PROGRAMMING GUIDE
FOR THE

MODEL 960 COMPUTER

VOLUME 1
OPERATIONAL SOFTWARE

{@’@ TEXAS INSTRUMENTS
INCORPORATED

P.O. BOX 66027 HOUSTON. TEXAS 77006

Copyright 1970

By

Texas Instruments Incorporated ,

All Rights Reserved

MY
Lot L)
us.s

The information and/or drawings set forth in this document
and all rights in and to inventions disclosed herein and patents
which might be granted thereon disclosing or employing the
materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made
to any other person or organization without the prior consent
of Texas Instruments Incorporated.

Section

1

II

GENERAL INFORMATION

1-1 Scope of Programming Guide . .
1-2 Computer Characteristics
1-3 System Configuration
1-4 Software Characteristics

TABLE OF CONTENTS

Page

1-1

.11

1-2
1-3

SYMBOLIC CODING IN ASSEMBLY

LANGUAGE
2-1 Introduction
2-2 Purpose of Assemblies
2-3 The Assembly Process
2-4 Symbolic Coding
2-4.1 Location Counter
2-4.2 Symbol Table
2-5.3 Coding Summary
2-5 Symbolic Line Format
2-5.1 Comment Lines
2-5.2 Name Field
2-5.3 Operation Field
2-5.4 Operand Field
2-5.5 Comment Field
2-6 Machine Instruction
Formats
2-6.1 Format 1
Machine Instructions
2-6.2 Format II
Machine Instructions
2-6.3 Format III
Machine Instructions
2-7 Assembler Directives
2-7.1 Absolute Attribute
Directive: ABS
2-7.2 Alternate Mode Registers
Directive: Mode 2
2-7.3 Terminate Segment Directive:
END
2-7.4 Directive: REF .,
2-7.5 Directive: DEF
2-7.6 Punch Symbol Table
Directive: PST
2-7.7 Memory Allocation
Directive: RES
2-7.8 Assignment Directive: FLAG
2-7.9 Connect Directive: CON
2-7.10 Equate Directive: EQU
2-7.11 Date Definition Directive:
DATA
2-7.12 Source Language Extension
Directive: FRM
2-7.13 Output Control
2-8 Symbolic Assembly Language .
2-9 Object Formats

Section

111

Page
2-9.1 Object Format 2-20
2-10 Object Format Definition ... 2-23

2-10.1 Program or Program Segment
Identification (ID) Record: . 2-23
2-10.2 Linkage Data (LD-External

Symbol Record: 2-24

2-10.3 TextRecord 2-25

2-10.4 Segment End Record 2-26
2-11 SAL Listing Record

Format 2-27

PROCESS AUTOMATION MONITOR

31 Scope ... 31
3-2 PAM System Description 33
3-2.1 PAM Program Structure 3-3

3-2.1.1 Supervisor Data Block 3-3
3-2.1.2 Supervisor Procedure Block 3-4
3-2.1.3 Supervisor Call Processors . 3-5

3-2.1.4 Interrupt Decoders 3-5
3-2.1.5 Device Service Routine ... 3-5
3-2.1.6 Worker Tasks 35

3-2.2 PAM Program Functions 3-5
3-2.3 Equipment Configuration ... 3-6

3-2.4 Data Structure 3-6
3-2.4.1 Supervisor Data Block 3-6
3-2.4.2 Worker Task Block 3-8
3-2.4.3 Worker-Supervisor Call ... 3-8
3-2.4.4 Record Formats 3-8
3-2.4.5 Support Programs 3-8
3-3 Operating Instructions 3-8
3.3.1 UsingPAM 38
3-3.2 Writing a Worker Program ... 3-8
3-3.2.1 SupervisorCalls 3-8
3-3.2.2 End of Program Function

1) o veeeanannn. 3.9
3-3.2.4 Bid a Task Function (O2) .. 3-9
3-3.2.5 Multiply Function (O3) ... 39

© 3.3.2.6 Divide Function (04) 3-10

3-3.2.7 Shift Memory Circular Left
Double Function (O5) 3-10

3-3.2.8 End of Job Function (0O4) . 3-10
3-3.2.9 Square Root Function (O7) 3-10
3-3.2.10 Convert Binary to ASCII

Coded Hexadecimal Function

(CBHA) (O8) 310
3-3.2.11 Convert Hexadecimal ASCII

to Binary Function

(CHAB) (09) 310
3-3.2.12 Convert Binary to ASCII

Coded Decimal Function

(CBDA) (09) 310

TABLE OF CONTENTS (Continued)

Section
3-3.2.13 Convert Decimal ASCII to
Binary Function (OB) . 310
3-3.2.14 Time Delay Function (OC) 3-10
3-3.2.15 Wait (Unconditional)
Function (OO) 3-10
3-3.2.16 Actuate Suspended Task
Function (OE) 3-10
3-3.2.17 Wait for Interrupt
Function (OF) 3-10
3-3.2.18 Get Date and Time
Function (10) 3-10
3-3.1.19 Get Data from Another
Task Function (11) 3-10
3-3.2.20 Convert Fixed Point to
Floating Point (12) 3-11
3-3.2.21 Convert Floating Point
to Fixed Point (13) 311
3-3.2.22 Floating Point Add (14) .. 3-11
3-2.2.23 Floating Point
Subtract (15) 311
3-2.2.24 Floating Point
Multiply (16) 311
3-2.2.25 Floating Point
(Divide 17) 3-11
3-2.2.25 Convert Floating Point to
Decimal ASCII (18) . 311
3-2.2.27 Floating Point Sine (19) .. 3-11
3-2.2.28 Floating Point Cosine
AA) © oo, 311
3-2.2.29 Floating Point
Arctangent (1B) 3-11
3-2.2.30 Future Supervisor Calls .. 3-11
3-3.3 Constructing a Worker
Task — The WIB 311
3-3.4 Using the Model 960
Computer in a Control
System 312
3-3.4.1 The Computer Advantages
of the Model 960 312
3-3.4.2 Economic Justification . 313
3-3.4.3 Functional Specification .. 3-13
3-3.4.4 1/O Summary 3-14
3-3.4.5 Installing the Computer
Program 3-16
3-3.4.6 Defining Application Tasks ~ 3-16
3-3.5 Installing Job Control
Programs into the System ... 3-17
3-3.5.1 Functions 3-17
3-3.5.2 Formats 3-17
3-3.5.3 Examples 3-18
3-3.6 DebugProgram 3-19
3-3.6.1 Initiate Debug Program . 319

Page

iv

Section Page
3-3.6.2 LMHA Function 3-19
3-3.6.3 DMHA Function 3-19
3-3.6.4 JCON Function 3-19
3-3.6.5 DIFO Function 3-19
3-3.6.6 RLIO Function 3-19
3-3.7 Performance Assurance Tests 3-19
3-3.7.1 Worker Task End Message 3-19
3-3.7.2 General Message 3-20
3-3.8 LoadingPAM 3-20
3-3.9 ConstructingPAM 3-20
3-3.9.1 PAM System Generation 3-20
3-3.9.2 Type and Number of Each

Type of 1/O Device 3-20
3-3.9.3 Structure of the Service
Routine Section 3-21
3-3.9.4 Logical Device Table
Size 3-21
3-3.9.5 System Clock Count 321
3-3.9.6 Priority of Debug 321
3-3.9.7 Process Interrupt Table
Size 3-21
3-3.9.8 PAM Segments Which Must
be in Any System 321
3-3.9.9 System Generation Summary 3-22
3-3.10 Standard Versions of PAM . 3-22
3-4 Subprograms 3-22
3-4.1 Supervisor Data Block
(SDB) oot 322
3-4.2 Supervisor (SPB) 3-23
3421 SUPRST 3-23
3422 SENTcov.... 3-23
3-4.2.3 Supervisor General Exit ... 3-23
3424 TSKSCN 3-23
3-4.2.5 Task Disabled 323
34.26 SGTWTB 3-25
3427 BidTask 3-25
3-4.2.8 End of Program 3-25
34.2.9 Endof Job 325
3-4.2.10 I/O Supervisor Call
Processor 3-26
3-4.2.11 SSBREG and SETBC 3-26
3-4.3 Optional Supervisor Call
Processors 3-27
3431 Multiply 3-27
3432 Divide 3-27
3-4.3.3 Shift Memory Circular
Left Double 3-27
3-4.3.4 Square Root 3-27
3-4.3.5 Convert Binary to ASCII
Coded Hexadecimal 3-27
3-4.3.6 Convert Hexadecimal ASCII
toBinary 3-27

Section

TABLE OF CONTENTS (Continued)

Page
3-4.3.7 Convert Binary to ASCII
Coded Decimal 3-27
3-4.3.8 Convert Decimal ASCII
toBinary 3-27
3-4.3.9 Definition of Six Supervisor
Calls 3-27
3-4.3.10 Convert Fixed Point to
Floating Point 3-28
3-4.3.11 Convert Floating Point
to Fixed Point 3-28
3-4.3.12 Floating Point Add 3-28

3-4.3.13 Floating Point Subtract .. 3-28
3-4.3.14 Floating Point Multiply .. 3-28

3-4.3.15 Floating Point Divide ... 3-28
3-4.3.16 Convert Floating Point

to Decimal ASCII 3-28
3-4.3.17 Floating Point Sine 3-28
3-4.3.18 Floating Point Cosine ... 3-28

3-4.3.19 Floating Point Arctangent 3-28
3-3.4.20 Program Control Supervisor

Services 3-28
3-4.3.21 GetDataBlock 3-30
34.3.22 GetDate 3-30
3-4.4 Internal Interrupt Decoder .. 3-30
3-4.5 CRU Interrupt Decoder 3-30
3-4.6 DMAC Interrupt Decoder ... 3-30
3-4.7 End of Record Routines 3-31
3-4.8 I/O Common Routines 3-31
3-4.9 CRU Device Service
Routines 3-33
3-4.9.1 Interval Timer Service
Routine 3-35

3-4.9.2 Electronic Data Terminal/
Teletypewriter Service

Routineuouu0s. 3-35
3-4.9.3 HSRHAN — Punch Tape

Reader Service Routine ... 3-40
3-4.9.4 Card Reader Service

Routine 341
3-4.9.5 Card Punch Service

Routine 341
3-4.9.6 Paper Tape Punch

Service Routine 343
3-4.9.7 Sine Printer Service
’ Routine " 343
3-4.10 DMAC Service Routines ... 3-50
3-4.10.1 Line Printer Service

Routine 3-51

3-4.11 Time and Date Support ... 3-52
3-4.12 Diagnostic Task 3-52
3-4.13 Job Control Task 3-53

3-4.14 DebugTask 3-53

Section

v

Page

3-5 CRU Programming Information 3-53
3-5.2 Data Modules — TTL

Compatible 3-53
3-5.3 Data Module — Contact

Closure Input and

Output 3-53
3-5.4 Interrupt Module 3-55
3-5.5 Analog to Digital

Converter Module 3-56
3-5.6 Digital to Analog

Converter Module 3-57
3-5.7 Interval Timer Operator 3-57

3-5.8 Teletype Interface Module .. 3-58
3-5.9 Pulse Accumulator Module .. 3-58
3-5.10 Multiple Function Modules . 3-59

PROGRAMMING SUPPORT MONITOR

4-1 Introduction 41
4-2 PSM System Description 4-1
4-2.1 Supervisor 4-1
4-2.1.1 Interrupts 4-1
4-2.1.2 Main Supervisor Call

Decoder (SENT) 41
4-2.1.3 /O Call Processor (10Q) .. 4-2
4-2.2 Device Service Routines 4-2
4-2.2.1 Data Terminal/Teletype-

writer Service Routine 4-2
4-2.2.2 Punch-Tape Reader

Service Routine 4-3
4-2.2.3 Card Reader Service

Routine 4-3
4-2.2.4 Card Punch Service

Routine—CRU interface ... 44
4-2.2.5 Paper Tape Punch Service

Routine—CRU Interface .. 4-5
4.2.3 System Service Routines 4-6
4-2.3.1 Multiply Service Routines . 4-6
4-2.3.2 Divide Service Routine ... 4-6

4-2.3.3 Double Word Circular

Left Shift Service

Routine 4-6
4-2.3.4 Square Root Service Routine. 4-6
4-2.3.5 Convert Binary to

Hexadecimal ASCII Service

Routine 4-7
4-2.3.7 Convert Binary to Decimal

ASCII Service Routine 4-7
4-2.3.8 Convert Decimal ASCII to

Binary Service Routine ... 4-7

4-2.3.9 Convert Fixed Point
Number to Floating Point
Service Routine 4-8

Section

TABLE OF CONTENTS (Continued)

Page
4-2.3.10 Convert Floating Point
Number to Fixed Point
Service Routine 4-8
4-2.3.11 Add Floating Point Numbers
Service Routine 4-8
4-2.3.12 Subtract Floating Point
Numbers 49

4-2.3.13 Multiply Floating Point
Numbers Service Routine . 4-9
4-2.3.14 Divide Floating Point
Numbers Service Routine . 4-9
4-2.3.15 Convert Floating Point
Numbers Service Routine . 4-9
4-2.3.16 Floating Point Sine

Service Routine 4-10
4-2.3.17 Floating Point Cosine

Service Routine 4-10
4-2.3.18 Floating Point Arctangent

Service Routine 4-10

4-2.4 System Bootstrap Loader ... 4-10
4-2.5 Logical Device Assignment .. 4-11
4-2.6 Physical Device Numbers ... 4-11

4-2.7 Basic PSM System 4-12
4-2.8 Core Description 4-12
4-3 PSM Control Communication . 4-12
430 INPUE oo e 4-12
4-3.2 Output 4-12
44 UsingPSM 4-13
4-4.1 Worker Task Block 4-13
44,2 Supervisor Calls 4-13
4-4.2.1 Input/Output 4-14
4.4.2.2 End of Program 4-14
4423 BidATask 4-14
4424 Multiply 4-14
4425 Divide 4-14
4-4.2.6 Shift Memory Circular
Left Double 4-14
4-4.2.7 EndofJob 4-15
4-4.2.9 Convert Binary to ASCII
Coded Hexadecimal 4-14

4-4,.2.10 Convert Hexadecimal ASCII

ToBinary 4-15
4-4.2.11 Convert Binary to ASCII

Coded Decimal 4-15
4-4.2.12 Convert Decimal ASCII

toBinary 4-15
4-4.2.13 Definition of Six PAM

Supervisor Calls 4-15
4-4.2.14 Convert Fixed Point to

Floating Point 4-15
4-4.2.15 Convert Floating Point

to Fixed Point 4-15

vi

Section

4-4,2.16 Floating Point Add 4-15
4-4.2.17 Floating Point Subtract .. 4-15
4-4.2.18 Floating Point Multiply .. 4-16
4-4.2.19 Floating Point Divide ... 4-16
4-4.2.10 Convert Floating Point '

to Decimal ASCIT 4-16
4-4.2.21 Floating Point Sine 4-16
4-4.2.22 Floating Point Cosine ... 4-16

4-4.2.12 Floating Point Arctangent 4-16
4-4.3 Future Supervisor Calls 4-16
4-4.4 1/O Calls and the Physical

Record Block 4-16
4-4.4.1 PRB Relative Word Zero .. 4-16
4-4.4.2 PRB Relative Word One ... 4-16
4-4.4.3 PRB Relative Word Two .. 4-16
4-4.4.4 PRB Relative Word Three . 4-16
4-4.4.5 PRB Relative Word Four .. 4-16

445 End Vector 4-17
4-5 Operation Procedures 4-17
4-5.1 Primitive Loaders 417
4-5.1.1 Card Media Primitive

Loader 417
4-5.1.2 Data Terminal/Teletypewriter

Primitive Loader 4-18
4-5.1.3 Primitive loader Loading

Instructions 4-18

4-5.2 Relocating Bootstrap Loader . 4-19
4-5.3 Program Support Monitor

Operation 4-20
4-5.4 Worker Tasks 4-20
4-6 Optional Separately Loadable
Programs 4-20
4.6.1 Dump Memory on
Teletypewriter 4-21
4-6.1.1 From the 960 Operating
Console 421

4-6.1.2 From a Worker Program .. 4-21
4-6.2 Dump Memory on Line

Printer 4.21
4-6.3 Patch Memory from Card

Reader 4-21
4-6.3.1 Card Format 4-21

4-6.3.2 Operating Procedures from the
960 Operating Console ... 4-21
4-6.3.3 Referencing the Patch
Program from a Worker

Program 4-21

4-6.4 Unload Memory 4-22

4-6.5 Source Maintenance Routines 4-22

4-7 System Generation 4-23
4-7.1 Type and Number of I/O

Devices 4-23

TABLE OF CONTENTS (Continued)

Section
4-7.1.1 Adding I/O Devices
4-7.1.2 Deletion of 1/O Devices
4-7.2 System Service Routine
Structure
4-7.3 Logical Device Assignment
Capacity
4-7.5 System Generation Summary
UTILITY PROGRAMS
5-1 Introduction
5-2 PAM Logical Unit Number
Assignment Display
5-3 PAM Task Status Display
5-4 PAM Message Writer Task
Figure No.
11 TI 960 Computer Block Diagram
21 Sample Symbolic Coding Sheet
2-2 Schematic Representation of the
Assembly Process
2-3 Example of Object Program
2-4 Format for Source Punch Tape
2-5 General Program Structure
31 PAM960 Program Structure —
Major Segments and Care Map
3-2 PAM960 Program Structure —
Data and Control Flow
33 PAM960/Worker Program —
Block Diagram
3-4 Digital I/O Summary
35 Analog Output Summary
3-6 Analog Input Summary
3-7 Supervisory General Entry
Worker Sequence Routine
3-8 Supervisor General Exit Routine
39 Task Scan Routine
3-10 Worker Task Linking Routine
3-11 I/O Supervisor Call

Processor Routine

Page Section Page
4-23 LINKING RELOCATING LOADER
4-23 6-1 Introduction 6-1
6-2 LRL Description 6-1
4.24 6-2.1 General |
6-2.2 Options 6-1
4-24 6-2.3 Equipment Configuration ... 6-1
4-24 6-2.4 Data Structure 6-1
6-2.5 Program Structure 6-3
6-2.6 Linking Loader Output
TapeData 6-3
6-3 Operating Instruction 6-3
5-1 6-3.1 Inputs/Outputs 6-3
6-3.2 Control Features 6-5
5-1 6-3.3 Restrictions 6-5
. 5-1 6-3.4 Loading Procedures 6-5
. 5-2 6-3.5 Operating Procedures 6-5
LIST OF ILLUSTRATIONS
Page Figure No. Page
1-2 3-12 Internal Interrupt Routine 3-31
2-2 3-13 CRU Interrupt Service Routine 3-32
3-14 DMAC Interrupt Service Routine ... 3-32
2-3 3-15 End of Record Routine 3-33
2-3 3-16 Logical Device Table Scan
27 Routine 3-34
2-21 3-17 Typical CRU Device Service
Routine 3-34
33 3-18 . Interval Timer Operation 3-35
3-19 Teletypewriter Service Routine 3-36
34 3-20 Teletypewriter Qutput Interface 3-38
321 Teletypewriter Input Interface 3-39
3-5 3-22 Punch Tape Reader Service Routine . 3-41
315 3-23 HSR Reader Interface 342
3-15 3-24 Legal Hollerith Codes 343
3-16 3-25 Card Recorder Service Routine 3-44
3-26 Card Reader Service Routine 345
3.23 3-27 Card Punch Service Routine 3-46
3-24 3-28 Card Punch Interface 3-47
3-24 3-29 High Speed Paper Tape Punch
3-25 Interface e 3-48
3-30 High Speed Paper Tape Punch
3-16 Service Routine 3-49

LIST OF ILLUSTRATIONS (Continued)

Figure No. Page Figure No.
3-31 Line Printer Routine (CRU) 3-50 342 Teletypewriter Qutput
3-32 Line Printer Interface 3-51 343 Teletypewriter Input
3-33 Typical DMAC I/O Service Routine 3-52 3-44 Pulse Accumulator Module
3-34 Line Printer Service Routine — 3-45 Multiply Functions Modules
DMAC Interface 3-52 4-1 Physical Record Block
3-35 CRU Addressing Scheme 3-54 4-2 Typical 8K PSMCore Load
3-36 DataModules 3-55 4-3 Physical Device Table for LP2310
3-37 Data Modules — Contract Closure Line Printer No. 1 ..o oo oot
IIlPth and Output 3-55 6-1 LRL960 — General Operating
3-38 Interrupt Module 3-55 Procedure . .o oo
3-39 A/D Converter Module 3-56 6-2 Memory Map
3-40 D/A Converter Module 3-57 6-3 Typical LRL Job Setup Using PAM . .
3-41 Interval Timer Module 3-58
LIST OF TABLES
Table No. Page Table No.
2-1 Assembler Directives 2-15 4-6 Card Media Primitive Loader
31 Supervisor Data Block 3-6 4.7 TapeCodes
4-1 Legal Hollerith Codes 4-4 4-8 Data Terminal/Teletypewriter
4-2 LDT Troubleshooting 411 Primitive Loader
4-3 ErrorCodes 4-12 51 Logical Unit Number Assignment
4-4 Worker Task Block+ 4-13 Display
4-5 Flag Assignments 4-17 5-2 PAM Task Status Display

viii

Page

3-60
361
3-62
3-63
4-2

4-12

4-24
6-2

64
6-7

LIST OF ILLUSTRATIONS (Continued)

Figure No. Page Figure No.
3-31 Line Printer Routine (CRU) 3-50 342 Teletypewriter Qutput
3-32 Line Printer Interface 3-51 3-43 Teletypewriter Input
3-33 Typical DMAC I/O Service Routine . 3-52 3-44 Pulse Accumulator Module
3-34 Line Printer Service Routine — 3-45 Multiply Functions Modules
DMAC Interface 3-52 4-1 Physical Record Block
3-35 CRU Addressing Scheme 3-54 4-2 Typical 8K PSM Core Load
3-36 DataModules 3-55 4-3 Physical Device Table for LP2310
3-37 Data Modules — Contract Closure Line Printet No. 1 . . oo oo un. .
Input and Output 3-55 6-1 LRL960 — General Operating
3-38 Interrupt Module 3-55 Procedureot
3-39 A/D Converter Module 3-56 6-2 Memory Mapuvuuin...
3-40 D/A Converter Module 3-57 6-3 Typical LRL Job Setup Using PAM . .
3-41 Interval Timer Module 3-58
LIST OF TABLES
Table No. Page Table No.
2-1 Assembler Directives 2-15 4-6 Card Media Primitive Loader
3-1 Supervisor Data Block 3-6 4.7 TapeCodes
4-1 Legal Hollerith Codes 44 4-8 Data Terminal/Teletypewriter
4-2 LDT Troubleshooting 4-11 Primitive Loader
4-3 ErrorCodes 4-12 5-1 Logical Unit Number Assignment
4-4 Worker Task Block+ 4-13 Display
4-5 Flag Assignments 4-17 5-2 PAM Task Status Display

viii

Page
3-60
3-61
3-62
3-63

412
424
6-2

64
6-7

SECTION I

GENERAL INFORMATION

1-1 SCOPE OF PROGRAMMING GUIDE.
The Texas Instruments Programming Guide for the Model
960 Process Control Computer is divided into two volumes:

a. Volume [contains the operational software.

b. Volume Il contains the performance assurance
test descriptions.

Revisions and additions will be published whenever they are
justified. Users who are on the authorized distribution list
will receive published revisions and additions automatically.

The Programming Guide is broken into several sections
according to subject. Refer to the Table of Contents to
quickly locate the desired subject.

The user is given a general orientation to the Model 960
Process Control Computer in this section. Details of
programming may be located also in the Model 960
Computer Programmer’s Reference Manual. Detail informa-
tion about the computer itself may be found in the Model
960 Computer Maintenance Manual.

1-2 COMPUTER CHARACTERISTICS.

The computer is a versatile tool for process automation
which readily adapts to a wide variety of applications.
These applications may be discrete or continuous opera-
tions. Typical applications include tool operation, fabrica-
tion and automatic assembly, material handling, environ-
mental control, and data acquisition. The computer can
perform inspections and issue status reports. Pertinent data
can be displayed to an operator at the job site or relayed to
a central computer facility to provide accurate data for
management decisions.

Perhaps the most worthy characteristic of the computer is
its real-time process control capabilities. Real-time process
control requires a computer with fast efficient context
switching, easy manipulation of bits and bit-fields, and easy
exchange of data between the computer and external
devices. The computer solves a great many automation
problems with the following features:

a. Dual Mode Operation. The dual-mode feature
permits fast context switching. While running in
one mode with one set of registers and cxecu-
tion counter, control can be switched to a
second mode with idéntical capabilities. This
not only provides a new programming environ-
ment, but frequently avoids the need to save
the status of the old environment. Mode switch-
ing can be accomplished under interrupt or
programmed instruction control.

1-1

b. Real-Time Clocks. Many process control func-
tions are time critical. The computer’s optional
interval timers perform many tight, time critical
functions. These optional timers are desirable
where process functions must occur at specific
instants or must occur after a specific time

delay.

c. Data Input/Output. The Communication Regis-
ter Unit (CRU) provides a changeable, efficient
interface with controlled external devices. Four
CRU modules, each with 16 input and 16
output lines, can be installed inside the Central
Processing Unit (CPU) enclosure. Additional
CRU modules may be added to expand the
CRU capacity to 256 modules in a separate
enclosure. Total capability would be, therefore,
4096 input and 4096 output lines. A variety of
CRU functions are available, such as binary
data modules, analog-to-digital modules, digital-
to-analog modules, stepping motor controller
modules, and pulse generator modules.

The computer block diagram (Figure 1-1) shows the basic
internal function relationships.

a. The core memory can store from 4096 to
65,536 17-bit words (16 data bits plus 1 parity
bit).

b. The Central Processing Unit (CPU) can address

the core memory, perform arithmetic and logic
functions, and sequence and control the ex-
change of the core
memory and other elements of the computer.
The CPU features an arithmetic unit and a
read-only memory controller.

information between

c. The Communication Register Unit (CRU) con-
trols the exchange of information between the
computer and external operations.

The Direct Memory Access Channel (DMAC)
interfaces the computer with high-speed auto-
matic computer peripherals, such as disc storage
units, line printers, and magnetic tape units. By
using a separate controller for each device,
concurrent operation of high speed peripherals
is achieved.

Core memory built in modules of 4096 words each
Minimum storage capacity, 4096 words

Maximum storage capacity, 65,536 words

Data word length, 16 information bits plus 1 parity bit Displacement index registers

Cycle time, 980 nanoseconds 3 MegaHertz clock
Instruction word length, 32 bits Three levels of priority interrupt

16 virtual
operations

registers for arithmetic, index, or mask Input/Output System
Communication Register Unit with 3 million bits per
second burst rate, output; 1.5 million bits per second
burst rate, input

Execution time

Load: 5.0 microseconds
Direct Meméry Access Channel with 1 million words
per second burst rate, input or output

Store: 5.3 microseconds

Add: 6.0 microseconds 1-3 SYSTEM CONFIGURATIONS.

The Model 960 Process Control Computer may be aug-

Set CRU bit: 4.6 mi d
¢ ' ficroseconds mented with any or all of several peripheral equipments.

Load register in CRU: 7.0 to 12.0 microseconds (1-16

bits) a. Electronic Data Terminal or Teletypewriter
Memory protect system for variable amounts of memory b. Card Reader
Single and double address logic ¢. Card Punch
Direct addressing of entire core memory, by word or bit d. High Speed Tape Reader
Indirect addressing with pre-indexing or post-indexing e. High Speed Tape Punch
CORE
MEMORY

(r—— "

Figure 1-1 Tt 960 Computer Block Diagram.

DIRECT | l
HIGH-SPEED MEMORY | |
PERIPHERALS ACCESS WORDS | TEST
CHANNEL | RESULTS |
>
READ-ONLY |
l ARITHMETIC MEMORY
| UNIT MICRO- I
COMMANDS SEQUENCER '
COMMUNI- |
EXTERNAL CATION . BITS | '
DEVICES REGISTER
UNIT | CENTRAL PROCESSING I
| UNITS

f. Magnetic Tape Transport
g Storage Disc.

The software "assumes that the computer will be equipped
with an electronic data terminal with its associated tape
reader and punch. This is the standard input/output device.
Texas Instruments Silent 700 Electronic Data Terminal
may be replaced with a Teletype Corporation Model
ASR-33 TBE teletypewriter. The units are interchangeable
as far as the software is concerned.

The computer’s modular core memory has a capacity of
4096 words, commonly called a “...4K module.” The
CPU has physical capacity for two core memory modules
(8192 words). However, the system is available with any
number of core memory modules, up to 65,536 words,
maximum. The larger capacity is obtained by housing the
additional core memory modules in a second cabinet.
Standard cables and hardware fittings simplify assembly of
computer systems to meet the user’s needs.

Texas Instruments has anticipated that the user may desire
the computer system to be arranged in more than one way.
Therefore, the Model 960 Computer may be mounted into
a table console or in traditional racks. Depending upon the
application, the computer and its related peripheral equip-
ments can be customized to a functional and pleasing
arrangement for the user.

1-4 SOFTWARE CHARACTERISTICS.

The computer can be operated under control of two
monitors or selected stand-alone programs. Two well
developed monitors are initially available: Process Automa-

1-3

tion Monitor (PAM960) and Programming Support Monitor
(PSM960).

The Process Automation Monitor is a real-time, multi-
programming operating system. It uses an executive/worker
method for program control and core resident worker tasks.

The Programming Support Monitor is a non-real-time,
single-programming operating system. It uses a supervisor
with interrupts for input/output devices. The I/O device
service routines reside in core. Standard device service
routines may be used or replaced by the user to perform
more specific tasks. PSM is upwards compatible with PAM.
Programs which are written to execute using PSM as the
computer interface will also execute using PAM.

The Texas Instruments SAL960 Assembler is a unique
program which has been written to simplify the user’s
programming task. Directives and programming functions
can be expressed in assembly language and SAL960 will
translate them into machine language. The assembler
provides two outputs: an object program (tape or deck) and
an assembly list. The assembly listing shows the original
source program statements side by side with the object
program instructions created from them.

Another feature of the software is the Linking Relocating
Loader (LRL960). The LRL960 links separately assembled
programs and program segments by combining the text and
completing the assembly process for external symbols.
LRL960 will optionally load a program as it is linked.

Utility programs are available to users of PAM960. These
programs perform specific software control tasks.

SECTION I1

SYMBOLIC CODING IN ASSEMBLY LANGUAGE

2-1 INTRODUCTION.

The first portion of this section discusses symbolic coding
in detail. If the user is already familiar with symbolic
coding techniques, he may proceed directly to paragraph
2-4.3 for a summary of the first portion. Explanation of the
Model 960 Computer assembly language begins with
paragraph 2-5.

The programmer’s job is to:
a. Arrange input and output data.

b. Establish “work areas” in storage.

c. Create constants or text values used in
calculations.

d. Choose and write the instructions that move
data, perform appropriate tests and

calculations, handle exception conditions, and
arrange data in a format specified for output.

Assembly language with symbolic notation is one method
by which this work is done.

2-2 PURPOSE OF ASSEMBLIES.

Programming in a symbolic language offers important
advantages over programming in the actual language of the
computer.

a. Mnemonic operation codes are more
meaningful than machine language. For
instance, the actual operation code for the
instruction Store General Register in right
justified hexadecimal is 12. The mnemonic
operation code in assembly language is ST.

b. Addresses of data and instructions can be
written in symbolic form. The programmer is
thereby relieved of severe problems in the
effective allocation of storage, and the resulting
program is far easier to modify. Furthermore,
the use of symbolic addresses reduces the
clerical aspects of programming and eliminates
many programming errors, If the symbols
chosen are meaningful, the program is also
much easier to read and understand than if
written with numeric addresses.

2-1

¢. Symbolic assembly directives and data
generation statements permit the introduction
of constants, reservation of space for results,
definition of instructions, control of the
assembly process, and manipulation of symbols.

The sum effect of these advantages is so great that it is
virtually out of the question to program in actual machine
language; that is, to write actual operation codes and
numeric address displacements.

-2-3 THE ASSEMBLY PROCESS.

An assembly language program cannot be executed directly
by the computer. The mnemonic operation codes and
symbolic addresses must be translated into machine
language. This is the function of the Symbolic Assembly
Language (SAL) processor.

The assembly process begins with a source program which is
written by the programmer. Ordinarily, a special coding
form is used (Figure 2-1). Cards or paper tape are punched
from this form, one card or line for each line of coding
making up the source program. This source program
becomes the primary input to the assembly process. The
Symbolic Assembly Language (SAL) processor controls the
assembly process in the computer (Figure 2-2).

SAL generates two outputs. The first is an object program.
Actual machine instructions in the object program
correspond to the source program statements written by
the programmer, The object program can be output on
punched cards, paper tape, or disk. The second output is an
assembly listing. This important document shows the
original source program statements side by side with the
object program instructions created from them. An
example is shown in Figure 2-3.

Note the following in the example:

a. The items under A show the decimal line or
sequence number of the source statement. It is
printed to assist the programmer when
correcting his source program. It has no effect
on the object program.

b. The items under B show the hexadecimal
addresses of the instructions, constants, and
areas of storage specified by the programmer.

PROBLEM

SYMBOLIC CODING FORM

PROGRAMMER ___ . _~ Lieaaaag

1 10 15 20 25 30 50

BCRZ&F,’ ,PSEG_J S . BINARY CARD 70 BI NARY TAPE

SUPENT. EQU. . X'7F' .

... REF. . CRPRA, XPPRIBI E@.F, GN ,EXTERA{AL REFERENCES

¥ XFILL BUFFER WITH 80 CHARACTER B! NARY RECORD X

‘S.IZARn | ILIA i_L“,L‘z)I ICXRIPIRBI L1 1 1PIR81 xDJIIS|P:L|ACIEME~17I. [

. SXBS XSUPENT. | CALL SUPERV.IS@R 1/0 . N
X | XOUTPUT, Bl NARY. ﬁECﬂRD BUFFER .T@ TAPE lPU”c,ﬂ * !
111|1.LAL;AJUPPRBI...IIJIIJII...I....11.,;;.1]
L. SXBS XSUPENT L :)
X . XCHECK EQR END W" F/LE REQ@RD *1 e i
.. ... BFNE EOF,ON, START ‘ , |
....l,,LAu_____IJ,EGJI , ENDCFJ@B..,,II .
- 1M3K53@*SUPEN7T ... V1A SUPERVISOR | .
ElaLJl | qu.Ul Mxllllaxqa.’l 1 [T N T S R U 1 1 1
. END l;__l a1 ! L 1 L | L L
TR SN N L T U T T SR 1 ! 1 1 1 . _fff . L
L [T T DS S B L 1 1 L L Lo !
TSI A L B RS T U B R L I | | - v I
PR ST ET S SR N S S W I Ll Ly L ! I .‘ 1
L OO S NN S Y Ll L. ! Ll s I
L | T I S B T [T B I Lf"_bj Ll
! | bd o Ll L P SRR ! o IR
Ly] U SR O SO B L 1 1 ! el o)
Logoa] [ST ST U S SR ! 1 ! Lovv il g

Figure 2-1. Sample Symbolic Coding Sheet

2-2

PUNCHED

CARDS

PROGRAMMER'S
STATEMENTS

A
2oa1
a0a2
n223
Aaa4
Qa5
B@26
A7
Aoos
20a9
aete
2011
AB12
2013
na14
2815

B

gann
2000
2000

2020
P002

2ena
oees

2008
220 A
eeac
P20F
200F

ASSEMBLY
LISTING

SAL960

OBJECT DECK

OR TAPE
Figure 2-2. Schematic Representation of the Assembly Process
C D
BCR2RP PSEG BINARY CARD TO BINARY TAPE
SUPENT FQU X'7F?
REF CRPRB.PPRB,EOF,0ON EXTERNAL REFERENCES
* *FILL BUFFER WTTH 804 CHARACTER BINARY RECORD «
4483007200 STARY LA 3.8CRPRR PRB DISPLACEMENT
7980007F SXBS *SUPENT CALL SUPERVISOR 1/0
* *0LUTPUT BINARY RFCORD BUFFER Y0 TAPE PUNCH «
4483@000 LA 3,8PPRA
7980007F SXBS *SUPENT
' * «CHECK FOR END OF FILE RECORD «
s4APQOQAN RFNE FOF.ON,START
44831820 LA 3.,E0) END OF J0B
79800087F SXBS *SUPENT VIA SUPERVI3OR
FoJ EQU X'i80an?
END

Figure 2-3. Example of Object Program

2-3

hexadecimal

c. The items under C are a
corresponding

representation of the
instructions and constants.

d. The items listed under D should be exactly the
same as the handwritten entries on the coding
sheet. This provides a good check on the
accuracy of the keypunching and ample
opportunity to comment on the function
performed by the instruction.

2-4 SYMBOLIC CODING.

Each line of the coding sheet represents one symbolic
statement. Each symbolic statement is used to tell SAL to
assemble a machine language instruction, a data constant,
or to do something during assembly time. Approximately
24 statements can be written on each coding sheet.

All instructions have a location in memory which they will
occupy when the object program is being executed.
Instructions also have an operation code and usually one or
more operands. Take the case of a general Format Ii
instruction which moves the contents of one memory
location to another. This instruction would begin at some
address in main storage, have a operation hexadecimal code
of 05, and contain the addresses of two operands. The
address of an instruction, its operation code, and the data
addresses correspond respectively to the following fields on
the coding sheet: Name, Operation, Operand. The entries
on the coding sheet will be made symbolically, rather than
in machine language.

The first six columns of the coding sheet are called the
name field. This field gives symbolic names to the locations
referred to by the program. For instance, if the program
contains a routine to handle alarm scanning, it would be
simpler if the machine address of the routine did not have
to be remembered. After assigning a name to the first
instruction in this routine, a symbolic branch instruction
referring to that name can be written. Then SAL, in
converting the program to machine language, will remember
the machine address of the symbolic name and will use it in
the object program whenever the programmer refers to it.

Symbolic names are also referred to as either symbols or
labels. Some of the characteristics of symbolic names are:

a. Symbolic names are usually given to
instructions, data fields, flags, or CRU lines
referred to in programs.

b. Generally, a symbol cannot be used in the
operand field unless it also appears in the name
field of a symbolic statement, That is, a symbol
in your program cannot be referenced unless it
is used as the name of one of the instructions,
directives, or data fields.

24

c. Symbols are restricted in length to six
characters or less and must contain only letters
or numbers. They must begin with a letter.

d. Within the preceding limitations, any symbot
may be used.

Each line on a coding sheet is one symbolic statement, A
symbolic statement can be a machine instruction, a data
definition, or an assembly directive which gives some
information to the assembler for use during the assembly
process. The operation field on the coding sheet tells the
processor whether the symbolic statement is an instruction
or something else. Although the name field of a symbolic
statement may be left blank, the operation field must
contain a mnemonic that is recognizable in SAL. If the
symbolic statement is an instruction, the mnemonic
represents one of the computer’s operation codes.
Directives to the assembler are also recognized by a
mnemonic.

For example, MLA instructs SAL to assemble a Shift
Memory Left Arithmetic instruction. The mnemonic for
the instruction is placed in the operation field of the coding
sheet. Each instruction and directive has its own unique
mnemonic. These are given in the Programmer’s Reference
Manual.

The operand field on the coding sheet contains the
remainder of the instruction. That is, the operation code of
an instruction is represented in the operation field by a
mnemonic, while the locations of the data to be operated
upon are put in the operand field.

The operand may be followed by a comment. This has no
effect on the assembly.

The program coded using SAL is called the source program.

The sole function of the source program is to provide input
data for the assembler. No instruction in the source
program is executed during the assembly (translation)
process. The output data of the assembler will be a machine
language program called the object file. This may be paper
tape, cards, or other media. The object file is the program
converted into machine language. It can be loaded, either
now or later, into the computer for execution. There is no
need to reassemble the program each time it is executed.
The object deck or tape can be used over and over again
until changes are made in the program.

To obtain an object (machine language) program from the
symbolic source program, the assembler must first be
loaded into the computer’s memory. As the assembler is
being executed, it will read in the source program and
convert it to the machine language that will be the object
program. There are two outputs from the assembly process.
One is the object file, while the other is an assembly listing.

24,1 LOCATION COUNTER. The computer, while
executing the assembler program, acts as a clerk. One of the
clerical tasks of the assembler is to assign machine addresses
to symbolic names, and to remember these addresses and
use them in the object program whenever the symbol is
used in the operand of the source statement.

For instance, when the assembler encounters the following

source statement, it must assign a machine address to the

symbol BEGIN.
NAME

OPERATION OPERAND

BEGIN LA 1,THERE

The assembler must remember the address of BEGIN so it

can insert that address when it encounters the following

branch instruction.
NAME

OPERATION OPERAND

B BEGIN
To be able to assign a machine address to a symbol, the
assembler contains an internal counter. This counter is
called the Location Counter and keeps track of the
addresses in the source program as it is being assembled.
The Location Counter is incremented as each symbolic
statement is processed. The length, in words, of main
storage area required by each statement determines how
much the Location Counter is incremented. For instance,
assume that the Location Counter is set to decimal 1000
when the following symbolic statement is read by the
assembler.
NAME

OPERATION OPERAND

BEGIN LA 1, THERE

LA is the mnemonic for the Load Register with Effective
Address instruction.

When the assembler encounters the preceding statement, it

assigns the address of decimal 1000 to the symbol BEGIN.

and steps the Location Counter to decimal 1002.

Whenever the assembler finds an entry in the name field, it
assigns the setting of the Location Counter to that name. It
then increments the counter by the number of words
required by the statement. The LA instruction in the above
example is two words long, and the Location Counter steps
from 1000 to 1002.

The Location Counter is just a data area within the
assembler. The assembler gives it some initial setting and
steps as required during the assembly process. Its main
function is to be able to assign an address to symbols as

they are encountered in the source program. The object
program, when loaded into the computer later, might
actually reside at locations different than those assigned at
assembly time. This is known as program relocation and
will be discussed separately later in this manual.

2-4.2 SYMBOL TABLE. The assembler uses its Location
Counter to assign addresses to symbols. However, the
assembler needs to retain the address it assigns to each
symbol. These are stored in another data area within the
assembler program. This area is referred to as the Symbol
Table. When a symbol is encountered in the name field of a
symbolic statement, that symbol, as well as the Location
Counter setting, is placed in the Symbol Table. The area of
storage used for the Symbol Table is limited by the
memory size of the computer. SAL limits the length and
quantity of symbols used in a program.

Whenever the assembler finds a symbol in the operand field,
it searches for the symbol in the Symbol Table. When it
locates the symbol, it obtains its machine address and uses
it in computing the assembled instruction. Of course, the
symbol must be defined somewhere in the source program.

SAL is a two-pass assembler. The first pass of a two-pass
assembler does not produce an object program. It reads the
source program and builds a complete Symbol Table.

If bulk storage is available, some versions of the assembler
have an intermediate output. The intermediate output from
the first pass is used as input data for the second pass. This
eliminates the requirement on the user to physically enter
the source data twice.

During the second pass, the assembler program uses the
Symbol Table to complete the assembly of the statements.
The output of the second pass is the object file and
assembly listing.

2-4.3 CODING SUMMARY.

a. During assembly time, the assembler program is
executed using a source program as input data.

b. The output data from the assembler consists of
an object file and its assembly listing.

c. A Location Counter in the assembler keeps a
record of the storage locations that are used by
the object program.

d. When a source statement contains a name, the
current setting of the Location Counter is given

to the label.

e. Each label and the address assigned to it is
placed in the assembler’s Symbol Table.

f. SAL is a two-pass assembler.

g. During the first pass, the source program is read
and the Symbol Table is generated.

h. During the second pass, the Symbol Table is
used to complete the assembly, and produce
the object program with its program listing.

2-5 SYMBOLIC LINE FORMAT.

The symbolic input line accepted by the assembler may
contain a name field, operation field, operand field, and a
comment field — or the entire line may be a comment. An
input line is the first 60 characters read from a source
record. The remainder of the record may contain a
sequence number. On cards the sequence number is in
columns 73 through 80. The sequence number is not used
by the assembler but is important for the Source
Maintenance Routine. Card columns 61 through 72 are left
blank for compatibility with future additions to SAL.

In the case of punched tape, an input line is a string of
characters. The first are the symbolic line characters and
the last are a carriage return, transmitter off, line feed, and
rubout characters (Figure 2-4). The input line must be no
more than 60 characters, not including rubouts or the
terminal characters. Input lines are free-form within the
limits described. All rubouts are ignored in the source lines
and do not affect the character count.

The character set acceptable for SAL includes:

Letters A through Z
Digits 0 through 9
Special Characters 8/-+,()'@% #
Field Terminators blank

carriage return, line

feed, x-off

Line Control

2.5.1 COMMENT LINES. Comment lines provide the user
with a place to annotate program listings. They are
indicated by an initial character which is an asterisk (*).
The remaining characters are arbitrary. The comment line
in no way affects the assembly process. The line is merely
reproduced in the printed output.

2.5.2 NAME FIELD. Names (also called symbols or labels)
are provided for symbolic references to instructions, values,
and data. A label is composed of from one to six characters,
all of which must be letters or numbers. The first character
of a label must be aletter (A-Z).

2-6

If a label is used, the first character must begin the input
line. The label is terminated by the first space.

2-5.3 OPERATION FIELD. The operation field is used to
describe the required action. It may be a mnemonic
operation code, assembler directive, or data generation
directive. The field consists of from one to four characters
terminated by a space. The first character of the operation
field must be preceded by at least one space.

2-5.4 OPERAND FIELD. The operand field consists of a
list of expressions or sublists, separated by commas. The list
is terminated by the first space or end-of-line character.

EXPRS1,EXPRS2,(EXPRS3,EXPRS4)

In the preceding example, (EXPRS3,EXPRS4) is a sublist.
A sublist is a sequence of expressions enclosed in
parentheses and arranged so each succeeding expression is
connected with the preceding expression by a comma.

If fewer than the required number of fields appear in a
source line,-the remaining fields are assumed to be not
applicable or zero. If the currency symbol ($) appears as an
item in an expression, the current value of the assembler’s
location counter will be used as its numeric equivalent.

Expressions are strings of items separated by arithmetic
operators and terminated by a space or end-of-line code.

Addition +
Subtraction -
Multiplication *
Division /

An item consists of a symbolic address, currency symbol
($), or a numeric value. Numeric items may be decimal or
hexadecimal. If the first character of an item is not
numeric, $, C', or X!, it is assumed to be symbolic. A
decimal item is a string of numeric characters (0-9), the first
being non-zero. A hexadecimal item is indicated by an X
followed by a string of hexadecimal digits (0-9 A-F),
enclosed by apostrophes.

Expressions are evaluated left to right; i.e., all operations
are performed in order of occurrence.

A symbol is defined for assembly purposes as relocatable if
the value assigned must be modified at load time by the
addition of a relocation constant.

L7,35 COMMENT

, HERE IS
L]
L]
[]]
e . L BLANKS
[])
° e 0 — L
o . BLANK
o0 000
e oc0 | — — COMMA
o0 o 00— 3
ee <9 0|——5
[] L)
s — BLANKS
[] e 00
® 0000
® @0 O
S oe.ces COMMENTS
[] o2*00
[] e® ©
o 0*00
o O 0
®]
° - L BLANKS
e-e | CARRIAGE RETURN
®or [XOFF | iNEFEED
eee0c000|— RUBOUT
L]
. 3
[]
[]
L]
[]
L]
[)
ADDITIONAL SOURCE RECORDS
. *
[]
:
[)
®
. J
*
L SLA
o 9.0 [—SLASH srERISK
JO:® o[CARRIAGERETURN .
L] n
e- o | LINE FEED
ecee-000| —— — RUBOUT
.
[]
[]
. HERE IS

/

Figure 2-4. Format For Source Punch Tape

2.7

> SOURCE RECORD

END OF FILE RECORD

Relocated Symbol Value = Assembled Symbol
Value + Relocation
Constant

The only address values in this category are those which
refer to memory directly; that is, 16-bit Format | memory
address operands and address constants appearing as DATA
directive operands.

Expressions containing relocatable symbols may also be
relocatable, illegal, or nonrelocatable. When an expression
consists of at least one relocatable item, the expression is:

Relocatable, if A, the sum of the added relocatable
items minus the sum of the subtracted relocatable
items is equal to 1.

Nonrelocatable, if A= 0.

llegal, if A <0, or if A>1, or if the expression
involves any operations other than addition and
subtraction upon two relocatable items.

Symbols used with an @ attribute are nonrelocatable.

The use of an external reference in an arithmetic expression
is an error.

Sample expressions are:

JOE+TOM*3/BOB Illegal if TOM and BOB
are relocatable.

$+5 Legal

LEA-6 Legal

5034 Legal

XYZ+F4 llegal if XYZ and F4

are relocatable.

2-8

PROGRAMMING NOTE

Due to the variety of address classes
found in the computer, it is not always
possible to determine the class attributes
of an expression containing several
symbols. In this case, the class attributes
of the first symbol in the expression are
used to define the attributes of the
expression,

2.5,5 COMMENT FIELD. Comments may be written on
any line. Any characters which appear between the space
which terminates the operand field and the end-ofline
character or card column 73 are treated as commentary.
The comment field has no effect on the assembly process.

Typical symbolic statements are:

NAME OPERATION OPERAND
PT1 L 1 BUFFER+2
ST 1,*ADDR
PT2 LA 0,1
LA 2,5
ST 1,ANS,2
ARB 0,$-2,2

2-6 MACHINE INSTRUCTION FORMATS.
Machine instructions are implemented in three basic
formats. Each instruction requires two consecutive memory
locations. The formats are defined as follows:

GROUP |
0 56 7 89 111213 1516 31
oP X|+]lK XR |#| R N

GROUP 1i

0 56 1516 18 19 2122 31
opP M my, | N

GROUP Il -

0 66 1516 19 20 21 22 31
oP M b |vi# N

A description of each of the fields is as follows:

OP The operation code field of an
instruction.

* The bit of the instruction used to
specify indirect addressing.

X The bit of the instruction used to
specify that indexing is to be done.

K Immediate operand indicator.

XR The field of the instruction used to
specify an index register.

The field of the instruction used to
specify alternate mode registers.

R The field of the instruction that
specifies a register in the register
file or specifies a shift count.

N The field of an instruction used as
an address field.

M The field of an instruction used as
an address field in two address
instructions,

My, The field of instruction used to
specify a base register to be used
with the M address field.

Ny, The field of an instruction used to

specify a base register to be used
with N address field.

2-9

A2 A bit used as an immediate value in
flag and bit instructions.

b The field used to specify a flag
address within a memory word or
the number of Dbits in a

communication register.

The * and X fields, used to specify address modifications,
have the following meanings:

Index bit - specifies indexing

I———— Indirect bit - specifies indirect

X *
0 0 Direct operand

0 1 Indirect operand

1 0 Indexed operand

1 1 Indirect, indexed operand

Address modifications, as specified by the X and * fields,
are performed using the XR and and the N fields. If indirect
addressing and indexing are both specified, the indexing is
done before indirect address if bit 5 (IM) of the status
register is zero. If it is a one, the indexing is done after the
indirect addressing. Any of the eight registers of each Mode
Register File may be used as an index register. Supervisor
index registers are used in supervisor mode and worker
index registers are used in worker mode.

The index control bit in the Status Register permits
optional indexing or post-indexing. This controls the
relation of indexing to indirect addressing. If the index
control bit is a one, indexing precedes indirect addressing.
If the index control bit is zero, indexing follows indirect
addressing. If indirect addressing is not involved, the two
modes are equivalent.

The SAL programmer has at his disposal flexible address
modification capabilities, a comprehensive set of machine
instructions that make available the full capabilities of the
machine hardware.

INDEXING - Indexing is specified by the presence
of a register number (0-7) or symbol after the address
operand.

EXAMPLE: L 2,N,3

NOTE
The underlined entries in the operand
field of example instructions are used to
identify the action described.

INDIRECT — Indirect addressing is specified by
placing an asterisk (*) before the address operand.

EXAMPLE: L 2*N

IMMEDIATE — Immediate addressing is
accomplished by using an alternate mnemonic of the
operation, e.g., the immediate counterpart of the
Load Register instruction (L) is LA (Load Address).

EXAMPLE: LA 2N

RELATIVE — When the “at” symbol @ precedes the
address operand, the relative address of the operand is
used rather than the relocatable or absolute address.

EXAMPLE: L 2,@N,5

ALTERNATE MODE REGISTERS — The presence
of the pound sign (#) preceding the operand list
causes the general register of the inactive mode to be
used in the execution of that instruction.

EXAMPLE: L #2N

PROGRAMMING NOTE
The inactive mode general register 2 is
loaded. Index register 3 from the active
mode is used to compute the effective
address.

For maximum flexibility in address modification, any
combination of the attributes may be used. Examples of
some of the possible combinations are as follows:

a. L #Z,N
b. L 2,*N,3
c. L #2.*@N,3
d. LA2@NS3
2-6.1 FORMAT I MACHINE INSTRUCTIONS.
SUBSET A
MNEMONIC INSTRUCTION OP CODE
L Load GR from Memory 1
LA Load GR with Effective Address 11
ST Store GR into Memory 12
A Add to GR from Memory 13

2-10

AA Add Effective Address to GR 13

S Subtract Memory Contents 14
from GR

SA Subtract Effective 14
Address from GR

LOT Load GR with Flag Tally 15
of Memory Word

LOTA Load GR with Flag Tally 15
of Effective Address

N And GR with Memory 16

NA And GR with Effective Address 16

OR Or GR with Memory 17

ORA Or GR with Effective Address 17

SAT Shift and Add Leading Zero’s 1B
Tally of Memory Word to GR

BL Branch and Link to Subroutine 1D

*BL Indirect Branch and 1D
Link to Subroutine

MLAX Shift Memory Left Arithmetic 1B

MRAX Shift Memory Right Arithmetic 19

MRRX Rotate Memory Right Logical 1A

TYPICAL SOURCE STATEMENT
LABEL OPER #GR,*@ADDRESS,XR COMMENTS SEQ

(Entries that are underlined are permitted, but not

required.)

The corresponding instruction format is:

0 56 789 1112131516

31

opP X|*IK} XR 1#] R

A specific Subset A instruction such as
LA 2,15 LOAD EFFECTIVE ADDRESS

would have the format:

0 56 7 89 1112131516 31

010001 | O] O}1 0 |0] 2 15

which shows the immediate operand indicator, bit 8, set
and the variable field R designates that 15 will be loaded
into register 2.

SUBSET B

MNEMONIC INSTRUCTION OP CODE
MLA Shift Memory Left Arithmetic 1B
MRA Shift Memory Right Arithmetic 19
MRR Rotate Memory Right Logical 1A

TYPICAL SOURCE STATEMENT

LABEL OPER COUNT,*@ADDRESS,XR COMMENTS SEQ

This subset contains the memory shift instructions and has
the following typical object format:

0 56 7 89 1112 1516 31

011000 |X} =0} XR R N

The illustration uses the Shift Memory Left operation as an
example. For this subset, the variable field R contains the
shift count.

SUBSET C

MNEMONIC INSTRUCTION OP CODE
NOP No Operation 1C
B Branch 1C
*B Indirect Branch 1C
XSB Transfer Control, 1C

Branch to Supervisor

*XSB XC, Indirect Branch 1C
to Supervisor

XWB XC, Branch to Worker 1C
*XWB XC, Indirect Branch to Worker - 1C
XS Transfer Control 1C

to Supervisor

XwW Transfer Control 1C
to Worker

SSB Save Status, Branch 1E

SXBS Save Status, XC, Branch 1E

to Supervisor

SXBW Save Status, XC, Branch 1E
to Worker

SXS Save Status, XC, 1E
to Supervisor

SXW Save Status, XC, 1E
to Worker

SS Save Status, Continue 1E

LDS Load Status 1F

TYPICAL SOURCE STATEMENT

LABEL SSB *@ADDRESS, XR,RQ COMMENTS SEQ

The mnemonic SSB is the Save Status, Branch operation.
This source statement has the following typical object
format.

0 56 789 111213141516 31
011110 X]| = |1 XR 8010 N

RQ is the relative address control bit.

SUBSET D
MNEMONIC INSTRUCTION OP CODE
ARB Add to Register and Branch 03

TYPICAL SOURCE STATEMENT

LABEL ARB ADDND,@ADDRESS,GR RQ COMMENTS SEQ

Option 1

LABEL MOV (DISP,GR),(DISP,GR) COMMENTS SEQ

The typical object format is:

0. 56 789 1112 15 16 31
000011 g XR R N

The R field contains the signed addend and bits 6 and 7 are
unused.

SUBSET E
MNEMONIC INSTRUCTION OP CODE
ADAC Activate Direct 01

Access Controller
TYPICAL SOURCE STATEMENT

LABEL ADAC DEVADD,LISTAD,Q COMMENTS SEQ

The mnemonic ADAC is for the Activate Direct Access
Controller operation.

TYPICAL OBJECT STATEMENT

0 56 78 1213 1516

000001 Q A

The A field contains a device address and N field is the 1/O
command list address. The Q field is optional and may
contain additional device address data.

2-6.2 FORMAT 11 MACHINE INSTRUCTIONS.

SUBSET A
MNEMONIC INSTRUCTION OP CODE
MOV Move Memory Word 05
to Memory Word
CM Compare Memory with Memory 04
CML Compare Memory with 06

Limits in Memory

The typical source statement has two optional forms.

2-12

LABEL CM
Option 2
LABEL MOV FROM,TO COMMENTS SEQ

PROGRAMMING NOTE
External references may not appear in
Option 2 operands.

Typical Object Format:

0 56 15161819 21 22 31

000101 mp| b

m}, and n} are explicitly defined base registers for Option
1, but are determined by the segment class in which the
label is defined in Option 2.

SUBSET B
MNEMONIC INSTRUCTION OP CODE
BRRL Branch Relative to QA

Register and Link
The typical source statement has two optional forms,
Option 1
LABEL BRRL LINK,(DISP,GR) COMMENTS SEQ
Option 2
LABEL BRRL LINK,THERE
PROGRAMMING NOTE
External References may not appear in
the branch address of the Option 2

operand.

Typical object format:

56 1516 18 19 2122 31

001010 R

Np

In Option 1, the operand base, GR, is specified and is found
in the N, field of the format. In Option 2, the operand base
is determined by the segment class in which the label is

defined.

SUBSET C
MNEMONIC INSTRUCTION OP CODE
AMI Add Immediate Value 08
to Memory
CcMI Compare Memory with 07

Immediate Memory
The typical source statement has two optional forms:
Option 1
LABEL AMI (DISP,GR),VALUE COMMENTS SEQ
Option 2

LABEL AMI LOCAT,VALUE COMMENTS SEQ

 PROGRAMMING NOTE
External References should not be used
in the memory address part of the Option
2 operand.

Typical object format:

0 56 15161819 31

001000 Mp| 13 BIT VALUE

Option 1 allows explicit base register (mp) definition and
Option 2 base register is determined by the segment class in
which the symbol is defined.

2-6.3 FORMAT III MACHINE INSTRUCTIONS.

SUBSET A
MNEMONIC INSTRUCTION OP CODE
XFNE Transfer Control if Flag 20
is Unequal to Operand
SETF Set Flag 22

2-13

The typical source statement has two optional forms.
Option 1

LABEL XFNE #FLAGN,F COMMENTS SEQ

LABEL SETF #FLAGN,F COMMENTS SEQ
Option 2

LABEL SETF #(WORD BIT),F COMMENTS SEQ

Typical object format:

0 1516181920 21 22 31

#

56

100010 M b |Vy

The flag word address appears in M. The bit address within
the word appears in b. Option 1 uses a flag name which has
been defined by the assembly directive FLAG in a flag
segment. Option 2 explicitly defines the appropriate flag
bit. The symbol word must be nonrelocatable or appear in a
flag segment. Self-defining terms (constants) may also be
used in place of symbols in the Option 2 sublist. The value
bit, V1 is used to compare with the flag bit in memory. V1
corresponds to F in the operand list.

SUBSET B
MNEMONIC INSTRUCTION OP CODE
BFNE Branch if Flag Not 21

Equal to Operand
The typical source statement is:
Option 1
LABEL BFNE #FLAGN,F,THERE COMMENTS SEQ
Option 2
LABEL BFNE #WORD BIT),F, THERE COMMENTS SEQ

Typical object format:

0 56 15616 1920 21 22

#

31

100001 M b |V,

The flag word address appears in M. The bit address within
the word appears in b. The branch address appears in N.
Option 1 uses the flag name designated in the flag segment
of the assembly and Option 2 explicitly defines the flag bit
address. The symbol WORD in the Option 2 sublist must be
nonrelocatable or appear in a flag segment. Self-defining
terms (constants) may also be used in place of symbols in
Option 2 sublists. The value bit, V1, is used to compare
with the flag bit in memory. Vi corresponds to F in the
operand list.

SUBSET C

MNEMONIC INSTRUCTION OP CODE
SETB Output Bit to CRU - oD
XBNE Transfer Control if CRU OE

Bit is Unequal to Operand
The typical source statement is:
LABEL SETB #BITOUT,B COMMENTS SEQ

LABEL XBNE #BITIN,B COMMENTS SEQ

Typical object format:

(Y] 56 1516 1920 2122 31

NOT
USED

001110 m Vql # NOT USED

M is the bit address in the CRU. b is not used. The value
bit, V1, is used to set or compare the addressed CRU bit.
V1 corresponds to B in the operand list.

PROGRAMMING NOTE
Self-defining terms used as bit addresses
must be multiplied by the factor 16 in
order to generate the correct CRU
address. Symbols defined using a connect
directive generate proper CRU addresses.

SUBSET D
MNEMONIC INSTRUCTION OP CODE
BBNE Branch if CRU Bit is 0oC

Not Equal to Operand
The typical source statement is:

LABEL BBNE #BITIN,B,THERE COMMENTS SEQ

2-14

Typical object format:

0 56 1516 19202122 31
NOT
0011 M Vv N
00 usep| V1| #

M is the CRU bit address. Vi is the immediate value
operand corresponding to B in the operand list. N is the

branch address.

PROGRAMMING NOTE
Self-defining terms used as bit addresses
must be multiplied by the factor 16 in
order to generate the desired CRU
address. Symbols defined using a connect
directive generate proper CRU addresses.

SUBSET E
MNEMONIC INSTRUCTION OP CODE
TSBX Test input bit for comparison OF

with operand bit, if input
bit equals operand bit then
set CPU output bit, or else
transfer control to
alternate mode.

The typical source statement is:

LABEL TSBX #BITIN,B,BITOUT,0B

Typical object format:

0 56 151617 19 20 2122 31

NOT
USED

001111 M Bivql# N

M is the input bit address. V1 corresponds to the input bit
value to be tested (B in the operand list). N is the output
bit address. B corresponds to the output bit value to be set
(OB in the operand list).

PROGRAMMING NOTE
Self-defining terms used as bit addresses
must be multiplied by the factor 16 in
order to generate the desired CRU
address. Symbols defined using a connect
directive generate proper CRU addresses.

SUBSET F

MNEMONIC INSTRUCTION OP CODE
LDCR Load CRU Register Memory 02
STCR Store CRU Register 0B

into Memory
The typical source statement has two options:
Option 1
LABEL LDCR #LINE,FL) MEMORY ~COMMENTS SEQ
LABEL STCR #(LINE,FL)MEMORY COMMENTS SEQ
Option 2
LABEL LDCR #CRFLD,MEMORY COMMENTS SEQ
LABEL STCR #CRFLDMEMORY ~ COMMENTS SEQ
PROGRAMMING NOTE
Symbols used to implicity reference CRU
registers must be defined using the
connect directive.
Typical object format:
0

56 151619 202122

#

31

000010 M bioO

M is the CRU starting line address. The b field contains the
number of bits in the CRU register -1, N is the memory
address of the data.

27 ASSEMBLER DIRECTIVES.

Assembler directives or pseudo-ops have formats similar to
symbolic instructions, but do not directly cause code
generation. Instead, they are directives to the assembler
itself. Symbolic Assembly Language (SAL) directives are
included to:

Identify symbols and program segments.

b. Allocate memory within a segment.
c. Define constants.
d. Pass data to the loader.

e. Supplement the source language.

If labels are used with assembler directives, they will be
assigned the current location counter value unless otherwise
specified. All assembler directives are listed in Table 2-1.

2-15

TABLE 2-1
ASSEMBLER DIRECTIVES
NAME USE
PSEG Procedure Segment
DSEG Data Segment
FSEG Flag Segment
BSEG CRU Symbolic Address Segment
ABS Absolute Program Declaration
MODE Permit Use of Alternate Mode Registers
END Segment Termination
REF External Reference
DEF Entry Point or External Symbol
Definition

PST Punch and List Symbol Table
RES Reserve Memory
FLAG Name Flag Bit
CON Assign CRU Bit Address
EQU Equate
DATA Define Data
FRM Format
PAGE Page Eject
TITL Identification

Certain directives are not used in all segment classes. The
following list defines permitted usage of directives.

PSEG & DSEG FSEG BSEG
All except FLAG EQU
TITL
FLAG and EQU CON
PAGE PST
CON RES END
TITL PAGE
DATA
PST
END

2-7.1 ABSOLUTE ATTRIBUTE DIRECTIVE: ABS.
General Form: ABS OPERAND

This statement instructs SAL to assign an absolute attribute
to symbols defined subsequently until an END card is
encountered. A segment identifier must follow an ABS
statement. The label field is not required. The assembler
ignores this field. The term in the operand field initializes
the absolute assembly program counter.

2.7.2 ALTERNATE MODE REGISTERS

DIRECTIVE: MODE.
General Form: MODE

This statement notifies SAL to permit reference to
alternate mode registers using the #attribute. Note that any
use of # when SAL is not provided a currently active
MODE directive, will cause an assembly error. Label and
Operand field entries are ignored.

2.7.3 TERMINATE SEGMENT DIRECTIVE: END.
General Form: END OPERAND

This directive terminates a segment and revokes an active

ABS or MODE statement. A non-blank entry in the

operand field will be passed to the loader identified as a
transfer vector. Entries in the label field are ignored.

Example 1. ABS X10410!
P1 PSEG
MODE
PROC LA 7,0
L #3NUMBER
START DATA PROC,X'8000!
END START
Example 2. P2 PSEG
END
FS1 FSEG

In the first example, the label START is the address of a
status block that is loaded to start the program. The
START label in the operand of END directive tells the
loader where to transfer control. The absolute directive,
ABS, forces the first instruction to be located at location
X10410'. The MODE directive enables the use of alternate
mode register 3. The END directive terminates the PSEG,
the ABS directive, and the MODE directive.

In the second example, the END directive terminates the
procedure segment. An ABS, MODE, PAGE, TITL, or a
Segment Identifier Directive must immediately follow
END, except when it is used to mark the conclusion of a
program. In that case, END must be followed by an
End-of-File record. (/*)

2-16

2-7.4 DIRECTIVE: REF.
General Form: REF OPERAND 1OPERAND2...

This statement identifies symbols appearing in the operand
list as external references. These externally referenced
symbols are passed to the loader with appropriate data for
subsequent assembly. REF may be used only in Procedure
and Data program segments. The use of an external
reference in an arithmetic expression is an error.

2-7.5 DIRECTIVE: DEF.
General Form: DEF OPERANDI,OPERANDZ...
OPERANDn

The DEF statement identifies those symbols which will be
defined within a segment and made available for reference
or call from another segment. In order to REFerence a
symbol in another program, that symbol must appear in a
DEF directive operand in the program in which the symbol
is defined. DEF is not used in a FSEG, BSEG, or DSEG.
Such usage would be redundant since symbols in those
segments are external by convention.

2-7.6 PUNCH SYMBOL TABLE DIRECTIVE: PST.
General Form: PST

This statement directs SAL to list the symbol table on the
system listing device and punch the table on the system
object device. Entries in the label and operand fields are
ignored.

2-7.7 MEMORY ALLOCATION DIRECTIVE: RES.
General Form: LABEL RES OPERAND

This statement is used to reserve word locations in memory,
the term in the operand field entry is added algebraically to
the contents of the current location counter. An entry in
the label field is optional.

Example: XLABEL RES 10

In the above example, the operand 10 specifies that ten
consecutive words will be reserved in memory. The label
XLABEL will be the address of the first word reserved.
Subsequent words in this reserved area may be addressed
using XLABEL and indexing by the proper integer (1 to 9).
Use of a relocatable expression in the operand field is an
error.

Example 1:

1. ABS 1000
2. MAIN PSEG

3. REF SINE
4. ADSINE BL 1,SINE
5. END

Example 2:

1. SUB PSEG

2. RES 10

3. DEF SINE
4. SINE ST 1,SAVE
5. L 1,SAVE
6 B 2.1

7 END

Line 3 of the first segment indicates that the label SINE
will appear in a separately assembled segment. Line 3, in
the second segment, declares the label SINE to be
externally defined so that the first segment may have access
to the value of the label which appears at line 4 when the
two segments are linked by the Linking Relocating Loader.

2.7.8 ASSIGNMENT DIRECTIVE: FLAG.
General Form: LABEL FLAG OPERANDl
OPERANDZ...OPERANDr1

This directive allows naming of flag bit addresses in the Flag
Segment (FSEG).

Flag addresses are assigned sequentially to the previously
undefined symbols appearing in the operand list. The
Current Flag Counter is started at bit 0 and is maintained
modulo 16. Each time the counter passes through zero, the
Flag Word Address Counter is incremented by one, thus
addressing the next word.

2-17

For example:
XLABEL FSEG

FLAG F1,F2,F3,1,F4,F53,F6

0O 1 2 3 4 5 6 7 8 910 16

Fi1|F2|F3|Fa] |Fs F6

Terms encountered in the operand list are added to the
current location counter to appropriately advance the flag
address. A constant or a symbol representing a constant
appearing in the operand list specifies the number of flags

to be skipped.
The FLAG directive may be used only in the Flag Segment.
FLAG directives do not allocate memory and are used asa
convenient method for generating flag addresses.
2-7.9 CONNECT DIRECTIVE: CON.

General Form: LABEL CON OPERAND MODIFIER
The CONnect directive is used in the CRU Symbolic
Address Segment (BSEG) to name the address of a CRU bit
or the address of a series of CRU bits.

The modifier is optional and has a default value of 1.

Example 1:

COMM BSEG 0

TAPE1 CON 18

TAPE2 CON 19,3

TAPE3 CON 20

TREG CON 18
END

Line 2 of the example assigns the name TAPE1 to bit
location 18 of the bit program segment. Line 3 assigns a
different name to the same location.

Line 3 assigns a name to bits 19, 20, and 21. These three
bits may be referenced as a communication register. Line 4
assigns a label to bit 20. This bit is contained within the
TAPE2 register, but may also be addressed as TAPE3.

Example 2:

COMM BSEG 400

TAPE1 CON 418

TAPE2 CON 419,3

TAPE3 CON 420

TREG CON 418
END

The second example gives the identical bit addresses as the
previous example because the difference between the BSEG
operand and the CON operand determines the CRU bit
address. This displacement value is limited by the number
of bits in the instruction address field to 0<M<1023.
Addressing the CRU requires the use of base register 7. The
value of the BSEG operand will normally be the value used
as the CRU Base Address.

Note that the CON directive does not initialize any bits.
CON is used only in a bit segment.

PROGRAMMING NOTE
A sequence of bits defined as
communication register with the CON
directive (TAPE2 in the examples) may
be addressed as a register by the LDCR
and STCR instructions. '

a

2.7.10 EQUATE DIRECTIVE: EQU.
General Form: LABEL EQU OPERAND

The EQU assignment directive assigns the value and
attributes of the expressions in the operand field to the
symbol appearing in the label field. Among other uses, this
statement may be used to assign a name to a register.

Example: REGONE EQU 1

This directive would allow General Register 1 to be referred
to as REGONE in subsequent instructions.

2-7.11 DATA DEFINITION DIRECTIVE: DATA.
General Form: LABEL DATA OPERANDl
OPERANDZ...OPERANDn
This directive is used to place specific values in memory.
Values specified in the operand list are entered in successive
core locations.
Four types of data are permitted. They are: decimal

integer, hexadecimal, ASCII (plain language or Hollerith),
and address.

2-18

A decimal integer list might appear as:
DATA 529,-3,65

A hexadecimal list:
DATA X'ABCO! X!A! X!3F10!

Note that for hexadecimal numbers, each entry is preceded
by X and is enclosed by apostrophes. Neither hexadecimal
nor decimal numbers may require more than 16 binary bits
for internal representation. If a number (such as X‘A’)
requires fewer than 16 bits, the number is right justified
internally and the field is padded with leading zero’s.

In whichever type a number is entered, its value (V) is

limited by:
215 <y <aldy,
An example of an ASCII list is:
DATA C'TEXAS INSTRUMENTS!,C1960 SAL!

Note again that the data is enclosed in apostrophes and is
preceded by C.

One memory word can store two ASCII characters so that
the first constant, TEXAS INSTRUMENTS, requires nine
storage words. There are 17 characters in the constant
including the space between words. SAL left justifies ASCII
characters and fills the right most half word with a blank if
an odd number or characters is specified. The DATA
directive may be used only in Procedure, Data, and Flag
Segments.

The construction
DATA MDAT

where MDAT is a relocatable address constant is permitted
in SAL960. Furthermore, the construction

DATA @MDAT

where @MDAT is a segment relative address constant is also
allowed.

SAL can be expanded. New data types and their parameters
will be added as they are developed.

2-7.12 SOURCE
DIRECTIVE: FRM.

LANGUAGE EXTENSION

General Form: LABEL FRM OPERANDl,

OPERANDz...OPERAND32

New instructions and data structures can be designed using
the format directive.

Field widths in bits are listed in the operand field.

XLAB FRM 4,2,10,5,5,6 Format Declaration

WORD XLAB 4,1,103,26,9,15 Format Reference
The programmer has the option to include a two-entry,
parenthetic sublist in the FRM operand.

XLABEL FRM 6,3,7(X‘FF’,0)
XLABEL 15,4,23

Should this option be exercised, a logical and will be
performed between the first sublist entry and the final
version of the FoRMatted word (or double word) and
logical or performed between the second sublist entry and
the formatted word. When the sublist is used, the number
of binary bits (in the example, 16) required to represent
each number of the sublist must not exceed the number of
bits specified by the field width operands. Should the
sublist number require less than the specified number of
bits, the number will be right justified in a field with
leading zero’s added.

The number of bits specified in the operand list must equal
either 16 or 32. Furthermore, when the 32-bit format is
used, a field may not be defined that extends across the
internal word boundary. An entry in the label field is
required. After FoRMat has been defined, it is referenced
by entering this label symbol in the operation code field.
The label symbol may not exceed four characters in length,
For example;

XLAB FRM 4,4,8

ALPHA XLAB 12,6,21

BRAVO XLAB 13,5,20
2-7.13 OUTPUT CONTROL.

Directive: PAGE

General Form: PAGE
The PAGE directive causes the listing output device to be
advanced to top of form. The actual directive, PAGE will
not be printed.

Directive: TITL

General Form: TITL OPERAND

2-19

This directive is used to specify the plain language (ASCII)
characters to be used in program identification, These
characters will be printed on the first line of each page of
the list generated by the assembler.

Note that this does not refer to application output
headings.

Example:
TITL T1I 960 MONITOR SYSTEM

No further output instructions are required. The presence
of TITL is sufficient to cause printing. Storage method and
requirements are identical with ASCI1 DATA.

2-8 SYMBOLIC ASSEMBLY LANGUAGE.
Using SAL, the programmer may implement his programs
as stand-alone units or may construct programs from one or
more modules of four basic segment types. The four
segment types are:

a. Procedures identified by the PSEG directive.
The procedure segment is normally the main
body of the program and contains computer
instructions. It is the action part of a program.
Symbol attributes in SAL assist the
programmer in making procedures re-entrant.

Data (DSEG). Data segments are used to
provide storage, 1/O Buffers, and constants for
procedure segments.

Flags (FSEG). A flag segment allows the
programmer to symbolically address the
memory bit by bit.

Communication Register Segment (BSEG). This
segment simplifies the assignment and use of
symbolic addresses for references to bit lines in
the Communication Register Unit, both by
register (field) and by individual bit.

There are many variations of this basic type of program
segmentation possible. In most cases, the program segments
permit very simple and quick convenient coding.

The computer feature which makes segmentation both
convenient and efficient is the automatic use of specific
base registers in Format III machine instructions. For
example, when referring to a software flag in the Software
Flag Segment (FSEG) with a Software Flag instruction, the
value of the symbol representing the software flag is
automatically biased with the contents of the Software Flag
Base Register during execution of the instruction. This then

creates the bit address of the software flag. So, as the
assembler is building an instruction that uses automatic
base registers, the displacement of the symbol relative to
the origin of the segment in which it was defined is placed
in the instruction rather than the program relative address
of the symbol. Format Il instructions allow base registers to
be specified in the instruction. For those instructions which
do not use base registers, the segment relative value of the
symbol rather than its program relative value may be
specified with the use of the relative attribute, the “at”
symbol, @. The relative attribute may also be used with the
DATA directive. For example:

DATA @SYMBOL

This directive would cause a data word to be initialized
with the value of the displacement of SYMBOL relative to
the origin of the segment in which it was defined. If the
relative attribute were not used in the example, the data
word would be initialized with the program relative address
of SYMBOL rather than its segment relative value. Example
source statement:

L 1,@TEMP,4

If the symbol TEMP is defined in a Data Segment, the
above use of the @ symbol effectively converts Format I
instructions to the base-displacement addressing mode used
in Format II instruction.

Segment Identifiers, PSEG, DSEG, and FSEG directives do
not allow an operand field entry. A label field entry is
required. The label and the assigned value are passed to the
loader via the segment ID record. The operand field entry
for the BSEG directive is an absolute bit address that is
passed to the loader via an external definition. Symbols
defined within a Flag segment, CRU segment, or Data
segment will be passed to the loader as external symbols.
The appropriate segment class attribute will be associated
with symbols defined within particular segment.
Procedure and Data segments will normally reserve memory
in some fashion or another. Flag segments may optionally
reserve memory, but will normally be used for address
assignment only. CRU symbolic address segments are used
for address assignment.

a

Once the program is assembled by the SAL assembler, it
may either be loaded into core memory for execution or
combined with other segments in relocatable object format
using the Linking Relocating Loader.

The SAL assembler creates the necessary data required by
the LRL to perform its functions of linking the different
segments, relocating segments, and completing the assembly
process for external symbols.

2-20

Figure 2-5 shows the general structure of an example
program. The program listing of paragraph 2-16 contains
this specific example.

The flexibility of the computer usage is demonstrated by
the segment structure of the program. Three independent
process tasks are executed simultaneously under program
and monitor control. Each process task has a data segment
which is unique to the task being performed. The first 16
words form the worker task block for monitor
communication. Because of independent task assembly, any
task or tasks may be added or deleted without altering any
part of the program except the relevant data segment(s). In
the example, all data segments use the same execution logic
provided by the re-entrant procedure segment. The one flag
segment is also used by all tasks. The addresses of actual
task process information input and output in relation to the
computer is defined by the communication register
symbolic address segment (BSEG), used by all three tasks.

2-9 OBJECT FORMATS.

The object program may be produced on either paper tape
or cards, depending upon the peripheral equipment
avaﬂable.

29.1 OBJECT FORMAT. The object records for the
Symbolic Assembler (or Linking Relocating Loader) have
the following formats.

Each segment in an assembly will result in the output of an
Identification Record and a Linkage Data Record(s) at the
end of PASS 1.

During PASS 2 of the assembler, the text records are
output. Text records contain the program text to be placed
in memory and additional linkage data.

At the end of PASS 2, an end record is output.

Binary output records on paper tape will be separated by an
x-off punch off and rubout or null code. Successive text
records are punched as required until the end of the
segment is reached. This is indicated by a segment end
record. This record can contain a transfer location. The last
character on the tape is an ASCII punch-off code.

All data on the object paper tape is punched 4 frames/16
bit word. Channels 14 of each frame contain one
hexadecimal digit. Channel 5 is always zero. Channels 6 and
7 are always one. The following list displays the
hexadecimal digits and the hexadecimal codes
corresponding to the eight channels on the tape.

I

MONITOR
DATA
SEGMENTS TA1SK
e am——
ILITE 1D!
| trenee
IREENT!
ILITE 3D!
TASK
;‘_3——’
ILITE 2D! FLAG
SEGMENT
ILITEF!
CRU
SYMBOLIC
ADDRESS
SEGMENT
ILITE B!

Figure 2-5. General Program Structure

CRU

LIGHT
SET 1

LIGHT
SET 2

LIGHT
SET 3

SLAVE 1
CONTROL
SWITCHES

SLAVE 2
CONTROL
SWITCHES

‘SLAVE 3

CONTROL
SWITCHES

MASTER
CONTROL
SWITCHES

2-21

ASCII Code

Hexadecimal Hex Digit

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

MmUY O W > OV 0 N0 kLN =

On cards each column represents one 8-bit character that is
decoded according to the following list.

BINARY INTERNAL CODE TO
BINARY CARD CODE CONVERSION

Most COMBINATION Least COMBINATION
Significant Significant

Digit 12-11-0-9 Digit ~ 8(1,2,....7)

0 blank 0 blank

1 9 1 1

2 0 2 2

3 0-9 3 3

4 11 4 4

5 119 5 5

6 11-0 6 6

7 11-0-9 7 7

8 12 8 8

9 129 9 8-1

A 12-0 A 8-2

B 1209 B 8-3

C 12-11 C 8-4

D 12-11-9 D 8-5

E 12-11-0 E 8-6

F 12-11-0-9 F 87

Example — The binary card character for X 'CA! is
12-11-8-2.

2-22

All binary formats have several common features. The
binary record is indicated by 17, code in the first two
frames. The two-bit record indicator code is defined for the

four different types of binary records in the following
table:

Binary Code Record Type
00 Identification (ID) Record
11 Linkage Data (LD) or
External Symbol Record
10. Text Record
01 End Record

The redundancy character is the sum modulo 256 of all bits
equal to one contained within the record excluding the
redundancy character itself.

The segment sequence number is increased by one for every
new segment defined within any assembly containing
multiple segments.

2.10 OBJECT FORMAT DEFINITION.

2-10.1 PROGRAM OR PROGRAM SEGMENT IDENTIFICATION (ID) RECORD.

BINARY RECORD 80 BYTES
INDICATOR 17 R IOIO
REDUNDANCY RC LI R
CHARACTER (NOTE 1)
S Y
- +
M + B
- -
0] L

SEGMENT ORIGIN

SEGMENT LENGTH (NOTE 3)

EXT. REF.CNT. |

[l

ID RECORD INDICATOR

SEGMENT NAME

SEGMENT SEQUENCE

——
NUMBER (NOTE 2) SSN]

E SEQUENCE FIELD

NOTES

1. The redundancy character is the sum of all bits equal to

one contained within the record

redundancy character itself.

excluding

the

2. The segment sequence number is increased by one for
every new segment defined within any assembly

containing multiple segments.

3. The Segment Length is the value of the Segment
Relative Program Location Counter when the segment is

terminated.

2-23

= O =

-0 ("

Program Segment has been linked.
Linking is required — Unsatisfied
contained in Text.

References

Program Segment is absolute.
Program Segment is relocatable.

Procedure Segment

Data Segment

Flag Segment

CRU Symbolic Address Segment

Processed by SAL960
Processed by LRL

I3

| <

—- O

2-10.2 LINKAGE DATA (LD-EXTERNAL SYMBOL RECORD).

fb Xr v R

Neither Flag nor Bit Address
Either Flag or Bit Address

Set if symbol is defined in a Flag
Directive Operand or is a CON
statement label.

Symbol is an external definition
accompanied by a value.

Symbol is an external reference
accompanied by a dictionary index.

80 BYTES
LI
17 RHL
RC L C
SYMBOL
1 2 3 4
SYMBOL
5 6 7 8
- S + —
v+
0

S

VALUE OR DICT. INDEX

Symbol is assigned a relocatable value.
Symbol is assigned a self-defining value
or a relative, i.e., is not relocatable.

VALUE is the value assigned to an externally defined symbol. The DICTIONARY INDEX is an integer
in the range 0-256 that is assigned to an external reference in the sequence in which it is declared in the

program.

2.24

SSN
- S + -
! Q
. .+_ -
c
NOTE

2-10.3 TEXT RECORD.

Binary Record
Indicator
Redundancy
Character

Text Word Address

Relocation Map:
Note: Relocation is required

for Direct Memory Addresses
only.

Map
Bit_

0 Not Relocatable
1 Relocatable

Note 1: A MASK is composed
of two hexadecimal digits.

M(1) Starting bit position
of field

M(2) Field Width 0 = 16 bits

Examgle:

A4 - Field starts at bit 10 and
is 4 bits wide.

Note 2: Special MASK values
will be used to mark special
cases.

MASK Value

FF
FE
FD
FC

17 R 10

RC L rlo Cc

LOAD RELOCATION CONSTANT

W
% RM-1

<
N —

=
RM-2 W

TEXT WORD 1

TEXT WORD 2

TEXT WORD 3

—

RELATIVE LOAD ADDRESS

MASK DICT. INDEX

RELATIVE LOAD ADDRESS

MASK DICT. INDEX
SSN LDRC
S E
- + .
(0] + N
C E
Meaning

Flag reference
CRU Bit Reference

CRU Register Definition

Text Record Indicator
Text Word Count

Text Word to be put in core
by load function.

=

Program is absolute
Program is relocatable

Address Relative to
Assembly Origin

Linkage Information for
External Symbol

References in Context

Linkage Data Record Count

Sequence Field

Relative Address required in Format I instruction

2-25

2-10.4 SEGMENT END RECORD.

Binary End Record Indicator
Record T
Indicator 17 R 0 1
B
(P:\ﬁdundancy RC L R 18 0 No Branch Vector Follows
aracter
1 B hv Foll
RELATIVE ENTRY VECTOR ranch Vector Tollows
Segment
Sequence
Number
SSN
S | E
Q N
— "I'— =1 Sequence Field
R = Reserved C E

2-26

2-11 SAL LISTING RECORD FORMAT.

N N
- +
N N
{
E] E
L L
- +
L L
20 T
| T _I_ T
T T
- +
T T
T 20

Later versions will indicate
statement continuation by
inserting CC 61 into print

position 20.

!

ASR 33 Listing
contains

CC 1-52 only

!

++++

Card Columns
1-60

NOTE: For the 960/960 assembler
with listing output on an ASR 33
lacking the punch/read without
printing option the source statement
will appear at the left of the page
followed by the assembly data.

LEGEND:

N — Source statement line number in decimal with leading zero’s suppressed.

E — Error Code.

L — Location counter in hexadecimal (Assembly Location Counter).

T — Text — Single words will be printed in 4 digits left justified and double words in 8 digits.

2-27

2-12 SAL960/960 WITH 8K MEMORY.

2-12.1 GENERAL. The 8K version of the assembler runs
under control of the Programming Support Monitor.
SAL960/960 is a two-pass assembler. During the first pass,
the symbol, segment, and form tables are built. Presently,
the assembler has the capacity to handle 100 symbols, 12
segments, and 5 forms. Since the common data block and
several routines are common to Pass 1 and Pass 2, Pass 2
loading time is reduced by overlaying Pass 1 by Pass 2. Pass
2 reads a source card, processes it, and prints the object.

2-12.2 LOGICAL UNIT NUMBERS. Logical unit numbers
for SAL960/960 are as follows:

LUNO Typical Device
4 Punch ASCIHI (PST) Teletypewriter
5 Read Source and Options Card Reader

6 List Line Printer

7 Punch Object Card Punch

The assembler reads the source from cards, prints the object
on the teletypewriter, and punches the output on paper
tapes. If different devices are desired, logical unit numbers
can be changed through the use of PSM job control.

2-12.3 OPTION CARDS. SAL960/960 accepts certain
options specified on a card of the following format:

*ab

where the combination ab can be one of the following:

PASS 1 PASS 2
a b FUNCTION FUNCTION
L List symbol and List line number error

segment tables

code, APC, object, and

only. card image only.
P Punch the ID Punch text record only.
and LD records
only
**B No printed or List line number error
punched output. code, APC, and object
only. Will not print
card image. (See Note.)
L P List symbol and List line number error
segment table and code, APC, object, and
punch the ID and card image and punch
LD records. text records.
*kp P Punch the ID List line number error

and LD records

code, APC, and object
and punch text records.

2-28

PROGRAMMING NOTE
B is used if input is on paper tape since
the teletype prints as it reads. In the case
of tapes, the output will appear as
follows:

START LA 5FLAG1

12 A0002 44850000

If no options are specified on the option card or no option
card is found, the options LP are set. The option card will
be recognized anywhere in the deck by Pass 1 but will be
ignored by Pass 2. :

2-12.4 LOADING AND RUNNING. After PSM is loaded
and started:

a. Get Pass 1 ready to load and ready the load
device and enter the letter L on the keyboard.
Pass 1 loads.

b. Pass 1 execution is started by typing an X on
the teletype.

c. When the assembler is ready to output the ID
and LD records and, if a punch option is given,
it will print the message

TURN ON OBJECT OUTPUT DEVICE

Turn on the teletypewriter and wait for a I*ON
record to be read.

d. When Pass 1 is finished, the supervisor waits
until one of the following characters is entered

on the keyboard:

L If Pass 2 or Pass 2 option change deck
is to be loaded.

X If Pass 1 is to be repeated.

If X is requested, repeat steps b-d again, since
Pass 1 is designed to initialize itself without
having to be loaded again.

e. If the options in Pass 1 are to be changed
before running Pass 2, the letter L is entered on
the keyboard and the Pass 2 Option Change
program is loaded. The program is started by
entering an X. The option record is input
immediately. If something other than a !*
record is read, the program says so and waits
for another record. If no options are given, the
options from Pass 1 will be retained and the
program then branches to the supervisor, which
in turn waits for the letter L to start loading in
Pass 2.

If the Pass 2 Option Change program is not
used, Pass 1 options will be retained and Pass 2
can be loaded by entering the letter L on the
keyboard.

Pass 2 is started by entering an X. Pass 2 reads
the first source record immediately.

If either the symbol or segment table is
exceeded during Pass 1, the assembler prints
out the symbol that caused the overflow and
branches to the supervisor to wait for an L.

i. At the finish of Pass 2, the assembler branches
to the supervisor to wait for an L or X,

j» The Option Change Deck can now be loaded
and the options changed again or Pass 2 can be
rerun. In either case, the tables from Pass 1 will
not be destroyed.

2-13 SAL960/360 DOS.

2-13.1 GENERAL. SAL960/360 DOS is catalogued on the
core image library and optionally in subprogram form on a
relocatable library. The DOS system file extent for
SYSLNK is used as an intermediate storage file (SYS007).
During Pass 1, the source input file (SYS004) is copied to
SYS007. SYS007 is the input for Pass 2. Pass 1 also outputs
to the object file (SYSPCH) and the list file (SYS005).
During Pass 2, the list file (SYS005) and the object file
(SYSPCH) are output.

2-13.2 JOB CONTROL. Job control cards for a typical
SAL960/360 DOS system are:

// JOB E7550871 MA PR 04 003 S960A MULTIPLY
MARK II

// ASSGN SYS004,X'002' CARD READER FORTRAN
UNIT7

// ASSGN SYS005,X'004' PRINTER FORTRAN UNIT 8

// ASSGN SYSPCH,X'006' CARD PUNCH FORTRAN
UNIT 2

// ASSGN SYS007,X'135! DISC BULK STORAGE
// DLBL IJSYS07,1JSYSLN!

/] EXTENT SYS007,000135,1,0,3760,200

// EXEC SAL960

+**SOURCE DECK ***

/*

/&

2-29

This job can be entered into the IBM System/360
background control stream. SAL960/360 averages an
assembly speed of 300 cards per minute on the 360/50.
Twenty segments and 500 symbols are accommodated by
SAL960/360 DOS.

2-14 SAL960/360 OS.

2-14.1 GENERAL. SAL960/360 OS is catalogued on the
job library AG.ASS960. The disc area declared in the
//GO.FT10F001 statement is used as an intermediate
storage file. During Pass 1, the source input data set
(FTO5F005) is copied to FT10F001. FT10F001 is the
input for Pass 2. Pass 1 also outputs to the object data set
(FTO7F001) and the list data set (FTO8F001). During Pass
2, the list data set (FTO8F001) and the object data set
(FTO7F001) are output.

2-14.2 JOB CONTROL. Job control cards for a typical
SAL960/360 OS system are:

//SAL960 JOB
//JOBLIB DD DSNAME=AG.ASS960,DISP=SHR
//SAL960 EXEC FORTGO,PARM=!SAL960"

//IGO.FT07F001
//GO.FT10F001

DD SYSOUT=C

DD UNIT=SPACE, SPACE=(CYL,(5,1)),
DCB=(RECFM=FB, BLKSIZE=80)

//GO.FT08F001 DD SYSOUT=A
//IGO.FT05F001 DD *

/*

1

This job can be entered into the IBM system/360 through
either the main terminal or any remote batch terminal
connected through data lines.

SAL960/360 OS averages an assembly speed of 900 cards
per minute on the 360/65. Thirty segments and 500
symbols are accommodated by SAL960/360 OS.

2-15 RELOCATABLE SAL960/PAM.

The following are the necessary job control cards to load
and execute the Assembler beginning at location X'0100!
under control pf PAM. This job stream will allow sequential
loading and execution of Pass 1 and Pass 2. Re-execution of
a pass will require user alteration of the job stream.

»

The deck provided is as follows:

]
$$LDTS**0100**0050 LOAD PASS ONE ID=X'0050!
/*

(pass 1 object is inserted here)

/*

$$INST**0050**00F0 INSTALL PRIORITY=X'00F0!
$$ABLE**0050 ENABLE PASS ONE
$$DFI0**0004**0008 SYMBOL TABLE OUTPUT
$$DFI0**0005**0004 SOURCE INPUT
$$DFI0**0006**0005 LIST OUTPUT
$$DFI0**0007**0006 OBJECT OUTPUT
$SEXCT**0050 EXECUTE PASS ONE

(Insert source deck to be assembled along with Assembler
option and control cards here)

PASS TWO

$$DLTS**0050 DELETE PASS ONE
3LDTS**0100**0051 LOAD PASS TWO_ ID=X'0051"
/*

(pass 2 object is inserted here)
/*
$$INST**0051**00F0 INSTALL PRIORITY=X'00F0'
$$ABLE**0051 ENABLE PASS TWO
$SEXCT**0051

EXECUTE PASS TWO

(Insert source deck to be assembled here)

2-30

CLEAN UP

The following data should be read through following
execution of pass 2 in order to release logical units and
delete the Assembler.

$$DLTS**0051 CLEAN UP
$$RLIO**0004
$$RLIO**0005
$$RLIO**0006
$$RLIO**0007
$$JCOF**

DELETE PASS TWO
RELEASE

END OF JOB

2-16 EXAMPLE SAL PROGRAM.

SYMBOL TABLE Duyme LIMSYM= 28
SYMROL SRLADT SSN FLAAG REF RFLOC DEFINFND EXT MULTY

REFNT 000 1 F F T T T £
LITFIG anni 1 F T F T T F
RPTSAVE non2 1 F T = T T F
RIMAST nan2 1 F T F T T F
RT7SUR nnng 1 F T F T T E
PAT2N1 nnns 1 F T F T T F
PATRN? 0nNoe 1 F T F T T F
PATRN 3 nanz 1 F T F T T F
PATRNG - 0008 R S | F T T F
RINTSK nong 1 F T = T T F
TTYPRB NN 1 F T F T T =
SUPFER nNnTF 1 F F F T F F
CRUYPFG nnnn 30T F F T T F
CONTRL nnny 307 £ F T T £
INDENT nno4 1 F F T T F =
LINF) N011 3 T F F T T F
Swl 018 1 F F T T F 3
LINF2 nn21 37 F F T T F
SW? nnic Y F F T T F F
LINF3 nn3x 3 T .F F T T F
SW3 1020 1 F £ T T F £
L INE4 no4 27 F v T T F
FRROR 1026 1 F F T T £ F
1C annn 2 T = 13 T T F
EXIT 002¢ 1 F F T T F F
LITFF anie ? F F T T T F
nrAOD nnoy 2 7 F F T T F
LITER annn 2 F F F T T F
SEAMENT TARLFE DUMP LIMSFG=

SEGNAM RERTAS LENGTH RFFCNT SSN LINK ABS SEGTYP

FEFNT annon 5S4 1” 1 T [T T
LITEF [ATA B S N)] 2 T | = e T
LITER 00A0 A n a T F F F

%% (INRFFERENCFN SYMROL *% FEFNT

#% JNUFEFFRENCED SYMA0L %% LITEF
% EFERENCEN SYMAML #% DRAP
#x © FERENCED SYMROL #* LITED
*&k QY FROPORS %%

2-31

SEQ FF LC

1
2
b
4
5
A
7
Q

(s}
lﬂ
11
12
12
14
15
16
17
18
19
29
1
22
23
24
25
26
27
28
29
31
31
32
37
34
35
16
37
38
39
40
41
49
43
44
45
46
a7
4R
49
50
51
52
57
54

nAnn

200N
neonn
nenan
alakala!
alalals)

HroN
nnno?

04
INNg

nnne
AINNA
nNoor
nrNne
nelo
mn12
nnlg
NN 1A

QRJIFCT

20 ANCNANN
4AC TINONN

46470000
INNNNR24

46470000
ANNNNKRI 4
CIASAR NAISR B!
AN021C1C
2NN3INNIN
ANNGNE26
46400000
70820022

. SAURCF
REFNT PSFG
*
= THIS EXAMPLF PROGRAM ACCEPTS CONTRAOL INPYUT FROM 3 SETS OF
* 16 SLAVE SWITCHFES AND 1 SET OF 16 MASTER SWITCHES AND
* PEOAVINDES 3 LFVELS OF CONTROL FOR THF OUTPUT OF OPT IONAL
NEMONSTRATIAN PATTERNS ON FACH CF THE NEMONSTRAT ION
% | J6HT SETS, FACH LISHT SET CONTAINS 16 LIGHTS WHOSE ON/OFF
* STATES CNPERSPOND NIRFCTLY TO 16 SLAVE SWITCHES WHEN
JHMOEDENAENT OPFRATION IS INDICATED BY MASTER CONTROL
* Sl TR nec NEE STATE, THF NN STATE OF THIS SWITCH
[MNICATES THAT CACH 0OF THF DQUTPYTS TO THE L TGHT SETS ARFE
% CLAVED T 8 NF THF 16 MASTER SWITCHES., SFETS 14?2,AND 3 ARF
CSLAVFD T MASTER SWITCHES 1-5.6-A, AND R-F RESPFECTIVELY,
% JF THFE FIFST SWITCH NF ANY 5 SWITCH GROUP IS 0OFF THE
* INDEDREANENT MANE OF OPFRATION WILL BF INM FFFECT FOR THFE
2 CCPRESPOANNING LIGHT SFT ONLY. IF THIS FIRST SWITCH IS 0N,
% THE DOROGHAM ATLL OUTPUYT AONF NF 4 PREDETERMINEDR L IGHT
k PATTERNS TMOICATEN RY THE HIGHFEST PRINRITY(LOWEST NO.)
* SWITCH IN THE NN STATFE WITHIN ITS GROUYP,
b4
Ak x DQEG EXECUTION BFGINMS WITH THE CRY 8ASE REGISTER
INTTTALT 250 WITH THE CRY BASF ADDRESS FOUND IN THE CURRENY
O WYODKER TASK RLNCK Aok

3¢

PEF LTTFIG,RTISAVFE,RTMAST
EFE PT7SUR, PATRNL, PATRN?
REE PATONZ, PATRNAG
REFF RIDTSK, TTYDPRA

SYPER FQU XTTF!

CoRd kK TNPUT SLAVE UNTT SWITCH CCNFIGURATION ¥k

STCF CRUBFG, LITHFING

ST Ty ARTSAVE, 4 SAVF REGISTER 7
*
4% THFE CPU RASFE REGISTER IS CHANGED TO
* ACCFSS THAT PORTION DF THE CRY CONNFCTED T THF MASTFR
* SWITCHFES #%%
&

L 7, AP TMAST, 4 MASTFO2 BSFG RASE

ARNE CONTRL, 1,TNDENT RRANCH FNR INNEP, MODF
»
*hxx THFE CRiJ RASFE REGISTER IS CHANGED T0O
X¥ACCESS THAT PARPTION OF THF CRyU CONNECTFD TO THF APPROPRIATR
EMACTES SWITOH GROYUD && k%

%*
L Ty IPTSURL A MASTFER GROYP RS EL RBASE
RANE CONTRPL,y 1, I NDENT
BRANI L INE1,0, SH1 NFTFRMINE SURSTITUYTF
BANE LINFE?2,0, SW2 LIGHT PATTERN,
RRNE LTINF 3,0, SW3
RANF LINF4,1,FRRMR NO PATTFERN,INDICATE ERROR
L Ny APATRNG, &
2] INNENT=?

2-32

54
56
57
58
59
AN
61

>
4

A2
H4
H&
6h
&7
49
(0
70
71
72
77

74
75
7¢
77
78
79
81
"1
92

83
84
85
86
87
an
R9
an
91
a2
93
94
95
Qg
97
91

nnle
nNOYA
nni1c
ANYF
nn o9

o2
N4
N4
AND O
1ODA
nooc
alaW iz
nNe3n
an3?
nrayg
ne

04

Yo
0N2A

annn

noNn
0nnt
1011
nnoi
N3
N4l
Y36

L640N00N
70820122
46400000
70820022
46400000

GAC ONNNN
LHaTN0CO0
DLNANNADC
44330000
TJasgONn7r
nARANAOCN
46430NNN
T7agnnnire
L432040N
T78_00NTC

SwWi L a Ny dPATRNL, &
R INDENT=-2
SW? L Ny APATRNZ, 4
R TMOIENT=?
SW3 L Ny APATRNG, 4
*
%%+ QTNRF SEFLECTED LIGHT PATTERN IN OUTPUT LOCATION *&x%
*
QT ﬂ,.’,\‘ITF[",,Q
INDENT L Ty 2R TSAVE, & RESTORE PEGISTFR 7
Fepp o BENE [0, 1,6XTT
LA 3, aTTVYPRRA SHOULD ERRNR RE IGNDORED
SYXR S % S{YPFER N, QUTPUT FRPRNAR COMMENT
EYrT LOCe CAyREG,LITFIS NJTPUT LIGHT PATTERN
| 2, PINTCK, 4 60 TN NEXT TASK VIA
SXRS *SUPER MONITOR BID FOUTINE
La 2, XV4NNY END CURBFENT TASK
CXR Q % QHPre VIA MONITOR FOP PNOUT INF
END
{ITEF FSEG
*
#dkt THE FCro, NEEINES FLAG LABRFLS EELATIVFE TO THE FLAG BASE

£ APNDRESS WH]CH NIFEFRS FNR FACH TASK.THF FLAGS ARF INITAL-
#7750 [N THF TASK DATA SEAMENT REGINNING AT THF RASE
XADDPRE G Akdk%
#*

FIAG T92,DFNP,14

EnMD
LITenr aeen N
k&% THE RSO RASE ADDRFSS NIFFERS FOR FACH TASK,NDYRING THE

* TASK FXECUTINN, THE RASE ADDRESS TS CHANGED FROM THE

IMITIAL SLAVE SWITC4 RASF T THF MASTERK SWITCH BASFE AND
% MASTER GROUP SWITCH RASE RY USING NISPLACFMENT NPERANDS
% WITH GXOUP 1 INSTRUCTICNS RELATIVE TC THE APPRNOPRIATE
* DATA RASE ADNRFSS, k&%
*
CRUPEG CON N,16
CONTRL CON 0
LINFL NN)
LINF2 CON 2
LINF3 CON 3
LINY4 CON 4
FAID

2-33

% %k

% *x

* %

£k

3

% %X

¥k

%

% %k

* %

SYMBOL TABLE DuMP

SYMBOL SRLADT SSN FLAG RFEF RFLNC DEFINFED

LITELD 0000 1
REENT 0001 1
LITELF nNn24 1
LITFIG nolo 1
PTSAVE 0011 1
RIMAST No12 1
R7SUR nni3 1
PATRN1 0014 1
PATRN 2 0n15 1
PATRN 3 Do1l6 1
PATRN 4 notlt 1
BINTSK nois8 1
TTYPRR n019 1
TTYBUF AL R 8 1

SEGMENTY TARLF DUMP
SEGNAM RFEETAS LENGTH REFCNT SSN LINK ABS SEGTY®P

LITEID 02000
UNRFFERENCED
UNREFERENCED
UNREFERFNCED
UNRFFERFNCED
UNRFFERENCEN
UNRFFFRENCID
UNREFFERENCED
UNRFFFRFNCED
UNRFFFRENCED

UNREFERENCED

‘37
SyMaent
SyMROL
symant
SYMROL
SymapL
SymMaop
symMapL
SyMaop
SYMRBROH

SYMROL

NN PASS 1 ERPORS #x

TTMTTMTMAMMMAMT AN NN

* &

%%

A ¥

* %

B2 e 2 2 T e o e M e o e 2 £ e ¢ AP B 3 |

1
LITFIG
R 7SAVE
RIMAST
RT7SUR
PATRN]
PATOND
DATO N3
PATR NG
2INDTSK

TTYPRR

i B B B R B B I B B S R

2-34

e e e e e e R e e e B I I

EXT MULT
T F
T F
T F
T F
T F
T F
T F
T F
T £
T £
T F
T F
T F
T £

LIMSYM=

LIMSFG=

14

1

SFQ FR LC
1 201D
2 onnon
3
4
5 000N

anpl

6 NnHn?
7 0003
anng
1N0s
N006

]2 0nO7
9 nnng
10 0009
11 NONA
12 000R
13 acnc
14 000N
NNNOF
nanFE

15 ﬂﬁlﬂ
16 nnll
17 12
18 nngn
19 0014
20 N5
21 nnls
22 J017
23 2018
24 NC19
25 AN TA
26 NN18
27 Nneac
28 nn1n
29 N01°
nnaan
nnz2

30 IN24
21 N25

N8JECT

nnnn
8000
000B .
noonn
0000
nano
nonn
0nn0
£0O00
nnoe
0030
ROON
nnno
nonn
0nno
anne
NN
nnnn
1061
nnet
no1Y
o012
not12
n014
000C
nonn
NO1F
nona
nanna
0n12
45526220
47524F 8RR
50201120
annn

LITELID

DSEG
REF

RFENT

SOURCE

FIRST LIGHT SET DATA SEGMENT

*x%k%x THE WNRKFR TASK BLOCK CONSISTS 0OF THE FIRST 16

* LOCATIONS

LITFIG
P TSAVE
RTMAST
R7SUR

PATON]
PATLND
PATEN3
PATRN4
RINTSK
TTYPRR

TTVYRyF

LITF1F

DATA

NATA
DATA

DATA
DATA
NATA
NATA
NATA
NDATA
NATA

NATA
NATA
NATA
NATA
NATA
DATA
DATA
NDATA
NATA
NATA
NATA
DA TA
NATA
NATA
NATA

DATA
END

TRk %
REENT, X1 80001

11
Ny Ny 0y

LITELID
PEENT
LITF1F
X¥t3n0¢
X! 300Ny
PEENT
Ny Ny O

N

Q

Y1 a0t
X1
X'll!
X112"
X|13!
Xt140
12
LITEIN
TTYAJF
11

11
X10n]20
CYERR,GRPOUP 1!

Yt annane

2-35

EVENT COUNTFER AND ST ATUS

FLAGS/PRINRITY
WORKFR REGISTERS 0 THROUGH 3

DATA BASF ADDRESS,RFGISTFR 4
PROCFNURE RASE ADDRESS yRFG, 5
FLAG BASF ADDRESS,REGISTFFR 6
CRU RASE ADDPRESS,RFGISTFR 7
INITT AL STATUS WORD

ENTRY PNINT

TIMER, LINK, IDENTIFICATION o

INITIALIZE PATTERN STORAGE
PEGISTER 7 STORAGF .

CRU MASTER CONTROL BASE .

CRUY SUR-CNNTROL RASE .
MISCELLANENUS LIGHT PATTEPNS
AVATLABLE FOR OUTPYT TO SFT 1
UNDER MASTFR GROUP CONTROL.

NEXT TASK TO BF FXFCUTED
WORKER TASK BOLCK ADDPFSS
RIJFFER ANDRESS

PIIFFFR LENGTH IN CHARACTFRS
RECORD LENGTH IN CHARACTERS
FLAGS AND LNGICAL UNIT NUMBER

v %

* %

*x

& %

* %

%k

% ¥k

* %

* 3%

¥* %

* %

SYMB0L TABLE DUMP

SYMBML SRLADT SSN FLAG REF RELNC DEFINED

LITE?2D aonen 1
RESNT nnnj 1
LITE?2F nnz24 1
LITFIG onLn 1
RTISAVE 01 1
®TMAST nnY2 1
RISYR ne13 1
PATRN] nnte 1
DATRN 2 anl1s 1
PATRN 3 0200 W 1
PATPNG& nn17 1
BIDTSK AN1R 1
TTYPRR nn1s 1
TTYRBUF ANYFE 1

SEGMIMT TARLE DUmre
SECNAM REBTAS LFNGTH BEFONMNT SSN LINK ABS SEGTYP

LITE2D 00DO
UNRFFERENCFD
UMREFFRENCED
UNREFFFRENCED
UNREFERFENCED
UNRFFERENCED
UMREFERFNCED
UNREFERENCED
UNREFERENCED
UNREFFRENCED

UNREFERENCED

27
SyMan|
Symeny
SYMRQOL
CYMROL
SYMRNY
SYMROL
SYMROL
SYMRnL
SYMBOL

SYMROL

NN PASS 1 FPPORS %

[2 M e o e £ TR 0 M T B v A B |

* %

* %

&

#

&k

% %k

s &

MMM AT NTNTMATT o4 "N
e T T e B B I B B e B B

1

LITFIG

R 7SA VE

RTMA ST

R7SUR

PATRNI

PATPN?

PATTN3

PATRNG

3INTSK

TTYPRA:

R e e e T e I R I IR A

2-36

EXT MULT
T F
T F
T F
T F
T F
T F
T =
T £
T F
T F
T F
T F
T F
T £

LIMSYM=

LIMSEG=

1%

1

SEQ B2 LC NBJIFCY SOURCE

1 000 LITF2D DSEG
? *
3 %%k THIS DSEG IS IDENTICAL TO THE FIRST IN THAT DAT A VALUES
4 % HAVING THF SAMFE DISPLACEMENT RELATIVE TOD THE DSEG RASFE
5 * WILL SE®VE IDENTICAL LOGIC PURPCSES. THE ACTUAL VALUES
6 * MAY IR MAY N(OT BRF THE SAMF , %%kx%
7 *
8 nn PEF REENT
9 009 Nnon DATA RFENT, Xt RNNNY
191 80N0
10 20n2 annC DATA 12
11 12003 onnop DATA D,0yMy N
004 0ONOD
anns nnon
2006 0000
12 D007 0000 DATA LITE2D
12 20NR £ONO NDATA REFENT
14 2009 0N24 DATA LITE2F
15 200A NO4O NDATA X'40¢
16 2HC0OR 8000 NDATA X18NnnNe
17 00 29200 NATA PFEENT
18 000D QONN DATA 0,0,0
INOFE 00N0
N00F NNOO
193 nani1n nonn LITFIG DATA O
20 N1l nonn RTSAVE DATA 0
21 1012 0060 PTMAST DATA X'
22 DO13 0066 R7SUB NATA X'56K1
23 NNnl4 no2 PATENT DATA Xx¥21°
24 NN1S 0022 PATRN? NDATA X'22°
25 N016 N023 < PATPN3 DATA X123
26 1017 0024 PATENG DATA X124
27 Nnn1a nonn PIDTSK DATA 13
28 D019 nnpn TYYPRR DATA LITE2D
29 0ON1A NO1F NDATA TTYRUF
30 o018 NNOR DATE 11
31 201C 000R DATA 11
32 927010 0012 DATA X'NnN12¢

331 N01F 4552522C TTYPUF DATA C'EPR,CRONP 2t
0020 43524F55
1022 50203220 :

34 0024 000D LITE2F DATA N

35 1025 END

2-37

*%

%%

o K

% %

%

* ¥

%%k

* &

* %

ok

SYMBDL TABLF DuUMP

SYMARDOL SRLANDT SSN FLAG REF PFLNC DEFINFD

LITE3D noooe 1
REENTY o001 1
LITE3F 0024 1
LITFIG nol1e 1
RTSAVE 0011 1
RTMASTY n012 1
R75UE nnl13 1
PATRN1 0014 1
PATRN? nels 1
PATRN 2 0016 1
PATRMG 0017 1
BIDTSK 0onle 1
TTYPRB nol19 1
TYYBUF N01E 1

SEGMENT TABLE DUMP
SFGNAM RFBIAS LENGTH RFFCNTY SSN LINK ABS SEGTYP

LITF3D 0000
UNREFERENCFD
UNREFFRENCED
UNREFFRENCED
UNREFFRENCED
UNREFFRFENCED
UNRFFERFNCED

UNRFFERFNCED

= UNREFFERENCED

UNREFEDENCFED

UMREFERENCED

37
SYMBOL
SyMaoL
SyMa0L
SYMBROL
SYMAN
SYMBOL
SymMenL
SyManLe
NAATAIE

SYMRQOL

NN PASS 1 FRPOPC %%

MMM AT T AMNMMMANTN

% &

% %k

X%k

* %k

* ke

* %

* %

%k

* X

L2 o 2 2 i o e W o e & M M 2 M o e s R Ry o |

o o e e o o o - - Ty

1

LITFIG

R 7TSAVE

RTMA ST

RT7S1RB

PATENI

PATRND

PATRN3

DA TR N4

TINTSK

TTypRR

o o 4 4 - o

238

EXT MULT
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
A F
T F

LIMSYM=

LIMSEG=

14

1

SEQ ER LC NBJECTY SOURCE

1 0009 LITE3D DSFG
2 *
3 *x%x% THIS DSEG IS INDENTICAL TO THE FIRST [N THAT DATA VALUE
4 * HAVING THE SAME DISPLACEMENT RELATIVE TO THE DSFG BASF
5 * WILL SERVE IDENTICAL LOGIC PURPOSES. THE ACTUAL VALUES
A £ MAY DR MAY NOT BE THFE SAME , %%%%
7 . *
8 0000 REF RFFNT |
9 N000 5000 DATA REENT, X*8900¢
N9l 8000
10 1002 007N DATA 13
11 1002 0000 DATA 0y0,0,0
1004 0000
0005 0090
0006 0000 4
12 1007 0000 DATA LITE3D
13 0018 0000 . DATA REENT
14 0009 0024 DATA LITE3F
15 N00A 0050 DATA X'S50¢
16 000R 8000 DATA X'800N*
17 000C N0No DATA REENT
18 000D 000N NDATA 0,0,0
0NOF 00NN :
200F 0000
12 0010 090N LITFIG DATA 0
20 0011 none R7SAVE NDATA N
21 2012 no6n PTMAST DATA X'60*
22 0013 0068 RTISUS DATA X'6B?
23 1014 0031 PATPNT NATA X'31¢
24 0015 0032 PATRN? DATA X'32°
25 0016 0033 PATRNZ DATA X'331
26 NN17 0034 PATENG DATA X'34¢
27 0018 000R RIDTSK DATA 11
28 nN19 0000 TTYPRR DATA LITE3N
29 0ON1A NNIF DATA TTYRUF
30 001B 00NR NATA 11
31 101C 000R NATA 11
32 001D 0012 DATA X$0N12e

33 N01F 4552522C TTYYRUF DATA CP'ERR,GRNYP 30
Q0?20 47524F55
0022 ®1N203320

34 N024 81NN LYTE3F DATA X*80NQO*

15 2075 END

/7 JDR FTSSNRTL NC PP 14 CNS CENSALEDEC

7/ ASSGN SYS0N4,X1nN20 CARD PEADER UNIT 7
I/ ASSGN SYSONK X tN04 PRINTER UNIT R

A ASSGN SYSPCH,X1NNAT PUNCH UNTT 2

/7 ASSGN SYSNNT7,Xt]138¢ NISK STARAGFE UNIT 1N
// DLBL TJSYSOT,?'IJSYSLN? DISK LAREL

// EXTENT SYSAOT,0N0135,1,0,3760,200 NISK LIMITS
/7 EXEC SALS6N

2-39

2-17 ERRORS.
The following errors will be detected and output on the
listing device at the end of pass 1.

1. Multiply defined symbols.

2. Undefined symbols.

3. Symbol Table Overflow.
Errors detected during Pass 2 will be flagged on the
assembly listing. Space is provided for printing two errors

per statement. The error codes printed will indicate the last
two errors detected.

Error

Code Error Type

D Multiply Defined Symbols

0] Undefined Symbols

A Address Error

B Branch Address Error

M Hlegal attempt to specify alternate
mode registers

0] Undefined Operation Code

S Syntax Error

T Value was truncated to fit in operand field

E Expression Error

240

SECTION III
PROCESS AUTOMATION MONITOR

3-1 SCOPE.
This section describes the Process Automation Monitor programming operating system using an executive/worker
PAM (PAM960). PAM is an operating system for the Texas method for program control and it has core resident worker
Instruments Model 960 computer. It is a real-time, multi- tasks.
LIST OF PAM960 SOFTWARE
OBJECT
SOURCE LINKABLE LOADABLE
NAME CARDS PT LISTING|] DESC |CARDS| PT |CARDS PT
SUPERVISOR-M (SPB) 218420 218421 218422 218544* 218424 218424
SUPERVISOR DATA-M (SDB)
BASIC 218570 218571 218572 218573* 218574 218575
HSPT MEDIA 218425 218426 218427 218545" 218428 218429
CARD MEDIA 218430 218431 218546" 218432
CRU INTERRUPT DECODER 218433 218434 218435 218547" 218436 218437
(CINTSG)
DMAC INTERRUPT DE- 218438 218439 218440 218548" 218441 218442
CODER (DMACSG)
INTERNAL INTERRUPT 218443 218444 218445 218549 218446 218447
DECODER (ITSEG)
END OF RECORD PROC- 218448 218449 218450 218550 218451 218452
ESSOR (RECEOR)
PROGRAM CONTROL SUPER- 218453 218454 218455 218551 218456 218457
VISOR SERVICES (TIMDLY)
GET DATA BLOCK SUPER- 218458 218459 218460 218552" 218461 218462
VISOR SERVICE (BTDBLK)
INTERVAL TIMER AND 218463 218464 218465 218553 218466 218267
CLOCK (TIMER)
1/0 COMMON SUB- 218468 218469 218470 218554" 218471 218472
ROUTINES (GETCO1)
DP/UT SR300 DRIVER-M 218473 218474 218475 218555" 218476 218477
{(CARDIN)
DP/UT SP 120 DRIVER-M 218478 218479 218480 218556" 218481 218482
{CDP000)
DP2310 LINE PRINTER 218483 218484 218485 218557* 218486 218487
DRIVER-CRU-M (LP0OOO0)
DP2310 LINE PRINTER 218488 218489 218490 218558* 218491 218492
DRIVER-DMAC-M (LPH)
REMEX RRS 304 DRIVER 218493 218494 218495 218559" 218496 218497
{HSRSEG)
TALLY 420 PUNCH 218498 218499 218500 218560 218501 218502
DRIVER (PTPQ00)
DATA TERMINAL/ASR33 218503 218504 218505 218561° 218506 218507
DRIVER (TTYSEG)
DIAGNOSTIC TASK 218508 218509 218510 218562* 218511 218512
JOB CONTROL TASK 218513 218514 218515 218563" 218516 218517
ON-LINE DEBUG TASK 218518 218519 218520 218564° 218521 218522
PAM-PT MEDIA 218538+ 218568" 218539 218540
PAM-CARD MEDIA 218541+ 218569 218542 218543
COMPLETE TIME & DATE 218576 218577 218578 218579 218580 218581
SUPPORT (DTDSEG)
DUMMY TIME & DATE 218582 218583 218584 218585 218586
SUPPORT (DTPSEG)
DUMMY DMAC INT. 218587 218688 218589 218590 218591

DECODER (DMACDM)

31

SERVICE & UTILITY TASKS

OBJECT
SOURCE LINKABLE LOADABLE
NAME CARDS| PT |LISTING| DESC |CARDS| PT |[CARDS| PT
TASK STATUS DISPLAY 218523 218524 218525 218565 218526 218527
LOGICAL UNIT NO 219528 218529 218530 218566 218531 218532
ASSIGNMENT DISPLAY
MESSAGE WRITER 218533 218534 218534 218567 218536 218537
PAM/PSM SERVICE ROUTINES
. OBJECT
SOURCE LINKABLE LOADABLE
NAME CARDS | PT |LISTING | DESC |cARDS | PT [cArDs| et
MULTIPLY (MULTPY) 218260 218261 218262 218373* 218263 218264
DIVIDE (DIVIDE) 218265 218266 218267 218374* 218268 218269
BINARY/DECIMAL (CBDA) 218270 218271 218272 218375* 218273 218274
BINARY HEXADECIMAL 218275 218276 218277 218376* 218278 218279
(CBHA)
DECIMAL/BINARY/ (CDAB) 218280 218281 218282 218377* 218283 218284
HEXADECIMAL/BIN (CHAB) 218285 218286 218287 218378* 218288 218289
CIRCULAR LEFT DOUBLE 218290 218291 218292 218379* 218293 218294
SHIFT (SCLD)
FIXED POINT SQ. ROOT 218295 218296 218297 218380* 218298 218299
(SQRT)
FLOATING POINT ARITH 218300 218301 218302 218381* 218303 218304
(FLTSEG)
TRIGONOMETRIC FUNC- 218305 218306 218307 218382* 218308 218309
TIONS (TRSEG)
PAM/PSM UTILITY TASKS
OBJECT
SOURCE LINKABLE LOADABLE
NAME CARDS| PT |LISTING| DESC |CARDS| PT |[cAmDs| et
UNLOAD MEMORY 218397 218392 218393 218383 218394 218395
SOURCE MAINTENANCE 218396 218350 218351 218384 218352 218363
LINKED OBJECT TAPE 218354 218355 218356 218385 218357 218358

EDIT

*Included within section 4 of this document.
#Load Map.

3-2

STANDARD LOADERS

OBJECT
SOURCE LINKABLE LOADABLE
NAME carps| er |usTing| DEsc |carps| pT |cAamrDs| pT
LOADER-ASR33 218249 218250 218251 218386 218252!
LOADER-PTM 218253 218254 218255 218387 218256!
LOADER-CARD MEDIA 218257 218258 218388 218259!
BOOTSTRAP LOADER : 218391
GENERAL FEATURES
PRIMITIVE LOADER 218344 218345 218346 218389
ASR33
PRIMITIVE LOADER 218347 218348 218349 218390
CARD MEDIA
LINKING RELOCATING 218620 218621 218622 218623 218624 218625
LOADER
! Primitive Loader Format
3 4 5 6
1 2 SCALL INTERRUPT DEVICE SERVICE WORKER
SDB SPB PROCESSORS DECODERS ROUTINES TASKS
GENERAL RESTART loc DIAGTB
EOJ CINTSG TTYSEG]
DIAGPB
P
SCALTB SENT EO
BIDT
1/0 v
TABLES SGX TimMbL IISEG CARDIN JCWTB
WAIT A
TSKSCN WTINT
DMACSG
UNSUSP LPH JCPB
DSTSQ
MULTPY
T
|
|
|
1 DEBUF
GTDBLK e]
DSTART

3-2 PAM SYSTEM DESCRIPTION.

Figure 3-1 PAM960 Program Structure — Major Segments and Care Map.

3-2.1. PAM PROGRAM STRUCTURE. PAM has six func-
tional groups of programs (or data blocks). Their interrela-

tionship is shown in Figures 3-1 and 3-2.

3-2.1.1 Supervisor Data Block. The Supervisor Data Block
(SDB) contains all of the I/O tables, address tables, pointers
to various tasks, interrupt status storage locations, and flags
used by the rest of the supervisor. It is always the first part
of the monitor in memory.

TTY LINEP. CARD P. CARD R.

CONTROL FLOW

INTERRUPTS
{ = ee e DATA FLOW
MANUAL
RESTART INTERRUPT
DECODERS
A 1/0 SERVICE
SUPERVISOR ROUTINES
SENT <
________ <
>
SGX
< P 4—|
_ _TsKscu] |
SUPERVISOR CALL I WORKER I
PROCESSORS | TASKS |
ioQ - :
OTHERS
> .
— —

Figure 3-2 PAM960 Program Structure — Data and Control Flow.

3-2.1.2 Supervisor Procedure Block. The innermost part of return to the calling program or save the
PAM is the first section of the Supervisor Procedure Block program’s registers and enter the task scanner.
(SPB).

d. The task scanner (TSKSCN) finds the highest
a. The supervisor restart routine clears all 1/O priority “able”, “bid”, and not “suspended”, or
tables upon initial start-up, not in time delay task; then loads the worker
registers and the EC, and transfers control to

b. The supervisor entry routine (SENT) decodes the worker task.

supervisor calls from a worker task.
e. The task disable processor disables a task which
c. The supervisor general exit routine (SGX) is has an error and requests an error message
used by all supervisor call processors to either printout.

34

3-2.1.3 Supervisor Call Processors. The Supervisor Call
Processors perform requested functions for the worker
programs. Some of these processors which are always
resident (I0Q, EOP, etc.) are part of SPB. Others, both
resident and optional, are separate segments and are linked
together at system generation time. Refer to paragraph
3-3.9.

3-2.1.4 Interrupt Decoders. There are three interrupt de-
coders, one each for CRU, DMAC, and INTERNAL
interrupt processing. If there is no DMAC on the computer,
the DMAC interrupt decoder may be replaced by a dummy.

3-2.1.5 Device Service Routine. There is a Device Service
Routine (DSR) for each type of peripheral equipment
which is attached to the computer. These routines are
reusable for multiple devices. That is, only one teletype-
writer service routine is required even though there may be
a number of teletypewriter devices. These routines are
initially entered by the I/O supervisor call processor. They
are subsequently entered by the interrupt decoders when
the device generates an interrupt.

3-2.1.6 Worker Tasks. There are three worker tasks which
are actually a part of PAM. Task zero, which is always at
priority zero, is the diagnostic task (DIAGTB). Refer to
Figure 3-3. Task one, the priority of which is determined
by the user, is the on-line debug task (DEBUF). Task two,
the priority of which is DEBUF plus one, is the Job Control
task (JCWTB).

3-2.2 PAM PROGRAM FUNCTIONS. PAM provides the
following general functions (refer to paragraph 3-3):

a. Control of all standard I/O devices.

b. Arithmetic and code conversion routines.
c. Interrupt processor.
d. Scheduling of multi-programmed worker pro

grams based upon real time input stimuli.

e. Scheduling of batch processing tasks based
upon computer operator inputs.

l MULTIPROGRAMMING SUPERVISOR |
INTERRUPT SUPERVISOR 960 PAM
1/0 HANDLERS | ALWAYS RESIDENT
I RESIDENT SUBROUTINES |
| T l | MODE
| | '
HIGHEST | f ‘ A J t ‘ ? ‘ Y Y A | Lowest
PRIORITY | PRIORITY
I DIAGNOSTIC APPLICATION| |APPLICATION I MODE
| PRINT OUT [PROGRAM PROGRAM | 2
PROGRAM RANK N + 1
| | RANK O RANK N D Y |
| iD o D X |
| 7 1 | |
— — — | — —+— '
! | |
: | | _
| | I BATCH
| | " PROGRAM USER
' DEBUG JoB ' | | (sAL960 BATCH
L PROGRAM CONTROL 3 L] OR PROGRAM
<1 RANKM RANKM+1 [~ =1 LRL 960) RANK R
D 1 D 2 RANK D W
RANK P
D z

Figure 3-3 PAM960/Worker Program — Block Diagram.

3-5

f. Interval timer support, including worker pro-
gram time delays and time of day and date.

3-2.3 EQUIPMENT CONFIGURATION. In order to per-
form effectively, PAM requires at least 8192 words of core
memory, an ASR-33 teletypewriter or TI Silent 700
electronic data terminal, and an interval timer. The neces-
sary additional devices are determined by the user. He
constructs his particular PAM to support his configuration.

Three standard configurations are supplied. The basic
configuration described above will be used as a starting
point from which to build larger systems. A card media

version supports a DP/UT SR300 card reader, DP/UT
SP120 card punch, and a DP 2310 line printer. A high
speed paper tape media version supports a Remex RRS 304
paper tape reader, a Tally 420 paper tape punch, and a DP
2310 line printer.

3-2.4 DATA STRUCTURE.

3-2.4.1 Supervisor Data Block. The Supervisor Data Block
(SDB) can be divided into six sections, each of which is
described below.

SDB-1. The first 36 words of SDB are common storage,
data, flags, etc., used by all of PAM (Table 3-1).

TABLE 3-1
SUPERVISOR DATA BLOCK

NUMBER .
LABEL OF WORDS USE
SENTRY 3 Supervisor Entry — object of SXBS by worker program
SUPRST 2 Pointer to Supervisor Restart — object of LDS instruction in location X1007D!.
(DATA LDTST) 1 Address of LDT table. Used by external support programs.
TSKLST 1 Pointer to first worker task.
DUTY, MDUTY 2 Current and maximum duty cycle.
YEAR-MILSEC 6 Time and date.
SEXS 1 Supervisor Exit. Switch — object of LDS* instruction to determine where super-
visor will exit.
RUNWTB 1 Address of task which is currently running.
(SFLAGS) 1 Supervisor flag word. (See SFSEG listing.)
SST1-SST3 3 Supervisor Subroutine Temporary Storage
CRUINT 3 Object of SXNS instruction in location X10094!, CRU interrupt.
INTINT 3 Object of SXBS in X'0090!, internal interrupt.
DMCINT 3 Object of SXBS in X10092!, DMAC interrupt.
DGFLAG 1 Diagnostic flags for general messages.
DTF, DTFQUE 3 Cause, etc. of a task disable.
SENTYA 1 Address of SENTRY (object of MOV instruction}.
SXSCNA 1 * Address of SXSCN (object of MOV instruction)
DCOUNT 1 Counter for duty cycle calculation.

36

SDB-2. The Supervisor Call Table (SCALTB) contains the
address of all the routines which process supervisor calls.
The order of this table determines the op code for each call.
Thus, the user should not rearrange the table, although
entries may be added to the bottom of the table when he
adds more functions. If he does this, he must also add the
appropriate REF statement.

SDB-3. The Physical Device Table (PDT) contains entries
which identify each 1/O device in the system to PAM. There
is a PDT block for every device. All CRU devices come first,
then the DMAC devices, if any, and finally the dummy
device. Within the CRU group, the system teletypewriter
must come first and the interval timer last. Each block has
the following format.

0 15
DEVICE SERVICE ROUTINE ADDRESS Devidt
PHYSICAL RECORD BLOCK ADDRESS j Different
W for each
LDT BLOCK ADDRESS call.
FLAGS CRU BASE ADDRESS
(See Detail) PLUS INTERRUPT LINE
-4 DSR TEMPORARY STORAGE <
(Variable number of words)
=0if
NEXT PDT BLOCK ADDRESS last PDT
block
DETAIL
1 2 3 4 .
1 st v
BUSY | ASS'ND | ENTRY | WAIT
T#

BIT MEANING IF = 1

0 — Busy, device is currently processing a call.

1 — Assigned, device is assigned to a specific LDT block.
2 — 1st Entry, initial entry for this call.

3 — Wait, device not ready — keep trying,

SDB-4. The Logical Device Table (LDT) contains entries
which relate Logical Unit Numbers (LUNO’s) to specific
physical devices. A side effect of this table is to provide a
one deep queue of I/O calls for each logical device. The
table consists of a number of four-word blocks, one of
which is pre-set to LUNO zero, Device zero, which is used
by PAM. The number of blocks must be as great as the total
number of LUNO’s which may be in the system at any one
time. PAM will require four of these in addition to the
preset one. The blocks have the following format.

37

0 7 8 15
Loaded by
DEVICE NUMBER LUNO job control
{DFI0, RLIO)
FLAGS Loaded by
{See Detail) TASK 1.D. 10Q
RESERVED
PHYSICAL RECORD BLOCK ADDRESS

DETAIL

0 1 2 A
NEED] DE- 4
svee | ASSND| kinep

M_

BIT MEANING IF =1
0 — Need Service, this block has an unprocessed call.
1 — Assigned, this block assigned to a particular task.
2 — Defined, this block not blank. Spare blocks have this
flag cleared and word zero = X'FFFF!,
SDB-5. The Device Service Routine Address Table

(DSRAT), called HAT in the listing, determines the
physical device number for a particular device. The order of
the table determines the device number. Devices zero
through three are always present and should not be
changed. There must be one entry (two words) in the table
for each device.

NOTE:
A teletypewriter with paper tape equipment is

considered to be two devices, although it has
only one PDT block. The table’s format is given

below.
Device
Number
HST KBHAN (Teletypewriter keyboard address)
TTYIDT (Teletypewriter PDT block address)
1 PTHAN (Teletypewriter paper tape address)
TTYIDT
2 TIMER (Interval timer routine address)
TMRPDT (Timer PDT block address)
DUNHAN (Dummy routine)
3 | oUMYDT (Dummy PDT block)
7 z
N Device Service Routine Address
Device PDT Block Address

SDB-6. The Process Interrupt Table (PRITBU) contains
entries which relate CRU line addresses and WTB addresses
of tasks waiting for those lines to become a logical one. The
CRU line addresses are stored in the first half of the table
and the WTB' addresses are stored in corresponding loca-
tions in the second half of the table. When a table slot is
empty, the CRU line address is set to X'FFFF!. The
number of words in the table must be twice the maximum
number of tasks which can be waiting for an interrupt at
one time.

PRITBU CRU LINE ADDRESS or -1

PRITBL WTB ADDRESS

3-2.4.2 Worker Task Block. The Worker Task Block (WTB)
is the first 16 words of each task. It is used by PAM to:

a. identify the task and its procedure,

b. save the task’s registers and EC upon sus-
pension, and

c. keep track of the status of the task at any given
time.

The format of the WTB is described in detail in paragraph
3-3.3.

3-2.4.3 Worker-Supervisor Call. When a worker program
makes a supervisor call to PAM, worker register three
contains the information necessary to define the call. Bits
0-5 contains an op code, and bits 6-15 usually contain an
address relative to the contents of worker register four. The
meaning of the op codes is given in paragraph 3-3.2.

3-2.4.4 Record Formats. Paper tape devices indicate an end
of record by a reader-off code. Keyboard input devices
indicate an end of record by a carriage return. Card devices
consider a whole 80-column card to be a record. Output list
devices recognize no end of record character. They merely
utilize the character count (record length). All file oriented
devices recognize a record to be an end of file if its first two
characters are /*.

3-8

3-2.4.5 Support Programs. The Logical Unit Number
Assignment Display task lists all LUNO’s which are cur-
rently defined, lists their status and device assignment, and
lists the numbers which are still available.

The Task Status Display task lists all tasks currently in the
system, and their status. In addition it lists the time and
date, and the duty cycle.

The Message Writer task services other tasks in the system
by putting their output requests in a queue and then
writing the messages.

3-3 OPERATING INSTRUCTIONS.

3-3.1 USING PAM. PAM is a multi-programming operating
system utilizing an executive/worker method for program
control and incorporating a multilevel priority scheme for
program execution. It is the application programmer’s job
to write the worker tasks which will be executed under the
supervision of PAM. He must determine the priorities of
these tasks and their interaction with one another. He must
be able to install these tasks into the computer, debug
them, and bring the application on line. And before he can
do this, he must generate the specific version of PAM which
satisfies the particular needs of his application.

3-3.2 WRITING A WORKER PROGRAM.

3-3.2.1 Supervisor Calls. PAM provides 1/O handlers, task
sequencing, and subroutines to implement programming
conveniences. The worker task requests PAM services by
using supervisor calls.

The supervisor call format is independent of the function
being accessed. The supervisor call format consists of one
equate statement and two instruction statements.

SENTRY EQU 127

LA 3, Function Call Format
SXBS *SENTRY

Worker Register Three contains the supervisor operation
code and optionally an address. Worker Register Three, bits
zero through five, contain the operation code and bits six
through fifteen, when used, contain an address.

The operation code is a number representing a specific
function. The address is relative to the contents of Worker
Register Four. The displacement value and the contents of

Worker Register Four are summed to obtain the effective
address of a specific memory location.

FUNCTION CALL FORMAT

0 5 6 15

DISPLACEMENT VALUE

OP CODE VALUE RELATIVE TO WR4

OPERATION CODE DISPLACEMENT

Functions marked (R) are always resident in PAM. Those
marked (O) are optional. Those marked (P) are optional,
but must be resident in any PAM which is to control 960
Programming System tasks. Those marked (T) are optional,
but must be resident in any PAM which has full time and
date support.

3-3.2.2 Input/Output Function (00). The input/output
function effective address must point to the first memory
location of the Physical Record Block (PRB) describing the
I/O function to be performed (R).

PHYSICAL RECORD BLOCK

0t 2 345 6 7 8 15
PRB
+0 WTB ADDRESS
+1 DATA BUFFER ADDRESS
+2 DATA BUFFER LENGTH
+3 DATA RECORD LENGTH
B |Ie [E In |C IR |B [R LOGICAL
U
41y Bl S & el x| & UNIT NBR+

* — SET BY CALLING TASK
LOGICAL UNIT NUMBERS 0 THRU F SYSTEM
RESERVED; FF ILLEGAL

The Physical Record Block (PRB) is a five location data
block containing the detailed information needed by the
PAM for executing an input/output operation.

Relative Word Zero must contain the address of the first
memory location of the associated WTB.

Relative Word One must contain the address of the first
memory location of the associated data buffer area.

Relative Word Two must contain the length (character
count) of the associated data buffer area. Input operations
continue until the buffer is full, or an end of record
character is read.

Relative Word Three must contain the record length
(character count) of the associated data. Output operations
will output this number of characters. Input operations will
store the number of characters actually input in this word.

Relative Word Four is divided into two halves. The left half
(bits zero through seven) is dedicated to input/output flags
which signify operational state or status. The flag assign-
ments are given in the table below. The second half (bits
eight through fifteen) must contain the Logical Unit
Number (LUNO) as selected by the user. Paragraph 3-5.1
tells how to define the LUNO to a specific I/O device prior
to program execution.

PRB FLAGS (Word 4, Bits 0-7)
BIT USE
0 BUSY 1 = I/Oin progress, 0 = 1/O complete.
1 ERR 1 = Error on last operation, 0 = no error.
2 EOF 1 = End of File (/*) on last call, 0 = no
EOF.
3 INJEX 1 = Initiate Call (program returned to im-
mediately),
0 = Execute Call (program returned to
when I/O is complete).
4 CON 1 = Control Call (e.g. Punch Leader), 0 =
Character I/O.
5 R/W 1 = Read (input), 0 = Write (output).
6 B/A 1 = Binary record, 0 = ASCII record.
7 RES Reserved.

3-3.2.3 End Of Program Function (01). The end of
program function does not use the displacement sector of
Worker Register Three. The calling task is terminated and
PAM enters the Task Scanner to search for another task to
be executed (R).

3-3.2.4 Bid A Task Function (02). The task identified in
the address field of register three will be executed when it
becomes the highest priority bidding task. Bits six through
fifteen of Worker Register Three contain the task ID itself,
and not an address relative to Worker Register Four. The
calling task may or may not be returned to immediately
depending upon the relative priority of the calling task and
the task which was bid (R).

3-3.2.5 Multiply Function (03). The multiply function
effective address must point to the memory location
containing the multiplicand. The multiplier must be in
Worker Register Zero. The product will be placed in Worker
Registers Zero and One (P).

3-3.2.6 Divide Function (04). The divide function effective
address must point to the memory location containing the
divisor. The dividend must be in Worker Registers Zero and
One. The quotient will be placed in Worker Register One
with the remainder placed in worker Register Zero (P,T).

3-3.2.7 Shift Memory Circular Left Double Function (05).
The shift memory circular left double function effective
address points to the memory address of the value to be
shifted. This word and the next word in memory, treated as
a 32-bit value, are rotated left the number of positions
specified in Worker Register Two (P).

3-3.2.8 End Of Job Function (06). The end of job function
does not use the address field of Worker Register Three.
The calling task is terminated and Job Control is bid.
Programs which are executed in a batch mode should use
this function for termination rather than end of program
(R).

3-3.2.9 Square Root Function (07). The effective address
is not used. The argument (double precision integer) must
be right justified in Worker Registers Zero and One. The
integer square root is returned in Worker Register Zero (O).

3-3.2.10 Convert Binary to ASCIl Coded Hexadecimal
Function (CBHA) (08). The convert binary to ASCII coded
hexadecimal function effective address must point to the
first memory location of a two word buffer where the
converted result is to be placed. Worker Register Zero must
contain the binary value to be converted (R).

3-3.2.11 Convert Hexadecimal ASCII to Binary Function
(CHAB) (09). The convert hexadecimal ASCII to binary
function effective address must point to the first memory
location of a two-location buffer containing the hexa-
decimal ASCII value. The binary result will be placed in
Worker Register Zero (R).

3-3.2.12 Convert Binary to ASCII Coded Decimal Func- -

tion (CBDA) (0A) The convert binary to ASCII coded
decimal function effective address must point to the first
memory location of a threelocation buffer where the
converted result is to be placed. Worker Register Zero must
contain the binary value to be converted (P).

3-3.2.13 Convert Decimal ASCII To Binary Function (0B).
The convert decimal ASCII to binary function effective
address must point to the first memory location of a
three-location buffer containing the decimal ASCII value.
The binary result will be placed in Worker Register Zero

(T). ‘

3-3.2.14 Time Delay Function (OC). The time delay
function effective address must point to the memory
location containing the number of system clock counts
minus one to be delayed before returning to the task.
Paragraph 3-3.9.5 tells how to set the length of a system
clock count (O). Note that this function, together with the
next three functions, comprise the Program Control Super-

visor Services segment. These functions are optional.
However, if any one is needed, they must all be resident.

3-3.2.15 Wait (Unconditional) Function (00). The wait
function does not use the address field of Worker Register
Three. The calling task is suspended. In order for it to begin
execution again, another task must release it by means of
the activate suspended task function (O).

3-3.2.16 Activate Suspended Task Function (0E). The
activate function address field in Worker Register Three is
not used to generate an effective address. The value is a task
identification number. The task specified in the address
field will have its suspend bit cleared. Paragraph 3-3.3 tells
about the task status bits (O).

3-3.2.17 Wait for Interrupt Function (OF). The wait for
interrupt function effective address must point to the
memory location containing the CRU line address of the
interrupt. The task will be suspended until that interrupt
occurs. The specified CRU line does not have to actually be
an interrupt, If it is not, there is a delay of approximately
one system clock count in responding to its change to a
logical one state (O).

3-3.2.18 Get Date and Time Function (10). The get date
and time function effective address must point to the first
memory location of a five-location buffer. The year, day,
hour, minute, and second will be placed in the five memory
locations sequentially (O).

3-3.2.19 Get Data From Another Task Function (11). The
get data from another task function effective address must
point to the first memory location of a three-location
buffer used to provide further information to PAM. The
first relative location will be divided into two parts. The
first part (bits zero through seven) will contain the number
of locations to be moved minus one, and vhe second part
(bits eight through fifteen) will contain the task identifica-
tion number in which the locations to be moved are
located. The second relative location contains the relative
address value which is added to the Worker Task Block
address of the task identified to obtain the address of the
data to be moved. The third relative location contains the
address displacement that is added to the Worker Task
Block address of the operating task to obtain the effective
destination address (O).

GET DATA FROM ANOTHER TASK
SUPERVISOR CALL BUFFER

0 78 15
+0 NUM OF WRDS TASK
TO MOVE -1 IDENTIFICATION
+1 RELATIVE ADR (OBTAINING WTB)
+3 RELATIVE ADR (RECIEVING WTB)

3-10

3-3.2.20 Convert Fixed Point To Floating Point (12). The
effective address is not used. The double precision integer
argument must be in Worker Registers Zero and One. The
floating point equivalent will be returned in Worker
Registers Zero and One (O).

3-3.2.21 Convert Floating Point To Fixed Point (13). The
effective address is not used. The floating point number in
worker registers zero and one is converted to integer and
returned in Worker Registers Zero and One (O).

3-3.2.22 Floating Point Add (14). The effective address
points to a two-word block containing the floating point
number to be added to the floating point number in Worker
Registers Zero and One. The result is placed in Worker
Register Zero and One (O).

3-3.2.23 Floating Point Subtract (15). The effective
address points to a two-word block containing the floating
point number to be subtracted from Worker Registers Zero
and One. The result is placed in Worker Registers Zero and
One (O).

3-3.2.24 Floating Point Multiply (16). The effective
address points to a two-word block containing the floating
point number to be multiplied by that in Worker Registers
Zero and One. The result is placed in Worker Registers Zero
and One (O).

3-3.2.25 Floating Point Divide (17). The effective address
points to a two-word block containing the divisor. The
dividend is in Worker Registers Zero and One. The quotient
is returned in Worker Registers Zero and One (O).

3-3.2.26 Convert Floating Point To Decimal ASCH (18).
The effective address points to a six-word buffer into which
the results are placed (in E format). The number to be
converted is in Worker Registers Zero and One. For
example, if the floating point number had the value 7, the
conversion would produce an ASCII representation of:

+.314159E+01 0).

3-3.2.27 Floating Point Sine (19). The effective address is
not used. The floating point representation of the angle X
in radians is in Worker Registers Zero and One. The size of
the angle must be -7/2 < X < 7/2. The floating point
representation of SIN(X) is returned in Worker Registers
Zero and One (O).

3-3.2.28 Floating Point Cosine (1A). Arguments are the
same as above except COS(X) is returned (O).

3-3.2.29 Floating Point Arctangent (1B). The effective
address points to argument B (floating point). Argument A
is in Worker Registers Zero and One. The angle value
ARCTAN (A/B) is returned in Worker Registers Zero and
One (O).

3-11

3-3.2.30 Future Supervisor Calls. Future supervisor calls
will be created as needed. A maximum of sixty-four can
exist (limited by the size of the operation code sector of
Worker Register Three).

3-3.3 CONSTRUCTING A WORKER TASK — THE WTB.
Tasks operating under PAM are executed in the worker
mode. PAM must have access to the initial values of the EC,
Status Register, and the eight worker mode registers. It
must also have space in which to keep track of the current
status of the task and to save the task’s registers when it is
suspended. The programmer must provide this space as the
first 16 words of his task. These 16 words are called the
Worker Task Block (WTB) and are normally the start of the
DSEG. The use made of each word is described below.

WORKER TASK BLOCK +

012345617 8 15
WTB
+0 | SAVED EC (RETURN ADDRESS)
+1 SAVED STATUS All flags
A s |T. s are cleared
+2 | B 8 Y SU P[] RANK when a
D C :
E d S task is
+3 installed.
SAVED WRO
+4 . 1
+5 2
Loaded
+
6 3 by job
+7 4 (DATA BASE ADR) { control
procedure
+8 5 (PROCEDURE BASE ADRJ)| | is attached.
+9 6(FLAG BASE ADR) Loaded
by job
+10 7 (CRU BASE ADR) control
when
task is
+11 INITIAL STATUS installed.
+12 PROCEDURE ENTRY POINT
+13 TIMER Set to FF
by job
+14 LINK TO NEXT TASK control
procedure
+15 PROCEDURE 1.D. TASK I.D. is attached.
+16 P C VALUE

+ FIRST SIXTEEN CONSECUTIVE LOCATIONS OF
TASK DATA SEGMENT

* EXISTENCE DEPENDENT ON USER DICTATES

BIT

WTB 0. The EC value (next instruction to be ex-
ecuted) will be saved here whenever the task is not
active.

WTB 1. The Status Register contents are saved here
whenever the task is not active.

WTB 2. The current status of the task is indicated by
the flags in the left byte. The task rank (priority) is
stored in the right byte. The flag definitions are given
below.

USE
0 — ABLE, set when the task is able to be executed.

1 — BID, set when the task is bid, or has been
requested to execute.

2 — SUSP, set when the task is suspended (normally
awaiting 1/O completion).

3 — TSUS, task temporarily suspended, waiting for
an I/O device to become available.

4 — SPC, set when the task wishes a value left in the
PC.

5 — TD, set when the task is in a time delay.
Reserved.
Reserved.

WTB 3 through WTB 10. The eight worker registers
are saved in these locations whenever the task is not
active. If the programmer wants PAM to initialize his
registers, he should place the desired valuesin WTB 3
through WTB 10. If the task is to be executed
repetitively and if particular register initialization is
desired, the registers should contain the desired values
each time the task terminates. WTB 7 and WTB 8 are
loaded with the WTB address and the Entry Point
respectively when the task is first installed via job
control.

WTB 11. The initial status register contents must be
placed here by the programmer. Note that a bad value
in this location could halt the machine. Normal
entries would be either X/8000' or X18200'. (Refer
to Programmer’s Reference Manual, paragraph 2-7.)
When the task is attached to a procedure by job
control and when task execution is completed, the
contents of Relative Word Eleven are moved to
Relative Word One.

WTB 12. The initial value of the EC (the procedure
entry point) is stored here. If the procedure and task
are assembled together, the programmer must put this
value in WTB 12. When task execution is completed,

3-12

or when a procedure is attached to the task via Job
Control, the contents of WTB 12 are moved to WTB
0.

WTB 13. If the task is currently in a time delay, the
number of system clock counts minus one remaining
in the delay is stored here.

WTB 14. The address of the WTB for the next lower
priority task is stored here. WIB 14 of the lowest
priority task is zero.

WTB 15. This word is divided into two halves. The
left half (bits zero through seven) contains a proced-
ure identification number. The right half (bits eight
through fifteen) contains the task identification
number. The task identifier and procedure identifier
are entered by Job Control when the task is installed
and the procedure is attached respectively.

WTB 16. This word contains the value to be placed
in the program counter if the task has flag four,
Relative Word Two set to a logical one. Thus, when a
mode change occurs, operational control in supervisor
mode will be passed to the user at the specified
location. WIB 16 provides for task operation in the
supervisor mode. However, a task will always be
entered by PAM in the worker mode. If WTB (4-2) is
to be set to a logical one, it must be done at run time;
not assembly time.

NOTE:

If the user elects not to use the above feature,
relative word sixteen need not exist as a part of
the WIB and WTB (4-2) should be set to zero.

3-3.4 USING THE MODEL 960 COMPUTER IN A
CONTROL SYSTEM.

3-3.4.1 The Computer Advantages of the Model 960. The
Model 960 computer is a carefully engineered approach to
computer-controlled equipment automation. Some of the
advantages are:

a. Economical and easily applicable electrical con-
trol system interface using the Communication
Register Unit (CRU) and the variety of CRU
function modules available.

b. Simplified methods for relating electrical con-
nections from external equipment to symbols
used in the programming language.

c. Computer programming instructions engineered
to provide one instruction to one external
function or event simplicity.

Digital output operation; uses one in-
struction

Digital input sense; uses one instruction
Analog input read; uses two instructions
Analog output; uses one instruction

Analog limit compare; uses one instruc-
tion

Memory utilization economy through program
reusability for identical subsystem tasks. As
many tasks as are necessary can share a reusable
procedure program even though each task
controls a physically separate device. Job Con-
trol supervises task loading and installation.
Modular TI supplied supervisor functions can
be added or deleted when PAM is generated.
Job Control to install programs on-line which
lets the system grow as it is used. Typical
functions:

Install tasks

Activate tasks

Delete tasks

Reorganize task priority

Change peripheral assignments
Complete set of off-line support programs.

960/960 Assembly program

960/IBM 360 Assembly program (OS or
DOS)

960 Linking Relocating Loader
960 Performance Assurance Tests
960 Utility Programs

Complete documentation at two levels of detail
for TI-furnished programs and systems.

User Guide — providing data for use,
maintenance, and modification at the
program module level.

Detailed Documentation — providing data
for modification and customization at the
machine instruction level.

All the expected conveniences.

Power Fail/Restart

Write Protected Memory with Violation
Detection

Priority Interrupt Structure
Illegal Operation Detection
Interval Time Control
Time of Day and Date
Field Expansion for:
I/O Devices
Memory
Communication Register Unit
Fast Memory Speed
Direct Memory Access Channel

High Speed Peripherals

i. Low incremental cost of implementing any
discrete or analog control loop for product
improvement.

3-3.4.2 Economic Justification. Economic justification for
automated equipment or products is usually derived from
increased profit expectation. A better control system must,
therefore, cost less to implement and perform the required
tasks in an equal or superior manner. Model 960 configura-
tion and programming flexibility allow construction of
computer-control systems that are more cost effective in
the above sense than many conventional analog, relay, or
wired logic control systems, as well as other computer
based control systems.

3-3.4.3 Functional Specification. All control systems, par-
ticularly those utilizing a computer, can be considered well

started when the functional specification is completed.

Information typically included for the computer system is
listed in the following outline:

I PROJECT SCOPE. This section

a. Contains a brief overall system description

b. List of pertinent standard practices, procedures,
and reviews background, experience and expec-
tation

c. Relates the project-to-company objectives

d. States the design goals

e. Outlines project schedule events.

313

II ECONOMIC JUSTIFICATION. The economic value is
clearly identified.

III SYSTEM DESCRIPTION. Block diagrams of hardware
configuration and programs necessary are presented.

IV PROGRAM DESCRIPTION. This section includes

a. A list of vendor software components and
programs selected

b. A functional description of each program task,
Model 960 programming techniques, and the
Process Automation Monitor simplify task im-
plementation. Basic tasks may be installed early
in the project and others may be added as they
are completed. Tasks may share reusable pro-
cedure segments.

¢. Equations for calculated values and control
algorithms

d. Input and output formats
e. Program timing analysis where appropriate

f. Forecast support computer requirements for
program compilation and debugging.

g- On-ine diagnostic program specifications.
V COMPUTER CONFIGURATION.
a. Complete description of computer components
Memory size
Peripherals and interface kits selected
CRU expansion size

CRU modules required and hardware
address assignments

DMAC and port expander details, if
necessary

Electrical interface details
b. Mechanical details
. Installation layouts
Cable lengths and routing,.

c. Operator interface or control panel functional
description. .

Vi PERFORMANCE EVALUATION. Outline the unit and
system test procedures selected to demonstrate the effec-

tiveness of the finished system. Standard Performance
Assurance Tests for the Model 960 computer and peri-
pherals are listed. Other test programs are identified and
described in detail.

VI SCHEDULE. Use the scheduling technique suited to
project and company requirements. Target dates for im-
portant events are clearly established. Typical event dates
to schedule are:

a. Detailed system design complete

b. Detailed programming design complete

¢. Computer and vendor components order dates
d. Computer and component delivery dates

e. Input/output summary sheet and report for-

mats 95% complete
f. Computer installation complete
g. Basic tasks installed and operating
h. All system tasks operating
i. System test complete
j- Documentation and drawings completed.

Control system schedules are often established by overall
project requirements, but good planning within overall
project constraints is essential for providing timely informa-
tion availability and reasonable forecasts.

VIII DETAIL PROGRAM DOCUMENTATION. Detail
program documentation consisting of flowcharts, task
abstracts, job control statements, and program installation
data are added to the functional specification after pro-
gramming is completed.

IX OPERATING INSTRUCTIONS. Program loading and
installation are included in this section. Detailed instruc-
tions for the use of any machine operator interface are also

included.

3-3.4.4 1/O Summary. The I/O summary is simply a list of
all computer input and output values. It may be expanded
to include calculated values, and the same idea may also be
used effectively to identify computer tasks.

Different systems require different I/O summary data. I/O
summaries are typically the most referenced and universally
useful document produced and should contain all pertinent
data.

Sample I/O summary forms are shown in Figures 34
through 3-6.

314

DIGITAL 1/0 SUMMARY

opP

CRU DATA

SYSTEM USE SYS

ip | NAME. |TYPE giT | BIT REMARKS D
IFUNCTION JLOGIC 1 |LOGICO|NS] PN |s [w

1 2 3 4 5 6 71 8 |9 10 1

1. OP ID. The unique symbol used to identify the input or output value.
2. NAME. A string of characters normally printed as part of an alarm or operation event.
3. TYPE. Input or Output.
4.5.,6.,7. SYSTEM USE.
FUNCTION. Used to identify the event controlled by an output or sensed by an input.
LOGIC 1. Used to identify the meaning of a Logic 1.
LOGIC 0. Used to identify the meaning of a Logic 0.

NOTE: Decoding for Communication Registers several bits wide must be done separately or in REMARKS.
Reference to the decoding method should be clearly stated.

8.,9. CRU DATA
BITPN. Program Name assigned to CRU bit address.
BIT. CRU address of bit. S = starting address. Communication registers can be defined. In this case W = register width in
bits.
10. REMARKS.
11. SYS ID. System Identification.

Figure 3-4 Digital 1/O Summary.

ANALOG OUTPUT SUMMARY

OPERATING | D/A OUTPUT | D/A OUTPUT CRU DATA
OP [OUTPUT LIMITS BITS ENGR UNITS |Al |cP | D/A| D/A REMARKS sYs
ID [NAME LOW HIGH |LOW HIGH [LOW HIGH PN |S |W D
1 2 3 4 5 6 7 8 9 (10} 11 |12] 13 14
1
|
|
I
1. OP ID. The unique symbol used to identify the output value.
2. OUTPUT NAME. A string of characters typically printed as part of an alarm output or value display.
3.,4. OPERATING LIMITS. The safe operating range of the output. Columns may also be required to indicate fixed or
variable alarm limits or other special processing.
5.,6. D/A QUTPUT-BITS. The D/A converter output.
7.,.8. D/A OUTPUT-ENGR UNITS. D/A converter output in engineering units.
9. Al. Algorithm Index. Used to identify the calculation to be performed. Other inputs and intermediate results from
other algorithms are listed in REMARKS.
10. CP. Calculation Period or Interval.
11.,12. CRU DATA. Addresses used.
D/A PN D/A Converter Register Program Name.
D/A D/A Converter Communication Register Address. S = starting address. W = register width in bits.
13. REMARKS.
14. SYS ID. System Identification Number. Used if required to relate this output to identification numbers used

elsewhere in the system.

Figure 3-5 Analog Output Summary.

3-15

ANALOG INPUT SUMMARY

OPERATING | INPUT A/D OUTPUT CRU ADDRESSES
OP | INPUT | LIMITS |ENGR UNITS BITS cl |sp IMmux|mux| A/D |A/D | T/D |REMARKS|SYS
iD | NAME TYPE ID
LOW |HIGH [LOW |HIGH | LOW |[HIGH PN S [W]| PN |S|W
1 2 3 4 5 6 7 g8 |9 [10] 11 12:13 13 14;15 15 16 17
I |
I |

1
1. OP ID. The unique symbol used by the computer operator to identify the input value.

2. INPUT NAME. A string of characters typically printed as a part of an alarm output or value display. V
3.,4. OPERATING LIMITS. The safe operating range of the input. If alarms are implemented columns can be added for

ALARM LIMITS.

5.,6. INPUT-ENGR UNITS. Transducer input range in Engineering Units.

7.,8. A/D OUTPUT-BITS. A/D Converter Output.

9. Cl. Conversion Index. Used to identify the conversion equation and/or coefficients.
10. SP. Scan Period. The polling or scanning time period is specified here.
11.,12.,13.,14. CRU ADDRESS DATA. Columns may be added for sub multiplexor addresses and gain settings if required.

MUX PN. Multiplexor Register Program Name.

MUX. Multiplexor Communication Register Address. S = starting address. W = register width in bits.

A/D PN A/D Converter Register Program Name.

A/D. A/D Converter Communication Register Address.
15. T/D TYPE. Transducer or Input Type — Thermocouple, Pressure, etc.

16. REMARKS.

17. SYS ID. System ldentification number. Used to relate input to identification used elsewhere in the system.

Figure 3-6 Analog Input Summary.

CRU connections listed in ascending order also assist the
system designer and programmer. If the I/O Summary data
is prepared on computer readable media, the summary lists
are not only easy to reproduce and change but also make
the data easy to present in many helpful formats.

The completed I/O summary and similar calculated value
and task identification summaries are added to the func-
tional specification and thus become a part of the final
system documentation.

3-3.4.5 Installing the Computer Program. Two standard
PAM’s are available: the card media version and the paper
tape version. The choice of either depends on the peri-
pherals available. In addition, an almost endless variety of
custom PAM’s can be constructed using the SAL960
assembler and the Linking Relocating Loader. Custom
versions of PAM can be constructed on a 960 with only a
teletypewriter, but for convenience either high speed paper
tape or card media should be available. The Programming
Support Monitor (PSM) is used for generating PAM systems
on Model 960 computers with 8K memory. PAM can be
used for generating custom PAM versions in 960 computers
with 12K memory or more.

Briefly, the system generation process is:

a. Select the optional modules required.
b. Assemble a Supervisor Data Block, if necessary.
c. Link the object modules in the prescribed

sequence.

3-16

d. Load the new PAM.

e. Install Application Tasks using Job Control.
3-3.4.6 Defining Application Tasks. Tasks in the computer
are items of work to be performed by the computer, The
data for a task is usually unique to that particular task. The
actual control program (procedure) may not be. If a
reusable procedure is already resident in memory to control
a particular device, then the task to control a second or
even the 125th device of that same type is added by
attaching the required data for the new device along with a
Worker Task Block (WTB) to the device control procedure.
This completes the adding of the task. If no procedure to
perform the required function exists, then one is written
and installed along with the data and a WTB.

Peripheral I/O performed by a task uses a Physical Record
Block (PRB) to describe the 1/O parameters. The pro-
grammer reads and writes a logical device so that peri-
pherals can be assigned at the time the task is installed. This
permits use of alternate I/O devices in the event the normal
device is unavailable.

Process 1/O is performed directly. This is an advantageous
feature of the Model 960 computer. No subroutines are
required to operate our external data via the CRU.

Task priority is determined at the time the task is installed.
This permits system tuning by the variation of task
priorities. Priorities can also be changed by temporarily
deleting a task and immediately installing it once more (it

need not be reloaded) at a different priority.

3-3.5 INSTALLING JOB CONTROL PROGRAMS INTO
THE SYSTEM.

3-3.5.1 Functions. Job Control provides the user a means
by which he can direct the loading, installing, and executing
of his task. This direction is obtained via the Job Control
cards which tell PAM what specifically the user desires. Job
Control is activated by a JCON command to the DEBUG
program. Refer to paragraph 3-3.6.

LOAD TASK. The PAM loader loads a task or data and
relocates it, beginning at the specified memory location. A
bad redundancy character or an out of limits load memory
location causes an error and the load is terminated. The
load also terminates if a task with the specified identifier
already exists. Another task should not be loaded until this
one is installed, since this identifier would be lost. In order
to identify to PAM a task which is already in memory, a
dummy load function may be performed if no object is
included. This is the way to identify the second of two
tasks that have been assembled and loaded together.

LOAD PROCEDURE. The PAM loader loads a procedure
and relocates it beginning at the specified memory location.
A bad redudancy character or an out of limits load memory
location causes an error, and the load terminates. The load
also terminates if 2 procedure with the specified identifier
already exists. Another procedure should not be loaded
until this one has been attached to a task. Otherwise this
identifier is lost. As above, a dummy load may be
performed in order to identify a procedure which was
loaded with a task.

INSTALL. The task, which was loaded previously is
installed into the PAM task scan at the specified priority. If
there is already a task at that priority, this request
terminates with an error. A task which has just been deleted
may be re-installed at another priority.

ATTACH. The specified procedure is attached to the task
by placing the procedure entry point into the Relative
Words Zero, Eight, and Twelve of the task’s WTB. Refer to
paragraph 3-3.3.

ENABLE. The able flag bit (WTB Relative Word Three) of
the task WTB is set, the task entry point (WIB Relative
Word Twelve) is placed in the WTB Relative Words Zero
and Eight, and the WTB base address of the task is placed in
the WTB Relative Word Seven. This function should be
used prior to initial task execution and after a task has been
disabled with an error. The task must not be re-enabled
after an error until the error has been corrected.

EXECUTE. A task which has been installed and enabled is
executed. This is accomplished by setting the bid flag bit
(WTB Relative Word Three) of the task WTB and termi-
nating Job Control. When the task becomes the highest
priority bidding task, it begins execution. If it is desired for
Job Control to be restarted after the task has finished
execution, the procedure should terminate with an end of
job supervisory call rather than an end of program
supervisory call. Refer to paragraph 3-3.2.8.

317

DELETE A TASK. The task is removed from the priority
structure and the PAM task scanning system. This function
should always be used following execution of a task which
will not be permanently core resident. If this task is to be
re-installed at another priority, it should be installed prior
to loading another task in order not to lose its identifier.

DEFINE INPUT/OUTPUT LOGICAL UNIT NUMBER.
The Logical Unit Number (LUNO) is assigned to a
particular input/output device. The function terminates
with an error if there is no room in the PAM supervisor
tables for another LUNO or if the LUNO has previously
been defined.

RELEASE INPUT/OUTPUT LOGICAL UNIT NUMBER.
The LUNO is removed from the PAM supervisor tables. The
function should always be performed following execution
of a nonpermanent task. The function should be performed
for every LUNO that was defined for the task.

JOB CONTROL OFF. Job Control is terminated.

PATCH. The memory location contents of a previously
loaded procedure, task, or data can be altered. An error
occurs if a patch is attempted on protected memory
locations, and PAM must be re-loaded.

3-3.5.2 FORMATS. The format of each control card is
given below. Comments may be punched following column
18 if desired. If the input medium is paper tape or
keyboard, rather than cards, the formats given are still
valid, but a reader off or carriage return respectively must
terminate each record.

Card Column 12345678910111213 141516 17 18

Job Control

LOAD A

TASK / $$LDTS**SS S S * * 00 | If
LOAD A

PROCEDUREY $$LDPR**SS S S * * 0 0 | Ip
INSTALL V' $$INST**00 1 It * * OO P P
ATTACH [/ $$ATCH**00 I Ip * * 00 I It
ENABLE /" $$ABLE**00 | I

EXECUTE } $$EXCT**00 I Iy

DELETE A

TASK / $$DLTS**00 I IT

DEFINE

1/0 LOG

UNITNO }'$$DFi0**00 L L * *0O0DD
RELEASE

1/0 LOG

UNITNO } $$RLIO**00 L L

JoB

CONTROL

OFF V/ $$JCOF * *

END OF

FILE V1

Where: SSSS is starting Load Address

PP is priority (rank)

LL is Logical Unit Number
DD is Device Number

Iy is Task ID Number

IIp is Procedure ID Number

Patch cards have the following format. Again, comments
may follow the data.

CardColumn 12345678910 11 12 13 14 156 16
Job Control

PATCH .

(Primary) ¢ $$PACH * *

PATCH

(Secondary) | X X X X;: VV Vv,

Singular

Loc

PATCH

(Secondary) ' X X X X,3: VVVV V V. V vy

Sequential H H H

Loc

PATCH

eoF carpl /*

Where: XXXX|y is the starting patch location (in hexa-
decimal)

VVVVy is the location contents (in hexadecimal)

3-3.5.3 Examples. The following are examples of the
normal use of Job Control. Note that controls are input on
LUNO 2, object (binary) is input on LUNO 8, and messages
are output on LUNO 3. All of these must be defined (via
DFIO commands to the DEBUG program) prior to activa-
tion of Job Control.

SINGLE BATCH TASK. The following deck loads and
executes a single task with a self-contained procedure. The
task uses LUNO’s 3E and 3F. It is assumed that this is a
batch type task and will be deleted after execution. It is
given an identifier of 64 and a priority of 2A. It will be
loaded at X'0700!.

Used only ——— /" $$JCOF™*

if no jobs
are following $SRLIO**003F
this one.
$$SRLIO**003E
Possible $$DLT§ 0064
input for .
task.

$SEXCT**0064
$$DF10™**003F * *000A
$$DFI0 " *003E™* *0005
$$ABLE**0064

The rest

of the
cards are
read on
LUNO 2

// &&INST**0064"*002A
/*

The cards
are read
on LUNO 8

OBJECT

These 2

/*
cards { $$LDTS**0700**0064
are read

on LUNO 2

3-18

TWO TASKS AND A PROCEDURE (SEPARATE). The
following loads a procedure (ID 7A), load two tasks (ID’s
2E, 2F) and then attach the procedure (presumably it is
re-entrant) to both tasks.

$$LDPR**0100**007A
/*

OBJECT
/*
$$LDTS**02F3**002E
/*

OBJECT
/*
$$INST**002E**0015
$$LDTS**03C7**002F
/*

OBJECT
/*
$$INST**002F**0016
$$ATCH**007A**002E
$$ATCH**007 A**002F
$$ABLE**002E
$$ABLE**002F
$$JCOF**

The tasks are now ready to be executed when desired.

TWO TASKS AND A PROCEDURE (COMBINED). The
following does the same thing as the previous example, but
in this case the tasks and procedure are all assembled
together (the same order and length as before).

$$SLDPR**0100**007A
/*

/*
$$LDTS**02F3**002E
/*

/*
$SINST**002E**0015
$$LDTS**03C7**002F
/*

/*
$$INST**002F**0016
$$ATCH**007A**002E
$$ATCH**007A**002F
$$ABLE**002E
$$ABLE**002F
$$JCOF**

OBJECT

SWAP PRIORITY. The following swaps the priority of the
two tasks which were loaded in the previous example.

$$DLTS**002E
$$DLTS**002F (now 2E is lost)
$$INST**002F**0015
$$LDTS**02F3**002E

/*

/*

$SINST**002E**0016
$$JCOF**

CHANGE PRIORITY. The following will change the
priority of task AB to priority 2F (2F must not be already
assigned).

$$DLTS**00AB
$$INST**00AB**002F
$$JCOF**

PATCH. The following sets location X'0103! to X'0005!,
X10ABC! to X!'FFFF!, X'0ABD! to O, and X'0ABE! to
X1ABCD!.

$$PACH**

0103: 0005 COMMENT

0ABC: FFFF, 0000, ABCD COMMENT
/*

$$JCOF

3-3.6 DEBUG PROGRAM

3-3.6.1. The DEBUG program (segments DEBUF AND
DSTART) allows the programmer to modify memory, take
post mortem dumps, assign I/O devices, and initiate Job
Control. To initiate the debug routine input a ! symbol on
the system logging device. To terminate the debug routine,
input TLFCR. After the routine has been initiated it
responds with an OP message, meaning that it is waiting for
one of the five presently defined four-letter function
identifiers: LMHA, DMHA, JCON, DFIO, and RLIO. Any
other inputs result in the error message BAD OP.
Additional functions will be added as they become
necessary.

3-3.6.2 LMHA Function (Load memory with hex num-
bers).

) Forma_t: LMHA AAAA;¢ NNNNj¢ NNNNy¢ - .- LFCR

Result: The string of four-digit hex numbers are converted
to 16-bit binary numbers and stored consecutively in
memory beginning at address AAAA. A 1 LFCR instruction
terminates the load operation.

3-3.6.3 DMHA Function (Print memory in hex)
Format: DMHA XXXX16 YYYY ¢

Result: The memory locations from XXXX to YYYY
inclusive, are output onto LUNO 9 in lines of eight
four-digit hex numbers along with the address of the first
number on that line. At some time after loading PAM, but
prior to using this function, the DFIO function must have
been used to assign LUNO 9 to the teletypewriter or the
line printer.

3-3.6.4 JCON Function (Activate Job Control).
Format: JCON

Result: The Job Control routine to be bid, and the debug

routine to be terminated. The message J C BID is output.
Prior to using this function DFIO must have been used to
make the following assignments:

LUNO 2 to control input device (such as card reader)

LUNO 3 to a message output device (such as line
printer)

LUNO 8 to the object input device (such as card
reader)

3-3.6.5 DFIO Function (Define 1/0).
Format: DFIO OOUUyq OODDy¢
Result: I/O specifying LUNO UU uses device DD. (Refer

to paragraph 3-3.2.2, DEFINE I/O LUNO, and RELEASE
I/O LUNO.

3-3.6.6 RLIO Function (Release I/O assignment).
Format: RLIO OOUU ¢

Result: Refer to RELEASE I/O LUNO.

3-3.7 PERFORMANCE ASSURANCE TESTS. Two types
of performance assurance tests are presently implemented:
task errors and general messages.

3-3.7.1 Worker Task Error Message. When a worker task
has a detectable error (which does not destroy the
supervisor), it is disabled and a message of the following
form is output on the system logging device:

TASK 3F, ERROR 03, AT 093F.

This message means that the task, the identifier being 3F,
made an invalid supervisor call from location X!093F!. The
meaning of the error codes is listed below:

ERROR MEANING
00 Tllegal Computer Instruction
01 Protected Memory Violation
02 Memory Parity Error
03 Invalid Supervisor Call
04 Invalid Logical Unit Number

. Future

OF

319

3-3.7.2 General Messages. General messages are output to
the system logging device in the following form:

DIAGNOSTIC 01

Their meanings are:

00 Card Reader Error (the card should be read
again)

. Future

OF

3-3.8 LOADING PAM. To load the Process Automation
Monitor via the Relocating Bootstrap Loader:

a. Determine desired load address of PAM. PAM
should be loaded as high in the core as possible.

b. Select: HALT-RESET-CLEAR.

c. Place PAM object followed by /* record into
object input device.

d. Select: OVER MEM PROT and:
Enter the following values into the specified

addresses:
Absolute Hexadecimal Address Value
7D X17C00!
7E load bias + 3
7F load bias
Select: OVER MEM PROT
e. Enter load address (a) into Supervisor register 0
(location X'0080").
f. Load Status register with X101CO0!.
g. Load Program Counter (PC) with 2.
h. Select RUN-START.
i. If input is on cards, start card reader.

After the /* has been read, PAM begins execution, If it
contains full time and date support, it prints ENTER
YEAR on the system logging device. Four digits should be
input (e.g. 1970). Then the day, hour, and minute is
requested in succession. The following shows the correct
sequence for 1:30 PM, March 29, 1943.

ENTER YEAR 1943

ENTER DAY 0088

3-20

ENTER HOUR 0013

ENTER MINUTE 0030

Following this (or immediately following the load if there is
no time and date support) the DEBUG should be initiated
and the system LUNO’s defined. Refer to paragraphs
3-3.6.3 and 3-3.6.4.

3-3.9 CONSTRUCTING PAM (SYSTEM GENERATION)

3-3.9.1. The PAM system has been structured to make
system generation as easy as possible. When generating a
system, source modification need be made to only one
segment. Linkable object is available for all other segments.
The only operations necessary are to assemble the one
source segment and to link it to the other segments.

Linkable object exists for two different configurations of
this segment. If either of these two is sufficient, then no
assembly is necessary. Therefore any PAM (or PSM) system
which is capable of running the Assembler and the Linking
Relocating Loader can be used to generate another PAM
system.

Six things affect the structure of a PAM System. They are:

a. The type and number of each type of I/O

devices.

b. The structure of the service routine section
(i.e., which service routines will be included or
excluded).

c. The maximum number of logical device assign-
ments possible.

d. The length of the system clock counts.

e. The priority of the DEBUG and JOB CON-
TROL tasks.

f. The maximum number of tasks which can

simultaneously wait for an interrupt.

3-3.9.2 Type and Number of Each Type of 1/O Device. To
change the I/O device structure, source changes must be
made to a Supervisor Data Segment (SDB) and a service
routine for each type of I/O device must be included in the
linking operation. All of the standard 1/O device service
routines available for PAM are written in a reusable manner.
Thus, one device service routine can control as many
devices of a particular type as desired.

a. Adding I/O devices. To add new I/O devices,
two source changes must be made to SDB.
They are:

(1) Add a Physical Device Table (PDT).

(2) Make an entry in the Device Service
Routine Address Table (DSRAT).

The source listing of SDB is commented in such a manner
that these changes can be done by following the direction
of the comments. Turn in the listing to the title which says
PHYSICAL DEVICE TABLE FOR XXXXX NO. N (where
XXXXX is the name of the device to be added).

b. Deleting I/O devices. If at some time it is
desired to delete some I/O devices from a
system, three things should be done. (These
changes are not necessary since the present
system would be sufficient but they would
reduce the size of that system.)

(1) Remove the Physical Device Table for
that device from SDB.

(2) Replace the entry for that device in the
DSRAT.

(3) If there is no other device of this type in
the system, exclude the device service
routine from the linking operation. The
ofder of the DSRAT determines the
physical device number of a device. If an
entry is deleted from the middle of the
table, then the physical device number
for the entries following it changes. To
prevent this, replace the entry with an
entry which says DATA DUMHAN,
DUMYDT. This keeps the table from
being re-ordered and if this device num-
ber is referenced by a worker program,
PAM ignores the I/O call and returns to
the worker program.

3-3.9.3 Structure of the Service Routine Section. To add
or delete a service routine from a system, just include or
exclude the linkable object for that routine in the linking
operation. Including a particular service routine in the
linking operation causes the error message DBLDEF for
that service routine name to be given by the Linking
Relocatable Loader, Disregard this message. However, if
one of these required routines is omitted by PAM (such as
CHAB), the LRL gives the error message UNDEF. In this
case another linking must be performed to include the
routine. It is the responsibility of the user to observe all
prerequisites when adding service routines. The LRL will
not find errors caused by failing to observe the pre-
requisites. For example: CDAB requires DIVIDE, but the
inclusion of CDAB and the omission of DIVIDE would not
cause an error to be flagged by the LRL.

3-3.9.4 Logical Device Table Size. The basic PAM allows
for a maximum of eleven logical device assignments. Five of
these are used by PAM itself (one pre-defined and four
defined by the operator). To increase this number add more

DATA-1,0,0,0 statements to the logical device table
(LDTST) in segment SDB.

3-3.9.5 System Clock Count. The length of the system
clock count (paragraph 3-3.2.14 for the use of this in Time
Delays) is set via the SYSCLK EQU X card in SDB. The
value of X is the length of each count in milliseconds. Thus
a value of 100 gives a 0.1 second clock, or ten counts per
second. Values of SYSCLK greater than 1000 or less than
10 are not recommended.

3-3.9.6 Priority of Debug. The Diagnostic Task (DIAGTB)
is always the highest priority task (0). The other two
system tasks — DEBUG and JOB CONTROL — are at
adjacent priorities, with that of DEBUG being set by the
DEBPRI EQU X card in SDB. X may be any value between
1 and 253. In an application system it will probably be of
lower priority than most application programs, but during
system debugging operations, it should be at a high priority.
Job Control is automatically at the priority immediately
below DEBUG.

3-3.9.7 Process Interrupt Table Size. The basic PAM allows
for a maximum of two tasks which can be waiting for an
interrupt at any one time. To increase this number, add
more DATA -1, -1 statements to the process interrupt table
(PRITBU) in segment SDB.

3-3.9.8 PAM Segments Which Must Be In Any System.

Supervisor Data* SDB

Supervisor SPB

Flags SFSEG

Converts CHAB
CBHA

Internal Interrupt IISEG

DMAC Interrupt DMACSG (real) or DMACDM
{(dummy)

CRU Interrupt CINTSG

Record Subroutines RECEOR

1/0O Subroutines GETCO1
Teletype TTYSEG
System Clock TIMER

Time & Date Support DTDSEG (full) or DTPSEG

(dummy)
Diagnostics DIAGTB
Job Control JCWTB
Debug* DEBUF

*SDB must be first and DEBUF must be last. Thus, they
must be at the beginning and end of the deck respectively
when the linking operation is performed.

3-21

3-3.9.9 System Generation Summary. Steps to follow in
generating a PAM system.

a. Read paragraph 3-3.9 carefully.

b. Decide what I/O devices will be included in the
system.

c. Add a Physical Device Table for each 1/O device
to the Supervisor Data Segment.

d. Add an entry in the DSRAT for each I/O device
in the Supervisor Data Segment.

e. If it is desirable to increase the maximum
number of logical device assignments, add a
DATA-1,0,0,0 to the Logical Device Table in
the Supervisor Data Segment. The maximum
number in the basic PAM is eleven. Each card
added will increase this number by one.

f. Choose the system clock count and insert a
SYSCLK EQU X card.

g Choose DEBUG priority and insert a DEBPRI
EQU X card.

h. If it is desirable to increase the maximum
number of tasks which can simultaneously be
waiting for an interrupt, add DATA-1,-1 card to
PRITBU. Each card adds one possible task.

i Assemble SDB,

j- Use the LRL to link all the segments together.
They must include those listed in paragraph
3-3.9.8, plus routines for all 1/O devices in the
system, plus all additional desired service sub-
routines. Remember that SDB must be first and
DEBUF last.

3-3.10 STANDARD VERSIONS OF PAM. Loadable object
is supplied for two standard versions of PAM; a high-speed
paper tape media version and a card media version. These
are generated using two standard versions of SDB (para-
graph 3-4.1 for device numbers). They both include the

following optional segments:

NAME FUNCTION
MULTPY Multiply supervisor call
DIVIDE Divide supervisor call
SCLD Shift circular left double
*CBHA Convert binary to hex ASCII
*CHAB Convert hex ASCII to binary

3-22

CBDA Convert binary to decimal ASCII
CDAB Convert decimal ASCII to binary
TDLAY Program Control Supervisor Services
GTDBLK Get Data Block supervisor call
DTDSEG Complete time and data support
DMACDM Dummy DMAC Interrupt decoder
LPOOO Line Printer Service Routine for CRU
*Required

The paper tape version also contains HSRHAN and
PTPOOO. The card version contains CARDIN and
CDPOOO.

3-4 SUBPROGRAMS.

3-4.1 SUPERVISOR DATA BLOCK (SDB). The structure
of the data in SDB is described in detail in paragraph 3-3.4.
Three standard versions of SDB are available.

The basic SDB is set up for teletypewriter only. However,
its main use arises when building non-standard versions of
PAM. This SDB is commented in a manner that the
inclusion of any configuration of 1/O devices may be easily
accomplished by removing *’s from certain cards and
re-punching a few other cards.

The card media SDB is set up to support a teletypewriter,
card reader, card punch, and line printer.

The high speed paper tape media SDB is set up to support 2
teletypewriter, high speed paper tape reader, high speed
paper tape punch, and line printer.

In the latter two versions, the following device numbers and
CRU base addresses will apply.

DEVICE NUMBER CRUj4
TTY-KB 0 0000
TTY-PT 1 0000
TIMER 2 00B0
DUMMY 3 -
CARD READER 4 0400
LINE PRINTER (CRU) 5 0800
CARD PUNCH 6 0050
REMEX READER 7 0020

DEVICE NUMBER CRUy¢
TALLY PUNCH 8 0040
LINE PRINTER (DMAC) 9 -

3-4.2 SUPERVISOR (SPB).

3-4.2.1 SUPRST is the first section of SPB. It is entered
when PAM is initially started and each time it is restarted at
location X'007D!'. This section clears flags in LDT and
PDT, initializes PAM worker tasks, and requests date and
time initialization.

3-4.2.2 SENT (Figure 3-7) is entered when a worker
program makes a supervisor call by executing a SXBS
*SENTRY instruction. The function code in Worker
Register Three is decoded. The op code is right justified in
the A register and the effective address is placed in the E
register. Then an indirect branch through SCALTB enters
the appropriate processor. In PAM the following register
conventions are observed: A=0, E=1, S=2, L=3, D=4, B=5,
F=6, C=7.

3-4.2.3. The Supervisor General Exit routine (SGX) is
entered by all the supervisor call processors when they are
done (Figure 3-8). Previously the Supervisor Exit Switch
(SEXS) has been set to either SENTRY or SXSCN. SGX
executes an LDS *SEXS which either returns to the calling
program or continues in the exit routine. If it continues,
the worker program’s EC is saved, and decremented if a
temporary suspension is occurring. Then all worker registers
are stored in the WIB and the task scan (TSKSCN) is
entered.

3-4.2.4. The task scan (TSKSCN) is entered from SGX,
from interrupt decoders, and from SUPRST (Figure 3-9). It
searches the linked list (Figure 3-10) of all the tasks
(pointed to by TSKLST) for a task which is ABLE, BID,
and not SUSP, TSUS, or TD. Since the list is kept in order
of priority, the first task found that meets the above
conditions will be the highest priority one. If no such task
is found, a loop is entered which increments a duty cycle
counter. If such a task is found, its WTB address is stored in
the current task location (RUNWTB) and the worker
registers are loaded from its WTB. Worker mode is
transferred to and the task is entered. The PC is left
pointing to SCNXW. If the worker task does a “blind”
transfer to supervisor mode, it normally returns immediate-
ly. However, if the SPC flag is set, control returns in the
supervisor mode at the location specified by word 16 of his
WTB.

3-4.2.5. When a task is disabled, many small sections of
SPB are involved. The sequence of events is as follows:

a. Supervisor
SETF B
DFXXXX,0ON TSKDSB
Set particular Error flag

LA 3, OPDESC

SXBS SENTRY

Format of OPeration DESCription

0 5 6 15
OPERATION ADDRESS RELATIVE TO
CODE REGISTER 4 (WRD)

(SENTRY)
SENT +

SET SUPVR
EXITTO
CALLING PGM

SCINV

DISABLE
TASK

v

SET SUPVT
EXIT TO

YES

NO

NOTE: SUPVR CALL DEVICE ROUTINES ARE ENTERED
WITH OP CODE RIGHT JUSTIFIED IN THE A RESIGTER,
& ADDRESS IN THE E REGISTER

Figure 3-7 Supervisor General Entry Worker Sequence
Routine.

3-23

RETURN TO

WORKER PROGRAM

TASK
SCAN

D)

GET
FIRST
WTB

IT, ABLE,
BID, & NOT
SUSP, ER.

POINT “RUNWTB"
TO THIS
TASK

v

LOAD ALL
WORKER
REGISTERS
FROM WTB

SXSCN
DISABLE DATA §$+2
INTERRUPTS 0o 1
‘ SUPVR _j
SAVE SXBW MODE
WORKER WEC DISABLE
PROGRAM DMAC
EC & CRU
ENABLE WeC EC
INTERRUPTS & ST
GO TO SUPVR
MODE $+1
DECREMENT
YES SAVED
WORKER
EC SGXB
NO
SGXB
STORE EC, ST, LDS $+2 €C
& ALL REGS
IN WTB o 00
sGxa SUPVR _1
MODE
ENABLE
SET SCAN INTR.
RUNNING FLAG
SFTSNR
GO TO
TASK
SCANNER

Figure 3-8 Supervisor

General Exit Routine.

SET INT.
LOCKOUT &
CLEAR SCAN
RUNNING

FLAG “SFTSNR"” |

TRANSFER TO
WORKER MODE

v

RELEASE INT.
LOCKOUT &
GO TO TASK

INCREMENT
DUTY CYCLE
COUNTER

CLEAR TEMP.
SUSP. FLAG

LDSS+2
DATAS+2

DATA X'01C0’
SETF SFTSNR, OFF

XWB ENTRTS
LDS *RUNWTB

TASK SCAN CAUSES THE HIGHEST PRIORITY TASK WHICH
IS ABLE, BID, & NOT SUSPENDED TO BEGIN EXECUTION.

Figure 3-9 Task Scan Routine.

WORKER TASKS ARE LINKED IN A LIST STRUCTURE SHOWN

POINTER TO SUPERVISOR DATA BLOCK

BELOW. LIST ITEMS ARE ENTERED SO THAT THE RANK RUNWTB
OF THE NEXT ITEM IS LOWER., RUNNING TASK
POINTER TO
KLST
TsKL TASK LIST
DIAGTB
]
1
LINK LINK et LINK LINK =0
RANK =0 RANK =N RANK =M RANK =P
THUSN<M<P
Figure 3-10 Worker Task Linking Routine.
b. TSKDSB 3-4.2.7. Bid task (BIDT) supervisor call processor, code 02,
SETF SETF B is entered from SENT with E containing the task ID (T) to

SFDSTS,ON ABLE,OFF EOP+2
Disable occurring Disable task

C. EOP
SETF Release assigned LDT’s and PDT’s LDS
BID,OFF SXSCN

d. SXSCN
Save EC, etc. in WTB B
DSTSQ

e. DSTSQ

Put task ID, Error # and EC in DTFQUE and
bid for DIAGTB

f. DIAGTB
Print out task error message.

DTFQUE has the following form:)
0 7 8 15

TASK ID ERROR NUMBER

ADDRESS (EC)

3-4.2.6. SGTWTB (get WTB subroutine) is called by bid
task, get data block, unsuspend and other supervisor call
processors. Upon entry E contains the task ID whose WTB
is to be found. The call is SSB SGTWTB. Upon return F
contains the WTB address minus one if found, otherwise F
=-1. X is destroyed.

be bid plus the contents of Worker Register Four. The ID is
isolated; SGTWTB is called to find the WTB. If there is one,
its BID flag is set and SGX is entered by way of IOQXSN.
If none is found, the call is ignored, and again SGX is
entered by way of IOQXSN. (IOQXSN restores registers B,
F, and C and sets SEXS to scan.) Note that for a program
to execute, it must be the highest priority program which is
BID and ABLE, but not in a Time Delay, Suspension, or
Temporary Suspension. Thus, if program T is of higher
priority than the calling program, and it meets the above
conditions, it will be executed. Otherwise, the task scanner
will re-enter the calling task.

3-4.2.8. The end of program (EOP) supervisor call pro-
cessor, code 01, is entered from SENT. The current
program WTB address is obtained from RUNWTB and its
BID flag is cleared. LDT blocks which are assigned to this
task are searched for. For each are found, its assigned and
need service flags are cleared, and if a PDT block is assigned
to it, its assigned and busy flags are cleared. Then the task’s
initial status and entry point are obtained and SGX is
entered at SGXB. This causes the registers and EC to be
saved in the WTB and the task scan to be entered.

3-4.2.9 The end of job (EDT) supervisor call processor,
code 06, is entered from SENT. The job control task
(JCWTB) is bid, and then the EOP processor is entered.

Bid Task Time: *41 microseconds + 38N microseconds
Plus PAM overhead of 190 microseconds + 37 microseconds
(Return to Task N)

3-25

3-4.2.10. The 1/O supervisor call processor (I0Q), code 00,
is entered from SENT with E containing the physical record
block (PRB) address (Figure 3-11). The logical unit number
(LUNO) is isolated and an LDT block with that LUNO is
sought. If none is found, the task is disabled. If one is
found but is busy (need service flag set), the task is
temporarily suspended by setting the TSUS flag and SGX is
entered. This decrements the EC and the worker re-
executes the call later. The same thing occurs if the LDT
block is assigned to another task.

If neither of the above conditions obtains, the LDT block is
assigned to this task, the PRB address is inserted, and the
need service flag is set. The device number is then isolated
and the corresponding PDT block obtained. If the PDT
block is busy or assigned to another task, then the calling
task is suspended if it was an execute call, or returned to if
it was an initiate call. If the PDT block is free, the LDT
address, PRB address, and device service routine address are

stored in it. Then the busy, assigned, and first entry flags
are set. The LDT need services flag is cleared. Registers D
and C are initialized, interrupts are masked, and the device
service routine is entered.

Upon return, the task is suspended if it was an execute call.
IOQXN sets SEXS to scan and exits to SGX.

3-4.2.11. SSBREG and SETBC are two system subroutines
which are re-entrant and thus may be called by interrupt
routines. IO drivers, or the main supervisor. Both are called
with a BL in register L.

SSBREG sets B = SPB, F = SDB, and C = Q. It then returns
(B2,L).

SETBC is entered with F containing a PDT address. B is set
to zero. D is set to (F) + 5. C is loaded from 3, F, and
anded with X'0007! for a DMAC device or with X'0FFQ!

WHEN HANDLERS /™ \
100 ARE ENTERED:
D TEMP.STGE. 10 HANDLER
F PDT SET UP
c CRU BASE 1 st CHARACTER
1S THERE AN
LDT WITH SAME |NO DISABLE
LUNO AS THAT TASK
IN PRB YES
GO TO
\ EOP NO
NEED ON
SERVICE sTPrez| SET PRB
FLAG “BUSY"” FLAG
OFF
LD BUSY
IS LDT SET “TSUS" WAS THE CALL) 0
ASSIGNED FLAG IN WTB 10Q PUTS AN 10 CALL PRB ADDRESS IN AN “EXECUTE"
TO ANOTHER & “SFDEC” THE APPROPRIATE LOGICAL DEVICE CALL
TASK YES | supvR. FLAG TABLE (LDT) BLOCK BASED ON THE
LOGICAL UNIT NO. {LUNO). THEN IF
THE APPROPRIATE PHYSICAL DEVICE
TABLE (PDT) BLOCK 1S FREE, IT SETS SET “SUSP”
UP THE PDT & ENTERS THE PARTICULAR FLAG IN WTB
ASSIGN IT TO 10 SERVICE ROUTINE. ,
THIS TASK
10QXSN
PUT PRB IN ON
LDT, SET SET SEXS
NEED SERVICE TO SXSCN
FLAG
ASSIGN IT TO
THIS LOT, PUT
IS PDT PRB IN PDT, PUT
?gskf\n%i?isn HANDLER ADDR. IN
ol PDT, SET “BUSY", CLEAR NEED
“ASSIGNED”, & “1ST SERVICE FLAG
ENTRY” FLAGS IN LOT

Figure 3-11 1/O Supervisor Call Processor Routine.

3-26

for a CRU device. Thus C equals the DMAC part number or
the CRU base address. The routine then returns (B 2,L).

3-4.3 OPTIONAL SUPERVISOR CALL PROCESSORS.
All supervisor call processors not included in SPB above are
assembled as separate segments and must be linked with the
other object decks when generating PAM. Each is given a
separate document number and each may be used with
PAM or PSM. Some of them (such as DIVIDE) contain
subroutines as their main element. These subroutines may
be called from other parts of the supervisor. For instance,
CBDA calls the subroutine which is the major element of
divide. Thus some of these processors are prerequisites for
others.

All times given are for the routines themselves. The PAM
overhead must be added to this. This is approximately 110
microseconds if SGX returns immediately to the calling
task. It is 190 microseconds plus 37 N microseconds if the
task scan is entered and returns to the Nth task.

3-4.3.1 Multiply. The multiply function effective address
must contain the memory address of the multiplicand. The
multiplier must be in Worker Register Zero. The product
will be placed in Worker Registers Zero and One (B).

CODE FUNCTION

03 Multiply
3-4.3.2 Divide. Te divide function effective address must
contain the memory address of the divisor. The dividend
must be in Worker Registers Zero and One. The quotient is
placed in Worker Register One with the remainder placed in
Worker Register Zero (B).

CODE FUNCTION

04 Divide

3-4.3.3 Shift Memory Circular Left Double. The shift
memory circular left double function effective address
contains the memory address of the value to be shifted.
This word and the next word in memory, treated as a 32-bit
value, are rotated left the number of positions specified in
Worker Register Two (B).

CODE FUNCTION

05 Shift Memory Circular Left Double

3-4.3.4 Square Root. The effective address is not used. The
argument (double precision integer) must be right justified
in Worker Registers Zero and One. The integer square root
returns in Worker Register Zero (O).

CODE FUNCTION

07 Square Root

3-27

3-4.3.5 Convert Binary To ASCII Coded Hexadecimal. The
convert binary to ASCII coded hexadecimal function
effective address must contain the memory address of a
two-word array where the converted result is placed.
Worker Register Zero must contain the binary value to be

converted (B).

CODE FUNCTION

08 Convert Binary To ASCII Coded
Hexadecimal

3-4.3.6 Convert Hexadecimal ASCII To Binary. The con-
vert hexadecimal ASCII to binary function effective address
must contain the memory address of a two-location array
containing the hexadecimal ASCII value. The binary result
will be placed in Worker Register Zero (O).

CODE FUNCTION

09 Convert Hexadecimal ASCII To Binary

3-4.3.7 Convert Binary To ASCIl Coded Decimal. The
convert binary to ASCII coded decimal function effective
address must contain the address of a three-ocation array
where the converted result is placed. Worker Register Zero

must contain the binary value to be converted (B).
CODE FUNCTION
OA Convert Binary To ASCIH Coded Decimal

3-4.3.8 Convert Decimal ASCH To Binary. The convert
decimal ASCII to binary function effective address must
contain the memory address of a three-location array
containing the decimal ASCII value. The binary result
returns in Worker Register Zero (O).

CODE FUNCTION

OB Convert Decimal ASCII To Binary

3-4.3.9. The next six supervisor calls are defined for PAM
only. They are treated as errors when encountered by PSM.
They are listed here for reference only.

CODE FUNCTION
oC Time Delay
OD Wait — Unconditional
OE Activate “Waiting” Task
OF Wait for Interrupt
10 Get Date and Time
11 Get Data Block from Another Task

3-4.3.10 Convert Fixed Point To Floating Point. The
effective address is not used. The double precision integer
argument must be in Worker Registers Zero and One. The
floating point equivalent returns in Worker Registers Zero

and One (O).

CODE FUNCTION

12 Convert Fixed Point To Floating Point

3-4.3.11 Convert Floating Point To Fixed Point. The
effective address is not used. The floating point number in
Worker Registers Zero and One is converted to integer and
returned in Worker Registers Zero and One (O).

CODE FUNCTION

13 Convert Floating Point To Fixed Point

3-4.3.12 Floating Point Add. The effective address con-
tains the location of a two-word block which contains the
floating point number to be added to the floating point
number in Worker Registers Zero and One. The result
returns in Worker Registers Zero and One (O).

CODE FUNCTION

14 Floating Point Add

3-4.3.13 Floating Point Subtract. The effective address
contains the location of a two-word block which contains
the floating point number to be subtracted from Worker
Registers Zero and One. The result returns in Worker
Registers Zero and One (O).

CODE FUNCTION

15 Floating Point Subtract

3-4.3.14 Floating Point Multiply. The effective address
contains the location of a two-word block which contains
the floating point number to be multiplied by that in
Worker Registers Zero and One. The result returns in
Worker Registers Zero and One (O).

CODE FUNCTION

16 Floating Point Multiply

3-4.3.15 Floating Point Divide. The effective address con-
tains the location of a two-word block which contains the
divisor. The dividend is in Worker Registers Zeto and One.
The quotient returns in Worker Registers Zero and One

(0).
CODE FUNCTION

17 Floating Point Divide

3-4.3.16 Convert Floating Point to Decimal ASCIL. The
effective address contains the location of a six-word array
into which the results are placed (in E format). The number
to be converted is in Worker Registers Zero and One. For
example, if the floating point number had the value 7, the
conversion would produce an ASCII representation of the
following:

+.314159E + 01 (O).
CODE FUNCTION
i8 Convert Floating Point To Decimal ASCII

3-4.3.17 Floating Point Sine. The effective address is not
used. The floating point representation of the angle X in
radians is in Worker Registers Zero and One. The size of the
angle must be -m/2 = X = n/2. The floating point
representation of SIN(X) returns in Worker Registers Zero
and One (O).

CODE FUNCTION

19 Floating Point Sine

3-4.3.18 Floating Point Cosine. Arguments are the same as
in paragraph 4-4.2.21 except COS(X) returns { O).
CODE FUNCTION

1A Floating Point Cosine

3-4.3.19 Floating Point Arctangent. The effective address
contains the location of Argument B (floating point).
Argument A is in Worker Registers Zero and One. The angle
of the value of which is ARCTAN (A/B) returns in Worker
Registers Zero and One.

CODE FUNCTION

1B Floating Point Arctangent

3-4.3.20. Program Control Supervisor Services (TIMDLY).
LENGTH: 50 words

PREREQUISITES: None

PERTINENT INFORMATION: Four supervisor call pro-
cessors are included in this segment — TIMDLY, WAIT,
UNSUSP, WTINT.

Their descriptions follow.

3-28

TITLE: TIMDLY

PURPOSE: Suspend the calling task for N+1 system timer
counts.

*TIME: 56 microseconds.

STORAGE: 8 words (set up subroutine only, processor
requires 34 words).

PREREQUISITES: None
Part of program control supervisor services.

PERTINENT INFORMATION: TIMDLY puts the count N
in WTB(13), sets the TD flag in WTB(2), and exits through
IOQXSN. This will save the task’s registers and EC in its
WTB and then enter the task scanner.

Every time the interval timer causes an interrupt, the
TIMER driver decrements WIB(13) by one for every task
whose TD flag is set. When WTB(13) becomes negative, the
TD flag is cleared. Then the task scanner will re-initiate the

program.

ERROR RETURN: None

TITLE: WAIT (unconditional)

PURPOSE: Suspend the calling program. Assume another
task will later use an UNSUSP call to restart it.

*TIME: 16 microseconds
STORAGE: 6 words

PREREQUISITES: None
Part of Program Control Supervisor Services.

PERTINENT INFORMATION: WAIT sets the SUSP flag in
WTB(2) of the calling program and then exits to the task
scanner through JOQXSN.

ERROR RETURN: None

TITLE: UNSUSP

PURPOSE: Unsuspend task T — Assumes the task is able,
bid, and suspended. If so, unsuspending it will allow it to
run.

*TIME: 30 microseconds
STORAGE: 14 words

PREREQUISITES: None
Part of Program Control Supervisor Services.

PERTINENT INFORMATION: UNSUSP calls SGTWTB to
find the WTB for task T. It then clears the SUSP flag in
WTB(2) and exits to the task scan through IOQXSN.

ERROR RETURN: If no task T, Worker Register Three is
set to zero upon return.

TITLE: WTINT

PURPOSE: Suspend the task until the specified interrupt
occurs.

LENGTH: 22 words

PREREQUISITES: Part of Program Control Supervisor
Services.

PERTINENT INFORMATION: WTINT finds an empty slot
in the PRITBU table and stores the CRU line address and
the WTB address in it. It then exits through WAIT to
suspend the task. If the CRU interrupt decoder ever finds
the above CRU line set to a one, it will unsuspend the task.

ERROR RETURN: If there is no room in the table, Worker
Register Three is set to zero and the calling program is
returned to through SGX.

*Plus PAM overhead of 110 microseconds (For Return To
Calling Task) or 190 microseconds + 37N microseconds
(Return To Task N)

3-29

3-4.3.21 Get Data Block.
TITLE: GTDBLK

PURPOSE: Transfer a block of Ny words of data from task
T (which is the NTth task) to the calling task.

*TIME: (94 microseconds) + (38 N microseconds) + (16
Nyy microseconds)

STORAGE: 40 words
PREREQUISITES: None

PERTINENT INFORMATION: GTDBLK calls subroutine
SGTWTB to find the WTB for task T. It finds the source
data block by adding the address specified to the WTB
address of task T. The receiving data buffer is the address
specified plus the calling task’s WTB address. Ny words are
transferred to the receiving data buffer and control is
returned to the calling task.

ERROR RETURN: If there is no task T, Worker Register
Three is set to zero upon return. The data buffer is
unchanged.

3-4.3.22 Get Date.

TITLE: GTDATE

PURPOSE: Move YEAR, DAY, HOUR, MINUTE, &
SECOND in a five-word buffer to a five-word buffer in the
calling task.

*TIME: 119 microseconds
STORAGE: 12 words

PREREQUISITES: Part of Time and Date Support —
DTDSEG

PERTINENT INFORMATION: The contents of PAM’s
time and date locations are moved to the five-word buffer
specified in the call. Note that if complete time and date
support have not been included when PAM was generated,
this call will be treated as an error and the calling task

disabled.

Following completion of the call, control is immediately
returned to the calling task.

ERROR RETURN: None

*Plus PAM overhead of 110 microseconds (For Return To
Calling Task) or 190 microseconds + 37N microseconds
(Return To Task N)

3-30

3-4.4 INTERNAL INTERRUPT DECODER (IISEG).
When an internal interrupt occurs (Figure 3-12), a trap to
location X'0090! is taken. SXBS INTINT instruction is
sorted there and INTINT+2 points to HSEG. The status
stored in INTINT+1 is examined to determine the cause of
the interrupt and the mode when the interrupt occurred. If
power failure has occurred, locations X'0090! and X'0091!
are modified to cause the Power On routine to be entered
when power is restored. The Power On routine restores
locations X'0090' and X'0091' and returns to the place of
interruption. For other causes, a particular diagnostic flag is
set. If the machine was in the supervisor mode, a B §
instruction is executed. Otherwise, the worker task which
caused the interrupt is disabled and the task scan entered.

Length: 66 words

Prerequisite: Locations X'0090' and X'0091' must have
been set by the initialization routine in Job Control
(JCRDBF).

3-4.5 CRU INTERRUPT DECODER (CINTSG). When a
CRU interrupt occurs (Figure 3-13), a trap to location
X'0094! is taken. An SXBS CRUINT instruction is stored
there, and CRUINT+2 points to CINTSG. All supervisor
mode registers are saved. Then, by loading F with each PDT
block address and C with word three of each PDT block,
the interrupt bit of each device whose busy flag is set is
checked. The system teletypewriter is checked regardless,
since it may accept unrequested input. For each interrupt
bit which is on, the appropriate device service routine is
entered.

After all devices have been processed, the Process Interrupt
Table (PRITBU) is checked. If any of the specified CRU
lines is a one, the corresponding task is unsuspended.

Next the conditions which prevailed prior to the occurrence
of the interrupt are checked to determine the proper exit.
The possibilities are enumerated on the flow chart on the
next page.

Length: 123 Words

Prerequisites: Locations X'0094! and X'0095! must have
been preset.

Approximate time: 250 microseconds

3-4.6 DMAC INTERRUPT DECODER (DMACSG). When
a DMAC interrupt occurs (Figure 3-14), a trap to location
X'0092! is taken. An SXBS DMCINT is stored there, and
DMCINT+2 points to DMACSG. All supervisor mode
registers are saved. Location X'0096' is then examined to
see which port caused the interrupt. Prior to the interrupt,
the DMAC set bits in location X'0096' corresponding to
the port numbers of the devices waiting to interrupt. Bits
0-7 correspond to ports 0-7. If there is a DMAC PDT block
corresponding to that port, the device service routine is

Cre
v

INTINT DATA O
SAVE REG.F&8B DATA ©
& POINT F DATA 0 IISEG
TO SDB
PUT “HPWON""
i '
POWER IN LOC. .),(009.;'
FAILURE PUS AN TLDS
INST. IN LOC.
X10090!

ILLEGAL SET DIAGNOSTIC

ON CODE

SET FLAG
“DFMEMV”
MEMORY
PARITY
ERROR SET FLAG
“DFMPER"

AN INTERNAL INTERRUPT CAUSES A TRAP TO
LOC. X10090!' WHERE THERE 1S NORMALLY AN
“SXBS INTINT” INSTRUCTION. LOCATION

“INTINT” & FOLLOWING CONTAIN:

LDS IIPWON C 1IPWON)
v

{IPWON
DATA St 2
DATA X!0IiCO!

LOCKOUT
INTERRUPTS

v

RESTORE LOC.
X10090! &
X10091!' TO
EXBS INTINT

v

RESTORE
REG. F

NO

v

DISABLE
TASK

LDS INTINT

Figure 3-12 Internal Interrupt Service Routine.

entered. That routine then checks the device status, stored
in location port number times two plus X'0098'.

After all interrupting ports have been serviced, status prior
to the interrupt is checked to determine the correct exit. If
the task scan was interrupted, it is restarted. If a worker
was interrupted it will be halted, and the task scan
restarted. If another part of the supervisor was interrupted,
the registers are restored and it is returned to.

Length: 88 words
Prerequisites: Locations X'0092! and X'0093! preset.

3-4.7 END OF RECORD ROUTINES (RECEOR). When
an I/O device completes a record (Figure 3-15), it branches
to RECEOR or FILEOR depending on whether it is a
record or file oriented device respectively. A file oriented
device is used exclusively by a task until an end of file
record is processed. These routines first use subroutine
EORA which clears the PRB busy flag, clears the WTB
suspend flag if it was an execute call, and sets the I/O done
flag (SFCIOD). It then checks for end of file (/*) and, if it
was not /*, returns to RECEOR or FILEOR, If there was a

3-31

/* it sets the PRB EOF flag and clears the LDT assigned flag
if it does not need service. It then enters LDTSCN (Figure
3.16).

When RECEOR is returned to with no EOF, it performs the
above function on the LDT and enters LDTSCN.

When FILEOR is returned to with no EOF, if the LDT
block is still assigned but does not need service, it returns to
I0Q or CRU interrupt decoder. If it needs service the
arguments are moved into the PDT and the device service
routine is re-entered.

When LDTSCN is entered, it searches the Logical Device
Table for an LDT block with the appropriate device
number which needs service. (The LDT is effectively a one
level deep queue of I/O requests, one for each LUNO.) If
none is found, it returns. If it finds one it puts the
appropriate data in the PDT and re-enters the device service
routine.

Length: 123 words

3-4.8 1/0 COMMON ROUTINES. This set of routines is
used by many of the 1/O device service routines. They

CRU INT

SAVE STATUS
& XFER TO
SUPVR MODE

v

SAVE ALL
SUPVR. REGS.

v

ENTER ALL
10 HANDLERS
WHOSE INTS.
ARE ON

v

PROCESS INT.
SERVICE
ROUTINE

“SFCIOD”"
FLAG

SET SEXS

INT

“CDMIN"
DMAC

LOAD REGS.
F,C.B; RELEASE
INT. LOCKOUT

GO TO
TASK
SCANNER

OFF

LOCATION X'0092!
CRUINT DATA 0,0,CINTSG

SET PC POINT
TO SCNXW
ON
RTN
TO
W WORKER v
RESTORE SUp” PUT STATUS
REGISTERS IN SENTRY + 1
LOAD REGS
RTR F,C,B
TO
SUP.

CRUINT

NOTE: USERS MUST NEVER INHIBIT DMAC INTERRUPTS
WITHOUT ALSO INHIBITING CRU.

Figure 3-13 CRU Interrupt Service Routine.

3-32

C DMAC INT

v

LOCATION X!'0096' SXBS
DMCINT

DMCINT DATA 0,0,DMACSG

SAVE STATUS
& XFER TO
SUPVR. MODE
SAVE SUPVR.
REGISTERS
ENTER ALL INTERRUPT CAUSES PORT
HANDLERS WHOSE | NUMBER TO BE SET IN
INT. BITS ARE SET | LOCATION X10096!. PDT'S
IN LOC X'0096' START AT DMPDTS.
SET SEXS
TO SCAN
} RESTART
SCAN
WAS TASK SCAN | YES
INTERRUPTED
GO
TO
SGXA
WAS SUPVR. \ NO
INT. / +
PUT STATUS
IN
RESTORE SUP. SENTRY + 1
REGS.
RTN LDS DMCINT GO
TO T0
SuP SGX

Figure 3-14 DMAC Interrupt Service Routine.

RECEOR FILEOR ’
/ EORA \ / EORA \

INITIAL
CLEANUP

CALL: LA APDTADR

B RECEOR or FILEOR

NEED
SERVICE
FLAG

ON

IN
LDTSCN | CLEAR
ASSIGNED FLAG
SERVICE IN LDT
LDEH
RA CALL:
C EO SSB EORA
CLEAR PDT
CLEAR PRB BUSY FLAG
BUSY FLAG SN
INITIATE
EXECUTE RESET PRB YES [cET PRB
“EOF” FLAG “EOF” FLAG
CLEAR WTB “SUSP”
FLAG AND SET NO
SUPERVISOR

“SFCIOD” FLAG

V4

Figure 3-15 End of Record Routine.

assume a standard use of temporary storage locations. Word
zero contains the character count and word one contains
the current character.

GETCOL1 is a routine to fetch the next character. Upon
entry D must point to temporary storage and A to the PRB.
The calling sequence is:

BL L,GETCO1
DATA EOR End of record return address
- Normal return location

The next character is fetched and placed in 1,D and the
character count in O,D is incremented. If there are no more
characters (character count = record length in PRB), the
return is to the end of record location.

XORCOO is a routine which inverts the character in the
right half of 1,D. The call is BL L, XORCOO.

PRBERR is a routine which sets the error flag in the PRB.
On entry A must point to the PRB. The call is BL
L,PRBERR.

Length: 44 words

3-4.9 CRU DEVICE SERVICE ROUTINES. The routines
described in this section are the device service routines for
devices connected to the CRU (Figure 3- 17) They all have
many common features. They all run in the supervisor
mode. They use the PDT first entry flag to determine if
they are being entered for the first time for a particular call.
If the device is not ready, they set the PDT wait flag and

3-33

CALL:
(LDTSCN) .

LA APDTADR
8 LDTSCN

GET FIRST

LDT (L CONTAINS ULTIMATE
l‘ RETURN ADDRESS MINUS 2)

GET PDT
ADDRESS
POINTED TO
BY DEVNO
IN LDT YES

v

IS IT THE SAME AS ARE THERE
THAT IN CALL MORE LDT'S
‘ NO
CLEAR BUSY
“NEED SERVICE” & ASSIGNED
FLAGS IN PDT

PUT PRB &
HAND. ADDR.
IN PDT

v

PUT LDT #
IN PDT

v

SET FIRST
ENTRY FLAG

v

SET REGISTERS
C,D,F

RE-ENTER
HANDLER

Figure 3-16 Logical Device Table Scan Routine.

C CDSR)

“FIRST \\OFF [cLEAR
ENTRY INTERRUPT
FLAG ‘
DO NEXT
CHARACTER

VON END OF
RECORD
SET PDT
“WAIT” FLAG VES

' EOR
EXIT

EXIT TO RECEOR

OR FILEOR WITH

L — UNCHANGED FROM ENTRY
A —PDT ADDRESS

DEVICE
READY?

CLEAR PDT
“WAIT” FLAG

v

CLEAR 18T
ENTRY FLAG

v

SET UP FIRST
CHARACTER

Vi

Figure 3-17 Typical CRU Device Service Routine.

3-34

exit; the TIMER routine will re-enter them periodically.
Some of them which cannot run simultaneously call
subroutine GONOGO to determine if they may run. They
all exit to RECEOR or FILEOR after they have processed
an entire record. The flow chart for a typical routine
follows. Note that on entry:

L (Reg. 3) = Return address — 2
D (Reg. 4) = Temporary storage address
F (Reg. 6) = PDT block address

C (Reg. 7) = CRU base address

3-4.9.1 Interval Timer Service Routine (TIMER). The
interval timer has an associated PDT block and an entry in
the DSRAT but it is not a normal CRU device since it
cannot be requested by a worker program (Figure 3-18). Its
busy flag is always set and the routine is entered every time
the timer counts through zero.

INPUT OUTPUT
INTERRUPT « CLEAR INTERRUPT
0 | SENSE 0
1 |« LSBSENSE | 1 |« LSBSET
2 A A
3
4
5 ON = 1 ON = 1
OFF = 0 OFF = 0
6
7
"y =
A { ™ Y
E |« msBSense |E |< MSBSET
. F | < START = 1
NOT USED STOP = 0

1 = Interrupt

%= Clear
Interrupt
COUNT RATE = 1000 COUNTS/SEC INTERRUPT

OCCURS ON ZERO COUNT. ALL FOURTEEN
DATA BITS MUST BE OUTPUT AT THE SAME

0 = No Interrupt

Figure 3-18 Interval Timer Operation.

The timer board itself can be preset with a count. This
count is decremented by one every millisecond, and when
the count becomes zero an interrupt occurs. In PAM, the

timer is initially started by the time and date initialization
portion of DIAGTB. The count is preset to SYSCLK.

When TIMER is entered it reads the timer count, adds
SYSCLK to it enough times (N) to make it positive, and
resets the count to that value. (Later N is used to
decrement time delays.) The MILSEC counter is incre-
mented by N*SYSCLK. This process prevents time loss
when the timer interrupt is not answered immediately and
it has counted below zero.

If the value MILSEC is now greater than 1000 (1 second is
up), then it is decremented by 1000 and the time and date
support package is entered. Otherwise, time delay pro-
cessing is begun. Each task which is in a time delay has its
TD count decremented by N. If this causes the count to go
negative, then the TD flag in the WTB is cleared.

Next the wait flag in each PDT is checked and, if on, the
corresponding device service routine is entered.

TIMER then returns to the CRU interrupt decoder.
Length: 101 words

App Time: (183 + 23N; + 26N, + 21Ng3) micro-
seconds

where Ni = Number of tasks
where Ny = Number of tasks in a time delay
where N3 = Number of PDT blocks

3-4.9.2 Electronic Data Terminal/Teletypewriter Service
Routine (TTYSEG). The teletypewriter service routine,
running under monitor interrupt control, will input or
output binary or ASCII characters via the keyboard or
paper tape (Figures 3-19 through 3-21). Required buffer
and control information is taken from the user Physical
Record Block.

The keyboard and paper tape hardware are each considered
a physical device. This requires two device service routine
entry points. Entry is controlled by 10Q.

Until the device service routine is called, the keyboard is
open (bit 3 of temporary storage flag word is set). In this
state, each character entered from the keyboard will be
inspected and all rejected except an exclamation point,
which will cause the DEBUG task to be bid.

On first entry for a keyboard input, the bell is rung to
indicate ready for input.

On first entry to paper tape service routine for input, a
reader-on character is sent.

On first entry to paper tape service routine for output, a
punch-on character is sent.

3-35

KBHAN

KEYBOARD
ENTRY
LOAD FLAG
WORD FOR SET WAIT
KEYBOARD FLAG
b / GONOGO \
CLEAR CPU LOAD FLAG ISIT
INTERRUPT WORD FOR OK TO
PAPER TAPE RUN
/ FLAGIN \
SET UP EXJT,
POINTERS WAIT
FLAG

/ STRB \

SET UP
TEMPORARY
STORAGE

SET

KEYBOARD

NO
INPUTS s
EXCLAMATION |NO /SEND RING THE
READER-ON BELL
POINT? CHARACTER
+ YES NO
BID DEBUT
TASK SEND
PUNCH-ON
CHAR

!

Figure 3-19 Teletypewriter Service Routine.

3-36

NO

INPUT LEG

INPUT
CHARACTER
AVE
ALL CHARACTERS 'E°F8
BEEN SENT
INPUT YES ISIT
KEYBOARD ONE MORE ASN X-OFF
CALL CHARACTER
END
YES
CONTROL OF DATA
CALL FLAG SET?
Ye
NO
CHARACTER
OUTPUT KEYBOARD =
READER-OFFf ENTRY? CARRIAGE
CHAR RETURN
NO
LEGAL
SET BINARY OR NO
OUTPUT END OF DATA ASCHt '
PUNCH-OFF FLAG DATA
CHAR + =
STORE THE
DATA IN THE
SET SFCIOD BUFFER
FLAG IN +
SUPERVISOR
IS THE
BUFFER
FULL?
YES
OUTPUT SET
NEXT BUFFER-FULL
CHAR OUTPUT FLAG

Figure 3-19 Teletypewriter Service Routine (cont’d.)

3-37

MEMORY WORD

7 8 9 10 11 12 13 14 15 TTY INTERFACE
CRU CARD - OUTPUTS
o |- CLEAR DATA
REGISTER
—eememeef| 1 |- CHAR. LSB
2
3
TRUE DATA OUTPUT
4 | COMMUNICATION
REGISTER
5
6
7
’ s |- CHAR. MSB
INTERRUPT
OUTPUTS 9 |- CLEAR
1
Al- READ/WRITE
Clear Data \ ENABLE =0
Regist
egister 0
1
Clear
Interrupts
1]
Read = 1
Read/Write
Write=0
INPUTS TTY INTERFACE
Interrupt = 1 CRU CARD — INPUTS
L]
No
Interrupt Interrupt Sense 9 INTERRUPT
o < SENSE
A |- REsDMRITE
-] Read/Write Sense
Write=0 Q/
NOTE: Oand 1

correspond to 0 and 1
bits used in 960 CRU

instructions

Figure 3-20 Teletypewriter Output Interface.

3-38

MEMORY WORD

4 ’ W—

0

1

TRUE DATA

INPUT SIGNALS

1 Interrupt

No Interrupt

0

Char in Progress = 1

L/

128| 64 |32 |16 | 8 | 4 | 2 1 TTY INTERFACE
CRU CARD — INPUTS

+ CHAR.LsB

INPUT
COMMUNICATION
REGISTER

< CHAR. MSB
NOT USED

INTERRUPT

SENSE READ/WRITE
ENABLE

CHAR. IN PROGRESS

TTY INTERFACE
Read Enabled = 1 CRU CARD — OUTPUTS

Write Enabled = 0
e———

0

OUTPUT SIGNALS

1

Clear
Interrupts

(4]
i 9
Read/Write 1= Read
Enable A
0 = Write

NOTE: 0 and 1 correspond
to 0 and 1 bits used in
960 CRU instructions

Figure 3-21 Teletypewriter Input Interface.

3-39

CLEAR DATA
REGISTER
(No Effect On Input)

CLEAR INERRRPUT

READ/WRITE
ENABLE

The following changes will be made to the user Physical
Record Block by the device service routine:

a. Input buffer length will be truncated to
X103FF! or 10231 characters.

At end of file, bit 2 of PRB flags is set to 1.

c. At end of record on input, the number of
characters stored is placed in the PRB Record
Length field.

No print line control is done by the device service routine.
The user must send carriage returns and line feeds as
needed. If a carriage return is sent as an ASCII output, a
series of null characters are sent by device service routine to
give the carriage time to complete its movement to prevent
lost characters. If 72 characters is exceeded and no CR is
sent, the device automatically carriage returns, causing a
possible overprint.

Each physical device has its own four-word temporary
storage area arranged as follows: :

Word 0 = counter for characters input or output.

Word 1 = address of buffer word being processed.

Word 2 = user PRB flag temporary storage.

Word 3 = device service routine flag word. Initialized to
2001 for KB, 0001 for PT. DSR flag word bit
arrangement:

Bit Condition

0=1, set when X-off sent at end of record on paper
tape.

1=1, set when P-off sent at end of record on paper
tape.

2 =1, keyboard active, not a paper tape call.
3 =1, keyboard open, set to zero on first entry.

4 =1, All data stored on paper tape input. Wait for
reader-off character.

5=1, Remex (high speed paper tape reader) active

6 = 1, Carriage return sent. Send four null characters for
wait loop.
7= Not used.

8-11 Null character counter used with bit 6.

340

12-15 Counter used in packing and unpacking buffer
words.

Buffer words for binary or ASCII input are packed. An
ASCH word contains two characters; a binary word
contains four characters. If a buffer word is not full, the
data is left justified.

To punch leader, set control bit of PRB flags. Put number
of frames wanted in PRB Record length field. Order of
output on paper tape is PUNCH ON, LEADER, PUNCH
OFF.

To punch binary data, set PRB flags for binary character
output. Set Record length to number of characters* to be
output, buffer address to address of first word of data
block. Order of paper tape output is: PUNCH ON, DATA,
READER OFF, PUNCH OFF. Each binary output digit is
merged with X'0060'. For example, a binary one punch as
X10061".

To input ASCII, set PRB flags for ASCII character input,
set buffer length to the number of characters to be input,
and set buffer address to the address of the first word of
the storage area. Only data between X!10020! and X!005F!
are stored. Carriage return or a full buffer halts input and
terminates a keyboard call. If paper tape, tape continues to
be passed for no data is stored until a reader-off character is
sensed.

For binary input, set PRB flags for Binary Character input.
Set buffer length to number of *characters to be stored. Set
buffer address field to address of the first word of the
storage buffer. Only data between X'0060' and X'006F!
are accepted. A reader-off character or a full buffer stops
data storage. Only a reader-off character stops tape move-
ment. Any data between buffer full indication and a
reader-off character are lost.

Length: 345 words

Average time per character: 200 microseconds

*A character is 8 bits, or 2 frames of tape.

3-4.9.3 HSRHAN — Punch Tape Reader Service Routine.
HSRHAN (Figures 3-22, 3-23) is the entry point for the
punch tape reader service routine. Since the data input by
the dcvice is subject to the same restrictions as that of the
teletypewriter paper tape reader, and since it is assumed
that all TI 960 systems have teletypewriters as the basic
communication device, routines are shared where possible.
This requires that the teletypewriter service routine be a
part of a system using the high speed punch tape reader
service routine.

The high speed punch tape reader service routine clears the
interrupt, starts the tape movement, loads the data from
the last read command, and stops the tape movement,
There must be a delay of from 20 to 100 milliseconds
between the start and stop commands. All other functions
are handled by the teletypewriter service routine input
routine.

Length: 38 words

Prerequisite: TTYSEG

H SRSEG

CLEAR
THE CRU
INTERRUPT

FLAGIN \

SET UP EXIT,
BASE REGISTERS,

POINTERS

/ STR3 \

PROCESS PRB

DATA FOR THE
INPUT CALL
ENABLE
HAS INTERRUPTS,
X—OFF BEEN SET TO
READ STEP MODE
?
TTYSEG
/ SPURT \ / SPURT _ \
START HSR, START HSR, GET
GET DATA ON LINE, DATA ON LINE
STOP HSR STOPHSR
)
TTYSEG
TTYSEG

Figure 3-22 Punch Tape Reader Service Routine.

3-4.9.4 Card Reader Service Routine (CARDIN). The
CARDIN portion of PAM is activated by 10Q (Figure
3-24). The CARDIN service routine performs either ASCII
or binary read functions of any buffer length from 1 to 80
characters, inclusive. These options are specified in the
Physical Record Block. A buffer length specification greater
than 80 characters will be truncated in the device service
routine to 80. A zero or negative buffer length will give
unpredictable results and should be avoided.

The number of characters read from a card will be stored in
the Physical Record Block (PRB) along with error and
End-of-File (/*) flags.

When an ASCII read is being performed, any Hollerith code
not found in the legal list (Figures 3-25, 3-26) will result in
an error flag in the PRB and an ASCII block inserted in the
buffer in place of the illegal character. This will not affect
the reading of the remainder of the card.

Because of program structure, the card reader need not be
READY prior to an I/O call. The device service routine
waits for the operator to cause a ready state prior to its
issuance of a feed card command.

The card reader requires approximately 185 milliseconds to
read a card. During this interval, PAM masks CRU and
DMAC interrupts.

If a feed or read error occurs, the message DIANOSTIC 00
will be output on the system logging device. The operator
should reposition the card in the hopper and press the
START button to re-read the card.

The GONOGO routine is used to prevent the card read
from running (and masking interrupts) while other asyn-
chronous devices are running (card punch or teletypewriter

paper tape).

Length: 223 words

3-4.9.5 Card Punch Service Routine — CRU Interface
(CDP000). The card punch service routine is first activated
by the I/O call processor (I0Q) and subsequently operates
under interrupt control (Figures 3-27, 3-28). Standard end
of record processing returns program control to the worker
task after the end of record is detected.

The number of characters transmitted as one record to the
card punch is specified in the record length word of the
PRB associated with the 1/O call. End of record processing
starts after the last character has been transmitted to the
punch. Records should be at least one character long and
no more than 80, otherwise results are unpredictable.

Data may be in either binary or ASCII format (See note)
packed two characters per word. The PRB contains the
appropriate data address.

341

MEMORY WORD
78 9AB CDEF

INPUTS 6

TAPE CHANNELS 1-8

2 110 Hole
0
1 Hole 7
SPROCKET
Hole

0 S—————

No Hole
INTERRUPT

Interrupt

No Interrupt

INTERRUPT = 1 WHEN SPROCKET — 1
INTERRUPT > OWHEN INTERRUPT CLEAR — 0

OUTPUTS
RUN RUN CONTINUOUS
1 X
Single Step
Advance Enabled
0
STEP 1
0
—{ t |-—— 20-48 <t < 10045
MASK INT
ENABLED
[——
CLEAR INT
1
I[é- CLEAR INTERRUPT
- 1
Rewind
Rewind
NOTE: O and 1

correspond to 0
and 1 bits used
in 960 CRU
instructions

X

CRU DATA
MODULE

INPUTS

| 0 | TECH1

1 2

2 3

.NOT.SPROCKET <«

INTERRUPT «

F DIFF

OUTPUTS

RUN -

STEP -

REWIND -

MASK INT. -

CLEAR INT. -~

Figure 3-23 HSR Reader Interface.

7\

ASCII H. CODE CHAR | ASCII H.CODE CHAR| ASCII H.CODE CHAR | ASCII H.CODE CHAR
20 No Punches SP 30 0 0 40 8.4 @ 50 1.7 P
21 11-8-2 ! 31 1 1 41 12.1 A 51 11-8 Q
22 uD 32 2 2 42 12-2 B 52 119 R
23 8.3 # 33 3 3 43 12-3 C 53 0-2 S
24 11-8-3 $ 34 4 4 44 12-4 D 54 0-3 T
25 UD 35 5 5 45 12-5 E 55 0-4 U
26 12 & 36 6 6 46 12-6 F 56 0-5 '
27 8-5 ' 37 7 7 47 127 G 57 0-6 w
28 12-8-5 (38 8 8 48 12-8 H 58 0-7 X
29 11-8-5) 39 9 9 49 12-9 I 59 0-8 Y
2A 11-8-4 * 3A 8-2 : 4A 11-1 J 5A 0-9 z
2B 12-8-6 + 3B 11.8:6 ; 4B 11-2 K 5B UD
2C 0-8-3 , 3C uD 4C 11-3 L 5C [8)))
2D 11 - 3D 8-6 = 4D 114 M 5D uD
2E 12-8-3 3E uD 4E 11-5 N SE uD
2F 0-1 / 3F 0-8-7 ? 4F 11-6 0 5F UD
Figure 3-24 Legal Hollerith Codes.
PROGRAMMING NOTE: a. Punch ASCII, one frame per character.

ASCII character conversion is optional in the b. Punch Binary, two frames per character.

punch service routine. Use ASCII only if the

capability is available. c. Punch Leader, one null frame per character.

The punch should be placed in the HOLD condition
between files when no punch output is expected. This
reduces punch mechanism wear and tear. It also prevents
punch malfunctions and the need for frequent mainte-
nance.

Mispunching of the first card can be avoided by always
requesting a record to be punched before each file that can
later be discarded. Punch malfunction during the first
record is commonly caused by mechanical and electrical
transients when the punch is started from the power off
condition or from the HOLD condition.

Punching errors cannot be detected by the computer.
Separate data verification is recommended such as use of a
redundancy character or checksum.

Length: 72 words
Prerequisite: GETCO1

3-4.9.6 Paper Tape Punch Service Routine — CRU Inter-
face (PTP000). The paper tape punch service routine
(Figures 3-29, 3-30) is first activated by the /O call
processor (I0Q) and subsequently operates under interrupt
control, Standard end of record processing returns program
control to the worker task after end of record is detected.

Three punch functions are implemented and are requested
by setting the appropriate bit in the PRB associated with
the I/O call.

343

Data to be punched should be packed two characters per
word, The number of characters is specified in the record
length word of the PRB associated with the 1/O call.

The punch motor power is off at all times when the punch
is not in operation. When a record is punched the power is
turned on. The punch power up sequence causes a delete
code to be punched in the tape. No data is destroyed.
Worker tasks should request leader before and after each
file punched.

Length: 112 words

Prerequisities: GETCO1

3-4.9.7 Line Printer Service Routine — CRU Interface
(LP000). The line printer service routine (Figures 3-31,
3-32) is first activated by the 1/O call processor (10Q) and
subsequently operates under interrupt control. Standard
end -of record processing returns program control to the
worker task after end of record is detected.

The number of characters transmitted as one record to the
line printer is specified in the record length word of the
PRB associated with the I/O call. The address of the data is
also specified in the PRB. End of Record means the number
of characters specified have been transmitted to the line
printer.

OUTPUT READ STORE
— =] CHARACTER IN

COMMAND PULSE
BUFFER
b 2T\ +
INCREMENT
LOAD DOWN CHARACTER
OFF COUNTER COUNT IN PRB
NO
ON NO CHARACTER
COLUMN COUNT COUNT <
SET PDT =80? BUFFER
WAIT FLAG LENGTH?
YES I\

GONOGO YES
WAIT FOR STORE COLUMN RESET
PERMISSION N—{ DATA FROM GONOGO
TO RUN CRU ENTRY
RESET FIRST DECREMENT DECODE
ENTRY COUNTER COLUMN INTO

BINARY
NO
{ RETURN
COUNTER =0 ‘F’I'CE oR
?
YES
CARD SET PDT
PRESENT WAIT FLAG
CONVERT TO
ASCII
RETURN ON
ON 1'
SET CARD OFF
READER ERROR
FLAG CHARACTER =
+ ASCII BLANK
SET ‘
DIAGNOSTIC SET ERROR
BID FLAG FLAG IN
PRB
ZERO PRB
“fv'ﬁﬁfzg g CHARACTER
COUNT

Figure 3-25 Card Recorder Service Routine.

344

MEMORY WORD

012345678 9101112131415 CRU DATA MODULE
0
4 INPUT
o | ERROR R/F
1 READER READY
1024
2 8
2048
3 9
3072 4 0
5 1
d |4—. < 120- Msec 6 ROW 12
1
Hole 7 CARD PRESENCE
DATA 0 ——
No Hole 8 7
! 9 6
COLUMN
INDEX 0 A 5
B 4
Not Ready = 1
Ready c 3
0 = Ready
D 2
1= Error E ROW 1
Error
0 = No Read or F COLUMN INDEX
Feed Error .
Present = 1
Card
Presence Not Present = 0
OUTPUT
(-
Clear Read Error 1
F RED COMMAND
0
E CLEAR READ CHECK
Read 1 Stop D
Comand .
o Read
i—> NOTE: O and 1
10- usec or More correspond to

1 and 1 bits used
in CRU instructions

Figure 3-26 Card Reader Service Routine.

3-45

DP00O

D=TEMP
STORAGE
ADDRESS

v

B = BASE

v

A =PRB
ADDRESS

v

CDPO10 +1
=HANDLER
LINK

18T
ENTRY

?
YES

NO

/]

ENABLE

| PUNCH

(FEEDS CARD)

/ GETCO1 \

\ B

GET
CHARACTER

CLEAR PUNCH
INTERRUPT

v

LOAD CRU
(CARD ROWS
89,0,B8,C)

MASK PUNCH
INTERRUPT

v

v

ISOLATE
BITS FOR
ROW 1-7

RESET CARD
FEED

v

v

COLUMN COUNT

—3

SET PDT
WAIT FLAG

NO

RESET WAIT
FLAG

v

RESET 1ST
ENTRY FLAG

SHIFT PUNCH
INDICATOR IN
PUNCH ROW
WORD
(INDICATOR
POSITION
CORRESPONDS
TO ISOLATED
BIT VALUE OF
PREVIOUS STEP)

REG. A=
PDT ADDRESS

v

LOAD CRU
WITH PUNCH
WORD

v

CLEAR PUNCH
INTERRUPT
(RESET)

v

MASK PUNCH

INTERRUPT

RETURN

Figure 3-27 Card Punch Service Routine.

3-46

FILEOR

MEMORY WORD
4 56 78 9ABCDETF

CRU
(7 OUTPUTS
ROW
-P{ 0 1
1 2
OUTPUTS 2 3
ROW 1-12 3 4
Hole 4 5
No Hole 5 6
PUNCH ENABLE ’ 6 7
Punch Enabled
(Feed Card) ’ 7 8
Stop Punching ’ 8 9
INTERRUPT MASK
Enabled 9 0
Marked
A 11
INTERRUPT CLEAR
’ B 12
PUNCH ENABLE - (o
INPUTS Clear Interrupt
PUNCH OPERABLE INTERRUPT MASK E
Operable INTERRUPT CLEAR —~ | F
PUNCH STROBE
—| Ready to Punch Column L
PUNCH OPERABLE <« C
INTERRUPT
———— Interrupt PUNCHSTROBE <« | D 4
No Interrupt E
NOTE: 0 and 1 INTERRUPT <« F DIFF

correspond to 0 and
1 bits used in 960 CR
instructions.

u

NOTE: Interrupt (Bit F) is set by
Punch Strobe Transitors to 1 and
reset by use of the Interrupt Clear

Figure 3-28 Card Punch Interface.

347

OUTPUTS

MEMORY WORD

789 ABCDEF

OUTPUTS
CLOCK
—P| 0 TAPE CH 1
1 A
1
0 Data ready to punch
BACKSPACE TAPE CHANNELS 1-8 2
1=NO HOLE OUTPUT
1 =
! 0=HOLE 3| COMMUNICATION
0 Backsapce Command 4 REGISTER
ENABLE LOCAL CONTROL
5
1 Disabled
6
0 Y
REMOTE BUZZ Enabled = TAPECH 8
! Buzz Enabled 8 CLOCK
0 isabl
POWER Buzz Disablod 9 BACKSPACE
A ENABLE LOCAL
On
1 CONTROL
B REMOTE BUZZ
INTERRUPT MASK © Off
c POWER OFF/ON
1 Enabled
D NOT USED
o
INTERRUPT Masked E INTR. MASK
1 ; F INTER. CLEAR
INPUTS 0 I/lnterrupt Clear
READY INPUTS
1 1.Not Ready
LA
0 Ready = Accept Another /
INTERRUPT Character READY « D ¢
! E
READY £
0
INTERRUPT = 1 INTERRUPT «
WHEN READY —> 0 INVERT
—~ and < &
INTERRUPT = 0 DIFF.

WHEN INT CLEAR —> 0

Figure 3-29 High Speed Paper Tape Punch Interface.

348

.ENTER

SET WAIT FLAG

RESET WAIT
FLAG

END OF RECORD RETURN / GO GET A

WAS THIS

START ZERO
|ESNT-|-':'$ FIRST YES PUNCH — CHAR
MOTOR COUNT
[PUNCH
READY?
[\
END OF +
RECORD _.We RESET FIRST
RETURN ENTRY FLAG RETURN)
/ GETCO1 \
IS CONTROL <5
CHARACTER BIT ZET s YES CHAR. TO
FROM et BLANK

MEMORY

A NO NO
LEADER R Coo
CALL [
GO INVERT
VES SET CHAR. CHAR.
MASK TO
PUNCH X—OFF
INTERRUPT » f s
@ ES CHARACTER
\ ASCHI
PUNCH OUTPUT I
READER OFF CHAR
OUTPUT
BINARY
RESET AND
UNMASK
INTERRUPT

SET ERROR

FLAG
IN PRB

DID SOME
ERROR
OCCUR

RETURN)

Figure 3-30 High Speed Paper Tape Punch Service Routine.

349

LP00O / XORCO0 \ REGISTER L
——| CLEAR STROBE N
INVERT —P l‘_lF"ﬁ(TUR"
CHARACTER
A =PRB L.P.
ADDRESS DEMAND N -
uP,
* OUTPUT
D = TEMP. CHARACTER
STORAGE ‘
CLEAR 1ST
ADDRESS ENTRY RETURN
‘ ELAG ouTPUT _’ MASK
‘ STROBE INTERRUPT
B = BASE ‘ +
CHARACTER
J COUNT = RESET RESET
ZERO INTERRUPT INTERRUPT
TEPM (3) = '
LINK L +
‘ REGISTER
RESET WAIT L =RETURN
SET PDT FLAG LINK
WAIT FLAG +
NO -
GET CO1 ADDRESS
NO GET CHARACTER UNMASK
N FROM BUFFER INTERRUPT
EXIT
TO
YES FILEOR

Figure 3-31 Line Printer Routine (CRU).

Data to be printed should be in ASCII format packed two
characters per word. Line and format control characters can
be inserted anywhere within the data to be printed. If more
than 80 characters are sent between line feed control
characters, overprinting will probably occur.

The line printer automatically skips to the top of the form
after 62 lines have been printed.

Control characters are

ASCII
Character Function
X'000A! Upspace one line and reset print posi-
tion to first character.
X1008D! Reset the print position to the first
character.
X'000C! Upspace the paper form to top of

form.

3-50

If the line printer is off line when the line printer service
routine is activated, the service routine sets the wait flag
and exits. When the printer becomes ready, it continues.

Occasionally the line printer requires a Master Clear as well
as an On-Line operation to obtain an operable condition.

Printing errors cannot be detected by the program.,
Length: 51 words

3-4.10 DMAC SERVICE ROUTINES. The routines de-
scribed in this section are for devices connected to the
Direct Memory Access Channel (Figure 3-33). They have
certain characteristics in common. Upon entry:

L (Reg. 3) = Return address — 2
D (Reg. 4) = Temporary storage address (if any)

F (Reg. 6) = PDT block address
C (Reg. 7) = DMAC part number (0-7)

MEMORY WORD

OUTPUTS CRU DATA
" 8 9101112131415 MODULE
Interrupt SIUN":SUT
1, 1
Interrupts 1
,'Jl';;:::’"“ Enabled ——-”T LSB
0
CLEAR 1 A
. 7 INTERRUPT
2
l/ ONE’S COMPLEMENT
0 Interrupt Cleared DATA OUTPUT
COMMUNICATION
STROBE
] % REGISTER
0 Strobe =0 +
INPUTS P| 6 | msB
Not Ready 7 | > STROBE
Ready
0 Ready =On Line V/‘Ij
1 _ E | MASK INTERRUPT
Demand (DI:::::N: :;Tteher
chara:ter) F | CLEAR INTERRUPT
1 Interrupt
Int t
niemup INTERRUPT — 1 WHEN DEMAND —> 0 L
0 TP Tr— INTERRUPT —> OWHEN INT.CLEAR —> 0
o Interrupt D DEMAND /,
< N
E ﬁ— READY
NOTE: 0 and 1 correspond
to 0 and 1 bits used in INTERRUPT | F I‘— —<
+60 CRU instructions
INVERT
DIFF

Figure 3-32 Line Printer Interface.

Device controllers attached to the DMAC process an entire
record at a time. When finished they store a status word in
location part number *2 plus X'0098'. Then a bit is set in
location X'0096! corresponding to their part number and a
DMAC interrupt causes a trap to location X'0092'. The
DMAC interrupt decoder then enters the device service
routine. This routine processes the end of record and exits
through FILEOR.

3-4.10.1 Line Printer Service Routine — DMAC Interface
(LPH). When the line printer is connected to the DMAC

(Figure 3-34) its operation and the data transfer from the
worker program are identical to the corresponding opera-
tions when using the CRU. However, the service routine is
quite different. It merely sets up an initialization list and
initiates the data transfer. When an interrupt is returned, it
checks to see if the line printer was ready. If so, it assumes
data transmission was correct. Otherwise, it sets the wait
flag and attempts transmission again later.

Length: 44 words

3-51

L DIOH)

C =)

CHECK STATUS:
NO WAS DEVICE
READY AND
1/0 PROCESSED
CORRECTLY
YES YES
CLEAR 1ST
ENTRY AND
WAIT FLAGS
‘ FILEOR TRY AGAIN
LATER
SeT UP SET 1ST ENTRY
INITIALIZATION
LIST FLAG AND ‘&
‘ WAIT FLAG
INITIATE
TRANSMISSION
'lADAc"

Figure 3-33 Typical DMAC 1/O Service Routine.

" 3-4.11 TIME AND DATE SUPPORT.
Real — DTDSEG Dummy — DTPSEG

The time and date support package contains three separate
routines:

a. the time and date portion of the TIMER

routine

b. the time and date initialization portion of
DIAGTB

c. the get time and date supervisor call processor.

When the dummy segment is used, the routines are merely
return branches.

The time and data portion of the interval timer routine
(TMDAY) is entered once each second. It calculates
machine duty cycle for that second and updates the
maximum duty cycle if necessary. It then increments the
SECOND counter and updates the MINUTE, HOUR, DAY,

STATUS:
NO WAS LINE
PRINTER
READY
YES YES
CLEAR 1ST
ENTRY AND
WAIT FLAGS
FILEOR
SET UP
INITIALIZATION SET 1STENTRY
LIST & AND WAIT NQ
“ADAC imsm. FLAG
INITIATE
TRANSMISSION
llADAc”

Figure 3-34 Line Printer Service Routine — DMAC Interface.

and YEAR counters as required. It then transfers back to
TIMER for time delay processing (location TDLAY).

The initialization portion requests input of YEAR, DAY,
HOUR, and MINUTE from the operator, converts them to
binary and stores them. It then returns to DIAGTB at
location DTRTN.

The get time and date supervisor call is described in
paragraph 3-4.3.

Length: 167 words.
3-4.12 DIAGNOSTIC TASK (DIAGTB). The diagnostic
task is always resident in PAM. Its task identifier is zero and

its priority is always zero. Its three main functions are:

a. to initialize the time and date and start the
interval timer

b. to print task error messages

c. to print general diagnostic messages.

3-52

If supervisor flag SETCLK is on when DIAGTB runs, it
starts the interval timer and goes to DTPSEG for time and
data initialization.

If any bits in word DGFLAG are set, it clears them and
prints the message DIAGNOSTIC ON where N is the bit
that was on.

If flag SFDSDG is on, a task has been disabled. The task
identifier, error number, and address are obtained from
DTFQUE and converted. A message of the form:

TASK XX, ERROR YY, AT ZZZZ
is printed.
Length: 149 words.

3-4.13 JOB CONTROL TASK (JCWTB). The job control
task is always resident in PAM. Its task identifier is two and
its priority is one greater than that of DEBUG. It performs
all of the functions which are described in detail in
paragraph 3-3.5. In general, the routines are straight
forward, and only the main subroutines used are described
here. Also, the interrupt trap location initialization routine
is described.

JCRDBF is a 40-word buffer into which control cards are
read. Prior to the reading of any cards, an initialization
routine is stored here. When PAM is loaded, the bootstrap
loader recognizes the end vector in the DEBUG routine,
and transfers control to JCRDBF. This routine initializes
locations X'0090' through X'0095', clears all device
interrupts, and goes to SUPRST in SPB.

JCGWTB subroutine searches for a WTB with the specified
task identifier or rank. If there is none, it returns to the
calling location plus two. If it finds one, it returns to the
calling location plus four with the WTB address in F and
the next priority WTB address in E.

JCGPRO subroutine searches the task list for a procedure
with the specified ID. If none is found it returns to the
calling location plus two. If it finds one, it returns to the
calling location plus four with the procedure entry point in
E and the WRB address of a task to which it is attached
in F.

JCLODR is a relocating loader which is used by both the
load task and load procedure functions. It loads the object
program in a similar manner to that of the bootstrap loader.
In addition it verifies the redundancy character and checks
load limits. It allows a load between location X'00A8! and
the beginning location of PAM. End vectors are ignored.

DEFIOD is a subroutine (re-entrant to worker tasks) which
is called both by Job Control and DEBUG to perform the
DFIO function. It searches the Logical Device Table for an
empty block, stores the device number and LUNO in it, sets
the defined flag and returns to the calling location plus

four. If the specified LUNO is already defined or the table
is full, an error return is made to the calling location plus
two.

RELIOD is similarly used to release LUNO. The block
containing the specified LUNO has its defined flag cleared
and its first word set to X!FFFF!, There is no error return.
The routine always returns to the calling location plus two.

Length: 733 words.

3-4.14 DEBUG TASK (DEBUF). The debug task is always
resident in PAM. Its task identifier is one. Its priority is set
by the user via the DEBPRI EQU X card in SDB. It
performs the functions described in detail in paragraph
3-3.6. All 1/O except memory dump is performed on LUNO
zero, the system logger. The memory dump is output on
LUNO 9. The Job Control routines DEFIOD and RELIOD
are utilized. There is no protection against illegal memory
modification when using the LMHA function.

Length: 368 words.
3-5 CRU PROGRAMMING INFORMATION.

3-5.1 BASIC CRU. The Basic CRU consist of space (4 card
slot) for 4 CRU Modules inside the Standard Central
Processor unit chassis. Each Module has 16 input and 16
output line addresses. CRU Expansion is provided by
connecting cables from the 4 basic card slots to CRU
Expansion Chassis. Each Expansion Chassis provides space
(16 card slots) for 16 CRU Modules. Up to four Expansion
Chassis can be connected to each basic card slot in the
central processor. A total expansion of 16 CRU Expansion
Chassis or 4096 output and 4096 input line addresses
results. Figure 3-35 illustrates the addressing scheme for the
basic CRU and expanded CRU.

3-5.2 DATA MODULES — TTL COMPATIBLE. A data
module provides direct input and/or output of data to
external devices through the CRU. Each module has the
capability of sixteen input lines and sixteen output lines
(Figure 3-36). The line may be addressed individually or in

~ fields from one to sixteen, either in input or output. A

jumper modification can be made to the module to allow it
interrupt capabilities. If this is done, input line fifteen is
used to sense for interrupt presence, output line 14 is used
for masking of the interrupt, and output line 15 is used for
clearing the interrupt.

Outputing a logical 0 on a data line produces +5 volts on
the output side of the module. A logical one produces 0
volts. On inputing or sensing lines, a +5 volts will cause a
logical zero to be sensed or input and a 0 volts will cause a
logical one to be sensed in input.

3-5.3 DATA MODULE — CONTACT CLOSURE INPUT
AND OUTPUT. The contact closure module provides eight
bits of relay buffered digital input and output CRU

3-53

BASIC CRU

(4 CRU MODULES)

CPUCARD | ApDRESS 0 - F
SLOT 012

CPU CARD

SLOT 011 | ADDRESS 400 - 40F

CPU CARD

SLOT 010 | ADDRESS 800 > 80F

CPU CARD

SLOT 009 | ADDRESS C00 - COF

EXPANDED CRU

(UP TO 256 CRU MODULES)

CPU CARD
SLOT 012

CABLES

EXPANSION

CPU CARD
SLOT 011

CABLES

CHASSIS
FOR 16 MODULES

}

111 (TT]

CPU CARD
SLOT 010

CABLES

CPU CARD
SLOT 009

(J

CABLES

Y

EXPANSION
CHASSIS
FOR 16 MODULES

Figure 3-35 CRU Addressing Scheme.

3-54

ADDRESS
0~ FF

ADDRESS
100> 1FF

ADDRESS
200 > 2FF

ADDRESS
300~ 3FF

ADDRESS
400 > 4FF

ADDRESS
500 > 5FF

ADDRESS
600 > 6FF

ADDRESS
700 > 7FF

ADDRESS
800 > 8FF

ADDRESS
900 —> 9FF

ADDRESS
A00 —~> AFF

ADDRESS
B00 —~ BFF

ADDRESS
C00 - CEF

'ADDRESS

D00~ DFF

ADDRESS
EO0 — EFF

ADDRESS
F00 - FFF

INPUTS OUTPUTS INPUT OUTPUT

0 0 o N [
1 1 1
2 8 CONTACTSENSE |
RELAY ISOLATED 8 CONTACT
3 \ INPUTS + 5V 3 > OUTPUTS
=
4 PICKUP OV a 50VA
L/ RELEASE
- D | oPTIONAL 5 5
E | INTERRUPT MASK 6] 6
INTERRUPT J
F SENSE F |INTERRUPT CLEAR 7 7
Interrupt = 1 Enabled = 1 LA/, > NOT IMPLEMENTED ‘2,
Interrupt Mask M m
o Disabled = 0
No Interrupt =0 0 = Input Contact Open 0 = Contact Open
1 1 = Input Contact Closed 1 = Contact Closed
Interrupt Clear
VO NOTE: 0 and 1 correspond to 0 and 1 bits used in 960 CRU
instructions.
Figure 3-36 Data Modules. Figure 3-37 Data Modules — Contract Closure 1/O.

INPUTS OUTPUTS
o | o
1 1
addresses and operations are shown in figure 3-37. This 2 | 2
module can be used in any expansion chassis. . :)N7TERRUPTS INTERRUPTS
3 SENSE 3 ?0-7 CLEAR
Programmable functions are:
1 %
a, Sense Contact Input ot et
| 7] 71
Example
s | 8 |)
BBNE 1,RDY1 1 =0 GO TO RDY1
NE CL1,RD FC1=0GOTO 9 | | INTERRUPTS 9 | | INTERRUPTS
> 0-7 ~0-7
b. Operate Output Contact 2y
. ENABLED SENSE 3 MASK
Example F | F |
SETB OCL,1 CLOSE OUTPUT nterrupt = 1 ; ;
CONTACT —
Clear
o | No Interrupt =0 o [Interrupt
Interrupts interrupts
SETB OC1,0 OPEN OQUTPUT Enabled Enabled
CONTACT
3-5.4 INTERRUPT MODULE. The interrupt module pro- 0 ‘ 0
| |
vides eight interrupts. CRU input and output addresses and nterrupts Masked nterrupts Masked
functions are shown in Figure 3-38. This module can be
used either in the CPU or in an expansion chassis. Figure 3-38. Interrupt Module.

3-55

Programmable functions are
a. Interrupt Sense
Example

BBNE INT1,0,ISUB1 IF INTERRUPT

GO TO I SUB.

b. Interrupt Mask Sense

Example

BBNE INT1M,0,MASK1IF INTERRUPT
MASKED GO
TO MASK1

c. Interrupt Clear

Example

SETB ICLR1,0 CLEAR INTERRUPT 1

d. Interrupt Mask

Examples

SETB IMASK1,0 MASK INTERRUPT

or

SETB IMASKI1,1 UNMASK
INTERRUPT

3-5.5 ANALOG TO DIGITAL CONVERTER MODULE
The 960 A/D converter module provides a simplified means
by which the programmer can converse with analog type
equipment. To input a value from the module, a total of
two instructions are required, one to request a sample and
one to input the digital value. From a programming point
of view, there are two configurations of the module, one
which does not have input multiplexing capabilities and one
which does. The same set of instructions can be used to
program either, but on the module having input multi-
plexing capabilities, a specific input channel must be
addressed to assure sampling of the desired analog input.

In the modules not having multiplexing capabilities, a
~ sample and conversion is initiated with the outputing of a
logical one to any one of the sixteen output addresses (0-15
plus CRU base address of the module). This may be done
with either a SETB or LDCR instruction. In the modules
having multiplexing capabilities, a sample and conversion is
also initiated with a SETB or LDCR instruction, but the
instruction must output a logical one to the output address
cortesponding to the desired input channel, e.g. a SETB
instruction outputing a logical one addressed to output
address six (plus CRU base address) will cause a sample to
be taken on input channel six and a conversion to be made

of that sample. During the sampling and conversion, the
Busy/Ready Signal will go to a logic 0 and remain in that
state until conversion is complete, at which time the signal
will go to a logic 1. This signal is sensed by addressing input
line fifteen (plus CRU base address). (See Figure 3-39).
Conversion time for those modules without multiplexing
capabilities is 70 microseconds maximum, with multi-
plexing requires 80 microseconds maximum. When the

INPUT
0 < LSB SENSE
1
ON =1
:fﬁ OFF =
1" < MSB SENSE
12
13 < PLUS FULL SCALE SIGNAL
14 < MINUS FULL SCALE SIGNAL
15 « BUSY/READY SIGNAL
1 = Ready
0= Busy‘
OUTPUT
o)
1
4 ADDRESS FOR ANALOG
INPUT 0-7 RESPECTIVELY
6
7
8 N
9
gy N ADDRESS FOR ANALOG
A INPUT 8-5 RESPECTIVELY
14
15 | “

1 = Input Selected

—

0 = Input Not Selected

Figure 3-39 A/D Converter Module.

Busy/Ready signal goes to a logic one, indicating conversion
complete, the digital value, a two’s complement binary
integer, can be input with a STCR instruction addressed to
line zero with a field width of 12 bits. The number may be
input anytime after the Busy/Ready signal has gone to a
- logic 1 and before another sample and conversion is
requested.

Input line addresses 13 and 14 are used for signals which
indicate a plus full scale or minus full scale binary output
respectively. The signal at line address 13 will be a logic one
if the A/D converter output contains the plus full scale
binary output. The signal at line address 14 is logic one for
a minus full scale binary output. If the converter number is
some intermediate value, both signals will be a logic zero.

3-5.6 DIGITAL TO ANALOG CONVERTER MODULE
The D/A converter module provides a simplified means by
which the programmer can have a digital value converted to
an analog output (Figure 3-40). The module can optionally
have one, two, or three Df/A converters, thus allowing
multiple analog outputs with one instruction. '

OUTPUT

0 | « LSBSET
1

] ON =1

] ofFF=0
10
11| « MSBSET
12 < CONVERT ON CHANNEL 1
13 < CONVERT ON CHANNEL 2
14 < CONVERT ON CHANNEL 3
15

1 = Channel Selected

0 = Channel Not Selected

Figure 3-40 D/A Converter Module.

The output to the module is a 12 bit number containing a
normal 960 two’s complement binary number. To output
the number and execute a conversion, 2 Load CRU (LDCR)
instruction is used to output a 13, 14, or 15 bit field
containing the 12 bit number to be converted. The CRU
address for the instruction is line zero (plus CRU Base
Address). To select the desired channel or channels, a
logical one is output to the appropriate line or lines. For
example, the following bit configuration would cause a 16
to be converted on converters one and three.

3-57

0000 0001 0000

0101
BIT BINERY NUMBER

L I—CONVERTER ONE

CONVERTER THREE

3-5.7 INTERVAL TIMER OPERATION. The interval
timer is a 14 bit down-counter which can be initialized by
the programmer. The count can be read at any time. It
generates an interrupt when it passes through zero. The
count will always be in the range -8,192 to +8,191. The
time interval for each count is 1, 2, 4, or 8 milliseconds. It
is selectable by a jumper wire but not by programming.

This module provides an easy means for the programmer to
generate an accurate time window for enabling or masking
system stimuli or to measure accurately the duration of an
event.

Programmable functions — Refer to Figure 341.

a. Initiate count and clear interrupt

Example:

LDCR {0,16), STCLCK

STCLCK DATA COUNT*2 + X'8000!

Note that using COUNT + 2 sets bit O to a 0, clearing the
interrupt.

b. Read Count
Example:

STCR (1,14), VALUE
VALUE RES 1
c. Reset count without stopping clock
Example:

LDCR (0,15), RESET
RESET DATA COUNT*2

INPUT OUTPUT

INTERRUPT
0 SENSE 0 | <« CLEAR INTERRUPT
1 < LSB SENSE 1] <LSBSET
2 A A
3
4
5 ON =1 ON =1

OFF = 0 OFF = 0
6
7
X,
A
Y Y
E | « MSB SENSE E | <« MSBSET
START =1

F

NOT USED F STOP=0
1 = interrupt

0 = Clear
0 = No interrupt V Interrupt

COUNT RATE = 1000 COUNTS/SEC INTERRUPT
OCCURS ON ZERO COUNT. ALL FOURTEEN
DATA BITS MUST BE OUTPUT AT THE SAME
TIME. THE INTERRUPT CANNOT BE RESET
WHEN THE COUNTER IS AT ZERO.

Figure 3-41 Interval Timer Module.

3.5.8 TELETYPE INTERFACE MODULE This CRU
module provides the interface to Texas Instruments Silent
700/20 electronic data terminal. A functionally similar
module is also provided for the Teletype Corp Model
ASR-33 teletypewriter.

Programmable functions: Refer to figures 342 and 3-43.

1. Output to data terminal

Example:

SETB TPO,1 MODE = SEND

SETB TP9,0 RESET CHARACTER
IN SIGNAL

LDCR (1,8), CHAR TRANSFER CHAR
TO COMM REG

BBNE TP9,1,$ WAIT FOR CHAR
TO COMPLETE

3-58

2. Input from data terminal

Example:

SETB TPO,0 MODE = RECEIVE

SETB TYP9,0 RESET CHARACTER
IN SIGNAL

BBNE TP9,1,$ WAIT FOR
CHARACTER
IN SIGNAL

STCR (0,8),CHAR TRANSFER
CHARACTER FROM
COMMUNICATION
REGISTER
TO MEMORY

Bit No. 9 may also be used to generate an interrupt when
the input or output function is complete.

3-5.9 PULSE ACCUMULATOR MODULE This module is
designed to count pulses from external sources. The pulses
may be accumulated on the basis of a selectable time
interval, and an accumulated value can be held for
interrogation by the CPU (Figure 3-44).

Programmable functions are:

Pulse Accumulator Input 0. (Mode I)

SETB 0,1 To select
Pulse Input 0

STCR (0,0),SAVE To retrieve
register count

SETB 0,0 To release

Pulse Input 0

Pulse Accumulator Input 1. (Mode I)

SETB 1,1 To select
Pulse Input 1

STCR (0,0),SAVE To retrieve
register count

SETB 1,0 To release

Pulse Input 1

Pulse Input 0, (Mode II)

SETB 2,1 To clear
register count
SETB 0,1 Select

STCR (0,0),SAVE Retrieve
SETB 0,0 Release
Pulse Input 1 (Mode Ii)

SETB 31 Clear
SETB 1,1 Select
STCR (0,0),SAVE Retrieve
SETB 1,0 Release

Mode 1 and Mode II operation is a hardware option. For
Mode I operation the pulse accumulator holding register is
automatically cleared when the ‘“‘release” instruction is
executed.

A separate programmable “clear” command is used to reset
the holding when Mode II is implemented.

~ 3-5.10 MULTIPLY FUNCTION MODULES Two CRU
Modules are used to implement the multiply function.
There are designated “LEFT” and “RIGHT” respectively
and are inserted in adjacent slots in a CRU expansion
chassis. A sixteen bit (signed, 2’s complement) number is
output to “LEFT” and a second 16 bit number is output
“RIGHT”. After a short delay the product is available. The

3-59

most significant 16 bits with sign extended is input from
“LEFT” and the least significant 16 bits is input from
“RIGHT” (Figure 3-45).

Example
LDCR LEFT, LOAD
MPCND MULTIPLICAND
LDCR RIGHT, LOAD
MULT MULTIPLIER
NOP *DELAY*
STCR LEFT, STORE
MSPROD PRODUCT MSP
STCR RIGHT, STORE
LSPROD PRODUCT LSP
NOTE

“LEFT” and “RIGHT?” are defined as

MPY BSEG ©

LEFT CON 0,16

RIGHT CON 16,16
END

7

MEMORY WORD

8 9 10

11 12 13

14

15

TRUE DATA

0

)

OUTPUTS
1

Clear Data
Register

.

INPUTS

No
Interrupt

=0

Read = 1

Clear
Interrupts
0

Read = 1

Read/Write

Write = 0

Interrupt = 1

Interrupt Sense

Read/Write Sense

Write= 0

NOTE: O and 1
correspond to 0 and 1
bits used in 960 CRU
instructions

Figure 3-42 Teletypewriter Output

3-60

TTY INTERFACE
CRU CARD — OUTPUTS

_, CLEAR DATA
REGISTER

- CHAR. LSB

OUTPUT

COMMUNICATION

REGISTER

_, CHAR.MSB
INTERRUPT

- CLEAR

-» READ/MWRITE
ENABLE =0

TTY INTERFACE
CRU CARD - INPUTS

]

9

- INTERRUPT
SENSE

. READ/WRITE
SENSE

MEMORY WORD

128|164 | 32|16 | 8 | 4 | 2 1 TTY INTERFACE
CRU CARD — INPUTS

L) A 0 | « CHAR.LSB

1

TRUE DATA 3
INPUT

COMMUNICATION
4 REGISTER

7 |« CHAR.MSB

INPUT SIGNALS 8 | NOT USED

Interrupt 9 INTERRUPT

SENSE READ/WRITE
ENABLE

B | CHAR. IN PROGRESS

g

1

No Interrupt A
(4]

Char in Progress = 1

TTY INTERFACE
Read Enabled = 1 CRU CARD - OUTPUTS

0 CLEAR DATA
Write Enabled = 0 REGISTER
— (No Effect On Input)

OUTPUT SIGNALS

1 1
Clear
Interrupts I/ r"/

0
9 | CLEAR INTERRUPT

Read/Write 1= Read
Enable A READ/WRITE
0 = Write ENABLE

NOTE: 0 and 1 correspond
to 0 and 1 bits used in
960 CRU instructions

Figure 3-43 Teletypewriter Input.

3-61

STCR 70 CPU

M L CRU
0 Ollsl10|9|8|7|6|5|4|3|2]|1]8 PULSE
8 i 'y 'y R ACCUMULATOR BOARD OUTPUT
* + * * ﬁ ’ 1 : 0 1 0 0 LSB
110 . N
1 |
y 2
1 | H
' 3 o
1 | L
T 4 D
1] " |
1 | &' N
| 6 G
1
| 7
1 R
t 8 E
1 | G
T 9
1 |
T 10 J
1 | 0.0 0
- — 1 11 | msB
STCRISALL 1S} o EAR VALUE
FULL VALUE ZERO L
X'OFFF! OR 409
 [p—— el EACE | 1 EAR |
SELECT ' RELEASE | CLEAR
PI#0 S/R e L——-d
0 : 1 | 0 i |
Pl #1 S/R ! |
Use SETB L R A '
from CPU P1 #0 CLEAR 2 :_ — I =
Pl #1 CLEAR | : I I
I\ | J
| MODE | |
4l
>
MODE II

Figure 3-44 Pulse Accumulator Module.

3-62

MULTIPLIER FROM CPU CRU

SLOT
X10030+

MODULE COMPUTATION

20~-0n
S
-
N
} -t
-
-
o

PRODUCT OUTPUT

“RIGHT-MULT"”
BOARD

21 3|oleiN]o|als|w|v]=]e

] |
BlW|N

MULTIPLICAND FROM CPU

-
)]

Zo-0

w2

F-

w

N

-

o

0

[+

~l

-]

(3}

£

w

N
-

N EllEEEENe]

X
S
8
Q

olo|v|ojaldlw|n]=|o] &

K

n[m[o]ola]>elo]]alalalu]s] - o

“LEFT-MPCND"
BOARD

PRODUCT |E | S

nw o2
©ONDT
oOND
OND
aANT
ANT
WwNDT
NNT
- NT
(=2 U -
O -
(- B0 -
NaT

Figure 3-45 Multiply Functions Modules.

3-63

SECTION IV

PROGRAMMING SUPPORT MONITOR

4-1 INTRODUCTION.
The Programming Support Monitor (PSM) provides all the
facilities required to operate the Model 960 programming
system including ’ ’

a. The assembler SAL960

b. The Linking Relocating Loader LRL960

c. The Source Maintenance Routine SMR960

d. The object program utilities
PSM is upwards compatible with the Process Automation
Monitor (PAM). Programs that are written to execute using
PSM as the computer interface will also execute using PAM.
Functions performed by PSM for the user include

a. Program Loading

b. Logical input/output device assignment

c. Control and operation of standard I/O equip-

ment

d. Optional arithmetic and code conversion
operations

e. Interrupt processing

f. Error detection and recovery.

Users with requirements for single program operation and
particularly for non-real-time-program operation should
consider the use of PSM as a system monitor because

a. PSMis upwards compatible with PAM
b. PSMis simple to use
c. PSMis expandable by the user

d. PSM memory requirements are minimal.

4-2 PSM SYSTEM DESCRIPTION.

The PSM Supervisor provides interrupt and supervisor call
decoding together with interrupt subroutine linkage for
operation of standard I/O devices and user linkage to
system functions, The PSM user can solve applications
problems without needing to become involved in the details
of 1/O interrupt processing and equipment control or the
internals of system functions. (Multiply, Divide, Code
Conversio_ns, etc.)

4.1

Practically all PSM system functions are optional. The user
may incorporate standard routines particularly suited to the
solution of the application problem. The user where
necessary can also supply and include special system
functions of his own manufacture.

4-2.1 SUPERVISOR.

4-2.1.1 Interrupts. There are three interrupt routines:

a. Internal
b. CRU
c. DMAC.

When an internal interrupt occurs, PSM comes to an error
halt (refer to paragraph 4-3.2). The DMAC interrupt is also
a hardware or software malfunction and causes an error
stop unless PSM is implemented on a machine with a
DMAC. The internal interrupt is caused by a power failure
or by a worker program which has not been debugged. Both
the DMAC and internal interrupt device service routines
may be easily replaced by the user with application-
dependent interrupt processors.

The CRU interrupt routine decodes interrupts for IO
devices connected to the CRU and enters the I/O device
service routine for each device requesting service. The
device service routine processes the next character and
returns to the CRU interrupt decoder.

NOTE

A device service routine that operates with
interrupts masked is never entered in this
manner.

PSM idles until each record requested is completed. At the
end of the record control returns to the worker program.

4-2.1.2 Main Supervisor Call Decoder (SENT). A worker
task makes a supervisor call by executing a SXBS *X'007F!
instruction. X'007F' contains the address of the PSM
Supervisor entry status block (SENTRY). At this time,
Worker Register Three must contain an op code in bits 0-5
and an address relative to Worker Register Four in bits
6-15. The status is saved. Execution in the supervisor mode
begins at location SENT. This routine decodes the call, puts
the op code in Supervisor Register Zero (right justified) and
the address in Supervisor Register One. If the op code is
legal, the device service routine for that call is entered.
Refer to paragraph 4-4 for a description of all legal calls.
Many of the device service routines get arguments from the

worker registers and enter a system subroutine. When the
requested action is completed, a LDS SENTRY instruction
returns control to the worker program.

4.2.1.3 1/O Call Processor (I0Q). When the Supervisor call
decoder (SENT) recognizes a zero op code, it branches to
I0Q. Register One contains the address of a Physical
Record Block (PRB). IOQ gets the Logical Unit Number
(LUNO) from the PRB and searches the Logical Device
Table (LDT) for a table entry with the same LUNO. If
there is none, the PSM comes to an error halt (refer to
paragraph 4-3.2). If the LUNO is found, the Physical Device
Number is determined and the device service routine
address is located in the Device Service Routine Address
Table (DSRAT). The appropriate block in the Physical
Device Table (PDT) is initialized with the device service
routine address and PRB address. Register Five is loaded
with the device temporary storage address. Register Seven is
loaded with the device CRU base address. Next, the proper
device service routine is entered, with interrupts masked.
When the device service routine returns to 10Q (after
processing the first character), interrupts are unmasked and
control is transferred to the PSM idle location. When the
entire I/O record is complete, control returns to the worker
task.

4-2.2 DEVICE SERVICE ROUTINES. The input/output
device service routines are reusable. One service routine can
control as many devices of a particular type as there are
physical device tables provided in the program.

4-2.2.1 Data Terminal/Teletypewriter Service Routine. The
teletypewriter device service routine, running under inter-
rupt control, inputs or outputs binary or ASCII characters
via the keyboard or punched tape. Buffer and control
information is taken from the user Physical Record Block.
Refer to Figure 4-1.

PHYSICAL RECORD BLOCK

012 34567 8 15
PRB
+0 WTB ADDRESS
+1 DATA BUFFER ADDRESS
+2 DATA BUFFER LENGTH
+3 DATA RECORD LENGTH

8 1e [e v S [r]e][R LOGICAL
+a |'%] | Bl @ ar| 5| UNITNBR+

* — SET BY CALLING TASK

+ — LOGICAL UNIT NUMBERS 0 THRU F
SYSTEM RESERVED; FF ILLEGAL

Figure 4-1 Physical Record Block.

The keyboard/pririter is treated as one physical device. The
paper tape reader/punch is considered a separate physical
device. Two entry points are provided in the device service
routines. Flags are set to permit use of common subroutines
for processing teletype 1/O for the

a. Keyboard

b. Printer

c. Paper Tape Reader
d. Paper Tape Punch

Half duplex operation is standard. Entry is from either I0Q
or from the CRU interrupt decoder.

When the teletypewriter service routine is inactive, the
keyboard is left open (bit 3 of temporary storage flag word
is set). In this state, each character entered from the
keyboard will be inspected and rejected except the letters L
or X, which causes a task to be loaded or executed.

On first entry for a keyboard input, the bell rings to
indicate ready for input.

On first entry for paper tape input, a reader-on character is
sent.

On first entry for paper tape output, a punch-on character
is sent. Teletypewriters with a manual punch will not
respond to this signal.

The following changes will be made to the user Physical
Record Block by the device service routine:

a. Input buffer length is truncated to 03FF ¢ or
1023 characters,

b. At end of file, bit 2 of PRB flags is set to 1.

c. At end of record on input, the number of

characters stored is placed in the PRB record
length field.

No print line control is done by the device service routine.
The user has complete control of page format. If a carriage
return is sent as an ASCII output, a series of null characters
is automatically sent by the device service routine to
printing while the carriage is in motion. If 72 characters are
sent with no carriage return, the device automatically
returns the carriage, possibly causing an overprint.

Each physical device will have its own four-word temporary
storage area arranged as follows:

Word 0 counter for characters input or output.

Word 1 address of buffer word being processed.

Word 2 user PRB flag word temporary storage.
Word 3 handler flag word. Initialized to 2001 for
KB, 0001 for PT.

Device service routine flag word bit arrangement:

BIT CONDITION

0 1, set when X-off sent at end of file on paper
tape.

1 1, set when T-off sent at end of file on paper
tape.

2 1, keyboard active, not a paper tape call.
3 1, keyboard open, set to zero on first entry.

4 1, All data stored on paper tape input. Wait for
reader-off character.

5 1, Remex (high speed paper tape reader) active.

6 1, Carriage return sent. Send four null charac-
ters for wait loop.

7 Not used.

8-11 Null character counter used with bit 6.

12-15 Counter used in packing and unpacking

buffer words.

Buffer words for binary or ASCII input are packed. An
ASCII word contains two characters; a binary word
contains four characters. If a buffer word is not full, the
data is left justified.

To punch leader, set the control bit of PRB flags. Put the
number of frames in the PRB record length field. Order of
output on paper tape is PUNCH ON, LEADER, PUNCH
OFF.

To punch binary data, set the PRB flags for binary
*character output. Set the record length to number of
characters to be output, buffer address to address of first
word of data block. Order of paper tape output is: PUNCH
ON, DATA, READER OFF, PUNCH OFF. All binary
output frames contain a 6 in the upper digit. For example,
a binary one will punch as a 61.

*A character is eight bits or two frames of tape.

To input ASCII, set the PRB flags for ASCII character
input, set the buffer length to the number of input
characters, and set the buffer address to the address of the
first word of the storage area. Only characters with values
between X!'0020' and X'005F! are stored. Carriage return

43

or a full buffer halts the input and terminates a keyboard
call, If the input is from paper tape, the tape continues to
pass after the carriage return is input until the reader-off
character is sensed, but no data after the carriage return is
stored.

For binary input, set the PRB flags for Binary Character
input. Set the buffer length to the number of characters
(two hex digits/character) to be stored. Set the buffer
address field to the address of the first word of the storage
buffer. Only data between X'0060' and X'006F!' is
accepted. A reader-off character or a full buffer stops the
data storage. Only a reader-off character stops tape move-
ment. Data between the buffer-full indication and reader-
off character is lost.

4-2.2.2 Punch-Tape Reader Service Routine. HSRSEG is
the entry point for the punch-tape reader service routine.
Since the data input by the high-speed tape reader is subject
to the same restrictions as that of the data terminal/
teletypewriter punch tape reader, routines are shared where
possible. The teletypewriter service routine must be a part
of a system which includes a punch-tape reader.

The high speed reader service routine controls operation of
the reader, processes reader interrupts, and uses the
teletypewriter character processing routines for character
processing.

4-2.2.3 Card Reader Service Routine. The card reader
service routine is activated by an 1/O call.

The device service routine performs either an ASCII or a
binary read function of any buffer length from one to 80
characters inclusive as specified in the Physical Record
Block associated with the call. A buffer length specification
greater than 80 characters is truncated. A zero or negative
buffer length gives unpredictable results.

The number of characters read from a card is stored in the
Physical Record Block (PRB) along with error and End-of-
File flags.

When an ASCII read function is being performed, any
Hollerith code not found in Table 4-1 results in an error
flag in the PRB and an ASCII blank inserted in the buffer in
place of the illegal character. This does not affect the
reading of the remainder of the card.

Because of program structure, the card reader need not be
ready prior to an I/O call. The device service routines wait
for the operator to ready the card reader before it issues a
feed-card command.

The card reader requires approximately 185 milliseconds to
read a card. During this interval, PSM masks external

interrupts.

A card jam or misregistration causes the CPU to halt with

TABLE 4-1
LEGAL HOLLERITH CODES

ASCII H. CODE CHAR | ASCII H.CODE CHAR| ASCII H.CODE CHAR| ASCII H.CODE CHAR
20 No Punches SP 30 0 0 40 8.4 @ 50 1.7 P
21 11-8-2 ! A 1 1 41 12.1 A 51 11.8 Q
22 UD 32 2 2 42 12.2 B 52 11-9 R
23 8-3 # 33 3 3 43 12-3 C 53 0-2 S
24 11-8-3 $ 34 4 4 44 12-4 D 54 0-3 T
25 uD 35 5 5 45 12-5 E 55 0-4 U
26 12 & 36 6 6 46 12-6 F 56 0-5 A
27 8-5 ’ 37 7 7 47 12-7 G 57 0-6 w
28 12-8-5 (38 8 8 48 12-8 H 58 0-7 X
29 11-8-5) 39 9 9 49 12-9 1 59 0-8 Y
2A 11-8-4 * 3A 8-2 : 4A 11-1 J 5A 0-9 A
2B 12-8-6 + 3B 11.8-6 4B 11-2 K 5B uD
2C 0-8-3 , 3C 4C 11-3 L 5C UD
2D 11 - 3D 8:6 = 4D 11-4 M- 5D Ub
2E 12-8-3 3E UD 4E 11-5 N 5E uD
2F 0-1 / 3F 0-8-7 ? 4F 11-6 o) 5F UD
CONTROL CHARACTER
UD = UNDEFINED
ASCII H.CODE CHAR MEANING
17 0-9-6 EOB BLOCK END
X'3001! displayed in INSTRUCTION REGISTER A. packed two characters per word. The PRB contains the
appropriate data address.
To recover this error:
The punch does not operate when the feed hopper is
a. Remove last card from card reader output empty, when the stacker is full, or when the chip box is
stacker. full. These conditions can be corrected as follows:
b. Place card at front of unread card deck in read
h a. Feed Hopper Empty
opper.
c Restart card reader. (1) HALT the computer using the operator’s
console.
'Ijhls halt d'oes not set a PRB error flag since this procedure (2) Place the punch in HOLD.
gives effective recovery.
4-2.2.4 Card Punch Service Routine — CRU Interface. The (3) ?argfltlllly riffle and place the cards in the
card punch service routine is first activated by the 1/O call eec hopper-
processor (I0Q) and subsequently operates under interrupt
control. Standard end of record processing returns program (4) Operate punch MASTER CLEAR.
control to the worker task after the end of record is (5) Select computer RUN, START.
detected.

The number of characters transmitted as one record to the
card punch is specified in the record length word of the
PRB associated with the I/O call. End of record processing
starts after the last character has been transmitted to the
punch. Records should be at least one character long and
no more than 80; otherwise results are unpredictable.

Data may be in either binary or ASCII format (see note)

4.4

(6) Release punch HOLD.

b. Stacker Full

HALT the computer using the operator’s
console.

(1)

(2) Place the punch in HOLD.

(3) Remove the cards from the stacker.
(4) Operate punch MASTER CLEAR.
(5) Select computer RUN, START.

(6) Release punch HOLD.

c. Chip Box Full

(1) HALT computer using operator’s console,
(2) Place punch in HOLD.

(3) Empty chip box.

(4) Operate punch MASTER CLEAR.

(5) Select computer RUN, START.

(6) Release punch HOLD.

The punch should be placed in the HOLD condition
between files when no punch output is expected. This
reduces punch mechanism wear and tear. It also prevents
punch malfunctions and the need for frequent mainte-
nance,

Mispunching of the first card can be avoided by always
requesting a record to be punched before each file that can
later be discarded. Punch malfunction during the first
record is commonly caused by mechanical and electrical
transients when the punch is started from the power off
condition or from the HOLD condition.

Punching errors cannot be detected by the computer.
Separate data verification is recommended such as use of a
redundancy character or checksum.

PROGRAMMING NOTE

ASCII character conversion is optional in the
punch service routine. Use ASCII only if the
capability is available.

Punch malfunctions should be avoided by careful operating
practices. Malfunctions can be recovered using the follow-
ing procedure to eliminate the effect of unpredictable
mechanical and electrical transients that occur when the
punch fails to operate.

a. Non Pick

HALT the computer using the operator’s
console.

1)

(2) Place the punch in HOLD.

(3) Remove the damaged card from the feed
hopper.

(4) Operate punch MASTER CLEAR.

(5) Display PSM load address +102.

(6) Enter value displayed in the program
counter.

(7) Enter X'00CO! in the status register.

(8) Select RUN, START.

(9) Release Punch HOLD.

b. Jam

(1) HALT the computer using the operator’s
console.

(2) Place the punch in HOLD.

(3) Remove the damaged card from the
punch mechanism.

(4) Perform steps four through nine above.

4-2.2.5 Paper Tape Punch Service Routine — CRU Inter-
face. The paper tape punch service routine is first activated
by the I/O call processor (I0Q) and subsequently operates
under interrupt control.

Standard end of record processing returns program control
to the worker task after end of record is detected.

Three punch functions are implemented and are requested
by setting the appropriate bit in the PRB associated with
the 1/O call.

a. Punch ASCII — one frame per character.
b. Punch Binary — two frames per character.
c. Punch Leader — one null frame per character.

Data to be punched should be packed two characters per
word. The number of characters is specified in the record
length word of the PRB assaciated with the I/O call.

The punch motor power is off at all times when the punch
is not in operation. When a record is punched the power is
turned on. The punch power up sequence causes a delete
code to be punched in the tape. No data is destroyed.
Worker tasks should request leader before and after each
file punched.

4-2.3 SYSTEM SERVICE ROUTINES.

42.3.1 Multiply Service Routine. This service routine
obtains the integer product of the contents of worker
register 0 and a 16 bit two’s complement number in
memory. The 32 bit two’s product replaces the contents of
Worker Registers Zero and One (16 magnitude bits in
Register One and 15 magnitude bits and a sign bit in
Register Zero).

TITLE: MULTPY

PURPOSE: To. determine the product of two bit two’s
complement integer numbers.

TIMING: 930 microseconds (average)
STORAGE REQUIREMENTS: 119 words

PREREQUISITE: None

EXAMPLE: 0010 X FFFF = FFFF FFF0Q
FFFF X FFFF = 0000 0001
7FFF X 7FFF = 3FFF 0001

ERROR RETURN: None

4-2.3.2 Divide Service Routine. This service routine divides
the 32-bit two’s complement number in Worker Registers
Zero and One by the 16-bit two’s number. Its quotient is
returned in Register One and the remainder in Register
Zero. If the sign of the quotient is plus then the sign of the
remainder is plus. If the quotient is minus, then the sign of
the remainder is equal to the sign of the original dividend.

TITLE: DIVIDE

PURPOSE: To divide a 32 bit two’s complement number
by a 16 bit two’s complement number.

TIMING: 1.2 milliseconds (average)
STORAGE REQUIREMENTS: 138 words

PREREQUISITE: None

EXAMPLE: 9(%1()?)%05 = 4003 with remainder
= 0003
&P;)E(%l— = BFFD with remainder
=FFFD
0001 000F _ . .
FFFC = BFFD with remainder

=0003
ERROR RETURN: If overflow occurs, that is, if the

magnitude of the quotient is larger than 15 bits, then the
overflow bit of the worker status register is set to 1.

4.6

4-2.3.3 Double Word Circular Left Shift Service Routine.
This service routine shifts the two words addressed by
Worker Register One circular left the number of places
given by Worker Register Two, the old double word being
replaced by the new shifted double word.

TITLE: SCLD

PURPOSE: To perform a double word circular left shift
from 0 to 31 places.

TIMING: Approximately 141 microseconds + 1.6 Nu (N =
Shift Count).

STORAGE REQUIREMENTS: 81 words
PREREQUISITE: None

EXAMPLE: Shift 3F01, 1001 circular left 4 will result in
FO11, 0013.

ERROR RETURN: A shift count greater than 31 gives an
unpredictable result, but no notification is given to the
user.

4.2.3.4 Square Root Service Routine. This service routine
calculates the square root of a 32-bit number in Worker
Registers Zero and One (16 magnitude bits in Register One
and 15 magnitude bits and a sign bit in Register Zero) and
places the results in Worker Register Zero. If the number is
minus (that is bit O of register 0 equals 1) then no operation
is performed.

TITLE: SQRT

PURPOSE: To calculate the square root of a 32 bit fixed
point number.

TIMING: 4.8 milliseconds
STORAGE REQUIREMENTS: 179 words
PREREQUISITE: Subroutine DIVIDE,
EXAMPLE: Enter Exit

3FFFF 0001 7FFF
ERROR RETURN: The maximum value which can be
handled by this routine is 3FFF 00011¢. Any larger

number results in an overflow in which case the worker
status overflow bit is set to 1.

4-2.3.5 Convert Binary to Hexadecimal ASCII Service
Routine. This service routine converts a 16-bit binary
number contained in Worker Register Zero to a four-digit
hexadecimal number and stores this converted value in a
two-word buffer supplied by the worker program.

TITLE: CBHA

PURPOSE: To convert a 16-bit binary number to a
four-digit hexadecimal ASCII number.

TIMING: 169 microseconds (average)
STORAGE REQUIREMENTS: 47 words

PREREQUISITE: The 16 word table BTOATB in service
routine CBDA.

EXAMPLE: Binary Value Resulting Hex. ASCI
7FFF 3746
4646

ERROR RETURN: None

4.2.3.6 Convert Hex ASCII To Binary Service Routine.
This service routine converts a two-word hexadecimal
ASCII array supplied by the worker task into a 16-bit
binary value and returns it in Worker Register Zero. No
validity checks are made. Significant hexadecimal digits
should be right justified in the field with leading zeros or
blanks padded.

TITLE: CHAB

PURPOSE: To convert a two-word hexadecimal ASCII
array to binary.

TIMING: 346-2/3 microseconds + 1/3 microsecond for
each character > 9.

STORAGE REQUIREMENTS: 48 words
PREREQUISITE: None

EXAMPLE: 41303746 hexadecimal ASCII converts to
AOQ7F.

ERROR RETURN: None

4.7

4-2.3.7 Convert Binary To Decimal ASCII Service Routine.
This service routine converts a two’s complement binary
number in Worker Register Zero to a signed five-digit
decimal ASCII number and stores this converted value in a
three-word buffer supplied by the worker program.

TITLE: CBDA

PURPOSE: To convert a 16-bit two’s complement binary
number to a signed five-digit decimal ASCII number.

TIMING: 6.271 milliseconds
STORAGE REQUIREMENTS: 93 words

PREREQUISITE: Subroutine DIVIDE.

EXAMPLE: Binary Value Resulting Decimal ASCII
7FFF 2B33
3237
3637

ERROR RETURN: None

4-2.3.8 Convert Decimal ASCII To Binary Service Routine.
This service routine converts the three-word signed decimal
ASCII buffer provided by the worker task into a 16-bit
binary number returned in Worker Register Zero. Signifi-
cant digits should be right justified in the field with leading
zeros or blanks padded. A value which is not signed
negative is assumed positive. No overflow or validity checks
are made.

TITLE: CDAB

PURPOSE: To convert a 3-word signed decimal ASCII
value to 16-bit binary.

TIMING: 55 microseconds

STORAGE REQUIREMENTS: 72 words
PREREQUISITE: None

EXAMPLE: +00329 read in ASCII format = 2B30 3033
3239, CDAB converts this buffer to 0149.

-00001 yields FFFF. .

ERROR RETURN: None

4-2.3.9 Convert Fixed Point Number To Floating Point
Service Routine. This service routine converts the double
word fixed point number in Worker Registers Zero and One
to a floating point number and places the resulting 32 bits
in Worker Registers Zero and One. The floating point
format is:

01 15 16 23 24 31
S BINARY
EXPONENT

0 =plus
1 = minus

3

TITLE: FIXFLT

23 bit magnitude Biased by X!0080!

PURPOSE: To convert a 32-bit two’s complement fixed
point number to floating point format.

TIMING: 555 microseconds

STORAGE REQUIREMENTS: (Floating Point Package)
851 words

PREREQUISITE: SCLD

EXAMPLE:
Fix Point Floating Point Decimal

(Hex) Equivalent

0000 0001 40000081 1.0
FFFF FFFF C0000081 -1.0
0000 FFFF 7FFF8090 +65535.0
FFFF 0001 80008090 -65535.0

ERROR ERTURN: None

4.8

4-2.3.10 Convert Floating Point Number To Fixed Point
Service Routine. This service routine converts a ﬂoating
point number in Worker Registers Zero and One to fixed
point format and returns the number in Worker Registers
Zero and One.

TITLE: FLTFIX

PURPOSE: To convert a floating point number to a fixed
point number.

TIMING: 460 microseconds

STORAGE REQUIREMENTS: (Floating Point Package)
857 words

PREREQUISITES: None

EXAMPLE:
Decimal Floating Point Fixed Point
(Hex) Results
1.0 4000 0081 0000 0001
0.5 4000 0080 0000 0000
-1.0 C000 0081 FFFF FFFF
3.5 7000 0082 0000 0003

ERROR RETURN: None

4-2.3.11 Add Floating Point Numbers Service Routine.
This service routine determines the floating point sum of a
floating point number in Worker Registers Zero and One
and a floating point number in memory. This sum replaces
the contents of Worker Registers Zero and One. Refer to
the floating point format.

TITLE: FLTADD

PURPOSE: To determine the sum of two floating point
numbers.

TIMING: 900 microseconds
STORAGE REQUIREMENTS: (Floating Point Package)
PREREQUISITE: DUBADD, NORMAL, FINEXP, CLEXP

ERROR RETURN: None

4-2.3.12 Subtract Floating Point Numbers. This service
routine determines the floating point difference of a
floating point subtrahend in Worker Registers Zero and One
and a floating point minuend in memory. This difference
replaces the contents of Worker Registers Nine and One.
Refer to the floating point format.

TITLE: FLTSUB

PURPOSE: To determine the difference of two floating
point numbers.

TIMING: 1.0 millisecond

STORAGE REQUIREMENTS: (Floating Point Package)
851 words

PREREQUISITE: FLTADD, DUBCMP

ERROR RETURN: None

4-2.3.13 Multiply Floating Point Numbers Service Routine.
This service routine determines the floating point product
of a floating point number in Worker Registers Zero and
One and a floating point number in memory. This product
replaces the contents of Worker Registers Zero and One.
Refer to the floating point format.

TITLE: FLTMUL

PURPOSE: To determine the product of two floating point
numbers.

TIMING: 4.3 milliseconds

STORAGE REQUIREMENTS: (Floating Point Package)
851 words

PREREQUISITE: MULTPY, DUBADD,
DUBCMP, NORMAL, FINEXP, CLEXP

DUBRT,

ERROR RETURN: None

49

4-2.3.14 Divide Floating Point Numbers Service Routine.
This service routine determines the floating point quotient
of a floating point dividend in Worker Registers Zero and
One and a floating point divisor in memory. This quotient
replaces the contents of Worker Registers Zero and One.
Refer to the floating point format.

TITLE: FLTDIV

PURPOSE: To determine the quotient of two floating
point numbers.

TIMING: 5.6 milliseconds

STORAGE REQUIREMENTS: (Floating Point Package)
851 words

PREREQUISITE: Divide, Multiply
ERROR RETURN: None

4-2.3.15 Convert Floating Point Numbers Service Routine.
This service routine converts a floating point number in
Worker Registers Zero and One to output format and stores
the resulting six words in a buffer supplied by the worker
program. The output format is of the form
51.NNNNNNE5,MM, where 51 is the sign of the number,
.NNNNNN is the magnitude of the number in decimal, E
divides the magnitude from the exponent, S, is the sign of
the exponent, and MM is the decimal power of ten by
which the number is multiplied.

TITLE: CONVBE

PURPOSE: To convert a floating point number to a format
suitable for output.

TIMING: 240 milliseconds (maximum)

STORAGE REQUIREMENTS: (Floating Point Package)
851 words

PREREQUISITE: FLTDIV, FLTMUL, CBDA
EXAMPLE:

Floating Point Number Output Format

1.0 +.100000E01
-479.01 -.479010E03

ERROR RETURN: None

4-2.3.16 Floating Point Sine Service Routine. This service
routine calculates the SIN of the floating point number in
Worker Registers Zero and One, which represents some
angle between -7/2 and /2, and returns the results in
Registers Zero and One.

TITLE: FSIN

PURPOSE: To determine the floating point SIN of a
floating point number.

TIMING: 39.12 milliseconds

STORAGE REQUIREMENTS: (Trigonometric Package)
468 words

PREREQUISITE: FLTSUB, FLTADD, FLTMUL, FLTDIV

ERROR RETURN: An angle greater than 7/2 or less than
-@/2 will produce an inaccurate result but no notification
is given to the worker program.

4-2.3.17 Floating Point Cosine Service Routine. This ser-
vice routine calculates the COS of the floating point
number in Worker Registers Zero and One, which repre-
sents some angle between ~m/2 and 7/2, and returns the
results in Registers Zero and One.

TITLE: FCOS

PURPOSE: To determine the floating point COS of a
floating point number,

TIMING: 39.12 milliseconds

STORAGE REQUIREMENTS: (Trigonometric Package)
468 words

PREREQUISITE: FSIN
ERROR RETURN: An angle greater than 7/2 or less than

~m/2 will produce an inaccurate result but no notification is
given to the worker program.

4-10

4-2.3.18 Floating Point Arctangent Service Routine. This
service routine calculates an angle, between -n/2 and 7/2,
the SIN of which is contained in Worker Registers Zero and
One, and the COS of which is addressed by the worker
programs supervisor call. This resulting angle is placed in
Worker Registers Zero and One.

TITLE: ARCTAN

PURPOSE: To compute the floating point arctangent of
the ratio of two floating point arguments.

TIMING: 68.42 milliseconds

STORAGE REQUIREMENTS: (Trigonometric Package,
including FSIN, FCOS, and ARCTAN) 468 words

PREREQUISITE: FSIN
ERROR RETURN: None

4-2.4 SYSTEM BOOTSTRAP LOADER. The system
loader, which occupies locations 0-124, is used by PSM to
process binary records from the SAL960 assembler and
produce a relocated program in core memory. The loader
has been written for three input devices. The input device
determines which loader is used. Input devices are:

a. Card reader
b. Tape reader
c. Teletypewriter.

All loader variations have similar operating procedures,
differing only in the manual control of the input device.
Loader operating instructions are located in paragraph 4-5.

Loader restrictions and limitations are:

a. Error checking has been minimized in favor of
saving memory.
b. Absolute programs (with a fixed load address)

will not be loaded correctly unless the load
address is manually set to zero before loading
the program.

For these reasons, PSM will allow the user to supply his
own loader program. To do this:

Using the system loader, load the new loader
program at some location in memory.

a.

These changes will not necessitate a new system generation.

4-2.5 LOGICAL DEVICE ASSIGNMENT. Worker pro-
grams address physical I/O devices by logical unit numbers.
WDFIO is a worker program that assigns a logical unit
number (LUNO) to a physical device (DEVNO). Loading
instructions for WDFIO are found in paragraph 4-5.

Ten logical device assignments are permitted in the standard
PSM. Logical Unit Zero is permanently assigned to the
system input device. This leaves nine available for worker
program logical unit assignment. All assignments, except
Logical Unit Zero, are released each time WDFIO is loaded.
Assignments for all 1/O devices are required each time
WDFIO is used. These assignments remain until WDFIO is
executed again.

On entry, the program prints OP? on the system input
device. There are three valid responses:

a. DFIQ — is a request for [/O file definition.

b. 1 — followed by a carriage return terminates
the task.
c. « — followed by a carriage return negates the

last successful assignment.

Any other entry will print BADOP. This and all other error
messages (Table 4-2) are followed by OP? and require one
of the three legal responses.

If DFIO is entered, the system input device skips two
spaces and waits for a four-digit hexadecimal LUNO to be
entered in the format OOLL. If four zeroes are entered,
UNIT ZERO NOT AVAILABLE is printed and the entry
ignored.

If the LUNO entered has been previously assigned during
this program call, the message ERROR.START OVER is
printed and any assignments completed must be redone. If
an entry is made after the nine available assignments have

been completed, TABLE FULL is printed and the task is
terminated. The number of assignment slots available to the
worker program can be increased only at system generation
time. Refer to paragraph 4-7.

If the LUNO is accepted, the system input device skips two
spaces and waits for a hexadecimal DEVNO to be entered
in the format OODD. If the DEVNO entered is greater than
the highest DEVNO in PSM, DEVNO TOO LARGE is
printed and the entry is ignored. All available logical unit
numbers can be assigned to the same physical device

number, if desired. '

EXAMPLE: Assign logical unit 02 to Physical Device 04.
The underlined portion is operator entry.

ENTRY REQUEST OPERATOR ENTRY

op? DFIO 0010 0002
op? DRIO 0020 0003
oP? DFIO 0030 0002
op? DFIO 0040 0000
Oop? DFIO 0050 0004
op? DFIO 0060 0000
(0):44 1

4-2.6 PHYSICAL DEVICE NUMBERS. All 1/O devices
controlled by PSM are given a physical device number. Each
device has a unique number.

The numbers range from 0 to N-1, where N is the total
number of /O devices.

These numbers are determined by the order of the device
service routine address table in the Supervisor Data Seg-
ment and are fixed at system generation time.

All PSM systems must have an 1/O device called the System
Logging device, such as the teletypewriter. This device
always has a physical device number of zero.

TABLE 4-2
LDT TROUBLESHOOTING

ERROR MESSAGE

CAUSE

RESPONSE

BAD OP

UNIT ZERO NOT AVAILABLE

ERROR. START OVER

DEVNO TOO LARGE

TABLE FULL

ILLEGAL NUMBER

Illegal response to OP?

Logical unit zero entered

Duplicate LUNO entries

No physical device with that DEVNO
All assignment slots full

Character other than O-F

Enter DFIO to continue, T CR to
terminate, <CR to repeat last entry.

Repeat entry with valid LUNO.
Start over. All prior entries cleared.
Repeat entry with correct DEVNO.
The task is terminated.

Repeat the entry.

4-2.7 BASIC PSM SYSTEM. The following routines are a
part of any standard PSM. The primary 1/O device is
assumed to be a data terminal/teletypewriter.

Supervisor (SPB)

Supervisor (SDB)

CRU Interrupt Decoder (CINTSG)
Multiply (MULTPY)

Divide (DIVIDE)

Circular Double Left Shift (SCLD)
Binary/Hexadecimal (CBHP)
Binary/Decimal (CBDA)
Hexadecimal/Binary (CHAB)

Data Terminal/Teletypewriter (DUOSEG &
TTYSEG)

Loader Teletypewriter

Data Terminal/Teletypewriter (DUOSEG &
TTYSEG)

If the equipment also includes a card reader, the following
additional PSM routines are included:

DP/UT SR300 Driver (CARD READER)

Loader Card Reader

4-2.8 CORE DESCRIPTION. Figure 4-2 shows a typical
core memory map. The user is advised that only one loader
resides in protected core. Either the data terminal/
teletypewriter or card reader loader must be installed prior
to attempting to load PSM or a worker program.

4-3 PSM CONTROL COMMUNICATION.
Simple control communication between the console
operator and PSM is provided.

4-3.1 INPUT. There are only two valid inputs to the PSM
system: L and an X. When no work program is in
execution, the PSM is in an idle loop waiting for instruc-
tions from the operator. The letter L entered via the system
input device will load the object program. An X will
execute the program currently in core. This permits
repetitive execution of a program,

4-3.2 OUTPUT. PSM halts when abnormal conditions are
encountered. At this point, the contents of console
Instruction Register A should equal 72D2, and the contents
of console Instruction Register B should equal 0000. The
contents of Supervisor Register Zero (memory location
X10080') can be examined to determine the exact error
condition. Table 4-3 gives error codes: an explanation for
each.

0000 RELOCATING
BOOTSTRAP LOADER

0080 REGISTERS
0090 INTERRUPT TRAPS &
DMAC STATUS WORDS
00B0
WORKER
TASK

SELECTED DEBUGGING

AIDS THIS X'0100!
{.:OCATION
AN BE
PSM INITIAL CSED BY

THE WORKER

P.S.M. PSM PROGRAM.

RESIDENT
1FFF

Figure 4-2 Typical 8K PSM Core Load

TABLE 4-3
ERROR CODES

CONTENTS OF X10080! ERROR EXPLANATION

0000 lllegal Interrupt — Either
an internal or DMAC
interrupt occurred.
Memory locations
Kt0106! and K!'0107! of
PSM can be examined to
determine the contents of
the program counter (or
event counter) and the
STATUS REGISTER
when the error occurred.

0001 Bad Supervisor Call —
PSM was asked by the
user to perform some

illegal task.

0002 lllegal Logical Unit.

0003 IHegal Physical Device
Number.

To recover from this error halt: TABLE 4-4
WORKER TASK BLOCK +
a. Set ST = X'0000!

b. Set PC = X'007D! 01234567 8 15
WTB Saved EC
c. Select RUN, START +0 ENTRY POINT & status
- when
running
4-4 USING PSM. 1 INITIAL STATUS under PAM.
4-4.1 WORKER TASK BLOCK. Tasks operating under +2 L ID s “u PC p| RANK [**
PSM are executed in the worker mode. PSM must have E d 3 N
access to the initial values of the EC, Status Register, and +3 |INITIAL WRO
the worker mode registers. Both PSM and PAM (Process
Automation Monitor) require the programmer to put the +4 .1
above information in the first 16 words of his task. This
data is called the Worker Task Block (WTB). PSM does not +5 . 2
utilize all 16 words, but they are reserved so that the task Valudes
may run under either PSM or PAM. +6 . 3 saved upon
interruption
h
WTB (0) — Procedure Entry Point +7 . 4 (DATA BASE ADR) :\le?:ing
under PAM,
WTB (1) — Initial Status +8| . 5(PROCEDURE BASE ADR)|| "
WTB(2) — * 19| . 6(FLAG BASE ADR)
WTB (3-10) — Initial Value of worker registers 0-7 +10 . 7(CRU BASE ADR)
WTB (11) — Unused by PSM, but initial status +11 INITIAL STATUS *x
put here for PAM
+12 PROCEDURE ENTRY POINT *
WTB (12) — Unused by PSM, but Entry Point
put here for PAM. +13 TIMER **
WTB (13-15) — * +14 LINK TO NEXT TASK *x
*Unused by PSM but required for PAM. +15 PROCEDURE I.D. TASK I.D.| **
Table 4-4 shows the make-up of the WTB for both PSM and +16 P C VALUE **

PAM. Since this block is set up properly, the task may be
executed under either PSM or PAM.
+ FIRST SIXTEEN CONSECUTIVE LOCATIONS OF
TASK DATA SEGMENT
service routines, task sequencing, and subroutines to imple-
ment progréamming cor?veniencges. The task invokes PPSM ** NOT USED BY PAM
operational functions using supervisor calls.

4-13

The supervisor call format is independent of the function
being accessed. The supervisor call format consists of one
equate statement and two instruction statements.

SENTRY EQU 127
. Task Coding
LA 3,Function Call Format
SXBS *SENTRY

Worker Register Three contains the supervisor op code and,
optionally, an address. Worker Register Three, bits 0-5,
contain the op code and bits 6-15 when used, contain an
address. The op code is a number representing a specific
function. The address is relative to the contents of Worker
Register Four. The displacement value and the contents of
Worker Register Four are added to obtain the effective
address of a specific memory location.

FUNCTION CALL FORMAT
0 5 6 15

DISPLACEMENT VALUE
RELATIVE TO WR4

OP CODE VALUE

OPERATION CODE DISPLACEMENT

Functions marked (R) are always resident in PSM. Those
marked (O) are optional. Those marked (B) are optional,
but they must be resident in any basic PSM system.

4-4.2.1 Input/Output. The input/output function effective
address must point to the first memory location of the
Physical Record Block (PRB) describing the 1/O to be
performed (R)).

CODE FUNCTION

00 Input/Output

4-4.2.2 End of Program. The end of program function does
not use the displacement sector of Worker Register Three.
The operational task is terminated. PSM returns to a state
of waiting for a letter L or E to be input on the system
logging device (R).

CODE FUNCTION

01 End of Program

4-4.2.3 Bid A Task. Illegal call for PSM. This call applies to
PAM only.

CODE FUNCTION

02 Bid A Task

4-4.2.4 Multiply. The multiply function effective address
must contain the memory address of the multiplicand. The
multiplier must be in Worker Register Zero. The product
will be placed in Worker Registers Zero and One (B).

CODE FUNCTION

03 Multiply

4-4.2.5 Divide. Te divide function effective address must
contain the memory address of the divisor. The dividend
must be in Worker Registers Zero and One. The quotient is
placed in Worker Register One with the remainder placed in
Worker Register Zero (B).

CODE FUNCTION

04 Divide

4-4.2.6 Shift Memory Circular Left Double. The shift
memory circular left double function effective address
contains the memory address of the value to be shifted.
This word and the next word in memory, treated as a 32-bit
value, are rotated left the number of positions specified in
Worker Register Two (B).

CODE FUNCTION

05 Shift Memory Circular Left Double

4.14

4-4.2.7 End Of Job. In PSM this function is the same as the
end of program (R).

CODE FUNCTION

06 End Of Job

4-4.2.8 Square Root. The effective address is not used. The
argument (double precision integer) must be right justified
in Worker Registers Zero and One. The integer square root
returns in Worker Register Zero (O)

CODE FUNCTION

07 Square Root

4-4.2.9 Convert Binary To ASCII Coded Hexadecimal. The
convert binary to ASCII coded hexadecimal function
effective address must contain the memory address of a
two-word array where the converted result is placed.
Worker Register Zero must contain the binary value to be
converted (B).

CODE FUNCTION
08 Convert Binary To ASCII Coded
Hexadecimal

4-4.2.10 Convert Hexadecimal ASCH To Binary. The
convert hexadecimal ASCII to binary function effective
address must contain the memory address of a two-location
array containing the hexadecimal ASCII value. The binary
result will be placed in Worker Register Zero (O).

CODE FUNCTION

09 Convert Hexadecimal ASCII To Binary

4-4.2.11 Convert Binary To ASCII Coded Decimal. The
convert binary to ASCII coded decimal function effective
address must contain the address of a three-location array
where the converted result is placed. Worker Register Zero
must contain the binary value to be converted (B).

CODE FUNCTION

OA Convert Binary To ASCII Coded Decimal

4-4.2.12 Convert Decimal ASCII To Binary. The convert
decimal ASCII to binary function effective address must
contain the memory address of a threelocation array
containing the decimal ASCII value. The binary result
returns in Worker Register Zero (O).

CODE FUNCTION

OB Convert Decimal ASCII To Binary

4-4.2.13. The next six supervisor calls are defined for PAM
only. They are treated as errors when encountered by PSM.
They are listed here for reference only.

CODE FUNCTION
ocC Time Delay
OD Wait — Unconditional
OE Activate “Waiting” Task
OF Wait for Interrupt
10 Get Date and Time
11 Get Data Block from Another Task

4-4.2.14 Convert Fixed Point To Floating Point. The
effective address is not used. The double precision integer
argument must be in Worker Registers Zero and One. The
floating point equivalent returns in Worker Registers Zero
and One (O).

CODE FUNCTION

12 Convert Fixed Point To Floating Point

4-4.2.15 Convert Floating Point To Fixed Point. The
effective address is not used. The floating point number in
Worker Registers Zero and One is converted to integer and
returned in Worker Registers Zero and One (O).

CODE FUNCTION

13 Convert Floating Point To Fixed Point

4-4.2.16 Floating Point Add. The effective address con-
tains the location of a two-word block which contains the
floating point number to be added to the floating point
number in Worker Registers Zero and One. The result
returns in Worker Registers Zero and One (O).

CODE FUNCTION

14 Floating Point Add

4-4.2.17 Floating Point Subtract. The effective address
contains the location of a two-word block which contains
the floating point number to be subtracted from Worker
Registers Zero and One. The result returns in Worker
Registers Zero and One (O).

CODE FUNCTION

15 Floating Point Subtract

4-15

4-4.2.18 Floating Point Multiply. The effective address
contains the location of a two-word block which contains
the floating point number to be multiplied by that in
Worker Registers Zero and One. The result returns in
Worker Registers Zero and One (O).

CODE " FUNCTION

16 Floating Point Multiply

4-4.2.19 Floating Point Divide. The effective address con-
tains the location of a two-word block which contains the
divisor. The dividend is in Worker Registers Zero and One,
The quotient returns in Worker Registers Zero and One

(O)-

CODE FUNCTION

17 Floating Point Divide

4-4.2.20 Convert Floating Point to Decimal ASCII. The
effective address contains the location of a six-word array
into which the results are placed (in E format). The number
to be converted is in Worker Registers Zero and One. For
example, if the floating point number had the value 7, the
conversion would produce an ASCII representation of the
following:

+.314159E + 01 (0).
CODE FUNCTION
18 Convert Floating Point To Decimal ASCII

4-4.2.21 Floating Point Sine. The effective address is not
used. The floating point representation of the angle X in
tadians is in Worker Reglsters Zero and One. The size of the
angle must be -m/2 7/2. The floating point
representation of SIN(X) returns in Worker Registers Zero
and One (O).

CODE FUNCTION

19 Floating Point Sine
4-4.2.22 Floating Point Cosine. Arguments are the same as
in paragraph 4-4.2.21 except COS(X) returns (O).

CODE FUNCTION

1A Floating Point Cosine

4-4.2.23 Floating Point Arctangent. The effective address
contains the location of Argument B (floating point).
Argument A is in Worker Registers Zero and One. The angle
of the value of which is ARCTAN (A/B) returns in Worker
Registers Zero and One.

CODE FUNCTION

1B Floating Point Arctangent

4-16

4-4.3 FUTURE SUPERVISOR CALLS. Future Supervisor
Calls will be written as needed. Sixty-four, maximum, can
be used (limited by the size of the operation code sector of
Worker Register Three).

4-4.4 1/0 CALLS AND THE PHYSICAL RECORD
BLOCK. The Physical Record Block (PRB) is a five-location
array containing the detailed information needed by the
PSM to execute an input/output operation.

4-4.4.1 PRB Relative Word Zero. Relative Word Zero must
contain the address of the first memory location of the
associated WTB.

4-4.4.2 PRB Relative Word One. Relative Word One must
contain the address of the first memory location of the
associated data buffer area.

4-4.4.3 PRB Relative Word Two. Relative Word Two must
contain the length (character count) of the associated data
buffer area. Input operations continue until the buffer is
full, or an end character is read.

4-4.4.4 PRB Relative Word Three. Relative Word Three
must contain the record length (character count) of the
associated data. The number of characters contained in
Relative Word Three is output. Input operations store the
number of characters actually input in this word.

4-4.4.5 Relative Word Four. Relative Word Four is divided
in half. The left half (bits 0-7) is dedicated to input/output
flags which signify operational status. The flag assignments
are given in Table 4-5. The second half (bits eight through
fifteen) must contain the Loglcal Umt Number (LUNO) as
selected by the user.

PHYSICAL RECORD BLOCK

0 1 2 345 6 7 8 15
PRB
+0 WTB ADDRESS
+1 DATA BUFFER ADDRESS
+2 DATA BUFFER LENGTH
+3 DATA RECORD LENGTH
B e [E.Nn|C |R|B [R LOGICAL
V]
+a 13| | G| & || R+ & UNITNBR+

* — SET BY CALLING TASK

+ — LOGICAL UNIT NUMBERS O THRU F
SYSTEM RESERVED; FF ILLEGAL

TABLE 4-5.
FLAG ASSIGNMENTS

PRB

-BIT FLAGS (Word 4, Bits 0-7)
0 BUSY 1 = 1/0 in progress, 0 = 1/0 complete.
1 ERR 1 = Error on last operation, 0 = no error.
2 EOF .1 = End of File (/) on last call, 0 = no EOF.
3** IN/EX 1 — Initiate Call (program returned to immediately),

0 = Execute Call (program returned to when 1/0 is complete).

4 CON 1 = Control Call (e.g. “Punch Leader”’), 0 = Character 1/0.
5 R/W 1 = Read {input), 0= Write (output).
6 B/A 1 = Binary record, 0 — ASCII record.
7 RES Reserved.

** Bit 3 is used by PAM only. PSM treats all calls as execute calls.

4-4.5 End Vector. In order for the loader to return to PSM
after loading a task, the task must contain a special end
vector. This vector is the address of a two-word status
block. The first word in the status block contains a
X'007F' and the second word contains a zero. This allows
the loader to return to PSM by executing a LDS instruction
that addresses the status block supplied. The following
example illustrates the end vector to be included on each
task run under PSM:

LABLE DATA X'7D'0

END LABLE

This end vector does not prevent running this task under
PAM, for PAM will ignore it.

4-5 OPERATING PROCEDURES.

4-5.1 PRIMITIVE LOADERS. Two Primitive Loaders are
provided: one for systems equipped with a card reader and
the other for paper tape systems. Both are designed to load
the system’s Relocating Bootstrap Loader.

The Primitive Loader is entered into memory via the
computer control panel.

4-5.1.1 Card Media Primitive Loader. The Card Media
Primitive Loader reads a card file of any length. The first 32
columns of each record are read (each column containing a
1 or 0), and these binary values are entered sequentially in
memory, two words (32 bits) per card read.

The loader occupies any 36 sequential memory words
except the 16 virtual register locations or the area to be
occupied by the bootstrap loader.

Table 4-6 contains the actual object, in hexadecimal, along
with the word’s relative address and a sample absolute
address using X'0400! as a load bias.

4-17

TABLE 4-6 TABLE 4-7
CARD MEDIA PRIMITIVE LOADER TAPE CODES
EXAMPLE PRIMITIVE EQUIV-
RELATIVE ABSOLUTE MEMORY LOADER BINARY ALENT
ADDRESS ADDRESS CONTENT CODE EQUIV- CODE HEXA-
(hexa- ALENT (hexa- DECIMAL

00 400 340F decimal) AsSCH decimal) DIGIT

01 401 0800

02 402 3001 40 (@) 60 0

03 403 0002 41 (A) 61 1

04 404 340F 42 (B) 62 2

05 405 0000 43 (C) 63 3

06 406 4482 a4 (D) 64 4

07 407 0001 45 (E) 65 5

08 408 7007 46 (F) 66 6

09 409 0000 47 (G) 67 7

0A 40A 340F 48 (H) 68 8

0B 408 0800 49 (1) 69 9

oc 40C 4481 4A (J) 6A A

oD 40D 000F 48 (K) 68 B

OE 40E 6261 4C (L) 6C C

oF 40F 0000 4D (M) 6D D

10 410 300F AE (N) 6E E

11 411 0810 4F (0) 6F F

12 412 300E

13 413 0816

12 3:; |8:88(())(()) Blank frames and rub outs are ignored. The end of record is

16 416 300F denoted by X-OFF (X'0013!).

1; 2:; 8219?: The Data Terminal/Teletypewriter Primitive Loader occu-

19 419 000E pies 28 sequential words of memory.

::g :}é ggg? Table 4-8 contains the actual object in hexadecimal, along

1C 41C OCAF with the word’s relative address and a sample absolute

1D 41D 000C address using X10400! as a load bias.

1E A1E 3007

1F 41F 001E Since direct addressing is used, the operator need not be

20 420 3000 concerned with relocating operand fields or constants.

21 a1 0020

22 422 72D2 4-5.1.3 Primitive Loader Loading Instructions. Either Prim-

23 423 0000 itive Loader may be loaded via the operator control panel

Since no direct addressing is used in the Primitive Loader,
the operator need not concern himself with relocating
operand fields or constants.

4-5.1.2 Data Terminal/Teletypewriter Primitive Loader.
The Data Terminal/Teletypewriter Primitive Loader reads a
single paper tape record of any length consisting solely of
the tape code acceptable to the primitive loader. Each
frame of tape contains the code for a single hexadecimal
character.

The loader accepts the codes shown in Table 4-7.

by following these steps:

a. Determine desired memory area for loading

(load bias).
b. Select: HALT-RESET-CLEAR
c. Select: MEM ADD (memory address).

d. Enter Absolute Address on console DISPLAY
REGISTER.

e. Select: ENTER

f. Select: MEM DATA (Memory Data)

4-18

TABLE 4-8
DATA TERMINAL
TELETYPEWRITER PRIMITIVE LOADER

EXAMPLE
RELATIVE ABSOLUTE MEMORY
ADDRESS ADDRESS CONTENT
00 400 340A
01 401 0800
02 402 4484
03 403 0000
04 404 4482
05 405 0003
06 406 4480
07 407 0000
08 408 3409
09 409 0000
0A 40A 3409
0B 408 080A
oC 40C 2000
oD 40D 5081
OE 40E 3004
OF 40F 0008
10 410 3006
1 411 0808
12 412 6004
13 413 0080
14 414 5000
15 415 0081
16 416 OCAF
17 417 0008
18 418 4AEQ
19 419 0000
1A 41A OCE1
1B 418 0000
ABSOLUTE ADDRESS = RELATIVE ADDRESS
+ LOAD BIAS

g- Select: CLEAR

Enter value corresponding to absolute address
(step d) from MEMORY CONTENT column
into console DISPLAY REGISTER.

i Select: ENTER

Repeat steps ¢ thru i until the Primitive Loader is loaded.
To verify the contents of a location:

a. Select: HALT
b. Select: MEM ADD
c. Select: CLEAR

Enter absolute address of location to be dis-
played into console DISPLAY REGISTER.

4-19

e. Select: MEM DATA
f. Select: LOAD

The contents of the specified address are now displayed on
the console DISPLAY REGISTER. A new value for that
address may now be entered in the following manner:

a. Select: CLEAR

b. Enter desired value into console DISPLAY

REGISTER.
c. Select: ENTER

4-5.2 RELOCATING BOOTSTRAP LOADER. Two Boot-
strap Loaders are provided: One each for card and paper
tape systems. Both Loaders perform the same function of
loading relocatable object output from either SAL960 or
the Linking Relocating Loader. Only one may be resident
at any time.

To load either Relocating Bootstrap Loader:
a. Load the appropriate Primitive Loader.

b. Place the Bootstrap Loader special object file in

input device.

c. Select: HALT-RESET-CLEAR.

d. Enter the first word address of Primitive Loader
into Supervisor Register Five (location
X10085).

e. Clear (enter zero) Supervisor Register Six (loca-

tion X10086!).
f. Enter the CRU Base Address of the object
input device into Supervisor Register Seven

(location X'0087').

g. Load Status Register with X'01CO' by:

(1) Select: CLEAR
(2) Select: ST (Status)
(3) Enter X'01CO' into console display
" register.
(4) Select: ENTER
h. Load Program Counter with Primitive Loader’s
first address by:
(1) Select: CLEAR

Select: PC (Program Counter)

()

(3) Enter first address of Primitive Loader
into Console Display Register.

(4) Select: ENTER

i. Select: OVER MEM PROT (Override Memory
Protect)

j- Select: RUN-START

k. Start object input device.

L The Primitive Loader is now active.

m. After the Bootstrap Loader has been read,

select:
RESET.

OVER MEM PROT or optionally

4-5.3 PROGRAM SUPPORT MONITOR OPERATION. To
load PSM via the Relocating Bootstrap Loader (PSM should
be loaded at the highest part of core possible):

a. Determine desired load address of PSM.
b. Select: HALT-RESET-CLEAR.
c. Place the PSM object followed by /* record
into object input device.
d. Select: OVER MEM PROT to unprotect memo-
ry and:
(1) Enter the following values into the speci-
fied addresses:
Absolute
Hexadecimal
Address Value
7D X17C00!
7E PSM load bias + X10103!
7F PSM load bias + X'0100!
(2) Select: OVER MEM PROT: memory is
now protected.
e. Enter the load address (1) into Supervisor
Register Zero (location X'0080').
f, Load Status register with X'01C0'.
g. Load Program Counter (PC) with 2.
h. Select run start.
i. Ifinput is on cards, start card reader.
j- After the end-of-file record has been read,

4-20

proper loading of PSM may be assumed if
INSTRUCTION REGISTER A contains
X17082' and REGISTER B contains load bias +
X1011B'.

If this condition does not exist, refer to
paragraph 4-3.2. Re-execution of steps a-j may
be necessary. Failure may have occurred be-
cause no end-of-file was present. If this is the
case, read a /* record via the object input
device.

4-5.4 WORKER TASKS. If the condition described in step
j of 4-5.3 has been met, PSM is ready to load and execute a
worker task. If this worker task needs any logical device
assignment, it should be done before the task is loaded.
Refer to paragraph 4-2.5. Worker Tasks are loaded starting
at X'00B0! and PSM is structured so that the first X'0100!
location can be used by the worker task. Thus, the worker
task can have all of core from X'00B0' to PSM + X10100!,

To load a task:

a. Place Worker Task object followed by an
end-of-file (/*) record into object input device.

b. If the card reader is the input device, start the
card reader.

c. Strike L on the system logging device keyboard.

Loading will start automatically at location X'00BO!.

At the conclusion of object input, INSTRUCTION REGIS-
TERS A and B should contain X'7082! and load address +
X1011B' respectively. If this is not the case, check that the
worker task object deck was followed by an end-of-file (/*).
If it was not, an end-of-file may be read at this time.

If an end-of-file has been read and the Instruction Registers
do not contain the proper values, refer to paragraph 4-3.2.

The task is now loaded and is ready for execution. Any
alterations to the task may be made at this time via the
operator console.

To execute the task, strike X on the system logging device
keyboard.

4-6 OPTIONAL SEPARATELY LOADABLE
PROGRAMS.

There are four programs that perform useful functions and
which run independent of PSM.

They can be used to:

a. Dump a variable part of memory in hexa-
decimal and ASCII onto the teletypewriter.
b. Dump a variable part of memory in hexa-

decimal and ASCII onto the line printer.

c. Patch memory from the card reader.

d. UNLOAD memory (binary punch) in reload-
able format.

The first three of these tasks can be loaded with the
Bootstrap Loader from the operating console (not by PSM,
however, except following a worker task). They are entered
with an SXBS instruction from a worker program, or they
can be controlled from the operating console. If entered via
an SXBS instruction, they will return to the worker
program after completion. If operated from the operating
console, they will halt after completion. The UNLOAD
memory program must be loaded and executed from the
control panel.

4-6.1 DUMP MEMORY ON TELETYPEWRITER. This
program assumes the CRU base address of the teletype-
writer is zero. If it is different from this, location X'000C!
of it should be set equal to the CRU base address.

4-6.1.1 From The 960 Operating Console (Assume the task
is loaded at ADDRES). '

a. Set PC = ADDRES
b. Set ST = X101C0!

c. Set memory address X'0080' = first word
address to be dumped.

d. Set memory address X'0081' = last word
address to be dumped.

e. Select RUN — START.
4-6.1.2 From A Worker Program.

LA 1,FWA FWA = first word address to

be dumped

ST 1,X180!

LA 1LWA LWA = last word address to
be dumped

ST 1,X181!

SXBS ADDRES +4

4-6.2 DUMP MEMORY ON LINE PRINTER. This routine
assumes that the line printer has a CRU base address of
X10800!. If different from this, then set location X'000C!
of the program equal to the proper CRU base address.

The instructions for operating this program are the same as
those given in paragraph 4-6.1.

4-6.3 PATCH MEMORY FROM CARD READER. This
routine assumes that the card reader has a CRU base
address of X'0400!. If different from this, then set location
X'000C! of the program equal to the proper CRU base
address.
4-6.3.1 Card Format.
The card format is: (all numbers are hexadecimal)

Col 1

XXXX.NNNN,MMMM,O000O,PPPP....
Where XXXX is the memory address where NNNN will be
placed. MMMM will go into address XXXX+1, 0000 will go
into address XXXX+2, etc. The first blank space terminates
a card.
These can be as many cards of this format as desired in a
patch deck. the patching operation is terminated by a /*
card.
Example of a patch deck.

0100,0104,2F00,1C00,FFFF

A102.F000,BCDE,0000,0000,0000

1402.0000

070F.0001,0020

/¥

4-6.3.2 Operating Procedures From The 960 Operating Con-
sole (Assume the patch program is loaded as ADDRES).

a. Place patch cards in the card reader.
b. Turn on the card reader.

“c. Set PC = ADDRES

d. Set ST =01CO

e. Select RUN — START

When all cards have been read, the patch program will halt
(B $).

4-6.3.3 Referencing The Patch Program From A Worker
Program (Assume that the patch program is loaded at
ADDRES). Execute an SXBS ADDRES +4 instruction.

The patch cards must be in the card reader and it turned
on.

4-21

After all cards have been read, execution returns to the
worker program.

46.4 UNLOAD MEMORY (BINARY PUNCH). UNLOAD
is a worker mode program which punches selected portions
of memory in a format which closely resembles that of
output from the SAL960 Assembler. The only differences

are:

a. The text records contains no linkage or reloca-
tion data.

b. Each text record contains an absolute starting
address.

c. The end record contains no end vector.

These restrictions require that the segment unloaded cannot
be linked with another segment and, when loaded, it must
be assigned a load bias of zero.

UNLOAD runs with the assistance of either PSM or PAM,
and uses two logical unit numbers which need assignment
(paragraph 4-2.4) They are:

for 1JO communication and must be
assigned to the teletypewriter keyboard.

b. D - punch output device; card punch or tape
punch.

Operating Procedures:

a. Using the bootstrap loader, load UNLOAD
from the computer operating console.

CAUTION

Do not overwrite the program or data to be
unloaded.

b. Ready the punch device.

c. UNLOAD will print the message INPUT SEG-
MENT NAME (6 CHARACTERS) and wait for
the operator to enter the desired characters on

the keyboard.

d. After the operator enters the desired data, the
UNLOAD program prints INPUT PUNCH
INTERVALS. Then the operator must enter
the beginning and ending addresses of the core
portion he desires to punch out. This input
must not exceed ten intervals and must end
with a 1 symbol and a carriage return. The
punch operation begins. Each punch interval
consists of two four-digit hexadecimal numbers.

EXAMPLE: 0000 000F 024C OFFF 1

This means that core locations 0000 to 000F and 024C to
OFFF are punched.

e. UNLOAD terminates by returning control to
the monitor.

f. If the output device is the card punch the first
and last cards of a punched card deck should be
discarded.

The core dump has no end vector. To load this data:
a. Place the object in the loading device.

b. Using the bootstrap loader, load with a load
bias of zero.

c. Wait until loading is complete and set the
program counter to X1007D1.,

d. Select RUN and START.

4-6.5 SOURCE MAINTENANCE ROUTINES. The Source
Maintenance Routines (SMR) are a series of routines
combined into a single program which runs under monitor
control. These routines can copy and sequence a source file,
read a source file or parts of a source file into memory, list
all or selected parts of a source file in memory, or insert or
delete source statements from a file. One or more of the
available options may be executed on any one program call
on one source file by the appropriate responses to program
questions. If maintenance is to be performed on a second
source program, the SMR must be terminated and recalled.

SMR can have up to four file assignments which are made
before SMR is loaded. If the letter-message N is printed in
response to the program query HAVE 1/O DEVICES BEEN
ASSIGNED, the program terminates and must be called
again after the assignments have been made. File logical
unit numbers are:

Source Input File Logical Unit 10

Source Output File Logical Unit 20

Listing File Logical Unit 30

Correction File Logical Unit 40

Upon execution, the program types questions concerning
the input and output devices, all of which can be answered
with letter-message Y or N. The initialization routine also
allows dynamic buffer allocation. All core between the end
of the SMR and the start of the monitor is available for
buffers. These limits are printed on the teletypewriter, but
the upper limit may be lowered via keyboard input, if
desired. The lower buffer limit cannot be changed.

4-22

Source input and/or output may be on either cards or paper
tape. Corrections may be made via the keyboard, cards, or
paper tape. All keyboard entries without an exclamation
point as the first character are rejected unless an INSERT
command has been entered. On keyboard entries, a <
symbol deletes the last character entered. If a source
correction, a T symbol deletes the current input line,
carriage return, and waits for a corrected entry.

If the source is output to paper tape, the SMR punches
leader before the first input and after the last output.

Commands accepted by SMR are:

'p,n Reads source input into memory up to se-
quence number p, then skips records on source
input file until sequence number n is read.
When all source line buffers are filled, the
records are output to the source output file if
output was indicated. More input is read until
the p and n requirements are met. If unse-
quenced records are being read, put 7FFF in
both p and n fields. Source statements may be
added, deleted, or listed after completion of
this command.

ILSA Lists all source statements in memory. The
sequence number is listed on the left, followed
by the source line.

!LSn,m Deletes source lines in memory from sequence

numbers n to m inclusive. Put delete code in

proper records so they are bypassed on output.

" Terminates the program and returns control to
the monitor. If output is indicated, writes any
input records not previously output.

IRPn Copies input file to output file and resequences,
starting at sequence number zero and incre-
menting by n. No additions or deletions can be
made since all input is automatically output.

All sequence numbers entered as part of a command must
be four decimal digits in length.

If an illegal op code or sequence number is entered,
ILLEGAL ENTRY will be typed and a new entry re-
quested.

4-7 SYSTEM GENERATION

The PSM system has been structured and subdivided into
segments in such a manner as to make system generation as
easy as possible. When generating a system, source modifi-
cation need be made to only one segment. Linkable object
is available for all other segments. The only operations
necessary are to assemble the one source segment and to
link it to the other segments. Any PSM capable of running

the SAL960 assembler and the Linking Relocating Loader
can be used to generate another PSM.

Three things affect the structure of PSM. They are:

a. The type and number of each type of I/O
devices.

b. The structure of the system service routine
section (i.e., which systems service routines will

be included or excluded).
c. The logical device assignment table capacity.
NOTE

Linkable object exists for three different con-
figurations of this segment. If any of these
three is sufficient, then no assembly is neces-
sary.

4-7.1 TYPE AND NUMBER OF 1/O DEVICES To Change
the I/O device structure, source changes must be made to a
Supervisor Data Segment SDATA and a service routine for
each type of 1/O device must be included when the system
is linked. All of the standard 1/O device service routines
available for PSM are written in a reusable manner, thus one
device service routine can control as many devices of a
particular type as desired (i.e., the teletypewriter device
service routine can control any number of teletypewriters
or data terminals.

4.7.1.1 Adding 1/O Devices. To add new I/O devices, two
source changes must be made to SDATA. They are:

a. Add a Physical Device Table.

b. Make an entry in the device service routine
address table (DSRAT).

The source listing of SDATA is commented in such a
manner that these changes can be accomplished by follow-
ing the direction of the comments. Figure 4-3 shows how to
add a line printer.

4-7.1.2 Deletion of I/O Devices. If at some time it is desired
to delete an 1/O device from a system, three things should
be done.

a. Remove the Physical Device Table for that
device from SDATA.

b. Replace the entry for that device in the device
service routine address table (DSRAT.)

c. If there is no other device of this type in the
system, exclude the device service routine from
the linking operation.

4-23

0000 LP1PDT RES o

* address
0000 LP1CRU FQU $

* REF LP0O0O

* DATA

* DATA

To add DP 2310 #1
3 things must be done

(1) Replace the $ in the address field of the next card with the CRU base

(2) Remove the * from col. 1 of the next 2 cards

LP000.0.X!300F!.LP1CRU.$+5.0.0.0.0

{3) Remove the * from col. 1 of the next card
LPOOO.LP1PDT

and place it in the devise service routine address table in this segment

Be sure to include segment LP00Q in the linking operation

Figure 4-3 Physical Device Table for LP2310. Line Printer No. 1.

The order of the DSRAT determines the physical device
number of a device. If an entry is deleted from the middle
of the table, then the physical device number for the entries
following it will change. To prevent this, replace the entry
with DATA BADPDN,O. This keeps the table from being
re-ordered and if this device number is referenced by a
worker program, PSM will come to an error halt.

4.7.2 SYSTEM SERVICE ROUTINE STRUCTURE To
add or delete a system service routine from a system, just
include or exclude the linkable object for that routine in
the linking operation.

Including a particular service routine in the linking opera-
tion will cause the error message doubly defined symbol for
that system service routine name to be given by the Linking
Relocating Loader. Disregard this message.

4-7.3 LOGICAL DEVICE ASSIGNMENT CAPACITY The
basic SDATA allows for a maximum twelve logical device
assignments. To add to this number add more DATA -1
statements to the Logical Device Table (LDTST) in segment
SDATA.

4-7.4 PSM SEGMENTS REQUIRED

DESCRIPTION NAME CD PT
Supervisor* SPB 218224-0001 218225-0001
CRU CINTSG 218242-0001 218243-0001
Interrupt

Decoder**

DESCRIPTION NAME CD PT

Teletype- TTYSEG 218247-0001 218248-0001
writer
Service
Routine***
Supervisor SDATA — -
Data
End of
Record

Routine

FILEOR 218407-0001 218407-0001

If the PSM being generated is not a teletypewriter only
system, then the following segment must be included when
the system is linked.

GETCO1 218402-0001

I/O Common 218403-0001

Subroutine
*The SPB Supervisor must be the first segment in any
PSM system. Therefore, it must be the first segment in
the linking operation.
**This segment must be second in the linking operation.
***This segment must be last in the linking operation.

4-7.5 SYSTEM GENERATION SUMMARY.

a. Read all of paragraph 4-7 (through 4-7.5)
carefully. .

4-24

b. Decide what I/O devices are needed.

c. Add a Physical Device Table for each I/O device
to the supervisor Data Segment (SDATA).

d. For each I/O device add an entry in the DSRAT

in SDATA.

e. If the maximum number of logical devices
assigned is to be increased, add DATA -1 to the
SDATA Logical Device Table.

f. Assemble the SDATA.

g. Use the LRL to link the following segments.

DESCRIPTION NAME
Supervisor* SPB

CRU CINTSG
Interrupt
Decoder**

End of FILEOR
Record
Routine

CDh

218224-0001

218242-0001

218407-0001

PT

218225-0001

218243-0001

218407-0001

DESCRIPTION NAME CD PT

Device - - -
Service
Routines

System — — —
Service
Routines

Supervisor SDATA - —
Data***

I/0 GETCO1 218402-0001 218403-0001
Common ****

*The SPB Supervisor must be the first segment in any
PSM system. Therefore, it must be the first segment in
the linking operation.

**This segment must be second in the linking operation.

***This segment must be last in the linking operation,

***+*Include this only if the PSM is not a teletypewriter-

4.25

only system.

SECTION V

UTILITY PROGRAMS

5-1 INTRODUCTION

This section describes the utility programs available to the
T1 960 PAM user. These utility programs are:

a. PAM Logical Unit Number Assignment Display

5-3 PAM TASK STATUS DISPLAY

This 434-word utility program outputs a list of currently
installed tasks and their status on logical unit X'00F8!. The
Task Status Display program (Table 5-2) also outputs the
960 duty cycle for the current second, the maximum duty
cycle since PAM initiation, the time, and the date. This

b. PAM Task Status Display TABLE 5-1
LOGICAL UNIT NUMBER ASSIGNMENT
¢. PAM Message Writer Task DISPLAY
5-2 PAM LOGICAL UNIT NUMBER ASSIGN- LUN DEV TASK PRB NEED ASSND
MENT DISPLAY NUM NUM 1D ADDR SVCE TOTSK
This 240-word utility program lists all current logical unit 09 05 01 2EFF F F
assignments with their status on the logging device and the 02 04 02 2BBF F F
number of possible assignments remaining (Table 5-1). The 03 05 02 2BFF £ F
loading procedure for this utility is the standard task 08 04 02 2BC4 F F
loading procedure described in Section III. Logical unit 00 00 20 0476 F F
assignments are unnecessary for task execution.
TABLE 5-2
PAM TASK STATUS DISPLAY
$$DFIO =*00F8 ** 0005 DEFINE OUTPUT TO LINE PRINTER (5)
$$LDTS «*0300 ** 0033 LOAD STAT DISPLAY
$$INST **0033 ** 0033 INST 33 AT PRI 33
$$ABLE **0033
$$EXCT **0033
TIME 16: 02
DATE 148: 1970
THE CURRENT 1SEC DUTY CYCLE IS 8 PER CENT.
THE PREVIOUS MAXIMUM DUTY CYCLE WAS 17 PER CENT.
TASK TASK PROC WTB ENTY LAST STATUS
RANK 1D D ADDR PT EC ABLE BID SuUsP TSUS TD
00 00 FF 1ABE 1AA5 1AAb T F F F F
01 01 FF 1DEO 1E5D 1E50 T F F F F
02 02 FF 1B03 1885 1B85 T F F F F
33 33 FF 0300 03E2 04A2 T T F F F

$$RLIO ** 00F8
$$DLTS #+ 0033
$$ICOF *»

5-1

program requires a version of PAM that includes the
optional supervisor calls DIVIDE and CBDA and uses the
standard task loading procedure (refer to Section HI).

54 PAM MESSAGE WRITER TASK

This 428-word utility program is used by one or more
worker tasks under PAM to output task messages on logical
unit X'00FE' without suspending execution of more
pertinent task functions and to minimize output buffer size
within the user tasks.

The Message Writer Task service is requested by any task
that sets bit zero of memory location 17 + load bias equal
to one. Proper servicing requires that the last 10 bits of this
location contain the displacement of the user’s message
buffer. This buffer is limited to a maximum of 36 words
and the first word must contain the hexidecimal number of
the ASCII characters in the message + 2 to define the buffer
size.

0 56 15

S BUFFER DISPLACEMENT

S=1FORSERVICE

The loading procedure for this task is non-standard in that a
patch function (refer to Section II) is used with the
standard control cards. This function is used to modify the
Message Writer’s user dictionary pointer location, load bias
+X100FE!, to contain the address of the top ID of the user

5-2

dictionary and to load into the dictionary the ID(s) of
those user task(s) which are to be eligible for message
service. User Task ID(s) fill all of the user dictionary from
the address contained in the dictionary pointer location to
the end of the message data file, load bias + X'01AC". The
ID format for the user dictionary is X'00——!.

In addition to the preceding required user modifications the
user may optionally extend the data file length by storing
in location “load bias + E27¢4” the end address of the
desired file. Tt is the user’s responsibility to protect other
tasks and the monitor when the file is extended. The need
for file extension may occur when the message writer task
has very low priority and/or many users.

The Message Writer Task requires a PAM version that
includes the optional monitor Time Delay and Get Data
From Another Task calls.

In the following example, three tasks, which execute
repeatedly, request the message writer to output messages
of the form Worker Task N, where N is the Task ID. The
actual output is shown below:

WORKER TASK 11
WORKER TASK 12
WORKER TASK 14
WORKER TASK 14
WORKER TASK 11
WORKER TASK 12
WORKER TASK 14
WORKER TASK 11
WORKER TASK 12
WORKER TASK 14

SECTION VI

LINKING RELOCATING LOADER

6-1 INTRODUCTION

The LINKING RELOCATING LOADER (LRL960) links
separately assembled programs and program segments by
combining the text and completing the assembly process
for external symbols.

6-2 LRL DESCRIPTION

6-2.1 GENERAL. Refer to Figure 6-1. The input and
output object files are in 960 binary format. Control is
assigned to an input device, normally a card reader or a
teletype. The load map and error list are assigned to an
output device such as a line printer or a teletype printer.
LRL will optionally load a program as it is linked.

6-2.2 OPTIONS. Several options have been incorporated
in LRL to provide for easy operation on most 960 systems:

a. List a Load Map. Flag External Symbols that
are undefined or defined more than once.

b. List an Error Summary.
c. Output the binary object file only.

d. Load the program to an available core area as
the program is linked.

6-2.3 EQUIPMENT CONFIGURATION. The minimum
equipment configuration includes:

a. Model 960 computer with 4K Memory.
b. Device for binary object input file.

c. Device for binary object output file.

d. Device for control messages and input.

e. Device for Lists (Load Map and Error Sum-
mary).

LRL will operate with all files and control assigned to a
single teletypewriter. Operation with only the teletype
Corporation Model ASR-33 TBE (Manual Punch Control) is
somewhat inconvenient. A program is available for separat-
ing the input binary records from the output records. Two
teletypewriters are recommended as the minimum. 1/O
equipment configuration. Automatic punch control in-
stalled on a single teletypewriter will increase effectiveness.
Optimum effectiveness is obtained with either of the
following I/O equipment configurations.

CARD MEDIA

Card Reader
Card Punch
Data Terminal or Line Printer
Teletypewriter, if no Data Terminal

PUNCHED TAPE MEDIA

High Speed Paper Tape Reader

High Speed Paper Tape Punch

Data Terminal or Line Printer
Teletypewriter, if no Data Terminal

6-2.4 DATA STRUCTURE. Four types of 960 Binary
Records are processed by LRL.

a. Segment Identification Records which contain
(1) Segment Name
(2) Origin, Length
(3) External Reference Count
(4) Segment Attribute Flags

b. Linkage Data Records which contain

(1) Number of symbols per card
(2) Symbol attribute Flags for each symbol
(3) External References accompanied by an
index or External Definitions accom-
panied by a value.
¢. Text Records which contain
(1) The number of text words in the record
(2) A Load address
(3) Relocation Map
(4) Linkage Data
(5) The number of Linkage Data Sets in the
record
d. End Records which may contain an optional

branch vector.

/ SEGMENT 1

BINARY
RECORD
FORMAT

.OR.

{

BINARY

CONTROL

OBJECT INPUT FILE

(F

v

BINARY
RECORD
FORMAT

.OR.

BINARY

CONTROL

>

—

LRL PASS 1

BUILD TABLES
ALLOCATE MEMORY

PREPARE LOAD MAP

—

LRL PASS 2

LINK

LIST ERRORS

OPTIONS
RELOCATE
LOAD

OUTPUT OBJECT
FILE

LOAD MAP

EXECUTABLE
PROGRAM

IN CORE
MEMORY

.AND OR.

% BINARY

OBJECT OUTPUT FILE

—

~/

Figure 6-1LRL960 — General Operating Procedure.

ERROR LIST

A detailed description of each binary record type can be
found in Section IL.

The segment name from each identification record proc-
essed is placed in a segment identification table (IDTAB).
Space is allocated for one hundred segment names.

Symbols obtained from Linkage Data Records are proc-
essed by constructing a symbol table starting at one end of
the symbol table work space. An External Symbol Refer-
ence list is constructed starting at the opposite end. Data in
the symbol table is referenced by symbol name. The
reference list is addressed using an index computed from
the position of a given program segment in the input file
and the external symbol index for a symbol within the
given program segment.

Text Records are processed during pass two of the binary
input file.

End Records provide separation between programs that
have been assembled separately. The segment sequence
number of the END record is retained for use in calculating
indexes for the external symbol reference list.

LRL automatically uses the memory between LRL and
PSM/PAM first address for the construction of the symbol
table. WHEN USING PAM NO WORKER TASKS SHOULD
RESIDE BETWEEN LRL AND THE FIRST PAM
ADDRESS.

6-2.5. PROGRAM STRUCTURE. LRL program structure
is divided into a control segment, first-pass segment, and
second-pass segment. The control segment reads the input
record and determines which record type is to be processed.

Only identification records and linkage data records are
processed in the first pass. The option to print a load map
may also be exercised.

6-2.6 LINKING LOADER OUTPUT TAPE EDIT. A link
load performed with the binary input file assigned to a
teletypewriter paper tape reader and the binary output file
assigned to the same teletypewriter’s paper tape punch
(which has no automatic punch on/off) will cause records
from the binary input file as well as records from the binary
object to be punched on the tape. This tape must be edited
before it can be loaded.

OBJMAT is a worker program which runs under control of
either PSM or PAM that performs this edit task. It reads the
LRL binary output file tape, deletes the extraneous data,
checks redundancy characters and punches a new tape. The
logical units used by this program are:

LUNO ASSIGNED
000A TTY Keyboard/printer
000B TTY punch tape reader/punch

6-3

OBJMAT OPERATING INSTRUCTIONS:

a. Use WFDIO to make Logical Unit Number
Assignments.

b. Load OBJMAT and execute.

c. Put the output tape from LRL into the TTY
tape reader.

d. Respond to the OBJMAT message TURN OFF
PUNCH AND RETURN CARRIAGE.

e. OBJMAT then reads the input tape, bypassing
the extraneous data, and builds a 800-word
buffer of good data.* If a redundancy character
error occurs, the message REPOSITION TAPE
I0 LAST RECORD AND RETURN CAR-
RIAGE is output to the teletype keyboard. If
this message persists, the tape contains a bad
record and cannot be processed.

f. When the buffer is full, the message TURN ON
PUNCH AND RETURN CARRIAGE is given.
The buffer is then punched.

g. Steps d, e, and f are repeated until an end
record is encountered, at which time the partial
buffer is punched and the program terminates.

*The size of this buffer (PCH BUF) can be changed at
assembly time without affecting the operation of the
program.

6-3 OPERATING INSTRUCTION

6-3.1 INPUTS/OUTPUTS. The input records, as defined in
paragraph 6-2.4, are processed by LRL. During the first
pass the identification records are used to build the segment
name table (IDTAB) and the linkage data records are used
to build the symbol table (SYMTAB). Examples of these
inputs and their relationship to the Linking Loader system
are shown in figure 6-2.

LRL processes text records during the second pass. Each
processed text record is examined for any linkage data
present. If there is no linkage data present in the card, the
text record is output, or loaded as it is. If there is linkage
data present, the text record data is linked as defined by
the linkage data and output or loaded.

In the second pass only the text records and end records are
processed. In this pass errors such as undefined labels,
double defined labels, a flag or bit reference used illegally,
illegal external references, and truncation errors (a value is
too large to mask into the described field) are printed as an
option. The second pass also produces the binary object
output file, consisting of an identification record, text
records, and an end record. The linked program can

FIXED STARTING
LOCATION FOR
PSM, VARIABLE

FOR PAM

LEGEND
DBL —

Fb

TYPICAL SEGMENT

Figure 6-2 Memory Map.

64

MEMORY MAP TABLE ID ENTRY
| N
BOOTSTRAP LOADER
X'007F!
SEGMENT
RESERVED NAME ASCII
X100B0! 6 CHARACTERS
LRL
————————— > 6 WORD/ENTRY
SEGMENT
SEGMENT _._&oRGIN
ID TABLE EXTERNAL
REF POINTER
SYMBOL
TABLE EXTERNAL trlsls
REF COUNT
V
TYPICAL
SYMBOL
TABLE
\
EXTERNAL SYMBOL
REFERENCE LIST SYMBOL
ASCH
6 CHARACTERS
5 WORDS / ENTRY
S PSM/PAM (7 > 5WORDS / ENTRY.
VALUE OR DI
e e
ssh | B|[F : v|R
0 = Defined LD
1 = Double Defined v,
0 = Neither Flag or Bit TYPICAL
1= Either Flag or Bit SECTION FROM
0 = Value EXTERNAL SYMBOL
1 = Dictionary Index REFERENCE LIST ONE ENTRY FOR
0= Relocatable Value) EACH EXTERNAL
1= Not Relocatable ESTPNNN 'I: REFFERENCE IN
0 = Linking Req'd EVERY SEGEMENT.
1= No Linking Req'd . THE ENTRY
0 = Relocatable : 3| RELATESTHE
1 = Absolute > EXTERNAL
00 = Procedure Segment ESTP002 2] REFERENCE
01 = Data Segment DICTIONARY
10 = Flag Segment INDEX TO THE
11 = CRU Segment ESTP0O1 1| LOCATION OF THE
SYSMBOL IN THE

SYMBOL TABLE.

optionally be loaded into any available space in memory.

When all text and end records are processed the Linking
Loader encounters an END OF FILE (EOF) record and,
after outputing the END and EOF record, the Linking
Loader returns to the monitor system.

6-3.2 CONTROL FEATURES. LRL runs under PAM.
Refer to Section I for help in using PAM Job Control to
set up LRL jobs. LRL also runs under PSM. Refer to
Section IV to find help in making PSM I/O assignments for
LRL. The Linking Loader requires one option card to
define what processes are necessary. LRL (LUNO 30) may
be assigned to either the card reader or teletypewriter
keyboard. The options are read after the messages PASS 1,
LOAD PRG; or PASS 2; LOAD PRG? are output. After all
passes are complete and an EOF card has been read, the
program returns to the monitor system,

Error stops in the Linking Loader occur if the symbol table
overflows; if the Linking Loader is trying to load a program
that is out of limits; or if a redundancy character error is
detected. Symbol table overflow is a non-recoverable error.
The Linking Loader prints SYMBOL TABLE FULL and
terminates the job. Loading out of limits is not a fatal error.
The Linking Loader prints LOAD OUT OF LIMITS and
turns off the loading process but continues with the
remaining options.

If a redundancy character error is detected, REDUN-
DANCY ERROR, REPOSITION LAST RECORD ? will be
printed. Error recovery requires the operator to position
the last record read. He must type on the keyboard the
letter Y and a carriage return if the desires to try again or
the letter N and a carriage return if he desires to abort.

6-3.3 RESTRICTIONS. LRL input restrictions are:

a. The programs to be linked must be assembled
according to Model 960 Reference Manual
procedures.

b. There must be no change in the sequence of
segments loaded for PASS 1 or PASS 2.

In assembly modules containing more than one segment the
REFerence declearations for all externally referenced
symbols in the entire assembly should be located in the first

6-5

segment. This means that all REF statements are in the first
segment of an assembly module.

6-3.4 LOADING PROCEDURES. LRL is loaded by Job
Control under Pam or by the bootstrap loader under PSM.
The PAM control cards needed to load and execute LRL
are described in Figure 6-3. The PAM types OP ? on the
teletypewriter when loaded. The correct answer to this is
JCON and a carriage return.

6-3.5 OPERATING PROCEDURES. PAM or PSM must be
loaded unless the monitor is already resident in core. LRL
and its PAM job control are loaded via the card reader or
the paper tape reader. Using PSM the command !L! from
the teletypewriter activates the loading process.

Using PAM option card for LRL should be directly in front
of the input binary file if options are to be read from a
card. If options are to be entered in through the teletype-
writer keyboard, the program segments to be linked must
appear following the $$SEXCT** card. The option card
format or teletypewriter entry is discussed in paragraph

6-3.4.

The LRL program prints:
PASS 1
LOAD PRG?

At this time the options are read and PASS 1 processing
continues.

During PASS 1 each record in the binary input file is
checked for a valid redundancy character. If an error is
detected,

REDUNDANCY ERROR
REPOSITION LAST RECORD ?

is printed on the control message device, normally the
teletype printer. Response to this is to reposition the last
record read, ready the card reader, and enter on the

keyboard:
Y cr try again.

N cr to abort.

LRL LOGICAL DEVICE ASSIGNMENT OPTIONS FOR LINKING RELOCATING LOADER

TYPICAL DEVICE CHARACTER 1 8
NUMBER USE TO USE NO. 1234567890 0
Card Reader, /*NN**LLLL
0010 Binary Input File Punched Tape
Reader Where NN is as follows:
Card Punch, BA Error Listing Only
0020 Binary Output File Paper Tape
Punch BB Load Map Only
Card Reader, _ i
0030 Option Input Data Terminal, 4C ~Load Map And Error Listing
TTY BD Binary Output Only
Data Terminal, TTY
0040 Messages — LOG Line Printer YE Binary Output and Error
Data Terminal Listing
0050 Load Map ata rermina,
Line Printer, TTY BF Binary Output and Load
Data Terminal Map
0060 Operator Input Keyboard, TTY .
BG All Options
EXAMPLE LRL LOG OUTPUT USING PSM B4 No Options
L in column 3 activates Load
LX Load, Execute Option
OP? DFIO 0010 0002 'WFDIO!
op? DFIO 0020 0003 LLLL in the Load Bias in Hexa-
OP? DFIO 0030 0002 10 Device decimal
op? DFIO 0040 0000 Assienment
OP? DFIO 0050 0004 8
OP? DFIO 0060 0000 There must be an option card present as the first card of
OP? 3 the binary deck (s) to be linked in PASS 1 and PASS 2 if
LX Load, Execute LRL card 3 is used to define Device 30 to the card reader.
PASS 1 NOTE
LOAD PRG ? LRL Messages
: Binary decks should not be re-arranged after
the linking process has begun.
PASS 2 Ep g .
LOAD PRG ? When the notification on the teletypewriter that PASS 2 of
X the LRL has begun:

6-6

$$JCOF **
/ $$DLTS **00A3
A$RL!O **0060
/$$RLIO **0050
/ $$RLIO **0040
/$$RLIO %0030
%sssnuo **0020
/$$RLIO **0010
/)
/ ((({({ BINARY INPUT FILE))))))
/*LG**00B0
/)
/ ({({{{{ BINARY INPUT FILE)}))))
% /*LG**00BO
$SEXCT **00A3
% $$DFIO **0060* *0000 (ASSIGN OPERATOR INPUT TO TTY KEYBOARD)
$$DFIO **0050"*0005 (ASSIGN LOAD MAP, ERROR LIST TO LINE PRINTER)
/ $$DFIO **0040**0000 (ASSIGN MESSAGES TO THE SYSTEM LOG)
%$$DFIO **0030* *0004 (ASSIGN OPTION INPUT TO THE CARD READER)
$SDFIO **0020**0006 (ASSIGN BINARY OUTPUT TO THE CARD PUNCH)
/$$DFIO **0010**0004 (ASSIGN BINARY INPUT TO THE CARD READERS)
% $SABLE **00A3
/ $$INST **00A3"*00FE
) —
/ ({(({{ LINKING RELOCATING LOADER))))))
/
/ $$LDTS" *0A20* *00A3 (LOAD TASK; LOAD ADDRESS=A20, D=A3)

Figure 6-3 Typical LRL Job Setup Using PAM.

2000000))))))))))))))

a. Card 12, the object programs to be linked, and
Card 13 must be reloaded into the high speed
card reader and the start button pushed. The
LRL program begins processing the PASS 2
options and terminates after reading card 13.

If data read from the Linkage Data Record overflows the
Symbol table during PASS 1 LRL prints.

SYMBOL TABLE FULL and terminates. This requires a
change to the programs to be Linked (decrease number of
symbols) or the symbol table of the Linking Relocating
Loader must be lengthened. When all data has been read by
the LRL and an EOF card (/*) has been recognized, the
Linking Relocating Loader terminates PASS 1 processing.

If the option to print a load map is in effect, the LRL
program prints the Local Map.

LOAD MAP (1)
INDENT TYPE RELOCATION CONSTANT (2)
EXTERNAL REFERENCES (3)
DUMO001 — PSEG — 0000 (4)
SYMO001 0001U SYM002 0002D SYM003 0000 (5)
DUMO002 — DSEG — 0100 (6)
DUMO003 — APSG — 0000 (7)

Lines 1 through 3 are header information. Line 4 identifies
program segment DUMO001 with an origin of 0000. Line 5
lists the external references for this segment. SYM0O1
0001U is an undefined reference and has a dictionary index
of 1. SYM002 0002D is a double defined reference and
retains the last value defined, 0002. SYMO003 0000 is a
defined symbol and has the value 0000.

Line 6 identifies the data segment DUMO002 with the origin
set at 0100. Line 7 identifies the absolute program segment
DUMO003 with an origin of 0000.

Five external references per line may be printed. One
hundred program segments may be listed.

When the load map is completed, the LRL begins the
second pass operations

PASS 2
LOAD PRG ?

is printed. The same option card loading procedure (or type
in), linkable object deck, and EOF card is repeated for the
second pass.

Three options are available during second pass processing.
The first option is to list errors found while linking the text
records. The errors format is DUM001 — PSEG — 0000.

The message UNDEF SYMO001 0010 means that SYM001,
an undefined symbol, was linked at relative location 0010
to Program segment DUMOO1.

The message DBLDEF SYM002 0011 means that SYMO002,
a double defined symbol was linked at relative location
0011 with the last defined value assigned.

The message TRUNC SYM002 0013 means that the symbol
value for SYM002 was too large to attempt linkage in the
instruction field at relative location 0013.

The message IL FLG OR BIT 0015 means that an illegal
external reference for a FLAG or BIT SYMBOL was
attempted at relative location 0015.

The second option is to generate the linked program object
code. The punched records include an identification record,
text records, end record, and an EOF record.

The third option is to load the linked program while the
linking process is generating new binary records.

If the program is to be loaded and happens to require more
than the available memory, LOAD OUT OF LIMITS is
ptinted where the LRL program terminates the load option
and continues with the remaining options.

The second pass terminates when the EOF card is recog-
nized. The LRL returns to the monitor.

	00-00
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08

