The
Connection Machine
System

Programming the NI

Version 7.1
February 1993

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, March 1992
Revised, February 1993

ke de e e e JeJe Je Je e e de e de e e de o e e de e I % e g e o v 3 v e e v v e v e e e v T v e e vk sk Fe e 3 e 3k e 9 vl o v v e v v 3 e Yo v e e ok o ok v e e de e ok

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

Yo v e s v 3 e Fe de e e vk o vk e ok e e e e e e 3 e e e e s vk vk vk e e e e ke v e vk e de de e e e e v e e e ke e e e e v o v e I ok e de de v dr ok sk e de e de e e e e ok

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM, CM-2, CM-5, CMosT, and NI are trademarks of Thinking Machines Corporation.

Thinking Machines is a trademark of Thinking Machines Corporation.

Sun, Sun-4, Sun Workstation, SPARC, and SPARCstation are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142 -1264
(617) 234-1000/876-1111

ontents

List Of FAgUIES0t ittt ittt it itaintianaeeenannnaaannss ix
About ThisManualttt ittt ittt iiiniiecnesanns xi
CUSLOMET SUPPOTL .. .ot it ttettan et icasenaasassaseerssssansonneessssscanaesoss xv
Chapter 1 The Network Interface...................................... 1
1.1 The CM-5 System: Nodesand Networksccovvvennnnnnn, 2
1.1.1 The CM-SNetworksccciiiiiiiiiiiininenennnenns 2
TheDataNetworkooiiiiiiiiiiiiiiiniiin 2
The Control Networkcoviiiiiiinernnnenns 3
For the Curious: The Diagnostic Network 3
1.12 Processing Nodescoiiiiiiiiiieiaieininenninns 3
1.1.3 Partitions and the Partition Manager 4
CM-5 Programming Styleo et 4
12 The NI ChiD «.vvirin ittt ittt tieiseaeransossasnanneanan 5
1.3 The NIReGIStEIS .. .c.oviriiiiintiiiiinenrnnronsoenecancnsanns 5
131 NIRegister TYPesoviiiiiiiiiiiiiiiiiiiiiiennnnee, 6
132 NIRegisterand Field Namesccoviivinnnn. 7
14 Wrting NICodeoiiiiiiiiiiiit ittt iierarannseennes 7
Finding the CMacro YouNeedccovunnnen 8
1.5 Using This Manual Effectivelycooiiiiiiiiiiiiiiiiiine, 8
1.6 WARNING: Experiment at Your Own Risk 9
Chapter 2 A Generic Network Interface 1
2.1 Network Messagesciviiitiieineeninieneansatenssennennnns 11
22 Sending a MesSageccvvtitaitiirriietreataoteaet e saeanns 12
22.1 MessageDiscardingcoiiiiiiiiiiiiiiiia s 12
2.2.2 Auxiliary Information0iiiiiiiiiii i 13
223 WritingaMessageoivevientiiitenieretirieennnnn 13
23 Receivinga Messagecciiiiiiiiiiiiiieiiiiiiiretrtienteanan 14
Version 7.1, February 1993 {ii

Copyright © 1993 Thinking Machines Corporation

Chapter 2
24

2.5

2.6
2.7

Chapter 3

3.1
3.2
33
34

35

3.6
3.7

A Generic Network Interface, cont’d

The Status RegISteriottrriiiiiiirereiansienronnnnansns 15
2.4.1 Status Fields for Message Sending 15
2.4.2 Status Fields for Message Receivingc.0vent. 16
2.4.3 Reading the Status Register Fields 16
Abstaining from an Interface — The Control Register 17
25.1 Effectof AbstainFlagsciviiiiiiiinniniinenan. 18
2.5.2 Combine Interface Abstain Flagscovinnnne. 18
2.5.3 Reading and Writing the AbstainFlag 18
2.5.4 Using the Abstain Flag Safelyooiint. 19
2.55 BeingaGoodNeighborcoiiiiiiiiiiiiinnn. 19
Using a Generic NetworkInterfacecooiiiiiiiiii i, 20
From the Generictothe Specificcoviiviiiiiiiii i, 20
The Data Networkttt 21
The Data Network Register Interfacesccoivvivivieia, 22
Data Network Messages covvvvtnnnieiiiiiinciininneeenennanans 23
Data Networtk Addressingoiiiiiiiiiiiiiiiiiinnnen. 23
Sending and Receiving Messagescoviiiieiiiiiiieennn. 24
34.1 SendingMessagesccniiiiiiiiniiiieiieiiiiieranns 25
342 Receiving Messagesc.ocevvneienniioneranenenesnns 25
The Status Registercivtiminiiiiiiiieienansiiensennnanns 26
351 MessageTagscvviiiiinneiinaiinenintnessnsannnss 27
352 Message TagsandInterruptscoivviiivnennnnnn, 28
3.5.3 The Send and Receive State Fields 29
354 TheNetwork-DoneFlagccoviiiiiiinininninnnn. 30
Data Network Usage Note: Receive before YouSend 30
D5 141 o) 31
Sending and Receiving a Messagecooviiireinnreennnn, 31
Sending and Receiving Long Messagescceviiiinn, 33
Interrupt-Driven Message Retrievalociviiinnnnn 35
Sending via LDR and RDR Simultaneously 36
Version 7.1, February 1993

Copyright © 1993 Thinking Machines Corporation

Contents v

Chapter 4 The Control Network 37
4.1 TheBroadcastInterfacecooviiiiunriinnnereneennnannnnss 38
4.1.1 Broadcast RegisterInterfaceccvevvennnnn.. 38
4.12 Broadcast MeSSAgEScouuuuvreencnnnnnnnennenss 38
4.1.3 Sending Broadcast Messagescccvvvrieiennnn.. 39
4.1.4 Receiving Broadcast Messagesccovvvvvrearonerennnns 40
4.1.5 The Broadcast Status Registercco0vevnn.. 40
How to Interpret the Value of the “Length Left” Field 41
4.1.6 Abstaining from the Broadcast Interface 41
4.1.7 Broadcast Interface Examples 42
Sending and ReceivingaMessagec.o.unn 42
42 TheCombineInterface............coiiiiiiiiiiiiiiinininnnenenens 43
4.2.1 The Combine Register Interfacecoevvievi.nn 43
422 Combine Messagescciiiiiinviiiniiiineinienen 4
4.2.3 Sending Combine Messagesccoiiiiunnininnnns 44
424 Legal Combiner and Pattern Valueso0vnenn 45
4.2.5 Receiving CombineMessageocovvveevennnernn 46
426 The Combine StatusRegisterccoviiiivinnnennn. 47
4.2.7 Scanning (Parallel Prefix) and Reduction Operations 47
Scanning with Segments 48
42.7.1 Addition ScanOverflow 49
4.2.83 Network-Done MesSagesocoueveunnrersnacenacnaons 50
How Network-Done Works...cocoviiinenaiiinns 51
..And Why You ShouldCarecccoouvn. 51
4.2.9 Abstaining fromthe Networkccovvviiveennnennn. 52
4.2.10 Abstain Flags and Reduction Messagescoo.tn. 53
4.2.11 Combine Interface Examplescccoveeivnnann.. 54
Sending and Receiving a Combine Message 54
Executing Scans and Reduction Scans 55
Executing a Network-Done Operation 56
43 TheGlobalInterfacecoiiiiiiiiiiiiiniiiennniirnennaenns 57
4.3.1 The Global Register Interfacesccceniiiiein... 57
4.3.2 The Synchronous Global Interfacecc.cvvnnn. 58
Sending and Receiving Messagescoovvvviennnens 58
Abstaining from Synchronous Global Messages 59
4.3.3 The Asynchronous Global Interfacec0vven 59
Sending and Receiving Messagesovvviveunnn. 60
4.3.4 Global Interface Examplesc.ocivivniienieennnas 61
Using the Synchronous Global Interface 61
Using the Asynchronous Global Interface 61
Version 7.1, February 1993

Copyright © 1993 Thinking Machines Corporation

Programming the NI

Chapter 5
5.1

52
53
54

5.5
56

Chapter 6
6.1

6.2

Writing NIProgramscooiiviiiiiiinannnnn, 63
Transferring Data between Nodesand the PM 63
5.1.1 Sending Messages from the PMtoNodes 64
5.12 Sending Messages from Nodestothe PM 65
5.13 Signalingthe PMiiiiiiiiiiniiniiirrenneenens 66
5.1.4 For the Curious: Using the Data Network 66
Settingthe Abstain Flagsottt iiiiiiiinnennnnn, 67
BroadcastEpablingcoooi i e 68
NI Program StUCRITE outitnneerneeernenacncanenasennnoensnns 69
54.1 ThecmnahHeaderFileooiiiiiiiiiannn. 69
542 PartitionManagerCodecovviiiiiiiiiinnnnn, 69
543 NodeCodeciiiiiiiniriniinnneerencnaaarnennns 70
The Node’s “Main”Routinecovevvinvenennnn 70

544 Interface Codeooiiviiiiiiiinnrinsenneenronrennnns 71
ASample Programviiviineiennnrnererncnsoaensanessnsans 71
Compiling and Executingan NI Programcoovvuiieennnnn. 76
5.6.1 A Simple Compiling Scriptcciiiiiiiiinn. 77
5.6.2 Compiling and Running the Program 78
5.6.3 OnlineCode Examplesccovivniiieiiennvnnnn, 78
Programming and Performance Hints 79
Performance HINLScoointirinininierninnniinererensnnnacans 79
6.1.1 NIRegister Operation Timescovveiennnnsnennns 79
6.1.2 Reading and Writing Registers with Doubleword Values 80
Example: LDR Send/Receiveoovvvvervnninenens 80

6.1.3 Use Message Discarding for Efficiency 82
6.1.4 Set the Abstain Flags Once and Forget Them 82
Potential Programming Trapsand Snarescccvvevenvnnnenns 83
6.2.1 Pay Attention to Data Network Addresses 83
6.2.2 Check the Tag before Retrieving a Data Network Message 83
6.2.3 Make Sure Double-Word Data Is Doubleword Aligned 84
6.2.4 Order Is Important in Combine Messages 84
6.2.5 Restriction on Network-Done Operations for Rev A NI Chips... 84
6.2.6 Broadcast and Combine Interface Collisions 86

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Contents

Appendixes

Appendix A Programming Toolscooiiiall. 89
A.1 Generic Variables and Macrosc..viitinerrinienennnnnenns 89

A2 Data Network Constants and Macrosoocivvivnnnniranenineens 90

A.3 Broadcast Interface Constantsand Macrosco0vvnn.n. 92

A4 Combine Interface Constants and Macrosccovievenvnennnnns 94

A.5 Global Interface Constants and Macrosevvvercanennecenn. 96
Appendix B CMOS_signalmanpage......................ccoeivviennn.. 97
Appendix C CMNA Header Filesco il 99
Cl Whatis CMNA? ittt ittt ittt teenttienasacosnsasnnsnsnas 99

C2 CMNAHeader Filesccoviiiiiiiiriiiieianansssnsessnonsnss 100
Appendix D Sample NIProgramsccoiiiiiiieniennene. 103
D.1 DataNetwork Testcoiiiiiiiiiiiiiiiniiinianenennnnaenan 103

D.2 Data Network Double-Word Messages Testc.ccvievnenn, 110

D.3 BroadcastInterface Testciveneiinnnenaniannnrrnnananaeenns 114

D4 CombineInterface Testccoviii it iiiiiiiineirerinenanannns 116

D.5 Global Network Testovvuneeeneeneereenenanennanananoaneanns 121

Indexes

Language INdexXiiiiinniiiiiiii ittt iiet i iattiiesiier it 125
Comeept INdexottt it i i e et e 129

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

ist of Figures

Figure 1. The CM-5 system: Processing nodes linked by Data and Control Networks. .. 2
Figure 2. The components of a typical processingnode.coi0vinns. 3
Figure 3. A partition of nodes and its partition manager.ceeniveeieennn 4
Figure 4. NI provides access to features of the Data Network and Control Network. 5
Figure 5. The three interfaces of the Data Network: DR, LDR,andRDR. 21
Figure 6. Addressingof nodesinapartition.ttt 24
Figure 7. The three interfaces of the Control Network: BC, COM, and global. 37
Figure 8. The partition manager stands apart from the partition it manages. 63
Figure 9. Relationship between CMNA and Nl header files. 100
Version 7.1, February 1993 ix

Copyright © 1993 Thinking Machines Corporation

About This Manual

Objectives of This Manual

Programming the NI describes the Network Interface (NI) chip of the Connection
Machine CM-5 system. The NI is the component of the CM-5 hardware that
manages the machine’s internal communications networks.

This manual describes the NI at a level sufficient for applications programmers
to write simple programs that directly access the NI chip.

The code examples throughout this manual are written in C, with #define
macros for simple operations. Most are code fragments illustrating specific
examples of NI features. For information about structuring your code and linking
it to run on CM-5 hardware, see Chapter 5. A complete description of the macros
used in this manual can be found in Appendix A.

Intended Audience

This manual is a guide for experienced programmers, not a tutorial. Some
overview information is provided, but this manual is primarily intended to help
knowledgeable CM programmers develop special-purpose code.

Also note that this manual does note cover supervisor-level details of the NI

WARNING: Code that directly accesses the NI chip will not be supported by
future hardware releases. This manual describes the current version of the NI, but
future implementations are free to change any of the NI features described here.

Thus, it is strongly recommended that you use the CMMD software library for
code that directly accesses the CM-5 networks.

Revision Information

This is an updated and revised version of the original Programming the NI
manual (March 1992).

Version 7.1, February 1993 xi
Copyright © 1993 Thinking Machines Corporation

Programming the NI

Organization of This Manual

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

The Network Interface
An overview of the NI's location and function within the CM-5
hardware.

A Generic Network Interface
A description of common features found in most of the NI net-
work interfaces.

The Data Network
The register interfaces and features of the Data Network.

The Control Network
The register interfaces and features of the Control Network,
including the broadcast, combine, and global interfaces.

Writing NI Programs
A brief overview of the process of writing, compiling, and run-
ning an NI program.

Programming and Performance Hints
Useful performance techniques, as well as descriptions of poten-
tial coding problems.

Appendix A Programming Tools

A complete list of the macro tools used for writing NI programs.

Appendix B CMOS_signal man Page

The man page for the CMOST command cMOS_signal ().

Appendix C Sample NI Programs

A selection of short programs that test the examples presented
in the network chapters above.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

About This Manual

Related Documents

These documents are part of the Connection Machine documentation set.

» Connection Machine CM-5 Technical Summary, November 1992

s CMMD Users Guide, Version 2.0, November 1992

= CMMD Reference Manual, Version 2.0, November 1992

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention

Meaning

bold typewriter

italics

typewriter

% bold typewriter
regular typewriter

UNIX and CM System Software commands, com-
mand options, and filenames, when they appear
embedded in text. Also, syntax statements and pro-
gramming language elements, such as keywords,
operators, and function names, when they appear
embedded in text.

Argument names and placeholders in function and
command formats.

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

Version 7.1, February 1993

Copyright © 1993 Thinking Machines Corporation

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Ma-
chine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

If your site has an applications engineer or a local site coordinator, please contact that person directly
for support. Otherwise, please contact Thinking Machines’ home office customer support staff:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet

Electronic Mail: customer-support @think.com
uucp

Electronic Mail: ames!think!customer-support
Telephone: (617) 234 -4000

(617) 876-1111

Xv

Chapter 1
The N etwork Interface

< st G g O S Al SR el Lkt o
S i 3P AT e et Ty .,,,,,.,}-;w,c Gof e sy e T DR L e

PSR SRR AN TP S e VYRR eI

First, a word to the wise. You’re reading this manual for one of two reasons:

= You absolutely, positively must write programs that manipulate the net-
work hardware of the CM-5 at the lowest possible level.

®* You’ve heard about a CM-5 component called the “Network Interface,”
and think it would be interesting to write a program that manipulates it.

If it’s the latter, we strongly suggest that you consider using a higher-level pro-
gramming method instead. Writing code at the level described in this manual
means taking direct control of the Network Interface chip, the part of the CM-5
hardware that manages the machine’s internal communications networks. This
isn’t something that you should be doing unless you have no alternative.

Also, be aware that code that directly accesses the Network Interface chip will
not be supported in future software and hardware releases — your code may re-
quire extensive modification to run. For essential code you should use the CMMD
software interface instead. CMMD gives you nearly the same level of access to
the CM-5 hardware, but provides it through a standard software interface that will
be easily portable to future releases. (For more information, see the CMMD
User s Guide.)

With this warning out of the way, we’ll assume that you’re reading this manual
for the first reason given above, and show you how to make use of the Network
Interface (NI) chip. This manual presents the software tools that you need to pro-
gram the NI and provides code examples throughout that show you how to do
simple network operations on the CM-5.

Version 7.1, February 1993 1
Copyright © 1993 Thinking Machines Corporation

1.1

1.1.1

The CM-5 System: Nodes and Networks

Because the main focus of this manual is the Network Interface chip, it makes
sense to start with an overview of the NI’s location and function within the CM-5
system. The CM-5 contains a large number of processing nodes linked together
by two main internal networks, the Data Network and the Control Network.

Networks

Processing
Nodes

Figure 1. The CM-5 system: Processing nodes linked by Data and Control Networks.

The two networks are similar in design; both are scalable, high-speed data com-
munications networks. The structure and intended purpose of the networks,
however, are quite different. The Data Network is used for high-volume ex-
change of data between nodes. The Control Network is used to control and
synchronize the operations of the nodes.

The CM-5 Networks

The Data Network

The Data Network is the data highway of the CM-5. It’s a high-speed, high-band-
width network designed to handle the simultaneous node-to-node transmission
of thousands of messages.

The Data Network is composed of two halves, the left interface and the right
interface, both of which are connected to all processing nodes. The left and right
interfaces can be used either independently or together as the combined Data
Network.

Terminology Note: This combination of the left and right halves of the Data
Network is sometimes called the “middle” interface by NI programmers.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 1. The Network Interface 3

The Control Network

The Control Network is used for control tasks that require the joint cooperation
of all nodes. It provides three separate functions:

= The broadcast interface distributes a single numeric value to every node.
It consists of two sub-interfaces: a user broadcast interface and a supervi-
sor broadcast interface.

= The combine interface receives a single value from each node, combines
the values arithmetically or logically, and then distributes the combined
result to all nodes.

» The global interface handles global synchronization of the nodes. It con-
sists of a number of distinct interfaces for synchronous and asynchronous
messaging by user and supervisor (OS) code.

For the Curious: The Diagnostic Network

There is also a third major CM-5 network, the Diagnostic Network, used by the
system manager to diagnose hardware problems in the CM-5. However, because
the NI chip is not used to access it, the Diagnostic Network is not discussed fur-
ther in this manual.

1.1.2 Processing Nodes

Each processing node contains a RISC microprocessor, a memory subsystem,
and a Network Interface (NI) chip, linked together in a bus arrangement:

64-bit bus

-«—— Data Network
Memory Subsystem
<«——» Control Network

Figure 2. The components of a typical processing node.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Programming the NI

113

The microprocessor (a SPARC chip in the current implementation) executes your
code. When this manual speaks of the “node” executing a function or accessing
a network, it’s really the microprocessor that does the work.

The memory subsystem consists of up to 32 Mbytes of DRAM memory, which
is managed either by a memory controller or by a set of four vector units (if your
CM-5 has the vector unit option installed).

The NI chip serves as an intermediary between the microprocessor and the two
networks, providing a standard network interface throughout the CM-5.

Partitions and the Partition Manager

Typically, your code doesn’t have access to every processing node in the CM-5.
Instead, your code runs on a partition of nodes that are monitored by a single
Dpartition manager (PM).

"P(P\j P P P v e tP", M
Nodes Partition Manager

Figure 3. A partition of nodes and its partition manager.

The PM is also attached to the Data and Control Networks, and it can communi-
cate with the processing nodes by sending and receiving messages via its own NI
chip. Programs written for the CM-5 normally include two separate files of code,
one for the PM and one for the nodes.

CM-5 Programming Style

The PM and the nodes typically operate in a data parallel style: the nodes execute
identical programs simultaneously, and the PM controls which function the nodes
will execute next. (For more information on program structure, see Chapter 5.)

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 1. The Network Interface 5

1.2 The NI Chip

1.3

The NI chip serves as an intermediary between the microprocessor and the two
CM-5 networks. Each network provides a specific set of network interfaces, and
the role of the Network Interface chip is to make those interfaces available to the
node microprocessor, and thereby to your programs.

Left interface
Data

/ Network Right Interface
\ Broadcast Interface
Control < Combine Interface

Network
Global Interface

Figure 4. NI provides access to features of the Data Network and Control Network.

When the microprocessor directs the NI to send a message via a network inter-
face, the NI dispatches the message and collects any replies from the networks.
The NI uses send and receive FIFOs to hold outgoing messages until they can be
sent, and to hold incoming messages until the microprocessor reads them.

The NI Registers

The NI chip is register-based; its network functions are controlled entirely by
reading and writing NI registers. Access to these registers is provided by
memory-mapping — the NI registers are mapped into the microprocessor’s
memory address space. From a programmer’s point of view, therefore, the NI
appears as a region of memory with some unique properties.

The microprocessor can either examine the registers of the NI chip to see whether
a message has arrived, or it can instruct the NI to signal an interrupt when a mes-
sage arrives. Control of the NI is therefore based on register operations and
interrupts.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Programming the NI

1.3.1 NI Register Types

There are three basic types of NI registers:

FIFO Registers — These “registers” are actually the entry and exit points of
send and receive FIFOs (First-In-First-Outs, or queues) associated with the
CM-5 networks. Writing a value to a FIFO register pushes that value into the
send FIFO of the corresponding network. Likewise, reading the value of a
FIFO register pops a value from the receive FIFO of the network.

Status Registers — These registers are composed of one-bit flags and multi-
bit fields, which indicate the state of the NI and its message FIFOs. For
example, most networks have two important status flags, send_ok and
rec_ok, which indicate the current status of messages being sent or received.

Control Registers — These are status registers containing flags that not only -
report the state of the NI, but also allow you to control it. Altering the value
of a control register’s flags has a corresponding effect on the state of the NI.
For example, each of the Control interfaces has one or more abstain flags that
control whether or not the NI participates in the transactions of the network.

The chapters of this manual that describe each of the networks also describe the
NI registers that are associated with them, and describe the programming tools
you can use to access these registers.

Implementation Note: Some NI queue registers are mapped onto more than one
memory location, and thus appear as regions of memory. Nevertheless, these re-
gions of memory are still considered to be a single “register.” The specific
memory location that you use in writing to these registers gives the NI additional
information about the kinds of network transactions it should perform. (More on
this in Section 2.2.2.)

Performance Note: In terms of cycles, reading and writing NI registers is mid-
way between reading the registers of the microprocessor and reading a value
from processor memory. See Section 6.1.1 for details on the time taken to read
and write NI registers.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 1. The Network Interface Chip 7

1.3.2

1.4

NI Register and Field Names
In this manual, the names of NI registers and register fields are given in the form:
ni_interface_purpose

The interface part of the name identifies the network interface, and is typically
one of the following abbreviations:

dr Data Network (left and right) be broadcast interface
ldr left interface com combine interface
rdr right interface global global interface

The purpose describes the purpose of the register or field. Some common exam-
ples are:

send Register used to send a network message .

recv Register used to receive a message.

send_ok Flag indicating that a message was sent successfully.
rec_ok Flag indicating that a message has been received.

For conciseness, this manual sometimes refers to a register or field by its purpose
alone. However, this is done only when the intended reference is unambiguous.

Writing NI Code

It’s possible for you to write NI code using any programming method that allows
you to read and write memory addresses. However, this manual assumes that NI
programs are written in the C programming language, because there are a large
number of existing C macros that you can use to streamline your code.

These programming tools fall into two categories:

® Accessor macros that read or write the value of a specified register, flag,
or field. (The SEND_OK and REC_OK macros are good examples.)

® Queue macros that take a number of arguments related to the sending of
a single data value, and handle the necessary protocol for sending it.

These tools are introduced individually in the chapters that follow, and there is
a complete list of them in Appendix A.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

1.5

Programming the NI

Finding the C Macro You Need

The predefined C macros typically have names based on the registers and fields
they manipulate. For example, most network interfaces have an NI register
named ni_interface_status that contains the ni_interface_send_ok and
ni_network_rec_ok status flags. There is a single pair of macros, SEND_OK ()
and REC_OK (), that is used to get the send_ok and rec_ok flag for any of the
interfaces that have a ni_interface_status register.

Note: To get access to these predefined macros, your program must #include
the header file cmna.h. (See Chapter 5 for more information.)

Using This Manual Effectively

The first few chapters of this manual are mostly explanatory, describing the net-
works of the CM-5 in detail and showing you how to use the NI programming
tools associated with them. While these network-specific chapters present some
brief code examples, none of these examples constitutes a complete NI program
in and of itself. There’s a fair amount of information that you simply have to
digest before a complete NI program makes sense.

Beginning CM-5 programmers should read through the “generic” network de-
scription in Chapter 2, and then read both of the network-specific chapters (3 and
4), before turning to the complete sample program presented in Chapter 5.

Experienced CM-5 programmers should read through Chapter 2 and skim chap-
ters 3 and 4 to get a sense of how the networks operate, and then proceed to the
sample program in Chapter 5 to see how NI programs are structured.

Whatever your level of experience, Chapter 6 presents a number of important '
performance strategies and potential sources of programming errors that you
should know about.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 1. The Network Interface 9

1.6 WARNING: Experiment at Your Own Risk

In writing code that manipulates the NI chip, you are taking control of the lowest
level of the CM-5’s hardware. That kind of power does not come without corre-
sponding responsibilities and hazards.

This manual sets strict protocols for reading and writing the registers of the NI.
When you use the features of the NI in the manner described here, you should
encounter no problems outside of the occasional error message.

If you step outside the bounds, however, the results can be as nasty as they are
unpredictable. In some cases reading and writing NI registers incorrectly can
even cause your partition of processing nodes to crash, potentially disrupting
other timesharing users of the CM-5.

So remember, if you choose to experiment with the NI, you have been warned!

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2
A Generic Network Interface

2.1

Each network interface of the Data and Control Networks has a corresponding
register interface — a set of NI registers that are used to send and receive mes-
sages through the network. Many of these register interfaces have a number of
features in common. This chapter presents a “generic” network interface that de-
scribes these features. With one exception (the global interface), all network
interfaces conform to the model described here. Individual variations for each
network interface are described in following chapters.

Important: The functions described in this chapter are pseudocode representa-
tions, not actual functions. You’ll get an error if you try to call one of the
nonexistent “generic” functions described here.

Network Messages

For the purposes of this manual, a network message is a sequence of word-length
(32-bit) values. Its content, format, and length depend on the network. Each mes-
sage is accompanied by a small amount of auxiliary information (such as the
length of the message, a tag field, etc.). The format of this auxiliary data is also
network-dependent.

Sending a message involves writing its sequence of values to the send FIFO regis-
ter of a network interface. As the message is written, its values are collected in
the send FIFO. When the entire message has been written to the FIFO, the NI
begins trying to send the message through the network.

Similarly, receiving a message involves reading its values from the receive FIFO
register of the network interface.

Version 7.1, February 1993 11
Copyright © 1993 Thinking Machines Corpor.

12

2.2

2.2.1

Programming the NI

When a message arrives from one of the network interfaces, the NI accumulates
the message in the corresponding receive FIFO. When the entire message has
been received, the NI sets a status flag, indicating a message is available. Your
program can then read the individual words of the message from the receive
FIFO.

Sending a Message

For each network interface, there is a single send FIFO, but two FIFO registers
are used to access it in the process of sending a message:

ni_interface_send first Used for first value of a message.
ni_interface_send Used for the rest of the message.

Important: There is a specific protocol to follow in sending a message:

= The first value of a message must be written to the send_£irst FIFO
register. This tells the NI that a message is being composed, and also speci-
fies the message’s auxiliary information (see Section 2.2.2 below).

® The remaining values (if any) must be written to the send FIFO register.

If this protocol is not followed, an error is signaled and the message currently
being composed is discarded.

Message Discarding
A message being written to the send FIFO register of a network interface can be
discarded for any of a number of reasons:

®* The send FIFO may be temporarily full.

® The supervisor may have disabled message sending for that interface.

* The message may not have been written according to protocol.
Whatever the reason, when a message is discarded, it is completely discarded.

Any previously written values for that message are removed from the send FIFO,
and a new message can be started by writing a value to the send_£1rst register.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. The Generic Network Interface 13

S DTG O SN 308 SN SIS AL 4 SO0 g 5 T 05 Y UTIAINE b o ARG PO SIS 04 NN LD BN 40 NN L PN O
L B O S B A B L S Oy S R Y Y e

2.2.2

2.2.3

Performance Note: You can use message discarding to your advantage and
thereby make your code more efficient. (See Section 6.1.3.)

Auxiliary Information

The auxiliary information of a message typically includes the length of the mes-
sage in words, as well as network-specific data such as a message tag. This
auxiliary information is transmitted implicitly when you write the first value of
a message to the send_f£irst register.

The send_f£1irst register for each network interface is actually mapped onto a
block of memory locations. Writing a value to any one of these locations has the
effect of writing that value to the send_f£irst register, but the actual memory
location that you use implicitly supplies the auxiliary information of the mes-
sage. (The low-order bits of the address actually contain the auxiliary data itself.)

Another way of saying this is that the length of a message, among other things,
determines the send_f£irst address you must use to send it.

Writing a Message
For each interface, there are two send_£irst macros,

CMNA_interface_send_£1irst (auxiliary-info, value)
CMNA_interface_send_f£irst_double (auxiliary-info, value)

that are used to write the first vaiue of a message to the send_£irst register.
The only difference between them is that the send_first macro writes an
unsigned value, while send_first_double writes a double. However, for
these macros it’s not the type of data being sent that’s important, only the length.

The send_first macro is intended to be used for sending word-length data,
and the send_£1irst_double macro is intended for sending double-word data.
In each case, you should coerce the values you send to the appropriate data type.
For example, to send a data value of type £loat, you must first cast it as an
unsigned value. To send a negative integer value, you must also first coerce it
to an unsigned value.

Performance Note: There are two kinds of send_£irst macro so that you can
use doubleword register operations to make your code more efficient. (See Sec-

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

14

2.3

Programming the NI

tion 6.1.2 for more information.) For the most part, however, this manual focuses
on single-word operations for clarity.

For the second and succeeding values of a message there is a different group of
macros. For each network interface there are three macros that write values to
the send register, one for each of the three data types you can send:

CMNA_interface_send_word (value)
CMN2_ interface_send_£loat (value)
CMNA_interface_send_double (value)

The send_word macro writes an unsigned word-length value, and the other
two macros write values of the indicated data types. Here there are three macros
to allow you to send values of differing data types without having to coerce them.
You’re not restricted to using only one data type, of course; you can use any com-
bination of send_type macro calls when sending a message.

Important: Remember that the send_t#ype macros do not work unless they are
preceded by a send_£irst or send_first_double call for the same network.
You’ll get an error if you attempt to use them to send the first value of a message.
If you have only one value to send, use the appropriate send_£irst macro.

Receiving a Message

For each network interface, the following register is used to receive messages:
ni_interface_recv FIFO register from which values are read.

A message is received by reading its value(s) in order from the recv register, one
at a time. There are three network-specific message-reading macros, one for each
network interface:

int value = CMNA_inferface_receive_word() ;
int value = CMNA_interface_receive_float () ;
int value = CMNA_interface_receive_double () ;

As with the send_type macros, you are not restricted to reading values of a par-
ticular type. You can use any combination of the rec_zype in reading a message.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

o

Chapter 2. The Generic Network Interface 15

24

2.4.1

When a message arrives in the receive FIFO, the NI sets the rec_ok flag in the
status register (see Section 2.4). You can repeatedly test the rec_ok flag to
determine whether a message has arrived (for example, in a top-level loop).

The Status Register

The ni_interface_status register can be used to check on the progress of a
message that is being sent, to detect when a message has been received, and to
retrieve information about a received message. The status register includes the
following flags and fields, which are the same for each of the network interfaces:

ni_interface_status Status register.
ni_send_ok Flag, status of message being sent.
ni_send space Field, space left in send FIFO.
ni_send_empty Flag, indicates empty send FIFO.
ni_rec_ok Flag, indicates arrival of a message.
ni_rec_length Field, total length of received message.
ni_rec_length_left Field, words left in receive FIFO.

Note: The rec status fields always reflect the “current” message in the receive
FIFO — the message that includes the next word waiting to be read from the
receive FIFO. If there is no pending message, the fields are undefined.

Status Fields for Message Sending

The “Send OK” Flag

If the send FIFO becomes full, all attempts to write a message (either to start or
to continue one) cause the message currently being composed to be discarded.
You can tell that a message has been discarded by examining the send_ok flag.

When the first value of a message is written to the send_first register, the
send_ok flag is set to 1. As long as the message has not been discarded, this flag
remains 1, indicating that the message is still being accepted. If the send_ok flag
is still 1 after you have written the final value of a message, you can assume that
that message has been accepted for delivery, and that you can start writing the
next one. If the message is discarded, the send_ok flag is set to 0, indicating that
the message has not been sent, and you should retry sending the entire message.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

16

Programming the NI

24.2

24.3

The “Send Space” Field and “Send Empty” Flag

The send_space field contains an estimate of the total space (in 32-bit words)
left in the FIFO. The actual space remaining may be less; nl_send_space is
usually correct, but may become invalid because of supervisor activity (such as
when processes are swapped in and out). User code should not assume that push-
ing a message shorter than this value is always successful. The send_empty flag
is 1 whenever the send FIFO is empty — that is, when there is no pending mes-
sage in the FIFO.

Programming Note: NI programmers typically write an entire message to the
send FIFO and only then check the send_ok flag to see whether it was accepted.
(See Section 6.1.3 for more information.) For this reason, the send_space field
and send_empty flag typically aren’t used by NI programmers.

Status Fields for Message Receiving

The “Receive OK” Flag and “Receive Length” Fields

Whenever a message is pending in the receive FIFO, the rec_ok flag is set to
1, and remains 1 while any part of the message remains to be read from the FIFO.
When no messages are waiting to be read, the flag is set to 0. (Attempting to read
from the FIFO when rec_ok is O signals an error.)

The ni_rec_length_left field contains the number of words of the current
message that are left in the receive FIFO. You can assume that it is safe to read
this many words from the receive FIFO. If you need the message’s original
length, the ni_rec_length field always contains the total length (in words) of
the current message as it was when it was received.

Reading the Status Register Fields

The general method for reading the value of an ni_interface_status field or
flag is to read the value of the entire status register, and then extract the required
fields from that value. (This cuts down the overhead of repeatedly reading the
value of the register.)

Each network has a macro that obtains the current value of the status register:

int value = CMNA_interface_status ()

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. The Generic Network Interface 17

2.5

Because the position and size of status fields and flags are the same for most of
the network interfaces, there is a single set of macros that extract the status fields
from the value returned by CMNA_interface_status:

SEND_OK (status) Gets send_ok flag from status value.
SEND_SPACE (status) Gets send_space field.

SEND_EMPTY (status) Gets send_empty flag.

RECEIVE_OK (status) Gets rec_ok flag.

RECEIVE_LENGTH (status) Gets rec_length field.
RECEIVE_LENGTH_LEFT (status) Gets rec_length_left field.

For example, to get the three send fields from the broadcast interface status reg-
ister, you could use the following C code:

int value = CMNA bc_status();

int send_ok = SEND_OK(value);

int space_left = SEND_SPACE (value);

int send queue_empty = SEND_EMPTY (value) ;

And to get the rec fields from the right data interface status register, you could
use the following code:

int value = CMNA_RDR_status();

int rec_ok = RECEIVE_OK(value);

int message_length = RECEIVE_LENGTH (value) ;
int words_to_go = RECEIVE_LENGTH_LEFT (value) ;

¥

Abstaining from an Interface — The Control Register

Each of the Control Network interfaces has a control register containing at least
one abstain flag, a flag that you can set to cause a node to ignore the transactions
of the network. The control register and abstain flag(s) typically have names like:

ni_interface_control Control register.
ni_rec_abstain Normal receive abstain flag.
ni_reduce_rec_abstain Combine reduction abstain flag.

Note: The global interface, always the exception, uses a different name for the
control register. See Section 4.3.2 for more information.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

18

Programming the N

2.5.1

2.5.2

2.5.3

Effect of Abstain Flags

The rec_abstain flag, when set to 1, causes the NI to “abstain” from receiving
messages via the corresponding interface. That is, the NI does everything neces-
sary to ignore the transactions of the interface:

= Arriving messages are simply ignored — they “disappear” with no indica-
tion of their arrival, and the rec_ok flag remains 0.

= Messages that require the participation of every node (global synch, etc.)
are allowed to complete without the abstaining node’s participation.

= Messages that require a value (scan messages, for example) are effectively
given an appropriate identity value for the type of message being sent.

While the rec_abstain flag is set for a given interface, it is an error to try to
send a message via that interface from the abstaining node. Attempts to write the
send_first or send registers under these circumstances signals an error.

Combine Interface Abstain Flags

The ni_reduce_rec_abstain flag is only defined for the combine interface,
and only applies to reduction operations. In addition, reduction operations treat
the value of the rec_abstain flag differently from all other interface opera-
tions. For more information, see Section 4.2.9.

Reading and Writing the Abstain Flag

To read and write the the abstain flag of a network, use these macros:

value = CMNA_read abstain_ flag (register) ;
CMNA_write_abstain_flag (register, value) ;

The register argument is a register address constant, which is defined separately
for each network.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. A Generic Network Interface 19

S N O N AP 1 N 5245 4. S PG G rNGE NN S, SO SPNEPNGI GEPOGNIT G S N IO NG L SISO I UGN VRN 0 Y NP NI N S g,
T A B o B B e O T B B B T L S s v inmpgans,

2.5.4 Using the Abstain Flag Safely

2.5.5

The abstain flag for a given network should only be changed when that network
is not in use. This means that there must be no messages traveling through the
network and you must not be either writing to a send queue or reading from a
receive queue in any node.

This generally requires that you use one of the NI’s global synchronization fea-
tures to bring operations to a halt in all nodes while the abstain flags are changed.
(See Section 4.3 for a discussion of the global interface synchronization fea-
tures.) The effects of changing a network’s abstain flags while the network is in
use are unpredictable — your code may run, producing erroneous results, or it
may signal an error.

Being a Good Neighbor

Important: Some programming systems (such as CMMD) use the abstain flags
for their own purposes. These systems are written with the assumption that the
abstain flags do not change unexpectedly, and if the flags do change these sys-
tems may not operate correctly.

When you alter the values of the abstain flags, you must take care to save the
original settings of these flags and to restore them before handing control back
to these systems. Failing to do so can cause either user or OS code to signal ob-
scure errors that are hard to trace.

Yersion 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

20

2.6 Using a Generic Network Interface

To sum up, the strategy to use in accessing network interface registers is:

®= To send a message, write the first word to the send_£irst register, and

any remaining words to the send register.

® Check the send_ok flag to see if the message was discarded, and if so,

retry sending the entire message.

= To receive a message, check the rec_ok flag to see if a message is in the
FIFO, and if so, use the 1ength and 1ength_left fields to determine the

number of words to read from the recv register.

®= Use the remaining fields of the status register to obtain other interface-

specific information about the state of the send and receive FIFOs.

= Use the abstain flag(s) in the control register to cause individual

nodes to ignore the transactions of the interface.

2.7 From the Generic to the Specific

The interface described in this chapter is an idealized view of a network inter-
face, lacking a specific purpose, a detailed description of message protocol, or

network-related restrictions on usage of the interface registers.

The next four chapters present a description of the Data Network interfaces and
the three Control Network interfaces. Each chapter presents the purpose, proto-
col, and restrictions of a real CM-5 network, building on the material presented

in this chapter.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

the NI

Chapter 3
The Data Network

O 7L ALY, S o

N AN

L O ST LTINS g I e
RS

7 POMBENIE S

The Data Network consists of two halves, the left interface (LDR) and right inter-
face (RDR). Each half of the network is connected to all nodes, and can be used
independently. The two halves of the network can also be accessed together as
the single Data Network (DR):

Figure 5. The three interfaces of the Data Network: DR, LDR, and RDR.

For each of these network interfaces there is a separate register interface. This
chapter describes these register interfaces, and shows how to use them to send
messages through the Data Network.

Terminology Note: The network acronyms (DR, LDR, RDR) are a historical
anachronism, and are retained in this manual only because the C macros used to
access the Data Network still refer to the three interfaces by the old abbrevi-
ations. In addition, the obsolete term “router” is occasionally still used in the
programming constants to refer to the Data Network hardware. “Network” is
currently preferred, as a more generic and thereby more accurate descriptive
term.

Version 7.1, February 1993 21
Copyright © 1993 Thinking Machines Corpor:

22 Programming the NI

3.1 The Data Network Register Interfaces

The three Data Network interfaces are based on the generic model presented in
Chapter 2. There are three sets of interface registers: one for each half of the
network (LDR and RDR), and one for the combined (DR) network.

Each network interface can be used to send and receive messages, with the fol-
lowing conditions:

® Sending a message via the DR actually sends it by either LDR or RDR,
depending on the load of the two interfaces.

* In the current implementation, the DR interface cannot be used to receive
any messages.

* The DR interface is mutually exclusive with the two half-network inter-
faces. In other words:

» Writing a message to the DR send FIFO excludes using either the
LDR or RDR at the same time. Likewise, writing a message to either
the LDR or RDR send FIFOs excludes using the DR interface.

» While a message is being sent, any excluded interface(s) remain ex-
cluded until the message has been written and accepted for delivery
by the network. Also, the status register(s) of excluded interface(s)
are invalidated and should not be used.

= The two half-network interfaces are not mutually exclusive, and in fact
can be used simultaneously. In other words, network messages can be sent
and received concurrently via both the LDR and RDR.

For each interface, the following registers are used to communicate with the Data
Network:

ni_dinterface_send_£irst Used to send the first value of a message.

ni_dinterface_send Used to send the rest of the message.
ni_dinterface_recv Used to receive a message.
ni_dinterface_status Status register.

The dinterface part of these names is a unique abbreviation for each interface:

dr — Data Network 1dr — left interfface = rdr — right interface

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The Data Network 23

e O R L A B B B L R O B R O S B i S U S S ol

3.2

3.3

Data Network Messages

The Data Network is essentially asynchronous in operation — nodes can send
and receive messages freely, so long as enough nodes are receiving messages so
that the network does not become clogged (see Section 3.6).

The destination node-of a Data Network message is determined by an address
word that is added to to the message as it is being written to the send FIFO. (Note:
The address word is removed in transit. It does not count as a message word with
reference to the length limits of the send and receive FIFOs.)

Data Network messages are atomic; individual messages are not sent through the
network until all the words of each message have been written into the send
FIFO, and arrival of each message is not reported until all the words of the mes-
sage have arrived in the receive FIFO.

The component words of a single Data Network message are always received in
the same order as they were sent. However, if you use multiple Data Network
messages as “packets” to send long messages from one node to another, the order
in which the packets arrive is not guaranteed to be the same as the order in which
they were sent.

Your code should not depend on having separate Data Network messages sent to
the same node arrive in some predictable order. Instead, your code should in-
clude data in the packets (for example, an offset into the original message) that
allows the receiving node to arrange the packets into the correct order.

Data Network Addressing

The Data Network delivers messages to specific processing nodes in the CM-5,
as indicated by an address word that is added to each message. Each node has
a unique address based on its location in its partition, and these addresses run
from O (for the first node in the partition) up to one less than the total number
of nodes in the partition. (See Figure 6.)

Note: The partition manager is always located at an address outside the partition,
and so does not occupy any of the relative addresses of the partition. (For more
information, see Section 5.1.)

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

3.4

Nodes PiIP|{P{|P||P| --|P PM
Addresses ¢ 1 2 3 4 n-1 Partition Manager

Figure 6. Addressing of nodes in a partition.

You can get the address of the node executing your code, as well as the total
number of nodes in the current partition, by examining these variables:

CMNA_self address Address of current node.
CMNA_partition_ size Number of nodes in current partition.

The values of these variables are automatically defined for each of the nodes.
The value of CMNA_partition_size is also defined for the partition manager.

Sending and Receiving Messages

The message format for all three Data Network interfaces is the same. The first
word of the message is a 20-bit destination address that must be zero-extended
to 32 bits. Failure to ensure that the address word is zero-extended to the full 32
bits can trigger a serious error, even causing your partition to crash.

The remaining words form the content of the message, which must be no longer
than the length limit of the send FIFO.

Programming Note: The length limit of the Data Network send FIFOs is given
by the constant MAX_ ROUTER_MSG_WORDS (currently 5 for all three interfaces).

The auxiliary information of the message consists of the length of the message
in words (excluding the address word), and a four-bit tag value. See Section 3.5.1
for information on the use of tag values. ‘

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The Data Network 25

3.4.1

3.4.2

Sending Messages

The sending interface used for the three Data Networks is the same as the generic
interface in Chapter 2. The following FIFO registers are used to send messages:

ni_dinterface_send first Used for first value of a message.
ni_dinterface_send Used for the rest of the message.

The dinterface part of these names is a unique abbreviation for each interface:
dr — Data Network 1dr — left interface = rdr — right interface
and for each dinterface there are corresponding send_£irst and send macros:

CMNA_dinterface_send_first (tag, length, value)
CMNA_dinterface_send_£irst_double (tag, length, value)

CMNA_dinterface_send_word (value)
CMNA_dinterface_send_£f1loat (value)
CMNA_dinterface_send_double (value)

For the send_first macros, the length argument is the length of the message
in words (excluding the address word), the tag argument is the message’s tag
value, and value is the first value of the message.

For the send macros, value is the second and succeeding values of the message.

Note: Currently you are limited to using tag values from O to 7. All other tags
are reserved for supervisor use.

Receiving Messages

The Data Network message-receiving interface is as described in Chapter 2. The
following register is used for receiving Data Network messages:

ni_dinterface_recv FIFO register from which values are read.

The dinterface abbreviation is the same as for the send registers.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

26 Programming the NI

To receive a message from the LDR or RDR, use the network-specific reading
operations described in Section 2.3:

value = CMNA_dinterface_receive_word() ;
value = CMNA_dinterface_receive_float() ;
value = CMNA_dinterface_receive_double () ;

Important: There are no message-receiving macros for the DR. You must use
the LDR and RDR to receive messages sent via the DR — the DR interface cannot
be used to receive messages.

3.5 The Status Register

The status register for each of the Data Network interfaces contains the following

sub-fields:
ni_dinterface_status Status register.

ni_send_ok Flag, status of message being sent.
ni_send_space Field, space left in send FIFO.
ni_rec_ok Flag, indicates receipt of message.
ni_rec_length Field, total length of message.
ni_rec_length_left Field, words left in the FIFO.
ni_rec_tag Field, tag value of the message.
ni_send_state Field, status of send FIFOs.
ni_rec_state Field, status of receive FIFOs.

ni_router_done_complete Flag, indicates empty send FIFOs.

The macros used to get the ni_interface_status for each network interface are:

int value = CMNA_dr_send _status () ;
int value = CMNA_ldr_ status();
int value = CMNA_rdr_status();

You can obtain the values of the send_ok, send_space, rec_ok and
rec_length flags and fields for each network by using the field extractors de-
scribed in Chapter 2 (Section 2.4.3).

The remaining flags and fields are described in the sections below.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The Data Network 27

P

e A AT 3 AN AN BTN P ISP L N, I N AN AN I 0 Ny PG PV, 1 8 BN | NSNS NS A SAMIN, JEPANN. P RN N PN A PS03 8
e A By S By S R i R A ViR B 8 8 BT S s B S B B E

3.5.1

Programming Note: Along with checking the rec_ok flag to determine wheth-
er there is a message to read, you must also check the tag value of a message
before retrieving it. (See the section below on message tags.)

Implementation Note: The ni_dr_send_ state and ni_dr_rec_state
fields, as well as the flag ni_router_done_complete, are intended to apply
to all three interfaces at once, and thus are only accessible from the DR interface
(that is, they are only defined for the ni_dr_status register).

Message Tags

The tag values of Data Network messages are used to distinguish between differ-
ent types of Data Network messages. The status register field rec_tag always
contains the tag value that was sent with the current message. To get the
rec_tag field, use the macro:

RECEIVE_TAG (Status)

Some tag values are reserved for supervisor use, to distinguish between supervi-
sor and user messages. The remaining tags can optionally be used in user
programs to distinguish different types of user messages.

IMPORTANT — Check the Tag before Receiving a Message

Tag values are not mandatory. You can, for instance, simply supply a tag value
of O for all Data Network messages. However, this does not mean that you can
simply ignore tag values altogether. The CM-5 operating system itself uses inter-
rupt tags. Whether or not you use tags yourself, you must always check the tag
field of a Data Network message before retrieving it, so that you do not acciden-
tally read a message intended as an interrupt.

The Data Network only checks the tag field of a message after the message has
been delivered to the receive FIFO. If the message has a tag that is set to signal
an interrupt (either by the user or by the supervisor), the appropriate interrupt is
signaled, with the assumption that the interrupt handler takes care of removing
the message from the FIFO.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

28

Programming the NI

3.5.2

This means that if you’re not careful, you can accidentally read a message with
an interrupt-triggering tag value before the NI has signaled the interrupt. The ef-
fect of doing so is unpredictable; an error may be signaled, or your partition may
crash. To avoid this problem, always check the tag of a Data Network message
before retrieving it, to make certain that it is neither a supervisor message or a
message with a tag value that you have assigned to trigger an interrupt.

Message Tags and Interrupts

Tag values can be used to trigger interrupts; when a message with an interrupting
tag value becomes available for reading in the receive FIFO, the NI signals an
interrupt to the microprocessor. Tag value interrupts can be used to cause the
microprocessor to execute a specific section of code.

For CMOST Users: You can use CMOST commands to instruct the NI to signal
an interrupt when it receives a message with a specific tag. This interrupt causes
the processing node to execute a specific routine of your program.

The cMOS_signal system call is used to set up an interrupt:
CMOS_signal (, signal, user_function, tag_mask)

The signal argument is the signal type, and must be the predefined constant
s1IeMSG. The user_function argument is the name of a user-defined function that
should handle receiving and processing the message.

The tag_mask argument is a 16-bit field, one bit for each possible value of the
tag. If bit n in this mask is set, then the receipt of a message with a tag of n causes
user_function to be executed. (Remember that you are limited to using only the
first four bits of this mask, corresponding to the tags 0 through 7.)

So, for example, the function call
CMOS_signal (SIGMSG , my_msg_handler , OXFE);

arranges the NI interrupt system so that when a Data Network message with a tag
from 1 to 7 is received, the user-defined procedure my_msg_handler is called.

Note: To use this function, you must #include the file cmsys/cm_signal.h.
For more information on cMOS_ signal, see the UNIX manual page for the func-
tion. (This is included as an appendix to this document.)

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The Data Network 29

3.5.3 The Send and Receive State Fields

The DR interface is mutually exclusive with the LDR and RDR interfaces. It is
an error to try to write a message to the DR send FIFO while there is a partially
completed message in either the LDR or RDR send FIFOs.

Likewise, having a partially completed message in the DR send FIFO makes it an
error to try to send a message via the LDR or RDR FIFOs. In either case, the status
registers and FIFOs of the excluded interface(s) are invalidated.

You can use the ni_dr_send_state and ni_dr_rec_ state fields to deter-
mine which interfaces are in use.

ni_dr_send_state is an integer from 0 to 2, with the following meanings:

0 No partial messages in any send FIFO.
1 Partial message in the DR send FIFO.
2 Partial message in either or both of the LDR or RDR send FIFOs.

ni_dr_rec_state is also an integer from O to 2:

0 No partial messages in any receive FIFO.
1 Reserved. (The DR interface cannot receive messages.)
2 Partial message in either or both of the LDR or RDR receive FIFOs.

You can obtain the values of these fields by using the following macros:

DR_SEND_STATE (status)
DR_RECEIVE_STATE (status)

For example:

int value = CMNA_LDR_status();
int send_state = DR_SEND_STATE (value);
int rec_state = DR_RECEIVE STATE (value);

Implementation Note: The ni_dr_send_state and ni_dr_rec_state
fields exist only for the DR interface (that is, are only accessible from the
ni_dr_status register).

Usage Note: The two half-network interfaces (LDR and RDR) are not mutually
exclusive. There is no restriction on having partially completed messages simul-
taneously in the LDR and RDR FIFOs. (This kind of simultaneous message
sending is one reason that the LDR and RDR interfaces exist.)

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

30

Programming the NI

3.5.4 The Network-Done Flag

3.6

The ni_router_done_complete flag is used by the Control Network as part
of its network-done message function. This feature is designed to make it easy
to synchronize the nodes after a Data Network operation. For more information,
see Section 4.2.8.

You can use the following macro to access this flag:

DR_ROUTER_DONE (status)

For example:

int value = CMNA_LDR_status();
int network_done = DR_ROUTER_DONE (value) ;

Data Network Usage Note: Receive before You Send

An important strategy to keep in mind when using the Data Network is “Receive
before you send.” That is, in most cases you should structure your code so that:

® Each node attempts to read a message from the Data Network before send-
ing a new message into it.

® If a node is unable to send a message, the node attempts to read a message
to help decrease the network load.

While the Data Network has a large capacity for messages from nodes, the sheer
number of nodes connected to it can simply overwhelm it if the nodes repeatedly
send messages into the network without attempting to receive them. For this rea-
son, your code should be biased towards removing messages from the network
rather than adding them.

However, your code should also provide fair opportunities for both receiving and
sending, where “fair” means that the ratio between the two actions should be
bounded both below and above, and where “opportunity” means the opportunity
to attempt sending or receiving a message, whether or not the attempt is success-
ful. Thus, the sending and receiving portions of your code should be called with
fairly equal frequency.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The Data Network 31

3.7

When you are using the LDR and RDR concurrently, you should likewise main-
tain a balance in using both interfaces, so that neither interface becomes more
heavily loaded than the other.

In short, the rule of thumb is: “Receive before you send, but receive and send
fairly.”

Note: Some applications use the LDR and RDR interfaces for completely differ-
ent purposes, and thus do not normally maintain a load balance between the two
halves of the Data Network (that is, one network interface may be used less often
than the other). Nevertheless, such application code should still try to maintain
a receive/send balance within each of the two network interfaces.

Examples

The examples shown below are code fragments intended to be run on the pro-
cessing nodes. See Chapter 5 for a discussion of large-scale program structure.

Also, since the interfaces for the DR, LDR, and RDR are virtually identical, the
examples below are written for the LDR only. Appropriate functions for the other
network interfaces can be obtained by appropriate substitution of names.

Sending and Receiving a Message

Here is a pair of functions that send and receive messages via the LDR interface.
The message is assumed to be composed of length words of data, and is sent with
the specified tag value to the node with the given dest_address.

int LDR_send (dest_address, message, length, tag)
unsigned dest_address, tag;
int *message;
int length;
{ int i;
CMNA _ldr_send_first(tag, length, dest_address);
while (length--) CMNA_ldr_send word(* (message++));
return (SEND_OK(CMNA ldr_status())};
}

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

32 Programming the NI

/* Highest tag NOT currently assigned as interrupt */
int tag_limit=0;

int LDR_receive (message, length)
int *message;
int length;

int i, tag = 999;
/* Skip messages currently assigned as interrupts */
while (tag>tag_limit) {

if (RECEIVE OK(CMNA ldr_status()))

tag = RECEIVE_TAG(CMNA_ ldr_status());

}
while (length--)

* (message++) = CMNA_ldr_receive_word() ;
return (tag):;

}

For example, the following code fragment causes each node to send a message
to the node with the next-higher node address. (The node with the highest ad-
dress sends a message to node 0.)

int next_node = (CMNA self_ address + 1)

% CMNA_partition_size;
int i, message[MAX ROUTER_MSG_WORDS] ;
for (i=0, i<MAX ROUTER_MSG_WORDS, i++) message[i]=i;
LDR_send (next_node, message, MAX ROUTER_MSG_WORDS, 0);
LDR_receive(message, MAX ROUTER_MSG_WORDS) ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Sending and Receiving Long Messages

Of course, the above functions are limited by the size restriction on Data Net-

work messages.

If you have a lot of data to send, you’ll probably want to use a

function that can send a message of any word length, breaking it up into chunks

as appropriate.

Here’s such a function, which handles both sending and receiving the message
in a single function call:

/* Send/Receive function with no length restriction */
LDR_send receive_msg(dest_address, message, length,

tag, dest)

unsigned dest_address, tag;

int
int

int
int
int
int
int

*message, *dest;
length;

packet_size=MAX ROUTER_MSG_WORDS-1;
send_size, receive_ size;

offset, source_offset=0, dest_offset;
words_to_send=length, words_received=0;
count, rec_tag, status;

while ((words_received<length) || (words_to_send)) {
/* First try to receive a packet */
status=CMNA_ldr_status();
if (words_received<length &&

RECEIVE_OK(status) &&
RECEIVE_TAG(status) <= tag_limit) {

dest_offset = CMNA_ldr_receive_word();
receive_size=

RECEIVE_LENGTH_LEFT (CMNA_ldr_status());

for (count=0; count<receive_size; count++)

dest [dest_offset++]=CMNA_ldr_receive_word() ;

words_received += receive_size;

}

Version 7.1, February 1993

Copyright © 1993 Thinking Machines Corporation

34 Programming the NI

/* Now try sending a packet */
if (words_to_send) {
send_size = ((words_to_send < packet size) ?
words_to_send : packet size);
do {
CMNA ldr_send first(tag, send_size+1,
dest_address) ;
/* Send offset of msg data being sent */
CMNA_ldr_send_word(source offset);
offset=socurce offset;
for (count=0; count<send_size; count++)
CMNA_ldr_send word(message [offset++]);
} while (!SEND_OK(CMNA_ ldr_status()));
source_offset=offset;
words_to_send -= send_size;
}o/* if */
} /* while */
}

Here's an example of how to call this function:

#define LONG_FACTOR 5

int mirror_node = (CMNA_partition size-1) -
CMNA self address;

int i, length = MAX_ROUTER_MSG_WORDS*LONG_FACTOR;
int send[MAX_ROUTER_MSG_WORDS*LONG_FACTOR] ;
int receive [MAX_ROUTER_MSG_WORDS*LONG_FACTOR] ;

for (i=0, i<length, i++) long _message[il)=i;

LDR_send receive_msg(mirror_node, send,
length, 0, receive);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The Data Network 35

Interrupt-Driven Message Retrieval

Using interrupt-driven message retrieval simply requires that you define a han-
dler to be called when an interrupting message arrives. The handler should take
no arguments, and its returned value is ignored.

/* Message handler for interrupt-driven LDR test */
#include <cm/cm_signal.h>

int interrupt_done = 0;

int interrupt_expect_length;

int interrupt_receive [MAX ROUTER_MSG_WORDS] ;

void LDR_receive_ handler ()
{
int temp=tag_limit;
tag_limit=3;
LDR_receive (interrupt_receive,
interrupt_expect_length) ;
tag_limit=temp;
interrupt_done=1;

}

You use cMOS_signal to inform the NI that it should signal an interrupt from
some or all of the possible tag values. (Remember that you must #include the
header file cmsys/cm_signal to have access to cMOS_signal.) For example:

int i, next_node, message_length=MAX ROUTER_MSG_WORDS;
int message [MAX ROUTER_MSG_WORDS] ;

for (i=0, i<message_length, i++) message[i]=i;
next_node = (CMNA_self_address+1)%CMNA partition_size;

/* signal interrupts for non-zero tag values */
CMOS_signal (SIGMSG , LDR _receive_handler , 14);

/* Send message with an interrupt tag (3) */
interrupt_done = 0;

interrupt_expect_length = message_length;
LDR_send (next_node, message, message_length, 3);

/* Wait for handler to signal interrupt finished */
while (interrupt_done==0) {};
printf ("Received message: ");
for (i=0, i<message_length, i++)
printf("sd ", messageli]):;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

.36 Programming the NI

Sending via LDR and RDR Simultaneously

One advantage to having the two sub-interfaces in the Data Network is that you
can send messages simultaneously through the LDR and RDR. For example,
here’s a pair of functions that send a single message via both interfaces, compar-
ing the received results to make sure that the message was received properly:

/* Send/Receive functions using LDR/RDR in tandem */
void LDR_RDR_send (dest_address, message, length, tag)
unsigned dest_address, tag:
int *message, length;

int i;
CMNA_ldr_send first(tag, length, dest_address);
CMNA_rdr_send first(tag, length, dest_address);
for (i=0; i<length; i++) {
CMNA_1ldr_send word (message[i]);
CMNA_rdr_send word(message[i]);
}
}

int LDR_RDR_receive (message, length)
int *message, length;:
{
int i, 1ldr_value, rdr_value, length_received_ok=0;
while (!RECEIVE_OK(CMNA ldr_status()) ||
!RECEIVE_OK(CMNA_ rdr_status())) {}
for (i=0; i<length; i++) {
ldr_value=CMNA_ldr_receive_wozd() ;
rdr_value=CMNA rdr_receive_word () ;
if (ldr_value==rdr_value) {
message [i] =1dzr_value;
length received_ok++;
}
}

return(length_received_ok) ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4
The Control Network

The Control Network consists of three interfaces, the broadcast interface (BC),
the combine interface (COM), and the global interface:

Figure 7. The three interfaces of the Control Network: BC, COM, and global.

The broadcast and combine interfaces are very similar, and there are some inter-
nal interactions between these two interfaces that you’ll need to keep in mind.
The global interface, however, is different in both structure and purpose from
either of the other two interfaces.

This chapter describes the three Control Network interfaces, and presents the
registers that are used to manipulate them.

Version 7.1, February 1993 37
Copyright © 1993 Thinking Machines Corporation

38

Programming the NI

4.1

4.1.1

4.1.2

The Broadcast Interface

The broadcast interface is used to broadcast a message from a single source node
to all nodes in the same partition (including the broadcasting node).

Implementation Note: Because of the way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 6.2.6.)

Broadcast Register Interface

The broadcast register interface is based on the generic model presented in Chap-
ter 2. The following NI registers form the broadcast interface:

ni_bc_send first Used to send the first value of a message.

ni_bc_send Used to send the rest of the message.
ni_bc_recv Used to receive a message.
ni_bc_status Status register.

ni_bc_control Control register.

The purpose and use of each of these registers is described in the sections below.

Broadcast Messages

A broadcast message is essentially synchronous — a single node broadcasts a
message that is received by all nodes in its partition (including the broadcasting
node itself). Only one node in each partition can broadcast by a given interface
at any time. If two or more nodes in the same partition attempt to broadcast simul-
taneously the effect is unpredictable. An error may be signaled and/or
transmitted data may be lost.

Broadcast messages are atomic with respect to sending; a broadcast message is
not transmitted until all its component words have been written to the send FIFO.
Broadcast messages are not atomic in transit, however. A multi-word message
may be split in transit into two or more smaller messages. Additionally, as broad-
cast messages arrive at each node they are concatenated together in the receive
FIFO.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. The Control Network 39

4.1.3

From the point of view of each receiving node, it always appears as if there is
exactly one broadcast “message” waiting to be read from the receive FIFO. (Once
a node begins receiving a message, however, the length of the message is fixed,
and a new “message” is formed behind it in the FIFO from any words that arrive
while the first message is being read out.)

Although the length of a broadcast message is not maintained, the order of the
words within a message is maintained. Also, while messages can be combined
and fragmented, the order in which entire messages are sent and received is unal-
tered.

Sending Broadcast Messages

A broadcast message consists of a series of one or more words. The maximum
length allowed for a message is determined by the length limit of the send FIFO.
The only auxiliary information associated with a broadcast message is its length.
However, the length is only meaningful for the node that sends a message, be-
cause of the way messages can be split and concatenated in transit.

Programming Note: The length limit of the broadcast send FIFO is given by the
constant MAX BROADCAST_MSG_WORDS (currently 4).

The sending interface used for the broadcast interface is the same as the generic
interface in Chapter 2. The following FIFO registers are used to send messages:

ni_bc_send first Used to send the first value of a message.
ni_bc_send Used to send the rest of the message.

and there are corresponding send_£irst and send macros:

CMNA_bc_send_first (length, value)
CMNA_bc_send first_double (length, value)

CMNA_bc_send_word (value)
CMNA_bc_send_float (value)
CMNA_bc_send_double (value)

For the send_£irst macros, the length argument is the length of the message
in words, and value is the first value of the message. For the send macros, value
is the second and succeeding values of the message.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

40

Programming the NI

4.1.4

4.1.5

Important: Each node has a system flag that controls whether broadcast sending
is permitted. In the current implementation, this flag is turned off by default. To
turn on this flag, you must include the following macro call prior to any broad-
cast interface operations:

CMNA_participate_in (NI_BC_SEND_ENABLE) ;

Receiving Broadcast Messages

Broadcast messages are received as described in Chapter 2. The following regis-
ter is used to receive messages:

ni_bc_recv FIFO register from which values are read.

To receive a message from the broadcast interface, use the network-specific read-
ing operations described in Section 2.3:

value = CMNA_bc_receive word();

value = CMNA_bc_recelve float();
value = CMNA_bc_receive_double () ;

The Broadcast Status Register

The broadcast status register contains the following sub-fields:

ni_bc_status Status register.
ni_send_ok Flag, status of message being sent.
ni_send_space Field, space left in send FIFO.
ni_send empty Flag, indicates empty send FIFO.
ni_rec_ok Flag, indicates receipt of message.

ni_rec_length_left Field, words left in the FIFO.

The meanings of these sub-fields are as described in Chapter 2. You can obtain
the values of these sub-fields by using the generic field extractors described in
Chapter 2 (Section 2.4.3).

The macro used to get the value of the broadcast status register is:

int value = CMNA bc_status ()

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. The Control Network 41

4.1.6

How to Interpret the Value of the “Length Left” Field

The NI combines broadcast messages as they are received, so there is never more
than one “message” waiting to be read from the receive FIFO. However, broad-
cast messages are never appended to a message that is in the process of being
retrieved, so you needn’t worry that a message will grow unexpectedly.

Once you have retrieved the first value of a received message, it is safe to assume
that reading a number of words equal to the rec_length_left value retrieves
the rest of the message. (Remember, however, that this method is not guaranteed
to read all words of a multi-word message that was divided in transit.)

Abstaining from the Broadcast Interface

The broadcast interface has an abstain flag that you can use to cause the NI to
ignore incoming broadcast messages. The abstain flag’s effects and use are as
described in Section 2.5.

ni_bec_control Status register, contains rec_abstain field.
ni_rec_abstain Flag, broadcast interface abstain flag.

The address constant for the abstain register is bc_control_reg. You can use
the macros described in Section 2.5.3 to read and write the abstain flag:

value = CMNA_read_abstain flag(bc_control_reg);
CMNA write_ abstain_flag(bc_control_reg, value) ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

42 Programming the NI

4.1.7 Broadcast Interface Examples

The examples shown here are fragments of code intended to be run on the pro-
cessing nodes. See Chapter 5 for a discussion of large-scale program structure.

Sending and Receiving a Message

This function sends a message via the broadcast interface. The message is as-
sumed to be composed of length words of data starting at the location specified
by message.

int BC_send(message, length)
int *message, length;

{
int i;
CMNA bc_send first(length--, *message++);
for (i=0; i<length; i++)

CMNA_bc_send_word (*message++) ;

return(SEND_OK(CMNA bc_status()));

}

This function receives a message via the broadcast interface, stores it in memory
beginning at the location specified by message, and returns the length of the mes-
sage received.

int BC_receive (message, length)
int *message, length;
{
int i;
for (i=0; i<length; i++) {
while (!RECEIVE_OK(CMNA_ bc_status())) ({}
message[i] = CMNA_bc_receive_word(); }
return(length);
}

For example:

int i, message[MAX BROADCAST MSG_WORDS] ;
for (i=0, i<MAX_ BROADCAST MSG_WORDS, i++)
message [i]=i;

BC_send (message, MAX BROADCAST MSG_WORDS) ;
BC_receive (message, MAX BROADCAST MSG_WORDS) ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. The Control Network 43

4.2 The Combine Interface

4.2.1

The combine interface is used for executing operations that combine in parallel
a single value from each processing node.

The supported operations are:

= parallel prefix (scanning), which performs a cumulative operation (addi-
tion, maximum, logical AND, etc.) over the values from each node in
either increasing or decreasing order of send addresses

» reduction, which combines the values from all the nodes and then returns
this single combined result to all participating nodes

= network-done, which simplifies the task of synchronizing the nodes after
a Data Network operation

Each operation is described in more detail below.

Implementation Note: Because of way the broadcast and combine interfaces
interact, if a node is abstaining from a combine operation, that node should not
execute a broadcast operation until the combine operation is completed. (For
more information, see Section 6.2.6.)

The Combine Register Iinterface

The combine register interface is based on the generic model presented in Chap-
ter 2, and includes the following registers:

ni_com_send_first Used to send the first value of a message.

ni_com_send Used to send the rest of the message.
ni_com_recv Used to receive a message.

ni_com_status Status register.

ni_com_control Control register.

ni_scan_start Control register used to set scanning segments.

The purpose and use of each of these registers is described in the sections below.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Programming the NI

4.2.2

4.2.3

Combine Messages

The combine interface is essentially synchronous — combine operations are not
completed until all non-abstaining nodes have started the same type of combine
operation. If two nodes attempt to start different combining operations at the
same time, an error is signaled.

Combine messages are atomic in both sending and receiving; a combine message
is not transmitted until all its component words have been written to the send
FIFO, and arrival of each message is not reported until all the words of the mes-
sage have arrived in the receive FIFO.

The order of combine messages is strictly preserved in transit. With the exception
of the network-done operation, which uses a different mechanism, the results of
combine operations are delivered into the receive FIFO in the same order the
operations were started.

Combine operations can be pipelined. Although all nodes must start the same
combine operation in order for that operation to complete, nodes are not required
to read the results of each combine message before sending the next. The length
of the pipeline is limited only by the capacity of the message FIFOs.

Important: Pipelined messages cannot use doubleword read/write operations
— see Section 6.1.2.

Sending Combine Messages

A combine message consists of a series of one or more words, with the exception
of network-done messages, which are always 1 word in length. The maximum
length allowed for a message is determined by the length limit of the send FIFO.

Programming Note: The length limit of the combine interface send FIFO is giv-
en by the constant MAX_COMBINE_MSG_WORDS (currently 5).

The auxiliary information has three parts:
® The length of the message in words
= A three-bit combiner value, determining the combine operation performed

® A two-bit pattern value, selecting the order in which values are combined

The legal combiner and pattern values are described in Section 4.2.4 below.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. The Control Network 45

4.2.4

The combine interface is the same as the generic interface in Chapter 2. The fol-
lowing FIFO registers are used to send messages:

ni_com send_first Used to send the first value of a message.
ni_com_send Used to send the rest of the message.

and there are corresponding send_£1irst and send macros

CMNA_com_send_£irst (combiner, pattern, length, value)
CMNA_com_send_£irst_double (combiner, pattern, length,value)

CMNA_com_send_word (value)
CMNA_com_send_float (value)
CMNA_com_send_double (value)

For the send_f£irst macros, the length argument is the length of the message
in words, and value is the first value of the message. The combiner and pattern
arguments are described in the sections below, covering each of the possible
combine operations.

For the send macros, value is the second and succeeding values of the message.

Legal Combiner and Pattern Values

For scan and reduction operations, the legal pattern and combiner values are:

pattern
1 — Backward scan (combine in descending order of node address).
2 — Forward scan (combine in increasing order of node address).
3 — Reduction operations.

combiner:
0 — Bitwise inclusive OR.
1 — Signed addition.
2 — Bitwise exclusive OR.
3 — Unsigned addition.
4 — Signed maximum.

Network-done operations are specified by a pattern value of 0 together with a
combiner value of 5.

The combiner values 6 and 7 are not currently used.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

46 Programming the N1

The following constants can be used to specify the value of the pattern field:

SCAN_FORWARD Forward scan pattern (2).
SCAN_BACKWARD Backward scan pattern (1).
SCAN_REDUCE Reduction scan pattern (3).
SCAN_ROUTER_DONE Network-done operation (0).

The following constants can be used to specify the value of the combiner field:

OR_SCAN Inclusive OR (0).
ADD_SCAN Signed addition (1).
XOR_SCAN Exclusive OR (2).
UADD_SCAN Unsigned add (3).

MAX SCAN Signed maximum (4).
ASSERT_ROUTER_DONE Network-done operation (5).

4.2.5 Receiving Combine Message

The message-receiving interface of the combine interface is as described in
Chapter 2, with the exception of the network-done operation, which is received
through the Data Network status field ni_router_done_complete (see Sec-
tion 4.2.8).

The following register is used to receive combine messages:
ni_com_recv FIFO register from which values are read.

To receive a message from the combine network, use the network-specific read-
ing operations described in Section 2.3:

value = CMNA_com_receive_word();
value = CMNA_com _receive_float();
value = CMNA_com_receive_double () ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

4.2.6

4.2.7

The Combine Status Register

The combine status register contains the following sub-fields:

ni_com_status Status register.
ni_send_ok Flag, status of message being sent.
ni_send_space Field, space left in send FIFO.
ni_send empty Flag, indicates empty send FIFO.
ni_rec_ok Flag, indicates receipt of message.
ni_rec_length Field, length of message in words.
ni_rec_length_left Field, words left in the FIFO.
ni_com_scan_overflow Flag, indicates add-scan overflow.

The send_ok, send_space, send_empty, rec_ok, rec_length, and
rec_length_left sub-fields are as described in Chapter 2. You can obtain the
values of these sub-fields by using the generic field extractors described in Sec-
tion 2.4.3.

The macro used to get the value of the combine status register is:
int value = CMNA_com_status ()

The flag com_scan_overflow is described in Section 4.2.7.1.

Scanning (Parallel Prefix) and Reduction Operations

In a scan or reduction operation, each node sends a single value that is combined
with the values sent by the other nodes in the partition.

For scan operations, the node values are combined cumulatively — that is, the
result for each node is the combination of the values transmitted by all nodes
having lower (or higher) relative addresses. Forward scans combine values in
order of ascending node addresses. Backward scans combine values in order of
descending node addresses.

Reduction is a special case of scanning. When a reduction message is sent, the
values from all participating nodes are combined into a single value, and then
this single result is sent to all the nodes.

A scan or reduction message is from 1 to 5 words in length, representing a value
to be combined with the values provided by other nodes on the network. The
message can be sent with one of five different combining functions and in one

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

48 Programming the NI

TS O AP A NENCOI 1 e A A DSOS Rl PO WO I R SRR s OIS S DT A0 N NN
R B L B o B B B L e R S s L L B I e SR L I el i B St

of three different scanning patterns, as determined by the combiner and pattern
values specified when the message is sent.

When each participating node has sent a value, the values are combined accord-
ing to the combiner and pattern of the message, and the result is delivered after
a brief interval to the receive FIFOs of the participating nodes.

The legal combiner and pattern values can be specified as symbolic constants.
The combiner argument must be one of the constants

= ADD_SCAN Signed addition.

® UADD_SCAN Unsigned addition.

® OR_SCAN Bitwise inclusive OR.
® XOR_SCAN Bitwise exclusive OR.
® MAX SCAN Signed maximum.

and the pattern argument must be one of the constants
5 SCAN_FORWARD Values are combined in ascending address order.
® SCAN_BACKWARD Values are combined in descending address order.

® SCAN_REDUCE Reduction operation.

Important: If you are sending a scan message that is longer than one word, the
order in which the words of the message must be written depends on the combine
operation:

* Maximum operations require the most significant word to be written first.
= Both types of addition require the least significant word to be written first.

® Inclusive and exclusive OR have no word-ordering requirement.

Scanning with Segments

You can use segmented scanning to divide a partition into segments of nodes —
regions of nodes within which forward and backward scanning is done indepen-
dently of all other nodes in the partition. The scan values obtained within each
segment do not affect the values obtained in any other segment.

Note: Reduction operations do not use segmented scanning. Reduction scans
ignore the current segment settings.

The following control register is used to read and set the current segmentation:

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

4.2.7.1

Chapter 4. The Control Network 49

ni_scan start One-bit control register, indicates start of scan segments.

The one-bit flag in the register ni_scan_start is used to indicate the starting
points of segments. Segments begin in each node where ni_scan_start is 1,
and extend through the nodes in order of node address — upward for
SCAN_FORWARD operations and downward for SCAN_BACKWARD operations. If
noni_scan_start flags are set in a partition, then the entire partition is treated
as one segment.

You can read and modify the value of ni_scan_start by using these macros:

int value = CMNA_ segment_start();
CMNA_set_segment start (value)

Important: If you are sending a message consisting of more than one word, the
value of ni_scan_start when the first value of the message is written applies
to the entire message. Altering the flag after the first value is written has no effect
on the message.

Addition Scan Overflow

Addition scans on large values can cause arithmetic overflow in some nodes. The
combine status register includes a flag that you can use to detect overflows:

ni_com status Status register.
ni_com_scan _overflow Flag, set if add scan had overtlow.

This flag is 1 if the current message in the receive FIFO suffered arithmetic over-
flow; otherwise, it is 0. You can obtain the current value of this flag by using the
field extraction macro:

value = COMBINE_OVERFLOW (startus) ;

Note: The com_scan_overflow flag is only meaningful when the current

message being received is a signed or unsigned addition scan (an ADD_SCAN or
UADD_SCAN operation).

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

50 Programming the NI

. s VSV A AN TS A NN NG e VS ORI . S S — e s o
B o o L B B e S B R A R L B o i S s S R B Oy e s s a0

4.2.8 Network-Done Messages

Network-done messages are used to synchronize the processing nodes after a
Data Network operation. A network-done message is sent by a node when it has
completed sending its Data Network messages and is waiting for the other nodes
to finish. (Of course, even after a node has sent a network-done message, it may
still receive Data Network messages.)

Important: Although network-done messages are directly related to the opera-
tion of the Data Network, they are a feature of the combine interface of the
Control Network. All non-abstaining processors must start a network-done mes-
sage before the network-done operation can be completed.

A network-done message is always of length 1; the actual value written as the
message is ignored. Also, there is a unique pair of combiner and pattern con-
stants that are used to signal a network-done operation:

combiner: ASSERT ROUTER_DONE pattern: SCAN_ROUTER_DONE

Network-done messages are an exception to the usual message-reception inter-
face of the combine interface. The result of a network-done message is not
delivered as a value in the receive FIFO.

Instead, the Data Network flag ni_router_done_complete is used to indi-
cate when the network-done message has been sent by all nodes:

ni_dr_status Data Network (DR) status register.
ni_router_done_complete Network-done completion flag.

When a node sends a network-done message, theni_router_done_complete
flag of that node is set to 0. When all non-abstaining nodes have sent a network-
done message, and when the Data Network has no pending messages for any
node, the ni_router_done_complete flag is set to 1 for all nodes.

You can use the following macro to access this flag:
DR_ROUTER_DONE (status)

Usage Note: An attempt to send a network-done message with a length other
than 1, or to send a network-done message while another such message is still
in progress (that is, while theni_router_done_complete flag is zero) signals
an error.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. The Control Network

How Network-Done Works...

Network-done messages continually use the combine interface hardware until
they are completed, so any combine operations started after a network-done
won't complete until after the network-done message is completed.

Each node maintains an internal register that is incremented when the node sends
a user message, and decremented when the node receives a user message. (Sys-
tem messages are not counted.) When no user messages are being transmitted
through the Data Network, the sum of this register across all nodes should be
zero.

Network-done messages use an add-scan operation to detect when the Data Net-
work is clear of transmitted messages. Once all non-abstaining nodes have
signaled a network-done message, the combine network does a repeated add-
scan on the message count registers of the nodes until the sum for all nodes is
zero. It then sets the ni_router_done_complete flag to 1 in all nodes.

...And Why You Should Care

Since network-done operations involve a combine interface scan of the value of
a Data Network register, you should be careful about setting and changing the
abstain flags of the combine interface when you intend to send a network-done
message. (See Section 4.2.9 for a discussion of the combine interface abstain
flags.)

For example, if you change the combine abstain flags of one or more nodes while
a Data Network operation is in progress, you may inadvertently exclude one or
more nodes that have non-zero message_count registers. If you then start a
network-done operation, these registers are ignored by the implied addition scan.
In most cases, this prevents the result of the scan from ever becoming zero, and
thus prevents the network-done message from completing.

To send a network-done message safely, make sure that the combine abstain flags
of all nodes that might send or receive a message via the Data Network are
cleared before starting the Data Network operation, and make sure those abstain
flags remain cleared until after the network-done message has been completed.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Programming the NI

NOTE

Because of a hardware defect, Revision A NI chips don’t al-
ways execute network-done operations correctly. For more
information, see Section 6.2.5.

4.2.9 Abstaining from the Network

The combine network has two abstain flags that you can use to cause the NI to
abstain from combine network transactions:

ni_com control Status register, contains combine abstain flags.
ni_rec_abstain Flag, combine network abstain flag.
ni_reduce_rec_abstain Flag, special reduction abstain flag.

The effect and use of these abstain flags is as described in Section 2.5.

Note: Because of way the broadcast and combine interfaces interact, if a node
is abstaining from a combine network operation, that node should not execute a
broadcast operation until the combine operation is completed. (For more infor-
mation, see Section 6.2.6.)

In the case of combine operations that expect a value from each node, abstaining
nodes effectively supply an appropriate identity value for the operation. Howev-
er, no result value is written to an abstaining node’s receive queue (except for
reduce operations, which use the other abstain flag, ni_reduce_rec_ab-
stain, for this purpose; see Section 4.2.10).

You can use the abstain flag macros described in Section 2.5.3 to read and write
the abstain flag, using the register address constant com_control_reg:

value = CMNA_read abstain_ flag(com_control_reg);
CMNA write_abstain flag(com_control_reg, value) ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. The Control Network 53

4.2.10 Abstain Flags and Reduction Messages

Reduction operations differ from scans in terms of node participation. The
ni_com_abstain flag allows a combine operation to proceed without the par-
ticipation of a given node, but does not prevent the abstaining node from
receiving the result of the reduction message.

There is an additional combine abstain flag, ni_reduce_rec_abstain, that
controls whether a node receives the result of a reduction operation. When
ni_reduce_rec_abstain is 1, all incoming reduction results are discarded.

You can use the following macros to read and write the receive abstain flag:

value = CMNA _read_rec_abstain flag(com _control_reg);
CMNA write rec_abstain_flag(com_control_reg, value);

For the Curious: The reason for this distinction is that there are important cases
where it is necessary for a node to receive the result of a reduction without having
to participate in it. For example, when you want to transfer a value from the
nodes of a partition to the partition manager, you can set the combine abstain
flags so that the nodes transmit a reduction message and only the PM receives it.
(For an example of just such a situation, see Section 5.1.)

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

54 Programming the NI

4.2.11 Combine Interface Exampies

The examples shown here are fragments of code that are intended to be run on
the processing nodes. See Chapter 5 for a discussion of large-scale program
structure.

Sending and Receiving a Combine Message

This function sends a message via the combine interface. The message is as-
sumed to be composed of length words of data starting at the location specified
by message, and is sent with the given combiner and pattern.

int COM_send{combiner, pattern, message, length)
int *message, combiner, pattern, length;
{ int i, start, step;
/* For max scans, send high-order word(s) first */
if (combiner==MAX_ SCAN) {start=length-1; step=-1;}
else { start=0; step=1; }
CMNA_com send first(combiner, pattern,
length, message(start]);
for (i=1; i<length; i++)
CMNA _com_send word(message [(start+=step)]);
return (SEND_OK(CMNA_com_status())); }

This function receives a message, stores it in memory beginning at the location
specified by message, and returns the length of the message received. (Note that
a combiner must also be specified, so that maximum scans are retrieved in the
right order.)

int COM_receive (combiner, message)
int *message;
{ int i, length, start, step:; '
while (!RECEIVE_OK(CMNA com_status())) {}
length=RECEIVE_LENGTH (CMNA_com_status());
/*For max scans,receive high-order word(s) firstx*/
if (combiner==MAX SCAN) {start=length-1; step=-1;}
else { start=0; step=1; 1}
for (i=0; i<length; i++) {
message [start] = CMNA_com_receive_word() ;
start+=step; }
return(length) ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. The Control Network 55

B O B B e B R B e e R R e

Executing Scans and Reduction Scans

This function sends and receives a scan using the given message of length words,
with the specified combiner and pattern, storing the result in memory starting at
result.

int COM_scan(combiner, pattern, message,
length, zresult)
int *message, *result, combiner, pattern, length;

int status=0, rec_length;
while (!status)

status=COM_send (combiner,pattern,message, length) ;
rec_length = COM_receive (combiner,result);
return(rec_length);

}
Here’s an example of a simple scan using integer values:

int send [MAX COMBINE_MSG_WORDS],
receive [MAX COMBINE MSG_WORDS] ;

for (i=1; i <MAX_COMBINE_MSG_WORDS ; i++)
send[i]l=1i;

COM_scan (ADD_SCAN, SCAN_FORWARD, send,
MAX COMBINE_MSG_WORDS, receive);

As a practical example, you can use a reduction scan on integer values to get the
number of non-abstaining processors in the current partition:

int send = 1, receive = 0;
COM_scan (ADD_SCAN, SCAN REDUCE, &send, 1, &receive);

printf (*Actual number of processors: %d\n",
CMNA_partition_size);

printf ("Scanned number of processors: %d\n",
receive);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

56 Programming the NI

Executing a Network-Done Operation
Here’s a simple network-done synchronizing function:

void network done_synch ()
{
CMNA com_send_first (ASSERT_ROUTER_DONE,
SCAN_ROUTER_DONE, 1, 0) ;
while (!DR_ROUTER_DONE (CMNA dr_status())) {};
}

For example:

int message = 1;
int network done_msg = 0;
int next_processor = (CMNA_self address+1)
% CMNA partition_size;

/* Send a message */
LDR_send (next_processor, &message, 1, 0);

/* Synchronize the nodes */
network_done_synch ()

/* Retrieve the message */
LDR_receive (&message, 1);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. The Control Network 57

4.3 The Global Interface

4.3.1

The global interface provides a generic synchronization mechanism for the
CM-5’s processing nodes. It is much like the network-done feature of the com-
bine interface, but without the additional condition that the Data Network must
be clear before the operation can complete.

The global interface combines a single bit from every participating node in a
logical OR operation, and then returns the result to each node. The actual values
sent by the nodes, however, can be completely arbitrary. The sending of the mes-
sage itself is sufficient to provide synchronization of the nodes.

A global interface message can be sent by either of the following interfaces:

* the synchronous global interface, which requires that all nodes send a
message before any receive the result

» the asynchronous global interface, which permits nodes to send a message
and read the result at any time, with the network continually monitoring
the state of all participating nodes

There is a separate register set for each of these interfaces. Both are described
in more detail in the sections below.

The Global Register Interfaces

Unlike the broadcast and combine interfaces, the global interface does not use
the generic interface model presented in Chapter 2. The following registers are
used for the two interfaces:

Synchronous global interface:
ni_sync_global send Used to send the first value of a message.
ni_sync_global_abstain Used to abstain from synch global msgs.
ni_sync_global Used to receive a message.
ni_hodgepodge Contains interrupt enable flag.
Asynchronous global interface:
ni_async_global Asynchronous send and receive flags
ni_hodgepodge Contains interrupt enable flag.

The purpose and use of these registers is described in the sections below.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Programming the NI

4.3.2 The Synchronous Global interface

The synchronous global interface takes the global OR of a flag set by each node.
Each non-abstaining node must set its synchronous global flag (and thereby send
a synchronous global message) before the result of the operation is reported to
any node.

The following registers and flags form the synchronous global interface:

ni_sync_global_send Used to send the first value of a message.
ni_sync_global_abstain Used to abstain from synch. global msgs.

ni_sync_global Used to receive a message.
ni_sync_global_rec Synchronous global receive flag.
ni_sync_global_complete Synchronous global completion flag.

Sending and Receiving Messages

To start a synchronous global interface message, write a value (either O or 1) to
the the ni_sync_global_send register. To do this, use the macro:

CMNA_or_global_sync_bit (value)

When you write a value to the global_send register, the ni_sync_glob-
al_complete flag is set to 0, indicating that a message is in progress. (Note:
It is an error to write to the ni_sync_global_send register when the
ni_sync_global_ complete flag is 0.)

When all participating nodes have sent a message, the global interface takes the
logical OR of the ni_sync_global_send flag in each node, and then sets the
ni_sync_global_rec flag of every participating node to the result. At the
same time, the ni_sync_global_complete flag is set back to 1 to indicate
completion of the message.

To detect when the message has completed and to retrieve the resulting global
value, use the macros

value = CMNA_global_sync_complete () ;
value = CMNA global_sync_rec();

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. The Control Network 59

4.3.3

Abstaining from Synchronous Global Messages

The synchronous global interface includes an abstain flag that can be used to
exclude a node from the interface:

ni_sync_global_abstain Status register, contains global abstain flag.

When theni_sync_global_abstain flag is set to 1, synchronous global mes-
sages complete without the node’s participation (as if the node has sent the
message with its ni_syne_global_send flag set to 0).

You can use the abstain flag operations described in Chapter 2 to read and write
the value of the ni_sync_global_abstain register. (The address constant for
this register is sync_global_abstain_reg.) For example:

value=CMNA_ read_abstain_flag(sync_global_abstain reg);
CMNA_write_abstain_flag(sync_global_abstain_reg, value) ;

Note: The abstain flag can only be changed when there is no global message
pending (that is, an error is signaled if the abstain flag is modified when the
ni_sync_global_complete flag is 0). Also, an error is signaled if the
ni_sync_global_send register is written while the abstain flag is 1.

The Asynchronous Global Interface

The asynchronous global interface is not so much a synchronization tool as a
means for determining whether all the nodes are still operating properly, or
whether some global action needs to be taken. As with the synchronous interface,
the asynchronous interface takes the global OR of a flag set by each node. How-
ever, this global OR is performed continually, so that a change of a flag by any
node is reported almost immediately to the other nodes.

For example, each node can set its flag to 1 before performing an operation, and
set the flag to 0 when the operation is completed. The global interface returns a
1 value until all nodes have set their flags to 0, guaranteeing that all nodes have
completed the operation.

The following registers and flags form the asynchronous global interface:

ni_async_global Control register, contains the following flags:
ni_global_ send Flag, used to “send” asynchronous messages.
ni_global_rec Flag, always set to logical OR of send flags.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Programming the NI

Sending and Receiving Messages

Because the asynchronous global interface operates continually, there really is no
such thing as “sending™ or “receiving” a message via this interface.

The ni_global_rec flag in each node is continually updated to reflect the
“current” logical OR of the ni_global_send flag in all nodes. When any node
writes a new value into its ni_global_send flag, the change is propagated to
the ni_global_rec flag of all other nodes after a brief interval.

Important: Because this is an asynchronous mechanism, the ni_global rec
flag may not always reflect the present state of the ni_global_send flags in
all the nodes. There is always a delay between the instant any node changes its
ni_global_send flag and the instant that all nodes receive the result of the
change. You should not write code that depends on this delay having any exact
length, but you can assume that the delay is no longer than the time taken to
transmit a synchronous message.

To set the value of the ni_global_send flag, use the macro
CMNA_or_global_async_bit (value) ;
and to retrieve the value of the ni_global_rec flag, use the macro

value = CMNA global_async_read();

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. The Control Network 61

4.3.4 Global Interface Examples

The examples shown here are fragments of code intended to be run on the pro-
cessing nodes. See Chapter 5 for a discussion of large-scale program structure.

Using the Synchronous Global Interface

Here’s a function that executes a simple barrier synchronization using the global
interface.

int global_sync_value (value)
unsigned int value;
{
CMNA_or_global_sync_bit (value);
while (!CMNA_global_sync_complete()) {};
return(CMNA_global_sync_read());
}

All non-abstaining nodes must execute this function for the global message to be
completed. If you don’t need to send or receive a value, you can rewrite this as:

int global_sync()

{
CMNA_or_global_sync_bit (1) ;
while (!CMNA global_sync_complete()) {}:
(void) CMNA_global_sync_read() ;

Using the Asynchronous Global interface

The following function sends a value using the asynchronous global interface,
and then immediately reads and returns the current value from the receive regis-
ter.

int CMNA_global_async{value)
unsigned int value;

{
CMNA_or_global async_bit(value);
return (CMNA_global_async_read());

}

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5

Writing NI Programs

In this chapter we’ll start applying some of the tools presented in the preceding
chapters. First, we’ll cover important small-scale issues, such as exchanging data
between the nodes in a partition and the partition manager. Next, we’ll look at
a short program that makes use of every network interface of the NI.

5.1 Transferring Data between Nodes and the PM

As described in Section 3.3, each node in a partition has a unique address based
on its location in the partition. However, the PM is not part of this addressing
scheme. The PM is always located outside of the address space of the partition
that it manages:

Nodes ||| pll'®|/®.||P] - |P PM
Addresses o 1 2 3 4 n Partition Manager

Figure 8. The partition manager stands apart from the partition it manages.

This means that sending messages to and from the partition manager involves
some careful coordination between the PM and the nodes.

Version 7.1, February 1993 63
Copyright © 1993 Thinking Machines Corpor.

64 Programming the NI

5.1.1 Sending Messages from the PM to Nodes

To send a message from the PM to a node, the PM does two broadcast operations:
one to send the address of the node that should “receive” the message, and one
to transmit the message itself.

For example:

void PM_send_ to_NODE (node_address, value)
int node_address, value;

{
CMNA_bc_send_first (1, node_address);
CMNA bc_send first(l, value);

}

Each of the nodes should perform two broadcast reads, one to determine whether
the address of the message matches the node’s own address, and one to either
receive and store the message or to ignore it, based on the supplied node address:

int NODE_get_ from_ PM(dest)
int *dest;
{
int address, value;
while (!RECEIVE_OK(CMNA bc_status())) {};
address=CMNA_bc_receive word () :
while (!RECEIVE_OK(CMNA bc_status())) {};
value=CMNA bc_receive_word() ;
if (address == CMNA_ self_ address) *dest=value;
}

Notice that the node waits until the rec_ok flag is set each time it tries to receive
a value from the broadcast interface. This is important — while these routines
are written so that the PM’s two broadcast values should arrive in the node’s re-
ceive queue nearly simultaneously, it’s still necessary to check the rec_ok flag
before each broadcast read, because the two values are still separate messages.

Also, notice that in this example only one node “accepts” the value sent from the
PM, but there’s no reason why you can’t have more than one node “accept” the
value — you can use any test you like to decide whether the nodes keep or dis-
card the values they receive.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

o e e = e = e

Chapter 5. Writing NI Programs 65

5.1.2 Sending Messages from Nodes to the PM

Sending a message from a node to the PM is almost as straightforward, but in-
volves two interfaces this time: broadcast and combine.

First, the PM sets its ni_com_abstain flag to 1 and its ni_reduce_rec_ab-
stain flagto 0, so that it can receive a combine message without having to send
a value. (Note: We’ll handle this step separately in Section 5.2, below.)

Next, the PM broadcasts a message containing the address of a processing node,
as in the PM_send_to_NODE example above. The nodes respond by signaling
a combine message (a UADD_SCAN reduction), in which only the node with the
address specified by the PM transmits a value. (The other nodes supply an identi-
ty value of 0 for the reduction.) The PM then receives this message to get the
requested value.

Here’s the function that handles the PM side of this transaction:

int PM_get_from NODE (nocde_address)
int node_address;
{
CMNA_bc_send_first (1, node_address);
while (!RECEIVE_OK(CMNA_ com_status())) {}:
return (CMNA_com_receive_word());

}
And here’s the corresponding node function:

void NODE_send_to_PM(value)
int value;
{
int address;
while (!RECEIVE_OK(CMNA bc_status())) {};
address = CMNA_bc_receive_word() ;
if (address != CMNA_self_address) value = 0;
CMNA_com_send_first (UADD_SCAN, SCAN_REDUCE, 1,value) ;
while (!RECEIVE_OK(CMNA_com_status())) {};
(void) CMNA com_receive_word() ;

}

Notice that immediately after the nodes send a combine message, they perform
a combine read to discard the resulting value. You might think it would be a good
idea to temporarily toggle the combine abstain flags for the nodes, so that they
will simply ignore the result. However, this is not such a good strategy. (Why
not? See Section 5.2.)

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

5.1.3

5.1.4

Programming the NI

Signaling the PM

Because the above PM/node communication functions use both the broadcast and
combine interfaces, we’ll want a function that forces the PM to wait until the
nodes have finished their computations before the PM broadcasts a request for
the results. A single function will suffice for both the PM and the nodes:

void PM_NODE_synch ()

{
CMNA_or_global sync_bit(1);
while (!CMNA_global_sync_complete()) {};
(void) CMNA_global_sync_read();

}

This function uses the global interface to create a simple barrier synchronization.

For the Curious: Using the Data Network

You can also use the Data Network to send messages between the partition man-
ager and the nodes. However, owing to the distinction between addressing on the
nodes and on the partition manager, it’s not as clear-cut an operation as using the
broadcast and combine methods described above.

To send a message from the partition manager to a specific node via the Data
Network, you can use the methods presented in Chapter 3, using the node’s ad-
dress as the destination for the message.

To send a message from a node to the partition manager, however, you must
make a system function call:

int *source, length, tag
CMNA_interface_send_packet_to_scalar (source, length, tag)

where the interface abbreviation is dr, 1dr, or rdr, depending on the network
interface you wish to use, and the other arguments are as noted in Chapter 3. The
partition manager can then receive this message as usual. There is a catch, how-
ever — this system call is currently implemented as a trap instruction, which in
practical terms means it is much less efficient than the combine network method
shown in Section 5.1.2.

Sending messages to and from the PM via the Data Network is primarily useful
in cases where you want to send a message to a specific node without requiring
all the other nodes to stop and do a network operation at the same time.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5. Writing NI Programs

5.2 Setting the Abstain Flags

Both the PM and the nodes will need to modify their abstain flags in order to use
the above functions. Since they will also need to restore the previous values of
these flags afterwards, it makes sense to use a single pair of functions to handle
saving and restoring the flags, rather than individually toggling flags within a
program.

Also, while changing abstain flags in the middle of a program does work, it’s
error-prone because it requires that you ensure the corresponding network(s) are
empty before changing the abstain flag settings. It’s much more straightforward
to simply set the abstain flags appropriately at the beginning of your program,
and then leave them alone as much as possible.

With these factors in mind, here are a pair of functions that handle saving and
restoring the abstain flags, giving them whatever intermediate settings you se-
lect.

First, a routine that saves the current values of the abstain flags and then sets
them to new values.

int bc_abstain flag,
com_abstain_flag,
com_rec_abstain_flag,
sync_global_abstain_flag;

void save_and set_abstain flags
{(new_bc, new_com, new_com_rec, new_sync_global)
int new_bc, new_com, new_com_rec, new_sync_global;

bc_abstain_flag =
CMNA_read_abstain_flag(bc_control_reg);
com_abstain_flag =
CMNA_read_abstain_flag(com control_reg);
com_rec_abstain_flag =
CMNA_read_rec_abstain flag(com_control_reg):;
sync_global_abstain flag =
CMNA_ read_abstain_flag(sync_global_ abstain_reg);
CMNA write_abstain flag(bc_control_reg, new_bc);
CMNA _write_abstain_flag(com_control_reg, new_com);
CMNA_write_rec_abstain_flag(com _control_reg,
new_com_rec) ;
CMNA_write_abstain flag(sync_global_abstain reg,
new_com) ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

68

Programming the NI

53

Next, a function that restores the old values:

void restore_abstain flags()
{
CMNA_write_abstain flag(bc_control_reg,
bc_abstain_flag) ;
CMNA write_abstain flag(com_control_reg,
com_abstain flag);
CMNA_write_rec_abstain_flag(com_control_reg,
com_rec_abstain flag);
CMNA write_abstain_ flag(sync_global_abstain reg,
sync_global abstain flag);
}

One caveat about these functions: they assume that none of the Control interfaces
are in use when you call them. This should be the case if you call them at the
beginning and end of your program, as they are intended to be used. If you need
to use functions like these within the body of a program, you should precede and
follow them with code (function calls, etc.) that synchronizes the nodes, thus en-
suring that none of the affected interfaces are in use.

For example, you can use the global interface to synchronize the nodes while you
change the abstain flags for the other interfaces, and then use the network-done
operation of the combine interface to synchronize while you change the abstain
flags for the global interface. (You can probably now see why it’s easier just to
set these flags once and then ignore them!)

Broadcast Enabling

Along with setting the abstain flags, there’s one other important operation that
needs to be included in any NI program. As noted in Section 4.1.3, you need to
call the macro

CMNA_participate_in(NI_BC SEND_ENABLE) ;

to enable broadcast sending — even if you clear the broadcast abstain flag. The
best point in your program to do this is the same place you set the abstain flags.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

5.4 NI Program Structure

5.4.1

5.4.2

Now, with these tools in hand we can turn to the task of designing an NI program.

An NI program consists of three files:
= Code to be run on the partition manager
= Code to be run on the nodes (one program executed by all nodes)
® An interface file defining the node routines that are callable from the PM

The sections below describe each of these parts in detail, and show you how to
bring them together into a working program.

The cmna.h Header File

Important: Both the partition manager code file and the node code file must
#include the header file cmna.h., as follows:

#include <cm/cmna.h>

This header file contains #include directives that load the other files needed to
define the NI programming tools described in this manual. Note: If you plan to
call cMoS_signal () (see Section 3.5.2), you must also #include the header
file <cmsys/cm_signal.h>.)

Partition Manager Code

Code that runs on the PM may contain anything ordinarily included in a program
running on a Sun computer. This includes print# calls, system calls, I/O calls,
and calls to other specialized libraries. The simplest PM program might look
something like this:

#include <cm/cmna.h>

void main() {
/* start node program running */
node_program(); }

This program does nothing more than call the corresponding node program de-
fined below. Typically, however, the PM code will include operations that send
data to the nodes and retrieve the results of the node computations.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

70

Programming the NI

5.4.3 Node Code

Code written for execution on the nodes consists of one or more subroutines that
perform local computations and make NI calls to send messages through the net-
works. Node programs can also include simple I/O calls to display intermediate
results.

In particular, the output of printf calls from all nodes is collected and saved
in a file (typically named “cMTSD_printf .pn.pid”) that you can examine dur-
ing and/or after execution of your program. However, the handling of printf
calls from the nodes slows down program execution considerably, so this method
of output is best used only for debugging your program.

Note: As of this release, many UNIX system calls are not supported on the
nodes. If node programs invoke these unsupported calls, segmentation violations
may be signaled. You should use node subroutines primarily for computations
and NI operations, and use the PM code for system calls and external I/O.

The Node’s “Main” Routine

The first subroutine in the node file must be the one initially called by the PM.
This routine serves much the same function as the “main” routine in standard C
programming — it is the trigger that starts everything else running.

‘While you can give a node subroutine any name that you wish, if it is to be called
from the PM, then you must add the prefix CMPE__ to the subroutine name when
defining it and when calling it from another node subroutine. This prefix is used
by the compiler to determine which subroutines will be called from the PM. You
do not have to use the cMPE__ prefix anywhere outside of the node subroutine file.

The simplest node program, corresponding to the PM program given above, is:

#include <cm/cmna.h>
void CMPE_node_program() {
/* Node program, does nothing, just an entry point */

}

As you can see, this is less than the bare bones of a subroutine — it does nothing
at all. We’ll see an example of a complete node program below.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

5.44

5.5

Interface Code

The “interface code” file is nothing more than a file of function prototypes, as
might appear in a header file. It is used in the compilation process to produce
special declaration code that allows the nodes to respond correctly to subroutine
calls from the PM.

The interface code file for the skeletal program given above has just one line:
void node_program() ;

Important: Before you compile it, the interface code file must be preprocessed
by the utility program sp-pe~stubs.This utility program translates your inter-
face prototypes into complete subroutine calls that can be compiled with the PM
and node code files to produce an executable NI program.

This is the reason why node functions callable from the PM require the CMPE_
prefix — the sp-pe-stubs utility adds this prefix to the name of each host-
callable function, so that there’s no possibility of collision with names of node
functions that you have not defined as host entry-points.

A Sample Program

As an example, here’s a simple NI program that uses each of the CM-5 network
interfaces. First, the partition manager source file:

Filename: NI_test.c
/* Sample NI program - PM program */
#include <cm/cmna.h>

#include "utils.h"

void main () {
int input, result, high node;

printf ("\nSimple NI test program, by W.R.Swanson, \n");
printf ("Thinking Machines Corporation--1/31/92.\n\n");

/* Enable broadcast sending */
CMNA_participate_in(NI_BC_SEND_ENABLE) ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

72 Programming the NI

/*2bstain from broadcast reception, combine sending */
save_and_set_abstain_flags(1,1,0,0);

/* Start node programs running */
node_main() ;

/* Get value from the user, send it to the nodes. */
printf (*This CM-5 partition has %d nodes.\n",
CMNA _partition_size);

printf ("Please type an integer to send: ");
scanf ("%d4", &input);

PM send to_NODE (0, input);
printf ("Sent value %d to node 0...\n",input);

/* Wait for the nodes to finish juggling numbers */
PM_NODE_synch () ;

/* Get value from high-address node */
/* (size - 2, because scan result starts with 0) */
high node = CMNA partition size-2;

result = PM_get_from NODE (high_node) ;

printf (*Got value %d (should be %d) from node %d.\n",
result, input, high node);

result = PM_get from_ NODE (0) ;

printf ("Got value %d (should be %d) from node 0.\n",
result, (input*(high node+1)));

restore_abstain_flags();
}

Next, the corresponding code for the processing nodes:
Filename: NI_test.node.c

/* Sample NI program - node program */
#include <cm/cmna.h>
#include "utils.h"

void CMPE node_main () {
int value=0, scan_value, flipped_value;
int mirror_node_addr;
CMNA_participate_in (NI_BC_SEND_ ENABLE) ;
save_and_set_abstain_flags(0,0,0,0);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5. Writing NI Programs 73

/* Node 0 gets the value sent by the PM... */
NODE_get_from_PM(&value) ;

/* and broadcasts it to all nodes */

if (CMNA_self_address==0) CMNA_bc_send first(1l,value);
while (!RECEIVE_OK(CMNA_bc_status())) {};

value = CMNA_bc_receive_word() ;

/* Do an addition scan to put a different value

in each node */
CMNA_com_send first (UADD_SCAN, SCAN_FORWARD, 1,value);
while (!RECEIVE_OK(CMNA_ com_status())) {};
scan_value = CMNA_ com_receive_word();

/* Use LDR to “"flip" order of values in nodes */
mirror_node_addr =

(CMNA_partition_size-1) - CMNA_self_ address;
CMNA_ldr_send first(0, 1, mirror_node_addr);
CMNA_ldr_send word(scan_value);
while (!RECEIVE_OK(CMNA_ldr_status())) ({};
flipped value = CMNA_ldr_receive_word();

/* Signal to PM that answer is ready */
PM_NODE_synch() ;

/* Send value from high-order node back to PM */
NODE_send_to_PM(flipped_value) ;

/* Send value from node 0 back to PM */
NODE_send_to_PM(flipped value);

restore_abstain_flags();
}

And the interface code file:
Filename: NI_test.proto

/* Sample NI program - interface code */
node_main() ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

74 Programming the NI

Finally, both the PM and node programs include a utilities file, which includes
such tools as the abstain-flag functions and the PM/node communications
functions:

Filename: utils.h

/* Utility code */
int bc_abstain flag, com abstain_flag,
com_rec_abstain flag, sync_global abstain flag:;

void save_and_set_abstain_flags(new_bc, new_com,
new_com_rec,
new_sync_global)
int new_bc, new_com, new_com_rec, new_sync_global;
{
bc_abstain_flag =
CMNA_read abstain_flag(bc_control_reg);
com_abstain flag =
CMNA_ read_abstain_ flag(com_control_reg) ;
com_rec_abstain_flag =
CMNA read rec_abstain flag(com_control_reg);
sync_global_abstain flag =
CMNA read_abstain flag(sync_global_ abstain reg);

CMNA_write_abstain flag(bc_control_reg, new_bc);
CMNA write_abstain flag(com_control_reg, new_com);
CMNA_write_rec_abstain_flag(com_control_reg,
new_com_rec) ;
CMNA_write_abstain flag(sync_global_abstain reg,
new_sync_global) ;

}

void restore_abstain_flags ()
{
CMNA write_abstain flag(bc_control_reg,
bc_abstain_ flag);
CMNA write_abstain_ flag(com_control_reg,
com_abstain flag);
CMNA write_rec_abstain flag(com control_reg,
com_rec_abstain_flag);
CMNA_write_abstain_ flag(sync_global_abstain_reg,
sync_global_abstain_ flag);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5. Writing NI Programs

void PM_send_to_NODE (node_address, value)

{

int

int

int node_address, value;

CMNA_bc_send first(l, node_address);
CMNA bc_send_first(l, value);

NODE_get_from PM(dest)
int *dest;

int address, value;

while (!RECEIVE_OK(CMNA bc_status())) {}:
address=CMNA_bc_receive_word();

while (!RECEIVE_OK(CMNA bc_status())) {};
value=CMNA_bc_receive_word() ;

if (address == CMNA_self_ address) *dest=value;

PM_get_from NODE (node_address)
int node_address;

CMNA_Dbc_send_£first(l, node_address);
while (!RECEIVE_OK(CMNA_com_status())) {};
return (CMNA_com_receive_word()); 1}

void NODE_send_to_PM(value)

{

}

int wvalue;

int address;

while (!RECEIVE_OK(CMNA_bc_status())) {};

address = CMNA bc_receive_word();

if (address != CMNA_self_address) value = 0;

CMNA_ com_send_first (UADD_SCAN, SCAN_REDUCE,
1,value) ;

while (!RECEIVE_OK(CMNA com_status())) {};

(void) CMNA_com_receive_word();

void PM_NODE_synch ()

{

CMNA_or_global_sync_bit(1);
while ({CMNA_global_sync_complete()) {}:
(void) CMNA_global_sync_read() ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

75

5.6 Compiling and Executing an NI Program

Note: This section presents a brief overview of the process of compiling and
executing an NI program. It’s very much like the procedure used in compiling
and executing a CMMD program — so much so that you should also read the
CMMD Users Guide for more information. (In particular, the CMMD User's
Guide includes examples of using a generic makefile to compile your code. This
may be more appropriate to your needs and inclinations than the script example
shown below.)

To compile an NI program you must:
» Preprocess the interface file by calling sp-pe-stubs.
s Compile the resulting file, as well as the PM and node routine files.
» Link the three object files together with the CM linking program emld.

To illustrate this, here are the steps you would take in compiling the sample pro-
gram shown above.

First, preprocess the interface code file:
/usz/bin/sp-pe-stubs < NI_test.proto > NI_test.intf.c
Next, compile the three code files:

cc NI_test.c -c -g -DCM5 -DMAIN=main
~I/usr/include

cc NI_test.node.c -c -g -DCM5 -dalign -Dpe_obj
-I/usr/include

cc NI_test.intf.c -c -g -DCM5 -DMAIN=main
-I/uszr/include

Finally, link everything together. For this purpose, you must use the CM-specific
linking program cmld:

/usr/bin/cmld -o NI_test
NI_test.o NI_test.intf.o
-L/usr/lib -lcmna_sp -lcmrts -lm
-pe NI_test.node.o
-L/usr/lib -lcmna_pe -lcmrts_pe -1m

The result is a single executable file, NI_test, which you can run by logging
onto one of the partition managers of a CM-5 and executing the file.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5. Writing NI Programs 77

5.6.1 A Simple Compiling Script

Here’s a short UNIX script that automates this process. It takes as its single argu-
ment the name of an NI program, constructs the names of the three component
files from the program name, compiles the files, and links them together as
shown above.

Note: This script assumes that the program files are all present in the current
directory.

#! /usr/bin/csh -e -£
nicc2 -~ Compiles an NI program
echo "Script: $0, Compiling $1 for the NI..."

set PMFILE = "g1,.c"

set PMOFILE = "gl.0o"

set NODEFILE = "S1.node.c"
set NODEOFILE = "$1l.node.o"
set INTFFILE = "S1.proto"
set INTFCFILE = "$l.intf.c*
set INTFOFILE = "$1.intf.o"
set OUIFILE = "gw

set NODEOUTFILE = "“$i1.pn"“
set EXECUTABLE = ¥a,out”

set NODEEXECUTABLE = "a.out.pn"

echo ’‘Preprocessing interface code file: ‘ SINTFFILE
/usr/bin/sp-pe-stubs < SINTFFILE > SINTFCFILE

echo ’‘Compiling PM code file: ‘ S$PMFILE

cc -¢ -g -DCM5 -DMAIN=main -I/usr/include $PMFILE -0

SPMOFILE

echo ’'Compiling node code file: ' SNCDEFILE

cc -c -g -Dpe_obj -DPE_CODE -I/usr/include $NODEFILE
-0 SNODEOFILE

echo ’Compiling interface code file: ’ $INTFCFILE

cc -c -g -DCM5 -DMAIN=main -I/usr/include $INTFCFILE
-0 S$INTFOFILE

echo ’'Linking it all together...’

/usr/bin/cmld -1lg $PMOFILE $INTFOFILE -o $OUTFILE \
~L/usr/1lib -lcmna_sp =-1lm \
~pe -1lg S$NODEOFILE -L/usr/lib -lcmna_pe =-1lm

echo ’'Done. Executable written to: ’ SOUTFILE

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Programming the NI

5.6.2 Compiling and Running the Program

Note: The following examples assume that you are currently logged into one of
the partition managers of a CM-5.

The output of the compiling script for the NI_test program looks like this:

% nicc2 NI_test

Script: nicc2, Compiling NI_test for the NI...
Preprocessing interface code file: NI_test.proto
Compiling PM code file: NI_test.c

Compiling node code file: NI_test.node.c
Compiling interface code file: NI_test.intf.c
Linking it all together...

Done. Executable written to: NI_test

The script produces a single executable file NI_test, which can be executed as
follows:

50: NI_test

Simple NI test program, by W.R.Swanson,
Thinking Machines Corporation -- 1/31/82.

This CM-5 partition has 32 nodes.

Please type an integer to send to the nodes: 42
Sent value 42 to node 0...

Received value 42 (should be 42) from node 30.
Received value 1302 (should be 1302) from node 0.

5.6.3 Online Code Examples

As of Version 7.1.3 of the CM system software, there are online copies of the
sample program and script in this chapter, along with copies of the programming
examples in Appendix C.

Depending on where your system administrator has chosen to store the CM soft-
ware, these files may be located under the pathname

/usr/examples/ni-examples

or they may also be located somewhere else entirely. Check with your system
administrator for help in locating these files.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6

Programming and Performance Hints

6.1

6.1.1

This chapter describes the ways you can make your NI programs more efficient,
and also points out a few potential programming traps that you may encounter.

Note: Some of the notes and warnings below are included in earlier chapters.
They are repeated here so that you can find them quickly.

Performance Hints

NI Register Operation Times

Here are some rough estimates of the time taken by a number of basic operations:

register access (register variable): 1 cycle

cache memory (previously accessed variable): 2-3 cycles
NI register read (ni_interface_status, etc.): 7-8 cycles
NI register write (ni_interface_status, etc.): 3-4 cycles
memory access (newly accessed variable): ~25 cycles

The time taken to perform an NI register read/write operation is longer than the
time taken for cached memory accesses, but much shorter than the time for full
memory accesses. For efficiency’s sake, you should read and write NI registers
as sparingly as possible and rely on cached values wherever possible.

For the Curious: This is why the NI status register tools are designed so that you
can read an NI status register once and then extract fields from the retrieved val-
ue. Once you have retrieved the value of the NI register and stored it in cached
memory, the access time for extracting multiple fields decreases substantially.

Version 7.1, February 1993 79
Copyright © 1993 Thinking Machines Corpor.

80 . Programming the NI

6.1.2 Reading and Writing Registers with Doubleword Values

While this document focuses for the most part on reading and writing network
messages in terms of single (32-bit) words, you can also use doubleword (64-bit)
operations in reading and writing network registers.

Writing a doubleword to a register has the same effect as writing two single-word
values, but involves only one register operation. Likewise, reading a doubleword
from a register is the same as reading two single words.

The combine interface is an exception to this rule, because of its pipelining fea-
ture. You can’t use doubleword writes when you are pipelining combine
operations. However, you can use doubleword reads with pipelined operations,
and doubleword writes are permitted for non-pipelined combine operations.

In addition, attempting a doubleword read or write for a message that consists of
only one word (as is the case for network-done tests) signals an error.

For C Programmers: To use doubleword read and write operations, the values
you send must be doubleword aligned in memory. To ensure that this is the case,
use the compiler switch ~dalign when compiling any file that includes double-
word function calls or variable definitions. For example:

cc -c¢ -g -DCM5 -dalign -I/usr/include ni_code.c

Example: LDR Send/Receive

Here’s the LDR_send_receive_msg function from the Data Network chapter,
rewritten to use double-word writes:

int tag_limit = 3;

LDR_send_receive_msg(dest_address,message, length, tag,dest)
unsigned dest_address, tag;
int *message, *dest, length:

int send_size, send_size2, receive_size,receive_size2;
int offset, source_offset=0, dest_offset;

int words_to_send=length, words_received=0;

int packet_size, count, rec_tag, status;

double *dbl;

if (((int)message & 3) || ((int)dest & 3))

CMPN_panic ("Message or dest not doubleword aligned");
packet_size = (MAX ROUTER_MSG_WORDS-1) & ~1;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Programming and Performance Hints 81

while ((words_received < length) || (words_to_send)) {
/* First try to receive a packet */
status=CMNA_ldr_status();
if (words_received<length && RECEIVE_OK(status) &&
RECEIVE_TAG (status) <=tag_limit) {
dest_offset = CMNA_ldr_receive_word();
receive_size =
RECEIVE_LENGTH_LEFT (CMNA_ldr_status());
for (count=0; count<(receive_size>>1); count++) {
dbl = (double *) (&dest [dest_offset++]);
dest_offset++;
*dbl = CMNA_ ldr_receive_double();
dbl++; }
if (receive_size & 1) /* If word left over */
dest [dest_offset++] = CMNA ldr_receive word();
words_received += receive_size;
} /> if */

/* Now try sending a packet */
if (words_to_send) {
send_size = ((words_to_send < packet_size) ?
words_to_send : packet_size);
send_size2 = send_size >> 1;
do {
CMNA_1dr_send_first(tag,send_size+1l,
dest_address);
CMNA_ldr_send word(source_ offset);
offset=source_offset;
/* Send as many doubles as possible */
for (count=0; count<send size2; count++) {
dbl = (double *) (amessagel[offset++]);
offset++;
CMNA_ldr_send_double (*dbl++); 1}
if (send_size & 1) /* If a word is left over */
CMNA_ldr_send word(message [offset++]);
} while (!SEND_OK(CMNA_ldr_status()));
source_offset=offset;
words_to_send -= send_size;
}o/* i */
} /* while */

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

82

Programming the NI

6.1.3

6.14

Use Message Discarding for Efficiency

When a message you are writing to a network send FIFO is discarded, it is com-
pletely discarded — effectively, it is as if you never began writing the message.

Many NI programmers take advantage of this property by writing a complete
message to a network FIFO, and only then checking to see whether it was dis-
carded (and if so, writing it again). This might seem a sloppy practice, but it is
actually a safe and efficient strategy.

Because messages are typically only a few words long, and because the NI com-
pletely ignores a discarded message, it’s perfectly reasonable to check the
send_ok flag just once, after you’ve written the entire message. Also, if your
code is properly written it should be rare for a message to be discarded, and thus
unlikely that checking the send_ok flag after writing each value of the message
provides any benefit. In fact, checking the send_ok flag after you write each
value of a message can slow your code down considerably.

Set the Abstain Flags Once and Forget Them

In most cases, abstain flags of a network interface can be changed only when the
network is not in use — that is, when there are no messages pending in either the
send or receive FIFOs, and no messages in transit in the network. While this cer-
tainly does not prevent you from toggling the state of the abstain flags within
your code, it does make this kind of flag-toggling more prone to programming
€ITOrS.

A more straightforward strategy to use is to set the values of the abstain flags
once, at the beginning of your program, leave them alone while the program
runs, and then restore their original values before your program exits,

Note: This last point is important. Some programming systems (such as CMMD)
use the abstain flags for their own purposes. These systems are written with the
assumption that the abstain flags won’t change unexpectedly, so if the flags do
change these systems may not operate correctly.

When you alter the values of the abstain flags, you must take care to save the
original settings of these flags and to restore them before your code exits. Failing
to do so can cause your code to signal obscure errors that are hard to trace.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Programming and Performance Hints 83

6.2

6.2.1

6.2.2

Potential Programming Traps and Snares

Here are some potential sources of serious errors that you should keep in mind:

Pay Attention to Data Network Addresses

‘When sending a Data Network message from one node to another, the address
of the destination node must be a valid address within the current partition. If an
address higher than CMNA_partition_size is supplied, the NI will signal an
error.

Also, there is currently a 20-bit limit on the length of a data network address, and
the remaining high-order bits in a 32-bit address value must be 0. If any of these
high-order bits are nonzero, the NI will signal a serious error, and in some cases
the entire partition of nodes may crash. You should either write your code so that
the high-order bits of a network address can never be other than zero, or failing
that mask out the top 12 bits of an address before using it.

Implementation Note: Currently, there is an additional restriction — the most
significant (20th) bit of the address must also be 0, or an error will resuit.

Check the Tag before Retrieving a Data Network Message

As described in Section 3.5.1, whether or not you use tag-driven interrupts to
receive messages, you must take care not to accidentally read a message intended
as an interrupt, because the operating system of the CM-5 itself sends Data Net-
work messages with interrupt tags.

The Data Network only checks the tag field of a message after the message has
been delivered to the receive queue. This means that if you’re not careful, you
can accidentally read a message with an interrupt-triggering tag value before the
NI has signaled the interrupt. The effect of doing so is unpredictable. An error
may be signaled, or your partition may crash.

To avoid this problem, check the tag value of a Data Network message before
retrieving it to make certain that it is a non-interrupting message.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

6.2.3

6.2.4

6.2.5

Make Sure Double-Word Data Is Doubleword Aligned

C Programmers: This is also mentioned in the performance section above, but
it’s as well to re-emphasize it. When you use doubleword read and write opera-
tions in your C code, you must compile your code with the ~dalign compiler
switch, so that doubleword values are properly aligned in memory:

cc -c -g -DCM5 -dalign -I/usr/include ni_code.c

If the doubleword values in your code are not properly aligned, the nodes will
most likely signal “illegal address”™ errors, and your code won’t run.

Order Is Important in Combine Messages

As noted in Section 4.2.7, if you are sending a scan message that is longer than
one word, the order in which the words of the message are written depends on
the combine operation:

= Maximum operations require the most significant word to be written first.
= Both types of addition require the least significant word to be written first.

* Inclusive and exclusive OR have no word-ordering requirement.

Restriction on Network-Done Operations for Rev A NI Chips

Because of a hardware defect, Revision A NI chips do not always transmit net-
work-done messages correctly. An internal register in each NI is used to keep
track of the number of messages sent and received through the Data Network,
and a combine network add-scan on the value of these registers is used to deter-
mine when the network is empty.

Rev A NI chips, however, do not correctly increment and decrement this register.
This defect has been corrected in later revisions of the chip, but to run code on
a machine that includes any Rev A chips, you must use a software workaround:
you must yourself use a program variable to keep track of the number of mes-
sages sent and received, and you must “force” the NI message-count register to
have this value during a network-done operation.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Prog 85

Note: This software workaround is necessary if and only if the CM-5 on which
you execute your code contains any Rev A NI chips in its processing nodes.
(Consult your applications engineer or systems manager to find out whether this
is the case.) On CM-5 systems with no Rev A NI chips, this workaround is not
needed (and is inefficient, as well).

The recommended variable to use is CMNA_router_msg_count (this variable
is predefined for you in the header files loaded by cmna.h). The workaround
strategy is as follows:

® Set CMNA_router_msg_count to zero at the beginning of the node pro-
gram (for example, at the same point that you set the abstain flags):

CMNA_router_msg count = 0;

= Every time the node program successfully sends a message via the Data
Network (that is, writes a message to the send queue and detects that the
send_ok flag is set), it should increment the count variable:

do { CMNA_ldr_send first(0, 1, dest_address);
CMNA_1ldr_send_word (message) ;
} while (!SEND_OK(CMNA_ ldr_status()));
CMNA_router_ msg_count++;

= Likewise, whenever the node program receives a message from the Data
Network (that is, detects that the rec_ok flag is set and reads all of the
values of the message), it should decrement the count variable:

status = CMNA_ldr_status();

if (RECEIVE_OK(status) && RECEIVE_TAG (status)<4) {
message = CMNA_ldr_receive_word();
CMNA_router_msg_count--; }

= Just before the node program signals a network-done message, it should
use the system function CMOS_set_dr_msg_count_reg() to write the
current value of the count variable into the count register.

CMOS_set_dr_msg_count_reg (CMNA_router_msg_count) ;
do { CMNA_com_send_ first
(ASSERT_ROUTER_DONE, SCAN_ROUTER_DONE,
1,CMNA_force_read) ;
} while (! (SEND_OK(CMNA com_status())));

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

86 Programming the NI

* Important: While waiting for the network-done operation to complete,
the node program must write the current value of the count variable into
the register before examining the ni_router_done_complete flag:

do {status = CMNA_ 1ldr_status();
if (RECEIVE OK(status) &&RECEIVE_TAG(status)<4) {
message = CMNA_ldr_receive_word() ;
CMNA_router_msg_count--; }
CMOS_set_dr_msg_count_reg
(CMNA_router_msg_count) ;
} while (!DR_ROUTER_DONE(CMNA dr_status())) ({};

6.2.6 Broadcast and Combine interface Collisions

Because of the way the broadcast and combine interfaces interact, you should be
careful in using the abstain flags of these interfaces. If your code causes a node
(processing node or PM) to abstain from the combine interface, and if:

= the abstaining node is sending a broadcast message

* simultaneously, the other nodes are sending a combine message,

then because of timing conflicts in the Control Network hardware, the two types
of messages can collide, possibly causing your partition to crash. This situation
most often occurs when you have instructed the PM to abstain from the combine
interface so that it can receive the results of a scan or reduction operation, yet at
the same time you want the PM to broadcast messages to the nodes telling them
what to do. The conflict arises when the PM needs to broadcast a message at the
same time that the nodes are sending a combine message. To avoid this problem,
your code must include safety checks that prevent a broadcast message from be-
ing sent at the same time that other nodes are sending a combine message. The
CMOST operating system includes a function you can call to send a broadcast
message that implicitly performs this safety checking:

int *msg, length;
CMNA bc_send msg(msg, length);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

uopvi0dio) sauryovpy Supyl £661 © 1ySukdon
L8 €661 Kionuga,g ‘I, uoisiy

saxipuaddy

Appendix A

Programming Tools

A.1 Generic Variables and Macros

To determine the address of a node, and its place within its partition, use these variables:

int CMNA_self_address — Relative address of current node.
int CMNA_partition_size - Number of nodes in partition.

These are the macros used to examine the fields of the ni_interface_status register for
any interface that has such a register:

Field Name: Macro used to read value of fieid:
ni_send_ok SEND_OK (status_value)
ni_send_space SEND_SPACE (status_value)
ni_send_empty SEND_EMPTY (status_value)
ni_rec_ok RECEIVE_OK (status_value)
ni_rec_length RECEIVE_LENGTH (status_value)
ni_length left RECEIVE_LENGTH_LEFT (status_value)

For interfaces that have an abstain flag, there is a pair of macros that can be used to read
and write the value of the flag:

value = CMNA_read_abstain_flag (register_address) ;
CMNA_write_abstain_flag (register_address, value) ;

For both macros, register_address is a symbolic constant giving the address of the abstain
flag register (this is defined separately for each interface that has such a register).

For the write macro, value is the new value (0 or 1) to be written to the flag.

Version 7.1, February 1993 89
Copyright © 1993 Thinking Machines Corpor,

T3

90 Programming the NI

o RIS N N e WOSL VOIS I INSUL A YIINANL PN SMGNAPNIGY, SI SINGIN Sy 2 IAL SN SIS SO GO0 S VT ORI LD = M f NI SO S SN WAL WS Wl 8 BN
B B R S A B B R o SR P BB R 03 D

A.2 Data Network Constants and Macros

Send and Receive Register Macros

The send_£irst registers for the Data Network interfaces are accessed via the macros
below:

Register Name: Macros used to write first value of message to register:
ni_dr_send_ first CMNA_dr_send_first (tag, length, value)
CMNA_dr_send_first_double (tag, length, value)
ni_ldr_send_first CMNA_ldr_send_first (tag, length, value)
CMNA_ldr_send_ first_double (fag, length, value)
ni_rdr_send_first CMNA_rdr_send_first(tag, length, value)

CMNA_rdr_send first_double (tag, length, value)

The length argument in each case is the total length in words of the message to be sent
(excluding the address word), and the zag argument is the message’s tag value.

The send and rec registers of the Data Network interfaces can be written to and read from
by the generic register macros in Section A.1, and by the following special purpose mac-
10S:

Register Name: Macros used to access register:

ni_dr_send CMNA_dr_send_word (word_value)
CMNA_dr_send_float (float_value)
CMNA_dr_send_double (double_value)

ni_ldr_send CMNA_ldr_send_word (word_value)
CMNA_ldr_send_float (float_value)
CMNA_1ldr_send_double (double_value)

ni_ldr _recv word _value = CMNA_ldr_receive_word();
float_value = CMNA_ldr_receive_float();
double_value = CMNA_ldr_receive_double() ;

ni_rdr_send CMNA_rdr_send_word (word_value)
CMNA_ rdr_send_float (float_value)
CMNA_rdr_send_double (double_value)

ni_rdr_rec word_value = CMNA rdr_receive_word();
float_value = CMNA_rdr_receive_float();
double _value = CMNA _rdr_receive_double () ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. Programming Tools 91

e B B B OO 0 SRS o A3 OOt AR

SIS I SO SR 1 N R O
AN R B L T R

Status Register Macros

The values of the Data Network status registers can be obtained by using the macros:

int dr_status = CMNA dr_send status();
int ldr_status = CMNA_ldr_status();
int rdr_status = CMNA_rdr_status();

[}

(1]

You can extract the fields of the status registers by applying the following macros:

Register/Field Name: Macros used to access fields:

ni_dr_status
ni_send_ok
ni_send_space

SEND_OK (dr_status)
SEND_SPACE (dr_status)
ni_send_state DR_SEND_ STATE(dr_status)
ni_rec_state DR_RECEIVE_STATE(dr_status)
ni_router_done complete DR_ROUTER_DONE (dr_status)

ni_ldr_status

ni_send ok
ni_send_space
ni_rec_ok
ni_ldr_rec_tag
ni_rec_length
ni_rec_length left

ni_rdr_status

ni_send ok
ni_send_ space
ni_rec_ok
ni_rdr_rec_tag
ni_rec_length
ni_rec_length_left

SEND_OK(ldr_status)

SEND_SPACE (1dr_status)
RECEIVE_OK(ldr_status)
RECEIVE_TAG(ldr_status)

RECEIVE_ LENGTH(ldr_status)
RECEIVE_LENGTH_LEFT (1dr_status)

SEND_OK(rdr_status)

SEND_SPACE (rdr_status)
RECEIVE_OK (rdr_status)
RECEIVE_TAG (rdr_status)
RECEIVE_LENGTH (rdr_status)
RECEIVE_LENGTH_LEFT (rdr_status)

Message Length Limit

The maximum length of a Data Network message (not counting the address word attached
in sending it) is given by the constant

MAX ROUTER_MSG_WORDS

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

92 Programming the NI

A.3 Broadcast Interface Constants and Macros

Send and Receive Register Macros

The send_£irst register for the broadcast interface is accessed via the macros listed
here:

Register Name: Macros used to write first value of message to register:

ni_bc_send_first CMNA_bc_send_first (length, value)
CMNA_bc_send first_double (length, value)

The send and rec registers of the broadcast interface can be written to and read from by
the following special purpose macros:

Register Name: Macros used to access register:

ni_bc_send CMNA_bc_send_word (word_value)
CMNA_bc_send_float (float_value)
CMNA_bc_send_double (double_value)

ni_bc_recv word_value = CMNA bc_receive_word();
float_value = CMNA bc_receive_float();
double_value = CMNA bc_receive double();

Status Register Macros
The value of the broadcast interface status register can be obtained by using the macro:
int bc_status = CMNA bc_status();

You can extract the fields of the status register by applying the following macros:

Register/Field Name: Macros used to access fields:

ni_bc_status

ni_send ok SEND_OK (bc_status)

ni_send space SEND_SPACE (bc_status)

ni_send empty SEND_EMPTY (bc_status)
ni_rec_ok RECEIVE_OK(bc_status)
ni_rec_length_left RECEIVE_LENGTH_LEFT (bc_status)

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. Programming Tools

Abstain Register Macros

The broadcast abstain register contains a single flag bit, which can be read and written
using the generic abstain bit operations described in Section A.1.

Register/Field Name: Macros used to access fields:

ni_bec_control
ni_rec_abstain value=CMNA_ read_abstain flag
(bc_control_reg)
CMNA_write_abstain flag
(bc_control_reg,value) ;

Message Length Limit

The maximum length of a broadcast message is given by the constant

MAX_BROADCAST MSG_WORDS

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

94 Programming the NI

A.4 Combine Interface Constants and Macros

Send and Receive Register Macros

The send_£irst register for the combine interface is accessed via the macros below:

Register Name: Macros used to write first value of message to register:

ni_com send first CMNA_com_send_first (combiner, pattern, length, value)
CMNA com_send first_double
(combiner, pattern, length, value)
For scan operations, the combiner argument can be any one of the constants:
ADD_SCAN MAX_SCAN OR_SCAN UADD_SCAN XOR_SCAN
and the pattern argument can be any one of the constants:
SCAN_BACKWARD SCAN_FORWARD SCAN_REDUCE

For network-done operations there is a unique combiner and pattern pair:

combiner: ASSERT_ ROUTER_DONE pattern: SCAN_ROUTER_DONE

The send and rec registers of the combine interface can be written to and read from by
the generic register macros in Section A.1, and by the following special purpose macros:

Register Name: Macros used to access register:

ni_com_send CMNA_com_send_word (word_value)
CMNA_com_send_float (float_value)
CMNA_com_send_double (double_value)

ni_com_recv word_value = CMNA_com_receive_word();
float_value = CMNA _com_receive_float();
double value = CMNA_com receive_double();

Message Length Limit

The maximum length of a combine message (with the exception of network-done mes-
sages, which are always 1 word) is given by the constant:

MAX COMBINE_ MSG_WORDS

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. Programming Tools

Segment Start Register Macros

The ni_scan_start register is accessed by the following special purpose macros:

Register Name: Macros used to access register:

ni_scan_start CMNA_set_segment_start (value)
value = CMNA segment_start();

Status Register Macros
The value of the combine interface status register can be obtained by using the macro:
int com status = CMNA_com_status();

You can extract the fields of the status register by applying the following macros:

Register/Fleld Name: Macros used to access fields:

ni_com_status

ni_send_ok SEND_OK (com_status)
ni_send_space SEND_SPACE (com_status)
ni_send_empty SEND_EMPTY (com_status)
ni_rec_ok RECEIVE OK(com_ status)
ni_rec_length RECEIVE_LENGTH (com_status)
ni_rec_length left RECEIVE_LENGTH_LEFT (com_status)
ni_com_scan_overflow COMBINE_OVERFLOW (com_status)

Abstain Register Macros

The combine abstain register contains two single-bit flags, which can be read and written
by the macros listed below:

Register/Field Name: Macros used to access fields:

ni_com_control .
ni_rec_abstain value=CMNA read_abstain_flag(com control_reg) ;
CMNA_write_abstain_flag(com_control_reg,value) ;
ni_reduce_rec_abstain
value=CMNA_read_rec_abstain flag(com_control_reg);
CMNA_write_rec_abstain flag(com_control_reg,value) ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

96 Programming the NI

A.5 Gilobal Interface Constants and Macros

Synchronous Global Register Macros

The synchronous global registers are read and written by the following macros:

Register Name: Macros used to access register:

ni_sync_global_send CMNA or_global_sync_bit (value)
ni_sync_global
ni_sync_global_complete value = CMNA_global_sync_complete ()
ni_sync_global_rec value = CMNA _global_sync_rec()
ni_sync_global_abstain

value=CMNA read abstain_flag(sync_global_ abstain reg);
CMNA_write_abstain_flag(sync_global_abstain_regvalue) ;

Asynchronous Global Register Macros

The two flags of the asynchronous global register are read and written by these macros:

Register/Flag Name: Macros used to access register:
ni_async_global
ni_global_ send CMNA_or_global_async_bit (value)
ni_global_rec value = CMNA_global_async_read()

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix B

CMOS_signal man page

ORI PG ML,

G A Ay

SRS RI RN NS TR S

CcMOS_signal — asynchronous event handlers on the nodes
Syntax:

#include <cmsys/cm_signal.h>
(*CMOS_signal (sig, func, mask)) ()
int sig;

void (*func) ();

int mask;

Description:

cMos_signal allows code on the nodes to specify software handlers for certain asynchro-
nous events. It is the responsibility of the user to ensure that the signal handler does not
change the state of the node in any way that will disrupt execution of the interrupted code.

A node program can specify that the arrival of data router messages with a certain set of
tags will generate an interrupt. The program specifies the message handler and the set of
tags with a call to cMOS_signal () with sig = SIGMSG, *func set to the address of the
user-written handler function, and mask set to a bit mask specifying which tags will
interrupt. (Bit O corresponds to tag 0, bit 1 corresponds to tag 1, and so forth.) Currently,
tags O to 3 are reserved for user messages. Bits 4 and up are reserved for system messages,
and may not be used or referenced by user code.

The context of the node except for the floating point context and the global registers g5,
%g6, and %g7 is saved before the user message handler is called. Thus, use of floating point
instructions in the user message handler will cause unpredictable errors in the interrupted
code. Also, the network state of the CM is not altered before entering the user message
handler. Thus, the message(s) which produced the interrupt will still be in the receiving
FIFO when the user message handler is invoked. It is the responsibility of the user message
handler to empty these messages.

Version 7.1, February 1993 97
Copyright © 1993 Thinking Machines Corpor.

Return Values:

CcMOS_signal () returns the previous action on success. On failure, it returns -1 and sets
errno to indicate the error.

Errors:

cMoS_signal () will fail and no action will take place if one of the following occurs:

EINVAL sig was not a valid signal number.
Notes:
The handler routine can be declared:

void handler ()

The routine is not passed any parameters relating to the received message. The user mes-
sage handler must read the NI registers to determine such details as the tag of the message
and whether the message has arrived via the left or right data network interface, etc.

Message interrupts are disabled while user code is in a user message handler. Thus, user
message handlers need not be reentrant. However, the message handler should not enable
interrupts (via a call to cMOS_signal ().) If it does, the results are unpredictable. Also,
note that if the user code anticipates a series of interrupting messages, the arrival of the first
message can be used to invoke the message handler and the remaining messages can be
received via polling within the handler, thus saving the overhead of an interrupt for all but
the first message. Message interrupts are disabled by a call to cMOS_signal () with func
set to CM_SIG_IGN. The mask argument is ignored. (Note that all user tag interrupts are
disabled by this call.)

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix C
CMNA Header Files

To access the NI macros described in this document, you must #include the
header file cm/cona . h:

#include <cm/cmna.h>

This file #includes many other header files that provide access to NI register
macros and accessor functions. These macros and functions are collectively
referred to as CMNA (CM Network Accessors), and can serve as a basis for your
own NI accessor code.

Note: The functions and macros in CMNA are designed to be very generic in
operation. As such, they are much less efficient than the special-purpose macros
and functions you’ll probably write on your own. Nevertheless, you can use the
operations defined in CMNA as a jumping-off point for your own code, to help
you understand what needs to be done to get your code to run correctly.

C.1 What is CMNA?

There are two main parts to CMNA:
* The NI Interface — Constants and macros used to manipulate NI registers.

®* CnC (“C-and-C”) — C functions that perform NI operations such as
reading and writing messages of arbitrary length.

The CMNA header files define the NI interface explicitly, in terms of register
accessor macros and constants. The header files also provide C prototypes for the
CnC functions, which are part of the CMOST operating system code.

Version 7.1, February 1993 99
Copyright © 1993 Thinking Machines Corporation

C.2

CMNA Header Files

The following header files are part of CMNA:

/usr/include/
cm/cmna.h — Main CMNA header file.
cmsys/cmna.h — CMNA user header file.
cmsys/cmna_sup.h ~— CMNA supervisor header file.
cmsys/ni_interface.h — Main NI interface header file.
cmsys/ni_macros.h — NI macro definitions.
cmsys/ni_constants.h — NI register/flag constant definitions.
cmsys/ni_defines.h — Low-level NI constant definitions.

The following diagram shows the relationship among the header files that make
up CMNA:

cm/cmna.h

\NI supervisor area
NI user area
cmna_sup.h

cmsys/cmna.h —

T

ni_interface.h
ni_constants.h ni_macros.h
\i
ni_defines.h

Figure 9. Relationship between CMNA and NI header files.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix C. CMNA Header Files

c.21

C.2.2

C.23

The Main CMNA Header File: cm/cmna.h

This single file #includes all the header files that are needed to define CMNA.
However, it contains virtually no definitions of its own. It simply #includes
either of the two header files cmsys/cmna.h or cmsys/cmna_sup.h, accord-
ing to which NI register area (user or supervisor) the #includeing code needs.

Implementation Note: At present, cmsys/cmna_sup.h is only #included
for diagnostic code (that is, code that defines the symbol CMDIAG).

The User Header File: cmsys/cmna.h

This file #includes the NI constant and macro files described below, and also
defines a number of useful C mask constants and C macros that are used in
CMNA. However, the constants and macros defined here are only sufficient for
the needs of CMNA, and are not by any means a complete set. (See the descrip-
tion of the ni_constants.h, and ni_defines files below.)

The Supervisor Header File: cmsys/cmna_sup.h

This file modifies a few key constant definitions so that any absolute memory
address constants defined in the other header files will refer to the NI supervisor
area, rather than the NI user area. It then #includes cmsys/cmna.h, so it has
much the same effect as that header file.

Note: The cmsys/cmna_sup .k file is only of use to programmers with legal
access to the NI supervisor area. Including this file does not in itself grant access
to the NI's supervisor area; it simply redefines many CMNA constants to have
address values that are only legal for supervisor code.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

c.24

C.25

C.2.6

The NI Interface Header File: ni_interface.h

This file defines the NI accessor interface. It #includes the file
ni_constants.h, and defines a number of basic NI register macros that are
used by CMNA. It then #includes ni_macros.h to define the remainder of the
CMNA macros.

This file also defines a number of NI register constants that are suitable for use
in C code. (That is, constants that have been cast as (unsigned *) values. See
the description of ni_constants.h and ni_defines.h below.)

The NI Macros Header File: ni_macros.h

This file defines a number of C macros that perform sterotypical NI operations
such as sending and receiving messages via a specific network interface.

The NI Constants Header Files: ni_constants.h, ni_defines.h

These files define a number of register constants and masks that are used by
CMNA. In particular, ni_constants. c includes definitions of constants speci-
fying the absolute memory address for each of the NI's registers. The file
ni_defines.h defines hundreds of constants that give the size and offset of the
register fields of the NI. These two sets of constants provide a complete interface
for NI operations written in assembly code.

Note For C Programmers: The register address constants are unsigned pointer
values. To use them in C code, you must first cast them to type (unsigned *).
For example:

unsigned *ni_dr_status = ((unsigned *) NI_DR_STATUS) ;

If you don’t perform this casting step, the C compiler by default treats the
constants as signed integers, possibly causing your code to fail. Note that many
of these constants are recast in just this fashion in the ni_interface.c header
file , so you may be able to just use those constants without having to do any
recasting yourself.

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D

AR RS D AT SN I NS NN g 8 U

Sample NI Programs

st Y s gm0 I
A T A Y R, LN RS R A A S SR T NI i s E
S RIS S rdo s " e FE B e N 00 P o ome s wraen B SR AL N AAn TSRS 0 DS

This appendix contains a series of NI programs that test all the programming examples
shown in the chapters of this manual. For each program, only the PM and node code files
are given. The interface file for each program is identical to that given for the sample pro-
gram in Chapter 5, and these test programs #include the same utils.h file as is used
in Chapter 5.

As of Version 7.1.3 of the CM system software, there are on-line copies of the sample pro-
grams presented here. Depending on where your system administrator has stored the CM
software, these files may be located under the pathname /usr/cm/src/ni-examples.
Check with your system administrator for help in locating these files.

Important: You should view the examples presented here as merely a cookbook of pos-
sible ideas, not a hard-and-fast rulebook on network protocol. These examples are written
for clarity, not efficiency, and your own individual application should be your guide as to
how to rearrange the code fragments presented here, and how best to trim them for speed.

D.1 Data Network Test

This program presents examples of a number of different kinds of Data Network opera-
tions, including:

®= Sending and receiving messages limited by the length of the network queues.

= Sending and receiving unlimited-length messages.

= Using interrupt-driven message retrieval.

®= Sending and receiving by the LDR and RDR simultaneously.

Version 7.1, February 1993 103
Copyright © 1993 Thinking Machines Corpor.

104 Programming the NI

Filename: LDR_test.c

/* LDR test program - PM program */
#include <cm/cmna.h>
#include “utils.h*

#define LONG_FACTOR 5

void main () {
int input, result, high node;
printf (*\nLDR test program, by William R. Swanson,\n");
printf (*"Thinking Machines Corporation -- 2/3/92.\n\n"*);

/* Enable broadcast sending */

CMNA participate_in (NI_BC SEND_ENABLE) ;

/* Abstain from broadcast reception and combine sending */
save_and set_abstain flags(1l,1,0,0);

/* Start node programs running */

node_main () ;

/* Get a value from the user and send it to the nodes. */
printf ("This CM-5 partition has %d nodes.\n",

CMNA _partition_size);
printf (*Please type an integer to send to the nodes: “);
scanf ("%d", &input);
PM_send_to_NODE (0, input);
printf ("Sent value %d to node 0...\n",input);
/* Wait for the nodes to finish juggling numbers */
PM_NODE_synch () ;

/* Get value from high node */

high node = CMNA partition_size - 1;

result = PM_get_from NODE (high node) ;

printf ("Short send:\n");

printf (*Received value %d (should be %d) from node %d.\n",
result, input+MAX BROADCAST_MSG_WORDS-1,high node);

result = PM get from NODE (high node) ;

printf ("Long send:\n");

printf ("Received value %d (should be %d) from node %d.\n",
result, input+ (MAX_BROADCAST_MSG__WORDS *

LONG_FACTOR) -1, high node);

result = PM get from NODE (high_node) ;

printf ("Interrupt-driven send:\n");

printf ("Received value %d (should be %d) from node %d4d.\n",
result, input+MAX BROADCAST MSG_WORDS-1,high node);

result = PM_get from NODE(O0);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. Sample NI Programs 105

T N e AR i S L SN N AR S 52 T AT U ST S LD 30
D S B B S S LS L S

printf ("Dual-network send:\n");

printf ("Received value %d (should be %d) from node %d.\n",
result, MAX BROADCAST MSG_WORDS, 0);

restore_abstain_flags();

Filename: LDR_test.node.c

/* LDR test program - node program */

#define NI_ROUTER_DONE_P NI_ROUTER_DONE COMPLETE P
#include <cm/cmna.h>

#include <cmsys/cm_signal.h>

#include "utils.h®

#define LONG_FACTOR 5

/* Send/Receive functions limited by length restriction */
int LDR_send {(dest_address, message, length, tag)

unsigned dest_address, tag;

int *message;

int length;

int i;

CMNA ldr_send first(tag, length, dest_address);
while (length--) CMNA_ldr_send word(*message++) ;
return (SEND_OK(CMNA_ldr_status())); 1}

int tag_limit=0;

int LDR_receive (message, length)
int *message;
int length;

int i, tag = 999;
/* Skip messages currently assigned as interrupts */
while (tagrtag_limit) {

if (RECEIVE_OK(CMNA_ldr_status{()))

tag = RECEIVE_TAG(CMNA_ldr_status());

}
while (length--)

*message++ = CMNA ldr_receive_word() ;
return (tag);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

106

pritese s oy

/*

Programmmg the NI

SR IR e

R S L T S R S S O S S i

oy

Send/Receive function with no length restriction */

LDR_send receive msg(dest_address, message, length, tag, dest)

unsigned dest_address, tag;
int *message, *dest;
int length;

int packet_size=MAX ROUTER_MSG_WORDS-1;

int send size, receive_size;

int offset, source offset=0, dest_offset;
int words_to_send=length, words_received=0;
int count, rec_tag, status;

while ((words_received < length) || (words_to_send)) {

*/

/* First try to receive a packet */
status=CMNA_ldr_ status();
if (words_received<length &&
RECEIVE_OK (status) &&
RECEIVE TAG(status) <= tag_limit) {
dest_offset = CMNA_ ldr_receive_word();
receive_size = RECEIVE_LENGTH LEFT(CMNA_ ldr_status());
for (count=0; count<receive _size; count++)
dest [dest_offset++] = CMNA_ldr_receive_word();
words_received += receive_size;

}

/* Now try sending a packet */
if (words_to_send) {
send size = ((words_to_send < packet_ size) ?
words_to_send : packet_size);
do {
CMNA_ldr_send first(tag, send_size + 1, dest_address);
/* Send offset to indicate part of message being sent

CMNA 1ldr_send word(source_offset);
offset=source_offset;
for (count=0; count<send _size; count++)
CMNA_ 1dr_send word(message[offset++]);
} while (!SEND OK(CMNA_ldr_status()));
source_offset=offset;
words_to_send -= send_size;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. Sample NI Programs 107

" o O3F e BN MG T S 1o S SN BN PG
BRI AR CONA IR E I S SIS AR S 1 o Yt 4 7 4

LN 0

B B St B S

s N e s

/* Message-receiving handler for interrupt-driven LDR test */
int interrupt_done=0;

int interrupt_expect_length;

int interrupt_receive [MAX_BROADCAST MSG_WORDS] ;

void LDR_receive handler ()
{
int temp=tag_limict;
tag_limit=3;
LDR_receive(interrupt_receive, interrupt_expect_length);
tag_limit=temp;
interrupt_done=1;

}

/* Send/Receive functions using LDR and RDR in tandem */
void LDR_RDR_send (dest_address, message, length, tag)
unsigned dest_address, tag;
int *message, length;

int i;

CMNA_ldr_send first(tag, length, dest_address);

CMNA rdr_send first(tag, length, dest_address);

for (i=0; i<length; i++) {
CMNA_ldr_ send word (message[i]);
CMNA_rdr_send word(message[i]);

}

int LDR_RDR_receive (message, length)
int *message, length;
{
int i, 1ldr_value, rdr_value, length_received ok=0;
while (!RECEIVE_OK(CMNA_ldr_status()) ||
!RECEIVE_OK (CMNA_rdr_status())) {}
for (i=0; i<length; i++) {
ldr_value=CMNA_ldr_receive_word() ;
rdr_value=CMNA rdr_ receive_word{();
if (ldr_value==rdr_value) {
message [i]=1dr_value;
length_received_ok++;
}
}

return(length_received_ok);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

108 Programming the NI

L BRI N LN, PN PN DN SOSN8 NP s G S LA SN ARNGL PRSNG| NN Lo (VOIS 51 % G G SO S WSSOI SR NS UL
R T R o Lo o U Pl LBl I e B R G S

/* Combine "network-done" Function */

void network_done_synch ()

{

CMNA_com send_first (ASSERT ROUTER_DONE, SCAN_ROUTER_DONE,1,0) ;
while (!DR_ROUTER_DONE (CMNA_dr_status())) {};

}

/* Tool to ensure there’s nothing in the receive gqueues */
/* Not used here, but you may find it handy */
void LDR_empty_network() {
int status, length, i;
while (status=CMNA_ldr_status(), RECEIVE_OK(status))
if (RECEIVE_TAG (status) <= tag_limit) {
length = RECEIVE_LENGTH (status) ;
for (i=0; i<length; i++)
(void) CMNA_ldr_ receive_word();
}
}

void CMPE_node_main () {

int value=0, i, length=MAX BROADCAST MSG_WORDS;

int long_length=length*LONG_FACTOR;

int next_node, mirror_node;

int received_ok;

int send[MAX_BROADCAST_MSG_WORDS*LONG_FACTOR] ,
receive [MAX_BROADCAST_MSG_WORDS],
long_receive [MAX_BROADCAST_MSG_WORDS*LONG_FACTOR] ,
dual_receive [MAX_BROADCAST MSG_WORDS] ;

/* signal interrupts for non-zero tag values */
CMOS_signal (SIGMSG , LDR_receive_handler , 14):
CMNA participate_in(NI_BC_SEND_ENABLE) ;
save_and_set_abstain flags(0,0,0,0);

/* All nodes get the value sent by the PM... */
All _NODES get_from_PM(&value) ;

for (i=0; i<long_length; i++) {
send [i] =value+i;
long_receive([i]=-999;

}

for(i=0; i<length; i++) {
receive([i]=-999;
interrupt_receive[i]=-999;
dual_receive[i]=-999;

}

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. Sample NI Programs 109

/* Calculate some useful addresses */
next_node = (CMNA self address + 1) % CMNA partition_size;
mirror_node = (CMNA partition_size-1) - CMNA_self_address;

/* Do an ordinary, length-limited send */
LDR_send (next_node, send, length, 0);
network_done_synch() ;

LDR_receive (receive, length);

network done_synch();

/* Do an unlimited-length send */
LDR_send receive_msg(mirror_node, send,

long_length, 0, long_receive);
network _done_synch() ;

/* Do an interrupt-driven send with a tag of 3%/
interrupt_expect_length=length;

LDR_send (next_node, send, length,3);

while (!interrupt_done) {}

network_done_synch{() ;

/* Send via both LDR and RDR, and check results */
LDR_RDR_send (mirror_node, send, length, 0);
network done_synch();

received_ok=LDR_RDR receive (dual_receive, length);

/* Signal to PM that answer is ready */
PM_NODE_synch() ;

/* Send check values back to PM */
NODE_send_to_PM(receive [length-1]);
NODE_send_to_PM(long_receive[long length-1]);
NODE_send_to_PM(interrupt_receive [length-1]);
NODE_send_to_PM(received_ok) ;

restore_abstain_flags();

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

110 Programmmg the NI

Oy

: S . e T A A Y NSNS g e
BB O P A AL W EJLIINI R & %

SRR S

D.2 Data Network Double-Word Messages Test

This program demonstrates the use of double-word read and write operations for Data Net-
work transmissions:

Filename: dbl_test.c

/* Double-word ops test program -~ PM program */
#include <cm/cmna.h>
#include "utils.h"

#define LONG_FACTCR 5

void main () {
int input, result, high node;
printf ("\nDouble-word test program, by W. R. Swanson, \n")
printf ("Thinking Machines Corporation -- 2/3/92.\n\n")

/* Enable broadcast sending */

CMNA_ participate_in(NI_BC_SEND_ENABLE) ;

/* Abstain from broadcast reception and combine sending */
save_and_set_abstain_flags(1,1,0,0);

/* Start node programs running */

node_main() ;

/* Get a value from the user and send it to the nodes. */
printf ("This CM-5 partition has %d nodes.\n",

CMNA partition_size);
printf ("Please type an integer to send to the nodes: ");
scanf ("%d"¥, &input);
PM_send to NODE (0, input);
printf ("Sent value %d to node 0...\n",input);
/* Wait for the nodes to finish juggling numbers */
PM_NODE_synch () ;

/* Get value from high node */

high node = CMNA partition_size - 1;

result = PM get_from NODE (high node) ;

printf ("Long send using double-word ops:\n")

printf ("Received value %d (should be %d) from node %d.\n%,
result, input+(MAX BROADCAST_MSG_WORDS*

LONG_FACTOR)-1, high node) ;
restore_abstain flags();

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. Sample NI Programs 111

Filename: dbl_test.node.c

/* Double-word ops test program - PM program */
#include <cm/cmna.h>

#include <cmsys/cm_signal.h>

#include "utils.h"

#define LONG_FACTOR 5

int tag_limit = 3;

/* Send/Receive function using double-words */
LDR _send receive_msg_double(dest_address, message,
length, tag, dest)
unsigned dest_address, tag:
int *message, *dest;
int length;

int packet_size;

double *dbl;

int send size, send size2, receive size, receive size2;
int offset, source_offset=0, dest_offset;

int words_to_send=length, words_received=0;

int count, rec_tag, status;

if ((int)message & 3)
CMPN_panic ("Error: Message array not double-word aligned!");

if ((int)dest & 3)
CMPN_panic ("Error: Dest array not double-word aligned!");

packet_size = (MAX ROUTER_MSG_WORDS-1) & ~1;
while ((words_received < length) || (words_to_send)) {

/* First try to receive a packet */
status=CMNA 1ldr_status{();
if (words_received<length &&
RECEIVE_OK (status) &&
RECEIVE_TAG(status) <= tag limit) {
dest_offset = CMNA_ldr_receive_word();
receive_size = RECEIVE LENGTH_LEFT (CMNA_ldr_status());
printf ("received offset %d, size %d.\n",
dest_offset, receive_size);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

112 Pro rammmg the NI

ST INEYSN L Y i

resgns s
SN 238

R Ry S g O 8 S P P 553 N, N o T
R SR FoRwon S RSP LETIN B e ety SRR

-$~y)

e e

for (count=0; count<(receive_size>>1); count++) {
dbl = (double *) (&dest[dest_offset++])
dest_offset++;
*dbl = CMNA_ldr_receive_double () ;
dbl~++; T -

}

if (receive_size & 1) /* If word left over */
dest [dest_offset++] = CMNA_ ldr_receive word();

words_received += receive_size;

}

/* Now try sending a packet */
if (words_to_send) {
send size = ((words_to_send < packet_size) ?
words_to_send : packet_size);
send_size2 = send_size >> 1;
do {
CMNA_ldr_send first(tag, send_size + 1, dest_address);
CMNA_1dr_send_word (source_offset);
offset=source_offset;
/* Send as many doubles as possible */
for (count=0; count<send_size2; count++) {
dbl = (double *) (&message[offset++]);
offset++;
CMNA_ldr_send_double (*dbl++) ;
}
if (send size & 1) /* If a word is left over */
CMNA_ ldr_send word (message [offset++])
} while (!SEND_OK(CMNA_ldr_status()));
printf ("sent offset %d, size %4.\n",
source_offset, send_size);
source_offset=ocffset;
words_to_send -= send_size;

}
}

/* Combine “network-done" Function */
void network_done_synch()

{
CMNA_com_send_first (ASSERT_ROUTER_DONE, SCAN ROUTER DONE,1,0) ;

while (!DR_ROUTER_DONE (CMNA_dr_status())) {};
}

void CMPE node main () {
int value=0, 1i;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendzx D. Sample NI Programs 113

B B L L S s e S e P D B e R B R B R B B

int length=MAX BROADCAST MSG_WORDS*LONG_FACTOR;
int mirror_node;

/* These variables MUST be double-word aligned! */
double temp_dalign_send;

int send [MAX_BROADCAST_MSG_WORDS*LONG_FACTOR] ;
double temp_dalign_rec;

int receive [MAX BROADCAST MSG_WORDS*LONG_FACTOR] ;

CMNA participate_in(NI_BC_SEND_ENABLE) ;
save_and_set_abstain_flags(0,0,0,0);

/* All nodes get the value sent by the PM... */
All NODES_get_from PM(&value) ;

for(i=0; i<length; i++) {
send [i] =value+i;
receive[i]=-999;

mirror_node = (CMNA partition size-1) - CMNA_self_ address;
/* Do an unlimited-length send using double-word ops */
LDR_send_receive_msg_double(mirror_node, send,
length, 0, receive);

network_done_synch() ;

/* Signal to PM that answer is ready */
PM_NODE_synch () ;

/* Send check value back to PM */
NODE_send_to_PM(receive[length-1]);

restore_abstain flags();

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

114 Programming the NI

D.3 Broadcast Interface Test

This program presents a simple test of broadcasting:
Filename: BC_test.c

/* Broadcast examples program - PM program */
#include <cm/cmna.h>
#include "utils.h"

void main () {
int input, result, high_node;
printf ("\nBroadcast test program, by W. R. Swanson,\n");
printf ("Thinking Machines Corporation -- 2/1/92.\n\n%);

/* Enable broadcast sending */

CMNA_participate in(NI_BC_SEND_ENABLE) ;

/* Abstain from broadcast reception and combine sending */
save_and_ set_abstain flags(1,1,0,0);

/* Start node programs running */

node_main();

/* Get a value from the user and send it to the nodes. */
printf ("This CM-5 partition has %d nodes.\n",

CMNA partition_size);
printf ("Please type an integer to send to the nodes: ");
scanf ("%d", &input);

PM send_to_NODE(0, input);
printf (*Sent value %d to node 0...\n",input);:

/* Wait for the nodes to finish juggling numbers */
PM_NODE_synch () ;

/* Get value from high node */
high node = CMNA _partition size - 1;
result = PM get from NODE (high node);
printf ("Received value %d (should be %d) from node %d.\n",
result, input+MAX BROADCAST MSG_WORDS-1,
high node);

restore_abstain_flags();

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. Sample NI Programs 115

Filename: BC_test.node.c

/* Broadcast examples program - node program */
#include <cm/cmna.h>
#include ®*utils.h"

int BC_send (message, length)
int *message, length;
{
int i;
CMNA_bc_send first(length--, *message++);
for (i=0; i<length; i++) CMNA_bc_send word(*message++);
return (SEND_OK(CMNA_bc_status(})));
}

int BC_receive (message, length)
int *message, length;
{
int i;
for (i=0; i<length; i++) {
while (!RECEIVE_OK(CMNA_bc_status())) {}
message [i] = CMNA_bc_receive_word() ;
}
return(length) ;
}

void CMPE_node_main () {
int value=0, i, length=MAX BROADCAST MSG_WORDS;
int send[MAX BROADCAST_MSG_WORDS],
receive [MAX_BROADCAST_MSG_WORDS] ;
int status, rec_length;

CMNA_participate_in(NI_BC_SEND_ENABLE) ;
save_and_set_abstain_flags(0,0,0,0);

/* Node 0 gets the value sent by the PM... */
NODE_get_from_PM(&value) ;

for(i=0; i<length; i++) {
send [i] =value+i;
receive (1] =-999;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

116 Programming the NI

if (CMNA_self_address==0) {

status=0;

while(!status) status = BC_send({send, length);
}

rec_length = BC_receive(receive);

/* Signal to PM that answer is ready */
PM_NODE_synch() ;

/* Send value from high-order node back to PM */
NODE_send_to_PM(receive[length-1]);

restore_abstain_flags() ;

}

D.4 Combine Interface Test

This program presents examples of a number of different kinds of combine operations,
including:

= Scanning messages, with and without segments

= Reduction messages

®* Network-done messages
Filename: coM_test.c

/* Combine examples program - PM program */
#include <cm/cmna.h>
#include "utils.h®

void main () {
int input, result, segment_size, high_node, i, expected;
printf ("\nCombine test program, by William R. Swan-

son, \n") ;
printf ("Thinking Machines Corporation -- 2/1/92.\n\n");

/* Enable broadcast sending */
CMNA_participate_in(NI_BC_ SEND_ENABLE) ;

/* Abstain from broadcast reception and combine sending */
/* Abstain from combine reception, too, for a while... */

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. Sample NI Programs 117
S T e B R i s R S O R A R AP S R

save_and_set_abstain flags(1,1,1,0);

/* Start node programs running */
node main() ;

/* Get a value from the user and send it to the nodes. */
printf ("This CM-5 partition has %d nodes.\n",
CMNA partition_size);
printf ("Please type a positive integer: ");
scanf (*%d", &input);

high node = CMNA partition_size-1;
PM_send_to_NODE (high_node, input);
printf ("Sent value %d to node %d...\n", input, high_node) ;

/* Wait for the nodes to finish juggling numbers =*/
PM_NODE_synch() ;

/* Turn combine reception back on */

CMNA write_rec_abstain_ flag(com_control_reg, 0);

/* Get check values */

result = PM_get_ from NODE(0);

printf ("Received value %d (should be %d) from node %d.\n",
result, (input+MAX BROADCAST MSG_WORDS-1), O0);

result = PM_get_from_ NODE (high_node) ;

printf ("Received value %d (should be %d) from node %d.\n",
result, (input*high node), high_node);

segment_size = PM_get_from NODE(0);

result = PM_get_ from NODE(0) ;

printf ("Received value %d (should be %d) from node %d.\n",
result, (input+MAX BROADCAST MSG_WORDS-1)

* (segment_size-1), 0);

result = PM_get_from NODE(0) ;

printf ("Network done for ncde 0 got %d (should be %d).\n",
result, high_node);

result = PM_get_from NODE(0) ;

printf ("Scanning counted %d nodes (should be %d).\n",
result, CMNA partition size);

/* Make sure all results are in */
PM_NODE_synch() ;

restore_abstain_flags();

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

118 Programming the NI

Filename: COM_test.node.c

/* Combine examples program - node program */

#idefine NI_ROUTER_DONE P NI_ROUTER_ DONE COMPLETE P

#include <cm/cmna.h>

#include "“utils.h®

int COM_send(combiner, pattern, message, length)
int *message, combiner, pattern, length;

{
int i, start, step;
/* For max scans, send high-order word(s) first */
if (combiner==MAX_ SCAN) { start=length-1; step=-1; }
else { start=0; step=1; }
CMNA com_send first(combiner, pattern, length,

message [start]);
for (i=1; i<length; i++)
CMNA_com_send word (message [(start+=step)]);

return (SEND_OK(CMNA com_status()));

}

int COM_receive(combiner, message)
int *message;
{
int i, length, start, step;
while (!RECEIVE_OK(CMNA_com status())) {}
length=RECEIVE_ LENGTH{CMNA com_status());
/* For max scans, send high-order word(s) first */
if (combiner==MAX SCAN) { start=length-1; step=-1; }
else { start=0; step=1; }
for(i=0; i<length; i++) {
message [start] = CMNA_com_receive_word();
start+=step;
}
return(length) ;

int COM_scan(combiner, pattern, message, length, result)
int *message, *result, combiner, pattern, length;
{
int status=0, rec_length;
while (!status) status =
COM_send (combiner, pattern, message, length);
rec_length = COM_receive (combiner, result);
return(rec_length) ;

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. Sample NI Programs 119

void CMPE node_main () {

int value=0, i, length=MAX BROADCAST_MSG_WORDS;

int send[MAX_BROADCAST MSG_WORDS],
result [MAX_BROADCAST_MSG_WORDS],
seg_result [MAX BROADCAST_ MSG_WORDS] ;

int rec_length, segment_size, high node;

int one, node_count;

int message, network done msg, next_processor;

CMNA_participate_in(NI_BC_SEND ENABLE) ;
save_and_set_abstain_flags(0,0,0,0);

/* Make sure segmenting is turned off to begin with */
CMNA_set_segment_start (0) ;

high node = CMNA_partition_size - 1;

/* High node gets the value sent by the PM... */
NODE_get_from_PM(&value) ;

/* Fill send array based on supplied value */

for(i=0; i<length; i++) {
send[i]=((CMNA_self address==high_node) ? value+i : 0);
result[i]=-999;
seg_result[i]=-999;

}

/* Do a max scan to distribute send values to all nodes */
rec_length = COM_scan(MAX SCAN, SCAN_ BACKWARD, send,
length, send);

/* Scan overwrites high node -- put back original value */
if (CMNA_self address==high_node)
for(i=0; i<length; i++) send[i] = wvalue+i;

/* Do an add scan to make different values */
rec_length = COM_scan(ADD_SCAN, SCAN_FORWARD, send,
length, result);

/* Do a backwards segmented reduction */
segment_size=(CMNA partition size<5 ?

CMNA partition_size : 5);
CMNA_set_segment_start (((CMNA_self address % segment_size)

== segment_size-1));
rec_length = COM_scan(MAX SCAN, SCAN_BACKWARD, result,
length, seg_result);

CMNA set_segment_start(0);

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

120 Programming the NI

/* Try network-done feature */

message=CMNA_self address;

network done_msg=0;

next_processor = (CMNA self_ address+1)%CMNA partition size;
CMNA ldr_send first(0,1,next_processor);
CMNA_1dr_send word (message) ;

COM_send (ASSERT_ROUTER_DONE, SCAN_ROUTER_DONE,
&network done_msg, 1);

while (!DR_ROUTER_DONE (CMNA_dr_status())) {};
while (!RECEIVE_OK(CMNA_ 1ldr_status())) {};

message=CMNA_ldr_receive_word();

/* Use reduction to do a processor "roll-call" */

one=1;

node_count=-999;

rec_length = COM_scan(ADD_SCAN, SCAN_REDUCE,
&one, 1, &node_count) ;

/* Signal to PM that answers are ready */
PM_NODE_synch () ;

/* Send check values back to PM */
NODE_send_to_PM(send[length-1]);
NODE_send_to_PM(result[0]);
NODE_send_to_PM(segment_size);
NODE_send_to_PM(seg_result[length-1]);
NODE_send to_PM(message) ;
NODE_send_to_PM(node_count) ;

/* Make sure all results have been received */
PM_NODE_synch() ;

restore_abstain_flags();

}

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. Sample NI Programs 121

D.5 Global Network Test

This program presents a quick example of asynchronous and synchronous global interface
operations:

Filename: GLOBAL_test.c

/* Global network test program - node program */
#include <cm/cmna.h>
#include "utils.h®

void main () {
int value;
printf ("\nGlobal test program, by William R. Swanson,\n");
printf ("Thinking Machines Corporation -- 2/6/92.\n\n");

/* Enable broadcast sending */

CMNA participate_in(NI_BC_SEND_ENABLE) ;

/* Abstain from broadcast reception and combine sending */
save_and_set_abstain_flags(1,1,0,0);

printf ("This CM-5 partition has %d nodes.\n",
CMNA partition_size);

/* Start node programs running */
printf ("Starting node programs...\n");

node_main() ;

/* Test asynchronous global network */
CMNA_or_global_async_bit(0);

PM_NODE_synch() ;

value = CMNA_global_async_read() ;
printf ("Received async bit %d (should be 0).\n", value);

restore_abstain_flags();

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

122 Programming the NI

Filename: GLOBAL_test.node.c

/* Global network test program - node program */
#include <cm/cmna.h>
#include "utils.h"

void CMPE node main () {
int value;
CMNA participate_in(NI_BC_SEND_ENABLE) ;
save_and_set_abstain flags(0,0,0,0);

CMNA_or_global_async_bit(0);

/* Signal to PM that answer is ready */
PM_NODE_synch () ;

value = CMNA global_async read();

if (value)
printf ("Error: node got non-zero global value.");

restore_abstain_flags();
}

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Indexes

Version 7.1, February 1993 123
Copyright © 1993 Thinking Machines Corporation

Language Index

This index lists the macros, system functions, and constants referred to in this document. Boldface
page numbers indicate a definition or other important reference.

A B

ADD_SCAN

combiner constant, 46, 48, 94
ASSERT_ROUTER_DONE

combiner constant, 46, 50, 94
bc_control_regq, constant, 41, 93

Cc

CMNA_bc_recelve_type(),

macro, 40, 92
CMNA_bc_send_£irst (), macro, 39,92
CMNA_bc_send first_double(),

macro, 39, 92
CMNA_bc_send_type (), macro, 39, 92
CMNA_bc_status (), macro, 40, 92
CMNA_com_receive_type (),

macro, 46, 94
CMNA_com_send_£irst(),

macro, 45, 94
CMNA_com_send_£first_double(),

macro, 45, 94
CMNA_com_send_type (), macro, 45, 94
CMNA_com_status (), macro, 47, 95
CMNA_dinterface_receive_type (),

macro, 26, 90
CMNA_dinterface_send_g£irst (), macro,

25,90
CMNA_dinterface_send_£first_double(),

macro, 25, 90
CMNA_dinterface_send_type (),

macro, 25, 90

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

125

CMNA_dinterface_status (),

macro, 26, 91
CMNA_dr_send_status (),

macro, 26, 91
CMNA global_async_read(),

macro, 60, 96
CMNA_global_sync_complete (),

macro, 58, 96
CMNA_global_sync_rec(),

macro, 58, 96
CMNA_interface_receive_type(),

macro, 14
CMNA_interface_send first(),

macro, 13
CMNA_interface_send_£irst_double(),

macro, 13
CMNA_interface_send_packet_to_scalar (),

system function, 66
CMNA_interface_send type(),

macro, 14

CMNA_ldr_status (), macro, 26, 91
CMNA_interface_status (), macro, 16
CMNA_or_global_async_bit (),

macro, 60, 96
CMNA_or_global_sync_bit(),

macro, 58, 96
CMNA_participate_in(),

system function, 40, 68
CMNA_partition_size, variable, 24, 89
CMNA_rdr_ status (), macro, 26, 91
CMNA_read abstain flag(),

macro, 18, 89

126

Programming the NI

CMNA_router_msg_count, variable, 85
CMNA_segment_start (), macro, 49, 95
CMNA_self_address, variable, 24, 89
CMNA _set_segment_start (),
macro, 49, 95
CMNA_write_abstain flag(),
macro, 18, 89
CMOS_set_dr_msg_count_reg(),
system function, 85
CMOS_signal ()
system call, 28, 97
com_control_reg, constant, 52, 95
COMBINE_OVERFLOW (), macro, 49, 95

D

DR_RECEIVE_STATE (), macro, 29, 91
DR_ROUTER_DONE () , macro, 30, 50, 91
DR_SEND_STATE () , macro, 29, 91

MAX BROADCAST MSG_WORDS,
constant, 39, 93

MAX_COMBINE_MSG_WORDS,
constant, 44, 94

MAX_ROUTER_MSG_WORDS,
constant, 24, 91

MAX_SCAN

combiner constant, 46, 48, 94

ni_async_global, register, 57, 59, 96
ni_bc_control, register, 38, 41, 93
ni_bc_recv, register, 38, 40, 92
ni_bc_send, register, 38, 39, 92

ni_bec send_f£irst, register, 38, 39,92
nl_bc_status, register, 38, 40, 92
ni_com_control, register, 43, 52, 95
ni_com_recv, register, 43, 94, 46
ni_com_scan_overflow, flag, 47, 49, 95
ni_com_send, register, 43, 45, 94
ni_com_send_first, register, 43, 45, 94
nl_com_status, register, 43, 47, 49, 95

ni_dinterface_rec_tag, field, 26, 91
ni_dinterface_recv, register, 22, 25, 90
ni_dinterface_send, register, 22, 25, 90
ni_dinterface_send first,
register, 22, 25, 90
ni_dinterface_status,
register, 22, 26, 50, 91
ni_dr_...Seeni_dinterface._...
ni_global_rec, flag, 59, 96
ni_global_send, flag, 59, 96
ni_hodgepodge, register
and asynchronous global interface, 57
and synchronous global interface, §7
ni_interface_control, register, 17
ni_interface_xrecv, register, 14
ni_interface_send, register, 12
ni_interface_send_g£irst, register, 12
ni_interface_status, register, 15
ni_1dr_... Seeni_dinterface_...
ni_interface_purpose,
register naming format, 7
ni_rdr_... See ni_dinterface_...
ni_rec_abstain, flag
of a network interface, 17, 18
of broadcast interface, 41, 93
of combine interface, 52, 95
ni_rec_length, field
of a network interface, 15, 16, 89
of combine interface, 47, 95
of Data Networks, 26, 91
ni_rec_length left, field
of a network interface, 15, 16, 89
of broadcast interface, 40, 41, 92
of combine interface, 47, 95
of Data Networks, 26, 91
ni_rec_ok,flag
of a network interface, 15, 16, 89
of broadcast interface, 40, 92
of combine interface, 47, 95
of Data Networks, 26, 91
ni_rec_state, field
of Data Networks, 26, 29, 91

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Language Index

g i s 0 O T IS I S TG Y g i -
A T B L R AN L I R T B AT ¥

ni_rec_tag, field
of Data Networks, 26, 91
ni_reduce_rec_abstain, flag,
17,18, 52,95
nl_router_done_complete,
flag, 26, 30, 46, 50, 91
ni_scan_start, register, 43, 49, 95
ni_send_empty, flag
of a network interface, 15, 16, 89
of broadcast interface, 40, 92
of combine interface, 47, 95
ni_send_ok, flag
for Data Networks, 26
of a network interface, 15, 89
of broadcast interface, 40, 92
of combine interface, 47, 95
ni_send_space, field
of a network interface, 15, 16, 89
of broadcast interface, 40, 92
of combine interface, 47, 95
of Data Networks, 26
ni_send_state, field,
of Data Networks, 26, 29, 91
ni_sync_global, register, 57, 58, 96
ni_sync_global_abstain,
register, 57, 58, 59, 96
nl_sync_global_ complete,
flag, 58, 58, 96

ni_sync_global_rec, flag, 58, 58, 96

ni_sync_global_send,
register, 57, 58, 58, 96

0

OR_SCAN
combiner constant, 46, 48, 94

Version 7.1, February 1993

Copyright © 1993 Thinking Machines Corporation

R

RECEIVE_LENGTH (), macro, 17, 89

RECEIVE_LENGTH_LEFT O,
macro, 17, 89

RECEIVE_OK (), macro, 17, 89

RECEIVE_TAG (), macro, 27,91

S

SCAN_BACKWARD

pattern constant, 46, 48, 94
SCAN_FORWARD

pattern constant, 46, 48, 94
SCAN_REDUCE

pattern constant, 46, 48, 94
SCAN_ROUTER_DONE

pattern constant, 46, 50, 94
SEND_EMPTY (), macro, 17, 89
SEND_OK (), macro, 17, 89
SEND_SPACE (), macro, 17, 89
sp~pe-stubs, preprocessor, 71
sync_global_abstaln_reg,

constant, 59, 96

U, X
UADD_SCAN

combiner constant, 46, 48, 94
XOR_SCAN

combiner constant, 46, 48, 94

127

R Y S
T Y N B R I

Concept Index

This index lists the major terms and topics found in this document. Boldface page numbers indicate a

definition or other important reference.

A

abstain flag, 17
effect of, 18
for combine interface, 52
function to set values of, 67
in control registers, 6
of broadcast interface, 41
of combine interface,
for reduction operations, 18
of global interface, 59
using efficiently, 82
abstaining
from a network interface, 17
from a synchronous global message, 59
from broadcast interface, 41
addition (signed), combine operation, 45
addition (unsigned), combine operation, 45
addition scan overflow, 49
addressing
of nodes, 23, 63, 83
of partition manager, 63
alignment of doubleword data, 84
“asynch global receive” flag,
of asynchronous global interface, 59
“asynch global send” flag,
of asynchronous global interface, 59
“asynch global” register,
of asynchronous global interface,
57,59
asynchronous interface,
of global interface, 57

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

129

auxiliary information
for combine interface messages, 44
for Data Network messages, 24
of a network message, 11

backward scan, combine pattern, 45
broadcast interface, 3, 37, 38
abstaining from, 41
conflicts with combine interface, 86
internal participation flag, 40
message format, 39
message ordering, 38
messages, 38
receiving, 40
registers, 38
sending, 39

Cc

cm_signal.h, header file, 28
CM-5,2

networks, 2

partition manager, 4

partitions, 4

processing nodes, 3
CMMD, software interface, 1
CMMD Reference Manual, xi
CMMD User’s Guide, xi
cmna . h, header file, 8, 69
“combine add-scan overflow™ flag, 47, 49

130

Programming the NI

combine interface, 3, 37,43
abstaining from, 52
auxiliary information, 44
conflicts with broadcast interface, 86
message format, 44
message ordering, 44
messages, 44
network-done messages, 50
parallel prefix. See scanning
pipelining, 44
receiving, 46
reduction messages, 47
registers, 43
scan overflow, 49
scanning, 47
sending, 44
status register, 47
word order in scans, 48
combine patterns
addition (signed), 45
addition (unsigned), 45
backward scan, 45
exclusive OR, 45
forward scan, 45
inclusive OR, 45
maximum, 45
network-done, 45
reduction, 45
combiner field, combine interface, legal
values, 45
combiner values, for combine messages, 48
compiling NI programs. See programs
conflicts, between broadcast and combine
interfaces, 86
Connection Machine CM-5 Technical
Summary, xi
Control Network, 2, 3, 37
See also broadcast interface; combine
interface; global interface
control register, register type, 6

“control” register
of a network interface, 17
of broadcast interface, 38, 41
of combine interface, 43
“current” message, in receive FIFO, 15

D

Data Network (DR), 2, 21
addressing. See addressing
auxiliary information, 24
interactions between interfaces, 22
message format, 24
message length limit, 24
message ordering, 23
message tags, 27
messages, 23
receiving, 25
registers, 22
send FIFO, registers, 25
sending, 25
tags, 83

Data Network interfaces
Data Network (DR), 22, 25
left interface (LDR), 2, 22, 25
registers, 22

See also Data Network
right interface (RDR), 22, 2§

Diagnostic Network, 3

discarded messages, 12, 82
and send_ok flag, 15

doubleword data, alignment, 84

doubleword operators, 13, 80

“DR network done” flag, 26, 30, 46

“DR receive state” field, 26, 29

“DR send state” field, 26, 29

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Concept Index

E

examples, online, 78
exclusive OR, combine operation, 45
executing NI programs. See programs

F

fields, register. See register fields
FIFO (first-in-first-out), 6
FIFO register
of a network interface. See
receive FIFO register;
send FIFO registers
register type, 6
flags and fields, status. See status registers,
flags and fields
format of messages, 11, 12
for asynchronous global interface, 60
for broadcast interface, 39
for combine interface, 44
for Data Network, 24
for synchronous global interface, 58
forward scan, combine pattern, 45

G, H

generic network interface, 11
using effectively, 20
getting value of status register, 16
See also status registers
“global abstain” register,
of synchronous global interface,
57,58,59
global interface, 3, 37, 57
asynchronous interface, 59
“global receive” register,
of synchronous global interface
57,58
“global send” register,
of synchronous global interface,
57,58, 58
header files, cm_signal.h, 28
“hodgepodge” register
and asynchronous global interface, 57
and synchronous global interface, 57

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

131

inclusive OR, combine operation, 45
interface, register

of asynchronous global interface, 59

of broadcast interface, 38

of combine interface, 43

of Data Networks, 22

of global interface, 57

of synchronous global interface, 58
interface code file. See programs
interrupts

and tag fields, 28

using to retrieve Data Network messages,

28

IOR, combine operation, 45

L

left Data Network interface (LDR), 2, 21
length limit
on broadcast interface messages, 39
on Data Network messages, 24
length of message
remaining words, 16
total (as received), 16

maximum, combine operation, 45
memory subsystem, of nodes, 3
message format

asynchronous global interface, 60

broadcast interface, 39

combine interface, 44

Data Network, 24

synchronous global interface, 58
message ordering, broadcast interface, 38
message tags, 27

132

Programming the NI

messages
address, for Data Network, 23
broadcast interface, 38
combine interface, 44
Data Network, 23
discarded, 12
and send_ok flag, 15
format, 11
for asynchronous global interface, 60
for broadcast interface, 39
for combine interface, 44
for Data Network, 24
for synchronous global interface, 58
from nodes to PM, 65
from PM to nodes, 64
global interface, 57
network, 11
receipt order, for Data Network, 23
receiving, 14
sending, 12
microprocessor, of processing node, 3
“middie” Data Network interface, 2

“network done” flag
See also “DR network done” flag
of Data Network, (network-done
operation), 50
Network Interface (NI), 5§
chip, 3,5
register names, 7
register types, 6
registers, 5
Revision A chip,
software workaround for, 84
network interface status registers, 15
network interfaces, interactions between, 86
network-done
combine interface operation, 43, 50
combine operation, 45
message format, 50
network-done messages,
(via combine interface), 50

networks, 2
common features, 11
conflicts between. See
broadcast interface, conflicts;
combine interface, conflicts
interfaces, generic, 11
messages, 11
NI programs. See programs
node program. See programs
nodes. See processing nodes

(o

online code examples, 78
OR, combine operation, 45

See also XOR, combine operation
order of words, in scan messages, 48
overflow, in addition scans, 49
overflow, in scan messages, 49

P

parallel prefix, combine interface operation.
See scanning
partition, 4
size of, variable, 24
partition manager (PM), 4
address of, 23, 63
exchanging data with nodes, 63
program. See programs
pattern field, combine interface,
legal values, 45
pattern values, for combine messages, 48
pipelining combine operations, 44
PM program. See programs
processing node program. See programs
processing nodes, 2, 3, 23
addressing. See addressing
exchanging data with PM, 63

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Concept Index

M D e, D G
o o ek

programs
compiling and executing, 76
interface code file, 71
NI, 7
node code file, 70
PM and node, 4
PM code file, 69
structure of, 69
protocol
See also messages, format
for sending messages, 12

R

reading registers, using doubleword operators,
80
reading status registers, 16
“receive abstain” flag
for broadcast interface, 41
of a network interface, 17, 18
of global interface, 59
“receive length left” field
of a network interface, 15, 16
of broadcast interface, 40, 41, 41
of combine interface, 47
of Data Networks, 26
“receive length” field
of a network interface, 15, 16
of combine interface, 47
of Data Networks, 26, 26
“receive ok” flag
of a network interface, 15, 15, 16
of broadcast interface, 40
of combine interface, 47
of Data Networks, 26, 26
receive FIFO
network interface register for, 14
of a network, 6, 11, 14
receive FIFO register, of a network, 14
“receive state” field, of Data Network, 26, 29
“receive tag” field, of Data Networks, 27
“receive” register
of broadcast interface, 38, 40
of combine interface, 43, 46
of Data Networks, 22, 25, 25

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

133
SRR YRR A

receiving

a broadcast interface message, 40
a combine interface message, 46
a Data Network message, 25
a global interface message, 60
a network message, 11, 14
a network-done message, 50
a reduction-scan message, 47
a scan message, 47
a synchronous global message, 58
an asynchronous global message, 60
reduction
combine interface operation, 43, 47
See also scanning
combine pattern, 45
“reduction abstain” flag,
of combine interface, 18
reduction messages,
(via combine interface), 47
register fields, names, 7
register interface
of asynchronous global interface, 59
of broadcast interface, 38
of combine interface, 43
of Data Networks, 22
of global interface, 57
of synchronous global interface, 58
register naming format,
ni_interface_purpose,7
register types, 6
register
doubleword operators, 80
names, 7
registers
NL §
status, 15
Revision A NI Chip, software workaround, 84
right Data Network interface (RDR), 2, 21
RISC microprocessor, of processing node, 3
router, 21
See also Data Network
“router done” flag. See
“DR network done” flag
router-done. See network done

running NI programs. See programs

134

scan overflow, in addition scans, 49
“scan start” register,

of combine interface, 43, 49

scanning

addition scan overflow, 49
combine interface operation, 43, 47

scanning with segments. See scanning
segmented scanning. See scanning
“self address™, of a processing node, 24

“send empty” flag

of a network interface, 15, 16
of broadcast interface, 40

of combine interface, 47

“send ok” flag

and discarded messages, 15
of a network interface, 15, 15
of broadcast interface, 40

of combine interface, 47

of Data Networks, 26, 26

send FIFO

network interface registers for, 12
of a network, 6, 11, 12

“send space” field

of a network interface, 15, 16
of broadcast interface, 40

of combine interface, 47

of Data Networks, 26, 26

“send state” field, of Data Network, 26, 29
“send” register

of a network interface, 12

of broadcast interface, 38, 39, 39
of combine interface, 43, 45

of Data Networks, 22, 25

“send-first” register

of a network interface, 12

of broadcast interface, 38, 39, 39
of combine interface, 43, 45

of Data Networks, 22, 25

sending

a broadcast interface message, 39

a combine interface message, 44

a Data Network message, 25

a global interface message, 60

a network message, 11, 12

a network-done message, 50

a reduction-scan message, 47

a scan message, 47

a synchronous global message, 58

an asynchronous global message, 60
sending messages from nodes to PM, 65
sending messages from PM to nodes, 64
status register

fields and flags, 1§

of a network interface, 15

of broadcast interface, 38, 40

of combine interface, 43, 47

of Data Networks, 22, 26, 50

register type, 6
status registers, 15

accessor macro, 16

reading, 16
“synchronous global completion” flag, of

synchronous global interface, 58, 58

“synchronous global receive” flag, of

synchronous global interface, 58, 58

synchronous interface, of global interface,
57,58

WX
tag fields

and interrupts, 28

of Data Network messages, 27
total length of message, 16
writing a message, 13

writing registers, using doubleword operators,

80
XOR, combine operation, 45

Version 7.1, February 1993
Copyright © 1993 Thinking Machines Corporation

Programming the NI

