7 .)
TEXAS INSTRUMENTS
Improving Man’s Effectiveness Through Electronics
S)
r »

DX 980
General Purpose Operating System

Programmer's Guide

MANUAL NO. 943005-9701
ORIGINAL ISSUE 1 OCTOBER 1974
REVISED AND REISSUED 15 MAY 1975

Digital Systems Division U

© Texas Instruments Incorporated 1975
A11 Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the prior consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

Note: The portion of the text affected by the changes s

' [usr OF EFFECTIVE PAGES

indicated by a vertical bar in the outer margins of
the page.

DX980 General Purpose Operating System Programmer's
~Guide (943005-9701)
Original Issue. « v v v v v v v v v v w 1 October 1974
Revised and Reissued....... « .. 15 May 1975 (ECN 388288)
 Change l....vuevenenennneeo 1 August 1975 (ECN 402621)
Total number of pages in this publication is 287 consisting of the following:
PAGE CHANGE PAGE CHANGE PAGE CHANGE

NO, NO. NO. NO. NO, NO,
Cover 1 6-3...... ... 0 8-77 —8-82B. .. 1
Eff, Pages 1 - Xr T R | 8-83, 0-
vexive] 6-5—6-8..... 0 8-84 « i .. 1
1-1—-1-10.... O 7-1—7-16 1 App. ADiv.... 0
2-1—2-21.... 0 8-1—8-3..... 1 A-1 1
2-22—2-34 ... 1 8-4—8-8..... 0 A-2—A-4 0
3-1 —3-17 O S 1 App. BDiv. ... 0
3-18 —3-36 ... 1 8§-10—8-11 ... O B-1-B-5 0
4-1—4-3 0 8-12 v o v ... 1 B-6.uvuveeeuwool
4-4—4-5..... 1 8-13 0 B-7—B-10.... 0
4-6 —4-12 8-14 1 B-11........1
4-13—4-14 ... 1 8-15 o0 .. O B-12—B-18... 0
4-15—4-22 ... 0 8-16 | App. CDiv. ... O
5-1=5-2..... 0 8-17 . .o O C-1—C-20.... 0
5-3 1 8-18—8-20 ... 1 App. DDiv. ... 0
5-4—5-10.... O 8-21 . v ee.. O D-1—D-72.... 0
5-11 —5-18 ... 1 8-22 1 D-73 1
5-19—5-24 ... 0 8-23—8-64 ... 0 D-74—D-76 ... 0
5-25—5-33B .. 1 8-65—8-66 ... 1 Alphabetical
5-34—-5-38 ... 0 8-67—8-69 ... 0 Index Div.... O
6-1......... 0 8-70 1 Index-1 O
6-2 i i i 1 8-71 — 8-76 0 Index-2 1

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

Total number of pages in this publication is

PAGE
NO,

Index-3 ...
Index-4 ...
Index-5 ...
Index-6 ...
Index-7 ...
Index-8 . ..
User's Resp
Bus. Reply.
Cover Blank
Back Cover

.

CHANGE
NO

.
o = O

L]
btk O QO b e O e

Note: The portion of the text affected by the changes is
indicated by a vertical bar in the outer margins of
the page.

consisting of the following:

CHANGE PAGE CHANGE
NO, NO, NO,

B/C

o]
%@ 943005-9701

This manual provides information concerning the Texas Instruments DX980
General Purpose Operating System for use by programming personnel work-
ing with the system, The information is divided into eight sections and four
appendixes as follows:

L.

11,

111,

v,

PREFACE

INTRODUCTION - This section describes the operating system and
its components to provide an overview of its capabilities,

JOB CONTROL LANGUAGE - This section introduces the Job Con-
trol Language used in the system and details the required parameters
and formats of JCL commands,

INPUT/OUTPUT STRUCTURE - This section explains the organiza-
tion of I/O handling routines and lists the I/O Supervisor Calls,

DISC FILE MANAGEMENT - This section describes the storage of
data in disc files and how the operating system controls that opera-
tion,

SUPERVISOR CALLS - This section lists and describes the super-
visor calls available for programmer use,

RATCH PROCESSTNG SUB

L0 L Ll LT AN AgINdL NG

component subsystems that handle batch processing for

VSTREM Thi cti

Q a aa A o Taitsnma
M oL W A AdaAvVEL ™= WA ild O DG LAV LIL CAP-LGLJ.J.D
t s

he system.,

ot

INTERACTIVE TERMINAL SUBSYSTEM - This section describes
the operation of the subsystem that provides interactive communica-
tion between the terminal users and the operating system.

UTILITIES - This section describes the characteristics of the
utility programs available for use with the operating system.

ERROR MESSAGES - This appendix lists DX980 error messages
and definitions.

RECOMMENDED JCL SEQUENCES - This appendix provides sample
listings of JCL sequences for the operating system.

ADDING TO ITS - This appendix provides detailed descriptions of
the Interactive Terminal Subsystem as an aid to adding new applica-
tion programs to run under the subsystem.

ADDING NON-STANDARD DEVICES TO DX980 - This appendix de-
scribes the procedure for designing a device service routine to ser-
vice a device not normally supplied with the operating system.

Digital Systems Division

o
(!@ 943005-9701

An alphabetical index of key phrases also appears at the back of this manual.
In addition to this manual the user should also have access to the following
manuals that are referenced as applicable within the text of this manual:

DX980 General Purpose Operating System, System Operator's Guide,
Part Number 943004-9701

Model 980 Computer, Basic System Use and Operation, Part Number
961961-9710

Model 980 Computer, Terminal User's Guide, Engineering Data, Part
Number 943010-9701

Model 980 Computer, Terminal User's Guide, Model 733 ASR/KSR Data
Terminal, Part Number 943009-9701

Model 980 Computer, Terminal User's Guide, Model 912 Video Display
Terminal, Part Number 943014-9701

Model 960 Computer and Model 980 Computer Debug User's Guide and
Operating Instructions, Part Number 942760-9701

Model 980 Computer FORTRAN, Part Number 944800-9701

Model 980 Computer Assembly Language Input/Output, Part Number
961961-9734

Model 980 Computer Assembly Language Programmer's Reference
Manual, Part Number 943013-9701

iv Digital Systems Division

o
(I{ifp 943005-9701

Paragraph Title Page

TABLE OF CONTENTS

SECTION I. INTRODUCTION

1.1 General i i e e e e e 1-1
1.2 Hardware Requirements 1-1
1.3 Hardware EXpansion. « « « v o v o o o o 0 o v s o 0 o v o v 1-2
1.4 System Structure ¢ v v v v v v v v v b o et 1-2
1.4.1 Nucleus i it i i i e e e e e it i e 1-3
1.4.2 Interactive Terminal Subsystem (ITS) 1-4
1.4.3 Batch Processing Subsystem (BPS) 1-5
1.5 Input/Output Managemento euuuuan 1-5
1.6 Memory Managemento v v oo, 1-6
1.7 Program Handling 1-6
1.7.1 Jobs L e e e e e e e e e e e e 1-6
1.7.2 B 1= 1-7
1.8 L I 1-7
1.8.1 File Organization. oo i oo 1-7
1.8.2 File Handling 1-8
1.8.3 Typesof Files. oo i v ii oo 1-9
SECTION II. JOB CONTROL LANGUAGE
2.1 General e e e e 2-1
2.2 Job Control Language Structure 2-1
2.3 JCL Processing v v v v v o v v v ot oo oo o v o 2-1
2.3.1 Expanded JCL, 2-2
2.3.2 Abbreviated JCL . ., oo v it 2-2
2.3.3 JCL Translator 0 i v vt vennon.. 2-3
2.3.4 DX980 Subsystems . . . v . . v v ittt e e 2-3
2.4 Job Submittal 0.0 2-3
2.4.1 JOB Command (JOB) 2-4
2.4.2 RUN Command (RUN) . . . v v v v v i e e e e e e e e n 2-6
2.5 Expanded JCL Specification 2-8
2.5.1 JCL Translator Input Format. 2-8
2.5.2 Control Commandso v v s v oo, 2-10
2.5.3 Execute Command00, 2-10
2.5.4 Assignment Command oot v 2-17
2.5.5 Job Continuation/Termination 2-30
2.6 Format Summary« o o v v v v v v v v v v oo v v o 2-30

Changel v Digital Systems Division

o]
{@ 943005-9701

Paragraph Title Page

TABLE OF CONTENTS (Continued)

SECTION III. INPUT/OUTPUT STRUCTURE

3.1 General i it e e e e e e e 3-1
3.2 I/O Supervisor Calls'¢eoveuueo.. 3-1
3.3 Physical Record Block, 3-3
3.3.1 Word O................... e et e . 3-3
3.3.2 e o 3-5
3.3.3 Word 2. it e s e e e e e e e 3-7
3.3.4 Word3........... e e e e e e e e e e . 3-8
3.3.5 Word4........... .00 uie.ie.. e e 3-9
3.4 Function of Specific OP Codes e e e 3-9
3.5 Initiate and Execute I/O Calls 3-14
3.6 Standard USASCITI Records . . « v v v v v e v v v e v v v .. 3-15
3.7 I/O Errors v v v v i e e et e e e e et et e e e 3-16
3.7.1 Logical Errors v i i 3-16
3.7.2 Severe Errors.o i i i it i, 3-17
3.7.3 Fatal Errors. . . . ¢ v v v v v i i it i e e e e e e 3-17
3.8 Individual Device Characteristics e.. + 3-18
3.8.1 Data Terminal and CRT Devices. 3-18
3.8.2 Model 733 ASR Cassetteo v v v v v v .. 3-26
3.8.3 Paper Tape Readers 3-28
3.8.4 Paper Tape Punch Devices 3-29
3.8.5 DMAC and I/O Bus Line Printers 3-30
3.8.6 Card Reader e e e e 3-31
3.8.7 Dummy Device0 ieeene... 3-31
3.8.8 16 Input/16 Output Data Module 3-32
3.8.9 AD/DA Devices . . . v vt v v v v ... e e e e 3-33
3.8.10 Magnetic Tape . . « . v v v v v v v v v i e e e o et w e 3-33
SECTION IV. DISC FILE MANAGEMENT
4.1 File Structures i it v i vt vttt 4-1
4.2 File Handling i i i i i v ittt vt v e oo, 4-1
4.2.1 Memory Allocation. e r e e e 4-1
4.2 File Integrity, 4-2
4.3 Disc Organization 4-2
4.4 File Types . . . o v i v i i it i it et ittt et o e 4-3
4.4.1 Linked Sequential Files. v .o v v .. 4-3
4.4.2 Relative Record Files. v v v v v v v v v v v v u . 4-6
4.4.3 Key Indexed Files 0.0 uiuee.. 4-6
4.4.4 File Errors oo e e ueueens.. e e e e e 4-13
4.5 Physical Record Block 4-13

Change 1 vi Digital Systems Division

[e]
{@ 943005-9701

TABLE OF CONTENTS (Continued)
Paragraph Title Page

SECTION V. SUPERVISOR CALLS

5.1 General e e e, 5-1
5.2 Input/OQutput ~ SVC Number 0. 5-8
5.3 Terminate Job - SVC Number 1 5-8
5.4 Set Floating Point Address - SVC Number 2 5-8
5.5 Get Memory Limits - SVC Number 3. 5-9
5.6 Terminate Job Abnormally - SVC Number 4 5-9
5.7 Terminate Task - SVC Number 5 5-10
5.8 Delete Task(s) - SVC Number 6 5-10
5.9 Suspend Task (Wait for Event) - SVC Number 7. . . . 5-11
5.9.1 Wait Criteria List (WCL) 5-11
5.9.2 System-Wide Events 5-12
5.9.3 Job Oriented Events v v v v v v v v e v v.. 5-15
5.10 Post An Event - SVC Number 8 5-15
5.11 Get Time and Date - SVC Number 29. 5-16
5.12 Create Task - SVC Number 30 5-17
5.12.1 Optional Arguments e e e e e 5-18
5.12. Create Task Examples 5-18
5.13 Load Memory Image Phase - SVC Number 37 5-24
5.14 Load and Relocate Memory Image Phase -

SVC Number 38 it i i is s, 5-25
5.15 Command Scanner Module - SVC Number 41. 5-25
5.15.1 External Interface 5-26
5.15.2 SVC 4l Exampleo 5-32
5.16 Wait for I/O - SVC Number 43 v v v v v v ... 5-33A
5.17 Allocate Resource - SVC Number 49 5-34
5.18 Deallocate Resource - SVC Number 51 5-36
5.19 Get Program Limits - SVC Number 98 5-37
5.20 User Start Job - SVC Number 129. 5-37

SECTION VI. BATCH PROCESSING SUBSYSTEMS

6.1 General L e 6-1
6.2 Batch Input Reader (BIR). 6-1
6.2.1 Job Command ieuenee.o.. 6-1
6.2.2 RunCommand 6-2
6.2.3 Data Control Command 6-2
6.2.4 End of Job Command 6-3
6.3 Batch Input Spooler (BIS). 6-3
6.3.1 Job Command 6-3
6.3.2 RunCommand ueunuene.o... 6-3
6.3.3 Data Control Command 6-3
6.3.4 End of Job Command 6-5

Change 1 vii Digital Systems Division

(o]
(@ 943005-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
6.4 Batch Output Spooler (BOS) . . v v v v v v v v e e .. 6-6
6.5 BIR and BIS Examples00 .o... 6-6
6.6 BISExample i it it i e e e e e e e e 6-8

SECTION VII. INTERACTIVE TERMINAL SUBSYSTEM

7.1 OVervVIEW . & i v i i i e e e e e e e e e e e e e e e 7-1
7.1.1 CRT Displays . . v v v v v it it it it e et e e un 7-1
7.1.2 Teleprinters . v v v v v v v v o v v ot oo oo o a e v o 7-2
7.1.3 ITS Terminal Assignments 7-2
7.1.4 ITS Memory Requirements. . . « che e 7-3
7.1.5 Remote Terminals 7-3
7.1.6 LoGON v v v i et et e e e e e e e e e e e e e e e . 7-3
7.1.7 Other ITS Commands v v v v v v v ewunn. 7-3
7.2 Interactive File Editor 7-4
7.2.1 File Commands« c v i i i vt et ot et e e e u 7-6
7.2.2 EditCommands+t i v v vttt eeeeon. 7-7
7.2.3 State Transition Commands L 7-12
7.3 Remote Job Entry 7-13
7.3.1 JobCommando 7-13
7.3.2 RunCommand i ot eeoa 7-13
7.4 Computer Status Display 7-14
7.5 ITS Error MeSSages « « + ¢ o e o o o s o o o o o s o o oo on 7-14
SECTION VIII. UTILITY PROGRAMS
8.1 General i i i i i i e e e e e e e e e e e e 8-1
8.2 JCL Translator (JCLTRN) . . v v v v v v v e e e e e e e w 8-1
8.2.1 Standard JCL Procedure oc.... 8-1
8.2.2 Memory Partition Requirements. 8-2
8.2.3 LUN Assignments 0o, 8-2
8.2.4 Operation . . . v v v v o v i it it s e e e e e e 8-2
8.2.5 Error Codes . . v v v i v v i v o v ot et o e e e oo a e 8-2
8.2.6 Sample Input . + o v v v v v v i et e e e e e e 8-2
8.3 Master File Directory Editor (CATLOG) 8-2
8.3.1 Standard JCL Procedure ¢ o et v vt v 8-3
8.3.2 Memory Partition Requirements. 8-3
8.3.3 LUN Assignments0 veeuenen.. 8-3
8.3.4 Operation v v v v i v it e e s e e e e e e 8-3
8.3.5 Error Codes v i v i v i v it v vt et e eae o 8-7
8.4 List User File Directory (CATFIL). 8-8
8.4.1 Standard JCL Procedure ¢ o' .u.o.. 8-8
8.4.2 Memory Partition Requirements. 8-8

Change 1 viii Digital Systems Division

o
@ 943005-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
8.4.3 LUN Assignments v eeen... 8-9
8.4.4 Operation . . . v v v v v i i it it et e e e e 8-9
8.4.5 Error Codes i i, 8-10
8.5 DX980 Overlay Link Editor (DXOLE) 8-11
8.5.1 Standard JCL Procedure 8-12
8.5.2 Memory Partition Requirements. 8-12
8.5.3 LUN Assignments 00w eeeen... 8-13
8.5.4 Operation . . . v i v i i v i i s e e e e e e e e e e 8-13
8.5.5 ErrorCodes e eneo.. 8-22
8.5.6 Input Format. i v it v v i vennen.. 8-23
8.5.7 DXOLE Output Formats v veuueo.. 8-28
8.6 Library Builder (LIBBLD). v o v v v v ... 8-31
8.6.1 Standard JCL Procedure 8-31
8.6.2 Memory Partition Requirements. 8-32
8.6.3 LUN Assignmentso i v veunennennn.. 8-32
8.6.4 Operation . . v v v v v v v i v e e e e e e e e e e e 8-32
8.6.5 ErrorCodes i v i i i vt it i i e, 8-32
8.6.6 Sample Outputo v v v it et e 8-32
8.7 File Copy Utility (DXCOPY). 8-33
8.7.1 Standard JCL Procedure 8-33
8.7.2 Memory Partition Requirements e e e e 8-33
8.7.3 LUN Assignments. . . o . v v oo v v v oo v v v v v un.. 8§-34
8.7.4 Operation . v v v v v v i i it e e e e e e e e e e e e . 8-35
8.7.5 ErrorCodes o i i i, 8-37
8.8 Program Debug (DEB980)o... 8-38
8.8.1 Standard JCL Procedure 0.0 o.. 8-39
8.8.2 Memory Partition Requirements. 8-39
8.8.3 LUN Assignments 8-40
8.8.4 Operation .« v v v v v v o vt et e e e e e e e e 8-40
8.8.5 ErrorCodes i 8-40
8.8.6 Sample Input oo i e e e 8-40
8.8.7 Sample OQutput e e e e e e 8-41
8.9 Symbolic Assembler (SAPG) 8-41
8.9.1 Standard JCL Procedure 8-41
8.9.2 Memory Partition Requirements. 8§-42
8.9.3 LUN Assignments enonon.. 8§-43
8.9.4 Operation . . v v v v v v b i et i i et e e e e e 8-44
8.9.5 ErrorCodes, 8-46
8.9.6 SampleInput ittt 8-46
8.9.7 Sample Output v i v i ... 8-46
8.10 FORTRAN IV Compiler. 8-46
8.10.1 Standard JCL Procedure 8-46

Digital Systems Division

o
{[@? 943005-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
8.10.2 Memory Partition Requirements 8-50
8.10.3 LUN Assignments 8-51
8.10.4 Operation v v v i v o i e e e e e e e e e e e 8-51
8.10.5 Error Codes 8-53
8.10.6 Sample Input, 8-56
8.10.7 Sample Output 8-57
8.11 I.oad Module Update (LMUPDT) 8-57
8.11.1 Standard JCL Procedure 8-58
8.11.2 Memory Partition Requirements. 8-58
8.11.3 LUN Assignments0...... 8-58
8.11.4 Operation ittt i i i 8-59
8.11.5 Sample Input Lo, 8-59
8.12 Source Maintenance Routine (SMR) 8-59
8.12.1 Standard JCL Procedure 8-60
8.12.2 Memory Partition Requirements. 8-60
8.12.3 LUN Assignments oo ... 8-60
8.12.4 Operation v v v v i i v i bt i e e e e e 8-60
8.12.5 Error Codes 8-71
8.12.6 Sample Output, 8-71
8.13 Linkable Parts File Build Utility (LPFBLD) 8-77
8.13.1 Standard JCL Procedure 8-77
8.13.2 Memory Partition Requirements 8-78
8.13.3 LUN Assignmentsot uineen... 8-78
8.13.4 Operationt v i i i it it et e e e 8-78
8.13.5 ErrorCodes i i i i it i, 8-79
8.14 Build Edit File Utility (BLDEDT) 8-80
l 8.14.1 Standard JCL Procedureo v v e uwuo.. 8-80
8.14.2 Memory Partition Requirements. 8-80
8.14.3 LUN Assignments neen.. 8-80
| 8.14.4 OPEeration « v v v v v vt v et e et e e e 8-81
8.14.5 Error Codes i i i i i, 8-81
l 8.15 List Edit Files Utility (LSTEDT) 8-81
8.15.1 Standard JCL Procedure 8-81
8.15.2 Memory Partition Requirements 8-81
8.15.3 LUN Assignments uuieeue... 8-82
8.15.4 Operation 0 i i it e e e e 8-82
8.15.5 Error Codes i eneei.. 8-82
8.16 Create, Delete, or Replace File (FILMGR). 8-82
8.16.1 Standard JCL Procedure v ¢ v v v a o . 8-82
I 8.16.2 Memory Partition Requirements. 8-82A
8.16.3 LUN Assignments. s e e e et aauee 8-82A
8.16.4 Operation . v v o v v v s o v s s v s 0 oo 8-83
8.16.5 ErrorCodes . v v v v ittt it st s e nnsnnnsean 8-854

Change 1 x Digital Systems Division

{@ 943005-9701

TABLE OF CONTENTS (Continued)

APPENDIXES
Appendix- Title Page
A Error Messages s e s s e s e e e e e A-1
B Sample JCL Sequences e e e e e e B-1
C A’deﬁxtGIT e e s s s s s s s s s s s 2 s s s c s s s 6 5 s e s C-1
D Adding Non-Standard Devices to DX980 e e e s e D-1
ALPHABETICAL INDEX
LIST OF ILLUSTRATIONS
Figure Title Page
1.1 DXO080 General Structure .« v v v v v v v v v v v v o v s vas i-3
1-2 Organization of Data Files within a Disc Drive 1-8
2-1 JCL Translator Formatting Summary 2-31
3-1 Physical Record Block (PRB) Format 3-4
3-2 Data Module PRB. . ..o v v v ... e e e 3234
3-3 Analog-to-Digital Converter PRB oo 3-35
3-4 Digital-to-Analog Converter PRB . v ¢ v v v v v v v v v 3-35
4-1 Linked Sequential File Parameters « « « « v v o v v . . . 4-5
4-2 Relative Record File Transfers « . . v v v v v v v oo 4-7
4-3 Key Index File Parameters et et e e e e 4-10
5-1 Event Descriptor Block Organization. 5-11
5-2 WCL with Multiple EDB . ..t vt v v v v v e e e 5-13
5-3 Sample TSTK Contents at Task Activation. 5-19
5-4 Format of Key Array After Return from SVC41 . 5-32
5.5 Templates for Descriptors in KEY Array........ 5-31
5-6 Resulting Contents of KEY and PAKSTRo 5-33
6-1 BIR Input Deck Structure .« « v v v v o v v o v 0 oo oo . 6-2
6-2 BIS Input Deck Structure « . v v v v v v v v v o v v v v . 6-4
7-1 Interactive File Editor Transitions 7-5
8-1 Control Card FormatsS. v o o v ¢t v e v o v v o v v a o o v 8-16
8-2 Overlay Structure and Control Deck. v « v v ¢ v o v v 4. 8-18
8-3 Object Records + o v v v v v v v v vt o v v 0w v un che e 8-26
8-4 DX980 Load Module Records .« . v v v v v v v v v v o 8-29
8-5 Memory Image Format for Files Other than
Relative Record. . . . v v v v v v v e v v v v e e e 8-36

Change 1 xi Digital Systems Division

o
@ 943005-9701

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
8-6 Saved File Format « « « v« v v v v v v v vt 0o 0 v e e e 8-36
8-7 SAPG Assembler Functional Diagram« « .« ... 8-45
8-8 Assembly Language Source Input to SAPG. 8-49
8-9 Object Module Output from SAPG 8-49
8-10 FORTRAN Execution Functional Diagram. 8-52
8-11 FORTRAN Source Input to FORTRAN Compiler. .. . 8-56
8-12 Object Module Output from FORTRAN Compiler ... 8-57
8-13 SMR Batch Input to Create a New Library. 8-72
8-14 Index of NEWLIB . . v v v v v v v v v v v v o e e e 8-72
8-15 Sequenced Listing Commands and Listing. 8-73
8-16 Input Stream to Add Two Modules « v v v v ¢ ¢ 0 o oo . 8-74
8-17 Index of NEWLIB with Added Modules ¢ .4 ... 8-75
8-18 Input Stream to Modify a Module c e e 8-75
8-19 Index of Modified Module . + . v v ¢ ¢ v v v v 0 v v v .o 8-75
8-20 Sequenced Listing of Modified Module -

Input Commands and Listing. e .« 8-76
8-21 Input Stream to Delete a Module 8-76
8-22 Index of NEWLIB without Deleted Module ©8-T6

LIST OF TABLES

Table Title Page
2-1 JCL Operand Defaults . ¢ ¢ v v e ot e e e et neneen 2-10
2-2 Suggested Device Names ¢ o v v vt o vt oo v e 2-18
2-3 File Integrity Codes . . v v v v 6 0 s 0o v o c e ae e 2-22
2-4 DS330 Disc Formatting . « v v e ¢ v e v v v v v v e e e 2-25
2-5 Maximum <prwds> Physical Record

Lengths for Disc Files . v e v v v o v v oo 0o v o0 v 2-28

2-6 Job Control Sequence (JCS) for RVN

Command Example00t et veeeeennnan 2-33

l 2-7 Parameter Keynames and Defaults for

JCS Example et e e e e e e 2-33
3-1 USASCII Format Control Word c v e e 3-6
3-2 PRBWord?2¢¢.e.. e e e e et e e e e e 3-8
3-3 Device Attributes Word after Execution of an

OpenCall . v v v vt v v v v oo v s e s s o s s e nans 3-9
3-4 Input/Output Opcodes . . ¢ v v v v v o v v v v vt v o v v un 3-10
3-5 I/OErrors « v o o v o s o o v o oo h e e e s e e e eees 3-16
3-6 Device Response to Sequential I/O Commands. 3-19

Change 1 xii Digital Systems Division

[o]
{@ 943005-9701

LIST OF TABLES (Continued)

Table Title : Page
3-7 USASCI Control Characterseeee.e.. o v 3-21
3-8 Binary Internal Code to Paper Tape Binary Code. . . 3-29
3-9 USASCII Character Internal Code to Hollerith

Code Conversion . .. v v v v oo oot oeeeseseess 3-32
3-10 Binary Character Internal Code to Binary Card

Code CONversion + v v v v o s o o s v o o s o s oo s nnas 3-33
3-11 16 I/O Data Module Instructions + e e e 3-34
4-1 Summary of DX980 File Features « « v ¢« v ¢ v ¢ v o . . 4-4
4-2 File Errors. C et e e e e e e e 4-14
4-3 Relative Record and Key Indexed File Management

Opcodes v v v v v v v vt v v v v e s e s e e e e 4-15
5.1 DX980 User Supervisor Calls. . v v v v v v v o .. e 5-2
5-2 DX980 Supervisor Call Description + « v v v ¢ v v v o v 5-3
5-3 User Accessible System-Wide Events 5-14
5-4 Job-Oriented Events . v v v v ¢ ¢« v vt v v 0 v 00 v 0o .. 5-15
5-5 Description of Command Language (Backus-Naur

Format)o st e et e e e .. 5-27
5-6 Error Codes . .« ¢ et v ot o o s 6o s o ooeescoesas 5-30
5-7 Resource Assignment Block (JLDT) Format 5-35
5.8 Job Structure Block (JSB) Preamble Format. 5-38
8-1 JCLTRN Logical Unit Assignments. . « « « « o ¢ « o + 8-2
8-2 CATLOG Logical Unit Assignments « o ¢4 8-3
8-3 CATILOG User Interaction « « « s v v v v 0 s v v v 0 N 8-5
8-4 User ID Integrity Codes ¢coveune.n 8-6
8-5 CATLOG Error MeSsSages + v v o o s o s 0 0 0 0 o R 8-7
8-6 CATFIL Logical Unit Assignments . « v« v v e v v v v o 8-9
8-7 CATFIL Termination Messages o v e s s 8-11
8-8 DXOLE Logical Unit Assignment 8-14
8-9 DXOLE Control Card Sequence and Options. 8-17
8-10 DXOLE Error MesSages v « o o o ¢« o o o o« c e e e e 8-22
8-11 Text Record Parameters. e e e e e 8-28
8-12 Load Module Field Definitions et e s 8-30
8-13 LIBBLD Logical Unit Assignments 8-32
8-14 DXCOPY Logical Unit AssignmentsS. ... ¢+ .. .o 8-35
8-15 DXCOPY Error MesSSaZE5 . v v v v o o o o s ¢ 8 s s o oo o 8-38
8-16 DEB980 Logical Unit Assignments. 8-41
8-17 Symbol Table Memory Allocation 8-43
8-18 SAPG Assembler Logical Unit Assignments 8-44
8-19 SAPG Error MeSSages v v v o o o v s s 0 6 o o s o oo oo 8-48
8-20 FORTRAN Compiler Phase 1 LUN Assignments. . . . 8-51
8-21 FORTRAN Compiler Phase 2 LUN Assignments. . . . 8-51

Change 1 xiii Digital Systems Division

o
%@ 943005-9701

LIST OF TABLES (Continued)

Table Title Page
8-22 FORTRAN Compiler Phase 1 Error Messages. 8-53
8-23 FORTRAN Compiler Phase 2 Error/Termination

MESSALES 4 v ¢ o o o ¢ ¢ 0 s o s s e s o oo e s noncoenas 8-55
8-24 Runtime Error Messages. . . « « + « + .+ .« e e e e e 8-55
8-25 LMUPDT Logical Unit Assignments. « « v v ¢« v v o o« » 8-59
8-26 SMR Logical Unit Assignments . . . « « « v s o s o s o s« 8-61
8-27 LPFBLD Logical Unit Assignments. . « « « « ¢« o ¢ o+« 8-79
8-28 BLDEDT Logical Unit Assignments. .« « v « v o ¢ « o« 8-81
8-29 ILSTEDT Logical Unit Assignments . + v v v v v v v o o 8-82
8-30 FILMGR Logical Unit Assignments . « « v ¢ v v ¢ s &« & 8§-82A

Change 1 xiv Digital Systems Division

[e]
@ 943005-9701

SECTION I
INTRODUCTION

1.1 GENERAL

DX980 is a general purpose operating system that supports the Texas Instru-
ments 980 Series minicomputers with major features that include the follow-

ing:
. Interrupt driven device handlers
° Multiprogramming with biased addressing and protected memory
bounds
° Flexible job management with complete resource allocation

® Comprehensive data management

. Dynamic memory management

. Priority scheduling of jobs and of tasks within jobs

° Subsystems to support batch and interactive terminal processing

These system attributes augment computer performance for application in the

° Interactive information management systems that allow terminal
devices to enter, retrieve and display data stored in an online disc
information base. '

° High speed, real-time computing systems that provide both analog
and digital data acquisition, and that include control loops that re-
quire the computational capacity of a 980 computer.

° Batch processing environments for program development, scientific
data processing and business applications.

e Combinations of the above systems for specialized applications.

1.2 HARDWARE REQUIREMENTS

The operating system nucleus occupies approximately 24, 000 words of main
memory and requires the following additional system hardware:

° Additional memory for support of subsystems, language processors,
and application programs.

° Either a moving head disc or a DS330 disc system.

® Magnetic tape drive to initially load the disc, to allow a dump of the
disc contents for reloading, and to provide offline storage.

1-1 Digital Systems Division

%@ 943005-9701

° Operator console for system interaction with the user.
(Model 733 ASR terminal or equivalent)

° Interval timer.

1.3 HARDWARE EXPANSION

In addition to the required hardware for operation of the system, DX980 sup-
ports a full 64K word memory computer system. The modular construction
of the system allows easy addition of new peripheral devices and their re-
lated service routines. Standard device service routines include support for
one or more of each of the following peripherals:

° Texas Instruments Model 733 ASR Terminal, Part Number
966645-0003

® Texas Instruments Model 733 KSR Terminal, TI Part Number
966671-0003

e Teletype Model 33 ASR Teletypewriter, TI Part Number
973346-0001

° Texas Instruments Model 912 CRT display unit, TI Part Number
973306-0012

e High Speed Paper Tape Reader/Punch Combination, TI Part
Number 973526-0003

e High Speed Paper Tape Reader, TI Part Number 965946-0003

° 132 Column I/O Bus Line Printer, TI Part Numbers 966792-0001
and 966792~0011

° 80 Column DMAC Line Printer, TI Part Number 217065-0001
° Card Reader, TI Part Number 966323-0003
° Analog-to-digital and digital-to-analog conversion equipment

° DS330 Disc Controller and Disc Drive System, TI Part Numbers
942541-0002, 942541-0003, 942541-0004, 942541-0005, and
942541-0006.

° Moving Head Disc, TI Part Number 955157-0001

° Texas Instruments Model 979 Tape Transport, TI Part Number
217536-0001

1.4 SYSTEM STRUCTURE

The operating system is divided into a nucleus for executive functions common
to most operations, and several subsystems that perform specific functions.
In addition to the nucleus, two subsystem modules are supplied with the
standard operating system: the Interactive Terminal Subsystem (ITS) and the
Batch Processing Subsystem (BPS). Figure 1-1 illustrates the relationship

1-2 Digital Systems Division

943005-9701

DX980
NUCLEUS
INTERACTIVE BATCH
TERMINAL. PROCESSING
SUBSYSTEM SUBSYSTEM
(1Ts) (BPS)
(A)129477

Figure 1-1. DX980 General Structure

of these subsystems to the nucleus. Other subsystems may also be added to
perform functions suited to special applications. The following paragraphs
describe the characteristics of the standard system components.

1.4.1 NUCLETUS

The nucleus is the portion of the operating system that defines the system
parameters, handles input and output servicing, and provides real time
reaction to the subsystems. The nucleus is divided into four main parts: the
system table, the memory resident code, the procedure pool or system over-
lay area, and a Dynamic System Control Area (DSCA). The real time fea-
tures of the operating system are integrated into these areas and do not form
a separate subsystem as do the Interactive Terminal Subsystem and the
Batch Processing Subsystem. Real time features include rollin and rollout,
task synchronization supervisor calls, dynamic device allocation, the ability
to start other jobs via a supervisor call, and a method for controlling file up-
dating with multiple online users. Most of the code for these features oc-
cupies main memory only when in direct use and runs in the procedure pool.

1.4.1.1 SYSTEM TABLE. The System Table describes the operating
parameters of the system including: system job parameters, system wide
control blocks, and pointers to system queues, the DSCA, procedure pool
and free area. The table is created during system generation,

1.4.1.2 MEMORY RESIDENT CODE. Memory resident code is that portion
of the operating system that is always in main memory. This code performs
the following functions in the DX980 system: interrupt processing, system
disc device handling, task management, preliminary supervisor call process-
ing, memory management, overlay management, and commonly used lower
level system subroutines.

1.4.1.3 PROCEDURE POOL. The procedure pool is a dynamically allo-
cated memory area used for system overlays. Approximately 80% of the sys-
tem routines run in this area. These routines include: device service rou-
tines not handled by the memory resident code, job management, file

1-3 Digital Systems Division

@ 943005-9701

management, operator communications, and modules of rollin and rollout.
The user can select the size of the procedure pool to adapt the amount of
memory available to the operating speed required.

1.4.1.4 DYNAMIC SYSTEM CONTROL AREA (DSCA). The DSCA is a
volatile memory pool that is used by the procedure pool routines. Most of
these routines are written in reentrant code. The DSCA provides a desig-

nated work area for each task executing a procedure pool routine. The user
can select the size of the DSCA.

1.4.2 INTERACTIVE TERMINAL SUBSYSTEM (ITS)

The Interactive Terminal Subsystem (ITS) provides simplified concurrent
communications with several terminals. Included in ITS is the ITS Super-
visor (ITSUPV) and the Interactive File Editor (IFE). ITSUPV manages the
terminals, and provides LOGON and LOGOFF functions plus the required
housekeeping functions for multi-terminal usage. ITSUPYV interfaces easily
with user written application programs. IFE provides interactive generation
and editing of disc files containing source text.

The ITS Supervisor initially checks the system's logical and physical device
tables to derive a list of the terminals with which it can communicate (polling
list). This list is based on the logical units assigned to the ITS at job start-
up time. The ITS then assigns to each of the terminals on the list:

° A buffer for data exchange with the terminal
° A User Control Block

The User Control Block contains pointers, flags, and a scratch pad memory
space for use by application programs operating under ITS. One key param-
eter in the control block indicates which body of code, or application pro-
gram, is currently attached to the terminal. A single Command Table is
available to ITSUPYV for all terminals. The Command Table contains the
names and entry points of the programs that can be run under ITS. After
logging on, the terminal operator, through the ITS Supervisor, can select
one of the programs in the Command Table for execution. Similarly, after
completion of that program the operator can select another program.

The ITS uses a Branch and Link command to pass the data exchange buffer

to the selected application program. That program then processes the input
and places any response to the terminal in the data exchange buffer. When
the application program returns control to the ITS, the program may instruct
the ITS to do any of the following operations:

e Write the contents of the data exchange buffer on the corresponding
terminal and return to the application program for more processing.

° Write the contents of the data exchange buffer on the corresponding
terminal, acquire a response from the terminal, and return for more
processing.

1-4 Digital Systems Division

e}
{@ 943005-9701

e Read input from the terminal and return for more processing.

° Return for more processing as time becomes available without
intervening I/O operations.

° Discontinue use of this application program by the terminal and
indicate readiness for the operator to select a new application pro-
gram.

1.4.3 BATCH PROCESSING SUBSYSTEM (BPS)

The Batch Processing Subsystem (BPS) consists of three data handling sub-
systems that allow convenient batch input and output for the operating sys-
tem. The three data handling subsystems are Batch Input Reader (BIR),
Batch Input Spooler (BIS) and Batch Output Spooler (BOS). Any of these sub-
systems can be activated from the system console by addressing a RUN com-
mand to the proper subsystem.

1.4.3.1 BATCH INPUT READER (BIR). Specifying BIR causes the oper-
ating system to activate the assigned card reader and read input directly
from that device.

1.4.3.2 BATCH INPUT SPOOLER (BIS). Specifying BIS instructs the op-
erating system to activate the assigned card reader, read input continuously

£aamamn +la ot
from that device, and copy the input data to a disc file (spooling). Process-

ing can then proceed via the disc file (SYSIN) in parallel with the input oper-
ation to increase throughput.

1.4.3.3 BATCH OUTPUT SPOOLER (BOS). Specifying BOS instructs the
operating system to access from the disc all data assigned to unit SYSOUT.
The data is read from the disc and printed on the system output device |
(usually a line printer). This feature allows data to be spooled on the disc
during execution of a job by specifying the output unit as SYSOUT. When the
output device becomes available, the operator can then activate BOS to dump
the spooled data on that device. Use of BOS in this manner significantly in-
creases throughput.

1.5 INPUT/OUTPUT MANAGEMENT

User programs running under DX980 select I/O devices with a logical unit
number (LUN) rather than a physical device number. A statement within

the JCL input for the job equates the LUN to a physical device name, while

a physical device table for the operating system specifies an actual I/O de-
vice to respond to the physical device name. This arrangement allows the
I/O device assignments within the operating system and the logical unit num-
bers within the user program to remain constant. A simple change to the
JCL input allows the user to change the I/O medium. The operating system
includes a Device Service Routine (DSR) for each I/O device supported by the

1-5 Digital Systems Division

o
(@ 943005-9701

monitor. Each DSR translates the common program I/O interface to the
unique [/O interface required by its type of I1/O device. The physical device
table ties a particular I/O device to the DSR that services it. Additional
DSRs can be added to the system to support new I/O devices without serious
change to the system.

1.6 MEMORY MANAGEMENT

All of memory that is not occupied by the resident operating system, system
tables, and the procedure pool is designated as a free area. The operating
system dynamically allocates this area to subsystems and to user jobs. When
a program is loaded into memory, the operating system stores it in contig-
uous locations in a single partition within memory. It then loads the upper
and lower bounds of that partition into the hardware memory protect address
registers of the memory controller, and enables the hardware Priviledged
Instruction Feature. All program parameters can then be referenced with a
relative address with respect to the lower bound of the memory partition
since the hardware automatically biases the addresses with the lower bound
address. The operating system allocates memory partitions to particular
jobs on a best fit basis.

1.7 PROGRAM HANDLING

Programs run under DX980 are performed as jobs; each job is further
divided into tasks. The following paragraphs explain these concepts with
respect to the operating system.

1.7.1 JOBS

A job is a unit of work in the DX980 system. A job consists of a set of user
tasks to be executed and the control information to communicate resource
requirements to the system. The system runs each job when all required
resources become available. When a job is complete, all allocated resources
are returned to the system. They may then be allocated to another job as
necessary. If the system has adequate resources, more than one job can be
active at one instant. Each job competes for execution time on a priority
basis.

Jobs can be submitted to DX980 through the Batch Processing Subsystem
(BPS), the Interactive Terminal Subsystem (ITS), the system console, or
from another user job. The job submission procedure is the same regard-
less of source. '

Once DX980 accepts the control information required to start a job, it places
the information in a priority queue, called the job queue. Part of the job
queue resides in main memory and part resides in a random access file on
the system disc. As resources become available from jobs currently in
execution, either through job termination or a specific request to release
one or more resources, DX980 determines whether the additional resources

1-6 Digital Systems Division

943005-9701

are sufficient to execute one of the jobs in the job queue. If so, the system
changes that job's state from Ready to Running and starts the job.

Fach job in DX980 is requested with Job Control Language (JCL), and com-
municates with the operating system using supervisor calls. A series of
jobs may be combined into related job steps to perform a larger function,
such as Compile, Link and Execute. In addition, a job may subdivide itself
into two or more concurrently resident tasks. All user jobs run in protected
mode and must remain within the memory bounds defined for that job.

1.7.2 TASKS

A task is a currently active program that coexists in memory with other con-
current tasks, all of which may be in various stages of completion. One or
more tasks combine to form a job. Tasks within a job may execute concur-
rently and share the same reentrant body of code though each task is in a
different state of execution. All jobs initiate as a single task. The initial
task then issues supervisor calls to activate other tasks within its job area.
Each separate task has its execution environment (register contents) and re-
ceives a relative priority rank with other concurrent tasks.

1.8 FILES

A file is an organized collection of information. The file is divided into rec-
disc when not being used. The following paragraphs describe the organiza-
tion of files, the types of files available with the operating system, and the
file handling features of the operating system.

ords that may be held in main memory while being used, but are stored on a

1.8.1 FILE ORGANIZATION

the DX980 operating system. The system locates a specific file with a three
parameter entry supplied by the user. The<volume> parameter specifies the
disc drive unit that contains the file, and allows the system to access the
Master File Directory for that disc unit. The Master File Directory lists
all of the User Directories that are stored on that disc unit, and the physical
disc addresses used to locate each directory. A second parameter, < fileid>,
tells the operating system which of the User Directoriés contains the file.
The system then calls up the proper User Directory, which lists all of the
files on the disc unit for that user, and their location on the disc. A third
parameter, <filnam>, tells the operating system which of these files to ac-
cess for the required information.

Figure 1-2 illustrates the organization of files within a single disc unit for

Volume number 1 is always the system disc unit containing all of the oper-
ating system files. Therefore, systems with only one disc unit must label
that disc as volume 1. Within the Master File Directory for the system disc
is an entry for the SYSTEM User Directory. This directory lists all of the
files that are part of the operating system. One of these files, SJCBFL,
contains the Job Control Language (output of the JCL Translator program) for
the system. Another file, JCLSRC, is the JCL source file.

1-7 Digital Systems Division

943005-9701

<FILNAM>
<FILEID> USER 1
I L FILE 1
USER °
g DIRECTORY)
1 °
USER 1
e FILE ki
USER 2
—I———-— FILE 1
UESE‘_R .
DIRECTORY
L S °
°
< VOLUME >
USER 2
® — FILE kp
MASTER
FILE
DIRECTORY
[J USER N—1
] L FILE 1
USER Y
L___gmi DIRECTORY .
n-1
°
USER N—1
——— FILE kn—t
USER N
[—’ FILE 1
USER
g DIRECTORY
n °
[
=l ERL
n
(A)129478

Figure 1-2. Organization of Data Files within a Disc Drive

1.8.2 FILE HANDLING

The operating system provides the user with the following features when
working with files:

° File protection through both creator access and password entry;
for either type of protection the user can specify whether it will be
applicable for reading, writing or deleting, or any combination of
those functions.

° Maintenance of several User Directories, so that files can be
segregated in a multi-user environment.

1-8 Digital Systems Division

o]
@ 943005-9701

° File mapping performed by the system can also be assisted by a
user request for a specific physical location to store a file.

e Specification of exclusive files for use by one job only, or of shared
access files for concurrent use by more than one job.

° Momentary cooperative locking of shared files during update to pre-
vent degradation; this feature prevents one job from destroying a
file update made by another job within an interactive information

management system.

° Blocking of multiple logical records into physical records for data
transfer and storage; these blocked records are built and disas-
sembled in buffer areas within the job extension area of main mem-
ory.

1.8.3 TYPES OF FILES

The operating system supports three types of files as outlined in the follow-
ing statements:

° Linked Sequential File - The records of this file are scattered
throughout the storage medium, but are chained together by pointers
within the file. This arrangement requires that the record be ac-
cessed in sequential order, but also allows the file to grow dynam-
ically like a magnetic tape file.

° Relative Record File - This type of file contains records of a speci-
fied length that can be accessed randomly within the file by their
relative position to the beginning of the file. Records are allocated
in contiguous storage space.

T acr Tead o ad 31~ T3 3 3
Key Indexed File - This type of file assigns a key to each recor

that is to be accessed in a random fashion, and sorts the keys i
tree structure for efficient location of each record. The keyed
records can then be stored in non-contiguous areas, allowing the
file to grow dynamically. A key indexed file may also include non-
keyed records that are accessed sequentially with keyed records.

d
na

1-9/1-10 Digital Systems Division

943005-9701

SECTION II
JOB CONTROL LLANGUAGE

2.1 GENERAL

Job Control Language (JCL) specifies the structure and resource require-
ments of jobs submitted to DX980. Other commands, used to request special
action from DX980, are described in the DX980 General Purpose Operating
System, System Operation Guide under the title of Operator Communications.

2.2 JOB CONTROL LANGUAGE STRUCTURE

Each job submitted to DX980 consists of one or more independent job steps

that are executed in the order in which they appear in the job stream. For

example, if two job steps are submitted, they will be executed in the order

of step one and then step two. If any step aborts because of an error condi-
tion, all subsequent steps will not be executed.

Job steps would normally be combined in such a way that the successful exe-
cution of each step depends on the successful completion of all preceding

steps. A common example is a sequence of four steps to compile (2 phases),
1:0k and execute a FORTRAN nrogram The link step would be started only

1INK ana €éxXecCuie a L uivd [VALN Prlgicaiiie =~ 11T Ll SLop WLl il Ll

if the compilation was successful, and the execution step would be started
only if both the compilation and link were successful.

Within the JCL statements for each step are assignment commands to asso-
ciate Logical Unit Numbers (LUNs) specified in the user program with phy-

sical devices or files. These commands allow the user to specify Input/

Output references logically when a program igs created and defer the actual

device assignments until the program is run (runtime). For most sequential
devices the assignment command merely links a LUN to the device. Fora
disc file, however, the user must specify the type of file to be assigned,
whether the file is new, old or temporary, blocksize of the data records,
and disposition of the file after termination of the job step.

2.3 JCL PROCESSING

There are two forms of Job Control Language (JCL): expanded JCL and
abbreviated JCL.

NOTE

In the following discussion and throughout the man-
ual, the term ''card image'' is equivalent to ''source
line image'' and is applicable to other input devices
as well as a card reader.

2-1 Digital Systems Division

@ 943005-9701

2.3.1 EXPANDED JCL

Expanded JCL can specify the structure of individual job steps, the location
of the object program (load module) for each step, and the resources re-
quired for each step. These specifications would normally be prepared once
for each type of job (e.g., FORTRAN compile, link, and execute) and saved
on a disc file for subsequent retrieval, Saving the JCL in card image form
requires reprocessing each time it is retrieved. To avoid this reprocessing,
DX980 saves the JCL in a binary form by passing the card images through a
program that produces a savable binary image. Thereafter, the binary
images can be processed on subsequent retrievals. The utility program that
translates the card images to binary is called the JCL translator.

Expanded JCL is not recognizable to the DX980 operating system, but only to
the JCL translator program that runs as a job under DX980. Expanded JCL
is the input to the JCL translator.

2.3.2 ABBREVIATED JCL

Abbreviated JCL, the mechanism for job submittal to DX980, is '"cookbook!'
oriented. It allows a user to run a FORTRAN program by directing the op-
erating system to "RUN FORTRAN'". The user does not have to specify the
detailed job step structure and resource assignments required to invoke the
two passes of the compiler, to activate the link editor and finally to execute
the program itself. This form must have a binary image of the expanded
JCL saved on a disc file under the appropriate name, i.e., "FORTRAN",
That is, the expanded JCL must be prepared and processed for the FORTRAN
example. However, this can be done by a systems programmer, leaving the
applications programmer to debug his FORTRAN program without having to
learn all ideosyncrasies of an expanded JCL.

In addition to invoking an existing JCL sequence (a sequence of expanded JCL
statements) by name only, abbreviated JCL allows modification of one or
more JCL specifications at runtime. For example, the original JCL speci-
fications might have assumed that a FORTRAN source program would be sup-
plied on cards when in fact the source for a particular program is stored on
a disc file. To satisfy this requirement, the user can specify at the time the
expanded JCL is prepared that any given JCL parameter is either:

(1) completely specified and cannot be modified at runtime,
(2) completely specified but can be modified at runtime, or
(3) not specified at all and must be supplied at runtime.

With this facility, the user of a JCL sequence can decide that the original
specifications or defaults are acceptable and invoke the sequence by name
only, or he can decide that modifications are required and can specify the
parameters to be modified. Abbreviated JCL is processed by the DX980 sub-
systems or by the DX980 operator communications facility via the system
console.

2-2 Digital Systems Division

943005-9701

2.3.3 JCL TRANSLATOR

The JCL translator is a utility program that runs in user memory (as
opposed to running in memory that is allocated to the operating system).
This program translates expanded JCL statements into an internal binary
representation for later processing. Input to the translator can be supplied
from any of the standard 980 input devices (card reader, cassette, magnetic
tape, disc files, etc.). Output from the translator can be stored on a disc
file for later submission. Since the translator is a utility program, it can
be invoked as any other user program by using abbreviated JCL form. The
saved JCL sequence for the translator is stored on the system disc together
with several other sequences that are supplied with each DX980 installation.

2.3.4 DX980 SUBSYSTEMS

In any particular DX980 installation one or more of the subsystems may be
active for submission of user jobs. For a system with a card reader the
Batch Processing Subsystem is active and user jobs can be submitted from
the card reader. For systems with several terminals attached, the Interac-
tive Terminal Subsystem is normally active to allow jobs to be submitted
from any of the terminals. In any case, jobs can be submitted from the sys-
tem console.

Job submission from each of these sources is consistent with the cookbook

. .
JCL approach. The JCL sequence produced by the translator is retrieved

from a disc file, modified according to the user's specifications, and sub-
mitted to the operating system for execution.

2.4 JOB SUBMITTAL

Job submittal commands in DX980 are separated into two categories: JOB
commands and RUN commands. The JOB command is required for a job sub-
mission and identifies the user and the JCL sequence file to be used for that
particular job. The RUN command represents abbreviated JCL and invokes

a particular JCL sequence from the JCL file specified in the JOB command.
When submitting a job via the system console or the Interactive Terminal
Subsystem, only one JOB command is required. A job submitted for the
Batch Processing Subsystem requires a JOB command for each RUN com-
mand. The identifier, //, must appear as the first two characters of a
source line image for both JOB and RUN commands. The system console
supplies this identifier automatically; however, it must be specifically sup-
plied when submitting jobs under the Batch Processing Subsystem. The Inter-
active Terminal Subsystem does not require the double slash identifier. The
following conventions will be adhered to for all JCL descriptions throughout
this manual:

° Brackets [] enclose optional fields.

. Operands may be separated by either blank(s) or a single comma
with or without intervening blanks. Successive commas may be

2-3 Digital Systems Division

[e]
@ 943005-9701

used to indicate a null operand. Both comma (,) and the symbol,
B, denote specified field separations.

° All numerical value parameters must be either decimal (base ten)
or hexadecimal (base sixteen). A numeric parameter is assumed
to be base ten unless it is immediately preceded by a ''greater than'"
symbol (>) to denote a hexadecimal value.

° The first character of a keyword or operand must be alphabetic and
the remaining characters may be either alphabetic or numeric char-
acters intermixed in any order unless specifically noted otherwise.

) A period terminates a job control command or expanded JCL speci-
fication. Comments may be written after the period. If no com-
ments are written, the period is optional.

° If the number of operands in a command exceeds the limits of a
single record, the command operands can be continued in succeeding
records by terminating each incomplete record with a semi-colon
(;). Continuation records must begin past the first two spaces of
the record, since the first two spaces will be ignored by the com-
puter. If the input is on the system console, the computer auto-
matically fills these two positions with two periods (..) following a
record terminated with a semi-colon. Operands may then be entered
immediately following the two periods. The number of continuation
records is unlimited. This option can be used with both expanded
and abbreviated JCL commands.

™ Items shown enclosed in angle brackets (< >) are variables that must
be supplied by the user when submitting the command to DX980.

2.4.1 JOB CCMMAND (JOB)

All jobs submitted to DX980 must be preceded by a JOB command. JOB iden-
tifies the user submitting a job, the name of the job, and the file where the
JCL sequence to be executed is located. Two acceptable forms of JOB com-
mands are as follows:

//TJOB ¥ < jsname>P<userid>
//JOB B <jsname>bh <userid>p FILE=(<volume>,<fileid>, <filnam>[,< pswd>])

In the first example containing no FILE specification, DX980 defaults to the
System JCS file [FILE=(1, SYSTEM, SJCBFL, AB).].

2.4.1.1 JOB KEYWORD. JOB is the keyword that identifies the remainder
of a record as a JOB command. JOB must appear in positions three through
six of the input record. Following the JOB keyword are the command oper-
ands. These operands are position sensitive and must be separated by one
or more blanks, or by a single comma with or without intervening blanks.

2-4 Digital Systems Division

%@} 943005-9701

2.4.1.2 <jsname> OPERAND. The nomenclature, <jsname> refers to a
name that is from one to six characters long. This name remains with the
job throughout execution and represents the job name.

2.4.1.3 <userid> OPERAND. The nomenclature<userid>refers to a
name that is from one to six characters long and that identifies the user to
the DX980 system. The< userid>operand appears only in the JOB command.
This operand identifies the disc directory that points to the disc files owned
by the user. Each directory is itself a disc file that contains information
about each of the files that belong to it. A utility program, CATLOG, that
is described later in this manual, creates and destroys the directories.
When created, each directory is given a unique name, represented by the
term< fileid>. A file may also be assigned an access restriction at the time
it is first defined. If access to the file is restricted to only the originator
(CREATOR) of the file, then the <userids in the JOB command must match
the < fileid > of the target file before access to the file is granted.

2.4.1.4 TFILE SPECIFICATION. FILE specification identifies the JCL se-
quence (JCS) file for a particular job. Each DX980 installation is supplied
with one file of commonly used JCL sequences referred to as the system

JCS file. In addition, users may create their own JCS files for particular
applications. In either case the FILE specification directs the system to the
appropriate file. If the FILE specification is not explicitly provided, ‘the
FILE specification defaults to the system JCS file [FILE=(1,SYSTEM,
SICBFL, AB)]. The following paragraphs explain the parameters of the FILE
specification.

<volume> Operand. The nomenclature <volume> represents an integer num-
ber that specifies the disc unit containing the JCS file. The DX980 system
disc is always disc number 1, and always contains the system JCS file. Addi-
tional disc units are labeled 2 through n (n < 20), and can be specified at
Initial Program Loading (IP1).

<fileid> Operand. The nomenclature <fileid> refers to a name that is from
one to six characters long, and that specifies the file directory containing
the JCS file. For the system JCS file this operand should be specified as
SYSTEM . For a user JCS file this operand must correspond to the < fileid>
that was specified when the JCS file was created.

<filnam> Operand. The nomenclature <filnam> refers to a name that is from
one to six characters long and that designates the file within <fileid> where
the JCL sequences are stored. The file name for the system JCS file is
SICBFL. For a user JCS file this operand must correspond to the <filnam>
that was specified when the file was created.

2-5 Digital Systems Division

[o]
%@ 943005-9701

<pswd> Operand. The nomenclature <pswd> represents a name that is from
one to four characters long and that is required only if the JCS file was desig-
nated for password protection when it was created. Normally JCS files

would not be protected from reading (the process of acquiring a JCL sequence
from a file is a read operation) and this operand is not required. However,
if the file is password protected from reading, this operand is required and
must match the password that was specified when the file was created. The
file, SJCBFL, is not password protected from reading.

2.4.1.5 JOB EXAMPLES. The following examples illustrate the use of
the JOB command.

(1) //JOB NAMEILl SYSTEM The job with job name "NAMEL"
will be run under the userid ''SYS-
TEM'". Defaults on the three re-
maining JOB parameters are ''1"
for <volume>, "SYSTEM' for
<fileid> and "SJCBFL'" (acronym
for System JCL File) for <filnam>.

(2) //JOB NAME?2 USERO1 The job with job name '"NAME2"
will run under the userid "USEROL"
The three default parameters are
the same as example one.

(3) //JOB NAME3 SYSTEM FILE=(1l, USERO01, JCLFIL)

The job with job name '"NAME3"
will be run under the userid
"SYSTEM'., The JCL sequence
will be retrieved from the file
name "JCLFIL" under< fileid>
"USERO1l" on disc number one.
JCLFIL must have been previously
created or the job will abort with
a JCL error.

2.4.2 RUN COMMAND (RUN)

The RUN command is the control statement interpreted by DX980 subsystems
and operator communications as a request to submit a job. This command
and its operands comprise the abbreviated JCL for DX980 and must be sup-
plied for each job submission. Only one RUN command is permitted within

a JOB command. Thus each job submitted to DX980 requires a single JOB
command followed immediately by a RUN command.

The format of the RUN command is as follows:

/ /RUNY<jcsnam>B[< kl =p1>1z$<ké=p2> RS kﬁ=Pn>]

2-6 Digital Systems Division

(o]
@@ 943005-9701

2.4.2.1 RUN KEYWORD. The RUN keyword, following the command de-
limiter {//), identifies the remainder of the record as a RUN command.
This format is consistent whether the job is submitted via the Batch Pro-
cessing Subsystem (BPS), or the operators console. If submitted under the
Interactive Terminal Subsystem (ITS), the command delimiter does not pre-
cede the RUN keyword.

2.4.2.2 <jcsnam>OPERAND. The nomenclature< jcsnam>refers to a
name that is from one to six characters long and that represents a JCL se-
quence within the JCS file specified in the JOB command. This operand
allows several JCL sequences to be stored in the same file with a unique
name for each sequence. This operand is an extension of the FILE speci-
fication on the JOB command in that the FILE specification directs the sys-
tem to the appropriate JCS file and <jcsnam> specifies the JCL sequence to

be invoked.

2.4.2.3 USER DEFINED KEYWORDS (ky, ky, ..., ky). The user defined
keywords in the RUN command permit modification of JCL parameters at
runtime. Changing parameters is frequently required when the default speci-
fications for one or more resource assignments do not match the require-
ments for a particular job submission. When expanded JCL is prepared for
input to the translator, the individual parameter specifications may include
a user defined keyword which allows those parameters to be overridden.
Selection of the keywords is at the discretion of the programmer preparing
the JCL sequence. For example, a user defined keyword for specifying the
master data file input to a payroll program might be spec1f1ed as "MASTFL"
in one environment and as "PAYFIL'" in another,

All user defined keywords supplied in the RUN command must match the
corresponding keywords in the expanded JCL. Unused keywords in the ex-
panded JCL assume their default values. If no default was specified, a JCL
error results.

2.4.2.4 PARAMETERS FOR USER DEFINED KEYWORDS. The nomen-
clature ''p; p2 ... pn'' represents either numeric or mnemonic values to be
substituted into the JCL sequence <jcsnam >that the system retrieves from
the <filnam> file. The size of the numeric values must fit within the limits
of the parameter being replaced. For example, if priority were the variable

being specified, 'p'' must be between 1 and 31.

2.4.2.5 RUN EXAMPLES. The following examples illustrate the use of the
RUN command to invoke the JCL translator. A list of the expanded JCL for
the translator is included in Appendix B of this manual.

(1) //RUN JCL "JCL'" is the < jcsnam> for the
JCL translator. This sequence is
stored in ""'SJCBF L' under the
fileid "SYSTEM'. This example

2-7 Digital Systems Division

[e]
{@ 943005-9701

invokes the JCL translator with
standard default assignments for
input and output. The standard
defaults are listed in the JCLTRN
JCS in Appendix B of this manual.

(2) //RUN JCL DSRC=CR2, DERR=LP],DLST=LPI1

Run the JCL translator with over-
ride parameters "LP1" (line
printer number 1) for DERR (er-
ror messages) and for DLST
(JCL listing), and with ""CR2"
(card reader number 2) for

DSRC (JCL source device).

(3) //RUN JCL OBJ=(USERO01, JCL, RLK)

Run the JCL translator with de-
fault parameters for DSRC, DERR
DERR and DLST; use override
parameters ""JCL'" for the file
name under fileid "USERO01"

with password "RLK'"'.

2.5 EXPANDED JCL SPECIFICATION

The following sections describe the format of JCL translator input. A de-
scription of the output is not appropriate at this point since it is only acces-
sible to the DX980 subsystems. However, this information is available in
Section V within the description of the Start Job supervisor call.

2.5.1 JCL TRANSLATOR INPUT FORMAT

All input commands to the JCL Translator require a single / (slash) as the
first character of the source line image. This is followed by a legal com-

mand {1 of 6) and any applicable keywords. The six commands are:
CREATE
REPLACE
DELETE
EXEC
ASSIGN

END

2-8 Digital Systems Division

(o)
{@ 943005-9701

These commands are explained later in this section. There are three accept-
able formats for these input commands as follows:

(1) /COMMAND <keyword> ...
(2) /COMMAND <keyword>=<value>...
(3) /COMMAND <keyword>:=<label>...

2.5.1.1 FORM ONE. The nomenclature <keyword> represents a binary
condition that is either 'true'' or "false'’. There is always one <keyword>
for the 'true' condition and another for the 'false'’ condition. If both
<keyword>s are specified for the same operand, the dual assignment will be
detected as a JCL error.

2.5.1.2 FORM TWO. The notation <keyword>=<value> assigns a value or
values to a particular <keyword> or <keyword>s respectively. This form
may be used in either of the two formats as follows:

a) <k1> =<p1>,<k2>=<p2>, cee ,<kg =<p>

b) <k>=(<pl>, <Pp>s -,<pn>)

If the second format is used, all parameters are positional and must be sup-
plied or replaced with successive commas.

2.5.1.3 FORM THREE. The notation <keyword>:=<label>, permits the
user to specify a label which becomes a <keyword> in the RUN command for
operand replacement at job submittal. The translator will accept a combina-
tion of form three and either form one or form two for the same operand.
This combination creates an operand that may be submitted with an appro-
priate default value if not overridden in the RUN command. Form three must
be used if the operand is to be supplied when the job is submitted.

2.5.1.4 DEFAULTS. Each operand in a given command must either be
supplied in one of the three forms or have an acceptable default value of
zero. When operands are required but not supplied, DX980 inserts zero for
the operands. If the default zero is not acceptable, omission of an operand
results in a JCL error. Table 2-1 lists the JCL operand defaults.

2-9 Digital Systems Division

@ 943005-9701

Table 2-1. JCL Operand Defaults

Command Parameter Default Value
EXEC PROT/PRIV PROT
ASSIGN EXCLUSIVE/SHARE EXCLUSIVE

RELEASE/PASS RELEASE
OLD/NEW/REPLACE OLD
SAVE/DELETE SAVE
PASSWORD 0

2.5.2 CONTROL COMMANDS

The first input record to the JCL translator must be a CREATE, REPLACE
or DELETE command. The formats for this command are as follows:

/CREATE <jcsnam>
/REPLACE <jcsnam>
/DELETE <jcsnam >

The CREATE command adds a new JCL sequence, the REPLACE command
replaces an existing sequence, and the DELETE command deletes an existing
sequence in the JCS file. If CREATE or REPLACE is specified, additional
input is expected after the command to define a new sequence. If DELETE
is specified, no additional input is expected other than a /END command to
terminate the operation. The name of the JCL sequence is <jcsnam>. Sub-
sequent RUN commands to invoke the sequence must specify the same
<jcsnam>.

2.5.3 EXECUTE COMMAND

Each job step defined for a sequence must begin with an Execute (EXEC)
command. This command contains information to set up the execution en-
vironment for the program to be run. Input and output information is not in-
cluded. If there are multiple steps in a sequence, each step must begin with
an Execute command. The Execute command supplies the following informa-
tion about a program:

° object program
e memory usage

. priority

2-10 Digital Systems Division

o
@ 943005-9701

. time limit
° execution mode
The format of the execute command is as follows:
/EXEC operands
The Execute operands may appear in any order following the command. The

following paragraphs explain each operand.

2.5.3.1 OBJECT PROGRAM SPECIFICATION. The object program speci-
fication operand supplies the location of the disc file that contains a binary
memory image of the object program. The object file to be used as input
must have been previously created by DXOLE., There are four parameters
required to access a unique object file. The format of these parameters is
as follows:

OBJV=<volume>
OBJN=<userid>

OBJF =<filnam>

OBJP=<pswd>

An optional form can also be used:

OBJ=(<volume>, <userid>, <filnam>, <pswd>)

The OBJ parameters can be interpreted in the same manner as the corres-
ponding parameters in the JOB command. For example, <volume> is an
integer number from 1 to n that indicates a particular disc drive unit where
the object file is located. The other parameters are user assigned. The
<pswd> parameter is required only when the file is password protected for
the execute attribute.

2.5.3.2 MEMORY USAGE SPECIFICATION. The memory usage specifica-
tion refers to the runtime memory allocation for the object program, file/
device buffers, and user control information. All memory specifications are
represented in units of memory words (16 bits per word). Three parameters
are required to completely specify user memory and are input in the follow-
ing format:

MEMT=<stksiz>

MEMU=<jarea>

MEMJ=<jearea>

or in the optional form:

MEM= (<stksiz>, <jarea>, <jearea>)

2-11 Digital Systems Division

[o]
{—@? 943005-9701

The parameter <stksiz> specifies the stack size supplied for the initial user
task created by DX980 when the job is started. This memory area is used
for temporary storage whenever a Supervisor Call (SVC) is executed by the
user program (the DX980 SVCs are discussed in Section V.) Since the
DX980 SVCs are generally reentrant, execution of an SVC requires a work
area for storage of local variables. If several reentrant modules are exe-
cuted to perform the SVC function, the work areas for each module must be
stacked as the SVC is processed. This work area stack must be supplied
within the user program's job extension area,

Although each DX980 SVC requires a different amount of memory for the
work area stack, the I/O SVCs require the largest amount. Thus, a <stksiz>
specification that satisifes I/O SVCs will also satisfy the remaining SVCs.
The two types of I/O SVCs are I/O calls either to peripheral devices or to
disc. I/O to peripheral devices requires approximately 125 words of
<stksiz>, whereas disc file I/O calls can require up to 300 words. There-
fore, specify 125 words if there are no disc files assigned and 300 words
otherwise. Either size will be sufficient to handle all other SVCs. This
<stksiz> specification applies only to the first task. Other tasks within the
job define their own stack allocation.

The parameter <jarea> defines the program job area for storage of the user's
object program plus any work space required by that program. The size of
an object program can be determined from the output of the DX980 Linkage
Editor DXOLE. If the program was subjected to a pre-planned overlay when
input to the Linkage Editor, <jarea> must be large enough to accommodate
the longest or largest overlay segment plus three words per phase (including
the root phase) for overlay directory. This information is also available
from the Linkage Editor. '

If the user requires a program with a dynamic work area that can be speci-
fied at runtime, <jarea> must specify sufficient memory for both the object
program and the work space. The user program can then determine avail-
able memory for the run through Get Memory supervisor calls within the
program logic. This concept is particularly useful to allow the amount of
program workspace to be specified at runtime rather than when the program
is compiled.

The parameter <jearea> defines the user program job extension area and
refers to that portion of the user's memory region used for file or device
buffers and control information. This area, though not directly accessible
from a user program, must be supplied for execution of the program.

The determination of the <jearea> size is much more difficult thah that of
<jarea> because the size of <jearea>is dependent on the logic of the user
program and will vary throughout the course of program executions. The

2-12 Digital Systems Division

[e]
{@ 943005-9701

following algorithm, though not exact, provides a guideline for the specifica-
tion of <jearea>:

NE NB
jearea> = max BS. + 1)+ 17%*NT + 7*NL + SS + 11
<je > ; Jz:; (BS,) 7
where
NF = Number of files assigned to the job step
NB = Number of buffers requested for each file
BS = Block size
NT = Number of co-resident program tasks
NL = Number of logical units (LUNs) assigned concurrently to the job step
SS = Dynamic TCB stack requirements

Since the terms inside the braces vary as a function of the number of files or
devices that are open and of the number of concurrent tasks that exist, the
user must determine the maximum value of the expression to specify <jearea>
size.

The first term, disc file blocksize, is the sum of all blocking buffers that
coexist at any instant in time plus one word of overhead for each block,
Since memory is allocated to blocking buffers only when a file is open, this
term varies according to the disc file activity in the user program. If mul-
tiple buffers are specified for a single disc file, each buffer must be ac-
counted for.

The second term encompasses the memory requirements for task control
blocks. Each task control block requires 17 words. Therefore, this term
can be determined by multiplying the number of tasks that exist at any instant
in time by 17. The operating system creates one task for the user job when
the job is started. Therefore, there is always at least one task control block
in the job extension area. Any additional tasks are directly created by the
program using the Create Task supervisor call (Section V), or indirectly

created by the program using an Initiate I/O supervisor call (Section III).

The third term provides space for Logical Device Tables ({LDT). There is
one LDT for every file or device assigned to the job. Thus, this term can be
determined as the number of logical units assigned multiplied by 7 (the size
of each LDT).

The fourth term, TCB stacksize, is a companion to the <stksiz> parameter.
The memory specified for <stksiz> is allocated from the job extension area
when the initial user task is created. If the user creates additional tasks
within the program, the <stksiz> specification for the additional tasks must
be supplied with the create task SVC. As each task is created, the memory
required by the accompanying <stksiz>is also allocated from the job exten-
sion area. Thus the TCB stacksize term must provide sufficient memory to
accommodate all concurrent tasks.,

2-13 Digital Systems Division

@ 943005-9701

The fifth term, a constant 11, is due to overhead required by the DX980
memory manager for control information, plus one extra LUN assignment
that is made by the operating system for every user program.

Examples:

(1)

(2)

MEM= (125, 2000, 152)

MEM=(300, 4000, 917)

Allocate memory for a program
with a single task and two LUN
assignments to non-disc peri-
pherals. The interpretation of
this specification is:

(1) <stksiz> of 125 words pro-
vides a stack for I/O to non-
disc peripherals

(2) <jarea> of 2000 words for the
object program. This num-
ber is output from DXOLE.

(3) <jearea> of 152 words accounts
for one co-resident program
task (17 words, two LUNs
(14 words), 125 words of TCB
stacksize, and 11 words of
overhead.

Allocate memory for a program
with two tasks, one system cre-
ated task and one user created
task, and two LUN assignments
to disc files, each with a physical
record length of 128 words. The
interpretation of this specification
is:

(1) <«<stksiz> of 300 words for file
I/0

(2) <jarea> of 4000 words a
specified on the DXOLE load
map ‘

(3) <jearea>of 917 words accounts
for two co-resident program
tasks (34 words), two LUNs
(14 words), two physical rec-
ord buffers (258 words), 600
words of TCB stacksize (as-
suming that the user created
task was also created with a
<stksiz> specification of 300
words for disc I/0), and 11

words overhead.

s

Digital Systems Division

943005-9701

2.5.3.3 PRIORITY SPECIFICATION, Priority specifies the priority of the
job step at execution, and the number of unique priority levels needed within
the step. This information is input to the DX980 computations which provide
resources to the resultant program during job submission and program exe-
cution. When the job is submitted, this job step contends for system re-
sources such as memory and peripherals along with all other job steps wait-
ing to be initiated. When the job is executed, scheduling of the CPU is also
determined by priority. The required parameters and appropriate mnemonic

n i o 11
epresentations are as IoLIoOws:

PRT L=<nprty>
PRTS=<jsprty>

or in the optional form:
PRTY=(<nprtys, <jsprty>)

The nomenclature <nprty> represents the number of task priority levels and
is greater than one only if the program uses the multi-tasking feature of
DX980. This number corresponds to the maximum number of separate task
priority levels (not the number of separate tasks) that may be created within
the user program. Several tasks may share a common priority level.

The notation < i sprt\r\ represents th ob step hr1nv1hr which is the prio

1e nota 1 < y> represen he job ste riorit hich is th rity
assigned to the job step for scheduhng purposes and to the initial task cre-
ated by the operating system. The limits on <jsprty> are ! to 31 where 1 is
the highest and 31 the lowest priority permissible to a user program. More
than one job may execute concurrently while sharing a common priority

level.

When a2 iob sten is submitted

LT e U SC = weellil I} > -~ faSp- < LI . 33 bi [=388%

eters as follows:
I <<nprty> < 31
1 <<jsprty> <31

1 <<nprty> + <jsprty>< 32

The limits on each parameter are due to the priority limits in DX980. The
combined limit is due to the method of creating one task from another in
DX980. If the user program creates additional tasks, the priority of each
created task is specified relative to the job step priority (0, 1, 2, etc.),

where the relative numbers are always positive. Thus, a task cannot be
created from a user program with a higher priority than the job step priority.
However, tasks can be created with priority equal to or lower than job priority.

2-15 Digital Systems Division

o]
@ 943005-9701

- If any task is created with a priority lower than 31, the creation will be rec-
ognized as a fatal error and the job will be aborted. This criteria produces
the combined <nprty> and <jsprty> limit.

Examples:

PRTY=(1,15) This job step contains only one
task priority level. Both the job
step and the task(s) created for
program execution are assigned
priority 15.

PRTY=(2,1) There are two task priority levels

-in this job step, levels 1 and 2.
The job step is assigned priority
1.

2.5.3.4 TIME LIMIT SPECIFICATION. Time limit specifies the maximum
amount of time for execution to be allotted to a job step. The time monitored
represents actual time that the program has control of the CPU (rather than
wall-clock time). If the program has not terminated normally when the time
limit passes, the operating system abnormally terminates the program.

Time parameter format is as follows:

TIME= time limit in seconds

To instruct the translator and operating system to run a job with an infinite
time limit, set the time limit to a minus one: TIME=-1, This input is in-
terpreted as a directive to ignore timeout checking completely.

2.5.3.5 EXECUTION MODE SPECIFICATION. Privileged or protected re-
fers to the mode of the program during execution. Normally user programs
run in the protected mode so that they are prevented from damaging the op-
erating system. System programs always run in the privileged mode, allow-
ing them to move freely within available memory. The format of this param-
eter is as follows:

PRIV
PROT

2.5.3.6 EXECUTE COMMAND EXAMPLE. The following input sample
illustrates the use of the EXEC command:

JEXEC OBJ=(1,SYSTEM, ASMBLR), MEM=(300,5000,1000), PRTY=(1,15);
/TIME=-1 MEM:=MEM, PRTY:=PRI, TIME:=TIM

2-16 Digital Systems Division

{'é?) 943005-9701
/

2.5.4 ASSIGNMENT COMMAND

Each job step must define the logical units for I/O operations. I/O assign-
ments are not carried forward from one job step to another. Therefore, an
assignment command must be included for each Logical Unit Number (LUN)
referenced during execution of each job step, except when using the Execution
Time Allocate SVC (see Section V). An assignment command has a slash (/)
in column 1 and the keyword '"TASSIGN" in columns 2-7. Following ASSIGN,
the assignment operands may be specified in the same three forms as on the
execute command. For convenience, however, the logical unit number and
device name operands may be specified positionally, logical unit number first
and device name second, or with the< keyword>=<value> form. As with all
operands, the<keyword>:=<label> form can provide override capability when
the job is submitted.

Each assignment command in each job step must have the following minimal

information:
™ LUN
° device name

. device sharability
° device disposition

If device name specifies a random access device (moving head disc),
then the following information must be supplied also:

° file creation

° file identification

e file disposition

e number of file buffers (key indexed files only)

If file creation is specified as "NEW'', then the following must also be speci-
fied:

file type

° file integrity

) file allocation

e key length (key indexed files only)

. logical record length (relative record files only)

Each operand, together with the operand limits and default value, if any, is
described in the following sections.

2-17 Digital Systems Division

o
{%@ 943005-9701

2,5.4.1 LUN OPERAND. LUNs provide a consistent method of communi-
cation between a user program and the DX980 I/O system. All I/O requests
from a user program must be accompanied by a LUN. Each LUN must be
coupled to a physical device or file through the assignment command. This
feature allows I/O requests in a program to be device independent, and de-
fers the actual device assignments until the program is submitted for execu-
tion., The LUN operand can take either of the following forms:

LUNO= <lun>
or
/ASSIGN <lun>

The notation<lun>is a decimal number in the range of 0 to 250 (LUNs from
251 through 255 are reserved for operating system use), and must be unique
within a job step. Duplicate assignments of the same LUN within a job step
will be recognized as an error. However, the same LUN can be used by
more than one job, since each assignment applies only to a specific job.

2.5.4.2 DEVICE NAME. Device names refer to the mnemonics that rep-
resent the physical devices attached to the computer. The translator accepts
any of the permissible device mnemonics that could exist for a DX980 instal-
lation. If an assigned device does not actually exist, one of the subsystems
detects the error when the job is submitted and the job is aborted. The
DEVICE NAME operand can take the form of either of the following forms:

DEVICE=<devnam>
or
/ASSIGN <lun> <devnam>
The notation <devnam> represents a user supplied mnemonic that must be

selected from the list in table 2-2.

Table 2-2. Suggested Device Names

Device Index

Mnemonic Device Description
Range
DISC1-DISCn 1-20 Disc (Moving head or DS330) 1 through
n <20 n, n <20
KEY1-KEYn (Teleprinter keyboard (ASR/KSR 33, 730,
733, 735) 1 through n
CRT1-CRTn 21 - 30 { Video display 1 through n
SC System console data terminal (Tele-

| printer keyboard or video display)

2-18 Digital Systems Divisjon

[e]
{@ 943005-9701

Table 2-2. Suggested Device Names (Continued)

Device Index

Mnemonic Device Description
Range
MT1-MTn 31 - 40 Magnetic tape 1 through n
LP1-LPn 41 - 50 Line printer 1 through n
CR1-CRn 51 - 60 Card reader 1 through n
PTRI1-PTRn 61 - 70 Paper tape reader 1 through n
PTP1-PTPn 71 - 80 Paper tape punch 1 through n
DMI1-DMn 81 - 90 Data module interface devices 1
through n
ADDA1-ADDAnN 91 - 100 Analog-to-digital/digital-to-analog con-
verter 1 through n
Cs11,Cs12,..., 101 - 110 Cassette 1 on teleprinter 1 through
CSnl, CSn2 cassette 2 on teleprinter n
DUMMY 255 Dummy device - responds with an im-

mediate end-of-file on input and with
no-op on output

SYSIN - System input spooler
SYSOUT - System output spooler
TERMIO - Interactive terminal log on device

2.5.4.3 DEVICE SHARABILITY. A device or file can be designated as
either shared or exclusive. These attributes are specified by the binary rep-
resentation of the keywords "SHARE' or "EXCLUSIVE'. The default value is
exclusive. If a device or file is exclusively assigned to one job, then any
other job that is submitted with an assignment to that device or file, either
shared or exclusive, will not be started until the first job releases it. If a
device or file is selected as shared by all assigning programs, then all pro-
grams may run concurrently.

2.5.4.4 DEVICE DISPOSITION. The device assignment may be kept or re-
leased when the current job step is completed. This choice is specified by
the binary keywords "RELEASE'" or "PASS'". The default value is release.

Assignment passing in DX980 is extremely useful for multi-step jobs that re-
quire the same file or device in more than one step. Further, passing a de-
vice or linked sequential file will cause the physical position to be maintained

2-19 Digital Systems Division

@ 943005-9701

between job steps (key indexed and relative record files do not hold position
between steps). Even though passed, a device must be assigned to a LUN
for the next job step.

The passing of only a portion of the required resources for a job string can
cause a resource deadlock. However, DX980 guards against any deadlock by
cancelling jobs that have passed resources from a previous job step and that
are also requiring unavailable resources. Thus, to preventa job cancella-
tion caused by the running job environment, the user should specify that all
resources are passed from job step to job step.

2.5.4.5 FILE CREATION., A file may be either old, new, or a replace-
ment. These attributes are specified by the binary representation of the key-
words ""OLD', "NEW' and "REPLACE" which are defined as follows:

° OLD: File already exists (default value).
. NEW: Create a file. Error if file already exists.
e REPLACE: Replace file if it is there; create a file if it is not there.

2.5.4.6 TFILE IDENTIFICATION. A file is accessed via a file directory
(or dictionary) and file name, and can be protected by a password. The
directory, name and password can be specified with either of the following
formats:

FILDIR=«fileid>
FILNAME=<filnam>
PASSWORD=<pswd>

or

FILE=(<fileid>, <filnam>, [<pswd>])

The <fileid> and <filnam> parameters are identical to the <fileid> and
<filnam> parameters in the JOB command. A special case of the <fileid >
parameter is provided for temporary files. The user can specify a file for
use only during a job string, by entering a <fileid> of "TEMP'. This file is
never entered into a User File Directory, but is totally unique to the job
string using it. The file creation parameter should be NEW for the first ref-
erence to a temporary file, and OLD for subsequent references. All other
parameters are specified as usual. The file is deleted at the end of the job
string unless deletion is specifically called for at the end of a job step by the
DELETE directive.

The notation <pswd> denotes a user supplied password that is used in con-
junction with file integrity to control file access as described under "File
Integrity' in this section. If this parameter is specified when a file is cre-
ated, it will be required to access the file. Otherwise, <pswd>is ignored.

2-20 Digital Systems Division

o
%@ 943005-9701

2.5.4.7 FILE DISPOSITION, The user can choose to either delete or save
a file after a job step. These two alternatives are specified by the binary
keywords:

SAVE
DELETE

The default value is SAVE, If the device disposition parameter was ""PASS',
specifying "DELETE'" produces an error condition that is detected by the
operating system.

2.5.4.8 FILE BUFFERS. Linked sequential files always require one buf-
fer. Relative record files require no buffers if the logical record length
equals the physical record length (unblocked), and require one buffer if the
logical record length is less than the physical record length (blocked). These
specifications are fixed and are unaffected by user input in JCL. However,
file management supports a variable number of buffers for key indexed files.
For a sequential access of the data records within a key indexed file, only
one buffer is required. For keyed access, a minimum of two buffers is re-
quired: one for key records and one for data records. Using more than two
buffers for these files reduces the amount of disc I/O required and increases
program speed. Therefore, the number of buffers assigned to a key indexed
file is controlled by the user through the Buffers specification. The format

for this specification is:

BUFFERS=<nbufs>

2.5.4.9 FILE TYPES. A file may be either linked sequential, relative
record, or indexed. These attributes are specified by the binary representa-
tion of the keywords "LINKSEQ', "RELREC", and "INDEXED'., There is no
default for file type, so it must always be specified. See Section IV for a de-
scription of the three file types.

2.5.4.10 FILE INTEGRITY. Files can be accessed under DX980 for one
of four functions: read, write, delete, or execute. Data management pur-
poses frequently require unlimited access to a file for one or more of these
function, but only limited access for others. Therefore, DX980 provides an
integrity mechanism for each of these functions. For example, DX980 can
be instructed to allow any user access to a file for reading but require a
password for access during writing or deleting. The format for supplying
integrity codes (only appropriate for newly created files) is either: '

READCODE=<integ>
WRITCODE=<integ>

2-21 Digital Systems Division

le]
@ 943005-9701

DELCODE=<integ>
EXECODE=<integ>

or
ACCESS=(kinteg>,<integ>, <integ>,<integ>)

The notation <integ> represents the integrity code supplied for each function,
Select the code from the list of values in table 2-3.

Table 2-3. File Integrity Codes

Code Access Granted To
ANY All users for the specified function.
PSWD User with password only (those users

that specify a <pswd> parameter cor-
responding to the « pswd> parameter
of the file).

CREAT Creator of the file only (the users that
specify a <pswd> parameter correspon-
ding to the <pswd> parameter of the file
and whose <userid> in the JOB command
matches the <fileid> of the file).

NONE No one (no access allowed for the speci-
fied function).

An "ANY'" code specifies unlimited access, and allows a user to access the
file for any specified function for which he knows the appropriate <fileid>

and <filnam>. In this case the <pswd> parameter is not required for file
specification.

A "PSWD'" code specifies that access for the associated function is possible
only if the proper <pswd> parameter is supplied in file specification. When
a file is created with "PSWD'" specified for a function, a <pswd> parameter
must also be supplied during file specification. Integrity code violations are
detected when the accessing program is running rather than when it is sub-
mitted. For each I/O request DX980 verifies that the I/O opcode is valid for
the integrity code that was established when the file was created.

A "CREAT'" code specifies that the <pswd> parameter must match the <pswd>
parameter of the file and that the <userid> parameter in the JOB command
must match the <fileid> parameter in the file specification operand for a user
to gain access for the associated function.

Change 1 2-22 Digital Systems Division

o
{@ 1 943005-9701

A '"NONE' code specifies that access is prohibited for the associated function.
Normally, the only function that has "NONE'" specified for an integrity code

is "EXECODE"; however, "DELCODE' may also be specified as "NONE"''.
The JCL translator ensures that "NONE' is not specified for READCODE or

WRITCODE, and flags such a specification as a JCL error. A "NONE' code
is automatically specified for EXECODE in the case of linked sequential and
key indexed files since those file types are not compatible with the program
loader in DX980.

2.5.4.11 FILE ALLOCATION. File allocation refers to the allocation of
file space on a disc.” This operand is pertinent only for files being newly
created (NEW or REPLACE). Under DX980 the user must specify the initial
and maximum space allocation, plus the physical record size of the file that
will occupy the space. The user can also indicate to DX980 where the file is
located on the disc. The format for supplying this information is one of the
following:

INITIA L=<itrks>
LOCN=«<trknums
PRECL=<prwrds >

or

ALLOCATE=(Kitrks>,<trknum>,<prwrds>,< mtrks>)

The nomenclature <itrks> represents the initial number of disc tracks that
are allocated to the file when the file is created. If the file type operand is
"RELREC", the initial allocation is forced to match the maximum allocation
because relative record files must be stored contiguously on the disc and
cannot grow. For the other file types, however, the file organizations are
noncontiguous and allow the file to grow beyond its initial allocation. The
default value for <itrks> is 1.

The nomenclature <trknum> represents the disc track where DX980 will start
searching for space to allocate to the file. The track allocation mechanism
in DX980 starts searching for the number of tracks specified in <itrks> at
track number <trknum> and continues the search until it finds sufficient con-
tiguous space to satisfy the request. Normally the search starts at track 0
and continues across the entire disc if necessary. Although disc tracks on a
moving head disc are not physically constructed in ascending order across
the disc, they are considered as such for the specification of <trknum>. In
general, specifying a nonzero <trknum> may be used to position the new file
close to another file.

Change 1 2-23 Digital Systems Division

({@ 943005-9701

This specification is useful only to reduce head movement on a moving head
disc drive when both files are accessed by a single program. This arrange-
ment can result in a significant throughput increase for I/O bound programs
that access more than one disc file.

The notation <prwrds> designates the number of words in each physical rec-
ord. Each physical record stored on the disc is preceded by a record
header. The moving head disc has a header at the beginning of each disc
sector regardless of physical record length and individual track formatting

is unnecessary. The DS330 disc system requires track formatting that in-
volves writing record headers at the beginning of each physical record across
the entire track. Various track formats are shown in table 2-4 for the DS330
disc type. Maximum values for <prwrds> are shown in table 2-5. Formatting
time for DS330 is 80 ms/track and occurs when the tracks are allocated to
the file, either initially or when expanding to another track. Since the disc
systems supported by DX980 store data in blocks of 32 words, it is necessary
to constrain <prwrds> to multiples of 32 words. Furthermore, since physical
record length is analogous to blocking buffer size, memory allocation for the
job extension area (<jearea>in the JOB command) must comprehend the
physical record length of each file assigned to a program.

The parameter <mtrks> defines the maximum number of tracks that are allo-
cated to a file that can grow, and in particular, to linked sequential and key
indexed files. The initial allocation (<itrks>) for these file types is made
when the file is created. When an operation tries to add data after the ini-
tial allocation is used up, the file grows one track at a time until either the
additions are completed or the number of tracks specified by <mtrks>is
reached. In the latter case, the offending program terminates abnormally
after file management allocates one extra track to perform the write opera-
tion in progress.

Examples:

| (1) ALLOCATE=(l,0,32,1) Allocate 1 initial track, starting
the search at track 0. Format
each physical record into 32
words and allocate no more than
1 track regardless of program
activity.

] (2) ALLOCATE=(5,100,512,10) Allocate 5 initial tracks, starting
the search at track 100. Format
each physical record into 512
words and allow the file to grow
to a maximum of 10 tracks.

Change 1 2-24 Digital Systems Division

(o]
<Jiz§} 943005-9701

Table 2-4., DS330 Disc Formatting

Records/Track|Sectors/Record | Words/Record Useful Efficiency
<prwrd> Words/Track
88 1 32 2816 41.90
44 2 96 4224 62. 86
29 3 160 4640 69.05
22 4 224 4928 73.33
17 5 288 4896 72. 86
14 6 384 5376 80. 00
12 7 448 5376 80.00
11 8 512 5632 83. 81
9 9 576 5184 77.14
8 10 672 5376 80,00
8 11 736 5888 87.62
7 12 800 5600 83.33
6 13 864 5184 77.14
6 14 960 5760 85.71
5 15 1024 5120 76.19
5 16 1088 5440 80. 95
5 17 1152 5760 85.71
4 18 1248 4992 74.29
4 19 1312 5248 78.10
4 20 1376 5504 81.90
4 21 1440 5760 85.71
4 22 1536 6144 91.43
3 23 1600 4800 71.43
3 24 1664 4992 74.29
3 25 1728 5184 77.14
3 26 1824 5472 81.43
3 27 1888 5664 84.29
Change 1 2-25 Digital Systems Division

[¢]
@ 943005-9701

Table 2-4. DS330 Disc Formatting (Continued)

Records/Track|Sectors/Record | Words/Record Useful Efficiency
<prwrd> Words/Track
3 28 1952 5856 87.14
3 29 2016 6048 90. 00
2 30 2112 4224 62. 86
2 31 2176 4352 64.76
2 32 2240 4480 66.67
2 33 2304 4608 68.57
2 34 2400 4800 71.43
2 35 2464 4928 73.33
2 36 2528 5056 75.24
2 37 2592 5184 77.14
2 38 2688 5376 80.00
2 39 2752 5504 81.90
2 40 2816 5632 83. 81
2 41 2880 5760 85.71
2 42 2976 5952 88.57
2 43 3040 6080 90. 48
2 44 3104 6208 92.38
1 45 3168 3168 47.14
1 46 3264 3264 48. 57
i 47 3328 3328 49.52
1 48 3392 3392 50. 48
1 49 3456 3456 51.43
1 50 3520 3520 52.38
1 51 3616 3616 53. 81
1 52 3680 3680 54.76
1 53 3744 " 3744 55.71
1 54 3808 3808 56.67

Change 1 2-26 Digital Systems Division

o
q{i@?} 943005-9701

Table 2-4. DS330 Disc Formatting (Continued)

Records/Track|Sectors/Record | Words/Record Useful Efficiency
<prwrd> Words/Track
1 55 3904 3904 58.10
1 56 3968 3968 59.05
1 57 4032 4032 ©0. 00
1 58 4096 4096 60.95
1 59 4192 4192 62.38
1 60 4256 4256 63.33
1 61 4320 4320 64.29
1 62 4384 | 4384 65.24
1 63 4480 4480 66.67
1 64 4544 4544 67.62
1 65 4608 4608 68.57
1 66 4672 4672 69. 52
1 67 4768 4768 70.95
1 68 4832 4832 71.90
1 69 4896 4896 72. 86
1 70 4960 4960 73.81
1 71 5056 5056 75.24
1 72 5120 5120 76.19
1 73 5184 5184 77.14
1 74 5248 5248 78.10
1 75 5344 5344 79.52
1 76 5408 5408 80. 48
1 77 5472 5472 81,43
1 78 5536 5536 82.38
1 79 5632 5632 83. 81
1 80 5696 : 5696 84. 76
1 81 5760 5760 85.71

Change 1 2-27 Digital Systems Division

o)
{@ 0430059701

Table 2-4. DS330 Disc Formatting (Continued)

Records/Track| Sectors/Record | Words/Record Useful Efficiency
<prwrd> Words/Track
1 82 5824 5824 86.67
1 83 5920 5920 88.10
1 84 5984 5984 89.05
1 85 6048 6048 90. 00
1 86 6112 6112 90.95
1 87 6208 6208 92.38
1 88 6272 6272 93.33

Table 2-5. Maximum <prwds> Physical Record Lengths
for Disc Files

File Type DIABLO Type Disc DS330 Type Disc
Relative Record 2816 (full track) 6272 (full track)
Linked Sequential 1408 (half track) 3104 (half track)
Key Indexed 2816 (full track) 6272 (full track)

2.5.4.12 KEY LENGTH. The length of keys for new indexed files can be
specified as in the following format:

KEYLEN=<klchar>

The notation <klchar> represents the number of characters in each key for a
key-indexed file and must be in the range of 1 to 30. The physical record

length must be able to hold at least 2 keys plus 14 words. Providing a phys-
ical record length that can hold 10 or more keys increases search efficiency.
Section IV contains a detailed description of key index file directory formats.

2.5.4.13 LOGICAL RECORD LENGTH. The logical record length for new,
relative record files can be specified in the following format:

LRECL=<lrchar>

The parameter <lrchar> specifies the logical record length in characters.

If the relative record file is blocked, then the logical record length must be
less than or equal to the physical record length. If the file is unblocked, then
the logical record length must be a multiple of 32, and must be equal to the
physical record length. LRECL is not appropriate for linked sequential and
key indexed files since both allow variable length logical records.

Change 1 2-28 Digital Systems Division

[e]
@ 943005-9701

2.5.4.14 ASSIGNMENT EXAMPLES. The following examples illustrate
possible uses of the ASSIGN parameters.

(1)

(2)

(3)

(5)

(6)

/ASSIGN, 5, CR1, EXCLUSIVE, RELEASE. ,

Assign LUN 5 to the card reader (CR). The card reader is not
shared with any other user (EXCLUSIVE), and is released at the
completion of the job step (RELEASE). The period (.) indicates
the end of the assignment and allows addition of user comments.
/ASSIGN 5 CR1 EXCLUSIVE RELEASE

This example is equivalent to example 1. Delimiters between op-
erands can be either blanks or commas. The period at the end of
the statement is optional.

/ASSIGN 13 DISC1 SHARE PASS OLD, FILE=(USRNAM, NAME)
Assign LLUN 13 to disc 1. The disc file is shared (SHARE) and
passed to the next job step (PASS). Since a disc is specified, cer-
tain file information must be given. The file is old (already exists),
and can be referenced by name NAME in directory USRNAM.

/ASSIGN 250 DISC1 SHARE PASS;

/NEW, RELREC, FILE=(USRNAM, NAME), SAVE;

/ACCESS=(ANY, CREAT,CREAT, PSWD);

/ALLOCATE=(1, 38, 64,1), LRECL=40

A new file was specified so that more information is required in
addition to that specified in example 3. The new file can be read by
anyone (ANY), can only be written into or deleted by the creator of
the file (CREAT, CREAT), and requires a password to execute code
from the file (PSWD). The file is to have 1 track allocated and

the search for this track must start at track 38. Each physical
record is 64 words. Finally, the logical record length is 40 char-

acters.

/ASSIGN 6 SYSOUT
SYSIN and SYSOUT are system spooling devices.

/ASSIGN DEVICE=SYSOUT, LUNO=6
An alternative form of example 5.

/ASSIGN 6 SYSOUT LUNO:=NEWLUN

This example has the same effect as examples 5 and 6 except that
the LUN can be changed for this assignment by specifying

//RUN ... NEWLUN=7... when the job is submitted.

Change 1

2-29 Digital Systems Division

(o]
%@ 943005-9701

2.5.5 JOB CONTINUATION/TERMINATION

Either another /EXEC card to specify a new job step, or a /END card to
signify that all job steps for the job have been defined through the JCL Trans-
lation phase must follow the last assignment of a job step. If the system de-
tects no errors in processing the sequence of job steps, it writes the infor-
mation specifying the job in the assigned output file, and locates that file in a
position specified on either the CREATE or REPLACE control card.

2.6 FORMAT SUMMARY

Figure 2-1 summarizes the formatting options and requirements for job sub-
submittal commands and for extended JCL commands. The format for sub-
mittal commands appears at the top of the figure. The JOB command format
is totally generalized; whereas the RUN command is an example that refer-
ences an existing JCL procedure. The JCS for this existing procedure ap-
pears in table 2-6. To clarify this example, table 2-7 lists the keynames

' that appear in table 2-6 that the JCL Translator recognizes, together with the
default parameters and the default override labels for each keyname. If both
a default value and an override label appear for the parameter, then it can be
modified at runtime. If no default value is listed, then the parameter must
be specified at runtime. If no override label is listed, then the parameter
cannot be modified at runtime. Following the submittal commands in the fig=
ure are the extended JCL commands. These commands constitute the input
to the JCL translator.

The figure displays, one above the other, all possible options for supplying
job step information to the JCL translator. Dotted lines illustrate the points
of convergence for the options. For example at the beginning of the line
labeled '"New File Specification', the three possible means for specifying file
types appear as follows:

/INDEXED, KEYLEN=<klchar <30>,
RELREC, LRECL=<lrchar>----- !
LINKSEQ --cmecmcmcamcoaaacs

This notation indicates that immediately following the slash (/) one of the
three forms must be used to designate the file type. The dotted line indicates
that all of the forms must be immediately followed by a comma before enter-
ing the next parameter.

Change 1 | 2-30 Digital Systems Division

[e]
@ 943005-9701

J0B SUBMITTAL COMMANDS

JOB //JOB <jsname> <userid> FILE=(<volume>,<fileid>,<filnam>,<pswd>)
Command FILE=(<volume>,<fileid> <fﬂnam>)
Ib, (>
2
RUN
Command //RUN XJD,DSRC=<devnam>,FSRC=(<f1‘1e1’d>,<f1’1nam>,<pswd>),DERR=<devnar“> LIST-<devnam> DOBJ=DISC<n>,FOBJ=(<volume>,<fileid>,<filnam>), REP ——————— i
/ / S~ /) ““‘"f e
3 / > /]5 3) / B3 NEW;
VA B =N I A B > y ;
EXTENDED JCL COMMANDS (JCL TRANSLATOR INPUT) x-—-PLOBJ=(<1trks>,<trknum>,<prwrds>,<mtrks>),MEM=<stks1‘z><jarea>,<jearea>) |
| |
[} _ , B. (3 I
Control ‘ /DELETE <jcsnam> S _
Commands /REPLACE <jcsnam> ——1 :

/CREATE <jcsnam> —_-'

l——,’EXEC 0BJV=<volume>,0BJIN=<userid>,0BJF=<filnam>, OBJP—<pswd> MEMT=<stksiz>,MEMU=<jarea>,MEMJ= <3earea> PRTL=<nprty>,PRTS=<jsprty>,TIME=<seconds>,PRIV

Execute
Command 0BJ=(<volume>,<userid>,<filnam> <pswd>)——————~- MEM=(<stksiz>,<jarea>,<jearea>) —— — — s’ PRTY=(<nprty>,<jsprty>) -/ <=1> PRE/
> ¥
ASSIGN /ASSIGN LUNO=<lun>,DEVICE=<devnam>,EXCLUSIVE,RELEASE,FILDIR=<fileid>,FILNAME=<f1ilnam>,PASSWORD=<pswd>, BUFFERS=<nbufs>,REPLACE ;-
Command <lun>,<devnam> —— ———— - SHARE—— / PASS——‘(FILDIR =TEMP , - B D & > OLD;
B ¥ FILE=(<fileid>,<filnam> <pswd>)__'—___v6_:::__;/ 8 NEW; ———-’
| l>/ I l) FILE=(<fileid>,<filnam>) -~ — — — ——— —— ~ ¥ E
S—— L/ FILE=(TEMP <fﬂnam>,<pswd>)~————————7 > ,
- ————— FILE=(TEMP <filpam>)———— - ———————~ Y _|
|
|
New File L~/ INDEXED,KEYLEN=<k1char<30>,READCODE=<integ>,WRITCODE=<integ>,DELCODE=<integ>,EXECODE=<integ>,DELETE, INITIAL=<itrks>,LOCN=<trknum> PRECL=<prwrds>,MAXTRACK=<mtrks>
Specification RELREC LRECL-<1r‘char>——~7’ACCESS (<integ>,<integ>,<integ>, <1nteg>) ———————————— »/ SAVE]’ ALLOCATE=(<itrks>,<trknum>,<prwrds>,<mtrks>)
LINKSEQ———————— — P—-
> ')
End of job JEND
Command
NOTES > Refer to section 2.4.1.5 for file default on JOB Command. [> No further input required for non file devices.
> The RUN Command given here is an example. Refer to @ BUFFERS = 1 for RELREQ and LINKSEQ;> 1 for INDEXED
table 2-5 for the referenced JCS
L ’> <integ> must be one of following:
> Refer to table 2-6 for defaults specified in the [ANY ,PSWD ,CREAT ,NONE.
referenced JCS
I~ %9 PASS and DELETE cannot be specified simultaneously.
14/ DELETE does not require further input. '
@ -1 designates infinite run time.
} Refer to table 2-6 for standard defaults.
(8)129979 Figure 2-1. JCL Translator Formatting
Summary

Change 1 2-31/2-32 < Digital Systems Division

[o]
@ 943005-9701

Table 2-6. Job Control Sequence (JCS) for RUN Command Example

+¥ CREATE JCL ,COMMENT,"CREATE JcL PROCEDURE »

/REPLACE JCL | _« CREATE JCL PROQCEDURE , ‘

/EXEC 0BJ=(1,3YSTEM,JCLTRN) MEM=(380,75508,10089) PRTYs¢1,15)}

/ _ TIMEswl MEMisSMEM PRTYs3spRI]

/A8SIGN 1 ScC DEVICE:=DSRC FILEs=FSRC BUFFERS=1 s SOURCE INPUT
/ASSIGN 2 $C DEVICEt=DERR SHARE3:sSERR « ERROR MESSAGE
/ASSIGN 3 SC DEVICE:=DLST FILE:=FLST SHARE:=3L3ST BUFFERS=1,30URCE [.ISTING
/ASSIGN 4 DIScy DEVICE:=DOBJ FILEs(SYSTEM,SJCBFL,AB);

/ FILE:sFOBJ REPLACEssROBY BUFFERSs2 INDEXED:

/ ACCESS® (ANY,ANY,ANY,ANY) ACCESS:sCO0BJ} ,

/ ALLOCATE=(1,0,96,28) ALLOCATEt=L 0BJ KEYLEN=§ . OBJECT OUT FILE
/END

Table 2-7. Parameter Keynames and Defaults for JCS Example

Extended JCL Keyname Default gzt:;‘?;;zte;aigll'

OBJ (1, SYSTEM, JCLTRN) -
MEM (300, 7600, 800) MEM
PRTY (1,15) PRI

| TIME . - R
LUNO 1
DEVICE sc DSRC
FILE - FSRC

| BUFFERS . 2 ...)
LUNO 2

| DEVICE .. SC DERR
LUNO 3

oevies S |...pmsT
LUNO 4
DEVICE DISC1 DOBJ
FILE (SYSTEM, STCBFL, AB) FOBJ
OLD/NEW /REPLACE OLD -/NEW/REP
LINKSEQ/RELREC/INDEXED INDEXED -
ACCESS (ANY, ANY, ANY, ANY) COBJ
ALLOCATE - LOBJ
KEYLEN | 6 -

Change 1 2-33/2-34 Digital Systems Division

o
{—@@ 943005-9701

SECTION III
INPUT/OUTPUT STRUCTURE

3.1 GENERAL

A user program initiates input/output operations with an Input/Output Super-
visor Call (I/O SVC). The SVC is an illegal machine instruction that gener-
ates an internal interrupt. The internal interrupt decoder turns control
over to the SVC processor. After determining that an I/O SVC has been
made, the SVC processor gives control to the I/O Management portion of the
operating system. A set of modules, called Device Service Routines (DSRs),

handles the primary I/O workload.

A Device Service Routine contains several logical paths. When an I/O SVC
is made, the system follows the initial entry path. The initial entry path be-
gins the I/O operation and may or may not complete it. I/O device interrupt
processing follows another path through the DSR. I/O interrupts can occur
from the I/O Bus or the Direct Memory Access Channel (DMAC) of the com-
puter. They occur while an I/O operation is in progress or when it is finish-
ed. Interrupts from the I/O Bus typically occur on a character-by-character
basis. Interrupts from DMAC devices occur only when the operation is com-
plete. The system also has a reset path through the DSR to stop uncompleted
I/O and to initialize the device and DSR. Separate operating system modules,
working with a disc DSR, control file management for the disc. Section IV of
this manual describes DX980 file management.

3.2 I/O SUPERVISOR CALLS

The I/O SVC is made by attempting to execute one of two illegal machine
instructions: > C380 or >F800. The programmer usually defines the I/0O
SVC instruction word with a symbolic name using the OPD (Operation Defini-
tion) assembler directive. To complete the call, the M-register must con-
tain the address of either a Physical Record Block (PRB) for the C380 in-
struction, or an argument list for the F800 instruction. The PRB is a list
of parameters describing the I/O operation that has been requested. For
example, if the programmer defines the I/O SVC as IOC (using OPD), a
typical I/O call using the C380 machine instruction would be coded as

shown on the following page.

3-1 Digital Systems Division

943005-9701

SAP ROLLC
SHEEY aont
At TIDT SAMPLF
232
ey @
2red INC OPN »C3R(,3 NEFINE INC
BrRE w
A0AE @
e {RAR APAY eLNM sPRR PRA ADNAR TO MREG
P oeadyl AN
BAR2 CIABP Q0QR 10 @ SVe INSTRUCTION
Ll Y222 T2 RZAZIARSRZ SRR AR RS AR 2 X2 A2 2 202 22))
ar17 w
amal poan any 1 PRB NATA @ NEFINE PRB
@12 » '
negoe 201y END

The F800 instruction is a special form of the more general F8XX format.
The letters XX indicate the SVC number to be executed (Section V lists addi-
tional SVC numbers). Using this format, the M-register must point to an
argument list with the following arrangement:

° Word 0 - This argument list word specifies the number of argu-
ments in the list. Word 0 of an I/O SVC contains a 1. If the SVC
has no argument, word O contains a 0.

° Word 1 - This argument list word contains a pointer to the first
argument. Word 1 of an I/O SVC points to the PRB.

° Word 2 through word n - These argument list words contain pointers
to arguments 2 through n, respectively. These arguments do not
apply to an I/O SVC since the PRB is the only argument.

SAP R2LC SHEEY 00a1
"LIX1 IDT SAMPLF
4Fgr efs2 18 EQu a
BABL v
sons e
aAan 1820 ANRE #LDM =ARGLST LIST ANDR TO MREG
oral @823
P Onas Fmgn ana7 svx 10 EXFCUTE CALL
aoe8 o
eAGaS o
any e P L LA LA R T T DAL LA L A LA A bl
er11 o«
P33 nARy VP12 ARGLST DATA 1,PRB NUM ARGS,ANDRS
P 0034 ARAS
2n1y :
@na% wepe @n1s PRA DATA @ NEFINE PRB
An1S e
noger VP1E END
3-2

Digital Systems Division

o]
{j@@ 943005-9701

3.3 PHYSICAL RECORD BLOCK

The Physical Record Block (PRB) is the list of parameters necessary for

the supervisor to perform an I/O operation. The PRB is either four or five
words long as shown in figure 3-1. The following paragraphs explain the use
of these parameters. Variations of this PRB structure occur for non-
standard I/O operations. Also, AD/DA and data module devices use a slightly
different PRB format. Refer to the description of these device characteristics
later in this section.

3.3.1 WORDO

PRB Word 0 contains flags that are controlled by the operating system I/0
routines, and a logical unit number specified by the calling program.

3.3.1.1 BIT 0 (BUSY BIT). Bit 0 applies only to Initiate I/O calls. This
bit is set during the I/O operation. When set, this bit indicates that the pro-
gram should not disturb the PRB or referenced data buffer.

3.3.1.2 BIT 1 (ERROR BIT). Bitl sets if an unrecoverable I/O error
or a logical error (see bit 6) was detected in the last operation performed
using this PRB. This bit resets if no error was detected. If Return on I/O
Errors was not requested when the device was opened, the job aborts on an
unrecoverable I/O error. If this bit is set following a Return, then PRB
word 2 contains an error code greater than 200. Appendix A of this manual
defines these error codes.

3.3.1.3 BIT 2 (END OF FILE BIT). Bit 2 sets if the last record read
with this PRB was an end of file. For most media an end of file is a record
whose first two characters are /%, End of File applies only to reading and
spacing opcodes. (Opcodes 00, 01, 05, 06, 14 and 15.)

3.3.1.4 BIT 3 (OPCODE IGNORED BIT). Bit 3 sets if the last I/O opera-
tion was ignored because of the physical limitations of the I/O device. For
example, an attempt to backspace a card reader sets this bit. Opcode Ig-
nored is not necessarily an error condition.

3.3.1.5 BIT 4 (END OF MEDIUM BIT). Bit 4 sets if the physical end of
the storage medium was reached. Magnetic tape, cassette, and disc files
provide end of medium detection.

3.3.1.6 BIT 5 (BEGINNING OF MEDIUM). Bit 5 sets if the physical be-
ginning of the storage medium was reached.

3-3 Digital Systems Division

P-¢e

q swasjsAg 1eubia

UOISIA]

WORD 0

WORD 1 1
o

WORD 2

WORD 3

WORD 4

(B)129983

WHEN SET AT
OPEN TIME

WHEN SET AT
RUNTIME
P CODES 00-29)

WHEN SET AT
RUNTIME

(OP CODES
100-119)

0 1 2 3 4 5 6 7 8 15
s ERROR BN Romen | B[PR NOl SSRSAT [reRtainall
B R
sy FiLE wERluM | mEgim By LOGICAL UNIT NUMBER (LUN)
ES@PE
FLAGS SET BY SYSTEM
INITIATE RETURN RETURN OPEN
170 SEVERE CORRECT- FOR EX—
ERRORS E CLUSIVE '_1
ERRORS ACCESS
8 15
vapgre | oweur | gute, | omuaTsuzoness| ps | BRNES -
o nsmé 1'ERM®NAT" usascu QU VERIFY '@ 1/0 OP CODE
S PRESS
U;ELL -
NOTES:
(1) MAGNETIC TAPE, CASSETTE AND DISC FILE ONLY
WITBTE koo actSeny | RERIRS G | G | Dk @ DaTA TERMINAL ONLY
i > BESIRED R(SJE%_EY veriry | Y @ " @S (3) APPLIES TO PRINTING DEVICES ONLY
@) IF BOTH LOCK AND UNLOCK ARE SPECIFIED, THE

FLAGS SET BY USER

DEVICE/FILE 1S LOCKED FOR THE DURATION OF
THE 1/0 OPERATION

DATA RECORD LENGTH

DATA BUFFER ADDRESS/DEVICE ATTRIBUTES (OPEN CALL)

KEY ADDRESS (CERTAIN DISC FILES ONLY, SEE SECTION IV)

Figure 3-1.

Physical Record Block (PRB) Format

10L6-500€¥6

[e]
@ 943005-9701

3.3.1.7 BIT 6 (LOGICAL ERROR). Bit 6 sets to indicate than an error
occurred that may have been a successful request under other conditions.
A Logical Error applies only to file management. For example, a write
with key to a key indexed file when the specified key already exists. When
bit 6 is set, bit 1 is also set.

3.3 8 BIT 7 (OPERATION TERMINATION). Bit 7 sets when the escape

key (ESC) of any data terminal is pressed, terminating any input or output

record in progress without completion. For read operations on key indexed
e

LY LIV UL LULIIIT LI ULl Y

, this bit indicates the return of a key value.

3.3.1.9 BITS 8 - 15. This field contains the Logical Unit Number (LUN)
for the I/O Operation as specified by the calling program.

3.3.2 WORD

PRB Word 1 contains flags that are set by the user program, plus an opcode
for the I/0O operation as specified by the user program. The opcode appears
in bits 8 through 15 of word 1. The flags appear in bits 0 through 7 ¢f word
1. The function of these flag bits varies with the time that the bit is set and
the operation being executed. The following paragraphs describe the function
of the flags under the three possible circumstances.

3.3.2.1 OPEN TIME FLAGS. If the calling program sets a user flag in
word 1 when opening an I/O device or a file, the operating system assigns
the following definitions to the flags:

) Bit 0 - Initiate I/O: The calling program sets this bit to indicate
that it is making an Initiate I/O call. When clear, this bit indicates

) P P U S, [TS) J R Y ~a
that the program is making an Execute I/O call.

. Bit 1 - Return on Uncorrectable Severe Errors: The calling pro-
gram sets this bit to prevent the system from aborting the program
if an uncorrectable severe error occurs during an I/O operation
with the opened device. Instead, the system returns control to the
calling program to recover from the error.

° Bit 2 - Return on Correctable Error: The calling program sets this
bit to prevent the system from asking for operator assistance if a
correctable severe error occurs during an I/O operation with the
opened device. Instead, the system returns control to the calling
program with bit 1 in word O set to recover from the error.

. Bits 3 through 6 - These flags are unused during an open call.

. Bit 7 - Open for Exclusive Access: The calling program sets this
bit to indicate that the file or device being opened by the call cannot
be shared, but must remain in exclusive control of the calling pro-
gram until released.

3-5 Digital Systems Division

[}
{@; 0430059701

3.3.2.2 RUNTIME I/O FLAGS. If the calling program sets a user flag in
word | at runtime when requesting an I/O operation (Opcodes 00 through 29),
the operating system assigns the following definitions to the flags:

o Bit 0 - Initiate I/O: The calling program sets this bit to indicate
that it is making an Initiate I/O call. When clear, this bit indicates
that the program is making an Execute I/O call.

° Bit 1 - Output with Reply: If the calling program sets bit 1 and the
I/O device is a data terminal, the terminal performs an output,
usually a question, and waits for a reply. If multiple programs
are using a data terminal, the reply is given to the correct pro-
gram. If the I/O is assigned to a device other than a data terminal,
setting bit 1 produces an input operation only.

° Bit 2 - Automatic Record Termination: When bit 2 is set, data ter-
minal input is automatically terminated upon reaching the input
record length. Normal termination occurs when a carriage return
is pressed.

. Bit 3 - Formatted USASCII Output or Suppress Bell on Input: When
set during an output call, this bit instructs printing devices to use
the first word of the output record as form control instead of data.

Table 3-1 lists these form control characters. This function applies
only to a Write USASCII output. When this bit is set during an input
call, it prevents the bell on the input terminal from sounding.

] Bit 4 - Suppress CR/LF Echo on Input: Setting bit 4 prevents the
data terminal from echoing an input of CR/LF.

. Bit 5 - File Write Verify: Setting this bit enables verification of
disc data after writing. Use of this bit is described in the File
Management Documentation in Section IV of this manual.

Table 3-1. USASCII Format Control Word

Bit{s) Definition
0-11 Reserved for future expansion. Should all be 0.
12 0 - Format before record.
1 - Format after record.
13 0 - No carriage-return
1 - Carriage-return
14 0 - No line feed
1 - Line feed
15 0 - No form-feed or second line feed
1 - Form-feed or second line feed
(depending on Bit 14)

3-6 Digital Systems Division

(o]
@ 943005-9701

° Bit 6 - Device Unlock: Setting this bit allows other jobs to use a
shared device that has been previously locked to the calling program.

° Bit 7 - Device Lock: Setting this bit prevents other jobs that may be
sharing the device from using the device until the device is unlocked.
If both bit 6 and bit 7 are set concurrently, the device is locked until
the I/Q operation is complete.

3.3.2.3 RUNTIME FILE FLAGS. If the calling program sets a user flag
in word 1 at runtime when requesting a file operation (opcodes 100 through
119), the operating system assigns the following definitions to the flags:

. Bit 1 - Initiate I/C: The calling program sets this bit to indicate
that it is making an Initiate I/O call. When clear, this bit indicates
that the program is making an Execute I/O call.

o Bit 1 - Key Specified: When set, this bit indicates that the calling
program has specified a key to locate the desired file. The address
of that key is contained in word 4 of the PRB.

® Bit 2 - Key Recovery Desired: Setting this bit instructs the oper-
ating system to recover a key and place it in the location specified
in word 4 of the PRB if the record accessed has a key and bit 1 of
PRB Word ! {Key Specified) is not set.

° Bit 3 - Return Record Size Only: Setting this bit transfers the
length of the accessed record into the Data Record Length field of
the PRB (word 2). No data transfer occurs.

. Bit 4 - Unused for file management.

° Bit 5 - File Write Verify: Setting this bit enables verification of
disc data after writing. Use of this bit is described in the File

Management Documentation.

. Bit 6 - File Unlock: Setting this bit allows other jobs to use a
shared file that has been previously locked to the calling program.

. Bit 7 - File Lock: Setting this bit prevents other jobs that may be
sharing the file from using the file until the file is unlocked. If
both bit 6 and bit 7 are set concurrently, the file is locked until the
I/Q operation is complete.

3.3.3 WORD?2

Word 2 contains the data record length in characters for the I/O operation.
Depending upon the type of I/O call, this field has various interpretations.
For an open or change record length call (opcodes 7 and 12, respectively),
this word sets the input record length for the logical unit. This record length
limits the number of characters stored on subsequent input calls. For an in-
put call, the I/O routines load this word with the number of characters actual-
ly contained in the input record. For an output call, this word contains the

3.7 Digital Systems Division

(o]
%@ 943005-9701

actual output character count. For utility operations such as back space or
forward space, this word indicates the number of operations to perform. At
the termination of these utility operations, the system returns the number of
operations that were not performed (that is, Word 2 contains '"'0'" if the opera-
tion was successfully completed, and a number greater than zero if the sys-
tem encountered an EOF or BOF before reaching the prescribed number of
backspace or forward space operations). For operations on an AD/DA de-
vice, this word is zero.

When a return on error is specified (Bit 1, Word 0 set) and an error does
occur during the specified operation, this word contains an error code great-
er than 200 (Appendix A describes the error codes for the system). When
this occurs, the word must be reset before issuing another I/O request using
this PRB. Table 3-2 summarizes the functions of PRB Word 2.

3.3.4 WORD3

Word 3 contains the data buffer address which is the starting address of the
logical data buffer for input and output operations.

An open call causes the device attributes word to be placed in word 3. There-
fore, the data buffer address must be placed in word 3 following an open call.

Table 3-2. PRB Word 2

Case Word 2 User/System Set
Open Input record length specifica- User
tion (limit of number of char-
Change record acters transferred on subse-
length quent input calls)
Input Input record character count System
Output Output record character count User
Back/forward space Number of operations to per- User
form
Number of operations unper- System
formed
Return with error Unchanged if no error occurred
during operation
Error code >200 if error oc- System
curred during operation
Data Module Output data User
AD/DA Converter Zeros - User

3-8 Digital Systems Division

o]
%:@:2 943005-9701

3.3.5 WORD 4

Word 4 contains a key address that applies only to key indexed or relative
files. Section IV of this manual explains disc files.

3.4 FEFUNCTION OF SPECIFIC OP CODES

Before a program can perform an I/O operation to a device or file, the pro-
gram must open the device or file. An open call prepares the device or file
to do an I/O operation. After the program finishes with the device or file,

it should close the device or file. Closing a device or file does not unassign
it from the job; it can be re-opened later and used again. Closing does ini-
tiate proper end-action for the device to ensure that no data is lost. Devices

are opened and closed using I/O supervisor calls.

When the program makes an open call, the I/O routines place the device
attributes word in PRB Word 3. Table 3-3 summarizes the device attributes
for standard 980 peripherals. Table 3-4 defines the function of I/O operation
codes (op codes).

Table 3-3. Device Attributes Word after Execution of an Open Call

Bits Value Device Attribute
0 1 System console
1 1 Dummy device
2 1 Can be rewound
3 1 Can be forward spaced
4 1 Can be back spaced
5 1 Printing device
6 1 Model 733 ASR cassette
7 1 Data terminal or CRT
8 1 Disc
9 1 Input device
10 1 OQutput device
11 1 USASCII transmission
12 1 Binary transmission
13 1 Reserved
14-15 00 Peripheral device
14-15 01 Linked sequential file
14-15 10 Relative record file
14-15 11 Key indexed file

3.9 Digital Systems Division

(o]
%@ 943005-9701

Table 3-4. Input/Output Opcodes

Decimal PRB

Opcode Words Operation
00 4 Read USASCII
01 4 Read Binary
02 4 Write USASCII

Function

One logical record is read from
the specified LUN and stored in
memory at the specified buffer
address. The characters are
packed two-per-word and the
maximum number stored does
not exceed the data record
length specified in the last open
or change record length call.
The actual number of characters
stored is returned in PRB Word
2, and may be less than or equal
to the requested input data rec-
ord length. Any needed conver-
sion to obtain internal USASCII
representation of the data is
performed. An end of file rec-
ord, when detected, will set the
EOF BIT. The most significant
bit of all USASCII characters is
equal to a 1 in memory.

One logical record is read from
the specified LUN and stored in
memory in a manner similar to
that described for Read USASCII.
A character in this case is an
8-bit byte, and any necessary
data conversion to obtain the

. .
binary format is performed.

End of file records are detected
and cause the EOF BIT to be set.

One logical record is transferred
from the specified buffer address
to the indicated LUN. The num-
ber of characters transferred is
specified in PRB Word 2, and

the data is packed two characters-
per-word. If the formatted
USASCII record bit (PRB Word 1
bit 3) is a 1, the printing DSR's

Digital Systems Division

o]
q@ 943005-9701

Table 3-4. Input/Output Opcodes (Continued)

Decimal PRB |
Opcode Words Operation Function

02 will interpret the first word in
(Cont'd) the buffer as form control. Any
necessary conversion from the
internal USASCII representation
to the medium storage format is
performed.

03 4 Write Binary One binary record is transferred
from the specified buffer address
to the indicated logical unit. The
number of characters transmit-
ted is taken from PRB Word 2.
Any necessary conversion from
binary to the medium storage
format is performed.

04 2 Rewind The physical device or sequential
disc file is positioned at the be-

g‘i‘h‘h‘;ho’ of the medium

........ & Yx viilT LiT i Udile

05 3 Back Space The number of logical records
Record specified in PRB Word 2 are
skipped in the reverse direction.
When an end of file record or be-
ginning of medium status is de-

fnﬁfnﬂ’ the oneration with

vvvvvv the op tion
the appropriate PRB bit set and
the operation count decremented.
If an end of file caused the stop,
the medium is positioned in

front of the end-of-file record.

atana wxri
SLCPS

06 3 Forward Space The number of logical records
Record specified in PRB Word 2 are

skipped in the forward direction.
When an end of file record or end
of medium status is detected, the
operation stops with the appropri-
ate PRB bit set and the operation
count decremented. If an end of
file caused the stop, the medium
is positioned to the beginning of
the record that follows the end of
file record.

3-11 Digital Systems Division

o]
% 943005-9701

Table 3-4,
Decimal PRB
Opcode Words Operation
07 4 Open
08 4 Open Rewind
09 2 Close
10 2 Close, Write
EOF
11 2 Write EOF
12 3 Change Record
Length
13 3 Read Device
Status
14 3 Back Space File

Input/OQutput Opcodes (Continued)

Function

Initialize the logical and physical
devices. PRB Word 2 sets the
maximum input record length.
The device attributes are re-
turned in PRB Word 3.

The I/O device is opened and re-
wound as previously described.

The necessary functions to ter-
minate /O to a device are per-
formed.

An end of file record is written
and the device is closed.

An end of file record is written.

The maximum input record
length is changed as specified in
PRB Word 2.

The Device Status Word is placed
in PRB Word 2. The Device
Status Word is device dependent
and is individually described
with each DSR in this section.

The number of files (as delimited
by end of file records) specified
in PRB Word 2 are skipped in
the reverse direction. If the
start of the medium is encoun-
tered, the operation stops with
the beginning-of-medium flag

set and the operation count decre-
mented. Otherwise, the end of
file bit is set. The medium is
always positioned at the begin-
ning of the first data record in

a file. A backspace of one file
remains within the current file

so that if it is preceded by
another backspace file it does
nothing. A backspace two files

Digital Systems Division

(o]
%‘—@f; 943005-9701

Table 3-4, Input/Output Opcodes (Continued)

Decimal PRB -
Opcode Words Operation Function

14 actually skips one file. A back-
(Cont'd) space record can be used to
cross an end of file record in the

reverse direction.

LLICCLi0

15 3 Forward Space The specified number of end of
File file records are skipped in the

forward direction. If the end of
the medium is encountered, the
operation stops with the end of
medium bit set and the operation
count decremented. Otherwise,
the end of file bit is set.

16 2 Unload Magnetic tape and cassette units
are rewound and unloaded. Mag-
netic tape units are placed off-
line.

17-18 Reserved Ignored by all DSR's.

19/20 Write/Read Device dependent calls supported
Direct by some DSR's for transfer with-
out data conversion. Data formats
are described with individual DSR
description in this section.

3-13 Digital Systems Division

(o]
%_@@ 943005-9701

3.5 INITIATE AND EXECUTE [/O CALLS

The calling program sets bit 0 in PRB Word 1 to signify Initiate I/O call and
clears bit 0 to indicate Execute I/O call. The Execute call suspends the
user program until the entire I/O operation is completed, making the I/O
appear to be a single, instantaneous operation of the calling program. In a
system with many programs executing, the Execute call does not degrade
total system efficiency since other programs are executed during the I/O
call processing time. When one or a small number of programs are running
in the system, the computer is substantially idle during the I/O transfers.

If the Initiate/Execute Bit is a 1, the system returns to the program for fur-
ther execution immediately following an I/O SVC. A program that is fre-
quently used and has high I/O activity can use the Initiate Call to increase
program throughput and attain maximum speed from I/O devices. The PRB
from which an initiate I/O call has been made and its associated data buffer
should not be modified until the I/O operation has been completed. The pro-
gram can monitor the PRB Busy Bit (Word 0, bit 0) to detect completion of
the I/O (if the Busy Bit is a 1, I/O is not complete). Doing an Initiate I/O
call to a device while a previous call to the same device remains incomplete
suspends the job until the first call is complete.

If an Initiate I/O call has been issued and processing is complete to the point
that the I/O operation must be complete in order to continue, use the Wait

for I/O Complete supervisor call to suspend the program. This SVC converts
the Initiate call that shares the same PRB to an Execute call.

3-14 Digital Systems Division

943005-9701

A typical Wait for I/O may look as follows:

SAP R2LC
SHEEY a0y
paent IDY SAMPLF
PR2R PGS WAIT FQl! »2R
arny SvC 0PN >F8MP,R NEFINE Ssve
A0s 9
oA «
aapm 1Rpr QARQEL eLNM =mARGLSY LIST ANDR TN MRER
P 2P0t Qxal
" ¥AA2 FR2R @aony SVve wWAlT FXFCUTE CaALL
ArA8 o
APV »
naqo 12221222 X R R Y Y Y 2 XX 222222222211
ALy
033 prpy 2712 ARGLSY DATA {,PRB NUM ARGS,ANDRS
P 20ra4 0ops
A1
22A8 22 AM14 PRB DATA >PR22 LUND »22
anark Qra2 Qny% DATA »0Qa2 WAS FRMTTYD wRYITE
VRaY 003A QARR DATA {0 R CHR+FPMT CNTYRIL
P P28 @rop8 @pnmy7 PATA BUFFER ADDRR OF DaTa
R ¥ T)
ange
220 pAeA& ar2¢ RUFFER NDATA >pa06,'SAMPIE !
2P@A DXCH
VRaR CDOY
2od8C CCCS
924D AFFF
nr21 w
arar AR22 END

-7 A -~

3.6 STANDARD USASCII RECORDS

DX980 uses two types of USASCII records, formatted and unformatted. An
unformatted record is a versatile record that is used to take advantage of
special characteristics of a device. Therefore, unformatted records are
usually installation and device dependent, whereas formatted records rely
on the DSR to allow for specific device characteristics.

Formatted USASCII records use the first word of the record to control phy-
sical device formatting on printing devices. To output an 80-character rec-
ord in the formatted USASCII mode, the program must make a call for 82-
characters. The extra two characters are the first word that contains format
control. Similarly, when an 80-character formatted record is read, the
program must make an input call for 82-characters to ensure that the entire
record is read. The program can ignore the first word.

To use the formatted USASCII mode, bit 3 of PRB Word 1 should be set to a
1. Bit 3 is meaningful only for a Write USASCII operation (Opcode 02) that
is directed to a printing device. Storage devices write the format control

3-15 Digital Systems Division

[e]
%"@? 943005-9701

character at the beginning of the data without modification. However, al-
ways set bit 3 to ensure device independence if the designated output device

is changed.

The format control is not punched on paper tape, since that medium assumes
a one-record-per-line format regardless of the format specified.

3.7 I/O ERRORS

Three types of errors are possible when executing an I/O operation: logical
errors, severe errors, and fatal errors. Two of these types, logical and
fatal errors, result from an error in the calling program. The other type,
severe, results from a malfunction of the I/O device. When severe and fatal
errors occur, the operating system prints an error message on the system
console. This message contains an error number that identifies the type of
error and the reason for the error. Table 3-5 lists the error numbers for
I1/O errors, their level of severity, and the cause of the error message.

The following paragraphs describe the three types of errors.

Table 3-5. I/O Errors

Error . . .
Number Severity Description

201 Severe Correctable Device Not Ready

202 Severe Uncofrectable Controller Error

203 Severe Correctable Data Error

204 Severe Uncorrectable Controller Busy Error

205 Severe Correctable Write Protect Error

206 Severe Uncorrectable End of Record Sequence
Error

207 Severe Uncorrectable Read-After-Write
Error

208 Severe Correctable Offline

209 Fatal Illegal I/O Opcode

3.7.1 LOGICAL ERRORS

Logical errors occur only during file management operations and are the

result of an error in the user call.
record with key when the key already exists in the file.
is not catastrophic to execution of the program.

For example, a user call to create a

This type of error

Therefore, when a logical

error occurs, the operating system returns control to the calling program
so that it can take an alternate course of action. When the system returns

3-16

Digital Systems Division

943005-9701

control to the program, it also sets the Logical Error and Error flags in the
PRB (word 0, bits 6 and 1), and places the error number of the error in the
Record Length field of the PRB (word 2).

3.7.2 SEVERE ERRORS

Severe errors occur during I/O operations and are the result of a status
condition of the peripheral device that prevents it from performing the re-
quested I/O operation. The error condition may be correctable through
operator intervention, or it may be uncorrectable.

3.7.2.1 CORRECTABLE. A correctable severe error results from a
status condition of the I/O device that the operator can fix. For example, a
printer that is out of paper or a card reader offline causes a correctable
error if the system can detect the required status condition. When such an
error occurs, the system prints a message on the system console asking the
operator to decide if he can correct the malfunction. The operator responds
either by correcting the condition and then entering the respcnse YES, or by
entering the response NO. If the operator enters a NO response, the error
becomes uncorrectable. If the operator enters a YES response, the system
retries the operation.

The user can choose to bypass the operator notification step and return
directly to the calling program when a correctable error occurs. Setting
PRB word 1, bit 2 during the SVC that opens the I/O device selects this
option. If the site does not have a full time operator, this option allows the
user to select an alternate I/O device rather than wait for the operator to

correct the malfunction on the original device.

3.7.2.2 UNCORRECTABLE. A severe error becomes uncorrectable if the
operator enters a NO response to the system's request for a correctable
error, or if the faulty status indication from the device is the result of an
inherently uncorrectable error such as failed components in the peripheral
interface. Uncorrectable severe errors abort the associated program. How-
ever, the user can choose to avoid this outcome by setting PRB word 1, bit

1, during the SVC that opens the I/O device. Setting this bit instructs the
operating system to return control to the user program if an uncorrectable
severe error occurs. When selecting this option, the user program must
allow for alternate devices or remedial routines to cope with severe errors.

3.7.3 FATAL ERRORS

Fatal errors are the result of errors in the user program that cannot be
reconciled by returning control to the program. For example, a call to read
information from a line printer is impossible to execute. Since the error is
part of the program or job control coding, the program is unable to adjust for
the error. Fatal errors abort the associated program. This outcome can-
not be avoided. '

3-17 Digital Systems Division

943005-9701

II Response From Device
. Full Duplex Paper Tape Paper Tape Card Magnetic Line Tape Sequential Relative Key-Index
Opcode Operation Dummy Terminal Reader Punch Reader Tape Printer Cassette File Record File File
00 Read USASCII Returns EOF Responds Responds D, b Error At least 1 Responds (Er- Error {Error if after {End of medium | Responds Responds D
(/* = EOF) (/% = EOF) card read ror if after outputj{/* = if after output)

(/% = EOF) [| output) B> EOF) B>

01 Read Binary Returns EOF Error Responds D Error At least 1 Responds (Er- Error (Error if after (End of me- Responds Responds D

{/* = EOF) card read ror if after output)(/* = dium if after

(/* = EOF) @ output) EOF) @ output)

02 Write USASCII Responds Responds Error Responds Error Responds Responds Responds Responds ﬁ/\

(/* = EOF) (/* = EOF) Acts as a Acts as a
replace/ replace/
add add

03 Write Binary Error 3 Responds Error] Responds Responds ® function function B)
{/* = EOF) (/* = EOF)
04 Rewind Error Generates Responds Responds Responds Responds
form feed
05 Back space record Error Error Responds Error Responds Responds Responds: EOF detection not
possible, since not allowed
06 Forward space Error Responds D Error Responds D Responds (Er- Error Responds [b Responds @ VResponds: EOF detection not
record ror if after possible, since not allowed
% output)
07 Open CR/LF output Responds Responds Responds Responds Responds Responds Responds @ Responds Responds
08 Open-rewind CR/LF output Responds Generates Responds

(Punches form feed

leader)

09 Close Responds Responds Responds Responds Responds Responds Responds
10 Close-write EOF | LF 3 lines Error EOF Fol- Error Generates Close, but does not write
lowed by form feed EOF

trailer

11 Write EOF LF 3 lines Error EQF Foi- Error Generates Error Error
lowed by form feed

trailer

12 fhartxﬁe record Responds Responds Ignores Responds Ignores Responds Responds
eng
13 Read device status Responds Ignores Ignores Responds l Responds Responds Responds
i4 Back space file Error Error Error Error Responds Error Responds Response results in begin or
15 Forward space file Responds Error Responds D Error Responds [> Responds @ Error (Error if Responds end of medium
after output)
16 Unload { Ignores Ignores Ignores Ignores Ignores Responds Ignores Responds Ignores Ignores Ignores
17 Not assigned l I I ' I 1 I Ignores I Ignores I 1
18 Not assigned Ignores Ignores Ignores Ignores Ignores Ignores Ignores Ignores Ignores Ignores Ignores
19 Write direct ; Responds Responds & Error Error " Error Error Error Error Error Error Error
20 Read direct ; Responds Responds b Responds @ Error Responds |> Error Error Error Error Error Error
]

NOTES: 1 Ignores blank frames and delete (rubout) frames. 7 End of medium = current position when op complete; 11 Options allow recovery of both data record and index

2 End of medium not detectable. performance of op 'when not at EOM destroys data key, or functional deletion of both data record and

from current position to EOM. index key from file.
3 Reads specified number of frames and stores them R R
ked ived int buff 8 EOM status possible with decremented record count
packed as received into user buffer. returned 12 All characters are written directly from the buffer;
4 DSR translates invalid columns to valid characters ; . A 3 caution should be vxercised when the device has paper
without error indication. 9 If opened for exclusive access, position is retrieved tape or cassette attached.
from disc when opened and stored on disc when
5 Stores 12-bit card image, right-justified within closed. 13 This operation expands the read ASCII key to include

words of user buffer. Character count = 160 a set of control characters.

for complete card. 10 The new record does not have an index key. A replace
operation occurs if not at end of medium and both the
6 End of medium = physical end; logical end not in- 0ld record and the index key (if any) are deleted.

dicated.

Table 3-6. Device Response to Sequen-

tial I/O Commands

Change 1 3-19/3-20

o]
%@ 943005-9701

3.8 INDIVIDUAL DEVICE CHARACTERISTICS

All sequential I/O devices and sequential disc files restrict the operations
that can successfully be performed with them. For example, devices capable
of both reading and writing cannot arbitrarily switch between Read and:

Write modes. Other restrictions vary from device to device. Do not close
and re-open a device to circumvent these restrictions since the results will
vary for each device. Table 3-6 catalogues responses to I/O commands, in-
cluding read-after-write restrictions. Most devices represent an end of file
with a /* record, but some devices do not. Because of this inconsistency,
always use the end of file command in lieu of a /* data record.

3.8.1 DATA TERMINAL AND CRT DEVICES

The Data Terminal Device Service Routine (DSR) operates with any of several
devices interfaced using the Communications Module (TI Part Number
966637). These devices include Texas Instruments Models 730 and 733 Data
Terminals, Model 912 CRT, teleprinter devices similar to the 33 ASR or 33
KSR, and the Hazeltine 2000 CRT. The DSR operates differently with each of
these devices to compensate for operating variations of the devices. The DSR
allows input to come from the paper tape reader device or the teleprinter type
device. The DSR echoes input characters to the terminal as they are entered.
For this reason the DSR does not use the terminals in true full-duplex mode.
Performing a read direct operation with the full duplex terminal expands the
read USASCII capability to accept the control code defined in table 3-7.

CAUTION

Do not press the keys on the keyboard during a data
transfer using either the tape cassette of an ASR

733 or the paper tape of an ASR 33. The printer
will not respond during the data transfer, and press-
ing the keys may result in loss of data.

3.8.1.1 INPUT/OUTPUT OPERATION. The PRB of the calling program
directs output to the data terminal. If the [ormatted USASCII mode is speci-
fied for output, the DSR adds carriage and form control as directed in the
first word of the record. An input call rings the terminal bell unless PRB
Word 1, bit 3 (Suppress Bell) is set. The DSR accepts input characters from
the keyboard until a carriage return is selected. At that time the DSR echoes
a carriage return - line feed to the printer. Regardless of how many charac-
ters are typed, the number of characters stored is limited by the record
length supplied in the open SVC. Two variations of this input operation are
available with special PRB bits. If the Automatic Terminate Bit is set (PRB
word 1, bit 2), the input terminates on a carriage return or full buffer,
whichever occurs first. The second option suppresses echo of the carriage
return - line feed when the record is terminated. The user selects this op-
tion by setting PRB word 1, bit 4. All input characters are then echoed to

Change 1 | 3-18 Digital Systems Division

o]
{_@; 943005-9701

Table 3-7. USASCII Control Characters

Hexadecimal | Control Control Valid Character Postable System
Code Function| Character on Read Direct _ Special
00 NULL |Shift/CTRL/p X
01 SOH CTRL/a X
02 STX CTRL/b X
03 ETX CTRL/c X
04 EDT CTRL/d X X(on
output)
05 ENQ CTRL/e X
06 ACK CTRL/f X
07 BEL CTRL/g X
08 BS CTRL/h X
09 HT CTRL/i X
0A LF CTRL/j : X
0B vT CTRL/k X
0C FF CTRL/1 X
0D CR CTRL/m X
0E SO CTRL/n X
oF SI CTRL/o X
10 DLE CTRL/p X
11 DC1 CTRL/q X
12 DC2 CTRL/r X
13 DC3 CTRL/s X
14 DC4 CTRL/t X
15 NAK CTRL/u X
16 SYN CTRL/v X
17 ETB CTRL/w X
18 CAN CTRL/x X
19 EM CTRL/y X
1A SUB CTRL/z X

Change 1 3-21 Digital Systems Division

o]
@ 943005-9701

Table 3-7. USASCII Control Characters (Continued)

Hexadecimal| Control Control Valid Character System
Code F .] Postable .
o unction| Character on Read Direct Special
1B ESC Shift/CRTL/k X
1C FS Shift/CTRL/1 X
1D GS Shift/CRTL/m X
1E RS Shift/CTRL/n X
1F Us Shift/CTRL /o X

the printer as they are received from the keyboard until the buffer is filled.
Special characters are not placed in the buffer nor echoed to the printer.
Tab and Escape also terminate an input record as described below.

3.8.1.2 LINE EDITING. The operating system provides several online
editing features as follows:

° Delete Input Characters - Backspace (CTRL/H) and — (left arrow)
deletes one input character. On Silent 700's, the print head back-
spaces and the DSR supplies a line feed when the first valid char-
acter is entered. CRT's perform a left-cursor. Teletype machines

type a backward slash (\).

] Delete Input Record - Rubout deletes an entire input record which
may then be re-entered.

° List Input Record - CTRL/N lists the input record as currently
stored.

o Terminate I/O - The escape key terminates any active I/O opera-
tion. The Terminate-on-Escape Bit in the PRB system flag area
(Word 0, Bit 7) is set.

° Tab - Tab is a special character than can be detected by the user
program during an input call. The input is immediately terminated
and the tab is placed in the data buffer, but the input record length
in the PRB does not reflect its presence.

° System Mode - If the data terminal is the system console, CTRL/O
puts the data terminal in system mode. When in system mode, any
user output assigned to the terminal is held in a queue until the ter-
minal returns to user mode.

° User Mode - If the data terminal is the system console, CTRL/U

puts the data terminal in user mode. When in user mode, any sys-
tem output assigned to the terminal is output without regard to mode.

Change 1 3-22 Digital Systems Division

o]
%@ 943005-9701

The following features insert or delete text within
a record and are convenient for use with a CRT
terminal only.

NOTE

. Increase Character Count - Line Feed or l (down cursor) increases
the input character count by the length of a line if it does not exceed
the record size specified in the open SVC. Line length is specified
in the Physical Device Table {PDT).

° Decrease Character Count - T (up cursor) decreases the input char-

acter count by the length of a line. Line length is specified in the
PDT.

e — (right cursor) increases the input character count by 1 if the
input character size does not exceed the record size specified in
the open SVC.

® Freeze the output - While the terminal is outputting, pressing the
control D key halts the current output. Pressing any other key
while in this mode will reactivate the output.

3.8.1.3 INTERACTIVE EXTENSIONS. Four device-dependeént features
are included in the DSR for data terminal input operations. They are ac-
tivated by four separate flag bits in the PRB and may be used in several
combinations. These flags do not apply to, and are ignored by, other device
service routines. The features are:

° Do not ring bell on input call.

e Do not echo carria
° Output with reply operation.

° Terminate input automatically when the data record length is
reached.

3.8.1.4 OUTPUT WITH REPLY. The Data Terminal DSR provides a spe-
cial output/input function for question and answer operations. Setting word
1, bit 1 (output with reply) in the input PRB directs the system to locate an
output PRB immediately following the input PRB. This bit should not be set
in the output PRB. The output (second) PRB is executed first. The respond-
ing input is executed immediately, even if multiple programs are using the
same data terminal. If the I/O is assigned to a device other than a terminal,
it is considered an input operation only. All other DSR's ignore the output
with reply PRB bit and execute only the first (input) PRB.

Change 1 3-23 Digital Systems Division

(o]
%@ 943005-9701

3.8.1.5 FORM FEED DETECTION. The data terminal DSR detects the
form feed function when it is issued by either a formatted output record or a
Form Feed Character in the output data stream. The terminal outputs six
blank lines when a form feed is detected unless the Home-on-Form-Feed
PDT Bit is set. In that case a home cursor command is issued.

3.8.1.6 OPEN/CLOSE OPERATIONS. An Open or Open-Rewind SVC
causes a CR/LF to be performed. A Close causes no special action, but a
Close-Write EOF writes three blank lines on the terminal. A Write End-of-
File command also results in three blank lines.

3.8.1.7 AUTOMATIC LINE CONTINUATION. The DSR can print data
records up to twice the carriage size on consecutive lines and without data
loss. This feature is subject to two restrictions:

(1) The print head must be at the left margin when the record begins
to print '

(2) Formatted output must be used

3.8.1.8 FORMATTED OUTPUT. This DSR supports formatted USASCII
output. A form feed is defined as six blank lines unless the Home-on-Form-
Feed PDT Bit is set. If that bit is set a form feed is interpreted as a home
cursor operation. Unformatted I/O is device dependent. :

3.8.1.9 CARRIAGE RETURN DELAY. Each different terminal device re-
quires from 1 to 5 null characters following carriage return commands to
allow for print head travel time. The DSR checks the Physical Device Table
(PDT) to determine the type of terminal so that it can generate the proper
number of null characters.

3.8.1.10 LINE FEED DELAY AND LINE CLEARING. A Clear to End-of-
Line code is sent following line feed operations. For a CRT, this clears the
display lines before output is done on a particular line. For other terminals
it provides a one character delay. This delay following line feeds is equiva-
lent to a null character.

3.8.1.11 CHARACTER LOSS. Character loss does not occur if unformat-
ted USASCII output with imbedded CR/LF's is used. For Silent 700's suffi-
cient null characters are sent following a carriage return to avoid character
loss. For other devices a single null character follows each carriage return.
For all devices a clear end-of-line character is sent following a line feed.
Unless the device is a CRT, this character is equivalent to a null character.
Each line of a CRT is cleared before output is done on that line.

Change 1 ‘ 3-24 Digital Systems Division

Q
%@ 943005-9701

3.8.1.12 REPEAT KEY. The repeat key may be used to transfer a charac-
ter repeatedly. The number of characters read will be echoed and printed.

3.8.1.13 CTRL/H ON SILENT 700. The print head back spaces one posi-
tion each time that the back space key is activated until the entire input rec-
ord is deleted. The first new character echo following a sequence of back
spaces is preceded by a line feed.

3.8.1.14 CTRL/H ON CRT. The cursor moves left one position each
time that the back space or left cursor key is activated until the entire input
record is deleted.

3.8.1.15 CTRL/H ON ASR/KSR 33. A backward slash is typed each time
that the back space key is activated until the entire input record is deleted.

3.8.1.16 ERROR CONDITIONS. No task or system errors are generated by
the Device Service routine. Read operations with timeout specified may
cause data error indication in the PRB. (See paragraph 3.8.1.19). For de-
tectable input errors the DSR discards the characters, echoing a Bell to the
terminal. Opcode errors cause an abort condition.

3.8.1.17 DEVICE STATUS WORD. A Read Device Status call reads the
and transfers it to the calling

chabizos meaord T AT 3 3
status register of the Communications Module

program. If bit 0 of the status word is a 1, the status is not valid and must be
requested again. Bit 0 can only be set to a 1 if the Communications Module
receives a character between the time the DSR is entered for the read status
and when the status is actually read. This is an unlikely occurrence, since
the window for this to happen is less than 50 s. Use of the status bits varies
with the type of terminal. Refer to the applicable Terminal User's Guide
listed in the Preface of this manual for the specific use of each status bit.

The status word bits are assigned as follows:

° Bit 0 - Invalid status if set.

° Bits 1 through 10 - Always zero.
. Bit 11 - Ring indicator.

° Bit 12 - Reverse channel receive.
° Bit 13 - Data carrier detect.

° Bit 14 - Clear to send.

° Bit 15 - Data set ready.

Change 1 3-25 Digital Systems Division

(o]
q@ 943005-9701

3.8.1.18 PAPER TAPE INPUT. The paper tape reader on the teletype de-
vices may be used to input data as if the data was being typed from the key-
board. The user must momentarily set the start button for each record. Each
record must be delimited by a carriage return (CR) and at least three ''don't
care' characters. All rubout characters at the beginning of each record will
be ignored.

3.8.1.19 USER SPECIFIED TIMEOUT ON READ OPERATIONS. Read oper-
ations may be timed out by setting bit 5 of the user set flags or the read PRB.
If this bit is set, word 4 of the PRB is a pointer to a one-word field containing
a right justified, non-zero, 8-bit timeout value in seconds. A >FF specifies
no timeout.

The data terminal device must be opened to return on correctable errors.
(See paragraph 3.3.2.1.) A timeout will be indicated if the error bit of the
system set flag is set and the returned error code is a 210.

3.8.2 MODEL 733 ASR CASSETTE

The Device Service Routine for the 733 ASR cassette handles 1200 baud cas-
sette units. Each cassette is treated as a separate physical device. The
DSR is functional only if the 733 ASR is operated in the line mode for USASCII
processing. The device must include 1200 baud and remote device control
options. The 733 ASR must be interfaced to the computer using the Com-
munications Module. The DSR supports reading USASCII records that have
been recorded in the continuous mode.

3.8.2.1 TAPE RECORD FORMATS. Some data conversion is done prior
to the recording on tape. The conversions described in this section apply to
both Binary and USASCII records. These conversions are performed after
initial conversions that vary between Binary and USASCII records.

An USASCII cassette tape record is defined as data followed by a carriage
return character. A record is more than one physical tape block long if it is
greater than 86-characters (including the CR). The record always begins on
a physical block boundry. All USASCII tape records require at least one 86-
character tape block for storage. Since a CR determines the end of a physi-
cal record, physical USASCII records rarely correspond exactly with logical
USASCII records that were output by the DSR. For example, if an USASCII
record ends with a carriage return/line feed, the LF becomes the first char-
acter of the next tape block following the rest of the record. Since the DSR
does not pass the CR or the LF to the user when reading USASCII, this
arrangement causes no problems.

All USASCII records require at least one tape block for storage. Short out-
put logical records may tend to overrun the capacity or the 733 ASR recording
buffer in the device. For this reason the DSR adds delete characters to all
records as necessary so that any two consecutive tape blocks contain at least
60 characters.

Change 1 3-26 Digital Systems Division

[}
{@ 943005-9701

3.8.2.2 USASCII RECORDS. To allow offline cassette preparation and
playback, cassettes are treated as printing devices instead of storage de-
vices. Therefore, all formatted write USASCII operations expand the for-
mat specification into form control characters before writing on tape. For-
matted expansion is identical to the data terminal DSR expansion.

Since a carriage return separates records on tape, the DSR appends a CR to
the end of any USASCII write operation that does not have at least one CR in
the data to be written. The hexadecimal characters 10 through 14 are re-
served control characters and are not allowed in USASCII records. If ocne

of these characters is encountered, the DSR converts it to a delete charac-
ter before transmission to the 733 ASR. A write direct operation is equiva-
lent to a USASCII write operation and is, therefore, not supported. The most
significant bit of an USASCII character is not written on the tape. To trans-

fer memory image data to cassette a write binarv must be used.

The USASCII read operation passes all recorded characters from hexadeci-
mal 20 to 5F to the caller. WSASCII records are terminated by a carriage
return on the tape, but the CR is not placed in the caller's buffer. Read di-
rect passes all recorded data, including delete and null characters. It is
also terminated by a carriage return and the CR is passed to the caller.

3.8.2.3 BINARY RECORDS. Each word in memory for a binary record
is written on the tape as three 7-bit characters. For example, the 16-bit
word:

ABCDEFGHIJKLMNOP
It is written on tape in three 7-bit characters as follows:
110ABCD
1EFGHIT
1KLMNOP

3.8.2.4 END-OF-FILE RECORDS. An end-of-file in both binary and
USASCII modes is a record with the first two characters being a (/*) combina-
tion, followed by a carriage return, line feed, X-off, and more than one delete
(rub-out) character. A write end of file command writes a /,*, carriage re-
turn, line feed, X-off, and 256 delete characters.

3.8.2.5 OFFLINE PREPARATION AND PLAYBACK. USASCII records
can be prepared offline by typing with the recording cassette in the Line
mode (RECORD switchiin the LINE position). Any cassette tape recorded
using the USASCII write operation can be listed offline. An offline end of
file is a '"/*' followed by a carriage return. Binary records cannot be pre-
pared or listed offline.

Change 1 3-27 Digital Systems Division

{1@? 943005-9701

3.8.2.6 TAPE POSITIONING FUNCTIONS. Forward Space Record and
Forward Space File commands operate with the DSR reading the cassette at
its normal read rate. The Back Space Record command is not implemented.
For USASCII records less than 86 characters each, a Block Reverse (DLE,
8) operation is equivalent to a Back Space Record command. A Back Space
File command assumes that the cassette was positioned at the beginning of

a file when it was opened. The tape then block-reverses to the open point
or to the last end of file read in the forward direction from the open point.
The Backspace File opcode backspaces only one file. Unload rewinds the
tape and leaves the cassette positioned on the clear leader of the tape.

3.8.3 PAPER TAPE READERS

The paper tape readers read 8-level paper tape in either an USASCII, Binary
or Direct mode. Support is provided for ASR33 type devices and high speed
paper tape readers.

3.8.3.1 RECORD FORMATS. USASCII records are read as one tape frame
per character. The most significant bit of each character is set to a binary
one regardless of its state on the paper tape. USASCII records may be delim-
ited by either of the following sets of characters:

Reader Off (XOFF), delete, delete
Carriage Return (CR), Line Feed (LF), delete, delete

Records delimited by the second set of characters may have any set of char-
acters between the CR and the LF, and any one character between the LF and
the delete, as follows:

CR, Xy, LF, X,, delete, delete
where,
X, is any set of characters not containing an LF
X3 is any character
Blank, punch on, punch off, and delete (rubout) frames are ignored.

Binary records are read as four frames per word using the conversions
shown in table 3-8, Records are terminated by an X-off character.

Read direct (opcode 20) is implemented for the paper tape reader. It operates
the same as read USASCII except for the following characteristics:

° The entire 8-bit character is stored unmodified.

° No characters are ignored; deletes and null frames are stored.
° There is no end of record character,

° No end of file record is recognized.

° Read direct paper tape on an ASR33 type device does not always read
the number of characters for which the device was opened. The user
should depend on the returned (PRB word) character count.

Change 1 | 3-28 Digital Systems Division

(o}
e@ 943005-9701

3.8.3.2 ERROR DETECTION. The DSR detects invalid punches during a
read binary operation only. An illegal operation aborts the job.

3.8.3.3 END OF FILE RECORDS. In USASCII and Binary modes any rec-

ord beginning with a slash-asterisk (/*) is detected as an end of file record.
For Binary mode thé '"'/*" record is not stored in memory.

.8.4 PAPER TAPE PUNCH DEVICES

3
Tlﬁ s b nitneoh A P Aal- AN 8=le el nape

e paper tape punch devices punch on I r tapes in an
USASCII, Binary, or Direct format. Support is provided for ASR33 type de-

vices and high speed paper tape punches.

Table 3-8. Binary Internal Code to Paper Tape Binary Code

Internal Tape Code
Code Frames

0 00010 000
00000 001
00000 010
10000 011
00000 100
00010 101
00010 110
10010 111
10011 000
00011 001
00011 010

ot

10011 011
00011 100
10011 101
10011 110
00011 111

H H O O W p» 0 0 ~ o U h w N

Change 1 3-29 Digital Systems Division

o}
{_@? 943005-9701

3.8.4.1 RECORD FORMATS. USASCII records are written as one frame
per character. Data is punched directly from the data buffer with no conver-
sions. Each record is terminated with a Carriage Return (CR), Line Feed
(LF), reader-off character (X-off), and two delete (rubout) characters, and
a punch-off character if the device is a Model 33 ASR. Binary records are
punched as four frames per word. The end-of-record indicator is the same
as for the USASCII write operation, without the carriage return and line feed.
Write Direct punches data directly from memory as in a USASCII write oper-
ation, but no end-of-record indicator is added to the punched data. Write
Direct is not supported on Model 33 ASR paper tape punches.

3.8.4.2 ERROR DETECTION. The punch does not detect punch errors.

3.8.4.3 END OF FILE RECORDS. An end of file record is defined for
both Binary and USASCII modes as a record beginning with "/*'". A write end
of file punches a ''/*' followed by CR, LF, X-off and two delete characters,

then a 10 inch blank tape trailer.

3.8.4.4 OTHER OPERATIONS. Open-rewind punches 10 inches of leader
on the paper tape punch.

3.8.5 DMAC AND I/O BUS LINE PRINTERS

Characters are printed directly from the user's data buffer. If the formatted
USASCII bit in the PRB is set, the first word of the data buffer is used for

format control.

3.8.5.1 STATUS. If the printer is in a Not Ready condition (as opposed
to offline), the DSR prints a Printer Not Ready message on the system con-
sole terminal. Offline status is not detectable.

3.8.5.2 ERRORS. The calling program aborts on illegal operations. If
the device is not ready, the DSR generates retry errors.

3.8.5.3 1I/O BUS PRINTER. A carriage return precedes any form feed
operation. Bold letter records may be output by setting bit 1 in the user set
flags of the PRB. Bit 1 instructs the line printer to overprint the line with

redundant text.
3.8.5.4 OTHER FUNCTIONS. The page moves to top of form when the
following operations are done:

° Rewind

° Open Rewind

° Close and Write EOF

. Write EOF

Change 1 3-30 Digital Systems Division

o]
%@ 943005-9701

The printer performs a carriage return and a line feed when it receives an
Open command.

3.8.6 CARD READER

For handling formatted I/O records, cards are considered as a hard-copy
medium rather than a storage medium. Therefore, do not punch the format
control characters when preparing the input deck. In addition the deck must
follow an implied one-record-per-card structure. The following restric-

tions are imposed upon cards as a storage medium:
° An implied CR/LF on every record

° Each blank line is indicated by a blank card
® A form-feed cannot be stored

° A maximum limit of 80-characters per record.

3.8.6.1 RECORD FORMATS. USASCII records actually appear as Holler-
ith punches on the cards. An USASCII read operation causes the DSR to con-
vert the Hollerith characters to USASCII characters. Table 3-9 lists the
characters and their Hollerith and USASCII codes. Binary records are
punched two characters per card column as shown in Table 3-10.

Read Direct (opcode 20) reads a card without any data conversion. The data
is stored in memory as one card column per word. The word is right-
justified with bits 0 through 3 equal to 0. The least significant bit in memory
represents card row 12 (top of card). The input record length must be given
in characters, or 8-bit bytes, and requires a character count of twice the
number of columns to be stored. If the character count is odd, only one byte
of the last column is stored. That byte is stored in the most significant half

of the buffer word.

vil

3.8.6.2 ERROR DETECTION. The DSR detects errors for timing and in-
valid punches. A timing error occurs when either an interrupt for one card
column is not serviced before the next is read, or when the punches in the
card are out of alignment. Not all mispunched card columns are detectable.
The DSR detects all invalid binary punches. Mispunched USASCII characters
that are not detected as errors are converted to valid USASCII characters.

3.8.6.3 END OF FILE RECORDS. A card with a slash-asterisk (/*) in
the first two columns represents an end of file record in both Binary and

USASCII modes.

3.8.7 DUMMY DEVICE

The dummy device handles all possible operations. All necessary system
set flags are returned. For example, read operations set the end of file bit.

Change 1 3-31 Digital Systems Division

%_\tz?; 943005-9701

] Table 3-9. USASCII Character Internal Code
to Hollerith Code Conversion
v S(Zisdi 1 Ho éI:;:th Character Uscisdz I Ho(ljl:;;th Character
20 "No Punches SP 40 8:4 @
21 12.8.7 ! 41 12-1 A
22 87 " 42 12.2 B
23 8.3 # 43 12.3 C
24 11-8-3 $ 44 12.4 D
25 0-8-4 % 45 12.5 E
26 12 & 46 12.6 F
27 845 ! 47 12.7 G
28 12-8-5 (48 12.8 H
29 11.8-5) 49 12.9 I
2A 11-8-4 * 4A 11.1 J
2B 12-8-6 + 4B 11.2 K
2C 0.8-3) 4C 11.3 L
2D 11 _ 4D 11 .4 M
2E 12-8-3 . 4E 11.5 N
2F 0-1 / 4F 11.6 9]
30 0 0 50 11.7 P
31 1 1 51 11.8 Q
32 2 2 52 11.9 R
33 3 3 53 0.2 S
34 4 4 54 0.3 T
35 5 5 55 0.4 U
36 6 6 56 0.5 v
37 7 7 57 0.6 4
38 8 8 58 0.7 X
39 9 9 59 0.8 Y
3A 8.2 : 5A 0.9 Z
3B 11-8:6 ; 5B 12 .8.2 [
3C 12.8-4 < 5C 0.8.2 \
3D 8-6 = 5D 11.8.2]
3E 0-8:6 > 5E 11.8.7 !
3F 0-8-7 ? 5F 0.8.5 —
3.8.8 16 INPUT/16 OUTPUT DATA MODULE
This DSR does not support interrupt processing. The 16 I/O Data Module is
not compatible with any other I/O device, and has its own functions and op-
| codes. They are listed in table 3-11." Figure 3-2 illustrates the Data Module

PRB.

Change 1 Digital Systems Division

o]
@ 943005-9701

Table 3-10. Binary Character Internal Code
to Binary Card Code Conversion

Internal Code Card Code Internal Code Card Code

Most Least
Significant Rows Significant Rows
Digit 12-11-0-9 Digit 8-1-2-3-4-5-6-7

Blank

9

0

0-9

11

11-9
11-0
11-0-9
12

12-9
12-0
12-0-9
12-11
12-11-9
12-11-0
12-11-0-9

o
—
o
o]
=

CO 00 00 00 00 CO ~1 O U1 i W IV =
- U |

HEDQW» 0000 hAWN—O
1
N OO W N

HEOOQWE > ©0®NA00hWN+—O

o @
|

Example: The binary card character for hexadecimal CA is
12-11-8-2.

3.8.9 AD/DA DEVICES
Figures 3-3 and 3-4 illustrate the PRB for Analog-to-Digital converters and
Digital-to-Analog converters, respectively.

3.8.10 MAGNETIC TAPE

The TI Model 979 Magnetic Tape Unit is a standard peripheral of the mini-
mum DX980 hardware configuration.

This unit is a 1/2 inch, 9 track, IBM compatible format, 800 bits per inch
tape drive. It uses an NRZI recording format with a standard fixed speed of
37 1/2 inches per second.

A detailed description of the unit is contained in the Model 979 Tape Trans-
port Operators Manual, part number 216316-9701.

Change 1 3-33 Digital Systems Division

o]
(I‘—@; 943005-9701

| Table 3-11. 16 I/O Data Module Instructions
Op Code Function
30 Reset - Initialize Data Module logic.
31 Output Word - Transfers a word from computer to Data
Module. '
32 Output Bit - Transfers a single bit from computer to a

specified bit of the Data Module.

33 Read Status - Transfers current Data Module status to
computer.
34 Read Data - Transfers a word from Data Module input

lines to computer.

35 Read Output Register - Transfers the contents of the
Data Module Output lines to the computer.

7 Open - Initialize the Data Module and set-up PRB.

9 Close - Terminate I/O operations.

0 7 8 15

WORD 0 SYSTEM SET FLAGS LUN

WORD 1 USER SET FLAGS OP CODE

WORD 2 OUTPUT DATA

(A)129984

Figure 3-2. Data Module PRB

Change 1 3-34 Digital Systems Division

943005-9701

0 7 8 15
WORD 0 | SYSTEM SET FLAGS LUN
WORD 1 USER SET FLAGS oP cope ()
WORD 2 ZEROS NOTES:
(D) OPERATION CODES.
OPERATION DEFINITION 1416= A/D CONVERSION
WORD 3 TABLE (ODT) ADDRESS 14 REQUESTED
07,¢g=OPEN
09, g=CLOSE
(® THE DEVICE ADDRESS RANGE
IS 0—63 AND IS SELECTED BY
SWITCHES INSIDE THE A/D
ODT FOR A/D s CONVERTER ASSEMBLY .,
(® GAIN ONLY APPLIES TO 7480/20
OR 7480/22
WORD 0 DEVICE ADDRESS (2)
WORD 1 CHANNEL GAIN(D)
WORD 2 RETURNED CONVERTER INPUT
(A)129985
Figure 3-3. Analog-to-Digital Converter PRB
0 7 8 15
WORD 0 | SYSTEM SET FLAGS LUN
WORD 1 USER SET FLAGS oP cobe (D
WORD 2 ZEROS
OPERATION DEFINITION
WORD 3 TABLE (ODT) ADDRESS
NOTES,
(D). OPERATION CODES'
13, ,=D/A OPERATION
16713 REQUESTED
0 ODT FOR D/A 15
07 &= OPEN
WORD 0 DEVICE ADDRESS 09, g=CLOSE
WORD 1 DATA OUTPUT WORD
7]e
WORD 2 CHANNEL
(A)129986

Figure 3-4. Digital-to-Analog Converter PRB

Change 1 3-35/3-36 Digital Systems Division

[e]
%;{\[Z@ 943005-9701

SECTION 1V
DISC FILE MANAGEMENT

4.1 FILE STRUCTURES

A DX980 file is a logical collection of related data stored on a random access
device. A file consists of a number of logical records each containing a col-
lection of related data items that the program treats as a unit. Logical rec-
ords may also combine to form a physical record. A physical record is a
collection of data items that the operating system treats as a unit when trans-
ferring data between main memory and the random access device. DX980
supports two types of record transfers: blocked and unblocked. An unblocked
file exists if each physical record in the file consists of a single logical rec-
ord. If the physical records contain more than one logical record, the file

is described as blocked.

4,2 FILE HANDLING

When the program issues an I/O call for a file transfer, the file management
system intercepts the call. For output operations, the logical record indi-
cated by the Physical Record Block (PRB) is transferred to a physical rec-
ord buffer. If the logical record transfer completes the physical record, the
physical record is transferred to the random access device. Similarly for
input operations, a physical record may be transferred from the device to
the buffer. The buffer then supplies logical records to the program until all
logical records are used. At that time a new physical record is retrieved
from the device. Thus, several logical record transfers can be made at
memory speed before a single transfer at peripheral speed. This arrange-
ment can minimize transfer time in programs with a high degree of I/O ac-
tivity.

4,2.1 MEMORY ALLOCATION

The operating system allocates memory space for physical record buffers
from the user program's job extension area (<jearea>) when the user opens
a file. The memory space is released when the user closes the file. The
Job Control Language (JCL) tells the system that a file is blocked and the
number of physical record buffers to be allocated. The job area (<jarea>)
for the user program provides memory space for logical record buffers.
The user can provide this space explicitly by using a Block Starting with
Symbol (BSS) directive in an assembly language program or implicitly with-
in the Fortran Input/Output package when the program is run.

4.1 Digital Systems Division

o
%:\@? 943005-9701

4,2.2 FILE INTEGRITY

DX980 maintains file integrity through access restriction and through file
locking. When the file is defined or assigned, the user specifies access re-
strictions for operations on the file of reading, writing, executing and de-
leting the file. He can restrict access completely for any of the operations
(NONE), he can allow access to anyone (ANY), or he can selectively restrict
access to either the creator of the file (CREAT) or to those having the proper
password (PSWD). Following this initial definition of access restrictions,
DX980 enforces them for each type of file operation.

In addition, DX980 provides three levels of file locking:
1. Assigned exclusive
2. Assigned shared - open exclusive
3. Assigned shared - open shared, then lock

The first type provides an exclusive access to the file until the file is deas-
signed through job step termination if the file is not being passed, or through
job string termination if the file is passed from one step to another. Ex-
clusive access can also be removed through runtime resource deallocation.
The second type of file locking provides exclusive access to the file until the
file is closed. The third type of file lock secures the file on an operation by
operation basis. The file is locked by setting a bit in the User Set Flag area
of the PRB for that operation. This type of lock secures the entire file
rather than a single record. Also, the user is not locked out unless he spe-
cifies the lock by setting the bit in the PRB.

4.3 DISC ORGANIZATION

The operating system allocates file space and maintains disc directories to
support both DS330 and moving head discs. DX980 uses two levels of direc-
tories:

® one master file directory for each disc pack (<volume>)
° a user file directory for each user Kfileid>) on each disc

These directories are standard indexed files with a physical record size of
96 words. For a single master file directory, this indexed file contains
keyed entries consisting of file control blocks for each user file directory.
The file control blocks are keyed on each valid user <fileid> in the system.
A particular user file directory contains keyed entries consisting of file con-
trol blocks for each file defined under the user. The file control blocks are
keyed on the file name <filenam>.

Each user file directory identifies files by file name (<filnam>). Thus, a
user can have several files under a particular user file directory on each
disc volume. If an installation has a single disc drive, all packs to be
mounted on that drive must also contain the operating system. For multiple

4.2 Digital Systems Division

[}
q@ 943005-9701

drive installations one drive, designated as the system disc, supplies the op-
erating system plus user files. The remaining drives are dedicated complete-
ly to user files. The selection of the drive or volume for file storage is a
JCL assignment parameter.

The operating system employs two techniques for file allocation: contiguous
allocation and noncontiguous allocation. Contiguous allocation places the en-
tire file on consecutive disc tracks (disc tracks are numbered consecutively
from O through the total number of tracks on the disc; the last track on one
disc cylinder and the first track on the next cylinder are numbered consecu-
tively on a moving head disc). Noncontiguous allocation is accomplished
dynamically as the file grows on a track-by-track basis. The initial alloca-
tion for noncontiguous files is specified as a JCL parameter and may be any
number of tracks. The entire initial allocation is assigned to consecutive
tracks. As I/O operations add records to the file and the initial allocation
is used up, additional tracks are allocated one at a time from any available
disc space. As each additional track is used up, another is added until the
final allocation limit, specified in JCL as <mtrks>, is reached. The file
management system can also start searching for the initial allocation quan-
tity (or total quantity for contiguous allocation) at a particular track
<trknum>. This user option minimizes head movement by grouping together
files to be processed by a program.

4,4 FILE TYPES

DX980 supports three types of files: linked sequential, relative record and
key indexed files. The following paragraphs explain each of these file types.

Table 4.1 summarizes the features of each file type.

Linked sequential files are files whose records can only be reached through
sequential access. File allocation is noncontiguous. The operations sup-
ported on a Linked Sequential File are identical to those outlined in Section
III for I/O to sequential devices. A linked sequential file supports an im-
bedded end of file so that a single linked sequential file can replace a multiple
file stack on a sequential access device (for example an entire reel of mag-
netic tape). The random access capabilities of the disc facilitate the search
file operations. A record cannot be inserted between two existing records.
Individual records cannot be deleted. An end of medium pointer always fol-
lows the last write performed. This end of medium is equivalent to an end
of volume on a tape reel.

4.3 Digital Systems Division

o
q@ 343005-9701

Table 4-1. Summary of DX980 File Features

File Type
Parameter Linked Relative Kev Indexed
Sequential Record Y
Access Sequential Sequential; Sequential;
Random Random
Allocation Noncontiguous Contiguous Noncontiguous
Logical Order Chronological Disc Address Keyed; alphabetic
Nonkeyed; Chron-
ological after key
l Key None 15-bit Binary 1-.30 byte
record number
Transfer Blocked Direct (LR = PR) | Blocked
Blocked (LR<PR)
Physical Record | Multiple of 32 Multiple of 32 Multiple of 32
Length
Logical Record Variable Fixed Variable
Length
Logical/Physi- | LRS PR LR < PR LR < PR-8 unkey-
cal Record Re- ed; LR < PR-8-
lationship KEY keyed where
KEY=key
Logical Record Yes No No
Split Over Phy-
sical Record
Boundary
I Inter Job Last File Beginning of Beginning of
. File Position |Position Medium Medium

The logical record length for linked sequential files is always variable.
Therefore word 2 of the PRB specifies the record length of each individual
record when the record is written. When a record is read, the actual record
length is returned in word 2 of the PRB subject to the maximum record length
specified when the file was opened. Insofar as the I/O program is concerned,
the physical record length of records stored on disc is transparent. If the
physical record length is greater than logical record length, the number of
actual disc transfers is less than the number of I/O calls. If the physical
record length is less than the logical record length, the number of disc trans-
fers will be greater than the number of I/O calls. Figure 4-1 illustrates the
composition of a linked sequential file.

Change 1 4-4 Digital Systems Division

943005-9701

LINK SEQ. BUFFER

WRITE
FLAG

‘WRITE_VERIFY
FLAG
{BUFFER FULL FLAG

\'UNUSED

LOGICAL RECORD STRUCTURE
DATA/EOF ~
FLAG READ DISC ADDRESS
= LI W B
\ conTiGuous OF PHYS. REC.
FLAG
" FORWARD TRACK
POINTER
NO. OF DATA INDEX TO END +1
BYTES=p OF LAST RECORD
IN BUFFER
LR
n
DATA BYTES (LOGICAL RECORD)
NO. OF DATA
. PHYS ICAL. RECORD
BYTES=n / LR DATA TRANSFER
> To/FROM STORAGE
‘ SERVICE)
DATA/EOF CONTIGUOUS (s1ZE= (PRWRDS) WORDS)
FLAG FLAG
LR
DATA RECORD STRUCTURE
NOT SPLIT ACROSS SPLIT ACROSS
PHYSICAL RECORD BOUNDARY PHYSICAL RECORD BOUNDARY LR
oo n o |1 n—Xx
n-x PARTIAL LR
DATA BYTES p
o lo] n-x
NDATA BYTES X
4 4 PHYSICAL RECORD
NDAR
o I o l % BOU Y
X DATA BYTES
olo o1 X

EOF RECORD STRUCTURE

1410 [

| BACK EOF POINTER_]
(0 FOR FIRST EOF)

BACK EOF INDEX

FORWARD EOF
POINTER
(0 FOR LAST EOF)

—

FORWARD EOF INDEX

110 c

T
1
(A)130321A 16 BITS

Figure 4-1. Linked Sequential File Parameters

Change 1 4-5 Digital Systems Division

(o]
@ 943005-9701

4.4.2 RELATIVE RECORD FILES

A relative record file allows random access in addition to sequential access
for locating records within the file. The random access method uses a num-
ber to directly specify the numerical position of the record within the file.
The first record is designated as record number 0. Records may be added
to the file using either access method. Existing records in the file may be
changed or read using either access method. A record cannot be inserted
between two existing records. Single records cannot be deleted. The oper-
ating system does not support an end of file interior to the file.

File allocation for a relative record file is contiguous so that the size of the
file must be specified when the file is defined. The entire contiguous data
area assigned to the file is partitioned into fixed length logical records. If
blocking is specified, the blocking buffer length (physical record length)
must be larger than the logical record length. In either case access to a
record does not require a directory search. A maximum of one disc access
is required to fetch a record by either method and may be none if the record
is within a blocked physical record that is in the buffer.

A relative record file is unblocked if the logical record length is equal to
pPhysical record length. For unblocked files the file management system does
not create an intermediate buffer in the job extension area. Instead, it trans-
fers the data directly to or from the logical record buffer specified by the
PRB. This direct transfer requires a disc transfer for each I/O call, and
increases the running time of the accessing program, but reduces the mem-
ory requirements due to a smaller job extension area. Figure 4-2 illustrates
both blocked and unblocked transfers.

The operating system supports the following random access functions:

° Write/Replace using key - Data record with same numeric key to be
replaced with new data record.

° Replace using key - same as Write/Replace using key.
e Read using key - Read the logical record as specified by the key.

Any access to a record in the file (read or write, random or sequential meth-
od) establishes a logical position that follows the record previously accessed.
This logical position has no effect on a subsequent random access operation,
but defines the location for a subsequent sequential operation.

4.4.3 KEY INDEXED FILES

A key indexed file allows random access in addition to sequential access for
locating records within the file. The operations allowed for both random and
sequential access methods are considerably more powerful than those allowed
for either linked sequential or relative record files. Key indexed files are
noncontiguous.

4-6 Digital Systems Division

943005-9701

DIRECT (UNBLOCKED) TRANSFER
FILE (ON DISC)

(LR=PR)

USER BUFFER

(LR=PR),

N
YY)
h\.

BLOCKED TRANSFER

FILE (ON DISC)

LRg

LRy

PY y PHYSICAL
/ RECORD

. {

BLOCKING BUFFER

(IN JEAREA) LRN—-1

(=BLOCKING FACTOR)

USER BUFFER LR LR

LR LR
n+1]‘——-— n+1 -—-' . LR .,

N
[X X J
N
~—
(X X]
N

LR2n—1 LR2n-1

(A) 130320

Figure 4-2. Relative Record File Transfers

4.7 Digital Systems Division

o}
%@ 943005-9701

The key for random access within a key indexed file is an n-byte name

(n<30 USASCII bytes or binary bytes). The number of bytes in the key is
fixed for all keyed records in the file when the file is defined. However, dif-
ferent key indexed files may have different key sizes. Keyed records are
added by setting a bit in the PRB (random access method). Records without
a key are added sequentially to the file. Records that are placed sequentially
in the file without a key can only be retrieved with the sequential access meth-
od. No two records may have the same key (name). Most of the sequential
access capabilities of key indexed files are identical to those described in
Section III for sequential 1/O devices. Insertion of a nonkeyed record is also
allowed.

4.4.3.1 RANDOM ACCESS FUNCTIONS., The operating system supports
the following random access functions:

° Read using key - With option to delete record and key.
] Write insert using key - Presence of same key considered error.

o Write replace/add using key - Data record with same key to be
replaced with new data record.

. Delete at record level - keyed and non-keyed records.

° Read next higher or lower key.

4.4.3.2 SEQUENTIAL ACCESS FUNCTIONS, When performing a sequen-
tial access read within a key indexed file, logical records are retrieved in
increasing order of key with the key treated as an unsigned integer (the order
is alphabetical if the key is USASCII bytes). Unnamed records are positioned
in the file as sequential records following either a keyed record or the be-
ginning of file. Any access to a record in the file (read or write, random
or sequential method) establishes a logical position that follows the accessed
record. This logical position has no effect on a subsequent random access
operation, but defines the location for a subsequent sequential access opera-
tion.

4.4.3.3 LIBRARY MANAGEMENT,. Libraries consisting of groups of log-
ical records identified with a common name are easily maintained through a
combination of keyed and nonkeyed records in the same file. For example,

a source program library could be written with a keyed record for the first
source record. The remaining records in the program would be nonkeyed,
sequential records. To retrieve a program, the system first performs a read
using key to locate the start of the program. Subsequent sequential read op-
erations retrieve the remaining records. The Key Recovery Desired bit in
the PRB (word 1, bit 2) must be set during this operation so that the first
time a key is returned, the system recognizes the corresponding record as
the first record of the next program. This indication can be treated as an
end-of-file if only one program is desired. If the program is the last in the
file, the EOF flag (PRB word 0, bit 2) denotes end-of-file.

4-8 Digital Systems Division

. .
@ 943005-9701

4.4.3.4 MULTIPLE RECORDS WITH THE SAME KEY, If the operating
system detects an existing identical key within the file while performing a
write using key operation, it returns a logical error indication to PRB word
0, bit 6. The user can still make an entry using that key, however. By per-
forming a read using key operation to locate the key within the file, and then
performing a sequential write without key at that location, the new record
can be inserted at the beginning of a sequential string following the record
with the target key. This operation generates a string of records for each
key that operates so that the last record inserted will become the first rec-

ord obtained sequentially following the keyed record itself.

4.4.3.5 BUFFER MANAGEMENT., A system wide buffering scheme pro-
vides buffer management for key indexed files. A major factor in gaining
access to a key-controlled data record is the number of disc accesses re-
quired to search through the key structure. To minimize the number of ac-
cesses and reduce search time, DX980 allows multiple memory buffers for
storing keyed records. The minimum number of buffers per job for key
indexed files is two: one buffer for keys and another for data. The operat-
ing system provides two mechanisms for acquiring multiple buffers. The
"BUFFERS=" parameter in the assignment command specifies the number
of buffers to be allocated in the accessing program's job extension area.

In addition if multiple programs are sharing a key indexed file, the buffers
from all sharing programs are grouped together for searching purposes.
The user should specify a sufficient number of buffers in his job extension
area to achieve the access time required for the application. If the file is
being shared, the access time will be less than anticipated.

4.4.3.6 BUFFER SIZE. Buffer size selection for key indexed files is
based on the length of each key, the number of keyed records in the file, and
the desired data access time. Access time for data records is approximately
equal to the number of disc accesses required to find and retrieve the record,
times the average seek time for the disc drive. The number of disc accesses
to get a data record is approximately equal to log n+l, where nis the num-
ber of data records in the file and m is the number of keys in each physical
record. The number of keys per physical record is equal to the physical
record length minus four divided by the effective length of each key. The
effective key length, including pointers and information about the data record,
is five words plus the key length in words. Since key length is specified in
characters in the JCL, the key length in words is the JCL specification di-
vided by two and rounded up. The minimum buffer size specification must
provide for two keys and at least one logical record: 14 words + 2% (key
length/2). In addition the buffer size must be a multiple of 32 words.

Figure 4-3 illustrates the file structure for key indexed files. The terms
used in the figure are defined in the following paragraphs. The structure is
handled by DX980 rather than the user. The information is supplied for in-
creased comprehension only.

4-9 Digital Systems Division

943005-9701

LOGICAL RECORD VIRTUAL BUFFERS IN MEMORY I
(s1ze 2> <1rchar>CHARACTERS) ' (NumBERD <nbufs>) '
- l N
POINTER TO PARTICULAR I
USER'S ASSIGNED BUFFERS
FPA l
ORWARD POIN
FORWARD LOGICAL FOINTER I (VIRT\JAL MEMORY BURFERS
BACKWARD POINTER
FPl (INDEX) {VIRTUAL MEMORY BUFFERS)| VIRTUAL
LOGICAL, WRITE BUFFER
RECORD FLAG]VERIFY IBUSY COUNT INFORMA TION
CONTROL BPA
BACKWARD LOGICAL POINTER l
FIELD RDA
REAL DISC ADDR OF
BPI (INDEX) I (PHYSICAL REGORD) J l
~
KEY DELETED gr-._'MrBEﬁ(Br l SO INTER l
FLAG FLAG BYTES FORWARD TRACK
KEY I I
L IF KEY FLAG=1 I LR I
I (LOGICAL RECORD) PHYSICAL RECORD (DATA TRANSFER TO
AGE DEVICE
TEXT > STORAGE DEVICE)
LR
| l (s1ZE=><prwrds > WORDS)
! " [
NON BOTTOM LEVEL NODE | J |
l DATA PACKAGE BUFFER
NON ER OF |
8OTTOM P LR
FLAG '
(COWER LEVEL] I
- P FOINTER) |
Ko KEY I
ACKAGE) I
KEY PACKAGE I
X i] °
8 BITS l PERIPHERAL STORAGE DE VICE
K|
I ELDCK SIZEZD
ELETE . e SOARATRS
FLAG NOT USED - P, . F-—=—- == (iss'mgc'rso BY
N,
KEY DIRECTORY BUFFER s|ys OEVICE
K2
- — DATA ———
POINTER
| (24 BITS) N
- POINTER TO PARTICULAR
- P — USER'S ASSIGNED BUFFERS
— — INDEX] ORWARD POINTER
(16 BiTS) K3 (VIRTUAL MEMORY BUFFERS)
I onieemniesistes| Lo
N-BYTE KEY
[-— — (7O WORD - - P4 . BUFFER
BOUNDARY ! WRITE | WRITE INFOR-
Py FLAG | VERIFY [BUSY COUNT MATION
°
[]
RDA
. l (REAL DISC_ADDR OF
BOTTOM LEVEL NODE I PHYSICAL RECORD) <
\
FORWARD TRACK POINTER
80TTOM NUMBER OF
FLAG KEY ENTRIES I
Ko e I -
ACKAGE) l TREE PHYSICAL RECORD (DATA TRANSFER TO
K NODES l STORAGE DEVICE)
1
l J l (SI1ZE ><prwrds> WORDS)
Kz : I
Ky I I
L4
: I
. I
K | I
- I
(C)129987

Figure 4-3. Key Index File Parameters

4.10 Digital Systems Division

o]
@@ 4430059701

4.4.3.7 LOGICAL RECORD. The logical records include both data and
control fields for operating system use. The control area of the record is
comprised of the following fields:

'Y Forward Pointer Address (FPA) - This two word space in each log-
ical record contains the disc address of the physical record contain-
ing the next logical record in a linked file.

° Forward Pointer Index (FPI) - This one word area in the logical rec-
ord designates the relative position of the next logical record within

the physical record specified by FPA.

™ Backward Pointer Address (BPA) - This two word space in each log-
ical record contains the disc address of the physical record contain-
ing the previous logical record in a linked file.

° Backward Pointer Index (BPI) - This one word area in the logical
record designates the position of the next logical record within the
physical record specified by BPA.

) Key Flag - The operating system sets this bit to indicate that the
logical record has a key associated with it.

° Delete Flag - The operating system sets this bit to indicate that
the logical record has been deleted from the file.

. m_ TN ~ e~ b~
I'ext Count - er of byte

is
in the data (text) field

a +lha wmisema~l
=S L€ numo

i 1
f the logical record.

o~
0]
(@]
O
=
o
Py
=
=
]

° Key - If the Key Flag is set, this field contains the key for the log-
ical record.

4,4.3.8 DATA PACKAGE BUFFER. The data package buffer contains log-
jcal records and a track pointer that comprise the physical record stored oo
the disc, plus control information used by the operating system. The num-
ber of buffers allocated in a particular job is specified by the user through

the <nbufs> parameter in JCL.

n
Uil

Track Pointer. The track pointer becomes part of the physical record on
the disc. If the record is the last record on a track, it points to the address
of the track containing the next physical record of the file. For the first
physical record on a track, this field is used for a pointer to the previous
track of the file. For interim records on a track, this field is not used.

Data Package Control. The control area of the buffer is comprised of
the following fields:

° User Buffer Pointer - This field contains the main memory address
of the first buffer assigned to the current user of the buffer.

4-11 Digital Systems Division

(o]
((:@? 943005-9701

° Forward Pointer (FP) - This one word field contains the main mem-
ory address of the next buffer in a series of buffers assigned to a
job.

° Backward Pointer (BP) - This one word field contains the main mem-
ory address of the previous buffer in a series of buffers assigned to a
job.

° Write Flag - When a user alters the information contained in a file
buffer, the Write Flag sets. When set, this flag indicates to the op-
erating system that the physical record must be written back to the
disc before it is discarded after being used. This flag ensures that
the changed data will be recorded in place of the old data on the disc.

. Write Verify Flag - When set, this flag indicates that the operating
system must read data back from the disc following a write to ensure
that the record was stored accurately.

° Busy Count - This field contains the number of users that are cur-
rently using the buffer. When the count equals zero, the system can
replace the buffer contents with new information.

® Real Disc Address (RDA) - This two word field contains the disc ad-
dress of the physical record currently in the buffer.

4,4.3.9 KEY DIRECTORY BUFFER. The key directory buffer is identical
to the data package buffer, except that the logical record fields of the data
package buffer are replaced with nodes of the sorting tree used to locate a
particular key. Each node contains one control word that specifies if the
node is a bottom node or an intermediate node, and that also indicates the
number of keys contained in the node. The remainder of the node contains
key packages, and if it is an intermediate node, pointers to the next lower
level node in the sorting tree.

Lower Level Pointers. If the desired key is not contained in a current node,
the operating system must access another block of keys (node) to locate the
key. The system searches the current node until it finds the first key that

is logically greater than (alphabetically past) the desired key. Associated
with each key is a two word pointer. The pointer is the disc address of the
node that contains keys in the level of the sorting tree below the associated
key. The operating system uses that pointer to access the next node for the
search. All of the keys in next lower level node are sorted and are alpha-
betically between the surrounding keys at the higher level.

Key Package. The key package consists of the following fields:

° Delete Flag - The operating system sets this bit to indicate that the
key and its associated logical record have been deleted from the file.

4.12 Digital Systems Division

o]
é@ 943005-9701

° Data Pointer - This 24-bit field contains the disc address of the
physical record that contains the logical record associated with the
key.

e Index - This one-word field designates the position of the correct
logical record within the physical record indicated by the data
pointer.

e Key - This field contains a name that is from 1 to 30 bytes long and
that identifies the logical record within the file. This key is re-

peated in the control field of the logical record associated
with the key.

4.4.4 FILE ERRORS

As with I/O devices, three levels of errors can result from a SVC to per-

form file I/O. The conventions described in Section III for I/O errors apply
to file errors also. Table 4-2 lists the possible file errors together with
their associated severity and error number.

4.5 PHYSICAL RECORD BLOCK

The Physical Record Block (PRB) for file 1/O is similar to that for device
I/O as outlined in Section III except for the key address field (word 4). The
PRB is four words in length unless bit 1 of word 2 is set. That bit indicates
the presence of the key address in a fifth word. Key address is used by key
indexed or relative record files. The field points to the memory address in
the user program where the key can be located. For relative record files the
indicated key contains a 15-bit binary value within the range of 0 to 32, 767.
Bit 0 of this word must be zero and bits 1 through 15 contain the record
number. This number indicates the logical record number within the partic-
ular relative record file. For key indexed files the key contains a block of
from 1 to I5 words (1 to 30 bytes) that functions as an alphanumeric byte
string or a binary number. The length of this block (key) is specified with
JCL. The key constitutes the name of the referenced logical record. Keyed
reads and writes require both a key and a logical data record pointer. Table
3-4 outlines the opcodes that are applicable to I/O for relative record and key
indexed files. Linked Sequential Files are accessed with I/O calls as de-
scribed in Section III.

Change 1 4-13 Digital Systems Division

[e]
%@ 943005-9701

Table 4-.2. File Errors

Error .
Number Severity Description

233 Severe No space available on disc volume

234 Severe File full. File status: can only be accessed for
reading. No additional records can be written into
the file, not even following a rewind operation. To
reuse the disc space the file must be replaced.

235 Logical Attempted write, logical record greater than
physical record

236 Severe Hardware failure on disc volume

237 Logical Key indexed file - replace attempted on non-
existent key

238 Logical Key indexed file - write attempted on existing key

239 Logical Key indexed file - write/replace (op code 101)
attempted without specifying key.

240 Logical Key indexed file - replace (op code 102) attempted
on a keyed record without specifying key,

241 Logical Key indexed file - replace (op code 102) attempted

' when file was positioned at EOF,

243 Logical | Key indexed and relative record files - no key
match in the file

250 Severe Insufficient tracks available for allocation

251 Severe Insufficient contiguous tracks left for allocation

252 Severe Allocation exceeds disc volume capacity

254 Severe Unable to allocate buffers, job extension area too
small

256 Severe Insufficient number of buffers for attempted oper-
ation

257 Fatal Opcode is either non-existent or illegal

258 Severe Access violation for integrity code

Change 1 4-14 Digital Systems Division

S17%

uoiIsialg swasAs jenbiq

Table

4.3, Relative Record and Key Indexed File Management Opcodes

1/0 Operation File F i
Code P Type unction
100 Write R.R. Fatal error - Must use Replace (102) or Write/Replace (101)
K.I. Write a logical record from the user's buffer to disc.
1) Key specified:

a) If the specified key already exists in the file, do not write
the logical record to disc. Return logical error status to
the user, and do not reposition file pointer.

b) If the specified key does not exist, make a key-directory
entry for the key and write the logical record to disc under
the new key entry. Position file pointer beyond completed
write.,

2) Key not specified: Insert the nonkeyed record where the file
pointer is positioned; advance pointer.

101 Write/ R.R. Perform a replace operation.
Replace . o . s ps

1) Key Specified: Replace the logical record of the specified key
with the logical record from the user's buffer. Position file
pointer for next sequential record.

2) Key not specified: Replace the record where the file pointer is
positioned and advance the file pointer.

K.I. Unconditionally write the logical record from the user's buffer to the

disc,

1) Key specified:

a) If the specified key exists in the key-directory, replace the
logical record associated with the key with the logical rec-
ord from the user's buffer. Position file pointer to next
sequential record.

10L6-500€%6

917 %

uorsialg swejsAs 1enbia

Table 4-3,

Relative Record and Key Indexed File Management Opcodes (Continued)

1/0 . File .
Code Operation Type Function
101 b) If the specified key does not exist, make a key-directory
(Cont) entry for it, and write the logical record to disc under the
new key entry. Position file pointer to next sequential rec-
ord.

2) Key not specified: Return an error status (number 239) to the
user. Do not reposition file pointer.

102 Replace R.R, Replace the logical record on the disc with the logical record from
the user's buffer. ‘

1) Key specified: Replace the record specified by the key and posi-
tion file pointer to next sequential records.

2) Key not specified: Replace record where the file pointer is
positioned and advance the pointer.

K.,I. Replace the logical record on the disc with the logical record from
the user's buffer.

1) Key specified: Replace the record specified by the key and posi-
tion file pointer to next sequential record. If key does not exist,
return error and do not reposition file pointer.

2) Key not specified: Replace record indicated by file pointer and
advance pointer. If record to be replaced has a key, then return
a logical error (number 240 or 241). Do not reposition file pointer.

103 Read R.R, Read the logical record from the disc into the buffer specified by the
user,

1) Key Specified: Transfer logical record associated with specified
key and position pointer to next sequential record.

10L6-500€¥6

LT%

uoising swaisAs renbig

Table 4-3. Relative Record and Key Indexed File Management Opcodes (Continued)
1/0 . File)
Code Operation Type Function
103 2) Key not specified: Read record indicated by the file pointer and
(Cont) advance pointer.
K.I. Read the logical record from the disc into the user's buffer.

1) Key Specified:

a) Read the logical record as specified by the key from the
disc into the user's buffer. Position file pointer to next
sequential record.

b) If the specified key is not in the key-directory, return an
error status to the user. Do not change file pointer.

2) XKey not specified:

a) Read the record indicated by the file pointer and advance
pointer.

b) If a keyed record is encountered and the PRB specifies that
key recovery is desired, return the key to the user in the
area allocated for the key. If key recovery is not desired,
do not return the key.

3) No data desired: By setting the "return record size only' bit in
the PRB a user can issue a Read and no logical record data is
transferred. The size of the logical record is returned in the
Data Record Length field of the PRB. Functions 1 and 2 above

apply.

T0L6-S00¢€¥6

8T°¥

uolsialg swesAs 1enbig

Table 4-3.

Relative Record and Key Indexed File Management Opcodes (Continued)

1/0 o tion File F H
Code perati Type unction
104 Read High R.R. Fatal error
K.I. Read the logical record from the disc into the user's buffer.

1)

2)

Key Specified:

a)

b)

c)

If the exact specified key exists in the key-directory, read
the logical record associated with it. Position pointer to
next sequential record.

If the specified key does not exist, find the next algebraically
higher key in the key-directory and read the logical record
associated with it. Return the key that was actually found to
the key field addressed by word 4 of the PRB. Position the
pointer to next sequential record beyond retrieved record.

If the specified key does not exist and no algebraically higher
key exists in the key-directory, return an error status (end
of medium) to the user. Do not reposition pointer.

Key not specified: Use the forward sequential-access method to
find the next key in the key-directory beyond the record indicated
by the file pointer.

a)

b)

Return the key to the user if a keyed record is found and if
the key recovery bit is set in the PRB. Put the associated
logical record in the user's buffer. Position file pointer to
next sequential record.

If no keyed record is found, return an error status (end of
medium) to the user. Position pointer past last data record
in file.

10L6-500E¥6

61" %

uorsiAlg sweisAs jeibig

Table 4.3. Realtive Record and Key Indexed File Management Opcodes (Continued)
1/0 o tion File]
Code pera Type Function
105 Read Low R.R. Fatal error
K.I. Read thelogical record from the disc into the user's buffer.

1)

Key Specified:

a)

b)

c)

If the specified key exists in the key-directory, read the
logical record associated with it. Position pointer to next
sequential record.

If the specified key does not exist, find the next algebrai-
cally lower key in the key-directory and read the logical
record associated with it. Return the key that was actually
found to the key field addressed by word 4 of the PRB. Posi-
tion pointer to next sequential record.

If the specific key does not exist, and no algebraically
lower key entries are in the key-directory, return an error
(beginning of medium) status to the user. Do not change

file pointer.

Key not svecified: Use the sequential access method to find the
next key in the key-directory going backwards from the current
file pointer position.

a)

If a keyed record is found, return the key to the user (if the
key recovery bit is set in the PRB) and put the associated
logical record in the user's buffer (if data is to be trans-
ferred). Position file pointer to record following the record
used.

10L6-500€¥6

0%

uorsialg swejsAs jenbia

Table 4-3.

Relative Record and Key Indexed File Management Opcodes (Continued)

1 .
/O Operation File Function
Code Type

105 b) If no keyed record is found, return an error (beginning of
(Cont) medium) status to the user. Position file pointer to be-

ginning of file.
106 Read R.R. Fatal error
Delete

K.I. Read the logical record associated with the specified key into the
user's buffer. Then mark both the key entry in the key-directory
and its associated logical record as deleted. Same rules apply as
for Read (I/O code 103) plus Delete (I/O code 107) for K.I. files.

107 Delete R.R. Fatal error

K.I.

Mark the indicated record as deleted.
1) Key specified: |
a) If the key exists, mark the specified key entry in the key-

directory and its associated logical record as deleted. Any
sequentially linked record(s) that exist for the specified key

remain, but the associated key and its record are specif-

ically marked as deleted. Position pointer to next record.

b) If the specified key entry does not exist in the key-directory,

return an error status to the user. Do not change file
pointer.

2) Key not specified:

a) Mark the logical record at the current file pointer position

as deleted. Increment the pointer to the next logical rec-
ord. If the deleted record has a key, delete that key from
the key-directory.

T10L6-500€¥6

1277

uossialg swejsAs |eybig

Table 4-3. Relative Record and Key Indexed File Management Opcodes (Continued)
1/0 . File .
Code Operation Type Function
107 b) If the key recovery bit is set in the PRB and the next logi-
(Cont) cal record contains a key, then return the deleted key to the
user in the key field of the PRB.
¢) When the last logical record is deleted, the file pointer is
incremented to point at the end of medium. Therefore, the
appropriate status is returned to the user.
108 Delete R.R. Fatal error
S tiall
equentially K.I. Mark the specified key entry, its associated logical record(s), and

1)

any sequentially linked logical record(s) up to, but not including, the
next algebraically successive key entry as deleted.

Key Specified:

a)

b)

Key
a)

1f the key entry exists in the key-directory, mark it and any
sequentially linked logical record(s) as deleted. If the key
recovery bit is set, the next successive key is returned to
the key field of the PRB. Position file pointer beyond de-
leted records.

If the key entry does not exist in the key-directory, return
an error status to the user. Do not change file pointer.

not specified:

Begin at the current file pointer position and mark the se-
quentially linked logical record(s) up to, but not including,
the next successive key entry as deleted. Position the

file pointer beyond deleted records.

10L6-500¢%6

27y

uorsiAlg swejsAs |eubia

Table 4-3. Relative Record and Key Indexed File Management Opcodes (Continued)

1/0 . File)
Code Operation Type Function

108 b) If the key recovery bit is set, return the next successive key
(Cont) to the user in the key field addressed by PRB Word 4.

c) If an end of medium is detected, return the appropriate sta-
tus to the user. :
109 Delete R.R. Fatal error
All K.1.

Mark all key-directory entries (key and non-key) and all logical data
records in the file as deleted (delete all data contents of file to create
an empty file). File allocation remains the same.

10L6-G00€¥6

o]
@ 943005-9701

SECTION V
SUPERVISOR CALLS

5.1 GENERAL

DX980 supervisor calls (SVC) are requests to the operating system to per-
form a service for the user. This request is the only communication between
a user program and the operating system. The computer interprets an SVC
as an illegal machine instruction. When the computer encounters an illegal
instruction, it automatically branches (traps) to the internal interrupt entry
address. The operating system examines all instructions that cause a trap
to determine if they are SVC opcodes. If not, the instruction actually is
illegal and the system aborts the offending program. If the instruction is an
SVC, the operating system decodes the remainder of the instruction and calls
the appropriate system service routine to process the SVC.

For compatibility with the Basic Monitor System, DX980 recognizes two SVC
instruction formats: C380 and F800. The C380 SVCs conform to SVCs for
the Basic Monitor. However, the Basic Monitor call Set Control Status Flag
(C384) is not recognized by DX980. The Basic System Use and Operatiocn
manual referenced in the preface to this manual explains Basic Monitor SVCs,

The standard DX980 SVC format is based on instructions in the form: F8XX
(XX corresponds to the hexadecimal equivalent of the SVC number as de-
scribed in this manual). To issue an F8XX SVC, construct an argument list
that contains a word identifying the number of arguments described by the
list, followed by successive words containing the addresses of each argu-
ment., Then set the M register to the address of the list and allow the pro-
gram to execute the SVC. For example, a Wait for I/O SVC is implemented

as follows:

@LDM = ARGLST
DATA >F82B (2B1¢ = 4310, Specifies SVC 43)

ARGLST DATA 1,PRB Designates 1 Argument at Address PRB.

Supervisor calls can be specified in decimal form if the OPD (Operation De-
finition) assembler directive is first used to define a new instruction mne-
monic, SVC, that maps the decimal number to its hexadecimal equivalent.
Then the statements:

SVC 43
and
DATA >F82B

are equivalent,

5-1 Digital Systems Division

[e]
@ 943005-9701

Table 5-1 summarizes the DX980 SVC. Table 5-2 lists and describes each
SVC. The remaining paragraphs in this section provide examples of param-
eter setup and calling sequences for each SVC, plus a raore detailed descrip-
tion.

Table 5-1. DX980 User Supervisor Calls

Base Ten Function
SVC Number
0 Input/Output
1 Terminate Job
2 Set Floating Point Address
3 Get Memory Limits
4 Terminate Job Abnormally
5 Terminate Task
6 Delete Task
7 Suspend Task
8 Post Event
29 ' Get Time and Date
30 Create Task
37 Load
38 Load and Relocate
41 Command Scanner
43 Wait for Input/Output
49 Allocate Resource
51 Deallocate Resource
98 Get Program Limits
129 Start Job

5-2 Digital Systems Division

1 @8ueyn

£-9

uoisIAlg swelsAs 1eybig

Table 5-2.

DX980 Supervisor Call Description

Base Ten
SVC Number

Function

Number of
Arguments,
Name(s)

Description

I1/0
Terminate Job

Set Floating Point
Address

Get Memory Limits

Terminate Job
Abnormally

Terminate Task

Delete Task

Suspend Task

Post Event

1, PRB

0
1, FLT980

1, ARRAY

1/2, ERRCOD,
ERRID

0
1, TASKID

1/2, WCL,
RETEDB

1, EDB

Performs all I/O for the user as specified by
the PRB.

Normal Job Termination

Set floating point address to trap to for any
floating point instructions.

Get memory limits of user partition from job
partition and return values in the supplied
array.

Abnormal Job Termination. Number of argu-
ments is either 1 or 2. First argument is
ERRCOD, an error code supplied by the user
(should be 1000 or greater). Second optional
argument is ERRID, the address of a 6 char-
acter identifier that the user supplies to identi-
fy which error the ERRCOD applies to.

Normal Termination of the Running Task.

Delete all tasks under the user job having the
same name as TASKID,

Suspend the running task under the user job
waiting for event(s) as specified by the Wait
Criteria List (WCL). RETEDB is optional; if
specified, the task returns to the last matched
Event Description Block (EDB) on which the
match occurred.

Post the event specified in the EDB.

T0L6-900€%6

¥-g

UoISIAlg SwWelsAsS 1eubiq

Table 5-2.

DX980 Supervisor Call Description (Continued)

Base Ten
SVC Number

Function

Number of
Arguments,
Name(s)

Description

29

30

Get Time & Date

Create Task

4, BTIM, BDAT,
CTIM, CDAT

Variable

Return the System Time and date in the follow-
ing parameters:

BTIM = System Time in Binary (2 words,

milliseconds since midnight)

BDAT = System Date in Binary (2 words,

CTIM

CDAT

year & day)

System Time in Characters (3
Words, HH:MM:SS)

System Date in Character (3 words,
MM:DD:YY)

The format of the date is year followed by day
of the year (instead of the month).

Create a task under the user job as specified
by the following parameters:

1) TPRI
2) TID

- Relative Task Priority
- Task identifier (user specified
binary number).

3) TSTART - Starting location of first instruc-

4) TREG

tion task is to execute.

- Pointer to a register file, If the

pointer is -1, the register file
for the new task is to be the same
as the creating task. If not -1,
the parameter is a pointer to the
register file containing values to
be passed to the new task.

10L6-500¢€%6

§-9

uorsialg swejsAs |eubig

Base Ten
SVC Number

Table 5-2.

DX980 Supervisor Call Description (Continued)

Function

Number of
Arguments,
Name(s)

Description

30
(Cont)

5) TSS

6) TWCL

- TCB STACK SIZE; number of

words to be allocated in the
auxiliary stack attached to the
TCB.

Wait Criteria List - A linear ar-
ray of one or more words. If the
first word of this parameter is
zero, the task is to be created in
the Ready state. If the first word
is non-zero, the parameter is the
Wait Criteria List and the task is
created in the Dormant state.

The following input parameters are to be in-
cluded only if the stack area for task creation

is required.

If no user supplied stack area

setup is required, the parameter list ends

here.

7) TSTK

8) TWRK

Pointer to user supplied stack.
This stack, within the user par-
tition, is required if the reen-
trant task to be created requires
work space.

Work Area flag. If zero, no
work area is required. If non-
zero, a pointer to the work area
within the user supplied stack
area is to be supplied.

10L6-500€%6

9-9

uorsialg sweysAs [enbig

Table 5-2. DX980 Supervisor Call Description (Continued)

Base Ten

Number of

SVC Number Function Arguments, Description
Name(s)
30 9) TFLAG -~ Argument flag word - i.e., if
(Cont) any arguments are supplied, each
bit of this word corresponds to an
argument and specifies whether
(= 1) or not (= 0) to move the first
word of the argument list to the
TCB.
10) ARGl - Argument 1 address
ARG2 - Argument 2 address
ARGN - Argument N address
37 Load 3, MIP#, Load MIP# (Memory Image Phase Number), at
' LOADR, LOADR (a specified load address) and return
EPA the address to give control at EPA (Entry
Point Address).
38 Load and Relocate: 3, MIP#, Same as SVC# 37 (LOAD) but perform the
LLOADR, necessary relocation.
EPA
41 Command Scanner 5, CMDSTR, A free format input record - Descriptor array
KEY, CTRL, for output string - Controls SVC41 processing -
PAKSTR, Packed output string - Reserved labels for
RESLAB command operator
43 Wait (Suspend) 1, PRB Suspend execution of this user program until

for I/0O

the I/O (specified by the PRB) completes.

10L6-G00€¥6

L™G

uoysiAlg swajsAs reybia

Table 5-2.

DX980 Supervisor Call Description (Continued)

Base Ten

Number of

SVC Number Function Arguments, Description
Name(s)
49 Allocate Resource 2, JERR, Allocate Resource at runtime.
JLDT JERR - Error/Availability Code returned to
caller.
0 means allocation made
-5 means device offline
-4 means device already assigned (un-
available)
-3 means device already committed
(unavailable)
>0 an error encountered during assign-
ment.

JLDT - A user supplied "assign-time' LDT
from which the "run-time' LDT is
built,

51 De-allocate 2, JERR, De-allocate resource at run-time.
Resource JLUNO JERR - error code returned to caller.
JLUNO - LUN number under users job of the
resource to be de-allocated.
98 Get Program 1, ARRAY Get program limits of Job partition and return
limits values in the user supplied array.
129 Start Job 1, JSB Starts an "independent'' job from the user job.

JSB (JOB START BLOCK) - a user supplied
block, for starting a job. Includes any re-
quired J1.DT's.

10L6-500€%6

o]
&@ 943005-9701

5.2 INPUT/OUTPUT - SVC NUMBER 0

@LDM =ARGLST Set M-Register to List Address

sSvC 0 Execute Call
ARGLST DATA 1 1 Argument
DATA PRB Physical Record Block

This I/O call requests the operating system to perform input/output or file
management action. Sections III and IV of this manual explain the system
services available in response to this call.

5.3 TERMINATE JOB - SVC NUMBER 1

@LDM =ARGLST Set M-Register to List Address
SVC 1 Execute Call
ARGLST DATA O No Arguments

This SVC terminates the job issuing the SVC. The Job Mahagement system
performs job termination, closes any files left open by the user, releases
the files, devices and memory used by the job step, and prints a job step
termination message on the system console. If the calling job step is the
last or only step within a job, a job string termination message is also

printed.

SVC 1 is the standard terminating method for jobs that have reached a nor-
mal conclusion. Although programs normally close all files and devices
before termination, the operating system can also perform this function.
Any incomplete input/output operation may be prematurely terminated.

5.4 SET FLOATING POINT ADDRESS - SVC NUMBER 2
@LDM =ARGLST Set M-Register to List Address

svC 2 Execute Call
ARGLST DATA 1 1 Argument
DATA FLT980 Package Entry Address

This call supplies the operating system with the address of the floating point
package within the user's program. The Set Floating Point Address call
(SVC 2) must be issued before performing any floating point operation. The

5-8 Digital Systems Division

o]
{@p 943005-9701

Floating Point Package in the FORTRAN Subroutine Library must have been
previously combined with the user program by the link editor. The argu-
ment is the entry point address of the package.

5.5 GET MEMORY LIMITS - SVC NUMBER 3

@LDM =ARGLST Set M-Register to List Address

SvC 3 Execute Call
ARGLST DATA 1 1 Argument

DATA LIMITS Limits Depository Address
LIMITS BSS 2 Lower and Upper

SVC 3 returns the memory limits of a user job area in the LIMITS argument
of the SVC. Memory limits correspond to the lower and upper limit regis-
ters that surround a user's addressable memory area. LIMITS is a two ele-
ment vector that contains the lower limit in LIMITS (0) and the upper limit
in LIMITS (1) when control returns to the user program. During program
execution, this SVC can determine the job area size (<jarea>) that was spec-
ified when the job was submitted. Since job area size varies with each job
submission, this information tells a program the amount of memory supplied
for a given submission. The lower limit is invariably returned as the value
zero for protected programs. When using SVC 3, the following formula
yields available memory for workspace:

Workspace = Supplied Memory Size - Program Residence Requirements

B S N
Upper Limit minus Last Program Address minus

Lower Limit First Program Address

SVC 98 performs a similar function and is simpler to use in certain cases.

5.6 TERMINATE JOB ABNORMALLY - SVC NUMBER 4

@LDM =ARGLST Set M-Register to List Address

svC 4 Execute Call
ARGLST DATA lor?2 2 if Optional Argument Used

DATA ERRCOD Address of Binary Error Code

DATA ERRID Optional, Address of 6-character ID
ERRCOD DATA value System Console Prints Value + 1000
ERRID DATA 'ABCDEF' System Console Prints ABCDEF

5-9 Digital Systems Division

(o]
@2 943005-9701

The operating system terminates a job abnormally because of a fatal program
error. Similarly, the program can terminate itself abnormally because of
an abortive error made by the user. Since the termination message and
error code are displayed on the system console, a user can notify the con-
sole operator of an abortive condition without assigning the system console

to his program. To avoid confusion between user generated and system gen-
erated termination codes, the system adds 10, 00010 to ERRCOD before
printing. ERRCOD is a 16-bit number.

5.7 TERMINATE TASK - SVC NUMBER 5

@LDM =ARGLST Set M-Register to List Address
SVC 5 Execute Call
ARGLST DATA 0 No Arguments

SVC 5 invokes normal task termination. If the subject task is the last or
only task for a job, the job also terminates normally.

5.8 DELETE TASK(S) - SVC NUMBER 6

@LDM =ARGLST Set M-Register to List Address
SvC 6 Execute Call
ARGLST DATA 1 1 Argument

DATA TASKID Address of Task Number

TASKID DATA value 16-bit Value for TASKID

This call deletes all tasks within the job whose identifying number corre-
sponds to that given in TASKID, TASKID is a 16-bit binary number that

must correspond to the TASKID supplied when the subject task(s) was created.
SVC 6 can delete more than one task at a time if they have the same task
identification (TASKID), If several tasks are created to perform a similar
function, the user can thereby cancel them all at once. This SVC is used by
one task to delete another. Thus, a supervisory routine can maintain control
by creating and deleting tasks as dictated by the environment.

5-10 Digital Systems Division

[o]
{@2 943005-9701

5.9 SUSPEND TASK (WAIT FOR EVENT) - SVC NUMBER 7

@LDM = ARGLST Set M-Register to List Address

SVC 7 Execute Call
ARGIST DATA n Number of Arguments

DATA WCL Address of Wait Criteria List (WCL)
o — - mm— m o~ S —mm — m— - — — —— e — - - —m - — = == ===
i DATA RETEDB Address of a structure containing the |
! returned event descriptor block (EDB) |
' : I
I optional |
e m m e e e e e o o e e e e e e = o e o e mm e wm e em e = e = = — — — - -~
WCL DATA value A List of Events

DATA value Descriptors
RETEDB DATA $-% This field will contain upon activation

the EDBlon which the last matched
occurred. It must be the size of the
largest EDB identified in the WCL.

DATA $-3%

SVC 7 suspends the calling task until the occurence of the selected combina-
tion of events as described in the Wait Criteria List (WCL)., The Suspend
Task (SVC 7) and Post Event (SVC 8) calls are extremely useful in multitask
environments. Together these two SVCs coordinate the activities of several
tasks that are running asynchronously. The calls cooperate within a single
job or between separate jobs. The suspend task SVC can also be used inde-
pendently to wait for specified system events, such as time of day. A task
may be suspended to wait for a single event or for several events to occur.
Upon reactivation a user may determine on which EDB the last match oc-
curred.

Change 1 5-11 Digital Systems Division

o]
@ 943005-9701

The returned event descriptor block argument is optional and, if specified,
this argument is a pointer to a structure large enough to contain the largest
EDB specified'in the WCL. Upon reactivation of the task, this structure will
contain the EDB on which the last match occurred.

5.9.1 WAIT CRITERIA LIST (WCL)

| The Wait Criteria List is the only required argument for the Suspend Task
SVC. A WCL contains one or more Event Descriptor Blocks (EDB) that de-
fine the parameters that must be satisfied before the task can resume execu-
tion. Figure 5-1 illustrates the components of an EDB. The Event Index
(Word 1) is a numerical value that identifies the event to the operating system.
These index values are given in the descriptions of system-wide and job-
oriented event types later in this section. The index may require 0, 1 or 2
I.D. words within the EDB. The number and meaning of the I.D, words is
different for each index.

A WCL containing only one EDB requires no further information. If the WCL
contains more than one EDB, the EDBs must be preceded in the WCL by two
words that prescribe:

1. The two's complement of the number of EDBs in the WCL
2. How many of the events must be satisfied before the task is activated.

Figure 5-2 illustrates a WCL containing multiple EDBs.

5.9.2 SYSTEM-WIDE EVENTS

A system-wide event is an event that is beyond the scope of a single job.
When tasks are suspended to wait for a system-wide event, the operating
system places the associated EDB's in the job extension area, and links
them together in separate lists for each event index. Each event index list
may contain EDBs from several concurrent jobs. All system-wide events
can be specified in an SVC 7 call as an event to reactivate a task. Some
system-wide events can be specified in an SVC 8 call, while others can be
posted only by the operating system. Those system-wide events that allow
an SVC 8 call (user posting) provide the capability for synchronizing tasks

WORD 1 EVENT INDEX
WORD 2) EVENT | ,D. WORD 1
WORD 3 EVENT 1.D. WORD 2

(A)129480

Figure 5-1, Event Descriptor Block Organization

Change 1 5-12 Digital Systems Division

o]
@ 943005-9701

r
WORD 1 TWO'S COMPLEMENT OF NUMBER OF EVENTS IN WCL
WORD 2 NUMBER OF EVENTS TO ACTIVATE TASK
WORDS 3-5 EDB 1
WORDS 6-8 EDB 2
. o
° = -
.
WORDS N—N+2 EDB n

(A)129381

Figure 5-2. WCL With Multiple EDB

across job boundaries. Table 5-3 lists the system-wide events and their
attributes. The following paragraphs define the column headings of that
table,

5.9.2.1 USER WAITABLE. This column indicates whether the event can
be the object of an SVC 7 call (user wait) from a user program.

5.9.2.2 USER POSTABLE. This column indicates whether the event can
be posted by the user with an SVC 8 call. User postable system-wide events
are not remembered for matching with subsequent SVC 7 calls. Therefore
the SVC 7 suspend must precede the SVC 8 post.,

5.9.2.3 SINGLE OR MULTIPLE MATCH. When an event is posted, the
operating system scans all the EDBs linked with the posted event index to
determine if the posted event releases any of the waiting tasks., Similarly
{but only for savable job-oriented events), when a task is suspended, the
operating system examines previous postings to determine if the event spec-
ified in the Suspend Task call has already happened. User postable system-
wide events are not remembered beyond a single scan. Therefore, a Suspend
Task call awaiting a previously user-posted system-wide event must wait for
the next posting to be released. The single or multiple match column spec-
ifies how far the operating system will search following the posting of an
event. If the table indicates a single match, then the operating system scans
waiting EDBs until it finds only one task to release. If the table indicates a
multiple match, the operating system scans all waiting EDBs in the list and
releases all tasks that are waiting for that event. When multiple tasks are
released, processing will proceed in priority order. Tasks are released if
the event I, D, words of both the SVC 7 and SVC 8 match as specified by the
Relational Operator.

Change 1 5-13 Digital Systems Division

943005-9701

Table 5.3. User Accessible System-Wide Events

Index User User Sl\tlzglte Ter Relational Number Event
Number | Waitable | Postable Matlfh Operator | I.D, Words Description

22 Yes No Multiple > 2 Time-of-day (double
prec. word in milli-
seconds)

23 Yes No Multiple > 2 Delta time (double
prec. word in milli-
seconds; 100 ms min)

24 Yes No Multiple = 0 Any job step termi-
nation

25 Yes No Multiple = 1 Particular job string
termination (bits 0-
11 = job string no.)

29 Yes No IMultiple =Q 1 Q@

35 Yes Yes Single = 1 Open to user

36 Yes Yes " Single = 1 Open to user

37 Yes Yes Multiple = 1 Open to user

38 Yes Yes Multiple = 1 Open to user

39 Yes Yes Multiple = 1 Open to user

NOTES:

@ If Bits 0-7 of the event I.D, are not all one's, then the com-
pare relation operator ''='' is done on all of the event I.D.;
otherwise, it is only done on Bits 8-15 of the event I.D.

@ The event I.D. is a 16-bit composite of an internal de-
vice I. D, and a control character, as follows:

o 7 8 15

DEVICE 1.D, CONTROL CHARACTER

The internal device I.D. is an 8-bit field, that identifies
the data terminal where the control character is gener-
ated. This field is set to a >FF if the match is to be
made on any data terminal generating the control char-
acter. The control character is a 7-bit pattern gener-
ated on the data terminal. Refer to the table of USASCII
Control Characters in Section III to determine which
control characters. are postable.

5.9.2.4 RELATIONAL OPERATOR. This column lists the criteria for
determining if the I.D. words of a posted event match the I.D. words of
a waiting task. The task is released if the I.D. words are equal (=), or
if the I.D. words of the posted event are greater than or equal to (>) the
waiting task's I.D. words.

Change 1 5-14 Digital Systems Division

o]
%@ 943005-9701

5.9.2.5 NUMBER I.D. WORDS. This column lists the number of I.D
words that must be included in the EDB of an SVC 7 call that specifies the
assocaited event index number. ‘

5.9.3 JOB ORIENTED EVENTS

Job oriented events synchronize tasks within a single job. All job oriented
events are User Postable and have a Relational Operator of ''="". A job ori-
ented event may be posted by a task even though no other task is currently
waiting for that event. If the event is specified as savable, the post is pre-
served until a corresponding wait is issued, or until the job terminates.
Once saved, the post is not retained past the first match., Table 5-4 lists
the job oriented events and their attributes. Each job defines the functions
of the events that it uses.

Table 5-4. Job-Oriented Events

Single or
Joder | sevante | hmieime | B
40 Yes Single 1
41 Yes Single 1
42 Yes Single 2
43 No Single 1
44 No Single 1
45 No Single 2
46 No Multiple 1
47 No Multiple 1
48 No Multiple 2
49 No Multiple 1

5.10 POST AN EVENT - SVC NUMBER 8

@LDM = ARGLST Set M-Register to List Address

SvC 8 Execute Call
ARGLST DATA 1 1 Argument Address

DATA EDB Address of Event Descriptor Block
EDB DATA Event index Event Descriptor Block

DATA I.D. Wordl
DATA I.D. Word 2

Change 1 5-15 Digital Systems Division

o]
%@ 943005-9701

The Post Event SVC notifies the system that the specified event has occurred.
The system then performs the necessary processing to either activate waiting
tasks or queue the event posting. Queueing occurs only for savable job-
oriented events that have no tasks waiting for them at the time of the posting
call. System-wide events are posted according to the attributes defined for
the corresponding event index. These postings may affect tasks throughout
the system. Job oriented events are posted according to the corresponding
job oriented event index., These postings can only affect tasks within the
same job.

The Post Event SVC contains only one argument: an Event Descriptor Block
(EDB). The format of the EDB for SVC 8 is the same as that for SVC 7.

5.11 GET TIME AND DATE - SVC NUMBER 29

@LDM =ARGLST Set M-Register to List Address

svcC 29 Execute Call
ARGLST DA'.I‘A 4 4 Arguments

DATA BTIM Address for Binary Time (Milliseconds)

DATA BDAT Address for Binary Date (Year, Day)

DATA CTIM Address for Character Time (Hours,

Minutes, Seconds)
DATA CDAT Address for Character Date (Month,
' Day, Year)
BTIM BSS. 2 Binary Milliseconds Since Midnight
BDAT BSS 2 . Binary Year, Binary Day in Year
CTIM BSS 3 HHMMSS in USASCII
3 MMDDYY in USASCII

CDAT BSS

This call gets the current time and date from the system. The operator
supplies the system with time and date at IPL time and may change it from
the operator's console while DX980 is running. An interval timer main-
tains the time for the system. There are 86,400,000 milliseconds in a day.
The double length time word accomodates 1,073, 741, 823 milliseconds.
Therefore, the timer does not overflow during a day. The interval timer
for most installations interrupts each 100 milliseconds so that BTIM is
truncated to the nearest 100 milliseconds.

Change 1 5-16 Digital Systems Division

(o}
%@ 943005-9701

5.12

CREATE TASK - SVC NUMBER 30

@LDM =ARGLST

SvC

ARGLST DATA
DATA
DATA
DATA
DATA
DATA
DATA

TPRI
TID

TREG

TSS DATA

TWCL DATA

DATA
BSS

TSTK
AREA

i TWRKA DATA

TFLAG DATA

30

TSTART

AREA

size

Set M-Register to List Address
Execute Call

Number of Arguments

Address of Task Relative Priority
Address of Task Identifier ‘
Address of Task Entry Point
Address of Starting Register Values
Address of Task System Stack Size

‘Address of Task Wait Criteria List

Address of User Stack Address :
Address of Flag for Work Area i
Address of Argument Flags :
User Argument Address 1 :
User Argument Address 2 :

1

Optional_:

Priority Relative to Job

Arbitrary 16-Bit Task I, D.

Task Entry Point

-1=Undefined Register Values, Otherwise,
Points to Starting Values for A,E,X, M,

S,L and B.
System Stack Size, for New Task

Zero, or Wait Criteria List if the Task
begins Suspended While Awaiting for
a Posted Event (See SVC 7).

Address of Stack Area

Stack Area for Building Call Arguments
for Task

If Not Zero, a flag indicating User Work
Area in AREA

Bits that Equal 1 to Indicate Arguments
Transcribed into AREA

Once a job is running with the single task created by the system, additional

tasks can be created from the user program with the SVC 30 call.

The

created tasks can have an equal or lower priority (high numerically) than

the job under which the task runs.

The priority for a new Task, TPRI, is

Change 1

5-17

Digital Systems Division

q@ 943005-9701

stated relative to the basic job step priority specified in JCL (<jsprty>).

TID supplies an identifier for the new task. The identifier may be refer-
enced in a subsequent SVC 6. The starting address for program execution
within the task is supplied as TSTART. TREG is a pointer to a set of values
for the register file. If the pointer is to a -1, the register file values for
the new task are undefined. If the location does not contain -1, the param-
eter points to values to be passed to the new task in A, E, X, M, S, L, and
B registers. The new task requires allocation in the job extension area mem-
ory for system temporary storage (see Section II, < stksize>). TSS specifies
this allocation. The argument TWCL, if zero, indicates that the new task is
to be created active. If the first word of TWCL is not zero, then it and sub-
sequent memory words constitute a wait criteria list as defined under SVC 7
and the task is created in a suspended state. The wait criteria list defines

the event(s) that activate the new task.

5.12.1 OPTIONAL ARGUMENTS

The call arguments TSTK, TWRKA, TFLAG, and ARG; are optional. If none
of these are furnished, the new task receives a value defined by TREG in

the M-Register. If these arguments are supplied, the M-Register points to
AREA as specified by TSTK in the call. The operating system establishes
the first word of AREA to specify the number of address arguments to be
placed in AREA. Any address arguments that the operating system tran-
scribes into ARE A before activating the task appear in the following order:

1. The address of work space within AREA
2. ARGI
3. ARG2

Each bit in the TFLAG argument corresponds to one of the supplied argument
addresses; bit 0 represents the first address, bit 1 represents the second ad-
dress, etc., to a maximum of 16 addresses. If the bit is a zero, the oper-
ating system transcribes the argument address (ARGi) into AREA. If the bit
is a one, the operating system transcribes the argument value into AREA
immediately following the argument addresses, and alters the corresponding
argument address in AREA to point to the location in AREA containing the
argument value. Figure 5-3 illustrates possible contents of AREA when the

task is activated.

5.12.2 CREATE TASK EXAMPLES

The following paragraphs illustrate some uses of the Create Task SVC.

Change 1 5-18 Digital Systems Division

[¢]

(]

943005-9701

M-REGISTER
POINTS TO ——#» AREA

OR

M—-REGISTER I
POINTS TO — 8 AREA

M-REGISTER
POINTS TOo — 8 AREA

TWRKA

(A)129482

NO ADDRESSES GIVEN

N

IN CALL

A~

USER ARGUMENTS
SUPPLIED

n

USER ARG
ADDRESS

USER ARG2
ADDRESS

USER ARGhH
ADDRESS

V"

USER ARGUMENTS ,
BUT SCRATCH WORK

AREA SUPPLIED

TWRKA

SCRATCH
WORK AREA

"N\ —

NUMBER OF ARGUMENTS IN AREA

USER ARGUMENT ADDRESSES

ADDRESS OF WORK AREA

OR

M-REGISTER
POINTS TO

——3®» AREA

"WRKA

BOTH SCRATCH WORK

AREA AND USER
ARGUMENTS

n+1

TWRKA

USER ARGH1
ADDRESS

USER ARG?2
ADDRESS
®

®
USER ARGN
ADDRESS

SCRATCH
WORK AREA

NUMBER OF ARGUMENTS +1

ADDRESS OF WORK AREA

USER ARGUMENT ADDRESSES

\~_-__—/"“/

TFLAG=40001g

(TRANSCRIBE ARGUMENT 2)

———8» AREA

NEW 2

TWRKA

Figure 5-3.

4

TWRKA

USER ARG1
ADDRESS

NEW 2

USER ARG3
ADDRESS

NEwW COPY OF
USER ARG2

SCRATCH
WORK AREA

M

ADDRESS OF WORK AREA

NEW ADDRESS FOR ARG2

Sample TSTK Contents

At Task Activation

5-19/5-20

Digital Systems Division

(o]
{@Jp 943005-9701

5.12.2.1 NO ARGUMENTS. The following sample call creates a task that
activates a non-reentrant subroutine, NEWTSK, with no arguments.
NEWSTK performs non-file I/O, thus requiring a TCB stack of 110 words.

@LDM =LIST Set List Address
SvC 30 Create Task
BRU NEXT Computation continues:
LIST DATA 6 Six Arguments in List
DATA ZERO New Task Priority Same as Job Priority
DATA TASKID Numeric Task Identifier
DATA NEWTSK Pointer to NEWTSK
DATA MINUS1 No Register Arguments
DATA TCBSTK TCB Stack of 110 Words
DATA ZERO Create Active Task
Constants, Arguments, etc.

ZERO DATA O

TASKID DATA 1

MINUS!] DATA -1

TCBSTK DATA 110
REF NEWTSK

5.12.2,2 DORMANT TASK, The following example creates a dormant task

that activates in 10 seconds and then activates a non-reentrant subroutine,

NEWTSK, with no arguments,

ing a TCB stack of 110 words.

NEWTSK performs non-file I/O, thus requir-

@LDM =LIST Set List Address
SvVC 30 Create Task
BRU NEXT Computation Continues
LIST DATA 6 Six Arguments in List
DATA ONE New Task Priority One Lower Than
Job Priority
DATA TASKID Numeric Task Identifier
DATA NEWTSK Pointer to NEWTSK
DATA MINUSI No Register Arguments
DATA TCBSTK TCBSTK of 110 Words
DATA WCL Pointer to Wait Criteria List

(listing continued on next text page)

5-21 Digital Systems Division

(e}
%—@‘@ 943005-9701

(listing continued from preceding text page)

Constants, Argurnents, etc.

ONE DATA 1
TASKID DATA O
MINUS1 DATA -1
TCBSTK DATA 110
WCL DATA 23
DATA O
DATA 10000
REF NEWTSK

5.12.2.3 ARGUMENTS IN A AND X, The following example creates a task
that activates a non-reentrant subroutine, NEWTSK, with one argument in
the A register and one argument in the X register. NEWTSK performs non-

file 1/O, thus requiring a TCB stack of 110 words.

@LDM =LIST Set List Address
SVC 30 Create Task
BRU NEXT Computation Continues
LIST DATA 6 Six Arguments in List
DATA ZERO New Task Priority Same as Job Priority
DATA TASKID Numeric Task Identifier
DATA NEWTSK Pointer to Newtsk
DATA TREG Pointer to Register File
DATA TCBSTK TCB Stack of 110 Words
DATA ZERO Create Active Task

Constants, Arguments, etc.
TREG DATA RFILE

ZERO DATA O
TASKID DATA 1

RFILE DATA 1 A Register - Address of I
BSS 1 E Register - Dummy
DATA 10 X Register - Index of 10
BSS 1 M Register - Not Specifiable
BSS 3 S, L, B - Dummy

TCBSTK DATA 110
REF NEWTSK
I BSS 100 Data Array

5-22 Digital Systems Division

[e]
(_I—@; 943005-9701

5.12.2.4 TWO ARGUMENTS. The following example creates a task that
activates a non-reentrant subroutine, NEWTSK, with two arguments, ARG1

and ARG2. NEW TSK performs non-file I/O thus requiring a TCB stack of
110 words.

LDM =LIST Set List Address
SvVC 30 Create Task
BRU NEXT Computation Continues

LIST DATA 11 Eleven Arguments in List
DATA ZERO New Task Priority Same as Job Priority
DATA TASKID TASKID of One
DATA NEWTSK Pointer to NEWTSK
DATA MINUSI No Register Arguments
DATA TCBSTK TCB Stack of 110 Words
DATA ZERO Create Active Task
DATA STKPTR Stack for Argument List
DATA ZERO No Work Space
DATA ZERO No Volatile Arguments
DATA ARG! Pointer to First Argument
DATA ARG2 Pointer to Second Argument

Constants, Arguments, etc.

ZERO DATA O

TASKID DATA 1

MINUS1 DATA -1

TCBSTK DATA 110

STKPTR DATA $+1
BSS 3

ARGI1 DATA X,Y,Z

ARG2 DATA 1,7
REG NEWTSK

5.12.2,4 TWO ARGUMENTS AND WORKSPACE., The following example
creates a task that activates a reentrant subroutine, RSUB, with two argu-
ments, ARGl and ARG2. RSUB performs file I/O, thus requiring 300 words
of TCB stack. In addition, RSUB requires 10 words of remote data area for

workspace.
@LDM =LIST Set List Address
SVC 30 Create Task
BRU NEXT Computation Continues

(listing continued on next text page)

5.23 Digital Systems Division

o
%@ 943005-9701
(listing continued from preceding text page)
LIST DATA 11 Eleven Arguments in List
DATA ZERO New Task Priority Same as Job Priority
DATA TASKID TASKID of Two
DATA RSUB Pointer to RSUB
DATA MINUSI No Register Arguments
DATA TCBSTK TCB Stack of 300 Words
DATA ZERO Create Active Task
DATA STKPTR Stack for Argument List and Work Area
DATA MINUSI Nonzero Signifies Work Area Supplied
DATA ZERO No Volatile Arguments
DATA ARGI Pointer to First Argument
DATA ARG2 Pointer to Second Argument
Constants, Arguments, etc.
ZERO DATA O
TASKID DATA 2
MINUS1 DATA -1
TCBSTK DATA 300
STKPTR DATA $+1
BSS 14
ARG1 DATA X,Y,Z
ARG2 DATA 1I,J
REF RSUB
5.13 LOAD MEMORY IMAGE PHASE - SVC NUMBER 37
NOTE
SVC 37 is not normally used directly by a user pro-
gram. Normally the overlay manager calls SVC 37
for the user as described in Section VIII for DXOLE.
@LDM =ARGLST Set M-Register to List Address
SVC 37 Execute Call
ARGLST DATA 3 3 Arguments
DATA MIPNUM Address of Memory Image Phase Number
DATA LOADR Address at Which to Load
DATA EPA Entry Point Address
MIPNUM DATA n Memory Image Phase Number per DXOLE
Load Map
MODULE BSS. k Overlay Area
LLOADR DATA MODULE
EPA BSS 1 Start Address for Execution

5-24

Digital Systems Division

o]
%@ 943005-9701

SVC 37 loads memory image phases directly from the load module file as-
signed to the running job. A memory image phase is a separate program
segment that was produced by the DX980 Linkage Editor (DXOLE). DXOLE
assigns a number to each memory image phase and outputs that number as
part of the DXOLE load map. Refer to the DXOLE description in Section VIII
of this manual for further details on load modules and memory image phases.
The SVC 37 call applies to preplanned overlays. This means that the link
editor must establish the load address relative to the main program (root).
The overlay may only be loaded at that one relative address. On return
from SVC 37 EPA contains the entry point address of the loaded phase. '

5.14 LOAD AND RELOCATE MEMORY IMAGE PHASE - SVC NUMBER 38

@LDM =ARGLST Set M-Register to List Address

SvC 38 Execute Call
ARGLST DATA 3 3 Arguments
DATA MIPNUM Address of Memory Image Phase Num-
ber
DATA LOADR Address at Which to Load
DATA EPA Entry Point Address
MIPNUM DATA n Memory Image Phase per DXOLE Load
B Map
MODULE BSS k Overlay Area
LOADR DATA MODULE
EPA BSS: 1 Start Address for Execution

SVGC 38 transfers memory image phases to memory and relocates them with-
in memory. The relocation map for the memory image phases is brought in-
to the job extension area at the same time that a memory image phase is
brought into the job area. The relocation map must, therefore, be consi-
dered when determining the size of the job extension area. The size of the
relocation map can be determined by dividing the number of words in the
memory image phase by sixteen (one map bit per phase word). This call ap-
plies to overlays that are not preplanned. Therefore, the link editor did not
assign a fixed address to the overlay relative to the main program (root).
The LOADR cell holds the load address of the module. This address may be
determined dynamically. On return from SVC 38 EPA contains the entry
point address of the loaded phase.

Change 1 5-25 Digital Systems Division

e}
{é]@ 943005-9701

5.15 COMMAND SCANNER MODULE - SVC NUMBER 41

CLDM = ARGLST Set M-Register to List Address

SvVC 41 Execute Call

ARGLST DATA n number of arguments
DATA CMDSTR command string
DATA KEY key word area

DATA CTRL control information
DATA PAKSTR packed string
DATA RESILAB reserved labels

T T T T T T T e e e e e e e e e e e e e e e e e e e - -

DATA MAXCH number of characters to scan

optional

T e e e e e e e e e e = e e e e e e wm e e e e e e m - —— o

r~===-=
S |

The Command Scanner SVC is a DX980 nucleus module that can be accessed
through SVC 41. SVC 41 accepts free format command records and pro-
duces fixed format arrays. Table 5-5 describes the language syntax accepted
by the command scanner.

5.15.1 EXTERNAL INTERFACE

The linking to SVC 41 is identical to the linkage for other SVC's. The M reg-
ister points to an argument list. The first word of the list contains the num-
ber of arguments. Subsequent words contain the argument addresses.

5.15.1.1 INPUT. All arguments, except PAKSTR, must be initialized by
the calling routine before issuing the SVC. The following parameters are
necessary as input:

CMDSTR. The command string may be a variable length input record.
If the MAXCH argument is specified, then the size of the command is
specified via this argument; otherwise, the command string is assumed
to be an 80 character input record, in which case if the actual string
is less than 80 characters long, it should end with a period or semi-
colon, or have the remaining characters filled with blanks.

KEY. KEY is an array that holds the descriptors for the command plus
all arguments in CMDSTR. The calling routine must zero the first word
of the KEY array before invoking the SVC. If the Command Scanner

later requests continuation records for a command, the first word con-
tains a non-zero value. This value should not be changed until the calling

routine wants to start a new command.

Change 1 5-26 Digital Systems Division

o
%@ 943005-9701

Table 5-5. Description of Command Language (Backus-Naur Format)

<command >::=<command string>.
<command string>::= <command identifier>|
<command identifier> <delimiter> <operand string>

<command identifier> ::= <label>| <blanks> <label>
<operand string> ::= <operand>

| <operand string> <delimiter> <operand>
<delimiter> ::=,]B ¥ <delimiter> | <delimiter> B|;
<blanks> ::=B<blanks>|¥ | (no characters)

A command can extend over several input records. The first
characters on the record will be ignored if CTRL word 5 is
appropriately set. If a command extends to the next record,
then the rightmost delimiter on the current record should be
a semi-colon. If neither a period nor a semi-colon is pres-
ent at the end of a record, then a period is assumed. Com-
ments may appear between the period or semi-colon and the
end of the record. The command identifier is compared
against the labels in the Reserved Labels table. If the com-
mand identifier is found in the table, the identifier is treated
as a Reserved Label; otherwise, the command identifier is
treated as a label. Only the leftmost eight characters of the
command identifier are significant.

<operand> ::=<label>] <number> | <expressions> | <range>
I<empty operand>
| <string> |<assignment>
<label>::=<letter> | <label> <letter> | <label><decimal digit>
<letter> ::= AlB| ¢|D|E|F|clHllsIKILIMINIOlPIQIRISITIUIVIW|XIY|Z
The length of labels is not restricted.
<number> ::= <sign><decimal integer>|<decimal integer>|<hex integer>
<decimal integer> ::= <decimal digit> | <decimal integer> <decimal digit>
<decimal digit>::= ol1l2l3l4|5|6l7l8l9
<sign>ii=+1-

<hex integer> ::=><hex digit>|<hex integer> <hex digit>

Change 1 5-27 Digital Systems Division

[e]
%@ 943005-9701

Table 5-5. Description of Command Language
(Backus-Naur Format) (Continued)

<hex digit>::= 0l112l3l4[5l6l 7l 8l9lalBl cIDIEIF

Decimal integers must be in the range of -32768 to 32767.
Hex integers must not contain more than four hex digits.

Numbers larger than four hex digits must be described by
strings.

<expressions> ::= <label>+ <right side>
| <label> (<subscripts>)= <right side>
<right side>::= <number>| <label>| <string>] (< subscripts>) |<range>
<subscripts> ::= <subscripts>, <script>|<script>
<script>::= <number>]|<label>
The number of subscripts allowed is not restricted.
<empty operand>::= {the empty set}

An empty operand is generated for every occurrence of
one of the following conditions:

° A pair of commas separated by no other characters
or only by blanks.

e A comma and a period separated by no other char-
acters or only by blanks.

® A comma and a semi-colon separated by no other
character or only by blanks.,

<subscripted expression>::=<label> (<subscripts>)= <right side>

<subscripts> ::= <subscripts>, <script>| <script>

<script>::= <number>) < labels>
The number of subscripts allowed is not restricted.

<string>::=| <substring>|

<substring> ::=<character>| < substring> <character>

<character>::= Any USASCII character. If a "|" is to appear in a
<substring>, then "ll'" should appear in the input to the scanner.
The length of the strings is not restricted.

<assignment> ::=<label>: =<label>

<range> ::= <number> :<number>

Change 1 5-28 Digital Systems Division

o]
%@ 943005-9701

CTRL.
°
°

CTRL is a six word array, that must be initialized as follows:
Word 0 - Number of Characters Reserved for PAKSTR
Word 1 - Number of Words Reserved for KEY

Word 2 - Not Initialized by the Calling Routine. Used by
Command Scanner for Workspace

Word 3 - Not Initialized by the Calling Routine. Used by
Command Scanner for Workspace

Word 4 - Number of Labels in RESLAB

Word 5 - The Column Number in CMDSTR Where Scanning is
to Start; the First Column in CMDSTR is Column
Zero.

MAXCH. MAXCH is a one-word field containing the number of char-
acters to scan. This argument is optional and if not specified the com-
mand string size is assumed to be 80 characters.

5.15.1.2 OUTPUT.

workspace.
guments.

SVC 41 changes PAKSTR and KEY, plus two words of
The following paragraphs describe the effects on these two ar-

PAKSTR. PAKSTR is used for storage of alphanumeric fields that were
retrieved from CMDSTR. The fields are packed together under control
of the KEY array.

KEY. The first word of KEY contains a completion code. The remain-

ing words contain a translation of the command string.

The value of the

completion code indicates one of the following conditions:

Normal End of Scan - A complete command has been success-
fully decoded.

Continuation Requested - The command extends across more

than one record. The value of the completion code minus one
is the number of continuation records previously read. KEY

array contains descriptors for all fields of CMDSTR that have
been scanned.

Error - Scanning of CMDSTR is terminated. The value of the
completion code indicates which error has occurred. Table
5.6 describes the error numbers. The KEY array contains
descriptors for all fields of CMDSTR that have been scanned.
However, the last descriptor may be incomplete or erroneous.

Change 1

5-29 Digital Systems Division

o]
%‘—@(’; 943005-9701

Table 5-6. Error Codes

Code Explanation

401 Overflow of the keyword area.

402 Overflow of packed strings character string.

403 The right-hand side of an expression or range is missing.
404 Unrecognizable or illegal subscript.

405 Missing delimiter after command identifier.

406 Number is larger than 16 bits.

407 Operand starts with illegal character.

408 Illegal digit in number.

409 Missing delimiter after operand.

410 Missing delimiter after subscript.

411 Illegal character precedes command.

412 ITS Run command does not contain a label or an expression.
413 Missing equal sign following colon in assignment.

414 The right-hand side of an assignment is missing.

415 Too many equal signs in expression.

416 Negative number of characters specified for PAKSTR by
CTRL word 0.

417 Non-positive number of words specified for KEY by CTRL
word 1.
418 Non-positive number of labels specified for reserved

labels list (RESLAB) by CTRL word 4.

419 The starting column for the scan, specified by CTRL
word 5, does not fall into the range of zero to seventy-nine.

Following the completion code is a description of the translation of CMDSTR.
The second word of KEY contains the number of operands detected in
CMDSTR. The remainder of KEY contains descriptors for the operands.
The format for KEY is illustrated in figure 5-4. The operand descriptors
are described in figure 5-5. The eight possible descriptor types are:
Label, Number, Expression, Range, Reserved Label, Empty Operand,
String, and Assignment.

Change 1 5-30 Digital Systems Division

943005-9701

LABEL DESCRIPTCOR

(o]

NUMBER OF CHARACTERS
IN LABEL

POINTER TO START OF
LABEL IN PAKSTR

NUMBER DESCRIPTOR

VALUE OF NUMBER

ASSIGNMENT DESCRIPTOR

2

NUMBER OF CHARACTERS
IN LABEL

NUMBER OF CHARACTERS
IN LABEL

POINTER TO START OF
LABEL IN PAKSTR

RANGE DESCRIPTOR

3

VALUE OF 1ST NUMBER

VALUE OF 2ND NUMBER

RESERVED LABEL DESCRIPTOR

POINTER INTO RESLAB

(A)130126A

LEFT SIDE OF
ASSIGNMENT

RIGHT SIDE OF
ASSIGNMENT

EMPTY OPERAND DESCRIPTOR

5

SUBSCRIPTED EXPRESSION DESCRIPTOR

NUMBER OF CHARACTERS
IN LABEL

POINTER TO START OF
LABEL IN PAKSTR

NUMBER OF SUBSCRIPTS ON
LEFT SIDE

DESCRIPTORS FOR LEFT SIDE
SUBSCRIPTS (NC DESCRIPTORS
IF NUMBER SUBSCRIPTS = 0)

NUMBER OF SUBSCRIPTS
ON RIGHT

DESCRIPTORS FOR RIGHT SIDE
SUBSCRIPTS (MUST BE AT
LEAST ONE)

STRING DESCRIPTOR

7

NUMBER OF CHARACTERS
IN STRING

POINTER TO START OF
STRING IN PAKSTR

DESCRIPTION OF
LABEL ON LEFT SIDE

DESCRIPTORS FOR
> LEFT SIDE sSuB-—
SCRIPTS

DESCRIPTORS FOR
RIGHT SIDE SuB—
SCRIPTS

Figure 5-5. Templates for Descriptors in KEY Array

Change 1 | 5-31

Digital Systems Division

[o]
<Jiz§} 943005-9701

WORD O

WORD 1

WORD 2

WORDN

(A)130120

KEY ARRAY IN MEMORY

COMPLETION CODE

NUMBER OF DESCRIPTORS

Yy DESCRIPTOR FOR
EACH OPERAND

Figure 5-4. Format of Key Array After Return from SVC 41

5.15.2 SVC 41 EXAMPLE

The ITS Supervisor uses SVC 41 to decode commands from each terminal.
The arguments could be declared as follows: '

CMDSTR BSS
KEY BSS
CTRL DATA
DATA
BSS
DATA
DATA
PAKSTR BSS
1 RESLAB DATA
DATA
DATA
DATA
DATA
DATA

80 Terminal command line
50 Key array

80 Number of characters in PAKSTR
50 Number of words in KEY
2 Workspace for SVC 41
12 Twelve valid commands
0 START SCAN at 0

80 Packed string

'LOGON ! Reserved labels
'LOGOFF"

'RUN !

'STATS '

'EbIT !

'ENTER '

(Listing continued on next text page)

Change 1

5-32 Digital Systems Division

(o]
{—@; 943005-9701

(Listing continued from preceding text page)

DATA 'JOB !
DATA 'DELETE!
DATA 'F1 !
DATA 'F2 !
DATA 'Al !
DATA 'A2 !

If a terminal user enters the following command:
EDIT FILE=(1, USER01, MVFILE).

The command is stored in CMDSTR by an ITS I/O routine. The ITS super-
visor issues SVC 41 with the standard argument linkage for SVC's. After
control returns from the command scanner, PAKSTR and KEY contain the
values illustrated in figure 5-6.

KEY PAKSTR
o]l SCAN COMPLETE . F
{ v

5 } 5 DESCRIPTORS f 1
4 Z L

COMMAND '
4 . 3 £
6 «f u
a LEFT SIDE OF EXPRESSION /f s
o S L E
o ® NO SUBSCRIPTS ON Lsyr"sms 7

p

3 * 3 SUBSCRIPTS ON RIGHT SIDE 3
i r T 1

FIRST ARGUMENT
1 i M
o P Y
6 SECOND ARGUMENT e F
4 L i
0 o L
6 THIRD ARGUMENT 5

10 J

(A)130122

Figure 5-6. Resulting Contents of KEY and PAKSTR

Change 1 5-33 Digital Systems Division

o]
q@ 943005-9701

5.16 WAIT FOR I/O - SVC NUMBER 43

@LDM =ARGLST Set M-Register to List Address

SVC 43 Execute Call
ARGLST DATA 1 1 Argument
DATA PRB Address of PRB Used for Initiate Call

The Wait for I/O SVC is used in conjunction with an Initiate I/0 data transfer
(see Section III) or with a multitasking program that requires synchronization
of 1/O and processing tasks. For Initiate I/O calls the calling program con-
tinues execution during the actual 1/O transfer. If processing must be dis-
continued at some point in the program until a requested 1/O transfer is com-
plete, the Wait for I/O SVC is issued. Program execution is then suspended
until the I/O transfer is complete. If the 1/O is already complete, process-
ing proceeds without suspension.

The procedure is similar for multitasking programs except that a separate
task issues an Execute 1/O rather than an Initiate I/O call. Other tasks
issue a Wait for I/O SVC to synchronize the I/O with processing portions of
their program.

Change 1 5-33A/5-33B Digital Systems Division

o]
<‘}(@;’P 943005-9701

5.17 ALLOCATE RESOURCE - SVC NUMBER 49

@LDM =ARGLST Set M-Register to List Address

SvVC 49 Execute Call
ARGLST DATA 2 2 Arguments
DATA JERR Address or Return of Error Code
DATA JLDT Address or Resource Assignment Block
JERR BSS 1 0=0k, 39=Device Offline, 88=Device Un-
available, > 0= Error
JLDT BSS 20 Assignment Block

The Allocate Resource SVC assigns a logical unit to a device or file from
within user code at runtime. This feature permits extension of the job as-
signments that were made with JCL (refer to Section II for a discussion of
JCL assignments). In response to SVC 49, the operating system checks the
availability of the requested resource. If the resource is available, the op-
erating system assigns that resource to the specified user job LUN. If the
specified LUN matches a previous user LUN, the new assignment super-
cedes the old assignment.

CAUTION

When using SVC 49 with a high priority program,
ensure that lower priority programs have not re-
served the requested resource. Failure to observe
this precaution may deadlock the system until the
lower priority program releases the device.

Input parameters for SVC 49 are one word for error code return, plus
another word group for the resource assignment block. The error code re-
turned in the first parameter is one of the following quantities:

° 0 = Allocation Made

) 39 = Device Offline

° 88 = Device Already Assigned/Committed
. other (See Appendix A for error codes)

The resource assignment block (JLDT) describes the file or device to be
assigned. The length of this block varies. It is four words long for a de-
vice assignment, 13 words long for an old file assignment, and 20 words
long to define a new file or replace an old file. Table 5-7 lists the word and
bit assignments for all fields of the resource assignment. Unused fields

should contain zeros for compatability with future uses.

5-34 Digital Systems Division

(o]
%@ 943005-9701

Table 5-7. Resource Assignment Block (JLDT) Format

Word Bit Field Description
0 Flag Word
0 Not used
1 Device(0)/file(l) flag
2 Not used
3 Exclusive(0)/shared(l) access flag

4.5 Not used(00)2
No pass(0)/pass(l) resources flag

Remainder of bits applicable to file assignments only:

7 No delete(0)/delete(l) file flag
8-9 Disposition flag:
002 = Assign old file
012 = Define new file
102 = Replace old file

112 =1Illegal disposition
10-11 File type flag
002 = Illegal type

012 = Linked sequential
102 = Relative record
112 = Key indexed
12 Permanent(0)/temporary(l) file flag -
13.15 Not used (000),

0-7 Not used

, 8-15 Logical unit number (LUN)

2 Device index (decimal 1-256 corresponding to device re-
quired). Actual device indexes for the physical devices
can be obtained through the List Device (LD) command

during IPL,

3 Reserved for future use

Remainder of words applicable to file assignments only:

4 Number of buffers to be used for file I/0
5-7 File owner user ID (6 USASCII alphanumeric characters)
8-10 File name (6 USASCII alphanumeric characters)
11-12 File password (4 USASCII alphanumeric characters)

5-35 Digital Systems Division

o]
@ 943005-9701

Table 5-7. Resource Assignment Block (JLDT) Format (Continued)

Word Bit Field Description

Remainder of words applicable to file define/replace
only:

13 Integrity code

0-2 Read code

100, = Creator only
1102 = Password owner
1117 = Any user

3.5 Write code-same options as read code

6-8 Delete code-same options as read code

9-11 Execute code-same options as read code

12-15 Not used
14 Initial file size (in tracks)
15 First disc address for allocation (in tracks)
16 Physical record length (in words)
17 Maximum file size (in tracks)
18 Logical record length (in characters) for relative rec-
ord files only

19 Key length (in characters) for key indexed files only

5.18 DEALLOCATE RESOURCE - SVC NUMBER 51

@LDM =ARGLST Set M-Register to List Address
SvC 51 Execute Call
ARGLST DATA 2 2 Arguments
DATA JERR Address for Return of Error Code
DATA JLUNO Address for Logical Unit Number
JERR BSS 1 0=0k, >0=error
JLUNO DATA n Logical Unit for Released Resource

The Deallocate Resource SVC removes an assignment of a device or file from
a user program at runtime. The released resource may have been allocated
to the job step initially by JCL or may have been allocated during runtime
with a SVC 49 call.

The input parameters consist of a word for return of error code from DX980
(0=0k, > 0=improper LUN), plus a word containing the LUN(1-254) to be
deallocated.

5-36 Digital Systems Division

o
J\@? 943005-9701

5.19 GET PROGRAM LIMITS - SVC NUMBER 98

@LDM =ARGLST Set M-Register to List Address
SvVC 98 Execute call
ARGLST DATA 1 1 Argument
DATA IIMITS Address for Limits Depository
LIMITS BSS 2 Lower and Upper

SVC 98 is identical to SVC 3 (Get Memory Limits) except that the memory
limits returned in LIMITS correspond to the area between the last word of
the user program and the end of the job area. This SVC determines the
amount of memory remaining for work area beyond the actual program code.
When using this SVC in conjunction with preplanned overlays, LIMIT (0)
contains the first word beyond the longest overlay; when used with non-
preplanned overlays, LIMIT (0) contains the first word beyond the root seg-
ment.

5.20 USER START JOB - SVC NUMBER 129

@LDM =ARGLST '~ Set M-Register to List Address
SVC i29 Execute call

ARGLST DATA 1 1 Argument
DATA JSB Address for Job Structure Block

The User Start Job SVC presents independent job steps to the system for exe-
cution. The input to this SVC consists of a Job Structure Block (JSB). To
initiate a multistep job string, the user must issue a separate User Start
Job SVC for each job step of the string. The JSB for a single job step con-
sists of a 26 word preamble plus one resource assignment block (JLDT) for
each resource to be initially assigned to the job step. Refer to the Allocate
Resource call (SVC 49) for a description of the JLDT. Table 5-8 lists the
word and bit assignments for the JSB preamble. Jobs may be started from
the system console or via batch or interactive input through the subsystems.
All of these methods utilize JCL. Jobs should be initiated in those ways
rather than through SVC 129. User Start Job should be used only when other
alternatives are unsatisfactory. If the system detects an error in the struc-
ture of a job being submitted, it dismisses all previous job steps and aborts

the job.

5.37 Digital Systems Division

943005-9701

Table 5-8. Job Structure Block (JSB) Preamble Format

Word Bit Field Description
0 Total length of JSB (for one job step, including all
JLDT's)
i Flagword
0 Last job step in sequence of steps within a job
0=No (More SVC 129's are forth coming in this
job)
1=Yes (This is the last SVC 129 for this job)
1 Privileged mode

0=Unprivileged mode <PROT >
1=Privileged mode <PRIV>

2-15 Not used

2-4 User 1, D, -<userid> (6 alphanumerics in USASCII)

5-7 Job name - <jsname> (6 alphanumerics in USASCII)

8 Job step number within job string (1 to 15)

9 Job priority - <jsprty> (1 to 31)

10 Number of task priority levels within the job - <nprty>

(1 to 31)

11 User partition size - <jarea> (load module + user buffer)
12 Job size - <jearea> (I/O buffers + job internal system

control area)

13 Stack size of initial task TCB and default size for sub-
sequent tasks - <stksiz>

14 Time limit for job step (in seconds); -1 indicates no
time limit

15-16 Two words, initially zero, for use by DX980

17 Load module volume ID - <volume>

}2 } Load module user I.D. (6 alphanumerics USASCII) -
20 <fileid>

g; } Load module file name (6 alphanumerics in USASCII) -
23 <filnam>

24 } Load module password (4 alphanumerics in USASCII) -
25 <pswd>

26 JLDT's

5-38 Digital Systems Division

[o]
{@ 943005-9701

SECTION VI
BATCH PROCESSING SUBSYSTEMS

6.1 GENERAL

Three separate subsystems provide batch processing capabilities to the

DX980 user., These subsystems are Batch Input Reader (BIR), Batch Input
ano'lpr (BIS), and Batch Output SPQQler (BOS), The two input subsystems

allow submission of user programs through a card reader. These subsys-
tems accept a data stream of intermixed data and control cards. However,
the BIS subsystem stores the input information on disc prior to activation of
the job, whereas the BIR subsystem allows the executing program to read
directly from the input peripheral device. Similarly, the BOS subsystem
reads program output from a disc and transfers it to a low speed output de-
vice such as a line printer. The subsystems may run concurrently as long
as they each have separate peripheral devices. Normally, the operator
starts one subsystem and allows it to run continuously. Any of the subsys-
tems, however, may be stopped at any time.

The subsystems are structured and invoked in the same manner as a job,
Each subsystem requires a JCS that identifies the peripheral devices and the
load module file. The operator activates the subsystem with JCL Job and

Misim A rmm i ata Aa funma tha .« ramanla Tha £fAT1 Axrd N ey -la A mmad L NN
FANERY A \-U.I.J..Ll.lLG.lL\J.D AL \WL1L l.u.c Dy Dbc.l..l.l LUILIDWUL T, A LLCT LULLUWLJLS Pal 651 GP.IJ.D aescrione
the operation of each subsystem and provide examples of batch processing
sequences,

6.2 BATCH INPUT READER (BIR)

The BIR subsystem functions as a single program input stream, That is,
the program reads any .chu.;:. ed 1npu.. data dire c»u.y from the i .L.ulJu.l., device,
Therefore, the batch input device may be unavailable to other users until
that program terminates, The BIR subsystem does, however, decrease the
1/0 overhead associated with spooling, Figure 6-1 illustrates a typical deck

structure for BIR input. The following control commands govern BIR pro-

cessing:
//JOB JCL Job command
//RUN JCL Run command
//DATA BIR Data Control command
/$ BIR End of Job command

6.2,1 JOB COMMAND

The Job command used with BIR is identical to the JCL Job command and
defines the start of the job. This command is described in Section II of this
manual,

6-1 Digital Systems Division

(o)
{@ 943005-9701

ENTER VIA CONSOLE
/7/3J0B BIR SYSTEM
/7 RUN BIR

RUN ASMLGO DSRC=CRI1

FORTRAN COMPLIER DELIMITER

FORTRAN COMPILER DELIMITER

/\ #/RUN FTNLGO DSRC=CR1 DEVS=CR{

NOTE. 1. BIR REQUIRES A CARD READER FOR INPUT
(B8)130751

Figure 6-1, BIR Input Deck Structure

6.2.2 RUN COMMAND

The Run command used with BIR is identical to the JCL Run command and
defines the JCS that loads and executes the requested JOb This command is
described in Section II of this manual,

6.2.3 DATA CONTROL COMMAND

The Data command (//DATA) identifies the start of the user data input, This
command must be included following the Run command and before the data
stream whenever data appears in the job input to BIR, The Data command
for BIR contains only the six character symbol, //DATA, Other information
may be included, but BIR ignores that input, Only one DATA command is
allowed in a BIR job., The data deck must be organized in the order expected
by the user program, The data deck cannot contain intermixed control cards,

6.2.3.1 SYSIN ASSIGNMENT, If the JCS identified in the Run command
contains an assignment to the generic device, SYSIN (/ASSIGN 6 SYSIN,),
then the input job must contain a Data command, When BIR reads the Data
command, it deallocates the input device and suspends operation until the
user program terminates. The user program then executes and is assigned
the same input device. The program acquires all data from this peripheral
as it is needed until processing terminates, At that point, BIR reactivates
and scans the input from the peripheral device for a new Job command.

Change 1 6-2 Digital Systems Division

[e]
@ 943005-9701

6.2.3.2 DEVICE ASSIGNMENT, If the user job contains an assignment to
the same I/O device that BIR is using, BIR again deallocates that device and
suspends processing until the user job completes, For example, if device
CR1 is assigned as the input device for BIR and a user job desires input
from that device, then the user job input must also contain a Data command
following the Run command, plus the associated input data., BIR then pro-
cesses the input as if the JCS for the job had assigned the input to SYSIN,
The JCS may contain many assignments to either SYSIN or the BIR input de-

vice, All such assignments designate the same device,

6.2.4 END OF JOB COMMAND

The End of Job command (/$) follows the last data input of the user program
and precedes the next Job command in the input stream. This command re-
sets BIR for the next job and signals the end of the current job.

6.3 BATCH INPUT SPOOLER (BIS)

The BIS subsystem receives input from the assigned peripheral device and
stores that input on a disc prior to the start of the related program. This
operation is called spooling, When the program starts, it can access data
from the high speed disc, rather than from the low speed input peripheral.

This system allows shorter program execution time and submission of other
jobs while the first job is executing. Figure 6-2 illustrates a typical deck
structure for BIS input. The following control commands govern BIS pro-

cessing:
//JOB JCL Job command
//RUN JCL Run command
//DATA BIS Data Control command
/$ BIS End of Job command

6.3.1 JOB COMMAND

The Job command used with BIS is identical to the JCL Job command and de-
fines the start of the job, This command is described in Section II of this
manual,

6.3.2 RUN COMMAND

The Run command used with BIS is identical to the JCL Run command and
defines the JCS that loads and executes the requested job, This command is
described in Section II of this manual,

6.3.3 DATA CONTROL COMMAND

The Data command (//DATA) identifies the start of the user data input. This
command must be included following the Run command and before the data

6-3 Digital Systems Division

943005-9701

ENTER VIA CONSOLE
/730B BIS SYSTEM

// RUN BIS
/$ /‘
/7% 4
/‘\hBIS JOB DELIMITER
SAPG
SOURCE \
DECK SAPG DELIMITER
// DATA A
/1 RUN ASMLGO
/1 JOB - -
7% /| \— //RUN ASMLGO DSRC=SYSIN
/%
FORTRAN BIS JOB DELIMITER
DECK
/// DATA A
7/ RUN FTNLGO
1/ OB
_ /7RUN FTNLGO DSRC=SYSIN
/7 $ /‘ (NO FORTRAN DATA CARDS)
Iy »
P\—BIS JOB DELIMITER
DATA
CARDS
[| . FOR \FORTRAN PROGRAM DELIMITER
FORTRAN
PROGRAM

/7 DATA 4
/%

/‘\IDENTIFIES DECK FOLLOWING AS DEV5 FOR COMPILER JCL.

FORTRAN
SOURCE
\"FORTRAN COMPILER DELIMITER

| DECK

/7 DATA A

7/ RUN FTNLGO

' // 308 — — / IDENTIFIES DECK FOLLOWING AS DSRC FOR COMPILER JCL
\ //RUN FTNLGO DSRC=SYSIN DEV5=SYSIN
NOTES, 1 ., BASED ON A MINIMUM CONFIGURATION AND SUPPLIED FTNLGO SEQUENCE
(B)130752 2, BIS REQUIRES CARD READER FOR INPUT

Figure 6-2, BIS Input Deck Structure

Change 1 6-4 Digital Systems Division

@ 943005-9701

stream whenever data appears in the job input to BIS, More than one Data
command may appear in the input to BIS, Each Data command is in the
form:

//DATA, [<p1>], [<p2>].

6.3.3.1 PARAMETER <Pp>e Parameter <p.> is optional, If supplied,
this field contains the letter J, If BIS detects the letter J in this field, it
spools all cards following the Data command onto the disc including any sub-
sequent Data commands, In this mode the End of Job command (/$) is the
only job delimiter, If the letter J is not supplied in this field, BIS interprets
subsequent Data commands as well as End of Job commands as data deck
delimiters. This allows the data input to be subdivided for use by different
portions of the program, If the Data command contains a J entry, it must
be the last Data command in the input stream since the remaining cards are
not interpreted,

6.3.3.2 PAR_AMETER <Py>e Parameter <Py> specifies the type of data
conversion to be used during spooling, Three entries are possible for this
parameter:

¢ A The letter A specifies conversion of the input data to USASCII
before storing the data on disc.

- D Mlhhna Tatbbaw D cemamtfae Amntmeramatmrm ~F o 2mcmcadt dadba b~ 1of o aees
L J LD 411C LTCLLTLI D DLJCL.L.LI.CD LULIVOIDILUILL ULl LIICT 1lilIpuUuL Uaila W L)]..l].aly
before storing the data on disc,

° D The letter D specifies storing the data directly on disc as it is
read from the input device,

If this parameter is not included, BIS defaults‘to converting the input data
to USASCII code for storage on the disc,

6.3.3.3 ASSIGNMENTS, All assignments for input data under BIS must
be made to SYSIN, BIS does not allow an assignment to the device that it is
using, Programs may have more than one assignment to SYSIN, Each as-
signment to SYSIN must have'a separate data deck preceded by a Data com-
mand, The input data sets must be organized in the same order as their
respective assignments, The first assignment to SYSIN in the JCS reads
the first data set, the second assignment reads the second data set, etc,

6.3.4 END OF JOB COMMAND

The End of Job command (/$) follows the last data input of the user program
and precedes the next Job cormunand in the input stream, This command re-
sets BIS for the next job and signals the end of the current job, Ifa //DATA
J. Data command occurred in the job, the End of Job command is the only
command that terminates data input.

6-5 Digital Systems Division

<SEZ%} 943005-9701

6.4 BATCH OUTPUT SPOOLER (BOS)

The BOS subsystem allows the user program to store output data on a high
speed disc file during program execution, The subsystem then retrieves
the data from the disc when the program is complete and writes the data on
the designated output device. This output spooling feature can be used only
if a System Output Queue (SOQ) file is installed on the system disc. The
operating system verifies the existence of SOQ at each initial program load-
ing (IPL), If SOQ is available, then any job may use the output spooling
feature by assigning the output LUN to SYSOUT. All data written to
SYSOUT is stored on the disc until the job string terminates. At that time
if BOS is running and not busy, it begins to output the data to the assigned
device, If BOS is not running, it will print out the data as soon as it is ac-
tivated with the Job and Run commands,

A job step may assign up to 26 LUNs to SYSOUT; however, the total number
of LUNs assigned to SYSOUT in a job string is also limited to 26. When the
data is spooled, it is separated on the disc according to LUN. Therefore,
when the data is printed out following completion of the job, all data written
to one LUN will be printed before any data is printed that was assigned to a
different LUN. This system provides a degree of organization to the output
data that cannot be achieved by assigning multiple LUNs to the same output
device directly. In that case the data is printed chronologically as produced
by the program. When the data is spooled, it can be divided into functional
groups.

6.5 BIR AND BIS EXAMPLES

1. //JOB JBNAME USERO1L
//RUN JSBKEY
/$

The JOB command specifies a user job with jobname JBNAME under userid
USERO01l. The JSB file defaults to the standard system JSB file under DX980,

The RUN command directs the system to retrieve the JSB with the name
JSBKEY from the system JSB.

2. //JOB JBNAME USERO1 FILE=(1, USER2, FILEX)
//RUN JSBKEY
/$

This example is identical to the previous example except that the JSB file is
on disc unit number one with userid USER2 and filename FILEX,

3. //JOB JBNAME USERO1
//RUN JSBKEY INPUT=CR2 FILE=(USERS3, FILE2)

6-6 Digital Systems Division

{@ 943005-9701

The keyword INPUT, established at JCL translation time, is overridden
with device assignment CR2 representing card reader number two. CRZ is

not the batch input peripheral, Keyword FILE is overridden to specify a
specific disc file,

4, //JOB IJBNAME USERO1
//RUN JSBKEY INPUT=SYSIN
//DATA A
data
/%

/$

Input is from the device assigned to the batch subsystem. If executed under
BIS, data is converted to USASCII before spooling. BIR ignores the letter A
in the Data command.

5. //JOB JBNAME USERO01
//RUN JSBKEY INPUT=CR1
//DATA ,, A

da:ta
/e
/$

If CR1 is the system input device, BIS will not recognize this job. BIR ig-
nores the letter A in the Data command.

6., //JOB JBNAME USERO1
//RUN JSB002 INPUT=SYSIN
//DATA J,A

data
/ %

//DATA B

(listing continued on next text page)

6-7 Digital Systems Division

[o]
%@ 943005-9701

data

als
«®

/$
For BIS the //DATA B card is spooled to disc as data because of the 'J' on
the first //DATA card, BIR also ignores the //DATA B card, because the
first Data command suspended the system to wait for job termination (/$).
6.6 BIS EXAMPLE

//JOB JBNAME USERO1

//RUN JSB0OO01 INPUT1=SYSIN INPUT2=SYSIN

//DATA A

da.t.a (a)

/%

//DATA B
data (b)

/%
/$
Data (a) will be with INPUT1 and data (b) will be with INPUT 2,

6-8 Digital Systems Division

(o]
%@ 943005-9701
SECTION VII

INTERACTIVE TERMINAL SUBSYSTEM

7.1 OVERVIEW

The Interactive Terminal Subsystem (ITS) is that portion of DX980 that sup-
ports interactive peripherals such as teleprinters and full duplex CRTs, In

particular, a single version of ITS allows intermixing in any configuration of

the following terminals:
e Model 733 ASR
e Model 733 KSR
° Model 33 ASR
° Full duplex 912 CRT

The ITS and the terminal user communicate with input commands and output
data or messages, The primary difference in the type of terminal, from the
terminal user's viewpoint, is the amount of information that can be displayed.
Teleprinters provide a single display line whereas CRTs provide up to 24
display lines. v

X7

o] 1 1 AT MMITATDOT A [ag
{eo Lo L VINL iorD N1l

Under ITS a full duplex CRT may be supported either as a single line or a
multi-line device. Single line or multi-line support is determined when
building the PDT for the CRT at IPL time. If single line mode is selected,
the CRT functions exactly as a teleprinter. If multi-line support is specified,
on-screen editing allows convenient operations not possible with a teleprint-
er. In this section references to a CRT applies specifically to a CRT oper-
ating in multi-line mode. The CRT should be regarded as a teleprinter if
single line mode is to be used.

The ITS and the terminal user communicate using input commands and output
data or messages, The first line of a CRT screen is dedicated to commands
and error messages, The remainder of the screen displays data, The
operator must enter requests to ITS in line 1. Each request (command) to ITS
must be followed by a period or have blanks (spaces) for all remaining posi-
tions in line 1. Depending on the type of request, the operator may also
enter lines of data prior to notifying ITS that the screen is ready for process-
ing. The operator can modify data on the screen with the cursor positioning
keys in conjunction with the data keys. Any data change is echoed to the
screen and stored simultaneously in the CRT buffer in the main memory.

The effective screen size for on-screen editing can be specified within a
range of 2 to 24 lines. The size impacts the amount of main memory re-
quired to support the terminal since each terminal must have a main memory
buffer of 40 words per display line. When the operator has completed the

Change 1 7-1 Digital Systems Division

[o]
@ 943005-9701

message on the screen, he transmits the message to the system by pressing
carriage return (CR).

7.1.2 TELEPRINTERS

Communication between the ITS and a teleprinter is in a one-line format.
Each input line must be entered completely before notifying ITS to accept

the input. ITS responds with data one line at a time. The operator keys in
a request to ITS at the terminal and terminates it by depressing carriage re-
turn (CR)., If terminal data is required to complete the request, ITS returns
control to the terminal and rings the bell, At that time the user enters a
data line and presses CR. This procedure continues until the request is sat-
isfied. Mistakes made during command or data entry can be corrected by
pressing CRTL H repeatedly to backspace until the carriage is positioned
over the character in error. Starting at that point, the remainder of the line
can be reentered correctly. When the operator presses the first reentry key,
the DX 980 terminal handler issues a line feed before echoing the character.
Thus, the corrected data appears immediately below the original data, If
this technique is employed several times, the data line resembles a stair-
case, Pressing CTRL N displays the entire data line on a single line, If the
line is uncorrectable, the terminal user can start over by pressing RUBOUT
and reentering the line,

7.1.3 ITS TERMINAL ASSIGNMENTS

ITS runs as a privileged program and can be activated via the RUN command
from the system console. (The system console can be any data terminal de-
vice,) The terminal assignments for ITS are normally incorporated into the
JCL sequence for ITS, but can be overridden in the Run command at submis-
sion time by specification of Ti=<devnam>, For this notation, i is in the
range of 1 through the number.of terminals at the installation and <devnam>
is the mnemonic representation for the subject terminal, Assignments may
be made to the system console (SC) and to the dummy device (DUMMY). Any
program, including ITS, can assign the system console as one of its devices.
Thus it can serve a dual purpose both as a system console and as a user ter-
minal, When assigned to a program, the console displays the message
USER MODE to notify the operator that the console has switched modes. At
that time the operator can use the console as any other terminal. Pressing
CTRL O switches the console back to system mode, After completion of the
system duties, the console can be switched back to user mode with CTRL U,
Assigning a terminal to DUMMY is a useful technique for starting ITS when
one of the normally active terminals is inoperative, This assignment affect-
ively deletes the corresponding assignment in the original JCL sequence,
The following sample entries illustrate initiation of ITS from the System Con-
sole:

(1) //RUNITS Start ITS with default assignments, The
n//" is displayed in response to pressing
the escape key (ESC),

Change 1 7-2 Digital Systems Division

o]
%@ 943005-9701

(2) //RUNITS T1=SC Start ITS with an assignment to the sys-
tem console in addition to the default as-
signments to other terminals, T1 could
have been given a default assignment of
DUMMY in the expanded JCS which would
require positive action for assignment to
the system console,

(3) //RUNITS T1=SC, Same as example (2) except that the ter-
T3=DUMMY minal normally assigned to T3 is inop-
erative,

7.1.4 ITS MEMORY REQUIREMENTS

The memory requirements of ITS vary depending upon the number of termi-
nals, the type of terminals, and whether the terminals are going to use the
Remote Job Entry capability of ITS. ITS requires approximately 6000 words
of JAREA, plus 125 words of JAREA per (one-line) terminal and 150 words
of JEA per terminal. If the terminal is a multi-line CRT, then 40 words per
display line must be added to the JAREA. If the terminal is going to use the
Remote Job Entry capability, then 500 words must be added to the JAREA
and 350 words must be added to the JEA,

7.1.5 REMOTE TERMINALS

After ITS is activated, a read is issued to each assigned terminal, This
command rings the terminal bell and activates the terminal for input. If the
assigned terminal is connected through a telephone data set, the data set is
conditioned so that the terminal is immediately activated when the telephone
connection is made, The procedure for establishing communications between
a telephone dataset and a terminal equipped with an acoustic coupler is as

£A1l
follows:

1) Dial the assigned number and wait for the data set tone (a high pitch
squeal), '

2) Plug the handset into the acoustic coupler (the acoustic coupler
must have the Mode switch set on '""Full Duplex''; the terminal Mode
switch must be set to '""Line"),

3) Terminal is ready for use,

7.1.6 LOGON

When communication is established between ITS and a terminal, the termi-
nal user must enter a Logon command to gain access to ITS facilities. The
format of the Logon command is as follows:

LOGON <«<userid> <acctno>

Change 1 | 7-3 Digital Systems Division

(o]
@ 943005-9701

The Logon command converts a terminal from the inactive state to the ready
state, When the terminal is in the ready state, all the services of ITS be-
come available to the user, The notation <userid> and <acctno> correspond
to user identification and account number respectively, Depending on the
installation, a future enhancement to ITS will use three parameters for val-
idation against a file of acceptable combinations and recording along with the
elapsed time of an ITS session for accounting purposes, The present version
of ITS requires them for syntactic validation. The <userid> field is limited
to six characters, the first of which must be alphabetic. The <acctno> field
is a positive integer that must be less than 32, 768. All ITS command op-
erands may be separated by a single comma, one or more blanks, or a
comma and one or more blanks,

| 7.1.7 OTHER ITS COMMANDS

After the Logon command has been validated, the message 'READY' is dis-
played on the terminal, At this point the following commands are valid
(brackets denote optional fields):

) LOGOFF

. EDIT FILE=(<volume>, <fileid>, <filnam> [,<pswd>])
[LRECL=<lrchar>]

° ENTER FILE=(<volume>, <fileid>, <filnam>[,<pswd>])
[LRECL=<lrchar>] [EXTEND]

e JOB <jsname> <userid>[FILE=(<volume>, <fileid>, <filnam>[,< pswd>])]
. RUN <jcsnam> ...

e STATUS [<jobnum>]

e DELETE FILE = (<volume>, < fileid>, < filnam>[,<pswd>])

The Edit and Enter commands gain access to the Interactive File Editor
(IFE)., The Job and Run commands enter the Remote Job Entry (RJE) facility.
The Stat command accesses the Computer Status Display (CSD) facility. The
Logoff command returns the terminal to the inactive state.

7.2 INTERACTIVE FILE EDITOR

The Interactive File Editor (IFE) is an integral part of the Interactive Ter-
minal Subsystem (ITS). It supports teleprinters.and full duplex CRTs, IFE
allows the user to display, insert, delete or replace records from the file,

as well as create an entirely new file from the editing terminal. Two utility
programs, BLDEDT and DXCOPY, construct the file for editing, and trans-
fer the edited file back to the user file, Two editing commands, ENTER and
EDIT, add or delete records from the file, Figure 7-1 illustrates the data
transitions that may occur within the scope of file editing. IFE operates

only on key indexed files. The file must be constructed such that the keys are

Change 1 7-4 Digital Systems Division

o]
4@ 943005-9701

CASSETTE OR DXCOPY
CARD INPUT
DATA (UTILITY)
BLDEDT
(UTILITY)
BLDEDT LINKED SEQUENTIAL
(UTILITY) USER FILE (NO KEYS)
FILE
DXcorPYy
(UTILITY) -
DXCOPY
(UTILITY)

KEY INDEXED
FILE WITH CON— ! KEY INDEXED FILE
SECUTIVE AND BLDEDT . WITH NONCONTIGUOUS
CONTIGUOUS EDIT EDIT | KEYS AND UNLABELED
KEYS FILE (UTILITY) FILE | REcorps

. o |

ENTERX

EXTEND

EDIT (COMMAND)

{EOMMAND

(COMMAND) AL\ EDIT I
J (commanD)
ENTER

(COMMAND)

KEYBOARD
INPUT

(A)130103

Figure 7-1, Interactive File Editor Transitions

the record numbers and the data is the source text, The first record must
have a key of ''1"", the second record ''2'", etc.. Either of two methods can
create a file in this form, The first method is a utility program name
BLDEDT, BLDEDT accepts input from a sequential access source and
copies the input data into a key indexed file suitable for use by IFE, The
second method is to use IFE to create a suitable edit file, The Enter com-
mand causes IFE to create a new key indexed file and accept the new text
from the user terminal record by record, Adding EXTEND to the Enter
command causes IFE to add new input to an existing edit file, Once a suit-
able edit file is created, IFE may be used to modify it by inserting, replac-
ing, or deleting specified records, This is accomplished with an Edit com-
mand, While editing, the record number keys in the Edit file become
nonconsecutive due to deletions and record insertions without keys, The
keys (or record numbers) may be cleaned up by recopying the file using the

Change 1 7-5 Digital Systems Division

[e]
{@ 943005-9701

BLDEDT utility, When editing is complete, the user may employ the

] DXCOPY utility with the "NOKEYS'" option to transcribe the key indexed file
into a linked sequential file. However, in most cases the edited material may
be left in the key indexed file. The Assembler, the Compiler and other pro-
grams accept input from a key indexed file resulting from IFE.

When using IFE the escape key (ESC) stops input, output, or processing and
returns control to the terminal,

The IFE command set can be separated into three basic catagories: file
commands, edit commands, and state transition commands. Each command
is independent of the type of terminal (teleprinter or CRT) that originated
the command, Special exceptions are noted as they are encountered in the
following command descriptions,

7.2.1 FILE COMMANDS

The IFE File commands assign, create or extend files for use by the IFE,

7.2.1.1 EDIT FILE, The Edit File command (EDIT FILE) directs IFE to
assign an edit file to the requesting terminal for interactive file editing.
The file must have been previously created by the Build Edit File (BLDEDT)
program or by an Enter File command, The Edit File command is per-
missable only when the terminal is in the Ready state. The format for the
Edit File command is as follows. The interpretation of each parameter is
identical to that specified in the JCL description in Section II of this manual.
The default value for LRECL is 80 characters,

EDIT FILE=(<volume>, <fileid>, <filnam> [,<pswd>]) [LRECL=<lrchar>]

After IFE has processed the Edit File command, it converts the terminal to
the Edit state and returns the first record(s) in the file to the terminal, At
this point, the user may enter edit commands or state transition commands
to control further processing, ‘

7.2.1.2 ENTER FILE. The Enter File command directs IFE to create a new
file or extend an existing file using data from the terminal. The file is a key
indexed file, If the file is being created by the Enter File command (EXTEND
option not specified), then the maximum number of tracks allowed for the

file is 25 which accommodates about 1200 lines of text. The access codes of a
file created with the Enter File command are (Any, Any, Any, None) unless
a password is specified in the command in which case the access codes are
(Any, Pswd, Pswd, None). As each record is entered into the file, IFE as-
signs a record number to it that can be used in subsequent editing sessions.
Enter File generally used for manual entry of data as with key-to-disc sys-
tems. Operation with this command is identical when using either a tele-
printer or CRT as a terminal. Control returns to the terminal after each
record is processed and awaits entry of the next record. For this command
line 1 of a CRT contains data rather than commands.

Change 1 7-6 Digital Systems Division

[o]
@ 943005-9701

The format for the Enter File command is as follows, The <fileid> param-
eter must have been previously defined via the CATLOG utility from the sys-
tem console, The<filnam> parameter may be new if the command creates a
new file, Default value for LRECL is 80 characters and defines the line-
width for the terminal,

ENTER FILE=(<volume>, <fileid>, <filnam> [,<pswd>])
[LRECL=<lrchar>] [EXTEND]

The Extend parameter of the Enter File command extends previously created
files by adding records to the end, As each record is added, IFE assigns the
next consecutive record number to it as with newly created files,

After IFE has processed an Enter command, it returns to the user and
awaits entry of data records, The length of each input record, keyed in at
the terminal, is controlled by the carriage return (CR) on a teleprinter or
number of characters per line on a CRT, The record is padded out with
blanks if the record length is less than LRECL, and is truncated if record
length is greater than LRECL., A zero length record (CR only) causes IFE to
stop accepting records to put in the file, and IFE returns to the Ready state.

7.2.1.3 DELETE FILE. The Delete File command directs IFE to delete a
file. The file is deleted if the integrity code which ITS is running under
allows the deletion.

7.2.2 EDIT COMMANDS

The basic format for all Edit commands plus the first two operands is as
follows:

{command} [RN=][+]M [, N]

The braces,{ }, indicate a mandatory field containing the command or opera-
tor. The brackets, [], indicate options. The parameter, M, is either an
absolute or relative record number depending upon the presence or absence
of a preceeding [RN=] field, The absolute record number indicator, [RN=],
directs IFE to select record number M from the record numbers that were
originally recorded in the edit file, Since the record numbers start at 1 and
are all positive, a minus sign for M does not have a general interpretation
for absolute record numbers., However, two special cases exist for starting
in front of the first record in the file (Beginning of File or BOF), or after the
last record (End of File or EOF)., The two cases are:

RN=0 Positions file at BOF
RN=-1 Positions file at EOF

Any other absolute record number for M must correspond to a record num-
ber that exists in the file, If not, the message "RECORD NOT FOUND" is
displayed following the command,

Change 1 7-7 Digital Systems Division

o]
@ 943005-9701

If the [RN=] field is not used, then M specifies a relative record position,
That is, it uses the current record position as a point of reference within
the edit file to access other records, The current record is the first data
line displayed on a CRT or the last data line that was printed on a teleprinter,
Specification of relative record position within a command directs IFE to
move forward (+) or backward (-) M records. If the sign field is not present,
+ is assumed., The current record is defined as relative record number 1,
the next record is record 2, etc., If the sign field specifies a minus number,
-1 refers to the record immediately preceeding the current record, -2 to the
record preceeding -1, etc, If 0 is specified as a relative record number,
IFE converts it to +1. The one exception to this rule is for the Insert Record
I command for CRTs. See examples for that command. The parameter [N]
specifies the number of records to be processed. Processing occurs after
the new file position has been established. If not specified, [N]| defaults to 1.
The following examples illustrate the use of the M parameter and its associ-
ated fields:

° RN=1 Position at record number 1 in the edit file

) RN=-3 Error: An edit file cannot contain a record number
of -3

. +1 Position at the current record: On a teleprinter this

specifies the last record printed, On a CRT it speci-
fies the first data line displayed (the first data line is
actually line 2 on the screen, since line 1 is reserved
for commands) '

e 1 Same as +1

™ -3 Position at the record that is three records before
the current record.

° RN=5,2 Position at record number 5, then process two records,

° 3,1 Position at the record that is two records beyond the
current record, then process one record

e 3 Same as 3,1

7.2.2,1 FIND RECORD: F[RN=][#]M. This command establishes a new
current record and displays it at the terminal, If the terminal is a CRT, it
fills the screen with records from the file starting at the new current record,

7.2.2.2 REPLACE RECORD: R[RN=][#]M[, N]. This command establishes
a new current record and replaces N records in the file with new records
entered from the terminal. If the new replacement record has a pound sign
(#) in column 1, it deletes the corresponding file record but does not re-
place it with a new record. This character allows simultaneous deleting and
modifying of replacement records. After the replacement process is com-
plete, the record immediately following the last record replaced becomes the
current record.

Change 1 7-8 Digital Systems Division

o]
%@ 943005-9701

When this command is entered from a teleprinter, IFE returns control to the
keyboard to accept N records (one at a time). Each time a record is entered,
IFE deletes the corresponding record from the file and, unless a # is in
column 1, replaces the old record with the new replacement record, as en-
tered. If a null length record is transmitted (user enters only a carriage re-
turn), then IFE terminates the replacement process and returns control to
the keyboard to accept a new command. The Replace command has a slightly
different interpretation when entered from a CRT. The records displayed on
the screen become the replacement records even if they originally came from
the file. This feature allows multiline editing from a CRT. The records
displayed on the screen by any previous command can be modified on the
screen and then used as replacements for the corresponding records in the
file. Since the new replacement records come from the screen image, this
command should not be used immediately following a List command which
displays information other than just the records from the file.

The absolute record number option, [RN=], is not valid from a CRT.

The following examples illustrate the use of this command:

° R1,3 Replace the current record and the two successive
records., When entered from a CRT, the replacement
records come from data lines 1, 2, and 3; when entered
from a teleprinter, control returns to the terminal
three times to accept three replacement records. On
any type of terminal, a replacement record with # in
column 1 deletes the corresponding file record and
does not add the replacement record. '

° R RN=1,3 Same as R 1, 3 except that the records are the file rec-
ord with record number 1 and the two successive file
records. This command is not valid from a CRT.

° R 5,4 Replace the file record which is 4 records beyond the
current record and the three following records. When
entered from a CRT, the replacement records come
from data lines 5, 6, 7, and 8; when entered from a
teleprinter, control returns to the terminal four times
to accept four replacement records.

7.2.2.3 INSERT RECORD: I[RN=][x]M [,N]. This command establishes
a new position and inserts N records following the new current record. The
insertions can be terminated short of N records from a teleprinter by trans-
mitting a null line, After processing is complete for the Insert Records
command, control returns to a teleprinter with the print head in position one
and the bell rings. When executed on a CRT, the displayed data opens at the
insertion point to make room for inserting records, A f# appears in column

Change 1 7-9 Digital Systems Division

o
J{@p 343005-9701

one of each insertion record and the remainder of the record contains blanks,
Insertion of records from a CRT is accomplished with a user entered
Replace Record command after the new records have been keyed into the data
lines that were opened for insertion, Each# must be eliminated before exe-
cuting the Replace Record command, or the record will not be inserted.

The absolute record number option is not valid from a CRT, The following
examples illustrate the use of this command:

° 11,3 Insert three records after the current record. When
entered from a CRT, the current record is maintained
on data line l; data lines 2, 3, and 4 are blanked out
except for a # in column 1. The record that was pre-
viously displayed on data line 2 is in data line 5, data
line 3 moves to data line 6, etc. The user-entered Re-
place Record command that would normally follow this
command is R 2, 3. This accomplisﬁgs the actual in-
sertion of the records (that the user has keyed into data
lines 2, 3, and 4) over the top of the lines which IFE dis-
played with the # in column 1. When entered from a
teleprinter, IFE returns control to the terminal three
times to accept three insertion records. If the user
enters a null line (enters only a carriage return), then
the insertion process is terminated and IFE requests a
new command,

° IRN=5,3 Insert three records after record number 5. Not valid
from a CRT. ’
° I RN=0,2 Insert two records before the first record in the file.

Not valid from a CRT.

° 10,2 Insert two records after the current record. If entered
from a CRT, data lines 1 and 2 are:blanked out except
for a # in column 1; and if the normal Replace Record
command of R 1,2 is then entered, the records actually
get inserted before the record that is considered the
current record at the time this I 0,2 command is en-
tered. In this way, records may be inserted before the
first record in the file.

o I-1,4 Insert four records after the record which precedes the
current record. Not valid from a CRT.

NOTE

Since, on a CRT, this command is normally followed
by a Replace Record command fwhich gets replacement
records from the lines on the CRT exactly as they are
displayed), the Insert Record command should not be
used immediately following a List Record command.

Change 1 7-10 Digital Systems Division

o]
%—@) 943005-9701

7.2.2.4 DELETE RECORD: D[RN=][+]M[,N]. This command finds a new
current record and deletes N records starting with the new current record.,
After the appropriate records are deleted, the current record is then changed
to be the record which follows the last deleted record. If records are deleted
from a CRT screen, the displayed data closes to reflect the new contents of
the edit file, The following examples illustrate the use of this command.

. D1,2 Delete the current record and the record which follows
it, When complete, display the new current record.

e D RN=5,3 Delete record number 5 and the following two records.
° D RN=0, 4 Delete the first four records of the file.

7.2.2.5 FIND STRING: FS[RN=][#]M [,N][C1:C2]/STRING/. This com-
mand finds a new current record and searches N records for the subject
string. The search for the string occurs between record columns Cl and
C2. A slash within a string is denoted by a double slash, i.e. //=/. The
Find String command is used in the same manner as Find Record except that
IFE searches for an occurrence of the specified string within the record
limits specified. If Cl and C2 are not specified, IFE searches each record
between column 1 and LRECL, The limits C1 and C2 restrict the search to
fewer than LRECL characters to eliminate unwanted matches and to decrease
the search time. The following examples illustrate the use of this command:

b

] FS RN=1, 10 /AB h

earch thro e e :
with record number 1 for the string
ABC, Establish the record contain-
ing ABC as the new current record.
If the string is not found, display
"STRING NOT FOUND' message and

maintain the original current record.

e
14 L

e FSRN=10,50 1:10 /XY//Z/ Search through fifty records starting
with record number 10 for the string
XY/Z. Limit the search to record
columns one through ten.

7.2.2.6 REPLACE STRING: RS [RN=][*]M [,N][C1:C2]/STRINGL/
/STRING2/. The Replace String command is identical to Find String except
that STRING2 replaces the first occurrence of STRING1. If the lengths of
STRINGI and STRING2 are different, the insertion is made and the record
length is adjusted accordingly. If the adjusted record length is greater than
LRECL, the record is truncated to LRECL, If the new record length is
shorter than LRECL, the record closes and fills with blanks from the right.
The use of consecutive slashes for STRING2 denotes a null string and deletes

Change 1 7-11 Digital Systems Division

o]
{@ 943005-9701

STRINGI from the record., The following examples illustrate the use of this
command:

e RS 1,10 1:20 /ABC/ /DEF/ Search through 10 records starting
with the current record for the
string ABC, If ABC is found, sub-
stitute the string DEF, otherwise
display the message: "STRING NOT
FOUND'", Limit the search to col-
umns 1 through 20,

e RSRN=1,10 /ABC/ // Search through 10 records starting
with record number 1 for the string
ABC, If ABC is found, substitute
a null string, close up the record
and fill with blanks from the right.
Otherwise, display the message
"STRING NOT FOUND',

7.2.2,7 REPLACE ALL STRINGS: RA [RN=][z]M [, N][C1:C2]/STRINGI/
/STRING2/. Replace All Strings is identical to Replace String except that
STRING2 replaces every occurrence of STRINGI1 in the subject records, The
current line is relocated to the record which follows the N lines searched.

7.2.2.8 LIST RECORD: L [RN=][#]M[,N]. This command establishes a new
current record and lists N records starting at that point. When the listing is
complete, the current record remains at the first of the N records listed.
The format of the listed records is as follows:

1. 1If the record has a record number associated with it (the record was
not inserted with an Insert Record command since the last time the
file was built), then the record number (maximum of four digits)
followed by a separator blank and the record are displayed. The rec-
ord is truncated on the right to fit the display line.

2. If the record has no associated record number, then five blanks and
the record are displayed. Again, the record is truncated on the right
to fit the display line.

The List Record command is intended for low volume listing and is, there-
fore, a relatively slow operation. For high volume listing, use the LSTEDT
utility.

7.2.3 STATE TRANSITION COMMANDS

The state transition commands permissable in the edit state are Stop and
Logoff, Stop returns the terminal to the ready state, Logoff returns the
terminal to the inactive state, No state transition commands are permissible
from the enter state., The only option available to change states is a null
transmission which switches the state from enter to ready.

Change 1 7-12 Digital Systems Division

o]
{1@; 943005-9701

7.3 REMOTE JOB ENTRY

The Remote Job Entry (RJE) facility in ITS provides interactive access to the
job management system of DX980 through a user terminal. RJE accepts two
basic commands: Job command and Run command, Both commands are
valid from the ready state only, '

7.3.1 JOB COMMAND

The Job command is optional when submitting a job via ITS. However, if it
is specified, it must immediately precede a Run command. The format of
the Job command from ITS is identical to that from any other system source,
If the Job command is not supplied, the default values are as follows:

® <jsname> - <userid> from Logon command
e <userid> - <userid> from Logon éommé,nd
® <devnu.m$ -~ 1, corresponds to DISC1

e <fileid> - SYSTEM

e <filnam> - SJCBFL, the system JCL file

e <pswd>- none

7.3.2 RUN COMMAND

The Run command is required to start a job from ITS. The format of the
Run command is identical to that from any other source. One additional op-
tion available to ITS users is the assignment of the user's terminal to the
job being started, This can be very useful if the terminal is located at a re-
mote site, The user can assign the terminal through a device assignment of
TERMIO, Expanded JCL sequences allow changing device assignments through
the use of keywords, Any device keyword can be assigned to the psuedo-
physical device name, TERMIO, ITS substitutes the true device name for
TERMIO before submitting the job. For example the expanded JCL may
specify: DEVICE:=INDEV, In the Run command the user may state:
INDEV=TERMIO. In this case ITS substitutes the true device name for
TERMIO, That device name may be CRT3 or any other device previously
assigned to TERMIO. The pseudo-physical device name, TERMIO, must be
specified in the Run command. It may not be specified in the expanded JCL.
As many device names as desired can be assigned to TERMIO and each name
is converted to the subject terminal, When the job is started, ITS releases
the terminal until the job is complete. At that time ITS reacquires the ter-

Change 1 7-13 Digital Systems Division

[o]
@ 943005-9701

minal and activates it for further communication, The following example
illustrates the device assignment option of the Run command:

RUN XA SRCDEV=DISC1, SRCFIL=(USER01, MYPROG);
LSTDEV=TERMIO, ERRDEV=TERMIO, OBJDEV=PTP1

Run the assembler with input from a
file with file name "MYPROG"
(possibly created and edited using
IFE), Assign listings and error
messages to my terminal (T ERMIO)
and assign the object output to the
paper tape punch,

7.4 COMPUTER STATUS DISPLAY

The Computer Status Display facility in ITS determines system status either
before or after submitting a job through the RJE facility, Entering the fol-
lowing command at the terminal displays the status of all programs in the
system:

STATUS

The statistics for all steps within a specific job can be displayed by entermg
the command in the following form:

STATUS <jobnum>

7.5 ITS ERROR MESSAGES.

ITS error messages fall generally into three catagories.

A. Messages of the form:

ERROR NNNN where NNNN is a four digit error number. These
error messages are given only by the Remote Job Entry and Com-
puter Status Display facilities. The error numbers are passed to
ITS by DX980 and are documented in Appendix A.

B. The message:
INSUFFICIENT MEMORY, TRY AGAIN LATER

This message is given only by the Remote Job Entry and Computer
Status Display facilities and indicates that there is not enough avail-
able memory in the ITS area to perform the request. If several
terminals are currently using ITS, then more memory may be avail-
able later as operations for other terminals are completed.

Change 1 7-14 Digital Systems Division

o
%@ 943005-9701

C. IFE Error Messages:

(1) .INVALID COMMAND
(2) .DISC OFFLINE

(3) .INVALID FILE TYPE

(4) .INVALID ARGUMENT

(5) .ARG COUNT ERROR

(6) .ARG RANGE ERROR

(7) .RECORD NOT FOUND

(8) .STRING NOT FOUND

(9) .STRING TOO LONG

(10) .INSUFFICIENT MEMORY
(11) . FILE ASSIGN ERROR
(12) .FILE BUSY

(13) .FILE FULL

(14) .FILE READ ERROR

(15) .FILE OPEN ERROR

{16) .FILE 1/0 ERROR

In most cases the user can readily discover the problem causing the
error and then reenter the command correctly to continue. However,
messages (15) and (16) may be given in response to the user submis-
sion of the EDIT or ENTER commands and if this occurs the user

D awe TOHAMANTT LLaf~ Tamn2ddlon ~ L1~ amiewad T'TTT
g LlIT Ucsiicu wisid

Ly

iy md o emd o e CTI’\ » - s mes s am
IMUSt €Mte€T viviL O Luuurrf DEIOTE Te=sSupiniicein

or ENTER command.

Change 1 7-15/7-16 Digital Systems Division

943005-9701

SECTION VIII
UTILITY PROGRAMS

8.1 GENERAL

A comprehensive set of programming support language processors and utility
programs is available for use with the operating system. Sequences of ex-
panded JCL supplied with a system reside on the system disc in the file ad-
dressed as FILE=(1, SYSTEM, JCLSRC). Appendix B contains a sample listing
of some expanded JCL sequences, When specified in a Run command, these
standard JCL sequences perform the language processors and utilities, Some
of these programs, such as the FORTRAN compiler, are not unique to the
DX980 operating system., These programs are documented in separate man-
uals, This section provides information concerning the use of these programs
as they apply to the DX980 operating system,

8.2 JCL TRANSLATOR (JCLTRN)

The JCL translator is a utility program that runs in user memory {as opposed
to running in memory that is allocated to the operating system). This pro-
gram translates expanded JCL statements into an internal binary representa-
tion for later processing. Input to the translator can be supplied from any of
the standard 980 input devices (card reader, cassette, magnetic tape, disc
files, etc,). Output from the translator is stored on a disc file for later sub-
mission, Since the translator is a utility program, it can be invoked as any
other user program by using abbreviated JCL form., The saved JCL sequence
for the translator is stored on the system disc together with several other se-
quences that are supplied with each DX980 installation. The name assigned

8.2,1 STANDARD JCL PROCEDURE

The following JCL is a standard procedure for invoking the JCL translator
(JCLTRN).

% CREATE JCL ,COMMENT,"CREATE JcL PROCEDURE "

/REPLACE JCL « CREATE JCL PROCEDURE ,

/EXEC - OBJ'(lcSYSTEHoJCLTRN) NEN'(SOI.7§5!.1!IG) PRTY!M;IS)}

/ _ TIMEsel MEMgSMEM PRTY =PRI ,

/ASSIGN 1 SC DEVICE1=DSRC FILEssFSRC BUFFERSsI ’ SOURCE INPUT
/ASSIGN 2 SC "DEVICEt=DERR SHARE$=SERR o, ERROR MESSAGE
/ASSIGN 3 SC DEVICE:=sDLST FILE!'FLST SHARE$sSLST RUFFERS=1,80URCE I|.ISTING
/ASSIGN 4 DISCy DEVICE1sDOBJ FILEs(SYSTEM,SJCBFL,AB)}s

/ FILEssFOBJ REPLACEs=R0BJ BUFFERSs2 INDEXEDs

/ ACCESSS (ANY,ANY,ANY,ANY) ACCESS:=COBJ} s

/ ALLOCATE=(1,8,96,20) ALLOCATE:sLOBJ KEYLENs6 . OBJECT OUT FILE
/END

Change 1 8-1 Digital Systems Division

o]
%@ 934005-9701

8.2.2 MEMORY PARTITION REQUIREMENTS
The memory allocation parameters for the JCL translator are:

MEM=(300, 7550, 650)

8.2.3 LUN ASSIGNMENTS
The LUN assignments required by the JCL translator are listed in table 8-1,

| Table 8-1. JCLTRN Logical Unit Assignments
LUN Description Comments
1 Expanded JCL input Any sequential access input device
file
2 Error Message Normally assigned to DUMMY when

input is from a Data Terminal;
otherwise assigned to SYSOUT or
LP1.

3 JCL echo print

4 Binary Format JCL output | Key indexed file with key length of
6 characters and a physical record
length of 96 words,

8.2,4 OPERATION

Refer to Section II of this manual for a description of the JCL translator,

8.2.5 ERROR CODES

Refer to Appendix A of this manual for JCL error codes,

8.2.6 SAMPLE INPUT

Refer to Section II and Appendix B of this manual for sample input sequences.

8.3 MASTER FILE DIRECTORY EDITOR (CATLOG)

The CATLOG utility allows the operator to list, create, or delete users in
the Master File Directory of any specified disc volume.

Change 1 8-2 Digital Systems Division

(o]
{@ 430059701

8.3.1 STANDARD JCL PROCEDURE

The following JCL is a standard procedure for the Master File Directory
Editor, CATLOG:
«% CREATE CATLOG,COMMENT,"LIST, CREATE,OR DELETE USERS"

/REPLACE CATLOG « LIST, CREATE, OR DELETE USERS ,
/EXEC 0BJ=(1,SYSTEM,CATLOG) MEM=(390,4000,678) PRTY=(1,5))

/ PRIV TIME==1 PRTY$=PRI .
/ASSIGN @ SC DEVICE3sDCON SHARE1sSCON .. CONTROL
/ASSIGN 6 SC DEVICE2aDLST FILEssFLST SHAREt=SLST BUFFERS=1,USER LISTING
/END

8.3.2 MEMORY PARTITION REQUIREMENTS

The job area required to run CATLOG must only be large enough to contain
the load module since CATLOG requires no work space, Sufficient job area
is 4000 words; sufficient job extension area is 670 words.

8.3.3 LUN ASSIGNMENTS
The logical unit assignments needed for CATLOG are listed in table 8-2,

Table 8-2. CATLOG Logical Unit Assignments

LUN Description Comments
0 Message Control Any input/output device
6 Listing of Users Any printing device

8.3.4 OPERATION

The Master File Directory Editor, CATLOG, is a single task program that
runs under DX980 in the privileged mode. Since it accesses portions of the
system which are inaccessible to the user, the CATLOG modules must be
linked with the system external definition file (SYSTEM, DXEXTD).

The program, CATLOG, should be run from the system console only. It
first types the message:

ENTER COMMAND TYPE--LIST, CREATE, DELETE--

on the message and control device (LUN 0) which is usually assigned to the
system console, The operator then responds by entering the first letter of
any of the three commands (i.e. L, C or D), followed by a carriage return to
select a list, create, or delete user operation, respectively., CATLOG then
requests the disc volume identification by printing to LUN 0:

DISC VOLUME ID =

Change 1 8-3 Digital Systems Division

[}
i!@ 943005-9701

The user responds by entering a number between 1 and 20 followed by a car-
riage return. This number selects the disc pack contained in the disc drive
with that number., The default for this input parameter is disc drive 1 and
can be invoked by entering carriage return without selecting a number.

Beyond this point, CATLOG's response is dependent on the function (list,
create, or delete) selected. Table 8-3 summarizes the input/output of
CATLOG for the three functions, The three functions are described sep-
arately in the next three paragraphs.

8.3.4.1 LIST. If the user responds with an L input to select the list users
function, the utility prints on LUN 6 an alphabetically ordered list of all
users on the disc volume selected, The utility also prints the date and time
of request,

CATLOG provides the following information for each user:
° User ID - the name of the user associated with the directory,

° Integrity code - A three-position code that defines allowed operation
to the user directory for three separate operations. The output
format is X, X, X, for read, write, delete operations respectively,
The letter X represents either N, C, or A (NONE, CREAT, ANY,
the file level integrity codes used as input to the JCL translator/
interpreter). Table 8-4 provides an interpretation of the three
integrity codes as a function of operation at the user level,

. Current user directory size - the number of tracks currently as-
signed to the user directory.

] Maximum user directory size - the maximum number of tracks that
can be assigned to the user directory.

In addition to the above tabular data for each user on the disc volume,
CATLOG prints the following information for the entire disc volume.

° Number of users
° Number of tracks available

) Number of tracks used

8-4 Digital Systems Division

-8

uoisinlg swasAg jeubiqg

Table 8-3, CATLOG User Interaction

CONSOLE OUTPUT

User Response

LIST CREATE DELETE
ENTER COMMAND TYPE--LIST, CREATE, DELETE-- L C D
DISC VOLUME ID = any disc drive number 1 through 20

(default = 1)

USER ID =

A 1 to 6 character alphanumeric

name of the user ID,

(no default)

INTEGRITY CODE =

4 alphabetic charac-
ters, separated by
commas, designate
the access codes for
read, write, delete
and execute acces-
ses (default = A, A,
A, A)x*

MAXIMUM DIRECTORY SIZE =

Number of tracks to
designate maximum
size of user direc-
tory (default = 1)

*N = None
C = Creator
P = Password
A = Any

10L6-900¢%6

[¢)
%@ 943005-9701

Table 8-4, User ID Integrity Codes
Operation
Integrity Read Write Delete
Code
N

(NONE) N, X, X no X, N, X noone can| X, X, N no one can de-
one can access| define new files lete or replace files
the files under| under the user ID under the user ID
the user ID

; > > >

(CREAT) | C, C, C X, C, X X, X, C
only the cre- only the creater only the creator can de-
ator can ac- can define new files | lete or replace files
cess the files | under the user ID under the user ID
under the
user ID

A

(ANY) A, X, X X, A, X X, X, A
any one can any one can define any one can delete or
access the new files under the replace files under the
files under user ID user ID
the user ID

>

8.3.4.2

CREATE,

Creator - that user whose < userid > parameter in the JOB

command matches the <userid> of the directory.

If the user responds with a C input to select the create

user function, the utility requests the following additional information (in
addition to the disc volume ID):

° User ID - A 1 to 6 character alphanumeric name of the user ID to
be created, followed by a carriage return.

° Integrity code - A 3-position code that defines allowed operation to
the user directory for three separate operations.
The input format is X, X, X for read, write, delete

operations, respectively.
See table 8-4 for an interpretation of the three

A,

The letter X is N, C, or

integrity codes as a function of operation at the

user level,

The default for this input parameter is

A, A, A for unlimited user operations,

8-6

Digital Systems Division

%@ 943005-9701

° Maximum user size - A decimal number that designates the maxi-
mum number of tracks to be assigned to the
user directory. The default is 1 track.

The program then creates the designated user by entering a user file direc-
tory (UFD) keyed on the user ID into the master file directory,

8.3.4.3 DELETE. If the user responds with a D input to select the delete
continuing. If other jobs are running, an error message is printed to LUN 0
and the CATLOG job is terminated. If the job does not terminate at this
point, the utility requests (in addition to the disc volume ID) only the user ID
to be deleted. The utility then deletes the user file directory (UFD) from the
master file directory as well as all files created under that user ID. The
CATLOG delete function should not be used to delete individual files under a
user, but only to delete an entire user directory, including all files residing
within that directory. The delete function of CATLOG may be used only when
no other jobs are in the system.

8.3.5 ERROR CODES

Table 8-5 lists the possible error/termination message printed by CATLOG
to LUN 0, Those that are possible only when a specific function is requested

.
are indicate ngly in the table,

o}
v
(o]
(¢
(o]
a1
[a
e

Table 8-5, CATLOG Error Messages

Current

Message Function

Meaning

NORMAL TERMINATION Process performed cor-
rectly no errors

ILLEGAL COMMAND First character of Com-
mand input not an L, C,
or D,

TOO MANY JOBS IN THE SYSTEM D Delete command-cannot
be run if there are other
jobs running under
DX980,

ILLEGAL INTEGRITY CODE C Create command-user
integrity code is not of
format X, X, X where X
is A, C, N,

BAD DATA Numerical input not a
valid decimal integer.

8-7 Digital Systems Division

o
{@ 430059701

Table 8-5, CATLOG Error Messages (Continued)

Current

Message .
g Function

Meaning

ILLEGAL DEVICE ID Device ID not in the
Physical Device Table
chain,

DISC OFFLINE Disc is not enabled,

PREV, DEFINED USER ID C Create command-user
ID already defined in
the Master File Direc-
tory.

ILLEGAL USER ID D Delete command-user
ID not found in the
Master File Directory,

USER ID MISSING D Delete command-user
directory file control
block is not in the file,

8.4 LIST USER FILE DIRECTORY (CATFIL)

The CATFIL utility lists all files in the User File Directory for a specified
<userid>., It also tabulates all pertinent information for each file,

8.4.1 STANDARD JCL PROCEDURE
The following JCL is a standard procedure for List User File Directory

CATFIL:
+» CREATE CATFIL,COMMENT,"LIST FILES UNDER A USER .
/REPLACE CATFIL o« LIST FILES UNDER A USER .

JEXEC 0BJ=(1,SYSTEM,CATFIL) MEM=(390,1858,678) PRTY=(1,5)}

/ PRIV TIMEs=1 PRTY3sPRI _

/ASSIGN @ SC DEVICE3sDCON SHARE$=sSCON . CONTROL
/ASSIGN 6 SC DEVICE1sDLST FILE3sFLST SHARE3$sSL.ST BUFFERSs1 FILE LISTING
/END

8.4.2 MEMORY PARTITION REQUIREMENTS

The job area required to run CATFIL must only be large enough to contain
the load module since CATFIL requires no work space. Sufficient job area
is 1850 words; sufficient job extension area is 670 words,

8-8 Digital Systems Division

o]
{@ 0430059701

8.4.3 LUN ASSIGNMENTS
The logical unit assignments needed for CATFIL are listed in table 8-6.

Table 8-6., CATFIL Logical Unit Assignments

LUN Description Comments
0 Message and control Any input/output device
6 Listing of files Any printing device or a file

8.4.4 OPERATION

CATFIL is a single task program that runs under DX980 in the privileged
mode, Since it accesses portions of the system that are user inaccessible,
it is necessary to link the CATFIL modules with the system external defini-
tion file (SYSTEM, DXEXTD).

The program, CATFIL, may be run from the system console or from the
Batch Processing or Interactive Terminal Subsystems. When run from other
than the system console the printout of the password for each file is sup-
pressed, CATFIL types the following request on the message and control
device (LUN 0): '

USERID =

The user responds with a 1 to 6 character identifier for the <userid> of the
User File Directory to be listed, The utility then requests the volume num-
ber (i.e. disc drive number) of the disc containing the User File Directory:

DISC VOLUME ID =

The user may respond by entering a specific integer value from 1 to 20 fol-
lowed by a carriage return, or by invoking the default volume number of 1
by selecting carriage return only., The utility then prints the date and time
of request, and an alphabetically ordered list of all files within the selected
User File Directory on LUN 6, The information provided by CATFIL for
each file is as follows:

. File Name - 1 to 6 alphanumeric characters identifying the file.

° Disc Address - hexadecimal track address of initial track allocated
to the file,

° Password - 0 to 4 alphanumeric characters identifying the password
for the file, If CATFIL has been invoked from other than the sys-
tem console any passwords for files will be replaced with asterisks.

Change 1 8-9 Digital Systems Division

(o]
(@ 943005-9701

. Integrity code - four alphabetic file access codes in the form Xy

XZ’ X3, X4 where

>
0

read access code
XZ = write access code

X3 = delete access code

e
H~
|

= execute access code

In general X; can be:

N = No one can access the file,

C = The creator can access the file,

P = The user having the correct password can access the file,
A = Anyone can access the file,

° Current File Size = Number of tracks currently allocated to the file,
If the file is completely full, this current file size exceeds the rnaxi-
mum file size by 1 track for linked sequential and key indexed files
only,

. Maximum File Size - Maximum number of tracks that may be allo-
cated to the file. One additional track may be allocated to a file at
the time the file becomes full,

. File Type - Indicates the type of file from the three supported types;
linked sequential, relative record, and key indexed.

° Logical Record/Key Length - Number of characters in the fixed
length logical record for relative record files, Number of charac-
ters in the key for key indexed files.

° Physical Record Length - Number of words in the physical record
for any type file, This establishes the length of the system acces-
sible buffers used for input/output to the file,

In addition to this tabular data for each file within the User File Directory,
CATFIL prints the following information for the specified User ID:

® The number of files

® The number of tracks allocated

8.4.5 ERROR CODES

The possible error/termination messages printed by CATFIL to LUN 0 are
listed in table 8-7.

8-10 Digital Systems Division

o]
{{@; 943005-9701

Table 8-7., CATFIL Termination Messages

Message Definition

NORMAL TERMINATION Process executed correctly

INVALID DEVICE ID Device ID is not in the Physical Device
Table List
ILLEGAL USER ID On INPUT from the CONSOLE-User ID is

greater than 6 characters OR first charac-
ter is not a letter

DISC OFF LINE

BAD NUM Input from the console - not a valid deci-
mal integer

UNDEFINED USER ID User ID not found in the Master File Direc-
tory

8.5 DX980 OVERLAY LINK EDITOR (DXOLE)

The DX980 Overlay Link Editor (DXOLE) must be used to format input object
records into a load module for execution under DX980, Three program
structures are allowed:

1. A memory resident program with no overlays
2, An overlay structure defined at link edit time (preplanned overlay)

3. An overlay structure that is dynamic and can change during execu-
tion (unplanned overlay).

DXOLE functions in three different modes to allow maximum flexibility to
the user, These modes are:

° Compact Mode - The Compact mode combines object modules to
create new object modules. All references for defined symbols be-
tween the object modules are resolved. All references to entry
points not found in the object modules are left unresolved. The ob-
ject module produced is relinkable, The new object module defines
all the entry points defined in the linked modules as entry points
and contains references to the unresolved entry points,

e Normal Mode - The Normal mode combines one or more object
modules to create a load module for execution, This mode is the
default mode for the link editor, The load module created may or
may not contain an overlay structure, depending upon parameters
supplied by the user, The Normal mode can produce an External
Definition File, This file contains the symbol names and addresses
of the entry points defined in the root segment of the created load
module,

8-11 Digital Systems Division

943005-9701

. Subsystem Mode - The Subsystem mode combines one or more ob-
ject modules to create a load module containing a subsystem for
execution, This load module may contain a preplanned overlay, but
cannot contain an unplanned overlay., Subsystems execute as abso-
lute programs. Therefore, they can address into the root segment
of the operating system, In the Subsystem mode an External Defini-
tion File produced during a previous Normal mode link of the oper-
ating system resolves external references,

8.5.1 STANDARD JCL PROCEDURE
The following JCL listing is a standard procedure for DXOLE:

/REPLACE DXOLE « LINK EDTTOR | .

/EXEC 0BJs(1,SYSTEM,DXOLE) MEM=(308,12000,2000) PRTY=(1,15))

/ TIME==] MEM3sMEM PRTY3sPRI TIMEssTIM . }
/ASSIGN 1 DUMMY DEVICE:sDOBi FILE;sFOB! BUFFERS=2 » ALT 1 OBJECT IN
/ASSIGN 2 DUMMY DEVICE:=DOB2 FILEp=FOB2 BUFFERSs2 ; ALT 2 0BJECT_IN
/ASSIGN 5 DISC1 DEVICEisDIN FILEssFIN BUFFERSs! ; PRIMARY INPUT/CON
/ASSIGN 6 SC DEVICE $=DLST A , » LOADMAP LIST/ERR
/ASS[GN 7 DUMMY DEVICE$sDOBJ FILE3=sFOBJ BUFFERSs! . COMPACT 0BJ oUT
/ASSIGN 8 DISC1 DEVICE:sOLM FILEssFLM REPLACEzsRLM3

/ BUFFERS®{ RELREC ACCESSs(ANY,CREAT.CREAT,ANY)}

/ ACCESS3aCLM ALLOCATE=(1,0,32,1) ALLOCATE1si LM}) o

/ LRECL=64 . LOAD MOD OUTPUT
/ASSIGN 9 DISCY{ FILEs(SYSTEM,USRFTN) DEVICEssDL1B}

’ FILEssFLIB BUFFERS=2 . . . LIBRARY FILE
/ASSIGN 1@ DISC1 FILEs(TEMP,SCRL) NEW BUFFERSsi LINKSFQ) | o

/ ACCESS= (ANY,ANY,ANY,ANY) ALLOCATEs(1,388,256,38) , LINKSEG SCRATCH_
/ASSIGN 11 DISCI FILE=(SYSTEN,DXEXTD) FILEssFEXT BUFFERSs! . SYS EXT DEFS OPT
/ASSIGN {3 DISCY FILE=(TEMP,SCRR) NEW BUFFERSsi RELREC}

/ ACCESS= (ANY,ANY,ANY,ANY) ALLOCATE=(10a,380,128,18)7, L oo
/END LRECL=1@0 « RELREC SCRATCH
/

8.5.2 MEMORY PARTITION REQUIREMENTS

DXOLE memory requirements. for linking an average program are defined
with the following expression:

MEM=(300, 12000, 2000)
DXOLE is an overlay program with variable memory requirements.

DXOLE requires 7950 words of program space plus a 2000 word Job Exten-

sion Area (<jearea>), A variable amount of table space is required depend-

ing upon the number of references, definitions, overlays, and identifications
in the input object decks, The memory requirements do not depend upon the
size of the load module being produced., The following guidelines aid in de-

termining the size of the variable tables:

° 17 words per overlay to be generated
° 12 words per DEF

. 12 words for the first REF and 3 words for each subsequent REF
to a label '

Change 1 8-12 ~ Digital Systems Division

(o]
@ 943005-9701

° 9 words per common definition

° 3 words per common reference

° 13 words per object module

. 5 words per OBJNAM parameter (unplanned overlays)

° 3 words per Library LUN specified

8.5.3 LUN ASSIGNMENTS

Table 8-8 provides a summary of the LUN assignment requirements for
DXOLE as a function of mode, As can be seen in the table, not all assign-
ments are required for each mode, In addition to these standard LUN's any
other LUN's can be assigned to DXOLE and accessed by means of Include,
Search, and Library commands,

8.5.4 OPERATION

DXOLE allows two different overlay structures, preplanned and unplanned,
Each structure has advantages and the user should decide which, if any,
overlay technique to use, The control cards describe the program structure
to DXOLE,

8.5.4.1 PREPLANNED OVERLAYS, A program that is link edited in the
Normal mode or Subsystem mode with the overlay (OVLY) option is called a
preplanned overlay, The programmer describes the overlay structures for
the program with the Root and Segment control cards, During execution of a
preplanned overlay structure, a Runtime Overlay Manager (OLM$#$) loads
all overlays into memory, The link editor includes the overlay manager as
part of the root segment, The Runtime Overlay Manager determines the re-
lationships between overlay segments and the load addresses of the overlays
by inspecting overlay transfer vectors built by the link editor, These run-
time vectors, called the Overlay Segment Vector (OSV$#$) and Overlay
Transfer Vector (OTV$#$), are also included in the root segment of the load
module produced.

The link editor uses the call-by-name technique for loading overlays in a
preplanned overlay structure, The user program references the name of
the definition resolved in the next level of the overlay, The overlay manager
then loads the overlay and transfers control to the desired entry point, The
overlay is only loaded when necessary, Following calls to the same overlay
will not reload the overlay unless it has been replaced in memory by another
overlay at the same overlay level, The overlay manager uses the S and X
registers and does not preserve their values, The calling program must
save these registers if the contents should not be destroyed, On the pre-
planned overlay load map all forward references in the overlay are identified
by the message "**OTV#**", The address associated with the reference on

8-13 Digital Systems Division

1 @8ueyd

¥1-8

" uosIng sweisAs enbig

Table 8-8, DXOLE Logical Unit Assignment
Mode Requirement
LUN Description Comments
Compact Normal Subsystem
5 Primary input Sequential input device/file with 80 X X X
character record length, Input control
commands and object modules may be
intermixed.
6 Diagnostics and Memory Maps Sequential output device/file with 80 X X X
character record length.
7 Object Module Output Sequential output device/file with 80 X
character record length,
8 Load Module Output File Relative record file with 64 character X X
’ record length,
9 Subroutine Library File Dummy or key indexed file with 80 X X X
character record length and 8 character
key length. This file should be built
using the Library Builder (LIBBLD)
utility,
10 Intermediate Scratch File Rewindable device or linked sequential X X X
file with 80 character record length.
11 External Definition Input File Linked sequential file with 8 character X X
record length., This file contains the
external definition table for the cur-
rently running versions of the operating
system produced under the Normal
mode during a previous link edit of the
operating system,
12 External Definition Output File Linked sequential file with 8 character X D
record length,
13 Intermediate Scratch File Relative record file with 100 character X X X
record length,
any Alternate Input Accessed with Include control command X l> X '> X %
unused
any Alternate Library File Accessed with Library control command X I> X !> X [>
unused
NOTES:
1 The External Definition Output File is not required for any mode, but is optional for the Normal mode, Itis assigned
only when an external definition table is to be produced. ’
2 Optional alternate LUN,
]

10L6-500¢€%6

[¢]
%@ 943005-9701

the load map points to a table entry that the Overlay Manager will use to load
the overlay, External references in the overlays are resolved in the follow-
ing manner, '

1) A reference to a label defined in the same overlay is resolved as the
address of the label,

2) A reference to a label defined in a lower level overlay which is in
the path of this overlay is resolved as the address of the label,

3) A reference to a label which is defined in the next overlay level is
resolved as an address in the Overlay Transfer Vector, At runtime
the entries in the Overlay Transfer Vector are managed by the
Overlay Manager, When an overlay is currently in memory, the
Overlay Transfer Vector causes control to pass directly to the over-
lay. When an overlay is not in memory, the Overlay Transfer Vec-
tor causes control to transfer to the Overlay Manager to load the
overlay and then transfer control to the overlay, Forward data ref-
erences may not be used,

4) No forward references can be made to definitions more than one
overlay level away. Any such reference is marked as undefined
("**UN-DEF*%" on the load map) and is assigned the absolute value
FFFF ¢

8.5.4.2 UNPLANNED OVERLAYS, An unplanned overlay is a program that
is link edited in the Normal mode with the No Overlay (NOVLY) option and that
defines overlays with Object control cards, The programmer describes the
overlay structure with the Root and Object control cards, The overlay is
called an unplanned overlay since the location of the overlay in memory is

not specified when the link edit is performed, During execution the overlay

is loaded using the load and relocate SVC, DXOLE does not include a Run-
time Overlay Manager as part of the load module., The second parameter of
the Object control card defines a name., This name can be an external ref-
erence in the root or any overlay, and is resolved as the overlay number,

The link editor does not resolve any other references between overlays, The
order for resolving external references is:

1) A reference to a label defined in the same overlay is resolved as
the address of the label,

2) A reference in an overlay to a label defined in the root is resolved
as the address of the label,

A reference having the same name as the second parameter of the
Object control card is resolved as the overlay number, These items
are identified on the load map by the message, **MIP*%,

w
—

8-15 Digital Systems Division

o
@ P

4) No references can be made to definitions in any overlay. Any such
reference is unresolved and is flagged as "**UN-DEF*¥'" on the load
map. Hexadecimal FFFF is assigned as the value of the unresolved
reference,

8.5.4.3 CONTROL CARDS. Figure 8-1 illustrates the format of the three
DXOLE control cards (Type I, Type II and Type III). Control cards must
have a blank in column one, a card name starting in column two and one or
more blanks preceding the first argument. Commas separate each argument.
The argument list cannot contain imbedded blanks. Arguments may be speci-
fied up to and including column 72. Comments can be placed on the control
cards following the first blank after the last argument specified. These con-
trol cards relate three kinds of information to the link editor:

° The mode of the link edit to produce either a relinkable object mod-
ule or a load module,

° The relationship between the memory image phases in the load mod-
ule,

e The input LUNs for the object modules to be included with each
Type II control card,

Table 8-9 indicates the Type II and Type III cards that are valid for each
Type I control card and its options, Figure 8-2 shows a sample control deck
and a block diagram of the associated program.

TYPE I
PAGE (D
a) COMPACT [NO PAGE]
NEXTD @ NOVLY @ PAGE @)
= , MAXSEG=
b NORMAL [EXTD] [.OVLY] [MAXENT=n, o] [2 G)] [NO PAGE
NOVLY O . . PAGE (D
c) SUBSYSTEM [W][,MAXENT_nl @] [,MAXSEG—nz @] [NO pAGE]
TYPE II::
OBJECT IDTNAM, OBJNAM [, HEXCON]
ROOT IDTNAM
SEGMENT LEVEL
TYPE II:
SEARCH 1,2(Keyl,Key2, ..., Keyn), 3
INCLUDE 1,2(Keyl;Key2,...,Key),3
LIBRARY 20,21,22

@® Default option
@ Default = 44
(©)) Default = 22

Figure 8-1, Control Card Formats

Change 1 8-16 Digital Systems Division

L1-8

uoisialg swesAs 1enbiqg

Table 8-9. DXOLE Control Card Sequence and Options

Valid Type II Cards Valid Type III Cards

Type I

Control Card Object
Object Root Segment Deck Search Include Library

Compact x D X X X X
Normal
No Overlay X X X X X X
Normal
With Overlay X [X X X X X
Subsystem
No Overlay X [> X X X X
Subsystem
With Overlay X lD X X X X X

Note:

1. Required card

10L6-500€%6

943005-9701

ROOT SEGMENT E1 LEVEL 0O

HI l , OBJECT DECK

06
INCLUDE 16(50)
LIBRARY 17,18
Il SEGMENT 1
n INCI.IJDE IG(S‘I)
Il SEGMEN
u 1700 IDTX

P! e LEVEL 1

1 6
SEARCH 18(KEY1)
SEGM

1706

LIBRARY 17

SEGMENT 2

INCLUDE IG(SS 54),17(s$5)

SEGM
17'00

MIP 2 MIP S MIP 7 MIP 10
E El, E1 - JE2, LEVEL 2 1

3
INCLUDE 16(S8)
SEGMENT
INCLUDE 9 (QQCOSINE)
SEARCH 1
SEGMENT 2

700

11
11
11
n
06
1] SEGMENT 2
11 INCLUDE 18(S57)
H SEGMENT
n
1
n
1]

1706
/%

mz

LEVEL 3

m
nNe
m
ne

(A)130110

Figure 8-2, Overlay Structure and Control Deck

Type I Control Cards., A Type I control card is optional, If present it must
be the first control card. The Compact card directs DXOLE to link object
decks together to create new relinkable object decks. The only valid param-
eter for this mode is to specify the load map use page ejects or double spac-
ing (PAGE and NOPAGE, respectively). This Normal control card directs
DXOLE to create a load module for execution. If no Type I card is spec1f1ed
the Normal mode is the default Type I control card. Four optional parame-
ters may be specified on this card. The NEXTD/EXTD parameter specifies
production (EXTD) or no production (NEXTD) of an External Definition File.
The External Definition File is a sequential file that contains the names and
addresses of all the definition statements in the root segment of the object
to be linked. This file then links subsystems to the operating system root
segment. The NOVLY/OVLY parameter specifies production (OVLY) or no
production (NOVLY) of a preplanned overlay structure. If this parameter is
not present no overlay will be produced. The MAXENT and MAXSEG param-
eters specify the maximum numbers of forward references in the overlay
structure and the maximum number of overlays, respectively. The Subsys-
tem control card also directs DXOLE to create a load module for execution.
The arguments valid for Subsystem cards have the same meaning as for the
Normal card. The Normal and the Subsystem modes handle the External
Definition File differently. The Subsystem mode automatically references
the EXTD and creates definition entries for all the names in the EXTD. This
allows privileged programs to use subroutines that are part of the root of
the operating system.

Change 1 8-18 Digital Systems Division

[e]
@ 943005-9701

Type II Control Cards, A Type II control card is required unless the pro-
gram to be linked is a nonoverlaid and nonprivileged program, For this ex-
ception, DXOLE will take the program entry point from the first object deck
in the root segment. This default condition allows the control input of
DXOLE (LUN 5) to be assigned directly to a linked sequential file output from
the 980 Assembler or FORTRAN compiler, For all other DXOLE modes at
least one control card is required., In the Compact mode an Object card is
required, In the Normal and Subsystem modes a Root card is required,
Segment cards can also be specified for the OVLY option and Object cards
for the NOVLY option,

A special comment is necessary to explain the specification of a FORTRAN
main program as the entry point in the DXOLE output, DXOLE uses blanks
as delimiters between the control card type (i.e., Normal, Root, Include)
and the arguments, This convention makes the specification of "BMAINp'
(The FORTRAN main program IDT) impossible. Therefore, DXOLE handles
the name 'MAIN' as a reserved word, The IDT specification of 'MAIN' on
either the Root card or the Object card as the object deck with the entry point
is interpreted by DXOLE to be any one of the following names:

1. BMAINp - The FORTRAN main program name,

2, kxpkkkx - The default IDT name assigned to assembler output
decks
3. MAIN., - The default IDT name assigned to an object deck by the

PL/EXUS compiler,

In the Compact mode the Object card has two arguments, The first argu-
ment is IDTNAM, This argument is the name of the object deck which has
-an end vector to be used to define the control entry point of the linked object
deck, The second parameter is OBJNAM, This argument is the name to
assign to the new linked object deck, No other arguments are valid.

Multiple compact mode object decks can be output by entering multiple object
control cards. The object decks are output to LUN 7 and terminated with a
single end of file.

In the Normal and Subsystem modes the Root card defines the memory resi-
dent code, Segment and Object cards define preplanned and unplanned over-
lays, respectively., The Root card has one argument, IDTNAM, This argu-
ment specifies the name of the object deck which has an end vector to be used
to define the control entry point in the root segment of the load module, The
Segment card has 1 argument, the level number, This argument defines the
overlay's relationship to the other overlays and the root, The rootis at
level 0 of the overlay, The first level below the root is level 1, the next
logical level is level 2 and so forth, Level numbers must be sequential, An
Object card also defines an overlay., However, all Object overlays are at
level 1. The Object card is valid only for the unplanned overlays (NOVLY
option), The first parameter of the card, IDTNAM, identifies the object
deck which has an end vector to be used to define the control entry point for

Change 1 8-19 Digital Systems Division

o
i@ 943005-9701

this overlay. The second required parameter, OBJNAM, associates a

name with the overlay being created, This parameter is entered in the
symbol table of DXOLE with a value equal to the overlay number (i.e. 1 for
the first, 2 for second, etc.). This entry name may be referenced from any
other segment and is resolved by DXOLE as the overlay number. The third
parameter, HEXCON, is optional. If specified, this parameter indicates the
load address of the newly created overlay.

Type III Control Cards. Type III control cards specify input LUNs. The
link editor uses the LUNs to obtain the object programs to be included. Type
III cards follow the Type II card defining the beginning of a root or overlay,
and precede the Type Il card that defines the beginning of the next overlay.

The Search and Include cards have identical formats, Both have one or more
parameters, FEach parameter is either a LUN or a LUN followed by one or
more indexed record keys grouped inside parentheses., Specified keys are
evaluated as an USASCII string., Keys are limited to a maximum of 8 char-
acters, Keys of less than 8 characters are extended on the right with blank
characters, LUNs accessed with keys must be assigned to an indexed file,
The Include card identifies particular object modules which DXOLE includes
in the output phase being created., Search cards identify object modules to

be searched for a definition that resolves an undefined reference in the same
phase. Only those modules that resolve external references are included,
Search and Include cards are processed when encountered in the input stream
and are scanned from left to right, If the LUNs do not have keys, the link
editor processes object modules until it finds an end of file, If a key is speci-
fied, the link editor processes all object modules until it finds an end of file
or another keyed record, DXOLE processes object modules in the input
stream as if they were specified by an Include statement, The object module
is included in the output phase regardless of whether it resolves external ref-
erences., A keyname of 'BPMAINB' cannot be specified because DXOLE does
not allow imbedded blanks within the list of keys. To include a FORTRAN
main program, specify a keyname of 'MAIN'. 'MAIN' will be interpreted as
'"BMAINB' for this program.

The Library card can only specify LUNs, Each LUN must have been as-
signed to an indexed file which has been formatted like the system library.
The link editor does not search libraries until it processes all other Type
III control cards, DXOLE then searches the indexed file(s) in the order
specified by the Library card before searching the system library file. The
system library, LUN9Y, is not accessed in the Compact mode unless explit-
icly specified on a Library control card.

8.5.4.,4 USING DXOLE WITH BATCH INPUT READER, Executing DXOLE
under Batch Input Reader (BIR) requires careful preparation of the input
stream if LUNs other than LUN 5 are assigned to the card reader. When
DXOLE processes an Include or Search card, the referenced LUN is opened
and read until an end of file is found, The input stream for DXOLE must be
structured as shown on the following page.

Change 1 8-20 Digital Systems Division

[e]
<Jiz§} 943005-9701

ROOT IDT1
1700 IDT1
1706
INCLUDE 17
1700 IDT2
1706
1700 IDT3
1706
/% End of file for LUN 17
SEARCH 18
* End of file for input stream LUN 5

The included file is physically defined inside the data for LUN 5. When
DXOLE encounters the Include for LUN 17, it opens and reads the file,
When the end of file is found, LUN 17 is closed and the next control card is
read from LUN 5. This structure also works for the Ratch Inp.ub opoo;er

______ <Ll 25T VCLUIC 8150

(BIS)., However, a more conventional input stream for BIS is as follows:

//DATA 5
ROOT IDT1
1700 IDT1
1706

INCLUDE 17
SEARCH 18

/% End of file for LUN 5
//DATA 17

1700 IDT2

1706

1700

1706 End of file for LUN 17
/%

8-21 Digital Systems Division

[o]
q’r\@? 943005-9701

8.5.5 ERROR CODES

Table 8-10 lists the error codes and their corresponding meanings for the
DXOLE utility.

Table 8-10, DXOLE Error Messages

Error Number Message
1 Missing Type 1 Control Card
2 Improper Control Card Format
3 Unidentifiable Control Card
4 Maximum Number of Entries Exceeded
5 Invalid Control Card Argument
6 Unexpected End Of File On LUN
7 Missing Type 2 Control Card
8 Invalid Control Card For DXOLE Mode
9 Multiply Defined Root Segment
10 Missing Argument Following Delimeter
11 Too Many Arguments
12 Undefined Program Name
13 Invalid Delimiter
15 Invalid LUN
16 Invalid Key
17 Missing 1700 Object Record
21 Level Number Not Sequential In Overlay
24 Maximum Number Of Segments Exceeded
25 Maximum Number Of Entries Too Large
26 Invalid Number Specified
27 Numeric Overflow >16 Bit Signed Number
28 Missing Root Segment
30 Multiply Defined Name
31 Invalid Level Number
32 Table Requirements Exceeded Available Memory
34 Object Decks Must Be Relocatable
35 Unidentifiable Object Record
36 : Checksum Error
37 Missing 1706 Object Record
| 38 Common or External Reference Not Defined
Before Referenced
39 File Organization Does Not Allow Keyed Access
40 Library File Not Properly Structured
41 Block Data STMTS Must Be In MIP Defining the
’ Common

Change 1 ' 8-22 Digital Systems Division

o]
{@@ 943005-9701

8.5,6 INPUT FORMAT

The following paragraphs describe the structure and format for input ac-
cessed by DXOLE, Refer to the description of the JCL translator in this
section of the manual for the structures of:

° Library files

) Data sets

-+
=t

® vject records in the files
8.5.6.1 DATA SET STRUCTURE FOR SEARCH AND INCLUDE, LUNs
referenced by Search and Include commands can be accessed either sequen-
tially or randomly., The user specifies the access method by supplying either
a LUN only, or a LUN and a key. When supplied with a LUN only, DXOLE
processes the LUN sequentially until it finds an end of file, Data sets or de-
vices assigned to these LUN's must allow sequential access of data, All
records read from that LUN must be in DXOLE input object format. By
specifying a LUN number and the value of a key, the user can specify pro-
cessing of any part of a key indexed file, (The LPFBLD utility can be used
to build a key indexed file with keynames equal to the object deck IDTNAM.,)
The key is an index for positioning to the first record to be read. Process-
ing is complete when DXOLE encounters either an end of file or another rec-
ord with a key. The key lengths are restricted to eight characters, If less
than eight characters are specified, the editor adds USASCII blanks on the
right of the key to make eight characters, The physical structure of the data

set is as follows:

Record
Keys Data Associated with Key (Object Record)
PGMO1b 1700 PGMO1
1702
1706

TABLED 1700 TABLE

.
.
.

1706

To include object modules from this data set, the programmer specifies the
name of the program(s) to be accessed, For example:

INCLUDE I(TABLE, PGMO01)

A key indexed file with this structure can also be accessed without specifying
a key since DX980 file management allows sequential access of records for
key indexed files,

8.23 Digital Systems Division

o
%—@; 943005-9701

8.5.6,2 LIBRARY AND SYSTEM LIBRARY STRUCTURE, DXOLE assumes
that LUN 9 has been assigned to either a dummy file or a key indexed file that
was created with the DX980 library builder (LIBBLD) utility program. If as-
signed to DUMMY, no processing other than syntax checking occurs. If as-
signed to a library file, that file has the characteristics described in the fol-

lowing paragraphs.

Library files must reside on disc and must be in the following format:

Record Key Data Associated with Key

QQSINE 1700 SINE
1702 SIND Records defining
1702 SINE entry points,

1702 ARCSIN

1706
SIND QQSINE
SINE QOSINE
ARCSIN QQSINE
QQCOSINE 1700 COSINE
1702 DCOS

1702 COSINE
1702 ARCCOS

1706
DCOS QQCOSINE
COSINE QQCOSINE
ARCCOS QQCOSINE

The 1700 object record of all programs in the library have a key equal to the
characters 'QQ' concatenated with the identification name of the program.
All other object records for this object deck are sequentially linked to the
keyed 1700 record. The utility program that creates the library also makes
a key equal to each entry point in the object module (i, e., SINE, SIND,
ARCSIN for object deck SINE)., The data associated with each key is another
key that positions the file at the 1700 object record of the program defining
the entry point. DXOLE accesses all library files in the following manner
for each unresolved external reference:

(1) The name of the symbol referenced is used as a key to read the
library.

(2) If the key does not exist, the symbol is not defined by any object
module in the library.

8.24 Digital Systems Division

o]
q@ 0430059701

(3) If the key exists, the first 8 characters of the record returned are
used as the key of a second read operation.

(4) The data returned with the second read must be the 1700 object rec-
ord of the module defining the external reference. Also, the second
key must exist or the library is improperly structured,

(5) Processing of the object module terminates with the 1706 record.

Library files may also be referenced with Search and Include control cards
by specifying the key that positions the file at the 1700 record, That is, the
letters 'QQ' followed by the identification name of the program to be ac-
cessed:

INCLUDE 9(QQSINE, QQCOSINE)

A library file must have a key specified if accessed with an Include or Search
card since some of the records contain keys rather than object records.
Using an Include on a library might be necessary if the order of the object
modules in the load module is important, Otherwise, normal library pro-
cessing at the end of a program segment will include those program neces-
sary to define external references,

8.5.6.3 OBJECT RECORD FORMAT, DXOLE accepts object from linked
sequential files, key indexed files, and devices, Several different data set
organizations are allowed. The DXOLE control cards describe the organiza-
tion of the data set and therefore the processing method used. All input data
sets must define at least one object module, Seven standard object records
are used by all object modules, These object records are illustrated in fig-
ure 8-3., Note that each record contains 32 words. All numbers are hexa-
decimal, and the object records are independent of the object media., The
first word of each record specifies the record type (0-6). The last word in
each record is a checksum, which is the two's complement of the sum of the

first 31 words,

Identification Record, The identification record contains the program name
which may be specified, for example, in an IDT assembler directive, If the
program name is greater than six characters, it is truncated; if it is less
than six characters, trailing blanks are inserted. Leading zeros are in-
serted in the format code,

Common Symbols, FEach record of common symbols contains a maximum of
seven symbols, Each symbol contains six characters, and trailing blanks
are inserted as required. A stop code is required following the last symbol
in each record,

Entry Points, Each record of entry points contains a maximum of seven
entries as indicated, for example, by a DEF assembler directive,

8-25 Digital Systems Division

943005-9701

IDENTIFICATION COMMON SYMBOLS
0 17 00 8 17 ! o1
2 3
FORMAT CODES FORMAT CODE 2 N 3 A
4 5 COMMON
5-RELOCATABLE OBJECT P R 4 M 5 3 SYMBOL
6 7 NO.1
N A 6 b 7 [y
PRNAME IS THE ¢ M s € 8 9
PROGRAM NAME 5 - LENGTH
IN ASCII CHARACTERS A STOP CODE 003016 IS 10 n
16
1”2 INSERTED FOLLOWING 12 13 gex;‘gf
- THE LAST SYMBOL LENGTH NO.2
TO INDICATE THE LAST 0 s :
COMMON SYMBOL ENTRY
¢ WITHIN A RECORD. 16 7
LENGTH
CHARACTERS 60 AND 61 |60 1 B 9
ARE RESERVED.
o2 63 20 21 COMMON
CHECKSUM SYMBOL
73 23 NO.3
24 bl
LENGTH
26 27
L — COMMON
28
= SYMBOL
£ e NO.4
€7 £
LENGTH
34
3 = COMMON
SYMBOL
g = No.5
1
LENGTH
42 ja3
ENTRY POINTS
m 3 COMMON
o 17 t 02 SYMBOL
NO.6
UP TO SEVEN ENTRY POINT |2 N 3 A 48 o7
SYMBOLS ARE CONTAINED
48
WITHIN A RECORD 4 s ENTRY POINT
O M E SYMBOLNO. 1 LENGTH
< = = 50 T
() 1
= = COMMON
g S SYMBOL
ENTRY POINT ADDRESS NO.7
10 n [54 55
N A
12 13 ENTRY POINT |56 Is7
M E SYMBOL NO.2 LENGTH
14 ° 1% 2 > 00 > 30
- - CHARACTERS 6061 |60 61
ENTRY POINT ADDRESS ARE RESERVED = 2
—
A STOP CODE 003016 IS LY % 3 CHECKSUM
INSERTED FOLLOWING L
THE LAST ENTRY POINT 7
ADDRESS TO INDICATE
THE END OF DATA WITHIN |2
A RECORD.
24
CHARACTERS 60 AND 61 7
ARE RESERVED.
83
CHECKSUM

(A)130394 (1/2)

Figure 8-3, Object Records (Sheet 1 of 2)

8-26 Digital Systems Division

943005-9701

EXTERNAL REFERENCES
0 17 1 03
2 N 3 A
‘ ™ s E
6 o 7 1
) o
0 N] A
12 ™M 13 E
14 o [3 2
S—
8 o 7 o
e
8 g0 9 a9
%6 21
2
24
o
3
CHECKSUM
BLOCK DATA
0 17 1 05
2 3
COMMON NO.
0 S
RELATIVE LOCATION
6 7
DATA COUNT
8 Is
DATA
10 H
12 13
DATA
14 115
) |50
RELATIVE LOCATION
18 v
DATA COUNT
12
_L DATA
] 23
24 25
DATA
26 127
MINUS ONE _

F o crdom

(A)130394 (2/2)

Figure 8-3,

EXTERNAL
REFERENCE
*NO.1
VARIABLE
LENGTH DATA
) (ITEMS CAN BE
EXTERNAL 1 TO 3 WORDS).
REFERNANCE
NO.2

A STOP CODE 003016 IS
INSERTED FOLLOWING
THE LAST EXTERNAL
REFERENCE TO INDICATE
THE END OF DATA
WITHIN A RECORD.

UP TO SEVEN EXTERNAL
REFERENCES CAN BE
CONTAINED WITHIN A
RECORD.

CHARACTERS 60 AND 81
ARE RESERVED.

BLOCK DATA RECORDS
ARE OUTPUT BY THE
FORTRAN COMPILER.

VARIABLE LENGTH, <4
DATA WORDS (MAY NOT
EXTEND BEYOND THE END
OF THE RECORD)

A MINUS ONE 1S INSERTED
TO INDICATE THE END OF
DATA WITHIN A RECORD.

F
"X
=

TEXT
0 17 i 04
3
ITEM COUNT
4 5
RELOCATION MAP 1
es 17
LOAD ADDRESS } ADDRESS OF FIRST ITEM AFTER THIS WORD.
1
ITEM 1
RELOCATION MAP
ITEM ITEM ITEM ITEM
1 2 3 4
ITEM 4
1
RELOCATION MAP
1}
ITEM
1 1 1
ITEM 20 0 0o o0 O
1 S
RELOCATION MAP ‘
1
ITEM 21
T 0 6 0 WORD, ABSOLUTE
ITEM 22 0 0 1 WORD.COMMON
0 1 0 WORD, RELOCATABLE
CHECK SUM G i 1 WORD, EXT. REFERENCE
100 BYTE, ABSOLUTE
10 1 BYTE, COMMON
110 BYTE, RELOCATABLE
1 11 BYTE, EXT. REFERENCE
‘“—— 1= LOAD ADDRESS INCLUDED
LOAD ADDRESS
ITEM n
0= NO LOAD ADDRESS
END
0 17 1 06
2 3
ENTRY ADDRESS
4 00 5 ox X=0 FOR NO VECTOR
X=1 USE ENTRY ADDRESS
17 AS END VECTOR.
PROGRAM LENGTH

C

G!ECE‘S\M

Object Records (Sheet 2 of 2)

8-27

Digital Systems Division

[e]
@ 943005-9701

External Reference Points,

Each record of external reference points con-

tains a maximum of seven references as specified, for example, by a REF

assembler directive,

Text Records,

All text records include an item count between 1 and 22 for

the current record, Each item is between one and three words long, and all

words in an item are contained within one text record,

The number of object

record words per item in memory, and the relocation character printed in

the first column of an assembly listing appear in table 8-11,

The final relo-

cation map in each record applies only to items within the current record,
not to any items in the next record.

Table 8-11, Text Record Parameters
Assembly Words per Words per
Item Type in Relocation Map Listing Item in Item in
Character Memory Text Record
000 - Absolute word (Blank) 1 1
001 - Common word C 1 2
010 - Relocatable word P 1 1
011 - External reference word X 1 2
100 - Absolute byte (Blank) 2 2
101 - Common byte C 2 3
110 - Relocatable byte P 2 2
111 - External reference byte X 2 3

Block Data., The block data records contain common numbers which are
used to order the symbols in the common symbols records for easy refer-
ence, For example, common number one refers to the common names in
the first entry of the first common symbols record, Relative location refers
to the start of the appropriate common, and data count is the number of
words, not items, in the specified common,

End Record. The end record indicates the end of the object program, and
contains the program length in words,

8.5.7 DXOLE OUTPUT FORMATS

DXOLE has two output formats: object modules and load modules, Object
modules, output by the Compact mode, have the same record formats as
previously described for object records, The format of a load module is
shown in figure 8-4, Table 8-12 describes the fields of the load module, All
programs submitted for execution under DX 980 must be in load module for-
mat; object modules cannot be executed directly,

8-28 Digital Systems Division

943005-9701

ROOT PHASE (MEMORY IMAGE PHASE 0)

3N WORDS
RELATIVE WORD A
RECORD NO.
/ \
0 1 2 3 4 5 6
o N | RR JLt L2 [RR JLt JL2 RR | L1 IL2 LP {Erc | w
' 1 1 1 2 2 2 eoo N Nl N 00
1
— CODE FOR ROOT -
2
K —1 E EPA
o Lo o
K 8a | B R
0 0 o] 10 eoeo
R BTA |BTA |8TA BTA
Lo PTo1T52d"0d @@@ 08
MEMORY IMAGE PHASE 1 (1ST OVERLAY)
w
RR o1 YY)
s E EPA
b4 Lt 1
[]
} BTA
RR +K BA | B R R BTA [BTA
1 1 1 11 L1 1 1IE 12 o0 '?
MEMORY IMAGE PHASE N (LAST OVERLAY)
RR w
N ON
E
® LN
[J
EPA
o N
RR 4K BA | B |R R BTA |sTA ° BTA S
N N N| N 1N LN N1 N2 e N
(A)130395

Figure 8-4. DX980 Load Module Records

8-29 Digital Systems Division

(o]
{@@ 430059701

Table 8-12. Load Module Field Definitions

Field Definition
N Number of overlays,
RR; Relative record number of the first word of overlay. The rela-

tive record number of the root phase (RR() is always 0,

L1 Number of words in the code portion of the overlay including
the entry point word., The length of the root phase (Llg) is in
the File Control Block (FCB) of the load module file and is not
part of the load module proper. Ll includes the length of the
overhead words for the root segment (3n +3 words long).

L2; Length of the relocation map in words, L2 is in the FCB of
the load module and is not part of the load module proper.

LP The address of the first word beyond the longest overlay path,
On the memory image phase file, this word is numerically equal
to the number of words used by the longest overlay path, The
word is marked for relocation in the relocate flag table, If the
load module is executed in the unprivileged mode, no relocation
will be performed. If the load module is executed in the privi-
leged mode, a relocation constant equal to the absolute address
of Wgg will be added. In either case the value in memory is

the address of the first word beyond the longest overlay path in
the address space of the executing Job.

ERC In the memory image phase file this word is numerically equal
to 3%N+3 and is marked for no relocation in the relocate flag
table., The correct value is error checked on the load of the
root phase. After the root phase has been loaded the cell in
memory is changed to have the absolute address of N.

Woi Word 0 of the code for overlay i.

Eii Last word of code for overlay i.

EPA; Entry point address for overlay i,

Ky Number of sectors required to hold the code portion of overlay

i, K; may be calculated from LI; or,
Ki = ((L1;+31)/32)%32,

using integer arithmetic,

8-30 Digital Systems Division

[e]
@ 943005-9701

Table 8-12. Load Module Field Definitions (Continued)

Field

Definition

BA

Rri
ESTYXil

BTA:n,
l.l_)l

BA is a value set by DXOLE to calculate the relocation bias to
be applied to all relocatable words in the code area from the
formula,

BIAS = FWLA-BA,
where

FWLA = The address of the first word loaded
(ADDR(N) ifi = 0 or ADDR(WOi) if i #0).

For the root segment BA(is set to - (3*N+3) so the bias will
evaluate to the address of Wgg when loading a privileged
program. For preplanned overlays, BA is set to the pre-
planned address relative to Wpg. For unplanned overlays,
BA is set to O.

Number of byte relocatable items in the code portion of the
overlay,

First word of the relocation bits., There is 1 bit for each
word in the overlay. In the root, the first relocation bit cor-
responds to the N, the number of secondary overlays, A 1 in-
dicates a relocatable item,

Last word of the relocation bits. Includes a bit for EPA;.

Address of first byte relocatable item in this overlay.

Address of last byte relocatable item in this overlay.

8.6 LIBRARY BUILDER (LIBBLD)

The LIBBLD utility program builds library files for use by the DX980 Over-
lay Link Editor (DXOLE).

8.6.1 STANDARD JCL PROCEDURE

The following listing is a standard procedure for LIBBLD:

o# CREATE LIBBLD,COMMENT,"BUILD LIBRARY FILE .
/REPLACE LIBBLD « BUILD LIBRARY FILE .
/EXEC 0BJ=(1,SYSTEM,LIBBLD) MEM®(300,2p00,1008) PRYYs(1,15)}

/
/ASSIGN
/ASSIGN
/ASSIGN
/

/

/

/END

TIMEswl MEM$sMEM PRTYg=pRI TIMEssTIM
5 MT1 DEVICEtsDOBJ FILEssFOBJ BUFFERSs1 . OBJECT INPUT
6 SC DEVICE:sDLST FILE;sFLST SHARE$=SLST BUFFERS=1.IDT/DEF LISTING
9 DISC1 DEVICEpsDLIB FILEssFLIB REPLACE g$=RLIR}

BUFFERS=2 INDEXED ACCESS=(ANY,ANY,ANY,ANY)s

ACCESS1sCLIB ALLOCATEs=(1,8,128,22) ALLOCATEs=LLIB}

KEYLEN®=8 . OUTPUT L.IB FILE

8-31 Digital Systems Division

o]
(_I_‘{,\ﬁ@ 943005-9701

8.6,2 MEMORY PARTITION REQUIREMENTS

Memory requirements of LIBBLD are:

MEM = (300, 2000, 1000)

8.6.3 LUN ASSIGNMENTS

The LIBBLD utility uses three LUN assignments. Table 8-13 outlines the
functions of each unit.

Table 8-13, LIBBLD Logical Unit Assignments

LUN Description

5 Provides object input for addition to the
library file. The LIBBLD utility termi-
nates when it finds an end of file in this
input,

6 Provides a hard copy listing of the mod-
ules (IDT names) and of the defined entry
points within each module in the library.

9 Assigned to a key indexed file with a key
length of 8. This unit contains the
library file to which the object modules
will be added.

8.6.4 OPERATION

When using LIBBLD, all names must be unique. No two definitions and no
two IDT names can be the same, The object modules in the library can all
be added at one time or by several executions of LIBBLD, No object mod-
ules can be replaced. LIBBLD checks for duplicate IDT names and duplicate
entry point names., To redefine an object module in the library, the library
must be entirely rebuilt,

8.6.5 ERROR CODES

LIBBLD error messages are literal and self-explanatory, These messages
are as follows: ‘

DUPLICATE DEF NAME, FIRST DEF USED <def name>
DUPLICATE KEY GENERATED FOR IDT
LIBRARY IS FULL, NO MORE RECORDS CAN BE ADDED,

8-32 Digital Systems Division

[o]
i@ 943005-9701

8.6.6 SAMPLE OUTPUT

The resulting library file is an indexed data set that has the following logical

organization of keys and associated data:

QQIDT1I 1700 IDT1
1702 DEF1 DEF2

DEF1 QQIDT1
DEF2 QQIDT1

QQIDT2 1700 IDT2
1702 DEF3
1706

DEF3 QQiDTZ

8.7 FILE COPY UTILITY (DXCOPY)

The DXCOPY utility copies and saves data from any type of file or device to
any other type of file or device, In addition DXCOPY can list the contents of
a file on a printer, Control parameters for the utility specify or override
optional functions of the utility., All of these parameters may be omitted to
specify their default values, DXCOPY also generates keys for key indexed

files,

8.7.1 STANDARD JCL PROCEDURE
The following listing is a standard procedure for DXCOPY:

«# CREATE DXCOPY,COMMENT,"GENERAL PURPOSE COPY "
/REPLACE DXCOPY + GENERAL PURPQSE COPY .

/EXEC 0BJa(1,SYSTEM,DXCOPY) MEM=(390,3700,2088) PRTY=(1,15))

/ TIMEs=1 MEM3*MEM PRTY3spRI TIMEsTIM

/ASSIGN 5 DUMMY DEVICE3sDCON .
/ASSIGN 6 DUMMY DEVICE$=DLST FILEgsFLST BUFFERSs1 .
/ASSIGN 7 DISC1 DEVICE:=DOUT FILEswFOUT REPLACE $sROUT;

/ BUFFERSs2 BUFFERS$sBOUT LINKSEQs=LIN RELREC$SREL}

/ INDEXEDS=IND ACCESSs (ANY,ANY,ANY,ANY) ACCESS1=COUTS
/ ALLOCATE=(1,0,128,18) ALLOCATEs=LOUT KEYLENs6}

/ KEYLEN:sKOUT LRECL=64 (RECL3I3G60UT R
/ASSIGN 8 DISC1 DEVICE:=DIN FILEssFIN DELETEs=sTIN BUFFERSsy

/END

8.7.2 MEMORY PARTITION REQUIREMENTS
The job area consists of space for the DXCOPY load module,

CONTROL/MESSAGE
LISTING

QUTPUT
INPUT

Sinhce DXCOPY

is an overlaid program, this space contains the root segment plus the longest

8-33

Digital Systems Division

[o]
(r@; 943005-9701

overlay, If there is no listing (i.e. LUN 6 is assigned to DUMMY), the job

area size may be specified as 2400, If listings are possible (i.e. LUN 6 as-
signed to a printing device or file), then the job area size must be specified

as 3700,

The job extension area can be calculated according to the following formula:

NF NB
<jearea> = Z Z (BSi+j) + 17(NT) + 7(NL) + SS + 11
i=1 j=1

where
NF = Number of files assigned (0<NF< 3)

NB = Number of buffers per file (1 NB<x depending on amount of
blocking)

BS = Physical record length in words of the individual files

NT = 2 co-resident tasks if the listing LUN (6) is assigned to DUMMY;
3 co-resident tasks if the listing LUN (6) is assigned a printing
device or file

NL = 4 LUNs assigned
SS

600 for dynamic TCB stack requirement if LUN 6 is assigned to
DUMMY; 900 if LUNG6 is assigned to a printing device or file

Therefore,

<jearea> = 673 + BB if LUN 6 assigned to DUMMY or,
<jearea> = 990 + BB otherwise

where:

BB = total blocking buffer requirements for all files.

A default of MEM=(300, 3700, 2000) has been used in the standard procedure
which allows the listing option and 1000 words of file buffer space.

8.7.3 LUN ASSIGNMENTS

The utility program uses four logical unit number (LUN) assignments, as de-
scribed in table 8-14.

8-34 Digital Systems Division

@ 943005-9701

Table 8-14, DXCOPY Logical Unit Assignments

LUN Description
5 Control input
6 Listing output
7 Data output
8 Data input

8.7.4 OPERATION

The DXCOPY utility is a multitask program that runs under DX980 in the
protected mode, A minimum of two tasks run concurrently, A third task is
created if a listing is possible (i.e, LUN 6 is assigned to other than DUMMY).

The user enters any of the control parameters on LUN 5, The entry is in
free format with one or more blanks between each parameter, All param-
eters must be within the same record, For many cases, however, the de-
fault values of the parameters produce the desired results so that none of the
parameters need to be specified, If all of the control characters are entered,
the input record is of the following form:

<type>,<key specification>,<definition>, <rewind option>, TRIM, <list>,

The following paragraphs describe each of these parameters and their default
values,

8.7.4.1 DATA TYPES AND CONVERSIONS, DXCOPY performs the re-
quired file conversion and copying according to the type of input and output
files without the data type (<type>) being given explicitly., However, certain
types of copies do require explicit definition in order to perform the desired
conversion, Data type specifies the format of the input, The output file data
is dictated by the input data type and what kind of files are being used (key
indexed, relative record, linked sequential, or other device)., The following
file types may be used for the <type> control parameter:

° SOURCE: Source files may exist on any file type., This data type
is the default value for linked sequential files and non-disc devices,

° DATA: Data is the default data type when the input file is key in-
dexed., The Data parameter must be stated if the input or output
media is binary format paper tape, card, or cassette in order to
obtain correct input conversion,

° RELOBJ: Relocatable object is never the default data type., This
parameter must be specified to verify checksum, or if the input or
output media is cards, paper tape, or cassette,

8-35 Digital Systems Division

943005-9701

) MEMI: Memory image is the default data type if either the input file
or output file is a relative record file, Memory image files exist in
relative records files as two header words in the File Control Block
and a group of 32 word records, When DXCOPY transfers the file
to any other media, it generates a header record followed by data
records and an end of file, Figure 8-5 illustrates the final format.
The user must specify either Data or Source for copying relative
record files that are not load module files,

° SAVED: Saved data is created by copying a (key indexed) file to a
file that is not a key indexed file. SAVED is the default data type
when the input file is indexed and the output file is not indexed, A
key specification input of NOKEYS overrides the creation of Saved
files, Saved files consist of physical records of 72 characters or
less, This organization allows large logical records to be trans-
mitted on card media, (Figure 8-6 illustrates the format of a
Saved file,

8.7.4.2 KEY SPECIFICATIONS, Key specification parameters allow the
user to set the characteristics of the keys or to delete input keys in the out-
put file, DXCOPY accepts the following words for key specification inputs:

. KEYLEN=<nchar>: This parameter specifies the length of keys in
characters, Default length key is 30 characters,

HEADER 1800 NUMBER OF HEADER HEADER CHECKSUM
RECORD 16 DATA WORD 1 WORD 2
RECORD

“— 10 CHARACTERS ——-l
DATA f
RECOND 18011¢ 32 DATA § WORD CHECKSUM

L 68 CHARACTERS —_——

THE DATA RECORD CHECKSUM IS THE SUM OF ALL DATA WORDS , THE
HEADER WORD (1801 1¢g) AND THE DATA RECORD NUMBER,

(A)130104 X _
Figure 8-5, Memory Image Format for Files
Other than Relative Record
1 WORD FWORD BOUNDARY
KEY DATA
1ST] 18101¢ KEYLENGTH 0 TO 30 © 170 66 CHECKSUM
JRECORD) DATALENGTH CHARACTERS CHARACTERS
(IF ANY)
SINGLE
LOGICAL
N GeZEE § rwoRo BOUNDARY
RECORD
RE—
conEs 1811,¢ ID_?OTAGB CHECKSUM
2-n CHARACTERS
72 .
g CHARACTERS 4
MAX ,
(A)130105

Figure 8-6, Saved File Format

8-36 Digital Systems Division

o
%@ 943005-9701

e KEYPOS=<mchar>: This parameter specifies that a key should be
generated for each record of input, starting at the character number
given to the right of the equal sign (<xmchar>),

° NOKEYS: This parameter specifies that any keys found in the input
file should not be transferred to the output file, This parameter
overrides-the Saved data specification,

8.7.4,3 DEFINITION, The user can enter:
FILES=<nfiles>

to specify copying more than one set of data (delimited by an end of file) to
the output file, The argument, <nfiles>, is either a number specifying how
many data sets to copy, or an asterisk (¥) to specify copying all data sets
until an end of media is detected, All end of files are transmitted to the out-
put file unless the output file is a key indexed or relative record file, These
output file types cause DXCOPY to declare an error and abort when more
than one file is transferred,

8.7.4.4 REWIND OPTIONS, DXCOPY normally rewinds the input and out-
put files before beginning the copy. However, the user can prevent rewinding
the input file by specifying NOINREW, Similarly, entering NOOUTREW pre-
vents rewinding of the output file,

8.7.4.5 TRIM OPTION, If the user enters TRIM for a control input,
DXCOPY trims trailing blanks before copying to the output file.

8.,7.4,6 LISTING OPTIONS, If LUN 6 is not assigned to Dummy, DXCOPY
generates two types of listings by default, The utility produces a source list
if the data type is Source, or an identification listing if the data type is relo-
catable object (RELORBJ). In addition, the user can enter the following param-
eters to select printing of optional data:

° RECNO: This parameter specifies printing of record numbers.

° KEYS: This parameter causes the keys to be listed. The key is
assumed to be valid USASCII., This listing is printed in hexadecimal
if the HEX parameter is also specified,

e HEX: This parameter results in a hexadecimal listing.

e ASCII: This parameter instructs DXCOPY to print the USASCII
equivalent to the right of the hexadecimal listing.

e WIDE: This parameter specifies that a 132 column printer is avail-
able on LUN 6 instead of an 80 column printer, Hexadecimal dumps
are then printed at 16 words per line instead of 8 words per line,

8.7.5 ERROR CODES

When an error occurs during processing, DXCOPY prints an error code on
the terminal, Table 8-15 defines the error codes,

8-37 Digital Systems Division

o
(r\'i]? 943005-9701

Table 8-15. DXCOPY Error Messages

Code Definition

11001 Unrecognizable parameter specified

11002 Invalid number

11003 More than one data specification

11004 Key length not > 1 and < 32

11005 Invalid key position specified

11006 Trim cannot be specified with given (or default) data type

11007 When copying memory image data from a non-relative rec-
ord file, the first record was not the expected header
record.

11008 When copying memory image data from a non-relative rec-
ord file, a non-memory image data record was detected

11009 When copying saved data, a record was found that was not
an 1810 record when an 1810 was expected

11010 When copying saved data, a record was found that was not
an 1811 record when an 1811 record was expected

11011 An unexpected end of file was detected

11012 An end of file was not found when an end of file was expected

11013 A logical error was detected when writing to an indexed file

11014 An embedded end of file was detected, but the output file is
either relative record or indexed

11016 Checksum error

8.8 PROGRAM DEBUG (DEB980)

DEB980 is a standalone utility package that aids in debugging user programs

without endangering system operation,

The package includes commands that

permit the user to modify or display contents of memory and registers, and

control execution of the program being debugged.

Control of execution may

be either interactive or batch, and includes loading, setting of breakpoints,

and specifying traces,

Program instructions may be executed one at a time

8-38 Digital Systems Division

[o]
{@ 943005-9701

to allow examination of results following each instruction. DEB980 is de-
signed for debugging single tasking jobs and does not support the following
SVCs:

® 6 - Delete Task

° 7 - Suspend Task

° 8 - Post Event

° 30 - Create Task

° 37 - Load

° 38 - Load and Relocate

° 49 - Allocate Resource

° 51 - De-allocate Resource

° 129 - Start Job

This program is completely documented in a separate manual: Model 960

Computer and Model 980 Computer Debug User's Guide and Operating In-
structions, Part Number 942760-9701. .

¥ CREATE DEB98R,COMMENT,"PROGRAM DEBUG AlD L
/REPLACE DEB98@ « PROGRAM DEgUG AlD ,
/EXEC 0BJs(1,3YSTEM,DEBS8R) MEMs (390,60800,680) PRTY=(1,15))
/ TIMEsw]l MEMg$sMEM PRYYgepPRI TIMEs=TIM
/ASSIGN »FO SC DEVICEssDCIN
/ASSIGN »F1 SC DEVICE:=DMSG
/ASSIGN »F2 DUMMY DEVICEssDCLST _
/ASSIGN 2F3 SC = DEVICE:sDUMP FILEs3sFUMP BUFFERSs1
/ASSIGN »F4 DISC) DEVICE3sD0BJ FILEs=sFQBJ BUFFERS={
/ASSIGN @ DUMMY DEVICEs=sDEVE :
/A3SIGN 4 DUMMY DEVICEssDEvV4 FILE:=sFIL4 BUFFERSS!
/ASSIGN 5 DUMMY DEVICE:sDEVS FILE1sFILS BUFFERSs{
/ASSIGN 6 DUMMY DEVICE:sDEV6 FILE3sFIL6 BUFFERSs{

7

8

CONTROL INPUT

b T T B

MEMORY DUMP

e *n

USER PROG LUN
USER PROG {UN
USER PROG LUN
USER PROG LUN
"USER PROG LUN
USER PROG LUN

/ASSIGN DUMMY DEVICE=DEV7
lésslGN DUMMY LUNOs=_LUNS DEVICE:1sDEVS
/END .

8.8.2 MEMORY PARTITION REQUIREMENTS

[e B T B T

The job area consists of space for the DEB980 load module plus space de-

pendent on the program being debugged. The following formula specifies the

job area size requirements:

<jarea> = 3000 + PS + WA + ST

where
3000 = DEB980 load module size
PS = Size of user program object module being debugged

WA = Work area for program being debugged
ST Storage for symbol table and commands

SYSTEM MESSAGE
CONTROL LISTING

RELOC OBJECTY IN

NN

8-39 Digital Systems Division

o]
%@ 943005-9701

The job extension area can be calculated according to the following formula:

NF NB
<jearea>= 3 b (BS;+1) + 17(NT) + 7(NL) + SS + 11
i=1 j=1

where

NF

Number of files assigned

NB = Number of buffers per file (1 < NB < x depending on amount of
blocking)

BS = Physical record length in words of the individual files

NT = 1 co-resident task

NL = 5 + number of user program LUNs
SS = 300 for dynamic TCB stack requirement
Therefore

<jearea> = 363 + 5(UL) + BB

where UL = Number of user program LUN's; BB = total blocking buffer re-
quirements for all files,

A default of MEM=(300, 6000, 600) has been used in the standard procedure,
8.8.3 LUN ASSIGNMENTS
NCTE

- Unlike most utility programs, DEB980 LUN assign-
ments are hexadecimal numbers,

Table 8-16 lists the logical unit (LUN) assignments for the DEB980 program,
In addition, all LUN assignments used in the user program being tested must
also be assigned to the DEB980 program.,

8.8.4 OPERATION

Refer to the Debug User's Guide for a description of program operation.

8.8.5 ERROR CODES

Refer to Section VI of the Debug User's Guide for a description of error
codes and messages generated by DEB980,

8.8.6 SAMPLE INPUT

Refer to the Debug User's Guide for sample input format,

8-40 Digital Systems Division

943005-9701

Table 8-16. DEB980 Logical Unit Assighments

LUN Function Description
FO,¢ Control input Inputs debug commands
Flyg Control log Displays operation messages, error mes-

sages, simulation termination messages,
and command requests

F216 Input log Lists commands entered on control input
device
F3,6 Dump and Prints dump and trace messages

trace output

F416 Program input Inputs object program being debugged.

This file must be direct output either from
the assembler or from DXOLE in the Com-
pact mode.

8.8.7 SAMPLE OUTPUT

Refer to the Debug User's Guide for sample output format,

Q
(o]

The general assembler, SAPG, translates 980 symbolic assembly language
into object language acceptable to the Model 980 Computer, SAPG is a two
pass assembler, During Pass 1, a symbol table is generated as the source
program is read, Pass 2 generates the object output and program listing

using both the source program and the generated symbol table., More de-
l-a-]aﬂ nkavnctav1cf’|he !*F l-'hn QQn :ccanﬂAr are HPQ(‘T‘1]’\P{:| 11"\ 'H‘\P T\/f(\(‘l@] an

L1TU ikl &

Computer Assembly Language Programmer's Reference Manual, Part Num-
ber 943013-9701,

8.9.1 STANDARD JCL PROCEDURE

Standard JCL procedures are listed below for the single job step assembly
job and for the 3-step assemble, link and go job sequence.
«% CREATE ASMBLR,COMMENT,"ASSEMBLE

/REPLACE ASMBLR + ASSEMBLE ,

/EXEC OBJs(i,SYSTEM,ASMBLR) MEM=(3@0,5009,108008) PRTY=(1,15)}

/ TIMEswi MEMgsMEM PRTYg=pRI TIME:sTIM .

/ASSIGN @ DumMY DEVICE:sDMSG SHARE . s SYSTEM MESSAGE
/ASSIGN 4 DUMMY DEVICE:sDCON SHAREt=SCON » CONTROL/MESSAGE
/ASSIGN & DISCi DEVICEssDSRC FILEs=FSRC BUFFERSs! . SOURCE INPUT
/ASSIGN 6 8C DEVICEs=DLST FILE;sFLST SHARE:=SLST RUFFERSs$,SOURCE |.IST/ERROR
/ASSIGN 7 DISCt1 DEVICEssDOBJ FILEg=FOBJ NEWIsNOBJ}

/ REPLACE$sR0BJ BUFFERSsi LINKSEQ)

/ ACCESS®CANY,ANY,ANY,ANY) ACCESS3:=COBJ) ,

/ ALLOCATE=(1,0,64,10) ALLOCATE:=sLOBJ . OBJECT 0oUTPUT
/ASSIGN 16 DIScy FILEs(TEMP,SCRL) NEW BUFFERS=1 LINKSEQ)

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATEs(10,380,256,3@) . SOURCE SCRATCH
/END

(Continued on next text page)

8-41 Digital Systems Division

943005-9701

(Continued from previous text page)

+% CREATE ASMLGO,COMMENT,"ASSEMBLE, LINK, AND GO "

/REPLACE ASMLGO o ASSEMBLE, LINK, AND GO .

JEXEC OBJs(1,SYSTEM,ASMBLR) MEM=(3p0,5800,1008) PRTY=({,15)}

/ TIME==1 MEM1SMEMA)

/ASSIGN @ DUMMY DEVICE3$=DMSG SHARE . SYSTEM MESSAGE
/ASSIGN 4 DUMMY DEVICEssDCON SHARE$sSCON . CONTROL/MESSAGE
/ASSIGN & DISCi DEVICE:sDSRC FILE3sFSRC BUFFERSsi » SOURCE INPUT
/ASSIGN 6 SC DEVICE:=DLSTA FILEssFLSTA BUFFERSs! . SOURCE |.IST/ERROR
/ASSIGN 7 DISCY FILEs(TEMP,0BJECT) NEW BUFFERS=1 LINKSEG)

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATE=(19,300,64,10) . OBJECT OUTPUT
/ASSIGN 16 DISCY FILE=(TEMP,SCRL) NEW BUFFERS=1 LINKSEQ) .

ACCESS®(ANY,ANY,ANY,ANY) ALLOCATE=(18,300,256,38) . SOURCE SCRATCH
/EXEC OBJs(1,SYSTEM,DXOLE) MEM=(30@8,12000,3008) PRTY=(1,15))

/ TIME=z=] MEMgsMEML ,

/ASSIGN & DISC! FILEs(TEMP,O0BJECT) DELETE BUFFERS=! . PRIMARY INPUT/CON
/ASSIGN 6 SC OEVICE3sDLSTL FILE:=sFLSTL BUFFERS=1] LOADMAP LIST/ERR
/ASSIGN 8 DISct FILEs(TEMP,LM) NEW BUFFERSsi RELREC LRECL-Ga;

/ ACCESS=(ANY,ANY,ANY,ANY) ALLOCATE=(10,300,32,10) » LOAD MOD ouUTPUT
/ASSIGN 9 DUMMY » LIBRARY FILE
/ASSIGN 1@ DISCy FILE=(TEMP,SCRL) DELETE BUFFERSsi LINKSEQ SCRATCH
/ASSIGN 13 DISCY FILEs(TEMP,SCRR) NEW NDELETE BUFFERSsy RELREC:

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATE=(10,300,128,10)}

/ LRECL=100 . RELREC SCRATCH
/EXEC 0BJs(1,TEMP,LM) MEMs(300,48009,1000) PRTY=(1,15)}

/ TIME=10@ MEM3I=MEMG TIME3sTIMG

/ASSIGN 4 DUMMY DEVICEssDEV4 FILEgsFIL4 BUFFERSs2
/ASSIGN S SC DEVICEs=DEVS FILEgsFILS BUFFERSs2
/ASSIGN 6 SC DEVICEssDEV6 FILEssFIL6 BUFFERSs2
/ASSIGN 7 DUMMY DEVICEssDEV?

/END

USER PROG LUN 4
USER PROG LUN §
USER PROG LUN 6
USER PROG LUN 7

“ e e

8.9.2 MEMORY PARTITION REQUIREMENTS

The job area consists of space for the load module of the assembler and any
work space required by the assembler for symbol table storage., The number
of words required for a single symbol table entry is a function of the number
of characters in the symbol as shown in table 8-17. The job area require-
ment may be calculated using the following formula:

<jarea> = 3650 + 3(S12) + 4(S34) + 5(S56)

where:
3650 = SAPG load module size
S12 = Number of symbols in table with a 1 or 2 character length

S34 = Number of symbols in table with a 3 or 4 character length
S56 = Number of symbols in table with a 5 or 6 character length

A job area size of 5000 words will allow the assembly of a program with as
many as 270 symbols,

8-42 Digital Systems Division

%@ 943005-9701

Table 8-17. Symbol Table Memory Allocation

Symbol Length
in Characters

Words Required
in Symbol Table

3
4
5

The job extension area can be calculated according to the following formula:

NF NB
<jearea>= 3, D (BS;+1) + 17(NT) + 7(NL) + SS + 11
i=1 j=1
where
NF = Number of files assigned (0 < NF < 3)
NB = Number of buffers per file (1 < NB < x, depending on amount of
blocking)
BS = Physical record length in words of the individual files
NT = 1 co-resident task
NL = 6 LUNs assigned
SS = 300 for Dynamic TCB stack requirement
Therefore,

<jearea> = 370 + BB

where BB is the total blocking buffer requirements for all files,

To assemble a program using the standard JCL procedure provided previously
in this section using input and output files having physical record lengths of
256 words or less, a job extension area of 1000 words is adequate,

8.9.3 LUN ASSIGNMENTS

Table 8-18 lists the logical unit assignments for the assembler,

8-43

Digital Systems Division

@ 943005-9701

Table 8-18. SAPG Assembler Logical Unit Assignments

LUN Description Comments
0 System error messages Any printing device
4 Messages and control Any input/output device
5 Source input Any input device/file. If not re-

windable, LUN 16 must be assigned
to a rewindable device/file, or in-
put must be manually input twice.

6 Output listing and Any printing device/file
error messages

7 Relocatable object output Output device/file

16 Temporary storage of Any input device/file, If rewind-
source input able, it is used as input to Pass 2;

if not rewindable, LUN 5 provides
input to Pass 2,

8.9.4 OPERATION

The SAPG assembler is a single-task program that runs under DX980 in the
protected mode. Figure 8-7 illustrates the operation and LUN assignments
for SAPG. The assembler first determines if the source input (LUN 5) is re-
windable, If it is not rewindable, SAPG prints the message:

READY SOURCE, HIT C/R

on LUN 4, When this message appears, the operator should ready the source
device, if necessary, and then select a carriage return on LUN 4, This con-
trol interaction can be eliminated by assigning the message and control (LUN
4) to DUMMY, Pass | reads the source from LUN 5 until it reads a record
containing an END directive, After the END is processed, Pass 1 terminates
and Pass 2 begins.

Pass 2 obtains the source input from one of two sources:

1) If LUN 16 has been assigned to a rewindable device or to a file,
Pass | copies the source input to LUN 16 and Pass 2 uses LUN 16
for its input,

2) If LUN 16 has been assigned to a non-rewindable device, Pass 2
uses the primary source input, (LUN 5) for input, If LUN 5 is as-
signed to a rewindable device or to a file, Pass 2 automatically re-
winds LUN 5, If LUN 5 is not rewindable, the source input control
message:

READY SOURCE, HIT C/R

is again printed to LUN 4, After repositioning the source in LUN 5,
select carriage return,

8-44 Digital Systems Division

943005-9701

! sysTem ;

ERRORS
LUN ©

PASS 1
BUILD TABLES

PASS 1
ERROR LIST
LUN 6

SOURCE
OUTPUT
TO DisC

SYSTEM
ERRORS
LUN O

SOURCE INPUT
LUN s | PASS 2
1. PROCESS FIELDS. / 7
[’ 2. OUTPUT MACHINE LIST OUTPUT

AND ERRORS
LUN 6

LANGUAGE EQUIVALENT.
3. LIST ERRORS.

MESSAGES

AND CONTROL
LUN 4

RELOCATABLE
OUTPUT
OBJECT

LT Y] -

NOTE; SOME FUNCTIONAL BLOCKS INDICATE THAT s
A REWIND 1S REQUIRED BEFORE PROCESSING
MAY CONTINUE, THE REWIND CAPABILITY R
1S DEFINED AS FOLLOWS,

AUTOMATIC REWIND
=)

MANUAL REWIND

L‘(-

Figure 8-7. SAPG Assembler Functional Diagram

(A)130097

8-45 Digital Systems Division

{@ 943005-9701

Pass 2 produces a listing and the bulk of the object output, and terminates
processing when it encounters an END directive, At that time Pass 1 re-
starts, The SAPG assembler continues to process source inputs terminated
by an END directive and generates corresponding output object modules until
it reads an End of File (EOF) record (/*) to terminate the assembly., It then
outputs an EOF record and trailer at the end of the object output to indicate
assembler termination. To execute any object program under DX980, the
module must be linked using the link editor, DXOLE,

8.9.5 ERROR CODES

When SAPG reads the source program, it may detect format errors, Detec-
tion of an error prints a diagnostic message on LUN 6, If the error is de-
tected in Pass 1, the message appears before the listing, If the error is de-
tected in Pass 2, the message is printed adjacent to the source line in question,
A total number of errors encountered in the assembly is given at the end of

the listing, Table 8-19 lists the possible error messages printed by SAPG,
8.9.6 SAMPLE INPUT

Figure 8-8 illustrates the source input to the SAPG assembler,

8.9.7 SAMPLE OUTPUT

Figure 8-9 illustrates the object module output from the SAPG assembler.

8.10 FORTRAN IV COMPILER

The FORTRAN compiler furnished with the DX980 operating system exceeds
the specifications set forth in the American National Standards Institute pub-
lication number USAS X3, 9-1966, The FORTRAN compiler is a l-pass, 2-
phase compiler that outputs an intermediate pseudo object of tables and link-
age information at the end of Phase 1, Using the mass storage capability of
the DX980 system, the operator need not handle the pseudo object output.
More detailed characteristics of this compiler are described in the FORTRAN
manual referenced in the Preface to this manual.

8.10.1 STANDARD JCL PROCEDURE

Standard JCL procedures are listed below for the 2-step FORTRAN compile
job sequence (Phase 1 and Phase 2) and for the 4-step FORTRAN compile,
link and go job sequence. This procedure does not permit searching of any
alternate, user-supplied libraries other than the standard FORTRAN library.
To enable additional searches, a separate JCL procedure must be written
with modifications to the job step portion of DXOLE. These modifications in-
clude assignment of the object module (TEMP, OBJECT) to an unused LUN,
assignment of the alternate library file to another unused LUN, and assign-
ment of the required DXOLE control commands (either in a file or from an
input device) to LUN 5,

8-46 Digital Systems Division

943005-9701

«® CREATE FTNPS1,COMMENT,"FORTRAN PHASE 1 COMPILE "
/REPLACE FTNPS1 « FORTRAN PHASE § COMPILE ,
/EXEC 0BJ=(1,SYSTEM,FTN) MEMs(3PQ,80802,10080) PRTY®(1,15)}

/ TIMEse]l MEM3sMEM PRTYisPRI TIMEisTIM

/ASSIGN @ DUMMY DEVICE:=DMSG SHARE . SYSTEM MESSAGE
/ASSIGN 5 DISCt DEVICE:sDSRC FILF3sFSRC BUFFERS={ . SOURCE INPUT
/ASSIGN 6 SC DEVICEs=DLST FILEgsFLST SHARE3$eSLST RUFFERS={,.SOURCE |.IST/ERROR
/ASSIGN 7 DISCY1 DEVICEssDINT FILEs=sFINT BUFFERSs! LINKSEQ; '

/ ACCESSS(ANY,ANY,ANY,ANY) ALLOCATE=(1,8,64,30)} . SOURCE SCRATCH

;END NEWssNINT REPLACE3sSRINT ACCESS:sCINT ALLOCATEssLINT

+% CREATE FTNPS2,COMMENT,"FORTRAN PHASE 2 COMPILE s

/REPLACE FTNPS2 . FORTRAN PHASE 2 COMPILE .

/EXEC OBJ=(1,SYSTEM,FTNPS2) MEM=(302,8p080,1000) PRTY=(1,15)}

/ TIME==f MEM$sMEM PRTYgspRI TIME:sTIM

/ASSIGN @ DUMMY DEVICE1=DMSG SHARE © SYSTEM MESSAGE

/ASSIGN 6 SC DEVICEs=DLST FILEtsFLST SHARE:=SLST BUFFERS®{ ,FRROR MMSSGRS
/ASSIGN 7 DISCt! DEVICE:sDOBJ FILE3=FORBJ BUFFERS=! LINKSEQ;

/ ACCESS=(ANY,ANY,ANY,ANY) ALLOCATE=(1,08,64,10)} . OBJECT QUTPUT

/ NEWsaNOBJ REPLACEtsROgJ ACCESS3sCOBJ ALLOCATE:=LOBJ

/QSSIGN 8 DIsct DEVICE:sDINT FILFs=FINT BUFFERS=1 . INTERMED ORJECT
/END

+% CREATE FTNLGO, CDMMENT."FORTRAN COMPILE, LINK,AND GO®
/REPLACE FTNLGO . FORTRAN COMPILE, LINK, AND GO ,
/EXEC 0BJs(1,SYSTEM,FTN) MEM=(308,1080a,1000) PRTY=(1,15))

TIMEsel, MEMIzMEMC .
/ASSIGN g DUMMY DEVICE$sDMSG SHARE : SYSTEM MESSAGE
/ASSIGN 5 DISCt DEVICE$sDSRC FILE:sFSRC BUFFERSs! » SOURCE INPUTY
/ASSIGN & SC DEVICE:sDLST! FILEt=sFL ST BUFFERSsY s SOURCE |.IST/FRROR
IASS'CN 7 DISct FILEs(TEMP.PHASE1) NEw BUFFERSsi LINKSEQ) - INTERMED ORJECT

ACCESSS (ANY,ANY,ANY,ANY) ALLOCATE=(10,300,64,39) . SOURCE SCRATCH
/EXEC ORJ=(1,SYSTEM,FTNPS2) MEM=(3p4@, BGGG.IGGB) PRTY=(1,15)3

/ TIMEzwi MEM3EMEMC)
/ASSIGN 8 DUMMY s SYSTEM MESSAGE
/ASSIGN 6 SC DEVICEs=DLST2 . ERROR MESSAGE

/ASSIGN 7 DISCt FILEs(TEMP,0BJECT) NEW BUFFERSs{ LINKSEQ} ,

/ ACCESS= (ANY,ANY,ANY,ANY) ALLOCATE=(10,300,64,18) . OBJECY OUTPUT
/ASSIGN 8 DIsct FILEs(TEMP,PHASE1) BUFFERS=1 . INTERMED OBJECT
/EXEC 0BJs(1,SYSTEM,DXOLE)Y MEM=(300,120080,3000) PRTY=(1,15))

/ TIMEs=] MEMisMEML .
/ASSIGN 5 DISC! FILEs(TEMP,0BJECT) DELETE BUFFERSs1 » PRIMARY INPUT/CON
/ASSIGN 6 SC DEVICEtsDLSTL FILE:sFLST BUFFERSs{ . LOADMAP I.IST/ERR
/ASSIGN 8 DISCY FILEs(TEMP,LM) NEW BUFFERSs{ RELREC} ‘

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATEs(190,300,32,13)) . LOAD MOD OUTPUT

/ LRECL=64

/ASSIGN 9 DISC) FILE=(SYSTEM,USRFTN) BUFFERSs2 ; L.IBRARY

/ASSIGN 1@ DISCt FILE=(TEMP,PHASE]) DELETE BUFFERSs={ . LINKSEQ SCRATCH
/ASSIGN 13 DISCt FILEsS(TEMP,SCRR) NEW DELETE BUFFERS={ RELREC)

/ ACCESS®S (ANY, ANY,ANY,ANY) ALLOCATEs(10,3087,128,10)3. RELREC SCRATCH

/ LRECL=10Q@

/EXEC OBJ=(1,TEMP,LM) MEM=(300,8p00,1000) PRTY=(1,15)12

/ TIME=100 MEMisMEMG TIMEgsTIMG

SYSTEM MESSAGE
USER LUN 9@

USER LUN {

USER LUN SsINPUT
USER LUN 6s0UTPUT

/ASSIGN @ 8C DEVICEt=DMSG

/ASSIGN »BB SC DEVICEssDEVE

/ASSIGN »B1 DUMMY DEVICEssDEV{

/ASSIGN »B5 SC DEVICEssDEVS FILEIsFILS BUFFERS=2
/ASSIGN »86 SC DEVICEssDEVS FILE:aFIL6 BUFFERS®2
/ASSIGN »88 DISC1 FILEs(TEMP,SCRL) NEW BUFFERSs1 LINKSEG)
ACCESSS(ANY,ANY,ANY,ANY) ALLOCATE=(18,38@,32,10) . USER SCRATCH FILE

. v~

[2 B]

/
/END

8-47 Digital Systems Division

o]
%@ 943005-9701

Table 8-19. SAPG Error Messages
Message . . .
Message Meaning (and Corrective Action)
Number

1 FIELD SZ Address beyond reach (use @ for extended
format)

2 UNDF OP Undefined operation code (check list of valid op
codes)

3 LONG SYM | Symbol > 6 characters

4 MDF O/F OPD or FRM multiply defined (rename label)

5 FRM > 16 FRM fields contain more than 16 bits

6 CAD > 10 Address expression > 10 elements

7 UNDF SYM | Symbol not defined (label probably omitted)

8 MDF SYM Symbol multiply defined (rename labels)

9 RELOC A relocation error (use only relocatable label in
arithmetic expression, or ORG statement can
use only one relocatable label)

10 SYM OVF Too many symbols have been defined (cut out
symbols or divide program)

11 BAD NUM Numeric element not valid (properly define
item in label or address field)

12 IMP R/D A REF or DEF symbol has been used improperly
(REF symbol defined inside and outside the pro-
gram; DEF symbol not defined in the program)

13 X RF USE A REF symbol has appeared invalidly in an un-
relocatable expression '

14 IXB ERR Address mode error (improper use of IXB field)

15 OPD ERR No such OPD format number

16 ADR MODE | Illegal addressing mode (improperly written ad-
dress)

8-48

Digital Systems Division

943005-9701

(A)130396

Figure 8-8. Assembly Language Source Input to SAPG

/ * (EOF)

] ‘
-
[]
(1706 |
V oy
[[RFASE] J
[1703]
(1702
[1701]
1700 -
rEND (1706) l
TEXT (1704) |"
EXT REF'S
I 11703)] : ‘
ENTRY POINTS
(1702)

COMMON
1701)]

700 RECORD)

(A)130397

Figure 8-9. Object Module Output from SAPG

8-49 Digital Systems Division

o]
i@ 943005-9701

8.10.2 MEMORY PARTITION REQUIREMENTS

The job area required to run Phase 1 and Phase 2 of the FORTRAN compiler
consists of space for the load modules as well as dynamic workspace. For
Phase 1, this job area is defined by the equation:

<jarea>] = LM, + WS,

where
LM; = 6650 (Phase 1 compiler load module size)
WS] = workspace required (program size dependent)

A job area size of 8000 words for the Phase 1 compilation job step allows for
compiling a small FORTRAN program, For Phase 2, the job area size is
defined by the equation:

<jarea>) = LI\/I2 + WS2
where

<jarea>; = job area size for Phase 2

LM,

2800 (Phase 2 compiler load module size)
ws,

workspace required (program size dependent)

A job area size of 8000 words for the Phase 2 compilation job step allows
for compiling a small FORTRAN program.

The job extension area can be calculated according to the following formula:

NF NB
<jearea>=) » (BS, + 1) + 17(NT) + 7(NL) + SS + 11
i=1 j=1

where

NF = Number of files assigned to the job step (0 < NF < 3)

NB = Number of buffers per file (0 < NB < x, depending upon amount of
blocking)

BS = Physical record length in words of the individual files assigned to
the job step

NT = 1 co-resident task

NL = 4 LUNs assigned to the compiler

SS = Dynamic TCB stack requirement (300 for compiler)
Therefore,

<jearea> = 356 + BB

8-50 Digital Systems Division

o
@ 943005-9701

where BB is the total blocking buffer requirements for all files assigned to
the job step. For compiling the previously listed standard JCL procedure
using input and output files having physical record lengths of 256 words or
less, a job extension area of 1000 words is adequate. For Phase 2, the re-
quired jearea is also 1000.

8.10,3 LUN ASSIGNMENTS

Tables 8-20 and 8-21 list the logical unit assignments for the Phase 1 and
Phase 2 FORTRAN compiler job steps, respectively.

Table 8-20. FORTRAN Compiler Phase 1 LUN Assignments

LUN Description Comments
0 System error messages Any input/output printing device
5 Source input Any input device/file
6 Output listing and Any printing device/file
error messages
7 Output to Phase 2 Output device/file
Table 8-21. FORTRAN Compiler Phase 2 LUN Assignments

LUN Description Comments
0 System error messages Any input/output printing device
6 Output listing and Any pfinting device/file
error messages
7 Relocatable object out- Output device/file
put
8 Input from Phase 1 Any input device/file

8.10.4 OPERATION

The FORTRAN compiler is a single-task program that runs under DX980 in
the protected mode. The compilation of a FORTRAN program consists of a
2-step job: Phase 1 and Phase 2 compilations. Figure 8-10 provides a func-
tional diagram of the FORTRAN compiler, including LUN assignments.

The FORTRAN Phase 1 compiler first determines if the source input (ILLUN 5)
is rewindable, If it is not rewindable, the compiler prints the message:

READY INPUT, HIT C/R

8-51 Digital Systems Division

943005-9701

FORTRAN PHASE 1

CONTROL 1. SYNTAX SCAN

SOURCE LIST

LN o 2. BUILD SYMBOL LUN 6
TABLES
3. ALLOCATE MEMORY
4. SOURCE LIST WITH
ERROR MESSAGES PSEUDO-OBJECT,
5. OUTPUT PSEUDO- (CONSTANTS
OBJECT AND LINKING
|
I NOTE:
R SYSTEM LOGICAL UNITS CORRESPONDING TO
__________ FORTRAN UNITS THAT HAVE BEEN USED IN A

FORTRAN PROGRAM MUST BE ASSIGNED TO
APPLICABLE PHYSICAL DEVICES BEFORE THE
FORTRAN PROGRAM IS RUN. THESE SYSTEM
RUN-TIME UNITS ARE LISTED IN THE FOLLOWING
TABLE:

FORTRAN PHASE 2

1. CREATE BASE PAGE
CONSTANTS

2. CREATE PAGING

ERROR
MESSAGES
LUN ©

PHASE 2

INPUT
LUN 8

CONSTANTS
3. OVERFLOW CHECK FORTRAN RUN-TIME LOGICAL UNITS
4. QUTPUT LINKABLE

OBJECT OBJECT FORTRAN UNIT SYSTEM UNIT

ouTPUT 0TO9 BO TO B9
LUN 7
10 TO 15 BA TO BF
16 TO 25 CO TO C9
26 TO 31 CA TO CF

(A)130106

Figure 8-10, FORTRAN Execution Functional Diagram

on LUN 0, When this message appears, the operator should ready the source
device and then select a carriage return on LUN 0, Phase | then reads the
source input and outputs an intermediate pseudo-object of tables and linkage
information to LUN 7, If after the END statement of a subprogram Phase 1
encounters a record containing two asterisks (*%) as the first two characters,
it produces delimiting characters for Phase 2 and restarts itself to process
an additional subprogram. This procedure compiles several subprograms
with a single application of the compiler, Once Phase 1 encounters an End
of File (EOF) record (minimally a /%), Phase 1 terminates and Phase 2 be-
gins,

The FORTRAN compiler Phase 2 determines if the intermediate object input
is rewindable, If the input is not rewindable, the compiler prints the mes-

sage:
READY INPUT, HIT C/R

on LUN 0, When this message appears, the operator should ready the input
device (LUN 8) if necessary, and then select a carriage return on LUN 0.
Phase 2 then reads the intermediate object and completes the compilation
process, If no errors occur in this process, Phase 2 prints the message:

COMPILATION COMPLETE
on LUN 6,

8-52 Digital Systems Division

o
{@ 943005-9701

The object code produced by 980 FORTRAN is in relocatable format suitable
for input to the link editor, DXOLE, The program ID for the object mod-

ule is taken from the name of the function or subroutine subprogram. The
name cannot exceed six characters in length, If it is less than six charac-
ters, the name field is right filled with blanks, Those programs that are

not identified as functions or subroutines are automatically named PMAINbD,
DXOLE does not recognize an IDT name beginning with b (blank space) within
an Include control record. Therefore, DXOLE cannot access a main pro-
gram produced by the FORTRAN compiler from within an indexed file by using
the keyname.

The object output from Phase 2 is ready for linkage editing with the FORTRAN
library to acquire any library modules referenced in the program. The
FORTRAN library contains a collection of commonly used subprograms typi-
cally referenced by programs generated by the FORTRAN compiler, The
library is provided to DX980 users in the form of a key indexed library file
identified as (SYSTEM, USRFTN), Assign this library file tc LUN 9 of the
DXOLE job step for most efficient linking. The output load module from
DXOLE may then be executed. The FORTRAN runtime package adds a value
of B0jg to the LUN of all user I/O requests. For example, if a user pro-
gram specifies an output for LUN 6, the JCL needed to execute the load mod-
ule must assign LUN B61¢ to the program. FORTRAN runtime error mes-
sages (explained in paragraph 8.10.5) are printed on LUN 0. Therefore, the
JCL procedure for executing any FORTRAN program must also assign LUN 0.
The standard JCL procedures provided in paragraph 8.10.1, illustrate the
assignment of LUN 0 for these error messages.

8.10.5 ERROR CODES

Error messages may originate from several sources in the FORTRAN com-
pile, link and go sequence, Table 8-22 lists the error codes generated by the
FORTRAN compiler Phase 1, Table 8-23 lists the error codes generated by
the FORTRAN compiler Phase 2, Table 8-24 lists the error codes generated
by the FORTRAN runtime library. These codes can be produced during the
actual execution of the load module,

Table 8-22. FORTRAN Compiler Phase 1 Error Messages

Comment Meaning

Line-by-Line Messages

SYNTAX Erroneous punctuation or illegally con-
structed arithmetic expression,

NUMBER A constant or label is too large or is in-
correctly constructed.

8-53 Digital Systems Division

(@ 943005-9701

Table 8-22, FORTRAN Compiler Phase 1 Error Messages (Continued)

Comment Meaning

ID CONFLICT The identifier marked is being used in a
context which contradicts a previous ex-
plicit or implicit declaration,

TYPE CONFLICT The identifier or expression marked is in
conflict with another identifier or ex-
pression,

MODE The identifier or expression marked has a
type in conflict with the context,

SUBSCRIPTS The number of subscript expressions used
in an array does not equal the number de-
clared for the array,

ALLOCATION A non-dummy variable has been given as an
adjustable dimension, or a variable has
been placed in COMMON more than once,
or a dummy variable appears in a
COMMON or EQUIVALENCE statement,

ORDER The statement appears in the program at a
point in violation to the stated rules govern-
ing the order of appearance of statements in
the program.

MISSING LABEL The statement must have a label in order to
be reached or referenced,

DATA COUNT The number of items in the data list of a
DATA statement is not equal to the number
of items in the variable list,

BLOCK DATA An executable statement appears in a
BLOCK DATA subprogram,

OVERFLOW The statement caused the compiler capacity
to be exceeded, Compilation does not con-
tinue,

End-of-Compilation Messages

LABEL ERRORS Labeling a Do loop structure errors, The
message is followed by a list of statement
numbers,

ALLOCATION ERRORS Memory allocation errors, The message

is followed by a list of identifiers to which
memory cannot be allocated, due to pro-
gramming errors,

8- 54 Digital Systems Division

o
@ 943005-9701

Table 8-23. FORTRAN Compiler Phase 2 Error/Termination Messages

Comment

Meaning

INCORRECT FORMAT
PROGRM OVER
BSPAGE OVER
INVALID CODE

FIELD SIZE ERROR

COMPILATION ABORTED -
PASS 1 ERROR

ERRORS - COMPILATION
ABORTED

PROGRAM END

COMPILATION COMPLETE

The Phase 1 output contains a format error
The program exceeds Phase 2 capacity
The base page exceeds the capacity allotted

The Phase 1 output contains a code not
recognized by Phase 2

The IAL statement on the indicated line
referenced a location that is not directly
addressable,

Error encountered in intermediate object
input from Phase 1

Errors encountered in Phase 2.

Phase 1 output successfully input to Phase
2.

No errors encountered in either phase

Table 8-24.

Runtime Error Messages

Message

Meaning

NOTE

The user program is terminated in all cases except
the **WARNING** condition,

ILLEGAL FORMAT
CHARACTER

ILLEGAL INPUT
CHARACTER

FORMAT PARENTHESIS
ERROR

UNDER/OVER FLOW

Illegal character encountered in runtime
format statement,

Illegal character encountered in input
stream during READ execution,

Runtime format statement contains un-
balanced set of parenthesis,

Real number in input stream or result of a
floating point operation is outside range of
numbers allowed.,

8-55

Digital Systems Division

o
@@ 943005-9701

Table 8-24. Runtime Error Messages (Continued)

Message Meaning
#**WARNING** RECORD User program attempting to input or out-
SIZE ERROR put record containing greater than 132 char-
acters,

INPUT (OUTPUT, REWIND, 1/0 was attempted on a FORTRAN unit
BACKSP, ENDFILE) UNIT greater than 7,
LIMIT ERROR

OUT OF DATA End-of-file encountered during a READ op-
eration,

ERR, OR WRTBIN Hardware error, or attempted operation is

(WRTBCD, REDBCD, illegal on device specified, i,e., rewind

REDBIN, ENDFIL, REWIND, card punch is illegal.
BACKSP) COMM IGND ON
UNIT BO (1,2,...,7) JOB
ABORTED

DIVIDE CHECK An attempt was made to perform a floating-
point division by zero,

8.10.6 SAMPLE INPUT
Figure 8-11 illustrates input format for the FORTRAN compiler.

l /¥ (EOF)
[]
@
[]
rEND l
UBP

* %k
ﬁn

MAIN FORTRAN
PROGRAM

(A)Y130399

Figure 8-11. FORTRAN Source Input to FORTRAN Compiler

8-56 Digital Systems Division

o
%@ 943005-9701

8.10.7 SAMPLE OUTPUT
Figure 8-12 illustrates output format from the FORTRAN Compiler,

/* (EOF)

(1701—-1705
RECORDS)

IDT sUB1
(1700 RECORD)

END (1706
RECORD)

(1701—1705
RECORDS)

IDT PMAIN
(1700 RECORD)

(A)130400

Figure 8-12, Object Module Output from FORTRAN Compiler

8.11 LOAD MODULE UPDATE (LMUPDT)

This utility updates an unplanned overlay on a load module file, The new
overlay must have been link edited as a subsystem using DXOLE, The rela-
tive record file of the new overlay must contain a directory entry for the
overlay, a dummy root phase, and the new overlay, Use the following con-

trol cards for DXOLE:

B SUBSYSTEM OVLY Subsystem Mode, Overlay
b ROOT MAIN, Dummy Root Phase
b SEGMENT 1 Level 1 Overlay
Object Deck Oirerlay 1
p SEGMENT 1 Level 1 Overlay
Object Deck Overlay 2

(listing continued on next text page)

8-57 Digital Systems Division

943005-9701

(listing continued from previous text page)

b SEGMENT 1 Level 1 Overlay
Object Deck Overlay n (n Load Modules to be Updated)
/% End of File Terminates DXOLE Input

8.11,1 STANDARD JCL PROCEDURE
The following listing is a standard procedure for LMUPDT:

+% CREATE LMUPDT,COMMENT,"LOAD MODULE UPDATE "

/REPLACE LMUPDT « LOAD MODULE UPDATE .

/EXEC OBJs(i,SYSTEM,LMUPDT) MEMs=(3p@,3800,508) PRTY=(3,1)}

/ TIMEs=! MEM3sMEM PRTY3spRI TIMEssTIM ,

/ASSIGN 4 SC DEVICEtsDMSG » SYSTEM MESSAGE
/ASSIGN 5§ 8C DEVICE:sDCON FILEs=FCON BUFFERSs{ » CONTROL INPUTY
/ASSIGN 6 DISCt DEVICE:sDLM FILEtsFLM BUFFERSs1 LOAD MODULE INPUT
/ASSIGN 7 DISCt1 DEVICEtsOUPD FILEssFUPD BUFFERSs{ . UPDATE FILE

/END

% CREATE LINKUP,COMMENT,"LINK MoD AND UPDATE L M FILE"
/REPLACE LINKUP « LINK MODULE AND UPDATE LOAD MODULE FILE .
/EXEC OBJs(1,SYSTEM,DXOLE) MEM=(300,12000,3000) PRTYs(1,1)}
TIMEs=] MEM3sMEML

/

/ASSIGN 1 DUMMY DEVICE:=DOBJ FILEs=FOBJ BUFFERSs2 . SECONDARY 0BJ IN
/ASSIGN 5 DISC1 DEVICE:=DIN FILE:sFIN BUFFERS=1 . PRIMARY INPUT/CON
/ASSIGN 6 SC DEVICEssDLST FILE:aFLST BUFFERS=1 LOADMAP LIST/ERR
/ASSIGN 8 DISCt FILEs(TEMP,LM) NEW BUFFERSs{ RELREC LRECL-641

/ ACCESS® (ANY, ANY,ANY,ANY) ALLOCATE=(10,300,32,10) . LOAD MND OUTPUT
/ASSIGN 9 DISCi DEVICE:sDPLX FILEs(SYSTEM,USRPLX) FILE:sFPLX}

/ BUFFERS=2 . PLEXUS |, IBRARY
/ASSIGN 1@ DISCY FILE=(TEMP,SCRL) NEW DELETE BUFFERS=y;

/ LINKSEQ ACCESS=(ANY,ANY,ANY, ANY)} " LINKSEQ SCRATCH
/ _ ALLOCATE=(1@,3080,256,30)

/ASSIGN 11 DISCY DEVICEs=DEXT FILE=(SYSTEM,DXEXTD) FILEssFEXT}

/ BUFFERSS1 SYSTEM EXT DEFS
/ASSIGN 13 DISCt FILEs(TEMP,SCRR) NEW DELETE BUFFERSs{ RELREC:

/- ACCESSa(ANY,ANY,ANY,ANY) ALLOCATE=(10,300,128,10);

/ LRECL=107 . RELREC SCRATCH
/EXEC OBJ=(1,SYSTEM,LMUPDT) MEM=(3@@,3800,500) PRTY=(1,1))

/ TIMEs=1 MEMgsMEMU

SYSTEM MESSAGE
CONTROL INPUT
LOAD MODULE INPUT
UPDATE FILE

/ASSIGN 4 SC DEVICE1=DMSG

/ASSIGN 5 8C DEVICE:=DCON SHARE$sSCON

/ASSIGN 6 DISCY FILEs(TEMP,LM) BUFFERSs}

IESSIGN 7 DISCt DEVICE3sDUPD FILEssFUPD BUFFERSs!
/END

b T T Bid

8.11.2 MEMORY PARTITION REQUIREMENTS
The memory requirements for the update utility are:

MEM=(500, 12000, 4000).

8.,11,3 LUN ASSIGNMENTS
LUN assignments for LMUPDT are given in table 8-25.

8-58 Digital Systems Division

(o]
@ 943005-9701

Table 8-25. LMUPDT Logical Unit Assignments

LUN Description
4 Error messages
5 Control record input
6 Load module input file
7 Load module file to be updated

8.11,4 OPERATION

One control record must be input for each load module to be updated. The
control record contains only a base 10 value of the Memory Image Phase
(MIP) to be updated. The value is obtained from the DX980 system link load
map listing, To find this value, scan the load map listing for the IDT name
of the module to be updated, The base 10 value of the MIP number for this
overlay is entered, left justified, on the control record as the base ID.

After the updates have been made, perform the Initial Program Loading (IPL)
procedure to bring the modified load module dictionary into memory, This
procedure is described in the DX980 System Operation Guide, Part Number
943004-9701.,

8.11.5 SAMPLE INPUT
A typical format for input on LUN 5 is as follows:
Control Record for OVerlay 1

Control Record for Overlay 2

Control Record for Overlay n

/% Terminates Control Record Input

8.12 SOURCE MAINTENANCE ROUTINE (SMR)

The DX980 Source Maintenance Routine (SMR) maintains source libraries for
large software projects. The SMR keeps a history of changes made to a
source library by recording the change level for each record within a pro-
gram in the library, for each program in the library, and for the library it-
self. The SMR can access any version (through all change levels) of any pro-
gram in the library. It can be used for either batch or interactive applica-
tions, and has commands that create a new program on the library, modify
an existing program in the library, and that delete, list or extract programs
in the library. The SMR can also produce an index of all the programs in the
library.

8-59 Digital Systems Division

943005-9701

8.12,1

STANDARD JCL PROCEDURE

The following listing is a standard procedure for SMR:

«% CREATE SMR +COMMENT, "SOURCE MAINTENANCE ROUTINE *

/REPLACE SMR
/EXEC 0BJs(1,SYSTEM,SMR) MEM=(30p,11500,5008) PRTY=(1,15))

/
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/

/
/ASSIGN
/

/
/ASSIGN
/ASSIGN
/ASSIGN
/END

[}
4
6
215
222

225

»26
»35
245

« SOURCE MAINTENANCE ROUTINE .

TIMEs=1 MEMisMEM

S¢ DEVICE$sDMSG

sC DEVICEssDCON FILEs=sFCON BUFFERSs]
DUMMY DEVICE$=DLST FILEs=sFLST BUFFERS=}

MT§ DEVICEs=DOLD FILEtsFOLD BUFFERS®=1 LINKSEQ
pDUMMY DEVICEs=0COM FILEssFCOM REPLACE$sRCOM}
BUFFERS®1 LINKSEQ ACCESSs(ANY,ANY,ANY,ANY)}
ALLOCATEs=LCOM

DUMMY DEVICE$sDNEW FILEtsFNEW REPLACE $sRNEW)
BUFFERS=! LINKSEQ ACCESSs(ANY,ANY,ANY,ANY)}
ALLOCATE$sLNEW

DUMMY

DUMMY DEVICE$sDEV3S FILE:®FIL35 BUFFERSs2
DUMMy DEVICE$=sDEVAS FILE:SFIL4S BUFFERSs2

8,12.2 MEMORY PARTITION REQUIREMENTS

<~ % <

[I

« e e e °

ERROR/USER MSG
COMTROL

LISTING

OLD LIBRARY FILL

COMPILE OUT FILE

NEW LIBRARY FILL
JCL UPDAT CON OUT
INCLUDE LUN OPT 1
INCLUDE LUN OPT 2

SMR memory requirements are defaulted in the standard procedure to the

following:

MEM=(300,11500, 2000)

8.12.3

LUN ASSIGNMENTS

The logical unit numbers that must be assigned for SMR are provided in
table 8-26. In addition to these standard required LUNs, any other LUNSs
can be assigned to SMR and accessed by the include option.

NOTE

All LUN assignments for SMR, unlike most utilities,

are hexadecimal numbers,

8.12.4 OPERATION

SMR executes in either an interactive or a batch manner depending on the type
of device used for command input. No special command is required since

SMR determines the manner of pro

cessing from the attributes of the command

LUN. Error processing is the main difference between the two operational
types. When executing interactively almost no errors are fatal. The error

message is output to

the interactive device (in addition to the listing device),

and the user can re-enter the command. When batch processing, however,

some errors are fatal and some are logical.
See section 8.12.5 for a description of SMR error codes.

Logical errors allow recovery.

8-60

Digital Systems Division

[o]
@ 943005-9701

Table 8-26. SMR Logical Unit Assignments

LUN Description Comments

0 Operator Console Used only as explained in discussion of
Messages ", # PAUSE" command,

4 Command Input If assigned to an input/output device cap-
(Logical/fatal able of printing, SMR executes in an inter-
error messages ctive manner; if assigned to an input-
if interactive de- only device/file, SMR executes in a batch
vice) manner, If assigned to DUMMY, the SMR

assumes that the first command is
", # UPDATE *COPYLIB'", (See discus-
sion of UPDATE mode command.,)

6 Listing Any sequential device/file, SMR uses

this LUN to list all submitted commands,
for messages, and for listings of programs
and indexes of the library as described in
discussion of "', # LIST", ",#LSTALL",

and ", # INDEX'" commands, If LUN 4 is
assigned to an interactive device and LUN
6 is assigned to DUMMY, then all messages
and the output caused by 'f, # LIST",

", #LSTALL, and ",# INDEX" commands
are written to LUN 4, Therefore, LUN 6
may be assigned to DUMMY unless a hard
copy of the processing performed is de-
sired,

1516 Old Library File Any rewindable sequential device/file.
Must be assigned to DUMMY if OLDLIB

is not being used.

221¢ | Compile Output Any sequential device/file, This file is
File the output LUN for all ", # COMPILE"
commands and for ", # MODIFY'" com-
mands if in EXTRACT mode (as discussed
later).

2514 | New Library File _Any rewindable sequential device/file, If
running SMR in EXTRACT mode (as dis-
cussed later), this LUN is not used and
may be assigned to DUMMY. Otherwise
this file is the output LUN when any changesg
are made to a program on OLDLIB; all un-
modified programs are copied unchanged.

8-61 Digital Systems Division

@ 943005-9701

Table 8-26. SMR Logical Unit Assignments (Continued)

LUN Description Comments

26 Scratch File Used in JCL installation procedure only.
16 P y
LUN 26 must be assigned to DUMMY for
general use of SMR,

All modules that comprise a project reside in a source library (OLDLIB),
OLDLIB is a sequential data set with rewind capability, either a linked se-
quential file or a magnetic tape. The directory entry for each program in
the library contains such information as module name, revision level, a
descriptive title, a general comment field for any other’information the user
may desire to include, and the language in which the module is written (e.g.
PLEXUS, SAP, FORTRAN, etc). All SMR commands that reference existing
library programs read from OLDLIB, the input source library. Whenever
a library program is to be modified or a library program added, a new
source library data set (NEWLIB) is created, OLDLIB is not modified,
NEWLIB is a copy of OLDLIB except for the modifications made via SMR
commands. NEWLIB has a revision level one greater than OLDLIB and all
programs modified have as a latest change level the revision level of NEWLIB.

Source programs can also be copied from OLDLIB to a compile file; that is,
a sequential file suitable for input to a compiler or assembler. The compile
file is useful when a copy of a program is desired but no permanent changes
are being made.

Functionally, SMR can be operated in three modes: Extract, Update and
Verify. The mode to be used is determined when the first command is read
and cannot be changed after that point, The following paragraphs describe
each of the modes,

§.12.4.1 UPDATE MODE, In Update mode, SMR assumes that no output is
to be made to the compile file. SMR reads from OLDLIB and writes to
NEWLIB. If OLDLIB does not exist (a new library is being built), then the
logical unit for OLDLIB (LUN 15714) must be assigned to DUMMY. When in
Update mode, SMR requires that the programs in the library be in alphabeti-
cal order. Whenever it adds a new program to a library, it first copies any
existing programs from OLDLIB that alphabetically precede the new program
(sorted by the name assigned to the program when it was created in the li-
brary). Furthermore, all SMR commands that reference programs in
OLDLIB must reference those programs in alphabetical order. Any pro-
grams in OLDLIB that are not specifically referenced in the command are
copied to NEWLIB unaltered. If a program is referenced out of order, SMR
will search to the end of OLDLIB without finding the program and will not
rewind OLDLIB to find the program (rewinding OLDLIB would create multi-
ple copies of programs from OLDLIB in NEWLIB).

8-62 Digital Systems Division

[o]
<Jii§} 943005-9701

8.12.4,2 VERIFY MODE, When operating in Verify mode, SMR assumes
that no output is to be made to the compile file., NEWLIB may not be as-
signed to DUMMY. This mode verifies that a new library (NEWLIB) was
generated without I/O errors, SMR commands operate the same in this
mode as in Update mode, except that SMR does not write to the output li-
brary, NEWLIB. Instead, SMR reads NEWLIB and compares it to verify the
contents of the record,

8,12.4.3 EXTRACT MODE, In Extract mode, SMR assumes that no new
library is being created. All commands, except .# CREATE and

.# DELETE, have meaning as discussed later in this description. Refer-
ences to programs in OLDLIB do not need to be in alphabetical order since
SMR rewinds OLDLIB to search for the programs when in Extract mode,
However, SMR is more efficient if references are alphabetically ordered,

8.12.4.4 SPECIFYING UPDATE MODE, To use the Update mode, the
first command to SMR must be one of the three following commands:

.# UPDATE
.# UPDATE *COPYLIB
.# UPDATE *DH*'<rl>',

The first command (, # UPDATE) activates the Update mode as previcusly
described with no modifications.

The second command (, # UPDATE *COPYLIB) instructs SMR to copy
OLDLIB without changes to NEWLIB., Specifying this option prevents SMR
from incrementing the library revision level, and produces an exact dupli-
cate of OLDLIB in NEWLIB. This option replaces the DXCOPY utility for
copying SMR libraries since DXCOPY cannot handle the large size logical
records (up to 3600 characters) that SMR writes. If the command input de-
vice (LUN 4) is assigned to DUMMY, then SMR assumes that the first input
command is . # UPDATE *COPYLIB,., If the *COPYLIB option is specified,
SMR does not request further input.

The third command (, # UPDATE *DH*'<rl>',) instructs SMR to Destroy
History., The symbol<rl>represents a 2-character code supplied by the
user for a revision level indication, The command must appear exactly as
it is shown to correctly specify the Destroy History option, When SMR re-
ceives this command, it does not write any record onto NEWLIB that was
deleted previous to the specified revision level («<rl>). Refer to the discus-
sion of , # MODIFY and . # DELETE commands for an explanation of the de-
leted records,

8-63 Digital Systems Division

{@ 943005-970 1

8.12.4.5 SPECIFYING VERIFY MODE, To use the Verify mode, the first
command to SMR must be one of the three following commands:

.# VERIFY
.4 VERIFY *COPYLIB

.# VERIFY *DH*'<rl>",

The options in the above commands are the same as those previously de-
scribed for the , #UPDATE command. To run SMR in the Verify mode, use
one of the .# VERIFY commands as the first command, Any options used in
this command must be the same options as specified in the , # UPDATE com-
mand used to create the NEWLIB that the command is verifying. Following
the initial command should be the same sequence of commands that followed
the . # UPDATE command (excluding the . # UPDATE command). Similarly,
the LUN assignments for OLDLIB and NEWLIB should be exactly the same
as those used to create the NEWLIB.

8.12.4.6 SPECIFYING EXTRACT MODE, To specify Extract mode, the
first command may be any valid .# xxxx command except those commands
used to specify the Update and Verify modes. The following two commands
specifically designate the Extract mode:

.# EXTRACT
.#EXTRACT *SEQ

The term, *SEQ, specifies a sequencing option used with the , # LIST,
.# LSTALL, and .# MODIFY commands. Refer to the discussion of the
.# LIST command for a description of this option.

8.12.4.7 CREATING A NEW MODULE ON NEWLIB, The command to
create a new module on the new library tape is:

. #CREATE<name>, <language>, <title>, <comment>,
The user specified fields are defined as follows:

e <name> - name to be assigned to the module. This is the name used
to reference the module in any other command. Limited to 9 char-
acters,

e <language> - source language of the module.
Languages recognized include:

a) SAL - 960 Assembly Language Source .
b) SAP - 980 Assembly Language Source
c¢) OBJECT - Object Decks

d) FORTRAN

8-64 Digital Systems Division

o]
%@ 943005-9701

e) FORT - Alternate Identifier for FORTRAN

fy COBOL

g) XPL

h) PLEXUS - Specifies PLEXUS language

i) PL1 - Specifies PL/I language

j) ASM - S/360 Assembly Language Source

k) ALGOL

1) COMMENT - module containing USASCII source records for
comment only.

e <title> - a quoted string, limited to 36 characters, that provides a
more descriptive title than the 9-character name.

. <comment> - a quoted string, limited to 20 characters, that can
hold any additional information such as programmer, author, pro-
ject name, etc,

When the CREATE commeand is invoked, all programs in OLDLIB (if any)
that alphabetically precede the current program are first copied to NEWLIB,
If a program with the specified name already exists in OLDLIB an error is
declared, The commands that follow this command normally define the de-
sired contents of the new module, Two different commands can follow a

.# CREATE, They are:
1) L./INCLUDE <lun>,<lun>, ...

Includes 80 character records (64 if the specified language name is
OBJECT) from the specified <lun> until an end-of-file is read.

The <lun>is not rewound before input. A ,#REWIND command
should be used to rewind the <lun> if desired. More than one
./INCLUDE command may be used. The <lun> may be a decimal
number, or a hexadecimal number prefixed by a '"'>'" (greater than)
or a '"#'" (pound sign)., Any number of<luns> may be specified, If
the language name is OBJECT, the contents of the module must be
inserted using . /INCLUDE commands since no object records may
be encountered in the command input stream,

2) Any record from the command input stream that does not have a
'.#'or',/'in column 1 and 2 is interpreted as part of the module
definition., The definition is completed with either another , # com-
mand or an end of file in the command input.

8.12,4,8 MODIFYING A PROGRAM ON OLDLIB, The command to begin
modification of a program on OLDLIB is:
. # MODIFY <name>.

or

. #MODIFY <name><language>,<title>, «ccomment>,

Change 1 8-65 Digital Systems Division

@ 943005-9701

The <name > field represents the name of the program to be modified., If the
program is not defined on OLDLIB, an error condition exists and the com-
mand is terminated. The<language>,<title>, and <comment> fields are op-
tional, They need only be supplied to change those fields on the program
header record that SMR maintains for the program and that are displayed
for each program when a , #INDEX command is processed. If any one of
these three fields is specified, then the field (or fields) préceding it must
also be specified, For example, to change the title, the . # MODIFY com-
mand must specify the name, the language and then the title.

If in Update mode, then the resulting program image is written on NEWLIB,
If in Extract mode, the resulting program image is written to the compile
file. When the . # MODIFY command is invoked in Update mode, all pro-
grams in OLDLIB that alphabetically precede the specified program are first
copied to NEWLIB., More commands are then input to define the new pro-

i gram contents, Four different commands can follow a .# MODIFY com-
are:

1) @ NNNNN.

This command is the Insert After command, This command copies
from OLDLIB all records in the program up'to and including record
number NNNNN, The number, NNNNN, should be a decimal num-
ber (leading zeroes not required)., (The .# LIST command descrip-
tion discusses sequenced listings of a program in OLDLIB, The
sequence numbers given by such a listing are the appropriate num-
bers to use for NNNNN,) When the records have been copied (to
NEWLIB if in Update mode or to the Compile File if in Extract mode)
then a new command is read to continue defining the new program
contents,

2) @NNNNN, MMMMM., .

This command is the Delete Records command. This command per-
forms the following functions:

° Copies all records of the program from OLDLIB up to and in-
cluding record number NNNNN-1,

e If in Extract mode, it reads and discards all records up to and
including record number MMMMM from OLDLIB,

° If in Update mode, it reads and marks as deleted (at the revision
level of NEWLIB) all records up to and including record number
MMMMM and then writes the records to NEWLIB, SMR does
not delete these records; it only marks them ‘'deleted'. In this
way SMR can reproduce the image of a program in the library
exactly as it appeared at any previous revision,

Change 1 8-66 Digital Systems Division

e}
‘[@ 943005-9701

3) ./INCLUDE <lun>,<lun>,...

This command operates the same as explained in the discussion of
the . # CREATE command,

4) Module Definition,

Any record from the command input stream that does not have an
"@" in column 1, or a ", 4" or ', /" in columns 1 and 2 is inter-
preted as part of the module definition, It is inserted into the com-
pile file or NEWLIB immediately. The module definition is com-
pleted when either a '".# '" command or an End-of-file is encountered
in the command input stream.

If an "@NNNNN, "' command is encountered after record NNNNN+1 has been
read from OLDLIB, then an error message is output and the command is ig-
nored. Similiarly, if a "@NNNNN, MMMMM, " command is encountered after
record NNNNN has been read from OLDLIB, then an error message is given
and the command is ignored.

If in Extract mode and the "*SEQ' option was specified in the ", # EXTRACT"
command, then columns 73 through 80 of the record are modified before being
placed in the Compile File, The modification is as follows:

1) If the record was not previously in OLDLIB (inserted into the com-
mand stream or via a ''. /INCLUDE'" command), then columns 73
through 80 are blanked,

2) If the record was in OLDLIB previously, then columns 73 and 76
are blanked, columns 74 and 75 contain the 2-character revision
level that represents the revision level of the library when the rec-
ord was added, and columns 76 through 80 contain a 4-digit (decimal)
sequence number,

8.12.4.9 COMPILE, The format of this command is:

<hame>
. # COMPILE { .
/%

This command moves records to the compile file when no editing is required.
Only one of the three options may be specified, If not in Extract mode, then
use of the "'/*' option causes the command to be ignored and use of either
<name >or * options produces a logical error message output and the com-
mand is then ignored. '

The user supplied parameters are interpreted as follows:

° <name> - Name of a module to be copied from OLDLIB to the com-
pile file.

8-67 Digital Systems Division

Y@ 943005-9701

° * - Records are to be copied directly from the command input into
the compile file until a ", #'" command or an end of file is encountered,

° /% - Write an end of file in the compile file, An end of file is auto-
matically written on the compile file when SMR terminates, This
command permits the user to build compile files with more than
one end of file,

To obtain a copy of a module in OLDLIB as it was at a revision previous to
the current revision of the module, a second option may be added to the
<name> option as follows:

.# COMPILE < name>, ¥'<rl>',

The notation<name >is the name of the module and <rl> represents a 2-
character revision code for the desired revision level, The allowed revision
character codes with interpretation are:

k3 =0
>}:A = l
*Z =26
AA =27
AZ = 52
Z7Z = 702

The * and quote marks are required to correctly specify the revision level
option,

8.12.4.10 DELETE. The command for designating modules as deleted
from the library is:

.#DELETE < name>,<hame>, ,..

If in Extract mode, this command is ignored. Otherwise, each module
named is located in OLDLIB and then the header record is marked ''deleted',
After marking the header record, SMR marks all previously non-deleted rec-
ords as being '"deleted' at the revision level of NEWLIB. All records (in-
cluding the header record) are copied to NEWLIB. This ''deletion' prevents
the module name from appearing when an Index (as discussed later) is done,
All subsequent references to the module name result in an error unless the
command that references the module name also contains the necessary op-
tions to specify that the revision level desired is previous to the '"deletion'

8-68 Digital Systems Division

{@ 943005-9701

of this module, However, if a ,# CREATE command is later used and the
name given matches the name of a previcusly deleted module, then the header
record and module name are reactivated, all the previously deleted records
are copied, unaltered, to NEWLIB, and then the next command is read to
start defining the module's contents, The source language of the new module
must be OBJECT if and only if the source language of the old module was
OBJECT,

8,12,4.11 LIST, The command for listing a library
LH#LIST < name>, <name>, ...

This command lists the source records in the modules specified, The mod-
ules referenced must always be on OLDLIB. If in Extract mode and the
"*SEQ' option was given on the ', # EXTRACT" command, then columns 73
and 76 are blanked, columns 74 and 75 have the 2-character code for the
revision level of the module when the record was created, and columns 77
through 80 contain a 4-digit (decimal) sequence number.

To get listings of certain modules as they appeared at a revision previous to
their latest revision, the revision level may be specified as in the following
example:

+#LIST NAME], *'*A"'", NAMEZ2, NAME3, *'BZ', NAME4, *'sk!',

I) Module NAMEI as it appeared at revision *A
2) Module NAME2 as it appears at the current revision
3) Module NAME3 at revision BZ

4) Module NAME4 at revision ** (when the library was first created.

8.12.4.12 LIST ALL. The command for listing all modules in OLDLIB
(except those with source language OBJECT) is:

. #LSTALL,

This command is invalid unless in Extract mode, Every non-OBJECT mod-
ule in OLDLIB will be listed on LUN 6, However, if LUN 4 is assigned to an
interactive device and LUN 6 is assigned to DUMMY, the listing appears on
LUN 4, The *SEQ option on the .# EXTRACT command has the same effect
when the .# LSTALL command is used as for the . #L.IST command.

8.12.4.13 REWIND LUN, The command to rewind one or more logical
units is:

. #REWIND <lun>,<lun>, ---,

8-69 Digital Systems Division

o
K@ 943005-9701

The notation may be a decimal number, or a hexadecimal number prefixed by

a '>' ora'#'., This command can be used to rewind a< lun>referenced in a
. /INCLUDE command,

8.12.4,.14 INDEX., The command for listing a library index is:
. #INDEX

The . #INDEX command lists on LUN 6 a catalog of all the modules on the
library tape. However, if LUN 4 is assigned to an interactive device and
LUN 6 is assigned to DUMMY, the listing appears on LUN 4, If the

. #INDEX command is input after records are written to NEWLIB, then

the new library will be indexed when the . # ENDALL command is entered to
terminate SMR. Two possible options may be specified with the . # INDEX
command (but only one at a time). The first:

. #INDEX *'<rl>'

causes SMR to produce an index of the library as it appeared at the revision
specified by the 2-character revision code represented in the example by <rl>.

The second:
.# INDEX *TH (Note the lack of quotes)

causes SMR to produce a listing of the library header records for all pre-
vious revisions of the library (beginning with the most recent and going back-
wards). This option is useful if the library header information has been
changed in previous revisions via the . # TAPE command.

8.12.4.15 TAPE. The command for creating a library header record is:
. #TAPE '<title>', '<part number>', '<date>', *'<revision level>'.
The user specified fields are defined as follows:

° <title> - a quoted string, limited to 26 characters, that is the name
of the source library.

° <part number > - a quoted string, limited to 12 characters, to be
used to document the part number the source library was released
under,

° <date >- a quoted string, limited to eight characters, used to docu-
ment the date the source library was generated,

® <revisionlevel> - a quoted 2-character string indicating the revision
level of NEWLIB.. If not specified, NEWLIB will have a revision
I level which will be the next sequential alphabet character; i.e. *B if
OLDLIB was *A.

The .# TAPE command is optional and need only be specified the first time
that a new library is generated or to change the title, part number, or date on
the library header record for the next revision of the library. This command,

Change 1 8-70 Digital Systems Division

[o]
%@ 943005-9701

if used, may be preceded only by , # PAUSE, ,#INDEX, .# UPDATE, and -
VERIFY commands.

8.12,4.16 PAUSE. The command to write a message to the operator's
console is:

. #PAUSE'«message>',
This command writes the quoted string on LUN 0. Processing is continued
when a response (carriage return or end of file) is entered on LUN 0.
8.12,4.17 ENDALL, The command for terminating SMR is:

. #ENDALL

An end of file on LUN 4 also terminates SMR, If a -#INDEX of NEWLIB has
been specified, it is processed when the copy from OLDLIB to NEWLIB is
completed,

8.12.5 ERROR CODES
Error codes for SMR are output to the listing device (LUN 6) and in the inter-
active mode, to the interactive command device (LUN 4) as well, In the in-

teractive mode, only two errors are considered fatal, Unlimited user retry
is normally allowed. In the batch mode, errors are classified as fatal, (i.e.

:
abortive to the job) or logical (i,e, program recoverable), Leogical errors

for batch mode include invalid LUN, missing arguments, unmatched quota-
tion mark, etc. In these cases the field is either skipped, assumed to be a
blank, or assumed to be terminated by quotation mark in column 81,

The two fatal errors for both SMR batch and interactive modes are:

) Specifying Update or Verify mode with NEWLIB assigned to
DUMMY.

® Specifying (or defaulting to) Extract mode with OLDLIB assigned to
DUMMY.

The two fatal errors for SMR batch mode are:
° Referencing a file name that does not exist in the old source library

. Exceeding 100 logical errors,

8.12.6 SAMPLE OUTPUT

The following paragraphs contain examples of the use of SMR.

8-71 Digital Systems Division

943005-9701

8.12.6.1 CREATING A NEW LIBRARY TAPE IN BATCH MODE, The JOB
and RUN commands for this execution are:

/JOB S SYSTEM
/RUN SMR DOLD=DUMMY DNEW=MT1 DCON=CRI;
/DMSG=SC DLST=LP1 DCOM=DUMMY.

The control cards and statements defining the modules are shown in figure
8-13, Figure 8-14 shows the index of NEWLIB at the termination of SMR.,

SOURCE MAINTENANCE ROUTINE

«#UPDATE
o#TAPE 1SMR EXAMPLES', '123456-78001,104/38/75) ,atwal
+#CREATE EFF330,FORTRAN, 'COMPUTE D233@ DISC EFFICIENCY',
WRITE(6,300)
Jep VFGRMAT(1H1:3X'13HREC0RDS/7RAﬂK,4X-IJHSECTORS/RECORD,
1 2X,12HWORDS/RECORD, 2X, { BHUSEFUL WORCS/TRACK,
2 2X,10HEFFICIENCY)
DC 180 ISECR = 1,88
NC & ((ISECR#1221,0w677,8)%32,0)/(34,0¢16,8)
IKRDR ® %C/32
IWRDR ® TWRDR#32
IRECT ® 88/ISECR
IUSWT ® IRECT#IWROR
EFFe (IUSKT#10d,.0)/6720,8
188 WRITE(6,200) IRECT, ISECR, IKRDR, I1ISWT,EFP
2080 Fg$ggrcxn 1/09%,15,18X,15,10%,1%5,13%,15,9%X,F8,2)

END
+#CREATE SMREXAMPLE,COMMENT, 'SMR EXAMPLE % 2 ', 'NO COMMENT!
THIS 15 ORIGINAL RECORD w
THIS 1S ORIGINAL RECORL #
THIS 18 ORIGINAL RECORD #
THIS 18 ORIGINAL RECORD #
THIS 1S ORIGINAL RECORD #
THIS 18 ORIGINAL RECORD #
THIS 18 ORIGINAL RECORD #
THIS 18 ORIGINAL RECORD
THIS 18 ORIGINAL RECORD #
THIS 18 ORIGINAL RECORD w

= OONREELE WA -

o#INDEX,
PLAG SET TO INDEX NEw LIBRARY
o#ENDALL ,

Figure 8-13. SMR Batch Input to Create a New Library

PART NO,8123456+7890 REVews DATEs®4/18/75 TITLESSMR EXAMPLES

NAML REY LANG TITLE COMMENY
EFF330 «% FORTRAN COMPUTE D833a DISC EFFICIENCY

SMREXAMPL #* COMMENT SMR EXAMPIE # 2 NO COMMEN
2 FILFS ON NEW LIBRARY coMmENT

Figure 8-14, Index of NEWLIB

8-72 Digital Systems Division

(o]
{_@a 943005-9701

8,12.6.2 GETTING A SEQUENCED LISTING OF A MODULE, Figure 8-15
shows the commands entered to get a sequenced listing of a module in
OLDLIB and the resulting list, The JCL to run SMR for this example is:

/JOB S SYSTEM
/RUN SMR DNEW=DUMMY DOLD=MT1
/DCON=SC DLST=LP! DCOM=DUMMY

PART M0,3123456=7890 REVs#+ DATE=N4/18/7b TITLE=SMR EXAMPLES

+#EXTRACT «SEQ
+#LIST SMREXAMPLE .,

NAME REV LANG TITLE COMMENT

SMREXAMPL #% CUMMENT SMR EXAMPLE # 2 NO COMMENT
THIS 18 ORIGINAL RECCRD # | «4 2001
THIS 18 ORIGINAL RECORD # 2 *e 2002
THIS 18 ORIGINAL RECCRD # 3 *+ Q23
THIS 18 ORIGINAL RECCRD « 4 +» 2004
THIS 18 ORIGINAL RECCRD # & *v 2005
THIS 18 ORIGINAL RECCRD # 6 e 2006
THIS 15 ORIGINAL RECORD # 7 e 2007
THIS 1S ORIGINAL RECORD # 8 «+ 3008
THIS 18 ORIGINAL RECORD # 9 *+ 2009
THIS 18 ORIGINAL RECORD # 18 «« P10

JH#ENDALL

Figure 8-15. Sequenced Listing Commands and Listing

8.12.6.3 ADDING A MODULE TO GET A NEW LIBRARY, Figure 8-16
shows the command input stream used to add two modules to the library.
Figure 8-17 shows an index of the new library. Note that the modules have
been inserted in alphabetical order.

8.12.6.4 MODIFYING A MODULE, Figure 8-18 shows the command input
stream to modify a module in the library. Figure 8-19 shows an Index of
the new library generated,

8.12.6.5 THE SEQUENCED LISTING OF THE MODIFIED MODULE. Fig-
ure 8-20 shows the command input stream used to get a sequenced listing of
the module modified in example 8. 12,6.4, as well as the sequenced listing
of that module.

8-73 Digital Systems Division

943005-9701

PARYT NQ,®12345607890 REVE#» DATE®M4/18/75 TITLE®SMR EXAMPLES

+#UPDATE . .
+#CREATE EDITOR,PLEX!IS, 'CHARACTER PDITOR PROGRAM!,
/v SC $S %H SA */

DECLARE EDITOR PROCEDURE CHARACTER,
CINSTRN,OTSTRN,NWSTRN) CHARACTER(S8E))
INSTRN = t 1y
DO WHILE SUHSTRCINSTRN,1,?) as 188Y)
INSTRN & INPUT)
NWSTRN 8 EDITORCINSTRN,'JLD!, Y JLX')}
QUTRUT & NWSTRN}
END3
EDIToRs PROCEPURE (INSTRING,VICTIM,VICTCR)}
DECLARE (INSTRING,RESULT) CHARACTER(8M),
(VICTIM,VICTOR) CHARACTER,
I FIXED(16))
RESULT s INSTRING}
1 = @8}
DO WHILE I«<s(LENGTH(INSTRING) » LENGTH(VICTOR)) &
I<u (LENGTH(INSTRING) = LENGTH(VICTIM)) &
(I < {08)y
IF VICTIM » SUBRSTRCTNSTRING,I,I4LENGTH(VICTIM))Y THEN
RESULT = SUBSTR(IMSTRING,@,I)IIVICTORII
SUBSTR(IVSTRING, I+LENGTH(VICTIM))}
I =141}
END}J
RETURN RESULT)
END EDITORS
EOF
+#CREATE SEEK,SAP,'D8332 INDEPENDEMT SEEK TEST!Y,
IDT ISTEST
HED DS332 INDEPENTENT SEEK TEST
svC OPD >C388,3
START EQU §
cKi EQU 3
TMBZ BUSY,PRB{
BRU CK2
BRU RBUF1
cK2 EQU §
TMBZ BUSY,PRB2
BRU CKi
BRU RBUF2
RBUF{ S8MBZ WRITE,PRui+1l
DLD PRB1+4
DAD INC
DST PRB1+4
oLDM sPRB{
BRU 6O
RBUF2 SMBZ WRITE,PRH2+1
DLD PRB2+4
DAD INC
DST PRB2+4
#LDM sPRB2
GO 8vc o
BRU CK{
PRB1 DATA §,»8017,32,BUF},0,0
WRITE EQU {5
susy EQU @
INC DATA ¢,88
PRB2 DATA &6,»8017,32,BUF2,0,88
gury BSS 32
L]V] 4 Bss 32
END START
+#INDEX
PLAG SET TO INDEX NEw LIBRARY
oWENDALL
Figure 8-16. Input Stream to Add Two Modules

8-74 Digital Systems Division

943005-9701

PERT Npj, =123

NAMF RF
ENITNR " A
EFF33~ e
SFEx «h

SMKFXAMP| we
4 FILFS Do w

Figure 8-17,

4567807 RFVesA NATF20A/1G/75 YITLFESMR FXAMPLFQ

PRAGLAM

Vv LanNm TYITLS
PLFXIIS CHARACTER FNRITQOR

FNRTRAM CNMP{TE DSIIA DISF FFFIFTENCY
Sap DS3IIA TMNFPFNOFNY SFEW TFST

FOMMENT SMR EXAMPIE & 2

Fow | TRIIARY

PART NO,.®123456-7890

+HUPDATE
+#MODIFY

SMREXAMPLE

~ THIS 18 NEW

7,9
O»FFF
+WINDEX
oWENDALL

THIS 18 NEW
THIS 18 NEW

THIS 18 NEW
THIS 18 THE

Figure 8-18,

PART HN,_ 31214557800

NAMF KEV LANG

ENLTOR .h
EFFY3n e
SFew A
SuMkFLAMP|L PR

FOAMMENT

MO CAMMEMNT

Index of NEWLIB with Added Modules

REVa#A DATE=?4/18/75 TITLE®SMR EXAMPLES

RECORD #

RECQRD # SeA
RECORD # S»B

RECORD 7e=A

NEW LAST RECODRD
FLAG SET TO INDEX NE4 LIBRARY

TITLF

REVa#R NATERRA/1P/75% TTT FeSkR

PLF XIS CHARAPTFR ERITAP PRPAGRA™
FORTTAN CNMPYUTF NSJAN NYSFr FFFIFTFNrY
SAP NRIIA ITMNFPENNFANT SFEX TEST

COMMENT SR EXYAMPLFE & 2

4 FTLFS UM NEW | TPRARY |

8,12,6.6 DELETING A MODULE,

Figure 8-19, Index of Modified Module

Input Stream to Modify a Module

FAMMENT

N CAMMENT

Figure 8-21 shows the command input

stream to delete a module, Figure 8-22 shows an index of the new library
generated, This index was generated in a separate run of SMR.

8-75

Digital Systems Division

943005-9701

PARY NQ,21234560789@ REVsel DATEs"4/198/7%5 TITLESSMR EXAMPLES

«#EXTRACT #SEQ
o#LIST SMREXAMPLE

NAME REV LANG TITLE COMMENTY
SMRE XAMPL #B COMMENT SMR EXAMPLE 4 2 nO COMMENT
THIS 18 MEw RECORD # § +8 op@!
THIS 18 ORIGINAL RECORD # { «e 2002
THIS 18 ORIGINAL RECCRD # 2 *% 2003
THIS 1S ORIGINAL RECORD # 3 e 3004
THIS 18 CRIGINAL RECORD # 4 «s 2005
THIS 1S ORIGINAL RECCRD # 5 e 2086
THIS 18 NEW RECQRD # S=A *8 2007
THIS 18 NEW RECORD # S5eB +8 po08
THIS 18 ORIGINAL RECCRD # 6 «* 3009
THIS 38 HEW RECORD 7eA *8 gole
THIS 18 ORIGINAL RECCRD # {9 s opiy
i THIS 1S THE NEW LAST RFCORD «8 gei2
o#ENDALL
Figure 8-20. Sequenced Listing of Modified Module -
Input Commands and Listing
PARY NO,9123456807890 REVs#B DATEs?4/18/75 TITLESSMR EXAMPLES
«#UPDATE
«#DELETE EDITOR
oWENDALL
Figure 8-21, Input Stream to Delete a Module
PAKT "N, 81234557392 RFVeel PATERPA/10/7S TITLFsSMR FYAMPLFS
NAMF REY LANF TITLF COMMENT
EFFaA3" ¢e FORTRAN COAMPUTE DS3IIR NTSE FFFIPTENCY
SFEK *h AP DR3IXA INNFPENNENT SFEX TESY
SMRFYXAMPL #R CQO“MFNTY S“R EYAMPLE & 2 NO COMMENT

3 FILFS ONM NEA | IPRARY

Figure 8-22, Index of NEWLIB without Deleted Module

8-76 Digital Systems Division

943005-9701

8.13 LINKABLE PARTS FILE BUILD UTILITY (LPFBLD)

The LPFBLD utility maintains a key indexed file of 980 object records., Each
object deck in the file has a key equal to the IDT name with all of the object
records for that program sequentially linked to the key. LPFBLD can be used
to modify, extract, or delete members of a linkable parts file. LPFBLD cre-
ates a key of the program if added to the file and replaces the old object if the
IDT name already exists as a key.

LPFBLD is useful for building an object file for input to the DX980 link editor
(DXOLE), To retrieve an object deck from the key indexed file, use the
DXOLE include with key option (i.e. INCLUDE 20(IDTNAM)). Using DXOLE
and LPFBLD together in this manner allows easy manipulation of object files
and easy retrieval for link editor input.

8.13.1 STANDARD JCL PROCEDURE

The following listings are standard procedures for LPFBLD. The firstis for
a single step job executing LPFBLD, The second is for a twc step job per-
forming an assembly of the module and including this assembled module in
the library file,

% CREATE LPFBLL,COMMENT,"UPNATE LTINKARLE PARTS FILE "

/REPLACE LPFRLD . UPDATE LINRARLF PARYS FILE ,

JEXEC OBJe(1,SYSTEM,LPFBLDY MEM=(300,3300A,1r24R2) PRYYS(1,2)}

Vi TIMEmeyl NBJIRNRJ MEMIBMEM

/ASS1IGN 2 Dummy DEVICE:=NCON « CONTROL
/ASSIGN § NISCY NEVICEt=DURJ) FILE=(LSERM1,ASMOUT) FILEt=FOBJ}

/ RUFFERS=1 « DBJECT INPUTY
/ASSIGN 6 SC DEVICESsULST o« LISTING

/ASSIGN 7 DuMiky DEVICE3=DEXT FILESsFEXT REPLACEI=REXT)

/ BUFFFRSm] | INKSFQ ACCESS®(ANY,CREAT,CREAT,CREAT)?
/ ACCESS:=CEXT ALLOCATE=(1,A,12R,2P) ALLOCATE:sLEXT , EXTRACT FILE
/ASSIGN 9 NISCY DEVICEIsNUPH FILESsFURD REPLACE:sRUPD)
/ RUFFERKS®2 INDEXED ACCESSs(CREAY,CREAT,CREAT,CREAT)}
/ ACCESSIsCUPD ALLUCATE=(1,0,256,1®) ALLOCATEIsLUPD?
/ KEYLEN=ZA « UPDATE FIIE
JEND

CREATE ASMUP ,COMMENT,"ASSEMBLE MOD AND UPDATE LPF *
/REPLACE ASMUP « ASSEMBLE MODULE AND UPDATE LPF ’
/JEXEC OBJs(1,SYSTEM,ASMBLR) MEM= (300,6900,2200) PRYY-(l.Z)s
/ TIMEsai MEMgsMEMWA . .)
/ASSIGN 8 DUMMY DEVICE:sDMSG » SYSTEM MESSAGE
/ASSIGN 4 DUMMY DEVICE:sDCON s CONTROL/MESSAGE
/ASSIGN S DISC!1 DEVICE:=DSRC FILE:=FSRC BUFFERSs1 » SOURCE INPUT
/ASSIGN 6 SC DEVICE:sDLSTA FILEtsFLST BUFFERSs1 . SOURCE LIST/ERROR
/ASSIGN 7 DISC1 FILEs(TEMP,ORJECT) NEW BUFFERS=1 LINKSEQ: . .
/ ACCESS= (ANY,ANY,ANY,ANY) ALLOCATEs(10,300,64,20y . OBJECT OUTPUY
/ASSIGN 168 DISCt FILEs(TEMP,SCRL) NEW DELETE BUFFERSsip
/ LINKSEQ ACCESSs (ANY,ANY,ANY,ANY)} . o o

ALLOCATE=(10,308,256,30) - SOURCE SCRATCH

/EXEC 0BJs(1,SYSTEM,LPFBLD) MEM=(390,3380,1080) PRTY=(1,2)3
/ TIMEsw] MEM$sSMEMU .
/ASSIGN @ DUMMY DEVICEt=DCON . + CONTROL
/ASSIGN S DISCY FILEm(TEMP,0BJECT) BUFFERSs] s OBJECT INPUT
/ASSIGN 6 SC DEVICE:sDLSTU FILEssFLST BUFFERSs1 » LISTING
/ASSIGN 9 DISCY DEVICE3sDUPD FILEi1sFUPD REPLACE:=RUPD} .
/ BUFFERSs2 INDEXED ACCESSs(CREAT,CREAT, CREAT, CREAT)x)
/ ACCESStsCUPD ALLOCATEssLUPD KEYLENsG « UPDATE FILE
/END

Change 1 8-77 Digital Systems Division

(o]
K@ 943005-9701

8.13.2 MEMORY PARTITION REQUIREMENTS
The memory allocation parameter for LPFBLD should be:
] MEM=(300, 3300, 1000).

The job extension parameter is dependent upon the blocking factors and the
number of buffers assigned for the LUNs, but 1000 words is adequate for
most files,

8.13.3 LUN ASSIGNMENTS

The logical unit assignments for LPFBLD are given in table 8-27, Figure
8-23 illustrates the linkable parts file (LPF) built on LUN 9,

8.13.4 OPERATION

LPFBLD first reads a control record from LUN 0. The control record deter-
mines the mode of execution. Mode 2 is the default LPFBLD mode of execu-
tion.

MODE 1: The control record of 'CRYY' implies all of the old keys and data
are deleted from the linkable parts file. Then processing continues
the same as in Mode 2.

MODE 2: The control record of 'MOD#' or an end of file (from DUMMY) mod-
ifies only those modules input from LUN 5 either by replacing the
old object, or by creating a new key and inserting the new object.
The new object is reformatted and output to LUN 9.

MODE 3: The control record of 'EX¥Y' implies that the object for members
of the linkable parts file assigned to LUN 9 is to be output to LUN 7
as a sequential file. The names of the modules to extract should
start in column 5 of the control command and be separated by com-
mas. The first blank column terminates the scan for member
names. A control card cannot be continued but multiple control
commands may be entered. An end of file or a control record
other than 'EXYB' terminates LPFBILD in the EXTRACT mode.

For example,

EX A,B,C
EX D
/%

would extract modules A, B,C, and D from LUN 9 and output the
object to LUN 7. An end of file is written at the end of LUN 7.

MODE 4: The control record of 'DELY' implies that the object for the mem-
bers of the linkable parts file that are named on the control card
is to be deleted from LUN 9. The syntax of the DELETE (DEL)
command is the same as for the EXTRACT command in mode 3.
Multiple DEL commands may be entered if necessary.

Change 1 8-78 Digital Systems Division

[e]
{@ 943005-9701

Table 8-27. LPFBLD Logical Unit Assignments

LUN

Description Comments

Control Input Control records are read to select the
LPFBLD mode of execution.

Object Input One or more object modules, input termi-
nated by an EOF. This LUN is refer-
enced for the 'CR' and 'MOD' modes. The
LUN is rewound before any input is read.

Listing _ Listing of IDT names of all object mod-
ules entered through LUN 5 and error
messages.

Extract Mode Output Output LUN for the 'EX' mode. This
LUN is rewound before any object is
written and is terminated with an end of
file. This LUN is processed as a link
sequential file or a device that supports
binary output.

Update File Key indexed linkable parts file built

with a kev lencgth of 6 characters and

&lis S ATy 4T oig Vit U Cilzalalilli s all

a logical record length of 80 charac-
ters.

8.13.5 ERROR CODES

"INDEX FILE FULL"

This message indicates that the linkable parts file is full and no
records can be added. The user must define a new file with a larger
maximum allocation and then recreate the file or use the DXCOPY
utility to copy the old file into the new file.

"INVALID MODE"

The control record was invalid. Columns 1 through 4 of the control
record must be 'CRBY¥', 'MODYB', 'EXBB', or 'DELP' unless an end
of file is input.

"<name> IS NOT IN FILE"

The number name specified on the DEL or EXT control record does
not exist on LUN 9. The processing does not terminate but just
skips over the invalid name.

Change 1

8-79 Digital Systems Division

lo]
@ 943005-9701

Re;:;d Data Associated with Key (OBJECT Record)
PGMO1b 1700 PGMO1

1702

1706
TABLED 1700 TABLE

1706

Figure 8-23. Format of Linkable Parts File Built by LPFBLD

8.14 BUILD EDIT FILE UTILITY (BLDEDT)

The build edit file utility, BLDEDT, constructs keyed indexed files for edit-
ing under the Interactive File Editor (IFE) of the Interactive Terminal Sub-

system. Reference the Interactive File Editor description in Section VII of
this manual for a discussion of the uses for BLDEDT, '

8.14.1 STANDARD JCL PROCEDURE
The following listing is a standard procedure for BLDEDT:

o# CREATE BLDEDT,COMMENT,"BUILD €DIT FILE .

/REPLACE BLDEDT s+ BUILD EDIT FILE .

/EXEC 08J)=(1,SYSTEM,BLDEDT) MEM®(3p0,5506,20808) PRTY=(1,15)}

/ TIMEsw] MEMgsMEM PRTYYgspRI TIMEssTIM ,

/ASSIGN 18 DISCt1 DEVICE:=DIN FILEssFIN BUFFERSs{ . SOURCE INPUTY
/ASSIGN 28 DISCt DEVICEssDOUT FILEssFOUT REPLACE BUFFERS=2;

/ BUFFERSs=BOUT INDEXED ACCESSs (ANY,ANY,ANY,ANY)}

/ ACCESS3=COUT ALLOCATE=(1,0,256,100) ALLOCATE:=LOUT}

;END KEYLEN=2 . SOURCE 0UT FILE

8.14.2 MEMORY PARTITION REQUIREMENTS

The following are the memory requirements for BLDEDT utility:

<stksiz> = 300 words
<jarea> '= 550 words

<jearea> = 2000 words

8.14,3 LUN ASSIGNMENTS
The LUN assignments for BLDEDT are given in table 8-28,

Change 1 8-80 Digital Systems Division

o]
{_@; 943005-9701

8.14.4 OPERATION

The Build Edit File (BLDEDT) utility is a 2-task program operating under
DX980. BLDEDT accepts input from a sequential access source (either de-
vice or file) and builds the key indexed edit file such that the 1-word keys
are record numbers and the data is the source text. The first record has a
key of '"'1', the second ''2', etc.

Table 8-28. BLDEDT Logical Unit Assignments

LUN Description Comment
10 Source Input Sequential device/file
20 Source Output Key indexed file with key length of 2 charac- .
ters.

8.14,5 ERROR CODES

BLDEDT does not have any unique error codes. The system detects any ab-
normal condition, Refer to Appendix A for the error codes.

8,15 LIST EDIT FILES UTILITY (LSTEDT)

The List Edit Files Utility (LSTEDT) lists an entire IFE File on a formatt-
able device., Although the List Record edit command of the Interactive File
Editor lists selected records in an edit file, this utility program lists the en-
tire edit file. This listing can be valuable for subsequent editing sessions
since the record number for each record is displayed along with the record.
The format of the listing is a four digit record number followed by a separator

blank and the data record.

8.15.1 STANDARD JCL PROCEDURE
The following listing is a standard procedure for LSTEDT:

«# CREATE LSTEDT,COMMENT,"LIST EDIT FILE J

/REPLACE LSTEDT « LIST EDIT FILE .

/EXEC OBJe(1,SYSTEM,LSTEDT) MEMs(300,1780,658) PRTY=(1,15)}

/ TIMEsel MEM3sMEM PRYYgspRI TIMEssTIM

/ASSIGN 18 SC _ DEVICEssOLST) . SOURCE OUTPUT
;Q:;xsn 20 DISCi DEVICE:sDIN FILEssFIN BUFFERS=1 . SOURCE INPUT FILE

8.15.2 MEMORY PARTITION REQUIREMENTS

The following are the memory requirements for the LSTEDT utility:
<stksiz> = 300 words
<jarea> = 1700

<jearea>= 650 words

Change 1 8-81 Digital Systems Division

[o]
{_@; 943005-9701

8.15.3 LUN ASSIGNMENTS
The required LUN assignments for the LSTEDT utility are given in table

8-29,
| Table 8-29. LSTEDT Logical Unit Assignments
LUN Description Comment
10 Source Output Formattable device
20 Source Input Key indexed file with key length of 2 charac-
ters,

8.15,4 OPERATION
The LSTEDT utility is a single-task program that operates under DX980.

No command input is required, The key indexed file assigned to LUN 20 is
listed to the formattable device assigned to LUN 10,

8.15.5 ERROR CODES

LSTEDT does not have any unique error codes, The system detects abnor-

mal conditions, Refer to Appendix A for error codes.

8.16 CREATE, DELETE, OR REPLACE FILE (FILMGR)

The File Manager Utility (FILMGR) creates, deletes or replaces a file. If
the user specifies replacement and a file with the same name presently exists,
FILMGR deletes the old file and creates a new file,

8.16.1 STANDARD JCL PROCEDURE
The following listing is a standard procedure for FILMGR:

«¥ CREATE FILMGR,COMMENT,"FILE CREATE/DELETE CAPABILIT*
/REPLACE FILMGR o FILE CREATE/DELETE CAPABILITY ,

/EXEC 0OBJ=(1,SYSTEM,DXCOPY) MEM®(390,2650,850) PRTY=S(1,15)}

/ . TIMEs=~1 PRTYtsPRI TIME3aTIM

/ASSIGN 1 DISCt DEVICE$sDISC FILEssFILE NEWgsSNEW REPLACES=REP;

/ DELETEtsDEL BUFFERS=] LINKSEQssLIN RELREC:=REL} s FILE 71O BE

/ " INDEXED$®IND ACCESS=(ANY,ANY,ANY,ANY) ACCESS3$=ACC3. CREATED/DELETED
/ ALLOCATEssALL KEYLEN=§ KEYLENSSKEY LRECL=643

/ LRECLs=LRE

/ASSIGN S DUMMY

/ASSIGN 6 DUMMY

/ASSIGN 7 DuUMMY

/ASSIGN 8 Dummy

/END

Change 1 8-82 Digital Systems Division

o
@ 943005-9701

8.16.2 MEMORY PARTITION REQUIREMENTS

The following memory parameters are required for the FILMGR utility:
< stksiz>= 300
< jarea> = 2650

< jearea>= 850

8.16.3 LUN ASSIGNMENTS
The required LUN assignments for the FILMGR utility are given in table

8-30.
Table 8-30., FILMGR Logical Unit Assignments

LUN Description Comment
1 File to be created, deleted or replaced Any file type
5 Not used Assign to DUMMY
6 Not used Assign to DUMMY
7 Not used Assign to DUMMY
8 Not used Assign to DUMMY

Change 1 8-82A/8-82B Digital Systems Division

[e]
{%}D 943005-9701

8.16.4 OPERATION

The FILMGR utility executes the load module, DXCOPY. Assignment of
LUN 1 to the file being managed accomplishes the action specified in the job
control when processed by DX980 job management, Parameters in the Run
command indicate if the file is to be created, deleted or replaced. Deleting
a file need only specify the file name and password (if the file is password
protected against deleting). Both the NEW and REPLACE specifications re-
quire further statements to allocate new disc space, define the access code
and state the type of file,

8.16.4.1 DELETING FILES, The Run command required to delete a file
is of the following form:

//RUN FILMGR DISC=<devnam> FILE=(<fileid>, <filnam>,<pswd>) DEL

Section II of this manual (Job Control Language) describes the variable
parameters. The password (<pswd>) may be omitted if the file is not pass-
word protected against deleting,

8.16.4.2 CREATING A LINKED SEQUENTIAL FILE, The Run command
necessary to create a new linked sequential file is of the form:

//RUN FILMGR DISC=<devham> FILE=(<fileid>, <filnam>,< pswd>) NEW LIN;
ACC=(integ>,<integ>,<integ>,<integ>) ALL=(<itrks>, <trknums,<prwrds>,< mtrks>)

Section II of this manual describes the parameters in this statement. A
sample Run command to create a 50-track, linked sequential file that anyone
can access appears as follows:

//RUN FILMGR DISC=DISC! FILE=(USEROI, FILEl) NEW LIN;
ACC=(ANY, ANY, ANY, ANY) ALL=(50,0, 256, 60).

The file is created on DISC1, has no password, has a physical record length
of 256 words and a maximum allocation of 60 tracks. The search for avail-
able space starts with track zero.

8.16.4.3 CREATING A RELATIVE RECORD FILE, The RUN command
used to create a relative record file appears as:

//RUN FILMGR DISC=<devnam> FILE =(<fileid>, <filnam>,<pswd>) NEW REL;
ACC=(<integ>,<integ>, <integ>, <integ>);
ALL=(<itrks>, <trknum>, <prwrds>,<mtrks>) LRECL=<lrchar>

The allocation of a relative record file is similiar to a link sequential except
that the logical record length, <lrchar>, must also be specified., A sample
allocation of a relative record file with a physical record length of 256 words
and a logical record length of 64 characters appears as follows:

//RUN FILMGR DISC=DISC1 FILE=(USEROI, FILE2, ABC);
NEW REL ACC=(ANY, PSWD, CREAT, CREAT);
ALL=(50, 0, 256, 50) LRECL=64

8-83 Digital Systems Division

]
%—_@) 943005-9701

This file is created with a password of ABC, Note the initial and maximum
track allocation must be the same since the relative record file is not ex-
pandable,

8.16.4.4 CREATING A KEY INDEXED FILE, A key indexed file may be
created with a Run command of the form:

//RUN FILMGR DISC=<devnam> FILE=(<fileid>,< filnam>, <pswd>) NEW IND;
ACC=(integ> <integ>,<integ>, <integ>);
ALL=kintrks>, <trknums,<prwrds>,<mtrks> KEYLEN=<klchar>

The parameter, <klchar>, specifies the key length in characters. The maxi-
mum key length is 30 characters. To create a key indexed file with a key
length of 6 characters, the following command may be used:

//RUN FILMGR DISC=DISC2 FILE=(SYSTEM, FILE3);
NEW IND ACC=(ANY, PSWD, CREAT, NONE);
ALL=(10,0, 128,20) KEYLEN=6

This file is created on DISC2 and has a physical record length of 128 words,

8.16.4.5 REPLACING FILES, If the replace (REP) parameter is specified
instead of new (NEW), any file with the specified name is deleted before the
new file is created. All information in the old file is destroyed.

8.16.5 ERROR CODES
Error messages for FILMGR are the same as those for DXCOPY,

8-84 Digital Systems Division

[o]
{@2 943005-9701

APPENDIX A
ERRCR MESSAGES -

Digital Systems Division

O

AS OF B4/89/75

OX982 ERROR CODES

=0UT OF PARTITION REFERENCE IMPLYED BY PARAMETERS 0OF AN SVC CALL
=JOB EXTENSION AREA YOO S“ALL

oNO 8PACE IN DSCA

«ILLEGAL NUMBER OF PARAMETERS IN 8VC LISY

«1/0 ATTEMPTED ON NON@ASSTGNED LUNO

-«I/0 ATTEMPTED WITHOUT OPFN

«DURLICATE QPEN ON SAMF L''NO

«dAIT CONTRQL LIST ERROR FOUND ON USER SUSPEND
10 =PRIORITY ERROR

i =CPU TIME EXCEEDED

12 «ILLEGAL USER POST

13 «ILLEGAL INSTRUCTION

OO IR AN

14 ®A NONeEXISTENT SVC *AS ISSUED

15 *USER HAS REQUESTED ACCESS TO A PRIVILEGED SVC
16 «ILLEGAL SVC ARGUMENT #OUTSIDE USER PARTITION
17 «PTR TO SVC ARG LIBT OUTSTDE USER PARTITION
18 =INVALID DEVICE I D

19 «NO SPACE IN PC8

20 ®NO SYSTEN LUNC ® idi

21 ~USER FILE DIRECTORY OVERF|OW

22 ~MASTER FILE DIRECTORY OVFRFLOW

23 =PREVIOUSLY DEFINED USFR ™D

24 »ILLEGAL USER ID

25 »ATTEMPT TO DELETE SYSTEM DISC MFD

26 «INVALID ABNORMAL JOB YERVINATION CODE

a7 =UNDEFINED FILE

a8 =UNDEFINED USER ID

29 ~ATTEMPT 10 REPLAGE PREV ASSIGNED FILE
3¢ =PREVIOUSLY DEFINED FILE

3t «INVALID PILE TYPE

32 ~INSUFFICIENT TRK SPACF OV DEFINE

33 «INSUFF, CONTIG, TRK SPACE ON DEFINE

34 «EXCEEDED D1SC $IZE ON DEFINE

35 »ZERO KEY LENGTH FOR DEFINE

36 *READY JSB FILE BAD

37 ~ATTEMPT TO DELETE A SHARED FILE

38 «INVALID FILE DISPOSITION CODE

39 «DEVICE OFFLINE

@ eATTEMFT TO SHARE UNSHARABLE DEVICE

4 «ATTEMPT TO SHARE BLOCKED DEVICE

42 «ATTEMPT TO ASSIGN EXCL A SHARED PASSED RESQURCE
43 «OPERATOR CANCELLATION

44 »TOD MANY JuB STEPS

485 «INVALID JCB
46 «INYALID INPUT LDT

47 «JOB NO/STEP NO, NOT IN SYSTEM

48 «JOB NAME NOT IN SYSTEM

49 »ATTEMPT TO ILLEGALLY ACCESS FILE

Se -»POTENTIAL RESOURCE DEADLNCK DUE TO INCOMPLETE PaASSING
81 «INVALID JCH SIZE SPECIFIED

S2 «ATTEMPT TO DEASSIGN UMASSIGNED LUNO

CM «TOQ0 MANY JOB STEPS (»18) IN ONE JOB STRING

34 =PARENT JOB ENDED BEFQRE YOB STRING STARTED

55 =LOAD MODULE TOO B81G POR SPECIFIED USER SPACE,
356 »NO JOB INITIATION SYSTEM TASK FOR JOB

7 «LOAD MODULE LOAD NO 600D

Change 1 A-1 Digital Systems Division

1]
39
oe
61
62
63
64
65
66
67
69
70
7y

«ATTEMPT TO ASSIGN TO DISC DIRECTLY

«DEASSIGNMENT OF QPEN DEVICE/FILE
SOCM~SYSTEM OUTPUT QUEUE QVERFLOW
80GM=TOQ MANY OUTRUT FILES

=MEMORY PARITY ERROR

«MEMORY PROTECT ERROR = ANDRESSING ERROR

=PRIVILEDGE INSTRUCTION VYOLATION

»RESQURCE STACK OVERFLOW

«BYTE RELOCATION ADDR BAD IN LD MQD

«MIP NO BAD FOR LOAD OR LNADR

«LOAD OR LOADR EXTENDS BEYOND USER MEM
8PSCAN NOT ALLOCATE INPUY DFVICE (REASON=MEMORY OR DEVICE NOT AVAILABLE)
BP3=READ ERROR ON JINPUT DEVICE

72BPSOC+ILLEGAL OR MISSING "JOB™ COMMAND
738PSOC-ILLEGAL RUN COMMAND

74
4]
76
77
78
ee
81
82
83
84
as
86
87
88
a9
90
91
92
93
94
98
96
97
98
99
jee
184
1ae
183
104
108
126
187
106
109
i1e
141
112
201
282
283
204
208
206
207
288
209

BPSmILLEGAL DATA COMMAND
BPS=TOO MANY INPUT DATA FILE
BPS=NO OF INPUT DATA FILES UNMATCHED KITH NO OF ASSIGNED INPUT DATA PILES
BPS=DATA COMMAND UNMATCHED WITH INPUT ASSIGNMENTS
BP3~OUTPUT QUEUE ERROR = REINITIALIZE QUEUE TO USE ROS
=JOB/STEP NUT IN ROLL FILE DIRECTORY
«NO SPACE AVAILABLE IN ROLL PILE
»INSUFFICIENT ROLLABLE MEORY
«ROLL PERFORMED NORMALLY
»ROLL FILE CLOBSERED
BP3=DATA ERROR ON LINE PRINTPR
BPSeEND OF FILE ENCOUNTERED WHILE SKIPPING RECORDS
«REQUEST POR MORE MEMORY THAN IN FREE MEMORY
«DEVICE FILE REQUESTED AT RUNTIME NOT AVAILABLE
«INVALID JOB STEP NUMBER TN J8B
»ILLEGAL NUMBER INPUT
«ILLEGAL COMMAND
~T00 MANY JUBS IN THE 8YSTEM
«LUNO LDT NOT FOUND
«NOT A RR FILE
JCLeUSERAID SPECIFIED FOR PRNCEDURE LIBRARY DOES NOT EXIT
JCLePROCEDURE LIBRARY DOES NNT EX1ST UNDER SPECIFIED USEReID
JCL®USER CANTT GAIN ACCESS Tn PROCEDURE LIBRARY BECAUSE OF INTEGRITY CODE
JCLeSPECIFIED PROCEDURE DOES NOT EXIST IN PROCEDURE LIBRARY
JCLeHARDWARE FAILURE WHILE ATTEMPTING READ FROM SPECIFIED PROCEDURE LIB .
JM=ATTEMPTED TO USE FILE OF RESTRICTED USER ID
OCeHARDWARE 1/0 ERROR IN OP, COMMUNICATIONS
OCmINVALID MESSAGE ID
OC=INVALID OPERAND IN OP,COMMUNICATIONS
OCeINVALID ARGUMENT LIST IN OP,.COMMUNICATIONS
OC=INVALID JOB NUMBER PASSEM IN OP,COMMUNICATIONS
OCeATTEMPT TO OFFLINE SYSTE™ DISC OR SYSTEM CONSOLE
OCeNO SPACE IN DSCA OR JEA
OC=INVALID OP,COMMUNICATIONS COMMAND
0CeJOB NUMBER NOT FOUND BY MP,COMMUNIGATIONS
OCeIN OJCBPR, INVALID 8IZE REQUIRED FOR '//J0B' JSB
OCwINVALID NUMBER USED FOR SKIP COVMAND TO BATCH OUTPUT SPOOLER
OC»UNDEFINED COMMAND GIVEN TO BATCH OUTPUT SPOOLER
10eDEVICE NOT READY
10eCONTROLLER ERROR
10wDATA ERROR
10-CONTROLLER BUSY ERROR
10«WRITE PROTECT ERROR"
10=EOR ERROR
10«READ=AFTER@WRITE ERROR
10=DEVICE OFFLINE
10eILLEGAL OPaCODE

A-2 Digital Systems Division

240 10-DEVICE TIMEOUT (DEVICE DTD NOY RESPOND)

233 FMeNO SPACE AVAILABLE ON DISC VOLUME

234 FMeFILE FULL 1/0 ERROR ,
235 FMeATTEMPTED WRITE, LOGICAL RECORD »s PHYSICAL RECORD ¢ OVERHEAD
236 FMeHARDWARE FAILURE ON DISC VOLUME

237 FM=INDEX, REPLACE ATTEMPTED ON NON=EXISTING KEY

238 EM=EXISTING KEY FOUND ON 'WRITE' OP«CODE «=0PERATION NOT PERFORMED
239 FMe INDEX, WRITE/REPLACE ATTFMPTED ON NON=KEYED RECORD
240 FM=IMDEX, REPLACE ATTEMPTED ON KEYED RECORD

241 FMeINDEX, REPLACE ATTEMPTED ON NULL DATA (NON=EXISTENT)
243 FMeINDEX, REL®REC, NO KEY AFTER SEARCH

240 FMeINVALID FILE TYPE (NON=EXISTENT)

25¢ FMeINSUFFICIENT TRACKS FOR ALLOCATION

251 FM-INSUFFICIENT CONTIGUOLS TRACKS LEFT ON DISC VOLUME
252 FMeALLOCATION EXCEEDS DISC VOLUME CAPACITY

254 FMeUNABLE TO ALLOCATE BUFFERS BECALSE OF JOB EXTENSION $IZE
256 FMeINSUFFICIENT NUMBER OF B'FFERS FOR ATTEMPTED OPERATION
257 FMaOPCODE IS EITHER NON«FXISTENT OR ILLEGAL

258 FMeACCESS VIOLATION, INTEGRTTY ERROR

421 [SCNeOVERFLOW OF KEYWORD AREA

492 CSCN=OVERFLOW OF PACKED STRING STORAGE

483 CSCNeR.H.3, OF EXPRESSION OR TERM MISSING

424 CSCNeILLEGAL EXPRESSION SUBSCRIPT

4285 (SCNeHISSING DELIMETER AFTER COMMAND ID

486 CSCNeNUMBER IS LARGER THAN 16 BITS

487 CSCNeOPERAND STARTS WITH ILLESAL CHARACTER

488 CSCNeILLEGAL DIGIT IN DECIMAL NUMBER

469 _CSCN-MISSING DELIMTER HETWEEN OPERANDS

418 CSCN~MISSING DELIMETER BETHEEM SUBSCRIPTS

411 CSCNwILLEGAL CHARACTER PRECEENS COMMAND

412 I73eRUN COMMAND DOES NOT CONTAIN A LABEL OR AN EXPRESSION
413 CSCNeMISSING EGUAL SIGN IN ASSIGNMENT

414 CSCNeRIGHT HAND SIDE OF ASSIGMMENT MISSING

415 CSCN=MORE THAN NNE ® SIGN IN EXPRESSIQN

416 CSCNeSIZE OF PACKED STRING < @ CHARACTERS

417 CSCNsUPPER BOUND ON KEYWORD AREA < 3

418 CSCNeNUMBER OF RESERVED LABELS < @

419 CSCN=STARTING CULUMN FOR SCAN NOT IN RANGE (9379)

420 JCLeFOR A NEW FILE, USER DIRECTORY NAME DIFFERS-FROM CURRENT USER
421 JCLeJSB MUST CONTAIN DEVICE TNDEX, NOT THE PDT ADDRESS
422 JCLeDEVICE INDEX MUST BE <= 955

423 JCL~PHYSI1CAL R.L, < KEY=LENGTH + 14

424 JCLeFILE HAS BAD AGCCESS CODE VALUE ;
426 JCL»BOTH 'DELETE' & 'PASS' SPECIFIED

426 JCL~LOGICAL R,L. > PHYSICAL R,L.

427 JCLeLOGICAL RoL. A MULTIPLE NF 32

428 JCLeDEVICE NOT SPECIFIED OR TNCORRECTLY SPECIFIED

429 JCLeUSER 1D NOT SPECIFIED

43¢ JCLeFILE NAME NOT SPECIFIED

433 JCLew PRIORITY LEVELS > 31 OR < |

434 JCLeJOB STEP PRIORITY > 34 OR « §

438 JCLeOBJ, VOLUMN ID I8 > 2¢ OR <}

436 JCLeTCB STACK SIZE < { WORD

437 JCLeILLEGAL COMMAND AFTER 'DFLETE!

439 JCLeTIME LIMIT < § SECOND ‘

443 JCLe# PRIORITY LEVELS ¢ JOB STEP PRIORITY IS » 3§ OR « 1
444 JCLwJOB EXTENSION 3IZE < TCR STACK SIZE + 15 WORDS

446 JCL=VOL USER ID NOT INITIALIZED

447 JCLeVOLUMN FILE NOT INITIALIYED

448 JCLeVOL USER ID OR FILE NAME » 6 CHARS

449 JCL~VOL PASSWORD > 4 CHARS

45¢ JCL~WRONG # OF OPERANDS ON THE RIGHT SIDE OF AN EXPRESSION

A-3 Digital Systems Division

451 JCLeOPERAND 18 NOT A LABEL OR A SUBSCRIPTED EXPRESSION

492 JCLeOPERAND ON THE RIGHT S8IDF I8 NOT A LABEL OR A NUMBER

453 JCLeBAD DEVICE NAME

454 JCLeBLOCK SIZE < |

456 JCL-REDEFINITION CF LUNO IN YOBSTEP

487 JCL~PASSWORD > 4 CHARACTERS

458 JCL=USER ID OR FILE NAME » 6 CHARACTERS

459 JCL~NUMBER BUFFERS < |

462 JCL-RE=INITIALIZATION OF JSB ITEM

461 JCLeBAD LABEL FOR ACCESS CODF

462 JCLeINITIAL TRACKS < |

463 JCL-FIRST TRACK ADDRESS « @

464 JCLePHYSICAL RECORD LENGTH <« 32

465 JCL=-PHYSICAL R,L, NOT MULYIPLE OF 32

466 JCLeMAX TRACKS < (INITIAL OR §)

467 JCL=~LOGICAL RECORD LENGTH < ¢

488 JCL~LUND NUMBER NOT IN RANGE @ TO 254

469 JCLeKEY LENGTH NOT IN RANGE { TO 38

47@ JCL~OPERAND DDESN'T START WITH LABEL

471 JCLeKEYNAME ON THE LEFT SIDE UF AN EXPRESSION IN NOT DEFINED
478 JCL=OVERFLOW NOF KEY*ENTRY TARLE

476 JCL=OVERFLOW OF KEY=REFERENCF TABLE

477 JCL=OVERFLUW OF KEY=CHARS TARLE

478 JCL=DISC ERROR ON LUND 4

479 JCLeINDEX KEY NAME FOLLOWING 'CREATE' OR 'REPLACE' > 6 CHARACTERS
480 JCLeGREATER 31 ASSIGN CARLS TN THIS JOB STEP

481 JCLe'CREATE' OR 'REPLACE!' NOT FOLLOWED BY INDEX KEY NAME

490 JCLeDEY INDEX « 21 OR FILF vnL » 2¢

491 JCL=PHYSICAL R,L, (CHAR) < (XEYLEN # 2 + {4)

492 JCLeFILE TYPE NOT SPECIFIFD WHEN NEEDED (DEFINE, ETC,)

B88f JCLeKEYNAME IS NOT IN RESERVFD WORD LIST

885 JCLe# OF ENTRIES IN TABLE PASSED TO 'CRLOOK' 18 NEGATIVE

540 JCL«3UBSCRIPTS APPEAR ON | HS OF EQUAL SIGN

511 JCLeTRIED TO FETCH NON=EXISTANT RHS SUBSCRIPT

512 JCLeTRIED TO FETCH NON=EXISTANT QPERAMND

520 JCLeI1/0 ERROR ON LUNO s 2, (ECHO PRINT)

52{ JCLeEOF, EOM, OR I/0 ERROR OM LUNO = §, (JCL IN)

522 JCL~MISSING SLASH IN FIRSY COLUMN OF JCL

523 JCLwOVERRIDING KEY WORD OM R'IN CARD DOES NOY EXIST FOR TWIS PROCEDURE
526 JCL=-NUMBER OF KEY=ENTRIES I8 NEGATIVE

8527 JCLeNUMBER OF KEY=ENTRIES » 19

528 JCLeNUMBSR OF KEY~REFERENCES < @ OR > {9

520 JCLeNUMBER OF KEY=CHARACTERS NOT IN RANGE @ TO j2¢

53¢ JCLwKEY«ENTRY POINTS TO KEY REFERENCE WHICH I8 NOT INITIALIZED
531 JCLeKEY=ENTRY FLAG INDICATES THAT NEITHER JCB NOR LDT 18 BEING INITIALIZED
832 JCLeLDT NUMBER REFERENCE BY KEY=ENTRY I8 NOT IN RANGE @ 10 30
833 JCL-PRODUCTION NUMBER NOT IN RANGE 3 T0 31

834 JCL«JOB STEP NUMHER NOT IMN RANGE { TO 15

534 JCLeJOB STEP NUMBER NOT IN RANGE { TO 18

535 JCLeKEYeCHARS HAS LESS THAN @ CHARACTERS

836 JCLeCHARACTERS OVERFLOW KEY=CHAR STORAGE

A-4 Digital Systems Division

@ 943005-9701

APPENDIX B
SAMPLE JCL SEQUENCES

Digital Systems Division

[e]
%@Q 343005.9701

APPENDIX B
SAMPLE JCL SEQUENCES

Job Control Sequence (JCS) for particular system installations are supplied
on file JCLSRC contained on the disc image tape. List this file after com-

pleting installation.

This appendix contains sample listings of some sequences. These samples
are not necessarily the exact sequences supplied on the previously mentioned
tape.

B-1/B-2 Digital Systems Division

943005-9701

+WUPDATE A
«#TAPE 'Dx989 JCL SOURCE FILEY,
% CREATE ASMBLR, COMHENT.”ASSEMBLE
/REPLACE ASMBLR . ASSEMBLE .
/EXEC OBJ=(1,SYSTEM,ASMBLR) MEM=(3p03,5000,1000) PRTY=(1,15))

',185/15/75",
[]

/ TIMEa-l MEM3sMEM PRTY =PRI TIME:=TIM)
/ASSIGN 8 DUMMY DEVICE:=DMSG SHARE . .
/ASSIGN 4 DuUMMY DEVICE:=DCON SHARE:sSCON .
/ASSIGN 5 DIScy DEVICEssDSRC FILEs=FSRC BUFFERS=!

/ASSIGN 6 SC DEVICEs=DLST FILEs=FLST SHARE$=sSLST ﬁuFFERSti
/ASSIGN 7 DISCi DEVICEs=D0BJ FILE3=F0BJ NEWIasNOBJ}

/ REPLACE:sROBJ BUFFERS=1 LINKSEQ}

/ ACCESS=(ANY,ANY,ANY,ANY) ACCESS:=COBJ}? ,
/ ALLOCATE=(1,0,64,19) ALLOCATE:=LO0BJ A
/ASSIGN 16 DISCt FILE=(TEMP, SCRL) NEW BUFFERS=1 LINKSEQ}

/ ACCESS®(ANY,ANY,ANY,ANY) ALLOCATEs(18,3008,256,30) .
/END

+# CREATE ASMGO ,COMMENT,"EXECUTE ASM {ANG GENED L M *©
/REPLACE ASMGO o« EXECUTE ASSEMBLY LANGUAGE GENERATED LOAD
/EXEC OBJs(i,USER@1,G0) MEM=(302,4308,1290) PRYY=(1,15)!

/ TIME=10@ 0BJ$s0BJ MEM:sMEM PRYY1sPRI TIMEtsTIM

/ASSIGN 4 DUMMY LUNOCi1sLUN4 DEVICEs=DEvV4 FILEisFIL4 BUFFERS=2,
/ASSIGN 5 SC LUND3sLUNS DEVICEs=DEVS FILE$=sFILS BUFFERSs2,
/ASSIGN 6 SC LUNOt=sLUNG6 DEVICE:=DEV6 FILE:sFILG BUFFERStz,
/ASSIGN 7 DUMMY LUNO$sLUN7 DEVICEs=DEV7 FILEs$sFIL7 BUFFERSs2,
/ASSIGN 8 DUMMY LUNOt=LUNB DEVICE3=DEVS FILEt1sFIL8 BUFFERSs2,
/END

% CREATE ASMLGO, COMMENT,"ASSEMBLE, LINK, AND GO "

/REPLACE ASMLGO « ASSEMBLE, LINK, AND GO .

7EXEC 0BJs{!,SYSTEM,ASMBLR) MEM=(330,5300,12800) PRTY=(1.15)}

/ TIMEs=1 MEM3sSMEMA

/ASSIGN 8 DUMMY DEVICE$sDMSG SHARE .
/ASSIGN 4 DUMMY DEVICE3=DCON SHARE$=SCON .
/ASSIGN 5 DISCt DEVICE:sDSRC FILE:»FSRC BUFFERS=1 ’
/ASSIGN 6 SC DEVICE:tsDLSTA FILEt=FLSTA BUFFERSs{ .
/ASSIGN 7 DISCt FILEsS(TEMP,0BJECT) NEW BUFFERSs{ LINKSEQ} ,
/ ACCESS'(‘NY,ANY!ANY:‘NY) ALLOCATE'(1913GQ'64'10) .
/QSSXGN 16 DIScy FILEs(TEMP,SCRL) NEW BUFFERSs{} LINKSEQ?

ACCESSs (ANY,ANY,ANY,ANY) ALLOCATEs(18,3098,256,38) .
/EXEC 0BJ=(1,SYSTEM,DXOLE) MEMs(30@,12000,3900) PRTY=(1,15)}
/ TIME==] MEM$SMEML .
/ASSIGN DISC1 FILEs(TEMP,0BJECT) DELETE BUFFERSs{ L
/ASSIGN Sc DEVICE3=DLSTL FILEtsFLSTL BUFFERS=! .
/ASSIGN D1sct FILEs(TEMP,LM) NEW BUFFERSsi RELREC LRECL=64}

[N4

/
/ASSIGN
/ASSIGN
/ASSIGN
/

/
/EXEC 0BJ=(1,TEMP,LM) MEM=(380,499d,10808) PRTYS(1,15)}

/
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/END

ACCESS® (ANY,ANY,ANY,ANY) ALLOCATE=(10,380,32,10)

9 DUMMY

1@ DIscy FILE=(TEMP,SCRL) DELETE BUFFERSs1
13 DISCy FILEs(TEMP,SCRR) NEW DELETE BUFFERS=1 RELREC)

ACCESS® (ANY,ANY,ANY,ANY) ALLOCATE=(10,300,128,10)}

LRECL=108@

TIME=13@ MEMIsMEMG
4 DUMMY DEVICEs$sDEVA4
5 SC DEVICEssDEVS
6 SC DEVICEssDEVE
7 DUMMY DEVICEsDEV?

TIMEssTIMG

FILEgsFIL4 BUFFERSs2
FILEssFILS BUFFERSs2
FILEs=FIL6 BUFFERSs2

»
by
-
¢

b T T

#lapt,

SYSTEM MESSAGE
CONTRUL/MESSAGE
SOURCE INPUT

.SCURCE {.IST/ERRQR

0BJECT OUTPUT

SOURCE SCRATCH

MODULE .

USER PROG LUN
USER PROG LUN
USER PROG LUN
USER PROG LUN
USER PROG LUN

N3 bH

SYSTEM MESSAGE
CONTROL/MESSAGE
SOURCE INPUT
SOURCE |.IST/ERROR

0BJECT OUTPUT
SOURCE SCRATCH
PRIMARY INPUT/CON
LOADMAP LIST/ERR
LOAD MOD OUTPUT

LIBRARY FILE
LINKSEQ SCRATCH

RELREC SCRATCH

USER PROG LUN 4
USER PROG LUN 8
USER PROG LUN 6
USER PROG LUN 7

Digital Systems Division

943005-9701

o¥ CREATE ASMLNK,COMMENT,"ASSEMBLE AND LINK .

/REPLACE ASMLNK

o ASSEMBLE AND LINK ,

/EXEC 0BJ=(1,SYSTEM,ASMBLR) MEMs=(3@®,5000,1000) PRTYI(lul5)'

/

/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN

/

/ASSIGN 1

/
/ASSIGN
/ASSIGN
/ASSIGN
/
/

/

/ASSIGN
/ASSIGN §
/ASSIGN 1
/

/

/END

2
4
S
6
7
6

5
6
8

a
3

TIMEsw]l MEMisMEMA

DUMMY DEVICEt=DMSG SHARE

DUMMY DEVICE3$sDCON SHARE:1=SCON

DISCY1 DEVICE:=DSRC FILE3=FSRC BUFFERSs{
SC DEVICEs=DLSTA FILE1=sFLSTA BUFFERSs1

e e O T

DISCy FILE=(TEMP,OBJECT) NEw BUFFERS=i LINKSEGS ,
ACCESS® CANY,ANY,ANY,ANY) ALLOCATE=(10,30806,64,10) .
DISCt1 FILE=(TEMP,SCRL) NEw BUFFERS=1 LINKSEQ}
ACCESSS(ANY,ANY,ANY,ANY) ALLOCATE=(16,3008,256,30) .
/EXEC DBJs(1,S8YSTEM,DXOLE) MEM=(30@,12000,3000) PRTY=(1,15);

TIMEz=1 MEMp=sMEML

DIsct FILE=(TEMP,0BJECT) DELETE BUFFERS={ .
Sc DEVICEssDLSTL FILEssFLSTL BUFFERSs] .
DIsct DEVICE:sDLM FILE=(USER@1,G0) FILE3=FLM)

REPLACE$sRLM BUFFERS®=§ RELREC}?

ACCESS®(ANY,ANY,ANY,ANY) ACCESSs=CLM} ,
ALLOCATE=(10,0,32,18) ALLOCATE:=sLLM LRECL=64 ’
DUMMY DEVICE1=DLIB FILE;=FLIB BUFFERSs! ’
DI1SCy FILEs(TEMP,SCRL) DELETE BUFFERS=! .
DIsct FILEs(TEMP,SCRR) NEW DELETE BUFFERS={ RELREC)
ACCESSS(ANY,ANY,ANY,ANY) ALLOCATE=(10,300,128,10)}

LRECL=109

% CREATE ASMUP ,COMMENT,"ASSEMBLE MOD AND UPDATE LPF *

/REPLACE ASMUP

« ASSEMBLE MODULE AND UPDATE LPF .,

/EXEC 0BJs=(1,SYSTEM,ASMBLR) MEM=(3p0,6800,2000) PRTV=(1,2)}

/

/ASSIGN
/ASSIGN
/ASSIGN
/7ASSIGN
/ASSIGN

/

/ASSIGN 1
/

/
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/

/

/END

% CREATE BIR
/REPLACE BIR

]
4
5
6
7
6

VO

TIMEzsel MEM3sMEMA
DUMMY DEVICE3$=DMSG
DuMMY DEVICE$sDCON

DIsct DEVICEssDSRC FILE:sFSRC BUFFERSs1
sc DEVICE3sDLSTA FILE:sFLST BUFFERS®=1

e e e

DISCY FILEs(TEMP,OBJECT) NEW BUFFERSs1 LINKSEQ) |
ACCESS=3(ANY,ANY,ANY,ANY) ALLOCATE=(12,380,64,20) .
DISCt FILEs(TEMP,SCRL) NEW DELETE BUFFERS=1})

LINKSEG ACCESSa(ANY,ANY,ANY,ANY)}
/ ALLOCATE=(18,308,256,30)
JEXEC OBJ=(1,SYSTEM,LPFBLD) MEM=(300,620,1008) PRTY=(1,2)}

TIMEs~1 MEMpsMEMU
DUMMY DEVICE3=DCON

DISCt FILEs(TEMP,0BJECT) BUFFERSs{

DISC) DEVICEssDUPD FI{EssFUPD REPLACE $=RUPD}S
BUFFERS®2 INDEXED ACCESS=(CREAT,CREAT, CREAT,CREAT)

4
SC DEVICE$sDLSTU FILE1sFLST BUFFERSs1 :
)

ACCESStsCUPD ALLOCATE:s_LUPD KEYLEN=6

+COMMENT,"BATCH INPUT READER .
« BATCH INPUT READER .

/EXEC OBJ=(1,SYSTEM,BIR) MEM=(389,900,600) PRTY=(1,3))
PRIV TIMEs=1 PRTY1sPRY TIME3=TIM :

/

/ASSIGN 18 CR1

/END

+# CREATE BIS
/REPLACE BIS

DEVICEs=DIN

oCOMMENT,"BATCH INPUT SPOOLER .
« BATCH INPUT SPOOLER.,

/EXEC 0BJ=(1,SYSTEM,BIS) MEM=(38g,1200, 800) PRTY= (1,5

/END

/ PRIV TIMEsel PRTY1=PRI TIMEgsTIM
/ASSIGN 5 CR}

DEVICE3=DIN

MEMSSMEM

SYSTEM MESSAGE
CONTROL/MESSAGE
SOURCE INPUT
SOURCE [|.IST/ERROR
0BJECT OQUTPUTY
SOURCE SCRATCH

PRIMARY INPUT/CON
LOADMAP LIST/ERR

LOAD MOD OUTPUT
LIARARY FILE
LINKSED SCRATCH

RELREC SCRATCH

SYSTEM MESSAGE
CONTROL/MESSAGE
SOURCE INPUT
SOURCE |.IST/ERROR

0BJECT QUTPUT

SOURCE SCRATCH

CONTROL
OBJECT INPUT
LISTING

UPDATE FILE

INPUT STREAM

INPUT STREAM

Digital Systems Division

943005-9701

,# CREATE BLDEDT,COMMENT,"BUILD EDIT FILE "
/REPLACE BLDEDT . BUILD EDIT FILE .

JEXEC 0BJs(1,SYSTEN,BLDEDT) MEM=(308,558,2000) PRTY=(1,15))
/ TIMEswl MEM$=MEM PRTYgspRI TIMEssTIM

/ASSIGN 18 DISC1 DEVICE:=DIN FILE:sFIN BUFFERSs{
/ASSIGN 28 DISCt DEVICEssDOUT FILE3=FOUT REPLACE BUFFERS=2;

/ BUFFERS:sBOUT INDEXED ACCESSs(ANY,ANY,ANY,ANY)}

/ ACCESSIsCOUT ALLOCATE=(31,08,256,1808) ALLOCATEs=LOUT}
/ KEYLENS2 .
/END ‘ |

% CREATE BOS +COMMENT, *"BATCH oUTPUT SPOOLER "
/REPLACE BOS o« BATCH OUTPUT SPOQLER .

/EXEC 08)s(1,SYSTEM,B08) MEM=(309@,1100,808) PRTYS(1,5);

/ PRIV TIMEs=i PRTY$sPRY TIMEgsTIM

/ASSIGN S 8C DEVICEssDOUT

/ASSIGN 6 DUMMY DEVICE$sDNEW FILE=(SYSTEM,NEWS) FILEseFNEWS
/ BUFFERSs1

/END

o# CREATE CATFIL,COMMENT,"LIST FILES UNDER A USER .
/REPLACE CATFIL o LIST FILES UNDER A USER ,

/EXEC 08Js(1,3YSTEM,CATFIL) MEM=(300,10850,670) PRTYs(1,5))

/ PRIV TINEse] PRTY1sPR]

/ASSIGN B SC DEVICEssDCON SHAREssSCON

SOURCE INPUT

SOURCE 0UT FILE

. OUTPUT |.ISTING

. CONTROL

/ASSIGN 6 SC DEVICE1sDLST FILEgsPLST SHARE$sSLST BUFFERSs!, FILE LISTING

/END

«% CREATE CATLOG, COHMENT,'L!ST: CREATE,OR DELETE USERS"

/REPLACE CATLOG « LIST, CREATE, OR DELETE USERS ,

/EXEC 0BJs(1,SYSTEM,CATLOG) MEM=(3p0,4008,678) PRTY=(1,5))
PRIV TIMEm=] PRTY3sPRI

/ASSIGN g SC DEVICE3ssDCON SHARE1=SCON

CONTROL

/ASSIGN 6 SC DEVICEssDLST FILEssFLST SHARE$=SLST BUFFERS=1,USER LISTING

/END
% CREATE DEROaa,COMMENT. "PROGRAM DERUC AID "

- - W -——

/REPLACE DEB9SBe . PROGRAM DEgUG AlID .

/EXEC 0BJe(1,SYSTEM,DEBOBQ) MEM®(398,0000,600) PRTYS(1,15))
/ TIMEswi MEM3ISMEM PRYYgespRI TIME:sTIM

/ASSIGN »F@ SC DEVICEtsDCIN

/ASSIGN »F1 SC DEVICE:=DMSG

/ASSIGN »F2 DUMMY DEVICEssDCLST .

/ASSIGN aF3 SC _ DEVICE:=DUMP FILE1sFUMP BUFFERS®{

/ASSIGN »F4 DISCi{ DEVICE3sDOBJ FILEssFOBJ BUFFERSs{

/ASSIGN @ DUMMY DEVICE$sDEVD .

/ASSIGN & DUMMY DEVICEssDEV4 FILE3sFIL4 BUFFERSs]
/ASSIGN 5 puUMMY DEVICE:sDEVS FILEi1sFIL5 BUFFERSs}
/ASSIGN 6 DUMMY DEVICE:=DEVS FILE3=FIL6 BUFFERSsY
/ASSIGN 7 DUMMY DEVICEssDEV?

/ASSIGN 8 DUMMy LUNOgs=sLUNS DEVICEss=DEVS

/END

+% CREATE DUMPLP,COMMENT,"DUMP LPF FROM DISC TO MY "
/REPLACE DUMPLP « DUMP LPF FROM DISC TO MAG TAPE ,

/EXEC OBJs(1,SYSTEM,DXCOPY) MEM=(390,48088,3888) PRTY=(1,2)}
/ TIMEswi MEM3aMEM

/ASSIGN & DUMMY DEVICE3sDCON

/ASSIGN 6 SC DEVICEssDLST FILEssfFLST BUFFERSs!

/ASSIGN 7 MT{ _ DEVICE:sDOUT FILE1sFOUT BUFFERSs2

7ASSIGN 8 DISCi OEVICEssDIN FILEs(SYSTEM,LPF) FILE$=FIN}
BUFFERSs2

/
/END

ey Te T Tt T T

[T B 2 2)

" e e

CONTROL INPUT
SYSTEM MESSAGE
CONTROL LISTING
MEMORY DUMP
RELOC 0BJECT IN
USER PROG LUN
USER PROG LUN
USER PROG LUN
USER PROG LUN
USER PROG LUN
USER PROG LUN

B®NORALES

CONTROL/MESSAGE
LISTING

ouTPUT

INPUT

Digital Systems Division

943005-9701

+# CREATE DXCOPY,COMMENT,"GENERAL PURPOSE COPY "
/REPLACE DXCOPY + GENERAL PURPOSE COPY .

/EXEC OBJs(1,SYSTEM,DXCOPY) MEMs(3p@,3780,2082) PRTYs(1,15))

/ TIME==] MEM3sMEM PRYYgnpPRI TIMEi=TIM

/ASSIGN S DUMMY DEVICE3$sDCON ‘ CONTROL/MESSAGE
/ASSIGN 6 DUMMY DEVICE:=DLST FILEssFLST BUFFERSs! . LISTING
/ASSIGN 7 DISCi1 DEVICE:eDOUT FILEgsFOUT REPLACE:sROUT}

/ BUFFERS®2 BUPFERS$=BOYT LINKSEQssLIN RELREC$sREL}

/ INDEXEDSSIND ACCESSs(ANY,ANY,ANY,ANY) ACCESS$sCOUT3

/ ALLOCATE=(1,0,128,10) ALLOCATE:=LOUT KEYLEN=6} ' :

/ KEYLEN$SsKOUT LRECL®64 (RECLI=GOUT » DUTPUT
/ASSIGN 8 DISC1 DEVICEs=DIN FILEssFIN DELETE:sTIN RUFFERSs! . INPUT

/END
o# CREATE DXLINK,COMMENT,"LINK Dx988 OPERATING SYSTEM "

- -

/REPLACE DXLINK « LINK DX98@ OPERATING SYSTEM ,

/EXEC OBJs(1,SYSTEM,DXOLE) MEM=(389,31500,880@) PRYY=(1,2)}

/ TIMEsal '

/ASSIGN g DUMMY DEVICE3sDLP! FILEssFLP{ BUFFERSs2 . ALY { OBJECT IN
/ASSIGN 2 DISC{ DEVICEt=DLP2 FILE=(SYSTEM,DXLPF) FILEssFLP2j

/ . BUFFERSa2 _ . ALT 2 OBJECT IN
/ASSIGN 3 DUMMY DEVICE:sDLP3 FILEs=FLP3 BUFFERSs2 . ALT 3 0BJECT IN
/ASSIGN 5 DISCY DEVICEssDIN FILE=CUSER@1,LINKDX) FILEtsFIN}

/ BUFFERS=1 _ » PRIMARY INPUT/CON
/ASSIGN 6 SC DEVICE:=DLST FILEt=FLST BUFFERSs! . LOADMAP LIST/ERR
/ASSIGN 8 DISC{ DEVICEssDLM FILEs(USER@1,DXMIP) FILE1sFLM)

/ REPLACE1=RLM BUFFERSsy RELREC)

/ ACCESS=(ANY,ANY,ANY,ANY))

/ ALLOCATE®(32,247,32,32) ALLOCATEssLLM LRECL=64 . LOAD MND OQUTPUT
/ASSIGN 9 DISC! DEVICE3:sDLIB FILEs(SYSTEM,USRPLX) FILEssFLIB}

/ _ BUFFERS®2) . LIBRARY FILE
/ASSIGN 1@ DISC1 FILEs(TEMP,SCRL) NEW BUFFERS®1 LINKSEQ? , .

/ ACCESSS (ANY,ANY,ANY,ANY) ALLOCATE=(10,302,256,88) . LINKSEN SCRATCH
/ASSIGN 12 DISC1 DEVICE3=DEXT FILEs(USER®1,DXEXTD) FILEIsFEXTS

/ REPLACEI=REXTY BUFFERSa1 LINKSEQ}

/ ACCESSS(ANY,ANY,ANY,ANY) ACCESStsCEXT} ,

/ . ALLOCATE=(1,0,128,1) - . SYS8 EXT DEFS FILE
/ASSIGN 13 DISCt FILEs(TEMP,SCRR) NEW BUFFERSs{ RELREC;

/ ACCESS®(ANY,ANY,ANY,ANY) ALLOCATE=(2,300,128,2); .

/ LRECLs120 . RELREC SCRATCH
/END

/REPLACE DXOLE ~ , LINK EDITOR |

/EXEC OBJu(1,3YSTEM,DXOLE) MEM®(308,120880.2000) PRTY=(1,15))

/ . VIMEsei MEM3jwMEM PRTY3®PRI TIMEssTIM . i

/ASSIGN | DUMNY DEVICE1#DOBI FILE;wFOB1 BUFFERAs2 » ALT 1 OBJEET IN

/ASSIGN 2 DUMMY DEVICE$sDOB2 FILEssFOB2 BUFFERSs2 » ALT 2 0BJECT_IN

/ASSIGN S DISC1 DEVICE1sDIN PILE3sFIN BUFFERSs{ » PRIMARY INPUT/CON

/ASSIGN 6 SC DEVICE;sDLSY ‘ , » LOADMAP LIST/ERR

/ASSIGN 7 DUMMY DEVICE:=DOBJ FILE3sF08J BUFFERA®1 . COMPACT 0BJ ouUT

/ASSIGN 8 DISC1 DEVICE$sOLM PILEgsFLM REPLACEgsRLM3

/ BUFFERSsi RELREC ACCESSs(ANY,CREAT.CREAT,ANY)]

/ ACCESS1aCLM ALLOCATES(1,8,32,1) ALLOCATEIsLLM} L

/ LRECLs64 B ~ LOAD MOD OUTAUT

/ASSIGN 9 DISC) PILEs(SYSTEM,USRFTN) DEVICEssDLIB .
FILE;aPLIB BUFFERSs2 " LIBRARY PILE

/ - .
/ASSIGN 18 DISCI FILE=(TEMP,SCRL) NEW BUFFERSe1 LINKSEQ) . . .
/ . ACCES39(ANY,ANY,ANY,ANY) ALLOCATE®(19,300,2586,30) ¢ LINKSEQ SCRATCH_
/ASSIGN 11 DISCt FILEs(SYSTEM,DXEXTD) FILESSFEXT BUFFERSs1 . 8YS EXT DEFS oOPY
/ASSIGN 13 DISC1 FILES(TEMP,SCRR) NEW BUFFERSsi RELREC} .
/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATE=(10,308,128,180)7,

/ LRECLe1g0 RELREC SCRATCH
/END

Change 1 B-6 Digital Systems Division

943005-9701

+#% CREATE DXOLEP,COMMENT,"LINK PLEXUS PROGRAMS .

/REPLACE DXOLEP

« LINK PLEXUS PROGRAMS ,

/EXEC 0BJ=(1,3YSTEM,DXOLE) MEMs(308,32200,3004) PRTY=(1,2)}
TIMEz=1 MEM$sMEM PRTY3sPRI TIME:=TIM

/

/ASSIGN
/

/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN

4
7/

/

/
/ASSIGN
/ASSIGN
/
/ASSIGN
/ASSIGN
/

/
/END

1

® NN

9
i@

11
13

DuUMMY DEVICE:sDOBY FILE=s(USER@1,ASMOUT) FILE:=FQB{

BUFFERS=2

DUMMY DEVICE$=D0B2 FI{E;=FOB2 BUFFERS=2

DISCt DEVICE:=DIN

Sc DEVICE:sDLST FILEs=FLST BUFFERSs1
DUMMY DEVICE:sDOBJ FILE:=FOBJ BUFFERS={

DISCY DEVICE:aDLM
BUFFERS=! RELREC

lag <1 At <y 4

“we

ALT 1 OBJECT IN
ALY 2 0BJECT IN
PRIMARY INPUT/CON
LOADMAP |LIST/ERR
COMPACT OBJ 0OUT

“»

FILEssFIN BUFFERSs)

FILEgsFLM REPLACEZsRLM3

ACCESS=a(ANY,CREAT.CREAT,ANY)}

ACCESStsCLM ALLOCATE=(1,0,32,1) ALLOCATEtsLLM}

LRECL =64

" LOAD MOD OUTPUT

DISCY FILEs(SYSTEM,USRPLX) FILEssFLIB BUFFERSs2 . LIBRARY FILE
DISCt FILE=(TEMP,SCRL) NEW BUFFERSsi LINKSEQ)

ACCESS® (ANY,ANY,ANY,ANY) ALLOCATE=(10,300,256,30) . LINKSEN SCRATCH
DISC1 FILE=(SYSTEM,DXEXTD) FILEssFEXY BUFFERS={ . 8YS EXT DEFS OPT
DISC! FILE=(TEMP,SCRR) NEW BUFFERS=1 RELREC;

ACCESSS (ANY,ANY,ANY,ANY) ALLOCATE=(18,300,128,10)},

LRECL=1@?

. RELREC SCRATCH

+# CREATE FILMGR,COMMENT,"FILE CREATE/DELETE CAPABILIY*®

/REPLACE FILMGR « FILE CREATE/DELETE CAPABILITY , M-
/EXEC OBJs(1,SYSTEM,DXCOPY) MEM=(3p0,2650,850) PRTY=(1,15)} 4
/ TIME==1 PRTY$=PRI TIMEsaTIM

/ASSIGN 1 DISct DEVICE:sDISC FILE3=FILE NEWssNEW REPLACESSREP}

/ DELETE1sDEL BUFFERS=] LINKSEQ$sLIN RELREC3=REL} . FILE 70 BE

/ INDEXEDs®=IND ACCESS=(ANY,ANY,ANY,ANY) ACCESS$=ACC}. CREATED/DELETED

/ ALLOCATEs®sALL KEYLEN=6 KEYLENtsKEY LRECL=64}

/ LRECLtsLRE

/ASSIGN 5 DUMMY

/ASSIGN 6 DUMMY

/ASSIGN 7 DUMMY

/ASSIGN 8 DUMMY

/€

/REPLACE FTNGO

ND
.# CREATE FTNGO ,COMMENT,"EXECUTE FORTRAN GENERATED LM"
o« EXECUTE FORTRAN GENERATED LOAD MODULE .

/EXEC OBJ=(1,USER®L,G0) MEM=(300,12090,1000) PRTYS(1,15))
TIME=1@2 0BJs=08J MEMgsMEM PRTYssPRI TIMEssTIM

/
/ASSIGN
/ASSICN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/

/

/END

)
2842

»BY
»B4

»B6-

»B6
»B8

sC DEVICE:sDMSG » SYSTEM MESSAGE

st LUNOtsLUND DEVICE1sDEVO » USER PROG LUN 8
DUMMY LUNOs=LUN1 DEVICEssDEV1 . USER PROG LUN 1}
DUMMY LUNO3sLUN4 DEVICEssDEV4 FILEssFIL4 BUFFERS=2,USER PROG LUN 4
sc LUNO$=LUNS DEVICE:ssDEV5 FILEs=FILS BUFFERSa2,USER PROG LUN 8
sC LUNOssLUN6 DEVICE3=DEV6 FILEssFIL6 BUFFERS®2,USER PROG LUN 6

DISCY LUNOssLUNS

FILE=(TEMP,SCRL) NEW BUFFERS=1}

LINKSEQ ACCESS=(ANY,ANY,ANY,ANY)} ,
ALLOCATE=(1,300,32,18) . USER SCRATCH FILE

B-7 Digital Systems Division

943005-9701

+% CREATE FTNLGO,COMMENT,"FORTRAN COMPILE, LINK,AND GO¥
/REPLACE FTYNLGO « FORTRAN COMPILE, LINK, AND GO ,
/EXEC 0BJ=(1,SYSTEM,FTN) MEM=(300,10828,1000) PRTY=(1,15))

/ TIMEs=1, MEMI=MEMC ,
/ASSIGN @ DUMMY DEVICE1sDMSG SHARE . SYSTEM MESSAGE
/ASSIGN 5 DISC1 DEVICEtsDSRC FILE;sFSRC BUFFERSat » SOURCE INPUT
/ASSIGN 6 SC DEVICEssDLST1 FILEssFLST BUFFERS=1 . SOURCE [.IST/FRROR
/ASSIGN 7 D1SCt FILEs(TEMP,PHASEL1) NEW BUFFERSs1 LINKSEQGS . INTERMED ORJECT

ACCESSS (ANY,ANY,ANY,ANY) ALLOCATEs(10,300,64,39) . SOURCE SCRATCH
/EXEC ORJ=(1,SYSTEM,FTNPS2) MEM=(3p0,8000,1880) PRTY=(1,15)}

/ TIMEswl MEM3sMEMC ,

/ASSIGN @ DUMMY » SYSTEM MESSAGE
/ASSIGN 6 8C DEVICE:=sDLST2 . ERKOR MESSAGE
/ASSIGN 7 DISCt FILE=s(TEMP,0BJECT) NEW BUFFERSs1 LINKSEQ) .

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATE=(10,302,64,10) . OBJECT OUTPUT
/ASSIGN 8 DISCt FILE=(TEMP,PHASEL) BUFFERS=g . INTERMED OBJECY

/EXEC 0BJs(1,SYSTEM,DXOLE) MEM=(309,120008,3000) PRTY=(1,15))
TIMEse] MEMisMEML

/ASSIGN 5 DISC! FILEs(TEMP,0BJECT) DELETE BUFFERSs! ; PRIMARY INPUT/CON

/ASSIGN 6 SC DEVICEssDLSTL FILE:=FLST BUFFERS=1 . LOADMAP L.IST/ERR

/ASSIGN 8 DISct FILEs(TEMP,LM) NEW BUFFERSsi RELREC} ,

/ ACCESSs (ANY,ANY,ANY,ANY) ALLOCATE=(10,300,32,19)3 . LOAD ™MOD OUTPUT

/ LRECL=64 '

/ASSIGN 9 DISCY FILEs(SYSTEM,USRFTN) BUFFERS=2 » LIBRARY

/ASSIGN §@ DISCt FILE=s(TEMP,PHASE1) DELETE BUFFERSs{ LINKSEQ SCRATCH

/ASSIGN 13 DISCY FILES(TEMP,SCRR) NEW DELETE BUFFERS={ RELRECI

/ ACCESS®(ANY,ANY,ANY,ANY) ALLOCATEs(10,380,128,108)3. RELREC SCRATCH
LRECLs=10Q@

/EXEC 0BJs(1,TEMP,LM) MEMS(300,8p000,1008) PRTY=(1,15)3

/ Tzngsgea MEM1=sMEMG TIMEg=TIMG

SYSTEM MESSAGE
USER LUN @

USER LUN 1

USER LUN S5sINPUT
USER LUN 6=0UTPUY

/ASSIGN @ SC DEVICE$sDMSG

/ASSIGN »B@ SC DEVICE1sDEV®

/ASSIGN »Bt DUMvY DEVICEssDEV{

/ASSIGN »B5 SC DEVICEs=DEVS FILEs=FIL5 BUFFERS=2
/ASSIGN »B6 SC DEVICE:=DEVS FILE:aFIL6 BUFFERSS2
/ASSIGN »B8 DISC1 FILEs(TEMP,SCRL) NEW BUFFERSs{ LINKSEQ})
/ ACCESSS(ANY,ANY,ANY,ANY) ALLOCATE=(19,308,32,18) . USER SCRATCH FILE

“~ s » ~

[]

/END
o% CREATE FTNLNK,COMMENT,"FORTRAN COMPILE AND LJNK ®
/REPLACE FTNLNK o FORTRAN COMPILE AND LINK .

/EXEC 0BJ=(1,SYSTEM,FTN) MEM= (32@,10800,1080) PRTYS(1,15)}

TIMEs=1, MEM1=MEMC '
JASSIGN @ DUMMY DEVICE18DMSG SHARE » SYSTEM MESSAGE
/ASSIGN 5 DISCt DEVICEtsDSRC FILEgsFSRC BUFFERSs1 , SOURCE INPUT
/ASSIGN 6 SC DEVICEssDLSTY FILE:1aFLST BUFFERSs{ . SOURCE I.IST/ERROR
/ASSIGN 7 DISCt FILEs(TEMP,PHASE1) NEW BUFFERSs{ LINKSEGS . INTERMED OBJECT

/ ACCESSS(ANY,ANY,ANY,ANY) ALLOCATEs=(10,300,64,30) SOURCE SCRATCH
/EXEC OBJs(1,SYSTEM,FTNPS2) MEM® (3p0,8000,1800) PRTY=(1,15)}

/ TIMEs=1 MEMgsMEMC ,

/ASSIGN @ DUMMY ’ SYSTEM MESSAGE
/ASSIGN 6 SC DEVICE$=DLST2 . ERROR MESSAGE
/ASSIGN 7 DISCt FILEs(TEMP,0BJECT) NEW BUFFERSs{ LINKSEQS ,

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATE=(10,390,64,12) . OBJECT OUTPUT
/ASSIGN 8 DISCt FILEs(TEMP,PHASEL1) BUFFERSs] . INTERMED OBJECT
/EXEC OBJs(1,SYSTEM,DXOLE) MEM=(30@,12000,3000) PRTYs(1,15)}

/ TIMEse]l MEMgasMEML ,

/ASSIGN & DISC! FILEs(TEMP,0BJECT) DELETE BUFFERSs} » PRIMARY INPUT/CON
/ASSIGN 6 SC DEVICE:sDLSTL FILE:ssPLST BUFFERSsY . LOADMAP LIST/ERR
/ASSIGN 8 DISCy DEVICEtsDLM FILEs(USER®1,G60) FILEssFLM}

/ REPLACEs=RLM BUFFERSsy RELREC)

/) ACCESSS(ANY,ANY,ANY,ANY) ACCESS3sCLM} ,

/ ALLOCATE®(19,0,32,18) ALLOCATEgsLLM LRECLS64 ¢ LOAD MOD OUTPUT
/ASSIGN 9 DISCt FILE®=(SYSTEM,USRFTN) BUFFERSs2 s LIBRARY

/ASSIGN 1@ DISC{ FILEs(TEMP,PHASE1) DELETE BUFFERSs} . LINKSEQ SCRATCH

/ASSIGN 13 DISCy FILEs(TEMP,SCRR) NEW DELETE BUFFERS=1 RELREC)

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATEs=(10,300,128,18)3. RELREC SCRATCH
/ LRECLs=t02
/END

B-8 Digital Systems Division

943005-9701

% CREATE FTNPS1,COMMENT,"FORTRAN PHASE 1 COMPILE "
/REPLACE FTNPS1 « FORTRAN PHASE i1 COMPILE .
/EXEC 0BJ=(1,SYSTEM,FTN) MEM=(38@,8099,10860) PRTYS(1,15)}

/ TIME=z=] MEM3sMEM PRTYispRI TIMEtsTIM ;
/ASSIGN @ DUMMY DEVICEtsDMSG SHARE s
/ASSIGN 5 DISct DEVICEi1sDSRC FILF3aFSRC BUFFERS=1 .
/ASSIGN 6 SC DEVICE:=sDLST FILFssFLST SHARE$=SLST RUFFERSst
/ASSIGN 7 DISCY1 DEVICEi1sDINT FILE:sFINY BUFFERSs! LINKSED;

/ ACCESS®(ANY,ANY,ANY,ANY) ALLOCATE=({.0,64,32)} R

/ NEWgsNINT REPLACE3=RINT ACCESStaCINT ALLOCATEssLINT
/END

«% CREATE FTNPS2,COMMENT,"FORTRAN PHASE 2 COMPILE "
/REPLACE FTNPS2 « FORTRAN PHASE 2 COMPILE .

/EXEC OBJ)=(1,SYSTEM,FTNPS2) MEM=(300,8000,1000) PRTYs(1,15)}

/ TIMExal MEMiSMEM PRTYgspRI TIMEgsTIM

/ASSIGN @ DUMMY DEVICE:=DMSG SHARE .
/ASSIGN 6 SC DEVICE1=DLST FILE:sFLST SHARE$=sSLST BUFFERS=1
/ASSIGN 7 DISC1 DEVICE$sDOBJ FILE:sFOBJ BUFFERS=1 LINKSEQ;

/ ACCESS= (ANY,ANY,ANY,ANY) ALLOCATEs(1,0,64,18)} .
/ NEWssNOBJ REPLACEs=ROBJ ACCESS3sCOBJ ALLOCATE3;=LOBJ
/ASSIGN 8 DISC1 DEVICE:sDINT FILFs=FINT BUFFERSs1 .
/END

% CREATE HELP ,COMMENT,"HeE«L=P OPERATOR ®
/REPLACE HELP e H=E=L=P OPERATOR ,
/EXEC O0BJs(l,SYSTEM,DXCOPY) MEM=(390,3700,1580) PRTY=(1,13))

/ TIMEz=l MEMtsMEM PRTyt1sPRI TIME$aTIM ,
/ASSIGN 5 DUMMY .
/ASSIGN 6 SC DEVICEssDLST ’
/ASSIGN 7 DUMMY .
/ASSIGN 8 DISC! FILEs(SYSTEM,HELP) BUFFERSs{ .
/END

+# CREATE INJTSP.COMMENT.'INITIAL BATCH OUT 8POOL FILE"
/REPLACE INITSP . INITIALIZE BATCH OUYPUY SPOOLER FILE .
JEXEC 0BJs(1,SYSTEM,INITSP) MEM=(300,3p0,700) PRTY=(1,5)}

/ TIMEsw! PRTY1sPRI

/ASSIGN 6 DISc1 DEVICE:=DS0Q FILEs(SYSTEM,S30Q) REPLACE}

/ BUFFERS=! RELREC ACCESSs(CREAT,CREAT,CREAT,CREAT)}
/ ALLOCATE=(1,0,32,1) LRECLs=64 .
/END

«% CREATE IPLINK, COMMENT,"LINK IpPL PROGRAM "

/REPLACE IPLINK « LINK IPL PROGRAM .
JEXEC OBJI=(1,.SYSTEM,DXOLE) MEM=(30d,15000,6000) PRTY®(1,2)}

/ 3 TIME..1 MEMg =MEM

JASSIGN § DISC1 DEVICE:sDIPL FILEs(SYSTEM,OXLPF) FILE:=FIPLS,

/ BUFFERS23 BUFFERS:=8IpL .
/ASSIGN & DISCi DEVICEssDIN FILEs=FIN BUFFERSs{ R
/ASSIGN 6 SC DEVICE:sDLST FILEssFLST BUFFERSs! .
/ASSIGN 8 DISCYy DEVICEisDLM FILEs(USER®1,I1PL) FILEt=FLM)

/ REPLACEssRLM BUFFERSsy1 RELREC)

/ ACCESS®(ANY,ANY,ANY,ANY) ACCESSt=CLM3 ,
/ ALLOCATE=(6,0,32,6) ALLOCATEs=LLM LRECL=364

/ASSIGN 9 DISC!H DEVICE:-DLIB FILEs(SYSTEM,USRPLX) FXLE:-FLIB;
/ BUFFERS=2

/ASSIGN 18 DISC! FILEs(TEMP,SCRL) NEW BUFFERSs1 LINKSEQ) .
/ _ ACCESS®(ANY,ANY,ANY,ANY) ALLOCATE=(12,308,256,18) .
/ASSIGN 1] DUMMY ,
/ASSIGN 12 DuMMY .
/ASSIGN 13 DISC! FILEs(TEMP,SCRR) NEW BUFFERSs§ RELREC}

/ ACCESS®(ANY,ANY,ANY,ANY) ALLOCATE=(2,3008,128,2)}

/ LRECLsi@@ .
/END

SYSTEM MESSAGE
SOURCE INPUT

+»30URCE L.IST/ERROR

SOURCE SCRATCH

SYSTEM MESSAGE

+ERROR MMSSGR5

OBJECY OUTPUT

INTERMED ORJECT

CONTROL/MESSAGE
LISTING

OUTPUTY

INPUT

80Q@ FILE

1PL OBJECY IN
PRIMARY INPUT/CON
LOADMAP | IST/ERR

IPL LOAD MOD OUT
LIBRARY FILE
LINKSEQ SCRATCH

8YS EXT DEFS OPY

RELREC SCRATCH

Digital Systems Division

943005-9701

«#¥ CREATE TS

/REPLACE ITS

/
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/ASSIGN
/END

% CREATE JCL

DUMMY
DUMMY
DUMMY
DUMMY
DyUMMY
DUMMY
DUMMY
DUMMY
DyMMy
DUMMY

-
A Gt 3= O N AL,

17
19

/REPLACE JCL

/
/ASSIGN
/ASSIGN
/ASSIGN’
/ASSIGN
/

/

/

/END

SC
SC

1
2
3 Sc
4

+COMMENT,"INTERACTIVE TERMINAL SUBSYS "

« INTERACTIVE TERMINAL SUBSYSTEM .
JEXEC OBJ=(1,SYSTEM,ITS) MEMs=(30@,8080,2800) PRTY®(2,1))
PRIV TIMEs=] OBJ1=0B8J MEMgsSMEM PRTYtsPRI PROTt®PRO,

DEVICEssT1
DEVICEssT2
DEVICE:=T3
DEVICE:=T4
DEVICE1=TS
DEVICE:sT6
DEVICE:sT7
DEVICE:=T8
DEVICE1=T9
DEVICE$=T1®

SHARE 3381
SHARE ;=82
SHARF =83
SHARE 1884
SHARE 1385
SHARF 1286

,COMMENT,"CREATE Jct PROCEDURE

TERMINAL,
TERMINA],
TERMINA|,
TERMINAL,
TERMINAL,
TERMINAJL,
TERMINAL
TERMINAL
TERMINAL
TERMINAL,

e TE Y e e e

h I
-0 BDNONEWN -

[3]

, . CREATE JCL PROCEDURE , ,
/EXEC 0BJ=(1,SYSTEM,JCLTRN) MEM=(398,7550.,1000) PRYY®(1,15)}
TIMEsal MEMgsMEM PRTY3spRI

DEVICE:=DSRC FILE3=FSRC BUFFERSs!
DEVICEtsDERR SHARE$=SERR .
DEVICEt=sDLST FILEs=FLST SHARE31=SLST RUFFERSs}
DIScy DEVICE:=DOBJ FILEx(SYSTEM,SJCBFL,AB)3

SOURCE INPUT
ERROR MESSAGE
+SOURCE LISTING

FILE:sFOBJ REPLACEssROBJ BUFFERS=32 INDEXEDs
ACCESSS (ANY,ANY,ANY,ANY) ACCESS:=COBJ}

ALLOCATE=S(1,8,96,28) ALLOCATEs=LOBJ KEYLEN=6 .

OBJECT OUT FILE

N
.% CREATE JCLUP ,COMMENT,"UPDATE JcL SOURCE AND BINARY"
« UPDATE JCL SQURCE AND BINARY FILES .

/REPLACE JCLuP

/EXEC OBJs(1,SYSTEM,JCLTRN) MEM=(39@,7558,1008) PRTY=(1,15)}

/ TIMEswl MEMisMEM))
/ASSIGN 1 DISC1 FILEs(SYSTEM,JCWORK) BUFFERSs{ » SOURCE INPUT
/ASSIGN 2 SC DEVICE s=DERR » ERROR MESSAGE
/ASSIGN 3 SC = DEVICEssDLSY . SOURCE LISTING
/ASSIGN 4 DISC1 DEVICE3:=DOBJ FILEs(SYSTEM,SJCBFL,AB)}

/ FILEssFOBJ REPLACE1®R0BJ BUFFERS=2 INDEXED}

/ ACCESS= (ANY,ANY,ANY,ANY) ACCESS:=C0BJ} ,

/ ALLOCATE=(1,2,96,32) ALLOCATE:1sLOBJ KEYLEN®6 . OBJECTY QUT FILE
/EXEC 0BJ=(1,SYSTEM,SMR) MEM=(3@p,115008,2008) PRTYs(1.15)}

/ TIMEs=1 MEM3sMEM ,

/ASSIGN @ DUMMY » ERROR/USER MSG
/ASSIGN 4 DISC1 FILEs(SYSTEM,JCLCUP) DELETE BUFFERSs{ » CONTROL

/ASSIGN 6 DUMMY . s LISTING

/ASSIGN »15 DISCY FILEs(SYSTEM,JCLSRC) BUFFERSs1 s OLD LIBRARY FILE
/ASSIGN 222 DUMMY , . COMPILE OUT FILE
/ASSIGN »25 DISC1 FILEs(TEMP,JCLFIL) NEW LINKSEQ BUFFERS®1j

/ ACCESS® CANY,ANY,ANY,ANY) ALLOCATE=(7,388,256,328) , NEW LIBRARY FILE
/ASSIGN »26 DUMMY . - » JCL UPDAT CON OUT.
/ASSIGN »35 DISCY FILEs(SYSTEM,JCWORK) BUFFERSw{ . INCLUDE

/EXEC OBJe(1,SYSTEM,SMR) MEM=(30g,11500,20008) PRTY=(1,15)}

¥ TIMEs=1 MEM1sMEM ,

/ASSIGN @ DUMMY » ERROR/USER MSG
/ASSIGN 4 DUMMY » CONTROL

/ASSIGN _6 DUMMY s LISTING

/ASSIGN 215 DISC1 FILEs(TEMP,JCLFIL) BUFFER3=1 s OLD LIBRARY FILE
/ASSIGN 222 DUMMY . . , COMPILE OUT FILE
/ASSIGN 225 DISCY FILEs(SYSTEM,JCLSRC) BUFFER3s1 ¢ NEW LIBRARY FILE
/ASSIGN »26 DUMMY . JCL UPDAT CON OUT
/END

Digital Systems Division

943005-9701

o% CREATE LIBBLD,COMMENT,"BUILD LIBRARY FILE "

/REPLACE LIBBLD « BUILD LIBRARY FILE .

/EXEC 0BJ=(1,SYSTEM,LIBBLD) MEM=(338,2000,10200) PRTY=(1,15)}

/ TIMEsw] MEMtsMEM PRTYY3sPRI TIME3sTIM ,

/ASSIGN 5 MTH DEVICEs=DOBJ FILE3sFO0BJ BUFFERSs! . OBJECT INPUTY

/ASSIGN 6 SC DEVICEssDLST FILE;sFLST SHARE3=SLST BUFFERS=1,IDT/DEF LISTING
/ASSIGN 9 DISCY DEVICE:=DLIB FILE:sFLIB REPLACE$=RLIB}

/ BUFFERS®2 INDEXED ACCESS=(ANY,ANY,ANY,ANY)s

/ ACCESSIsCLIB ALLOCATEs(1,8,128,20) ALLOCATE:=LLIB)

/ KEYLEN®=8 . OUTPUT LIB FILE
/END

«% CREATE LINKUP,COMMENT,"LINK MoD AND UPDATE L M FILE"

/REPLACE LINKUP o LINK MODULE AND UPDATE LOAD MODULE FILE .

/EXEC OBJs(1,SYSTEM,DXOLE) MEM=(300,12000,3000) PRTY=(1,1)}

/ _ TIME==1 MEM31sMEML)
/ASSIGN 1 DuUMMY DEVICE:=sDOBJ FILE:=FO08J BUFFERSs2 . SECONDARY 0BJ IN
/ASSIGN 5 DISCt DEVICEtsDIN FILEtsFIN BUFFERS={ s PRIMARY INPUT/CON
/ASSIGN 6 SC DEVICE$sDLST FILFs=FLST BUFFERSs1 LOADMAP LLIST/ERR
/ASSIGN 8 DIScCt FILEs(TEMP,LM) NEW BUFFERSsi RELREC LRECL-64z

/ ACCESS= (ANY,ANY,ANY,ANY) ALLOCATE=(10, 390,32,10) . LOAD MND .QUTPUT
/ASSIGN 9 DISCi DEVICE:sDPLX FILEs(SYSTEM,USRPLX) FXLE:SFPLXI

/ BUFFERS=2 . PLEXUS |.IBRARY
/ASSIGN 18 DISCY FILE=(TEMP,SCRL) NEW DELETE BUFFERSs1; ,

/ LINKSEQ ACCESSs(ANY,ANY, ANY,ANY)} . LINKSEQ SCRATCH

/ _ ALLOCATE=(10,309,256,32)

/ASSIGN §1 DISCY DEVICE3=DEXT FILEs(SYSTEM,DXEXTD) FILESsFEXT}

/ BUFFERSs! SYSTEM EXT DEFS
/ASSIGN 13 DISCt FILEs(TEMP,SCRR) NEW DELETE BUFFERSw1 RELREC!

/ ACCESS'(ANY:ANY!ANY:ANY) ALLOCATEs (18, 300.!28.15))

/ LRECL=lQ@ . RELREC SCRATCH
/EXEC 0BJs(1,SYSTEM, LHUPDT) MEM= (398, 3000.500) PRTYs(1,1)})

/ TIMEs=]1 MEMgsMEMU

/ASSIGN 4 SC DEVICE 1=DHMSG SYSTEM MESSAGE

CONTROL INPUT
LOAD MODULE INPUT
UPDATE FILE

/ASSIGN S SC DEVICE:sDCON SHARE$=SCON
/ASSIGN 6 DISCY FILEs(TEMP,LM) BUFFERSs1
/ASSIGN 7 DISC1 DEVICEtsDUPD FILE3=sFUPD BUFFERSs{

h T B T

/END

+% CREATE LMUPDT,COMMENT,"LOAD MODULE UPDATE "

/REPLACE LMUPDT o LOAD MODULE UPDATE .

/EXEC 0BJ=(1,SYSTEM,LMUPDY) MEMs(3p9,3@800,580) PRTY=(1,1))

/ TIMEsel MEM3IsMEM PRTYpspRI TIMEssTIM ,

/ARSICN 4 8C DEVICE tsDMSG ; SYSTEM MESSAGE
/ASSIGN S SC _ DEVICE$sDCON FILEpsFCON BUFFERSs! » CONTROL INPUT
/ASSIGN 6 DISC{ DEVICEssDLM FILE1=FLM BUFFERSs{ , LDAD MODULE INPUT
/ASSIGN 7 DIScCt DEVICEssDUPD FILE;sFUPD BUFFERSs! . UPDATE FILE

/END

¥ CREATE LPFBLD,COMMENT,"UPDATE LINKABLE PARTS FILE ™
/REPLACE LPFBLD « UPDATE LINKABLE PARTS FILE ,
/EXEC OBJu(1,8YSTEM,LPFBLD) MEM=(300,3308,i000) PRYYR(1,2))

/ TIMEsay 0BJ380BJ MEMISMEM ‘
/ASSIGN @ DUMMY DEVICE$eDCON . CONTROL
/ASSIGN 8 DISCY DEVICE1aDOBJ FILEs(USERS1,ASMOUT) FILESsFOBJ)

/ BUFFERSsY , DBJECT INPUT
/ASSIGN 6 SC DEVICE$sDLSY . LISTING
JASSIGN 7 DUMMY DEVICE3=DEXT FILE$aFEXT REPLACESsREXT)

/ BUFFERSs] LINKSEQ ACCESSs(ANY,CREAT,CREAT,CREAT))

/ ACCESS1aCEXT ALLOCATE®(1,8,128,28) ALLOCATEIaLEXT , EXTRACT FILE
JASSIGN 9 DISCI DEVICE1sDUPD FILESsFUPD REPLACEJsRUPD}

/ BUFFERSs2 INDEXED ACCESSs(CREAT,CREAT,CREAT,CREAT)}

/ ACCESS1sCUPD ALLOCATEs($,0,256,18) ALLOCATEISLUPD?

/ KEYLEN=S . UPDATE FILE
/END

Change 1 B-11 Digital Systems Division

943005-9701

+¥ CREATE | STEDT,COMMENT,"LIST EDIT FILE .
/REPLACE LSTEDT o LIST EDIT FILE .

/EXEC O0BJs(1,SYSTEM,LSTEDT) MEM=(390,1780,650) PRTY=(1,15))
/ TIME=w1 MEM3sMEM PRTY3spPRI TIMEgsTIM

/ASSIGN 18 SC _ DEVICE3sDLST SOURCE QUTPUT

IéSSIGN 28 DISCt DEVICE:sDIN FILEssFIN BUFFERSs! « SOURCE INPUT FILE
/END

+# CREATE PIALGO,COMMENT,"PLEXUS COMP,ILT,ASM,LINK,GO *

/REPLACE PIALGO « PLEXUS COMPILE, ILT, ASSEMBLE, LINK, AND GO ,

/EXEC 0BJs(1,SYSTEM,PLEXUS) HEH'(3OG.>94CG 2708) PRTY=(1,2)}

/ TIME=7200 MEM3sMEM:

ERROR MESSAGE
SOURCE INPUT
SOURCE [.ISTING

/ASSIGN @ SC . DEVICE:=DERR

/ASSIGN 5 DISCY DEVICEs=DSRC FILE:=FSRC BUFFERS=s}
/ASSIGN 6 sC DEVICE:sDLSTC N

/ASSIGN »22 DISCY FILEs(TEMP,DATA) NEW BUFFERS=1 LINKSEG})
/ ACCESS= (ANY,ANY,ANY,ANY) ALLOCATE=(1@,300,168,18). NDATA DIV INT CODE
/ASSIGN »23 DISCY FILEs(TEMP,PROC) NEW BUFFERSs) LINKSEQ} ,

/ ACCESSs(ANY,ANY,ANY,ANY) ALLOCATE=(16.,30@.160,10). PROC DIV INT CODE
/ASSIGN »25 DUMMY

/EXEC 0B)=(1,SYSTEM,ILT988) MEM=(3@0,>94C0,2500) PRTYs(1,2)}

[T T

/ TIME=720@ MEM3eMEM ,
/ASSIGN @ SC DEVICEssDERR . ERROR MESSAGE
/ASSIGN 6 SC DEVICE3=DLST] _ » PRINTOUT

/ASSIGN »12 DISC1 FILE=(TEMP,DATA) DELETE BUFFERSs1 . DATA DIV INT CODE
/ASSIGN »13 DISCY FILEs(TEMP,PROC) DELETE_ BUFFERSs} . PROC DIV INT CODE
/ASSIGN 14 DISCI FILEs(TEMP,SCRR) NEW BUFFERSs1 RELREC)

/ ACCESS= (ANY,ANY,ANY,ANY) ALLOCATE®(10,300.128,10)}

/ . LRECL®64 . REL REC SCRATCH

/ASSIGN »23 DISCt FILEs(TEMP,ILTOUT) NEW BUFFERSsi LINKSEQ;

/ ACCESS= (ANY,ANY,ANY,ANY) ALLOCATE=(10,300,128,32), ILT OUTPUT
/ASSIGN 524 DISC{ FILE=(TEMP,SCRR) BUFFERSs{ . REL REC SCRATCH
/ASSIGN »38 DISCY FILEs(SYSTEM,MDEF) SHARE BUFFERS=1 . MACHINE DESCRIPT
/EXEC 0BJs(1,3YSTEM,ASMBLR) MEM=(390,20000,2000) PRTY=(1,2)}

/ TIMEs18002 ,

/ASSIGN @ DUMMY » SYSTEM MESSAGE
/ASSIGN 4 DUMNY ¢, CONTROL/MESSAGE
/ASSIGN S pISCY FILEs(TEMP,ILTOUT) DELETE BUFFERSs{ - ASSEMBLY INPUT
/ASSIGN 6 SC DEVICEssDLSTA . ASSEMBLY LISTING
/ASSIGN 7 DISC1 FILEs(TEMP,O0BJECT) NEW BUFFERSs1 LINKSEQ}

/ _ ACCESS=(ANY,ANY,ANY,ANY) ALLOCATE=(1@,308,128,28). OBJECT OUTPUT
/ASSIGN 16 DISCY FILEs(TEMP,SCRL) NEW BUFFERS=i LINKSEQ}
/ ACCESSIIANV-ANY.ANY'ANY) ALLOCATE=(19,300,2%6,30). ASSEMBLY SCRATCH
/EXEC 0BJs= (1, SVSYEH.DXOLE) MEMs (388,20800,3000) PRTYS(1,2);

TIMEs1800 '

(-]

/ASSIGN S DISCY FILEs(TEMP,O0BJECT) DELETE BUFFERSs} s PRIMARY INPUT/CON
/ASSIGN 6 SC = DEVICEssDLSTL . LOADMAP LIST/ERR
/ASSIGN 8 DISCi FILEs(TEMP,LM) NEW BUFFERSs1 RELREC:

/ ACCESSs(ANY,ANY,ANY,ANY) ALLOCATE=(19,3008,32,10))

/ LRECL=64 LOAD MOD OUTPUT

LIBRARY
LINKSEQ SCRATCH
RELREC SCRAYCH

/ASSIGN _9 DISC1 FILEs(SYSTEM,USRPLX) BUFFERSs2
/ASSIGN 10 DISCI FILEs(TEMP,SCRL) DELETE BUFFERSsi
/ASSIGN 13 DISCt FILE=(TEMP,SCRR) OELETE BUFFERSsi
/EXEC OBJs(1,TEMP,LM) MEM=(390,29000,3800) PRTYs(1,2))
/ TIMEs1888

/ASSIGN @8 SC . DEVICEgsDERR

/ASSIGN 5 DISCY DEVICEssDIN{ FILEs®FINt BUFFERS=}
/ASSIGN 6 SC DEVICEssDOUTY

/ASSIGN »12 DUMMY DEVICEssDIN2 FILEsSFIN2 BUFFERSsi
/ASSIGN »22 DUMMY DEVICEssDOUT2 FILE:®FOUYZ BUFFERSs|
/ASSIGN »30 DUMMY DEVICE3sDF® FILEZsSFF@ BUFFERS={
/ASSIGN »31 DuMMY DEVICEtsDFY FILEs®SFF1 BUFFERSs}
/END

[2 2 2

ERROR MESSAGE
PRIMARY INPUT
PRIMARY OUTPUT
SECONDARY INPUT
SECONDARY INPUT
FILE @

FILE 1

[0 B B B B 2 B

B-12 Digital Systems Division

943005-9701

«# CREATE PIALNK,COMMENT,"PLEXUS COMP,ILT,ASM,AND LINK"

/REPLACE PIALNK . PLEXUS COMPILE, ILY, ASSEMBLE, AND LINK .

/EXEC OBJ=(1,SYSTEM,PLEXUS) MEM=(389,>04C0,2708) PRTY=(1,2)}

/ TIME=7200 MEMgsMEM

/ASSIGN 2 sc DEVICE:=DERR i ERROR MESSAGE
/ASSIGN 5 DISC1 DEVICE¢»DSRC FILE:=FSRC BUFFERSs={ SQURCE INPUT
/ASSIGN 6 SC DEVICEs=DLSTC . SOURCE {.ISTING
/ASSIGN »22 DISCY FILE=(TEMP,DATA) NEW BUFFERSs1 LINKSEQ)

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATEs(18,300,160, 12). DATA DIV INT CODE
/ASSIGN »23 pISCy FILE=(TEMP,PROC) NEW BUFFERS®1 LINKSEG)

/ ACCESS= CANY,ANY,ANY,ANY) ALLOCATE=(18,308,168,18). PROC DIV INT CODE
/ASSIGN »25 DUMMY

/EXEC ORJ=(1,S3YSTEM,ILT9BO) MEM=(3p8,>94C08,2500) PRTY=(1,2))
/ TIME=7200 MEMtsMEM

/ASSIGN @ SC DEVICEs=DERR

/ASSIGN 6 SC = DEVICE:sDLSTI

/ASSIGN »12 DISCY FILE={TEMP,DATA) DELETE BUFFERS=1

/ASSIGN »13 D1SCy FILEs(TEMP,PROC) DELETE BUFFERSs)

/ASSIGN »14 DISCt FILEs(TEMP,SCRR) NEW BUFFERS={ RELREC)

/ ACCESSS(ANY,ANY,ANY,ANY) ALLOCATEs(10,300.128,10)}

/ LRECL®64 . REL REC SCRATCH
/ASSIGN »23 DISCi FILEs(TEMP,ILTOUT) NEW BUFFERS=1 LINKSEQ;

/ ACCESSs(ANY,ANY,ANY,ANY) ALLOCATE=(186,368.128, 36). ILY QUTPUT
/ASSIGN »24 DISCt FILE=(TEMP,SCRR) BUFFERS=1 . REL REC SCRATCH

/ASSIGN »3@ DISCt FILEs(SYSTEM,MDEF) SHARE BUFFERSs{ . MACHINE DESCRIPT
/EXEC 0BJs(1,SYSTEM,ASMBLR) MEM= (398,28000,2008) PRTYs(1,2)}
/ TIME=1808

/ASSIGN @ DUMMY

/ASSIGN 4 DUMMY

/ASSIGN 5 DISCt FILEs(TEMP,ILTOUT) DELETE BUFFERSs{
/ASSIGN 6 SC _ DEVICEtsDLSTA

/ASSIGN 7 DISCi FILEs(TEMP,O0BJECT) NEW BUFFERS=1 LINKSEQ;

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOGATE®(18,368,128,28). OBJECT OUTPUT
/ASSIGN 16 DISC{ FILEs(TEMP,SCRL) NEW BUFFERSs1 LINKSEGS

/ ACCESS= CANY,ANY,ANY,ANY) ALLOCATE=(10,30@,256,38). ASSEMBLY SCRATCH
JEXEC 0BJs(1,SYSTEM,DXOLE) MEM=(39@,20800,3008) PRTY=(1,2);

.

ERROR MESSAGE
PRINTOUT

DATA DIV INT COOE
PROC DIV INT CODE

L3 T)

SYSTEM MESSAGE
CONTROL/MESSAGE
ASSEMBLY INPUT
ASSEMBLY LISTING

» e e e "

/ TIME=1800 .
/ASSIGN 5 pI8C1 FILEs(TEMP,0BJECT) DELETE BUFFERSs{ » PRIMARY INPUT/CON
/ASSIGN 6 SC = DEVICE;=DLSTL . LOADMAP LIST/ERR
/ASSIGN 8 DISC{ DEVICEssDLM FILEs(USERB1,G0) FILEiIsFLMS

/ REPLACEssRLM BUFFERS®1 RELREC}

/ ACCEQOm(ANY ANV ANY ANYY ACCESSi=nCi M

/ ALLOCATE'(!G.B 32.10) ALLOCATE;!LLN LRECL=64 » LOAD MOD OUTPUT
/ASSIGN 9 DISCt FILEs(SYSTEM,USRPLX) BUFFER§s2 » LIBRARY

/ASSIGN {2 DISCs FILEs(TEMP,3CRL) DELETE BUFFERS=1 s LINUSEG S3CRATCH
/ASSIGN 13 DISCt FILEs(TEMP,SCRR) DELETE BUFFERSs! « RELREC SCRATCH
/END

% CREATE PLEXGO,COMMENT,"EXECUTE PLEXUS GENERATED L M®

/REPLACE PLEXGO » EXECUTE PLEXUS GENERATED LOAD MODULE .,

/E!EC 08Ja(1,USERPL,G0) MEM=(380,120082,1008) PRTYS(4,15);
TIME=180@ OBJ1®0BJ MEM3sMEM PRTY1sPR] TIMEtsTIM
/ASSKGN @ sC DEVICEssDERR
/ASSIGN 5 DISCY DEVICEssDINt FILEs®FINI BUFFERS={
/ASSIGN 6 SC DEVICEssDOUTH
/ASSIGN 212 DUMMY DEVICEssDIN2 FILEsSFIN2 BUFFERSs]
/ASSIGN »43 DUMMY DEVICE:sDIN3 FILEsSFIN3 BUFFERSsY
/ASSIGN »22 DUMMY DEVICE:sDOUT2 FILEssFOUT2 BUFFERSs{
/ASSIGN »23 DUMMY DEVICE3=DOUT3 FILE:SFOUT3 BUFFERSs]
/ASSIGMN »3@ DUMMY DEVICE3sDF® FILEtaFFO BUFFERSe]
/ASSIGN »31 DUMMY DEVICE:=DF| FILE:®FF1 BUFFERS=]
/END

ERROR MESSAGE
PRIMARY INPUT
PRIMARY QUTPUT
SECONDARY INPUTY
TERTIARY INPUY
SECONDARY OUTPUY
TERTIARY OUTPUY
FILE @

FILE

[T B T T T T B B

B-13 Digital Systems Division

943005-9701

% CREATE PLEXIA, COMMENT, "PLEXUS COMPILE, ILT, AND ASM*"
/REPLACE PLEXIA . PLEXUS COMPILE, ILT, AND ASSEMBLE .
/JEXEC 0BJs(1,SYSTEM,PLEXUS) MEM=(3p0,>94C0,2700) PRYY=(1,2)}
/ TIME=?200 MEMg=MEM TIMEisTIM
/ASSIGN 2 SC DEVICE 3$=DERR
/ASSIGN 5 DISC{ DEVICEssDSRC FILE1sFSRC BUFFERS=]

/ASSIGN 6 SC DEVICE:sDLSTC FILEs=FLSY BUFFERSs1

/ASSIGN »22 pIsSCt FILEs(TEMP,DATA) NEW BUFFERSs{ LINKSER?S

/ ACCESS®(ANY,ANY,ANY,ANY) ALLOCATE=(10,328,160, 14). DATA DIV INT CODE
/ASSIGN »23 DISCt FILEs(TEMP,PROC) NEW BUFFERSsy LINKSEQ)

/ ACCESS=(ANY,ANY,ANY,ANY) ALLOCATE=(10,300, 169,10). PROC DIV INT CODE
/ASSIGN »25 DUMMY

/EXEC OBJ=(1,SYSTEM,ILT988) MEM=(3p0,>94C02,2508) PRTY=(1,2))
/ TIME®7282 MEM3sMEM TIME3sTIM

/ASSIGN @ sC DEVICE:=DERR

/ASSIGN 6 SC DEVICEssDLSTI FILE:SFLST BUFFERSs|

/ASSIGN »12 DISCH FILEs(TEMP,DATA) DELETE BUFFERSs{

/ASSIGN »13 DISCY FILE=(TEMP,PROC) DELETE BUFFERSs{

/ASSIGN »14 DISCi{ FILEs(TEMP,SCRR) NEW BUFFERSs1 RELREC}

FRROR MESSAGE
SOURCE INPUT
SOURCE L.ISTING

(30 T

ERROR MESSAGE
PRINTOUT

DATA DIV INT CODE
PROC DIV INT CODE

.y vp *
(3]

* e

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATES(10,300,128,10)}

/ LRECL®64 . REL REC SCRATCH
/ASSIGN »23 DISC1 FILEs(TEMP,ILTOUT) NEW BUFFERSsi LINKSEQS

/ ACCESS® CANY, ANY,ANY,ANY) ALLOCATE=(10,320,128,3@), ILT OUTPUT
/ASSIGN »24 DISCY FILEs(TEMP,SCRR) DELETE BUFFERSs{ » REL REC SCRATCH
/ASSIGN 538 DISCY FILEs¢SYSTEM,MDEF) SHARE BUFFERS=} . MACHINE DESCRIPY
JEXEC 0BJ=(1,SYSTEM,ASMBLR) MEM=(300,29080,2000) PRTYs(1,2)}

/ TIMEs1800

/ASSIGN @ DUMMY » SYSTEM MESSAGE
/ASSIGN 4 DUMMY , CONTROL/MESSAGE
/ASSIGN 5 DISCY1 FILEs(TEMP,ILTOUT) BUFFERSw{ ’ ASSEMBLY INPUT
/ASSIGN 6 SC DEVICE$sDLSTA FILEg®FLSY BUFFERSs} ASSEMBLY LISTING
/ASSIGN 7 DISE1 DEVICE;eDOBJ FILEw(USER®1,ASMOUT) FILE3=FOBJ)

/ REPLACE BUFFERSs{ LINKSEQG ACCESSw=(ANY,ANY,ANY,ANY))

/ ACCESS31=COBJ ALLOCATEs(1,2,128,20) ALLOCATEtsLOBJ. OBJECT OUTPUT
/ASSIGN 16 DISCY1 FILEs(TEMP,SCRL) NEW BUFFERSs{ LINKSEQ}

/END ACCESS® (ANY,ANY,ANY,ANY) ALLOCATE=(18,390.256,30). ASSEMBLY SCRATCH
/

B-14 Digital Systems Division

943005-9701

+% CREATE PLEXUP,COMMENT,"PLEXUS GENERATED UPDATE LPF *

/REPLACE PLEXUP . PLEXUS COMPILE, ILT, ASSEMBLE MODULE AND UPDATE LPF ,
/EXEC OBJs(1,SYSTEM,PLEXUS) MEM=(3p8,>94C®,2708) PRTY=(1,2)}

/ TIME=7200 MEMisMEM TIMEgsTINM)

/ASSIGN @ SC DEVICEs=DERR » ERROR MESSAGE
/ASSIGN 5 DISCY DEVICEssDSRC FILE:sFSRC BUFFERS=1 » SOURCE INPUT
/ASSIGN 6 SC DEVICE:sDLSTC FILE$*FLST BUFFERS= . SOURCE I.ISTING

/ASSIGN »22 DISCY FILE=s(TEMP,DATA) NEW BUFFERSs1 LINKSEQ} ,

/ ACCESS=(ANY,ANY,ANY,ANY) ALLOCATE=(10,309,160,10). DATA DIV INT CODE
/ASSIGN »23 DISCY FILEs(TEMP,PROC) NEW BUFFERS=! LINKSEQG} ,

/ ACCESSs (ANY,ANY,ANY,ANY) ALLOCATE=(18,308,.160,18). PROC DIV INT CODE
/ASSIGN »25 DUMMY

JEXEC OBJe(1,SYSTEM,1LT980) MEM=(3p0,>94C2,2508) PRTY=(1,2)?
/ TIME=7200 MEMisMEM TIMEi=TIM

/ASSIGN 2 SC DEVICE3=DERR

/ASSIGN 6 SC DEVICE:sDLSTI FILE:®FLST BUFFERS={

/ASSIGN »12 DISCY FILEs(TEMP,DATA) DELETE BUFFERSs{

/ASSIGN »13 DISCY1 FILEs(TEMP,PROC) DELETE BUFFERSs|

/ASSIGN »14 DISCY FILEs(TEMP,SCRR) NEW BUFFERSst RELREC}

ERROR MESSAGE
PRINTOUT

NATA DIV INT CODE
PROC DIV INT CODE

[I B

/ ACCESS® (ANY,ANY,ANY,ANY) ALLOCATE=(18,380,128,10)3
/ LRECL=64 . REL REC SCRATCH
/ASSIGN »23 DISCY FILE=(TEMP,ILTOUT) NEW BUFFERS=1 LINKSEQ; |
/ . ACCESS®(ANY;ANY,ANY,ANY) ALLOCATE=(10,300,128,308). ILT OUTRPUT
/ASSIGN »24 DISCi FILEs(TEMP,SCRR) DELETE BUFFERSs} . REL REC SCRATCH
/ASSIGN 532 DISC{ FILE=(SYSTEM,MDEF) SHARE BUFFERSs} . MACHINE DESCRIPT
/EXEC 0BJ=(1,SYSTEM,ASMBLR) MEM= (398,20000,2080808) PRTYs(1,2)}

TIME=180@ ,
/assch @ DUMMY . SYSTEM MESSAGE
/ASSIGN 4 DUMMY . CONTROL/MESSAGE
/ASSIGN 5 DISC{ FILES(TEMP,ILTOUT) DELETE BUFFERS=} . ASSEMBLY INPUT
/ASSIGN 6 SC DEVICE$sDLSTA FILE1SFLST BUFFERS=1 . ASSEMBLY LISTING
/ASSIGN 7 DISCi FILEs(TEMP,ASMOUT) NEW BUFFERSs! LINKSEG;
/ ACCESSs (ANY,ANY.ANY,ANY) ALLOCATE=(18,308.128,2A). 0BJECT OUTPUT
/ASSIGN 16 DISC1 FILE®(TEMP,SCRL) NEW DELETE BUFFERS=1jp
/ LINKSEQ ACCESSs (ANY,ANY,ANY,ANY)}

/ ALLOCATEs(10,300,256,39) } ASSEMBLY SCRATCH
/EXEC 0BJ=(1,SYSTEM,LPFBLD) MEMS(398,8000,3000) PRTYs(1,2)}
TIMEse={

/
/ASSIGN @ DUMMY CONTROL

/ASSIGN 5 DIscy DEVICEs=DOBJ FILEs(TEMP,ASMOUT) BUFFERSsi ; O0BJECY INPUT
/ASSIGN 6 SC = DEVICE=DLSTU FILEs®FLST BUFFERSs{ . UPDATE LISTING
/ASSIGN 9 DISCI DEVICE:sDUPD FILEs(SYSTEM,DXLPF) FILEssFUPD}

/ BUFFERS®=2 . UPDATE FILE
/END

% CREATE RESTLP,COMMENT,"RESTORE LPF FROM MT YO DISC *

/REPLACE RESTLP o RESTORE LPF FROM MAG TAPE TO DISC ,

/EXEC 0BJs(1,SYSTEM,DXCOPY) MEM®(3p0,4900,3000) PRYY=(1,2)}

/ . TIMEmsei MEMgSMEM)

/ASSIGN 5 DumMMy DEVICE1=DCON _ CONTROL/MESSAGE
/A8SIGN 6 SC DEVICE:=DLST FILEysFLST BUFFERS={ . LISTING

/ASSIGN 7 DISci DEVICE3sDOUT FILEs(SYSTEM,LPF) FILEs=FOUT)
REPLACE BUPFERS=2 BUFFERS:SBOUT INDEXEDS

/ ACCESS= (ANY, ANY,ANY,ANY) ACCESS3sCOUTS

/ ALLOCATE=(2,0,128,58) ALLOCATE1sLOUT KEYLEN=6 » OUTPUT
/éssrcn 8 MT1 DEVICE:sDIN FILEgsFIN BUFFERSs2 . INPUT
/END

B-15 Digital Systems Division

943005-9701

«¥ CREAYE SMR +COMMENT, "SOURCE MAINTENANCE ROUTINE *
/REPLACE 8MR « SOURCE MAINTENANCE ROUTINE .

/EXEC OBJ=(1,3YSTEM,SMR) "EH'(3UE:IISGB:5GGG) PRTY=(1,18)}
/ TIMEs=] MEMIsMEM

/ASSIGN @ sc DEVICE:=DMSG
/ASSIGN 4 8C DEVICEs=sDCON FILE1sFCON BUFFERSs{
/ASSIGN 6 DUMMY DEVICEssDLSY FILEssFLST BUFFERSst

/ASSIGN »15 MTy DEVICE:=DOLD FILFEtsFOLO BUFFERS=21 LINKSEQ
/ASSIGN »22 DUMMY DEVICE:=DCOM FILEssFCOM REPLACE$SRCOMS

/ BUFFERS=1 LINKSEQ ACCESSm(ANY,ANY,ANY,ANYY}

/ ALLOCATEssLCOM

/ASSIGN »25 DUMMY DEVICEssDNEW FILEtsFNEW REPLACES®RNEW)

/ BUFFERS=1 LINKSEQ ACCESSs(ANY,ANY,ANY,ANY)}

/ ALLOCATESSLNEW

/ASSIGN »26 DUMMY

/ASSIGN »35 DUMMY DEVICE$=DEV3S FILE:sFIL35 BUFFERS=2
/ASSIGN »45 DUMMY DEVICEt=sDEV45 FILE:sFILA4S5 BUFFERSs2
/END ‘

% CREATE SMRASM,COMMENT,"SMR, ASM, AND UPDATE LPF U
/REPLACE SMRASM e« SMR, ASM, UPDATE LPF .

/EXEC 0BJ=(1,SYSTEM,SMR) MEM=(329,11500,5208@) PRTY=(1,15)}
/ TIMEs={

- . e v "

L3 T T

/ASSIGN @ DUMMY R
/ASSIGN 4 SC DEVICE3sDCON FILE3sFCON BUFFERSs1 .
/ASSIGN 6 DuMMY DEVICEssODLST .
/ASSIGN »15 MT1 DEVICE1sDOLD FILEs=FOLD BUFFERS®{ .
/ASSIGN »22 DISC1 FILE=(TEMP,SMRWRK) NEW BUFFERSs1 LINKSEQ;
/ ACCESS® (ANY, ANY,ANY,ANY) ALLOCATE=(2,300,128,28) ,
/ASSIGN »25 DUMMY .
/ASSIGN »26 DUMMY .
/ASSIGN 535 DUMMY R
/ASSIGN 245 DUMMY .
/EXEC OBJs(1,3YSTEM,ASMBLR) MEMs(3@0,29008,2000) PRTY=(1,2)}
/ TIME=180@)
/ASSIGN @ DUMMy .
/ASSIGN 4 DUMMY ,
/ASSIGN 5 DISC1 FILEs(TEMP,SMRWRK) DELETE BUFFERSs} .
/ASSIGN 6 SC DEVICEssDLSY .
/ASSIGN 7 DISCY FILEs(TEMP,ASMQUT) NEW BUFFERSs{ LINKSEQs
/ _ ACCESSm(ANY,ANY,ANY,ANY) ALLOCATE=(1@,300,128,30).
/ASSIGN 16 DISCY1 FILEs(TEMP,SCRL) NEW DELETE BUFFERSsi}
/ LINKSEG ACCESS=(ANY,ANY,ANY,ANY)}
/ ALLOCATE=(18,300,256,30) ;
/EXEC 0BJs(1,SYSTEM,LPFBLD) MEMs (380,8008,3000) PRTYs(1,2)3
TIMEs~1 ,
/Assxcu @ DUMMY ’
/ASSIGN 5 DISC1 FILEw(TEMP,ASMQUT) BUFFERSs} R
7ASSIGN 6 SC DEVICEss=sDLSY .
/ASSIGN 9 DISC1 DEVICE:sDUPD FILEw(SYSTEM,DXLPF) FILEssFUPD}
/ BUFFERSs2 .
/END

ERROR/USER MSG
COMTROL

LISTING

OLD LIBRARY FILL

COMPILE OUT FILE

NEW LIBRARY FILL

JCL UPDAT CON OUY
INCLUDE LUN OPT ¢
INCLUDE LUN OPT 2

ERROR/USER MSG
CONTROL

LISTING

OLD LIBRARY FILE
COMPILE OUT
NEW LIBRARY
JCL €oN ouT
INCLUDE L.UN
INCLUDE L.UN

FILE
FILE
FILL
oPY
OPT

SYSTEM MESSAGE
CONTROL /MESSAGE
ASSEMBLY INPUT
ASSEMBLY LISTING

OBJECT OUTPUTY

ASSEMBLY SCRATCH

CONTROL
OBJECT INPUT
UPDATE 1.ISTING

UPDATE FILE

Digital Systems Division

943005-9701

«% CREATE SMRPLX,COMMENT,"SMR,PLEXUS,ILT,ASM,UPDAT LPF"

/REPLACE SMRPLYX « SMR, PLEXUS, ILT, ASM, UPDATE LPF .
/EXEC 0BJ=(1,SYSTEM,SMR) MEM=(3¢8,1150@,5080) PRTY®(1.15))

TIMEs=y
/AS$IGN ? DUMMY . ERROR/USER MSG
/ASSIGN 4 sC DEVICEs=DCON FILEisFCON BUFFERS=1 » CONTROL
/ASSIGN 6 DUMMY DEVICE3=DLSY . LISTING

/ASSIGN »15 MTy DEVICEssDOLD FILEt=sFOLD BUFFERSs{

/ASSIGN »22 DISCy FILEs(TEMP,SMRWRK) NEW BUFFERSs! LINKSEQ)

/ . ACCESSs(ANY,ANY,ANY, ANY) ALLOCATE'(?13051128133)
/ASSIGN »25 DUMMY

/ASSIGN »26 DUMMY

/ASSIGN »35 DUMMY

/ASSIGN »45 DUMMY

/EXEC 0BJ=(1,SYSTEM,PLEXUS) MEM=(390,>94Cp,2500) PRTY'(!:?)}

OLD LIBRARY FILE

COMPILE OUT FILE
NEW LIBRARY FILL
JCL CON OUT FILE
INCLUDE iL.UN OPT
INCLUDE LUN OPT

. e

/ TIME=7208 MEM:sMEM ,

/ASSIGN @ ‘DUMMY - ERROR MESSAGE
/A8SIGN 5 DISC1H FILE'(TEHP:SMRNRK) BUFFERS=1 s PRIMARY INPUT
/ASSIGN 6 SC DEVICEs=DLST . SOURCE |.ISTING

/ASSIGN »22 DISCY FILE=s(TEMP,DATA) NEW BUFFERS=1 LINKSEQ} .

/ ACCESSS (ANY,ANY,ANY,ANY) ALLOCATE=(192,3008,16@,1”7). DATA DIV INT CODE
/ASSIGN »23 DISCt FILEs(TEMP,PROC) NEW BUFFERS=1 LINKSEN}

7 ACCESSa(ANY,ANY,ANY,ANY) ALLOCATE={18,3208,160,12). PROC DIV INT CODE
/ASSIGN 225 DUMMY

/JEXEC OBJs(i,SYSTEM,ILT986) HMEN®{30€,>94C0,2566) PRTYs(i,2))

/ TIME=727@ MEM3®MEM

/ASSIGN @ DUMMY ERROR MESSAGE

/ASSIGN 6 SC DEVICEgeDLST . PRINTOUT

/ASSIGN »12 DISCY FILEs(TEMP,DATA) DELETE BUFFERSs1 . DATA DIV INT CODE
/ASSIGN »13 DISC) FILE=(TEMP,PROC) PELETE BUFFERSs1 . PROC DIV INT CODE
/ASSIGN 14 DISC1 FILE=(TEMP,SCRR) NEW BUFFERS=1 RELRECH

/ ACCESS= (ANY, ANY,ANY,ANY) ALLOCATE= (18,302,128, 19);

/ LRECL 264 REL REC SCRATCH
/ASSIGN »23 DISCI FILEs(TEMP,ILTOUT) NEW BUFFERS=1 LINKSEQ)

/ ACCESS= (ANY,ANY,ANY,ANY) ALLOCATE=(18,308,128,30), ILT OUTPUT
/ASSIGN »24 DISCY FILEs(TEMP,SCRR) DELETE BUFFERSs] + REL REC SCRATCH
/ASSIGN 30 DISC{ FILE=(SYSTEM,MDEF) BUFFERSs1 . MACHINE DESCRIPT
JEXEC OBJs(1,SYSTEM,ASMBLR) MEM=(300,20000,2008) PRTY=(1,2))

/ TIME=1800 '

/ASSIGN @ DUMMY » SYSTEM MESSAGE
/ASSIGN 4 DUMMY - CONTROL/MESSAGE
/ASSIGN 5 DISCI1 FILEs(TEMP,ILTOUT) DELETE BUFFERSs{ . ASSEMBLY INPUT
/ASSIGN 6 SC DEVICE:1sDLST » ASSEMBLY LISTING
/ASSIGN 7 DISC1 FILEs(TEMP,SMRWRK) BUFFERSs1 . OBJECT OUTPUT
/ASSIGN 16 DISCY FILEs(TEMP,SCRL) NEW DELETE BUFFERSs{}

/ LINKSEQ ACCESS=(ANY,ANY,ANY,ANY)} ,

/ ALLOCATE= (10,300,256,38) . ASSEMBLY SCRATCH
JEXEC 0BJs(1,SYSTEM,LPFBLD) MEMs(3@8,8000,3200) PRTY=(1,2)

/ TIMEs=] .

/ASSIGN @ DUMMY » CONTROL

/ASSIGN S DISCI FILEs(TEMP,SMRWRK) BUFFERSw1 » OBJECT INPUY
/ASSIGN 6 SC DEVICE;sDLST UPDATE L.ISTING
/ASSIGN 9 DISC) DEVICEssDUPD FILEs (SYSTEM,DXLPF) rrLe:-rupop

/ BUFFERSs2 UPDATE FILE

/END

B-17 Digital Systems Division

943005-9701

% CREATE YANK ,COMMENT,"FETCH JCL SEQUENCE .
/REPLACE YANK o FETCH JCL SEQUENCE .

/EXEC OBJ=(1,SYSTEM,SHMR) MEM=(30p,11573,5008) PRTY®(1.15)7
/ TIMEsel MEM$sMEM PRTY$1sPRI TIMEssTIM

/ASSIGN @ DUMMY

/ASSIGN 4 SC DEVICEs=DCON

/ ASSIGN 6 DUMMY DEVICE:sDLST B

/ASSIGN »15 DISC1 FILE=(SYSTEM,JCLSRC) BUFFERSs1

/ASSIGN »22 DISCY FILEs(TEMP,COMPIL) NEW BUFFERSs) LINKSEOS
/ ACCESSE(ANY,ANY,ANY,ANY) ALLOCATE=(1,8,256,3)
/ASSIGN »25 DUMMY

/ASSIGN »26 DISCH FILE=(SYSTEM,JCcLCUP) REPLACE BUFFERS=1}

/ LINKSEQ ACCESS=(ANY,ANY,ANY,ANY)}

/ ALLOCATE=(1,0,64,1)

JEXEC OBJs(1,SYSTEM,BLDEDT) MEM=(3@8,550,2000) PRTY®(1,15))
/ TIMEs=i MEMtsMEM PRTY1=PRI TIMEtsTIM

JASSIGN 1@ DISC1 FILE=(TEMP,COMPIL) BUFFERS={
/ASSIGN 2@ DISCi FILEs(SYSTEM,JCWORK) REPLACE BUFFERSs2;

[B e S

ERROR/USER MS8G
CONTROL

LISTING

nLD LIBRARY FILE

COMPILE OUT FILE
NEW LIBRARY FILE

JCL UPDAT CON OUY

SOURCE INPUT

/ INDEXED ACCESS=(ANY,ANY,ANY,ANY)})
/ ALLOCATE=(1,2,256,3) KEYLENS2 . SOURCE OUT FILE
7END
B-18 Digital Systems Division

o
q!@ 943005-9701

APPENDIX C
ADDING TO ITS

Digital Systems Division

943005-9701

APPENDIX C
ADDING TO ITS

Cc.1 ITSINTERNAL STRUCTURE

NOTE

The ITS design includes the ability to support a
polled terminal for future expansion., This fea-
ture does not apply to the hardware currently
supported with DX980.

Before modifying ITS or adding application programs to run under ITS, the

programmer must understand the structure of the subsystem. The subsys-
tem consists of four main parts: Terminal Process Monitor, Terminal 1/0
subroutines, Supervisor, and individual application programs. Figure C.1

illustrates the interrelation of these components. The following paragraphs
explain the operation of each component.

1/0 SUBROUTINES

ITTPMN ITFDIO
POST
SV
terminaL | |07 L
PROCESS o PUbtEX
MONITOR I /o

BRANCH AND i

i LINK |
ITINIT ITSTBL ITSUPV : ITPBIO
STATE
1TS TABLES, — | SUPERVISOR L gl POLLED
INITIALIZER ENTRY BUFFER
TABLES 1/0

‘BRANCH AND LINK

' ' K’

ITIFE ITRJE ITSTAT
INTERACTIVE REMOTE READ OTHER
FILE Jos STATUS USER
EDITOR ENTRY APPLICATION
PROGRAMS
~ S
=\

(A)130112 APPLICATION PROGRAMS

Figure C-1. ITS Components

C-1 Digital Systems Division

e}
%:@@ 943005-9701

c.l1.1 TERMINAL PROCESS MONITOR

The Terminal Process Monitor (ITTPMN) is the main task for ITS and coor-
dinates the operation of the other tasks in the subsystem. Figure C-2 pro-
vides a conceptual flow chart for ITTPMN. The monitor calls two subrou-
tines, scans the PRCESS flag for each of the terminals connected to it and
activates the I/O subroutines.

C.1.1.1 ITINIT. When ITS is first activated, the monitor calls the ITINIT
subroutine. This subroutine examines the Logical Device Tables (LDT) for
the job, to determine what terminals are under control of ITS, and the DX980
Physical Device Table (PDT) for the assigned devices, to determine the
characteristics of each terminal. (ITS uses a special SVC so that these func-
tions can be performed while executing in the protected mode.) From this
information the subroutine builds a terminal list in the ITS workspace area
for each terminal assigned to ITS. The list contains the characteristics of
the terminals. Table C-1 defines the information contained in a list entry
for one of the terminals.

In addition to building a terminal list, ITINIT allocates one 1/0 buffer for
each full duplex terminal and a specified number of 1/0 buffers to support
polled terminals. Each full duplex I/O buffer is permanently assigned to the
full duplex terminal. The polled terminal 1/O buffers are dynamically as-
signed. ITINIT also allocates one Physical Record Block (PRB) and creates
one I/0O task for each I/O buffer. The I/0 tasks for full duplex buffers use
the reentrant procedure, ITFDIO. The I/0 tasks for polled buffers use the
reentrant procedure, ITPBIO. ITINIT sets the Read Terminal (RDTRM) flag
for each of the terminals and starts them in their respective I/O task. When
all I/0O tasks are created, ITINIT returns control to ITTPMN. The 1/0 tasks
are described later in this section.

C.1.1.2 TERMINAL LIST SCAN. When ITINIT returns to ITTPMN, the
monitor starts scanning each entry in the Terminal List to determine if any
PRCESS flags are set. The PRCESS flag indicates that the terminal operator
has entered a complete record that is ready for processing by ITS. When
ITTPMN encounters a terminal entry with a set PRCESS flag, it calls the
Supervisor (ITSUPYV) to service the request from the terminal. If ITTPMN
scans the entire Terminal List without finding a set PRCESS flag, it suspends
itself for one-half second. At the end of the delay period, ITTPMN reacti-
vates and begins the table scan again. Each scan cycle after the delay period
begins with the first entry in the list and continues sequentially through the
list until it reaches the end or detects a PRCESS flag. When returning to the
scan cycle after servicing a PRCESS flag, the scan starts at the terminal
following the serviced terminal in the list. ITTPMN does not take the one-
half second delay at the end of a cycle if it has serviced a terminal during that

cycle.

C-2 Digital Systems Division

943005-9701

(B)130113

Figure C.2

ITTPMN

Y

ITINIT

BUILD
TERMINAL
LIST

CREATES

L — CONCURRENT
TASKS FOR EACH

L:fRMINAL:ITFDIO

SET TERMINAL
LIST POINTER,
N=0

PRCESS
=1 FORNTERM .

N+1—=N

ITSUPV

SERVICE
PRCESS
FLAG '

HAVE
ANY PRCESS
FLAGS BEEN
SERVICED

sSvC 7
SUSPEND FOR
1/2 SECOND

EXIT TO DX980
1/2 SEC DELAY

RE—-ENTER
ITTPMN

SVvC 8
POST ITFDIO

" POLLING
BUFFER

AVAILABLE

POLLING
LINE
AVAILABLE

0—BUFFER
AVAILABLE
LINE

AVAILABLE

'

svC 8
POST 1TPBIO

o—

Terminal Process Monitor Conceptional Flow Chart

C-3

Digital Systems Division

e}
%@? 943005-9701

Word Bit Field Name Definition

Table C-1., ITS Terminal List Entry

0 0 RDTRM Read Terminal Flag: Setting this flag in-
structs the I/0 task for the terminal to
issue a Read Terminal I/0 call.

1 TYPTRM Terminal Type: If this bit is a 0, the cor-
responding terminal is a full duplex termi-
nal; if this bit is a 1, the terminal is a
polled terminal.

2 PRCESS Process Flag: The terminal I/0 task sets
this flag to indicate to ITTPMN that data
from the corresponding terminal is ready
for processing.

3 WRTTRM Write Terminal Flag: Setting this flag in-
structs the I/0O task for the terminal to
issue a Write Terminal I/0O call.

4-7 BFNUM Buffer Number: This number indicates
which of the polling buffers has been dy-
namically assigned to this terminal. This
field is not used for full duplex terminals,

8-15 LUN Logical Unit Number: Indicates which
LUN that the terminal responds to.

1 0-15 TRMTSK Terminal Task: Task identification of the
last I/O task that serviced this terminal,.
This field is static for a full duplex termi-
nal and dynamic for a polled mode terminal.

2 0-15 UCBPTR User Control Block Pointer: The location
: of the user control block for the terminal.

3 0-15 PRBPTR Physical Record Block Pointer: The loca-
tion of the PRB for the terminal. This
field is static for a full duplex terminal and
dynamic for a polled mode terminal.

4 0-15 TRBFLN Terminal Buffer Length: The number of
characters that can be put into the buffer
for the terminal.

C-4 Digital Systems Division

[e]
@ 943005-9701

C.1.1.3 ITSUPV. ITTPMN calls the ITSUPV to service a terminal whose
PRCESS flag is set. ITSUPV is a major part of ITS and is discussed in de-
tail later in this section. During processing, ITSUPV resets the PRCESS

flag so that it will not be recognized again during the next table scan. How-
ever, application programs called by ITSUPV may set the PRCESS flag again
if they do not complete processing. If ITSUPV requires additional input from
the terminal, it sets the RDTRM flag before returning to ITTPMN; if data out-
put to the terminal is required, ITSUPV sets the WRTTRM flag before re-

turning to ITTPMN.

C.1.1.4 TERMINALI/O. If either the RDTRM or the WRTTRM flag is set
when ITSUPV returns to ITTPMN, the monitor issues a POST to activate an
I1/0O task. If the terminal operates in full duplex mode, the monitor activates
a task using the ITFDIO procedure; if the terminal is a polled terminal, the
monitor activates a task using the ITPBIO procedure. Either of these tasks
(initially created by ITINIT) transfers data to and from the terminal device
by issuing I/O supervisor calls. ‘

C.1.2 FULL DUPLEXI/O TASK (ITFDIO)

When building the Terminal List, ITINIT determines if a terminal is operat-
ing in full duplex mode. For full duplex terminals, ITINIT allocates memory
to supply a terminal buffer {(including one extra word for format control) and
a Physical Record Block (PRB) for that terminal. It also creates a task with
pointers to the PRB and the Terminal List as arguments and places the task
identification in word 1 of the Terminal List entry for that terminal. The
task, the terminal buffer and the PRB remain associated with the terminal.
ITFDIO uses information in the terminal list to direct I/O operations between
the ITS and the full duplex terminal. Figure C-3 illustrates the functions

performed by the subroutine.

C.1.2.1 TASK INITIATION. Before ITINIT creates a terminal task for
ITFDIO, it sets the RDTRM flag in the Terminal List entry for that terminal.
Therefore, when ITFDIO begins execution, it issues an I/O SVC to read data
from the terminal, ITINIT starts tasks for each terminal in the system in
the same manner, so that when ITINIT returns control to ITTPMN, all ter-
minal tasks are waiting for input from the corresponding terminals.

C.1.2.2 PROCESS REQUEST. When the operator enters a complete rec-
ord of data at the terminal, the data terminal Device Service Routine (DSR)
returns control to ITFDIO. ITFDIO then resets the RDTRM flag to indicate
the completion of a read operation, and sets the PRCESS flag to indicate that
the data is in the input buffer and requires attention from ITSUPV. ITFDIO
then suspends processing to wait for either the RDTRM or the WRTTRM flag
to set.

C-5 Digital Systems Division

943005-9701

WRTTRM

=1
YES

SVC O
WRITE 1/0
TO TERMINAL

0—WRTTRM

RDTRM
=1 NO

YES

SVC 0
READ DATA
FROM TERM INAL

!

0—RDTRM
{ — PRCESS

'

svC 7

'

1— PRCESS

(A)130114

Figure C-3. ITFDIO Conceptual Flow Chart

SUSPEND h
UNTIL POSTED
BY ITTPMN

C-6

Digital Systems Division

[o]
{@ 943005-9701

C.1.2.3 RESPONSE TO TERMINAL. If ITSUPV, or a subordinate applica-
tion subroutine, produces data in response to.a terminal request, it also sets
the WRTTRM flag after filling the terminal buffer with data to be written to
the terminal. This flag causes ITTPMN to post the ITFDIO task for that ter-
minal and instructs that task to issue a Write Terminal I/O SVC. If more
data is required, RDTRM is set. If both WRTTRM and RDTRM are set, the
I/O is performed in the order of write and then read. Neither ITSUPV or the
subordinate applications issue I/O SVCs to communicate directly with the ter-
minals.

C.1.2.4 DISPLAY SIZE. During construction of the Terminal List, ITINIT
determines the display size of the terminal from the PDT. The display size,
plus the format control word, determines the allocated buffer size for the
terminal, and also specifies the length field in the PRB when the terminal is
opened. Buffer lengths for the terminal devices are as follows:

e Teleprinter - 82 characters
@ Teletype - 74 characters _
° CRT - variable ﬁp to 1922 characters

If available memory cannot support several terminals with a 1922 character
display, the PDT can be modified to reduce the display size. The display
size for CRTs can be reduced to 80 characters so that the CRT responds as
a teleprinter.

C.1.3 POLLED TERMINAL I/O TASK (ITPBIO)

The polled I/O routine (ITPBIO) is a reentrant subroutine that, unlike
ITFDIO, does not require a task for each terminal. Instead, ITINIT creates
a task for each polling buffer. The number of polling buffers can be signifi-
cantly less than the number of terminals., Figure C-4 illustrates the func-
tions performed by the subroutine.

C.1.3.1 TASK INITIATION. When ITINIT determines that there is one or
more polled terminals assigned to ITS, memory is allocated for a specified
number of polling buffers and PRBs. The number of polling buffers specified
for the standard ITS is two. Although this number can be increased, two
should be adequate for most applications. Unlike full duplex terminals, a
task is not created for ITPBIO when a polled terminal is added to the terminal
list. However, like full duplex terminals the RDTRM flag is set. After all
terminals have been added to the terminal list, ITINIT allocates memory for
a buffer and PRB, and creates a task for each polling buffer. The first time
through, ITPBIO does not issue a terminal read since ITINIT does not specify
which terminals should be polled. Thus control goes immediately to an SVC
to suspend ITPBIO until posted by ITTPMN,

C-7 Digital Systems Division

o]

[943005-9701

POST FOR
WRITE
NO

sSvC 0
WRITE DATA
TO TERMINAL

'

0—=WRTTRM

SET POLLING j— BUFFER
AVAIL

LIST
POINTER N=0

NO

1 —PRCESS

NO

SVC O
READ DATA
FROM
TERMINAL

RECORD
LENGTH

N+71— N

0—RDTRM
1—=PRCESS

NO

LINE
AVAILABLE

'

svC 7
SUSPEND FOR
ITTPMN POST

(B)130115

Figure C-4. ITPBIO Conceptual Flow Chart

C-8 Digital Systems Division

o
{@@ 943005-9701

C.1.3.2 PROCESS REQUEST. ITTPMN checks the status of the polling
buffers and the polling lines (communication modules) if:

1) a terminal is ready for processing and ITTPMN calls ITSUPV, or

2) no terminal is ready for processing and ITTPMN suspends itself
for one-half second.

If both a polling buffer and a line are free, ITTPMN issues a post for the ap-
propriate ITPBIO together with a pointer to the line to be polled.

After receiving control, ITPBIO issues a read to each terminal on the polling
line in succession. If a terminal user has pressed the transmit key prior to
issuance of the read to his terminal, the screen data is transferred when the
read is issued. If the transmit key has not been pressed, the terminal does
not respond and the DSR returns control to ITPBIO with a record length of
zero. This record length is treated as a negative response and a read is
issued to the next terminal on the line. The first positive response termin-
ates the poll and the PRCESS flag is set for the corresponding terminal.
ITPBIO then issues a suspend SVC to wait for another post.

C.1.3.3 RESPONSE TO TERMINAL. The WRTTRM flag can be set by
'ITSUPV or a subordinate application subroutine. This causes a post to the
appropriate ITPBIO task for data transfer. After the data is transferred,

TTDDTMN bt iemana =y ~ H o~ Ta a~
11 DI Ge€termines whcthcl“ RDTRM is also set. If RDTRM is oct, ITPBIO

releases the buffer and issues a suspend SVC, If RDTRM is not set, ITPBIO
sets PRCESS and does not release the buffer. This process allows a pro-
gram to maintain a buffer throughout a series of data transfers to a terminal.

1.3.4 DISPLAY SIZE. When ITINIT determines that polling buffers are
required, it also determines the largest display size for the terminals to be
polled. It then allocates memory to each buffer that corresponds to the maxi-
mum size.

C.l.4 SUPERVISOR (ITSUPV)

The ITS Supervisor (ITSUPV) is a combination state and table driven control-
ler that acts as an intermediary between ITTPMN and the application pro-
grams that run under ITS, When ITINIT initializes a terminal, it creates a
table of parameters, called the User Control Block (UCB), that stays with the
terminal as long as it is assigned to ITS. The information within the UCB
varies with the user program that is currently using the terminal. Table C-2
defines the information fields within the UCB, When control transfers to
ITSUPYV to service a particular terminal, it clears the Terminal List flags
for that terminal and examines the state-field of the UCB to determine what
type of servicing is required. Figure C.5 illustrates the logical sequence of
events within ITSUPV, Table C.3 defines the terminal states and the actions
required of ITSUPYV to service a terminal in that state.

C-9 Digital Systems Division

Q
{Q[Z@ 943005-9701

Table C-2. ITS Terminal User Control Block (UCB)

Word | Field Name Description

0-2 USERID User Identification: This field contains the
<userid> that is entered at the terminal during a
Logon operation. Not validated by current
ITSUPV. Reserved for future accounting software.

3-4 ACCTNO Account Number: This field contains the <acctno>
that is entered at the terminal during a Logon op-
eration. Not validated by current ITSUPV. Re-
served for future accounting software.

5 STATE Terminal State: This field contains a number that
indicates to ITSUPV how to respond to a service
request from the terminal.

6 TRMPTR Terminal Pointer: This field contains the mem-
ory address of a table of device characteristics
for the terminal.

7 OPTR Operation Pointer: This field contains space for
the application program to load a pointer for its
use.

8-9 TIMEON Clock Time of Logon: This field is not used by

the standard ITS.

10-11 DATEON Calendar Date of Logon: This field is not used by
the standard ITS.

12 TRMLNS Terminal Lines: This field specifies the number
of lines on the display unit.

13 LINLEN Line Length: This field specifies the length of
each display line.

14-49 - These fields provide intermediate storage of
parameters for the application program currently
using the terminal.

C-10 Digital Systems Division

943005-9701

ITSUPV

0—WRTTRM
0—RDTRM
0—PRCESS

i

UCB STATE DECODE

O 1
NOT LOGGED NOT IN 10—19 20—29 30—39 240
ON APPLICATION
ITIFE ITSTAT
SvVC 41 SVC 41
CALL COMMAND CALL COMMAND INTERACTIVE READ
SCANNER SCANNER FILE EDITOR STATUS

Y r

ITRJE USERAP*
OPERATION REMOTE ANY USER
RECOGNIZABLE Jjos APPLICATION
NC ENTRY PROGRAM

YES YES
\READY' — BRANCH AND
1/0 BUFFER LINK TO
APPLICATION

PROGRAM

{—= WRTTRM
1—= RDTRM
1— STATE

v Yy -y

- * USER PROGRAM AND OF CODE MUST

’ EXIT TO
ITTPMN
BE ADDED TO TABLE OF RECOGNIZABLE

(A)130116 CODE FOR ITSUPV,

Figure C-5. ITSUPV Conceptual Flow Chart

C-11 Digital Systems Division

(@ 943005-9701

Table C-3. User Control Block State Definitions

State Number Terminal Conditions/Requirements
0 Inactive: User has not entered a Logon command to
identify himself. ITSUPV checks only for a Logon
commeand,
1 Ready: User has logged-on, but has not as yet re-

quested any application program.

10-19 Edit: User is currently running the Interactive File
Editor (ITIFE) application program. ITSUPYV calls
ITIFE to process request.

20-29 Remote Job Entry: User is currently running the Re-
mote Job Entry (ITRJE) application program. ITSUPV
calls ITRJE to process request.

30-39 Status: User is currently running the Status Display
(ITSTAT) application program. ITSUPV calls ITSTAT
to process request.

1AV
S
o

User Program: User is currently running an applica-
tion program not normally supplied with ITS, ITSUPV
transfers control to the user program if the program
has been entered in the table of recognizable code for
ITSUPV.

C.1.4.1 STATE 0. If the UCB State field is zero, the user has not pre-
viously entered data from the terminal. Therefore, the first command from
the terminal must be a Logon command to identify the user. In State 0
ITSUPYV calls the command scanner to examine the input code. If the input
code does not contain a Logon command, ITSUPV returns control to ITTPMN
without further processing. If the code contains a Logon command, ITSUPV
validates the syntax, transfers the pertinent data to the UCB and places a
Ready indication in the I/O buffer. It then sets the WRTTRM flag to ensure
that the Ready indication is sent to the terminal and sets the RDTRM flag to
enable the user to respond by entering the next command. ITSUPYV then
places a value of 1 in the State field of the UCB before returning control to
ITTPMN. '

C.1.4.2 STATE 1. If the UCB State field is one, the user has logged-on,
but has not as yet indicated an application program. ITSUPYV then calls the
command scanner to examine the input code (see Section V for a de-
scription of the command scanner). The input command must be one of the
commands that ITSUPV can recognize. The standard ITS system provides a

C-12 Digital Systems Division

(o]
@ 943005-9701

table of commands that allows ITSUPV to recognize the following input com-
mands and their appropriate arguments:

EDIT
ENTER
LOGOFF

DELETE

Any user programs that are added to ITS must also add at least one command
to this list that will link ITSUPV to the user program. ITSUPV processes the
Logoff command. Application programs process all other commands. If an
application program processes the command, ITSUPYV transfers control to
that program with a Branch and Link (BRL) instruction. Pointers to the ter-
minal list entry and to the command scanner data arrays accompany the com-
mand to the application program. The application program, therefore, has
access to all control blocks for the terminal, plus the command and argu-
ments that were entered at the terminal.

C.1.4.3 OTHER STATES. If the UCB State field is greater than one,
ITSUPYV transfers control directly to the application program. Terminals in
this state have previously used an application program. That program set
the state field to a value that returns control to the program for further in-
put, or that logs-off the user from that program. ITSUPYV does not process
commands in these higher states. Therefore, the application program must

Amrmand s A= o~ o wma] o Laa e L o b et 1
dc\,udc d.lly CUlllillaliud LI ULl LIIC LCIIIlilldl.

C.1.5 APPLICATION PROGRAMS

Application programs that run under ITS are closed subroutines. The argu-
ments that ITSUPV passes to the program are pointers to the appropriate
terminal list entry and the command scanner arrays. Figure C-6 shows the
relationship between the control blocks and structures.

C.1.5.1 CONTROL TRANSITIONS. When control is passed to an applica-
tion program, the RDTRM, WRTTRM, and PRCESS flags are all set to zero
and the buffer pointer in the PRB points to the first data word in the terminal
buffer. If this is the initial entry into the subroutine, STATE is set to 1 and
the key and packed arrays in the command scanner structure contain the de-
coded command line. Before the application program returns control to
ITSUPV, the program sets RDTRM, WRTTRM, PRCESS, STATE, and the
format control word according to the requirements of the application.

C-13 Digital Systems Division

943005-9701

TERM INAL USER CONTROL
LIST BLOCK
0 0—5 TERMINAL
CHARACTERISTICS
1 6 B 0
2 7 i—-3
3 8—49
A

PHYSICAL RECORD
BLOCK

> TERM INAL
BUFFER

NOTE. NUMBERS IN THE BLOCKS CORRESPOND
TO WORD NUMBER

(A)130117

C.1l.5

Figure C-6. ITS Control Blocks

.2 SAMPLE APPLICATION TRANSFER. The following example

from the file editor illustrates the strategy for performing a function under

ITS.

The terminal is in the Ready state, and the user wants to edit a file by

changing the string ABC to XYZ everywhere that it appears. The file con-
tains 50 records. The following sequence performs that operation:

1.

2'

User keys EDIT FILE=(1, USERO1, MYFILE) and presses RETURN
from a teleprinter; ITFDIO then sets the PRCESS flag.

ITTPMN detects that processing was requested and calls ITSUPV,
ITSUPYV calls the command scanner, determines that the command
is to be processed by the file editor (ITIFE) and makes the call.

C-14 Digital Systems Division

{—%\[’]@ 943005-9701

3.

ITIFE calls a subroutine to assign and open the file, and read the
first file record into the terminal buffer. ITIFE then sets the for-
mat control word to 000E 4, RDTRM to 1, WRTTRM to 1, and
STATE to 11, and returns control to ITSUPV. ITSUPV returns to
ITTPMN to activate the I/0 task for the user's terminal.

ITFDIO writes the terminal buffer and issues a read to accept more
input.

Terminal user enters RA 1,50 /ABC/ /XYZ/ to direct the file editor
to replace all strings ABC with the string XYZ in the next 50 rec-
ords of the file.

ITTPMN detects that processing was requested and calls ITSUPV,
ITSUPV determines that STATE is between 10 and 19 and calls
ITIFE, ITIFE calls the command scanner, determines that the com-
mand is a string operation, and calls a subroutine that processes all
string commands. The string processor reads 25 records, changing
ABC to XYZ wherever found. After processing the 25 records,

(the subroutine interrupts itself rather than being arbitrarily cutoff)
the string processor changes STATE to 14, leaves RDTRM and
WRTTRM reset, sets the PRCESS flag and returns control through
ITIFE and ITSUPV to ITTPMN. ITTPMN does not post the I/O rou-
tine because neither RDTRM or WRTTRM are set., However, it

A thn bnwwrnndnal oan ad tlh next .,.t

GOE€Ss COoNTinue til€ terininals sCall at tilie nex

In time the terminal scan progresses to the same terminal. ITTPMN
detects that processing was requested and passes control through to
the string processor to process the last 25 records, After process-
ing is complete, the string processor puts the last record processed
in the terminal buffer, sets RDTRM and WRTTRM to 1, changes

1 A
STATE back to 11 and returns. ITIFTE sets the format control word

to 000E;¢ and returns through ITSUPV to ITTPMN to activate the
appropriate I/O task. Control then returns to the user. The user
can key in either more edit commands for further file processing, a
Stop command to get back to the ready state, or a Logoff command
to exit the system.

C.2 DESIGN PRINCIPLES

Before adding a new application program to ITS, the user must understand
the design features in the subsystem that provide the highest overall effi-
ciency for the subsystem. Observance of these principles when implement-
ing a new program will enhance its performance within the system.

C.2.1

DUAL MODE OPERATION

ITS can run in either the protected or the privileged mode. The first DXOLE
control card (see Section VIII) controls the mode of operation. If the card

C-15 Digital Systems Division

@ 943005-9701

specifies SUBSYSTEM, the program links for privileged operation; if the
card specifies NORMAL, the program links for protected operation. Privi-
leged mode is slightly faster than protected mode since it performs less er-
ror checking for privileged SVCs. In addition, a privileged mode program
can be smaller since it can access the runtime package that is linked into the
memory resident portion of the operating system.

Protected mode simplifies debugging a new ITS application program, and
guarantees that an error in the new program will not destroy the operating
system. When preparing the new program, link it in the protected mode,
Then check the program by running a single terminal with the PROT param-
eter specified in the Execute command (EXEC) to the JCL translatore. When
the application is completely checked in this manner, it can be linked with the
rest of ITS with SUBSYSTEM specified on the DXOLE control card.

C.2.2 APPLICATIONS OVERLAY

To attain maximum memory efficiency, ITS application programs can be
overlayed. The majority of ITS is coded as reusable subroutines. This con-
vention allows the overlays to be the simple, preplanned overlays supported
by DXOLE.

C.2.3 PSEUDO TIME SLICING

To avoid monopolizing the system for a single terminal application, all ap-
plication programs must return control to ITTPMN periodically. To main-
tain an average access time of three seconds for any terminal and for a total
of up to 30 terminals, the average processing time for any one terminal re-
quest must be limited to 100 milliseconds. Many terminal requests require
less than the 100 millisecond average; long functions may use up to a maxi-
mum of 200 milliseconds. The actual interruption of the program, however,
is left to the program itself. That is, either the program completes its pro-
cess within the time limit, or the program interrupts its processing at a
logical breakpoint to return to ITTPMN within the time limit. If the program
interrupts itself, it returns to ITTPMN with the PRCESS flag set, and with
both RDTRM and WRTTRM flags clear. Thus, no I/O operations are initiated
and ITTPMN returns to the program during the next Terminal List scan.
This process of allowing the program to limit its time instead of being trun-
cated after an arbitrary period is called pseudo time slicing.

Two functions in the standard ITS package, the RJE processor and the Display
Status processor, do not follow the pseudo time slicing guidelines. These
processors both contain supervisor calls that take longer than 200 millisec-
onds to perform (Start Job and Stat SVCs, respectively). Control does not
return to the processor until the SVC is complete. For each of these proces-
sors a small reentrant module appears in the root segment of the ITS overlay.
After the Job, Run and Stat commands are syntactically validated, the pro-
cessor creates a task that points to the reentrant module. The reentrant

C-16 Digital Systems Division

e}
@ 943005-9701

module issues the SVC, The processor then resets PRCESS, RDTRM and
WRTTRM flags and returns normally to ITTPMN. When the SVC returns,
the reentrant module sets the PRCESS flag and issues a Delete Task SVC.
During the next Terminal List scan cycle, ITTPMN detects the PRCESS flag
and reactivates the processor,

C.3 MODIFYING ITS

Calls from ITS to applications programs are driven by a set of tables in the
module, ITSTBL., To add an application, the ITSTBL source module must

be modified, assembled, and linked with ITS and with any new applications
programs. Refer to figure C-7 for a listing of the components in the ITSTBL
module., Two sets of tables must be modified to add an application: The
State/Call Translation Tables and the Application Names/Initial Entry Tables,

C.3.1 STATE/CALL TRANSLATION TABLES

The State/Call Translation Table, STATET, breaks all of the possible states
into State Intervals, Once the interval is determined by ITSUPV, itis used
as an index for an indirect branch through a table of application entry addres-
ses (SCALLT)., Note that on the standard table states 0 through 1 map into a
call to ITCOM (ITS command decode), states 2 through 19 map to ITIFE (al-
though only states 10 through 19 are used), states 20 through 29 map to
ITRJE, and states 30 through 39 map to ITSTAT. To add an application that
uses states 40 through 49, a''DATA 49' statement must be inserted after the
'DATA 39' statement in STATET, and a 'DATA application entry point' must
be inserted after the 'DATA ITSTAT' statement in SCALLT. This will cause
ITSUPYV to call the given application for states 40 through 49, Note that a
single application may have more than one state interval and entry address

if desired.

C.3.2 APPLICATION NAMES/INITIAL ENTRY TABLES

This set of tables map application names to initial application entry points,
The first table, RESLAB, is a list of eight character application keywords.
The second table, ICALLT, is a list of application entry points that corre-
spond to the application names, New application names must be inserted
after the DATA 'JOB', 'DELETE' statement in RESLAB, and new initial entry
points must be inserted after the last 'DATA ITIFE' statement in ICALLT,
The order of the standard eight commands may not be changed.,

c-17 Digital Systems Division

943005-9701

o

IDT ITSTHL
T e e e e e R R PR R e L
ABSTRACT s THIS TABLE CONTAINS THE USER VARIABLE PARAMETERS
FOR THE INTERACTIVE TERMINAL SYSTEM, AND DEFINES
THE APPLICATION NAMES AND ENTRY ADDRESSES, THIS
MODULE MUST HE MODIFIED IN ORDER TO ADD ANY
ADDITIONAL APPLICATYONS ROU'TINES,

RONTINES
CALLED ® |.OGON,LOGUFF,ITRJE,TTSTAT,ITIFE,ITCOM

* % & F & % SR

P I i i sy s 22 2 X R R R R R R R R R R A R A R R R RS2 222 2]

HED ITS COMMAND/STATE TABLF

T N L L A L T T I T R IR)

* NOTE 3 *

* THIS MODULE MUST BE IMCLYDED IN THE ROOT SEGMENT «

T T T S T S L L IS T T T I I T)

DEF INFO,RESLAB,KEYA,PAKSTR,ICALL,SCALL,S3ATET,POLTIM
REF LOGON,LOGOFF,ITRJE,ITSTAT,ITIFE,BADST,ITCOM

EQu
EQU
EQu
EQu
EQu
EQU
EQU
EQU
EQuU
EQU
PEJ

WP UMW EXMD>
> T
Were NOA L U &

| 3

APPLICATION NAMES (RESLAE)

*

L]

RESLAB EQU §

DATA 'LOGOM VL'LOGOFF ' aw PNSITION SENSITIVE e«
DATA 'RUN t,78TATUS ' « PDSITION SENSITIVE e+
DATA 'EDIT ', VENTER 't wx POSITION SENSITIVE w«
DATA 'JOB VL'DELETE ' #«« PNSITION SENSITIVE e+
. INSERT NEW APPLICATIONS ABOVE
RESD EQU $eRESLAB THIS LABEL MUST FOLLOW LAST
NRES EQu RESD/4 APPLICATION NAME
»
» INITIAL ENTRY ADDRESS TABLE
"
ICALLY EQU §
DATA LOGON e
DATA LOGOFF t
DATA ITRJE 2
DATA JTSTAY 3
DATA ITIFE 4
DATA ITIFE 8
DATA ITRJE 6
DATA ITIFE 7
PEJ

Figure C-7, ITSTBL Listing (Sheet 1 of 2)

C-18 Digital Systems Division

943005-9701

. STATE/CALL TRANSLATION TABLFS
]
STATET EQU 8 _
DATA | STATES @0=01
DATA 19 22=19
DATA 29 20-29
DATA 39 38=39
N INSERT NEW STATES HERE
DATA =f AL!. OTHERS
]
*
«
SCALLT DATA ITCOM 2222 COMMAND DECODE
DATA ITIFE 1819 IFE
DATA ITRJE 20=29 RJE
DATA ITSTAT 3¢=39 STATUS
N INSERT NE CALLS HERE
DATA BADST ALL UNDEFTNED STATES
PEJ
*
. ROUTINE TO MAKE INTTIAL CALL. BY APPL, NAME
*
ICALL EQU §
RMO B,A SAVE BASE
RMGC M,8 GET SECOND ARGUMENT
LDx #2,BR *
RMO A,B RESTNRF BASE
LDA ICALLT,X GET CALL ADDRESS
RMO A,P CALL
]
. ROUTINE TO MAKE SUBSEQUENT CALLS ACCCRDING TO STATE
SCALL EQu 8
_RMO 8,A SAVE BASE .
RMO M,B GET SECON® ARG,
LDX #2,BR *
RMO A,B RESTORF BASE
LDA SCALLT,X GET CALL ADDRESS
RMO A,P CALL
PEJ
*
* CRSCAN 'CONTROL' ARRAY
]
INFO EQU 3§
DATA NPAK , NUMBER OF CHARS, IN 'PAKSTR!
DATA NKEY NUMBER OF WORDS IN 'KEYA!
DATA 8,8 CRSCAN WORKSPACE
DATA NRES NUMBER OF LABELS IN 'RESLAB!'
DATA @ STARTING SCAN POSITION
NPAK EQU 8@ NO OF CHAR, IN PAKSTR
NKEY EQU 88 NO OF WORMS IN KEY ARRAY

KEYA B3SS NKEY
PAKSTR B3S NPAK/2
DEF TRMS,BUFS,LINS

MTRMS EQU 32 MAXs NO, NF TERMINALS

MLINES EQU ¢ © MAX, NC, NF POLLING LINES

MBUFS EQU ¢ MAX, NO, OF POLLING BUFFERS

TRMS BSS 6#MTRMS TERMINAL LI9TY

BUFS B33 4eMBUFS BUFFER LIST

LINS B3S J6eMLINES LINE LIST

POLTIM DATA Bgu POLLING INTERVAL (IN MILLISECONDS)
DEF UCBS8I12

UCBSIY DATA 5@ USER CCNTROL BLOCK SIZE
END

Figure C-7., ITSTBL Listing (Sheet 2 of 2)

C-19 Digital Systems Division

[e]
% 943005-9701

C.3.3 CALLING CONVENTIONS

Calls from ITSUPV follow the standard DX980 calling conventions and are
as follows:

e Initial Entry (via Applications Names/Initial Entry tables)

@ LDM=ARGLST
@ BRL APPLIC

ARGLST DATA 2

DATA TRMLST pointer to TRMLST entry
DATA keyno pointer to Key Number index

e Subsequent Entry (via State/Call Translation Tables)

@LDM=ARGLST
@BRL APPLIC

ARGLST DATA 2
DATA TRMLST
DATA STATI pointer to state interval
C.3.4 CRSCAN ARGUMENTS

The calling argument, key array, and packed string for the command decode
done in states 0 and 1 are in ITSTBL.

C.3.5 TRMS

All TRMLST entries are built in ITSTBL in the buffer '"TRMS'., The size of
this area is controlled by the label, MTRMS.

C.3.6 POLLING PARAMETERS

Several parameters may be adjusted to suit the requirements of the user,
These parameters are:

° POLTIM - Time interval for polling
° MLINS - Maximum number of polling lines

. MBUFS - Maximum number of polling buffers

C.3.7 USER CONTROL BLOCK SIZE

The user may alter the size of the USER CONTROL BLOCKS by adjusting the
value of the statement: '

UCBSIZ DATA 50
Note that the minimum UCB size for IFE is 50 words,

C-20 Digital Systems Division

[o]
{@ 943005-9701

APPENDIX D
ADDING NON-STANDARD DEVICES TO DX980

Digital Systems Division

o
%__@72 943005-9701
APPENDIX D

ADDING NON-STANDARD DEVICES TO DX980

D.1 GENERAL

By using DX980 utilities, user supplied routines, and information about the
1/O package, up to four non-standard devices may be added to a DX980 con-
figuration. However, non-standard discs cannot be added. To support a

new device, the user must design, code and install a device service routine in
the system. In addition, he must implement a utility to build and modify I/0
associated tables. This appendix provides the necessary information and

procedure to accomplish these tasks.

D.2 WRITING A DEVICE SERVICE ROUTINE

Writing a new Device Service Routine (DSR) requires a knowledge of the
DX980 input/output structure, coding requirements for a DSR, plus an under-
standing of the device characteristics to be allowed for in the routine. The
following paragraphs provide that background in addition to sample DSR's to
be used as a guide.

D.2.1 INPUT/OUTPUT STRUCTURE

A program initiates Input/Output operations by using an I1/O supervisor call
(SVC) and passing the required operation via a Physical Record Block (PRB).
The SVC is actually an illegal instruction that generates an internal interrupt.
The internal interrupt decoder passes control to the SVC Processor. After
determining that an I/O SVC has been made, the SVC Processor gives con-
trol to the I/O Manager. Figure D-1 illustrates the relationship of the I/O
Manager within the I/O system. :

The I/O Manager performs the required housekeeping of the I/O associated
tables, controls the available devices, sets up and controls DSR entry and
exit, and performs all other common I/O SVC functions. The following are
some of the pre - DSR device independent functions performed by the I/O
Manager: :

° Control and hplisekeeping of Open/Close calls
° Device assigﬁment checks

° LUN Open checké

e Control of the share/exclusive capabilities

° Data buffer boundary checks

° Linking PRB's and Logical Device Tables (LDT's) to the Physical
Device Tables (PDT's)

D-1 Digital Systems Division

943005-9701

END
TASK

-3

1/O0 MGMT CONTROL PATHS

USER

CODE

svC
PROCESSOR

L s

1/0 MANAGER

-————
EXECUTE FILE
PREPROCESSOR PROCESSOR
ACTIVATE * T NOT FINISHED
1/0 CALL
CANCEL PROCESSOR
o JE—
FINISHED
e
§ sk
DSR DRIVEN

PROCEDURE

]] — ———— _— e —
INTERRUPT
DRIVEN
PROCEDURE

SAVE RESTORE POST END
STATE STATE ACTION
1,0 TO TASK
INTERRUPT, SCHEDULER
(8)130247

Figure D-1.

General I/O Flow

Digital Systems Division

o]
@] 943005-9701

° Queuing operations when a device is busy
° Monitoring system operations for initiate I/O SVC's

° Calling the correct DSR

D.2.2 DEVICE SERVICE ROUTINES (DSR's)

DSR's provide the actual interface with the hardware. They check for illegal
operations and for special device dependent and unique conditions not monitor-

ed by the I/O Manager. The DSR's have three standard entries: an initial

L

entry, a reset or cancel entry and an interrupt entry.

D.2.2.1 INITIAL AND CANCEL ENTRIES. For initial entry, the I/O Man-
ager issues an SVC to begin an I/O operation. The I/O manager also controls
the cancel or reset entry by issuing an SVC to the DSR when the system is try-
ing to terminate an I/O operation in progress. The SVC is as follows:

CALL SVC (DSR #, PDT @, TYPE)

In this form, the term PDT @ represents a pointer to the PDT containing the
1/O information. The term TYPE indicates that the call is either an initial
or a cancel entry to the DSR.

Since the I/O Manager calls DSR's with an SVC, the DSR can have only one
entry point. For this reason and also to perform some common logic rou-
tines, the DSR executes a system routine (ISDSRI) immediately when entered.
This call must appear in all DSR's and has the following format:

REF ISDSRI

START EQU $
RMO L, A 1stword of code
@BRL ISDSRI
DATA interrupt entry pointer
DATA cancel entry pointer

(logic for initial entry)

The initial entry checks operation validity, starts the I/O operation and, if
possible, completes the operation. The reset path terminates the I/O opera-
tion by reseting the interrupt logic and, trying to halt the I/O device.

D.2.2.2 INTERRUPT ENTRIES. 1I/0O interrupts can occur during or at the
end of an I/O operation from either an I/O Bus or a Direct Memory Access
Channel (DMAC) device. I/O bus interrupts can occur following each char-
acter transfer while DMAC devices usually interrupt when the operation is
complete. The operations following an interrupt resemble the response to a
supervisor call. However, the interrupt decoder coordinates the activity

D-3 Digital Systems Division

@]
@ 943005-9701

instead of the SVC Processor. The interrupt decoder transfers control to
the DSR through the interrupt entry. The interrupt entry either completes the
operation or prepares for further interrupts.

D.2.2.3 REGISTER INITIALIZATION. Regardless of the type of entry,
when the DSR is entered from the entrance utility, the following registers are

initialized:
. Register E = 0
° Register S = entry address of the utilities

° Register M = pointer to the PRB
) Register B = pointer to the PDT

In addition, if the entry was an initial entry, registers A and X contain the

operation code.

D.2.2.4 EXITS. For any type of entry the DSR may take one of six possible
exits (see the DSR EXIT utility). These may be classified into three groups.
The NORM exit is the normal exit from the DSR when no abnormal conditions
have been detected and the data transfer is not yet complete. The EOR exit
indicates an End-of-Record exit when the requested data transfer is complete.
Other types of exits are used to indicate that abnormal conditions were en-

countered.

D.2.2.5 I/O ERRORS. Errors that occur during an I/O operation are
described in Section III of this manual. The I/O Error numbers listed in
Section III are in the range of 201 - 209. However, the I/O Manager adds
200 to the error number returned by the DSR. Therefore, the DSR need
only provide an error number from 1 - 9 to the I/O Manager. An additional
error number, 10, is reserved for use by the I/O Manager. When an error
occurs that requires return to system control, the DSR performs one of the

standard exit utilities.

D.2.2.6 SYSTEM ERRORS. Most I/O errors may require abortion of the
user job requesting the I/O. Some types of I/O errors, however, are so
severe that they endanger the integrity of the system. ZFor these errors the
DSR should halt the system so that the cause of the problem can be determined
before the clues are destroyed. An available DSR routine, SCRASH, provides
a standard method of bringing the system to a halt gracefully. This routine
causes the CPU to IDLE. Information from the routine that called SCRASH
may then be displayed. A sample calling sequence is shown below:

REF SCRASH

@LDM =ERINFO Load M Register with Address of Error Information
@BRL SCRASH Call SCRASH

(Continued on next text page)

D-4 Digital Systems Division

o]
@ 943005-9701

ERINFO DATA 1, BADERR Number of Arguments, Address of Arguments
BADERR DATA ERCODE Code that may be displayed in the A Register
at IDLE.

If arguments other than an error code would provide helpful information, the
number of arguments may be increased. At IDLE the M Register provides

a pointer to this information. See the DX980 System Operation Guide for the
standard set of SCRASH codes.

D.2.2.7 INFORMATION RETURNED BY THE DSR. The DSR only se
Operation Ignored bit in the system set flags (PRB word 0, bit 3) when
operation is not implemented. The I/O manager sets all other system set
flags. The DSR may pass device dependent information to the caller through
the non-dedicated bits of the PRB. When passing information that requires
several words, the DSR must use a buffer that is pointed to by the third word
of the PRB. The operation code for this type of call is either 0,1,2, 3,19, or
20. The DSR does not need to set or reset any indicators for the I/O Manager.

The type of exit taken indicates a course of action for the I/O Manager.

+ +1 o
i LI1CT

S
an

D.2.3 I/O UTILITY ROUTINES

The I/O utility routines perform common DSR functions with minimal coding
in the DSR itself. By using the utilities, the DSR need never know the mem-
ory locations of any PDT, PRB or LDT; furthermore it does not need to mon-
itor character input and output buffer indexes. The DSRs use the exit utilities
to ensure proper handling of interrupts and other types of exits. Failure to
use the optional utilities creates increased DSR size, development time, and
maintenance requirements. The I/O Utility Routines perform services fre-
quently required by Device Service Routines (DSRs). The functions available
are:

PRB/PDT/LDT Bit Manipulation

PRB/PDT/LDT Word Transfer (via register)
PRB/PDT/LDT Conditional Skip on Bit

READ/WRITE on I/Q Bus (via register)

PUT/GET Character from Packed Buffer (via register)
LINKAGE to DSR Exit Routine

The routines generate no task or system errors. All I/O interrupts must be
masked and the B Register must point to the PDT when using the routines.

D.2.3.1 UTILITY ROUTINE INTERFACE. The utility routines are serially
re-usable. The DSR need not know the location of the utility routines in mem-
ory. When the DSR is entered by the I/O call processor or Interrupt Decoder,
the S-register contains the I/O utility entry point. The routines are entered

D-5 Digital Systems Division

o]
%@ 3430059701

by execution of an REX S, P instruction. To enhance DSR readability, the
REX S, P instruction is defined as a new instruction, IOCOM, using the OPD
assembler directive:

IOCOM OPD C7CT7,5

A two word calling sequence is required to use a utility function:

IOCOM
OPERATION OPRI, OPR2,....,OPR(N)

The I/0O Utility ENTRY/EXIT Routine transfers control to the correct opcode

processor. This processor decodes the operand(s) and performs the function.
On return to the DSR, execution resumes at the instruction following the oper-
ation designator (unless a skip was executed. For skip instructions execution
is resumed two instructions after the operation designator). No active regis-
ters used by the DSR are changed by the common utility routines unless called
for in the operation; however, the status register compare indicators are

volatile.

All general-purpose DSR's use the utility functions as much as possible,
sometimes a special-purpose DSR cannot afford the added overhead of using
the Common Utility Functions. To allow for in-line coding where necessarv,
the DSR is always entered with the PDT location in the B-register and the
PRB location in the M-register. Additionally, the E-register is always
zeroed when a DSR is entered.

D.2.3.2 SET/CLEAR PRB, PDT, OR L.DT BIT. This routine allows the
DSR to manipulate bits within the PRB, PDT or LLDT. The machine instruc-
tion appears in the following format:

0 4 5 6 7 1112 15
OP CODE "i-olgﬁ_ WORD NUMBER BIT NUMBER
[—

10=SKIP ON ZERO 00=PRB3
11-SKiP ON ONE 01=PDT
10=LDT

The assembler directives that define the instruction are as follows:

BIT FRM 5,2,5,4
SET EQU 1

CLR EQU
PRB EQU
PDT EQU
LDT EQU

NN~ O O

D-6 Digital Systems Division

[e]
(@ 1943005-9701

Therefore, the general form of the instruction becomes:

SET PRB)
BIT { } s LDT , <word number>, <bit number>
CLR PDT

For example, the expression:

I0COM
BIT SET, PRB, 1,5

changes bit 5 of PRB Word 1 to a value of 1. Also, the expression:

I0COM
BIT CLR, LDT, 0, 15

changes bit 15 of LDT Word 0 to a value of 0.

The utility's execution time is between 26.00 to 29.50 microseconds.

D.2.3.3 CONDITIONAL INSTRUCTION SKIP FROM PRB, PDT OR LDT BIT,.
This routine allows the DSR to inspect a specific bit of either the PRB, the
PDT or the LDT and either skip or not skip depending upon the state of that
bit. The machine instruction word appears as follows:

) 45 6 7 1112 15
LOCA—
OP CODE TION WORD NUMBER BIT NUMBER
- -)
1=SET BIT 00=PRB
0=CLR BIT 01=PDT
10=LDT

The assembler directives that define the instruction are as follows:

BIT FRM 5,2,5,4
SKIPC EQU 2
SKIP1 EQU 3
PRB EQU 0
PDT EQU 1
LDT EQU 2

Therefore, the general form of the instruction is:
BIT {SKIPO

PRB
PDT; - .
SKIPI} ’ , <word number>, <bit number>

LDT

D-7 Digital Systems Division

(o]
{_@@ 943005-9701

For example, the expression:

IOCOM
BIT SKIPO, PRB, 3,15

indicates that if bit 15 of PRB word 3 is a zero, then the next instruction
should be skipped. Similarly, the expression:

IOCOM
BIT SKIPI, LLDT, 0,0

indicates that if bit 0 of LDT word 0 is a 1, then the next instruction should
be skipped.

The execution time for this utility is between 27.50 to 29. 75 microseconds.

D.2.3.4 LOAD/STORE PRB, PDT OR LDT WORD TO/FROM REGISTER.
The routine allows the PRB to transfer a word between a designated register
and a specified word in either the PRB, PDT or LDT. The machine instruc-
tion appears in the following format:

o) 45 6 7 8 9 10 11 15
REG JLOCA- i
OP CODE No. |TIoN 2‘3 WORD NUMBER
\ y ; ‘ p
100=LOAD ' 00=PRB
101=STORE 01=PDT

10=LDT

The assembler directives that define the instruction are as follows:

REG FRM 5,3,2,6
LOAD EQU 4

STORE EQU
PRB EQU
PDT EQU
LDT EQU

N = O O,

The general form of the instruction is:

PRB
REG {LOAD } , <register number>, PDT , <word number>.
STORE LDT

For example, the expression:

IoOCOM
REG STORE,A,PDT,6

D-8 Digital Systems Division

o]
<J;z§) 943005-9701

transfers the contents of the A Register to word 6 of the PDT. Similarly,
the expression:

IOCOM
REG LOAD, M, LDT, 0

transfers the contents of word 0 of the LDT to the M Register.

The execution time for this utility is 20.25 to 23.25 microseconds.

D.2.3.5 READ/WRITE I/O BUS TO/FROM REGISTER. This routine al-
lows the DSR to transfer the contents of a register to the I/O Bus, or to fill

a particular register from the I/O Bus. The machine instruction appears in
the following format:

0 4 5 10 11 12 13 15
o
- |REGISTER
OP CODE NOT USED ol NUMBER
Z 5
% 4 S !
110=READ 0=DATA
11 1=WRITE 1=COMMAND

The assembler directives that define the instruction are as follows:

IOBUS FRM 5,7,4
READ EQU 6

WRITE EQU
DATA EQU
CMMD EQU

— o =

The general form of the instruction is:

READ } { DATA

KBUS{WRHE leMmD

] , <register number>

For example, the expression:

I0COM
IOBUS READ, DATA, X

transfers data from the I/O Bus to the X Register. Similarly, the expression:

IOCOM
IOBUS WRITE, CMMD, A

transfers a command from the A Register to the I/O Bus.

The execution time for this utility is 29.00 to 40,50 microseconds.

D-9 Digital Systems Division

(9\47@ 943005-9701

D.2.3.6 EXIT DSR. This routine links the DSR to the proper routine to
handle the conditions that exist when the DSR is completed. The machine
instruction for this routine appears in the following format:

0 6 7 8 15
"
ERROR NUMBER
OP CODE gu (SEE APPENDIX C)

- W 4

010 0000=NORMAL

010 0001-ABORT

010 0010=RETRY

010 0011=DTERR

010 0100=EOR

The assembler directives that define the instruction are as follows:

EXIT FRM 7,9
NORM EQU 20,
ABORT EQU 21,
RETRY EQU 22,
DTERR EQU 23,
EOR EQU 241,

The general form of the instruction is

EXIT {type} , {error number} Error number is ignored for
NORM and EOR exits.

For example, the expression:

IOCOM
EXIT NORM, 0

indicates a normal exit from the DSR. Also, the expression:

IOCOM
EXIT ABORT, 9

indicates that the operation was aborted due to an attempt to execute an
illegal I/O operation to the device (error code 9).

D.2.3.7 PUT/GET. This routine performs character transfer between a
packed buffer and a specified register. The PUT routine transfers a charac-
ter from the right half of the register to the packed buffer and increments the
PRB character count. The routine may also set bit 0 of the register to indi-
cate that storing that character filled the buffer space. If the buffer space is
already full, the routine sets bit 1 of the register to indicate that the charac-
ter was not stored. The GET routine transfers a character from the buffer
to the right half of the specified register and increments the output count con-
tained in the first word of the temporary storage area of the PDT. The rou-
tine may also set bit 0 of the register to indicate that fetching the current

D-10 Digital Systems Division

(o)
@'@ 943005- 9701

character emptied the buffer. If the buffer is already empty, the routine
sets bit 1 to indicate that no character is available. The machine instruction
for this routine appears in the following format:

o] 4 5 - 12 13 15
REGISTER
OP CODE NOT USED NUMBER
| S -

v

LiLiIl=

01011=GET

The assembler directives that define the instruction are as follows:

CHAR FRM 5,11
PUT EQU Ajg
GET EQU By

The general form of the instruction is:

PUT

GET} ., <register number>

CHAR {

For example, the expression:

TNCON
FAWA LU\ 4

CHAR PUT,M

transfers a character from the M Register to a packed buffer. Similarly,
the expression:

IOCOM
CHAR GET,E

transfers a character from a packed buffer to the E Register.

The execution time for the put and get utilities between 58.25 to 67. 00 micro-
seconds and 49.50 to 55.50 microseconds, respectively.

D.2.4 PHYSICAL DEVICE TABLES

A Physical Device Table (PDT) contains parameters, such as device ad-
dresses and special attributes, that are necessary for control and perfor-
mance of an I/O operation, Figure D-2 illustrates the format for a standard
PDT and Table D-1 defines each of the fields. Device Service Routines use
the PDT's for temporary data storage between interrupts. Each device with-
in a system has a PDT containing information exclusive to that device. How-
ever, one common DSR may be used to coordinate I/O operations for a group
of identical devices.

D-11 Digital Systems Division

943005-9701

WORD
0 NEXT PDT ADDRESS
1 FLAGS
2 INTERNAL DEVICE NUMBER COMMIT PRIORITY
3 ASSIGN COUNT OPEN COUNT
4 LOCKING LDT POINTER
5 ERROR CODE SVC INDEX
6 DEVICE ATTRIBUTES
7
DEVICE
8
NAME
9
10 POINTER TO EXTENDED PDT OR EXTERNAL REGISTER
11 /0 LOAD FACTOR TIMEOUT
12 DSR INTERRUPT ENTRY
13 PRB ADDRESS
14 LDT ADDRESS
15 1/0 DONE EVENT LINK
16 DATA BUFFER ADDRESS
17 UNSOLICITED INTERRUPT PROCESSING
18 OUTPUT CHARACTER COUNT
19
DSR
I TEMPORARY STORAGE AREA
n (VARIES FOR EACH DEVICE)
(A)Y130248

Figure D-2. Physical Device Table General Structure

D-12 Digital Systems Division

o
%@ 943005-9701

Table D-1. Standard PDT Field Definitions

Word Bits ‘ Definition
0 0-15 | PDT chain word, pointer to the next PDT. Zero in this
word indicates that this is the last PDT in the system.
1 0 Device Busy Flag - initially zero and set by I/O manager.
1-2 ‘RESERVED - initially zero.
3 Exclusive access/shared access flag set by assignment.

Initially zero (shared access) by Job Manager.

4 Exclusive access/shared access flag set at OPEN time
by I/O Manager. Initially zero (shared access).

5 Locked/not Locked flag. Initially zero (not locked) and
set by I/O Manager.

6 ONLINE/OFFLINE status set by online processor.

7 Not sharable/sharable attribute set at system gebneration.

8 Extended PDT indicator . When set, word 10 contains
pointer to an Extended PDT for a central controller.

9 RESERVED - initially zero.

1 10-11 | System/user mode indicator - used only for system con-

sole data terminal by I/O manager and DSR to determine
whether device is in a system or user mode. Initially

zero.
12-15 | DSR used flags; I/O Manager resets to zerc at every
initial DSR entry.
2 0-7 Internal device identification nurnber - Each PDT has a

unique number. Identification numbers 0-20, inclusive,
are reserved and should not be used. All others are
assigned according to table 2-2.

8-15 | Commit priority - initially zero.

3 0-7 Assign count, initially zero.

8-15 | Open count, initially zero

4 0-15 | Locking LDT pointer, initially zero.

5 0-7 This byte indicates the operation status upon completion;
initially zero, it is controlled by the I/O manager and
DSR exit utilities.

D-13 Digital Systems Division

[e]
(@ 943005-9701

Table D-1. Standard PDT Field Definitions (Continued)
Word Bits Definition
5 8-15 | SVC index - Determines which DSR is to be called. The
(con't) value is determined by the memory image phase (MIP)
containing the DSR, as follows:
MIP SVC Index
181 22
182 23
183 24
184 25
6 Device attributes. Returned in the PRB when the device
is opened.
0 System console only
1 Dummy device only
2 Rewindable
3 Device can be forward spaced
4 Device can be back spaced
5 Printing Device
6 ASR 733 cassette
7 Data Terminal or CRT
8 Disc
9 Input
10 Output
11 USASCII Device
12 Binary Device
13 Polled CRT
14-15 | 00 - Non-disc Device
01 - Linked Sequential Disc File
10 - Relative Record Disc File
11 - Indexed Disc File
7-9 0-15 | Device Name - This may be any valid USASCII 6 charac-
ter string which has not previously been used as a device
name.

Digital Systems Division

(o)
{@ 943005-9701

Table D-1. Standard PDT Field Definitions (Continued)

Word Bits Definition

10 0-15 | If the Extended PDT flag is set, then this word contains
the address of the Extended PDT. If this is a data bus de-
vice and the I/O utilities are to be used, this word con-
tains two possible device addresses. Refer to I/O Util-

ities description in this section. Otherwise, this word

is available for DSR use.
11 0-7 I1/0 load factor.

8-15 | Device Timeout - can be selected by loading value less
than 255 into the timeout count byte of the PDT. Counting
begins when an I/O Call is initially processed. If a de-
vice is timed out before the data transfer is complete, a
correctable I/O error occurs. Each count corresponds to
one second to allow a maximum timeout of 4 minutes and
14 seconds. Some devices will require resetting the last
record.

Keyboard type devices do not normally have a timeout.
The timeout in the PDT's should be set to FF,, to specify
no timeout.

12 0-15 | DSR interrupt entry - Initially points to a set of code that
performs a required task when an I/O operation is not
currently being done to this device. Normally the only
logic required clears the interrupt and returns control to
the system. This word is controlled by the entry and exit
utilities. This code may reside in the Extended PDT or
temporary storage area, This entry normally handles
unexpected hardware interrupts.

13 0-15 | PRB Pointer for the PRB currently being processed by a
DSR. Initially zero.

14 0-15 | Logical Device Table (LDT) pointer for the LDT currently
being processed by the DSR. Initially zero.

15 0-15 | I/O done event link controlled by the exit utilities and the
system task scheduler. Initially zero.

16 0-15 | If the operation currently being processed by a DSR is a
Read Binary, Read USASCII, Write USASCII, Write
Binary, Write Direct, or Read Direct, then this word
contains the data buffer address associated with the oper-
ation. This word is initially zero.

D-15 Digital Systems Division

(o]
{_\@P 943005-9701

Table D-1. Standard PDT Field Definitions (Continued)

Word Bits Definition
17 Same as word 12.
18 0-15 | Used by the utilities to maintain an output character count.

Should be set to zero by the DSR at the start of character
retrievals from the data buffer. Otherwise, this word is
available for DSR use.

19 0-15 | This area contains any temporary data or device dependent
information required by the DSR.

Controllers that handle more than one identical device (moving head disc con-
troller or magnetic tape controller for example) are not completely separate
physical devices. Therefore, each multiple unit controller has an Extended
PDT in addition to the regular PDT's for the separate devices connected to
the controller. Figure D-3 illustrates the format for an extended PDT.

Table D-2 defines each of the fields. The Extended PDT helps the I/O Manag-
er determine the busy status of the controller and its individual devices, and
also indicates which of several PDT's associated with the bus address applies
to a generated interrupt. When an I/O operation is initiated, the I/O Manager
sets the PDT pointer into Word 1 of the Extended PDT. The PDT address
table contains a pointer to the Extended PDT instead of the PDT itself. When
an interrupt occurs from one of the controller's devices, the Interrupt De-
coders check the PDT Address Table to determine the address of the Extended
PDT. The decoders then use data in the temporary storage area of the Ex-
tended PDT to determine which device PDT is associated with the interrupting
device.

WORD

0 FFFF, g

1 ACTIVE PDT POINTER

2 EXTERNAL REGISTER

3 FLAG WORD

4 DATA TERMINAL PDT POINTER

5 0000

6

l VARIABLE DSR TEMPORARY STORAGE
(A)130249 n

Figure D-3., Extended PDT General Structure

D-16 Digital Systems Division

[o]
Q@ 943005-9701

Table D-2. Extended PDT Field Definitions

Word . Definition
0 Musi:beFFFF16
1 Active PDT Pointer - controlled by I/O Manager if the Extended

PDT bit is set in the device PDT (Word 1, Bit 8).

2 External Register - used for command or data regi y I
bus device., Available for DSR use if device is on the DMAC,

3 Bit 0 - set to indicate controller busy.
Bit 1 - set to indicate a Silent 700 Series Data Terminal Extended
PDT. Word should be initially set to zero.

4 Pointer to Data Terminal PDT if Word 3, Bit 1 is set, Other-
wise may be used as temporary storage.

5 Mode control for 733 ASR Cassette if Word 3, Bit 1 is set.

Otherwise may be used as temporary storage. Initially zero.

Bit 8 of Word 1 in the device PDT indicates to the I/O Manager that an Ex-
tended PDT exists for a central controller. If that bit is set, the I/O Man-
ager retrieves the Extended PDT Pointer from Word 10 of the device PDT

to access the Extended PDT. It then examines Bit 0 of Word 3 of the Extended
PDT to determine if the controller is busy.

D.2.5 LOGICAL DEVICE TABLE

The Logical Device Table (LDT) equates logical device numbers to physical
devices or files. Figure D-4 illustrates the table format. Table D-3 pro-
vides a detailed breakdown of the fields. Job Management creates and de-
letes LDT's. When an I/O call is made, the I/O Call Processor searches
the linked LDT's for a LUN definition. If it finds the LUN, it prepares

WORD
s} FLAGS
1 KEY LENGTH LUN
2 " - PDT/FCB POINTER
3 RECORD LENGTH
4 NEXT LDT ADDRESS
5 UTILITY POINTER

(A"130250

Figure D-4., DX980 Logical Device Table Format

D-17 Digital Systems Division

(e}
(@ 943005-9701

Table D-3. LDT Field Definitions

Word Bit Definition
0 0 Device open

1 File

2 Blocked

3 Reserved

4 Return on I/O Error

5 Busy

6 Pass LDT

7 Delete LLDT

8 Return on Retry

9 Password - Owner
10 Password Protected
11 No Password Protection
12 Temporary
13 User/Creator Access

14-15 Not Used

1 0-7 Key length - for files only
8-15 LUN
2 0-15- | Pointer to PDT for devices. Pointer to File Control
Block for files.
3 0-15 Record length
4 0-15 Pointer to next LDT - zero if last LDT; Anchor is in Job

Control Block.

5 Pointer to Record Control Block for files.

for either a DSR or a File Management entry, and relinguishes control to the
correct DSR or File Management Routine., If it does not find a definition for
the LUN, an error condition exists and the I/O call cannot be executed.
Open and close calls change the LDT Flags and Pointers as necessary.

D-18 | Digital Systems Division

(o]
e_‘@? 943005-9701

D.2.6 DEVICE TIMING FACTORS

Many I/O Bus interrupts are time-critical, whereas DMAC interrupts gener-
ally are not. Two factors affect I/O Bus interrupt performance:

1. The,.worst—case time to service the high-priority device,

2. The percentage of CPU time required to service interrupts.

TERRUPT LATENCY TIME. The worst-

D.2.5.1 WORST-CASE I/O BUS IN
case late ency time to pt:l‘vlCC ulgh-pllOl‘lLY I/O Bus device is the sum of the
following:

Factor Maximum Time Required

1. The longest code sequence when inter-
rupts can be masked. This occurs im-
mediately after a previous interrupt has
been decoded and includes set-up for
DSR entry, DSR execution, DSR exit

and return to the correct machine state. 400 microseconds
2. Interrupt execution time that is a hard-

ware function and does not add to the

latency time. N/A
3, Retaining the current state of the ma-

chine and identifying the interrupt, plus

setting-up for DSR entry. These fac-

tors are controlled by the I/O Bus Inter-

rupt Decoder. 40 microseconds

4, DSR execution to the internal point of
1/O is dependent upon the DSR being used. 60 microseconds

Total worst case latency time to
honor a high priority I/O Bus
interrupt =505 microseconds

Table D-4 lists the character interval times of some standard I/O Bus
peripheral devices.

D.2.6.2 INTERRUPT HANDLING CAPACITY. The worst-case percentage
of CPU time required by a I/O Bus device is calculated by:

WORST-CASE INTERRUPT SERVICE TIME

TIME BETWEEN INTERRUPTS X 100

The worst-case percentage of CPU time required by a DMAC device during
the actual transfer is:

4 WORDS PER SECOND X 0,000075

D-19 Digital Systems Division

o]
{—@Q 943005-9701

Table D-4. I/O Data Rates and CPU Loading

Maximum

Device Character Time System L.oad

(Worst Case)
9600 Baud Modem 1040 uS. 29.0 %
1200 Baud Modem 8333 k.S, 3.5 %
300 Baud Modem 33,333 .S, . 91%
110 Baud Modem 100, 000 pS. .3 %
300 CPM Card Reader 1760 S. 17. %
Moving Head Disc (DMAC) 7.25%
Model 979 Tape Transport (DMAC) 1.25%
DS330 Disc System (DMAC) 36, %
High Speed Paper Tape Reader 3333 1S, 9.1 %
High Speed Paper Tape Punch 13,333 S, 2.3 %
2310 Line Printer (DMAC) .02%

The worst-case I/O Bus interrupt service time is the sum of the worst cases
of:

1. Interrupt identification and DSR entry time (45 microseconds)
2. DSR execution time (350 microseconds)
3. DSR exit until interrupts are re-enabled (40 S. microseconds)

The total worst case time is 435 microseconds. The system can handle any
combination of devices concurrently until the available CPU time is exceeded.
The best performance occurs if the higher transfer rate devices are assigned
to the high priorities.

D.2.6.3 SYSTEM OVERLOAD PREVENTION., The maximum system load
percentage for each device is represented in the individual Physical Device
Tables. The I/O Manager routines monitor the system I/O load at all times.
If an I/O call is made that causes the load to exceed 90%, the task is queued
until more CPU time is available. Higher-speed DSR's are designed with
system load in mind and frequently show a significant improvement over the
worst-case percentages,

D.2.7 CONFIGURATION LIMITATIONS

The Model 980 Computer has four catagories of interrupts: Internal, Priority
Option, Direct Memory Access Channel (DMAC), and I/O Bus. Internal inter-
rupts are not directly related to I/O transfers and are handled as a separate

D-20 Digital Systems Division

C
{’:@Zp 943005-9701

function. The I/O interrupt decoders assign the I/O Bus interrupts a higher
priority than DMAC interrupts {this is different than the hardware priority
assignment). Within the I/O Bus and DMAC interrupt levels, there is also

a definite priority structure. I/O Bus interrupt handling has the greatest im-
pact on overall system performance.

Versions of the I/O Bus interrupt decoder support the following I/O configur-

ations:
Maximum I/O Ports With (Without)
I1/O Configuration Internal Expansion
Internal Only 13 (4)
1 Expander 22 (13)
2 Expanders 31 (22)
3 Expanders 40 (31)
4 Expanders 49 (40)

Figure D-5 illustrates priority the structure for internal expansion only.
Figure D-6 illustrates the maximum I/O Bus configuration. The PDT pointer
tables list the location of the PDT or Extended PDT associated with that de-
vice. If less than the maximum configuration is used, expanders should be
added in the numerical order indicated. Internal expansion may or may not
be included. If an I/O expander is not included, its internal port may be used
for an I/O device. Figure D-7 shows the DMAC expander table,

The following equation determines the maximum number of ports per hardware
configuration:

(# of expanders x 10) + (13 - # of expanders)

D.2.8 DX980 CONVENTIONS

Some general rules apply to all sequential I/O devices as well as sequential
disc files. Devices capable of both reading and writing cannot arbitrarily
switch between Read/Write modes. The restrictions vary from device to
device. Do not close and re-open a device to circumvent these restrictions;
the results are unpredictable and different for each device. All DSR's should
ignore I/O opcode 17 and 18 to allow for expansion with new functions. Op-
codes above 20 are generally in error, although some are legal for random
access to disc files and other device-dependent functions. For opcodes 0-3
and 19-20, the I/O Call Processor checks for allowable data buffers. Use
these opcodes for data transfer functions. Use opcodes above 29 for special
functions that do not directly involve a data transfer. The basic functions,
Open and Close are processed by all standard Device Service Routines. All
sequential writing DSR's provide a command to write an end-of-file. For
most devices this is a /* record. The end-of-file command should always
be used in lieu of writing a /* for that purpose.

D-21 Digital Systems Division

943005-9701

13 14 15
* * *
*-NOT USED
1/0 BUS POINTER TABLE
0 0
1 PDT POINTER (OR 0) 1ST PRIORITY
2 PDT POINTER (OR 0)*2ND PRIORITY
3 PDT POINTER (OR 0) 3RD PRIORITY
4 PDT POINTER (OR 0} 4TH PRIORITY
5 PDT POINTER (OR 0) 5TH PRIORITY
6 PDT POINTER (OR 0 6 TH PRIORITY
7| PDT POINTER (OR 0) 7TH PRIORITY
8 PDT POINTER (OR 0) 8TH PRIORITY
9 PDT POINTER (OR 0) 9TH PRIORITY
A PDT POINTER (OR 0) 10TH PRIORITY
B PDT POINTER (OR 0] 11TH PRIORITY
*
c PDT POINTER (OR 0) {2TH PRIORITY
D PDT POINTER (OR 0) 1 3TH PRIORITY
E 0
*0 INDICATES NO F | (o]
DEVICE WITH DESIGNATED
PRIORITY.
1016 0
(A)130251

Figure D-5. PDT Branch Table with Internal Expansion Only

D-22 Digital Systems Division

943005-9701

(D)130252

1/0 BUS INTERNAL EXPANSION WORD

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
> 0 0
PORT 1 EXPANSION WORD PORT 2 EXPANSION WORD
ot 2 3 5 8 7 8 9 10 11 12 13 14 15 01 2 3 4 56 7 8 9 101112131415
Clefelefel TLTITTTTT I lefefefele] TITTT] °
PORT 1 PDT POINTER o o o PORT 2 PDT . . ° INTERNAL EXPANSION
TABLE WORD POINTER TABLE WORD PDT POINTER TABLE
WORD BIT SET IN
0 NOT USED 0 NOT USED 0 NOT USED
EXPANSION WORD BIT SET IN =
1 1 NOT USED 1 NOT USED
NOT USED POINTS TO EXPANSION WORD
2 NOT USED CORRESPONDING WORD 2 NOT USED POINTS TO 2 NOT USED
3 NOT USED IN PO'N;E*R 3 NOT USED CORRESPONDING WORD 3 NOT USED
TABL
a NOT USED 4 NOT USED IN POINTER 4 PRIORITY 41
TABLE
5 PRIORITY 1 5 PRIORITY 11 a2
6 2 ° 6 12 N a3 e
7 3 7 13 7 44
8 4 [] 8 14 8 45 o
9 5 9 15 9 46
10 6 L] 10 16 10 47 ()
" 7 11 17 11 48
1z 8 12 18 12 PRIORITY 49
13 a 13 19 13 NOT USED
14 PRIORITY 10 14 PRIORITY 20 14 NOT USED
15 NOT USED 15 NOT USED 15 NOT USED
16 NOT USED 16 NOT USED 16 NOT USED
PORT 3 EXPANSION WORD PORT 4 EXPANSION WORD
01 23 4 5 67 8 9 10111213 1415 0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
~— | ™1 T 1 1T 1 T T T) S S s | ¥ 1T T T T 1T T 1 1 1 17 1
Lelofofefol UL LT 1L 1) lefelefelel I PP LT
* NOTE: GENERAL FORM FOR PRIORITY
3 PORT 4 PDT OF A PARTICULAR PDT IS
PORT 3 PDT e o . WORD . ° ° ° GIVEN BY:
WORD POINTER TABLE POINTER TABL :
0 NOT USED BIT SET iN 0 NOT USED 10(n—1) + (W-4)
EXPANSION WORD
1 NOT USED 1 NOT USED BIT SET IN WHERE
POINTS TO E XPANSION WORD 0 ~PORT NUMBER
2 NOT USED CORRESPONDING WORD 2 NOT USED POINTS TO]
W=POINTER TABLE WORD NUMBER
3 NOT USED IN POINTER 3 NOT USED CORRESPONDING WORD
TABLE* IN POINTER
4 NOT USED 4 N
OT USED TABLE*
5 PRIORITY 21 5 PRIORITY 31
6 22 . 6 32
7 23 7 33
.
8 24 8 34
9 25 . 9 35
10 26 10 36 []
11 27 ° 1 37
12 28 12 8 .
13 29 13 39
14 PRIORITY 30 14 PRICRITY 40
15 NOT USED 15 NOT USED
16 NOT USED 16 NOT USED

Figure D-6.

Priority Scheme for Max-
imum I/O Expansion

D-23/D-24

Digital Systems Division

943005-9701

D.2.9 DSR WRITING PROCEDURE

The recommended method for writing a DSR uses a defined, consistent struc-
ture. The approach breaks up the DSR into unique processing steps. Each
step is controlled by a branch vector, similar to the operation of a hardware
state controller. The branch vector serves as the next state identifier. This
technique is not suitable for all DSR's. DSR's that do not have several unique
processing steps are inappropriate for this convention.
D.2.9.1 PREPARATION. Before designing a DSR, understand completely
how the hardware interface works. Research sufficient interface documenta-
tion (usually available) to develop a familiarity with the interface. When de-
veloping new hardware, design both the interface and DSR before constructing
either one. Very often, a simple hardware addition can save a considerable
amount of software, and vice-versa., In some cases, special features that
look desirable when only considering the hardware may actually make the
software more complicated and are best eliminated.

D.2.9.2 REENTRANT DSR'S. DX980 DSR's can service multiple identical
devices with one copy of the procedure. A data base consisting of several
I/0 tables described earlier is required for each individual device. The
DSR's also appear to service multiple devices simultaneously because when
an I/O interrupt occurs, it is serviced very quickly for the interrupting de-
vice. Once the interrupt service has begun, however, another interrupt can-

not be serviced until the service for the current one has been completed.

All registers and DSR local storage are lost between interrupts for a device.
All data needed for a subsequent execution of a DSR is saved in a temporary
storage area of the device's Physical Device Table (PDT). This temporary
storage area is whatever size is needed by the DSR and begins at the end of
those entries required by the I/O Manager. Do not save data locally in a
DSR even when only one device is serviced by it. If a second device is ever
added, the DSR will not work., Furthermore, PDT storage usually takes the
same amount of code and memory as local DSR storage. Therefore, whether
or not the DSR's appear to be reentrant, code them as if they were; with all
data storage being done in the PDT.

D.2.9.3 STRUCTURING THE DSR. First determine how many interrupt
entry points will be necessary. To do this requires breaking the I/O transfer
operation into its major components. This is not always an obvious decision.
Hold the number of states to a reasonable level.

For example, consider the high-speed paper tape punch interface. A write
operation involves sending the requested data on a character basis to the in-
terface. The DSR is initially in an idle state that clears interrupts and re-
turns control back to the system. When an output request is initiated by the
IO Manager, the DSR sends a character to the interfaces, sets its next state
to one that continues sending characters upon interrupt, and exits normally.

D-25 Digital Systems Division

@@ 943005-9701

o] PDT POINTER (OR 0)*1ST PRIORITY
*0 INDICATES NO
DEVICE WITH THIS

1 2ND PRIORITY PRIORITY.

2 3RD PRIORITY

3 4TH PRIORITY

4 5TH PRIORITY

5 6TH PRIORITY

6 7TH PRIORITY

7 PDT POINTER (OR 0) 8TH PRIORITY

8 (o]

(A)130253

Figure D-7. DMAC Expansion Table PDT Pointer

When the DSR senses that it is about to send the last character, it changes
state to exit the DSR with an End-of-Record exit. When this state is exe-
cuted, the state is again set to idle and the DSR is exited. This procedure
involves changing the state of the DSR several times. Upon an interrupt
entry, the DSR only needs to clear the interrupt and branch via the next state
vector.

Figure D-8 and table D-5 provide a flowchart and listing, respectively, of
the paper tape punch DSR. Following that, figure D-9 and table D-6 provide
a more complex example, the data terminal DSR.

D.2.9.4 CODING PDT BUILDER. When configuring the DX980 system at
Initial Program Load (IPL) time include all the hardware configuration that
is going to be used on the total system. This allows adding a device by
adding only the PDT pointer to PDT branch tables since these tables already
exist. The PDT Builder utility then has access to these tables using pointers
and labels defined in table D-7. Figure D-10 outlines the steps required to
add the new PDT using the PDT Builder utility. The remainder of this para-
graph describes these events.

D-26 Digital Systems Division

01

PAGE

AUTUFLOW CHART SET -

ROUTINE

SERAVICE

£

TAPE PUNCH DEVI

943005-9701

CHART TITLE - PAPER

01/16/74

O —n
« -
w
-
<
o
=
~
«
W e
o A
a 1
w [
S la
Z e
I~ o
O e
D o~
S o
aax »
1
1
z
-
- | o
[| o
o | e
o1V
&or | ———t
24| z
z -
S o
- a
'
= >
W) x
w o} e
t z
— W

PLE X T XY 23
2

INITIAL ENTRY PUINT

/

SETUP TU CALL
ECFEGR ROUTINE
QUTPUT AN EOF A

A TRAILER
;__-__--_-I-_______-

U2.02-==>

UN OPE

ERRORy Wi

ivision

o1.05--->]

FoOR
SAVE REG E AS
NEXT SPECIFIED

Eul

JSING UP COuk AS

I

SET_VECTOR TO

tal Systems D

i
8IT
IVPTP3
igi

SET VECTOR TO
.

GET CHARACTER

D

IvPTP3 I

| ZERD OUTPUT COUNT
[S V. S

Sl i A

I SEY DIRECT WRITE
f .

L

Paper Tape Punch DSR (Sheet 1 of 2)
D-27

Figure D-8.

943005-9701

J1/lof T4

CHART TITLE —~ PAPER TAPE PUNCH DEVICE SERVICE ROUTINE

/ IVPTP4 /

* 0l
* *
* *
* * YES
* ElRECT PUNCHZ -4

Tmmo

INTFRRUPT ENTRY PCINT

INTERR

BRANCH VIA VECTOR

AUTOFLOW CHART SET -

USING HALF BYTE
AS_INDEX _PICKUP
DATA TO JuTeut .
| 11
/ /
7/ /
/ CUTPUT 1/4 OF /7
/ BINARY WCRD ¢
/ /
0l.16- I
EXTNRM 12
= EXIT *
AwAITING FURTHER
INTERRUPTS

PAGE 02

Figure D-8. Paper Tape Punch DSR (Sheet 2 of 2)

D-28

Digital Systems Division

943005-9701

SAP R2LC

Table D-5. Paper Tape Punch DSR Listing

PYP NSR = INITIAL ENTRY

ae@q
poas
Arny
AMaL
o1 1% 8
Arne
naaz

anes ..

aArag
113 N
an11
ne12
a1y
er1 4
ARLE
am1e
ey
AN{R
anieg
nogn
pe21
pa22
er23
ne24
aran
ep2e
ne2r
nr28
aren
an3e
na 3y

Y- ¥
riga

RN
LY
¢3S
AL
PLEY
033
AR3
an4r
anaq
ana2
71X I
Al ¥
anas
"1 ¥ IA
anaz
A48
AR4D
pasn
a5y
FLT]
ansy

* ¢ & & & @

SHFET oaony

943117

TEXAS INSTRUMENTS, INC, PARTH043117=9Q01

DY INPTP

(AR A AR AR AR A A A2 AR AR A A2 R R X ARl R R R 222 20

L B B B N B R BN IR N BE Y RN BN NE R Y BN NE NE SR NN RS NN BE NE BN RF N NN

TITLE s HIGH SPEFD PAPER TAPF PUNCH NEVICE SFRVICE R
118PTP!
AUTHOR = ERNEST BNNUGLI, 01/74
SYSTEM = Nxogn
ARSTRACT THTS RNITINE PROVINES THF INTERFACE

MAJOR FLUINCTYIOMS

REYWEFEN TYHF PAPER TAPF PUNCH COANTROLILER

AND THE DYXOQBRQX SYSTEM,

1) THF MIGK SPEED PAPFR TAPRPF PUNCH
NRSR PUNCHES DATA ON B LEVEL PAPER
TAPES IN AM ASCIY, BINARY, DR NIRECT
MONE,

2) ACSTIY RECORNDS ARE WRITTEM AS NNE
FRAME PER CHARACTFR, THE DATA
PUMEHEN NIRECTLY FROM TWE NDATA BliFw
FER WITH NN CONVERSINNS,

1) FACH RECNRN T8 TERMINATER WITH A
REANER OFF CHMARACTFR (XeNFF)Y AND 4
NELETE (RURD!IT) CHARACTERS,

) RIMARY RECARNS ARE PUNCHED 48
FRAMES PFR WNRN,

%) NN WRITE DIRECT NN END OF RECORD

INNICATOR 18 PUNEHFD,
NN PHNCH ERRNRS ARF NFTECTARLE
NPFRATINN CONE ERRNRS = ARNRT

A [a8 -]
[FUI'N

FOLLNWING ARGUMENT IS8 PASSFD
(PNTe, INITIAL/CANCEL CALL INDICATNR)

N8R PO A CALL TN ISDSRY TO ORTAIN THF

FOLLNATNRS?

ERRNRS

INPYTY s THF
ALl

F s

]

|

=
nUTPLIT 2 NONE

]
PRR »
opY o

M
R
A AND ¥ g NPFRATION CODE
8

HTYLTTY FNTRY
BRANECH INTN INTTTAL NR CAMCEL FNTR

D-29

Digital Systems Division

943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP R2LC
PTP NSR = INITIAL ENTRY SHEEY @aop?

eS¢
pese
aase

« ROUTINES
»
*
@087 & SVCS USED s NNNE
» .
1
]
w

CALLED s T/n HYILTTTIES

2058
"nse
171 .3]

ne6t 22 XXX 2 2SR ZXT SRR ANSRS 2RSSR ARA SRR AR AR R AR R 2 X2

D-30 Digital Systems Division

943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP R2LC
PTP ORR = INITIAL ENTRY SHEET nond
"nee PEJ :
I .M REF ISDSR?Y
1. ¥ NEF I8PTP
I A A R X a T I T X I SRS R S R L
AP6E
P87 1/0 UTILTTY EQUATES
ANER
NOBOD PR AN RN AR R DRI TSN RN NI RN C VR TR RN ORI RN BT PN
pe7e INCOM OPD C7C7 .5
Ppr21 @771 ARORY EQU »21
yope @m72 OPDFRR FQU 9
Ae73 AT FRM 5§,2,5,4
aony an7é SET Fatr g
anpge nRATE CLEAR Fon @
Aty aaye pDT FQtr
nage an77 PRB FQU A
wop2 pAa78 LNT EQu 2
wea?2 paYe SKIPA Fou 2
pon) At SKIP1 EQu 3}
pogy REG FRM 5,3%,2,6
era4a AGRD I_NAD Fat 4
#*3% ARAY STORE FAUl &
amas (MBS FRAM B,7,4
PAR” WORY READ EQLH 6
wap7? A08® WRIYTE FQu 7
woavr amRY DATA FQu ®n
fapy AMAR CMMD Fan 1
BPARS CHAR FRM 5,11
pnpa @amer PHT Fatt »a
PCAR ACFQY1 GFT EnQu R
anQ? EXIY FR¥ 7,9
vA2r wuPeY NARM EQU »2@
nr2d Q9L ENR FRlIl »24
D-31 Digital Systems Division

943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP R2L T
PTP NSQ e IMITIAL ENTRY SHEFETY noep4
anrge PEJS
ange LA A AR A A A A A A I N L Y A I I T T I YYm
frQY »
“r08 ¢ REGISTFR ENUATES
ARQS w
BN LAAAAAR AR S AL A A A A A A Y R Y 122 I I I T I T ar e
A%eC a1t A FQu w
AR M8 F Fai 1
ar2p? A1aY X FoQir 2
NAAR AIAL M FQIt 3
wrpae p1a% 8§ FRL 4
LI L N AN T A EQli 8
BouE a1e7 R FQnn 6
wrayY Ates P Faur 7
neay 1145 AR FQti !
414 WA A AR A A A R R YR R 2 R R L T T T T T v,
CRR R *
4112 « PRR
ALY e
114 LA AAAAA A A A d Al A R L L L T T P ar N
BArplr A11% PRBSFIL Fotr o QYSTFM FI AR WORD
witle o
Ara2 MA4(7 PRBFOF EnRit 2 EOF SYSTEM FLAG
“"al 7118 PRBNPT FQUI 3 OPERATINN IGNNRED FI AR
115 »
d7py “W120r PRBNPC EQU 1 NPERATION CORE (RIGHT HLLAF)
“wee? #1214 PRBNRL ENIt 2 NATA RFCNARD LENRTH
12z AR A A A A A A A A A N R T Y e
A2 w
n124Z « PNT
a12% »
a12e bbb A A A A A R Al L N L R L L T T e
nr A127 PPTFLG EQN 1 FLAG WORD
1128 «»
@7aF 3126 ODYIRCTP Eni) 1% DIRECT PUNCH ATY
2137
2212 A131 0UTCNTY FQUi {R OUTPIY COUNT USED RY UTILITIES
Ar12 A132 TEMP Fau 14
213 A13F TEMPY EQu 10
AMid4 n13é VECT EqQu 20 WRITF VECTNR LSFN NN INTERRUPT ENT
n138 LAAAA A A A A A A A A A A A A AT I Y R T R R I I Ty gm
213€¢ «»
@137 @« WRITE COMMANDS FOR PTP INTERFACE
2138 o
213¢ wttgtttttcottctﬁtt'o-aatotqttwttttqt.t'tttttt'tw't-ttwttttﬁ
N20¢ 0140 WCDISC EOU >p200 NISCNONNECY DPVICE
P187 Q2141 WCENIN EFQU »RiQn FNABLE IMTPRRUPTS
n142 A A A A A A A A A A A I Y R R R A I I T I IS
143 o
2144 o« CONTROL FOR ENFEOR SURROUTINE
P14% »
V14€ A A A A A A L I I R R A I T I T T I T Y e
2227 @147

WTENF EQU 7

D-32 Digital Systems Division

o]
(%;D 943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP R2LE
PTP DSR = INITIAL ENTRY SHEET opoal

pee% @148 WTEOR FEQU S
A14C WEN PTP DSR = INITIAL ENTRY

D-33 Digital Systems Division

943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP ROLC
PTP ()OSR e IMNITIAL ENTRY SHFET QopAk
L ER.1 PEJ
'4'5] ttttt**tt*ttttﬁtttttttit.ttitﬁtttttitttttwi.tttt.tt'wti*
NL57
" ER. = DFTERMINE TF LFGAL DPCNDF,TAXKE ERRNR PATHE IF NOT

" A,
182 ¢ B, = RRANCH VTA BRANCHM TARLF ACCORDING TO QPCNADF
A15% »

- LA L X Y Y R R A R T I T T T T
nree A187 ISPTP FQU S

@aan C50 @158 RMO L, A SAVE SVC RETURN @
Enal 7400 D18¢ #RFL ISNSRY INITIALIZE SUR PROGRAM
poan
X @722 pone
P ana3 @nEN D160 NATA INTERR TNTERRUPT ENTRY ADNRESS
P A4 An2& @181 DATA CANCEL FANCFL ENTRY APDRESS
enaS 18pF P62 SLNM mWCENTN PNABLE INTERRUPT CANTROL
¢rAR pipw
@#37 CYCY @163 1060M
enam 3813 2164 TORUS WRTTF,CMMD,M
2229 C7C? Q168 10¢0M
@7aA 3013 p16€ TOBUS READ,CMMR, M
vAAR 6F1Y 2167 CPA =19
@aar CN8n A168 SGE
eAan 7RID @169 RRU OPCNER
Roar 19221 @ire LDX Se2,X
2AOF (8527 8171 RMO X, P
P BALA AP2R @172 DATA OPCPER @ READ ASCIY
P anty @028 @173 DATA OPCPER ! READ RINARY
P 2012 Pr4E Q174 DATA WTASCY ?2 WRITE ASCI!
P ALY @n6E A17E DATA WTBINY 3 WRITE BINARY
P 2014 @028 Q17€ PATA OPCDER 4 REWIND
P 8215 @028 Q177 DATA DPCNER 5 BACKSPACE RECORD
P 2A1A (AP2R 2178 DATA OPCDER 6 FORWARD SPACE RECORD
P e717 PO28 0179 DATA EXTEOR 7 OPEN
P 2AIA A04? Qt87 DATA LDRTRL A OPEN REWIND
P 8019 2028 Q181 DATA EXTEOR 9 cLOSE
P 2A1A @a31 0182 DATA CLSWEF 10 CLOSE WRITE ENF
P 2aiRn @031 0183 NATA CLSWEF 11 WRITE EOF
P eoiCc 2028 @184 DATA EXTEOR 12 CHANGE RECORD LENGTM
P 221N Pr24 @188 DATA IGNOR 13 READ NEVICE STATUS
P OPiE QP28 DPI8E DATA OPCNER 14 BACK SPACE FILE
P BAIF @028 Q187 DATA OPCNER 18 FORWARD SPACE F1LE
P 2020 QP24 Q188 DATA IGNOR 18 UNLOAD
P 2A21 9P24 @189 DATA IGNOR 17 UNASSIGNED
P 0A22 @P24 0190 NATA IGNOR' 18 UNASSIGNED
P 2R23 Q04D 0191 DATA DIRECY 19 WRITE DIRECT
2192 MED PTP DSR

D-34 Digital Systems Division

943005-9701

$AP R2LC
PTP DSR

24
A28

0wA2A
P Bn27
28
2029
QA2A

GR2R
an2c
wagn
am2F
vn2F
wa3n

R
en32
P 2733

Table D-5.
2192
Ar24 R1904& . IGNDR
C7C? A19%
BARY a19¢
BP28 A197 CANCEL
wr2E 9198 EXTEOR
peRe . RA196
2075
Bii1d4 a2aer
c7C7 @291
4800 @202
WR2R 222y OPCNER
nweae w2ad
neac
C7C7 Qa2a%
Jain a2ye
C7C7? a247
4200 QA2¢8
@039 A2AC CLSWEF
1707 w2\e
pRA* N211
Dr42
n212

Paper Tape Punch DSR Listing (Continued)

SHFET anra?
PEJ
Fou 8
10CcOM SET OPrONRE IGNNR BIT
BIT SFT,PRB,PRBSFL,PRROPI
Eﬂ‘! s
EQU §
®LNA aFXTNRM
872 VECT,PRR
ToCoM EXIT ON COMPLETINN OF RENUEST

EXTT FOR,n
EQU 8
sLNA suUCNISC

neoM

TRRUS wWRYITH,nMMD A
1ocomM

FXTT ARQRY,QOPDERR
FQiui &

LNY sWTEOF

#_NE = DRTRL

HEP PTP DSR » WRITE ENF/ENR

D-35

Digital Systems Division

943005-9701

SAP RoLC

Table D-5.

PTP SR e WRITE ENF/EOR

LAY
en3n
P AN3RK
a3y
g2 3

LR Y]
¥A3A
RAJR
ama3C
an3n
0A3E
@n3F
Buan
m4y

nr3a
8613
nege
na39
B114
9112
no3Q
1112
@23F
c7c?
Irpn
49192
7838
1113
9114
7R3N

nweyy
not14
a21%
7218
4217
o188
w219
agen
#2221
a2e2
n222
8224
no2s
wa2r
a227

n228
@228
23
p231
0232
2233
2234
nels
2236
2237
2238
n23¢
a2ac

12222 1)
L
«INPUT

*

* % % % &
MM O D>
¢ » e
P98 0 02

»
' T1222}
EOFFOR

IVPTPY

Paper Tape Punch DSR Listing (Continued)

SHFET @n@R

PEL
'Y 222222232222 X2222 23322232 2 RS2 R AR R R AR AR

1S E=NFXT FNTRY VECTOR ANDY®? TF EOR OR Xsd IF ENF
RFT VECTNAR TN TVPTPY

GET CHARACTER

1S IT LASY QME TN PiNECHM? ES THEN O TO F

OUTPLIT CHARACTER

FXTT NNRHMALLY

SET VECLTNR A9 SPFCIFTEN NN ENTRY

T R R A Y R R R R R R R XA A A R R 2
EQil % '

STE TFMPY,BR

eLNDA =IVPTPY

STA VECT,RR
STY TEMP,PR

EQtt 8

L.DX TEMP,RR
LDA ENF,X
TOCOM

IDPUS WRITF,NATA,A

NMY TEMP,RR

BRI EXTNRM

LD¥ TFMP{,BR

$TY VECT,RR

BRI EXTNRM

HEP PTP DAR = PINCH LEADER/TRAILER ROITINE

D-36 Digital Systems Division

943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP R2LC
PTP DR e PUNCH LEARER/TRAILER ROUTINF SHFET @arno
B4y PEJ
T R R 2R R R X X R R R X X R X R 2 R 22X XX2222)
N24Y » :
M244 » A, = SET INTERRUPY VERTNR TN FNTER AT B
B24% « B, = DNOME IT 14> TIMES? YES YHEN S0 VO F
Wo4E e C, = PUNCH A ALANK
A247 + D, = FXTT NORMALLY
2248 ¢ E, = DNISCONMNELT DFVYCF AND EXTIT ENR
W24s »
A AT I R R R R T R R N R Y R Y R R R S X2 R X J
ur4? 74251 LPRTRL FOQLY 8
P42 @amae po252 a.NDA sTVPTPR2
P BA4% @47
"WAd4 B114 uU25Y STA VFCT,RR
A48 764 3252 .LDA si@aA
vA48 BR112 a25% §TA TFEMP,RR
ned? a25€ IVPYP? FRII 8
“Ad47 4912 ¥o87 MY TFMP,RR
w4 7apy Hwoss RRII %42
wn4aq 78pC w288 RRI! CANCE!
QA4 C7CY 026w ToCom
W24R IR APB 1 TORUS WRTITE,NATA,E
41140 TR2A poO&S RRIE EXTNRM
n262 HEP PTP NSR = WRTYTF ASCIT

D-37 Digital Systems Division

943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAF R2LCT
PTF DSR = WFITE ASCTT SHFEY amyn
N26R4 PE
AP6% (XA XA R 2R 2 R X R 2 R 2 R 2 Ry R Y Y R R R R R X R R X2 22X L)
N26C »
A267 &« A, = SET VERLTNR
268 e« B, = 7ERQ PNT QI'TRPUT COHNT
A26% « L, = GET CHARACTER
n277 « D, = I8 IT LAST CHARACTFR TN WRTITE 7 NN THEN 630 TN F
n2714 * E, = SET VECTOR TN YVPTPR4
wo72 # F, « EXTIT NORMAILY
227 «
U A T T R Y Y T AR A I I I
o4t @27% DIRECT EQL 8 ENTRY FOR DNIRECT PUNCKH
rnadn 51919 n2re 1M PPTFLG,RR SET NIRECT BIT FLANG
P4F @277 WTASCY EQU 8
Pia4F anpe nezs eLPA sTVPTP3
P WUAF nneo
vl B114 Q279 STA VECT,RR
2ns 8912 p2ar STF OHTCNTY,RR
nes2 a281 IVPTP3 FQIJ §
w82 C7C7 w282 ToCOM
NasxY SRUP Y282 CHAR GET, A
bwas4 pRrir Q1284 TARD A
was® JRA3 (¢28S% RRI' CONT
WASE QRAC (DAL OLNE aTVPTR4
P #us7 oSt
VA%R AO014 0287 STF VFECT,AR
250 @288 CONT QU 8
w89 C7C7 42ae rocomM
RAaSA 38R Q207 TORUS WRITE,NATA,A
VPSR 781Q 0291 RRI! EXTNRM
ee8C @292 IVPTP4 FQIl 8
PaSet QAta1 w29y LDA PNTFLG,RR
28N DRAF Q294 TARZ DIRCTP
BRSE 78C7 029°% BRI} EXTFENR RRANCHK IF PNING DIRECT PIINEHM
APSF @29€ SETFOR FQU 8
vasr 1708 @297 LOX eWTEQOR
aese pkpr A208 SOLDE aFXTENR
P An8y PN2eE
BA62 TADY "} 3-1] RRU EOFEQOR
a3ar HERN PTP NSR & INTERRUPT FNTRY

D-38 Digital Systems Division

943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

S4P R2LC

PTP DSR w INTERRUPT ENTRY SHEET ARt
a3ng PEJ
BIND e a A e P AN S R NP RO N E R IR AP W RPN NN RN I RO N R PR RN TR
WIFY

@¥@Z # A, = CLEAR INTERRUPT

@305 # B, = ARANCH VTA VECTOR

alpes e

Y YT Y i A A I I I I I I I I

APAY P3IAB INTERR FQRU §

Wn83 C7C7 ©308 tocom
w284 Iy @310 TORUS READ,CMMN, A
ARES 7N1a a3y RRI!I #VECT,BR
a3y HER PTP NSR = WRYTE RINARY

D-39 Digital Systems Division

943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SaP ROLC
PTF 1SR e WKITE RYNARY SHFETY @212
R I PEJ
A1 2 ' Y2 2222222222223 XXXYER XX AR RS RS R AR R AR AALAL LA R 222
AR " »
“Y1€& ¢ A, = GEY CHARACTER FRAM RIIFFFR
AN17 # B, = kA8 RUFFFR RFEN FYXMAUSTFN? YFS 6N TN TVPTP4
4318 « C, = SAVE CHARACRTFR In PNTY
#A%1% % D, » SEY VELTAR TN TVPRTRA (STATEMENT £)
9327 « E, = JUTPIT DAJFOT CHAR
W321 % F, = JXTT NNRALLY
AR22 B, = HFYT NEYT NRJIFLY CHAR FNRM PDT
A32Y w W, = SET VECTNR TN TVPTRA (STATFMFNT &)
n32L e I, = GO IO F
A%2%

naA2 £ ' X22222 22 22 X222 X2 A R R R R R 2 X R X R X R SRR AR AR X 22]
WrhE WX27 WTIBTNY FQU 8

W2k ROL2 13283 STF NHTEMT,RR
287 wl20 IVPTPKA FODU %

Witk 7 c’e? [P Yed TOoENM

WARK KAEAr 233 CHAR GFT,A

VARI DRAY A332 TARZ ¢

LY TRF 4 R A RRIN SFTEOR

VASH A1y vid3e STA TFMPY ,RW

" d.1d CApa A RY.] CRA 4

LT WRA nile | NF sTVPTIRS

P #MHF 177
wneF A337 CONT7 EQY 8

YPAF KQta4 2318 STF VECT,BF

a7 JFQF w337 AND ®>F

ar7y CRR2 w347 eMn A, X

w72 W20k n341 1 NA TAR, X

Wy C7C7 wlaz 1arnm

werza JRED x4l TORUS WRTITF,NATA A

We7% ax4L JVPTP EQIl 8
PA7% A34% EXTNRM ERI 8

Wr7s C7C7 4A34E TarnM
BVRTA 42401 (347 FXTIT NOR™, o
P77 #l48 IVPTPS FQIl %
PATT 1LY ANAR LPa TFMPY,AR
g2’ PR BB OLNE STVRTPRS
P vwna72Q ar67
UATA 7RFA4 @l RRIt CONT7
ne7s BI85 ENF FRIJ $Smi
BWerIB poFF AXNSY NATA »FF
AATC WAPFF W35 NATA »FF
ARTnN ARFF n3s% NATA »FF
@17F @anFF a3%€ NULL NATA >FF NELETE
2A7F ar93 @387 XNFF NATA »0) YaNFF
¥ABA AMAA AXSS NATA >AA *
L. B W2AF "AS5% NATA >AF /
482 Ny @A367T TAB NATA >
V283 @721 Q361 NATA >0
er84 w7@2 w362 DATA >02
223% APRY V1REY NDATA »RJ

D-40 Digital Systems Division

943005-9701

Table D-5.

Paper Tape Punch DSR Listing (Continued)

SAP R2LC
PTP NRR w WRITE BINMRY SHFET @amil
BuBR P8 PNEL NATA >4
CLEY 2N LR U I R .1/ NATA »18
¥MrdR pris A3EE NATA »16
#AA0 P97 Q367 NRATYA »97
puda WrQR BIHS NaTa »08
PRAR ar19 BI6G NATA »19
pner unid @37e PATA »14A
AN8D Urok @371 NATA >08
223F po{C w37% DATA »4C
PABF AP0 @AX73 NATA »QD
An9n e QF ANT ¢ NATA >QF
22914 Ary{F nyzx NATA >¢F
ARPC AR A FND ISPTYP
D-41

Digital Systems Division

943005-9701

Table D-5. Paper Tape Punch DSR Listing (Continued)

SAP ROLE

BTP N8R = WRITF RTINARY SHFET nnyd
A nean ARORT amQy R R NOOR RTY 8508
B8R wEay CANCEL aP2Fk CHAR RARD R CLFaAR anpm
CLS«EF @ae3y oMM ANAY cNNT APKO CANTY? ANKF
DATA nAMA DIRCTR AnaAF PDTRFCT andn E ann
ENF anza ENFFOR A”34 ENR AR24 EXIT 8190
EXTFOR pn2eR EYTNRM an7S GFY APPR IGNNR LY
INTFRR (063 1nBi1s LY E.L! dalodzl] crc? ISNDSRY aAnpaR
18PTP aran R IVPTP 7S IVPTPY an3e IVeTP2 0NM47
IVPTP3 anr5? IVPTP4 aeSC IVPTIPE Qaa77 IVPTPA QANK7
L neus LPRTRL 0742 R LNT nre2 R LNAD ann4
M aral NORM am2n R NULL NOTF OPCNRFR @n2R
OPNFRK PACAQ DIITENY P12 P aney R PNOY anot
PNTFILLG oret PRE anpn R PRANRL arE2 R PPRENF Rond

R PRRNPC Avind PRBOAPY 0apl PRASFL anrpnr kR PUT 200 A
KEAD poRA REG 8440 R 8 aAnp 4 SFET anny
SETFNR ACSF R SKIPQ2 nra2 R SKIP neny R STNRE poas
TA8 are? TEMP 2012 TEMPY ANty VECT ANy 4
WEDISE a2en WCENIN P1Q0 WRITE napy WTASCT @04k
WTBTNY QP66 WTENF araz WTENR acps X Aan2

R XNFF ARTF

ARQYP FRENRS

D-42 Digital Systems Division

PAGE 01

—%

/

.
1
4 close s

SET PRB_OP
1GNORED FLAG

END OF RECORD
/

IGNORE OPERATION
WRTEOF

01.05%-->%

01.05%==>%
CLGSE /0 CALL

01e05-==>

»
+
i
1]
i
|
i
i
i
|
i
1
|
i
1
|
i
|
*

AUTOFLCW CHART SET -

EXIT WITH ABORT ERRCR

GPLODE ERROR

YES

INTERRUPT

READ

e

Ivision

.

21
!
/

w
-
i
k1
a.

RRUPT

INTERRUPT

Digital Systems D

WRITE

BRANCH VIA READ VECTOR
BRANCH VIA WRITE VECTOR

END OF RECORD

—

* g
[Pt Yy % P
*

E
?
*

FRCM PRB
0PCADE

GET_1/0 OPCODE

BRANCH USING

[SESUIS. S

32.16—==>%
170 CALL ENTRY

[S—

28588888823°3338555
~00000006Q0~0000Nd0
cesecesesrsecren e
N80 bt et A N N et] Nk b ot

—eaaa woagreoger

QUOWWWW _ WwOO AWl e
200n08anZZANLLEOOHGS
AQLVOPOLLCOL RO EZ
Q6~a86600JIXXOLABOO
XOROOSOTOI RWAOOwmrire

CHART TITLE — DATA TERMINAL OSR ~ 3804

0L/17/74

943005-9701

YES

QRMAL

N

INTERRUPT ENTRY

Data Terminal DSR (Sheet 1 of 6)
D-43

Figure D-9.

943005-9701

aL/17/74

CHART TITLE - OATA TERMINAL DSR - $BOA

/ /
NOTE 01
L RN EER]
* CANCEL CUDE MUST 3
* FOLLOw REAL *
. VECTCOR 3RANCH *
P e

©
o

____________________ H
H

2 {SETRIG) H
« | READ VECTOR TC H
2 IGNOR H
5 H
S S .
| 03
S *
H

5 {XLEST) H
. SEND CR/LF H
i H
1 H
P Sl S — ————

. S
CLEAR LINE FE
TGNORE FLAG

END OF RECORD

Figure D-9.

AUTUFLOW CHART SET -

R ——t 03.11-—->‘ -
lglhﬁzg'l WITH REPLY D et *
R
{XLTST) H
* SEND BACK H
| ARROW, CRy LF H
12 H
* * *. e —————————
* *
WAS QUTPUT # YES 01.05-=->
* ALREADY DONE #——--—»
* . ? . * READ ASCII ENTRY
.
*
NO . . 18
L *
YES * *
#—=———% QUTPUT WITH =
* REPLY 7 #
13 * *
. S -4 s
' SET_DUTPUT WITH l *
REPLY BIT i NO
l 14
>
I SET PRB BIAS TO I . DOINP 1

*e

________ ZE'?B—FEE-_'
soivror |

CORRECT THE DATA
BUFFER ADDRESS IN

. L.o1l
eos TOENT

EXECUTE THE OUTPUT PRB

RECORD LENGTH

03.,27—~>
RNGBEL * 20
*
- -
YES * *
———=~% SUPRESS BELL *
* ? *
*
*

1

*

H
(MRTCHR) H
RING THE BELL :
H

»

v
m

I _READ TO
TO (TAKCHR)

* EXIT *

NORMAL

/

02.23%~->

SET wRITE
[UNORE INT

RETURN

PAGE 02

Data Terminal DSR (Sheet 2 of 6)

Digital Systems Division

943005-9701

oL/17/74

CHART TITLE — DATA TERMINAL DSR ~ 9804

AUTUFLOW CHART SET -

PAGE 03

PROCESS READ
INTERRUPT
.
l 09
* * e ————DE
* . | !
. . & YES GOTOCR 18
* CARRIAGE #-tmt . %
* RETURN ? =
* * ES *
* * t-———-% SUPRESS CR/LF *
ECHO ?
NO * *
- L
NO
10
* *
* * 19
YES * * R e
=< BACK SPACE 7 * H
* * 5 (XLIST) H
BRANCH HERE ON * * . SEND CR/LF H
BACKSPACE FROM * * 1 H
KEYBOARD H
NO
*
1 o1
* *
* *
* IS INPUT & YES
* BUFFER EMPTY #-—+¢ 11
* ? * *
* * * *
= . * * YES
soas - [US QuT ? *—e
NO . 4. * —===03,17%-~>
. 08 . * *
seae * * CHKEQF = 21
EXTNRM e - *
LY . 2. * *
o 17 . - * NO
sses * IS FIRST DATA #*-+
02 RUBOUT *WORD A /% ?%
- * * *
* IS e s %
YES #PRINT HEAD
¢—-——~—% BACK-SPACABLE * 12 YES a2
- ? * * * . 08 .
* - * * ss0a
* * * . EXTEOR
* LINE FEED 7?2 =
NO * *
* *
. 22
* - .
NG
* IS INPUT o NO
. 02 * COUNT ;GE- 2 %%
| CHANGE BACK SPACE | . |
| 10 BACK SLASH | + * f
Dt | cese
YES e 2.
. 08 .
EXTEOR
4 {WRTCHR) H
- SEND BACK H 23
1| sPace or dack H D T .
3 SLASH n SET PRS
— s END-OF=FILE FLA
. 2.08.
eve EXTEOR
NOTE &
® & & X ¥ F & X % EXIT DSR
s IS LINE-FEED .
* AFTER BACKSPACE *
* BIT SET ? *
® £ ¥ ¥ E X X £ 5 F R
* o7
* *
. P L SRS SO ——->%
* NG
* SEE_NOTE -4 BRANCH HERE ON
* ABOVE * * 16 LINE—FEEL FROM
* * * KEYBOARD
- * - b
. were #wAS BUFEER * YES
YES . 4. * ALREACY FULL *-+
P L * ? L4
seee * .
EXTNRM * *
- ceae
NO . 4.
. 08 .
i SET LINE FEED EXTNRM
BEFORE ECHO BIT
[TR ph bl S
| 17
___________________ .
DECREMENT _INPUT
cen CUUNT

T w.08l
T eae EXTNAM
EXIT DSR

Figure D-9.

S

CHECK FOR END=-OF-FILE

INE-FEED
1 BEFORE ECHO BIT

7 2.200
veo ANGBEL
ACCEPT FURTHER INPUT

Data Terminal DSR (Sheet 3 of 6)

Digital Systems Division

943005-9701

JL/1T/ T4

LHRART TITLE - D4TA TERMINAL OS<x - 980A

AUTUFLOW CHART SET - ’ PAGE

£ SNDCHR /

Q4otis——>s

SEND ONE CHARACTER
RETURN WHEN comPLETE
-

1

[S
SE] WRITE VECTOR
TC RETURN TO

N
22
x x
* *
*WAS BUFFER * YES
* JUST FILLED ?
- *
* *
s =
NO
04,09-—->
CHKLFS 03
o«
* -
* IS LINE * YES
% FEED BEFORE *~—-——t
* ECHO FLAG ¥
* SET ? *
* -
NO
04
S R
CLEAK LINE FEED
BEFURE ECHO FLAG
05
S R
5 {XMTCHR) H
- SEND LINE FEED H
[} TO PRINTER H
1 H
Sl RS 4
| J6
e e e e e -
H
2 {SETWIG) H
. SET WRITE H
r IGNOR H
6 H
B, v
I 4
SENUCH 27
[Pt SO

NORMAL

Figure D-9.

>%
ENTRY FOR BUFFFR
EXACTLY FullL
. NEIEEN
-« %408,
" 03 . 08.
. * * eea EXTNRM
- NO EXIT DSR
* AUTO =4+
*TERMINATE? *
* *
s *
* cnse
YES .TTeT. [—
. 03 . / MRTCHR /
cHRiEB
02.21%~~>%
10 SEND ONE CHARACTER,
e T RETURN IMMEDIATELY
2 SETRIG) H *
» IGNOR FURTHER H [} 14
2 NPUT H ——— ————
5 H / 7

! 7
/ OUTPUT THE /
’/ CHARACTER ’/

1
-
H
4 (SNDCHR) H
. | ECHO THE INPUT H
i CHARACTER ~ H
2 H . .
,,_________I ________ 3 :
RETURN
HENIN

oo CHKEOF
CHECK FOK END-OF—FILE

Data Terminal DSR (Sheet 4 of 6)

04

D-46

Digital Systems Division

943005-9701

01717/ 74

AUTGFLOW CHART SET -

CHART TITLE - DATA TERMINAL DSR - 9B0A

f XMTCHR /

04.05%—>%
SEND ONE CHARACTER

CONVERT SPECIAL
CHARACTERS - TO
EQUIVALENT STRINGS

02
* s

» *
* * YES

* LINE FEED ? #=—-=--s
* *

- *
LI

NO

L)
. *

06

[— —— %
l ADJUST POINTER TO
CURSOR LIST

o
NOHGME | a7

METSIN
S XuisT
SEND THE STRING

Figure D-9.

-
NO_ *1S_ONE
----- —+ AFTER CR
xSt

! 10

S U4
ADJUST POINTER TO

SHORT CR LIST I

=01.10%-=>
SEND CHARALTER STRING

—————)
LSTLUP 11
*

* 12
* *
* *
* * YES
* END OF LIST ? #——oem
* *

* *
- *
*

NO

DO NEXT CHARACTER

L osale
T oees AuasT
SEND THE STRING

*

PAGE 05
/USTUIN 7
03.268-~>%
LIST USER BUFFER ON
PRINTER .
05,24%—>%
P | 19
——— e e e B
H
{GET) H
GET A H
CHARACTER o
[U -
* 20
*
* *
YES *
----- —* BUFFER EMPTY ¥
* ? Y
* *
* *
NO
21
* *
*

H
5 {XHTCHR} H
. SEND “THE H
[CHARACTER H
1 H
P R
24
*
- *
= = KO
* FORMATTED &+
* QUTPUT 7+ I
* *
* e
ves .UT8T,
S 19
LsiGoP
25
— H
c

LEAR LF IGNDF
FLAG

[S Mk LS

ReTURN TO CALLER

L s.190
" ee. Lsioop
DO NEXT CHARACTER

Data Terminal DSR (Sheet 5 of 6)

Digital Systems Division

943005-9701

01/17/74 AUTUFLOW CHART SET - PAGE 06

CHART TITLE - DATA TERMINAL DSR - 9804

/ 4
V1.0 6. 06
NOTE 20
WRITE ASCII ENTRY FORMATTED OUTPUT X EE R L
CONTROL * CHARACTER STRING *
- * DATA TABLES
| a1 T PR N N
___________________ H 19 IR
| ZERJ OUTPUT COUNT | B . (BCK ARRy CRoLF)
oS | LOOK AT SACK ARRDH
FORMATT ING WORD (CRERLF)
DATA LINK ESCAPE
* 02 ADC ON
* * DC4
* * * 11 (LINE_FEED)
NG * * . %
T eormaTTED e N . CLEAR EOL
* QUTPUT 7 % NG % *
. L CARR [AGE . [————
* * ® RETURN 2?2 = (FORM_FEED)
* d LE
YES * * LE
* LF
YES (3 LINE_FEEDS)
LF
LF
LF
. 03 CLEAR EOL
INCREMENT 12 e e —
CHARACTER COUNT B * (CR W/ _5 NULLS)
BY 2 H CR
T e e ————— * 5 {XMTCHR} H
. SEND CR H
2 H
1 H
* 04 [S ———————— *
. *
. . Pmmmm e >
* *
* FORMAT AFTER *— NOCR * 13
* RECORD ? *
* * *
* - * * YES
- * LINE FEED ?
YES * * FMTLF I 15
* * Rt » CLR EOL
. 0« H [S 4 S
* 5 {XMTCHR) H
NQ . SEND LINE FEED H
Q2 H
3 1 H
= B ————————— *
A
H
=
H * 14 ls
- * * » -
. * - « *
* * YES NO ¥ *
e * FORM FEED ? SECOND LINE *
J6 * * T FEED 7 *
* - * *
“ * * * *
il - *
H NO YES
H
o
*
17
vee L e -
. . H
. . 5 XMTCHR) H
. . . SEND SECUND LF H
s 9 H
1 H
RETURN e et e e -
HE—— >
FMTRET
RETURN
................. ——>%
FMTFF | 19
[L ——
H
5 (XMTCHR] H
J9 . SEND FORM-FEED H
D e * 0 H
‘ SET PRB B1AS TC 1 H
o 5, 4
. 2.15. . .
ees CHOTHL
RETURN
PLINT TO THE [NPUT PWR
ANU EXECUTE

Figure D-9. Data Terminal DSR (Sheet 6 of 6)

D-48 Digital Systems Division

o]
{@ 943005-9701

SAP R2LE

Table D-6. Data Terminal DSR Listing

QRAA DATA TFRMINAL NEVICE SERVICE RNUTINE SHEET @201
ap@1 _#CREATE TDNTY,SAP,INATA TFRMIMAL PSR!,
aep?2 InY 1onnt
nagy WED QBAA DATA TERMINAL DFEVICF SERVICE ROUTINE
PAAL »)
G35 # TITLESTODT e 9RGA NATA TERWMINAL NSR
AAQE » ')
2207 o AUTHORSWAYME DOKNAL
A0A8 "« i ‘
2209 w» REVISIONSEND REVISTIONS
ar1Z =
215 O B COHPUTERIQSGA S$AP
eRr12 w
ALY « ABSTRACT- THIS IS THE DEVICE SERVICE RNITINE PRAVIDING
2244 = THE NECESSARY INTERFACE BETWE N THE DATA
artLe w TERMINALS TIED TO COMMUNICATINAN MONULE
BALE o AND THE DY9RA SYSTEM,
P17 @
Bpo18 » DETAILEN NPERATIONAL NNCUMENTATION TS SFPARATE
aRIc
P22 % STATTSTICSeTHE MAXIMIIM PATH WITH INTERRUPTS MASKED I8
g1« 27777 1S, PLUS TIME FNR THE FOLLOWING UTILITY
pO22 = FUNRTIONSS
o2y «
Ar24 w
02T «
an2e HED DATA TERMINAL DSR « GENFRAL FNUATES

D-49 Digital Systems Division

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP R2LC
NDATA TERMINAL DSR w» GENFRA[EQUATES SHEEY onrp?
ang7y PEJS
-3 BT I R Y R Y R R R R X R R A R R R R R R A R X XX XXXX22221)
AT
RAJr w EXTERNAL REFFRENCES® AND PEFINITINNS
231 «
T R R Y A R X A Y R R R R R R X R XA X2 222222222}
223 »
273 L REF ISNSRTY
235 NEF 18DT ENTRY POINTY
223 REF ICCHAR COMTROL CHARACTER ROUTINE
An37 :
I Y T T R Y 2 22 A2 A2 R X222 X 21X 22221111
NA30 »
Unar T/0 UTILTTY FQUATESR
amd1 * .
X 3 [2A AR ARl AR R AR XA R 22X XXX 2222222 2222 YR Y
NP4y @
AN4L 1I0CNM NPN »C7C7,5
npa% BIT FR™ 5,2,5%,4
noey arae SFT FRut g
nron A4y CLEAR EQUL @
A D] o488 PNT Fon 1
aopn A042 PRB FRll @
ara? aese LOT Fau 2
PPR? VBt SKIPE FQU 2
AAAY A% QKIPY Fay 3
anrsy REG FR 5,3,2,6
rAA4 anrs4 LOAN FOu 4
0% Yos® STORE FQU 5
08¢ T081S FRM 5,7,4
BARR Aan87 RFAN FQU &
neaz 2258 WRITE FQu 7
pepe A0%Q DATA Fait @&
AOB87 CHAR FRM 5,11
R2AA ANE 1 PUT FQU' >»A
AR 0262 GET QL »R

wosy EXIT FR™ 7,9
BR27 PRBL NORM FRAL >»20
nnga 0On6% EOR EQll »24
P22 am6€ ABQORT FQu »21

D-50 Digital Systems Division

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP R2LC

NATA TERMINAL DSR = GENFRAL EQUATES SHEETY nannd
ANKT PEJ
AAGR i*tittt*tt*ttttitt*tttttitwitii*t*ttﬁittiOﬁivﬁt*ttﬁtttitit'
Ll I
1ol A/ PRR wORD EBUATES
.13 A
pn7e tt't.*ﬁtbttiti*ti*ttit&ttit*tbiti*.titt*ti*titﬁtttt*tttitt*
ANTY

wanpn epu7 4 PRBSFL FQU @ BRR SYSTFEM SET FLAGS

gentl @0?s PRBUFL FQIT 1ISFR SFT FLAGS

nap1 @naYe PRABNPC EQU 1 1/0n OPCODE (RIGHT HALF)

pop2 @e77 PRBNARL EQUl 2 ' NATA RECNRN LENGTH

p72p3d An78 . PRBNAA EQU 3 NATA RECORD LENGTH
D A~ »
AART ttctt*gtttttitttttttttttwcotttt*totf.t*tttttioaettttt*twttt
pA81 e
aAnge w PRR FLAG BIT ENUATFS
Bamay, v
pAg 4 ttt't***wt0&*wowo«w*actott.ttav*ttttttatc*atvtat't-tt-tat-w
PHBE @

ENN NF FTLE

APPFRATION TGNOREN

AUTRIIT WiTHW REPLY

AUTD RFCNRD TERMINATE
FORMATTED ASCIT NUTPUY
SURPRESS AUTN CR=LF AN INPUT
SURPRESS RFEL L. AN INPUT

pop® (AnRe PRBEOF EQU
Pead @A®87 PRBNPY EQU
rent WABA PRBNWR ENLU
pPa2 AwuAR PRBATM EGH
nead amQer PRAFAC FQU
nepd Ac91 PRBSCR EQU
anp3d angs PRBSBL EQU
A7QT #

[N SRR N

D-51 Digital Systems Division

943005-9701

Table D-6, Data Terminal DSR Listing (Continued)

SAP R2LC
NATA TERMINAL N8&R « GFNFRAL ENUATFS SHEETY anp4
ArQ4 PEJ
hegw 2 X2 2 2 2 X X R A IR A AR RS ARSI R X AR RS R RS R X ARS AR SR A A2 X2]
ANge »
©wrgr PPDT wWORD ENUATFS
BrgR -
L T R Y Y R R R R R R R R R R R T TR R R TR R P Y YR I Y X
A pe »
prey RN R PRTFLG FNLi { FLAGS
nepr 2142 PNATPRR FQN 13 PRR ADDRFSS
17 Wig W12 PNATNRA EQU 16 PDATA BIFFER ADR
ar12 A1MZ2 PNRTNCT FOL {R AUTPHT CAUNT :
amya AT PATMXN EQl 2m 20 MAX CHARACTER OUTPUT/RECORD
nris A€ PPTSTA FQI' 21 INTTTAL STAT!S
2716 W1AY PNRTRVE EQH 22 READ VFCTOR
ney7 W1AB PNRTWVE FOLL 23 WRITE VECTOR
ARIR A1 ae TEMPY FQIl 24 TEMPNRARY STNRAGF
FA19 Aa11? TEMP2 FoIL 2% TEMPARARY STNPRAGF
NryA AN TEMPY FNI! 26 TEMPORARY STNRAGF
#EyR 2112 PNTNEV FRUL 27 NEVICE DFSCRTIPTION
0113«
2114 23 22222 2 2 2 X X X2 R A XX R TR ER XA AR A SRR REER AR 2
211% w
R11€ o PDT FLAG BIT ENUATFS
2117 «
AR B L A 2222222322222 2 222 2 X2 22 XX 2 2222233222222 2222 2222 2 2]
115+
aepr i2r PNTRSY FQUI @ NEVICE RSy
erpe w121 PNTLFE Fall 2 LF BFFNRE FCHO AFTER RS RIT
arad w422 PNTLFT FQH 3 TGNORE NEXY LINE FFEN RIT
vrepd 212% PNDTFFR FRIY 4 HOME OM FQRM FFEN RAIY
A28 @124 PNOTINL FQU 5 ONFE NULL AFTFR CR RIT
peps 312% PNTRCK EQIL 6 RACK SPACARLF PRINT WKEAD RYY
fprA7 K124 PNATIFA FQUt 7 AUTO LF ON CARRIAGE SI7t BRTYY
ArAF @127 POTLFR FQU 14 LINE FFEN REFORE ECHNM RIT
WPAF 4128 PNATNWR EQLL {8 AUTPIIT WTITH REPLY IN PROGRESS

D-52 Digital Systems Division

943005-9701

Table D-6, Data Terminal DSR Listing (Continued)

AP ROLC
NaTA TERMINAL DSR « GFNFRA[ERUATES SHFET Qops

wiee PEJS
137 (222 XA A X222 R A X R X R R R X2 RS XS A R 2 R R R
1131 *
2132 = RENTISTFR ENIIATES
BI3T »
n134 (222 A KR AR A A X2 2 R XA R X X2 R R A TS Y P R R RN N
213% »

AP A3 A FQu @

avel 2137 E Fau 1

nep? 138 X EQu 2

wrax 6139 M EQte 3

pAAR n14am L EQU 8

APAR QA141 R Fau 6

wen? a142 P EQu 7

20RY A14Y B8R EQi 1
w14 *
A LA R N R R R 2 X 2 A R I I I I I I
n14€ =
n147 * CHARACTER EQUATESR
Mid4B
VAN T 2T RS T TR T TR R Y A R N ¥ Y S 2 230222222222 22;
A1 8 *

A*{F n184 CLR FQu: »{F

LA BINS CHRIP FRQU »1A CURSNR UP

pERm W18 NULL FQU »p
aAn@a2 P15L HWOMF FRy »%
PPA7 KA1S5% RFLL FRt >a7
WPAR NISE RAKSP FQU »08

AORA ©MISY LF FRIl >0A

WFAC wnidB FF Foil »C

ARPR Q188 MR EQU »nD

peryz wt6c DLE EQll »19

#rya Q161 DpCa Fal) »14

ar1? w162 CLRLIM EQU >»47 CLFAR LINE

WadA QP16Y RNCNAN FEQLL »3A
A0S w1684 BKSLSH EQll »5C
APSF 0168% BCKARR EQU >5&F
WaZF nI6€ RIBNT EQU »7F
PeBO A167 TAR FQu »RQ
AFAA n1R8 ENDFIL FRIt »AFAA

Digital Systems Division

T30

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP RPLC
NATA TERMINAL

nepr
wapn
AL AR
ACOF
ANQF

WPy
praQ

N8R « GFNFRAL ENUATES SHFEY oares
A16S PEJ

AT 2 2222222222222 2 2 R s X RS X AT R A SRR A 222 RS 2 2 2 2.
ny{74 »

nir72 » NTRIIT FARMAY FONTROI FLAG RIT EGUATFS

Q17% «

R T Y 22222 222 2 XX X2 X2 XX SRR 22 R AR R R R 2 2 2 2)
H17% o«

W17 PNSFRM FQU! {2 FORMAT AFTFR RECORN

177 CRFARM ENLL X CARRTIAGE RFTHRN

A178 ILFFORM FQit 14 LIME FEED

A17% FFFORM FnNit {8 FoemM FFED

AIRe LF2FRM FRu 1% OND | INE FFFD

n181 »

X Y 2 2 2223222222222 22322222222 X2 22 2R AR A2 AR 2 R 2 2 2)
UWIRZ »

MRS » NTHER FQULATES

WiR" -

VIBE et e bttt v R At AR R o b P R A RN R R AP N C RO b
niRY *

WIB] [LNTNPC EQI J

AYRS ILLOPN FQII Q9 JLLEGAL OPFRATINN

p1o” »

721Q14 HFP DATA TEWMTNAL NSR e« I1/0 CALI, ENTRY

D-54 Digital Systems Division

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP R2LC
NATA TERFMINAL NRSR = TI/0 CALL FNTRY SHFEY aaay

@192 PEJ
anpr »19% TSNY Fan o &

adnan CSS51 n19d o RMN |, A RAVE 8YL RET!'RM @
A2AL 742G 219°% . #RRL ISNSRY ITNTTTALIZF SIIB PROGRAM
argae
X AR32 fepr
P 2AAR (poy L RRTA NATA ISINT INTERRIPTY ENTRY
P £al4 WA4R 2197 NATA ISRSY RESEY ENTRY
eaas 7272 #19§3 RRL SETRIG INTTTALYZE READN VECTNR TN TGMNOR
HAER 7074 P10 RRIL SFT«IR INTTTALIZE WRITF VFCTOR YO IGNNRF
noar we2ac INENT FQL 8 STARTING PATINT FNOR I/0 CALLS
wuea? C7C7 @201 I0rQM REY 1/0 npenntk
anan 201 QP22 REC LOAN,A,PRR,PRROPC
Papa JIFFF AP4% ANN =»FF
PAAA CRAR A2l RMN A, X
waun KFLD a2n” CPs =18 _
waldlt CPBY none SGF | EGAL NPCNODF 7
pran 7RIR 4op? RRII OPCOER MO, FATAL FRROR
WAF 2118 a208 LDOA PDTSTA,RR GET INTTTAL STAYUS
HRAF 67C7? QA2en TNCOM TNTTTALIZF INYERFACE
AL 3Ruae 027 TORIS WRITF,NATA, A
P11 a2y a9t LDA $S+2,X
@m12 C85a7 wup12 RMN A,P RRANCH VIA TABIE
P #4%13 WrEC 213 NATA RDASCY 2 READ ASCYIY
P emid4 Pu26 N214 NATA OPCNER f1 RFAN RAINARY
P A21% 0132 p21® NATA WTASC? 7?2 WRITE ASCTI
P VALR UNMN2K QA21EF NATA OPCPER ?d WRITE RTINARY
P 2217 o2& 24217 DATA OPCNER m4 REWIND
P BRIA un2& 2218 NDATA DPCNDER r5 BACK SPACE RECORD
P AA1n ALPRE PA21G NATA QPECDER 26 FNRWARND SPACE RFCNRN
P A21A @251 a2ec NATA ODPEN 7 OPEN
P 401} ARNY PBo21 NATA OPEN P8 OPEN REWIND
P 4AiC M22R A22% NATA CLOSE 28 CLOSE
P ARLND NP2R 7227 NATA CLOSE 1?7 CLUSE WRITE ENNwNF=FILE
P A2LF na2rr y224 NATA WRTEQF 11 WRITE END OF FILE
P BALF pe8% 0228 PATA EXTEODR 12 CHANGF RECORD LFNGTH
P A2 p163 wnp2s PATA RNSTAY 13 REAN PEVICE STATUS
P aRr21 P26 4227 NATA OPCHER 14 BACK SPACF FILE
P V022 (Pr2f @228 NATA DOPCNER 15 FNRWARD SPACE FILF
P ¥72X% P2 922¢ NATA TGNAR 16 LUNLOAD
P AN24 na2f @232 YATA IGNNR 17 '
P

QR2K p22F 234 NDATA IGNNR 18

Digital Systems Division

943005-9701

AP R2LC

NATA TERMINAL

VAR
w227

AARR
nirgza
RA2A

A e
neer

?a2n
P MI2F
we2F
w3

Table D-6.

BARE
crc7
420
AA2R
crey
WRAX
7R24A
nir2k
cree
7R2R
pmgnr
pAAY
v1Cce
7429
TR24

DSk = 1/0 CALL

w232
A23)
w234
A23"
nexe
w237
Mm233
norss
noar
no e
no4az
w2473
n24¢

APAT
V24
a247
#2483

NPCNER

1GNAR

CLOSE

WRTFOF

Data Terminal DSR Listing (Continued)

FNTRY SHFEY nepA
PE.J
FQll % FATAL FRROR FMTRY
1orQm FATA|L FRROR
EXTT ARORTY, ILLNAPR
Foatt s
Incom RET PRR TIGNARE FL AR
RIT SFT,PFR,PRBSFI ,PRROP]
BRI+ FYTFOR
[ReTN L3
SEV X CLOSF WRYTF FOF 2
RRi' EXTENE M :
[A TR
oLNA m| FIL QT YE®, SENDP 3 | INE FFENS
RRL «XXI_TSY
RRII EXTFOR
HED DATA TERQMINAL NSR « INTEFRRUPT EMTRY PNINY

Digital Systems Division

943005-9701

Table D-6., Data Terminal DSR Listing (Continued)

SAP R2LC
0ATA TERMINAL DSR =« INTERRUPT ENTRY POINY SHFEY #2090
A249 PE .

G331 @257 ISINT Fou § INTERRUPT ENTYRY POINT
pa3y 1701 02514 ILDY = TNITTYALIZE O CLEAR TNTERRUPT
Bw23? C7C7 4232 palgoly » READ INTPRRUPT 1.0,
a3y 3rpr Q252 TORJS READ,DATA,

Pia34 DR nPNL TARZ @ READ IMTERRUPT ?

43S JRUA W25% RRI} RNINT YES

PA3s RNY T R2%€ TARZ | WRYTF TNTERRIUIPY 7

werd7 78m8 1257 RRIT WRTINT YES

WA3R CAAX 258 CRY 3 ASSUME STATUS CHANGRE INTFRRLPY
43 £7C7 w28% TACOM

PI3A JIAN2 Y28rT TNRUS WRTITF,NATA,X

W3R 7REE ;D61 RR!! EYTMRM™

An3C U262 WRTINY FGU &

VA3 CAd4e V267 CRY 4 CLFAR WRTTYF INTERRIIPT
va3n CIC7 4W26¢ T0COM

RO3F 3RU? U26% T0RUS WRTTF,NATA,X

WAJF 7N1T uPASe RRII #PDTWVC,RR RRANCH VYA WRITE VFCTOR

noar w287 RNINT FQU 8
wman CAAY 2268 tRY FLEAR QEAN INTFRRUPT
Wigi CT7C7 w2&% 1ocaom
WA4Z 32RP w2rr TORUS WRITF,NATA, X
PA4R DRAY N271 TARZ 3 TEST FRAMING ERRNR
Yingda IJRAM 4972 ARIT EXTHNRM™
nivds DNDRAA @272 TAR? 4 TEQT TIMING FRROR
Vnas TRHR po7¢L RRI' EYTHNR™
Ne47 IFTF a27¢ AND ®»7F MASK STATIIS RITS
PA4R Tapy wn27€ AREL TCCHAR CRENK SPECTAL CHARACTYFRS

At

¥ WAdQ pAae
wnas TIN1IE 0277 RRII #«PNTRVL,RW MO, ARANCH TN READ VFPCTYOR
‘N278 «
wezrs HEN DATA TERMYWNAL DSR = OPENM ANPB APEN RFWIND

D-57 Digital Systems Division

| S

943005-9701

SAP QoLf

NATA TEMMINAL

gn4r
anér
vaan
VA4F
N d4F
dnyn

ensy
"Lt)
LA
2184

" XLE 1.
nass

P brngy
P 6ASA
P Quse

we 4R
702r
woaaR
Y4k
c7c?
aIBRY
7824

nosi
crce
7383
nuald
7404
aass
crc?
4RpP

n180
nige
A1QR

Table D-6.

NAR =

noge
w281
WoR2
w28y
noRe
ao8T
n28e
w287
neasg
noRg
hw2or
2291
nooe
neoY
n29L
729"
"} 31
2297
B20R
r29¢%
p3pr
2301
ning
"3l
wiag
ERY T
nNge

Data Terminal DSR Listing (Continued)

NREN AND NPEN REWTNN SHFET oanyp
PEJ
* NATR: TSRST MIST FOLLNW ORRIL TCrHAR & RRU wPDYRVC,BR
TSRST FQU & CAMCFL 1/0 ENTRY
RRI SETRINA SET READ VFCTOR TN IGNNRF
ILDA XYRKAR
RRI. »xXLYIST SEMD CR/LF
Tocam CLEAR LINF FFEP TGNORF RTT
PIT CIEAR,PNT,PNTNEV,PDTLFT
RRI} EXTEOR FYTT THE DNSR
*
OPEN EQn s
TOCNM CLFAR IGNDRF LINE FEFN FL AR
RIT CILEAR,PDY,PNTNEV,PDTLFI
.DA XXCRLF
BRI wYXL1I8Y SEND CR/LF
EYTEOR FQU 8
10COM N8R ENN=NF-RECNRN EXTTY
FXIT ENR,R
»
*
»
XXCRLF DATA XCRLF
XXBKAR NATA XRCKAR
XYLIST DATA XLIST

»
»

HEP DATA TERMINAL DSR » READ ASCIY

D-58 Digital Systems Division

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP ROLC
DATA TERMINAL DSR =« RFAD ASCIT SHEET @nmy
nsa? PEJ
@rS5A P3A8 QOTWREP EQII 8
¢A35A C7C7 alae Taram SEF TF ALRFANDY THRNAUGH LNOP
éa58 §121F a¥Mr RIT SKIPQA,PNT,PNTFLG,PDTOWR
ansrc JRaF a3%44 RRII DOINP YER. GET THF RFPLY
alsn CcrCc? a312 10COM NO, SET NUTPHT WITH REPLY RIT
OA%F NALF 231y RIT SET,PRY,PNTFLG,PDTOWR
WosSFE A4 314 LDA =4 SEY UP PRBR RTIAS
AAG” AX1% CHGTBL FQUI' 8 SEY 1P NFW PRB AND DR AMNRS
@a62 (28} 231€ RAD A,M SET 1IP NFW PRB ANNDRESS
189 c83r A3y7” PMD M,A
au62 BIal A%L3 STA PNRYPRA,AR SAVE IN PDT ,
63 CIC7 231¢ 1000 RET NEW DATA BUFFER ADNRFESS
L84 2043 A%2C FEG LDADN,A,PRR,PRRNRA
KRS RYyr P21 STA PDTYNRA,RR §AVE IN PDY
POSE TRA? 322 RRUY INEwNT
AnRT A32Y RHUBNUT FQui 8§ FNTER WERE IF RURQUT INPUT
ANE7 QNUFR A324¢ LL.NDA XXBXAR
wM6R TAFC ©n32°% RRI. wYYXI IS8T SEND BACK ARROW, LR, LF
w69 K324 RDASCY Fan]
B89 (7C? R Y- g ncau MUITPUY WTTH REPLY ?
YAKA 111 A3¥2R AIT SKIPR,PRR,PPHIFL ,PRROWR
ANKA PREF px20 RRIl NTWREP YES
an6C W33 DOINP FQU %
0w3Rr CIC? 2331 Torom ZERPN INPIIT RFCNARN LENGTH
nahAn 2902 @AX3r REG STORE,E,PSR,PRANR
GrE6F @A33% RNGREL FAIl 8
BASE C707 332 TOC0M SUPRFSS RELL ?
PASE 121N A3l RIT SKIPR,PRR,PRRIFL ,PRASAL
en7n 782 33 RRI' DONTRA YES
araz nYe7 (AX3Y? LLDA =REI L
haz2 70074 N33 RRI. WRTCHR WRTTF THWHF CHARACTER
nWZ273 A3JLY DONTRG FQLL &
W73 @RCAF AN4T 8LNA STAXLCHR SFY {iP RFADN VECTNR
P 874 ¢16R
TR a1e 034y STA PPTRVE,OR TO ACCEPY NFYT CHARACTER
a7/ 704 U3AD RRL SFTuIn
WYY 7R2A A34Y BRIl EYTHRM
ANGL »
nOZR A34% SFTRIN FAU &
Ar7R 1A% 348 LAY XFYXNRM SET READ VFCYOR
an7e Q11+ n34r STY PRTRVF,QR Th IGNNRF FURTHER CHARACTERS
waZa C887 adaA AMO | ,P
P34C o ’
LR Y14 >
waZR AXKY SFTWINR FNU 8
PAJR pRQR2 QAXSS LDA XFXNRWM SET WRTTF VERTNR
weye B117 2352 STA PNTWYC,RR TN IGNNRF FIRTHER TNTERRUPTYS
@170 £S87 @182 RMN | ,P
“3IST o
P WNZ?F (PA? A3%E XEXNRM NATA EYTMRM
TRY. 3 HEPD N,T, DSR=CHARACTER INTFRRUPT INPHT , CANTINUFD

igi s Division
D-59 Digital System ,

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)
SAP woLC
N,T, NSC=CHARACTER TNTERRUPT TNPUT , FOMTINUHER QHFET 212
w538 PEJ
ar7F M3ING CLRSCF FNIH &
WR7F 7760 WA3K? FR| WRTCHR
aagn C2C7 Wikt 10c0M
vird g w21{F n362 RIT CIEAR,PNTY,PrTFLG,PDTLFR
@NR2 J7PEFR 23K RRII RNASPEY
BWeBY RREL TAKCHY Foul s
WPRY KF7F PXES CPA sRUADY RUR NUT 2
P4 CPAL ulee SNF
Brls 7AF4 nis?7 RRII RHRNAYT YES
X L npse NR&R SARQ 8 SET M8R NF FHARACTER TN
2487 €?2C? 03&¢ 1INCOM STYARF TN USER'S RUFFFR
@AgR Kape QA377? CHAR PUT, A
WARQ #78G X7t rPL sTAR TAR 7
MA8A (Ch2? QX772 SEN
PABR 7837 AN?Y RRI! CKRIFF)
QA8 DRRY n¥7L TARZ ¢ WAS RUFFFR ALREADY FlUILL ?
@38N 7”14 Q37" RRiI EXTNRM ' YES, DON'T DN ANYTHING
AABF C7BF 037e REX M,BR NO, POINT RASE TN PRN
ONBF 4942 A377 NMT PRBNRL,RR RENPUCE CHARACTER CNUNT RY 1
BAQA 7ApA Ax78 RRU %41 NECESSARY NNP TN CASF NF SKIP
@29y CY8f Q374 REY M,B RESTNRE RASF Tn PDT
BV2g2 78{C N3IRC RRII CHKEOF FHFCK FOR ENNPwNFeFILF
29N 03A1 CxBU'FF EQU 8
ea93 DRy a382 TARZ 1 WAS RUFFFR ALREANY FULL 7
294 7ApN Q38 RRII EXTNRM YES, DNN'T DA ANYTHING
8298 DRP® Q38¢ TARZ @ RIN WE JUST FILL BIUFFER 7
BN9s 7Rt 238% BRI FULLBF YES, SFE IF AUTO TERMINATE
N9y a38€ CHKLFR EQU 8
@287 C7C7? @38? T0COM SEF IF LF REFORE ErHKN
MUQR 1AtF udas BIT SKIPY{,PPT,PNTFLG,PDNTLFB
8199 7Rp7 M38¢ BRI SENDCH NO, ECHO THE CHARACTER
WAgA B81ier Aa3QC 8TA TEMPY,AR SAVE THE ECHN CHARACTER
¥A9R C7C7 8391 TocoM CLEAR LF BEFNRE PFCHO FLAG
P7QC N21F 0392 RIT CLEAR,PNT,PNTF|G,PDTLFB
RAON A704 A30Y LDA =sLF
ngE 7252 A)o4 ARL XMTCHKR SEND THE LF
wegp 7opR 23908 RRL SETWIA SET WRTITF VFCTAR TN TGNORE
YAAN Q18 A39E LDA TEMPY,AR RESTNRE THE FCHO CHARACTER

Digital Systems Division

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP R2LC
DeVe NP HARACTER INTERRUPTY INPUT , FONTINIEN SHEET ani13
n3p7 PEJ
d2A1 - A30R SENNCH EQI §
VRAL 7744 2A30¢ RRL WRTCHR FCHO CHARACTFR TN TERMINA|L
@®4A2 aamz (VHNT FQu §
APA? W4R1 IVRNT Fau $

NPA2 0402 EXTNRM EQU S

¥oA2 C7C7 @aa?2 10r0M NORMAL DSR FYIY
BAAY 4P PB4 EXIT NORM,p
AMAL KaAE FULLBF EQu 8 COME HERE TF BUFFER JUSY FlILL
BRAR CT7C7? @48 0nCcomM AUTD«TERMINATE 7
BAAS {R12 R4Q@Y RIT S~IPY{,PRB,PRBIIFL,PRRATM
WAAK J7AF? PaQSs RRIJ CHKLFR ND
QAA7? 20DP AaARe RRL SETRIG NISCARD FURTHER CMWMARACTERS
YAAR 703F J4aye RRIL. SNDCHR FCHO THE CHARACTER
VARG 7RAS Béii RRUI CHKEDF CHECK FOR ENNeNFePILF
N41Z w
na1y o«
NaLL »
PMAA Pa1% GNATNACR EQL § ENTER HWERE ON CR INPUT
@MAA WAL nate LA XYCRLF
#RAR C7C7 Q447 Tocom SUPRFSS CR/LF FCHO 7
AnAr 114 prata RIT SKIP{_PRR,PRRIIFI .PRRSLR
boan 7¢5n0 ©wais BRL XL ISY SENMD CR/LF
AAAF 70CO Q427 BRL SFTRIA TGNORE FURTHWFER INPUTY
ARAF 2421 CHKFQOF FQir §
WAIAF 2810 pa2? LNA «PNDTNRA,RF LODK AT FIRST WORD IN RUFFFR
VWARM BRAP 1423 eCPA BENDFTL ENNeNFuFILF %
CPRY AFAR
WAR? CN2P 0n42¢ SEN
BARY T7RAY 042F% RRIY EXTENR Mn, FXTT DSR
P2ag4a C7C7 wna2e 10rom LONK AT TNPUT COUNT
nags 2ra2 A427 RER LOAD,A,PRR,PRANR|
GIRR AFA1 Q428 CPA =y 1S 1T AT LEASY 2 7
Angy Cchoar 4426 SLY
P8R 7RQL p437” RRIL EYTFNOR ND, FXTY DSR
wrgo 7C7 nay1 T0rQM YES, SET EOF FLAG TN PRB
vORA PRA2 A437 RIT SFT,PRR,PRRRFI| ,PRRFNF
AARR JRQQ nayy BRIl EXTEQR FYIY DSR

Digital Systems Division

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP ROLCM
NeTe NSE=FHARACTER TINTERRUPT INPUT , FOMTINHEN SHEET not4
na3e PEJ
AUBP 243% RACYSP FGQII 8 : FNTER WERF T1F RACKSPACE TNPUT
@Al3ec "CTIC7 WANe TOCOM LONK AT INPLUT ROUNT
G2AEN 21pn? ney” RER LOAN,F,PRRAR,PRANRL
LT LI of of K B 1. SN7 E 18 1T 2ERD 7
¥ARF 7RE? 1430 RRII EXTNRM YES, EXIT DSR
Gace C7C7 naer 10rAM 18 PRINTFR RACK SPACARBLE ?
WACY {RBF 4441 RYIT SKIP{,PNT,PRTNEV,PDTREK
WAC? WwrIsCc ne4 LDA s®sRKSRLSH ND, 1ISF PACK SILLASH INSTEAD
wACY 7m24 Y Y M RRL SNNCHR SEMD RACK SPACE NR 81 ASH
UrCa 7JUBE NAAZ RRL SETwIN
MnCs C72C7 na4s 10L0OM LONK AT TINPUT COUNT
WPCA 2102 a4l RFG LOAD,F,PRR,PRRANRL '
ROR? C71Y wvaar RDF E,E NECREMFNT CHARACTER CQOUNT
¥AC3 C7C7 Kaés 10coM PUY RACK IN PRR
duCqQ 29p2 “H44n FE STYORF,F,PRR, PRARNMNRL
waca cre? A48T TOCOM SEF IF LF AFTER RS
#¥aca {RR? 2431 RIT SKIPY{,PNPYT,PRTREV,PDTLFE
WACr 7Rp2 A4ST RRI RACKS1 NAN'Y SET |_F BEFNRE ECHO BT
arcn C7C7 KaSBY 10C0+ SEY LF RECARF FCHNO BTYT
BOCF MALF wase RIT SET,PrT,PNTF|G,PDTLFR
APCF 24%% RACKSY FQU 8
WACF CrARY AAKE SNZ E
wanNe 78DY AASY BRI FEYTHRM™
QAN C?7C7? »4x%y TocoM rRY?
VWAD? 1RBA A%R K1Y SKIPY{,PNT,PRTREV,PDTFFH
AN 7JACF B4R" RRI! FYXTNRHM N
BANA AR B46Y ILDA PNTINEV,RR
WX 3RAM 467 #AND 3>FF MASK WINTHW
Wone (#7FF
20T 2FUX A4BY S{IR 3>»3
VaNR 87232 n46s STa $+3
WADR w7y Kaek DA av
VADA SRAP RAKE eNTV 3ted
WANR AR R
BeDN Cret KnARY SIF F
AANN JRCA NA68R RRI' EYTHRM
PED LY AW N465 LDA sftlRLIP
WANF 7RCY na7Y HRID SFNNCH
n4721 *
wayre ¢
APEC AA7Y LTINFEN Fit o 8 ENTER HERFE IF LF INPUT
ANEY NAAT KAT 4 eLDA YXRKAR
@2E1 KAnbdA ,
¢PED 7P2R NATS AR{ XL IST SEMD RACK ARROW, CR, LF
WAENY RKO12 n4aye STF PRATNLCT,AR ZERD NHTPUT COUNT
AVE A 7732 wazryz PR LSTI IN | 18T THE INPHY RECNRN
ANES C7C7 naAT R TOCoM FfLFAR |LF REFNRE FCHN RIY
AAER N21F waz7e RIY CLEFAR,PNhT,PNTF|G,PDTLFB
BAF? JRBE WARC RRII RNGRE| ACCEPT FURTHFR INPUT
W4R ¢ "
nage *
ndBY MEP DATA TEEMTNAL DSR » CHARACTER TRANSMISSTON

D-62 Digital Systems Division

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP ROLC

NATA TERMINAL DSR = CHARACTER TRANSMIRSTON SHFEY poat8
nas¢s PEJ
LV 2 AR R R R R R T R X R A s X X X X X X XXX X223 222122112111
NABE »
@487 ¢ SUBRQIITINF TO SFND ANF CHARACTER FROM THE A«-RFGYSTER,
B4R8 « RFTURN YIS WHENM CHARACTER TRANSMTSSINN TS COMPLETEN,
A48 «
K-l Y A R A X R R R R X 222 2 2222222222222 1T2221X222112.
NaQ91 »

URER n4Q2 SMDCHR FOLE 8

KAER C551% P49y RMD L,E)

V2EQ 8917 0494 STF PNTWNVC,R8R SAVE RETURN TN WRITE VFCTOR

DAEA 7001 nN498 RRL WRTCHR AUTPIT THE CHATACLTFR

QRER T8RE pagl RRU EXTNRY FYXTYT N8R
NEAQ7 w
LR YT R Y R R R R N R Y P R S R A 222222222232 X222
0wag9s #»
A%5a7 « SIBROUTINF TO SFNN NNF CHARACYER FROM THF A«RFGTSTER,
ASA1 » RFTURN TS IMMFDYATE,
ABRE w
L T Y Y N Y R R R R R R R 2232222232222 22212112

PREC ASAE WRTCHR FQRLI &

BOED 3JIF7F B5KY AND =®»7F

PAEN DRKY .11 SARQD 1 SET INTERFACF TRANSMTT BIT

PrEF C7C7 A%n7 ToeoM

CRAEF JRrRAC 808 TORUS WRITF,NATA,A

B*F2 857 @%an RMN L ,P RETURN

D-63 Digital Systems Division

943005-9701

Table D-6., Data Terminal DSR Listing (Continued)

SaAP rROLC

NATA TFEMINAL NSR =« CHARACTFR TRANSMISSTOAN QHFET AR
nRyr PEY
ELBE] P Y 2 2 R R R R 2 XX XX RS SRR RA AR SRS A2 AR 2 2 X 24
L2 w
A%4{Y & SUBROUTTINF TN SFNN SINGILE CHAPACTERS, !NSAGF TS STMTLAR
UEi2z # TN SNNCHR, EXCEPT SPECIAL CHARACTERS ARF CONVERTEND TO
Bs1*® e THE NFCFSSARY CHARAMNTFER SYRTNGS, MAY AL SN RE ENTFRED AT
N81® &« XLIST TN SEND A PRE«SFEFIFIFD STRING,
1817 -

I S s A sy a2 R A R R R R R R R A A A AR A A2 A R A0
anFY1 4816 XMTCHR FAHL 8

AAFY 3F7F nR2r AMP =a7F
RAF2 EFPN AKD4 CPA sCR CAPRIAGE RETIIRN ?
U2FY Char QA%22 SNF
WAF4 TR{Y AKX RRI/ XCR VES
BAFR KFPA AK2¢ CPaA = F LINE FFED 2
wrFAR DA neow SNF
AAF7? 7Rp0 LR2F RRII XIF YES
EAFR AFUC %27 CPs aFF FORPM FFED 7
e?Fn cn2m nK28R SER
WAFA JRE[: n%2% RRI' SNDOHR NO, JUST TRANSMIY AS 1S
GAFR AoAr wS3r oL NA sFFLST
P AaFrC p(CK
weFn C7C7 a%3d TnEOM ' SEF IF HMMF ON FNARM FEFD
VPFF 134 wh3Z RIT SKIPQA,PNT,PRTREV,PDTFFH
VIIFF 2714 283D ADP =HMLSTY=FFI ST PHANGE CHARARTER LIS8SYT ADR
iy 7Rppr wB3Z RRU XLIST SENMD FNRM FEFD ENUTIVALFNTY
nied AN3T YLF FOU &
2131 At IR AKJE LDA PDTNEV,RAR
Y122 DRPI u837 TARZ PNDTLF?Y REF TF LF IGNNRE RTT SFT
#1a3 7R{r @A%3I8 RRI' SKPLF 1IGMNURE LINE FEFD
Yi1vd an234a a%3%s ILDA XILFLSY SEND LINE FEFD EQUIVALENT
BWins T7RpS aR4r RRII XLIST
MOAE %481 XCR Faur 8§
VWI1AR Aopr MR42 oLPA ECRILST
P @147 wniDdo
W1AR (C7C7 pS4Y rorom SEF TF NNE NULI AFTER CR
w140 {IRS ©W%4s RIT SKIPA,PNT,PNTYNEV,POTIN
B1AA 2747 ©nS%4% ADD sCR2LST=CR1| 8T
PIPR 2848, XILLIST FAOU % REND THE CHARARTER LTSY
ALAR B11G uS47 STA TFMP2,RR SAVE LTST TNDEY
R1AC CKS51 %48 RMN ,E
P1UN BQLA pn%ac STF TFMPJY,RR RETURN ADPR
PipF usse | STLUP FoI' §
B1aF %19 05584 LDA *TEMP2,RR RET A CHARACTER
B1AF NDRPY 0552 TARZ 1 END NF LYST ?
e1im 7DYA A%5Y RRII «TE“PY,RR YES, RFTURN
111 5119 QAxS5e IMN TEMP2,BR MO, TNCRFMENT TNNEY
RI1L2 70D% Q@Q%RSse RRI SMNCHR AND SEND THE CHARACTFR
2113 78FA @a%se RRIV | 8TLUP D NEXT CHARACTER
114 @857 SXPLF FaQu %
V114 DR4Y UKSA SARZ PDTLFTY PESEY LF IGNNRF RAIT
115 811{R N850 STA PNTDEV,RR
BW11R C=57 u%sr FMn L ,P RETLRN

Digital Systems Division

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

8AP R2LC
DATA TERMINAL OSSR = CHARACTER TRAMSMISSTOM SHEEY @anyy
n581 PEJ
#4117 U882 LSTLIM FOU 8 LIST USER BUFFFR ON TERMTINAL
“117 88 4562 RMA | , A
2118 BIIR ANEZ 8TA TEMP1,RR SAVE RETURN
119 C?C7 @&58% - TOCOM GEY 5 CHARACTER
B11A BRAP AKEL . CHAR GET,A
wWi1R DRpt @%67 TARZ RUFFFR EMPTY 7
il 7DLR @%E8 RRIt #TE-PY,HR YES, EXYIT ROUTINF
11N JIFJF A%68 AND =»7F ‘
Bi{F 6F1P BB77 - CPA ®m>»id TF THE CHARACTFR 18 TN THWE
R1{F CPhCP A571 SLF RANGF AF »10 TN »14
2120 783 us7? v ‘ BRI! CHARQDK CHANGE IT TD A NULL
r129Y 6F14 a%7Y CPs 3»14
w1292 cnan aK7¢ SLY
$123 avee asryyT L DA eNILL
#2124 WN87€ . CHAROW FQiv %
#124 70CC as?7 : _RRL XMTCHR M0, SENMD THE CHARACTER
w125 C7C7 u%78 - TocOM SREF 1F FNRMATTFD allYPUTY
w12 {RYI3 pk7% . .RIT 8KIP),PRR,PRBIFL,PRRFAC
w127 7R8Ft A%arv RRII LSTLIN$?2
W12R DY1IR AXAY LDA PNRTNEV,RR LONK AT PEVICE DFSCRIPTINN
129 DRAY ANRKR? SARZ PDTLFT CLEAR THF ILF IGNNRF FLAG
2124 BI1R ANAY STA PDTNEV,AR
w12R JIFFF N8RS ANN m>FF CHFCK CARRYIAGE S1ZF
$h12C K012 2%8% CRA PDTNOCTY, QR EQIAL TO OUTPUT COHUNT 72
120 [N2r pRAr SER
¢12F 78EA P5RY RRI] LSTLIM 42 N
B12F 7280 NA8 LDA =CR
132 20CP AKKD RRI XMTCHR SENMD CARRIAGF RETURN
2131 wAp7 asen LDA XLFLST POINY YO LINF FEFD LIST
Vw132 C7C7 591 T0COM NN DEVICE NN TTS NKN LF ?
133 1387 @%92 RIT SKIPA,PNPT,PRTNEV,PDTLFA
Y134 27P% 593 ADD =y YES, SKIP TWF LF
V135 7eD% 4594 FRI. XLIST SFND LF DR LF/CLR FOL
B138 C7C7 A59% rtocaom SET THE LF IGNARE FLAG
w137 QRRXY US%of RIT SFT,POT,PNRTNREV,PNTLFI
G13R JRERX @S97 RRII LSTL ING2 G0 ON MARE
A%Q8 »
A%Q% w
P 2130 p1CY asae XL FILSY PAYA LFLST
ARUL »

neag HENR DATA TEOMINAL DSk = WRITE ASCTY]

Digital Systems Division

[} 943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP ROLC
NATA TESMINAL NSR = WRITE ASCTI SHFET QPR
AEQAY PEJ
M134F 6L WTASCY Fou %
WI3A RQ1Z 0AAA% STF PPTOCT,RR ZERPD NUTPUT FOHNT
vi3ln C7C7 n8ac 1aro~ FORMATTEN NuUTPUTY 2
MI3r (RIX AR@Y RIY Sk1P1,PRR,PRB!FI ,PRRFAC
13N 7RPE RS RRI' SNDILLIN NO FOARMATTING
Wi3F 8112 A6RS IMA PNTNCT,RR INCRFMENT PAST FNARMAT WORD
13F Bt1? e&yC IMn PDTOCT,RR
14> as1er Akt LDA #«PDTDRA,R® LANK AT FORMATTING WORD
P14 PR2C A61% TARZ PNSFRM POST FNRMATTING 7
wiL42 77pa asyy ARL LSTLINM YES, LIST THF RECNHAN
143 7007 k14 RR|. FORMAT no FARMAYTING
n144 084" SNDLINM EQL §
d144 77PD2 061C RRL LSTLIN PUMMY CALL IF ALREADY NDONE
148 p1eY PeL7 LDA POTYFLG,RR LONK AT PDT FLAGS
n14R8 DR{F neys TARQ PDTNWR WAS THTS AN OUTPIIT WITH REPLY
147 7R21 @AALS RRI! FXEQRX ND, WE ARE FINTSHEN
d14R QP7FC 0827 LDA =med RESTNRF ORIGINAL PRB ANR
149 7Cee QAR2Y 8BRU CHGTBRI RESET PRB ANN NB ADRS
P 2144 pn@Er
nE22 w
ne2y HED DNATA TERMINAL DSR = FNARMATTEN QUTPUY / READ 8STA

D-66 Digital Systems Division

943005-9701

sabP ROLC

NATA TERMINAL

P14R

(e AP
©1&t

b1an
Ay 4F
At 4F
#1187
(AR B

w182
w18y
@154
0138
¥is4%
w157

YR
n189
w154
hn1s8
%180
2150
C15F
v NF

niga
w161
wi1R2

P14R
ol 134
gy4n
nsie
DRLN
7RA2
prac
779F
n152
asie
DRAF
7ap3
DRAF
7249
7NyR
N1SR
r72
7297
nwsire
DRIF
7RIR
A7Qa
7099
JNyR
r160
mrryoC
TR8F
7n18

n163

AI83
w164
18K
C16F
wi6?
URN.L)

2169
nisA

t7C7
Jepo
3Rpe
B2LF
c7c?
2R4A2
169
c7?c?
4RO

Table D-6.

DSR =

n624
neor
AR2E
n&R27
ne2s
nE2e
AR3C
an3t
2632
AR3Y
A63L
463"
WEe3e
LY 4
4833
483%
ne4ar
nEa
LY §-
nea4y
neae
AR4Y
AR4r
nKay
LYY]
NR4%
NEBC
AR5
AKSD
A65Y
LY. ¥
131,
ARSE
1134
we58

1139
[.1.1.Y2
AR61
A682
WERY
LY 4
I.1.Y 3]

FARMATTED OQUTPUT / READ STATUSR

Data Terminal DSR Listing (Continued)

SHFEY opog9
PEJ
FORMAY EQI' 8
RMD L, A
&TA TEMPY,RR SAVE RETHRN
LDA «PDTDRA,RR LONK AT FORMAT WNRN
TARD CRFORM CARRTARGE RETIHRN %
RRU! NOCR MO
1.OA =CR YER
RR1 XMTCHR YES, SEND TT OuUY
NOCR Fair §
LNha *PNTNRA,RR LONK AY FORMAT WARND AGAINM
TARZ LFFORM ILYNE FFED %
RRU' FMTLLF YES
TARZ FFFNRM FORM FEEDN 2
RRI} FMTEF YES
RRII «TEMPY,RAR NOTHING AT ALL, RETURN
FMTLF FOQU s SEND &1 LINF FFEN
LDA =L F NO
RRL XMTCHR SEMD THE LINF FEFD
LDA #PDTNDRA,RR LONK AT THE FORMAT WNRN
TARQ LF2FR™ SELOND ILINE FEED 7
RRI! #TEMPY{,RR NO, RETURN TN CALLFR
LDA s®LF YES
BRI XMTOHR YES, SFEND TIT OUT
RRUI #TEMPY,RR YHEN RETLRN
FMTEF FQul %
LDa sFF
RRI XMTNHS SEND THWE FNRM FEED
RRIL wTEYP!,RR
«
L
RNSTAY FQlUI $
1org™ READ INTFRFACE STATUS wWORD
TORUS READ,DATA,A
OAND =»B21F
1Qcam RETURN IN PR
REGC STORE, A,PRB,PRRORL
EYENRY EQI' &
TorQM
EXTT ENR,
L]
HEP -NATA TEOMINAL DSR » CWARACTER INTERRUPT INPIIT

Digital Systems Division

943005-9701

Table D-6. Data Terminal DSR Listing (Continued)

SAP R2|r
NATA TERMINAL DSR = CHARARNTER INTFRRUPY TMPUT SHFET oQn2re
LYY PEJ
“1BR AKRT? TAKCHR FQU %
WisR BFRp NRER CPA =»22
VAL (N4r nKKS 6y
‘A K- Aok In QR RRI *XTAKP N
vISF C8p2 pR7Y RMO A, X
A1 AF {201t AR7Z LNDX $+2,X
hWi7> CRP7 A7 RMO X ,P
P P17 noA2 ART 4 XFXTNR NATA EYTNRM [NEIL L.
P Wi72 QrAP pAeYx PATA FYTNRM ”y
P Y17 WRA2 QAK€ PATA EXTMRM 02 HWNME CURSOR
P W14 ArAD 877 NATA EYTANRM ny
P 2175 yprA? pR7A8 PATA EXTHRM 4
P Q178 oAl aryQ NATA EXYTNRM rx
P 0177 @m™A? @a&a" NATA EXTHRM a8
P WI78 A2A2 nKBY PATA EYTNRM 27 BELL
P 179 pnAC 0ka% NATA BACKSP PR RACKSPACE NR FURSNR LFFT
P V{74 ©m8) QAKRY NATA TAKOHY 79 HNRTIZONTAL TaRW
P e17R p19F nAkae PATA DWNARR ?A LINE FEEND OR FURSAR DAWN
P V170 QpoA2 peg® DATA EYTHRM™ mR
P B17D @uAQ gmae PATA EYTMRM ac FNRM FEED
P OI7F @mArA WUAB? PATA GNTNCR A0 CARRIAGF RETURN
P Wi7F Q2Er QAKRY NATA LINFED OF LYST TNPYUT L INE
P QIR @PA? QBAG NATA FYTNRM ar
P 6181 @2A2 @akQqp NATA EXTNRM 1m DILE
P 2182 @ara2 2a9t DATA EXTNRM 11
P UIRY @mA?2 @aRKg2 DATA EXYTNRM 12 PRINT
P 0184 poA2 @asQY NDATA EYTNRM 13
P A18% @A2A2 0894 DATA EXTNRM 14 DC4
P U188 pPpA2 Q@RO= NATA EXTNAM 15
P Q187 o0A? page NATA EXTNRM 18
P @18R awA2 @K9Y DATA EXTNR™ 17 CLEAR END OF LINE
P 0189 @PA2 o6gs DATA EXTNRM 18
P 0184 00A2 pAage DATA EXTNRM 19
P U{BR @1AR Q70¢ NDATA UPARRN tA CURSOR UP
P vi8r woA2 @701 PATA EXTNRM 18
P 2180 w191 @aye2 DATA RIGARR 1C CURSOR RIGHT
P R218€ ¢2aA2 2783 DATA EXTNRM D)
P 218F @oaA2 o070¢ PATA EXTNRM 1E
P 197 @07F nyes DAYTA CLRSCR 1F CLEAR SCRFEN
0181 @726 RIGARR EquU §
2191 C8¢2 nYay RMO A, X
0192 C7C7 avas 1ocom
193 20082 arpe REG LOAD,A,PRR,PRADRL
9194 C300 ayyp RIN A,A
€19% 7mas ayyy BRI} DWNARY
NIOA (A712 DWNARR EQU §
194 Cc%02 ayiy RMA A,X
U197 C7C7 o714 10C0M
@19a 2102 arys REG LOAD,F,PRA,PRADRL
190 @118 ayie LDA PDTNEV,AR
0194 3mpe uyyy SAND mpPF MASK WIDTH

e19n oopp

D-68 Digital Systems Division

943005-9701

SAP RP2LC
NATA TERMINAL
vwior 2F@°
wi9n Croe
N19F
BIQF C7C7 .
b19F {RBA
QLA 7rp0
BatAY C7C7
B1A2 2183
P1aN Cale
G1Ad4 Chan
Q1A 7CCER
A1AE
WiIAS CIYC7
@1a7 2RQ2
ALAR CHOP
B1AQ 7Cp2
P bi1AA QArAY
N1AR
Q1AR C7C?
Q1AL 1RB4
G1AD 7CC3Y
A1AE C7C?
MiAF 2182
2184 214R
BWiRY JRpn
B182 BOFF
21483 2F@2?
4td4 Ccaye
#1888 Chae
¢13h 7CRA
187 Cnpy
BIHR AL
nisa 1712
¥i13a 7RER
P B1BR 783

Table D-6., Data Terminal DSR Listing (Continued)

CSR =

a718
b71%
aren
arei
nr22
n727
2724

.y

arae
w727
n728
aree
a73e
n731
A73%2
w73y

n734
a73s
“73¢
w737
Ar3a
a73e
n74c
nr41

0742
n743
nyae
a74%
n74e
n747
nrag
n74%
w750
w751

CHARACTFR INTFRRUPT INPUT SHEEY @a21

SUR s»2
RAD E,A
DWNARY FGUII 8
TOCOM CRT?
RIT SKIPY1,PNT,PNRTHEV,PDTFFH
RRU «XEXTMR

1ncoM

NEG LNAN,E,LDT,LDTOPC
RCA E,A

SGT

RRH #YXEYTMR
DWNAR? FQU 8§

TacoM
REG STORE,A,PRB,PRRNRL
RMN X, A

#BRU SFNDCH

UPARRN FQU %

10c0oM CRY?

RIT SKIPY,PNPT,PNTNREV,PDTFFH
RRII #YFEXTNR NO

10COM

RER LDAN,F,PRA,PRRNRL
LDA PRTDEV,RAR

AAND maFF MASK WIDTH
SR =>»2

RCA E,A

SGF

RRU e XEYTMNR

RSII A,E

MR E,A

LDY =CURUP
BRIl DWNARD
XTAKCH DATA TAKCHY
HEN DATA TFRMINAL NSR = SPERTAL CHARAGTFR LT1STS

D-69 Digital Systems Division

943005-9701

SAF K2 C

NATA TERMINAL

CAN-1g

niRn
VIRF
A1AF
nigce
vwiCH
a{C2

nIcy
wica
RN

vwiCcs
2107
WICR

@19
viCa
#IcR
nwice
wicn
vICF
@1CF

LD
kw101
AR
4103
n104
[RADL]
10~

2107
@10R
0109

610
wi0R
e1or

W{RC
PPRF
218D
perpf
near
nRa
nwrae
RrAC
paya
wiCcy
2irad
@pmy7
L Y
wiCces
zoRA
VA
naph
wico
NepaA
nwryz
BPAA
wny?
RAAAA
g7
4ugp
e1De
wean
noapn
Nran
nage
nree
erae
4a2are
*107
anan
POGAP
4020
a{DA
nop?
prty?
47gp

Table D-6.

Data Terminal DSR Listing (Continued)

NSK = SPErTAL CHARACTFR LTSTS SHFEY 0an2?2
A757 PE
A T T L R AR R A R I A s s T I T A S SRS Y XY
A75854 «
W78® & LTSTS USEN RY THE x) I&T SUBRDITINE, TRANSMISSINN
B7%F % IS TERMINATED RY RIT ¢ NF THE WARN FALLAWING THF | AST
ATR? « CRARACTFR TN 8F SFNY AFTINA QET,
A7TH8 »
AT 2 22 A s s s s A A PR A R A R SRR SR X
W76 »
A781 XRCKAR FNRII &
767 NATA RCKARR
W76 XCRLF FAD %
764 NATA CR
476" NATA NULL
A7 6F NATA NU'LL
n7K87 NATA NULL
N76B NATA NUI,
W76% NAYA DC4
w?7¢ LFLST Fit %
A771 NATA LF
wr772 NDATA CLFLTIN
n773 NATA »4070
A774& FFLST FRaQll %
nw77" NAYTA LF
n77e NATA LF
w777 NATA LF
W778 LF3LST FRU %
n77e DATA LF
A7A°7 NATA CLRLIN
A781 MATA LF
AT89 PATA CLRLIN
w787 NATA LF
N7RL NATA CLRLIN
P7RY NATA »4072Q
n78f CRILST FQU $
w787 PATA CR
n788 NPATA NULL
n7809 NATA NILL
a79r NATA NULL
n791 NATA NULL
ar02 NATA NULL
24 M DATA »4072
w794 CR2LSY EQU %
w798 PATA CR
nzee DATA NIILL
azr97 DATA »4070
A708 HWMLST FQU §
ur9% NATA HOME
ARQp DATA CLRLIN
nRA1 NATA »4pe@ ‘
WRAZ HEN DATA TERMINAL DSR o AUTNAFLOW SOURCE

Digital Systems Division

o]
é_\@,a 943005-9701

Table D-6, Data Terminal DSR Listing (Continued)

SAP R2LE
NATA TERMINAL DSR = AUTOFLOW SOURFE SHEETY @n23
PRAY PEJ
AARe ARRL FEND ISDT

D-71 Digital Systems Division

943005-9701

Table D-6., Data Terminal DSR Listing (Continued)

SAF ROLCL

DATA TERMINAL NDSR =« AUTNFI Nk ROURCE RHFET nm24
A RGN AROWT aroy R aArnR RACKSY UARF
BACWSH &VvAC R RAKSP ANAR REKARD QANNF BELL ann?
817 B5AR RKSI SKH @acSe RR me oy CHAR gann
CHARNOK A124 CHGTBL anap CHKFOF Qp2AF CHKLFR nmgQ7
CXRIFF wpergd CLEAR AP AN cLASE AP2R R CLR PALF
CLRLIN w17 CLRSCR @e7F CR anan CRILST aInn
CR2ILST 2117 CRFARM nean CHRIP ARy A DATA prpa
Dr4 Ary4 R NLE amye pNIMP ARARF DANTRG QAN73
UwWNARY ©10F DWNAR? QPtAR DANARR @10k € anpy
ENDFYIL. AFAA FAR nr24 EXENRY A169 EXTT 8ipn
EXTFNF QArS% FYXTNRM AMA2 FF neee FFFNRM QADAF
FFLST A{cA FMTFF A{67 FMYLF A15R FNRMATY A1 4R
FIILLRF oavad GET AOAR GNTOCR arAA KM 8T Bena
HOMF ara? ICCHAR APRY IGNNR nP2A ILLNPN 2RRQ
Innug 8448 INCNM crc7 INENT anay ISDSRY @anan
Isor peran TSINT DYy 18RST AR4R R IVRRT PAA2

R Ivunrt nWra2 L] b LnT arp2 LhTOPr Aapld
LF Prea LF2FRM QanaF LF3ILSYT niC9 LFFARM Q0Q@fF
LFLST A1CY LINFEDN angwn LOAD ANe4 LSTLIN Q1%7
LSTLUP Q1AF M A%AY NNCR ni1s? NORM anoo
NUILL ACAR OPCNER 02K OREN ansy OTWREP QAOSA
P lJd. b PNY AN POTINI anas POTRCK AR

R PNTRSY Qron PNTNBA BrtA PNTNREV an{Rm PPTFFH QAQ4
POTFLR @orpt POTLFA Q@AY PNTLFR Qanar PRTLFE @002
PDTLFY aray R PATHMXON amri4 PRNTACY oRr1? PRTAWR QA0aF
PNTPRR acah PRTRVE QARiA PNTSTA P18 PRTWVE 20y?
PNSFRM 4ArpC PRB aran PRBATM aPQA?2 PRBRNDBA Q203
PRBNRL @Ara?2 PRBEFOF nrn2 PREFAC 0PQ3 PRBOPE A7 M
PRANPT PPrRY PRBNWR Qarnt PRASBL n2ad PRRSCR Qond
PRBSFL opran PRBIIFL @ar21 PUT popa RNASCY @2n89

R RNCHN P03 A RAINT Ar4n ROSTAY 163 READ 2008
REG 84A0 RIGARR 0191 RNGRE| anaE RUROT anyP
RUBNYT A8y SENNCH anmAtL SET ared SETRIG 08078
SETWIG Q@CInm SxIPD aeA2 sKIPy 14 h] SKPLF fi14
SNOCHR APEN SNOLIN 0144 STORE ARRs TAR Ang9
TAKCHY arsy TAKCHR (P16R TEMPY AOLA TEMPD L A%]
TEMRY BRLA UPARRD Q1AR WRITE neey - WRTCKHR QOagcC
WRTFOF @pr2n WRTINY @an3r WTASCY @134 X 2002
XRCKAR Q1BC XCR ntas XCRILF ALBA XEXNRM @0YE
XEXTNR @171 XLF N1y XLFLSY @at130 XLIST 2108
XMTCHR QAAFY XTAXCH @18R XYXYRKAR QOBA XYCRLF @087

XXLIST uvrs9Q

aAnA ERRORS

D-72 Digital Systems Division

o]
d’@? 943005-9701

Table D-7. PDT Builder Required Definitions

Label Definition

ITDBTO Pointer to the internal IO expansion PDT branch table
ITDBTI1 Pointer to the 1st IO expansion PDT branch table

ITDBT2 Pointer to the 2nd IO expansion PDT branch table

ITDBT3 Pointer to the 3rd IO expansion PDT branch table

ITDBT4 Pointer to the 4th IO expansion PDT branch table

ITDMT Pointer to the DMAC expansion PDT branch table

ITVECT Label indicating the start of the vector interrupt PDT branch

table
ITPDT1 Label indicating the start of the 1st PDT in the system

SDMAEX Label on word containing the DMAC expansion flag:
0 - no expander
1 - expander

SDBEXP Label on word containing the number of I/O bus external ex-
pansions, value: 0-4 '

SINTEX Label on word indicating that there is internal I/O expansion
0 - no internal expansion
1 - internal expansion

IDDMAC Label indicating a word that returns control to the system
when no processing is required on an interrupt. This label
may be used in PDT words 12 and 17, or may be branched to
when the processing required to clear an unsolicited interrupt
is complete.

JDSCAA Pointer to a system memory managed area. This pointer
should be used by the PDT Builder program when a block of
memory is required in the system.

The utility requires some memory allocated permantly for the PDT and any
other structures required by the new device. This memory block should be
at least 18 words (more if temporary storage is required). To allocate this
memory space, the utility has access to one of the system memory manager
routines. The following is the calling sequence for the memory allocation
(MRAL) routine:

REF MRAL
REF JDSCAA

(listing continued on next text page)

Change 1 D-73 Digital Systems Division

943005-9701

ADD
PDT

GET MEMORY : LINK NEW
FOR PDT USE MEMORY PDT
STRUCTURE - —— MANAGER INTO CHAIN

(> 18 WORDS)

! '

ITPDT1=LABEL
gg;_?llg THROUGH FOR 1ST PDT: INITIALIZE
TS0 oF |- — — LAST PDT HAS 1ST 18 WORDS
LA A ZERO IN POINT— OF PDT

ER TO NEXT PDT

' '

SET POSSIBLE

DEVICE ID ADD POINTER
=254 TO INTERRUPT
BRANCH TABLES
CHAIN THROUGH

PDT'S TO
7] DETERMINE

SELECT
1D=1ID-1 RESULT AS
NEW ID
FOR PDT

(A)130254

Figure D-10., Addition of New PDT

D-74 Digital Systems Division

o
q@ 943005-9701

@LDA JDSCAA
STA ARGI1+1

@LDM =ARG1

@BRL MRAL

ARGI DATA 3 # of arguments
DATA $-$
DATA BLKADR

DATA BLKSIZ

BLKSIZ DATA $-$ Size of block needed
BLKADR DATA O Pointer to requested block -

Upon return from the MRAL routine, determine if the requested block
was given to the PDT Builder utility. If the pointer to the requested block
(BLKADR) is zero, then the memory was not available.

The PDT Builder utility has access to a label indicating the start of the first
PDT in the PDT chain, To determine a suitable device I,D, number, select
the largest, non-assigned device I, D, (<255), Chain down through each PDT
to determine if the selected I,D, is assigned., The last PDT on the chain is
identified by a 0 in the Next PDT Pointer field (WORD 0).

After assigning a device I.D., chain the PDT to the last PDT on the list and
initialize the PDT according the description provided in figure D-2. Then
place the PDT pointer in the appropriate PDT interrupt branch table as
described earlier in this appendix.

Once the PDT builder program is coded, assemble it using SAPG. Object
output should be to the file (USEROI, ASMOUT). Then link it with the DX980
operating system using DXOLE. The following job control is required to do
this using the standard LINK procedure. Refer to Section VIII for a detailed
description of the DXOLE utility. The following is a sample Link:

//RUN DXOLEP DOB1=DISC1 DIN=SC;
.. FLM = (SYSTEM, UTLFIL) RLM LLM-=(3, 0, 32, 3)

The input would then be as follows:

BSUBSYSTEM OVLY

BROOT MAIN,

BSEGMENT 1

BINCLUDE 1 object for PDT utility

/ sk

Change 1 D-75 Digital Systems Division

o)
Q@; 043005-9701

D.3 ADDING THE NEW DEVICE SERVICE ROUTINE

Every DX980 has a standard utility, LMUPDT, that updates a memory image
phase (MIP) of a load module generated by the DXOLE utility., LMUPDT can
replace any of four dummy memory image phases (MIP Nos. 181, 182, 183
and 184) in the DX980 system load module.

Perform the following procedure to update the DX980 load module:

1. Reference the description of the load module update (LMUPDT)
utility in Section VIII of this manual.

2, Perform this update procedure using the <userid> of SYSTEM.,

3. Run the standard LMUPDT., Set LUN 5 to the record input device.
This record should be the MIP number of the system load module
MIP to be updated. Set LLUN 7 to the relative record file of the
DX980 system load module, (SYSTEM, SYSLD). The input is as
follows:

//RUN LMUPDT DCON=SC FLM=(SYSTEM, UTLFIL);
FUPD=(SYSTEM, SYSLD)

4. Once the phase has been replaced, reload the system via the IPL
program.,

This utility does not replace an existing module. Instead, it adds a module
to the end of the File and changes pointers from the old MIP to indicate the
new MIP, Therefore, after replacing the MIP several times in the process
of testing and debugging, LMUPDT may terminate with an error indication
such as 'file full''. To prevent this problem, build a development system
load file using the load module copy program (DXCOPY). The new file should
be large enough to allow for expansion, Once the MIP has been tested, this
file may be deleted. Then run.the update utility against the system file or
disc.,

D-76 Digital Systems Division

o]
{@g‘} 943005-9701

ALPHABETICAL INDEX

Digital Systems Division

@ 943005-9701

ALPHABETICAL INDEX
INTRODUCTION

The following index lists key words and concepts from the subject material
of the manual together with the area(s) in the manual that supply major cov-
erage of the listed concept, The Reference column of the listing contains

references to the following manual areas:

cicl c= LL LIle 1 v2ii

° Sections - References to Sections of the manual appear as ''Section
x'"" with the symbol x representing any numeric quantity.

e Appendixes - References to Appendixes of the manual appear as
"Appendix y'" with the symbol y representing any capital letter,

° Paragraphs - References to paragraphs of the manual appear as a
series of alphanumeric or numeric characters punctuated with deci-
mal points. Only the first character of the string may be a letter;
all subsequent characters are numbers, The first character refers
to the section or appendix of the manual in which the paragraph is
found.

° Tables - References to tables in the manual are represented by the
capital letter T followed immediately by another alphanumeric char-
acter (representing the section or appendix of the manual containing
the table). The second character is followed by a dash (-) and a
number:

Tx-yy

° Figures - References to figures in the manual are represented by
the capital letter F followed immediately by another alphanumeric
character (representing the section or appendix of the manual con-

taining the figure)., The second character is followed by a dash (-)
and a number:

Fx-yy

° Other entries in the Index - References to other entries in the index
are preceded by the word '"See'" followed by the referenced entry.

Index 1 Digital Systems Division

o]
(@ - 943005-9701

ALPHABETICAL INDEX

Subject Reference Subject Reference
Area, Job Extension 1.8.2 Code, Memory
Assembler, Symbolic 8.9 Resident 1.4.1,
Assign Command 2.5.4 1.4.1.2
i Code, Hollerith T3-8
Batch I t Read See BIR !
accl nput C.eacer ee Code, USASCII T3-7, T3-8
Batch Input Spooler See BIS Code. Bi T3-9
Batch Output Spooler See BOS ode, Dinary B
. Command Scanner
Binary Code T3-9
Error Codes T5-6
BIR 6.1, 6.2,
Command Scanner 5.15
1.4.3, 1.4.3.1,
8.5.4.4 Command Table 1.4.2
ot Compact Control
BIS 6.1, 6.3,
Card 8.5.4.3
1.4.3, 1.4.3.2 c ¢ Mod 8.5
BLDEDT 8.14 Czrmng?fer oae :
Block, Physical FORTRAN IV 8.10
Record D,2.1 ..
] Conditional Instruc-
Blocking 4.1, 1.8.2,] .
tion Skip D.2.3.3
4.4.2, 2.5.3.2 c ¢ 5 5 2
BOS 6.1, 6.4, reate POl
1.4.3, 1.4.3.3 8.3.4.2
BPS 1.4, 1.4.3, Create Task 5.12
Creator 1.8.2,
1.7.1, 2.3.4 5. 4.1.3
Buffer, Data ot
2.5.4.10
Exchange 1.4.2 CRT 2.1 5
Buffers 4.4.3,5 tTre
Build Edit File 8.14 Data Command 6.2.3,
6.3.3
S i 3.
Calls, Supervisor 1 Debug, Program 3.8
CATFIL 8.4
DEB980 8.8
CATFIL Error
Delete 2.5.2,
Messages T8-7 5. 5.4.7
CATLOG 8.3, 2.4.1.3, Tt e
7 2 1 2 8. 3. 4. 3
CATLOG Error Delc?te Reco.rd 7.2.2.,4
Messages TS5 Device Service
Clear LDT Bit Dijilltelnseervice el B2
Utility . D. 2 3.2 Routines, Reentrant D.,2.9.2
Clear PDT Bit]
eqs Device Table,
Utility D.2.3.2 Phvsical 1.5
Clear PRB Bit ysica :
o Devnam 2.5.4.2
Utility D.2.3.2 Directory, Master
Close 3.4, 3.8.1.6 File 4.3,
1.8.1
Change 1 Index 2 Digital Systems Division

]
@ 943005-9701

Subject

Directory, User

DSCA

DSR

DSR, Sample

DXCOPY
DXCOPY Error
Messages
DXOLE
DXOLE Error
Messages

Editing

Editor, Master File
Directory

Editor, Overlay
Link

END

Enter File

ERRCOD
Error, Fatal
Error, Logical

Error, Severe

Error Codes, Com-
mand Scanner

Error Messages

Error Messages,
CATLOG

Error Messages,
CATFIL

Reference

.
W
-

.
-

o 00

-

- .
=t DN =
.

L]

v—-’h

-

* e
0o 0o n
N =

-

H W W e s
. e

|
Nole)s

~
IS
© ! ¢
5”‘0‘
~ = oH
oo

0o H

* 00
:
—
n

« o o
= O~ Ul
" -

o

NN b W
.
~

.

W~ W ~N~J0 DN K O1TU

W W Wwwwo-33N
P . e e

.
—

T5-6
Appendix A

T8-5

T8-7

ALPHABETICAL INDEX (Continued)

Subject

Error Messages,
DXCOPY

Error Messages,
DXOLE

Error Messages,
SAPG

Error Messages
Phase 1, FORTRAN

Error Messages
Phase 2, FORTRAN

Error Messages
Runtime, FORTRAN

Errors

Errors, I/0
Event

Event Index

Exclusive

Execute

Execute I/O

Exit DSR

Extend

Extended Physical
Device Table

Extract Mode (SMR).

File

File, Key Indexed

File, Linked Se-
quential

Reference

T8-15
T8-10
T8-19
T8-21

T8-22

W+
oo
1
[aV]

W
[}

W)

vl

.
gl 01 U1 \0 O =
. e s O,
(6}
o1 O
8]
-

w -
-

1
2]

N OO W owww

w

o

ON

g wN

. .

.

TNy
O\wu_lw;#r—-

N
:h
o
W]
&

.
~

LY

® @ U

r—t»—-

R
s
N oNw

.
-

.
N =
- e

W bt) b et et
. (4]

Index 3

Digital Systems Division

(o]
%@ 943005-9701

ALPHABETICAL INDEX (Continued)

Subject Reference Subject Reference
File, Relative
Record 4.4.2, I/0 Errors D.2.2.5
1.8.3, I/O Manager D.2.1
2.5.4.9, F4-2 1FE 7.2, 1.4.2
File, Saved F8-6 Include Control Card 8.5.4.3
File Copy 8.7 Index, Event 5.9.1
File Features T4-1 Initiate I/O 3.5, 5.16
File Integrity 2.5.4.10 Insert Record 7.2.2.3
File Manager See FILMGR Integrity, File 2.5.4.10
Utility Interactive File
Fileid 1.8.1, Editor See ITE
2.4.1.3, Interactive Terminal
2.4,1.4, Subsystem See ITS
2.5.4.6 IoCOM D.2.3.1
FILMGR 8.16 ISDSRI D.2.2.1
Filnam 4.3, 1.8.1, ITFDIO C.1.2, FC-3
2.4.1.4, ITINIT C.1.1.1
2.5.4.6 ITPBIO C.1.3, FC-4
Find Record 7.2.2,1 Itrks 2.5.4.11
Find String 7.2.2.5 ITS 1.4, 1.4.2,
Flags 3.3.2.1, 1.7.1, 2.3.4,
3.3.2.2, 2.4,2.1, Section
3.3.2.3 7, Appendix C
Formatted Records 3.6, ITSUPV C.1l.4,
3.3.2.2, 1.4.2,
3.8.2.2, C.1.1.2,
3.8.3.1, C.1.1.3,
3.8.6.1 FC-5
FORTRAN 2.2, 2.3.1, Tarea 4.2
2.3.2 2. 5: 3.2
FORTRAN Error JCL 1.5, 1.7.1,
Messages Phase 1 T8-21 1. 8’1
FORTRAN Error Section 2
Messages Phase 2 T8-22 JCL Sequences
FORTRAN Error ?
. Sample Appendix B
Messages Runtime T8-23 JCL Translator 8.2, 2.3.1
FORTRAN IV Com- : 2. 3: 3 ’
piler 8.10 JCLTRN 8.2
Free Area 1.6 Jcsnam 2.4.2.2,
GET Routine D.2.3.7 2.4.2.4
Hollerith Code T3-8 Jearea ;é 35
JI1.DT 5.17, 5.20,
T5-7
Change 1 Index 4 Digital Systems Division

@ 943005-9701

ALPHABETICAL INDEX (Continued)

Subject
Job

Job Command

Job Extension Area

Job Queue
JSB
Jsname
Jsprty

Key Indexed File

Keylen

Latency Time

LDT Bit Utility,
Clear

LDT Bit Utility, Set

LDT Word from
Register, Store

LDT Word to Reg-
ister, Load

LIBBLD

Library

Library Builder

Library Control Card

Limits

Link Editor, Overlay

Linkable Parts File
Build

Linked Sequential
File

Reference

»
—
3
SN |

-

et
-

N
. .

°
°

-

.
un

[N NS N
o DN
-

.
™~
oy
N
—
-

-

-

W = W

.
-

= ket ON et
. -

'
- .
et
°
Qo
[a 4]

LA

w

-

N
U
=N
.
~n

B0 =
H
[}
N

U

.

[OV N
e e

NN O NBR RANIJIIOODNDNDNF—N

w N O,

ot
.
w

-

[\

L

v U ®
:h‘w
o i
NN
W

o
o

Subject

List

List Edit Files
List Record
List User File

TS veambA e
Director v

LMUPDT

Load LLDT Word to
Register

Load Module

Load Module Update

Load PDT Word to
Register

Load PRB Word to
Register

Logical Device Table

Logical Error

Logical Record

Logoff
Logon
LPFBLD
Lrecl
LSTEDT
LUN

Manager, I/0

Master File
Directory

Master File
Directory Editor

Memory Image

Memory Image
Phase

Memory Resident
Code

Reference

8.3.4.1

D.2.3.4
F8-4, T8-12
8.11

D.2.3.4

.

?HNN
P W
@]
s

-

. e
-
L]

N-\l

L]
— -
w"

.
B O O = O D e W
Ut O~ W

. .
W *

NS
et
w

Ul e

.
-

a8

.

N
-

.
-

WO HOONOW-N-INDRMWOmAgADU

>

» -
=
O -

o
;,

N
w
e
[00)
—

8.3
5.13, 5.14

F8-4, F8-5

1,
1

1.4.
1.4.1.2

Index 5

Digital Systems Division

©
@ 943005-9701

ALPHABETICAL INDEX (Continued)

Subject Reference Subject Reference
Module, Load ¥8-4, T8-12 Physical Device Table 1.5, D.2.4
MRAL Memory Allo- C.1.1.1,
cation Routine D.2.9.4 TD-1, FD-2
Mtrks 4,3, . . Physical Device
2.5.4,11 Table, Extended FD-3,
D.2.4
11:1}1;;35 ; : j:g Physical Record 4.1, 4.2
NEWLIB 8.12.4 Physical R d 1.8.2
Normal Control Card 8.5.4.3 ysical fecor
Block See PRB
Normal Mode 8.5 Pool, Procedure 1.6
NOVLY 8.5.4.2 ’ T
Nprty 2.5.3.3 1.4.1.3
Nucleus 1.4, 1.4.1 PRB 3.2, 3.3,
’ 3.5, 4.2,
Object Control Card 8.5.4.3 4.5,
OLD 2.5.4.5 C.1.1.1,
OLDLIB 8.12.4 D.2.1,
Opcodes T4-3, T3-2, 3.8.1.1,
T3-5, T3-10 F3-3, F3-4
OPD 3.2, 5.1 PRB Bit Utility, Set D.2.3.2
Open 3.4, PRB Bit Utility,
3.8.1.6 Clear D.2.3.2
Overlay Link Editor 8.5 PRB Word from
Overlay Manager, Register, Store D.2.3.4
Runtime 8.5.4.1 PRB Word to
Overlays, Pre- Register, Load D.2.3.4
planned 8.5.4.1 Preplanned Overlays 8.5.4.1
Overlays, Unplanned 8.5.4.2 Procedure Pool 1.6,
Pass 2.5.4.4 1.4.1.3
Password 1.8.2 Program Debug 8.8
PDT Bit Utility, Prot 2.5.3.5
Clear D.2.3.2 Prty 2.5.3.3
PDT Bit Utility, Set D.2.3.2 Prwds 2.5.4.11
PDT Builder Utility D.2.9.4 Pseudo Time Slicing C.2.3
PDT Pointer Table FD-6, FD-7 Pswd 2.4.1.4,
PDT Word from 2.5.4.10
Register, Store D.2.3.4 PUT Routine D.2.3.7
FDT Word to Read I/O Bus to
Register, Load D.2.3.4)
Phase, Memory Register . D.2.3.5
Image F8-4 F8-5 Rea:d Operations
’ Timeout 3.8.1.19
Record 1.8
Change 1 Index 6 Digital Systems Division

o]
@ 943005-9701

ALPHABETICAL INDEX (Continued)

Subject

Record, Formatted

Record, Logical

Record, Physical

Record, Unformatted

Reentrant Device
Service Routines

Relative Record File

Release
Remote Job Entry
Replace

Replace Record
Replace String

RIE

Root Control Card

Routine, Device
Service

Run Command

Runtime
Runtime Overlay
Manager

SAPG
SAPG Error
Messages

Save
Saved File

Reference

3.3.2.2,

.
-

W o R DN O = R W W W W
. . .
ON 0O = U1 Id 00 = 00 00 00 O

.

o~ WY
.

- = DN

L
™~

.
-

-

L I
oW
— ~J
w‘a

no

-
-

(W)

.
oD
©
N

[Nao'e}
AN W

-

N o=

e
©

4-2

o
Oy
B e

.
. -

.
I IS NS> BN
L] L] L]
N O G
-

03I~ ~IDNDpNnM
L] L]

W NDNNOGLULO G
L]

‘.'.—. .
S
N

L)
NN
-

[NSEESEEN e e NN w)
DN W == WV
“ e -

N - w

.

w

.

(s8]

00
N
W
—_

T8-19
2.5.4.7
F8-6

Subject

Scanner, Command

SCRASH

Search Control Card

Segment Control
Card

Set LDT Bit Utility

Set PDT Bit Utility

Set - PRB Bit Utility

Severe Error

Share
SJCBFL

Skip, Conditional
Instruction

SMR
Source Maintenance

.
Zem

N ~s=d
DouLLlc

Spooling

STATUS
Status

Step

Stksiz
Store LDT Word
from Register
Store PDT Word
from Register
Store PRB Word
from Register
Subsystem Control
Card
Subsystem Mode
Supervisor Calls

Symbolic Assembler

Reference

ot
[0, }

g wm
RN
.

il)
W o

L]
W w w
. -

N;\)NU"

. -
- o

= k= DY
* e -
(O

DN ~=DNWWIOOYO w
m:h

o]
!. .
N B0 0T Wy YT
N. . . . e .
w
w

- ™
o~

.

W

-

>
.

- U1 O~
. .
ot
-~

-
w
.
ot

-

3

NN WW-] OO
Ul W N 00 00— N

w N
)
oo

w/
™
W
W

1.7.2,
Section 5,
T5-1, T5-2
8.9

Index 7

Digital Systems Division

%@ 943005-9701

ALPHABETICAL INDEX (Continued)

Subject Reference Subject Reference
SYSIN 6.2.3.1, Unformatted Records 3.6
6.3.3.3 Unplanned Overlays 8.5.4.2
SYSOUT 6.4 Update Mode (SMR) 8.12.4.1,
System Console 2.3.2, 8.12.4.4
2.3.4, USASCII Code T3-7, T3-8
7.1.3 User Control Block See UCB
System Disc 1.8.1 User Directory 4.3, 1.8.1,
System File 1.8.1, 1.8.2
2.4.1.4, Userid 7.1.5,
2.4.1.5 2.4.1.3
System Output Utilities Section 8
Queue 6.4 .
System Table 1.4.1.1 Verify Mode (SMR) 8.12.4.2,
8.12.4.5
Table, Command 1.4.2 Volume 1.8.1,
Table, Extended 2.4.1.4
Physical Device D.2.4, FD-3
Table, Logical Wait 3.5, 5.9
Device D.2.5, Wait Criteria List See WCL
C.1.1.1, Wait for I/O 5.16
TD-3, FD-4 WCL 5.9.1, F5-1,
Table, PDT Pointer FD-6, FD-7 F5-2
Table, Physical Write I/O Bus from
Device 1.5, D.2.4, Register D.2.3.5
C.1.1.1,
TD-1, FD-2
Table, System 1.4.1.1
Task 1.1, 1.7,
1.7.1,
1.7.2
Task Control Block 2.5.3.2
Taskid 5.8
Teleprinter 7.1.2
Temp 2.5.4.6
Time 2.5.3.4
Time Slicing Pseudo C.2.3
Translator, JCL 2.3.1,
2.3.3
Trknum 4.3,
2.5.4.11
UCB C.1.4,
1.4.2, TC-2
Change 1 Index 8 Digital Systems Division

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title:DX980 General Purpose Operating System
Programmer's Guide {943005-9701)

Manual Date:l August 1975 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:
Please list any discrepancy found in this manual by page, paragraph, figure, or tabie number in

the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), STAPLE AND MAIL

First Class

PERMIT NO. 3135
Austin, Texas

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

EEE———
EE——
E——
[R—
EES—
Postage Will Be Paid by (A —
E———
EE—
[r——
SEE—
SEEEE———

PO. BOX 2909 - AUSTIN,TEXAS 78767
Attn: TECHNICAL PUBLICATIONS, MS 2|46

980 COMPUTER
SYSTEM
SOFTWARE
o608 MANUALS
SYSTEM
DESCRIPTION
943012-9701
LANGUAGES
| l |]
BASIC LANG
FORTRAN INTERPRETER TILT
SYSTEM
9448009701 943002-9701 956382-9701

i . PROGRAM DEVELOPMENT

l l |

OVERLAY 960/980 ASSY LANG
LINK PROGRAM PROGRAMMER'S
EDITOR ! DEBUG REFERENCE

961961-9714

942760-9701 943013-9701

| [

. SYSTEM/ 3X0 ASSY LANG PROGRAMMING
4 SUPPORT INPUT/OUTPUT CARD

s 961961-9712 961961-9734 943000-9701

e

i OPERATING SYSTEMS
BASIC SYSTEM DX980
USE AND PROGRAMMER'S
OPERATION GUIDE
961961-9710 943005-9701
DXx980 DX980 SYSTEM

SYSTEM OPERATION
DOCUMENTATION GUIDE

943015-9701 943004-9701

\-

\\._

°~ TEXAS INSTRUMENTS

INCORPORATED

DIGITAL SYSTEMS DIVISION
POST OFFICE BOX 2909 ¢ AUSTIN, TEXAS 78767

	001
	002
	002a
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-33
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-33a
	5-34
	5-35
	5-36
	5-37
	5-38
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74
	8-75
	8-76
	8-77
	8-78
	8-79
	8-80
	8-81
	8-82
	8-82A
	8-83
	8-84
	A-00
	A-01
	A-02
	A-03
	A-04
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	D-41
	D-42
	D-43
	D-44
	D-45
	D-46
	D-47
	D-48
	D-49
	D-50
	D-51
	D-52
	D-53
	D-54
	D-55
	D-56
	D-57
	D-58
	D-59
	D-60
	D-61
	D-62
	D-63
	D-64
	D-65
	D-66
	D-67
	D-68
	D-69
	D-70
	D-71
	D-72
	D-73
	D-74
	D-75
	D-76
	I-00
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	replyA
	replyB
	xBack

