
;-::..:::=:::::·~·n:::::=::===::::::::!'ll!fC:, =======--·----_-__ :::_::::-::::::.-:__-_:==:==--:.:=--:=:-=================================-

TEXAS INSTRUMENTS

Improving Man's Effectiveness Through Electronics

Model 980 Computer
Assembly Language

Programmers Reference Manual

MANUAL NO. 943013-9701

ORIGINAL ISSUE 15 DECEMBER 1974
REVISED AND REISSUED 1 MARCH 1975

INCLUDES
CHANGE 1 1 MARCH 1976

Digital Systems Division

~ Texas Instruments Incorporated 1976
All Rights Reserved

The infonnation and/or drawings set forth in thfs document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos­
ing or employing the materials. methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the infonnation or drawings shall be made to any other person or
organization without the prf~r consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES Note: The portion of the text affected by the changes is
indicated by a vertical bar in the outer margins of
the page.

Model 980 Computer Assembly Language Programmer's. Reference Manual (943013-9701)

Original Issue
Revised and Reissued

Change 1

15 December 1974
1 March 1975 (ECN 388070)
1 March 1976 (ECN 407116)

Total number of pages in this publication is 166 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO,. NO. NO. NO. NO. NO.

Cover 1 4-20 1
Effective Pages 1 4-21 - 4-22. 0
iii - v . 0 Appendix A Divider 0
vi - viii 1 A-1 - A4 0
1-1 - 1-2 1 Appendix B Divider 0
2-1 - 2-8 0 B-1 - B-6 0
3-1 - 3-7 0 Appendix C Divider 0
3-8 1 C-1 · C-2 0
3-8A/3-8B 1 User's Response 0
3-9 - 3-55 0 Business Reply 1
3-56 1 Cover Blank 0
3-57 - 3-92 . 0 Cover 0
3-93 1
3-94 - 3-96. 0
4-1 0
4-2 1
4-2A/4·2B 1
4-3 1
44 - 4.5 0
4-6 - 4-8 1
4-8A/4-8B 1
4-9 - 4-10 I
4-11 0
4-12 1
4-l 2A/4-12B 1
4-13 - 4-19 . 0

~----9_4_3_01_3_-_9_7_0_1 ____________________________________ __,_ ________ ~

Paragraph

1. 1
1. 2

2. 1
2.2
2.3
2.4
2.5
2.6
2.7

TABLE OF CONTENTS

Title

SECTION I. GENERAL INFORMATION

Scope of Manual
References .••••

SECTION II. HARDWARE FEATURES

Gener al •••••••.•.•••.•
Computer Organization •••.•
Data and Instruction Formats
Register Organization •••••••
Memory Protect/Fri vileged Instruction Feature
Program Relocation Feature •
Priority Interrupt Feature .••••.•.••••••••

Page

1-1
1-1

2-1
2-1
2-3
2-4
2-6
2-7
2-7

SECTION III. MACHINE INSTRUCTIONS AND CODING CONVENTIONS

3. 1
3. 1. 1
3. 1. 2
3. 1. 3
3.2
3. 2. 1
3.2.2
3. 2. 3
3.2.4
3.2.5
3.2.6
3.3
3. 3. 1
3.3.2
3. 3. 3
3.3.4
3. 3. 5
3.4
3. 4. 1
3.4.2
3.4.3
3.4.4

General ••••••••••.••
Instruction Descriptions
Addressing Modes ••••
Extended Format Addressing .

Load Instructions ••••••••••
Double Load Registers A and E (DLD).
Load Register A (LDA).
Load Register E (LDE).
Load Register .M (LDM)
Load Register X (LDX).
Load Register File (LRF) ••••••.•••••

Store Instructions ••••••••••••••
Double Store Registers A and E (DST).
Store Register File (SRF) •
Store Register A (STA).
Store Register E (STE) .
Store Register X (STX).

Branch Instructions •••••
Branch on Incremented Index (BIX).
Branch and Link (BRL) .••••
Branch Unconditional (BRU)
Idle (ID L) • • • •••••••••••

iii

3-1
3-1
3-5
3-8
3-8
3-8
3-9
3-10
3-10
3-11
3-12
3-13
3-13
3-13
3-14
3-15
3-16
3-16
3-17
3-18
3-19
3-20

Digital Systems Division

~.0-------~ 943013-nOI

.Paragraph

3. 4:. 5
3.4.6

3.4.7
3. 5
3. 5. 1
3. 5. 2
3. 51. 3
3.5.4
3. 5. 5
3. 5. 6
3. 5. 7
3. 5. 8
3. 5. 9
3. 5. 10
3. 5. 11
3. 5. 12
3.5.13
3.6
3. 6. 1
3.6.2
3. 6. 3
3.6.4
3. 6. 5
3.7
3. 7. 1
3. 7. 2
3. 7. 3
3.7.4
3. 7. 5
3.7.6
3. 7. 7
3.7.8
3. 7. 9
3.7.10
3. 7. 11
3.7.12
3.7.13
3.7.14
3.7.15
3.7.16

TABLE OF CONTENTS (Continued)

Title

Load Status Block and Branch (LSB) ••••••
Load Status Block, Reset Interrupt, and

Branch (LSR)
Store Status Block and Branch (SSB) •.

Arithmetic Instructions .•••
Add to Register A (ADD) ..
Double Length Add (DAD) .
Divide (DIV) .•••..•••••
Double Length Subtract (DSB) ••
Increment Memory by One (IMO)
Multiply (MPY) .•.•••••••
Register Add (RAD)••.
Register Complement (RCO)
Register Decrement (RDE) ••
Register Increment (RIN) .••
Register Invert (RIV) •.••••••
Register Subtract (RSU) ••••••••
Subtract from Register A (SUB) .

. .

Compare Instructions .•••.•.•••
Compare Logical Character String (CLC)
Compare Algebraic (CPA) .••••••
Compare Logical (CPL} .••••••••
Register Compare Algebraic (RCA)
Register Compare Logical (RCL) .•

Skip Instructions ••••.•.•••••.•.
Decrement Memory and Test (DMT)
Skip on Equal (SEQ) .••••••••••
Skip on Even (SEV) .••••••••••
Skip on Greater than or Equal (SGE)
Skip on Greater Than (SGT) ..••••
Skip on Less Than or Equal (SLE) .
Skip on Less Than (SLT) .•
Skip on Minus (SMI) .•.
Skip on No Carry (SNC) ..
Skip on Not Equal (SNE) ..
Skip on Not All Ones (SNO)
Skip on No Overflow (SNV)
Skip on Not All Zeros (SNZ) ••••.
Skip on Carry (SOC) ..••.
Skip on Odd (SOD) •.••
Skip on All Ones (SOO) .••

.

Page

3-21

3-22
3-23
3-24
3-25
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-31
3-32
3-33
3-34
3-35
3-36
3-36
3-38
3-39
3-4:0
3-41
3-42
3-42
3-~~3

3-44
3-44
3-45
3-46
3-47
3-48
3-48
3-49
3-SO
3-51
3-52
3-!52
3-!;3
3-54

~-·~-·~--~--------------------~---------·~---~-----

iv Digital Systems Division

J15' ______ _ ~ 943013-9701

Paragraph

3. 7. 1 7
3.7.18
3.7.19
3.7.20
3.7.21
3. 8
3. 8. 1
3. 8. 2
3. 8. 3
3. 8. 4
3. 8. 5
3. 8. 6
3.8.7
3. 8. 8
3. 8. 9
3. 8. 10
3. 8. 11
3. 8. 12
3. 8. 13
3. 8. 14
3.8.15
3. 8. 16
3. 8. 1 7
3.8.18
3. 8. 19
3. 8. 20
3.8.21
3.8.22
3.9
3. 9. 1
3. 9. 2
3. 9. 3
3. 9. 4
3. 9o 5
3. 10
3. 1 o. 1
3. 1 o. 2
3.10. 3
3. 1 o. 4
3. 1 o. 5
3. 1 o. 6

TABLE OF CONTENTS (Continued)

Title

Skip on Overflow (SOV) .•.
Skip on Plus (SPL) •.••••
Skip on Sense Switch Equal (SSE)
Skip on Sense Switch not Equal (SSN) ••
Skip on Z er o (SZE) . . • • . • • . • • • • • • •

Shift Instructions ••••.••••.•••••••••
Arithmetic Left Shift Register A (ALA) ..
Arithmetic Left Shift Double (ALD) ••.•.
Arithmetic Right Shift Register A (ARA)
Arithmetic Right Shift Double (ARD) •••.
Circular Left Shift Double (CLD) ..••
Circular Right Shift Register A (CRA).
Circular Right Shift Register B (CRB).
Circular Right Shift Double (CRD) .•.
Circular Right Shift Register E (CRE).
Circular Right Shift Register L (CRL).
Circular Right Shift Register M (CRM)
Circular Right Shift Register S (CRS) .
Circular Right Shift Register X (CRX).
Logical Left Shift Register A (LLA) .
Logical Left Shift Double (LLD) ••••.
Logical Right Shift Register A (LRA)
Logical Right Shift Double (LRD) .•..
Left Test for Ones in Register A (LTO) ..
Left Test for Zeros in Register A (LTZ) •
Normalize (NRM) ••••••••••••••••
Right Test for Ones in Register A (RTO) •
Right Test for Zeros in Register A (RTZ)

Logical Instructions •••••••.••••.
Logical AND with Register A (AND)
Logical OR with Register A (IOR) ••
Register AND (RAN) •.••••
Register Exclusive OR (REO)
Register OR (ROR) ••••••.

Bit Manipulation Instructions •••
Set Register A Bit to One (SABO) ••
Set Register A Bit to Zero (SABZ) .
Set Memory Bit to One (SMBO) .••
Set Memory Bit to Zero (SMBZ) .••
Test Register A Bit for One (TABO)
Test Register A Bit for Zero (TABZ) .

v

Page

3-55
3-55
3-56
3-57
3-58
3-58
3-59
3-59
3-60
3-61
3-62
3-62
3-63
3-64
3-64
3-65
3-66
3-66
3-67
3-68
3-68
3-69
3-70
3-70
3-71
3-72
3-73

. 3-74
. 3-75
. 3-75
. 3-76
. 3-77

3-77
3-78
3-79
3-79
3-80
3-81
3-82
3-83
3-83

Digital Systems Division

~ __ __..___ ____ _ ~ 943013-9701

I

Paragraph

.3.10. 7
3.10. 8
3. 11
3. 11. 1
3.11.2
3. 11. 3
3. 12
3.12.1
3.12.2
3. 12. 3
3.12.4

TABLE OF CONTENTS (Continued)

Title

Test Memory Bit for One (TMBO)
Test Memory Bit for Zero (TMBZ).

Move Instructions
Move Character String (MVC)
Register Exchange (REX) •
Register Move (RMO) ••••••

Input I Output Instructions •••••
Auxiliary Processor Initiate (API) .
Automatic Transfer Instruction (ATI) •
Read Direct Single (RDS) •
Write Direct Single (WDS) .••••••••

Page

3-84
3-85
3-86
3-86
3-88
3-88
3-89
3-89
3-91
3-92
3-94

SECTION IV. ASSEMBLER CHARACTERISTICS AND DIRECTIVES

4.1
4.2
4. 2. 1
4.2.2
4. 2. 3
4.2.4
4. 3
4. 3. 1
4.3.2
4.3.3
4.3.4
4. 3. 5
4. 3. 6
4. 3. 7
4. 3. 8
4. 3. 9
4. 3. 10
4. 3. 11
4.3.12
4. 3. 13
4.3.14
4. 3. 15
4.3.16
4. 3. 1 7
4. 3. 18
4. 3. 19
4.3.20
4. 3. 21

Change 1

General .•••••.•. g •••••••••

Symbolic Assembly Program (SAP)
SAP Coding Line Format ••••.
Segmented Source Programs
SAP Object Format ••••••.•••.•••••
SAP Error Messages •••••.••••••.•••.•••.•

4-1
4-1
4-51
4-7
4-8
4-8
4-8
4-9
4-10
4-10
4-11
4-12
4-12
4-13
4-13
4-15
4-16
4-16
4-17
4-18
4-18
4-1.8
4-19
4-19
4-Zl
4-Zl
4-Z2
4-Z2

Assembler Directives •••••••
Block Ending Symbol (BES)
Base Register Reset (BRR) •.••••
Base Register Set (BRS) ••••••••
Block Starting Symbol (BSS) .••
Generate Byte Address (BYTE) ••.
Blank Common (COMM)
Generate Word Address or Data (DATA) •
Define Entry Point Symbol (DEF) ••
End of Source (END) .•••••
Equate (EQU) ••• , .•••••••••••
Flag Bit Address (FLAG) •••••
Format a New Instruction (FRM)
Page Heading (HED) •.•••
Object Identifier (IDT) •••
Conditional Assembly (IF).
Start Listing (LIS) .•••••
Operation Define (OPD)
Origin (ORG) •••.••••••••••••••••
Page Eject (PEJ) •.•••••••••••••••
Referenced External Symbols (REF) ••
Stop Li sting (UNL) .•••••••••••••••••

vi Digital Systems Di'vision

Appendix

A
B
c

Figure

2-1

3-1

4-1
4-2
4-3
4-4
4-5

Table

1-1

2-1
2-2
2-3
2-4

3-1

3-2

3-3

4-1
4-2

APPENDIXES

Title

Instruction Execution Times. • .
Alphabetical and Hexadecimal Ins true ti on Indexes • • • • •
Illegal Instruction Opera ti on Codes •.••••••••

LIST OF ILLUSTRATIONS

Title

Model 980 Computer Block Diagram .•

Register-Memory Instruction Fields.

Source Coded Main Program •••
Source Coded Subroutine •• Assembled Main Program •••
Assembled Subroutine .••••
Example of BYTE and DATA Usage

LIST OF TABLES

Title

Related Manuals ••••

Model 980 Computer Characteristics
Model 980 Computer Addressable Registers. o •

Status Register Bit Functions ••••••••••
Model 980 Computer Interrupts •••••••••

Model 980 Computer Machine Instructions by
Functional Group •••••••••••••••

Assembly Language Coding Format and
Instruction Execution Symbols ••••.••

Register-Memory Instruction Addressing
Modes and Coding Conventions •••..•

SAP Error Mes sages ••••••••••••••
Model 980 Computer SAP Assembler Directives

.

Page

A-1
B-1
C-1

Page

2-1

3-5

4-1
4-2A
4-3
4-4
4-14

Page

1-1

2-2
2-4
2-5
2-8

3-1

3-5

3-6

4-8A
4-9

·--~~~~-
Change 1 vii/viii Digital Systems Division

I

I

~~-~~~~~~~~~ ~ 943013-9701

SECTION I

GENERAL INFORMATION

I. I SCOPE OF MANUAL

This is one of two manuals covering the Model 980 Computer assembly lan­
guage. This manual describes all of the Model 980 Computer machine in­
structions and the associated symbolic assembly language coding conventions.
Beginning with Section II, an overview of the Model 980 Computer is presented
with specific information on the hardware features that affect assembly lan­
guage. Section III presents the machine instructions and the symbolic coding
conventions. Section IV follows with a general description of the Symbolic
Assembly Program (SAP) and a list of assembler directives. Included in
Section IV are sample assembly listings produced by SAP. The appendixes
at the rear of the manual contain instruction execution times, an alphabetical
and numerical listing of instruction operation codes, and a table of illegal op­
eration codes.

1. 2 REFERENCES

The second of the two manuals covering the Model 980 Computer assembly
language is Model 980 Computer Assembly Language Input/Output. It pro-
vides the information necessary to program input/output devices available
with the 980 at the assembly language level. The Model 980 Computer Basic
System Use and Operation manual or the DX980 GPOS Programmer's Guide I
should be referenced for information on how to assemble, load, and execute
an assembly language program. The related software manuals and their
respective manual numbers are listed in table 1-1.

Table 1-1. Related Manuals

Manual Manual No.

Model 980 Computer Assembly Language Input/Output

Model 980 Computer Basic System Use and Operation

Model 980 Computer Programming Card

DX980 General Purpose Operating System Pro­
grammer's Guide

Change 1 1-1/1-2

961961-9734

961961-9710

943000-9701

943005-9701

Digital Systems Division

I

~~--9_4_30_1_3_-_9_70_1 __________ ~--~----------~~--~----~~~-

SECTION II

HARDWARE FEATURES

2.1 GENERAL

This section contains a brief block diagram discussion of the computer, a
table of computer characteristics, and a list of programmable registers. In­
cluded is a bit-by-bit breakdown of the status register.

2. 2 COMPUTER ORGANIZATION

The computer is functionally organized into a central processing unit (CPU),
a memory, an input/output (I/O) unit, and a power supply. Figure 2-1 shows
a block diagram of the basic system. The Direct Memory Access Channel
(DMAC) is an I/O channel used for peripheral devices having a relatively fast

r

I ...Q_ATAOUT SEMI CONDUCTOR I DMAC SINGLE DEV.__
INTERFACE ADORES..§. MEMORY

OR EXPANDER -- I (32K MAX.I

r---- ----- -- ------ ---1
I I
I DATA IN I

.f_ONTROL --- ___ J -
I
l

• I- ~ .
~ g _,
w - 0
a: ~ a:

I-
0 <(z

1/0 INTERRUPT W/
0 I- 8_
<(_!,

INTERFACE EXP'R
~ SINGLE DEV. -- FOUR (4) -OR EXPANDER DATA BUS DATA IN_..

SINGLE DEV. -- PORTS AND ~ATAOUT CENTRAL

OR EXPANDER
~ ONE 4-BIT

CONTROL
PROCESSING

INTERRUPT UNIT
SINGLE DEV. EXPANDEP
OR EXPANDER

~
SINGLE DEV. --OR EXPANDER • ~~ SPPLY

CONTROL

f DATA IN
&ADDRESS

SINGLE DEV.
AUXILIARY PROCESSOR

OR EXPANDER -- -. DATAOUT
PORT -

DATA & CONTROL

_t

CONTROL
PANEL

L _________ ------- - - -- -- ____ J

Figure 2-1. Model 980 Computer Block Diagram

2-1 Digital Systems Division

943013-9701

rate of data transfer. The Data Bus is an I/O channel used for peripheral
devices having a relatively slow rate of data transfer. An auxiliary proces­
sor (AP) is used to add to the standard 980 instruction set. For example,
floating point arithmetic may be added or the instructions for another com­
puter may be emulated. Expansion of the DMAC, Data Bus, and AP ports
may be accomplished by using the optional twelve (12) connector chassis with­
in the Model 980 mainframe and/or an expansion chassis external to the
mainframe. Table 2-1 lists some of the more important characteristics -of
the computer.

Tabel 2-1. Model 980 Computer Characteristics

Or ganiza ti on

• Parallel operation

• Single level indirect addressing

• Two's complement arithmetic

• Eight addressable registers, plus status register

• Bipolar ROM control for CPU

Memory

• Dynamic MOS/LSI semiconductor array memory

• 16-bit word length plus even parity (980A); 16-bit word
length plus 6-bit error correction/detection code (980B)

• Capacity,_ in 4096-word increments (980A); in 8192-wqyd
increments (980B)

4096 words minimum (980A); 8192 words minimum (980B)
65536 words maximum (980A and 980B)
32768 in CPU chassis, 32768 external (980A); 65536 in

CPU chassis (980B)

• All of memory can be directly addressed

• Power failure protection

• 750 nanosecond read or write cycle

• 500 nanosecond me:mory access

Input I Output

-----·---

• One direct memory access channel (DMAC) port, expandable
to eight

Single word parallel transfer
One million words per second burst rate

2-2 Digital Systems Division

~--~94_3_0_1_3_-9_7_0_1 ____ ~----~--------------------------~--~-
Table 2-1. Model 980 Computer Characteristics (Continued)

• A processor-controlled data bus with 4 ports, expandable
to 256 ports

One 4-bit interrupt expander

16-bit parallel transfer

• Three priority interrupts

Vectored interrupts (highest priority)
DMAC interrupts
Data bus interrupts (lowest priority)

Instruction set

• 99 basic instructions (covered in Section III)

Other features

• Memory protect/privileged instruction feature (standard)

• Vectored (priority) interrupt option, up to 32 hardware
vectored interrupts (optional)

• Auxiliary Processor option (optional)

• Hardware bootstrap loader (standard)

• Internal expansion chassis for DMAC, data bus, and auxiliary
processors (optional)

• Internal battery for maintaining memory contents when power
is off (optional)

2. 3 DATA AND INSTRUCTION FORMATS

Both the data and instruction words are 16 bits long. The bit positions within
a word are numbered 0 (most significant bit) through 15 (least significant bit).
Data is represented in binary two's complement form with bit 0 indicating the
algebraic sign. A zero in the first bit indicates a positive sign. The range
of integers representable in one 16-bit word is from -215 to +215 -1.

Double length operands such as products from multiplication, dividends for
divides, and quantities for double-length arithmetic shifts have the following
format:

0 1 15 16 17 31

H 15MSB 15 LSB

2-3 Digital Systems Division

A?)\ ______ _ ~ 943013-9701

Input, output, and status register related instructions are 32 bits long and
occupy two consecutive 16-bit words. The register-to-memory instructions
1nay be 16, 32, or 48 bits long.

Z. 4 REGISTER ORGANIZATION

Eight 16-bit registers are directly addressable via the instruction formats
involving registers. These registers with their respective address, designa­
tion, and function are listed in table 2-2.

Table 2-2. Model 980 Computer Addressable Registers

Register
Address

0

1

2

3

4

5

6

7

Designation

A

E

x

M

s
L

B

PC

Function

Primary arithmetic register.

Secondary (extension) arithmetic register.

Index register for operand address modi­
fication.

Maintenance register for temporary
storage.

Storage register for temporary storage.

Link register to hold return address for
subroutine linkage.

Base register to hold base address for op­
erands.

Program counter to hold the address of the
next instruction.

In addition to these eight registers, the status register may be directly af­
fected by the instruction set. The status register is used to hold the present
condition of the computer and to enable or disable interrupts. The status
register together with the program counter constitutes the "status block".
The functions of the status register bits are listed in table 2-3.

~----·~--------------------~-------~---

2-4 Digital Systems Division


~~~9_4_3_01_3_-_9_7_01 ____________________________________ ~~--~~ 
Table 2-3. Status Register Bit Functions 

Bits Function 

0, 1 Compare Indicators - Indicate the result of the last compare 
operation. 

00 - less than 
01 - equal to 
10 - greater than 
11 - unused bit setting 

2 Overflow Indicator - Turned on or off by those instructions that 
may result in a number that is outside of the range of the as so­
ciated register(s ). 

3 Carry Indicator - Turned on or off by an add or subtract in­
struction that may result in a carry into the sign bit of a regis­
ter. 

4 Privileged Instruction and Memory Protect Interrupt Control 

0 - Disabled 
1 - Enabled 

5 Memory Protect Address Violation - May not be set under pro­
gram control. 

0 - No Violation 
1 - Violation 

6 PIF>:~ Instruction Violation - May not be set under program con­
trol. 

0 - No Violation 
1 - Violation 

7 Data Bus Interrupt Control 

0 - Disabled 
1 - Enabled 

8 Vectored Interrupt Feature 

0 - Disabled 
1 - Enabled 

>!~PIF - Privileged Instruction Feature 

2-5 Digital Systems Division 



~~-~~----~~~~-~ 943013-9701 

Table 2-3. Status Register Bit Functions (-Continued) 

Bits Function 

9 PIF~:< Lower Limit Address Bias 

1 0 Index Control 

0 - Disabled 
1 - Enabled 

9 - Post Indexing 
1 - Pre -indexing 

11 Memory Parity Error Interrupt Control 

0 - Disabled 
1 - Enabled 

12 DMAC Interrupt Control 

13 Not Used 

0 - Disabled 
1 - Enabled 

14 Memory Parity Error Indicator - May not be set under pro­
gram control. 

0 - No Error 
1 - Error 

15 Power Fail Indicator - One millisecond (980A) or 20 millisec­
ond (980B) warning that power failure is imminent. May not be 
set under program control. 

0 - Power Up 
1 - Power Failure Imminent 

~:<PIF - Fri vileged Instruction Feature 

2. 5 MEMORY PROTECT /PRIVILEGED INSTRUCTION FEATURE 

When enabled, the memory protect/privileged instruction feature (MP /PIF') 
allows program execution to occur only within a specified area of memory. 
It also causes certain instructions to be treated as illegal. This feature mlay 
be used to protect the operating environment from destruction during execu­
tion of an undebugged program. 

The system may use this feature to prevent a user program from inadvertent­
ly storing data over a system program or another user program. The 

2-6 Digital Systems Division 



~---9_4_3_01_3_-_97_0_1 __ ~~~--------------------------------~ 
MP /PIF can also prevent program execution from proceeding beyond the re­
gion that the given program occupies in memory; thus, a program cannot in­
advertently branch into the middle of another program. Finally, when the 
MP/PIF is enabled, a user can neither disrupt input/output activity that the 
system has in progress nor bring the computer to an idle. 

Before enabling the MP/PIF feature, it is first necessary to load the MP/PIF 
lower limit and upper limit registers that define the limits within which ex­
ecution will be constrained. Both registers are loaded using the WDS instruc­
tion (refer to paragraph 3. 12. 4) just as if the MP/PIF registers were exter­
nal to the computer. Register address zero defines the lower limit and re­
gister address one defines the upper limit. These boundary locations and all 
memory outside of the boundaries are protected by the MP /PIF feature. The 
MP /PIF feature is then enabled by setting bit 4 of the status register. 

2. 6 PROGRAM RELOCATION FEATURE 

The program relocation feature (PRF) allows a program to be loaded any­
where within the 980 memory, but to execute as though it were loaded start­
ing at memory location zero. When used by a system program, this allows 
programs to be moved from one point in memory to another with no affect on 
the operation of the program. It also allows programs to be stored in an ab­
solute rather than relocatable form, thus requiring less storage space. 

The lower limit register used by the MP /PIF is also used by the PRF. If the 
system sets bit 9 of the status register at the time control is transferred to 
the user program, the contents of the lower limit register plus one is added 
into the address calculations for each memory access. For example, sup­
pose a program is assembled as an absolute program with origin at location 
0000 16. Also, suppose that the entry point to the program is location 002016, 
and that it is convenient for the system to load the program at location 
100016• The system loads the program starting at 100016, places OFFF16 
in the lower limit register, and performs an LSB instruction (refer to para­
graph 3. 4. 5) to transfer to the program. The LSB must set bit 9 of the sta­
tus register and load the program counter with 002016· Note, that although 
the instruction executed is at 102016, the program counter contains 002016· 
If, for instance, a trap were to occur, the value 0020 16 in the program 
counter would be saved for the return. 

2. 7 PRIORITY INTERRUPT FEATURE 

The Model 980 Computer responds to four different types of interrupts. 
These interrupts, in order of priority include: internal interrupt, vectored 
interrupt option, DMAC interrupt, and data bus interrupt. The three lower 
priority interrupts are input/ output interrupts, and their occurrence depends 
on the system hardware configuration. The internal interrupts include the 
detection of imminent power failure, an illegal operation code, a memory 
parity error, a memory protect violation, and a privileged instruction viola­
tion. When any internal or input/ output interrupt occurs, computer control 

2-7 Digital Systems Division 



Jd])\ ________ _ ~ 943013-9701 

traps to low order memory as listed in table 2-4, assuming the proper status 
register bits are set to enable the interrupt. Note that the power failure and 
illegal operation code interrupts cannot be masked by the status register. 

Table 2-4. Model 980 Computer Interrupts 

Trap Status Register Bits 
Interrupt Type Address 

{Hex) Mask Bit Interrupt Bit 

Internal 

Power fail 0002 - ~s(i) 
Illegal op-code 0002 -
Parity error 0002 11 14 
MP violation 0002 4 5 
PIF violation 0002 4 6 

0008@ 
Vectored {Optional) 

. 
8 . -

0046 

DMAC 0004 12 -

Data Bus 0006 7 -

NOTES: 

<D The illegal op-code interrupt is detected when none of the other in­
ternal interrupts cause the trap to 000216. 

@ The optional vectored interrupt feature may include up to 32 sepa­
rate trap locations, beginning with the highest priorities at 000816, 
OOOA16, OOOC16,, etc. to the lowest priority at 004616· 

Programming all four types of interrupts is covered in detail in the Model 
980 Computer Assembly Language Input/Output manual. 

2-8 Digital Systems Division 



-~----94_3_0_1_3_-9_7_0_1 ________________ ~~~~----~--~------~ 

SECTION III 

MACHINE INSTRUCTIONS AND CODING CONVENTIONS 

3.1 GENERAL 

This section describes the machine instructions and the related assembly lan­
guage coding conventions for the Model 980 Computer. Table 3-1 groups the 
99 instructions by function, and references a separate paragraph on each in­
struction for more detailed information. Appendix B contains an alphabetical 
and hexadecimal index to these same paragraph numbers. General coding 
conventions applicable to the label, operation, operand, and comment fields 
of the symbolic assembly language are covered in Section IV of this manual. 

3. 1. 1 INSTRUCTION DESCRIPTIONS 

Each instruction description referenced in table 3-1 contains the following in­
formation about the instruction: 

• Instruction word field breakdown 

• Description of instruction execution 

• Status register bits affected by instruction execution 

• Execution time 

• Assembly language coding conventions 

• Instruction example 

Table 3-1. Model 980 Computer Machine Instructions 
by Functional Group 

Mnemonic 

• Load Instructions 

DLD 
LDA 
LDE 
LDM 
LDX 
LRF 

• Store Instructions 

DST 
SRF 
STA 
STE 
STX 

Description 

Double Load Registers A and E 
Load Register A 
Load Register E 
Load Register M 
Load Register X 
Load Register File 

Double Store Registers A and E 
Store Register File 
Store Register A 
Store Register E 
Store Register X 

3-1 

Paragraph No. 

3.2 

3. 2. 1 
3.2.2 
3.2.3 
3.2.4 
3.2.5 
3.2.6 

3.3 

3. 3. 1 
3.3.2 
3. 3. 3 
3.3.4 
3.3.5 

Digital Systems Division 



• 

• 

• 

• 

943013-9701 

Table 3-1. Model 980 Computer Machine Instructions 
by Functional Group (Continued) 

Mnemonic Description Paragraph No. 

Branch Instructions 3.4 

BIX Branch on Incremented Index 3. 4. 1 
BRL Branch and Link 3.4.2 
BRU Branch Unconditional 3. 4. 3 
IDL Idle 3.4.4 
LSB Load Status Block and Branch 3.4.5 
LSR Load Status Block, Reset In-

terrupt, and Branch 3.4.6 
SSB Store Status Block and Branch 3.4.7 

Arithmetic Instructions 3. 5 

ADD Add to Register A 3. 5. 1 
DAD Double Length Add 3. 5. 2 
DIV Divide 3. 5. 3 
DSB Double Length Subtract 3.5.4 
IMO Increment Memory by One 3. 5. 5 
MPY Multiply 3. 5. 6 
RAD Register Add 3. 5. 7 
RCO Register Complement 3. 5. 8 
RDE Register Decrement 3. 5. 9 
RIN Register Increment 3. 5. 10 
RIV Register Invert 3.5.11 
RSU Register Subtract 3. 5. 12 
SUB Subtract from Register A 3.5.13 

ComEare Instructions 3.6 

CLC Compare Logical Character String 3. 6. 1 
CPA Compare Algebraic 3.6.2 
CPL Compare Logical 3.6.3 
RCA Register Compare Algebraic 3. 6 .. 4 
RCL Register Compare Logical 3. 6. 5 

SkiE Instructions 3. 7 

DMT Decrement Memory and Test 3. 7. 1 
SEQ Skip on Equal 3.7.2 
SEV Skip on Even 3. 7. 3 
SGE Skip on Greater Than or Equal 3. 7. 4 
SGT Skip on Greater Than 3. 7. 5 
SLE Skip on Less Than or Equal 3.7.6 
SLT Skip on Less Than 3. 7. 7 

3-2 Digital Systems Division 



~--~9_4_3_0_13_-_9_7_0_1 ______________________ ~~--------------~---

• 

• 

Table 3-1. Model 980 Computer Machine Instructions 
by Functional Group (Continued) 

Mnemonic Description Paragraph No. 

SkiE Instructions (Continued) 

SMI Skip on Minus 3. 7. 8 
SNC Skip on No Carry 3. 7. 9 
SNE Skip on Not Equal 3.7.10 
SNO Skip on Not All Ones 3. 7. 11 
SNV Skip on No Overflow 3.7.12 
SNZ Skip on Not All Zeros 3.7.13 
soc Skip on Carry 3.7.14 
SOD Skip on Odd 3.7.15 
soo Skip on All Ones 3.7.16 
sov Skip on Overflow 3.7.17 
SPL Skip on Plus 3. 7. 18 
SSE Skip on Sense Switch Equal 3.7.19 
SSN Skip on Sense Switch Not Equal 3.7.20 
SZE Skip on Zero 3.7.21 

Shift Instructions 3.8 

ALA Arithmetic Left Shift Register A 3. 8. 1 
ALD Arithmetic Left Shift Double 3. 8. 2 
ARA Arithmetic Right Shift Register A 3. 8. 3 
ARD Arithmetic Right Shift Double 3. 8. 4 
CLD Circular Left Shift Double 3. 8. 5 
CRA Circular Right Shift Register A 3. 8. 6 
CRB Circular Right Shift Register B 3. 8. 7 
CRD Circular Right Shift Double 3. 8. 8 
CRE Circular Right Shift Register E 3. 8. 9 
CRL Circular Right Shift Register L 3. 8. 10 
CRM Circular Right Shift Register M 3. 8. 11 
CRS Circular Right Shift Register S 3. 8. 12 
CRX Circular Right Shift Register X 3. 8.13 
LLA Logical Left Shift Register A 3.8.14 
LLD Logical Left Shift Double 3.8.15 
LRA Logical Right Shift Register A 3. 8. 16 
LRD Logical Right Shift Double 3. 8. 1 7 
LTO Left Test for Ones in Register A 3.8.18 
LTZ Left Test for Zeros in Register A 3. 8. 1 9 
NRM Normalize 3.8.20 
RTO Right Test for Ones in Register A 3. 8. 21 
RTZ Right Test for Zeros in Register A 3.8.22 

3-3 Digital Systems Division 



~~-~~------~~~~-~ 943013-9701 

Table 3-1. Model 980 Computer Machine Instructions 
by Functional Group (Continued} 

Mnemonic Description 

• Logical Instructions 

AND 
!OR 
RAN 
REO 
ROR 

Logical AND with Register A 
Logical OR with Register A 
Register AND 
Register Exclusive OR 
Register OR 

• Bit Manipulation Instructions_ 

SABO 
SABZ 
SMBO 
SMBZ 
TABO 
TABZ 
TMBO 
TMBZ 

• Move Instructions 

MVC 
REX 
RMO 

Set Register A Bit to One 
Set Register A Bit to Zero 
Set Memory Bit to One 
Set Memory Bit to Zero 
Test Register A Bit for One 
Test Register A Bit for Zero 
Test Memory Bit for One 
Test Memory Bit for Zero 

Move Character String 
Register Exchange 
Re gi ste r Move 

• Input/Output Instructions 

API 
ATI 
RDS 
WDS 

Auxiliary Processor Initiate 
Automatic Transfer Instruction 
Read Direct Single 
Write Direct Single 

Paragraph No. 

3.9 

3. 9. 1 
3 .. 9. 2 
3.9.3 
3.9.4 
3. 9. 5 

3. 10 

3. 1 o. 1 
3. 1 o. 2 
3. 1 o. 3 
3.10.4 
3.10. 5 
3.10.6 
3. 1 o. 7 
3. 1 o. 8 

3. 11 

3.11.1 
3.11.2 
3. 11. 3 

3.12 

3.12.1 
3.12.2 
3. 12. 3 
3.12.4 

The status register bits are defined in table 2-3. The symbols used in pre·­
senting the instruction assembly language coding formats and the symbols 
used in presenting an abbreviated form of instruction execution are listed in 
table 3-2. The symbols and directives used in the instruction examples are 
explained in Section IV. 

3-4 Digital Systems DJvision 



~----9_4_30_1_3_-9_7_0_1 ______________________________________ ~-

Instruction 
Execution 

Assembly 
Language 

Coding 
Format 

{ 
.,. 

Table 3-2. Assembly Language Coding Format 
and Instruction Execution Symbols 

Symbol Definition 

( ) Contents of enclosed register 
dress 

- Replaces 
,1, Indirect addressing ,,, 

@ Extended format 

= Immediate operand 

[ ] Optional item 

Lower case alpha- User supplied item 
be tic characters 

or ad-

.... ' 1,6 Required blank space (one or more) 

3. 1. 2 ADDRESSING MODES 

The computer instruction set can be broken down into a number of different 
format types. The addressing modes associated with all but one of the for­
mat types are straightforward, and are included in the individual instruction 
descriptions. The remaining instruction format type, register-memory in­
structions, is more involved and is described in this paragraph and refer­
enced by the instruction descriptions when applicable. 

The format of register-memory instructions is shown in figure 3-1. The ad­
dressing mode is determined by the I, X, and B fields as shown in table 3-3. 

-
BI TS 0 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 

* DEPENDING 
ON I LX, 
AND tj 

FIELDS• 

---..--..... -..--.-------------------------...... ---------
OP=OPERATION 

CODE 

o<D < 2ss 
-f2a~sD:s;127 

D =DISPLACE EN 
OR* 
SD=SIGNED DISPLACEMENT 

I=INDIRECT ADDRESS 
X=INDEXING 
B=BASE RELATIVE ADDRESS 

Figure 3-1. Register-Memory Instruction Fields 

3-5 Digital Systems Division 



--~~--9_4_30_1_3_-_9_70_1 __________ ~-~----------~~----------~-------
Table 3-3. Register-Memory Instruction Addressing 

Modes and Coding Conventions 

Symbolic Coding 
IXB Effective Operand Conventions Addressing 
Bits Address, EOA 

Operation l Operand 
Mode 

000 (PC)(D +SD MNUCD ADRS@ PC relative 
@MNU =NUM@,@ 
@MNU NUM, 7@ 

001 (B)CD + D MNU ADRS, 1 Base register 
MNU ADRS© re la ti ve 

010 (PC)+ (X)(D + SD MNU ADRS, 2 Indexed PC 
relative 

-
011 (B) + (X) + D MNU ADRS, 3 Indexed base 

MNU ADRS,2@ register 
relative 

100 ((PC)+ SD) MNU ':'ADRS Indirect PC 
MNU ':'ADRS, 4 relative 
MNU ADRS© 

@MNU ADRS 5 

101 ((B) + D) MNU :::ADRS, 1 Indirect base 
MNU ':'ADRS, 5 register 
MNU ADRS, 5 re la ti ve 
MNU :::ADRS@ 

110 ((PC)+ SD)+ (X~ MNU ':'ADRS, 6 Indirect, 
((PC)+ (X) + SD) 8 MNU ':'ADRS, 2 indexed, 

MNU ADRS, 6 PC relative 
@MNU ADRS,2®,@ 

111 Immediate value MNU =NUM Immediate 
is the SD MNU NUM,7 

NOTES: 

(!) PC - Program Co:unter (points to next instruction); B - Base Register; 
X - Index Register; MNU - Instruction Mnemonic. 

@ Sym.bolic name of address. 

G) Number, literal, or address. 

© Under BRS directive. 

@ All extended format instructions are regarded as PC relative because the 
assembler zeros the SD field. This means the computer must add the PC to 
the zeroed SD to locate the extended data/address. Note that the computer 
increments the PC to the next location before the instruction is executed. 

© Post-indexing, regardless of status register bit 10. 

CV Post-indexing if status register bit 10 = O. 

@ Pre-indexing if stat us register bit 10 = 1. 

3-6 Digital Systems o;vision 



~~-9_4_3_0_13_-_97_0_1~--~--~~~--~~~--------------~--~ 
NOTE 

To fully understand table 3-3, all of paragraph 
3. 1. 2 and 3. 1. 3 must be read. 

In general, calculation of the Effective Operand Address (EOA) of the mem­
ory data involved in the instruction includes indirect addressing if bit I is set, 
indexing if bit Xis set, and base relative addressing if bit Bis set. If 'an 
three of these bits are set, an immediate operand is assumed by the com­
puter. If immediate addressing is specified for a load, add, subtract, or 
algebraic compare instruction, the displacement field (D) is treated as an 
8-bit signed quantity and bit eight is extended through bits 0 to 7 to provide a 
16-bit operand. If immediate addressing is specified for a store instruction, 
D is treated as the EOA. 

The index control bit~n the status register permits optional pre-indexing or 
post-indexing. This controls the relation of indexing to indirect addressing. 
If the index control bit is one, indexing precedes indirect addressing. If the 
index control bit is zero, indexing follows indirect addressing. If indirect 
addressing is not involved, the two modes are equivalent. Additional address­
ing capability is available with the optional memory protect/privileged in­
struction feature. If status register bit 9 is set, the lower limit address is 
added to the computer calculated address for every memory access. 

Table 3-3 also lists the symbolic coding conventions available with register­
memory instructions, and hence shows the transliteration process performed 
by the assembler in developing the I, X, and B fields. In order to translate 
the operand address expression of a register-memory instruction, the as­
sembler first evaluates the expression as a 16-bit number and then modifies 
the expression in one of the following ways: 

• For program counter relative instructions, a number one greater 
than the assembler location counter is subtracted. 

• For base register relative instructions, the base register value or 
the number associated with a BRS directive (refer to Section IV of 
this manual) is subtracted. 

• For extended format instructions (described in next paragraph), the 
expression remains unmodified. 

• For single length immediate instructions, or base register relative 
instructions under the BRR directive (refer to Section VII of this 
manual), the expression is truncated to an eight-bit value. 

• If the resulting address is unattainable under the defined conditions, 
a field size error is indicated by the assembler. 

3-7 Digital Systems Division 



I 

3.1. 3 EXTENDED FORMAT ADDRESSING 

It is possible to extend the format of certain register-memory instruction~: 
and to include data or indirect addresses within these instructions. When 
this feature is used, the instruction is referred to as an extended format in­
st:ruction. The extended format instruction coding forms are flagged by note 
5 in table 3-3. The assembler interprets the coded instruction and fills the 
I, X, B and SD fields as follows: 

• 

• 

• 

3.2 

If the I, X, B, and SD fields are 0, 0, 0, 0, re spe cti vely, the next 
sequential location in memory is used for the operand) and the pro­
gram counter is incremented a second time. (The first increment 
is normal to locate the next word in memory). If the instruction is 
of the double precision type, such as DLD, DST, DAD, or DSB, the 
next two sequential memory locations are used for the operand, and 
the program counter is incremented a third time. The assembler, 
in this case, generates only one word of data for these double-length 
instructions. The programmer must supply the second word, typi­
cally with a DATA directive. 

If the I, X, B, and SD fields are I, 0, 0, 0, respectively, the effec­
tive address is obtained from the next sequential location in mem­
ory, and the program counter is incremented a second time. 

If the I, X, B, and SD fields are I, I, 0, 0, respectively, the con­
tent of the next sequential memory location is added to the content 
of the index register to form the effective address, and the program 
counter is incremented a second time. 

NOTE 

The indexing is unconditionally performed as post­
indexing for double-word instructions; bit 10 of the 
status word is ignored in this case. 

LOAD INSTRUCTIONS 

The load instructions listed in table 3-1 are described in the following para·­
graphs. 

3. 2. 1 DOUBLE LOAD REGISTERS A AND E (DLD) 

:Machine Format: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e-1 I 0 -, I x-1 B 1..---...---r---.....-~ ~. --..----., J 
-----v-----J 

OP-CODE 

Instruction Execution: {EOA, EOA+ 1 )- {A, E) where EOA is developed in 
accordance with table 3-3. 

~~~---------~----------~~ 

Change 1 3-8 Digital Systems Division

~~--9_43_0_1_3_-_9_7_01 __ _

Description: Register A is lOaded with the contents of the effective operand
address, EOA, and register E is loaded with the contents of the EOA plus
one. If the IXB fields are 716 (immediate addressing), load E with the sign
extended displacement field, D, and_ load A with the extended sign (all zeros
or all ones).

Change 1 3-8A/3-8B Digital Systems Division

Yd15' ______ _ ~ 943013-9701 DLD, LDA

Status Affected: None

Execution Time: I. 00 to 4. 00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the DLD instruction. The DLD mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

ExamEles:

DLD $+1
:::>

DATA >AE30, >3239

@DLD BASE
:::;>

BASE DATA >l 064, >7558

3.2.2 LOAD REGISTER A (LDA)

Machine Format:

OP-CODE

Instruction Execution: (EOA)-(A)

Before After

(A) = 005416 AE3016
(E) = 16BC16 323916

(EOA) = AE3016 No change
(EOA+l) = 323916 No change

(A) = CC4516 106416

(E) = AOA016 755816

(EOA) = 106416 No change
(EOA+l) = 755816 No change

where EOA is developed in accor­
dance with table 3-3.

DescriEtion: Register A is loaded with the contents of the effective operand
address, EOA. If the IXB fields are 7 16 (immediate addressing), load A
with the sign extended displacement field, D.

Status Affected: None

Execution Time: O. 75 to 2. 75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
rtlats available with the LDA instruction. The LDA mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

3-9 Digital Systems Division

943013-9701

Examples: Before After

LDA = -1 ::;> (A) = 05A316 FFFF16
(EOA) = 07FF16 No change

HERE LDA $ => (A) = F6EF16 OOFF16
(HERE) = OOFF16 No change

3. 2. 3 LOAD REGISTER E (LDE)

Machine Format: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~,-1-0--1-.-ix-1-e-1-----1-D-1 ---1 --1
OP-CODE

Instruction Execution: (EOA) - (E) where EOA is developed in accor­
dance with table 3-3.

pescription: Register E is loaded with the contents of the effective operand
address, EOA. If the IXB fields are 716 (immediate addressing), load E with
the sign extended displacement field, D.

Status Affected: None

Execution Time: O. 75 to 2. 75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding formats
available with the LDE instruction. The LDE mnemonic replaces the MNU
operation field (in table 3-3) and optional label and comment fields may be
used.

Example: Before After

LDE BOT, 2 (E) = A6B7 16 033316
=>

(X) = 000116 No change
BOT DATA >F,>0333 (EOA) = 033316 No change

3. 2. 4 LOAD REGISTER M (LDM)

Machine Format:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E,.......,.., I -.---I · -r---r-1 x I -T--0 I---.., _, . ----0 ---, I
..__ ___ ...,,.. __ _

OP-CODE

Instruction Execution: (EOA)-(M) where EOA is developed in accor­
dance with table 3-3.

3-10 Digital Systems Dlvision

J}ryt) _______ _ ~ 943013-9701 LDE, LDM, LDX

Description: Register M is loaded with the contents of the effective operand
address, EOA. If the IXB fields are 716 (immediate addressing), load M
with the sign extended displacement field, D.

Status Affected: None

Execution Time: O. 75 to 2. 75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the LDM instruction. The LDM mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

Example: Before After ----
EXEC @LDM =PRB (M) = 112416 Address of

=> PRB
PRB DATA >0006 (EXEC+!)= Address No change

DATA >oooo of PRB
DATA >0050, BUFFER

3. 2. 5 LOAD REGISTER X (LDX)

Machine Format:
0 2 3

0 0

OP-CODE

Instruction Execution: (EOA)-(X)

4 5 6 7 8 9 10 11 12 13 14 15

D]

where EOA is developed in accor­
dance with table 3-3.

Description: Register X is loaded with the contents of the effective operand
address, EOA. If the IXB fields are 7 16 (immediate addressing), load X
with the sign extended displacement field, D.

Status Affected: None

Execution Time: O. 75 to 2. 75 microseconds {refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the LDX instruction. The LDX mnemonic replaces the
MNU operation field (in table 3 -3) and optional label and comment fields may
be used.

Example:

CHCT LDX = -32 => (X) =
(CHCT) =

3-11

Before After

FFE016
No change

Digital Systems Division

3. 2. 6 LOAD REGISTER FILE (LRF)

Machine Format:
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WORD 1 0 I 11 0 0 1 I
I

O ARBITRARY
BIT SETTINGS

OP-CODE

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15.

WORD 2 _l ______ , _____ : ____ v_=_M_E_M_o_R_v __ A_oo_R_E_s_s __ ' ____________ __

:Instruction Execution: (Y, Y+l, Y+2, Y+3, Y+4, Y+5, Y+6) - (A, E, X, M, S, L, B)

Description: Registers A, E, X, M, S, L, and B (the register file) are
loaded from sequential memory locations starting at the address specified by
Y (second word of the instruction).

Status Affected: None

Execution Time: 7. 00 microseconds

Symbolic Coding: The assembly language coding formats for the LRF in­
structions are as follows:

Label Operation Operand Comment

[label] 16 @LRF 16 adrs 16 [comment] where "adrs" is the

or
symbolic name of a
16-bit memory

[label] 16 LRF 16 [comment] address.
[label] 16 DATA 16 adrs 1,6 [comment]

Example:

@LRF MEMA

MEMA DATA >0300, >06AA, >FFEO, >1A61, >0000, >1121, >8A04

Before {Hex) After {Hex~

(A) = 0000 0300
(E) = 0002 06AA
(X) = FFFF FFEO

Register file (M) = 200D 1A61
(S) = OCOO 0000
(L) = FAOO 1121
(B) = 0601 8A04

3-12 Digital Systems Division

~5' _______ , ~ 943013-9701 LRF, DST, SRF

3. 3 STORE INSTRUCTIONS

The store instructions listed in table 3-1 are described in the following para­
graphs.

3. 3. 1 DOUBLE STORE REGISTERS A AND E (DST)

Machine Format:

0 2 34 5 6 7 89 10 11 12 13 -14 15

0
~ I I I l

OP-CODE

Instruction Execution: (A, E)-(EOA, EOA+l) where EOA is developed in
accordance with table 3.,; 3.

Description: Store the contents of register A into the contents of the effective
operand address, EOA, and store the contents of register E into the contents
of EOA plus one. If the IXB fields are 7 16 (immediate addressing), the dis­
placement field, D, is the EOA.

Status Affected: None

Execution Time: 2. 75 to 4. 00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the DST instruction. The DST mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

ExamEle:

DST TOP Before After
(A, E) = 444116, 4D4E16 No change

=>
TOP BSS 2 (TOP, TOP+l) = 4C5516' 434B16 4441 16, 4D4E16

3. 3. 2 STORE REGISTER FILE (SRF)

Machine Format:
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WORD 1 1 __ 1 ______ 0 __ 1_1 ____ 0 ___ 0 ___ 0_1_1 ______ _.. __ A_~_e_1~_R_A_~_v ____ ~I _ . . BIT SETTING~

OP-CODE

0 2 3 4 s 6 7 8 9 10 11 12 13 14 15

WORD 2
I I I I I

Y=M EMORY ADDRESS •

3-13 Digital Systems Division

943013-9701

Jnstruction Execution: (A, E, X, M, S, L, B)-(Y, Y+l, Y+2, Y+3, Y+4, Y+5, Y+6)

Description: Store the contents of registers A, E, X, M, S, L, and B (reg-·
ister file) into sequential memory locations starting at the address specified
by Y (second word of the instruction).

Status Affected: None

Execution Time: 7. 00 microseconds

Symbolic Coding: The assembly language coding formats for the SRF instruc­
tion are as follows:

Label Operation

[label] 16 @SRF 16

or

[label] 16 SRF 16
[label] 16 DATA 16

Example:

SRF
DATA SAVE

SAVE BSS 7

Operand Comment

adrs 16 [comment] where "adrs" is the
symbolic name of a
16-bit memory

[comment] address.
adrs 16 [comment]

Before (Hex) After (Hex)

(A) = 0001
(E) = DE03

Register
file

(X) = 0004
(M) = 0101
(S) = FFFF

No change

Memory
loc.ations

(L) = 23A3
(B) = 0800

(SAVE) = FA03
(SAVE+ 1) = 0004
(SA VE+2) = FFDE
(SAVE+3) = DESO
(SAVE+4) = 3A40
(SAVE+S) = llAB
(SAVE+6) = CEOO

0001
DE03
0004
0101
FFFF
23A3
0800

3. 3. 3 STORE REGISTER A (STA)

Machine Format:
o 2 3 4 s 6 7 e 9 10 11 12 13 14 1s

OP-CODE

3-14

I
·o]

Digital Systems Di1vision

~----9_4_3_0_13_-_9_7_0_1 ______ ~------~----~~~~~~~~~S_T __ A_,~ST~E-
Instruction Execution: (A) - (EOA) where EOA is developed in accordance

with table 3- 3.

Description: Store the contents of register A into the contents of the effective
operand address, EOA. If the IXB fields are 716 (immediate addressing),
the displacement field, D, is the EOA.

Status Affected: None

Execution Time: 2. 00 to 3. 00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3 - 3 for the assembly language coding for­
mats available with the STA instruction. The STA mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

Example:
Before After

STA DEST, 1 => (A) = D8Co16 No change

(DEST) = 064216 D8COl6

3.3.4 STORE REGISTER E (STE)

Machine Format:

0 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 .1 4 1 s

l1'00011+1 ''~''']
OP-CODE

Instruction Execution: (E)- (EOA) where EOA is developed in accordance
with table 3-3.

Description: Store the contents of register E into the contents of the effective
operand address, EOA. If the IXB fields are 7 16 (immediate addressing),
the displacement field, D, is the EOA.

Status Affected: None

Execution Time: 2. 00 to 3. 00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the STE instruction. The STE mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

Example:

STE =6 =>
(E)

Before
= 1AE916

(Memory location 6) = 788B16

3-15

After
No change

Digital Systems Division

~~\-~~~--~~~~-~ 943013-9701

3.3.5 STORE REGISTER X (STX)

Machine Format:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I I I I I
D

OP-CODE

Instruction Execution: (X)-(EOA) where EOA is developed in accordanc1e
with table 3- 3.

_Description: Store the contents of register X into the contents of the eJfect~:~e
opera_nci Cl,_ddre~_s, EOA. If the IXB fields are 716 (immediate addressing),
the displacement field, D, is the EOA.

Status Affected: None

Execution Time: 2. 00 to 3. 00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the STX instruction. The STX mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields n1ay
be used .

. Example:

@STX FARAWY, 2 =>
(X)

Before
= 000216

(FARAWY+2) = 100716

NOTE

After
No change

The content of register X is both stored and used as
the index.

3.4 BRANCH INSTRUCTIONS

The branch instructions listed in table 3-1 are described in the following
paragraphs.

--- ------------------·-----
3-16 Digital Systems Division

~----9_4_3_0_13 ___ 9_1_0_1 ____ ~ _________________________________ s_T_x_,~B_1_x_

3.4.1 BRANCH ON INCREMENTED INDEX (BIX)

Machine Format:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D

OP-CODE

Instruction Execution: (X)+l- (X); if (X) f. 0, EOA- PC
if (X) = 0, PC is not affected

where EOA is developed in accordance with table 3-3.

Description: Increment the contents of register X by one: if the resulting X
register value is non-zero, place the effective operand address, EOA, in the
program counter and continue execution from that point; if the resulting X
register value is zero, continue execution with the next sequential instruction.
If the IXB fields are 716 (immediate addressing), the displacement field, D,
is the EOA. The BIX instruction is commonly used in loop control where
register X contains a negative loop count.

NOTE

The extended format BIX instruction is allowed
since an extra program counter increment occurs
on the fall through condition. If the BIX instruc­
tion is single length, the IXB bits are zero, and
the displacement field is zero, the next word is
skipped when the X register is incremented to zero.
When the X register is incremented to a non-zero
quantity, the next word is executed.

Status Affected: None

Execution Time: 1. 25 to 2. 25 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the BIX instruction. The BIX mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

Example:
Before After

BIX DOG ~ (X) = FFA6 16 FFA7 16 where the BIX in-

(PC) = 1B64l6 1B20l6
struction is at 1B6416
and DOG is at 1B2016·

3-17 Digital Systems Division

~~-~~~--~~~~-~ 943013-9701

The following instruction application example illustrates use of the BIX in­
struction to sum a buffer's contents.

LOOP

BUFFER

LDX
LDA
ADD
BIX

BSS

=-32
=0
BUFFER+32, 2
LOOP

32

3.4.2 BRANCH AND LINK (BRL)

Machine Format:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP-CODE

Instruction Execution: (PC)- (L); EOA-(PC)

D

where EOA is developed
in accordance with
table 3-3.

Description: Load the contents of the program counter into the link register,
L, place the effective operand address, EOA, in the program counter, and
continue execution from that point. If the IXB fields are 7 16 (immediate
addressing), the displacement field, D, is the EOA. The BRL instruction is
commonly used for subroutine linkage. To return, the subroutine typically
uses either an RMO L, P or REX L, P instruction. The return may also be
accomplished by storing the contents of the link register in memory and
branching indirectly through that memory location with a BR U instruction.

NOTE

The extended format BRL instruction places the
address of the first word beyond the double-length
BRL instruction in the link register.

Status Affected: None

Execution Time: 1. 50 to 2. 50 microseconds (refer to Appendix A)

§ymbolic Coding: Refer to table 3 -3 for the assembly language coding for­
rnats available with the BRL instruction. The BRL mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

3-18 Digital Systems Oi'tdsion

~~--94_3_0_1_3_-9_7_0_1 ______________ ~----~~~~~~~B-RL, BRU

Example:

BRL
Before

= 032Al6 CAREA => (L)

(PC) =

After
055El6

058016

where CAREA is at
058016 and in the range
-12 8::; PC ::; 12 7.

The following instruction application example illustrates use of the BRL in­
struction to execute a subroutine.

(Main program)

BRL WRITE

WRITE EQU $ (Write subroutine)

RMO 5, 7 (Return to instruction following BRL WRITE)

3.4. 3 BRANCH UNCONDITIONAL (BRU)

Machine Format:

0 2 3 4 s 6 7 8 9 10 11 12 13 14 15

OP-CODE

I
D

Instruction Execution: EOA- (PC) where EOA is developed in accordance
with table 3-3.

Description: Place the effective operand address, EOA, in the program
counter and continue execution from that point. If the IXB fields are 716
(immediate addressing), the displacement field, D, is the EOA.

NOTE

The extended format BR U instruction alters the
program counter in the same manner as single­
length BR U instructions.

Status Affected: None

Execution Time: 1. 00 to 2. 25 microseconds (refer to Appendix A)

3-19 Digital Systems Division

~h_~~~--~~~~--~ 943013-9701

.~mbolic Coding: Refer to table 3-3 for the assembly language coding formats
available with the BR U instruction. The BR U mnemonic replaces the MNU
operation field (in table 3-3) and optional label and comment fields may be
used.

Example:

@BRU
Before

TAB, 2 => (PC) = lBl316

(X) = 005016

After
085016

No change

where TAB is at

080016·

3. 4. 4 IDLE (IDL)

Machine Format:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 I 0 I JP"T~1)NAL I
_ EigLp _

--~--~----------v------------------'
OP-CODE

Instruction :Execution: HALT

Description: The idle instruction causes the computer to pause. If the idle
instruction is encountered in the RUN mode, the RUN indicator is turned of:f
and the IDLE indicator is turned on. If the MODE switch is left in the RUN
position, the computer re-enters the RUN mode if an interrupt occurs or if
the START switch is activated. The IDLE indicator is turned off if the
MODE switch is placed in the HALT position. If the MODE switch is placed
in the SIE position and an idle instruction is encountered during single in­
struction execution, the IDLE indicator is turned on. If an interrupt occurs
in the SIE mode after encountering an idle instruction, the instruction in the~
appropriate trap location is auton1atically executed and the IDLE indicator 1ls
turned off. The idle instruction is restricted, meaning it is considered
illegal if the memory protect/privileged instruction feature is enabled.

_____ , __ _

NOTE

This instruction is commonly used in catastrophic
sequences such as a power failure condition. All
conditions and registers are preserved in mem­
ory, specific interrupt mask conditions are estab­
lished, and the IDL is executed. Subsequently,
when power is restored, or an interrupt is issued
which indicates a clearing of the catastrophic sit­
uation, the program will resume from the appro­
priate interrupt entrance.

3-20 Digital Systems Division

~~-~--~~----~~-~ 943013-9701 IDL, LSB

Status Affected: None

Execution Time: 1. 00 microseconds

Symbolic Coding: The assembly language coding format for the IDL instruc­
tion is as follows:

Label Operation Operand Comment

[labell ~ IDL n ~ [comment]

where 11 n 11 can be used to flag the reason for the idle when the instruction reg­
ister is displayed on the computer front panel. If no flag is desired, "n"
may be coded as a zero. (0 s n s 15).

Example: IDL 1

3.4. 5 LOAD STATUS BLOCK AND BRANCH (LSB)

Machine Format:

0 2 3 4 5 6 7 8 9 10 11 1 2 13 14 15
I I I I I 0~5-a WORD 1 0 0 0 0 0 0

OP-CODE

0 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15
I I

WORD 2 Y=M EMORY ADDRESS

Instruction Execution: (Y, Y+l)-- (PC, ST)

Description: The program counter is loaded with the contents of memory
location Y and the status register is loaded with the contents of memory lo­
cation Y+l. Program execution continues at the location specified by the
new contents of the program counter. Status register bits 5 (memory pro­
tect violation), 6 (PIF violation), 14 (memory parity error), and 15 (power
fail) are unconditionally cleared to zero by the LSB instruction. The instruc­
tion is also restricted, meaning it is considered illegal if the memory protect/
privileged instruction feature is enabled. Interrupts, other than internal, are
inhibited for one instruction following an LSB.

3-21 Digital Systems Division

94 3 013 - 9701

NOTE

The LSB instruction is commonly used for an exit
from interrupt processing or for a return from a
subroutine. The address Y points to the program
counter and status register preserved by an SSB
instruction upon entrance to an interrupt process­
ing or subroutine program.

~Staj:us Affected: All status register bits are affected as indicated by memory
location Y+l, with the following exceptions: bits S, 6, 14, and lS are uncon­
ditionally cleared to zero.

Execution Time: 3. 2S microseconds

~Symbolic Coding: The assembly language coding formats for the LSB instruc­
tion are as follows:

Label

[label] 16

[label] 16
[label] 16

Operation

@LSB 16

or

LSB 16
DATA 16

Operand

adrs

adrs

Comment

16 [comment l

[comment]
16 [comment]

where "adrs" is the
symbolic name of a
16-bit memory
address.

_Example:

@LSB FROGS => Before (Hex) After (Hex)
lA,69, 0010 (PC, ST) = 0400, 0850

(FROGS, PROGS+l) = 1A69, 0010 No change

3. 4. 6 LOAD STATUS BLOCK, RESET INTERRUPT, AND BRANCH (LSR)

Machine Format:

0 2 3 4 5 6 7 8 9 10 1 1 1 2 13 .14 15

I 1011~1fil WORD 1 0 0 0 0 0

OP-CODE

0 2 3 4 s 6 7 8 9 10 1 1 1 2 13 14 15

[I I I I I
WORD 2 Y=MEMORY ADDRESS

3-22 Digital Systems Division

~~--9_4_3_0_1_3-_9_7_0_1 __________________ ~~----~~~----~-L-S_R, SSB

Instruction Execution: (Y, Y+l)- (PC, ST); reset highest priority vectored
interrupt if applicable.

Description: Execution of the LSR instruction is identical to LSB (paragraph
3.4. 5), except that the highest priority vectored interrupt present in the vec­
tored .. interrupt option is additionally reset. If the computer does not include
the vectored interrupt option, the LSR instruction is identical to LSB.

Status Affected: All status register bits are affected as indicated by memory
location Y+l, with the following exceptions: bits 5 (memory protect violation),
6 (PIF violation), 14 (memory parity error), and 15 (power fail) are uncondi­
tionally cleared to zero.

Execution Time: 3. 25 microseconds

Symbolic Coding: The assembly language coding formats for the LSR in­
struction are as follows:

Label Operation Operand Comment

[label] l6 @LSB l6 adrs l6 [comment] where "adrs" is the

or
symbolic name of a
16-bit memory

[label] l6 LSB 16 [c.ommentJ address.
[label] 16 DATA 16 adrs 16 [comment]

Example:

LSR => Before (Hex) After (Hex)
DATA CATA (PC, ST) = 13A5, 0110 075D, 0010

(CATA, CATA+l) = 075D, 0010 No change

3.4. 7 STORE STATUS BLOCK AND BRANCH (SSB)

Machine Format:

0 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15

WORD 1 0 1 0 0 0 I 1 'ows;a
OP-CODE

0 2 3 4 s 6 7 e 9 10 1 1 1 2 13 14 15
I

WORD 2 Y=MEMORY ADDRESS

3-23 Digital Systems Division

94 3 013 - 9701

;cnstruction Execution: (PC, ST)- (Y, Y+l); Y+2-(PC)

_Description: The program counter is stored in memory location Y and the
status register is stored in memory location Y+l. Program execution con­
tinues at memory location Y +2. Interrupts, other than internal, are inhibited
for one instruction following an SSB.

NOTE

The SSB instruction is commonly used for entrance
to interrupt processing and subroutine programs.
Return from these type of programs is accomplished
by an LSB instruction.

Status Affected: Bits 7 (data bus interrupt), 8 (vectored interrupt), and 12
(DMAC interrupt) of the status register are cleared to zero accoraing to thE~
co1nputer interrupt priority schen~e. These bits are cleared so that when an
interrupt occurs, all interrupts of lower or equal priority are disabled. The
four types of interrupts in order of priority are as follows: internal interrupt,
vectored interrupt, Dl\tf.AC interrupt, and data bus interrupt.

Execution Time: 3. 25 microseconds

§y_mholic Coding: The assembly language coding formats for the SSB instruc­
tion are as follows:

Label Operation Operand Comment

[label] 16 @SSB 16 adrs 16 [comment] where "adrs" is the

or
symbolic name of a

16-bit memory
[label] 16 SSB 16 [comment] address.
[label] 16 DATA 16 adrs 16 [comment]

Example:

SSB => Before {Hex) After {Hex)
DATA >0A23 (PC,ST) = 07A2, 0110 OA25, Oll 0

(OA23 16, OA24 16) = 08B6, 0010 07A2, 0110

3. 5 ARITHMETIC INSTRUCTIONS

The arithmetic instructions listed in table 3-1 are described in the following
paragraphs.

3-24 Digital Systems Division


~~~9_4_30_1_3 ___ 91_0_1 ______ ~---------------------------A_D_D __ ,_D_A_D~ 
3. 5. I ADD TO REGISTER A (ADD) 

Machine Format: 

0 2 34 5 6 7 8 9 10 11 12 13 14 15 

0 

OP-CODE 

I 
D 

Instruction Execution: (EOA) + (A)- (A) where EOA is developed in ac­
cordance with table 3-3. 

Description: Add the contents of the effective operand address, EOA, to the 
contents of register A and place the sum in register A. If the IXB fields are 
716 (immediate addressing), the sign extended displacement field, D, is 
added to register A. 

Status Affected: If the sum from the ADD instruction is outside the range of 
-z-.15 to z 15-1, the overflow indicator (bit 2 of the status register) is turned 
on. If the sum is within the same range, the overflow indicator is turned off. 
If the add operation results in a carry into the sign position (bit O), the carry 
indicator (bit 3 of the status register) is turned on; otherwise, it is turned off. 

Execution Time: O. 75 to 2. 75 microseconds (refer to Appendix A) 

Symbolic Coding: Refer to table 3 -3 for the assembly language coding for­
mats available with the ADD instruction. The ADD mnemonic replaces the 
MNU operation field (in table 3-3) and optional label and comment fields may 
be used. 

Example: 
Before After 

ADD *BSC =>(A) = 4B1016 5FOCl6 

(BSC) = 003Al6 No change 

(003A 16.) = 1.3FCl6 No change 

3. 5. 2 DOUBLE LENGTH ADD (DAD) 

Machine Format: 

0 2 3 4 5 6 7 e 9 10 11 12 13 14 1s 

0 I I+ I I I D I J 
OP-CODE 

3-25 Digital Systems Division 



J2n5', ______ _ ~ 943013-9701 

Instruction Executio!l: (EOA, EOA+l) + (A, E)- (A, E) where EOA is de­
veloped in accordance 
with table 3-3. 

Description: Add the concatenation of the contents of the effective operand 
address, EOA, and EOA+l to the concatenation of registers A and E (register 
A is the most significant half of the second concatenation). At completion of 
the add operation, bit 0 of register E is forced to agree with bit 0 of register 
A. If the IXB fields are 7 16 (immediate addressing), the displacement field, 
D, with its sign extended 24 bits becomes the double-length operand. 

NOTE 

Prior to the addition, ensure that the two sign bits 
associated with each double-length word are iden­
tical. If the two sign bits in the same double­
length word are different, the result of the add may 
not be valid. 

Status Affected: If the sum from the DAD instruction is outside the range of 
~-230 to 230_1, the overflow indicator (bit 2 of the status register) is turned 
on; otherwise, the overflow indica,tor is turned off. If the add operation re­
sults in a carry into the sign posiHon (bit 0 of register A), the carry indica-· 
tor (bit 3 of the status register) is turned on; otherwise, the carry indicator 
is turned off. 

~E:x~cution Time: 1. 00 to 4. 00 microseconds (refer to Appendix A). 

!~~bolic Coding: Refer to table 3 -3 for the assembly language coding for­
mats available with the DAD instruction. The DAD mnemonic replaces the 
MNU operation field (in table 3-3) and optional label and comment fields may 
be used • 

.:Example: 

DAD PRICE 
=> (A, E) 

Before (Hex) 
= 0069, 73B4 

(PRICE, PRICE+l) = 0100, 5C80 

3 • 5 • 3 DIVIDE (DIV ) 

Machine Format: 

After (Hex) 
016A, 5034 

No change 

2 34 s 6 7 89 10 11 12 13 14 15 

0 I I+ I I I 
D 

OP-CODI:: 

_____ , ________________ , 
3-26 Digital Systems DMsion 



j}~~---~-43_0_1_3_-9_1_0_1 ________________ ~~~----------~~~~~· "ij/ DIV, DSB 

Instruction Execution: (A, E) I (EOA) - (A , E ) 
quo rem 

where EOA is de­
veloped in accordance 
with table 3- 3. 

Description: Divide the concatenation of registers A and E (with the most 
significant half in register A) by the contents of the effective operand address, 
EOA. Place the quotient in register A and the remainder in register E. The 
sign of the remainder will be the same as the sign of the original dividend, 
except when the sign is set positive in the case of a zero remainder. If the 
IXB fields are 7 16 (immediate addressing), the displacement field, D, with 
its sign extended eight bits is used as the divisor. 

Status Affected: If the magnitude of the mo st significant half of the dividend 
(register A) is greater than or equal to the magnitude of the divisor, the 
overflow indicator (bit 2 of the status register) is turned on and the contents 
of registers A and E remain unchanged. Otherwise, the overflow indicator 
is turned off. 

Execution Time: 1. 50 to 8. 75 microseconds (refer to Appendix A) 

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the DIV instruction. The DIV mnemonic replaces the 
MNU operation field (in table 3- 3) and optional label and comment fields may 
be used. 

Example: 

@DIV 
Before (Hex) 

=600 => (A, E) = 0019, 78AO 

(EOA) = 0258 

3. 5.4 DOUBLE LENGTH SUBTRACT (DSB) 

Machine Format: 

After (Hex) 
0588, OlEO 

No change 

0 2 3 4 56 7 8 9 10 11 12 13 14 15 

0 
D I 

oP~cooE 

Instruction Execution: (A, E) - (EOA, EOA+ 1 )- (A, E) where EOA is de­
veloped in accordance 
with table 3- 3. 

Description: Add the two's complement of the concatenation of the contents 
of the effective operand address, EOA, and EOA+l to the concatenation of 
registers A and E (register A is the most significant half of the second con­
catenation). Place the result in registers A and E. At the completion of the 

3-27 Digital Systems Division 



~~-~~~~~~~~-~ 943013-9701 

two's complement addition, bit 0 of register E is forced to agree with hit 0 
of register A. If the IXB fields are 1 16 (immediate addressing), the displace­
ment field, D, with its sign extended 24 bits becomes the subtrahend. 

NOTE 

Prior to the subtraction, ensure that the two sign 
bits associated with each double-length word are 
identical. If the two sign bits in the same double­
length word are different, the result of the subtract 
may not be valid. 

Status Affected: If the result of the DSB instruction is outside the range of 
-=2~30 to 230 .. 1, the overflow indicator (bit 2 of the status register) is turned 
on; otherwise, the overflow indicator is turned off. If there is a carry into 
the sign position (bit 0 of register A), the carry indicator (bit 3 of the status 
register) is turned on; otherwise, the carry indicator is turned off. 

Execution Time: 1. 00 to 4. 00 microseconds (refer to Appendix A) 

~mbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the DSB instruction. The DSB mnemonic replaces the 
MNU operation field (in table 3-3) and optional label and comment fields may 
be used. 

E~ample: 

DSB DECMAL, 5 => (A, E) 

(DECMAL) 

Before (Hex) 
= 6Dll, 6F51 

= 0396 

After (Hex) 
5~68, SACB 

No change 

No change 

3. 5. 5 INCREMENT MEMORY BY ONE (IMO) 

Machine Format: 

0 2 3 4 5 6 7 8 9 1 0 t 1 1 2 1 3 .1 4 1 s 

0 
I I ~ I I I J 

OP-CODE 

Instruction Execution: (EOA) + 1- (EOA) where EOA is developed in ac -
cordance with table 3-3. 

Description: Increment the contents of the effective operand address, EOA, 
by one, and replace the contents of the EOA with the result. If the IXB fields 
are 716 (immediate addressing), the displacement field, D, becomes the EOA. 

-·------------------· ------------------·---
3-28 Digital Systems Division 



943013-9701 IMO, MPY 

Status Affected: None 

Execution Time: 2. 75 to 3. 75 microseconds (refer to Appendix A) 

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the IMO instruction. The IMO mnemonic replaces the 
MNU operation field (in table 3-3) and optional label and comment fields may 
be used. 

Before 
Example: 

@IMO BOX, 2 => (X) = 000816 

(BOX+8) = 634A 16 

3. 5. 6 MULTIPLY (MPY) 

Machine Format: 

After 
No change 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 

OP-CODE 

Instruction Execution: (A) x (EOA) - (A, E) where EOA is developed in 
accordance with table 3-3. 

Description: Multiply register A by the contents of the effective operand 
address, EOA. Place the double-length result in registers A and E, the 
most significant part being i.n register A. At completion of the multiplication, 
bit 0 of register E is forced to agree with bit 0 of register A. If the IXB 
fields are 716 (immediate addressing), the displacement field, D, with its 
sign extended eight bits becomes the operand. 

Status Affected: If both operands are equal to the maximum negative number 
(-215 ), the overflow indicator (bit 2 of the status register) is turned on and 
the result in registers A and E will be indeterminate. Otherwise, the over­
flow indicator is turned off. 

Execution Time: 1. 25 to 7. 25 microseconds (refer to Appendix A) 

Symbolic Coding: Refer to table 3 -3 for the assembly language coding formats 
available with the MPY instruction. The MPY mnemonic replaces the MNU 
operation field (in table 3-3) and optional label and comment fields may be 
used. 

Example: 

MPY ARG, 1 
=> (A, E) 

(ARG) 

Before (Hex) 
0003, 1020 

FFFF 

3-29 

After (Hex) 
FFFF,FFFD 

No change 

Digital Systems Division 



~'-~~~--~~~~-~ 943013-9701 

3.5.7 REGISTER ADD (RAD) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 1 5 

0 + 0 0 0 ::5R= DR•DESTI-
SOURCE NATION 
REGISTER REGISTER 

-...,,. I 

OP-CODE 

.Instruction Execution: (SR) + (DR) - (DR) 

pescription:_ Add the contents of the registers specified by the SR and DR 
fields. Place the result in the register specified by the DR field. If bit 12 
of the machine format is set to one and bits 13 to 15 are zeroed, the status 
register is specified as the destination register. In this case the instruction 
is restricted, meaning it is considered illegal if the memory protect/ 
privileged instruction feature is enabled. Interrupts, other than internal, 
are inhibited for one instruction following this special case of the RAD in­
struction. 

Status Affected: If the result of the RAD instruction is outside the range of 
·_z15 to zl5_1, the overflow indicator (bit 2 of the status register) is turned 
on; otherwise, the overflow indicator is turned off. If there is a carry into 
the sign position (bit 0 ), the carry indicator (bit 3 of the status register) is 
turned on; otherwise, the carry indicator is turned off. 

Execution Time: 1. 25 microseconds 

_Symbolic Coding: The assembly language coding format for the RAD instruc­
tion is as follows: 

Label 

[label] l6 

Operation 

RAD 

Operand Comment 

l6 sreg, dreg l6 [ comment] 

where "sreg" and "dreg" are expressions that address the source and destina­
tion registers, respectively, in accordance with table 2-2. The special cae:e 
when "dreg" equals eight is covered in the "Description" paragraph. 

_Example: 

A EQU 0 
x EQU 2 

RAD A,X 

=> 

Before 
(X) = 445616 

(A) = 21CC16 

3-30 

After 
662216 

No change 

Digital Systems Dhlision 



)}7.15-) ____ 9_4_3_0_13 ___ 9_1_0_1 ____________________________________ ~~~-~ RAD, RCO, RDE 

3. 5. 8 REGISTER COMPLEMENT (RCO) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 ,, 12 13 14 15 

0 0 0 0 0 

OP-CODE 

Instruction Execution: - (SR) - (DR) 

Description: Replace the contents of the register specified by the DR field 
with the two's complement of the contents of the register specified by the SR 
field. H bit 12 of the machine format is set to one and bits 13 to 15 are 
zeroed, the status register is specified as the destination register. In this 
case the instruction is restricted, meaning it is considered illegal if the 
memory protect/privileged instruction feature is enabled. Interrupts, other 
than internal, are inhibited for one instruction following this special case of 
the RCO instruction. 

Status Affected: If the SR register contains -215, the overflow indicator (bit 
2 of the status register) is turned on and the DR register is set to -215; 
otherwise, the overflow indicator is turned off. 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the RCO instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

RCO 

Operand Comment 

16 sreg, dreg 16 [comment] 

where 11 sreg 11 and "dreg" are exp'ressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when "dreg" equals eight is covered in the "Description" paragraph. 

Example: 

RCO 
Before 

2, 2 => (X) = OOOF16 
After 
FFFll6 

3. 5. 9 REGISTER DECREMENT (RDE) 

Machine Format: 

0 0 0 

OP-CODE 

3-31 Digital Systems Division 



~~--94_3_0_1_3-_9_7_0_1 ______________________________________ ~ 

Instruction .Execution: (SR )-1- (DR) 

Description: Subtract one from the contents of the register specified by the! 
SR field and place the result in the register specified by the DR field. 

NOTE 

If the maximum negative number (-32768) is decre­
mented, the maximum positive number (+32767) is 
placed in the DR register. 

If bit 12 of the machine format is set to one and bits 13 to 15 are zeroed, the 
status register is specified as the destination register. In this case the in­
struction is restricted, meaning it is considered illegal if the memory 

. protect/privileged instruction feature is enabled. Interrupts, other than in­
ternal, are inhibited for one instruction following this special case of the 
RDE instruction. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

.§y_mbolic Coding: The assembly language coding format for the RDE instruc­
tion is as fallows: 

Label 

[label] l6 

Operation 

RDE 

Operand Comment 

l6 sreg, dreg l6 [comment] 

where "sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when "dreg" equals eight is covered in the "Description" paragraph. 

Example: 

s EQU 4 => Before 
(S) = 0044 16 

RDE S, S 

3. 5. 10 REGISTER INCREMENT (RIN) 

Machine Format: 

0 2 3 4 s 

11 
I I 

0 0 0 0 

---..... 
OP-CODE 

·-------· 

After 

004316 

6 7 

3-32 

8 9 10 1 1 1 2 1 3 14 15 

0 
SR= 
SOURCE 
REGISTER 

/ 

Digital Systems Division 



~~--9_4_3_0_l_3-_9_7_0_1 ________________________________________ R_IN~'-R_I_V~ 
Instruction Execution: (SR)+l- (DR) 

Description: Add one to the contents of the register specified by the SR field 
and place the result in the register specified by the DR field. 

NOTE 

If the result of the RIN is considered to be a 15-bit 
signed number, incrementing the maximum positive 
number (+32767) results in the maximum negative 
number (-32768). If the result of the RIN is .con­
sidered to be a 16-bit positive number (as in ad­
dress calculation), incrementing the maximum posi­
tive number (65535) results in zero. 

If bit 12 of the machine format is set to one and bits 13 to 15 are zeroed, the 
status register is specified as the destination register. In this case the in­
struction is restricted, meaning it is considered illegal if the memory 
protect/privileged instruction feature is enabled. Interrupts, other than in­
ternal, are inhibited for one instruction following this special case of the RIN 
instruction. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the RIN instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

RIN 

Operand Comment 

16 sreg, dreg 16 [comment] 

where "sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when "dreg" equals eight is covered in the "Description" paragraph. 

Example: 

RIN 7, 5 
=> (L) 

Before 
= 622B16 

(PC) = 022516 

3. 5. 11 REGISTER INVERT (RIV) 

Machine Format: 

After 
022616 

No change 

OP-CODE 

3-33 Digital Systems Division 



J~'-~~~-~~~~--~ 943013-9701 

Instruction Execution: - {SR )-1- (DR) 

_De_:scription: Replace the contents of the register specified by the DR field 
with the one's complement of the contents of the register specified by the SR 
field. This means each bit of the SR register is complemented individually. 
If bit 12 of the machine format is set to one and bits 13 to 15 are zeroed, the 
status register is specified as the destination register. In this case the in­
struction is restricted, meaning it is considered illegal if the memory 
protect/privileged instruction feature is enabled. Interrupts, other than in­
ternal, are inhibited for one instruction following this special case of the 
RIV instruction. 

Status Affected: None 

Execution Time: l. 00 microsecond 

_Sy~nbolic Coding: The assembly language coding format for the RIV instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

RIV 

Operand Comment 

16 sreg, dreg 16 [comment] 

where "sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when "dreg" equals eight is covered in the "Description'' paragraph. 

Example: 

E EQU 1 Before After ----x EQU 2 {X) = 121Cl6 FCFA 16 
=> 

(E) = 03 0516 No change 
RIV E,X 

3. 5. 12 REGISTER SUBTRACT {RSU) 

Machine Format: 

0 0 0 0 
SR= 

0 SOURCE 
REGISTER 

--~~~~---.....--~~~~~-

OP-CODE 

~Instruction Execution: (DR) - (SR)- (DR) 

_Description: Subtract the contents of the register specified by the SR field 
from the contents of the register specified by the DR field. Place the result 
in the register specified by the DR field. If bit 12 of the machine format is 

--------
3-34 Digital Systems Division 



)"}n7\ 943013-9701 

~--------' 
RSU, SUB 

set to one and bits 13 to 15 are zeroed, the status register is specified as the 
destination register. In this case the instruction is restricted, meaning it 
is considered illegal if the memory protect/privileged instruction feature is 
enabled. Interrupts, other than internal, are inhibited for one instruction 
following this special case of the RSU instruction. 

Status Affected: If the result of the RSU instruction is outside the range of 
-215 to 215_1, the overflow indicator (bit 2 of the status register) is turned 
on; otherwise, the overflow indicator is turned off. If there is a carry into 
the sign position (bit 0 ), the carry indicator (bit 3 of the status register) is 
turned on; otherwise, the carry indicator is turned off. 

Execution Time: 1. 25 microseconds 

Symbolic Coding: The assembly language coding format for the RSU instruc­
tion is as follows: 

Label 

[label] ~ 

Operation 

RSU 

Operand Comment 

~ sreg, dreg ~ [comment] 

where "sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when "dreg" equals eight is covered in the "Description" paragraph. 

Example: 

RSU 6, 5 Before After 
=> (L) = 56A2 l6 556716 

(B )' = 013B16 No change 

3.5.13 SUBTRACT FROM REGISTER A (SUB) 

Machine Format: 

0 2 34 5 6 7 89 1 0 1 1 1 2 1 3 ._, 4 1 5 
I I I 

D 

OP-CODE 

Instruction Execution: (A) - (EOA )- (A) where EOA is developed in ac -
cordance with table 3-3. 

Description: Add the two's complement of the contents of the effective oper­
and address, EOA, to the contents of register A. Place the result in regis­
ter A. If the IXB fields are 716 (immediate addressing), the sign extended 
displacement field, D, is subtracted from register A. 

3-35 Digital Systems Division 



~-·~-9_4_3_0_1_3-_9_7_0_1 ____ ~----------~----------------------~ 
Status Affected: If the result of the SUB instruction is outside the range of 
-:=-215 to z 15-1, the overflow indicator (bit 2 of the status register) is turned 
on; otherwise, the overflow indicator is turned off. If there is a carry into 
the sign position (bit 0 ), the carry indicator (bit 3 of the status register) is 
turned on; otherwsie, the carry indicator is turned off. 

Execution Time: 0. 75 to 2. 75 microseconds (refer to Appendix A) 

§_ymbolic Coding: Refer to table 3 -3 for the assembly language coding for­
mat s available with the SUB instruction. The SUB mnemonic replaces the 
MNU operation field (in table 3- 3) and optional label and comment fields ma. y 
be used. 

Example: 

THIS SUB =28 
=> (A) 

Before 

= 000516 

(THIS) = 2FlC16 

3 .. 6 COMPARE INSTRUCTIONS 

After 
FFE9 16 

No change 

The compare instructions listed in table 3-1 are described in the following 
paragraphs. 

3~ 6. 1 COMPARE LOGICAL CHARACTER STRING (CLC) 

Machine Format: 

0 2 3 4 s 6 7 8 9 10111213 .14 15 

1 I I 

~ 0 

--...... 
OP-CODE 

Instruction Execution: (M
1

): (Y 
1 

), (M
2

): (Y 2 ), .•. (Mn): (Y n) 

where M
1

, M
2

, ... Mn and Y 
1

, Y 
2

, ..• Y n are byte strings in memory 

3-36 Digital Systems Division 



~~--9-4_3_0_1_3 ___ 91_0_1 ______________________________________________ c __ L_c~ 
Description: Perform a consecutive byte-by-byte logical comparison of two 
byte strings in memory defined in general registers as follows: 

REGISTER 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A~:I] 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

51 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

M~Sj2 

0 2 3 4 5 6 7 8 9 

s ta 52 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x BC 

where, Sl and S2 are the starting word addresses of the two byte strings. 
The most significant bits of the Sl and S2 addresses are in the A 
and M registers, respectively. 

B 1 and B2 indicate the position of the fir st byte in the words ad­
dressed by Sl and S2, respectively. A logic zero indicates the 
first byte is in the most significant half (left half) of the first 
word; a logic one indicates the first byte is in the least signifi­
cant half (right half) of the first word. 

BC indicates the number of bytes to be compared (up to 65, 535). 

The first non-equal comparison encountered terminates the CLC instruction 
with the number of bytes left to be compared loaded in register X. In addi­
tion, registers A and E will contain the byte address of the next byte that 
would have been processed in string 1 and registers M and Swill contain the 
byte address of the next byte that would have been processed in string 2. If 
the CLC instruction is interrupted, the general registers contain the same 
information as that described for a non-equal comparison when the interrupt 
is taken. Note that register X will contain all zeros only when all byte com­
parisons, or all but the last byte comparison, are found to be equal. 

3-37 Digital Systems Division 



~~\-~---------------~ 943013-9701 

i3tatus Affected: Bits 0 and 1 of the status register are modified as follows 
hy the CLC instruction. 

Each Compare Equal 
Byte1 > Byte2 
Byte1 < Byte2 
Unused Bit Setting 

Bit 0 ---
0 
1 
0 
1 

Bit 1 
1 
0 
0 
1 

If the byte count (BC) in register X is specified as zero, no comparison is 
performed and status register bits 0 and 1 are set to 01 unconditionally. 

_Execution Time: 5. 00 + 2. 25 X (no. of bytes compared) mi.croseconds 

i?.Y_I_!'lbolic Coding: The assembly language coding format for the CLC instruc­
tion is as follows: 

Label Operation Operand Comment 

[label] 16 CLC 16 [comment] 

~8xample: 

CLC Before (Hex) 
=> (A) = 0000 

(E) = 0574 
(M) = 0000 
(S) = 06A6 
(X) = OOOB 

(02BA, 02BB, .•• ) = 5123, 64AC, ••• 
(0353,0354, ••• ) = 5123,64AD, ••• 

3. 6. 2 COMPARE ALGEBRAIC (CPA) 

Machine Format: 

After (Hex) 
0000 
0578 
0000 
06AA 
0007 

No change 
No change 

0 2 3 4 56 7 8 9 10 11121314 15 

....._---~----' 
OP-CODE 

I 
.D 

Jnstruction Execution: (A): (EOA), algebraically where EOA is developed in 
accordance with table 3- 3. 

pescription: Perform an algebraic compare (bit 0 reflects sign) between the 
contents of register A and the contents of the effective operand address, EOA. 
The contents of register A and the contents of EOA are not affected by the 
eon1pare. Set status register bits to indicate the result of the compare (refer 
to the next paragraph). If the IXB fields are 716 (immediate addressing), the 
displacement field, D, sign extended to 16 bits is compared with register A. 

--~-----------~------· 

3-38 Digital Systems Di\tision 



~~--94_3_0_1_3_-9_7_0_1 ______ ~~------~~--------~~· CPA, CPL 

Status Affected: Bits 0 and 1 of the status register are modified as follows 
by the CPA instruction. 

Bit 0 Bit 1 
(A)> (EOA) 0 0 
(A)= (EOA) 0 1 
(A) < (EOA) 1 0 
Unused Bit Setting 1 1 

Execution Time: O. 75 to 2. 75 microseconds (refer to Appendix A) 

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the CPA instruction. The CPA mnemonic replaces the 
MNU operation field (in table 3-3) and optional label and comment fields may 
be used. 

Example: 

CPA H4000, 1 => (A) 

(H4000) 

= 7FFF16 } 

= 400016 
Status register bits 0 
and l equal 00 

3. 6. 3 COMPARE LOGICAL (CPL) 

Machine Format: 

0 2 34 5 6 7 8 

OP-CODE 

Instruction Execution: (A): (EOA:), logically 

9 10 11 12 13 14 15 
I I TH I I 

D 

where EOA is developed in 
accordance with table 3-3. 

Description: Perform a logic·a~_compare (unsigned numbers) between the 
contents of register A and th~>cont-ents of the effective operand address, EOA. 
The contents of register A and the contents of EOA are not affected by the 
compare. Set the status register bits as described for the CPA instruction 
in paragraph 3. 6. 2. If the IXB fields are 7 16 (immediate addressing), the 
eight bits of the displacement field, D, are compared with the low order eight 
bits of register A. 

Status Affected: Refer to paragraph 3. 6. 2. 

Execution Time: O. 75 to 2. 75 microseconds (refer to Appendix A) 

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the CPL instruction. The CPL mnemonic replaces the 
MNU operation field (in table 3-3) and optional label and comment fields may 
be used. 

3-39 Digital Systems Division 



~~-~~~--~~--~-~ 943013-9701 

Example: 

@CPL =DOZEN=> (A) = A6BBl6} 

(DOZEN) = 18F416 
Status register bits 0 
and 1 set to 00 

3. 6. 4 REGISTER COMPARE ALGEBRAIC (RCA) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 

0 0 0 0 0 0 
SR• 
SOURCE 
REGISTER 

--v 
OP-CODE 

Instruction Execution: (SR) : (SR), algebraically 

Description~ Perform an algebraic compare (bit 0 reflects sign) between the 
contents of the register specified by the SR field and the contents of the reg­
ister specified by the DR field. The status register bits are set to indicate 
the result of the compare (refer to the next paragraph). If bit 12 of the ma-­
chine format is set to one and bits 13 to 15 are zeroed, the status register 
is specified as the destination register. In this case the instruction is re­
stricted, meaning it is considered illegal if the memory protect/privileged 
instruction feature is enabled. Interrupts, other than internal, are inhibited 
for one instruction following this special case of the RCA instruction. 

Status Affected: Bits 0 and 1 of the status register are modified as follows 
by the RCA instruction. 

Bit 0 Bit 1 --
(SR)< (DR) 0 0 
(SR) = (DR) 0 1 
(SR)> (DR) 1 0 
Unused Bit Setting 1 1 

Execution Time: 1. 25 microseconds 

Symbolic Coding: The assembly language coding format for the RCA instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

RCA 

Operand Comment 

16 sreg, dreg 16 [comment] 

where 11 sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when "dreg" equals eight is covered in the "Description" paragraph. 

3-40 Digital Systems Division 



~fifl ___ ~_4_30_1_3_-~_10_1 ________________________________________ ~--~ ~ RCA, RCL 

Example: 

s 
x 

EQU 
EQU 

4 
2 => 

(S) 

(X) 

= 105416l 

= B66616} 

Status register bits 0 and 1 
set to 00 

RCA X, S 

3. 6. 5 REGISTER COMPARE LOGICAL (RCL) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SR= 
0 0 0 0 0 SOURCE 

REGISTER 

OP-CODE 

Instruction Execution: (SR) : (DR), logically 

Description: Perform a logical compare (unsigned numbers) between the 
contents of the register specified by the SR field and the contents of the reg­
ister specified by the DR field. The status register bits are set to indicate 
the result of the compare as detailed in paragraph 3. 6. 4. If bit 12 of the ma­
chine format is set to one and bits 13 to 15 are zeroed, the status register is 
specified as the destination register. In this case'"the instruction is restricted, 
meaning it is considered illegal if the memory protect/privileged instruction 
feature is enabled. Interrupts, other than internal, are inhibited for one in­
struction following this special case of the RCL instruction. 

Status Affected: Refer to paragraph 3. 6. 4. 

Execution Time: 1. 25 microseconds 

Symbolic Coding: The assembly language coding format for the RCL instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

RCL 

Operand C omnaoe'Rt. 

l6 sreg, dreg 16 [ comme-nt] 

where 11 sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when "dreg" equals eight is covered in the "Description'' paragraph. 

3-41 Digital Systems Division 



943 013-9701 

~xample: 

RCL 2, 4 => (S) = 1054 16 ( 

(X) = B666 16f 
Status register bits 0 and 1 
settolO 

3. 7 SKIP INSTRUCTIONS 

The skip instructions listed in table 3 -1 are described in the following para-­
graphs. 

When a skip is taken, only one word is skipped. 
For this reason, a double or triple length instruc­
tion should not immediately follow a skip instruc­
tion. 

3. 7. 1 DECREMENT MEMORY AND TEST (DMT) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 t!:) 

f o 

I 

0 0 D 

.Instruction Execution: (EOA)-1-(EOA); skip next word if (EOA) = 0 

where EOA is developed in accordance with table 3-3. 

_Description: Decrement the contents of the effective operand address, EO.A, 
by one and replace the contents of the EOA with the result. If the result is 
zero, skip the next sequential word. If the IXB fields are 716 (imme­
diately addressing), the displacement field, D, is the EOA. 

NOTE 

The DMT instruction is typically used for loop con­
trol where the contents of some memory location is 
used as a counter. 

Status Affected: None 

Execution Time: 2. 75 to 3. 75 microseconds (refer to Appendix A) 

_Symbolic Coding: Refer to table 3 -3 for the assembly language coding for­
mats available with the DMT instruction. The DMT mnemonic replaces the 
MNU operation field (in table 3-3) and optional label and comment fields may 
be used. 

--------· 
3-42 Digital Systems Division 



ri DMT, S Q <r> 943013-9701 E. 
t, ----------+---

Example: 

DMT 
BRU 
BRU 

BASE, 2 
$-10 => 
RESET 

Before 
(X) = 0009l 6 

(BASE+9) = 000116 

3. 7. 2 SKIP ON EQUAL (SEQ) 

Machine Format: 

After 
No change 

000016} 

Control will 
now branch 
to RESET 

0 2 3 4 s 6 7 a 9 10 11 12 13 14 1s 

9P-CODE 

Instruction Execution: (ST)
0 

i = 01, skip next word , 
(ST)

0 1 
I: 01, execute next word 

' 
Description: Skip the next sequential word if the result of the last com­
pare operation was equal (status register bits 0 and 1 set to 01 ). If the re­
sult was something other than equal, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SEQ instruq­
tion is as follows: 

Label Operation Operand 

[label] 16 SEQ 16 

Comm:ent 

[comment] 

Example: The SEQ instruction in the following example will skip a word 
only if the contents of registers S and X are equal. 

RCL 2,4 
SEQ 

3-43 Digital Systems Di-vision 



~----9_4_30_1_3_-9_1_01 __________ ~----------------------~--
3. 7. 3 SKIP ON EVEN (SEV) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 14 15 

0 011 0 0 , , 0 
o = ~EGISTER I ~ II l 

----v---
OP-CODE 

Instruction Execution: (R )I 5 = 0, skip next word 

(R )15 = 1, execute next word 

Description: If bit position 15 of the register specified by the R field is zeirn, 
skip the next sequential word; otherwise, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

~mbolic Coding: The assembly language coding format for the SEV instruc -
tion is as follows: 

Label Operation Operand Comment 

[label] 16 SEV 16 reg 16 [comment] where "reg" is an 
expression that ad--
dresses a register 
in accordance with 
table 2-2. 

Example: 

A EQU 0 Before After 
=> (A) = A62o 16 No change 

SEV A (PC) = 013216 013416 (skip) 

3.7.4 SKIP ON GREATER THAN OR EQUAL (SGE) 

Machine Format: 
).' 

0 2 

0 

3 4 5 6 7 8 9 10 11 12 13 14 15 

0 

OP-CODE 

3-44 Digital Systems o;vision 



;-2nS\ ______ ___..__ ~ 943013-9701 SEV, SGE, SPT 

Instruction Execution: (ST)
0 1 

I 00, skip next word , 
(ST)

0 1 
= 00, execute next word , 

Description: If the result of the last compare operation was greater than tjr 
equal (status register bits 0 and 1 other than 00), skip the next sequential 
word; otherwise, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SGE instruc­
tion is as follows: 

Label Operation Operand Comment 

[label] 16 SGE 16 [ comment] 

Example: The SGE instruction in the following example will skip a word 
only if the content of register Xis logically greater than or equal to the 
content of register S. 

RCL 2, 4 
SGE 

3. 7. 5 SKIP ON GREATER THAN (SGT) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 -14 15 

0 0 

OP-CODE 

Instruction Execution: (ST)
0 1 

= 10, skip next word , 
(ST)

0 1 
':f 10, execute next word , 

Descr'iption: If the result of the last compare operation was greater than 
(status register bits 0 and 1 set to 10), skip the next word; otherwise, 
execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

3-45 Digital Systems Division 



~~-~~~--~~~~-~ 943013-9701 

§ymbolic Coding: The assembly language coding format for the SGT instruc­
tion is as follows: 

Label Operation Operand Comment 

[label] 16 SGT 16 [comment] 

_!Gx~mple: The SGT instruction in the following example will skip a word 
only if the content of register X is logically greater than the content of 
register S. 

RCL 2, 4 
SGT 

3. 7. 6 SKIP ON LESS THAN OR EQUAL (SLE) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 

OP-CODE 

J.ns!ruction Execution: (ST)
0 1 

1 10, skip next word , 
(ST)

0 1 
= 10, execute next word , 

Description: If the result of the last compare operation was less than or 
equal (status register bits 0 and 1 other than 10), skip the next sequential 
word; otherwise, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

!?.Y!:?:1bolic Coding: The assembly language coding format for the SLE inst rue -
t:ion is as follows: 

Label 

[label] 16 

Operation 

SLE 

--·-------------

Operand 

3-46 

Comment 

[comment] 

Digital Systems Di,tision 



~~----9-4_3_0_1_3-_9_7_0_1 __________________________ ~----------------~---~ SLE, SLT 

Example: The SLE instruction in the following example will skip a word 
only if the content of register X is logically less than or equal to the 
content of register S. 

RCL 2, 4 
SLE 

3.7.7 SKIP ON LESS THAN (SLT) 

Machine Format: 

0 2 3 4 s 6 7 8 9 1 0 1 ' ' 2 1 3 .1 4 1 s 

0 0 0 

OP-CODE 

Instruction Execution: (ST)
0 1 

= 00, skip next word 
' (ST)

0 1 
#. 00, execute next word 

' Description: If the result of the last compare operation was less than (status 
register bits 0 and 1 both set to zero), skip the next word; otherwise, 
execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SLT instruc­
tion is as follows: 

Label Operation Operand 

[label] 16 SLT 16 

Comment 

[comment] 

Example: The SLT instruction in the following example will skip a word 
only if the content of register Xis logically less than the content of reg­
ister S. 

RCL 2,4 
SLT 

3-47 Digital Systems Division 



~ 943013-9701 

3. 7. 8 SKIP ON MINUS (SMI) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 1 2 13 14 15 

0 I I I 0 I II ~ II I 0 0 0 1 
o ~EGtSTER 

OP-CODE 

Instruction :Execution: (R) 
0 

= 1, skip next word 

(R)
0 

= 0, execute next word 

Description: If bit position 0 of the register specified by the R field is one, 
skip the next word; otherwise, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

~mbolic Coding: The assembly language coding format for the SMI instruc­
tion is as follows: 

Label 

[label] ~ 

Operation Operand Comment 

Example: 

SMI 3 
=> 

SMI 

(M) 

reg 

Before 
= 62AE 16 

(PC) = 23FE
16 

3. 7. 9 SKIP ON NO CARRY (SNC) 

Machine Format: 

---------------~----------

~ [comment] where "reg" is an 
expression that ad-· 
dresses a register 
in accordance with 
table 2-2. 

After 
No change 

OP-CODE 

3-48 

(no skip) 

Digital Systems Division 



J¥,5) _______ ~, ~ 943013-9701 SMI, SNC, SINE 

Instruction Execution: (ST )
3 

-- 0, skip next word 

(ST)
3 

= 1, execute next word 

Description: If the last instruction affecting the carry indicator (bit 3 of the 
status register) did not turn it on, the next word is skipped; otherwise, 
execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SNC instruc­
tion is as follows: 

Label Operation Operand Comment 

[ label] 16 SNC 16 [comment] 

Example: The SNC instruction in the following example will skip a word 
if the sum of register A and the contents of location TABLE did not pro­
duce a carry into bit 0. 

ADD TABLE 
SNC 

3. 7. 10 SKIP ON NOT EQUAL (SNE) 

Machine Format: 

0 2 3 4 s 6 7 e 9 10 11 12 1s 14 1s 

O.P-CODE 

Instruction Execution: (ST)
0 1 

1- 01, skip next word , 
(ST)

0 1 
= 01, execute next word , 

Description: If the result of the last compare operation was less than or 
greater than (status register bits 0 and 1 other than 01 ), skip the next 
word; otherwise, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

3-49 Digital Systems Division 



~~-~~~--~~~~-~ 943013-9701 

Symbolic Coding: The assembly language coding format for the SNE instruc­
tion is as follows: 

Label Operatlon Operand Comment 

[ label] 16 SNE 16 [comment] 

Example: The SNE instruction in the following example will skip a word 
if the content of register Xis logically less than or greater than the con­
tent of register S. 

RCL 2, 4 
SNE 

3. 7. 11 SKIP ON NOT ALL ONES (SNO) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

OP-CODE 

Instruction Execution: (R) f. FFFF 
16

, skip next word 

(R) = FFFF 
16

, execute next word 

pescription: If at least one bit position of the register specified by the R 
field is zero, skip the next word; if all bit positions are ones, execute 
the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SNO instruc­
tion is as follows: 

Label Operation 

[ label] 16 SNO 

Operand Comment 

reg 16 [ comment] 

3-50 

where 11 reg" is an 
expression that ad­
dresses a register 
in accordance with 
table 2-2. 

Digital Systems Division 



~ __ 9_4_3_0_13 ___ 9_1_0_1 ___________________ s_N_o_,_sN,v __ 

Example: 

x EQU 2 Before After 

=> (X) = FFEF 
16 

No change 

SNO x (PC) = 2111
16 

2113
16 

(skip) 

3. 7. 12 SKIP ON NO OVERFLOW (SNV) 

Machine Format: 

0 2 3 4 5 6 7 e 9 10 11 12 13 14 15 

0 

OP-CODE 

Instruction Execution: (ST )
2 

= 0, skip next word 

(ST)
2 

= 1, execute next word 

Description: If the last instruction affecting the overflow indicator (bit 2 of 
the status register) did not turn it on, the next word is skipped; other -
wise, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SNV instruc­
tion is as follows: 

Label Operation Operand Comment 

[label] 16 SNV 16 [comment] 

Example: The SNV instruction in the following example will skip a word 
if the sum of register A and the contents of location TABLE did not cause 
an over flow. 

ADD 
SNV 

TABLE 

3-51 Digital Systems Division 



)~\-~~~-~~~~~ ~ 943013-9701 

3. 7. 13 SKIP ON NOT ALL ZEROS (SNZ) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I 1 0 0 l 1 0 0 l 1 0 0 I 0 ~ ~E~.S~ER I 
OP-CODE 

Instruction Execution: (R) -.f:. 0, skip next word 
(R) = 0, execute next word 

D~scription: If at least one bit position of the register specified by the R 
field is one, skip the next word; if all bit positions are zeros, execute 
the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Sy1nbolic Coding: The assembly language coding format for the SNZ instruc­
tion is as follows: 

Label 

[label] "kS 

Example: 

SNZ 1 
=> 

Operation Operand Comment 

SNZ reg 

Before 
(E) = 2100

16 

"kS [ comment] 

After 
No change 

where "reg" is an 
expression that ad­
dresses a register 
in accordance with 
table 2-2. 

(PC ) = 1 1 O 3 16 
1105

16 
(skip) 

3. 7. 14 SKIP ON CARRY (SOC) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 

OP-CODE 

3-52 Digital Systems Division 



Jiin,~ ____ 9_4_30_1_3 ___ 9_10_1~--~--~~----------------------~--~~--~ ~y SNZ, SOC, SOD 

Instruction Execution: (ST)
3 

= 1, skip next word 

(ST)
3 

= 0, execute next word 

Description: If the last instruction affecting the carry indicator (bit 3 of the' 
status register) turned it on, the next word is skipped; otherwise, exe-
cute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SOC instruc­
tion is as follows: 

Label Operation Operand 

[ label] 16 SOC 16 

Comment 

[comment] 

Example: The SOC instruction in the following example will skip an instruc:.. 
tion if the sum of register A and the contents of location TABLE results in a 
carry into bit O. 

ADD TABLE 
soc 

3. 7. 15 SKIP ON ODD (SOD) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I 1 0 I 0 I 1 0 0 I 0 I 0 0 ra ~E~1s~ER I 
OP-CODE 

Instruction Execution: (R )
15 

= 1, skip next word 

(R )
15 

= 0, execute next word 

Description: If bit position 15 of the register specified by the R field is one!, 
skip the next word; otherwise, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

3-53 Digital Systems Division 



J~'-~~~-~~~~~ ~ 943013-9701 

§y~bolic Coding: The assembly language coding format for the SOD inst rue -
tion is as follows: 

Label Operation Operand Comment 

[ label] 16 SOD reg 16 [ comment] 

where "reg" is an expression that addresses a register in accordance with 
table 2-2. 

E~ample: Before After ---
X EQU 2 => (X) = 000416 No change 

SOD x (PC) = 0010
16 

0011
16 

(no skip) 

3.7.16 SKIP ON ALL ONES {SOO) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 

011 lo 
I 

I ~ II I 0 0 0 0 1 0 = ~£GISTER 
OP-CODE 

Instruction Execution: (R) = FFFF 
16

, skip next word 

(R} -/: FFFF 
16

, execute next word 

Description: If all bit positions of the register specified by the R field are 
one, skip the next word; otherwise, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SOO instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

soo 
Operand Comment 

reg 16 [ comment] 

where "reg 11 is an expression that addresses a register in accordance with 
table 2-2 .. 

Example: 
Before After 

soo 0 => (A) = FFFF
16 

No change 

(PC) = 010116 010316 (skip) 

--------· 
3-54 Digital Systems Diltision 



J2ns" _________ _ ~ 943013-9701 SOO, SOV, SP:C 

3. 7. 17 SKIP ON OVERFLOW (SOV) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10111213 .14 1 5 

0 I I I 0 
I 1io~:;g 0 0 

OP-CODE 

Instruction Execution: (ST)
2 = 1, skip next word 

(ST)
2 = 0, execute next word 

Description: If the last instruction affecting the overflow indicator (bit 2 of 
the status register) turned the indicator on, the next word is skipped; 
otherwise, the next word is executed. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SOV instruc­
tion is as follows: 

Label Operation Operand Comment 

[label] ~ SOV ~ [comment] 

Example: The SOV instruction in the following example will skip a word 
if the sum of register A and the contents of location TABLE causes an 
overflow. 

ADD TABLE 
sov 

3. 7. 18 SKIP ON PLUS (SPL) 

Machine Format: 

0 2 

11 0 

3 4 5 6 

I 0 I I 
0 

OP-CODE 

3-55 

7 8 9 10 1 1 12 13 14 15 

11 
I 

I §:3 I I I 
0 1 

O =~GISTER 

Digital Systems Division 



~-·~--9_4_3_01_3 ___ 9_1_01----~----~·--------------------------~--~---~ 

I 

Instruction Execution: (R) 0 = 0, skip next word 

(R) 
0 

= 1, execute next word 

f?_:escription: If bit position zero of the register specified by the R field is 
zero, skip the next word; otherwise, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

~mbolic Coding: The assembly language coding format for the SPL instruc­
tion is as follows: 

Label 

[label] l6 

Operation 

SPL 

Operand Comment 

reg l6 [comment] 

where "reg" is an expression that addresses a register in accordance with 
table 2-2. 

~xample: 

L EQU 5 Before 
=> (L) = F32B 16 

After 
No change 

SPL L (PC) = 090816 
0909

16 
(no skip) 

3. 7. 19 SKIP ON SENSE SWITCH EQUAL (SSE) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 

: ~ 11 
I 

1 I I 
0 0 0 0 0 0 S• 

SENSE 
SWITCH 

OP-CODE 

Instruction Execution: Refer to 11 description" paragraph. 

15 

D~scription: The S field bits of the machine format correspond to the com·­
puter front panel sense switches as follows: 

Sense Switch 
l 
2 
3 
4 

S Field Bit 
12 
13 
14 
15 

Test only the sense switches whose corresponding S field bits are one. If 
the tested switches are on (up position), skip the next word; otherwise, 
execute the next word. If all S field bits are zero, SSE will always skip and 
SSN will never skip. 

--··-----------· 
Change 1 3-56 Digital Systems Division 



J2t75' ______ ~ ~ 943013-9701 SSE, S~N 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SSE instru<j:­
tion is as follows: 

Label 

[label] ~ 

Operation 

SSE 

Operand Comment 

SS ~ [comment] 

where "ss" is an expression that specifies the sense switches to be tested. 

Example: The following SSE instruction will skip a word if sense 
switches 2 and 3 are on (switches 1 and 4 are not tested). 

SSE 6 

3. 7. 20 SKIP ON SENSE SWITCH NOT EQUAL (SSN) 

Machine Format: 

0 2 3 4 5 6 7· 8 9 10 11 12 13 14 15 

OP-CODE 

Instruction Execution: Refer to "description" paragraph. 

I 
S= 
SENSE 
SWITCH 

Description: Refer to paragraph 3. 7. 19 for the relationship between the m~­
chine format S field bits and the computer front panel sense switches. Teat 
only the sense switches whose corresponding S field bits are one. If any o:f 
the test switches are off (down position), skip the next word; otherwise, 
execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SSN instru¢­
tion is as follows: 

Label 

[label] ~ 

Operation 

SSN 

Operand Comment 

SS ~ [comment] 

where "ss" is an expression that specifies the sense switches to be tested. 

3-57 Digital Systems Division 



A~-~-~~~~~~~-~ 943013-9701 

l~xample: The following SSN instruction will skip a word if sense 
switch 1 is off (switches 2, 3, and 4 are not tested). 

SSN 8 

3. 7. 21 SKIP ON ZERO (SZE) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

OP-CODE 

Instruction Execution: (R) = 0, skip next word 
(R) ;/:. 0, execute next word 

pescription: If the content of the register specified by the R field is zero, 
skip the next word; otherwise, execute the next word. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

~Symbolic Coding: The assembly language coding format for the SZE instruc­
tion is as follows: 

Label 

[label] l6 

Operation 

SZE 

Operand Comment 

reg l6 [comment] 

where "reg" is an expression that addresses a register in accordance with 
table 2-2. 

~~xample: 

B EQU 6 

=> (B) 
Before 

= 001016 

(PC) = 1188
16 

3. 8 SHIFT INSTRUCTIONS 

SZE B 

After 
No change 

The shift instructions listed in table 3-1 are described in the following para­
graphs. 

---------·~------~~---------------------------~·~--------------------------------------------------·----~ 

3-58 Digital Systems Di1vision 



Jdf) _______ ----+---~ 943013-9701 SZE, ALA, ALiD 

3. 8. 1 ARITHMETIC LEFT SHIFT REGISTER A (ALA) 

Machine Format: 

0 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 

I 1 
o I o I 1 

I 

ol 
I I I I I 

I 0 0 0 0 : ~J'.ilFT COUNT 

osCS31 
OP-CODE 

Instruction Execution: Shift (A) left C places; zero fill vacated bits 

Description: Shift bits 1 through 15 of register A to the left the number of 
bit positions specified by the C field. The sign bit (bit O) of register A is 
not affected by the shift. Bit positions vacated are filled with zeros and bit~ 
shifted off the left end (from bit 1) are lost. If the C field is zero, no shift · 
takes place. 

Status Affected: If the sign bit and bit 1 of register A differ at any time du~ing 
the shift operation, the overflow indicator (bit 2 of the status register) is 
turned on; otherwise, it is turned off. In either case, the sign bit is not 
affected. 

Execution Tilne: O. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the ALA instruc­
tion is as follows: 

Label Operation 

[label] 16 ALA 

Operand 

16 count 

Comment 

16 [comment] 

where "count" is an expression that specifies the shift count. 

Example: 

ALA 5 
=> 

Before 
(A) = 537B

16 

After 
6F6o

16 
(the overflow indicator is 
turned on) 

3. 8. 2 ARITHMETIC LEFT SHIFT DOUBLE (ALD) 

Machine Format: 

0 2 3 4 5 6 7 e 9 10 1 1 1 2 13 14 15 

11 o I o I 1 0 11 
I I I I I I I 0 0 0 

: ~J'.ilFT COUNT 

0SC531 

OP-CODE 

3-59 Digital Systems Division 



943013-9701 

-~nstruction Execution: Shift (A, E) left C places; zero fill vacated bits 

Description: Shift the double-length word formed by bits 1 through 15 of 
both registers A and E to the left the number of bit positions specified by the 
C field. The sign bits (bit 0) of registers A and E are not involved in the 
shift. Bit 0 of register E is forced to agree with bit 0 of register A and bits 
shifted out of bit 1 of register E are shifted into bit 15 of register A. Bit 
positions vacated by the shift are filled with zeros and bits shifted off the 
left end (bit 1 of register A) are lost. If the C field is zero, no shift takes 
place but the sign of register E is forced to agree with the sign of register A. 

Status Affected: If the sign bit and bit 1 of register A differ at any time during 
the shift operation, the overflow indicator (bit 2 of the status register) is 
turned on; otherwise, it is turned off. In either case, the sign bit is not 
affected. 

Execution Time: 1. 00 + (shift count/4) microseconds 

Sytnbolic Coding: The assembly language coding format for the ALD instrm:­
tion is as follows: 

Label Operation Operand 

l6 count 

Comment 

[ label] l6 ALD l6 [comment] 

where "count" is an expression that specifies the shift count. 

Example: 

ALD 10 Before (Hex) 
~ (A,E) = C3Cl,86Al 

After (Hex) 
8435, 8400 (the overflow 

indicator is 
turned on) 

3. 8. 3 ARITHMETIC RIGHT SHIFT REGISTER A (ARA) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ol 
I I 

0 1 0 0 o Io' ' o I c~ I 
• 0 . SHIFT COUNT 

----.,, 
OP-CODE 

In_struction Execution: Shift (A) right C places; sign fill vacated bits 

Description: Shift the contents of register A to the right the number of bit 
positions specified by the C field. Bit positions vacated are filled with the 
original sign bit (bit O) and bits shifted off the right end are lost. If the C 
field is zero, no shift takes place. 

3-60 Digital Systems Division 



~----9_4_3_0_13_-_9_7_0_1 ______________________ ~-------------A __ RA __ ,_A __ R_D 

Status Affected: None 

Execution Time: O. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the ARA instrqc­
tion is as follows: 

Label 

[label] 16 

Operation 

ARA 

Operand 

16 count 

Comment 

16 [ comment] 

where "count" is an expression that specifies the shift count. 

Example: 

ARA 3 Before 
=9 (A) = 8321

16 

After 
F064

16 

3.8.4 ARITHMETIC RIGHT SHIFT DOUBLE (ARD) 

Machine Format: 

0 2 3 4 5 6 7 8 9 1 0 1 1 1 2 
I 

C= 

1 3 -14 
I I 

0 0 I 1 0 0 0 I 0 I 0 I SHIFT COUNT 

O:S;C$31 

OP-CODE 

15 

Instruction Execution: Shift (A, E) right C places; sign fill vacated bits 

Description: Shift the double-length word formed by registers A and E to· t)h.e 
right the number of bit positions specified by the C field. Bit 0 of register: 
E is forced to agree with bit 0 of register A and bits shifted out of bit 15 of 
register A are shifted into bit 1 of register E. Bit positions vacated by the 
shift are filled with the original sign bit (bit 0 of register A) and bits shifteQ 
off the right end are lost. If the C field is zero, no shift takes place but the 
sign of register E is forced to agree with the sign of register A. 

Status Affected. None 

Execution Time: 1. 00 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the ARD instruc -
tion is as follows: 

Label 

[label] 16 

Operation 

ARD 

Operand 

16 count 

Comment 

16 [ comment] 

where "count" is an expression that specifies the shift count. 

3-61 Digital Systems Division 



~~-~~~~~~~~-~ 943013-9701 

_E~x~mple: 

FIVE EQU 5 Before (Hex) 
=i> (A,E) = 2F03,1100 

After (Hex) 
0178,0C88 

ARD FIVE 

3. 8 .. 5 CIRCULAR LEFT SHIFT DOUBLE (CLD) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

o I o I 1 o o I o 6= 
. SHIFT COUNT 

-----------v--------~' 0 $C $31 
OP-CODE 

Instruction Execution: Shift (A, E) left C places, circularly 

Description: Shift the double-length word formed by registers A and E to the 
left the number of bit positions specified by the C field. Bits shifted out of 
bit 0 of register A are shifted into bit 15 of register E. Bits shifted out of 
bit 0 of register E are shifted into bit 15 of register A. If the C field is zero, 
no shift takes place. 

Status Affected: None 

Execution Time: 0. 75 + (shift count/ 4) microseconds 

§ymbolic Coding: The assembly language coding format for the CLD instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

CLD 

Operand 

16 count 

Comment 

16 [ comment] 

where "count" is an expression that specifies the shift count. 

]~Xiample: 

CLD 8 Before (Hex) 
=c> (A,E) = 5350,4F54 

After (Hex) 
504F, 5453 

3. 8. 6 CIRCULAR RIGHT SHIFT REGISTER A (CRA) 

Machine Format: 

0 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 .1 4 1 5 

0 0 
I I I I I I I 

o o ~H IFT COUNT 

'------------------- 0 $C $31 
OP-CODE 

--·--·---------------- ------------------·---
3-62 Digital Systems Dillision 



J};f) ____ 9_4_30_1_3_-_9_70_1 ______ ~------------------~----~~~~ ~ GLD, CRA, CI{B 

Instruction Execution: Shift (A) right C places, circularly 

Description: Shift the contents of register A to the right the number of bit 
positions specified by the C field. Bits shifted out of position 15 are shifted! 
into position O. If the C field is zero, no shift takes place. 

Status Affected: None 

Execution Time: 0. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the CRA instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

CRA 

Operand 

16 count 

Comment 

16 [comment] 

where "count" is an expression that specifies the shift count. 

Example: 

FOUR EQU 4 
=> 

Before 
(A) = FAD9

16 

After 
9FAD

16 

CRA FOUR 

3. 8. 7 CIRCULAR RIGHT SHIFT REGISTER B (CRB) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 I I I I I 
1 ~~IFT COUNT • 

OP-CODE 

Instruction Execution: Shift (B) right C places, circularly 

Description: Shift the contents of register B to the right the number of bit 
positions specified by the C field. Bits shifted out of position 15 are shiftecj 
into position O. If the C field is zero, no shift takes place. 

Status Affected: None 

Execution Time: O. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the CRB instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

CRB 

Operand 

16 count 

Comment 

16 [comment] 

where "count" is an expression that specifies the shift count. 

3-63 Digital Systems Division 



943013-9701 

_Example: 

CRB 15 
=> 

Before 
(B) = 0105

16 

After 
020A

16 

3. 8. 8 CIRCULAR RIGHT SHIFT DOUBLE (CRD) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
I 
C= 

0 SHIFT COUNT 

..__~~~~--------v--~~~~~~--' 

OP-CODE 

Instruction Execution: Shift (A, E) right C places, circularly 

Description: Shift the double-length word formed by registers A and E to the 
right the number of bit positions specified by the C field. Bits shifted out of 
position 15 of register E are shifted into position 0 of register A. Bits shifted 
out of position 15 of register A are shifted into position 0 of register E. If 
the C field is zero, no shift takes place. 

Status Affected: None 

Ex,ecution Time: O. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the CRD instruc­
tion is as follows: 

Operation Comment Label 

[label] l6 CRD 

Operand 

l6 count l6 [comment] 

where "count" is an expression that specifies the shift count. 

Example: 

CRD 6 Before (Hex) 
=> (A, E) = F6A9, 24Bl 

After (Hex) 
C7DA, A492 

3. 8. 9 CIRCULAR RIGHT SHIFT REGISTER E (CRE) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

It l 0 0 1 0 0 I 0 I 0 ;;;IFT COUNT 

OP-CODE 

---·---~--~----------~----------~·~-------------------------------------
3-64 Digital Systems Division 



~----9_4_3_0_13 ___ 9_1_0_1 _________________________________ c_R_D_,_c __ RE __ ,_c_R~:-L~ 

Instruction Execution: Shift (E) right C places, circularly 

Description: Shift the contents of register E to the right the number of bit 
positions specified by the G field. Bits shifted out of position 15 are shiftetjl 
into position O. If the C field is zero, no shift takes place. 

Status Affected: None 

Execution Time: 0. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the CRE instru~­
tion is as follows: 

Label 

[label] 16 

Operation 

CRE 

Operand 

16 count 

Comment 

16 [comment] 

where "count" is an expression that specifies the shift count. 

Example: 

ONE EQU 

CRE 

1 

ONE 

Before 
(E) = 24AC

16 

After 

125616 

3. 8. 10 CIRCULAR RIGHT SHIFT REGISTER L (CRL) 

Machine Format: 

0 2 3 4 s 6 7 8 9 10 1 1 1 2 13 
I I I 

C= 

14 15 
I I 1 

0 0 11 0 I 0 0 I SHIFT COUNT 

O~C~31 
OP-CODE 

Instruction Execution: Shift (L) right C places, circularly 

Description: Shift the contents of register L to the right the number of bit 
positions specified by the C field. Bits shifted out of position 15 are shifted 
into position O. If the C field is zero, no shift takes place. 

Status Affected: None 

Execution Time: O. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the CRL instrtjc­
tion is as follows: 

Label 

[label] 16 

Operation 

CRL 

Operand 

16 count 

Comment 

16 [ comment] 

where "count" is an expression that specifies the shift count. 

3-65 Digital Systems Division 



~~-~~~--~~~~-~ 943013-9701 

Example: 

CRL 5 Before 
=> (L) = 62FF 

16 

After 
FBI 7

16 

3. 8. 11 CIRCULAR RIGHT SHIFT REGISTER M (CRM) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 

I 1 ol 
I I 0 

0 1 0 0 

----..... 
OP-CODE 

1 1 1 2 13 14 15 
I I 

C= 
SHIFT COUNT 

0$C$31 

Jns_!ruction Execution: Shift (M) right C places, circularly 

I 

_Description: Shift the contents of register M to the right the number of bit 
positions specified by the C field. Bits shifted out of position 15 are shifted 
into position O. If the C field is zero, no shift takes place. 

Status Affected: None 

Execution Time: O. 75 + (shift count/4) microseconds 

~Symbolic Coding: The assembly language coding format for the CRM instruc­
tion is as follows: 

Label Operation 

[ label] 16 CRM 

Operand 

16 count 

Comment 

16 [ comment] 

where "count" is an expression that specifies the shift count. 

_:"Example: 

CRM 8 Before 
(M) = 2630

16 

After 

302616 

3.8.12 CIRCULAR RIGHT SHIFT REGISTER S (CRS) 

Machine Format: 

0 2 3 4 s 6 7 8 9 10 11 12 13 14 15 

I ~= I 
0 0 0 . SHIFT COUNT 

0$C$31 

OP-CODE 

-------------------------------------·-----------------------------------~----
3-66 Digital Systems Di\rision 



~----9_4_3_0_13 ___ 9_1_01 ______________________________ ~_c_RM __ , __ c_R_s_,_c_RX_,_ 

Instruction Execution: Shift (S) right C places, circularly 

Description: Shift the contents of register S to the right the number of bit 
positions specified by the C field. Bits shifted out of position 15 are shifted 
into position O. If the C field is zero, no shift takes place. 

Status Affected: None 

Execution Time: O. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the CRM instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

CRS 

Operand 

16 count 

Comment 

16 [ comment] 

where "count" is an expression that specifies the shift count. 

Example: 

CRS 2 Before 
=> (S) = CD94

16 

After 

336516 

3. 8. 13 CIRCULAR RIGHT SHIFT REGISTER X (CRX) 

Machine Format: 

0 2 3 4 s. 6 7 8 9 10 11 12 13 14 15 

0 , , 
I I 

0 0 0 0 I I I l 
0 ~HIFT COUNT _ 

os;CS31 

OP-CODE 

Instruction Execution: Shift (X) right C places, circularly 

Description: Shift the· contents of register X to the right the number of bit 
positions specified by the C field. Bits shifted out of position 15 are shifted 
into position O. If the C field is zero, no shift takes place. 

Status Affected: None 

Execution Time: O. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the CRX instruc­
tion is as follows: 

Label Operation 

[ label] 16 CRX 

Operand 

16 count 

Comment 

16 [ comment] 

where "count" is an expression that specifies the shift count. 

3-67 Digital Systems Division 



~~-9_4_30_1_3_-9_7_01 __________ ~--------------------~~ 
.Example: 

Fl5 EQU 15 

CRX Fl5 

=> 
Before 

(X) = OOB2
16 

After 

016416 

3. 8. 14 LOGICAL LEFT SHIFT REGISTER A (LLA) 

Machine Format: 

0 2 3 4 5 6 7 8 9 1 0 1 1 
I I 

1 2 1 3 14 15 
I I I 
C= I 0 0 I 1 0 0 ol 0 I SHIFT COUNT 

OS:CS:31 
OP-CODE 

Instruction Execution: Shift (A) left C places; zero fill vacated bits 

Description! Shift the contents of register A to the left the number of bit 
positions specified by the C field. Bit positions vacated are filled with zeros 
and bits shifted off the left end are lost. If the C field is zero, no shift takes 
place. 

Status Affected: None 

Execution Time: O. 75 + (shift count/4) microseconds 

~mbolic Coding: The assembly language coding format for the LLA instruc­
tion is as follows: 

Label Operation 

[ label] l6 LLA 

Operand 

l6 count 

Comment 

l6 [ comment] 

where "count" is an expression that specifies the shift count. 

Example: 

LLA 4 
=> 

Before 
(A) = F409

16 

After 

409016 

3~ 8. 15 LOGICAL LEFT SHIFT DOUBLE (LLD) 

Machine Format: 

0 2 3 4 5 6 7 8 

11 0 ol 0 0 ol 
OP-CODE 

3-68 

9 10 1 1 1 2 1 3 14 1 5 
I I 
C= 
SHIFT COUNT 

-OS:CS:31 

Digital Systems Division 



S?ofl ___ ~4-3_0_1_3_-9_1_0_1 ______________________________________ ~~· ~ LLA, LLD, LRA 

Instruction Execution: Shift (A, E) left C places; zero fill vacated bits 

Description: Shift the double-length word formed by registers A and E to the 
left the number of bit positions specified by the C field. Bit positions vacated 
are filled with zeros, bits shifted out of position 0 of register A are lost, and 
bits shifted out of position 0 of register E are shifted into position 15 of reg­
ister A. If the C field is zero, no shift takes place. 

Status Affected: None 

Execution Time: 0. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the LLD instruc­
tion is as follows: 

Label Operation Operand 

16 count 

Comment 

[label] 16 LLD 16 [comment] 

where "count" is an expression that specifies the shift count. 

Example: 

LLD 3 
=> 

Before (Hex) 
{A, E) = F2FO, 1108 

After (Hex) 
9780,8840 

3. 8. 16 LOGICAL RIGHT SHIFT REGISTER A (LRA) 

Machine Format: 

0 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 .1 4 1 5 

I I 0 I 0 0 0 0 0 
I I I I I I 1 

. t O ~~IFT COUNT 

0$C$31 

OP-CODE 

Instruction Execution: Shift {A) right C places; zero. fill vacated bits 

Description: Shift the contents of register A to the right the number of bit 
positions specified by the C field. Bit positions vacated are filled with zeros 
and bits shifted off the right end are lost. If the C field is zero, no shift 
takes place. 

Status Affected: None 

Execution Time: O. 75 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the LRA instruc­
tion is as follows: 

Label Operation 

[label] 16 LRA 

Operand 

16 count 

Comment 

16 [ comment] 

where ''count" is an expression that specifies the shift count. 

3-69 Digital Systems Division 



943013-9701 

Example: 

SEVN EQU 

LRA 

7 

SEVN 

=> 
Before 

(A) = 3CF1
16 

3.8 .. 17 LOGICAL RIGHT SHIFT DOUBLE (LRD) 

Machine Format: 

After 

007916 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ol 
I 

0 1 0 
I I 

0 o l o I I I I I I 
~~IFT COUNT 

-------....1/ O~C$31 -v 
OP-CODE 

Jnstruction Execution: Shift (A, E) right C places; zero fill vacated bits 

_pescription: Shift the double-length word formed by registers A and E to the 
:right the number of bit positions specified by the C field. Bit positions va­
cated are filled with zeros, bits shifted out of position 15 of register A are 
:shifted into position 0 of register E, and bits shifted out of position 15 of 
register E are lost. If the C field is zero, no shift takes place. 

Status Affected: None 

:Execution Time: O. 75 + (shift count/4) microseconds 

~Symbolic Coding: The assembly language coding format for the LRD instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

LRD 

Operand 

16 count 

Comment 

16 [ comment] 

where "count" is an expression that specifies the shift count. 

_Example: 

LRD 12 
=> 

Before (Hex) 
(A, E) = 0214, 5F67 

After (Hex) 
0000,2145 

3. 8. 18 LEFT TEST FOR ONES IN REGISTER A (LTO) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 1 1 1 2 
I 
C= 

13 14 1 5 

11 0 0 11 0 0 I 1 
0 I 0 I 

SHIFT COUNT 

O$C$31 

OP-CODE 

~~-------------------------

3-70 Digital Systems Division 



~~--9_4_3_0_1_3-_9_7_0_1 __________________________________ L_R_n_, __ L_T_o_, __ L_T_z_ 

Instruction Execution: Shift (A) left C places or until a one is found in bit O; 
leading zeros count - (X); zero fill vacated bits 

Description: Logically shift the contents of register A to the left the number 
of bit positions specified by the C field or until a one appears in bit 0 of reg­
ister A. Bit positions vacated by the shift are filled with zeros. If a one is 
shifted into bit 0, it is set to zero and register X is loaded with a count of 
the number of zeros shifted out of bit O. If a one is not found after shifting 
the number of bits specified by the C field, register X is loaded with· the value 
of the C field. If the C field is zero, bit 0 of register A is complemented and 
register X remains unchanged. 

NOTE 

The LTO instruction is commonly used to deter­
mine which bits of a status word returned from a 
peripheral device are set. 

Status Affected: None 

Execution Time: 1. 00 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the LTO instruc­
tion is as follows: 

Label 

[label] l6 

Operation 

LTO 

Operand 

l6 count 

Comment 

l6 [ comment] 

where "count" is an expression that specifies the shift count. 

Example: 

SIX EQU 6 
=> 

LTO SIX 

(A) = 
(X) = 

Before 
3C2B

16 
FF03

16 

After 
70AC

16 
0002

16 ("one" found after 
two shifts) 

3. 8. 19 LEFT TEST FOR ZEROS IN REGISTER A {LTZ) 

Machine Format: 

3-71 Digital Systems Division 



~~-~~----~~~~-~ 943013-9701 

Instruction Execution: Shift (A) left C places or until a zero is found in bit O; 
leading ones count - (X); zero fill vacated bits 

Description: Logically shift the contents of register A to the left the number 
of bit positions specified by the C field or until a zero appears in bit 0 of reg­
ister A. Bit positions vacated by the shift are filled with zeros. If a zero is 
shifted into bit 0, it is set to one and register X is loaded with a count of the 
nurnber of ones shifted out of bit O. If a zero is not found after shifting the 
number of bits specified by the C field, register X is loaded with the value of 
the C field. If the C field is zero, bit 0 of register A is complemented and 
register X remains unchanged. 

Status Affected: None 

Execution Time: 1. 00 + (shift count/ 4) microseconds 

Symbolic Coding: The assembly language coding format for the LT Z instruc­
tion is as follows: 

Label 

[label] 16 

Operation Operand 

16 count 

Comment 

LTZ 16 [ comment] 

where "count" is an expression that specifies the shift count. 

Example: 

LTZ 3 

=> 
Before 

(A) = FCoz 1
6 

(X) = 0080
16 

After 
EOlo

16 

000316 (no "zeros" found in three 
shifts) 

3~ 8. 20 NORMALIZE (NRM) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 t1 12 13 14 15 

0 0 I 0 0 I 0 0 I I I I 
OP-CODE 

.!_~struction Execution: Shift (A, E) left until (A)o -:f (Ah; shift count- (X); 
zero fill vacated bits 

Description: Shift the double-length word formed by registers A and E to the 
left until bit 0 of register A is different from bit 1 of register A. Bit posi·­
tions vacated by the shift are filled with zeros and bit 0 of register E is 
forced to agree with bit 0 of register A. Bits shifted out of bit 1 of register 
E are shifted into bit 15 of r egist:e r A. The total number of bits shifted to 
perform the normalization is loaded in register X. If the contents of registers 

---~-~----------------------------·------------------------------------------·------
3-72 Digital Systems Division . 



~----9_4_3_0_13_-_9_7_0_1 ______________________________________ N_RM ___ ,_R __ T_o __ 

A and E are both zero and the NRM instruction is executed, a count of 31 is 
stored in register X and registers A and E remain at zero. If registers A 
and E are all ones and the NRM instruction is executed, a count of 3 0 is 
stored in register X and registers A and E both contain 8000

16
• 

Status Affected: None 

Execution Time: 1. 00 + (shift count/4) microseconds 

Symbolic Coding: The assembly language coding format for the NRM instruc­
tion is as follows: 

Label Operation Operand Comment 

[label] 16 NRM 16 [comment] 

ExamEle: 

NRM Before {Hex) After (Hex) 
=> (A, E) = 0062, B87A 6238, 7AOO 

(X) = OAB2 0008 

3.8.21 RIGHT TEST FOR ONES IN REGISTER A (RTO) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 
C= I 
I I 

0 0 SHIFT COUNT 

OP-CODE 

Instruction Execution: Shift (A) right C places or until a one appears in bit 
15; trailing zeros count --(X); zero fill vacated bits 

Description: Logically shift the contents of register A to the right the number 
of bit positions specified by the C field or until a one appears in bit 15. Bit 
positions vacated by the shift are filled with zeros. If a one is shifted into 
bit 15, it is set to zero and register X is loaded with a count of the number of 
zeros shifted out of bit 15. If a one is not found after shifting the number of 
bits specified by the C field, register X is loaded with the value of the C 
field. If the C field is zero, bit 15 of register A is complemented and reg­
ister X remains unchanged. 

Status Affected: None 

Execution Time: 1. 00 + (shift count/4) microseconds 

3-73 Digital Systems Division 



~~--9_4_3_0_1_3_-_91_0_1 ____________ ~-------------------------------------
§ymbolic Coding: The assembly language coding format for the R TO instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

RTO 

Operand 

16 count 

Comment 

16 [ comment] 

where "count" is an expression that specifies the shift count. 

J~x~mple: 

EGHT EQU 8 Before After 
(A) = 6BA4

16 
1AE8

16 
RTO EGHT (X) = 090516 000216 

3. 8. 22 RIGHT TEST FOR ZEROS IN REGISTER A (R TZ) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 1 1 1 2 
I 

C= 

1 3 14 15 

I 1 0 011 0 0 I 0 0 SHIFT COUNT 

~ 
I O~C~31 

OP-CODE 

~Instruction Execution: Shift (A) right C places or until a zero appears in 
bit 15; trailing ones count - (X) 

_De_scription:. Logically shift the contents of regisfer A to the right the number 
of bit positions specified by the C field or until a zero appears in bit 15. Bit 
positions vacated by the shift are filled with zeros. If a zero is shifted into 
bit 15, it is set to one and register X is loaded with a count of the number of 
ones shifted out of bit 15. If a zero is not found after shifting the number o:f 
bits specified by the C field, register X is loaded with 'the value of the C 
field. If the C field is zero, bit 15 of register A is complemented and reg­
ister X remains unchanged. 

Status Affected: None 

Execution Time: 1. 00 + (shift count/4) microseconds 

.§.rmbolic Coding: The assembly language coding format for the R TZ instruc­
tion is as follows: 

Label Operation 

[ label] l6 RTZ 

Operand 

16 count 

Comment 

16 [comment] 

where "count" is an expression that specifies the shift count. 

------------------· 
3-74 Digital Systems Division 



~----9_4_3_0_1_3-_9_7_0_1 _______________________________ ~----~-R_T_·z_,~A-N_D~ 
Example: 

RTZ 5 
Before 

(A) = F601
16 

(X) = FFFF 
16 

3. 9 LOGICAL INSTRUCTIONS 

After 
7BOI

16 

000116 

The logical instructions listed in table 3-1 are described in the following para­
graphs. 

3. 9. 1 LOGICAL AND WITH REGISTER A (AND) 

Machine Format: 

0 2 3 4 5 6 7 

0 0 

OP-CODE 

Instruction Execution: (A) AND (EOA) - (A) 

8 9 10 11 12 13 14 15 
I I 

D 

where EOA is developed in 
accordance with table 3-3. 

Description: Perform a bit-by-bit logical AND between the contents of reg­
ister A and the contents of the effective operand address, EOA. Place the 
result in register A. If the IXB fields are 7

16 
(immediate addressing), the 

operand to be AND' ed with register A consists of zeros in bits 0 to 7 and the 
displacement field, D, in bits 8 to 15. The Logical AND operation is defined 
as follows: 

(A) (EOA) 
Bit Bit Result 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

Status Affected: None 

Execution Time: 0. 75 to 2. 75 microseconds (refer to Appendix A) 

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the AND instruction. The AND mnemonic replaces the 
MNU operation field (in table 3-3) and optional label and comment fields may 
be used. 

3-75 Digital Systems Division 



943013-9701 

li:xample: 

MASK AND =>B6 
=> 

Before 
(A) = F637

16 
(MASK) = 3FB6

16 

3. 9. 2 LOGICAL OR WITH REGISTER A (!OR) 

Machine Format: 

After 

003616 

No change 

0 2 3 4 5 6 7 89 10 11 12 13 14 15 
I I I 

0 D 

OP-CODE 

Instruction Execution: (A) OR (EOA) - (A) 

Description:: Perform a bit-by-bit logical OR between the contents of register 
A and the contents of the effective operand address, EOA. Place the result: 
in register A. If the IXB fields are 1 16 (immediate addressing), the operand 
to be OR 1 ed with register A consists of zeros in bits 0 to 7 and the displace­
ment field, D, in bits 8 to 15. The logical OR operation is defined as follows: 

(A) (EOA) 
Bit Bit Result ---
0 0 0 
0 1 1 
1 0 1 
1 1 1 

Status Affected: None 

Execution Time: O. 75 to 2. 75 mi.croseconds (refer to Appendix A) 

Symbolic Coding: Refer to table 3-3 for the assembly language coding for­
mats available with the !OR instruction. The !OR mnemonic replaces the 
MNU operation field (in table 3-3) and optional label and comment fields may 
be used. 

!'~xample: 

!OR HEX, 2 
=> (A) 

Before 

= 010816 

3-76 

After 

313816 

No change 

where, (X) = 
001816 

Digital Systems Division 



J2nS\_~_9_4_30_1_3_-~~0_1 ______ ~----~-------------------------------~ IOR, RAN, REO 

3. 9. 3 REGISTER AND (RAN) 

Machine Format: 

0 0 0 0 

OP-CODE 

Instruction Execution: (SR) AND (DR) - (DR) 

SR= 
SOURCE 
REGISTER 

Description: Perform a bit-by-bit logical AND between the contents of the 
registers specified by the SR and DR fields. Place the result in the register 
specified by the DR field. The logical AND operation is defined in paragraph 
3. 9. 1. If bit 12 of the machine format is set to one and bits 13 to 15 are 
zeroed, the status register is specified as the destination register. In this 
case the instruction is restricted, meaning it is considered illegal if the 
memory protect/privileged instruction feature is enabled. Interrupts, other 
than internal, are inhibited for one instruction following this special case of 
the RAN instruction. 

Status Affected: None 

Execution Time: 1. 25 microseconds 

Symbolic Coding: The assembly language coding format for the RAN instruc­
tion is as follows: 

Label 

[label] 16 

Operation 

RAN 

Operar:id Comment 

l6 sreg, dreg l6 [comment] 

where "sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when "dreg" equals eight is covered in the "Description" paragraph. 

Example: 

RAN 0, 3 Before 
(M) = B8A5

16 
(A) = OF70

16 

After 

082016 

No change 

3. 9. 4 REGISTER EXCLUSIVE OR (REO) 

Machine Format: 

0 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 .1 4 1 5 

I I 
0 0 

OP-CODE 

3-77 Digital Systems Division 



~~-~~--~~~~~-~ 943013--9701 

Inst_ruction Execution: (SR) exclusive OR (DR)- (DR) 

Description: Perform a bit-by-bit logical exclusive OR between the contents 
of the registers specified by the SR and DR fields. Place the result in the 
register specified by the DR field. The exclusive OR operation is defined as 
follows: 

(SR) (DR) 
Bit 

0 
0 
1 
1 

Bit 

0 
1 
0 
1 

Result 

0 
1 
1 
0 

If bit 12 of the machine format is set to one and bits 13 to 15 are zeroed, the 
status register is specified as the destination register. In this case the in­
struction is restricted, meaning it is considered illegal if the memory 
protect/privileged instruction feature is enabled. Interrupts, other than in­
ternal, are inhibited for one instruction following this special case of the 
H.EO instruction. 

Status Affected: None 

Execution Time: 1. 25 microseconds 

~bolic Coding: The assembly language coding format for the REO instruc­
tion is as follows: 

Label Operation Operand Comment 

[ label] 16 REO 16 sreg, dreg 16 [comment] 

where "sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when "dreg" equals eight is covered in the "Description" paragraph. 

~Example: 

A EQU 0 Before After 
s EQU 4 ~ (S) = 386216 63C3

16 

REO A, S (A) = 5BAI 16 
No change 

3. 9. 5 REGISTER OR (ROR) 

Machine Format: 

0 0 0 0 0 
SR= 

1 SOURCE 
REGISTER 

--~~~~-,--....--~---------/ 
OP-CODE 

3-78 Digital Systems Dlvision 



~~-~-------~~~ ~ 943013-9701 ROR, SABO 

Instruction Execution: (SR) OR (DR) - (DR) 

Description: Perform a bit-by-bit logical OR between the contents of the reg­
isters specified by the SR and DR fields. Place the result in the register 
specified by the DR field. The logical OR operation is defined in paragraph 
3. 9. 2. If bit 12 of the machine format is set to one and bits 13 to 15 are 
zeroed, the status register is specified as the destination register. In this 
case the instruction is restricted, meaning it is considered illegal if the 
memory protect/privileged instruction feature is enabled. Interrupts, other 
than internal, are in..li.ibited for one instruction following this special case of 
the ROR instruction. 

Status Affected: None 

Execution Time: 1. 25 microseconds 

Symbolic Coding: The assembly language coding format for the ROR instruc­
tion is as follows: 

Label 

[label] l6 

Operation 

ROR 

Operand Comment 

l6 sreg, dreg l6 [comment] 

where "sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when "dreg" equals eight is covered in the "Description" paragraph. 

Example: 

ROR 4, 3 Before 
=> (M) = 0005

16 
(S) = 0030

16 

After 

003516 

No change 

3.10 BIT MANIPULATION INSTRUCTIONS 

The bit manipulation instructions listed in table 3-1 are described in the fol­
lowing paragraphs. 

3.10.1 SET REGISTER A BIT TO ONE (SABO) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 B=BIT I 
OP-CODE 

Instruction Execution: 1- (A)bit B 

3-79 Digital Systems Division 



~-~~~--~~~~-~ 943013-9701 

Description: Set the bit in register A specified by the B field to one. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the SABO instruc­
tion is as follows: 

Label Operation 

[label] ~ SABO 

Operand 

bit 

Comment 

~ [comment] 

where "bit 11 is an expression that specifies the bit in register A to be set to 
one. 

Example: 

SABO 4 Before 
(A) = 2200

16 

After 
2AOo

16 

3.10.2 SET REGISTER A BIT TO ZERO (SABZ) 

Machine Format: 

0 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 .1 4 1 5 

I I 
I 

0 0 1 1 0 
I I I I I I 

0 0 B=BIT 

OP-CODE 

Instruction Execution: 0 - (A)bit B 

D~scription: Set the bit in register A specified by the B field to zero. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

_eymbolic Coding: The assembly language coding format for the SABZ instruc­
tion is as follows: 

Label 

[label] ~ 

Operation 

SABZ 

Operand 

bit 

Comment 

~ [comment] 

where 11bit 11 is an expression that specifies the bit in register A to be set to 
zero. 

Example: 

FIFTN EQU 15 

SABZ FIFTN 

-"> 

Before 

(A) = FFFF lb 

3-80 

After 
FFFE

16 

Digital Systems Division 



S?ofl_~~-4-30_1_3_-~1_0_1 ____ ~~----~~~~--~~~--~~--------~· \.,..\~ SABZ, SMBO 

3.10.3 SET MEMORY BIT TO ONE (SMBO) 

Machine Format: 

0 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15 

r : I 
I I I I 

WORD 1 __ , ___ , ___ o __ _...~---o------~-0--..-..------J----B-=_B_•_T __ _. 

OP-CODE 

0 2 3 4 s 6 7 8 9 10 11 12 13 14 15 

WORD 2 Y=MEMORY ADDRESS I I 

Instruction Execution: 1-·- (Y )bit B 

Description: Set the bit, in memory location Y, specified by the B field to 
one. 

Status Affected: None 

Execution Time: 3. 25 microseconds 

Symbolic Coding: The assembly language coding formats for the SMBO in­
struction are as follows: 

NOTE 

The FLAG directive in the second coding format 
is described in Section IV. 

Label Operation Operand Comment 

[ la-bel] l6 SMBO l6 bit, adrs l6 [comment] 

or 

[label] l6 FLAG l6 adrs 16 [comment] 
[label] l6 SMBO l6 bit 16 [comment] 

where "bit" and "adr s" are expressions that must be evaluated to specify a 
bit in memory to be set to one. First, the "bit" expression is divided by 16. 
The resulting quotient is added to the value of the "adrs" expression to form 
the memory word address, Y. The remainder becomes the B field and speci­
fies the bit in word Y to be set to one. 

Example: 

SMBO 17, STATUS Before 
{STATUS+!) = 0013

16 

3-81 

After 

401316 

Digital Systems Division 



J2r75' _______ _ ~ 943013·-9701 

3.10.4 SET MEMORY BIT TO ZERO (SMBZ) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

WORD 1 0 0 B=BIT 

OP-CODE 

O 2 3 4 5 6 7 B 9 10 11 12 13 14 15 
I I I I I 

WORD 2 Y=MEMORY ADDRESS 

_!ns!ruction Execution: 0 -(Y)bit B 

Description: Set the bit, in memory location Y, specified by the B field to 
zero. 

Status Affected: None 

Execution Time: 3. 25 microseconds 

Symbolic Coding: The assembly language coding formats for the SMBZ in­
struction are as follows: 

NOTE 

The FLAG directive '.in the second coding format 
is described in Section IV. 

Label 

[label] 1,6 

[ label] 1,6 
[label] 1,6 

Operation 

SMBZ 

FLAG 
SMBZ 

Operand Comment 

1,6 bit, adr s 1,6 [ comment] 

or 

adrs 
bit 

1,6 [ comment] 
1,6 [ comment] 

where "bit 11 and "adrs" are expressions that must be evaluated to specify a 
bit in memory to be set to zero. First, the value of the 11bit" expression is 
divided by 16. The resulting quotient is added to the value of the 11 adrs 11 ex-· 
pression to form the memory word address, Y. The remainder becomes the 
:s field and specifies the bit in word Y to be set to zero. 

~8xample: 

SMBZ 15, MEM 
=> 

Before 
(MEM) = 2A23

16 

3-82 

After 
2A22

16 

Digital Systems Oi\fision 



~----9_4_3_0_1_3 ___ 91_0_1 _________________ ~-------------s_M __ B_z_,~T_A_B_o_,~T·_A_B_z_ 
3. 10. 5 TEST REGISTER A BIT FOR ONE (TABO) 

Machine Format: 

0 2 3 4 5 
/.:'\ 
(JS' 7 8 

I I , 0 0 lo 1 I- -, I I I 
0 0 - B=BIT -

OP-CODE 

Instruction Execution: (A )bit B = 1; skip next word 

(A)bit B = O; execute next word 

Description: If the bit in register A specified by the B field is a one, skip 
the next word. If the bit is a zero, execute the next word. 

Status Affected: None 

Execution Time: 1. 25 microseconds 

Symbolic Coding: The assembly language coding format for the TABO in­
struction is as follows: 

Label 

[label] 16 

Operation 

TABO 

Operand 

bit 

Comment 

lS [comment] 

where "bit" is an expression that specifies the bit in register A to be tested. 

Example: 

TABO 6 Before After 
=> (A) = 02A3

16 
No change 

(PC) = 117916 117B
16 

3.10.6 TEST REGISTER A BIT FOR ZERO (TABZ) 

Machine Format: 

0 2 3 4 s 6 7 8 9 10 11 12 13 14 15 
I 

0 0 1 

OP-CODE 

Instruction Execution: (A )bit B = O; skip next word 

(A )bit B = 1; execute next word 

3-83 Digital Systems Division 



943013-9701 

Description: If the bit in register A specified by the B field is zero, skip the 
next word. If the bit is one, execute the next word. 

Status Affected: None 

Execution Time: 1. 25 microseconds 

Syinbolic Coding: The assembly language coding format for the TABZ in­
struction is as follows: 

Label 

[label] 16 

Operation 

TABZ 

Operand 

bit 

Comment 

16 [ comment] 

where "bit" is an expression that specifies the bit in register A to be tested. 

ExamEle: 

SEVN EQU 7 Before After 
(A) = F5C6

16 
No change 

=> 
TABZ SEVN (PC) = 131116 131216 

3. 10. 7 TEST MEMORY BIT FOR ONE (TMBO) 

Machine Format: 

0 2 3 4 s 6 7 8 9 10 11 12 13 14 15 

WORD 1 _1_, ______ a __ :_,_, __ , __ o ________ l_o __ '_o __ '_, __ '_, ...... 1 ____ 8_=_~_.T_' __ .... l 
OP-CODE 

0 2 3 4 s 6 7 8 9 10 11 12 13 14 15 

WORD 2 
I I I I 

Y=MEMORY ADDRESS -

Instruction Execution: (Y)bit B = 1; skip next word 

(Y)bit B = O; execute next word 

Description: If the bit, in memory location Y, specified by the B field is one, 
skip the next word. If the bit is zero, execute the next word. 

Status Affected: None 

Execution Time: 2. 75 microseconds 

----·--------·---------------------·---
3-84 Digital Systems Division 



~~--9_4_3_0_1_3_-_97_0_1 ____ ~~----~--~----------~-------T_M_B __ o_,_T~M_B_Z~ 
Symbolic Coding: The assembly language coding formats for the TMBO in­
struction are as follows: 

NOTE 

The FLAG directive in the second coding format 
is de scribed in Section IV. 

Label 

[label] 16 

[label] 16 
[label] 16 

Operation 

TMBO 

FLAG 
TMBO 

Operand Comment 

16 bit, adr s 16 [ comment] 

or 

16 
16 

adrs 
bit 

16 [comment] 
16 [ comment] 

where "bit" and "adrs" are expressions that must be evaluated to specify a 
bit in memory to be tested. First, the value of the "bit" expression is di­
vided by 16. The resulting quotient is added to the value of the "adr s" ex­
pression to form the memory word address, Y. The remainder becomes the 
B field and specifies the bit in word Y to be tested. 

Example: 

TMBO 4, TEST Before After 
(TEST) = 0800

16 
No change 

(PC) = 2AEF 
16 

2AF1
16 

3.10.8 TEST MEMORY BIT FOR ZERO (TMBZ) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 

I I I 

0 I I I 
0 0 0 0 B=BIT 

OP-CODE 

0 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 
I I 

Y=MEMORY ADDRESS WORD 2 !._ __________________________________________ __ 

Instruction Execution: (Y)bit B = O; skip next word 

(Y )bit B = 1; execute next word 

3-85 Digital Systems Division 



~5' _______ _ ~ 943013-9701 

Description: If the bit, in memory location Y, specified by the B field is 
zero, skip the next word. If the bit is one, execute the next word. 

Status Affected: None 

Execution Time: 2. 75 microseconds 

Symbolic Coding: The assembly language coding formats for the TMBZ in­
struction are as follows: 

NOTE 

The FLAG directive in the second coding format 
is described in Section IV. 

Label Operation Operand Comment 

[label] 16 TMBZ 16 bit, adrs 16 [comment] 

or 

[label] 16 FLAG 16 ad rs 16 [comment] 
[label] 16 TMBZ 16 bit 16 [comment] 

where "bit" and "adrs" are expressions that must be evaluated to specify a 
bit in memory to be tested. First, the value of the "bit" expression is di­
vided by 16. The resulting quotient is added to the value of the "adrs" ex­
pression to form the memory word address, Y. The remainder becomes the 
B field and specifies the bit in word Y to be tested. 

E~ample: 

TMBZ 0, LOC 
=> 

Before 
(LOC) = 808A

16 
(PC) = 077D

16 

3.11 MOVE INSTRUCTIONS 

After 
No change 

The move instructions listed in table 3-1 are described in the following para­
graphs. 

3.11.1 MOVE CHARACTER STRING (MVC) 

Machine Format: 

0 2 3 4 s 6 7 8 9 10 11 12 13 14 15 

OP-CODE 

3-86 Digital Systems Di11ision 



~---9_4_3_01_3_-9_1_0_1 ________________________ ~~~--~- MVC 

Instruction Execution: (M
1

, M
2

, ... Mn)-(Y
1

, Y
2

, ..• Yn) 

where M
1

, M
2

, ••• Mn and Y 
1

, Y
2

, ..• Yn are byte strings in memory 

Description: Move a string of consecutive bytes from one location in mem.ory 
to a second location in memory. The starting addresses of the two memory 
locations (Sl, Bl moved to S2, B2) and the number of bytes to be moved (BC) 
are established in general registers as described in paragraph 3. 6. 1. The 
content of byte address Sl, Bl is moved to S2, B2, and then the two byte ad­
dresses are incremented. The byte move and address increment process is 
repeated until BC bytes have been moved in this manner. 

If the displacement between Sl, Bl and S2, B2 is 
less than the length of the byte string (BC) to be 
moved, and Sl, Bl is less than S2, B2, the bytes 
from the source string (Sl, Bl) in the overlap ad­
dresses will be replaced before they are to be 
moved. In particular, if the move displacement 
is one byte, the first byte of the source string will 
be placed in all of the destination addresses. 

Status Affected: None 

Execution Time: 4. 75 + 2. 75 X (no. of bytes moved) microseconds 

Symbolic Coding: The assembly language coding format for the MVC instruc­
tion is as follows: 

Label 

[label] 

Example: 

MVC 

Operation 

16 MVC 

~ (A) 
(E) 
(M) 
(S) 
(X) 

(02BA, Q2BB) 
(0353, 0354) 

16 

= 
= 
= 
= 
= 
= 
= 

Operand Comment 

[comment] 

Before {Hex) After {Hex) 
0000 0000 
0574 0577 
0000 0000 
06A6 06A9 
0003 0000 

5123, 64AC No change 
Fl25, 0398 5123, 6498 

3-87 Digital Systems Division 



J2ns, ______ _ ~ 943013-9701 

3. 11. 2 REGISTER EXCHANGE (REX) 

Machine Format: 

0 0 0 
SR= 

1 , 1 SOURCE 
REGISTER 

----~-----v....-~~~--~~ 
OP-CODE 

In~truction Execution: (SR) - (DR); (DR) - (SR) 

Description: Exchange the contents of the registers specified by the SR and 
DR fields. If bit 12 of the machine format is set to one and bits 13 to 15 ar 1e 
zeroed, the status register is specified as the destination register. In this 
case the instruction is restricted, meaning it is considered illegal if the 
memory protect/privileged instruction feature is enabled. Interrupts other 
than internal, are inhibited for one instruction following this special case of 
the REX instruction. 

Status Affected: None 

Execution Time: 1. 50 microseconds 

§y_mbolic Coding: The assembly language coding format for the REX instruc­
tion is as follows: 

Label 

[label] l6 

Operation 

REX 

Operand Comment 

16 sreg, dreg l6 [comment] 

where "sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with tab]e 2-2. The special 
case when "dreg" equals eight is covered in the "Description" paragraph. 

ExamEle: 

B EQU 6 Before After 
M EQU 3 =9 (M) = 003216 1FA0

16 

REX B, M (B) = 1FAo
16 003216 

3. 11. 3 REGISTER MOVE (RMO) 

Machine Format: 

0 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 14 15 

SR= 
0 0 0 0 0 SOURCE 

REGISTER 

----..... 
OP-CODE 

_____ , ________________ , 
3-88 Digital Systems Division 



~-----9_4_3_0_13_-_9_7_0_1 __________________________________ R_E_x_, __ RM ___ o_,_A_P~I 

Instruction Execution: (SR)--- (DR) 

Description: Move the contents of the register specified by the SR field to 
the register specified by the DR field. The contents of the register specified 
by the SR field remain unchanged. If bit 12 of the machine format is set to 
one and bits 13 to 15 are zeroed, the status register is specified as the des­
tination register. In this case the instruction is restricted, meaning it is 
considered illegal if the memory protect/privileged instruction feature is en­
abled. Interrupts other than internal, are inhibited for one instruction fol­
lowing this special case of the RMO instruction. 

Status Affected: None 

Execution Time: 1. 00 microsecond 

Symbolic Coding: The assembly language coding format for the RMO instruc­
tion is as follows: 

Label Operation Operand Comment 

[ label] 16 RMO 16 sreg, dreg 16 [comment] 

where "sreg" and "dreg" are expressions that address the source and des­
tination registers, respectively, in accordance with table 2-2. The special 
case when 11 dreg" equals eight is covered in the "Description" paragraph. 

Example: 

RMO 5, 0 Before After 
~ (A) = 000316 1C25

16 
(L) = 1C25

16 
No change 

3.12 . INPUT /OUTPUT INSTRUCTIONS 

The input/ output instructions listed in table 3-1 are described in the following 
paragraphs. 

3.12.1 AUXILIARY PROCESSOR INITIATE (API) 

Machine Format: 

0 2 3 4 5 6 7 e 9 10 1 1 12 13 14 15 

I 1 o I 1 11 
I I I I I 

WORD 1 0 AP COMMAND CODE 

OP-CODE 

0 2 3 4 5 6 7 e 9 10 1 1 12 13 14 15 

I I I I I I I I I WORD 2 V=M EMORY ADDRESS 

3-89 Digital Systems Division 



J2rL?\ _______ _ ~ 943013-9701 

Instruction Execution: (Y)- (AP) ; (AP)- (Y) where AP is Auxiliary 
Processor 

pescription: The computer sends the two words comprising the API instruc­
tion to the AP port. The computer then enters a wait state while both the AP 
and DMAC ports are given access to memory. If the AP port command cod1e 
in word one of the instruction is not recognized by the controller(s) being 
used, the computer treats the API instruction as illegal. The AP port is 
also capable of suspending its operation with appropriate return information 
stored in memory when the computer recognizes an interrupt. The AP uses 
the command code in word one of the instruction and the memory address in 
word two of the instruction to perform operations not included in the 980 in­
struction set (floating point arithmetic, emulation of other computer instruc­
tion sets, etc.). Following a successful AP operation, the AP port issues a 
release signal to the computer so ·the computer may resume processing. 

NOTE 

The AP physically interfaces with the computer at 
a card slot in the input/ output expansion area of the 
computer chassis. 

Status Affected: None 

Execution Time: Variable, depending on the complexity of the AP operation • 

. ~!:nbolic Coding: The assembly language coding format for the API instruc -
Hon is as follows: 

Label 

[label] l6 
[label] . l6 

Operation 

API 
DATA 

Operand 

cmd 
ad rs 

Comment 

l6 [ comment] 
l6 [ comment] 

where "cmd" is an expression which, when evaluated, identifies to the AP 
the command to be executed. The expression "adrs" is the symbolic name 
for a 16-bit memory address containing the necessary information to execute 
the command. 

An optional method of is suing API instructions is through use of the OPD as: -
sernbler directive (described in Section IV of this manual). The example in 
the next paragraph illustrates this method in detail. 

Example: The following example assumes an AP is available to perform a 
vector dot product. The three OPD directives establish the word one bit 
patterns of the three API instructions is sued later in the extended version of 
the register-memory format. The extended instructions then reference 

~--------~~--~---

3-90 Digital Systems Division 



~----9_4_3_0_13_-_9_7_0_1 ____ ~--------~----------~--------~--~-A-T~I 
symbolic names for the memory addresses that comprise word two of the 
respective AP! instructions. 

Label 

VLD 
VDOT 
SST 

Operation 

OPD 
OPD 
OPD 

VLD 
VDOT 
SST 

Operand 

DDOO, l 
DD80, 1 
DDCO, I 

Vectl 
Vect2 
Result 

Comment 

Vector Load Command 
Vector Dot Command 
Scalar Store Comment 

Load Vectl 
Vectl Dot Vect2 
Store in result 

3.12.2 A UT OMA TIC TRANSFER INSTRUCTION (A TI) 

Machine Format: 

0 2 3 4 s 6 7 8 9 10 1 1 1 2 1 3 14 15 

DEVICE DEVICE( 
WORD 1 1 0 0 0 DEPENDENT CHANNE · 

ADDRESS 

OP-CODE 

0 2 3 4 5 6 7 8 9 10 11 1 2 1 3 14 15 
I I I I I 

WORD 2 CONTROL WORD OR MEMORY ADDRESS 

Instruction Execution: External device data -Memory, or 
Memory data- External device 

Description: The ATI instruction is used to control' the Direct Memory Ac­
cess Channel (DMAC). The first word of the ATI instruction addresses one 
of eight possible device controllers (bits 13 to 15) and supplies any neces­
sary device dependent data (bits 8 to 12 ). The second word of the ATI in­
struction is interpreted by the addressed device controller as a single word 
functional command or as an address pointing to a list in memory containing 
command related data. After the second word has been interpreted, the 
specified DMAC data transfer takes place. The ATI instruction is restricted, 
meaning it is considered illegal if the memory protect /privileged instruction 
feature is enabled. 

3-91 Digital Systems Division 



943013-9701 

NOTE 

The AT! instruction and DMAC are covered in more 
detail in the Model 980 Computer Assembly Lang­
uage Input/Output manual. 

Status Affected: None 

Execution Time: 2. 50 microseconds 

_?ymbolic Coding: The assembly language coding format for the A TI instruc .. 
tion is as follows: 

Label 

[ label] 16 
[label] 16 

Operation 

ATI 
DATA 

Operand 

dev 
adrs 

Comment 

16 [comment] 
16 [ comment] 

where "dev" is the symbolic name for the least significant eight bits of word 
one of the A TI instruction and "adr s" is the symbolic name of the 16-bit ad­
dress comprising word two . 

. A.11 standard Texas Instruments software addresses the DMAC devices (bits 
13 to 15 of word one in the ATI instruction) as follows: 

Address (Hex) 

0 
1 
2 
5 

Device 

Fixed-Head Disc or DS 330 Disc 
Moving-Head Disc 
Magnetic Tape 
High-Speed Line Printer 

Example: Examples of ATI instructions for the fixed-head disc, moving­
head disc, magnetic tape, and high- speed line printer are included in the 
M~del 980 Computer Assembly Language Input/Output manual. 

3.12.3 READ DIRECT SINGLE (RDS) 

Machine Format: 

WORD 1 

0 2 3 4 5 6 7 

0 

'--------~,,.../ 

OP-CODE 

8 9 10 11 12 13 -14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

WORD 2 ~~Bra • ra A 1!~~~~;~~1 
B=BUSY BIT l=INCREMENT ADDRESS A=ADDRESS 

MODE 

3-92 Digital Systems o;vision 



~~--9_4_30_1_3 ___ 91_0_1~----------------------~----~~-----~-R_D_s~ 
Instruction Execution: External device data-(R) or ( (R) ) 

Description: The RDS instruction uses the input/ output data bus to read one 
word of data from an external device to a register or memory location. The 
external device is specified by the GROUP and ER fields of word one of the 
RDS instruction. The GROUP field selects 1 of 4 groups and the ER field 
picks 1 of 64 external devices in the chosen group. This allows for a maxi­
mum of 256 data bus ports, however, in most cases GROUP zero is specified. 
The destination register or memory location is specified by the A and R fields 
of word two of the RDS instruction. The R field selects 1 of 8 registers in 
accordance with table 2-2 and the A field is the associated indirect bit. If the 
A field is zero, the destination of the read is a register; if the A field is one, 
the destination of the read is the memory address contained in the selected 
register. If the A field is one, the I field bit in word two is set to a one or 
zero to increment or decrement, respectively, the memory address in the 
selected register each time the RDS instruction is executed. The B field is 
set to a one when the device addressed by the GROUP and ER fields may not 
be ready to transfer data when queried by the RDS instruction. If the B field 
bit is one and no data transfer takes place, the instruction following the RDS 
instruction is executed. If the B field bit is one and a su~cessful data trans-
fer takes place, the instruction following the RDS instruction is skipped 
(dependent on physical device - see manual for particular device). If the B I 
field bit is zero, the instruction following the RDS instruction is uncondi­
tionally executed. The RDS instruction is considered illegal if the memory 
protect/privileged instruction feature is enabled. 

NOTE 

The RDS instruction and input/output data bus are 
covered in more detail in the Model 98 0 Computer 
Input/ Output manual. 

Status Affected: None 

Execution Time: 3. 00 to 4. 75 microseconds 

Symbolic Coding: The assembly language coding format for the RDS instruc­
tion is as follows: 

Label 

[label] ~ 
[label] ~ 

Operation 

RDS 
DATA 

Operand 

dev 
biar 

Comment 

~ [comment] 
~ [comment] 

where "dev" is the symbolic name of a 16-bit number that is OR'ed with the 
RDS op-code to develop word one of the instruction. "biar" is the symbolic 
name of a 16-bit number that represents the B, I, A, and R fields of word 
two. 

Change 1 3-93 Digital Systems Division 



~~-~~~--~~~~--~ 943013-9701 

Example: The following example reads a word from the device connected to 
external register 18

16 
into register A. The busy bit option is also used. 

RDS > 18 
DATA > 80 

Refer to the .Model 980 Computer Assembly Language Input/Outpu! manual 
for additional examples of the RDS instruction and the standard input I output 
data bus external register addresses used by Texas Instruments software. 

3.12.4 WRITE DIRECT SINGLE (WDS) 

Machine Format: 

WORD 1 

WORD 2 

0 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 .1 4 1 5 

0 

OP-CODE 

0 ER 1 ER=EXTERNAL 
REGISTER 

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 1 5 

~"~BG I la A l!~i~~~~~ I 
B=BUSY BIT l=INCREMENT ADDRESS A=ADDRESS 

MODE 

Instruction Execution: (R) or ( (R) )- External device 

Description: The WDS instruction uses the input/ output data bus to write one 
word of data from a register or memory location to an external device. Th~e 

source register -or memory location is specified by the A and R fields of WDS 
word two and the destination device is specified by the GROUP and ER fields 
of WDS word one. These fields along with the B and I fields of WDS word tV\ro 

perform the same function as those described in paragraph 3.12. 3 for the 
RDS instruction. The WDS instruction is restricted, meaning it is considered 
illegal if the memory protect/privileged instruction feature is enabled. 

_______ , 

NOTE 

The WDS instruction and input/ output data bus are 
covered in more detail in the Model 98 0 Computer 
Input I Output manual. 

3-94 Digital Systems Dillision 



J~-~~~~~~~~-~ 943013-9701. WDS 

Status Affected: None 

Execution Time: 3. 00 to 5. 00 microseconds 

Symbolic Coding: The assembly language coding format for the WDS instruc-­
tion is as follows: 

Label 

[label] 16 
[label] 16 

Operation 

WDS 
DATA 

Operand 

16 dev 
16 biar 

Comment 

16 [comment] 
16 [ comment] 

where "dev" is the symbolic name of a 16-bit number that is OR'ed with the 
WDS op-code to develop word one of the instruction. "biar'' is the symbolic 
name of a 16-bit number that represents the B, I, A, and R fields of word 
two. 

Example: The following example writes a word in register A to the external 
device connected to external register I 0

16
. The busy bit option is not used. 

WDS >IO 
DATA >0 

Refer to the Model 980 Computer Assembly Language Input/Output manual 
for additional examples of the WDS instruction and the standard input I output 
data bus external register addresses used by Texas Instruments software. 

3-95/3-96 Digital Systems Division 



St,~-~~~~~~~ ~ 943013-9701 

SECTION IV 

ASSEMBLER CHARACTERISTICS AND DIRECTIVES 

4. 1 GENERAL 

This section describes the Symbolic Assembly Program (SAP) from the user 
point of view and the 22 assembler directives av~ilable to the assembly lang­
uage programmer. The SAP description covers source program coding fields, 
object program output, error messages that may accompany the assembly 
listing, and sample source programs and associated assembly listings. Op­
eration of the two versions of SAP, SAPG and SAP733, is covered in the 
Model 980 Computer Basic System Use and Operation manual. 

4. 2 SYMBOLIC ASSEMBLY PROGRAM (SAP) 

The two versions of SAP, SAPG and SAP733, are available to translate sym­
bolic assembly language coding into object language acceptable to the Model 
980 Computer. The difference between SAPG and SAP733 is due to the media 
handled. SAPG is a general assembler that handles paper tape, card, mag­
netic tape, and disc media. SAP733 is used only with cassette media on the 
733 ASR data terminal. Figure 4- 1 is a sample source main program, writ­
ten in symbolic assembly language and ready to be punched into cards or 

SYMBOLIC CODING FORM 

5 10 15 20 25 30 35 40 45 
I I I I I 

HED MODEL 980 MAIN PROGRAM 
IDT ILLUS 6 CHARS. FOR OBJECT 
ORG 1000 TELL SAP RUN-TIME 
BRS 1000 ORIGIN AND BASE 

BASE DATA 1000 
REF SUB EXT. REF. FOR LINKING 

START LOA BASE ACTUALLY SET BASE 
RMO 0,6 FOR EXECUTION 
@BRL SUB ADD 2 NOS. TOGETHER 
DATA ADDRl ADDR.OF FIRST NO. 
DATA ADDR2 ADDR.OF SECOND NO. 
STA ANSWER ANSWER IN REG.A 

MORE EXECUTABLE 
INSTRUCTIONS AND 
ASSEMBLER 
DIRECTIVES. 

ADDRl DATA 7 FIRST NO. 
ADDR2 DATA 8 SECOND NO. 
ANSWER BSS l 

END START 

Figure 4- 1. Source Coded Main Program 

4- 1 Digital Systems Division 



943013-9701 

paper tape, or otherwise prepared for input. Figure 4-2 is a source subrou·­
tine. Source programs input to SAP generate two outputs. The first output 
is an object program that can be loaded into the computer and executed or 
linked with other object programs. The object program can be output on 
cassette, paper tape, or other media. The second output is an assembly 
listing as depicted in figure 4-3 for the main program and figure 4-4 for the 
subroutine. Note the following about the assembly listings: 

• The items listed under A are an exact reproduction of the hand­
written entries on the coding sheet. 

• The items under B are a hexadecimal representation of the corre­
sponding instructions and constants as assembled by SAP. 

• The items under C show the hexadecimal addresses of the instruc­
tions, constants, and areas of storage specified by the programmer. 

• The items under D show the decimal line or sequence number of the 
source statements to be used in case the program is changed. 

• Under DX980, the date and time of assembly is obtained and printed 
in the heading of every sheet of the assembly and placed in charac­
ters 18-22 of the IDT record as follows: 

18-19 month 

20-21 day 

22-23 year 

24-25 hours 

26-27 minutes 

28-29 seconds 

SAP is a two.-pass assembler, meaning it scans the source program twice. 
During the first pass, the source program is read and a symbol table is gen·­
erated. This is accomplished with the use of a location counter in the assen:i­
bler. The location counter keeps track of the storage locations that will be 

------~--------~--------------------· 

Change 1 4-2 Digital Systems Division 



JdPl _______ _ ~y 943013-9701 

SYMBOLIC CODING FORM 

5 10 15 20 25 30 35 40 45 
I 

IDT SUB 6 CHARS.FOR OBJECT 
DEF SUB DEFINE ENTRY POINT FOR 

A EQU 0 LINKING 
L EQU 5 GIVE REGISTERS SYMBOLIC 
p EQU 7 NAMES. 
POINT BSS 2 RESERVE LOCATIONS. 
HERE BSS 2· 
SUB RMO L,A L POINTS TO FIRST DATA 

STA POINT WORD AFTER @BRL 
RIN A,A POINTER TO SECOND DATA 
STA POINT+J WORD AFTER @BRL 
LOA *POINT GET ADDRl 
STA HERE STORE ADDRESS IN THIS 
LDA *POINT+l SUBROUTINE 
STA HERE+l GET AND SAVE ADDR2 
LDA *HERE PICK UP FIRST NO. 
ADD *HERE+l ADD SECOND NO. 
RIN L,L MOVE POINTER PAST DATA 
RIN L,P WORDS AND RETURN. 
END SUB 

Figure 4-2. Source Coded Subroutine 

Change 1 4-2A/4-2B Digital Systems Division . 





4r 943013- 9701 

c B D A 
~r"-\~ 

MODEL 980 MAIN PROGRAM 

0001 HED MODEL 980 MAIN PROGRAM 
0002 

03E8 0003 
03E8 0004 

03E8 03E8 0005 BASE 
0006 

03E9 OOFE 0007 START 
03EA C506 0008 
03EB 7400 0009 

0000 
X 03EC 0000 

03ED 03FO 0010 
03EE 03Fl 0011 
03EF 8002 0012 

0013 
0014 
0015 
0016 

03FO 0007 0017 ADDRl 
03Fl 0008 0018 ADDR2 
03F2 0019 ANSWER 

0020 
0001 0021 SUB2 

X 03F3 0000 
0000 0022 WORD 
0000 0023 

-c 03F4 0002 
03E9 0024 

COMMON 0006 

MODEL 980 MAIN PROGRAM 

{ 
ADDRl 

. Symbo 1 START 
· Table WORD 

03FO ADDR2 
03E9 SUB 
0000 

0000 ERRORS 
NOTES: 

IDT 
ORG 
BRS 
DATA 
REF 
LDA 
RMO 
@BRL 

DATA 
DATA 
STA 

DATA 
DATA 
BSS 
REF 
DATA 

COMM 
DATA 

END 

03Fl 
0000 

ILLUS 
1000 
1000 
1000 
SUB 
BASE 
0,6 
SUB 

ADDRl 
ADDR2 
ANSWER 

7 
8 
l 
SU Bl 
SU Bl 

6 
WORD+2 

START 

ANSWER 
SUBl 

1. The symbol table is not generated by SAP733 
2. In the left column, P =Program counter relocatable 

X =External reference 
C =Common (to programs) 

3. In the symbol table, R =Unreferenced symbol 
U = l.)ndefined (error) 
M = Multidefined 

6 CHARS.FOR OBJECT 
TELL SAP RUN-TIME 

ORIGIN AND ~ASE 

EXT.REF.FOR LINKING 
ACTUALLY SET BASE 

FOR EXECUTION 
ADD 2 NOS. TOGETHER 

ADDR.OF FIRST NO. 
ADDR.OF SECOND NO. 
ANSWER IN REG.A 

MORE EXECUTABLE 
INSTRUCTIONS AND 
ASSEMBLER 
DIRECTIVES. 

FIRST NO. 
SECOND NO. 

03F2 BASE 03E8 
0001 R SUB2' 03F3 

Q =Multi defined unreferenced 

SHEET 0001 

SHEET 0002 

4. A,B,C, and D references at top of page are explained in paragraph 4.2 

Figure 4-3. Assembled Main Program 

Change 1 4-3 Digital Systems Division 

I 



943013- 9701 

C B D A 
~~~ 

SHEET 0001

0001 IDT SUB 6 CHARS.FOR OBJECT
0002 DEF SUB DEFINE ENTRY POINT FOR

0000 0003 A EQU 0 LINKING·
0005 0004 L EQU 5 GIVE REGISTERS SYMBOLIC
0007 0005 p EQU 7 NAMES.

p 0000 0006 POINT BSS 2 RESERVE LOCATIONS.
p 0002 0007 HERE BSS 2

0004 C550 0008 SUB RMO L,A L POINTS TO FIRST DATA 0005 80FA 0009 STA POINT WORD AFTER @BRL 0006 C300 0010 RIN A,A POINTER TO SECOND DATA 0007 80F9 0011 STA POINT+l WORD AFTER @BRL 0008 04F7 0012 LOA *POINT GET ADDRl 0009 80F8 0013 STA HERE STORE ADDRESS IN THIS OOOA 04F6 0014 LOA *POINT+l SUBROUTINE OOOB 80F7 0015 STA HERE+l GET AND SAVE ADUR2 oooc 04F5 0016 LOA *HERE PICK UP FIRST NO.
0000 24F5 0017 ADD *HERE+l ADD SECOND NO.
OOOE C355 0018 RIN L,L MOVE POINTER PAST DATA OOOF C357 0019 RIN L,P WORDS AND RETURN.

0004 0020 END SUB

SHEET 0002

Svni>ol l A 0000 HERE 0002 L 0005 p 0007
Table PO I NT 0000 SUB 0004

0000 ERRORS

NOTE:
Ref er to NOTES in figure 4-3.

Figure 4-4. Assembled Subroutine

required by the object program. When a source statement contains a name:,
the current setting of the location counter is assigned to the name. Each
name and the address assigned to it is placed in the assembler 1 s symbol
table. During the second pass, the symbol table is used to complete the as·­
sembly, and to produce the object with its assembly listing. If bulk storage
is available, SAPG will copy the source to bulk storage during pass one.
Since the output from the first pass is used as input data for the second pass,
this eliminates the requirement to manually enter the source data twice.
SAP733 automatically repositions the cassette source file before entering
pass 2 to eliminate any manual repositioning.

4-4 Digital Systems Di'vision

~ 943013-9701

4. 2. 1 SAP CODING LINE FORMAT

The symbolic input line accepted by the assembler may contain a label field,
operation field, operand field, and a comment field; or the entire line may be
a comment. An input line is the first 64 characters read from a card, or in
the case of cassette or paper tape, an input line is a string of characters
terminated with a special end-of-line sequence. The Model 980 Computer
Basic System Use and Operation manual describes the paper tape end-of-line
characters. The end-of- line sequence for cassette consists of a carriage
return (CR), line feed (LF), X-OFF (press the CTRL and S keys at the same
tirne), and rub out. The input line may exceed 64 characters, not including
the end-of-line characters in the cassette and paper tape case, but only 64
characters are processed and only 59 are printed on the listing to the right
of the line number. The input line is free form within the limits listed in the
following paragraphs.

4. 2. 1. 1 COMMENT LINES. Comment lines provide the user with the
ability to annotate program listings. They are indicated by an initial charac­
ter which is either a period (.) or an asterisk (~:'). The remaining characters
are arbitrary. The comment line in no way affects the assembly process·
The line is merely reproduced in the printed output.

4. 2. 1. 2 LABEL FIELD. Lab.els (also called symbols or names) are pro­
vided for symbolic references to instructions, values, and data. A label is
composed of from one to six characters. The first character of a label must
be a letter. The remaining may be any characters except the following:

+ Plus *Asterisk (Left Faren. >Greater Than

- Minus I Slash) Right Faren. , Comma

If a label is used, the first character must begin the input line. The label is
terminated by the first space.

At assembly time, the labels are stored as variable length data. One or two
character labels require one word of memory, three or four character labels
take two words, and five or six characters require three words. Therefore,
if the symbol overflow error occurs during assembly, labels should be
shortened or omitted.

4. 2. 1. 3 OPERATION FIELD. The operation field describes the required
action. It may be an instruction mnemonic or an assembler directive. The
field consists of from one to four characters followed by a space or the end­
of-line characters. The first character of the operation field must be pre­
ceded by at least one space.

4-5 Digital Systems Division

~~-~~~--~~~~-~ 943013- 970 l

I

4. 2. 1. 4 OPERAND FIELD. The operand field consists of a sequence of
expressions separated by commas, and is terminated by a space or the end-·
of-line characters.

exp
1

, e.xp
2

, exp
3

If two commas appear successively, the value of the missing expression is
understood to be zero. If the currency symbol ($) appears as an element in
an expression, the current value of the assembler's location counter is used
as its numeric equivalent.

Expressions may be strings of items separated by arithmetic operators and
terminated by a space, comma, or end-of-line characters. The arithmetic
operators are:

• Addition +
• Subtraction

• Multiplication

• Division I

If two operators appear in succession, a zero item is assumed.

An item consists of a symbolic address, dollar sign ($), or a numeric value.
If the first character of an item is not numeric, $, or> , it is assumed to be
syrnbolic. Numeric items may be octal, decimal, or hexadecimal. An octal
item is a string of octal characters (O to 7), the first of which is zero. A
decimal item is a string of numeric characters (O to 9), the first of which is
non- zero. A hexadecimal item is a greater than symbol (>} followed by a
string of hexadecimal digits (O to 9 and A to F). When using paper tape input,
the back slash (\} may be used in place of > to indicate hexadecimal.

Expressions are evaluated left to right using normal arithmetic precedence;
i.e., all multiplications and divisions are performed first in order of oc­
currence followed by additions and subtractions performed in order of occur­
rence. All quantities are treated as integers. In division only the quotient
is retained and any remainder is discarded. Division by zero is performed
as division by one and is not considered as an error. Sample expressions
are:

JOE+TOM*3/BOB
$+5
LEA-6
5034
XYZ+>F4

Change 1 4-6 Digital Systems Division

~~-~~~~~~~~~ "'~ 943013-9701

NOTE

All expressions are acceptable in absolute assem­
blies, but multiplication and division involving
labels is not allowed in relocatable assemblies.
Hence, the first sample would cause a relocation
error in a relocatable program.

4. 2. 1. 5 COMMENT FIELD. Comments may optionally be written on any
line. Any characters that appear between the space that terminates the op­
erand field and the end-of-line characters or card column 64 are treated as
commentary. The comment field has no .effect on the assembly process.

4. 2. 2 SEGMENTED SOURCE PROGRAMS

SA.PG provides the capability of storing a single source program on more
than one physical section of the storage medium, enabling long programs to
be conveniently stored on cassette or paper tape. (Segmenting cannot be done
to disc files.) To segment a source program, divide it and add the flag
record(=} as follows:

.,. first line of program

··· last line of first segment

/ ·'· .,.

::: first line of next segment
··· immediately follows last line
··· of preceding segment

/
,,, .,.

Change 1

additional intermediate
segments as needed

END
/ ,.

first segment

intermediate segment

last segmenl

4-7 Digital Systems Division

)}75' ______ _ ~ 943013-9701

I 4. 2. 3 SAP OBJECT FORMAT

I

The object program output by the assembler is in the form of standard object
records used by all system progra1ns in the Basic System. Details of the
object records are covered in the Model 980 Computer Basic System Use anc~
_Q~ration manual. Information from. the IDT and ORG assembler directives
is used to generate the header data. Entry point records, external reference
records, and common symbols records are constructed as specified in the
DEF, REF, and COML assembler directives, respectively. The required
text records are created by the assembler, and the end record is generated
from the END directive. No block data records are output by the assembler.

I 4. 2. 4 SAP ERROR MESSAGES

I

The two versions of the assembler (SAPG and SAP733) may detect certain
syntax errors in the source program. When an error occurs, a diagnostic
message (SAPG) or the message number (SAP733) is printed in the assembly
listing adjacent to the line in question. These messages (listed in table 4-1)
apply only to the assemblers that operate in the Model 980 Computer. Error
messages are printed anyway if the UNL directive is in effect.

4. 3 ASSEMBLER DIRECTIVES

In addition to the instruction set presented in Section III of this manual, SAP
will accept 22 different assembler directives. The assembler directive
formats (name, operand, operation, and comment fields) are similar to the
sym.bolic instructions, but the directives do not directly cause code genera­
tion as do the instructions. Instead, the directives are commands to the as-­
sembler used to provide for storage allocation, program identification,
forrnat control, and other such functions. If labels are used with directives,,
they are assigned the current location counter value unless otherwise speci­
fied in the following paragraphs. The assembler directives are covered in
detail in alphabetical order under the paragraph numbers listed in table 4-2.
The assembly language coding format accompanying each directive descrip­
tion uses symbols from table 3-2.

Change 1 4-8 Digital Systems Di\fision

~~-----------~~~-~ 943013-9701

Message
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Change 1

Table 4- 1. SAP Error Messages

Message

FIELD SZ

UNDF OP

LONG SYM

MDF O/F

FRM > 16

CAD > 10

UNDF SYM

MDF SYM

RELOC

SYM OVF

BAD NUM

IMP R/D

X RF USE

IXB ERR

OPD ERR

ADR MODE

Meaning (and Corrective Action)

Address beyond reach (use@ for extended for­
mat)

Undefined operation code (check list of valid
of codes)

Symbol > 6 characters

OPD or FRM multiply defined (rename label)

FRM fields contain more than 16 bits

Address expression has > 10 elements

Symbol not defined (label probably omitted)

Symbol multiply defined (rename labels)

A relocation error (use only one relocatable
label in arithmetic expression, or ORG state­
ment can use only one relocatable label)

Too many symbols have been defined (cut out
symbols or divide program)

Numeric element not valid (properly define
item in label or address field)

A REF or DEF symbol has been used impro­
perly (REF symbol defined inside and outside
the program, DEF symbol not defined in the
program)

A REF symbol has appeared invalidly in an un­
relocatable expression

Address mode error (improper use of IXB
field)

No such format number (OPD format numbers
0 to 8)

Illegal addressing mode (improperly written
address)

4-8A/4-8B Digital Systems Division

~--~9-43_0_1_3_-_97_0_1 __ ___::B~E~S:__
Table 4-2. Model 980 Computer SAP Assembler Directives

Directive Paragraph
Mnemonic

Description
No.

BES* Block Ending Symbol 4. 3. 1

BRR Base Register Reset 4.3.2

BRS Base Register Set 4.3.3

BSS Block Starting Symbol 4.3.4

BYTE Generate Byte Address 4.3.5

COMM,:< Common Storage 4.3.6

COML>:< Labelled Common Name 4.3.6

DATA Generate Word Address or Data 4.3.7

DEF Define Entry Point Symbol 4.3.8

END End of Source 4.3.9

EQU Equate 4. 3. 10

FLAG Flag Bit Address 4. 3. 11

FRM~:< Format a New Instruction 4. 3. 12

HED>!< Page Heading 4. 3. 13

IDT Object Identifier 4. 3. 14

IF>!< Conditional Assembly 4. 3. 15

LIS Start Listing 4. 3. 16

OPD Operation Define 4. 3. 17

ORG Origin 4.3.18

PEJ* Page Eject 4. 3. 19

REF Referenced External Symbols 4.3.20

UNL Stop Listing 4. 3. 2 1

>!<are not supported by SAP733

4. 3. 1 BLOCK ENDING SYMBOL (BES)

The BES directive evaluates the operand field and advances the location
counter by that amount. If a label is present, it is assigned to the new value
of the location counter. BES is similar to BSS, except the label is applied to

Change 1 4-9 Digital Systems Division

I

I

I
I

I

I

Jd15'·-------~ 943013-9701

the first location past the reserved area. The assembly language coding for­
mat for the BES directive is as follows:

Label Operation Operand Comment

[label] ¥> BES exp - ~ [comment 1
where 11 exp" is typically a decimal number specifying the reserved area in
words. If 11 exp" involves a symbol, it must be previously defined as an ab­
solute quantity.

The following example reserves 50 words with TEN associated with the first
word following the reserved area.

Label Operation Operand

TEN BES 50

4. 3. 2 BASE REGISTER RESET (BRR)

The BRR directive informs the assembler that the base register is not avail-·
able to the assembler for addressing purposes. The programmer can still
specify base register addressing with the mode field. The BRR directi.ve'in-·
forms the assembler to use the base register for addressing purposes only
in the event the mode field specifies that type of addressing. (This is the
initial condition of assembly.) Under BRR directive control, if D is the un­
signed displacement in register-memory instructions, then O~ D ~ 255 when
the mode field contains B= 1, or else a field size error occurs. The assem­
bly language coding format for the BRR directive is as follows:

Label Operation Operand Comment

[label] ¥> BRR 16 [comment]

4. 3 .. 3 BASE REGISTER SET (BRS)

The BRS directive informs the assembler of the value the base register will
contain at run time. The operand field of the BRS directive defines a 16- bit
value that will be placed in the B register by the programmer. When the
BRS is used and the assembler encounters subsequent register-memory for ..
rnat instructions that would produce field size errors if program counter
relative, the assembler will attempt to generate these base register relative.
In this case, if D is an unsigned 16- bit evaluation of the displacement ex­
JHession and Bis the value assumed in the base register, then 0~ D-B< 25:)
or else a field size error occurs. The assembly language coding format for
the BRS directive is as follows:

Label Operation Operand Comment

[label] 16 BRS exp ~ [comment]

Change 1 4-10 Digital Systems Division

S:M ______ _ ~ 943013-9701 BRR, BRS, BSS

where "exp" is the symbol for a 16-bit base value to be used. An example
of BRS usage follows:

Label

CAT

Operation

BRS

@LDA
RMO

BES
BSS

Operand

CAT

=CAT
A,B

350
10

Comment

DEFINE BASE VALUE TO
ASSEMBLER

PUT ADDRESS OF CAT IN BASE
REGISTER

CAT IS DEFINED OUT OF
PROGRAM COUNTER REL.
RANGE

4.3.4 BLOCK STARTING SYMBOL (BSS)

The BSS directive reserves an area of inemory. The first location in the
reserved area is associated with the label in the name field of the BSS direc­
tive. The location of the area reserved is that defined by the location counter,
which is then advanced past the reserved area. Note that no object code is
generated by the BSS directive. If the programmer desires some value(s) to
be assembled in the reserved area, he must do so by other means. The as­
sembly language coding format for the BSS directive is as follows:

Label Operation Operand Comment

[label] l'> BSS exp l'> [comment]

where "exp" is typically a decimal number specifying the reserved area in
words. If 11 exp" involves a symbol, it must be previously defined as an ab­
solute quantity. An example of the BSS directive follows:

Location Counter

03AA
03AB
03D3

Label

AREA
TOM

Operation Operand

BRU TOM
BSS 40
LDA AREA

Comments

BRANCH AROUND AREA
RESERVE AREA
REFERENCE AREA

A common usage of symbols in a BSS operand is an expression which defines
the length of a reserved area. In the following example, if the length of
TABA is likely to change, but TABB must al ways be the same length as
TABA, it may be symbolically stated as follows:

Label Operation Operand Comments

TABA BSS 50 MIGHT CHANGE
TABB BSS TABB-TABA ALWAYS SAME AS TABA

4-11 Digital Systems Division

4. 3. 5 GENERATE BYTE ADDRESS (BYTE)

When using the byte string manipulation instructions, MVC and CLC, it is
necessary to address data using byte rather than word addresses. The
BYTE directive may be used to generate these byte addresses. Its usage is
sin1ilar to that of the DATA directive when generating word addresses. The
assembly language coding format for the BYTE directive is as follows:

Label Operation Operand Comment

[label] 11> BYTE ¥> exp
1

, exp
2

, •• exp n ¥> [comment]

where 11 exp
1

, exp
2

, •• exp 11 are evaluated and assigned to successive pairs o:f
memory words. !fa lab~ is used, it is assigned to the first word of the first
byte address.

Each byte address requires two words in the following format:

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 .1 4 1 5

0~2~fTsl

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I I I I I I I I]
~ LEAST SIGNIFICANT 15 BITS OF ADDRESS

An expression in a BYTE operand field is evaluated as a word address and
then multiplied by two to obtain the byte address. If the expression is pre­
ceded by a colon(:), the byte address is also incremented by one. The as­
sembly listing in figure 4- 5 shows the BYTE evaluation process.

4. 3. 6 REFERENCING COMMON STORAGE

4. 3. 6. 1 NAMED COMMON LABEL (COML). The COML directive is used
to start a new labeled common block. The label field must be used and gives
the name of the new block. Storage reservation (given by the COMM direc­
tive) is started at zero for the new common block; all COMM directives
following any given COML directive, up to the next COML directive, cause
storage to be reserved in that con1mon block. The assembler generates no
entry in the common table if no COMM directives appear for a COML direc­
tive. Every assembly begins with an implicit COML directive in effect giving
the name of FORTRAN blank common, ''\6BLANK 1

, and the occurrance of the
END directive automatically terminates the immediately preceding COML
block. The length of a COML block is determined by the sum of the sizes
given on all COMM directives appearing under that COML directive. See

Change 1 4-12 Digital Systems Division

YdlS\ ______ _ ~ 943013-9701

paragraph 4. 3. 7 for examples. The assembly language coding format for the
COML directive is as follows:

label COML comment

NOTE

COML is supported in revisions ~:~E and later of
SAPG, part number 943253.

4.3.6.2 RESERVE COMMON STORAGE (COMM). The COMM directive
reserves the given number of words in the currently active common block.
If a label appears, it is assigned a value corresponding to the first word of
the block, relative to the beginning of the currently active block. The as sem­
bly language coding format for the COMM directive is as follows:

[label] 1zS COMM l6 exp 16 [comment]

Several examples of the use of COML and COMM follow. In all cases,
assume that there are no COML and COMM directives in the program besides
those explicitly given.

Example 1: referencing FORTRAN blank common.

x
y

J

COMM
COMM
COMM

END

30
10

1

Blank common is 41 words long, and it is the only common block present.

Example 2: referencing labeled common only.

CO Ml
x
J

COML
COMM
COMM

END

30
2

Common block COMl is 32 words long, and the name 'COMl' is defined for
the linking loader. Note that since no COMM entries occurred prior to the
COMl COML statement, blank common has length zero and hence is not
entered.

Change 1 4-12A Digital Systems Division

J}nS\ _______ _ ~ 943013-9701

Exa1nple 3: Referencing blank and labeled common.

A
B

x

c

D

y

COMM
COMM

COML

COMM

COMM

COML

END

20
10

5

7

in blank common
in blank common

blank common is terminated at 30 words, and
a new common block started, nan1ed X.

in block X

in block X

block X is 12 words long, and a new block
started, named Y.

block Y has no COMM directives in it, so has
length O. This is most likely an inadvertent
error, but must be detected by noticing that Y
fails to appear in the common summary.

A common name may appear in an address field, and will address the first
word of the common block. However, it may be used in this way only after
at least one COMM directive has appeared in it.

~---------------------------------- ---
Change 1 4-lZB Digital Systems Division

~~--9_4_3_0_1_3_-_9_70_1 ________________ ~--~~--B_Y_T_E __ ,_c_o_M __ M~'--D_A_T._A~'-D~E.F
COMM is used in a manner similar to FORTRAN COMMON. If a FORTRAN
program and assembly language program are merged via link edit, any ref­
erences in the FORTRAN program to labeled COMMON and references in
the assembly language program to COMM defined storage are references to
the same area of memory. In many applications this simplifies communica­
tions between the two programs. The following COMM directive would be
used by a program requiring use of 12 words of common storage referenced
as WORD.

Label Operation Operand

WORD COMM 12

4. 3. 7 GENERATE WORD ADDRESS OR DATA (DATA)

The DATA directive is used for data generation. The assembly language
coding format for the DATA directive is as follows:

Label Operation Operand Comment

[label] l6 DATA ¥> exp
1

, exp
2

, •• exp n ¥> [comment]

where 11 exp
1

, exp
2

, •• exp 11 are expressions or strings that are evaluated and
assigned to successive .ni1emory locations.

The DATA statement is used to define alphanumeric strings using the follow­
ing format:

Label

CAT

Operation

DATA

Operand

'STRING'

STRING is a string of characters enclosed in single quotes. The string will
be produced in ASCII code, two characters per word, packed left to right.
If there is an odd number of characters in the string, the last word contains
a delete code in the last character position. If a label is used, it is assigned
to the first memory location involved. Figure 4- 5 contains examples of
several types of operands that may be used in a DATA statement.

4. 3. 8 DEFINE ENTRY POINT SYMBOL (DEF)

The program-linking assembler directives DEF and REF allow the program­
mer to symbolically link independently assembled programs that are to be
loaded and executed together. Symbolic linkages between programs are cre­
ated by means of symbols defined in one program and used as operands in
another program. Such symbols are termed linkage symbols. A linkage
symbol is called a defined entry point symbol in the program in which it is
defined; it is a referenced external symbol in the program in which it is used
as an operand. Every linkage symbol must be properly identified as such in
the source program. A linkage symbol used as an external symbol is iden­
tified in each using program by the REF directive. A linkage symbol used

4-13 Digital Systems Division

~ 943013- 970 I

Location Code Line Label Operation Operand

OOFF C8C9 0013 DATA 'HI'
p 0100 0107 0014 THERE DATA HERE+2,THERE-6,>100,100,0100
p 0101 OOFA

0102 0100
0103 0064
0104 0040

p 0105 0105 0015 HERE DATA HERE,THERE,>100+104,THERE-HERE
p 0106 0100

0107 0168
0108 FFFB

p 0109 0000 0016 HEREl BYTE HEREl
OlOA 0212

p OlOB 0000 0017 BYTE :HEREl
OlOC 0213

p 0100 0000 0018 BYTE :HERE+6
OlOE 0217

p OlOF 0000 0019 BYTE HEREl,:HEREl ,~HERE1+6,>l00
0110 0212

p 0111 0000
0112 0213

p 0113 0000
0114 021F
0115 0000
0116 0200
0117 0000 0020 BYTE >100+>104,THERE-HERE
0118 0408
0119 FFFF
OllA FFF6

p 011 B 0000 0021 BYTE HERE+2,THERE-6,:>l00,100,:0100
011 C 020E

p 0110 0000
OllE 01F4
OllF 0000
0120 0201
0121 0000
0122 OOC8
0123 0000
0124 0081

Figure 4-5. Example of BYTE and DAT A Usage

4- 14 Digital Systems Di'vision

~----9_4_3_0_13_-_9_7_0_1 ______________ ~--------~------------~--E_N __ D~
as an entry point must be identified in the defining program by the DEF di­
rective. The assembly language coding format for the DEF directive is as
follows:

Label Operation Operand Comment

[label] ¥> DEF ¥> sym
1
,sym

2
, •• symn }S [comment]

where 11 sym
1

, sym
2

, •• sym 11 are symbols defined elsewhere in the program
that may be used as entry Points by other programs. A referenced symbol
that is not defined in the program is flagged in the listing as an error.

In the following sequence, SQRT is identified as an entry-point symbol.

Label

SU BRO

SQRT

Operation

BSS
DEF

STA

Operand

10
SQRT

SAVE

4. 3. 9 END OF SOURCE (END)

The END directive terminates the assembly of a program. It also supplies
a point in the program to which control is transferred after the program is
loaded. The END directive must always be the last statement in the source
program. The assembly language coding format for the END directive is as
follows:

Label Operation Operand Comment

[label] }S END }S [exp] }S [comment]

where 11 exp'! specifies the point to which control is transferred when loading
is complete. If the operand field is invalid, the statement is flagged as a
possible error. If the operand field is blank, no program entry address is
defined.

The point to which control usually is transferred is the first instruction in
the program, as shown in the following sequence:

Location Counter

2000
2032

Label

AREA
BEGIN

Operation

ORG
BSS
LDA

END

4- 15

Operand

>2000
50

=3

BEGIN

Digital Systems Division

943013- 9701

Here control will be transferred to BEGIN at location 2032 16. If the operand
field were blank, control would be transferred to location 0000 16, a point
outside of this program. When several object programs are joined by link
editing, one is specified as the main program. Its transfer point is taken as
the transfer point for the link edited program.

4. 3. 10 EQUATE (EQU)

The EQU directive is used to define a symbol in the label field by assigning
to it the value of an expression in the operand field. The assernbly language
coding format for the EQU directive is as follows:

Label Operation Operand Comment

sym EQU exp ¥> [comment]

where 11 sym11 in the label field is given the same value as 11 exp 11 in the operand
field. The expression in the operand field can be relocatable or absolute, and
the symbol is similarly defined. Any symbols in the expression must be pre­
viously defined.

If the expression in the operand field or the symbol in the label field, or both,
are invalid, or are not present, the EQU statement is flagged as an error in
the listing and is not used. The EQU directive is the usual way of equating
syrnbols to register numbers, input/output unit numbers, immediate data,
actual addresses, and other arbitrary values. The examples below illustrate
how this might be done:

Label Operation Operand Comments

REGX EQU 2 REGISTER X
IO 125 EQU 125 INPUT/OUTPUT DATA
TEST EQU >3F IMMEDIATE DATA
TIM.ER EQU 80 ACTUAL ADDRESS

To reduce programming time, the programmer can equate symbols to fre­
quently used compound expressions and then use the symbols as operands in
place of the expressions. Thus in the statement:

Label Operation Operand

FIELD EQU ALPHA- BETA+GAMMA

FIELD is defined as ALPHA-BETA+GAMMA and may be used in place of it.
Note, however, that ALPHA, BETA, and GAMMA must all be previously de­
fined and only one may be a relocatable value. FIELD can be used anywhere
in the program.

4 .• 3. 11 FLAG BIT ADDRESS (FLAG)

The FLAG directive is used by the assembler to specify a relative starting
address for memory bit-referencing instructions (SMBO, SMBZ, TMBO,

4- 16 Digital Systems Division

~-~--~~~~~· ~ 943013-9701 EQU, FLAG, FRM

and TMBZ). The FLAG directive may be used at any time, but until it is
used, the starting memory address for the memory bit- referencing instruc­
tions is 0000

16
• The assembly language coding format for the FLAG direc­

tive is as follows:

Label Operation Operand Comment

[label] l6 FLAG ¥> exp ¥> [comment]

where "exp" is an expression that evaluates as the 16-bit memory word ad­
dress used in conjunction with memory bit-referencing instructions.

The following example zeros bit 5 of location ABC with the use of the FLAG
directive.

FLAG ABC
SMBZ 5

4. 3. 12 FORMAT A NEW INSTRUCTION (FRM)

The FRM directive is used to create an instruction. The label field of the
FRM directive is referenced as an op-code and the operand field of the FRM
directive breaks the created instruction down into fields. The assembly
language coding format for the FRM directive is as follows:

Label

label l6

Operation

FRM

Operand Comment

l6 exp
1

, exp
2

, ••• exp n l6 [comment]

where "label" is the expression representing the op-code (must be one to
four characters) and "exp

1
, exp

2
, ••• exp 11 are expressions for positive values

whose sum is 16. n

When the label is used as an op- code, n fields of the associated operand
field are evaluated, truncated to the length specified by the corresponding
exp in the FRM directive, and placed in the output word. The following
example illustrates use of the FRM directive.

Label Operation Operand

0010 ABC FRM 5, 5, 6

1000 F846 0020 ABC >IF,1,6

In the first line of this example, ABC is defined to have three fields of 5, 5,
and 6 bits, respectively. When ABC is subsequently used as an operation
code, the assembler puts IF l6 in the first 5 bits, 1 in the next 5 bits, and 6
in the last 6 bits of the instruction. Thus, the second line in this example
shows the ass em bled instruction 1111 1000 0100 0110 2 , or F846 16.

4-17 Digital Systems Division

~~-~~~~~~~~-~ 943013-9701

4,. 3 .. 13 PAGE HEADING (HED)

The remaining characters in the line containing the HED directive are printed
as page headings on the output listing. The first HED is used as the heading
of all pages up to and including the page containing the second HED. Subse­
quent HED directives appear as page headings on the first page following the
one on which the HED appears, and subsequent pages, until another HED is
encountered. The assembly language coding format for the HED directive is
as follows:

Label Operation Comment

[label] l6 HED l6 comment

The program in figure 4~3 makes use of the HED directive.

4. 3. 14 OBJECT IDENTIFIER (IDT)

The IDT directive reproduces the symbol appearing in the operand field as
the program name in the object program. Names less than six characters
have trailing blanks. If the name has more than six characters, the output
will be truncated, and the name will consist of the first six characters. If
the IDT directive is not present, the name will consist of six asterisks. The
assembly language coding format for the IDT directive is as follows:

Label Operation Operand Comment

[label] l6 IDT sym Y> [comment]

where 11 sym 11 is the symbol for the program name.

4. 3 Cl 15 CONDITIONAL ASSEMBLY (IF)

The IF directive alters the assembly process in accordance with the results
of a conditional test. The operand field of the IF directive consists of two
expressions and an optional symbol. The two expressions are evaluated and
compared. If they are not equal, the assembly process continues with the
next line. If the values are equal, the assembly process is suspended under
the influence of the optional symbol. If the symbol is not present, assembly
is suspended for one line. If the symbol is present, assembly is suspended
until the input line with the same symbol in its label field is found.

All lines suspended from the assembly process are treated as comments;
i.e., they are printed but no code is generated. Two or more IF statements
may have overlapping ranges. This directive allows assembly-time modifi­
cation of a program.

NOTE

Mathematical expressions cannot be used in the
third (optional symbol) field of the operand.

4-18 Digital Systems Division

~--~9_4_3_0_1_3_-_9_70_1 ____ ~------~---------------H_E_n __ ,_I_D_T_,_I_F_, __ L_Is~,o--P_D~
The assembly language coding format for the IF directive is as follows:

Label Operation Operand Comment

[label] ¥> IF ¥> exp 1, exp
2

, [sym] ¥> [comment]

where 11 exp J' exp
2

11 are the two expressions to be evaluated and compared
and "sym" is the optional symbol.

The following example illustrates usage of the IF directive.

Label Operation Operand Comment

TTYVAL EQU 2 TEST ASSUMES ONE DATA
TERMINAL AT STANDARD
ADDRESS

ASR EQU 2 TTY 1 - ASSUMED ASR AT
STANDARD ADDRESS

TIP EQU 3 TTY2 - ASSUMED TIP AT
STANDARD ADDRESS

TYPE! CRA 3 ROTATE 50 CHARS PRINT OK
IF TTYVAL, ASR IF TTYVAL=2, REF DATA TERM 2
WDS TIP
IF TTYVAL, TIP IF TTYVAL=l, REF DATA TERM 1
WDS ASR
DATA BIT80N
BRU $-2

4. 3. 16 START LISTING (LIS)

The LIS directive initiates printing of the assembly listing. Printing con­
tinues until the UNL directive is encountered. If a complete assembly listing
is desired, no LIS directive is required. The assembly language coding for­
mat for the LIS directive is as follows:

Label Operation Comment

[label] ¥> LIS ¥> [comment]

4.3.17 OPERATION DEFINE (OPD)

The OPD directive is used to define an operation code. The label field of
the OPD directive is referenced as the defined op-code mnemonic and the
operand field of the OPD directive establishes the op-code bit settings and
format type of the defined op-code. The first item in the operand field is
evaluated as a 16- bit number and stored as the op- code. The second item in
the operand field indicates the format type for the defined instruction. When

4- 19 Digital Systems Division

~h'-~~~--~~~~-~ 943013-9701

I

the label in the name field of the OPD directive appears as an op- code mne-·
monic, the accompanying operand field is OR 1 ed in with the defined op- code
bit settings in accordance with the defined format type to assemble the in­
struction in the object program. Any op-code defined with the OPD directive
takes precedence over the standard symbolic op-code. The assembly lang­
uage coding format for the OPD directive is as follows:

Label

label 16

Operation

OPD

Operand

Y> bits, n

Comment

Y> [comment]

where "bits'' is the hexadecimal representation of the defined op-code,
"label" is the expression for the defined op- code mnemonic. (must be one to
four characters), and 11 n 11 defines the format type as follows:

SPACE -
0 -
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -

Register-Memory}
Register-Memory
Register-Memory
Register-Register

Identical Formats

Register Shift and IDLE
Register Skip
Status Indicator Skip
Data Bus Input/ Output
Sense Switch Skip and Register Bit
Direct Memory Access Channel and Auxiliary Processor

The final merging of the operation code and the operand fields is performed
using a logical OR. Thus the operation code may be used to force setting of
any bit to one. For example:

1009
OAOC 9AFF 1010

Label Operation Operand Comments

XYZ
JOE

OPD
XYZ

>9800, 1
JOE, 2

FORMAT TYPE 1
COMMENT

In the first line, XYZ is defined to be the mnemonic of an operation code.
The first part of the operand specifies the machine operation code (9800 16 or
1001 1000 0000 00002) and the second part of the operand specifies format
type 1, or a register-memory format.

In this example, the 5- bit operation code (1001 12) for a hardware multipli-·
cation instruction (>9800=MPY) is specified. Line two shows the assembled
result when the defined operation is subsequently used. Format type 1
causes the assembler to look for an optional label, a required operation code,
a required first operand field, and an optional second operand field. The
operation code (9800) is OR'ed with the IXB tag (2) to produce 1001 10102or
9Ai6• The B bit is not set; therefore, the operand is program counter rela­
tive. Since the program counter :is pointing to the instruction in location
OAOD l6' the program counter relative address of JOE (OAOD 16 - 000 i 16 =
OAOC16) is minus one, or FF 16 • The OR 1 ed result produces the machine
instruction 9AFF 16•

~---·------

Change 1 4-20 Digital Systems Division

J2rZ5-_~~~~~~~~~~~~~~~~~~~~~~~~~0-R_G_,_P_E~J ~ 943013-9701 REF, UNL (on next page)

Similarly, a new multiply instruction may be defined that is always base
register relative by setting the B bit in the first field of the OPD operand as
follows:

Label Operation

MPB OPD

4. 3. 18 ORIGIN (ORG)

Operand

>9900, 1

The ORG directive sets the value of the location counter to the value of the
expression in the operand field. Any symbol in the expression must be pre­
viously defined. If the operand field is invalid, the ORG directive is not
used. The ORG directive is commonly used to force loading of a program in
specified memory locations. The assembly language coding format for the
ORG directive is as follows:

Label Operation Operand Comment

[label] ¥> ORG exp ¥> [comment]

where "exp" is typically a decimal number specifying the location counter
setting. If 11 exp11 involves a symbol, it must be previously defined.

The following example shows how the ORG directive can be used for other
purposes.

Operation Operand

ORG $+500

This ORG directive increases the location counter by 500. Therefore, in
this case the directive provides an alternate way to reserve storage areas.

NOTE

If the operand field of any ORG contains an absolute
value instead of a relocatable expression, an ab­
solute object is output; otherwise, a relocatable ob­
ject is output.

4. 3. 19 PAGE EJECT (PEJ)

The PEJ directive ejects the remainder of the current assembly listing page.
The assembler begins a new page with the heading from the current HED
directive and the PEJ itself is printed as the first line on the new page. The
assembly language coding format for the PEJ directive is as follows:

Label Operation Comment

[label] ¥> PEJ ¥> [comment]

4-21 Digital Systems Division

J~'-~~~-~~~~~ ~ 943013-9701

4. 3. 20 REFERENCED EXTERNAL SYMBOLS (REF)

The REF directive identifies a linkage symbol as an external symbol that is
referenced in the program using the REF directive. Each such external
syrnbol must be identified in a REF directive. The assembly language coding
format for the REF directive is as follows:

Label Operation Operand Comment

[label] }'> REF ¥> sym
1

, sym
2

, •• symn ¥> [comment]

where 11 sym sym , •• sym " are symbols that must be defined in another
program anJ idenlified in 1fhat program as an entry-point symbol with the
DEF directive.

As an example, if MTPLY is an entry point symbol in another program, the
using program identifies it as an external symbol as follows:

Operation Operand

REF MTPLY

The only way an external symbol rnay be referenced is as a full 16- bit ad­
dress. The SAP assembler allows an external symbol to be used in an
arithmetic calculation. For example, use of MTPLY+Z is allowed. To link
to a program named SINE, the following coding might be used:

Label

PROGA

AD SINE

Operation

BSS
REF

@BRL

Operand

2
SINE

SINE

4. 3. 2 1 STOP LISTING (UNL)

The UNL directive terminates the assembly listing process until an LIS di­
rective is encountered. However~ error messages are still printed. The
assembly language coding format for the UNL directive is as follows:

Label Operation Comment

[label] ¥> UNL ¥> [comment]

4-22 Digital Systems Dillision

~----9_4_30_1_3_-_9_70_1 __ _

APPENDIX A

INSTRUCTION EXECUTION TIMES

Digital Systems Division

J2n5\ ______ _ ~ 943013- 970 1

APPENDIX A

INSTRUCTION EXECUTION TIMES
(IN MICROSECONDS)

This appendix groups the instructions by format type to facilitate presentation
of the execution times.

REGISTER-MEMORY INSTRUCTIONS

Mnemonic Name
Memory- Immediate

Refe'r eric ing* Addressing

ADD Add to Register A 1. 75 0.75
AND Logical AND with Register A 1. 75 0.75
BIX Branch on Incremented Index 1. 25 1. 25
BRL Branch and Link 1. 50 1. 50
BRU Branch Unconditional 1. 25 1. 00
CPA Compare Algebraic 1. 75 0.75
CPL Compare Logical 1. 75 0.75
DAD Double Length Add 2.75 1. 0
DIV Divide 2.5-7.75 1. 50.-6. 75
DLD Double Load Registers A and E 2.75 1. 0
DMT Decrement Memory and Test 2.75 2.75
DSB Double Length Subtract 2.75 1. 0
DST Double Store Registers A and E 2.75 2.75
IMO Increment Memory by One 2.75 2.75
!OR Logical OR with Register A 1. 75 0.75
LDA Load Register A 1. 75 0.75
LDE Load Register E 1.75 0.75
LDM Load Register M 1. 75 0.75
LDX Load Register X 1.75 0.75
MPY Multiply 2.25-6.25 1. 25-5. 25
STA Store Register A 2.00 2.0
STE Store Register E 2.00 2.0
STX Store Register X 2.00 2.0
SUB Subtract from Register A 1.75 0.75

~:<Add the following to execution times, when applicable: O. 25 microseconds
for indexing, O. 75 microseconds for indirect addressing, and O. 25 micro­
seconds for DAD, DLD, DST, and DSB extended format.

A-1 Digital Systems Division

943013- 9701

Mnemonic

ALA
ALD
ARA
ARD
GLD
CRA
CRB
CRD
CRE
CRL
CRM
CRS
CRX
LLA
LLD
LRA
LRD
LTO
LTZ
RTO
RTZ

.Mnemonic

RAD
RAN
RCA
RCL
RCO
RDE
REO
REX
RIN
RIV
RMO
ROR
RSU

REGISTER SHIFT INSTRUCTIONS

Name

Arithmetic Left Shift A
Arithmetic Left Shift Double
Arithmetic Right Shift A
Arithmetic Right Shift Double
Circular Left Shift Double
Circular Right Shift A
Circular Right Shift B
Circular Right Shift Double
Circular Right Shift E
Circular Right Shift L
Circular Right Shift M
Circular Right Shift S
Circular Right Shift X
Logical Left Shift A
Logical Left Shift Double
Logical Right Shift A
Logical Right Shift Double
Left Test for Ones
Left Test for Zeros
Right Test for Ones
Right Test for Zeros

~:~sc=Shift Count

REGISTER TO REGISTER INSTRUCTIONS

Name

Register ADD
Register AND
Register Compare Algebraic
Register Compare Logical
Register Complement
Register Decrement
Register Exclusive OR
Register Exchange
Register Increment
Register Invert
Register Move
Register OR
Register Subtract

~-~-·~-------------------

A-2

Execution
Time

O. 75+SC*/4
1. 00+
o. 75+
1.00+
o. 75+

o. 75+
1.00+
1. 00+
1.00+
1. OO+SC/4

Execution
Time

1. 25
1. 25
1. 2 5
1. 2 5
1.00
1.00
1. 25
1. 50
1.00
1.00
1.00
1. 25
1. 2 5

Digital Systems Dillision

~----9_4_3_0_13_-_9_7_0_1 ______ ~---------------------------------------

Mnemonic

SEV
SM!
SNO
SNZ
SOD
soo
SPL
SZE

Mnemonic

SEQ
SGE
SGT
SLE
SLT
SNC
SNE
SNV
soc
sov

Mnemonic

SSE
SSN

Mnemonic

LRF
LSB
LSR
SRF
SSB

REGISTER SKIP INSTRUCTIONS

Skip on Even
Skip on Minus

Name

Skip on Not All Ones
Skip on Not All Zeros
Skip on Odd
Skip on All Ones
Skip on Plus
Skip on Zero

INDICATOR SKIP INSTRUCTIONS

Name

Skip on Equal
Skip on Greater Than or Equal
Skip on Greater Than
Skip on Less Than or Equal
Skip on Less Than
Skip on No Carry
Skip on Not Equal
Skip on No Overflow
Skip on Carry
Skip on Overflow

SENSE SKIP INSTRUCTIONS

Name

Skip on Sense Switch Equal
Skip on Sense Switch Not Equal

MULTI-REGISTER INSTRUCTIONS

Name

Load Register File
Load Status Block and Branch
Load Status Block, Reset Interrupt, and Branch
Store Register File
Store Status Block and Branch

Execution
Time

I. 00

1.00

Execution
Time

1.00

1.00

Execution
Time

I. 00
I. 00

Execution
Time

7.00
3.25
3.25
7.00
3.25

A-3 Digital Systems Division

943013- 9701

Mnemonic

CLC

MVC

Mnemonic

SMBO
SMBZ
TMBO
TMBZ

Mnemonic

SABO
SABZ
TABO
TABZ

Mnemonic

AP!

AT!
IDL
NRM
RDS
WDS

BYTE MANIPULATION INSTRUCTIONS

Name

Compare Logical Character String

Move Character String

MEMORY BIT MANIPULATION INSTRUCTIONS

Name

Set Memory Bit to One
Set Memory Bit to Zero
Test Memory Bit for One
Test Memory Bit for Zero

REGISTER BIT MANIPULATION INSTRUCTIONS

Name

Set Register A Bit to One
Set Register A Bit to Zero
Test Register A Bit for One
Test Register A Bit for Zero

MISCELLANEOUS

Name

Auxiliary Processor Initiate

Automatic Transfer Initiate
Idle
Normalize
Read Direct Single
Write Direct Single

Execution
Time

5.00+2.25/
Byte
4. 75+2. 75/
Byte

Execution
Time

3.25
3.25
2.75
2 .. 75

Execution
Time

1.00
1.00
1. 25
1. 25

Execution
Time

AP Con­
troller
Dependent

2.50
1. 00

1. oo-s. 75
3. 00--+-4. 75
3.oo-5.oo

~----~------------------------------·~--

A-4 Digital Systems Division

Yd75' ______ _ ~ 943013-9701

APPENDIX B

ALPHABETICAL AND HEXADECIMAL
INSTRUCTION INDEXES

Digital Systems Division

~~--9_4_3_0_13_-_9_7_0_1 ______________________________________ ~~~·

APPENDIX B

ALPHABETICAL INSTRUCTION INDEX

Mnemonic
Hexadecimal

Name Paragraph
Code

ADD 2000 Add to Register A 3. 5. 1
ALA C880 Arithmetic Left Shift A 3. 8. 1
ALD C8AO Arithmetic Left Shift Double 3.8.2
AND 3800 Logical AND with Register A 3. 9. 1
API DDOO Auxiliary Processor Initiate 3. 12. 1
ARA C800 Arithmetic Right Shift A 3.8.3
ARD C820 Arithmetic Right Shift Double 3.8.4

*ATI D900 Automatic Transfer Initiate 3.12.2
BIX 4000 Branch on Incremented Index 3. 4. 1
BRL 7000 Branch and Link 3.4.2
BRU 7800 Branch Unconditional 3.4.3
CLC DF80 Compare Logical Character String 3. 6. 1
CLD CB80 Circular Left Shift Double 3.8.5
CPA 6800 Compare Algebraic 3.6.2
CPL 6000 Compare Logical 3.6.3
CRA CAOO Circular Right Shift A 3.8.6
CRB CB60 Circular Right Shift B 3.8.7
CRD CBCO Circular Right Shift Double 3. 8. 8
CRE CA20 Circular Right Shift E 3.8.9
CRL CB40 Circular Right Shift L 3. 8. 10
CRM CA60 Circular Right Shift M 3.8.11
CRS CB20 Circular Right Shift S 3.8.12
CRX CA40 Circular Right Shift X 3.8.13
DAD B800 Double Length Add 3.5.2
DIV 5800 Divide 3.5.3
DLD BOOO Double Load Registers A and E 3. 2. 1
DMT 4800 Decrement Memory and Test 3. 7. 1
DSB A800 Double Length Subtract 3. 5. 4
DST AOOO Double Store Registers A and E 3. 3. 1

*IDL CEOO Idle 3.4.4
IMO 5000 Increment Memory by One 3. 5. 5
IOR 3000 Logical OR with Register A 3.9.2
LDA 0000 Load Register A 3.2.2
LDE 0800 Load Register E 3.2.3
LDM 1800 Load Register M 3.2.4
LDX 1000 Load Register X 3.2.5
LLA C8CO Logical Left Shift A 3.8.14
LLD C8EO Logical Left Shift Double 3.8.15
LRA C840 Logical Right Shift A 3.8.16

>:cp ri vileg ed instructions

B-1 Digital Systems Division

~~--94_3_o_I3_-_9_7o_I~--------------------------------~~-
ALPHABETICAL INSTRUCTION INDEX (Continued)

Mnemonic

LRD
LRF

*LSB
*LSR

LTO
LTZ
MPY
MVC
NRM

**RAD
*~:<RAN

**RCA
**RCL
**RCO
**RDE

*RDS
**REO
**REX
**RIN
**RIV
**RMO
**ROR
**RSU

RTO
RTZ
SABO
SABZ
SEQ
SEV
SGE
SGT
SLE
SLT
SMBO
SMBZ
SMI
SNC

Hexadecimal
Code

C860
D8AO
D880
D890

C980
C9CO
9800
DFOO
CA9F
COBO
C680
C400
C600
c IOO
C700
D800
C280
C780
C300
C200
C500
C480
cooo
C900
C940
DB50
DB40
CD20
cc co
CD80
CD40
CDCO
CDOO
DB70
DB60
CC60
CFEO

*Privileged instructions

Name

Logical Right Shift Double
Load Register File
Load Status Block and Branch
Load Status Block, Reset Interrupt,
and Branch
Left Test for Ones
Left Test for Zeros
Multiply
Move Character String
Normalize
Register Add
Register AND
Register Compare Algebraic
Register Compare Logical
Register Complement
Register Decrement
Read Direct Single
Register Exclusive OR
Register Exchange
Register Increment
Register Invert
Register Move
Register OR
Register Subtract
Right Test for Ones
Right Test for Zeros
Set Register A Bit to One
Set Register A Bit to Zero
Skip on Equal
Skip on Even
Skip on Greater Than or Equal
Skip on Greater Than
Skip on Less Than or Equal
Skip on Less Than
Set Memory Bit to One
Set Memory Bit to Zero
Skip on Minus
Skip on No Carry

Paragraph

3.8. I7
3.2.6
3.4.5
3.4.6

3.8. I8
3.8.I9
3.5.6
3. 11. I
3.8.20
3.5.7
3. 9. 3
3.6.4
3. 6. 5
3. 5. 8
3. 5. 9
3. 12. 3
3. 9. 4
3.II.2
3. 5. 10
3.5.11
3.11.3
3. 9. 5
3.5.IZ
3.8.2I
3.8.22
3. IO. I
3. IO. 2
3.7.2
3.7.3
3.7.4
3. 7. 5
3.7.6
3.7.7
3. IO. 3
3. 10. 4
3. 7. 8
3. 7. 9

*~:<Privileged instructions when status register is the destination register.

~-~-------·--

B-2 Digital Systems Dil1ision

Jd75' ______ _ ~ 943013-9701

Mnemonic

SNE
SNO
SNV
SNZ
soc
SOD
soo
sov
SPL
SRF
SSB
SSE
SSN
STA
STE
STX
SUB
SZE
TABO
TABZ
TMBO
TMBZ

*WDS

Hexadecimal
Code

0000
0800
1000
1800
2000
2800
3000
3800
4000
4800

ALPHABETICAL INSTRUCTION INDEX (Continued)

Hexadecimal
Name

Code

CDAO Skip on Not Equal
CCAO Skip on Not All Ones
CDEO Skip on No Overflow
CC80 Skip on Not All Zeros
CF60 Skip on Carry
CC40 Skip on Odd
CC20 Skip on All Ones
CD60 Skip on Overflow
GCEO Skip on Plus
D8EO Store Register File
D8CO Store Status Block and Branch
CClO Skip on Sense Switch Equal
CC90 Skip on Sense Switch Not Equal
8000 Store Register A
8800 Store Register E
9000 Store Register X
2800 Subtract from Register A
ccoo Skip on Zero
DBlO Test Register A Bit for One
DBOO Test Register A Bit for Zero
DB30 Test Memory Bit for One
DB20 Test Memory Bit for Zero
D820 Write Direct Single

HEXADECIMAL INSTRUCTION INDEX

Mnemonic Name

LDA Load Register A
LDE Load Register E
LDX Load Register X
LDM Load Register M
ADD Add to Register A
SUB Subtract from Register A
IOR Logical OR with Register A
AND Logical AND with Register A
BIX Branch on Incremented Index
DMT Decrement Memory and Test

Paragraph

3. 7. 10
3.7.11
3. 7. 12
3.7.13
3. 7. 14
3.7.15
3.7.16
3. 7. 17
3. 7. 18
3.3.2
3.4.7
3.7.19
3.7.20
3.3.3
3.3.4
3. 3. 5
3. 5. 13
3.7.21
3. 10. 5
3. 10. 6
3. 10. 7
3. 10. 8
3. 12. 4

Paragraph

3.2.2
3.2.3
3.2.5
3.2.4
3. 5. 1
3. s. 13
3. 9. 2
3. 9. 1
3. 4. 1
3. 7. 1

*Privileged Instructions

B-3 Digital Systems Division

~ 943013- 9701

HEXADECIMAL INSTRUCTION INDEX (Continued)

Hexadecimal
Mnemonic Name Paragraph

Code

5000 IMO Increment Memory by One 3. 5" 5
5800 DIV Divide 3. 5 .. 3
6000 CPL Compare Logical 3. 6 .. 3
6800 CPA Compare Algebraic 3. 6 .. 2
7000 BRL Branch and Link 3. 4 .. 2
7800 BRU Branch Unconditional 3. 4 .. 3
8000 STA Store Register A 3. 3 .. 3
8800 STE Store Register E 3.3.4
9000 STX Store Register X 3.3.5
9800 MPY Mulitply 3.5.6
AOOO DST Double Store Registers A and E 3. 3. 1
A800 DSB Double Length Subtract 3.5.4
BOOO DLD Double Load Registers A and E 3. 2. 1
B800 DAD Double Length Add 3.5.2

**COOO RSU Register Subtract 3.5.12
*>:<C080 RAD Register Add 3. 5. 7
**C 100 RCO Register Complement 3. 5. 8
>:<*C200 RIV Register Invert 3.5.11
*>!<C280 REO Register Exclusive OR 3.9.4
~:0:<C300 RIN Register Increment 3. 5. 10
**C400 RCA Register Compare Algebraic 3.6.4
*>:cC480 ROR Register OR 3. 9. 5
*>:cc 500 RMO Register Move 3.11.3
>~<>!<C 600 RCL Register Compare Logical 3. 6. 5
>:o:cC680 RAN Register AND 3. 9. 3
*>:<c 100 RDE Register Decrement 3. s. 9
>!<>!<C 780 REX Register Exchange 3.11.2

C800 ARA Arithmetic Right Shift A 3. 8. 3
C820 ARD Arithmetic Right Shift Double 3.8.4
C840 LRA Logical Right Shift A 3.8.16
C860 LRD Logical Right Shift Double 3.8.17
C880 ALA Arithmetic Left Shift A 3. 8. 1
C8AO ALD Arithmetic Left Shift Double 3.8.2
C8CO LLA Logical Left Shift A 3. 8. 14
C8EO LLD Logical Left Shift Double 3. 8. 15
C900 RTO Right Test for Ones 3.8.21
C940 RTZ Right Test for Zeros 3.8.22
C980 LTO Left Test for Ones 3. 8. 18
C9CO LTZ Left Test for Zeros 3. 8. 19
CAOO CRA Circular Right Shift A 3.8.6

~:<>:<Privileged instructions when the status register is the destination register.

--·-----·------------ --------------------
B-4 Digital Systems Division

~ 943013- 9701

HEXADECIMAL INSTRUCTION INDEX (Continued)

Hexadecimal
Mnemonic Name Paragraph

Code

CA20 CRE Circular Right Shift E 3. 8. 9
CA40 CRX Circular Right Shift X 3.8.13
CA60 CRM Circular Right Shift M 3.8.11
CA9F NRM Normalize 3.8.20
CB20 CRS Circular Right Shift S 3.8.12
CB40 CRL Circular Right Shift L 3.8.10
CB60 CRB Circular Rig.ht Shift B 3.8.7
CB80 CLD Circular Left Shift Double 3.8.5
CBCO CRD Circular Right Shift Double 3.8.8
ccoo SZE Skip to Zero 3.7.21
CClO SSE Skip on Sense Switch Equal 3.7.19
CC20 soo Skip on All Ones 3.7.16
CC40 SOD Skip on Odd 3.7.15
CC60 SMI Skip on Minus 3.7.8
CC80 SNZ Skip on Not All Zeros 3.7.13
CC90 SSN Skip on Sense Switch Not Equal 3.7.20
CCAO SNO Skip on Not All Ones 3.7.11
cc co SEV Skip on Even 3. 7. 3
CCEO SPL Skip on Plus 3.7.18
CDOO SLT Skip on Less Than 3.7.7
CD20 SEQ Skip on Equal 3. 7. 2
CD40 SGT Skip on Greater Than 3.7.5
CD60 sov Skip on Overflow 3.7.17
CD80 SGE Skip on Greater Than or Equal 3.7.4
CDAO SNE Skip on Not Equal 3.7.10
CDCO SLE Skip on Less Than or Equal 3. 7. 6
CDEO SNV Skip on No Overflow 3. 7. 12

>:~CEOO IDL Idle 3.4.4
CF60 soc Skip on Carry 3.7.14
CFEO SNC Skip on No Carry 3. 7. 9

):~n8oo RDS Read Direct Single 3. 12. 3
*D820 WDS Write Direct Single 3. 12. 4
*D880 LSB Load Status Block and Branch 3. 4. 5
):~D89o LSR Load Status Block, Reset Interrupt> 3.4.6

and Branch
D8AO LRF Load Register File ·3.2.6

D8CO SSB Store Status Block and Branch 3.4.7
D8EO SRF Store Register File 3. 3. 2

>:~D900 ATI Automatic Transfer Initiate 3.12.2

DBOO TABZ Test Register A Bit for Zero 3.10.6

>!~Privileged instructions

B-5 Digital Systems Division

94 3 0 13 ·- 9701

HEXADECIMAL INSTRUCTION INDEX (Continued)

Ffexadecimal
Mnemonic

Code

DBlO TABO
DB20 TMBZ
DB30 TMBO
DB40 SABZ
DBSO SABO
DB60 SMBZ
DB70 SMBO
DDOO API
DFOO MVC
DF80 CLC

Name

Test Register A Bit for One
Test Memory Bit for Zero
Test Memory Bit for One
Set Register A Bit to Zero
Set Register A Bit to One
Set Memory Bit to Zero
Set Memory Bit to One
Auxiliary Processor Initiate
Move Character String
Compare Logical Character String

Paragraph

3.10.5
3.10.8
3.10.7
3.10.2
3.10.l
3.10.4
3.10.3
3.12.1
3.11.1
3. 6. 1

--~~---
B-6 Digital Systems Division

~---~9_4_3_01_3 ___ 9_1_0_1 ___________________________________ ~~~~~~~

APPENDIX C

ILLEGAL INSTRUCTION OPERATION CODES

Digital Systems Division

APPENDIX C

ILLEGAL INSTRUCTION OPERATION CODES

When the op-code of an instruction is other than one of the 99 standard op­
codes, it is considered illegal. Table C-1 lists the instruction bit-patterns
that are detected as illegal.

Table C-1. Illegal Instruction Codes

Instruction Bits
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 0 x x x x x x x 1 x x x
1 1 0 0 0 0 x 1 1 x x x x x x x
1 1 0 0 0 1 0 1 1 x x x x x x x
1 1 0 0 1 0 0 1 x x 1 x x x x. x
1 1 0 0 1 0 1 0 1 0 1 x x x x x
1 1 0 0 1 0 1 0 1 1 x x x x x x
1 1 0 0 1 0 1 1 0 0 0 x x x x x
1 1 0 0 1 0 1 1 1 x 1 x x x x x
1 1 0 0 1 1 1 0 0 0 0 1 x x x x
1 1 0 0 1 1 1 0 0 0 1 x x x x x
1 1 0 0 1 1 1 0 0 1 x x x x x x
1 1 0 0 1 1 1 0 1 x x x x x x x
1 1 0 0 1 1 1 1 x 0 x x x x x x
1 1 0 0 1 1 1 1 0 1 0 x x x x x
1 1 0 1 0 x x x x x x x x x x x
1 1 0 1 1 0 1 x 1 x x x x x x x
1 1 0 1 1 1 x 0 x x x x x x x x
1 1 1 x x x x x x x x x x x x x

X =DON'T CARE (0 or 1)

C-1/C-2 Digital Systems Division

USER'S RESPONSE SHEET

Model 980 Computer Assembly Language Programmer's
Manual Title: Reference Manual (943013-9701)

Date of Manual: 1 March 1976 Date of This Letter:
~~~~~~~~~~~~~ ~~~~~~ 

Company: ~--------------~~--~~~------~--~~--------~----~~----~-
Street Address: 

----~~------~--------~--------~--------~~--~~----~-

Please list any discrepancy found in this manual by page, paragraph, figure, 
or table number in the following space. If there are any other suggestions 
that you wish to make, feel free to include them. Thank you. 

Location Comment/Suggestion 
W in Manual 
z 
J 
l!) 
z 
0 
..J 
<( 

r­
::> 
0 

I 
I 
I 
I 
I 
I 
I 
I 
I 

NO POSTAGE NECESSARY IF MAILED IN U.S.A. 

FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), STAPLE AND MAIL 



---- - --- - - ·- - - -- - - - - - -

BUSINESS REPLY MAIL 
No Postage Necessary if Mailed in the United States 

Postage Will Be Paid! by 

TEXAS INSTRUMENTS INCORPORATED 
DIGITAL SYSTEMS DIVISION 

P.O. BOX 2909 • AUSTIN, TEXAS 78767 

First Class 
PERMIT NO. 3135 

Austin. Texas 

Attn: TECHNICAL PUBL.ICATIONS, MS 2146 

- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --



9808 
SYSTEM 

DESCRIPTION 

943012-9701 

1 
FORTRAN 

944800-9701 

I 
OVERLAY 

LINK 
EDITOR 

961961-9714 

l 
SYSTEM/ 3XO 

SUPPORT 

961961-9712 

LANGUAGES 

I 
BASIC LANG 

INTERPRETER 
SYSTEM 

943002-9701 

980 COMPUTER 
SYSTEM 

SOFTWARE 
MANUALS 

l 
TILT 

955382-9701 

PROGRAM DEVELOPMENT 

t 1 
960/980 ASSY LANG 

PROGRAM PROGRAMME R'S 
DEBUG REFERENCE 

942760-9701 943013-9701 

J 
l 1 

ASSY LANG PROGRAMMING 

INPUT /OUTPUT CARD 

961961-9734 943000-9701 

OPERATING SYSTEMS 

I l 
BASIC SYSTEM DX980 

USE AND PROGRAMMER'S 
OPERATION GUIDE 

f---
961961-9710 943005-9701 

J 
.......---· l 1 

D>C980 DX980 SYSTEM 
SYSTEM OPERATION 

DOCUMENTATION GUIDE 

943015-9701 943004-9701 

TEXAS INSTRUMENTS 
INCORPORATED 
DIGITAL SYSTEMS DIVISION 

POST OFFICE BOX 2909 • AUSTIN. TEXAS 78767 


	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-08a
	3-08b
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	3-87
	3-88
	3-89
	3-90
	3-91
	3-92
	3-93
	3-94
	3-95
	4-01
	4-02
	4-02a
	4-02b
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-08a
	4-08b
	4-09
	4-10
	4-11
	4-12
	4-12a
	4-12b
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	A-0
	A-1
	A-2
	A-3
	A-4
	B-0
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	C-0
	C-1
	C-2
	replyA
	replyB
	xback

