
The
Connection Machine
System

Programming the NI

Version 7.1
March 1992

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, March 1992
Revised, March 1992

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsiility or liability for any errors that may appear in this document Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-, CMosr, and NI are trademarks of Thinking Machines Corporation.
Thinking Machines is a trademark of Thinldng Machines Corporation.
Sun, Sun-4, Sun Workstation, SPARC, and SPARCstation are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents

About This Manual ... ix
Customer Support .. xiii

Chapter 1 The Network Interface 1

1.1 The CM-5 System: Nodes and Networks 2
1.1.1 The CM-5 Networks 2

The Data Network 2
The Control Network 3

1.1.2 Processing Nodes 3
1.1.3 Partitions and the Partition Manager 4

1.2 The NI Chip .. 5
1.2.1 The NI Registers 5
1.2.2 Types of Registers 6
1.2.3 Register and Field Names 7

1.3 Writing N Code 8

1.4 Using This Manual Effectively 8

1.5 WARNING: Experiment at Your Own Risk 9

Chapter 2 A Generic Network Interface 11

2.1 Network Messages ... 11

2.2 Sending a Message ... 12
2.2.1 Auxiliary Information 12
2.2.2 Writing a Message 13
2.2.3 The Network Status Register 14
2.2.4 Reading the Send Status Register Fields 15

2.3 Receiving a Message ... 15
2.3.1 Detecting and Reading a Received Message 16
2.3.2 Reading the Receive Status Register Fields 16

2.4 Abstaining from the Network 17
2.4.1 Reading and Writing the Abstain Flag 17
2.4.2 Using the Abstain Flag Safely 17

2.5 Different Networks, Different Purposes 18

Version 7.1, March 1992 iii

iv Programming the NI

Chapter 3 The Data Network ... 19

3.1 Data Network Addressing 20

3.2 Sending a Message ... 21
3.2.1 Message-Sending Macros 21
3.2.2 Status Register Fields 22
3.2.3 Using the send_state Field 22

3.3 Receiving a Message ... 23
3.3.1 Message-Receiving Macros 23
3.3.2 Status Register Fields 24
3.3.3 Using the rec_state Field 24
3.3.4 Tag Fields and Interrupts 25

3.4 Other Things to Know: ... 26
3.4.1 Data Network Message Ordering 26
3.4.2 "Receive before You Send" - A Data Network Usage Note .. 26

3.5 Examples ... 27
Sending and Receiving a Message 28
Sending and Receiving Long Messages 29
Interrupt-Driven Message Retrieval 31
Sending via LDR and RDR Simultaneously 32

Chapter 4 The Broadcast Network 33

4.1 Sending a Message ... 33
4.1.1 Message Sending Macros 34
4.1.2 Status Register Fields 34

4.2 Receiving a Message ... 35
4.2.1 Message-Receiving Macros 35
4.2.2 Status Register Fields 35
4.2.3 How to Interpret the Value of the "Length Left" Field 36

4.3 Abstaining from the Network 36

4.4 Examples ... 37
Sending and Receiving a Message 37

Version 7.1, March 1992

Contents V~i

Chapter 5 The Combine Network

5.1 Sending a Message ...
5.1.1 Message-Sending Macros
5.1.2 Status Register Fields
5.1.3 Pipelining Combine Operations

5.2 Receiving a Message ...
5.2.1 Status Register Fields
5.2.2 Abstaining from the Network

5.3 Parallel Prefix (Scanning) Messages
5.3.1 Scanning with Segments
5.3.2 Addition Scan Overflow

5.4 Reduction Messages ..
5.4.1 Abstain Flags for Reduction Messages

5.5 Network-Done Messages ..
5.5.1 How Network-Done Works, and Why You Should Care

5.6 Examples ...
Sending and Receiving a Combine Message
Executing Scans and Reduction Scans
Executing a Network-Done Operation

The Global Network

6.1 The Synchronous Global Interface
6.1.1 Sending and Receiving a Message
6.1.2 Abstaining from the Synchronous Interface

6.2 The Asynchronous Global Interface

6.3 Examples. ..
Using the Synchronous Global Network
Using the Asynchronous Global Network

Chapter 7 Writing NI Programs

7.1 Transferring Data between Nodes and the PM
7.1.1 Sending Messages from the PM to Nodes
7.1.2 Sending Messages from Nodes to the PM
7.1.3 Signaling the PM
7.1.4 For the Curious: Using the Data Network

7.2 Setting the Abstain Flags

7.3 Broadcast Enabling

Version 7.1, March 1992

39

39
40
40
41

41
41
42

43
44
44

45
45

46
46

48
48
49
50

51Chapter 6

51
52
52

53

54
54
54

............. 55

.................. 55

.................. 56

.................. 57

.................. 58

.................. 58

.................. 59

.................. 60

Contents v

v. . >:.:.P.:::::rogammn -g..:- ... N-.> .. I:.

Chapter 7, cont.

7.4 NI Program Structure
7.4.1 The cmna. h Header File
7.4.2 Partition Manager Code
7.4.3 Node Code

The Node's "Main" Routine
7.4.4 Interface Code

7.5 A Sample Program

7.6 Compiling and Executing an NI Program
7.6.1 A Simple Compiling Script
7.6.2 Compiling and Running the Program...
7.6.3 Online Code Examples

Chapter 8 Programming and Performance Hints ..

8.1 Performance Hints
8.1.1 NI Register Operation Times

61
61
61
62
62
63

63

68
69
70
70

71

................... 71

................... 71
8.1.2 Reading and Writing Registers with Double-Word Values

Example: LDR Send/Receive
8.1.3 Use Message Discarding for Efficiency
8.1.4 Set the Abstain Flags Once and Forget Them

8.2 Potential
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6

Programming Traps and Snares
Pay Attention to Data Network Addresses
Check the Tag before Retrieving a Data Network Message
Make Sure Double-Word Data Is Double-Word Aligned
Order Is Important in Combine Messages
Restriction on Network-Done Operations for Rev A NI Chips .
Broadcast and Combine Network Collisions

Appendixes

Appendix A Programming Tools
A.1 Generic Variables and Macros

A.2 Data Network Constants and Macros
Send and Receive Register Macros
Status Register Macros
Message Length Limit

72
72
74
74

75

75

75

76
76
76
78

81

81

82
82
83
83

Version 7.1, March 1992

vi Programming the N1

Contents vii
****�*��*� �

Appendix A, cont.
A.3 Broadcast Network Constants and Macros 84

Send and Receive Register Macros 84
Status Register Macros 84
Abstain Register Macros 85
Message Length Limit 85

A.4 Combine Network Constants and Macros 86
Send and Receive Register Macros 86
Message Length Limit 86
Segment Start Register Macros 87
Status Register Macros 87
Abstain Register Macros 87

A.5 Global Network Constants and Macros 88
Synchronous Global Register Macros 88
Asynchronous Global Register Macros 88

Appendix B

Appendix C

C.1

C.2

C.3

C.4

C.5

CMOSsignal man page

Sample NI Programs

Data Network Test

Data Network Double-Word Messages Test .

Broadcast Network Test

Combine Network Test

Global Network Test

Indexes

Language Index 113

Concept Index .. 117

Version 7.1, March 1992

89

91

91

98

102

104

109

Contents vii

About This Manual

Objectives of This Manual

This manual shows you how to write programs that directly manipulate the low-level
network hardware of the Connection Machine CM-5 system. The main focus in this
document is the Network Interface (NI) chip, the component of the CM-5 hardware that
manages the machine's internal communications networks.

The code examples throughout this manual are written in C, with #define macros for
simple operations. Most are code fragments illustrating specific examples of NI features.
For information about structuring your code and linking it to run on CM-5 hardware, see
Chapter 7. A complete description of the macros used in this manual can be found in
Appendix A.

Intended Audience

This manual is a guide for experienced programmers, not a tutorial. Some overview
information is provided, but this manual is primarily intended to help knowledgeable CM
programmers develop special-purpose code.

WARNING: Code that directly accesses the NI chip will not be supported by future
hardware releases. It's recommended that you use the CMMD software interface for
essential code. CMMD also gives you access to the NI, but through a software interface
that can be easily ported to future releases.

Revision Information

This manual is new as of Version 7.1. Minor revisions from the first printing are included
in this version.

Version 7.1, March 1992

-M

ix

x Pgramin th N

Organization of This Manual

Chapter 1

Chapter 2

The Network Interface
An overview of the NI's location and function within the CM-5
hardware.

A Generic Network Interface
A description of common features found in most of the NI net-
work interfaces.

Chapter 3 The Data Network
The register interface and features of the three Data Networks.

Chapter 4 The Broadcast Network
The register interface and features of the broadcast network.

Chapter 5 The Combine Network
The register interface and features of the combine network.

Chapter 6 The Global Network
The register interface and features of the global network.

Chapter 7

Chapter 8

Writing NI Programs
A brief overview of the process of writing, compiling, and run-
ning an NI program.

Programming and Performance Hints
Useful performance techniques, as well as descriptions of poten-
tial coding problems.

Appendix A Programming Tools
A complete list of the macro tools used for writing NI programs.

Appendix B CMOS_signal man Page
The man page for the CMosT command Cos_signal () .

Appendix C Sample NI Programs
A selection of short programs that test the examples presented in
the network chapters above.

Version 7.1, March 1992

Programming the ATIx

About This Manual xi

Related Documents

These documents are part of the Connection Machine documentation set.

* Connection Machine CM-5 Technical Summary, October 1991

* CMMD User Guide, Version 1.1, January 1992

a CMMD Reference Manual, Version 1.1, January 1992

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter

italics

UNIX and CM System Software commands, com-
mand options, and filenames, when they appear
embedded in text. Also, syntax statements and pro-
gramming language elements, such as keywords,
operators, and function names, when they appear
embedded in text.

Argument names and placeholders in function and
command formats.

typewriter

% bold typewriter
regular typewriter

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

Version 7.1, March 1992

About his Manual xi

Customer Support
...........

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

If your site has an applications engineer or a local site coordinator, please contact that person directly
for support. Otherwise, please contact Thinking Machines' home office customer support staff:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail:

uuep
Electronic Mail:

Telephone:

customer-support@think com

ames!think!customer-support

(617) 234-4000
(617) 876-1111

xil

Chapter 1

The Network Interface

First, a word to the wise. You're reading this manual for one of two reasons:

* You absolutely, positively must write programs that manipulate the net-
work hardware of the CM-5 at the lowest possible level.

* You've heard about a CM-5 component called the "Network Interface,"
and think it would be interesting to write a program that manipulates it.

If it's the latter, we strongly suggest that you consider using a higher-level pro-
gramming method instead. Writing code at the level described in this manual
means taking direct control of the Network Interface chip, the part of the CM-5
hardware that manages the machine's internal communications networks. This
isn't something that you should be doing unless you have no alternative.

Also, be aware that code that directly accesses the Network Interface chip will
not be supported in future software and hardware releases - your code may re-
quire extensive modification to run. For essential code you should use the CMMD
software interface instead. CMMD gives you nearly the same level of access to
the CM-5 hardware, but provides it through a standard software interface that will
be easily portable to future releases. (For more information, see the CMMD
User s Guide.)

With this warning out of the way, we'll assume that you're reading this manual
for the first reason given above, and show you how to make use of the Network
Interface (M) chip. This manual presents the software tools that you need to pro-
gram the NI and provides code examples throughout that show you how to do
simple network operations on the CM-5.

Version 7.1, March 1992 1

>.,:2g¢: Prorammi the:jf NI>':.:t .:: .^..::>:?:'.f::::

1.1 The CM-5 System: Nodes and Networks

Because the main focus of this manual is the Network Interface chip, it makes
sense to start with an overview of the NI's location and function within the CM-5
system.

The CM-5 contains a large number of computing units, or processing nodes,
linked together by two internal networks, the Data Network and the Control Net-
work.

Figure 1. The CM-5 system: Processing nodes linked by Data and Control Networks.

The two networks are similar in design; both are scalable, high-speed data com-
munications networks. The structure and intended purpose of the networks,
however, are quite different.

1.1.1 The CM-5 Networks

The Data Network

The Data Network is the data highway of the CM-5. It's a high-speed, high-band-
width network designed to handle the simultaneous node-to-node transmission of
thousands of messages.

The Data Network is composed of two half-networks, the left data network and
right data network, both of which are connected to all processing nodes. These
two half-networks can either be used independently as separate networks, or to-
gether as a single data network.

Version 7.1, March 1992

Networks

Processing
Nodes :I

I I

I I

I

2 Programming the N1

Chapte . h Ntor ntrac

The Control Network

The Control Network is used for control tasks that require the joint cooperation
of all nodes. It is composed of three different sub-networks, each with a unique
function:

* The broadcast network distributes a single numeric value to every node.

* The combine network receives a single value from each node, combines
the values arithmetically or logically, and then distributes the combined
result to all nodes.

* The global network handles global synchronization of the nodes.

Note: Because of the unique features of these three sub-networks, NI program-
mers often refer to them as independent networks in their own right, and they're
described independently in this manual. However, there are some interactions be-
tween these networks that you'll need to keep in mind. These are explained in
later chapters.

1.1.2 Processing Nodes

Each processing node contains a RISC microprocessor, a memory subsystem,
and a Network Interface (NI) chip, linked together in a bus arrangement:

64-bit bus
Ij~~~ if~~~~ . L

Memory Subsystem
Data Network

r--, Control Network

I I

Figure 2. The components of a typical processing node.

The microprocessor (a SPARC chip in the current implementation) executes your
code. When this manual speaks of the "node" executing a function or accessing
a network, it's really the microprocessor that does the work.

Version 7.1, March 1992

I I

I

Chapter . Te Network Interfce 3

4 Programming the N

The memory subsystem consists of up to 32 Mbytes of DRAM memory, which
is managed either by a memory controller or by a set of four vector units (if your
CM-5 has the vector unit option installed). Check with your applications engineer
or system administrator to find out what memory hardware is available.

The NI chip serves as an intermediary between the microprocessor and the two
networks, providing a standard network interface throughout the CM-5.

1.1.3 Partitions and the Partition Manager

Typically, your code doesn't have access to every processing node in the CM-5.
Instead, your code runs on a partition of nodes that are monitored by a single
partition manager (PM) node:

Figure 3. A partition of nodes and its partition manager.

The PM is much like the processing nodes, in that it is attached to the Data and
Control Networks and can send messages via the NI. Programs written for the
CM-5 normally include two separate files of code, one for the PM and one for the
nodes.

Most often, the PM and the nodes operate in a data parallel style: the nodes ex-
ecute identical programs simultaneously, while the PM controls which function
the nodes will execute next. For more information on program structure, see
Chapter 7.

Version 7.1, March 1992

.ijE\- - -\-

- - - -

Nodes Partition Manager

4 Programming the NI

I

I

Chate 1 Te etwrkInerc 5

1.2 The NI Chip

Although each NI chip in the CM-5 is physically part of its processing node, it's
useful to think of the NI as being a separate entity from the rest of the node, be-
cause the NI operates independently:

Figure 4. The NI provides access to the facilities of the Data and Control Networks.

When the processing node directs the NI to send a network message, the NI han-
dles the actual dispatching of the message as well as the collection of any replies
that arrive from the networks.

The NI uses output buffering to hold messages until they can be sent, and input
buffering to hold received messages until the node can read them. The processing
node can either examine the registers of the NI to see if a message has arrived,
or it can instruct the NI to signal an interrupt when a message arrives.

1.2.1 The NI Registers

The NI chip is register-based - its network functions are controlled entirely by
reading and writing registers. For each network the NI manages, there is a unique
set of NI registers.

Access to these registers is provided by memory-mapping - the registers are
mapped into the memory address space of the microprocessor. This means that
from a programmer's point of view the NI is just a region of processor memory
with some unique properties.

Version 7.1, March 1992

I _. Data - Left Data Network
Data

Io/ / Network Right Data Network

Broadcast Network
Control . Combine NetworkI m or Global Networki

Chapter . Thre Network Interfce 5

6p PrgrminheN

1.2.2 Types of Registers

There are three basic types of NI control registers:

* First, there are queue registers. These "registers" are actually the entry and
exit points of message queues associated with the CM-5 networks. Instead
of holding values, queue registers act as entry and exit points for network
messages.

By "writing" a message to a queue register, you push the message onto the
send queue of a network. Likewise, reading the value of a queue register
pops a message from the receive queue of the network.

* Secondly, there are status registers, which are composed of one-bit flags
and multi-bit fields. These registers are used to indicate the state of the NI
and its message queues.

For example, most networks have two status flags, send ok and rec_ok,
that indicate the current status of messages being sent or received.

* Finally, some status registers act as control registers; that is, altering the
value of a control register's flags and fields has a corresponding effect on
the state of the NL

As an example, some networks have an abstain flag that you can set or
clear to control whether or not the NI will participate in the transactions of
one or more networks.

The chapters of this manual that describe each of the networks also describe the
NI registers that are associated with them, and describe the programming tools
you can use to access these registers.

Implementation Note: Some NI queue registers are mapped onto more than one
memory location, and thus appear as regions of memory. Nevertheless, these re-
gions of memory are still considered to be a single "register." The specific
memory location that you use in writing to these registers gives the NI additional
information about the kinds of network transactions it should perform. (More on
this in Section 2.2.1.)

Performance Note: In terms of cycles, reading and writing NI registers is mid-
way between reading the registers of the microprocessor and reading a value
from processor memory. See Section 8.1.1 for details on the time taken to read
and write NI registers.

Version 7.1, March 1992

6 Programming the NI

Chaper 1ThN

1.2.3 Register and Field Names

For consistency of reference in this manual, the names of NI registers and register
fields are given in the form

ninetwork purpose

The network part of the name identifies the network, and is typically one of the
following abbreviations:

bc broadcast network
ldr left data network
dr data network (left and right)

con combine network
rdr right data network
global global data network

The purpose describes the purpose of the register or field. Some common exam-
ples are:

send

rec

sendok

send_space

The entry-point of a network send queue.
The exit-point of a network receive queue.
Flag indicating that a message was sent successfully.
Field containing amount of space in the send queue.

For conciseness, this manual will occasionally refer to a register by the purpose
portion of the name alone, but only when this kind of reference is unambiguous.

Names of Register Accessors

The programing tools that you'll use to access NI registers and fields typically
have names based on the registers and fields they manipulate.

For example, most networks have an NI register named ni network status
that contains the ni network send ok and ni network recok status flags.
Instead of having a separate function for each network to get the value of these
flags, there is a single pair of macros, SEND_OK () and REC_OK (), that is used
to get the sendok and rec_ok flag for any of the networks.

Version 7.1, March 1992

Chapter . Te Netork Intefce 7

8 Pogrmmig te N

1.3 Writing NI Code

It's possible for you to write NI code using any programming method that allows

you to read and write memory addresses. However, this manual assumes that NI

programs are written in the C programming language, because there are a large

number of existing C macros that you can use to streamline your code. These
programming tools fall into two categories:

= Accessor macros that read or write the value of a specified register, flag,

or field. (The SDq _O and REC OK macros are good examples.)

· Queue macros that take a number of arguments related to the sending of

a single data value, and handle the necessary protocol for sending it.

These tools are introduced individually in the chapters that follow, and there is

a complete list of them in Appendix A.

Note: To get access to these predefined macros, your program must #include

the header file cmna. h. (See Chapter 7 for more information.)

1.4 Using This Manual Effectively

The first few chapters of this manual are mainly explanatory, describing the net-
works of the CM-5 in detail and showing you how to use the NI programming
tools associated with them. While these network-specific chapters present some
brief code examples, none of these examples constitutes a complete NI program
in and of itself. There's a fair amount of information that you simply have to

digest before a complete NI program makes sense.

Beginning CM-5 programmers should read through the "generic" network de-

scription in Chapter 2, and then read all four network-specific chapters, before
turning to the complete sample program presented in Chapter 7.

Experienced CM-5 programmers should read through Chapter 2 and at least one

of the network-specific chapters to get a sense of how the networks operate, and

then proceed to the sample program in Chapter 7 to see how NI programs are
structured.

Whatever your level of experience, Chapter 8 presents a number of important
performance strategies and potential sources of programming errors that you
should know about.

Version 7.1, March 1992

programming the NI8

Chapter 1. The etwrkIneiac

1.5 WARNING: Experiment at Your Own Risk

In writing code that manipulates the NI chip, you are taking control of the lowest
level of the CM-5's hardware. That kind of power does not come without corre-
sponding responsibilities and hazards.

This manual sets strict protocols for reading and writing the registers of the NI.
When you use the features of the NI in the manner described here, you should
encounter no problems outside of the occasional error message.

If you ,step outside the bounds, however, the results can be as nasty as they are
unpredictable. In some cases reading and writing NI registers incorrectly can
even cause your partition of processing nodes to crash, potentially disrupting oth-
er timesharing users of the CM-5.

So remember, if you choose to experiment with the NI, you have been warned!

Version 7.1, March 1992

Chapter . The Network Intefce 9

Chapter 2

A Generic Network Interface

Each of the networks accessible through the NI has its own network interface
its own set of control registers that are used to send and receive messages. How-
ever, most of the network interfaces have a number of features in common. This
chapter presents a "generic" network interface that describes these features. With
one exception (the global network), all networks conform to the model described
here. Individual variations are described in separate chapters for each network.

Important: The functions described in this chapter are pseudocode representa-
tions, not actual functions. You'll get an error if you try to call one of the
nonexistent "generic" functions described here.

2.1 Network Messages

For the purposes of this manual, a network message is a sequence of word-length
values. The length and content of a message depends on the network. Sending a
message involves writing this sequence of values to the send queue of a network.
As the message is written, the individual values are held in the send queue. When
the entire message has been written to the queue, the NI begins trying to send the
message through the network.

Similarly, receiving a message involves reading a sequence of values from the
receive queue of a network. When the NI receives a message from a network, it
accumulates the message in the receive queue. When the entire message has been
received, the NI signals that a message is available. Your program can then read
the individual words of the message from the receive queue.

Version 7.1, March 1992 11

12 Pogrmmig te N

2.2 Sending a Message

For each network, two queue registers are used for sending a message:

ni_network_send_first Used for first value of a message.
ni networksend Used for the rest of the message.

Important: There is a very specific protocol to follow in sending a message:

* The first value of a message must be written to the send first queue
register. This signals to the NI that a message is being composed.

* The remaining values of the message must be written, in order, to the send
queue register.

If this protocol is not followed, an error is signaled and the message currently
being composed is discarded.

When a message is discarded, any values that have been written to the queue are
ignored, and the send queue resets itself so that a new message can be started by
writing a value to the send first register. Writing additional values to the
send register has no effect.

Performance Note: You can use message discarding to your advantage and
thereby make your code more efficient. (See Section 8.1.3.)

2.2.1 Auxiliary Information

A network message also includes some auxiliary information, such as the length
of the message in words. This auxiliary information is transmitted implicitly
when you write the first value of a message to the send_first register.

Each send_first "register" is mapped onto a block of memory locations. Writ-
ing a value to any one of these locations has the effect of writing that value to the
send first register, but the actual memory location that you use implicitly
specifies the auxiliary information of the message.

Another way of looking at this is that the length of a network message (among
other things) determines which send first location you must use in sending
the message.

Version 7.1, March 1992

12 Programming the NV

Chap::te.X :. "2.:: Te, G-enri Network Inte:f:e 1

2.2.2 Writing a Message

For each network, there are two send first macros,

CMNA_network_send_first (auxiliary-info, value)

CMNAnetwork_send first_double (auxiliary-info, value)

that are used to write the first value of a message to the sendfirst register.
The only difference between them is that the send_first macro writes an
unsigned value, while send_firstdouble writes a double. However, for
these two macros it's not the type of data being sent that's important, only the
length.

The send_first macro is intended to be used for sending word-length data, and
the send_first_double macro is intended for sending double-word data. In
each case, you should coerce the values you send to the appropriate data type. For
example, to send a data value of type float, you must first cast it as an
unsigned value. To send a negative integer value, you must also first coerce it
to an unsigned value.

Performance Note: There are two kinds of sendfirst macro so that you can
use double-word register operations to make your code more efficient. (See Sec-
tion 8.1.2 for more information.) For the most part, however, this manual focuses
on single-word operations for clarity.

For the second and succeeding values of a message there is a different group of
macros. For each network there are three macros that write values to the send
register, one for each of the three data types you can send:

CMNA network sendword (value)

CMNA network send float (value)

CMNA network senddouble (value)

The sendword macro writes an unsigned word-length value, and the other
two macros write values of the indicated data types. Here there are three macros
to allow you to send values of differing data types without having to coerce them.
You're not restricted to using only one data type, of course; you can use any com-
bination of send type macro calls when sending a message.

Important: Remember that the send_type macros do not work unless they are
preceded by a send_first or sendfirst_double call for the same network.
You'll get an error if you attempt to use them to send the first value of a message.
If you have only one value to send, use the appropriate send first macro.

Version 7.1, March 1992

Chapter 2. The Gene?!c Network Interace 13

14~ ProgammngteN

2.2.3 The Network Status Register

The ni_network status register can be used to check on the progress of a mes-
sage that is being sent. It contains the following flags and fields related to
message sending:

ninetwork_status Status register, contains the following fields:
ni network_sendok Flag, the status of message being sent.
ni_network_send_space Field, the space left in send queue.
ninetwork_send_empty Flag, indicates the send queue is empty.

If the send queue becomes fill, all attempts to write a message (either to start one
or to continue one) cause the message currently being composed to be discarded.
You can tell whether a message has been discarded by examining the send ok
flag.

When the first value of a message is written to the send_first register, the
send ok flag is set to 1. As long as the message has not been discarded, this flag
remains 1, indicating that the message is still being accepted. If the message is
discarded, the flag is set to 0, indicating that the message has not been sent.

You can check the send ok flag both during and after writing a message to see
whether the message is accepted for delivery. If the send ok flag indicates that
a message has been discarded, you should retry sending the entire message.

The send_space field contains an estimate of the total space in words left in the
queue. The actual space remaining may be less; ni networksend_space is
usually correct, but may become invalid in some cases (such as during process
swaps). You should not assume that pushing a message shorter than this value
will always be successful.

The send_empty flag is 1 whenever the send queue is empty - that is, when
there is no pending message in the queue.

Programming Note: NI programmers typically write an entire message to the
send queue and only then check the send_ok flag to see whether it was accepted.
(See Section 8.1.3 for more information.) For this reason, the send_space field
and send empty flag typically aren't used by NI programmers. The
send_empty flag is used by internal NI operations that need to determine the
state of the network's send queues.

Version 7.1, March 1992

14 Programming the NI

Che 2

2.2.4 Reading the Send Status Register Fields

The general method for reading the value of an ni_network_status field or
flag is to read the value of the entire status register, and then extract the required
fields from that value. (This cuts down the overhead of repeatedly reading the
value of the register.)

Each network has a macro that obtains the current value of the status register:

int value = CMNA network status()

Because the position and size of status fields and flags are the same for most of
the networks, there is a single set of macros that extract the send status fields
from the value returned by CMha_ network status:

SEND_OK (status) Gets send ok flag from the given status value.
SEND_SPACE (status) Gets send_space field.
SEND_EMPTY (status) Gets send_empty flag.

For example, to get the three send fields from the broadcast network's status
register:

int value = CMNA bc status();

int send ok = SEND OK(value);

int space_left = SEND_SPACE(value);

int send_queue_empty = SEND_EMPTY(value);

2.3 Receiving a Message

For each network, the following register is used to receive a message:

ni networkrec Queue register from which values are read.

A message is received by reading its values, in order, from ni network rec.
There are three network-specific message-reading macros, one for each network:

int value = CMNA network receive word();
int value = CMNA network receive float();

int value = CMNA network receivedouble();

As with the send type macros, you are not restricted to reading values of a par-
ticular type. You can use any combination of the rec_type in reading a message.

Version 7.1, March 1992

Chapter 2. The Generic Network Interfce 15

16P

2.3.1 Detecting and Reading a Received Message

The ni_network_status register contains additional flags and fields that are
used for detecting and receiving incoming messages:

ni network status Statu
ni network rec ok
ni_network_rec_length

ni network_rec_length_lef t

is register, contains the following fields:
Flag, indicates arrival of a message.
Field, total length of message received.
Field, words left in the receive queue.

The status register's fields always reflect the "current" message, that is, the mes-
sage that is currently being read (or is waiting to be read) from ninetwork_ rec.

Whenever a message is pending in the receive queue, the rec ok flag is set to
1, and remains set while the message is read from the queue. When no messages
are waiting to be read, the flag is set to 0. (Note: It is an error to try to read from
the queue when this flag is 0.)

The field ni network_rec length always contains the total length (in words)
of the current message as it was when it was received.

The field ni network rec length left contains the number of words re-
maining to be read from the queue. (Usage Note: You can assume that it is safe
to read this many words from ni network rec.)

2.3.2 Reading the Receive Status Register Fields

Just as with the send status fields, there are generic macros that can be used to
extract the values of the receive status fields:

RECEIVE OK (status)

RECEIVE LENGTH (status)
RECEIVE LENGTH LEFT (status)

Gets recok flag from a status value.
Gets rec_length field.
Gets rec_length_left field.

For example, to get the rec fields from the right data network's status register:

int value = CMNA RDR status();

int rec ok = RECEIVE OK(value);

int message_length = RECEIVE_LENGTH(value);

int words_to_go = RECEIVE_LENGTH_LEFT(value);

Version 7.1, March 1992

Programming the N116

e 2.

2.4 Abstaining from the Network

Some networks have an abstain flag, a flag that you can set to cause a node to
ignore the transactions of the network. The abstain register and flag typically
have names like:

ni network control Abstain status register.
ninetwork abstain Network abstain flag.

(The global network, always the exception, uses a different name for this register.
See Chapter 6 for more information.)

The ni network_abstain flag, when set to 1, causes the NI to "ignore" the
transactions of the network. All incoming messages are discarded, and the
rec ok flag remains 0. Attempts to write a message with the abstain flag set will
signal an error.

2.4.1 Reading and Writing the Abstain Flag

To read and write the the abstain flag of a network, use these macros:

value = CMNA_read_abstain_flag (register) ;

CMNA_write_abstain_flag (register, value);

The register argument is a register address constant, which is defined separately
for each network.

2.4.2 Using the Abstain Flag Safely

The abstain flag for a given network should only be changed when that network
is not in use. This means that there must be no messages traveling through the
network and you must not be either writing to a send queue or reading from a
receive queue in any node.

This generally requires that you use one of the NI's global synchronization fea-
tures to bring operations to a halt in all nodes while the abstain flags are changed.
(See Chapter 6 for a discussion of the global network's synchronization features.)
The effects of changing a network's abstain flags while the network is in use are
unpredictable - your code may run, producing erroneous results, or it may sig-
nal an error.

Version 7.1, March 1992

Chapter 2. The Generic Network Intterface 17

Pgm nt

Also, some programming systems (such as CMMD) use the abstain flags for their
own purposes. When you alter the values of the abstain flags, you must take care
to save the original settings of these flags and to restore them before your code
exits. Failing to do so can cause your code to signal bizarre errors that are hard
to trace.

2.5 Different Networks, Different Purposes

The above description is an idealized view of a network, lacking either a specific
purpose or a detailed description of message protocol and the restrictions on
usage of the network.

The next four chapters present a description of the Data Network and the three
Control sub-networks. Each chapter presents the purpose, protocol, and restric-
tions of a real CM-5 network, building on the material presented in this chapter.

Version 7.1, March 1992

18 Programming the NI

Chapter 3

The Data Network
-- -- ------ -- --- -- -- ----- ----- -----

The Data Network consists of two half-networks, the left data network (LDR) and
right data network (RDR). The two sub-networks can also be accessed together
as a single data network (DR).

Figure 5. The Data Network consists of independent left and right halves.

There are three sets of control registers: one set for each half-network, and a sep-
arate set for the combined (DR) network. Each set of registers is used to send and
receive messages via the corresponding network, with the following conditions:

* Sending a message via the DR actually sends it by either LDR or RDR, de-
pending on the load of the two half-networks. The DR cannot be used to
receive messages.

* Sending a message via the DR excludes using either the LDR or RDR indi-
vidually, and invalidates the LDR and RDR send status fields until the
message has been written to the DR send queue and accepted for delivery.

Version 7.1, March 1992

I 1

I

i E~~~~n3~~~E~~~l~~~~~i$: :I~..

19

20"- Pro5 "eeelszrami 2'> th NI ..
::::::: i:!~~

* Likewise, sending a message via either the LDR or RDR excludes using the
DR for sending, and invalidates the DR status registers until the message
has been written to the LDR or RDR send queue and accepted for delivery.

* The two half-networks are not exclusive, however, and can operate inde-
pendently - messages can be sent and received concurrently through both
the LDR and RDR

3.1 Data Network Addressing

The Data Network delivers messages to specific processing nodes in the CM-5,
as indicated by an address word that is added to each message. Each node has a
unique address based on its location in its partition, and these addresses run from
0 (for the first node in the partition) up to one less than the total number of nodes
in the partition:

I 1

I Partition Manaqer
I I-

Figure 6. Addressing of nodes in a partition.

You can get the address of the node executing your code, as well as the total num-
ber of nodes in the current partition, by examining these variables:

Nodes

Addresses

CMNAselfaddress

CMNA_partition_size

Address of current node.
Number of nodes in current partition.

The values of these variables are automatically defined for each of the nodes. The
value of CMNApartition_size is also defined for the partition manager.

Version 7.1, March 1992

20 Pro-oammingP the NI

Chpe 3. ThaaNtok2

3.2 Sending a Message

The message format for all three Data Networks is the same: The first word of
the message is a 20-bit destination address that must be zero-extended to 32 bits.
Important: Failure to do so can trigger a serious error, even causing your parti-
tion to crash (See Section 8.2.1).

The remaining words form the content of the message, which must be no longer
than the value of MAX_ROUTERMSG_WORDS (currently 5).

The auxiliary information of the message consists of the length of the message
in words (excluding the address word), and a four-bit tag value. See Section 3.3.4
for information on the use of tag values.

3.2.1 Message-Sending Macros

The sending interface used for the three Data Networks is the same as the generic
interface in Chapter 2. The following queue registers are used to send messages:

ni_dnetwork_send_f irst Used for first value of a message.
nidnetwork_ send Used for the rest of the message.

The dnetwork part of these names is a unique abbreviation for each network,

dr - data network 1dr - left data network rdr - right data network

and for each dnetwork there are corresponding send first and send macros:

CMNA_dnetwork_send_first(tag, length, value)
CMNA_dnetwork_send_firstdouble (tag, length, value)

CMNA dnetwork send word(value)
CMNA dnetwork send float(value)
CMNA dnetwork senddouble (value)

For the sendfirst macros, the length argument is the length of the message
in words (excluding the address word), the tag argument is the message's tag
value, and value is the first value of the message.

For the send macros, value is the second and succeeding values of the message.

Note: Currently you are limited to using tag values from 0 to 3. All other tags
are reserved for supervisor use.

Version 7.1, March 1992

Chapter 3. The Data Network 21

; . .:: : :'.: :: .:::::: :: : :: ::2::::: ::2: Prg: mngteN

3.2.2 Status Register Fields

The following Data Network status register fields are used for message sending:

ni_dnetwork_status Status register, contains the following fields:
ni dnetwork_send-ok Flag, the status of message being sent.
ni_dnetwork_send_space Field, the space left in send queue.
nisendstate Field, indicates status of three networks.
ni_router_done_complete Flag, indicates send queue is empty.

The macros used to get the ni networkstatus value for each network are:

int value = CMNA drsend status();

int value = CMNAldrstatus();

int value = CMNArdrstatus();

You can obtain the values of the sendok flag and send_space field for each

network by using the field extractors described in Chapter 2 (Section 2.2.4).

The ni send state field and nirouterdone complete flag exist only

for the DR interface (that is, they are only accessible from the ni_dr_status
register). You can obtain the values of these fields by using the following macros:

DRSENDSTATE (status)

DR_ROUTER_DONE (status)

For example:

' tvalue DRtatus ();

int state = DRSENDSTATE(value);

int networkdone = DR ROUTER DONE(value);

The ni router donecomplete flag is used by the combine network as part
of its network-done message function. For more information, see Section 5.5.

3.2.3 Using the send_state Field

The DR interface is mutually exclusive with the LDR and RDR interfaces. It is an
error to try to write a message to the DR send queue while there is a partially
completed message in either the LDR or RDR send queues.

Likewise, having a partially completed message in the DR send queue makes it
an error to try to send a message via the LDR or RDR queues. In either case, the

Version 7.1, March 1992

Programming the NVI22

Chapter 3Thae

state of the send status registers and queues of the excluded network(s) is unde-
fined.

You can use the ni send state field to determine which interfaces are in use.
The value of this field is an integer from 0 to 2, with the following meanings:

0 No partial messages in any send queue.
1 Partial message in the DR send queue.
2 Partial message in either or both of the LDR or RDR send queues.

Note: The two half-networks are not mutually exclusive. There is no restriction
on having partially completed messages simultaneously in the LDR and RDR
queues. (This kind of simultaneous message sending is one reason why the two
half-networks exist.)

3.3 Receiving a Message

The message-receiving interface of the Data Networks is as described in Chapter
2. The following register is used for receiving Data Network messages:

ni_dnetwork_rec Queue register from which values are read.

The dnetwork abbreviation is the same as for the send registers.

3.3.1 Message-Receiving Macros

To receive a message from the LDR or RDR, use the network-specific reading
operations described in Section 2.3:

value = CMNA dnetwork receiveword ();
value = CMNA dnetwork receive float();
value = CMNA dnetwork receive double();

Important: There are no message-receiving macros for the DR. You must use the
LDR and RDR to receive messages sent via the DR - the DR interface cannot be
used to receive messages.

Version 7.1, March 1992

Chapter 3. Yhre Data Network 23

24CProgamming theNI

3.3.2 Status Register Fields

The following Data Network status register fields are used in receiving messages:

ni_dnetwork_status Status register, contains the following fields:
ni dnetwork_rec_ok Flag, indicates receipt of a message.
nidnetwork_rec_tag Field, tag value of the message.
nidnetwork_rec_length Field, total length of message.
nidnetwork_rec_length_lef t Field, words left in the queue.
ni_recstate Field, status of three networks.

You can obtain the values of the rec ok flag and the rec_length and
rec_length_left fields by using the generic field extractors described in
Chapter 2 (Section 2.3.2).

The rec_tag field always contains the tag value of the current message. To get
the rec_tag field, use the macro:

RECEIVETAG (status)

Programming Note: Along with checking the rec_ok flag to determine wheth-
er there is a message to read, you must also check the tag value of a message
before retrieving it. (See Section 3.3.4.)

3.3.3 Using the rec_state Field

Just as there is an nisend state field for the Data Networks, there is a corre-
sponding ni_re_ state field that you can use to determine which receive
interfaces are in use. You can get the value of this field by using the macro:

DR RECEIVE STATE (status)

The value of this field is an integer from 0 to 2, with the following meanings:

0 No partial messages in any receive queue.
1 Reserved.
2 Partial message in either or both of the LDR or RDR receive queues.

As with the nisend_state field, the nirec state field exists only for the
DR interface (it is only accessible from the DR status register).

Version 7.1, March 1992

24 Programminzg the A7

Chapter 3. The Data Network 25
A.�

3.3.4 Tag Fields and Interrupts

The tag values of Data Network messages are used to distinguish different types
of messages sent through the network. You can also use them to automate the
handling of Data Network messages in your code.

You can use CMOST commands to instruct the NI to signal an interrupt when it
receives a message with a specific tag. This interrupt causes the processing node
to execute a specific routine of your program.

The CMOS_signal operator is used to set up an interrupt:

CMOS_signal(signal, userfunction, tag_mask)

The signal argument is the signal type, and must be the constant SIGMSG.

The userfunction argument is the name of a user-defined function that should
handle receiving and processing the message.

The tagmask argument is a sixteen-bit field, one bit for each possible value of
the tag. If bit n in this mask is set, then the receipt of a message with a tag of n
will cause user function to be executed. (Remember that you are limited to using
only the first four bits of this mask, corresponding to the tags 0 through 3.)

So, for example, the function call

CMOS_signal(SIGMSG , my_msg_handler , 14);

arranges the NI interrupt system so that when a Data Network message with a tag
of 1, 2, or 3 is received, the user-defined procedure my_ msghandler is called.

Note: To use this function, you must #include the file cm/cm signal .h . For
more information on COSsignal, see the UNIX manual page for the function.
(A copy is included as Appendix B of this manual.)

IMPORTANT - Check the Tag before Retrieving a Message

Whether or not you use tag-driven interrupts to receive messages, you must al-
ways check the tag field of a Data Network message before retrieving it, so that
you do not accidentally read a message intended as an interrupt. The Data Net-
work only checks the tag field of a message after the message has been delivered
to the receive queue.

Version 7.1, March 1992

Chapter 3. The Data Network 25

26 Pogrmmig te N

This means that if you're not careful, you can accidentally read a message with
an interrupt-triggering tag value before the NI has signaled the interrupt. Because
the CM-5 operating system itself sends Data Network messages with interrupt
tags, the effect of doing so is unpredictable; an error may be signaled, or your
partition may crash.

To avoid this problem, check the tag of a Data Network message before retrieving
it to make certain that it is a non-interrupting message that you have sent yourself
(that is, a message with a tag from 0 to 3 that you have not assigned as an inter-
rupt tag).

3.4 Other Things to Know:

3.4.1 Data Network Message Ordering

The values of a single Data Network message are always retrieved in order. How-
ever, because of the way messages are managed while they are being transferred
through the network, there is no guarantee that the order in which two separate
messages are sent will be the order in which they are received.

If you send multiple messages to the same destination, your code should not de-
pend on having them arrive in any particular order. If you require messages to be
received in a particular order, you must wait for each message to be received be-
fore sending the next.

3.4.2 "Receive before You Send" - A Data Network Usage Note

An important strategy to keep in mind when using the Data Network is "Receive
before you send." That is, you should structure your code so that:

* Each node attempts to read a message from the Data Network before send-
ing a new message into it.

* If a node is unable to send a message, the node attempts to read a message
to help decrease the network load.

Version 7.1, March 1992

26 Programming the NVI

Chapter 3.TheataNework

While the Data Network has a large capacity for messages from nodes, the sheer
number of nodes connected to it can simply overwhelm it if the nodes repeatedly
send messages into the network without attempting to receive them. For this rea-
son, your code should be biased towards removing messages from the network
rather than adding them.

However, your code should also provide fair opportunities for both receiving and
sending, where "fair" means that the ratio between the two actions should be
bounded both below and above, and where "opportunity" means the opportunity
to attempt sending or receiving a message, whether or not the attempt is success-
ful. Thus, the sending and receiving portions of your code should be called with
fairly equal frequency.

When you are using the LDR and RDR concurrently, you should likewise main-
tain a balance in your usage of both networks, so that neither network becomes
more heavily loaded than the other.

In short, the rule of thumb is: "Receive before you send, but receive and send
equally."

3.5 Examples

The examples shown below are code fragments intended to be run on the pro-
cessing nodes. See Chapter 7 for a discussion of large-scale program structure.

Also, since the interfaces for the DR, LDR, and RDR are virtually identical, the
examples below are written for the LDR only. Appropriate functions for the other
network interfaces can be obtained by appropriate substitution of names.

Version 7.1, March 1992

Chapter 3. The Data Network 27

28 Progra:ming the NI

Sending and Receiving a Message

Here is a pair of functions that send and receive messages via the LDR interface.
The message is assumed to be composed of length words of data, and is sent with
the specified tag value to the node with the given dest_address.

int LDR_send (dest_address, message, length, tag)

unsigned dest_address, tag;

int *message;

int length;

{ int i;

CMNA _ldrsendfirst(tag, length, dest_address);

while (length--) CMNA_ldr_send_word(*message++);

return (SEND_OK(CMNA_ldr_status ());

}

/* Highest tag NOT currently assigned as interrupt */

int tag_limit=O;

int LDR receive (message, length)

int *message;

int length;

{
int i, tag = 999;

/* Skip messages currently assigned as interrupts */

while (tag>tag_limit) {

if (RECEIVEOK(CMNA _ldrstatus()))

tag = RECEIVE_TAG(CMNA_ldr_status());

}
while (length--)

*message++ = CMNA_ldr_receive word();

return (tag);

For example, the following code fragment causes each node to send a message
to the node with the next-higher node address. (The node with the highest address
sends a message to node 0.)

int next node = (CMNA self address + 1)

% CMNA_partition_size;

int i, message[MAX_ROUTER_MSG_WORDS];

for (i=0, i<MAXROUTERMSG_WORDS, i++) message[i]=i;

LDR_send(nextnode, message, MAX_ROUTER_MSG_WORDS, 0);

LDR receive(message, MAX_ROUTER MSG WORDS);

Version 7.1, March 1992

Programming the NI28

..:.:.::::::::Che:at :3:. :h:e ::D:a N::o:r:::':'. :2:9: :

Sending and Receiving Long Messages

Of course, the above functions are limited by the size restriction on Data Network
messages. If you have a lot of data to send, you'll probably want to use a function
that can send a message of any word length, breaking it up into chunks as appro-
priate. Here's such a function, which handles both sending and receiving the
message in a single function call:

/* Send/Receive function with no length restriction */

LDR_send_receive_msg(dest_address, message, length,

tag, dest)

unsigned dest_address, tag;

int *message, *dest;

int length;

int packet_size=MAX_ROUTER_MSG_WORDS-1;

int sendsize, receivesize;

int offset, sourceoffset=O, destoffset;

int words_tosend=length, wordsreceived=0;

int count, rec_tag, status;

while ((words_received<length) (words_to_send)) {

/* First try to receive a packet */

status=CMNAldr status();

if (words_received<length &&

RECEIVEOK(status) &&

RECEIVE_TAG(status) <= tag_limit)

destoffset = CMNA ldrreceiveword();

receivesize=

RECEIVE_LENGTHLEFT(CMNAldrstatus());

for (count=O; count<receive size; count++)

dest[dest_offset++]=CMNA_ldr_receive word();

wordsreceived += receive size;

Version 7.1, March 1992

Chapter 3. The Data Network 29

3> -. .. 0... .*: r*S. . : ... :::::;'Pmn the N.: ;.. .-

/* Now try sending a packet */

if (words_to_send) {

sendsize = ((words_tosend < packetsize) ?

words_to_send : packet_size);

do {

CMNAldr_send first(tag, send size+l,

destaddress);

/* Send offset of msg data being sent */

CMNAldr-send-word(source-offset);

offset=source offset;

for (count=O; count<send size; count++)

CMNA_ldr_send_word(message[offset++]);

} while (!SEND_OK(CMNA_ldr_status ());

sourceoffset=offset;

wordstosend -= sendsize;

} /* if */

} /* while */

Here's an example of how to call this function:

#define LONGFACTOR 5

int mirror node = (CMNA_partition_size-1) -

CMNAselfaddress;

int i, length = MAX_ROUTER_MSG_WORDS*LONG_FACTOR;

int send[MAX_ROUTER_MSG_WORDS*LONG_FACTOR];

int receive[MAX_ROUTER_MSG_WORDS*LONG_FACTOR];

for (i=O, i<length, i++) long_message[i]=i;

LDR-send-receive_msg(mirror_node, send, length, 0, re-

ceive);

Version 7.1, March 1992

30 Programming the NI

tGr. D

Interrupt-Driven Message Retrieval

Using interrupt-driven message retrieval simply requires that you define a han-
dler to be called when an interrupting message arrives. The handler should take
no arguments, and its returned value is ignored.

/* Message-receiving handler for interrupt-driven LDR
test */

#include <cm/cm_signal.h>

int interrupt_done = 0;

int interrupt_expect_length;

int interrupt_receive MAX_BROADCAST_MSG_WORDS];

void LDR receive handler ()

int temp=tag_limit;

tag_limit=3;

LDR_receive(interrupt_receive,

interrupt_expect_length);

tag_limit=temp;

interrupt_done=l;

And that you use CMOSsignal to inform the NI that it should signal an interrupt

from some or all of the possible tag values. For example:

int i, nextnode, message_length=MAX ROUTERMSGWORDS;

int message[MAX_ROUTER_MSG_WORDS];

for (i=0, i<message_length, i++) message[i]=i;

next_node = (CMNA_self_address+l)%CMNApartition_size;

/* signal interrupts for non-zero tag values */

CMOS_signal(SIGMSG , LDR_receive_handler , 14);

/* Send message with an interrupt tag (3) */

interrupt_done = 0;

interrupt_expect_length = message_length;

LDR_send(next_node, message, message_length, 3);

/* Wait for handler to signal interrupt finished */

while (interrupt_done==0) {};

printf("Received message: ");

for (i=0, i<message_length, i++)

printf("%d ", message[il);

Version 7.1, March 1992

Chapter 3. Yhte Data Network 31

32 Prog8rammin the N

Sending via LDR and RDR Simultaneously

One advantage to having the two sub-networks in the Data Network is that you
can send messages simultaneously through the LDR and RDR. For example,
here's a pair of functions that send a single message via both networks, compar-
ing the received results to make sure that the message was received properly:

/* Send/Receive functions using LDR and RDR in tandem
*/
void LDR RDR send (dest address, messaae, lenath, taa)

unsigned destaddress, tag;

int *message, length;

int i;
CMNA ldr_send_first(tag, length, dest_address);

CMNArdrsendfirst(tag, length, dest address);

for (i=0; i<length; i++) {

CMNA_ldr_send_word(message[il);

CMNA_rdr_send_word(message[i]);

}

int LDRRDRreceive (message, length)

int *message, length;

int i, ldr_value, rdrvalue, length_received ok=O;

while (!RECEIVE OK(CMNA _ldr_status()) II

!RECEIVEOK(CMNArdrstatus())) {}

for (i=O; i<length; i++) {

ldr value=CMNA _ldrreceive word();

rdr value=CMNA rdr receive word();

if (ldr_value==rdr value) {

message[i] =ldrvalue;

length_received_ok++;

}
return(lengthreceived_ok);

}

Version 7.1, March 1992

32 Programming the N1

_ ,,

Chapter 4

The Broadcast Network

The broadcast network is one of the components of the Control Network, and is
used to broadcast a value from a single source node to all nodes in the same parti-
tion.

4.1 Sending a Message

A broadcast message consists of from 1 to MAX_BROADCAST MGWORDS
(currently 5) words of data.

The only auxiliary information associated with a broadcast message is its length.
However, the length of a message is only meaningful for the purpose of sending
the message. A broadcast message consisting of more than one word of data may
be split in transit into two or more smaller messages. Also, as broadcast messages
are received by the NI, they are appended together in the receive queue so that
it always appears as if there is one "message" waiting to be read.

Thus, the original length of a broadcast message has no meaning for the nodes
receiving it. (Note, however, that the order of the words sent in a broadcast mes-
sage is preserved, regardless of how those words are recombined into new
messages.)

Important: Each node has a system flag that controls whether broadcast sending
is permitted. In the current implementation, this flag is tumrned off by default. To
turn on this flag, you must call the following macro prior to any broadcast net-
work operations:

CMNA_participate_in(NI_BC_SE ENABLE);

Version 7.1, March 1992 33

34 Programming the NI

4.1.1 Message-Sending Macros

The sending interface used for the broadcast network is the same as the generic
interface in Chapter 2. The following queue registers are used to send messages:

ni bc send first Used for first value of a message.
ni bcesend Used for the rest of the message.

and there are corresponding send first and send macros:

CMNA_bc_send_first (length, value)
CMNA_bcsendfirstdouble (length, value)

CMNA bc send word (value)
CMNA bc send float(value)
CMNA bc send double (value)

For the send first macros, the length argument is the length of the message
in words, and value is the first value of the message. For the send macros, value
is the second and succeeding values of the message.

Important: To avoid contention for network resources, at most one NI in any
partition should broadcast at any time. If two or more NI's attempt to broadcast
simultaneously, the effect is unpredictable. An error may be signaled and/or
transmitted data may be lost.

Also, because of way the broadcast and combine networks interact, if a node is
abstaining from a combine network operation, that node should not execute a
broadcast operation until the combine operation is completed. (For more infor-
mation, see Section 8.2.6.)

4.1.2 Status Register Fields

The following broadcast status register fields are used for message sending:

ni_bc_status Status register, contains the following fields:
nibc_send_ok Flag, the status of message being sent.
nibcsend space Field, the space left in send queue.
ni bc_send_empty Flag, indicates that the send queue is empty.

Version 7.1, March 1992

34 Programming the NI

Cha4 -T B s No

The macro used to get the value of the broadcast status register is:

int value = CMNAbc status()

You can obtain the values of the send_ok and send_empty flags and the

sendspace field by using the generic field extractors described in Chapter 2
(Section 2.2.4).

4.2 Receiving a Message

The message-receiving interface of the broadcast network is as described in
Chapter 2. The following register is used for receiving broadcast messages:

nibc_rec Queue register from which values are read.

4.2.1 Message-Receiving Macros

To receive a message from the broadcast network, use the network-specific read-
ing operations described in Section 2.3:

value = CMNA bc_ receive word();
value = CMNA bc receive float();
value = CMNA bc receive double();

4.2.2 Status Register Fields

The following broadcast network status register fields are used in receiving mes-
sages:

nibc status Status register, contains the following fields:
ni bc rec ok Flag, indicates a message has been received.
nibcreclengthleft Field, number of words left in message.

You can obtain the values of the rec_ok flag and the rec_length_left field
by using the generic field extractors described in Chapter 2 (Section 2.3.2).

Version 7.1, March 1992

Chapter 4. he Broadcast Network 35

365~8~-> Programming the NI

4.2.3 How to Interpret the Value of the "Length Left" Field

The NI combines broadcast messages as they are received, so there is never more
than one "message" waiting to be read from the receive queue. However, broad-
cast messages are never appended to a message that is in the process of being
retrieved, so you needn't worry that a message will "grow" unexpectedly. Once
you have retrieved the first value of a received message, it is safe to assume that
reading a number of words equal to ni_bc_rec_length_left will retrieve the
rest of that message. (Remember, however, that this method is not guaranteed to
read all of a message that was divided in transit.)

4.3 Abstaining from the Network

The broadcast network has an abstain flag that you can use to cause the NI to
ignore incoming broadcast messages. The following registers and flags are used:

ni_bc_control Status register, contains rec_abstain field.
ni bc_rec_abstain Flag, broadcast network abstain flag.

Setting the abstain flag, nibcree abstain, to 1 causes the NI to discard any
arriving messages. (The value of ni bc_rec_ ok will always be 0, and the re-
ceive queue will always be empty.) Setting the flag back to 0 allows the NI to
receive messages again.

You can use the macros described in Section 2.4 to read and write the abstain
flag. (The abstain register address constant for the broadcast network is be con-
trol_reg.)

value = CMNA read_abstain_flag(bc_control_reg);

CMNA write abstainflag (bc_control_reg, value);

Version 7.1, March 1992

36 Programming the NI

C t4 e o a e r

4.4 Examples

The examples shown here are fragments of code intended to be run on the pro-
cessing nodes. See Chapter 7 for a discussion of large-scale program structure.

Sending and Receiving a Message

This function sends a message via the broadcast interface. The message is as-
sumed to be composed of length words of data starting at the location specified
by message.

int BC_send(message, length)

int *message, length;

{
int i;

CMNA bcsend first(length--, *message++);

for (i=O; i<length; i++)

CMNA bcsend_word(*message++);

return(SEND_OK(CMNA_bc_status());

This function receives a message via the broadcast interface, stores it in memory
beginning at the location specified by message, and returns the length of the mes-
sage received.

int BCreceive(message, length)

int *message, length;

int i;

for(i=0; i<length; i++) {

while(!RECEIVE_OK(CMNA bc_status())) {}

message[i] = CMNA_bc_receive word();

return(length);

For example:

int i, message(MAXBROADCAST_MSG_WORDS];
for (i=0, i<MAXBROADCASTMSGWORDS, i++)

message[i]=i;

BC send(message, MAX_BROADCAST MSG_WORDS);

BC_receive(message, MAX_BROADCAST_MSG_WORDS);

Version 7.1, March 1992

Chapter 4 he Broadcast Network 37

Chapter 5

The Combine Network
-- -- - -

The combine network is the second component of the Control Network It is used
for executing operations that combine in parallel a single value from each pro-
cessing node. The supported operations are: parallel prefix (scanning), reduction
operations, and network-done tests. (These operations are described individually
below.)

5.1 Sending a Message

A combine network message consists of from 1 to MAX COMBINEMSGWORDS

(currently 5) words of data, with the exception of network-done messages, which
are always 1 word in length.

The auxiliary information has three parts:

* The length of the message in words

X A three-bit combiner value, determining the combine operation performed

* A two-bitpattern value, selecting the order in which values are combined

The sending interface used for the combine network is the same as the generic
interface in Chapter 2. The following queue registers are used to send messages:

ni com send first

ni com send

Used for first value of a message.
Used for the rest of the message.

and there are corresponding send first and send macros, described in the
next section.

Version 7.1, March 1992 39

40 PmgramngheN

5.1.1 Message-Sending Macros

The message-sending macros for the combine network are:

CMNA com_send_first (combiner, pattern, length, value)
CMNA com_ send firstdouble (combiner, pattern, length, value)

CMNA com send word (value)

CMNA com send float(value)

CMNA com send double (value)

For the send first macros, the length argument is the length of the message
in words, and value is the first value of the message. The combiner and pattern
arguments are described in the sections below, covering each of the possible
combine operations.

For the send macros, value is the second and succeeding values of the message.

Important: Combine operations are not completed until all participating nodes
have signaled the same type of combine operation. If two nodes attempt to start
different combining operations at the same time, an error is signaled.

5.1.2 Status Register Fields

The following combine status register fields are used for message sending:

nicom_status Status register, contains the following fields:
ni_com_send_ok Flag, the status of message being sent.
nicom_send_space Field, the space left in send queue.
ni_com_send_empty Flag, indicates the send queue is empty.

The macro used to get the value of the combine status register is:

int value = CMNA comrn status()

You can obtain the values of the send ok, sendspace, and send empty

fields by using the generic field extractors described in Chapter 2 (Section 2.2.4).

Version 7.1, March 1992

40 Programming the NI

Chptr .Th Cmbn Ntwrk4

5.1.3 Pipelining Combine Operations

Combine network operations can be pipelined; after starting one combine opera-
tion, you can immediately start another without waiting for the first to complete.
The length of the pipeline is limited only by the capacity of the message queues.
However, all nodes must agree in the type of combine operation they signal.

Note: Pipelining prevents you from using double-word writes to send combine
messages - see Section 8.1.2.

5.2 Receiving a Message

The message-receiving interface of the combine network is as described in Chap-
ter 2, with the exception of the network-done operation, which is received
through the Data Network status field nirouter_done_complete (see Sec-
tion 5.5).

The following register is used for receiving combine network messages:

ni com rec Queue register from which values are read.

To receive a message from the combine network, use the network-specific read-
ing operations described in Section 2.3:

value = CMNAcom receiveword();
value = CMNAcom receivefloat();
value = CMNA com receive double();

5.2.1 Status Register Fields

The following combine status register fields are used in receiving messages:

nicom status
ni com rec ok

ni_com_rec_length

ni_com rec_length_left

Itatus register, contains the following fields:
Flag, indicates received message.
Field, total length of message received.
Field, number of words left in message.

You can obtain the values of these fields by using the generic field extractors
described in Chapter 2 (Section 2.3.2).

Version 7.1, March 1992

Chapter 5. he Combine Network 41

42 PrgmmngtheN

5.2.2 Abstaining from the Network

The combine network has two abstain flags that you can use to cause the NI to
abstain from combine network transactions:

ni_com_control Status register, contains combine abstain flags.
ni_com_abstain Flag, combine network abstain flag.
ni_reduce_rec_abstain Flag, special reduction abstain flag.

Setting the ni_com abstain flag to 1 causes the NI to discard any arriving
combine network messages, and allows any messages signaled by other nodes to
complete without the participation of the abstaining node.

In the case of combine operations that expect a value from each node, abstaining
nodes effectively supply an appropriate identity value for the operation. Howev-
er, no result value is written to an abstaining node's receive queue (except for
reduce operations, which use the other abstain flag, ni_reduce_rec abstain,
for this purpose; see Section 5.4).

You can use the abstain flag macros described in Section 2.4 to read and write the
abstain flag, using the register address constant comr_control_reg:

value = CMNA_read_abstain_flag(com_control_reg);
CMNA_write abstain_flag (com_control_reg, value);

For the ni reducerec abstain flag, there is a separate pair of macros:

value = CMNA_read_recabstain flag(com_control_reg);
CMNA_write_rec_abstain_flag(com_control_reg, value);

Note: Because of way the broadcast and combine networks interact, if a node is
abstaining from a combine network operation, that node should not execute a
broadcast operation until the combine operation is completed. (For more infor-
mation, see Section 8.2.6.)

Important: As with any other abstain flags, the nicom_abstain flag and the
i_reduce rec_ abstain flag should only be changed when there are no mes-

sages pending in the combine network.

-> -,. k,

. ,',;,...
,'\ *·~ c:'.

Version 7.1, March 1992

42 Programming the NJ

Chptr5.Te obieNewrk4

5.3 Parallel Prefix (Scanning) Messages

A scan message is from 1 to 5 words in length, representing a value to be com-
bined with the values provided by other nodes on the network. A scanning
message can be sent with one of five different combining functions and in one
of three different scanning patterns, as determined by the combiner and pattern
values specified when the message is sent.

After all participating nodes have transmitted a scanning value, the values are
combined according to the selected combiner operation and pattern. The result
is delivered as a message to all participating nodes after a brief interval. The val-
ues are combined cumulatively - that is, the result for each node is the
combination of its own transmitted value with the values of all nodes having low-
er (or higher) addresses.

The legal combiner and pattern values are specified by symbolic constants. The
combiner argument must be one of the constants

· ADD_SCAN Signed addition.

* UADD_SCAN Unsigned addition.

* ORSCAN Bitwise inclusive OR.

* XORSCAN Bitwise exclusive OR

* MAX_SCAN Signed maximum.

and the pattern argument must be one of the constants

* SCAN_FORWARD Values are combined in ascending address order.

* SCAN_BACKWARD Values are combined in descending address order.

· SCANREDUCE Reduction operation (see Section 5.4 below).

Important: If you are sending a scan message that is longer than one word, the
order in which the words of the message must be written depends on the combine
operation:

Maximum operations require the most significant word to be written first.

* Both types of addition require the least significant word to be written first.

* Inclusive and exclusive OR have no word-ordering requirement.

Version 7.1, March 1992

Chapter 5. Tlhe Combine Network 43

44Po rMMzn e

5.3.1 Scanning with Segments

You can use segmented scanning to divide a partition into segments of nodes -
regions of nodes within which forward and backward scanning is done indepen-
dently of all other nodes in the partition. The scan values obtained within each
segment do not affect the values obtained in any other segment.

Note: Reduction operations do not use segmented scanning. Reduction scans
ignore the current segment settings.

The combine network interface includes a register used to specify segments:

ni scan_start Status register, indicates start of scan segments.

The one-bit flag in the register ni_scan_start is used to indicate the starting
points of segments. Segments begin in each node where niscanstart is 1,
and extend through the nodes in order of node address - upward for
SCAN FORera operations and downward for SCAN _BACKWAD operations. If
no ni scan start flags are set in a partition, then the entire partition is treated
as one segment.

You can read and modify the value of ni scan start by using these macros:

int value = CMNA_segment_start();

CMNAsetsegmentstart(value)

Important: If you are sending a message consisting of more than one word, the
value of ni_scan start when the first value of the message is written applies
to the entire message. Altering the flag after the first value is written has no effect
on the message.

5.3.2 Addition Scan Overflow

Addition scans on large values can cause arithmetic overflow in some nodes. The
combine network status register includes a flag that you can use to detect such
an overflow:

ni_com_status Status register.
ni_com _scan_overflow Flag, set if add scan had overflow.

The value of the ni scan_overflow flag is 1 when the scan message currently
being received suffered arithmetic overflow; otherwise, it is 0.

Version 7.1, March 1992

44 Progammsinz the W

C r e i w

You can obtain the current value of this flag by using the field extraction macro:

value = COMBINE OVERFLOW(status);

Note: This flag is only meaningful when the current message being received is
an addition scan (an ADD SCAN or UADD SCAN operation).

5.4 Reduction Messages

Reduction is a special case of scanning - a reduction message is simply a scan-
ning message with with a pattern value of SCAN_REDUCE. The effect of a
reduction operation is to combine the values obtained from every node and then
to deliver that combined result as a message to all nodes. Every node receives the
same combined value.

5.4.1 Abstain Flags for Reduction Messages

In terms of node participation, reduction differs from scanning. The
ni com abstain flag allows a combine operation to proceed without the par-
ticipation of a given node, but does not prevent the abstaining node from
receiving the result of the reduction message. There is an additional abstain flag,
ni reducerec abstain, that controls whether a node receives a reduction
result. When ni reduce rec abstain is 1, all incoming reduction messages
will be discarded.

For the Curious: The reason for this distinction is that there are important cases
where it is necessary for a node to receive the result of a reduction without having
to participate in it. For example, when you want to transfer a value from the
nodes of a partition to the partition manager, you can set the combine abstain
flags so that the nodes transmit a reduction message and only the PM receives it.
(For an example of just such a situation, see Section 7.1.)

Version 7.1, March 1992

Chapter 5. Yhre Combine Network 45

*;..: .: ' :::.: :.. - .:.:.:,:.:.:.:.:.:.:.:...4 .. r...r...- the

5.5 Network-Done Messages

Network-done messages are used to synchronize the processing nodes after a
Data Network operation. A network-done message is sent by a node when it has
completed sending its Data Network messages and is waiting for the other nodes
to finish. (Of course, even after a node has sent a network-done message, it may
still receive Data Network messages.)

Important: Although network-done messages are directly related to the opera-
tion of the Data Network, they are a feature of the combine network. All
non-abstaining processors must signal a network-done message, or else the net-
work-done operation will not complete.

A network-done message is always of length 1; the actual value written as the
message is ignored. Also, there is a unique pair of combiner and pattern con-
stants that are used to signal a network-done operation:

combiner: ASSERT_ROUTER_DONE pattern: SCAN_ROUTER_DONE

Network-done messages are an exception to the usual message-reception inter-
face of the combine network. No message is delivered to the combine receive
queue as a result of a network-done operation. Instead, the Data Network flag
ni_router_done_complete is used to indicate when the network-done mes-
sage has been sent by all nodes:

nidr status Data Network status register.
ni_router_donecomplete Flag, indicates when router is empty.

When a network-done message is sent by a node, the ni_router_done_com-
plete flag of that node is set to 0. When all nodes have sent a network-done
message, and when the Data Network has no pending messages for any node, the
ni routerdone_complete flag is set to 1 for all nodes. (See Section 3.2.2
for the macro that extracts this flag.)

5.5.1 How Network-Done Works, and Why You Should Care

Each node maintains an internal register that is incremented when the node sends
a user message, and decremented when the node receives a user message. (Sys-
tem messages are not counted.) When no user messages are being transmitted
through the Data Network, the sum of this register across all nodes should be
zero.

Version 7.1, March 1992

46 Programming the N1~

Chapter -- The Combine-Network-4

Network-done messages use an add-scan operation to detect when the Data Net-
work is clear of transmitted messages. Once all non-abstaining nodes have
signaled a network-done message, the combine network does a repeated add-
scan on the message count registers of the nodes until the sum for all nodes is
zero. It then sets the ni_router done_complete flag to 1 in all nodes.

NOTE

Because of a hardware defect, Revision A NI chips don't always
execute network-done operations correctly. See Section 8.2.5.

Since network-done operations involve a combine network scan of the value of
a Data Network register, you should be careful about setting and changing the
abstain flags of the combine network when you intend to send a network-done
message.

For example, if you change the combine abstain flags of one or more nodes while
a Data Network operation is in progress, you may exclude nodes with non-zero
message count registers from combine network operations. If you then signal a
network-done operation, the excluded message count registers may prevent the
network-done addition scan from returning zero, and thus the network-done mes-
sage may never complete.

To send a network-done message safely, make sure that the combine abstain flags
of all nodes that might send or receive a message via the Data Network are
cleared before starting the Data Network operation, and make sure those abstain
flags remain cleared until after the network-done message has been completed.

Version 7.1, March 1992

Chapter S. Yhe Combine Network 47

4 Prg'mn th NI

5.6 Examples

The examples shown here are fragments of code that are intended to be run on
the processing nodes. See Chapter 7 for a discussion of large-scale program
structure.

Sending and Receiving a Combine Message

This function sends a message via the combine interface. The message is as-
sumed to be composed of length words of data starting at the location specified
by message, and is sent with the given combiner and pattern.

int COM_send(combiner, pattern, message, length)
int *message, combiner, pattern, length;

{ int i, start, step;
/* For max scans, send high-order word(s) first */
if (combiner==MAX_SCAN) {start=length-1; step=-l;}
else { start=0; step=l;

CMNA_com_send_first(combiner, pattern,
length, message[start]);

for (i=l; i<length; i++)

CMNA_com_send_word (message[(start+=step)]);
return(SENDOK(CMNAcom_status ())); }

This function receives a message, stores it in memory beginning at the location
specified by message, and returns the length of the message received. (Note that
a combiner must also be specified, so that maximum scans are retrieved in the
right order.)

int COM_receive(combiner, message)
int *message;

{ int i, length, start, step;

while(!RECEIVE_OK(CMNAcom_status()))){}
length=RECEIVELENGTH(CMNA_com_status());

/*For max scans,receive high-order word(s) first*/

if (combiner==MAX_SCAN) {start=length-1; step=-l;}
else { start=O; step=l; }
for(i=0; i<length; i++) {

message[start] = CMNA_comrnreceive word();
start+=step; }

return (length);

}

Version 7.1, March 1992

48 Programming he NI

Chptr . heCobie etor 4

Executing Scans and Reduction Scans

This function sends and receives a scan using the given message of length words,
with the specified combiner and pattern, storing the result in memory starting at
result.

int COMscan(combiner, pattern, message,

length, result)

int *message, *result, combiner, pattern, length;

{
int status=0, rec_length;

while (!status)

status=COM send(combiner,pattern,message,length);

reclength = COM_receive(combiner,result);

return(rec_length);

Here's an example of a simple scan using integer values:

int send[MAXCOMBINEMSGWORDS],

receive MAX_COMBINEMSGWORDS];

for (i=l; i<MAX COMBINE MSG WORDS; i++)

send(i]=i;

COM scan(ADD SCAN, SCANFORWARD, send,

MAXCOMBINE MSG WORDS, receive);

As a practical example, you can use a reduction scan on integer values to get the
number of non-abstaining processors in the current partition:

int send = 1, receive = 0;

COM_scan(ADD_SCAN, SCAN_REDUCE, &send, 1, &receive);

printf("Actual number of processors: %d\n",

CMNA_partition_size);

printf("Scanned number of processors: %d\n",

receive);

Version 7.1, March 1992

Chapter 5. The Combine Network 49

5PgmntN

Executing a Network-Done Operation

Here's a simple network-done synchronizing function:

void network_done_synch()

{
CMNA_com_send_first(ASSERT_ROUTERDONE,

SCAN ROUTERDONE,1,0);

while (!DR ROUTER DONE(CMNA drstatus())) {};

For example:

int message = 1;

int networkdonemsg = 0;

int next_processor = (CMNA_self_address+l)

% CMNA_partition size;

/* Send a message */

LDR_send (nextprocessor, &message, 1, 0);

/* Synchronize the nodes */

network_done_synch()

/* Retrieve the message */

LDRreceive (&message, 1);

Version 7.1, March 1992

Programming the ATI50

Chapter 6

The Global Network

The global network is the third component of the Control Network. Unlike the
broadcast and combine networks, the global network does not use the generic
interface model presented in Chapter 2.

The purpose of the global network is to act as a generic synchronization mecha-
nism for the nodes of the CM-5. The global network combines a single bit from
every participating node in a logical OR operation, and then returns the result to
each node. Thus, it is much like the network-done facility of the combine net-
work, but without the additional condition that the Data Network must be clear
before the operation can complete.

A global network message can be sent in either a synchronous or an asynchro-
nous operation, and there is a separate register interface for each of these two
methods. The synchronous interface requires that all nodes signal a message be-
fore any receive the result. The asynchronous interface permits nodes to send a
message and read the result at any time, with the global network continuously
monitoring the state of all participating nodes.

6.1 The Synchronous Global Interface

The following registers and flags form the synchronous global network interface:

ni_sync_global_send Status register, contains flag used
for sending global messages.

ni_sync_global Status register, contains the following flags:
ni_sync_global_complete Flag, indicates completion of message.
ni_sync_global_rec Flag, indicates global OR of messages.

Version 7.1,. March 1992 51

%~52 Programming th··x~~s~~.e N

6.1.1 Sending and Receiving a Message

To start a synchronous global network message, write a value (either 0 or 1) to
the the ni syncglobal send register. To do this, use the macro:

CMNA_or_global_sync_bit (value)

When you write a value to the global_send register, the nisync_glob-
al_complete flag is set to 0, indicating that a message is in progress. (Note: It
is an error to write to the ni_sync_global_send register when the
ni sync_globalcomplete flag is 0.)

When all participating nodes have signaled a message, the global network takes
the logical OR of the ni sync_global_send flag in each node, and then sets
the ni sync_globalrec flag of every participating node to the result. At the
same time, the ni sync_globalcomplete flag is set back to 1 to indicate
completion of the message. To detect when the message has completed and to
retrieve the resulting global value, use the macros

value = CMNA_global_sync_complete();

value = CMNA_global_sync_rec ();

6.1.2 Abstaining from the Synchronous Interface

The synchronous global interface includes an abstain flag that can be used to ex-
clude a node from the network's operations:

ni_sync_global_abstain Status register, contains global abstain flag.

When the ni_sync_global_abstain flag is set to 1, synchronous global mes-
sages will complete without the node (as if the node has set its
ni sync_global_send flag to 0). You can use the abstain flag operations de-
scribed in Chapter 2 (Section 2.4) to read and write the value of the
ni_sync_global_abstain register. (The address constant for this register is
sync_global abstain reg.) For example:

value=CMNA_read_abstain_flag(sync_global_abstain_reg);
CMNA_write_abstain_flag (sync_global_abstain_reg, value);

Note: The abstain flag can only be changed when there is no global message
pending (that is, an error is signaled if the abstain flag is modified when the
ni_sync_global_complete flag is 0). Also, an error is signaled if the
nisync_globalsend register is written while the abstain flag is 1.

Version 7.1, March 1992

52 Programming the NI

Chaptr 6

6.2 The Asynchronous Global Interface

The following register and flags form the asynchronous global network interface:

ni_global Status register, contains the following flags:
ni_global_send Flag, used to "send" asynchronous global message.
ni_global_rec Flag, always set to logical OR of send flags.

The asynchronous global interface operates continuously - there is no such
thing as "sending" or "receiving" a message via this interface. The ni_glob-
al_rec flag in each node is continuously updated to reflect the "current" logical
OR of the ni _global_send flag in all nodes. When any node writes a new val-
ue into its ni_global_send flag, the change is propagated to the
niglobal_rec flag of all nodes after a brief interval.

Important: Because this is an asynchronous mechanism, the ni_global_rec
flag may not always reflect the present state of the ni_global_send flags in all
the nodes. There is always a delay between the instant any node changes its
niglobal_send flag and the instant that all nodes receive the result of the
change. You should not write code that depends on this delay having any exact
length, but you can assume that the delay will be no longer than the time taken
to transmit a synchronous message.

To set the value of the ni_global_send flag, use the macro

CMNA_or_global_async_bit (value);

and to retrieve the value of the niglobalrec flag, use the macro

value = CMNA_global_async_read ();

Version 7.1, March 1992

Chapter 6. Thte Global Network 53

54 Pogrmmig te N

6.3 Examples

The examples shown here are fragments of code intended to be run on the pro-
cessing nodes. See Chapter 7 for a discussion of large-scale program structure.

Using the Synchronous Global Network

Here's a function that executes a simple barrier synchronization using the global
network.

int global_sync_value(value)

unsigned int value;

CMNA_or_global_sync_bit(value);

while (!CMNA_global_sync_complete()) {};

return(CMNA_global_sync_read());

All non-abstaining nodes must execute this function for the global message to be
completed. If you don't need to send or receive a value, you can rewrite this as:

int global_sync()

{
CMNA_or_global_sync_bit (1);
while (!CMNA_global_sync_complete()) {};

(void) CMNA_global_sync_read();

Using the Asynchronous Global Network

The following function sends a value using the asynchronous global interface,
and then immediately reads and returns the current value from the receive regis-
ter.

int CMNA_global_async(value)

unsigned int value;

CMNA_or_global_async_bit(value);

return (CMNA_global_async_read());

}

Version 7.1, March 1992

54 Programming the NI

Chapter 7

Writing NI Programs

In this chapter we'll start applying some of the tools presented in the preceding
chapters. First, we'll cover important small-scale programming issues, such as
exchanging data between the nodes in a partition and the partition manager. Next,
we'll look at a short program that makes use of every network interface of the NI.

7.1 Transferring Data between Nodes and the PM

As described in Section 3.1, each node in a partition has a unique address based
on its location in the partition. However, the PM is not part of this addressing
scheme. The PM is always located outside of the address space of the partition
that it manages:

Figure 7. The partition manager stands apart from the partition it manages.

This means that sending messages to and from the partition manager involves
some careful coordination between the PM and the nodes.

Version 7.1, March 1992

Nodes [
I Addresses 0 1 2 3 4 n Partition Manager I

I I~~~~~~~~~~~~~~~~~~~~~~~~~

I:i

55

56 Programming the NI_____ ,

7.1.1 Sending Messages from the PM to Nodes

To send a message from the PM to a node, the PM does two broadcast operations:
one to send the address of the node that should "receive" the message, and one
to transmit the message itself.

For example:

void PM_send_to_NODE(nodeaddress, value)

int node address, value;

CMNAbcsendfirst(1, nodeaddress);

CMNA bc send first(1, value);

Each of the nodes should perform two broadcast network reads, one to determine
whether the address of the message matches the node's own address, and one to
either receive and store the message or to ignore it, based on the supplied node
address:

int NODE_get_from_PM(dest)

int *dest;

{
int address, value;

while (!RECEIVE_OK(CMNA bcstatus())))};

address=CMNA bc receive word();

while (!RECEIVEOK(CMNA bcstatus())) {};

value=CMNA bcreceive word();

if (address == CMNA self address) *dest=value;

Notice that the node waits until the rec_ok flag is set each time it tries to receive
a value from the broadcast network. This is important - while these routines are
written so that the PM's two broadcast values should arrive in the node's receive
queue nearly simultaneously, it's still necessary to check the rec ok flag before
each broadcast read, because the two values are still separate messages.

Also, notice that in this example only one node "accepts" the value sent from the
PM, but there's no reason why you can't have more than one node "accept" the
value - you can use any test you like to decide whether the nodes keep or dis-
card the values they receive.

Version 7.1, March 1992

56 Programming the NI

Chptr7.WrtngN Po rms5

7.1.2 Sending Messages from Nodes to the PM

Sending a message from a node to the PM is almost as straightforward, but in-
volves two networks this time, the broadcast network and the combine network.

First, the PM sets its ni_comabstain flag to 1 and its ni_reduce recab-
stain flag to 0, so that it can receive a combine message without having to send
a value. (Note: We'll handle this step separately in Section 7.2, below.)

Next, the PM broadcasts a message containing the address of a processing node,
as in the PM_send_to_ NODE example above. The nodes respond by signaling
a combine network message (a UADD SCAN reduction), in which only the node
with the address specified by the PM transmits a value. (The other nodes supply
an identity value of 0 for the reduction.) The PM then receives this message to
get the requested value.

Here's the function that handles the PM side of this transaction:

int PM_get_from_NODE(node_address)

int nodeaddress;

CMNA_bc_send_first(l, nodeaddress);

while (!RECEIVE_OK(CMNA_ com_status())) {};

return(CMNA com receive word());

And here's the corresponding node function:

void NODE send to PM(value)

int value;

int address;

while (!RECEIVE OK(CMNA bcstatus())) {};

address = CMNA bc receive word();

if (address != CMNA selfaddress) value = 0;

CMNAcomrnsendfirst(UADDSCAN,SCANREDUCE,1,value);
while (!RECEIVEOK(CMNA comrnstatus())) {};

(void) CMNA corn receive word();

Notice that immediately after the nodes send a combine message, they perform
a combine network read to discard the resulting value. You might think it would
be a good idea to temporarily toggle the combine abstain flags for the nodes, so
that they will simply ignore the result. However, this is not such a good strategy.
(Why not? See Section 7.2.)

Version 7.1, March 1992

Chapter 7. riting ATPrograms 57

58 roramin th N

7.1.3 Signaling the PM

Because the above PM/node communication functions use both the broadcast and
combine networks, we'll want a function that forces the PM to wait until the
nodes have finished their computations before the PM broadcasts a request for the
results. A single function will suffice for both the PM and the nodes:

void PMNODE_synch()

{
CMNA_or_global_sync_bit(l);
while (!CMNA_global_sync_complete ()) };

(void) CMNA_global_sync_read();

This function uses the global network to create a simple barrier synchronization.

7.1.4 For the Curious: Using the Data Network

You can also use the Data Network to send messages between the partition man-
ager and the nodes. However, owing to the distinction between addressing on the
nodes and on the partition manager, it's not as clear-cut an operation as using the
broadcast and combine methods described above.

To send a message from the partition manager to a specific node via the Data
Network, you can use the methods presented in Chapter 3, using the node's ad-
dress as the destination for the message.

To send a message from a node to the partition manager, however, you must
make a system function call:

int *source, length, tag

CMNA_network_send_packet_to_scalar(source, length, tag)

where the network abbreviation is dr, dr, or rdr, depending on the network,
and the other arguments are as noted in Chapter 3. The partition manager can
then receive this message as usual. There is a catch, however - this system call
is currently implemented as a trap instruction, which in practical terms means it
is much less efficient than the combine network method shown in Section 7.1.2.

Sending messages to and from the PM via the Data Network is primarily useful
in cases where you want to send a message to a specific node without requiring
all the other nodes to stop and do a network operation at the same time.

Version 7.1, March 1992

Programming the NI58

7 Wi r m

7.2 Setting the Abstain Flags

Both the PM and the nodes will need to modify their abstain flags in order to use
the above functions. Since they will also need to restore the previous values of
these flags afterwards, it makes sense to use a single pair of functions to handle
saving and restoring the flags, rather than individually toggling flags within a
program.

Also, while changing abstain flags in the middle of a program does work, it's
error-prone because it requires that you ensure the corresponding network(s) are
empty before changing the abstain flag settings. It's much more straightforward
to simply set the abstain flags appropriately at the beginning of your program,
and then leave them alone as much as possible.

With these factors in mind, here are a pair of functions that handle saving and
restoring the abstain flags, giving them whatever intermediate settings you select.

First, a routine that saves the current values of the abstain flags and then sets them
to new values.

int bc_abstain_flag,

com_abstainflag,

com_rec_abstain_flag,

sync_global_abstain flag;

void save_and_set_abstain_flags

(new_bc, new_com, new_com_rec, new_sync_global)

int new_bc, new_com, new_com_rec, new_sync_global;

bc_abstain_flag =

CMNA_read_abstain_flag(bc_control_reg);

com_abstain_flag =

CMNA_read_abstain_flag(com_control_reg);

com_rec_abstain_flag =

CMNA_read_rec_abstain_flag(com_control_reg);

sync_global_abstain flag =

CMNA_read_abstain_flag(sync_global_abstain_reg);

CMNA_write_abstain_flag(bc_control_reg, new_bc);
CMNA_write_abstain_flag(com_control_reg, new_com);

CMNA_write_rec_abstain_flag(com_control_reg,

new com rec);
CMNA_write_abstain_flag(sync_global_abstain_reg,

new_com);

}

Version 7.1, March 1992

Chapter 7. Wting 2VIPrograms 59

604 Program-·m NI-.

Next, a function that restores the old values:

void restore_abstain_flags()

{
CMNA_write_abstain_flag(bc_control_reg,

bc_abstain_flag);
CMNA_write_abstain_flag(com_control_reg,

com_abstain_flag);

CMNA_write_rec_abstain_flag(com_control_reg,

comrn_rec_abstain_flag);

CMNA_write_abstain_flag(sync_global_abstain_reg,

sync_global_abstain_flag);

One caveat about these functions: they assume that none of the Control sub-net-
works are in use when you call them. This should be the case if you call them at
the beginning and end of your program, as they are intended to be used. If you
need to use functions like these within the body of a program, you should precede
and follow them with code (function calls, etc.) that synchronizes the nodes, thus
ensuring that none of the affected networks are in use.

For example, you can use the global network to synchronize the nodes while you
change the abstain flags for the other networks, and then use the network-done
operation of the combine network to synchronize while you change the abstain
flags for the global network. (You can probably now see why it's easier just to
set these flags once and then ignore them!)

7.3 Broadcast Enabling

Along the setting the abstain flags, there's one other important operation that
needs to be included in any NI program. As noted in Section 4.1.1, you need to
call the macro

CMNA_participate_in(NI BC SEND_ENABLE);

to enable broadcast sending - even ifyou clear the broadcast abstain flag. The
best point in your program to do this is the same place you set the abstain flags.

Version 7.1, March 1992

60 Programming the NI

Chapr 7oa

7.4 NI Program Structure

Now, with these tools in hand we can turn to the task of designing an NI program.

An NI program consists of three files:

* Code to be run on the partition manager

* Code to be run on the nodes (one program executed by all nodes)

* An interface file defining the node routines that are callable from the PM

The sections below describe each of these parts in detail, and show you how to
bring them together into a working program.

7.4.1 The cmna.h Header File

Important: Both the partition manager code file and the node code file must
#include the header file cmna. h., as follows:

#include <cm/cmna. h>

This header file contains #include directives that load the other files needed to
define the NI programming tools described in this manual.

7.4.2 Partition Manager Code

Code that runs on the PM may contain anything ordinarily included in a program
running on a Sun computer. This includes printf calls, system calls, I/O calls,
and calls to other specialized libraries. The simplest PM program might look
something like this:

#include <cm/cmna.h>
void main() {

/* start node program running */
node_program();

This program does nothing more than call the corresponding node program de-
fined below. Typically, however, the PM code will include operations that send
data to the nodes and retrieve the results of the node computations.

Version 7.1, March 1992

61Chapter 7. Wtriting ATPrograms

62 Pn t

7.4.3 Node Code

Code written for execution on the nodes consists of one or more subroutines that
perform local computations and make NI calls to send messages through the net-
works. Node programs can also include simple I/O calls to display intermediate
results.

In particular, the output of printf calls from all nodes is collected and saved in
a file (typically named "CMrSDprintf. pn.pid"') that you can examine during
and/or after execution of your program. However, the handling of printf calls
from the nodes slows down program execution considerably, so this method of
output is best used only for debugging your program.

Note: As of this release, many UNIX system calls are not supported on the nodes.
If node programs invoke these unsupported calls, segmentation violations may
be signaled. You should use node subroutines primarily for computations and NI
operations, and use the PM code for system calls and external I/O.

The Node's "Main" Routine

The first subroutine in the node file must be the one initially called by the PM.
This routine serves much the same function as the "main" routine in standard C
programming - it is the trigger that starts everything else running.

While you can give a node subroutine any name that you wish, if it is to be called
from the PM, then you must add the prefix CMPE_ to the subroutine name when
defining it and when calling it from another node subroutine. This prefix is used
by the compiler to determine which subroutines will be called from the PM. You
do not have to use the CKPE prefix anywhere outside of the node subroutine file.

The simplest node program, corresponding to the PM program given above, is:

#include <cm/cmna.h>

void CMPE_node_program() {

/* Node program, does nothing, just an entry point */

}

As you can see, this is less than the bare bones of a subroutine - it does nothing
at all. We'll see an example of a complete node program below.

Version 7.1, March 1992

62 Programming the NI

Cp 7.

7.4.4 Interface Code

The "interface code" file is nothing more than a file of function prototypes, as
might appear in a header file. It is used in the compilation process to produce
special declaration code that allows the nodes to respond correctly to subroutine
calls from the PM.

The interface code file for the skeletal program given above has just one line:

void nodeprogram ();

Important: Before you compile it, the interface code file must be preprocessed
by the utility program sp-pe-stubs.This utility program translates your inter-
face prototypes into complete subroutine calls that can be compiled with the PM
and node code files to produce an executable NI program.

This is the reason why node functions callable from the PM require the CMPEz_
prefix - the sp-pe-stubs utility adds this prefix to the name of each function
so that there's no collision with the names of functions that you have defined.

7.5 A Sample Program

As an example, here's a simple NI program that uses each of the CM-5 networks.
First, the partition manager source file:

Filename: NI_ test.c

/* Sample NI program - PM program */

#include <cm/cmna.h>

#include "utils.h"

void main () {

int input, result, high_node;

printf("\nSimple NI test program, by W.R.Swanson,\n");

printf("Thinking Machines Corporation--1/31/92.\n\n");

/* Enable broadcast sending */

CMNAparticipate_in(NI_BC_SENDENABLE);

Version 7.1, March 1992

Chapter 7. Wfing N Programs 63

64 Prgraming he N

/*Abstain from broadcast reception, combine sending */

save_andset_abstainflags(1,1,0,0);

/* Start node programs running */

nodemain();

/* Get value from the user, send it to the nodes. */

printf("This CM-5 partition has %d nodes.\n",

CMNA_partition_size);

printf("Please type an integer to send: ");

scanf("%d", &input);

PMsendto_NODE(0, input);

printf("Sent value %d to node 0...\n",input);

/* Wait for the nodes to finish juggling numbers */

PM_NODE_synch();

/* Get value from high-address node */

/* (size - 2, because scan result starts with 0) */

high_node = CMNA_partition_size-2;

result = PM_get_from_NODE(high_node);

printf("Got value %d (should be %d) from node %d.\n",

result, input, high_node);

result = PM_get_from_NODE(0);

printf ("Got value %d (should be %d) from node 0.\n",

result, (input*(high_node+1)));

restore_abstain_flags ();

Next, the corresponding code for the processing nodes:

Filename: NItest.node.c

/* Sample NI program - node program */

#include <cm/cmna.h>

#include "utils.h"

void CMPEnode main () {

int value=0, scan_value, flipped_value;

int mirror node addr;

CMNA_participate_in(NI_BC_SENDEDNABLE);

save_and_set_abstain_flags(0,0,0,0);

Version 7.1, March 1992

64 Programming the A7

Chpe 7WrtnNIPogas6

/* Node 0 gets the value sent by the PM... */

NODE_get_from_PM(&value);

/* and broadcasts it to all nodes */

if (CMNAselfaddress==0) CMNA bcsend first(1,value);
while (!RECEIVE OK(CMNA_bc_status())) {};

value = CMNA bc receive word();

/* Do an addition scan to put a different value

in each node */

CMNA_com_send_first(UADD_SCAN,SCAN_FORWARD,l,value);

while (!RECEIVEOK(CMNA_com_status())) {};

scanvalue = CMNA comrnreceiveword();

/* Use LDR to "flip" order of values in nodes */

mirrornodeaddr =

(CMNA_partition_size-1) - CMNA_self_address;

CMNA_ldr_sendfirst(0, 1, mirror_nodeaddr);

CMNA _ldr send word(scan value);

while (!RECEIVEOK(CMNA _ldrstatus())))};

flipped value = CMNA_ldr_receive_word();

/* Signal to PM that answer is ready */

PM_NODE_synch();

/* Send value from high-order node back to PM */

NODE_send_to_PM(flipped_value);
/* Send value from node 0 back to PM */

NODE_send_to_PM(flipped value);

restore_abstain_flags();

}

And the interface code file:

Filename: NI_test.proto

/* Sample NI program - interface code */

node main();

Version 7.1, March 1992

Chapter 7. Wing ATIProgams 65

66Prgamin heN

Finally, both the PM and node programs include a utilities file, which includes
such tools as the abstain-flag functions and the PM/node communications
functions:

Filename: utils.h

/* Utility code */
int bc_abstain_flag, com_abstain_flag,

com rec_abstain_flag, sync_global_abstain_flag;

void save_and_set_abstainflags (new_bc, new_com,
new com_rec,

new_sync_global)
int new_bc, new_com, new_com_rec, new_sync_global;

bc_abstain_flag =
CMNA_read_abstain_flag(bc_control_reg);

comrn_abstain_flag =
CMNA_read_abstain_flag(com_control_reg);
com_rec_abstain_flag =
CMNA_read_rec_abstain_flag(com_control_reg);
sync_global_abstain_flag =
CMNA_read abstain_flag(sync_global_abstainreg);

CMNA_write_abstain_flag(bc_control_reg, new_bc);
CMNA_write_abstain_flag(com_control_reg, new_com);
CMNA_write_rec_abstain_flag(com_control_reg,

newcom_rec);
CMNA_write_abstain_flag(sync_global_abstain_reg,

new_sync_global);

void restore_abstain flags()

{
CMNA_write_abstain_flag(bc_control reg,

bc_abstain_flag);
CMNA_write_abstain_flag(com_control_reg,

com_abstain_flag);
CMNA_write_rec_abstain_flag(com_control_reg,

com_ rec_abstain_flag);
CMNA_write_abstain_flag(syncglobal_abstain_reg,

sync_globalabstain_flag);
}

Version 7.1, March 1992

66 Programming the NI

Chapter 7. Writing NI Programs 67

void PM sendtoNODE(nodeaddress, value)

int nodeaddress, value;

CMNAbc sendfirst(1, node_address);

CMNA bc send first(1, value);

int NODE_get from PM(dest)

int *dest;

{
int address, value;

while (!RECEIVE_OK(CMNA_bc_status())) {};

address=CMNA bc_ receive word();

while (!RECEIVE OK(CMNA bc status())) {};

value=CMNA bc receive word();

if (address == CMNA self address) *dest=value;

int PM_get_from_NODE(node_address)

int node address;

CMNAbcsend_first(1, node_address);

while (!RECEIVE OK(CMNA_comstatus())) {};

return(CMNAcomrn receiveword()); }

void NODEsendto PM(value)

int value;

{
int address;

while (!RECEIVEOK(CMNA_bcstatus())) {};

address = CMNA bcreceive word();

if (address != CMNA self address) value = 0;

CMNA_com sendfirst(UADDSCAN,SCANREDUCE,

1,value);
while (!RECEIVE_OK(CMNAcom_status())) {};

(void) CMNA corn receive word();

void PM_NODE_synch()

{
CMNA_or_global_syncbit(1);
while(!CMNA_global_sync_complete()) {};

(void) CMNA_global_sync_read();

}

Version 7.1, March 1992

~68 Programming theNI

7.6 Compiling and Executing an NI Program

Note: This section presents a brief overview of the process of compiling and ex-
ecuting an NI program. It's very much like the procedure used in compiling and
executing a CMMD program - so much so that you should also read the CMAD
User i Guide for more information. (In particular, the CMMD User Guide in-
cludes examples of using a generic makefile to compile your code. This may be
more appropriate to your needs and inclinations than the script example shown
below.)

To compile an NI program you must:

· Preprocess the interface file by calling sp-pe-stubs.

· Compile the resulting file, as well as the PM and node routine files.

· Link the three object files together with the CM linking program cmid.

To illustrate this, here are the steps you would take in compiling the sample pro-
gram shown above.

First, preprocess the interface code file:

/usr/bin/sp-pe-stubs < NI_test.proto > NI_test.intf.c

Next, compile the three code files:

cc NI_test.c -c -g -DCM5 -DMAIN=main

-I/usr/include

cc NI_test.node.c -c -g -DCM5 -dalign -Dpe_obj
-I/usr/include

cc NI test.intf.c -c -g -DCM5 -DMAIN=main
-I/usr/include

Finally, link everything together. For this purpose, you must use the CM-specific
linking program cmld:

/usr/bin/cmld -o NI test

NItest.o NI test.intf.o

-L/usr/lib -cmna_sp -lcmrts -lm
-pe NI_test.node.o

-L/usr/lib -lcmna_pe -lcmrts_pe -lm

The result is a single executable file, NI_test, which you can run by logging
onto one of the partition managers of a CM-5 and executing the file.

Version 7.1, March 1992

68 Programming the NI

Chap 7W n

7.6.1 A Simple Compiling Script

Here's a short UNIX script that automates this process. It takes as its single argu-
ment the name of an NI program, constructs the names of the three component
files from the program name, compiles the files, and links them together as
shown above.

Note: This script assumes that the program files are all present in the current di-
rectory.

#! /usr/bin/csh -e -f
echo "Script: $0, Compiling $1 for the NI..."

set PMFILE = "$1.c"

set PMOFILE = "$1.o"

set NODEFILE = "$1.node.c"
set NODEOFILE = "$1.node.o"

set INTFFILE = "$1.proto"

set INTFCFILE = "$1.intf.c"

set INTFOFILE = "$1.intf.o"

set OUTFILE = "$1"

set NODEOUTFILE = "$1.pn"
set EXECUTABLE = "a.out"

set NODEEXECUTABLE = "a.out.pn"

echo 'Preprocessing interface code file: ' $INTFFILE

/usr/bin/sp-pe-stubs < $INTFFILE > $INTFCFILE

echo 'Compiling PM code file: ' $PMFILE

cc -c -g -DCM5 -DMAIN--main -I/usr/include $PMFILE -o

$PMOFILE

echo 'Compiling node code file: ' $NODEFILE

cc -c -g -Dpeobj -DPE_CODE -I/usr/include $NODEFILE

-o $NODEOFILE

echo 'Compiling interface code file: ' $INTFCFILE

cc -c -g -DCM5 -DMAIN=main -I/usr/include $INTFCFILE

-o $INTFOFILE

echo 'Linking it all together...'

/usr/bin/cmld -lg $PMOFILE $INTFOFILE -o $OUTFILE \

-L/usr/lib -lcmna_sp -lm \
-pe -lg $NODEOFILE -L/usr/lib -lcmna pe -lm

echo 'Done. Executable written to: ' $OUTFILE

Version 7.1. March 1992

Chapter 7. Wil'rting NN Programs 69

7 Pxa n th NI

7.6.2 Compiling and Running the Program

Note: The following assumes that you have previously logged into one of the
partition managers of a CM-5.

The output of the script for the NI_test sample program looks like this:

% nicc2 NItest

Script: nicc2, Compiling NI_test for the NI...

Preprocessing interface code file: NI_test.proto

Compiling PM code file: NI_test.c

Compiling node code file: NI_test.node.c

Compiling interface code file: NI_test.intf.c

Linking it all together...

Done. Executable written to: NItest

The script produces a single executable file NI_test, which can be executed as
follows:

50: NI test

Simple NI test program, by W.R.Swanson,
Thinking Machines Corporation -- 1/31/92.

This CM-5 partition has 32 nodes.

Please type an integer to send to the nodes: 42
Sent value 42 to node 0...

Received value 42 (should be 42) from node 30.

Received value 1302 (should be 1302) from node 0.-

7.6.3 Online Code Examples

As of Version 7.1.3 of the CM system software, there are online copies of the
sample program and script in this chapter, along with copies of the programming
examples in Appendix C.

Depending on whereyour system administrator has chosen to store the CM soft-
ware, these files may be located under the pathname

/usr/cm/src/ni-examples

or they may also be located somewhere else entirely. Check with your system
administrator for help in locating these files.

Version 7.1, March 1992

70 Programming the NI

Chapter 8

Programming and Performance Hints
g_____E _ ___

This chapter describes the ways you can make your NI programs more efficient,
and also points out a few potential programming traps that you may encounter.

Note: Some of the notes and warnings below are included in earlier chapters.
They are repeated here so that you can find them quickly.

8.1 Performance Hints

8.1.1 NI Register Operation Times

Here are some rough estimates of the times taken by a number of basic opera-
tions:

register access
cache memory
NI register access
memory access

(register variable):
(previously accessed variable):
(CMNA network_status ()):
(newly accessed variable):

The time taken to perform an NI register read/write operation is longer than the
time taken for cached memory accesses, but much shorter than the time for full
memory accesses. For efficiency's sake, you should read and write NI registers
as sparingly as possible and rely on cached values wherever possible.

For the Curious: This is why the NI status register tools are designed so that you
can read an NI status register once and then extract fields from the retrieved val-
ue. Once you have retrieved the value of the NI register and stored it in cached
memory, the access time for extracting multiple fields decreases substantially.

Version 7.1, March 1992

1 cycle
2-3 cycles
4-5 cycles
-20 cycles

71

72 Prorammin the N

8.1.2 Reading and Writing Registers with Double-Word Values

While this document focuses for the most part on reading and writing network
messages in terms of single words, you can also use double-word operations in
reading and writing network registers. This may be more efficient, depending on
your application.

Writing a double word to a register has the same effect as writing two single-
word values, but involves only one register operation. Likewise, reading a double
word from a register is the same as reading two single words. However, you can
always overdo a good thing. Attempting a double-word read or write for a mes-
sage that consists of only one word (as is the case for network-done tests) signals
an error.

Usage Note: The combine network, because of its pipelining feature, is an excep-
tion. You can't use double-word writes when using pipelined combine
operations. However, you can always use double-word reads when accessing the
combine network.

Important: To use double-word read and write operations, the values you send
must be double-word aligned in memory. To ensure that this is the case, use the
compiler switch -dalign when compiling any file that includes double-word
function calls or variable definitions. For example:

cc -c -g -DCM5 -dalign -Dpe_obj -I/usr/include

NItest.node.c

Example: LDR Send/Receive

Here's the LDR_send_ receive msg function from the Data Network chapter,
rewritten to use double-word writes:

int tag_limit = 3;

LDR_send_receive_msg(dest_address,message,length,tag,dest)

unsigned dest address, tag;

int *message, *dest, length;

int send_size, sendsize2, receivesize,receivesize2;
int offset, sourceoffset=O, destoffset;

int words_to_send=length, words_received=O;
int packet_size, count, rec_tag, status;
double *dbl;

Version 7.1, March 1992

72 Programming the N1

Chptr . mgamin ndPefomaceHits7

if (((int)message & 3) 11 ((int)dest & 3))

CMPNpanic("Message or dest not doubleword aligned");

packet_size = (MAX_ROUTERMSG_WORDS-1) & -1;

while ((words_received < length) I I (words_to_send)) {
/* First try to receive a packet */

status=CMNA ldrstatus();

if (words_received<length && RECEIVE_OK(status) &&

RECEIVETAG(status)<=tag_limit) {

destoffset = CMNA ldrreceive word();

receivesize =

RECEIVE LENGTH LEFT(CMNA ldr status());

for (count=0; count<(receivesize>>l); count++) {

dbl = (double *) (&dest[dest_offset++]);

dest_offset++;

*dbl = CMNA _ldr receivedouble();
dbl++; }

if (receive size & 1) /* If word left over */

destEdest_offset++] = CMNA_ldr receive_word();
wordsreceived += receivesize;

} /* if */

/* Now try sending a packet */

if (wordsto send) {

send_size = ((words_to_send < packet_size) ?
words_to_send : packet_size);

send size2 = send size >> 1;

do {

CMNA_ldr_send_first(tag,send_size+1,

destaddress);

CMNA_ldr_send_word(source_offset);

offset=sourceoffset;

/* Send as many doubles as possible */

for (count=O; count<sendsize2; count++){
dbl = (double *) (&message[offset++]);

offset++;

CMNAldrsenddouble(*dbl++); }

if (sendsize & 1) /* If a word is left over */
CMNA_ldr_sendword(message[offset++]);

} while (!SEND_OK(CMNA ldr_statuso));

source_offset=offset;

words to send -= send size;

} /* if */
} /* while */

Version 7.1, March 1992

Chapter 8. Programming and Peformance Hints 73

74 Programming the N

8.1.3 Use Message Discarding for Efficiency

When a message you are writing to a network send queue is discarded, it is com-
pletely discarded - effectively, it is as if you never began writing the message.
Many NI programmers take advantage of this property by writing a complete
message to a network queue, and only then checking to see whether it was dis-
carded (and if so, writing it again).

This might seem a sloppy practice, but it is actually a safe and efficient strategy.
Because messages are typically only a few words long, and because the NI com-
pletely ignores a discarded message, it's perfectly reasonable to check the
sendok flag just once, after you've written the entire message.

If your code is properly written, it should be rare for a message to be discarded,
and thus unlikely that checking the send ok flag after writing each value of the
message will be of any benefit. In addition, repeatedly checking the sendok
flag while you are writing a message can slow your code down considerably.

8.1.4 Set the Abstain Flags Once and Forget Them

In most cases, abstain flags of a network can only be changed when the network
is not in use - that is, when there are no messages pending in either the send or
receive queues, and no messages in transit in the network. While this certainly
does not prevent you from toggling the state of the abstain flags within your code,
it does make this kind of flag-toggling more prone to programming errors.

A more straightforward strategy to use is to set the values of the abstain flags
once, at the beginning of your program, leave them alone while the program runs,
and then restore their original values before your program exits. There are exam-
ples of utility functions that handle the abstain flags in this way in Section 7.2.

Version 7.1, March 1992

74 Programming the NI

Chapter .

8.2 Potential Programming Traps and Snares

Here are some potential sources of serious errors that you should keep in mind:

8.2.1 Pay Attention to Data Network Addresses

When sending a Data Network message from one node to another, the address of
the destination node must be a valid address within the current partition. If an
address higher than CMNApartition_size is supplied, the NI will signal an
error.

Also, there is currently a 20-bit limit on the length of a data network address, and
the remaining high-order bits in a 32-bit address value must be 0. If any of these
high-order bits are nonzero, the NI will signal a serious error, and in some cases
the entire partition of nodes may crash.

You should either write your code so that the high-order bits of a network address
can never be other than zero, or failing that mask out the top 12 bits of an address
before using it.

8.2.2 Check the Tag before Retrieving a Data Network Message

As described in Section 3.3.4, whether or not you use tag-driven interrupts to
receive messages, you must take care not to accidentally read a message intended
as an interrupt, because the operating system of the CM-5 itself sends Data Net-
work messages with interrupt tags.

The Data Network only checks the tag field of a message after the message has
been delivered to the receive queue. This means that if you're not careful, you
can accidentally read a message with an interrupt-triggering tag value before the
NI has signaled the interrupt. The effect of doing so is unpredictable. An error
may be signaled, or your partition may crash.

To avoid this problem, check the tag value of a Data Network message before
retrieving it to make certain that it is a non-interrupting message (that is, a mes-
sage with a tag value from 0 to 3 that you have not assigned as an interrupt tag.)

Version 7.1, March 1992

ahapter &. Programming and Performance Hints 75

76 roramin th N

8.2.3 Make Sure Double-Word Data Is Double-Word Aligned

This is also mentioned in the performance section above, but it's as well to re-em-
phasize it. When you use double-word read and write operations in your node
programs, you must compile your code with the -dalign compiler switch, so
that double-word values will be properly aligned in memory:

cc -c -g -DCM5 -dalign -Dpe_obj -I/usr/include
NItest.node. c

If the double-word values in your code are not properly aligned, the nodes will
most likely signal "illegal address" errors, and your code will not run.

8.2.4 Order Is Important in Combine Messages

As noted in Section 5.3, if you are sending a scan message that is longer than one
word, the order in which the words of the message are written depends on the
combine operation:

* Maximum operations require the most significant word to be written first.

* Both types of addition require the least significant word to be written first.

* Inclusive and exclusive OR have no word-ordering requirement.

8.2.5 Restriction on Network-Done Operations for Rev A NI Chips

Because of a hardware defect, Revision A NI chips do not always transmit net-
work-done messages correctly. As described in Section 5.5.1, an internal register
in each NI is used to keep track of the number of messages sent and received
through the Data Network, and a combine network add-scan on the value of these
registers is used to determine when the network is empty.

Rev A NI chips, however, do not correctly increment and decrement this register.
This defect has been corrected in later revisions of the chip, but to run code on
a machine that includes any Rev A chips, you must use a software workaround:
you must yourself use a program variable to keep track of the number of mes-
sages sent and received, and you must "force" the NI message-count register to
have this value during a network-done operation.

Version 7.1, March 1992

76 Programming the N1

Chper8 Pormmn adPefraneHib7

Note: This software workaround is necessary if and only if the CM-5 on which
you execute your code contains any Rev A NI chips in its processing nodes.
(Consult your applications engineer or systems manager to find out whether this
is the case.) On CM-5 systems with no Rev A NI chips, this workaround is not
needed (and is inefficient, as well).

The recommended variable to use is cOmA router msg._count (this variable
is predefined for you in the header files loaded by cmna. h). The workaround
strategy is as follows:

* Set CMA router _msgcount to zero at the beginning of the node pro-
gram (for example, at the same point that you set the abstain flags):

CMNA_router_msg_count = 0;

* Every time the node program successfully sends a message via the Data
Network (that is, writes a message to the send queue and detects that the
send ok flag is set), it should increment the count variable:

do { CMNAldr sendfirst(O, 1, dest address);
CMNA_ldr_send_word(message);
} while (!SEND OK(CMNA ldrstatus()));

CMNA_r outermsg_count++;

* Likewise, whenever the node program receives a message from the Data
Network (that is, detects that the rec_ok flag is set and reads all of the
values of the message), it should decrement the count variable:

status = CMNAldrstatus();

if (RECEIVE_OK(status) && RECEIVE_TAG(status)<4)

message = CMNA ldr receive word();

CMNA_router_msg_count--; }

* Just before the node program signals a network-done message, it should
use the system function CMOSset_drmsg_ count_ reg () to write the
current value of the count variable into the count register.

CMOS_setdr msg_count_reg(CMNA_router_msg_count);

do { CMNA com send first

(ASSERT_ROUTER_DONE,SCAN_ROUTER_DONE,

1,CMNAforce_read);

} while (!(SEND_OK(CMNA_com_status())));

Version 7.1, March 1992

Chapter 8. Programming and Perforance Hints 77

78 PrgamngteN

Important: While waiting for the network-done operation to complete,
the node program must write the current value of the count variable into
the register before examining the ni_ routerdonecomplete flag:

do {status = CMNAldrstatus();
if (RECEIVE OK(status) &&RECEIVE TAG(status)<4) {

message = CMNA_ldr_receiveword();
CMNA_router_msg_count--; }

CMOS_set_dr_msg_count_reg

(CMNA_router_msg_count);
} while (!DRROUTERDONE(CMNA_dr_status())))};

8.2.6 Broadcast and Combine Network Collisions

Because of the way the broadcast and combine networks interact, you should
take care in using the abstain flags of these two networks.

In particular, if your code causes a node (processing node or PM) to abstain from
the combine network, and if the following conditions hold:

The abstaining node is signalling a broadcast message

Simultaneously, the other nodes are signalling a combine message,

then because of timing conflicts in the Control network hardware, the two types
of messages can collide, possibly causing your partition to crash.

This situation most often occurs when you have instructed the partition manager
to abstain from the combine network (so that it can receive the results of a scan
or reduction operation, for example), yet at the same time you want the PM to
broadcast messages to the processing nodes telling them what to do. The conflict
arises when the PM needs to broadcast a message at the same time as the nodes
are signalling a scan or reduction message.

There is a software workaround to use in this situation. When the abstaining node
(the PM in this case) needs to send a broadcast message, use the function

int *msg, length;
CMNA_bc_send_msgg(msg, length);

instead of the sending methods described in Chapter 4. This function includes
internal safety checks that prevent broadcast and combine network messages
from colliding.

Version 7.1, March 1992

Programming the N178

Appendixes
_ ___~~~~~~~~~~~~~a

Version 7.1, March 1992 79

Appendix A

Programming Tools

A.1 Generic Variables and Macros

To determine the address of a node, and its place within its partition, use these variables:

int CMNAself address - Relative address of current node.
int CMNA_partition_size - Number of nodes in partition.

These are the macros used to examine
any network that has such a register:

Field Name:

the fields of the ni network_status register for

Macro used to read value of field:

ni network send ok
ninetwork_sendspace

ni_network_send empty

ninetwork rec ok
ni_network_ rec_length

ni_network_length_left

SENDOK (status_value)
SENDSPACE (status_value)

SEND EMPTY (status_value)

RECEIVE OK (status value)
RECEIVELENGTH (statusvalue)

RECEIVE_LENGTH_LEFT (status value)

For networks that have an abstain flag, there is a pair of macros that can be used to read
and write the value of the flag:

value = CMNA _read_abstain_f lag (register_address);
CMNA_write_abstain-f lag (register_address, value);

For both macros, register_address is a symbolic constant giving the address of the abstain
flag register (this is defined separately for each network that has such a register).

For the write macro, value is the new value (O or 1) to be written to the flag.

Version 7.1, March 1992 81

82 Programming the NI
� *.�.. 'C

A.2 Data Network Constants and Macros

Send and Receive Register Macros

The send first registers for the Data Networks are accessed via the macros below:

Register Name:

ni dr send first

ni ldr sendfirst

ni rdr send first

Macros used to write first value of message to register:

CMNA_dr_send_first (tag, length, value)
CMNA_dr_send_first_double (tag, length, value)
CMNAldr_send_first (tag, length, value)
CMNA_ldr_send_first_double (tag, length, value)
CMNA_rdr_send_first (tag, length, value)
CMNA_rdr_send_first_double (tag, length, value)

The length argument in each case is the total length in words of the message to be sent
(excluding the address word), and the tag argument is the message's tag value.

The send and rec registers of the Data Networks can be written to and read from by the
generic register macros in Section A. 1, and by the following special purpose macros:

Register Name:

nidrsend

nildr send

ni ldr rec

nirdr send

ni rdr rec

Macros used to access register:

CMNA_dr_send_word (word value)

CMNA_dr_send_float (floatvalue)

CMNAdrsenddouble (doublevalue)

CMNA _ldrsendword (wordvalue)
CMNA_ldr_send_float (float value)
CMNA_ldr_send double (double-value)

wordvalue = CMNAldrreceiveword();
floatvalue = CMNAldrreceive float();
doublevalue = CMNAldrreceivedouble();

CMNA rdr send word (word value)
CMNA_rdr_send_float (floaatvalue)
CMNA_rdr_send_double (doublevalue)

wordvalue = CMNA rdrreceiveword();
floatvalue = CMNArdrreceive float();
doublevalue = CMNA rdrreceive double();

Version 7.1, March 1992

82 Programmzing the NI

Appndx . roramin Tol 8

Status Register Macros

The values of the Data Network status registers can be obtained by using the macros:

int dr status = CMNA dr send status(');

int ldrstatus = CMNAldrstatus();

int rdr status = CMNA rdr status();

You can extract the fields of the status registers by applying the following macros:

Register/Field Name:

ni dr status

ni dr send ok

ni_dr_sendspace

ni send state

ni rec state

ni router_done_complete

nildr status

ni ldr send ok

ni_ldrsendspace

ni ldr rec ok

ni_ldr_rec_tag

ni_ldr_rec_length

ni_ldr_rec_length_left

ni rdrstatus

ni rdr send ok

ni rdr_sendspace

ni rdr rec ok

nirdr_rec_tag

ni_rdr_rec_length

nirdr_rec_length_left

Macros used to access fields:

SEND_OK(dr_status)

SEND_SPACE(dr_status)

DR_SEND_STATE(dr_status)

DRRECEIVESTATE(dr status)

DRROUTERDONE(dr status)

SEND OK(ldrstatus)

SEND SPACE(ldrstatus)

RECEIVE OK(ldrstatus)

RECEIVETAG(ldr_status)

RECEIVE_LENGTH(ldr_status)

RECEIVE LENGTH LEFT(ldr status)

SEND OK(rdr status)

SENDSPACE(rdrstatus)

RECEIVE OK(rdr status)

RECEIVE TAG(rdr status)

RECEIVE_LENGTH(rdr status)

RECEIVELENGTH LEFT(rdr status)

Message Length Limit

The maximum length of a Data Network message (not counting the address word attached
in sending it) is given by the constant

MAXROUTERMSGWORDS

Version 7.1, March 1992

--

Appendix A. Programming Tools 83

84 Programming the NI�.' ____

A.3 Broadcast Network Constants and Macros

Send and Receive Register Macros

The send first register for the broadcast network is accessed via the macros listed here:

Register Name: Macros used to write first value of message to register:

ni_bc_send_first CMNA_bc_send_first (length, value)

CMNA bc_send_first_double (length, value)

The send and rec registers of the broadcast network can be written to and read from by
the following special purpose macros:

Register Name: Macros used to access register:

ni bcsend CMNA_bc_send_word (wordvalue)

CMNA_bc_send_float float_value)

CMNAbc_send_double (double_value)

ni bcrec word value = CMNA bcreceive word();

float value = CMNA bc receive float();

double value = CMNA bcreceivedouble();

Status Register Macros

The value of the broadcast network status register can be obtained by using the macro:

int bc status = CMNA bc status();

You can extract the fields of the status register by applying the following macros:

Register/Field Name: Macros used to access fields:

ni be status

ni_bc send ok SEND OK(bc status)

nibc sendspace SEND_SPACE (bc_status)

ni_bc_send_empty SEND_EMPTY(bc_status)

ni_bcrec ok RECEIVE_OK(bc_status)

ni_bc_rec_length_left RECEIVE_LENGTH_LEFT (bc_status)

Version 7.1, March 1992

Programming the NI84

Apped A

Abstain Register Macros

The broadcast abstain register contains a single flag bit, which can be read and written
using the generic abstain bit operations described in Section A. 1.

Register/Field Name: Macros used to access fields:

nibc control

ni bc_ recabstain value=CMNAread abstainf lag

(bc_control_reg);

CMNA_write abstain_flag

(bc_control_reg,value);

Message Length Limit

The maximum length of a broadcast network message is given by the constant

MAXBROADCASTMSG WORDS

Version 7.1, March 1992

Appendix A. Programrming Tools 85

", Prr amming... theI. 11.1.~';:: ..

A.4 Combine Network Constants and Macros

Send and Receive Register Macros

The sendfirst register for the combine network is accessed via the macros below:

Register Name: Macros used to write first value of message to register:

ni_comsendfirst CMNAcom_send_first (combiner, pattern, length, value)
CMNAcom send first double

(combiner, pattern, length, value)

For scan operations, the combiner argument can be any one of the constants:

ADDSCAN MAXSCAN ORSCAN UADDSCAN XORSCAN

and the pattern argument can be any one of the constants:

SCANBACKWARD SCANFORWARD SCANREDUCE

For network-done operations there is a unique combiner and pattern pair:

combiner: ASSERTROUTER_DONE pattern: SCAN_ROUTER_DONE

The send and rec registers of the combine network can be written to and read from by the
generic register macros in Section A.1, and by the following special purpose macros:

Register Name: Macros used to access register:

ni_com_send CMNA_com_send_word(word_ value)

CMNA_com_send_float (float_value)

CMNAcom_send_double (double_value)
ni com rec wordvalue = CMNAcom receiveword();

float value = CMNA comrn receive float();

doublevalue = CMNAcom receivedouble();

Message Length Limit

The maximum length of a combine network message (with the exception of network-done
messages, which are always 1 word in length) is given by the constant:

MAX COMBINEMSGWORDS

Version 7.1, March 1992

86 Programming he NI

Appen A

Segment Start Register Macros

The niscanstart register is accessed by the following special purpose macros:

Register Name: Macros used to access register:

ni scan start CMNA_set_segment_start (value)

value = CMNA_segment_start();

Status Register Macros

The value of the combine network status register can be obtained by using the macro:

int corn status = CMNAcomrn status();

You can extract the fields of the status register by applying the following macros:

Register/Field Name:

nicom status

ni com send ok

ni_com_send_space

ni_com_sendempty

nicom rec ok

ni comrec length

ni_com_rec_length_left

ni com scan overflow

Macros used to access fields:

SENDOK(com status)

SENDSPACE(com_status)

SEND_EMPTY(com status)

RECEIVE_OK(com status)

RECEIVE LENGTH(com status)

RECEIVELENGTH LEFT(com status)

COMBINE OVERFLOW(com status)

Abstain Register Macros

The combine abstain register contains two single-bit flags, which can be read and written
by the macros listed below:

Register/Field Name: Macros used to access fields:

ni com control

ni com abstain value=CMNA_read_abstain_flag(com_control_reg);

CMNA_writeabstainflag(com_control_reg,value);

ni reducerec abstain

value=CMNA_read_rec_abstain_flag (com_controlreg);

CMNAwriterecabstain_flag(com_control_reg,value);

Version 7.1, March 1992

Appendix A. Programming Tools 87

88 Programmi*:'ng. ,: t.: N:I': ',>g.,n;g'. the N. d.Q

A.5 Global Network Constants and Macros

Synchronous Global Register Macros

The synchronous global registers are read and written by the following macros:

Register Name: Macros used to access register:

ni_sync_global_send CMNA_or_global_sync_bit (value)

ni_sync_global

ni_sync_global_complete value = CMNA_global_sync_complete()

ni_sync_global_rec value = CMNA_global_sync_rec()

ni_sync_global_abstain

value=CMNA_read_abstain_flag(sync_global_abstainreg);

CMNA_write_abstain_flag (sync_global_abstain_reg,value);

Asynchronous Global Register Macros

The two flags of the asynchronous global register are read and written by these macros:

Register/Flag Name: Macros used to access register.

ni_global

ni_global_send CMNA_or_global_async_bit (value)

ni_global_rec value = CMNA_global_async_read()

Version 7.1, March 1992

88 Programming the NI

Appendix B

CMOS_signal man page

CMS_signal - asynchronous event handlers on the nodes

#include <cm/cm_signal.h>
(*CMOS_signal(sig, func, mask)) ()
int sig;
void (*func) ();
int mask;

CMUS-signal allows code on the nodes to specify software handlers for certain asynchro-
nous events. It is the responsibility of the user to ensure that the signal handler does not
change the state of the node in any way that will disrupt execution of the interrupted code.

A node program can specify that the arrival of data router messages with a certain set of
tags will generate an interrupt. The code specifies the message handler and the set of tags
with a call to CMOS signal () with sig = SIGHSG, *func set to the address of the
user-written handler function, and mask set to a bit mask specifying which tags will inter-
rupt. (Bit 0 corresponds to tag 0, bit 1 corresponds to tag 1, and so forth.) Currently, tags
0 to 3 are reserved for user messages. Bits 4 and up are reserved for system messages, and
may not be used or referenced by user code.

The context of the node is saved before the user message handler is called. Thus, use of
floating-point instructions in the user message handler will cause unpredictable errors in
the interrupted code. Also, the network state of the CM is not altered before entering the
user message handler. Thus, the message(s) that produced the interrupt will still be in the
receiving FIFO when the user message handler is invoked. It is the responsiblity of the user
message handler to empty these messages.

The handler routine can be declared:

void handler()

Version 7.1, March 1992 89

G"dP90 rgamigteN

The routine is not passed any parameters relating to the received message. The user mes-
sage handler must read the NI registers to determine such details as the tag of the message
and whether the message has arrived via the left or right data network, etc.

Message interrupts are disabled while user code is in a user message handler. Thus, user
message handlers need not be reentrant. Also, if the user code anticipates a series of inter-
rupting messages, the arrival of the first message can be used to invoke the message
handler and the remaining messages can be received via polling within the handler, thus
saving the overhead of an interrupt for all but the first message.

Version 7.1, March 1992

90 Programming the NI

Appendix C

Sample NI Programs

This appendix contains a series of NI programs that test all the programming examples
shown in the chapters of this manual. For each program, only the PM and node code files
are given. The interface file for each program is identical to that given for the sample pro-
gram in Chapter 7, and these test programs #include the same utils. h file as is used
in Chapter 7.

As of Version 7.1.3 of the CM system software, there are on-line copies of the sample pro-
grams presented here. Depending on where your system administrator has stored the CM
software, these files may be located under the pathname /usr/cm/src/ni-examples.
Check with your system administrator for help in locating these files.

Note: You should view the examples presented here as a cookbook of possible coding
ideas, not a hard-and-fast rulebook on network protocol. These examples are written for
clarity, not efficiency, and your own individual application should be your guide as to how
to rearrange the code fragments presented here, and how best to trim them for speed.

C.1 Data Network Test

This program presents examples of a number of different kinds of Data Network opera-
tions, including:

* Sending and receiving messages limited by the length of the network queues.

* Sending and receiving unlimited-length messages.

* Using interrupt-driven message retrieval.

* Sending and receiving by the LDR and RDR simultaneously.

Version 7.1, March 1992 91

gQS9 rgamigteN

Filename: LDR test.c

/* LDR test program - PM program */

#include <cm/cmna.h>

#include "utils.h"

#define LONG FACTOR 5

void main () {

int input, result, high_node;

printf("\nLDR test program, by William R. Swanson,\n");

printf("Thinking Machines Corporation -- 2/3/92.\n\n");

/* Enable broadcast sending */

CMNA_participate_in(NI_BC_SENDEDENABLE);

/* Abstain from broadcast reception and combine sending */

save_andset_abstain_flags(1,1,0,0);

/* Start node programs running */

node main();

/* Get a value from the user and send it to the nodes. */

printf("This CM-5 partition has %d nodes.\n",

CMNA_partition_size);

printf("Please type an integer to send to the nodes: ");

scanf("%d", &input);

PM_send_to_NODE(0, input);

printf("Sent value %d to node 0...\n",input);

/* Wait for the nodes to finish juggling numbers */

PM_NODE_syncho);

/* Get value from high node */

high_node = CMNA_partition_size - 1;

result = PM_get_from_NODE(high_node);

printf("Short send:\n");

printf("Received value %d (should be %d) from node %d.\n",

result, input+MAX_BROADCAST_MSG_WORDS-1, high_node);

result = PM_get_from_NODE(high_node);

printf("Long send:\n");

printf("Received value %d (should be %d) from node %d.\n",

result, input+(MAX_BROADCAST_MSG_WORDS*

LONG_FACTOR)-1, high_node);

result = PM_get_from_NODE(high_node);

printf("Interrupt-driven send:\n");

printf("Received value %d (should be %d) from node %d.\n",

result, input+MAX_BROADCAST_MSG_WORDS-1, high_node);

Version 7.1, March 1992

92 Programming the NI

Appendix C. amp IPg9

result = PM_get_from_NODE(O);

printf("Dual-network send:\n");

printf("Received value %d (should be %d) from node %d.\n",

result, MAXBROADCASTMSGWORDS, 0);

restore_abstain_flags();

Filename: LDR test.node.c

/* LDR test program - node program */

#define NI ROUTER DONE P NI ROUTER DONE COMPLETE P

#include <cm/cmna.h>

#include <cm/cm_signal.h>

#include "utils.h"

#define LONG FACTOR 5

/* Send/Receive functions limited by length restriction */

int LDRsend (dest address, message, length, tag)

unsigned dest_address, tag;

int *message;

int length;

{
int i;

CMNA_ldr_send_first(tag, length, dest_address);
while (length--) CMNA_ldr_send_word(*message++);

return (SEND OK(CMNA ldrstatus()); }

int tag_limit=0;

int LDRreceive (message, length)

int *message;

int length;

int i, tag = 999;

/* Skip messages currently assigned as interrupts */

while (tag>tag_limit) {

if (RECEIVEOK(CMNAldr_status()))
tag = RECEIVE TAG(CMNAldr_status ());

}
while (length--)

*message++ = CMNA_ldr_receive_word();

return (tag);

}

Version 7.1, March 1992

Appendix C Sample NI Programs 93

94 ProgrammingtheN

/* Send/Receive function with no length restriction */

LDR_send_receivemsg(destaddress, message, length, tag, dest)

unsigned dest_address, tag;

int *message, *dest;

int length;

int packet size=MAX ROUTER_MSGWORDS-1;

int send_size, receive_size;

int offset, source_offset=0, dest_offset;

int words_to_send=length, words_received=0;

int count, rec_tag, status;

while ((words_received < length) I I (words_to_send)) {

/* First try to receive a packet */

status=CMNA ldr status();

if (words_received<length &&

RECEIVEOK(status) &&

RECEIVE_TAG(status) <= tag_limit) {

destoffset = CMNA ldrreceiveword();

receivesize = RECEIVELENGTHLEFT(CMNA _ldrstatus());

for (count=O; count<receive size; count++)

dest[destoffset++] = CMNAldrreceive word();

words received += receive size;

/* Now try sending a packet */

if (words to_send) {

send size = ((words_to_send < packet_size) ?
words_to_send : packet_size);

do {
CMNA_ldr_send_first(tag, send_size + 1, dest_address);

/* Send offset to indicate part of message being sent */

CMNAldrsendword(sourceoffset);

offset=source offset;

for (count=O; count<send size; count++)

CMNAldrsendword(message[offset++]);

) while (!SEND_OK(CMNA_ldr_status ());

source offset=offset;

words to send -= send size;

Version 7.1, March 1992

Programming the N194

Appendix C. Sample NI Programs 95

/* Message-receiving handler for interrupt-driven LDR test */
int interrupt_done=0;
int interrupt_expect_length;
int interrupt_receive[MAX_BROADCAST_MSGWORDS];

void LDR receive handler ()

int temp=tag_limit;
tag_limit=3;
LDR_receive(interrupt_receive, interrupt_expect_length);
tag_limit=temp;
interrupt_done=l;

/* Send/Receive functions using LDR and RDR in tandem */
void LDR_RDR_send (dest_address, message, length, tag)

unsigned dest_address, tag;
int *message, length;

int i;
CMNA_ldr_send_first(tag, length, dest_address);
CMNA_rdr_send_first(tag, length, dest_address);
for (i=0; i<length; i++) {

CMNAldr_send_word(message [i]);
CMNArdr send word(message(i]);

int LDR_ RDRreceive (message, length)
int *message, length;

int i, ldr value, rdr_value, length_received_ok=0;
while (!RECEIVE_OK(CMNA_ldr_status()) I I

!RECEIVE OK(CMNA rdr status())) {(
for (i=0; i<length; i++) {

ldr value=CMNA ldr receive word();
rdr value=CMNA rdr receive word();
if (ldr_value==rdr value) {
message (i]=ldr_value;
length receivedok++;

}

return(lengthreceived ok);

Version 7.1, March 1992

96 roramin th N

/* Combine "network-done" Function */

void network_done_synch()

CMNAcom sendfirst(ASSERTROUTERDONE,SCANROUTERDONE,1, 0);

while (!DR_ROUTER_DONE(CMNA_dr_status())) {};

/* Tool to ensure there's nothing in the receive queues */

/* Not used here, but you may find it handy */

void LDR_empty_network() {

int status, length, i;

while (status=CMNA_ldr_status(), RECEIVE_OK(status))

if (RECEIVE_TAG(status) <= tag_limit) {

length = RECEIVELENGTH(status);

for (i=O; i<length; i++)

(void) CMNAldrreceive word();

}

void CMPE node main () {

int value=O, i, length=MAX_BROADCAST_MSG_WORDS;
int long_length=length*LONG_FACTOR;

int nextnode, mirrornode;

int received ok;

int send[MAX_BROADCAST_MSG_WORDS*LONG_FACTOR],

receive[MAX BROADCAST MSG WORDS],

long_receive[MAX_BROADCAST_MSG_WORDS *LONG_FACTOR],

dual receive(MAX BROADCAST MSG WORDS];

/* signal interrupts for non-zero tag values */

CMOS_signal(SIGMSG , LDR_receive_handler , 14);

CMNAparticipate_in(NIBC_SEND_ENABLE);

save_and_set_abstain_flags(0,0,0,0);

/* All nodes get the value sent by the PM... */

All_NODES_get_from_PM(&value);

for(i=0; i<long_length; i++) {

send[i]=value+i;

long_receive[i]=-999;

for(i=0; i<length; i++) {

receive[i]=-999;
interrupt_receive[i]=-999;

dual receive[i]=-999;

}

Version 7.1, March 1992

96 Programming the NI

AppendixZ C.Sml I rgas9

/* Calculate some useful addresses */

next_node = (CMNA_selfaddress + 1) % CMNA_partition_size;

mirror_node = (CMNA_partition_size-1) - CMNA_self_address;

/* Do an ordinary, length-limited send */

LDRsend(next_node, send, length, 0);

network_done_synch();
LDRreceive(receive, length);

network_done_synch();

/* Do an unlimited-length send */

LDR_send receivemsg(mirrornode, send,

long_length, 0, long_receive);

network_done_synch();

/* Do an interrupt-driven send with a tag of 3*/

interrupt_expect_length=length;

LDR_send(nextnode, send, length,3);

while (!interrupt_done) }

network_done_synch();

/* Send via both LDR and RDR, and check results */

LDR_RDR_send (mirror_node, send, length, 0);

network_done_synch();

received_ok=LDRRDRreceive (dualreceive, length);

/* Signal to PM that answer is ready */

PM_NODE_synch();

/* Send check values back to PM */

NODE_sendtoPM(receive[length-1]);

NODE_send_to_PM(long_receive[long_length-1]);

NODE_send_to_PM(interrupt_receive [length-1]);

NODE_send_to PM(received_ok);

restore_abstainflags();

}

Version 7.1, March 1992

97Appendix C Sample M Programs

98Prgrmmngth N

C.2 Data Network Double-Word Messages Test

This program demonstrates the use of double-word read and write operations for Data Net-
work transmissions:

Filename: dbl test.c

/* Double-word ops test program - PM program */

#include <cm/cmna.h>

#include "utils.h"

#define LONG FACTOR 5

void main () {

int input, result, high_node;

printf("\nDouble-word test program, by W. R. Swanson,\n");

printf("Thinking Machines Corporation -- 2/3/92.\n\n");

/* Enable broadcast sending */

CMNA_participate_in(NI_BC_SEND_ENABLE);

/* Abstain from broadcast reception and combine sending */

save_andset_abstain_flags(1,1,0,0);

/* Start node programs running */

node main();

/* Get a value from the user and send it to the nodes. */

printf("This CM-5 partition has %d nodes.\n",

CMNA partition_size);

printf("Please type an integer to send to the nodes: ");

scanf ("%d", &input);

PM_send_to_NODE(0, input);

printf("Sent value %d to node 0...\n",input);

/* Wait for the nodes to finish juggling numbers */

PM_NODE_synch();

/* Get value from high node */

high_node = CMNA_partition_size - 1;

result = PM_get_from_NODE(high_node);

printf("Long send using double-word ops:\n");

printf("Received value %d (should be %d) from node %d.\n",

result, input+(MAX_BROADCAST_MSG_WORDS*

LONG_FACTOR)-1, highnode);
restore_abstain_flags ();

}

Version 7.1, March 1992

Programingthe NI98

Apedr C ape NiPoras9

Filename: dbl test.node.c

/* Double-word ops test program - PM program */

#include <cm/cmna.h>

#include <cm/cm_signal.h>

#include "utils.h"

#define LONGFACTOR 5

int tag_limit = 3;

/* Send/Receive function using double-words */

LDR_send_receive msg_double (dest_address, message,

length, tag, dest)

unsigned dest_address, tag;

int *message, *dest;

int length;

int packet_size;
double *dbl;

int send size, send size2, receive size, receive size2;

int offset, source_offset=O, dest_offset;

int words_to_send=length, words_received=0;

int count, rec_tag, status;

if ((int)message & 3)

CMPN panic("Error: Message array not double-word aligned!");

if ((int)dest & 3)

CMPN panic("Error: Dest array not double-word aligned!");

packetsize = (MAX_ROUTER_MSG_WORDS-1) & -1;

while ((words received < length) 11 (words_to_send)) {

/* First try to receive a packet */

status=CMNA ldr status();

if (words received<length &&

RECEIVE OK(status) &&

RECEIVE_TAG(status) <= tag_limit) {

destoffset = CMNAldr receiveword();
receive size = RECEIVE_LENGTH_LEFT(CMNA_ldr_status ());

printf("received offset %d, size %d.\n",

dest_offset, receive size);

Version 7.1, March 1992

Appendix C. Sample N Programs 99

0Poai te

for (count=O; count<(receive size>>1); count++) {

dbl = (double *) (&dest[destoffset++]);

destoffset++;

*dbl = CMNA ldrreceivedouble();

dbl++;

}
if (receive_size & 1) /* If word left over */

dest[dest offset++] = CMNAldr receive word();

words received += receivesize;

/* Now try sending a packet */

if (words to send) {

send_size = ((words_tosend < packet_size) ?

words_to_send : packet_size);
send size2 = sendsize >> 1;

do {
CMNA_ldr_send_first(tag, send_size + 1, dest_address);

CMNA_ldrsend_word(source_offset);

offset=source offset;

/* Send as many doubles as possible */

for (count=0O; count<send size2; count++){

dbl = (double *) (&message[offset++]);

offset++;

CMNA ldr send double(*dbl++);

if (send size & 1) /* If a word is left over */

CMNA _ldr sendword(message[offset++]);

} while (!SEND OK(CMNA _ldr_status());

printf("sent offset %d, size %d.\n",

source offset, send size);

sourceoffset=offset;

wordstosend -= sendsize;

/* Combine "network-done" Function */

void network_done_synch()

{
CMNA_com_send_first(ASSERT_ROUTER_DONE,SCAN_ROUTER_DONE,1,0);
while (!DR ROUTERDONE(CMNA drstatus())) {};

Version 7.1, March 1992

Programming the N1100

App"endix ~. le NIPrograms101

void CMPE node main () {

int value=0, i;

int length=MAX_BROADCASTMSGWORDS*LONG_FACTOR;

int mirrornode;

/* These variabes MUST be double-word aligned! */

double temp_dalign_send;
int send(MAX_BROADCAST_MSG_WORDS*LONG_FACTOR];

double temp_dalign_rec;

int receive[MAX_BROADCAST_MSG_WORDS*LONG_FACTOR];

CMNA_participate_in (NI_BC_SENDENABLE);

save_and_set_abstainflags(0,0,0,0);

/* All nodes get the value sent by the PM... */

All_NODES_get_from_PM(&value);

for(i=O; i<length; i++) {

send[i]=value+i;

receive [i] =-999;

}

mirror_node = (CMNA partition_size-1) - CMNA_self_address;

/* Do an unlimited-length send using double-word ops */
LDR_send_receive_msg_double(mirror_node, send,

length, 0, receive);
network_done_synch();

/* Signal to PM that answer is ready */

PM_NODE_synch();

/* Send check value back to PM */

NODE_send_toPM(receive[length-1]);

restore_abstain_flags ();

}

Version 7.1, March 1992

Appendi C Sample NI Pograms 101

102 rg

C.3 Broadcast Network Test

This program presents a simple test of broadcast network transmission:

Filename: BC_ test.c

/* Broadcast examples program - PM program */

#include <cm/cmna.h>

#include "utils.h"

void main () {

int input, result, high_node;

printf("\nBroadcast test program, by W. R. Swanson,\n");

printf("Thinking Machines Corporation -- 2/1/92.\n\n");

/* Enable broadcast sending */

CMNA_participate_in(NI_BC_S SEND_ENABLE);

/* Abstain from broadcast reception and combine sending */

save and set abstain flags(1,1,0,0);

/* Start node programs running */

nodemain();

/* Get a value from the user and send it to the nodes. */

printf("This CM-5 partition has %d nodes.\n",

CMNA_partition_size);

printf("Please type an integer to send to the nodes: ");

scanf("%d", &input);

PM send to NODE(0, input);

printf("Sent value %d to node 0...\n",input);

/* Wait for the nodes to finish juggling numbers */

PM_NODE_synch();

/* Get value from high node */

high_node = CMNA_partition_size - 1;

result = PM_get_from_NODE(high node);

printf("Received value %d (should be %d) from node %d.\n",

result, input+MAX_BROADCAST_MSG_WORDS-1, high_node);

restore_abstain_flags ();

}

Version 7.1, March 1992

Programming the NI102

ApedxC BSakNIPo ras 0

Filename: BCtest.node.c

/* Broadcast examples program - node program */

#include <cm/cmna.h>

#include "utils.h"

int BCsend(message, length)

int *message, length;

int i;

CMNAbc sendfirst(length--, *message++);

for (i=0; i<length; i++) CMNA_bc_send_word(*message++);

return(SEND OK(CMNA bc status()));

int BCreceive(message, length)

int *message, length;

int i;

for(i=0; i<length; i++) {

while(!RECEIVE OK(CMNA bcstatus())) }

message[i] = CMNA_bcreceive_word();

}
return (length);

void CMPE node main () {

int value=0, i, length=MAX_BROADCAST_MSGWORDS;

int send[MAX_BROADCASTMSG_WORDS],

receive[MAX_BROADCASTMSGWORDS];

int status, rec_length;

CMNA_participate_in(NIBC_SEND_ENABLE);

save_and_set_abstainflags (0,0,0,0);

/* Node 0 gets the value sent by the PM... */

NODE_get_from_PM(&value);

for(i=0; i<length; i++) {

send i]=value+i;

receive i]=-999;

}

Version 7.1, March 1992

103Appendix C Sample NI Pograms

104Prgamin heN

if (CMNA_self_address==0) {

status=0;

while(!status) status = BCsend(send, length);

}
rec_length = BC_receive(receive);

/* Signal to PM that answer is ready */

PM_NODE_synch();

/* Send value from high-order node back to PM */

NODEsend to PM(receive[length-1);

restore_abstain_flags ();

}

C.4 Combine Network Test

This program presents examples of a number of different kinds of combine network opera-
tions, including:

* Scanning messages, with and without segments

* Reduction messages

* Network-done messages

Filename: COM test. c

/* Combine examples program - PM program */

#include <cm/cmna.h>

#include "utils.h"

void main () {

int input, result, segment size, high_node, i, expected;

printf("\nCombine test program, by William R. Swanson,\n");

printf("Thinking Machines Corporation -- 2/1/92.\n\n");

/* Enable broadcast sending */

CMNAparticipate_in(NI_BC_SENDEDENABLE);

/* Abstain from broadcast reception and combine sending */

/* Abstain from combine reception, too, for a while... */

save and setabstainflags (1,1,1,0);

Version 7.1, March 1992

Programming the NI104

BApdC0

/* Start node programs running */
·nodemain();

/* Get a value from the user and send it to the nodes. */
printf("This CM-5 partition has %d nodes.\n",

CMNA_partition size);
printf("Please type a positive integer: ");
scanf ("%d", &input);

high_node = CMNA_partition_size-1;

PM_send_to_NODE(high_node, input);
printf("Sent value %d to node %d...\n", input, high_node);

/* Wait for the nodes to finish juggling numbers */

PM_NODE_synch();
/* Turn combine reception back on */

CMNA_write_rec_abstain_flag(comcontrol_reg, 0);

/* Get check values */

result = PM_get_from_NODE(0);

printf("Received value %d (should be %d) from node %d.\n",

result, (input+MAXBROADCASTMSGWORDS-1), 0);

result = PM_get_from_NODE(high_node);
printf("Received value %d (should be %d) from node %d.\n",

result, (input*high_node), high_node);

segment_size = PM_get_from_NODE(0);

result = PM_getfrom_NODE(0);

printf("Received value %d (should be %d) from node %d.\n",

result, (input+MAXBROADCASTMSGWORDS- 1)

* (segment_size-1), 0);

result = PM_get_from_NODE(0);
printf("Network done for node 0 got %d (should be %d).\n",

result, highnode);

result =PMgetfrom_NODE(0);
printf("Scanning counted %d nodes (should be %d).\n",

result, CMNA_partition_size);

restore abstain_flags ();

Version 7.1, March 1992

Appendix C Sample M Programs 105

106 Prgrmin

Filename: COM test.node.c

/* Combine examples program - node program */

#define NI ROUTER DONE P NI ROUTER DONE COMPLETE P

#include <cm/cmna.h>

#include "utils.h"

int COMsend(combiner, pattern, message, length)

int *message, combiner, pattern, length;

int i, start, step;

/* For max scans, send high-order word(s) first */

if (combiner==MAX_SCAN) { start=length-1; step=-l; }

else { start=O; step=l;

CMNAcom_sendfirst(combiner, pattern, length,

message [start]);

for (i=l; i<length; i++)

CMNA_com_send_word (message [(start+=step)]);

return(SENDOK(CMNA com status ());

int COM_receive(combiner, message)

int *message;

int i, length, start, step;

while(!RECEIVEOK(CMNAcom status())) {}

length=RECEIVE_LENGTH(CMNA_com_status ());

/* For max scans, send high-order word(s) first */

if (combiner==MAX_SCAN) { start=length-1; step=-1; }

else { start=O; step=l; }

for(i=0; i<length; i++) {

message[start] = CMNA_comrnreceiveword();

start+=step;

}
return (length);

int COM_scan(combiner, pattern, message, length, result)

int *message, *result, combiner, pattern, length;

int status=O, rec_length;

while (!status) status =

COM_send(combiner, pattern, message, length);

rec_length = COM_receive(combiner, result);

return(rec_length);

}

Version 7.1, March 1992

106 Programming the NVI

A p e d x . S m le N r gr m 0

void CMPE node main () {

int value=0, i, length=MAX_BROADCASTMSG_WORDS;

int send[MAXBROADCAST_MSG_WORDS],

result[MAXBROADCAST_MSGWORDS],

seg_result[MAX_BROADCAST_MSGWORDS];

int rec_length, segment_size, high node;

int one, node count;

int message, networkdone_msg, next_processor;

CMNA_participate_in(NI_BC_SENDENABLE);

save_and_set_abstain_flags(0,0,0,0);
/* Make sure segmenting is turned off to begin with */

CMNA_setsegment_start(0);

highnode = CMNA_partition_size - 1;

/* High node gets the value sent by the PM... */

NODE_get from_PM(&value);

/* Fill send array based on supplied value */

for(i=0; i<length; i++) {

send[i]=((CMNA self_address==high_node) ? value+i : 0);

result [i] =-999;

seg_result[i]=-999;

/* Do a max scan to distribute send values to all nodes */

rec_length = COM_scan(MAX_SCAN, SCAN_BACKWARD, send,

length, send);

/* Scan overwrites high node -- put back original value */

if (CMNA selfaddress==high_node)

for(i=0; i<length; i++) send[i] = value+i;

/* Do an add scan to make different values */

rec_length = COM_scan(ADD_SCAN, SCAN_FORWARD, send,

length, result);

/* Do a backwards segmented reduction */

segment_size=(CMNA_partition_size<5 ?

CMNAartition_size : 5);

CMNA_set_segment_start(((CMNA_self_address % segment_size)

== segment_size-1));

rec_length = COM_scan(MAX_SCAN, SCAN_BACKWARD, result,

length, seg_result);

CMNA_set_segment_start(0);

Version 7.1, March 1992

107Appendix C Sample ATIPrograms

10 Pgimmngth N

/* Try network-done feature */

message=CMNA_self_address;

network_done_msg=0;

next_processor = (CMNA_self_address+1)%CMNA_partition_size;

CMNA_ldr_send_first(0,1,next_processor);

CMNA_ldrsendword(message);

COM_send(ASSERT_ROUTER_DONE, SCAN_ROUTER_DONE,

&network_done_msg, 1);

while (!DR ROUTER DONE(CMNA dr status())) {};

while (!RECEIVE_OK(CMNA_ldr_status())) {};

message=CMNA_ldr_receive_word();

/* Use reduction to do a processor "roll-call" */

one=l;

node count=-999;

rec_length = COM_scan(ADD_SCAN, SCAN_REDUCE,

&one, 1, &node_count);

/* Signal to PM that answers are ready */

PM_NODEsynch();

/* Send check values back to PM */

NODE_send_to_PM(send[length-11]);

NODEsendtoPM(result[0]);

NODE_send_to_PM(segment_size);

NODE_send_to_PM(seg_result[length-1]);

NODE_send_to_PM(message);

NODE_sendtoPM(nodecount);

restore_abstain_flags ();

}

Version 7.1, March 1992

108 Programming the NI

Ae:Ca

C.5 Global Network Test

This program presents a quick example of asynchronous and synchronous global network
transmission:

Filename: GLOBAL test. c

/* Global network test program - node program */

#include <cm/cmna.h>

#include "utils.h"

void main () {

int value;

printf("\nGlobal test program, by William R. Swanson,\n");

printf("Thinking Machines Corporation -- 2/6/92.\n\n");

/* Enable broadcast sending */

CMNA_participate_in(NIBC_SEND_ENABLE);

/* Abstain from broadcast reception and combine sending */

saveandsetabstain_flags(1,1,0,0);

printf("This CM-5 partition has %d nodes.\n",

CMNA_partition_size);

/* Start node programs running */

printf("Starting node programs...\n");

node main();

/* Test asynchronous global network */

CMNA_or_global_async_bit(0);

PM_NODE_synch();

value = CMNA_global_async_read();

printf("Received async bit %d (should be 0).\n", value);

restore_abstainflags ();

}

Version 7.1, March 1992

Appendix C Snple A Programs 109

110 rogammig te N

Filename: GLOBAL test.node.c

/* Global network test program - node program */

#include <cm/cmna.h>

#include "utils.h"

void CMPE node main () {

int value;

CMNA_participate_in(NI_BC_SEND_ENABLE);

save_and_setabstainflags(0,0,0,0);

CMNA_or_global_async_bit(0);

/* Signal to PM that answer is ready */

PM_NODE_synch();

value = CMNA_global_async_read();

if (value)

printf("Error: node got non-zero global value.");

restore_abstain_flags();

}

Version 7.1, March 1992

Programming the NI110

Indexes

Version 7.1, March 1992

--------- -------- -- -------- --- --------- -------------------------------- --------- -- ------- - ---- -------------- iil,�� � � �illi�lillillillillillillillilI ------ -- ------

111

Language Index
i .:. _ _'_

This index lists the macros, system functions, and constants referred to in this document.

A, B
ADD_SCAN, combiner constant, 43, 86

ASSERTROUTER DONE,

combiner constant, 46, 86
bc_control_reg, constant, 36, 85

C
CMNA_bc_receive_type(),

macro, 35, 84
CMNA bcsendfirst(),macro,34,84

CMNA bc send first double(),

macro, 34, 84
CMNA_bc_send_msg, () function,78
CMNA_bc_send_type(), macro, 34, 84
CMNAbc status(), macro, 35, 84
CMNA_com_receive_type(),

macro, 41, 86
CMNA com send first(),macro,40,86
CMNA com send first double(),

macro, 40, 86
CMNA com_sendtype(), macro, 40, 86
CMNA comrn status (), macro, 40, 87

CMNA dnetwork receive type (),
macro, 23, 82

CMNA dnetwork sendfirst(),
macro, 21, 82

CMNAdnetwork send firstdouble,

macro, 21, 82
CMNAdnetwork_send_type (),

macro, 21, 82
CMNA dnetwork status (),macro, 22, 83

CMNA dr ...See CMNA dnetwork ...

CMNA drsendstatus (),macro,22, 83

CMNA_global_async_read(),

macro, 53, 88

CMNA_global_sync_complete(),
macro, 52, 88

CMNA_global_sync_rec(),

macro, 52, 88

CMNA ldr ... See CMNA dnetwork ...

CMNAldrstatus (), macro, 22, 83

CMNA_network_receive_type(),

macro, 15

CMNA network send first(),

macro, 13

CMNA network send first-double()

, macro, 13

CMNA_network_send_type (), macro, 13

CMNAnetwork status (),macro, 15

CMNA_or_global_async_bit(),
macro, 53, 88

CMNA_or_global_sync_bit),

macro, 52, 88

CMNA_participate_in (),system

fiunction, 33, 60

CMNA_partition_size, variable, 20, 81

CMNA rdr ... See CMNA dnetwork ...

CMNA_rdrstatus (), macro, 22, 83

CMNA_read_abstain_flag(),
macro, 17, 81

CMNArouter msg_count, variable, 77
CMNA_segment start (), macro, 44, 87

CMNA self address,variable,20, 81

Version 7.1, March 1992 113

114 Progmmingth

C, cont.
CMNA network

send_packet_to_scalar(),

system function, 58
CMNA_set_segment_start() ,

macro, 44, 87
CMNA_writeabstain_flag(),

macro, 17, 81
CMOS_set _dr_ms g_ count_reg(),

system function, 78
CMOS_signal (), system function, 25, 89
com_control_reg, constant, 42, 87
COMBINEOVERFLOW (), macro, 45, 87

D
DR RECEIVE STATE (),macro, 24, 83
DR ROUTER DONE (), macro, 22, 83
DR SENDSTATE (),macro, 22, 83

M
MAXBROADCAST MSG WORDS,

constant, 33, 85
MAXCOMBINEMSG WORDS,

constant, 39, 86
MAX ROUTER MSG WORDS,

constant, 21, 83
MAX_SCAN, combiner constant, 43, 86

N
ni bc_control, register, 36, 85
ni_bc_rec, register, 35, 84
ni bc_rec_abstain, flag, 36, 85
ni bc_rec_length_left, flag, 35, 84
ni bc_rec_ok,flag, 35, 84
ni bc_send, register, 34, 84
nibc_send_empty, flag, 34, 84
nibc_send_first, register, 34, 84
ni bc_send_ok, flag, 34, 84
ni_bc_send_space, field, 34, 84
ni_bc_status, register, 34, 35, 84
nicom_ abstain, flag, 42, 87

ni_com_control, register, 42, 87

ni_com_rec, register, 41, 86
ni_com_rec_length, field, 41, 87
ni_com_rec_length_left, flag, 41, 87
ni_com_rec_ok, flag, 41, 87
nicomrn scan_overflow, flag, 44, 87

ni_com_send, register, 39, 86

ni_com_send_empty, flag, 40, 87

ni_com_send_first, register, 39, 86

ni_com_send_ok, flag, 40, 87
ni_com_send_space, field, 40, 87

ni com _status, register, 40, 41, 44, 87

nidnetwork_rec, register, 23, 82

ni_dnetwork_rec_length, field, 24, 83

ni_dnetwork_rec_length_lef t,
flag, 24, 83

ni_dnetwork rec_ok, flag, 24, 83
ni dnetwork rec_tag, field, 24,83
ni_dnetwork_send, register, 21, 82

ni_dnetworksend first,
register, 21, 82

ni_dnetwork_send_ok,flag,22,83
ni dnetworksendspace,field, 22,83
nidnetwork status,

register, 22, 24, 46, 83

ni dr ... See ni dnetwork ...

ni_global, register, 53, 88
ni_global_rec, register, 53, 88

ni_global_send, register, 53, 88

ni ldr ... See ni dnetwork ...

ninetwork_abstain, flag, 17

ni_network_control, register, 17

ni_network rec, register, 15

ni network_rec length, field, 16, 81

ni_network_rec_length_lef t,
flag, 16, 81

ninetworkrec_ok, flag, 16, 81
ninetworksend, register, 12
ni_network_send_empty, flag, 14, 81

ni_network_send_first, register, 12

ni network_send_ok, flag, 14, 81

Version 7.1, March 1992

Programming te NI114

Lanuag Idex11

N, cont.
ni_network_ send_space, field, 14, 81

ninetwork_status, register, 14, 16

nirdr ... See ni dnetwork ...
ni_rec_state, field, 24,83

ni reduce rec abstain, flag, 42, 87
ni_router done_complete,

flag, 22, 46, 83
ni_scan_start, register, 44, 87
ni_send state, field,22, 83

ni_sync_global, register, 51, 88

ni_sync_global_abstain,

register, 52, 88

ni_sync_global_complete,
flag, 51, 88

ni_sync _global_rec, flag, 51, 88
ni_sync global_send, register, 51, 88

O
OR SCAN, combiner constant, 43, 86

R
RECEIVELENGTH (),macro, 16, 81

RECEIVELENGTHLEFT (), macro, 16, 81

RECEIVEOK(), macro, 16, 81

RECEIVETAG(), macro, 24, 83

S
SCAN_BACKWARD, pattern constant, 43, 86

SCAN_FORWARD, pattern constant, 43, 86

SCAN_REDUCE, pattern constant, 43, 86
SCAN_ROUTERDONE,

pattern constant, 46, 86

SENDEMPTY (), macro, 15, 81

SENDOK (), macro, 15, 81

SEND SPACE (), macro, 15, 81

sp-pe-s tubs, preprocessor, 63

sync_global_abstain_reg,

constant, 52, 88

U,X
UADDSCAN, combiner constant, 43, 86
XOR_SCAN, combiner constant, 43, 86

Version 7.1, March 1992

115Language Index

Concept Index
.

This index lists the major terms and topics found in this document.

A
abstain flag, 17

for broadcast network, 36
for combine network, 42
for global network, 52
function to set values of, 59
using efficiently, 75

addressing
of nodes, 20, 55, 75
of partition manager, 55

auxiliary information, 12
for broadcast network messages, 33
for combine network messages, 39
for Data Network messages, 21

B
broadcast network, 3, 33

abstaining from, 36
internal participation flag, 33
message format, 33
message length limit, 33
message ordering, 33
receiving, 35
sending, 33
status register, 34, 35

C
cm signal. h, header file, 25

CM-5, 2
networks, 2
partition manager, 4
partitions, 4
processing nodes, 3

CMMD, software interface, 1
CMMD Reference Manual, ix
CMMD User s Guide, ix
cmna. h, header file, 8, 61
combine network, 3, 39

abstaining from, 42
auxiliary information, 39
message format, 39
message length limit, 39
network-done messages, 46
parallel prefix. See scan messages
pipelining, 41
receiving, 41
reduction messages, 45
scan messages, 43
scan overflow, 44
segmented scanning, 44
sending, 39
status register, 40, 41
word order in scans, 43

combiner values, for combine messages, 43
compiling NI programs. See programs
Connection Machine CM-5 Technical

Summary, ix

Version 7.1, March 1992 117

118 Programming the NI

C, cont.
Control Network, 3, 33

See also
broadcast network;
combine network;
global network

control registers, 6

D
-dalign compiler switch, 72, 76
Data Network, 2, 19

addressing. See addressing
auxiliary information, 21
message format, 21
message length limit, 21
message ordering, 26
network-done messages. See combine

network
receiving, 23
sending, 21
status register, 22, 24
tags, 25, 76

data network (DR), 2, 19
detecting incoming messages, 16
discarded messages, 12, 14, 74
double-word operators, 13, 72

E
executing NI programs. See programs
examples, online, 70

F
flags and fields, status.

See status registers, flags and fields
format of messages. See messages, format

G
generic network interface, 11
getting value of status register, 15

See also status registers

global network, 3
abstaining from, 52
asynchronous interface, 53
synchronous interface, 51

interface code file. See programs
interrupts

and tag fields, 25
using to retrieve Data Network messages,

25

L
left data network (LDR), 2, 19

M
memory mapping, 5
memory subsystem, of nodes, 3
messages

address, for Data Network, 20
discarded, 12, 14
format

for broadcast network, 33
for combine network, 39
for Data Network, 19, 21

from nodes to PM, 57
from PM to nodes, 56
global network, 51
network, 11
receipt order, for Data Network, 26
receiving, 15
sending, 12

microprocessor, of processing node, 3

N
names of registers, 7
network-done flag, of Data Network, 22

Version 7.1, March 1992

Programming the NI118

Cocet ndx 1

N, cont
Network Interface (NI), 5

chip, 3, 5
registers, 5
Revision A chip,

software workaround for, 77
network status registers, 14
network-done messages,

(via combine network), 46
networks, 2

common features, 11
interactions between, 19, 78
messages, 11

NI programs. See programs
node program. See programs
nodes. See processing nodes

0
online code examples, 70
order of words, in scan messages, 43
overflow, in scan messages, 44

P
parallel prefix messages. See scan messages
partition, 4

size of, variable, 20
partition manager (PM), 4

address of, 55
exchanging data with nodes, 55
program. See programs

pattern values, for combine messages, 43
pipelining combine operations, 41
PM program. See programs
processing node program. See programs
processing nodes, 2, 3, 20

addressing. See addressing
exchanging data with PM, 55

programs
compiling and executing, 68
interface code-file, 63
NI, 8
node code file, 62

programs, cont.
PM and node, 4
PM code file, 61
structure of, 61

protocol See also messages, format
for sending messages, 12

Q
queue registers, 6

R
reading a message, 16
reading status registers, 15
"receive length" field, 16

of combine network, 41
of Data Networks, 24

"receive length left" field, 16
of broadcast network, 35
of combine network, 41
of Data Networks, 24

"receive ok" flag, 16
of broadcast network, 35
of combine network, 41
of Data Networks, 24

"receive" register, 15
for global network, 51
of broadcast network, 35
of combine network, 41
of Data Networks, 23

"receive state" flag, of Data Network, 24
"receive tag" field, of Data Networks, 24
receiving

a broadcast network message, 35
a combine network message, 41
a Data Network message, 23
a global network message, 52, 53
a network message, 15
a network-done message, 46
a reduction-scan message, 45
a scan message, 43

reduction messages,
(via combine network), 45

Version 7.1, March 1992

-

119Concept Index

120 Pr in th N

R, cont.
registers

control, 6
names, 7
NI, 5
queue, 6
status, 6, 14

Revision A NI Chip, software workaround, 77
right data network (RDR), 2, 19
RISC microprocessor, of processing node, 3
"router done" flag, of Data Network.

See network-done flag
running NI programs.

See programs

S
scan messages, (via combine network), 43
segmented scanning,

in combine network messages, 44
segments, 44
"self address", of a processing node, 20
"send empty" flag, 14

of broadcast network, 35
of combine network, 40

"send ok" flag, 14
of broadcast network, 35
of combine network, 40
of Data Networks, 22

"send" register, 12, 13
for global network, 51
of broadcast network, 34
of combine network, 39
of Data Networks, 21

"send space" field, 14
of broadcast network, 35
of combine network, 40
of Data Networks, 22

"send state" flag, of Data Network, 22
"send-first" register, 12

of broadcast network, 34
of combine network, 39
of Data Networks, 21

sending
a broadcast network message, 33
a combine network message, 39
a Data Network message, 21
a global network message, 52, 53
a network message, 12
a network-done message, 46
a reduction-scan message, 45
a scan message, 43

sending messages from nodes to PM, 57
sending messages from PM to nodes, 56
status registers, 6, 14

accessor macro, 15
broadcast network, 34, 35
combine network, 40, 41
Data Network, 22, 24
fields and flags, 14, 16
reading, 15

T
tag fields

and interrupts, 25
of Data Network messages, 24

W
writing a message, 13

Version 7.1, March 1992

120 Programming the NI

