B The Connection Machine System C M 5 |

i

VU Programmer’s
| Handbook

CMosT Vers’ion 72

i.,
%.

26610 EET

(ops os1on U0 sBugsy 006) bu.wmao.a pue _w_.__wu_.:oo 0 z € 9 L 6 0T TT 2T PT ST 8T 61.0Z 1€
5 it uojeioas sauyoe UPJUIYL o lflolo: uyabuesy | zsutques fuzenzedi T Il T inlololp iy ————--
spleyqns yiim Jeisibes seleoipuy » W 00 SSUIYISH SUPuItL 0 _o _o uabusT Toutauos jwaeaiedi 1 —o _.H 0 _ 0 _o _ 0iX
000%0 esneo gdnixejuy tu)
CIIES e — e —— ofofoi wwuer iofolojofoit]|t]oiofofo]oixi -—-—- i 08
010X = =
T0%0 I teaer 3dnzzequr tu_ | oJoJoi wwuer folo]ofofoio]oftiofo]ofoiti ------ o8s
810%0 — = _
- 18 TeoTsiyd TU
020%0 =
eseq uorataaed Tu
820%0 i kbl ofofoi wibuer ger [xitf{t]|tiofofofoixi ------ Hay
ezts uoryrized TU
S—— —— TEmey ool Etshoiegeo et alnln: uyuapuasr ! pea IwvintTtiTtiontoninolniv:i o
0£0%0 [ofofoi wasuer sea [xioft|tiofofofoix Ha1l
X — —— Py
BE0X0 I' eqep erqey yunyo Tu ofoJoi wasuer bea |xit]ofoiofo]ofoixi —-—- Ha
0v0xX0 CN.-HQIEJO'HC. * p— »nmwuuun eseq IN
870%0 UﬂﬂOO’O@MQQUﬁIﬂﬂlﬂﬂ spou buissaippe 9033930 37q Iosyazadus/iesn
050%0 yseWw qunoo Tu suwiaped Bujssalppy 1S1)) puas adoeudiul |u
X — T ———— .
8S0%0 I'yeew qdnzaequy oex Tu _ﬁ 0000 0000X0
090%0

Jysew bey xesn Fu

0002 0000%0

890%0

Ajuo pyomiep joguo) |

0L0%0 r—— 00%0 Mgnzeqs x Tu |»
8L0*0 uvoTqernbrguoo TUu 80%0 ejeatad X TU |x
080%0 pues jdnizejur Fu 01x0 = N 000
— — oxjuop X tTu i« 000 0002%0
880%0 Jequnu TeTI®S TU To73 esale jasn
— X
060%0 Teqo1b ouke 1o . 0z*0 5002%0 |- - - -©9BdSIN - - - .
— — X
860%0 fyreqsqe TeqoTh ouks Tu oex0 eaJe Josiuadns
— — = [0 280]
0¥0%*0 pues ysnry woo Tu 0000 010Z%0
8¥0%0 Teqo1b oukse Tu * jesjjo 119s Jeis|bey
s ' x4 ojdwies 0000 000¥X0

080%0 Teqo1b dns oukse Tu |»
8490%*0 ebpodebpoy Tu M

“000TX0
000ZX0

38173 pues Ip Tu

002%0 0000 0002%0

020%0 pues Teqorb ouks Tu 00BX0 000E%0 o e
820%0 Haoﬂuﬂumﬂuucuqml..nn M % % Uuun.,ul v_uuﬂIua....nc 0000 0003X0
04oxo — = - 009%0 000¥*0 38ITF pues Oqs TUu
usexb zesaro jdnizejuf Fu |» %

8d0%0 _ — 008%0 0005%0 | pues woo Tu

mou 3dnizejuy TU 00¥X0 0009%0 I N 0000 0083%0
030%0 vuavu.ﬂuonﬂ.nﬁ 38ITF pues IpT TU
8I0%0 e —— 0020 000L%0 [T pues zpx Tu 0000 0v8.J%0

sseIppe peq TUu *:
040%Q : e 0oax0 jesjjo xey —_—
081X0 : { . 165130 X0y sselppe xey
jesyo . (10s)a18dnS 10 Je8N) (pelieisu] SNA INOYNM 10 YYM)
Xel sia1siboy walsAs B [eqorn s19)s|bay adeBU| Baly AIOWdW [enUiA IN dew Alowapy [enUIA SPON

o081 Teqoth 10sfAzadns” Ju
NQQH@Q i L - B 31e3s pues wod U

P—!—O—.—QE& v i : 0 P Tt o -5 M M” uze3jed puss wod Ju
uojieiodioD seuyoryy Bupjuiyl ‘ezl :sod :ewieN piejd i .“,, e ieeeeceeee s ®m [
.—..EOH_Olma"ogﬂﬂlﬂﬂg uh@ﬂm—aom . - l\ . L .v Q ﬂuﬁﬁ.ﬁlﬂﬂ.vnlﬂn-nvldﬂ
e e UL 8 e
I o pues TraeTt - |\P| e e e e — - - ndv - b [of A3dwa 081 wod Ju
nQN_m uﬂ& . _ nQEﬂz v—ﬂ—m e e e e e oo - - l\r - - l\l - - 3 [umop TI®J TI® 281 ap Ju
.HSO.HU oudswe TFUu n.—ﬂﬂw—mﬂm - |$ B T v 8] MOTJI9A0 UEDS WOD U
e R il ity uuuuucv\’ncnn--na-'o...n [v sTqrUs puas Ju
L L @3a1dwon” Teqo1h ouks” fu N U VY WD W | TTn3 oeaqu
1 0 sex Teqorh ouks ju R u\w . u“a . |N, . |A Y M dors puos™u
8zZ|S :80d ewepN pleid - |\Pn femmcceme— :\’n -- 1 A do3s oe1 fu
L oz e TesoT oukeT R HloisiboM A AR A v
02 0 moy ssaippe peq ju puas do3s us ju \ » \/ \ ;
7 zewiy U WOO O28/S HAUM HA :8zs :sod soweN pjej4
‘ezls :sod ‘eweN pleid o} oea Teqorb ouks Tu

0 1T ¢ € ¥ S 9 L 8 TI ZT ¥T ST 9T LT 8T 1€

a1qeua dax 3dnazejui Ju

ssexppe peq Tu :J3is|boy

Lol B I R B
OrNOTBOONMN®

@381dwoo uof3eanbFIuUCD TU —‘ _xoﬂ_mun_wuw N"w_oou_ ot _ucu_ :wwun—. uvuwu_uou ..uvw_.w.unnn ke
} ve paa 1ane1" 3dnazequy fu o pues 3dnazsjuy Ju * oF \ waay — .
L oL uucwuol._.u>u.nlun=uuvu5|.nc . s39Tdw0S"qENT3 Fu 8] o 201 3a0 nau»humauua o8 .H.G.P.mﬂﬁl |dvgIejuyr IU ..—Quw—uom
L 8 noTT8A TansT 3dnizeuy Tu af oezx teqotrb xostAzadns” Tu
I (1] use16”TasT 3dnizeuy Fu ®1 oax Teqolh ju . l$ e e e ettt e e eeacneaa L ! ute3eqe 081 Bonpex U
ezl :sod eweN piejd iez|s :sod TewieN pieid R LRy LR R R o ute3sqe ooa Tu
TeaeT adnzzequy fu :191S|6oH ebpodebpoy Fu :19is|boy WOO OJa/s Hau ud -ezs :sod “elUeN plojd
yL gsaooe Aiowsw peq JesTd/8sned ju .HOHHEOU"OUHHOU&'.H—“ ".—Uﬁ_uﬁm
el umop TT®3 TT® 081 ap Aes[d/asned Ju el ©80Ippe BATIE[DI peq 1eR[d/esned Ju
cL bey oex 1p IeaTd/agnEd TU r4 8 eayyebou qunoo 1p aee(9/esues ju L I R \)n -- 2 €2 @je3s 081 Ip Ju
L xoluwuluvaluuwau\wnzuulﬂc LL pebueys uje3sqe wod Aesd/agnEd JU LERER R EE R 5! -- 2 (¥4 muauﬁv:a.-..uula:
oL jyo oe1 apT 1eeTo/esnes fu oL UOTETIT0D WOoD 10 Oq l1esid/esnes fu - - 3 B i § (174 #0TJI0A0 UEDS WOD TU
6 yo D81 ap iea[o/esnes Tu 6 moTT2A 3dnazejuy oq 1esTd/esnes fu . cemeeececa- \’n - \9- -- ¥ 18 © Bey o1 Ip ju
@ 03 TeqoTh iosAzedns” IEeTo/esnea” fu 8 ebuezo jdnizejuy oq iea[s/esnes Tu - ..»: R 1\’.. -- n»v -- ¥ i yibuey 083 Ju
VA oex TeqoTb avayo/esned Ju L adniiejuf 28wy Jeayd/esnes Ju -- \Dr --- 5- --- \/t --- \u -- ¥ L 3391 wabust oex Tu
0 o8I Teqo1h duks” awaTo/esnes ju 9 0138 UNSYDBYS IP IesTo/38NED JU - |\- - - 051 cemcceme-=-== L 9 Kadwe pues”ju
S Kadwe oe1 woo awayo/esnen ju S 0130 paey UD Ieayo/esnes Ju I L I) \9- -- 1 9 @3a1dwoo"auop” 183n01” FU
v %0 D81 Wod ieayojesnen U v 10112 uMsyo8YyD UD Ieayd/esnes U -- 3 ---— \n --- \/u - $v -- 1 S %0 pues” Ju
€ X0 D@1 oqs Jealo/asNED TU € pax adnizejuy og ieeld/esned Ju -- \9- --- Eu --- \r --- »- -- 1 4 ¥0 281 fu
A X0 Da1 oq 2eao/esnes U F4 30119 WD IEaTd/aEnEd TU - |\ === |\'| -- l\f -- n\o -- ¥ 0 eoeds pues fu
3 :o.nuuw>0|=uunuuau.~u\wn=aula= [Iuouua!g_munaﬁw\on:muuﬁ: Wod o6/S HAHN Ha tez|S :sog zeweN pleid
0 use1b 3dnizajuy oq Iee[o/esned TU 0 3Tney Teuiaju] Ieeld/esned U 0 €y € 9 ¢ o1 11 vl ST 61 0z 12 22 €2 b7 Sz 16
isod ‘eweN piejd ‘sod _ :8WeN pio|d ﬂua. - F _ _ TE R _ﬁ?z ooz | bes ooz _Es_ o _ o R
usezf TveTo/esneds jdnrzejuy FU aveTo/esnes jdnzzejut TU Y 2 Y Y.

(sBeyj je ‘suogysod yq euwres) "m._ﬂuw_uﬁr_ (sBey e ‘suojysod yq eures) nw..ﬂum_uﬂﬂ 30 281 Yo puas auUOpP YIom3au snje3s eowgIejuT TuU u._Oum_OOI

VU
Programmer’s
Handbook

CMOST Version 7.2,
August 1993

| Thinking Machines Corporation

First printing, August 1993

**

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines reserves the right to make changes to any
product described herein,

Although the information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation assumes no liability for errors in this document. Thinking Machines does not assume any liability
arising from the application or use of any information or product described herein.’

e e v o e v e e v v e e v g o v v o v e v e sk sk v e ke vk e v v vk v v e e v v e e e vl dk vk e e ke Sk T ke vl e ke e e e e v e e e e e e e e e e de e e de e de e e e e e ok

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.
CMost, CMAX, and Prism are trademarks of Thinking Machines Corporation.

Cc*®isa registered trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.

CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.

Thinking Machines® is a registered trademark of Thinking Machines Corporation.

SPARC and SPARCstation are trademarks of SPARC International, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Copyright © 1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142 —1264
(617) 234-1000 ' |

Contents

About This Manualovuuuetiniiiiiiiiiiitnnnneennneernneesonannnnannns ix
CUSLOMET SUPPOI ... v vttt iiiieiiaiiaseenseesnssseeeneenasssssnasaasonnns Xiii
Chapter 1 Introduction s 1
1.1 Programming the CM-5 Vector Units (VUS)covveniereenernnnn 1

12 The CM-SHardwarecciiiiniiiiinnnsninnccenoseneasanns 2

1.3 The DPEAC and CDPEAC Instruction Setsccvveerenennnnan 4

1.3.1 The CM-5 Assembly Code Levelccouevvnnnnnnnnn. 4

1.3.2 DPEAC — Vector Unit Assembly Code 5

1.3.3 CDPEAC — DPEAC Written in Cccoiiivineennnnn 6

14 UsingDPEACand CDPEACcvviiiiinnnecrecneranananns -7

141 The DPEACHeaderFileccciviinenennnnnn., 7

14.2 The CDPEACHeaderFilecovvvvinnnnn., 7

1.5 Using This Handbookcivviiiiiininnrneninnneennnannns 8
Chapter 2 The CM-5 Vector Unitsccoiiiin.. 9
2.1 CM-5 Vector Unit ACCEleratorscvevenerennosecannsonnranas 9

2.1.1 VectorUnitHardwarecooviiiienernnnnnennn. 10

2.1.2 VU Virtual Memory Layoutcovveveeeenninnnnnn. 10

22 VU REGISIEIS ...iiietrnrienenneennnsneenaneeenaeeeannnaneeenns 12

22.1 VUDataRegiStersocvvneenneenernnreianceeannss 12

222 VU Control Registers e eeeeeesteereeraaaas 13

2.3 Effects of VU Control Registers e reteaaaseeerrr e 14
2.3.1 Vector Mask and Conditionalizationcovvivunnn. 15

2.3.2 ALU Status and Contextualizationccoonneveennnn. 15

2.3.3 Status Register Flags e veeeeeraiieteatitatiiiaananes 16

234 The Vector Mask Buffer e rieeeret e, 17

24 Other VUFEaturesovvtiiiineiennenrnenneeaanssisnonsnesnnns 17

2.4.1 Accumulated Context COUDEo evvvueeerrrnnnnrennnsnsn 17

242 Populaion Counteveevvevnnnnceenenaenennnn 17

2.5 VU Control Register Constantsccoeerorenannseceeceenssss 18

CMosr Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation jii

iv

32

3.3

34
35
3.6
3.7
38
39

VU Programmer s Handbook

DPEAC SYDAX ..o voiiieitetieiieetttrtinnennnnnsensseranannnnns 21
32.1 General SYntaxcciiiiiiiiirniiiiiiiieneienana. 21
322 SPARCCPUREEISIEIS o .vvvvennnninnnnerrenonnnnnnnnnss 22
323 VectorUnitDataRegistersccovvvnieennernnenn. .23
3.2.4 Vector Unit Control Registers.............ccovvnvevnnnnens. 24
3.2.5 VU Register and Memory Stride Markerscc... 24

Register Stride Markerscccvvvvvennnnnn 24
VU Memory Stride Markerscovvvnnnn. 25
3.2.6 VU Selection in DPEAC Statementscc00u.... 25
3.2.7 VU Selection in DPEAC Accessor Instructions 26

DPEACIDSITUCHONS . . oo etttiieetistennnnnnnnnnnsecesnsnnnnnns 27
3.3.1 Scalar and Vector Instructionscc0vviennnnnnn. 27
332 RegisterOperandsciviiiiiiiiirrnernnnnnnnnnes 27
333 Data Ty PeS...ininrnetereerennnesinneinesnennenenees 28
3.3.4 Arithmetic Instructionscevviiireninenennnnnnns 28
3.3.5 Memory InStructionsoovvviiennennnnneeinneerennnnnns 29
336 Modifierscooiiiiiiiiiiii ittt e it 30

DPEAC Statement Formatsc.0iiieiinnnininiireneennnnnnn 31

The Short FOrmatovviviutiiinnnnninnereressesnnnnnnnenes 32

Immediate (Long) Formatcciiiiiiiininirnnneennnnn. 34

Register Stride (Long) Formatcciiiiiiiiiiieerrrnnnnnnns 35

Memory Stride (Long) Formatccoiiiiiniininnnnnnnnnns 36

Mode Set (Long) Formatoovviniiiiiiiniininnvnnneennnnnn 37
3.9.1 Mode Set Format Variantscceevieerennnnesn 38

Vector Length Variantcoiviinvinnn.. 38
rS1 Stride Variantcoiiiiiiiiniiienna., 39
Register Stride Indirection Variant 39
Memory Stride Indirection Variant 40
Population Count Varfantcccovvinnnnnnn, 40
Special Modifier Variantcc0vvunnnn. 41
Scalar Instruction Variantc.ceviiiiiinnnn... 41
3.9.2 Vector Length Modifiercooiviiiinvninnnn.. 42
3.9.3 Register Stride Indirectionccciiiiiiiiiiann., 42
3.9.4 Memory Indirectionciiiiiiiiiiiiiiniiinaa 43
3.9.5 Mode Set Format Modifiersccovvinieennnrnnnnnnn 44
CMosT Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

Contents v

Chapter 4 DPEAC Instruction Set Reference 45
4.1 DPEAC Arithmetic Instructionsccooiiiiiienenneennnnn. 45
4.1.1 Monadic (One-Source) Arithmetic Instructions 45
4.1.2 Dyadic (Two-Source) Instructionscoevvvea... 46
4.1.3 Arithmetic COmPAriSONScovvreninnnnnnnnnreeeeanns 47
4.1.4 Compare (Dyadic withrD constant) 48
4.1.5 Dyadic Mult-Op Operatorsoovvemunnnnaneerennns 48
4.1.6 Convert Operation (Dyadic with rS2 constant) 49
4.1.7 True Triadic (Three-Source) Operators 50
4.1.8 No-Op Operatorc.oiiiiiiiiiiiiiiineneeeennenns 51
4.2 DPEAC Memory InStructionsc.eevevvnnrnnneeinennnnnnnnnns 51
4.2.1 No-OpOperatorcoovvvrernnnnirininnieenenennnns 51
4.3 DPEAC Instruction Modifierscovviiiiiiiiinnennns. 52
4.3.1 Modifiers That Can Be Used in All (or Most) Formats 52
4.3.2 Conditionalization Modifiersc..cona... 53
4.3.3 Special Modifiers (Mode Set FormatOnly) 54
4.4 DPEAC Accessor InStructionscvvveeveernreenerenennnonnss 56
4.4.1 VU Register Accessor Instructionscovvvevninnen, 56
442 VUTrapInStructionsccceevvinnuieerenenernnnns 57
4.4.3 Vector Mask Instructionscoiiiiiiiiiienaann, 58
444 SPARC Accessor Instructionsooovvvvvennnrennnneennn. 58
Chapter 5 The CDPEAC Instruction Set 61
5.0 CDPEAC COEttt ee e eee e e neeaaee, 62
511 VUIDSUCHODS ... vvettveeeanneeenennneeeresseeeasss 62
5.1.2 VU Accessor Instructionsc.oviiinineeieeneensn. 63
5.1.3 VU Special Instructionsccovviininnnnnnnnnenenns - 63
514 TheJoin Macrovueivniiiiiiereennnnneceennenenss 63
5.1.5 Instruction Suffixes S 64
5.1.6 ArgumentMacros B 65
5.2 CDPEAC SYDEAXcuvvueunrrnnnnneneannannssnsonenseeeenns 65
521 General Syntaxoiiiiiiiiiiiiiiiiii e 65
5.2.2 Vector Unit Data Registersocviiniiiint, 66
5.2.3 Vector Unit Control Registerscoviiiiiinniinnn. 66
5.24 RegisterOffsetMacro...........cooviviiiiiiiiniiian, 67
52.5 VURegister Stride Macroscovvvveneneennnneennns 67
52,6 VUMemory Stridingccoiiiiiiiiiiiinnnnnnn. 68
5.2.7 VU Selection in CDPEAC Statementscceevuieen... 68
5.2.8 VU Selection in CDPEAC Accessor Instructions 69

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

53

54
5.5
5.6
5.7
58
59

Chapter 6

6.1
6.2
6.3
6.4
6.5

VU Programmer s Handbook

CDPEAC INSLIUCHONS .+ v vvvvvsvveerennereneeneeosassnassnsaeansss 70

5.3.1 Scalar and Vector Instructionscveevnnnannnnn. 70
5.3.2 Register ATgUMENtSviiiiniininiiiiiiiiiii 70
533 DataType ATQUIMENt ioveeiinnnnrenenneerannnennnnns 71
5.3.4 Arithmetic Instructionsccvviereinnnrinnneen. 71
5.3.5 Memory InStructionsoovveinninnnenenenennnneennnnns 72
536 Modifiers ...o.oiutiiiiiiiiiii ittt ittt 73
CDPEAC Statement FOormatsviviiiinrnneenerennnnnenenns 74
The Short Formatc..ivniiiiiiiiiiiiiieiiiierennnnnnnennnns 75
Immediate (Long) Formatciviiiiiiiiiinnrrrnnnnnnnns 77
Register Stride (Long) Formatovviiiiiiiinnreernnnnnnns 78
Memory Stride (Long) FOIMAtveeneeernnrrnnnrennnnnnnn 79
Mode Set (Long) Format I (|
59.1 Mode Set Format Variantscoovvvinnneenennnn. 81
Vector Length Variantoovvinvrniennnn... 81

1S1 Stride Variant ittt 82

Register Stride Indirection Variant 82

Memory Stride Indirection Variant 83

Population Count Variantcccovvnunnn. 83

Special Modifier Variantcciiiiineennn. 84

Scalar Instruction Variantc00vvennnn. 84

5.9.2 Vector Length Instruction Suffixesccovvvvntt 85
5.9.3 Register Stride Indirectionccciiiiiiiiin., 86
5.9.4 Memory Indirectionciiiiiiiiiiieiiiiiiiea, 86
5.9.5 Mode Set Format Modifier.............cc.coivvvviinnnnnnn 87
CDPEAC Instruction Set Reference 89
The CDPEAC JOin MBCIO et vveieiiaeeeennniiaaeeeseeeeanennns 89
CDPEAC Type ABBIEVIAHONS v vvveneeeeeeenneeeeaeeanenss 89
CDPEAC Argument Macroscovetiennnnnnnerennnerennnennnns 90
Instruction Suffixescciiiiiiiiiiiiiiiii ittt it 90
CDPEAC Arithmetic InStructionsoivieereiinieennenenennns 91
6.5.1 Monadic (One-Source) Arithmetic Instructions 91
6.5.2 Dyadic (Two-Source) Instructionsiceeeeeennnen 92
6.5.3 Arithmetic Comparisonscovvveennnerennennnenens 93
6.5.4 Compare (Dyadic withrDconstant) 93
6.5.5 Dyadic Mul;—Op Operatorsovvvviiverennneenennennns 94
6.5.6 Convert Operation (Dyadic with Rs2 Constant) 95

CMosr Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

Contents

6.5.7 True Triadic (Three-Source) Operatorsccoeuuesn. 96
6.5.8 No-OpOPEratorcovvenvrvneeenesnseensnocennssans 96
6.6 CDPEAC Memory INStructionsooeeeeureriennsssncnnnnns 97
6.7 CDPEAC Statement Modifiersc.coviiiiiiiiininnnnennn, 98
6.7.1 Modifiers That Can Be Used in All (or Most) Formats 98
6.7.2 Conditionalization Modifiersoviiiniincnnnan 99
6.7.3 Special Modifiers (Mode Set FormatOnly) 100
6.8 CDPEAC Accessor InStructionsceveeereneenerneneenenns 102
6.8.1 VU Register Accessor InStructionSoeeveeviannnennn. 102
6.9 CDPEAC Special InStruCtOnSccvvvveeinrerenernernreensnnns 104
Chapter 7 Using DPEAC/CDPEAC in Programs 105
7.1 Example: An Arithmetic Subroutinecocveevieenieennnn., 105
7.2 Low-Level Program Structureccoeevvevvnnrsnnesannsonass 106
7.2.1 ProgramFiles e reeriaretten, 107
Source File Naming Conventionscovuvennn.. 107
7.2.2 Host/Node Interface Naming Conventions 108
7.3 Passing Arrays into DPEAC and CDPEACRoutines 109
7.4 Sample Program Source Filesoovinvvineiiernansenanannns 110
7.5 The Main CM Fortran Program (mainfcm)cocvvvviennnnnn. 110
7.6 The Host Interface File (hOSE.C)evrvrvrvenenenrnenenenrnnnnenns 111
7.7 The Node Interface File (interface.pe)cvvvieerivinneeenannnn 112
7.8 The DPEAC Subroutine File (dpeac_code.dp)ocvvvvevniiaannn. 113
7.9 The CDPEAC Subroutine File (cdpeac_code.cdp) e 115
7.10 Makefile for the Sample Program (Makefile)ccvvvvnviennn.. 117
7.11 Sample Runof the Program LR R R R EE PRI 121
Appendixes
Appendix A VUMemory Mappingccoevvveeeininnnnnnnn.. 125
Appendix B VUMemoryMapscoeviiiiieeneeennnnnnn. 133
CMost Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

VU Programmer s Handbook

Appendix C VUPipelineccooviiiiiiiiiiiiiiiii i 139

C.1 VUlnstructionPipelineccooiiiiiiniiniiiiiiiiiiennnnnn, 139

C.1.1 PipelineHazardsc.cooiuiiiiiinnnniinnennenennns 140

C.12 Avoiding PipelineHazardsccovvvieinn.. 143

Appendix D VU Arithmetic Operations 145
D.1 Arithmetic Status Resultscoiviuiriiiiiinnenneinennennnns. 145

D.2 VU Arithmetic Operationsccvvvivennenennereneennnnnns 149
Appendix E Thedpas Assembler..........................ccooeiinne... 169
Appendix F ThedpccCompileroiiiiaal. 171
Appendix G HowCDPEAC Workscooiiiiinna L. 173
G.1 GNUCC’S ASM Statementovvveemeneeencnnnacerennnnnnens 173

G.2 Using GCC Macros to Produce ASM Statements 175
Appendix H CMRTS and CM Memory Allocation 177
H.1 The CM Run-Time System (CMRTS)cvueiviiiinnennennennns 177

Hl11 Armaysinthe CMRTSciittiiiiiiniiinnnennennns 178

H.12 AnExample f ACMRTS Amay............c.e00nnunnnnn 180

H.1.3 CMRTSData SIUCtUrescovvveeeeneeeenennnaeennas 184

CMRT d@BC_ T ..vvevrnrenracerannssensnsanseanansnns 184

CMRT_array_geometry t................. ereeneees 185

CMRT machine geometry tc.oevvvnveenns 188

CMCOM_axis_descriptor................. e 190

H.2 CMRTS Parallel Meory ALIOCatONvvvuniernneeernnnennnn.. 193

H2.1 Standard CMRTS Memory Allocation Functions 193

H.22 Node-Level Stack Operationsccceiieuennnnnnn. 195

H.3 Non-RTS (CMMD) Paralle]l Memory Allocation Ceieieeiieees 196

{15 L. P 199
CMost Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

bout This Manual

Objectives

This manual provides a concise collection of the information required for writing
programs that directly access the CM-5 vector unit (VU) accelerators. There are
. two low-level instruction sets available on the CM-5: DPEAC and CDPEAC. A
program that directly manipulates the VU accelerators will typically include
subroutines written in either DPEAC or CDPEAC. Both methods of
programming the vector unit accelerators are described in this manual.

IMPORTANT

You do not have to use the methods described in this book to
write programs that access the CM-5 VUs. The compilers for
high-level CM languages (such as CM Fortran and C*) auto-
matically take advantage of the VUs where possible, without
the need for explicit instructions. The information presented
here is intended for knowledgeable users who want to hand-
code specific low-level subroutines for execution on the VUs.

intended Audience

This is a programmer’s handbook, not a tutorial. This document describes the

DPEAC and CDPEAC instruction sets in detail, and provides some examples of

their use, but is intended to be used by knowledgeable CM programmers in

writing low-level code. For the most part, this handbook contains concise
. summaries of information that these low-level programmers will find helpful.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation ~ iX

Revision Information

Thisisanewmﬂnua_l.

Organization of This Manual

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Introduction

Presents an overview of the CM-5 and the two low-level instruc-
tion sets DPEAC and CDPEAC.

The CM-5 Vector Units
Describes the design and features of the CM-5’s vector unit

‘accelerators.

The DPEAC Instruction Set _
Explains the syntax and structure of the DPEAC instruction set.

DPEAC Instruction Set Reference
Lists the arithmetic, memory, modifier, and accessor instruc-
tions of the DPEAC instruction set.

The CDPEAC Instruction Set

Explains syntax and structure of the CDPEAC instruction set.

CDPEAC Instruction Set Reference
Lists the arithmetic, memory, modifier, and accessor instruc-
tions of the CDPEAC instruction set.

Using DPEAC/CDPEAC in Programs
Presents an example of using a DPEAC (or CDPEAC) subrou-
tine in a CM Fortran program.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

e i s BB s s

Appendixes:

Appendix A VU Memory Mapping
Explains the layout of VU parallel memory.

Appendix B VU Memory Maps
A three-page VU memory map and register quick-reference.

Appendix C VU Pipeline
Describes of the operation of the VU instruction pipeline, and its
effects on execution of VU vector instructions.

Appendix D VU Arithmetic Operations
Describes the arithmetic instruction set of the VUs, with special
emphasis on the status bits that are modified by each instruction.

Appendix E The dpas Assembler
Describes dpas, the DPEAC assembler.

Appendix F The dpcc Compiler
Describes dpcc, the CDPEAC compiler.

“Appendix G How CDPEAC Works
Describes the implementation of CDPEAC via the GCC compil-
er’s asm statement and macro facility.

Appendix H CMRTS and CM Memory Allocation
Describes the CM Run-Time system, CM parallel array data
structures, and methods for allocating parallel memory either
through the CMRTS or by other means.

Related Documents
These documents are part of the Connection Machine documentation set.
= Programming the NI, Version 7.1.

= DPEAC Reference Manual, CMOST Version 7.1.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter UNIX and CM System Software commands, com-
mand options, and filenames, when they appear
embedded in text. Also programming language
elements, such as keywords, operators, and func-
tion names, when they appear embedded in text.

italics Argument names and placeholders in function and
command formats.

typewriter Code examples and code fragments.

% bold typewriter In interactive examples, user input is shown in

regular typewriter bold typewriter and system output is shown in
regular typewriter font.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

ustompport

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines’
home office customer support staff:

Internet
Electronic Mail: customer-support@think.com
uucp ,
Electronic Mail: ames! think!customer-support
U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264
Telephone: (617) 234-4000.

CMosr Version 7.2, August 1993 :
' Copyright © 1993 Thinking Machines Corporation ~ Xill

lpiAatebe s G s e e L e

PP LS I

Chapter 1

Introduction

1.1 Programming the CM-5 Vector Units (VUs)

Writing a program that takes explicit control of the vector unit (VU) accelerators
of the Connection Machine CM-5 system requires an understanding of the
CM-5’s hardware design (in particular, the design and function of the VUs them-
selves), and how to construct programs that contain assembly-level CM-5 code.

This chapter presents a brief overview of the CM-5’s hardware design, along
with a description of the assembly-level instruction sets (DPEAC and CDPEAC)
that are available on the CM-5.

IMPORTANT

You do not have to use the methods described in this book to
write programs that access the CM-5 VUs. The compilers for
high-level CM languages (such as CM Fortran and C*) auto-
matically take advantagé of the VUs where possible, without
the need for explicit instructions. The information presented
here is intended for knowledgeable users who want to hand-
code specific low-level subroutines for execution on the VUs.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 1

VU Programmer’s Handbook

1.2 The CM-5 Hardware

1.2.1

The CM-5 computing environment consists of a partition of processing nodes
(each of which has its own memory) together with a partition manager (PM).
These components are linked together by the CM-5’s internal communication
networks: the Data Network and Control Network (see Figure 1).

Depending on how the CM-5s processing nodes have been configured by the
system administrator, there may be one or several partitions active in a CM-5 at
any one time. A partition of processing nodes is treated as a single computing
system for the purpose of assigning and swapping processes.

Figure 1. The CM-5 computing environment.

The partition manager (PM) contains a RISC CPU and connecting hardware that
allows the PM to interact with other computers and with users on terminals.
Thus, the PM is the “gateway” by which a programmer gains access to the pro-
cessing nodes of the CM-5 and instructs the CM-5 to execute a program.

The CM-5 Networks

The CM-5’s processors can exchange information with each other through the
machine’s internal networks.

The Data Network is a high-speed, high-bandwith network for data transmission.
It is the primary means for sending large blocks of information between the
nodes and/or the PM.

The Control Network is a high-speed internal network for control functions, such
as broadcasting a value to the nodes, parallel-prefix computations, and node syn-
chronization. ’

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

1.2.2

1.23

The CM-5 Processing Nodes

A CM-5 processing node consists of a RISC processor, a Network Interface chip,
4 memory units, 4 vector unit arithmetic accelerators, and a 64-bit MBUS that
links the various components together. :

64-bit
MBUS

Figure 2. A typical CM-5 processing node.
The RISC processor (CPU) is a SPARC chip in the current implementation, and

will hereafter be referred to as the “SPARC” or the “SPARC CPU”.

The Network Interface (NI) is the node’s link to the CM-5 networks, and is used
by the SPARC IU to send messages to other nodes and to the PM.

The CM-5 Vector Units

The vector unit (VU) accelerators are located between the SPARC CPU and node
memory, and typically act as memory controllers, handling memory store and

- fetch operations as required by the SPARC.

However, some memory operations are interpreted as instructions by the VUs:
the value written is interpreted as a VU arithmetic and/or memory instruction,
and the address to which it is written determines which of the four VUs on the
node will execute the instruction. Thus, VU computations are invoked by (and
look like) SPARC memory operations.

Chapter 2 provides more detail on the vector units, and describes features of their
internal design that are important for DPEAC and CDPEAC programmers.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

VU Programmer 3' Handbook

1.3 The DPEAC and CDPEAC Instruction Sets

1.3.1

The Connection Machine system provides a number of layers of software that are
used to write CM-5 programs. The basic structure is shown below. Typically, a
user-written CM-5 program depends on high-level software for the majority of
_ its data structures and control flow, and only directly calls low-level code for
hand-crafted subroutines that must execute as efficiently as possible.

User-Written CM-5 Programs

CM-5 HARDWARE
(SPARC Processor, NI Chip, Vector Units)

Figure 3. Structure of software layers on the CM-5.

Note: There is nothing inherently inefficient about a program written in a high-

- level CM-5 programming language. The CM-5 language compilers themselves

make use of efficient low-level routines wherever possible.

The CM-5 Assembly Code Level

Because the instruction units of the CM-5 processing nodes are SPARC chips,
the SPARC assembler instruction set is the CM-5’s “native” machine language
instruction set. However, there is an entirely different instruction set used to
compose instructions for the CM-5’s vector units. This instruction set is called
DPEAC. There is also a C interface to DPEAC, called CDPEAC. Which instruc-
tion set you use depends on your experience and programming needs.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

)

A T T e sy

" ET et FTITR A Send S

POPREE NP IIPRSLSIUIE EL E P :

[OTNPORRIN SRS

1.3.2 DPEAC — Vector Unit Assembly Code

The DPEAC instruction set is the “assembly code” of the CM-5 vector unit
accelerators. DPEAC looks much like standard assembly code, in that it consists
of instructions that perform arithmetic and memory operations:

Start: floadv [%i0] :4, V2
fmulv V2, 0r3.69, V3
fmadav v2, 0r25.0, V4
floadv [%i1] :4, V5; fmadav V3,V4,V5S

fstorev [%i2] :4, V5

However, DPEAC instructions are not executed directly by the SPARC. Instead,
they are assembled into singleword or doubleword values that can be written to
the VUs to cause them to execute the appropriate arithmetic and/or memory
operations.

DPEAC code and SPARC assembly code can be intermixed freely; the SPARC
code is executed by the SPARC processor, and the DPEAC code is sent to the
VUs for execution.

Coding in DPEAC is best for a programmer with some experience in coding at
the assembly-code level. It requires skill in managing the SPARC registers and
a firm knowledge of the SPARC ABI calling conventions, which describe how
subroutines pass values to each other at the SPARC assembly code level.

dpas — The DPEAC Assembler

The dpas assembler is used to assemble a DPEAC program. dpas is an exten-
sion of the SPARC as assembler; it translates DPEAC instructions into SPARC
instructions, and then passes the translated instructions to as for final assembly.

DPEAC source
DPEAC translation

‘For a more detailed description of the dpas assembler, see Appendix E.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

T ——_——

VU Programmer's Handbook

1.3.3 CDPEAC — DPEAC Writtenin C

For those programmers who would rather not code at the DPEAC level, there is :
an alternative: the CDPEAC instruction set. CDPEAC is a set of macros written .
in the C programming language, which can be used to insert DPEAC instructions i
into the body of a standard C function or subroutine.

A CDPEAC routine generally consists of both C and CDPEAC code:

CDPEAC_routine (aloc,bloc, size)
unsigned. aloc,bloc, size;
{ dpsetup();
for (; size ; size -= 8); {
loadv_u(f,aloc,4,V2);
join2(loadv_u(f,bloc,4,V3), madav(f,v2,Vv2,V3));
storev_u(f,bloc,4,V3); b
aloc += (4*8); bloc += (4*8); 3
}

}

CDPEAC instructions expand directly into corresponding DPEAC instructions;
the two instruction sets are best seen as two ways of accomplishing the same
thing. Both produce assembly-level code, but CDPEAC lets this code be written
in a form that is familiar to, and readily understandable by, C programmers.

Coding in CDPEAC is best for C programmers who want to use DPEAC instruc-
tions without having to write a DPEAC assembly code routine. CDPEAC still
requires an understanding of the basic vector unit operations being performed,
but does not require as much attention to assembly-level details as does direct
DPEAC coding.

dpcc — The CDPEAC Compiler

The dpec compiler is used to compile a CDPEAC program. dpec is an extension
of the GNU C compiler gec; it translates a CDPEAC procedure into the corre-
sponding DPEAC code, then calls dpas to assemble the code.

i
gece compilation

obiectcode
For a more detailed description of dpce, see Appendix F.
CMost Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

Chapter 1. Intro

duction
R

1.4 Using DPEAC and CDPEAC

1.4.1

1.4.2

The most common use of DPEAC or CDPEAC in a CM-5 program is for writing
highly efficient subroutines to be called from programs written in a high-level
language (such as CM Fortran). The high-level program uses its own operators
to define parallel CM arrays, and then calls DPEAC (or CDPEAC) routines to
perform efficient arithmetic operations on those arrays.

This is the best way to make use of DPEAC: let the high-level language compiler
manage the details of memory management and data layout, so that the DPEAC
or CDPEAC subroutines can be focused on exactly those parts of the program
that require large amounts of efficient computation.

The DPEAC Header File

To have access to the DPEAC instruction set, including the symbolic constants
defined for the locations of registers, etc., as described later in this book, your
DPEAC source file should include the DPEAC header file:

#include <cmsys/dpeac.h>

This header file is only required in the DPEAC source code file; the other source
files in your program (see Chapter 7) should include whatever other header files
are needed.

The CDPEAC Header Filg

Similarly, to have access to the CDPEAC instruction set, including the symbolic
constants defined for the locations of registers, etc., as described later in this
book, your CDPEAC source file should include the CDPEAC header file:

#include <cm/cdpeac.h>

This header file is only required in the CDPEAC source code file; the other
source files in your program (see Chapter 7) should include whatever other
header files are needed.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

VU Programmer s Handbook

1.5 Using This Handbook

All programmers should read through Chapter 2, which describes the design and
features of the CM-5 vector units.

Programmers who feel comfortable working with SPARC assembly code should
read through Chapters 3 and -4, which describe the DPEAC instruction set. Pro-
grammers who prefer working in C should read Chapters 5 and 6, which describe
CDPEAC. The DPEAC and CDPEAC chapters present basically the same
information, but describe it in terms of the appropriate instruction set. (The
CDPEAC chapter includes occasional notes describing DPEAC features that are
not currently implemented in CDPEAC.)

Both DPEAC and CDPEAC programmers should read through Chapter 7, which
presents an example of a CM Fortran program that calls a DPEAC (or CDPEAC)
subroutine.

The appendixes contain useful information about the vector units and about the
dpas assembler and dpcc compiler, which are used to assemble/compile
DPEAC and CDPEAC source code. Appendix D, in particular, provides detailed
descriptions of the VU arithmetic operations and their effects on the flags in the
VU status register. S

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2
The CM-5 Vector Units

- 2.1 CM-5 Vector Unit Accelerators

The vector unit (VU) accelerators are located between the SPARC CPU and the
memory banks of the processing node (see Figure 4).

64-bit
MBUS

Figure 4. A typical CM-5 processing node, showing the location of the 4 VUs.

The VUs act as memory controllers, handling memory store and fetch operations
as required by the SPARC. However, some memory operations are interpreted
as instructions by the VUs: the value written is interpreted as a VU arithmetic
and/or memory instruction, and the address to which it is written determines
which of the four VUs on the node will execute the instruction.

VU instructions can be strided, or made to operate step-wise across many
memory or VU register locations; hence the term “vector unit” for the accelerator
hardware. (This striding is specified either by explicit instructions, or by a
default value stored in a VU control register.)

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 9

10

211

2.1.2

VU Programmer's Handbook

Vector Unit Hardware

There are actually only two VU chips in each processing node; each chip con-
tains the hardware necessary to simulate the operations of a pair of VUs. Thus,
VU instructions that select groups of VUs can only select them as follows: one
VU alone, all VUs at once, or fixed pairs (0/1 or 2/3).

Figure 5. Internal arrangement of VU chips in CM-5 processing node.

For the Curious: The VU chips operate at approximately 32 MHz, while the

.memory chips operate at 16MHz. Thus, each VU chip performs two memory

operations per cycle, one for each of the two attached memory chips.

VU Virtual Memory Layout

Each vector unit instruction can be performed either by a single VU, or by two
or four of the VUs operating in parallel (this parallel operation typically provides
the best performance). '

The vector units that perform a given VU instruction are selected by the VU
memory address to which the instruction is written. There is a set of virtual
addresses for each VU and permitted combination of VUs (see Figure 6).

These VU memory regions all correspond to the same physical memory region,
but each VU region selects a different VU or set of VUs to execute a DPEAC
statement. (There are also memory regions devoted to ordinary SPARC serial
memory references, which don’t trigger VU operations.) '

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. The CM-5 Vector Units 11

R S

L MOy peTe!

Figure 6. VU virtual memory regions.

Each of the VU regions includes two separate address spaces, called data space
and instruction space, that refer to the same physical VU memory, but have dif-
ferent effects on the VUs (see Figure 7). Data space addresses allow the SPARC
to perform normal load/store operations on VU parallel memory. Instruction
space addresses cause the VU(s) to perform an operation using the instruction
space address as the memory operand.

Figure 7. Contents of a single VU memory region.

The instruction and data spaces of each VU virtual memory region refer to a
single physical memory region that includes a parallel stack and a parallel heap.
The stack and heap are “striped” across the VU memory banks in such a way that
they occupy the same locations in each VU memory region.

Note: The diagrams above are a simplification. Refer to Appendix A for a more
detailed description of the way the vector units are mapped into the physical and
virtual memory of the SPARC CPU.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

12 VU Programmer's Handbook

2.2 VU Registers

Each VU has an internal set of registers, along with hardware for-both memory
accessing and register arithmetic. Thus, a single VU operation can involve a
memory operation, a register arithmetic operation, or both at once.

To Node Memory

To MBUS (and SPARC IU)

Figure 8. VU internal components.

2.2.1 VU Data Registers

Each VU has a register file containing 128 data registers, each 32 bits long,
which are used as operands for arithmetic and memory operations. These regis-
ters are typically addressed as vectors, that is, blocks of registers that are either
adjacent to each other or are located a constant distance (or stride) apart.

Depending on the data type in uée, the data registers may be accessed individu-
ally as singleword (32-bit) values, or in pairs as doubleword (64-bit) values. The
typical way to view these data registers is as 16 vectors of 8 elements:

VO VI V2 V3 Va4 V5 Ve V7 Vid Vi5
(RO | A8 |R16 | R24 |32 | R40 | R4B | RB6] _ _ _ _ _ [R112|R120
R R9 |R17 | R25 [R33 |R41 [R49 [R57| _ __ _ __ _ [R113[R121
R2 |R10 | R18 [R26 [R34 [R42 [RBO|R58 | _ _ _ _ _ |R114[R122
R3 | R11 [R19|R27 |R35 | R43 |R51 (RSO | _ _ _ R115]R123]
R4 |R12|R20 |R28 |R36 [R44 |R52 [RBO| _ _ _ _ _ [R116]R1

R5 | RI3IR21 |R29 |R37 [R5 [R53 [R61 | [R117IR125
R6 |R14|R22 | R30 [R38 | R46 [R54 [RE2| R118[R126
R7 |R15|R231R31 R3O R47 |R55 [R63 T _ | [R1191R127

Figure 9. VU data registers: 16 vectors of 8 registers.

: CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

2.2.2 VU Control Registers

Each VU also has internal control registers that affect VU instruction execution.
VU Vector Mask Registers:

dp_vector_mask — Vector mask register:
Source of context bits (see below) and storage for arithmetic status bits.

dp_vector_mask direction — Vector mask shift direction:
One-bit register, 0 means shift right (towards LSB), 1 means shift left

dp_vector_mask_buffer — Vector mask copy buffer:
Copy of vector mask register loaded or stored prior to each operation.

dp_vector_mask_mode — Default vector mask conditionalization mode:
Indicates which of ALU and memory instructions are conditionalized.
VU Arithmetic Status Registers:

dp_status — Status register:
Holds status bits produced by arithmetic operations.

dp_status_enable — Status enable register:
Selects status bits that are ORed and stored in vector mask register.

C/DPEAC Instruction Default Registers:

dp_vector_length — Vector length register:
Default length of vectors (number of steps) for vector operations.

dp_stride_rsi — Rsl register operand stride:
Default stride for Rs! operand in arithmetic operations.

dp_stride_memory — Memory operand stride:
Default stride for memory operations.

dp_alu_mode — Arithmetic mode register:
Selects Fast or IEEE mode for arithmetic operations.

Important: The pair of VUs on a single chip (that is, VUs 0/1 and 2/3) actually
share all control registers except for the two registers dp_vector_mask and
dp_vector_mask_buffer. This means that any change to a shared register
affects both VUs that share it.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

14 _ VU Prograrﬁmer 5 Handbook

2.3 Effects of VU Control Registers

The VU control registers are used for a number of purposes:
» Conditionalization of VU instructions (described iri Section 2.3.1). -
* Contextualization, or collection of status bits (described in Section 2.3.2).

» Default registers for DPEAC and CDPEAC operators. (These are are
described in the chapters on DPEAC and CDPEAC, along with the
instructions that use and modify these registers.)

Figure 10 summarizes the effects of the control registers (and some instruction
modifiers) on the ALU and memory components of VU instructions:

dp_vector_mask_buffer accumulated
context count

mask copy mode
instruction modifier

vmrotate

rg'tgg:n Eg vmcurrent

modifier

i dp_vector_mask_direction

conditionalization
(do or don't do)

| dp_stride_memory I dp_stride_memory]

[dp_alu_mode

l dp_vector_length —l

Figure 10. Effects of VU control registers on ALU and memory instructions.

» CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. The CM-5 Vector Units 15

2.3.1 Vector Mask and Conditionalization

The VUs have the ability to conditionalize vector operations. The vector mask
register (dp_vector_mask) is used to mask individual ALU and memory
instructions in a vector operation. At each step of a vector operation, a context
bit is shifted out of the mask register (see Figure 11). This bit can be used to mask
out (prevent) the ALU operation, the memory operation, both operations, or nei-
ther of them. (Note: In the current implementation, dp_vector_mask is a
32-bit register, but only the least significant 15 bits are used.)

By default, the vector mask mode register (dp_vector_mask mode) deter-
mines which, if any, of the ALU and/or memory operations are conditionalized.
Initially, the mode register is set so that no conditionalization is done. A 0 context
bit masks the corresponding ALU and/or memory operation, preventing the
results from being stored in the destination register. A 1 context bit allows the
results to be written. (Note: Scalar operations are never conditionalized.)

C/DPEAC instruction modifiers let you override the mode register and/or change
its value while executing an instruction. There is also a C/DPEAC instruction
modifier that allows you to invert the sense of the context bit, so that a 1 bit
masks the operation, and a 0 bit allows the operation to proceed.

vmrotate: status bits context bits

vmcurrent:

15 vien 0

Figure 11. Bit-shifting modes of vector mask register.

2.3.2 ALU Status and Contextualization

Every ALU operation sets the flags in the status register (dp_status) to indi-
cate the results of the operation. There is a similar set of flags in the status enable
register (dp_status_enable), indicating which of the dp_status flags are
ORed together to make the status bit of a vector operation.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

233

At each step of a vector operation, the ALU sets the flags in dp_status, and
then the flags selected by 1 bits in dp_status_enable are ORed together into
a single status bit, indicating whether or not the ALU operation completed suc-
cessfully. This status bit is shifted into the vector mask register.

Status bits are typically rotated into the vector mask register at the end opposite
to that from which condition bits are drawn (this is known as rotate mode.) How-
ever, a C/DPEAC instruction modifier can cause the context bits to be inserted
into the vector mask register in numerical order at the same end from which they
are drawn (current mode). See Figure 11 above.

The vector mask shift direction register, dp_vector_mask_direction, deter-
mines which way the vector mask bits are shifted. If it is 0, the default, the bits
are shifted right (toward the low end of the register, as shown in Figure 11). If
the mask direction is 1, bits are shifted left (toward the high end).

Status Register Flags

The current flags in the dp_status and dp_status_enable registers,
together with their symbolic names as defined by the C/DPEAC header files, are
shown in the table below. (Starred status flags are the IEEE-defined exceptions.)

Bit Flag Mask Symbol Status

0 DP_STATUS ENABLE MASK INEXACT Float result is inexact (*)

1 Dp_STATUS ENABLE_MASK_DIVIDE BY ZERO Division by zero (*)

2 DP_STATUS_ENABLE_MASK UNDERFLOW Float underflow (*)

3 DP_STATUS_ENABLE MASK_OVERFLOW Float overflow (*)

4 pP_STATUS_ENABLE MASK_INVALID_oPERATION Invalid operation (*)

5 DP_STATUS_ENABLE_MASK_INT OVERFLOW Integer overflow

6 Dr_STATUS ENABLE_MASK_NEGATIVE_UNSIGNED Negative integer result

7 DP_STATUS_ENABLE_MASK DENORM_INPUT Float input denormalized

8 DP_STATUS ENABLE_MASK_ZERO Float/integer result of zero
9 DP_STATUS_ENABLE_MASK POSITIVE Float/integer result positive
10 DP_STATUS ENABLE MASK_NEGATIVE Float/integer result negative
11 Dpr_STATUS_ENABLE_MASK INTEGER_CARRY Integer carry

12 DP_STATUS_ENABLE MASK_INFINITY Float result is +/- infinity
13 DP_STATUS ENABLE MASK_NAN Float result is a NaN

14 DP_STATUS_ENABLE_MASK_DENORM Float result is denormal

15 DpPp_sTATUS_ENABLE MASK_UNORDERED (Internal, do not use)

16 DP_STATUS ENABLE MASK_UNDER (Internal, do not use)

17 DP_STATUS_ENABLE_ MASK_DENO (Internal, do not use)

CMosr Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

Chapter 2. The CM-5 Vector Units 17

234

24

2.4.1

242

See Appendix D for a more detailed description of the meanings of the status
flags, and for descriptions of the VU arithmetic operations that modify them.

The Vector Mask Buffer

Prior to each DPEAC operation, the contents of the vector mask register may be
stored to, or copied from, the vector mask buffer register (dp_vec-
tor_mask buffer). By default, no such copying is done. The vector mask
buffer can be useful, for example, for keeping a fixed vector mask handy so that
it can be copied into the mask register before each DPEAC operation.

A C/DPEAC instruction modifier allows you to override the value of this register
for a given instruction, or modify its value to affect future instructions.

Other VU Features

Accumulated Contexf Count

The C/DPEAC format modifier vmcount causes the individual context bits
shifted out of the vector mask register to be stored in a series of VU data regis-
ters. This accumulated context count feature can be useful for determining which
instructions in a VU operation were masked out. For more information, see the
discussion of the vmcount modifier (Section 4.3 for DPEAC, and Section 6.7
for CDPEAC).

Population Count

The C/DPEAC format modifier [d]epc causes the vector units to do a population
count, or count of the number of 1 bits, on a register. This is a strided operation,
and acts like a memory instruction in a VU operation. (Section 4.3 for DPEAC,
and Section 6.7 for CDPEAC).

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

18 VU Programmer s Handbook

2.5 VU Control Register Constants

The following constants are defined by the C/DPEAC header files, giving the
offsets of the VU control registers.

Register ' Register Constant Current Value
dp_stride_xsi * DP_STRIDE RS1 0x10C
dp_stride_memory DP_STRIDE_MEMORY 0x108
dp_vector_length DP_VECTOR_LENGTH 0x104
dp_alu_mode DP_ALU_MODE 0x100
dp_status DP_STATUS 0x124
dp_status_enable DP_STATUS_ENABLE 0x120
dp_vector_mask DP_VECTOR_MASK 0x110

dp_vector_mask_directionDP_VECTOR MASK DIRECTION Ox11C
dp_vector_mask buffer DP_VECTOR MASK_BUFFER 0Ox114
dp_vector_mask mode - DP_VECTOR_MASK MODE 0x118

Note: These offsets are for use only with accessor instructions such as dpset
and dpget. C/DPEAC statement formats also allow you to implictly use and/or
set the value of one or more control registers while executing a VU operation.
See the mode set format in particular (Section 3.9 for DPEAC, Section 5.9 for
CDPEAC) for examples.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation -

Chapter 3

3.1

The DPEAC instruction set is an extension of SPARC assembly code, providing
extra instructions that are used to manipulate the vector units. When a routine
containing DPEAC code is assembled, each DPEAC instruction is translated into
one or more SPARC memory operations that send appropriately assembled
instruction word(s) to the VU hardware.

DPEAC Code

A DPEAC routine consists of a series of statements. Each statement is either a
SPARC instruction, a DPEAC statement, or a DPEAC accessor instruction. A
DPEAC statement can occupy either a single text line or several text lines, with
a “\” character immediately preceding each linebreak but the last.

A DPEAC statement consists of one or more DPEAC instructions, separated by
semicolons. (An optional extra semicolon can follow the last instruction.)
DPEAC instructions are grouped in three categories:

®* grithmetic instructions, which cause the VUs to perform register arithmetic

dfaddv vo,Vv2,V4

® memory instructions, which move data between VU registers and memory

floadv [%10] :4,V0
fastorev [%il1]:8,R16

® modifiers, which alter the assembly or execution of the DPEAC statement

vmcurrent ; noalign ; vmnew

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 19

20

3.1.1

3.1.2

VU Programmer s Handbook

A single DPEAC statement represents a single VU operation, and thus can con-

“tain both a memory instruction and an arithmetic instruction (but no more than

one of each type). At least one memory or arithmetic instruction must be present.
‘When a DPEAC statement includes both memory and arithmetic instructions, the
memory instruction executes first, and any value it obtains from memory can be
used by the arithmetic instruction.

A DPEAC statement may also include any number (including zero) of modifiers,
as permitted by the statement’s format.

The components of a DPEAC statement may be arranged in any order, but for
readability you should adopt a consistent form. A good “canonical” DPEAC
statement order, used by many DPEAC programmers, is:

arithmetic-op ; memory-op ; modifier-l ; modifier-2 ...

This order is recommended because although the memory operation and modifi-
ers are usually executed and/or applied before the arithmetic operation, it is the
arithmetic part of the instruction that is typically of the greatest interest.

Chain Loading

When a DPEAC statement refers to the same register in both the memory and
arithmetic operations, and when the memory operation is a load, the loaded
value from the memory operation is used in the arithmetic operation. This is
called chain loading. In a vector operation, this can happen for each step in the
vector operation.

There are some modifier operations (such as population counting), that can also
chain load, and some modifier operations that cannot chain load. Section 4.3 lists
the DPEAC modifiers and indicates any that can or cannot chain load.

DPEAC Accessor Instructions

A DPEAC accessor instruction is a DPEAC instruction that doesn’t correspond
to a VU arithmetic/memory operation. DPEAC accessor instructions are typi-
cally utility operations such as reading and writing VU registers from the
SPARC, directly reading and writing parallel memory locations, etc. Accessor
instructions can be recognized by their “dp” prefix: dpset, dpget, etc.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The DPEAC Instruction Set

3.2 DPEAC Syntax

3.2.1 General Syntax

21

Numbers are 64-bit constants, parsed as in C. Numbers starting with O are octal
by default, and numbers starting with a non-zero digit are decimal. The 0x (hex),
ob (binary), 0o (octal), and on (decimal) integer forms are provided, as well as
of (32-bit), oxr (32-bit) and od (64-bit) IEEE float forms.

ASCII constants appear in single quotes ("ABC’), and represent the integer
obtained by concatenating the character bytes (the first byte is most significant).
Comments are denoted by a “1”, and extend to the end of the line (as in as).
C-like /*comment*/ and #comment forms are provided by dpas itself.

Expressions in DPEAC evaluate to a constant when assembled. There are three
classes: constant-expressions, as-expressions, and general-expressions.

A constant-expression is evaluated at dpas assembly time, using 64-bit integer
arithmetic (signed for products/divisions, else unsigned). The following opera-
tors are supported, and are evaluated in the order shown (first across, then down):

+ Unary plus (no-op) - Negate (2’s complement)
! Logical not ~ Invert (1’s complement)
%lo Low 10 bits %hi High 22 bits

& Bitwise AND | Bitwise OR

. Bitwise XOR

* Signed multiply / Signed divide

<< Logical Left shift >> Logical Right shift

+ Addition - Subtraction

< Less than <= Less than or equal

== Equal to l= Not equal to (<> also allowed)
> Greater than >= Greater than or equal
&& Logical AND I Logical OR

A constant-expression can include symbols only if they can be translated into
constants by the dpas preprocessor. Floating-point constants are allowed, but are
“cast” as integers. (Note that floating-point constants and the operators <= and
&& are dpas extensions to as expression syntax.)

An as-expression is passed directly to the as assembler, and must follow as syn-
tax. It is evaluated as a 32-bit integer. It can contain any symbols processed by
as, but cannot contain either float constants or the operators <= and &&.

A general-expression can be either a constant-expression or an as-expression. If
dpas cannot parse a general-expression as a constant-expression, it assumes it
is an as-expression, and passes it directly to as.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

VU Programmer's Handbook
R S

3.2.2 SPARC CPU Registers

DPEAC memory instructions refer to SPARC registers by these symbols:

%r0 - %r31 IU registers %0 - %31 IU registers (alternate form)
%i0 - %17 in registers %00 - %07 out registers

%£0 - %£31 FP registers %g0 - %g7 global registers

%psr Processor state register %fsr FP state register

%wim Window invalid register %tbr Trap base register

%y Multiply-step (Y) register %fq FP queue register

(Note: Later descriptions denote an arbitrary SPARC register as as-register.)

SPARC IU Registers SPARC FPU Registers

SPARC Register FP Queue Reg %fq
Windows Trap Base Reg %tbr %fs

FP Regs %f10-%f31

Ins %I0-%I7
Locals %l0-%I7
Outs %00-%07

Figure 12. SPARC CPU registers accessible from DPEAC.

Register Restrictions: The following SPARC registers are used by DPEAC
operations to store default values, so these registers should be avoided:

Register Usage
%16 (Reserved) Default memory operand (Selects all VU’s)
%17 (Reserved) dp_instruction_ext register pointer
%g2, %g3 (Temporaries) Used as temporaries in VU instructions

%16 and %17 are initialized by dpas, which expects them to be preserved.
dpas assumes that these registers are no longer correct if a . seg directive or
a dpunset accessor instruction is included. %g2 and %g3 are overwritten by
dpas code execution, but are not expected to be preserved. Thus, these regis-
ters can be used as temporaries in code that has no VU instructions.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

3.2.3 Vector Unit Data Registers

DPEAC arithmetic and memory instructions refer to the 128 VU data registers
by the following names:

RO - R127 All 128 registers in sequential order
V0 - V15 Vector regs (first in each vector, same as RO, R8 ... R120)
80 - 815 Scalar regs (single precision), same as RO - R15

80 - 830(even) Scalar regs (double precision), same as RO - R30 (even)

Restrictions: DPEAC statements in immediate format use the R0 and R1 regis-
ters to store immediate operands, so these registers should be avoided.

The VU data registers are grouped in banks of 8, called vector registers. The
special register names V0 - V15 are used to refer to the first data register in each
vector. When a vector instruction requires an “aligned vector” operand, the oper-
and must be one of the Vnn registers (or the equivalent Rnn).

VO Vi V2 V3 V4 V5 V6 V7 _____ V14 vi5

Ro | R8 [R16 [R24 |R32 |R40 | R48[R56 | __ __ _ __ _IR112IR

Rt | R9 |R17]R25 [R33|R41 1R49|RE7| _ __ ______IR113[R

R2 |[R10|R18{R26 (R34 |[R42 |RS0 |R58(_ _ _ __ _ [R114IR122

R3 |R11[{R19{R27 | RI5 |AR43 {R61 [RS9 | __ __ __ __ R115{R123

R4 |R12 | R20 |R28 |R36 [R44 RS2 |RE0| _ ___ ___ |R116/R124

RS |R13|R21 |R29 |R37 [R45 |AS3 {R61| _ ____ ___ [R117/R125
| R6 |R14 | R22 | R30 | R38 |R46 |R54 | R62 | R118|R126

R7 |R15|R23|R31 [R39(R47 |RS51R63| _ __ _ __ _ [R119|R127

Figure.13. VU data registers: 16 vectors of 8 registers.

A subset of these registers is designated as the scalar registers. These are S0 -
815 (singleword), or the even registers from S0 - 830 (doubleword). (The snn
names are equivalent to Rnn, and explicitly show use of scalar registers.) Scalar
operations that use scalar registers assemble into efficient instructions.

You can apply a register offset to a data register to access one of the registers
succeeding it in Rnin order (this is mainly useful for accessing the elements of vnn
vectors):

Regn [kl Refers to register Regn + k. (Ex: V2[5] = R16+5 = R21)

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

24

VU Programmer s Handbook

3.2.4 Vector Unit Control Registers

3.25

There are symbols for all the VU control registers, as described in Section 2.5.
However, these symbols are typically only used for accessor instructions such as
dpset and dpget. DPEAC statement formats allow you to implicitly use and/or
set the value of one or more control registers while executing a VU operation.
See the mode set format in particular (Section 3.9) for examples.

VU Register and Memory Stride Markers

Some VU arithmetic and memory operations can stride through a group of regis-
ters or memory addresses. The stride length is indicated by a stride marker
attached to the appropriate register or memory operand. The generic syntax of
these markers is shown below.

Important: The stride markers shown here are not valid for all staiement for-
mats; most statement formats restrict the types of stride markers that are allowed.

Register Stride Markers

The general syntax of register stride markers is shown below, where register is
any valid VU register, and stride and set-stride are constant expressions in the
range -128 to +128. Register striding is always in terms of the Rnn ordering,
even when a van register name is specified. A stride of zero causes the same
register to be used at each step.

Syntax Effect

register Use unit stride (1 for words, 2 for doublewords).
register : stride Temporarily use specified stride.

register :mode Use stride value stored in dp_stride_xrsi.
register : =stride Set dp_stride_rs1i to stride and use it.
register : stride=set-stride Set dp_stride_xrs1 to set-stride, but use stride.
register=stride Set dp_stride_rs1i to stride (scalar ops only).

Note: The last four stride marker forms shown above are valid only for the S
register argument of an arithmetic instruction.

rS1 Stride Restriction: When you apply a stride of 0 to the rSI argument of an
arithmetic operation (for example, R0:0), the 7SI register must be one of the
scalar registers 80 through 815, or 830 for double-precision.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The DPEAC Instruction Set : 25

3.2.6

VU Memory Stride Markers

The general syntax of memory stride markers is shown below, where n and set-n
is a general expression or as-register giving the stride in bytes. Note that the
stride value is limited to a 24-bit signed integer. A stride of zero causes the same
address to be used at each step. '

Syntax Effect

memory-operand Use default stride in dp_stride_memory.
memory-operand:n Temporarily stride by n bytes.
memory-operand: =n Set dp_stride_memory to n and use it.
memory-operand:n=set-n Set dp_stride_memory to set-n, but use n.
memory-operand=n Set dp_stride_memory to n (scalar ops only).

In the above formats, n and set-n are either 4 or 8 for singleword data types, or
8 or 16 for doubleword data types.

When you write DPEAC code by hand, you should make sure the default
memory stride register dp_stride_memory is set to the stride you require (for
example, 4 bytes for single-precision or 8 bytes for double-precision). You can
use the DPEAC accessor instruction dpset for this purpose; for example:

dpset ALL DPS, 8, DP_STRIDE MEMORY

VU Selection in DPEAC Statements

The VUs that execute a DPEAC statement are selected by the memory address
specified in the statement. (Deselected VUs are effectively idle.) A DPEAC
statement’s memory address is:

= the value of the memory-operand in the memory instruction
= the value specified by the maddr modifier, if any

= If neither of these is supplied, a default address that selects all the VUs.
The default address used is DPV_STACK_INST PORT ALL.

Typically, you won’t construct these merﬁory addresses yourself; your compiler
and/or the dpas assembler generate these addresses for you.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

VU Programmer’s Handbook

3.2.7 VU Selection in DPEAC Accessor Instructions

The VU(s) referenced by a DPEAC accessor instruction are determined by the
“VU selector” argument. This argument must be a valid VU selector as described
below.

A VU selector is an integer or symbolic constant that specifies one or more VUs
to perform a given accessor instruction. The syntax is:

~ Syntax Immediate Value
constant-expression Use the specified selector constant (see table below).
as-register Use value from a SPARC register (all bits).
as-register< Use value from SPARC register (bits 12:15).
* Select all VUs.
*n Use both VUs on chip n (0=VU’s 0&1, 1=VU’s 2&3).

The modifier “<” makes as-register references faster (fewer SPARC operations)
because only 4 bits (12 through 15) of the register are used. The constant-expres-
sion form can be either an integer VU selector value, a physical VU selector (an
integer preceded by a “$™), or one of the symbols defined in the header file dp.h
for these values. (Use of predefined symbols is recommended.)

The legal VU selector values, and their corresponding symbols, are:

vU VU Selector Physical VU Selector
Number(s) Value Symbol Selector Symbol

VUn 2*n DP_n $n DP_PHYS NUM 1
ALLVUs 8 ALL DPS $8 ALL_PHYS_NUM_DPS
VUs 0 and 1 10 DPS_0_AND 1 $9 DP_PHYS NUM O0_AND 1

VUs2and3 12 DPS_2 AND 3 $11 DP_PHYS NUM 2_AND 3

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The DPEAC Instruction Set 27

3.3

3.3.1

3.3.2

DPEAC Instructions

Scalar and Vector Instructions

DPEAC memory and arithmetic instructions come in two forms: scalar and
vector.

Scalar instructions execute just once for the supplied operands, and are distin-
guished by an “s” suffix on the opcode.

Vector instructions execute repeatedly for each of a series of operands, and are
distinguished by a “v” suffix on the opcode. Vector operations start with the
specified register or memory address operand(s) and then step through succeed-
ing locations determined by the vector stride and vector length:

= The vector stride determines the number of registers or memory addresses
a vector operation advances at each step. The default vector stride depends
on the type of operation (memory or arithmetic).

= The vector length determines the number of registers or memory addresses
affected by a vector instruction. The vector length defaults to the value of
the VU register dp_vector_length, unless a different vector length is
specified explicitly.

Note: If a DPEAC statement includes both a memory instruction and an
arithmetic instruction, the two must agree in form: they must be either both scalar
instructions or both vector instructions.

Register Oheran’ds

The register operands of arithmetic and memory instructions are indicated by the
following symbols, indicating arbitrary VU registers:

rS1,rS2 First and second source registers.

rLS Load/store (or third source) register.
rD Destination register.
riA Indirect addressing (used in Register Indirect format).

‘When an instruction format requires vector (Vnn) register arguments, the sym-
bols vS1, vS2, vLS, vD, and vIA are used instead. Similarly, when scalar (snn)
register arguments are required, the symbols sS1, sS2, sLS, sD, and sIA are used.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

28

VU Programmer’s Handbook

3.33

334

Data Types

The data type of a DPEAC instruction is typically indicated by one of the follow-
ing prefixes on the instruction opcode:

i Signed 32-bit integer u Unsigned 32-bit integer
di Signed 64-bit integer du Unsigned 64-bit integer
£ Single (32-bit) float df Double (64-bit) float

Arithmetic Instructions

An arithmetic instruction causes the VUs to perform a register arithmetic opera-
tion. Arithmetic instructions have the following general forms, where opcode is:
{1,di,u,du,£,df }operation{v,s}

Monadic (one source argument): opcode rSl1, rD
Dyadic (two source arguments): opcode rSI1, rS2, rD
Triadic (three source arguments): opcode rS1, rLS, rS2, rD

Note: In the statement format descriptions in Section 3.4, the arithmetic opera-
tion is always shown in triadic form. Dyadic and monadic forms are obtained
simply by omitting the appropriate operand symbols (rLS and rS2).

(Appendix D describes the VU arithmetic instructions in detail, and describes the
VU status bits that are affected by each instruction.)

Vector instructions have a default stride of 1 (singleword) or2 (doubleword) for
register operands, unless the instruction explicitly specifies a different stride.

rS2 Operand Restrictions: The rS2 operand of an arithmetic instruction has the
following restrictions:

= For vector operations, 7S2 cannot be any of R0 through R7, by any name
(80, Vo, etc.).

® In scalar operations, rS2 cannot be any of Rnn, where nn is any multiple
of 16 (for single-precision) or 32 (for double-precision).

This restriction is imposed by the internal representation of DPEAC operations.

Triadic/Memory Register Restriction Note: When a triadic arithmetic opera-
tion and a memory operation are joined, the rLS operand of the arithmetic
operation must be identical to the rLS operand of the memory operation.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The DPEAC Instruction Set 29
e B S i SR

3.3.5 Memory Instructions

A memory instruction causes the VUs to move data between memory and VU
registers. The operands of a memory instruction are a memory address and a VU
register. Memory instructions have the following general form:

{1,d1,u,du,£,4f }memory-operation{v,s} memory-operand, rLS

The rLS operand can be any VU register, but if a triadic arithmetic operation and
a memory operation are combined, the rLS operand of both must be the same,
and the memory operation can only be a 1oad, not a store. The default stride
for the rLS register is determined by the arithmetic operation, and the stride
required by the memory operation must agree.

The memory-operand can be any memory address that selects one or more VUs,
and it is specified by SPARC register indirection, using Sun-4 Assembler syntax:

Syntax Memory Address

[as-register] Contents of as-register

[as-register] + as-register2] Sum of as-register] and as-register2
[as-register + offset] Contents of as-register + offset

where offset is limited to the range —-4096 to +4095. Note that double precision
memory references must be doubleword (8-byte) -aligned.

The stride of vector instructions is either specified explicitly in the instruction,
or else defaults to the dp_stride_memory register value.

Singleword / Doubleword Performance Note: Doublewords are the natural
word size for the VUs. Singleword operations require a read-modify-write step.
Thus, singleword operations are less efficient than doubleword operations.

CMosr Version 7.2, August 1 993
Copyright © 1993 Thinking Machines Corporation

30 VU Programmer s Handbook

3.3.6 Modifiers

Modifiers: Modifiers are keywords, such as pad, maddr, vimcurrent, etc., that
modify the assembly or execution of a DPEAC statement. The modifiers per-
mitted in a DPEAC statement are determined by the statement’s format. The
available modifiers are listed below, and described in-more detail in Section 4.3.

Modifiers That Can Be Used in All (or Most) Formats:

[nolpad[: pad-size] Pad vector length
maddxr=memory-operand Default memory address
{vmrotate, vmcurrent} Packing mode for vector mask bits
[noJalign Doubleword alignment declaration
vmmode : [=]mode-keyword Conditionalization mode selector

Conditionalization Modifiers (Mode Set Format Only):
{vminvert, vmtrue} Conditionalization bit sense selector

{vmold, vmnew, vmnop} Vector mask copying mode

Special Modifiers (Mode Set Format Only):
[dlepc{v,s} (VLS)=riA:stride Population count
vmcount[s]=reg:stride Accumulated context count

[no]exchange On-chip VU data exchange

) CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The DPEAC Instruction Set 31
S e S

S e

3.4 DPEAC Statement Formats

There are two main classes of statement formats, short format and long format.
The distinction comes from the way the two formats are assembled into SPARC
operations.

A short format statement assembles into a singleword (32-bit) operation. Short
format instructions execute faster than those in long format, but lack some of the
features provided by the long format.

A long format statement assembles into a doubleword (64-bit) operation. Long
format instructions are slower to issue, but use the extra word to provide addi-
tional operand types and modifiers that are not permitted by the short format.
Specifically, the long instruction format comes in three varieties:

Immediate format allows an immediate operand in the arithmetic operation.
Register stride format allows register striding in the arithmetic operation.
Memory stride format allows address striding in the memory operation.

Mode set format provides access to a number of VU features, including regis-
ter/memory indirection and overriding of many VU instruction defaults.

Each of the varieties of long format represents a modification of the short format.
In terms of DPEAC source code, you can think of the short format as the back-
bone of features that all DPEAC source lines share, with each of the long formats
representing some modification of or addition to those features.

Important! Because of the way that DPEAC code is assembled, the modifica-
tions provided by each of the long formats cannot be combined. You can use only
one of the long formats, or none of them (that is, use the short format) in a single
statement.

For the Curious: Each DPEAC statement is assembled into a word (or double-
word) containing fields for each of the opcodes and operands in the statement.
Each of the long formats is assembled as a doubleword, and uses the extra word
for a different purpose; thus the extensions provided by the long formats are
physically incompatible within a single DPEAC statement.

Note: In the syntax descriptions below, escaped linebreaks (indicated by “\”) are
sometimes inserted for clarity when a statement’s syntax is long and/or complex.
These linebreaks are not a syntax requirement — all statement formats occupy
one line in a DPEAC program.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

VU Programmer s Handbook

s e RS

3.5 The Short Format

The short statement format is:

Vector Instuctions:

arith-opcode rS1, vLS, vS2, vD ; mem-opcode mem-operand, vLS ; modifier ; ...
Scalar Instuctions:

arith-opcode rS1, sLS, sS2, sD ; mem-opcode mem-operand, sLS ; modifier ; ..

With one exception (the mode set statement format, see Section 3.9), the rSI
operand can only have one of the following explicit stride forms:

rS1 Use register rS1, with unit stride for vector ops.
rSI:mode Use register rS1, with dp_stride_rs1 stride.
sS1:0 Use scalar register sSI with 0 stride.

The remaining register operand(s) must be aligned vector (vnn) registers for a
vector operation, or scalar (Snn) registers for a scalar operation. Vector instruc-
tions always use unit striding, so stride markers are not allowed in short format
(see register stride format, Section 3.7).

The mem-operand must have one of the following forms:

mem-operand Use dp_stride_memory stride.
mem-operand] : tempstride] Use restricted tempstride.

The optional tempstride is restricted to 4 or 8 for single word operations, 8 or
16 for doubleword operations (see memory stride format, Section 3.8). If temps-
tride is specified, the rSI operand must be an aligned vector (Vnn) register or a
scalar (snn) register with a stride of 0.

The vector length is taken from dp_vector_length. This cannot be overridden
in the short format (see mode set format, Section 3.9)

Only the following modifiers are permitted by the short format:

[nolpad| : pad-size] Vector length padding (default is 4).
maddr=mem-operand Memory operand specifier.
[nolalign Doubleword alignment guarantee.

{vmrotate, vmcurrent} Status bit rotation mode.
vmmode : [=]mode-keyword Conditionalization mode selector

Note: {vmcurrent, vmrotate} are useful only for comparison operations,
where the result of the comparison produces status bits that can be rotated.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The DPEAC Instruction Set 33

Examples:
imovev VO,V1 ! Integer monadic
imovev = VO,V1l; iloadv [%i0],VO ! same, chain-loaded
imovev V0,Vl; iloadv [%$i0]:8,V0 ! same, temp stride
imovev V0:mode, V1 ! Default reg. stride
imovev S0:0,V1 | Scalar reg, 0 stride
imoves S0:0,S1 ! Scalar operation
iloadv [si0],V1 ! memory operation
iloadv [$i0],V1l; noalign ! same, non-aligned
floadv [¢i0] :4,V0 | unit stride
floadv [¢i0]:8,V0 i double stride
dfloadv [%i0]:8,V0 ! unit stride
dfloadv [%i0]:16,V0 ! double stride
itestv V0,V1; maddr=[%io0] ! maddr modifier
dfgtv Vo, V1 ! Conditional
dfgtv VO0,V1l; vmcurrent ! same, with modifier
faddv Vvo,V1i,V2 | Float dyadic
faddv v0,V1,V2; nopad ! No vlen padding
fmadav vo,vi,Vv2 ! Mult-add
fmadiv Vvo,Vv1,Vv2 ! Mult-add, inverted

fmadtv vo,vi,v2,V3; floadv [%i0],V1
! True triadic, chain-loaded

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

3.6 Immediate (Long) Format

The immediate format modifies the short format by replacing one source operand
in the arithmetic instruction with an immediate value. (The operand replaced
depends on the arithmetic instruction in use — see the instruction listings in
Chapter 4.) The immediate value is loaded into R0 (singleword operations) or RO
and R1 (doubleword operations) prior to use.

Vector Instuctions: (rS2 replaced with immediate value)

arith-opcode rS1, vLS, imm, vD ; mem-opcode mem-operand, vLS ; modifier ; ...
Scalar Instuctions: (rS2 replaced with immediate value)

arith-opcode 781, sLS, imm, sD ; mem-opcode mem-operand, sLS ; modifier ; ...

The imm operand is a 32-bit immediate value, either an as-register or a general
expression. Immediate values are sign-extended in double integer arithmetic
(zero-extended for double unsigned operations). For double-precision constants,
only the upper 32 bits are included in the instruction. Thus, only floating-point
numbers with Os in the 32 least significant bits of their mantissas are allowed.

Older syntax required an immediate value expression to be preceded by a dollar
sign ($). This syntax is still supported, but is discouraged in new code.

Restrictions: With the exception of the immediate operand, all register and
memory operands have the same restrictions as in the short format. Vector length
comes from dp_vector_length, and the permitted modifiers are the same.

Examples:

imovev 29,V1

imovev %1i0,V1

imovev 29,V1; iloadv [%i0],V2
imovev 29,V1; iloadv [%1i0]:8,V0
imoves 29,81

Monadic immed.
SPARC register
with memory op.
with temp stride
Scalar operation

— hme eam amm wem

faddv R0:0,29,V1 ! Immed arithmetic
fmadtv RO:0,V1,29,V3; dfloadv [%i0],V1
! Triadic immediate

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

BARE pal ns

AN L el e

Chapter 3. The DPEAC Instruction Set 35

3.7 Register Stride (Long) Format

The register stride format modifies the short format by allowing arbitrary stride
markers on the rS2, rLS, and rD register operands. (rSI format doesn’t change.)

Vector Instuctions:
arith-op rS1, vLS[: stride2], vS2[: stride3), vD[:stride4] ; \
mem-op mem-operand, vLS| : stride2}; \
modifier ; ...

Scalar Instuctions: .
arith-op rS1, sLS| : stride2), sS2[: stride3], sD [:stride4]; \
mem-op mem-operand, sLS[: stride2]; \
modifier ; ..

The stride markers can be any of the register stride markers in Section 3.2.5, -
except those that apply to 7SI only. If a triadic arithmetic operation is used, the
rLS stride must be the same for both the arithmetic and memory operations.

The register operands do not have to be vector—aligned, and thus can be any of
the 128 data registers.

The short format’s operand, vector length, and modifier restrictions apply.

Examples:
imovev VO,R4:4 ! Integer monadic
imovev VO,R4:4; ilocadv [%i0],VoO ! same, chain-loaded
imovev VO,R4:4; iloadv [%i0]:8,V0 ! same, temp stride
iloadv [%$i0] ,R4:4; ! memory operation

imovev VO0:mode,R4:4
imovev S0:0,R4:4
imoves S0:0,83:2 Scalar operation
dfgtv VO,R12:10 Conditional
faddv VO0,R20:4,R6:3 ! Float dyadic
fmadtv R0O:0,V1:2,R20:4,R60:7; dfloadv [%i0],V1:2

! True triadic, chain-loaded

Default reg. stride
Scalar reg, 0 stride

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

36

VU Programmer’s Handbook

3.8 Memory Stride (Long) Format

The memory stride format modifies the short format by allowing an arbitrary

stride marker on the memory operand.

Vector Instuctions:

arith-op rS1, vLS, vS2, vD ; mem-op mem-operand] : stride), vLS ; modifier ; ...
Scalar Instuctions:

arith-op rS1, sLS, s82, sD ; mem-op mem-operand] : stride), sLS ; modifier ; ...

The stride marker can be any of the memory stride markers in Section 3.2.5.

- The short format’s operand, vector length, and modifier restrictions apply.

Examples:

iloadv
iloadv
iloads
imovev

{[%i0] :=8,V1; ! use and set 8

[3410] :8=4,V1; ! use 8, set- 4
[%$i0]=4,80; ! set 4 (scalar op)
V0,V1l; iloadv [%i0]:=8,V0 ! Chain-loaded

CMosr Version 7.2, August 1993 -

Copyright © 1993 Thinking Machines Corporation

S

Chapter 3. The DPEAC Instruction Set

R s e

3.9 Mode Set (Long) Format

The mode set format is the most complex of the long formats. It allows you to
do any or all of the following:

* Qverride and/for set the default vector length in dp_vector_length.
= Qverride the default conditionalization mode (vmmode).

= Override the default conditionalization sense (vminvert, vmtrue).

» Qverride the default vector mask copy mode (vmold, vmnew, vmnop).

= Use any of the modifiers permitted by the short format.

Mode set format also allows you to use one (and only one) of the following
mutually incompatible extensions to the short format:

= Register stride markers on the rS! operand.
= Register indirection on the S/ operand.
* Memory indirection on the memory-operand.
* Exchange of data between the two VUs on a single chip ([noJexchange).
= Accumulated count of conditionalization bits (vimcount(s]).
® Population counts ([d]epc{v,s}).
The mode set “format” is actually a family of distinct but related variants, deter-

mined by the appearance of one of the incompatible features listed above. These
variants are presented, with examples, in the sections below.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

38

VU Programmer's Handbook

SR

3.9.1 Mode Set Format Variants

The legal mode set variants are:

Vector Length Variant

arith-op[vec-len] rS1, vLS, vS2,vD ; \
mem-op[vec-len] mem-operand, vLS; \

modifier; ...

(The syntax

for the vec-len specifier is described in Section 3.9.2.)

This is the basic mode set variant, in which the only features used are those
that are allowed in all mode set variants. In other words, this variant lets you
specify an arbitrary vector length for a vector operation, and use general
mode set modifiers like vimnew, vminvert, and vmcurrent.

Examples:
imovev*16 vV0,V2 ! Integer monadic
imovev*16 V0o,Vv2; iloadv [%i0],VO

! same, chain-loaded
iloadv*1l6 [%i0],V1; ! memory operation
iloadv*16 [%10],V1; noalign

! same, non-aligned
faddv*16 Vv0,V2,V4 ! Float dyadic
fmadtv*16 vo,v2,v4,v6e; dfloadv [%i0],V2

! True triadic, chain-loaded

imovev*=16 vo,Vv2 ! Use and set len.
imovev*%i2 v0,V2 ! SPARC register
imovev*=%i2 vo,V2 ! Use and set
imovev*%$12< V0,V2 1 4 bit length
imovev*=%i2< VO0,V2 1 4 bit use/set
imoves=16 S0, 858 ! Scalar set
faddv Vv0,V1,V2; vmcurrent; ! Current mode
faddv V0,V1,V2; vmnew; ! New mask copy
faddv vV0,V1,V2; vmnop; ! No mask copy
faddv vV0o,V1i,V2; iloadv [%i0],V0; wvminvert;

! Inverted conditional

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

3. The DPEAC Instruction Set 39

rS1 Stride Variant

arith-op[vec-len] rS1[: stride], v;LS, vS2,vD; \
mem-op[vec-len] mem-operand, vLS; \
modifier; ...

This variant lets you specify an arbitrary stride marker for the rSI operand.
This stride marker can be any of the register stride markers in Section 3.2.5.

Examples:

imovev*16 v0:2,V2 ! Use stride 2
imovev V0:1=4,V2 ! Use 1, set 4
imoves RO=4,R6 ! Set 4 (scalar)
faddv*16 v0:2,V2,V4 ! Float dyadic
fmadtv V0:1=0,V2,V4,V6; \

dfloadv [%i0],V2 ! Triadic

Register Stride Indirection Variant

arith-op[vec-len) rS1[(rIA :stride)], vLS, vS2,vD ; \
mem-op[vec-len] mem-operand, vLS; \
modifier ; ...

This variant allows the use of an arbitrary VU register to specify the rSI
stride. Register indirection format is described in Section 3.9.3.

Examples:
imovev V0(V2),V4 | Reg. indirection
imovev*16 V0 (V2),V4; iloadv [%io],VvOo \
| same, chain-loaded
imovev V0(v2:2),V4 ! Indirect. with stride

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

40 | VU Programmer’s Handbook

Memory Stride Indirection Variant

arith-op[vec-len] rS1, vLS, v§2,vD ; \
mem-op{vec-len) mem-operand| (rlA:stride)], vLS; \
modifier ;...

This variant allows the use of a VU register to specify the mem-operand
stride. Memory indirection format is described in Section 3.9.4.

Examples:

iloadv*16 [$i0] (V2),VO0; ! Mem. Indirect
iloadv*16 [#i0] (V2:4),V0; ! with stride
imovev*16 - Vo,V4; iloadv [%io0] (V2),Vo0

! Chain-loading

Population Count Variant

arith-op[vec-len] rS1, vLS, v§2,vD ; \
[dlepc{v,s} (VvLS[:unit])=rIA[:stride] ; \
other-modifier; ...

This variant allows you to specify the [d]Jepe{v,s} modifier, which cannot be
combined with a memory operation, or with any other mode set variant. (See

Section 4.3.3.)

Examples:

epcv (Vo) =vi ! Unit stride

epcv (Vo) =v1i:2 ! Explicit stride

depcv (Vo) =V1:2 ! Double op

faddv*16 VO0,V1,V2; epcv (V0)=Vl; ! Chain-loading
dfaddv*16 V0,V1,V2; depcv (V0)=V4; ! Double op

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Special Modifier Variant

arith-op[vec-len] rS1, vLS, v§2,vD ; \
mem-op[vec-len] mem-operand, vLS; \
{[no]exchange, vmcount[s]=reg[:stride]} ;
other-modifier; ...

This variant allows you to specify one (and only one) of the [no]exchange
or vmcount[s] modifiers, which cannot be combined with any other mode
set variant. (See Section 4.3.3.)

Examples:
faddv V0,V1l,V2; exchange; ! exchange values
faddv Vo,Vi,v2; \

floadv [%10],V0; exchange; ! chain-load
vmcount=vo; ! Context count
vmcount=vV0:2; ! with stride
faddv V0,V1,V2; vmcount=Vo0; ! chain-loaded
faddv vo,vV1i,v2; \

floadv [%10],V0; vmcount=V0; ! chain-loaded
faddv V0,V1,V2; vmcount=v0:2; ! strided

Scalar Instruction Variant

arith-op[vec-len) rSI1| : stride], sLS, sS2, sD ; \
mem-op[vec-len] mem-operand, vLS; \
modifier ; ...

This variant lets you use a scalar DPEAC operation to set the default vector
length for future instructions (and specify an arbitrary rSI stride marker).
This mode set variant is much more efficient than using the dpset accessor
instruction to modify the dp_vector_length register.

Examples:
fadds V0,V1,V2; exchange; ! exchange wvalues
fadds vo,vVi,v2; \

floads [%1i0],V0; exchange; ! chain-load

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

42

VU Programmer s Handbook

3.9.2

3.9.3

Vector Length Modifier

In all mode set format variants, the vec-len modifier specifies the vector length
for the operation, and can also be used to modify the default vector length stored
in the register dp_vector_length. The syntax of the vec-len modifier is:

Syntax ‘Effect
opcode*vien Use constant length vien.
opcode*=vien Use/set dp_vector_length to vien.

~ opcode*as-register Use length from as-register (all bits, + 1).
opcode*=as-register Use/set dp_vector_length from as-register.
opcode*as-register< Use length from as-register (bits 19:22, + 1).
opcode*=as-register< Usefset dp_vector_length from as-register.
opcode=vlen Set dp_vector_length to vien (scalar ops.)

where vien is a constant-expression. The length specified must always be an inte-
ger from 1 to 16. Any unused bits of a referenced as-register must be 0. The
modifier “<” makes as-register references faster (fewer SPARC operations)
because only 4 bits (19 through 22) of the register are used.

The vec-len modifier can be attached to either the arithmetic opcode or memory
opcode, or both, and it applies to both. (If a vec-len modifier is specified on both
the arithmetic and memory opcodes, the two modifiers must be identical.)

Note: All forms that obtain a length value from a register implicitly add 1 to the
value before use. All forms that store a value into dp_vector_length store the
value in decremented form, so that this implicit incrementing will work propetly.

Register Stride Indirection
For register stride indirection, the rSI operand format is:

Syntax Effect
rS1(rlA) Indirect addressing, unit stride.
rS1 (rIA:stride) Indirect addressing, constant stride.

The rIA register operand contains offsets that are separately added to the S base
register to obtain the actual Rnn register containing the rSI stride. (Note: This
offset addition is not cumulative.)

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. The DPEAC Instruction Set 43

3.94

The register offsets are packed four to a register in the specified rIA register and
in subsequent registers at the specified stride. Since offsets cannot exceed 127
(7 bits), the eighth bit of each offset byte must be zero:

offset 3 offset 4

3130 242322 16 15 14 876 0

Note: If a stride is not specified, then the “unit” stride is always 1 register for
both single- and doubleword operations; one doubleword “register” corresponds
to two singleword registers.

Memory Indirection
For memory stride indirection, the mem-operand format is:

Syntax Effect
mem-operand (register) Memory indirection, unit stride.
mem-operand (register : stride) Memory indirection, constant stride.

The indirection modifier replaces the [: tempstride] modifier of the short format.

The specified single-precision VU register contains offsets that are separately
added to the memory address to obtain each operand location. The addition is
done in two’s-complement, so negative offsets will work correctly. (Note: This
offset addition is not cumulative.) The memory offsets are stored one byte per
register, taken from the specified single-precision register and subsequent regis-
ters at the specified stride.

Note: If a stride is not specified, then the “unit” stride is 1 single-precision regis-
ter for single-precision memory operations, and 2 single-precision registers (1
double-precision register) for double-precision memory operations.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

44 ' VU Programmer s Handbook

3.9.5 Mode Set Format Modifiers

The following modifiers are permitted by the mode set format:

These modifiers are permitted by the short format:

[nolpad| : pad-size] Vector length padding (default is 4).
maddr=mem-operand Memory operand specifier.
[nolalign Doubleword alignment guarantee.
{vmrotate, vmcurrent} Status bit rotation mode.

vmmode : [=}mode-keyword Conditionalization mode selection.
These are the mutually-compatible modifiers added by the mode set format:

{vminvert, vmtrue}; Conditionalization bit sense selection.
{vmold, vmmew, vmnop} ; Vector mask copy mode.

These are only allowed in the pop. count and special modifier variants:

[d]lepc{v,s} (VLS[:unit])=rlA:stride Population count.
vmcount|[s]=reg:stride Accumulated context count.
[no]exchange VU on-chip data swapping.

These modifiers are all described in more detail in Section 4.3.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4
DPEAC Instruction Set Reference

This chapter presents a quick-reference list of the DPEAC instruction set, includ-
ing DPEAC instructions, instruction modifiers, and accessor instructions.

4.1

4.1.1

DPEAC Arithmetic Instructions

Monadic (One-Source) Arithmetic Instructions

These operators perform an arithmetic operation on rS1, storing the result in rD.
(Note: In immediate format, the 7S] source argument is the immediate value.)

Formats:
opcode rS1,rD

Monadic Opcodes

Function

{i,d1,u,du,£,df } move{v,s}

{1,di,u,du,f,df} test{v,s}
{u,du} not{v,s}

{£,df} clas{v,s}
{£,4f} exp{v,s}

{£,df } mant{v,s}
{u,du} ££b{v,s}
{1,41,£.,df} neg{v,s}
{1,d41,f,df} abs{v,s)
{£,df} inv{v,s]}

{£,df} sqrt{v,s}

{£,df} isqt{v,s}

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

45

Move rS1 to rD, no status generated.
Move rSI to rD and test.

Bitwise invert (rD = ~rS1I).

Classify operand (rD = class of rSI).
Extract exponent from float.

 Extract mantissa with hidden bit,

Find first “1” bit.

Negate rD=0 - rSI).

Absolute value (rD = |rSI|).
Invert (rD = 1/rS1).

Square root (rD = SQRT (rS1)).
Inverse root (rD = 1/SQRT (rS1)).

46

VU Programmer’s Handbook

The to operator converts between data types: rS1 is of the first type in the
opcode, and rD is of the second type. (In immediate format, r§7 is an immediate

value.)
Formats:

opcode rS1,rD

Monadic Opcodes Function

{1,di,u,du} to{£,dE}{v,s} Convert integer to float.
{£,df} to{£,df}{v,s} Convert to another precision.
{£,af} to{i,di,u,du}r{v,s} Convert to integer (round).

{£,4f} to{i,diu.du}{v,s}

Convert to integer (truncate).

4.1.2 Dyadic (Two-Source) Instructions

These operators perform an arithmetic operation on the rSI and rS2 arguments,
and store the result in the 7D argument. (In immediate format, rS2 is an immedi-

ate value.)
Formats:

opcode rSl1,rS2,rD

Dyadic Opcodes Function
{1,di,u,du,£f,df} add{v,s} Add (rD = rS1 + rS2).
{1,di,u,du} addc{v,s} Integer add with carry bit from shift
of vector mask register.
{1,di,u,du,f,df} sub{v,s} - Subtract (rD = rS1 - rS2).
{1,d1i,u,du} subc{v,s} Integer subtract with carry bit from shift

{1,di,u,du,£,df} subr{v,s}
{1,di,u,du} sbrc{v,s}

{1,di,u,du,£,df} mul{v,s}
{di,du}mulh{v,s}
{£,af} div{v,s}

{u,du} enc{v,s)}

of vector mask register.
Subtract reversed (rD = rS2 - rSI).
Integer subtract reversed with carry bit
from shift of vector mask register.
Multiplication (low 32/64 bits for ints).
Integer multiply (high 64 bits).
Divide (D = rS1 / rS2).

Make ﬂoai from exp and mant (rS1, rS2).

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. DPEAC Instruction Set Reference

47

Dyadic (Two-Source) Instructions (continued)

Formats:

opcode rS1,rS2,rD

Dyadic Opcodes Function

{u,du} shi{v,s} Shift left (rD = rSI << rS2).

{u,du} shlr{v,s} Shift left, reversed (rD = rS2 << rS1).
{1,di,u,du} shr{v,s} Shift right (rD = rS1 >> rS2).
{1,di,u,du} shrr{v,s} Shift right, reversed (rD = rS2 >> rSI).

{u,du} and{v,s} Bitwise logical AND.

{u,du} nand{v,s} Bitwise logical NAND.

{u,du} ande{v,s} Bitwise logical NOT(rS1) AND rS2.

{u,du} ox{v,s} Bitwise logical OR.

{u,du} nor{v,s} Bitwise logical NOR.

{u,du} xor{v,s} Bitwise logical XOR.

{i,di,u,du,f,df} mrg{v,s}

4.1.3 Arithmetic Comparisons

If vector mask bit = 1 then rSI else rS2.

These operators perform an arithmetic comparison between the rSI and rD
arguments, and set status flags accordingly. (In immediate format, rD is an

immediate value.)
Formats:

opcode rS1,rD

Opcodes Function
{1,d4,u,du,£f,df} gt{v,s} Greater than.
{1,d1,u,du,£,df} ge{v,s} Greater than or equal.
{1,di,u,du,f,df} 1t{v,s} Less than.
{1,di,u,du,f,df} le{v,s} Less than or equal.
{1,di,u,8u,f,df} eq{v,s} Equal.
{1,d41,u,du,£,df} ne{v,s} Not equal or unordered.
{1,di,u,du,f,df} 1g{v,s} Ordered and not equal.
Unordered.

{1,d1,u,du,£,df} un{v,s}

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

48 VU Programmer s Handbook

4.1.4 Compare (Dyadic with rD constant)

The compare operation tests for a numeric relationship between the S and rS2
arguments, as indicated by the supplied constant code. (In immediate format, 7SI
is an immediate value.)

Format:

{i,di,u,du,f,df jcmp{v,s} rSI,rS2,code

Code Purpose
0 Test for greater than.
1 Test for equal.
2 Test for less than.
3 Test for greater than or equal.
4 Test for unordered (NaN present).
5 Test for ordered and not equal.
6 Test for not equal or unordered.
7 Test for less than or equal.

4.1.5 Dyadic Mult-Op Operators

These operations perform a muliplication and an arithmetic (or logical) operation
on the rS1, rS2, and rD arguments, and store the result in 7D. Note: The optional
[h] suffix indicates that the high 64 bits of the multiplication are to be used in
the logical operation, rather than the low 64 bits (the default). (In immediate for-
mat, rS2 is an immediate value.)

Format:

opcode rS1,rS2,rD

Accumulative Opcodes Function

{i,di,u,du,£,df jmada{v,s} rD = (rS1 * rS2) + rD

{i,di,u,du,£,df jmsba{v,s} rD=(rS1*rS2)-rD

{1,di,u,du,f,df jmsra{v,s} rD=rD - (rS1 * r§2)

{i,41,u,du,f,df }nmaa{v,s} rD = -rD - (rS1 * r52)
dum[h]sa{v,s} rD = (rS1 * r§S2) AND rD
dum[h]ma{v,s} rD = (rS1 * rS2) AND NOT rD
dum|h]oa{v,s} rD = (rS1 * r$2) OR rD
dum[h]xa{v,s} rD = (rS1 * r§2) XOR rD

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. DPEAC Instruction Set Reference

49

Dyadic Mult-Op Operators (continued)

Format:
opcode rS1,rS2,rD

Inverted Opcodes
{1,d1,u,du,£.df jmadi{v,s}
{1,d1i,u,du,£,df }msbi{v,s}
{i,di,u,du,f,df jmsri{v,s}
{1,d1,u,du,£,df }nmai {v,s}
dumfh]si{v,s}
dum[h]mi{v,s}
dum[h]oi{v,s}
dum[h]xi{v,s}

Function

rD = (rS2 * rD) + rS1

rD = (r§2 * rD) - rS1

rD =rS1 - (rS2 * rD)

rD = -rS1 - (rS2 * rD)

rD = (rS2 * rD) AND rS!

rD = (rS2 * rD) AND NOT rS1I
rD = (rS2 * rD) OR rS1

rD = (rS2 * rD) XOR rS1

4.1.6 Convert Operation (Dyadic with rS2 constant)

These operations convert the rSI argument to the type indicated by the constant
code argument, and store the result in the rD argument. The symbolic code
constants listed below are defined by the dp . h header file. (In immediate format,

rS1 is an immediate value.)

Format:

cvt{£,£4,1,ir}{v,8} rSI, code, rD

Opcode/Type Code

Purpose

cvt 1ifr] cvTICD_F I (4)
cvt 1i[x] cvTICD F U (5)
cvt - i[xr] cvTICD_F_DI (6)
cvt 1i[xr] cvrIicp_F _pu (7)
cvt if[r] cvrICD DF_I (12)
cvt i[r] cvricp_DF U (13)
cvt i[r] cvTICD DF DI (14)
cvt 1ifr] cvrIcD_DF_DU (14)
cvt £ CVTFCD_F_DF (3)
cvt £ CVTFCD_DF_F (9)

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Single float to single signed integer.
Same, to unsigned integer.
Single float to double signed integer.
Same, to unsigned integer.
Double float to single signed integer.
Same, to unsigned integer.
Double float to double signed integer.
~ Same, to unsigned integer.
Single float to double float.
- Double float to single float.

VU Programmer s Handbook

Convert Operation, Continued
Format:

cvt{£,£1,1,ix}{v,8} rS1,code,rD

Opcode/Type Code . Purpose
cvt £i1i cvrFICD_I_F (1) Single signed integer to single float.
cvt £i CVIFICD U_F (5) Same, but from unsigned integer.
cvt £1 CVIFICD_I_DF (3) Single signed integer to double float.
cvt f1 CVIFICD U_DF (7) Same, but from unsigned integer.

cvt £1 CVTFICD_DI_F (9) Double signed integer to single float.
cvt £1 CVTFICD_DU_F (13) Same, but from unsigned integer.
cvt f1 CVIFICD DI_DF (11) Double signed integer to double float.
cvt f£i1 CVTFICD DU_DF (15) Same, but from unsigned integer.

4.1.7 True Triadic (Three-Source) Operators

These operations perform a muliplication and an arithmetic (or logical) operaﬁon
on the rSI, rS2, and rLS arguments, and store the result in rD. (In immediate
format, rS2 is an immediate value.) :

Format:
opcode rSl1,rLS, rS2,rD

True Triadic Opcodes Function

{1,di,u,du,£,df Jmadt{v,s} rD = (rS1 * rLS) + rS2

{1,d44,u,du,£,df }msbt{v,s) rD = (rS1 * rLS) - r§2

{1,di,u,du,f,df jmsrt{v,s} 'rD =182 - (rS1 * rLS)

{1,d1i,u,du,f,df |nmat{v,s} rD = -rS2 - (rS1 * rLS)
dum[h]st{v,s} rD = (rS1 * rLS) AND rS2
dum[h]mt{v,s} rD = (rS1 * rLS) AND NOT rS2
dum[h]ot{v,s} rD = (rS1 * rLS) OR rS2
dum[h]xt{v,s} rD = (rS1 * rLS) XOR rS2

Note: In the opcode descriptions above, the optional [h] indicates that the high
64 bits of the multiplication are to be used in the logical operation, rather than
the low 64 bits (the default).

Triadic/Memory Register Restriction Note: When a triadic arithmetic opera-
tion and a memory operation are joined, the rLS operand of the arithmetic
_operation must be identical to the rLS operand of the memory operation.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

4.1.8

4.2

4.2.1

No-Op Operator

The untyped arithmetic no-op allows modifier side effects without specifying an
operation. The no-op takes no arguments.

Formats:

£nop(v,s} (No arithmetic operation.)

DPEAC Memory Instructions

The following opcodes are supported for memory operations.
Format:
opcode memory-address,rD

Opcodes Function
{1,d4,u,du,£,df }1oad{v,s} Load Vis from memory.
{1,di,u,du,£,df }store{v,s} Store Vis to memory.

No-Op Operator
The following opcodes are supported for memory operations.
Format:

memnop memory-address,rD

Opcodes Function
memnop No memory operation.

The memnop operation allows the side effects of memory syntax (setting of stride
defaults by stride markers; etc.) to happen without an actual memory operation.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

52

VU Programmer’s Handbook

4.3 DPEAC Instructidn Modifiers

4.3.1

This section describes the statement modifiers that can be combined with arith-
metic and memory operations to affect their assembly and/or execution. Note:
Some of these modifiers (such as the last three) can be used on their own.

Modifiers- That Can Be Used in All (or Most) Formats

[nolpad]: pad—size] Default: pad:4

Vector Length Padding: Pads vector length of instruction to at least pad-
size. Has no effect if vector length is already that size. Used to avoid
instruction pipeline hazards. If not supplied, defaults to pad:4. The nopad
variant is the same as pad: 0. Pads between 0 and 4 are allowed, but have the
same effect as pad: 4.

maddr=memory-operand Default: None

Memory Operand Specifier: Used to supply a default memory operand for
DPEAC statements that omit the memory instruction — this memory operand
is used solely to determine VU selection.

{vmrotate, vmcurrent} Default: vmrotate

Status Bit Rotation Mode: Determines how status bits from vector opera-
tions are stored in the register dp_vector_mask. vmrotate “rotates” them
in, vmcurrent inserts them in bit order. (See Figure 14.) Note: this modifier
is allowed by the short format for conditional operations only. Otherwise, it
can only be used in the mode set format.

vmrotate: status bits context bits

vmcurrent:

15 vien 0‘7

Figure 14. Bit-shifting modes of vector mask register.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. DPEAC Instruction Set Reference
B

S

[nolalign Default: noalign

Doubleword Alignment Guarantee: Declares whether or not the memory
operand is doubleword-aligned (even for singleword operations). If align-
ment is guaranteed, dpas can generate more efficient code. (Note: The
default setting of this modifier can be reversed by providing the -~a command
line switch to dpas.)

4.3.2 Conditionalization Modifiers

These modifiers are used to control the conditionalization mechanism. For more
information, see Section 2.3.1.

vmmode : [=]mode-keyword Default: vmmode : vmmode

Conditionalization Mode: The vmmode modifier overrides the value of the
dp_vector_mask_mode register, which affects whether arithmetic opera-
tions and/or memory operations are to be conditionalized. The permitted

mode-keyword operands are:
Mode Effect
vmmode : vinmode Use current value of dp_vector_mask_mode.

vmmode : always Do not use conditionalization in this instruction.

- vmmode:=always Set dp_vector_mask_mode for no conditionalization.
vmmode : condmem Conditionalize loads and stores in this instruction.
vmmode : =condmem Set dp_vector_mask_mode for conditionalization.
vmmode :condalu Conditionalize arithmetic in this instruction.
vmmode : =condalu Set dp_vector_mask_mode for conditional arithmetic.
vmmode : =cond Set dp_vector_mask_mode for full conditionalization.

It is not legal to override dp_vector_mask_mode for full conditionaliza-
tion. Thus, “vmmode : cond” is not allowed.

Usage Note: Scalar instructions are executed without conditionalization, so
you may add vmmode :always to any scalar instruction in any format with
no effect. Similarly, you may add vmmode : vimmode to any vector instuction
in any format since it represents the default action taken by the hardware.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

54 : | VU Programmer s Handbook

g R
SRR

{vminvert, vmtrue} Default: vmtrue

Conditionalization Bit Sense: The vminvert and vmtrue modifiers con-
trol whether the conditionalization bits shifted out of the dp_vector_mask
are inverted. If inverted, the sense of these bits is reversed; i.e., O selects a
vector element, and 1 deselects it.

Modifier Effect
vminvert Invert sense of vector mask bits for conditionalization.
vmtrue Do not invert sense of vector mask bits.

Note: This modifier is only allowed in the mode set statement format.

{vmold, vmnew, vimnop} Default: vmold

Vector Mask Copy Mode: The vmold, vmnew, and vmnop modifiers control
the copying of the vector mask and vector mask buffer registers prior to
instruction execution:

Modifier Effect

vmold Copy dp_vector_mask_buffer to dp_vector_mask.
vmnew Copy dp_vector_mask to dp_vector_mask buffer.
vmnop No copy.

Note: This modifier is only allowed in the mode set statement format.

4.3.3 Special Modifiers (Mode Set Format Only)
[dlepc{v,s} (VLS[:unit]) =rIA[:stride] Default: None

Population Count: The [d]epc{v,s} modifier enables the population count
feature. Specifically, the single- or double-precision register vLS (and subse-
quent registers at a unit stride) are read and the “1” bits in each are counted.
The results, each a single-precision unsigned integer between 0 and either 32
(single-precision) or 64 (double-precision), are written to the register Ria
(and subsequent single-precision registers at the specified stride, a constant-
expression that defaults to the unit stride for the data type).

The [d]lepc{v,s} modifier effectively replaces the normal memory operation
in a DPEAC statement. The Vs register operand is used, so population count-
ing cannot be combined with any memory operation. Population counting
also cannot be used in conjunction with register or memory indirection or the

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. DPEAC Instruction Set Reference 55

vmcount(s] or [noJexchange modifiers. The population count result is
written before the operands are read for the arithmetic operation, so the
[d]epc{v,s} modifier chain loads. The vLS operand is always strided with a
unit (1 or 2 register) stride, so the :unit keyword is optional and has no
effect other than to emphasize the unit striding.

Implementation Note: Currently, the [d]epc{v,s} modifier cannot be used
in conjunction with a long-latency arithmetic operation, i.e., [£,df]div,
[£,df]sqrt, [£,df]inv, or [£,df]isqt.

vmcount|[s]=reg:stride Default: None

Accumulated Context Count: The vimcount modifier enables the VU chip’s
accumulated context count feature. The single-precision VU register reg (and
subsequent registers at the given stride, a constant-expression) is loaded with
the accumulated count of “1” bits in the vector mask at each step in the vector
operation. This accumulation is inclusive; the count includes the bit that is
shifted out of the vector mask register for each element. The scalar version,
vmcounts, is intended for use with scalar operations. It is an error to use
vmcounts with any vector operation.

For each element in the vector, the vmcount result is written before the oper-
ands are read for the arithmetic operation, so this modifier chain loads. This
modifier cannot be used in conjunction with either register or memory
indirection, nor with the [d]epc{v,s}, or [noJexchange modifiers.

[no]exchange Default: noexchange

VU On-Chip Data Swapping: Controls exchange of data between two VUs
on the same chip. Specifying exchange causes arithmetic results on each VU
to be written to the destination register(s) of the other VU. In conditionalized

- ALU operations, deselected elements are not written to the opposite VU.
Selected elements are written, even if the corresponding element in the oppo-
site VU is deselected.

The [no]exchange modiﬁer is only used in the mode set format. However,
it is incompatible with register stride indirection, memory stride indirection,
and with the [d]epc{v,s}, and vmcount[s] modifiers.

Implementation Note: This modifier is implementation-dependent, and may

not be available in the future. Also, the current implementation of exchanging
does not allow chain loading into the arithmetic destination register.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

56 VU Programmer’s Handbook

4.4 DPEAC Accessor Instructions

These accessor instructions are always used as single statements, execute on the
node microprocessor (the SPARC), and generally move data between the SPARC
and the VU, or affect values stored in SPARC registers.

4.41 VU Register Accessor Instructions

Instruction(s) Function(s)
dpwrt[d], dprd[d] Write and read VU data registers.
dpset[d], dpget[d] Write and read VU control registers.

dpchgbk Convert address from one VU region to another.
dpchgsp Convert between VU data and instruction spaces.
dp1d[d], dpst[d] Read and write VU parallel memory.

dpsync Synchronize instruction pipelines of VUs.

These instructions move data between VU data registers and SPARC registers:

dpwrt[d] VU-selector, as-src-reg, VU-dest-reg [, {sync, nosync}]
dpwrt[d] VU-selector, value, VU-dest-reg [, {sync, nosync}]
dprd[d] VU-selector, VU-src-reg, as-dest-reg [, {sync, nosync}]

dpwrt ALL DPS,%i1,V0,sync
dpwrt DPS_0_AND 1,29,V0,nosync
dprd DP_3,V0,%i0

These instructions move data between VU control registers and SPARC registers.
(See Section 2.5 for a list of predefined control register constants.)

dpset[d] VU-selector, as-src-reg, ctl-reg-offset [, SUPERVISOR]
dpset[d] VU-selector, value, ctl-reg-offset [, SUPERVISOR]
dpget[d][s] VU-selector, ctl-reg-offset, as-dest-reg [, SUPERVISOR]

dpset DP_3,%i0,DP_VECTOR MASK
dpset ALL DPS,0,DP_VECTOR MASK
 dpget DPS_0_AND 1,DP_VECTOR MASK, %10

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. DPEAC Instruction Set Reference 57

This instruction converts a VU memory address between the data and instruction
virtual memory spaces: A

dpchgsp srcreg, destreg
dpchgsp R5, R6

This instruction modifies a VU memory address to refer to a different VU
memory region:

dpchgbk srcreg, VU-selector, destreg
dpchgbk RS, DPS_0, R6

These instructions move data between VU parallel memory and a SPARC TU
register:

dpld[d] as-mem-operand, as-dest-register
dpst([d] as-src-register, as-mem-operand

dpld [$i0], %i1
dpst %i1, [%io0]

This instruction generates code to prevent the preceding and following instruc-
tions from overlapping in the instruction pipeline of the VUs (see Appendix C):

dpsync

faddv vo,Vvi,Vv2
dpsync
fmulv Vv1,V2,V3

4.4.2 VU Trap Instructions

These instructions generate traps and provide direct SPARC access to the
dp_vector_mask register:

Opcode Function
trap Generate trap unconditionally.
etrap Generate trap if set_enb bit in the

dp_interrupt_cause_green register is set.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

58 VU Programmer s Handbook

4.4.3 Vector Mask Instructions

Opcode Function
1dvm rSI Move rS1 to dp_vector_mask.
stvm rSI Move dp_vector_mask to rS1.
ldvm V1
stvm V1

4.4.4 SPARC Accessor Instructions

These instructions assemble into SPARC-only code, and do not affect the VUs:

Instruction Function
dpentry Creates a callable DPEAC routine.
dpretn Returns from DPEAC routine.
load[d] Loads an IU register with a constant value.
dpunset Signals that one or both reserved registers
may have been overwritten.
dpregs Overrides SPARC default register usage.

dpentry name, argwords, localbytes
_ROUTINENAME, 0, 0

The dpentry instruction creates a callable DPEAC routine. name is an as-
symbol, the name of the routine. (Don’t forget the leading underscore when
naming routines to be called from C.)

argwords is the number of stack words reserved for arguments (in excess of
6) to subroutines. (Doubleword arguments count as two words.) If there are
no subroutine calls (or none with more than 6 arguments), argwords is 0.

localbytes is the number of bytes beyond the standard frame size (MINFRAME,
i.e., 92) to be allocated on the stack frame for local temporaries. (These are
located at the top of the frame and referenced by negative offsets from %£p.)

The dpentry instruction implies a “dpregs =,=, » — that is, the Default
Maddr Base and Instruction Extension Pointer registers are initialized.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 4. DPEAC Instruction Set Reference 59

7

s panstsrstans

dpretn

This instruction generates a return from the DPEAC routine. It takes no argu-
ments, and generates the following code:

ret
restore

To return values from a routine, place them in %10 and %11, as per the C
convention. Floats are returned as a double in the floating-point register %£0.

load[d] general-expression, as-register
load 1066, %i0

This instruction loads a SPARC IU register with a constant value, automati-

cally generating the SPARC instructions needed to load the value. Loadd
loads an aligned pa1r of registers with a doubleword value.

dpunset

dpunset

The dpunset “instruction” informs the dpas assembler that one or both of
the reserved registers (%16 and %17) may have been overwritten. If succeed-

ing code requires the original values of these registers, dpas inserts
instructions to reinitialize them.

dpregs

dpregs %$16,%17,%g2
dpregs %16=,~,%g2+

The dpregs “instruction” modifies the default SPARC registers used by
dpas for code construction. The syntax is:

dpregs MaddrReg, InstExtPtrReg, TempRegs

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

VU Programmer s Handbook

Argument Register Usage
MaddrReg Default Maddr Base Register, used for executing

DPEAC statements lacking a memory address.
~ Default value is DPV_STACK_INSTR_PORT_ALL.

InstExtPtrReg Instruction Extension Pointer Register, used in
non-doubleword-aligned memory references;
contains 0xC0000176, a value used to compute
a pointer to the dp_instruction_ext register.

TempRegs An even-numbered SPARC register; declares that
' both the specified register and its immediate successor
can be used as temporaries to execute VU instructions.

Each of these arguménts can have any one of the following forms:

Argument Meaning
as-register Use this register and mark it as uninitialized.
as-register= Use this register and generate code to initialize it.
= Generate code to initialize the current register.
- Tell dpas to not use any register for this feature.
{as-register}+ Tell dpas to use the register, but not alter its value.
(blank) Do not change the current setting (NOP).

The default setting at the beginning of dpas assembly is:
dpregs %16,%17,%g2 ! declare regs, but don’ t initialize

“-” syntax is used to turn off Maddr Register usage, subsequent VU instruc-
tions that don’t specify a memory address will signal an error. If the Instruction
Extension Pointer Register is turned off, dpas will generate code two cycles
slower wherever a long format instruction performs a memory operation on a
possibly non-doubleword-aligned memory address (one for which neither the the
align modifier nor the —a switch to dpas were given).

~ The “-” (disable) and “=" (initialize) markers can only be applied to the Maddr-
Reg and InstExtPtrReg operands.

Declaring a register but not immediately setting it up (i.e., specifying a register
name, but not using the “=” syntax), causes dpas to mark that register as unini-
tialized. This causes initialization code to be inserted later in assembly when the
value of the register is needed again. This can be used when a register may have
been overwritten to declare that dpas should not assume its contents are valid.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5
The CDPEAC Instruction Set

The CDPEAC instruction set is a set of preprocessor macros implemented in the
C programming language. These macros are based on the C asm statement,
which allows a programmer to directly insert a line of assembly code as a state-
ment in a C procedure. (See Appendix G for more information.)

When a C program containing CDPEAC statements is compiled, each CDPEAC
statement is translated into an asm statement that inserts a line of DPEAC code.
This DPEAC code is further compiled into SPARC assembly code, which sends
appropriately assembled instruction word(s) to the VU hardware.

L | e

CDPEAC | _, ! asm j,_,I DPEAC | _, | SPARC
statements | macros | Lstatement5| code

—————] —— e

Figure 15. Process of translation used for CDPEAC code.

The most common use of CDPEAC is for efficient arithmetic functions: a main
program written in a high-level CM language (such as C* or CM Fortran) defines
parallel CM arrays using its own operators, and then calls a CDPEAC subroutine
to perform a specific arithmetic operation on the contents of the arrays.

Note: CDPEAC is C interface for DPEAC programmers. There are a few lesser-
used features of DPEAC syntax that have no analogues in CDPEAC syntax —
these are noted in the appropriate sections of this chapter.

Also, because CDPEAC statements expand into DPEAC code with little internal
translation, some familiarity with DPEAC is very helpful for effective CDPEAC
programming. In particular, the syntax of CDPEAC arguments is virtually the
same as that for DPEAC (see Section 5.2).

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 61

62

VU Programmer s Handbook

5.1

5.1.1

CDPEAC Code

A CDPEAC procedure is just a C procedure that includes CDPEAC statements.
A CDPEAC statement is one of the following:

8 a VU instruction
= a VU accessor instruction

® a special instruction

VU Instructions

A CDPEAC VU instruction corresponds to a scalar or vector operation executed
on the vector units. (In other words, a CDPEAC instruction corresponds to a
single DPEAC statement.)

A VU instruction is either:

® an arithmetic instruction, which causes the VUs to perform a register
~ arithmetic operation:

addv(i, vo, vi, v2) /* vector add (v2=V0+V1l) */

® a memory instruction, which moves data between VU registers and
parallel memory:

loadv(i, address , VO) /* load values into V0O */

® a statement modifier, which affects the compilation and/or execution of a
CDPEAC statement:

vmmode (cond) /* Vector mask conditionalization */

® or some combination of the above instruction types, made with the
CDPEAC joinn operator:

join3 (addv(i,vo,Vv1,V2),
loadv(i,address,V0),
vimmode (cond))

) CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5. The CDPEAC

s

Instruction Set

CHUSRERER SRR

A

5.1.2 VU Accessor Instructions

A CDPEAC VU accessor instruction is a CDPEAC instruction that doesn’t cor-
respond to a VU arithmetic or memory operation (that is, an instruction executed
by the SPARC). Accessor instructions are typically utility operations such as
reading and writing VU registers from the SPARC, directly reading and writing
parallel memory locations, etc. Accessor instructions can be recognized by their
“dp” prefix, i.e., dpset, dpget, etc.:

/* Get memory argument stride */
dpget(i, DP_1, dp stride memory, sp_dest)

/* Read VU data register into SPARC register */
dprd(i, ALL DPS, RO, sp_dest)

5.1.3 VU Special Instructions

A CDPEAC special instruction is an instruction not belonging in either of the
other classes but that peforms some useful operation on the SPARC and/or VUs:

set_vector_length(8) /* Set default vector length */
1dvm (RO) /* Set contents of dp_vector_mask register */

5.1.4 The Join Macro

CDPEAC includes a macro named (joinn) that joins two or more CDPEAC VU
instructions into a more efficient single instruction:

join[I-9] (instructioni, ..., instructionn) — n-way join

This joining is not arbitrary, however; it is based on the underlying statement
syntax of DPEAC.

A single CDPEAC VU instruction represents a single VU operation, so a joinn
statement can include no more than one memory instruction and one arithmetic
instruction. Either or both can be omitted (in which case appropriate no-ops are
generated). A joinn statement may also include any number (including zero) of
modifiers, as permitted by the statement format in use (see Section 5.4).

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

5.1.5

VU Programmer’s Handbook

The component instructions of a join statement may be arranged in virtually any
order, but for readability you should adopt a consistent form. A good “canonical”
join statement order, used by many CDPEAC programmers, is:

joinn (arithmetic-inst, memory-inst, modifier-1, modifier-2 ...)

This order is recommended because while the memory operation and modifiers
are usually executed and/or applied before the arithmetic operation, it is the arith-
metic part of the instruction that is typically of greatest interest.

Note: The n in the joinr macro name must match the number of arguments. It
can range from 1 to 9. If there are only two arguments, the n can be omitted.
Also, join statements cannot be used as arguments to other join statements
(for example, you can’t apply join2 to two other join statements).

Chain Loading

When a join statement includes both memory and arithmetic instructions, the
memory instruction executes first, and any value it obtains from memory can be
used by the arithmetic instruction.

When a join statement refers to the same register in both the memory and arith-
metic operations, and when the memory operation is a load, the loaded value
from the memory operation is used in the arithmetic operation. This is called
chain loading. In a vector operation, this can happen for each step in the vector
operation.

There are some modifier operations (such as population counting), that can also
chain load, and some modifier operations that cannot chain load. Section 6.7 lists
the CDPEAC statement modifiers and indicates which can and can’t chain load.

Instruction Suffixes

CDPEAC instructions often use special suffixes, suchas “_1”,“_v”, etc., to indi-
cate alternate forms of a single arithmetic or memory instruction:

loadv_i (i, source,V2,V0) /* memory indirection */
movev_v(i,16,V0,V2) /* explicit vector length */

These suffixes are introduced in the syntax and statement format sections below.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

s

5.1.6

5.2

5.2.1

Chapter 5. The CDPEAC Instruction Set

Argument Macros

There are also argument macros that apply to a single argument of a CDPEAC
instruction, and provide some modification of the instruction’s effects on that

argument:

dreg u(vs, 8) /* Register stride of 8 */
dreg x(V2, 5) /* Register offset of 5 */

These macros are described in more detail in the syntax sections below.

CDPEAC Syntax

General Syntax

Since CDPEAC procedures are written in C, standard C syntax is followed for
the overall structure of a CDPEAC procedure and declaration of its arguments.
However, the arguments to a CDPEAC macro have their own syntax, which is
derived from the underlying DPEAC syntax. CDPEAC expression syntax is the
same as the DPEAC syntax described in Section 3.2, with one exception: the
SPARC register syntax of DPEAC is replaced by references to C variables, as
described below.

CDPEAC operations that need to refer to parallel memory addresses or SPARC
registers, in particular the memory instruction operations load and store, take
C variables as the parallel memory address or SPARC register argument. (These
variables are converted internally into appropriate references for DPEAC.) Thus,
for example, in the CDPEAC fragment:

unsigned source, dest;
loadv(£, source , VO);
storev(£, dest , V0);

the variables source and dest must be pointers to arrays in parallel memory
of values (floating-point values, in this example). The length of these arrays must
be as least as large as the current value of dp_vector_length. The contents
of the source array are copied into the vector register vo of the VUs, and then
read back out and stored in the dest array.

Note: Typically, the C variables used in this fashion will be addresses supplied
by a C* or CM Fortran program, representing a subgrid of an array argument.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

66

VU Programmer s Handbook

'5.2.2 Vector Unit Data Registers

5.23

CDPEAC code refers to the 128 VU data registers by the following names:

RO - R127 All 128 registers in sequential order.
V0 - V15 Vector regs (first in each vector, same as RO, R8 ... R120).
80 - S15 ‘Scalar regs (single-precision), same as RO - R15.

80 - s30(even) Scalarregs (double-precision), same as RO - R30 (even).

Restrictions: CDPEAC statements in immediate format use the R0 and R1 regis-
ters to store immediate arguments, so these registers should be avoided.

The VU data registers are grouped in banks of 8, called vector registers. The
special register names V0 - V15 are used to refer to the first data register in each
vector. When a vector instruction requires an “aligned vector” argument, the
argument must be one of the Van registers (or the equivalent Rnn).

VO VI V2 V3 V4 V5 V6 VI Via Vi5
RO | A8 |R16 | R24 |R32 | R40 |R4B | R56] _ _ _ _ _ [R112]R120
R1_| R9 |R17 [R25 |R33 | R41 |R4O|R57| _ _ . _ _ |R113[R121
R2 |R10 [R18 | R26 | R34 [R42 [R50 |R58 | _ _ _ _ _ [R114|R122
R3 |R11 |R19|R27 |[R35 |R43 [R51 | R59 | _ R115|R123
R4 |R12 |R20 |R28 [R36 | R44 |R52 |[R60| _ _ _ _ _ [R116|R124
R5 |R13 [R21 |R29 |R37 |R45 [R53 | R61| _ _ _ __ _ |R117|R125
R6 |R14 |[R22 |R30 |R38 [R46 | R54 |R62| _ _ _ _ _ [R118|R126
R7 |R15|R23[R31 [R39 [R47 [RS5 [R63| _ . _ _ |R118|R127

Figure 16. VU data registers: 16 vectors of 8 registers.

A subset of these registers is designated as the scalar registers. These are 80 -
815 (singleword), or the even registers from S0 - §30 (doubleword). (The snn
names are equivalent to Rnn, and explicitly show use of scalar registers.) Scalar
operations that use scalar registers assemble into efficient instructions.

Vector Unit Control Registers

There are symbols for all the VU control registers, as described in Section 2.5.
However, these symbols are typically only used for accessor instructions such as
dpset and dpget. CDPEAC joinn statement formats allow you to implicitly
use and/or set the value of one or more control registers while executing a VU
operation. See the mode set format in particular (Section 5.9) for examples.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5. The CDPEAC Instruction Set 67

5.2.4 Register Offset Macro

5.2.5

You can apply a register oﬁ&ét to a data register, and thereby access one of the
registers succeeding it in Rnn order (this is mainly useful for accessing the ele-
ments of Vnn vectors):

dreg_x(dreg, index)

For example, dreg x(V2, 5) refers to R21, that is, V2 (=R16) + 5 = R21

VU Register Stride Macros

VU arithmetic operations can stride, or step through, a group of data registers.
The stride increment is indicated by a stride macro applied to the appropriate
register argument. The general syntax is shown below:

Macro Syntax Effect

register Unit stride (1 for singlewords, 2 for double).
dreg_u (register, stride) Temporarily use specified stride.
scalar (register, stride) Scalar striding, same as dreg (register, 0).
dreg_u(register, mode) Use stride value stored in dp_stride_rsi.
dreg_s (register, stride) Set dp_stride_rsi to stride and use it.

dreg_u_s (register, stride, set-stride)
Set dp_stride_rsi to set-stride, use stride.

In the above, register is any valid VU data register, and stride and set-stride are
constant expressions in the range -128 to +128. Register striding is always in
terms of the Ran ordering, even when a vnn register name is specified. A stride
of zero causes the same register to be used at each step.

Important: The stride marker forms shown here are not valid for all statement
formats — most statement formats restrict the types of stride markers that are
allowed. In particular, the latter four forms are valid only for the rSI register
argument of an arithmetic instruction.

rS1 Stride Restriction: When you apply a stride of 0 to the 7SI argument of an
arithmetic operation (for example, dreg_u (R0, 0)), the rSI register must be
one of the scalar registers s0 through 815, or 830 for double-precision.

Note for DPEAC Programmers: There is no CDPEAC macro equivalent to the
DPEAC register=stride stride marker format.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

68

VU Programmer’s Handbook

5.2.6

5.2.7

VU Memory Striding

VU memory operations can also stride through memory locations. The stride of
vector instructions is either specified explicitly in the instruction, or else defaults
to the value of the dp_stride_memory control register. Typically, the default
memory stride (dp_stride_memory) is used, but CDPEAC memory instruc-
tions also allow you to specify the memory stride as part of the instruction.

For each memory instruction, there are a number of suffixes you can add that
change the striding of the memory address argument. (Note: These memory
stride instruction forms are mainly of use for CDPEAC instructions written in
memory stride format; see Section 5.8.)

Instruction Suffix Effect
mem-inst (type, memop, reg) Use default stride on memop.
mem-inst_u.(type, memop, stride, reg) Use stride stride on memop.
mem-inst_s (type, memop, stride, reg) Set default stride to stride and use it.
mem-inst_u_s (type, memop, stride, set-stride, reg)
Set default to set-stride, but use
stride for this instruction.

For all the above suffix formats, the stride values that can be specified are
restricted to 4 or 8 for singleword operations, and 8 or 16 for doubleword opera-
tions. When you write CDPEAC code by hand, you should make sure the default
memory stride register dp_stride_memory is set to the stride you require (for
example, 4 bytes for single-precision or 8 bytes for double-precision). You can
use the CDPEAC accessor instruction dpset for this purpose; for example:

dpset (i, ALL _DPS, 8, DP_STRIDE MEMORY)

VU Selection in CDPEAC Statements

The VUs that execute a CDPEAC statement are selected by the memory address
specified in the statement. (Deselected VUs are effectively idle.) A CDPEAC
statement’s memory address is: ‘

® the value of the memory-argument in the memory instruction.

= the value specified by the maddr modifier, if any.

® If neither of these is supplied, a default address that selects all the VUs.
The default address used is DPV_STACK_INST PORT_ ALL.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5. The CDPEAC Instruction Set
e ;

5.2.8

Typically, you won’t construct these memory addresses yourself; your high-level
language compiler andfor the dpcc compiler generate these addresses for you.

VU Selection in CDPEAC Accessor Instructions

The VU(s) referenced by a CDPEAC accessor instruction are determined by the

“VU selector” argument. This argument must be a valid VU selector, as
described below.

A VU selector is an integer or symbolic constant that specifies one or more VUs
to perform a given accessor instruction. The syntax is:

Syntax Immediate Value

constant-expression Use the specified selector constant (see table below).
C variable Use value of specified variable.

* Select all VUs.

*n Use both VUs on chip n (0=VU’s 0&1, 1=VU’s 2&3).

The constant-expression form can be either an integer VU selector value, a
physical VU selector (an integer preceded by a “$”), or one of the symbols
defined by the header file cdpeac.h for these values. (Use of predefined sym-
bols is recommended.)

The legal VU selector values, and their corresponding symbols, are:

vU VU Selector Physical VU Selector
Number(s) Value Symbol Selector Symbeol

vVUn 2*n DP_n $n DP_PHYS_NUM n
ALL VUs 8 ALL_DPS $8 ALL_PHYS NUM DPS
VUsOand1 - 10 DPS_0_aAND 1 $9 DP_PHYS NUM_O_AND_1

VUs 2 and 3 12 Dpps_2_aAND 3 $11 DP_PHYS NUM 2 AND_3

-

DPEAC Usage Note: There is no CDPEAC equivalent of the modifier “<” for
VU selectors in DPEAC, which selects bits 12: 15 of the value.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

70

53

5.3.1

53.2

VU Programmer’s Handbook

CDPEAC Instructions

Scalar and Vector Instructions

CDPEAC memory and arithmetic instructions come in two forms: scalar and
vector.

.Scalar instructions execute just once, for the supplied arguments, and are distin-

guished by an “s” suffix on the instruction name.

Vector instructions execute repeatedly for each of a series of arguments, and are
distinguished by a “v” suffix on the instruction name. Vector instructions start
with the specified register or memory address argument(s) and then step through
succeeding locations determined by the vector stride and vector length:

® The vector stride determines the number of registers or memory addresses
a vector instruction advances at each step. The default vector stride
depends on the type of operation (memory or arithmetic). -

= The vector length determines the number of registers or memory addresses
affected by a vector instruction. The vector length defaults to the value of
the VU register dp_vectoxr_length, unless a different vector length is
specified explicitly.

Note: If a CDPEAC join statement includes both a memory instruction and an
arithmetic instruction, the two must agree in form: they must be either both scalar
instructions or both vector instructions.

Register Arguments

The register arguments of CDPEAC arithmetic and membry instructions are
indicated by the following symbols, indicating arbitrary VU registers:

rS1, rS2 First and second source registers.

rLS Load/store (or third source) register.
rD Destination register.
rlA Indirect addressing (used in register indirect format).

When an instruction format requires vector (Vrn) register arguments, the sym-
bols vS1, v§2, vLS, vD, and vIA are used instead. Similarly, when scalar (Snn)
register arguments are required, the symbols sS1, sS2, sLS, sD, and sIA are used.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

The CDPEAC Instruction Set

5.3.3 Data Type Argument

Virtually every CDPEAC instruction has an initial type argument, which speci-
fies the data type of the instruction. This argument must be one of the following

data-type symbols:
i Signed 32-bit integer u Unsigned 32-bit integer
di Signed 64-bit integer du Unsigned 64-bit integer
3 Single (32-bit) float df Double (64-bit) float

5.3.4 Arithmetic Instructions

An arithmetic instruction causes the VUs to perform a register arithmetic opera-
tion. Arithmetic instructions have the following general forms:

Monadic (one source): instruction{v,s} (type, rS1,rD)
Dyadic (two sources): instruction{v,s} (type, rS1,rS2, rD)
Triadic (three sources): instruction{v,s} (type, rS1, rLS, rS2, rD)

Note: In the statement format descriptions in Section 5.4, the arithmetic opera-
tion is always shown in triadic form. Dyadic and monadic forms are obtained
simply by omitting the appropriate arguments (LS and rS2).

(Appendix D describes the VU arithmetic instructions in detail, and describes the
VU status bits that are affected by each instruction.)

Vector instructions have a default stride of 1 (singleword) or 2 (doubleword) for
register arguments, unless the argument explicitly specifies a different stride (see
Section 5.2.5.)

rS2 Argument Restrictions: The rS2 argument of an arithmetic instruction has
these restrictions, imposed by the internal representation of the instruction:

® For vector operations, rS2 cannot be any of Ro through R7, by any name
(so, vo, etc.).

® In scalar operations, 52 cannot be any of Rnn, where nn is any multiple
of 16 (for single-precision) or 32 (for double-precision).

Triadic/Memory Register Restriction Note: When a triadic arithmetic opera-
tion and a memory operation are joined, the rLS operand of the arithmetic
operation must be identical to the LS operand of the memory operation.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

72

VU Programmer's Handbook

5.3.5 Memory Instructions

A memory instruction causes the VUs to move data between memory and VU
registers. The arguments of a memory instruction are a memory address and a
VU register. Memory instructions have the following general form:

' memory-operation{v,s} (type, memory-argument, rLS)

The rLS argument can be any VU register, but if a triadic arithmetic operation
and a memory operation are combined, the rLS argument of both must be the
same, and the memory operation can only be a 1oad, not a store. The default
stride for the rLS register is determined by the arithmetic operation, and the stride
required by the memory operation must agree.

The memory-argument can be any memory address that selects one or more VUs,
and it is specified by a C variable containing the address as an unsigned integer.

The stride of vector instructions is always the default value given by the
dp_stride_memory register.

Singleword / Doubleword Performance Note: Doublewords are the natural
word size for the VUs. Singleword operations require a read-modify-write step.
Thus, singleword operations are less efficient than doubleword operations.

CMosr Version 7.2, August 1993
€opyright © 1993 Thinking Machines Corporation

Chapter 5. The CDPEAC Instruction Set 73

5.3.6 Modifiers

Modifiers: Modifiers are keywords, such as pad, maddr, vimcurrent, etc., that
modify the assembly or execution of a CDPEAC statement. The modifiers per-
mitted in a CDPEAC statement are determined by the statement’s format. The
available modifiers are listed below, and described in more detail in Section 6.7.

-Modifiers That Can Be Used in All (or Most) Formats:

nopad, pad[(pad-size)] Vector length padding (default is 4).
maddr (memory-argument) Default memory address.
{vmrotate, vmcurrent} Packing mode for vector mask bits.
[no]align Doubleword alignment declaration.

vmmode[_s] (mode-keyword) Conditionalization mode selector.

Conditionalization Modifiers (Mode Set Format Only):
{vminvert, vmtrue} Conditionalization bit sense selector.

{vmold, vmnew, vmnop} Vector mask copying mode.

Special Modifiers (Mode Set Format Only):

epc{v,s} (type, sreg, dreg) Population count.
vmcount[s] (dreg) Accumulated context count.
[no]exchange ' On-chip VU data exchange.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

74 : VU Programmer s Handbook

5.4 CDPEAC Statement Formats

As noted in Section 5.1.4, the permissible arguments to a join statement are
constrained by the DPEAC code that the join statement turns into. Thus, there
are two main classes of join statement formats, short format and long format.

A short format statement assembles into a single word (32-bit) operation. Short
format statements execute faster than those in long format, but lack some of the
features provided by the long format.

A long format statement assembles into a doubleword (64-bit) operation. Long
format statements are slower is issue, but use the extra word to provide additional
argument types and modifiers that are not permitted by the short format. Specifi-
cally, the long format comes in four varieties: :

Immediate format allows an immediate argument in the arithmetic operation.
Register stride format allows register striding in the arithmetic operation.
Memory stride format allows address striding in the memory operation.

Mode set format provides access to a number of VU features, including regis-
ter/memory indirection and overriding of many VU instruction defaults.

Each of the varieties of long format represents a modification of the short format.
You can think of the short format as the backbone of features that all CDPEAC
Join statements are allowed to have, with each of the long formats representing
some modification of or addition to those features.

Important! Because of the way that CDPEAC code is compiled and assembled,
the modifications provided by each of the long formats cannot be combined. You
can use only one of the long formats, or none of them (that is, use the short for-
mat) in a single join statement.

Note: You do not have to use the join macro to make use of the statement for-
mats described below. It is perfectly legal to write a CDPEAC statement
consisting of a single arithmetic or memory instruction using a modifier or macro
allowed by any of the statement formats. Just be sure that you don’t try to use
more than one statement format in the same instruction.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

5.5 The Short Format

The short statement format is:

Vector Instuctions:
joinn(arith-inst(type, rS1, vLS, vS§2, vD),
mem-inst[_u] (type, mem-argument, [stride,] vLS),
madifier ...)
Scalar Instuctions:
Joinn(arith-inst(type, rS1, sLS, sS2,sD),
mem-inst_u] (type, mem-argument, [stride,] sLS) ,
modifier ...)

With one exception (the mode set statement format, see Section 5.9), the rS1
argument can only have one of the following explicit stride forms:

- rS! Use register rS1, with unit stride for vector ops.
dreg_u(rSI, mode) Use register rS1, with dp_stride_xrs1 stride.
dreg_u(sSI, 0) Use scalar register sSI with 0 stride.

The remaining register argument(s) must be aligned vector (Vnn) registers for a
vector operation, or scalar (Snn) registers for a scalar operation. Vector instruc-
tions always use unit striding, so stride markers are not allowed in short format
(see register stride format, Section 5.7).

The mem-inst instruction can be in the “_u” (explicit memory stride) form, but
if a memory stride is specified then the rS/ argument must be either an aligned
vector (Vnn) register, or a scalar (Snn) register with an explicit stride of 0. The
mem-argument must be a C variable (unsigned integer) giving a valid memory
address.

The vector length for a vector operation is taken from dp_vector_length.
This cannot be overridden in the short format (see mode set format, Section 5.9).

Only the following modifiers are permitted by the short format.

nopad, pad| (pad-size)] Vector length padding (default is 4).
maddr (memory-argument) Default memory address.
{vmrotate, vmcurrent} Packing mode of vector mask bits.
[noJalign Doubleword alignment declaration.

vmmode|[8] (mode-keyword) Conditionalization mode selector.

Note: {vmcurrent, vmrotate} are useful only for comparison operations,
where the result of the comparison produces status bits that can be rotated.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

76 , VU Programmer s Handbook

| Examples:

movev (i, vo,V1) /* Integer monadic */
join2 (movev(i,V0,V1),loadv (i, source, Vo)) '

/* Same, chain-loaded */
movev (i,dreg_u(v0,mode),V1) /* Default reg. stride */

movev (i,dreg_u(s0,0),V1) /* Scalar reg, 0 stride */
moves (i,dreg u(so0,0),S1) /* Scalar operation */
loadv (i, source, V1) /* memory operation */

join2 (loadv (i, source,V1l), noalign)
/* same, non-aligned */

loadv_u(f,source,4,V0) /* unit stride, singleword */
loadv_u(f, source, 8,V0) /* unit stride, singleword */
loadv_u(df, source,8,V0) /* unit stride, doubleword */
loadv_u(df, source, 16,V0) /* unit stride, doubleword */

join2 (testv(i,Vv0,V1), maddr (source))
/* maddr modifier */

gtv(df,vo,vi) /* Conditional */
join2 (gtv(df,V0,V1), vmcurrent)
/* Conditional, with modifiexr */

addv (£,V0,V1,V2) /* Float dyadic */

join2 (addv(£f,V0,V1,V2) ,nopad) /* No vlen padding */
madav (£,V0,V1,V2) /* Mult-add */
madiv(£f,Vv0,V1,V2) ’ /* Mult-add, inverted */

join2 (madtv(£f,v0,V1,Vv2,V3), loadv(f, source, V1))
/* True triadic, chain-loaded */
join2 (addv(f,v0,V1,V2),load (i, source, V0) , vmmode (condmem))
. /* Conditional mem. op. */
join2 (addv(£,v0,Vv1,V2),load (i, source,V0),vmmode (condalu))
/* Conditional arith. op. */

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5. The CDPEAC Instruction Set 77

5.6 Immediate (Long) Format

The immediate format (indicated by an “1” suffix on the arithmetic operator)
modifies the short format by replacing one source argument in the arithmetic
instruction with an immediate vatue. (The operand replaced depends on the arith-
metic instruction in use — see the instruction listings in Chapter 6.) The
immediate value is loaded into Ro (singleword operations) or R0 and R1 (double-
word operations) prior to use.

Vector Instuctions:
joinn(arith-insti (type, rS1, vLS, imm, vD),
mem-inst]_u] (type, mem-argument, [stride,] vLS) ,
modifier ...)
Scalar Instuctions:
joinn(arith-insti (type, rS1, sLS, imm, sD),
mem-inst[_u] (type, mem-argument, [stride,] sLS),
modifier ...)

The imm argument is a 32-bit immediate value, either a C variable or a general
expression. Immediate values are sign-extended in double integer arithmetic
(zero-extended for double unsigned operations). For double-precision constants,
only the upper 32 bits are included in the instruction. Thus, only floating-point
numbers with 0’s in the 32 least significant bits of their mantissas are allowed.

Restrictions: With the exception of the imm argument, the register and memory
arguments have the same restrictions as in the short format. Vector length comes
from dp_vector_length, and the permitted modifiers are the same.

Examples:
movevi (1,29,V1) /* Monadic immed. */
movevi (i, value,V1) /* C variable */

join2 (movevi (i,29,V1),loadv{i,source,V2)) /* with mem. op. */
join2 (movevi (i, 29,V1},loadv_u(i, source, 8,V0))

/* with mem stride */
movesi(i,29,81) /* Scalar operation */
addvi (£,dreg_u(R0,0),29,V1) /* Immed arithmetic */
join2 (madtvi (£,dreg_u(R0,0),V1,29,V3), loadv(df,source, V1))

/* Triadic immediate */

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

78 VU Programmer’s Handbook

5.7 Register Stride (Long) Format

The register stride format modifies the short format by allowing any of the regis-
ter stride macros (dreg_u, dreg_s, dreg_u_s, etc.) on the r$2, rLS, and rD
register arguments. (The rS] format does not change.)

Vector Instuctions:
joinn(arith-inst(type, rS1, {stride vLS}, {stride vS2}, {stride vD}),
mem-inst]_u] (type, mem-argument, [stride,] {stride vLS}),
modifier ...)
Scalar Instuctions:
joinn(arith-inst(type, rS1, {stride sLS}, {stride sS2}, {stride sD}),
mem-inst[_u] (type, mem-argument, [stride,] {stride sLS}),
modifier ...)

The register arguments do not have to be vectof—aligned, and thus can be any of
the 128 data registers.

The stride macros on the rS2, rLS, and rD can be any of the register stride macros
described in Section 5.2.5, except those that apply to 7SI only. If a triadic arith-
metic operation is used, the rLS stride must be the same for both the arithmetic
and memory operations.

The short format’s argument, vector length, and modifier restrictions apply.
Examples:

movev (i,V0,dreg_u(R4,4)) /* Integer monadic */
join2 (movev(i,V0,dreg_u(R4,4)),loadv(i,source,V0))
/* Chain-loaded */
join2 (movev(i,V0,dreg u(R4,4)),loadv_u(i, source,8,V0))

/* same, temp stride */
loadv(i,source,dreg_u{(R4,4)) /* memory operation */
movev(i,dreg u(V0,mode),dreg u(R4,4)) /* Default reg. stride */
movev(i,dreg_u(so0,0),dreg u(R4,4)) /* Scalar reg, 0 stride */
moves (i,dreg u(S0,0),dreg_u(s3,2)) /* Scalar operation */
addv (£,V0,dreg_u(R20,4) ,dreg u(R6,3)) /* Float dyadic */
join2 (madtv(f,dreg (R0, 0) ,dreg_u(Vi,2),dreg u(R20,4),dreg_u(R60,7)),

loadv(df, source,dreg_u(Vvi,2)))
/* True triadic, chain-loaded */

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chap

2RV

5.8

ter 5. The CDPEAC Instruction Set

&

Memory Stride (Long) Format

The memory stride format modifies the short format by allowing any of the
memory stride variants (_u,_s, u_s), of the memory instructions to be used.
(See Section 5.2.6.)

Vector Instuctions: _
joinn (arith-inst (type, rS1, vLS, vS§2,vD),
mem-inst_{u,s,u_s} (type,mem-argument,[stride set-stride,] vLS) ,
modifier ...)
Scalar Instuctions:
Joinn(arith-inst(type, rS1, sLS, s82, sD),
mem-inst_{u,s,u_s} (type, mem-argument,[stride, set-stride,] sLS) ,
modifier ...)

The short format’s argument, vector length, and modifier restrictions apply.
Examples:
loadv_s(i,source,8,V1l) /* use and set 8 */

loadv_u_s(i,source,8,4,V1) /* use 8, set 4 */
join2 (movev(i,V0,V1),loadv_s(i,source,8,V0)) /* Chain-loaded */

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

80

VU Programmer s Handbook

5.9 Mode Set (Long) Format

The mode set format is the most complex of the long formats. It allows you to
do any or all of the following:

Override and/or set the default vector length in dp_vector_length.
Override the default conditionalization mode (vmmode).

Override the default conditionalization sense (viminvert, vmtrue).
Override the default vector mask copy mode (vmold, vmnew, vmnop).
Use any of the modifiers permitted by the short format.

Mode set format also allows you to use one (and only one) of the following
mutually incompatible extensions to the short format:

Register stride markers on the 7S] argument.

Register indirection on the rS1 argument.

Memory indirection oﬁ the memory-argument.

Exchange of data between the two VUs on a single chip ([nolexchange).
Accumulated count of conditionalization bits (vmcount).

Population counts (epc{v,s}).

The mode set “format” is actually a family of distinct but related variants, each
determined by the appearance of one of the incompatible features listed above.

Note for DPEAC Users: There is no CDPEAC counterpart to the “scalar modi-
fier variant” of the mode set format in DPEAC (described in Section 3.9.1).

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 5. The CDPEAC Instruction Set
SRR ZEE I R &

PR 2 225 2

5.9.1 Mode Set Format Variants

The legal mode set variants are:

Vector Length Variant

joinn(arith-inst_{v,vs,vh,vhs}
(type, vien, rS1, vLS, v§2, vD),
mem-inst_{v,vs,vh,vhs}[_u]
(type, vlen, mem-argument, [stride,] VLS) ,
modifier ...)

This is the basic mode set variant, in which the only features used are those
that are allowed in all mode set variants. In other words, this variant lets you
specify an arbitrary vector length for a vector operation, and use general
mode set modifiers like vmnew, vminvert, and vimcurrent. (The syntax for
the vec-len specifier is described in Section 5.9.2.)

Examples:

movev_v(i,16,V0,V2) /* Integer monadic */
join2 (movev_v (i, 16,V0,V2),loadv (i, source,V0))

/* same, chain-loaded */
loadv_v(i,16,source, V1) /* memory operation */
join2(loadv_v(i,16,source,V1), noalign)

/* same, non-aligned */
addv_v(f,16,V0,V2,V4) /* Float dyadic */
join2{madtv_v(£f,16,V0,V2,V4,V6),loadv (f, source,Vv2))

/* True triadic, chain-loaded */

movev_v(i,vlen,Vvo0,V2) /* C variable */
movev_vs (i, 16,V0,V2) /* Use and set len. */
movev_vs(i,vlen,V0,V2) /* Use and set */
moves_vs (i, 16,50,S8) /* Scalar set */
movev_vh(i,vlen,Vo0,V2) /* 4 bit length */
movev_vhs (i, vlen,Vvo0,V2) /* 4 bit use/set */

join2 (addv(f,Vv0,V1,V2), vmcurrent) /* Current mode */
join2 (addv(f,Vv0,V1,V2), vmnew) /* New mask copy */
join2 (addv(f,V0,V1,V2), vmnop) /* No mask copy */
join3 (addv(£,V0,V1i,V2), loadv(i,source,V0), vminvert)
/* Inverted conditional */

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

VU Programmer s Handbook

rS1 Stride Variant

joinn(arith-inst[_{v,vs,vh,vhs}]
(type, [vien,] {stride rS1}, vLS, v§2,vD),
mem-inst_{v,vs,vh,vhs}][_u]
(type, [vien,] mem-argument, [stride,] VLS),
modifier ...) :

This variant lets you apply an arbitrary register stride macro to the rSI argu-
ment. This macro can be any of the stride macros described in Section 5.2.5.

Examples:

movev_v(i,16,dreg_u(vo,2),Vv2) /* Use stride 2 */
movev (i,dreg_u_s(V0,1,4),V2) /* Use 1, set 4 */
addv_v(f,16,dreg_u(V0,2),V2,V4) /* Float dyadic */

join2 (madtv(f,dreg_u_s(V0,1,0),V2,V4,V6), loadv(df, source,Vv2))
/* Triadic */

Register Stride Indirection Variant

joinn(arith-inst_{v,vs,vh,vhs}]
(type, [vlen] dxreg_1 (rS1,rIA), vLS, vS2, vD),
mem-inst[_{v,vs,vh,vhs}][_u]
(type, [vlen,] mem-argument, [stride,] VLS),
modifier ...)
arith-op[vec-len] rS1[(rlA:stride)}, vLS, vS§2, vD ; \
mem-op[vec-len] mem-argument, vLS; \
modifier ;

This variant allows the use of an arbitrary VU register to specify the rS1
stride. The macros used to specify the indirection register are described in
Section 5.9.3.

Examples:

movev (i,dreg_i(V0,V2),V4) /* Reg. indirection */
join2 (movev_v(i,16,dreg_i(V0,V2),V4),loadv(i,source,V0))

/* Same, chain-loaded */
movev(i,dreg;i (vo,dreg_u(vz,2)),v4)

/* Indirect. with stride */

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

83

Chapter 5. The CDPEAC Instruction Set
i e

SRR RS

Memory Stride Indirection Variant

joinn(arith-inst[_{v,vs,vh,vhs}]
(type, [vien] rS1, vLS, v§2, vD),
mem-inst[_{v,vs,vh,vhs}][1]
(type, [vilen,] mem-argument, riA, vLS) ,
modifier ...)

This variant allows the use of memory stride indirection (indicated by an
“_1” suffix on the memory instruction). Memory indirection format is

described in Section 5.9.4.

Examples:

loadv_i (i, source,V2,V0) /* Mem. Indirect */
loadv_v_i(i,16,source,V2,V0) /* Same, with vlen */

loadv_v_i(i,16,source,dreg _u(v2,4),V0) /* Same, with stride */
join2 (movev_v(i,16,V0,V4),loadv_i (i, source,V2,V0})
/* Chain-loading */

Population Count Variant

joinn(arith-inst[_{v,vs,vh,vhs}](type, [vilen] rS1, vLS, vS§2, vD),
epc{v,s} (type, VLS, rlA),
modifier ...)

This variant allows you to specify the epc{v,s} modifier, which cannot be
combined with a memory operation, or with any other mode set variant. (See

Section 4.3.3.)

Examples:

epcv(u,Vo, Vi) /* Unit stride */
epcv (u,V0,dreg_u(vi,2)) /* Explicit stride */
epcv (du, V0,dreg_u(vi,2)) /* Double op */

join2(addv_v (£, 16,V0,V1,V2),epcv{u,V0o,V1)) /* Chain-loading */
join2 (addv_v(df,16,V0,V1,V2),epcv(du,V0,v4)) /* Double op */

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

84 VU Programmer s Handbook

Special Modifier Variant

joinn(arith-inst[_{v,vs,vh,vhs}]
(type, [vien] rS1, vLS, v§2,vD),
mem-inst[_{v,vs,vh,vhs}][_ul]
(type, [vlen,] mem-argument, [stride,] vLS),
{[no]exchange, vmcount[s](reg)}
modifier ...)

This variant allows you to specify one (and only one) of the [nojexchange
or vmcount[s] modifiers, which cannot be combined with any other mode
set variant. (See Section 4.3.3.)

Examples:

join2 (addv (f,V0,V1,V2),exchange) /* exchange values */
join3 (addv(f,Vv0,V1,V2),loadv(£f, source,V0),exchange)
/* chain-load */

vmcount (V0) /* Context count */
vmcount (dreg_u(V0,2)) /* with stride */
join2 (addv (f,V0,V1,V2),vmcount (Vo)) /* chain-loaded */
join3 (addv(f,Vv0,V1,V2),loadv(f, source,V0), vmcount (V0))

/* chain-loaded */
join2 (addv(£,V0,V1,V2),vmcount (dreg_u(Vo0,2)))

/* strided */

Scalar Instruction Variant

Note for DPEAC Users: There is no CDPEAC counterpart to the “scalar
modifier variant” of the mode set format in DPEAC. However, you can use
the special instructions described in Section 6.9 to accomplish the same
effect.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

5.9.2 Vector Length Instruction Suffixes

In all mode set format variants, either (or both) of the arithmetic and memory
. instructions can explicitly specify a vector length. This is indicated by a special
suffix attached to the instruction, and by an extra vlen argument. These suffixes
can also be used to modify the default vector length stored in the register
dp_vector_length. The defined vector length suffixes are:

Syntax Effect

operator_v Use constant vector length vien.

operator_vs Use[set dp_vector_length to vien.

operator_vh Use length from bits 19:22 of vien.

operator_vhs Use/set dp_vector_length from bits 19:22 of vien.

Note: The vector length suffixes listed above are, in some mode set variants,
combined with the _1i (indirection) and _u (explicit stride suffixes), as in the
form operator_vhs_u.

The vlen argument is either a constant-expression or a C variable. The length
specified must always be an integer from 1 to 16.

Either or both of the arithmetic and memory instructions in a join statement
may be given a vector length suffix; the specified vector length applies to both
instructions. If a vector length is specified in both instructions, both the suffix
and vector length for both instructions must be the same.

Implementation Note: If you specify the vector length with a C variable (which
is translated into a SPARC register reference at the DPEAC level) or by default-
ing to the value of dp_vector_length, then 1 is added to the length before it
is used. Whenever a value is stored into dp_vector_length by one of the suf-
fix forms above, it is stored in decremented form, so that this implicit
incrementing by 1 will work properly.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

86 , vu ngra}nmer'!s Handbook

5.9.3 Register Stride Indirection

For register stride indirection, the rSI argument format is:

Syntax Effect

dreg_1(rS1,rIA) : Indirect addressing, unit stride.
dreg_i(rSl,dreg_u(rlA, stride)) Indirect addressing, constant stride.

The rIA register argument contains offsets that are separately added to the rS1
base register to obtain the actual Rnn register containing the rS! stride. (Note:
This offset addition is not cumulative.)

The register offsets are packed four to a register in the specified rIA register and
in subsequent registers at the specified stride. Since offsets cannot exceed 127
(7 bits), the eighth bit of each offset byte must be zero:

offset 1 offset 3. offset 4
3130 242322 16 15 14 8 76 0

Note: If a stride is not specified, then the “unit” stride is always 1 register for
‘both single- and doubleword operations; one doubleword “register” corresponds
to two singleword registers.

5.9.4 Memory Indirection

For the memory stride indirection (_1 suffix) form of CDPEAC memory opera-
tions, the 7IA argument format is one of:

Syntax Effect
register Memory indirection, unit stride.
dreg_u (register, stride) = Memory indirection, constant stride.

The specified single-precision VU register contains offsets that are separately
added to the memory address to obtain each argument location. The addition is
done in two’s-complement, so negative offsets will work correctly. (Note: This
offset addition is not cumulative.) The memory offsets are stored one byte per
register in the specified register and subsequent registers at the specified stride.

Note: If a stride is not specified, then the “unit” stride is 1 single-precision regis-
ter for single-precision memory operations, and 2 single-precision registers
(1 double-precision register) for double-precision memory operations.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

R

Chapter 5. The CDPEAC Instruction Set 87

5.9.5 Mode Set Format Modifier

The following modifiers are permitted by the mode set format:

These modifiers are permitted by the short format:

nopad, pad[(pad-size)] Vector length padding (default is 4).
maddr (memory-argument) Default memory address.
{vmrotate, vmcurrent} Packing mode for vector mask bits.
[no]align Doubleword alignment declaration.

vmmode[_s] (mode-keyword) Conditionalization mode selector.
These are the mutually compatible modifiers added by the mode set format:

{vminvert, vmtrue} Conditionalization bit sense selector.
{vmold, vmnew, vmnop } Vector mask copying mode.

- These are only allowed in the pop. count and special modifier variants:

epc{v,s} (type, sreg, dreg) Population count.
vmcount|s] (dreg) Accumulated context count.
[no]lexchange On-chip VU data exchange.

These modifiers are all described in more detail in Section 6.7.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6
CDPEAC Instruction Set Reference

6.1

6.2

This chapter presents a quick-reference list of the CDPEAC instruction set,
including CDPEAC instructions, argument macros, and accessor instructions.

The CDPEAC Join Macro

The join operator connects arithmetic operations, memory operations, and
statement modifiers to form compound CDPEAC statements:

join(instructionl, instruction2) — default join, same as join2
joinN (instructioni, ..., instructionN) — N-way join
N = {1,2,3,4,5,6,7,8,9}

A join can have at most one arithmetic and one memory operation, but any
number of modifiers from 0 to 7. The N of a joinN must match the total number
of instructons (operations and modifiers) supplied to the joinN.

CDPEAC Type Abbreviations

These symbols can be used as the type argument of a CDPEAC instruction:

Type Meaning

u,du Unsigned integer, singleword (32-bit) and doubleword (64-bit).
i,di Signed integer, singleword and doubleword.

£,df Float value, single-precision (32-bit) and double-precision (64-bit).

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 89

90 vu Prografnmer s Handbook

6.3 CDPEAC Argument Macros

Data Register Offsets:

dreg_x(dreg,index) Data register offset (index must be a constant).
If dreg is Rnn, this form refers to R(nn+index).

Note: The dreg_x form can be the dreg argument in any modifier below.

Data Register Striding:
dreg With no modifier, use unit striding.
(Unit stride is 1 for singles, 2 for doubles.)
dreg_u (dreg, stride) Use given stride once.
scalar (dreg) Scalar striding, same as dreg_u (dreg, 0).
dreg_u (dreg,mode) Use default stride (dp_stride_rs1).
dreg_s (dreg, stride) Store stride as the rS1 default and use it.

dreg_u_s (dreg, stride, set_stride)
' Use stride, and store set_stride as default.

Data Register Indirection:

dreg_1 (dreg,ireg) Simple register indirection.
dreg_1i (dreg,dreg_u (ireg,stride)) Register indirection, ireg striding.

6.4 Instruction Suffixes

These suffixes appear at the end of long format CDPEAC instructions, and indi-
cate an alternate instruction form and/or argument list:

Type Meaning

i Immediate value argument. (arithmetic operations only)
_1 Memory stride indirection. (memory operations only)
_u Use explicit memory stride. (memory operations only)
_8 Use and set memory stride. (memory operations only)
_u s Use stride and set set_stride as default. (mem. operations only)
_v Use explicit vector length. (unsticky)
_vs Use and set vector length, (sticky)
_vh Vector length from variable. (unsticky, 1+(bits 19:22))
_vhs Vector length from variable. (sticky, 1+(bits 19:22))

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. CDPEAC Instruction Set Reference 91

6.5 CDPEAC Arithmetic Instructions

6.5.1 Monadic (One-Source) Arithmetic Instructions

These operators perform an arithmetic operation on the single 7SI argument, and
store the result in the rD argument. (Note: In immediate format, indicated by the
1 suffix, the first source argument, 7SI, is the immediate value.)

Formats:

opcode{s,v} [1] (type,rSl,rD)
opcode{s,v}_{v,vs,vh,vhs} (type,vien,rSl,rD)
type = {u, du, i, di, £, df}

Opcodes Types Purpose
move {u,du i,di, £,df} Move rSI to rD, no status generated.
test {u,du,i,di, £,df} Move rSI to rD and test.

not {u, du} Bitwise invert (rD = ~rSI).

clas (£, df} Classify operand (rD = class of rSI).

exp {£, df} Extract exponent from float.

mant {£, df} Extract mantissa with hidden bit.
££b {u, du} Find first “1” bit. ‘

neg {1, 44, £, df} Negate 'D =0 - rSI).

abs {1, 44, £, df} Absolute value (rD = |rS1|).

inv {£, Af} Invert (rD = 1/rS1).

sqrt (£, df} Square root (rD = sqrt (rSI)).

isqt (£, df} Inverse root (rD = 1/sqzrt (rSI)).

The to operators have an extra type argument, and convert between the two
types: r81 is of typel, rD of type2. (In immediate, 1, format, rSI is immediate.)

Format:

opcode {s,v} [1] (typel ,type2[x],rS1,rD)
opcode{s,v}_{v,vs,vh,vhs} (typel ,type2[x],vien,rS1,rD)
typel, type2 = {u, du, 1, di, £, df}

Opcode Typel Type2 Purpose
to {u, du, 1,d1i} (£, df} Convert integer to float.
to {£, £} {£, df} Convert to another precision.
to {£, 4f} {u, du, 1, di}x Convert to integer (round).
to {£, Af} {u, du, 1, di} Convert to integer (truncate).

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

ok
o

6.5.2 Dyadic (Two-Source) Instructions

These operators perform an arithmetic operation on the rSI and rS2 arguments,
and store the result in the rD argument. (In immediate, 1, format, the S2 argu-
ment is the immediate value.)

Formats:

opcode {s,v} (1] (type,rS1,rS2,rD)
opcode {s,v}_{v,vs,vh,vhs} (type,vilen,rS1,rS2,rD)
type = {u, du, 1, di, £, df}

Opcodes Types Purpose
add {u, du, 1, di, £, d€} Add (rD = rS1 + rS2).
addc {u, du, i, di} Integer add with carry bit from shift
of vector mask register.
sub {u, du, 1, 41, £, df} Subtract (rD = rS1 - rS2).
subc {u, du, 1, di} Integer subtract with carry bit from shift

of vector mask register.
subr {u, du, 4, 44, £, df} Subtract reversed (rD = rS2 - rSI).
gsbre {u, du, i, di} Integer subtract reversed with carry

bit from shift of vector mask register.
mul {u, du, i, di, £, df} Multiplication (low 32/64 bits for ints).

mulh {du, di} Integer multiply (high 64 bits).

div - {£, df} Divide (rD = rS1 / rS2).

enc {u, du} Make float from exp and mant (rS1, rS2).
shl {u, du} Shift left (rD = rS1 << rS2).

shlr {u, du} Shift left, reversed (rD = rS2 << rS1).
shr {u, du, 1, di} Shift right (rD = rSI >> rS2).

shrr {u, du, 1, di} Shift right, reversed (rD = rS2 >> rS1).
and {u, du} Bitwise logical AND.

nand {u, du} Bitwise logical NAND.

andc {u, du} Bitwise logical NOT(rSI) AND rS2.

or {u, du} Bitwise logical IOR.

nor {u, du} Bitwise logical NOR.

xor {u, du} Bitwise logical XOR.

mrg {u, du, 1, di, £, df} If vector mask bit = 1 then rS7 else rS2.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

uonp.10d.10y) sauyovpy Suryunyl c661 © 1ySrkdon
661 1Sn8ny ‘T, u0isiay ISOWD

‘[enba 10 Uy SSO] 10J 1S9], L {3P ‘37 ‘TP ‘T ‘np ‘n} duo
"pazopIoun 1o [enbs jou 10 1S9], 9 {3P ‘F ‘TP ‘T ‘np ‘n} duo
‘Tenba jou pue paIspIo 10§ 1S3, ¢ {IIP‘Tap‘n} duo
*(yuasaxd NEN) paIopioun Ioj 1S9, v {3P ‘T ‘TP ‘T ‘np ‘n} dmo
‘Tenba 10 weY 1938013 10§ 1S9, € {3p ‘F ‘TP ‘T ‘np ‘n} dwo
‘uey) SSo[10J 1S9, z {(Fp‘FrP ‘T ‘np ‘n} duo

‘[enba 107 3591, 1 {3P ‘F ‘TP ‘T ‘np ‘n} dwuo

"wey) 191818 10 153, 0 {P‘FTP‘Fnpn} dwo
asodang 3po) sad£y, apoadQ

{3p ‘7 ‘TP ‘T ‘np ‘n} = 2dfy
(3p02 ' ZS4 ' [S4 ' Uudja’ 2df3) {SUA'YA'SA’'A} {A'8)apoado
(apoo 'S4 [§4°2df1) [T] {Aa '8} apoado
1A AGT

(-onyeA SjerpawI 3y ST JuSWNSIe 754 Y “Jewr
-10J ‘T ‘@yeIpauau uj) "2po2 Jueisuod parddns o 4q parestpul se ‘sjuoumsre zg4
pue 7S 93 uaomieq dIysuone[a1 SLISWMU © 0] §159) uonesdo areduros duo ay,

(ueysuod g4 yum aipeAq) asedwon 59

"peroprour) {3IP ‘F ‘TP ‘T ‘mp ‘n} un
‘[enbe jou pue parpIQ {IP ‘F ‘TP ‘T ‘0P ‘n} BT
‘pazepioun 10 [enba 0N {IP ‘F ‘TP ‘T ‘np ‘n} su
Tenbg {3P ‘7 ‘TP ‘T ‘0P ‘n} be
‘Tenbo 10 wey) SSoT {IP ‘T ‘TP ‘T ‘np ‘n} o1
wey) ssoT (3P F TP ‘T ‘mp ‘n} 3T
‘[enba 10 wer 13e01) {IP ‘F ‘TP ‘T ‘np ‘n} ab
ueq) 19381 {IP ‘7 ‘TP ‘T ‘np ‘n} 36

asodang sadA], sapoodQ

{3P ‘7 ‘TP ‘T ‘np ‘n} = 2d(1
(Q4'[S4'usja’ 2dy) {SUA'YA'SA'A} {A’8}2poodo
(@4 184" 2d47) [¥] (a8} 3poodo

{JeuULIO]
(‘enfeA 9jeIpoTILIT 9T ST JuSUMSIIe (74 O} “JeULIO] ‘T

‘g)erpourunl Uf) ‘PSLFIPOW 10U ST (7.4 "A[Surpioooe s3efJ snjejs 1os pue ‘sjusumsIre
@4 pue [S4 oy} ueamieq uosureduwrod opeuwryiire ue wojrad siojerodo oseyy,

suosiiedwo) JPWHILY €°G'9

R

S R
20ua.Laf5Y 19§ uonINUSU] HVIIAD "9 121dvy>H

94 VU Programmer s Handbook
b e R S e

6.5.5 Dyadic Mult-Op Operators

These operations perform a muliplication and an arithmetic (or logical) operation
on the rS1, rS2, and rD arguments, and store the result in 7D. (In immediate, 1,
format, the rS2 argument is the immediate value.)

Format:

opcode {s,v} [1] (type,rS1,rS2,rD)
opcode{s,v} {v,vs,vh,vhs} (type,vlen,rS1,rS2,rD)
type = {u, du, 1, 41, £, df}

Note: In the opcode descriptions below, the optional [h] indicates that the high
64 bits of the multiplication are to be used in the logical operation, rather than
the low 64 bits (the default).

Accumulative Operators

Opcodes Types Purpose
mada {u,du, 1,41, £,df} rD=(rSI1*rS2)+rD
msba {u,du,1,di, £,df} rD=(rSI1*rS2)-rD
msra {u,du,i,di,£,dE} rD= rD- (rSI*rS2)
nmaa {u,du, 1,41, £, 8} rD=-rD - (rS1*rS2)

mfh]lsa {du} rD = (rS1 * rS2) AND rD
mfh]ma {du} . rD=(rS1 * rS2) AND NoOT rD
mfhjoa {du} rD = (rS1 * r§2) 1I0R rD
m[hjxa {du} rD = (rS1 * rS2) XOR rD

Inverted Operators

Opcodes Types Purpose
madi {u,du, i, di, £,d€} rD=(rS2* rD) + rSl
msbi {u,du, 1,41, £, d€} rD = (rS2 *rD) - rSl
meri {u,du, 1,41, £,df} rD= rSI - (rS2*rD)
nmai {u,du, 1,44, £,df} rD=-rSI- (rS2*rD)

m[h]si {du} rD = (rS2 * rD) AND rS1
m[h]jmi {du} rD = (rS2 * rD) AND NOT rS!
m{hloi {du} rD = (rS2 * rD) 10R rS!
m[h]xi {du} rD = (rS2 * rD) XOR rS1

~ CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. CDPEAC Instruction Set Reference 95
S

GG

6.5.6 Convert Operation (Dyadic with Rs2 Constant)

These operations convert the src argument to the type indicated by the constant
code argument, and store the result in the rD argument. The symbolic code
constants listed below are defined by the cdpeac.h header file. (In immediate,
i, format, the rS1 argument is the immediate value.)

Format:

opcode{s,v} (1] (type,rSl,code, rD)

opcode {s,v}_{v,vs,vh,vhs} (type,vlen,rSl,code,rD)
type = {i[r], £, £1}
code = a C constant from the list below

Opcode/Type Code Purpose
cvt i[r] cvrIicD_F_I (4) Single float to single signed integer.
cvt 1i[r] cvrIcD_F U (5) Same, to unsigned integer.
cvt 1i[r] CVTICD_F DI (6) Single float to double signed integer.
cvt 1i[r] cvTICD_F DU (7) Same, to unsigned integer.
cvt i[r] cvrIicp DF_I (12) Double float to single signed integer.
cvt 1i[r] cvTICD_DF U (13) Same, to unsigned integer.

cvt i[r] cvricp_DF DI (14) Double float to double signed integer.
cvt 1i[r] cvTICD_DF DU (14) Same, to unsigned integer.

cvt £ CVTFCD_F_DF (3) Single float to double float.

cvt £ CVTFCD_DF_F (9) Double float to single float.

cvt fi1 CVIFICD_I_F (1) Single signed integer to single float.
cvt f£fi CVTFICD _U_F (5) Same, but from unsigned integer.
cvt f£f1 CVTFICD_I_DF (3) Single signed integer to double float.
cvt f£1 CVTFICD_U_DF (7) Same, but from unsigned integer.
cvt fi CVTFICD_DI_F (9) Double signed integer to single float.

cvt £i CVTFICD_DU_F (13) Same, but from unsigned integer.

cvt f£i cvTFIcD_DI_DF (11) Double signed integer to double float.
cvt £1 CVTFICD _DU_DF (15) Same, but from unsigned integer.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

96

6.5.7

vu Progrdmmer‘ S Handbook

True Triadic (Three-Source) Operators

These operations perform a muliplication and an arithmetic (or logical) operation
on the rS1, rS2, and rLS arguments, and store the result in 7D, (In immediate,
i, format, the rS2 argument is the immediate value.)

Format:

opcode {8,v} [1] (type,rS1,rLS,rS2,rD)
opcode{s,v}_{v,vs,vh,vhs} (type,vien,rS1,rLS,rS2,rD)
type = {u, au, 1, di, £, df}

Note: In the opcode descriptions below, the optional [h] indicates that the high
64 bits of the multiplication are to be used in the logical operation, rather than
the low 64 bits (the default).

Opcodes Types Purpose
madt {u,du, 1,41, £,df} rD = (rSI * rLS) + rS2
msbt {u,du, i,di, £, d€} rD=(rSI*rLS)-rS2
mert f{u,du,i,d4,£,df} rD= rS2-(rS1*rLS)
nmat {u, du, i, di, £, df} rD=-r§2 - (rS1*rLS)

mfh]lst {du} rD = (rS1 * rLS) AND rS2
nfhjmt {du} rD = (rS1 * rLS) AND NOT rS2
mfhjJot {du} rD = (rSI1 * rLS) IOR rS2
m[h]jxt {du} rD = (rS1 * rLS) XOR rS2

Triadic/Memory Register Restriction Note: When a triadic arithmetic opera-
tion and a memory operation are joined, the rLS operand of the arithmetic
operation must be identical to the 7LS operand of the memory operation.

No-Op Operator

The untyped arithmetic no-op allows modifier side effects without specifying an
operation. The no-op takes no arguments (except for the vien argument in the
vector-length cases). The suffixes are as described above.

Format:

fnopi{s,v} ()
fnop {s,v}_{v,vs,vh,vhs} (vien)

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. CDPEAC Instruction Set Reference 97

6.6 CDPEAC Memory Instructions

These operations move data between VU memory and data registers.
Note: The default memory stride is stored in dp_stride_memory.

Formats:
opcode {s,v} (type,address, dreg)
— use default memory stride.
opcode {s,v}_u (type, address, stride, dreg)
— use stride once.
opcode {8,v}_s (type, address, stride , dreg)
— use stride and store it as default.
opcode {s,v}_u_s (type, address, stride, set_stride , dreg)
— use stride, and store set_stride as default.
opcode {8,v}_1 (type, address, ireg, dreg)
— memory stride indirection.
opcode {8,v}_1 (type,address, dreg_u (ireg, stride) ,dreg)
— memory indirection with stride on ireg.
opcode{s,v}_{v,vs,vh,vhs} (type, vien,address, dreg)
— explicit vector length for CDPEAC statement.
opcode {8,v}_{v,vs,vh,vhs}_1(type,vien,address,ireg,dreg)
— vector length and memory stride indirection.
opcode {s,v}_i{v,vs,vh,vhs}_u(type,vien, address, cstride, dreg)
— vector length and use-once cstride.
type = {u, du, 1, di, £, df}

Opcode Types . Purpose
load {u,du,i,di, f,df} Load from memory to VU data register.
store {u,' du, i, di, £, df} Store from VU data register to memory.

No-Op Instruction: Untyped memory no-op allows modifier side effects with-
out a load or store. Suffixes and arguments are as in the load/store formats above.

memnop (address)

memnop_u(address, ustride)

memnop_s (address, stride)

memnop_u_s (address, stride, set_stride)
memnop_1 (address, idreg)

memnop_ {v,vs,vh,vhs} (vlen, address)

memnop_ {v,vs,vh,vhs]}_1(vlen, address, idreg)
memnop_ {v,vs,vh,vhs}_u(vlen, address, ustride)

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

6.7 CDPEAC Statement Modifiers

6.7.1

This section describes the statement modifiers that can be joined with arithme-
tic and memory operations to affect their assembly and/or execution. Note: Some
of these modifiers (such as the last three) can be used on their own.

Modifiers That Can Be Used in All (or Most) Formats

nopad, pad(pad-size) Default: pad (4)

Vector Length Padding: Pads vector length of instruction to at least pad-
size. Has no effect if vector length is already that size. Used to avoid
instruction pipeline hazards. If not supplied, defaults to pad: 4. The nopad
variant is the same as pad: 0. Pads between 0 and 4 are allowed, but have the
same effect as pad: 4.

maddr (memory-address) Default: None

Memory Operand Specifier: Used to supply a default memory operand for
DPEAC statements that omit the memory instruction — this memory operand
is used solely to determine VU selection.

{vmrotate, vmcurrent} Default: vmrotate

Status Bit Rotation Mode: Determines how status bits from vector opera-
tions are stored in the register dp_vector_mask. vmrotate “rotates” them
in, vmcurrent inserts them in bit order. (See Figure 17.) Note: this modifier
is allowed by the short format for conditional operations only. Otherwise, it
can only be used in the mode set format.

vmrotate: Status bits context bits

vmcurrent:

15 vien 0

Figure 17. Bit-shifting modes of vector mask register.

CMosr Version 7.2, Augﬁst 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. CDPEAC Instruction Set Referencé 99

[no]align Default: noalign

Doubleword Alignment Guarantee: Declares whether or not the memory
operand is doubleword-aligned (even for singleword operations). If align-
ment is guaranteed, dpas can generate more efficient code. (Note: The
default setting of this modifier can be reversed by providing the ~a command
line switch to dpas.) :

6.7.2 Conditionalization Modifiers

These modifiers are used to control the vector mask conditionalization mecha-
nism. For more information, see Section 2.3.1.

vmmode|[_s] (mode-keyword) Default: vimmode (vmmode)

Conditionalization Mode: The vmmode modifier overrides the value of the
dp_vector_mask_mode register, which affects whether arithmetic opera-
tions and/or memory operations are to be conditionalized. The permitted
mode-keyword operands are:

Mode Effect

vmmode (vmmode) Use current value of dp_vector_mask_mode.

vmmode (always) Do not use conditionalization in this instruction.
vmmode_s (always) Set dp_vector_mask_mode for no conditionalization.
vmmode (condmem) Conditionalize loads and stores in this instruction.
vmmode_s (condmem) Set dp_vector_mask_mode for conditionalization.
vmmode (condalu) Conditionalize arithmetic in this instruction.

vmmode_s (condalu) Set dp_vector_mask_mode for condit. arithmetic.
vmmode_s (cond) Set dp_vector_mask_mode for full conditionalization.

It is not legal to override dp_vector_mask_mode for full conditionaliza-
tion. Thus, “vmmode (cond) ” is not allowed.

Usage Note: Scalar instructions are executed without conditionalization, so
you may add vmmode (always) to any scalar instruction in any format with
no effect. Similarly, you may add vmmode (vmmode) to any vector instuction
in any format since it represents the default action taken by the hardware.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

100 VU Programmer’s Handbook

{vminvert, vmtrue} Default: vmtrue

Conditionalization Bit Sense: The vminvert and vmtrue modifiers con-
trol whether the conditionalization bits shifted out of the dp_vector_mask
are inverted. If inverted, the sense of these bits is reversed; i.e., 0 selects a
vector element, and 1 deselects it.

Modifier Effect
vminvert Invert sense of vector mask bits for conditionalization.
vmtrue Do not invert sense of vector mask bits.

Note: This modifier is only allowed in the mode set statement format.

{vmold, vmnew, vmnop} Default: vmold

Vector Mask Copy Mode: The vmold, vmnew, and vmnop modifiers control
the copying of the vector mask and vector mask buffer registers prior to
instruction execution:

Modifier Effect

vmold Copy dp_vector_mask_buffer to dp_vector_mask.
vmnew Copy dp_vector_mask to dp_vector_mask_buffer.
vmnop No copy.

Note: This modifier is allowed only in the mode set statement format.

6.7.3 Special Modifiers (Mode Set Format Only)

epc{v,s} (type, VLS, riA) Default: None

Population Count: The epc{v,s} modifier enables the population count fea-
ture. Specifically, the single- or double-precision register vLS (and
subsequent registers at a unit stride) are read and the “1” bits in each are
counted. The results, each a single-precision unsigned integer between 0 and
either 32 (single-precision) or 64 (double-precision), are written to the regis-
ter rIA (and subsequent single-precision registers at the specified stride, a
constant-expression that defaults to the unit stride for the data type).

The epc{v,s} modifier effectively replaces the normal memory operation in
a DPEAC statement. The Vs register operand is used, so population counting
cannot be combined with any memory operation. Population counting also
cannot be used in conjunction with register or memory indirection or the

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. CDPEAC Instruction Set Reference 101

vmcount[s] or [no]exchange modifiers. The population count result is
written before the operands are read for the arithmetic operation, so the
epc{v,s} modifier chain loads. The vLS operand is always strided with a unit
(1 or 2 register) stride, so the :unit keyword is optional and has no effect
other than to emphasize the unit striding.

Implementation Note: Currently, the epc{v,s} modifier cannot be used in
conjunction with a long-latency arithmetic operation, i.e., [£,df]div,
[£,af]sqrt, [£,df]inv, or [£,df]isqt.

vmcount(s] (reg) Default: None

Accumulated Context Count: The vmcount modifier enables the VU chip’s
accumulated context count feature. The single-precision VU register reg (and
subsequent registers at the given stride, a constant-expression) is loaded with
the accumulated count of “1” bits in the vector mask at each step in the vector
operation. This accumulation is inclusive; the count includes the bit that is
shifted out of the vector mask register for each element. The scalar version,
vmcounts, is intended for use with scalar operations. It is an error to use
vmcounts with any vector operation.

For each element in the vector, the vmcount result is written before the oper-
ands are read for the arithmetic operation, so this modifier chain loads. This
modifier cannot be used in conjunction with either register or memory
indirection, nor with the epc{v,s}, or [no]Jexchange modifiers.

[no]lexchange Default: noexchange

VU On-Chip Data Swapping: Controls exchange of data between two VUs
on the same chip. Specifying exchange causes arithmetic results on each VU
to be written to the destination register(s) of the other VU. In conditionalized
ALU operations, deselected elements are not written to the opposite VU.

Selected elements are written, even if the corresponding element in the oppo-
site VU is deselected.

The [no]exchange modifier is used only in the mode set format. However,
it is incompatible with register stride indirection, memory stride indirection,
and with the epc{v,s}, and vmcount[s] modifiers.

Implementation Note: This modifier is implementation-dependent, and may

not be available in the future. Also, the current implementation of exchanging
does not allow chain loading into the arithmetic destination register.

CMosr Version 7.2, August 1993 .
Copyright © 1993 Thinking Machines Corporation

102 VU Programmer’s Handbook

6.8 CDPEAC Accessor Instructions

These accessor instructions are always used as single statements, execute on the
node microprocessor (the SPARC), and generally move data between the SPARC
and the VU, or affect values stored in SPARC registers.

6.8.1 VU Register Accessor Instructions

Instruction(s) Function(s)
dpwrt[d], dprd[d] Write and read VU data registers.
dpset[d], dpget[d] Write and read VU control registers.

dpchgbk Convert address from one VU region to another.
dpchgsp Convert between VU data and instruction spaces.
dpld[d], dpst[d] Read and write VU parallel memory.

dpsync Synchronize instruction pipelines of VUs.

These instructions move data between VU data registers and SPARC registers:

dpwrt [_sync,_nosync] (fype, selector, sp_src,vu_dreg)
dpwrt [_sync,_nosync] (fype, selector,value,vu_dreg)
dprd [_sync,_nosync] (fype, selector,vu_dreg, sp_dest)
type = {u, du, i, 41, £, df}
sync/nosync = whether to sync VU pipeline (default is sync)

dpwrt_sync(i,ALL DPS,%i1,V0)
dpwrt_nosync(i,DPS_0_AND_1,29,V0)
dprd(i,DP_3,V0,%1i0)

These instructions move data between VU control registers and SPARC regis-
ters. (See Section 2.5 for a list of predefined control register constants.) -

dpset [_supervisor] (type, selector, sp_src,vu_creg)
dpset [_supervisor] (fype, selector, sp_src, vu_creg)
dpget [_supervisor] (fype, selector,vu_creg, sp_dest)
type = {u, du, 1, di, £, df}
supervisor = get/set in supervisor region

dpset (i,DP_3,%10,DP_VECTOR MASK)
dpset (i,ALL_DPS, 0,DP_VECTOR_ MASK)
dpget (i,DPS_0_AND_1,DP_VECTOR MASK, $i0)

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter

S

SR

6. CDPEAC Instruction Set Reference 103
R S s % 3 R ey

This instruction converts a VU memory address between the data and instruction
virtual memory spaces:

dpchgsp (szc,dest) Toggle between datafinstruction spaces.

dpchgsp (R5,R6)

This instruction modifies a VU memory address to refer to a different VU
memory region:

dpchgbk (src, selector,dest) Change referenced VU region.

dpchgbk (R5,DPS_0,R6)

These instructions move data between VU paralle] memory and a SPARC IU
register:

dpld (fype, address, sp_dest)
dpst (type, sp_src,address)
type = {u, du, i, di, £, df}

dpld(i, [%i0], %i1)
dpst (i, %11, [%i0})

This instruction generates code to prevent the preceding and following instruc-
tions from overlapping in the instruction pipeline of the VUs. (See Appendix C.)

dpsync ()

addv (f,v0,V1i,Vv2)
dpsync ()
mulv (£,V1,V2,V3)

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

VU Progrdmmer'k Handbook

6.9 CDPEAC Special Instructions

These control operations are always used as single statements, and typically per-
form some useful operation on VU or SPARC registers and/or memory locations.

VU Internal Register Modifiers: These operations expand into CDPEAC
instructions with special modifier flags that set the values of one or more of the
following VU internal registers: '

dp_vector_mask mode Default vector mask mode

dp_stride_memory Default memory stride
dp_stride rsi Default rS1 register stride
dp_vector_length Default vector length
set_vmmode (vmmode) Sets dp_vector_mask_mode to vmmode
set_mem_stride (stride) Sets dp_stride_memory to stride

set_rsl_stride (rsi_stride) Sets dp_stride_rsito rts_stride
set_vector_length(vlen) - Sets dp_vector_length to vien

set_vector_length and vmmode (vlen, vmmode)

set_vector_length and rsl stride(vlen,rsl_stride)

set_vector_length and rsl_stride_and vmmode
(vlen,rsl_stride, vmmode)

Vector Mask Load/Store: These operators move the value of the vector mask
register to or from the specified VU data register (dreg).

ldvm(dreg)
stvm (dreqg)

ldvm Vi
stvm Vi

CDPEAC Function Setup/Cleanup: These functions set up (and clean up) the
VU registers before and after a user-written CDPEAC routine. (Usage Note:
These operators are not always necessary, depending on the use of a CDPEAC
routine, but it is not harmful to include them. Their use is recommended.)

dpsetup () Initializes the SPARC registers for use with CDPEAC
code; must appear at start of block of CDPEAC code.

dpcleanup () Restores state of VU control registers for CM Run-Time
System code. Must appear at end of a block of CDPEAC
code that can be called by the CMRTS.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 7
Using DPEAC/CDPEAC in Programs

7.1

The most common use of DPEAC and/or CDPEAC in a CM-5 program is for
writing highly efficient subroutines that are called from a program written in a
high-level language. This chapter presents a simple example of just such a sub-
routine, shows how it can be written in either DPEAC or CDPEAC, and
demonstrates how to call it from a CM Fortran program.

Example: An Arithmetic Subroutine

The subroutine described in this chapter calculates a specific arithmetic formula,

— b2+ ¢
J 3.69a + 25.0b

elementwise across a set of four array arguments, a, b, ¢, and d. Each of these
variables represents an element of a high-level array that is passed into the
DPEAC or CDPEAC subroutine. The high-level program that calls this subrou-
tine handles allocation of the arrays and subsequent processing of the results
produced by the subroutine.

Note: You do not have to structure your programs as shown in this chapter to .
make use of the CM-5’s vector units. The CM Fortran and C* compilers auto-
matically define DPEAC routines in the process of compiling standard CM
programs, and thus implicitly use the vector units whenever they are needed. The
methods shown in this chapter allow you to duplicate the compiler’s work for
specific routines that you choose to write by hand.

CMosrt Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 105

106 VU Programmer’s Handbook

7.2 Low-Level Program Structure

A CM-5 program that includes user-written DPEAC or CDPEAC routines has
four main parts, each of which is contained in a separate source code file:

* The DPEAC or CDPEAC subroutines, which execute in identical copies
on each of the processing nodes.

= The node interface functions, one for each DPEAC or CDPEAC roufine,
which define which node routines can be called from the PM.

= The host interface functions, on the PM, which broadcast a call to the node
interface functions on all the nodes.

® The main program, written in a high-level language (such as CM Fortran),
which calls the host interface functions to invoke the node subroutines.

The overall program structure is as shown below:

Partition Manager (PM)

The host and node interface files describe the relationship between a specific set
of function calls made on the PM, and a specific set of functions that are defined
on the nodes. The interface files provide the “glue” that allows these function
calls and definitions to compile and link correctly.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 7. Using DPEAC/CDPEAC in Programs 107

7.2.1 Program Files

Thus, a program with DPEAC or CDPEAC subroutines has four component
source code files:

A main program file, written in a high-level language.

A host interface file, containing the definitions of all host interface func-
tions called in the main program.

A node interface file, containing the definitions for all node interface
functions called in the host interface file.

A subroutine code file, containing the definitions of all DPEAC/CDPEAC
routines called from the node interface functions.

In addition, there is typically a makefile that is used to build the program via the
UNIX make utility.

Source File Naming Conventions

The tools used to compile and link a program with DPEAC/CDPEAC routines
impose the following restrictions on the program files:

The host interface file must be written in C, and itS name must end with
the suffix “.c”. :

The node interface file must also be written in C, but its name must end
with the suffix “.pe”. When the program is compiled, this file is run
through a filter that produces a “. ¢” file for compilation.

The subroutine code file must be written in DPEAC or CDPEAC, and
must have the suffix “.pe.dp” (for a DPEAC routine file) or “.pe.cdp”
(for a CDPEAC routine file).

It is a convention of the compilers and linkers used on the CM-5 that all object
files containing code to be executed on the nodes must have the suffix “.pe.o”.
The suffix restrictions described above ensure that all object files produced in the
compilation process will have the correct object file suffixes for the linker.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

108 VU Programmer’s Handbook

7.2.2 Host/Node Interface Naming Conventions

The tools used to compile and link a program with DPEAC/CDPEAC routines
also impose the following restrictions on function names used in the program:

® The host interface function for each routine can have any legal name in the -
main program, but it must be defined in the host interface file with the
same name, in all lower case, and with a trailing underscore “_” added.

(For example, in the sample program below, the host interface function is
called NODECALC in the CM Fortran source file, and nodecalc_ in the
host interface file.)

= The node interface function for each routine can have any legal function
name in the host interface file, but its definition in the node interface file
must have the same name with the prefix “cMPE_" attached.

(In the sample program, the node interface function is called nodecalc
in the host intgrface file, and CMPE_nodecalc in the node interface file.)

= The DPEAC (or CDPEAC) subroutine can have any legal function name
in the node interface file, but its definition in the subroutine file must have
the same name (and, in a DPEAC subroutine file, must have a leading
underscore “_" character added).

(In the sample program, the subroutine name used is nodecalc in the
node interface file, nodecalc in the CDPEAC subroutine file, and
_nodecalc in the DPEAC subroutine file.)

For the Curious: These special prefix and case requirements make it easy for
the compiler and linker to determine which host and node interface functions
correspond to which routines in the main program and the DPEAC code file.

The “cMPE_” prefix for the names of node functions callable from the host has
the additional purpose of making it unlikely that a random function name used
in the main program would happen to match a function name defined in the host/
‘node interface.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 7. Using DPEAC/CDPEAC in Programs 109

7.3 Passing Arrays into DPEAC and CDPEAC Routines

The arguments of a DPEAC or CDPEAC subroutine depend on the manner in
which the entire program is executing on the CM. For example, in programs that
manipulate parallel arrays (such as the sample program in this chapter), the
DPEAC or CDPEAC routine on each node handles the array subgrid that is
stored in that node’s memory.

In this case, the arguments to the DPEAC or CDPEAC subroutine are typically
the memory addresses of the array subgrids located in the node’s memory. The
subroutines on each node handle the subgrids stored on that node, in such a way
that every element of each array argument is handled by some node in the CM.

(There are other ways to pass data into DPEAC or CDPEAC routines. For exam-
ple, you can use OS routines to allocate parallel memory yourself — Appendix H
describes how to do this. You can then pass the addresses of these parallel
memory regions into DPEAC or CDPEAC subroutines. However, this method
of argument passing is not discussed further in this chapter.)

In CM Fortran, arrays are not referenced by the address of the array data itself,
but instead by a pointer to a data structure known as an array descriptor. This
descriptor contains, among other things, the address of the start of the array and
the number of elements in the array.

Array descriptors are stored on the partition manager. The array location in the
descriptor is a memory address in node memory. Thus, part of the job of the host
interface function is to get the array location from the descriptors of any array
arguments, and pass these memory addresses on to the node interface function.

The contents of an array descriptor can be extracted by calls to special accessor
functions that are part of the CM Run-Time System (CMRTS). For example:

CMCOM_cm_address_t CMRT_desc_get_cm_location

(arr_desc) ;

int CMRT_desc_get_subgrid size(arr_desc);
CMRT_desc_t arr_desc;

CMRT desc_get_cm_location returns the starting address (in node memory)
of the array described by arr_desc.

CMRT_desc_get_subgrid_size returns the number of elements of the array
that are stored in the memory of each VU (the “subgrid size” of the array). This
value is required by the DPEAC routine, which must determine how many
memory locations to operate on.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

110

vu Progra)nmer s Handbook

7.4 Sample Program Source Files

7.5

The sample program described below consists of five files:
® A main program written in CM Fortran: main.fcm

= A host interface file: host.c

= A node interface file: interface.pe

= A DPEAC subroutine file: | dpeac_code.pe.dp

= A CDPEAC subroutine file: cdpeac_code.pe.cdp

The DPEAC and CDPEAC subroutine files contain the same routine, written
appropriately for each of the two instruction sets.

The program is designed so that it can be compiled with either the DPEAC or
the CDPEAC subroutine file; the main program and host/node interface files are
identical in both cases. A sample makefile is also provided; this makefile can be
used to compile the program with either (or both) of the subroutine files.

The Main CM Fortran Program (main.fcm)

The CM Fortran program main. £cm does three thmgs
= It initializes its arrays by assigning

a = 3.0

b = random numbers between 0.0 and 1.0
¢ = 19.0 ‘

d = 0.0

=]t evaluates the formulad = (b*b+c)/sqrt (3.69*%a+25.0%b) twice:
first, by a ordinary CM Fortran expression (which is internally compiled
into DPEAC code by the CM Fortran compiler); second, by a call to the
host interface function NODECALC.

= The program then prints out the argument arrays and the computed results,
for each of the two methods, to demonstrate that the two methods do in
fact return the same values.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 7. Using DPEAC/CDPEAC in Programs

The main.fem program is as follows:

program main
parameter {(length=32)
real a(length), b{length), c(length)
real dh(length), dn(length)
a=3.0
b=0.0
call CMF_RANDOM(b)
¢=19.0
¢ Host calculation
dh=0.0
dh= (b*b+c) /sqrt(3.69*a + 25.0%*b)
c Node calculation
dn=0.0
call NODECALC(a,b,c,dn)
¢ Display results for comparison

print *,’’
print *,’Computing d=(b*b+c)/sqgrt(3.69*a + 25.0%b):’
print *,’ Item ',’ A= ! B= L, C= *,’ Host ',’
Node *
do 10 i=1,length
print 900, i, a(i),b(i),c(i),dh(i),dn(i)
10 continue
print *,’’
stop
900 format (i6,f6.2,f6.2,f6.2,£6.2,£6.2)
end

7.6 The Host Interface File (host.c)

The host interface file contains a single function, nodecale_, which does three
things:

®]t calls CMRT desc_get_cm_location once for each of the array argu-
ments to get the actual node memory locations of the arrays.

= Because all the array arguments must have the same size and shape, the
host interface function calls CMRT desc_get_subgrid size just once
to get the subgrid size of the array arguments.

* Finally, the host interface function makes a call to the corresponding
nodecalc function to execute the DPEAC routine.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

112 VU.Prograhzmeris Handbook

The host . c host interface file is as follows:

#include<cm/cmrt.h>
void nodecalc_ (a,b,c,d)
CMRT desc_t a,b,c,d;
{
CMCOM_cm_address_t aloc,bloc,cloc,dloc;
int size; '

/* get memory location for each array */
aloc=CMRT_desc_get_cm location(a); '
bloc=CMRT desc_get_cm location(b) ;
cloc=CMRT desc_get_cm location{c);
dloc=CMRT_desc_get_cm location(d);

/* subgrid size is same for all arrays */
size=CMRT desc_get_ subgrid size(a);

/* call node interface function */
nodecalc{aloc,bloc,cloc,dloc, size);

7.7 The Node Interface File (interface.pe)

The node interface file contains one node interface function, CMPE_node.
CMPE_node takes the array addresses and subgrid size provided by the host func-
tion and passes them directly to the DPEAC (or CDPEAC) subroutine.

The interface.pe node interface file is as follows:

void CMPE_nodecalc (aloc,bloc,cloc,dloc, size)
unsigned aloc,bloc,cloc,dloc,size;
{
CMPE_nodecalc(aloc,bloc,cloc,dloc, size);

}

Note: This file is passed through a filter, mkpestubs, which converts it into an
appropriate C code file. (This filtering step is handled internally by the makefile.)

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 7. Using DPEAC/CDPEAC in Programs ' 113

7.8 The DPEAC Subroutine File (dpeac_code.dp)

This file contains the DPEAC version of the arithmelic subroutine:

#include <cmsys/dpeac.h>

dpentry _CMPE_nodecalc,0,0 ! Entry point

! By convention, function args are in SPARC ”input”
! registers, %i0, %il, etc.

! Symbolic names for registers:

| Note that ”"%" prefix is used explicitly in code
! to make SPARC/VU register distinction clear.
define A io0

define B i1

define C i2

define D i3

define Size i4

! By default, CM Fortran sets vector length to 8,
| and vector mask mode to "always”. The following
! is insurance; when it is not needed, it is simply redundant

set_vector_length and vmmode 8, always
#define VECTOR_LENGTH 8
|. Formula being evaluated is:
| d=(b*b+c)/sqrt(3.69*a + 25.0*Db)
Loop:
floadv [%B]:4, V2 | (Short format, memory stride)
! Load subgrid slice of B into V2,
! striding by 4 bytes for each of
! the 8 vector elements.
add %B, (4*8),%B ! (SPARC instruction)
I Bump array pointer B to next slice
| in subgrid (4 bytes * 8 elements)
floadv [%C]:4, V3; \
fmadav V2,V2,V3! (Short format, chain-loading)
! Load subgrid slice of C into V3,
!" striding by 4 for 8 elements,
! and mult-add V3=(B*B)+C in same
| operation. .
add %C, (4*8),%C ! (SPARC instruction)
| Bump array pointer B to next slice
! in subgrid (4 bytes * 8 elements)
CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

114 : VUProgrdmmer-’s Handbook

floadv [%A]:4, V4; \
fmulv V4, 0r3.69, V5 \
| (Immediate format, chain-loading)
! Load subgrid slice of A into V4,
| striding by 4 for 8 elements,
! and multiply V5=(3.69*V4) in same
! operation.
add %A, (4*8),%A | (SPARC instruction) -
| Bump array pointer A to next slice
! in subgrid (4 bytes * 8 elements)
fmadav V2, 0r25.0, V5 | (Immediate format)
! Mult-add V5=(25.0%B)
fisgtv V5, V5 ! (Short format)
! Calculate V5=1/SQRT(VS5)
fmulv V5, V3, V5 | (Short format)
1 Multiply V5= (V3*V5) .
fstorev [%D]:4, V5 | (Short format, memory stride)
! Store result in D subgrid slice
! striding 4 bytes for 8 elements.
addcc $Size,~VECTOR_LENGTH, %Size \
! (SPARC instruction)
! Subtract vector length (8) from
! subgrid size argument to see if
! there are subgrid slices left
bne Loop ! (SPARC instruction)
! If result is non-zero,
! go back and do next subgrid slice.
add %D, (4*8),%D ! (SPARC instruction, DELAY SLOT)
! Bump array pointer D to next slice
! in subgrid (4 bytes * 8 elements)

dpretn ! (DPEAC Accessor Instruction)
1 Return from DPEAC subroutine

A few notes on the structure of this program:

® Note that the £loadv and f£storev instructions explicitly specify the
memory stride as 4. An alternative to this would be to set the value of the
dp_stride_memory register to 4.

= CM Fortran sets the following VU control registers to these defaults:

dp vector_length 8
dp_stride_rsi 0
dp stride_memory 0
dp_vector_mask_mode always

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 7. Using DPEAC/CDPEAC in Programs 115

dp_vector_mask_dlrection right
dp alu mode_fast fast, not IEEE

Nevertheless, it is always a good precaution to set these registers to the
values you require within your DPEAC code routines, to avoid unneces-
sary surprises should these defaults change.

® Note that the array size is assumed to be a multiple of 8. Since the vector
length is set to 8, there is no remainder, or “tail” of leftover elements. To
handle a more general case, any “tail” of remaining values would need to
be processed in a separate section of code, by resetting the vector length
to the tail length, and repeating the calculation just once for the tail values.

7.9 The CDPEAC Subroutine File (cdpeac_code.cdp)

This file contains the CDPEAC version of the arithmetic subroutine:

#include <cm/cdpeac.h>
/* CDPEAC sample program.
Formula being evaluated is:
d= (b*b+c) /sqrt(3.69*a + 25.0*b) */
CMPE nodecalc(aloc,bloc,cloc,dloc,size)
unsigned aloc,bloc,cloc,dloc,size;
{
/* Initialize SPARC registers for CDPEAC */
dpsetup() ;

/* By default, CM Fortran sets vector length to 8,
and vector mask mode to ”always”. The following
is insurance; when it is not needed, it is simply
redundant */

set_vector_length and vmmode (8,ALWAYS);

/* Loop over each 8-element subgrid slice */
for (; size ; size -= 8);
{
loadv_u(f,bloc,4,vV2); /* (Short format, memory stride)

. Load subgrid slice of B into V2,
striding by 4 bytes for each of
the 8 vector elements. */

bloc += (4*8); /* Bump array pointer of B to new slice
in subgrid (4 bytes * 8 elements) */

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

116 VU Programmer’s Handbook

join2 (/* (Join of memory and ALU operations) */
loadv_u(f,cloc,4,v3), /* (Short format, chain-loading)
Load subgrid slice of C into V3,
striding by 4 bytes for each of
the 8 vector elements. */
madav (£,Vv2,V2,V3) /* Mult-add V3= (B*B)+C
in same operation. */
): /* (End of join2 macro) */

cloc += (4*8); /* Bump array pointer of C to next slice
in subgrid (4 bytes * 8 elements) */

join2 (/* (Join of memory and ALU operations) */

loadv_u(f,aloc,4,V4),
/* (Immediate format, chain-loading)

mulvi(f,v4,3.69,V5)

): /* (End of

aloc += (4*%8);
madavi (£,V2,25.0,V5) ; /*

isqtv(f,Vs,V5); /*

mulv(£,Vs,V3,V5);
storev_u(f,dloc,4,V5);

dloc += (4*8);

3

Load subgrid slice of A into V4,

striding by 4 for 8 elements. */
/* multiply V5=(3.69*V4)

in same operation. */

join2 macro) */

/* Bump array pointer of A to new slice

in subgrid (4 bytes * 8 elements)*/

(Immediate format)
Mult-add V5=(25.0*B) */

(Short format)
Calculate V5=1/SQRT(V5) */

/* (Short format)
Multiply V5=(V3*V5) */

/* (Short format, memory stride)
Store result in D subgrid slice
striding 4 bytes for 8 elements. */

/* Bump array pointer of D to new slice

in subgrid (4 bytes * 8 elements)*/

/* Clean up VU control registers -- NOTE: not always needed */

dpcleanup ()

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 7. Using DPEAC/CDPEAC in Programs 117

7.10 Makefile for the Sample Program (Makefile)

Below is a sample Makefile that can be used with the UNIX utility program
make to compile and link the sample program described above.

For those who have not used make before, all you have to do is place the five
code files plus this Makefile into the same directory, set that directory as the
current one (i.e., ed to it in UNIX), and then type make to build the program.
(You will want to be logged on to a CM-5 partition manager when you do this,
so that you will have access to the appropriate compilers and libraries.)

Note: When compiling this program with make, you can select either of the two
subroutine code files by providing an appropriate argument. For example:

make dpeac builds the DPEAC version of the program (run_dp).
make cpdeac builds the CDPEAC version (run_cdp).

By default, this Makefile builds both executable versions of the program.

Once you have used make to build the executable files (run_dp and/or
run_cdp), you can run the program by typing the appropriate executable file
name. (Again, you’ll want to be logged on to a CM-5 partition manager.)

The Makefile shown here performs a number of different operations to bring
the pieces of the sample program together:

® The main CM Fortran program is compiled by em£ to produce two object
files, one for the PM (main.o) and one for the nodes (main.pe.o).

= The host interface program is compiled by ce, producing an object code
file (host.o) for the PM.

* The node interface program is compiled by dpcc and then passed through
a stubs filter (mkpestubs) to produce a PM object file (pe-call.o).

* The appropriate subroutine file(s) are assembled by dpas, producing node
object files (dpeac_code.o and/or cdpeac_code.o).

= Finally, the various object code files are linked together (again by cmf) to
produce the executable file(s) (xun_dp and/or run_cdp). '

The Makefile also includes a number of “suffix rule” definitions, which
describe how the various code source files are compiled.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

118 WngraMer'k Handbook

The Makefile is as follows:

#
Makefile to assemble C/DPEAC example programs

By William R. Swanson, 5/5/93
#

=== Setup Definitions ===
Don’'t display commands while building program
.SILENT:

Alias macros that are used to clarify Make syntax
SOURCE_FILE = $<
OBJECT_FILE = $@

debugging: set to -g to compilé for debuggers
DEBUG -

=== Target File Names ===

Names of final executable files
DPEAC_EXECUTABLE = run_dp
CDPEAC_EXECUTABLE = run_cdp

Names of source and object files
MAIN = main

HOST_INTF = host

NODE_INTF = interface

DPEAC_CODE= dpeac_code

CDPEAC_CODE = cdpeac_code

Object file sets

HOST OBJS = $(MAIN).o $(HOST_INTF).o $(NODE_INTF).o
DPEAC_NODE_OBJS = $(MAIN).pe.oO $(DPEAQ_CODE).pe.O
CDPEAC_NODE_OBJS = §$(MAIN).pe.o $(CDPEAC_CODE) .pe.o
DPEAC_OBJS = §$(HOST_OBJS) $(DPEAC_NODE_OBJS)
CDPEAC_OBJS = §(HOST OBJS) $(CDPEAC_NODE_OBJS)

=== Top-level Rules ===

By default, trigger build of both executables
default: dpeac cdpeac

To rebuild, do a clean and then trigger both builds
scratch: clean default -

Trigger build of just dpeac executable
dpeac: $(DPEAC_EXECUTABLE)

Trigger build of just cdpeac executable
cdpeac: $(CDPEAC_EXECUTABLE)

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 7. Using DPEAC/CDPEAC in Programs 119

=== Cleanup Ruleg ===

cleanobj:
echo ”"Removing old objects, stub files, etc.”
mm -f *.0 *,s $(NODE_INTF).c
rm -f *# *#[0-9]* *§ *~

clean: cleanobj
echo "Removing old executable files”
rm -f $(DPEAC_EXECUTABLE) $ (CDPEAC_EXECUTABLE)

=== Program-specific Build Rules ===

CMF driver is used to handle linking:
LINKER = $(CMF)
LINKFLAGS = $ (CMFFLAGS)

Main linking step that builds the executable program:
$ (DPEAC_EXECUTABLE) : $ (DPEAC_OBJS) '
echo “Linking ($(LINKER)) $(DPEAC_OBJS)”
echo “to make executable file \”$(DPEAC_EXECUTABLE)\””
$ (LINKER) $(LINKFLAGS) $(DPEAC_OBJS) -0 $(DPEAC_EXECUTABLE)

Main linking step that builds the executable program:

$ (CDPEAC__EXECUTABLE) : 8 (CDPEAC__OBJS)
echo "Linking ($(LINKER)) $(CDPEAC_OBJS)”
echo “to make executable file *$(CDPEAC_EXECUTABLE)\"”
$ (LINKER) $(LINKFLAGS) $(CDPEAC_OBJ S) -o

$ (CDPEAC_EXECUTABLE)

Host stubs obj file is produced from node interface file
interface.o: interface.c

All other compilation steps are handled by suffix rules
=== Suffix Rules ===

Add CMF and DPEAC suffixes to SUFFIX variable:

SUFFIXES += .fcm .dp .cdp .pe

Clear out default suffix-list and install new list:
.SUFFIXES:

.SUFFIXES: $ (SUFFIXES)

To compile a C file, run it through $(CC)

cc = CC
CFLAGS = -DCM5_DASH -0 $ (DEBUG)
.C.0:

echo "Compiling ($(CC)) $(SOURCE_FILE) into $(OBJECT FILE)”
$(cC) $(CFLAGS) -c $(OBJECT_FILE) §$(SOURCE_FILE)

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

120 - VU Programmer’s Handbook

To compile a CMF file, run it through $(CMF)
Note: This step produces _two_ object files: .o and .pe.o
CMF = cmf2.0
CMFFLAGS = -cm5 -vu -0 -Zcmld -Bstatic $ (DEBUG)
NOLINK = -C
LINK =
.fcm.o:
echo "Compiling ($(CMF)) $(SOURCE_FILE) into
$ (OBJECT_FILE) and $(OBJECT_FILE:.o=.pe.o)”
$(CMF) §$(CMFFLAGS) §$(NOLINK) $(SOURCE FILE)

To assemble a DPEAC file, run it through $ (DPAS)

DPAS = /usr/bin/dpas
DPFLAGS = -t
.dp.o:

echo ”Assembling ($(DPAS)) §$(SOURCE FILE) into
$ (OBJECT_FILE)}"”
$ (DPAS) $ (DPFLAGS) -o $(OBJECT_FILE) $(SOURCE_FILE)

To assemble a CDPEAC file, run it through $(DPCC)
This produces one object file: .o

DPCC = /usr/bin/dpcc
DPCCFLAGS =
.cdp.o:

echo ”Assembling ($(DPCC)) $(SOURCE_FILE) into
$ (OBJECT_FILE) "
$(DPCC) $ (DPCCFLAGS) -o $(OBJECT FILE) % (SOURCE_FILE)

To process a DPEAC node interface file, rum it through
$ (MKSTUB)
MKSTUB = /usr/bin/mkpestubs
MKSTUBFLAGS = -n
.pe.c:
echo "Processing ($(MKSTUB)) $(SOURCE_FILE) into
$ (OBJECT_FILE)”
echo ’#include <cm/cmcom_types.h>’ > $(OBJECT_FILE)
$ (MKSTUB) $ (SOURCE_FILE) $(MKSTUBFLAGS) >> $(OBJECT_FILE)

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 7. Using DPEAC/CDPEAC in Programs 121

7.11 ‘Sample Run of the Program

Here is a UNIX session in which the sample program is built and run. (The fol-
lowing assumes that you have logged on to the partition manager of a CM-5, and
are currently in a directory containing the five code files and the makefile.)

%$: make clean
Removing old objects, stub files, etc.
Removing old executable files

%: ls

Makefile host.c out
cdpeac_code.pe.cdp interface.pe
dpeac_code.pe.dp main.fcm

%: make

Compiling {(cmf2.0) main.fcm into main.o and main.pe.o

cmf [CM5 VecUnit 2.0 Beta 2]

Compiling main.fcm

Compiling (cc) host.c into host.o

Processing (/usr/bin/mkpestubs) interface.pe into \
interface.c

Compiling (cc) interface.c into interface.o

Assembling (/usr/bin/dpas) dpeac_code.pe.dp into \
dpeac_code.pe.o

Linking {(cmf2.0) main.o host.o interface.o \
main.pe.o dpeac_code.pe.o \
to make executable file ”run dp”

cmf [CM5 VecUnit 2.0 Beta 2]

Linking...done.

Assembling (/usr/bin/dpcc) cdpeac_code.pe.cdp into \
cdpeac_code.pe.o

Linking (cmf2.0) main.o host.o interface.o \
main.pe.o cdpeac_code.pe.o \
to make executable file ”“run_cdp”

cmf [CM5 VecUnit 2.0 Beta 2]

Linking...done.

24.1u 16.58 2:22 28% 0+676k 21+652io0 177pf+0w

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

122 Wngerk Handbook

%: run dp

Computing d=(b*b+c)/sqrt(3.69*a + 25.0%*b):

Item A= B= C= Host Node
1 3.00 0.77 19.00 3.56 3.56
2 3.00 0.77 19.00 3.55 3.55
3 3.00 0.67 19.00 3.68 3.68
4 3.00 0.59 19.00 3.81 3.81
5 3.00 0.19 19.00 4.78 4.78
6 3.00 0.44 19.00 4.09 4.09
7 3.00 0.20 19.00 4.73 4.73

. . . < other values omitted >
30 3.00 0.88 19.00 3.44 3.44
31 3.00 0.99 19.00 3.34 3.34
32 3.00 0.39 19.00 4.21 4.21

FORTRAN STOP

%: run_cdp
Computing d=(b*b+c)/sqrt(3.69*a + 25.0%*Db):

Item A= B= C= Host Node
1 3.00 0.06 19.00 5.34 5.34
2 3.00 0.88 19.00 3.43 3.43
3 3.00 0.24 19.00 4.60 4.60
4 3.00 0.25 19.00 4.60 4.60
5 3.00 0.54 19.00 3.90 3.90
6 3.00 0.04 19.00 5.48 5.48
7 3.00 0.91 19.00 3.41 3.41

. . . < other values omitted >
30 3.00 0.50 19.00 3.97 3.97
31 3.00 0.41 19.00 4.16 4.16
32 3.00 0.06 19.00 5.38 5.38

FORTRAN STOP

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendixes

123

Appendix A

AA1

VU Memory Mapping

This appendix describes in more detail the relationship between the physical and
virtual memory mappings of the CM-5 vector units. Note: The diagrams shown
here are a simplification of the detailed memory maps provided in Appendix B.

VU Physical Memory Mapping

The SPARC IU’s physical memory is divided up into memory regions, one for
each possible VU grouping. The memory regions are located at physical address
N00000000 hex, where N is one of:

Memory Region (N) Purpose

0-3 VU 0-3 memory and data regs (read/write).
8 All VUs (write only).
9 VUs 0 and 1 (write only).
B VUs 2 and 3 (write only).
F VU control registers and ROM.

Within each of the VU memory regions (with the exception of the control regis-
ter region, described separately below) there are three subdivisions, indicated by
the second hex digit of the physical address:

Physical Address (hex) Purpose

Nsommmmmm Instruction memory space.
Noommmmmm Data memory space.
Naoooommm VU data registers.

In each case, the mmmmmm indicates the range of addresses permitted within the
corresponding memory space.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 125

126

Vvu Pragra}nmer 5 Handbook

A.1.1

A.1.2

VU Memory Spaces

The data space and instruction space of a VU memory region in fact refer to the
same piece of VU memory. A single memory location can thus be accessed in
two ways: by an instruction space address, which triggers a VU operation, or by
a data space address, which does not.

VU instruction space memory addresses trigger VU operations. A VU operation
begins when a singleword or doubleword DPEAC instruction is written to an
address in instruction space memory. The address written to provides the
memory operand for the DPEAC instruction. The VU space in which the address
is located selects the VUs that execute the instruction.

VU data space memory provides access to the parallel memory of the VUs with-
out an accompanying VU operation. Data space memory operations are treated
as normal memory accesses.

VU Parallel Stack and Heap

The memory region referred to by the data and instruction areas includes two
regions: parallel stack and parallel heap. Theése occupy “stripes” of memory
across the memory regions of all possible VU groupings:

Physlical Memory Sample

N VU Region Paralle! Memory Layout

Instr. Space

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

A.13

A2

VU Register Spaces

The VU data register region occupies 128 words of space, from physical address

"N40000000 to N400001FF hex. This memory region corresponds to the 128

registers (RO - R127) accessible through DPEAC.

The VU control register region of VU physical memory is itself subdivided into
regions for each possible VU combination.

Physical Memory VU Register Regions VU Register Areas

-ROM & Regs.

(Supervisor Area)
— Control Registers —
(User Area)
VU3 — - .
VU2 . "ROM Memory
VU 1 VU O
vuo
Physical Address (hex) Purpose

FFNoommmm ROM memory.
FFNsommmm Control registers (supervisor area).
FFNssmmmm Control registers (user area).

Again, N represents the seven possible combinations of VUs, as listed above.
Remember that the pair of VUs on a single chip share all control registers except
for dp_vector_mask and dp_vector_mask_buffer. Any change to a shared
register affects both VUs that share it.

VU Virtual Memory Mapping

The virtual memory mapping for each CM node is established by CMOST, the
CM-5 operating system. The VU memory and register regions are mapped into
virtual memory by function, rather than by VU:

Virtual Address (hex) Purpose

40000000 Instruction space stack regions.
60000000 Instruction space heap regions.
80000000 Data space stack regions.

A0000000 Data space heap regions.

€0000000 VU register (control and data) regions.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

rd

128 VU Programmer s Handbook

Each of the five virtual memory regions is divided into VU regions, with offsets
as follows:

Address Offset (hex) Purpose

00000000 VU 0 region.
04000000 VU 1 region.
08000000 VU 2 region.
0C000000 VU 3 region.
10000000 All VUs region.
14000000 VU 0/1 region.
18000000 VU 2/3 region.

Pictorially, the virtual memory mapping is as follows:

Virtual Memory VU Reglons

‘ Parallel Stack
VU Registers e
parallel heap

~ Instr Space - ng V1U Vél
pal’allel stack = . " L) L
parallel heap

- xasior vz

- : VU1

5 ' vuo

The VU control and data registers for each VU combination are mapped together
into a single region:

Virtual Memory VU Register Reglons
N _

VU Register Areas

VU Registers G
parallel heap Control Registers
- F:::mjpace = {Supervisor Area)
parallel heap
—~ Data Space — zg:
parallel stack VU1 Control Registers
vU O (User Area)

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

ppendix A. VU Memory Mapping : : 129

A.3 VU Virtual Memory Symbolic Constants

For each virtual memory region and VU combination, there is a corresponding
symbolic constant that specifies the starting address of the corresponding
memory region. These constants are defined in the header file <cmsys/dp.h>.
The names and current values of these constants are shown in the tables below:

Instruction Space Stack:

VU Region Programming Constant Name Address (hex)
vuo DPV_STACK_INST_PORT_0 0x40000000
A4 DPV_STACK_INST_ PORT_1 0x44000000
vu2 DPV_STACK_INST PORT_ 2 0x48000000
VU3 DPV_STACK_INST_ PORT_3 0x4c000000
All VUs DPV_STACK_INST PORT_ALL 0x50000000
VU 0/1 DPV_STACK_INST PORT O_AND_1 0x54000000
vu23 DPV_STACK_INST PORT_2_ AND_3 0x58000000

Instruction Space Heap:

VU Region Programmngg Constant Name Address (hex)
vuo DPV_HEAP_INST PORT 0 0x60000000
vuo DPV_HEAP_INST PORT_1 0x64000000
vUuo DPV_HEAP_INST_ PORT_ 2 0x68000000
vuo DPV_HEAP_INST_PORT 3 0x6c000000
All VUs DPV_HEAP INST PORT ALL 0x70000000
VU 0/1 DPV_HEAP_INST PORT O_AND_1 0x74000000
VU 2/3 DPV_HEAP_INST PORT 2_AND_3 0x78000000

Data Space Stack:

VU Region Programming Constant Name Address (hex)
vUuo DPV_STACK_DATA_0 0x80000000
VU1 DPV_STACK DATA 1 . 0x84000000
VU2 DPV_STACK_DATA 2 0x88000000
VU3 DPV_STACK DATA 3 0x8c000000
All VUs DPV_STACK_DATA_ALL 0x90000000
VUs 0/1 DPV_STACK_DATA_0_AND_1 0x94000000
VUs 2/3 DPV_STACK_DATA 2_AND 3 0x98000000

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

130

vu Progrdmmer s Handbook

Data Space Heap:

VU Region Programming Constant Name Address (hex)
vuo DPV_HEAP_DATA_ 0 0xa0000000
VU1 DPV_HEAP_DATA_1 0xa4000000
VU 2 DPV_HEAP DATA 2 0xa8000000
VU3 DPV_HEAP_DATA 3 0xac000000
All VUs DPV_HEAP_DATA_ ALL 0xb0000000
VU 0/1 DPV_HEAP DATA 0_AND 1 0xb4000000
VU 2/3 DPV_HEAP_DATA_2_ AND_3 0xb8000000

VU Data Registers:

VU Region Programming Constant Name Address (hex)
vuo DPV_DATA_REGS_0 0xc0800000
VU1 DPV_DATA_REGS_1 0xc4800000
vu2 DPV_DATA_REGS_2 0xc8800000
\AVK] DPV_DATA_REGS_3 0xcc800000
All VUs DPV_DATA_REGS_ALL 0xd0800000
VU 0/1 DPV_DATA REGS_O_AND_ 1 0xd4800000
VU 2/3 DPV_DATA REGS_2_AND_3 0xd8800000

VU Control Registers (user area):

VU Region Programming Constant Name Address (hex)
vuo DPV_CTL_REGS_0 0xc0000000
VUl DPV_CTL REGS_1 0xc4000000
vu2 DPV_CTL_REGS_2 0xc8000000
vu3 DPV_CTL_REGS_3 0xcc000000
All VUs DPV_CTL_REGS_ALL 0xd0000000
VU 0/1 DPV_CTL_REGS_O_AND_1 0xd4000000
VU 2/3 DPV_CTL_REGS_2_AND_3 0xd8000000

CMosr Version 7.2, August 1993

Copyright © 1993 Thinking Machines Corporation

Appendix A. VU Memory Mapping

A.4 VU Physical/Virtual Memory Correspondence

The diagram below summarizes the above description of the relationship
between physical and virtual VU memory regions:

Virtual Memory

" | FFFF FFFF

Physical Memory Regions

Vo VO VU VU ALL VU VU
0 1 2 3 Vvus 0/1 2/3

VU Control and _
Data Regs

RS I heap -
VU Data —

R4 T stack]
R3 heap -
j— VU Inst —

T stack .

R6

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix B
VU Memory Maps

On the following pages are a two-sided memory and register map showing the
overall layout of VU virtual memory and of the VU data and control registers,
a one-page diagram showing the relationship between VU physical and virtual
memory, and a quick-reference sheet showing the starting memory addresses of
the various VU stack and heap regions.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 133

800X%0

a0 - :
0TO0X0 mis R momme " Auo uojssjused wus uothe1 paloaTes ojut 3985330 = 000 0
ms sm3was bu dp * ejum/peel Josjaledns Sejeojpu] Ms Is
8TO0X0 'ms Buqep_zoz3e dp S1Tq 30919s eBare 19381691 TOoI3U0D = DD DD
020X0 =roane" (epis es1enas uo sBugs)| eeg) 83Tq 109T9s uotbod nA = AAAQA
8Z0%0 = Wubtetelid A Spieyans L Jeis|Bai sejealpul * §31Tq 309T19s uotba ¥y d
4 MIS opow 20100 adnizeuy dp dp - ATq 3097 Ibay =
0€0X0 [yys Tepon-sseoov Azouew dp sue)sjBeu pejejes ejeojpu; sexog [
8E0X0 [\ swoapuds peq ow dp ">ﬂ¥
0%0X0 s 20320 peoioy dp e
870X0 pmus zoopyovwq Bwaf dp
05S0%0 [s ot Gp €661 E-N0
MWNHM MS uuuo.nlluouucull nnln-lullnv Aieyapidold pue [epuapUOD 0000 0000%0
IS ysexzex ow dp * uopeiodio) ssujysew Bupjuiyl 000Z 0000X0
890%0 'pe asoubez Buaf ap 0000 0000X%0
0L0X0

8.L0%0
JL0X%0

0000 0020%0
00TX0

Y0IX0 qabuey z0308A dp 0000 00¥%0X%0 0000 0002X0 =

80TX0 Zzowew epyaas dp si19)1s1bay IN

J0TX0 18T opyaas dp 0000 0090%0 0000 0TOZXO

0TTIX0 uﬂuaun!’l& .

vITX0 z033mq Yo 203004 &P 0000 6080%0 0000 000¥X0

8TTX0 opow IS 203004 dp "

JOTTX0 woj3aoeITp JsvE Zojoea dp 0000 0OVOXO - |- yoels zy
0ZTX0 oTqwue am3vas Gp , 0o ———IsuUl NA
YZIX0Ine smavas dp 0000 00D0X%0 : @
8ZTX0 P = deey €¥
22TX0 SF

0ETX0 0000 00d0XO0

~—— EL:

222 P Y e M (eazy.iasq).. >0000 000TX0 A @ vy

BETXO g™ eraqwue sanzzeauy dp * H:jonuo S.NA TV) — e1ed NA —

DETX0 weeB eiquue adnazerut Gp I 0000 0800%0 : @

0vIX0us TweTo adnizeauy op ™ = %0: sy
X — e =

g COTE I N 0000 007TX0

8Y1XO0 Ig TSTY smexppv ped dp *

ovTX0 |35 aoT sEeappv ped dp os|AMedns): 0000 009TX0 | i sBay ejeqg .

0STXO Fig™ usTy woyaonxasuy veq dp 13); ; .| Ppuejonuoy

VSTXONis _ sevueronmrsiped e | 0000 08TOX0 0000 008TX0 0000 0003X0

8GTX0 1S FUGWSTS IUSIIND AP

OSTX0
09TX0
voTX0

0000 OOVIXO0

SIPwET d

Ad4d AATX0
-u..lanun.ﬁul dp T

89TX0 9SO xay 0000 O0DIXO0 0000 0084X0
O9TX0
0LTX0 =°_m°I NA o—nEﬂw 0000 00dATXO

0000 0¥84X0
Addd J3IIX0
198)J0 Xay ssaippe xoy

VLTX0
8LTXO |
JATX0

1esyo

d444 A44TX0

(10sja19dns pue 1osn)
xou si9ysibay [onuo) suojbay NA depy EoE,uE jenujA epoN

A 52T - ,
uopeiodi n—hl |SuUappuod go14q v9 s L4 1 Juemets dp
0D Iyoew Bupjupyl seafq zE < 8 0 asTp1-dp M 4 3593 opou nye dp
8034q 9T ’ oS ¢ o punox spow nye dp
: '8 .
promotanop IS od ‘ouieN Ploid ozS
€ JRR— - IS :sod 1oweN pieid
pIom z 19 3uexInd dp "hﬂﬁ_mﬂm .
poazTey . epow nrv dp :s9isiboy
214q 0
nﬂnlb uoporsuel) FTYCTY e @ o715 uoTaoEsURII BERIPPY Ped dP QQ—. 0@—. ow3~snqui dp
od4y sweIppy peq ap u”Eﬂz ‘—QE * ‘ Ugu.v-.-OMuOmwﬁauulnuwugﬂlvm&l.% ‘ .v . >.00_=|n=n—Elﬂﬂ
1 4 0 yS1y sse1ppe peq dp v 0 Aequ snqui dp
peazesel 51-9 oz " puesn’ sngqu dp
pue peon auos 1S isod ‘oweN pioid 192)s :sod awi
91 3u8I9YOD 510! — — . H . ™ >
evepTTeANT s ubTq ssexppe peq dp 49isiBay 2o snau . N Piotd
pue 237Im JUEISYOD 3 snqu dp .._Q—w_uﬂ
v
pesax JuaIaYod € L p— _
o ©IVPTTRAUT 3USISYOD c oL uu uMMIM-.umunlnu €l (:]1 JowTy Ysa13ex oW dp
- _ nje:
S o Feddn”s3yuyT deed dp peet T 113 kuovuoﬁ.lnzu unlnc 9z|s :sod owe| 9
1 0 18m07 53 TWFT deey dp o 0 vi 23Tn8ax WIouop | o - N PioH
. . : Bne3s (t:] o ¢ .
zS :sod :3weN pisld -h”uﬁuu topossuen ‘anjeA €l uguwulnm:lmﬂununIM aseazex oF dap ..—ﬂﬁm_mﬂm
- — ssoxppy ped dp 19| x -~
sapuT deey dp :i9)SiBoy HIeN PISH m" ATReST eATTINY mame 9P L8 opou 10119 po0I07 P
1705 Uy BN3E3S dp 8 0 I . -
sL oL S ” Aunuouvuu Teotsdyd 30 €3Tq *sS'wW Y ol 1qnse1 Beu snjeys dp roz1S 0@ 20119 padIoy dp
Pels Tq SeeIpPY PUq ¢ . — * S0, H
Sl 0 IamOT S3TWIY Yoeas dp "Ped dp SWEN PI3Id M 3tnses sod en3e3s dp d *SWeN pidld
. _ JInsei 010Z BN3LIE ¢ I0119 pedixoy dp 48 b
t9z|S S0 - — — - dp :19)S|D3Y
d _ aweN piotd Y579 sseappe peq dp :10ys)160y L anduy wxousp enye3E dp
S3TWIT jyowas dp uhﬂwﬂ_mﬂm spjol4 uojpoesuel] w—.— an 9 poubTsun eafiebeu snje3s dp 8 € Junoos sn3eas ouw dp
S MOTFI2A0 10603UY sujels dp € 1] paalesaI snjels ouw dp
v uotjeiado PYTRAUT snjeas dp 192|S :80d TOWEN pIo
(4 eaTjefou Junod” Ip TesTd/esnes TU ¢ noT3T0ATnITIS AP sn o P
L} (eTqeue ou) ssa00¥ SjoWSX PFTRAUT dp M noT33opuN wnIEIs dp Jeas o dp :10181694
010z Aq » —
Om—. 3dn1zequy Bea(dp 0 0z~ Aq u33v|m=u3n|mv b (] 8 opoul Tewyl uojjoesueiy dp
8 J— s zo136AzomOU™dp 503 Joexsur snae3s dp 91 0 3ese1d zewyi uojiowsuezy dp
L andoywousg-aTvdp aTney reuzsauy dp _ ‘9weN pieid 0z|s :sod 0
9 peubysun eatjefeu niv dp M etbuts” Azowew dp eTqeus snye3s” dp ~I=D.QDQ||QU TOWF - o PO
. ~ — 3 uof3ow - .
w moT310A0 10603uy NTE dp s uuou“um fzomou—ap | (S0P ¥ ‘suomssod uq eurss) 1918162y Tiowsweas—dp MAlsiboy
PTeAuF NI oTprTeATY dp _ € ~ou
€ gauu»%lﬂ”l” 14 WOTSTIIOS 93TIN I23s5Tber dp 4 @ puos ny¥ spou ysw 103004 dp —._. M" polnlinlng
_ - _ ysa opoui ou
[4 MoTgrepun nre dp M 8s900€ [e00Y PYTRAUY dP ¢ 0 prico weul Spou yaww 103004 dp I (1] 8 Eu“”lM”HIUEIH
L oz05Adop o ssaIppe AIowsui pyTeAUT dp 9218 :so0d . ™
0 ﬂbﬂﬁl—.ﬂd g I s83Ippv 19381661 PTTRAUT ¢ ‘oweN !0—& [4 Q wmud “epou ou_dp
3pwxeuy ¥ dp Freaut dp epow Ysew - . 4 9 2780 apOTou "
-s0d) ()} de13-braep™dp b | 10300a dp -101S|BaY ¢ y8depou ow dp
:oweN Piold :80d owe € e=Te opouT il dp
wee16{do} 3dnixejuy dp (doj—adn :SWeN piald se ¢ enTeA~Aouew SpTIIE AP m h Bupmra~epou ou ap
(sey o Uq eures; e aanziel .ﬂ.ﬂ'ﬁﬂ . . 3091100 apou ou dp
suogsod) :61015|69Y | (sDou 4o ‘suomsod va suss . 9z|§ :so0d :oweN pioid :
4q oures) :ss9)5)69y Jra— — 9z|§ :sod owe,
spjaas dp -i9)s|bey _ :awieN pieid
epou ouw dp :191SI69H

(suoibes Ajuo ejum)

. Aiejopudoud pue [epuapyuo)d
(4nokel £661@ EETD ua
nelodion saujyoepy Supjuiyl
Aiowsu uo |1eep Joy iz ||z 2(z|2| was nA
obed }xau 89g)
WwioiviMIB: MIIM
ooiciocic oo o] deaq NA
_ €ENA[ZNA {LNA [ONA
A \
nohe
Aowapy jojjeiRd
0000 0000X0 U 0X0
ﬁ 0000 8000%0
0000 0T00X0 CTXO
A eovdg w3va 0000 0Z00X0
. 0000 0¥00X0 g0
ol & 0000 0800X0
£l 0000 000¥X0 Cevexg
ol 3 (0020 000¥X0
88 0000 0008X0 %0
H 0000 8008X0
" 0000 0TO08X0
SXQ
» 0000 0Z08X0
eouds wop3onIIETI ﬁoooo 0708%0
0000 0808X0 9%0
19sl0 LX0
E»_umom ajdwesg
OW3W NA " 8%0
SNA 11V
T 6%0
" 0ddX0
su| SPeuERg T e
puy jojuo) .. .mmmxm ‘- gxo
s "t pAAX0
..... © ' OONAAXO " 8ddX0 -+ 5%
5 ° " 644AX0 t T aXo0
LY J * T 08NJAX0 T TVddX0 tTTEX0
e 88N4dX0 Tt dddaxomxo
T T 06NdgX0 * 1 0d4X0 Wmﬁm |onuo)n d4X%0
ssaIppy ssaippy ssalppy
|
uoibay uoifay sjdwes suoibay NA A
! owdpy [eaishyd apo
Aowapy |enuIA SpON suoibay NA Js1bay nA sbay |04ju0D sBay |0JjU0D W [eJiSAyd 9pON

c
22
BS
8_.2
[
= QL
82
2o
e
£2
S =
=Cc
=
o
=
X e
c 0
=0
=

M ©1993

VU Stack

(write only regions)

| instr
i gv_x-’mu___msw_pbnm_un o : pace TR ot '~;,:D?V;_S“T_AQK’_@S{.@R?_A:L“L,‘
0XAC00 0000 E sDa‘a § 0x8C00 0000
o DPV_HEAP_DATA_3 pace DPV_STACK_DATA_3
-
> 0x6C00 0000 E '"ss‘"“’“m E 0x4C00 0000
DPV_HEAP_INST_PORT_3 pace DPV_STACK_INST PORT 3
0XA800 0000 E SData E 0x8800 0000
N DPV_HEAP_DATA 2 pace DPV_STACK_DATA_2
-
> 0x6800 0000 E '"ss"“°“°" E 0x4800 0000
DPV_HEAP_INST_PORT 2 pace DPV_STACK_INST PORT 2
0XA400 0000 E sData E 0x8400 0000
DPV_HEAP_DATA_1 pace DPV_STACK_DATA_1
-
> 0x6400 0000 E '“ss"“c“m‘ &' 0x4400 0000
DPV_HEAP INST_PORT 1 pace DPV_STACK_INST_ PORT 1
Ty) Data <
0XA000 0000 0x8000 0000
o DPV_HEAP_DATA_0 o Space o DPV_STACK_DATA_0
S
™M | Instruction |N
0x6000 0000 0x4000 0000
DPV_HEAP_INST PORT 0 o Space o DPV_STACK_INST PORT 0

“Appendix C
VU Pipeline

C.1 VU Instruction Pipeline

The VU accelerator chips execute vector instructions in a pipelined fashion, so
that the operations on successive elements of vector operands can begin on
successive clock cycles.

There are 9 stages to the VU pipeline, each two SPARC cycles long, through
which a VU operation must pass for each element of a vector operand.

Pop. Count Result
Acc. Context Count
Immediate Operand 1 1)y Status Bits to
Ris (load) STVM Rd Vector Mask

Stage Cycle T ,__J T '__f
) [|]
| [] i | I
011(213(415]/6)7 8|91Q1112|1314|1516L17

TT 7 R

Ria Context from | ALU Operand 1
(Memory | VectorMask | MULOpnd12 ALUOpnd1

Indirection) .
Ris Ria (Register Indirection)
(Double-Precision RIs (Single-Precision Load)
Store) Pop. Count Load

A new vector element is started at each VU pipeline stage. Thus, the result of the
operation for element 0 is not generally available until four operations later.

CMosr Version 7.2, August 1993 ‘
Copyright © 1993 Thinking Machines Corporation 139

C.1.1

For example, assuming a four-element vector length, the pipeline pattern is:

r Time_ Element 0 Result Written
Vector T TTTTT[TTd
Elements hlann D | | |
| 11
lement [l |
Hemept R : | '
Hiepepts | | | | | | |
! | | A
i

Element 0 Operands Read

Generally, a destination register (rD) is readable four vector element operations
later. For example, the upper marked box in the diagram above shows a register
written in the second half of the eighth VU pipeline stage for element 0. The
lower marked box shows the same register being read as an operand in the first
half of the fourth stage for element 0 of the next vector operation. The read takes
place in the succeeding SPARC cycle to the register write, so the value read will
be the value written to the register. Any attempt to read the register earlier than
shown above will return the prior contents of the register instead.

Pipeline Hazards

~ 'When two or more vector operations are executed in sequence, the VU chips

attempt to execute them without breaking the pipeline, so that their execution can
overlap. This creates the potential for pipeline hazards, conditions in which
otherwise correctly written instructions can execute improperly when overlapped
in the VU pipeline. These pipeline hazards can be corrected in one of two ways:

® by inserting a dpsynch instruction (see Section 4.4.1) between the
offending instructions to prevent pipeline overlap

® by using the [no}pad modifier to insert padding between instructions
® by rewriting the instructions so the hazard condition no longer exists

) CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

ix pline 141

There are seven possible pipeline hazards:
Hazard 1: Reading from a register written fewer than 4 VU operations ago.

The results of an operation typically cannot be used until 4 operations later.
By default, the VUs pad all operations to a vector length of 4 (including scalar
operations). Thus, an operation of vector length 2 is executed as: operation0,
operationl, NOP, NOP. This avoids hazards as long as vectored data is always
accessed from ascending registers, since the result from the first vector ele-
ment of one vectored instruction will not be needed until the beginning of the
next vectored instruction, which is guaranteed (by the padding) to be 4 opera-
tions later. There are three exceptions to this rule, described under Hazards
2, 3, and 4 below.

Hazard 2: Storing a register value to memory after fewer than 7 SPARC cycles.

If an instruction stores data to memory from a vector of registers, and the data
in the registers is the result of an arithmetic operation, the data must be writ-
ten to the registers 7 pipeline stages before it is stored in memory (for double-
precision), or 5 pipeline stages (for single-precision data). This implies that
a vector length of 7 or more is required for the data to be stored correctly,
assuming registers are computed in the order in which they are stored on the
subsequent instruction (for example, in ascending Ran order).

Performance Note: The dpas assembler, by default, avoids this hazard by
inserting an £nops operation before all instructions that perform stores. Such
operations are padded to 8 cycles. This is effectively the same as assembling
the instruction with a pad modifier of pad: 8.

Hazard 3: Memory indirection after fewer than 8 SPARC cycles.

If an instruction uses indirect addressing of memory, and the vector of
indirection offsets (Ria) is calculated by an arithmetic operation, each offset
must be written to its register at last 8 pipeline stages before it is used. Thus,
assuming the offsets are used in the order in which they were computed (for
example, in ascending Rnn order), a vector length of 8 is required for this
instruction sequence to work correctly. This does not apply to indirect regster
accessing, which has the normal latency of 4 operations.

Performance Note: The dpas assembler, by default, avoids this hazard by
inserting an fnops operation before each instruction that uses memory
indirection, effectively padding it out to 8 cycles. (This is effectively the same
as assembling the instruction with a pad modifier of pad:8.)

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

142 VU Programmer s Handbook

Hazard 4: Loading from second ALU operand after fewer than 3 cycles.

A relaxation of the 4-cycle latency rule is that a number of arithmetic opera-
tions (specifically, those that use the ALU circuitry of the accelerator chip)
only require their second ALU operand (the first operand for shift operations)
to have been written at least 2 operations previously rather than 4. This is
because the second operand is read 2 cycles later in the pipeline than operands
are normally read. The operations for which this exception applies are:

= peg and not

] énc, clas, exp, and mant

= type conversion operations: cvt£, dftof, £todu, etc.

= shifts: shl, shr, etc. (first operand, value to be shifted)

= add, sub

= sub

= 2-operand bitwise logicals: and, nand, xor, etc.

* comparisons: cmp, le, gt, etc.

» triadics: dum, mad, msb, etc. (the operand that is not in the multiply)
An additional hazard occurs with this 2-cycle latency operand because it is
read 2 cycles later in the pipeline. In a vector operation of these instructions,
in the last two element calculations, the second operand register (as it is being

strided) is vulnerable to loads (from memory, or from ACC or EPC opera-
tions) of that register done in the first two cycles of the next instruction.

Hazard 5: Accessing a VU register from the SPARC while the reg is in use.

Another hazard occurs when the SPARC reads or writes registers (via the
dprd and dpwrt instruction) that are being read or written by a currently
active instruction. The dprd and dpwrt operations are not synchronized to
the pipelined instruction stream by the accelerator chip, and therefore can
interact unpredictably. When the SPARC reads a register, as many as three of
the previous instructions can be actively writing the register. When the
SPARC writes a register, only the immediately preceding instruction can be
active.

Performance Note: dpas automatically inserts synchronization code before
dprd and dpwrt instructions to avoid this hazard, though this can be dis-
abled.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Hazard 6: Generating status bits in a VU that is subsequently disabled.

The current implementation of the accelerator architecture has hazard poten-
tial when collecting status. Two VUs are housed on each accelerator chip. If
an instruction is issued that collects meaningful status into vector_mask for
one VU of a pair, and the next instruction is issued only to the other VU on
the same chip, the vector_mask register will be corrupted in the disabled
VU, effectively losing the status collected by the first instruction. To correct
for this, rather than disabling the VU, you can operate it with conditionaliza-
tion enabled and a vector mask of 0’s.

Hazard 7: Chain loading into destination register of a VU exchange.

The current implementation of the assembler architecture disallows chain
loading into a register that is also used as the destination register when the
exchange modifier is used. In particular, the following is illegal:

dumovev V2,V2; duloadv [%$1i1],V2; exchange

This must be recoded to use different source and destination registers in the
arithmetic operations. For example,

dumovev V2,V6; duloadv [%il],V2; exchange

C.1.2 Avoiding Pipeline Hazards

You can avoid hazards by applying the following usage guidelines in writing
your code:

1. Always use aligned vectors: start operations on vector register boundaries
(that is, refer to vector registers by name, Vo, V1, etc.) and process vectors
in ascending order (always use a positive stride).

2. Do not use scalar registers (80 through $31) simultaneously as scalar and
as vector operands.

3. Don’t override the sync default in dprd and dpwrt instructions, and
don’t override the pad: 8 default in DPEAC instructions.

4. When executing an operation that generates status bits, don’t execute a
subsequent instruction that deselects some of the VUs.

5. Don’t chain load into the rD operand in an exchange operation.

CMosr Version 7.2, August 1993
Copyright-© 1993 Thinking Machines Corporauon

Appendix D
VU Arithmetic Operations

D.1

This appendix presents a description of each of the arithmetic operations pro-
vided by the CM-5 vector units, including information about the VU status bits
that are modified by each operation.

Arithmetic Status Results

The computation of each element in a scalar or vector arithmetic operation gen-
erates status information. Arithmetic status is written to the dp_status mode
register as an 18-bit value after each individual computation. Each bit of this
status word indicates a particular item of status.

The dp_status mode register is overwritten after each individual computation.
Therefore, one cannot retrieve the status bits for each vector element in a vector
operation. Instead, bits can be chosen to contribute to (be logically OR-ed into)
a single status bit that is shifted into the vector mask.

The table below lists the bits in the dp_status control register, along with their
programming mask symbols, as defined by the DPEAC and CDPEAC header
files. The symbols shown are defined as integer masks for the indicated bit.

The first five status bits, marked with (*), are the exceptions defined by the
IEEE754 Floating-Point Arithmetic Standard.

Note: The opcode descriptions in Section D.2 include a list of status bits for each
opcode, indicating which of the status bits may be set to 1 by the opcode. Any
status bits not included in an opcode’s list are always set to zero by the operation.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 145

146

VU Programmer s Handbook

:E‘,\ooo«.lmm-hwmp—olg;

[Y e o
LS e N R NS I S]

Mask Symbol

Status

DP_STATUS_ENABLE_MASK_INEXACT
DP_STATUS_ENABLE_MASK_DIVIDE_BY_ ZERO

. DP_STATUS_ENABLE_MASK_UNDERFLOW

DP_STATUS_ENABLE_MASK_OVERFLOW
DP_STATUS_ENABLE_MASK_INVALID_OPERATION
DP_STATUS_ENABLE_ MASK_INT_ OVERFLOW
DP_STATUS_ENABLE_MASK_NEGATIVE_ UNSIGNED
DP_STATUS_ENABLE_MASK_DENORM_INPUT
DP_STATUS_ENABLE_MASK_ZERO
DP_STATUS_ENABLE_MASK_POSITIVE
DP_STATUS_ENABLE_MASK_NEGATIVE
DP_STATUS_ENABLE_MASK_INTEGER_CARRY
DP_STATUS_ENABLE_MASK_INFINITY
DP_STATUS_ENABLE_MASK_NAN
DP_STATUS_ENABLE_MASK_DENORM
DP_STATUS_ENABLE_MASK_UNORDERED
DP_STATUS_ENABLE_MASK_UNDER
DP_STATUS_ENABLE_MASK_DENO

The status bits are defined as follows:

Float result is inexact(*)
Division by zero(*)

Float underflow(*)

Float overflow(*)

Invalid operation(*)
Integer overflow

Negative integer result
Float input denormalized
Float/integer result of zero
Float/integer result positive
Float/integer result negative
Integer carry

Float result is +/- infinity
Float result is a NaN

Float result is denormal
(Internal, do not use)
(Internal, do not use)
(Internal, do not use)

inexact is asserted when the delivered result after rounding differs from
what would have been computed were both the exponent range and preci-
sion unbounded. inexact is never asserted when invalid is active.

divide_by_zero is active when a division by zero is attempted, and the
operands are not invalid.

underflow is active when an IEEE floating-point underflow is detected
after rounding. This flag is also active when an IEEE denormalized num-
ber is clipped to zero in fast mode. under£low is never active when an
integer result is produced.

Implementation Note: Currently, the underflow signal is generated by
the logical OR of the under status with the logical AND of the deno and
zero status bits.

overflow is active when a floating-point result exceeds in magnitude,
after rounding, the largest finite number in the destination format, were the
exponent range unbounded. It is never active when the result of a com-
putation is an integer.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. VU Arithmetic Operations 147

® invalid_operation becomes active when any of the following occur:

1.

7.
8.

A floating-point operation that generates status has a signaling NaN
as an operand.

Two infinities with opposite signs are added.

An infinite floating-point number is an operand in a floating-point-
to-integer conversion. In this case, the result is saturated to the
maximum integer of the proper sign, and int_overflow is set.

An attempt is made to convert to an integer a floating-point number
that is out of the range of the integer. In this case, the result is satu-
rated to the maximum integer of the proper sign, and the
int_overflow bit is set.

. A NaN is an operand in a floating-point-to-integer conversion. The

result will be a zero, and the zero flag will be raised.
An attempt is made to multiply O times infinity.
An attempt is made to divide O by O or infinity by infinity.

A square root of a non-zero number less than zero is attempted.

* The int_over£flow flag is raised when an integer result is to be produced
from an arithmetic operation or conversion, and an overflow occurs. This
occurs in the following situations:

1.

For two’s complement addition, this is the XOR of the msb and the
msb+1 bits.

For unsigned results, this is the value of the msb+1 bit, if the operands
are both positive.

. For conversions, this occurs when a floating-point number outside

the range of a destination integer is converted to integer. (This is sim-
ilar to the “v” overflow bit that one would see on a microprocessor.)

. For integer multiplication, this occurs when a 1 is found in the upper

half of the result.

®* negative_unsigned is active when a negative result is generated for an
unsigned integer during arithmetic and conversions. The result is forced
to zero, and the zero flag is set.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

148 VU Programmer’s Handbook

® denorm_input is active when a denormal operand is detected. This flag
can be active regardless of the underflow handling mode.

" zero is active when the integer or floating-point result is zero. Negative
floating-point zero is also indicated with this flag.

® positive is active when the integer result is not zero or positive, or the
floating-point result is not zero, positive, or a NaN. In the current imple-
mentation, the pos-result signal is generated by the logical NOR of the
zero, negative, and nan-result bits (i.e., positive is set when
these are all clear).

* negative is used during comparison operations, to indicate that the
- second operand is larger than the first operand. (For integer arithmetic
operations, this flag is similar to the “s” or “N” flag found on microproces-
sors.) When an answer is in two’s complement format, the negative flag
will be the value of the msb of the result. When an unsigned result is pro-
duced, the negative flag will always be zero. In floating-point
operations that produce status other than comparisons, the negative flag
will be equal to the sign bit in the result. During conversions, negative
will be equal to the sign of the result.

" integer_carry indicates that a carry has been generated from the msb
of the result in the ALU’s adder during an integer arithmetic instruction.
For shift instructions, integer_carry is equal to the bit to the left of the
msb or the bit to the right of the Isb, depending on the direction of the shift.

® infinity indicates the floating-point result is an infinity of either sign.

® nan indicates that the result is a quiet NaN. It is valid for instructions that
produce floating-point results in the ALU, with the exception of the enc
and move instructions. The enc instruction will not set this status bit, even
if a quiet or signaling NaN is created. '

® denorm is active when the result after rounding and after fast mode clip-
ping is an IEEE denormal number. It is not active when a result after
rounding is an inexact zero. denorm indicates the class of the result and
not necessarily the occutrence of the IEEE tiny condition.

In the current implementation, the denorm signal is generated by the log-
ical AND of deno and the logical NOT of zero.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

149

Implementation Note

The following signals are only used in the current accelerator
implementation, and are included merely to facilitate testing.

® unordered is active for the comparison operation when at least one of the
operands is a signaling or quiet NaN.
- ® under is active when an IEEE floating-point underflow is detected after
rounding. It is never active when an integer result is produced.

® deno is active when the result after rounding and before fast mode clip-
ping is an IEEE denormal number. It is not active when a result after
rounding is an inexact zero. deno indicates the class of the result and not
necessarily the occurrence of the IEEE tiny condition.

D.2 VU Arithmetic Operations

D.2.1 {idif,dfjabs

Takes the absolute value of its operand.

Possible status outputs:

invalid Invalid operand; operand was a signaling NaN.

int-overflow Result overflows the destination integer format.

Zero Result is zero.

positive Result is not zero, negative, or a quiet NaN.

integer-carry Integer carry out was generated during negation
: of a two’s complement integer.

infinity Result is an infinity.

nan Result is a quiet NaN.

denorm Result is a denormal number.

(deno) Result is a denormal number before fast mode clipping.

CMosr Version 7.2, August 1993
Copyright ©® 1993 Thinking Machines Corporation

D.2.2

D.2.3

ok

{i,di,u,du,f,df}add, sub, subr

The add operation adds its first two operands.
The sub operation subtracts the second operand from the first.
The subr operation subtracts the first operand from the second.

Integer overflows during addition are signaled, but the result is not saturated.
Negative results for unsigned integers are saturated to zero, and the negative-un-
signed flag is asserted. '

Note: The accelerator chip handles unsigned subtraction in a nonstandard way.
Whenever a larger number is subtracted from a smaller number, the result is zero,
rather than wrapping. This can occur in the unsigned variants of the subtract
instructions and the triadics with negated operands.

Possible status outputs:

inexact Result cannot be represented exactly.

underflow Result underflows the destination format.

overflow Result overflows the destination floating-point format.
invalid Invalid operand; operand was a signaling NaN or

operands are oppositely signed infinities.
int-overflow Result overflows the destination integer format.
negative-unsigned
A negative result was generated for an unsigned integer.

zero Result is zero.

positive Result is not zero, negative, or a quiet NaN.

negative Result has a negative sign.

integer-carry Integer carry out was generated.

infinity Result is an infinity.

nan " Result is a quiet NaN.

denorm Result is a denormal number.

(deno) Result is a denormal number before fast mode clipping.

{i,di,u,du}addc, subc, sbrc

These three functions are similar to the add, sub, and subr operations, except
that the addc, subc, and sbrc operations include a carry bit in the computation.
The bits being shifted off of the vector mask (normally used for conditionaliza-
tion) are used here as the carry input.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. VU Arithmetic Operations : 151

As a result, these operations always operate unconditionally, regardless of the
setting of the vector_mask_mode control register and ignoring any use of the

- modifiers affectiong conditionalization (always, condmem, and condalu). If
the vminvert modifier is used, the bit shifted from the vector mask is complem-
ented before being used in the computation. If a memory operation accompanies
these arithmetic operations, it is conditionalized normally by the vector mask
bits.

Note: The accelerator chip handles unsigned subtraction in a nonstandard way.
Whenever a larger number is subtracted from a smaller number, the result is zero,
rather than wrapping. This can occur in the unsigned variants of the subtract
instructions and the triadics with negated operands.

Possible status outputs:

int-overflow Result overflows the destination integer format.
negative-unsigned A negative result was generated for an unsigned integer.

zero Result is zero.
positive Result is not zero or negative.
negative Result has a negative sign.

integer-carry Integer carry out was generated.

Note: In the current implementation, for subc and sbrc, if the operands and
carry are zero, then integer-carry is set to 1.

D.2.4 {u,du}and, andc, nand, or, nor, xor

These operations perform, respectively, a bitwise logical AND, a bitwise AND
with the first operand complemented, a bitwise NAND, a bitwise OR, a bitwise
NOR, and a bitwise XOR of the two operands.

Possible status outputs:
zero Result is zero.
positive Result is not zero.

CMost Version 7.2, August 1993 .
Copyright © 1993 Thinking Machines Corporation

D.2.5

D.2.6

{f,df}clas

Floating-point number class function. Produces an integer indicating the number
class of the operand. (The size of the integer will be the size of the operand.)
Does not flag signaling NaNs as an exception. Encodes the integer result as:

Integer Result Interpretation

Hex 0001 Signaling NaN.

Hex 0002 Quiet NaN.

Hex 0004 Negative infinity.

Hex 0008 Negative normalized finite non-zero.

Hex 0010 Negative denormalized.

Hex 0020 Negative zero.

Hex 0040 Positive zero.

Hex 0080 Positive denormalized. -

Hex 0100 Positive normalized finite non-zero.

Hex 0200 Positive infinity.
Possible status outputs:
positive Always asserted.
{i,di,u,du,f,dfjcmp
The generic cmp operation is supported only for completeness. More specific
compares (such as £gtv) are preferred. For cmp, a third argument is given that
specifies the compare code (0-7).
Possible status outputs:
invalid Invalid operand; at least one operand is NaN.
zero : * Operands are equal.
positive Result is not zero, negative, or a quiet NaN.,
negative Second operand is greater than the first.
unordered At least one operand is a NaN.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. VU Arithmetic Op

D.2.7

D.2.8

cvif, cvtfi, cvti, cvtir

The general conversion opcodes (cvtf, cvtfi, cvti, and cvtir) are sup-
ported only for completeness. The specific conversion opcodes, such as £tolv,
are preferred. The specific opcodes expect two operands, a source and a destina-
tion. The general opcodes take three operands: a source, a convert code, and a
destination. The convert code specifies the conversion done.

The cvtir opcode performs the same float-to-integer conversions as the cvtd
opcode, except that cvtd truncates its result and evtir rounds the result to the
nearest integer.

Possible status outputs:

inexact Result cannot be represented exactly.

underflow Result underflows the destination format.

overflow Result overflows the destination format.

invalid Invalid operand; operand could be a NaN, infinite, or

outside the range of the destination integer.
int-overflow Integer overflow; operand is outside the range of

the destination integer.
negative-unsigned Attempt to convert negative value to unsigned.
zero Result is zero.
positive Result is not zero, negative, or a quiet NaN.
negative Result has a negative sign.
infinity Result is an infinity.
nan Result is a quiet NaN.
denorm Result is a denormal number.
(deno) Result is a denormal number before fast mode clipping.

{t,df}div

This instruction divides the first operand by the second operand. When an oper-
and is NaN, infinity, or zero, the division timing will be the same as for
normalized operands and results. Note: In the current accelerator chip, the div
function cannot be used in conjuunction with a memory operation.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

154

D.2.9

VU Programmer s Handbook

These operations do not execute one-per-cycle as do the other operations. Specif-
ically, for a vector length of N, these instructions will take 2N*k Mbus (SPARC)
cycles to execute, rather than the usual 2N, where k is taken from the following
table:

Operation k Value

~ fdiv{v,s} 4
dfdiv{v,s} 5

Possible status outputs:
inexact Result cannot be represented exactly.
divide-by-zero Division of zero into a non-zero finite number.
overflow Result too large to be represented in destination format.
underflow Result too small to be represented in destination format.
invalid Result cannot be represented exactly; may be caused by

a signaling NaN, 0/0, or infinity / infinity.
denorm-input Denormal input.

zero Result is zero.

positive Result is not zero, negative or a quiet NaN.

negative " Result has a negative sign.

infinity Result is an infinity.

nan Result is a quiet NaN.

(deno) Result is a denormal number before fast mode clipping.

dumfh]{s,m,o,x}{a,i,t}

These multiply-logical operations combine a 64-bit multiply and a 64-bit bitwise
logical operation. These can be used to implement “shift-and-mask” type
constructions. The use of multiply rather than a true shift allows more compli-
cated shifting patterns. Either the least significant or the most significant 64 bits
of the multiply result can be used.

These operations all work on 64-bit unsigned values (type du). The logical func-
tion is based on the “s,m,0,x” choice:

s (select) gives the AND function

m (mask) gives the AND-NOT function
° gives the OR function

x gives the XOR function

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

endix D. VU Arithmetic Operations 155

D.2.10

The last letter of the opcode indicates the triadic form:

a | accumulative
i inverted
t " triadic

The optional “h” causes the most significant 64 bits of the multiply result to be

" used as the first operand to the logical operation, rather than the least significant

64 bits. The high half can simulate a right shift. For example, multiplying by
2"{64-N} and using the high half of the result is effectively a right shift by N.

The result status is reported for the ALU boolean only. The other status is derived
entirely from the multiplication.

Possible status outputs:

int-overflow A 1 was found in the upper half of the result (MULT).
zero Result is zero (ALU).

positive Result is not zero (ALU).

{u,du}jenc

This operation generates a floating-point number by placing the first operand in
the exponent field and the second operand in the mantissa field. For both oper-
ands, the values are given as unsigned integers in least significant bits. The
exponent is given in biased form. The output is a floating-point value.

For floating-point values in the normalized range, the mantissa operand must
contain the hidden bit. Denormal numbers are constructed from an exponent
equal to 1 and a mantissa with the hidden bit cleared. The resulting denormal
value will have a zero in its exponent field. No checlcmg is performed on the
resulting floating-point number.

Possible status outputs:

positive Always asserted.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

D.2.11

D.2.12

D.2.13

VU Programmer s Handbook

etrap

This operation is not a vector operation. It forces a trap to occur if the result of
logically ANDing the value of dp_status with the bits in the register
dp_interrupt_enable_green is non-zero. Since the dp_status register
contains the status from the last element computed, this is really only useful for
diagnostic purposes. This operation sets no status flags.

{f,df}exp

This operation extracts the biased exponent of its operand, a floating-point value.
The Isb of the exponent becomes the Isb of the resulting integer. The precision
of the floating point operand becomes the precision of the resulting integer. The
format of the result is the same as that required for the enc instruction.

The result of NaN and infinity operands is a left-justified string of ones equal to
the width of the exponent field of the operand. Denormal numbers produce an
integer with a value of 1.

Possible status outputs:

invalid Invalid operand; first operand was a signaling NaN.
positive Always asserted.

{u,du}ffb

The ££b (find first bit) instruction returns the number of leading (most signifi-
cant) zeroes above the most significant 1 bit in the operand. For example, duffb
of binary 0001... returns 3. If no 1s are present in the operand, a zero is returned.
The single-precision version, duffb, views its operand as a 64-bit unsigned
number constructed by padding the 32-bit argument with zeroes. As a result,
uf £b(0xFFFFFFFF) gives 32. The result of the ££b instruction on an operand
equal to zero is zero.

Possible status outputs:
zero Result is zero.
positive Result is not zero.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. VU Arithmetic Operations 157

D.2.14

D.2.15

ftodf, dftof

These operations convert a floating-point operand to a floating point result of
another precision.

Possible status outputs:

inexact . Result cannot be represented exactly.

underflow Result underflows the destination format.

overflow Result overflows the destination floating-point format.
invalid Invalid operand; operand was a signaling NaN.

zero Result is zero.

positive Result is not zero, negative, or a quiet NaN.

negative Result has a negative sign.

infinity Result is an infinity.

nan Result is a quiet NaN.

denorm Result is a denormal number. .
(under) Result underflows dest format before fast mode clipping.
(deno) Result is a denormal number before fast mode clipping.
{f,df}inv

This operation takes the reciprocal of its operand. When the operand is NaN,
infinity, or zero, the reciprocal timing will be the same as for normalized oper-
ands and results.

Note: In the current accelerator chip, the inv function cannot be used in con-
junction with a memory operation.

These operations do not execute one-per-cycle as do the other operations. Specif-
ically, for a vector length of N, these instructions will take 2N*k Mbus (SPARC)
cycles to execute, rather than the usual 2N, where £ is taken from the following
table:

Operation k Value
fdiv{v,s} 4
dfdiv{v,s} 5

CMos Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

158

VU Programmer s Handbook

Possible status outputs:

inexact Result is inexact.

divide-by-zero 1/ was attempted.

overflow Result too large to be represented in destination format.
- underflow Result too small to be represented in destination format.

invalid Invalid operand; operand is a signaling NaN.

denorm-input Denormal input.

zero Result is zero.

positive Result is not zero, negative, or a quiet NaN.

negative Result has a negative sign.

infinity Result is an infinity.

nan Result is a quiet NaN.

(deno) Result is a denormal number before fast mode clipping.

{t,df}isqt

D.2.16

This operation divides the first operand by the square root of the second operand.
No status is generated by this instruction.

This operation does not obey the IEEE standard with respect to rounding or
exception detection. First, 1sqt always rounds the result toward zero. The error
in the result will be at most one Isb in the mantissa when compared to an infi-
nitely precise answer, and the result will be equal to or smaller than the infinitely
precise answer. Second, the only exception detected is when the operand is nega-
tive and non-zero or a NaN, in which cases a NaN result is generated and the

- dp_status_nan result bit in the dp_status register is set. Notably, no

divide-by-zero detection is done for the case when the argument is zero, nor is
underflow signaled when the result is too small. The positive status bit is always
set.

Note: In the current accelerator chip, the 1sqt function cannot be used in con-
junction with a memory operation.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. VU Arithmetic Operations ' 159

D.2.17

D.2.18

These operations do not execute one-per-cycle as do the other operations. Specif-
ically, for a vector length of N, these instructions will take 2N*k Mbus (SPARC)
cycles to execute, rather than the usual 2N, where k is taken from the following
table:

Operation k Value
fisqt{v,s} 5
dfisqt{v,s} 7

When an operand is NaN, infinity, or zero, the AINVSQRTB timing will be the
same as for normalized operands and results.

Possible status outputs:
positive Always asserted.
lvdm

Required syntax: 1dvm VU-register

This operation moves the low order 16 bits of a specified register into both the
vector mask (dp_vector_mask) and the vector mask buffer (dp_vec-
tor_mask_buffer). This operation has a fairly significant cost both in
execution speed and in pipeline delay, and should be used sparingly.

This instruction may not be combined with a memory operation (1oad, store),
and is not affected by conditionalization. Possible status outputs: None.

{i,di,u,du,f,df}it, le, gt, ge, eq, ne, un, Iig

These operations compare the two operands. No result is written to the register
file. The result of the compare (a 1 bit if true, otherwise a 0 bit) is shifted into
the vector mask. The rotate mode (vmrotate) is used by default, but the
vmcurrent modifier can be added to change to the current mode. (See Section
4.3.1 for DPEAC, Section 6.7.1 for CDPEAC.)

In addition, the status bits are set as if the two values were subtracted (operand
1 minus operand 2), as shown below. At most one of zero, negative, and
unordered will be set.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

160 .

D.2.19

vu Progrdmmer-k Handbook

Possible status outputs:

invalid At least one operand is a signaling NaN.

zero Operands are equal. '

positive Result is not zero, negative, or a quiet NaN.
negative The second operand is greater than the first operand.
unordered At least one operand is a NaN.
{i,di,u,du,f,dfjmad, msb, msr, nma

These operations perform a multiply followed by some other operation (for
example, an add). There are three forms, the accumulative, the inverted, and the
triadic. These differ in the way in which they apply the operands in the computa-
tion. The form is signaled by the suffix on the instruction: a = accumulative,
i = inverted, t = true triadic.

Integer overflows during addition are signaled, but the result is not saturated.
Negative results for unsigned integers are saturated to zero, and the negative~
unsigned flag is asserted. The result status (zexo, negative-result, etc.)
reflects the final result only. Exception status (e.g., over £1ow) is derived by OR-
ing the status from both operations.

Possible status outputs:

inexact
invalid
overflow
underflow
int-overflow

negative-unsigned
denorm-input
zero
positive
negative
integer-carry
infinity -
nan

denorm
(under)

(deno)

Result cannot be represented exactly.

. Invalid operand.

Result overflows the destination floating-point format.
Result underflows the destination format.

MULT: a ‘1’ was found in the upper half of the resuit.
ALU: result overflows the destination integer format.

A negative result was generated for an unsigned integer.
Denormal input.

Result is zero.

Result is not zero, negative, or a quiet NaN.

Result has a negative sign.

Integer carry out was generated.

Result is an infinity.

Result is a quiet NaN.

Result is a denormal number.

Result underflows dest format before fast mode clipping.
Result is a denormal number before fast mode clipping.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. VU Arithmetic Operations : 161

D.2.20

D.2.21

D.2.22

{f,dfjmant

The operation extracts the mantissa of its operand, a floating-point number. If
the operand is normalized, the hidden bit is present in the result. The Isb of the
mantissa becomes the Isb of the resulting integer. A double-precision floating-
point operand produces a double-precision integer result, and a single-precision
floating-point operand produces a single-precision result. The format of the
result is the same as that required for the enc instruction. A NaN input returns
the value of the mantissa, with the hidden bit set to 1, and sets the invalid
status.

Possible status outputs:

invalid Invalid operand; first operand was a signaling NaN.
positive Always asserted.

{i,di,u,du,f,dfjmove

The first operand is passed through the ALU. Invalid operands are not converted
into a quiet NaN. Possible status outputs:

positive Always asserted.

{u,du}mrg

The merge instruction 'merges two vectors under control of the vector mask. Bits
shifted off of the vector mask, normally used for conditionalization, are used in
a different way. Specifically, for each element, the bits control which operand is
moved to the destination. If the bit shifted from the vector mask is a ‘1°, the result
is taken from the first operand; otherwise, it is taken from the second operand.
If you use the vminvert modifier, which inverts the sense of the vector mask,
the merge is done in the opposed fashion. As a result, this operation always oper-
ates unconditionally, regardless of the setting of the vector_mask _mode
control register, and it ignores the modifiers affecting conditionalization
(always, condmem, and condalu). Any memory operation that accompanies
these arithmetic operations is conditionalized normally by the vector mask bits.

Possible status outputs:

positive Always asserted.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

162

D.2.23

D.2.24

VU Programmer's Handbook

{i,u,f.dfimul
This operation multiplies its two operands. Multiplication with the double inte-
ger format can be accomplished with the {di,du}mul and {di,du}mulh
instructions. Multiplication of 32-bit integers will produce a 64-bit result. When
an operand is NaN, infinity, or zero, the multiplication timing will be the same
as for normalized operands and results.
Possible status outputs:
inexact Result cannot be represented exactly.
overflow Result overflows the destination floating-point format.
underflow Result underflows the destination format.
invalid . Invalid operand; cansed by 0 times infinity or by

a signaling NaN operand.
int-overflow A ‘1’ was found in the upper half of the result.
denorm-input Denormal input.
zero Result is zero.
positive Result is not zero, negative, or a quiet NaN.
negative Result has a negative sign.
infinity Result is an infinity.
nan Result is a quiet NaN.
(under) Result underflows dest format before fast mode clipping.
(deno) Result is a denormal number before fast mode clipping.
{di,du}mul, mulh

These operations generate the low (mul) and high (mulh) 64 bits of the multi-
plication of the two integer operands.

Possible status outputs:

int-overflow
zero
positive
negative

A ‘1’ was found in the upper half of the result.
Result is zero.

Result is not zero, negative, or a quiet NaN.
Result has a negative sign.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

s S

Appendix D. VU Arithmetic Operations : 163

D.2.25

D.2.26

D.2.27

{i,di,f,df}neg

This operation subtracts the first operand from zero. Integer overflows are sig-
naled, but the result is not saturated. Negative results for unsigned integers are
saturated to zero, and the negative-unsigned flag is asserted.

Possible status outputs:

invalid Invalid operand; operand was a signaling NaN.
int-overflow Result overflows the destination integer format.
zero ' Result is zero. '

positive Result is not zero, negative, or a quiet NaN.
negative Result has a negative sign.

negative-unsigned Attempt to convert negative value to unsigned.
integer-carry Integer carry out was generated during negation
of a two’s complement integer.

infinity Result is an infinity.

nan Result is a quiet NaN.

denorm Result is a denormal number.

(deno) Result is a denormal number before fast mode clipping.
fnop{v,s}

This operation is, as its name suggests, a NOP. It does nothing.

Possible status outputs: None.

{u,du}not

This operation performs a bitwise logical NOT of its first operand.

Possible status outputs:
zero Result is zero.
positive Result is not zero, negative, or a quiet NaN.

CMost Version 7.2, August 1993 :
Copyright © 1993 Thinking Machines Corporation

D.2.28

D.2.29

VU Programmer s Handbook

{u,du}shl, shir
This operation performs an integer logical left shift.

For shl, the first operand is the value to be shifted, and the unsigned value of
the low 6 bits of the second operand is the shift distance. The bits in the second
operand above the sixth bit are ignored. The reversed shift, shlr, shifts the
second operand by the value in the low 6 bits of the first operand. These alterna-
tives are provided so that the RsI operand, which has improved accessibility and
striding capability, can be used as either operand.

Zeros are shifted into the low end of the result. The status integer-carry will be
the value of the bit to the left of the msb. A negative two’s complement integer
is sign-extended beyond the msb, so a zero shift on a negative two’s complement
number will produce integer-carry. As a result of the 6-bit shift value, it is
not possible to shift a double-precision value by a full 64 bits. (It is, however,
possible to shift a 32-bit integer by 32).

Possible status outputs:

integer-carry Value of the msb+1 bit.
zZero Result is zero.
positive Result is not zero, negative, or a quiet NaN.

{u,du,i,di}shr, shrr

This operation performs an integer shift right (logical or artihmetic). For shr, the
first operand is the value to be shifted and the unsigned value of the low 6 bits
of the second operand is the shift distance. The bits in the second operand above
the sixth bit are ignored. For shrr, the reverse shift is performed: the second
operand is the value to be shifted, and the low 6 bits of the first operand provide
the shift distance.

For the unsigned data types (u and du), the shift is a logical shift; thus, zeros are
shifted into the high end of the result. For the signed data types (1 and di), an
arithmetic shift is performed: i.e., the bits shifted into the upper end of the result
are a copy of the original sign bit of the operand. For example, shifting the 32-bit
hexidecimal value 80000008 right one bit by an arithmetic shift yields
C0000004, while a logical shift of the same value yields 40000004. The inte-
ger-carry status is the value of the bit to the right of the Isb.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Ap_)géndix D. VU Arithmetic Operations 165

D.2.30

D.2.31

Possible status outputs:

integer-carry Value of the LSB-1 bit.

zero Result is zero.

positive Result is not zero, negative, or a quiet NaN.
negative Result has a negative sign.

stvm

Required syntax: stvm VU-register

This operation moves the 16-bit value in the vector mask (dp_vector_mask)
into the specified VU-register. This instruction may not be combined with a
memory operation and is not affected by conditionalization. This operation has
a significant cost in speed and pipeline delay, and, should be used sparingly.

Possible status outputs: None.

{d,df}sqrt
The operation takes the IEEE square root of the first operand.

Note: In the current accelerator chip, the sqrt function cannot be used in con-
junction with a memory operation.

These operations do not execute one-per-cycle as do the other operations. Specif-
ically, for a vector length of N, these instructions will take 2N k Mbus (SPARC)
cycles to execute, rather than the usual 2N, where k is taken from the following
table:

Operation k Value
fasqrt{v,s} 6
dfsqrt{v,s} 8

When the operand is a NaN, infinity, zero, or negative, the square root timing
will be the same as for normalized operands and results.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

166

D.2.32

VU Programmer s Handbook

Possible status outputs:
inexact Result cannot be represented exactly.
underflow Result underflows the destination format.

invalid

denorm-input

zZero
positive
negative
infinity
nan
(under)
(deno)

{i,di,u,du,f,df}test

Invalid operand; operand is a negative non-zero number
or a signaling NaN.

Denormal input.

Result is zero.

Result is not zero, negative, or a quiet NaN.

Result has a negative sign.

Result is an infinity.

Result is a quiet NaN.

Result underflows dest format before fast mode clipping.

Result is a denormal number before fast mode clipping.

This operation adds the first operand to zero. Unlike move, the test instructions
do assert status outputs to reflect the value moved. Specifically, test is exactly

like adding zero to the operand, as far as the setting of status flags is concerned.

Possible status outputs:

invalid Invalid operand; operand was a signaling NaN.
zero Result is zero.

positive Result is not zero, negative, or a quiet NaN.
negative Result has a negative sign.

infinity Result is an infinity. '

nan Result is a quiet NaN.

denorm Result is a denormal number. -

(deno)

Result is a denormal number before fast mode clipping.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

D.2.33

D.2.34

{t,df}to{i,di,u,du}{[r]}

These operations convert a floating-point operand to integer format. Overflows
are saturated to the maximum integer value in the output format, and underflows
are forced to zero. Converting a negative floating-point number to unsigned
causes the negative-unsigned status and saturates the result to zero. Conver-
sions from NaN formats to integers create a zero result, and set the invalid
status. Conversions from infinities are saturated like overflows; they, too, cause
the invalid status. The “r” forms round by the current rounding mode (set by
default to “nearest™); the non-“x” forms simply truncate toward zero.

Possible status outputs:
inexact Result cannot be represented exactly.
invalid Invalid operand; operand could be a NaN, infinity,

or outside the range of the destination integer.
int-overflow Result overflows the destination integer format.
negative-unsigned Attempt to convert negative value to unsigned.

zero Result is zero.

positive Result is not zero, negative, or a quiet NaN.
negative Result has a negative sign.

nan The first operand is a NaN.
{i,di,u,du}to{f,df}

- These operations convert an integer operand to floating-point format.

D.2.35

Possible status outputs:

inexact Result cannot be represented exactly.
negative Result has a negative sign. .
positive Result is not zero, negative, or a quiet NaN.
zero Result is zero.

trap

This operation, which is not a vector operation, forces a trap to occur. This trap
will be a green interrupt identical to the trap caused by a masked status trap.
Possible status outputs: None.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix E
T

BB

he dpas Assembler

E.1 The dpas Assembler

The dpas assembler is used to assemble a DPEAC source file. dpas is an exten-
sion of the SPARC as assembler; it translates DPEAC instructions into SPARC
instructions, then passes the translated instructions to as for assembly.

lexical preprocessing

DPEAC source

as assembler object code

DPEAC translation

The dpas command line format is
dpas [switches...] [source-file] [switches...]

where source-file is a text file containing a DPEAC program, and having a file-
name extension of “.dp” (if omitted, stdin is used). Assembled object code is
written to a file with the same name but with an extension of “.o”.

Optional switches can precede and follow the source-file argument. Typing
“dpas -h” gives a list of the current switches.

Typing “dpas -Fw” puts dpas in “filter” mode; you can type in a DPEAC state-
ment to see if its syntax is correct, and to see what SPARC code it produces.

dpas also includes its own preprocessor that provides C-like lexical directives
(#define, #i1fdef, etc.) and macro definitions.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 169

170 VU Programmer s Handbook

The dpas assembler provides the following lexical directives:

#comment comment-text... — Comment line.

#define symbol text... — Preprocessor symbol.

#undef symbol — Undefine preprocessor symbol.

#set symbol expression — Sets symbol to value of expression.
#define name(params) body... — Preprocessor macro.
#macro name parameter[=default]... — Multi-line macro.
#endmacro — End of macro body.
#include filename — Include named file (as in C code).

#1f expression — Assemble if expression is non-zero.
#ifz expression — Assemble if expression is zero.
#ifdef symbol — Assemble if symbol is #defined.
#ifndef symbol — Assemble if symbol is not #defined.
#ifsame stringl, string2 — Assemble if strings are exactly identical.
#1fnsame stringl, string2 — Assemble if strings are different.
#ifblank [text] — Assemble if rest of line is blank.
#ifnblank [rext] — Assemble if rest of line is not blank.
#ifz expression — Assemble if expression is zero.

#else expression — Else case for #1f directive.

#ellf expression — Else-if case.

#else 1fxxx expression — Else case, starts new #1£xxx directive.
#else — Final else clause for #1£xxx directive.
#endif — End of #1£ directive.

#irepeat count — Repeat block.

#iendrepeat count — End of repeat block.

#print item, item,... — Print items (strings or expressions).
#warning item, item,... — Print items, signal assembler warning.
#erxor item, item,... — Print items, signal assembler error.
#ident text.. — Entire line passed to output unchanged.

dpas pre-defines the symbol “dpas” to the string “1” before preprocessing a
file; this symbol can be used to conditionally assemble code depending on
whether or not dpas is being used as the assembler.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix F

F.1

The dpcc Compiler

The dpcc Compiler

The dpcc compiler is used to compile a CDPEAC program. dpcc is an extension
of the GNU C compiler gec; it translates a CDPEAC procedure into the corre-
sponding DPEAC code, then calls dpas to assemble the code.

| CDPEAC Code gce compliation dpas assembly

l object code

The dpcc command line format is
dpce [switches...] [source-file] [switches...]

where source-file is a text file containing a CDPEAC program, and having a file-
name extension of “.cdp”. Assembled object code is written to a file with the
same name but with an extension of “.0”.

Optional switches can precede and follow the source-file argument.” Typing
“dpcc -h” gives a list of the current switches.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 171

Appendix G
How CDPEAC Works

.

e

This appendix describes the way that GNU CC’s asm statement and macro
facilities are used to define the CDPEAC instruction set.

Note: This information is provided for those readers interested in how CDPEAC
operates — this is not essential knowledge for simply using CDPEAC, however.

G.1 GNU CC’s ASM Statement

GNU CC (or “GCC?, as it is often abbreviated) is a C compiler provided with
the GNU operating system. The full description of GNU CC’s asm statement is
best left to the GCC user’s manual. The description below concentrates on how
GCC is currently used to permit DPEAC programming from C.

GCC’s ASM statement has the basic form:
asm(pattern : outputs : inputs : clobbered);

where
® pattern is a string containing an assembly-language instruction.

® inputs and outputs are descriptions of C variables that represent the oper-
ands passed into the instruction and the values (if any) that are returned.

= clobbered is a series of strings naming any internal chip registers that are
modified (or “clobbered”) by the instruction.

Note: For the purposes of CDPEAC, the outputs argument can be ignored.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 173

174

G.1.1

VU Programmer’s Handbook

For example:
asm(“dfloadv %0, V5" : : “m” (*source) : “%g2”, “%g3”)

In this example, the DPEAC instruction dfloadv directs each VU to load into
vector register V5 a vector’s worth of data from the memory location specified
by the C variable source. (The #“m” indicates that the source variable is a
pointer into memory.) As with most DPEAC operations, this instruction clobbers
the SPARC registers %g2 and %g3.

When a C program containing this asm statement is compiled by GCC, the asm
statement might translate into the following actual DPEAC code:

dfloadv [%i1], V5

where the [%11] indicates that the pointer contained in the source variable has
been moved into the SPARC register %11 for use by DPEAC.

The Pattern and Input Arguments

In an asm statement, the pattern argument is a string (or a series of strings) con-
taining a “template” for an instruction. This template can contain pattern
variables %0, %1, %2, etc., indicating where the input and output arguments of the
asm statement should appear in the final assembled instruction.

The pattern variables %0, %1, %2, etc., enumerate in order the arguments appear-
ing in the output and input fields of the asm statement. (Since the output field is
not used by CDPEAC, these variables effectively enumerate the input argu-
ments.)

Each input argument consists of two parts:

® a constraint string, which indicates the type of the input argument

® a C expression defining the argument’s value
The constraint typically contains a single letter giving the argument’s type. For
example, “m” indicates a memory operand, “r” a general register operand, “1”

an immediate integer value, etc. (The GCC documentation includes a list of these
constraint strings and their specific meanings.)

Note: If the partern argument consists of multiple strings, these strings are con-
catenated in order when the asm statement is compiled.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

o

Appendix G. How CDPEAC Works 175

G.2 Using GCC Macros to Produce ASM Statements

G.2.1

The preprocessor macro facility of GCC makes it easy to construct asm state-
ments for DPEAC instructions. For example, the asm statement presented above
could be rewritten as:

asm(“df” “loadv %0, ” “V5” : : *“m" (*source) : \
”%92” , ll%g3 ")

Since the pattern argument of this statement is now separated into parts, these
parts can be provided by macro arguments. For example, a general C macro for
defining loadv instructions might be defined as follows:

#define loadv(type, source, data register) \
asm{#type “loadv %0, ” data_register : : \
umu (*Source) . ” %9211, ” %g3u)

The loadv macro expects type to be a literal symbol representing the data type
of the load operation (the # in front of #ype converts it into a string). The source
and data_register arguments are assumed to be strings representing the source
variable and the VU data register, respectively.

The loadv macro can be called from a C program like this:
loadv(df, source, “V5")

Note: To reduce the number of quotation marks, CDPEAC defines macro sym-
bols for all the VU data registers. For example, the #v5~ string in the example
above could be replaced by CDPEAC’s literal vs symbol, which is defined as:

f#define V5 “V5*

Going Generic with Macros

Because many DPEAC instructions have similar formats, one can define a
generic macro in which the instruction opcode is also provided as an argument.
For example:

#define mem(mnemonic, source, data_register) \
asm(mnemonic ” %0, ” data_register : : \
nmn (*SOU.ICG) : ” %gzu , n %9.3")

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

176 VU Programmer s

Handbook

e

CDPEAC defines a number of these internal, generic macros, and uses them to
define the macros for the CDPEAC instruction set. The definitions of the loadv
and storev instructions, for example, might be:

#define loadv(type, source, data_register) \
mem (#type ”loadv”, source, data_register)

#define storev(type, source, data_register) \
mem(#type “storev”, source, data_register)

G.2.2 Handling Argument Syntax with Macros

DPEAC instructions often indicate special strides or modes by attaching markers
to instruction operands. In CDPEAC, this is handled by macros that construct the
appropriate DPEAC syntac. For example:

/* Data register offset syntax */
#define dreg_x(dreg, index) \
dreg ## [## index ##]

/* Data register indirection */
#define dreg_i(dreg, ireg) \
dreg ## (## ireg ##)

/* Stride marker macros */

#define dreg u(dreg, stride) \
dreg ## : ## stride

fdefine dreg_s(dreg, setstride) \
dreg ## := ## setstride

#define dreg u_s(dreg, stride, setstride) \
dreg ## : ## stride ## = ## setstride

(In these examples, the “##” operator is an ANSI C convention that concatenates

the surrounding arguments together into a single C symbol, eliminating any
space in between.)

G.2.3 CDPEAC: Macros on Macros

Similar definitions are used for the other elements of the CDPEAC instruction
set, making it, in essence, a very large macro package.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

. Appendix H
CMRTS and CM Memory Allocation

H.1

This appendix describes the features of the CM Run-Time System (CMRTS) that
you are likely to use in DPEAC and CDPEAC programming. It also discusses
methods for allocating parallel CM memory, both through the CMRTS and by
other means.

Note: To make direct use of the CMRTS functions and data structures described
in this chapter, you must include the CMRTS header file in your program:

#include <cm/rts.h>

The CM Run-Time System (CMRTS)

The CMRTS is a set of low-level CM code libraries that define and manipulate
array data structures in CM parallel memory. CMRTS functions allocate blocks
of CM memory and manipulate their contents “at run time” (that is, during
execution of CM programs), hence the name of the library. The CMRTS is
divided into three main libraries of functions:

®* CMRT — The CM Run-Time Library.

®* CMCOM — The CM Communications Library.

= CMIP — The CM In-Processor Library.
The CMRT layer is the topmost layer of the RTS software, and represents an

. “external,” machine-independent interface for the RTS. CMRT functions and

data types provide access to all CM operations defined in the RTS. The CMCOM
and CMIP layers are “internal” support software for the CMRT layer. CMCOM
functions perform CM communication operations (sends, scans, etc.). CMIP

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation 177

178

VU Programmer s Handbook

functions perform in-processor operations (arithmetic and logical computations,
etc., that don’t require communication between CM processors). If your program
makes any direct calls to the CMRTS, it is typically throngh the CMRT func-

tions. However, references to data structures defined at the CMCOM level (in -

particular, CMCOM machine geometries) are common.

H.1.1 Arrays in the CMRTS
A high-level CM array, as defined in a parallel programming language such as
CM Fortran or C*, is represented in the RTS by an array descriptor, of type
CMRT_desc_t. This array descriptor is the topmost level of a hierarchy of data
structures (see Figure 18) that form a bridge between high-level arrays and the
physical memory of the CM hardware.
high-level array/pvar
array descriptor (in CM Fortran or C*)
| omr _desct |=«
Garbage
/ ' Dataag
: Array Axis Extents, /
y array geometry Garbago Mask
[gmw_array _geometry_t I————-»
o .| _ Node Distribution,
y machine geometry Subgrid Memory Layout :
{ CMCOM_machine_geometry_t I——> / —Node 0 // NOQé 1 //
z‘f’ /l s
............... die Do I/ N?de Gooing
Node 0 Node 1 Node2 | Node3
parallel ‘vulvulwulvu|ivu|vulvuivu|vulvuivu vu"vu vu|vu|vu
y memory location ob&tt21840]111213 |3)l0)1/2]3
CMRT_cm_location t]——» :
n

Figure 18. Internal Structure of a CM Array.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix H. CMRTS and CM Memory Allocation 179

A high-level parallel array can have any reasonable shape and size, as permitted
by the syntax of the programming language in use, and by the memory space
available on the CM. However, the number of processing nodes available on the
CM and the amount of memory available within each node typically remains
fixed, placing a physical constraint on the sizes and shapes of arrays that can be
conveniently stored in parallel memory.

The RTS allocates array memory in bands across the individual memory banks
of the nodes, so that the starting memory address and size of the array region is
the same for each node. (If the CM has vector units, these bands are across the
individual memory banks of the VUs, as shown in the above figure.)

Implementation Note: The RTS memory allocation routines ensure that each
allocated region of memory is double-word aligned (that is, starts at an address
that is a multiple of 8 bytes).

An array with a number of elements that is an exact multiple of the number of
processing nodes (or VUs) can be stored very neatly in such a memory stripe. But
if the array is not an exact multiple of the machine size (or if the program that
uses the array is run on a CM of a different size), then the array cannot be stored
in CM memory without wasting some space on one or more of the nodes. This
garbage space must be kept track of, so that the invalid values it contains are not
confused with the actual data of the array.

The many-layered structure of RTS arrays deals with these hardware constraints
by using data structures known as geometries to define the arrangement of array
data in CM memory. Two types of geometry are used to define the layout of a
high-level array:

® A machine geometry, of type CMCOM_machine_geometry_t, which
describes the structure of an arbitrary array that is sized and shaped to fit
exactly into a stripe of CM memory.

® An array geometry, of type CMRT array geometry_t, which refers to
a specific machine geometry and selects a region of it to represent the
actual data of a high-level array. (The unused space defined by the
machine geometry is considered garbage data, and is ignored.)

A CM array descriptor (a CMRT desc_t data structure) includes:

® An array geometry, which defines the layout of the array.

= A parallel memory location, of type CMRT_cm_location_t, which
defines the start of the band of parallel memory that holds the array data.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

180 VU Programmer’s Handbook

For the Curious: This multi-layer array data structure saves storage space, since
a single machine geometry data structure can be shared between the descriptors
of many array geometries. It also makes it possible to use a simple pointer com-
parison to determine whether two arrays have the same machine geometry.

H.1.2 An Example of A CMRTS Array

Let’s take a specific example. Suppose that we have a CM-5 with a very small
number of processing nodes — four, to be exact (see Figure 19). This CM-5 has
vector units, so that the number of processing elements in the machine is 16: four
nodes with four VUs per node. (If this CM-5 did not have vector units, then there
would be only four processing elements — the four processing nodes them-
selves.)

Partition
Manager

7

<
[=]
Q.
(-]
o
=
(=]
Q.
(]
-
4
=]
Q.
(]
N
Z
o
Q.
@
w

&
=&
LTS
&
11 e
=&
LT &
HHTTTH &
NS
=&
[T &
S
L &

HHH =&

T NS
T e &

Figure 19. A hypothetical 4-node CM-5 system (with VUs).

Suppose further that we compile and run a CM Fortran program on this machine,
defining a floating-point array as follows:

DOUBLE PRECISION LUCKY (7,11)

How is this array stored in the memory of the CM? First, look at the array itself:

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix H. CMRTS and CM Memory Allocation 181

123456178 910MN

NOoOO O s NN =

It’s a two-dimensional array of 77 elements, each of which is a double-precision
floating-point number. This is not evenly divisible across 16 VUs, so a small
number of garbage elements will need to be added. In general, the garbage space

- of an array is added by extending the axes of the array, addmg garbage elements
at the high ends of one or more axes.

The amount of garbage space to add is determined as follows:

* Enough garbage space must be added so that the array can be divided into
pieces of equal size and shape for each CM node.

* The part of the array assigned to each node must furthermore be divisible
into 4 parts of equal size and shape, one for each of the node’s VUs.

» Each node’s portion of the array should be of the same rank as the entire
array, and should have the same basic shape.

* The amount of added garbage space should be as small as possible.
In addition, there is an implementation-dependent restriction: the number of
array elements assigned to each VU must be a multiple of 8. (In a forthcoming

version of CM Fortran, you will be able to supply a compiler switch,
~-nopadding, which removes this restriction.)

Following these guidelines, a 7-by-11 array is padded out into an 8-by-16 array,

1 23 45678 910111213141516

O ~NOOOO A WN -

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

VU Programmer’s Handbook

S i

and is divided among the nodes and VUs as follows:

1 23 456 7 8 9 10 11 12 13 14 15 16

; Node 0

sl vu|vu|vu|vu
01|23

4

5

6

7

8’,,

Note that this assigns a 4-by-2 portion of the array to each vector unit.

The portion of the array assigned to each vector unit is called the array’s subgrid.
This subgrid is the same size and shape for each VU, and basically represents the
part of the array that is stored in the memory of each VU. The size of the subgrid
determines the total amount of parallel memory allocated for the array. Exactly
enough memory for one subgrid is allocated in the memory bank of each VU.

The subgrid of our sample array contains 8 double-precision floating-point val-
ues. A double-precision float in Fortran occupies two words of memory, so 16
words of parallel memory must be allocated on each CM node to contain the
array. The n-dimensional subgrid stored on each VU is “unwrapped” and stored
as a one-dimensional series of VU memory words.

As you might expect, this is done systematically by defining a single memory
storage order for all subgrids. In the case of the sample (7,11) array, the memory
storage order is as shown below (remember that each double-precision subgrid
element is stored as 2 words in memory):

subgrid axis 1

1 2
2» 11 2|3 4
s 2|5 6 8
je)
& 3 10| 11 12
o]
@ 4113 14|15 16

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix H. CMRTS and CM Memory Allocation 183

The resulting actual memory distribution of the array is shown below:

Node 0 | [Nodei1 |[Node2 |[Node3

VU|VU|VU(VU| (VU|VU(VU|VU| |VU|VUIVU|VU| |VU|VU[VU|VU
oj1|2(3|(|(of1|2|3|f{of{1|2|3||0|1]2]3

Figure 20. The actual memory distribution of a 7-by-11 CM Fortran array.

As you can see, this arrangement of array data values in CM memory bears
almost no relation to the shape of the original high-level array. It is the array’s
geometry alone that determines how the array data in CM memory is interpreted.
With a different array geometry, the values of this two-dimensional array could
just as readily be accessed as a one-dimensional array or a three-dimensional
array, by suitably adjusting the axis lengths.

A complete discussion of the algorithms used to determine the layout of a CM
array in memory is beyond the scope of this appendix, but the above example
should help you understand the information found in CMRTS array descriptors
and geometry objects, as described in the following sections.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

184 ' VU Programmer’s Handbook

H.1.3 CMRTS Data Structures

CMRT _desc_t

This is the top-level array descriptor data structure. (See Figure 18.) It contains
references to all component data structures that define a single high-level array.

The user-accessible structure slots are:
CMRT;cm_locétion_t cm_locaﬁion

This is the parallel memory location (the same address on each VU) at
which the array’s allocated memory region begins. The amount of
memory allocated is determined by the array size and shape specified in
the array_ geometry structure.

CMRT_array_geometry_t array_ geometry

This is the array geometry, which specifies the size, shape, and garbage
region of the array. See the description of the CMRT array_geometry_t
data structure below.

int4 element_ size
This is the size, in words of memory, of a single array element.
The CMRTS functions used to access these structure slots are:

CMRT_cm location_t CMRT desc get cm location(descrlptor)
CMRT_desc_t descriptor;

CMRT array_geometry_t CMRT_desc_get geometry(descrlptor)
CMRT desc_t descriptor;

int4 CMRT desc_get_ element size (descriptor)
CMRT_desc_t descriptor;

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix H. CMRTS and CM Memory Allocation 185

CMRT_array_geometry_t

This is the array geometry, which specifies an array’s extents, garbage space, and
machine geometry (only the first two are directly specified by the array geome-
try; the machine geometry is specified by referring to a CMCOM data structure).

_ array geometry
| omr_erray_geometry_t I_i'nk___, 2

numbe:_of_elements)' 77

_ lowex_bounds

> [0,0]
upper_bounds

» [6’101
extents . [7' 11] /

extents(1) = 11
0 10
0
- data array
extents(0) =7 rank and axis extents
6 v
garbage_mask - garbage mask
- array
machine_geometry machine geometry

\j

[Glcou_macﬁine _geomet:y__t‘J——b

Figure 21. The CMRT _array_geometry data structure.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

186

The user-accessible structure slots are:

int4 rank

This is the rank (number of dimensions) of the array. This is typically the
same as the rank specified by the machine_geometry.

int8 number_of elements

This is the total number of actual (non-garbage) data elements in the array
(basically the product of the array’s axis extents, defined below).

int8 *extents, *lower_bounds, *upper_bounds

These are integer arrays specifying the lengths and lower and upper axis
indices for each array axis. Note that these values are completely indepen-
dent of the array extents specified by the machine_geometry — the
bounds arrays specify what part of the array is used for actual data.

Note: The lower and upper bound values in these arrays are zero-based,
unlike Fortran array indices which are one-based. The CMRTS is coded
in C, and thus follows the C conventions for array indexing.

CMCOM_machine_geometry_t machine_geometry

This is the machine geometry, which specifies the parallel memory layout
for the array. See the description of the CMCOM machine_geometry t
data structure below.

CMRT_cm_location_t garbage_mask

This is the garbage mask array, a region of parallel memory that defines
the garbage space of the array. The garbage mask contains boolean values,
with a TRUE value representing garbage elements. Essentially, the garbage
mask provides the same information as the extents and bounds arrays
described above, but in an array format that is more convenient for some
CMRTS operations. The garbage mask is typically stored in a compressed
format to save space, so extracting the appropriate boolean value for a
given array element is non-trivial.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appe

% £33

ndix H. CMRTS and CM Memory Allocation

To access these slots, you can use the following accessor functions. (Note that
these functions are applied to the array descriptor, not to the geometry object.)

int4 CMRT desc_get_rank (descriptor)
CMRT_desc_t descriptor;

int8 CMRT desc_get number_of_elements (descriptor)
CMRT desc_t descriptor;

(The following accessors take an extra axis argument, zero-based as in C.
The appropriate value for the specified array axis is returned.)

int8 CMRT desc_get_ lower_bound (descriptor, axis)
CMRT desc_t descriptor;
int4 axis;

int8 CMRT_desc_get upper_bound (descriptor, axis)
CMRT_desc_t descriptor;

int4 axis;

You can also access the structure slots directly (you must do this to access the
extents and machine_geometry slots, for example):

(array_descriptor->array_gecmetry) -> extents[axis]

(array_descriptor->array_geometry) -> machine geometry

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

188

CMRT_machine_geometry._t

This is the machine geometry, which specifies the abtual parallel memory layout
of the array (the division of the array among the nodes and VUs, and the size and
shape of the subgrid stored in each VU’s memory).

array geometry
|um1'__mchine _geometry_t F rank - 2
axis_ descriptors total_off_ chip length 1 6

product_subgrid lengths 8

[

=

axis_descriptor (axis 1) |

ptor (axis 0) | <—————

Node 0 Node 1 \\:\\._
0. 1:2. 3{4:5/6 7| ™ =
o] 1
. . 21 3
8 Node 2 Node 3: \ N
8 ™ 4 | 5
S| 8:9 101111213114 15
5 ANEE R

array subgrid 7

Figure 22. The CMCOM_machine_geometry data structure.

The user-accessible structure slots are:

int4 rank

This is the rank (number of dimensions) of the array. This is typically the
same as the rank specified by the array geometry.

unsigned cilaz total_off_ chip length
This is the logarithm (base 2) of the total number of subgrids (specifically,

this is the total number of physical, or “off-chip” bits required in send
addresses of array elements). Note: While this value typically represents

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

189

Appendix H. CMRTS and CM

the number of VUs in your CM, it may sometimes be less. This is particu-
larly the case for small arrays that do not use all of the nodes of the CM
to store array data.

int4 product_subgrid lengths
This is the total number of elements in each subgrid (that is, the product
of all the subgrid axis lengths).

CMCOM_axis_descriptor *axls_descriptors

This is an array of axis descriptor data structures, one for each axis of the
array. See the description of the CMCOM_axis descriptor data struc-
ture below.

To access the product_subgrid_lengths slot, you can use the following
accessor function:

int4 CMRT_ desc_get subgrid size (descriptor)
CMRT desc_t descriptor;

You can also access the structure slots directly (you must do this to access the
remaining slots):

CMCOM machine geometry_t m_gecmetry =
array_descriptor->array_geometry -> machine_geometry

m_geometry -> rank
m_geometry -> total off chip length

m_geometry -> axis_descriptors[axis]

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

190

R

SRR

CMCOM_axis_descriptor

This is the array descriptor data structure, which defines the geometry informa-
tion for a single axis of a machine geometry.

array geometry
l CMCOM_axis_descriptor ! subgrid_lengthr 8
power_of_two
| - TRUE
subgrid axis increment
subgrid outer_increment
subgrid_outer_count,
subgrid_orthogonal_length
Y axis_length
Y I '
Node 0 Node 1 | [0]
0:1.2.3{4:5:6:7 2|3
4|5
Node 2 Node 3 s | 7
8 9 10.11{12 13 14 15
array subgrid

Figure 23. The CMCOM_axis_descriptor data structure.

The user-accessible structure slots are:
int4 subgrid length, power_of_two

The subgrid_length is the number of subgrid elements along the given
axis. The power_of_two slot is a flag that is TRUE if and only if the sub-
grid length is an exact power of two.

int8 axis_length

This is the total length (number of array elements) of the array axis. (This

is basically the subgrid length along the given axis times the number of
subgrids).

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix H. CMRTS and CM Memory Allocation 191

int4 subgrid axis increment

This is the number of array elements in memory that must be skipped to
move from each subgrid element along the given axis to the next element.

int4 subgrid outer_increment

This is the product of the subgrid_axis_increment and the
subgrid_length; in other words the number of array elements in
memory that must be skipped to move past all the subgrid elements along
a single axis. (If subgrid axis_increment is the distance between
elements in a row, for example, then subgrid_outer_increment is
the distance between the first elements of successive rows of the subgrid.)

int4 subgrid outer_count

This is the result of dividing the subgrid size (number of elements) by the
value of subgrid_outer_increment. In other words, it is the number
of iterations that would be needed to step through the entire subgrid using
increments of subgrid_outer_increment. (This slot is used internally
in the CMRTS to quickly calculate looping limits for operations that take
place over the entire subgrid.)

int4 subgrid orthogonal_length

This is the product of the subgrid lengths of all other axes in the array. In
other words, this is the number of subgrid elements in a single multi-di-
mensional “slice” through the array that is perpendicular to the given axis.
(In a three-dimensional array, for example, this would be the number of

- rows and columns of elements in each horizontal “slice” of the vertical
axis.)

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

VU Programmer’s Handbook

(The remaining slots are used to specify the send addresses of array elements.
These slots are not shown in Figure 23.)

unsigned char off_chip positions, off_chip length
unsigned4 off_chip mask

These slots specify the physical, or “off-chip” part of an array element’s
send address that corresponds to the given axis. (Literally, these values are
the starting position of the physical, or “off-chip” bits assigned to the axis,
the number of bits assigned to the axis, and a binary mask that selects only
those bits from a send address.)

unsigned char subgrld bits_position, subgrid bits_ length;
int4 subgrid bits_mask;

These slots specify the subgrid part of an array element’s send address that
corresponds to the given axis. (Literally, these values are the starting posi-
tion of the subgrid bits assigned to the axis, the number of bits assigned
to the axis, and a binary mask that selects only those bits from a send
address.)

Note: The subgrid bits slots are only valid if the power_of_two slot
is TRUE — in other words, if the number of elements in the subgrid is an
exact power of two.

To access the subgrid_length slot, you can use this accessor function:

int4 CMRT desc_get subgrid dimension (descriptor, axis)
CMRT_desc_t descriptor;
int4 axis;

You can also access the structure slots directly (you must do this to access the
remaining slots):

CMCOM_machine geometry t m_geometry =
array_descriptor->array geometry -> machine geometry

CMCOM_axis_descriptor axis_d =
m_geometry -> axis_descriptors[axis]

axis_d -> axis_length
axis_d -> subgrid_axis_increment

axis_d -> subgrid_outer_count

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix H. CMRTS and CM Memory Allocation ' 193

H.2 CMRTS Parallel Memory Allocation

For some special-purpose applications, it is necessary to allocate parallel CM
memory other than by using a high-level language to define an array. (For exam-
ple, you may need to allocate memory to hold a temporary value on each node.)
To do this, you can use the memory allocation functions of the CMRTS.

H.2.1 Standard CMRTS Memory Allocation Functions

As described in Appendix A, parallel VU memory is mapped into two general
regions of memory, the parallel stack and the parallel heap. Both the stack and
the heap regions grow upward, toward higher memory addresses. When you allo-
cate new space in these regions, it is allocated as a stripe across the physical
memory of the VUs.

There are two ways to allocate either stack or heap memory space: by a physical
block of memory, or by a geometry block of memory. The difference is essen-
tially one of convenience. If you know exactly how many bytes of memory you
want to allocate on each VU, use the physical memory allocation functions:

CMRT_cm_location_t
CMRT allocate_physilcal stack field(num bytes)
int4 num bytes;

CMRT_cm_location_t
CMRT_allocate_physical heap_field(num bytes)
int4 num bytes;

Both functions take a number of bytes as an argument, and return a
CMRT cm_location_t pointer to the allocated stack or heap memory region. -
To deallocate a memory region allocated in this way, use the functions:

CMRT deallocate_physical stack through(field, num_byte's)
CMRT_cm location t field;
int4 num_bytes;

CMRT_deallocate_physical_heap_ field(field, num bytes)
CMRT cm _location t field;
int4 num bytes;

CMosr Version 7.2, August 1993 .
Copyright © 1993 Thinking Machines Corporation

194 VU Programmer’s Handbook

These functions take a starting address and a number of bytes, and return the
indicated space to free storage. (Note that deallocating a stack field implicitly
deallocates all stack fields with higher stack addresses.)

If, on the other hand, you have a specific CMRT_array_geometry_t and want
to allocate enough memory to give each element of the geometry a specific num-
ber of bytes, you should use these allocation functions:

CMRT_cm_location_t
CMRT allocate stack fileld(geometry, num bytes)
CMRT array_geometry_ t geometry;
int4 num bytes;
CMRT cm_location_t
CMRT _allocate_heap_field (geometry, num bytes)
CMRT_array_geometry t geometry;
int4 num bytes;

Both functions take a geometry object and a number of bytes, and return a
CMRT_cm_location_t pointer to the allocated stack or heap region. The differ-
ence between these functions and the physical ones shown above is that these
functions allocated the specified number of bytes for each element of the array’s
subgrid — the num_bytes argument is multiplied by the array’s subgrid size.
Thus, the following equivalences hold:

CMRT allocate_stack fileld(geometry, num bytes) ==
CMRT allocate physical_stack field (num bytes *
geometry->machine geometry->product_ subgrid_lengths)

CMRT allocate_heap_ fleld(geometry, num bytes) ==
CMRT_allocate_physical_heap fileld (num bytes *
geometry->machine_geometry->product_subgrid_ lengths)

To deallocate these fields, you can use the following deallocation functions:

CMRT_deallocate_stack field through
(field, geometry, num bytes)
CMRT_cm_location_t field;
CMRT array_geometry_t geometry;
int4 num_bytes;
CMRT_deallocate_heap_ field
(field, geometry, num bytes)
CMRT_cm_location_t field;
CMRT_array_geometry_ t geometry;
int4 num _bytes;

CMosr Version 7.2, Augisst 1993
Copyright © 1993 Thinking Machines Corporation

Appendix H. CMRTS and CM Memory Allocation 195

H.2.2 Node-Level Stack Operations

When you are writing a node-level routine that is to be called as part of a global
program, you can also use CMRTS functions to allocate temporary stack space
independently on each node. The only condition to this is that you must ensure
that the allocated space is freed before your node-level routine returns.

The following routines can be used at this level:
CMCOM_cm_address_t CMCOM pe_get_stack pointer ()

CMCOM_cm_address_t
CMCOM_pe_allocate_stack space (nbytes)
int4 nbytes;

CMCOM pe_set_stack polnter (new_sp)
CMCOM_cm_address_t new_sp;

The proper (and recommended) method to do this is:

" At the start of a node-level subroutine, get the current value of the stack
pointer and store it in a temporary variable:

CMCOM cm_address_t temp;
temp = CMCOM pe get stack pointer();

® When you need to allocate stack space, call the allocation function:
space = CMCOM pe allocate_stack space (nbytes);

= At the end of the routine (or before any return point), free all allocated
stack space by resetting the stack pointer to its original value.

CMCOM _pe_set_stack_pointer (temp);

Important: This method is only applicable for node routines that are called
directly as part of a global (PM and nodes) program. If you are running code
under the global/local version of the RTS, in which each node is treated as a par-
allel machine in and of itself, you can make calls to the standard RTS memory
allocation routines as described in Section H.2.1 above. These will work in either
the global or the local parts of a globalflocal program.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

196

VU Programmer’s Handbook

H.3 Non-RTS (CMMD) Parallel Memory Allocation

H.3.1

For some applications (in particular, when writing DPEAC or CDPEAC code
that is to be called from CMMD message-passing routines), it is necessary to
allocate parallel CM memory without using the standard memory allocation and
deallocation routines provided by the CMRTS. Methods for allocating parallel
memory without use of the CMRTS are described in the sections below.

Important: The methods described below must not be used in any application

that makes calls to the CMRTS — directly accessing the stack and heap pointers
as described here is incompatible with the CMRTS memory management code.

Parallel Memory Addressing

Using the memory allocation routines described here requires that you refer to
memory regions by their actual memory addresses (as opposed to using a
memory location data type, such as CMRT _em_location_t, as a “handle”).

Parallel memory locations are referenced by their all-VU, instruction space
address. This is the address in the region of VU memory that causes all four VUs
to execute a DPEAC instruction simultaneously. Both CMRTS routines and
CMMD routines take addresses of this type as arguments.

When you are using and manipulating these kinds of addresses, whether you are
coding in DPEAC or CDPEAC, you should include this header file:

#include <cmsys/dp.h>

This header file defines a number of symbolic constants that are helpful in

constructing and interpreting addresses in the VU memory regions.

For example, the base of the parallel stack (in all-VU instruction space) is given

by the symbol DPV_STACK_INST PORT ALL (0x50000000), and the base of

the parallel heap region is given by the symbol DPV_HEAP INST PORT ALL
(0x70000000). You can construct an address within these regions by adding a
byte offset to these base addresses.

Important: Before you can access a stack or heap word, the memory region
must have been expanded to include the address (that is, you must allocate the
memory before you can legally access it).

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Appendix H. CMRTS and CM Memory Allocation 197

H.3.2 Expanding the Stack or Heap

When you want to expand the stack or heap, you make a CMOST system call to
manipulate the pointer of the appropriate memory region. You can do this either
from the partition manager or from a processing node. If you do this from a node,
only one processing node must (and should) make the allocation call. To access
the appropriate CMOST routines, include the header file:

#include <cmsys/cm memory.h>

The memory pointer system calls from the partition manager are:

CM_memaddr_t

CM_set_dp_stack_ptr (CM memaddr_t new_limit)
CM_memaddr_t

CM_set_dp_heap ptr (CM memaddr_ t new_limit)

CM memaddr_t CM _get dp_ stack ptr ()
CM memaddr_t CM get_dp_heap ptr ()

The equivalent calls from the node are:

CM_memaddr_t
- CMPE_set_dp_stack_ptr (CM memaddr_t new_limit)
CM _memaddr_t
CMPE_set_dp heap_ptr (CM memaddr_t new limit)

CM _memaddr_t CMPE_get dp_stack _ptr ()
CM_memaddr_t CMPE_get_dp_heap_ptr ()

All these routines return a CM_memaddxr_t value, which is an all-VU, instruction
space address, representing the current position of the memory pointer (in the
case of the set routines, this is the value of the pointer after you have modified
it). The value of the pointer is always one more than the highest allocated address
in the memory region. '

You cannot access allocated memory using the cM_memaddr_t values returned
from these system calls, because they are in all-VU instruction space. You must
translate this value into a single-VU, data space pointer, as described in Section
H.3.3 below. -

To use the set system calls, you pass in the highest address that you want to have
allocated. The pointer value the call returns will always be greater than this value
(unless there is insufficient memory remaining, in which case zero is returned),
but it may not be exactly one more than the address you passed in.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

198

H.3.3

VU Progrdmmer s Handbook

Important: Don’t make a “copy” of the stack or heap pointer and expect the
copy to remain valid. Stack and heap memory can be allocated for reasons other
than explicit system calls from your program. Thus, the stack and heap pointers
can change without warning. You should always use the current value returned
by the system calls mentioned above when determining the current size of the

~ stack or heap.

If you want to deallocate parallel memory (in other words, shrink the stack or
heap regions), call the appropriate set function with the new lower limit.

Note: CMOST currently does not allow the regions to shrink, and thus the call
described above will have no effect, and the current limit will be returned. Never-
theless, it is sensible to include deallocation calls, for compatibility with later
software versions.

Translating Stack and Heap Addresses

You can change cM_memaddr_t values into valid data space addresses ﬁsing the
following C macro, which is defined in cmsys/dp .h:

data_address = TOGGLE DPV_SPACE (instruction_address) ;

Note that the returned data space address is still an all-VU address. It cannot be
used to read from memory, and if used to store to memory, the stored value will
be written to all four VUs (broadcast).

You can change the data space address to point to a single VU by using one of
the following macros:

VU_0_address
VU_1 address
VU_2_address
VU_3_address

CHANGE_DP (data_address, DP_0);
CHANGE DP(data_address, DP_1);
CHANGE DP(data_address, DP_2);
CHANGE DP(data_address, DP_3);

The resulting addresses are pointers to words (or doublewords) in stack or heap
memory and can be used, for example, as a C pointer value to read or write
memory values.

Note: Paralle]l memory accessed by the node processor is always mapped with
caching disabled. Thus, access to words/doublewords in the above fashion will
be 2 to 3 times slower than normal cached accesses. Also, all attempts to
read/write parallel memory using pointers that are not word-aligned will result
in memory faults.

CMost Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Index

CMosr Version 7.2, August 1993

199
Copyright © 1993 Thinking Machines Corporation

Tdiien, i g

- 75

Symbols

t{=}n
memory stride syntax, in DPEAC, 25
register stride syntax, in DPEAC, 24
1mode, stride marker, in DPEAC, 24
(reg) , memory indirection syntax, in
DPEAC, 43
(rIA) , register indirection syntax, in DPEAC,
42
[%rn], memory address syntax, in DPEAC,
29
[n1, register offset syntax, in DPEAC, 23
* {=} n, vector length syntax, in DPEAC, 42
=always, mask mode modifier option
in CDPEAC, 99
in DPEAC, 53
=cond, mask mode modifier option
in CDPEAC, 99
in DPEAC, 53
=condalu, mask mode modifier option
in CDPEAC, 99
in DPEAC, 53
=condmem, mask mode modifier option
in CDPEAC, 99
in DPEAC, 53
<
vector length modifier, in DPEAC, 42
VU selection modifier, in DPEAC, 26
1

immediate format suffix, in CDPEAC, 86

memory indirection suffix, in CDPEAC, 90
register indirection suffix, in CDPEAC, 86,

90
8

memory stride suffix, in CDPEAC, 68, 90
register stride suffix, in CDPEAC, 67, 90

CMosr Version 7.2, ;August 1993

_u
memory stride suffix, in CDPEAC, 68, 90
register stride suffix, in CDPEAC, 67, 90

_us
memory stride suffix, in CDPEAC, 68, 90
register stride suffix, in CDPEAC, 67, 90

_v, vector length suffix, in CDPEAC, 85, 90

_vh, vector length suffix, in CDPEAC, 85, 90

_vhs, vector length suffix, in CDPEAC, 85,

: 90
_vs, vector length suffix, in CDPEAC, 85, 90
_x, register offset suffix, in CDPEAC, 67, 90

A

accelerators, vector unit (VU), 3
accessor instructions, SPARC, in DPEAC, 58
accumulated context count
CDPEAC statement modifier, 101
DPEAC statement modifier, 55
VU feature, 17
align
CDPEAC statement modifier, 99
DPEAC statement modifier, 53
alignment guarantee
CDPEAC statement modifier, 99
DPEAC statement modifier, 53
ALL_DPS, VU selector
in CDPEAC, 69
in DPEAC, 26
ALL_PHYS_NUM_DPS, VU selector
in CDPEAC, 69
in DPEAC, 26
ALU status and contextualization, 15
always, mask mode modifier option -
in CDPEAC, 99
" in DPEAG, 53
argument macros, in CDPEAC, 65, 90

Copyright © 1993 Thinking Machines Corporation 201

202

arithmetic instructions
in CDPEAC, 62, 71
in DPEAC, 19, 28
list of
for CDPEAC, 91
for DPEAC, 45
arithmetic mode register, VU control register,
13
arithmetic no-op instruction
for CDPEAC, 96
for DPEAC, 51
array descriptor, CMRTS, 178, 184
array geometry, CMRTS, 179, 185
array_geometry, CMRT_desc_t structure
slot, 184
arrays in CMRTS, 178
arrays, passing, into C/DPEAC routines, 109
as assembler, 5, 169
as-expression, DPEAC syntax, 21
as-register, DPEAC syntax, 22
ASCII constants, DPEAC syntax, 21
asm statement, in the C language, 61
axis_descriptors, CMRTS machine
geometry slot, 189
axis_length, CMRTS axis descriptor slot,
190

Cc

C variables, in CDPEAC instructions, 65
CDPEAC accessor instructions, list of, 102
CDPEAC argument macros, 65, 90
CDPEAC code, 62
CDPEAC header file, 7
CDPEAC instruction set, 6, 61
CDPEAC instructions, 70

list of, 89
CDPEAC join statement order, 64
CDPEAC procedure, 62
CDPEAC special instruction, 63
CDPEAC statement formats, 74
CDPEAC statement modifiers, 98

for conditionalization, 99

special modifiers, 100

v VU Programmer’s Handbook
S S ;

CDPEAC subroutine, 106
in a C/DPEAC program, 108
CDPEAC syntax, 65
CDPEAC VU accessor instruction, 63
chain loading
in CDPEAC, 64
in DPEAC, 20
CM Run-Time System (CMRTS), 177
cm_location, CMRT_desc_t structure slot,
184
CM-5 assembly code, 4
CM-5 computing environment, 2
CM-5 hardware, 2
CM-5 networks, 2
CM-5 processing node, 3
CM-5 software layers, 4
CM-5 vector units (VUs), 1, 3,9
CMCOM layer, of CMRTS, 177
CMCOM_axis_descriptor, CMRTS data
structure, 190
CMCOM_machine geometry_t, CMRTS
data structure, 179, 188
CMCOM_pe_allocate_stack_space,
CMRTS memory allocation function,
195
CMCOM_pe_get_stack pointer, CMRTS
memory allocation function, 195
CMCOM_pe_set_stack pointer, CMRTS
memory allocation function, 195
CMIP layer, of CMRTS, 177
CMPE_, prefix, of node interface functions, in
C/DPEAC program, 108
CMRT layer, of CMRTS, 177
CMRT allocate_heap field, CMRTS
memory allocation function, 194
CMRT_allocate_physical_heap_field,
CMRTS memory allocation function,
193
CMRT_allocate_physical_ stack_field,
CMRTS memory allocation function,
193
CMRT_allocate stack field CMRTS
memory allocation function, 194

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Index

203

CMRT_array_geometry_t, CMRTS data
type, 179, 185
CMRT _cm_location t, CMRTS parallel
memory location, 179
CMRT_deallocate_heap_ field, CMRTS
memory allocation function, 194
CMRT_deallocate_physical_ heap fiel
4, CMRTS memory allocation
function, 193
CMRT_deallocate_physical stack thr
ough, CMRTS memory allocation
function, 193
CMRT_deallocate_stack field throug
h, CMRTS memory allocation
function, 194
CMRT desc_get_cm_location, CMRTS
accessor function, 184
CMRT desc_get_element_size, CMRTS
accessor function, 184
CMRT_desc_get_geometry, CMRTS
accessor function, 184
CMRT_desc_get_lower_bound, CMRTS
accessor function, 187
CMRT_desc_get_number_ of_elements,
CMRTS accessor function, 187
CMRT_desc_get_rank, CMRTS accessor
function, 187 '
CMRT_ desc_get_subgrid_dimension,
CMRTS accessor function, 192
CMRT desc_get_subgrid size, CMRTS
accessor function, 189
CMRT_desc_get_upper_bound, CMRTS
accessor function, 187
CMRT_desc_t, CMRTS array descriptor, 178,
184
code
CDPEAC, 62
DPEAC, 19
comments, DPEAC syntax, 21
comparison instructions, list of
for CDPEAC, 93
for DPEAC, 48
condalu, mask mode modifier option
in CDPEAC, 99
in DPEAC, 53

CMosr Version 7.2, August 1993 _
Copyright © 1993 Thinking Machines Corporation

_ conditional instructions, list of, for DPEAC,

47,93
conditionalization, 15
conditionalization bit sense
CDPEAC statement modifier, 100
DPEAC statement modifier, 54
conditionalization mode, 15
CDPEAC statement modifier, 99
DPEAC statement modifier, 53
conditionalization modifiers
of CDPEAC statements, 99
of DPEAC statements, 53
condmem, mask mode modifier option
in CDPEAC, 99
in DPEAC, 53
constant-expression, DPEAC syntax, 21
context bit, 15
context bit sense, 15
context count, VU feature, 17
contextualization, 15
Control Network, 2
control register constants, of VU registers, 18
control register region, 127, 128
control registers, VU, 13
in CDPEAC, 66
in DPEAC, 24
conversion instructions, list of
for CDPEAC, 95
for DPEAC, 49
current mode
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
vector mask shift mode, 16

Data Network, 2
data register region, 127, 128
data registers, VU, 12
in CDPEAC, 66
in DPEAC, 23
data space, 126
in VU memory, 11

204

data types
of a CDPEAC instruction, 71
of a DPEAC instruction, 28
depc
CDPEAC statement modifier, 100
DPEAC statement modifier, 54
descriptor, array, in CMRTS, 178, 184
doubleword, 12
doubleword alignment guarantee -
CDPEAC statement modifier, 99
DPEAC statement modifier, 53
dp_alu_mode, VU control register, 13
DP_n, VU selector
in CDPEAC, 69
in DPEAC, 26
DP_PHYS NUM_0_AND_1, VU selector
in CDPEAC, 69
in DPEAC, 26
DP_PHYS_NUM_2_AND_3, VU selector
in CDPEAC, 69
in DPEAC, 26
DP_PHYS_NuM_n, VU selector
in CDPEAC, 69
- in DPEAG, 26
dp_status, VU control register, 13, 15
dp_status_enable, VU control register, 13,
15
dp_stride_memory
default memory stride, 104
in CDPEAC, 68
in DPEAC, 25
VU control register, 13
dp_stride_rsi
default rS1 register stride, 104
in CDPEAC, 67, 75
in DPEAC, 24, 32
VU control register, 13
dp_vector_length
default vector length register, 104
in CDPEAC, 70, 85
in DPEAC, 27, 42
VU control register, 13
dp_vector_mask
vector mask register, 52, 98
VU control register, 13, 15

VU Programmer’s Handbook

dp_vector_mask_buffer, VU control
register, 13, 17
dp_vector_mask_direction, VU control
register, 13, 16
dp_vector_mask_mode, 53
vector mask mode register, 99, 104
VU control register, 13, 15
dpas assembler, 169
dpas assembler symbol, 170
dpas command line format, 169
dpas lexical directives, 170
dpas preprocessor, 169
dpas switches, 169
dpas, DPEAC assembler, 5
dpcc command line format, 171
dpcc compiler, 171 |
dpcc switches, 171
dpce, CDPEAC compiler, 6
dpchgbk, register accessor instruction
for CDPEAC, 102, 103
for DPEAC, 56, 57
dpchgep, register accessor instruction
for CDPEAC, 102, 103
for DPEAC, 56, 57
dpcleanup, CDPEAC special instruction,
104
DPEAC accessor instruction, 20
DPEAC accessor instructions, list of, 56
DPEAC and CDPEAC, using, 7
DPEAC code, 19
DPEAC header file, 7
DPEAC instruction set, 5, 19
DPEAC instructions, 19, 27
list of, 45
DPEAC statement, 19
DPEAC statement formats, 31
DPEAC statement modifiers, 52
for conditionalization, 53
special modifiers, 54
DPEAC statement order, 20
DPEAC subroutine, 106
in a C/DPEAC program, 108
DPEAC syntax, 21
dpentry, SPARC accessor instruction, in
DPEAC, 58

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Index

205

dpget, register accessor instruction
for CDPEAC, 102
for DPEAC, 56
dpl4, register accessor instruction
for CDPEAC, 102, 103
for DPEAC, 56, 57
dprd, register accessor instruction
for CDPEAC, 102
for DPEAC, 56
dpregs, SPARC accessor instruction, in
DPEAC, 59
dpretn, SPARC accessor instruction, in
DPEAC, 59
DPS_0_AND_1, VU selector
in CDPEAC, 69
in DPEAC, 26
DPS_2 AND_3, VU selector
in CDPEAC, 69
in DPEAC, 26
dpset, register accessor instruction
for CDPEAC, 102
for DPEAC, 56
dpsetup, CDPEAC special instruction, 104
dpst, register accessor instruction
for CDPEAC, 102, 103
for DPEAC, 56, 57
dpsync, register accessor instruction
for CDPEAC, 102, 103
for DPEAC, 56, 57
dpunset, SPARC accessor instruction, in
DPEAC, 59 '
dpwrt, register accessor instruction
for CDPEAC, 102
for DPEAC, 56
dreg 1
CDPEAC register indirection macro, 86
register indirection macro, 90
dreg_s (), CDPEAC register stride macro,
67,90 :
dreg_u(), CDPEAC register stride macro,
67,90
dreg_u_s (), CDPEAC register stride macro,
67,90

CMosrt Version 7.2, August 1993]
Copyright © 1993 Thinking Machines Corporation

dreg_x() , CDPEAC register offset macro,
67,90
dyadic arithmetic instructions
in CDPEAC, 71
in DPEAC, 28
list of
for CDPEAC, 92
for DPEAC, 46
dyadic comparison instructions, list of
for CDPEAC, 93
for DPEAC, 48
dyadic conditional instructions, list of
for CDPEAC, 93
for DPEAC, 47
dyadic conversion instructions, list of
for CDPEAC, 95
for DPEAC, 49
dyadic mult-op instructions, list of
for CDPEAC, 94
for DPEAC, 48

effects of VU control registers, 14
element_size, CMRT _desc_t structure slot,
184

epc » .
CDPEAC statement modifier, 100
DPEAC statement modifier, 54

etrap, VU trap instruction, in DPEAC, 57

exchange
CDPEAC statement modifier, 101
DPEAC statement modifier, 55

expressions, DPEAC syntax, 21

extents, CMRTS array geometry slot, 186

F
file naming conventions, in C/DPEAC

program, 107
flags, VU status register, 16

206

VU Programmer’s Handbook

G

garbage data, in CMRTS arrays, 179

garbage_mask, CMRTS array geometry slot,
186

general-expression, DPEAC syntax, 21

geometries, CMRTS, 179

H

hazards, VU pipeline, 140
header file
for CDPEAC, 7
for DPEAC, 7
heap, in VU memory, 11, 126
host interface file, in C/DPEAC program, 107
host interface function, in a C/DPEAC

program, 106, 108

1, immediate format suffix, in CDPEAC, 77,

90

immediate format

in CDPEAC, 74, 77

in DPEAC, 31, 34
instruction pipeline, 139
instruction space, 126

in VU memory, 11
instruction suffixes, in CDPEAC, 64, 90
inverting, context bit sense, 15

J

join macro, in CDPEAC, 63, 89
Joinn(), CDPEAC instruction joining
macro, 64, 89

L

ldvm
CDPEAC special instruction, 104
vector mask instruction, in DPEAC, 58
load, SPARC accessor instruction, in
DPEAC, 59

long format statement
in CDPEAC, 74
in DPEAC, 31
lower_bounds, CMRTS array geometry slot,
186

machine geometry, CMRTS, 179, 188
machine_geometry, CMRTS array
geometry slot, 186

maddr

CDPEAC statement modifier, 68, 98

DPEAC statement modifier, 25, 52
main program file, in C/DPEAC program, 107
makefile, in C/DPEAC program, 107, 117
memory allocation

in CMRTS, 193

non-CMRTS, 196
memory argument, of a CDPEAC instruction,

72

memory correspondence, physical/virtual, 131
memory indirection

in CDPEAC, 86

in DPEAC, 43
memory instruction

in CDPEAC, 72

in DPEAC, 29
memory instructions

in CDPEAC, 62

in DPEAC, 19

list of

for CDPEAC, 97
for DPEAC, 51

memory mapping, 125
memory maps, 133
memory no-op instruction

for CDPEAC, 97

for DPEAC, 51
memory operand

CDPEAC statement modifier, 98

DPEAC statement modifier, 52

of a DPEAC instruction, 29

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Index

207

memory operand stride, VU control register,
13

memory operand syntax, in DPEAC, 29
memory stride default

in CDPEAC, 68

in DPEAC, 25
memory stride format

in CDPEAC, 74, 79

in DPEAGC, 31, 36
memory stride indirection vatiant, of mode set

format

in CDPEAC, 83

in DPEAC, 40
memory stride markers, in DPEAC, 25
memory striding

in CDPEAC, 68

in DPEAC, 25
mode, stride marker, in CDPEAC, 67
mode set format :

in CDPEAC, 74, 80

in DPEAC, 31, 37
modifiers

of a CDPEAC statement, 62, 73, 98

of a DPEAC statement, 19, 30, 52
monadic arithmetic instructions

in CDPEAC, 71

in DPEAC, 28

list of

for CDPEAC, 91
for DPEAC, 45

mult-op instructions, list of

for CDPEAC, 94

for DPEAC, 48

N
naming conventions, interface function, in
C/DPEAC program, 108
naming conventions, source file, in C/DPEAC
program, 107
Network Interface (NI), 3
no-op, arithmetic
for CDPEAC, 96
for DPEAC, 51

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation’

no-op, memory
for CDPEAC, 97
.for DPEAC, 51
noalign
CDPEAC statement modifier, 99
DPEAC statement modifier, 53
node, 3
node interface file, in C/DPEAC program,
107
node interface function, 106
in a C/DPEAC program, 108
noexchange
CDPEAC statement modifier, 101
DPEAC statement modifier, 55
nopad
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
number_of_elements, CMRTS array
geometry slot, 186
numbers, DPEAC syntax, 21

o)

off_chip length, CMRTS axis descriptor
slot, 192
off_chip mask, CMRTS axis descriptor
slot, 192
off_chip positions, CMRTS axis
descriptor slot, 192
one-source (monadic) instructions
in CDPEAC, 71
in DPEAC, 28
one-source (monadic) instructions, list of
for CDPEAC, 91
for DPEAC, 45
operators, arithmetic, DPEAC syntax, 21

P

pad
CDPEAC statement modifier, 98
DPEAC statement modifier, 52

208
B e
padding

CDPEAC statement modifier, 98
DPEAC statement modifier, 52
parallel heap, 126
in VU memory, 11
parallel memory allocation
in CMRTS, 193
non-CMRTS, 196
parallel stack, 126
in VU memory, 11
partition, 2
partition manager (PM), 2
passing arrays, into C/DPEAC routines, 109
physical memory mapping, 125
physical memory regions, 125
physical/virtual memory correspondence, 131
pipeline hazards, 140
pipeline overlap, 140
pipeline stages, 139
pipelining, 139
population count
CDPEAC statement modifier, 100
DPEAC statement modifier, 54
VU feature, 17
population count variant, of mode set format
in CDPEAC, 83
in DPEAC, 40
power_of_two, CMRTS axis descriptor slot,
190
procedure, DPEAC, 62
processing elements, 180
processing node, 3
processor, RISC, 3
product_subgrid_lengths, CMRTS
machine geometry slot, 189

R

rank
CMRTS array geometry slot, 186
CMRT'S machine geometry slot, 188
rD, register argument, 27, 70
register arguments, in CDPEAC, 70
register file, VU, 12

ok

VU Programmer s Handbo

G

register offsets
in CDPEAC, 67, 90
in DPEAC, 23
register operands, in DPEAC, 27
register restrictions
SPARC, in DPEAC, 22
vU
in CDPEAC, 66
in DPEAC, 23
register stride format
in CDPEAC, 74, 78
in DPEAC, 31, 35
register stride indirection
in CDPEAC, 86, 90
in DPEAC, 42
register stride indirection variant, of mode set
format
in CDPEAC, 82
in DPEAC, 39
register stride markers, in DPEAC, 24
register striding
default, of vector instructions
in CDPEAC, 71
in DPEAC, 28
in CDPEAC, 90
in DPEAC, 24
restrictions, rS2 argument, in CDPEAC, 71
restrictions, rS2 operand, in DPEAC, 28
rlA, register argument, 27, 70
RISC processor (CPU), 3
rLS, register argument, 27, 70
Rnn, VU data register
in CDPEAC, 66
in DPEAC, 23
rotate mode
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
vector mask shift mode, 16
rotation mode of vector mask
CDPEAC statement modifier, 98
DPEAC statement modifier, 52 V
routine, DPEAC, 19
rS1, register argument, 27, 70

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

Index

rS1 argument, in CDPEAC short statement
format, 75
rS1 operand, in DPEAC short statement
format, 32
rS1 register operand stride, VU control
register, 13
rS1 stride restriction
in CDPEAC, 67
in DPEAC, 24
sl stride variant, of mode set format
in CDPEAC, 81, 82
in DPEAC, 38, 39
rS2, register argument, 27, 70
rS2 argument restrictions, in CDPEAC, 71
rS2 operand restrictions, in DPEAC, 28
Run-Time System (CMRTS), 177

S

scalar instruction variant, of mode set format,
in DPEAC, 41
scalar instructions
in CDPEAC, 70
in DPEAC, 27
scalar registers
in CDPEAC, 66
in DPEAC, 23
scalar (), CDPEAC register stride macro,
67,90
scalar/vector agreement
in CDPEAC, 70
in DPEAC, 27
sD, register argument, 27, 70
set_mem_stride(), CDPEAC special
instruction macro, 104
set_rsl_stride (), CDPEAC special
instruction macro, 104
set_vector_length (), CDPEAC special
instruction macro, 104
set_vector_length_and rsi_stride(),
CDPEAC special instruction macro,
104
set_vector_length and_rsl_stride_a
nd_vmmode (), CDPEAC special
instruction, 104

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

set_vector_length_and_vmmode (),
CDPEAC special instruction macro,
104 '
set_vmmode (), CDPEAC special instruction
macro, 104
short format statement
in CDPEAC, 74,75
in DPEAC, 31, 32
sIA, register argument, 27, 70
single-/doubleword performance, in DPEAC,
72
single-fdoubleword performance, in DPEAC,
29
singleword, 12
sLS, register argument, 27, 70
snn, VU scalar data register
in CDPEAC, 66
in DPEAC, 23
SPARC, processor, in CM-5 nodes, 3
SPARC accessor instructions, in DPEAC, 58
SPARC as assembler, 5, 169
SPARC assembly code, 19
SPARC register restrictions, in DPEAC, 22
SPARC registers, DPEAC syntax, 22
special modifier variant, of mode set format
in CDPEAC, 84
in DPEAC, 41
special modifiers
of CDPEAC statements, 100
of DPEAC statements, 54
sS1, register argument, 27, 70
582, register argument, 27, 70
stack, in VU memory, 11, 126
stages of VU pipeline, 139
statement formats
in CDPEAC, 74
in DPEAC, 31
statement modifiers
in CDPEAC, 62, 73
in DPEAC, 19, 30
statement order
in CDPEAC, 64
in DPEAC, 20

210

VU Progrdmmer-k Handbook

statements
in CDPEAC, 62
in DPEAC, 19
status bit rotation mode
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
status bits, from VU arithmetic operations, 16
status enable register, VU control register, 13,
15
status flags, in VU status register, 16
status register, VU control register, 13, 15
stride, of vector registers, 12
stride macro, for register arguments in
CDPEAC, 67
stride marker, in DPEAC, 24
stride restriction, rS1 register
in CDPEAC, 67
in DPEAC, 24
striding, of VU operations, 9
stvm
CDPEAC special instruction, 104
vector mask instruction, in DPEAC, 58
subgrid, in CMRTS arrays, 182
subgrid axis_increment, CMRTS axis
descriptor slot, 191
subgrid bits_length, CMRTS axis
descriptor slot, 192
subgrid _bits_mask, CMRTS axis
descriptor slot, 192
subgrid bits_position, CMRTS axis
descriptor slot, 192
subgrid length, CMRTS axis descriptor -
slot, 190
subgrid_orthogonal_length, CMRTS
axis descriptor slot, 191
- subgrid _outer_count, CMRTS axis
descriptor slot, 191
subgrid_outer_increment, CMRTS axis
descriptor slot, 191
subroutine code file, in C/DPEAC program,
107
suffixes, instruction, in CDPEAC, 90
supported operators, in DPEAC expression
syntax, 21

symbolic constants, for VU virtual memory
regions, 129
syntax
CDPEAC, 65
DPEAC, 21

T

three-source (triadic) instructions
in CDPEAC, 71
in DPEAC, 28
three-argument mult-op instructions, list of
for CDPEAC, 96
for DPEAC, 50
total_off chip length, CMRTS
machine geometry slot, 188
trap, VU trap instruction, in DPEAC, 57
triadic arithmetic instructions
in CDPEAC, 71
in DPEAC, 28
triadic instructions, list of
for CDPEAC, 96
for DPEAC, 50
triadic mult-op instructions, list of
for CDPEAC, 96
for DPEAC, 50
triadic rLS register restriction
in CDPEAC, 71
in DPEAC, 28, 29
two-source (dyadic) instructions
in CDPEAC, 71
in DPEAC, 28
two-argument mult-op instructions, list of
for CDPEAC, 94
for DPEAC, 48
two-source (dyadic) instructions, list of
for CDPEAC, 92
for DPEAC, 46
type abbreviations, for CDPEAC type
argument, 89
type argument, of a CDPEAC instruction, 71

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

upper_bounds, CMRTS array geometry slot,
186
using DPEAC and CDPEAC, 7

v

variables, in CDPEAC instructions, 65
vD, register argument, 27, 70
vector instructions
in CDPEAC, 70
in DPEAC, 27
vector length
in CDPEAC, 70
in DPEAC, 27
vector length instruction suffixes, of mode set
format, in CDPEAC, 85
vector length modifier, of mode set format, in
DPEAC, 42
vector length padding
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
vector length register, VU control register, 13
vector mask and conditionalization, 15
vector mask bit sense
CDPEAC statement modifier, 100
DPEAC statement modifier, 54
vector mask buffer, VU control register, 17
vector mask conditionalization mode, VU
control register, 13
vector mask copy buffer, VU control register,
13
vector mask copy mode
CDPEAC statement modifier, 100
DPEAC statement modifier, 54
vector mask instructions, in DPEAC, 58
" vector mask mode
CDPEAC statement modifier, 99
DPEAC statement modifier, 53
vector mask mode register, VU control
register, 15
vector mask register, VU control register, 13,
15

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

vector mask rotation mode
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
vector mask shift direction, VU control
register, 13, 16
vector mask status bits, 16
vector registers
in CDPEAC, 66
in DPEAC, 23
vy, 12
vector stride
in CDPEAC, 70
in DPEAC, 27
vector unit (VU) accelerators, 3, 9
vector unit registers
in CDPEAC, 66
in DPEAC, 23
vIA, register argument, 27, 70
virtual memory mapping, 127
virtual memory regions, 128
virtual memory symbolic constants, 129
vLS, register argument, 27, 70
vmcount
CDPEAC statement modifier, 101
DPEAC statement modifier, 55
vmcurrent
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
vminvert
CDPEAC statement modifier, 100
DPEAC statement modifier, 54
vmmode
CDPEAC statement modifier, 99
DPEAC statement modifier, 53
vmnew
CDPEAC statement modifier, 100
DPEAC statement modifier, 54
vmnop
CDPEAC statement modifier, 100
DPEAC statement modifier, 54
vmold
CDPEAC statement modifier, 100
DPEAC statement modifier, 54

212

vmrotate
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
vmtrue
CDPEAC statement modifier, 100
DPEAC statement modifier, 54
vnn, VU vector data register
in CDPEAC, 66
in DPEAC, 23
v§1, register argument, 27, 70
v§2, register argument, 27, 70
VU chips, 10
VU control register constants, 18
VU control register region, 127, 128
VU control registers, 13
effects of, 14
in CDPEAC, 66
in DPEAC, 24
VU data register region, 127, 128
VU data registers, 12
in CDPEAC, 66
in DPEAC, 23
VU data space, 126
VU instruction, in CDPEAC, 62
VU instruction pipeline, 139
VU instruction space, 126
VU instructions, 3
VU memory layout, 10
VU memory mapping, 10, 125
VU memory maps, 133
VU memory regions, 10
VU memory spaces, 126

VU memory stride markers, in DPEAC, 24

VU memory striding, in CDPEAC, 68

VU Programmer’s Handbook

VU on-chip data swapping
CDPEAC statement modifier, 101
DPEAC statement modifier, 55
VU physical memory mapping, 125
VU physical memory regions, 125
VU physical/virtual memory correspondence,
131
VU pipelining, 139
VU register accessor instructions, list of
for CDPEAC, 102
for DPEAC, 56
VU register file, 12
VU register restrictions
in CDPEAC, 66
in DPEAC, 23
VU register spaces, 127
VU register stride macros, in CDPEAC, 67
VU register stride markers, in DPEAC, 24
VU registers, 12
VU selection
in CDPEAC, 68
in CDPEAC accessor instructions, 69
in DPEAC, 25
in DPEAC accessor instructions, 26
VU selectors
in CDPEAC, 69
in DPEAC, 26
VU status flags, in VU status register, 16
VU striding, 9
VU trap instructions, in DPEAC, 57
VU vector registers, 12
VU virtual memory mapping, 127
VU virtual memory regions, 128
VU virtual memory symbolic constants, 129

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

