MODEL 990 COMPUTER
ASSEMBLY LANGUAGE PROGRAMMER’S GUIDE

MANUAL NO. 943441-9701
ORIGINAL ISSUE 1 JUNE 1974

YF) TEXAS INSTRUMENTS

INCORPORATED

(© Texas Instruments Incorporated 1974

A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein

are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the prior consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES [

Model 990 Computer Assembly Language

Programmer's Guide (943441-9701)

Original Issue 1 June 1974

The portion of the text affected by the changes is
indicated by a vertical bar in the outer margins of
the page.

Total number of pages in this publication is 94 consisting of the following:

CHANGE
NO,

PAGE CHANGE PAGE

NO, NO. NO,

Cover.0 8-1-8-3
Eff., pages.0 8-4 Blank
ili-ve...o.o...0 9-1-9-2
vi Blank 0 10-1 - 10-11. ..
vit. o000 . 0 10-12 Blank. . ..
viii Blank 0 App A Divider . .
I-1 ce..0 A-1-A-2.....
1-2 Blank0 App B Divider .
2-1-2-7.....0 B-1-B-12....
2-8 Blank 0 App C Divider . .
3-1-3-4.....0 C-1-C-12....
4-1-4-20 App D Divider . .
5-1-4-9 0 D-1-D-2.....
5-10 Blank 0 User's Resp ...
6-1 - 6-6 . . 0 Bus. Reply
7-1-7-20 Cover Blank ...

Back Cover.. ..

OO OO OO OOODDOODOOO OO

PAGE i CHANGE

. NO,

{@5) 943441-9701

TABLE OF CONTENTS

Paragraph Title Page
SECTION I. GENERAL INFORMATION
1.1 Scope of Manual. e e e s et s e e s e e e e s . 1-1
1,2 References C e e e e e e e e e e s . . 1-1
1.3 Model 990 Assembler . « v v v e o ¢ s s 0 s e v s 0o e 1-1
SECTION II. LANGUAGE REQUIREMENTS
2.1 Source Statement Format . ..o v v o v v o oo eon. . 2-1
2.1.1 Character Set v i vttt ittt it ot s oo s anas 2-1
2.1.2 Tabel Field. . v v v v v i ittt et s e vt onnonnnas 2-1
2.1.3 Operator Field . . ¢t vttt vt oot v o naeoseoaos 2-3
2.1. 4 Operand Field . ¢ ¢« v e vt vt ettt o et nsnonseos 2-3
2.1.5 Comment Field . . v o v v vt v o vt nnensnneees 2-3
2.2 EXpressions . o v v oo oo oeoeeeseososoesoeoesos 2-3
2.2.1 Definition « w o v v v v s o s v oo oo nvsoosinsnass 2-4
2.2.2 Well-Defined Expressions . c ot e e e o e 2-4
2.2.3 Arithmetic Operators and Order of Evaluation ... 2-4
2.3 Constants o v v v v o o v v v 0t v o s s ot eaonosan oo 2-5
2.3.1 Decimal Integer Constants. « o o o s ¢« o ¢ 0 s 0 0 0 0 s o 2-5
2.3.2 Hexadecimal Integer Constants. . . « v ¢« v . « . . 2-5
2.3.3 Character Constants. v« o « o o o o 0 ¢ 0 0 0 00 a0 oo 2-5
2.3.4 Assembly-Time Constants . « o « ¢« « o « « o » .o . 2-6
2.4 SYMbOLS ¢ v s v o v s o e bt et ettt et 2-6
2.5 TerINS o o v o o v o o v o ot 6o s oo oo sosoesnsosocass 2-6
2.6 Character Strings . ¢ v i v v e o v oo o e o oo o s oo oo oess 2-7
SECTION IlI. ADDRESSING MODES
3.1 General . . oo vttt i oot ctonososaoncnsacan 3-1
3.1.1 Workspace Register Addressing « « o « e o o v o 0 o 0 o v 3-1
3.1.2 Workspace Register Indirect Addressing 3-2
3.1.3 Symbolic Memory Addressing . .. v oo v v v oo oo 3-2
3.1.4 Indexed Memory Addressing . .. v v v v v e oo oo 3-2
3.1.5 Workspace Register Indirect Autoincrement
Addressing « v e o e« o e s s s 00 et s a0 e 3-3
3.2 Program Counter Relative Addressing. . « v v v v ¢ v o o v 3-3
3.3 CRU Bit Addressing + « « « s o o o o 6 0 0 ¢ 00 st a s o oo 3-3
3.4 Immediate Addressing . ¢ ¢ o o v oo o v v o v ev o s oo 3-4

iii

Digital Systems Division

043441-9701

TABLE OF CONTENTS (Continued)

Paragraph Title

Ur U1l G Ot G101 O U1 Ul Ul O U ol Ul gl Ul
. . s s s+ s & s & s e s & s =

Ul U1 Ul U1 Ul
e o e e o

O UL B R W W W W WD INDNDNDNN ke e b e et

UL W DNV =

9]

o~

B W N - Ul s W IV — Ul o W N

N =

N =

SECTION IV, RELOCATABILITY

Relocation of Code v v s v o o v o 0 o 6 0 0 0 06 ¢ oo o

Relocatability of Source Statement Elements. ...

SECTION V., ASSEMBLER DIRECTIVES

Directives Affecting the Location Counter
Absolute Origin (AORG) c s s e e s e e
Relocatable Origin (RORG) e v e v e
Block Starting with Symbol (BSS)44 .
Block Ending with Symbol (BES)

Word Boundary (EVEN) . . 00t it ot oo

Directives Affecting Assembler Output
Program Identifier (IDT). o v o ¢ ¢ o ¢ s ¢ s s o s
Page Title (TITL) e e s e s e s e s s
List Source (LIST) e v e s e e et e s e s
No Source List (UNL) ¢ 4 ¢ ¢ v ¢ o ¢ ¢ 0o 0 o 6 o oo
Page Eject (PAGE) . ¢ v v v v v vt v et v o v o

Directives that Initialize Constants « + ¢ v + o « .+ .
Initialize Byte (BYTE) ¢ v o v v o o 0o 0 v 000 e
Initialize Word (DATA) & v v v v ¢ 6 v o s o 0 0 s

Initialize Text (TEXT) et e s e e e
Define Assembly-Time Constant (EQU)

Directives that Link Programs. « « « o o o s s ¢ « &
External Definition (DEF) v v ¢ ¢ 4 0 ¢« 6 6 ¢ ¢ + o
External Reference (REEF) v v v ¢« ¢ ¢ 0 v o o o o o

Miscellaneous Directives . v« v o v ¢ ¢ 0 ¢ v 0 0 o oo
Define Extended Operation (DXOP) . .. 4« .
Program End (END) v 4 4t 4 v v o0 ¢ 0 0 00 0 a0

SECTION VI, MACHINE INSTRUCTIONS

General . v v v v et o v o v o ot ot e oo oo o
Format I - Two Address Instructions
Format II Jump Instructions .. .4 o v v oo s
Format II Digital Input/Output Instructions. ...

Format III - Logical Instructions . .. s s ¢ v v s o

Format IV - CRU Instructions . .. ¢ e o v e v s s
Format V - Register Shift Instructions

Format VI - Single Address Instructions

Page

—

1 1]] 1 1 1 1 1 1

| B N T U T D L I A |
O 0000 00N~ ~O00 01Ul U0 AW W WY ==

.
L]
.
.

U1 U1 01Oy U1 U1 0101 O1 U0 O O1 U1 O O Ul Ut Ot U1 U1 O On
]

L]
o OO0 O0N OO O
] 1
B W W WD =

iv

Digital Systems Division

[o]
4}\@? 943441-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
6.9 Format VII - Control Instructions. « « o v o v 2 v o o o v v .. 6-4
6.10 Format VIII - Immediate Instructionso c.... 6-4
6.11 Format IX Extended Operation Instruction 6-5
6.12 Format IX Multiply and Divide Instructions 6-6

SECTION VII. PSEUDO-INSTRUCTIONS

7.1 Gel’leral................-.-..-........... 7-]-

7.2 NO C)peratiOn (NOP) L A I e e R R N N I I I T T R T 7"1

703 Retu.l'l’l(RT)......-.....-.....-.-.......... 7"1
SECTION VIII. SUBROUTINE CALLING AND RETURN

8.1 Common Workspace Subroutine .+ . o v v v v v o 0o o veweo.. 8-1

8.2 Context Switch Subroutines . .. v v v v v v o v oo eeeoeen. 8-1

SECTION IX. PROGRAM MODULES

General & v i i ittt i et e e e et e e et e
External Reference Directive . v v v v o v o o o v o 0 o o o oo
External Definition Directive v v v v v o o o o 0 v o o o o oo
Program Identifier Directive v v v v v o o o o o ¢ o o« . e
Linking Program Modules . v v v v v v v o v 0o v v v e e e

(No2ENeENe JENe INe}

O N W N =

NN BENo INo IINGe}
1

[T A

SECTION X. ASSEMBLER OUTPUT

10.1 Source Listing. @ 6 & 4 0 & 2 0 0 0 0 0 0 0 L s B e s Lt 6 P e s 8 e o 10-1
].O. 1. 1 . Listing Format ® @ o o 4 8 s s 0 8 0 6 B 4 s 6 6 s & 6 8 @ 8 8 e e 10-1
10.]..2 Error COdeS e & & 8 4 2 2 2 S ° 0 8 4 0 6 0 0 8 6 & 06 6 0 0 6 8 = 10—2
10.2 Obje'ct COde ® & o 4 9 0 5 2 B 6 0 0 6 0 6 0 6 0 b & 6 B s e 8 8 6 8 s @ 10-4
100 20 1 ObjGCt COde Format ® 8 o o 8 0 & & 2 0 P 6 0 8 B 6 6 6 o 0 e s » 10-4
10.2.2 Machine Language Format. « o « v v v ¢ e e s o sewess.. 10-9
10.3 Procedures for Changing Object Code . .+ v v v s eeew.. 10-9
APPENDIXES
Appendix Title Page
A Character Set . v v oo v s ... A-1
B Sample Program . v v v v v oo v o ot o ot v v v o enanennn B-1
C Instruction Tables ® & & 4 6 B2 & & o 9 0 6+ ® 8 e 6 4 o = e e 8 @ e @ C-l
D Assembler Directive Table v o v o o o o o o o o o o o o o v w.. D-1

v/vi Digital Systems Division

r

o

/]

943441-9701
LIST OF ILLUSTRATIONS
Figure Title Page
2-1 Source Statement Formatse oo e s 0 s e 2-2
8"1 COl’lte.XtSWitChil’lg..-.-.-.-......-... e o o o o 8"3
10-1 Source Listing with Error Messages « « ¢ o s o e oo v oo .. 10-5
10-2 External Reference Example . v v v v v v v v v eneseso. 10-8
10-3 Machine Instruction Formats . « « v o v 0 o o o & s e ee.. 10-10
LIST OF TABLES
Table Title Page
3"1 Addressing Modes @ & 06 6 o+ & s 2 s 8 o 0 0 s s 0 s 0 o o o . 3-1
10-1 ErrorCOdeS..........-..........o. « e o o o o 10"3
10-2 Object Output Tags Supplied by the Assembler 10-6

vii/viii

Digital Systems Division

% 943441-9701

SECTION I
GENERAL INFORMATION

1.1 SCOPE OF MANUAL

This manual contains detailed information about the Model 990 Computer As-
sembly Language, including source statement formats and elements, address-
ing modes, assembler directives and pseudo-instructions, and source state-
ment formats for machine instructions. The manual also describes the
assembler output, both the listing and object code. The appendices contain
the character set, a sample program, and instruction and directive tables.

1.2 REFERENCES

The machine instructions of the Model 990 Computer are described in the
Model 990 Computer Reference Manual. Input/Output subroutines and tech-
niques are described in the Input/Output Assembly Language Users Guide.

1.3 MODEL 990 ASSEMBLER

The Model 990 Assembler is a one-pass assembler that assembles object
code for the Model 990 Computer from assembly language source statements,
and is implemented on the Model 990 Computer.

The Model 990 Assembler can assemble both absolute and relocatable object
code in the same assembly. The object code is formatted to allow trans-
mission over telephone lines, and to allow correction of object code on the
object medium with an off-line device. The assembler processes external
references and definitions, which permits jobs to be assembled as separate
programs and linked together by the linking loader.

1-1/1-2 Digital Systems Division

[o]
%@ 943441-9701

SECTION II
LANGUAGE REQUIREMENTS

2,1 SOURCE STATEMENT FORMAT

An assembly language source program consists of source statements which
may contain assembler directives, machine instructions, pseudo-instructions,
or comments. FEach source statement is a source recort as defined for the
source medium. With the exception of comment statements, each statement
may have as many as four fields: the label field, the operator field, the op-
erand field, and the comment field. The fields are separated by one or more
blanks; and no field, with the exception of the comment field, may contain
embedded blanks. A tab character (CTRL I) may be used in place of a blank
to separate fields on the ASR733 and the ASR33. Two acceptable formats of
source statements are shown in figure 2-1. The first four lines show the
fields aligned on arbitrarily chosen character positions to produce aligned
fields in the source listing. The next four lines show the fields separated

by tab characters.

Comment statements consist of a single field starting with an asterisk (%) in
the first character position followed by any ASCII character including a blank
in each succeeding character position. Comment statements are listed in
the source portion of the assembly listing and have no other effect on the as-
sembly.

The maximum length of source records is 60 characters. However, only
the first 52 characters will be printed on the ASR733 or the ASR33. The
end-of-record for the source medium is placed following the last field used.

2.1.1 CHARACTER SET
The Model 990 Assembler recognizes ASCII characters as follows:
e “The alphabet (capital letters only) and space character
° The numerals
° Twenty-two special characters
° Five undefined characters
° The null character
° The tab character
Appendix A contains tables that list all 66 characters and show the ASCII and
Hollerith codes for each.
2.1.2 LABEL FIELD

The label field begins in character position one of the source record and ex-
tends to the first blank. The label field contains a symbol (paragraph 2. 4)

2-1 Digital Systems Division

uoIsiAIg swalsAg jeybig

(A)128440

% CONVENTIBNAL s¢URcE STRTEMENT ForMAT T

START LI 3,725 LBAD W R 3

A 5.3 ;“ anbd w R 5

RTE ' RETURN 10 cALLIMG PROGRAM
PACKED saunce STAﬁEMENT F¢RMAT USING TABS

STARTH LIT3 7251L8AD w R 3

PAY5,35000 W R 5 | |
| |
l

ARTHRETURN T® CALLING PREGRAM
|

!

Figure 2-1. Source Statement Formats

10L6-TPPEDO @S

@ 943441-9701

supplied by the programmer. A label is optional for machine instructions

and pseudo-instructio,ns, and for many assembler directives. When the label
is omitted, the first character position must contain a blank. A source state-
ment consisting of a label field only is a valid statement that has the effect of

an EQU directive (paragraph 5. 3. 4) with the same label and with a dollar

sign ($) in the operand field (paragraph 2.4.1).

CAUTION

When the location counter contains an odd loca-
tion, and a source statement consisting only of
a label is followed by a machine instruction or
a DATA directive, the machine instruction or
data word does not have the same location as
the label.

2.1.3 OPERATOR FIELD

The operator field begins following the blank that terminates the label field,
or in the first non-blank character position after the first character position
when the label is omitted. The operator field is terminated by one or more
blanks, and may not extend past character position 60 of the source record.
The operator field contains a symbol that defines the o peration, which may
be a machine instruction, a pseudo-instruction, or an assembler directive.
The operator field may contain a user-defined extended operation symbol
(paragraph 5.5.1).

2.1.4 OPERAND FIELD

The operand field begins following the blank that terminates the operator
field, and may not extend past character position 60 of the source record.
The operand field may contain one or more expressions, terms, or con-
stants, according to the requirements of the operation specified in the oper-
ator field. The operand field is terminated by one or more blanks.

2.1.5 COMMENT FIELD

The comment field begins following the blank that terminates the operand
field, and may extend to the end of the source record if required. The com-
ment field may contain any ASCII character, including blank. The contents
of the comment field are listed in the source portion of the assembly listing
and have no other effect on the assembly.

2.2 EXPRESSIONS

Expressions are used in the operand fields of assembler directives and ma-
chine instructions.

2-3 Digital Systems Division

o
(@Z@ 943441-9701

2.2.1 DEFINITION

An expression is a constant or symbol, or a series of constants, a series of
symbols, or a series of constants and symbols separated by arithmetic op-
erators. FEach constant or symbol may be preceded by a minus sign (unary
minus). The expression may contain no embedded blanks. The symbols may
not be symbols that are defined as extended operations (paragraph 5. 5. 1).
Symbols that are defined as external references (paragraph 5. 4.2) may not
be operands of arithmetic operations. Only one symbol in an expression may
be subsequently defined in the program, but that symbol must not be part of
an operand in a multiplication or division operation within the expression.

An expression that contains a relocatable symbol or constant immediately
following a multiplication or division operator is an illegal expression. Also,
when the result of evaluating an expression up to a multiplication or division
operator is relocatable, the expression is illegal. An expression in which
the number of relocatable symbols or constants added to the expression minus
the number of relocatable symbols or constants subtracted from the expres-
sion is not equal to zero or one is an illegal expression. Refer to paragraph
4.2 for definition of relocatability.

The following are examples of valid expressions:
BLUE+1
GREEN-4
2*%16+RED
440/2-RED

2.2.2 WELL-DEFINED EXPRESSIONS

Some assembler directives require well-defined expressions in the operand
fields. A well-defined expression must not contain any symbols or assembly-
time constants that are not previously defined. No character constant may
be placed in a well-defined expression. The evaluation of the entire ex-
pression must be absolute.

2.2.3 ARITHMETIC OPERATORS AND ORDER OF EVALUATION
The arithmetic operators in expressions are as follows:

° + for addition

° - for subtraction
® * for multiplication
° / for division

In evaluating an expression, the assembler first negates any constant or
symbol preceded by a unary minus, then performs the arithmetic operations
from left to right. The assembler does not assign precedence to any opera-
tion other than unary minus.

2-4 Digital Systems Division

o]
@ 943441-9701

For e}'cample, the expression 4+5%2 would be evaluated 18, not 14. Also, the
expression 7+1/2 would be evaluated 4, not 7.

2.3 CONSTANTS

Constants are used in expressions. The assembler recognizes four types of
constants: decimal integer constants, hexadecimal integer constants, char-
acter constants, and assembly-time constants.

2.3.1 DECIMAL INTEGER CONSTANTS

A decimal integer constant is written as a string of numerals. When a deci-
mal integer constant represents data, the range of values is -32, 768 to

+65, 535. Positive decimal integer constants greater than 32, 767 are consid-
ered negative when used as operands of addition and subtraction instructions.

The following are valid decimal constants:
1000
-32768 .
25

2.3.2 HEXADECIMAL INTEGER CONSTANTS

A hexadecimal integer constant is written as a string of up to four hexadeci-
mal numerals preceded by a greater than (>) character. Hexadecimal num-
erals include the decimal values 0 through 9 and the letters A through F.

The following are valid hexadecimal constants:
>78
>F
>37AC

2.3.3 CHARACTER CONSTANTS

A character constant is written as a string of one or two characters enclosed
in single quotes. For each single quote required within a character constant,
two consecutive single quotes are required to represent the quote. The char-
acters are represented internally as éight-bit ASCII characters, with leading
bit equal to zero. A character constant consisting only of two single quotes

(no character) is valid, and is assigned the value 0000

0
The following are valid character constants: 1‘)
Constant Value
'AB' 4142,
'c! 00431¢
'N! 004E ¢
iy 2744 14

2-5 Digital Systems Division

%:@? 943441-9701

2.3.4 ASSEMBLY-TIME CONSTANTS

An assembly-time constant is written as an expression in the operand field
of an EQU directive (paragraph 5.3.4). Any symbol in the expression must
have been previously defined. The value of the label is determined at as-
sembly time, and is absolute or relocatable as defined in paragraph 4. 2.

2.4 SYMBOLS

Symbols are used in the label field, the operator field, and the operand field.
A symbol is a string of alphanumeric characters, the first of which must be
an alphabetic character, and none of which may be a blank., When more than
six characters are used in a symbol, the assembler prints all the characters,
but accepts only the first six characters for processing. User-defined sym-
bols are valid only during the assembly in which they are defined.

When a symbol is used in the label field, it is associated with a location in
the program, and must not be used as a label in any other statement. The
mnemonic operation codes and the assembler directive names are valid
user-defined symbols when placed in the label field.

The DXOP directive (paragraph 5.5.1) defines a symbol to be used in the
operator field. No other user-defined symbol may be used in the operator
field. Any symbol that is used in the operand field must be placed in the
label field of a statement, or in the operand field of a REF directive (para-
graph 5.4.2) with two exceptions. One exception is the operand field of the
DXOP directive (paragraph 5.5.1). The other exception is the dollar sign
character ($) used in expressions to represent the current location within the
program (HERE).

The following are examples of valid symbols:
START
Al
OPERATION

$

2.5 TERMS

Terms are used in the operand fields of machine instructions and an assem-
bler directive. A term is a decimal or hexadecimal constant, an absolute
assembly-time constant, or an absolute label.

The following are examples of valid terms:
12
>C

WR2

2-6 Digital Systems Division

(o]
‘[@ 943441-9701

Note that WR2 is valid as a term only if it has an absolute value. If START
were a relocatable symbol and WR2 were defined as follows, WR2 would be
relocatable, and not a valid term:

WR2 EQU START+4

2.6 CHARACTER STRINGS

Several assembler directives require character strings in the operand field.
A character string is written as a string of characters enclosed in single

quotes. For each single quote in a character string, two consecutive single
quotes are required to represent the single quote within the character string.
The maximum length of the string is defined for each directive that requires

a character string, The characters are represented internally as eight-bit
ASCII characters.

The following are valid character strings:
'SAMPLE PROGRAM'
IPLAN IICIH

'"OPERATOR MESSAGE * PRESS START SWITCH!

2-7/2-8 Digital Systems Division

{i@? 943441-9701

SECTION III
ADDRESSING MODES

3.1 GENERAL

Five addressing modes are available for either operand of Format I instruc-
tions, and for the source operand of Format III, Format IV, Format VI, and
Format IX instructions. The addressing modes are summarized in table 3-1
and are described in the following paragraphs.

Table 3-1. Addressing Modes

A‘ddressing Mode T f:l\ellocii:ev:i.:ue Example Note
Workspace Register 0 5
Workspace Register 1 7
Indirect
Symbolic Memory 2 @LABEL 2,3
Indexed Memory 2 @LABEL(5) 2,4
Workspace Register 3 AT+
Indirect Autoincrement
Notes:
1. The T field is described in table 9-1.
2. The instruction requires an additional worc for each T
field value of 2. This word contains a memory address.
3. The S or D field is set to zero by the assembler.
4, Workspace register 0 cannot be used for indexing.

3.1.1 WORKSPACE REGISTER ADDRESSING

Workspace register addressing specifies a workspace register that contains
the operand. A workspace register address is written as a term having a
value in the range of 0 to 15.

The following example shows a MOV instruction and a COC instruction having
two workspace register addresses each, A workspace register may be as-
signed a symbolic address as in the second example. Use an EQU directive
having an appropriate absolute value.

MOV 4,>8
CcocC 15,R10

3-1 Digital Systems Division

(@ 943441-9701

3.1.2 WORKSPACE REGISTER INDIRECT ADDRESSING

Workspace register indirect addressing specifies a workspace register that
contains the address of the operand. An indirect workspace register address
is written as a term preceded by an asterisk (*).

The following example shows two MOV instructions. The first instruction
moves a word at the address in workspace register 7 to the address in work-
space register 2. The second instruction moves a word at the address in
workspace register 7 to workspace register 0. '

MOV %7, %2
MOV *7,0

3.1.3 SYMBOLIC MEMORY ADDRESSING

Symbolic memory addressing specifies a memory address that contains the
operand. A symbolic memory address is written as an expression preceded
by an at sign (@).

The following example shows three MOV instructions. The first instruction
moves a word from the address assigned to TABLE] to the address assigned
to LIST4. The second instruction moves the contents of workspace register
0 to the address assigned to STORE. The third instruction moves the con-
tents of address 000C ;4 to address 007C .

MOV @TABLEL,@LIST4
MOV 0,@STORE
MOV @12,@>7C

3.1.4 INDEXED MEMORY ADDRESSING

Indexed memory addressing specifies a memory address that contains the
operand. The address is the sum of the contents of a workspace register

and a symbolic address. An indexed memory address is written as an ex-
pression preceded by an at sign (@) and followed by a term enclosed in paren-
theses. The workspace register specified by the term within parentheses is
the index register. Workspace register 0 may not be specified as an index
register.

The following example shows two MOV instructions. The first instruction
moves a word at a memory address to workspace register 6. The memory
address is the sum of 2 and the contents of workspace register 7. The sec-
ond instruction moves the contents of workspace register 7 to a memory
address.

3-2 Digital Systems Division

d%\[’]@ 943441-9701

The memory address is the result of subtracting 6 from the location assigned
to LIST4 and adding the contents of workspace register & to the difference.

MOV @2(7), 6
MOV 7,@LIST4-6(5)

3.1.5 WORKSPACE REGISTER INDIRECT AUTOINCREMENT ADDRESSING

Workspace register indirect autoincrement addressing dpecifies a workspace
register that contains the address of the operand. After the address is ob-
tained from the workspace register, the workspace register is incremented.
The workspace register increment is one for byte operations and two for:
word operations. A workspace register autoincrement address is written as
a term preceded by an asterisk (*) and followed by a plus sign (+).

The following example shows a MOV instruction that moves a word at the
address in workspace register 3 to workspace register 2. Then the contents
of workspace register 3 is incremented by 2.

MOV 34,2

3.2 PROGRAM COUNTER RELATIVE ADDRESSING

Program counter relative addressing is used by the Jump Instructions of
Format II. A program counter relative address is an expression that cor-
responds to a byte address. The assembler evaluates the expression and
subtracts the sum of location counter value plus two. One-half of the dif-
ference is the value that is placed in the object code. This value must be in
the range of -128 to +127. The following example shows a program counter
relative address:

JMP THERE

When the instruction is in relocatable code, the expression must be re-
locatable. When the instruction is in absolute code, the expression must be
absolute:

3.3 CRU BIT ADDRESSING

The CRU Bit Instructions use an expression that represents a displacement
from the CRU address contained in bits 3 through 14 of workspace register
12. The displacement, in the range of -128 to +127, is added algebraically
to the contents of workspace register 12. The following examples show CRU
bit addresses:

SBO 8
SBO DTR

When DTR has been assigned the value of 8 by an EQU directive, paragraph
5.3.4, the two instructions would be equivalent, and would cause bit 8

3-3 Digital Systems Division

o]
%@ 943441-9701

relative to the CRU base address in workspace register 12 to be set to a
logic one.

3.4 IMMEDIATE ADDRESSING

Immediate instructions use the contents of the word following the instruction
word as an operand of the instruction. The immediate value is an expres-
sion, and the value of the expression is placed in the word following the in-
struction by the assembler. Those immediate instructions that require two
operands have a workspace register address preceding the immediate value.
The following examples show an immediate address in an instruction that re-
quires an immediate operand only, and in an instruction that requires two

operands:
LIMI 5
LI 5,>1000

3-4 Digital Systems Division

{\‘@3’} 943441-9701

SECTION IV
RELOCATABILITY

4.1 RELOCATION OF CODE

The Model 990 Assembler assembles both absolute and relocatable object
code. Absolute object code is code that must be placed in specified memory
locations and is appropriate for programs that occupy dedicated areas of
memory. Relocatable object code is code that may be placed in any available
locations. All relocatable address information must be modified for the ac-
tual memory locations in which the program is placed. Relocatability allows
programs to share memory in many possible combinations.

4.2 RELOCATABILITY OF SOURCE STATEMENT ELEMENTS

Elements of source statements are expressions, constants, symbols, and
terms. Terms are absolute in all cases; the other elements may be either
absolute or relocatable.

The relocatability of an expression is a function of the relocatability of the
symbols and constants that make up the expression. An expression is re-
locatable when it contains one or more relocatable constants or symbols, and
the number of relocatable symbols or constants added to the expression is
one greater than the number of relocatable symbols or constants subtracted
from the expression. (All other valid expressions are absolute). When the
first symbol or constant is unsigned, it is considered to be added to the ex-
pression. When a unary minus follows an addition operator in an expression,
the effective operation is subtraction. When a unary minus follows a sub-
traction operator, the effective operation is addition. For example, when
all symbols in the following expressions are relocatable, the expressions
are relocatable:

LABEL--1
LABEL+TABLE+-INC
-LABEL+TABLE+INC

Decimal, hexadecimal, and character constants are absoclute. Assembly-
time constants defined by absolute expressions are absolute, and assembly-
time constants defined by relocatable expressions are relocatable.

Any symbol that appears in the label field of a source statrement other than

an EQU directive (paragraph 5. 3. 4) is absolute when the statement is in an
absolute block of the program. Any symbol that appears in the label field of
a source statement other than an EQU directive is relocatable when the state-
ment is in a relocatable block of the program.

4-1 Digital Systems Division

(!@ 943441-9701

A location Iﬁay be defined as absolute (paragraph 5.1.1) or as relocatable
(paragraph 5.1.2). The location may contain either an absolute or relocat-

able values. The sample program in appendix B includes absolute loca-
tions with relocatable contents and relocatable locations with absolute con-
tents.

4-2 Digital Systems Division

e]
X‘r@? 943441-9701

SECTION V
ASSEMBLER DIRECTIVES

5.1 DIRECTIVES AFFECTING THE LOCATION COUNTXR

Five assembler directives affect only the location counter of the assembler.
Two of these also define the succeeding block of the program as absolute or
relocatable. The location counter is a component of the assembler that con-
tains the present location.,

Until an Absolute Origin directive is processed by the assembler, the loca-
tion counter contents are relocatable. Subsequent Relocatable Origin direc-
tives cause the location counter to be set to the specified relocatable value,
and to continue assembling relocatable object code. This concatenates all
relocatable blocks within an assembly into a single relocatable segment.
The total length of this segment is the length of the relocatable code assem-
bled.

The Block Starting with Symbol and Block Ending with Syrabol directives ad-
vance the location counter, forming an area for storage of data. The Word
Boundary directive aligns the location counter to a word toundary (even ad-
dress).

5.1.1 ABSOLUTE ORIGIN (AORG)

AORG places a value in the location counter and defines the succeeding loca-
tions as absolute, Use of the label field is optional. When a label is used,
it is assigned the value that the directive places in the location counter. The
operator field contains AORG. The operand field contains a well-defined ex-
pression. The assembler places the value of the well-defined expression in
the location counter. Use of the comment field is optional.

The following example shows an AORG directive:
AORG >1000+X

Symbol X must be absolute and must have been previously defined. If X has
a value of 6, the location counter is set to 100616 by this directive. Had a
label been included, the label would have been assigned the value 1006]¢.

5.1.2 RELOCATABLE ORIGIN (RORG)

RORG places a value in the location counter and defines the succeeding loca-
tions as relocatable. Use of the label field is optional. When a label is used,
it is assigned the value that the directive places in the location counter. The
operator field contains RORG. The operand field is optional , and when the
operand field is not used, zero or the value that was in the location counter
following assembly of the preceding relocatable location is placed in the loca-
tion counter. When the operand field is used, a relocatable expression that

5-1 Digital Systems Division

[e]
(@ 943441-9701

contains no symbols not previously defined is placed in the operand field.
The comment field may be used only when the operand field is used.

The following example shows an RORG directive:
RORG $-20 OVERLAY TEN WORDS

The $ symbol refers to the location following the preceding relocatable loca-
tion of the program. This has the effect of backing up the location counter
ten words. The instructions and directives following the RORG directive re-
place the ten previously assembled words of relocatable code, permitting
correction of the program without removing source records. Had a label
been included, the label would have been as signed the value placed in the lo-
cation counter. An example of a RORGC directive with no operand field is as
follows:

SEGZ2 RORG

Assume that after defining data for a program, which occupied 4471¢ bytes, an
AORG directive initiated an absolute block of code. The absolute block is
followed by the RORG directive in the above example, which places 0044

in the location counter and defines the location counter as relocatable., Sym-
bol SEG2 is a relocatable value, 00441¢. The RORG directive in the above
example would have no effect except at the end of an absolute block.

5.1.3 BLOCK STARTING WITH SYMBOL (BSS)

BSS assigns the value in the location counter to the symbol in the label field
and advances the location counter according to the value in the operand field.
The label field contains the label of the first byte in the block. The operator
field contains BSS. The operand field contains a well-defined expression
that represents the number of bytes to be added to the location counter. The
comment field is optional.

The following example shows a BSS directive:
BUFF1 BSS 80 CARD INPUT BUFFER

This directive reserves an 80-byte buffer at location BUFF1.

5.1.4 BLOCK ENDING WITH SYMBOL (BES)

BES advances the location counter according to the value in the operand field
and assigns the new location counter value to the symbol in the label field.
The label field contains the label of the location following the block. The
operator field contains BES. The operand field contains a well-defined ex-
pression that represents the number of bytes to be added to the location
counter. The comment field is optional.

The following example shows a BES directive:

BUFF?2 BES >10

5-2 Digital Systems Division

{@HP 943441-9701

The directive reserves a 16-byte buffer. Had the location counter contained
10016 when the assembler processed this directive, BUFF2 would have been
assigned the value 1104¢.

5.1.5 WORD BOUNDARY (EVEN)

EVEN places the location counter on the next word boundary (even) byte ad-
dress. When the location counter is already on a word boundary, the loca-
tion counter is not altered. Use of the label field is optional. When a label
is used, the value in the location counter after processing the directive is
assigned to the label. The operator field contains EVEN. The operand field
is not used, and the comment field is optional.

The following example shows an EVEN directive:
WRF1 EVEN WORKSPACE REGISTER FILE ONE

The directive assures that the location counter contains a word boundary
address, and assigns that address to label WRF1. Use of an EVEN direc-
tive preceding or following a machine instruction or a DATA directive (para-
graph 5.3.2) is redundant. The assembler advances the location counter to
an even address when it processes a machine instruction or a DATA directive.

5.2 DIRECTIVES AFFECTING ASSEMBLER OUTPUT

Five assembler directives affect assembler output. One affects the object
code output of the assembler and the remaining four affe-t the source listing
output of the assembler.

The Program Identifier directive supplies a program name, which is placed
in the object code for use by the linking loader.

The Page Title directive supplies a title to be printed at the top of each page
of the source listing. The List Source directive restores printing of the
source listing when printing has been inhibited by a No Source List directive.
The Page Eject directive causes the assembler to print 2 heading and con-
tinue the source listing on a new page.

5.2.1 PROGRAM IDENTIFIER (IDT)

IDT assigns a name to the program. An IDT directive must precede any
machine instruction or assembler directive that results in object code. Use
of the label field is optional. When a label is used, the current value of the
location counter is assigned to the label. The operator field contains IDT,
The operand field contains the program name, a character string of up to
eight characters. When a character string of more than eight characters is
entered, the assembler prints a truncation error message, and retains the
first eight characters as the program name. The comment field is optional.

5.3 Digital Systems Division

@@ 943441-9701

The following example shows an IDT directive:
IDT 'CONVERT!

The directive assigns the name CONVERT to the program to be assembled.
The program name is printed in the source listing as the operand of the IDT
directive, but does not appear in the page heading of the source listing. The
program name is placed in the object code, but serves no purpose during the
assembly,

5.2.2 PAGE TITLE (TITL)

TITL supplies a title to be printed in the heading of each page of the source
listing. When a title is desired in the heading of the first page of the source
listing, a TITL directive must be the first source statement submitted to the
assembler. This directive is not printed in the source listing. Use of the
label field is optional. When a label is used, the current value of the loca-
tion counter is assigned to the label. The operator field contains TITL. The
operand field contains the title, a character string of up to 50 characters,
When more than 50 characters are entered, the assembler retains the first
50 characters as the title, and prints a truncation error message, The com-
ment field is optional, but the assembler does not print the comment.

The following example shows a TITL directive:
TITL '"s« REPORT GENERATOR !

The directive causes the title * REPORT GENERATOR ** to be printed

in the page headings of the source listing. When a TITL directive is the first
source statement in a program, the title is printed on all pages until another
TITL directive is processed. Otherwise, the title is printed on the next page
after the directive is processed, and on subsequent pages until another TITL
directive is processed.

5.2.3 LIST SOURCE (LIST)

LIST restores printing of the source listing. This directive is required only
when a No Source List directive is in effect, to cause the assembler to re-
sume listing. This directive is not printed in the source listing. Use of the
label field is optional. When a label is used, the current value of the loca-
tion counter is assigned to the label. The operator field contains LIST. The
operand field is not used. Use of the comment field is optional, but the as-
sembler does not print the comment.

The following example shows a LIST directive:
LIST

The directive causes the source listing to be resumed with the next source
statement.

5-4 Digital Systems Division

—rﬂ 943441-9701

5.2.4 NO SOURCE LIST (UNL)

UNL inhibits printing of the source listing. The UNL directive is not printed
in the source listing. Use of the label field is optional. When a label is
used, the current value of the location counter is assigned to the label. The
operator field contains UNL. The operand field is not used. Use of the com-
ment field is optional, but the assembler does not print the comment.

The following example shows UNL directive:
UNL

The directive inhibits printing of the source listing. Use of the UNL direc-
tive to inhibit printing reduces assembly time and the size of the source list-
ing.

5.2.5 PAGE EJECT (PAGE)

PAGE causes the assembler to continue the source program listing on a new
page. The PAGE directive is not printed in the source listing. Use of the
label field is optional. When a label is used, the current value of the loca-
tion counter is assigned to the label. The operator field contains PAGE.
The operand field is not used. Use of the comment field is optional, but the
assembler does not print the comment.

The following example shows a PAGE directive:
PAGE

The directive causes the assembler to begin a new page ¢f the source listing.
The next source statement is the first statement listed on the new page. Use
of the Page directive to begin new pages of the source listing at the logical
divisions of the program improves documentation of the program.

5,3 DIRECTIVES THAT INITIALIZE CONSTANTS

Four assembler directives assign initial values to constants. The Initialize
Byte directive initializes one or more bytes of memory with eight-bit two's
complement numbers. The Initialize Word directive initializes one or more
words of memory with 16-bit two's complement numbers. The Initialize Text
directive places ASCII characters in successive bytes of memory. The De-
fine Assembly-Time Constant directive assigns a value to a symbol.

5.3.1 INITIALIZE BYTE (BYTE)

BYTE places one or more values in one or more successive bytes of memory.
Use of the label field is optional. When a label is used, the location at which
the assembler places the first byte is assigned to the label. The operator
field contains BYTE. The operand field contains one or more expressions
separated by commas. The expressions must contain no symbols that are

5-5 Digital Systems Division

[¢]
{@@ 943441-9701

not previously defined and no external references. The assembler evaluates
each expression and places the value in a byte as an eight-bit two's comple-
ment number. When truncation is required, the assembler prints a trunca-
tion error message and places the rightmost portion of the value in the byte.
The comment field is optional.

The following example shows a BYTE directive:
KONS BYTE >F+1,-1,'D'-'=',0,'AB'-'AA'

The directive initializes five bytes, starting with a byte at location KONS.
The contents of the resulting bytes is 00010000, 11111111, 00000111,
00000000, and 00000001,

5.3.2 INITIALIZE WORD (DATA)

DATA places one or more values in one or more successive words of mem-
ory. The assembler advances the location counter to a word boundary (even)
address. Use of the label field is optional. When a label is used, the loca-
tion at which the assembler places the first word is assigned to the label.
The operator field contains DATA. The operand field contains one or more
expressions separated by commas. The assembler evaluates each express-
ion and places the value in a word as a sixteen-bit two's complement number.
The comment field is optional.

The following example shows a DATA directive:
KONS1 DATA 3200, 1+'AB', -'AF',>F4A0,'A

The directive initializes five words, starting with a word at location KONSI .
The contents of the resulting words are OC80 6 4143 BEBA16, F4A016,
and 0041;,. Had the location counter contents been O 8F16 prior to
processing this directive, the value assigned to KONS! would be 011047¢-

5.3.3 INITIALIZE TEXT (TEXT)

TEXT places one or more characters in successive bytes of memory. The
assembler negates the last character of the string when the string is pre-
ceded by a minus (-) sign (unary minus). Use of the label field is optional.
When a label is used, the location at which the assembler places the first
character is assigned to the label. The operator field contains TEXT. The
operand field contains a character string of up to 52 characters, which may
be preceded by a unary minus sign. The comment field is optional,

The following example shows a TEXT directive:
MSG1 TEXT 'EXAMPLE' MESSAGE HEADING

The directive places the eight-bit ASCII representations of the characters in
successive bytes. When the location counter is on an even address, the re-
sult, in hexadecimal representation, is 4558, 414D, 504C, and 45XX. XX
represents the contents of the rightmost byte of the fourth word, which are

5-6 Digital Systems Division

(o]
(@ 943441-9701

determined by the next source statement.. The label MSG1 is assigned the
value of the first byte address in which 45 is placed. Aaother example,

showing the use of a unary minus, is as follows:

MSGZ TEXT -'""NUMBER"

When the location counter is on an even address, the result, in hexadecimal
representation, is 4E55, 4D42, and 45AE. The label MSG2 is assigned the
value of the byte address in which 4E is placed.

5.3.4 DEFINE ASSEMBLY-TIME CONSTANT (EQU)

EQU assigns a value to a symbol. The label field contaias the symbol. The
operator field contains EQU. The operand field contains an expression in

which all symbols have been previously defined. Use of the comment field
is optional.

The following example shows an EQU directive:
RO EQU 0 WORKSPACE REGISTER 0

The directive assigns an absolute value to the symbol RO, making RO avail-

able to use as a workspace register address. Another example of an EQU
directive is:

TIME EQU HOURS

The directive assigns the value of previously defined symbol HOURS to sym-
bol TIME. When HOURS appears in the label field of a machine instruction
in a relocatable block of the program, the value is a relecatable value. The
two symbols may be used interchangeably.

5.4 DIRECTIVES THAT LINK PROGRAMS

Two assembler directives provide links between programs that are assembled
separately. The External Definition directive makes one or more symbols

in a program available to other programs. The External Reference directive
provides access to one or more symbols from other programs for use in a
program. The programs may be linked and executed as one program,

5.4.1 EXTERNAL DEFINITION (DEF)

DEF makes one or more symbols available to other prog-ams for reference.
The use of the label field is optional. When a label is used, the current value
of the location counter is assigned to the label. The operator field contains
DEF. The operand field contains one or more symbols, separated by commas,
to be defined in the program being assembled. The comraent field is optional.

The following example shows a DEF directive:

DEF ENTER, ANS

5-7 Digital Systems Division

@ 943441-9701

The directive causes the assembler to include symbols ENTER and ANS in
the object code so that these symbols are available to other programs. When
the DEF directive does not precede the source statements that contain the
symbols, the assembler identifies the symbols as multiply defined symbols.

5.4.2 EXTERNAL REFERENCE (REF)

REF provides access to one or more symbols defined in other programs.

The use of the label field is optional. When a label is used, the current
value of the location counter is assigned to the label. The operator field
contains REF. The operand field contains one or more symbols, separated
by commas, to be used in the operand field of a subsequent source statement.
The comment field is optional.

The following example shows a REF directive:
REF ARG1,ARG2

The directive causes the assembler to include symbols ARG1 and ARG2 in
the object code so that the corresponding addresses may be obtained from
other programs.

NOTE

An external reference will not be inserted
by the loader at absolute location 0.

5.5 MISCELLANEOUS DIRECTIVES

Two miscellaneous directives are available, The Define Extended Operation
directive assigns a symbol for an extended operation. The Program End
directive terminates the source program.

5.5.1 DEFINE EXTENDED OPERATION (DXOP)

DXOP assigns a symbol to be used in the operator field to specify an extended
operation. The use of the label field is optional. When a label is used, the
current value in the location counter is assigned to the label. The operator
field contains DXOP. The operand field contains a symbol followed by a
comma and a term. The symbol assigned to an extended operation must not
be used in the label or operand field of any other statement. The assembler
assigns the symbol to an extended operation specified by the term, which
must have a value in the range of 0 to 15. The comment field is optional.

The following example shows a DXOP directive:
DXOP DADD, 13

The directive defines DADD as extended operation 13. When the assembler
recognizes the symbol DADD in the operator field, it assembles an XOP
instruction (paragraph 6.9. 1) that specifies extended operation 13. The XOP

5-8 Digital Systems Division

(o]
<Jii§} 943441-9701

instruction is described in the Model 990 Reference Marual. The following
example shows the use of the symbol DADD in a source statement:

DADD @LABEL1(4)

The assembler places the operand field contents in the T, and S fields of an
XOP instruction, and places 13 in the D field.

5.5.2 PROGRAM END (END)

END terminates the assembly. The last source statement of a program is
the END directive. When any source statements follow the END directive,
they are ignored. Use of the label field is optional. When a label is used,
the current value in the location counter is assigned to the symbol. The
operator field contains END. Use of the operand field is optional. When the
operand field is used, it contains a symbol that specifies the entry point of
the program. When the operand field is not used, no entry point is placed in
the object code. The comment field may be used only when the operand field
is used.

The following example shows an END directive:
END START

The directive causes the assembler to terminate the assembly of this pro-
gram. The assembler also places the value of START in the object code as
an entry point.

When a program executes in a stand-alone mode, and is loaded by the ROM
loader, it must supply an entry point to the loader. When no operand is in-
cluded in the END directive, and that program is loaded by the ROM loader,
the loader transfers control to the entry point of the loacer, and attempts to
load another object program.

When a program is to be loaded by the Linking Loader (1.LAL.990) the END
directive does not require an operand unless the program is to be loaded and
linked to other programs and contains the entry point for the resulting linked
program. LAL990 returns control to the first relocatahle location when the
program or programs loaded do not specify entry points. When LAI.990
loads a set of programs, and more than one of these programs specifies an
entry point, LAL990 transfers control to the last entry point it receives.

5-9/5-10 Digital Systems Division

<Jii§} 943441-9701

SECTION VI
MACHINE INSTRUCTIONS

6.1 GENERAL

This section describes the source statement formats for machine instructions.
The operation of each machine instruction is described in the Model 990 Ref-
erence Manual. There are nine formats of machine code, shown in figure
10-3. The source statement formats correspond to the mmachine code for-

mats, except that two of the machine code formats each require more than
one source statement format.

Source statements that contain machine instructions use the label field, the
operator field, the operand field, and the comment field defined in paragraph
2.1. Use of the label field is optional for machine instructions. When the
label field is used, the label is assigned the address of the machine instruc-
tion. The assembler advances the location counter to a word boundary (even
address) before assembling a machine instruction. The operator field con-
tains the mnemonic operation code of the instruction. The contents of the
operand field is defined for each format in the following paragraphs. The use
of the comment field is optional.

In the descriptions of source statement formats in the following paragraphs,
a general address is in one of the five addressing modes described in Section
III. A workspace register address is the workspace register address de-
scribed in paragraph 3.2.

6.2 FORMATI - TWO ADDRESS INSTRUCTIONS

The operand field of Format [instructions contains two general addresses
separated by a comma. The first address is the source address; the second
is the destination address. The following mnemonic operation codes use
Format [:

A MOV SOC
AB MOVB SOCB
C S SZC
CB SB SZCB

The following example shows a source statement for a Format I instruction:
SUM A @LABEL]1, *7

The label SUM refers to the location at which the assembler places the in-
struction. The operator field specifies an add words instruction. The sum
of the word at location LABELI and the word at the address contained in
workspace register 7 is placed in the address contained in workspace regis-
ter 7.

6-1 Digital Systems Division

o
@ 943441-9701

6.3 FORMAT II JUMP INSTRUCTIONS

The operand field of Format II Jump Instructions contains an expression that
corresponds to a byte address. When the byte address is not on a word
boundary (an even address), the assembler subtracts one to obtain a word
boundary address. When the instruction is in an absolute block of a program,
the expression in the operand field must be absolute. When the instruction is
in a relocatable block, the expression must be relocatable.

The assembler adds two to the location counter contents and subtracts the
sum from the address corresponding to the expression in the operand field.
The assembler divides the difference by two to obtain a displacement in
words. The displacement must be in the range of -128 to +127.

The following mnemonic operation codes are Format II Jump Instructions:

JEQ JLE JNE
JGT JLT JNO
JH JMP JOC
JHE JNC JOP
JL ’

The following example shows a source statement for a Format II Jump In-
struction:

JMP BEGIN

The label field is not used. The operator field specifies a jump unconditional
instruction. Control transfers to the instruction at location BEGIN.

6.4 FORMAT II DIGITAL INPUT/OUTPUT BIT INSTRUCTIONS

The operand field of Format II Digital Input/Output Bit Instructions contains
a well-defined expression. The value of the expression is a bit address rel-
ative to a base address in workspace register 12. The value of the express-
ion must be in the range of -128 to +127. The following mnemonic operation
codes are Format II Digital Input/Output Instructions:

SBO SBZ B

The following example shows a source statement for a Format II Digital
Input/Output Instruction:

SBO 5

The label field is not used. The operator field specifies a set bit to one in-
struction. The operand field specifies bit 5 relative to a base address in
workspace register 12. Assuming that the base address has been set to the
lowest address of a group of CRU bits connected to a digital input/output ad-
dress, this instruction sets bit 5 of the group to one.

6-2 Digital Systems Division

(o]
giig?} 943441-9701

6.5 FORMAT III - LOGICAL INSTRUCTIONS

The operand field of Format III instructions contains a general address fol-
lowed by a comma and a workspace register address. The general address
is the source address. The workspace register address is the destination
address. The following mnemonic operation codes use IN'ormat III:

COC CzZC XOR

The following example shows a source statement for a Format III instruction:
COMP XOR @LABELS8(3),5

The label COMP refers to the location at which the assembler places the in-
struction. The operator field specifies an exclusive OR instruction. The
result of an exclusive OR operation between the contents of a word at loca-
tion LABELS indexed by workspace register 3 and the ccntents of workspace
register 5 is placed in workspace register 5.

6.6 FORMAT IV - CRU INSTRUCTIONS

The operand field of Format IV instructions contains a general address fol-

lowed by a comma and a term. The general address is the memory address
from which or into which bits will be transferred. The CRU address for the
transfer is the contents of workspace register 12. The term is the number

of bits to be transferred, and must have a value in the range of 0 to 15 (a0

value transfers 16 bits). The following mnemonic operation codes use For-
mat IV:

LDCR STCR
The following example shows a source statement for a Format IV instruction:
LDCR *6+, 8

The label field is not used. The operator field specifies a load communica-
tion register instruction. The instruction loads a byte firom the byte address
in workspace register 6 into the CRU at the location in workspace register
12, and increments the address in workspace register 6 by one.

6.7 FORMAT V - REGISTER SHIFT INSTRUCTIONS

The operand field of Format V instructions contains a workspace register
address followed by a comma and a term. The contents of the workspace
register are shifted a number of bit positions specified by the term. When
the term equals zero, the shift count must be placed in bits 12-15 of work-
space register 0. The value of the term must be in the range of 0 to 15,
The following mnemonic operation codes use Format V:

SLA SRC SRL
SRA

The following example shows a source statement for a Format V instruction:

SLA 6,4

6-3 Digital Systems Division

%@? 943441-9701

The label field is not used. The operator field specifies a shift left arithmetic
instruction. The instruction shifts the contents of workspace register 6 to
the left four bit positions.

6.8 FORMAT VI - SINGLE ADDRESS INSTRUCTIONS

The operand field of Format VI instructions contains a general address. The
following mnemonic operation codes use Format VI:

ABS DEC NEG

B DECT SETO
BL INC SWPB
BLWP INCT X
CLR INV

The following example shows a source statement for a Format VI instruction:
CNT INC 7

The label CNT refers to the location at which the assembler places the in-
struction. The operator field specifies an increment instruction. The in-
struction adds one to the contents of workspace register 7 and places the sum
in workspace register 7.

6.9 FORMAT VII - CONTROL INSTRUCTIONS

Format VII instructions require no operand field. The following mnemonic
operation codes use Format VII;

CKOF IDLE RSET
CKON LREX RTWP

The following example shows a source statement for a Format VII instruction:
RTWP RETURN TO MAIN PROGRAM .

The label field is not used. The operator field specifies a return from inter-
rupt subroutine instruction. The comment field follows the operator field
because no operand field is required.

6.10 FORMAT VIII - IMMEDIATE INSTRUCTIONS

The operand field of Format VIII instructions contains a workspace register
address followed by a comma and an expression. The workspace register
address is the destination address, and the expression is the immediate op-
erand. The following mnemonic operation codes use Format VIII:

Al LI
ANDI ORI
CIl

6-4 Digital Systems Division

q{i@?} 943441-9701

The following example shows a source statement for a Format VIII instruc-
tion: ‘

ANDI 4,>000F

The label field is not used. The operator field specifies an AND immediate
instruction. The instruction performs an AND operation with the contents
of workspace register 4 and the number 000F]¢. The eifect is to mask out
the 12 leftmost bits of the workspace register contents.

Two Format VIII instructions require only an expression in the operand field.
The expression is the immediate operand. The destination address is im-
plied in the name of the instruction. The following mne:monic operation codes
use this modified Format VIII:

LIMI LWPI

Another example shows this modified Format VIIIL
LWPI WRKI

The label field is not used. The operator field specifies a load workspace
pointer immediate instruction. The location that corresponds to label WRK]1

is placed in the WP register.

Two other Format VIII instructions require only a workspace register ad-
dress in the operand field. The workspace register address is the destina-
tion address. The source is implied in the name of the instruction. The
following mnemonic operation codes use this modified Format VIII:

STST STWP

The following example shows a source statement for a S.ore Workspace
Pointer instruction:

STWP 4

The label field is not used. The operator field specifies a store workspace
pointer instruction. The operand field specifies workspice register 4. The
instruction transfers the contents of the workspace pointer into workspace
register 4.

6.11 FORMAT IX - EXTENDED OPERATION INSTRUC TION

The operand field of a Format IX Extended Operation instruction contains a
general address and a term. The general address is the address of the op- -
erand for the extended operation. The term specifies the extended operation
to be performed and must be in the range of 0 to 15. Th= mnemonic opera-
tion code is XOP.

The following example shows a source statement for a Format IX Extended
Operation instruction:

XOP (@LABEL(4),12

6-5 Digital Systems Division

(o]
%@ 943441-9701

The label field is not used. The operator field specifies an extended opera-
tion instruction. The operand field specifies that extended operation 12 is to
be performed with the contents of a word at location LABEL indexed by work-
space register 4. The DXOP directive (paragraph 5.5.1) can be used to de-
fine an extended operation.

6.12 FORMAT IX MULTIPLY AND DIVIDE INSTRUC TIONS

The operand field of Format IX Multiply and Divide instructions contains a
general address followed by a comma and a workspace register address.

The general address is the address of the multiplier or divisor, and the
workspace register address is the address of the workspace register that
contains the multiplicand or dividend. The workspace register address is
also the address of the first of two workspace registers to contain the result.
The mnemonic operation codes are MPY and DIV,

The following example shows a source statement for a Format IX Multiply
instruction:

MPY (@ACC,9

The label field is not used. The operator field specifies a multiply instruc-
tion. The operand field instruction multiplies the contents of a word at lo-

cation ACC by the contents of workspace register 9, and places the product
in workspace registers 9 and 10.

6-6 Digital Systems Division

o]
q_[@@ 943441-9701

SECTION VII
PSEUDO-INSTRUCTIONS

7.1 GENERAL

The Model 990 Assembly Language includes two pseudo-instructions, which
are predefined symbols that cause the assembler to assemble certain ma-
chine instructions with specific operands. A pseudo-instruction is a conven-
ient way to code an operation that is actually performed by a machine instruc-
tion. The pseudo-instructions are the No Operation and the Return instruc-
tions.

7.2 NO OPERATION (NOP)

NOP places a machine instruction in the object code which has no effect on
execution of the program. Use of the label field is optional. When the label
field is used, the label is assigned the location of the instruction. The oper-
ator field contains NOP. The operand field is not used. Use of the comment
field is optional.

Enter the NOP pseudo-instruction as shown in the following example:
MOD NOP

Location MOD contains a NOP pseudo-instruction when the program is loaded.
Another instruction may be placed in location MOD durirg execution to im-
plement a program option. The assembler supplies the same object code as
if the source statement had contained the following:

MOD JMP $+2

7.3 RETURN (RT)

RT places a machine instruction in the object code to return control to a
calling routine from a subroutine. Use of the label field is optional. When
the label field is used, the label is assigned the location of the instruction.
The operator field contains RT. The operand field is nou used.

Use of the comment field is optional. Enter the RT pseudo-instruction as
shown in the following example:

RT

The assembler supplies the same object code as if the scurce statement had
contained the following:

B %11

When control is transferred to a subroutine by execution of a BL instruction,
the link to the calling routine is stored in workspace register 11. An RT

7-1 Digital Systems Division

(,r@@ 943441-9701

pseudo-instruction returns control to the instruction following the BL instruc-
tion in the calling routine.

7-2 Digital Systems Division

[e]
(@ 943441-9701

SECTION VIII
SUBROUTINE CALLING AND RETURN

8.1 COMMON WORKSPACE SUBROUTINE

One type of subroutine supported by the Model 990 Assembly Language uses
the same set of workspace registers that the calling routine uses. The BL
instruction branches to a common workspace subroutine, and stores the re-
turn address in workspace register 11. The subroutine uses an RT pseudo-
instruction to return control to the calling routine at the instruction follow-
ing the BL instruction. A common workspace subroutine may use other
branch instructions as appropriate to transfer control to other points in the
calling routine or in other subroutines.

8.2 CONTEXT SWITCH SUBROUTINES

Another type of subroutine supported by the Model 990 Assembly Language
consists of hardware interrupt subroutines, extended operation subroutines,
and user subroutines. The method of branching to and returning from these
subroutines is similar, and is called a context switch. 'The subroutine has a
workspace which becomes the active workspace when the subroutine receives
control. The environment of the calling or interrupted routine is stored.
When the subroutine returns control to the calling or interrupted routine,

the calling environment is restored.

When the user writes a hardware interrupt subroutine, he must place the
workspace pointer and the entry point in the pair of memory words assigned
to the level of the interrupt. Multiply the interrupt level number by four to
obtain the address of this pair of memory words. The subroutine workspace
pointer must be placed in the first word, and the subroutine entry point must
be placed in the second word. The workspace pointer of the interrupted pro-
gram is.stored in workspace register 13 of the subroutine workspace. The
return address is stored in workspace register 14. The Status Register
contents at interrupt time is stored in workspace register 15. The sub-
routine returns control to the interrupted program at the interrupt point
with an RTWP instruction. The instruction restores the interrupted environ-
ment as it returns control to the instruction following the interrupt point.

When the user writes an extended operation subroutine, he must place the
workspace pointer and the entry point in the pair of memory words assigned
to the extended operation. An extended operation is specified by a number,

0 to 15, in the XOP instruction. Multiply the number by four and add the
product to 40, ,. This is the address of the pair of words assigned to the ex-
tended operation. The subroutine workspace pointer must be placed in the
first word, and the subroutine entry point must be placed in the second word.
The use of workspace registers described in the preceding paragraph applies.
An extended operation subroutine is entered by executing an XOP instruction

8-1 Digital Systems Division

S

943441-9701

that specifies the operation. The subroutine returns control to the calling
routine with an RTWP instruction. The instruction restores the calling
routine environment and returns control at the instruction following the XOP
instruction.

A user context switch subroutine is entered by a BLWP instruction. The op-
erand of the instruction is the address of a pair of words that contain the sub-
routine workspace pointer and the subroutine entry point. An RTWP instruc-
tion restores the environment of the calling program and returns control at
the instruction following the BLWP instruction. The use of workspace reg-
isters is the same as previously described for a hardware interrupt subrou-
tine. '

The details of the context switch resulting from execution of a BLWDP instruc-
tion are shown in figure 8-1. Context switching because of an interrupt or
an XOP instruction is similar to this example.

8-2 Digital Systems Division

SFo

943441-9701
BEFORE EXECUTION OF A BLWP AFTER EXECUTION OF
: - INSTRUCTION AT LOCATION 300 THE *NSTRUCTION
wp WP
E & 100 RO 100
PC
102 R1 ‘ 102
300 700
104 R2 ‘ 104
106 R3 106
108 R4 108
10A 220 RS 10A 220
10C 700 R6 10C 700
4; 2 L ~
220 20 RO
222 222 R1
T L % %
23A 23A 100 R13—0LD WP
23C 23c 302 R14—-0OLD PC
23E 23E XXXX R15-0LD ST
300 BLWP R5 300 BLWP R5
302 302
~ -Ar ;js 9?
700 SUBROUTINE >700 SUBROUTINE
702 702
¥ ¥ = %
RTWP RTWP
et -
(A)128441

Figure 8-1. Context Switching

8-3/8-4 Digital Systems Division

{@ 943441-9701

SECTION IX
PROGRAM MODULES

9.1 GENERAL

Since the assembler includes directives that generate the information required
to link program modules, it is not necessary to assemble an entire program
in the same assembly. A long program may be divided into separately as-
sembled modules to avoid a long assembly or to reduce the symbol table size.
Also, modules common to several programs may be combined as required.
The linking loader links the programs as it loads them, so that the loaded
program functions as if it had been assembled in a single assembly. The
following paragraphs define the linking information that must be included in

a program module.

9.2 EXTERNAL REFERENCE DIRECTIVE

Each symbol from another program module must be placed in the operand
field of an REF directive in the program module that recuires the symbol.
The IDT character string of each program module that defines one or more
of these symbols must also be placed in the operand field of an REF direc-
tive within one of the program modules being linked. The first module may
contain an RET directive that contains the IDT character strings of all mod-
ules to be linked.

9.3 EXTERNAL DEFINITION DIRECTIVE

FEach symbol defined in a program module and required »y one or more
other program modules must be placed in the operand ficld of a DEF direc-
tive.

9.4 PROGRAM IDENTIFIER DIRECTIVE

Subsequent program modules after the first module loaded by the linking
loader must include an IDT directive. The first six characters of the IDT
character string must be unique with respect to other IDT character strings
submitted to the loader during the loading of the program.

9.5 LINKING PROGRAM MODULES

The linking loader builds a list of symbols from REF directives as it loads
the program modules. The loader matches symbols fromm DEF directives
to the symbols in the reference list., The loader also mitches the first six
characters of IDT character strings with symbols in the reference list.

When object code for several program modules is on the same cassette or
paper tape, and a program that requires only some of these modules is being

9-1 Digital Systems Division

o]
{_@@ 943441-9701

loaded, the loader ignores those program modules whose IDT character
strings do not appear in the reference list of the loader. This allows pro-
gram modules from several cassettes or paper tapes to be loaded without
requiring the user to locate the required modules on the cassettes or paper
tapes. However, it requires that all referencing modules precede the mod-
ules they reference in the sequence in which the loader loads the modules.

9-2 Digital Systems Division

o
(@ 943441-9701

SECTION X
ASSEMBLER OUTPUT

10.1 SOURCE LISTING

The Model 990 Computer Assembler prints a source listing that shows the
source statements and the resulting object code. Appendix B includes a list-
ing example.

10.1.1 LISTING FORMAT

Each page of the source listing has a title line at the top of the page. Any
title supplied by a TITL directive is printed on this line, and a page number
is printed to the right of the title area. The printer skips a line below the
title line, and prints a line for each source statement listed. The line for
each source statement contains a source record number. a location counter
value, object code assembled, and the source statement as entered. When a
source statement results in more than one word of object code, the assem-
bler prints the location counter value and object code on a separate line fol-
lowing the source statement for each additional word of object code. The
source listing lines for a machine instruction source statement are shown in
the following example:

0018 0156 C820 MOV @INIT4+3, @3
0158 012B'
015A 0003

The source record number, 0018 in the example, is a four-digit decimal
number. Source records are numbered in the order in which they are entered,
whether they are listed or not. The TITL, LIST, UNL, and PAGE directives
are not listed, and source records between a UNL directive and a LIST di-
rective are not listed. The difference between source record numbers
printed indicates how many source records are not listec.

The next field on a line of the listing contains the location counter value, a
hexadecimal value. In the example, 0156 is the location counter value. Not
all directives affect the location counter, and those that do not affect the lo-
cation counter leave this field blank. Specifically, of the directives that the
assembler lists, the IDT, REF, DEF, DXOP, EQU, and END directives
leave the location counter field blank.

The third field contains the hexadecimal representation of the object code
placed in the location by the Assembler, C820 in the example. The apostro-
phe following the third field of the second line in the examniple indicates that
the contents, 012B, is relocatable. All machine instructions and the BYTE,
DATA, and TEXT directives use this field for object code., The EQU direc-
tive places the value corresponding to the label in the object code field.

10-1 Digital Systems Division

[e]
(@ 943441-9701

The third field may contain two or four hyphens (-) instead of hexadecimal
digits. This occurs when a forward reference determines the values of these
digits. Later, when the forward reference is defined, the assembler prints
an additional line in the listing following the statement that defines the for-
ward reference. This line contains the location being resolved, two aster-
isks (%), and the contents. An error-free listing will include such a line
for each location previously printed with hyphens in the contents.

The fourth field contains the first 52 characters of source statement as sup-
plied to the assembler. Spacing in this field is determined by the spacing in
the source statement. The four fields of source statements will be aligned
in the listing only when they are aligned in the same character positions in
the source statements or when tag characters are used.

The machine instruction used in the example specifies the symbolic memory
addressing mode for both operands. This causes the instruction to occupy
three words of memory, and three lines of the listing. The object code
corresponds to the operands in the order in which they appear in the source
statement.

When object code is punched on the ASR33, the object code is printed as it is
punched. Since the listing is being printed on the same device, lines of ob-
ject code are printed between the lines of the source listing.

10.1.2 ERROR CODES

The assembler prints an error code on a separate line of the listing when it
detects an error. The error code is printed in the following formart:

*## ERR 1 - LD Q1ZE +#

The error code is 1 and the error is at location 012E1¢4. Error codes are
listed in table 10-1. This particular message was printed at the end of the
assembly and identified an undefined symbol at the specified location. The
statement that contained the undefined symbol was a statement that allows
forward references. The symbol was therefore not undefined until the as-
sembler recognized an END statement without having recognized a statement
defining the symbol. The error code line may be printed at any point, from
the line immediately following the statement in error to lines following the
END statement.

The assembler can accommodate a minimum of 150 symbols in a 4K memory
configuration. When the assembler is unable to continue because the area

of memory available for symbols and forward references has been filled, the
assembler prints the following message:

sk sk AB OR T skesk

The user may divide the program into two or more modules and assemble
them separately. Considerations for properly linking these modules are

10-2 Digital Systems Division

0

943441-9701

described in Section IX. Alternatively, the user may shorten the symbols in
the program and reassemble. Since shorter symbols ute less space in the
symbol table, the capacity of the symbol table is increased by using short
symbols.,

Following the last statement or error message, the ass:mbler prints unde-
fined symbols, if there are any, one symbol per line. %he undefined symbol
may correspond to one of several error codes, or may »e a symbol in a
DEF directive that does not also appear in the label field of a statement.

Table 10-1. Error Codes

Code Description

1 Undefined symbol. A symbol in the operard field of the
statement corresponding to the error location does not ap-
pear in the label field of a source statemert, or in the op-
erand field of a REF directive.

2 Syntax error. The statement correspondirg to the error
location contains a syntax error.

3 lllegal external reference. The statement corresponding to
the error location contains an external refecrence (and an
arithmetic operator) in an expression or an external refer-
ence to be placed in a field smaller than 1¢ bits.

4 Truncation error. The statement corresponding to the er-
ror location contains a number that is too large or a char-
acter string that is too long. The number may be the re-
sult of evaluating an expression. Relocata»ility of a term
or expression may be in error.

5 Multiply defined symbol. A symbol in the statement corre-
sponding to the error location has been previously refer-
enced or defined.

6 Unrecognizable operator. Contents of the operator field of
the statement corresponding to the error location is not a
mnemonic operation code, a directive, or a name defined
as an extended operation.

7 Illegal forward reference. A symbol in the statement cor-
responding to the error location that should have been pre-
viously defined is not previously defined.

8 [llegal term. A term has an illegal value less than zero or
greater than 15.

10-3 Digital Systems Division

[o]
<Jii§} 943441-9701

The last line of the listing is an error summary as follows:

oons ERS

In an error-free listing the statement is printed with four zeros as the num-
ber of errors.

Figure 10-1 shows an example of a source listing with errors and an unde-
fined symbol. The error messages shown precede the statement in which
the error was detected because these errors were detected as the statements
were read. Following the last source line, the undefined symbol is printed.
The symbol MULT in the DEF directive is undefined because it does not ap-
pear in the label field of a source statement. The error summary line fol-
lows the list of undefined symbols.

10.2 OBJECT CODE

The Assembler produces object code that may be linked to other object code
modules or programs and loaded into the Model 990 computer, or may be
loaded into the computer directly. Object code consists of records contain-
ing up to 71 ASCII characters each, The format, described in the next para-
graph, permits correction using a keyboard device. Re-assembly to correct
errors is unnecessary. An example of output code is included in appendix B.

10.2.1 OBJECT CODE FORMAT

The object record consists of a number of tag characters, each followed by
one or two fields as defined in table 10-2. The first character of a record
is the first tag character, which tells the loader which field or pair of fields
follows the tag. The next tag character follows the end of the field or pair
of fields associated with the preceding tag character. When the assembler
has no more data for the record, the assembler writes the tag character 7
followed by the check sum field, and the tag character F, which requires
no fields. The assembler then fills the rest of the record with blanks, and
begins a new record with the appropriate tag character.

Tag character 0 is followed by two fields, and appears at the beginning and
end of the object code file., The first field is zero in the first occurrence of
tag character 0 and is the number of bytes of relocatable code in the last
occurrence., In the first occurrence the second field contains the program
identifier assigned to the program by an IDT statement. When no IDT state-
ment is entered, the second field contains blanks. In the last occurrence of
the tag character 0, the second field contains blanks. The loader uses the
program identifier to identify the program, and the number of bytes of re-
locatable code to determine the load bias for the next module or program.

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is
used when the entry address is absolute. Tag character 2 is used when the
entry address is relocatable. The hexadecimal field contains the entry ad-
dress. One of these tags may appear at the end of the object code file. The

10-4 Digital Systems Division

943441-9701

AL TRN Y
TOOE

SO g

S0

S D
AR}
DRI s
WYL
Wl 4
D01
D014
el s
D01E
IRIn R
D070

T A
PR PP)

AT e
IXTabr
SULLT

A0z

ERF 5

ROR Y
AR AT
STV

[T e

IRTATAT

OO
WL
GO1E
T I 8
RN
DalE

I N
AT
IHI]E

~ L

[ATRTR N}
|_‘u_)x-) -
NIRRT

2

MG

[T

(IR

11=-

P—
sERR

RN} 1 (AN

E144

f-_h_c 1 4 #a] 10OE

a4

OV

sl

ALY

GO A

DT

il s] S0E

|hi‘[r-t—vb1 -|U

EFRS

Figure 10-1.

[AlulnIn

IR TRTATN

=

WiE

W4

MENT

oM

PHZINED

MPR

RNESS

T
LEF

OXOF
BE=
DAaThH

BEZ
M
JUT
Mz
My
LT
Ry
T
JAER
o
R
MOV
INCT
M
LI

FTWF
Rt

o
1=

e]

B

MEDG

MY

JMF
ENI

ML
MULT, MENT, WZ

FMLLT 30

11 ':'.::l ;:l

ZiD
#11, %11
FICINE
#1444, 0
#0, 1
MFFR
*11 1
NEH
4,5
MNEG

1, #0

i

T HO
T, 0
S
o

EMENT+10

1
CioM

Source Listing with Error Messages

AT

10-5

Digital Systems Division

943441-9701

e

Table 10-2. Object Output Tags Supplied by the Assembler

Tag Hexadecimal Field . .
Character (Four Characters) Second Field Meaning
0 Length of all relo- | 8-character Pro- Program Start
catable code gram Identifier
1 Entry address None Absolute Entry
Address
2 Entry address None Relocatable Entry
Address
3 Location of last 6-character sym- External Reference
appearance of bol last used in relo-
symbol catable code
4 Location of last 6-character sym- |External Reference
appearance of bol last used in abso-
symbol lute code
5 Location 6-character sym- |Relocatable Ex-
bol ternal Definition
6 Location 6-character sym- Absolute External
bol Definition
7 Checksum for None Checksum
current record
9 Load address None Absolute load ad-
dress
A Load address None Relocatable load
address
B Data None Absolute data
C Data None Relocatable data
None None End-of-recerd

associated field is used by the loader to determine the entry point at which
execution starts when the loading is complete.

Tag characters 3 and 4 are used for external references.

Tag character 3

is used when the last appearance of the symbol in the second field is in re-

locatable code.
bol is absolute code.

appearance.

Tag character 4 is used when the last appearance of the sym-
The hexadecimal field contains the location of the last

10-6

Digital Systems Division

e@ 943441-9701

The symbol in the second field is the external reference. Both fields are
used by the linking loader to provide the desired linking to the external ref-
erence.

For each external reference in a program, there is a tag character in the
object code, with a location, or an absolute zero, and the symbol that is
referenced. When the object code field contains absolute zero, no location
in the program requires the address that corresponds to the reference (an
IDT character string, for example). Otherwise, the address corresponding
to the reference will be placed in the location specified in the object code by
the linking loader. The location specified in the object -ode similarly con-
tains absolute zero or another location. When it contains absolute zero, no
further linking is required. When it contains a location. the address cor-
responding to the reference will be placed in that address by the linking
loader. The location of each appearance of a reference in a program con-
tains either an absolute zero or another location into which the linking loader
will place the referenced address.

Figure 10-2 illustrates the chain of the external referen-e EXTR. The ob-
ject code contains the following tag and fields:

4CO00EEXTR

At location COOE, the address COOA points to the preceding appearance of

the reference. The chain includes both absolute and rel-catable addresses
and consists of absolute addresses COOE, C00A, C006, and C002, relocatable
addresses 029E, 029A, and 0298, absolute addresses BGOE, BOOA, B0O06,
and B002, and relocatable addresses 0290 and 028E. Eszch location points to
the preceding appearance, except for location 028E, which contains zero.

The zero identifies location 028E as the first appearance of EXTR, the end

of the chain.

Tag characters 5 and 6 are used for external definitions. Tag character 5
is used when the location is relocatable. Tag character 6 is used when the
location is absolute. Both fields are used by the linking loader to provide
the desired linking to the external definition. The second field contains the
symbol of the external definition.

Tag character 7 precedes the checksum, which is an error detection word.
The checksum is formed as the record is being written. It is the two's com-
plement of the sum of the 8-bit ASCII values of the characters of the record
from the first tag of the record through the checksum tas, 7.

Tag characters 9 and A are used with load addresses for data that follows.
Tag character 9 is used when the load address is absolue. Tag character

A is used when the load address is relocatable. The heradecimal field con-
tains the address at which the following data word is to he loaded. A load
address is required for a data word that is to be placed n memory at some
address other than the next address. The load address ‘s used by the loader.

10-7 Digital Systems Division

943441-9701

TE=T FROGRAM

JETn LAY
LO0E
B85
RGO
SOOE

j:,' l':_h':\ l‘:\
CO00

O TR e
CO04
IRAIRYS
OO
ORI AT
DR T TN
ZOoOE

%

CEmz0

D470
sO0s
Doz
BO0A
AR

EOOS

iy

Tt it

IZO08

e A

O
(IR IATY

Figure 10-2,

DEOTIO DO

4k

FAGE 0007

DEMONSTRATE EXTERNSL REFERENCE LINKING

REF
RIJRI
Moy
XOR

ADIRG
LIVE

ELWF
Al
MF'Y
RORG
MY
XOR

AOR
LDCF:
ELWF

Al

MFY

External Reference Example

EXTR

REXTR,

[

REXTR, =

HROO0

REXTR., &

REXTR

= EXTR

REXTR. =

REXTR, REXTR

REXTR,

s

BEXTH, |

REXTR

= EXTR

REXTR, Z

10-8

Digital Systems Division

(o]
%ﬁﬁ} 943441-9701

Tag characters B and C are used with data words. Tag ~haracter B is used
when the data is absolute; an instruction word or a word that contains text
characters or absolute constants, for example. Tag character C is used for
a word that contains a relocatable address. The hexadecimal field contains
the data word. The loader places the data word in the memory location
specified in the preceding load address field, or in the memory location that
follows the preceding data word.

Tag character F indicates the end of a record. It may be followed by blanks.
The last record of an object code file has a colon (:) in the first character
position of the record, followed by blanks.

10.2.2 MACHINE LANGUAGE FORMAT

Some of the data words preceded by tag character B represent machine in-
structions. Corparing the source listing with the object code fields identi-
fies the data words that represent machine instructions. Figure 10-3 shows
the manner in which the bits of the machine instructions relate to the oper-
ands in the source statements for each format of machin> instructions.

10.3 PROCEDURES FOR CHANGING OBJECT CODE

To correct object code without reassembling a program, change the object
code by changing or adding one or more records. One additional tag char-
acter is recognized by the loader to permit specifying a load point. The ad-
ditional tag character, D, may be used in object recordt changed or added
manually.

Tag character D is followed by a load bias (offset) value The loader uses
this value instead of the load bias computed by the loade r itself. The loader
adds the load bias to all relocatable entry addresses, external references,
external definitions, load addresses, and data. The effect of the D tag char-
acter is to specify the area of memory into which the loader loads the pro-
gram.

Correction of object code may require only changing a character or a word
in an object code record. The user may duplicate the record up to the char-
acter or word in error, replace the incorrect data with the correct data, and
duplicate the remainder of the record up to the 7 tag character. Because the
changes the user has made will cause a checksum error when the checksum
is verified as the record is loaded, the user must change the 7 tag character
to F.

When more extensive changes are required, the user may write an additional
object code record or records. Begin each record with i« tag character 9 or
A followed by an absolute load address or a relocatable 1oad address, re-
spectively. This may be an address into which an existing object code record
places a different value. The new value on the new reco:d will override the

10-9 Digital Systems Division

o}

/]

943441-9701

FORMAT 0 1 2 3 4 5 6 7 8 o9 10 11 12 13 14 15
I
I 1 1 X
1 1 o x fwsB T D TS s
1) 1 X
11, 1X o o 1 X X X
1
v 0 0 1 1 0 X NUM
\a 0 o] 0 o] o 1 X X X X
11 o] 0] ¢] 1 X X X X DISP
\Y% 0 0 0 0 1 0 X X REG COUNT
VIl o 0 o o o o 1) X X X N REG
Vil o} 0 0 0 0 0 1 1 X X N N N N N N
(A)128442
X is a bit of the operation code that is either 0 or 1 according to the
specific instruction in the format
W/B is a bit of the operation code that is 0 in instructions that operate
on words, and 1l in instructions that operate on bytes
Td is a pair of bits that specify the addressing mode of the destina-
tion operand, as follows:
00 = Workspace register addressing
01 = Workspace register indirect addressing
10 = Symbolic memory addressing when D = 0
10 = Indexed memory addressing when D # 0
11 = Workspace register indirect autoincrement addressing
D is the workspace register for the destination operand
T is a pair of bits that specify the addressing mode of the source
S operand as shown for Td
S is the workspace register for the source operand
NUM is the number of bits to be transferred
DISP is a two's complement number that represents a displacement
REG is a workspace register address
COUNT 1is a shift count

Figure 10-3. Machine Instruction Formats

10-10 Digital Systems Division

{—@bp 943441-9701

other value when the new record follows the other record in the loading se-
quence. Follow the load address with a tag character B or C and an abso-
lute data word or a relocatable data word, respectively. Additional data
words preceded by appropriate tag characters may follow. When additional
data is to be placed at a non-sequential address, write znother load address
tag character followed by the load address and data words preceded by tag
characters, When the record is full, or all changes hate been written,
write tag character F to end the record.

When additional memory locations are loaded as a resuit of changes, the user
must change the hexadecimal field following the tag character 0 at the end of
the object code file. For example, when the object file written by the as-
sembler contained 100016 bytes of relocatable code, and the user has added

8 bytes in a new object record, additional memory locations will be loaded.
The user must find the 0 tag character at the end of the object code file and
change the value following the tag character from 1000 to 1008; he must also
change the 7 tag character to F in that record.

When added records place corrected data in locations previously loaded, the
added records must follow the incorrect records. The loader processes

the records as they are read from the object medium, znd the last record
that affects a given memory location determines the cortents of that location
at execution time.

The object code records that contain the external definition fields, the ex-
ternal reference fields, the entry address field, and the final program start
field must follow all other object records. An additional field or record may
be added to include reference to a program identifier. 'The tag character is
4, and the hexadecimal field contains zeros. The second field contains the
first six characters of the IDT character string. External definitions may
be added using tag character 5 or 6 followed by the relocatable or absolute
address, respectively. The second field contains the defined symbol, filled
to the right with blanks when the symbol contains less ttan six characters,.

10-11/10-12 Digital Systems Division

@ 943441-9701

APPENDIX A
CHARACTER SET

Digital Systems Division

\Qf@ 943441-9701

APPENDIX A
CHARACTER SET

The Model 990 Assembly Language uses the ASCII characiers listed in table
A-1, The table includes the ASCII code for each character, represented as

a hexadecimal value and as a decimal value. The table also shows the corre-
sponding Hollerith code. In addition to the characters listed in table A-1,
Model 990 Assembly Language defines six characters that are undefined in
ASCII. Table A-2 lists these characters, hexadecimal and decimal repre-
sentations, corresponding Hollerith codes, and the corresponding character
on the Model 29 keypunch.

Table A-1. Character Set

Hexadecimal | Decimal Character Hollerith
Value Value Cole
20 32 Space Blanik
21 33 ! 11-8-2

22 34 " 8-7

23 35 i 8-3

24 36 $ 11-8-3
25 37 % 0-8-1
26 38 & 12

27 39 ! 8-5

28 40 (12-8-5
29 41) 11-8-.5
2A 42 % 11-8-4
2B 43 + 12-8-6
2C 44 , 0-8-3
2D 45 - 11

2E 46 . 12-8-3
2F 47 / 0-1

30 48 0 0

31 49 1 1

32 50 2 2

33 51 3 3

34 52 4 4

35 53 5 5

36 54 6 6

37 55 7 7

38 56 8 8

39 57 9 9

3A 58 : 8-2

3B 59 ; 11-8-6

A-1 Digital Systems Division

{@@ 943441-9701

Table A-~1., Character Set (Continued)

Hexadecimal | Decimal Character Hollerith
Value Value , Code

3C 60 < 12-8-4
3D 61 = 8-6
3E 62 > 0-8-6
3F 63 ? 0-8-7
40 64 @ 8-4
41 65 A 12-1
42 66 B 12-2
43 67 C 12-3
44 68 D 12-4
45 69 E 12-5
46 70 F 12-6
47 71 G 12-7
48 72 H 12-8
49 73 I 12-9
4A 74 J 11-1
4B 75 K 11-2
4C 76 L 11-3
4D 77 M 11-4
4E 78 N 11-5
4F 79 O 11-6
50 80 P 11-7
51 81 Q 11-8
52 82 R 11-9
53 83 S 0-2
54 84 T 0-3
55 85 U 0-4
56 86 A\ 0-5
57 87 W 0-6
58 88 X 0-7
59 89 Y 0-8
5A 90 4 0-9

A-2 Digital Systems Division

\‘r@? 943441-9701

Table A-2. Additional Characters
Hexadecimal Decimal Hollerith _
Value Value Character Code Kevpunch Character

5B 91 [12-2-8 ¢
5C 92 \ 0-8-2 0-8-2
5D 93] 12-7-8 | (vertical bar)
5E 94 A 11-7-8 —1 (logical NOT)
5F 95 _ 0-5-8 (underscore)
00 00 Null
09 09 Tab

A-3/A-4

Digital Systems Division

943441-9701

APPENDIX B
SAMPLE PROGRAM

Digital Systems Division

O
\j’%\[fp 943441-9701

APPENDIX B
SAMPLE PROGRAM

This appendix describes a sample program in Model 990 Assembly Language,
and includes the coding sheets, the source listing, and tke contents of the ob-
ject records.

The program translates 80 ASCII characters from buffer BUFF and places
the result in buffer OUT as hexadecimal values. The seven-bit ASCII values
are assumed to have been placed in the bytes of BUFF right-justified with
leading zeros. The program translates characters 0 through 9 and A through
F correctly, but does not check that the characters in BUFF are within that
range. When the translation is complete the computer enters the idle mode
awaiting an interrupt.

The program consists of a main program and an extended operation subrou-
tine. The main program consists of a loop that is executed for each word in
buffer BUFF. The loop makes a correction for characters A through F and
masks out the four most significant bits of each byte. The loop then packs
the remaining bits of the word into a byte and stores the byte in buffer OUT.
The extended operation subroutine provides an AND words operation using
the symbol AND to specify the extended operation.

The coding sheets for the sample program are shown in figure B-1. The
first statement, a TITL directive, is placed first in order to have the title on
the first page of the listing, figure B-2. The IDT directive supplies a pro-
gram name to the linking loader. The AORG directive provides a block of
absolute code to initialize the pair of words at absolute address 40;¢. The
DATA directive places the addresses of the subroutine workspace and the
subroutine entry point in this pair of words. The RORG directive causes the
remaining code of the program to be relocatable. The T.iTL directive
changes the title on the second sheet of the listing, and the PAGE directive
forces a new page of the listing,

The EVEN directive assures that the area reserved for the workspace begins
on a word boundary. The BSS directive reserves an ares for the subroutine
workspace, at location WS, The DXOP directive assigns the symbol AND to
extended operation 0. The MOV instruction at location ANDS moves the op-
erand in the workspace of the calling program into workspace register 1 of
the subroutine workspace. The next MOV instruction moves the contents of
the address in workspace register 11, the other operand, to the location of
the immediate value for the ANDI instruction. The next instruction, ANDI,
performs the AND operation between the operands and plices the result in
workspace register 1. The MOV instruction transfers the result into the
calling program workspace, and the RTWP instruction returns control to the
calling program. The RTWP instruction also restores the calling program
environment. Another TITL directive changes the title fur the third page of
the listing, and a2 PAGE directive forces a new listing paye.

B-1 Digital Systems Division

uoiSIAIQ SwalsAs 1eubia

(A)128443 (1/4)

1 2 3456 78 91011121314151617 18 1920 21 22 2324 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

o TITL VYSAMPLE [PREGRAM’
Z IDT ‘SAMPROG'
. ARG >40 LPAD DEDICATED [ADDRESSES
. DATIA WS, ANDS FER XBP 0
- RORG
. TITL VAND SUBRGUTINE
. PAGE
. THIS SuskdoTIME PERFORMS AN AND APERATION
.l BETWEEN TRE PPERAND BF Thg DEFINED XEP, AND, AND
2 % TWAE CENTEWTS 6F TRE CALLING PRUGRAM'|S WORYSPACIE
: P REGISTIER | . THE SUBRPUVTINE PLACES THE ResvLT IN
~ & THE CALLING PREGRAM®S WGRYSPACE REGISTER 1. TUE
. " CALLING SEQUENCE| IS A4S tPLLAWS:
.k
. x AND @B CALL SUBRPUTINE
Figure B-1, Coding Sheets (Sheet 1 of 4)

£n

10L6-1%%EP6

uoIsiAIg swalsAs reubiag

(A)128443 (2/4)

LTS 41 A7 4 aa t0 AG Ay An ARG

WPRKSPRCE ON WPRD BFUNDARY

_ SUBRBUTINE WHRKSPACE

DEFINE AND ZPERATIOGN
MOVE CALLING WR | TO W R

MBVE FPERAND INTO
IMMEDTATE INSTRUCTIGN

HBVE W R | T) CALLING W R |
RETU@“ |

TRIS PROGRAM TRANSLATES 30 ASCIT CHARACTERS IN

- -
; EVEN
_@éws 8SS %2

ol Vge AND,0

f%nmos M@y @ach),ﬁ

. MoV x11.8xv6

. ANDT 1,0 |

. My 1,82013)

. RTNP !
o TLTU “MAIN PROGRAM!
L};T_ — g e

*
X
1\‘ TRANSLATED;
X

C BUFE INT® HEKADECIMAL VALVUES. AWNY CHARACTER IS

CRARACTERS b - 4 AND A - F ARE

TRANSLATED CERRECTLY, THE 40 WORDS RESVLTING

Figure B-1.

Coding Sheets (Sheet 2 of 4)

£n

10L6-17%ET6

P-d

uorsialg swejsAs 1eubig

En

10L6-1%%CP6

" F FRGM THE TRANSLATION ARE PLACED [N foo —reosess
o ¥

. EVEN WORKSPACE $N WHRD BEUNDARY
: Wi Bss 32 RESERVE MALN WHRKSPACE

» BUFE Bsy 80 INPUT BUFEER

L lBvT 85y 4o BUTPUT BUFFER

« ADDR DATA BUFF.GUT DEFINE ADDRESSES

- START Lwelr wi LBAD WERKSPACE |pGINTER

: LT 0,70 FOF LGAD W R O

. NGV @ADDR.? LBAD W R 2

. cLe 3 SET W R 3 T ZLeRg

- MGV @ADDRL2,5 LEAD W R 5

. MOV @START«2,6 LpAD W R b

o LEFP MOY #04s LEAD M R |

. CT| 1,73A00 JUMP |TF

(A)128443 (3/74)

Figure B-1. Coding Sheets (Sheet 3 of 4)

uorsialg swaisAs enbiq

(A)128443 (4/4)

4% AT L5 24 85 45 a0 A5

0 TRREUGW 4 |
CHRRECT A THRPUGH F

Tff;_” TTOLT SuET
ol AT 1,704b00
04 \ :
.~ SHET _ SWPB |

o INV 3

LOPP+2

| _m__glg“ﬁNﬁngBhkAdTERs
| INVERT W R 3
CHECK FTRER CHARACTER

AN @l
Q% MEV. 1,4

| SUBRGVTINE CALL
STde RESULT

LT LoHpP
~IDLE
END START

Figure B=1.

eI 2,BUFF48D

L SRC 4,4 SAIFT RESULT
5| | ; |
. sge 4,0 | $R OIGITS
. nﬂ%a @3(6),xd+ $T¢RE‘C“RQACTEQ

TEST R MPRE DATA
MgRE DATA

AWAT T LINTERRUPT
FINISH

Coding Sheets (Sheet 4 of 4)

0y

10L6-17PET6

943441-9701

FAGE 0001

TOMFLE ERGE

T DT SAMPROG
=30 LOAD DEDICATED ADDRESSES

BT Yo o =l

T R e CATAS WS, ANDE FIOR XOF O
T e

TR CER IO T T RIJRG

Figure B-2. Source Listing (Sheet 1 of 3)

B-6 Digital Systems Division

943441-9701

AND SUZROUT INE FhiGE OO0z

OO % THIT SUBROUTINE FERFORMS AN AND DFERATION
SO0 # EETWEEN THE OFERAND OF THE DEFINED XOF, AND, AND
DL , ¥ THE CONTENTS OF THE CALLING FROGRAMS WORKSFACE
ac © % REGISTEF 1. THE SUBROUTINE FLACES THE RESULT IN
R bel ” THE CALLING FROGRAMCS WORKEZFACE FESISTER 1. THE
a01E % CALLING EOUENCE 1S AS FOLLOWS.

0014 , . o

001 - AND O RE : Call SUBROUTINE

LA “
"0y 7 : EVERN WOF S
DOLE 0000 Wz BLE

FRCE T84 WORD RBOGUMIARY
TE SUBROUT INE WORKSFATE

IR TR T T

DA

[xIardn]

TR AL O OEFINE &RND OFPERAT LN
Moy EBZ o130, 1 MOVE CALLIMNG W R 1 TO W R |

aaTt

MOV =11, 2%+4 MOVE DPERANIT INTO
(AR Deg

AMDI 1,0 . IMMEDIATE INSTRUCTION

noEy

MOV L, RE(LTE) MOVE W R 1 70 CALLING W R L

[T b S T ST

FTWF RETURN

Figure B-2. Source Listing (Shéet 2 of 3)

B-7 Digital Systems Division

943441-9701

MAIN FROGRAM

00zZ7

+*
nozE 3*
anED +
alnicint *
0031 *
NOEZ *
[he it
[aledcr: Wi
0035 BLUFF
QO34 T
AORT OOCA OOSET ADDR
QOCD 00RzET
003 OOCE TTART
DT

DOIT O0DE
Qa0ng

QT

QO0A0

a4l DR
D T SRR T W

WOTIE
Q04T DOED

OOES
nn44 DiE4S
a04s QRS

a0as
0047

CWEE

AOAE OOFD
WO S
Q049 DOFZ

OOF 3
POF
DOFE
DOFS
OOFT GE4d
AGFE EQ34

IR K] AT

QNS0

nOS1

TOOSZ
[ki
NS4

(TR kriee]

B e

DO%E 0104

RO RO
ULUALICAR R
OGS ORB AT
(Al

OO0 ERE

Figure B-2,

MOV

CLF
MOy

M

M
o1

LT
Al

SWFE
INY
JLT
AN

Mot
=R

[

JLT
IDLE
ERD

Source Listing

THIS FROGSRAM TRANSLATES S0
ELUFF INTO HEXADECIMAL
TRANSLATED,
TRANSLATED CORFECTLY.
FROM THE TRANZLATION

I_} 121
ELFF, OUT

Wi
0, OFOF

RAIDFR, &

PAODR+Z, T

RETERT+Z, &

do+, 1

o EAD0

SHFT

1, SO

1

LODF+3
a1

=, BIFF+30
LOOF

STHRT

CHARACTERS

FAGE 03z

ASCIT CHARACTERE IM
VALUES., ANY CHARACTER I
OO~ % OAND 4 — F OARE

THE 40 WORDE REZUWLTING
ARE PLATED IM QUT.

WORESFACE O WORD SOUNDARY
RESERVE MAIN WORESFACE
INFIIT ZUFFER

OUTFLUT EUFFER

DEFINE ADDRESSES

LOAT WORKSFACE FOIMTER

LOAD W RO

LiZAD W R Z

SET W R =
LoD W R D

T ZERD

LoD WoR A&
LOAD W R 1
JUMETF

O THROLGH 7
CORRECT & THROUGH F

EXCHANGE CHARACTERS

INVERT W R =
CHECK OTHER CHARRACTER
SUBROUTINE ALl

STORE RESILT
THIFT RESULT

OF DIGITS

STORE CHARACTER
TEST FOR MORE DATH
MORE DATA

AWAIT IMTERRUFT
FINIZH

(Sheet 3 of 3)

B-8

Digital Systems Division

\J@? 943441-9701

The main program listing is on page 3. Four directives reserve arcas for
the workspace and the buffers, and a DATA directive places the buffer ad-
dresses in a pair of memory locations.

The first group of instructions beginning at location STAET initializes the
workspace for the processing to follow. The LWPI instruction places the
workspace address in the workspace pointer register. Tne LI instruction
places the mask, OFOF ¢, into workspace register 0. The MOV instruction
places the address of BUFF into workspace register 2. The CLR instruction
clears workspace register 3 to zero to use as a character flag. Another
MOV instruction places the address of OUT into workspace register 5. A
third MOV instruction places the address of the workspace into workspace
register 6.

The processing begins at location LOOP with a MOV instruction that places
the first word of BUFF into workspace register 1. The CI instruction tests
the leftmost character of the word to determine if it requ.res modification.
The next instruction, JLT, jumps to location SHFT when the leftmost charac-
ter is 9 or less. Otherwise the Al instruction corrects the character as re-
quired for A through F. Then the SWPB instruction at lo:-ation SHET ex-
changes the characters, and the INV instruction inverts the character flag.
When only one character of the word has been tested, the character flag is
equal to -1 at this point, and the JLT instruction returns control to the CI
instruction to process the other character. When both characters have been
tested and any necessary correction has been performed, the program calls
XOP AND to mask off the most significant four bits of each character. Con-
trol returns at the MOV instruction, that transfers the result of the AND op-
eration to workspace register 4. Then the SRC instruction shifts the result
four bit positions to the right. The SOC instruction, effectively an OR opera-
tion, combines the contents of workspace register 1 and workspace register
4. The rightmost byte of workspace register 1 now contains the hexadecimal
values of both characters. The MOVB instruction stores this byte in buffer
OUT. The CI instruction determines whether or not all words of BUFF have
been converted, and the JLT instruction returns control to location LOOP to
process another word until all words have been processec¢. The IDLE in-
struction places the computer in the IDLE mode. (The computer remains in
the IDLE mode until the operator intervenes or an interrupt occurs. Not all
computers have a means of operator intervention. Additional programming
not shown in this example is required to properly implement an interrupt.)
The last statement is an END directive that causes the assembler to termi-
nate the assembly and supplies the entry location, START, to the loader.

The source listing (figure B-2) consists of a heading on each page, followed
by source lines. The heading lines consist of titles supplied by TITL direc-
tives, and page numbers. The source lines consist of four columns. The
first column contains a statement number. Notice that the TITL and PAGE
directives are assigned numbers, and that these numbers do not appear on

B-9 Digital Systems Division

il%\g@ 943441-9701

the source listing because the directives are not listed. The second column
contains the location counter value. This column is blank for directives that
do not affect the location counter values. The third column contains the hex-
adecimal value placed in the location by the assembler. The column is blank
for directives that do not provide values. One or more of the hexadecimal
digit positions may contain a hyphen (-). This occurs when a forward refer-
ence determines the values of these digits. When the statement containing
the forward reference has been processed, the assembler prints a line with
the location, two asterisks (*%), and the complete value. For example, the
values shown as hyphens on page 1 are supplied on page 2, following state-
ments 18 and 20, respectively. Notice that some values are followed by an
apostrophe ('). The apostrophe indicates that the value is relocatable and
will be modified when the program is loaded. The loader modifies relocat-
able values by adding the load point address to each value. The fourth col-
umn contains the source statement supplied to the assembler.

If any errors had been detected by the assembler, the error codes would
have been printed as the errors were detected. Following the END state-
ment, the error count (0 in the sample program) is printed.

Figure B-3 shows the contents of the object records assembled for the sample
program. Notice that the first tag character (table 9-2) is 0, and that the
hexadecimal field is zero, since the assembler has no way of knowing at this
point what the length of relocatable code will be. The program identifier
follows the hexadecimal field. The next tag character is 9, followed by an
absolute address, 00407¢, tag character C, and relocatable data, 0000, 4.
This causes the loader to add the load point value to the relocatable value

and place the sum in the absolute address. The next tag character, A, is
followed by relocatable address 0020;¢, tag character B, absolute data
C06D16, tag character B, and absolute data 00021¢4. This causes the loader
to add the load point value to the relocatable address to get the absolute ad-
dress in which to load the following data. The data words are absolute, and
the loader places these words in consecutive address unaltered. The remain-
ing tag characters and fields contain load addresses and data in the order
shown in the source listing. Five more tag characters with accompanying
hexadecimal fields appear in the first record, followed by tag character 7.
The checksum for the first record follows the tag character, and is followed
by tag character F, the end-of-record indicator.

The next four records are similar, and contain load addresses and data.
Notice that the checksum field and the end-of-record tag that terminate each
record do not necessarily appear in the same character positions within the
record. The assembler supplies these immediately following the last data
field of the record.

The next to the last record begins with tag character 2, followed by relocat-
able entry address 00CE16' The loader adds the load point value to the entry

B-10 Digital Systems Division

943441-9701

O0000zAMPROG 9004UCGUDGHUDEDBCﬂEDEDDDE90D4EEUDEDHUDE4BC813EDU£HFF31QF
HOUESBDE4IBUDBDBCB4IBDOOEEUSBUHGGCHCUUSECD&HEEDEEGEDQB&BDSDUE&FDFFFiDEF
HDUD&BCOHDCUDCHB04C3BCIEUEGBCCBCIHDEUUDBBCD?EBUEBlBBﬁﬂﬂHDﬁECBUESIFFlﬁiF
HDOEEBD?GDB&BCIHUOEHBI102HO0F23054331IFBBECEDCUDSEBCIUIBUE44BEU44FF1§EF
AOLOOBDDAERAOOIRO2R2CN0ACEY 1IEDROS4 OPFRISF i
SONCEQNDLOC rFCAERF

Figure B-3. Object Records

B-11 Digital Systems Division

@ 943441-9701

address and stores the sum as the address to which control is passed when
the load operation is complete. This is followed by tag character 0 and the
length of relocatable code, 010Cj¢. The program identifier field is blank,
because the program identifier was supplied in the first record. A check-
sum field and an end-of-record tag complete the record. The last record
consists of the end-of-file indicator, a colon in character position 1.

B-12 Digital Systems Division

)

943441-9701

APPENDIX C
INSTRUCTION TABLES

Digital Systems Division

‘I‘@ 943441-9701

APPENDIX C
INSTRUCTION TABLES

The source formats for the machine instructions are summarized in eight
tables. Refer to the Model 990 Computer Reference Manual for descriptions
of the machine instructions. Arithmetic instructions are listed in table Cc-1,
and branch instructions are listed in table C-2. Table C-3 lists compare
instructions and table C-4 lists control and CRU instructions. ILoad and move
instructions are listed in table C-5, and logical instructions are listed in
table C-6. Workspace register shift instructions are listed in table C-7, and
the extended operation instruction is listed in table C-8.

The pseudo-instructions are listed in table C-9,
The following symbols are used in tables C-1 through C-¢:

G, Gl, G2 - A general address in one of the five mades described in
Section III

R - A workspace register address, described in paragraph 3.2

S - A symbolic memory address (a label or an expression that
contains a label or $)

E - An expression, described in paragraph 2.2, with the addi-
tional limitation that the expression must not contain a
symbol that is not previously defined.

I - An immediate value, which is an expression (paragraph
2.2)

T - A term, described in paragraph 2.5

(,) - The contents of the address within parentheses

— - "replaces”

: - "is compared to"

The following example shows the use of the symbols in the source format
column:

XOR G,R

The source format entry means that the mnemonic operation code XOR re-
quires a general address and a workspace register address separated by a
comma. In the effect column, the symbols are used as in the following
example:

(G) XOR (R) —(R)

C-1 Digital Systems Division

o]
@@ 943441-9701

This means that the result of an exclusive OR of the contents of the general
address with the contents of the workspace register replaces the contents of
the workspace register. In the status bits test column, the symbols are used
as in the following example:

(R) : O

This means that the result placed inthe workspace register is compared to
zero and the status bits contain the result of this comparison.

C-2 Digital Systems Division

£€-D

uoIsIAIg swasAs 1eubiag

Table C-1. Arithmetic Instructions
Instruction Format - Effect Opcode Si’;;esciigs Sta?:'StBits gzrrnrgii
Add words A G1,G2 (G1)+(G2)—(G2) A000 0-4 (G2) :0 I
Add bytes AB G1,G2 (GL)+(G2) —(G2) B00OO 0-5 (G2) :0 I
Absolute value ABS G Absolute (G)—(G) 0740 0-2 Note 1 VI
Add immediate AI R,I (R)+I—(R) 0240 0-4 (R) :0 VIII
Decrement DEC G (G)-1—(G) 0600 0-4 (G) :0 VI
Decrement by 2 DECT G (G)-2—-(Q) 0640 0-4 (G) :0 VI
Divide DIV G, R Note 2 3C00 4 Note 3 IX
Increment INC G (GH+1—(G) 0580 0-4 (G) :0 VI
Increment by 2 INCT G (G)+2-—>(G) 05CO 0-4 (G) :0 VI
Multiply MPY G, R Note 4 3800 None X
Negate NEG G -(G)—(G) 0500 0-2 (G) :0 VI
Subtract S G1,G2 (G2)-(G1)—(G2) 6000 0-4 (G2) :0 I
Subtract Bytes SB G1, G2 (G2)-(G1l)—(G2) 7000 0-5 (G2) =0 I
NOTES

The original value of G is compared to zero. 3. If the divisor is less than or equal to the left

The contents o segiter R and the next consec- Dol o0 dvidend, e dvide ottt

utive register (32-bit magnitude) are divided by

G (1l6-bit magnitude). The quotient (16-bit mag- 4. (G) is multiplied by (R). The result (32-bit mag-

nitude) is placed in R and the remainder is placed
If R=15, the remainder is placed in the

in R+1.

location immediately following the workspace.

nitude) is placed in R and R+1. R contains the
most significant half of the result. If R=15, the
least significant half of the result if placed in
the location immediately following the work-
space. '

uojsing swejsAs 1eybig

Table C-2. Branch Instructions
. : Format
Instruction Format Effect Necessary Status Opcode
Number
Branch B G G—(PC) Unconditional 0440 VI
Branch and Link BL G G—(PC) Unconditional 0680 VI
(PC—(R11)
Branch and Link WP BLWP G Note 1 Unconditional 0400 VI
Jump If Equal JEQ S S—(PC) Bit2 =1 1300 I
Jump If High or Equal JHE S S—(PC) Bit0Oor Bit2 =1 1400 II
Jump If Greater Than JGT S S—(PC) Bitl =1 1500 II
Jump If Logical High JH S S—(PC) Bit 0 = 1 and 1B0O 11
Bit2 =0
Jump If Logical Low JL. S S—(PC) Bit 0 = 0 and 1A00 I1
Bit2 =0
Jump If Less or Equal JLES S—(PC) Bit1 =0 or 1200 11
: Bit2 =1
Jump If Less Than JLTS S—(PC) Bit 1 = 0 and 1100 II
Bit2 =0
Unconditional Jump JMP S S—(PC) Unconditional 1000 I1
Jump If No Carry JNC S S—(PC) Bit3 =0 1700 II
Jump If Not Equal JNE S S—(PC) Bit2 =0 1600 IT
Jump If No Overflow JNO S S—(PC) Bit4 =0 1900 II
Jump If Odd Parity JOP S S—(PC) Bit 5=1 1C00 11
Jump On Carry JOC S S—(PC) Bit3 =1 1800 IT

/]

10L6-1PPET6

o]

uorsialg sweisAs 1eubiag

Table C-2. Branch Instructions (Continued)

Instruction Format Effect Necessary Status Opcode Forr1nat
: . Number
Return WP RTWP Note 2 Unconditional 0380 VII
Execute X G Note 3 Unconditional 0480 VI
NOTES)

BLWP is explained in detail in paragraph 8. 2. 3.
It can be summarized as follows:

(G)—(WP)

(G + 2)—(PC)
(original WP)—(R13)
(old PC)—(R14)
(ST)—(R15)

RTWP is explained in detail in paragraph 8. 2.
It can be summarized as follows:

(R13)—(WP)

(R14)—(PC)
(R15)—(ST)

An instruction at address G is executed as if it
were located in memory where the Execute in-
struction resides. Observe that if the instruc-
tion executed is not a single word instruction,
the word following the Execute instruction is
used (i. e., if symbolic memory addressing or
indexed addressing is required, the symbol
value must be in the word following the Execute
instruction). The Execute instruction does not
affect the status bits but the instruction exe-
cuted will set the status bits appropriately.

T10L6-T¥PET6

uojs|AIQ swelsAs 1enbia

Table C-3. Compare Instructions

Instruction Format Opcode Status Bits Status Bits Format
P Affected Test Number
Compare Words C Gl1, G2 8000 0-2 (G1) :(G2) |1
Compare Bytes- CB G1,G2 9000 0-2,5 (G1) :(G2) I
Compare Immediate CIR,I 0280 0-2 (R) I VIII
Compare Ones COCG,R 2000 2 Note 1 III
Corresponding
Compare Zeros CZC G, R 2400 2 Note 2 III
Corresponding :
NOTES

General: Compare instructions have no effect

1.

other than setting status bits. Note that
in two's complement representation neg-
ative numbers are logically greater than
positive numbers, and that negative
numbers of small magnitude are logically
greater than negative numbers of larger
magnitude.

The bits in the destination operand that corre-
spond to bits equal to one in the source operand

are compared to one. If the corresponding bits
are equal to one, status bit 2 is set to 1.
Otherwise the status bit is set to O.

The bits in the destination operand that corre-
spond to bits equal to one in the source oper-
and are compared to zero. If the correspond-
ing bits are equal to zero, status bit 2 is set
to 1. Otherwise the status bit is set to 0.

10L6-1%¥€E¥6

uojsialg swajlsAs |eybig

9

Table C-4. Control and CRU Instructions
Instruction Format Effect Opcode Sf;fisctz)(ijts Stat;islf':its Iizfnn;zi
Clock Off CKOF Note 1 03Co0 None VII
Clock On CKON Note 2 03A0 None VII
Load Commu- LDCR G, T Note 3 3000 0-2,5 (G) :0 v
nication Register
Idle IDLE " Note 4 0340 None VII
Reset I/0O RSET Note 5 0360 0-5 Note 6 VII
Set Bit to One SBO E Note 7 1D00 None I
Set bit to Zero SBZ E Note 8 1E00 None 11
Store Commu- STCR G, T Note 9 3400 0-2,5 (G) :0 v
nication Regis-
ter
Test Bit TB E 1F00 2 Note 10 II

NOTES

Disables 120 HZ clock.

Tl et o o 3TN TYR * 1
S LA LT D LAV Lids Ll

I tile sy upl level 3 1s
enabled, an interrupt occurs every 8. 33 ms.

Interrupt address is 144 ¢.

Transfers consecutive data bits from the
byte address specified by G to the CRU,

The number of bits transferred is speci-
fied by T. The CRU address is the con-
tents of R12 of the current workspace.

The least significant bit of the byte ad-

dreased hy (3 ie placed in the CRTT Lit 53,

dressed by R12.

Places the computer in the idle state.

Lo

See illustration, Memory
CRU Transfer (Note 9).

An inter-

rupt or start signal causes the computer to re-
sume execution at the instruction following the

IDLE instruction.

Disables all interrupts.

connected I/0 devices.

Resets all directly

10L6-1%%€P6

uossiaig swelsAs [eubiqg

O 0 g o

Table C-4. Control and CRU Instructions (Continued)

NOTES
Sets bits 0 - 5 to zero.
Sets CRU bit at address in R12 + E to one.
Sets CRU bit at address in R12 + E to zero.

Transfers consecutive data bits from the CRU
to the byte address specified by G. The number 10.
of bits transferred is specified by T. The CRU

* o o » o

‘ MEMORY

(o]
—
~
]

address is the contents of R12 of the current
workspace. The CRU bit addressed by R12 is
placed in the least significant bit of the byte ad-
dressed by G. See Memory - CRU Transfer
illustration.

Tests CRU bit at address in R12 + E. Set status
bit 2 to the value of the CRU bit.

CRU

-

s o o

(A)128444

Memory - CRU Transfer

10L6-1PPEP6

uoISIAIQ swelsAs 1eubig

Table C-5. I.oad and Move Instructions

Instruction Format Effect Opcode Status Bits Status Bits Format

' Affected Test Number
LLoad Immediate ITR,I [—(R) 0200 None VIII
Load Interrupt LIMII Note 1 0300 None VIII
Mask
Load from ROM LREX Note 2 03E0 None VII
and Execute
I.oad Workspace ILWPII [—(WP) 02E0 None VIIT
Pointer
Move Words MOV G1, G2 (G1)—(G2) C000 0-2 (G2) :0 I
Move Bytes MOVB G1, G2 (G1)—(G2) D000 0-2,5 (G2) :0 [
Store Status STST R (ST)—(R) 02CO0 None VIII
Store WP STWP R (WP)—(R) 02A0 None VIII
Swap Bytes SWPB G | Note 3 06CO None VI

NOTES

~ R
Dlacc the

. o,

cast-sigaificant 4 bits of the 1ni-

mediate value I in the interrupt mask.

LLoads the 256 words of the ROM program
into the first 256 words of memory. Places

tie contents of the memory pair at address 0

into WP and PC and starts execution

3. Interchanges bits 0 - 7 with bits 8 - 15 of word
at address specified by G.

SFo

10L6-1%%E%6

01-D

uojsialg swelsAs jeybig

Table C-6. Logical Instructions

. Status Bits Status Bits Format
Inst t t >
nstruction Forma Effect Opcode Affected Test Number
AND Immediate ANDI R, I (R) AND I—(R) 0240 0-2 (R) :0 VIII
Clear CLR G 0—(G) 04CO None VI
Invert Bits INV G Note 1 0540 0-2 (G) :0 Vi
OR Immediate ORI R,I (R) OR I—(R) 0260 0-2 (R) :0 VIII
Set to Ones SETO G >FFFF—(Q) 0700 None VI
Set Ones SOC G1, G2 Note 2 E000 0-2 (G2) :0 I
Corresponding '
Set Ones Corre- SOCB Gl1, G2 Note 2 FO000 0-2,5 (G2) :0 I
sponding Bytes
Set Zeros Cor- SzC G1, G2 Note 3 4000 0-2 (G2) :0 I
responding
Set Zeros Cor- SZCB G1, G2 Note 3 5000 0-2,5 (G2) :0 I
responding
Bytes
Exclusive OR XOR G, R (G) XOR (R)—(R) |2800 0-2 (R) :0 111

NOTES

Places one's complement of contents of loca-

tion G in location G.

Sets bits to one in G2 that corresporid to bits
equal to one in Gl. (Gl) OR (G2) —(G2).

1111111100000000 G1
1010101010101010 G2

TTTT1117T10701010 G2 (result)

Sets bits to zero in G2 that correspond to bits
equal to one in Gl.

1111111100000000 G1
1010101010101010 G2

0000000070707010 G2 (result)

(INV(G1)) AND (G2)—(G2).

10L6-1PPEP6

I1-D

uoisinig sweisAs |eybig

Table C-7. Workspace Register Shift Instructions

Instruction Format Value Placed in Vacated Bit Position on 0 d Format
s . Each Shift pcoae Number
Shift Right SRA R, C Original value of leftmost bit 0800 A%
Arithmetic
Shift Right SRL R, C Logical zero 0900 v
Logical
Shift Left SLLA R,C Logical zero (Note 1) 0AO00 Vv
Shift Right SRC R, C Rightmost bit moves to leftmost bit 0B0O A%
NOTES
General: If C is zero, the 4 least-significant bits bit 3. The shifted value is compared

of RO contain the shift value. If the 4
least-significant bits of RO equal 0, shift
16 positions. Otherwise, shift C posi-
tions. The value of the last bit shifted
out of the register is placed in status

to zero-setting status bits 0 - 2.

1. If the sign of the value in R changes during
shift, sets status bit 4.

10L6-1¥¥EP6

AR

uoIsIAIg swelsAs 1eybig

Table C-8. Extended Operation Instruction

Status Bits Status Bits Format
I .
nstruction Format Effect Opcode Affected Test Number
Extended Oper- XOP G, T Note 1 2C00 6 Note 2 IX
ation
NOTES

T specifies the extended operation, 0 - 15,

to be executed.

(Paragraph 6.11).

2. Sets status bit 6 to one when extended operation
is software implemented, and to zero when ex-
tended operation is hardware implemented.

Table C-9. Pseudo-Instructions
Equival
Instruction dniva .ent Opcode
Instruction
NOP IMP $+ 2 1000
RT B *11 045B

10L6-1%PEP6

Q
{é]@ 943441-9701

APPENDIX D
ASSEMBLER DIRECTIVE TABLE

Digital Systems Division

‘[@ 943441-9701

APPENDIX D
ASSEMBLER DIRECTIVE TABLE
The assembler directives for the Model 990 Assembly Language are listed in
table D-1. All directives may include a comment field following the operand
field. Those directives that do not require an operand field may have a com-
ment field following the operator field. Those directives that have optional

operand fields (RORG and END) may have comment fields only when they have
operand fields.

The following symbols and conventions are used in defining the syntax of as-
sembler directives:

. Angle brackets (< >) enclose items supplied by the user
e Brackets ([]) enclose optional items
° An ellipsis (...) indicates that the preceding itern may be repeated

The following words are used in defining the items used in assembler direc-
tives:

° symbol - defined in paragraph 2.4
) label - a symbol used in the label field

° string - a character string defined in paragraph 2.6, of a length
defined for each directive

° expr - an expression, defined in paragraph 2.2.1
® wd expr - well-defined expression defined in paragraph 2.2.2

o term - defined in paragraph 2.5

D-1 Digital Systems Division

0

943441-9701

Table D-1,

Assembler Directives

Force Word

Directive Syntax Boundary Note
Page Title [<label>] TITI. <string> NA
Program [dentifier [<label>] IDT <string> NA
External Definition [<label>] DEF <symbol>[,<symbol>] ... NA
External Reference [<label>] REF <symbol>[,«symbol>] ... NA
Absolute Origin [<label>] AORG <wd expr > No
Relocatable Origin [<label>] RORG [« expr>] No 1, 3
Block Starting <label >BSS <wd expr> No
with Symbol
Block Ending <label> BES <wd expr> No
with Symbol
Initialize Word [<label>] DATA <expr> [,<expr>] . Yes
Initialize Text [<label>] TEXT [-] <string> No 2
Define Extended [<label>] DXOP <symbol>, <term»> NA
Operation
Define Assembly- <label> EQU <expr> NA 3
Time Constant
Word Boundary [<label>] EVEN Yes
No Source List [<label>] UNL NA
1.ist Source [<label>] LIST NA
Page Eject [<label>] PAGE NA
Initialize Byte [<label>] BYTE <wd expr> No
[h<wd expr>] ...
Program End [<label>] END [<symbol>] NA 4

NOTES

1. The expression must be relocatable.

2. The minus sign causes the assembler to negate the right-
most character.

3. Symbols in expressions must have been previously defined,

4. Symbol must have been previously defined.

Digital Systems Division

CUT ALONG LINE

USER’S RESPONSE SHEET

Model 990 Computer
Manual Title: Assembly Language Programmer's Guide (943441-9701)

Date of Manual: 1 June 1974 Date of This Letter:
User: Office/Dept. No.:
Company:

Street Address:

City/State/Zip:

Please list any discrepancy found in this manual by page, paragraph, figure,
or table number in the following space. If there are eny other suggestions
that you wish to make, feel free to include them. Thank you.

Location Comment/Suggestion
in Manual

NO POSTAGE NECESSARY IF MAILED IN U, S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), STAPLE AND MAIL

First Class

PERMIT NO. 3135
Austin, Texas

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States

Postage Will Be Paid by

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

PO. BOX 2909 - AUSTIN, TEXAS 78767
Attn: TECHNICAL PUBLICATIONS, MS 2146

_.——..————————.——-.———.——-——____.———.—

Sales and Service Offices of Texas Instruments are located
throughout the United States and in major countries
overseas. Contact the Digital Systems Division,
Texas Instruments Incorporated, P.O. Box 1444,
Houston, Texas 77001, or call (713) 494-5115,
for the location of the office nearest to you.

[e]

Texas Instruments reserves the right to make changes at any time to
improve design and supply the best product possible.

TEXAS INSTRUMENTS

INCORPORATED

	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	A-00
	A-01
	A-02
	A-03
	A-04
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-00
	D-01
	D-02
	replyA
	replyB
	xBack

