
The
Connection Machine
System

CMMD User's Guide
- _ _ _ -11 1-11n`-- -

Version 1.1
January 1992

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, October 1991
Revised, January 1992

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

Connection Machine ® is a registered trademark of Thinking Machines Corporation.
CM, CM-1, CM-2, CM-200, CM-5, and DataVault are trademarks of Thinking Machines Corporation.
CMosT and Prism are trademarks of Thinking Machines Corporation.

C*® is a registered trademark of Thinking Machines Corporation.
*Lisp and CM Fortran are trademarks of Thinking Machines Corporation.
CMMD is a trademark of Thinking Machines Corporation.
Thinking Machines is a trademark of Thinking Machines Corporation.
Motif is a trademark of The Open Software Foundation, Inc.
Sun, Sun-4, Sun Workstation, SPARC, and SPARCstation are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.
The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1991, 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents

About This Manual ... vii
Customer Support .. ix

Chapter 1 Introduction .. 1

1.1 Partitions .. 1

1.2 Software Versions Documented 2

1.3 Using a CM-5 System .. 2
1.3.1 The User's View 3
1.3.2 Keeping Up with System Status 4

1.4 Why Use This Manual? ... 7
1.4.1 Software to Know About 7
1.4.2 Organization of the Manual 8

Chapter 2 Creating Message-Passing Programs 9

2.1 Basic Components of a Message-Passing Program 9
2.1.1 Host Code ... 9
2.1.2 Node Code .. 10
2.1.3 Interface Code .. 11

2.2 How a Message-Passing Program Runs 12
2.2.1 Initialization .. 12
2.2.2 Starting the Node Program 12
2.2.3 While the Program Runs 14
2.2.4 Ending the Program 14
2.2.5 A Few Caveats 15

2.3 Writing from the Nodes ... 15
2.3.1 Using printf .. 16

2.4 A Sample Program ... 17

Chapter 3 Compiling Your Code 25

3.1 Compiling Your Code ... 25

3.2 Linking Your Code ... 25

Version 1.1, January 1992 iii

iv",...........' .. MD,': S ' 'Use .Guide

3.3 Libraries ...

3.4 Compiling and Linking with a Makefile

3.5 A Sample Makefile ...

3.6 A Sample Make Session ..

r 4 Executing Programs

4.1 The Execution Environment

4.2 Gaining Access ..

4.3 Checking System Status ...

4.4 Executing a Program ...

4.5 Executing a Batch Job with NQS
4.5.1 Submitting a Batch Job
4.5.2 Checking on NQS

4.6 Timing a Program ..
4.6.1 Using the CMMD Timers
4.6.2 Individual Timers, Called by Any Node
4.6.3 Global Timers, Called by the Host

Chapter 5 Error Handling and Error Diagnosis

5.1 Error Handling ..
5.1.1 Default Error Handling
5.1.2 Customized Error Handling

5.2 When Your Program Is Terminated
5.2.1 Using printf ..
5.2.2 The Errors File
5.2.3 Core Files ..
5.2.4 CMTSD Files ...

5.3 More about Cores ..
5.3.1 Looking at Core Files

5.4 Fortran Tracebacks: A Warning about Synchronization

Chaptei

26

26

28

29

31

31

32

32

33

34
34
35

35
36
37
38

41

41
42
42

43
43
43
44
44

44
44

45

Version 1.1, January 1992

iv CMMD User S Guide

Contents v

Chapter 6 Debugging Your Program 47

6.1 Introduction ... 47

6.2 High-Level dbx Features Supported 48
6.2.1 The Essential Commands 48
6.2.2 Other Commands 49
6.2.3 Commands Not Supported 49

6.3 Summary of Extensions .. 49

6.4 Commands for Low-Level Debugging 50

6.5 Compiling and Linking ... 52

6.6 Starting Up pndbx ... 52
6.6.1 Using Prism .. 52
6.6.2 Using dbx ... 53

6.7 Monitoring the Nodes ... 54
6.7.1 Asynchronous Monitoring 54

6.8 Exiting from pndbx ... 54

6.9 Using pndbx .. 55
6.9.1 pnstatus ... 55
6.9.2 Interrupting Nodes 56
6.9.3 Waiting for Breakpoints and Errors 57

6.10 A Sample pndbx Session .. 57

Index .. 67

Version 1.1, January 1992

About This Manual

Objectives of This Manual

The CMMD User Guide is written for programmers who are writing or porting
message-passing programs to run on the Connection Machine model CM-5. It

* Introduces the components and environment of the CM-5 system, as they
are used for message-passing programming.

* Provides a brief description of the host/node programming model, and
describes how that model is currently implemented on the CM-5.

* Introduces the tools currently provided on the CM-5 to assist in the
development of message-passing programs.

* Provides, from time to time, a few "do's and don't's" for the successful
creation and execution of message-passing programs on the CM-5.

This user's guide is intended to be used in conjunction with the CMMD Reference
Manual, which describes the functions provided by the CM-5's message-passing
library, CMMD. Both manuals assume that the programmer has some experience
in writing message-passing programs in the language of his or her choice.

This edition of the manual documents Version 1.1 of the CMMD library and
Version 7.1 of the CMosT operating system. The software it describes is still
under development and may be subject to changes. As further developments and
enhancements occur, the manual will be updated to reflect them.

Version 1.1, January 1992 vii

..........i.i. CMMD~ U............,........~...ser'.....se s G.:uide.........)...................... .::

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter

italics

CMMD functions and UNIX and CM System Soft-
ware commands, command options, and filenames,
when they appear embedded in text. Also program-
ming language syntax statements, and language
elements such as keywords, operators, and function
names, when they appear embedded in text.

Argument names and placeholders in function and
command formats.

typewriter

% bold typewriter

regular typewriter

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

Version 1.1, January 1992

viiiVlll CMMD User S Guide

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connec-
tion Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much infomnnation as possible to help us iden-
tify and correct the problem. A code example that failed to execute, a session transcript,
the record of a backtrace, or other such information can greatly reduce the time it takes
Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact that
person directly for support. Otherwise, please contact Thinking Machines' home office
customer support staff:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail: customer-support@think.com

uucp
Electronic Mail: ames!think! customer-support

Telephone: (617) 234-4000
(617) 876-1111

ix

Chapter 1

Introduction

This manual provides information on the CMoST operating system and its asso-
ciated utilities for programmers who are interested in node-level, message-
passing programming on the CM-5 supercomputer.

The current model for such programming on the CM-5 is the host/node model:
one C or Fortran 77 program running on the host initiates and monitors a second
program (in the same language) that runs on each of a number of nodes. The
number of nodes is set by the size of the CM-5 partition (explained below); the
library used for interprocessor communication - that is, for the message passing
itself- is a CM library named CMMD.

1.1 Partitions

The CM-5 is a highly scalable parallel processing computer. The number of com-
putational processors (or nodes) on a CM-5 ranges from fairly small to very large.

No matter what its size, however, a CM-5 provides for both space-sharing and
timesharing.

* Space-sharing occurs when the system administrator partitions the CM-5,
alloting so many nodes to one partition, so many to another. The system
administrator also decides which users have access to a given partition.

Administrators can change partition sizes or access rules as needed to meet
the needs of their sites.

· All partitions run the CMosT operating system, an enhanced UNIX operat-
ing system. Therefore, timesharing is the natural state on all partitions.

Version 1.1, January 1992 1

2 CMD sers Gid

Users of the CM-5 have access to all UNIX facilities that normally form part of
the SunOS version of UNIX. In addition, they have access to special tools and
utilities provided by CM software to facilitate parallel programming.

1.2 Software Versions Documented

This edition of the CMMD User Guide documents tools and utilities that are part
of Version 7.1 of the CM operating system, CMOST.

It does not document the cc or f77 compilers, which you would use for compil-
ing your message-passing programs; please see SunOS documentation for that
information.

1.3 Using a CM-5 System

A CM-5 supercomputer is a massively parallel supercomputer. It contains tens,
hundreds, or thousands of processors. These processors are divided into two cate-
gories: processing nodes and control processors.

Processing nodes (PNs) make up the vast majority of processors inside the CM-5
system. They are the processors that do the actual computations on parallel data,
communicating with each other to share data as necessary. (System software oc-
casionally refers to these processors as processing elements, or PEs.)

Control processors (CPs) manage the CM-5's processing nodes and I/O devices.
These processors provide major OS services for the system, handling the sys-
tem's user interface, its I/O and network interfaces, and its system administration
and diagnostic interfaces.

A group of processing nodes under the control of a single control processor is
called a partition. The control processor managing the partition is known as the
partition manager (PM). In the host/node message-passing model, the partition
manager is the host, while the processing nodes are - naturally - the nodes.

Interprocessor communication networks connect all processors, of both types, to
provide rapid, high-bandwidth communication within and between processes.

Version 1.1, January 1992

2 CMMD User $ Guide

Cggpt .- Intodctin-

1.3.1 The User's View

Figure 1 illustrates a sample CM-5 system as it appears to a user. This particular
system has two partition managers, which have been named Mars and Venus.
Each of these PMs is currently managing a partition of 256 nodes. The system
also has control processors managing some I/O peripherals, and one that is dedi-
cated as a system console, for the system administrator's use.

t. ..

::- User. .

Use.

:User
Workstaton

Ethernet

0

C
X1

.:11. . . i · .11 '.::¥;'! ;ii .{' i7 . g :; .ii :'iii: :' '. ii i . i! :::
= r~~~~~~~~~7 . _4'

' Partition #1

Wl Partition #2

W-X7 Interprocessor communications networks

Figure 1. A sample CM-5 system.

Users (shown here at workstations "somewhere on the network") access the
CM-5 system by accessing one of the PMs. They can log in remotely or use re-
mote shells to run programs on either partition, assuming they have been granted
access. Two examples might be:

r:sh vurlogin: mayrs :

;:i:: a i. ou : :.. : - - '"

| -i:?: rishi: venus m rgram -: :: :! -

Version 1.1, January 1992

A program runs on a single partition, using all the nodes on the partition for its
parallel operations. If a program needs access outside the partition - to read

Chapter . Introduction 3

4 CMMD User i Guide

from an I/O device, for example, or to pass data to a process running on another
partition - it goes through the partition manager to do so. (The partition manag-
er, running in supervisor mode, can access any address in the system. The nodes,
running the user's program in user mode, can access only addresses within their
own partition.)

1.3.2 Keeping Up with System Status

Partitions are not permanent. They are defined by the system administrator to
meet the site's needs, and can be changed as needed. The system shown in
Figure 1, for example, could be reconfigured as a single partition, with Venus
controlling all the parallel nodes and Mars either inactive or acting as a stand-
alone compile server. Similarly, if some nodes needed to be taken out of service
temporarily, the partition could be reconfigured around them.

The cmps command, given on a partition manager, tells users how many nodes
the PM currently controls and what jobs it is running. For more information on
this command (which is modeled after the UNIX pa command), see Chapter 4.

........ ~ ~ ~ ~ ~ ~ ~~.

. :il-.;:f :iii:i·ii- s l ' `: ' '· "':· ':- ' ' :' ' ;:. .'.... .:..: :.: :.:..............xf...;.j~~:~j~ ts .. :f.. th..i . .n.. : M odele. .. :.

Old:~~~~~~~~~~~~~~i
.-. : ..-.. ''.'. : l' : :'. ..:'..' . : ,I :'-~i~i(::-~ -ii:;"-: -'.,': .:~·i'\:'·r·:: ": . ..:.'. ' .'::

.......... .:':·w -~- Ii:: ·i:.i;; sers I n o tic::·:-i-~ ·.. · :.
-in' c g~~~~~~~~~~~~~~~~~~~~~~~~~~:.:.:~ -· ·- :·:··fv - cell cpges m the useJ. ...e t .on .. e ..

.::·::::::·:-:::.:::::: ·ss·:-:·:::::.. -...:::. ···.::::::. .::: :·:-::·-·--·.. . ..

ff~ ~ i::: :*< Is Ae G o at tac ~h 'fie--*oB-en pro b M
''""'of'''li~·ijij~9' e Cl: - syst : -Ce

-- ;-- is a a way ? par lel od6§ s:.-

- The CM-2 informafiona l commandS cmfinger and cmlist--are
--not-avaiable'on he cm-5.

,.,'·:·:·: ..··r -:·l::·: ::: ·- · i ' . . - - . . .- ' . ,- -- ::. ~ - . :i.: : .'' :- . :: .: - : . .- ·.....:':::i :''::::I:':-i:.i·:i~li::::.:'i i-:theoC" thei C M 5, but:

: '- Te checkpointing facility--is.no yet available--on M C-,bt
be e later.: . -

: :. .. :. : :: :..

Version 1.1, January 1992

Chapter 1. Introduction 5
___~g;$l~f8~L~B~b~B1;

*, The::~: CM~:~ S 5 ~ hardware p sm·~.~·w~:a2::~:-;~·~: andM)a
Thus: users can write both d't · parallel programs and.messagepassing programs (r the CM-Sd .steme

Daapripr~rmuguestesm Mpralllnugs

.=.9M-~5. as~on the CM-2. Same libraries, such as the CMi
Fortan tilt ibrary and CM F. ar id l y

, .ers.' .; such as..§ gr.icS .are . .d:...ere :.., propainmmg uses standard C or Fortan 77an~di *sup~ored b theinessge~pssin comuniction
idr!r .,C·:·-.

: :' . ::@:::;di~~i : :: : ,::I' ·~~'::::: ':"':·:-: .:::: :- I·:· ·-' -.S- < ' '' A $ote tS .ser: fro.Other Systems:.

CM~~~~~~~~~~~~ enviro2~~~~~~~~~~~~~~~m t . .-....
X IS$'X8:'K's : S p .robab y $cona.:Ins

.rmoe- nodes ta : anyi other .ma-;.... m.; -:-.:
,~ $ - , :~:: i $,,~~F::ib·;·:·:·;ny;·: . X:·-·:-:e :·:·:-::·:·:·:-: ~::··:·:·\:S~;i~. .X,

chinefor hichou'v wrte esg-asng rgrmso t c y w -pas grite a mssage-assin
g a p ~ ~ t, y. .let.- y..X ¢X .a.. s ge. -g....it:: R.." :.:.. a.:ps s .e :: ::i:X.:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:~. :I·:· ··-·

Programs db frmoher machiesherefore, may e:Vtlilo er..:' pend:..~~~~~U~,'C~F~~i~l.: ? ~~:
df ropo s oftmeco andcommunicating.
A.a progmthat rn or 16 nes, ad t most of its time-:
doing computation, may find itself muc more ev -
an.., ced beween computation and communication when it runs

$- -on a cojnsiderably lrer number of nodes. In some cases, this

may make reth,.king one's algorithms.advisable.~j~~~~i~ ~ ,..may. make thin~:~:ng one re 's'al writhms advisable.E~i
............ ::.--:. -:.:: --.-:::'::·: ., - ..::.. -r · .-.-:

: -:i~:i::::-~·:: i~... · . C~:. : ·. :::;:-..::-VQ IV: i -,--....-.- -:.--.: .-----.. : -- ---
.....

* SMD stands for Single Instruction, Multiple Data, and MIMD stands for Multiple Instructions, Multiple
Data. These terms are sometimes used to describe programming styles as well as hardware. They are not,
however, entirely accurate as software descriptors. Data parallel programming, as implemented on the
CM-5 system, includes MIMD as well as SIMD capabilities, while message-passing programming often
makes use of SIMD techniques.

Version 1.1, January 1992

,

..

6 CMMDUser' Guid

2 You don t have o copt o oe h ote prcese; hzs r.n t"::' . .ng::: . . so l pations aretmh : .:.h:e:.. PM. is.
-Y v~ S~fthex. contolgpocessor heew hen .a host prora tat ruson

rout. . as .e.. hot nodeprogams betreatedas a sgl
unit insofar as timesharingjl ic

3f O YiSnc a CM 5 youdont nee to aloct prcssors for you pro-

~~~~~~~~lii~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~:iri~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~
mand),::x~yyS~s!YsY @ you haveautotially alocatd all the ndes within.te:

> -eiTereor youri~is prgrm ,~O.w... .iillr :a y .ail

!SSe B.e fom'.~fs: X daSX day or~evero"h-.hour.- b + Yu
aU ~1 h .28d nclestlj ma csn: aol e.12alal ncdes.. t- . §

-:siz s::. .O* t z.. : - .
... ,Bzsx B BjBZ ....... 5,.S, .,x . ,g yeS ........ ~s ''S 1:::n. ..': ' ~. '' s .:.. ..Y~ vnO ho>wever count on a art~t~on.size b'eisng atpower ofi tibnwo.

.. 2 8 i f f Mes' ..Bi~~~i 3 64 iXYB- . i:. 1 256 ; :512 etc. Tis my b ::: some h t yo in

trees wthantprgramse To, take avna, r titionig your p
vas gwhev fl ble..Y.o r ....

~~~shoilaBB.d m~ .>akR4de la..yout. decisions at. nm..... tie,. so: as.. to maeop.a
a B za -:S: :z:*: :>:.f .,: . . S-a,,, . ,- -f : S ., .:.::.. .:S ..::: :: .f.:f::--:..:: : ::S::: .:.i-':::·:lii:-.. ~~ii-::::i:~i::::,:-l j.:.

S :.S .SKX;;xuaseY; ofpatitions oaros sizes You can use the aq comad:
(at~r shl level) an the clm i ze eutin e (wi t

Sf Y f '- B a i-f x .f -. ..: . : > - : -: : · --:.: ':: i '::·:9::-::j~ : :': .~'j~:;~ .: :: .' :: : : i~:il::~li: : " .'::'' -.-- '~':' ~ """ .

.. xax~ a ssafsfi Yg>.message- pasig program.). to .repr th .e curet prtton sze. . :

5 Bcause CMMDs global :routies .take adantage o f hardw are
faf f~ia~~gand. sofware designed. specifically. for. best -performance -when

.;; ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~.> . opeat~ig over all nodes m~ih :a pattoyuwillwat touse thuseti-...... f5Sff'.-. fgloba rutineswhenever possiblraterh had-cdin g-your.
' Sf S5'f. .own such routies (You will need to wrte your ow routines if.............

fyou:,-'"f. Wa tot o'glo l opera ons, such. as redutionas.s.:ii.aser t
o S : f,.: ':. : :: . . - .. - - -f the partition.)...............: .. . : .:::- .. : :: . - - .- - - :

ma; -:---;oft e.nodes de -i e ptt f"..'...'~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~i''li:::i~iiiii~i~~W~~ '.",'.-''..,'' ';'.: ',' :,'"' ':-''

: 5 - $-: .: .: : -., : 5. .' :.~~~.~~.::.;...~.~.. .

Version 1.1, January 1992

~iiii:~~i.~l~lrii~~iii: ~ ~ ::~··''-~iii~~iii~i:;:~...... : I:. ·;;··::: · ·.. x· :,.~:.~:~... r;::x:::·· ~ii~i~Bi~~: ll~~:i:~: ~ ~ lx::i i:~::::~ii~ibi Eii~ I~~ii:8WX~:~Iii

6 CMMD User b Guide

Chate 1 nXdc

1.4 Why Use This Manual?

This manual describes the CMosT tools and utilities that support message-
passing programming on the CM-5. It should be used in conjunction with the
CMMD Reference Manual, which describes the message-passing library itself.

1.4.1 Software to Know About

This manual explains the following commands and tools, which are useful to pro-
grammers writing message-passing programs on the CM-5 system.

cemps The CM version of the UNIX ps command, cups tells you how
large a partition is and what processes are currently running on
it. See Chapter 4, or the on-line man page.

cmld The CM version of the UNIX d linker, documented in Chapter
3 of this manual and in an on-line man page.

pndbx The CM's node-level debugger, documented in Chapter 6 of this
manual and the on-line man page.

qsub The NQS command by which users submit jobs for batch execu-
tion on the CM-5. See Chapter 4, or the on-line manual page, or
NQS for the CM-5, Version 2.0.

printf The standard C "write" function to "standard output," invaluable
in debugging. Since there are no terminals on the CM-5, printf
sends its output to a file. See Chapter 5 for details.

CMMD timers
Node-level timers, which allow timing of code running on indi-
vidual nodes. See Chapter 4, or the on-line man page for any of
the timer commands.

CM panic
CMPN panic

CMosT calls that handle errors in host and node processes; by
default, they halt the program, print an error message, and dump
core. See Chapter 5, or the on-line man page.

Version 1.1, January 1992

Chapter . Introduction 7

8 CMMD Usr ~ Guid

core dump files
error files

Files created by CMosT to help diagnose program errors, docu-
mented in Chapter 5 of this manual.

CMOS SAFETY LEVEL

A CM environment variable that aids low-level debugging by
enabling a record of the last few functions called by the dispatch
loop.

rlogin The standard UNIX remote login command, used to log in to a
CM partition.

rsh The standard UNIX remote shell execution command, used to
run a program interactively on a CM partition without logging in.

1.4.2 Organization of the Manual

Within this user's guide,

* Chapter 2 describes the basic components of a message-passing program
and explains what happens during program execution. It also provides a
sample C program.

* Chapter 3 describes how to compile and link message-passing programs.
It also describes a sample makefile that facilitates these tasks.

* Chapter 4 describes how to execute your programs. It also describes the
CMMD timers and the cmps command.

* Chapter 5 describes some OS facilities for handling and diagnosing pro-
gram errors.

* Chapter 6 describes how to debug message-passing programs using
pndbx in conjunction with Prism or with dbx.

Version 1.I, January 1992

8 CMMD User Guide

Chapter 2

Creating Message-Passing Programs
NIE.....M_ _ W_

This chapter discusses the mechanics of creating a message-passing program,
and describes briefly what happens when such a program runs on the CM-5. It
also provides information on writing from the nodes, and concludes with a sam-
ple message-passing program.

The next chapter discusses compiling and linking message-passing programs.

2.1 Basic Components of a Message-Passing Program

Source code for a CM-5 program consists of three parts:

* Code to be run on the host processor (the PM).

* Code to run on the nodes.

* Interface code, which allows the PM to initiate node programs.

2.1.1 Host Code

Code that runs on the host (that is, on the partition manager) may contain any-
thing ordinarily included in a program running on a Sun computer. This includes
system calls, I/O calls, X11 routines, and calls to other specialized libraries.

Version 1.I. January 1992 9

0 MM a

In a message-passing program, code for the host must include calls that

* Enable the CMMD environment, to allow message passing.

* Invoke at least one node procedure, as a subroutine.

* Disable the CMMD environment when the program finishes.

The simplest host program, then, would look something like this:

#include <cm/cmmd.h>

void main()

{
/* initialize CMMD */

CMMDenable();

/* start node program running */

noderunner();

/* disable CMMD */

CMMDdisable();

} /* main */

More often, however, host programs also include code that performs computa-
tions, makes CMMD calls to communicate with the nodes (perhaps to provide
input or receive output from them), makes calls to other libraries or routines, or
temporarily suspends message passing to allow calls to data parallel routines.

Section 2.2 provides further information on how host code performs these tasks.

2.1.2 Node Code

Code written for execution on a node consists of one or more possibly indepen-
dent subroutines.

The subroutines may perform local computations and exchange data among node
and host processors. At this release, they can do very little other I/O; see Section
2.3 for a discussion of node I/O. Similarly, many UNIX system calls are not sup-
ported on the nodes. If node programs invoke these unsupported calls,
segmentation violations may ensue. The rule is, therefore: use node code for
computation and for inter-node communication via CMMD library calls. Use the
host (the PM) for external I/O and for system calls.

Version 1. , January 1992

CMMD User 5: Guide10

·
.-: :::,:C::::. Mesg-n> Pr

Node routines may be invoked

* From the host processor.

* From the nodes themselves.

The first routine must be invoked by the host. If it forms the only routine in the
program (or at least the only one invoked from the host), it is equivalent to a "PN
main" routine. Once the routine is running on the nodes, it can call other routines,
as any program would. All the routines may be visible to the host.

It is also possible, however, for node code within a program to consist of a num-
ber of loosely related or even unrelated subroutines called from the host.

Routines that are to be invoked directly from the host must be named with a lan-
guage-specific prefix.

* In C, the prefix is CPE_

* In Fortran 77, the prefix is CMFPE

2.1.3 Interface Code

Interface code provides special declaration code that allows the nodes to respond
correctly to subroutine invocations from the host. It is generated with CM utility
functions:

* For C, the function is cspye stubs

* For F77, the function is f77 sppe_stubs

For information on how these files work, plus more information about how to
write them, please see Section 2.2.2.

Version 1.1, January 1992

Chater 2. Creating Message-Passing Programs 11

12 CMMUerGid

2.2 How a Message-Passing Program Runs

By now, the reader probably has a pretty good idea of the basic picture: one
"main" program, which runs on the host, invokes as subroutines one or more pro-
grams that run on the nodes. These node programs do the bulk of the computation
required by the overall program, passing their output back to the host as required.

But how does all this really work?

2.2.1 Initialization

The host initiates message-passing activity with a call to COm enable (),
which changes the state of the partition manager's network participation and ini-
tializes the message-passing environment.

NOTE

If any other CM activity has taken place, the user must ensure
that it has finished before calling CMHD_enable.

After initialization, the host program is able to invoke node routines and call
CMMD host-only and host-and-node routines.

2.2.2 Starting the Node Program

The steps in starting node programs are as follows:

1. When the user starts the overall (host) program on the PM, the CMOST
operating system automatically loads the node code into each node's
memory.

2. The nodes, with user code loaded, now wait in a "dispatch loop" for invo-
cation information from the PM.

3. The host program calls Cmenable to initialize message passing.

Version 1.1, January 1992

�5�5�2�8�

i�a�8�5�8%66�6�C��

12 CMMD User Guide

Chapr 2ea

4. The host program invokes the first node routine. Typically, this is a
user-written routine with a name prefixed as described above, invoked via
an ordinary subroutine call.

By making this call, the PM broadcasts a message containing the address
of the function to be invoked, the number of arguments to the function, and
the argument values.

Each node kernel receives the message, constructs an appropriate stack
frame, and invokes the designated function. Since each node in the parti-
tion does this, the node code starts on all nodes.

Interface Files, Again

In order for Step 4, above, to happen, the PM must be able to transmit the right
information and the nodes must be able to interpret the data correctly. This trans-
fer of information is mediated through a special interface file.

An interface file consists of special declaration code that allows the PM to pro-
vide the nodes with the information to form the correct stack from the broadcast
data. To make it easy for the user to generate the correct file, two utility functions,
sp-pe-stubs and f77-sp-p-stubs, have been provided.

For each node function that the host must see, you create a function prototype.
In C, this is just an ANSI prototype. In Fortran the format is similar, but with
Fortran types instead of C type names.

NOTE

1. Since the PM must broadcast the arguments of the interface
functions to the nodes, these arguments cannot be pointers or
structures. They must be standard C or Fortran types.

2. Even in Fortran prototypes, the code must be terminated with
a semicolon.

You then place all the prototypes into one or more files (named, by convention,
. proto files) and pass them as input to the utility function. Output files, by con-
vention, use the suffix . intf. c.

Version 1.1, January 1992

Chater 2. Cadtng Message-Passing Pograms 13

14e,¢ CMM User Guide: ::j':, '>f::',.. ,':v7:'' :'.:' ' 5;' :>:*_'>I.:.•...:::~...:.~ ~...c:~~.:...::.x..:::..:.~..::..::~..:::..::.<:..::~..::...::~.:`:..`.:>::.x:.....:....:..:..x.`::..:..::.<:..:~;::..::...::.....::...::..~.x..::...:>::...::..:::..::.....:.:::..:.`.~..:::..::...:>:.:::..:>:::..:>:::cx..x::..::<::..:::..::...::..:::..::...:.::...::..::.`.::...::..

Finally, you compile the output (. intf . c) files and include them in the link
phase of the host code. See Chapter 3 for more information.

2.2.3 While the Program Runs

While the program is running, any given node may be in one of three states:

* Executing code.

* "Blocking," i.e., waiting within a code block for data or synchronization.

* "In the dispatch loop," waiting between procedures for further
instructions.

Each node executes its code asynchronously, fetching data and instructions from
its local memory. It synchronizes with other nodes only when required to do so
for message-passing purposes (e.g., to send or receive a message, or to participate
in a global instruction).

Each time the nodes finish a routine, they go back into the dispatch loop and wait
for further instructions. Certain CMMD calls, such as barrier synchronization,
global timing functions, and CM -Dsuspend, can be given only while the nodes
are in the dispatch loop. If such calls are intermixed with other message-passing
calls - that is, if they are given during execution of a procedure - the program
will hang.

2.2.4 Ending the Program

When the nodes have finished executing their part of the overall program, they
return to the dispatch loop.

When all message-passing activity has been completed, the host program should
invoke CMMD disable to free internal CMMD memory allocation and return the
host's network participation to its prior state.

Version 1.1, January 1992

14 CMMD User 5· Guide

;9110111111111111

2.2.5 A Few Caveats

1. Don't forget to use CaIDenable and 3OI_disable. If you forget,
CMOST will terminate your program with an unsightly error.

2. If your program hangs, in all likelihood someone is waiting for a message
that has not been sent.

3. Allowing host code to become disordered so that the host calls for results
(e.g., via CmODreduce_from nodes) before invoking the node routine
that contains the matching call (e.g., C3O_ reduce_to host) is a sur-
prisingly common method for achieving such program hangs.

4. If your program fails with the message:

Ts-daemon failed to set up user memory on PE

Error: Couldn't register with the TS daemon!

it means your program requires more memory than is available on
each node.

2.3 Writing from the Nodes

Neither Fortran I/0 commands nor (with one exception) C 1/0 commands are cur-
rently available on the nodes. The exception is the printf command, discussed
in Section 2.3.1.

CMMD calls, however, can be used to transfer data from the nodes to the host.
The messages can come from any node or nodes, asynchronously, or from all
nodes together (e.g., via CmMD concat_to host and CmID_gather_from
nodes). Since the host program runs on the PM, it can use standard UNIX I/0
calls to store or print data.

Using global calls to pass data to the host causes the node programs to synchro-
nize. Since the more frequently a program synchronizes, the easier it is to debug,
forcing synchronization through concatenation or reduction to the host of data or
debugging messages (which can be removed as the program stabilizes) can con-
stitute a handy debugging trick.

Using global calls in this manner may be faster than using printf. If a program
has hit a communications deadlock, however, the global calls will also be dead-

Version 1.1, January 1992

Chapter 2. Creafing Message-Passing Programs 15

16 MM Us

locked. Calls to printf, on the other hand, go through the OS. They will
therefore succeed even if the program itself is blocked.

2.3.1 Using prinff

A node version of printf is available for debugging C programs. Its use will
slow down your code. It writes output to a special file (as explained in Chapter
5) with the output from each node prefaced by pnX, where XX2 is the node
identifier.

Fortran print and write will not work on nodes. If Fortran programmers wish
to print from nodes, they must create their own specialized calls to printf. To
do so requires a modest understanding of Sun interlanguage calling protocol:

1. Fortran passes arguments by reference. Therefore, a C routine called from
Fortran must expect arguments that are pointers. Any return value must be
passed as a value, not as a pointer.

2. C routines to be called from Fortran must have names that are entirely
lowercase, and that end in a trailing underscore.

3. Fortran routines that call C programs should expect that floating-point
return values will be double precision.

4. Fortran routines expecting return values from C code must be be declared
to be of the appropriate type. Declaring them to be external is also useful.

An example:

To print the line "Hello world. x = 5", an appropriate wrapper would be:

C code:
#include <stdio.h>

void my_print_(string, value)

char *string;

int *value;

printf("%s%d\n", string, *value);

}

The Fortran code then calls this routine as follows:
integer x

Version 1.1, January 1992

CMMD User b Guide16

Chpe .Creatin Messae-asin Prgrms1

x= 5

call my_print("Hello world. x = ", x)

A somewhat more versatile approach would be to use the Fortran write statement
to generate a string and then print the string via a wrapper. This would look like:

C code:
#include

void print_string_(string)

char *string;

{
printf("%s\n", string);

}

Fortran code:
character*(80) output_string

integer x

x = 5

write(output_string, 10) x

10 format(lx, "Hello world. x = ", il)

call print_string(output_string)

2.4 A Sample Program

The program pi uses a master/worker paradigm to perform a Monte Carlo ap-
proximation of pi. Points are randomly generated within a unit square centered
at (0,0) and with vertices at (1,1), (-1,1), (-1,-1), and (1,-1). We count the num-
ber of "hits" as the number of points that are within distance of 1 to the origin.
We can then approximate pi from the ratio of hits to the total number of points
generated.

The program takes two arguments: numtrials, the total number of points to be
generated, and work_increment, the number of points each worker should gener-
ate and test at a given time.

The PM is the master and the nodes are the workers. The workers send
FREE_WORKER messages to the master to let it know that they are free. If there

Version 1.1, January 1992

Chap~ter 2. Creating Message-Passing Programs 17

D:8D: : ::::: : :::::::::::::::G::::::::::::U:sr :::. Guide::::::� ':':'::::::::::::::::::' ':::' f..:::::::::: :

is work to be done, the master then sends the first available worker a WORK mes-
sage that tells that worker to generate and test a specified number of points. If a
worker has finished its job, it will send the master an ANSWER message that re-
ports the number of hits the worker counted. This entire process continues until
there is no more work to be given to the workers.

The master then waits for any outstanding ANSWER messages before sending all
workers a DONE message.

Below is a sample run in which 10 million points were generated with a work_
increment of 1 million and 4 nodes available as workers.

NOTE

Master/worker programs are normally used for tasks that require
intensive computation on each node. The pi program, being
designed simply to illustrate the basic shape and style of a mas-
ter/worker program, performs a trivial task. Because the nodes
have so little computational work to do, they spend much of their
time idle. The moral? Copy this template only if your applica-

Version 1.1, January 1992

Mot e a rl a:E pproxmation; nfp odes ;to perform 100000
. .. -- s s s i' ''''' iss: - -

0rker .2. r.............

-- :---::---: r-ke 32 reports :785S:ht-: ::::-
::·:~~-~~-:. .~~'':i . iii~iii::ii I~ii~i':::i~~i':;: l ii i:,i i..i i:-:-:: ::: :- :-:·:;·:- :. ::: ::::. ::. .- :. .:: ...-

...:.'..-,.
.:I-rr~i ::I:·:-l:···1:,:,i::: · .: i ; .. : .:-: i .:: i: ::::- - ::: : : -.......-.

~l~i'lorker i i reports 765824 iil b -- c ._2~~~~~~~·:j::::··:·--: ·. ..;: ·:· ::li':'. ::·.:.:.::-.:-.· :i:-::IlI::on p-1::-:u~~~~:~:ling_.-.o.s: ·:.: :::::li:no S ':::0 _: :E':r..-'i ::P;:

: a rkerZ : 0:: r 788 it

ore 2 eg t 7849 ions : :9::h::: OXI& T- ;0,000

o er 1 reot 873 hitso-ker 0.: repors 7 5 h s .. -

.. f. '..."..'.'-""''"."'-' " " W '.''.''' '0"' :'"'''
"''"'"""I-"""':''"""'""'"'':''"".'""'<'"""''.' '" " <'if''" ' r f 8 5 : ·:I-: :: ::i::.··:: ::-:·':::-I:.··7 : i :-Z::ii:,':I''·:''."""'""',-':' ::·.''",', II.: i·:··:i:

:~~~re 3rp ts 7832 h sI- s-:I·~:·~': ·B, owed :.' fee .~-olr~'B~SiS2:,s·: .

l0 l5u 0.5s 2- 05 81 0+464k-a- 2+*3 123opftO :---w
i'i:::i'''iki::~'i::I:::i_::i ;i~:::l~~i-::i:-.-:::-l:-i . : ::::_~1,:~ 111:, 1 .--. :.: ::r:::-:: -:~::::--.

. -... iiii;i:. I :I:i: -i~.-~a~i.4: . ~. -- .~s: . :,: _., l:ii -i:ij-:-: i:- :-: - .: -:: -.:. :-.::: - .-........i!. ::. 1i1::.: -;ri::i lW ~. 5: 2r. · i s- .. -- :::: ·.... ~ ~ ~ : .:::.:r I:I:e o r- ··: ·:-
i~l:i:i~i~i~:I::::.:.:::I: I S 2 4i:i:::::l-hi!g1517-::':::' '::

::::: :I::rI::: ..:::.i:-: ~~:: :--.,~.:...:
...:·i-:1 ::~~jl:j."`::::.':'i: ·i::: ;' ·.;:.j':': lil:-

.. .. : i§ : :8 t : ::.':7 : :8 ::9 2 :::.::h;t
...... ::'I::: ' ''.i .:::1. :::::: i... : :....:.;:.. -

:~: .. -. .-::~,j:ij :: :··::·- ... :~:.::1:: :' ::- '

:~:. ··li ::~::::: :~:,~· :: · -·:; ·

CMMD User j· Guide18

Chapter 2. Creating Message-Passing Programs 19

tion will keep the nodes well occupied with substantial
computing tasks.

Here are the five files involved in pi:

1. The header file, pi. h

/ *--------------------------------------

File: pi.h

Example program from CMMD User's Guide.

/* message tags */

#define FREE WORKER 0

#define WORK 1

#define ANSWER 2

#define STOP 3

/* auxiliary routines */

void print usage(char *name);

void start workers();

2. The prototype file: pi. proto

void start workers();

3. The host code: pi-pm. c

/*.

File: pi-pm.c

Contains the main program to be run on the partition manager to coordinate
"workers" on the processing nodes. The program approximates pi by a Monte Carlo

method.

#include <stdio.h>

#include <cm/cmmd.h>

#include "pi.h"

Version 1.1, January 1992

�63�8�

�8�3�1�g�8�

20 CMMD User Guide

void

main(int argc, char *argv[])

int numtrials, workleft, workincrement, numhits=0, numworking=0, answer;

if (argc<3)

I
print_usage(argv[0]);
return;

numtrials = atoi(argv[1]);

workleft = numtrials;

workincrement = atoi(argv[2]);

CMMDenable();

printf("Monte Carlo approximation of pi using %d nodes to perform %d

trials\n", CMMDypartition_size(), numtrials);

printf("\t Work increment is %d \n\n", work_increment);
startworkers();

while (workleft>0)

int free_worker;

/* while there are workers free, send them work */

if (CMMD_msgpending(ANY_NODE, FREE_WORKER))

CMMD_receive(ANY_NODE, FREE_WORKER, NULL, 0);

free_worker = CMMD_msg_sendero);

if (work_left < work_increment)

{
CMMD send(free worker, WORK, &work left, sizeof(int));

workleft = 0;

else

CMMD_send(free_worker, WORK, &workincrement, sizeof(int));

workleft -= work increment;

numworking++;

/* receive finished work from workers */

if (CMMDmsg_pending(ANY_NODE, ANSWER))

CMMD_receive(ANYNODE, ANSWER, &answer, sizeof(int));
numhits += answer;

printf("\t Worker %d reports %d hits \n",

CMMD_msg_sender(), answer);
numworking--;

Version 1.1, January 1992

Chapter 2. Creating Message-Passing Programs 21

/* Check that all workers have finished */
while (numworking>0)

{
if (CMMDmsgpending(ANYNODE, ANSWER))

CMMDreceive(ANY_NODE, ANSWER, &answer, sizeof(int));

numhits += answer;

printf("\t Worker %d reports %d hits \nn,

CMMD msg_sender(), answer);

numworking--;

/* Stop all workers */

{
int worker;

for (workers0; worker < CMMDpartition size(); worker++)

{
CMMD_receive(worker, FREEWORKER, NULL, 0);

CMMDsend(worker, STOP, NULL, 0);

}

CMMD disableo;

printf("\t pi %f \n", ((float) (4*numhits)/(float) (numtrials)));

printf("task done \n");

exit(0);

void

printusage(char *name)

fprintf(stderr, "Usage: %s <number of trials> <work increment>\n", name);

4. The node code: pi. pe. c

/*

File: pi.pe.c

Contains the "worker" code which runs on the processing nodes to calculate pi

via the Monte Carlo method. The principal routine is CMPEstart workers which

is called from the main program running on the partition manager.

File: pi-pe.c

#include

#include

#include

<cm/cmmd.h>

<math.h>

"pi.h"

Version 1.1, January 1992

�E�8�k�4�6�

{

}

22 CMMD User i Guide

/* Monte Carlo trial for calculating pi.

A point (x,y), -1 < x,y < 1 is randomely generated.

Returns TRUE if the distance from (x,y) to (0,0) is less

than or equal to 1. */

int approx_pi_points()

{
float x=2.0, y=2.0;

while ((x < -1) II (x > 1))

x = 1 - ((float) (random() & (long) (1<<20)-1)))/((float) (1<<18));

while ((y < -1) II (y > 1))

y = 1 - ((float) (random() & (long) ((1<<20)-1)))/((float) (1<<18));

return sqrt(x*x + y*y) <= 1;

/* worker code */

void CMPE start workers()

int work; /* number of trials to perform */

srandom(CMMD self address());

CMMD_send(CMMD_host_node(), FREE_WORKER, NULL, 0);

CMMD_receive(CMMD_host_node(), ANY_TAG, &work, sizeof(int));

while (work)

int i, hits=0;

switch (CMMDmsg_tag())

case WORK:

for (i=0; i<work; i++)

if (approxpipoints()) hits++;

CMMD_send(CMMD_host_node(), ANSWER, &hits, sizeof(int));

CMMD_send(CMMD_host_node(), FREE_WORKER, NULL, 0);

CMMD_receive(CMMD_host_node(), ANY_TAG, &work, sizeof(int));

break;

case STOP:

return;

default:

printf("Error: bad tag %d \n", CMMDmsg_tago);

return;

Version 1.1, January 1992

Chapter 2. Creating Message-Passing Programs 23

5. The makefile (see Chapter 3 for an explanation of this file):

Makefile for pi -- a master/worker CMMD example

that performs a Monte Carlo approximation of pi.

for dependency checking

.KEEP STATE:

MAIN = CC

TARGET = pi

SP_SRCS = pi-pm.c
PE_SRCS = pi-pe.c
C_PROTO = pi.proto

INCDIR -

USRLIBDIR

CC - gcc

OPT_LEVEL = -g

#USR SP LIBS =

USRPE LIBS

#include file that does all the work

include /usr/include/cm/cmmd.make.include

###Y#############

Version 1.1, January 1992

Chapter 3

Compiling Your Code

Compiling and linking of CMMD programs are best done using CMMD's make-
file. They can, however, be done in separate steps. This chapter describes each
step as it would be done separately, and then describes and explains the use of the
makefile.

3.1 Compiling Your Code

The compilers used for message-passing programs are cc, gcc, and Sun f77.

Each type of code - host code, node code, and interface code - must be com-
piled separately from the other types. (For definitions of these types of code, see
Chapter 2.)

CMMD header files are common to both host and node code. For C, the header
file is cmmd. h. For Fortran, it is cmmd fort. h.

3.2 Linking Your Code

Use the cmld linker to link object code for the CM-5. cmld is a version of the
standard Sun linker that has been extended to accept host and node objects and
to produce from them a single executable file. The linker accepts all the flags
accepted by the Sun linker as well as the -pe marker flag, which separates host
and node objects.

Version 1.1, January 1992 25

2..a C U Gud

To link a C program, use the following syntax:

% cmld <host flags, paths> <host objects> <interface objects>
<host ibs> -pe <node flags, paths> <node objects> <node libs>

You can use the -o flag, either as a host flag or as a node flag, to specify the name
of the executable file. (If you use the -o flag in both places, the name you specify
with the node flag is used.)

To link Fortran code, use the CM Fortran compiler driver. This ensures that a
Fortran main routine is linked in.

For example:

% cmf -cm5 myfile.o myfile. intf. o -lcmmd -lcmna_sp-lm
-pe myfile.pe. o -lcmmd pe -lcmna_pe -lm

3.3 Libraries

CM-5 libraries are provided for both the host code and the node code. Host
libraries are identified as libname. a (except for the CMNA library, cmna
sp. a). Node libraries are identified as libname_pe . a. All libraries provided by
Thinking Machines Corporation may be found in /usr/lib.

Programs using CMMD must link with the following libraries, all of which are
provided by the makefile discussed in the next section:

For the host code:

cmmd

cmna_sp

m

For the node code:

cmmd_pe

cmna_pe

m

3.4 Compiling and Linking with a Makefile

To make compiling and linking easier, Thinking Machines provides a makefile
to compile and link your message-passing programs. This makefile consists of
two parts: the specific makefile and the cmmd. make. include file.

Version 1.1, January 1992

CMMD User ~ Guide26

Chapter 3. Co

In the specific makefile, you assign program-specific values to the following
make variables:

MAIN =

TARGET =

SP SRCS =

PE SRCS =

C PROTO =

F77 PROTO =

INCDIR =

USR LIBDIR =

CC =

OPT LEVEL =

USR SP LIES =

USR P LIBS =

Either F77 or CC. This indicates which main routine to
link into the executable.

The name of the executable.

The names of the host source files.

The names of the node source files.

The names of the C prototype files.

The names of the F77 prototype files.

A list of directory paths to add to the header search path.

A list of directory paths to add to the linker search path.

The name of the C compiler.

The optimization level with which compilation is per-
formed.

A list of additional libraries to provide to the linker for the
PM link phase. NOTE: cmmd. cmna sp and m are already
included.

A list of additional libraries to provide to the linker for the
node link phase. NOTE: cmd pe, cmnape and m are
already included.

Finally, you include the common camd. make. include file into the makefile.

include /usr/include/cm/cmmd.make.include

The cmmd. make. include file uses the values of the preceding variables to
create the interface files, compile the host, node, and interface sources as indi-
cated, and then link the host, interface, and node objects into the appropriate
executable files.

The makefile then cleans up after itself. It removes intermediate files (like
. intf . c files), and creates a make. depend file for complete dependency
checking.

Version 1.1, January 1992

Chapter 3. Compiling Your Code 27

28 CMDUsrsud

Several options allow you to request additional tasks:

clean indicates that make should remove all object files, depend
files, and depend backup files.

echo indicates that the values of selected make variables should
be displayed.

env indicates that the values of all environment variables
should be displayed.

print indicates that the make variable specified by the input
variable NAME should be displayed. This is useful for de-
bugging make errors. For example:

make -f Makefile NAME=FOO_FILES print

would print the value of wOO_FILES as determined by the
make program.

3.5 A Sample Makefile

As an example of a makefile, here is the makefile for pi, the sample program
shown in Chapter 2. (The cmmd. make. include file, which is standard for all
programs, is provided on-line.)

Makefile for pi -- a master/worker CMMD example

that performs a Monte Carlo approximation of pi.

for dependency checking
.KEEP STATE:

MAIN = CC

TARGET = pi

SP_SRCS = pi-pm.c

PE_SRCS = pi-pe.c

C_PROTO = pi.proto

INCDIR

USR LIBDIR =
CC = gcc
OPT_LEVEL = -g

Version 1.1, January 1992

28 CMMD User Guide

C r m g C

USRSPLIBS

USRPELIBS =

#include file that does all the work
include /usr/include/cm/cmmd.make.include

3.6 A Sample Make Session

Here is a sample session using the makefile shown above:

,Ss ^ .g¢¢ | ::::::::::::";': :R:i; :R

:dgdlii~~~~~~~~~~~~i~~~~r~~~~C~~~~::::- ·· I:::::::·:::.:.~ ~ ~~~~~~~~~~~~~~~~~~~~~~~:fnncal:
ge g eDCs PpoPDPEEnpiecc o p e

:0W ":dii ~..-..- ."? . p t sX

~~:~~LV~~pipe.pe 0:S :-::'e::.::::S.:e .:..
gcc.in. ina

/usrbin/mld-o ppi m~a i itf o

-lcmradyei:' -lc mnarye 12I·:- ln·,: i~~~~~~~~~n:
:--:u~~~~~~~::·:t ~ ~ ~ w. n:::·::::::::.:.::·.:.-:~....... ...

Version 1.1, January 1992

Chapter 3. Compiling Your Code 29

Chapter 4

Executing Programs

This chapter discusses

* Checking system status.

* Executing programs interactively.

a Submitting batch jobs.

* Timing programs.

* Printing output.

4.1 The Execution Environment

The program execution environment on the CM-5 is similar to that of any UNIX
system, with enhancements to handle parallel processing.

As with any system, you

· Gain access.

· Perhaps check system status.

· Run your program.

Version 1.1. January 1992 31

32 MMDUse v uid

4.2 Gaining Access

To gain access to a CM-5, you must know the name of one or more of its partition
managers. In addition, you must have been granted access rights by the system
administrator.

The CM-5 is usually accessed across a network, either by logging in remotely (via
the UNIX rlogin command), by running a remote shell (via the rsh command),
or by submitting a batch job (via the qsub command).

Once you have logged in or established your shell, you are operating in the
CMOST timesharing environment, with the following resources available to you:

* A partition manager (equivalent to a UNIX workstation). You initiate pro-
gram execution on this processor, which utilizes parallel nodes and I/O
devices as needed.

* All the parallel nodes in the partition. Under the CMosT timesharing envi-
ronment, all the nodes are available to, and used by, all the parallel
programs running on that partition.

* All the I/O devices on the CM-5 (assuming the system administrator has
granted you access to the appropriate file systems).

4.3 Checking System Status

The two most common questions about system status on a CM-5 are

* How large is this partition at this time?

* How many users are running on it?

You can use the cmps command (modeled after the UNIX ps command) to an-
swer these questions. The cmps command provides information about the
partition on which the command runs. If you're logged on to Mars, the command
cmps provides information on Mars. To find out about conditions on Venus, you
would use a remote shell and type rsh venus cps. In either case, the camps
output would look something like this:

Version 1.1, January 1992

32 CMMD User 5 Guide

Chpe .Eeutn rgas3

The first line of the cmps output provides general information about the partition,
including the number of nodes (or PNs) it contains. The columns give informa-
tion about each process.

The time column indicates the amount of time that the CMOST timesharing dae-
mon has made available to the process, regardless of whether the process actually
utilized the nodes. For timing information on how your program uses the nodes,
use the timer functions described later in this chapter.

The memory columns, given in hexadecimal notation, refer only to the nodes.
The stack is the UNIX process stack on each node, while pstack and pheap refer
to memory allocated for user data. To find comparable data for the partition man-
ager, use the UNIX ps command.

4.4 Executing a Program

The CMosT operating system treats the partition manager and its nodes as a
single unit. Thus, you execute a message-passing program, or other parallel pro-
gram, simply by executing the host program on the PM, as you would any UNIX
program on any UNIX system:

% a.out

You can also execute a program in the background or by means of the at or
batch command, as on any UNIX system, or via the NQS batch system's qsub
command (described in the next section).

Version 1.1, January 1992

."'.'~~~~~~.: ''.'''X.''" -

, ~~~~~~~~~~~~~~~~~~~~~~.-.-..........-.......---..-.....-........-.-.-;'-."... :k . :: - : :: -: .4Y -.9 --' ' ' : :: - ' ::: '-o:0-P T 0-0EAP:::::=.D: :-.- .:.-.. :i 0 00 0 : 00 Q0:g t '.w

,.-.:~~~~~~~~~~~~~ ,. : -. . , - - .. . - -:: - :. .

.4.:: -an:. : :: :: .:..:::-*6-til:: .3::: :- . :: -:: -:3:51.:-14 :-002:30o --:- :-:- 0Qc000 .:0000::: -0

-., -; .~.. :-; , ..: -.3 '.~:: .0.0,,3: .- .- :0- - --,~~~~~~~~~~~~~~~~~~~~~ .. 0,0... - - . , ,, , .' . . -....-
6::i··-~ ii:jx;-:~ ::~~i ~ i:'~::'i:;~`Siiiii: ~ :r:::j.- ···:·r.·.::i ;;;; ·;:...:·;;·:-- · · ··::·~:. a:;·'.i ~·::;--

Chater 4. Executing Programs 33

34g, C;.M,;;M Uspe,Yr ^+r~e Gu:-fide<<'9St,+uSS;6.j8 M9>

4.5 Executing a Batch Job with NQS

In a batch system, you submit one or more programs as a request to a queue. The
batch system in turn submits the queued requests for execution. Your request is
generally executed when it reaches the head of the queue. The CM system admin-
istrator is in charge of configuring queues to meet the needs of the site, and of
informing users what queues are available when.

The CM batch system is based on the standard Network Queueing System (NQS).

NQS provides four user commands:

qsub Submit a batch request.

qdel Delete a batch request.

qstat Display the status of queues and batch requests.

qlimit Display the resource limits that can be placed on batch
requests.

The following sections present a very brief introduction to the qsub and qstat
commands. For full information on using the NQS batch system, please see NQS
for the CM-5. You can also refer to the on-line manual pages for information on
specific NQS commands.

4.5.1 Submitting a Batch Job

To submit a program for batch execution, you first create a script-file. A script-
file is simply a file containing one or more program names. It may also contain
instructions as to how NQS is to handle the program queueing and execution.

You then invoke NQS with the qsub command, and give it the name of the script-
file. For example,

% qsub myscript

You can add options to the qsub command that supplement or override those in
the script-file. For example,

% qsub -q marsl myscript

Version 1.1, January 1992

CMMD User ~ Guide34

Chpe .Eeutn rgas3

This command line submits the script-file myscript to the queue marsl, no
matter what queue the script-file specifies.

When your programs execute, output and error messages are written to files. By
default, these files are placed in your current working directory. However, you
can use qsub options to control their names and placement.

4.5.2 Checking on NQS

To find out the status of all your NQS requests, type

% qstat

To narrow your request to jobs on a specific queue, specify the queue name. To
request status on all jobs (not just yours), use the -a option. Thus, to see the status
of all jobs on queue mars l, type

% qstat -a marsl

For information on the queues themselves, use the -b option. See the on-line
manual page and NQS for the CM-5 for information on these options and on
qstat in general.

4.6 Timing a Program

To time a message-passing program, insert calls to the CMMD timers within the
program. These timers are much like the CM timers used to time data parallel
code; but where those timers treat all the nodes as a unit, the CMMD timers treat
each node separately. Each node calls its own timers, and each node's timers
record times only for that node.

The paragraphs below summarize information about these timers.

Version 1.1, January 1992

Cha~ter 4. Executing Programs 35

36 CM Ue ud

4.6.1 Using the CMMD Timers

A program written with CMMD can use timers in either or both of two ways:

* A node can create and read timers for its own use, independent of any
other node.

* The host processor can create timers on all nodes, and read maximum
values from those timers.

Different sets of functions are provided for each model of use. Both sets follow
the same pattern:

* First call timer clear with an integer timer-ID to create a timer and ini-
tialize it to zero.

* Then call timer_start, to start the timer going.

* Then call timer_stop, information-reading functions, and timer
start whenever you like. Timings will be cumulative until timer
clear is called again.

A total of 64 timers is available to each node. Timers can be nested. Thus, one
timer can provide timings for an entire routine, while a second timer provides
timing for a particular block of code within the routine. Each timer can record
timings of up to 43 hours, with microsecond precision.

Timers measure three values:

* Busy time is the time during which the user program is executing user
code.

* Idle time is the time during which the user program is looping in the
dispatch loop.

* Elapsed time is the sum of busy time and idle time. It represents the
amount of time during which your process was scheduled for execution on
the CM-S.

Timers give most accurate results when the program being timed has exclusive
use of the partition. System load under timesharing can affect program timings.

Version 1.1, January 1992

CMMD User 5: Guide36

Chaper 4 Excutig Pogras 3

4.6.2 Individual Timers, Called by Any Node

The following functions may be called by any node to manipulate timers for that
node. No node can manipulate another node's timers, nor can the host manipulate
timers initiated by a node.

Nodes can, however, cooperate in the use of timers. Moreover, a node can read
a timer value into a buffer, then send that buffer to the host. If all nodes have read
and stored timer values in an appropriate manner, they may perform a reduce
to host to sum the time values, or to find the maximum or minimum value.

In all these functions, the value for timer must be an integer from 0 to 63,
inclusive.

int CMMD node timerclear(int timer)

Sets the total elapsed time, total CM busy time, and number of starts for
timer to zero. Must be the first function called for any timer.

int CMMD node timer start(int timer)

Starts the clock running for timer. Elapsed time and CM busy time are
accumulated. Number of starts is incremented.

int CMMD node timer stop(int timer)

Stops the clock running for timer. The specified timer's state variables for
CM elapsed time and CM busy time are updated. A subsequent call to
CMD_timer _start - without an intervening call to cMD _timer
clear - restarts the timer and adds to the accumulated elapsed and busy
values for this timer.

double CMD node timer elapsed(int timer)

Returns the elapsed time recorded by this timer.

double ClMMDnode_timer_busy (int timer)

Returns the busy time recorded by this timer.

double CUD node timer idle (int timer)

Returns the idle time recorded by this timer.

Version 1.1, January 1992

Chater 4. xecuting Programs 37

38 aM x se Gud

4.6.3 Global Timers, Called by the Host

The host uses the global timer functions to set and query timers running on all
nodes simultaneously. There is no protection against a node manipulating one of
these timers once the host has initiated it; such action, however, may well invali-
date timings for the program as a whole.

Again, the value for timer must be an integer from to 63, inclusive. It is the
responsibility of the calling procedure to ensure that timers created by the host
and those created by nodes have different identitiling numbers.

Global timer calls operate through control blocks sent by the host to all nodes.
Calls to these timers can therefore be made only while the nodes are in the dis-
patch loop between procedures. Hence, global timers can time entire procedures
only; they cannot time code blocks within procedures. To time individual code
blocks, use local timers on individual nodes, as explained above.

Global timer functions are as follows:

void CM=D' clear node-timers (int timer)

Sets the total elapsed time, total CM busy time, and number of starts for
timer to zero on all nodes. Must be the first function called for any global
timer. Causes a global barrier synchronization.

void CMM start node-timers (int timer)

Starts the clock running for timer on a nodes. Elapsed time (also known
as wall-clock time) and CM busy time are accumulated. Number of starts
is incremented. Causes a global barrier synchronization.

void CM~d_stop_ode_timiers int timer)

On all nodes, stops the clock running for the specified timer and updates
its state variables for CM elapsed time and CM busy time. Causes a global
barrier synchronization.

A subsequent call to CMM-~Dtimer-s tart - without an intervening call
to CHM timer-clear -restarts the timer and adds to the accumulated
elapsed and busy values for this timer.

double CM-node max-elapsed time (int timer)

Returns to the host the mxu elapsed time recorded on any of the
nodes by the specified timer. Causes barrier synchronization.

CMMD- User Ir Guide38

Version .1, January 1992

Chapte 4. Exetg3

double CMD node max idle time(int timer)

Returns to the host the maximum idle time recorded on any of the nodes
by the specified timer. Causes barrier synchronization.

double CD node max busy_time (int timer)

Returns to the host the maximum busy time recorded on any of the nodes
by the specified timer. Causes barrier synchronization.

Version 1.1, January 1992

Chapter . Executing Programs 39

Chapter 5

Error Handling and Error Diagnosis

There are several features built into the CM software that make debugging and
error handling more convenient. The node-level debugger, pndbx, discussed in
the next chapter, is one such feature. Various files that contain helpful informa-
tion in the event of errors are another. Those files are discussed briefly in this
chapter, along with the CM condition-handling routines, CM panic and CMPN
panic.

5.1 Error Handling

The Connection Machine system provides two error handlers:

CMpanic ("error_message") for host programs

CMPN panic ("error_message") for node programs

You can word your error messages to be as helpful as possible. Using different
prefixes for different routines, for example, or otherwise identifying the source
(and, to the extent possible, the cause) of the error is often useful, especially if
you are writing code for others to use.

Version 1.1, January 1992 41

..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 'L1"' L ·::::;~;:;;::;a....'~:~~'~::::~":~:": ~ ':~::·:'::":~:::"~:::;
:·:·:·:·:~~~~·~~·:·:~~·:·~~~·:~;:·:·r:....

NOTE

For C programs, CMPNpanic is the cleanest way to terminate
a program running on the nodes. Calling EXIT is valid only for
programs running on the host, not for programs running on the
nodes. (In the current implementation, calling EXIT from a node
program produces a call to CMPNpanic. This behavior is not
guaranteed to persist.)

For Fortran programs, a call to STOP by a node program pro-
duces an OS error and thus stops the overall program with an
error message pointing to the code that called STOP.

5.1.1 Default Error Handling

The default behavior for both routines is to abort the currently running process,
after printing the specified error message to the user's stderr and producing
core dumps for the node and host processes. Both routines use the PM and the
timesharing daemon to do this. (For details of the default behavior, see the
CM panic (1) man page.)

If you are running your code in the debuggers (Prism or dbx for the host code,
plus pndbx for the node code), the debuggers will trap the error signal and halt
your code. This allows you to examine and analyze the state of the failed pro-
gram. (See Chapter 6 for information on using the debuggers.)

5.1.2 Customized Error Handling

You can alter the default behavior of CM panic and CMPN_panic in several
ways:

You can set the environment variable CM NO PN CORE, to disable the
creation of the errors file and the node core dumps, stack file, and heap
file. (The command line

Version 1.1, January 1992

..I ,".

42 CMMD User ~ Guide

Chapter 5. Error Handling and Error Diagnosis 43

setenv C NO PN CORE

accomplishes this.)

The default behavior of both routines culminates in the host process re-
ceiving a SIGTERM signal. You may choose to install a different error
handler for SIGTERm, or, alternatively, to have your program ignore the
SIGTERM signal. (If the signal is ignored, the Cztpanic routine simply
returns; the program may or may not be able to recover.)

Please note that only wizards should try these tricks. They should consult the man
pages for CMOS abort and CN_longjmp.

5.2 When Your Program Is Terminated

If your program is terminated by a SIGTERM signal, you will usually get at least
two things: PN (node) core dump(s), and a PN errors file. In addition to those
files, Fortran programs may also get a Fortran traceback. The data contained in
these three files, combined with some well-placed printf statements in your
code, should help you to track down the cause of the error.

5.2.1 Using prinff

If the nodes call the printf routine to print out data, the output is stored into the
file CTSDEprintf . pn .pid in the current directory (wherepid is the process ID
of your program). Using printf will slow down your program a great deal, so
it is best used only for debugging.

Note that printf uses supervisor facilities, so that it will work even if your pro-
gram has clogged the network.

5.2.2 The Errors File

In the directory from which you executed your program, you should find a file
called CZTSD_errors.pid. This file is generated by the timesharing daemon
when a user program crashes; it contains a list of the status of each node (and of

Version 1.1, January 1992

�4�a�l�g�6�

44 CMDUe u

the PM, if an error was detected there). The errors file will tell you which nodes
crashed, and give you some information about the crash, such as what memory
address the node was trying to reference, whether it died because of a segmenta-
tion fault, and so on.

5.2.3 Core Files

You should also find one or more node core files. These files are named
CTSD coreynX.pid, where pid is again the process ID, and X is the node
identifier. In some circumstances, you may also see a regular core file, from the
host process.

If you don't want PN core files generated (generating them does take time), set
the environment variable CM_NO PN CORE to any non-null value.

5.2.4 CMTSD Files

You may also see two files called C!TSD heap.pid and CMTSDstack.pid.
These files contain the contents of the parallel stack and heap for the failed pro-
cess. They are unlikely to be of much use to you. You can simply delete them,
if you wish.

5.3 More about Cores

When an error occurs, cores for some of the nodes are dumped. To avoid wasting
disk space, only unique cores are dumped. That is, if several nodes have the same
error, only the core for the first node with that type of error is dumped. Also, the
first node with no error (if there is such a node) will dump core.

5.3.1 Looking at Core Files

Node core files have names of the form CHTSDcore. pnX. pid, where X is the
number of the node. You may examine the node core files with dbx. This requires
two steps:

Version 1.1, January 1992

CMMD User Guide44

ChaterSErrorHdlig an ErrDn4

1. Use the cmsplit command to separate the host and node executables.
The host executable will have the same name as the merged exe-
cutable (e.g., a. out); the node executable will have a .pn suffix (e.g.,
a. out. pn). The syntax for cmaplit is

cmsplitprogram-name [-o node-file-name.pn]

2. Invoke dbx on the node executable, supplying the name of the core file as
an argument, as shown in the following example:

. . a . . r fiReaditing symbalie informati

pXqr1~ trmnte b sgnlSEGV (semenaton vX~~ain

tdb tells St :.......~~~:ii~::~,:i:::: :i:ii ::. i:::...
cnms rr:::::::i:..:::...:: ::::I·:::ii~~~iiiiljii:.:~~i::i::......... ... _ r = g N m ILL·L _Y·. _0EB' _'Bi:' X:::': Xi~ ··.

....,,

Note that you must give dbx the name of the node executable, rather than the host
executable, to look at node cores. Specify the host executable to look at a host
core file.

You can ignore the warning from dbx about registers' values. Node core files
don't have some of the relatively obscure (undocumented) fields that normal
UNIX cores have at the end, and dbx complains about this. It will not cause any
problems with debugging.

5.4 Fortran Tracebacks:
A Warning about Synchronization

When a Fortran program dies, it may generate a traceback. The traceback file will
be calledprog. trace, where prog is the name of your host program. The file is
appended to every time your Fortran program dies, so if you crash multiple times,
there will be multiple traces in the file. The last trace in the file is the newest one.

Version 1.1, January 1992

Chaptfer 5 Error Handling and Error Diagnosis 45

46 MMDUse ~ uid

The traceback may give you an indication of which routine the code died in.
However, the information may not be very valuable. Remember that the host and
the nodes are not necessarily synchronized. The host frequently tells the nodes
to begin some computation, then goes on to its own next task; therefore the host
is frequently ahead of the nodes. Moreover, if a node has an error, the host may
continue working for a while before the error status is propagated to it and your
program halts. Therefore, the routine or instruction that is executing on the host
when the nodes die may have nothing to do with the error.

Version 1.1, January 1992

CMMD User Guide46

Chapter 6

Debugging Your Program

6.1 Introduction

When you debug a message-passing program on the CM-5, you are actually de-
bugging two programs - the host program and the node program -
simultaneously but separately. There are two methods for doing this:

* You can debug your program inside the Prism programming environment.
You use Prism's own windowed debugger to debug the host program and
pndbx (invoked for you by Prism if you select PN Debug from the Utili-
ties menu) to debug the node program. This is the preferred method, since
Prism provides extensive debugging and data visualization features, as
well as comprehensive on-line documentation.

· You can use the standard UNIX debugger, dbx (1), to debug the host pro-
gram, and the pndbx debugger to debug the node program.

Section 6.6 explains these two methods. Note that both use pndbx to debug the
node program; pndbx is specifically designed for node programs.

The pndbx debugger has the same interface as dbx, with a few important exten-
sions to handle parallelism. Because nodes may be operating asynchronously,
pndbx works with one node at a time and allows the user to move among nodes
at will.

For example, breakpoints are set on a per-node basis. You can set identical break-
points on all nodes, or set different breakpoints for each node. However, you can
see a particular node's breakpoints only if you have set that node as your current
node.

The following discussion presents a brief overview of pndbx. Sections 6.2
through 6.4 list the features that pndbx provides for both high-level and

Version 1.1, January 1992 47

eg~23~ 5~ 5

low-level debugging. Sections 6.5 through 6.9 discuss how to use pndbx. Sec-
tion 6.10 provides an annotated sample debugging session.

The discussion in this chapter assumes that you are already familiar with dbx. If
you have not used dbx, and you find the discussion here insufficient, please con-
sult your SunOS or other UNIX documentation.

6.2 High-Level dbx Features Supported

This section lists dbx commands that are supported and extended in pndbx.
Extensions are listed in Section 6.3.

6.2.1 The Essential Commands

The following list highlights key commands used in high-level language debug-
ging. Note that these commands, when given in pndbx, apply only to the current
node.

stop in procedure

stop at line

cont

step, next

print exp

assign var = exp

where

Sets a breakpoint at the start of the specified
procedure.

Sets a breakpoint on the specified source line.

Continues execution after being stopped by a
breakpoint.

Single-steps into or over subroutines.

Prints the value of a variable or a source-
language expression.

Assigns a value to a variable.

Provides a stack trace.

Version 1.1, January 1992

CMMD User b Guide48

Chapt 6. g Yu -- g

6.2.2 Other Commands

Features of dbx that involve querying the symbol table or source file, such as
file, func, list, whatis, and so on, are also supported. In general, these
commands are not node-specific. See the on-line pndbx man page for details.

6.2.3 Commands Not Supported

Features of dbx that are inappropriate in the parallel context of a message-
passing node program are not supported. These include tracing, watchpoints, and
conditional breaks. Signal-handling control is also disabled.

6.3 Summary of Extensions

The pndbx utility extends the dbx command set by adding the following com-
mands:

pn [n] Identifies or changes the "current node," that is,
the node to which node-specific pndbx com-
mands refer. n is the node identifier for the node
you wish to make current.

pnstatus [all] Prints out the status of the current node, or of all
nodes. Possible states are running, break, and
error.

interrupt Stops the current node and identifies the place
in the source code at which the code was inter-
rupted.

NOTE: Many other pndbx commands, such as
where, print, stop in, and stop at, also
cause the current node to stop execution.

wait Causes pndbx itself to wait (without displaying
the pndbx prompt) until the current node reach-
es a breakpoint or encounters an error, thus
notifying the user of the change in node status.

Version 1.1, January 1992

Chapter 6. Debugging Your Program 49

50 CMMD User G:ide', .%x·: · '..::...·"...'.:. ' '. ,~.:'' " ~..~S., ' .':: >'.:.x~',>.¢ .i

Three new arguments to dbx and pndbx commands also exist:

command all

command stopped

command running

Causes a dbx or pndbx command, such as
where or interrupt, to operate on all nodes,
rather than on just the current node.

Causes a command to affect all stopped pro-
cesses (that is, all those having a pnstatus of
either break or error).

Causes a command to affect all running pro-
cesses.

These arguments apply to any commands for which they make sense. For exam-
ple, you could request "pnstatus all"; "where all" or "where running" or
"where stopped"; "interrupt running", or "cont stopped"; but you
could not reasonably request "pn all".

6.4 Commands for Low-Level Debugging

Low-level debugging support in pndbx includes the following commands:

address [,address] / format

Shows contents of a memory location (or range
of locations).

address / [count] format Shows contents of count memory locations, in
a given format. Default count is 1.

print register Shows contents of a register in hex.

register [,register] / format
Shows contents of a register (or a range of reg-
isters), in a given format.

register / [count] format Shows contents of count registers, in a given
format. Default count is 1.

stopi at address

stepi
nexti

Sets a breakpoint at a code address.

Single-step by machine instruction, either into
or over calls.

Version 1.1, January 1992

50 CMMD User Guide

Chpe . eugngTu rgram 5

assign address = value Writes a value into a memory location.

assign register = value Writes a value into a register.

number = format Performs a radix conversion.

The formats for these commands are as follows:

d 2-byte decimal
o 2-byte octal
x 2-byte hex
f float
i instruction

D 4-byte decimal
0 4-byte octal
X 4-byte hex
F double

The default format is initially X. Specifying a format for any pndbx command,
however, changes the default to the newly specified format. Thus, if you type
"1000/D", you automatically set the default format to "D".

Register names are as follows:

$gO - $g7
$o0 - $07

$10 - $17

$iO - $i7
$fO - $f31

$wim

$psr
$pc
$npc
$y
$tbr
$sig

$fsr
$fqO
$fql

window invalid mask
processor status register
program counter
next program counter
Y register (step-multiply)
trap base register
trap number that got the program into pndbx
floating status register
FP queue (address of pending FP instruction)
pending FP instruction

NOTE

Printing $fsr, $fqO, and $fql should be done with caution,
as it may trigger a pending floating-point exception.

~~i~~~3~~S~~~~

Version 1.1, January 1992

11 II

Cha~ter 6. Debugging Your Program 51

52 CMMD User : Gui

Some examples of legal commands are

Ox1000/10X

print $pc

$pc/D

0x2000/10i

$gO/32X

1000=X

Ox3e8=D

Show ten hex words starting at virtual address
hex 1000.

Show current PC in hex.

Show current PC in decimal.

Show ten instructions starting at virtual address
hex 2000.

Show 32 registers, $gO through $17.

Convert decimal 1000 to hex.

Convert hex 3e8 to decimal.

6.5 Compiling and Linking

If you intend to use dbx and pndbx, you must compile the source code for your
host and node programs with -g. Then, when linking with cmld, pass cmld the
-ig option, after the -sp or -pe flag.

6.6 Starting Up pndbx

How you start pndbx depends on whether or not you are using Prism. Using
Prism makes the startup much simpler.

6.6.1 Using Prism

You can do much more with the Connection Machine's Prism programming en-
vironment than just debug programs. A simple debugging session, however, is all
we will discuss here. For information on Prism itself and how you use it, see the
Prism User s Guide.

Version 1.1, January 1992

CMMD User ~ Guide52

Cper::>>. .:- Deugn :Your Prga 5

Start by invoking Prism and giving it the name of the program you wish to debug.
For example,

% prism hilbert

A Prism window appears on your screen, displaying the specified host program.
You can set breakpoints and so on as you wish in this program.

In the Utilities menu, click on PN Debug. Then give Prism the Run command.
When your program begins running, a new window opens. The new window
contains pndbx, already invoked and active on your node program.

Alternatively, you can start executing your host program, let it run until it reaches
a breakpoint, and then click on PN Debug to invoke pndbx on the node program.

6.6.2 Using dbx

To debug a program using dbx and pndbx you must first start up your host pro-
gram under dbx, then invoke pndbx on the downloaded (and possibly running)
node program. Usually, you run your host program under dbx in one window and
your node program under pndbx in a second window.

How do you invoke pndbx if your program takes only a few seconds to run? You
start up the host program under dbx and set a breakpoint in the code at a point
just after the nodes have started executing. (The command "stop in main"
accomplishes this.) When you hit the breakpoint, you may invoke pndbx on the
node program, set any breakpoints, and then let the host program continue
executing.

The command line for invoking pndbx is

pndbx program-name host-pid

For example:

% pndbx hilbert 14640

You can use the cmps command to get the process ID (pid) of the stopped host
process. See the sample session at the end of this chapter for an example of this
procedure.

Version 1.1, January 1992

Chapter 6 Debugging Your Program 53

5 CUsG

6.7 Monitoring the Nodes

With pndbx, you monitor one node at a time. When you first start up, you are
monitoring node 0. You can find out which node you are monitoring by using
pndbx's pn command. You can switch to a different node by using the pn n com-
mand, where n is the number of the node you want.

6.7.1 Asynchronous Monitoring

Because the nodes execute their programs asynchronously but simultaneously,
pndbx is asynchronous with respect to the overall program being debugged. You
can be typing commands at the pndbx prompt while some (or all) of the node
processes being debugged are running.

Error handling in pndbx reflects this asynchronous operation. If one node
encounters an error, that node goes into an error state and suspends execution at
the point of the error. The other nodes, however, continue to execute the user
program.

You can use pndbx to see which nodes are in an error or break state, switch to
one of those nodes, and use debugger commands to see what is going on. If the
node was in a break state (that is, if it was stopped because it hit a debugger-set
breakpoint or was interrupted by the debugger), you can use the cont command
to resume execution on the node.

6.8 Exiting from pndbx

The quit command in pndbx causes pndbx to exit. It also causes pndbx to
clean up after itself by deleting all breakpoints on all nodes and continuing all
stopped nodes.

A quitfast command also exists. This command causes pndbx to exit without
cleaning up after itself.

Version 1.1, January 1992

54 CMMD User $ Guide

Chptr .Deugig ou mgam5

6.9 Using pndbx

Like dbx, pndbx displays a prompt when it starts up. Unlike dbx, pndbx dis-
plays a prompt even when the current node is executing code. This is similar to
running a process in the background from the shell. In general, you will always
have a pndbx prompt, no matter what the node is doing. There are a few excep-
tions:

* The step and next commands do not display the prompt until the com-
mands complete. They usually complete quickly, but sometimes they take
a long time. When that happens, the prompt vanishes for a long time.

* The wait command (described later in this chapter) does not display the
prompt until the next breakpoint is reached or an error occurs.

In any of these cases, typing Ctrl-C redisplays the prompt.

6.9.1 pnstatus

Since pndbx always displays a prompt, you need a way to find out whether the
node is running, stopped at a breakpoint, or stopped with an error. You can find
out what a node is doing by using the pnstatus command, which tells you the
status of the current node. You can also use pnstatus all to find out the status
of all nodes. (Note that this may take a minute or two on a large partition.)

Version 1.1, January 1992

Chater 6. Debugging Your Program 55

:· ~ '::~iii:':~':'·::·:~·::~: ~ · :·:'~'·:'i::~ ·~-:'' ·~·:·:~··.:··:···:·:··~r:·:r~ ·~~"' ' " "' .. .i. ' j i' " i:' ..:~:::~~~::~:~~:i.:~::.~.:".1 -, :: ..

NOTE

Because output for pnstatus all (and some other commands)
may be long enough to scroll out of your window, or off your
screen, pndbx paginates the output, printing a more? prompt
after each 24 lines. You can change the pagination with the
pndbx command

set $page_size = number-of-lines

Setting page size to 0 disables pagination and allows the output
to scroll freely.

6.9.2 Interrupting Nodes

One important thing to remember when using pndbx is that many of the normal
debugging commands you use (in particular, any command that reads or writes
memory in the node) interrupt the nodes. When this happens, the nodes are not
automatically restarted.

For example, if you want to find out where the current node is, and type where,
you will get the expected information. After the command executes, the node
remains stopped, regardless of whether it was stopped before you executed the
command. You must explicitly type cont to let the node continue executing.

In general, therefore, you should be careful to check the status of a node after
doing any pndbx commands, to be sure the node is in the state you think it is. If
you forget to resume execution of a node, you (and the node) will simply sit there
and wait, and nothing will happen.

You can also use the pndbx command interrupt to interrupt a node. This is
similar to hitting Ctrl-C under regular dbx, to interrupt the process being
debugged.

Version 1.1, January 1992

"'~~i~~ii~~~i~~ii~ii ~ ' :i~:i=

CMMD User Guide56

e 6 Dgi

6.9.3 Waiting for Breakpoints and Errors

Because of the asynchronous nature of the debugger, no message is printed out
when a node reaches a breakpoint. This could make it inconvenient to work with
breakpoints, because you would not know if a node had reached its breakpoint
unless you repeatedly used the pnstatus command.

To solve this problem, use the wait command. This command takes away the
pndbx prompt. It causes pndbx to sit and wait until the current node reaches a
breakpoint or encounters an error, at which time it restores the prompt.

To break out of a wait, hit Ctrl-C. This restores the pndbx prompt. Doing this
will have no effect on the node; if the node is running, it will keep running.

There is currently no way to sit and wait until any node hits a breakpoint or error;
you can only wait for the current node to do so.

6.10 A Sample pndbx Session

Assume two windows, one for debugging the host process with dbx and one for
debugging the nodes with pndbx.

Start up the host process on the PM and execute to the start of "main":

Host Window

Version 1.1, January 1992

:: ii:==-- - -- -·::.....:~
title% dbx hilbert

.Readingr symbolic information...
.Read ..2549 symbols .
(dbx) stop in main
(dbx) run 1024 200 0 10 3
Running: hilbert 1024 200 0 10 3
stopped in main at line 116 in file "/users/title/cmmd/hilb.sc.c"

116 second();

Chapter 6. Debugging Your Program 57

8CMUrGi

Start up pndbx:

Node Window

title% prz~~~~~~~~~~~~~~~~~~~~~x t~~~~~~~~ilbs~~~~~~~~~~t 14640~~'' iiii:.'Currnt art iton size.... is.4f!'c~~~Ci::i:~ ~ ~ .~~. ':--rll.:::::.:.' c·.·..............iililili.~~~~~:c~~.'.~~?:'.iliii(-ii.~~~~~~::iiiii l .-- :T..~~~~~~~::~~.l~~:iii::i~~~ji::::i~~~~il~~li~~i...

Ztiik- DO 0,00~~.Ui'i~···r·n· ~l:i :l':~~n~'A n ::·::000 00:]. ob. il·lO 10 :RI:00 4ai". :~kie Iri.:

~~~tslv '7-..' ;o0.0:::,0.Q0:Qoo: ::::00,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:·:::: Y:::,

Welcoe topndb verion 1l 0 beta of 8/2/91 9sg :5:4 (:~hespera atink co).
.0 running~~~~~~~~~~~~~~~~~~~~~~~~~4'0................ ..... ......... . ... ....... ·..... .~ ~~~'lc~~~i';i~~~~i~~iiiiilri -::::~~~~~~~~~~:::-:... .............. ....... ::i _~..::~:i·:.i:::::~::...;; . ..........

~t~~·.- L~.r r n z n g:::: ~·:·:·. . .2 running~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.....3 runn i~i~i~ri · ·:·: .... ..... ..ht: MM.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~·· ·: X: i: ( per nk'o
C. SlO:::.: i~

List some source code:

Node Window

.(pnd':bx)°§~~ ; a ' '''-''.- .f

12

-- 414 C:receive_broadcast_from ost&primes, sizeof(int))

::415 :::: -if (pe==0: printf '(primes = %x\n, pri' mes); : 
: CMMDr::46 :::- ceceive broadcast fromhost (primes, : :- :
:nprimes*sizeof(int)-; --

4-17 -if (pe0 printf ("prmes %d %d %d %d %d ..\n":

primes[0},:primest. :--:
.primes:::-2!:: r imes 3], Prmest4:::ii: :.) :: ': 
418:: ... i.:f C.s.; i .::I Zse f-address)::: :::: : : :::

Version 1.1, January 1992

58 CMMD User $ Guide



Chapter 6. Debugging Your Program 59

Here we will set a breakpoint at line 408 in PN 0, a breakpoint at line 414 in PN 1,

and a breakpoint at line 416 in all nodes. Note how as a side effect of setting a

breakpoint, the nodes go into a "break" state. So after setting all the breakpoints,

we continue all the nodes to get them back into the "running" state.

Node Window

-(ndx) 8:top 408

interrupt : C: A isat idle at Oxc 18: a: :

i..:-C ii ndilspatch i. lj.:: i:: i:- .a d:

: p "sat il b.pe.c :40' : : ' :.: : -i

2 1.: :-- runnn : :::: 

-: runni ng : 

(pnxdbxl) pn +1 - -

-(pndbx top at - :: : :: - :: :: : :
.. interrupt in CMNA dispatch _idle at Oxcbl8: :' : .......
:-CMNA dispatch idle+0x78: - andcc : %Ai3, 16, %gO

[1] top a hilb pec":414 :::- :: : 
(pndbx) pnstatus all

PN. pn-status 

0:. break ::--.. : 

2 ::running :- -:--- - : 
: 3 running.

(pndbx) stop at 416:all
pn number : - :-

:-21 stop at "hilb.pe.c"-:416

pn number 1:: -

: 2] stop at "hilb.pe.c":416-
- pn number 2:: -

interrupt in CMNA dispatchidle at Oxcbl8

-CMNA_dispatchidle+Ox78: andcc %i3, 16, %gO

[11i stop at "hilb.peic":416

pn number 3:-

interrupt in CMNA_dispatchidle at Oxcbl8
CMNAdispatchidle-+Ox78: andcc %i3, 16, %gO

[tl stop at "hilb.pe.c":416
(pndbx) pnstatus all
PN pn-status

o break
1 break
2 break
3 break

Version 1.1, January 1992



60 CMMD User � Guide

Node Window (cont'd)

,......,.''.....,,-,....''
-:.E . :i.·.,-- :ii w W -' ' " f'- ' . .''-

pndb) pats - . ... . ...
.... R i':::::S::::: :'' v. . .. .

1nU runin ~~.::~~~- ~~~--~~~.:,::: ::::::. ~ ~ ~ ~ Z~i A .

2>' > = E~~~~~~~~g g ; R m i g i~~~~~~~~~~ runningW~~~~~~~~~~~~~~~~~~ ~ ............3'~~u,:. r n n .ng ... ....... -
"Sf an: R:::::i~i~-. .':::::i:::::':::::.:.:,-f··::::::,.-: ::: R S &S R fR 8 B::·i::: ··a 8 S :.:i: R:i.D~~~~iiii~~~i~~i.:inie: i~~i~~i~il :·'::"' ''';';~~~~~~~:i~~i::~~~:~~~:~- r ··:r:::::: ··:~~~ ~ ~

:rJ: ~~~~~~~::::::..:;,..r A~~~~~~~~~~~~~L.. ··CL A i ::......... .

.9: ~~~~~~~~i :e·:·:;···.·.r~~~~~~~~~~~~~~~~~~~~~~~~·5: " :I'~~~~~~~~~~F 

::,r::u ~ ~ ~ ~ ~ ~~~ii~~~i t~~~~x·:·:·:·.·:·:: ·~~~~~~~~~ . ....:-::.·::.. ...... ·-
i r· :·:i· ii i:::i~~~~~~~~~~~X, .... . ....

Note that the nodes remain "running" in the dispatch loop, and don't reach the
breakpoints, because the host process is stopped at the start of "main." If we con-
tinue the host process past the CMMD startup code, the nodes can proceed:

Host Window

,....,r uilding: .... '......

:.4s- i :.at ;. 1 59 .7. ... ..:"... .
19 .,ssina l ..

, 1 , 6, p.:i: (,. .,., N'EG, S, XU ;I'''"' ' '')''.:

':::'::'" . " a: . "; s 'a : 8' '"'':'" . - '- '"""- ' - :

..... ~:.'::.:.~.~..-:.......=:users.,cmsg.4/ ~. ,le/c , ' / hz-. c. ....... ': "161sSa -l prnt inems· to %dl .tae :':. :-;Legendre.:s. etris %d ",

p'esENpR 1], a egsze) 

164 f* Allocate ..... o. eN.h ab .*o p ods..*.

~ ~~~~`. : ::i::i::'::::.:. --. ... -

170: CMDbroa:: : dcstfroh.:ost(&tem::., sizeof.(int)); .' -.
:;::::: :*.... :::::; -:: .: ..... ' - : where: it is : : :: :- 

.... :::s ..... to.:223:;: :.Legendre entries 0. .. ........ : -- 
i... :i::ai:; : 'i'iat line- ..: :- :: -. -':" ~u~se~s/cmsg4/~ti~~t~~l/ J~cmmc d/hilb. s. .c......

170..: 7::CMD-broadcast-from host(&temp, sizeof(int));
ims.. f* Tell s-. we e tis /. -:

Version 1.1, January 1992

60 CMMD User Guide



:::::..::::::.i iii.:: : : : . : : : : :: ::::::.

Now, going back to the node window, we see that node 0 has hit its breakpoint
at line 408:

Node Window

(pndbx) pn tatus . ... ..al.... ...
.PN:::x pn-status: .-

. break-..:. .
:1 running.--:0 ... ..

running:.
3:::: runnn

(-pndbx) .pn... -.... .---. -...(pndbx):: where::.
:.: [13. ::stopped in cMP ain at. line 4.08 in: fi "hilspec:.

408 .. : CD.:CMDreceive,broadcast fromos t (&sqrts, zefi
CMPNymain(nsearch 1024:.. nprimes 200: nleg -0,

depth imA:, 10 ,xylim 3),x line 40 8: in "hilb.pe. c::-
.pe ain def aul t..(:): at Oxca90.::

-, :' -' -. .: -. : ' .:::..I: :l:.- --. -'` 1: :. :., ~j:I:::::i:: - ::: -:.':- . :-. .':'' .'::,~ -.I. :: : - : '. : .:l~. ': ,s~: 

If we do a next command to step over the CMMDreceive_broadcast
fromhost call, we hang because the host has not yet made the broadcast:

Node Window

(pndbx). next -
[ - - ..... .- , ........... - ....-- - -..- - -..- -: -- - -

So, switching back to the host, we'll step past where it does the broadcast. Along
the way, we'll take a look at the value being broadcast:

Host Window

(dbx)- print temp
'hilb.sc'main'temp = 0x80.000000
(dbx) next
stopped in main at line 173 in file

-"/users/title/cmmd/hilb. sc. c"
173 . temp = CM_sbrk (NPRIMES*sizeof (int) );

/* Allocate heap for primes */

Version 1.1, January 1992

Chapter 6. Debugging Your Program 61



62 CMM UsrNud

In the node window, the next now completes, and we check that the value received
is correct:

Node Window
. ..... ..... .... .... , , , , , , ,. ,., ....... ....... , , ... ........................... ............... ........ .........~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. ..... .. 

,,,,,,,,. . ,, ... ,....; ............... .. ... ...... .stoppei: d i ::·i ii::iiiii d:i'i: '::l;:-i:9 Xn:>f:id-tt;:1Sez: : -~ .:d·:~~~ ~.-: .an 4i:e h Ie.c.

.. g..409 A (p==) p nt( sqr .. xri'r. .t ..
* A':'''''''"'~:ii~~; ifeW:~:~;;~;~ ~Bi ** * :::::~...' .... ...

ox:8RO0::::· .ipndb~~~~~~~~~~~~~~~~~~~~-ic)i:::i: prt sqt
OxBOQOOOOO ;.:: ·:::::::::::::·::::i::: ···:li

Checking node status again, we note that node 1 has hit its breakpoint at line 414.

Node Window
~~~~~~~~~~~~~~~~~~~~~~~~~~... .... .. , ... . .. .... .- .

p a -ata i
i $ - 'i*:?':i 2 2 i l i'; g ' " ' Ygg..~~~.P~~~~~~~~~~

: B : - . s : : ~ ~ ~~~~~~~~~~~~~~~~~~.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.. . . l.. .B..d.. -x 4pR B -h stts: )::
2 r::u:::: nnin·j:gr:: .- ,,::::·., , ,,-:I'.,,-~l' _ .

De stnpped C-P a aline414inflehu p: 

.: .. .... .........

de.tl m . 10. .y . .... line 414 i ....b. p........
peman dfaut()at Xca0

Once again a next over the CD receive broadcast_ from_host () hangs
until we let the host continue execution:

Node Window
(pn bx) .. x. :.......... .... .

.... :(:pnex):.....:-: ... :. .
.-..-....-...-....... ...... .... .... .... . . ... .. ::......: ..... ,. - ---................................ ---- -- , .-. ..-.I-..

Version 1.1, January 1992

62 CMMD User Guide



..... .., ..... 6. ;..... De.. bu.. g .... Yo..r .r....o.g.ia 63....".... - . ..: ...

Host Window

1-74 if ( temp == -
-:!:175-:::-::- fpr in tf(s tderr,: "No.t enough room- on heapd for- p esm\n ;- :;-:

- "... .-- :i; ;:. t ::p : .:. ... .:: .: e::-: -e - : / :: -: . : . : :. .

78 CMMD broadcast_from_ host.( temp, si eoft(-inty));
/. Notify PNs wherec m / hb. i

1:: 79< :- .: .M broadcast fromhost (prime:s,-NPRIES*sizeof -:

80:i:-: C MMDreceive (0, DEFAULT:MSG::TAG, &temp, sizeof (temp) ) :

18 i:. :. emp: -(te = primes NPRI MES- : -:: .)'.: .-
p-:r::-::-::-intf (stderr, "Wron max pri me downloaded = -%dn,: temp);

183. - 1 f .. exit l):;
:x):prinp r : - : primes
':1b. sc'mai 'primes = O0x8000:100 4 :::::
(dbx) stop at 180::
(5:: stop at ,f:/users/title/cmmd/.hilb.sc.c#: 80

(dbx) cont :- - -- - -- - - - - --

::stopped:in main at line 180 in file "`lusers/:titlecmmd/hilb.sc.c"
--1D80 ::M receive(0, DEFAULTMSGTAG,. temp, sizeof (temp));

. ....

Now we're unstuck in the node window, and can once again check that the node
received the correct value for "primes":

Node Window

stopped in CMPN pmain at line 415 in file "hilb.pe.c"
:--:'415 if (pe==0) printf ("&primes = %x\n"', primes);

(pndbx) print primes
-Ox80001004

By now the remaining nodes have hit their breakpoints at line 416:

Node Window

(pndbx) pnstatus all
PN- pn-status
0 break
1 break
2 -'break

3 - break

Version 1.1, January 1992

Chapter 6. Debugging Your Program 63



64 MM Uer Gid

The where all command lets us see where all the nodes are stopped:

Node Window

pemaindefaul~~~~~~~~~~~~t() at ieca9pn ,:m nuMber

,pe~~~~nain~~~~default() at Oxca9O ~ ~ ~ ~ ~ ~ e~..t . ..... .... M _ ..... ......···): : : ·

416 ~~~NMD~recevebh odcst~ro hot~r-es`npume-szeo. ut

xylim 3), line 416 in "hi~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~b..pe. ....c. ...wi.::::·. .. number.. 3:...M.M.~~~~~~~~~~~~~~~~~~~~~:
.416 i :1MDreceve:bpres-fr nlt gs m e nCMP:;ymainnsrh" 1024 nprmes= 200, nieg - 0,I:: dpthlim; 10,

x~~'lim - 3), line 416 ir~ "hilb~~pe~c"... .. ..~ ..~.... .... *..

p e ~ ~ ~ m a i n ~ ~ ~ ~ d e f a u l t 0 a t O x c a 9 O ..... ......... . . . ........~~~~~~~~~~~~~~~~~~~~~~~~.. ... .. ..

At this point, we'll allow execution to continue freely. We'll do a continue on
the host side, and a continue-all on the node side. After the first continue-
all on the node side, nodes 0 and 1 hit the line 416 breakpoint (since they
haven't previously hit that breakpoint). A subsequent continue-stopped gets
them past it:

Host Window

.-' d. :.. c - .... ... .

Version 1.1, January 1992

64 CMMDi User ~ Guide



Chaper 6:. o .. Debugg.ng Your Progr

Node Window

C spndx} cont; a~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. ... .. ... . . ..... .. ..~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. .. .. ... .... ... : . -;: -- ..- .-:-.-:
.::number:,

pn-:- numbe-: 2: : :.'- -..........-..- .... . -. .. -:-.. ........-.-:.-.-;,-:--.

.: pn- number ::
(pndbx). pnstatus all

-:PN pn-status
-:0--- break::::
1 break

. 2- r l n g .. - .. f. :. S - . ..~~~~~~~~~~~~~~.. ... ..2 runn ng ..... ......
3 .... u-n.. .- . .. ...unn

:pnbx) cont: stooped
:.p.n r ..- : . .:number:: 0

pnnumberI 1:
u .~~~~~~~~~~~~~~~~~~~~~~~~~--..,.-:::.: ................... :,.-: ,,-,

:'-'~~~~~ ' :. '' :. ' :

Now all the nodes are running:

Node Window

So our program runs to completion, as shown in the host window:

Host Window

.Search on 4:-PNs.
User-clock time from beginning of run= - 16.34935 seconds.

c/n^2 = 21.9427/1048576 = 0.209261894226

User-clock time from beginning of run= 18.36593 seconds.

Master visit calls = 1243, subtasks = 1240

execution completed, exit code is 0

program exited with 0

Version 1.1, January 1992

::.. {pndbx) pnstatus all
:'PN: pn-status: :

: -0-'":. running. .:: -
:: .:-'running . :
2 ':- : running.. 
.3:::. running

. . .
.

f v

':''

::- -'···· I:·i·:':'

::

:"

:"

i·:·'· '
:·:

65Chapter 6. Debugging Your Program



66 CMM User Guid

And we exit both debuggers:

Host Window

Node Window
(pndbz) - - -~~~~~~:-:-.:.-: : . .- .. .- . ...

,.. . . ....... :.. . ....... ........ 
;: :,·-.~: $~gi;:·1'' '''''' " j::i·:: - `::'.'.'::'~':::::': '::':.::::::::i~: . ·.·::.:.:;`.:. -:... ....

Version 1.1, January 1992

66 CAWD User ~ Guide



Index
Z "' ~ ' · _

Symbols
-pe marker flag, 25

A
a. out, 33
access

to devices or processes, 3
to the system, 3, 32

administrator, system, 1
at, 33

B
barrier synchronization, 14, 38
batch, 33
batch job execution, 34
blocking, 14
breakpoints, 47, 57
broadcast, 13
busy time, 36

C
caveats, 15
cc, 25
CM Fortran compiler driver, 26
CM NO PN COR, 42, 44
cM panic, 41

CRPE., subroutine prefix, 11
cmld, 25
CMMD

calls, 10, 14
disabling, 10
enabling, 9
host calls, 10
initializing, 12

cmndr. h, 25
cmmd. make. include, 26

CuDclearnodetimers, 38
CmD disable, 10, 15
CHMD enable, 10, 12, 15
mdA fort.h, 25
CRUD node_max busy_time, 39
C:D node_max elapsed time, 38
CRMDnode max idletime, 39
CRD_node_timer busy, 37
CMD node timer clear. 37
CRsD nodetimerelapsed, 37
CHMD_node timer idle, 37
CUDnode timer start, 37
CRID nodetimer stop, 37
CMDstart nodetimers, 38
CQstop_ node timers, 38
CmD_ suspend, 14
CMosT, 2, 12, 32
cmzPE, subroutine prefix, 11
cQPN panic, 41

cmps, 32
cmsplit, 45
C!TSD core. pnx.pid, 44
cMTSD core_pnx.pid, 44
CQTSD_errors.pid, 43
code

for host processor, 9
for nodes, 10
interface, 11

compiling a program, 25
to allow debugging, 52

compiling and linking with a makefile, 26
control processors, 2

core files, 44

D
dbx

commands, 48
for examining core files, 45

Version 1.1, January 1992 67



68'CMMD ' ":U G..,:::,'

debugging a program, 47
disabling CMMD, 14
dispatch loop, 12, 14

E
elapsed time, 36
enabling CMMD, 9
errors

common, 15
diagnosing, 43
file, 43
handling, 41

executing a batch job, 34
executing a program, 12, 33
EXIT, calling, 42

F
f77, 25

f77-sp-pe-stubs, 11

files
. intf. c, 13

.proto, 13

czne. h, 25
cemd. make. include, 26
cmmd fort.h,25

CTSDrintf . pe.pid, 43
core files, 44
errors file, 43
interface, 13
makefile, 26
prototype, 13

flags, 25
function prototype, 13

G
gec, 25
global timing functions, 14

H
handling errors, 41
host, 2

host code, 9
host-node programming model, 1

I/O, 15
I/O calls, 9
idle time, 36
initializing CMMD, 12
interface code, 11
interface files, 13
interprocessor communication, 1
interprocessor communication networks, 2
invoking node programs, 10

L
libraries, 26
linking a program, 25
logging in, 3

M
makefile, 26
massively parallel, 2
memory, 33
message-passing programs. See programs

N
network participation, 12
node code, 10

loading, 12
nodes, 32
NQS, 34

P
partition, 1, 2, 4, 32
partition manager, 3, 32
PN, 2
PN Debug, 47, 53
pndbx

commands, 49
sample session, 57

Version 1.1, January 1992

68 CMMD User ~ Guide



ge. -

starting, 53
using, 54

printf, 16, 43
used from Fortran, 16

Prism programming environment, 47, 53
processing elements, 2
processing nodes, 2
programs

compiling, 25
compiling via makefile, 26
compiling, for debugging, 52
components of, 9
creating, 9
debugging, 47
ending, 14
executing, 31, 33
execution of, 12
hanging, 14, 15
linking, 25
running on the host, 9
running on the nodes, 10, 12
sample, 17
terminating with errors, 15, 43
timing, 35

prototype, 13
ps, 32, 33

Q
qdel, 34
qlimit, 34
qstat, 34,35
qsub, 34

R
remote shells, 3
rlogin, 3, 32
rsh, 3, 32

S
script-file, for batch requests, 34
segmentation violations, 10
SIGTERM signal, 43
sp-pe-stubs, 11
space-sharing, 1
stack frame, 13
STOP, calling, 42
subroutines, 10

invoked by host, 11, 13
invoked by nodes, 11
naming conventions for, 11

supervisor mode, 4
system administrator, 1
system calls, 9, 10
system status, 4, 32

T
timers, using, 36
timing a program, 35
tracebacks, 45

U
UNIX facilities, 2
user mode, 4

W
writing, error messages, 41
writing, from Fortran, 15

X
Xli, 9

Version 1.1, January 1992

Index 69


