5, s Lt fe

THINKING MACHINES CORPORATION

CONNECTION MACHINE TECHNICAL SUMMARY

The
Connection Machine
System

Connection Machine
- Model CM-2 Technical Summary

Version 6.0
November 1990

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, November 1990

The information in this document is subject to change without notice and should not be construed
as a commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves
the right to make changes to any products described herein to improve functioning or design.
Although the information in this document has been reviewed and is believed to be reliable,
Thinking Machines Corporation does not assume responsibility or liability for any errors that may
appear in this document. Thinking Machines Corporation does not assume any liability arising
from the application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM-1, CM-2, CM-2a, CM, and DataVault are trademarks of Thinking Machines Corporation.
c*®isa registered trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.

C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.

Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

Sun, Sun-4, SunOS, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

The X Window System is a trademark of the Massachusetts Institute of Technology.
StorageTek is a registered trademark of Storage Technology Corporation.

Trinitron is a registered trademark of Sony Corporation.

Copyright © 1990 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 021421264
(617) 234-1000/ 8761111

Contents

Chapter 1
1.1
12
1.3
14

Chapter 2
2.1
2.2
23
24
25
2.6
2.7
238

Chapter 3
31
32
33
34
35

Part I The Parallel Environment

Parallel Architectureooiill, 3
System Organizationcoiuiiiiiiiiiiiiiiiiiieeeseennnns 3
Data Parallel Hardwarec.cciiiiiiiiiirninnnocnsonanes 4
Data Parallel Computationcciiiiirennernrenaerananes 7
Data Parallel Softwareccoiviiiiiiiiiiiiiiiinniiennnnn 12
The Operating System Environment 13
The Front-End Environmentccoviiiiiiiiineennennnnans 13
Partitioning the Connection Machine System 14
The NQS Batch Systemcoiiiiiiiiiiiiiiiiiiieininnnninas 15
TImesharing . ..ottt iiiiiie it is it it 17
The Program Development Environmentccovvvuennnn 17
The Program Execution Environmentccoviiiininnnrnenns 18
The Connection Machine File Systemcoiiiiiineann. 19
CM DiagnostiCsvversvruennnneeeeeonnnnineseoerannnnneeenns 20

Part I1 Parallel Software

Languages..............coooiiiiiiiiiiiii i 23
Establishing Parallel Data Structuresccceeiiiiieiieneennns 24
Establishing Linkages among Data Elements 24
Establishing Scalar Datacoiiiiiniiiiiiiiiinneeeaneenns 25
Operationson Mixed Datacooiiiiiiiiiiiiiiiiinnnnnn, 25
Conditionalscciiiiiiniiiiiin ittt ittt 25

iii

Chapter 4
4.1
4.2
43
44
4.5

Chapter 5
5.1
52
53
54

Chapter 6
6.1
6.2
6.3
6.4

Chapter 7
7.1
7.2
7.3
74
7.5
7.6

Chapter 8
8.1
82
83
84

Connection Machme Model CM-2 Technical Summary
e

Fortran 27
Structuring Parallel Dataccoiiiiiiiiniieiiianienennn. 27
Computingin Parallelcccoiiiiieiiiennnn, S 29
Communicating in Parallelcoiiiiiiiiiiiiiiiin.t, 30
Transforming Parallel Datacccvivevenennnnnannnn.. 32
ToLearn MOTEovvieriiiiiiiiiiiii ittt iiieieeneanenns 33
The C* Languageccoiiiiiiiiiiiinennnnnn. 35
Structuring Parallel Datacciviiieinniiiinneninnercnnnss 35
Computingin Parallelcoiiiiiiiiiiiiiiiiiiiiiiienn, 37
Communicating in Parallelcooviiiiiiiiiiiiiennnn, 38
Transforming Parallel Dataccciiiiiiiireinnieennnnnn 40
The *Lisp Languagecociiiiiiiiiinan... 41
Structuring Parallel Dataccociiiiiiiiiiiina, 42
Computingin Parallelccoiiiiiiiiiiiiiiii i, 45
Communicating in Parallelccciiiiiiiiiiiennennnnenn 46
Transforming Parallel Datacccceiiiiiiiieinnennnnnen 48
CM Scientific Software Library 51
CMSSL Capabilitiesvvvirierieniirinereinininieeeeinnnnes 51
CMSSL Paraliel Computationoovviiieiiiiiineeiiinnnn, 53
Linear AIGEbIaccvueunnneenenceeonreeonnnencennanennnes 56
Fast Fourier Transformsc.oviiiiiiieiiniiineenrnnn. 58
Random Number Generatorsc..vvvuvreeerninnreeeeennns 59
Statistical Analysiscoviierrriiiniiitiiiiiiiii i 60
Data Visualizationoooil, 61
Visualization Output from the CM Systemooviit, 62
bl 21 T - e 63
Generic Display Interfaceccciieiiiiiiieninnnennnnans 65

Image File Interfacecocotiiinininnneinnriereennneennens 67

Chapter 9
9.1
9.2

Chapter 10
10.1
10.2
10.3
104
10.5
10.6
10.7

Chapter 11
11.1
112
11.3
114
11.5

Chapter 12
12.1
12.2
123

Chapter 13
13.1
13.2
13.3

Chapter 14
14.1
14.2

g1 n
Virtual Machine Architecturecoooviiiiiniiiiiniieiinensn, 71
Instruction Set Overviewcceitiiiivinninnnnreraceennns 75
CM-2 Architecturecoovviiiiiiniirennrennnenns 81
Processor Architectureciviiinriiiinariisitsattnnannas 83
The Paralle]l Processing AITYovvvennunnreeeeeeesennns 83
The Floating-Point Acceleratorccovvivuvneeneresnsananns 85
The ROULETuvuuinnineineeeeseansnosassosnssssosnssnssssnns 86
The NEWS Grid oiiitiiiiniiiiniinieeenrorensoeesansanennes 88
Scans and Spreadsciiiiiiiiiiiiiiiiiii it iiaaas 89
Communication with the Front Endc0evviiinn.. 90
Dataand Image /Occoiiiiiiiiiiininnnnnnns 91
Data /O Chanmelsocvviiiininnennnecnsnrsnenesnsoncnns 91
Data /O OVEIVIEWoivivtiniriitorenrsrensesnnsassonsnnnanns 92
Graphics Output for Data Visualizationc.cc000nn, 93
CMT/O Controllerccvvueiernenesnrecensnnsnrseansonenss 93
CMIO BUS ... iiieiiiiiiienieeriosenssasarssoassssnsesaasnanns - 94
TheDataVaultcoiiiiiiiiiiininann... 97
The File Serverciviininriteierinirssasectsssrnscosecsnnnns 99
Writing and Reading Datacvviviiiniicironeieccnncnnnns 100
Data Protection0c0ueeuesernvnersoncessocassosoaneananns 101
CMIO Intelligent Bus Interfaces 103
HIPPIBusInterfacec.ocvivievsnnncnsrnnnnsnasacnannes 103
VMEbus Interfaceciiiiiiiniieniiieesecrnrecasonenansons 104
SCSTBUS INEIfACE ...\ \vveeenneeeennneeannneannaaeinneeennnnees 105
The Graphics Display System 107
Connection Machine Framebuffercoiveiiiinn... 107
The MOMItOT . .. coiviiieiiarennsnoenencasacnssnssssoscnnsnsnsns 109

Vi

Connection Machine Model CM-2 and DataVault System

The Connection Machine Model CM-2 uses thousands of processors operating in parallel to achieve
peak processing speeds of above 10 gigaflops. The DataVault mass storage system stores up to

60 gigabytes of data.

vii

Part 1

Chapter 1

Parallel Architecture

The Connection Machine Model CM-2 is a data parallel computing system. Data parallel
computing associates one processor with each data element. This computing style exploits
the natural computational parallelism inherent in many data-intensive problems. It can sig-
nificantly decrease the execution time of a problem, as well as simplify its programming.
Execution time is frequently reduced in proportion to the number of data elements in the
computation; programming effort is reduced in proportion to the complexity involved in
expressing a naturally parallel problem statement in a serial manner.

The Connection Machine Model CM-2 is an integrated system of hardware and software.
The hardware elements of the system include front-end computers that provide the devel-
opment and execution environments for the users’ software, a parallel processing unit of
64K processors that executes the data parallel operations, and a high-performance data
parallel /O system. Software elements begin with the standard operating system and
program development environment of the front-end computer and enhance that environ-
ment with extensions to standard languages and tools that facilitate data parallel program
development. Users write programs using familiar languages and constructs, taking advan-
tage of the full, enhanced front-end development environment. When they choose, they can
also call on CM language features and library routines specifically designed to handle tasks
and problems germane to large-scale data-intensive programming. Programs have normal
sequential control flow; new synchronization structures are not needed. Thus, users can
easily develop programs that exploit the power of the Connection Machine hardware.

1.1 System Organization

The Connection Machine system was specifically designed to handle the largest computa-
tional problems. At the heart of any large computational problem is its data set: some
combination of related data objects, such as numbers, characters, records, structures, and

4 Connection Machine Model CM-2 Technical Summary

arrays. The task of any application is to select, combine, rearrange, and operate upon this
data. Data-level parallelism expedites this task by taking advantage of the parallelism
inherent in large data sets.

At the heart of the Connection Machine system is the parallel processing unit, which con-
sists of up to 64K processors, each with up to 128 kilobytes of memory. These processors
can not only process the data stored in their memory, but also can exchange information
among themselves and with I/O peripherals. All these operations happen in parallel on all
processors.

A CM-2 parallel processing unit may contain 16K, 32K, or 64K data processors. The model
CM-2a may contain 4K or 8K data processors. Here, and throughout this document, “K”
stands for 1024, or 2!°. Thus 64K means 65,536; 32K means 32,768; 16K means 16,384;
8K means 8,192; and so on. '

The Connection Machine processors are used whenever an operation can be performed
simultaneously on many data objects. Data objects remain in the Connection Machine
memory during execution of the program and are operated upon in parallel. This model
differs from the serial model, where data objects in a computer’s memory are processed
one at a time, by reading each one in turn, operating on it, and then storing the result back
in memory before processing the next object.

Of course, some small part of an application’s data may be better processed serially. Such
data resides in the memory of the front-end computer and is processed serially in the usual
way. The memories of the parallel processors hold the bulk of data that can be usefully
processed in paraliel. The flow of control is handled entirely by the front end, including
storage and execution of the program and all interaction with the user and/or programmer.
Parallel data is operated upon through commands sent by the front end to the Connection
Machine processors.

1.2 Data Parallel Hardware

The Connection Machine system implements data paralle]l programming constructs direct-
ly in hardware and microcode. Parallel data structures are spread across the data
processors, with a single element stored in each processor’s memory. When parallel data
structures contain more data elements than the system has processors (the normal situ-
ation), the system operates in virtual processor mode, presenting the user with a larger
number of processors, each with a correspondingly smaller memory. This allows the user
to write programs assuming the number of processors that is natural for the application,
rather than forcing code to conform to the number of hardware processors available. Each

. Parallel A

s

Chapter 1

ke

rchitecture

hardware processor is made to simulate the appropriate number of virtual processors; as the
program issues each parallel instruction, microcode causes it to be executed many times,
once for each virtual processor. The same program can run without change on different
quantities of hardware processors—but the more hardware, the faster it runs.

Interprocessor communication is implemented by a special-purpose high-speed network.
When data is needed, it is passed over the network to the appropriate processors. Proces-
sors that hold interrelated data elements store pointers to one another, thus supporting
completely general patterns of communication. In addition, special hardware supports cer-
tain commonly used regular patterns of communication. Nearest-neighbor communication
in a multidimensional rectangular grid is particularly efficient.

High-speed transfers between peripheral devices and Connection Machine memory take
place through the Connection Machine I/O system. All processors, in parallel, pass data to
and from /O buffers. The data is then moved between the buffers and the peripheral
devices. Connection Machine high-speed peripherals include the DataVault mass storage
system, the Connection Machine graphics display system, the Connection Machine VME
I/O system, and the HIPPI high-speed interface.

Connection Machine Model CM-2 Technical Summary

Figure 1. Components of a Connection Machine system. The user’s terminal
provides access to the front-end computer, CM-2 parallel processing unit,
DataVaults, and high-resolution graphics color monitors.

Chapter 1. Parallel Architecture
R

1.3 Data Parallel Computation

Connection Machine systems are designed to operate on large amounts of data. These data
sets may be richly interconnected or totally autonomous. A scientific simulation data set,
such as a finite-element grid, is highly interconnected, with every node value connected to
several element values and vice versa. Disparate values are continually being brought
together, computed on, and redispersed. A document data base, on the other hand, may be
totally autonomous. The search of any one document proceeds entirely without reference
to any of the others. There is no need to combine information from multiple documents in
a single computation.

The Connection Machine system is made up of large numbers of processors, each with its
own local memory. (Note that a system with 65,536 processors, each with a 128-kilobyte
memory, has a total of 8 gigabytes of physical memory.) From the programming perspec-
tive, it is possible to think of the memory in either of two ways. When computing on
interconnected data sets, it is easiest to think of the memory as a single multi-gigabyte data
space. When computing on autonomous data, it is easiest to think of it as many local
memories.

Efficient Connection Machine algorithms invariably combine both points of view. When
data is being being gathered, it is done in the global context. Once the data is gathered,
however, it becomes local data. The ensuing computations are then most easily thought of
as being carried out in multiple local memories.

Physical Processors and Memory

The unit of data in a Connection Machine is the parallel variable. A parallel variable is not
a new concept; all Fortran arrays, for example, are parallel variables. The array A (64000)
is a parallel variable with 64,000 individual data elements. The array D (1000,1000) isa
parallel variable with 1,000,000 data elements. What is important in the Connection
Machine system is the way such variables are allocated into physical memory. They are not
allocated contiguously in the 8-gigabyte global memory space, because to do so would
bunch the variables up in the local memories of the first few processors. Instead, individual
arrays are spaced out through the whole address space, so that each processor’s local
memory space receives the same amount of data. If the number of elements in the array
matches the number of physical processors, then each local memory receives one element.
If three arrays, such as A (64000), B (64000), and C (64000) are defined on a 64K CM-2,
then space will be allocated in each local memory for one instance of each variable.

8 Connection Machine Model CM-2 Technical Summary

Initialization of these arrays may proceed in either of two ways. The following sequence
of Fortran 77 code initializes one element at a time, and hence requires 64,000 units of
time:

DO 20 I = 1,64000
20 A(I) = 4

An exactly equivalent Fortran 90 statement performs the same initialization in a single unit
of time:

A =4

A = 4 is a parallel command, and executes for all the elements of A (in this case, for 64,000
such elements). On the Connection Machine system, this parallel form is vastly more effi-
cient than its serial counterpart. Initialization of a parallel array to a constant value is
carried out by broadcasting the constant from the front end to all the processors at once.

Initialization to a constant is always a local operation. Other computations may or may not
be local. An example of a local addition in Fortran would be:

DO 20 I =1, 64000
20 C(I) = A(I) + B(I)

Such a computation proceeds serially, but at each step, the appropriate values of A and B
are to be found in the same local processor, along with the location of C into which the sum
is to be stored. Such a program sequence also has a vastly more efficient parallel form on
the Connection Machine:

Virtual Processors

The Connection Machine hardware allows each physical processor to operate as many vir-
tual processors, each with a smaller memory. The virtual memory facility is invoked
automatically when a parallel variable is declared. Thus the declaration

DIMENSION D(1000,1000), E(1000,1000), F(1000,1000)

causes the compiler (in this case the Fortran compiler, but other languages have corre-
sponding ways of declaring parallel variables) to invoke a million virtual processors. The

ter 1. Parallel Architecture 9

way this invocation is carried out depends on the physical hardware configuration at run
time. If there are 65,536 processors available, then each is subdivided 16 ways. (Note that
65,536 times 16 is 1,048,576 virtual processors, slightly more than are needed.) Thus the
two statements

C=A+8B
F=D+E

are equally valid parallel statements. Assuming the declarations shown above, the first
statement will execute in one unit of time on a 64K CM-2. One unit of time, however, is only
enough to do one sixteenth of the second statement. The system automatically cycles
fifteen more times to complete the second statement.

Because of the virtual processor capability, these parallel statements also execute on small-
er CM-2 or CM-2a systems. On an 8K CM-2a with one gigabyte of memory, the array
declaration A (64000) invokes 8 virtual processors per physical processor; the declaration
D (1000,1000) invokes 128 virtual processors. Virtual processors allow CM-2 programs
to be completely scalable. They run unchanged on larger and smaller configurations,
because the underlying virtual processor configuration changes dynamically to match the
code to the hardware resource. When arrays of different sizes are used in the same program
(as they typically are) the system changes its virtual processor context as needed to match
the current data being operated on.

' Global Operations

Global operations are directly supported in hardware just as local operations are. A typical
global operation is:

X = MAX(A)

where X is a scalar (as opposed to a parallel) variable. All the values of A are compared,
and the largest is stored in X. This is an example of a reduction operation; a large set of
values is reduced to a scalar result. Other reduction operations include summation, logical
AND, and logical OR.

10 Connection Machine Model CM-2 Technical Summary

Parallel Computation on Interconnected Data Structures

So far we have seen cases where there is no connection between data elements (local com-
putation) and cases where there is total connection between data elements (global
reduction). The more typical case lies in between. The inherent structure of most data sets
links each data element to some, but not all of the others. Often the linkages are to neigh-
boring elements, so the structure is localized (but not in the absolute sense of “local” used
in the previous section). A matrix, for example, is generally thought of as having row and
column structure. Elements that have one subscript the same are used in a connected way.
If the matrix is used as part of a finite-difference calculation, then the horizontal and verti-
cal neighbors are continually being brought together for computation. If a data structure is
converted from the spatial domain to the frequency domain, then a butterfly topology may
be invoked during the course of a Fast Fourier Transform (FFT).

It is not possible to arrange interconnected data so that all the pieces of data will reside in
the processors that need to use them, because the same piece of data must be used in more
than one part of the computation, by more than one processor. Interprocessor communica-
tion is required. Computations on data structures have a definite rhythm: first data elements
are brought together, then computations are performed. Once the data elements have been
brought together, the computations are local. Even on very complex data structures, it is
possible to have most of the interacting elements located in the same processor memory.
Typically, only a few need to be brought in from another processor’s memory.

Localized, Regular Structures

In a localized, regular data structure, the pattern of interconnection is the same everywhere
in the data structure, and the paths between interconnected data elements are very short. A
finite difference grid is a very typical example. Each data element is connected to its neigh-
bors to the north, south, east, and west. In the three-dimensional case, it is also connected
front and back. When the data structure is originally set up, one element of the array is
stored in the local memory of each processor.

The CM-2 hardware includes specific communications hardware, the NEWS grid, that sup-
ports nearest-neighbor communications on multidimensional rectangular grids. Each
Connection Machine language has facilities for moving data along the NEWS grid. A com-
putation on a regular data structure alternates between the gathering of data on the NEWS
grid and performing computations locally in the individual processors.

Chapter 1. Parallel Architecture 11

7 P et ket /) [N et Aiet et et
AL TYRT I, ST, NTET y
At de et je1k-1 Pt dot et 14 s

[4

Figure 2. Examples of regular grid structures

Figure 3. Example of an irregular grid structure

Irregular and Global Structures

In an irregular data structure, the pattern of interconnection varies from one part of the the
data to another. Most irregular data structures are relatively localized, but it is also possible
to have interconnections between very distant data elements. A finite-element data struc-
ture is a common example of a local, irregular pattern. Each of the parallel languages
includes language constructs to bring data together and to scatter it back out. Once the
appropriate data elements are brought together, the computations on them are carried out
in the individual processors.

1.4 Data Parallel Software

To expedite the handling of parallel data structures, Connection Machine system software
offers languages that provide data parallel extensions to well-known standards and libraries
that facilitate specialized tasks in scientific computing and visualization. It also provides
a UNIX-based operating system and various networking capabilities. In all cases, system
software is integrated with existing programming languages and environments, so that
users can rapidly feel at home on the system.

Fortran on the Connection Machine system is based on Fortran 77 but also uses the array
extensions in the draft Fortran 90 standard (proposed by ANSI technical committee X3J3)
to express data parallel operations. These array extensions map naturally onto the under-
lying data parallel hardware.

The C* language, developed by Thinking Machines Corporation, is a data parallel exten-
sion of the C programming language (ANSI technical committee X3J11). C* programs are
similar in style to C programs; the extensions are unobtrusive and easy to learn. Parallel
code looks like serial code, but is executed in all parallel processors simultaneously.

The *Lisp language, also developed by Thinking Machines Corporation, is a data parallel
dialect of Common Lisp (a version of Lisp currently being standardized by ANSI technical
committee X3J13). *Lisp gives programmers fine control over the CM-2 hardware while
maintaining the flexibility of Lisp.

. Chapters 2 through 8 of this Technical Summary examine this software environment.
Chapters 9 through 14 then discuss the architecture that supports it.

Chapter 2

The Operating System Environment

The Connection Machine Operating System (CM OS) is fully compatible with the UNIX
operating system and enhances it in an intuitive manner. The X Window System environ-
ment is also fully supported. Since the CM OS follows UNIX standards for its file system
and works with UNIX, VME, and HIPPI standards for networking, system managers can
integrate their Connection Machine system fully into today’s heterogeneous super-
computing environments.

2.1 The Front-End Environment

The front-end computer is the user’s gateway to the Connection Machine system. Through
the front end, CM users develop, compile, debug, and execute their application programs.
Administrators use the front-end computer to configure the Connection Machine system
and to execute diagnostic programs for its maintenance; the CM OS offers interactive and
automatic features for system administration.

The front-end computer’s file system holds all system software and user programs for the
Connection Machine system. (Data for user programs, on the other hand, is usually stored
in the CM file system, which is discussed later in this chapter.) Programs execute in the
front-end environment, with the front end passing instructions to the Connection Machine
supercomputer, transmitting I/O requests to its associated I/O and display devices, and
receiving program output and messages.

A front end is a multi-user UNIX system: either a Sun-4 Workstation that runs the SunOS
operating system and contains a VMEbus, or a Digital Equipment Corporation VAX 8000
or 6300 series minicomputer that runs the ULTRIX operating system and contains a VAXBI
/0 bus. Different types of front-end computers may be included in a single Connection

13

14 Connection Machine Model CM.

2 Technical Summary

SR

Machine system and may run applications simultaneously on that system. A Connection
Machine system can have from one to four front ends.

2.2 Partitioning the Connection Machine System

A user process can access either the complete Connection Machine supercomputer or some
portion of it. The portion accessed (whether the whole or the part) is called a partition. A
partition is created and allocated for dedicated or multi-user use by a system process or user
process giving an attach command. It is deallocated when the process detaches.

Flexibility for the Administrator

At any given time, a partition of a Connection Machine system can be available as a
multi-user partition, a batch partition, or a single-user partition.

® A multi-user partition runs timesharing, and may run batch. Such a partition
executes interactive programs for any number of users (up to an optional limit). If
the administrator chooses, batch jobs from one or more batch queues may share
resources with the interactive jobs, either at the same priority or at a different
priority.

® Abatch partition runs batch, but not timesharing. This partition is under the control
of a batch queue. Interactive jobs may access the partition when no batch jobs are

running. The batch queue, however, may be configured so that it detaches such
users when the next batch job requires the partition.

" A single-user partition does not run timesharing, but may run batch. This type of
partition is available either to one interactive user or to one interactive or batch
user at a time.

Changing a partition among single-user, multi-user, and batch modes is as simple as start-
ing or stopping a system process. It can be done interactively, or through scripts set to
operate at particular times. Thus, an administrator might choose to divide a 32K system into
one 16K multi-user partition and one 16K single-user partition for daytime use, but con-
figure that same system as a single 32K batch partition on nights and weekends, with the
changeovers occurring automatically at preset hours.

Chapter 2. The Operating System Environment 15

Flexibility for the User

A system administrator has the option of leaving the entire Connection Machine system in
single-user mode. In this case, user programs dynamically partition the CM by attaching to
and detaching from those portions of the machine required by their programs.

In other cases, users work within the partitioning established by the system administrator,
choosing the multi-user partition or batch queue that best suits their needs.

CM Number of Possible
Model Processors Partitions
CM-2 64K 16K, 32K, 64K
CM-2 32K 8K, 16K, 32K
CM-2 16K 8K, 16K
CM-2a 8K 8K

CM-2a 4K 4K

2.3 The NQS Batch System

The Connection Machine uses the Network Queueing System (NQS) batch system, which
is becoming standard for UNIX networks. This batch system supports two types of queues:
batch queues, which are linked to a specific partition, and pipe queues, which feed jobs (via
batch queues) to whichever partition is available to run them. It allows submission of batch
jobs over the network, either via pipe queues or via rsh. It also allows the NQS manager
to control the number and characteristics of available queues, as well as each queue’s hours
of operation.

The hours during which a batch queue executes jobs and the hours during which it accepts
jobs are not necessarily identical. For example, a queue might accept jobs from 8 am till
midnight, but execute jobs between 8 pm and 8 am. (A queue that accepts jobs is said to
be enabled, one that executes jobs is said to be started.)

Creating and Configuring Queues. An NQS manager decides how many queues to create
and what characteristics each queue will have, thus tailoring the batch system to the needs

16

Connection Machine Model CM-2 Technical Summary

of the particular site. The administrator uses the gqmgr utility to create each queue, naming
and describing the queue and defining

the hours during which the queue operates (queues with restricted hours start and
stop automatically at designated times)

the priority of this queue in relation to other queues

the users or groups of users who can submit jobs to the queue

time and size limitations for jobs executing from the queue

the CM system resources available to jobs executing from the queue

whether the queue has exclusive use of its sequencer(s) and whether it can forcibly
detach other users

whether a queue provides automatic attaches and detaches for its jobs

Submitting Batch Requests. Frequently, the NQS manager defines a number of queues
with different characteristics. Users can then choose the queue most suitable for each pro-
gram. In addition, users can further define the execution environment for a program by
using options to the job submittal command that

request that execution be delayed until a particular time
request the use of a specified shell

request that all environment variables be exported with the job
direct the method by which output is to be handled

set various per-process limits

assign a priority to the job

Users can also ask for notification by mail of their job’s progress, and can query the system
for information on the characteristics and availability of queues and on the status of queued
requests.

Controlling Batch Queues. NQS operators can start and stop queues, enable and disable
queues, and shut down NQS. When necessary, they can also remove waiting and executing
jobs from queues.

Chapter 2. The Operating System Environment

2.4 Timesharing

Each multi-user partition is a virtual machine environment, only slightly smaller than the
physical environment, operating under the control of a timesharing executive. The execu-
tive arbitrates memory demands among user processes, switches the full CM context
between processes, and swaps user processes to disk. Swapping to a DataVault — the
recommended method — allows a speed of 25 megabytes per second (or 25 megabytes
per second per DataVault for striped DataVaults). Administrators can tune timesharing
parameters to best meet the needs of their sites; parameters include:

®= the maximum number of processes that can execute simultaneously

® the minimum amount of time for which a process can be scheduled

= the maximum amount of memory any process will be allowed to consume
= the desired latency for the scheduler

= the amount of disk space to use for swapping

= the level of logging and the location of the log file

2.5 The Program Development Environment

The program development environment available to Connection Machine users offers the
full capabilities of the UNIX and X windows systems. In addition, it offers enhancements
specific to CM parallel programming: parallel languages, specialized libraries, and pro-
gramming tools. It also offers users access to two file systems: the front end’s own UNIX
file system and the UNIX-based, parallel, high-performance CM file system.

Users write programs in CM languages: C*, CM Fortran, or *Lisp. These languages are
supersets of C, Fortran 77, and Common Lisp, respectively. Programs may also include
code written in Paris (the Connection Machine’s PARallel Instruction Set), and calls to
specialized libraries, such as the Connection Machine Scientific Software Library
(CMSSL).

Once the program is coded, it is compiled with a CM compiler. (Programs written in *Lisp
may be either compiled or interpreted.) Profiling options can be used during compilation,
to allow profiling with the gprof command.

When a program is compiled, sequential code is translated directly to the native machine
code of the front end. Source-level constructs that correspond to Connection Machine (data
parallel) operations are translated to a mix of front-end machine code and instructions
for the parallel processing unit. In typical programs, data structures are created in the

18 Connection Machine Model CM-2 Technical Summary

Connection Machine memory and are used in precisely the same manner as structures in
front-end memory. The difference is that operations on the Connection Machine structures
can be carried out on many data items in parallel.

Debugging may be done either with a debugger resident on the front end or with emdbx,
the CM’s parallel extension of the dbx debugger.

2.6 The Program Execution Environment

Program execution takes place, as mentioned above, either interactively or in batch mode.
In either case, the program executes on the front-end computer and accesses the CM, its /'O
subsystem, and its display hardware as needed. The program may access a DataVault, for
example, either to read and write data, or to store the results of a checkpointing operation.

Several facilities — checkpointing, timing, and safety-checking — are available to aid pro-
gram development and robustness during execution. In addition, tools are provided to
allow programs executing on single-user partitions to initialize the partition.

Checkpointing

Many applications that run on the Connection Machine system require extended execution
times, because of complexity, number of iterations, or both. Users need to be able to inter-
rupt and later restart such a program: perhaps to allow it to run only when the system is not
needed for other use, to allow for scheduled machine downtime or protect against unsched-
uled halts, or simply to allow for restarting the program from some intermediate state
during debugging. The Connection Machine system supports this need with a check-
pointing facility.

Checkpointing a program lets the user save (and later restart) an executable copy of a pro-
gram’s state. This includes the program’s state on the front end, its state on the CM, a list
of the files that the program had open at the time of the checkpoint, and a stored copy of
the checkpointed program.
The CM checkpointing facility offers three basic methods of checkpointing:

® inserting checkpoints at particular points in a program

® having checkpoints occur periodically

= having a checkpoint occur when a program is sent a particular signal, such as the
signal sent during a planned shutdown of the system

Checkpointing can be used from within a debugger, such as dbx, and it can be used on
programs that execute only on the front end as well as on programs that use the CM.

Timing

A CM timer calculates, with microsecond precision, both the total elapsed front-end time
(wall-clock time) and the total amount of time the CM is active. Calls to CM timers can be
inserted anywhere in a program. A program can use (and nest) up to 64 timers for simulta-
neous coarse-grain and fine-grain timing.

Safety Checking

Users may choose to enable a CM safety-checking utility during program execution. This
utility checks both for low-level errors and for inconsistencies in programs. Although
safety checking reduces execution speed, it can be useful in developing and debugging

programs.

2.7 The Connection Machine File System

The Connection Machine File System (CMFS) is designed to handle the immense amounts
of data needed by many CM applications, to store data in a format most suitable for the
parallel processing done by the CM, and to transform data between this parallel format and
the serial format used by other systems.

Serial and Parallel Formats

A serial-format file consists of a single stream of data, suitable for processing by the front
end or any other sequential computer. A parallel-format file contains many streams of data,
one per Connection Machine virtual processor. It also contains geometry information indi-
cating whether the many streams are to be organized as a multidimensional grid and, if so,
how they are to be organized.

20 Connection Machine Model CM-2 Technical Summary

CMFS library calls are available to transpose data from serial to parallel format, and vice
versa. Thus, data can be exchanged between the Connection Machine system and other
systems.

A UNIX-Like File System

The Connection Machine file system is closely modeled on the UNIX file system. It has a
hierarchical directory structure, with directories and files identified by pathnames. Many
CMFS user commands and library calls have counterparts in the UNIX file system that are
similar in name and function. Users will thus find considerable congruence between their
front end’s file system and the CM file system, and will handle the two in very similar ways.

As in UNIX, any /O device in the CM I/O system is regarded from the user’s perspective
as just another file in a file system. /O to all devices in the Connection Machine system is
handled in the same manner, regardless of the type of device involved. For example,
writing data from the CM to a DataVault appears to be no different than writing to a tape
drive. Users need to learn only a single set of commands and library calls to move data
among all devices in the system.

2.8 CM Diagnostics

A complete set of diagnostics for the Connection Machine system is provided with
Connection Machine software. Facilities are also provided to make it easy to send error
reports and details of diagnostic failures through an electronic message network to the
Customer Support Group at Thinking Machines Corporation.

Part I1
Parallel Software

2z

Chapter 3

Languages

Data parallel languages allow the programmer to organize data so that program operations
may be applied to many elements of data at once. There are few differences in coding style
between a data parallel program and a conventional serial program. In both cases a single
sequence of instructions is used, with a serial control structure. However, parallel opera- '
tions are performed on many data items at once. Thus the programming languages for the
Connection Machine system provide parallel processing without requiring the programmer
to indicate synchronization explicitly in programs.

Because the data parallel and serial programming styles are similar, they can use almost
identical languages. The languages currently supported for the Connection Machine sys-
tem are CM Fortran, C* (pronounced see-star), and *Lisp (pronounced star-lisp). CM
Fortran implements the Fortran 90 array features directly. Each of the other two languages
extends its corresponding serial language specification by adding a new data type. Very
little new syntax is added; the power of parallelism arises simply from extending the
meaning of existing program syntax when applied to parallel data.

CM Fortran and C* are the most commonly used languages for numeric applications. *Lisp
is commonly used for artificial intelligence and other symbolic processing applications, but
also provides excellent numerical performance with all the convenience and power of the
Lisp language.

The following sections survey some broad themes, common to any data parallel
programming language, that are useful to keep in mind when examining a language
description.

23

o

24 Connection Machine Model CM-2 Technical Summary
S A

3.1 Establishing Parallel Data Structures

Data parallel programs can be expressed in terms of the same data structures used in serial
programs. Emphasis is on the use of large, uniform data structures, such as arrays, whose
elements can be processed all at once. A statement such as A =B + C, which in a serial lan-
guage adds a single number B to a single number C and stores the result in A, can equally
well indicate thousands of simultaneous addition operations if A, B, and C are declared to
be arrays. The underlying paradigm is that every array element is in the memory of a differ-
ent processor; if the number of array elements exceeds the number of physical hardware
processors, a virtual processor mechanism transparently maintains the paradigm.

Although array declarations can thus in principle be identical for serial and data parallel
programs, the underlying architecture may require careful allocation of array elements to
physical processor memories for best performance. Indeed, in some cases very small arrays
are better processed serially. Therefore, data parallel languages, like vector processing lan-
guages, generally provide some optional declarations that give the user control over data
allocation. In CM Fortran, the compiler automatically determines, according to how the
array is used in the program, whether an array should be considered serial or parallel, and
how parallel arrays should be allocated to Connection Machine processors. The pro-
grammer can override such automatic decisions by inserting declarations in the form of
structured comments. In C*, the data types in a declaration implicitly specify whether a
data structure is parallel. In *Lisp, data structures are created dynamically, and the
programmer uses different allocation operations to specify creation of serial or parallel data
structures.

The choice of parallel data structures is perhaps the most important aspect of data parallel
programming. Once data has been properly allocated, executable code follows naturally.
It is not necessary to use different operation names for different cases. Parallel code can
look just like serial code, in the same way that floating-point arithmetic looks like integer
arithmetic. A conventional compiler examines the declarations of variables B and C to
determine whether B + ¢ will require an integer or floating-point add instruction. In the
same way, a compiler for a data parallel language examines declarations to determine
whether B + € will require a single addition operation or thousands.

3.2 Establishing Linkages among Data Elements

During the execution of a program, data from different problem elements are used together.
Data parallel programs use pointers or array subscripts to establish connections between
processors and hence between their data elements. An array of pointers, itself a parallel

data structure, establishes an arbitrary pattern of intercommunication. If the required pat-
terns are regular and local, such as processors sharing data with their nearest neighbors,
then no explicit array of pointers is needed because each processor can easily calculate the
address of its neighbors as needed (in some cases implicitly, with the assistance of special
hardware such as the NEWS grid).

3.3 Establishing Scalar Data

Some data is not parallel. For example, it may be wasteful to place a copy of a constant
permanently in every processor’s memory since the constant can be efficiently broadcast
as needed from a central point. For this reason, scalar data (whether constant or variable)
may be declared as such and stored in the front end.

3.4 Operations on Mixed Data

Operations that use both scalar and parallel data typically involve replication or reduction.
If a scalar value participates in an operation that yields a parallel result (such as adding a
constant to every element of an array), the scalar value is replicated by broadcasting it to
all processors at once. If parallel data participates in an operation that yields a scalar result,
such as finding the sum of all of the elements of an array, a reduction operation is used;
given one processor for each data element, such an operation can be completed very
quickly by organizing the operations on the data into a balanced binary tree. (This organi-
zation is carried out by the underlying language implementation.)

3.5 Conditionals

Data parallel programs implement conditionals by limiting the impact of operations to a
certain subset of processors, and hence to a subset of the data elements of a parallel data
structure. A conditional operation first tests a specified condition in all elements of a paral-
lel data structure, and then performs the operations only for array elements where the
conditional was true. As in serial programs, conditionals may be nested in very general
ways.

Zo

Chapter 4

Fortran

B

Fortran for the Connection Machine system is standard Fortran 77 supplemented with the
array-processing extensions of the ANSI and ISO (draft) standard Fortran 90. These exten-
sions provide convenient syntax and numerous intrinsic functions for manipulating arrays.

Newly written Fortran programs can use the array extensions to express efficient data
parallel algorithms for the CM. These programs will also run on any other system, serial
or parallel, that implements Fortran 90. CM Fortran also offers several extensions beyond
Fortran 90, such as the FORALL statement and some additional intrinsic functions. These
features are well known in the Fortran community and are particularly useful in data

parallel programming.

4.1 Structuring Parallel Data

Fortran 90 allows an array to be treated either as a set of scalars or as a first-class object.
As a set of scalars, array elements must be referenced explicitly in a DO construct. In con-
trast, a reference to an array object is an implicit reference to all its elements (in undefined
order). For example, to increment the elements of array A (100) by 1, a program can refer-
ence the array either way:

A as a set Aasan
of scalars object
DO I=1,100
A(I) = A(I) + 1 A=A+1
END DO

27

28 Connection Machine Model CM-2 Technical Summary

To operate on multidimensional arrays, DO loops must be nested to reference each element
explicitly. In the statement A = A + 1, however, A could be a scalar, a vector, a matrix, or
a higher-dimensional array.

CM Fortran takes advantage of this standard feature when allocating arrays on the CM sys-
tem. An array that is used only as a set of scalars is stored and processed on the front-end
computer in the normal serial manner. Any array that is referenced as an object is stored
in CM memory, one element per processor, and processed in parallel. In essence, the front
end executes all of CM Fortran that is Fortran 77, and the CM executes all the array exten-
sions drawn from Fortran 90. No new data structure is required to express parallelism.

Front End

operations I l l I I l l I
= Array objects

® Fortran 90 operations

[.

The simple array reference A is the default form of a triplet subscript, A(1:100:1), which
resembles the control specification of a DO loop. Using triplet subscripts, you can replace
DO loops with an array reference that indicates all the elements of interest — and thereby
cause the array to be processed in parallel on the CM system.

An implicit triplet — that is, the array name alone — is usually used for whole arrays. You
can, however, specify any of the control variables, just as in a Do loop, to indicate a section
of the array. For example, some sections of array B (4, 6) are:

B(l1:2,:) B(3:4,4:6) B(:,2:6:2) B(3,:)

Array sections can be used anywhere that whole arrays are used — in expressions and
assignments and as arguments to procedures.

Chapter 4. Fortran 29

pusc:

4.2 Computing in Parallel

The most straightforward form of data parallel computing is elemental computing, that is,
operating on array elements all at the same time, each independently of the others. Any
array assignment where the array is referenced as an object has this effect. For example,
consider an assignment statement for a 40 x 40 x 40 array C:

C = Cc**2

The CM system allocates one element of C in each of 64,000 processors, and all the proces-
sors operate on their respective elements of C at the same time.

An expression or assignment can involve any number of arrays or array sections, as long
as they are all of the same shape. Scalars can be intermixed freely in array operations, since
Fortran 90 specifies that a scalar is effectively replicated to match any array. For example,
the following statement assumes that D and E are 10 x 10 matrices and Fis a 10 x 100 x
100 array:

D=E*2 +1 + F(:,1:10,3)

Another form of array operation uses an elemental intrinsic function. Fortran 90 extends
most of the intrinsic functions of Fortran 77 so that they can take either a scalar or an array
as an argument. If G is an array, this statement operates elementally:

G = SIN(G)

An array assignment can be performed conditionally if it is constrained by a WHERE state-
ment. This statement includes a logical mask; it behaves like a DO loop with an embedded
IF statement (except that the order in which elements are processed is undefined). For ex-
ample, to avoid division by zero in an array assignment, one might say:

WHERE (D.NE.O) E = E/D
Finally, CM Fortran offers a form of elemental array assignment, the FORALL statement,
whose action is position-dependent. The syntax of a FORALL statement resembles a DO con-
struct, but the assignments can be executed in parallel. For example, to initialize H as a
Hilbert matrix of size N:

FORALL (I=1:N, J=1:N) H(I,J) = 1.0 / REAL(I+J-1)

30 Connection Machine Model CM-2 Technical Summary

FORALL can use a mask to make its action dependent on either the value or the position of
the individual array elements. For example, to clear matrix H below the diagonal, one can
set a mask to select those positions where row index I is greater than column index J:

FORALL (I=1:N, J=1:N, I1.GT.J) H(I,J) = 0.0
To initialize a table of integer logarithms:

FORALL (I=1:10) LG (2**(I~-1):2**I-1)=1I-1

4.3 Communicating in Parallel

A second form of data parallel computing requires processors to access each other’s memo-
ries, all at the same time. The pattern of interprocessor communication can be either regular
(grid-based) or arbitrary. Fortran 90 defines a number of features that move data from one
array position to another; these features map naturally onto the communication mech-
anisms implemented in CM hardware.

Grid-Based Communication

Many applications, such as convolutions and image rotation, need to move data in regular
grid patterns. One way to specify such motion in Fortran 90 is by assigning array sections.
For example, to shift vector values to the left:

V(1l:9) = Vv(2:10)

V{(2:10)

V(1:9)

To shift data on more than one dimension:

™

A(2:4,1:4)

Fortran 90 also defines intrinsic functions that perform grid-based data motion. The func-
tion CSHIFT performs a circular shift of array elements, and EOSHIFT performs an end-off
shift. For example, the following statement shifts the elements on the second dimension of
A by one position to the left and assigns the result to B. (The SHIFT argument can also be
an array, which shifts the rows by different offsets.)

B = CSHIFT(A, DIM=2, SHIFT=1)

For solving differential equations, CM Fortran programs can access a library of stencil
routines. These routines combine pipelined floating-point arithmetic with highly optimized
grid communications, often in several directions at once. The communication patterns are
customized to the various stencil, or star, patterns of the finite difference discretizations of
these equations. For example, the two-dimensional, five-point stencil routine gets data
from four grid neighbors and performs four adds and five multiplies; it achieves speeds
considerably beyond those achieved by manual coding of the same operations.

General Communication

Processors must communicate in arbitrary patterns to map an unstructured problem onto
a grid or to index into arbitrary locations of an array. To perform these operations in paral-
lel, CM Fortran provides vector-valued subscripts and FORALL.

A vector-valued subscript is a form of array section that uses a vector of index values as
a subscript. If A is a vector of length 10 and P is a permutation of the integers from 1 to
10, then A = A (P) applies this permutation to the values in A. The statement A (P) = A ap-
plies the inverse permutation.

The index values can be repeated, which causes element values to be repeated in the
section. For example, if V is the vector (/2,6,4,9,9/), then A(V) is a five-element
vector whose values are A (2), A(6),A(4),A(9), and A(9), in that order:

The FORALL statement provides the same arbitrary indexing into an array of any rank. For
example, the following statement uses the two-dimensional index arrays X and ¥ to per-
mute the values of a two-dimensional array B:

FORALL (I=1:N, J=1:M) C(I,J) = B(X(I,J), ¥(I,J))

4.4 Transforming Parallel Data

Fortran 90 defines a rich set of intrinsic functions that take an array argument and construct
a new array (or scalar). All these transformational functions take only array objects (not
arrays subscripted in the Fortran 77 manner), and all are therefore computed in parallel on
the CM.

One set of transformational functions is the reduction intrinsics, such as SUM or MAXVAL.
These functions apply a combining operator to the elements of an array (or array section)
and return the result as a scalar. For example, given a 100 x 500 matrix D, the following
expression returns the sum of the elements in the upper left quadrant:

SUM(D(1:50,1:250))

These functions can take a mask argument to make the reduction conditional. If applied
only to a specified dimension, they return an array of rank one less than the argument array.
For example, given the 100 x 500 matrix D, the following expression returns a 100-element
vector containing the sums of the positive elements in each row.

SuM(D, DIM=2, MASK=D.GT.0)

A parallel-prefix, or scan, operation applies a combining operator cumulatively along a
grid dimension, giving each element the combination of itself and all previous elements.
These operations, which are useful in such algorithms as line-of-sight and convex-hull, can
be expressed with the FORALL statement and a reduction function. For example, in the

Chapter 4. Fortran

following add-scan (or sum-prefix) operation, each element of B gets the sum of all
elements up to and including the corresponding element of A:

FORALL (I=1:N) B(I) = SUM(A(1:I))

The array construction functions transform arrays in a wide variety of ways. For example,
TRANSPOSE performs matrix transposition; RESHAPE constructs a new array with the same
elements as the argument but a different shape; PACK and UNPACK behave as gather/scatter
operations; and SPREAD replicates an array along a new dimension. CM Fortran also pro-
vides the Fortran 90 array multiplication functions, DOTPRODUCT and MATMUL. In addition
to the standard Fortran 90 intrinsics, CM Fortran also offers the functions DIAGONAL,
REPLICATE, RANK, PROJECT, FIRSTLOC, and LASTLOC.

4.5 To Learn More

To learn more about programming in Fortran on the Connection Machine, see Getting
Started in CM Fortran, from the Connection Machine documentation set, and /mple-
menting Fine-Grained Scientific Algorithms on the Connection Machine Supercomputer,
Technical Report #TR 90-1.

34

Chapter 5

The C* Language

C* is an extension of the C programming language designed to support data parallel
programming,

The C* language is based on the standard version of C specified by the American National
Standards Institute (ANSI). C programmers will find most aspects of C* code familiar to
them. C language constructs such as data types, operators, structures, pointers, and func-
tions are all maintained in C*; new features of ANSI C such as function prototyping are also
supported. C* extends C with a small set of new features that allow programmers to use
the Connection Machine system efficiently.

C* is well suited for applications that require dynamic behavior, since it allows the size and
shape of parallel data to be determined at run time. In addition, it provides programmers
with all the standard benefits of C, such as block structure, access to low-level facilities,
string manipulation, and recursion. C* also provides a straightforward method for calling
Paris functions and CM Fortran subroutines from a C* program, thus allowing access to
these languages when appropriate.

5.1 Structuring Parallel Data

In C*, data is allocated on the CM only when it is tagged with a shape. A shape is a way
of logically configuring paralle]l data. C* includes a new construct called left indexing that
is used in declaring a shape. The left index provides the number of dimensions (or axes)
in the shape and the number of positions along each dimension. Positions correspond to
processors (or virtual processors) on the CM. For example,

shape [256][512]s:;

35

36 Connection Machine Model CM-2 Technical Summary
O

declares a shape s that is laid out as a 256 x 512 grid on the CM.

This shape is considered to be fully specified, since the number of dimensions and positions
are provided at compile time. Shapes may also be partially specified or fully unspecified.
C* lets the programmer dynamically allocate and specify shapes, thus providing flexibility
in the way they can be used.

Once a shape has been fully specified, one can declare parallel variables of that shape.
Parallel variables have both a standard C data type and a shape. For example, the code

shape [16384]t;
int:t parallel_intl, parallel_int2;
float:t parallel floatl;

declares three parallel variables of shape t; each consists of 16384 elements, laid out along
one dimension. Parallel variables interact most efficiently when they are of the same shape.
In addition to the above method, parallel variables can also be allocated dynamically.

C* also provides parallel versions of arrays and structures. For example, the code

shape [16384]¢t;
int:t parray([16];

declares a parallel array, parray, which consists of 16 parallel ints of shape t. The code

shape [16384]¢t;
struct scalar_struct {
int a;
float b;
}i
struct scalar_struct:t pstruct;

declares a parallel structure, pstruct, that consists of the standard C structure
scalar_struct replicated in each of the 16384 positions of shape t.

C* includes pointers to both shapes and parallel variables. As in standard C, C* pointers
are fast and powerful.

5.2 Computing in Parallel

Parallel Use of Standard C Operators

C* extends the use of standard C operators, through overloading, to apply to parallel data
as well as scalar data. For example, if pl, p2, and p3 are all parallel variables of the same
shape, the statement

p3 = p2 + pl;

performs a separate addition of the values of p1 and p2 in each position of the shape, and
assigns the result to the element of p3 in that position. The additions take place in parailel.
If p1 or p2 were not a parallel variable, it would first be promoted to parallel, with its value
replicated in every element. Note that this line of code looks exactly like standard C; the
result differs, however, depending on whether the variables are parallel or scalar.

The with and where Statements

C* adds new statements to standard C that allow operations on parallel data.

The with statement selects a current shape. In general, parallel variables must be of the
current shape before parallel operations can take place on them. For example, code like the
following is actually required to perform a parallel addition like the one shown above:

shape [16384]¢t;
int:t pl, p2, p3;

with (t)
p3 = p2 + pl;

C* also adds a where statement to restrict the set of positions on which operations are to
take place; the positions to be operated on are called active. Selecting the active positions
of a shape is known as setting the context. The where statement in the following example
ensures that division by 0 is not attempted:

with (t)
where (pl != 0)
p3 = p2 / pl;

Serial code always executes, no matter what the context.

38 Connection Machine Model CM-2 Technical Summary

Programs may contain nested where statements; these cumulatively shrink the set of active
positions. The context is passed into functions called within the scope of a where statement
and is correctly reestablished when returning to an outer level as a result of a break, con-
tinue, goto, or return statement. Note that the context does not affect the flow of
control of a program. One can still use standard C statements such as if and while to
manipulate flow of control.

C* extends the standard C else statement for use in conjunction with the where state-
ment; using else after a where reverses the set of active positions. The new everywhere
statement makes all positions active.

New Operators and Data Type

C* adds a few new operators to standard C. For example, the <? and >? operators are avail-
able to obtain the minimum and maximum of two variables (either scalar or parallel).

C* also includes a new single-bit data type called bool. Using parallel bools for flags can
save space, since memory in the CM may be allocated on bit, rather than byte, boundaries.

Parallel Functions

Functions in C* can pass and return parallel variables and shapes. If it is not known what
the current shape will be when the function is called, you can use the new keyword
current in place of a specific shape name within the function declaration; current
always means the current shape.

A useful feature of C* is overloading of functions. C* allows you to declare more than one
versivn of a function with the same name — for example, one version for scalar data and
another for parallel data. The compiler automatically chooses the right version.

5.3 Communicating in Parallel

C* provides two methods of parallel communication: as part of the syntax of the language
and via an extensive library of functions. Both allow communication in regular patterns
within shapes and in irregular patterns both within and between shapes. Regular
communication is faster.

Chapter 5. The C* Language 39

Regular Communication

C* uses the intrinsic function pcoord to provide a self-index for a parallel variable along
a specified axis of its shape. For example, if p1 is of a one-dimensional shape with 16384
positions (and the shape is current), pcoord initializes p1 as shown in Figure 4:

Pl = pcoord(0);

Positions
0 1 2 3 4 5 6 7 8 16383
pl 0 1 2 3 4 5 6 7 8 ... |16383

Figure 4. The use of pcoord with a one-dimensional shape

The peoord function is typically used to provide regular communication — called grid
communication in C* — along the axes of a shape. For example, the following code sends
values of source to the elements of dest that are one coordinate higher along axis 0:

[pcoord(0) + l]ldest = source;

In the common case where pcoord is called within a left index expression, and the argu-
ment to pcoord specifies the axis indexed by the left index, C* allows a shortcut: the call
to pcoord can be replaced by a period. Thus, for a two-dimensional shape, the following
provides grid communication along both axis 0 and axis 1:

[. + 1][. - 2]dest = source; (A chess knight'’s move)

Wrapping from one end of an axis to the other is provided by a standard C* programming
idiom that involves the use of pcoord along with the new modulus operator $% and the
dimof intrinsic function, which returns the number of positions along an axis of a shape.

Library functions are also available to perform grid communication. For example, the
to_grid _dim and to_grid functions can be used in place of the statements above.

Irregular Communication

C* uses the concept of left indexing to provide communication between different shapes,
as well as within-shape communication that does not necessarily occur in regular patterns.

40 Connection Machine Model CM-2 Technical Summary

A left index can be applied to a parallel variable. If the index itself is a parallel variable,
the result is a rearrangement of the values of the parallel variable being indexed, based on
the values in the index. If the index is of one shape and the parallel variable being indexed
is of another shape, the result is a remapping of the parallel variable into the shape of the
index. Thus, in the following code,

dest = [index]source;

the parallel variable dest gets values from source; the values in index tell dest which
element of source is to go to which element of dest. The variables dest and index must
be of the current shape; source can be of any shape. This is known as a get operation.
Putting the index variable on the left-hand side specifies a send operation. Sends are rough-
ly twice as fast as gets. The operations can also be performed with the send and get
functions in the C* communication library. (These are closely related to the Paris opera-
tions of the same name.)

5.4 Transforming Parallel Data

C* provides operators and library functions that enable programmers to easily perform
common transformations of parallel data.

C* overloads the meaning of several standard C compound assignment operators to
provide a succinct way of expressing global reductions of paraliel data. For example, +=,
when applied as a unary operator to a parallel variable, sums the values of all active
elements of the parallel variable. The resulting value can be treated the same way as the
result of a serial operation. Similarly, the | = operator performs a bitwise OR of all elements
of a parallel variable. The reduce and global library functions provide similar capabili-
ties for various operations.

The C* communication library contains many functions that perform other transformations
of parallel data. For example:

® The scan function calculates running results for various operations on a parallel
variable.

® The spread function spreads the result of a parallel operation into elements of a
parallel variable.

* The rank function produces a numerical ranking of the values of parallel variable
elements; this ranking can be used to rearrange the elements into sorted order.

Chapter 6

The *Lisp Language

The *Lisp language is an extension of Common Lisp used to program the Connection
Machine system in a data parallel style. It allows users to write Connection Machine
programs that make full use of the Connection Machine hardware, yet at the same time
retain the clarity, expressiveness, and flexibility of Lisp.

The *Lisp language extends the Common Lisp language by providing parallel equivalents
for the basic operations of Common Lisp, along with operations that are unique to datal
parallel programming, such as processor selection, parallel prefix, interprocessor
communication, and data shape specification.

A *Lisp program is simply a Common Lisp program that includes calls to *Lisp operators.
*Lisp is thus fully compatible with the Common Lisp standard; programs written in Com-
mon Lisp will run unmodified in *Lisp. A call to a *Lisp operator on the front-end machine
causes all active processors on the CM to execute that operation in parallel. Sequential
Common Lisp code, running on the front end, can be freely intermixed with parallel opera-
tions; only parallel operations are executed on the CM.

With few exceptions, *Lisp functions and macros are defined via defun and defmacro,
just as in Common Lisp. *Lisp programs are compiled by the Common Lisp compiler,
which is extended to recognize and handle *Lisp operations. *Lisp programs can therefore
be written, compiled, and tested with the same editors and debuggers as Common Lisp

programs.

41

42 Connection Machiq Model

6.1 Structuring Parallel Data

Scalar and Parallel Data

*Lisp distinguishes between data stored on the front-end computer and data stored in
parallel on the CM. Because *Lisp is an extension of Common Lisp, it includes all the
standard Common Lisp data types. These data types are all stored in the memory of the
front-end machine and are collectively referred to as scalar data. *Lisp also supports an
additional, parallel, data type called a pvar, which is always stored on the Connection
Machine. Pvars are collectively referred to as parallel data.

A pvar is a parallel variable, that is, a single variable with a separate, modifiable value in
each processor of the CM. Operations performed on a pvar are performed by all active pro-
cessors simultaneously, with each processor seeing and modifying only its own value for
the pvar. For most of the scalar data types available in *Lisp, there are corresponding pvar
data types. The eight basic pvar data types are boolean, integer, floating-point, complex,
character, array, structure, and front-end reference.

Creating Pvars in *Lisp

There are three basic ways to create, or allocate, a pvar in *Lisp, each designed to serve
a specific purpose, as shown in the examples below:

(!!5) ;7 Allocating a temporary pvar
(*defvar my-five-pvar 5) ;7 Allocating a permanent pvar
(*let ((my-pi!! pi)) ?: Allocating a local pvar

(*!! 2 my-pi!!))

The simplest way to allocate a pvar is via the *Lisp function ! ! (pronounced bang-bang),
which takes a single scalar value as its argument, and returns a temporary pvar with that
value in every processor. For example, the expression (! ! 5) above returns a pvar with the
value 5 in each processor. Most functions in *Lisp operate this way, performing a parallel
operation and then returning a temporary pvar value.

One can also allocate a pvar via *defvar, which defines a permanent pvar, a pvar
allocated in such a way that it will remain in existence until it is explicitly deallocated by
the user. The example above defines a permanent pvar named my-£five-pvar, and

Chapter 6. The *Lisp Language 43

initializes it to have the value 5 in every processor. (Note that scalar values are automatical-
ly promoted to pvars where necessary.)

It is also possible to allocate Jocal pvars that exist only for the duration of a body of *Lisp
code. By analogy with the Common Lisp operators let and let*, *Lisp includes two
operators, *1let and *let*, which are used to define these kinds of pvars. The example
above defines a local pvar named my-pi!!, and then multiplies its value by 2 in every
Pprocessor.

Defining the Shape of the Data

The shape of the data stored in a pvar is determined by the grid of processors that the CM
is currently simulating. The CM can be configured to simulate a grid of processors with up
to 31 dimensions, although a one-, two-, or three-dimensional grid is often sufficient. The
CM can also simulate more than one grid at a time. The defining property of a processor
grid is its geometry, which specifies the rank of the simulated grid and the sizes of its
dimensions.

The combination of a particular grid geometry and a set of pvars that share that geometry
is called a virtual processor set (VP set). A VP set is simply a description of a particular
abstract configuration of the CM processors, combined with a set of associated pvars that
use that configuration. For example, the expression

(def-vp-set my~vp-set ’ (32 64))

defines a new VP set named my-vp-set with a two-dimensional geometry of 32 x 64
Processors.

*Lisp uses the concept of a current VP set to determine which VP set is active. Unless other-
wise specified, all pvar operations take place within the current VP set. However, you need
not concern yourself with defining VP sets if you choose not to. There is a default VP set
that is automatically defined whenever you start up *Lisp, and until you create and select
other VP sets, all pvar operations take place within this default VP set.

*Lisp provides operations to allocate VP sets of many types. The simplest such operator is
def-vp-set, which allows you not only to define a VP set, but also to specify one or more
permanent pvars that will be associated with that VP set. For example, the expression

(def-vp-set double-my-vp-set ’ (64 64)
:*defvars ((x 1 nil (unsigned-byte-pvar 8))
(y 1.0 nil single-float-pvar)))

defines a new VP set named double-my-vp-set with twice as many processors as in the
my-vp-set example above. This new VP set has two associated permanent pvars: an
unsigned integer pvar x, and a single-precision floating-point pvar y.

An important feature of the simulated grids defined by VP sets is that they permit the
assignment of addresses to processors. There are two basic methods used to assign
addresses to processors on the CM: send addressing and grid addressing.

Each processor has a unique numeric send address based upon its location within the physi-
cal hardware of the CM. The *Lisp operation (self-address!!) returns a pvar whose
value in each processor is the send address of that processor.

Each processor also has a grid address, a sequence of coordinates that defines its position
in the n-dimensional grid of processors the CM is currently simulating. The *Lisp operation
(self-address-grid!! n) returns a pvar whose value in each processor is the coor-
dinate of that processor along the nth dimension of the current grid.

Accessing and Copying Parallel Data

The most basic pvar operations provided by *Lisp allow you to access pvar values on a
per-processor basis, to copy the value of one pvar into another, and to display the elements
of a pvar over a range of processors.

The standard function for reading the value of a pvar in a single processor is pre£. For
example, (pref my-pvar 10) returns the value of my-pvar in processor 10.

The macro *setf£, analogous to the Common Lisp macro set¢£, is used in combination
with pref to set the value of a pvar in a specific processor, asin (*setf (pref my-pvar
10) 123), which stores the quantity 123 into processor 10 of my-pvar.

It is also possible to refer to processors by grid addresses using the *Lisp operator grid,
as in (*setf (pref my-pvar (grid 5 7)) 111), which stores the quantity 111 into
my-pvar at grid location (5,7). '

The contents of one pvar may be copied into another by using the assignment operator
*set. For example, (*set pvarl pvar2) copies the contents of pvar2 into pvarl in
all active processors. *set is often used to set the value of a pvar in all processors. For
example, the statement (*set pvarl 5) will store the value 5 into pvarl in all active
Processors.

Chapter 6. The *Lisp Language 45

You can use the *Lisp operation ppp (short for pretty-print-pvar) to display the
values of a pvar. For example, the expression (ppp (self-address!!) :end 20)
displays the send addresses of the first 20 processors:

012345678910 11 12 13 14 15 16 17 18 19

The keyword argument :end is used to control how many values are printed. The ppp
operator provides many keyword arguments that specify the arrangement and format of the
pvar values that are displayed.

6.2 Computing in Parallel

The parallel operations supplied by *Lisp are modeled very closely on the existing scalar
operations of Common Lisp. *Lisp includes parallel equivalents for most Common Lisp
functions and macros. These parallel operations typically have the same name as their
scalar Common Lisp counterparts, with either the characters “11” added to the end, or an
asterisk “*” appended to the front. The characters “! ! are meant to resemble the mathe-
matical symbol | |, which means parallel. The asterisk similarly denotes the concept of an
operation taking place in parallel. For example, the parallel version of the Common Lisp
mod function is mod!!, and the Common Lisp if operator has two *Lisp equivalents,
if!! and *if.

Most *Lisp operators take pvars as arguments and return a pvar result. In general, if a Com-
mon Lisp operation takes arguments of a specific data type, the *Lisp equivalent for that
operation takes pvars of that data type as arguments and returns an appropriately typed pvar
result.

For example, the functions +!!, =!!, *11, and /!! perform the same operations as the
Common Lisp functions +, -, *, and /, but take numeric pvars as arguments and perform
the appropriate arithmetic operation in parallel. The *Lisp expression (*set pvazr2 (*!!
pvarl pvar2)) multiplies the values of pvarl and pvar2 in all active processors and
stores the resulting products in pvar2.

*Lisp includes parallel versions of Common Lisp functions for many data types, including
operations for complex and character pvars. *Lisp also includes an extensive selection of
operators for manipulating array, vector, string, sequence, and structure pvars. There are
even operations that allow you to create pvars that reference front-end data structures (such
as symbols and lists).

46 Connection Machine Model CM-2 Technical Summary
4 P G SR

Selection of Active Sets of Processors

Parallel computations can be performed in all processors simultaneously, or in a specific
subset of active processors selected by the user. Pvar values in inactive processors are
always left unmodified. *Lisp provides several macros for selecting the current set of
active processors (sometimes referred to as the currently selected seft).

The most basic processor selection operators are *when and *unless. Similar to their
Common Lisp counterparts, these operators conditionally evaluate a body of code based
on the result of a test. The difference is that the test controls which processors will evaluate
the body, not whether the body will be evaluated. In the following code sample, *when
is used to select all processors with odd send addresses. The value of my-pvar in those
processors is then negated.

(*set my-pvar (self-address!!))

(*when (oddp!! (self-address!!))
(*set my-pvar (-!! my-pvar)))

(ppp my-pvar :end 20)
0-12-34-56-78-910-11 12 -13 14 -15 16 -17 18 -19

The *all construct unconditionally selects all processors for the duration of a body of
*Lisp code. For example, evaluating the expression (*all (*setmy-pvar 10)) ensures
that the value of my-pvar in all processors is 10, regardless of the state of the currently
selected set.

6.3 Communicating in Parallel

One of the primary strengths of the Connection Machine system is its data communication
capabilities. *Lisp includes several kinds of communication operations, including opera-
tors for interprocessor communication and for exchange of data between the CM and the
front end. These operations are described in the sections below.

Interprocessor Communication

There are two basic kinds of interprocessor communication, regular and irregular.

Regular communication (sometimes referred to as grid, or NEWS, communication)
involves a uniform shifting of data across the currently selected grid. The basic *Lisp
functions for regular communication on the CM are news! ! and *news. These functions
cause each of the active processors on the CM to get or send a value from/to another
processor located a fixed distance away across the current grid, with news! ! performing
a parallel get and *news performing a parallel send. For example, assuming that the current
VP set is two-dimensional, the expression

(news!! data-pvar 1 0)

will return a copy of data-pvar in which each value has been shifted one position along
axis 0 of the currently defined grid.

Irregular communication (also known as general router, or scatter/gather, communication)
involves a nonuniform exchange of data among processors within that grid. The basic
*Lisp functions for irregular communication on the CM are pref!! and *pset. These
functions cause each of the active processors on the CM to get or send a value from/to any
processor in the machine, with pre£!! performing a parallel get and *pset performing
a parallel send. Both these operations take an address pvar argument whose value in each
processor is the address of the processor in the CM with which communication is
performed.

If two or more processors attempt to read the data of a single processor, they all receive the
same correct data. If two or more processors attempt to write to the same address, the user
can specify how they are to be combined (for instance, by summing the values).

In the code sample

(*set pvarl (send-address!!))
(ppp pvarl :end 9)
0123456717829

(*pset :no-collisions pvar2 pvarl
(=!! *number-of-processors-limit* (self-address!!) 1))

(ppp pvar2 :end 9) ;;; On a 64K machine, the output is:
65535 65534 65533 65532 65531 65530 65529 65528 65527 65526

the *pset operator is used to “reverse” the contents of pvarl (with respect to send-
address ordering) and to store the result in pvar2.

6.4 Transforming Parallel Data

*Lisp contains many functions to help perform transformations on data. These include
operators computing parallel prefixes (scanning) of data, spreading data across the proces-
sors of the CM, and sorting and enumeration of pvar values.

Parallel Prefixing (Scanning)

Scanning is a transformation in which a cumulative operation is performed on the values
of a pvar across the currently selected grid. There are two main scanning functions in
*Lisp, scan!! and segment-set-scan!!. The extensive options of these functions
permit the selection of many kinds of scanning operations, such as addition/multiplication
of values; taking the maximum and minimum of values; taking the logical/arithmetic AND,
OR, and XOR of values; and even simply copying values across the processor grid.

Scanning can be performed on processors in send or grid address order along any dimen-
sion of the currently selected processor grid. Scanning can be performed in either direction
along the chosen dimension; the method by which each processor adds its value to the total
(inclusively or exclusively) is also controllable.

A simple example of the scan! ! operation is

(ppp (scan!! (self-address!!) ’+!!) :end 20)
013610 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190

Scanning operations in *Lisp can select segments of processors. Scanning operations are
performed independently within segments. This allows the selection of irregular regions of
data within which scanning is to be performed.

The scan!! operation accepts a segmentation argument for simple uses of this feature.
The segment-set-scan!! operation uses a special type of pvar, a segment set pvar, to
allow much finer control over the segmentation of processors than scan! ! provides.

Spreading, Sorting, and Enumeration

An operation related to scanning is spreading, in which the value of a pvar at a given coor-
dinate along a selected dimension of the currently selected grid is spread to all processors
along that dimension. The main *Lisp spreading operator is spread!!. *Lisp also
includes a related operation that combines the operations of scanning and spreading, called
raeduce—-and-spread!!.

The sort!! operator reorders the values of a numeric pvar into ascending order. The
enumerate!! operator assigns to each currently active processor a distinct integer
between 0 (inclusive) and the number of active processors (exclusive).

Chapter 7
CM Scientific Software Library

The Connection Machine Scientific Software Library (CMSSL) is a growing set of numeri-
cal routines that support computational applications while exploiting the massive
parallelism of the Connection Machine system. This library can be linked with code written
in CM Fortran, *Lisp, Fortran/Paris, C/Paris, or Lisp/Paris.

The first releases of the CMSSL offer a basic set of linear algebra routines along with Fast
Fourier Transforms, random number generators, and histogramming routines. Many of the
routines have been implemented to allow parallel computation either on multiple, indepen-
dent objects (known as multiple instances) or on a single large object.

The design of the library addresses the fundamental issues of multiple-object scientific
computation on data parallel architectures. In this, the CMSSL offers the foundation for a
standard for data parallel algorithms and interfaces.

7.1 CMSSL Capabilities

The library includes many linear algebra routines, two varieties of Fast Fourier Transform
(FFT) routines, two kinds of random number generators (RNG), and two histogramming
routines for statistical analysis.

Linear Algebra Routines

» Matrix Multiplication. Multiplies two real or complex matrices.

» Matrix Vector Multiplication. Multiplies a matrix and a vector containing either
real or complex data.

51

® Vector Matrix Multiplication. Multiplies a vector and a matrix containing either
real or complex data.

8 Matrix Inversion and Linear System Solver. Inverts a séluare matrix of real or com-
plex numbers and solves for the values outside the specified matrix. In the
high-level languages, these operations are called separately.

® OR Factorization. Factors a matrix of real or complex numbers into an orthogonal
matrix and an upper triangular matrix.

® OR Solver. Given a real or complex matrix decomposed by QR factorization,
applies the Householder vectors to the right-hand sides and solves the upper trian-

gular system.

® Triangular Solver. Solves a triangular system consisting of the upper or lower
triangular portion of a matrix and a right-hand-side matrix, where both contain
cither real or complex data.

= Tridiagonal Solver. Solves one or more tridiagonal systems specified as upper,
lower, and diagonal vectors of real or complex data.

All linear algebra routines are designed to support multiple instances. That is, multiple,
independent matrices may be solved, transformed, or multiplied concurrently. In addition,
where this is relevant, multiple vectors or multiple right-hand sides may be associated with
each matrix to be multiplied or solved.

Fast Fourier Transforms (FFTs)

This library routine performs one or more FFT transformations on a multidimensional data
set. Interfaces are provided for both simple and detailed versions. The simple version is
sufficient for most purposes. The detailed version allows separate specification of the
transform direction, scaling factor, and addressing mode along each data dimension and
can increase performance for certain cases.

The detailed CMSSL FFT implementation supports performing separate FFTs along each
data dimension as well as performing multiple, independent FFTs concurrently along a
single dimension.

Chapter 7. CM Scientific Software Library 53

Random Number Generators

Two lagged-Fibonacci random number generators (RNGs) are provided: the Fast RNG and
the VP RNG. The Fast RNG is faster than the standard random number generator included
in Paris and the high-level CM languages. The VP RNG produces identical streams on
differently sized machines. Both CMSSL RNGs generate pseudo-random numbers as either
floating-point or unsigned integer quantities. Both also allow user-controlled reinitializa-
tion and checkpointing.

The CMSSL RNGs support multiple instances: multiple streams of random numbers are
generated.

Statistical Analysis

Two kinds of histogramming routines are offered: full histogramming and range histo-
gramming. Full histogramming records the distribution of all values within one or more
CM data objects. Range histogramming records the distribution of values within specified
ranges of values within one or more CM data objects. Both kinds of CMSSL histogram
routines can provide an accumulation of totals through successive calls.

7.2 CMSSL Parallel Computation

As a data parallel implementation of familiar numerical routines, the CMSSL represents a
set of new solutions to problems of both performance and algorithm choice and design. In
most cases, this has led to new implementations of well-known algorithms. The result is
a library that brings the power of parallel computation to bear on scientific applications.

Many of the CMSSL routines operate on either single or multiple instances of their oper-
ands without requiring additional arguments. For example, matrix vector multiplication
may be performed with a single matrix and a single vector by specifying each as an object
whose elements are stored one per CM processor. Alternatively, multiple matrix vector
products can be computed simultaneously simply by specifying the arguments as a parallel
matrix and a parallel vector: one matrix and one vector per CM processor.

In the first case, the single result vector resides in multiple processors; in the second case,
each of the multiple result vectors resides in a single processor. In either case the interface
is the same. The difference between invoking computation on a single instance and on

Connection Machine Model CM-2 Technical Summary
S

multiple instances lies only in the dimensionality of the data structures used as parameters
to the particular CMSSL routine.

Consider a second example: the tridiagonal system solver. The parameters to this routine
include three vectors that contain the upper, main, and lower diagonals of a tridiagonal
system, and a fourth vector that contains the right-hand-side values for the system. Upon
completion the solution overwrites the right-hand side.

This one routine interface supports four different degrees of computational concurrency:
A single system may be solved. A single system may be solved for multiple right-hand
sides. Multiple systems may be solved for a single right-hand side each. Multiple systems
may be solved, each for multiple right-hand sides. Using an odd-even cyclic reduction
algorithm one or more systems of tridiagonal equations of the form 4x = b are solved.

To solve a single system, specify the upper, main, and lower arguments as one-dimensional
(see Figure 5).

X
I

V| x b
matrix solution right-hand side

Figure 5. A single tridiagonal system with a single right-hand side

To solve for multiple right-hand sides, the right-hand-side argument (also the solution) is
given an in-processor (serial) dimension equal to the number of right-hand sides (nr&s) (see

Figure 6).

matrix

nrhs nrhs
D
x@, . x(wrhs-1) | p(@), ,, p(arks-)
X B
solutions right-hand sides

Figure 6. Single tridiagonal system with multiple right-hand sides and solutions

To solve multiple systems, specify the upper, main, and lower arguments with two dimen-
sions: one for the coefficients of the system and one to specify how many systems are

represented. The right-hand side (solution) argument must be similarly specified in two

dimensions (see Figure 7).

n - =
~ » "
i —
7 bo'
X B
solutions right-hand sides

Figure 7. Multiple tridiagonal systems with single right-hand side for each system

56 Connection Machine Model CM-2 Technical Summary

To solve multiple systems each with multiple right-hand sides, the right-hand-side (solu-
tion) argument is specified in three dimensions: one is the length of the vector and along
this dimension lie the right-hand values; one is the number of systems (); and one is the
number of right-hand sides (nrhs) per system (see Figure 8).

il

Ag...Ar

matrices ' solutions right-hand sides

Figure 8. Multiple tridiagonal systems with multiple right-hand sides for each system

The benefit of using CMSSL routines to solve a single instance of a linear problem lies in
the speed gained by exploiting the parallel architecture of the Connection Machine system.
Computations on matrices require numerous repetitive calculations along one or both axes.
On a serial machine, these must be done one at a time, but on a parallel machine they can
be done all at once.

Using the CMSSL to solve multiple instances of a linear problem offers similar, but perhaps
greater, benefits. For applications that require solving many systems or decomposing many
matrices, it is no longer necessary to iterate over the set of systems; the solutions can be
computed concurrently.

7.3 Linear Algebra

The CMSSL provides separate, optimized operations to do matrix multiplication, matrix
vector multiplication, and vector matrix multiplication. The CMSSL matrix multiplication

Chapter 7. CM Scientific Software Library -~ 57

implementation uses a systolic algorithm known to be numerically stable. The matrix
vector and vector matrix implementations use a Saxpy algorithm also known to be stable.

Similarly, the CMSSL provides separate linear system solving operations for dense matrices
and for banded matrices.

Solving Dense Systems

For dense matrices, the CMSSL offers two methods of solving a linear system represented
as a real or complex general matrix. The first method uses the Gauss-Jordan linear system
solver. The second method uses the QR factorization operation in combination with either
the QR solver or the triangular solver. These operations are based on two different
algorithms.

The CMSSL linear system solver is based on a variant of the Gauss-Jordan algorithm. The
Gauss-Jordan algorithm is known, in some cases, to give residuals that are higher than
those resulting from the Gaussian elimination method — by as much as the order of the
condition number of the linear system. However, in the CMSSL a variant known as “the
rehabilitated Gauss-Jordan algorithm” is implemented and, for well-conditioned systems,
this yields results as good as those produced by Gaussian elimination.

Both Gaussian elimination and Gauss-Jordan require pivoting if the system is not sym-
metric positive definite. The CMSSL linear system solver supports two pivoting strategies:
a variant of partial pivoting, where the pivot element is chosen from the pivot row, and
columns are (in effect) permuted, and conventional total pivoting, where the pivot element
is chosen from a submatrix and both rows and columns are permuted. The total pivoting
strategy is numerically more stable but slower than the partial pivoting strategy.

Matrix inversion is also accomplished using the same variant of the Gauss-Jordan algo-
rithm. On well-conditioned matrices, this algorithm produces numerically stable matrix
inversion results. On ill-conditioned matrices, it fails about as often as LU decomposition.

The second method of solving a dense linear system uses the QR factorization and the QR
solver operations. Given one or more systems of the form AX = B, this method uses QR
factorization to decompose 4 = OR. Next, the QR solver applies the Householder vectors
in Q to the right-hand sides in B and then solves the upper triangular system R, while over-
writing B with the least squares solution of the linear system. This algorithm produces
numerically stable results on well-conditioned matrices.

58 Connection Machine Model CM-2 Technical Summary

Solving Banded Systems

Banded linear algebra operations solve systems of equations in which the coefficient
matrix has non-zero matrix elements in a narrow band around the diagonal.

A tridiagonal solver provides this functionality in the CMSSL. For diagonally dominant and
positive definite systems, the CMSSL implementation of the tridiagonal solver is known to
be unconditionally stable. However, for poorly conditioned systems, the algorithm may be
unstable. A stabilization strategy is currently planned.

7.4 Fast Fourier Transforms

Continuous physical quantities, such as waves and periodic vibrations, can be represented
as summations of sinusoidal components over a range of frequencies. The derivation and
manipulation of these frequency series is known as Fourier analysis. The Fourier transform
of a function over time or space specifies the amplitudes and phases of each frequency
component. Usually this information is expressed as the complex exponential (cos + i sin)
of certain harmonics of a fundamental frequency.

Given such a function, the Fourier transform can be used to convert between the time or
space domain and the frequency domain. Most applications of the Fourier transform begin
as quantities specified or measured over space or time, so the transform of these values into
the frequency domain is called a forward transform. An inverse transform converts
frequency-domain values back into time- or spatial-domain values.

The Discrete Fourier Transform (DFT) is the Fourier transform most suitable for numeric
work. Its most common implementation is the Cooley-Tukey Fast Fourier Transform or
FFT.

A Fast Fourier Transform algorithm is a method of performing the Discrete Fourier Trans-

form, which determines the discrete frequency components of a continuous but discretely
sampled complex variable. An FFT is considered fast because it exhibits O(N log N) com-
plexity, where N is the length of the input sequence. By comparison, a straightforward
evaluation of the DFT formula exhibits O(N?) complexity.

The CMSSL FFT implements an algorithm known as the Radix-2 Cooley-Tukey FFT. The
Connection Machine system lends itself well to this particular algorithm, which combines
two data elements at each step in a butterfly communication pattern. A butterfly communi-
cation pattern always operates between data elements at a distance of 2%, On the CM, this

Chapter 7. CM Scientific Software Library 59

is readily done with a very efficient kind of interprocessor communication known as cube
wire communication.

FFTs have a wide range of scientific and engineering applications including digital filtering
of discrete signals, smoothing and decomposition of optical images, correlation and auto-
correlation of data series, numerical solution of partial differential equations such as
Poisson’s equation, and polynomial multiplication.

The CMSSL provides a complex-to-complex FFT routine with two user interfaces:
» the Simple FFT, used to transform a dataset in the same direction along all axes
= the Detailed FFT, used for all other cases

The FFT is traditionally defined as a one-dimensional algorithm. However, a multidimen-
sional FFT can be done by performing FFTs along each row and column of a grid. The
CMSSL FFT operations support n-dimensional FFTs, subject to the limits of Paris (31
dimensions) and of machine memory (27 nontrivial dimensions on a CM-2 with 8 gigabytes
of memory).

7.5 Random Number Generators

Two varieties of random number generators (RNG) are included in the CMSSL:
= the Fast RNG
= the VP RNG

These random number generators use a lagged-Fibonacci algorithm. They supplement the
standard Paris random number generator, which uses a cellular automaton algorithm.

The lagged-Fibonacci algorithm used by both CMSSL random number generators is widely
used to produce a uniform distribution of random values. This implementation has been
subjected to a battery of statistical tests, both on the stream of values within each processor
and for cross-processor correlation. The only test that the CMSSL RNGs fail is the Birthday
Spacings Test, as predicted by Marsaglia. Despite this failure, these lagged-Fibonacci
RNGs are recommended for the most rigorous applications, such as Monte Carlo simula-
tions of lattice gases.

To construct pseudo-random values, the CMSSL random number generators use state tables
loaded from the Paris random number generator. The difference between the Fast RNG and
the VP RNG lies in the allocation of their state table fields. The Fast RNG allocates one state
table per physical Connection Machine processor. The VP RNG allocates one state table per

60 Connection Machine Model CM-2 Technical Summary

virtual processor. The Fast RNG (so named because it is much faster than the Paris RNG)
thus consumes substantially less CM memory than the VP RNG. The VP RNG can produce
identical results on differently sized Connection Machines.

Either CMSSL RNG may be reinitialized for reproducible results and checkpointed to guard
against forced interruption.

7.6 Statistical Analysis

The CMSSL statistical analysis routines currently include two histogramming operations.
Histograms provide a statistical mechanism for simplifying data. They are generally used
in applications that need to display or extract summary information, especially in cases
when the raw data sets are too large to fit into the Connection Machine system. Two
routines are provided: one that tallies the occurrences of each value in a CM array, and one
that counts the occurrences of values within specified value ranges. For particularly large
data sets, the range histogram operation facilitates breaking data down into subranges,
perhaps as a preliminary step before doing more detailed analysis of interesting areas.

Histograms have many applications in image analysis and computer vision. For example,
a technique known as histogram equalization computes a histogram of pixel intensity
values in an image and uses it to rescale the original picture.

The CMSSL histogram operations treat the elements of a front-end array as a series of bins.
In each bin a tally of CM field values or value ranges is stored. The number of histogram
bins varies widely with the application, from a dozen tallies on a large process or a few
dozen markers on a probability distribution to a few hundred intensity values in an image
or a few thousand instruction codes in a performance analysis.

Chapter 8
Data Visualization

Visualization, the graphic representation of data, has come to be an essential component of
scientific computing. Visualization techniques range from a simple plotting of data points
to sophisticated interactive simulations, but all allow researchers to analyze the results of
their computations visually. One can literally “look at” the data to identify special areas of
interest, anomalies, or errors that may not be apparent when scanning raw numbers. Visual-
ization is often the only effective way to interpret the large data sets and complex problems
common to the applications run on the Connection Machine system.

Thinking Machines Corporation supports visualization on the Connection Machine system
through a Generic Display Interface, which permits both image display and user interac-
tions on either an X windows workstation or a dedicated high-resolution graphics display
system. Subroutine libraries perform basic visualization tasks to simplify the creation,
display, and storage of CM images. '

There are three main visualization libraries:

® *Render provides basic functions for creating and manipulating an image in CM
memory.

= The Generic Display Interface provides a single interface for displaying image
data in CM memory on any X windows display or through the CM graphics display
system. Through this interface a programmer can initialize a display, control
display parameters, transfer an image to the display, and implement mteract1v1ty
through a mouse interaction system and text display.

® The Image File Interface provides support for storing images from CM memory in
TIFF (Tag Image File Format) image files. TIFF is a standard image file format that
is widely supported. Functions are also provided that read TIFF files into CM
memory, into a front-end array, or directly to a Generic Display.

61

Connection Machine Model CM-2 Technical S;

R

These libraries may be called directly from CM Fortran, C*, Fortran/Paris, C/Paris, or Lisp/
Paris programs.

8.1 Visualization Output from the CM System

The CM supports three methods for graphic output: the X Window System, the graphics
display system, and networked output to graphics workstations.

The X Window System

Thinking Machines supports the X Window System Version 11 interface by supplying
“client” extensions that display Connection Machine images on any display running the X
Window System. Through the Generic Display Interface, described in more detail below,
you can easily establish any X windows server as the display for your visualization

programs.

The X Window System has become the dominant vendor-independent workstation window
interface standard. It logically separates the support of a window-based display from the
computer actually running an application. The display computer may be connected to the
application computer by means of a network. Thus, by using the X Window System, users
can display the results of their computation on the Connection Machine system on a remote
workstation anywhere on- the network. X interfaces are now available for most work-
stations, including those manufactured by Sun Microsystems and Digital Equipment
Corporation.

The CM Graphics Display System

In addition to the X windows interface, the Connection Machine system also includes a
high-resolution graphics display system consisting of a framebuffer and a high-resolution
19-inch monitor. As explained in Chapter 14, the graphics display system is directly
coupled with the parallel processing unit. Because of this tight integration, the CM graphics
display system is capable of real-time output.

Chapter 8. Data Visualization _ 63

Geometric Output to Graphics Workstations

For especially demanding visualization applications, software is available that makes it
possible to send geometric descriptions of an image from the Connection Machine system
to Stardent or Silicon Graphics graphic workstations for rendering and display.

Stardent and Silicon Graphics workstations are specialized graphics-processing work-
stations that implement many advanced rendering techniques in hardware and offer
extensive rendering environments. The CM interfaces to these workstations allow the user
to use the Connection Machine system to compute the image geometry (for example,
polygon coordinates and color information) and then send it from the CM I/O channel over
the VMEDbus directly to local memory on the graphics workstation. The image data is sent
in a format that may be immediately used by the workstation’s specialized graphics
processors and software to produce full-color shaded images.

Thus, these interfaces make it possible to establish a high-speed interactive distributed
graphics environment in which the Connection Machine system is used to perform the
numeric computing that produces the geometric data, and the specialized graphics work-
stations perform the image rendering that produces the final data visualization.

8.2 *Render

*Render provides basic functions for creating and manipulating an image in CM memory.
These functions include

= drawing routines for basic graphics primitives (points, lines, arrays, and spheres)

» graphics math utilities for creating, manipulating, and transforming coordinate
vectors and matrices, and for converting between different color spaces

® image processing (dithering) routines that can be used to convert RGB images to
grayscale and grayscale to monochrome.

This library is intended as a building block for more advanced visualization tools.

Drawing Routines

*Render draws graphics primitives into an image buffer in CM memory. An image buffer
is simply a parallel data structure (an array in CM Fortran; a parallel variable in C*) that

64 Connection Machine Model CM-2 Technical Summary

is used to collect pixel values for display. The image buffer is organized as a two-
dimensional array with one data element for each pixel. Each data element contains the
color value and, if the image is three-dimensional, the z-coordinate of the corresponding
pixel in the image to be displayed.

The *Render drawing routines allow the user to draw graphic primitives including points,
lines, image arrays, and spheres into the image buffer by specifying image buffer
coordinates in scalar or parallel variables. When a set of coordinates is specified in a
parallel variable, *Render operates on all the coordinate values at once. For example, the
line drawing function accepts an array of line coordinates (with each data point containing
the starting and ending points for one line) and draws the lines in parallel into the image
buffer.

Graphics Math Utilities

*Render provides a toolbox of math routines to simplify basic operations common to com-
puter graphics.

In computer graphics, coordinates are commonly represented as position vectors in coordi-
nate matrices. Transformations of these coordinates (scaling, translation, or rotation) are
performed by applying a transformation matrix to the coordinates using the rules of matrix
multiplication.

*Render routines create and manipulate coordinate vectors and matrices, and create and
combine transformation matrices to scale, rotate, or translate coordinate data, In addition,
routines are available that create viewing matrices. These matrices can be used to apply
foreshortening, oblique, orthographic, or perspective projections to an image geometry.
Paralle] versions of these routines are provided that can apply a transformation matrix to
an entire array of coordinates in a single operation.

Similarly, colors are often represented as vectors in a “color space.” The most common of
these is the RGB color space supported by the CM framebuffer. However, different
graphics environments may use other color models. *Render provides routines to convert
color values from one color space to another. Specifically, routines are available to convert
between RGB, CMY, YIQ, HSV(HSB), and HSL.

Image Processing (Dithering)

The color capabilities of a programmer’s workstation may range from full 24-bit color, as
on the CM framebuffer, to a 1-bit black and white display. *Render routines make it pos-
sible to compute your image for color and then convert it for display on grayscale or black
and white monitors. :

Specifically, an RGB image can be converted to a single-value grayscale and then
“dithered” to a 1-bit black and white image. Several different methods, including dot
diffusion and error propagation of different orders, can be applied to preserve as much
image detail as possible while reducing the number of color intensities used to represent
the image.

8.3 Generic Display Interface

The Generic Display Interface provides a single high-level interface that simplifies the
display of data from an image buffer. With just two function calls the user can select and
initialize a display screen and transfer image data to it from a parallel data structure in CM
memory. Currently the display may be an X11 window on any workstation screen, or the
CM graphics display system. In addition, support is provided for mouse interactions,
including cursor tracking and selection, and for displaying text strings on either display

type.

Creating a Display

A single Generic Display routine creates and initializes a display. When calling this
routine, the user specifies the width, height, and bits per pixel desired for the display. (The
display’s bits per pixel, also called the display’s depth, is the number of bits of color
information maintained for each pixel.) The Generic Display Interface then returns a menu
containing the framebuffer displays available from the attached Connection Machine and
an X windows option.

Once a display is selected from the menu, the Generic Display Interface initializes the
display as the current display, matching the desired width, height, and bits per pixel as
closely as possible. For an X windows host, the interface opens an X window on that server
as the current display. For a CM framebuffer, that framebuffer and its attached monitor are
initialized as the current display. All the operations of the other Generic Display Interface

Connection Machine Model CM-2 Technical Summary

R SR

routines, including image transfer, display parameter changes, and display information
queries, are directed to the currently selected display.

Because the display is selected from a menu at execution time, it is possible to move the
image display between an X windows display and a CM framebuffer without changing the
program. This simplicity gives a great deal of flexibility during application development.
One might view data through an X11 window when a CM framebuffer is not available, pre-
view an image in X11 during development and then switch to the CM framebuffer for final
revisions and viewing, or display the image on a remote X server.

Displaying an Image

Transferring an image to the currently selected display also requires only a single call to
a Generic Display Interface routine. If no offsets are applied, the interface writes the color
value at position (0,0) in the image buffer to the origin (the upper left corner of the display
space); each subsequent position in the image buffer supplies the color value for the pixel
at the corresponding location in the display space. If the image is smaller than the display,
the portion of the display to the right and below the image is left unchanged. If the image
is larger, the portion of the image beyond the boundaries of the display is clipped. The
Generic Display Interface also allows you to offset the image in the display space.

If the current display is an X windows display, the dimensions of the display window will
be as close as possible to the desired width and height you specified when creating the
display. The other capabilities of the display, for instance the number of bits per pixel,
depend on the capabilities of the workstation supporting the X server you named.

If a CM framebuffer is the current display, the Generic Display Interface transfers the image
buffer data from CM memory directly to the framebuffer display memory. Image data
written to the framebuffer is immediately displayed on the color monitor. The maximum
size of the image that may be displayed is determined by the resolution of the monitor.
Normally, this is a high-resolution RGB monitor with a resolution of 1280 x 1024 pixels.
The framebuffer also supports an NTSC signal that can be fed into videotape recorders and
other standard video processing equipment. The resolution of an NTSC monitor is usually
640 x 480 pixels.

Interactivity

User interaction with the display is supported through the Generic Display Interface’s
mouse interaction system. These routines allow applications to track mouse movement

with a cursor on either an X windows display or a CM framebuffer and to respond to button
presses on the mouse.

Routines are provided to select the mouse host; get the location of points, lines, and boxes
defined by the cursor on the display; get a stream of mouse motion events; “grab” the
mouse and poll it for button presses; move the cursor; and change the shape and visibility
of the cursor.

Text Display

The Generic Display Interface also provides a group of Generic Text routines that support
the use of text strings to annotate visualization images. With these routines, one can display
text strings on either an X windows display or a CM framebuffer, or draw text strings into
an image buffer in CM memory. The strings are positioned by specifying display or image
coordinates.

The Generic Text software includes two fonts that are always available. In addition, users
working on an X windows workstation may use any of the X11 fonts available on it.

8.4 Image File Interface

The Image File Interface allows image data from the CM system to be stored in files for
later display or processing. The interface currently writes the files in the TIFF image file
format. This format is supported by a public domain library and is accepted by many other
graphics systems and software packages on platforms ranging from personal computers to
supercomputers. Thus, this interface makes it possible for you to move images between the
CM system and numerous other graphics environments.

Routines are also provided that read the most common classes of TIFF files into an image
buffer in CM memory, into an array on the front-end computer, or directly to a Generic
Display.

68

Part I11

Parallel Architecture

70

Chapter 9

Paris

Paris is the PARallel Instruction Set for programming the Connection Machine system.

Used primarily as a base for the higher-level languages of the Connection Machine system,
Paris provides a large number of operations similar to the machine-level instruction set of
an ordinary computer. Paris supports primitive operations on signed and unsigned integers,
floating-point numbers, and complex numbers as well as communication operations and
facilities for transferring data between the Connection Machine processors and the front-
end computer. ' '

The Paris user interface consists of a set of functions, macros, and variables to be called
from compiled code. Where appropriate, users may insert Paris code directly into their
programs. Several different versions of the user interface are provided: one for the Fortran
programming language, one for C, and one for Lisp. These interfaces are functionally
identical; they differ only in conforming to language-specific syntax and data types.

Since Paris is a lower-level language than CM Fortran, C*, or *Lisp, it provides a useful
way to understand the Connection Machine architecture. 1t is presented here to help fill in
the picture of the programming model for the CM-2.

9.1 Virtual Machine Architecture

An important property of the Connection Machine architecture is scalability. Connection
Machine systems can have from 4,096 to 65,536 physical (hardware) processors. In most
cases the same software can be executed unchanged on Connection Machine systems with
different numbers of physical processors. Using twice as many physical processors, a
problem will run in half the time.

71

72 Connection Mac(gir_;e Model CM-2 Technical Summary

e e S

Paris enhances this scalability by presenting the user an abstract version of the Connection

Machine hardware. The most important feature of this paradigm is the virtual processor
facility, whereby each physical processor simulates some number of virtual processors. A

program can be written assuming any appropriate number of processors; these virtual

processors are then mapped onto physical processors. In this way a program can be

executed unchanged on Connection Machine systems with different numbers of physical

processors. There is an approximately linear trade-off between number of physical

processors and execution time. There is a memory trade-off as well: the memory of a

physical processor is divided among the virtual processors it supports.

When a Paris add instruction is executed, each physical processor may perform many
addition operations, one for each virtual processor that is mapped onto that physical
processor. Paris also provides virtual-processor versions of the three hardware-supported
communications mechanisms: routing, NEWS grids, and scanning.

Virtual Processors and Virtual Processor Sets

The Paris virtual processor mechanism supports data parallel programming by associating
one virtual processor, or VP, with each element of a data set. The set of all virtual proces-
sors associated with a data set is called a virtual processor set, or VP set. Consider, for
example, an image-processing problem that deals with an image of 65,536 pixels, shaped
in a 512 x 128 rectangle. Each pixel is an element of the data set that makes up the image.
Thus we would write a program using one VP set of size 65,536: one VP for each pixel. We
would configure the NEWS grid for this VP set to be two-dimensional, with shape 512 x
128.

Because a single problem may be composed of more than one data set, Paris allows the
simultaneous existence of more than one VP set. For example, a text retrieval program may
implement some operations that work with articles and some that manipulate words. This
is most conveniently modeled with two VP sets, the first corresponding to the data set of
all articles (one VP per article) and the second corresponding to the data set of all words
(one VP per word). The second VP set will be much larger than the first.

VP sets are created and deleted through function calls to Paris. The number of virtual
processors in the VP set (the VP set size) is fixed at the time of the VP set’s creation. The
VP set size must be a multiple of the number of physical processors. The organization of
the virtual processors as a NEWS grid is called a geometry. The geometry of a VP set is
specified when the VP set is created and may have from 1 to 31 dimensions. While the total
number of virtual processors in a VP set remains fixed, its geometry may be altered at any
time.

Although multiple VP sets may coexist, only one VP set may be active at any time. This
VP set is known as the current VP set. All VP sets other than the current VP set are latent;
they can not execute any instructions. Paris provides a function for making any specified
VP set current. Instructions are then executed in that VP set until some other VP set is made
current.

Mapping VP Sets to the Physical Machine

When a Paris program runs, the virtual processors in the user’s program are mapped onto
the machine’s physical processors. The sizes of the VP sets and the size of the physical
machine determine how many virtual processors are assigned to each physical processor.
In effect, each Connection Machine processor and its memory are shared among the virtual
processors they support. These concepts are explained further in the following sections.

VP Ratios

Each virtual processor set has a virtual processor ratio (VP ratio). The VP ratio indicates
how many times each physical processor must perform a certain task in order to simulate
the appropriate number of virtual processors. The VP ratio may change when a new VP set
is made current.

When the machine is operating within a particular VP set, each Paris instruction is executed
many times in each physical processor, once for every virtual processor. This is completely
transparent to the user.

The method of assigning virtual processors to physical processors “spreads out” a VP set
as much as possible; the VP ratio for each VP set is as low as possible. The burden of
handling a VP set is shared equally by all physical processors. If a larger (physical) machine
is used on a particular application, the VP ratio required for each VP set is smaller.

This description of “execute once for each virtual processor” applies most accurately to
operations such as arithmetic that can take place within each virtual processor
independently of other virtual processors. Operations that perform communication are
more complicated, but the idea is the same: each physical processor performs all necessary
execution steps on behalf of each virtual processor that is to participate in the operation.

As far as the user is concerned, physical processors are hardly visible. Paris is designed to
allow the programmer to think entirely in terms of the virtual processor as the basic unit
of computation.

74 Connection Machine Model CM-2 Technical Summary

Fields

At the time of its creation, a VP set has no associated memory. Paris provides functions to
allocate and deallocate memory for a VP set.

Memory is handled in units called fields. Conceptually, a field is simply some number of
consecutive bits at the same location in every processor. A field can be of any size. When
a field is allocated, its size is specified by the user. Every field belongs to exactly one VP
set. When we speak of allocating a field to a VP set, we mean allocating a field to each
virtual processor in the VP set.

Most Paris instructions operate on memory fields. For example, a three-address add
operation requires three field arguments: two source fields (whose contents are added
together) and one destination field (into which the sum is stored).

There are two types of fields: heap fields and stack fields. Either type of field is allocated
within a specific VP set. The distinction between heap and stack fields arises from the
storage management strategy employed in physical CM memory in order to support virtual
processors. Heap fields may be allocated and deallocated in any order. Stack fields may be
allocated in any order, but they must be deallocated in the reverse order from that of their
allocation. Thus, heap fields are more flexible, but have higher overhead than stack fields.

P;ocessor Addresses

Paris supports two different sorts of addresses for virtual processors: the send address,
which is used for general-purpose communication among virtual processors, and the NEWS
address, which describes a VP’s position in the n-dimensional grid used to optimize
nearest-neighbor communication and scanning.

A virtual processor has one send address and one NEWS address at all times. Send
addresses and NEWS addresses are specific to a VP set; that is, every VP in a VP set has a
unique send address and a unique NEWS address, but it is possible for a VP in another VP
set to have the same send address or NEWS address. Since Paris always operates within a
single VP set (the current VP set), there is normally no ambiguity as to which VP is meant
by a given address.

For communication from one VP set to another, Paris can uniquely identify the intended
destination VP with ease. Communication across VP sets is effected with either the Paris
send operation (and its variants) or the Paris cross-vp-move operation. Each of these
operations expects the source field to be in the current VP set, while the destination field
may be in the same or some other VP set. A field is always associated with exactly one VP

Chapter 9. Paris 75

set, and this fact allows Paris to determine unambiguously the intended destination VP. The
send operation sends data from each source VP to a destination that may be in the same
VP set or in another VP set. The cross-vp-move operation transfers a copy of all or a
portion of a field from one VP set to another according to a specified axis-mapping
correspondence; it is faster than send but less general.

Flags

Each Paris virtual processor has an assortment of one-bit flags. Many Paris operations
affect these flags rather than, or in addition to, storing results into the memory. For
example, the CM: s-add-2-1L operation adds one signed integer to another, but also stores
information into the carry flag and the overflow flag. Similarly, CM: u~gt-2-1L compares
two unsigned integers and sets the test flag if the first is greater than the second.

The context flag is of particular importance. Most Paris instructions are conditional : a
virtual processor participates only if its context flag is 1. A few instructions, including
those that can alter the context flag itself, are unconditional.

9.2 Instruction Set Overview

This section provides a quick guided tour of some of the instructions in the Paris instruction
set, organized by categories of functionally related operations. This is not a complete list
of Paris operations. The names of the operations are presented in abbreviated form,
glossing over the many addressing mode variants and, in some cases, data type variants.
For example, the Paris add instruction comes in two-operand and three-operand forms,
with or without an immediate operand, for signed integer, unsigned integer, floating-point,
and complex floating-point data types; but for brevity only the generic operation name add
is mentioned below. The full name of a Paris operation includes the prefix cM__ (for Fortran
or C) or cM: for Lisp, perhaps another prefix indicating data type, and suffixes indicating
addressing modes. For example, “‘signed integer add immediate two-address” is
CM_s_add constant 2 1I.

For more information about Paris instructions, see Connection Machine Parallel Instruc-
tion Set, and Connection Machine Programming in C/Paris.

76 Connection Machine Model CM-2 Technical Summary

Memory Allocation

Paris provides operations that create, deallocate, and otherwise manipulate VP sets, geome-
tries, and fields. For example, the operation allocate-vo-set creates a new VP set
having a specified geometry. The geometry must first be defined using an instruction such
as create-gecmetry. To create a field that may then be used as an argument to most
other Paris operations, the instruction allocate-stack-field or allocate~heap-
field may be used. '

Arithmetic Operations

Paris provides most of the unary and binary arithmetic operations one might expect to find
in a computer instruction set:

add floor eq abs subfrom
subtract ceiling ne negate divinto
multiply truncate gt signum add-carry
divide round ge power random
max mod 1t shift

min rem le scale

A combplete set of transcendental and trigonometric functions is also supported, including
hyperbolic functions and their inverses:

exp sin asin sinh asinh
1n cos acos cosh acosh
sgrt tan atan tanh atanh

Compound operations are equivalent to sequences of simpler instructions but are specially
coded for improved floating-point performance. The following compound Paris
instructions are representative:

mult-add add-mult
mult-sub sub-mult

Chapter 9. Paris

Operations on Bit Fields

Paris provides all ten nontrivial bitwise boolean operations:

logand logeqv
logior logandcl
logxor logandc2
lognand logorcl
lognor logorc2

In addition, the lognot operation inverts all the bits of a field.
The following operations also treat fields in a bitwise fashion:

move swap
move-reversed latch-leds

The move operation copies one field to another; move~reversed reverses the order of the
bits; swap exchanges the contents of two fields.

The red lights on the face of the CM-2 cabinet may be turned off and on under user program
control with the 1atch-leds instruction; there is one light for every sixteen physical
Processors.

~ General Interprocessor Communication

The send and get operations use the router mechanism to transfer data to or from arbitrar-
ily designated virtual processors, in either the current VP set or any other designated VP set.

The send operation takes a source field in the current VP set, a destination field that may
be in any VP set, and an address field in the current VP set that contains addresses of virtual
processors within the VP set of the destination field. Thus each virtual processor in the
current VP set contains a source message and an indication of which virtual process is
to receive it; the send operation transfers these messages all at once to their intended
destinations.

It may happen that a given destination receives more than one message. The send opera-
tion has many variants, indicating how multiple received messages are to be handled:

78 Connection Machine Model CM-2 Technical Summary
B S R

send-with-overwrite send-with-logand
send-with-logior send-with-logxor
send-with-s-add send-with-s-multiply
send-with-u-add send-with-u-multiply
send-with-f-add send-with-f-multiply
send-with-c-add send-with-c-multiply
send-with-s-max send-with-s-min
send-with-u-max send-with-u-min
send-with-f-max send-with-f-min

The send-with-overwrite version indicates that one (arbitrarily chosen) message
should be retained and other incoming messages should be discarded. The others indicate
a combining operation to be applied; for example, send-with-£-add indicates that
incoming messages should be regarded as floating-point numbers, and the destination field
should receive their sum. This set of standard combining operations is also used by many
other Paris communications operations.

The get operation is inverse to send. If send is viewed as a “write” by each active pro-
cessor into a global shared memory, then get is the corresponding “read” operation.

NEWS Communication

The operations send-to-news and get-from-news are analogous to send and get,
described in the previous section. Instead of transferring data to or from an arbitrarily
designated processor, they transfer data to or from a nearest neighbor within the current
NEWS grid for the current VP set. Data may be transferred in either direction along any
dimension of the grid. Within a two-dimensional grid, for example, the choices are north,
east, south, or west (hence the acronym NEWS). Within a three-dimensional grid, there are
six nearest neighbors. In any case, a processor in an n-dimensional grid has 2n nearest
neighbors. The send-from-news and get-from-news operations are considerably
more efficient than send and get for these particular patterns of data transfer. Because
send-to-news causes all processors to transfer data in the same direction (all east, all
north, or whatever), there is no possibility of message collisions, and so no combining
variants are needed.

Chapter 9. Paris 79

Scanning and Related Operations

Paris provides a number of powerful array-processing operations that perform both com-
munication and computation in regular, grid-oriented patterns: .

scan global reduce spread multispread

Each of these has variants corresponding to the same standard combining operations used
by send. For example, the scan-with-£-add operation (also known as “parallel
floating-point sum prefix”) can compute all the partial sums along a particular NEWS axis;
that is, every virtual processor receives the floating-point sum of the source values from all
processors before it along the axis. This operation is quite fast, as it is supported by special
hardware and is performed in parallel by special algorithms. The global-£-add
operation is similar, but instead of computing all partial sums for each row, it computes a
single sum of values from every virtual processor in the current VP set; the sum is returned
to the front end. The reduce-with-£-add operation is the special case of
scan-with-£-add; it computes only the sums of entire rows or colums, not all the partial
sums. This special case is more efficient than a general scan. Similarly, spread is the
special case of scan whereby the sum, or perhaps a designated element of the axis, is
replicated so that all virtual processors along the axis receive a copy. Finally, the
multispread operations optimize the case of spreading over more than one NEWS
dimension at once. All these instructions can use any standard combining operation, so that
one may compute partial products, largest or smallest values, or bitwise logical operations.

These specialized patterns of computation occur surprisingly often in data parallel applica-
tions. Paris provides them as primitive operations for programming convenience and
computational efficiency.

Data Transfer between Processor Array and Front End

The operations read-from-processor and write-to~processor allow the front end
to access any field within any virtual processor, one scalar item at a time.

The operations read-news-array and write-news-array transfer entire arrays or
subarrays between an array on the front end and the NEWS grid of the current VP set. Their
implementation is optimized for relatively high throughput.

80

Chapter 10
CM-2 Architecture

As explained in Chapter 1, a Connection Machine system consists of a parallel processing
unit containing thousands of data processors, a front-end computer, and an I/O system that
supports mass storage, graphic display devices, and VME and HIPPI peripherals.

The central element in the system is the parallel processing unit, which contains
= from 4K to 64K data processors
= a sequencer that controls the data processors
® an interprocessor communications network

" zero or more /O controllers and/or framebuffer modules

See Figure 9. Each of the data processors can execute arithmetic and logical instructions,
calculate memory addresses, and perform interprocessor communication or I/O. In this
respect, each data processor is very much like an ordinary serial computer. The difference
is that the data processors do not fetch instructions from their respective memories. Instead,
they are collectively under the control of a single microcoded sequencer. The task of the
sequencer is to decode commands from the front end and broadcast them to the data
processors, which then all execute the same instruction simultaneously.

Interprocessor communication is particularly important in data parallel processing. Proces-
sors must be able to pass information among themselves in the pattern best suited to the
needs of the moment; the patterns must be able to adapt to any application’s needs, and to
change over time. The CM-2 supports this need with three forms of communication within
the parallel processing unit: routing, NEWS, and scanning.

This chapter describes the architecture of the parallel processing unit and its interprocessor
communications network. Subsequent chapters describe the architecture of the 'O system
and framebuffer.

81

A

82 Connection Machine Model CM-2 Techni

S

Global Result Bus Scalar Memory Bus

s Instruction Broadcast Bus

[V

Combine}

m‘g, hih Ly
e |0 O P B0 o7 [[[

Router / NEWS / Scanning

/0 10
Controller Controller Framebuffer

/O Bus 10 Bus Framebuffer Out

Figure 9. The CM-2 parallel processing unit

Paralle]l processing instructions issued by the front-end computer are received by the sequencer,
which interprets them to produce a series of single-cycle “nanoinstructions.” The nanoinstructions
are broadcast over the instruction bus to thousands of data processors. Each data processor has its
Own memory.

All processors can access their respective memories simultaneously. Alternatively, the sequencer can
access this memory serially, one 32-bit word at a time, over the scalar memory bus. The data proces-
sors can emit one datum apiece, and their combined value is delivered to the sequencer on the global
result bus. The data processors can exchange information among themselves in parallel through rout-
ing, NEWS, and scanning mechanisms; these are in turn connected to the I/O interfaces.

Chapter 10. CM-2 Architecture |) | 83

10.1 Processor Architecture

Figure 10 diagrams the architecture of a CM-2 data processing node. As the figure shows,
each node contains

® 32 CM-2 data processors, with their associated memory
® an optional floating-point accelerator

* communications interfaces for interprocessor communication

Each of the data processors houses an arithmetic-logic unit (ALU). Together, they create the
CM-2’s parallel processing array.

10.2 The Parallel Processing' Array

A CM-2 arithmetic-logic unit consists of a 3-input, 2-output logic element and associated
latches and memory interface.The basic ALU cycle first reads two data bits from memory
and one data bit from a flag. The logic element then computes two result bits from the three
input bits. Finally, one of the two results is stored back into memory and the other result
into a flag. The entire operation is conditional on the value of a third flag, the context flag.
If this flag is zero, then the results for its data processor are not stored.

The logic element can compute any two boolean functions on three inputs; these functions
are simply specified as two 8-bit bytes representing the truth tables for the two functions.
This simple ALU suffices to carry out, under control of the sequencer, all the operations of
the Paris instruction set.

Consider, for example, addition of two k-bit signed integers. First the virtual processor con-
text flag is loaded into a hardware flag register, to serve as the condition flag for all
remaining ALU operations. Next a second hardware flag is cleared for use as a carry bit.
Next come £ iterations of an ALU cycle that reads one bit of each operand and the carry bit
from memory, computes the sum (a three-way exclusive OR) and carry-out (a three-input
majority function), and stores the sum back into memory and the carry-out back into the
carry flag. These cycles start with the least significant bits of the operands and proceed
toward the most significant bits. The last of the & cycles stores the carry-out into a different
hardware flag, so that the last two carry-outs may be compared to determine whether over-
flow has occurred.

84 Connection Machine Model CM-2 Technical Summa
2 0 B e t

b

global bus .
to 11 other chips to 11 other chips instruction bus
J’
N)
EREREER BEER
NEWS, NEWS,
Router E E] E Router E E E E
Interf;
“ | EEEE e | R EE
ECC I ECC I
24 224
Floating-Point
Floating-Point Execution
Memory address and Memory 32 (Single or Double
< 1,8 Interface Precision)

Figure 10. Two CM-2 processor chips with memory and floating-point chips

CM-2 processor chips are arranged in pairs. Each pair shares a group of memory chips, a floating-
point interface chip, and a floating-point execution chip. The memory chips provide a 44-bit-wide
data path; 22 bits (16 data and 6 ECC) go to each processor chip. The floating-point interface chip
handles these same 44 bits and also provides memory address control for indirect addressing. The
floating-point execution chip receives operands from the floating-point interface chip, 32 bits at a
time, and in the same manner gives the interface chip results to be stored back into memory.

Chapter 10. CM-2 Architecture 85

Integer arithmetic is thus carried out in a bit-serial fashion. At about half a microsecond per

bit, plus a few more microseconds for instruction decoding and other overhead, a 32-bit

add takes about 21 microseconds. If the ratio of virtual to physical processors (known as

the VP ratio) n is greater than one, this process is repeated » times; one addition is per-

formed for each virtual processor. With 64K processors all computing in parallel, this

produces an aggregate rate of 2500 Mips (that is, 2.5 billion 32-bit integer additions per
~ second). All other Paris operations are carried out in like fashion.

The ALU cycle is broken down into subcycles. On each cycle the data processors can
execute one low-level instruction (called a nanoinstruction) from the sequencer and the
memories can perform one read or write operation. The basic ALU cycle for a two-operand
integer add consists of three nanoinstructions:

LOADA: read memory operand A, read flag operand, latch one truth table
LOADB: read memory operand B, read condition flag, latch other truth table
STORE: store memory operand A, store result flag

Other nanoinstructions direct the router, NEWS grid, hypercube interface, and floating-
point accelerator; initiate I/O operations; and perform diagnostic functions.

10.3 The Floating-Point Accelerator

In addition to the bit-serial data processors described above, the CM-2 parallel processing
unit is typically configured with a floating-point accelerator that is closely integrated with
the processing unit. The floating-point accelerator operates in both single precision (32
bits) and double precision (64 bits) and supports IEEE standard floating-point formats and
operations.

As Figure 10 shows, floating-point acceleration hardware consists of two special-purpose
VLSI chips for each pair of CM-2 processor chips: a memory interface unit and a floating-
point execution unit.

As an example of the operation of the floating-point accelerator, consider the execution of
a two-operand floating-point instruction such as add or multiply. Execution proceeds in
five stages; each stage consists of 32 nanoinstruction cycles (one cycle for each of the 32
data processors on the two CM-2 processor chips).

1. The first operand for each of 32 data processors is transferred from memory to the
interface chip.

86 Connection Machine Model CM-2 Technical Summary

2. The first operand is transferred from the interface chip to the floating-point execu-
tion chip. (The floating-point execution chip is capable of storing 32 values of a
given precision.) Simultaneously, the second operand is transferred from memory
to the interface chip.

3. The second operand is transferred from the floating-point interface chip to the
floating-point execution chip, where the operation is performed. At the end of this
stage, the floating-point execution chip contains the 32 results.

4. The results are transferred from the floating-point execution chip to the interface
chip.

5. The results are transferred from the interface chip to memory.

If the VP ratio is n, this process is pipelined so as to require only 3n+2 stages instead of 5n
stages. Thus one floating-point operation is performed for every three memory references
(the same performance as for integer operations). More specialized instructions, such as
scan or global reductions, or convolution and FFT, achieve even greater operation rates
by performing several operations and/or accumulating results on the floating-point execu-
tion chip.

Just as 64-bit integer operations take twice as long as 32-bit integer operations, so double-
precision floating-point operations (using the double-precision floating-point accelerator)
take twice as long as single precision in the simple cases because memory bandwidth is the
limiting factor. More complex operations may take less than twice as long in double preci-
sion because of their improved ratio of floating-point operations to memory references.

10.4 The Router

Interprocessor communication is accomplished in the CM-2 parallel processing unit by
special-purpose hardware. Message passing happens in parallel; all processors can simulta-
neously send data into the local memories of other processors, or fetch data from the local
memories of other processors into their own. The hardware supports certain message-
combining operations: that is, the communication circuitry can combine multiple messages
en route to the same destination processor by applying some arithmetic or logical com-
bining operation. The destination processor receives the combined result.

The most general of the CM-2’s communications mechanisms is the router, which allows
any processor to communicate with any other processor. One may think of the router as
allowing every processor to send a message to any other processor, with all messages being

sent and delivered at the same time. Alternatively, one may think of the router (in conjunc-
tion with indirect addressing) as allowing every processor to access any memory location
within the parallel processing unit, with all processors making memory accesses at the
same time.

Each CM-2 processor chip contains one router node, which serves the 16 data processors
on the chip. See Figure 10. (Note that because a processing node contains two processor
chips, each processing node contains two router nodes.) The router nodes on all the proces-
sor chips are wired together to form the complete router network. The topology of this
network is a boolean n-cube. For a fully configured CM-2 system, the network is a 12-cube
connecting 4,096 processor chips. Each router node is connected to 12 other router nodes;
specifically, router node i (serving data processors 16 through 16i +15) is connected to
router node j if and only if |i — j| = 2¥= (@ k) v 2*for some integer & (that is, i and j differ
only in bit position k), in which case we say that routers i and j are connected along
dimension k.

Each message travels from one router node to another until it reaches the chip containing
the destination processor. The router nodes automatically forward messages and perform
some dynamic load balancing. For example, suppose that processor 117 (which is proces-
sor 5 on router node 7, because 117 = 16 x 7 + 5) has a message M whose destination is
processor 361 (which is processor 9 on router node 22). Since 22 = 7 + 24~ 20, this message
must traverse dimensions 0 and 4 to reach its destination. In the absence of contention for
hypercube wires, router 7 forwards the message to router 6 (6 = 7 — 2%), which forwards
it to router 22 (22 = 6 + 2%), which delivers the message to processor 361. On the other
hand, if router 7 has another message that needs to use dimension 0, it may choose to send
message M along dimension 4 first, to router 23 (23 = 7 + 2¢), which then forwards the
message to router 22, which then delivers it.

The algorithm used by the router can be broken into stages called petit cycles. Each petit
cycle consists of enough ALU/route cycles to process all the bits of a destination address
and a message. (An ALU/route cycle is a LOADA, LOADB, STORE ALU cycle, followed by
a ROUTE nanoinstruction.) The delivery of all the messages for a Paris send operation
might require only one petit cycle if only a few processors are active, but if every processor
is active then typically many petit cycles are required. It is possible for a message to trav-
erse many dimensions, possibly all twelve, in a single petit cycle, provided that contention
does not cause it to be blocked; the message data is forwarded through muitiple router
nodes in a pipelined fashion. A message that cannot be delivered by the end of a petit cycle
is buffered in whatever router node it happens to have reached, and continues its journey
during the next petit cycle. If petit cycles are regarded as atomic operations, then the router
may be viewed as a store-and-forward packet-switched network. Within a petit cycle, how-
ever, the router is better regarded as a circuit-switched network, where dimension wires are

88 Connection Machine Model CM-2 Technical Summa

assigned to particular messages whose contents are then pumped through the reserved
circuits.

Each router node has a limited ALU, distinct from those for the data processors. During
each petit cycle, each router node checks to see if its buffers hold several messages that are
all going to the same processor. If so, the messages are combined. This may be done by
taking the numerically greatest, summing them, taking the bitwise logical OR, or arbitrarily
discarding all but one message. Other combining functions are implemented in terms of
these primitives. For example, combining with bitwise logical AND is performed by invert-
ing the original message data, sending it with OR-combining, and re-inverting received
messages. (Such tricks are implemented by the sequencer and are transparent to the Paris
user.) This hardware support for combining accelerates Paris instructions that perform
combining operations. The combining hardware also combines read requests during exe-
cution of the Paris get instruction, so that a value fetched once from a processor can be
returned to many requestors.

Each router node also contains specialized logic to support virtual processors. When a mes-
sage is to be delivered by a router node, it is placed in the correct region of memory for the
virtual processor originally specified as the message’s destination.

10.5 The NEWS Grid

Communication operations between processors that are nearest neighbors within a Carte-
sian grid are much more efficient than the general router mechanism because they exploit
three different transfer methods, two of which have special hardware support.

Imagine a VP set with 222 virtual processors (about four million of them) running on a 64K
Connection Machine system. We wish to organize these virtual processors as a 2048 x 2048
grid. (Such grids are referred to as NEWS grids because each processor has a north, east,
west, and south neighbor.)

The system has 212 processor chips with connecting wires forming a boolean 12-cube;
these are the same physical wires that serve the general router mechanism. A subset of
these wires can be chosen so that they connect the 212 chips as a two-dimensional grid of
shape, say, 64 x 64. (This uses the technique of Gray-coded grid coordinates, a method of
assigning a series of coordinates so that adjacent coordinates differ in exactly one bit posi-
tion —which implies that the processors they label will have a hypercube wire between
them. There are many ways to choose the subset of connecting wires, and many other
shapes are also possible, but for this example we will assume a 64 x 64 configuration.)

Chapter 10. CM-2 Architecture 89

Within each chip are 16 physical processors. Imagine that they are arranged within the chip
as a 4 x 4 grid. Within each physical processor are 64 virtual processors. Imagine that they
are arranged within the chip as an 8 x 8 grid.

Suppose we wish each processor to send a value to its neighbor to the east. Within each
group of 64 virtual processors, 56 of them must send data to another virtual processor that
is within the same physical processor. This is the first of the specialized transfer methods:
seven-eighths of the work is done by having each physical processor rearrange data within
its own memory, without doing any physical interprocessor communication.

The rest of the work requires each physical processor to send eight messages to its physical
processor neighbor to the east. Within each group of 16 physical processors, 12 of them
must send data to another physical processor that is within the same chip. This is the second
of the specialized transfer methods: three-fourths of the remaining work is done by a
specialized per-chip permutation circuit that is independent of the entire router/hypercube-
wire mechanism.

The last bit of work requires each chip to send 32 messages to its neighbor along one
hypercube wire (and to receive 32 other messages from its neighbor to the west, along
some other hypercube wire). This is the third of the specialized transfer methods: because
the communication pattern is so regular, the per-chip permutation circuit can determine
directly the wires to be used, thus avoiding the need to calculate the address of a neighbor
and feed the address to the router, bit by bit.

The hardware is flexible enough to accommodate any shape or VP ratio. For example, the
per-chip permutation circuit can organize its 16 physical processors as 8 x 2, or 1 x 16, or
4x2x2,0or1 x8x2,0r2x2x2x2,and so on. Thanks to this specialized hardware
support, NEWS grids of any shape or number of dimensions can be handled with great
speed and efficiency.

10.6 Scans and Spreads

Scanning is a powerful operation on NEWS grids that combines communication and com-
putation. Simultaneously, in every row of a grid along a particular dimension, scanning
computes all the partial sums of that row. This is an extraordinarily powerful operation.
Instead of sums one may compute products, find the largest or smallest value, or compute
bitwise AND, OR, or exclusive OR. Special cases of scanning include finding the sum
(product, largest value, etc.) over all elements of an array, finding the sums of all rows or
columns of a matrix, and replicating a vector so as to fill a matrix.

90 Connection Machine Model CM-2 Technical Summa

Spreads, in contrast, allow a value from one processor to be sent to all other processors.
This requires transmitting the value from one chip to all other chips. By using the 12 wires
on each chip that form the CM-2’s 12-cube, a single-bit value can be spread from one chip
to all other chips in only 75 steps. Furthermore, if the processors are programmed to
perform bit-serial arithmetic as the bits fly past, the same communication pattern yields
partial sums or other scan operations.

Variants of these techniques encompass all the specialized scan, reduce, spread, and multi-
spread operations on grids of any dimension, and are encapsulated as Paris instructions for
ease of access.

10.7 Communication with the Front End

All Connection Machine programs execute on a front end, with the front end issuing
instructions as needed to the CM-2 parallel processing unit. The sequencer then breaks
down these “macroinstructions” into appropriate “nanoinstructions” and broadcasts these
instructions to all the processors at once.

In contrast, data can be exchanged between the front end and the processing array in any
one of three ways: broadcasting, global combining, and the scalar memory bus. Broadcast-
ing allows a single value from the front end to be replicated and sent to all the data
processors at once. Global combining allows the front end to obtain the sum, largest value,
logical OR, or whatever, of one value from each data processor. The scalar memory bus
allows the front end to read or write one 32-bit value at a time anywhere in any processor.

Chapter 11
Data and Image 1I/0

As with most computer systems, the Connection Machine’s I/O operations can directly
affect the system’s overall efficiency and ease of use. For Connection Machine applications
in particular, where large data files are routine, high /O bandwidth can significantly
improve job execution efficiency as well as program development times. In addition, the
complex problems that the Connection Machine is routinely used to investigate, and the
massive data sets they usually involve, impose difficult conceptualization and interpreta-
tion demands on the programmer/scientist. Such users can benefit greatly from graphic
representation of their computations, displayed in high-resolution color with real-time
animation.

The Connection Machine supports these ancillary requirements with high-performance
data I/O and imaging systems. This chapter provides an overview of these facilities. Chap-
ters 12 through 14 contain more detailed descriptions of the individual /O and visualization
system components.

11.1 Data I/O Channels

Every Connection Machine has, depending on its size, from 2 to 16 channels available for
data and/or image 1/O. These channels are organized into pairs, with each pair controlled
by a separate section of the CM. For example, an 8K CM-2 has 2 I/O channels, as does a 4K
CM-2a. At the other end of the spectrum, a 64K CM-2 has 16 I/O channels, two for each
of its eight sections.

The Connection Machine supports simultaneous use of multiple /O channels with the
restriction that only one channel in any given pair can be active at time. This means that
an 8K CM-2 is limited to using one /O channel at a time, while a 64K CM-2 can have up
to 8 of its 16 channels in use simultaneously.

91

92 Connection Machine Model CM-2 Technical Summa

A channel’s mode of use is determined by the type of interface board that is installed in its
backplane slot — a Connection Machine I/O controller (CMIOC) or a framebuffer.

= A CMIOC board adapts its channel for transferring data to and from external
devices over a dedicated data bus, called the CMIO bus.

® A framebuffer board adapts its channel for connection to a graphics display
monitor.

Although there are no hardware or software restrictions against filling both /O slots on the
same backplane with the same type of /O module (either two CMIOCs or two framebuf-
fers), most configurations have a single CMIOC and/or a single framebuffer serving each
section.

11.2 Data I/O Overview

From the user’s perspective, the CM’s data I/O system is organized as a set of client and
server processes running on two or more computers that are linked by Ethernet. Included
in this network will be at least one Connection Machine front end running a user applica-
tion program. Other computers in the net are located in /O devices that are connected to
the Connection Machine via one or more CMIO buses. These /O computers run file server
processes for their respective devices.

A user program becomes a client when it initiates a CMIO operation. File system software
on the front end issues commands to the file server on the appropriate IO computer over
the Ethernet link. The file server, in turn, initializes the data storage or I/O processor device
on which it resides for the impending transfer. For a Connection Machine write to a data
storage device, for example, the file server translates the logical file description it receives
from the front end into a physical description meaningful to the device, including the size
of the transfer in device-specific units and the physical location at which the file is to be
stored. The file server also passes device status information back to the front end.

The front end also sends I/O instructions to the CM. There, these instructions invoke micro-
coded /O service routines, which control the CM’s half of the I/O operation. For a
Connection Machine write operation, for example, this control involves initializing the
CMIOC for the transfer and moving data from the parallel processing unit to data buffers
on the CMIOC.

A CMIOC module serves as the bridge between a set of physical processors and a CMIO
bus. The CMIO bus, in turn, links the CM to a world of peripheral devices, including:

Chapter 11. Data and Image 1/0 93

® DataVault: a disk-based mass storage system (see Chapter 12)
® CM-HIPPI system: a CMIO-to-HIPPI bus interface (see Chapter 13)
= CM-IOP system: a CMIO-t0-SCSI bus interface (see Chapter 13)

® VMEbus interface controller — a third-party computer equipped with a VMEIO
board to provide a CMIO-to-VMEDbus interface (see Chapter 13)

The DataVault, CM-HIPPI, CM-IOP, and VMEIO board are all manufactured by Thinking
Machines Corporation.

Each CMIOC and CMIO bus can support peak data transfer rates as high as 50 megabytes
per second. I/O rates exceeding 100 megabytes per second can be achieved using multiple
CMIOC boards with a separate CMIO bus connected to each and spreading files across all
the buses. Not all I/O devices can maintain this rate, however.

Some consideration should be given to how the CMIO bus configuration can be arranged
to match the device /O bandwidth to the Connection Machine’s /O capability. Section
11.5, CMIO Bus, touches briefly on this subject.

11.3 Graphics Output for Data Visualization

The Connection Machine system includes a powerful set of visualization tools that support
display of memory contents via a direct link to a high-resolution color monitor or to any
X windows server connected to the front end. The framebuffer module, which is installed
in one of the Connection Machine backplane slots reserved for /O modules, provides the
direct link between the Connection Machine parallel processing unit and a 19-inch color
monitor. The Connection Machine visualization hardware is described in Chapter 14.

11.4 CM /O Controller

Each CMIOC serves the processor boards that are plugged into the same backplane as itself,
treating the 8K physical processors on its backplane as two banks of 4K processors. Each
4K bank is distributed evenly among 256 processor chips (16 processors per chip) and each
chip is connected to the backplane by a single I/O line. A bank can therefore pass 256 bits
in parallel to its associated CMIOC. Bytewise parity is generated for the data sent to the
CMIOC; data received from the CMIO bus also carries bytewise parity. This contributes an

Connection Machine Model CM-2 Technical Summary

additional 32 bits to the I/O path, yielding a 288-bit-wide path between the processors and
the CMIOC.

Only one bank on a given backplane can be sending or receiving data at a time. During /O
operations, the sequencer controls a bank switch that determines which bank in its 8K set
is active. It toggles between the banks on alternate bits.

A CMIOC buffers its /O data in a FIFO that is 288 bits wide by 512 bits deep. The CMIOC
checks the parity it receives from the processor boards with outgoing data (processor-to-
CMIO bus) and generates new bytewise parity for the data it drives onto the CMIO bus.
Incoming data has its parity checked first on the CMIOC and then again on the processor
boards.

The data path on the CMIO bus is 72 bits wide, consisting of 64 data bits and 8 parity bits.
Consequently, the CMIOC must also multiplex and demultiplex data passing between the
288-bit-wide processor data path and the 72-bit-wide CMIO bus.

11.5 CMIO Bus

The CMIO bus is based on a multi-drop architecture; up to 16 devices, including the
CMIOC, can be connected to a single bus. As mentioned earlier, the Connection Machine
can have up to 16 CMIOCs, each of which can be connected to a separate CMIO bus. Thus,
a fully configured 64K CM-2 could physically accommodate 240 external I/O devices, plus
the 16 CMIOCs needed as interfaces to the 16 buses.

The combination of multiple CMIOCs and multi-drop bus architecture offers valuable flexi-
bility in designing an optimal CM I/O configuration. One goal in designing CM /O system
configuration is achieving a good match between the bandwidth of the external devices and
the Connection Machine’s own I/O capability.

For example, most peripheral devices do not operate at the speeds the Connection Machine
is able to sustain. It can be advantageous, then, to connect multiple devices to the
Connection Machine in parallel; that is, to connect each device to a separate CMIO bus,
each of which is connected to a separate CMIOC. This arrangement allows data transfers
to be conducted in parallel, yielding aggregate transfer rates well above the rate possible
with a single peripheral transferring 64-bit-wide data. This approach is called file striping.

File striping on the CM uses two, four, or eight CMIO buses connected in parallel to sepa-
rate CMIOCs, with a separate DataVault on each bus, producing an arrangement called a
striped set. The file system distributes its files in 512-bit slices across all the processors
in the striped set. When a file is written to the DataVaults, it is sent in parallel to all the

Chapter 11. Data and Image 1/0

#

DataVaults in the striped set. Each DataVault receives a 512-bit chunk of the file in 64-bit
consecutive units. Adjacent DataVaults receive contiguous 512-bit chunks of the file. Files
are retrieved from the striped set in the reverse order, with the file system software distrib-
uting the 512-bit chunks to the appropriate 8K sets of processors.

Alternatively, one or more peripherals may be connected to a single bus. The bus, in turn,
is connected in daisy chain fashion to CMIOCs in more than one section of the parallel
processing unit. This configuration allows data to be moved directly between any device
on the bus and any part of the processing unit.

Most CM I/O systems employ a mix of these configurations. Some devices are connected
to multiple CMIOCs, while others connect to just one. The Connection Machine router is
used as necessary to move data to its intended destination in the parallel processing unit.

In addition to its 64 data lines and 8 parity lines, the CMIO bus includes 8 control lines.
These are used to implement an asynchronous transfer protocol. This protocol requires one
of the devices on the bus to serve as bus arbiter. Any device wishing to transfer data to
another device on the bus submits a request to the arbiter to be given control of the bus. The
arbiter reconciles conflicting bus requests and allocates bus mastership, following a
scheme designed to avoid bus monopoly by any one device.

Each device’s interface to the CMIO bus is implemented by a state machine. When a device
participates in a transfer across the bus, its state machine controls one end of the transfer
handshaking. The bus interface also recognizes and flags bus protocol errors that may
occur during the transfer. This error detection allows the I/O control software to retry a
transfer a prescribed number of times.

96

Chapter 12
The DataVault

The DataVault is a disk-based mass storage system for Connection Machine files. It com-
bines large capacity with high transfer rates and exceptional reliability, making it well
suited for storing and transferring massive data files.

The basic DataVault disk configuration provides storage for 30 gigabytes of data; this can
be expanded to 60 gigabytes. A DataVault is capable of transferring data at a sustained rate
“above 25 megabytes per second.

For further efficiency, the CM file system allows files to be striped across a set of two, four,
or eight DataVaults. Each DataVault in the set is attached, via a separate CMIO bus, to a
separate CMIOC; but the whole set acts as a single logical device, under the control of one
of its member servers. A set of striped DataVaults thus writes and reads in parallel to and
from two, four, or eight sections of the CM-2. A set of eight DataVaults, attached to a 64K
CM-2, can hold files of up to 480 gigabytes (8 x 60 gigabytes) and achieve data transfer
rates well above 100 megabytes per second.

A 30-gigabyte DataVault employs an array of 42 51/s-inch Winchester disk drives, of which
39 are active and 3 are spares. (See Figure 11.) Of the 39 active drives, 32 hold data and
7 hold error correction code (ECC) bits. The ECC bits allow the DataVault to correct single-
bit errors and to flag multiple-bit errors in each 32-bit value retrieved from the disks. A
40-gigabyte DataVault has 84 drives, of which 64 hold data, 14 hold ECC bits, and 6 are
spares. .

The data is spread across the drives, one bit per drive. Each 64-bit data chunk received from
the Connection Machine I/O bus is split into two 32-bit words. After verifying parity from
the I/O bus, the DataVault controller adds 7 ECC bits and stores the resulting 39 bits on 39
individual drives. Subsequent failure of any one of the 39 drives does not impair reading
of the data, since the ECC data allows any single-bit error to be detected and corrected for
every data word. The ECC data permits 100% recovery of the contents of a failed disk,
allowing a new copy of this data to be reconstructed and written onto a spare disk. Once
this recovery is complete, the data base is healed.

97

98 Connection Machine Model CM-2 Technical Summary

The DataVault’s speed and large capacity support the Connection Machine in a number of
ways. Loading Connection Machine memory with data for processing is a prime example.
Most source media for Connection Machine data have slow data transfer characteristics —
typical transfer rates for tape drives on a VMEDbus, for example, are on the order of 5 to 10
megabytes per second. The rate at which Connection Machine memory is loaded can be

Inside the DataVault

CMUOBus | |CMVO Bus

Controller
(minicomputer)

[Ewernet] :
Ethernet

Figure 11. Inside the DataVault

The DataVault cabinet contains 42 disk drives (or 84 for double capacity) plus a standard
minicomputer to control them. The controller accepts I/O commands over an Ethemet connection
and transfers data over a high-speed CMIO bus.

For every 32-bit data word written to the DataVault, each bit goes to a different disk drive. Seven
error correction code (ECC) bits generated by the DataVault on the data it receives go to seven more
drives. The remaining three drives serve as spares. Even if a drive should fail totally, its contents can
be reconstructed and written to one of the spare drives. The ability to recover from such component
failures makes the DataVault storage system remarkably reliable.

Chapter 12. The DataVaul

R B

greatly improved over this by using the DataVault as a way station for the data. The data
is written first to the DataVault at the tape drive’s transfer rate and then loaded from the
DataVault to Connection Machine memory at the DataVault’s rate.

The tape-to-DataVault path would include either a VMEIO or SCSI bus interface controller,
depending on the type of /O interface used by the tape unit. This bus interface would
provide a path between the tape device and the CMIO bus. It would also perform CMFS
functions for the tape unit (see Chapter 13). This path could also be used when writing
processed Connection Machine data out to tape files for long-term storage. The data would
first be written out to the DataVault and then transferred to the tape.

The Connection Machine need not participate in the tape-to-DataVault transfers, leaving it
free to perform other operations while these transfers are going on. Checkpointing and time
sharing on the Connection Machine also benefit substantially from the DataVault’s high
bandwidth.

12.1 The File Server

All DataVault operations take place under the control of a standard minicomputer (built
into the DataVault) running a file server process. The server manages the Connection
Machine file system’s UNIX-like hierarchical directory structure, handling the allocation
of physical disk space and matching file names and logical read/write requests to the
physical locations of data on the DataVault disks.

The file server receives commands from the front end via its Ethernet link. File server com-
mands include creating files, as well as opening, reading, writing, and checking status.
Operations that do not involve data transfers, such as opening or closing a file or sending
status information to the front end, the file server performs itself, without interacting with
the rest of the DataVault. For read/write operations, the file server issues the appropriate
commands to the DataVault’s internal controller.

The file server maintains duplicate copies of its file bit maps on two independent file server
disks. The bit maps are used to map logical Connection Machine file system references to
the corresponding physical disk blocks. This redundancy ensures continued access to user
files on the DataVault even if one of the file server disks fails. The DataVault file server
uses a form of memory caching to promote faster access of files. Whenever the file server
opens a user file, it copies the corresponding physical block location information to its
main memory. This allows the file server to produce physical addresses immediately
during subsequent read and write operations.

100 Connection Machine Model CM-2 Technical Summary

Internally, the file server represents a Connection Machine file as a series of extents, or
areas of contiguous disk surface. Each extent starts at a logical offset within the Connection
Machine file; each has a physical disk address and a length. This representation allows a
file to have arbitrarily large physically contiguous blocks of the disks holding data for log-
ically contiguous segments of the file. As a result, positioning of the read/write heads is
more efficient, yielding faster file access.

12.2 Writing and Reading Data

Data transfers move information between parallel variables in Connection Machine
memory and DataVault files. A single read or write moves a specified number of bits into
or out of each Connection Machine virtual processor. The principal events involved in
writing a file to the DataVault are summarized below. Reading a file from the DataVault
into Connection Machine memory is very similar and can be inferred from the write
operation description.

A wrrite operation is initiated by the front end. The front end issues a write instruction over
the Ethernet to the DataVault file server. When it receives the logical file request, the file
server translates the request into a series of physical disk addresses. Assuming that the
request parameters are valid (e.g., there is sufficient space), the file server returns a
message to the front end indicating successful completion. If the request cannot be
fulfilled, the file server sends a failure report to the front end instead.

Data from Connection Machine memory is moved to the CMIOC, with parity checked for
each byte, and stored in the buffer memories (288 bits wide by 512 bits deep) on those
controllers. When the buffers are sufficiently full, the I/O controller signals its readiness to
send data to the DataVault.

Data in the CMIOC is split into 72-bit units (64 data bits plus 8 parity bits). These 72-bit
units are multiplexed out to the DataVault via the CMIO bus.

The DataVault checks and then strips the parity from the data it takes off the CMIO bus. Its
ECC circuits then generate 7 bits of ECC for each 32 bits of the original data. The resulting
39 bits are distributed to 39 separate disk buffers, one bit per buffer. As these buffers fill
up, the data is written out to the individual disks.

When all data has been written on the disks, a signal is returned to the front end that the
transfer is complete.

Chapter 12. The DataVault 101

Data being read into the Connection Machine memory from the DataVault follows the
same path as for writing, but in reverse order, through the disk buffers, the CMIO bus, and
the CMIOC. The data coming off the disks is checked by ECC circuits. Single-bit errors are
corrected and logged, and the data is written with parity to the CMIO bus.

12.3 Data Protection

A transfer status may indicate that a single disk drive is failing and that the ECC was
required to correct data. This will most often be discovered when the error logs are checked
(typically at the end of the day). At that point, the faulty drive can be physically replaced
with an external spare. If the site does not currently have any spares available in storage,
other than the three (or six) spare drives contained in the DataVault, one of these internal
spares can be logically substituted for the failing drive.

This logical substitution uses a software procedure, called sparing, that reconstructs the
corrupted data, using the ECC circuits to correct the failing bit, and stores it on one of the
spare drives provided for the purpose. The sparing program redirects the path followed by
the faulty bit from the failing drive to the spare. Regeneration of this data takes from 30
to 60 minutes (two minutes per gigabyte), after which the data is again protected against
the failure of another drive.

When the failed drive is physically replaced, the files are reconstructed using the same
technique as is used when sparing the failed drive.

o2

Chapter 13
CMIO

_

Intelligent Bus Interfaces

The Connection Machine /O system includes three products that are designed to link the
Connection Machine to a heterogeneous world of data acquisition and storage. These
products provide interfaces between the CMIO bus and /O devices that are attached to
HIPPI, SCSI, or VME buses.

13.1 HIPPI Bus Interface

The CM-HIPPI is a bus interface controller that is designed to transfer data at high speed
between the ANSI draft standard HIPPI bus and one or more CMIO buses. It is primarily
intended to link the Connection Machine and its DataVault to other supercomputer systems
via two simplex HIPPI buses, one carrying incoming data and the other carrying outgoing
data. Each HIPPI bus has a bandwidth of 100 megabytes per second.

The CM-HIPPI is a complete, integrated system. It contains a Sun-4/300 CPU, two disk
drives, a VMEbus, HIPPI input and output interface modules, and up to eight HIPPI-to-
CMIO interface modules. This architecture supports full duplex communication between a
32-bit HIPPI source/destination and multiple CMIO buses at a peak bandwidth of 200 mega-
bytes per second.

The HIPPI controller CPU receives CMFS commands from the Connection Machine front
end over an Ethernet cable. A file server process running on the CPU interprets these
commands and controls the /O operations engaged in by the CM-HIPPI accordingly. The
disk drives store duplicates of the system software, the file server, and hardware diagnostic

programs.

Together, the HIPPI input and output modules provide a full duplex I/O interface between
a pair of external HIPPI buses and a pair of internal buses, one for incoming data and one

103

104 Connection Machine Model CM-2 Technical Summary

for outgoing data. These internal buses are also connected to the eight HIPPI-to-CMIO inter-
face modules via a set of multiplexing switches. These switches provide the means for
establishing and breaking links between specific CMIO buses and the HIPPI input and

output ports.

Each HIPPI-to-CMIO module provides a separate path between a CMIO bus and the internal
HIPPI buses, as controlled by the switch matrix. In this way, up to eight CMIO buses can
be connected to the HIPPI input and output ports in parallel. Depending on the transfer rates
of the various CMIO bus devices involved, the peak aggregate I/O potential of this
configuration is 200 megabytes per second.

13.2 VMEDbus Interface

The CMIO-to-VMEbus interface is based on Thinking Machines Corporation’s VMEIO
board. This is a printed circuit module that can be installed in a VME computer running
UNIX or a UNIX-equivalent operating system. The combination of the VMEIO module and
a UNIX-based computer provides an intelligent link allowing any device on the CMIO bus,
including the Connection Machine and the DataVault, to transfer files to and from various
/O devices such as tape drives and video frame grabbers that have VMEIO buses.

The computer serves as a platform for a file server process, which interprets CMFS file
operation commands. The Connection Machine’s front end sends these commands to the
file server and receives status messages from it via an Ethernet link. This computer also
runs a special device driver for controlling the VME I/O functions.

The VME computer may also contain client processes that issue commands to servers in
other computers on the CMIO bus, such as the DataVault’s computer. Such processes may
transfer data across the CMIO bus without requiring participation by the Connection
Machine or its front-end computer. This is the arrangement described in Chapter 12.

The VMEIO module provides the hardware interface between a standard 32-bit VMEbus
and the 64-bit (plus parity and control) CMIO bus. Transfer-rate differences between the
two buses are alleviated by an 8-megabyte buffer (64 bits wide, 1 megabyte deep).

Chapter 13. CMIO Intelligent Bus Interfaces « 105

13.3 SCSI Bus Interface

The VMEIO module is a key component in the CM-IOP, a bus interface controller that pro-
vides a bridge between the CMIO and the industry-standard SCSI buses. The CM-IOP is a
fully integrated system that includes a Sun-4/300 CPU, two disk drives, a VMEbus, a
VMEIO module, and up to eight VME-to-SCSI interface control modules.

The Sun-4/300 runs a file server process that interprets CMFS commands received from the
front end via an Ethemet connection. The two disk drives contain redundant copies of the
CPU’s system software as well as the file server and hardware diagnostic programs. The
CPU communicates with the other circuit modules in the CM-IOP via an internal VMEDbus.

The VMEIO module is the interface between the internal VMEbus and the system CMIO
bus, enabling devices on the CMIO bus to transfer data into and out of the CM-IOP.

The SCSI interface controllers, in turn, connect the internal VMEDbus to external SCSI-based
devices, such as Storage Tek 4980 tape drives. The CM-IOP logic chassis can accommodate
up to eight SCSI interface controllers, each of which has two SCSI I/O ports.

o6

Chapter 14

The Graphics Display System

The Connection Machine graphics display system consists of two hardware components:
a printed circuit module, called the framebuffer, which resides in the CM, and a high-
resolution color monitor. Three coaxial cables connect the framebuffer to the color
monitor. See Figure 12.

14.1 Connection Machine Framebuffer

The framebuffer resides on a backplane in one of the Connection Machine’s 8K-processor
sections, connecting directly to the 8K physical processors on that backplane via 256 I/O
lines. The processors send data directly to the framebuffer over the /O lines. The proces-
sors in other sections of the Connection Machine send data to the framebuffer indirectly,
using the Connection Machine’s interprocessor communications network to first send it to
the 8K processors to which the framebuffer is directly connected.

The Color Buffers

The framebuffer contains a 7-megabyte display memory into which values from Connec-
tion Machine virtual processors are written. The display memory represents 2048 x 1024
pixels. The memory representing each pixel consists of three 8-bit color buffers — red,
green, and blue — and one 4-bit overlay buffer.

107

108

Front End
Connection
Machine
Color Monitor
Sequencer
/0 Cont\rol Lines
rocessors ? gl
Coaxial
256 VO Lines Cables

Figure 12. Connection Machine graphics system hardware components

Each of the 8-bit color buffers is associated with an 8-bit-wide color lookup table with 256
entries. The display memory may be configured to use either 24 bits per pixel or 8 bits per
pixel. The number of bits per pixel is set when the display is initialized.

In true-color mode, 24 bits per pixel, each color buffer in display memory for each pixel
is used as an index into the corresponding lookup table. The value at each entry in the tables
determines the intensity of the red, green, and blue components of the color displayed for
that pixel; 0 1s off, 255 is full intensity.

In pseudo-color mode, 8 bits per pixel, only one of the color buffers in display memory,
either green or blue, is read. This single value is used as the index into all three color tables
to determine the color displayed.

Using pseudo-color mode limits the number of colors simultaneously available to 256.
However, it requires only one-third as much Connection Machine memory and one-third
as much data to be transferred to the framebuffer as does true-color mode.

Chapter 14. The Graphics Display System 109

Another advantage of using pseudo-color mode is the ability to use double buffering: using
one buffer to hold the image currently shown while the next image is created in the other
buffer. Switching buffers updates the image.

The Overlay Buffer

An overlay buffer is supported, which can be used to display text, cursors, and other data
without disturbing the underlying image. .

The overlay buffer is a 4-bit field maintained for each pixel. If the overlay is enabled, the
value in the overlay buffer controls the display of each pixel as follows:

b3 b2 bl b0

0 0 0 0 - theoverlay for this pixel is off

0 0 0 1 - (display the color in the first overlay color register

0 0 1 0 - (display the color in the second overlay color register
0 0 1 1 - display the color in the third overlay color register

0 1 x x - overide bits b0 and bl to set pixel to white

1 x x x - override bits b0, bl, and b2 to set pixel to black

For each pixel, the lower two bits (b1 and bO0) either turn off the overlay for the pixel, or
select which register’s color is displayed. Each register contains a 24-bit color value. The
lowest eight bits control the red value, the middle bits control the green value, and the
upper eight control the blue. These registers can be loaded at any time.

The upper two bits (b3 and b2) of the overlay planes are override bits. If b2 is set, then the
pixel is set to a value that is 10 percent brighter than white (“whiter than white) regardless
of bits bl and b0. If b3 is set, then the pixel is set to a value of “blacker than black” (by
10 percent), regardless of b2, bl, and b0.

14.2 The Monitor

The framebuffer drives three 75-ohm coaxial cables connecting it to the color monitor with
the red, green, and blue color values determined for each pixel. Currently the monitor is
either a high-resolution Sony Trinitron Graphic Display Monitor or an NTSC-compatible
color monitor.

110 Connection Machine Model CM-2 Technical Summary

The resolution of the monitor used determines the maximum size, in pixels, of the image
displayed. The Sony monitor, like most high-resolution monitors, displays 1280 x 1024
pixels. NTSC-compatible video is displayed at a resolution of 640 x 512 pixels.

