The
Connection Machine
System

CMMD Reference Manual

Version 1.1
January 1992

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, October 1991
Revised, January 1992

*ekok * ok k a0 e 20 o o ok o 3 o s o o 3 o ok ke ke ke ok ok ke ok

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

gk sk 6 2 s 36 28 o 3 e o 26 o 2 3 2k ok ok ol dk ok e ok * * ok o 2 ok 3 ok e ke o o e o 3k ok ok

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-1, CM-2, CM-200, CM-5, and DataVault are trademarks of Thinking Machines Corporation.
CMost and Prism are trademarks of Thinking Machines Corporation

c*®isa registered trademark of Thinking Machines Corporation.

*Lisp and CM Fortran are trademarks of Thinking Machines Corporation.

CMMD is a trademark of Thinking Machines Corporation.

Thinking Machines is a trademark of Thinking Machines Corporation.

Motif is a trademark of The Open Software Foundation, Inc.

Sun, Sun-4, and SPARC are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 021421264
(617) 234-1000/876-1111

Contents

About This Manualcvitiiiiiiinnrnireetseunessesettotssssacnonnnns vii
CUStOMET SUPPOIT ...ttt ittt itniiitessearossreeennnssscesanncsasseonas ix
Chapter 1 Imtroduction.............................. e 1
1.1 Introducing CMMDevuunnennnnennnneennneenneeenneennnn 1

The Cooperative Message-Passing Model
TWO EXCEPHONS .. .vvvviiieernneerronnrensacsncrenanecnnaans 2
CMMD and Other CM Softwarecccviiiinirennnnnan 3
12 HowMany Nodes?coviiiiiiiniirinianiinenencnseecnennnses 3
CMMD Function SUMMArycoveiueennerrenencacenans 5
Single-Node Functions: HostOnly 5
Single-Node Functions: Host or Any Node 6
Two-Node Functionsccoiviiiiinenennnn. 7
Global Functions: All Nodes, but Not Host 8
Global Functions: Host plus All Nodes 9
13 Cand Fortran 77ccuiuiuninuennennennscoconcnnnaeaanannns 10
Chapter 2 Inmitialization i 1n
2.1 Initializing CMMDciiuteerennnnroesonnnnnsncossosssaans 11
2.2 Initializing the Short Message Facilityc.cooiinn... 12
2.3 Functions That Initialize CMMDc.cciiiiiiieaniinernnnnnnass 12
2.4 Functions That Initialize the Short Message Facility 14
Chapter 3 Processor Information 15
| 3.1 Processor Information Functionsc.ooiiiiiiiiiiiiiie, 15
Chapter 4 Message Passingcociiiiiiiiiiiinnianen. 17
41 Introductionc.ciiiiiiiiiiiiiiainentasrannnannasnanes 17
Blocking and Non-Blocking Message Passing 17

Version 1.1, January 1992 iii

iv

CMMD Reference Manual

42

43

44

Chapter 5
5.1

Chapter 6

Chapter 7

7.1
7.2

Chapter 8
8.1

Chapter 9
9.1

9.2
9.3

Patterns of Message Passingcoovviiinnn. 18
Regular Messages and Vector Messages 18
Functions for the Paired Sending and Receiving of Messages 19
42.1 SendingMessagescciiiiiiitiiriiiiieieieiaan 19
Standard Sends and Vector Sends 20
More about Vector Sendsc.civiiiiiininnnn, 22
422 Receiving Messagescoviveinnennennnraeenennnn 24
Standard Messages and Vector Messages 25
Simultaneous Sends and Receivescooviiiiiiiiiiiiiienn. 27
431 InAnyPatternooiininiiiiiiiiiiii it 27
432 Further NOtesoovvirnnnniiinirinnneivenasanenennnss 28
4.3.3 Swaps: An Exchange between Two Nodes Only 29
Non-Blocking Short Message Sendingc0niiennnnn 31
Pollingcooiiiiiiiii it e 33
Polling Functionc.coiiiiiiiiiinirenninrenisrenneennnens 33
Auxilliary Routinescoiiiiiiiit, 35
Broadcastsciiiiiiiiiiiiii i 37
Broadcasting the Entire Buffer to All Nodes 37
Distributing a Buffer among the Nodesccoiiinn, 38
Global Synchronizationcoil 41
Global Synchronization Functionscovvvierennennennnnnn 42
Scan, Reduction, and Concatenation Operations 45
Reductions, Scans, and Segmented Scansllt, 46
Reductionscviiiviererinnnniereeeeennnnesenannnnanas 46
CANSttt i ittt 47
Segmented SCANSovvvteinerrtraertriscnetotvasananns 48
Concatenationccoiviineennnecerensssaestsssctsensanans 48
Reduction Operationsccvevererreecosronecscnnennonnsas 49

Version 1.1, January 1992

Contents v

94 Scan Operationsccceeenecaronaocrnsnerronseennnnnns 51
Directionand Inclusion ..., 53

Smode and Sbitciiiiiiiiiiii it i et 54

9.5 Concatenation Operationscovvreeernunensaeerseeseeenns 56
Appendix A Routines That Let You Create Your Own Protocol 57
Al The Packet ROUHNESciverriinneennneneeeneneennerennnns 58

Index ... e e, 59

Version 1.1, January 1992

Aout his Maal

Objectives of This Manual

The CMMD Reference Manual describes the CMMD library, a library of commu-
nication routines used for creating message-passing programs (sometimes called
MIMD programs) to run on the Connection Machine CM-5 supercomputer. It pro-
vides

® a brief introduction to the library and to the host/node message-passing
model that it implements.

® a “quick reference” list of routines provided by the library, organized by
which processors (host, node, or both) and how many processors (one, two
or more, or all) can or must call the routine.

= reference chapters for each functional group of routines. These chapters
provide information on the routines themselves and, in some cases, on the
way in which the routines function and the uses to which they may be put.

intended Audience

This manual is written for programmers who are developing or porting message-
passing programs to run on the Connection Machine CM-5 supercomputer. It
assumes some previous knowledge of message-passing programming,.

Related Documents

CMMD User’s Guide: The CMMD Reference Manual should be used in
conjunction with the CMMD User 5 Guide, which provides an introduction to the
CM-5 supercomputer itself and to the manner in which message-passing
programs execute on that machine. Programmers new to the CM-5 supercom-
puter are urged to read the first two chapters of the user’s guide before beginning
programming on the machine.

Later chapters of the user’s guide describe the tools for compilation, linking,
debugging, and program analysis.

Version 1.1, January 1992 vii

viii CMMD Reference Manual

Manual Pages: The reference descriptions for individual routines provided in
this manual are also available on-line as manual pages accessible via the man
command.

Revision Information

This edition of the CMMD Reference Manual documents Version 1.1 of the
CMMD library. Readers should note that this library is still under development
and is therefore subject to change.

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter CMMD functions, and UNIX and CM System Soft-
ware commands, command options, and filenames,
when they appear in syntax statements or em-
bedded in text.

italics Argument names and placeholders in function and
command formats.

typewriter Code examples and code fragments.

% bold typewriter In interactive examples, user input is shown in
typewriter bold typewriter and system output is shown in
regular typewriter font.

Version 1.1, January 1992

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connec-
tion Machine operation and to suggest improvements in our products.

‘When reporting an error, please provide as much information as possible to help us iden-
tify and correct the problem. A code example that failed to execute, a session transcript,
the record of a backtrace, or other such information can greatly reduce the time it takes

Thinking Machines to respond to the report.

If your site has an Applications Engineer or a local site coordinator, please contact that
person directly for support. Otherwise, please contact Thinking Machines’ home office

customer support staff:

U.S. Masil:

Internet
Electronic Mail:

uucp
Electronic Mail:

Telephone:

Thinking Machines Corporation
Customer Support

245 First Street

Cambridge, Massachusetts 02142-1264

customer—support@think.com

ames!think!customer—support

(617) 234-4000
(617) 876-1111

Chapter 1

1.1

Introducing CMMD

The CM message-passing library, CMMD, provides facilities for cooperative
message passing between processing nodes. It thus provides simple inter-
processor communication that falls outside the range of the CM data parallel
languages.

This library is expected to be of particular interest to users who have written C
or Fortran programs for machines with MIMD architectures. Such users can port
their programs to the CM-5 by replacing the original message-passing library
calls with calls to CMMD routines.

The Cooperative Message-Passing Model

CMMD supports a programming model frequently referred to as host/node pro-
gramming. This model involves two simultaneously running programs. One
program runs on the host, while independent copies of the node program run on
each processing node. On the CM-5, the host is the partition manager (PM) that
controls a partition of the system, while the nodes are the processing nodes within
the partition. The host begins execution by performing needed initializations (in-
cluding initializing the CMMD library) and then invoking the node program; it
may have little involvement in subsequent computations.

Within this general programming model, CMMD permits cooperative concurrent
processing, in which synchronization occurs only between matched sending and
receiving nodes and only during the act of communication. At all other times,
computing on each node proceeds asynchronously.

Version 1.1, January 1992 1

CMMD Reference M.

This initial release of CMMD primarily supports blocking message sending and
receiving, but does provide limited support for non-blocking message passing as
well. (Future versions of the library are expected to offer further support for
asynchronous message passing.) Blocking routines are synchronized routines in
which senders wait for their recipients to respond before continuing execution,
and vice versa. Programmers using such routines must ensure that each sending
routine is matched with a receiving routine, or deadlock may ensue. (The CM-5
timesharing operating system ensures that any such deadlock affects only the
erring program, and has no effect on other programs sharing the partition.)

In addition, global functions provide for broadcasting data from and reducing it
to the host, for scan and reduce operations, and for global sychronization. (Like
their data parallel counterparts, CMMD global functions are able to take advan-
tage of the CM-5"s hardware support for global communications.)

Two Exceptions

Two exceptions to the cooperative message-passing format exist. The first is a
facility for sending non-blocking short messages. Using this facility, each node
can send one short message to one or more other nodes and then continue its
program without waiting for a response. Only one message from one given node
to another can be outstanding; sending two or more messages to the same node
requires some synchronization.

For example, node 1 can send node 3 a short message, then perform computa-
tions without waiting for node 3 to receive the message. If node 1 then sends a
second message to node 3, the system software will check the status of the first
message. If that first message has been received, the second is also sent as a
non-blocking message. If, however, the first message has not yet been received
by node 3, the second send will block until receipt of the first message.

The second exception is a pair of routines that operate outside the CMMD mes-
sage-passing protocol and thus allow programmers to define their own protocols.
These routines should be used only by programmers who are highly experienced
in writing message-passing programs, as they provide almost no safeguards
against disaster.

Version 1.1, January 1992

Chapter 1. Introduction 3

1.2

CMMD and Other CM Software

CMMD can be called from C and from Fortran 77. This manual documents the
C interface (that is, it uses C syntax and data types). Section 1.3, at the end of this
chapter, shows the relationship between C data types and Fortran data types.

CMMD routines are completely compatible with the current release of the CM-5
operating system, CMOST Version 7.1. Programs under the control of CMMD
routines, however, cannot make calls to data parallel CM libraries, such as paral-
lel /O or graphics routines. Standard (serial) C calls can be used: UNIX I/O calls
from the host program, for instance, or Xlib graphic routines. Future versions of
the CMMD library are expected to make provision for moving data between
CMMD and data parallel programming modes.

Please note that this library is under continual development and hence subject to
possibly substantial changes.

This manual provides information on the CMMD routines. See the CMMD User s
Guide for information on compiling, loading, use of timers, and debugging.

How Many Nodes?

Synchronization of processors under the message-passing model affects different
numbers of processors according to the operation being performed.

= When one node sends a message, and a second receives it, those two nodes
must synchronize. Until both have made their respective calls and the mes-
sage is transferred, neither call can return.

® If more than two nodes are involved in a set of messages (which can hap-
pen in send_and_receive calls), all those nodes must complete their calls
before any of the calls can return.

= When a global function is invoked, no call can return until every node (and
sometimes the host) has made the call.

= Informational functions usually involve only one node; for example, any
node may check whether it has a message pending without involving any
other node.

Version 1.1, January 1992

CMMD Reference Manual
e

Programs using CMMD calls have the responsibility of checking that all requisite
nodes make the appropriate calls at the appropriate times. If this is not done, pro-
gram performance will suffer and deadlock may ensue.

Please note that global routines can be used only when all processors in the parti-
tion take part. If some section of a program involves only a single subset of
processors, it cannot make a global call on that subset without hanging the entire

program.

The chart on the next several pages summarizes CMMD routines by functionality
and by the number and identity of nodes that must call them. Once you are ac-
quainted with the library, you can use this chart as a quick reference.

Succeeding chapters discuss each functional group of routines and provide refer-
ence writeups for each routine.

Version 1.1, January 1992

CMMD Function Summary

Single-Node Functions: Host Only

Enabling and Disabling Library Use

CMMD_enable ()

CMMD is_enabled()
CMMD_disable()
CMMD_suspend ()

CMMD is suspended()
CMMD_resume ()

Global Synchronization

CMMD barrier_ sync()

Version 1.1, January 1992

6 CMMD Reference Manual

Single-Node Functions: Host or Any Node

Informational Functions

CMMD_self address()
CMMD_host_node ()
CMMD_partition_size()

CMMD_bytes_received()
CMMD_bytes_sent()
CMMD msg_sender ()
CMMD msg tag()

Poliing

CMMD_msg_pending (int node, int tag)

Setting and Getting Global Or

CMMD_set_global or (int value)
CMMD get_global_or()

Sending Short Messages

CMMD_send_short (int destination, int tag, void *buffer, int len)
CMMD_wait_for_send (int destination)

Version 1.1, January 1992

Chapter 1. Introduction | 7

Two-Node Functions

(Note: In any of these functions, a single node may play both roles, being both
sender and receiver.)

Sending and Receiving Messages

CMMD send (int destination, int tag, void *buffer, int len)
CMMD_send_v (int destination, int tag, void *buffer, int elem_len,
int stride, int elem_cnt)

CMMD receive (int source, int tag, void *buffer, int len)
CMMD_receive_v (int source, int tag, void *buffer, int elem_len,
int stride, int elem_cnt)

CMMD send and_receive (int source, int source_tag, void *inbuffer,
int inlen, int destination, int dest_tag, void *outbuffer,
int outlen)

CMMD_send and_receive_v (int source, int source_tag, void
*inbuffer, int in_elem_len, int in_stride, int in_elem_cnt,
int destination, int dest_tag, void *outbuffer,
int out_elem_len, int out_stride, int out_elem_cnt)

CMMD_swap (int processor, void *inbuffer, int inlen, void *outbuffer,
int outlen)

CMMD_swap_v (int processor, void *inbuffer, int in_elem_len,
int in_stride, int in_elem_cnt, void *outbuffer,
int out_elem_len, int out_stride, int out_elem_count)

Version 1.1, January 1992

- CMMD Reference Manual

Global Functions: All Nodes, but Not Host

Global Synchronization

CMMD_sync_with nodes ()

Reduce, Scan, and Concatenate

CMMD_reduce_<type> (<type> value, CMMD_combiner_t combiner)

CMMD_scan_<type> (<type> value, CMMD_combiner_t combiner,
CMMD _scan_direction_t direction,
CMMD _segment_mode_t smode, int sbit,
CMMD_scan_inclusion_t inclusion)

CMMD_concat_with_nodes (void *element, void *buffer,
int elem_length)

Version 1.1, January 1992

Chapter 1. Introduction 9

Global Functions: Host plus All Nodes

Enabliing and Disabling Short Message Sending

CMMD_enable_short messages ()
CMMD_disable_short messages()

Broadcast

CMMD_bc_from_host (void *buffer, int len)
CMMD_receive_bc_from_host (void *buffer; int len)

CMMD_distrib to_nodes (void *buffer, int elem_length)
CMMD_receive_element_from host (void *buffer, int length)

Global Synchronization

CMMD_sync_host_with nodes()
CMMD sync_with host()

Reduce and Concatenate

CMMD_reduce_from nodes_<type> (<fype> value,
CMMD _combiner_t combiner)

CMMD_reduce_to_host_<type> (<type> value,
CMMD_combiner_t combiner)

CMMD_gather from_nodes (void *buffer, int elem_length)
CMMD concat_elements_to_host (void *element, int elem_length)

Version 1.1, January 1992

| 1.3 C and Fortran 77

Fortran 77 calling sequences for CMMD routines are identical to C calling
sequences, in terms of routine names, parameter names, and parameter order.

Data types, however, are declared differently. The following table shows transla-
tions from C data types to Fortran 77 data types.

c Fortran

int integer

char character
CMMD_combiner_t integer
CMMD_scan_direction_t integer
CMMD_segment_mode_t integer
CMMD_scan_inclusion_t integer
unsigned integer

float real

double double precision

In the ANSI C programming language, void is a special data type that has no
meaningful values. The equivalent of a Fortran SUBROUTINE (a subprogram that
returns no value) is expressed in C as a function whose return type is void.

A widespread C programming convention is that the type “pointer to void™ repre-
sents a pointer to any desired type. If a subroutine has a formal parameter of type
“pointer to void”, then a pointer of any type may correctly be used as the corre-
sponding actual argument. The called routine must then assume or deduce the
properties of the data pointed to, usually from information conveyed by the other
parameters.

The CMMD library uses this convention for all cases in which an argument is a
pointer to an area of memory that either contains data to be sent or is reserved for
data to be received. Pointers indicate only the starts of memory areas; the sizes
of the areas are specified through other parameters.

Version 1.1, January 1992

Chapter 2

Initialization

2.1 Initializing CMMD

Data parallel and message-passing program execution make different demands
on the CM-5’s communications networks (the Control Network and the Data Net-
work), and thus require different settings for network participation. For
message-passing programs using CMMD, these settings are controlled by two
pairs of functions, which must be called from the host. The first pair, CMMD_
enable and CMMD_disable, perform the initial tasks necessary first to enable
message passing and later to disable message passing and restore the network
setting to the state it was in when CMMD_enable or CMMD_resume was last
called. The second pair, CMMD_suspend and CMMD_resume, are used to suspend
and resume message passing temporarily within the course of a program (for ex-
ample, to allow use of some other library).

Programs or routines using CMMD should therefore begin with the host calling
CMMD_enable and end with the host calling CMMD_disable. Calls by the host
to CMMD_suspend and CMMD_resume may be placed where necessary within the
program (if they are needed). '

Each of these calls requires that the system be in the appropriate state: for in-
stance, an error results from trying to disable message passing when it is not
enabled. Therefore, two informational routines are provided: CMMD_is__
enabled tells whether message passing has been enabled; cMMD_i s_
suspended tells whether message passing is currently suspended.

Version 1.1, January 1992 11

12

CMMD Reference Manual

2.2

2.3

Initializing the Short Message Facility

At this initial release, CMMD uses a model of cooperative, or loosely synchro-
nous, message passing. A short message facility within CMMD does, however,
allow the non-blocking sending and receiving of short messages (up to 16 bytes).
This facility must be enabled and disabled separately from CMMD itself. A pro-
gram enables CMMD and starts passing messages. At some point, when the
sending of short messages is useful, the program enables that facility, creating
short-message buffers on all the nodes. When the facility is no longer useful, it
may be disabled and its buffer space reclaimed. If the facility is still enabled
when CMMD itself is disabled, it will be disabled automatically as part of the
overall disabling.

The routines that enable and disable the sending of short messages are CMMD_
enable_short messages and CMMD_disable_short messages. These
routines must be called synchronously by all nodes and the host; they are dis-
cussed at the end of this chapter.

Functions That Initialize CMMD

CMMD_enable ()

CMMD_enable must be called by the host at the beginning of any program that
uses CMMD routines. It records the current states of communications in the net-
works, allocates space for message buffers in the host and the nodes, and
initializes variables needed for message-passing operations, and synchronizes
the host and nodes.

CMMD is_ enabled()

CMMD_is_enabled returns TRUE if CMMD is currently enabled (that is, if it has
been enabled and is not suspended). Otherwise, it returns FALSE. Only the host
can call this function.

Version 1.1, January 1992

Chapter 2. Initialization 13

CMMD_disable()

CMMD_disable must be called by the host at the termination of a program that
uses CMMD routines. It synchronizes the host with the nodes, deallocates the
space originally allocated in the host and the nodes for message buffers, and re-
stores the original states of the communications networks. (That is, it returns the
networks to the state found when CMMD_enable or CMMD_resume was last
called.)

An error is signaled if CMMD is not currently enabled. If it has been suspended,
it must be resumed before it can be disabled.

CMMD_suspend ()

CMMD_suspend returns control temporarily to the host processor, to allow data
parallel processing. The routine synchronizes the host with the nodes, saves the
current states of the communication networks, and restores the states that the net-
works were in before the latest CMMD_enable or CMMD_ resume was called. This
routine can be called only by the host.

CMMD_suspend signals an error if CMMD has not been enabled or if it is already
suspended.

CMMD is suspendad()

CMMD_is_suspended returns TRUE if message passing has been enabled and
then suspended; otherwise, it returns FALSE. Only the host can call this routine.

CMMD_resume ()

If CMMD has been suspended, CMMD_resume saves the current states of the com-
munications networks and restores the communications network states in effect
before the last call to CMMD_suspend. The user program should ensure that host
and nodes are synchronized after making this call before beginning message

passing again.

Version 1.1, January 1992

2.4

CMMD Reference Manual

CMMD_resume can be called only by the host. It returns an error if CMMD is not
in a suspended state.

Functions That Initialize the Short Message Facility

CMMD_enable_short messages ()

CMMD_enable_short messages synchronizes the host and all nodes and allo-
cates internal storage necessary to support the non-blocking sending of short
messages via the CMMD_send_short function. It must be called on the host and
all nodes.

CMMD_enable_short_messages has no effect on a program’s ability to use
CMMD calls other than CMMD_send_short. All standard CMMD calls can be
used while the send_short facility is enabled.

An error is signaled if the facility is already enabled.

CMMD_disable_short messages ()

CMMD_disable_short messages disables the non-blocking sending and
receiving of short messages. It must be called on the host and all nodes.

On each node, the call waits until all short messages sent from this node have
been received (e.g., by CMMD_receive). It then frees the internal storage allo-
cated on that node for short message support.

If short message passing is enabled at the time that CMMD itself is disabled, then
this function is called internally by CMMD_disable.

An error is signaled if this function is called when the facility is not enabled.

Version 1.1, January 1992

Chapter 3

Processor Information

3.1

Processors, both host and nodes, must address each other explicitly during mes-
sage passing. Therefore, routines are needed to provide host and node identifiers.
CMMD_host_node provides the host identifier, while CMMD_self_address
provides the calling node’s own identifier.

For each partition, the set of node identifiers consists of the integers from 0 to the
number of nodes in the partition minus 1, inclusive. The function CMMD_parti-
tion_size returns the size of the current partition, The host identifier is an
integer outside the range of the partition size.

Processor Information Functions

CMMD self address()

Called from a process running on a given node, CMMD_self_address returns
the node identifier for that node.

Node identifiers are integers, from 0 to the maximum number of processors in the
partition —1, inclusive. For example, every 128-node partition contains nodes
0 to 127. Node identifiers are logical identifiers: programs and programmers
need never concern themselves with physical processor addresses.

Version 1.1, January 1992 - 15

CMMD host nodae ()

CMMD_host_node returns the host identifier (an integer not in the partition set).
It can be called from the host itself or from any node.

CMMD partition size()

CMMD_partition_size returns the number of processors in the current parti-
tion. It can be called from the host or from any node.

Version 1.1, January 1992

Chapter 4

Message Passing

4.1 Introduction

Blocking and Non-Blocking Message Passing

This initial version of CMMD primarily supports cooperative message passing,
in which the sending and receiving of messages are synchronized. Most of the
message-passing routines discussed in this chapter fit this model. They not only
pass information from one node to another, but also synchronize the nodes in so
doing. They are therefore called blocking routines.

CMMD does, however, allow the non-blocking sending and receiving of short
messages (up to 16 bytes). This facility must be enabled and disabled separately
from CMMD itself, using the routines CMMD_enable_short_messages and
CMMD_disable_short messages. These routines, which must be called by
host and all nodes, are discussed in Chapter 2.

Two routines are used to send short messages: CMMD_send_short to actually
send the message, CMMD_wait_for_send to allow users to impose some mea-
sure of synchronization, should they wish to do so. These routines are discussed
in Section 4.4, at the end of this chapter. No special routines are needed for
receiving short messages: CMMD_receive or CMMD_receive_v may be used.

Version 1.1, January 1992 17

18 CMMD Reference Manual

Patterns of Message Passing

A processor can play one of four roles in message passing:
®]t can send a message.
= It can receive a message.

= It can send and receive messages simultaneously. Two special cases:

» It can take part in a cshift, in which all nodes simultaneously send
(in one direction) and receive (from another direction).

= It can take part in a swap, in which it and one other processor ex-
change messages, simultaneously sending to and receiving from
each other.

Routines are provided for each of these roles: send, receive, send_and_receive,
and swap. These routines are discussed in Sections 4.2 and 4.3.

Regular Messages and Vector Messages

Message-passing routines support two types of messages: standard messages, in
which bytes are stored in normal sequential order, and vector messages, in which
elements are separated by some amount of space. Each of the routines in this
section, therefore, has two versions: a standard version, and a vector version
(labeled with a final _v).

In a vector message, the distance between the starting position of one element
and the starting position of the next element is referred to as the “stride.” The
stride includes one element plus the intervening space before the beginning of the
next element. Normally, therefore, the stride is larger than the element size.

Element Element

Stride

Version 1.1, January 1992

Chapter 4. Message Passing 19

4.2 Functions for the Paired Sending and
Receiving of Messages

4.2.1 Sending Messages

CMMD_send (int destination, int tag, void *buffer, int len)

CMMD_send_v (int destination, int tag, void *buffer; int elem_len,
int stride, int elem_cnt)

destination An integer identifying the node to which the message is
to be sent.
tag An integer from 0 to 127, inclusive, which serves as a

label for the message.

*buffer A pointer to a buffer that contains the message to be sent.
len The length of the buffer, in bytes.
elem_len (Vector sends only.) An integer specifying the length of

each element in the vector.

stride (Vector sends only.) An integer specifying the distance in
bytes between the starting addresses of vector elements.

elem_cnt (Vector sends only.) An integer specifying the number of
elements in the vector.

CMMD_send and CMMD_send_v send the contents of a buffer of specified length,
tagged with the specified tag, to the given destination node. The node must be
inside the partition; otherwise, an error results. (The symbol DEFAULT MSG_TAG
is the standard default tag.)

Buffers may be of any length up to the maximum memory per node. A NULL
buffer pointer or a length of zero causes a message of zero data length to be sent.

The message is not sent until the receiving node acknowledges that it is ready to
receive a message labeled with the specified tag from this node. In its response,
the receiving node specifies the maximum length of the message it is willing to
receive. Normally, this is the same as the length specified by CMMD_send, but it
may be either larger or smaller.

For example, if the receiving node does not know the length of the message to
be sent to it, it can specify the maximum buffer length (or whatever shorter length

Version 1.1, January 1992

CMMD Reference Manual

R

seems a reasonable maximum for the type of message expected) and accept as
many (or as few) bytes as the sender desires to send.

On the other hand, if the receiving node does not have room for the full message
that the sender wishes to send, it can signal that it wishes to receive a shorter
message. CMMD_send is constrained to send no more data than the receiver has
signaled that it can accept. (Please note: This is an implementation-dependent
constraint that may be lifted at some future release.) Thus, it sends either the
amount it planned to send or the amount CMMD_receive allows, whichever is
less.

After sending whatever amount of data it is allowed to send, CMMD_send returns;
it returns a value of 0 if it sent its entire message and a value of 1 if it sent a
smaller amount. In the latter case, or in the case in which CMMD_receive allo-
cates a “maximum-length” buffer, the program should call cMMD_bytes sent
to get the number of bytes actually sent.

Standard Sends and Vector Sends

A standard message, sent by CMMD_send, begins at the starting place identified
by the *buffer argument, and proceeds for len sequential bytes. A vector mes-
sage, sent by CMMD_send_v, takes a number of non-sequential elements from the
buffer, and sends those as a sequential message. (In other words, it performs an
implicit gather.)

Normally, the stride specified for CMMD_send_v will be larger than the element
length. This difference creates the vector send: elem_len bytes are put into the
message, then (stride — elem_len) bytes are skipped over, then the next elem_len
bytes are added to the message, and so on, until the specified number of elements
has been placed in the message to be sent. (See Figure 1).

If the stride and element length are specified as being equal, the result is the same
as a non-vector send: (elem_len * elem_cnt) bytes are sent.

If the stride is smaller than the element length, CMMD_send_v sends elem_len
bytes starting at each stride. For example, a stride of 0 would result in the same
element being sent elem_cnt times.

Note that you do not specify the total length of the message in a vector call. Rath-
er, the length is the result of multiplying the number of elements by the length of

Version 1.1, January 1992

Chapter 4. Message Passing 21

each element. Note also that unless the element length and the stride are identical
(in which case you are using a vector call to do a standard send), the buffer itself
must be longer than the message to be sent from it, since its length must equal
the number of elements multiplied by the stride. Figure 1 illustrates stride, ele-
ment length, element count, message length, and buffer length for a vector send.

Element Element

forthissend: Elem_len = 4
Stride = 8
Elem_cnt = 2

Text of message:

Figure 1. A vector send.

As an example of regular and vector sends, let us consider the case of a 4 x 6
matrix A, filled with self-addresses from 0 to 23, in which each element is one
byte long, laid out in memory as follows:

o

1 2 3 4 5
7 8 9 10 11
A= 12 13 14 15 16 17

18 19 20 21 22 23

[=,]

Version 1.1, January 1992

CMMD Reference Manual

To send the top row of the matrix as a message to node 5, you would use the call
CMMD_send (5, DEFAULT MSG_TAG, &A, 6)

To send the first column of the matrix to node 3, on the other hand, you would
need a vector send, stating that you were sending four elements (elem_cnf), each
one byte long (elem_len), located six bytes apart (stride).

CMMD_send v (3, DEFAULT MSG_TAG, &A, 1, 6, 4)

Normally, the receiving node would accept the first message with a standard re-
ceiving call (CMMD_receive) and the second with a vector receiving call
(cMMD_receive_v), thus preserving the original geometry of the data. They are
not, however, required to do so. Indeed, you could transpose this sample matrix
by sending each row as a sequential message, but having each received as a
six-element vector with a stride of 4.

More about Vector Sends

Vector sends, like standard sends, are constrained by the destination’s receive
request. A sending node offers to send (selem-count * selem-length) bytes; a re-
ceive message agrees to accept (delem-count * delem-length). The smaller
number of the two is sent, in the following manner:

(1) Each element of the source is sent in its entirety until the appropriate
number of bytes sent is reached.

(2) If selem_len '= delem_len, the source elements will be broken up and
distributed across the destination’s element length (not across its stride).

Note that this is in contrast to what some might expect. CMMD calls DO NOT send
only as many bytes of each source element as will fit in each destination element.

Version 1.1, January 1992

Chapter 4. Message

For example, if selem_len > delem_len

8,

selem len = 5, sstride
= 3

delem len = 2, dstride

the source buffer would contain

(lefofafa] | [J2l2]2f2f2] T] [3[3[3]s]s] | | [4]4]4]af4] e

and the destination buffer (after the operation) would contain

[elof [afa] [af2] [af2] J2]2] 3]3] [3{3] [3]4] [4]4] [4]4] e

On the other hand, if selem_len < delem_len

sstride = 5,

selem len = 2,
= 3, dstride = 4

delem_len

the source buffer would contain

Lfef [[af2f T 1 [sf3[[[4]4]e--

and the destination buffer (after the operation) would contain

Lt]tf2] [2]3]3] [4]4] e«

Version 1.1, January 1992

24 CMMD Reference Manual
R R R e e

4.2.2 Receiving Messages
CMMD _receive (int source, int tag, void *buffer, int len)

CMMD_receive_v (int source, int tag, void *buffer, int elem_len, int stride,
int elem_cnt)

source An integer identifying the node from which the message
is to be sent (ANY_NODE allows any node to be the
sender).

tag An integer from 0 to 127, inclusive, which serves as a
label for the message (ANY_TAG allows receipt of a mes-
sage labeled with any tag).

*buffer A pointer to a buffer that will contain the message to be
received.

len (Non-vector function only.) The length of the buffer, in
bytes.

elem_len (Vector functions only.) An integer specifying the length

of each element in the vector, in bytes.

stride (Vector functions only.) An integer specifying the dis-
tance in bytes between the starting addresses of the
vector elements.

elem_cnt (Vector functions only.) An integer specifying the num-
ber of elements in the vector.

CMMD_receive and CMMD_receive_v inform the source node that they are
ready to receive a message of len bytes with a specified tag; they then wait for
a message with the given tag to be sent from the given source. These routines can
take the special symbol ANY_NODE as the source argument, indicating that any
source is acceptable, and the symbol ANY_TAG as the tag argument, indicating
that any tag will be accepted.

If ANY NODE is given, the program can call the function CMMD_msg_sender ()
to get the node identifier of the actual sender; if ANY_TAG is used,
CMMD_msg_tag () can be called to get the tag of the accepted message.

Once an acceptable message is sent, CMMD_receive and CMMD_receive v
copy the message into the specified buffer. They return a value of 0 if the number

Version 1.1, January 1992

of bytes received equals /en; otherwise they return 1, and CMMD_bytes_
received () can be called to get the number of bytes actually received.

Standard Messages and Vector Messages

All messages sent by CMMD calls are packed in sequential order. For many, this
is the actual data ordering: CMMD_receive handles this type of message.

Other messages, however, send data that is not to be considered sequential: an
array section would be one example. In this case, CMMD_receive_v is used, and
the call specifies that the information to be received is to be considered a vector
of e elements (elem_count), each m bytes long (elem_length), each element to be
placed in an area of the buffer that is n bytes long.

The placement of the data in the buffer thus depends on the relationship between
stride and elem_len:

® If stride > elem_len (the usual case) the elements will be placéd in the
specified buffer at intervals, each separated by (» minus m) bytes.

» 1If stride = elem_len, then the elements are placed sequentially in the buff-
er, as for a standard receive.

= If stride < elem_len, subsequent elements overwrite previous ones where
they overlap.

CMMD_send_v and CMMD_receive_v are frequently paired, so that data is
received in the same geometry from which it was sent. It is possible, however,
to receive data in a geometry different from that in which it was sent: for instance,
sequential data may be broken into a vector (thus “scattering” the data), or a vec-
tor received as sequential (thus “gathering” it). Figure 2 illustrates these four
possible patterns.

Version 1.1, January 1992

26

CMMD Reference Manual

send 4 bytes oli1l1213
receive 4 bytes ol1l1213

send_v 4 elements:

stride = 2, elem_len = 1 1 1 1 i
receive_v 4 elements:

stride = 2, elem_len = 1 0 2 4 6
send 4 bytes ol11213

receive_v 4 elements:

stride = 2, elem_len = 1 0 1 2 3
send_v 4 elements:

stride = 2, elem_len = 1 0 2 4 6

receive 4 bytes 0l21416

Figure 2. Sending and receiving data.

Version 1.1, January 1992

Chapter 4. Message Passing 27

4.3 Simultaneous Sends and Receives

4.3.1 In Any Pattern

CMMD_send_and_receive (int source, int source_tag, void *inbuffer; int inlen,
int destination, int dest_tag, void *outbuffer,
int outlen)

CMMD_send_and_receive_v (int source, int source_tag, void *inbuffer,
int in_elem_len, int in_stride, int in_elem_count,
int destination, int dest_tag, void *outbuffer,
int out_elem_len, int out_stride,
int out_elem_count)

source An integer identifying the node from which a message
will be received by this node.

source_tag An integer, 0-127 inclusive, or ANY_TAG, labeling the
message to be received.

*inbuffer Pointer to the buffer that will contain the message to be
received.

inlen (Non-vector functions only.) Length, in bytes, of the buff-

er to hold the message received by this node.

in_elem_len (Vector functions only.) Length, in bytes, of each element
in the vector to be received by this node.

in_stride (Vector functions only.) Number of bytes between starting
addresses of elements in the vector that comprises the
message to be received by this node.

in_elem_count (Vector functions only.) Number of elements that com-
prise the vector to be received by this node.

destination An integer identifying the node to which this node will
send a message.

dest_tag An integer, 0—127 inclusive, labeling the message that
will be sent by this node.

*outbuffer A pointer to the buffer holding the message to be sent by
this node.

Version 1.1, January 1992

outlen (Non-vector functions only.) Length, in bytes, of the buff-
er to be sent by this node.

out_elem_len (Vector functions only.) Length, in bytes, of each element
in the vector to be sent by this node.

out_stride (Vector functions only.) Number of bytes by which start-
ing addresses of elements in the vector to be sent are
separated.

out_elem_count (Vector functions only.) Number of elements that com-
prise the vector to be sent by this node.

These two functions allow nodes to send and receive messages simultaneously.
The routines can be used to perform common grid communication, or to send and
receive in more random patterns. Any number of nodes can take part in one of
these calls; the only requirement is that each node must both send a message and
receive a message. (See CMMD_swap and CMMD_swap_v for a simpler way to
send and receive simultaneously when two nodes are involved, each serving as
both source and destination for the other.)

The functions cause the message in the calling node’s outbuffer to be passed to
the destination node at the same time that a message is read into the calling
node’s inbuffer from the source node. The buffers may overlap.

CMMD_send_and_receive and CMMD_send and receive_v do not return
until the calling node has sent one message and received one. They return TRUE
if the number of bytes received equals inlen and the number of bytes sent equals
outlen; otherwise they return FALSE, and CMMD_bytes_received () and
CMMD_bytes_sent () can be called to get the number of bytes received and
sent, respectively.

CMMD_send_and_receive handles sequential data, while CMMD_send_
and_receive_v exhibits gather/scatter behavior.

4.3.2 Further Notes

(1) The strides for sent and received messages do not have to be equal. For
example, to perform a transpose in which the sends are vectored and the
receives are sequential, set in_stride as needed for the sends and set it
equal to in_elem_len for the receives. (For more information on vector
messages, see the entry for CMMD_send.)

Version 1.1, January 1992

Chapter 4. Message Passing 29

(2) The send_and_receive functions should be used when a program needs
to perform circular shifts on an array. Each node sends in one direction
and receives from another direction, as in the example diagrammed in
Figure 3 below.

Inbuf

outbuf

Figure 3. A circular shift on 4 nodes.

(3) Sends and receives may be mixed with send_and_receive functions. For
example, you might mix these calls in order to create an end-off shift on
four nodes:

Node 0: cMMD_send: uses boundary value, sends to node 1
Node 1: CcMMD_send_and_receive: receives from 0, sends to 2
Node 2: CMMD_send_and_receive: receives from 1, sends to 3
Node 3: CMMD_receive: receives from 2

4.3.3 Swaps: An Exchange between Two Nodes Only
CMMD_swap (int processor, void *inbuffer, int inlen, void *outbuffer, int outlen)

CMMD_swap_v (int processor, void *inbuffer, int in_elem_len, int in_stride,
int in_elem_count, void *outbuffer, int out_elem_len,
int out_stride, int out_elem_cnt)

processor An integer identifying the node with which a message is
to be swapped.

Version 1.1, January 1992

*inbuffer

inlen

in_elem _len

in_stride

in_elem_count

*outbuffer

outlen

out_elem_len

out_stride

out_elem_count

A pointer to the buffer that will hold the received
message.

(aMD_swap only.) Length, in bytes, of the buffer that
will hold the message received by this node.

(cMMD_swap_v only.) Length, in bytes, of each ele-
ment in the vector to be received by this node.

(cMD_swap_v only.) Number of bytes between start-
ing addresses of elements in the vector to be received by
this node.

(cMD_swap_v only.) Number of elements that com-
prise the vector to be received by this node.

A pointer to the buffer holding the message to be sent by
this node.

(caMp_swap only.) Length of the buffer to be sent by
this node.

(cMMD_swap_v only). Length, in bytes, of each element
in the vector to be sent by this node.

(cMD_swap_v only.) Number of bytes by which start-
ing addresses of elements in the vector to be sent are
separated.

(cMp_swap_v only.) Number of elements that com-
prise the vector to be sent by this node.

CMMD_swap is identical to CMMD_send_and_receive (and CMMD_swap_v to
CMMD_send_and_receive_v) where the source node equals the destination

node.

For an explanation of sequential versus vector routines, sec CMMD_send.

Version 1.1, January 1992

Chapter 4. Message Passing 31

4.4 Non-Blocking Short Message Sending

cMMD_send_short (int destination, int tag, void *buffer, int len)

destination An integer identifying the node to which the message is
to be sent.

tag An integer from 0 to 127, inclusive, which serves as a la-
bel for the message.

*buffer A pointer to a buffer that contains the message to be sent.

len The length of the buffer, in bytes.

CMMD_send_short sends a message of up to CMMD_SHORT MESSAGE_BYTES
(16) from this node’s buffer, labeled with the specified tag, to the destination
node. If no previous short send from this node to the specified destination node
is outstanding, CMMD_send_short returns immediately; unlike CMMD_send, it
does not wait for the destination to receive the message. If a previous short send
from this node to the specified destination node is still in transit, the call waits
until that message has been received (e.g., by CMMD_receive) before returning.

Note that a given node can send a single short message to any number of destina-
tion nodes, without having to wait for acknowledgment.

An error is signaled if CMMD_send_short is called when the short message
facility is not enabled; that is, before the host and all nodes have called
CMMD_enable_short_messages, or after they have called CMMD_disable_
short_messages.

CMMD_wait_for_send (int destination)

destination An integer identifying the node to which the message is
to be sent.

CMMD_wait_for_ send checks to see whether a prior short message from this
node to the specified destination node is outstanding (not yet received). If such
a message exists, the function waits until that message has been received (e.g.,
by CMMD_receive). If destination is ANY_NODE, the function waits until all pre-
vious messages from this node to any destination have been received.

Before sending a message to the specified node (n), CMMD_send_short(n, ...)
automatically calls CMMD_wait_for_send(n), thus ensuring that a second send

Version 1.1, January 1992

32 CMMD Reference Manual

to node n does not occur until the first has been received. A program would call
CMMD_wait_for_send explicitly if the programmer wanted to ensure that a
message to one node was received before a message to another node was sent,
but did not want to wait immediately after the first send. The pattern might be

send short to noden
do some other stuff
call wait_for_send on noden
send short to nodem

Version 1.1, January 1992

Chapter 5

Polling

5.1

Message-passing programs need some way of identifying whether, at any given
time, there are messages that are either in transit or waiting to be sent. To identify

such messages, a program polls for them.

A process on any individual node may call CMMD_msg_pending () to poll for
a message, and issue a message-receive call only after it knows that a message
is waiting to be sent. This allows the process to avoid having to block while wait-
ing for a message. (A receiving process that relies on polling but polls
infrequently may, of course, cause sending processes to block while waiting for
the receiver.)

Polling Function

CMMD msg_pending (int node, int tag)
node Integer identifying a node. (May be ANY_NODE.)
tag Integer identifying a tag. (May be m_'rAG.)

CMMD_msg_pending returns TRUE if there is a message waiting to be received
from the specified node (or from any node if ANY_NODE is supplied as the node
argument) with tag fag (or any tag if ANY_TAG is supplied as the tag argument).
It returns FALSE otherwise.

If ANY_NODE is used, the function CMMD_msg_sender () can then be called to
get the node identifier of the pending sender; if ANY_TAG is used, CMMD msg_tag
will return the tag of the pending message.

Version 1.1, January 1992 33

Chapter 6

Aucxiliary Routines

These are the routines that tell you what really happened when you sent that mes-
sage from one node to another: How much was sent or received? By what node
was it sent? How was it tagged? Although their obvious uses are as responses to
return values of 1 (signifying incomplete transmission or reception) or to the re-
ception of messages sent from ANY_NODE or labeled with ANY_TAG, these
informational routines can be called at any point during a program.

CMMD_bytes_received() Returns the number of bytes received by this
node in its most recent message.

CMMD_bytes_sent () Returns the number of bytes sent in the last
message.
CMMD msg_sender () Returns the node identifier for the last message

received except when issued following a call to
CMMD_msg_pending. In that case:

« If the call to CMMD_msg_pending
returned TRUE, CMMD_msg_sender
returns the identifier of the node that is
waiting to send a message.

« If the call to CMMD_msg_pending
returned FALSE, calling CMMD_msg_
sender causes an error.

Version 1.1, January 1992 A 35

36 CMMD Reference Manual

CMMD_msg_tag() Returns the tag of the last message received
except when issued following a call to CMMD_

msg_pending. In that case:

» If the call to CMMD_msg_pending
returned TRUE, CMMD_msg_tag returns
the tag of the message that is waiting to
be received.

= If the call to CMMD_msg_pending
returned FALSE, calling CMMD _msg_
tag causes an CIror.

Version 1.1, January 1992

Chapter 7

Broadcasts

Broadcasts are messages sent from the host to all nodes. Two kinds exist: The
host may broadcast the entire contents of the buffer to all nodes (in which case
all receive identical data) or it may parcel out elements from the buffer among
all nodes, one element per node.

All nodes receive data simultaneously, and all receive the same amount of data.
For this reason, it is very important to ensure that all nodes have sufficient buffer
space to hold the broadcast message.

The host and all the nodes must take part in these broadcasts. Once a broadcast
is signaled, either by the host or by any node, the hardware begins checking for
responses. Only when the hardware signals that the entire broadcast is complete
can any of the broadcast calls return.

7.1 Broadcasting the Entire Buffer to All Nodes

CMMD bc_from_host (void *buffer, int len)
CMMD_receive_bc_from_host (void *buffer, int len)

*buffer A pointer to a buffer that holds the message being broad-
cast and received.

len The length, in bytes, of the buffer being broadcast and
received.

Version 1.1, January 1992 37

38

7.2

CMMD Reference Manual

The host process calls CMMD_be_£rom_host to broadcast a buffer of the
specified length (in bytes) to all nodes. All nodes must call CMMD_receive_
bc_from host, with the same length argument, to receive the buffer.

PLEASE NOTE

If length arguments are not identical across all nodes, a segmen-
tation fault may result.

Please note also that all processors within the partition must

take part in this operation. If a given program divides the parti-

tion into sections, an attempt to use global operations within a
~ section will fail.

These functions do not return until the broadcast is complete; that is, until the
host and all the nodes have made their calls.

Distributing a Buffer among the Nodes
CMMD_distrib to_nodes (void *buffer, int elem_length)
CMMD_receive_element from host (void *buffer, int length)

*buffer A pointer to the buffer that holds the messages being sent
- and received.

For the host, the length of the buffer (in bytes) must be at
least (CMMD_partition_size () * elem_length).

For a node, the length must be at least elem_length.

 elem_length The length (in bytes) of each element to be sent.

length The length (in bytes) of the buffer that is to receive the
element being sent.

Version 1.1, January 1992

Chapter 7. Broadcasts 39

The host process calls CMMD_distrib_to_nodes in order to distribute ele-
ments of the given length from the specified buffer to each node in processor
order. The length (in bytes) of the buffer on the host must be at least (CMMD_
partition_size() * elem_length). Only the first (CMMD_partition_
size () * elem_length) bytes are sent; each node receives one element.

In response to the host call, all nodes must call CMMD_receive_element_
from_host, specifying a buffer of the appropriate size to receive the element.

Neither the host call nor any of the node calls return until all have been made and
completed.

Version 1.1, January 1992

Chapter 8

Global Synchronization

Global synchronization functions, as.their name implies, serve to synchronize all
nodes (and optionally the host as well) at a given point in a program. Three ver-

sions are provided:

CMMD_sync_host_with_nodes This pair of calls serves as a synchroni-

CMMD_sync_with host

CMMD_sync_with nodes

CMMD barrier_sync

zation point for host and nodes together.

This call, sent by all nodes, allows them
to synchronize themselves without the
host’s participation.

This call, sent only by the host, synchro-
nizes host and nodes at the completion of
all currently executing node functions.

All processors in the partition must join in these calls. Once the host or any node
has begun one of these synchronization calls, the CM hardware keeps track of
responses, and allows none of the calls to return until all nodes (and the host,
when needed) have made their call.

In addition to these synchronous routines, two asynchronous global OR routines
allow host and all nodes to signal to each other by contributing to a global OR and

reading its results.

CMMD_set_global or

CMMD_get_global or

Version 1.1, January 1992

41

Sent by host and all nodes, this call con-
tributes a value (0 or nonzero) toward the
creation of a global OR.

Sent by host or any node, this call reads
the current value of the global OR.

8.1

CMMD Reference Manual
R R

By using the CMMD_set_global_or function, each processor contributes to the
global OR at an appropriate time; the hardware checks and updates the global
value at frequent intervals; and individual processors read the value when de-
sired. Thus, the global OR mechanism can be used as a non-blocking method of
determining when all processors have reached a given state. All processors
would start a task, for instance, by sending a 1. As each finished its share of the
task, it would send a 0. By checking the value of the global OR (which would
change to 0 only when all processors had finished), a processor could determine
whether the whole task was complete and thus select its own next action.

Please note: These asynchronous global OR functions should not be confused
with the synchronous global-OR reduction operation, which is explained later, in
the section on Scans, Reductions, and Concatenation.

Global Synchronization Functions

CMMD_sync_host_with nodes ()
CMMD_sync_with_host ()

The host calls CMMD_sync_host_with nodes to synchronize itself and all the
nodes. The nodes respond by calling CMMD_sync_with_host. These calls re-
turn only after the host and all nodes have made the call.

CMMD_sync_with nodes ()

CMMD_sync_with_nodes synchronizes the calling node with all other nodes.
Once one node has made this call, all nodes must; the function does not return
until they do. (Note that this routine does not involve the host.)

Version 1.1, January 1992

Chapter 8. Global Synchronization 43

e

CMMD barrier_sync()

A program running on the nodes of a CM-5 system alternates between two states:
It can be executing a procedure, or it can be in the dispatch loop, waiting for the
host to initiate execution of a procedure. (For more information about this execu-
tion process, see Chapter 2 of the CMMD User s Guide.)

The CMMD_barrier_sync function is called by the host only. It synchronizes
the host with the completion of all previously called node procedures. It returns
only when all nodes have finished execution and have returned to the dispatch
loop.

PLEASE NOTE

All host-node communication for all nodes in a given program
block must be complete before the host processor makes this
call. If the call is made while any communication between host
and node is pending, the program will hang.

CMMD set_global_or (int value)
value An integer, either 0 or nonzero.

Callable on any processor (host or node), CMMD_set_global_or allows a pro-
cessor to contribute a value (either 0 or some nonzero integer) to a global OR
function — that is, an OR in which host and all nodes may take part. The function
returns when the value has been sent; it does not wait for participation by any
other processor.

Version 1.1, January 1992

CMMD Reference Manual

CMMD_get_global_or()

Callable on either the host or the nodes, CMMD_get_global_or returns the cur-
rent value of a global OR function over all processors, host and nodes alike.

This function is asynchronous; it requires participation by no other processors.

IfcMMD_set_global_or has not already set a value for the global OR, calls to
CMMD_get_global_or return unpredictable results.

As contributions to this global OR may be asynchronous, the hardware checks the
value at frequent intervals and updates it as needed. Note, however, that some
network delay exists during reception and propagation of values; thus, there is a
small but actual window between the time at which a processor sends a
set_global or message and the time by which that message can affect the
result of another node’s get_global_or request.

Version 1.1, January 1992

Chapter 9

Scan, Reduction, and Concatenation
Operations

Scans, reductions, and concatenation are global operations. Given a buffer con-
taining some value in each node, these global computations operate cumulatively
on the buffer set to perform such tasks as

* summing the value across all the nodes
* finding the largest or smallest value
® performing a bitwise AND, OR, or XOR

For reduction operations, the final value can be returned either to all the nodes
or to the host. For scans, the cumulative results are returned as a running tally
across all the nodes.

All nodes within the partition must take part in these calls. If the result is to be
returned to the host, then the host must also take part.

These global functions impose synchrony: those involving both host and nodes
do not return until host and all nodes have made their (different) calls; those in-
volving only nodes do not return until all nodes have made the call.

Each scan and reduction function comes in four versions: one for integer, one for
unsigned integer, and one each for single- and double-precision floating-point
numbers. Each version requires as input a value of the type specified in its name,
and returns a value of the same type. Exceptions to this rule are the float routines,
which take float arguments but return double results.

Because scan and reduction functions may perform one of a number of opera-
tions, they take as an argument one of the following symbols representing the
operation to be performed.

Version 1.1, January 1992 45

- 9.1

CMMD Reference Manual

CMMD_combiner_add Add operations.

CMMD_combiner uadd Add operations (unsigned).
CMMD_combiner_ max Return the largest value found.
CMMD_combiner_umax Return the largest value found (unsigned).

CMMD_combiner_min Return the smallest value found.
CMMD_combiner_umin Return the smallest value found (unsigned).
CMMD_combiner_ior Inclusive OR operation.
CMMD_combiner_xor Exclusive OR operation.

CMMD_combiner_and Logical AND operation.

Thus, for example, a CMMD_reduce_int function, called using the CMMD_com-
biner_max argument, would compare the values on all nodes and return the
largest value to all nodes, while a call to CMMD_reduce_to_host with the
CMMD_combiner_add argument would add the values from all nodes and return
the sum of the values to the host. '

Reductiohs, Scans, and Segmented Scans

Reduction operations, scans, and segmented scans provide three basic methods
of all-to-all and all-to-one communication. (See Figure 4.)

Reductions

A reduce operation starts with values in every processor and ends with a single
value, either in every node or in every node plus the host processor. Values may
be added, so that the sum of all values is returned; or the largest or smallest value
may be chosen; or an OR or XOR may be done across all the values. In each case,
one final result is returned.

Thus, on four nodes holding the values
4 9 7 6
a reduce/add would return

26 26 26 26

Version 1.1, January 1992

Chapter 9. Scan, Reduction, and Concatenation Operations

; ¢

33/33}33/33/33{33{33|33

Scan

Reduction

02-46 5/2 6 4

T

361 2
3910/570 2-2 4 9|2 8 12

Segmented scan

Figure 4. Global summation operations.

Scans

A scan (sometimes called a parallel prefix operation) moves from processor to

* processor, in processor identifier order, creating a running tally of results in each
processor. The function call specifies whether the scan proceeds upward (0 to »)
or downward (n to 0), and whether the scan is to be inclusive or exclusive. (In
an inclusive scan, the source value contained in any given node n contributes to
the result for node »; in an exclusive scan, it does not.)

Version 1.1, January 1992

48

9.2

CMMD Reference Manual

Thus, with our same four values,
4 9 7 6

an upward exclusive scan/add would produce
0 4 13 20

while a downward inclusive scan/add would produce
26 22 13 6

Segmented Scans

In a segmented scan, independent scans are run simultaneously on different sub-
groups (or segments) of the nodes. The segments are determined at run time by
an argument called the sbit (described later in this chapter). For example, given
our four values:

4 9 7 6
and sbit values of
1 01 0
an upward inclusive segmented scan/add would return

4 137 13

Concatenation

Concatenation simply appends the value from each processor to the values of all
preceding processors (in processor identifier order). CMMD provides two ver-
sions of concatenation: one concatenates across the nodes only, and writes the
resulting value into a buffer on every node. The other concatenates values from
every node into a buffer on the host. Concatenation always proceeds from the
lowest to the highest node; it is never segmented.

Version 1.1, January 1992

, Reduction, and C

tenation Operations 49

9.3 Reduction Operations

CMMD reduce_int (int value, CMMD _combiner_t combiner)
CMMD_reduce_uint (unsigned value, CMMD_combiner_t combiner)
CMMD reduce_float (float value, CMMD_combiner_t combiner)
CMMD_reduce_double (double value, CMMD_combiner_t combiner)

value The value to be contributed to the operation. Its type must
match that specified by the function name.

combiner One of the symbols listed below, specifying the type of
’ operation to be performed.

For signed integer operands (CMMD_reduce_int), al-
lowable combiners are

CMMD combiner_ add CMMD_combiner_ ior
CMMD_combiner_ max CMMD combiner_xor
CMMD combiner min CMMD_combiner_and

For unsigned integer operands (CMMD_reduce_uint),
allowable combiners are

CMMD_combiner uadd CMMD_combiner_ ior
CMMD combiner umax CMMD_combiner xor
CMMD_combiner_ umin CMMD_combiner_ and

For float and double operands (CMMD_reduce_float
and CMMD_reduce_double), allowable operands are

CMMD_combiner_ add
CMMD_ combiner_ max
CMMD_combiner_min

Using anything other than an allowable combiner causes a
fatal error.

The reduce functions return the value of the specified reduce operation over all
the nodes. Every node thus receives the same return value. The functions will not
return until all nodes have called CMMD_reduce_type. The host processor is not
involved. To involve the host processor, use the pair of routines described below,
CMMD_reduce_from nodes and CMMD_reduce_to_host. Note that these
routines must be paired; it is an error to call CMMD_reduce on the nodes and
CMMD_reduce_from nodes on the host.

Version 1.1, January 1992

50

CMMD Reference Manual

CMMD reduce_from nodes_int (intvalue, CMMD_combiner_t combiner)
CMMD_reduce_from nodes_uint (unsigned value, CMMD_combiner_t

combiner)
CMMD reduce_ from nodes_float (float value, CMMD_combiner_t
combiner)
CMMD_reduce_from nodes_double (double value, CMMD_combiner_t
combiner)
CMMD_reduce_to_host_int (int value, CMMD_combiner_t combiner)
CMMD_reduce_to_host_uint (unsigned value, CMMD_combiner_t
combiner)

CMMD reduce_to_host _float (float value, CMMD_combiner_t

combiner)

CMMD reduce to_host_double (double value, CMMD_combiner_t

value

combiner

combiner)

The value to be contributed by this processor to the opera-
tion. Its type must match that specified by the function
name.

One of the symbols listed below, specifying the type of
operation to be performed.
For signed integer operands, allowable combiners are

CMMD_combiner_ add CMMD_combiner_ior
CMMD_combiner max CMMD_combiner_ xor
CMMD_combiner min CMMD_combiner_and

For unsigned integer operands, allowable combiners are

CMMD combiner uadd CMMD combiner_ior
CMMD_combiner umax CMMD_combiner_xor
CMMD_combiner umin CMMD_combiner_and

For float and double operands, allowable operands are

CMMD_combiner_ add
CMMD_combiner max
CMMD_combiner min

Using anything other than an aliowable combiner causes a
fatal error.

In this pair of functions, the host calls CMMD_reduce_from_nodes_#pe and
all nodes call CMMD_reduce_to_host_type. The functions return to the host
processor and to each node the value of the specified reduce operation over all

Version 1.1, January 1992

Chapter 9. Scan, Reduction, and Concatenation Operations 51

the nodes including the host processor. The functions will not return until all
nodes have called CMMD_reduce_to_host_fype and the host has called cMMD_
reduce_from nodes_ fpe.

9.4 Scan Operations

CMMD scan_int

CMMD_scan_uint

CMMD_scan_float

CMMD scan_double

value

combiner

Version 1.1, January 1992

(int value, CMMD_combiner_t combiner, CMMD scan_
direction_t direction, CMMD_segment_mode_t smode,
int sbit, CMMD_scan_inclusion_t inclusion)

(uint value, CMMD _combiner_t combiner, CMMD _
scan_direction_t direction, CMMD_segment_mode_t
smode, int sbit, CMMD_scan_inclusion_t inclusion)

{float value, CMMD_combiner_t combiner, CMMD _
scan_direction_t direction, CMMD_segment_ mode_t
smode, int sbit, CMMD_scan_inclusion_t inclusion)

(double value, CMMD_combiner_t combiner, CMMD _
scan_ direction_t direction, CMMD_segment_mode_t
smode, int sbit, CMMD_scan_inclusion_t inclusion)

The value to be contributed by this processor to the opera-
tion. Its type must match that specified by the function
name.

One of the symbols listed below, specifying the type of
operation to be performed.

For signed integer operands (CMMD_scan_int), allow-
able combiners are

CMMD_combiner_ add CMMD combiner_ ior

CMMD_combiner_ max CMMD_combiner_xor

CMMD_combiner min CMMD_combiner_ and
For unsigned integer operands (CMMD_scan_uint),
allowable combiners are

CMMD_combiner uadd CMMD_combiner_ ior

CMMD_ combiner umax CMMD combiner_xor

CMMD_ combiner umin CMMD_ combiner_ and

52

CMMD Reference Manual

direction

smode

sbit

inclusion

For float and double operands (CMMD_scan_float and
CMMD_reduce_double), allowable operands are

CMMD_combiner_add
CMMD_combiner_ max
CMMD_combiner_min

Using anything other than an allowable combiner causes a
fatal error.

CMMD_upward
The scan starts at node 0 and proceeds to the highest-
numbered node.

CMMD_downward
The scan starts at the highest-numbered node and pro-
ceeds downward to node 0.

CMMD_none
The scan proceeds across all nodes.

CMMD_segment bit
The scan is a segmented scan, with sbit acting as a seg-
ment bit.

CMMD start bit
The scan is a segmented scan, with sbit acting as a start
bit.

If sbit is nonzero, the node marks the boundary (usually
the beginning) of a segment; if sbit is zero, the node is not
a boundary marker. (If smode is CMMD_none, then sbit is
ignored.)

CMMD_inclusive
The scan is inclusive.

CMMD_exclusive
The scan is exclusive.

CMMD_scan_type returns the value of the specified scan operation over all the
nodes. This function does not return until all nodes have called the function. The
host processor is not involved.

Version 1.1, January 1992

Chapter 9. Scan, Reduction, and Concatenation Operations 53

PLEASE NOTE

(1) Values for direction, smode, and inclusion MUST be identi-
cal across all nodes. Otherwise, results are unpredictable and
the program may crash.

(2) For cMMD_scan_float and CMMD_scan_doublae, the
combination of smode = CMMD_start_bit and inclusion =
CMMD_exclusive is currently illegal and will cause the nodes
to exit.

Direction and Inclusion

The direction argument determines the direction of the scan, either upwards
(from 0 to the highest-numbered node) or downwards (from the highest-num-
bered node to 0). The inclusion argument determines whether a given node
participates in its own value. When smode is CMMD_none, these two arguments
alone work together to define which source values affect the destination value in
a given processor.

* In inclusive upward scans, the value returned for a given node # is the
combination of the source values in all nodes <= n.

= In inclusive downward scans, the value returned for a given node n is the
combination of the source values in all nodes >= n.

= In exclusive upward scans, the value returned for a given node 7 is the
combination of source values in all nodes <n. The first (lowest-numbered)
node receives the identity value for the combiner.

= In exclusive downward scans, the value returned for a given node » is the
combination of the source values in all nodes >n. The highest-numbered
node receives the identity value for the combiner.

If a scan is a segmented scan, these rules apply on a per-segment basis, as ex-
plained below.

Version 1.1, January 1992

54 CMMD Reference Manual

Smode and Sbit

The smode and sbit arguments define segmented scans. These are scans that tally
their results across subgroups of the nodes. Every node belongs to one group, or
“segment,” with the group to which it belongs determined by smode and sbit as
follows:

® When smode is CMMD_segment_bit

If smode is CMMD_segment_bit, then sbit is considered a segment bit. A
nonzero segment bit starts a new segment for an upward scan, but ends a
segment for a downward scan. Imagine 8 nodes with the following seg-
ment bits:

00100100

Both upward and downward scans would have 3 segments: one would in-
clude nodes 0 and 1, another would include nodes 24, and a third would

include nodes 5-7.

When sbit is a segment bit, operations in one segment never affect the val-
ues of elements in another segment. Thus, given segment bits of

0010

and values of
4152

an upward exclusive max would produce
0405

(See Figure 5.)

* When smode is CMMD_start _bit

If smode is CMMD_start_bit, then sbit is considered a start bit. A non-
zero start bit always starts a new segment, whether the direction of the scan
is upward or downward. Thus, given 8 nodes with the following start bits:

00100100

an upward scan would have the same segments as the segmented scan
shown above (0~1, 2—4, 5-7); but a downward scan would have segments

of 7-6, 5-3, and 2-0.

Version 1.1, January 1992

Chapter 9. Scan, Reduction, and Concatenation Operations 55

In addition, if the operation is exclusive, a node with a nonzero start bit
does receive a value from the preceding segment. The value received is the
reduce of the previous segment, with the same combiner. Thus, given start
bits of

0010

and values of
4152

an upward exclusive scan/max would produce
0445

(See Figure 5.)

Using CMMD_segment_bit:
Segment 0 Segment 1

source 411 5|2
max = 4 5
dest 0|4 0|5

Using CMMD_start bit:
Segment 0 Segment 1

source 4 |1 5|2
——— | S—

max = 4 5

dest 01}4 4|5

Figure 5. Upward exclusive scans with max combiners.

Version 1.1, January 1992

56 CMMD Reference Manual

9.5 Concatenation Operations

CMMD_concat_with_nodes (void *element, void *buffer; int elem_length)

*element A pointer to the element this node contributes to the
concatenation process.

*buffer A pointer to the buffer in which the returned value will
be stored. Its length in bytes must be at least
(cMMD_partition_size() * elem_length).

elem_length The length in bytes of the element to be concatenated.
Must be identical across all nodes.

CMMD_concat_with_nodes concatenates elements of equal length from each
node into the given buffer. The length of the buffer in bytes must be at least
(cMMD_partition_size () * elem_length). This function does not return until
all nodes have called CMMD_concat_with_nodes. The host processor is not
involved.

CMMD_gather_from_nodes (void *buffer, int elem_length)
CMMD_concat_elements_to_host (void *element, int elem_length)

*buffer (Host only.) A pointer to the buffer in which the returned
value will be stored. Its length in bytes must be at least
(cMMD_partition_size() * elem_length).

*element (Nodes only.) A pointer to the element this node contrib-
utes to the concatenation process.

elem_length The length in bytes of the element to be concatenated.
(Must be identical for all processors.)

This pair of functions concatenates elements from each node into a buffer on the
host. The element length must be identical for all processors, and the host must
specify enough space to store the result. The function returns after all nodes have
called CMMD_concat_elements_to_host and the host has called CMMD_
gather from nodes.

Note that these functions are essentially the opposite of the functions CMMD_
distrib_to_nodes and CMMD_receive_element_ from host. That pair
distributes the contents of a buffer element-wise from the host to the nodes; this
pair gathers the elements from the nodes into a buffer on the host.

Version 1.1, January 1992

Appendix A

“ Routines That Let You
Create Your Own Protocol

PLEASE NOTE

(1) The routines documented in this appendix, CMMD_send _
packet and CMMD_receive_packet, cannot be used in con-
junction with other CMMD send and receive routines. The
library provides no protection against doing so, but results are
likely to be indeterminate. CMMD global functions, on the other
hand, can be used with these packet routines.

(2) Creating a message-passing protocol is not a simple opera-
tion. Deadlocks are not only possible, they are extremely likely.
Please do not use these routines unless you have very good rea-
sons for doing so, and are experienced at message-passing

multiprocessor programming.

Using CMMD_send_packet and CMMD_receive_packet, nodes can send and
receive non-blocking messages of up to 20 bytes in length. The routines provide
no synchronicity, nor any functionality to verify whether a message, once sent,
is received somewhere. Users employing these routines must ensure that any
messages sent by them are received; unreceived messages can clog the data net-
work and cause the program to hang.

Version 1.1, January 1992 57

A1

CMMD_send packet and CMMD_receive packet make no provision for
headers. Users must create their own headers and their own software to parse
whatever header-and-text combination they decide to use.

The Packet Routines

CMMD_send_packet (unsigned int destination, int words_to_send,
unsigned int *bufffer, unsigned int type)

destination An integer identifying the node to which the message is
to be sent.

words_to_send The length of the buffer, in 32-bit words.

*buffer A pointer to a buffer that contains the message to be sent.
type At this release, 0 is the only allowable value for this argu-
ment.

This function sends out a message to the destination node. Arguments specify the
length (expressed in 32-bit words) of the packet, and the starting address of the
message.

The function is non-blocking. It does not wait for any acknowledgment from the
receiver. It returns TRUE if the message has been sent into the communications
network, FALSE otherwise.

CMMD_receive_packet (unsigned int *buffer)

*buffer A pointer to a buffer that contains the message to be
received.

The function checks for incoming messages. If it finds one, it receives the mes-
sage, writes it into the buffer, and returns the number of words received. If it finds
no incoming message, it returns —1.

Version 1.1, January 1992

Index

A

AND, 45

ANY NODE, 24, 35
ANY TAG, 24,35
auxiliary routines, 35

blocking messages, 2, 17
broadcasts, 37
buffers
broadcasting, 37
distributing, 38
length of, 19

Cc

C3

circular shifts, 29
CMMD_barrier_sync, 41,43

CMMD bc_from host, 37
CMMD_bytes_received, 35
CMMD_bytes_sent, 35

CMMD concat_elements_to host, 56
CMMD_concat_with nodes, 56
CMMD_disable, 11,13
CMMD_disable_short_messages, 14
CMMD_distrib_to_nodes, 38
CMMD_enable, 11, 12
CMMD_enable_short messages, 14
CMMD_gather from nodes, 56
CMMD get_global_or, 41,44
CMMD_host _node, 16
CMMD_is_enabled, 11, 12

CMMD_is suspended, 1], 13
CMMD_msg_pending, 33

CMMD_ msg_sender, 35

CMMD msg_tag, 35

Version 1.1, January 1992

59

CMMD_partition size, 16
CMMD_receive, 24
CMMD receive_bc_ from host, 37
CMMD_receive_element from host,
38
CMMD_receive_packet, 58
CMMD_receive_v, 24
CMMD_reduce, 49
CMMD_reduce_from nodes, 50
CMMD reduce_to_host, 50
CMMD resume, 11,13
CMMD_scan, 51
CMMD self address, 15
CMMD_send, 19
CMMD_send_and_receive, 27
CMMD_send_and_receive_v, 27
CMMD_send_packet, 58
CMMD_send short, 31
CMMD_send v, 19
CMMD_set_global_ or,41,43
CMMD_suspend, 11, 13
CMMD_swap, 29
CMMD_swap_v, 29
CMMD_sync_host_with nodes, 41,42
CMMD_sync_with host, 41,42
CMMD_sync_with_nodes, 41,42
CMMD_wait_for_ send, 31
combiners, 45
communication patterns, 28
concatenation operations, 45, 48, 56
cooperative message passing, 1

D

DEFAULT_MSG_TAG, 19
defining a protocol, 57
direction of scans, 52
distributing a buffer, 38

60

elements

of a broadcast, 38

of vector messages, 20, 25
end-off shift, 29
exclusive scans, 53

F

Fortran 77, 3
functions
broadcasts, 37
concatenation, 56
for any node, 6
for host only, 5
for receiving messages, 24
for sending and receiving, 27, 29
for sending messages, 19
global, 8
global synchronization, 41
informational, 15, 35
low-level packet, 58
pairing two nodes, 7
reduce, 48
requiring all nodes, 8
requiring all nodes plus host, 9
scans, 50
to initialize CMMD, 12
to initialize the short message facility, 14

G

gather/scatter, 28
global functions, 8
global operations, 45
global OR
combiner, 41
synchronization facility, 41
global synchronization, 41

CMMD Reference Manual

global synchronization functions, 42
grid communication, 28

H

host functions, 5

host identifier, 15

host processor, role of, 1
host/node programming model, 1

inclusive scans, 53
initializing CMMD, 11
initializing the short message facility, 12

L

length

of buffers, 19

of messages, 19

of vector elements, 25
logical operations, 45

M
matrices
sending rows or columns of, 21
transposing, 21, 25
MAX, 45
messages
blocking, 17
length of, 19
non-blocking, 12
receiving, 24
sending, 19
sending and receiving simultaneously, 27
short, 31
swaps, 29
vector, 20, 25
MIN, 45

Version 1.1, January 1992

Index

network delay, 44

network participation settings, 11
node identifiers, 15

node processors, 1

nodes, number required for synchronization, 3

non-blocking messages, 2

(o

OR
combiner, 45
for synchronization, 41

P

packet routines, 58

parallel prefix operations, 47
polling, 33

polling routines, 33

processor information functions, 15

R
receiving
blocking messages, 24
broadcast messages, 37, 38
short messages, 17
vector messages, 25
reduction operations, 45, 46, 49
resuming CMMD, 11

Version 1.1, January 1992

S
shit, 54
scan operations, 45, 47, 51
segment bit, 54
segmented scans, 48
sending messages, 19
sending short messages, 31
shifts, 29
short messages, 12, 17,31
simultaneous sends and receives, 27
single-node functions, 5
smode, 54
start bit, 54
stride, of vector messages, 20, 25
summation, 45
suspending CMMD, 11
swaps, 29
synchronization, 3
global, 41, 45

T

transposing matrices, 21, 25
two-node functions, 7

\')

vector messages, 20, 25

X
XOR, 45

