TEXAS INSTRUMENTS

Impfoving Man’s Effectiveness Through Electronics

Model 980 Computer

| Assembly Language
Programmers Reference Manual

MANUAL NO. 943013-9701
ORIGINAL ISSUE 15 DECEMBER 1974
REVISED AND REISSUED 1 MARCH 1975

INCLUDES
CHANGE 1............... 1 MARCH 1976

Wi

Digital Systems Division

© Texas Instruments Incorporated 1976
A1l Rights Reserved

The information and/or drawings set forth in this document and a1l rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the prior consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

l|ST o F E r FECT'VE PAGEsj Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Model 980 Computer Assembly Language Programmer’s Reference Manual (943013-9701)

Original Issue . . e -« « .« 15December 1974
Revised and Reissued 1 March 1975 (ECN 388070)
Changel 1March 1976 (ECN 407116)

Total number of pages in this publication is 166 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO, NO ., .
Cover . 1 4-20 . . 1
Effective Pages 1 4-21 - 422, 0
iili - v, 0 Appendix A Divider 0
vi - viii 1 A-l - A4 o 0
1-1-1-2 1 Appendix B Divider 0
2-1-2-8 0 B-1 - B-6 .. 0
3-1-37 0 Appendix C Divider 0
38 . .. 1 C-1-C-2 0
3-8A/3-8B . 1 User’s Response . 0
39 -3.55 0 Business Reply 1
3-56 . . 1 Cover Blank 0
3-57-392.0 Cover 0
393 . . L . . L L
3-94 - 3.96 . 0
4-1 0
42 . . . 1
4-2A/4-2B . 1
43 . . 1
44 -4.5 0
4-6 -4-8 . 1
4-8A/4-8B . 1
49 - 4-10 1
4-11 . 0
4-12 . 1
4-12A/4-12B 1
4-13 - 4-19 , 0

o]
&z@ 943013-9701

TABLE OF CONTENTS

Paragraph Title Page

SECTION I. GENERAL INFORMATION

1.1 Scope of Manual . ..o v vttt v oot no sttt anseenens 1-1
1.2 References. « « o« v ot vt ettt ot oot onnoesnsnnens 1-1
SECTION II. HARDWARE FEATURES
2.1 General v v v v v un 2-1
2.2 Computer Organization. « v v v o o o s ¢ o s 0 o 0 0 o 0o oo on 2-1
2.3 Data and Instruction Formats et oo oo es oo 2-3
2.4 Register Organization o oo vt vt ot oo oo ooeoons 2-4
2.5 Memory Protect/Privileged Instruction Feature 2-6
2.6 Program Relocation Feature « « « v v ¢ o ¢ o ¢ 0 00 o v o oo 2-7
2.7 Priority Interrupt Feature ettt e et eeeenon. 2-7

SECTION III. MACHINE INSTRUCTIONS AND CODING CONVENTIONS

3.1 General &« o v v v it ittt it e e e e et e e ettt 3-1
3.1.1 Instruction Descriptions e e e ee s e e s 3-1
3.1.2 Addressing Modes v v v o s s o 0 o 0 st o 0o o0 oo oenens 3-5
3.1.3 Extended Format Addressing. . « v v o ¢ ¢ o o ¢ 0 ¢ o o o« 3-8
3.2 Load INStructions .« v s v o o ¢ o o 0 0 0 o o o 6 oo o oeonoaos 3-8
3.2.1 Double Load Registers Aand E (DLD). ¢« v v v v v v v .. 3-8
3.2.2 Tioad Register A (LDA) . ¢ v ¢ v e o o v o o 0 o oo o s v eaa 3-9
3.2.3 Load Register E (LDE) . v ¢ ¢ ¢ o ¢ ¢ 0 6 0 60 o 0o eoeoeos 3-10
3.2.4 Load Register M (LDM) .. vt vt v v v v v v v nnnnness 3-10
3.2.5 Load Register X (LDX) . ¢« v v v v s st o v v oo o aouans 3-11
3.2.6 Load Register File (LRF) & v ¢ v ¢ ¢ v o 0 0 o 0 o 0 o oo o 3-12
3.3 Store INStrUCtiONS + v ¢ ¢ ¢ o o o ¢ o e o o0 s o oo o o oo onoeoa 3-13
3.3.1 Double Store Registers Aand E (DST). v v ¢ v v v 0 v .. 3-13
3.3.2 Store Register File (SRF) ¢ v v v v o ¢ o o ¢ o 0 0 0o o v oo 3-13
3.3.3 Store Register A (STA). v v vt vt vt et et oo oennas 3-14
3.3.4 Store Register E (STE). ¢ v v v v v vt st oo oo veeoens 3-15
3.3.5 Store Register X (STX) . v o v v o o o v o 0 o o oo o seweoes 3-16
3.4 Branch Instructions « « o o v o ¢ ¢ o ¢ 0 ¢ 0 0 v oo o s o eeeoes 3-16
3.4.1 Branch on Incremented Index (BIX). v v ¢ ¢ o s 0 s 0 s s » 3-17
3.4.2 Branch and Link (BRL) . v ¢ ¢ v ¢ o ¢ s o 0o 00 0000 oo 3-18
3.4.3 Branch Unconditional (BRU) &« ¢ v v o v ot v 0 o0 0 eoos 3-19
3.4.4 Idle (IDL) v v o v v v ot e s ot oo oo oo nonsoeeeeesos 3-20

iii Digital Systems Division

[e]
@ 943013-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
3.4.5 Load Status Block and Branch (LSB) . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4 « 3-21
3.4.6 Load Status Block, Reset Interrupt, and

Branch (LSR). G e s e s s e s e s e e e e 3-22
3.4.7 Store Status Block and Branch (SSB) v « ¢ ¢ ¢ o ¢ ¢ ¢ ¢ « 3-23
3.5 Arithmetic Instructions . . .« oo o v e v o v v 0t o oo e s 3-24
3.5.1 Add to Register A (ADD). v v v v v ot o s s o oo oo s oo 3-25
3.5.2 Double Length Add (DAD) . . v v v vt e e vt oo v oo oo 3-25
3.5.3 Divide (DIV) v o ¢ o s o e o s 0 s 0 s o s s s a oo soososses 3-26
3.5.4 Double Length Subtract (DSB) « v v v ¢ v 0o o o0 o000 o 3-27
3.5.5 Increment Memory by One (IMO) s s s 00 s e s 3-28
3.5.6 Multiply (MPY) ¢ v v v e v et v e oo v o s o eosoanosses 3-29
3.5.7 Register Add (RAD) . v v v ¢ e v v o o v s oo st s o o0e s 3-30
3.5.8 Register Complement (RCO) . . ¢ i vt e vt vt 00 oo 3-31
3.5.9 Register Decrement (RDE) .. . ¢ o0 v v v e et v v e v 3-31
3.5.10 Register Increment (RIN) . . ¢ ¢ v v v vt 0 e oo 0 v o s o 3-32
3.5.11 Register Invert (RIV) v v v ¢ o s o v s v e v s o v oo oo 3-33
3.5.12 Register Subtract (RSU) .« vt v v v v vttt et eees o 3-34
3.5.13 Subtract from Register A (SUB) . . v o v v v vt 0o 0 00 v 3-35
3.6 Compare Instructions . « « « « v « ¢ s s ¢ o o s 0 s s s 0o s 0o 3-36
3.6.1 Compare Logical Character String (CLC) 3-36
3.6.2 Compare Algebraic (CPA). ¢ v ¢ v v e vt v e s n s 0o o 3-38
3.6.3 Compare Logical (CPL) . v v v vt v vt v vt o v e osn 3-39
3.6.4 Register Compare Algebraic (RCA)o v v 3-40
3.6.5 Register Compare Logical (RCL) . v ¢ v v v v v v e v e 3-41
3.7 Skip InStructions « v v o v o v o e o s e 0 s v o s 0 s 0 o a0 o . 3-42
3.7.1 Decrement Memory and Test (DMT) C e e e e e e e 3-42
3.7.2 SkiponEqual (SEQ) + ¢ ¢ ¢« v e ot 0 oo v s s o0 a o oo 3-43
3.7.3 Skipon Even (SEV) . ¢t et e o vt v v o osssess oo 3-44
3.7.4 Skip on Greater than or Equal (SGE) . .« . v v v e v oo 3-44
3.7.5 Skip on Greater Than (SGT). . . ¢ ¢ e o v v e . e e e 3-45
3.7.6 Skip on Less Than or Equal (SLE) v oo 3-46
3.7.7 Skip on L.ess Than (SLT). ¢« ¢ e v v 00t 0o v e v oo evnen 3-47
3.7.8 Skipon Minus (SMI) . v v v e e c v o s o o v o s oo oesenss 3-48
3.7.9 Skip on No Carry (SNC) . .ot i v v vt ot n v o on oo 3-48
3.7.10 Skip on Not Equal (SNE) e e s e e e s e 3-49
3.7.11 Skip on Not Al1 Ones (SNO) . . v ¢ v v e v vt v a0 o oo 3-50
3.7.12 Skip on No Overflow (SNV) . ..o v ittt eneononsen 3-51
3.7.13 Skip on Not All Zeros (SNZ) . ¢ vttt v e o v oo a oo 3-52
3.7.14 Skip on Carry (SOC). 3-52
3.7.15 Skip on Odd (SOD) v v v v vt eevevenneseeenees. 3-53
3.7.16 Skip on Al1 Ones (SOO) v v v e v e o s s s o0 v s o oo o 3-54

iv Digital Systems Division

1‘_@@ 943013-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
3.7.17 Skip on Overflow (SOV). e s e s 0 b u s e e 3-55
3.7.18 SkiponPlus (SPL). . ¢t ¢t 0t v et vt v o0 a oo onsnes 3-55
3,7.19 Skip on Sense Switch Equal (SSE) ¢¢ 0o 3-56
3.7.20 Skip on Sense Switch not Equal (SSN). 3-57
3.7.21 SkiponZero (SZE) .« v v v v ot vt vttt o oo nenons 3-58
3.8 Shift InStruCtioNS . o o o« ¢ o ¢ o ¢ ¢ ¢ s s o 0 s 0 0o 00 s oo 3-58
3.8.1 Arithmetic Left Shift Register A (ALA) 3-59
3.8.2 Arithmetic Left Shift Double (ALD). s v v ¢ ¢ o ¢ s o o s & 3-59
3.8.3 Arithmetic Right Shift Register A (ARA) 3-60
3.8.4 Arithmetic Right Shift Double (ARD) . . . v o ¢ v v oo .. 3-61
3.8.5 Circular Left Shift Double (CLD) . v v ¢ ¢ ¢ ¢ ¢ o0 0 s s 3-62
3.8.6 Circular Right Shift Register A (CRA). 3-62
3.8.7 Circular Right Shift Register B (CRB). 3-63
3.8.8 Circular Right Shift Double (CRD) 3-64
3.8.9 Circular Right Shift Register E (CRE). 3-64
3.8.10 Circular Right Shift Register L (CRL). +. 3-65
3.8.11 Circular Right Shift Register M (CRM) 3-66
3.8.12 Circular Right Shift Register S(CRS) 3-66
3.8.13 Circular Right Shift Register X (CRX). 3-67
3.8.14 Logical Left Shift Register A (LLA) . . oo v vvenan 3-68
3.8.15 Logical Left Shift Double (LLD) . « ¢ v v v v 0 e v o .. 3-68
3.8.16 Logical Right Shift Register A (LRA) 3-69
3.8.17 Logical Right Shift Double (LRD) - e e 3-70
3.8.18 Left Test for Ones in Register A (LTO). . ¢ v v o vt 3-70
3.8.19 Left Test for Zeros in Register A (LTZ)o 3-71
3.8.20 Normalize (NRM) o v o v v o 6 s 06 00 o s 000sseessan 3-72
3,8.21 Right Test for Ones in Register A (RTO) 3-73
3.8.22 Right Test for Zeros in Register A (RTZ) 3-74
3.9 Logical InStructions . « « « ¢« ¢ o ¢« o o o 0 s e o s 0 s 0 0o oo 3-75
3.9.1 Logical AND with Register A (AND) « ¢ v et v v v e o 3-75
3.9.2 Logical OR with Register A (IOR). . ¢« ¢ e e o e v e v v o« 3-76
3.9.3 Register AND (RAN) .. ¢ vttt et v oo oo nooeosse 3-77
3.9.4 Register Exclusive OR (REO)ttt eennonee 3-77
3.9.5 Register OR (ROR) v v v v e vt ot et v ot a oo oo 3-78
3.10 Bit Manipulation Instructions. « « « « ¢ ¢ v v v v s s 0o s o o 3-79
3.10.1 Set Register A Bitto One (SABO) . . ¢+ c e e v v v v o 3-79
3.10.2 Set Register A Bitto Zero (SABZ) . ¢ ¢ o v v v v v v oo 3-80
3.10.3 Set Memory Bit to One (SMBO) ¢t ev e 3-81
3.10.4 Set Memory Bit to Zero (SMBZ). v ¢ v v e v e v s o v o o 3-82
3.10.5 Test Register A Bit for One (TABO) . . . v e v v 0 v v v 3-83
3.10.6 Test Register A Bit for Zero (TABZ) 3-83

v Digital Systems Division

[o]
%@ 943013-9701

TABLE OF CONTENTS (Continued)

Paragraph Title

3.10.7 Test Memory Bit for One (TMBO)
3.10.8 Test Memory Bit for Zero (TMBZ). « o .o v ...
3.11 Move INStrucCtioOns .« o ¢ o + ¢ o ¢ ¢ o s s s 0 0 0 s o s
3.11.1 Move Character String (MVC) . . .4 ¢ 0 v v o s
3.11.2 Register Exchange (REX) 4 ¢ o ¢ ¢ ¢ 0 00 ¢ s 0 o
3.11.3 Register Move (RMO). . ¢ v vt o s s 0 st o s oo
3.12 Input/Output Instructionso e oo o v oo
3.12.1 Auxiliary Processor Initiate (API)
3.12.2 Automatic Transfer Instruction (ATI)
3.12.3 Read Direct Single (RDS) . v v v v ¢t v v ot 0 0o
3.12. 4 Write Direct Single (WDS). v v v ¢ ¢ ¢ e 0o s 00 0

SECTION IV. ASSEMBLER CHARACTERISTICS AND

General @ v o v o o 0t v o s e e b e e b e s e e s e e e

SAP Coding Line Format . « .« ¢ v o v o s s 0
Segmented Source Programs « « « v v v v oo

L

SAP Error Messages . ¢« v o« v s o0 s 0 0 s 0
Assembler Directives .+ o v o o ¢ o s e s 0 00 ¢ o
Block Ending Symbol (BES) ¢+ v s s ¢ ¢ s 6 s«
Base Register Reset (BRR) . v v v v o s 0 s v s
Base Register Set (BRS) . v v ¢ ¢ v e 00 0 0o
Block Starting Symbol (BSS) . .4 v o s oo

. °
. - . . Y . .
B W N =

Blank Common (COMM) . ¢ ¢ e v s v s 0 ¢ oo
Generate Word Address or Data (DATA) ..
Define Entry Point Symbol (DEF) ¢ v v ¢ « s &
End of Source (END) . v ¢t ¢ ¢ o000 eo oo
Equate (EQU) « v v s s o o s o 006000 ososs
Flag Bit Address (FLAG) ¢ « ¢ « v « o s s o s
Format a New Instruction (FRM)

DO DN b=t b bt bt et b b O 00 -] O 0T N W

= O W oo JO0NUTLh WDN- O

Object Identifier (IDT) . v v s o s o oo s 0 o 0o
Conditional Assembly (IF). v o o ¢ o 6 0 0 o o
Start Listing (LIS) 4 ¢ « « ¢ s e s s 6 66 s s 00
Operation Define (OPD) ... ¢t ¢ v v oo oo
Origin (ORG) v v e s s s s s o 0o s s s 0 00ssee
Page Eject (PEJ). . ¢ v v e v v o s oo oo
Referenced External Symbols (REF) e e s o
Stop Listing (UNL). v ¢ v ¢ ¢ e 0 e s o0 000

N N N N O N N O N =
W W W W W WWWWWWIWWWWIWWWWWWWwNDNDNDNINe.

Generate Byte Address (BYTE) . .. ¢ e oo

Page Heading (HED) e @& 9 0 & 0 & ° 8 ° 0 O 0 * & o o

Symbolic Assembly Program (SAP)

SAP Object Format . . . L] . L] ° e o

3-92
s @ o o o 3-9‘4

DIRECTIVES
e e e e e 4-1
e 4-1
o e ve 4-5
e 4-7
4.8
 eea 4-8
c e e s e e 4-8
. 4-9
s e e e e 4-10
v e s e e o 4-10
4-11

e o © o s o 4-12

o e e 4-12
4-13
e e e 4-13
oo s e 4-15
o« o e e 4-16
4-16
v e e 4-17
e e e 4-18
v e e e 4-18
o oo e 4-18
4-19
e e e 4-19
e 4-21
oo e 4-21
4-2.2
e e e 4-22

Change 1 vi

Digital Systems Division

o) ’
@ 943013-9701

APPENDIXES
Appendix Title Page
A Instruction Execution Times. e e e e . A-1
B Alphabetical and Hexadecimal Instruction Indexes « « « « . B-1
C Illegal InStrllCtiOn operatiol’l COdeS. e 3 & ® & & @ & 0 o * » & o C"].

LIST OF ILLUSTRATIONS

Figure Title Page

Model 980 Computer Block Diagram « o o o o ¢+ ¢ o s ¢ s + » «
Register-Memory Instruction Fields. . . ¢ v o s v v v v o v

2-1 2-1

3-1 3-5

4-1 Source Coded Main Program « o « s o ¢ ¢ o« s 0 0 0 0 0 o o o 4-1
4"2 SOU.I‘CG COded Subroutine ® 8 6 o 8 92 © & o 8 & 0 © 5 & 0 0 s 8 s o & 4-2A
4-3 Assembled Main Program. « « « « o o « s s 0 6 s 006 00000 4-3
4 4 Assembled Subroutine . . L] . L] L] L] . . L] L L) . . * . L] . . L . . . 4 4
4-5 Example of BYTE and DATA Usage .+ ¢ s s 0080000 4-1

LIST OF TABLES

Table Title Page
1-1 RelatedManualsoooo-oocooooo-uo.oo.ooinooo 1-1
2-1 Model 980 Computer CharacteristiCs . o« o v o s s ¢ s o s « o 2-2
2-2 Model 980 Computer Addressable Registers. « o« « o v s « » 2-4
2"3 Status Register Bit FunctionS e & o 6 o 06 0 o+ 3 6 0 0 0 0 0o s o 2-5
2-4 MOdel 980 Computer Interl'upts s & © & &t @ © 0 o & & o 0 0 ¢ s 0 2"8
3-1 Model 980 Computer Machine Instructions by

Functional Group « « ¢ ¢ ¢ o o o o o 0 o 0 o s s 0 s e senoeas 3-1
3-2 Assembly Language Coding Format and

Instruction Execution Symbols . . ¢ ¢ v ot e 06 0o e o 3-5
3-3 Register-Memory Instruction Addressing

Modes and Coding Conventions . .« . . « o o oo 060000 3-6
4-1 SA-P Error Messages L] * L] L] L] . L] Ld e o e o L] . . L] . . . 4-8A
4-2 Model 980 Computer SAP Assembler Directives . + « . . . 4-9
Change 1 vii/viii Digital Systems Division

o
(_ri@ 943013-9701

SECTION I
GENERAL INFORMATION

1.1 SCOPE OF MANUAL

This is one of two manuals covering the Model 980 Computer assembly lan-
guage. This manual describes all of the Model 980 Computer machine in-
structions and the associated symbolic assembly language coding conventions.
Beginning with Section II, an overview of the Model 980 Computer is presented
with specific information on the hardware features that affect assembly lan-
guage. Section III presents the machine instructions and the symbolic coding
conventions. Section IV follows with a general description of the Symbolic
Assembly Program (SAP) and a list of assembler directives. Included in
Section IV are sample assembly listings produced by SAP. The appendixes
at the rear of the manual contain instruction execution times, an alphabetical
and numerical listing of instruction operation codes, and a table of illegal op-
eration codes.

1.2 REFERENCES

The second of the two manuals covering the Model 980 Computer assembly
language is Model 980 Computer Assembly Language Input/Output. It pro-
vides the information necessary to program input/output devices available
with the 980 at the assembly language level. The Model 980 Computer Basic
System Use and Operation manual or the DX980 GPOS Programmer's Guide
should be referenced for information on how to assemble, load, and execute
an assembly language program. The related software manuals and their
respective manual numbers are listed in table 1-1.

Table 1-1. Related Manuals

Manual Manual No.
Model 980 Computer Assembly Language Input/Output 961961-9734
Model 980 Computer Basic System Use and Operation 961961-9710
Model 980 Computer Programming Card 943000-9701
DX980 General Purpose Operating System Pro- 943005-9701
grammer's Guide

Change 1 1-1/1-2 Digital Systems Division

o]
{é@ 943013-9701

SECTION II
HARDWARE FEATURES

2.1 GENERAL

This section contains a brief block diagram discussion of the computer, a
table of computer characteristics, and a list of programmable registers. In-
cluded is a bit-by-bit breakdown of the status register.

2,2 COMPUTER ORGANIZATION

The computer is functionally organized into a central processing unit (CPU),
a memory, an input/output (I/O) unit, and a power supply. Figure 2-1 shows
a block diagram of the basic system. The Direct Memory Access Channel
(DMAC) is an I/O channel used for peripheral devices having a relatively fast

r 1
' I
: DATA IN |
GLEDE ' DMAC ATA QUT SEMICONDUCTOR l
S V. AD MEMORY
OR EXPANDER T INTERFACE DRESS, (32K MAX.) |
] CONTROL
r A 5 A '
-t
l A I
| x| 2| &
| 8l £| 2 I
1/0 INTERRUPT W), </ %] 8 |
I inTerFace ExeR - Q
| [SiNGLeoev, | FOUR {(4) |
| | or ExpanDER DATA BUS DATAIN _
i SINGLE DEV. S?QFETL,S ;:;“D DATA OUT CENTRAL |
- - PROCESSING
i OR EXPANDER INTERRUPT |CONTROL e '
SINGLE DEV. EXPANDER
| |_orexpanDer [|
| | sinGLE DEV. |
| LLOR ExPANDER [P I
| SPPLY
I |
| CONTROL |
[DATA IN |
| & ADDRESS |
AUXILIARY
SINGLE DEV.
| | or ExpANDER ﬁgggesson DATA OUT l
| DATA & CONTROL |
y
' |
| CONTROL I
PANEL
| [
L e o ____ 4

Figure 2-1. Model 980 Computer Block Diagram

2-1 Digital Systems Division

;_r@@ 943013-9701

rate of data transfer. The Data Bus is an I/O channel used for peripheral
devices having a relatively slow rate of data transfer. An auxiliary proces-
sor (AP) is used to add to the standard 980 instruction set. For example,
floating point arithmetic may be added or the instructions for another com-
puter may be emulated. Expansion of the DMAC, Data Bus, and AP ports
may be accomplished by using the optional twelve (12) connector chassis with-
in the Model 980 mainframe and/or an expansion chassis external to the
mainframe. Table 2-1 lists some of the more important characteristics of
the computer.

Tabel 2-1. Model 980 Computer Characteristics

Organization
° Parallel operation
° Single level indirect addressing
° Two's complement arithmetic
° Eight addressable fegisters, plus status register

e Bipolar ROM control for CPU

° Dynamic MOS/LSI semiconductor array memory

) 16-bit word length plus even parity (980A); 16-bit word
length plus 6-bit error correction/detection code (980B)

° Capacity, in 4096-word increments (980A); in 8192-word
increments (980B) ’

4096 words minimum (980A); 8192 words minimum (980B)

65536 words maximum (980A and 980B)

32768 in CPU chassis, 32768 external (980A); 65536 in
CPU chassis (980B) -

. All of memory can be directly addressed

. Power failure protection

. 750 nanosecond read or write cycle
® 500 nanosecond mermory access
Input/OQutput

° One direct memory access channel (DMAC) port, expandable
to eight

Single word parallel transfer
One million words per second burst rate

2-2 Digital Systems Division

L[E 943013-9701

Table 2-1. Model 980 Computer Characteristics (Continued)

° A processor-controlled data bus with 4 ports, expandable
to 256 ports

One 4-bit interrupt expander
16-bit parallel transfer
° Three priority interrupts

Vectored interrupts (highest priority)
DMAC interrupts
Data bus interrupts (lowest priority)

Instruction set

® 99 basic instructions (covered in Section III)

Other features
° Memory protect/privileged instruction feature (standard)

. Vectored (priority) interrupt option, up to 32 hardware
vectored interrupts (optional)

e Auxiliary Processor option (optional)
® Hardware bootstrap loader (standard)

® Internal expansion chassis for DMAC, data bus, and auxiliary
processors (optional)

° Internal battery for maintaining memory contents when power
is off (optional)

2.3 DATA AND INSTRUCTION FORMATS

Both the data and instruction words are 16 bits long. The bit positions within
a word are numbered 0 (most significant bit) through 15 (least significant bit).
Data is represented in binary two's complement form with bit 0 indicating the
algebraic sign. A zero in the first bit indicates a positive sign. The range
of integers representable in one 16-bit word is from -215 to +215 .1,

Double length operands such as products from multiplication, dividends for
divides, and quantities for double-length arithmetic shifts have the following
format: ' :

01 1616 17 31

S 15 MSB S 15 LS8

2-3 Digital Systems Division

o]
@ © 943013-9701

Input, output, and status register related instructions are 32 bits long and
occupy two consecutive 16-bit words. The register-to-memory instructions
may be 16, 32, or 48 bits long.

2.4 REGISTER ORGANIZATION

Eight 16-bit registers are directly addressable via the instruction formats
involving registers. These registers with their respective address, designa-
tion, and function are listed in table 2-2.

Table 2-2. Model 980 Computer Addressable Registers

Register . . i
Address Designation Function
0 A Primary arithmetic register.
1 E Secondary (extension) arithmetic register.
2 X Index register for operand address modi-
fication. '
3 M Maintenance register for temporary
storage.
4 S Storage register for temporary storage.
L Link register to hold return address for
' subroutine linkage.
6 B Base register to hold base address for op-
erands.,
7 PC Program counter to hold the address of the
next instruction.

In addition to these eight registers, the status register may be directly af-
fected by the instruction set. The status register is used to hold the present
condition of the computer and to enable or disable interrupts. The status
register together with the program counter constitutes the ''status block''.
The functions of the status register bits are listed in table 2-3.

2-4 Digital Systems Division

q_riﬁp 943013-9701

Table 2-3. Status Register Bit Functions

Bits Function
0,1 Compare Indicators - Indicate the result of the last compare
operation,
00 - less than
01 - equal to

10 - greater than
11 - unused bit setting

2 Overflow Indicator - Turned on or off by those instructions that
may result in a number that is outside of the range of the asso-
ciated register(s).

3 Carry Indicator - Turned on or off by an add or subtract in-
struction that may result in a carry into the sign bit of a regis-
ter.

4 Privileged Instruction and Memory Protect Interrupt Control

0 - Disabled
1 - Enabled
5 Memory Protect Address Violation - May not be set under pro-

gram control.

0 - No Violation
1 - Violation

6 PIF* Instruction Violation - May not be set under program con-
trol,

0 - No Violation
‘1 - Violation

7 Data Bus Interrupt Control

0 ~ Disabled
1 - Enabled

8 Vectored Interrupt Feature

0 - Disabled
1 - Enabled

*PIF - Privileged Instruction Feature

2-5 Digital Systems Division

[e]
{_@? 943013-9701

Table 2-3. Status Register Bit Functions (Continued)

Bits Function
9 PIF* Lower Limit Address Bias
0 - Disabled
1 - Enabled
10 Index Control
0 - Post Indexing
1 - Pre-indexing
11 Memory Parity Error Interrupt Control
0 - Disabled
1 - Enabled
12 DMAC Interrupt Control
0 - Disabled
1 - Enabled
13 Not Used
14 Memory Parity Error Indicator - May not be set under pro-
gram control.
0 - No Error
1 - Error
15 Power Fail Indicator - One millisecond (980A) or 20 millisec-
ond (980B) warning that power failure is imminent. May not be
set under program control.
0 - Power Up
1 - Power Failure Imminent

#*PIF - Privileged Instruction Feature

2.5 MEMORY PROTECT/PRIVILEGED INSTRUCTION FEATURE

When enabled, the memory protect/privileged instruction feature (MP/PIF)
allows program execution to occur only within a specified area of memory.

It also causes certain instructions to be treated as illegal.

be used to protect the operating environment from destruction during execu-
tion of an undebugged program.

The system may use this feature to prevent a user program from inadvertent-

ly storing data over a system program or another user program. The

2-6 Digital Systems Division

This feature may

{i?@ 943013-9701

MP/PIF can also prevent program execution from proceeding beyond the re-
gion that the given program occupies in memory; thus, a program cannot in-
advertently branch into the middle of another program. Finally, when the
MP/PIF is enabled, a user can neither disrupt input/output activity that the
system has in progress nor bring the computer to an idle.

Before enabling the MP/PIF feature, it is first necessary to load the MP/PIF
lower limit and upper limit registers that define the limits within which ex-
ecution will be constrained. Both registers are loaded using the WDS instruc-
tion (refer to paragraph 3.12.4) just as if the MP/PIF registers were exter-
nal to the computer. Register address zero defines the lower limit and re-
gister address one defines the upper limit. These boundary locations and all
memory outside of the boundaries are protected by the MP/PIF feature. The
MP/PIF feature is then enabled by setting bit 4 of the status register.

2.6 PROGRAM RELOCATION FEATURE

The program relocation feature (PRF) allows a program to be loaded any-
where within the 980 memory, but to execute as though it were loaded start-
ing at memory location zero. When used by a system program, this allows
programs to be moved from one point in memory to another with no affect on
the operation of the program. It also allows programs to be stored in an ab-
solute rather than relocatable form, thus requiring less storage space.

The lower limit register used by the MP/PIF is also used by the PRF. If the
system sets bit 9 of the status register at the time control is transferred to
the user program, the contents of the lower limit register plus one is added
into the address calculations for each memory access. For example, sup-
pose a program is assembled as an absolute program with origin at location
0000y4. Also, suppose that the entry point to the program is location 002074,
and that it is convenient for the system to load the program at location
10003¢. The system loads the program starting at 10001¢, places 0FFF ¢
in the lower limit register, and performs an LSB instruction (refer to para-
graph 3.4.5) to transfer to the program. The LSB must set bit 9 of the sta-
tus register and load the program counter with 00201¢. Note, that although
the instruction executed is at 1020y¢, the program counter contains 002074.
If, for instance, a trap were to occur, the value 00204 in the program
counter would be saved for the return.

2.7 PRIORITY INTERRUPT FEATURE

The Model 980 Computer responds to four different types of interrupts.
These interrupts, in order of priority include: internal interrupt, vectored
interrupt option, DMAC interrupt, and data bus interrupt. The three lower
priority interrupts are input/output interrupts, and their occurrence depends
on the system hardware configuration. The internal interrupts include the
detection of imminent power failure, an illegal operation code, a memory
parity error, a memory protect violation, and a privileged instruction viola-
tion. When any internal or input/output interrupt occurs, computer control

2-7 Digital Systems Division

[o]
{@ 943013-9701

traps to low order memory as listed in table 2-4, assuming the proper status
register bits are set to enable the interrupt. Note that the power failure and
illegal operation code interrupts cannot be masked by the status register.

Table 2-4. Model 980 Computer Interrupts

Trap Status Register Bits
Interrupt Type Address
(Hex) Mask Bit Interrupt Bit
Internal
Power fail 0002 - 15
Illegal op-code 0002 - @
Parity error 0002 11 14
MP violation ' 0002 4 5
PIF violation 0002 4 6
0008®
Vectored (Optional) . 8 -
0046
DMAC 0004 12 -
Data Bus 0006 7 -

NOTES:

(@ The illegal op-code interrupt is detected when none of the other in-
ternal interrupts cause the trap to 0002;.

(® The optional vectored interrupt feature may include up to 32 sepa-
rate trap locations, beginning with the highest priorities at 0008;¢,
000A1¢, 000C14, etc. to the lowest priority at 0046]6.

Programming all four types of interrupts is covered in detail in the Model
980 Computer Assembly Language Input/Output manual.

2-8 Digital Systems Division

B o
&@ © 943013-9701
SECTION III

MACHINE INSTRUCTIONS AND CODING CONVENTIONS

3.1 GENERAL

This section describes the machine instructions and the related assembly lan-
guage coding conventions for the Model 980 Computer. Table 3-1 groups the
99 instructions by function, and references a separate paragraph on each in-
struction for more detailed information. Appendix B contains an alphabetical
and hexadecimal index to these same paragraph numbers. General coding
conventions applicable to the label, operation, operand, and comment fields
of the symbolic assembly language are covered in Section IV of this manual.
3.1.1 INSTRUCTION DESCRIPTIONS

Each instruction description referenced in table 3-1 contains the following in-
formation about the instruction:

° Instruction word field breakdown

° Description of instruction execution

° Status register bits affected by instruction execution
° Execution time

) Assembly language coding conventions

° Instruction example

Table 3-1. Model 980 Computer Machine Instructions
by Functional Group

Mnemonic Description Paragraph No.

e Load Instructions

DLD Double Load Registers A and E 2.1
LDA Load Register A 2.2
ILDE Load Register E .3
LDM Load Register M 2.4
ILDX Load Register X .2.5
LRF Load Register File 6

e Store Instructions

W wwww W W W wwww w
L]] . .
W wwww w [SCI O S I AS N U R WS oV [\

DST Double Store Registers A and E .1
SRF Store Register File .3.2
STA Store Register A .3.3
STE Store Register E .3.4
STX Store Register X .3.5

3-1 Digital Systems Division

(o)
{@ 943013-9701
Table 3-1. Model 980 Computer Machine Instructions
by Functional Group (Continued)
Mnemonic Description Paragraph No.
e Branch Instructions 3.4
BIX Branch on Incremented Index 3.4.1
BRL Branch and Link 3.4.2
BRU Branch Unconditional 3.4.3
IDL Idle 3.4.4
L.SB Load Status Block and Branch 3.4.5
LSR Looad Status Block, Reset In-
terrupt, and Branch 3.4.6
SSB Store Status Block and Branch 3.4.7
o Arithmetic Instructions 3.5
ADD Add to Register A 3.5.1
DAD Double Length Add 3.5.2
DIV Divide 3.5.3
DSB Double Length Subtract 3.5.4
IMO Increment Memory by One 3.5.5
MPY Multiply 3.5.6
RAD Register Add 3.5.7
RCO Register Complement 3.5.8
RDE Register Decrement 3.5.9
RIN Register Increment 3.5.10
RIV Register Invert 3.5.11
RSU Register Subtract 3.5.12
SUB Subtract from Register A 3,5.13
o Compare Instructions 3.6
CLC Compare Logical Character String 3.6.1
CPA Compare Algebraic 3.6.2
CPL Compare Logical 3.6.3
RCA Register Compare Algebraic 3.6.4
RCL Register Compare Logical 3.6.5
e Skip Instructions 3.7
DMT Decrement Memory and Test 3,7.1
SEQ Skip on Equal 3.7.2
SEV Skip on Even 3.7.3
SGE Skip on Greater Than or Equal 3.7.4
SGT Skip on Greater Than 3.7.5
SLE Skip on Less Than or Equal 3.7.6
SLT Skip on Less Than 3.7.7

Digital Systems Division

{{/\]@ 943013-9701

Table 3-1. Model 980 Computer Machine Instructions
by Functional Group (Continued)

Mnemonic Description Paragraph No.

e Skip Instructions (Continued)

SMI Skip on Minus 3.7.8
SNC Skip on No Carry 3.7.9
SNE Skip on Not Equal 3.7.10
SNO Skip on Not All Ones 3.7.11
SNV Skip on No Overflow 3.7.12
SNZ Skip on Not All Zeros 3.7.13
SOC Skip on Carry 3.7.14
SOD Skip on Odd 3.7.15
SO0 Skip on All Ones 3.7.16
SOV Skip on Overflow 3.7.17
SPL Skip on Plus 3.7.18
SSE Skip on Sense Switch Equal 3.7.19
SSN Skip on Sense Switch Not Equal 3.7.20
SZE Skip on Zero 3.7.21
e Shift Instructions 3.8
ALA Arithmetic Left Shift Register A 3.8.1
ALD Arithmetic Left Shift Double 3.8.2
ARA Arithmetic Right Shift Register A 3.8.3
ARD Arithmetic Right Shift Double 3.8.4
CLD Circular Left Shift Double 3.8.5
CRA Circular Right Shift Register A 3.8.6
CRB Circular Right Shift Register B 3.8.7
CRD Circular Right Shift Double 3.8.8
CRE Circular Right Shift Register E 3.8.9
CRL Circular Right Shift Register L 3.8.10
CRM Circular Right Shift Register M 3.8.11
CRS Circular Right Shift Register S 3.8.12
CRX Circular Right Shift Register X 3.8.13
LLA Logical Left Shift Register A 3.8.14
LLD Logical Left Shift Double 3.8.15
LRA Logical Right Shift Register A 3.8.16
LRD Logical Right Shift Double 3.8.17
LTO Left Test for Ones in Regﬁster A 3.8.18
LTZ Left Test for Zeros in Register A 3.8.19
NRM Normalize 3.8.20
RTO Right Test for Ones in Register A 3.8.21
RTZ Right Test for Zeros in Register A 3.8.22

3-3 Digital Systems Division

[}
\;‘_@? 943013-9701

Table 3-1. Model 980 Computer Machine Instructions
by Functional Group (Continued)

Mnemonic Description Paragraph No.
o Logical Instructions 3.9
AND Logical AND with Register A 3.9.1
IOR Logical OR with Register A 3.9.2
RAN Register AND : 3.9.3
REO Register Exclusive OR 3.9.4
ROR Register OR 3.9.5
o Bit Manipulation Instructions 3.10
SABO Set Register A Bit to One 3.10.1
SABZ Set Register A Bit to Zero 3,10.2
SMBO Set Memory Bit to One 3.10.3
SMBZ Set Memory Bit to Zero 3.10. 4
TABO Test Register A Bit for One 3.10.5
TABZ Test Register A Bit for Zero 3.10.6
TMBO Test Memory Bit for One 3.10.7
TMBZ Test Memory Bit for Zero 3.10. 8
¢ Move Instructions 3.11
MVC Move Character String 3.11.1
REX Register Exchange 3.11.2
RMO Register Move 3.11.3
e Input/Output Instructions 3.12
API Auxiliary Processor Initiate 3.12.1
ATI Auytomatic Transfer Instruction 3.12.2
RDS Read Direct Single 3.12.3
WDS Write Direct Single 3.12. 4

The status register bits are defined in table 2-3. The symbols used in pre-
senting the instruction assembly language coding formats and the symbols
used in presenting an abbreviated form of instruction execution are listed in
table 3-2. The symbols and directives used in the instruction examples are
explained in Section IV.

3-4 Digital Systems Division

{@Zi} 943013-9701

Table 3-2. Assembly Language Coding Format
and Instruction Execution Symbols

Symbol Definition
() Contents of enclosed register or ad-
Instruction dress
Execution Replaces
g * Indirect addressing
@ Extended format
Assembly .
= Immediate operand
Language
Coding [] Optional item
Format Lower case alpha- User supplied item
betic characters
q) Required blank space (one or more)

3.1.2 ADDRESSING MODES

The computer instruction set can be broken down into a number of different
format types. The addressing modes associated with all but one of the for-
mat types are straightforward, and are included in the individual instruction
descriptions. The remaining instruction format type, register-memory in-
structions, is more involved and is described in this paragraph and refer-
enced by the instruction descriptions when applicable.

The format of register-memory instructions is shown in figure 3~1. The ad-
dressing mode is determined by the I, X, and B fields as shown in table 3-3.

BITS O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
" ol D=DISPLACEMENT @ |
DEPENDING | oP=oPERATION |1 | x|B | OR*
CODE SD=SIGNED DISPLACEMENT

ON I1,X,
AND B
FIELDS, 0<D< 25 1=INDIRECT ADDRESS

< 255
—128<sSD<127 X=INDEXING
= B=BASE RELATIVE ADDRESS

Figure 3-1. Register-Memory Instruction Fields

3-5 Digital Systems Division

"{iy@ 943013-9701

Table 3-3. Register-Memory Instruction Addressing
Modes and Coding Conventions

Symbolic Coding
IXB . Effective Operand Conventions Addressing
i A
Bits Address, EO Operation Operand Mode
000 (PC)® + SD MNU® ADRS® PC relative
; @MNU -Nnum®, ®
@MNU NUM, 7
001 (B)®+ D MNU ADRS, Base register
MNU ADRS relative
010 (PC) + (X)®+ SD MNU ADRS, 2 Indexed PC
relative
011 (B)+ (X)+D MNU ADRS, 3 Indexed base
MNU ADRS, 2@ register
relative
100 ((PC) + SD) MNU *ADRS Indirect PC
MNU *ADRS, 4 relative
MNU ADRS,
@MNU ADRS
101 ({B) + D) MNU *ADRS, 1 Indirect base
MNU *ADRS, 5 register
MNU ADRS, 5 relative
MNU *ADRS@
110 ((PC) + SD) + (X)® MNU *ADRS, 6 Indirect,
((PC)+ (X) + sD)® MNU *ADRS, 2 indexed,
MNU ADRS, 6 PC relative
@MNU ADRS, 20, ©®
111 Immediate value MNU =NUM Immediate
is the SD MNU NUM, 7
NOTES:

@ PC - Program Counter (points to next instruction); B - Base Register;
X - Index Register; MNU - Instruction Mnemonic.

(® Symbolic name of address.

@ Number, literal, or address.

@ Under BRS directive.

@ All extended format instructions are regarded as PC relative because the
assembler zeros the SD field. This means the computer must add the PC to
the zeroed SD to locate the extended data/address. Note that the computer
increments the PC to the next location before the instruction is executed.

@ Post-indexing, regardless of status register bit 10.

@ Post-indexing if status register bit 10 = 0,

Pre-indexing if status register bit 10 = 1.

3-6 Digital Systems Division

{@(‘D 943013-9701

To fully understand table 3-3, all of paragraph
3.1.2 and 3.1, 3 must be read.

NOTE

In general, calculation of the Effective Operand Address (EOA) of the mem-
ory data involved in the instruction includes indirect addressing if bit I is set,
indexing if bit X is set, and base relative addressing if bit B is set. If all
three of these bits are set, an immediate operand is assumed by the com- °
puter. If immediate addressing is specified for a load, add, subtract, or
algebraic compare instruction, the displacement field (D) is treated as an
8-bit signed quantity and bit eight is extended through bits 0 to 7 to provide a
16-bit operand. If immediate addressing is specified for a store instruction,
D is treated as the EOA.,

The index control bit:fin the status register permits optional pre-indexing or
post-indexing. This controls the relation of indexing to indirect addressing.

If the index control bit is one, indexing precedes indirect addressing. If the
index control bit is zero, indexing follows indirect addressing. If indirect
addressing is not involved, the two modes are equivalent. Additional address-
ing capability is available with the optional memory protect/privileged in-
struction feature. If status register bit 9 is set, the lower limit address is
added to the computer calculated address for every memory access.

Table 3-3 also lists the symbolic coding conventions available with register-
memory instructions, and hence shows the transliteration process performed
by the assembler in developing the I, X, and B fields. In order to translate
the operand address expression of a register-memory instruction, the as-
sembler first evaluates the expression as a 16-bit number and then modifies
the expression in one of the following ways:

° For program counter relative instructions, a number one greater
than the assembler location counter is subtracted.

° For base register relative instructions, the base register value or
the number associated with a BRS directive (refer to Section IV of
this manual) is subtracted.

° For extended format instructions (described in next paragraph), the
expression remains unmodified.

. For single length immediate instructions, or base register relative
instructions under the BRR directive (refer to Section VII of this
manual), the expression is truncated to an eight-bit value.

° If the resulting address is unattainable under the defined conditions,
a field size error is indicated by the assembler.

3-7 Digital Systems Division

o]
@ 943013-9701

3.1.3 EXTENDED FORMAT ADDRESSING

It is possible to extend the format of certain register-memory instructions
and to include data or indirect addresses within these instructions. When
this feature is used, the instruction is referred to as an extended format in-
struction. The extended format instruction coding forms are flagged by note
5 in table 3-3. The assembler interprets the coded instruction and fills the
I, X, B and SD fields as follows:

° If the I, X, B, and SD fields are 0, O, 0, 0, respectively, the next
sequential location in memory is used for the operand, and the pro-
gram counter is incremented a second time. (The first increment
is normal to locate the next word in memory). If the instruction is
of the double precision type, such as DLD, DST, DAD, or DSB, the
next two sequential memory locations are used for the operand, and
the program counter is incremented a third time. The assembler,
in this case, generates only one word of data for these double-length
instructions. The programmer must supply the second word, typi-
cally with a DATA directive.

° If the I, X, B, and SD fields are 1, 0, 0, 0, respectively, the effec-
tive address is obtained from the next sequential location in mem-
ory, and the program counter is incremented a second time.

° If the I, X, B, and SD fields are 1, 1, 0, 0, respectively, the con-
tent of the next sequential memory location is added to the content
of the index register to form the effective addre ss, and the program
counter is incremented a second time.

NOTE

The indexing is unconditionally performed as post-
indexing for double-word instructions; bit 10 of the
status word is ignored in this case.

3.2 LOAD INSTRUCTIONS

The load instructions listed in table 3-1 are described in the following para-
graphs.

3.2.1 DOUBLE LOAD REGISTERS A AND E (DLD)

Machine Format: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T Y T T T T T T T T

1 (o) 1 1 O 1 X} B D
| —
=V
OP—-CODE

Instruction Execution: (EOA,EOA+]1)—(A,E) where EOA is developed in
accordance with table 3-3.

Change 1 3-8 Digital Systems Division

%@9 943013-9701

Description: Register A is loaded with the contents of the effective operand
address, EOA, and register E is loaded with the contents of the EOA plus
one. If the IXB fields are 7;¢ (immediate addressing), load E with the sign

extended displacement field, D, and load A with the extended sign (all zeros
or all ones).

Change 1 3- éA /3-8B Digital Systems Division

[e]
@@ 943013-9701 DLD, LDA

Status Affected: None

Execution Time: 1.00 to 4. 00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the DLD instruction. The DLD mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
Examples: Before After
DLD $+1 LA = 0054;¢ AE30;,
DATA >AE30, >3239 (E) = 16BCyq 323916
(EOCA) = AE307¢ No change
(EQA+1) = 3239;¢ No change
@DLD BASE
: = (A) = CC457¢ 1064;¢
BASE DATA >1064, >7558 (E) = AO0AO01¢ 755816
' (EOA) = 106454 No change
(EOA+1) = 1755816 No change
3.2.2 LOAD REGISTER A (LDA)
Machine Format: : 0O 1t 2 3 4 5 6 7 Zve 9 10 11 12 13 14 15
L 1] T L [] T T LI 1 I)
0.0 o o olt]|xl]s. . D
) OP—CODE
Instruction Execution: (EOA)——(A) where EOA is developed in accor-

dance with table 3-3,

Description: Register A is loaded with the contents of the effective operand
address, EOA, If the IXB fields are 716 (immediate addressing), load A
with the sign extended displacement field, D.

Status Affected: None

Execution Time: 0.75 to 2. 75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the LDA instruction, The LDA mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

3-9 Digital Systems Division

q@ 943013-9701

Examples: Before After
LDA = -1 = (A) 05A316 FFFF16

(ECA) = 07FFjq No change
HERE LDA $ = (A) = F6EF;, 00FFyq
(HERE) = O00FF1¢ No change
3.2.3 LOAD REGISTER E (LDE)
Machine Format: o t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T 1 T 1 T T T 7
o o o o 1|1lx]s D
L} \ /
OP—CODE
Instruction Execution: (EOA)— (E) where EQOA is developed in accor-

dance with table 3-3.

Description: Register E is loaded with the contents of the effective operand
address, EOA. If the IXB fields are 7]¢ (immediate addressing), load E with
the sign extended displacement field, D.

Status Affected: None

Execution Time: 0.75 to 2.75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding formats
available with the LDE instruction. The LDE mnemonic replaces the MNU
operation field (in table 3-3) and optional label and comment fields may be

used.
Example: Before After
LDE BOT, 2 - (E) = A6B716 033376
. (X) = 0001y¢ No change
BOT DATA >F,>0333 (EQA) = 033374 No change

3.2.4 LOAD REGISTER M (LDM)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
T T T T L T T | 1 | 1

0 o o L | 1 X|B . D

OP—CCDE

Instruction Execution: (EOA)—— (M) where EOA is develof)ed in accor-
dance with table 3-3.

3-10 Digital Systems Division

(o]
&@ 943013-9701 LDE, LDM, LDX

Description: Register M is loaded with the contents of the effective operand
address, EOA. If the IXB fields are 716 (immediate addressing), load M
with the sign extended displacement field, D.

Status Affected: None

Execution Time: 0.75 to 2.75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the LDM instruction. The LDM mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
Example: Before After
EXEC @LDM =PRB (M) = 112474, Address of
: => PRB
PRB DATA >0006 (EXEC+1) = Address No change

DATA >0000 of PRB
DATA >0050, BUFFER

3.2.5 LOAD REGISTER X (LDX)

Machine Format:

(o] 1 2 3 4q 5 6 7 8 9 10 11 12 13 14 15
T T T T T T 1 1 1 | LB 1

o o o 1 o|1]|x]|s D
\ v /
OP—CODE
Instruction Execution: (EOA)— (X) where EOA is developed in accor-

dance with table 3-3.

Description: Register X is loaded with the contents of the effective operand
address, EOA. If the IXB fields are 716 (immediate addressing), load X
with the sign extended displacement field, D.

Status Affected: None

Execution Time: 0.75 to 2. 75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the LDX instruction. The LDX mnemonic replaces the
MNTU operation field (in table 3-3) and optional label and comment fields may

be used.
Example: Before After
CHCT ILDX = =32 = (X) = 000034 FFEO1¢

a
o
Q
&
f

17E01¢ No change

3-11 Digital Systems Division

o]
{@ 943013-9701

3,2.6 LOAD REGISTER FILE (LRF)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 T T T T T T T T T T T
WORD | ARBITRARY
ORD 1 1 1 o 1 1 o O o}1 o 1 BIT SETTINGS
\ “ /
OP—CODE
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
] | 1 ! 1 I LR I | I I | 1
WORD 2 Y=MEMORY ADDRESS

Instruction Execution: (Y, Y+1,Y+2, Y+3, Y+4,Y+5,Y+6)— (A,E, X, M, S, L, B)

Description: Registers A, E, X, M, S, L, and B (the register file) are

loaded from sequential memory locations
Y (second word of the instruction).

Status Affected: None

Execution Time: 7.00 microseconds

Symbolic Coding: The assembly language
structions are as follows:

Label Operation Operand
[label] B @LRF %} adrs B [
or
[label] B LRF ¥ [
[label] ¥ DATA ¥ adrs ¥ [
Example:
@QLRF MEMA

MEMA DATA

starting at the address specified by

coding formats for the LRF in-

Comment

comment] where "adrs'' is the
symbolic name of a
16-bit memory

comment] address.

comment]

>0300, >06AA,>FFEO, >1A61,>0000,>1121,>8A04

Before (Hex) After (Hex)

(A) = 0000 0300

(E) = 0002 06AA

(X) = FFFF FFEO
Register file (M) = 200D 1A61

(S) = 0C00 0000

(L) = FAO0O 1121

(B) = 0601 8A04

3-12

Digital Systems Division

(o]
{é@ 943013-9701 LRF, DST, SRF

3.3 STORE INSTRUCTIONS

The store instructions listed in table 3-1 are described in the following para-
graphs.

3.3.1 DOUBLE STORE REGISTERS A AND E (DST)

Machine Format:

0O 1t 2 3 4 5 6 7 8 9 10 1112 13 14 15
T 1 1 T T T T T 1

1 0 1 o0 o]l 1X|8B D

OP—CODE

Instruction Execution: (A, E)— (EOA, EOA+1) where EQOA is developed in
accordance with table 3-3,

Description: Store the contents of register A into the contents of the effective
operand address, EOA, and store the contents of register E into the contents
of EOA plus one. If the IXB fields are 7y¢ (immediate addressing), the dis-
placement field, D, is the EOA,

Status Affected: None

Execution Time: 2.75 to 4.00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the DST instruction. The DST mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
Example:
DST TOP Before After
. (A, E) = 4441,¢,4D4E ¢ No change
. =>
TOP BSS 2 (TOP, TOP+1) = 4C557¢,434B1¢ 4441,¢,4D4E ¢

3.3.2 STORE REGISTER FILE (SRF)

Machine Format:

o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LI LI L V1T 1T 1

WORD 1 ARBITRARY
! t o1 1t o o o}t ! ! BIT SETTINGS

OP—CODE

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
—TrTrTr T T T T T T 1

WORD 2 Y=MEMORY ADDRESS

3-13 Digital Systems Division

{@@ 943013-9701

Instruction Execution: (A, E,X,M,S, L, B) (Y, Y+1, Y+2, Y+3, Y+4, Y+5, Y+6)

Description: Store the contents of registers A, E, X, M, S, L, and B (reg-
jister file) into sequential memory locations starting at the address specified
by Y (second word of the instruction).

Status Affected: None

Execution Time: 7.00 microseconds

Symbolic Coding: The assembly language coding formats for the SRF instruc-
tion are as follows:

Label Operation Operand Comment

[1abell] ¥ @SRF B adrs ¥ [comment] where "'adrs'' is the
symbolic name of a
16-bit memory
[1abel] B SRF ¥ [comment] address.

[1abell] B DATA ¥ adrs ¥ [comment]

or

Example:
SRF Before (Hex) After (Hex)
DATA SAVE (A) = 0001
. (E) = DEO3
) (X) = 0004
SAVE BSS 7 ﬁclaeglster (M) = 0101 No change
(S) = FFFF
(L) = 23A3
(B) = 0800
/(SAVE) = FAO03 0001
(SAVE+1) = 0004 DEO03
Mermor }(SAVE+2) = FFDE 0004
loﬁmdg’s (SAVE+3) = DES0 0101
- ’(SAVE+4) = 3A40 FFFF
(SAVE+5) = 11AB 23A3
\(SAVE+6) = CE00 0800

3.3.3 STORE REGISTER A (STA)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1T T 7 UL L

i1 0 0 o0 o 1| X|B ‘D

3-14 Digital Systems Division

[¢]
{—i@? 943013-9701 STA, STE

Instruction Execution: (A)— (EOA) where EOA is developed in accordance
with table 3-3.

Description: Store the contents of register A into the contents of the effective
operand address, EOA. If the IXB fields are 74 (immediate addressing),
the displacement field, D, is the EOA,

Status Affected: None

Execution Time: 2.00 to 3.00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the STA instruction. The STA mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
Example: Before After
STA DEST,1 = (A) = D8C016 No change
(DEST) = 064216 D8C016

3.3.4 STORE REGISTER E (STE)

Machine Format:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LR N A D D N
1 0 0o o 1|1]x]|B D

OP—CODE

Instruction Execution: (E)— (EOA) where EOA is developed in accordance
with table 3-3.

Description: Store the contents of register E into the contents of the effective
operand address, EOA. If the IXB fields are 716 (immediate addressing),
the displacement field, D, is the EOA.

Status Affected: None

Execution Time: 2.00 to 3.00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the STE instruction. The STE mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
Example:
STE =6 => Before After
(E) = 1AE91¢ No change
(Memory location 6) = 788By ¢ 1AE916

3-15 Digital Systems Division

]
@ 943013-9701

3.3.5 STORE REGISTER X (STX)

Machine Format:

o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T 1 | L A R L
1 o o 1 oli}|x]s. D

OP—CODE

Instruction Execution: (X)—(EOA) where EOA is developed in accordance
with table 3-3.

R e

operand address, EOA. If the IXB fields are 714 (immediate addressing)
the displacement field, D, is the EOA.

Status Affected: None

Execution Time: 2.00 to 3.00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the STX instruction. The STX mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
@STX FARAWY,2 = Before After
(X) = 000214 No change
(FARAWY+2) = 1007714 000214

NOTE

The content of register X is both stored and used as
the index.

3.4 BRANCH INSTRUCTIONS

The branch instructions listed in table 3-1 are described in the following
paragraphs.

3-16 Digital Systems Division

[o]

[7 943013-9701 STX, BIX

3.4.1 BRANCH ON INCREMENTED INDEX (BIX)

Machine Format:

o] 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
| Ll I 1 1 T LI) LI
o) 1 0O 0O o011 X]B D

Instruction Execution: (X)+1— (X); if (X) # 0, EOA — PC
if (X) = 0, PC is not affected
where EOA is developed in accordance with table 3-3.

Description: Increment the contents of register X by one: if the resulting X
register value is non-zero, place the effective operand address, EOA, in the
program counter and continue execution from that point; if the resulting X

register value is zero, continue execution with the next sequential instruction.

If the IXB fields are 7y¢ (immediate addressing), the displacement field, D,
is the EOA. The BIX instruction is commonly used in loop control where
register X contains a negative loop count.

NOTE

The extended format BIX instruction is allowed
since an extra program counter increment occurs
on the fall through condition. If the BIX instruc-
tion is single length, the IXB bits are zero, and

the displacement field is zero, the next word is
skipped when the X register is incremented to zero.
When the X register is incremented to a non-zero
quantity, the next word is executed.

Status Affected: None

Execution Time: 1.25 to 2.25 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the BIX instruction. The BIX mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

Example: Before After
BIX DOG = (X) = FFA616 FFA716 where the BIX in-

struction is at 1B6416

(PC) and DOG is at 1B20;¢.

1B64 ;¢ 1B207

3-17 Digital Systems Division

Wbl W e e el sme

o
@ 943013-9701

The following instruction application example illustrates use of the BIX in-
struction to sum a buffer's contents.

ILDX =-32
LDA =0
LOOP ADD BUFFER+32,2

BIX LOOP

BUFFER BSS 32

3.4.2 BRANCH AND LINK (BRL)

Machine Format:

o} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T T T T T 1 i 1
o 1 1 1 O 1 Xl B D
\ Ve 7
OP—CODE

Instruction Execution: (PC)—(L); EOA — (PC) where EOA is developed
in accordance with
table 3-3.

Description: Load the contents of the program counter into the link register,
L, place the effective operand address, EOA, in the program counter, and
continue execution from that point. If the IXB fields are 7;¢ (immediate
addressing), the displacement field, D, is the EOA. The BRL instruction is
commonly used for subroutine linkage. To return, the subroutine typically
uses either an RMO L, P or REX L, P instruction. The return may also be
accomplished by storing the contents of the link register in memory and
branching indirectly through that memory location with a BRU instruction.

NOTE

The extended format BRL instruction places the
address of the first word beyond the double-length
BRL instruction in the link register.

Status Affected: None

Ixecution Time: 1.50 to 2.50 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the BRL instruction. The BRL mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

3-18 Digital Systems Division

o]
(5\ 943013-9701 BRL, BRU

Example: Before After
BRL CAREA = (L) = 032A5, 055E ¢ where CAREA is at

058074 and in the range

(PC) -128< PC <127.

055D16 058016
The following instruction application example illustrates use of the BRL in-
struction to execute a subroutine.

(Main program)

BRL WRITE

WRITE EQU $ (Write subroutine)

RMO 5,7 (Return to instruction following BRL WRITE)

3.4.3 BRANCH UNCONDITIONAL (BRU)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP—CODE

Instruction Execution: EOA — (PC) where EOA is developed in accordance
with table 3-3.

Description: Place the effective operand address, EOA, in the program
counter and continue execution from that point. If the IXB fields are 7y
(immediate addressing), the displacement field, D, is the EQA.

NOTE

The extended format BRU instruction alters the
program counter in the same manner as single-
length BRU instructions.

Status Affected: None

Execution Time: 1.00 to 2.25 microseconds (refer to Appendix A)

3-19 Digital Systems Division

@Q 943013-9701

Symbolic Coding: Refer to table 3-3 for the assembly language coding formats
available with the BRU instruction. The BRU mnemonic replaces the MNU
operation field (in table 3-3) and optional label and comment fields may be

used.
w Before After
@BRU TAB,2 = (PC) = 1B1316 085016 where TAB is at
(X) = 00507¢ No change 0800, 4.
3.4.4 IDLE (IDL)
Machine Format:
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 1 1 T 1 T 1 1 1
OPTIONAL
1 1+ oo|t1t 1 1 olo o o o n
FIELD
OP—CODE

Instruction Execution: HALT

Description: The idle instruction causes the computer to pause. If the idle
instruction is encountered in the RUN mode, the RUN indicator is turned off
and the IDLE indicator is turned on. If the MODE switch is left in the RUN
position, the computer re-enters the RUN mode if an interrupt occurs or if
the START switch is activated. The IDLE indicator is turned off if the
MODE switch is placed in the HALT position. If the MODE switch is placed
in the SIE position and an idle instruction is encountered during single in-
struction execution, the IDLE indicator is turned on. If an interrupt occurs
in the SIE mode after encountering an idle instruction, the instruction in the
appropriate trap location is automatically executed and the IDLE indicator is
turned off. The idle instruction is restricted, meaning it is considered
illegal if the memory protect/privileged instruction feature is enabled.

NOTE

This instruction is commonly used in catastrophic
sequences such as a power failure condition. All
conditions and registers are preserved in mem-
ory, specific interrupt mask conditions are estab-
lished, and the IDL is executed. Subsequently,
when power is restored, or an interrupt is issued
which indicates a clearing of the catastrophic sit-
uation, the program will resume from the appro-
priate interrupt entrance.

3-20 Digital Systems Division

o
{%@ 943013-9701

IDL, LSB

Status Affected: None

Execution Time: 1.00 microseconds

Symbolic Coding: The assembly language coding format for the IDL instruc-

tion is as follows:

Label

Operation

[1abel] B IDL

Operand Comment

¥ n

b [comment]

where ''n'" can be used to flag the reason for the idle when the instruction reg-

ister is displayed on the computer front panel.
may be coded as a zero.

Example: IDL 1

3.4.5

Machine Format:

WORD 1

WORD 2

If no flag is desired, ''n"
(0< n <15).

LOAD STATUS BLOCK AND BRANCH (LSB)

10 11 12 13 14 15

A AV
101100010002@%

N
OP—CODE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I I I ! 1 1 L LI L T I
Y=MEMORY ADDRESS

Instruction Execution: (Y, Y+1)— (PC, ST)

Description: The program counter is loaded with the contents of memory
location Y and the status register is loaded with the contents of memory lo-

cation Y+1.

Program execution continues at the location specified by the

new contents of the program counter. Status register bits 5 (memory pro-
tect violation), 6 (PIF violation), 14 (memory parity error), and 15 (power

fail) are unconditionally cleared to zero by the LSB instruction.

The instruc-

tion is also restricted, meaning it is considered illegal if the memory protect/
privileged instruction feature is enabled. Interrupts, other than internal, are
inhibited for one instruction following an LSB.

3-21 Digital Systems Division

@ 943013-9701

NOTE

The LSB instruction is commonly used for an exit
from interrupt processing or for a return from a
subroutine. The address Y points to the program
counter and status register preserved by an SSB
instruction upon entrance to an interrupt process-
ing or subroutine program.

Status Affected: All status register bits are affected as indicated by memory
location Y+1, with the following exceptions: bits 5, 6, 14, and 15 are uncon-
ditionally cleared to zero.

Execution Time: 3.25 microseconds

Symbolic Coding: The assembly language coding formats for the LSB instruc-
tion are as follows:

Label Operation Operand Comment

[1abel]l ¥ @LSB ¥ adrs B [comment] where "adrs'' is the
symbolic name of a
16-bit memory
[1abel] ® LSB ¥ [comment] address.

[1abel]l ® DATA % adrs ¥ [comment]

or

Example:
@LSB PROG5 = Before (Hex) After (Hex)
(PC, ST) - 0400, 0850 1A69, 0010
(PROGS5, PROG5+1) = 1A69, 0010 No change

3.4.6 LOAD STATUS BLOCK, RESET INTERRUPT, AND BRANCH (LSR)

Machine Format:

o 1t 2 3 4 5 6 7 8 9 10 1112 13 14 15
1 1 T 1 T 1T Py AAT
WORD1]l1 1 0 11 o0 o o1 o0 O 1 /NOTUSED
PP
\ —
OP—CODE

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1t T 7 7T T T 1
WORD 2 - Y=MEMORY ADDRESS

3-22 Digital Systems Division

(o]
{_i@ 943013-9701 LSR, SSB

Instruction Execution: (Y, Y+1)— (PC, ST); reset highest priority vectored
interrupt if applicable.

Description: Execution of the LSR instruction is identical to LSB (paragraph
3.4.5), except that the highest priority vectored interrupt present in the vec-
tored interrupt option is additionally reset. If the computer does not include
the vectored interrupt option, the LSR instruction is identical to LSB.

Status Affected: All status register bits are affected as indicated by memory
location Y+1, with the following exceptions: bits 5 (memory protect violation),
6 (PIF violation), 14 (memory parity error), and 15 (power fail) are uncondi-
tionally cleared to zero.

Execution Time: 3.25 microseconds

Symbolic Coding: The assembly language coding formats for the LSR in-
struction are as follows:

Label Operation Operand Comment

[1abel] B @LSB B adrs ¥ [comment] where "adrs'' is the
symbolic name of a

ot 16-bit memory
[1abel] ¥ LSB ¥ [comment] address.
[1abel] B DATA ¥ adrs b [comment]
Example:
LSR = Before (Hex) After (Hex)

DATA CATA (PC, ST)
(CATA, CATA+1)

13A5, 0110 075D, 0010
075D, 0010 No change

1]

3.4.7 STORE STATUS BLOCK AND BRANCH (SSB)

Machine Format:

O 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LI | LR LI |
WORD 1 11011000110%’?;@2

e /

OP—CODE

0 1 2 3 4 5 6 7 8 9 10 t1 12 13 14 15
¥ ¥ 1 L] 1 1 T 1 T T T T 1 T T

WORD 2 Y=MEMORY ADDRESS

3-23 Digital Systems Division

o
{@ 943013-9701

Instruction Execution: (PC, ST)— (Y, Y+1); Y+2—(PC)

Description: The program counter is stored in memory location Y and the
status register is stored in memory location Y+1. Program execution con-
tinues at memory location Y+2. Interrupts, other than internal, are inhibited
for one instruction following an SSB.

NOTE

The SSB instruction is commonly used for entrance
to interrupt processing and subroutine programs.
Return from these type of programs is accomplished
by an LSB instruction.

Status Affected: Bits 7 (data bus interrupt), 8 (vectored interrupt), and 12
(DMAC interrupt) of the status register are cleared to zero according to the
computer interrupt priority scheme. These bits are cleared so that when an
interrupt occurs, all interrupts of lower or equal priority are disabled. The
four types of interrupts in order of priority are as follows: internal interrupt,
vectored interrupt, DMAC interrupt, and data bus interrupt.

Execution Time: 3.25 microseconds

Symbolic Coding: The assembly language coding formats for the SSB instruc-
tion are as follows:

Label Operation Operand Comment

[1abel]l ¥ @SSB b adrs b [comment] where "adrs' is the
symbolic name of a
16-bit memory
[1abel] ® SSB) [comment] address.

[1abel]l ¥ DATA B adrs $ [comment]

or

Example: ,
SSB = Before (Hex) After (Hex)
DATA >0A23 (PC, ST) = 07A2, 0110 0A25, 0110
(0A23,,, 0A24,,) = 08B6, 0010 07A2, 0110

3.5 ARITHMETIC INSTRUCTIONS

The arithmetic instructions listed in table 3-1 are described in the following
paragraphs.

3-24 Digital Systems Division

{2{@ 943013-9701 ADD, DAD

3.5.1 ADD TO REGISTER A (ADD)

Machine Format:

[*] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP—CODE

Instruction Execution: (EOA)+ (A)— (A) where EOA is developed in ac-
cordance with table 3-3.

Description: Add the contents of the effective operand address, EOA, to the
contents of register A and place the sum in register A, If the IXB fields are
71¢ (immediate addressing), the sign extended displacement field, D, is
added to register A.

Status Affected: If the sum from the ADD instruction is outside the range of
-2-15 to 215-1, the overflow indicator (bit 2 of the status register) is turned
on. If the sum is within the same range, the overflow indicator is turned off.
If the add operation results in a carry into the sign position (bit 0), the carry
indicator (bit 3 of the status register) is turned on; otherwise, it is turned off.

Execution Time: 0.75 to 2,75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the ADD instruction. The ADD mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
Example: Before After
ADD *BSC = (A) = 4B10yg¢ ' 5F0016
(BSC) = 003A;, No change
(003A16,) = 13FC;¢ No change

3.5.2 DOUBLE LENGTH ADD (DAD)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

OP—CODE

3-25 , Digital Systems Division

o]
@ 943013-9701

Instruction Execution: (EOA, EOA+1l)+ (A, E)— (A, E) where EOA is de-
veloped in accordarce
with table 3-3.

Description: Add the concatenation of the contents of the effective operand
address, EOA, and EOA+1 to the concatenation of registers A and E (register
A is the most significant half of the second concatenation). At completion of
the add operation, bit 0 of register E is forced to agree with bit 0 of register
A. If the IXB fields are 7;, (immediate addressing), the displacement field,
D, with its sign extended 24 bits becomes the double-length operand.

NOTE

Prior to the addition, ensure that the two sign bits
associated with each double-length word are iden-
tical. If the two sign bits in the same double-
length word are different, the result of the add may
not be valid.

Status Affected: If the sum from the DAD instruction is outside the range of
-230 ¢o 230-1, the overflow indicator (bit 2 of the status register) is turned
on; otherwise, the overflow indicator is turned off. If the add operation re-
sults in a carry into the sign position (bit 0 of register A), the carry indica-
tor (bit 3 of the status register) is turned on; otherwise, the carry indicator
is turned off.

Execution Time: 1.00 to 4.00 microseconds (refer to Appendix A).

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the DAD instruction. The DAD mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
DAD PRICE Before (Hex) After (Hex)
= (A, E) = 0069, 73B4 016A, 5034
(PRICE, PRICE+1) = 0100, 5C80 No change

3.5.3 DIVIDE (DIV)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I I Al 1 1 1 T 1 T | 1

o 1 o 1 1}1}X]|B . D

OP—CODE

3-26 Digital Systems Division

o
{@D 943013-9701 DIV, DSB

Instruction Execition: (A,E) / (EOA)— (A , E) where EOA is de-
quo’ rem)
veloped in accordance
with table 3-3,

Description: Divide the concatenation of registers A and E (with the most
significant half in register A) by the contents of the effective operand address,
EQOA. Place the quotient in register A and the remainder in register E. The
sign of the remainder will be the same as the sign of the original dividend,
except when the sign is set positive in the case of a zero remainder. If the
IXB fields are 7;¢ (immediate addressing), the displacement field, D, with
its sign extended eight bits is used as the divisor.

Status Affected: If the magnitude of the most significant half of the dividend
(register A) is greater than or equal to the magnitude of the divisor, the
overflow indicator (bit 2 of the status register) is turned on and the contents
of registers A and E remain unchanged. Otherwise, the overflow indicator
is turned off.

Execution Time: 1.50 to 8.75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for--
mats available with the DIV instruction. The DIV mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
Example: Before (Hex) After (Hex)
@DIV =600 = (A,E) = 0019, 78A0 0588, 01E0
(EOQA) = 0258 No change

3.5.4 DOUBLE LENGTH SUBTRACT (DSB)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

- OP—CODE

Instruction Execution: (A, E) - (EOA, EOA+1)— (A, E) where EOA is de-
veloped in accordance
with table 3-3.

Description: Add the two's complement of the concatenation of the contents
of the effective operand address, EOA, and EOA+1 to the concatenation of
registers A and E (register A is the most significant half of the second con-
catenation). Place the result in registers A and E. At the completion of the

3-27 Digital Systems Division

{@@ 943013-9701

two's complement addition, bit 0 of register E is forced to agree with bit 0
of register A. If the IXB fields are 7y, (immediate addressing), the displace-
ment field, D, with its sign extended 24 bits becomes the subtrahend.

NOTE

Prior to the subtraction, ensure that the two sign
bits associated with each double-length word are
identical. If the two sign bits in the same double-
length word are different, the result of the subtract
may not be valid.

Status Affected: If the result of the DSB instruction is outside the range of
2230 to 230-1, the overflow indicator (bit 2 of the status register) is turned
on; otherwise, the overflow indicator is turned off, If there is a carry into
the sign position (bit 0 of register A), the carry indicator (bit 3 of the status
register) is turned on; otherwise, the carry indicator is turned off.

Execution Time: 1.00 to 4.00 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the DSB instruction. The DSB mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
Example: Before (Hex) After (Hex)
DSB DECMAL,5= (A, E) = 6D11, 6F51 5268, 5ACB
(DECMAL) = 0396 No change
(03961¢, 039714) = 1AA9, 1486 No change

3.5.5 INCREMENT MEMORY BY ONE (IMO)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

r 1 171 T 1T 1T P T
o. 1 o 1 ojllXis D

OoP—CODE

Instruction Execution: (EOA) + 1— (EOA) where EOA is developed in ac-
cordance with table 3-3.

Description: Increment the contents of the effective operand address, EOA,
by one, and replace the contents of the EOA with the result. If the IXB fields
are 714 (immediate addressing), the displacement field, D, becomes the EOA.

3-28 Digital Systems Division

. o
%@D 943013-9701 IMO, MPY

Status Affected: None

Execution Time: 2.75 to 3.75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the IMO instruction., The IMO mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

Example:
@IMO BOX,2 = (X)

Before After
000874 No change

634A16 634B16

(BOX+38)

3.5.6 MULTIPLY (MPY)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1T 1T 1 -t r 1 T 1
D

OP—CODE

Instruction Execution: (A) x (EOA) — (A, E) where EOA is developed in
accordance with table 3-3.

Description: Multiply register A by the contents of the effective operand
address, EOA. Place the double-length result in registers A and E, the
most significant part being in register A, At completion of the multiplication,
bit 0 of register E is forced to agree with bit 0 of register A. If the IXB
fields are 714 (immediate addressing), the displacement field, D, with its
sign extended eight bits becomes the operand.

Status Affected: If both operands are equal to the maximum negative number
(-215), the overflow indicator (bit 2 of the status register) is turned on and
the result in registers A and E will be indeterminate. Otherwise, the over-
flow indicator is turned off.

Execution Time: 1.25 to 7.25 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding formats
available with the MPY instruction. The MPY mnemonic replaces the MNU
operation field (in table 3-3) and optional label and comment fields may be

used.
Example:
MPY ARG,1 Before (Hex) After (Hex)
- (A,E) 0003, 1020 FFFF, FFFD
(ARG) FFFF No change

3-29 Digital Systems Division

(o]
%@ 943013-9701

3.5.7 REGISTER ADD (RAD)

Machine Format:

[o] 1 2 3 4 5 6 7 B8 9 10 1112 13 14 15

1 I 1 T T | T T T = T T
3R= DR=DESTI-
t 1. 0 0j0 0 0 0 1 |35yRcE ZNATION
REGISTER [~ REGISTER
A /
W
OP—CODE

Instruction Execution: (SR) + (DR)— (DR)

Description: Add the contents of the registers specified by the SR and DR
tields. Place the result in the register specified by the DR field. If bit 12
of the machine format is set to one and bits 13 to 15 are zeroed, the status
register is specified as the destination register. In this case the instruction
is restricted, meaning it is considered illegal if the memory protect/
privileged instruction feature is enabled. Interrupts, other than internal,
are inhibited for one instruction following this special case of the RAD in-
struction.

Status Affected: If the result of the RAD instruction is outside the range of
-212 to 2151, the overflow indicator (bit 2 of the status register) is turned
on; otherwise, the overflow indicator is turned off. If there is a carry into
the sign position (bit 0), the carry indicator (bit 3 of the status register) is
turned on; otherwise, the carry indicator is turned off.

Execution Time: 1.25 microseconds

Symbolic Coding: The assembly language coding format for the RAD instruc-
tion is as follows:

Label Operation Operand Commeént
[1abel] ¥ RAD ¥ sreg,dreg ¥ [comment]

where ""'sreg'' and '"'dreg'' are expressions that address the source and destina-
tion registers, respectively, in accordance with table 2-2. The special case
when ''dreg'' equals eight is covered in the '""Description' paragraph.

Example:
A EQU 0 Before After
X EQU 2 = (X) = 445644 66221¢
RAD A, X (A) = 21CCj1¢ No change

Digital Systems Division

(o]
q‘r@? 943013-9701 RAD, RCO, RDE

3.5.8 REGISTER COMPLEMENT (RCO)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I L L) T 1§ v L] ¥ T L~ 1 g
SR= DR=DEST{—

1t 1 6 0|0 O O 1 O |SOURCE NATION
REGISTER REGISTER

N /

OP—CODE

Instruction Execution: -(SR) — (DR)

Description: Replace the contents of the register specified by the DR field
with the two's complement of the contents of the register specified by the SR
field. If bit 12 of the machine format is set to one and bits 13 to 15 are
zeroed, the status register is specified as the destination register. In this
case the instruction is restricted, meaning it is considered illegal if the
memory protect/privileged instruction feature is enabled. Interrupts, other
than internal, are inhibited for one instruction following this special case of
the RCO instruction.

Status Affected: If the SR register contains -215, the overflow indicator (bit
2 of the status register) is turned on and the DR register is set to 215,
otherwise, the overflow indicator is turned off.

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the RCO instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] © RCO ¥ sreg,dreg B [comment]

where '"'sreg'' and ''dreg'' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when ''dreg'' equals eight is covered in the '"Description'' paragraph.

Example: Before After
RCO 2,2 => (X) = 000F¢ FFFly¢

3.5.9 REGISTER DECREMENT (RDE)

Machine Format:

o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I =

T T
SR= DR=DE£!;TI"'
1 1 o oo 1 1 1 0 |SOURCE / NATION
REGISTER “AREGISTER

3-31 Digital Systems Division

\J‘%\[’]@ 943013-9701

Instruction Execution: (SR)-1— (DR)

Description: Subtract one from the contents of the register specified by the
SR field and place the result in the register specified by the DR field.

NOTE

If the maximum negative number (-32768) is decre-
mented, the maximum positive number (+32767) is
placed in the DR register.

If bit 12 of the machine format is set to one and bits 13 to 15 are zeroed, the
status register is specified as the destination register. In this case the in-
struction is restricted, meaning it is considered illegal if the memory

. protect/privileged instruction feature is enabled. Interrupts, other than in-
ternal, are inhibited for one instruction following this special case of the
RDE instruction.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the RDE instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ RDE B sreg,dreg B [comment]

where '"'sreg'' and ''dreg'' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when '"'dreg'' equals eight is covered in the '""Description'' paragraph.

Example:
S EQU 4 — Before After
. (8) = 004416 004316
RDE §S,S

3.5.10 REGISTER INCREMENT (RIN)

Machine Fermat:

0O 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15
T 1 1 L — T 2 T J
SR= DR=DESTI]
1t 1.0 0j0 0 1 1 O|SOURCE %NATION
REGISTER |- {REGISTER
- v /7
OP—CODE
3-32

Digital Systems Division

o]
4_@@ 943013-9701 | | RIN, RIV

Instruction Execution: (SR)+1— (DR)

Description: Add one to the contents of the register specified by the SR field
and place the result in the register specified by the DR field.

NOTE

If the result of the RIN is considered to be a 15-bit
signed number, incrementing the maximum positive
number (+32767) results in the maximum negative
number (-32768). If the result of the RIN is con-
sidered to be a 16-bit positive number (as in ad-
dress calculation), incrementing the maximum posi-
tive number (65535) results in zero.

If bit 12 of the machine format is set to one and bits 13 to 15 are zeroed, the
status register is specified as the destination register. In this case the in-
struction is restricted, meaning it is considered illegal if the memory
protect/privileged instruction feature is enabled. Interrupts, other than in-
ternal, are inhibited for one instruction following this special case of the RIN
instruction.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the RIN instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ® RIN B sreg,dreg B [comment]

where ''sreg'' and ''dreg'' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when ''dreg'' equals eight is covered in the '"Description' paragraph.

Example:
RIN 7,5 Before After
(PC) = 02251¢ No change

3.5.11 REGISTER INVERT (RIV)

Machine Format:

0|23456‘789101‘I!21314|5

! ! ! ! ! ! ! SR='- ! % DR=|DE§T -
1 1 0O 00 O 1 O O |SOURCE NATION
REGISTER REGISTER
\ v

3-33 Digital Systems Division

o]
{@@ 943013-9701

Instruction Execution: -(SR)-1— (DR)

Description: Replace the contents of the register specified by the DR field
with the one's complement of the contents of the register specified by the SR
field. This means each bit of the SR register is complemented individually.
If bit 12 of the machine format is set to one and bits 13 to 15 are zeroed, the
status register is specified as the destination register. In this case the in-
struction is restricted, meaning it is considered illegal if the memory
protect/privileged instruction feature is enabled. Interrupts, other than in-
ternal, are inhibited for one instruction following this special case of the
RIV instruction.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the RIV instruc-
tion is as follows:

Label Operation Operand Comment
[1abel]l] B RIV ¥ sreg,dreg B [comment]

where ""'sreg'' and '"dreg'' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when ''dreg'' equals eight is covered in the '"Description'' paragraph.

Example:
E EQU 1 Before After
X EQU 2 (X) = 121Gy, FCFApq
. =>
: (E) = 030516 No change
RIV E, X

3.5.12 REGISTER SUBTRACT (RSU)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

T T T | E— T
SR=] priDESTI-
1 1 o o|lo o o o o0]|source [~]NATION
REGISTER REGISTER

Instruction Execution: (DR) - (SR)— (DR)

Description: Subtract the contents of the register specified by the SR field
from the contents of the register specified by the DR field. Place the result
in the register specified by the DR field. If bit 12 of the machine format is

Digital Systems Division

943013-9701 RSU, SUB

set to one and bits 13 to 15 are zeroed, the status register is specified as the
destination register. In this case the instruction is restricted, meaning it

is considered illegal if the memory protect/privileged instruction feature is
enabled. Interrupts, other than internal, are inhibited for one instruction
following this special case of the RSU instruction.

Status Affected: If the result of the RSU instruction is outside the range of
219 to 215-1, the overflow indicator (bit 2 of the status register) is turned
on; otherwise, the overflow indicator is turned off. If there is a carry into
the sign position (bit 0), the carry indicator (bit 3 of the status register) is
turned on; otherwise, the carry indicator is turned off.

Execution Time: 1.25 microseconds

Symbolic Coding: The assembly language coding format for the RSU instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] B RSU ¥ sreg,dreg ¥ [comment]

where '"'sreg' and ''dreg'' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when '"dreg'' equals eight is covered in the "Description'' paragraph.

Example:
RSU 6,5 Before After
= (L) = 56A24¢ 55671¢
(B) = 013Byg No change

3.5.13 SUBTRACT FROM REGISTER A (SUB)

Machine Format:

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP—CODE

Instruction Execution: (A) - (EOA)—(A) where EOA is developed in ac-
cordance with table 3-3.

Description: Add the two's complement of the contents of the effective oper-
and address, EOA, to the contents of register A. Place the result in regis-
ter A. If the IXB fields are 71¢ (immediate addressing), the sign extended
displacement field, D, is subtracted from register A.

3-35 Digital Systems Division

{%\@ 943013-9701

Status Affected: If the result of the SUB instruction is outside the range of
_215 to 215—1, the overflow indicator (bit 2 of the status register) is turned
on; otherwise, the overflow indicator is turned off. If there is a carry into
the sign position (bit 0), the carry indicator (bit 3 of the status register) is
turned on; otherwsie, the carry indicator is turned off.

Execution Time: 0.75 to 2.75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the SUB instruction. The SUB mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may

be used.
Example:
THIS SUB =28 Before After
= (A) = 0005, ¢ FFE916
(THIS) = 2F1Cy¢ No change

3.6 COMPARE INSTRUCTIONS

The compare instructions listed in table 3-1 are described in the following
paragraphs.

3.6.1 COMPARE LOGICAL CHARACTER STRING (CLC)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
! |) | I | | /l/
1 1t 0 1/1 1 1 1 1 %/m'r{syér//
e s
\ /
OP—CODE

Instruction Execution: (I\/I1):(Yl), (Mz):(Y2) (Mn):(Yn)

where M, M

1 2,...MnandY,Y

.o Yn are byte strings in memory

1’2

3-36 Digital Systems Division

CLC

{@ 943013-9701

Description: Perform a consecutive byte-by-byte logical comparison of two
byte strings in memory defined in general registers as follows:

REGISTER

0 t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A V 1 T T
/ s1
A
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/ 1) 1 1 T T L} T T T T T T
E % s1 B1
0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
g T T T
o] -
2]
0O 1 2 3 4 5 6 7 ®© 9 10 1112 13 14 15
L~ LIS LI R | LB | T T 7T T
s s2
[B2
0O 1 2 3 4 5 6 7 8 9 10 11 1213 14 15
 ENRS I S Y I S RENE N REN IS N S RN SR
X BC

S1 and S2 are the starting word addresses of the two byte strings.
The most significant bits of the S1 and S2 addresses are in the A
and M registers, respectively.

where,

Bl and B2 indicate the position of the first byte in the words ad-
dressed by Sl and S2, respectively. A logic zero indicates the
first byte is in the most significant half (left half) of the first
word; a logic one indicates the first byte is in the least signifi-
cant half (right half) of the first word.

BC indicates the number of bytes to be compared (up to 65, 535).

The first non-equal comparison encountered terminates the CLC instruction
with the number of bytes left to be compared loaded in register X. In addi-
tion, registers A and E will contain the byte address of the next byte that
would have been processed in string 1 and registers M and S will contain the
byte address of the next byte that would have been processed in string 2. If
the CLC instruction is interrupted, the general registers contain the same
information as that described for a non-equal comparison when the interrupt
is taken. Note that register X will contain all zeros only when all byte com-
parisons, or all but the last byte comparison, are found to be equal.

3-37

Digital Systems Division

(o]
(@ 943013-9701

Status Affected: Bits 0 and 1 of the status register are modified as follows
by the CLC instruction.

Bit 0 Bitl
Each Compare Equal 0 1
Byte] > Byte2 1 0
Bytej < Bytep 0 0
Unused Bit Setting 1 1

if the byte count (BC) in register X is specified as zero, no comparison is
performed and status register bits 0 and 1 are set to 01 unconditionally.

Execution Time: 5.00 + 2.25 X (no. of bytes compared) microseconds

Symbolic Coding: The assembly language coding format for the CLC instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] B CLC) [comment]
Example:
CLC Before (Hex) After (Hex)
= (A) = 0000 0000
(E) = 0574 0578
(M) = 0000 0000
(S) = 06A6 06AA
(X) = 000B 0007

(02BA, 02BB, ...)
(0353, 0354, ...)

5123, 64AC,... No change
5123, 64AD, ... No change

3.6.2 COMPARE ALGEBRAIC (CPA)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP—CODE

Instruction Execution: (A):(EQA), algebraically where EOA is developed in
accordance with table 3-3,

Description: Perform an algebraic compare (bit 0 reflects sign) between the
contents of register A and the contents of the effective operand address, ECA,
The contents of register A and the contents of EOA are not affected by the
compare. Set status register bits to indicate the result of the compare (refer
to the next paragraph). If the IXB fields are 714 (immediate addressing), the
displacement field, D, sign extended to 16 bits is compared with register A.

3-38 Digital Systems Division

[o]
Q]‘? 943013-9701 CPA, CPL

Status Affected: Bits 0 and 1 of the status register are modified as follows
by the CPA instruction.

Bit 0 Bitl
(A) > (EOCA) 0 0
(A) = (EOA) 0 1
(A) < (EOCA) 1 0
Unused Bit Setting 1 1

Execution Time: 0.75 to 2.75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the CPA instruction. The CPA mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

Example:
CPA H4000,1 = (A)
(H4000)

TFFF 16 Status register bits 0
4000, ¢ and 1 equal 00

3.6.3 COMPARE LOGICAL (CPL)

Machine Format:

O t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| I R | 1 1T 1 T T 71
o 1 1 o oli|x]s. D
OP—~CODE
Instruction Execution: (A):(EOA), logically where EOA is developed in

accordance with table 3-3.

Description: Perform a logi’éa:"l',‘compare (unsigned numbers) between the
contents of register A and the. contents of the effective operand address, EOA.
The contents of register A and the contents of EOA are not affected by the
compare. Set the status register bits as described for the CPA instruction
in paragraph 3.6.2. If the IXB fields are 71¢ (immediate addressing), the
eight bits of the displacement field, D, are compared with the low order eight
bits of register A.

Status Affected: Refer to paragraph 3.6.2.

Execution Time: 0.75 to 2.75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the CPL instruction. The CPL mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

3-39 Digital Systems Di\?ision

{@ 943013-9701

E}_{_amgle:
@CPL =DOZEN = (A)

(DOZEN)

A6BByg Status register bits 0
18F44¢ and 1 set to 00

3.6.4 REGISTER COMPARE ALGEBRAIC (RCA)

Machine Format:

Q 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

i I I LIRS I T T T T
! SR= -~ or=DESTI-
1 1 0o ofo 1 0 0 O |sourRcE [~]NATION
REGISTER REGISTER
\ 7
A
OP—CODE

Instruction Execution: (SR) : (SR), algebraically

Description: Perform an algebraic compare (bit 0 reflects sign) between the
contents of the register specified by the SR field and the contents of the reg-
ister specified by the DR field. The status register bits are set to indicate
the result of the compare (refer to the next paragraph). If bit 12 of the ma-
chine format is set to one and bits 13 to 15 are zeroed, the status register
is specified as the destination register. In this case the instruction is re-
stricted, meaning it is considered illegal if the memory protect/privileged
instruction feature is enabled. Interrupts, other than internal, are inhibited
for one instruction following this special case of the RCA instruction.

Status Affected: Bits 0 and 1 of the status register are modified as follows
by the RCA instruction.

Bit 0 Bitl
(SR) < (DR) 0 0
(SR) = (DR) 0 1
(SR) > (DR) 1 0
Unused Bit Setting 1 1

Execution Time: 1.25 microseconds

Symbolic Coding: The assembly language coding format for the RCA instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ RCA B sreg,dreg ¥ [comment]

where "sreg'' and ''dreg'' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when ""dreg'' equals eight is covered in the '"Description'’ paragraph.

3-.40 Digital Systems Division

o

{ékfp 943013-9701 RCA, RCL

Example:
E =
S QU 4 (S) 105416 Status register bits 0 and 1
X EQU 2 = t to 00
) (X) = Bbbbyg set to
RCA X,S

3.6.5 REGISTER COMPARE LOGICAL (RCL)

Machine Format:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 T T

SR= -~ 1brR=DESTI-

1t 1 0 o|lo 1 1 0 o |souUrRcE [Z-INATION
REGISTER [_~]1REGISTER

(. 7/

OP—CODE

Instruction Execution: (SR): (DR), logically

Description: Perform a logical compare (unsigned numbers) between the
contents of the register specified by the SR field and the contents of the reg-
ister specified by the DR field. The status register bits are set to indicate

the result of the compare as detailed in paragraph 3.6.4. If bit 12 of the ma-
chine format is set to one and bits 13 to 15 are zeroed, the status register is
specified as the destination register. In this case*the instruction is restricted,
meaning it is considered illegal if the memory protect/privileged instruction
feature is enabled. Interrupts, other than internal, are inhibited for one in-
struction following this special case of the RCL instruction.

Status Affected: Refer to paragraph 3.6.4.

Execution Time: 1.25 microseconds

Symbolic Coding: The assembly language coding format for the RCL instruc-
tion is as follows:

Label Operation Operand Commaent.
[1abel] ¥ RCL B sreg,dreg ¥ [comment]

where '"sreg' and '"dreg' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when ''dreg' equals eight is covered in the '""Description'' paragraph.

3-41 Digital Systems Division

(e}
{@? 943013-9701

Jxample:
RCL 2,4 = (9)
(X)

B66616) set to 10

i

1054, % Status register bits 0 and 1

3.7 SKIP INSTRUCTIONS

The skip instructions listed in table 3-1 are described in the following para-
graphs.

CAUTION

When a skip is taken, only one word is skipped.
For this reason, a double or triple length instruc-
tion should not immediately follow a skip instruc-
tion.

3.7.1 DECREMENT MEMORY AND TEST (DMT)

Machine Format:

[¢] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP—CODE

Instruction Execution: (EOA)-1— (EOA); skip next word if (EOA) = 0

where EOA is developed in accordance with table 3-3.

Description: Decrement the contents of the effective operand address, EOA,
by one and replace the contents of the EOA with the result. If the result is
zero, skip the next sequential word. If the IXB fields are 71¢ (imme-
diately addressing), the displacement field, D, is the EOA.

NOTE

The DMT instruction is typically used for loop con-
trol where the contents of some memory location is
used as a counter.

Status Affected: None

Execution Time: 2.75 to 3.75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the assembly language coding for-
mats available with the DMT instruction. The DMT mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

3-42 Digital Systems Division

O .
{@? 943013-9701 DMT, SE;Q

Example:
DMT BASE, 2 Before After
BRU $-10 = (X) = 0009y, No change
BRU RESET Control will
. (BASE+9) = 000144 000016} now branch
) to RESET
3,7.2 SKIP ON EQUAL (SEQ)
Machine Format:
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| B — | — T T 7///
1 1 0 o|1T 1 0o 1j]0 0 1 O NOT USED
///1

N\ /

'
OP—CODE

Instruction Execution: (ST)O 1= 01, skip next word
$4
(ST)O 1 # 01, execute next word
2
Description: Skip the next sequential word if the result of the last com-

pare operation was equal (status register bits 0 and 1 set to 01). If the re-
sult was something other than equal, execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SEQ instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ SEQ] [comment]

Example: The SEQ instruction in the following example will skip a word
only if the contents of registers S and X are equal.

RCL 2,4
SEQ

3-43 Digital Systems Division

%—@‘D 943013-9701

3.7.3 SKIP ON EVEN (SEV)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LI | L LR 1 1 L

1100110011oo/§EGISTER
]

N /

OP—CODE

Instruction Execution: (R)15 = 0, skip next word

(R);5 = 1, execute next word

Description: If bit position 15 of the register specified by the R field is zero,
skip the next sequential word; otherwise, execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SEV instruc-
tion is as follows:

Label Operation Operand Comment

[1abel] B SEV) reg ¥ [comment] where ''reg'' is an
expression that ad-
dresses a register
in accordance with
table 2-2.,

Example:
A EQU 0 Before After
. = (A) = A62016 No change
SEV A (PC) = 013216 013416 (skip)

3.7.4 SKIP ON GREATER THAN OR EQUAL (SGE)

Machine Format:
B\

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

1 LI T ¥ k) - T LI | ///p//}//)r//
1 1 0 of1 1 o 1 |t 0o o O /NOT USED
/ <

o /

OP—CODE

3-44 Digital Systems Division

SO :
{@p 943013-9701 SEV, SGE, SGT

Instruction Execution: (ST)

00, skip next word

0,1
(ST) = 00, execute next word

Description: If the result of the last compare operation was greater than ar
equal (status register bits 0 and 1 other than 00), skip the next sequential |
word; otherwise, execute the next word.

Status Affected: None

Execution Time: 1,00 microsecond

Symbolic Coding: The assembly language coding format for the SGE 1nstruc-
tion is as follows:

Label Operation Operand Comment
[labell B SGE B [comment]

Example: The SGE instruction in the following example will skip a word
only if the content of register X is logically greater than or equal to the
content of register S.

RCL 2,4
SGE

-
.

3.7.5 SKIP ON GREATER THAN (SGT)

Machine Format:

0123456789101112131415
1 1 T T I V 1 I 1 PP
1 1 o o|/1 1T 0 1]l0o 1 o o NOT USED
////
A\ /
OP—CODE
Instruction Execution: (ST)0 1T 10, skip next word
b4
(ST)O 1 # 10, execute next word

Description: If the result of the last compare operation was greater than
(status register bits 0 and 1 set to 10), skip the next word; otherwise,
execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

3-45 Digital Systems Division

(o]
{@@ 943013-9701

Symbolic Coding: The assembly language coding format for the SGT instruc-
tion is as follows:

Label Operation Operand Comment
[label]l ¥ SGT B [comment]

Example: The SGT instruction in the following example will skip a word
only if the content of register X is logically greater than the content of

register S.

RCL 2,4
SGT

3.7.6 SKIP ON LESS THAN OR EQUAL (SLE)

Machine Format:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 1 T 1 T T 1 7// P

1 1 (o] 0] 1 1 o 1 i 1 [0} (o] NOTUfEB/

/// P

- 7/

OP—CODE

Instruction Execution: (ST) # 10, skip next word

0,1

(ST)O 1= 10, execute next word

Description: If the result of the last compare operation was less than or
equal (status register bits 0 and 1 other than 10), skip the next sequential
word; otherwise, execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SLE instruc-
tion is as follows:

Label Operation Operand Comment

[1abel] ¥ SLE ¥ [comment]

3-46 Digital Systems Division

o]
“ré’@ 943013-9701 SLE, SLT

Example: The SLE instruction in the following example will skip a word
only if the content of register X is logically less than or equal to the
content of register S.

RCL 2,4
SLE

.
»

3.7.7 SKIP ON LESS THAN (SLT)

Machine Format:

0123456789101112131415

I]lllllll/l'

1 1 0o o|]1 1 0o 1{lo o o o NOTUS
= /
e /
OP~CODE
Instruction Execution: (ST)O 1 T 00, skip next word
2
(ST)0 1 # 00, execute next word
?

Description: If the result of the last compare operation was less than (status
register bits 0 and 1 both set to zero), skip the next word; otherwise,
execute the next word.

Status Affected: None

Execution Time: 1,00 microsecond

Symbolic Coding: The assembly language coding format for the SLT instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ SLT] [comment]

Example: The SLT instruction in the following example will skip a word
only if the content of register X is logically less than the content of reg-
ister S,

RCL 2,4
SLT

3-47 Digital Systems Division

o

[1@5 943013-9701

3.7.8 SKIP ON MINUS (SMI)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
1 I 1 1 I |]] 1 1 T
ojlo 1 1 o R=
1 1 o oj1 1 O /REGISTER

_

AV —

OP—CODE

Instruction Execution: (R)0 1, skip next word

(R)0 = 0, execute next word

Description: If bit position 0 of the register specified by the R field is one,
skip the next word; otherwise, execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SMI instruc-
tion is as follows:

Label Operation Operand Comment

[1abel] B SMI) reg B [comment] where ''reg'' is an
expression that ad-
dresses a register
in accordance with
table 2-2.

Example:
SMI 3 Before After
= (M) = 62AE, No change
(PC) = 23FE16 23FF16 (no skip)

3.7.9 SKIP ON NO CARRY (SNC)

Machine Format:

o t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e
110011111110/N?I/S';D’

OP—CODE

3-48 Digital Systems Division

o]
{;ELZ:]L.J; 943013-9701 SMI, SNC, SNE

Instruction Execution: (ST)3 = 0, skip next word

(ST)3 = 1, execute next word

Description: If the last instruction affecting the carry indicator (bit 3 of the
status register) did not turn it on, the next word is skipped; otherwise,
execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SNC instruc-
tion is as follows: ’

Label Operation Operand Comment
[1abel]l ¥ SNC] [comment]

Example: The SNC instruction in the following example will skip a word
if the sum of register A and the contents of location TABLE did not pro-

duce a carry into bit 0,

ADD TABLE
SNC

3.7.10 SKIP ON NOT EQUAL (SNE)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

P P o
110011011010/N:)TUED
//j

A - V4

OP—CODE

Instruction Execution: (ST) # 01, skip next word

0,1
(ST)O 1 = 01, execute next word
?
Description: If the result of the last compare operation was less than or

greater than (status register bits 0 and 1 other than 01), skip the next
word; otherwise, execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

3-49 Digital Systems Division

{%\[Z@ 943013-9701

Symbolic Coding: The assembly language coding format for the SNE instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ SNE] [comment]

Example: The SNE instruction in the following example will skip a word
if the content of register X is logically less than or greater than the con-
tent of register S.

RCL 2,4
SNE

3,7.11 SKIP ON NOT ALL ONES (SNO)

Machine Format:

[o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T T T T T T T T

110011001010%1"z

A REGISTER

~ /

OP—CODE

Instruction Execution: (R) # FFFF skip next word

16’
(R) = FFFF,. ,6, execute next word
16

Description: If at least one bit position of the register specified by the R
field is zero, skip the next word; if all bit positions are ones, execute
the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SNO instruc-
tion is as follows:

Label Operation Operand Comment

[1abel] ¥ SNO B reg ¥ [comment] where ''reg'' is an
expression that ad-
dresses a register
in accordance with
table 2-2.

3-50 Digital Systems Division

O
Q? 943013-9701 SNO. SNV
‘7 2 ’

Example:
X EQU 2 Before After
. = (X) = FFEFl6 No change
SNO X (PC) = 211116 211316 (skip)

3.7.12 SKIP ON NO OVERFLOW (SNV)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

—
110011011110?@/}520//

OP—CODE

0, skip next word

Instruction Execution: (ST)2
(ST)2 = 1, execute next word

Description: If the last instruction affecting the overflow indicator (bit 2 of
the status register) did not turn it on, the next word is skipped; other-
wise, execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SNV instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] © SNV] [comment]

Example: The SNV instruction in the following example will skip a word
if the sum of register A and the contents of location TABLE did not cause
an overflow.

ADD TABLE
SNV

3-51 Digital Systems Division

(e}
{@ 943013-9701

3.7.13 SKIP ON NOT ALL ZEROS (SNZ)

Machine Format:

o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 ! 1 1 1 ¥ L~ 1 1

1 1 0o o|l1 1 o o0|1 0 0 O R=
//REGISTER

~ /

Instruction Execution: (R) # 0, skip next word
(R) = 0, execute next word

Description: If at least one bit position of the register specified by the R
field is one, skip the next word; if all bit positions are zeros, execute
the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SNZ instruc-
tion is as follows:

Label Operation Operand Comment

[1abel]l] ¥ SN2z b reg ¥ [comment] where ''reg' is an
expression that ad-
dresses a register
in accordance with
table 2-2.

Example:
SNZ 1 Before After
= (E) = 210016 No change

(PC) = 1103y, 1105,, (skip)

3.7.14 SKIP ON CARRY (SOC)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
T 1 { 1 || T T L T ;j)i/);/f
1 1 o of1t 1 1 1]lo 1t 1 o NOT USED.]

[N /

OP—CODE

3-52 Digital Systems Division

o _
e‘_@p 943013-9701 SNZ, SOC, SOD

Instruction Execution: (ST)3 = 1, skip next word

(ST)3 = 0, execute next word

Description: If the last instruction affecting the carry indicator (bit 3 of the
status register) turned it on, the next word is skipped; otherwise, exe-
cute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SOC instruc-
tion is as follows:

Label Operation Operand Comment
[label] B SOC [[comment]

Example: The SOC instruction in the following example will skip an instruck-
tion if the sum of register A and the contents of location TABLE results in a
carry into bit O.

ADD TABLE
SOC

3.7.15 SKIP ON ODD (SOD)

Machine Format:

0 1.2 3 4 S5 6 7 8 9 10 1112 13 14 15
™ 1 T 1T 1 LI 7 BRI
R=
1 1 0 o1 1 o oo 1 ooémﬂ,_“s.'.l_:R
\ /
vV
OP—CODE
Instruction Execution: (R)15 = 1, skip next word
(R)15 = 0, execute next word

Description: If bit position 15 of the register specified by the R field is one,
skip the next word; otherwise, execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

3-53 Digital Systems Division

{@5) 943013-9701

Symbolic Coding: The assembly language coding format for the SOD instruc-
tion is as follows:

lLabel Operation Operand Comment

[1abel] ¥ SOD B reg ¥ [comment]

>

where ''reg' is an expression that addresses a register in accordance with

table 2-2.
Example: » Before After
X EQU 2 - ((X) = 000416 No change
SOD x (PC) = 001016 001116 (no skip)

3.7.16 SKIP ON ALL ONES (S0O0)

Machine Format:

O t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 ™TT T T T
1 1 0o oflt 1 o o|lo o 1 ol]R:
~ | REGISTER
N— —_ /
OP—CODE
Instruction Execution: (R) = FFFF16, skip next word

(R) # FFFF_,, execute next word
16

Description: If all bit positions of the register specified by the R field are
one, skip the next word; otherwise, execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SOO instruc-
tion is as follows:

Label Operation Operand Comment

[1abel] ¥ SO0 b reg ¥ [comment]
where ''reg' is an expression that addresses a register in accordance with
table 2-2,
Example:
— Before After

SO0 0 = (A) = FFFF16 No change

(PC) = 010116 010316 (skip)

3-54 Digital Systems Division

o]
{@} 943013-9701 SO0, SOV, SPL

3.7.17 SKIP ON OVERFLOW (SOV)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

/m:ﬁ‘l/u/:n
1 1 o ol1t 1 o 1o 1 1 O
//S/

N -
OP—CODE

Instruction Execution: (ST)2 1, skip next word

(ST)2 = 0, execute next word

Description: If the last instruction affecting the overflow indicator (bit 2 of
the status register) turned the indicator on, the next word is skipped;
otherwise, the next word is executed.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SOV instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] B SOV] [comment]

Example: The SOV instruction in the following example will skip a word
if the sum of register A and the contents of location TABLE causes an
overflow.

ADD TABLE
SOV '

3.7.18 SKIP ON PLUS (SPL)

Machine Format:

0123456789101112131415
1 IR L LI

R=
“] REGISTER

OP—CODE

Digital Systems Division

{\L] 943013-9701

Instruction Execution: (R)o = 0, skip next word

(R)O = 1, execute next word

Description: If bit position zero of the register specified by the R field is
zero, skip the next word; otherwise, execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SPL instruc-
tion is as follows:

Label Operation Operand Comment

[1abel]l ¥ SPL) reg ¥ [comment]
where ''reg'' is an expression that addresses a register in accordance with
table 2-2,
Example:

L EQU 5 Before After

= (L) = F32B16 No change
SPL L (PC) = 090816 090916 (no skip)

3.7.19 SKIP ON SENSE SWITCH EQUAL (SSE)

Machine Format:

o] 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

¥ 1 I T T T | T T T T
1 S=
1 0 o1 1 0 o|loOo o o0 1 SENSE
SWITCH
N /
W
OP—CODE

Instruction Execution: Refer to ''description'' paragraph.

Description: The S field bits of the machine format correspond to the com-
puter front panel sense switches as follows:

Sense Switch S Field Bit
1 12
2 13
3 14
4 15

Test only the sense switches whose corresponding S field bits are one. If

the tested switches are on (up position), skip the next word; otherwise,

execute the next word. If all S field bits are zero, SSE will always skip and
I SSN will never skip.

Change 1 3-56 Digital Systems Division

o
% 943013-9701 SSE, SSN

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SSE instrucip-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ SSE] s8 ¥ [comment]
where ''ss'' is an expression that specifies the sense switches to be tested.

Example: The following SSE instruction will skip a word if sense
switches 2 and 3 are on (switches 1 and 4 are not tested).
SSE 6

3.7.20 SKIP ON SENSE SWITCH NOT EQUAL (SSN)

Machine Format:

0 1 2 3 4) 6 7 8 9 10 11 12 13 14 15
4 I ¥ i I 4 1 L) ¥) 1 1

1t 1 o o|l1 1 o o1 o o 1] SENSE
SWITCH

\V
OP—CODE

Instruction Execution: Refer to ''description'' paragraph.

Description: Refer to paragraph 3.7.19 for the relationship between the ma-
chine format S field bits and the computer front panel sense switches. Test
only the sense switches whose corresponding S field bits are one. If any of
the test switches are off (down position), skip the next word; otherwise,
execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SSN instrué:—
tion is as follows: '

Label Operation Operand Comment
[1abel] © SSN [ss B [comment]

where ''ss'' is an expression that specifies the sense switches to be tested.

3-57 Digital Systems Division

(o]
@ 943013-9701

Example: The following SSN instruction will skip a word if sense
switch 1 is off (switches 2, 3, and 4 are not tested).

SSN 8

3.7.21 SKIP ON ZERO (SZE)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 1 T 1 T 1 T T e 1 1

1 1 o o1 1 O 0}0 o o0 o

R=
- REGISTER

OP—CODE

Instruction Execution: (R) = 0, skip next word
(R) # 0, execute next word

Description: If the content of the register specified by the R field is zero,
skip the next word; otherwise, execute the next word.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SZE instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ SZE | reg ¥ [comment]
where ''reg' is an expression that addresses a register in accordance with
table 2-2.
Example:
B EQU 6 Before After
-~ (B) = 001016 No change
SZE B (PC) = 118816 118916

3.8 SHIFT INSTRUCTIONS

The shift instructions listed in table 3-1 are described in the following para-
graphs.

3-58 Digital Systems Division

[}
{;@@ 943013-9701 SZE, ALA, ALD

3.8.1 ARITHMETIC LEFT SHIFT REGISTER A (ALA)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L UL LI | LI L

1 1 oo|1 o o ot o olShiFT count

A -/ 0<C<31

Instruction Execution: Shift (A) left C places; zero fill vacated bits

Description: Shift bits 1 through 15 of register A to the left the number of

bit positions specified by the C field. The sign bit (bit 0) of register A is
not affected by the shift. Bit positions vacated are filled with zeros and bits
shifted off the left end (from bit 1) are lost. If the C field is zero, no shift :
takes place. 1

Status Affected: If the sign bit and bit 1 of register A differ at any time during
the shift operation, the overflow indicator (bit 2 of the status register) is
turned on; otherwise, it is turned off. In either case, the sign bit is not
affected.

Execution Time: 0,75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the ALA instruc-
tion is as follows:

Label Operation Operand Comment
[1abel]l] B ALA B count B [comment]
where '"count'' is an expression that specifies the shift count.

Example:

ALA 5 Before After
= (A) = 537B,, 6F601 (the overflow indicator is
turned on)

3.8.2 ARITHMETIC LEFT SHIFT DOUBLE (ALD)

Machine Format:

o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LR B | LR r T LB

1 1+ o0 oj1 o0 O Of1 O 1

C=

SHIFT COUNT

\ 0<C<31
OP—CODE

3-59 Digital Systems Division

(o]
%@ 943013-9701

[nstruction Execution: Shift (A, E) left C places; zero fill vacated bits

Description: Shift the double-length word formed by bits 1 through 15 of
both registers A and E to the left the number of bit positions specified by the
C field. The sign bits (bit 0) of registers A and E are not involved in the
shift. Bit 0 of register E is forced to agree with bit 0 of register A and bits
shifted out of bit 1 of register E are shifted into bit 15 of register A. Bit
positions vacated by the shift are filled with zeros and bits shifted off the

left end (bit 1 of register A) are lost. If the C field is zero, no shift takes
place but the sign of register E is forced to agree with the sign of register A.

Status Affected: If the sign bit and bit 1 of register A differ at any time during
the shift operation, the overflow indicator (bit 2 of the status register) is
turned on; otherwise, it is turned off. In either case, the sign bit is not
affected.

Execution Time: 1.00 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the ALD instruc-
tion is as follows:

Label Operation Operand Comment
[1abel]l ¥ ALD B count % [comment]

where ''count'' is an expression that specifies the shift count.

Example:
ALD 10 Before (Hex) After (Hex)
= (A,E) = C3Cl,86Al 8435, 8400 (the overflow
indicator is
turned on)

3.8.3 ARITHMETIC RIGHT SHIFT REGISTER A (ARA)

Ma.chine Format:

0o t 2 3 4 5 6 7 8 9 10 1112 13 14 15
L L B DL L | T T 1 1

1 1 o oft1 o O O]J]O O O g;“:--r COUNT

N v
v 0<C<31
OP—CODE

Instruction Execution: Shift (A) right C places; sign fill vacated bits

Description: Shift the contents of register A to the right the number of bit
positions specified by the C field. Bit positions vacated are filled with the
original sign bit (bit 0) and bits shifted off the right end are lost. If the C
field is zero, no shift takes place.

3-60 Digital Systems Division

o
{é’@ 943013-9701 ARA, ARD

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the ARA instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] B ARA B count B [comment]

where '"count' is an expression that specifies the shift count.

Example:
ARA 3 Before After
= (A) = 832116 F06416

3.8.4 ARITHMETIC RIGHT SHIFT DOUBLE (ARD)

Machine Format: »

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
1 1 | L ! | I I T i T 1

C=
1 1 o o}t o O o]0 O 1 SHIFT COUNT

N y , 0<C<31
OP—CODE

Instruction Execution: Shift (A, E) right C places; sign fill vacated bits

Description: Shift the double-length word formed by registers A and E to the
right the number of bit positions specified by the C field. Bit 0 of register
E is forced to agree with bit 0 of register A and bits shifted out of bit 15 of
register A are shifted into bit 1 of register E. Bit positions vacated by the
shift are filled with the original sign bit (bit 0 of register A) and bits shifted
off the right end are lost. If the C field is zero, no shift takes place but the
sign of register E is forced to agree with the sign of register A.

Status Affected. None

Execution Time: 1.00 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the ARD instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] © ARD B count ¥ [comment]

where '"count' is an expression that specifies the shift count.

3-61 Digital Systems Division

@\ 943013-9701

Example:
FIVE EQU 5 Before (Hex) After (Hex)
. = (A,E) = 2F03,1100 0178, 0C88
ARD FIVE

3.8.5 CIRCULAR LEFT SHIFT DOUBLE (CLD)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 i 1] I I LS 1 1 I |
1 1 O oj1 O 1 1 1 0o o

C=
SHIFT COUNT

\ v / 0<C<31
OP—CODE

Instruction Execution: Shift (A, E) left C places, circularly

Description: Shift the double-length word formed by registers A and E to the
left the number of bit positions specified by the C field. Bits shifted out of
bit 0 of register A are shifted into bit 15 of register E. Bits shifted out of
bit 0 of register E are shifted into bit 15 of register A. If the C field is zero,
no shift takes place.

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the CLD instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ CLD B count B [comment]

where ''count'' is an expression that specifies the shift count.

Example:
CLD 8 Before (Hex) After (Hex)

> (A,E) = 5350,4F54 504F, 5453

3.8.6 CIRCULAR RIGHT SHIFT REGISTER A (CRA)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LI L 1 | LI L
. C=
1 1 o (o] 1 0 1 0 (o) (o] 0 SHIFT COUNT

N / 0<C <31
OP—CODE

3-62 Digital Systems Division

[o]
{ij@ 943013-9701 CLD, CRA, CRB

Instruction Execution: Shift (A) right C places, circularly

Description: Shift the contents of register A to the right the number of bit
positions specified by the C field. Bits shifted out of position 15 are shifted
into position 0. If the C field is zero, no shift takes place. ’

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the CRA instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ CRA ¥ count ¥ [comment]

where '"count'' is an expression that specifies the shift count.

Example:
FOUR EQU 4 Before After

CRA FOUR

3.8.7 CIRCULAR RIGHT SHIFT REGISTER B (CRB)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LI | LI LI L

C=
T 1. 0 o1 0 1 110 1 1| SHIFT COUNT

N v /; 0<cC<31
OP—CODE

Instruction Execution: Shift (B) right C places, circularly

Description: Shift the contents of register B to the right the number of bit
positions specified by the C field. Bits shifted out of position 15 are shifted
into position 0. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the CRB instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ CRB ¥ count ¥ [comment]

where '"count' is an expression that specifies the shift count.

3-63 Digital Systems Division

[o]
%'@5) 943013-9701

'E‘_i@mgle:
CRB 15 Before After
:> -
(B) 010516 020A16

3,8.8 CIRCULAR RIGHT SHIFT DOUBLE (CRD)

Machine Format:

o] 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
r T I I 1 1 I T T 1 T T

t 1 0o ol1 o 1 1|1 1 ol SHiFT count

> ~ 0<c<31
OP—CODE

Instruction Execution: Shift (A, E) right C places, circularly

Description: Shift the double-length word formed by registers A and E to the
right the number of bit positions specified by the C field., Bits shifted out of
position 15 of register E are shifted into position 0 of register A. Bits shifted
out of position 15 of register A are shifted into position 0 of register E, If
the C field is zero, no shift takes place.

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the CRD instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ® CRD ¥ count % [comment]
where '""count'' is an expression that specifies the shift count.

Example:

CRD 6 Before (Hex) After (Hex)
> (A, E) = F6A9, 24B1 C7DA, A492

3.8.9 CIRCULAR RIGHT SHIFT REGISTER E (CRE)

Machine Format:

o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| p— T T T T T T T T T T

C=
1 1 o O 1 (o] 1 0 o} o} 1 SHIFT COUNT

- ‘ — 0<C<31
OP—CODE

3-64 Digital Systems Division

(o]
{é@ 943013-9701 CRD, CRE, CRL

Instruction Execution: Shift (E) right C places, circularly

Description: Shift the contents of register E to the right the number of bit
positions specified by the C field. Bits shifted out of position 15 are shifted
into position 0, If the C field is zero, no shift takes place. '

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the CRE instru;t:-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ CRE B count ¥ [comment]

where ''count' is an expression that specifies the shift count.

Example:
ONE EQU 1 Before After
. = (E) = 24AC16 125616
CRE ONE

3.8.10 CIRCULAR RIGHT SHIFT REGISTER L (CRL)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T 1 1 T T T 1

1 1 o Ooj1 O 1 1]0 1 O

C=
SHIFT COUNT

——
™ 0<Cc<31
OP—CODE

Instruction Execution: Shift (L) right C places, circularly

Description: Shift the contents of register L to the right the number of bit
positions specified by the C field. Bits shifted out of position 15 are shifted
into position 0. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the CRL instruc-
tion is as follows:

Label Operation Operand Comment
[1abel]l ® CRL B count ¥ [comment]

where '"count' is an expression that specifies the shift count.

3-65 Digital Systems Division

{i@? 943013-9701

Example:
CRL 5 Before After
= (L) = 62FF16 FB1716

3.8.11 CIRCULAR RIGHT SHIFT REGISTER M (CRM)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L LI LI LD

C=
1 1 0 o) 1 0 1 (o] 0 1 1 SHIFT COUNT

e -~ . 7 0<Cc<31
OP—CODE

Instruction Execution: Shift (M) right C places, circularly

Description: Shift the contents of register M to the right the number of bit
positions specified by the C field. Bits shifted out of position 15 are shifted
into position 0. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the CRM instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] # CRM b count ¥ [comment]

where ''count'' is an expression that specifies the shift count.

Example:
CRM 8 Before After
= (M) = 263016 302616

3.8.12 CIRCULAR RIGHT SHIFT REGISTER S (CRS)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LI B | LASRRL | T 1 LR L

T 1t 0 O0i1 0o 1 1}10 O 1

C=
SHIFT COUNT

\ v / 0<Cc<31
OP—CODE

3-66 Digital Systems Division

o
&@ 943013-9701 CRM, CRS, CRX

Instruction Execution: Shift (S) right C places, circularly

Description: Shift the contents of register S to the right the number of bit :
positions specified by the C field. Bits shifted out of position 15 are shifted
into position 0, If the C field is zero, no shift takes place. ’

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the CRM instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ CRS ¥ count ¥ [comment]

where ''count' is an expression that specifies the shift count.

Example:
CRS 2 Before . After
= (8) = CD9416 336516

3.8.13 CIRCULAR RIGHT SHIFT REGISTER X (CRX)

Machine Format:

O 1t 2 3 4 5 6 7 8 9 10 1112 13 14 15
LB LI T 1 T T 1

1 1 0 of1 o 1 oflo 1 of SEGiFrcount

- v / 0<Cc<31
OP—CODE

Instruction Execution: Shift (X) right C places, circularly

Description: Shift the contents of register X to the right the number of bit
positions specified by the C field. Bits shifted out of position 15 are shifted
into position 0. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the CRX instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ CRX B count ¥ [comment]

where "'count' is an expression that specifies the shift count.

3-67 Digital Systems Division

j{[]g 943013-9701

Example:
F15 EQU 15 Before After

CRX F15

3.8.14 LOGICAL LEFT SHIFT REGISTER A (LLA)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
: 1 I] 1 I I 1 | I I | 1
H C=
. 1 1 0 (o2 I | (o) o) (o) 1 1 0 SHIFT COUNT
\ — / o<Cc<31
OP—CODE

Instruction Execution: Shift (A) left C places; zero fill vacated bits

Description: Shift the contents of register A to the left the number of bit
positions specified by the C field. Bit positions vacated are filled with zeros
and bits shifted off the left end are lost. If the C field is zero, no shift takes
place.

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the LLA instruc-
tion is as follows:

Liabel Operation Operand Comment
[1abel]l ¥ LLA b count ¥ [comment]

where ''count' is an expression that specifies the shift count.

Example:
LLA 4 Before After
= (A) = F40916 409016

3,8.15 LOGICAL LEFT SHIFT DOUBLE (LLD)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

| — B T | B —

1 1 0 o1 o o of1t 1 1| EhiFT count

\ — -0<C<L31
OP—CODE

3-68 Digital Systems Division

{%gfp 943013-9701 LLA, LLD, LRA

Instruction Execution: Shift (A, E) left C places; zero fill vacated bits

Description: Shift the double-length word formed by registers A and E to the
left the number of bit positions specified by the C field. Bit positions vacated
are filled with zeros, bits shifted out of position 0 of register A are lost, and
bits shifted out of position 0 of register E are shifted into position 15 of reg-

ister A. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the LLD instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ® LLD ¥ count ¥ [comment]
where ''count'' is an expression that specifies the shift count.

Example:

LLD 3 Before (Hex) After (Hex)
= (A,E) = F2F0,1108 9780, 8840

3.8.16 LOGICAL RIGHT SHIFT REGISTER A (LRA)

Machine Format:

o t 2 3 4 5 6 7 8 9 10 1112 13 14 15
LI B LRI L L
c

1 1 o of|1 o o olo 1 o SHIFT COUNT

R , 0<C<3t
OP—CODE

Instruction Execution: Shift (A) right C places; zero fill vacated bits

Description: Shift the contents of register A tothe right the number of bit
positions specified by the C field. Bit positions vacated are filled with zeros
and bits shifted off the right end are lost. If the C field is zero, no shift
takes place._

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the LRA instruc-
tion is as follows: '

Label Operation Operand Comment
[1abel] # LRA ¥ count ¥ [comment]

where ''count" is an expressidn that specifies the shift count.

3-69 Digital Systems Division

ir@? 943013-9701

E_}ialmp_le:
SEVN EQU 7 Before After
= (A) = 3CF116 007916

LRA SEVN

2,8,17 LOGICAL RIGHT SHIFT DOUBLE (LRD)

Machine Format:

0 t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1T 1 LI v L
1 1 0o oft1t o o0 o0 1 1

C=
SHIFT COUNT
\ Va — 0ZLC<31

Instruction Execution: Shift (A, E) right C places; zero fill vacated bits

Description: Shift the double-length word formed by registers A and E to the
right the number of bit positions specified by the C field. Bit positions va-
cated are filled with zeros, bits shifted out of position 15 of register A are
shifted into position 0 of register E, and bits shifted out of position 15 of
register E are lost. If the C field is zero, no shift takes place.

Status Affected: None

Execution Time: 0.75 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the LRD instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ LRD ¥ count ¥ [comment]
where ''count'' is an expression that specifies the shift count.

Example:

LLRD 12 Before (Hex) After (Hex)
= (A,E) = 0214,5F67 0000,2145

3.8.18 LEFT TEST FOR ONES IN REGISTER A (LTO)

Machine Format:

(o] 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
| L LERLEL| LI T 1 1 1

C=
1 1 [0 B ¢] 1 o O 1 1 o o SHIFT COUNT

- s 0<c<31

3-70 Digital Systems Division

o
Qﬂ? 943013-9701 LRD, LTO, LTZ

Instruction Execution: Shift (A) left C places or until a one is found in bit 0;
leading zeros count — (X); zero fill vacated bits

Description: Logically shift the contents of register A to the left the number
of bit positions specified by the C field or until a one appears in bit 0 of reg-
ister A. Bit positions vacated by the shift are filled with zeros. If a one is
shifted into bit 0, it is set to zero and register X is loaded with a count of

the number of zeros shifted out of bit 0. If a one is not found after shifting
the number of bits specified by the C field, register X is loaded with the value
of the C field. If the C field is zero, bit 0 of register A is complemented and
register X remains unchanged.

NOTE

The LTO instruction is commonly used to deter-
mine which bits of a status word returned from a
peripheral device are set.

Status Affected: None

Execution Time: 1.00 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the LTO instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ LTO B count ¥ [comment]

where ''count' is an expression that specifies the shift count.

Example:
SIX EQU 6 Before After
. = (A) = 3C2B16 7OAC16
LTO SKX (X) = FF0316 000216 (""one' found after

two shifts)

3.8.19 LEFT TEST FOR ZEROS IN REGISTER A (LTZ)

Machine Format:

[} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 1 1 1 T T T T 1 T L 1

1 1 0 of1 o o 1l1 1 o E5iFr count

- — /' 0<C<31

3-71 Digital Systems Division

o
{—@@ 943013-9701

Instruction Execution: Shift (A) left C f)laces or until a zero is found in bit 0;
leading ones count — (X); zero fill vacated bits

Description: Logically shift the contents of register A to the left the number
of bit positions specified by the C field or until a zero appears in bit 0 of reg-
ister A. Bit positions vacated by the shift are filled with zeros. If a zero is
shifted into bit 0, it is set to one and register X is loaded with a count of the
aumber of ones shifted out of bit 0. If a zero is not found after shifting the
number of bits specified by the C field, register X is loaded with the value of
the C field. If the C field is zero, bit 0 of register A is complemented and
register X remains unchanged.

Status Affected: None

Execution Time: 1.00 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the LTZ instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ LTZ ¥ count ¥ [comment]

where '"count' is an expression that specifies the shift count.

Example:
LTZ 3 Before After
> (A) = FCO2 E010,,
(X) = 008016 000316 (no "zeros' found in three

shifts)

3.8.20 NORMALIZE (NRM)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ER | T T

1 1t o oJ]1 o 1 o|1 O o0 1 1 1 1 1

OP—CODE

Instruction Execution: Shift (A, E) left until (A)g # (A)1; shift count — (X);
zero fill vacated bits

Description: Shift the double-length word formed by registers A and E to the
left until bit 0 of register A is different from bit 1 of register A. Bit posi-
tions vacated by the shift are filled with zeros and bit 0 of register E is

forced to agree with bit 0 of register A. Bits shifted out of bit 1 of register

E are shifted into bit 15 of register A. The total number of bits shifted to
perform the normalization is loaded in register X. If the contents of registers

3-72 Digital Systems Division

(e}
e@ 943013-9701 NRM, RTO

A and E are both zero and the NRM instruction is executed, a count of 31 is
stored in register X and registers A and E remain at zero, If registers A
and E are all ones and the NRM instruction is executed, a count of 30 is
stored in register X and registers A and E both contain 800016'

Status Affected: None

Execution Time: 1.00 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the NRM instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] © NRM [} [comment]
Example:
NRM Before (Hex) After {Hex)
= (A,E) = 0062, B87A 6238, 7A00
(X) = 0AB2 0008

3.8.21 RIGHT TEST FOR ONES IN REGISTER A (RTO)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LR LR LI L L

11001001000‘5:;IFTCOUNT

\ , 0<C<31
OP—CODE

Instruction Execution: Shift (A) right C places or until a one appears in bit
15; trailing zeros count — (X); zero fill vacated bits

Description: Logically shift the contents of register A to the right the number
of bit positions specified by the C field or until a one appears in bit 15. Bit
positions vacated by the shift are filled with zeros. If a one is shifted into

bit 15, it is set to zero and register X is loaded with a count of the number of
zeros shifted out of bit 15, If a one is not found after shifting the number of
bits specified by the C field, register X is loaded with the value of the C
field. If the C field is zero, bit 15 of register A is complemented and reg-
ister X remains unchanged.

Status Affected: None

Execution Time: 1.00 + (shift count/4) microseconds

3-73 Digital Systems Division

(o]
@, 943013-9701

Symbolic Coding: The assembly language coding format for the RTO instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ RTO B count ¥ [comment]

where '"count'' is an expression that specifies the shift count.

Example:
EGHT EQU 8 Before After
. (A) = 6BA4:16 1AE816
RTO EGHT (X) = 090516 000216

3.8.22 RIGHT TEST FOR ZEROS IN REGISTER A (RTZ)

Machine Format:

o t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 1 1 T 1 1 T 1 L

1 1 o of1 o o 1|0 1 ol GhieT counT
~ -/ 0<cCc<31

OP—CODE

Instruction Execution: Shift (A) right C places or until a zero appears in
bit 15; trailing ones count — (X)

Description: Logically shift the contents of register A to the right the number
of bit positions specified by the C field or until a zero appears in bit 15. Bit
positions vacated by the shift are filled with zeros. If a zero is shifted into
bit 15, it is set to one and register X is loaded with a count of the number of
ones shifted out of bit 15. If a zero is not found after shifting the number of
bits specified by the C field, register X is loaded with ‘the value of the C

field. If the C field is zero, bit 15 of register A is complemented and reg-
ister X remains unchanged.

Status Affected: None

Execution Time: 1.00 + (shift count/4) microseconds

Symbolic Coding: The assembly language coding format for the RTZ instruc-
tion is as follows:

Label Operation Operand Comment
[1abell ¥ RTZ b count ¥ [comment]

where ''count'' is an expression that specifies the shift count.

3-74 Digital Systems Division

0o
Q_@@ 943013-9701 RTZ, AND

Example: Before After
RTZ 5 (A) = F60116 7B0116
(X) = FFFFlé 000116

3.9 LOGICAL INSTRUCTIONS

The logical instructions listed in table 3-1 are described in the following para-
graphs.

3.9.1 LOGICAL AND WITH REGISTER A (AND)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
T T T T T T LI | T T T
o o0 1 1 1)1 | X|B D
X /
v
OP—CODE

Instruction Execution: (A) AND (EQCA) —(A) where EOA is developed in
accordance with table 3-3,

Description: Perform a bit-by-bit logical AND between the contents of reg-
ister A and the contents of the effective operand address, EOA., Place the
result in register A, If the IXB fields are 7 (immediate addressing), the
operand to be AND'ed with register A consists of zeros in bits 0 to 7 and the
displacement field, D, in bits 8 to 15. The Logical AND operation is defined
as follows: '

(A) (EOA)
Bit Bit Result
0 0 0
0 1 0
1 0 0
1 1 1

Status Affected: None

Execution Time: 0.75 to 2.75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3-3 for the as sembly language coding for-
mats available with the AND instruction. The AND mnemonic replaces the
MNU operation field (in table 3-3) and optional label and comment fields may
be used.

3-75 _ Digital Systems Division

@ 943013-9701

_E_x_g;mpl e:

MASK AND =>B6 Before After
= =
(A) F63716 003616
(MASK) = 3FB6 16 No change

3.9.2 LOGICAL OR WITH REGISTER A (IOR)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
T T 1 1T T 1 1T 1

o] (o) 1 1 0|1 X| B D
\ -
—
OP—CODE

Instruction Execution: (A) OR (EOQA) — (A)

Description: Perform a bit-by-bit logical OR between the contents of register
A and the contents of the effective operand address, EOA. Place the result

in register A, If the IXB fields are 716 (immediate addressing), the operand
to be OR'ed with register A consists of zeros in bits 0 to 7 and the displace-
ment field, D, in bits 8 to 15. The logical OR operation is defined as follows:

(A) (EOA)

Bit Bit Result
0 0 0

0 1 1

1 0 1

1 1 1

Status Affected: None

Execution Time: 0.75 to 2.75 microseconds (refer to Appendix A)

Symbolic Coding: Refer to table 3_3 for the assembly language coding for-
mats available with the IOR instruction. The IOR mnemonic replaces the
MNTU operation field (in table 3-3) and optional label and comment fields may

be used.
Example:
IOR HEX,2 Before After
= (A) = 01 0816 313816 \ggfsre, (X) =
(HEX + 1816) = 303016 No change 16

3-76 Digital Systems Division

(o]
Q@ 943013-9701 IOR, RAN, REO

3.9.3 REGISTER AND (RAN)

Machine Format:

0O 1t 2 3 4 5 6 7 B8 9 10 11 1213 14 15
| S 1T 1T 1 T 7 T 1
SR= - AbR=DESTI
1 1 0 o|JO0o 1 1 O 1] SOURCE %NATION
REGISTER}"AREGISTER
\ J

hd
OP—-CODE

Instruction Execution: (SR) AND (DR)-—(DR)

Description: Perform a bit-by-bit logical AND between the contents of the
registers specified by the SR and DR fields. Place the result in the register
specified by the DR field. The logical AND operation is defined in paragraph
3.9.1. If bit 12 of the machine format is set to one and bits 13 to 15 are
zeroed, the status register is specified as the destination register. In this
case the instruction is restricted, meaning it is considered illegal if the
memory protect/privileged instruction feature is enabled. Interrupts, other
than internal, are inhibited for one instruction following this special case of
the RAN instruction.

Status Affected: None

Execution Time: 1.25 microseconds

Symbolic Coding: The assembly language coding format for the RAN instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ RAN B sreg,dreg B [comment]

where '"'sreg'' and ''dreg'' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when '"dreg'' equals eight is covered in the '"Description'’ paragraph.

Example:
RAN 0,3 Before After
= (M) = BSAS16 : 082016
(A) = 0F7O16 No change

3.9.4 REGISTER EXCLUSIVE OR (REO)

Machine Format:

o t 2 3 4 5 €6 7 8 9 10 1112 13 14 15
LI | | L I | - | é
SR= DR=DESTI—
1 1t 0o ojo o 1 0 1|35yrce [~INATION
REGISTERI ~IREGISTER 1
\ -t
—
OP—CODE

3-77 Digital Systems Division

[e]
@ 943013-9701

Instruction Execution: (SR) exclusive OR (DR)— (DR)

Description: Perform a bit-by-bit logical exclusive OR between the contents
of the registers specified by the SR and DR fields. Place the result in the
register specified by the DR field. The exclusive OR operation is defined as

follows:
(SR) (DR)
Bit Bit Result
0 0 0
0 1 1
1 0 1
1 1 0

If bit 12 of the machine format is set to one and bits 13 to 15 are zeroed, the
status register is specified as the destination register. In this case the in-
struction is restricted, meaning it is considered illegal if the memory
protect/privileged instruction feature is enabled. Interrupts, other than in-
ternal, are inhibited for one instruction following this special case of the
REO instruction.

Status Affected: None

Execution Time: 1.25 microseconds

Symbolic Coding: The as sembly language coding format for the REO instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ® REO ¥ sreg,dreg B [comment]

where ''sreg'' and ''dreg'' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when "dreg' equals eight is covered in the "Description'' paragraph.

E}_{_amgle:
A EQU 0 Before After
= - 2
S EQU 4 > (S) J86216 630316
REO A,S (A) = 5BAIl 16 No change

3.9.5 REGISTER OR (ROR)

Machine Format:

o t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I | I 1 | | T T L T é
SR= DR=DESTI-|
1 1 o ojo 1 O O 1 |SOURCE /NATION
REGISTER [|REGISTER
\ v /
OP—CODE

3.78 Digital Systems Division

(o]
Q]@ 943013-9701 ROR, SABO

Instruction Execution: (SR) OR (DR)— (DR)

Description: Perform a bit-by-bit logical OR between the contents of the reg-
isters specified by the SR and DR fields. Place the result in the register
specified by the DR field. The logical OR operation is defined in paragraph
3.9.2. If bit 12 of the machine format is set to one and bits 13 to i5 are
zeroed, the status register is specified as the destination register. In this
case the instruction is restricted, meaning it is considered illegal if the
memory protect/privileged instruction feature is enabled. Interrupts, other
than internal, are inhibited for one instruction following this special case of
the ROR instruction.

Status Affected: None

Execution Time: 1.25 microseconds

Symbolic Coding: The assembly language coding format for the ROR instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ ROR ¥ sreg,dreg ¥ [comment]

where ''sreg'’ and '"dreg'' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when '"dreg'' equals eight is covered in the '""Description'' paragraph.

Example: ,
ROR 4,3 Before After
= (M) = 0005 0035,

(S) = 003016 No change

3.10 BIT MANIPULATION INSTRUCTIONS

The bit manipulation instructions listed in table 3-1 are described in the fol-
lowing paragraphs.

3.10.1 SET REGISTER A BIT TO ONE (SABO)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
| A — T T S T 1T

1 1 0 1 1 o 1 1]0 1 o0 1 B=BIT

A%
OP—CODE

Instruction Execution: 1— (A)

bit B

3-79 Digital Systems Division

[o]
%@ 943013-9701

Description: Set the bit in register A specified by the B field to one.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SABO instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ SABO B bit B [comment]

where ''bit'" is an expression that specifies the bit in register A to be set to

one.
Example:
SABO 4 Before After
= (A) = 220016 2A0016

3.10.2 SET REGISTER A BIT TO ZERO (SABZ)

Ma.chine Format:

0O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
LN LB LI LI
1 1 0 1)1 o 1t 1|0 1 0 O B=BIT

~
OP—CODE

Instruction Execution: 0— (A)

bit B
Description: Set the bit in register A specified by the B field to zero.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the SABZ instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ SABZ B bit ¥ [comment]

where ''bit'' is an expression that specifies the bit in register A to be set to

zero.
Example:
FIFTN EQU 15 Before After
. > (A) = FFFF16 FFFE16
SABZ FIFTN
3-80

Digital Systems Division

50
{‘@ 943013-9701 SABZ, SMBO

3.10.3 SET MEMORY BIT TO ONE (SMBO)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 T 1 | A I B
WorD 1 |1 1 0o 1|1 o0 1 1|0 1 1 1 B=BIT
\u /
OP-CODE
0O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
| 1 || LI LI { 1 T T T
WORD 2 Y=MEMORY ADDRESS
Instruction Execution: 1-—(Y) .
()b1t B
Description: Set the bit, in memory location Y, specified by the B field to

one.

Status Affected: None

Execution Time: 3.25 microseconds

Symbolic Coding: The assembly language coding formats for the SMBO in-
struction are as follows:

NOTE

The FLAG directive in the second coding format
is described in Section IV,

Label Operation Operand Comment

[1abel] B SMBO ¥ bit,adrs B [comment]

or
[1abel]l] ¥ FLAG ¥ adrs ¥ [comment]
[1abel] ¥ SMBO ¥ bit b [comment]

where "bit' and '"adrs'' are expressions that must be evaluated to specify a
bit in memory to be set to one. First, the 'bit" expression is divided by 16.
The resulting quotient is added to the value of the ""adrs' expression to form
the memory word address, Y. The remainder becomes the B field and speci-
fies the bit in word Y to be set to one.

Example:
SMBO 17, STATUS Before After
= (S'];'ATUS+1) = 001316 401316
3-81

Digital Systems Division

o
%@ 943013-9701

3.10.4 SET MEMORY BIT TO ZERO (SMBZ)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15

WORD 1 1 1 0 1 1 o 1 1 0 1 1 0

! I 1
B=BIT

v
OP—CODE

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T] T 1 T 1] T 1 1 T 1
WORD 2 Yy=MEMORY ADDRESS

1 1 1 1

Instruction Execution: 0 ———(Y)bit B

Description: Set the bit, in memory location Y, specified by the B field to

zZero.

Status Affected: None

Ixecution Time: 3.25 microseconds

Symbolic Coding: The assembly language coding formats for the SMBZ in-

struction are as follows:

NOTE

The FLAG directive in the second coding format

is described in Section IV.

Label Operation Operand Comment

[1abel]l B SMBZ ¥ bit,adrs ¥ [comment]

or
[1abel]l ¥ FLAG ¥ adrs ¥ [comment]
[1abell] ¥ SMBZ ¥ bit ¥ [comment]

where '"bit'"" and ""adrs' are expressions that must be evaluated to specify a
bit in memory to be set to zero. First, the value of the ''bit" expression is
divided by 16. The resulting quotient is added to the value of the "adrs' ex-
pnression to form the memory word address, Y. The remainder becomes the

B field and specifies the bit in word Y to be set to zero.

Example:
SMBZ 15, MEM Before After
=> =
(MEM) 2A23 16 2A22 16
3-82

Digital Systems Division

[0}
{@@ 943013-9701 SMBZ, TABO, TABZ
J

3.10.5 TEST REGISTER A BIT FOR ONE (TABO)

Machine Format:

o 1t 2 3 a4 5 ()7 8 9 10 11/12)13 14 15
T T T T T T ™7 T 1

1 1 o 1 1 0 1 10 o O 1 B=BIT

—
OP—CODE

Instruction Execution: (A) 1; skip next word

bit B

(At B =

Description: If the bit in register A specified by the B field is a one, skip
the next word. If the bit is a zero, execute the next word.

0; execute next word

Status Affected: None

Execution Time: 1.25 microseconds

Symbolic Coding: The assembly language coding format for the TABO in-
struction is as follows:

Label Operation Operand Comment
[1abel] B TABO B Dbit ¥ [comment]

where '"bit'' is an expression that specifies the bit in register A to be tested.

Example:
TABO 6 Before After
= (A) = 02A316 No change
(PC) = 117916 117B16

3.10.6 TEST REGISTER A BIT FOR ZERO (TABZ)

Machine Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
UL I I LIS Ll | I I | 1
1 1 o0 1 1 0 1 1]0 0 O O B=BIT
N /
hd
OP—CODE

1]

Instruction Execution: (A)bit B

(A)bit B 1; execute next word

0; skip next word

3-83 Digital Systems Division

@ 943013-9701

Description: If the bit in register A specified by the B field is zero, skip the
next word. If the bit is one, execute the next word.

Status Affected: None

Execution Time: 1.25 microseconds

Symbolic Coding: The assembly language coding format for the TABZ in-
struction is as follows:

Label Operation Operand Comment
[1abell ¥ TABZ B bit b [comment]

where '"bit'' is an expression that specifies the bit in register A to be tested.

Example:
SEVN EQU 7 Before After
. N {A) = F5C616 No change
TABZ SEVN (PC) = 1311, 1312,

3.10.7 TEST MEMORY BIT FOR ONE (TMBO)

Machine Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 T T 1 71 T T 1 1
WORD 1 1 1 0 1 1 0 1 1 0 [o] 1 1 B=BIT
e 7
v
OP—CODE
) 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

1 1 T T T 7 T T T T 1 1

WORD 2 Y=MEMORY ADDRESS

Instruction Execution: (Y) = 1; skip next word

(Y)

bit B

= 0: '
bit B ; execute next word

Description: If the bit, in memory location Y, specified by the B field is one,
skip the next word. If the bit is zero, execute the next word.

Status Affected: None

Execution Time: 2.75 microseconds

3-84 Digital Systems Division

(o]
Q@D 943013-9701 TMBO, TMBZ
{

i

Symbolic Coding: The assembly language coding formats for the TMBO in-
struction are as follows:

NOTE

The FLAG directive in the second coding format
is described in Section IV,

Label Operation Operand Comment

[1abell] B TMBO B bit,adrs ¥ [comment]

or
[1abel] ¥ FLAG ¥ adrs ¥ [comment]
[1abel] ¥ TMBO ¥ bit # [comment]

where '"bit'' and "adrs'' are expressions that must be evaluated to specify a
bit in memory to be tested. First, the value of the 'bit'' expression is di-
vided by 16. The resulting quotient is added to the value of the "adrs'' ex-
pression to form the memory word address, Y. The remainder becomes the
B field and specifies the bit in word Y to be tested.

Example:
TMBO 4, TEST Before After
=> (TEST) = 080016 No change
(PC) = 2.AEF16 ZAFl16

3,10.8 TEST MEMORY BIT FOR ZERO (TMBZ)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| R T T 1 — 1 7
WORD 1 1 1 o 1|1 o 1 1 o o 1t O B=BIT
\ ——
V
OP—CODE

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
™71 1 71 =&+ 1 §+°&+.°17 7T T 17T"7T".1

WORD 2 Y=MEMORY ADDRESS

Instruction Execution: (Y)bit B =

Vi B =

0; skip next word

1; execute next word

3-85 Digital Systems Division

(o]
{@Q 943013-9701

Description: If the bit, in memory location Y, specified by the B field is
zero, skip the next word. If the bit is one, execute the next word.

Status Affected: None

Execution Time: 2.75 microseconds

Symbolic_Coding: The assembly language coding formats for the TMBZ in-
struction are as follows:

NOTE

The FLAG directive in the second coding format
is described in Section IV,

Label Operation Operand Comment
[1abel] ¥ TMBZ ¥ bit,adrs ¥ [comment]
or

[1abel] ¥ FLAG ¥ adrs ¥ [comment]
[1abel] ¥ TMBZ ¥ bit ¥ [comment]

where "bit" and ''adrs'' are expressions that must be evaluated to specify a
bit in memory to be tested. First, the value of the 'bit'' expression is di-
vided by 16. The resulting quotient is added to the value of the ""adrs' ex-
pression to form the memory word address, Y. The remainder becomes the
B field and specifies the bit in word Y to be tested.

Example:
TMBZ 0, LOC Before After
= (LOC) = 808A16 No change
(PC) = 077D16 077E16

3.11 MOVE INSTRUCTIONS

The move instructions listed in table 3-1 are described in the following para-
graphs.

3.11.1 MOVE CHARACTER STRING (MVC)

Machine Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T I T T T T T >y Iy
1 1 o 11 1 1 1 0 %/'})TUSED/r//

OP—-CODE

Digital Systems Division

@@ 943013-9701 MVC

IR .Mn)—-»(Yl, YZ’ . ..Yn)
M and Y_,Y
n 1

Instruction Execution: (Ml’ M

where Ml’ M

TR TR Yn are byte strings in memory

Description: Move a string of consecutive bytes from one location in memory
to a second location in memory. The starting addresses of the two memory
locations (S1, Bl moved to S2, B2) and the number of bytes to be moved (BC)
are established in general registers as described in paragraph 3.6.1. The
content of byte address S1, Bl is moved to S2, B2, and then the two byte ad-
dresses are incremented. The byte move and address increment process is
repeated until BC bytes have been moved in this manner.

CAUTION

If the displacement between S1, Bl and S2, B2 is
less than the length of the byte string (BC) to be
moved, and S1, Bl is less than S2, B2, the bytes
from the source string (S1, Bl) in the overlap ad-
dresses will be replaced before they are to be
moved. In particular, if the move displacement
is one byte, the first byte of the source string will
be placed in all of the destination addresses.

Status Affected: None

Execution Time: 4.75 + 2,75 X (no. of bytes moved) microseconds

Symbolic Coding: The assembly language coding format for the MVC instruc-
tion is as follows:

Label Operation Oper and Comment

[1abel] B MVC ¥ [comment]
Example:
MVC Before (Hex) After (Hex)
> (A) = 0000 0000
(E) = 0574 0577
(M) = 0000 0000
(S) = 06A6 06A9
(X) = 0003 0000
(02BA, 02BB) = 5123,64AC No change
(0353, 0354) = F125, 0398 5123, 6498

3-87 Digital Systems Division

[e]
% 943013-9701

3.11.2 REGISTER EXCHANGE (REX)

Machine Format:

0O 1t 2 3,4 5 6 7.8 9 10 11 12 13 14 15
“ ;
et LI sr= ' [~“]pripESTI
1 1 o olo 1 1 1. 1]|SOURCE [~INATION
: REGISTER [~ JREGISTER
L1 e " . —/
> OP—CODE '

Instruction Execution: (SR)— (DR); (DR)— (SR)

Description;: Exchange the contents of the registers specified by the SR and
DR fields. If bit 12 of the machine format is set to one and bits 13 to 15 are
zeroed, the status register is specified as the destination register. In this
case the instruction is restricted, meaning it is considered illegal if the
memory protect/privileged instruction feature is enabled. Interrupts other
than internal, are inhibited for one instruction following this special case of
the REX instruction.

Status Affected: None

Execution Time: 1.50 microseconds

Symbolic Coding: The assembly language coding format for the REX instruc-
tion is as follows:

Label Operation Operand Comment
[1abel]l ¥ REX B sreg,dreg B [comment]

where ""sreg" and ""dreg' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2. The special
case when ''dreg' equals eight is covered in the ''Description' paragraph.

Example:
B EQU 6 Before After
M EQU 3 = (M) = 003216 1FA016
RiEX B, M (B) = 1FA016 003216
3.11.3 REGISTER MOVE (RMO)
Machine Format:
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L bt T Ter= U P~ lor=DESTI-

1 1 0O 0] 0 1 O 1 O} SOURCE /NATION
REGISTER|{ ~JREGISTER

3-88 Digital Systems Division

{Qﬁ@ 943013-9701 REX, RMO, API
-’
X

Instruction Execution: (SR)—(DR)

Description: Move the contents of the register specified by the SR field to
the register specified by the DR field. The contents of the register specified
by the SR field remain unchanged. If bit 12 of the machine format is set to
one and bits 13 to 15 are zeroed, the status register is specified as the des-
tination register. In this case the instruction is restricted, meaning it is
considered illegal if the memory protect/privileged instruction feature is en-
abled. Interrupts other than internal, are inhibited for one instruction fol-
lowing this special case of the RMO instruction.

Status Affected: None

Execution Time: 1.00 microsecond

Symbolic Coding: The assembly language coding format for the RMO instruc-
tion is as follows:

Label Operation Operand Comment
[1abel] ¥ RMO ¥ sreg,dreg ¥ [comment]

where ''sreg'' and ''dreg'' are expressions that address the source and des-
tination registers, respectively, in accordance with table 2-2, The special
case when ''dreg' equals eight is covered in the '"Description'' paragraph.

Example:
RMO 5,0 Before After
> (A) = 000316 102516
(L) = 102516 No change

3.12 'INPUT/OQUTPUT INSTRUCTIONS

The input/output instructions listed in table 3-1 are described in the following
paragraphs.

3.12.1 ATUXILIARY PROCESSOR INITIATE (API)

Machine Format:

0O { 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| A SRS | T 7 T 1 ¢ 1 1T §U

WORD 1 1 1 o'1|1 1 o 1 AP COMMAND CODE

0O 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| L L A L L L L L e

WORD 2 : Y=MEMORY ADDRESS

3-89 Digital Systems Division

o]
%@ 943013-9701

Instruction Execution: (Y)— (AP) ; (AP)—(Y) where AP is Auxiliary
Processor

Description: The computer sends thetwo words comprising the API instruc-
tion to the AP port. The computer then enters a wait state while both the AP
and DMAC ports are given access to memory. If the AP port command code
in word one of the instruction is not recognized by the controller(s) being
used, the computer treats the API instruction as illegal. The AP port is
also capable of suspending its operation with appropriate return information
stored in memory when the computer recognizes an interrupt. The AP uses
the command code in word one of the instruction and the memory address in
word two of the instruction to perform operations not included in the 980 in-
struction set (floating point arithmetic, emulation of other computer instruc-
tion sets, etc.). Following a successful AP operation, the AP port issues a
release signal to the computer so the computer may resume processing.

NOTE

The AP physically interfaces with the computer at
a card slot in the input/output expansion area of the
computer chassis.

Status Affected: None

Execution Time: Variable, depending on the complexity of the AP operation.

Symbolic Coding: The assembly language coding format for the API instruc-
tion is as follows:

Label Operation Operand Comment

[1abel]l B API '} cmd ¥ [comment]
[1abel] . ¥ DATA ¥ adrs ¥ [comment]

where '"emd'' is an expression which, when evaluated, identifies to the AP
the command to be executed. The expression "adrs' is the symbolic name
for a 16-bit memory address containing the necessary information to execute
the command.

An optional method of issuing API instructions is through use of the OPD as-
sembler directive (described in Section IV of this manual). The example in
the next paragraph illustrates this method in detail.

Example: The following example assumes an AP is available to perform a
vector dot product. The three OPD directives establish the word one bit
patterns of the three API instructions issued later in the extended version of
the register-memory format. The extended instructions then reference

3-90 Digital Systems Division

(o]
VE\Z@ 943013-9701 ATI

symbolic names for the memory addresses that comprise word two of the
respective API instructions.

Label Operation Operand Comment
VLD OPD DDO00, 1 Vector Load Command
VDOT OPD DD80, 1 Vector Dot Command
SST OPD DDCO, 1 Scalar Store Comment
VLD Vectl Load Vectl
VDOT Vect2 Vectl Dot Vect2
SST Result Store in resflt

3.12.2 AUTOMATIC TRANSFER INSTRUCTION (ATI)

Machine Format:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
] I 1 1 ¥ 1 T I L) 1 1 1
worD 1 {1 1 o0 1]1 o o 1 DEVICE CEANKE
DEPENDENT ADDRESS
\ v /
OP—~CODE

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
T 1 .t 1. 1T t 1T 1§ 1+ T T T T°17

WORD 2 CONTROL. WORD OR MEMORY ADDRESS

Instruction Execution: External device data —Memory, or
Memory data— External device

Description: The ATI instruction is used to control‘the Direct Memory Ac-
cess Channel (DMAC). The first word of the ATI instruction addresses one
of eight possible device controllers (bits 13 to 15) and supplies any neces-
sary device dependent data (bits 8 to 12). The second word of the ATI in-
struction is interpreted by the addressed device controller as a single word
functional command or as an address pointing to a list in memory containing
command related data. After the second word has been interpreted, the
specified DMAC data transfer takes place. The ATI instruction is restricted,
meaning it is considered illegal if the memory protect/privileged instruction
feature is enabled.

3-91 Digital Systems Division

e}
e:{\[zg; 943013-9701

The ATI instruction and DMAC are covered in more
detail in the Model 980 Computer Assembly Lang-
uage Input/Output manual.

NOTE

Status Affected: None

Execution Time: 2.50 microseconds

Symbolic Coding: The assembly language coding format for the ATI instruc-
tion is as follows:

Label Operation Operand Comment

[1abel] ® ATI ¥ dev $ [comment]
[1abel] ¥ DATA ¥ adrs ¥ [comment]

where "dev' is the symbolic name for the least significant eight bits of word
one of the ATI instruction and '"adrs'' is the symbolic name of the 16-bit ad-
dress comprising word two.

A1l standard Texas Instruments software addresses the DMAC devices (bits
13 to 15 of word one in the ATI instruction) as follows:

Address (Hex) Device

0 Fixed-Head Disc or DS 330 Disc
1 Moving-Head Disc

2 Magnetic Tape

5 High-Speed Line Printer

Example: Examples of ATI instructions for the fixed-head disc, moving-
head disc, magnetic tape, and high-speed line printer are included in the
Model 980 Computer Assembly Language Input/Output manual.

3.12.3 READ DIRECT SINGLE (RDS)

Machine Format:

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

T T T T T T 1
worp 1 {1 1 o 1 1|erouPr|0 o0 |ER| O | ER=EXTERNAL
REGISTER
(- ~ 4
OP—CODE
o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15
= //)y/ =5 IR PR
WORD 2 NOT USED B 1 A | INTERNAL
// e / // g REGISTER
B=BUSY BIT 1=INCREMENT ADDRESS A=ADDRESS
MODE

3-92 Digital Systems Division

{éz@ 943013-9701 RDS

Instruction Execution: External device‘data———(R) or ((R))

Description: The RDS instruction uses the input/output data bus to read one
word of data from an external device to a register or memory location. The
external device is specified by the GROUP and ER fields of word one of the
RDS instruction, The GROUP field selects 1 of 4 groups and the ER field
picks 1 of 64 external devices in the chosen group. This allows for a maxi-
mum of 256 data bus ports, however, in most cases GROUP zero is specified.
The destination register or memory location is specified by the A and R fields
of word two of the RDS instruction. The R field selects 1 of 8 registers in
accordance with table 2-2 and the A field is the associated indirect bit. If the
A field is zero, the destination of the read is a register; if the A field is one,
the destination of the read is the memory address contained in the selected
register. If the A field is one, the I field bit in word two is set to a one or
zero to increment or decrement, respectively, the memory address in the
selected register each time the RDS instruction is executed. The B field is
set to a one when the device addressed by the GROUP and ER fields may not
be ready to transfer data when queried by the RDS instruction. If the B field
bit is one and no data transfer takes place, the instruction following the RDS
instruction is executed. If the B field bit is one and a successful data trans-
fer takes place, the instruction following the RDS instruction is skipped
(dependent on physical device - see manual for particular device). If the B
field bit is zero, the instruction following the RDS instruction is uncondi-
tionally executed. The RDS instruction is considered illegal if the memory
protect/privileged instruction feature is enabled.

NOTE

- The RDS instruction and input/output data bus are
covered in more detail in the Model 980 Computer
Input/Output manual.

Status Affected: None

Execution Time: 3.00 to 4.75 microseconds

Symbolic Coding: The assembly language coding format for the RDS instruc- -
‘tion is as follows:

Label Operation Operand Comment

[1abel] B RDS ¥ dev ¥ [comment]
[1abel] ¥ DATA ¥ Dbiar ¥ [comment]

where '"dev'' is the symbolic name of a 16-bit number that is OR'ed with the
RDS op-code to develop word one of the instruction. ''biar' is the symbolic
name of a 16-bit number that represents the B, I, A, and R fields of word
two. .

Change 1 3-93 Digital Systems Division

o]
%:{\g@ 943013-9701

Example: The following example reads a word from the device connected to
external register 1816 into register A, The busy bit option is also used.

RDS > 18
DATA > 80

Refer to the Model 980 Computer Assembly Language Input/Output manual
for additional examples of the RDS instruction and the standard input/output
data bus external register addresses used by Texas Instruments software.

3.12.4 WRITE DIRECT SINGLE (WDS)

Machine Format:

ot 2 3 4 5 €6 7 8 9 10 1112 13 14 15
1 1 1 T I 7 1T

ER=EXTERNAL
WORD 1 |1 1 o 1 1 |GrouP| o o |ErR| 1 | ERZEXTER

A
OP—CODE

0 3 4 8 9 10 11 12 13 14 15
L~

L 5 6 7
A A A : T 7 . —
woro 2 |7 Sor et~ o[1 [n | Koy

B=BUSY BIT I=INCREMENT ADDRESS A=IP\:|%IIDDFEESS

Instruction Execution: (R)or ((R))— External device

Description: The WDS instruction uses the input/output data bus to write one
word of data from a register or memory location to an external device, The
source register or memory location is specified by the A and R fields of WDS
word two and the destination device is specified by the GROUP and ER fields
of WDS word one. These fields along with the B and I fields of WDS word two
perform the same function as those described in paragraph 3.12.3 for the
RDS instruction, The WDS instruction is restricted, meaning it is considered
illegal if the memory protect/privileged instruction feature is enabled.

NOTE

The WDS instruction and input/output data bus are
covered in more detail in the Model 980 Computer
Input/Output manual.

3-94 Digital Systems Division

(o]
@@ 943013-9701 . WDS

Status Affected: None

Execution Time: 3.00 to 5.00 microseconds

Symbolic Coding: The assembly language coding format for the WDS instruc-
tion is as follows:

Label Operation Operand Comment

[1abel] B WDS) dev ¥ [comment]
[1abell] ¥ DATA ¥ biar ¥ [comment]

where '"dev'' is the symbolic name of a 16-bit number that is OR'ed with the
WDS op-code to develop word one of the instruction. 'biar'' is the symbolic
name of a 16-bit number that represents the B, I, A, and R fields of word
two.

Example: The following example writes a word in register A to the external
device connected to external register 1016' The busy bit option is not used.

WDS >10
DATA >0

Refer to the Model 980 Computer Assembly Language Input/Output manual
for additional examples of the WDS instruction and the standard input/output
data bus external register addresses used by Texas Instruments software.

3-95/3-96 Digital Systems Division

o

N
L[(]@ 943013-9701

SECTION IV
ASSEMBLER CHARACTERISTICS AND DIRECTIVES

(

4,1 GENERAL

This section describes the Symbolic Assembly Program (SAP) from the user
point of view and the 22 assembler directives available to the assembly lang-
uage programmer, The SAP description covers source program coding fields,
object program output, error messages that may accompany the assembly
listing, and sample source programs and associated assembly listings., Op-
eration of the two versions of SAP, SAPG and SAP733, is covered in the
Model 980 Computer Basic System Use and Operation manual,

4.2 SYMBOLIC ASSEMBLY PROGRAM (SAP)

The two versions of SAP, SAPG and SAP733, are available to translate sym-
bolic assembly language coding into object language acceptable to the Model
980 Computer, The difference between SAPG and SAP733 is due to the media
handled. SAPG is a general assembler that handles paper tape, card, mag-
netic tape, and disc media, SAP733 is used only with cassette media on the
733 ASR data terminal. Figure 4-1 is a sample source main program, writ-
ten in symbolic assembly language and ready to be punched into cards or

SYMBOLIC CODING FORM
5 10 15 20 25 30 35 40 45
f T T T T T T T T 1

HED MODEL 980 MAIN PROGRAM
IDT ILLUS 6 CHARS. FOR OBJECT

ORG 1000 TELL SAP RUN-TIME

BRS 1000 ORIGIN AND BASE
BASE DATA 1000 :

REF SUB EXT. REF, FOR LINKING
START LDA BASE ACTUALLY SET BASE

RMO 0,6 FOR EXECUTION

@BRL SUB ADD 2 NOS. TOGETHER

DATA ADDR1 ADDR.OF FIRST NO.

DATA ADDR2 ADDR.OF SECOND NO.

STA ANSWER ANSWER IN REG.A
. MORE EXECUTABLE
INSTRUCTIONS AND

ASSEMBLER
. . DIRECTIVES.
ADDR1 DATA 7 FIRST NO.
ADDR2 DATA 8 SECOND NO.
ANSWER BSS 1
END START

Figure 4-1., Source Coded Main Program

4-1 Digital Systems Division

943013-9701

paper tape, or otherwise prepared for input., Figure 4-2 is a source subrou-
tine., Source programs input to SAP generate two outputs. The first output
is an object program that can be loaded into the computer and executed or
linked with other object programs, The object program can be output on
cassette, paper tape, or other media, The second output is an assembly
listing as depicted in figure 4-3 for the main program and figure 4-4 for the
subroutine, Note the following about the assembly listings:

. The items listed under A are an exact reproduction of the hand-
written entries on the coding sheet.

° The items under B are a hexadecimal representation of the corre-
sponding instructions and constants as assembled by SAP,

° The items under C show the hexadecimal addresses of the instruc-
tions, constants, and areas of storage specified by the programmer.

° The items under D show the decimal line or sequence number of the
source statements to be used in case the program is changed.

° Under DX980, the date and time of assembly is obtained and printed
in the heading of every sheet of the assembly and placed in charac-
ters 18-22 of the IDT record as follows:

18-19 month

20-21 day

22-23 year

24-25 hours

26-27 minutes

28-29 seconds
SAP is a two-pass assembler, meaning it scans the source program twice,
During the first pass, the source program is read and a symbol table is gen-

erated. This is accomplished with the use of a location counter in the assem-
bler. The location counter keeps track of the storage locations that will be

Change 1 4.2 Digital Systems Division

(o]
{—@? 943013-9701

SYMBOLIC CODING FORM

26 30 35 40

45

IDT
DEF
EQU
EQU
EQU
BSS
BSS
RMO
STA
RIN
STA
LDA
STA
LDA
STA
LDA
ADD
RIN
RIN
END

Figure 4-2,

SuB

NN OTO

L,A
POINT
AA
POINT+]
*POINT
HERE
*POINT+1
HERE+1
*HERE
*HERE+1
L,L

L,P

SUB

¥ I T I

6 CHARS.FOR OBJECT

DEFINE ENTRY POINT FOR
LINKING

GIVE REGISTERS SYMBOLIC
NAMES.

RESERVE LOCATIONS,

L POINTS TO FIRST DATA
WORD AFTER ©BRL

POINTER TO SECOND DATA
WORD AFTER ©BRL

GET ADDRI

STORE ADDRESS IN THIS
SUBROUTINE

GET AND SAVE ADDR2

PICK UP FIRST NO.

ADD SECOND NO.

MOVE POINTER PAST DATA
WORDS AND RETURN.

Source Coded Subroutine

Change 1

4-2A/4-2B

Digital Systems Division

Q
s{izg} 943013-9701

C

et Wate Wet WV

MODEL

03E8
03E8
03E9
03EA
03EB
X 03EC
03ED

03EE
O3EF

03F0
03F1
03F2

X 03F3

C O3F4
COMMON

B

D

>

980 MAIN PROGRAM

03E8
03E8

O0FE
€506
7400
0000
0000
03F0
03F1
8002

0007
0008

0001
0000
0000
0000
0002
03E9
0006

0001
0002
0003
0004
0005
0006
0007
0008
0009

0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023

0024

HED
10T
ORG
BRS
BASE DATA
REF
START LDA
RMO
@BRL

DATA
DATA
STA

ADDR1 DATA
ADDRZ DATA
ANSWER BSS
REF
SuB2 DATA

WORD COMM
DATA

END

MODEL 980 MAIN PROGRAM

ADDRI
Symbol 1 sTaRT

03F0

03E9
0000

0000 ERRORS

NOTES:

ADDR2 03F1
SuB 0000

MODEL 980 MAIN PROGRAM

ILLUS
1000
1000
1000
SuB
BASE
0,6
SuB

ADDR1
ADDR2
ANSWER

— o~

SuB1
SUB1

WORD+2
START

ANSWER

SUB1

1. The symbol table is not generated by SAP733

~

=

2. In the left column, P = Program counter relocatable

X = External reference
C = Common (to programs)

. In the symbol table, R = Unreferenced symbol

U = Undefined (error)

M = Multidefined

6 CHARS.FOR OBJEC
TELL SAP RUN-TIME
ORIGIN AND BASE

EXT.REF.FOR LINKI
ACTUALLY SET BASE
FOR EXECUTION
ADD 2 NOS. TOGETH

SHEET 0001

T

NG

ER

ADDR,.OF FIRST NO.

ADDR.OF SECOND

NO.

ANSWER IN REG.A

MORE EXECUTABLE

INSTRUCTIONS AND

ASSEMBLER

DIRECTIVES.
FIRST NO,
SECOND NO.

03F2 BASE
0001 R SuB2

Q =Multidefined unreferenced
4, A,B,C, and D references at top of page are explained in paragraph 4.2

Figure 4-3, Assembled Main Program

SHEET 0002

03E8
03F3

Change 1

4-3

Digital Systems Division

o]
{@ 943013-9701

C B D _ A
Pt Wantn Y anthun Wes ~ A
SHEET 0001
0001 IDT SUB 6 CHARS.FOR OBJECT
0002 DEF SUB DEFINE ENTRY POINT FOR
0000 0003 A EQU 0 LINKING"
0005 0004 L EQU 5 GIVE REGISTERS SYMBOLIC
0007 0005 P EQU 7 NAMES .
P 0000 0006 POINT BSS 2 RESERVE LOCATIONS.
P 0002 0007 HERE BSS 2
0004 C550 0008 SUB RMO L,A L POINTS TO FIRST D
0005 8OFA 0009 STA POINT WORD AFTER @BRL ATA
0006 €300 0010 RIN ALA POINTER TO SECOND DATA
0007 80F9 0011 STA POINT+1 WORD AFTER @BRL
0008 04F7 0012 LDA *POINT GET ADDR1
0009 80F8 0013 STA HERE STORE ADDRESS IN THIS
Q000A O04F6 0014 LDA *POINT+] SUBROUTINE
000B 80F7 0015 STA HERE+1 GET AND SAVE ADLR2
000C O04F5 0016 LDA *HERE PICK UP FIRST NO.
000D 24F5 0017 ADD *HERE+1 ADD SECOND NO.
000E (€355 0018 RIN L,L MOVE POINTER PAST DATA
000F (€357 0019 RIN L,P WORDS AND RETURN.
0004 0020 END SUB
SHEET 0002
A 0000 HERE 0002 L 0005
S
Ym0l POINT 0000 SUB 0004 i 0007

0000 ERRORS

NOTE:
Refer to NOTES in figure 4-3.
Figure 4-4, Assembled Subroutine

required by the object program. When a source statement contains a name,
the current setting of the location counter is assigned to the name., Each
name and the address assigned to it is placed in the assembler's symbol
table, During the second pass, the symbol table is used to complete the as-
sembly, and to produce the object with its assembly listing., If bulk storage
is available, SAPG will copy the source to bulk storage during pass one,
Since the output from the first pass is used as input data for the second pass,
this eliminates the requirement to manually enter the source data twice.

SAP 733 automatically repositions the cassette source file before entering
pass 2 to eliminate any manual repositioning.,

4-4 Digital Systems Division

943013-9701

4,2.1 SAP CODING LINE FORMAT

The symbolic input line accepted by the assembler may contain a label field,
operation field, operand field, and a comment field; or the entire line may be
a comment, An input line is the first 64 characters read from a card, or in
the case of cassette or paper tape, an input line is a string of characters
terminated with a special end-of-line sequence. The Model 980 Computer
Basic System Use and Operation manual describes the paper tape end-of-line
characters, The end-of-line sequence for cassette consists of a carriage
return (CR), line feed (LF), X-OFF (press the CTRL and S keys at the same
time), and rub out. The input line may exceed 64 characters, not including
the end-of-line characters in the cassette and paper tape case, but only 64
characters are processed and only 59 are printed on the listing to the right
of the line number, The input line is free form within the limits listed in the
following paragraphs,

4.2.1.1 COMMENT LINES, Comment lines provide the user with the
ability to annotate program listings. They are indicated by an initial charac-
ter which is either a period (.) or an asterisk (*). The remaining characters
are arbitrary. The comment line in no way affects the assembly process.
The line is merely reproduced in the printed output.

4.2,1.2 LABEL FIELD, Labels (also called symbols or names) are pro-
vided for symbolic references to instructions, values, and data, A label is
composed of from one to six characters, The first character of a label must
be a letter. The remaining may be any characters except the following:

+ Plus % Asterisk (Left Paren, >Greater Than
- Minus / Slash) Right Paren. , Comma

If a label is used, the first character must begin the input line, The label is
terminated by the first space.

At assembly time, the labels are stored as variable length data, One or two
character labels require one word of memory, three or four character labels
take two words, and five or six characters require three words, Therefore,
if the symbol overflow error occurs during assembly, labels should be
shortened or omitted.

4,2,1,3 OPERATION FIELD, The operation field describes the required
action. It may be an instruction mnemonic or an assembler directive. The
field consists of from one to four characters followed by a space or the end-
of-line characters, The first character of the operation field must be pre-

ceded by at least one space,

4-5 Digital Systems Division

943013-9701

4,2.1.4 OPERAND FIELD, The operand field consists of a sequence of
expressions separated by commas, and is terminated by a space or the end-
of-line characters,

eXp ., eXp,, €Xp,

If two commas appear successively, the value of the missing expression is

understood to be zero., If the currency symbol ($) appears as an element in
an expression, the current value of the assembler's location counter is used
as its numeric equivalent.

Expressions may be strings of items separated by arithmetic operators and
terminated by a space, comma, or end-of-line characters, The arithmetic
operators are:

° Addition +
® Subtraction -
® Multiplication *
° Division /

If two operators appear in succession, a zero item is assumed,

An item consists of a symbolic address, dollar sign ($), or a numeric value,
If the first character of an item is not numeric, $, or >, it is assumed to be
symbolic, Numeric items may be octal, decimal, or hexadecimal, An octal
item is a string of octal characters (0 to 7), the first of which is zero. A
decimal item is a string of numeric characters (0 to 9), the first of which is
non-zero. A hexadecimal item is a greater than symbol (>) followed by a
string of hexadecimal digits (0 to 9 and A to F), When using paper tape input,
the back slash (\) may be used in place of > to indicate hexadecimal,

Expressions are evaluated left to right using normal arithmetic precedence;
i.e.,, all multiplications and divisions are performed first in order of oc-
currence followed by additions and subtractions performed in order of occur-
rence. All quantities are treated as integers., In division only the quotient
is retained and any remainder is discarded, Division by zero is performed
as division by one and is not considered as an error. Sample expressions
are:

JOE+TOM*3/B0OB
$+5

LEA-6

5034

XYZ+>F4

Change 1 4-6 Digital Systems Division

(o]
J
{:ﬁgﬂ; 943013-9701

All expressions are acceptable in absolute assem-

4.2.1.5

COMMENT FIELD.

NOTE

blies, but multiplication and division involving

labels is not allowed in relocatable assemblies.
Hence, the first sample would cause a relocation
error in a relocatable program.

Comments may optionally be written on any

line. Any characters that appear between the space that terminates the op-
erand field and the end-of-line characters or card column 64 are treated as
commentary. The comment field has no effect on the assembly process.

4.2.2 SEGMENTED SOURCE PROGRAMS

SAPG provides the capability of storing a single source program on more
than one physical section of the storage medium, enabling long programs to
be conveniently stored on cassette or paper tape. (Segmenting cannot be done
to disc files.) To segment a source program, divide it and add the flag
record (=) as follows:

first line of program

last line of first segment

first line of next segment
immediately follows last line
of preceding segment

additional intermediate
segments as needed

END

first segment

intermediate segment

last segment

Change 1

Digital Systems Division

o
%—@(p 943013-9701

] 4.2.3 SAP OBJECT FORMAT

The object program output by the assembler is in the form of standard object
records used by all system programs in the Basic System. Details of the
object records are covered in the Model 980 Computer Basic System Use and
Operation manual. Information from the IDT and ORG as sembler directives
is used to generate the header data. Entry point records, external reference
records, and common symbols records are constructed as specified in the
DEF, REF, and COML assembler directives, respectively. The required
text records are created by the assembler, and the end record is generated
from the END directive. No block data records are output by the assembler.

] 4.2.4 SAP ERROR MESSAGES

The two versions of the assembler (SAPG and SAP733) may detect certain

syntax errors in the source program. When an error occurs, a diagnostic

message (SAPG) or the message number (SAP733) is printed in the assembly

listing adjacent to the line in question. These messages (listed in table 4-1)

apply only to the assemblers that operate in the Model 980 Computer. Error
I messages are printed anyway if the UNL directive is in effect,

4,3 ASSEMBLER DIRECTIVES

In addition to the instruction set presented in Section III of this manual, SAP
will accept 22 different assembler directives, The assembler directive
formats (name, operand, operation, and comment fields) are similar to the
symbolic instructions, but the directives do not directly cause code genera-
tion as do the instructions. Instead, the directives are commands to the as-
sembler used to provide for storage allocation, program identification,
forrnat control, and other such functions. If labels are used with directives,
they are assigned the current location counter value unless otherwise speci-
fied in the following paragraphs. The assembler directives are covered in
detail in alphabetical order under the paragraph numbers listed in table 4-2.
The assembly language coding format accompanying each directive descrip-
tion uses symbols from table 3-2,

Change 1 4-8 Digital Systems Division

(o]

/] 943013-9701
Table 4-1, SAP Error Messages
Message Message Meaning (and Corrective Action)
Number g g

1 FIELD SZ Address beyond reach (use @ for extended for-
madt)

2 UNDF OP Undefined operation code (check list of valid
of codes)

3 LONG SYM Symbol > 6 characters

4 MDF O/F OPD or FRM multiply defined (rename label)

5 FRM > 16 FRM fields contain more than 16 bits

6 CAD > 10 Address expression has > 10 elements

7 UNDF SYM Symbol not defined (label probably omitted)

8 MDF SYM Symbol multiply defined (rename labels)

9 RELOC A relocation error (use only one relocatable
label in arithmetic expression, or ORG state-
ment can use only one relocatable label)

10 SYM OVFE Too many symbols have been defined (cut out
symbols or divide program)

11 BAD NUM Numeric element not valid (properly define
item in label or address field)

12 IMP R/D A REF or DEF symbol has been used impro-
perly (REF symbol defined inside and outside
the program, DEF symbol not defined in the
program)

13 X RF USE A REF symbol has appeared invalidly in an un-
relocatable expression

14 IXB ERR Address mode error (improper use of IXB
field)

15 OPD ERR No such format number (OPD format numbers
0 to 8)

16 ADR MODE| Illegal addressing mode (improperly written
address)

Change 1 4-8A/4-8B Digital Systems Division

Bo
[.
&lg@ 943013-9701 BES

Table 4-2. Model 980 Computer SAP Assembler Directives

l\I/)I;I;::)lrrii Description Pa.r;xlgfaph
BES* Block Ending Symbol 4,3.1
BRR Base Register Reset 4,3.2
BRS Base Register Set 4.3.3
BSS Block Starting Symbol 4.3.4
BYTE Generate Byte Address 4,3,5
COMM * Common Storage 4.3.6
COML* Labelled Common Name 4.3.6
DATA Generate Word Address or Data 4.3.7
DEF Define Entry Point Symbol 4,3.8
END End of Source 4,3,9
EQU Equate 4.3.10
FLAG Flag Bit Address 4,3,11
FRMx* Format a New Instruction 4,3,.12
HED* Page Heading 4,3.13
IDT Object Identifier 4.3,14
IF* Conditional Assembly 4,3.15
LIS Start Listing 4,3,16
OPD Operation Define 4.3.17
ORG Origin 4,3.18
PEJ* Page Eject 4.3,19
REF Referenced External Symbols 4,3.20
UNL Stop Listing 4.3.21

*are not supported by SAP733

4,3.1 BLOCK ENDING SYMBOL (BES)

The BES directive evaluates the operand field and advances the location
counter by that amount, If a label is present, it is assigned to the new value
of the location counter. BES is similar to BSS, except the label is applied to

Change 1 4.9 Digital Systems Division

o
%@ 943013-9701

the first location past the reserved area, The assembly language coding for-
mat for the BES directive is as follows:

Label Operation Operand Comment
[label] ¥ BES b exp - P [comment]

where ""exp" is typically a decimal number specifying the reserved area in
words., If "exp' involves a symbol, it must be previously defined as an ab-
solute quantity.

The following example reserves 50 words with TEN associated with the first
word following the reserved area,

Label Operation Operand
TEN BES 50

4.3.2 BASE REGISTER RESET (BRR)

The BRR directive informs the assembler that the base register is not avail-
able to the assembler for addressing purposes. The programmer can still
specify base register addressing with the mode field, The BRR directive in-
forms the assembler to use the base register for addressing purposes only
in the event the mode field specifies that type of addressing. (This is the
initial condition of assembly.,) Under BRR directive control, if D is the un-
signed displacement in register-memory instructions, then 0< D <255 when
the mode field contains B=1, or else a field size error occurs. The assem-
bly language coding format for the BRR directive is as follows:

Label Operation Operand Comment

[label] b BRR b [comment]

4.3,3 BASE REGISTER SET (BRS)

The BRS directive informs the assembler of the value the base register will
contain at run time., The operand field of the BRS directive defines a 16-Dbit
value that will be placed in the B register by the programmer, When the
BRS is used and the assembler encounters subsequent register-memory for.
mat instructions that would produce field size errors if program counter
relative, the assembler will attempt to generate these base register relative,
In this case, if D is an unsigned 16-bit evaluation of the displacement ex-
pression and B is the value assumed in the base register, then 0< D-B< 255
or else a field size error occurs, The assembly language coding format for
the BRS directive is as follows:

Label Operation Operand Comment

[label] ¥ BRS b exp b [comment]

Change 1 4-10 Digital Systems Division

[e]
{A@ 943013-9701 BRR, BRS, BSS

where '"'exp' is the symbol for a 16-bit base value to be used. An example
of BRS usage follows:

Label Operation Operand Comment
BRS CAT DEFINE BASE VALUE TO
ASSEMBLER
@LDA =CAT PUT ADDRESS OF CAT IN BASE
RMO A,B REGISTER
CAT BES 350 CAT IS DEFINED OUT OF
BSS 10 PROGRAM COUNTER REL.
RANGE

4.3.4 BLOCK STARTING SYMBOL (BSS)

The BSS directive reserves an area of memory. The first location in the
reserved area is associated with the label in the name field of the BSS direc-
tive., The location of the area reserved is that defined by the location counter,
which is then advanced past the reserved area, Note that no object code is
generated by the BSS directive, If the programmer desires some value(s) to
be assembled in the reserved area, he must do so by other means. The as-
sembly language coding format for the BSS directive is as follows:

Label Operation Operand Comment
[label] b BSS b exp b [comment]

where ""exp" is typically a decimal number specifying the reserved area in
words, If'exp' involves a symbol, it must be previously defined as an ab-
solute quantity, An example of the BSS directive follows:

Location Counter Label Operation Operand Comments

03AA BRU TOM BRANCH AROUND AREA
03AB AREA BSS 40 RESERVE AREA
03D3 TOM LDA AREA REFERENCE AREA

A common usage of symbols in a BSS operand is an expression which defines
the length of a reserved area, In the following example, if the length of
TABA is likely to change, but TABB must always be the same length as
TABA, it may be symbolically stated as follows:

Label Operation Operand Comments
TABA BSS 50 MIGHT CHANGE
TABB BSS TABB-TABA ALWAYS SAME AS TABA

4-11 Digital Systems Division

Q
@@ 943013-9701

4,3,5 GENERATE BYTE ADDRESS (BYTE)

When using the byte string manipulation instructions, MVC and CLC, it is
necessary to address data using byte rather than word addresses, The
BYTE directive may be used to generate these byte addresses. Its usage is
cimilar to that of the DATA directive when generating word addresses. The
assembly language coding format for the BYTE directive is as follows:

Liabel Operation Operand Comment
[label] b BYTE b exp 1? €XPys « ¢ ©XP B [comment]
where ”expl, exp.,,..exp_'' are evaluated and assigned to successive pairs of

s
memory words., ZIf a label is used, it is assigned to the first word of the first
byte address.

tach byte address requires two words in the following format:

(o] 1 2 3 4 35 6 7 8 9 to 1112 13 14 15

T

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T 1 1 1 T 1 1 7 1 1T 1
0 LEAST SIGNIFICANT 15 BITS OF ADDRESS

An expression in a BYTE operand field is evaluated as a word address and
then multiplied by two to obtain the byte address, If the expression is pre-
ceded by a colon (:), the byte address is also incremented by one, The as-
sembly listing in figure 4-5 shows the BYTE evaluation process.

4,3.6 REFERENCING COMMON STORAGE

4.3.6.1 NAMED COMMON LABEL (COML). The COML directive is used
to start a new labeled common block. The label field must be used and gives
the name of the new block. Storage reservation (given by the COMM direc-
tive) is started at zero for the new common block; all COMM directives
following any given COML directive, up to the next COML directive, cause
storage to be reserved in that common block. The assembler generates no
entry in the common table if no COMM directives appear for a COML direc-
tive. Every assembly begins with an implicit COML directive in effect giving
the name of FORTRAN blank common, 'BBLANK!', and the occurrance of the
END directive automatically terminates the immediately preceding COML
block. The length of a COML block is determined by the sum of the sizes
given on all COMM directives appearing under that COML directive. See

Change 1 4-12 Digital Systems Division

o]
(E(?;? 943013-9701

paragraph 4.3.7 for examples. The assembly language coding format for the
COML directive is as follows:

label ¥ COML VS comment

NOTE

COML is supported in revisions *E and later of
SAPG, part number 943253,

4.3.6.2 RESERVE COMMON STORAGE (COMM). The COMM directive
reserves the given number of words in the currently active common block.

If a label appears, it is assigned a value corresponding to the first word of
the block, relative to the beginning of the currently active block. The assem-
bly language coding format for the COMM directive is as follows:

[1abel] ¥ COMM) exp B [comment]

Several examples of the use of COML and COMM follow. In all cases,
assume that there are no COML and COMM directives in the program besides
those explicitly given.

Example 1: referencing FORTRAN blank common.

X COMM 30

Y COMM 10

J COMM 1
END

Blank common is 41 words long, and it is the only common block present.
Example 2: referencing labeled common only.

COMl1 COML

X COMM 30
J COMM 2
END

Common block COM1 is 32 words long, and the name 'COM1' is defined for
the linking loader. Note that since no COMM entries occurred prior to the
COMI1 COML statement, blank common has length zero and hence is not
entered.

Change 1 4-12A Digital Systems Division

(o]
{@ 943013-9701

Example 3: Referencing blank and labeled common.

20 in blank common
COMM 10 in blank common

W >
Q
O
<
<

X COML blank common is terminated at 30 words, and
a new common block started, named X.

C COMM 5 in block X
D COMM 7 in block X
Y COML block X is 12 words long, and a new block

started, named Y.

END block Y has no COMM directives in it, so has
length 0. This is most likely an inadvertent
error, but must be detected by noticing that Y
fails to appear in the common summary.

A common name may appear in an address field, and will address the first
word of the common block. However, it may be used in this way only after
at least one COMM directive has appeared in it.

Change 1 4-12B Digital Systems Division

o] ‘ .
&@ 943013-9701 BYTE, COMM, DATA, DEF

COMM is used in a manner similar to FORTRAN COMMON, Ifa FORTRAN
program and assembly language program are merged via link edit, any ref-
erences in the FORTRAN program to labeled COMMON and references in
the assembly language program to COMM defined storage are references to
the same area of memory, In many applications this simplifies communica-
tions between the two programs,., The following COMM directive would be
used by a program requiring use of 12 words of common storage referenced
as WORD,

IL.abel Operation Operand
WORD COMM 12

4.3,7 GENERATE WORD ADDRESS OR DATA (DATA)

The DATA directive is used for data generation, The assembly language
coding format for the DATA directive is as follows:

Label Operation Operand Comment

[label] b DATA [eXp) €XP,s « o €XP b [comment]

where ”expl, ©XP,s e expn” are expressions or strings that are evaluated and
assigned to successive memory locations.,

The DATA statement is used to define alphanumeric strings using the follow-
ing format:

Label Operation Operand
CAT DATA 'STRING'

STRING is a string of characters enclosed in single quotes. The string will
be produced in ASCII code, two characters per word, packed left to right.

If there is an odd number of characters in the string, the last word contains
a delete code in the last character position. If a label is used, it is assigned
to the first memory location involved, Figure 4-5 contains examples of
several types of operands that may be used in a DATA statement,

4,3,8 DEFINE ENTRY POINT SYMBOL (DEF)

The program-linking assembler directives DEF and REF allow the program-
mer to symbolically link independently assembled programs that are to be
loaded and executed together, Symbolic linkages between programs are cre-
ated by means of symbols defined in one program and used as operands in
another program, Such symbols are termed linkage symbols, A linkage
symbol is called a defined entry point symbol in the program in which it is
defined; it is a referenced external symbol in the program in which it is used
as an operand, Every linkage symbol must be properly identified as such in
the source program. A linkage symbol used as an external symbol is iden-
tified in each using program by the REF directive, A linkage symbol used

4-13 Digital Systems Division

{@;’j 943013-9701

Location Code Line

o ©

=)

OOFF
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
010A
0108B
010C
010D
010E
010F
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
011A
0118
011C
011D
011E
011F
0120
0121
0122
0123
0124

€8C9
0107
00FA
0100
0064
0040
0105
0100
0168
FFFB
0000
0212
0000
0213
0000
0217
0000
0212
0000
0213
0000
021F
0000
0200
0000
0408
FFFF
FFF6
0000
020E
0000
01F4
0000
0201
0000
00C8
0000
0081

Figure 4-5.

0013
0014

0015

0016

0017

0018
0019

0020

0021

Label Operation

DATA
THERE DATA

HERE DATA

HERET BYTE

BYTE

BYTE
BYTE

BYTE

BYTE

Operand

IHI'
HERE+2,THERE-6,>100,100,0100

HERE ,THERE ,>100+104 , THERE-HERE
HERE1
+HERE1

:HERE+6
HERET, :HERE1, : HERET+6 ,>100

>100+>104 ,THERE-HERE

HERE+2 ,THERE-6,:>100,100,:0100

Example of BYTE and DATA Usage

4-14

Digital Systems Division

[e]
&@ 943013-9701 END

as an entry point must be identified in the defining program by the DEF di-
rective, The assembly language coding format for the DEF directive is as
follows:

Label Operation Operand Comment
[label] B DEF b sym,, sym,, .. sym A b [comment]
where ""sym _, sym_,..sym ' are symbols defined elsewhere in the program

that may be used as entry points by other programs. A referenced symbol
that is not defined in the program is flagged in the listing as an error.

In the following sequence, SQRT is identified as an entry-point symbol,

Label Operation Operand

SUBRO BSS 10
DEF SQRT
SQRT STA SAVE

4.3.9 END OF SOURCE (END)

The END directive terminates the assembly of a program. It also supplies
a point in the program to which control is transferred after the program is
loaded, The END directive must always be the last statement in the source
program, The assembly language coding format for the END directive is as
follows:

Label Operation Operand Comment
[label] B END b [exp] b [comment]

where '""exp' specifies the point to which control is transferred when loading
is complete, If the operand field is invalid, the statement is flagged as a
possible error, Ifthe operand field is blank, no program entry address is
defined,

The point to which control usually is transferred is the first instruction in
the program, as shown in the following sequence:

Location Counter Label Operation Operand
ORG >2000
2000 AREA BSS 50
2032 BEGIN LDA =3
END BEGIN

4-15 Digital Systems Division

(o]
{%\[Z@ 943013-9701

Here control will be transferred to BEGIN at location 2032 . If the operand
field were blank, control would be transferred to location 000014, @ point
outside of this program. When several object programs are joined by link
editing, one is specified as the main program. Its transfer point is taken as
the transfer point for the link edited program.

4,3.10 EQUATE (EQU)

The EQU directive is used to define a symbol in the label field by assigning
to it the value of an expression in the operand field, The assernbly language
coding format for the EQU directive is as follows:

Label Operation Operand Comment
sym b EQU b exp b [comment]

where ""sym'" in the label field is given the same value as '"exp' in the operand
field, The expression in the operand field can be relocatable or absolute, and
the symbol is similarly defined, Any symbols in the expression must be pre-
viously defined.

If the expression in the operand field or the symbol in the label field, or both,
are invalid, or are not present, the EQU statement is flagged as an error in
the listing and is not used., The EQU directive is the usual way of equating
symbols to register numbers, input/output unit numbers, immediate data,
actual addresses, and other arbitrary values. The examples below illustrate
how this might be done:

Label Operation Operand Comments

REGX EQU 2 REGISTER X

10125 EQU 125 INPUT/OUTPUT DATA
TEST EQU >3F IMMEDIATE DATA
TIMER EQU 80 ACTUAL ADDRESS

To reduce programming time, the programmer can equate symbols to fre-
quently used compound expressions and then use the symbols as operands in
place of the expressions. Thus in the statement:

Label Operation Operand
FIELD EQU ALPHA-BETA+GAMMA

FIELD is defined as ALPHA- BETA+GAMMA and may be used in place of it,
Note, however, that ALPHA, BETA, and GAMMA must all be previously de-
fined and only one may be a relocatable value. FIELD can be used anywhere
in the program.

4,3.11 FLAG BIT ADDRESS (FLAG)

The FLAG directive is used by the assembler to specify a relative starting
address for memory bit-referencing instructions (SMBO, SMBZ, TMBO,

4. 16 Digital Systems Division

(o]
(I;é@ 943013-9701 EQU, FLAG, FRM

and TMBZ), The FLAG directive may be used at any time, but until it is
used, the starting memory address for the memory bit-referencing instruc-
tions is 0000 6° The assembly language coding format for the FLAG direc-
tive is as folllows:

Label Operation Operand Comment
[label] b FLAG b exp B [comment]

where '"exp'' is an expression that evaluates as the 16-bit memory word ad-
dress used in conjunction with memory bit-referencing instructions.

The following example zeros bit 5 of location ABC with the use of the FLAG

directive,
FLAG ABC
SMBZ 5

4.,3.12 FORMAT A NEW INSTRUCTION (FRM)

The FRM directive is used to create an instruction, The label field of the
FRM directive is referenced as an op-code and the operand field of the FRM
directive breaks the created instruction down into fields, The assembly
language coding format for the FRM directive is as follows:

Label Operation Operand Comment

label b FRM) eXP |, ©XP,, ¢ 04 OXP b [comment]

where ''label' is the expression representing the op-code (must be one to
four characters) and ”expl, EXPyy e e expn" are expressions for positive values
whose sum is 16,

When the label is used as an op-code, n fields of the associated operand
field are evaluated, truncated to the length specified by the corresponding
exp in the FRM directive, and placed in the output word., The following
example illustrates use of the FRM directive.

Label Operation Operand
0010 ABC FRM 5,5,6

1000 F846 0020 ABC >1F, 1,6

In the first line of this example, ABC is defined to have three fields of 5, 5,
and 6 bits, respectively, When ABC is subsequently used as an operation
code, the assembler puts 1F16 in the first 5 bits, 1 in the next 5 bits, and 6
in the last 6 bits of the instruction, Thus, the second line in this example
shows the assembled instruction 1111 1000 0100 01102, or F84616.

4-17 Digital Systems Division

(o]
{@ 943013-9701

4.3,13 PAGE HEADING (HED)

The remaining characters in the line containing the HED directive are printed
as page headings on the output listing. The first HED is used as the heading
of all pages up to and including the page containing the second HED. Subse-
quent HED directives appear as page headings on the first page following the
one on which the HED appears, and subsequent pages, until another HED is
encountered. The assembly language coding format for the HED directive is
as follows:

Label Operation Comment
[label] ¥ HED b comment

The program in figure 4-3 makes use of the HED directive.

4,3.14 OBJECT IDENTIFIER (IDT)

The IDT directive reproduces the symbol appearing in the operand field as
the program name in the object program. Names less than six characters
have trailing blanks. If the name has more than six characters, the output
will be truncated, and the name will consist of the first six characters. If
the IDT directive is not present, the name will consist of six asterisks, The
assembly language coding format for the IDT directive is as follows:

Label Operation Operand Comment
[label] ¥ IDT b sym b [comment]

where ""sym'' is the symbol for the program name.

4.3.15 CONDITIONAL ASSEMBLY (IF)

The IF directive alters the assembly process in accordance with the results
of a conditional test, The operand field of the IF directive consists of two
expressions and an optional symbol., The two expressions are evaluated and
compared. If they are not equal, the assembly process continues with the
next line. If the values are equal, the assembly process is suspended under
the influence of the optional symbol, If the symbol is not present, assembly
is suspended for one line. If the symbol is present, assembly is suspended
until the input line with the same symbol in its label field is found.

All lines suspended from the assembly process are treated as comments;
i.e., they are printed but no code is generated, Two or more IF statements
may have overlapping ranges., This directive allows assembly-time modifi-
cation of a program,

NOTE

Mathematical expressions cannot be used in the
third (optional symbol) field of the operand,

4-18 Digital Systems Division

[e]

i‘\ﬁp 943013-9701 HED, IDT, IF, LIS,OPD

The assembly language coding format for the IF directive is as follows:
Label Operation Operand Comment
[label] ¥ IF [exp expz,[sym] b [comment]
where '"exp., exp,' are the two expressions to be evaluated and compared
and '"'sym'' is the optional symbol,

The following example illustrates usage of the IF directive.

Label Operation Operand Comment
TTYVAL EQU 2 ,. TEST ASSUMES ONE DATA
. TERMINAL AT STANDARD
. ADDRESS
ASR EQU 2 TTY1 - ASSUMED ASR AT
STANDARD ADDRESS
TIP EQU 3 TTY2 - ASSUMED TIP AT
. STANDARD ADDRESS
TYPE1 CRA 3 ROTATE 50 CHARS PRINT OK
IF TTYVAL, ASR IF TTYVAL=2, REF DATA TERM 2
WDS TIP
IF TTYVAL, TIP IF TTYVAL=1, REF DATA TERM 1
WDS ASR
DATA BIT8ON
BRU $-2

4,3,16 START LISTING (LIS)

The LIS directive initiates printing of the assembly listing. Printing con-
tinues until the UNL directive is encountered., If a complete assembly listing
is desired, no LIS directive is required, The assembly language coding for-
mat for the LIS directive is as follows:

Label ~Operation Comment

[label] B LIS b [comment]

4,3.17 OPERATION DEFINE (OPD)

The OPD directive is used to define an operation code, The label field of
the OPD directive is referenced as the defined op-code mnemonic and the
operand field of the OPD directive establishes the op-code bit settings and
format type of the defined op-code, The first item in the operand field is
evaluated as a 16-bit number and stored as the op-code. The second item in
the operand field indicates the format type for the defined instruction. When

4-19 _ Digital Systems Division

o
@ 943013-9701

the label in the name field of the OPD directive appears as an op-code mne-
monic, the accompanying operand field is OR'ed in with the defined op-code
bit settings in accordance with the defined format type to assemble the in-
struction in the object program., Any op-code defined with the OPD directive
takes precedence over the standard symbolic op-code. The assembly lang-
uage coding format for the OPD directive is as follows:

Label Operation Operand Comment
label b OPD b bits,n B [comment]

where ''bits'' is the hexadecimal representation of the defined op-code,
"label'' is the expression for the defined op-code mnemonic. (must be one to
four characters), and ''n'' defines the format type as follows:

SPACE - Register-Memory
0 - Register-Memory} Identical Formats
1- Register-Memory
2 - Register-Register
| 3 - Register Shift and IDLE
4 - Register Skip
5 - Status Indicator Skip
6 - Data Bus Input/Output
7 - Sense Switch Skip and Register Bit
8 - Direct Memory Access Channel and Auxiliary Processor

The final merging of the operation code and the operand fields is performed
using a logical OR. Thus the operation code may be used to force setting of
any bit to one, For example:

Label Operation Operand Comments

1009 XYZ OPD >9800,1 FORMAT TYPE 1
0A0C 9AFF 1010 JOE XYZ JOE, 2 COMMENT

In the first line, XYZ is defined to be the mnemonic of an operation code,
The first part of the operand specifies the machine operation code (9800, or

1001 1000 0000 00002) and the second part of the operand specifies format
type 1, or a register-memory format,

In this example, the 5-bit operation code (1001 12) for a hardware multipli-
cation instruction (>9800=MPY) is specified. Line two shows the assembled
result when the defined operation is subsequently used, Format type 1
causes the assembler to look for an optional label, a required operation code,
a required first operand field, and an optional second operand field. The
operation code (9800) is OR'ed with the IXB tag (2) to produce 1001 101020r
9A1¢. The B bit is not set; therefore, the operand is program counter rela-
tive., Since the program counter is pointing to the instruction in location
0AOD 14, the program counter relative address of JOE (0AOD ¢4 - 000116 =
0A0Cj¢) is minus one, or FF 4. The OR'ed result produces the machine
instruction 9AFF j¢.

Change 1 4.20 Digital Systems Division

o ORG, PEJ
{é@ 943013-9701 REF, UNL (on next page)

Similarly, a new multiply instruction may be defined that is always base
register relative by setting the B bit in the first field of the OPD operand as
follows:

Label Operation Operand
MPB OPD >9900, 1

4,3.18 ORIGIN (ORG)

The ORG directive sets the value of the location counter to the value of the
expression in the operand field, Any symbol in the expression must be pre-
viously defined, If the operand field is invalid, the ORG directive is not
used, The ORG directive is commonly used to force loading of a program in
specified memory locations, The assembly language coding format for the
ORG directive is as follows:

Label Operation Operand Comment
[label] b ORG b exp B [comment]

where ""exp' is typically a decimal number specifying the location counter
setting, If''exp" involves a symbol, it must be previously defined,

The following example shows how the ORG directive can be used for other
purposes,

Operation Operand
ORG $+500
This ORG directive increases the location counter by 500, Therefore, in
this case the directive provides an alternate way to reserve storage areas.
NOTE

If the operand field of any ORG contains an absolute
value instead of a relocatable expression, an ab-
solute object is output; otherwise, a relocatable ob-
ject is output.

4,3.19 PAGE EJECT (PEJ)

The PEJ directive ejects the remainder of the current assembly listing page.
The assembler begins a new page with the heading from the current HED
directive and the PEJ itself is printed as the first line on the new page, The
assembly language coding format for the PEJ directiveis as follows:

Label Operation Comment

[label] b PEJ B [comment]

4.21 Digital Systems Division

o]
@@ 943013-9701

4,3,20 REFERENCED EXTERNAL SYMBOLS (REF)

The REF directive identifies a linkage symbol as an external symbol that is
referenced in the program using the REF directive. Each such external

symbol must be identified in a REF directive, The assembly language coding
format for the REF directive is as follows:

Label Operation Operand Comment

[label] b REF b Sym,, Sym,, .. sym b [comment]
where '""sym _sym._,..sym ' are symbols that must be defined in another
program and identified in Fhat program as an entry-point symbol with the
DEF directive,

As an example, if MTPLY is an entry point symbol in another program, the
using program identifies it as an external symbol as follows:

Operation Operand
REF MTPLY

The only way an external symbol may be referenced is as a full 16-bit ad-
dress. The SAP assembler allows an external symbol to be used in an
arithmetic calculation., For example, use of MTPLY+2 is allowed, To link
to a program named SINE, the following coding might be used:

Label Operation Operand
PROGA BSS 2

REF SINE
ADSINE @BRL SINE

4,3.21 STOP LISTING (UNL)

The UNL directive terminates the assembly listing process until an LIS di-
rective is encountered. However, error messages are still printed. The
assembly language coding format for the UNL directive is as follows:

Label Operation Comment

[label] b UNL b [comment]

4-22 Digital Systems Division

‘Q/]f? 943013-9701

APPENDIX A
INSTRUCTION EXECUTION TIMES

Digital Systems Division

(‘_@ 943013-9701

APPENDIX A

INSTRUCTION EXECUTION TIMES

(IN MICROSECONDS)

This appendix groups the instructions by format type to facilitate presentation
of the execution times,

Mnemonic

ADD
AND
BIX
BRL
BRU
CPA
CPL
DAD
DIV
DLD
DMT
DSB
DST
IMO
IOR
LDA
LDE
LDM
LDX
MPY
STA
STE
STX
SUB

*Add the following to execution times, when applicable:

REGISTER-MEMORY INSTRUCTIONS

Name

Add to Register A

Logical AND with Register A
Branch on Incremented Index
Branch and Link

Branch Unconditional
Compare Algebraic

Compare Logical

Double Length Add

Divide

Double Load Registers A and E
Decrement Memory and Test
Double Length Subtract
Double Store Registers A and E
Increment Memory by One
Logical OR with Register A
Load Register A

Load Register E

Load Register M

Load Register X

Multiply

Store Register A

Store Register E

Store Register X

Subtract from Register A

Memory- Immediate
Referencing* Addressing

1.75 0.75
1,75 0.75
1.25 1.25
1.50 1.50
1.25 1.00
1.75 0.75
1.75 0.75
2,75 1.0
2,5— 7,75 1,50—6,75

2,75 1.0

2.75 2.75
2,75 1.0

2,75 2.75
2,75 2,75
1.75 0.75
1.75 0.75
1.75 0.75
1.75 0.75
1.75 0.75

2,25—6.25 1,25—5,25

2,00 2.0

2.00 2.0

2.00 2.0

1.75 0,75

0.25 microseconds

for indexing, 0.75 microseconds for indirect addressing, and 0.25 micro-
seconds for DAD, DLD, DST, and DSB extended format.

Digital Systems Division

o]
@ 943013-9701

REGISTER SHIFT INSTRUCTIONS

Mnemonic Name Exef:ui:lon
Time
ALA Arithmetic Left Shift A 0, 75+SC*/4
ALD Arithmetic Left Shift Double 1.00+ 4
ARA Arithmetic Right Shift A 0. 75+
ARD Arithmetic Right Shift Double 1.00+
CLD Circular Left Shift Double 0, 75+
CRA Circular Right Shift A T
CRB Circular Right Shift B
CRD Circular Right Shift Double
CRE Circular Right Shift E
CRL Circular Right Shift L
CRM Circular Right Shift M
CRS Circular Right Shift S
CRX Circular Right Shift X
LLA Logical Left Shift A
LLD Logical Left Shift Double
LRA Logical Right Shift A i
LRD Logical Right Shift Double 0, 75+
LLTO Left Test for Ones ' 1.00+
LTZ Left Test for Zeros 1,00+
RTO Right Test for Ones 1,00+ ¢
RTZ Right Test for Zeros 1,00+SC/4
#SC=Shift Count
REGISTER TO REGISTER INSTRUCTIONS
Mnemonic Name Exef:utmn
Time

RAD Register ADD 1.25
RAN Register AND 1.25
RCA Register Compare Algebraic 1.25
RCL Register Compare Logical 1.25
RCO Register Complement 1.00
RDE Register Decrement 1.00
REO Register Exclusive OR 1.25
REX Register Exchange 1. 50
RIN Register Increment 1,00
RIV Register Invert 1,00
RMO Register Move 1.00
ROR Register OR 1.25
RSU Register Subtract 1.25

A-2 Digital Systems Division

o]
(I:\%’g@ 943013-9701

REGISTER SKIP INSTRUCTIONS

Mnemonic Name Exef:utmn
Time
SEV Skip on Ewven 1.00
SMI Skip on Minus
SINO Skip on Not All Ones
SNZ Skip on Not All Zeros
SOD Skip on Odd
SO0 Skip on All Ones
SPL Skip on Plus
SZE Skip on Zero 1,00
INDICATOR SKIP INSTRUCTIONS
Mnemonic Name Exef:ut1on
Time
SEQ Skip on Equal 1,00
SGE Skip on Greater Than or Equal 4
SGT Skip on Greater Than
SLE Skip on Liess Than or Equal
SLT Skip on Less Than
SNC Skip on No Carry
SNE Skip on Not Equal
SNV Skip on No Overflow
SOC Skip on Carry v
SOV Skip on Overflow 1,00
SENSE SKIP INSTRUCTIONS
Mnemonic Name Exe‘cutwn
Time
SSE Skip on Sense Switch Equal 1.00
SSN Skip on Sense Switch Not Equal 1.00
MULTI-REGISTER INSTRUCTIONS
Mnemonic Name Exe.cutmn
Time
LRF Load Register File 7.00
LSB Load Status Block and Branch 3.25
LSR Looad Status Block, Reset Interrupt, and Branch 3.25
SRFE Store Register File 7,00
SSB Store Status Block and Branch 3.25

A-3 Digital Systems Division

(e}
@ 943013-9701

BYTE MANIPULATION INSTRUCTIONS

Mnemonic Name Exef:utlon
Time
CLC Compare Logical Character String 5.,00+2,25/
Byte
MVC Move Character String 4,75+2,75/
Byte
MEMORY BIT MANIPULATION INSTRUCTIONS
Mnemonic Name Exef:utmn
Time
SMBO Set Memory Bit to One 3.25
SMBZ Set Memory Bit to Zero 3.25
TMBO Test Memory Bit for One 2.75
TMBZ Test Memory Bit for Zero 2,75
REGISTER BIT MANIPULATION INSTRUCTIONS
Mnemonic Name Exe?‘utlon
Time
SABO Set Register A Bit to One 1.00
SABZ Set Register A Bit to Zero 1.00
TABO Test Register A Bit for One 1.25
TABZ Test Register A Bit for Zero 1.25
MISCELLANEOUS
Mnemonic Name Exe? ution
Time
API Auxiliary Processor Initiate AP Con-
troller
Dependent
ATI Automatic Transfer Initiate 2.50
IDL Idle 1.00
NRM Normalize 1.00—8,75
RDS Read Direct Single 3,00—4,75
WDS Write Direct Single 3,00—5,00

A-4 Digital Systems Division

[e]
{ﬁ@fp 943013-9701

APPENDIX B

ALPHABETICAL AND HEXADECIMAL
INSTRUCTION INDEXES

Digital Systems Division

(o]
([@7? 943013-9701
APPENDIX B

ALPHABETICAL INSTRUCTION INDEX

Mnemonic Hexaél:di:mal Name Paragraph
ADD 2000 Add to Register A 3.5.1
ALA C880 Arithmetic Left Shift A 3.8.1
ALD C8AO0 Arithmetic Left Shift Double 3.8.2
AND 3800 Logical AND with Register A 3.9.1
API DDO0O0 Auxiliary Processor Initiate 3.12,1
ARA C800 Arithmetic Right Shift A 3.8.3
ARD C820 Arithmetic Right Shift Double 3.8.4

*ATI D900 Automatic Transfer Initiate 3.12,2
BIX 4000 Branch on Incremented Index 3.4.1
BRL 7000 Branch and Link 3.4,2
BRU 7800 Branch Unconditional 3.4.3
CLC DF80 Compare Logical Character String 3.6.1
CLD CB80 Circular Left Shift Double 3.8.5
CPA © 6800 Compare Algebraic 3.6.2
CPL 6000 Compare Logical 3.6.3
CRA CAO00 Circular Right Shift A 3.8.6
CRB CB60 Circular Right Shift B 3.8.7
CRD CBCO Circular Right Shift Double 3.8.8
CRE CA20 Circular Right Shift E 3.8.9
CRL CB40 Circular Right Shift L 3.8.10
CRM CA60 Circular Right Shift M 3.8.11
CRS CB20 Circular Right Shift S 3.8.12
CRX CA40 Circular Right Shift X 3.8.13
DAD B800 Double Length Add 3.5.2
DIV 5800 Divide 3.5.3
DLD B00OO Double Load Registers A and E 3.2.1
DMT 4800 Decrement Memory and Test 3.7.1
DSB A800 Double Length Subtract 3.5.4
DST A000 Double Store Registers A and E 3.3.1

*IDL CEO00 Idle 3.4.4
IMO 5000 Increment Memory by One 3.5.5
IOR 3000 Logical OR with Register A 3.9.2
LDA 0000 Load Register A 3.2.2
LDE 0800 Load Register E 3.2.3
LDM 1800 Load Register M 3.2.4
LDX 1000 Load Register X 3,2.5
LLA C8CO Logical Left Shift A 3.8.14
LLD C8EOQ Logical Left Shift Double 3.8.15
LRA C840 Logical Right Shift A 3.8.16

*Privileged instructions

B-1 Digital Systems Division

o]
{;’\gf) 943013-9701

Mnemonic

LRD
LRF
*L.SB
*LSR

LTO
LTZ
MPY
MVC
NRM
#xRAD
*%RAN
*kRCA
*%RCL
*%RCO
**R_’DE
*RDS
>{<>{<REO
*kREX
#*%RIN
*%RIV
#%*RMO
#*ROR
*%RSU
RTO
RTZ
SABO
SABZ
SEQ
SEV
SGE
SGT
SLE
SLT
SMBO
SMBZ
SMI
SNC

ALPHABETICAL INSTRUCTION INDEX (Continued)

Hexadecimal
Code

C860
D8AO

D880
D890

C980
C9CO0
9800
DF00
CA9F
Co080
C680
C400
C600
c1o0
C700
D800
C280
C780
C300
C200
C500
C480
Co000
C900
C940
DB50
DB40
CDh20
CCCo
CD80
CD40
CDCo
CDO00
DB70
DB60
CCé60
CFEO0

*Privileged instructions
*kPrivileged instructions when status register is the destination register,

Name

Logical Right Shift Double
Load Register File

Load Status Block and Branch
Load Status Block, Reset Interrupt,

and Branch

Left Test for Ones

Left Test for Zeros
Multiply

Move Character String
Normalize

Register Add

Register AND

Register Compare Algebraic
Register Compare Logical
Register Complement
Register Decrement

Read Direct Single
Register Exclusive OR
Register Exchange
Register Increment
Register Invert

Register Move

Register OR

Register Subtract

Right Test for Ones

Right Test for Zeros

Set Register A Bit to One
Set Register A Bit to Zero
Skip on Equal

Skip on Even

Skip on Greater Than or Equal

Skip on Greater Than

Skip on Less Than or Equal
Skip on Less Than

Set Memory Bit to One

Set Memory Bit to Zero
Skip on Minus

Skip on No Carry

Paragraph

~

°®

W W Www

[N Vo)
*

oy 01 O =

e ©°
*

ON =
O 00

—_

L]
Nele BN I - VS IEN I Ao A

-] L] L] o ° . £ 3 L)
N L] L) L] L] L] L]
O =

.,';o
w

e ® L] L] L]
—

L]
= ®
W - O N

W WWWLWWWWLWLWWWWWWWWWWWWWWWWLWWWWWLWWLWWWW
L]

NN AN AN N NN =000 00 U0 =D = U01UTONONO U1 0 U1 000
—

® & & ® e o °
® .‘Oo..
e DD = U1
N =N =N

e e ® e e

e e OO .

O 00 N0 UL W
W

Digital Systems Division

o
{@ 943013-9701

ALPHABETICAL INSTRUCTION INDEX (Continued)

Mnemonic

SNE
SNO
SNV
SNz
SOC
SOD
SO0
SOV
SPL
SRF
SSB
SSE
SSN
STA
STE
STX
SUB
SZE
TABO
TABZ
TMBO
TMBZ
*WDS

Hexadecimal

Code

0000
0800
1000
1800
2000
2800
3000
3800
4000
4800

Hexadecimal
Code

CDAO
CCAO
CDEO
CC80
CF60
CC40
CC20
CD60
CCEO0
D8EO
D8CO
CC10
CC90
8000
8800
9000
2800
CCo00
DBI10
DB00
DB30
DB20
D820

Name

Skip on Not Equal

Skip on Not All Ones

Skip on No Overflow

Skip on Not All Zeros

Skip on Carry

Skip on Odd

Skip on All Ones

Skip on Overflow

Skip on Plus

Store Register File

Store Status Block and Branch
Skip on Sense Switch Equal
Skip on Sense Switch Not Equal
Store Register A

Store Register E

Store Register X

Subtract from Register A
Skip on Zero

Test Register A Bit for One
Test Register A Bit for Zero
Test Memory Bit for One
Test Memory Bit for Zero
Write Direct Single

HEXADECIMAL INSTRUCTION INDEX

Mnemonic

LDA
LDE
LDX
LDM
ADD
SUB
IOR
AND
BIX
DMT

*Privileged Instructions

Name

Load Register A

Load Register E

Load Register X

Load Register M

Add to Register A

Subtract from Register A
Logical OR with Register A
Logical AND with Register A
Branch on Incremented Index
Decrement Memory and Test

Paragraph

»

= b e a] UT W W W A A R W al ad] A] A] A
L]

N b U1 D WD et] IV o pel et ot et et e e

N O O OO
*

010N UL WIDN~O

.
. []
[N

.
3 . . 3

®
L]
0010 Ul ~ W

W WWWLWWWWWWWWWWWWWWWWWwWWwWww
s ® L]
e e

Paragraph

.

W WwWwWwwWwwwwww
-

EN I NN BENo IO IC 2 B SN SV SU I ¥
L]

L]
— et N = DT WV

Digital Systems Division

[e]
@f; 943013-9701

HEXADECIMAL INSTRUCTION INDEX (Continued)

Hexa:iecunal Mnemonic Name Paragraph
Code
5000 IMO Increment Memory by One 3.5.5
5800 DIV Divide 3.5.3
6000 CPL Compare Logical 3.6.3
6800 CPA Compare Algebraic 3.6.2
7000 BRL Branch and Link 3.4.2
7800 BRU Branch Unconditional 3.4.3
8000 STA Store Register A 3.3,3
8800 STE Store Register E 3.3.4
9000 STX Store Register X 3.3.5
9800 MPY Mulitply 3.5.6
A000 DST Double Store Registers A and E 3.3.1
AB0O DSB Double Length Subtract 3.5.4
B00O DLD Double Load Registers A and E 3.2.1
B80O DAD Double Length Add 3.5.2
*%C000 RSU Register Subtract 3.5.12
4#%C080 RAD Register Add 3.5.7
*%C 100 RCO Register Complement 3.5.8
*%G200 RIV Register Invert 3.5.11
*%C280 REO Register Exclusive OR 3.9.4
*%C300 RIN Register Increment 3.5.10
#%C400 RCA Register Compare Algebraic 3.6.4
*%C480 ROR Register OR 3.9.5
*%C500 RMO Register Move 3.11.3
% C600 RCL Register Compare Logical 3.6.5
*%C 680 RAN Register AND 3.9.3
*%CT700 RDE Register Decrement 3.5.9
*%CT780 REX Register Exchange 3.11.2
C800 ARA Arithmetic Right Shift A 3.8.3
C820 ARD Arithmetic Right Shift Double 3.8.4
C840 LRA Logical Right Shift A 3.8, 16
C860 LRD Logical Right Shift Double 3.8.17
C880 ALA Arithmetic Left Shift A 3.8.1
C8AO0 ALD Arithmetic Left Shift Double 3.8.2
C8CO LLA Logical Left Shift A 3.8.14
C8EO0 LLD Logical Left Shift Double 3.8.15
C900 RTO Right Test for Ones 3.8.21
C940 RTZ Right Test for Zeros 3.8.,22
C980 LTO Left Test for Ones 3,8.18
C9Co LTZ Left Test for Zeros 3.8.19
CA00 CRA Circular Right Shift A 3.8.6

w«%Privileged instructions when the status register is the destination register,

Digital Systems Division

943013-9701

HEXADECIMAL INSTRUCTION INDEX (Continued)

Hexadecimal

Code Mnemonic Name Paragraph
CA20 CRE Circular Right Shift E 3.8.9
CA40 CRX Circular Right Shift X 3.8.13
CA60 CRM Circular Right Shift M 3.8.11
CA9F NRM Normalize 3.8.20
CB20 CRS Circular Right Shift S 3.8.12
CB40 CRL Circular Right Shift L 3.8.10
CB60 CRB Circular Right Shift B 3.8.7
CB80 CLD Circular Left Shift Double 3.8.5
CBCO CRD Circular Right Shift Double 3.8.8
CC00 SZE Skip to Zero 3.7.21
CC10 SSE Skip on Sense Switch Equal 3.7.19
CC20 SO0 Skip on All Ones 3.7.16
CC40 SOD Skip on Odd 3.7.15
CC60 SMI Skip on Minus 3.7.8
CC80 SNZ Skip on Not All Zeros 3.7.13
CC90 SSN Skip on Sense Switch Not Equal 3.7.20
CCAOQ SNO Skip on Not All Ones 3.7.11
CCCoO SEV Skip on Even 3.7.3
CCEO SPL Skip on Plus 3.7.18
CDO00 SLT Skip on Less Than 3.7.7
CD20 SEQ Skip on Equal 3.7.2
CD40 SGT Skip on Greater Than 3.7.5
CD60 SOV Skip on Overflow 3.7.17
CD80 SGE Skip on Greater Than or Equal 3.7.4
CDAO SNE Skip on Not Equal 3.7.10
CDCO SLE Skip on Less Than or Equal 3.7.6
CDEO SNV Skip on No Overflow 3.7.12

*CEO00 IDL Idle 3.4.4
CF60 SOC Skip on Carry 3.7. 14
CFEO SNC Skip on No Carry 3.7.9

*D800 RDS Read Direct Single 3.12,3

*D820 WDS Write Direct Single 3.12.4

*D880 LSB Load Status Block and Branch 3.4.5

*D890 LSR I.oad Status Block, Reset Interrupt, 3,4.6

and Branch
D8AO LRF ILoad Register File 3.2.6
D8CO SSB Store Status Block and Branch 3.4.7
D8EO SRF¥F Store Register File 3.3.2

*D900 ATI Automatic Transfer Initiate 3,12.2
DBO0O TABZ Test Register A Bit for Zero 3.10.6

#Privileged instructions

B-5 Digital Systems Division

o]
;@ 943013-9701

HEXADECIMAL INSTRUCTION INDEX (Continued)

Hexadecimal

Code Mnemonic Name Paragraph
DBI10 TABO Test Register A Bit for One 3.10.5
DB20 TMBZ Test Memory Bit for Zero 3,.10.8
DB30 TMBO Test Memory Bit for One 3.10.7
DB40 SABZ Set Register A Bit to Zero 3.10.2
DB50 SABO Set Register A Bit to One 3.10.1
DB60 SMBZ Set Memory Bit to Zero 3.10.4
DB70 SMBO Set Memory Bit to One 3.10.3
DDO00 API Auxiliary Processor Initiate 3.12.1
DFO00 MVC Move Character String 3.11.1
DF80 CLC Compare Logical Character String 3.6.1

B-6 Digital Systems Division

[o]
1'@5 943013-9701
‘}

APPENDIX C
ILLEGAL INSTRUCTION OPERATION CODES

Digital Systems Division

943013-9701

2

~

APPENDIX C
ILLEGAL INSTRUCTION OPERATION CODES

—code of an instruction is other than one of the 99 standard op-

When the op

Table C-1 lists the instruction bit-patterns

codes, it is considered illegal,

that are detected as illegal.

Illegal Instruction Codes

Table C-1.

Instruction Bits

11 12 13 14 15

6 7 8 9 10

2 3 4 5

1
1
]
1

0

X

X

X

0

1

X

X

X
X

1

0

1

0o
0
0
0
0
1

1

1 010 O
010 O
010

1
1

1
1

1
1

1

0 X X XX X

X 0fXx X

1

0 0f0 X X X|X X

0 0|0 O X

0 0|0

00
00
0 0
00
0 O
00
0 0

0 0

1

0

XX X X XX X

1

X = DON'T CARE (0 or 1)

Digital Systems Division

C-1/C-2

CUT ALONG LINE

|
|
|
|
|
|
I
I
I
I
|
I
|
|
I
I
I
I
I
|
I
I
I
I
|
|
I

USER’S RESPONSE SHEET

Model 980 Computer Assembly Language Programmer's
Manual Title: Reference Manual (943013-9701)

Date of Manual: } March 1976 Date of This Letter:
User: Office/Dept. No.:
Company:

Street Address:

City/State/Zip:

Please list any discrepancy found in this manual by page, paragraph, figure,
or table number in the following space. If there are any other suggestions
that you wish to make, feel free to include them. Thank you.

L.ocation Comment/Suggestion
in Manual

NO POSTAGE NECESSARY IF MAILED INU.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), STAPLE AND MAIL

First Class

PERMIT NO. 3135
Austin, Texas

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States

Postage Will Be Paid by

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

RO. BOX 2909 - AUSTIN, TEXAS 78767
Attn: TECHNICAL PUBLICATIONS, MS 2146

980 COMPUTER

SYSTEM
SOFTWARE
o MANUALS
SYSTEM
DESCRIPTION
943012-9701
LANGUAGES
BASIC LANG
FORTRAN INTERPRETER TILT
SYSTEM
944800-9701 943002-9701 955382-9701

PROGRAM DEVELOPMENT

| l I

OVERLAY 960/980 ASSY LANG
LINK PROGRAM PROGRAMMER'S
EDITOR DEBUG REFERENCE

943013-9701

961961-9714

942760-9701

[I

SYSTEM/ 3X0 ASSY LANG PROGRAMMING
SUPPORT INPUT/QUTPUT CARD
9619619712 961961-9734 943000-9701

OPERATING SYSTEMS

I I

BASIC SYSTEM D X980
USE AND PROGRAMMER’S
OPERATION GUIDE
961961-9710 943005-9701

[

DX980 DX980 SYSTEM
SYSTEM OPERATION
DOCUMENTATION GUIDE

943015-9701 943004-9701

° TEXAS INSTRUMENTS

0 INCORPORATED

DIGITAL SYSTEMS DIVISION
POST OFFICE BOX 2909 ¢ AUSTIN, TEXAS 78767

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-08a
	3-08b
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	3-87
	3-88
	3-89
	3-90
	3-91
	3-92
	3-93
	3-94
	3-95
	4-01
	4-02
	4-02a
	4-02b
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-08a
	4-08b
	4-09
	4-10
	4-11
	4-12
	4-12a
	4-12b
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	A-0
	A-1
	A-2
	A-3
	A-4
	B-0
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	C-0
	C-1
	C-2
	replyA
	replyB
	xback

