s

TI BASIC
Reference Manual

o. -
eeeeeeeeeeeee

TeEXAS INSTRUMENTS

LIST OF EFFECTIVE PAGES

0 P e N S
INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES
Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer
margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or &
page layout change.

TI BASIC Reference Manual (2308769-9701)

Original Issue i 1 February 1983
Change 1 i e 1 December 1983

Total number of pages in this publication is 288 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.
Cover 1 B-1-5-22 . i 0 0.7 1
Effective Pages....... 1 6-1-66.......0000.. 0 9-8. . 0
e 0 6-7-68.............. 1 101, . 1
VoV o 1 6-9-622............. 0 10-2-10-4 0
vit-xili oo 0 B-23. .. e 1 B 1 I 1
XIV e e e 1 6-24-6-25............ 0 11-2-116............ 0
XVIXVE oo e i 0 B-26. .. 1 117 1
1-1-14 0 6-27-6-29 0 11-8-11-20........... 0
2-1-23 .. . 1 6-30. 1 12-1-12-9............ 0
2-4-25 0 6-31-6-34 0 1210 ... o 1
26-2-8..... 1 6-35. 1 12-11-12-12.......... 0
31-32 .. e 0 6-36-6-46............ 0 1213, .. . 1
33-36.............. 1 7-1-711 0 1214 ... oo 0
37 e 0 7-12 . 1 A1-A14 1
38. .. 1 81-818............. 0 B-1-B6 0
39-314............. 0 819. 1 C1-C2 0
A1 . 1 820. e 0 D-1-D-5 0
4-2-4-4 0 8-21. . . 1 D6 1
45-46.............. 1 822 . 0 D-7-D-18 0]
4-7-4-8..... 0 823 . .. 1 E1 .. 1
4-9 . e 1 8-24-826............ 0 E-2-E-4 0]
4-10. .. e 0 91-96.............. 0 F1-F4 0}

m—

©Texas Instruments Incorporated 1983
All Rights Reserved, Printed in U.S.A

The information and/or drawings set forth in this document and all rights in
and to inventions disclosed herein and patents which might be granted
thereon disclosing or employing the materials, methods, techniques or
apparatus described herein, are the exclusive property of Texas Instruments
Incorporated.

Preface

This manual describes the Texas Instruments BASIC* language, hereafter referred to as BASIC.
BASIC is a symbolic programming language oriented toward financial, engineering, and scientific
applications. This manual explains in detail the correct syntax of program statements and
operating commands. Although BASIC is an excellent tool for learning to write computer
programs, you are assumed to have some familiarity with computer programming and its concepts
before beginning this manual. For tutorial reference, T offers a BASIC self-study manual, T/
BASIC, A Tutorial Approach to Programming, part number 2305790-9701. Many other commercial
textbooks and guides are also available.

Before using BASIC, you must have installed TI BASIC on your operating system following the
directions in the BASIC Installation guide. This manual assumes that you know how to turn on and
turn off your system and are familiar with the System Command Interpreter (SCI) file creation
commands described in your operating system programmer”’s guide.

This manual is organized into the following sections and appendixes.

Section

1 General Description — Describes the components of TI BASIC and the Tl enhancements
to ANSI-standard BASIC.

2 Getting Started — Describes the process of writing, saving, and executing a BASIC
program and provides a simple example.

3 BASIC Commands — Presents the commands used to manage the system resources.

4 Editing Capabilities — Describes the BASIC editor; emphasizes the use of keyboard
editing functions in program development and describes the use of the OPTION
statement to inhibit the function keys during program execution.

5 Data and Expressions — Describes the types and attributes of data on which BASIC
operates and how the data types can be combined to form expressions.

6 Input/Output (I/O) Statements — Describes in detail the 1/0 facilities of BASIC, including
formatting.

7 Control Statements — Describes conditional and unconditional transfer of control
within a program.

8 Intrinsic Functions — Describes the built-in arithmetic, string, time and date, and
miscellaneous functions of BASIC.

* BASIC is a trademark registered by the trustees of Dartmouth College, Hanover, New Hampshire.

2308769-9701 iii

Preface

Appendix

10

11

12

A

o O W

m

User-Defined Procedures — Explains how to define functions and subprograms.

Debug Features — Describes commands and methods useful in locating program
errors.
Assembly Language Subroutines — Describes the process of linking BASIC to

assembly language subroutines.

BASIC Subroutine Library — Describes the sort and key file package (KFP) subroutines.

Keycap Cross-Reference — This appendix contains specific keyboard information to
help the user identify individual keys on any supported terminal.

ASCII Character Set — Lists the ASCIl and graphics characters supported by TI BASIC.
BASIC Reserved Word List — Lists the words reserved for the TI BASIC language.
Error Messages and Codes — Lists the BASIC error messages and codes.

BASIC System Differences — Describes the system differences between DX10 Micro,
DX10, and DNOS BASIC.

Logical Operators with Integer Operands — Describes the use of logical operators
within the BASIC systems.

Syntax Diagrams — Describes the syntax of the individual BASIC statements in a
schematic format.

Example Programs — Provides examples of programs illustrating important features of
BASIC.

BASIC Systems Function Keys — Lists the functions supported by BASIC and specifies
the keys that control these functions on various Tl keyboards.

Consult the appropriate manual for more information about your operating system and other
system software:

Title Part Number
DX10 Manuals

DX10 Operating System Computer Concepts and

Facilities (Volume) 946250-9701
DX10 Operating System Operations Guide (Volume Il) 946250-9702
DX10 Operating System Application Programming Guide 946250-9703
(Volume 1)

Change 1 2308769-9701

2308769-9701

Title

DX10 Operating System Text Editor (Volume IV)

DX10 Operating System Systems Programming Guide

(Volume V)

DX10 Operating System Error Reporting and Recovery

Manual (Volume VI)
DNOS Manuals
DNOS Concepts and Facilities Manual

DNOS Operations Guide

DNOS System Command Interpreter (SCI) Reference

Manual

DNOS Text Editor Reference Manual

DNOS Messages and Codes Reference Manual
DNOS Systems Programmer’s Guide

DNOS System Generation Reference Manual
DNOS Link Editor Reference Manual

Business System 200 Manuais

Business System 200 Operator’s Guide

DX10 Micro Messages and Codes

DX10 Micro User’s Guide

DX10 Micro Operating System Handbook
Other Manuals

990/99000 Assembly Language Reference Manual

TMS 9900 Microprocessor Assembly Language
Programmer’s Guide

Link Editor Reference Manual

Change 1

Part Number

946250-9704

946250-9705

946250-9706

2270501-9701

2270502-9701

2270503-9701
2270504-9701
2270506-9701
2270510-9701
2270511-9701

2270522-9701

2533266-9701

2533322-9701

2228263-9701

2533262-9701

2270509-9701

943441-9701

949617-9701

Preface

vivi

Contents

Paragraph

1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
144

1.4.5
1.4.6

2.1

2.2

2.21
2.2.2
223
224
225

3.1
3.2
3.3
3.4
35
3.6
3.6.1
3.6.2
3.7
3.8
3.8.1
3.8.2
3.8.3
3.9

2308769-9701

Title Page

1 — General Description

INtrodUCHioN o 11
BASIC System Configuration it i e 1-2
Manual OVerVIEWo i e e e 1-3
Program Development 14
Writing the BASIC Programottt 1-4
Listingthe Programo i i i it e 14
Executingthe Program it e 1-4
Editingthe Program i 1-4
Correcting the Programttt e e 1-4
Savingthe Program i i e 1-4
2 — Getting Started
Initial Operations i 21
Sample Program e 2-2
Step 1 — Enter BASIC 23
Step2 — Createthe Program ittt e e e 2-3
Step3 — Analyzethe Codingo iriiiit e 26
Step4 — Executethe Program. it 2-7
Stepb — Terminate BASIC it 2-7
3 — BASIC Commands
INtrOdUCHION . . o e 3-1
NEW Commando e e e 3-2
NUMBER Command i e e e e 3-2
RESEQUENCE Command. ittt e e e e e e e 3-3
OLD Command.ot e e 3-5
EDIT Command i e e 3-5
EDI T MAIN L 35
EDI T ESUB ..o 35
LIST Command e 3-6
DELETE Command i e e 3-6
DELETE File . ..o e e e 37
DELETE ESUB ... o i e e e 37
DELETE LiNeS ..ot e e 3-8
RENAME Command it e e e e e 39

vii

Contents

Paragraph

3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.21
4.2.2
4.3
4.31
432
4.4
4.5
4.6
4.7
4.8
481
48.2
4.8.3
484
485
486
4.8.7
488
489
4.8.10
4.8.11
4.8.12
4.8.13
4.8.14
48.15
4.8.16
4.8.17
4.8.18
4.8.19
4.8.20
49
4.9.1
49.2

viii

Title Page

MERGE COmMMAaNdottt ittt ettt it e iinee e aias e ssaaananranns 39
(0] 27 I =07 212 1 7= s o 5 3-10
SAVE CommMand ..ottt ittt et et 3-10
[0 1Yo 14T -1 1 T [3-11
BYE COMMANG . .ottt ittt it ettt ittt et s e 313

4 — Editing Capabilities

Y4 e Yo 11T § o o TR 41
Writing Program Lines. i e e e 4-1
Program Development Mode.o e e 41
Immediate ExecutionMode i i e e i 4-2
USIiNG COMMENtSottt ittt e e a et s n e 4-3
Remark Statement (REM) i i i it i i 4-3
Taill Remark ... it e e 4-4
Editing Program LinesS oottt i ittt ittt e 4-4
Adding Linestoa Programiiiirtit it e 4-4
Deleting Lines FromaProgramttt eennanas 4-5
Copying/Moving LinesinaProgramt iinntrninaennnnans 4-5
Editing FUNGHIONS i i i i i i it e i e 4-5
Space Forward e e e 4-5
Move Cursor Right/Move Cursorleft i ittt 4-5
Back Tab i e e e e 4-5
L= 0 46
Display Current or PrecedingLine i, 46
Display CurrentorSucceedingLine. it 46
InsertCharacter. i e i e e 4-6
Delete Character i i i i e e e 4-7
Erase InpuUt e e e 4-7
Erase Field i e 4-7
LI o 4-7
Y o T 4-7

R T2 o - 4-7
(7= 1 Lo U] F- ¥ = 4-7
Break EXQCULION . . vttt ettt ettt et e e et e e e 4-7
Resume EXeCUtioN. i i i i e e 4-7
5] = 2 4-8

L (Y= O 1] =T 4-8
Suspend Executionon Output e 4-8
Return With EOF i e 4-8
OPTION Statement e e e e e it es 4-8
L0 0] e 49

10] 1 10 4-10

2308769-9701

Paragraph

5.1

5.2
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.4.3
5.4.3.1
5.4.3.2
5.4.3.3
5.4.4
545
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.7
5.7.1
5.7.2
5.8
5.9
5.9.1
5.0.2
5.9.3
5.9.4
5.9.4.1
5.9.4.2
5.9.4.3
59.4.4
5.10
5.11
5.11.1
5.11.2
5.11.3
5.11.4

6.1
6.2
6.2.1
6.2.2
6.2.3

2308769-9701

Title

5 — Data and Expressions

INtroducCtion i e e e
7 Y -
{070 1= = 1o 1 €=
NUMENC CONStaNtS . ..o vt e ittt e e e
StringConstants i s
Varniables e e e e
NumericVariables oo oottt
NumericVariable Names i
Numeric Type Declarationscviiiiiien,
The REALStatementottt

StringVariables i e
StringVariableNames i i i
Value Assignmentt
Arithmetic LET .. oo i i i e e
StHNG LET . oot i e e

N - 7 T PP
DIMStatementot i e e e s
OPTIONBASE Statement it
Virtual Arrays . ..o e e e e
ASSIGN Statement ...ttt e e e
CLOSEStatement ...t e
EXpPressionst e e e
(0] 0= - 1 Lo £
ArithmeticOperators.o i i
StringOperatoro e e
RelationalOperatorso i
Logical Operatorsoiieiiiiiii it
Logical NOT ... i et e e
Logical OR i e e e e
Logical AND e e
Logical OperatorExample i .
Precedence of Operator Evaluation
Evaluationof Expressions it
Arithmetic EXpressions. it
Logical Expressions i
String Expressions
Relational EXpressions i i

6 — Input/Output (I/0) Statements

INtrodUGTION . .o e e e s
FileOrganization i i e e
Sequential e
Relative Recordo oo et e e et e
I o e e e e e e e e e

Contents

Page

Contents

Paragraph

6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.2
6.3.2.1
6.3.2.2
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3 -
6.3.4
6.3.5
6.3.5.1
6.3.5.2
6.3.5.3
6.3.5.4
6.4
6.5
6.5.1
6.5.2
6.5.2.1
6.5.2.2
6.5.2.3
6.5.3
6.5.3.1
6.5.3.2
6.5.3.3
6.5.3.4
6.5.4
6.5.5
6.5.5.1
6.5.5.2
6.5.5.3
6.5.5.4
6.5.5.5
6.5.5.6
6.5.6
6.5.6.1
6.5.6.2
6.5.6.3
6.5.7
6.5.8
6.6
6.6.1
6.6.2
6.6.2.1
6.6.2.2

Title Page
OPEN Statement . ..t e e e e 6-2
OPEN Statement with File Organization Attribute 6-3
Opening a Sequential FileorDevice i 6-3
OpeningaRelativeFile i i e 6-4
OpeningaKIF it i e 6-4-
File/Device Format Attribute i i e i 6-4
DISP LAY FOrmat .. oottt i it e et et i e s 6-4
INTERNAL FOormat o i it i e e it e ittt e e 65
File/Device Record Length Attribute o i i, 6-6
Variable Record Length i e 6-6
FixedRecordLength i i ittt e s 6-6
Physical Recordlengtho, e 6-7
Fille Life. ot i i e e e it et e e e 6-7
FileAccess Attribute. i i e e 6-7
Output Access Mode it i i i it e e 6-7
INput ACCESS MO i i i e e 6-8
Update Access Mode. o it i e it e e e 6-8
Append Access MOode it i e e e e 6-8
CLOSE Statementottt i e e et et e e e e 6-9
PRINT AND DISPLAY Statementsttt it 6-9
Device QUIPUL i i i i et it i e 6-11
Data SeParatOrS . . . v it it i i e e e e 6-11
(00T ¢ 111 2T 6-12
£ST=Y 1 1] Lo 1 T 6-12
APOSITOPNE . . . o et 6-13
OUtPUL OptioNS ... i i e i e 6-13
PRINTwithERASE ALLOption. i e 6-13
PRINT With AT Option i e et e aae e e 6-14
PRINT withSIZEOption e e 6-14
PRINTWith BELL Option . ..o it e e e e et e 6-15
PRINTwithUSING Option. i i i e e e e e 6-15
IMAGE Statement i e s 6-16
IMAGE Format Control Characters ittt an 6-17
Integer Fields i i ettt e e 6-18
Decimal Fleldsot i it et e ettt e 6-19
Exponential Fields. it e e 6-19
AlphanumericFields i i e i s 6-20
Literal Fields i it i i i i i i e e et et e 6-21
Fille OUtPUL i e e 6-21
Sequential File QUtpUt i e e e e 6-21
Relative Record FileOutput i i i 6-22
KIF QUIPUL ... i e et e 6-24
REPRINT Statement ..ottt it e et e et 6-25
SCRATCH Statement ...t it et e e e e 6-26
INPUT AND ACCEPT Statementst e e e es 6-26
INPUT Statement i i i i i it et et ittt e 6-27
Keyboard InpuUt e e e 6-28
INPUT with ERASE ALL Option. i i e e e 6-28
INPUT With AT Option . ..ot e e et e e o 6-29

2308769-9701

Paragraph

6.6.2.3
.6.6.24
6.6.2.5
6.6.2.6
6.6.3
6.6.3.1
6.6.3.2
6.6.3.3
6.6.4
6.7
6.7.1
6.7.2
6.7.3
6.7.3.1
6.7.3.2
6.8
6.9
6.9.1
6.9.2

71
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

8.1

8.2

8.21
8.2.2
8.2.3
8.2.4
8.25
8.2.6
8.2.7
8.28

2308769-9701

INPUT with SIZEOption i,

INPUT with BELL Option
Input Prompting
INPUT Statement in File Access
KIF Input
DATA Statement

RESTORE Data Statement Pointer

Shared Files

INtrodUCHION ..o e

Unconditional Transfer (GOTO)

GOSUB and RETURN Statements

END Statement

INtroduction i e i e,

Mathematical Functions

Arctangent Function (ATN)

INPULEMTOrs i e e
Sequential Filelnput........::::::
Relative Record Filelnput
ACCEPT Statementcooeeeiennnnn,
Program DAT A e e
READ Statementcoooeieoeinnnnn
RESTORE STATEMENT it

FileRESTOREottt e iinnes

Relative Record FileExample........... ...,
KIFEXample. ... i i e e i e et e et e e e

Computed Transfer (ON-GOTO) ...t
Conditional Transfer (IF-THEN-ELSE)
Repeated Sequences (FOR-TO-STEP-NEXT)
Computed GOSUB Statement
ONERROR/RETURN ittt it it cieiaeens

STOPStatement ...t i i it i it e s

Absolute Value Function(ABS). ...t
Cosine Function(COS) i,
Exponential Function(EXP)
Integer Function(INT) it
Natural Logarithm Function(LOG).........................
Sign Function(SGN) i i e
SineFunction(SIN) i i e e

Contents

xi

Contents

Paragraph Title Page
8.29 Square Root FUNCLion (SQR)ottt 8-6
8.2.10 Tangent Function (TAN) s 8-6
8.3 StriNG FUNCHIONS . .. ot e i e i et 8-6
8.3.1 Convert ASCIl to Decimal Function(ASC) o i 8-7
8.3.2 Break Function (BREAK)ot i et e 8-8
8.3.3 Length Function (LEN).t s 89
8.34 Numeric Function(NUMERIC) s 8-9
8.3.5 Position FUNCLION(POS)o et e 8-10
8.3.6 Repeat FUNGLION (RPTE)o it it 8-11
8.3.7 Match String Function (SPAN) i 8-11
8.3.8 Uppercase FUNCion(UPRCS)ot i 8-12
8.3.9 Value FUNGHION (VAL)ot e i i i et aaas 8-13
8.3.10 Character FUNCtion (CHRSE)o i ittt e i e 8-14
8.3.11 Segment FUNCHON (SEGS)ot 8-15
8.3.12 String FUNGLioN (STRS) . ..ottt i e e s 8-15
8.4 Dateand Time FUNCHIONS i it e e s e e e 8-16
8.4.1 Date FUNCHON (DATS) . ..o it i it et ittt e i e 8-16
8.4.2 Time Function (TIMES)o i et ettt 8-17
8.5 Miscellaneous FUNGLIONS i i i i it e st 8-18
8.5.1 Random Number Function(RND)o i i e 8-18
8.5.2 Randomize Statement (RANDOMIZE) oo i 8-18
85.3 Find Available Space Function (FREESPACE)o vt 8-19
8.5.4 Return Number of Characters in Buffer Function (INKEY) 8-19
8.5.5 Return Character Function (INKEYS®)o 8-19
8.5.6 End-of-File FUNCtion (EOF) it e e 8-20
8.5.7 Verify File Function (FTYPE)ot e s 8-22
8.5.8 Tab FUNCHON (TAB) ..ottt it e e et it e e 8-23
859 ERR FUNCHION . . ottt it i i et ettt s et aee e 8-24
8.5.10 Test for Duplicate Keys(DUP)ot e 8-26

9 — User-Defined Procedures

9.1 INErOdUCHION . ..t i i e e 91
9.2 Function Definition ...t i e s 91
9.2.1 Define Statement (DEF). it i i i e e 9-2
9.2.2 Function End Statement (FNEND) i e 9-4
9.2.3 ReCUISIVE FUNCHIONS ..ttt it et e it e e et e 9-4
9.3 BASIC SUDPIOGIamMS . ..t ittt ittt it e 9-5
9.31 Calling Subprograms. it e 9-5
9.3.2 Subprogram Statements L 9-6
9.3.2.1 SUB Statement ...ttt e e e 9-6
9.3.2.2 ESUB Statement . ..ottt i e e e 9-7
9.3.2.3 SUBEXIT Statementttt et e 9-8
9.3.24 SUBEND Statement.o oo ittt e e e 9-8
9.4 Defining Types of Parameters and Local Variables, 9-8

xii 2308769-9701

Paragraph

10.1
10.2
10.2.1
10.2.2
10.3
10.4
10.5

111
1.2
11.3
11.4
115
11.6
1.7
11.7.1
11.7.2
11.7.3
11.7.4
11.8
11.8.1
11.8.2
11.9
11.9.1
11.9.2
11.9.3
11.9.4

121
12.2
12.2.1
12.2.2
123
12.3.1
12.3.1.1
12.3.1.2
12.4
12.4.1
12.4.2

2308769-9701

Title

10 — Debug Features

Introduction i e
Program Breakst i e e e e

BRKPNT and UNBRKPNTCommandsccovvunun...

Break Function Keyottt i i
Continuing Execution i i i i i e
Steppinga Program e e e
TRACEAandUNTRACE it ittt

11 — Assembly Language Subroutines

Introduction e e
Creating an Assembly Language Subroutine
Installing an Assembly Language Subroutine.
LIBRARY Statement it i,
CALL Statement i it i it

Accessing ParameterDataValues...............c ciiiiiinennnn.
IntegerDataFormat it i
RealDataFormatttt

StringDataFormat i i
Accessing Arrays in an Assembly Language Subroutine
AccessiNg NUMEMC AITaYSttt e it it eneennns
Accessing String Arraysviiiti it i e e
Assembly Language SubroutineExample.........................
Step 1 — Creating the Assembly Language SourceCode
AssemblingtheSourceFile i i,
Step 3 — Linking the Assembly Language Subroutine.............
Step 4 — Calling the Subroutine from a BASIC Program

12 — BASIC Subroutine Library

Introduction i e e
Usingthe Subroutines i i
Subroutine Arguments e e e
SubroutineErrorCodesoiii it
SORT Subroutineso i e
SOt EXamMpPle ... e
Sorted Record OQutput i
IntegerOutput i e
KeyedFilePackagettt i e e e
Keyed File Organization i,
Keyed File Format i e

Contents

Page

xiii

Contents

Paragraph

1243
12.4.4
1245
12.4.5.1
12452
12453
12.46
12.46.1
12.4.6.2
124.6.3
12.46.4
12.4.6.5
12.46.6
12.4.6.7
12.4.6.8
12.4.6.9
12.4.6.10
12.4.7

Appendix

I G mmooO W >

xiv

Title Page
Keyed File Data Base BufferCreation oo, 12-10
Keyed FileCreationo i e i e 12-10
KFP MemoryManagement i i 12-10
Subroutine Memory Requirements.t i 12-10
Keyed File DataBaseBuffer...................... e eeeeeneeameen 12-11
Record Buffero i i e e e e s 1212
K P SUDIOULINES .o oottt it it et it e et i i e 1212
BLDBUF — Build Keyed File Data Base BufferFile.. 12-13
KFINIT — Initialize Keyed File DataBase Buffer 12-13
KFCREA —CreateKeyed File 12-15
KFOPEN — OpenKeyedFileot 12-16
KFPUT — Put DataintoRecordBuffer 1217
KFWRIT —WriteKeyed Fileot 12-19
KFREAD — Read KeyedFileottt 12-20
KFGET — Get Datafrom RecordBuffert 12-21
KFDELR — Delete Keyed FileRecord i, 12-22
KFCLOS — CloseKeyedFilec. ittt 12-23
Keyed File EXample oot i it et it i e 12-23
Appendixes
Title Page
Keycap Name Cross-Referenceot A-1
ASCIH Character Set e e B-1
BASICReservedWord List i i i C-1
ErrorMessagesand Codesttt i s D-1
BASIC System Differencesc.o i i e i e E-1
Logical Operators with IntegerOperands i F-1
SYNtaX DIagrams ... ittt e G-1
EXamMPle PrOgrams . .. oottt ittt e e e H-1
BASIC Systems Function Keys i e i1
Index

Change 1 2308769-9701

Contents

Hlustrations

Figure

2-1
7-1

11-1
112
113
11-4
115
116
117
118
12-1
122
123

Nested Subroutines

Parameter Information Block
Integer Data Format
Real Data Format
String Data Format
Sample Routine Source Code

Sample Routine Object Listing
Sample Routine Object Listing Cross-Reference
Link Control File for Sample Routine

Sort Subroutine Program
Sample Build Buffer Utility
Keyed File Example

Table

1-1
4-1
5-1
5-2
5-3
5-4
6-1
6-2
8-1
8-2

2308769-9701

TI BASIC Device Support
Bit Positions and Values Associated with Keys

Arithmetic Operators
Relational Operators
Truth Table
Numeric/Logical Expression Priority

Memory Requirements for INTERNAL Format Data
Format Control Characters

BASIC Intrinsic Functions
FTYPE Values

Xv/xvi

General Description

1.1 INTRODUCTION

The BASIC system is a commercially oriented program development system. The BASIC language
includes the minimal BASIC standard developed by the American National Standards Institute
(ANS)I), designated ANSI X3.6-1978. Texas Instruments has developed BASIC beyond this standard,
producing a more flexible language system suitable for both business and scientific applications.
By using the extensions made to TI BASIC, you can perform the following:

* Write independent subroutines in BASIC

. Write multiiine function definitions

" e Specify images that provide precise control of output formats

. Accommodate arrays too large for internal memory

. Transmit data to and from files and external devices

o Specify the position of data on the screen

. Restrict the precision of data by rounding

. Conveniently locate program logic errors

. Determine the date and time

. Use IF-THEN-ELSE statements

. Use assembly language subroutines within BASIC programs

. Protect programs against modification and examination

. Write multiple statements on each program line

2308769-9701 11

General Description

1.2 BASIC SYSTEM CONFIGURATION

You can install TI BASIC on Business System 200 (S200) computers that use the DX10 Micro (DXM)
operating system, or on other Business System or Tl 990 computers that use the DX10 or DNOS
operating system. The capabilities of BASIC are identical on the various systems, with the excep-
tion that DXM is a single-user, single-task operating system. While DX10 and DNOS can execute
separate tasks in foreground and background mode, DXM executes one task at a time in foreground
mode. BASIC executes as a single task; thus, on $S200 computers, when you are developing or run-
ning a program in BASIC, the System Command Interpreter (SCl) suspends operation. Appendix E
discusses system differences.

Standard configuration for a TI BASIC system includes at ileast one system and one terminal device;
the capacity to support additional devices depends on the operating system. The terminal device is
the device through which you enter BASIC commands. The system device (usually a disk) is the ex-
ternal storage unit for any BASIC operating system that does not reside in the computer’s internal
memory. A file device is any device that can be attached to the computer with which a BASIC pro-
gram communicates. Table 1-1 lists the equipment that can be used as devices with each of the
systems.

Table 1-1. TI BASIC Device Support

BASIC Terminal System File
0s Device Device' Device?
DXM any DSDD or DSDD or
Winchester Winchester
DX10 any any disk? any
DNOS any any disk? any
Notes:

" DSDD indicates double-sided, double-density diskettes.

2 You can use any device for a file, but you must provide a device service routine (DSR) for
it. The standard release packages include DSRs for the terminal device, the system device,
and printers available with the operating system.

3 The devices that can be used in these positions are restricted only by the DX10 or DNOS
operating system.

12 23087699701

General Description

1.3 MANUAL OVERVIEW

This manual is arranged in top-down order. Section 2 tells you how to get into and out of BASIC; we
work down from there. The following list briefly describes the elements of TI BASIC in the order they
appear in this manual:

Commands — Section 3 describes the BASIC commands that allow you to instruct the
computer to perform immediate actions.

Editing operations — Section 4 describes Tl BASIC’s extensive editing capabilities,
which facilitate creating and editing program statements.

Data and expressions — Section 5 describes how Tl BASIC handles data and explains
how to assign values in program statements.

Statements — Allow you to construct a program. Each statement causes the program to
perform a particular function. Section 6 describes I/O statements; Section 7 describes
control statements (for example, GOTO).

Intrinsic Functions — Section 8 describes the intrinsic functions provided by Tl BASIC.
They include mathematical functions, string functions, date and time functions, and
miscellaneous functions that perform commonly used operations. These functions are
accessed by statements.

User-defined functions and subroutines — Section 9 describes how to write your own
functions and subroutines. You can minimize code by writing a function or subroutine
that is activated at several locations within a program but written only once.

Debugging Aids — Section 10 describes the BASIC debugging features that allow you to
examine the actions of the program and identify functional errors.

Assembly-language subroutines — Section 11 outlines how to create, link, and call
assembly language subroutines to interface with your program. These routines enable
you to implement special functions and features not supplied in BASIC.

Error Messages — Appendix D lists the error messages and codes. The error message in-
dicates the nature of the error and where it was detected in the program.

2308769-9701 1-3

General Description

1.4 PROGRAM DEVELOPMENT
The following paragraphs outline the steps in program development.

1.41 Writing the BASIC Program
A BASIC program is made up of one or more BASIC statements, which may be entered in either of
two modes:

o Program development mode — In this mode, the programmer enters a line number fol-
lowed by a BASIC statement. The statements do not execute until the program executes.

o Immediate execution mode — In this mode, BASIC statements execute as soon as you
enter a carriage return. There are no line numbers.

Each BASIC statement has a required syntax. To terminate a statement, enter any editing function
that causes a carriage return. You can write multiple statements on the same line by using a double
colon (::) to separate the statements.

1.4.2 Listing the Program
When a new program has been created or an existing program has been loaded, you can list the pro-
gram. Listing the program allows you to check the statements entered.

1.4.3 Executing the Program

After a program has been written, it can be executed. When a program error is encountered, the
BASIC system displays an error message and stops execution or transfers control to a user-
supplied error routine. Appendix D describes the system-supplied error messages. The reap-
pearance of the prompting period indicates successful completion of the program.

1.4.4 Editing the Program

When you discover errors in a program or need to add or change statements, you can edit the pro-
gram to make the appropriate changes. The BASIC editing functions allow you to display and edit
the lines of a program and to add new lines.

1.4.5 Correcting the Program

You can locate and correct most errors by using the information in the error message descriptions
in Appendix D. Each error message includes a numeric code. Appendix D lists the error messages in
numeric order according to the code. If you cannot correct an error, use the debugging commands
discussed in Section 10 to locate the error.

1.4.6 Saving the Program

When you complete work on a program or decide to continue the work later, you can save the pro-
gram in a file. To resume work or execute the program, use a BASIC command and the pathname of
the file.

1-4 23087699701

2

Getting Started

2.1 INITIAL OPERATIONS

To begin to develop or execute a BASIC program, enter the SCI procedure name BASIC. One set of
the following prompts appeatr:

DXM only
EXECUTE BASIC EXECUTE BASIC
WORKSPACE SIZE (KB) : WORKSPACE SIZE(KB): 20
NUMBER OF OVERLAY BUFFERS: 8 NUMBER OF OVERLAY BUFFERS: 6
WORK FILE VOLUME NAME: WORK FILE VOLUME NAME:
INITIAL PROGRAM NAME: INITIAL PROGRAM NAME:

MODE (F,B): FOREGROUND

Prompt Responses

WORKSPACE SIZE
Allows you to specify, in increments of 1000 bytes (or kilobytes), the amount of available user
memory you want to use for program editing and execution. The system accepts integer
values; for example, if you want 12,000 bytes of memory available, you would enter 12 in
response to this prompt. There is no default value. If you request more memory than is
available, the system assigns all available memory.

NUMBER OF OVERLAY BUFFERS
Allows you to specify the number of overlay buffers available to this BASIC program. The more
buffers you assign, the less likely BASIC is to have to access an overlay on disk; however, each
buffer takes up memory that otherwise would be available to the user. You should assign the
lowest value that allows your program to run efficiently. Experiment with each application to
determine the optimum response to this prompt.

WORK FILE VOLUME NAME

The name of the volume where the BASIC work file resides. Although no default is indicated,
the default value is the system disk.

INITIAL PROGRAM NAME

Indicates that you have the option of loading and executing a BASIC program immediately. If
you enter a valid program name, that program executes immediately.

2308769-9701 Change 1 21

Getting Started

MODE

Requests whether BASIC is to be executed in background or foreground. On operating
systems that have background mode, if you select this mode, you must specify an initial
program to run in background. The program cannot contain DISPLAY, ACCEPT, INPUT, or
PRINT statements that direct /O to your terminal. If the program contains an error, the
system displays the appropriate error message; otherwise, on termination the system
displays a message indicating successful completion. If you select foreground mode, you
can execute a program immediately or enter the BASIC command mode.

If you enter an invalid name or press the Return key in response to the INITIAL PROGRAM NAME
prompt, the system displays the following information:

TEXAS INSTRUMENTS BASIC VERSION n.n.n

The prompting period appears, indicating that you are in command mode. You can now enter any of
the BASIC commands (see Section 3).

The first time you execute BASIC, no initial value appears for the WORKSPACE SIZE(KB) prompt.
However, after you enter a value for this prompt, that value appears as the initial value each time
you execute BASIC until you specify a new response. Similarly, if you enter a program pathname in
response to the prompt, that pathname appears the next time you execute BASIC.

The existence of a work file allows you to write and execute a program that, including its sub-
programs, is larger than available user memory. The work file contains the main program and exter-
nal BASIC subprograms. When you are ready to edit the main program or a BASIC subprogram, you
enter the appropriate edit command (see Section 4). That routine is copied into memory for editing.
Only one routine is in memory at a time.

To terminate BASIC, enter the command BYE after the prompting period.

2.2 SAMPLE PROGRAM
This paragraph provides a sample program for users who prefer to get acquainted with their
systems through hands-on experience. The following steps give you a brief introduction to program
development in Tl BASIC. You will:

1. Enter BASIC in the program development mode

2. Build a program source module

3. Execute the program

4. Terminate BASIC

2.2 Change 1 2308769-9701

Getting Started

2.2.1 Step 1 — Enter BASIC

To begin creating your program, press the Command Key to place SCI in the command mode. Now,
enter the BASIC command by typing BASIC following the SCI prompt and press Return. Respond
to the prompts as follows:

EXECUTE BASIC

WORKSPACE SIZE (KB): 4

NUMBER OF OVERLAY BUFFERS: 8

WORK FILE VOLUME NAME:
INITIAL PROGRAM NAME:
MODE (F,B): FOREGROUND

You are in the program development mode; you can begin to enter source code.

222 Step 2 — Create the Program
Step 2 explains how to write a BASIC program source module using the Text Editor. For a complete
description of the Text Editor, see Section 3.

1.

The prompting period indicates that BASIC is in the command mode. Enter the NEW com-
mand, which erases any program currently in memory, as follows:

NEW

To eliminate the need to type in line numbers, enter the NUM command. The system will
start numbering at 100, using increments of 10.

‘NUM

Type in the following program. By pressing the Return key, you terminate a program line.
Figure 2-1 offers you an entertaining introduction to Tl BASIC. Refer to Step 3 (para-
graph 2.2.3) for an analysis of the coding techniques employed in this program.

Check your program for typos. If you discover a mistake, press the Previous Line or Next
Line key until you reach the line number of the incorrect statement. Simply write over it
and press Return; the new line replaces the incorrect one.

To disable the automatic numbering initiated by the NUM command, press Return when
line 1110 appears on the screen. Use the SAVE command followed by a pathname and
LIST to save this program on disk. Type in the command SAVE immediately after the
prompting period; since this command is not part of the program, you do not want it to
have aline number. Enter the following line to save your program:

SAVE “.INVADER” LIST

The name of the file is INVADER,; the period preceding the file name indicates that the file
is on the system disk. The LIST parameter specifies that the file is saved in source form. If
you omitted LIST, the program would be saved in object code; you could run it, but could
not correct errors.

2308769-9701 Change 1 2-3

Getting Started

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

690
700

2-4

INTEGER ALL::RANDOMIZE

DISPLAY ERASE ALL

DISPLAY AT(4,34)" INVADER "

DISPLAY AT(8,21) " USE THE FOUR AND SIX NUMERIC KEYS "
DISPLAY AT(9,21) " TO CONTROL THE DIRECTION OF THE "
DISPLAY AT(10,21)" LASAR CANNON MOVING ALONG THE "
DISPLAY AT(11,21)" BOTTOM OF THE SCREEN. THE FIVE "
DISPLAY AT(12,21)" KEY WILL STOP THE CANNON AND THE "
DISPLAY AT(13,21)" SPACE BAR FIRES A LASAR BLAST. "
DISPLAY AT(14,21)" THE ESC KEY ABORTS THE CURRENT "

DISPLAY AT(15,21)" MISSION. PRESS RETURN TO BEGIN. "

DISPLAY AT(24,1)"";

AS=INKEYS$ (0) : :IF ASC(AS$)<>141 THEN 220 IWait for RETURN key
HC=0

DISPLAY ERASE ALL AT(1l,1)"POINTS: "+HC :: THITS=0

RKT=25 :: DISPLAY AT(2,1)"SHOTS LEFT:";RKT

CUR=40 :: DLY=0 :: STP=53:: LFT=52 :: RIT=54 :: ESC=155::FIR=32

TRW=4 :: SPD=2 :: DIR=0 :: BWAT=70 :: LBR=5 :: LBC=1 !Sets up keys,speed,etc
BMB=0 :: BCLK=0 :: TOG=-1

T$=CHRS (27+128) &"*"&CHRS$ (11+128) tDefines target

!

TGT=INT (75*RND)+1 :: LTRW=TRW :: TRW=INT{(1l7*RND)+4

DISPLAY AT(LTRW,1l) :: DISPLAY AT(TRW,TGT)TS$ 'Displays target

!

HOLD=INT((80~ (PCNT/2)) *RND) 'How long to hold still
FOR TIM= 1 TO HOLD !1Begin loop ==—====~—=—=

IF BMB THEN BWAT=INT (50*RND) !
IF NOT BMB THEN BCLK=BCLK+1l !
IF NOT BMB THEN IF BCLK>BWAT THEN BMB=-1::BRW=TRW::BCL=TGT+2::BCLK=0 !
DISPLAY AT(23,LCUR)"™ " !
DISPLAY AT(23,CUR) CHRS$ (28)]
TOG=TOG*-1 :: IF TOG=-1 THEN DISPLAY AT(24,1)" " 1
IF BMB THEN BMB=MOVB :: IF BMB>0 THEN 490 !
1 I

!

1

IF INKEY(0)=0 THEN 570 !
MS=INKEYS$(0) :: BTN=ASC (MS$) tAccept,decode command!
IF BTN=FIR THEN TIM= FIRE(CUR,TGT) ELSE IF BTN=LFT THEN DIR=-SPD 4
IF BTN=RIT THEN DIR=SPD ELSE IF BTN=STP THEN DIR=0 4
IF BTN<>ESC AND RKT<>0 THEN 570 J
1
IF RKT=25 THEN PCNT=0 ELSE PCNT=(THITS/(25-RKT)) *100

!
DISPLAY AT(1l,20) "PERCENT: "&STRS (PCNT)&"%" i
ACCEPT AT(24,1)SIZE(1l),"AGAIN(Y/N)?: ":AS$!
IF AS$S="Y" OR AS$="" THEN 240 !Start up again !
!
IF A$<>"N" THEN 530 ELSE STOP Quit !
!]
IF CUR+DIR>80 OR CUR+DIR<1 THEN DIR=-DIR tCursor wraparound !
! !
LCUR=CUR :: CUR=CUR+DIR !
NEXT TIM 'End lcop t
GOTO 310 -
!
DEF FIRE (SRC,DST) IFires at target
FIRE=HOLD !:: DIR=0
RAY $=CHRS (9) !Defines rocket path
FOR %=22 TO TRW STEP -1 IShoot rocket at target
DISPLAY AT(Z,SRC)SIZE(Ll)RAYS !Shows path
IF Z=BRW AND SRC=BCL AND ASC(RAYS$)=9 THEN BMB=0::HC=HC+1
NEXT 2
IF RAYS$=CHRS (9) THEN RAYS=" " :: GOTO 660

Figure 2-1. Invader (Sheet 1 of 2)

2308769-97C1

710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
9290

1000

Getting Started

IF SRC<DST OR SRC>DST+(LEN(T$)-1) THEN 730 1It"s a hit!
HC=HC+2: : THITS=THITS+1: :DISPLAY AT(1,1)CHRS$(7) ;::CALL EXPL(TRW,TGT+1,0)
DISPLAY AT(1,12) HC

RKT=RKT-1 1One down and
DISPIAY AT(2,12) RKT 'How many to go
IF RKT=25 THEN PCNT=0 ELSE PCNT=(THITS/(25-RKT)) *100
FNEND
!
DEF MOVB
BRW=BRW+1
B$="+"

IF BCL<CUR THEN BM=1 ELSE BM=(BCL>CUR)
IF ABS (BCL~-CUR) >23-BRW THEN BM=BM*2
BCL=BCL+BM
DISPLAY AT(LBR,LBC)SIZE(1)" " :: LBR=BRW :: LBC=BCL
DISPLAY AT (BRW,BCL)SIZE(1)B$
IF (BCL>=TGT AND BCL<=TGT+(LEN(TS)+1)) AND BRW=TRW THEN TIM=HOLD
IF BRW<23 THEN 980
IF BCL<>CUR THEN 950 ELSE DISPIAY AT(1,1)CHRS(7);
FOR Z=1 TO 50
DISPLAY AT(23,CUR-5)"_\“|"/_"
NEXT 2
DISPLAY AT(23,1)
BMB=1: :GOTO 980
DISPLAY AT (LBR,LBC-2)SIZE(5)""
DISPLAY AT(24,LBC-2)SIZE(5)"\.|./"
BMB=0
MOVB=BMB
FNEND
! SHOW AN EXPLOSION

1010 SUB INTEGER EXPL(R,C,T)

1020 IF T OR R<6 OR R>20 OR C<5 OR C>75 THEN N=1 ELSE N=3
1030 ECS$=CHRS$ (19)

1040 K=R :: L=C :: PRINT AT (K,L)" ";

1050

FOR J=1 TO N :: DISPLAY AT(K,L~J);EC$; :: DISPLAY AT (K-J,L-J)ECS;

1060 DISPLAY AT(K-J,L)EC$; :: DISPLAY AT(K-J,L+J)ECS;
1070 DISPLAY AT(K,I+J)EC$; :: DISPLAY AT(K+J,L+J)ECS;
1080 DISPLAY AT(K+J,L)ECS$; :: DISPLAY AT (K+J,L-J)ECS;::NEXT J

1090
1100

2308769-9701

IF EC$<>" " THEN BCS$=" "::GOTO 1050
SUBEND

Figure 2-1. Invader (Sheet 2 of 2)

2:5

Getting Started

2.2.3 Step 3 — Analyze the Coding

This program illustrates many of the coding techniques described in later sections of the manual. If
you wish, read the following commentary to become acquainted with some of the features of Tl
BASIC. You may want to study the coding in the program more closely after reading the rest of the
manual.

LINE 100
The INTEGER ALL statement assigns the integer data type to all variables in the program.

LINE 110
DISPLAY ERASE ALL clears the screen.

LINES 120 through 210
These DISPLAY statements display instructions on the screen, explaining to the player how to
move and fire the cannon.

LINE 220
Waits for the player to press Return.

LINES 230 through 280
These lines clear the instructions from the screen, then display the number of shots available
to the player. Constants are assigned values (for example, STP (Stop) is assigned the value of
53; SPD (Speed) equals 2).

LINE 290
Defines the target, the spaceship.

LINES 300 through 330
Displays the target.

LINE 340
Defines how long the target will hold still. The better the player is, the shorter the time the
spaceship remains in one place. The percentage of hits is divided by 2, subtracted from 80, and
then multiplied by a random number.

LINES 350 through 620
The main body of the program times the bombs falling from the spaceship, displays the can-
non, defines what to do when the cannon is hit, etc.

LINES 630 through 780
A function the programmer has defined; this function controls the cannon fire. See Section 9
on user-defined functions.

LINES 790 through 990
Another user-defined function; the purpose of this one is to move the bomb. Line 810 defines
the bomb as the “+ ” character. The next two lines make the bombs fall toward the cannon.
Line 870 prevents the bomb from hitting the spaceship; lines 900 through 970 define what is
displayed for a hit and a miss.

LINES 1000 through 1100
A subprogram that shows an explosion.

2.6 Change 1 2308769-9701

Getting Started

2.24 Step 4 — Execute the Program . .
Enter the RUN command to execute the program. You would enter the following line to run

.INVADER:
RUN “.INVADER”

The program should execute correctly. If it does not, error messages will appear indicating the line
number and kind of error. Check the line indicated against the line in the source program and cor-
rect it. The program still resides in memory; to make corrections, enter the LIST command. Then
use the Previous Line to find the incorrect line or lines. For more information on BASIC error mes-
sages and codes, refer to Appendix D. For information on the BASIC commands, see Section 3.
Forinformation on using the BASIC editing capabilities, see Section 4.

225 Step 5 — Terminate BASIC
When you have saved the world from space invaders and are ready to terminate BASIC, enter the
command BYE after the prompting period, as follows:

BYE

BYE terminates BASIC and the system returns to SCI mode.

2308769-9701 Change 1 2-7/2-8

3
BASIC Commands

3.1 INTRODUCTION

Commands direct and control system functions, including creating programs, debugging programs,
and terminating system operations. This section discusses program development commands and
the BYE command, which terminates operations. Section 10 discusses debug commands. You can
enter commands whenever the prompting period () is displayed. Some commands (such as BYE,
RUN, RENAME, and DELETE File) are executable as either BASIC commands or statements.

Each command is associated with a keyword. When you use a command as a statement in a
BASIC program, only the first three letters of the keyword need be entered. Some commands
require that you enclose the pathname of a BASIC program in quotes. For example, when loading
the program in Section 2, you would use OLD "“.INVADER".

When you enter BASIC, you can choose among three operations:
. Develop a new program
. List or modify an old program
. Run a program

The BASIC commands in the following paragraphs are described as you might use them in the three
operations. If you were developing a new program, you would begin with NEW, then probably number
the lines (NUM), and later might want to resequence them (RES).

If you were editing an old program, you would begin with OLD. You could then specify which portion
of the program to edit, the main program or a subroutine (EDIT). Once the portion to edit is loaded
into memory, you might list it to the screen or optionai printer (LIST). The DELETE commands allow
you to delete extraneous lines or files. The RENAME command allows you to rename a file. The
MERGE command allows you to merge two programs. When you are debugging a program, you can
use the UPDATE command to send the modifications you have completed to the work file without
affecting the program on disk. That way, you can experiment with modifications. When you finish
debugging a program, you are ready to save it.

The SAVE command allows you to store a program in source format (SAVE LIST), in internal (object)
format (SAVE), or in object format with program security (SAVE LOCK).

The RUN command runs a program saved in source or object format. Programs saved in object for-
mat run faster but cannot be debugged or edited.

2308769-9701 3-1

BASIC Commands

3.2 NEW COMMAND
The NEW command prepares the system to accept a new program by erasing the program currently
in memory and emptying the BASIC work file. BASIC is in the immediate execution mode. This com-

mand has no parameters. NEW removes all program lines and variables currently in memory, clears
the BASIC work file, closes any open files, and deactivates the TRACE command (Section 10).

FORMAT
NEW
NEW SIZE workspace
NEW SIZE workspace, overlays

where:

workspace is the size, in kilobytes, of the workspace you wish to define for the new
program.

overlays is the number of overlay buffers you want available for this application.

3.3 NUMBER COMMAND
The NUMBER command eliminates the need to type line numbers when entering a program from the

keyboard. Line numbers in BASIC never contain commas.

FORMAT

NUMBER
NUMBER line_num
NUMBER ,inc
NUMBER line__num,inc
where:
line_num is the beginning line number.

inc is the increment used to determine subsequent line numbers.

3-2) 2308769-6701

BASIC Commands

If you do not specify a starting line number, the system begins with a default line number of 100. If
you do not specify an increment, the system uses a default increment of 10. If the system reaches a
line number that currently exists in program memory, the existing line and its line number appear on
the screen.
The following is an example of the NUMBER command.

NUMBER 1100,50
This command generates line numbers for statements, beginning with line number 1100. The
system numbers lines by increments of 50 until a blank line is entered. If 50 were omitted, the
system would use the default increment of 10.

3.4 RESEQUENCE COMMAND

The RESEQUENCE command renumbers the program lines currently in memory.

FORMAT
RESEQUENCE
RESEQUENCE line_num
RESEQUENCE line__num, inc

RESEQUENCE line_num, inc, start__line - end__line

where:
line__num is the beginning line number.
inc is the increment used to determine subsequent line numbers.
start__line is the first original line number to be changed.
end__line is the last original line number to be changed.

23087699701 Change 1 3.3

BASIC Commands

You ¢can omit any parameter, in which case the following defaults apply:
o First new line number: 100
. New line numberincrement: 10
. First original line number to be changed: 1
. Last original line number to be changed: 32759
Note that the defaults for the first two parameters are the same as for the NUMBER command.

The RESEQUENCE command assigns new line numbers to all lines in the specified range. The com-
mand also changes all line references in BASIC statements contained within memory to match the
new numbers. The RESEQUENCE command cannot change the order of program lines in memory.
The following example illustrates the most general form of the command:
RESEQUENCE 4000,20,10000-12000
The parameters in the example specify the following:
4000 — First new line number to be used when renumbering
20 — Line number increment for the renumbering

10000 — First original line number to be changed

12000 — Last original line number to be changed
This command is particularly useful when you are developing a program and require more space to
insert additional statements. After you enter RES and accept the defaults, the entire contents of
memory are renumbered, statements that reference line numbers are modified (for example, GOTO),
and space for nine new statements is provided between each existing statement.
You can also use the RESEQUENCE command in conjunction with the MERGE command when ap-
pending several subroutines to a program in memory. If you are using the convention of saving all
subroutines resequenced to 20000, 10, or some comparably large range of numbers, you need to en-

sure that you do not duplicate line numbers. You can use the RESEQUENCE command to renumber
the program each time a MERGE command brings in a subroutine.

3.4 Change 1 2308769-9701

BASIC Commands

3.5 OLD COMMAND

The OLD command copies the main program and external subprograms from disk files into the
BASIC work file. OLD then loads the main program into the user workspace, erasing the program
previously residing in memory there. External subprograms remain in the BASIC work file rather
than being loaded into memory.

FORMAT

OLD pathname

OLD pathname SIZE workspace

OLD pathname SIZE workspace, overlays
where:

pathname is a valid pathname.

workspace is the size, in kilobytes, of the workspace you wish to define for this program.

overlays is the number of overlay buffers you want available for this application.
Enclose the pathname of the file containing the program in quotes. When loading is complete, the
system returns to the command level.
3.6 EDIT COMMAND

The EDIT command copies the main program or an external subprogram from the BASIC work file
into memory for editing.

3.6.1 EDIT MAIN

This form of the EDIT command loads the source main program from the BASIC work file into the
user workspace for editing.

FORMAT

EDIT MAIN

The main program currently in the workfile is loaded into memory. If no program is in the BASIC
work file, an error message appears.

2308769-9701 Change 1 3.5

BASIC Commands

3.6.2 EDIT ESUB
This form of the EDIT command loads a disk-resident subprogram from the BASIC work file into the
user workspace for editing.

FORMAT

EDIT ESUB name
where:

name is the name of the external subprogram.
The external subprogram specified by name is loaded into memory. If the specified subprogram is
not in the BASIC work file, an error message appears.

3.7 LIST COMMAND

The LIST command lists on the screen the specified line(s) of the program or subprogram currently
in memory. You cannot use this command within a program.

FORMAT

LIST
LIST start__line_num - end__line__num
LIST line__num, line_num
where:
start__line__num specifies the first line to be listed.
end__line_num specifies the last line to be listed.

line__num is an individual number to be listed.

3-6 Change 1 2308769-9701

BASIC Commands

The following are examples of the LIST command:

LIST Displays the entire program contained in memory
LIST -30 Displays lines 30 and below

LIST 30 Displays line 30

LIST 120- Displays lines 120 and above

LIST 500-1000 Displays lines 500 through 1000

LIST 10-50, 100-200 Displays lines 10 through 50 and 100 through 200
To abort a listing, use the break execution function (Section 4). Paragraph 3.12 discusses listing to
devices other than the screen.
3.8 DELETE COMMAND
The DELETE command deletes lines from a program or deletes a file.
3.8.1 DELETE File

This form of the DELETE command deletes a file.

FORMAT

DELETE pathname

The file specified by pathname is deleted. If the file does not exist, BASIC ignores the command.

3.8.2 DELETE ESUB
This form of the DELETE command deletes a subprogram.

FORMAT

DELETE ESUB name
where:

name is the name of the external subprogram

The subprogram specified by name is deleted. If the subprogram does not exist, an error message
appears.

2308769-9701 37

BASIC Commands

3.8.3 DELETE Lines
This command deletes lines from the program currently in memory. You cannot use this command
during program execution.

FORMAT

DELETE start__line_num - end__line__num
DELETE line__num,line__num
where:
start__line__num specifies the first line to be deleted.
end__line_num specifies the last line to be deleted.

line__num is an individual number to be deleted.
The following is an example of the DELETE command.

EXAMPLE

DELETE 120-200
In the example, line numbers 120 through 200 (inclusive) are deleted. If you omit either the starting
or the ending line number, all preceding or succeeding lines, respectively, are deleted. If you spec-
ify only a single line number without a leading or trailing dash, only that line is deleted. Another
way to delete a single line is to enter the line number and press Return. The following example
shows multiple ranges being deleted:

DELETE -20,70-120,400-

The command in this example deletes lines 1 through 20, lines 70 through 120, and lines 400 and
above.

3.8 Change 1 2308769-9701

BASIC Commands

3.9 RENAME COMMAND

The RENAME command changes the name of a file.

FORMAT

RENAME pathname__1 TO pathname__2
The current pathname, pathname__1, is renamed pathname__2. If the file to be renamed does not
exist or a file with the new name already exists, an error message appears and no action is taken.
Both pathnames must specify the same disk. The file being renamed must be closed before the
RENAME command executes. The command is executable from a program. :

3.10 MERGE COMMAND

You can use the MERGE command to merge programs saved in SAVE and SAVE LIST format; you
cannot merge programs saved in SAVE LOCK format.

The MERGE command merges a program on a disk file with the program or external subprogram
currently in memory. This command is especially useful when used with subprograms. The program
text in the named file is added to the text already in memory.
FORMAT,

MERGE pathname
The file specified by pathname is the file to be merged with the program in memory. If any line in the
program on disk has the same number as the program in memory, the former replaces the latter

in memory. To avoid interspersing lines of the program on the disk file with those of the program
in memory, ensure that the program on disk has higher line numbers than the program in memory.

2308769-9701 39

BASIC Commands

3.11 UPDATE COMMAND

The UPDATE command writes the contents of the user workspace (the main program or external
subprogram (ESUB) in memory) to the BASIC work file. After you execute the UPDATE commarid,
you can bring new material into the workspace to edit without losing the corrections made to the
previous material. However, note that edit changes do not become permanent until you enter the
SAVE command.

UPDATE

The UPDATE command is useful for editing programs containing external subprograms. The work
file is a temporary file; modifications made to its contents do not affect the original program. You
can experiment with modifications to a program, run it, and debug it again if necessary. When you
finish editing the program, you can make the modifications permanent by entering the SAVE
cormmand.

3.12 SAVE COMMAND

The SAVE command saves the program in memory as a program on a disk file or lists it to a
printer. '

SAVE pathname LIST
SAVE pathname

SAVE pathname LOCK

In all three formats, SAVE writes the contents of the user workspace (the program or subprogram
in memory) to the BASIC work file. The contents of the BASIC work file are then copied to the disk
file specified by pathname.

In the first format, the LIST parameter directs the system to translate the program in the work file
to readable ASCI text before copying it to the sequential file designated by pathname. You must
store a program in this format if it is to be read by another computer. At least one copy of every pro-
gram should be saved with the LIST option to ensure compatibility with future BASIC releases and
for file compatibility between BASIC systems.

The second format omits the LIST specification and saves the program in internal (object) format as

a relative record file. Although this format allows quicker loading, you cannot look at the file using
the Show File (SF) or Print File (PF) commands.

3-10 2308769-9701

BASIC Commands

In the third format, the LOCK parameter directs the system to save the program in protected
format (or Fast). The program in the BASIC work file is translated to Fast format before it is copied
to the file on disk designated by pathname. The header record of this file is marked as Fast

format. Large programs saved in this format usually execute considerably faster than programs
saved without LOCK.

You cannot list or load programs saved with LOCK. This feature allows you to protect the program
from being modified. A program is saved in locked format only if you specify the LOCK parameter.
CAUTION

Before saving a program in LOCK format, be sure you have another

copy of the program. You cannot unlock a program saved in LOCK
format.

To list a program on a printer, specify the printer in the SAVE command and specify the LIST option,
as shown in the following example:

EXAMPLE

SAVE “LPO1” LIST

This command lists on the printer the program currently in memory. Note that the LIST option must
be specified.

3.13 RUN COMMAND

The RUN command executes the program in memory or a program saved in a file. If the program has
been saved to a file, the contents of the file are copied to the BASIC work file and execution begins.

Programs saved in SAVE or SAVE LIST format execute more slowly than programs saved in SAVE
LOCK format.

2308769-9701 3-11

BASIC Commands

RUN line_num
RUN pathname
RUN pathname line__num
RUN pathname line__num SIZE
RUN pathname line_num SIZE workspace
RUN pathname line__num SIZE workspace, overlays
where:
line_num specifies the line where program execution begins.
pathname specifies the file pathname of the program to be executed.
workspace is the size of the workspace you wish to define for this program.

overlays is the number of overlay buffers you want available for this application.

The following shows several examples of the RUN command:
RUN
RUN 570
RUN “DS02.MYFILE”
RUN “VOL1.MYFILE” 120

Execution begins with the lowest-numbered line unless you specify a line number. Executing any
form of the RUN statement destroys the values of all variables in memory.

The first example executes the program in memory from the beginning, and the second example
starts execution at line number 570. The third example loads the program DS02.MYFILE from disk
and executes it from the beginning. Any program currently in memory and all variable values are
lost. This command can be executed in one program to chain it to another program. No variable
values can be passed to the succeeding program except through virtual arrays or files. In the last ex-
ample, VOL1.MYFILE is loaded and execution begins at line number 120. If the line number specified
does not exist, an error message appears.

312 2308769-9701

BASIC Commands

3.14 BYE COMMAND

The BYE command terminates operations of BASIC and the system returns to the SCI mode.

FORMAT

BYE

BYE str_exp
where:

str__exp is a valid string expression.
You can follow the BYE command with a string expression. When the BYE command executes, the
string expression appears on your terminal. This feature is particularly useful when your BASIC pro-
gram is running in background mode; the string expression can indicate the status of the program

upon compiletion. In the following example, assume the program is running in background mode:

100 ON ERROR 500

490 'BYE “NORMAL PROGRAM TERMINATION”
500 A$ = “ERROR DETECTED”
510 BYE A$

2308769-9701 3-13/3-14

4

Editing Capabilities

4.1 INTRODUCTION

TI BASIC provides extensive editing capabilities that allow you to develop programs or modify
existing programs. Developing programs entails: writing program lines, adding comments, editing
the lines, adding or deleting lines, and copying or moving lines. To make program development
easier, BASIC includes numerous editing functions that are implemented through the keyboard.
Since the functions and keys are hardware dependent, Appendix | lists the keys and functions by
keyboards. Refer to Appendix | to determine which keys on your system perform the functions
described in the following paragraphs. Section 4 concludes with a discussion of the OPTION
statement, which enables you to mask the function keys.

4.2 WRITING PROGRAM LINES

When the prompting period (.) is displayed, the system is at command level and is ready to receive
statements or commands. For program development, you should begin by entering the NEW com-
mand. This command clears any other programs from memory, ensuring that the new program will
not be combined with an old one in memory. You can enter program statements in either program
creation mode or immediate execution mode.

4.2.1 Program Development Mode

In this mode, a line number must precede BASIC statements. You can enter line numbers
manually as part of the statement or automatically by using the BASIC command NUMBER. You
need not enter line numbers in sequence. The line number identifies the relative position of the
statement in the program. Line numbers cannot exceed 32759.

The statement is written to memory when the line terminates. You can save a program developed in
this way for future use; to execute it, enter the RUN command. A program developed with line
numbers remains in memory until you enter a NEW command, load another program into memory, or
terminate BASIC. Therefore, you can move, edit, or delete program lines while developing the
program.

EXAMPLE

100 PRINT “Hello”

2308769-9701 Change 1 41

Editing Capabilities

4.2.2 Immediate Execution Mode

In this mode, BASIC statements are executed when the line terminates. The statements are not
numbered. Since the statements are not written into memory, you cannot save them for future
execution; however, you can use the replay function to access the last statement executed.

EXAMPLE

PRINT “Hello”
Although this execution mode is not practical for most programs, it is useful for debugging. Since
the immediate execution method does not disturb memory, a program can occupy memory while its
statements are immediately executed. As a result, the status of variables and their relationships

can be examined and their values changed before execution continues.

You can write multiple program statements on a single program line. The program statements are
separated by two colons. Statements cannot continue from one line to the next.

Program statements are not executed until the statement line terminates. To terminate a line, use
one of the following keyboard functions:

. Return
. Display current or preceding line
U Display current or succeeding line

. Return with EOF

4.2 2308769-9701

Editing Capabilities

4.3 USING COMMENTS

You can use comments within a BASIC program to document the program. The two methods for
placing comments in a BASIC program are the remark statement and the tail remark.

4.3.1 Remark Statement (REM)

The REM statement permits you to insert explanatory remarks in a program. The system ignores a
REM statement line, allowing you to document the program. While the text that follows REM is ig-
nored, the associated line number can be used in a GOSUB, IF-THEN-ELSE, GOTO, ON-GOTO,
ON-GOSUB, ON ERROR, RETURN, RESTORE, RUN, BRKPNT, or UN BRKPNT statement. You cannot
use a RUN command to a line number that is a comment in a program saved in LOCK format. Execu-
tion continues at the next executable command.

FORMAT

REM text

You can include any of the printable ASCII characters, including the special characters in the text.
The following is an example of the REM statement.

EXAMPLE

100 REM INSERT DATA IN LINES 900-998. THE FIRST NUMBER IS N,
110 REM THE NUMBER OF POINTS, THEN THE DATA POINTS THEMSELVES

200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS
300 RETURN
520 GOSUB 200

999 END

2308769-9701 4.3

Editing Capabilities

To insert explanatory remarks following a BASIC statement on the same line, use the multistate-
ment line feature. Separate the statements by a double colon as follows:

250 LETY = 1: REMINITIALIZE Y

This line includes the remark INITIALIZE Y. The remark does not affect the execution of the prograrn.
The REM statement cannot be followed by another statement on the same line; it must be the last
statement on the line since anything following REM is treated as part of a remark.

4.3.2 Tail Remark

A tail remark is an exclamation point (!) followed by a remark. A tail remark follows the same con-
ventions as the REM except that a tail remark can follow a statement without being preceded by
double colons. The following is an example of a tail remark:

250 LETY = 1 ! INITIALIZE Y

4.4 EDITING PROGRAM LINES

You can copy a program into the work file by using the OLD command followed by the pathname of
the program. The main part of the program (that is, everything except external BASIC Subprograms)
is automatically copied into memory for editing. If you want to bring an external subprogram into
memory for editing, enter the EDIT ESUB command (paragraph 3.6.2). To edit the lines of these pro-
grarns, use the keyboard editing functions. To edit a specific line, use either the display current or
preceding line or the display current or succeeding line function. Display the appropriate line, then
modify it. The edited line is not changed in memory until the line terminates.

To display a specific line, use the LIST cornmand followed by the line number. If the line numbear
specified in the LIST command does not exist, the prompting period returns. If the line number is
unknown, use the LIST command to list all or part of the program.

4.5 ADDING LINES TO A PROGRAM

To add lines to programs that have been saved and loaded into memory by using the OLD command
or to programs that are being developed, write program statements with line numbers that do not yet
exist in the program. Ensure that each new line number represents the position in the program
where that program statement should be placed. Regardless of the order in which the line numbers
are entered, the statements are placed in numeric order. If you do not have enough room between
line numbers to add the lines desired, resequence the existing statements by using the
RESEQUENCE command to make numbers available between lines. The largest number you can
specify is 32759.

4-4 2308769-9701

Editing Capabilities

4.6 DELETING LINES FROM A PROGRAM

To delete a program line from memory, enter its line number and press Return. To delete multiple
lines from a program or to delete a file, use the DELETE command.

4.7 COPYING/MOVING LINES IN A PROGRAM

You can copy a program line in memory to another position by changing the line number of the
original line. As a result, a copy of the original line is stored in the new line number location. If the
original line is then deleted, the result (in effect) is that the original line has been moved. This is an
efficient method if only a small number of lines are to be moved; when large blocks of lines are in-
volved, the MERGE command is more efficient. Execute the MERGE command as follows:

1. Access the appropriate program lines in memory, and delete any of those lines that are
not to be moved.

2. Resequence the remaining lines. The beginning line number specified should be the line
number at which the data will be merged.

3. Save the lines in a temporary file.

4. Call the original program into memory again by using the OLD command.

5. Resequence the lines where the data is being merged to aliow room for the new lines.
6. Execute the MERGE command, specifying the temporary file.

7. I the lines are to be moved rather than copied, delete the lines from their original place in
the program.

8. Save the file.

4.8 EDITING FUNCTIONS

The editing functions listed below expedite entering and correcting program lines by means of
keyboard entries. The functions and the keys that perform them vary according to the operating
system and terminal used. Appendix | lists the key functions for the various system configurations.

4.8.1 Space Forward
Use the space forward function to space right on a program line. The characters that are spaced
across are deleted.

4.8.2 Move Cursor Right/Move Cursor Left
These two keyboard functions move the cursor to the left or right. When the cursor moves across a
character, the character remains unchanged.

4.8.3 Back Tab

This function moves the cursor to the left eight character positions each time you press the function
key. Characters that are tabbed over remain unchanged.

23087699701 Change 1 4.5

Editing Capabilities

4.8.4 Return
This function terminates a program line. The program line is either executed immediately (if in
immediate execution mode) or stored in memory (if in program creation mode).

48.5 Display Current or Preceding Line

This function displays the specified program line. If the specified line does not exist, the next lower-
numbered (preceding) program line appears. This function requires that the program lines already
exist in memory (whether previously created or brought into memory by using the OLD command).
Using the function again writes the current line, including any corrections, into memory and
displays the preceding line. The following example illustrates the use of this function. Assume that
the following program lines exist in memory.

10 .PRINT “HERRO”
20 PRINT “GOODBYE"
30 END

If, after listing the program above, you want to make a correction to line 10, you enter the number
10 following the prompting period and press the function key. Line 10 appears. You can then
replace “HERRO” with “HELLO”. When you press the Return key, the edited line is written into
memory, replacing the former line. If you enter 5 and press the function key, the prompting pericd
followed by the number 5 remains on the screen since no program statement numbered 5 exists in
memory and no lower-numbered program statement exists. You can then add a program statement
as line 5, if desired. If you enter line number 40 when using this function, line number 30 appears
on the screen since no line 40 exists in memory and line 30 is the next lower-numbered line.

Entering any number higher than the highest-numbered line in the program displays the last line of
the program. If this function is used while a program line appears, the program line, including any
corrections made to it, is-written into memory, replacing the appropriate line in memory. The next
lower-numbered program line is then displayed.

4.8.6 Display Current or Succeeding Line

This function works in the same way as the display current or preceding function with one excep-
tion: if the specified line number does not exist, the next higher-numbered line is displayed. Enterirg
line number 1 and using this function results in the display of the lowest-numbered line in memory. If
the number specified does not exist and no higher-numbered line exists, the prompt character
followed by the line number specified remains on the screen. You can enter a program statement at
that line number, if desired.

4.8.7 Insert Character

The insert character function inserts characters in a program line. Every character entered after you
press the function key is entered to the left of the cursor. For each character entered, the cursor, the
character at the cursor position, and the characters to the right of the cursor are shifted one
character position to the right. The number of characters that can be inserted is limited by the line
length. When the line is full, no more characters can be entered. The system will not shift characters
past the end of the line during an insert. To terminate the insert character mode, use any other
keyboard function except repeat and space forward.

4-6 Change 1 2308769-9701

Editing Capabilities

4.8.8 Delete Character
The delete character function deletes the character at the cursor position. All characters to the right
of the deleted character are shifted one character position to the left.

4.8.9 Erase Input
The erase input function erases all characters on the current line; on printer terminals, the printhead
is positioned at the beginning of the line.

4.8.10 Erase Field
This function erases the current line from the cursor position to the end of the line.

4.8.11 Tab
The tab function advances the cursor to the end of the displayed program line. You can then enter
data or additional statements on the program line.

4.8.12 Repeat

The repeat function is used in conjunction with the other keys on the keyboard. If you press and hold
the function key and then press the key whose action is to be repeated, the specified action repeats
until you release the function key. On some keyboards, the repeat function is not a separate func-
tion key; these keyboards have typamatic keys that repeat the character if you hold the key down for
longer than one second.

4.8.13 Replay

The replay function redisplays the last line entered from the keyboard while at command level. For
example, if you entered the RUN command and the program executed, using the replay function at
the end of the program redisplays RUN. You can then reexecute the program using the return func-
tion. The replay function operates at command level only.

4.8.14 Calculate

The calculate function evaluates an expression immediately. You can evaluate any legal expression
by entering the expression in response to the prompting period and pressing the function key. The
result appears following an equal sign. The following is an example:

123*210= 24.6
The calculate function operates at command level only.
4.8.15 Break Execution

This function stops execution of a program immediately. When you use this function, the following
message appears and the prompting period reappears:

STOPPED #1 IN line__num

This function enables you to examine variable values. If you modify the program, you must restart it
with a RUN command. When you use this function at command level, it functions like the erase in-
put function.

4.8.16 Resume Execution
This function resumes execution of a program after the break execution function has been used.

2308769-9701 4-7

Editing Capabilities

4.8.17 Step

Use the step function after a breakpoint has caused a break in execution or when you use the break
execution function while a program is executing. The step function resumes execution of one pro-
gram statement at a time. Usually, this function is used for debugging programs.

4.8.18 Reset Cursor

The reset cursor function repositions the cursor at the beginning of a displayed program line, com-
mand, or input.

4.8.19 Suspend Execution on Output

The suspend execution on output function suspends execution of the BASIC system the next time it
attempts to display any data on the terminal. This feature is most useful during a LIST of a large
program. Pressing the function key or any other key a second time causes the system to resume
execution.

4.8.20 Return with EOF

This function operates like the return function in that it terminates a program statement; however,
the return with EOF also sets the EOF flag for the unit number associated with the screen. You can
test the condition of the flag using the EOF function. The next input/output (I/0) to or from the screen
resets the flag.

4.9 OPTION STATEMENT

The OPTION statement has two forms: OPTION 1 and OPTION 2. OPTION 1 allows you to disable the
function keys so that they cannot affect a program while it is executing. OPTION 2 allows you to see
which keys have been masked. '

The form of the OPTION statement is either of the following:

FORMATS
OPTION num__exp__1,num__exp
where:
num__exp__1 is a numeric expression that equals 1.
num__exp is an expression that indicates the keys to be inhibited.
or
OPTION num__exp__2, num__var__name
where:
num__exp__2 is a numeric expression that equals 2.

num__var__name is a numeric variable name that returns the value of the current mask.

4-8 2308769-9701

Editing Capabilities

491 OPTION 1
Using OPTION 1, you can inhibit one or more of the function keys; you can then use these keys as
data keys. Table 4-1 shows the bits of the numeric expression (hum__exp) associated with the keys.

Table 4-1. Bit Positions and Values Associated with Keys

Bit Numeric
Position Function Key Value Function
14 F1 2 Calculate
i3 F2 4 Replay
12 F3 8
11 F4 16
10 F5 32
9 F6 64
8 F7 128 Resume Execution
7 F8 256 Step
6 Command 512 Command
4 Attention/ 2048 Break Execution
CTRLX
0-3,15,5 Unused Unused Unused

The numeric expression is used as a mask to indicate whether the associated key is a data key or a
function key. When no numeric value is given, the default value of 2048 is used, causing the break
function to be masked.

For example, to inhibit the step and replay functions, bits 7 (F8) and 13 (F2) must be set. Bit 7 (F8)
equals 256. Bit 13 (F2) equals 4. Therefore, each of the following OPTION statements inhibits the
step and replay functions.

100 OPTION 1,256 + 4
100 OPTION 1,260

To reset the inhibited functions, execute the OPTION statement, specifying a value that resets the
bits previously set or specifying a value of zero (which resets all of the bits). The following statement
resets all bits:

OPTION 1,0
Note that the bits set by the OPTION statement are not reset using the edit functions or the com-

mands. The mask established by the OPTION statement is maintained only during execution of the
program. When the program terminates or runs another program, the mask is cleared.

2308769-9701 Change 1 4.9

Editing Capabilities

4.9.2 OPTION 2

Using OPTION 2, you can specify a numeric variable name to receive a copy of the contents of the
current mask; the current mask contains a numeric value representing the sum of the bit values of
the masked keys. You can check this numeric variable name to determine which keys have been in-
hibited. The following example illustrates the use of the OPTION 2 statement:

100 OPTION 2,MSK
110 PRINT MSK

410 2308769-9701

5

Data and Expressions

5.1 INTRODUCTION

BASIC program statements contain data and expressions. BASIC handles two types of data:
numeric and character string. The value of this data can be either constant or variable within a pro-
gram. An expression is a single item of data or two or more data items joined by operators such as
+ or - to combine constants and variables. After learning how Tl BASIC handles data and expres-
sions, you will learn how BASIC evaluates expressions.

5.2 DATA
BASIC handles two types of data: numeric and character string. Both types can occur as constants
or variables. Numeric data can be stored in an integer, floating-point, or decimal format. String data
stores nonnumeric information such as words or other sequences of characters. String data con-
sists of alphabetic, numeric, and special characters.
5.3 CONSTANTS
A constant is a value that cannot change; it retains its intrinsic value throughout program execution.
Constants can be either numeric or string. The following are examples:
EXAMPLES

10

3.1415926
“This is a string constant.”

The first two examples are numeric constants, while the third is a string constant.

2308769-9701 5-1

Data and Expressions

5.3.1 Numeric Constants

A numeric constant can be a positive or negative number; optionally, it can contain a decimal point
and/or an exponent. An exponent, symbolized by the letter E, signifies that the number preceding the
E is to be multiplied by the integer power of 10 indicated by the number following the E. For
example, 1.50E2 means 1.50 times 100, or 150. Constants should have a value no larger than
9.999999999999E + 127 and no smaller than 1E - 128. This condition holds for both initial input and
internal data. The following examples are valid numeric constants in a BASIC program:

EXAMPLES

1.0
120.0
0.234
1.34967
12345678.0
12345678.91234
-2.0
-5.55E5
8.02
6.00
-.543298721
-123.4567891234

The following are not valid numeric constants in a BASIC program:

EXAMPLES

10X2
2.22.
5,280.66

The first invalid example contains an illegal character (X is not numeric), the second contains two
decimal points, and the third contains an illegal comma.

5-2 2308769-9701

Data and Expressions

5.3.2 String Constants

String constants are sequences of printable ASCII characters defined in the BASIC character set
(see Appendix B) and enclosed in quotes. A string constant is an explicit representation of data and
remains unaltered during execution of the program. Although a numeric character can appear in a
string, an attempt to perform arithmetic on a string results in an error. Likewise, an attempt to per-
form a string operation on a numeric value results in an error. A quote can appear within a string if it
is entered as two contiguous quotation marks (‘”’). The following are valid string constants.

EXAMPLES

“CONSTANT”
“123.45”
“:;?”

uHE SAID, MMHLHU 39

The following are not valid string constants:

EXAMPLES .
‘NOT A STRING’
“BASIC
“HE SAID, “HL””

The first invalid example contains apostrophes rather than quotation marks; the next example lacks
the second quotation mark; the third needs two contiguous quotation marks on each side of the
dialogue (it should be “HE SAID, ““HI”"").

5.4 VARIABLES

Variables are symbols whose values are defined during the execution of a BASIC program. For
example, in a program that processes a payroll, an individual’s pay rate can be constant over a
period of time; however, the number of hours worked in any given week would be a variable.
Variables can be numeric or string.

Variables can be grouped and accessed by one name. The grouping is referred to as an array, and
the name by which the variables are accessed is called the array name. A particular variable is ac-
cessed in the array by specifying the array name followed by a subscript. Arrays are described later
in this section.

2308769-9701 5-3

Data and Expressions

5.4.1 Numeric Variables

Numeric variables are numeric values that can be altered during program execution. The values can
range from 9.999999999999E + 127 to 1E ~ 128. An attempt to generate a value that is too large
results in a warning condition; if the variable is real, the value is then replaced by the largest pos-
sible value. An attempt to generate a value that is too small also results in a warning condition; if
the variable is real, the value is then replaced by zero. If overflow or underflow occurs when the
variable is an integer or decimal value, an error occurs. (Refer to Appendix D.) Numeric variables are
stored as floating-point (real) numbers unless explicitly assigned another data type.

5.4.2 Numeric Variable Names

Numeric variable names consist of any letter of the alphabet followed by any number of optional let-
ters, numbers, or any of the following special characters: @, [,], \ , and __. The following variable
names are valid in a BASIC program:

EXAMPLES

A@CT
XYZ
7123
M9
KIHG]X
JG__542

If a variable name is the same as one of the keywords reserved in BASIC (for example, FOR), an error
occurs during execution. Appendix C lists the reserved keywords.

5.4.3 Numeric Type Declarations

Numeric variables can be of three types: real, integer, or decimal. The default type for all numeric
variables is real (floating-point) unless a type statement explicitly declares otherwise. The ALl
clause in a numeric type statement changes the default type to the declared type. For example, an

INTEGER ALL statement declares that the default type for all numeric variables in the program is
INTEGER.

NOTE

If you use the ALL specification, the statement must precede the first
executable statement.

5.4 23087699701

Data and Expressions

54.31 The REAL Statement. The REAL statement assigns the real data type to a variable or list
of variables. Real variables must be less than 1E + 128; they can include up to 14 digits. You should
use a real variable when the evaluation of an expression can result in a value greater than 32,767 or
less than -32,768 or in a fractional value.

FORMATS

REAL ALL

REAL var_1,var_2, ...
where:

var_1 and var__2 are numeric variable names or array declarations (described later).
The following example declares the variables A, B, C, and D to be of the real data type. REAL is the
default specification.
10 REAL A, B,C, D
5.4.3.2 DECIMAL Statement. The DECIMAL statement assigns the decimal data type to a
variable or list of variables. Variables of this type are identical to real variables in internal represen-
tation except that you can force rounding of the values on output. (Values less than or equal to four
round down; values greater than or equal to five round up.) This type of variable is useful for com-

putations where limited accuracy is required (for example, in developing financial reports in which
fractions of a cent are not to be retained).

FORMATS

DECIMAL (precision) ALL
DECIMAL (precision) var__1, var__2, . . .
where:
var__1 and var__2 are any numeric variable names or array declarations.
precision is an optional value specifying the number of digits of accuracy to main-

tain (the range for precision is —15 to 13).

The precision value specifies the number of digits to be retained to the right of the decimal point.
For example, if the precision value is 2, all digits beyond the hundredths place are rounded off. If the
precision value is -3, values are rounded off to the nearest thousand. If the precision value is 0, only
the number of units is retained.

2308769-9701 55

Data and Expressions

If the precision value is omitted, the variables default to integer values on output. The precision
specification can be positive or negative.

In the following example, the variables A, B, C, and D are declared to be of the decimal data type
with only the first two places to the right of decimal point retained on output.

10 DECIMAL (2) A, B,C, D
The following statement declares that all numeric variables not appearing in another type state-
ment are to be of decimal data type with two-digit accuracy maintained to the left of the decimal
point for output.

10 DECIMAL (-2) ALL
For example, the number 5343 would be displayed as 5300.
5.4.3.3 INTEGER Statement. The INTEGER statement assigns the integer data type to a variable
or list of variables. The range of values for an integer variable is from -32,768 through + 32,767. in-
teger values cannot contain fractions.
FORMATS

INTEGER ALL

INTEGER var__1, var__2

where:

var__1 and var_2 are any numeric variable names or array declarations (described later).

In the following example, the variables A, B, C, and D are declared to be of the integer data type.
10 INTEGER A, B,C, D

5.4.4 String Variables

String variables are string values that can be altered during program execution. String values are se-
quences of the BASIC character set. A string can contain a maximum of 255 characters. Usually,
strings contain nonnumeric information such as names and part descriptions. They are also used to
print messages and describe numeric quantities.

5-6 2308769-9701

Data and Expressions

5.4.5 String Variable Names
String variable names follow the same rules that apply to numeric variable names except that they
must always end with a dollar sign ($). The following are examples of string variable names:
EXAMPLES

A$

NAMES$

Z123%
ADDRESS$

5.5 VALUE ASSIGNMENT

The LET statement assigns values to both numeric and string variables. It can be used to assign the
initial value of a given variable or to change the value of a variable during execution of the program.

5.5.1 Arithmetic LET

The arithmetic LET statement assigns a value to a variable or changes the value of a numeric
variable during program execution.

FORMATS

LET num__var = num__exp

num__var = num__exp
where:

num__var is a numeric variable.

num__exp is a numeric expression.
The value of the expression on the right side of the equal sign is assigned to the variable on the left
of the equal sign. The variable can be either subscripted or unsubscripted. The variable to the left of
the equal sign retains the assigned value until another BASIC statement redefines it. The word LET

is optional.

In the following example, the first statement assigns the value of 5 to XY, the second increments A
by 1, the third assigns 69 to XZ, and the fourth assigns XZ to Z9:

EXAMPLE

100 LET XY = (2*3) + (4-95)
110 LETA =A + 1

120 XZ = 69

130 29 = XZ

2308769-9701 5-7

Data and Expressions

5.56.2 String LET
The LET statement can also assign values to subscripted or unsubscripted string variables.

FORMATS

LET str_var = str_exp
str__var = str__exp
where:
str__var is a string variable name as previously defined.

str__exp is any valid string expressicn.
The keyword LET is optional. The following is an example of a string LET:

EXAMPLE
100 LET B$ = “STRING ONE”
110 LET A$ = B$

5.6 ARRAYS

Often it is advantageous to group variables of the same type together under one name. In BASIC this
grouping is known as an array, which is accessed by an array name.

To access an individual element of an array, specify its position in the array with a subscript en-

closed in parentheses after the array name. For example, to reference the element in the third row
and second column of an array named SURVEY, use the term SURVEY(3,2).

5-8 2308769-9701

Data and Expressions

5.6.1 DIM Statement
Use the DIM statement to declare arrays. The DIM statement defines the number of data elements
that can be contained in the specified array.

FORMATS

DIM array__name (integer)

DIM array__name (integer, integer, . . .)
where:

array__name is any variable name.

integer(s) is the unsigned integer constant specifying the dimensions of the array.

The following is an example of a two-dimensional array with space reserved for 121 elements.

EXAMPLE

DIM ARRY1(10,10)
The integer specifies the maximum value a subscript can have in that position. The number of in-
tegers specified is the number of dimensions of the array. Normally, the subscript value ranges from
zero up to the value of the integer. Thus, a one-dimensional array has one more element than the
value of the integer. The total number of elements in an array equals the product of the number of
elements along each dimension. Thus, an array declared as F(3,4,5) has @+ 1)*(4+1)*(6+1) or
4*5*6 or 120 elements.
More than one array name can appear in a DIM statement, provided that each array name is
separated from the previous array by a comma.
EXAMPLE

DIM A(5,5),B(20),C(9,2,2,9)

In the following example, statement 10 defines an array named HOURS with elements numbered 0
through 10. To access the data element stored in the third element, you should reference HOURS(2).

EXAMPLE

10 DIM HOURS(10)

2308769-9701 5-9

Data and Expressions

The following example defines an array with nine possible locations: (0,0), (0,1), (0,2), (1,0), (1,1), (1,2),
(2,0, 2,1), (2,2).

EXAMPLE

10 DIM SQUARE(2,2)

Similar procedures are used for arrays with more than two dimensions. BASIC automatically
creates arrays with a lower boundary of zero and an upper boundary of 10 for each dimension.
Therefore, one-dimensional arrays that contain 11 or fewer data elements need not appear in a DIM
statement. When all dimensions of a multidimensional array have an upper boundary of 10 or less,
the array need not appear in a DIM statement. In all other cases, the array must be specifically de-
fined in a DIM statement or in a type declaration that declares the size of the array. The following
are examples:

EXAMPLES
10 DIM A(20,20)
20 REAL B(5,2,7)
NOTE

Although you need not use the DIM statement for arrays with fewer
than 10 elements for each dimension, doing so can save con-
siderable memory space. For example, an array of real numbers
defined as (4,4,4,4) reserves 5000 bytes of memory (5*5*5*5*8). If you

accept the default, the system attempts to reserve 117,128 bytes of
memory (11*11*11*11*8).

You can also dimension arrays with REAL, DECIMAL, and INTEGER statements. Such arrays have
the same characteristics as variables declared with these types of statements. Arrays can also be
dimensioned for strings. String arrays follow the same rules for definition and access as numeric ar-
rays. In the following example, A$ is defined as an array containing 20 strings, that is, A$(0), A$(1),
A$(2), ... A$(19).

100 DIM A$(19)

Each string element of A$ follows the same rules that govern a string.

NOTE

A DIM statement must precede all references to the array it defines.

510 2308769-9701

Data and Expressions

The following examples illustrate correct and incorrect use of the DIM statement and a variable in
the dimension array.

EXAMPLE

CORRECT:

100 DIM A(100)
110 LET A(50)=9

INCORRECT:

100 LET A(50)=9
110 DIM A(100)

5.6.2 OPTION BASE Statement

When an array is named in a program, whether dimensioned in a DIM statement or otherwise, the
element zero, which is A(0) in a one-dimensional array, is created by BASIC unless the OPTION
BASE statement is used.

FORMAT

OPTION BASE n
where:

nis 1or0.

The value of n declares the minimum value of all array subscripts. If no OPTION BASE statement oc-
curs in a program, the default is zero. If an OPTION BASE statement specifies that the lower bound
for all array subscripts is one, no DIM statement can specify a lower bound of zero. A program can
contain only one OPTION BASE statement. If used, the OPTION BASE statement must occur ina
lower-numbered line than any declarative or executable statements that reference array elements.
The type ALL statement and the MERGE statement are exceptions to this rule.

2308769-9701 5-11

Data and Expressions

5.7 VIRTUAL ARRAYS

BASIC supports array file structures, allowing data stored in files to be accessed as if it were stored
in memory. A virtual array is referenced within a program in the same manner as a memory-resident
array. However, a reference to a virtual array forces the system to calculate the disk address of the
element and read that element into memory, if it is not already present. Also, modification of any vir-
tual array element forces the system to write the updated element back to the appropriate disk
address.

Virtual array files are relative record files (Section 6). Generally, you should use virtual arrays for
large or infrequently accessed data. Virtual arrays can contain as many as 65,000 elements. The
lower bound (the minimum value of all array subscripts) is zero unless changed to one by using the
OPTION BASE statement. The original definition of the file determines the upper bound.

You can use the ASSIGN statement to open a virtual array and a special form of the CLOSE state-
ment to close the virtual array.

5.7.1 ASSIGN Statement
The ASSIGN statement establishes program access to virtual arrays or creates a virtual array file if

one does not exist. The ASSIGN statement assigns a disk file to a virtual array. It also dimensions
the array. Note that the USING clause is always required with this statement.

FORMAT
ASSIGN pathname USING array__name (integer, . . .) max__size
where;

pathname is any legal relative record file pathname or string variable containing the
pathname. If the file does not exist, it is created.

array__name is the name to be given to the array.
integer(s) specifies the number and size of the dimensions, as with the DIM statement.

max__size is optional and specifies the maximum size of a string for a string array
variable. It consists of an asterisk (*) followed by a number.

An example of the ASSIGN statement is as follows:

EXAMPLE

ASSIGN “DS01.MYFILE” USING PCNT(100,10)

5-12 2308769-9701

Data and Expressions

DS01.MYFILE is the name of the file on which the virtual array is located. It must be specified by any
legal string expression. The keyword USING precedes the declaration of the array as it would ap-
pear in the DIM statement. The array name can be preceded by a type declaration, for example,
USING INTEGER JULIANDATE (365,4).

An ASSIGN statement must precede any reference to the virtual array, as shown in the following
example.

EXAMPLE

100 ASSIGN “DS01.MYFILE1” USING NAMES$(500)

105 ASSIGN “DS01.MYFILE2” USING INTEGER ENUM(500)
110 FORI1 = 1TO 3

120 PRINT NAMES$(I),ENUM(l)

130 NEXT |

140 END

JOHN DOE 345-6768
JANE DOE 876-4365
MARY DOE 677-4344

This example prints names that have been previously stored in the virtual array assigned in line 100,
along with employee numbers stored in the virtual array assigned in line 105. You can also specify
the number of characters or the length of a string in the ASSIGN statement.
Virtual arrays that contain string data have a maximum string size. Elements of the virtual array
cannot be larger than this maximum. In the following example, each string in array NAMES$ can con-
tain a maximum of 30 characters.
EXAMPLE

100 ASSIGN “DS01.MYFILE” USING NAME$(500)*30
If no length is specified, string virtual arrays default to a maximum of 18 characters. The type of vir-

tual array is the default data type if either of the following is true:

. The type of virtual array is not explicitly defined by a type specification immediately
preceding the numeric declaration.

U The virtual array name does not end with a dollar sign, indicating a string virtual array.

If the array file already exists, the type specification must be the same.

2308769-9701 5-13

Data and Expressions

5.7.2 CLOSE Statement
To close a virtual array file, specify the array name in a CLOSE statement.

FORMAT

CLOSE array__name
where:

array__name is the name assigned to the virtual array.
The following statement closes the file associated with the virtual array NAMES.

EXAMPLE

CLOSE NAME$
NAMES is the array name associated with the file in the ASSIGN statement of the preceding ex-
ample. To reopen a virtual array file, execute an ASSIGN statement with the same array or different
array name. A virtual array file implicitly closes when a STOP, END, or RUN command executes.
5.8 [EXPRESSIONS

Expressions are formed by combining constants and variables with symbols, called operators. Like
variables and constants, expressions are evaluated to either numeric or string values.

If an expression contains any variables, its value depends on the values of the variables at the time
the expression is evaluated. For example, A+ 10 is an arithmetic expression consisting of the
variable A, the arithmetic operator +, and the numeric constant 10. If A equals 5 when the expres-
sion is evaluated, the value of the expression is 15.

5-14 2308769-9701

Data and Expressions

5.9 OPERATORS

Operators are special symbols within the Tl 990 BASIC character set and are used to combine
variables and constants. An operator requires one or two operands. Each operator is categorized as
arithmetic, logical, string, or relational, depending on the function it represents.

5.9.1 Arithmetic Operators

Combinations of variables, constants, arithmetic operators, and relational operators are used to
perform arithmetic. The arithmetic operators (Table 5-1) specify addition, subtraction, multiplica-
tion, division, negation, and exponentiation.

Table 5-1. Arithmetic Operators

Operator Meaning Example
- Negation -B
+ Addition A+B
- Subtraction A-B
* Muitiplication A*B
/ Division A/B
A Exponentiation XA2

5.8.2 String Operator

Use the string operator (&) to concatenate. A string expression consists of one or more string
variables, constants, or function references separated by the string operator, as shown in the
following example. In this example, the string operator assigns the value ABCDEFGHI to A$.

EXAMPLE

80 B$ = “DEF”
90 A$ = “ABC” & B$ & “GHI”

2308769-9701 5-15

Data and Expressions

5.9.3 Relational Operators

BASIC provides six relational operators for comparing two expressions, which can be numeric or
string. You can compare string expressions only to string expressions and numeric expressions
only to numeric expressions. The relational operators (Table 5-2) are ali of the same precedence. A
relational expression equals -1 if true and 0 if false. You can assign the value of a relational expres-
sion to a numeric variable. You can also use relational operators in arithmetic expressions.

Table 5-2. Relational Operators

Operator Meaning Example
= Is equal to A=B
< Is less than A<LB
> Is greater than A>B
<=or =< Is less than or equal to A< =B
>=or => Is greater than or equal to A> =B
<> or>< Is not equal to A<L>B

Two strings are equal only if they have the same length and contain identical sequences of
characters. For example, in the following, C$ is equal to D$ because each contains the same
number and sequence of characters.

EXAMPLE
10 A$ = “AAA”
20 B$ = “BBB”
30 C$ = “AAABBB”
40 D$ = A$ &B$

When strings are compared, the characters within the strings are compared on the basis of their
ASCII codes (Appendix B). Thus, “$Z00” is less than (<) “ANT” because the dollar sign has an
ASCII code less than that of A; similarly, “car’” is greater than (>) “CAR” because the ASCII code for
a lowercase c is higher than that of an uppercase C. If the strings are of unequal length and differ
only because of additional characters, the longer string is considered greater than the shorter
string. For example, “SUNNY” is greater than “SUN”.

5-16 2308769-9701

Data and Expressions

When numeric or string values are compared using the relational operators, the result is 0 when the
relationship is false and -1 when it is true. The following example provides several relational expres-
sions and the results of their evaluations.

EXAMPLE

PRINT 5*7>6 ; 22< =2.2/.1 ; “ABC”&"DEF” = “ABCDEF” ; .5> 3.14

-1-1-10

5.9.4 Logical Operators

The logical operators are NOT, AND, and OR. The result of a logical operation is a logic value, which
indicates that the result of the operation is either true or false. BASIC represents logic values as
zero (false) and nonzero (true). To avoid confusion with arithmetic operations, logic values in Table
5-3 are indicated by T (for true) or F (for false).

Table 5-3. Truth Table

Value of Value of Value of Value of

X Y NOT X XANDY XORY

F F T F F

F T T F T

T F F F T

T T F T T
NOTE

The logical operators are also available for bit manipulation of in-
teger (16-bit) results. Floating-point values are converted to integer
form before being used with these operators. Appendix F contains
additional information on how to use the logical operators.

594.1 Logical NOT. The NOT operator yields a result opposite to the logic value of the expres-
sion. Thus, if an expression is evaluated as true, the NOT operator yields a value of false and vice
versa.

5.9.4.2 Logical OR. The logical OR operator produces a logic value of true if either of the expres-
sions is evaluated as true.

5.9.4.3 Logical AND. If the values of X and Y are both true, the AND operator yields a logic value
of true. If either or both of the values are false, the AND operator produces a logic value of false.

2308769-9701 517

Data and Expressions

5.9.4.4 Logical Operator Example. The order of precedence of the logical operators is NOT, AND,
and OR, as shown in the example below. You can use parentheses to override this order. Although
the logical operators have differing precedence, the relational operators all have the same
precedence.

EXAMPLE

100 A=4::B=6:C=2

110 IF NOT(A>3) THEN PRINT “TRUE” ELSE PRINT “FALSE”

120 IF (A< B) AND (B< C) THEN PRINT “TRUE” ELSE PRINT “FALSE”

130 IF (A< B) OR (B< C) THEN PRINT “TRUE” ELSE PRINT “FALSE”

140 IF NOT (A< B) AND (B< C) THEN PRINT “TRUE” ELSE PRINT “FALSE”
150 IF NOT (A< B AND B< C) THEN PRINT “TRUE” ELSE PRINT “FALSE”

FALSE
FALSE
TRUE
FALSE
TRUE.

5.10 PRECEDENCE OF OPERATOR EVALUATION

To simplify the discussion of the precedence of operations, the operators are assigned the priority
numbers given in Table 5-4. One (1) has the highest priority.

Table 5-4. Numeric/Logical Expression Priority

Arithmetic Operation Priority Symbol
Exponentiation 1 A
Negation (unary minus) 2 - (e.g., -X)
Multiplication 3 *
Division 3 !
Addition 4 +
Subtraction 4 -
Relational operators 5 =,<,>,<=,>=,<>
Logical NOT 6 NOT
Logical AND 7 AND
Logical OR 8 OR

5-18 2308769-9701

Data and Expressions

Expressions are evaluated from left to right, using the priorities in Table 5-4, unless a portion of the
expression is in parentheses. When a portion is enclosed in parentheses, that portion is treated as a
single element and evaluated before being associated with the remainder of the expression. Evalua-
tion within parentheses is made with the same left-to-right priority. Expressions can also contain
nested parentheses (a pair of parentheses inside a pair of parentheses). The expression contained
within the innermost parentheses is evaluated first.

5.11 EVALUATION OF EXPRESSIONS

All expressions are evaluated either to a numeric or string value. Note that if the expression
evaluates to a logic value, that value is stored as a numeric value; this numeric value represents the
logic value (true or false).

The order of evaluation of any expression is based on the priority of the operators in the expression.
The operator evaluated last determines the expression type. Thus, if the last operator evaluated is
an arithmetic operator, the expression is an arithmetic expression that produces a numeric result.

5.11.1 Arithmetic Expressions

Subject to two conditions, any combination of numeric variables (subscripted or unsubscripted);
numeric constants; numeric functions; and arithmetic, logical, and relational operators constitutes
a valid arithmetic expression. The two conditions are as follows:

U] An arithmetic operator must be the last operator evaluated in the expression.

. No two variables, constants, or operators can appear in succession. The only exception is
that the unary plus or unary minus can appear following another operator (for example,
X*=Y).

The following expressions are valid arithmetic expressions.

EXAMPLES

B

A+ 7.05/A
X*YI2

-B/2.3
X+Y+Z

(A AND B) +1
(A = B)*-1

2308769-9701 5-19

Data and Expressions

Note that a single numeric variable or numeric constant is a valid expression. The following are not
valid arithmetic expressions:

EXAMPLES

7.05A +B*2
123.45X

/

10.2Y

ABC + /XYZ

Mathematical and string functions can also appear in arithmetic expressions. The following pro-
gram segment includes several examples of the use and evaluation of expressions:

EXAMPLE

100 A=2

110 B=3

120 C=4

130 D=B+C/2

140 E=BA2+ C/AA2
150 F=CA2-C/A

160 G=A*(A+ BA2)-22
170 H=AAAAB

Everything to the right of the equal sign is an expression.

At line 130, C/2 equals 2 and is added to B to obtain 5.

At line 140, B raised to the second power is 9, A raised to the second power is 4, C divided by this in-
termediate result is 1, and the result added to 9 equals 10.

At line 150, C raised to the second power is 16, C divided by A is 2, and 2 subtracted from 16 equals
14.

At line 160, B raised to the second power is 9, A added to this intermediate result is 11, 11 multiplied
by 2 is 22, and 22 subtracted from 22 equals 0.

At line 170, A raised to the second power is 4, and 4 raised to the third power is 64. Note that ex-
ponentiation is performed from left to right.

5-20 2308769-9701

Data and Expressions

The following example illustrates the use of nested parentheses. In this example, C divided by A is
2, 2 multiplied by A is 4, and 4 added to the product of B and C is 16. This intermediate result is then
multiplied by C, resulting in 64, and 64 is added to A, resulting in 66.

EXAMPLE

100 A=2
110 B=3
120 C=4
130 D=A+C*(A*(C/IA)+ B*C)

NOTE

BASIC performs all arithmetic in real mode regardless of the types of
variables involved. Therefore, all intermediate results in an expres-
sion are real unless explicitly typed using intrinsic functions.

In the following example, the subexpression A/B in statement 30 produces a real result even though
A and B are integer variables. This intermediate result is added to 100 and then rounded to an in-
teger value before being assigned to variable E.

EXAMPLE
10 INTEGER A,B,E
20 INTEGER D,C,F

30 E=100+A/B
40 F=C*(CID)

For a result other than a real intermediate result, use the intrinsic function INT. To maintain the
same number of digits of accuracy throughout the calculation, the expression at statement 40
should be divided into the following two statements:

40 F=C/D
50 F=F*C

In this way, no real intermediate value enters into the calculation.

2308769-9701 5-21

Data and Expressions

5.11.2 Logical Expressions

BASIC evaluates a logical expression to determine whether the relationship is true or false. The ex-
pression A> B AND C< D is evaluated as true if the value of A is greater than the value of B and the
value of C is less than the value of D. BASIC first evaluates the two relational expressions in accor-
dance with priority to determine their logical value. Then, the logical AND is applied to the values of
the two subexpressions, yielding a result for the entire expression.

The expression A=B OR C< =D is evaluated as true if either of the relational expressions holds
true. Therefore, the logical expression is said to be true if the value of A is equal to the value of B, or
the value of C is less than or equal to the value of D. If both expressions are evaluated as false, the
entire logical expression is evaluated as false. However, if only one of the expressions is true, the
entire expression is evaluated as true.

You can use the relational negator NOT to complement the value of a relational expression.
Therefore, NOT A> B has the same result as A< = B. The NOT operator cannot immediately precede
another logical operator; therefore, the expression A NOT > B is illegal.

5.11.3 String Expressions

You can use string constants and variables with the string concatenation operator (the ampersand)
and the intrinsic string functions (Section 8) to produce string expressions. String expressions
result in string values; consequently, you cannot use string expressions when numeric or logical
values are required. In the following example, A$ is combined with B$ by using the ampersand.

EXAMPLE
100 A$ = “12345”
110 B$ = “67890"
120 C$ = A$ & B$
130 PRINT C$
RUN
1234567890

5.11.4 Relational Expressions

You can use the relational operators with constants, variables, and arithmetic and logical operators
to form relational expressions. However, the relational operator must be the last operator evaluated
in the expression. The evaluation of a relational expression yields a logic value of either true or
false. Although relational expressions are frequently used with the IF ... THEN ... construct, they
can be used anywhere an expression can be used.

5-22 2308769-9701

6

Input/Output (I/0) Statements

6.1 INTRODUCTION

I/O statements allow the program to communicate with peripheral devices and data files. These
statements permit you to enter data into the program and enable the program to output data to you.
Generally, the information input or output by a statement is referred to as a record, and a collection
of records is a file (analogous to records kept in a conventional file drawer). in the BASIC system,
files are stored on disks that can be both read and written to by a BASIC program.

You can store multiple files on a single disk.

After reviewing the three types of files that BASIC supports, this section describes the BASIC
statements used to manipulate I/O. Files are made available to a BASIC program by means of the
OPEN statement. To access records, use the PRINT, DISPLAY, INPUT, and ACCEPT statements.
Use the RESTORE statement to position the file position pointer to a particular record. Use the
SCRATCH statement to delete records and the REPRINT statement to modify records within a key
indexed file (KIF). The CLOSE statement ensures that all data written to the file is recorded on the
disk.

6.2 FILE ORGANIZATION

Every file has a file organization attribute that specifies the logical structure of the file. BASIC
supports sequential, relative record, and key indexed file organization, as indicated by the
keywords SEQUENTIAL, RELATIVE, and KEYED. Refer to the manuals that accompany your
, operating system for instructions on file creation.

The OPEN statement makes a specific file or device available to a BASIC program. OPEN can also
create a file (except for KIFs) for program use. When the OPEN statement does not specify a file
organization, sequential organization is assumed. Devices handle records sequentially; thus, their
organization is sequential by default.

6.2.1 Sequential
In sequential files, records are read and written in sequential order, beginning with the first record in
the file. Additional records can be appended to the end of an existing file.

Peripheral devices attached to a system are treated as sequential files. These devices can be
opened, and records can be read from and written to the device (if the device permits) in sequential
fashion.

2308769-9701 6-1

input/Output (1/0) Statements

6.2.2 Relative Record

Relative record files permit both sequential access and random record access. To access a record
nonsequentially, you must specify its numeric position in the file, relative to the beginning. The first
record in a file is record number 0. Thus, to access the tenth record in a relative file, you would
specify record number 9. The paragraph entitled “Opening a Relative Record File” provides an
example.

6.2.3 KIF

Although the records of sequential and relative record files are read by identifying their position in
the file, the records of KIFs are read by identifying a portion or field of the record. Thus, instead of
searching sequentially through a KIF for the desired record, you need only identify the field you
want. These fieids are known as keys, and their contents are key values. A key is defined at the file
level and, therefore, applies to every record in the file. The first key defined is the primary key; other
keys are secondary keys. In a personnel file, for example, the primary key might be the employee
identification number, while secondary keys might be last name, first name, telephone extension,
home address, and so on.

BASIC cannot create KIFs; you must create them in the SCI mode by using the Create Key Indexed
File (CFKEY) command.

6.3 OPEN STATEMENT

Before a BASIC program can access a file, the file must be opened. Opening a file associates a
number, the unit number, with a specified file. Records in the file can be accessed until the file is
closed. A unit number assigned to one file cannot be assigned to another file until the first one is
closed. All opened files are closed upon execution of a NEW, OLD, or RUN command.

The OPEN statement makes a specific file or device available to a BASIC program. OPEN can also
create a file (except for KIFs) for program use. OPEN identifies the file to be referenced by specify-
ing which volume or disk the file resides on and the file name. It also indicates the unit number
assigned to the file or device while it remains open. The OPEN statement can also create an output
file to receive data supplied by the BASIC program.

6-2 2308769-9701

FORMAT

Input/Output (I/0) Statements

OPEN # unit__number: pathname, attribute__list

where:

unit_number

pathname

attribute__list

is any numeric value or expression that has a value greater than 0 and less
than 256.

is the file pathname (or device name) to be opened or created. It can be ex-
pressed as a pathname or device name within quotations, such as
“DS01.MYFILE”, or as a string variable, such as NAMES$ (where NAMES =
“DS01.MYFILE").

can contain any of the following items (in any order):

File organization attribute
File/device format attribute
File/device record length attribute
File life

File access attribute

A comma is required between each attribute in the list.

The following paragraphs describe the file attributes you can include in the OPEN Statement.

6.3.1 OPEN Statement with File Organization Attribute

If the OPEN statement does not specify a type of file organization, sequential is the default if the
file does not already exist. If you attempt to open a relative record file or KIF without specifying
the file organization attribute, an error message appears.

6.3.1.1 Opening a Sequential File or Device. The following statements are equivalent. They
open a sequential file named DS01.MYFILE on unit number 1.

EXAMPLE

OPEN #1: “DS01.MYFILE”,SEQUENTIAL, OUTPUT

OPEN #1: “DS01.MYFILE”, OUTPUT

2308769-9701

6-3

Input/Output (1/0) Statements

Devices can be accessed by BASIC as in the following example.

EXAMPLE

OPEN #7:“LP01”

The line printer is opened as unit number 7. Since data cannot be read from a line printer, only cut-
put can be performed to that device.

6.3.1.2 Opening a Relative File. When opening a relative record file, you must specify the
attributes RELATIVE, INTERNAL and FIXED. The following example opens a relative record file
named DSO01.MYFILE on unit number 1.

EXAMPLE

OPEN #1:“DS01.MYFILE”,RELATIVE,INTERNAL,FIXED,OUTPUT

6.3.1.3 Opening a KIF. BASIC cannot create KIFs; you must create them in the SCl mode by using
the Create Key Indexed File (CFKEY) command. After using SCI to create a KIF named DS01.KIF,
you can open it in BASIC as follows: '

EXAMPLE

OPEN #5:“DS01.KIF”, KEYED

6.3.2 File/Device Format Attribute

In the OPEN statement, you can indicate file or device format by the keywords DISPLAY or
INTERNAL. Data is stored in files in either format, depending on the type of file required (sequential,
relative, or key-indexed). You must use DISPLAY format with devices.

6.3.2.1 DISPLAY Format. The display specification indicates that the file is to be stored in ASCI|
format; that is, each character is written to the file as an ASCll code. This format is especially useful
when the files are to be transferred to other systems. DISPLAY is the default for the OPEN state-
ment and must be used in conjunction with devices and sequential files or KIFs.

6-4 2308769-9701

Input/Output (I/0) Statements

The following examples, two equivalent statements, open a sequential file DS01.MYFILE on unit
number 1. (Since the default file organization is sequential and the default format is DISPLAY, you
need not specify these attributes.) The format of the file is ASCII. Records written to the file are writ-
ten as ASCII codes.

EXAMPLES

OPEN #1:“DS01.MYFILE”,SEQUENTIAL,DISPLAY

OPEN #1:“DS01.MYFILE”
6.3.2.2 INTERNAL Format. The internal specification must be specified when opening or
creating relative record files. INTERNAL indicates that the data is stored in internal memory image
format. In this format, each numeric value is written to the record in a format that depends on its
type definition in the program (REAL, DECIMAL, INTEGER, or string). The amount of memory used to

store the data depends on the data type and the data itself. Table 6-1 shows the memory re-
quirements for each data type.

Table 6-1. Memory Requirements for INTERNAL Format Data

Data Type Memory Requirement
String 1 byte per character + 1 byte
Integer 2 bytes

Real 8 bytes

Decimal 8 bytes

A numeric value is stored as an integer if it can be accurately represented; otherwise, it is stored as
a real constant. '

The following example opens the relative record file DSO1.MYFILE on unit number 1.

EXAMPLE

OPEN #1:“DS01.MYFILE”,RELATIVE,INTERNAL,FIXED

2308769-9701 6-5

Input/Output (I/O) Statements

6.3.3 File/Device Record Length Attribute

Each open file has a record length attribute that specifies whether the records in the file are fixed or
variable in length. Sequential files, KIFs, and devices have variable record lengths. Relative record
files have fixed record lengths. The keywords VARIABLE and FIXED are included in the OPEN state-
ment to specify this attribute.

You should specify the length attribute in the OPEN statement when creating a sequential or
relative record file.

6.3.3.1 Variable Record Length. The variable record length attribute specifies that the records in
a file or for a device can be of varying lengths. If the OPEN statement does not specify a record
length type, the variable record type is assumed. You can specify with an integer expression to the
right of the keyword an optional maximum length in bytes. If you do not specify a maximum length, a
default maximum length of 80 characters for files and the standard line size for devices is assumed.

If data exceeds the record length specified, the current record is terminated and the remaining data
is written in the next record. If you do not specify record type, variable record type is assumed. The
variable attribute can be used only with sequential file structures, KIFs, or devices.

In the first example that follows, the OPEN statement creates a sequential file named DS01.MYFILE
on unit number 1. The file can contain at least 500 records, the internal format is ASCII, and the
records are variable in length with a maximum length of 100 bytes. In the second example, the OPEN
statement opens the device LP0O1 on unit 7 with a variable record length of 132 bytes (characters).
EXAMPLES
OPEN #1:“DS01.MYFILE”,SEQUENTIAL 500,DISPLAY,VARIABLE 100,0UTPUT
OPEN #7:“LP01” ,VARIABLE 132
6.3.3.2 Fixed Record Length. The fixed attribute specifies that record lengths are of a fixed size.
You can specify the size of a file by including an integer expression following the keyword FIXED.
An attempt to read or write a record that exceeds the specified length results in an error. A relative
record file requires fixed length records. You must specify the fixed attribute when opening a
relative record file, and the record length specified must match the record length specified for the
file when it was created.
The following example creates a relative record file named DS01.MYFILE on unit number 1. The data
written to the file is in internal format, and the fixed length of each record is 256 bytes.

EXAMPLE

OPEN #1:“DS01.MYFILE”,RELATIVE,INTERNAL,FIXED 256,0UTPUT

6-6 2308769-9701

Input/Output (I/0) Statements

6.3.3.3 Physical Record Length. A physical record is the size of a block of data in the files. Tak-
ing physical record length into consideration during file creation can optimize file management.

The default physical record length is operating-system dependent. If the logical record length of
your file exceeds the default, use the Create File (CF) SCl command to create a new file. Specify a
larger physical record length, one that allows several logical records to be stored in one physical
record, improving system throughput. See your operating system manual for details on file creation.

6.3.4 File Life

Files created during a BASIC session are regarded as permanent unless explicitly deleted before
the end of program execution. BASIC allows you to specify whether the file is to be permanent or
temporary when it is created by specifying the keyword PERMANENT or TEMPORARY in the OPEN
statement. The default is PERMANENT. If a file is specified as temporary, the file is deleted when
the CLOSE or BYE statement is executed, or when another program is run. The file in the following
example would be deleted upon closing.

EXAMPLE

OPEN #1:“DS01.SCRATCH”, OUTPUT, TEMPORARY

NOTE

Not all operating systems support temporary files. See Appendix E,
BASIC System Differences, for details.

WARNING

BASIC will allow the creation of a temporary file with the same file
name as an existing file name on disk. If the temporary file is closed
with the “delete” option, both the temporary file and the permanent
file are deleted.

6.3.5 File Access Attribute

You can specify one or more access modes to instruct BASIC which operations can be performed on
a file. These specifications include creating a new file and specifying read-only access, write-only
access, or both read and write access to a file.

6.3.5.1 Output Access Mode. You must specify OUTPUT in the OPEN statement if you want
BASIC to create the file. You cannot do this in opening a device, since BASIC cannot create a device
(for example, LPO1). Likewise, you cannot specify the output mode in the OPEN statement for KIFs,
since they must be created in SCI mode. In the following example, the file DSO1.MYFILE is created
and opened on unit number 1. The file access mode is write-only. Since other file attributes are not
stated, the defaults apply; the result is a sequential file in display format with variable length
records whose maximum length is 80 characters.

2308769-9701 Change 1 6-7

Input/Qutput (1/0) Statements

EXAMPLE

OPEN #1:“DS01.MYFILE”,OUTPUT
6.3.5.2 Input Access Mode. The input mode specifies that a file can be read. In response to an at-
tempt to write a file opened with only the input mode specified, an error message appears and pro-
gram execution halts. The input option can be combined with the output option. Using this combina-

tion, a new file is created with both read and write access.

The following example opens a file named DS01.MYFILE on unit number 1. The file can only be read.

EXAMPLE
OPEN #1:“DS01.MYFILE",INPUT,RELATIVE 50,FIXED 200,INTERNAL
The following example creates and opens a file named DS01.MYFILE on unit number 1. The program
can read records from the file or write records to the file.
EXAMPLE
OPEN #1:“DS01.MYFILE”,OUTPUT,INPUT
6.3.5.3 Update Access Mode. The update mode specifies that a file can be both read and written,

and serves as the default file access mode.

In the following example, the file DSO1.MYFILE is opened on unit number 1. The program can read
records from the file or write records to the file.

EXAMPLE

OPEN #1: “DS01.MYFILE”,UPDATE

6.3.5.4 Append Access Mode. You can use the append mode only with the sequential file struc-
ture. This mode indicates that records can be written to the end of the file, but no records can ke
read. When the file is opened, the file position indicator is positioned past the last record in the file
so that subsequent writes are to the end of the file. If a read operation is attempted, an error
occurs and program execution halts. If a RESTORE statement is executed, a file mode error
results.

The following example opens a file named DS01.MYFILE on unit number 1. Records can only be writ-
ten or appended to the file.
EXAMPLE

OPEN #1:“DS01.MYFILE”,APPEND

6-8 Change 1 2308769-9701

Input/Output (1/0) Statements

6.4 CLOSE STATEMENT
The CLOSE statement disassociates a file or /O device from a unit number. After execution of the
CLOSE statement, the file or device is inaccessible to the program and the unit number is available

for reassignment. If the unit number specified is not associated with an open file, an error condition
results. The general form of the CLOSE statement is as follows:

FORMAT

CLOSE # unit__number
CLOSE # unit__number: DELETE
where:

unit_number is any numeric value or expression greater than 0 and less than 256.

All open files and devices are automatically closed upon execution of a NEW, OLD, or RUN
command.
BASIC supports a CLOSE with DELETE function. To delete a file opened with the OPEN statement,
add :DELETE to the CLOSE statement. If this statement is addressed to a device, it merely closes
the device. The following statements delete the file .JUNK on disk DSO01:
EXAMPLES

OPEN #1:“DS01.JUNK”

CLOSE #1:DELETE
6.5 PRINT AND DISPLAY STATEMENTS
The PRINT and DISPLAY statements format and transmit the output of the BASIC program to a disk

file or output device. The first two format statements describe the PRINT statement used for screen
output; the others are used for output to files and devices in general.

23087699701 6-9

Input/Output (I/O) Statements

FORMATS
PRINT options: output__list
PRINT options USING image: output__list
PRINT # unit_number: output__list
PRINT # unit_number USING image: output__list
PRINT # unit__number, rec__clause: output__list
PRINT # unit_number, key__clause: output__list
PRINT # unit__number, key__clause USING__image: output__list

where:
options indicates ERASE ALL, AT (row, col), SIZE (int), or BELL.

unit_number is any numeric value or expression greater than 0 and less than 256 that
specifies the disk file or output device.

image is the line number of an IMAGE statement or a string expression.

output__list specifies the data items to be printed. The data items can be numeric
variables, strings, or expressions that are evaluated and then printed. The out-
put list can also contain column and position information.

rec__clause location of the record to be written; consists of the word REC followed by any
legal arithmetic expression.

key__clause location of the record to be written; consists of the word KEY followed op-
tionally by a pound sign (#) and a key number and/or by a key value.

The DISPLAY statement has the same syntax as the PRINT statement. You can use the DISPLAY
and PRINT statements interchangeably when sending data to the output devices or files, except
that if you specify screen options with the PRINT statement, these options are ignored if you direct
output to a device other than the screen.

In the remainder of this section, the term PRINT statement describes both the PRINT and DISPLAY
statements. Aside from the exception noted above, the options available with the PRINT statement
apply equally to the DISPLAY statement. Many extensions are available to both statements, making
them two of the most useful statements in the BASIC language.

6-10 2308769-9701

Input/Output (I/0) Statements

6.5.1 Device Output

To send output to a device, use the PRINT or DISPLAY statement with a unit number that specifies
the device. All devices accessed with a unit number other than zero must be opened by using the
OPEN statement before the output statement can be executed. The simplest forms of the PRINT
statement are as follows:

EXAMPLES
PRINT

PRINT #1

Execution of the preceding PRINT statements advances the output position to the beginning of the
next line.

Numeric values are displayed with a leading sign position (blank if positive and a minus sign if
negative) and a trailing blank. String values are displayed without these additions.

The following is an example of a PRINT statement that outputs the value of an expression.

EXAMPLE

100 PRINT “TEST DATA”
110 PRINT 4+8
120 PRINT 4-8

RUN

TEST DATA
12
-4

6.5.2 Data Separators

You can include multiple data items in a single PRINT statement if you separate them by data
separator symbols. BASIC provides three data separator symbols for use within the PRINT state-
ment: the comma, the semicolon, and the apostrophe. The effect of these separators is independent
of whether the data is numeric or string. If a list ends with a data separator, the output position does
not advance to the next line after the values of the expressions in the list are printed; consequently,
the results from more than one DISPLAY statement can appear on a single line. Except for this at-
tribute, each data separator acts differently, as explained in the following paragraphs.

2308769-9701 6-11

Input/Output (I/O) Statements

6.5.21 Comma. For DISPLAY format output (sequential files, KIF, and devices), the comma data
separator advances the output display position to the next zone. The output line is divided into
zones; each zone is 16 spaces wide. The following example shows.the PRINT statement that uses a
list and the comma data separator.
EXAMPLE

110 PRINT 1,2,3

RUN

1 2 3

You can achieve the same result by appending a comma to separate PRINT statements, as in the
following example.

EXAMPLE
110 PRINT 1,
120 PRINT 2,
130 PRINT 3
RUN
1 2 3

For internal format output (relative record files), the comma causes no formatting. Data items are
output one after the other to the relative record file.

6.5.2.2 Semicolon. When you use the semicolon data separator, BASIC does not advance the
output position after displaying a value. If a semicolon replaces the comma in the preceding ex-
ample, no space appears between the data fields.

EXAMPLE

100 DISPLAY 1;2;3
110 DISPLAY “ABCD”;“EFGH”

RUN
1 2 3
ABCDEFGH

In this example, the blanks between 1 and 2 and the blanks between 2 and 3 represent the sign posi-
tion and the trailing blank; the semicolon does not cause any blanks.

6-12 2308769-9701

Input/Output (I/0) Statements

6.5.2.3 Apostrophe. The apostrophe data separator has the same effect as the semicolon except
that the data separator symbol (the comma unless otherwise defined by the PUNCTUATION state-
ment) is inserted between the data items. This is particularly useful in transmitting datato files. See
paragraph 6.10 for special considerations in using the apostrophe separator with KIFs.

The following example shows the different effects of the three data separators.

EXAMPLE

100 DISPLAY
110 DISPLAY
120 DISPLAY
130 DISPLAY
140 DISPLAY "
150 DISPLAY 1;
160 DISPLAY 2”7
170 DISPLAY 3
180 END

]

] " ; " Lowll ; IIDEEPI’

2
2
2
I
I n*n LOW" “n DEEP"

.3
33
‘3
GH
GH

RUN

1 2 3
1 2 3
1,2,3
HIGHLOWDEEP
HIGH,LOW,DEEP
1 2,3

6.5.3 Output Options

The following options are available with the PRINT and DISPLAY statements: ERASE ALL, AT, SIZE,
and BELL. You can use these options only when the format of the output statement does not include
a unit number. When you use any of the options, you must precede the output list by a colon. When
you use two or more options in combination, you must list them in the order previously given.
6.5.3.1 PRINT with ERASE ALL Option. The ERASE ALL option clears the screen before any
values are displayed.

FORMAT

ERASE ALL

The following is an example of a PRINT statement that uses the ERASE ALL option. If you select
this option, it must immediately follow the keyword PRINT.

EXAMPLE

PRINT ERASE ALL:“Total =";SUM

2308769-9701 6-13

Input/Output (1/O) Statements

6.5.3.2 PRINT with AT Option. The AT option specifies the starting position for the display on the
screen.

AT (line__num, col_num)

The default value for the line is 24, the bottom line; the default value for the column is column 1. If
you do not specify the AT option and no data separators are in effect, a DISPLAY statement causes
output to begin in the lower left corner of the screen (the default position). Therefore, if a PRINT
statement without the AT option follows a PRINT statement with one, the output of the second
statement begins in the lower left corner, regardless of where the cursor was positioned by the AT
option in the previous statement. If the AT and ERASE ALL options are both used in the same PRINT
statement, the keyword AT must follow the keywords ERASE ALL. The following example shows a
PRINT statement that uses the AT option.

EXAMPLE

PRINT AT(10,I):XNUM
6.5.3.3 PRINT with SIZE Option. The SIZE option has the following form:

FO RMAT
SIZE(n)
where:

n equals the number of characters to be displayed (can be positive or negative).
The SIZE option declares the maximum number of characters that can be dispiayed. If you do not
specify a size, the size defaults to a value large enough to hold the data to be output plus the

number of characters to the end of the last line on which data is written. When a line is displayed on
the screen, it is cleared according to the size specification.

6-14 2308769-9701

Input/Qutput (1/0) Statements

You can use the SIZE option to display data to a line and to preserve previously displayed data in the
line after the field specified by the size option. The field is cleared for the length of the size
specification only. If a string is to be displayed with a length greater than the size specification, the
output is truncated on the right after the number of characters in the SIZE specification has been
displayed. If you specify a negative size, the absolute value is used and no error occurs. If the AT op-
tion is also present, it must precede the SIZE option as shown in the following example:
EXAMPLE
PRINT AT (20,10) SIZE(21): “THIS IS 21 CHARACTERS”

6.5.3.4 PRINT with BELL Option. The BELL option sounds the bell when the PRINT statement
executes. You can achieve the same result by using CHRS$(7).

FORMAT

BELL
Using the BELL clause does not affect the format or interpretation of aﬂny data that the statement is

processing. If you use the BELL option with ERASE ALL, AT, or SIZE options in the same PRINT
statement, the keyword BELL must follow the others.

EXAMPLE

PRINT AT (20,10) SIZE(19) BELL: “THIS RINGS THE BELL”

6.5.4 PRINT with USING Option
The USING option can control output format. The form of the option is either of the following:

FORMATS

USING line_num
USING str_exp
where:
line__num is the line number of an IMAGE statement.

str__exp contains the format image.

2308769-9701 6-15

Input/OQutput (I/0) Statements

PRINT statements that include the USING option can contain the same elements as a PRINT list
except that the expressions in the list must be separated by commas and only a semicolon can be
used as a trailing data separator. The keyword USING must follow all of the other option keywords
in a PRINT statement. The following is an example of the USING option.

EXAMPLE

10 VALUE = 1234.569

20 AS$ = “H##HH

30 IMAGE ##t##.4#

40 PRINT USING “####.##":VALUE
50 PRINT USING A$:VALUE

60 PRINT USING 30:VALUE

RUN

1234.57
1234.57
1234.57

The preceding PRINT USING statements all produce the same output, 1234.57. Since the interaction
between the print list and the image are the same whether they are contained in a string expression
or in an IMAGE statement, further discussion is in terms of the IMAGE statement form only.

If the print list includes more values than there are conversions specified in the associated IMAGE
statement, the excess values are printed on a new line and the IMAGE statement is reevaluated,
beginning with the first character. If fewer values are to be printed than the IMAGE statement
provides for, the printing terminates when the first data conversion field for which no value is
encountered.

6.5.5 IMAGE Statement
The IMAGE statement is used only in association with a USING clause in a PRINT or DISPLAY state-

ment; its line number is specified in the clause. The IMAGE statement provides the template used in
formatting values in the PRINT statement list.

FORMAT

IMAGE str__const
where:

str__const is a quoted or unquoted string constant.

6-16 23087699701

Input/Output (I/0) Statements

The string constant contains directions for formatting the vaiues in the display list as well as text to
be included in the list. The text characters in the output line appear in the same positions as in the
string constant. Text characters are any characters not specified as format control characters.

6.5.5.1 IMAGE Format Control Characters.
their corresponding functions.

Table 6-2. Format Control Characters

Table 6-2 lists the nine format control characters and

Character

Function

Pound sign (#)

Circumflexes (AAAA)

Plus sign (+)

Decimal point (.)

Angle brackets (< >)

Comma (,)

Dollar sign ($)

Asterisks (**)

Serves as the replacement field for a data character

Provide positions for displaying the exponent. If more
positions are provided than are required by the exponent,
leading zeros are displayed.

When placed at the beginning of a field, it causes a
floating sign to be displayed to the left of a number.

Indicates the position of the decimal point symbol. it can
also be used to align the decimal points in a column of
numbers.

When a numeric conversion field is enclosed by angle
brackets, the brackets are displayed when the value of the
field is negative.

Used in a numeric field to insert digit separator
characters in specified output positions.

Causes a currency symbol to be displayed at the begin-
ning of the specified field. To obtain a fioating currency
symbol, use two dollar signs.

When specified in pairs at the beginning of a numeric con-
version, causes leading zeroes to be replaced by
asterisks, providing blank protection.

2308769-9701

6-17

{nput/Output (I/O) Statements

When encountered in an image, any characters other than those in Table 6-2 are reproduced in the
output without editing. The following example shows statements that use format control
characters.

EXAMPLE

100 A=123.546

110 B=24.68

120 C$=“AUSTIN”

130 IMAGE ##i#### Tl BASIC < #it#.4#>

140 FORMATS = “H.HHH#AMAN SSH####”
150 PRINT USING 130:A,B

160 PRINT USING FORMATS$:A,B

170 PRINT USING 130:C$,-B

180 PRINT USING “ + ##i ####.#":A -B

RUN

124 TI BASIC 247
.1235E + 03 $24.68
AUSTIN TI BASIC < 24.7>
+124 -247

The format control characters used to represent the different types of data are controlled by the
rules discussed in the following paragraphs.

6.5.5.2 Integer Fields. An integer field is composed of digits with an optional sign. If the
specified number overflows the field, asterisks are displayed instead of the value. Numerical data is
right justified and rounded. The sign of the number is included in the number of digits. A maximum
of 14 significant digits can be displayed.

The following example uses the IMAGE option with integer fields. Note that the last variable (C ==
1289.9999) overflows the image specification (###); thus, its output field is filled with asterisks.

EXAMPLE

100 IMAGE #iHit# #itHH ##4
105 A = 12345: B = -34.856 :: C = 1289.9999
120 PRINT USING 100: A,B,C

130 END
RUN
123 -36 ***

6-18 2308769-9701

Input/Output (I/0) Statements

The following example shows IMAGE assigned to a string variable.

EXAMPLE

100 AS = “H#iHH HitHH #HE
110 A=123.45:B =-34.856::C = 1289.999
120 DISPLAY USING A$:A,B,C

130 END
RUN
123 -35 ***

6.5.5.3 Decimal Fields. A decimal field is a string of pound signs with an optional leading sign
and a decimal point that may precede, be embedded in, or terminate the field. The specified
number is rounded to the number of places indicated by the pound signs that follow the decimal
point. The number is right justified, and the decimal point is placed in the position specified in the
field definition. When the number overflows the field, asterisks are displayed instead of the value.
Up to 14 significant digits can be displayed. A display field that contains more than 14 numeric
characters causes a program error. -

The following example uses the IMAGE option with decimal fields.

EXAMPLE

100 IMAGE ##t## 4 H### A R # 41

110 LETA = 123456 : B = -34.856 ::C = 47.7 : D = -.0177
120 PRINT USING 100: A,B,C,D

160 END

RUN

123.46 -34.8560 48. -.018

6.5.5.4 Exponential Fields. An exponential field is a decimal or integer field followed by four or
five circumflexes (depending on the size of the exponent), which reserve a place for the exponent.
Fewer than four or more than five are treated as a literal string. The specified number is rounded in
the same manner as in decimal fields. The leftmost unary sign (-, +) reserves a position for the sign
of the number: minus if negative, blank if positive. At least one field character (#, —, +) must
precede the period in the image. Up to 14 significant digits can be displayed.

23087699701 6-19

Input/Output (I/0) Statements

The following example uses the IMAGE option with exponential fields.

EXAMPLE

100 IMAGE #.####H#AAA ## BHEAAN H#E MMM #HIAMAA
110 A = 123456 :B = -34.856::C = 47.7 =D = -.0177
120 PRINT USING 100:A,B,C,D

160 END

RUN

.12346E+03 -3.486E+01 48.E+00 -.18E-01
6.5.5.5 Alphanumeric Fields. The number sign or any other format control character is used to in-
dicate the position and length of the field. If the string is shorter than the format specification, the
field is filled with blanks on the right. If the string is longer than the format specification, the output
field is filled with asterisks.
The following example uses the IMAGE option with alphanumeric fields. Note that the second
variable (B$ = “ABCDEFGH?") is larger than the image specification (#####); thus, asterisks fill the
second output field.
EXAMPLE

100 IMAGE ##### #####

110 LET A$=“ABC” :: B$ = “ABCDEFGH"

120 PRINT USING 100: A$,B$

130 END

RUN

ABC * ok kok N

6-20 2308769-9701

Input/Output (I/0O) Statements

6.5.5.6 Literal Fields. A literal field is composed of characters that are not format control
characters. A literal field appears on the line exactly as it appears in the image. For example, the im-
age string ABCDEF consists of a six-character literal field.

EXAMPLE
100 PRINT USING “THE TOTAL IS ###":503

RUN

THE TOTAL IS 503

6.5.6 File Output

The BASIC program uses the PRINT statement to transmit data to a file. It can send data to sequen-
tial, relative record, and key-indexed files. To initiate output, open the file by using the appropriate
OPEN statement. To send data to the file, specify the file’'s unit number in the PRINT statement.

6.5.6.1 Sequential File Output. The display format, used with the sequential file structure, forces
the data written to a record to appear in the same format as the data written to your screen. In the
following example, the PRINT statement outputs four variables (A, B, C, and D) to the sequential file
associated with unit number 1. The comma data separator inserts spaces in the record to position
the variables at the beginning of output zones. If the file specification is removed from the PRINT
statement or if unit number O is used, the values are written to your screen in exactly the same
format.

EXAMPLE

PRINT #1:A,B,C,D

1 2 3 4

The following statement can also output data to a sequential file:
PRINT #1:A’B'C'D

However, this statement produces a record containing the values of variables A, B, C, and D
separated by data separators (in this case, commas), as follows:

1,2,3,4

2308769-9701 6-21

Input/Qutput (I/0) Statements

String data is treated in the same manner, as indicated by the following example.

EXAMPLE

100 NAMES$ = “DOE,JOHN”
110 ADDRESS$ = “123 BARTON SPRINGS RD”
120 PRINT #1:NAME$'ADDRESS$

Executing this statement sends the following output to a sequential file record:

DOE,JOHN,123 BARTON SPRINGS RD

To output a large number of variables (more than could be contained in a single variable list) on a
single record, terminate the last variable in the variable list with a data separator symbol (', ;). This

causes data to be sequentially output to a record until that record is filled, as in the following
example.

EXAMPLE

100 FORI=1TO 40
110 PRINT #1:DAT(l)
120 NEXT |

130 PRINT #1

The apostrophe data separator following the PRINT statement informs BASIC that more values are
to be written to the current record. The final PRINT statement at line 130 indicates that the record is
complete, and the next PRINT statement to unit number 1 begins a new record. The apostrophe data
separator inserts a comma between each value in the output record.

6.5.6.2 Relative Record File Output. The INTERNAL format, always used with relative record
files, produces data records with binary values equivalent to their specified data type (REAL,
INTEGER, or DECIMAL). Data separators do not cause formatting; data items are output one after
the other to the relative record file.

The PRINT statement can specify the record number (REC) by using the REC clause when sending
output to a relative record file. The REC clause can contain any legal arithmetic expression.

6-22 2308769-9701

Input/Output (I/0) Statements

In the following example, the PRINT statement writes data to record 1 of the relative record file,
DSO01.RELFILE. ‘

EXAMPLE

110 PRINT #1,REC 1:A,B,C,D

If the variables A, B, C, and D are defined as integers, the PRINT statement produces a record of
eight bytes, as follows: bytes 1 and 2 contain the value of variable A, bytes 3 and 4 contain the
value of variable B, and so on. The data is stored in REC 1 of the file DSO1.RELFILE without any
data separators. If the fixed record length is specified as less than the number of characters or
bytes required to write the record, the data is continued on the next record.

If string data is written to a relative record file, the length of the string determines the number of
characters written. The number is equal to the length plus one. The following example illustrates
output of string values to a relative record file.

EXAMPLE

110 NAME$=“ABC”
120 ADDR$=“DEF”
130 PRINT #1,REC 1:NAME$,ADDR$

In the preceding example, the PRINT statement writes eight characters or bytes to record number 1
of a relative record file, that is, one byte for the length of NAMES$ followed by the three-byte string
NAME$ and one byte for the length of ADDR$ and the three-byte string ADDRS.

To output a large number of variables (more than could be contained in a single variable list) on a
single record, terminate the last variable in the variable list with a data separator symbol (', ;). This
causes data to be sequentially output to a record until that record is filled, as in the example below.

When a long record is written to a relative record file, ensure that the REC clause is specified only in
the first write to the record. The occurrence of the REC clause in an I/O statement causes a new
record to be accessed. In the following example, 40 values are written to record N of a relative record
file.

EXAMPLE

100 PRINT #1,REC N:DAT(1),
110 FORI1=2TO 40

120 PRINT #1:DAT(}),

130 NEXT |

140 PRINT #1

The initial PRINT statement must be outside the FOR loop so that the REC clause is specified only
once.

2308769-9701 Change 1 6-23

input/Output (I/0) Statements

6.5.6.3 KIF Output. The PRINT statement inserts a new record into a file. The KEY clause is ig-
nored as far as the inserted record is concerned. The position of the inserted record depends on the
value of its keys (defined in the record). The KEY clause does, however, specify a particular key
number so that a subsequent INPUT statement to the file with no KEY clause specified will read the
record following the one inserted.

In KEY files, the data and key values should be padded to the right with blanks when necessary to
fill their fields prior to the PRINT statement. The record specified in the PRINT statement must be
large enough to contain all key values; KIFs are variable in record length, with a minimum as well as
a maximum, If the record is too small, an error occurs and program execution halits.

The following KIF example shows a file that has one key with a maximum length of 20 characters
specified in position 1. However, the logical record length is specified as 50 bytes to allow room for
data. Note that the SIZE specification on the ACCEPT statement prevents entering values larger
than the maximum fields defined.

EXAMPLE

100 ACCEPT SIZE(20):CITY$

110 IF LEN(CITY$)> 19 THEN 140 ! NO PAD NECESSARY
120 | PAD KEY TO MAXIMUM LENGTH

130 CITY$ = CITY$ & RPT$(* ,20-LEN(CITY$))

140 ACCEPT SIZE(20):STATE$

150 PRINT #1:CITY$'STATES

When a long record is written to a KIF, the same conventions apply as when a long record is written
with a REC clause in a relative record file. Including a KEY clause terminates a record. In the follow-
ing example, 20 string values are written to a KIF, where character positions 1 through 5 have been
defined as the key.

100 K$ = “ABCDE”
110 PRINT #1:K$’

120 FORI=1TO 19
130 PRINT #1:DATAS(lY
140 NEXTI

150 PRINT #1

A record is inserted with the primary key equal to ABCDE, followed by 19 data values.

6-24 2308769-9701

Input/Output (1/0) Statements

6.5.7 REPRINT Statement

The REPRINT statement allows you to update a KIF record. Updating a record entails reading, modi-
fying, and rewriting the record. To rewrite a record, you must have locked it by a previous INPUT or
ACCEPT statement. REPRINT updates and unlocks the record.

FORMATS

REPRINT # unit__number
REPRINT # unit__number, key__clause

where:

unit__number is any numeric value or expression greater than 0 and less than 256 that
specifies the KIF.

key__clause location of the record to be rewritten; consists of the word KEY followed op-
tionally by a pound sign (#) and a key number and/or key value.

The REPRINT statement specifies the unit number attached to the file, optionally followed by a KEY
clause. The KEY clause defines the location of the record to be rewritten. If you omit the KEY clause,
the default value of the record is the record designated by the last operation on the file. The follow-
ing is an example of the REPRINT statement:

EXAMPLE

100 DIM DATAS (20)

110 OPEN #1l:".KEYFILE",KEYED

120 INPUT #1, KEY #2 "CASSIUS CLAY ", LOCK:SSN$, NAMES,
130 IF EOF(l) THEN 250

140 FOR I =1 TO 19

150 INPUT #1l: DATAS$(I),

160 NEXT I

165 INPUT #1l: DATAS (20)

170 IF NAMES <> "CASSIUS CLAY" THEN UNLOCK #1 :: GOTO 250

180 IF LEN(SSNS) >= 9 THEN 200

190 SSN$ = SSN$ & RPTS(" ",9-LEN(SSNS)) ! BLANK FILL
200 REPRINT #1l: SSN$“ "MOHAMMED ALI "1 BLANK FILL
210 FOR I =1 TO 20

220 REPRINT #1: DATAS(I)”

230 NEXT I

240 REPRINT #1

250 CLOSE #1

260 STOP

In this example, if a client named Cassius Clay had changed his name to Mohammed Ali, you could
update the record accordingly. During the creation of this KIF, social security number (SSN) was
designated key 1, starting at position 1, with a length of 9. Key 2 (NAME) starts at position 11 (which
leaves room for a data separator between keys 1 and 2); its length is 25.

2308769-9701 6-25

Input/Qutput (I/0) Statements

6.5.8 SCRATCH Statement
The SCRATCH statement enables you to delete records within a KIF.
FORMATS
SCRATCH # unit_number
SCRATCH # unit__number, key__clause
where:

unit_number is any numeric value or expression greater than 0 and less than 256 that
specifies the KIF.

key__clause - location of the record to be deleted; consists of the word KEY followed op-
tionally by a pound sign (#) and a key number and/or key value.

The SCRATCH statement specifies the unit number of the file being edited, optionally followed by a
KEY clause. If you omit the KEY clause, the default value is the next record in sequence. The follow-
ing example demonstrates the SCRATCH statement:

EXAMPLE
300 SCRATCH #1,KEY #5 “TEXAS”

500 SCRATCH #7 .

In the first line, the first record whose fifth key value is equal to TEXAS is deleted. In the second line,
the record to which the data pointer is currently positioned via a RESTORE or other I/O statement is
deleted. '

WARNING
The SCRATCH statement scratches the next key greater than or
equal to the specified key. If the key does not exist, the next higher
key is scratched.
6.6 INPUT AND ACCEPT STATEMENTS
The INPUT and ACCEPT statements can accept data from the keyboard during program execution
and receive data from files. The statements differ in that INPUT can include a list similar to a PRINT

statement, but ACCEPT can receive only a single variable. The ACCEPT statement receives its
single variable with no editing for data separators.

6-26 Change 1 2308769-9701

Input/Output (I/0) Statements

6.6.1 INPUT Statement
The INPUT statement assigns values obtained from either the keyboard or a file to variables within

the program. The INPUT statement has two forms: one for screen input and another (the general
form) for device and file input.

FORMATS

INPUT options prompt: variable__list

INPUT # unit__number: variable__list

INPUT # unit__number, rec__clause, lock__clause: variable__list

INPUT # unit__number, key__clause, lock__clause: variable__list

where;
options

prompt

variable__list

unit__number

rec__clause

lock__clause

key_clause

2308769-9701

specifies ERASE ALL, AT, SIZE, or BELL.

specifies an optional message that is printed immediately in front of the in-
put field on the screen.

specifies the data items to be entered. When the list specifies more than
one variable, the variables must be separated by commas.

specifies the file or device from which the data is to be entered. If no unit
number is specified, the keyboard is the input device.

location of the record to be read; consists of the word REC followed by any
legal arithmetic expression.

consists of the optional keyword LOCK.

location of the record to be read; consists of the word KEY followed op-
tionally by a pound sign (#) and a key number and/or by a key value.

6-27

Input/Output (I/0) Statements

6.6.2 Keyboard Input

You can use the INPUT statement to enter data from the keyboard. No unit number need be
specified. If the variable is a string variable, the data entered is interpreted as string data; if the
variable is numeric, enter numeric data. The following are several examples of valid INPUT
statements that enter data items from the keyboard.

EXAMPLES

INPUT PAY_RATE

INPUT POWER,WEIGHT(l),TESTER$

INPUT REC_NO,DESC$

INPUT BELL “Enter the value” : X
When the INPUT statement is executed, you are prompted to enter a value. All data entered from the
keyboard in response to a single INPUT statement must be contained on one line of the screen.
Leading and trailing blanks are removed from each data item upon input. Separate multiple variable
values by commas. Use the comma to separate one data item from another upon input. You can use
the PUNCTUATION statement to change the data separator symbol from a comma to another

character.

Options available with the INPUT statement are selected the same way as DISPLAY statement cp-
tions. When you use an option, you must precede the variable list with a colon.

6.6.2.1 INPUT with ERASE ALL Option. You can use the ERASE ALL option with the INPUT state-
ment. This option erases the screen before the remainder of the statement is processed. If you
select it, you must include it immediately after INPUT. The following is an example of the INPUT
statement using the ERASE ALL option.

EXAMPLE

INPUT ERASE ALL:HOURS

6-28 2308769-9701

Input/Output (1/0) Statements

6.6.2.2 INPUT with AT Option. You can use the AT option with INPUT in the same fashion as with
the DISPLAY statement. The cursor moves to the specified position, and the prompt is issued.
Keyboard data is accepted after the prompt appears. The following example demonstrates the use
of the AT option.

EXAMPLE

INPUT AT(5,9*J + 2)“QUANTITY”:QUAN()

If you use both the AT and ERASE ALL options in the same INPUT statement, the keyword AT must
follow the keywords ERASE ALL.

6.6.2.3 INPUT with SIZE Option. You can use the SIZE option with the INPUT statement. The ab-
solute value of the size specification declares the maximum number of characters that you can
enter. If you attempt to enter more characters than the size specification allows, the bell sounds. If
you do not enter a size specification, the field size defaults to the remainder of the line following the
input prompt.

If the size specification is positive, the data entry area is cleared before data is accepted. If the size
specification is negative, the data entry area is not cleared and you can provide default values. This
simplifies data entry when the data usually, but not always, has a fixed value (for example, country
of customer). The following example uses the size specification with a negative argument.
EXAMPLE

10 DEFAULT = 12

20 DISPLAY ERASE ALL AT (12,44): DEFAULT

30 INPUT AT (12,25) SIZE (-2), “Number of doughnuts-":DOUGHNUTS
Executing this example causes the following to appear:

Number of doughnuts-12
If the typical number of doughnuts is ordered (in this example, 12), you need only press the carriage
return. However, if seven doughnuts are ordered, you must entera 7, followed by a blank. The blank
is required to erase the second digit of the default value. If the size specification had been positive,
the data entry area would be erased within the bounds of the size specification, prior to the input
prompt, thereby eliminating the default INPUT value. If the AT option is also present, it must precede
the SIZE option, as shown in the following examples.
EXAMPLES

INPUT AT (10,10) SIZE(3),“ENTER 3 LETTERS”:A$

INPUT ERASE ALL AT (5,5) SIZE(5):B$

2308769-9701 6-29

Input/Output (I/0) Statements

If the SIZE and ERASE ALL or the SIZE and AT options are used in the same INPUT statement, the
keyword SIZE must follow the keywords ERASE ALL or AT.

6.6.2.4 INPUT with BELL Option. The BELL option causes the bell to ring when the INPUT state-
ment executes. The form of this option is as follows:

FORMAT

Using the BELL option does not affect the format or interpretation of any data that the statement is
processing.

EXAMPLE

INPUT AT (10,10) SIZE(3) BELL, “IF THE BELL RINGS, ENTER YES”:A$

If you use the BELL option with the ERASE ALL, AT, or SIZE options in the same INPUT statement,
the keyword BELL must follow the keywords ERASE ALL, AT, or SIZE.

6.6.2.5 Input Prompting. If a prompt is not explicitly included in the INPUT statement, the default
prompt, which is a question mark followed by a space (?), appears on the screen. If a more descrip-
tive prompt is needed, you must include a prompt clause in the INPUT statement. The clause is a
string expression and is displayed instead of the question mark and blank. You can use the empty
string, “”, as the prompt clause if no prompting is needed. The following provides an example of
prompting for input.

EXAMPLE

10 INPUT “NUMBER PLEASE :N

20 DISPLAY “THE SQUARE ROOT OF”;N; “IS”;SQR(N)
30 INPUT “MORE INPUT?” :A$

40 IF A$ = “NO” THEN 60

50 GOTO 10

60 DISPLAY “THANK YOU, GOODBYE”

70 END

RUN

NUMBER PLEASE 16

THE SQUARE ROOT OF 16 IS 4
MORE INPUT? YES

NUMBER PLEASE 25

THE SQUARE ROOT OF 25 IS 5
MORE INPUT? NO

THANK YOU, GOODBYE

6-30 Change 1 2308769-9701

Input/Output (I/O) Statements

6.6.2.6 Input Errors. A number of different errors can result from improper use of the INPUT state-
ment. The following indicates the most common input errors.

Error Meaning
80 Too much input data
83 Too little input data
2 Missing or mistyped number

You can handie these errors by using the special error trapping statements (for example, ON
ERROR) or you can allow the system to indicate the error. When the system indicates an input data
error, an error code appears on the screen for several seconds. The INPUT statement is then
reexecuted.

6.6.3 INPUT Statement in File Access

You can use the INPUT statement to receive data from sequential and relative record files. Before
you can use the INPUT statement to access a file, you must open the file with the appropriate OPEN
statement. Also, file INPUT statements cannot use the prompt option or the screen options.

6.6.3.1 Sequential File Input. Input of data from a sequential file is similar to input from a device.
When you input multiple values, you must separate them by the data separator symbol. Otherwise,
they appear as one data item. Leading and trailing blanks are removed from each data item upon in-
put. The following statements are examples:

OPEN #1: “DS01.MYFILE”
INPUT #1: A,B,C

These statements successfully input three values from the sequential file that contained data in the
following format:

1,2,3

However, if the data is in the format 123, the contents of the record appear as a single value, 123;
this value is assigned to the variable A. Subsequent records are then read until a sufficient amount
of data is found to satisfy the variables B and C. If more data items are in a sequential record than
the INPUT statement requires, only those needed to satisfy the INPUT statement are read. The re-
maining data items are discarded unless the INPUT statement has a data separator following the
last variable name. In that case, the data remaining in the record is read by the next input operation.

2308769-9701 6-31

Input/Output (I/O) Statements

6.6.3.2 Relative Record File Input. The INTERNAL format, always used with relative files, pro-
duces data records with binary values equivalent to their specified data type (REAL, INTEGER, or
DECIMAL). Relative file /O also allows the random access of records by specifying the record
number to be read or written in the I/O statement.

In the following example, record number 1 is written to and then read from a relative record file. The
record number specification can be any legal arithmetic expression. Whenever the REC clause is
specified, a new record is read. If the variables A, B, C, and D are defined as integers, the PRINT
statement produces an eight-byte record: bytes 1 and 2 equal the value of variable A, bytes 3 and 4
equal the value of variable B, and so on. Zones and data separators are not defined in a relative
record file; input fields are defined by the types of variables in the INPUT variable list instead of the
appearance of a comma data separator in the data record. Therefore, the apostrophe print separator
cannot be used.

If the variables D, E, F, and G are defined as integers, the associated INPUT statement retrieves the
values as written. However, if one or more of the variables in the INPUT list differ in type from those
in the PRINT list, the results are unpredictable. If the fixed record length is specified as less than the
number of characters or bytes required to write the record, an error results. Table 6-1 provides infor-
mation on memory requirements for different data types stored in relative record files.

EXAMPLE
PRINT #1,REC 1:A,B,C,D
INPUT #1,REC 1:D,E,F,G
If string data is written to a relative record file, the length of the string determines the number of
characters written.
To input multiple data items on a single line, use a data separator to terminate the INPUT state-

ment. The occurrence of the REC clause in any I/O statement causes a new record to be accessed. In
the following example, 40 values are read from record N of a relative record file.

EXAMPLE

100 INPUT #1,REC N:DAT(1),
110 FOR1=2TO 40

120 INPUT #1:DAT(I),

130 NEXTI

6-32 2308769-9701

Input/Output (I/0) Statements

6.6.3.3 KIF Input. Toinput datato a program from a KIF, use a KEY clause to identify the record
you wish to access. A key clause consists of the keyword KEY followed, optionally, by a pound
sign (#) and a key number and/or a key value.

FORMAT
statement # unit__number, KEY key__num, key__val: variable
where:
statement represents a BASIC statement (for example, INPUT or ACCEPT).

unit_number is the number assigned to the file in the OPEN statement.

key__num is the pound sign (#) followed by the key number. If omitted, the primary key
is used.

key__val is the value of the key. If omitted, the next value on the specified key is
used.

variable specifies the data item to be entered.

If you do not specify the key number, the default value is the primary key. If you do not specify the
key value, the next record in the current key is read. If the entire KEY clause is omitted, the next
record in sequence is read.

EXAMPLE

INPUT #1,KEY#1 NAME$:NAM$,ADDRS$,CITY$,STATES

In this example, the INPUT statement specifies that four data values are to be read from a record
whose first or primary key is equal to or greater than NAME$. Note that if no record is found with a
primary key of NAMES$, the record with the next greater primary key value is returned (if one exists).

The data format in a KIF is the same as the data format in a sequential file. When more than one
value is stored in a record, a data separator symbol must separate each. Since keys are stored in the
record with the data, the overall position of the information in the record is critical. To facilitate in-
put, use the apostrophe separator when writing a record. Also, remember to leave space for the
apostrophe separator during the key definition phase of file creation.

2308769-9701 6-33

Input/Output (1/0) Statements

The following problem in file creation focuses on correctly positioning the apostrophe separator.
During the creation of a KIF, two keys are specified. The first is defined as a 20-character string that
begins in position 1 of the record. The second is a 20-character string positioned immediately after
the primary key. Since the primary key occupies positions 1 through 20 and the apostrophe
separator inserts a comma into position 21, the second key must begin in position 22. The following
illustrates this record layout:

0 1 2 3 4
12345678901234567890123456789012345678901
—————— KEY #1 =-—--=,--=--— KEY #2 ———=--

Note that the second key occupies positions 22 through 41; therefore, the logical record length
specified must be at least 42 characters (41 rounded up, since the length must be even).

The following example demonstrates how you can use KIF features to search a KIF. If a record is not
found with a key value equal to the key value specified in the KEY clause, the record with the next
greater key value is returned. Thus, you can search a KIF sequentially from a starting key number or
value.

EXAMPLE

100 STATE$ = “”

200 INPUT #1,KEY #3 STATE$:NAMES$,CITY$,STATES
210 IF EOF(1) THEN 250

220 PRINT NAMES$,CITY$,STATE$S

230 INPUT#1:NAMES$,CITY$,STATES

240 IF EOF(1)=0 THEN 220

250 CLOSE #1

260 END

In this example, the KIF #1 is searched sequentially on key number 3. Records are read and the data
is printed until an end-of-file condition occurs.

6-34 23087699701

Input/Output (I/0) Statements

6.6.4 ACCEPT Statement
The ACCEPT statement is like the INPUT statement with the following exceptions:

. You can input only a single variable.

. Trailing commas, semicolons, or apostrophes cannot follow the variable.

. The input data for an ACCEPT statement is not edited for commas or data separators.
Commas can be part of the string data. Numeric data is handled as with the INPUT

statement.

e The ACCEPT statement accepts all data on the input line (up to 255 characters) as the
single-string data item.

In the following format description, the first format statement describes the ACCEPT statement
used for screen input; the others are used for device and file input.

FORMATS
ACCEPT options prompt: variable
ACCEPT # unit__number: variable
ACCEPT # unit_number, rec__clause: variable

ACCEPT # unit__number, key__clause: variable

where:
options indicates ERASE ALL, AT (row, col), SIZE (int), or BELL.
prompt is the message displayed on the screen.
variable specifies the dataitem to be used as input.

unit_number is any numeric value or expression greater than 0 and less than 256 that
specifies the file or device from which the data is to be entered. If you do
not specify a unit number, the keyboard is the input device.

rec__clause location of the record to be read; consists of the word REC followed by any
legal arithmetic expression.

key__clause location of the record to be read; consists of the word KEY followed op-
tionally by a pound sign (#) and a key number and/or key value.

2308769-9701 Change 1 6-35

Input/Output (I/0) Statements

The following are examples of an ACCEPT statement that uses some of the options available with
the INPUT statement.

EXAMPLES
ACCEPT #1: A$
ACCEPT “ENTER YOUR NAME" :N$

ACCEPT AT(J,22) SIZE(4):PAY__GRADE

in inpui operations, the ACCEPT statement can read single data items from the keyboard and files.
It accepts all of the data within the input record as a single-string data item, ignoring data
separators. With this exception, it can be used in the same way as the INPUT statement.

6.7 PROGRAM DATA

Program data statements maintain constant data within a user program. The DATA, READ, and
RESTORE statements manage and access the constant data.

6.7.1 DATA Statement

The DATA statement defines the data values that will be used in the program. The data values can
be numeric or string constants. The program can contain several DATA statements; these
statements need not be adjacent. As the program exhausts one DATA statement, BASIC scans lines
with higher numbers to locate the next one.

FORMAT

DATA list

where:

list represents one or more numeric constants, or quoted or unquoted string constants,
separated by commas.

6-36 2308769-9701

input/Output (I/0) Statements

The following is an example of the use of the DATA statement.

EXAMPLE

100

170
180

220
230

DATA 1,23

DATA 4,5,6
DATA “Doe”

DATA PARIS, ROME
DATA 4, CASH 8.7 , “ Title ”

6.7.2 READ Statement

The READ statement assigns values to the variables listed in the READ statement by using data
values in the DATA statements. The variables can be either numeric or string and either subscripted
or unsubscripted. The READ statement begins reading items from the lowest-numbered DATA state-
ment and proceeds to the next higher-numbered DATA statement as each data list is exhausted. The
type (numeric or string) and range (-32768 through + 32767) for integer variables must agree with
each item read.

FORMAT

READ list

where:

list represents one or more variables separated by commas.

2308769-9701

6-37

Input/Output (1/0) Statements

The READ statement must always be associated with the DATA statements from which it obtains
values. An internal data pointer is maintained so that subsequent READ statements read subse-
quent data items. When a READ statement is executed, the next available data item from a DATA
statement is supplied. If a variable in a READ statement is encountered after all data in the DATA
statements has been used, an error condition occurs.

EXAMPLES

100 READ AB,C

110 DISPLAY A;B;C;

120 READ A,B,C

130 DISPLAY A;B;C

140 DATA 100,200,300,400,500,600
150 END

RUN
100 200 300 400 500 600

10 READ A,A$,B$,B

20 DATA 25, 1S, “THE SQUARE OF”,5

30 DISPLAY A;A$:B$;B

40 END

RUN

25 IS THE SQUARE OF 5
6.7.3 RESTORE STATEMENT
The RESTORE statement resets the internal data pointer to a specified position. This statement can
set the data pointer either to one of the DATA statements in a program or to a record within a file.
6.7.3.1 RESTORE Data Statement Pointer. The RESTORE statement resets the-internal data
pointer to the lowest-numbered DATA statement in the program or, if you supply a line number, to
the DATA statement at the indicated number. The next READ statement executed reads from that
point.
FORMATS

RESTORE

RESTORE line_num

6-38 2308769-9701

If the line

available DATA statement. If no succeeding DATA statem

Input/Output (I/0) Statements

number specified does not contain a DATA statement, the pointer is set to the next

ent exists, an error condition occurs when

the next READ statement is attempted. The following is an example of the RESTORE statement.

EXAMPLE

100
110
120
130
140
150
160
170
180
190
200

RUN

1
1
4

an N

6.7.3.2 File RESTORE. The RESTORE statement can move the
record in an open file. A file RESTORE is indicated by a unit num
the unit number is not associated with an open file, an error occurs.

2308769-9701

DATA 1,2,3

DATA 4,5,6

DATA 7,89

READ A,B,C,D,E,F
DISPLAY A;B;C;D;E;F
RESTORE

READ A,B,C,D,E,F
DISPLAY A;B;C;D;E;F
RESTORE 110

READ A,B,C,D,E,F
DISPLAY A;B;C;D;E;F

3 4 5 6
3 4 5 6
6 7 8 9

file position indicator to a specific
ber preceded by a pound sign (#). If

6-39

Input/Output (I/0) Statements

FORMATS

RESTORE # unit__number

RESTORE # unit__number, rec__clause

RESTORE # unit_number, key__clause
where:

line__num specifies the line number of the DATA statement to which the internal data
pointer will be reset.

unit__number is any numeric value or expression greater than 0 and less than 256 that
specifies the file.

rec__clause location of the record; consists of the word REC followed by any legal
arithmetic expression.

key__clause location of the record; consists of the word KEY followed optionally by a
pound sign (#) and a key number and/or by a key value.

Sequential File RESTORE. With the sequential file structure, use the RESTORE statement to posi-
tion the file position indicator to the first record of the file. A subsequent INPUT or ACCEPT state-
ment reads that record.

If the file was opened with the APPEND attribute specified, execution of a RESTORE statement to
that file results in an error.

Relative File RESTORE. The RESTORE statement for a relative record file positions the file posi-
tion indicator to a particular record number in the file. The REC clause indicates the record number.
If no REC clause is present, the indicator is positioned at record number 0.

The indicator assigned to unit number 1 is positioned to the eleventh record in the file. The first
record is number 0. If the REC clause is omitted, the indicator is positioned to record 0. If the record
number specified in the REC clause is greater than the largest record number in the file, the end-of-
file (EOF) indicator is set.

EXAMPLE

RESTORE #1,REC 10

6-40 23087699701

Input/Qutput (I/0) Statements

KIF RESTORE. The RESTORE statement for a KIF directs the file position indicator to a specific
record based on a key number or key value. Consider the following example:

RESTORE #7,KEY #1

The KIF assigned to unit number 7 is positioned to the first record in the file according to the sorted
order of the primary key.

You can specify a key value to position the file to a record containing that key value as in the follow-
ing example:

RESTORE #9,KEY “ARA”

The KIF assigned to unit number 9 is positioned to the first record in the file whose primary key
value is equal to or greater than “ARA”. Note that if a key number is omitted, the first or primary key
is assumed. If more than one record exists that contains the key value specified in the RESTORE
statement, the DUP function returns a 1. (See paragraph 8.5.10 for information on the DUP function.)

6.8 PUNCTUATION STATEMENT
The PUNCTUATION statement allows you to modify the following symbols:

. The currency symbol produced by the PRINT or DISPLAY statement with the USING op-
tion. Note that the dollar sign ($) must still be used in output formats (such as IMAGE
statements) to indicate that the currency symbol should be printed. The dollar sign is the
default currency symbol.

. The decimal point symbol used in input and output data. Numeric constants within the
program must use the period () as the decimal point. The period is the default decimal
point symbol.

e The digit separator produced by the PRINT or DISPLAY statements with the USING op-
tion. The comma must be used in formats (such as IMAGE statements) to indicate a digit
separator. The comma is the default digit separator symbol.

. The data separator symbol used by the INPUT, PRINT, and DISPLAY statements directed
to devices or sequential files. This symbol is produced by executing a PRINT statement
with an apostrophe in the output list. The INPUT statement uses this symbol to determine
where within a list of data items one item ends and another begins. The comma is the
default data separator symbol.

2308769-9701 6-41

Input/Output (I/0) Statements

FORMAT
PUNCTUATION str__exp
where:

str__exp represents any valid string expression.

The first four characters in the string expression specify, in order, the characters to be generated for
the currency symbol, the decimal point symbol, the digit separator symbol, and the data separator
symbol. If the string expression contains more than four symbols, only the first four are used. If the
expression contains fewer than four symbols, only those symbols specified are changed; for the
omitted characters, the default or previously defined symbols are used. If the data separator symbol
is defined to be the same as the decimal point symbol, that symbol is defined as the decimal point
symbol when valid. When a BASIC program begins execution, the initial condition is the same as
when the following statement is executed:

PUNCTUATION “8.,,”
If French characters are to be used, the following statement is appropriate:
PUNCTUATION “F,..”

This statement defines F as the currency symbol, a comma (,) as the decimal point symbol, a period
(- as the digit separator symbol, and a colon (:) as the data separator. The data separator is modified
in this case to prevent it from being confused with the decimal point symbol in input data. I/O
statements executed after the PUNCTUATION statement reflect the new notation. The image for-
mat used by the PRINT USING option must still adhere to the conventions discussed for the USING
option. The following example illustrates the use of the PUNCTUATION statement and its effect on
output.

EXAMPLE

100 IMAGE PRICE = $$### #i##.## QUANTITY = ##
110 PRICE = 123456.789

120 QUANTITY = 4

130 PRINT USING 100 : PRICE, QUANTITY

140 PRINT PRICE’QUANTITY

150 PUNCTUATION “F,..”

160 PRINT USING 100 : PRICE, QUANTITY

170 PRINT PRICE’QUANTITY

180 END

RUN

PRICE = $123,456.79 QUANTITY
123456.789 , 4

PRICE = F123.456,79 QUANTITY = 4
123456,789 : 4

Il
I

6-42 2308769-9701

Input/Output (I/O) Statements

After the PUNCTUATION statement executes, entering multiple data items requires use of the
specified data separator to punctuate input from the keyboard. For example, the following
statements require that data entered from the keyboard be in the format ABC:DEF:HIJ.

100 PUNCTUATION “F,..”
110 INPUT A$,B$,C$

You can use the PUNCTUATION statement to redefine the data separator symbol for sequential and
KIF 1/0, enabling you to support data with embedded commas, as in the following example:

100 OPEN #1: “DS01.MYFILE”
110 PUNCTUATION “$.,.”

120 A$ = “DOE, JOHN”

130 B$ = “505 MAIN ST.”
140 PRINT #1: A$'BY’

150 RESTORE #1

160 INPUT #1: NAMES$,ADDR$
170 PRINT NAMES$

180 PRINT ADDR$

RUN

DOE, JOHN
505 MAIN ST.

This example produces the following file record image:

DOE, JOHN:505 MAIN ST..

2308769-9701 6-43

Input/Output (I/0) Statements

6.9 SHARED FILES

BASIC supports shared files, that is, relative record files or KIFs that can be opened and accessed
by several users simultaneously (if you have a multiuser system). To preserve file integrity, BASIC
allows you to lock and unlock records in a shared file. Although several users have access to the
same file, a locked record provides exclusive (single-user) read and write access. This feature does
not provide file security, since any file user can unlock a locked record; however, this feature does
ensure that record updates occur one at a time.

The LOCK clause appears in the INPUT or ACCEPT statement and indicates that another user can-
not access the record being read until it is unlocked.
FORMATS
INPUT # unit__number, rec__clause, LOCK:variable
INPUT # unit__number, key__clause, LOCK: variable
ACCEPT # unit_number, rec__clause, LOCK: variable
ACCEPT # unit_number, key__clause, LOCK: variable
where:

unit_number is any numeric value or expression greater than 0 and less than 256 that
specifies the disk file or output device.

rec__clause is the record number; consists of the word REC followed by any legal
arithmetic expression.

key__clause location of the record to be read; consists of the word KEY followed op-
tionally by a pound sign (#) and a key number and/or key value.

variable specifies the data item (or iterﬁs) to be input.
Do not confuse the LOCK clause used in the INPUT and ACCEPT statements with the LOCK

parameter in the SAVE command. The former is used during input to shared files; the latter is used
to prevent the program in question from being listed or modified.

6-44 2308769-9701

Input/Output (I/0) Statements

The foliowing example illustrates updating a file with and without record locking.

Without Record Locking

To unlock a record, use the UNLOCK statement.

FORMAT

User A reads a record.

User B reads the same
record.

User A updates his copy of
the record and writes the
updated record to the file.

User B updates his copy of
the record and writes the
updated record to disk.

Final Result:

User B’s update is incor-
porated in the final record,
but user A’s update is lost.

UNLQCK # unit_number, rec__clause

UNLOCK # unit_number, key__clause

where:

unit_number

rec__clause

With Record Locking

User A reads a record and
locks it.

User B attempts to read
the same record, but
finding it locked, auto-
matically waits for it to be
unlocked.

User A updates the record
and writes it back to disk,
thereby unlocking it.

User B reads the record
and locks it.

User B updates the record
and writes it back to
disk.

Final Result:

Both user A’s and user B’s
updates are included in the
record.

is any numeric value or expression greater than 0 and less than 256 that
specifies the disk file or output device.

is a record number; consists of the word REC followed by any legal

arithmetic expression.

key__clause location of the record to be read; consists of the word KEY followed op-

tionally by a pound sign (#) and a key number and/or by a key value.

2308769-9701 6-45

Input/Output (I/0) Statements

6.9.1 Relative Record File Example
The following example locks record 10 of a relative record file after it is read. The record remains in-
accessible to other users until it is unlocked or rewritten.

200 INPUT #2,REC 10,LOCK:DAT(1),DAT(2)
The following command unlocks the record from the previous example:

500 UNLOCK #2, REC 10
6.9.2 KIF Example
To lock a KIF, you insert a LOCK clause in an INPUT or ACCEPT statement following the KEY
clause.
The following example locks a record in a KIF. When one user attempts to access & record locked by
another, the attempt fails. BASIC reattempts the access several times. If the record remains locked
throughout the attempted accesses, BASIC assumes that the record is permanently inaccessible

and terminates the requesting program with an error message. For this reason, it is important that
the record remain locked for a minimum amount of time.

200 INPUT #3,KEY #7 KY$,LOCK:A$,B$,C$
The following command unlocks the record from the previous example:

600 UNLOCK #3, KEY #7 KY$

6-46 2308769-9701

7

Control Statements

7.1 INTRODUCTION
Unless directed otherwise, a program executes program statements in sequence from the first

through the last statement. Certain statements, described in the following paragraphs, permit you
to alter the execution sequence.

7.2 UNCONDITIONAL TRANSFER (GOTO)
The unconditional transfer statement transfers program control to the specified statement. Each
time a program encounters an unconditional transfer statement, program execution proceeds from
the specified statement.
FORMAT
GOTO line_num
GO TO line_num
where:
line__num is the line number of the statement to which control is to be transferred.
In the following example, the statement in line 600 transfers control to the statement in line 300. At

line 300, variable A is incremented by 1 and a new sum, C, is formed. This process continues in-
definitely, since the END statement is blocked by line 600 and cannot be executed.

EXAMPLE
100 A=0
200 B =10
300 A=A+1
400 C = A+B
500 PRINT C;
600 GO TO 300
700 END
RUN

11 12 13 14 15 16 17 18 19

2308769-9701 71

Control Statements

7.3 COMPUTED TRANSFER (ON-GOTO)

The computed transfer statement provides a multiple switch for altering program control, depend-
ing on the value of an expression. The computed transfer statement transfers program control to a
designated line as a function of the value of the indicated expression.

FORMAT

ON exp GOTO line__1, line__2, line_3 . ..
where:

exp is any valid arithmetic expression.

line__1 represent the line numbers of the statements to which program control transfers,
line__2 depending on the value of the arithmetic operand.
line__3

A value of 1 (exp = 1) transfers program control to the statement whose line number appears first in
the list; the value 2 transfers control to the statement whose line number appears second in the list,
and so on. The relationship between the value of the arithmetic expression and the line numbers to
which control is transferred is positional. When the value of the arithmetic expression is less than
one or greater than the number of line numbers in the statement, an error results. The following ex-
ample illustrates the computed transfer statement.

EXAMPLE
90 X=0
100 X = X+1

110 ON X GOTO 120, 140, 120, 160
120 PRINT “AT LINE 120”

130 GO TO 100

140 PRINT “AT LINE 140"

150 GO TO 100

160 PRINT “AT LINE 160"

RUN
AT LINE 120
AT LINE 140

AT LINE 120
AT LINE 160

72 23087699701

Control Statements

7.4 CONDITIONAL TRANSFER (IF-THEN-ELSE)

The conditional transfer statement provides greater flexibility in program control. Unlike the GOTO
statement, which provides an unconditional transfer of control, the IF-THEN construct passes con-

trol only if a specific condition is fulfilled. Otherwise, the normal, sequential execution of program
statements continues.

FORMAT

IF condition THEN action_a ELSE action_b
where:
condition is a relational expression.

action_a are either statements or line numbers in the current program.
action_b

The ELSE action__b clause is optional. If the value of the relational expression is true, execution of
the program continues with the specified THEN action. If the value is false and the ELSE clause is
included, action__b occurs; if the ELSE clause is not included, execution continues with the state-
ment immediately following the IF-THEN statement. Note that the end-of-line terminates IF-THEN-
ELSE statements. All statements following THEN are part of the THEN block; similarly, all
statements following the ELSE clause, if present, are part of the ELSE block. The entire IF-THEN-

ELSE statement must be contained on one line. The following is an example of a conditional
transfer. :

EXAMPLE

100 A$="“AAA”

110 B$="“BBB”

120 C$=“AAABBB”

130 IFC$ = A$ & B$ THEN 160
140 PRINT “AT LINE 140”

150 STOP

160 PRINT “AT LINE 160”

170 END

RUN

AT LINE 160

In this example, program control is transferred to line 160 because C$ equals the concatenation of
A$ and BS.

2308769-9701 7-3

Control Statements

The following example is similar to the computed transfer example except that an IF-THEN state-
ment replaces the GOTO statement in line 600. The IF-THEN statement checks the value of the
variable C to determine if program control should be shifted to line 300. When C reaches the value
16, the condition is no longer satisfied and the normal sequential execution of program statements
continues. The END statement executes, and the program terminates.

100 A=0

200 B =10

300 A= A+1

400 C=A+B

500 PRINT G;

600 IF C < =15THEN GOTO 300
700 END

RUN

11 12 13 14 15 16

An arithmetic expression can replace the relational expression in the IF statement. The condition is
false if the value of the expression is zero and true if the value is nonzero.

In the following example, the variable PASS is used as a flag variable to determine whether the user
input is less than 10.

10 LET MAX = 10

20 PRINT “ENTER A VALUE";

30 INPUT A 4

40 IF A> = MAX THEN PASS = 0 ELSE PASS = -1
50 IF PASS THEN PRINT “OK” ELSE PRINT “BAD”
90 END

7-4 2308769-9701

Control Statements

7.5 REPEATED SEQUENCES (FOR-TO-STEP-NEXT)

To execute a set of instructions several consecutive times, you can define a repeating sequence, or
loop. Using a FOR statement and its associated NEXT statement, you can repeatedly execute pro-
gram segments located between pairs of these statements.

FORMATS

FOR ind__var

init__val TO lim__val

FOR ind__var = init__val TO lim_val STEP increment

NEXT ind__var
where:
ind__var can be any unsubscripted numeric variable.
init__val can be any numeri¢ expression.
lim__val can be any numeric expression.

increment can be any numeric expression.

When the FOR statement is executed, the ind__var takes on the value of init__val. Each time the
associated NEXT statement is encountered, the increment is added to ind__var. If the amount of the
increment is not specified, the value 1 is used. If the increment is positive and the new value of
ind__var does not exceed the value of lim__val, execution proceeds from the statement following the
FOR. Similarly, if the increment is negative and the value of ind__var is not less than the value of
lim__val, execution proceeds from the statement following the FOR.

2308769-9701 7-5

Control Statements

The BASIC statements executed by the loop are those with line numbers between the FOR state-
ment and the associated NEXT statement. In the following example, the statements between the
FOR statement and the NEXT statement are executed until the conditions of the loop defined by the
values of A, B, and C are satisfied. The value of A is the initial value of the index, B is the limit value
of the loop, and C is the value by which | is incremented each time the loop is executed. In sorne

cases, the loop does not execute. The loop is ignored and the associated NEXT statement is
executed in either of the following cases:

° If the increment is positive and the limit is less than the initial value

. If the increment is negative and the limit is greater than the initial value

EXAMPLE

100 FOR| = ATOBSTEPC
200 PRINTI

300 PRINT I*1

400 NEXTI

500 STOP

The following example shows an equivalent set of instructions using the IF statement:

100 X1
110 X2
120 | = A

130 IF(I-X1)*SGN(X2)> 0 THEN 180
140 PRINT |

150 PRINT I*]

160 | = I+ X2

170 GOTO 130

180 STOP

B
C

76 2308769-9701

Control Statements

The expressions for starting value, limit, and increment are evaluated when the FOR statement is
initially executed. BASIC saves these expressions, separated from user control. The program is then
free to modify (within the loop) the value of any variable in these expressions with no effect on the
number of times the loop is executed. Loops can be nested within other loops; that is, a FOR and a
NEXT statement can reside between another FOR and NEXT statement set. However, the two sets
of statements cannot use the same index variable. The following example demonstrates the use of
the FOR and NEXT statements in loops.

100 FORI=1TO 4

110 FORJ=1TO 4

120 READ A,B,C,D

130 PRINT A;B;C;D;

140 NEXT J

145 RESTORE :: PRINT

150 NEXT |

160 DATA 11,12,13,14,21,22,23 24,31,32,33,34,41,42,43,44
170 END

RUN
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

7.6 GOSUB AND RETURN STATEMENTS
BASIC programs can have internal subroutines. An internal subroutine is a set of statements ac-

cessed by a GOSUB statement. Two statements control the use of internal subroutines: GOSUB and
RETURN. GOSUB provides entry to the subroutine, and RETURN exits the subroutine.

FORMAT

GOSUB line_num

RETURN

2308769-9701 7-7

Control Statements

The line__num parameter following the GOSUB statement identifies the first line of the subroutine.
The RETURN statement causes the program to resume execution at the statement immediately
following the GOSUB. The following is an example.

430 X = 182

440 Y = 4

450 GOSUB 650

460 PRINT “X DIVIDEDBY YIS ; A

650 A = X/Y
660 RETURN

After the assignment of values to variables X and Y, the GOSUB statement executes at line 450. The
next statement to execute is statement 650. When the RETURN statement executes, execution
transfers to the statement following GOSUB (statement 460).

You can nest subroutines so that one subroutine contains a GOSUB to another subroutine (Figure

7-1).

Program

10 X =2

20 GOSUB 90
30 PRINT 2
40 X =25

50 GOSUB 100
60 PRINT Z

90 IF X <>5 THEN 120
100 Xx=1
110 GOTO 190
120 X = 10
130 GOSUB 190
140 Z =2+ 2
- 150 RETURN

190 Z = X*2
200 RETURN

Execution Sequence

10 X =2
20 GOSUB 90
90 IF X <>5 THEN 120
120 X =10
130 GOSUB 190
190 Z = X*2
200 RETURN
140 2 =12+ 2
150 RETURN
30 PRINT Z

40 X =5
50 GOSUB 100
100 X =1

110 GOTO 190
190 Z = X*2
200 RETURN

60 PRINT 2

Figure 7-1. Nested Subroutines

7-8

2308769-9701

Control Statements

In Figure 7-1, execution begins by assigning 2 to the variable X. The GOSUB statement at line 20
transfers control to the subroutine at line 90, which assigns 10 to X. The GOSUB statement at line
130 transfers control to a second (nested) subroutine at line 190, which assigns 20 to Z. Upon execu-
tion of the RETURN statement, control returns to statement 140. Z is calculated to a value of 22, and
the RETURN statement at line 150 exits the current subroutine. The value of Z is printed at line 30, X
is assigned a value of 5, and a GOSUB to line 100 is executed. X is assigned a value of 1, and execu-
tion continues at line 190 because of the GOTO statement at line 110. After Z is recalculated, the
RETURN statement returns control to the statement following the last executed GOSUB (in this
case line 60), where the new value of Z is displayed.

The RETURN statement at line 200 terminates the subroutine that was called at line 130 and began
execution at line 190. However, due to the second subroutine call at line 50, coupled with a GOTO
statement rather than a GOSUB statement at line 110, the second execution of the RETURN state-
ment at line 200 terminates the subroutine that began at line 100.

7.7 COMPUTED GOSUB STATEMENT

The computed GOSUB statement is similar to the computed GOTO statement and has the following
format.

FORMAT

ON exp GOSUB line__1, line_2, . ..

This statement is identical to the computed GOTO statement except that a RETURN statement
returns control to the next statement. The following example uses the ON GOSUB and RETURN
statements.

EXAMPLE

10 X =0

20 X=X+ 1

30 ON X GOSUB 100,200,300

40 IF X< 3 THEN 20 ELSE 500
100 PRINT “AT SUBROUTINE 100”
110 RETURN

200 PRINT “AT SUBROUTINE 200”
210 RETURN

300 PRINT “AT SUBROUTINE 300”
310 RETURN

500 END

RUN
AT SUBROUTINE 100

AT SUBROUTINE 200
AT SUBROUTINE 300

2308769-9701 79

Contro! Statements

In this example, control passes to each succeeding subroutine as the value of X is incremented.
Finally, when the value of X reaches 3 and the RETURN statement is executed in the third
subroutine, control passes to statement 500 via the ELSE clause at statement 40.

7.8 ON ERROR/RETURN

The ON ERROR statement enables you to gain program control when execution time errors, both
recoverable and unrecoverable, occur. The ON ERROR statement specifies the action to be taken
when an error occurs. This allows you to “trap” expected errors and process them within the BASIC
program without terminating program execution. However, the ON ERROR statement will not trap
errors encountered during the execution of a RUN statement within a BASIC program except to
verify the presence of the destination program.

NOTE

Error trapping is inoperative under certain conditions. An Out-of-
Memory error might indicate insufficient memory to trap the error.
Also, certain errors in program structure (such as improper nesting of
FOR ... NEXT loops) are detected during prescan of the program and
are thus ignored during prescan of the program execution.

The form of the ON ERROR statement is as follows:

FORMAT

ON ERROR line_num

ON ERROR STOP

‘In this format, line_num is the line humber to which control is to be transferred when an error oc-
curs within the program unit. If the line number does not exist, an error occurs when the ON ERROR
statement is executed.

The group of statements executed when an error is trapped is referred to as the error processing
routine, which can be located anywhere within the BASIC program. If you use the STOP clause, a
subsequent error causes the default action to occur. That is, the error message is displayed and
either the program is halted or the system-provided recovery takes place. When the error routine is
entered, the previous error trapping mode is reset and the default error processor is activated. To
trap further errors, you must execute an ON ERROR statement prior to exiting the error routine or
after the RETURN statement.

7-10 2308769-9701

Control Statements

The ON ERROR statement is active only in the procedure in which it is executed. If an external sub-
program is invoked, the current error processing state is saved and the default error processing
state is activated until an ON ERROR statement is executed within the subprogram. When the sub-
program is exited, the previous error processing state is reactivated. If an ON ERROR statement is
executed in an external subprogram, the error processing state is saved when the subprogram is
exited and reinstated on subsequent calls. A subprogram should not specify the same error pro-
cessing routine as the main program or another subprogram to avoid confusion as to which
variables are active in the calling routine.

To resume program execution after an error routine, execute a RETURN statement. The form of the
RETURN statement is as follows:

FORMATS

RETURN
RETURN NEXT
RETURN line__num

RETURN PRINT

The RETURN statement specifies that the statement that caused the error is to be executed again.
The RETURN NEXT statement specifies that the statement following the one that caused the error
is to be executed next.

The RETURN line__num statement indicates the line number of the statement to be executed. Any
line number within the current program unit can be used. The RETURN PRINT statement specifies
that the error message associated with the current error is to be displayed, and execution is to con-
tinue with the statement following the one that caused the error.

By using the ON ERROR statement in conjunction with the ERR intrinsic function (see Section 8)
and the RETURN statement, you can control error processing.

EXAMPLE

100 ON ERROR 150

110 ACCEPT “ENTER A NUMERIC VALUE:” :A$

120 |1=VAL(AS)

130 PRINT |

140 GO TO 110

150 |IF ERR<>2 THEN 180

160 PRINT “VALUE ENTERED MUST BE NUMERIC!”

170 GO TO 190

180 PRINT “UNEXPECTED ERROR ENCOUNTERED—RETRY”
190 RETURN 100

2308769-9701 711

Control Statements

If you enter alphabetic characters when the ACCEPT statement is executed at line 110, evaluation
of the VAL function in line 120 generates an error condition. The error is trapped because of the
execution of the ON ERROR statement at line 100. Control passes to line 150, where the value of the
error received is inspected and the appropriate recovery action is taken. The RETURN statement at
line 190 returns control to line 100, where the error trap is reset and execution continues.

79 END STATEMENT

The END statement indicates that the end of the program has been reached.

FORMAT

The last statement of every program in memory is an implicit END statement. When an END state-
ment executes, the program terminates and BASIC enters the command mode.

7.10 STOP STATEMENT

The STOP statement terminates execution of the program at some point prior to the END statement.

FORMAT

STOP

The STOP statement is useful in programs that have more than one logical stopping point. You can
also use it to terminate a program during execution when an abnormal condition occurs.

7.11 OTHER METHODS OF TRANSFERRING CONTROL
Several other methods of transferring program control are available to you. Section 8 describes

user-defined functions and subprograms. Section 11 describes external assembly language sub-
routines. Section 12 describes the BASIC sort and Keyed File Package (KFP) subroutines.

2 Change 1 23087699701

8

Intrinsic Functions

8.1 INTRODUCTION

The intrinsic functions of the TI BASIC programming language are grouped as mathematical func-
tions, string functions, date and time functions, and miscellaneous functions. Table 8-1 lists these

functions by category.

Table 8-1.

BASIC Intrinsic Functions

Mathematical Functions

Absolute Value ABS
Arctangent ATN
Cosine COS
Exponential EXP
Integer INT
Logarithm LOG
Sign SGN

Sine SIN

Square Root SQR
Tangent TAN

Date and Time Functions

Date DATS
Time TIME$

String Functions

Convert ASCII to Decimal ASC
Break BREAK
Length LEN
Numeric NUMERIC
Position POS
Repeat RPT$
Match String SPAN
Uppercase UPRC$
Value VAL
Character CHR$
Segment SEG$S
String STR$

Miscellaneous Functions

Random Number RND

Randomize RANDOMIZE

Find Available Space FREESPACE

Return Number of Characters
in Buffer INKEY

Return Character INKEY$

End-of-File EOF

Verify File Type FTYPE

Tab TAB

Err ERR

Test for Duplicate Keys DUP

When you execute the examples of the functions in the following paragraphs, the system responds
with a question mark (?) prompt to allow you to enter a value for the unknown.

2308769-9701

81

Intrinsic Functions

8.2 MATHEMATICAL FUNCTIONS

The following paragraphs describe the mathematical functions and their associated forms. Unless
otherwise noted, these functions have the foliowing format:

FORMAT

fun__name(arg)
where:

fun_name is a three-letter function name.

arg may be an expression, constant, or variable.
The value of the function applied to the argument replaces the function name in the statement in
which it appears. You can use functions instead of variables on the right-hand side of assignment
statements, PRINT statements, ON statements, and function definitions.
8.2.1 Absolute Value Function (ABS)
The ABS function returns the absolute value of its argument. It returns a nonnegative argument
value unaltered and returns the absolute value of a negative argument.
In the following example, if you entered -1, the system would return a value of 1 as the absolute
value of -1,
EXAMPLE

10 INPUT X

20 PRINT ABS(X)
30 END

. EXAMPLE

? -1
]

8-2 2308769-9701

Intrinsic Functions

8.2.2 Arctangent Function (ATN)

The ATN function returns the angle (in radians) whose tangent is the argument of the function. To
obtain the size of the angle in degrees, multiply the number of radians by 180/pi.

EXAMPLE

10 INPUT X

20 D= ATN(X)*(180/3.14159265)
30 PRINTD

40 END

Executing this example produces the following:

? 5.9246
80.4194732508

8.2.3 Cosine Function (COS)
The COS function returns the cosine of the argument. The argument represents an angle in radians.
To convert an angle to radians, multiply the number of degrees by pi/180.

EXAMPLE -
10 INPUT B
20 PRINT COS(B)
30 END

Executing this example produces the following:

?125
3156322362395

8.2.4 Exponential Function (EXP)
The EXP function returns the value of e (the base of natural logarithms) raised to the power specified

in the argument.
EXAMPLE
10 INPUT X
20 PRINT EXP(X)
30 END

Executing this example produces the following:

?25
72004899337.3

2308769-9701 8-3

Intrinsic Functions

8.2.5 Integer Function (INT)
The INT function rounds down to the nearest whole number.

EXAMPLE

10 INPUT Z
20 PRINT INT(2)
30 END

Executing this example produces the following:

?3.7
3

Note that all computations are performed in floating-point format regardless of the type of variables
declared. The result of the expression is converted to the data type of the assigned variable only
after the entire expression has been evaluated unless the INT or other functions preempt the normal
evaluation. Therefore, in the preceding example, if Z is defined as an integer and the INT function is
removed from statement 20, the input of 3.7 is first rounded to 4 and then assigned to the variable Z.

8.2.6 Natural Logarithm Function (LOG)
The LOG function returns the natural logarithm (base e) of the argument.
EXAMPLE

10 INPUTL

20 PRINT LOG(L)

30 END

Executing this example produces the following:

? 5280
8.5716813767

8-4 2308769-9701

Intrinsic Functions

8.2.7 Sign Function (SGN)

The SGN function returns the value 0 if the argument X is zero, + 1 if X is positive, and -1 if X is
negative.

EXAMPLE

100 A=SGN(2.3+7)

110 B=SGN(ABS(-2.4)-3)

120 C=SGN(0)

130 D =SGN(-0)

150 PRINT“A = "A“B = "B“C = "C;*D = ";D
160 END

Executing this example produces the following:

A=1 B=-1 C=0 D=0

The SGN function interprets -0 as zero rather than as negative.

8.2.8 Sine Function (SIN)
The SIN function returns the sine of the argument. The argument represents an angle in radians. To
convert an angle from degrees to radians, multiply the number of degrees by pi/180.

EXAMPLE
10 INPUT A
20 PRINT SIN(A)
30 END

Executing this example produces the following:

?1.25
948984619356

2308769-9701 8-5

Intrinsic Functions

8.29 Square Root Function (SQR)
The SQR function returns the value of the square root of the specified argument. The argument can

be positive or zero. An error message appears if the argument is negative.
EXAMPLE
10 INPUTJ

20 PRINT SQR(J)
30 END

Executing this example produces the following:
?2
1.41421356237

8.2.10 Tangent Function (TAN)

The TAN function returns the tangent of the argument. The argument represents an angle in radians.
To convert an angle from degrees to radians, multiply the number of degrees by pi/180.

EXAMPLE
10 INPUTN
20 PRINT TAN(N)
30 END

Executing this example produces the following:

?0.137
137863601824

8.3 STRING FUNCTIONS |

The following paragraphs discuss the various string functions provided by BASIC.

8-6 23087699701

Intrinsic Functions

8.3.1 Convert ASCII to Decimal Function (ASC) ,
The ASC function returns the decimal ASCII value of the first character of the specified string.

FORMAT
ASC(str)
where:
str can be any string expression.

The following is an example:

EXAMPLE
10 Y$ = “?u
20 PRINT ASC(Y$)
30 END
Executing this example produces the following:
63
The program in this example prints the number 63, which is the decimal representation of the ASCII
code for the question mark (?).
EXAMPLE
10 LET C=ASC(*X")
20 PRINTC
99 END
Executing this example produces the following:
88

The program in this example assigns the number representation of the ASCII character X to the
variableC. When run, the program prints the number 88.

2308769-9701 8-7

Intrinsic Functions

8.3.2 Break Function (BREAK)
The BREAK function finds the first character in one string that matches any character in a second
string.

FORMAT

BREAK(str_1,str__2)
where:

str___1
are string expressions.
str__2

This function compares the first character in string 1 to each character in string 2. If no match oc-
curs, the next character of string 1is compared to each character in string 2. This process continues
until a match occurs or until all characters in string 1 have been checked. The value returned is the
number of characters compared in string 1 before a match occurred or, if no match occurs, the total
number of characters in string 1.

EXAMPLE

100 A$=“ABCDEFGHIJ"
110 B$="“STRING2”

120 C$="$"

130 PRINT BREAK (A$, BS)
140 PRINT BREAK (BS, A$)
150 PRINT BREAK (AS$, C$)
160 PRINT BREAK (C$, A9)
170 END

Executing this example produces the following:
6
3

10
1

8-8 2308769-9701

8.3.3 Length Function (LEN)

The LEN function returns the number of characters in the argument string.

FORMAT

LEN(str)

where:

str

is any valid string variable, constant, or expression.

The following is an example:

EXAMPLE

100
110
120
130
140
150

READ A$, B$, C$

PRINT“A$ = 7;A$,“LENGTH =";LEN(A$)
PRINT“B$ = ";B$,,“LENGTH =";LEN(BS$)
PRINT“C$ = ”;C$,“LENGTH =";LEN(CS$)
DATA ABC, DEFGH, WKLMNOP

END

Executing this example produces the following:

A$

B$
C$

ABC LENGTH = 3
DEFGH LENGTH = 5
[JKLMNOP LENGTH = 8

8.3.4 Numeric Function (NUMERIC)
The NUMERIC function determines whether a certain string represents a valid number. It returns
— 1 if the string can be passed to the VAL function (paragraph 8.3.9) without error. It returns 0 if
applying VAL to the string would cause an error.

FORMAT

NUMERIC(str)

2308769-9701

Intrinsic Functions

89

Intrinsic Functions

Executing this example produces the following:

EXAMPLE

10 A$ = “HELLO":B$ = “37.5"
20 X = NUMERIC(A$)

30 PRINT X

40 Y = NUMERIC(B$)

50 PRINT Y;VAL(B$)

60 END

Executing this example produces the following:

0
-137.5

8.3.5 Positlon Function (POS)
The POS function determines the position of a substring within another string.

FORMAT

POS(str___1, str__2, start)

where:
str__1
are any two strings.
str__2
start is a numeric value.

The value returned indicates the character position within str__1 of the first occurrence of str__2.
The search begins at character position start, rounded to an integer. if a substring does not exist as
defined, 0 is returned as the value. The following example shows the result of applying the POS
function.

EXAMPLE
110 PRINT POS(“ABCDEFG ABCD”,“AB”,1)

120 PRINT POS(“ABCDEFG ABCD”,“AB”,2)
130 A$=“STRING1 AND STRING2 ARE ANY TWO STRINGS AND”

140 I=1
150 1=POS(A$,“IN",l)
160 PRINT |;

170 IF1<>0THEN I=1+1 ELSE STOP
180 GOTO 150

8-10 2308769-9701

Intrinsic Functions

Executing this example produces the following:

1
9
4 16 36 0

8.3.6 Repeat Function (RPT$)

The RPT$ function provides a string repetition capability. The function uses two variables, a string
and a number, and produces a new string equal to the supplied string repeated the specified number
of times. The number must be nonnegative and less than 256. A warning condition occurs if the
resulting string has a length greater than 255.

FORMAT

RPT$ (str, num__exp)
An example is as follows:

EXAMPLE
PRINT RPTS$(“*8*”,3)
8 *8* *8*
8.3.7 Match String Function (SPAN)

The SPAN function compares characters in one string with characters in a second string until a
character in the first string does not match any character in the second string.

FORMAT
SPAN(string__1,string__2)
where:
string__1

are string expressions.
string__2

This function compares consecutive characters in string__1 to each of the characters in string__2
and stops at the first character in string__1 that does not occur in string__2. The value returned is
the position of the last matched character.

2308769-9701 8-11

Intrinsic Functions

EXAMPLE

100 S$ = “******THIS SENTENCE HAS EMBEDDED ASTERISKS”
110 ASTS = SPAN(SS,“*”)
120 PRINT ASTS;“ASTERISKS PRECEDE THIS SENTENCE”
130 END
Executing this example produces the following:

6 ASTERISKS PRECEDE THIS SENTENCE

8.3.8 Uppercase Function (UPRCS$)
The UPRC$ function changes all lowercase letters in the argument string to uppercase letters.

FORMAT

UPRC$(str)

The value returned is the string variable with all lowercase letters replaced by uppercase letters.
Nonalphabetic characters in the argument remain unchanged.
EXAMPLE

10 A$ = “ABC”

20 PRINT UPRC$(AS$),

30 PRINT UPRCS$(“def”),

40 PRINT UPRC$(“xY2"),
50 END

Executing this example produces the following:

ABC DEF XYZ

812 2308769-9701

8.3.9 Value Function (VAL)

Intrinsic Functions

The VAL function returns the numeric value of a string expression that represents a valid numeric

value.

FORMAT

VAL(str)

The argument str is any valid string expression that is also a valid numeric representation; blanks
(leading or trailing) are permitted. This function can convert numbers in string format to numeric

values that can be used in arithmetic expressions.

EXAMPLE
100 A$=+122"
110 A=VAL(A$)

120 PRINT A;2*A
130 END

Executing this example produces the following:

122244

EXAMPLE

100 INPUT A$
110 PRINT VAL(A$)
120 END

Executing this example produces the following:

? 5E5
500000

If the string does not represent a number, an error occurs.

2308769-9701

8-13

Intrinsic Functions

8.3.10 Character Function (CHRS$)

The CHR$ function returns a one-character string that is the ASCIl character represented by the

argument (rounded to an integer value); the argument must be greater than or equal to 0 and less
than or equal to 255.

FORMAT

CHRS$(num__exp)

This function is the inverse of the ASC function. It is often used to generate special control
characters in the PRINT statement.

The following example uses the control characters on an 810 printer, advancing the paper to the top-
of-form and controlling print size.

EXAMPLE

100 OPEN #1:“LP01”

110 PRINT #1:CHR$(12)&“NORMAL PRINT SIZE"

120 PRINT #1:CHR$(13)&CHR$(27)&CHR$(55)& “REDUCED PRINT SIZE”
130 PRINT #1:CHR$(27)&CHR$(54)&“RESTORED PRINT SIZE”

140 STOP

Executing this example produces the following:

NORMAL. PRINT SIZE
REDUCED PRINT SIZE
RESTOREI FRINT STZE

The capabilities of other control character sequences are given in the reference manual for the
specific device.

8-14 2308769-9701

Intrinsic Functions

8.3.11 Segment Function (SEGS$)
The SEGS$ function extracts the designated segment of the specified string.

FORMAT

SEGS$(str__1, item__1, item__2)
where:

str___1 is the specified string or string-valued expression from which the extraction is to
be made.

item__1 is the character position in the specified string at which the desired substring
begins.

item__2 is the length of the substring to be extracted.

Itemn__1 and item__2 can be any arithmetic expression and are rounded to integer values. If item__1
is less than or equal to 0, an error occurs; if item__1 is greater than the length of str__1, the null
string is returned; if item__2 is less than 0, an error occurs; if item__2 is equal to 0, the null string is
returned; if the sum of item__1 and item__2 is greater than the length of str__1, the remainder of
str__1 (starting at the position indicated by item__1) is returned.

EXAMPLE
100 A$ = “ABCDEFGHI”
110 B$ = SEG$(A$,2,4)
120 PRINT “B$ = ”;B$
130 END
Executing this example produces the following:
B$ = BCDE
8.3.12 String Function (STRS$)

The STR$ function returns the string representation of the specified numeric argument. This func-
tion can be assigned to a string variable or referred to directly in an output statement.

FORMAT

STR$(arith__exp)

2308769-9701 8-15

Intrinsic Functions

As shown in the following example, STR$ returns a string value that is the same as if the value had
been displayed at the terminal. The first character in the resulting string is either a blank (for
positive numbers) or a minus sign (for negative numbers).

EXAMPLE

90 FORI=1T04
100 [INPUT A

110 A$=STR$(A)

120 PRINT A,LEN(AS$)AS
130 PRINT

140 NEXT |

150 END

Executing this example produces the following:

? 123456789

123456789 9 123456789
? 1234.567

1234.567 8 1234.567
? 1.0E2

100 3 100

? 12345671234.5678
12345671234.6 13 12345671234.6

8.4 DATE AND TIME FUNCTIONS

BASIC provides functions that access the date and time. The following paragraphs describe these
functions.

8.4.1 Date Function (DATS)

The DATS$ function provides the calendar date as a string in the following form.

FORMAT

MM/DD/YY

where:
MM indicates the month.
DD indicates the day.

YY indicates the year.

8-16 2308769-9701

Intrinsic Functions

The following example prints the date (January 2, 1980) by using a variable. The DAT$ function need
not be assigned to a string variable.
EXAMPLE
10 LET A$=DAT$
20 PRINT A$
99 END
Executing this example might produce the following:
01/02/80
The following example also prints the date.
10 PRINT DAT$
99 END

8.4.2 Time Function (TIMES$)
The TIME$ function indicates the time of day in the form of a string, based on a 24-hour clock. You
can either assign the function to a string variable or refer to it directly in an output statement. The
form of the output is as follows:
FORMAT

HH:MM:SS
where:

HH indicates the hour.

MM indicates the minute.

SS indicates the second.

The following example prints the time twice, first using a variable and then using the function
directly.
EXAMPLE

100 A$=TIME$

110 PRINT A$, TIMES
120 END

2308769-9701 8-17

Intrinsic Functions

Executing this example might produce the following:

11:30:29 11:30:29

8.5 MISCELLANEOUS FUNCTIONS

The miscellaneous functions include the RND, FREESPACE, INKEY, INKEY$, EOF, FTYPE, ERR,
TAB, and DUP functions, plus the RANDOMIZE statement. The following paragraphs describe these
functions.

8.5.1 Random Number Function (RND)

The RND function produces pseudorandom numbers, where each number is greater than or equal to
0 and less than 1. The RND function does not require an argument. The same sequence of random
nurnbers is generated for each program that calls the RND function unless the RANDOMIZE state-
ment with no seed value is executed prior to evaluating the RND function. You can specify a seed
value by using the RANDOMIZE statement to indicate a new sequence of random numbers. This se-
quence of numbers is generated each time the RND function is evaluated until another RANDOMIZE
statement is executed. The following example shows the result of applying the RND function when
using the RANDOMIZE statement with a constant as a seed value.

EXAMPLE

100 RANDOMIZE (.354879485439)
110 FORI=1TO5

120 PRINT RND

130 NEXT |

140 END

Executing this example produces the following:
782246790824
.833832091865
670523262318

.862162175859
974191040483

8.5.2 Randomize Statement (RANDOMIZE)
The RANDOMIZE statement reinitializes the random number generator.

FORMATS

RANDOMIZE num__exp
RANDOMIZE

The num__exp is a numeric expression whose value is used as a seed for the random number
generator. If num__exp is not provided, the seed value is derived from the real-time clock.

8-18 2308769-9701

Intrinsic Functions

8.5.3 Find Available Space Function (FREESPACE)
The FREESPACE function determines the amount of available space in memory. The number of
bytes or characters currently available in memory is returned.

FORMAT

FREESPACE(0)

In the following example, if the number of bytes available were 500, the statement FREESPACE(0)
would set the numeric variable EMPTY equal to 500.

EXAMPLE

10 EMPTY = FREESPACE(0)

8.5.4 Return Number of Characters in Buffer Function (INKEY)

The INKEY function returns the number of characters in the keyboard buffer. The length of the buffer
is operating-system dependent; buffers contain characters in a first-in, first-out (FIFO) queue. If no
characters are currently in the queue, 0 is returned.

FORMAT

INKEY(0)

An example is as follows:

EXAMPLE

100 IF INKEY(0)=0 THEN 100
110 ACCEPT X$
120 DISPLAY X$

8.5.5 Return Character Function (INKEY$)

The INKEY$ function reads and removes characters from the keyboard buffer. The value returned
is a string equal to the next character in the buffer. The INKEY$ function deletes the character
from the input buffer, allowing the next character to be read. The codes returned for INKEY$ func-
tions differ, depending on the keyboard. Refer to Appendix | for alist of the INKEY$ function codes
and the keys to which they map.

2308769-9701 Change 1 ' 8-19

Intrinsic Functions

When you execute the following example, the program waits for you to type a character on the
screen. That character is then deleted from the input buffer and displayed on the screen.

EXAMPLE
10 1$ = INKEY$(0)

20 PRINT 1$
30 END

8.5.6 End-of-File Function (EOF)
The EOF function determines when the last record of a file has been read. (See Section 6 for a more
detailed discussion on reading and writing files.)

FORMAT
EOF(X)
where:
X is the unit number assigned to the file when the file was opened. X can be any legal
arithmetic expression.
This function can return the following values:

. 0 — Indicates the file is not positioned at the end-of-file (that is, an attempt to read the
next record will not result in an end-of-file error).

U 1 — Indicates the file is positioned at the end-of-file (that is, an attempt to read the next
record will result in an end-of-file error).

U 4 — Indicates the unit number (X} is not being used.

8-20 2308769-9701

Intrinsic Functions

In the following example, 10 records are written to file TEST, and an attempt is made to read 20.
However, BASIC sets the end-of-file indicator after reading the tenth record; consequently, the EOF

value at statement 50 is 1 when | equals 11. Program execution then transfers to statement 80 with
I-1 records read.

EXAMPLE

10
20
30
40
50
60
70
80
90

RUN

OPEN #1: “DS01.TEST”,OUTPUT:: A$ = “1234567890”

FOR | = 1 TO 10 :: PRINT #1:A$:: NEXT |

CLOSE #1

OPEN #1: “DSO1.TEST”,INPUT

FORI| = 1TO 20 :: IF EOF(1)=1 THEN 80

ACCEPT #1:A$:: PRINT A$

NEXT |

PRINT “END OF FILE HIT AFTER READING”;I-1;“RECORDS”
END

1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890
1234567890

You must check the EOF flag on sequential and relative record files before each read to determine
whether any records are left. You should check the EOF flag on a key indexed file (KIF) after each
read to determine if the specified record exists. The EOF status of a relative record file may not be
reported accurately following a print operation.

2308769-9701 Change 1 8-21

Intrinsic Functions

8.5.7 Verify File Function (FTYPE)
This function verifies the existence and type of a file or a device. The argument is any valid string
variable or string constant that contains the filename or device name.

FORMAT

FTYPE(str)

Table 8-2 lists the values FTYPE returns.

Table 8-2. FTYPE Values

Value Meaning
-1 Error
0 File not found
1 Busy device
2 Open sequential file
3 Key indexed file
4 Sequential file
5 Device
x*32 + 6 (See Note) Relative record file

Note:

x is the logical record length of the file.

For relative record files, the value returned contains the record size in bits 1 through 10 (which can
be accessed by dividing the returned value by 32), and the relative file identifier in the remaining 5
bits (which can be accessed by ANDing the returned value with 31). The following word illustrates
how the file length and the file type identifier are returned.

LOGICAL RECORD LENGTH
IF< =1023% 0 IF > =1024

8-22 2308769-9701

Intrinsic Functions

When the record length is not representable in 10 bits (greater than or equal to 1024), a 0 is returned
in bits 1 through 10.

EXAMPLES
100 | = FTYPE (“PATHNAME”)
110 IF I = 0 THEN PRINT “MISSING PAYROLL FILE!”
120 END
100 | = FTYPE (“PATHNAME")

110 IF 1< = 0 THEN 140

120 IF (1 AND 31) <> 6 THEN 140

130 PRINT “RELATIVE FILE, RECORD LENGTH: ”; INT (1/32)
140 END

NOTE

If the FTYPE function attempts to access a device, delays in pro-
gram execution can result. For example, using FTYPE to determine
the file type of a terminal can suspend the program until you press
Return. Used with a communication port, FTYPE can suspend the
program until the device times out. FTYPE does not correctly indi-
cate the presence of atemporary file.

8.5.8 Tab Function (TAB)
The TAB function advances the printhead or cursor to a specific position on the device. Use TAB
only in the output list of a PRINT or DISPLAY statement.

FORMAT

TAB(n)
where:

n is the column at which output begins; n can be a numeric constant, variable, or
arithmetic expression.

The rounded integer value is used. The printhead is then moved to that position before printing the
next character. The value n must be positive and is taken modulus the field length of the device.

2308769-9701 Change 1 8-23

Intrinsic Functions

If the position designated by the TAB function has already been passed, the function moves to the
next line and tabs to the designated position.

EXAMPLE

100 PRINT “12345678901234567890”
110 PRINT TAB(10); 123;

120 PRINT TAB(12); 1234

130 PRINT TAB(15),“ABCDEF”

140 PRINT 123456 :: PRINT TAB(4); 123
150 END

RUN

12345678901234567890
123
1234
ABCDEF
123456
123

8.59 ERR Function
The ERR function returns an integer code that identifies the last warning or error that occurred. The
form of this function is as follows:

FORMAT

ERR

If no exception has occurred, ERR returns a zero. When a warning has occurred, ERR returns a
negative warning number. When an error has occurred, ERR returns a positive error message
number.

8-24 2308769-9701

Intrinsic Functions

EXAMPLE
100 ON ERROR 150
110 ACCEPT “ENTER A NUMERIC VALUE: ":1$
120 IF I$ = “” THEN STOP
130 PRINT VAL(IS$)
140 GO TO 100
150 IF ERR < 0 THEN PRINT “WARNING ”; ELSE PRINT “ERROR ”;
160 PRINT “NUMBER: ";ABS(ERR);“:OCCURRED”

170 RETURN 100
180 END

Executing this example produces the following:

ENTER A NUMERIC VALUE: ABC

ERROR NUMBER: 2 :OCCURRED

ENTER A NUMERIC VALUE:
Additionally, you can trap 1/O errors by using the ON ERROR statement. If error trapping is not in ef-
fect at the time of an I/O error, the system returns an error message consisting of the ERR value and
the equivalent operating system error code (hexadecimal). The following example shows an
operating system error message:
EXAMPLE

ERROR #1183 (OS > B7) IN LINE 120
where:

ERR value equals 1000 plus the operating system error code (decimal).

This error code indicates that an attempt was made to access a locked record. Refer to your
operating system error message manual for details on messages and codes.

2308769-9701 8-25

Intrinsic Functions

8.5.10 Test for Duplicate Keys (DUP)
The DUP function is used to determine the validity of certain KIF operations.

FORMAT
DUP (X)
where:

X is the unit number assigned to the KIF when the file was opened. X can be any legal
arithmetic expression.

The DUP function returns a value of O or 1. The function retains its value until the next /O operation
is performed on the argument unit number.

After write operations, the DUP function returns a value of 1 if you attempted to insert a record
which would create a duplicate value for a key defined as allowing no duplicates. In that case, the in-
sert operation (PRINT or REPRINT) aborts. If you have defined a key as allowing no duplicates, you
should test the value of the DUP function following each insert operation to ensure that the PRINT
or REPRINT succeeded.

After the positioning operation (RESTORE with key value specified), the DUP function is also set. It
returns a value of 1 if a subsequent read accesses a record with the same key value. The following
example shows the application of the DUP function.

EXAMPLE

100 INTEGER ALL

110 OPEN #1:“BASIC.KEY”,KEYED

120 INPUT “ENTER NAME, AGE, OCCUPATION: ":N$,A$,0$
130 CALL FILL(N$,20)

140 CALL FILL(A$,3)

150 PRINT #1:N$’A$’0$

160 IF DUP(1)=0 THEN 180

170 PRINT “DUPLICATE ENTRY! — INSERT ABORTED."
180 CLOSE #1

190 END

200 ! BLANK FILL PRIMARY & SECONDARY KEYS.

210 SUB INTEGER FILL(K$,LNGTH)

220 IF LEN(K$)< LNGTH THEN K$ = K$ & RPT$(“ ”,LNGTH-LEN(KS))
230 SUBEND

In the preceding example, a KIF was created with two keys. The first (primary) key was created with
a length of 20 characters and specified as no duplicates. The second key was created with a length
of three characters and specified as allowing duplicates. The DUP function is used to determine
whether an attempt is made to insert a record with a duplicate primary key. If such an attempt is
made, the DUP function will return a value of 1 and the insert operation will be aborted.

8-26 23087699701

9

User-Defined Procedures

9.1 INTRODUCTION

BASIC allows you to define single-statement and multiple-statement functions and allows you to
use internal and external subprograms. This section describes the definition and use of these pro-
cedures within a BASIC program.

9.2 FUNCTION DEFINITION

Function definition involves the define statement (DEF) and the function-end statement (FNEND). A
function definition specifies the means of evaluating the function based on the values of the
parameters appearing in the parameter list, other variables, or constants. When the function is
referenced, the expressions in the argument list of the function reference are evaluated and their
values are assigned to the parameters in the parameter list of the function definition. The function
is then evaluated, and a value is assigned as the value of the function.

2308769-9701 9-1

User-Defined Procedures

9.2.1 Define Statement (DEF)

The DEF statement can be used for both single- and multiple-statement function definitions. For
single-statement definitions, the DEF statement contains the entire function definition; for multiple-
statement definitions, the DEF statement defines only the parameters and the local variabies used
in the body of the function definition. Function definitions are generally placed at the beginning of a
program. In the format descriptions that follow, the first DEF statement would be used for single-
statement definition and the second for multiple-statement definition.

FORMATS
DEF fun__name
DEF type fun_name = exp
DEF type fun_name (type parm, type parm) = exp
DEF type fun_name type local, type local

DEF type fun__name (type parm, type parm) type local, type local

where:

fun_name is the name of the function.

type clause specifying numeric type: INTEGER, REAL, or DECIMAL.

parm specifies a parameter.

exp is the expression which is evaluated to determine the value of the function.
local specifies a local variable.

The following is an example of a single-statement function definition:

EXAMPLE

DEF XYZ(AB)=A+B+2

In this example, XYZ is the name of the function, A and B are the arguments, and A + B + 2is the
expression that is evaluated to determine the value of the function. Appendix G shows the complete
format in the num__fun statement and the str__fun statement.

9-2 23087699701

User-Defined Procedures

The following is an example of a multiple-statement function definition:

EXAMPLE

DEF XYZ(A,B)
XYZ=A+B+2
FNEND

In this example, XYZ is the name of the function, A and B are the arguments, and A + B + 2 is the ex-
pression that is evaluated to determine the value of the function. The value of the function is the last
value assigned to the function name prior to the execution of FNEND.

The function name can be any legal variable name corresponding to the type of result (numeric or
string) returned. If the function is numeric, you can use the optional type specification to declare the
type of numeric result (that is, REAL, INTEGER, or DECIMAL). The optional parameter list defines
those variables that must appear when the function is referenced. The local variable list, which is
optional, defines those variables that do not appear in the parameter list but that are also local to
the function definition. The following examples show different forms of the DEF statement and
display the distinct characteristics of each.

EXAMPLES
Single-statement function definition:

50 DEF AVG(X,Y)= (X + Y)/2
70 DEF REAL Pl=3.1415926535

200 INPUT A
210 INPUT B
220 X =AVG(A,B)PI
230 PRINT X

Multiple-statement function definition:

100 DEF SQRT(A) XN,XN1
110 XN=1

120 XN1=(XN + A/XN)/2
130 IF XN=XN1 THEN 160
140 XN =XN1

150 GOTO 120

160 SQRT =XN1

170 FNEND

300 INPUT A
310 PRINT SQRT(A)

2308769-9701 9-3

User-Defined Procedures

A parameter appearing in the parameter list of a DEF statement is local to the defined function. A
local parameter or variable is a variable that is assigned a definition only for the routine in which it
is declared. Therefore, two variables can share the same name but have different values depending
on the routine being executed.

In the preceding example, XN and XN1 are local variables to the function SQRT. These variables can
have one value during execution outside the function and another value during execution of the
function. Variables not explicitly defined as local are considered global. A global variable is one that
contains only one value, regardless of the routine being executed. The default specification for a
variable is global. If you intend for any variable to be local, you must explicitly define it as such at
the beginning of the function. A variable can be global to one function and local to another.

9.2.2 Function End Statement (FNEND)
The FNEND statement signifies the end of a multiple-statement function definition. It must be the
last statement of the definition. You cannot use FNEND with a single-statement definition.

FORMAT

FNEND

9.2.3 Recursive Functions

You can use functions that have parameters recursively; that is, a function can call itself. The
following is an example of a recursive function.

EXAMPLE
100 DEF FACT(X)
110 IF X< = 0 THEN FACT =1: GOTO 130
120 FACT = X*FACT(X-1)
130 FNEND
140 PRINT FACT(4)

Executing this example produces the following:

24

9-4 2308769-9701

User-Defined Procedures

9.3 BASIC SUBPROGRAMS

BASIC subprograms provide a powerful mechanism for developing programs. If several separate
programs use a procedure, it can be coded once as a subprogram and then merged with the pro-
grams that use it. By using subprograms, you eliminate the problem of conflicting use of identical
variable names, which must be considered if two BASIC programs are merged. This attribute also
allows you to partition a large program so that several people can work on it at the same time. For
example, more than one application program can use a subprogram that uses values for the year,
month, and day to compute the Julian date.

There are two kinds of BASIC subprograms: internal and external. Internal subprograms reside in
memory with the main program. External subprograms reside on disk and are loaded into memory
when they are called. When an external subprogram completes execution, it is released from
memory. Programmers should avoid frequent calls to external subprograms, since accessing the
disk causes the program to execute more slowly. You can use external subprograms to advantage
with programs that are too large to fit in memory.

9.3.1 Calling Subprograms

The CALL statement transfers control to the named BASIC subprogram. When control passes back
to the calling program, execution resumes at the statement immediately following the CALL state-
ment that initiated the subprogram. Arguments are passed to the subprogram in the CALL state-
ment and can be altered by the subprogram. The CALL arguments must agree in number, type, and

number of dimensions with the parameters defined in the subprogram’s SUB statement. The sub-
program may or may not have any arguments.

FORMATS
CALL sub__name
CALL sub__name (parm, parm)
where:
sub__name is the name of the subprogram.

parm specifies a parameter.
The following are examples of the CALL statement:

EXAMPLES
CALL SUBTOTALS

CALL PAYCHECK(SSN(I),PAYRATE(l),DATE,|,TABLE(,))

2308769-9701 95

User-Defined Procedures

In the first CALL statement in this example, a subprogram is called without an argument. In the
second example, a subprogram is called with several arguments; the first two are numeric array
elements, the next two are numeric variables, and the last Is a two-dimensional numeric array.
When a subprogram is called, it is said to be active. Before a subprogram is called or after it is
exited (by executing either a SUBEND or SUBEXIT statement within it), it is said to be inactive. Sub-
programs can call other subprograms as long as the subprogram called is inactive.

9.3.2 Subprogram Statements
Four statements define BASIC subprograms: SUB, ESUB, SUBEXIT, and SUBEND.

9.3.21 SUB Statement. The SUB statement defines the name of the internal subprogram and the
names used within the subprogram to refer to the data (parameters) passed to it.

FORMATS

SUB sub__name

SUB sub__name (parm, parm)

SUB type sub__name (parm, parm)
where:

sub__name is the name of the subprogram.

parm specifies a parameter.

type clause specifying numeric type: INTEGER, REAL, or DECIMAL.
The SUB statement must be the first statement of the subprogram. The parameters appearing in the
SUB statement are used as variables within the subprogram. The parameters cannot appear in type
statements within the subprogram.
EXAMPLE

SUB JULIAN(DAY,MONTH,YEAR,JDATE)
In this example, the subprogram is named JULIAN. DAY, MONTH, and YEAR are input parameters to
the subprogram. The statements that follow the SUB statement use these variable names and

others to calculate the Julian date. The subprogram places the result in the variable JDATE and then
returns to the program that referenced it.

9-6 2308769-9701

User-Defined Procedures

Parameters to a subprogram can be arrays. To indicate an array parameter, enter the parameter
name followed by a pair of parentheses in the SUB statement. If the array has more than one dimen-
sion, place a comma between the parentheses for each additional dimension. In the following ex-
ample, PART is a simple parameter, VALUE is a one-dimensional array parameter, and VENDOR is a
three-dimensional array parameter.
EXAMPLE

SUB PRICEOUT(PART,VALUE(),VENDOR,,)
You can insert a type identifier after SUB and before the subprogram name to specify the default
type of variables within the subprogram. For example, SUB INTEGER TIMECARD indicates the
beginning of a subprogram within which the untyped variables are INTEGER. This subprogram has
no parameters; you can assume that it receives its data from another source, such as a data file. No
variables are global to the subprogram.
9.3.2.2 ESUB Statement. The ESUB statement defines the name of the external subprogram and
the names used within the subprogram to refer to the data (parameters) passed to it.

FORMATS

ESUB esub.__name

ESUB esub__name (parm, parm)

ESUB t);pe esub__name (parm, parm)
where:

esub__name is the name of the external subprogram; it cannot contain more than eight

characters.
parm specifies a parameter.
type clause specifying numeric type: INTEGER, REAL, or DECIMAL.

The ESUB statement functions identically to the SUB statement. Refer to the description of the SUB
statement for details.

NOTE

An ESUB may not call another ESUB.

2308769-9701 Change 1 9-7

User-Defined Procedures

9.3.2.3 SUBEXIT Statement. When a SUBEXIT statement is executed, control returns to the call-
ing program. At that time, it is assumed that all operations associated with the subprogram’s task

have been completed. The parameters are set to the values required by the program that transferred
control to the subprogram.

FORMAT

SUBEXIT

9.3.2.4 SUBEND Statement. The SUBEND statement signifies the end of the subprogram text. It

performs the same function as a SUBEXIT statement. The SUBEND statement must be the last
statement of the subprogram.

FORMAT

SUBEND

9.4 DEFINING TYPES OF PARAMETERS AND LOCAL VARIABLES

Variables in the local variable list of a DEF statement or in the parameter list of a CALL or DEF
statement must be defined before you can introduce a type statement. As a result, if the variables
are to be of a type other than the default type, you must declare the type in the parameter list or local

variable list. Precede each local variable with a type specification, as shown in the following
examples.

EXAMPLES

DEF STRP(INTEGER X, INTEGER Y,2)

suB SUM_fTRIP(FRGNT, INTEGER DEST, DECIMAL(4) MILES)

DEF INTEGER FIBB(REAL N, REAL ASY, |, SUM) X, INTEGER Z
The function STRP is defined to have three arguments. X and Y are of type INTEGER, and Z is the
default type. In subprogram SUM__TRIP, the parameter TRGNT is the default type, DEST is

INTEGER, and MILES is DECIMAL with a scale factor of 4. Function FIBB has declared the function

result type to be INTEGER, but two of its parameters (N and ASY) are specified as REAL. Its local
variable Z is INTEGER.

9-8 2308769-9701

10

Debug Features

10.1 INTRODUCTION

BASIC provides several features that are useful in locating programming errors. This section
describes the explicit statements that support the breakpoint and trace features. Note that you can-
not use the debug features on a locked program.

10.2 PROGRAM BREAKS

Program breaks are temporary halts in the execution of a program. You can initiate them either by
entering the BRKPNT command or by pressing the break function key. (Appendix | lists the func-
tion keys.)

10.2.1 BRKPNT and UNBRKPNT Commands

The BRKPNT command sets one or more program breakpoints, each of which stops the program at
a particular line during execution. At command level, the BRKPNT command sets breakpoints in
memory at the lines specified in the program. The UNBRKPNT command removes breakpoints. If
you specify a nonexistent line number, a warning condition results. You can use a BRKPNT state-
ment with no line numbers specified; the program halts when the BRKPNT statement is executed.

When an external subprogram executes, breakpoints to the main program are removed, except for
those set within the program. Similarly, breakpoints to external subprograms, except for those set
within the subprogram, are removed when the subprogram returns control to the main program.
Therefore, programmers will sometimes need to use explicit BRKPNT commands when debugging
programs containing external subprograms.

2308769-9701 Change 1 101

Debug Features

The following examples illustrate breakpoint commands and their functions.
Example Command Function

BRKPNT 100,175 Halts execution at the specified lines (issued at
command level)

UNBRKPNT Removes all current breakpoints except those set
within a program

UNBRKPNT 100,175 Removes only the breakpoints set with the previous
BRKPNT command at lines 100 and 175

10 X=0 Halts execution when X equals 3

20 X=X+ 1

30 IF X< 3THEN 20

40 BRKPNT

To proceed from a break, press the resume execution function key.

10.2.2 Break Function Key

If you press the break function key while a program is actively running or waiting for input from the
keyboard, the system immediately halts the program, displays the line number where execution
halted after the message STOPPED IN LINE, and prompts you for command input. At this point, you
can enter any command or direct execution statements. To restart the program, press the resume
execution function key. If the program is awaiting input, the INPUT statement reexecutes; other-
wise, execution continues with the statement at which the break occurred. When you press the
break key during active execution, the break occurs at the next statement (not necessarily at the end
of the line). Thus, an endless loop contained on one line cannot execute indefinitely. You can display
the values by entering the variable name and pressing the calculate function key. Program execu-
tion will not continue if you modify the program text while in command mode; an error message will
appear. You must enter RUN to restart the program.

10.3 CONTINUING EXECUTION

The resume execution function key resumes program execution after a break caused by either the
break function key or a breakpoint. Execution resumes with the line at which the breakpoint oc-
curred. The values of all variables are retained. You can modify these values during a break in execu-
tion by executing statements in the command mode. Program execution will not continue if you
modify the program text while in command mode; an error message will appear. You must enter
RUN to restart the program.

10-2 2308769-9701

Debug Features

10.4 STEPPING A PROGRAM

Stepping a program consists of executing one statement of a program and following that step with
a program break. This procedure is useful for program debugging.

The step function key steps the program. Normally, you should use the BRKPNT command to set
breakpoints, stopping the program at specified locations, and then use the step key to continue
execution one statement at a time. Program execution does not continue if you modify the program
text while in command mode. Note that you cannot step a locked program. You cannot continue
execution once you try to step a locked program; an error message will appear. You must enter RUN
to restart the program. ‘

10.5 TRACE AND UNTRACE
For debugging, the TRACE command displays the line number of each command as it is executed in
a program. The actual program flow is displayed as it is executed so that you can identify endless

program loops and other programming problems. You cannot use TRACE in a locked program. You
must remove the TRACE command prior to locking a program.

FORMAT

TRACE

Trace output is directed to the screen. Output continues until an UNTRACE command is en-
countered, either in the program or in command mode. The UNTRACE command terminates the trac-
ing initiated by the TRACE command. To execute the UNTRACE command, first press the break
function key while a trace is active and then enter the UNTRACE command. You can also execute
the UNTRACE command as a program statement.

FORMAT

UNTRACE

2308769-9701 10-3/10-4

11

Assembly Language Subroutines

11.1 INTRODUCTION

TI BASIC provides an interface that allows you to start execution of and communication with a
routine written in 990/9900 assembly code. This feature allows added flexibility in designing a
BASIC program. Typical uses of the assembly language subroutine interface include optimizing
compute-bound sections of a program and implementing special functions and features not sup-
plied in BASIC.

A system external to the BASIC system creates and formats an assembly language routine. The
LIBRARY and CALL statements in a BASIC program then reference the routine. This section
describes how to create and install an assembly language routine, how to start execution of the
routine and return control to the BASIC program from the routine, and how to communicate data to
the routine in the various data formats.

11.2 CREATING AN ASSEMBLY LANGUAGE SUBROUTINE

If you wish to write an assembly language routine for use with a BASIC program, you should have
enough knowledge of 990/9900 assembly code to develop, test, and debug the routine before inter-
facing it to the BASIC program. Refer to the Assembly Language Programmer’s Guide for your
operating system.

The following restrictions apply to the source code for the assembly language routine:

] You cannot use the first word of the routine.

U The second word must contain the address to which control should be transferred when
the BASIC program begins execution of the routine.

e The last instruction to be executed by the routine must be an RTWP instruction.

. When the RTWP instruction is executed to return control to a BASIC program, workspace
registers 13, 14, and 15 must contain the same values as they did when the routine was
entered.

The following general restrictions apply while you are creating an assembly language subroutine:

. The routine must be small enough to fit into your BASIC user’s workspace along with the
program that will call it.

. The routine should not attempt input or output with an active BASIC terminal or with a
device that a program has already opened for input or output.

2308769-9701 Change 1 111

Assembiy Language Subroutines

11.3 INSTALLING AN ASSEMBLY LANGUAGE SUBROUTINE

When the source code of an assembly language subroutine is ready for interfacing to a BASIC pro-
gram, you must link the source code in a manner that will allow BASIC to access it properly. First,
you should use the Execute Macro Assembler (XMA) command to assemble the source code, send-
ing the object code to a sequential file in standard ASCIl object format. Then, you should convert the
object code to image format by specifying IMAGE format in the link edit control file and entering the
Execute Link Edit (XLE) command.

The name assigned to the linked object that the Link Editor creates is the name by which the BASIC
program refers to the assembly language subroutine. Paragraph 11.9 provides an example of the
procedure you must follow to create, assemble, link, and then call an assembly language subroutine
from a BASIC program.

11.4 LIBRARY STATEMENT

The LIBRARY statement identifies an assembly language subroutine to a BASIC program. The name
of each assembly language subroutine to be accessed by a program must appear in a LIBRARY
statement before the program can execute the subroutine. The LIBRARY statement must physically
precede the CAIL statement in the BASIC program that executes the routine. The LIBRARY state-
ment cannot occur in an external subprogram.

FORMAT

LIBRARY ‘“pathname”

LIBRARY ‘“*pathname”

An asterisk preceding the assembly language subroutine pathname indicates that the subroutine is
to be preloaded. The assembly language subroutine is loaded into memory when the RUN statement
is executed and remains in memory throughout execution of the BASIC program. This allows the
subroutine to retain its internal variable values during multiple calls by the BASIC program. If the
asterisk does not appear in the LIBRARY statement, the assembly language subroutine is loaded
into memory each time a CALL statement specifying that subroutine is executed.

11.2 2308769-9701

Assembly Language Subroutines

11.5 CALL STATEMENT

The CALL statement transfers control from the BASIC program to the assembly language
subroutine. It also specifies the information to be communicated to the subroutine. The information
is passed in a parameter list that specifies the names of variables containing the information. A
maximum of 15 parameters can be passed. Any variable can be passed as a parameter to the
subroutine; however, attempting to pass a constant value or function as a parameter causes an
error.

FORMAT

CALL “pathname”(parameter__1,....parameter__n)

11.6 PARAMETER INFORMATION BLOCK

To access the parameters specified in the CALL statement, an assembly language subroutine must
calculate a pointer to the parameter information block. Figure 11-1 illustrates a parameter informa-
tion block.

The location of the parameter information block is calculated by subtracting 36 from the workspace
pointer of the assembly language routine. To do so, use the Store Workspace Pointer (STWP) and
Add Immediate (Al) assembly language statements as follows:

STWP R1
Al R1,-36

If the preceding instruction sequence is executed upon entry to the assembly language subroutine,
register 1 (R1) contains a pointer to the parameter information block.

The first word of the block contains the number of parameters occurring in the CALL statement that
transferred control to the routine. The second and third words of the block contain information
about the types of parameters listed in the CALL statement. A two-bit code represents the type of
each parameter occurring in the CALL statement, reading from left to right. The following codes are
used:

Code Meaning
00 End of parameter typing list
01 Integer number
10 Real number (or decimal number)
11 String value

Words 4 through 18 of the parameter information block contain pointers that access the parameters
listed in the CALL statement. Each one-word pointer is matched with a corresponding parameter,
proceeding from left to right through the parameter list in the CALL statement.

2308769-9701 113

LAl g

106698062

WP=36

WP-34

wWP-28

WP-26

WP—-24

wp=-22

wpP-20

WP-6

wpP-24

WpP=-2

WP~

2280090

NUMBER OF PARAMETERS
PASSED TO ROUTINE BY THE
CALL STATEMENT (0~15)

PARAMETER ¥
— TYPE CODES

POINTER TO PARAMETER 1 DATA
POINTER TO PARAMETER 2 DATA
POINTER TO PARAMETER 3 DATA
POINTER TO PARAMETER 4 DATA
1 POINTER TO PARAMETER 5 DATA
g *
® LJ
» L J
>
I POINTER TO PARAMETER 13 DATA
POINTER TO PARAMETER 14 DATA
POINTER TO PARAMETER 15 DATA
RO
R1
— ASSEMBLY
R2 ROUTINE
WORKSPACE —_—
R3
® []
[] [J
[] ®
— D
R12
R13
ROUTINE
R14 ENTRY AND EXIT
— DATA -
R15

Figure 11-1.

NUMERIC
PARAMETER

STRING
PARAMETER

NUMERIC DATA VALUE
{(NUMERIC ARRAY
ODATA VAILLUE 1)

| NMUMERIC ARRAY

DATA VALUE N

L ——

STRING DATA POINTER
STRING ARRAY —>
ATA POINTER 1)

STRING DATA VALUE
(STRING ARRAY
DATA VALUE 1)

STRING ARRAY
DATA POINTER N

L

¥pPARAMETER TYPE CODES

(2-BITS FOR EACH PARAMETER)
00 — END OF LIST

01 — INTEGER

10 — REAL (DECIMAL)

11 — STRING

Parameter Information Block

STRING ARRAY

| DATA VALUE N I

saunnoiqng abenbue A|quiassy

REAL (DECIMAL)

Assembly Language Subroutines

11.7 ACCESSING PARAMETER DATA VALUES

The pointers in the parameter information block access the data values that allow the BASIC pro-
gram and assembly language subroutine to communicate. The following sections discuss how to
use these pointers to access the data and describe the representation of the data that is passed.

11.7.1 Integer Data Format

The parameter pointer to an integer data value points to a 16-bit word containing a 16-bit, two’s-
complement integer value. Figure 11-2 shows the representation of integer data. Any 16-bit value in
the range -32768 to + 32767 is a legal integer value in BASIC. Figure 11-1 shows the parameter
pointer trail used to locate an integer parameter.

11.7.2 Real Data Format

The pointer to a real data parameter points to an 8-byte (64-bit) value, which represents a floating-
point number using a biased radix 100 exponent and normalized mantissa. Figure 11-3 shows the
representation of real data.

INTEGER

k— BINARY DATA VALUE __’l

16-BIT 2°'S COMPLEMENT BINARY INTEGER

BYTE O BYTE 1

Figure 11-2. Integer Data Format

64-BIT EXPONENT-MANTISSA NOTATION

IMPLICIT RADIX POINT

I..

ole

EXPONENT T

MANTISSA

X

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE 5

BYTE 6

BYTE 7

I BYTE O

MANTISSA SIGN BIT

BITS CONTAINING DECIMAL SCALING INFORMATION

Figure 11-3. Real Data Format

2308769-9701 11-5

Assembly Language Subroutines

Bit 0 of byte 0 is the sign bit of the mantissa. If bit 0 is set to 0, the mantissa is positive; if it is set to
1, the mantissa is negative. If the sign bit is set to 1, the two’s complement of the first word of the
four-word value is used to compute the absolute value of the number represented. Bits 1 through 7 of
byte 0 contain the radix 100 exponent of the value biased by 64. This means that 64 must be sub-
tracted from the value represented by these bits to obtain the true value of the exponent. (For ex-
ample, an exponent of 0 is represented as 64, an exponent of -3 is represented as 61, and an expoc-
nent of + 2 is represented as 66.) Since the exponent is based on radix 100, the value of the expo-

- nent obtained by removing the bias must be multiplied by 2 to obtain the base 10 exponent. (For ex-
ample, 100 squared is equal to 10 raised to the fourth power.)

Byte 1 of the value contains the first nonzero digit or digits of the radix 100 mantissa. The allowable
values for this byte are 1 through 99. Bytes 2 through 7 of the value contain the remainder of the
mantissa digits. The allowable values for these bytes are 0 through 99. The implicit radix point is
located before the first byte of the mantissa (between bytes 0 and 1 of the 8-byte value). Figure 11-4
shows the parameter pointer trail used to locate a real parameter.

The first byte of a real value can contain any legal eight-bit value in the range 0 through 25%;
however, spurious results can occur if the allowable bounds of the mantissa bytes are exceeded.
The only case in which the first byte of the mantissa can equal 0 is when the data value is 0. A data
value of 0 is represented by the first two byles of the 8-byte value being set to 0.

The following shows some real numbers and their corresponding hexadecimal internal repre-
sentations:

Real Hexadecimal
Number Numbers
1 4001 0000 0000 0000
-1 BFFF 0000 0000 0000
103 4101 0300 0000 0000
-103 BEFF 0300 0000 0000
10.3 400A 1E00 0000 0000

11.7.3 Decimal Data Format

Decimal data is represented in the same way as real data except that the highest-order bits (the zero
bits) of bytes 2 through 7 have special meanings. These bits store the scaling information that
allows a decimal value to retain the precision defined by the BASIC DECIMAL type statement. The
example below shows the representation of decimal data.

Bit 0 of byte 2 distinguishes between real data and decimal data. If the bit is set to 0, the 8-byte value
is a real value; if the bit is set to 1, the 8-byte value is a decimal value. The 0 bits of bytes 3 through 7
represent the actual scaling factor of the decimal value in the following manner. These bits repre-
sent a five-bit value from 1 to 31 when assembled in reverse order; that is, bit 0 of byte 7 becomes bit
0 of the value, bit 0 of byte 6 becomes bit 1 of the value, and so on.

11-6 23087699701

Assembly Language Subroutines

This 5-bit value represents the negative of the scaling factor of the decimal value biased by 16. For
example, a scaling factor of 0 is represented by 16, a scaling factor of —2is represented by 14, and
so on. This scaling factor represents the radix 10 precision that should be maintained in the decimal
value. For example, a scaling factor of —2 means that a precision of two digits to the left of the
decimal place should be maintained, while a scaling factor of + 3 means that zeros should be main-
tained in the first three digits to the right of the decimal place.

With the exception of the decimal scaling information, decimal values are accessed and
manipulated in the same way as real values, as shown in the following example:

Real Numbers Hexadecimal Numbers Comment
12345.67890 4201 97AD C35A 0080 Decimal scaling 3
12345.67900 4201 97AD 43D9 0080 Decimal scaling 5
12345.67890 4201 172D 4359 0000 No decimal scaling

11.7.4 String Data Format

Double indirection accesses string parameter data. The parameter pointer points to the string data
pointer, which points to a variable-length string data value. Figure 11-4 shows the representation of
string data.

The first byte of the data value contains the length of the actual string data in characters (bytes).
The first byte can have any value from 0 through 255; 0 indicates that the string is nuil. BASIC inter-
prets the actual characters in the string data value as standard 8-bit ASCll codes. Figure 11-1 shows
the parameter pointer trail used to locate a string parameter data value.

String data passed to an assembly language subroutine as a parameter must be initialized to an
adequate length for application by the BASIC program that calls the subroutine. This is because
you cannot change the length byte of a string data value (the first byte of the string parameter data
value). If an assembly language routine changes the length of the string value, internal pointers
may be destroyed, requiring you to reload the BASIC system to repair the damage.

STRING N + 1 CONSECUTIVE BYTES OF 8-BIT DATA
STRING
LENGTH
(N) CHARACTER STRING
L] L] e
L] [L]
BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE N-1 BYTE N

2280089

Figure 11-4. String Data Format

2308769-9701 Change 1 11-7

Assembly Language Subroutines

11.8 ACCESSING ARRAYS IN AN ASSEMBLY LANGUAGE SUBROUTINE

An array cannot be explicitly passed from a BASIC program to an assembly language subroutine.
However, you can gain access to the elements of the array. The techniques required to gain such ac-
cess also enable an assembly language subroutine to access buffers that it cannot statically
allocate. In this case, the BASIC program that calls the subroutine can dimension a numeric array to
the required size and allow the routine to use the memory space allocated to the designated array as
the required buffer.

When accessing arrays and calculating array element addresses, BASIC has a default index base of
0 for all arrays uniess you use the OPTION BASE 1 statement. Consequently, if an array A is dimen-
sioned to have maximum index values of (M1,M2, . . .,Mn), the total number of elements in each
dimensjonis M1+ 1,M2+1,...,Mn+ 1. If you use an OPTION BASE statement to set the array index
base to 1 in the program in which array A appears, the total number of elements in each dimension
equals M1,M2, .. ,Mn.

BASIC stores numeric array data sequentially. When BASIC accesses multidimensional arrays, the
memory location of an element in the array is determined for adjacent array indexes as follows: the
.index on the left remains fixed, while the index on the right increments from the lowest value to the
highest value of its range.

Use the general array formula in the following example to calculate parameter pointer offsets to ar-
ray elements. Let A be an array with dimensions (M1,M2, .. .,Mn). Let the desired element of A have
the array index values of (11,12, . . .,In). If the array base of the BASIC program in which A appears is 0
(the default base in BASIC), evaluation of the formula results in the offset. Adding the offset to the
parameter pointer (the initial array element pointer) results in a pointer that points to the memory
location where the data information is stored.

In the preceding example, D equals 2 when the array is an integer string array and 8 when the array
is a real or decimal array. When a BASIC program contains an OPTION BASE statement that sets
the array index base to 1, use the following general array formula. This formula compensates for the
absence of index 0 elements.

11.8.1 Accessing Numeric Arrays

To access a numeric array, the BASIC program that calls the assembly language subroutine must
dimension the array either implicitly or explicitly; the program must then pass the first element of
the array to the subroutine as a parameter. To access an element of the array, use the general array
formula to compute the offset. The offset is added to the first parameter pointer to set the pointer to
the desired array element. For example, if an integer array ARR is dimensioned to (7,8,9), the follow-
ing is the offset added to the initial parameter pointer to access element ARR(2,3,5):

2°@* B+ 1)*O@+ 1)+ 3"(9+1)+5)=430

If the BASIC program in which array ARR appears includes an OPTION BASE statement that sets
the array index base to 1, the offset to be added to access the same element is as follows:

2*(2*8"9+3"9+5)=352

11-8 2308769-9701

Assembly Language Subroutines

When an assembly language subroutine needs to use BASIC array storage as a buffer, you should
dimension a single-dimension integer array to the same number of elements as 16-bit memory
words needed for the buffer. The initial parameter pointer passed to the subroutine then contains a
pointer to a buffer of the required length.

11.8.2 Accessing String Arrays

To access a string array, the BASIC program that calls the assembly language subroutine must
dimension the array either implicitly or explicitly; the program then passes the element of the array
to the subroutine. However, in accessing an element string array, the pointers to the string data
values (not the string data values themselves) are stored sequentially in memory. Thus, after the pro-
gram calculates the offset to the desired string array element pointer, the result is added to the
pointer parameter; this parameter points to the string data pointer, which in turn points to the string
data value. Figure 11-1 illustrates the method by which an array element is accessed.

To calculate the offset to the parameter pointer, use the general array formula, with D equal to 2. For
example, if a string array ARR is dimensioned to (2,4,8) and the required element is (2,1,7), the offset
added to the pointer is as follows:

2*2*4+N*@+1)+1*@+ 1N+ 7)=212

If the BASIC program in which array ARR$ appears contains an OPTION BASE statement that sets
the array index base to 1, the offset added to access the pointer to the same element is as follows:

2*(2*4*8+1*8+7)=158

11.9 ASSEMBLY LANGUAGE SUBROUTINE EXAMPLE

Use the following procedure to prepare and execute any assembly language subroutine to be called
by BASIC:

1. Using a Text Editor, create the source file of the assembly language subroutine (Figure
11-5).

2. Assemble the source file into a standard ASCIH object file. (Figure 11-6 shows the sampie
routine object listing, and Figure 11-7 shows the cross-reference listing.)

3. Use the Link Editor to format the object file into an image format object file. (Figure 11-8
shows the sample routine for the link control file.)

The file is now ready to be called by BASIC as an assembly language subroutine.
11.9.1 Step 1 — Creating the Assembly Language Source Code

Use the Text Editor to create the source file of the assembly language subroutine. Figure 11-5 shows
a sample routine source code.

2308769-9701 119

Assembly Language Subroutines

11-10

IDT “SIGDIG”

TITL “SIGNIFICANT DIGIT TRUNCATOR”
Khkkhhhhhhdhhhhhhhhhhhhhkhrhhkhrhkhhhhhhhhhhhhhhhhhhdhhdkdrhhdh

* THIS IS A TI 990 BASIC CALLABLE ASSEMBLY LANGUAGE *
* SUBROUTINE. IT TRUNCATES A REAL VALUE TO A *
* SPECIFIED NUMBER CF SIGNIFICANT DIGITS. AN ASCII *
* STRING IS RETURNED TO BASIC TO INDICATE WHETHER *
* THE TRUNCATION RESULTED IN A LOSS OF ANY NON-ZERO *
* DIGITS. *
* *
* PARAMETERS : *
* *
* PARM 1(REAL DATA TYPE) - ON INPUT CONTAINS *
* THE VALUE WHICH SHOULD BE TRUNCATED BY THIS *
* ROUTINE. ON OUTPUT CONTAINS THE TRUNCATED *
* VALUE. *
* *
* PARM 2 (INTEGER DATA TYPE) - ON INPUT *
* CONTAINS THE NUMBER OF SIGNIFICANT DIGITS *
* TO WHICH THE REAL VALUE IN PARM 1 SHOULD *
* BE TRUNCATED. NOT CHANGED BY THIS ROUTINE *
* *
* PARM 3 (STRING DATA TYPE) - ON INPUT *
* CONTAINS A STRING OF 41 CHARACTERS. ON *
* OUTPUT CONTAINS A 41 CHARACTER STRING *
* DESCRIBING WHETHER THE VALUE IN PARM 1 *
* LOST ANY NON-ZERO DIGITS BECAUSE OF THE *
* TRUNCATION. *
* *
* PARM 4 (INTEGER DATA TYPE) - ON INPUT IS *
* INITIALIZED TO A -1. ON OUTPUT CONTAINS ONE *
* OF THE FOLLOWING COMPLETION CODES: *
* *
* -1 PARAMETER TYPE OR NUMBER MISMATCH *
o 0 SUCCESSFUL COMPLETION *
* 1 STRING PARM OF INCORRECT LENGTH *
* 2 ERROR IN NUMBER OF DIGITS REQUESTED *
* *
khkhkhhhkkkkkkhhhhhhhhhhhhhhrhhhkhhkhhhhhhhkhdhhdhdhdhdkkhhdhhkkdhhkkkik

PAGE

DATA 0,SIGO10 ROUTINE ENTRY DATA
B e e e et e e et s o i e e e e i " S o o o o e " 2 o o o *
OFFSET EQU -36 OFFSET TO PARM INFO BLOCK
NPARMS EQU 4 NUMBER OF PARAMETERS
PTYPES EQU >9D00 PARAMETER TYPE WORD
B e e e e o ot o o o o o o e e e o v e P o o T o e S e Y S e o o o o e o o o e ot e S o B o o o e i) o *
STRERR EQU 1 STRING PARAMETER ERROR
DIGERR EQU 2 DIGIT REQUEST ERROR
B et e e e e e e e e e e o e et i e s T2) — *

LWOOOA EQU LBOO

K e e e e o 1 e o e e e o e *
STRLEN DATA MSGLEN*256 STRING PARAMETER LENGTH * 256
VALLEN DATA 8 LENGTH OF REAL PARAMETER
EXPMSK DATA >FF80 EXPONENT MASK FOR REAL VALUE
EXPZRO DATA >0040 EXPONENT BIAS VALUE
e e e e e *
NTRMSG TEXT “NO TRUNCATION OF NON-ZERO DIGITS ‘

TRUMSG TEXT “TRUNCATION CAUSED LOSS OF NON-ZERO DIGITS”
MSGLEN EQU $-TRUMSG

Figure 11-5. Sample Routine Source Code (Sheet 1 of 3)

23087699701

PAGE
SIG010 EQU $
STWP RO
AI RO,OFFSET

CI R1,PTYPES

JEQ SIGO030
SIG020 EQU $
B @RETURN

SIG030 EQU $

MOV R1,R5
INC RS

K e e et e e et e 0 e o o e o
CLR *R4

MOVB *R3+,R6

CB R6,@STRLEN

JEQ SIG040

LI RO, STRERR

B @ERROR
SIG040 EQU 8

MOV @STRLEN, R6

SWPB R6
LI R7 ,NTRMSG
MOV R3,R8

SIG050 EQU §
MOVB *R7+, *R8+

MOV *R2,R6

JGT SIG070
SIG060 EQU $

LI RO,DIGERR

B @ERROR
SIG070 EQU $§

CB R6,Q@QLWO0O0OD

JGT SIGO060

MOV R1,R7
A @VALLEN, R7

SWPB R8

SZCB @EXPMSK,R8
MOV @EXPZRO,R9
S R8,R9

JEQ SIG080

JLT SIG080

DEC R9

SLA R9,1

Assembly Language Subroutines

GET PTR TO PARM INFO BLOCK

CHECK FOR CORRECT NUMBER AND
TYPE OF PARMS, ERROR RETURN
IF INCORRECT

GET POINTERS TO PARAMETERS
LOCATIONS:

R1 - PTR TO REAL EXPONENT
R2 - PTR TO SIG DIGIT COUNT
R4 - PTR TO EQUAL FLAG

R5 - PTR TO REAL MANTISSA

CHECK STRING PARAMETER FOR
CORRECT LENGTH; RETURN ERROR
IF NOT; IF CORRECT, INITIALIZE
WITH MESSAGE INDICATING NO
TRUNCATION OF NON-ZERO DIGITS

CHECK NUMBER OF SIGNIFICANT
DIGITS REQUESTED; RETURN ERROR
WHEN NEGATIVE, ZERO OR GREATER
THAN SUPPORTED PRECISION

INITIALIZE R7 TO POINT AT END
OF REAL MANTISSA

STRIP MANTISSA SIGN BIT

CHECK SIGN OF EXPONENT; SKIP
SIGNIFICANT ZERO COUNT WHEN
EXPONENT IS ZERO OR GREATER

SUBTRACT NUMBER OF SIGNIFICANT
ZEROS FROM DIGITS DESIRED; GET

Figure 11-5. Sample Routine Source Code (Sheet 2 of 3)

2308769-9701

11-11

Assembly Language Subroutines

SIG090

SIG100

SIG110

SIG120

SIG130

SIG140

SIG150

R9,R6
SIG090
@LBOO, *R1
SIG120

*R5,QLBOA
SIG100

eLwoo00A,R10
R10,R8
R9,R6
R10,R8

R9

R9, *R5+
R6,R6
SIG140

$

@STRLEN, R6
R6

R9, TRUMSG
$

*R9+, *R3+
R6
SIG150

@LB00, *R5+
R7,R5
SIG160

MORE DIGITS WHEN POSITIVE
RETURN ZERO WHEN NOT POSITIVE

COMPENSATE FOR NON-SIGNIFICANT
DIGIT IN FIRST MANTISSA BYTE

FIND MANTISSA BYTE CONTAINING
LAST SIGNIFICANT DIGIT; GO TO
APPROPRIATE TRUNCATE ROUTINE

CHECK FOR TRUNCATION OF A
NON-ZERO DIGIT INSIDE BYTE;

IN NON-ZERO TRUNCATION OCCURS,
CHANGE STRING PARAMETER

CHECK FOR TRUNCATION OF A

NON-ZERO BYTE; IF NON-ZERO
TRUNCATION OCCURS, CHANGE

STRING PARAMETER

MODIFY STRING PARAMETER TO
INDICATE TRUNCATION OF
NON-ZERO DIGITS

CLEAR NON-SIGNIFICANT BYTES IN
MANTISSA

SET ERROR FLAG TO INDICATE

Figure 11-5. Sample Routine Source Code (Sheet 3 of 3)

11-12

23087699701

Assembly Language Subroutines

11.9.2 Assembling the Source File

Use the XMA command to assemble the source code into object format. Figure 11-6 shows the ob-
ject listing you would get if you assembled the sample source code (Figure 11-5). If you select the
cross-reference option, as is shown on the first page of the listing, you get the listing of cross
references shown in Figure 11-7.

11.9.3 Step 3 — Linking the Assembly Language Subroutine
After you assemble the source code into standard ASCII format, use the Text Editor to create a link
control file and then use the XLE command to format the object file into IMAGE format.

Figure 11-8 provides an example of a link control file:

FORMAT IMAGE,REPLACE
PHASE 0,EXAMPLE
INCLUDE .OBJ.EXAMPLE
END

The XLE command prompts for a linked output access name; the name you assign is the name by
which the BASIC program will reference the assembly language subroutine. In our example, assume
_you assign the name ASMBLY.

11.9.4 Step 4 — Calling the Subroutine from a BASIC Program

Once you have assembled and linked the assembly language subroutine, you can call it from a
BASIC program, as illustrated in paragraph 12.2.

2308769-9701 1113

Assembly Language Subroutines

SDSMAC 3.4.0 81.117 16:10:44 THURSDAY, JAN 20, 1983.

ACCESS NAMES TABLE PAGE 0001
SOURCE ACCESS NAME= VOL.SIGDIGS

OBJECT ACCESS NAME= VOL.SIGDIGO

LISTING ACCESS NAME= VOL.SIGDIGL

ERROR ACCESS NAME=

OPTIONS= XREF, TUNLST

MACRO LIBRARY PATHNAME=

SIGDIG SDSMAC 3.4.0 81.117 16:10:44 THURSDAY, JAN 20, 1983.
PAGE 0002
0001 IDT “SIGDIG”
0()03 **,********************
0004 * THIS IS A TI 990 BASIC CALLABLE ASSEMBLY LANGUAGE *
0005 * SUBROUTINE. IT TRUNCATES A REAL VALUE TO A *
0006 * SPECIFIED NUMBER OF SIGNIFICANT DIGITS. AN ASCII *
0007 * STRING IS RETURNED TO BASIC TO INDICATE WHETHER *
0008 * THE TRUNCATION RESULTED IN A LOSS OF ANY NON-ZERO *
0009 * DIGITS. *
0010 * *
0011 * PARAMETERS: *
0012 * *
0013 * PARM 1 (REAL DATA TYPE) - ON INPUT CONTAINS *
0014 * THE VALUE WHICH SHOULD BE TRUNCATED BY THIS *
0015 * ROUTINE. ON OUTPUT CONTAINS THE TRUNCATED *
0016 * VALUE. *
0017 * *
0018 * PARM 2 (INTEGER DATA TYPE) - ON INPUT *
0019 * CONTAINS THE NUMBER OF SIGNIFICANT DIGITS *
0020 * TO WHICH THE REAL VALUE IN PARM 1 SHOULD *
0021 * BE TRUNCATED. NOT CHANGED BY THIS ROUTINE *
0022 * *
0023 * PARM 3 (STRING DATA TYPE) - ON INPUT *
0024 * CONTAINS A STRING OF 41 CHARACTERS. ON *
0025 * OUTPUT CONTAINS A 41 CHARACTER STRING *
0026 * DESCRIBING WHETHER THE VALUE IN PARM 1 *
0027 * LOST ANY NON-ZERO DIGITS BECAUSE OF THE *
0028 * TRUNCATION. *
0029 * *
0030 * PARM 4 (INTEGER DATA TYPE) - ON INPUT IS *
0031 * INITIALIZED TO A -1. ON OUTPUT CONTAINS ONE *
0032 * OF THE FOLLOWING COMPLETION CODES: *
0033, * *
0034 * -1 PARAMETER TYPE OR NUMBER MISMATCH *
0035 * 0 SUCCESSFUL COMPLETION *
0036 * 1 STRING PARM OF INCORRECT LENGTH *
0037 * 2 ERROR IN NUMBER OF DIGITS REQUESTED *
0038 * *
0039 KAk AKAIAIhARKAAIAAIARIRIRRERAKKAKRRAKRKk Kk kkhkkhkhkkhkkhkhhhkhhkrhhkkhkhhkhkk

Figure 11-6. Sample Routine Object Listing (Sheet 1 of 5)

1114 2308769-9701

Assembly Language Subroutines

SIGDIG SDSMAC 3.4.0 81.117 16:10:44 THURSDAY, JAN 20, 1983.
SIGNIFICANT DIGIT TRUNCATOR PAGE 0003
0041 0000 0000 DATA 0,SIGO10 ROUTINE ENTRY DATA
0002 0062~

0042 K e e e e *
0043 FFDC OFFSET EQU -36 OFFSET TO PARM INFO BLOCK

0044 0004 NPARMS EQU 4 NUMBER OF PARAMETERS

0045 9pD00 PTYPES EQU >9D00 PARAMETER TYPE WORD

0046 e e e *
0047 0001 STRERR EQU 1 STRING PARAMETER ERROR

0048 0002 DIGERR EQU 2 DIGIT REQUEST ERROR

0049 K e e e e e e e *
0050 0004 00 LBOO BYTE >00

0051 0005 OA LBOA BYTE >0A

0052 0004° LWOOOA EQU LBOO

0053 0006 000D LWOOOD DATA >000D

0054 A e e e e *
0055 0008 2900 STRLEN DATA MSGLEN*256 STRING PARAMETER LENGTH * 256
0056 000A 0008 VALLEN DATA 8 LENGTH OF REAL PARAMETER

0057 000C FF80 EXPMSK DATA >FF80 EXPONENT MASK FOR REAL VALUE
0058 O000E 0040 EXPZRO DATA >0040 EXPONENT BIAS VALUE

0059 L T T etttk ettt *
0060 0010 4E NTRMSG TEXT “NO TRUNCATION OF NON-ZERO DIGITS ‘

0061 0039 54 TRUMSG TEXT “TRUNCATION CAUSED LOSS OF NON-ZERO DIGITS”

0062 0029 MSGLEN EQU $-TRUMSG

Figure 11-6. Sample Routine Object Listing (Sheet 2 of 5)

2308769-9701

1115

Assembly Language Subroutines

SIGDIG

SDSMAC 3.4.0 81.117

SIGNIFICANT DIGIT TRUNCATOR

11-16

0064
0065
0066

0067
0068
0069

0070
0071
0072

0073
0074
0075

0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090

0091
0092

0093

0094
0095

0096
0097

0098
0099
0100
0101
0102
0103
0104
0105
0106
0107

0108

0109
0110

0111

0062
0064
0066

0068
006a
006C
006E
0070
0072
0074
0076

0078
007A

007C
007E
0080
0082
0084
0086
0088

008A

008C
008E
0090
0092
0094
0096
0098
009A
009C

009E
00A0
00A2
00A4
00A6
00A8

00AA
00AC
00AE

00BO
00B2

ooB4
00B6
0oB8
00BA

00BC
00BE
00co

0062 S1G010 EQU $

02A0 STWP RO
0220 Al RO,OFFSET
FFDC

B e e e e e o i o o o g o o
Cc070 MOV *RO+,R1
0221 Al R1l,--NPARMS
FFFC
1604 JNE SIGO020
c070 MOV *R0O+,R1
0281 CI R1l,PTYPES
9Dp00
1302 JEQ SIG030
0078”° SIG020 EQU $
0460 B @RETURN
0138~

B e o e . e e o i e e e e e o e i i e i S o o S
007C” SIGO030 EQU $§
05C0 INCT RO
co070 MOV *RO+,R1
CO0BO MOV *RO+,R2
COFO MOV *R0+,R3
Cl10 MOV *RO,R4
Ccl41 MOV R1,R5
0585 INC R5

K e s e e o o e o e e 2 e o e v o o
04D4 CLR *R4

K e e e s i o - " " —— —
Ccop3 MOV *R3,R3
D1iB3 MOVB *R3+,R6
9806 CB R6,@STRLEN
0008~
1304 JEQ SIG040
0200 LI RO, STRERR
0001
0460 B @ERROR
013Aa“
009E” SIG040 EQU §
Cclao0 MOV @STRLEN,R6
0008~
06C6 SWPB R6
0207 LI R7,NTRMSG
0010~
c203 MOV R3,R8
00AA“ SIGOS50 EQU §
DE37 MOVB *R7+4,*R8+
0606 DEC R6
15FD JGT SIGO050

L
c192 MOV *R2,R6
1504 JGT SIGO070
00B4” SIG060 EQU $
0200 LI RO,DIGERR
0002
0460 B @ERROR
013n”
00BC” SIGO070 EQU $
9806 CB R6,@LWOOOD
0006~
15F9 JGT SIG060

16:10:44 THURSDAY, JAN 20,

1983.
PAGE 0004

GET PTR TO PARM INFO BLOCK

CHECK FOR CORRECT NUMBER AND
TYPE OF PARMS, ERROR RETURN

IF INCORRECT

GET POINTERS TO PARAMETERS
LOCATIONS:

Rl - PTR TO REAL EXPONENT
R2 - PTR TO SIG DIGIT COUNT
R4 - PTR TO EQUAL FLAG

R5 - PTR TO REAL MANTISSA

CHECK STRING PARAMETER FOR
CORRECT LENGTH; RETURN ERROR

IF NOT; IF CORRECT, INITIALIZE
WITH MESSAGE INDICATING NO

TRUNCATION OF NON-ZERO DIGITS

CHECK NUMBER OF SIGNIFICANT
DIGITS REQUESTED; RETURN ERROR
WHEN NEGATIVE, ZERO OR GREATER
THAN SUPPORTED PRECISION

Figure 11-6. Sample Routine Object Listing (Sheet 3 of 5)

23087699701

Assembly Language Subroutines

SIGDIG SDSMAC 3.4.0 81.117 16:10:44 THURSDAY, JAN 20, 1983.

SIGNIFICANT DIGIT TRUNCATOR PAGE 0005
0112 L et T *
0113 00C2 clicl MOV R1,R7 INITIALIZE R7 TO POINT AT END
0114 00C4 AlEO A @VALLEN,R7 OF REAL MANTISSA

00C6 000A~
0115 A e e e e e e e e e e e e e e e e e e *
0116 00C8 D211 MOVB *R1,R8 STRIP MANTISSA SIGN BIT
0117 OOCA 06C8 SWPB R8 CHECK SIGN OF EXPONENT; SKIP
0118 00CC 5220 SZCB @EXPMSK,R8 SIGNIFICANT ZERO COUNT WHEN
00CE o000C”
0119 00D0 C260 MOV @EXPZRO,R9 EXPONENT IS ZERO OR GREATER
00D2 000E”
0120 00D4 6248 S R8,R9
0121 00D6 1308 JEQ SIG080
0122 00D8 1107 JLT SIGO080
0123 00DA 0609 DEC R9 SUBTRACT NUMBER OF SIGNIFICANT
0124 00DC 0Al9 SLA R9,1 ZEROS FROM DIGITS DESIRED; GET
0125 OODE 6189 s R9,R6 MORE DIGITS WHEN POSITIVE
0126 OOE0 1506 JGT SIG090 RETURN ZERO WHEN NOT POSITIVE
0127 OOE2 D460 MOVB @LB0O, *R1
00E4 0004~
0128 O0E6 1016 JMP SIG120
0129 e e e et i *
0130 00E8” SIG080 EQU §
0131 O0OE8 9815 CB *R5,Q@LBOA COMPENSATE FOR NON-SIGNIFICANT
00EA 0005~
0132 00EC 1102 JLT SIGl00 DIGIT IN FIRST MANTISSA BYTE
0133 A e e e e e e e e e e e ———————————— *
0134 00EE” SIG090 EQU $
0135 OOEE 0606 DEC R6 FIND MANTISSA BYTE CONTAINING
0136 OOFO0 1304 JEQ SIGL10 LAST SIGNIFICANT DIGIT; GO TO
0137 00F2” SIG1l00 EQU S APPROPRIATE TRUNCATE ROUTINE
0138 00F2 0585 INC R5
0139 00F4 0606 DEC R6
0140 00F6 130E JEQ SIG1l20
0141 OOF8 10FA JMP SIG090
0142 e e e e e e e e - *
0143 O0OFA” SIG110 EQU $
0144 OOFA 04C8 CLR R8 CHECK FOR TRUNCATION OF A
0145 OOFC 04C9 CLR R9 NON-ZERO DIGIT INSIDE BYTE;
0146 OOFE D255 MOVB *R5,R9 IN NON-ZERO TRUNCATION OCCURS,
0147 0100 06C9 SWPB R9 CHANGE STRING PARAMETER
0148 0102 c2a0 MOV @LWOOOA,R10
0104 0004~
0149 0106 3EOA DIV R10,R8
0150 0108 C189 MOV R9,R6
0151 010A 3A0A MPY RI10,R8
0152 010C 06C9 SWPB R9
0153 010E DD49 MOVB R9, *R5+
0154 0110 cC186 MOV R6,R6
0155 0112 1606 JNE SIGLl40
0156 e e e e e e e e e e e e e e e e e e e *
0157 0114” SIG120 EQU §
0158 0114 €205 MOV R5,R8 CHECK FOR TRUNCATION OF A
0159 0116”° SIG130 EQU $ NON-ZERO BYTE; IF NON-ZERO
0160 0116 DEL8 MOVB *R8, *R8+ TRUNCATION OCCURS, CHANGE
0161 0118 1603 JNE SIGl40 STRING PARAMETER
0162 011A 8207 c R7,R8
0163 011C 15FC JGT SIG130
0164 011lE 100C JMP RETURN
0165 e et e e e e e e e e e e e *
Figure 11-6. Sample Routine Object Listing (Sheet 4 of 5)
2308769-9701 1117

Assembly Language Subroutines

SIGDIG SDSMAC 3.4.0 81.117 16:10:44 THURSDAY, JAN 20, 1983.
SIGNIFICANT DIGIT TRUNCATOR PAGE 0006
0166 0120” SIG140 EQU $
0167 0120 ClA0 MOV @STRLEN,R6 MODIFY STRING PARAMETER TO
0122 0008~
0168 0124 06C6 SWPB R6 INDICATE TRUNCATION OF
0169 0126 0209 LI R9, TRUMSG NON-ZERO DIGITS
0128 0039~
0170 012A“ SIG1l50 EQU S
0171 0122 DCF9 MOVB *R9+, *R3+
0172 012C 0606 DEC R6
0173 012E 15FD JGT SIG150
0174 K e e e e o o e o *
0175 0130”° SIG160 EQU $
0176 0130 DD60 MOVB QLBO0O, *R5+ CLEAR NON-SIGNIFICANT BYTES IN
0132 0004~
0177 0134 8147 c R7,R5 MANTISSA
0178 0136 15FC JGT SIG1l60
0179 K e e e e o o e o o o e e e *
0180 0138° RETURN EQU §
0181 0138 0380 RTWP
0182 K e o o e o *
0183 013A° ERROR EQU §
0184 013A C500 MOV RO, *R4 SET ERROR FLAG TO INDICATE
0185 013C 10FD JMP RETUEN
0186 END
NO ERRORS, NO WARNINGS

Figure 11-6. Sample Routine Object Listing (Sheet 5 of 5)

1118 2308769-9701

Assembly Language Subroutines

SIGDIG SDSMAC 3.4.0 81.117 16:10:44 THURSDAY, JAN 20, 1983.

LABEL VALUE DEFN REFERENCES PAGE 0007

$ 013E” 0062 0064 0074 0077 0094 0099 0106 0109 0130
0134 0137 0143 0157 0159 0166 0170 0175 0180
0183

DIGERR 0002 0048 0107

ERROR 013a” 0183 0093 0108

EXPMSK oooc” 0057 0118
EXPZRO 000E” 0058 0119
LBOO 0004~ 0050 0052 0127 0176
LBOA 0005~ 0051 0131
Lwoooa 0004~ 0052 0148
LWOO0OD 0006~ 0053 0110
MSGLEN 0029 0062 0055
NPARMS 0004 0044 0069
NTRMSG 0010~ 0060 0097
OFFSET FFDC 0043 0066
PTYPES 9D00 0045 0072

RO 0000 0065 0066 0068 0071 0078 0079 0080 0081 0082
0092 0107 0184

Rl 0001 0068 0069 0071 0072 0079 0083 0113 0116 0127

R10 000A 0148 0149 0151

R2 0002 0080 0104

R3 0003 0081 0088 0088 0089 0098 0171

R4 0004 0082 0086 0184

R5 0005 0083 0084 0131 0138 0146 0153 0158 0176 0177

R6 0006 0089 0090 0095 0096 0101 0104 0110 0125 0135
0139 0150 0154 0154 0167 0168 0172

R7 0007 0097 0100 0113 0114 0162 0177

R8 0008 0098 0100 0116 0117 0118 0120 0144 0149 0151
0158 0160 0160 0162

RO 0009 0119 0120 0123 0124 0125 0145 0146 0147 0150

0152 0153 0169 0171

RETURN 0138~ 0180 0075 0164 0185
SIGO010 0062~ 0064 0041

SI1G020 0078~ 0074 0070

SIGO030 007c” 0077 0073

SIG040 009E~ 0094 0091

SIGO050 00AaA” 0099 0102

S1G060 00B4~ 0106 0111

S1G070 00BC” 0109 0105

SIG080 00E8~ 0130 0121 0122
S1G090 00EE~ 0134 0126 0141
SIG100 00F2~ 0137 0132

S1G110 00FA~ 0143 0136

SIG120 0114~ 0157 0128 0140
SIG130 0116~ 0159 0163

SIG1l40 0120~ 0166 0155 O0ls6l
SIG150 012n~ 0170 0173

51G160 0130~ 0175 0178

STRERR 0001 0047 0092

STRLEN 0008~ 0055 0090 0095 0167
TRUMSG 0039~ 0061 0062 0169
VALLEN 000A~ 0056 0114

Figure 11-7. Sample Routine Object Listing Cross-Reference

2308769-9701 1119

Assembly Language Subroutines

FORMAT IMAGE,REPLACE

TASK EXAMPLE
INCLUDE VOL. SIGDIGO
END

Figure 11-8. Link Control File for Sample Routine

11-20 2308769-9701

12
BASIC Subroutine Library

12.1 INTRODUCTION

This section describes the library of subroutines available with BASIC. The general types are as
follows:

. Sort subroutine
° Keyed File Package (KFP) subroutines

You receive the BASIC subroutines in image format on the disk. The subroutines are ready to use
with the BASIC program; you should not attempt to modify or alter them.

If the subroutines are copied to a volume other than the system disk, the call statement must use
that disk’s volume name or the drive name.

The subroutine examples in this section assume that the subroutines are contained on a disk in
drive DS01 and can be called using the “XXXXXX"” syntax (where XXXXXX is the name of the file
containing the utility).

12.2 USING THE SUBROUTINES

A BASIC program must use the LIBRARY and CALL statements to access the subroutines. In a
BASIC program, the LIBRARY statement must precede the CALL statement and must occur in the
main program, as shown below:

10 LIBRARY “.SORT” {or LIBRARY “*.SORT"}

For further information about using the LIBRARY and CALL statements and creating user-defined
subroutines, see Section 11.

12.2.1 Subroutine Arguments

Communication between your BASIC program and the subroutine occurs through the argument list.
Each subroutine requires that the CALL statement supply a list of arguments in a specified order.
The argument list is contained in parentheses after the pathname of a CALL statement. The CALL
statement must supply all of the required arguments; otherwise, an error condition results. Also, the
arguments must be of the appropriate type (either integer or string) and must be of sufficient length
to accept the returned values.

2308769-9701 121

BASIC Subroutine Library

You can name subroutine arguments any name valid for the required data type. If you use arguments
that specify arrays, you must specify the dimensions of each array in the appropriate statement at
the beginning of the program. Arguments that specify character strings must have names that ter-
minate with a dollar sign. Subroutines cannot be called using literal numeric or string data. For
example:

Invalid calling sequence:
100 CALL “.SORT”(1,0,“.INPUT”,“ OUTPUT",“DS01",“MYDISK",20, 1:UP,2:UP,0)

Valid calling sequence:
100 INTEGER ALL
110 DUMY =0
120 TYPE=0
130 INNAMS = “.INPUT”
140 OUTNAMS = “.OUTPUT”
150 WK1$ = “DS01”
160 WK2$ = “MYDISK”
170 SIZ=20
180 RFT$="$,$”
190 KFT$ = “1:UP,2:UP”
200 STAT=0
210 CALL“.SORT"(DUMY,TYPE,lNNAM$,OUTNAM$,WK1$,WK2$,SIZ,RFT$,KFT$,STAT)

In the example of the valid calling sequence, all of the arguments are set to initial values. Failure to
initialize an argument, even an output argument, results in an error in the CALL statement.

12.2.2 Subroutine Error Codes
The system indicates an error in subroutine execution in either of two ways:

U The interpreter issues a program line error message for the CALL statement, halting
execution.

e The subroutine returns an error code to the program without interrupting execution.
In the first case, the interpreter issues an error message such as the following:
ERROR #74, in 120
This type of error message appears when any of the following occurs:
e A subroutine CALL statement supplies the incorrect number of arguments.
o The data types of the arguments do not match the data types required by the subroutine.
. The argument is not properly initialized as specified in the subroutine description.
After the message appears on the screen, execution stops and a period is displayed in the lower left-
hand corner of the screen. This indicates that the system is in the command mode. You can use the

calculate (F1) function to examine the current argument values and determine the source of the
error. You can then correct and rerun the program.

12-2 2308769-9701

BASIC Subroutine Library

In the second method of indicating a subroutine error, the subroutine loads an error code into one of
the arguments. This argument is called the subroutine error status (STAT). This type of error does
not directly halt program execution; however, the subroutine failure may cause an error within the

program.

See Figure 12-3 for an example of a BASIC program that checks for error conditions. Appendix D

lists and describes the error messages and codes.

12.3 SORT SUBROUTINES

BASIC provides a subroutine that sorts relative record files. This subroutine previously was

available only on SBC 990 BASIC.

The Sort subroutine generates the following types of output:

o Sorted record output

® Integer index and sort key output
» Integer index output

. Real index output

. Integer virtual array index output

. Real virtual array index output

The first output type produces a relative record file containing records in sorted order. The other out-
put types produce files or virtual arrays containing pointers that index the input records in the order
produced by the sort. The pointers can be integer numeric values, real numeric values, integer virtual
arrays, or real virtual arrays. Depending on the output type, this subroutine sorts files with the

following maximum sizes:
File Type

Sorted record output
Integer index and sort key
Integer index output

Real index output

Integer virtual array output
Real virtual array output

System limit
32,767 records
32,767 records

6,533,599 records
32,767 records
32,767 records

The limits are typically smaller, due to the requirement that files be contiguous and do not span

disks.

2308769-9701

12-3

BASIC Subroutine Library

This subroutine allows a maximum of 100 data fields in an input record. The data fields can be of
any type (that is, integer, real, or string). Of these data fields, up to 10 may be designated as sort
keys.

NOTE

In the LIBRARY and CALL statements in the following examples,
SORT is a synonym for the pathname of the SORT subroutine.

To execute this subroutine, use the foliowing CALL statement:
100 CALL“SORT”(DUMY,TYPE,INNAM$,OUTNAM$ WK1 $,WK2$,SI1Z, RFTS$,KFT$,STAT)

Argument details are summarized below:

Argument Type 1[o] Use
DUMY Integer Input Reserved for future use
TYPE Integer Input Output type code:*

0 = Sorted relative records

1 = Integer index and sort key

2 = Integer index

3 = Real index

4 = Integer virtual array

5 = Real virtual array
INNAM$ String input Pathname of relative record file to be sorted
OUTNAMS String Input Pathname of output file*
WK1% String input First temporary work volume name*
WK2$% String Input Second temporary work volume name*
SiZ Integer Input Maximum size (bytes) of combined keys*
RFTS String Input Record-format template*
KFT$ String Input Key-field template”
STAT Integer Output Subroutine error status™

* Argument notes and special considerations:

TYPE This argument specifies the type of output produced by the subroutine. The
following values produce the indicated results:

0 — The subroutine generates an output file containing the input records in
sorted order.

1 — The subroutine generates an output file of integers that index the input file
according to the sort specifications. Also, each output record contains the
composite key for the indexed record. (The composite sort key consists of
the combination of the key fields in the specified hierarchical order.)

12-4 23087699701

OUTNAMS$

WK1$ and

WK2$

14

2308769-9701

BASIC Subroutine Library

2 — The subroutine generates an output file of integers that index the input file
according to the sort specifications.

3 — The subroutine generates an output file with records containing real
numbers that index the input file according to the sort specifications.

4 — The subroutine generates an integer virtual array that indexes the input
file.

5 — The subroutine generates a real virtual array that indexes the input file.

This argument specifies the pathname of the file to which the sorted output will
be written. The subroutine automatically creates a relative record file with the
pathname specified by this argument. If the file already exists, the subroutine
aborts and issues an error message. Therefore, if a file with this pathname
already exists, delete it before running this subroutine. When sorted record out-
put is specified (TYPE =0), the input and output files should be on different
disks for maximum efficiency. Any file specified by this pathname cannot be
open when the Sort subroutine is executed. Also, any virtual array specified by
this pathname cannot be assigned when the subroutine is executed.

These two arguments specify the volumes (or disks) that the Sort subroutine
uses to contain intermediate files used in executing the sort. The volumes
specified by these arguments should be on different disks for maximum sorting
speed. The same volume can be designated for each; however, the time required
to complete a sort may be significantly increased. During the sort, the
subroutine creates two temporary files, T1$$X and T2$$X. You should not have
any other files with these names, since they are deleted upon completion of the
sort.

This argument specifies the length (in bytes) of the composite key. The com-
posite key is the concatenation of all of the designated key fields. Each integer
field has a length of two bytes; each real field has a length of eight bytes; and
each string field has a length of one byte per character plus one length byte.
Thus, if a sample composite key contained four integer fields, two real fields,
and one string field (the string field having a maximum length of 12 characters),
then the SIZ parameter would equal the following:

SIZ=(4X2) + (2X8) + (12X 1) + 1) = 37 bytes

12-5

BASIC Subroutine Library

RFT$

KFT$

STAT

This argument defines the record-format template that specifies the data type
descriptors for each field in the record. The descriptors are as follows:

| = Integer
R = Real
$ = String

A descriptor may be repeated several times by preceding it with an n*, where n
is the number of fields of that type. For example, 4*R indicates four real fields.
Descriptors must be separated by commas. Up to 100 fields can be described.

This argument defines the key-field template that specifies on which fields the
file is to be sorted. Starting in order of precedence, the sort key fields are
specified by field number. Each must be followed by “UP” for ascending order
or “:DN” for descending order. For example, “2:UP” sorts on the second field of
the record in ascending order. The field order specification must be separated
by commas. You can specify up to 10 sort key fields.

This argument returns the subroutine error code or completion status. This
subroutine prefixes all /O error codes with 1, 2, or 3 to denote an error for an
input, output, or temporary file, as follows (xxx is an error code listed in
Appendix D):

1xxx — 1/Q error on the input file

2xxx — /O error on the output file

3xxx — /O error on a temporary file

For example, the error code 2086 indicates that an invalid pathname was
specified for the output file.

12.3.1 Sort Example
Figure 12-1 is a program that illustrates the use of the sort subroutine in a BASIC program. It may
also serve as a general sort utility program. It prompts you for argument values and then sorts the

file as specified.

12:6

2308769-9701

BASIC Subroutine Library

100 INTEGER ALL
110 LIBRARY "SORT"
120 DISPLAY ERASE ALL :: DISPLAY "SORT EXAMPLE"
130 ACCEPT " OPERATION TYPE: ":T
140 ACCEPT " INPUT FILE: ":INNAMS
150 ACCEPT " OUTPUT FILE: ":0UTNAMS
160 ACCEPT "WORK FILE 1 VOLUME OR DEVICE NAME: ":WK1$
170 ACCEPT "WORK FILE 2 VOLUME OR DEVICE NAME: ":WK2$
180 ACCEPT " MAXIMUM FIELD SIZE: ":SI2
190 ACCEPT " KEY(S) :UP/DN: ":KEYS$S
200 ACCEPT " DESCRIPTORS: ":DESCS$
210 1
220 DEL OUTNAMS
230 DISPLAY :: DISPLAY "START TIME: "§TIMES
240 1
250 puMY=0 :: ER=0
gsg CALL "SORT" (DUMY,T,INNAMS,OUTNAMS,WK1$,WK2$,SI2,DESCS,KEYS,ER)
70 1
280 DISPLAY "END TIME: "sTIMES
290 DISPLAY "ERROR RETURNED: "&STRS (ER)
Figure 12-1. Sort Subroutine Program
12.3.1.1 Sorted Record Output. The following example illustrates using the sort subroutine driver

program to produce sorted relative record output. The input file DSO1.INFILE contains records with
two alphabetic strings per record. You enter the following parameters into the sort utility program
(Figure 12-1) to begin the sorting operation:

2308769-9701

Prompt

OPERATION TYPE:
INPUT FILE:
OUTPUT FILE:

WORK FILE 1 VOLUME OR DEVICE NAME:
WORK FILE 2 VOLUME OR DEVICE NAME:
MAXIMUM FIELD SIZE:

KEY(S):UP/DN:
DESCRIPTORS:

Response

0

DSO1.INFILE
DS01.0OUTFILE
DSO01

DS02

20

1:UP,2:UP

$.$

127

BASIC Subroutine Library

Note that both fields in the input record are used as sorting keys. Additional fields in the record
would be associated with that record in a tag-along fashion. The file is then sorted as follows:

Rec # DSO1.INFILE Rec # DSO01.0UTFILE

0 ZEIGLER JANE 0 ABBOTT MARY
1 ABBOTT MARY 1 BEST ANN

2 SMITH ALICE 2 ELLSWORTH JOE

3 SMITH JAMES sort 3 GOTWORTH JUNE

4 JONES ARTHUR 4 JONES ARTHUR
5 MARTIN ALEX 5 LYNN GEORGIA
6 GOTWORTH JUNE 6 MARTIN ALEX

7 "ELLSWORTH JOE 7 SMITH ALICE

8 BEST ANN 8 SMITH JAMES
9 LYNN GEORGIA 9 ZANES CARL

10 ZANES CARL 10 ZEIGLER JANE

12.3.1.2 Integer Output. To produce integer index output, you can enter the following responses
into the sort subroutine driver program (Figure 12-1):

Prompt Response

OPERATION TYPE: 2
INPUT FILE: DSO1.INFILE
OUTPUT FILE: DSO01.0UTFILE
WORK FILE 1 VOLUME OR DEVICE NAME: DSO01
WORK FILE 2 VOLUME OR DEVICE NAME: DS02
MAXIMUM FIELD SIZE: 20
KEY(S):.UP/IDN: 1:UP,2.UP
DESCRIPTORS: $,$

The sorting process proceeds as foliows:

Rec # DSO1.INFILE Rec # DS01.OUTFILE
0 ZEIGLER JANE 0 10
1 ABBOTT MARY 1 0
2 SMITH ALICE 2 7
3 SMITH JAMES sort 3 8
4 JONES ARTHUR - 4 4
5 MARTIN ALEX 5 6
6 GOTWORTH JUNE 6 3
7 ELLSWORTH JOE 7 2
8 BEST ANN 8 1
9 LYNN GEORGIA 9 5

10 ZANES CARL 10 9

The output file for this sort operation contains 11 records, each containing an integer that indexes
the record number in sorted order. Note that the index begins with record 0, not record 1. In the
above example, record 0 (ZEIGLER JANE) of the input file becomes the last record of the ordered
output, and record 1 (ABBOTT MARY) of the input file becomes record 0 of the ordered output.

128 23087699701

BASIC Subroutine Library

12.4 KEYED FILE PACKAGE

BASIC supports a Keyed File Package (KFP) that allows you to access relative record files by a key
value. All keyed file operations must be performed by calling assembly language subroutines that
are supplied with the system from within a user program.

NOTE

Because the KFP buffer is destroyed when the application ter-
minates, you must close all KFP files within every program.

12.4.1 Keyed File Organization
A BASIC keyed file is organized using a data structure referred to as a B-tree. A B-tree consists of
pages that are nodes in the tree. Within this B-tree structure are two different types of pages:

. Index pages
. Data pages

An index page contains only pointers to lower level pages (either index or data, but not both). A
special index page, referred to as page zero, is always at the tep level (root node) of the tree; all
searches begin here. A data page always occupies a leaf node (the lowest leve! of the tree). The data
page contains the actual logical data records. This type of data structure ensures efficient data ac-
cess since the most recently used pages are retained in system memory. BASIC allows you to
define the page size and the number of pages to be stored in memory. Depending on both the
number of pages available to the KFP and which pages are being accessed, it is possible to read,
write, or delete a record without a single disk access.

12.4.2 Keyed File Format

A keyed file is a relative record file whose special internal format allows keyed access. Each record
in a keyed file can have 100 data fields of integer, real and/or string data type, including up to 10
variable-length key fields. You specify the data fields with a record-format template and the key
fields with a key field template when the file is created.

The page size for a keyed file is equal to its physical record length (specified at creation) and is the
minimum block of data transferred between disk and memory during a read or write operation. For
optimum use of disk space, the page size should be a multiple of 256 bytes, which must be greater
than or equal to a multiple of the minimum page size. To compute page size, use the following
formula:

PAGE SIZE = (MAXIMUM KEYED RECORD SIZE * 2) + 6

The average length of a logical record, the maximum length of the composite key, and the total
number of data records determine the number of ADUs required to hold the keyed file.

2308769-9701 129

BASIC Subroutine Library

12.4.3 Keyed File Data Base Buffer Creation
Use the following procedure to create a keyed file buffer file:

1. Using the BLDBUF subroutine or the example utility (Figure 12-2), create a file of the
desired buffer size. This file must be loaded as the first LIBRARY statement and must be
preloaded by preceding the library name by an asterisk (*) in all programs using the
keyed file package. This file is used as the buffer in all programs requiring a buffer of
-that size.

2. Execute the KFINIT subroutine to establish the parameters for the keyed file data base
buffer. This subroutine must be run in every program that uses the KFP.

12.4.4 Keyed File Creation
You can create keyed files by using the KFCREA subroutine.

12.4.5 KFP Memory Management

You must allocate a certain amount of memory to the KFP for keyed file management functions. The
amount of memory allocated depends on the number of subroutines simultaneously preloaded and
the size of the keyed file data base buffer.

CAUTION

If, for any reason, the system becomes unusable while a KFP file is
open, it should be assumed that file integrity is lost. It is the respon-
sibility of the application programmer to restore lost files (using
methods such as frequent back-ups and transaction logs).

12.4.5.1 Subroutine Memory Requirements. The KFP requires sufficient freespace to load the
subroutines, as well as an additional contiguous block of memory at least as large as the page size
of the keyed file. Memory requirements for each subroutine rounded to the next highest 50-byte in-
crement are as follows:

Memory Requirement

Subroutine (in Bytes)
BLDBUF 1350
KFINIT 600
KFCREA 1650
KFOPEN 1150
KFCLOS 600
KFPUT 900
KFGET 700
KFREAD 2400
KFWRIT 3100
KFDELR 2150

1210 Change 1 2308769-9701

BASIC Subroutine Library

You should never have an occasion to use the BLDBUF routine in an application, although you must
run it before running an application. The other nine of the KFP subroutines require approximately
13,250 bytes of memory if they are preloaded. However, in most applications, KFINIT, KFCREA,
KFOPEN, and KFCLOS need not be preloaded since they are rarely called. Only the frequently used
subroutines (KFPUT, KFWRIT, KFGET, and KFREAD) need to be preloaded if they are needed for a
particular application.

When writing a keyed file application program, the sum of the following items must not exceed the
available user memory:

. Length of BASIC program

. Combined lengths of preloaded subroutines

. Length of largest nonpreloaded subroutine

. Length of KFP buffer

. Length of the additional contiguous page-sized memory block

If the KFP cannot obtain sufficient memory for any of the previous requirements, the application
program terminates and the appropriate error message is returned.

12.4.5.2 Keyed File Data Base Buffer. The KFP contains a keyed file data base buffer created by
the BLDBUF subroutine or by a utility similar to the one in Figure 12-2. The size of this buffer deter-
mines how many pages of a keyed file can be contained in memory at one time. Use the following
equation to calculate the buffer size:

BUFFER SIZE = 26 + ((140+ K)*N) + (M*(P + 12))
where:

(R +F)+ 1) AND -2)

record buffer size (maximum record size in bytes)
maximum number of data fields

number of files

total number of pages in buffer

page size (bytes)

VI ZTIXR
1 T T L O

The more pages of data in memory, the faster the keyed file can be searched for a specific logical
record. However, including pages in memory reduces the amount of user freespace. Thus, you
should carefully choose a buffer size that is large enough to permit efficient searching yet small
enough to leave sufficient user freespace.

2308769-9701 12-11

BASIC Subroutine Library

The KFINIT subroutine initializes the keyed file data base buffer according to the parameters you
supply. These parameters determine the buffer's general operating characteristics. These
parameters include:

. Length of data base buffer (stored within the buffer)

] Maximum number of keyed files open at one time

. Maximum page size

. Maximum number of pages simultaneously in memory (computed by KFINIT)

¢ Maximum data record size (record buffer)

. Maximum number of data fields (BASIC variables) in any record
12.4.5.3 Record Buffer. The data base buffer contains a record buffer for each KFP file. The
record buffer serves as an intermediate area for the transfer of data to and from keyed files.
Subroutines KFWRIT and KFREAD transfer data in the form of BASIC variables between this buffer
and keyed files. KFWRIT transfers data from the buffer to the record, and KFREAD transfers data
from the record to the buffer. The BASIC user program accesses the buffer by using subroutines

KFGET and KFPUT. KFPUT transfers data to the buffer, and KFGET returns data from the buffer to
the user program.

12.4.6 KFP Subroutines
All KFP file operations must be performed by a BASIC program. BASIC provides the following series
of subroutines to access a keyed file:

Name Description
BLDBUF Build Keyed File Data Base Buffer
KFINIT Initialize Keyed File Data Base Buffer
KFCREA Create Keyed File
KFOPEN Open Keyed File
KFPUT Put Data into Record Buffer
KFWRIT Write to Keyed File
KFREAD Read from Keyed File
KFGET Get Data from Record Buffer
KFDELR Delete Keyed File Record
KFCLOS Close a Keyed File

The following paragraphs describe each of the individual keyed file subroutines.

12-12 2308769-9701

BASIC Subroutine Library

12.4.6.1 BLDBUF — Build Keyed File Data Base Buffer File. This subroutine builds the file to be
loaded and used as the data base buffer by other keyed file package subroutines. The file created
by this subroutine must be included as the first preloaded LIBRARY subroutine by all BASIC
programs using the keyed file package. To execute this subroutine, use the following CALL
statement:

CALL “.BLDBUF”(PATH$,BUFSIZ,REPLAC,STAT)

Argument details are summarized below:

Argument Type 110 Use

PATHS$ String Input Pathname of buffer file

BUFSIZ Integer Input Computed data base buffer size
REPLAC Integer Input Qutput file deletion code”

STAT Integer Output Subroutine error status

* Argument notes and special considerations:

REPLAC This integer code specifies whether the buffer file will be replaced if it already
exists. The following list shows the possible values for this argument:

0 — An existing file of the same name will not be replaced.
1 — An existing file of the same name will be replaced.
12.4.6.2 KFINIT — Initialize Keyed File Data Base Buffer. This subroutine establishes the
general parameters for using keyed files on BASIC. Until this subroutine is run, keyed files cannot
be accessed or manipulated. This subroutine can also be used to modify KFP parameters previously
established. It cannot be run if a keyed file is currently open.
The KFINIT subroutine sets up the KFP parameters within the keyed file data base buffer. Note that
you must use the BLDBUF subroutine to define the keyed file data base buffer before you can
execute any other KFP subroutine. KFINIT allows you to specify the following parameters:
] Maximum page size
. Maximum number of open keyed files

. Largest data record allowed

. Maximum number of data fields per record reserved per file

2308769-9701 Change 1 1213

BASIC Subroutine Library

If the buffer is large enough to contain at least two pages, then the buffer is initialized based on the
supplied input parameters. If there is insufficient buffer space to contain at least two pages, then
the subroutine returns an error, and the buffer is not initialized. In either case, the number of pages
contained in the buffer is returned to the calling program in the third argument (NUMPG).

To execute this subroutine, use the following CALL statement:

CALL “.KFINIT”(DUMY,STAT,NUMPG,MAXPGZ,RECSIZ,NUMFLD,NUMFIL)

Argument details

are summarized below:

Argument Type Te] Use

DUMY Integer Input Reserved for future use

STAT Integer Output Subroutine error status

NUMPG Integer Output Number of pages in memory*

MAXPGZ Integer Input Maximum size of KFP memory page*
RECSIZ Integer Input Size of largest data record*

NUMFLD Iinteger Input Maximum number of fields in data record*
NUMFIL Integer Input Maximum number of open keyed files*

* Argument notes and special considerations:

NUMPG

MAXPGZ

RECSIZ

NUMFLD

NUMFIL

12-14

This output parameter specifies the exact number of pages of a specified size in
the keyed file data base buffer. A keyed file is accessed most rapidly when this
value is large (for example, four or more pages in memory per file).

The maximum page size must be at least as large as the largest physical record
(page) size used by any keyed file. This parameter must be expressed in bytes. The
minimum page size is 18 bytes. This value cannot be less than any PGSIZ argu-
ment used by the KFCREA subroutine.

This parameter specifies the largest data record that can be read or written to a
keyed file. This value cannot be greater than half the largest physical record size
minus six bytes. This value specifies the size of the record buffer contained in the
keyed file data base buffer. The minimum data record size is two bytes. Note that
the value must include a length byte for each string included in the buffer.

This parameter specifies the maximum number of data fields that can be con-
tained in any record. A data field is specified by a BASIC variable and can be an
integer, string, or real value. This value must be at least 1, cannot be greater than
half the data record size, and cannot be greater than 100.

This argument specifies the maximum number of open keyed files allowed at one
time. This value must be at least 1 and not more than 15.

2308769-9701

BASIC Subroutine Library

12.4.6.3 KFCREA — Create Keyed File. This subroutine creates a keyed file. To execute this
subroutine, use the following CALL statement:

CALL “.KFCREA”(DUMY,STAT,PATH$,PGSIZ,MAXKEY,ALLOC,RFT$,KFT$)

Argument details are summarized below:

Argument Type 1[o) Use

DUMY Integer Input Reserved for future use

STAT Integer Output Subroutine error status

PATHS$ String Input Pathname of keyed file

PGSIZ Integer Input Physical record size (page size)*
MAXKEY Integer Input Maximum size of composite key*
ALLOC Integer Input Primary allocation in physical records
RFT$ String input Record-format template*

KFT$ String Input Key-field template*

* Argument notes and special considerations:

PGSIZ

MAXKEY

ALLOC

RFT$

2308769-9701

This argument determines the file’s page size (physical record size) and must not
exceed the maximum page size specified in the KFINIT subroutine. Determination
of the page size is based largely on data record size and number of records per
page. A large page size reduces disk I/O but requires more memory. The KFP per-
forms physical I/O operations on pages rather than on individual records.

This parameter specifies the maximum size (in bytes) of the composite key. The
composite key is the concatenation of all the key fields. Refer to the SIZ descrip-
tion in the SORT subroutine for information on calculating this value. This value
determines the number of bytes reserved in the index record for each composite
key. This value should be as small as possible to ensure the most efficient loading
of index pages. The value cannot exceed ((PAGE SIZE - 6)/2) - 2).

Primary allocation in physical records. You can pass a value of zero for the
system default.

The record-format template describes the arrangement of data types (BASIC
variables) within a keyed record. The record-format template is a string with the
following format:

TYPE1,TYPE2,..TYPEn
where the type equals one of the following:

| = Integer data

R = Real data

$ = String data

1215

BASIC Subroutine Library

KFT$

Consecutive fields of the same type can be designated by preceding an identifier
with n*, where n is an integer that indicates the number of consecutive fields of
the same data type. For example, the string $,2*1,R,2*$ specifies a record contain-
ing a string, followed by two integers, followed by a real value, followed by two
strings. The number of fields defined must not exceed the maximum number of
fields defined at data base buffer initialization.

This parameter defines the key-field template that specifies which data fields are
to be used for the keys. It is a multiple numeric index to the data fields. Up to ten
data fields can be used as key fields. The key-field template is a string variable
with the following format:

KEYFLD1:< UP/DN> ,KEYFLD2:< UP/DN> ... KEYFLDn:< UP/DN>
where:
KEYFLD1...KEYFLDn are integer values indexing the data fields
A colon separates the KEYFLDn integer value from the UP or DN string

UP or DN are strings that indicate whether the key field is to be accessed in
ascending or descending order

For example, if the third and fifth data fields are key fields and are to be accessed
in ascending order, the key-field template should be defined by the following:

KFT$ = “3:UP,5:UP”

The KFP subroutines search for records using the key fields. They compare the
key fields defined by the key-field template (KFT$) with the key fields in the record.
If the first search key field matches the first record key field, the second fields are
compared, and so on, until two unequal fields are found or until all key fields have
been compared.

12.4.6.4 KFOPEN — Open Keyed File. This subroutine opens a keyed file for access by a user
program. It operates in a manner similar to the BASIC OPEN statement except that the system
rather than the user assigns the unit number. The unit number must be referenced when performing
any I/O on the file.

To execute this subroutine, use the following CALL statement:

CALL “.KFOPEN”(DUMY,STAT,PATH$,UNITNO,ACCESS)

1216

23087699701

Argument details are summarized below:

Argument Type
DUMY Integer
STAT Integer
PATHS$ String
UNITNO Integer
ACCESS Integer

1o

Input
Output
Input
Output
Input

BASIC Subroutine Library

Use

Reserved for future use

Subroutine error status

Pathname of file to open

Unit number assigned to keyed file*
Specifies access privileges™

* Argument notes and special considerations:

UNITNO The unit number can range from 1 to 15.

ACCESS Specifies access privileges; the default is read/write without file sharing. If you
want the file to be read only, and you want multiple users to be able to read the file
at one time, you must specify the access privileges. If ACCESS =0, or if you do
not specify the access parameter, then the access privilege is read/write. When
ACCESS is not equal to zero, access privilege is read only.

12.4.6.5 KFPUT — Put Data into Record Buffer.

This subroutine inserts data in the form of BASIC

variables into the record buffer. The record buffer can then be written to a record of a specified
keyed file by using the KFWRIT subroutine. You specify whether the record buffer is initialized
(cleared) before the insertion of variables.

To execute this subroutine, use the following CALL statement:

CALL “.KFPUT”(DUMY,STAT,UNITNO,INIT,FLDNUM,DATA1,...DATAN)

where:
1< =n< =10
2308769-9701

1217

BASIC Subroutine Library

Argument details are summarized below:

12-18

Argument Type 1o Use

DUMY Integer Input Reserved for future use

STAT Integer Output Subroutine error status

UNITNO Integer Input Keyed file unit number

INIT Integer Input Record buffer initialization code:*

0 = Do not initialize
1 = Initialize

FLDNUM Integer input Starting field number*
DATA1 Any input Optional first data argument”
. . Input .
Input
. . Input .
DATAnN Any Input Optional nth data argument*

(where 1< =n< =10)*

* Argument notes and special considerations:

INIT

FLDNUM

DATAN

This argument specifies whether the record buffer is initialized before access by
the KFPUT subroutine. The record buffer should be initialized only once after
opening the keyed file. Note that the record buffer need not be initialized if a read
operation is performed before executing the KFPUT subroutine.

This argument specifies the field number at which the KFPUT subroutine places
DATA1 (data argument one). Any subsequent data arguments (DATA2...DATAnN) are
sequentially inserted in the following fields in the record buffer. Insertion can
begin with any field in the record, but DATA1..DATAn must correspond to the
record-format template from FLDNUM forward. Note that if FLDNUM plus n is
larger than the total number of fields in the record, a record-buffer-overflow error
occurs. If overflow occurs, none of the data arguments are placed into the record
buffer.

The data arguments are used to pass data to the record buffer from the BASIC

program. If no data arguments are specified and the INIT argument is set equal to
1, the subroutine only initializes the record buffer.

2308769-9701

12.4.6.6 KFWRIT — Write Keyed File.

BASIC Subroutine Library

This subroutine writes the contents of the record buffer to
a keyed file. The subroutine uses the keys specified in the buffer to search for the appropriate record
within the file. To execute this subroutine, use the following CALL statement:

CALL “.KFWRIT”(DUMY,STAT,UNITNO,IMMED,REP)

Argument details are summarized below:

Argument Type

DUMY Integer
STAT Integer
UNITNO Integer
IMMED Integer
REP Integer

1o

Input
Output
Input
Input

input

Use

Reserved for future use
Subroutine error status
Unit number assigned to keyed file
Immediate write option code:*
0 = No immediate write
1 = Immediate write
Record replace code:*
0 = Do not replace record
1 = Replace record

* Argument notes and special considerations:

IMMED This argument specifies whether the write operation causes a page to be written
to disk immediately. If you select the immediate option, the subroutine updates
records on disk as soon as the modification is made. Otherwise, the subroutine
does not update files on disk until a page is forced back to disk or the file is
closed. Using the immediate option can result in slower subroutine execution

times due to frequent disk 1/O.

REP If this argument equals 0, the subroutine writes the record into the file only if it
does not already exist. If this argument equals 1, the subroutine writes the record
to the file whether or not a record with the specified key already exists.

2308769-9701

1219

BASIC Subroutine Library

12.4.6.7 KFREAD — Read Keyed File.

This subroutine reads a specified record from a keyed filie

into the record buffer. You specify whether to search the file for a record specified by a unique key
value or to search the file sequentially for the next higher or next lower record. You can access the
data contained in the record buffer by calling the KFGET subroutine. To execute this subroutine, use

the following CALL statement:

CALL “.KFREAD”(DUMY,STAT,UNITNO,OP,KEY1,< KEY2,KEY3,...KEYn>)

Argument details are summarized below:

Argument Type

DUMY Integer
"STAT Integer
UNITNO Integer
oP Integer
KEY1 Any
KEY2 Any
KEYn Any

/o

Input
Output
input
Input

Input
Input

Input

Use

Reserved for future use
Subroutine error status

Unit number assigned to keyed file
Operation code for subroutine:*

0 = Find record equal to key

1 = Find record less than or equal to key

2 = Find record greater than or equal to key
3 = Find next record less than key

4 = Find next record greater than key

Required first key value
Optional second key value

Optional nth key value (n< = 10)

* Argument notes and special considerations:

OP This argument specifies whether the subroutine searches the file for a record with
a specific key value or searches the file for a record with the next lower or next
higher key value. If this argument equals 0, the subroutine reads the record with
the specified key value. If this argument equals 1, the subroutine reads the record
with the specified key or the next lower key if the record does not exist. If this
argument equals 2, the subroutine reads the record with the specified key or the
next higher key if the record does not exist. If the argument equals 3, the
subroutine reads the record with the next lower key value. If the argument equals
4, the subroutine reads the record with the next higher key value.

1220

2308769-9701

BASIC Subroutine Library

12.4.6.8 KFGET — Get Data from Record Buffer. This subroutine returns data in the form of
BASIC variables from the record buffer to the calling program. This subroutine is used in conjunc-
tion with the KFREAD subroutine to read the contents of keyed files. You must specify the starting
variable field number to be returned. A maximum of 10 data arguments can be returned per call, and
the data may be returned in nonsequential order. To execute this subroutine, use the foliowing CALL

statement:

CALL “.KFGET”(DUMY,STAT,UNITNO,FLDNUM,< DATA1,..DATAN>)

where:

1< =n< =10

Argument details are summarized below:

DATAN

2308769-9701

Argument Type o Use

DUMY Integer input Reserved for future use
STAT Integer Output Subroutine error status
UNITNO Integer Input Unit number of keyed file
FLDNUM Integer Input Starting field number

DATA1 Any Output Optional first data argument
DATAN Any Input Optional nth data argument*

* Argument notes and special considerations:

The data arguments are used to return data from the record buffer. The argument
must be of the same data type as the BASIC variable data contained in the record
buffer as defined in the record-format template. If the subroutine is used to return
string data, the calling arguments must be large enough to contain the data. The
argument should be initialized either to the length equal to or greater than that of
the data. If the argument’s length is less than that of the data, the former is filled
with asterisks. If the argument’s length is greater than that of the data, the former
contains the data and additional blanks to pad the remainder of the string. If you
have no indication of the length of the data string, you should use an argument
initialized to 255 characters.

The data arguments (DATA1 through DATAN) cannot be initialized to a zero-length
string, even though a zero-length string may exist in the record buffer. Data
arguments are filled with blanks if a corresponding element in the record buffer
has a zero length.

12-21

BASIC Subroutine Library

12.4.6.9 KFDELR — Delete Keyed File Record. This subroutine deletes a record within a keyed
file. You must specify the keyed file unit number and the key value(s) of the record to be deleted. You
can specify whether the record is deleted immediately or at page replacement or close. To execute

this subroutine, use the following CALL statement:

CALL “.KFDELR”(DUMY,STAT,UNITNO,IMMED,KEY 1,< KEY2,KEY3,....KEYn>)

Argument details are summarized below:

Argument Type
DUMY Integer
STAT Integer
UNITNO Integer
IMMED Integer
KEY1 Any
KEY2 Any
KEYn Any

o

Input
Output
Input
Input

Input
Input

Input

Use

Reserved for future use
Subroutine error status
Unit number of keyed file
Delete immediate code:*
0 = No immediate delete
1 = Immediate delete
Required first key value
Optional second key value

Optional nth key value (n< = 10)

* Argument notes and special considerations:

IMMED This argument specifies whether the delete operation causes a page to be written
to disk. If you select the immediate delete option, the subroutine deletes the
record from the disk immediately. If you do not select the immediate delete option,
records are not deleted until a page is forced back to disk or the file is closed.
Using the immediate option can result in slower subroutine execution times due

to frequent disk 1/O.

12-22

2308769-9701

BASIC Subroutine Library

12.4.6.10 KFCLOS — Close Keyed File. This subroutine closes a specified keyed file. It operates
in a manner similar to that of the BASIC CLOSE statement. After a file is closed, it is unavailable for
access (either read or write) until the KFOPEN subroutine opens it. If you did not select the im-
mediate write option in the KFWRIT subroutine, the KFCLOS subroutine writes all pages containing
modified records to the disk before closing. To execute this subroutine, use the following CALL
statement:

CALL “.KFCLOS”(DUMY,STAT,UNITNO)

Argument details are summarized below:

Argument Type 1] Use

DUMY Integer Input Reserved for future use

STAT Integer Output Subroutine error status
UNITNO Integer Input Unit number of file to be closed

12.4.7 Keyed File Example

Figure 12-2 illustrates the use of the KFP subroutines in a BASIC program. This example allows you
to build a keyed file containing names and telephone numbers. You access the phone numbers by
name.

To build the keyed file application, the following assumptions were made about the data:
. The phone directory will contain a maximum of 100 entries (records).
. Each entry (record) will consist of a last name and phone number.

— The last name will be the key field and can be up to 40 characters (bytes) in length. it
is a string data item with a length of 41 bytes (40 character bytes plus one length
byte).

— The phone number will be a data item and can be up to 14 characters (bytes) in

length. It is a string data item with a length of 15 bytes (14 character bytes plus one
length byte).

2308769-9701 12-23

BASIC Subroutine Library

You must set up the KFP data base buffer, either by using the BLDBUF subroutine or by using a
utility such as the one in Figure 12-2. The following formula is used to calculate the size of the buf-

fer. To keep the size of the buffer small, the number of pages contained within the buffer (M) has
been set to the minimum value of two.

BUFFER SIZE = 26 + ((140+K) * N) + (M * (P +12))

where:
K = ((R+F)+ 1) AND -2) = (((56 + 2) + 1) AND -2) = 58 bytes
R = record buffer size = maximum record size = 56 bytes
F = maximum number of data fields = 2
N = number of files = 1
M = number of pages in buffer = 2
P = page size = 256 bytes

BUFFER SIZE = 26 + ((140+58) * 1) + (2 * (256 + 12)) = 760 bytes

Enter the value 760 in response to the BUFFER SIZE prompt of the sample Build Buffer utility in

Figure 12-2; note that in Figure 12-2, KFP is a synonym for the directory containing the KFFP
subroutines.

After you build the KFP buffer (Figure 12-2), the system can run the following program (Figure 12-3).

12.24 2308769-9701

BASIC Subroutine Library

100 INTEGER ALL

110 LIBRARY "*KFP.BLDBUF"

120 DISPLAY ERASE ALL AT(1l,1)"CSD BASIC KFP BUFFER UTILITY"
130 DISPLAY AT(2,8)"FILE PATHNAME: .KFPBUF"

140 DISPLAY AT(3,8)" BUFFER SIZE: "

150 DISPLAY AT(4,8)"REPLACE(Y/N)?: N"

160 DISPLAY AT(5,8)" OK(Y/N/Q)2: "

170 C¢=23

180 DISPLAY AT(24,1)

190 ACCEPT AT(2,C)SIZE(-48)"":P$

200 ACCEPT AT(3,C)SIZE(-6)"":52$

210 IF NOT NUMERIC(SZ$) THEN 200

220 IF VAL (SZ$)>32766 THEN 200 ELSE S2=VAL(S2$)

230 SZ=((SZ+1) AND -2)

240 DISPLAY AT (3,C)STRS (SZ)

250 ACCEPT AT (4,C)SIZE(-3)"":RPS

260 RP=POS ("NY",SEGS$ (RPS,1,1) ,1)

270 IF RP=0 THEN 250 ELSE RP=RP-1

280 ACCEPT AT(5,C)SIZE(-3)"":0K$

290 OK=POS ("NYQ",SEGS$ (OK$,1,1) ,1)+1

300 ON OK GOTO 280,180,320,310

310 STOP

320 ER=0

330 DISPLAY AT(24,1)"== UTILITY EXECUTING =="

340 CALL "KFP.BLDBUF" (P$,SZ,RP,ER)

350 DISPLAY AT (24,1)

360 [F ER=0 THEN DISPLAY AT(24,1)"** UTILITY COMPLETE **".;:: GOTO 400
370 IF ER>=1000 THEN DXER$=" (DX "&HEXASCS (ER-1000)&")" ELSE DXERS$=""
380 EM$="** ERROR RETURNED: #"&STRS(ER)&" "&DXER$&" **"

390 DISPLAY AT(24,1)EMS;

400 DISPLAY BELL; :: AS=INKEYS(0)

410 IF ASC(A$)=141 OR ASC(A$)=160 THEN 180
420 IF ASC(A$)=155 THEN 310 ELSE 400

430 1

440 DEF HEXASCS (I)

450 DIM CNS$(7)::CNS$(0)="8"::CNS$(1)="9"

455 FOR W=2 TO 7::CNS (W) =CHRS (W+63) : :NEXT W

460 IF I<0 THEN FLG=-1::%2=T AND 32767 ELSE 2=I::FLG=0
470 H$=""

480 FOR J=1 TO 4

490 X=INT(Z/16) :: Y=Z-(X*16) :: Z2=X

500 IF Y<10 THEN Y=Y+48 ELSE Y=Y+55

510 H$=CHRS (Y) &HS

520 NEXT J

530 IF FLG THEN HEXASCS$=">"&CNS$ (VAL (SEGS$ (HS,1,1)))&SEGS$ (HS,2,3) ::GOTO 550
540 HEXASCS=">"&HS

550 FNEND

Figure 12-2. Sample Build Buffer Utility

2308769-9701 1225

BASIC Subroutine Library

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700

12-26

INTEGER ALL :: LIBRARY "*KFP.KFPBUF"
LIBRARY "KFP.KFOPEN","KFP.KFINIT","KFP.KFCREA"," *KFP.KFPUT"," *KFP.KFWRIT"

LIBRARY "*KFP.KFREAD","*KFP.KFGET","KFP.KFDELR","KFP.KFCLOS"
fhkkkhkhkhkhkkkkhkhkkxhxk® ITNITIALIZE KFP *khxkhkdkhhkhhhhhhhhhhhdhdorhhkhkkdkhkhkk

1

DUMY=1 :: STAT=0 :: NUMPG=0 :: MAXPGZ=256

RECSIZ=56:: NUMFLD=2 :: NUMFIL=1

CALL "KFP.KFINIT" (DUMY,STAT,NUMPG,MAXPGZ,RECSIZ,NUMFLD,NUMFIL)

IF STAT>0 THEN DISPLAY "KFINIT status = ";STAT :: STOP

| Rk Kk A RKKRK AR KRRk * KX * k%% CREATE/OPEN FILE ***%kdkdkdhkdhhddhhdhbhhhshdshdhhk
1

DUMY=1 :: STAT=1 :: PATH$="KFP.FILEP" :: PGSIZ=256 :: ACCESS = 0
MAXKEY=41 :: ALLOC=35 :: RPTS="S$,$" :: KFTS$S="l1l:Up"

ACCEPT"DO YOU WANT TO CREATE THE DIRECTORY? (Y/N)":CRS$

IF CRS$="Y" THEN 250 ELSE 350

PRINT ERASE ALL

PRINT "The number of pages in the data base buffer = "; NUMPG
PRINT

PRINT " If the number is not optimal, modify the "

PRINT " data base buffer size using the BLDBUF subroutine"
PRINT :

ACCEPT "*** Press RETURN to Continue ***".CRS

DEL PATHS

CALL"KFP.KFCREA" (DUMY,STAT,PATHS,PGSIZ,MAXKEY,ALLOC, RFTS,KFTS)
IF STAT>0 THEN DISPLAY "KFCREA status = ";STAT :: STOP

CALL "KFP.KFOPEN" (DUMY,STAT,PATHS,UNITNO,ACCESS)

IF STAT>0 THEN DISPLAY "KFOPEN status = ";STAT :: STOP
!*********************** MENU SECTION khkkhkkhkhkhkdkkhkkhkkhkhkkhkkhkkhkkhhkhkhhkkhkhkhkkhki
1

DISPLAY ERASE ALL

DISPLAY AT(5,15)" PHONE NUMBER DIRECTORY - Menu"
DISPLAY AT(7,20)" A - ADD ENTRY "

DISPLAY AT(8,20)" D - DELETE ENTRY "

'DISPLAY AT(9,20)" F - FIND NUMBER "

DISPLAY AT(10,20)" E - EXIT DIRECTORY"

DISPLAY

ACCEPT AT(15,20)" ENTER CODE FROM ABOVE MENU ":C$

IF C$="A" THEN 580
IF C$="D" THEN 700
IF C$="F" THEN 780

IF C$="E" THEN 530 ELSE GOTO 390
Ihkkkdkhkhhkkhhkkkkkhkkkkxk*x**x OLOSE FILE *****hkkhhkhhrhkhhkhhhhhhhhkhhhhhhohohkd
1

éALL "KFP.KFCLOS" (DUMY, STAT,UNITNO)

IF STAT>0 THEN DISPLAY "KFCLOS status = ";STAT :: STOP

STOP

| hkkkkhkkkkkkkkkkkkx% WRITE RECORDS SECTION **kkhkkkdkkkkhhhhhrhhhhhrhhhhhhkhd
X .

DISPLAY ERASE ALL

ACCEPT "ENTER THE LAST NAME " :NAMES

ACCEPT "ENTER THE PHONE NUMBER " :NUMBERS

INIT=1 :: FLDNUM=1

CALL "KFP.KFPUT" (DUMY,STAT,UNITNO, INIT,FLDNUM,NAMES ,NUMBERS)

IF STAT>0 THEN DISPLAY "KFPUT status = ";STAT :: STOP
IMMED=0 :: REP=1
CALL "KFP.KFWRIT" (DUMY,STAT,UNITNO, IMMED, REP)
IF STAT>0 THEN DISPLAY "KFWRIT status = ";STAT :: STOP
GOTO 390
Thkkkkkhkkkkhkkhkkkhkk DELETE RECORDS SECTION kkkhkkkhkkhkhkkhkhkhkhhkhhkhhkhkhxrhkhhhhdid
!
IMMED=0
Figure 12-3. Keyed File Example (Sheet 1 of 2)

2308769-9701

710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900

BASIC Subroutine Library

ACCEPT "ENTER THE NAME TO BE DELETED ":NAMES$
CALL "KFP.KFDELR" (DUMY,STAT,UNITNO,IMMED,NAMES)
IF STAT=377 THEN DISPLAY "RECORD DOES NOT EXIST ":: GOTO 880

IF STAT>0 THEN DISPLAY "KFDELR status = ";STAT :: STOP

GOTO 390

|*hkkkkkkkkkkkkk®k*%* READ RECORDS SECTION *hkdkikkkhkhdkhkkahhhhhhhrhhhihhd
1

NAME $=" " +: ACCEPT "ENTER THE LAST NAME " :NAMES$

OoP=0 :: NUMBERS= " "

CALL "KFP.KFREAD" (DUMY,STAT,UNITNO,OP,NAMES)

IF STAT=377 THEN DISPLAY "RECORD DOES NOT EXIST" :: GOTO 880
IF STAT>0 THEN DISPLAY "KFREAD status =";STAT :: STOP
NUMBERS$=" " :: FLDNUM=1

CALL "KFP.KFGET" (DUMY,STAT,UNITNO,FLDNUM,NAMES ,NUMBERS)

IF STAT>0 THEN DISPLAY "KFGET status =";STAT :: STOP
DISPLAY ERASE ALL

DISPLAY AT (10,20) NAMES;" " : NUMBERS
-ACCEPT "press RETURN to continue" :A$
GOTO 390

STOP

Figure 12-3. Keyed File Example (Sheet 2 of 2)

23087699701 12-2712-28

Appendix A

Keycap Cross-Reference

Generic keycap names that apply to all terminals are used for keys on keyboards throughout this
manual. This appendix contains specific keyboard information to help you identify individual keys
on any supported terminal. For instance, every terminal has an Attention key, but not all Attention
keys look alike or have the same position on the keyboard. You can use the terminal information in
this appendix to find the Attention key on any terminal.

The terminais supported are the 931 VDT, 911 VDT, 915 VDT, 940 EVT, the Business System
terminal, and hard-copy terminals (including teleprinter devices). The 820 KSR has been used as a
typical hard-copy terminal. The 915 VDT keyboard information is the same as that for the 911 VDT
except where noted in the tables.

Appendix A contains three tables and keyboard drawings of the supported terminals.

Table A-1 lists the generic keycap names alphabetically and provides illustrations of the
corresponding keycaps on each of the currently supported keyboards. When you need to press
two keys to obtain a function, both keys are shown in the table. For example, on the 940 EVT the
Attention key function is activated by pressing and holding down the Shift key while pressing the
key labeled PREV FORM NEXT. Table A-1 shows the generic keycap name as Attention, and a
corresponding iHustration shows a key labeled SHIFT above a key named PREV FORM NEXT.

Function keys, such as F1, F2, and so on, are considered to be already generic and do not need
further definition. However, a function key becomes generic when it does not appear on a certain
keyboard but has an alternate key sequence. For that reason, the function keys are included in the
table.

Multiple key sequences and simultaneous keystrokes can also be described in generic keycap
names that are applicable to all terminals. For example, you use a multiple key sequence and
simultaneous keystrokes with the log-on function. You log on by pressing the Attention key, then
holding down the Shift key while you press the exclamation (!) key. The same information in atable
appears as Attention/(Shift)!.

Table A-2 shows some frequently used multiple key sequences.

Table A-3 lists the generic names for 911 keycap designations used in previous manuals. You can
use this table to translate existing documentation into generic keycap documentation.

Figures A-1 through A-5 show diagrams of the 911 VDT, 915 VDT, 940 EVT, 931 VDT, and Business
System terminal, respectively. Figure A-6 shows a diagram of the 820 KSR.

2274834 (1/14)

2308769-9701 Change 1 A-1

Keycap Cross-Reference

A-2

Table A-1. Generic Keycap Names
Business
. 911 940 931 820!
Generic Name System
VDT EVT VDT Tormimal KSR
Alternate
Mode None None
Attention?
Back Tab None
Command?
Control CONTROL é
£ w»zmwxcw
Delete
Character none
Enter
Erase Field

Notes:

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions.

*On a915 VDT the Command Key has the label F9 and the Atiention Key has the label F10.

2284734 (2/14)

(

>hange 1

2308769-9701

Keycap Cross-Reference

Table A-1. Generic Keycap Names (Continued)
Business
. 911 940 931 820
Generic Name System
VDT EVT - VDT Terminal KSR

Erase Input

Exit

Forward Tab

F1

F2

F3

F4

Notes:

"The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service

Routine (DSRY). Keys on other TPD devices may be missing or have different functions.

2284734 (3/14)

2308769-9701

Change 1

A-3

Keycap Cross-Reference

Table A-1. Generic Keycap Names (Continued)

Business

. 911 940 931 820
Syst

Generic Name VDT EVT VDT T KSR

F5

Fé

F7

F8

F9

F10

Notes:

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service

Routine (DSR). Keys on other TPD devices may be missing or have different functions.

2284734 (4714)

Change 1

2308769-9701

Keycap Cross-Reference

Table A-1. Generic Keycap Names (Continued)

Business
. 911 940 931 820'
Generic Name System
VDT EVT VDT Terminal KSR

4

F11 CON%ROL

SHIFT

F12

F13

F14

Home

Initialize Input

Notes:

'"The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions

2284734 (5/14)

2308769-9701 Change 1 A5

Keycap Cross-Reference

A-6

Table A-1. Generic Keycap Names (Continued)
911 940 931 Business 820"
Generic Name System
VDT EVT VDT Terminal KSR
Insert None
Character
NQXt None
Character
Next Field
Next Line
Previous None
Character
Previous Field None
Notes:
'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device-Service
Routine (DSR). Keys on other TPD devices may be missing or have different tunctions
2284734 (6/14)
2308769-9701

Change 1

Keycap Cross-Reference

Table A-1. Generic Keycap Names (Continued)

911 940 931 Business 820"

System
VDT EVT VDT Terminal KSR

Generic Name

Previous Line

Print

Repeat

Return

Shift

Skip

Uppercase
Lock

Notes:

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions.

*The keyboard is typamatic. and no repeat key is needed.

2284734 (7:/14)

2308769-9701 Change 1 A-7

Keycap Cross-Reference

Table A-2. Frequently Used Key Sequences

Function Key Sequence
Log-on Attention/(Shift)!
Hard-break Attention/(Control)x
Hold Attention
Resume Any key

Table A-3. 911 Keycap Name Equivalents

911 Phrase Generic Name
Blank gray Initialize Input
Biank orange Attention
Down arrow Next Line
Escape Exit
Left arrow Previous Character
Right arrow Next Character
Up arrow Previous Line

2284734 (8/14)

A-8

Change 1

2308769-9701

10/6-69280€¢

} @abueyd

6-v

SPECIAL CONTROL
A

[—

el]

oS W SSERE Lot

CURSOR CONTROL
AND EDIT

2284734 (9/714)

Figure A-1.

Vv
DATA ENTRY

911 VDT Standard Keyboard Layout

NUMERIC PAD

89Us19)8H-S5010) deoAs)y

>
—
=)
FUNCTION
KEYS STATUS LEDS
A A
/ N/ AN
o O O O
IDLE EXEC TEST COMM
o O o O
ERR MODE DSO1 DSO2
[e)
=
)
]
@
o
b

\
—/ / \ - /
CURSOR CONTROL NUMERIC
AND EDIT KEYS « , KEY PAD

Y,

DATA ENTRY
KEYS

2284734 (10,14)

Figure A-2. 915 VDT Standard Keyboard Layout

1026-69280¢€2

80uadI8jay-SS01D drohay

L026-69280¢€¢

t abueyn

LY

— S, g, p—— | Np——, [N—, S p—— | N—— T, S, S Sy, TR TR TR
fna Fla F15 F16 F17 F18 F19 F20 F21 F22 g8l F23 F24 SEND It Rk [ﬁktg
L F2 F3 F4 5 6 F7 F8 9 F10 il FM1 F12 £of ;] O ;[INPUT i
‘)m. Bounnnin X P00t s Piomoomot Podoaaooe® Viomansxes VRXx0000oR Wouoauas® Voo V00000t Paoooood™ Priooo0ost! SOPARRRRARRZID m& P oo’ Padocmnott

Powroedt

R —

3
lmnri
B..

oe STAILS SR oporr ey smoord DSV gpec KEY MARGIN MEBE oo ouicine et RSN

1B HBBNEeE . L2130
70789l -
4 5 6 ,
1283}

2284734 (11/14)

Figure A-3. 940 EVT Standard Keyboard Layout

90U818)9Y-SS01D dBohaYy

Ly

F1

STATUS

9oUsI9y8Y-88010) drohs))

L abueyn

2284734 (12,1 4)

10.6-69/80€C

Figure A-4. 931 VDT Standard Keyboard Layout

10,6-69280¢€2

| ebueyn

€LV

Boconnh

2284734 (13/14)

lmst‘, ERASE

FIELD : lﬂ?lﬂE
] Nebatl N

Figure A-5. Business System Terminal Standard Keyboard Layout

90U8d19)aY-s5010 deaksyf

vi-v

1 ebBueyd

10.,6-69.80€2

(3] (] [y

2284734 (14/14)

Figure A-6. 820 KSR Standard Keyboard Layout

:! + SPACE] | TaB
(74t o]
=
(1H[2}(3

)

B0UBI9jaY-SS04D drahay

Appendix B
ASCII Character Set

Table B-1 lists the ASCII characters and graphics characters supported by Tl BASIC. The ASCII
value is either the value returned when the convert-ASClI-to-decimal function (ASC) is applied to the
character or the argument of the CHR$ function that returns the corresponding character.

In BASIC, the codes 7,10, and 13 produce control actions instead of graphics. Adding 128 to these
values results in graphics. BASIC subtracts 128 from the codes greater than 127 to determine which
graphic to display. The statement PRINT CHR$(l) following tables when | has the value indicated in
the I-code column. You can determine the characters that can be displayed on a given system by
entering the following program:

FOR 1=0 TO 255 :: PRINT L;,CHR$(l) :: NEXT 1
Table B-1 shows the output of this program. In the above program, the output is indexed by the value
of | for easy reference.
NOTE

Graphics characters are not displayed on the screen for BASIC for
the following codes:

Code Description
07 The beeper is sounded and nothing is displayed.
10 Nothing is displayed.
13 A new line is started.

2308769-9701 B-1

ASCII Character Set

Table B-1. ASCII Character/Graphic Character Codes

| ASCIl DISPLAYED 1 DISPLAYED
CODE CHARACTER ¥ CHARACTER CODE CHARACTER

00 NUL - 32 SPACE

01 SOH - 33 !

02 STX - a4 i

03 ETX [] 35 #(£ FORU.K.)

04 EOT (] 36 $ (X{ SWEDISH)

05 ENQ 1 37 %

06 ACK l 38 &

07 BEL l 39 !

08 8s l 40 (

09 HT I a)

10 LF r a2 ¢

11 vT 1 43 +

12 FE ' 44 .

13 CR ‘ a5 -

14 so ',l“ 46 .

15 s1 - 47 /

16 DLE) 48 0

17 [»Yet| ' 49 1

18 Dcz » 50 2

19 DC3 - 51 3

20 DC4 - 52 4

21 NAK - 53 5

22 SYN - 54 5

23 ETB - 55 7

24 CAN + 56 8

25 EM l 57 9

26 suB 1 58 H

é7 ESCXX r 59 ;

28 Fs ‘ 60 <

29 Gs | 61 =

30 RS \ 62 >

31 us I I 63 ?
*THE ASCII CHARACTER DIFFERS FROM THE DISPLAYED CHARACTER

2280068 FOR CODES 00 ~ 31 ONLY.

2308769-9701

2308769-9701

ASCII Character Set

Table B-1. ASCII Charact_erIGraphic Character Codes (Continued)

U.S. U.K.
FRANCE DENMARK SWEDEN
JAPAN GERMAN NORWAY FINLAND
1 DISPLAYED | DISPLAYED DISPLAYED | DISPLAYED
CODE CHARACTER | CHARACTER | CHARACTER | CHARACTER

64 @ @ @ £ (SWEDISH)
65 A A A A

66 B B B B

67 c c c c

68 D D D D

69 E E E E

70 F F F F

71 G G G G

72 H H H H

73 1 I I 1

74 J J J J

75 K K K K

76 L L L L

77 M M M M

78 N N N N

79 o o o (o)

80 P P P P

81 Q Q Q Q

82 R R R R

83 s. S s S

64 T T T T

85 U u v u

86 v \% Y v

87 w w w w

88 X X X X

89 Y Y Y Y

90 z z z z

91 C A ~ A

92 \ o) o o]

93 3 U A A

94 A A A U (SWEDISH)
95 - - - _

2280066

B-3

ASCII Character Set

B-4

Table B-1. ASCIHl Character/Graphic Character Codes (Continued)
U.S. U.K.
FRANCE DENMARK SWEDEN
JAPAN GERMAN NORWAY FINLAND
I DISPLAYED DISPLAYED | DISPLAYED | DISPLAYED
CODE CHARACTER | CHARACTER | CHARACTER | CHARACTER

96 \ \ \ € (SWEDISH)
97 a a a a

98 b b b b

99 c c c c

100 d d d d

101 e e e e

102 f f f f

103 9 q 9 9

104 h h h h

105 ' i ! |

106 i i j i

107 k k k k

108 | | | |

109 m m m m

110 n n n n

111 o [=] o [+]

112 p p P P

113 q q q q

114 r r r r

115 S s S s

116 t t t t

17 u u u u

118 v \% v v

119 w w w w

120 X X X X

121 Y A A A

122 z z z z

123 { a & a

124 : o 4 o

125 } u a a

126 ~ B ~ u

127 DEL DEL DEL. DEL

2280065

2308769-9701

ASCII Character Set

Table B-1. ASCII CharacterlGraphic Character Codes (Continued)

JAPANESE JAPANESE JAPANESE JAPANESE

I DISPLAYED I DISPLAYED 1 DISPLAYED 1 DISPLAYED
CODE CHARACTER CODE CHARACTER CODE CHARACTER CODE CHARACTER
128 - 160 NONE 192 T OTA 224 ?
129 - 161 [o] 193 # CHI 225 |
130 s 162 I 194 W TSU 226 “
131 [| 163 I 195 F TE 227 =
132 i 164) 196 b 228 "8
133 | 165 197 T NA 229 %
134] 166 - 198 NI 230 &
135 I 167 - A 199 7 NU 231 ’
136 l 168 1 200 ¢ NE 232 (
137 I 169 " U 201 7+ No 233)
138 r 170 IE 202 N HA 234 .
139 1 171 4 O 203 E HI 235 *
140 T 172 P YA 204 27 FU 236 '
141 k 173 1 YU 205 " HE 237 -
142 f 174 3 YO 206 * HO 238
143 - 175 W TSU 207 7 MA 239 .

144 1 176 - 208 = Ml 240 0
"145 ' 177 - A 208 4 MU 241 1
146] 178 i 210 1 ME 242 2
147 n 179 - U 211 £ MO 243 3
148 - 180 T E 212 T YA 244 4
149 - 181 + 0 213 1 yu 245 5

150 - 182 n KA 214 3 vo 246 6
151 L] 183 ¥ Kt 215 5 RA 247 7
152 + 184 7 KU 216 y ORI 248 8

153 l 185 5 KE 217 ¥ RU 249 9

154 1 186 1 Ko 218 I RE 250

155 ’ 187 4 SA 219 o RO 251

156 i 188 3 SHI 220 7 WA 252 >

157 ‘ 189 X su 221 o N 253

158 \ 190 v SE 222 " 254 >

150 I | 191 v so 223 o 255 DEL

2280064
B-5/B-6

2308769-9701

Appendix C

BASIC Reserved Word List

The following are reserved words for TI BASIC.

2308769-9701

ABS
ACCEPT
ALL
AND
APPEND
ASC
ASSIGN
AT

ATN

BASE
BELL
BREAK
BRK
BRKPNT
BYE
CALL
CHR$
CLOSE

COSs
DAT$
DATA
DECIMAL
DEF
DEL
DELETE
DIM
DISPLAY

DUP
EDI
EDIT
ELSE
END
EOF
ERASE
ERR
ERROR

ESUB
EXP
FIXED
FNEND
FOR

FREESPACE

FTYPE
GO
GOSuUB

GOTO

IF

IMAGE
INKEY
INKEY$
INPUT
INT
INTEGER
INTERNAL

KEY
KEYED
LEN
LET
LIBRARY
LIS

LIST
LOCK
LOG

MAIN
MER
MERGE
NEW
NEXT
NOT
NUM
NUMBER
NUMERIC

OLD

ON

OPEN
OPTION

OR

OUTPUT
PERMANENT
POS

PRINT

PUNCTUATION
RANDOMIZE
READ

REAL

REC
RELATIVE
REM

REN

RENAME

REPRINT
RES
RESEQUENCE
RESTORE
RETURN

RND

RPT$

RUN
SAV

SAVE
SCRATCH
SEG$
SEQUENTIAL
SGN

SIN

SIZE

SPAN
SQR

CA1

BASIC Reserved Word List

c-2

STEP
STOP
STR$
SuB
SUBEND
SUBEXIT
TAB

TAN
TEMPORARY

THEN
TIMES
TO

TRA
TRACE
UNE
UNBRKPT

UNLOCK
UNT

UNTRACE
UPD
UPDATE
UPRC$
USING
VAL
VARIABLE

23087699701

Appendix D

Error Messages and Codes

D.1 INTRODUCTION

This section lists and describes the BASIC error messages. The format for BASIC error messages is
as follows:

ERROR # error__number IN line_number
WARNING # error__number IN line_number
STOPPED IN line_number

The error__number parameter specifies a particular error encountered. The text following the
number in the table describes conditions that cause the error. When IN line__number is included, it
specifies the line number of the statement being evaluated when the error was detected. Usually,
this line contains the error. If the error message results from a statement executed in immediate
execution mode, the IN line__number field is not displayed.

When an error message is encountered, the BASIC system does not attempt to recover. if no ON
ERROR statement is in effect, the system displays the error message and returns to command
mode. At this point, use the LIST command to list the indicated line number and then read the in-
dicated error description in Table D-1. If appropriate, examine the relevant variables by entering the
variable names and using the calculate function key.

When a warning message occurs, the BASIC system performs a recovery procedure. If no ON
ERROR statement is in effect, the system displays the error message and continues execution.
Table D-1 describes the recovery procedure for each warning message.

A STOPPED message appears if you press the breakpoint, break key, or step key. The program
remains stopped until you press the resume execution function key. :

The following is an example of a BASIC error message.

ERROR #6 IN 125

where:
ERROR indicates that there is no recovery procedure for the encountered error.
#6 indicates that the description of the error follows error number 6.
IN 125 indicates that the error was detected while executing a statement in line number

125.

2308769-9701 D-1

Error Messages and Codes

If this error message is displayed and no ON ERROR statement is in effect, the system returns to
command mode. Executing the command LIST 125 displays a statement that has one or more
references to the log function. By entering the arguments to each of the log function references and
pressing the calculate function key, you can determine the negative argument.

When an ON ERROR statement is in effect, an error message is not printed uniess a RETURN PRINT
statement is executed before the next error or warning is encountered. A program can easily dif-
ferentiate between errors and warnings because warning error codes are returned as the negative of
the error number when the ERR function is evaluated.

BASIC can detect operating system 1/O errors as well as BASIC program errors by using the ON
ERROR statement. If error trapping is not in effect at the time of an I/O error, the system returns an

error message consisting of the ERR value and the equivalent error code (hexadecimal). The follow-
ing example shows error trapping.

EXAMPLE

ERROR #1183 (OS > B7) IN LINE 120

The error code indicates that an attempt was made to access a locked record. Similar error
messages appear on the other Tl operating systems that support BASIC. To look up an error
message, refer to your operating system error message manual.

D-2 23087699701

Error Messages and Codes

Table D-1. BASIC Error Messages

Error Error
Number Message/Description
1 BREAKPOINT

The break execution key was pressed or the program en-
countered a breakpoint at the indicated line. Press the resume
execution key to resume execution of the program.

2 MISSING OR MISTYPED NUMBER
BASIC expected a numeric value, but the data was either miss-
ing or of the wrong type. An example of this is VAL(*A4”), where
VAL requires a character string representing a numeric value.

5 DIVISION BY ZERO
The indicated statement specifies division by zero. Execution
continues, using the largest number representable. Examine the
current values of divisors in the statement to determine which
one is zero, and modify the program appropriately.

6 LOG OF A NON-POSITIVE NUMBER
The LOG function in the indicated statement has a negative or
zero argument.

7 NEGATIVE NUMBER TO NON-INTEGER POWER
The statement specifies that a negative value be raised to a
noninteger power. Since this would result in a complex value, an
error occurs.

8 SQUARE ROOT OF NEGATIVE NUMBER
The square root function, SQR, has a negative argument.

10 ARITHMETIC OVERFLOW
A calculation produced a number that is greater than or equal to
1.E128. It has been replaced with the largest number the system
can handle, and execution continues.

11 INTEGER OVERFLOW
An attempt to calculate an integer value greater than 32,767 was
encountered, and execution stopped. You can change the
operand to type REAL to alleviate the problem.

12 DECIMAL OVERFLOW
This statement attempts to store a decimal value that exceeds
the limits imposed by scaling. This condition also resuits when
a DECIMAL statement has a scale size greater than 15.

2308769-9701 D-3

Error Messages and Codes

Table D-1. BASIC Error Messages (Continued)

Error
Number

Error
Message/Description

14

15

16

17

18

19

20

22

ERROR IN SYNTAX

The statement indicated has an error in its syntax. The error is
usually the result of a misspelled or misused keyword, an incor-
rectly placed or missing separator, or an improperly formatted
constant. Refer to the discussion of the appropriate statement
for the correct syntax. This can also indicate an error in the data
being read by the statement (for example, data elements not
separated by commas).

ERROR IN DIMENSION
In the indicated statement, the syntax is in error or the size of a
specified virtual array exceeds 65,536 elements.

STATEMENTS BETWEEN SUBPROGRAMS

The program contains statements after a SUBEND and before a
following SUB statement. Remove these statements, since they
cannot be executed.

NONTERMINATED QUOTED STRING
The statement contains a quote () that is not paired (for ex-
ample, CH$ = “ABC). Add the missing quote to the statement.

ILLEGAL CHARACTER DETECTED

The program in memory contains a character that is illegal in a
BASIC program. Either the program was generated outside the
BASIC system or a flaw has occurred in the storage media.

ILLEGAL KEYWORD FOR SAVE WITH LOCK

An attempt was made to save a program with the lock option
specified, which contains one of the following keywords:
MERGE, BRKPNT, UNBRKPNT, TRACE, UNTRACE. You should
remove these keywords from programs before saving them with
LOCK.

KEYWORD OUT OF CONTEXT OR SYNTAX ERROR

The statement contained a keyword where one was not ex-
pected. This error can result from using keywords as variable
names, as in ON THEN GOTO 40,50. If this is not the case, check
the syntax.

SYMBOL NOT FOUND OR CREATABLE

The statement contains a symbol that was never defined in the
program. A symbol becomes defined when it is the object of a
LET, READ, INPUT, ACCEPT, FOR, or CALL statement. Add a
statement that establishes the initial value of the variable. This
message also results if a program file is improperly specified.

2308769-9701

Error Messages and Codes

Table D-1. BASIC Error Messages (Continued)

Error Error
Number Message/Description
24 DATA TYPE MISMATCH

The statement contains a value that does not correspond to the
type required. For example, a numeric expression contains a
string constant or variable, a string expression contains a
numeric constant or variable, a statement references a virtual
array with a different type of variable from the one with which it
was created, or a statement references a subroutine or function
with arguments that do not correspond to the type with which it
was defined.

25 ERROR IN DECLARATION
This declarative statement is improperly positioned or formed.
For example, an OPTION BASE statement has neitheraOnora 1
argument, an ASSIGN statement includes an improperly named
variable, or a MERGE statement is not at the beginning of a pro-
gram.

28 MULTIPLY DECLARED OR USED VARIABLE

A variable appeared in more than one declaration. (For example,
INTEGER X::REAL X was referenced with a different number of
dimensions from that with which it was defined or was used as
a function and as a variable within the same program.) In some
cases, this error can occur when saving a program with LOCK
specified, even though the program executed with no error when
not locked. In these cases, an array has been referenced in a line
preceding the line in which it was defined (using a DEF,
INTEGER, REAL or DECIMAL. statement). The definition should
be moved to a line preceding the first reference to the array.

29 ILLEGAL FOR VARIABLE
The statement specified an array element or a string variable as
the index of a FOR statement; for example, FOR V(1)= 1 TO 5.

30 CANNOT ASSIGN TO FUNCTION NAME
The statement results in an attempt to read into a function
name while in command mode.

31 NO SUCH VIRTUAL ARRAY
The statement references a relative record file that was not
created with a virtual array. This also results when a command
references a virtual array element.

32 UNASSIGNED VIRTUAL ARRAY
The statement references an element of a virtual array for which
the ASSIGN statement has not been executed, or the virtual ar-
ray has been closed.

2308769-9701 D-5

Error Messages and Codes

Table D-1. BASIC Error Messages (Continued)

Error
Number

Error
Message/Description

D-6

33

36

37

39

40

42

43

ILLEGAL INPUT OR ACCEPT VARIABLE
An INPUT or ACCEPT statement executed in command mode
has the name of a function as an input variable.

IMAGE FIELD HAS OVER 14 SIGNIFICANT DIGITS

The specified image has more than 14 digits of precision
specified for a single field. Reduce the number of #s in the
image.

NO DATA FIELDS IN IMAGE

The specified image contains no data conversion fields, but
data is provided in the PRINT USING statement. Either add con-
version fields to the image or eliminate the variable list from the
PRINT USING statement.

OUT OF MEMORY

First attempt to increase the workspace. The present level of
usage will determine whether and to what extent an increase is
possible. Or, if this error occurs immediately after RUN, the
combination of program space and variables is too large.
Reduce the dimensions of arrays, change large arrays to virtual
arrays, or break the program into sections that link by means of
the RUN statement and communicate by means of files. If the
error occurs later in execution, the cumulative length of the
string variables is too large. Recover the space occupied by
inactive strings by setting the string to empty (for example,
AS=).

STACK OVERFLOW

The operation stack has exceeded its limits. This can be the
result of too many GOSUBs without a RETURN being executed,
too many recursive function calls, too many CALLs without a
SUBEND or SUBEXIT being executed, too many incomplete
FOR-NEXT loops, too many ON ERROR statements being
executed without a RETURN, or a complex expression.

FNEND NOT INSIDE A FUNCTION CALL

GOTO in a program branched into the definition of a function.
You can execute a function only by referencing the function
name in an expression. Correct the flow of the program. Use the
TRACE statement to help determine where the flow requires
correction.

NEXT WITHOUT FOR

GOTO has transferred control into the range of a FOR loop, and
a NEXT statement is encountered without the associated FOR
statement being executed. Executing with the TRACE feature
usually locates the point at which the flow was disrupted.

Change 1

23087699701

Error Messages and Codes

Table D-1. BASIC Error Messages (Continued)

Error Error
Number Message/Description
45 FOR/NEXT/DEF/FNEND INSIDE AN IF

An IF statement contains a FOR, NEXT, DEF, or FNEND.
Change the IF to branch to statements that contain the required
statement types.

46 TOO MANY ELSES
The statement contains more ELSEs than IFs. Restructure the
statement so that this does not occur.

47 SUBEND NOT INSIDE A CALL
The GOTO in a program has transferred control into a
subroutine and a SUBEND is encountered. You can enter
subroutines only by executing a CALL. Running the program
using TRACE should point out where the subroutine was
improperly entered.

48 RECURSIVE SUBROUTINE CALL
The program has called this subroutine a second time before its
SUBEND or SUBEXIT has been executed. Change the flow of the
program so that the subroutine will not be called again, or call
another subroutine that causes the first subroutine to be called.

49 MISSING SUBEND
The subroutine specified is not terminated by a SUBEND. Ap-
pend a SUBEND statement to the end of the BASIC program.

50 IMPROPER NESTING OF FORS AND DEFS
The program encountered a second DEF statement before en-
countering an FNEND statement for the DEF currently active,
the program encountered an FNEND between a FOR and its cor-
responding NEXT, or the statements bound by two FOR/NEXT
pairs overlapped instead of being nested or separate. Rearrange
the statements involved.

51 RETURN WITHOUT GOSUB OR ON ERROR
The program encountered a RETURN statement for which there
was no corresponding GOSUB or ON ERROR. Possibly, a GOTO
rather than an intended GOSUB was executed earlier in the
program.

52 ILLEGAL COMMAND IN AN EXTERNAL SUBROUTINE
You cannot use top-level commands within an external
subroutine, or one external subroutine cannot call another
within a program.

54 STRING TOO LONG — TRUNCATED

The concatenation operation resulted in a string over 255
characters long. The excess was lost, but execution continued.

2308769-9701 D-7

Error Messages and Codes

Table D-1. BASIC Error Messages (Continued)

Error
Number

Error
Message/Description

D-8

55

57

58

60

61

63

64

65

66

INPUT FIELD EXCEEDS AVAILABLE LINE LENGTH

The specified input prompt in an INPUT or ACCEPT statement
exceeds the number of characters available on the line. Modify
the program so that the string expression does not exceed the
acceptable length. Alternatively, if more characters are required,
issue a DISPLAY AT with the prompt message foliowed by an
ACCEPT AT with no prompt.

SUBSCRIPT OUT OF RANGE

A subscript reference exceeded the range of its dimensions; for
example, Q(12) =5, where the dimensions of Q are declared by
reference or specification to be less than 12. Specify the desired
maximum subscripts explicitly in a DIM statement.

WRONG NUMBER OF SUBSCRIPTS

The statement referenced an array with fewer or more
subscripts than were initially specified for the array. Each
dimension must have only one corresponding subscript in each
reference to the array.

LINE NOT FOUND

A transfer statement (for example, GOTO) has as its destination
a nonexistent statement. Either add the specified statement or
correct the transfer statement.

BAD LINE SPECIFICATION

You entered incorrectly a command that uses a line number in-
crement or line range, executed a RESEQUENCE command con-
taining an argument that is not a number or that results in a line
number greater than 32,759, or included a USING clause that
referenced a nonexistent line.

INDEX OUT OF RANGE
The argument of an ON ... GOTO statement is larger than the
number of line numbers given.

STEP/LINE NUMBER/RECORD SIZE CANNOT BE ZERO
The statement specified a step size in a FOR statement, a
record size in an OPEN statement, or a line number of 0.

ATTEMPT TO ACCESS PROTECTED PROGRAM
The statement attempts to list, save, or alter a protected
program.

DIRECT COMMAND TERMINATED

You executed a CALL or GOSUB statement in command mode
and pressed the continue function key, creating an ambiguous
execution sequence.

2308769-9701

Error Messages and Codes

Table D-1. BASIC Error Messages (Continued)

Error Error
Number Message/Description
67 CANNOT CONTINUE

You are attempting to continue from a fatal error or to begin pro-
gram execution by pressing the resume execution function key
without having entered the RUN command. Correct any errors
and enter the RUN command.

68 UNACCEPTABLE RESEQUENCE SPECIFICATIONS
The specifications for an RES are not acceptable. Either the
values are out of acceptable line number range or executing the
RES results in changing the relative position of statements in
memory (for example, RES 30000,10000).

69 COMMAND ILLEGAL IN PROGRAM
The command used in the indicated line can be used only in top-
level commands (for example, RES). Delete the statement.

70 CAN ONLY BE USED IN A PROGRAM
The command just entered (for example, DIM) can be used only
in a program.

71 NO LINE NUMBER

During the loading of a program, BASIC encountered a line
without a line number.

74 BAD ARGUMENT TO INTRINSIC FUNCTION/CALL
One of the arguments used in referencing a function or
subroutine does not have the attributes required by that pro-
cedure (e.g., negative string function indices).

75 WRONG NUMBER OF ARGUMENTS TO USER FUNCTION OR
SYSTEM SUBROUTINE
The statement references a user-defined function or system
subroutine with a different number of arguments than was
specified in the function or subroutine definition.

76 CAN'T CALL BY REFERENCE
An attempt was made to pass an array element in place of an ar-
ray. Either remove the subscript from the call or transmit it as a
separate parameter. Some other incidents of variable attribute
mismatches can also cause this error message.

77 CANNOT PASS VIRTUAL ELEMENT BY REFERENCE
The program is attempting to pass a virtual array element as an
argument. Enclose the argument in parentheses if it is a single
element.

2308769-9701 ' D9

Error Messages and Codes

Table D-1. BASIC Error Messages (Continued)

D-10

Error Error
Number Message/Description

78 NO PROGRAM TO SAVE
A SAVE command was entered but no program is in memory.
Verify this by entering the LIST command. Reenter the program.

79 INVALID USE OF FUNCTION
A user-defined function invocation may not be a parameter in a
CALL to an external subprogram.

30 TOO MUCH INPUT DATA
You have provided more data in an input line than is requested.
Reenter the entire corrected line.

81 TOO MANY VARIABLES IN CALL OR INPUT
More variables are specified in a CALL or INPUT statement than
are specified in the corresponding SUB statement or input
record.

83 TOO LITTLE INPUT DATA
You have supplied iess data than was requested. Reenter the en-
tire line.

84 OUT OF DATA
READ statements have exhausted the data provided in DATA
statements. Either restore the data pointer or add more DATA
statements and then run the program.

87 BASIC UNIT NUMBER OUT OF RANGE
You attempted to specify a BASIC unit number outside the legal
range (1 to 255); e.g., you attempted to close unit number 0.

89 BAD UNIT NUMBER SPECIFICATION
The program is attempting to perform /O using a file with an il-
legal logical unit number. Acceptable unit numbers are 1 to 255.
This error generally occurs in an OPEN statement.

90 UNIT NUMBER ALREADY ASSIGNED
The program is attempting to open a file using a logical unit
number that is already assigned to another file. Close the first
file before attempting to open the second, or specify another
logical unit number.

91 ILLEGAL OPERATION ON UNOPENED FILE

An INPUT, PRINT, CLOSE, or RESTORE statement is referencing
a logical unit number that is not associated with a currently
open file. Verify that the unit number used in the referenced
statement is the same one specified in the associated OPEN
statement.

2308769-9701

Error Messages and Codes

Table D-1. BASIC Error Messages (Continued)

Error
Number

Error
Message/Description

2308769-9701

92

96

101

104

105

106

107

108

ILLEGAL OPERATION IN BACKGROUND MODE (DX BASIC
ONLY)

The program running in background mode has attempted to
direct data to the terminal through a PRINT, ACCEPT, INPUT, or
DISPLAY statement.

FILE UNEXPECTEDLY CLOSED

During the evaluation of an input or output statement, the pro-
gram executed a function that closed the referenced file. Close
the file only after the statement has been completed.

ILLEGAL READ/WRITE TRANSITION

You attempted to proceed from a read operation to a write
operation or from a write operation to a read operation without
an intervening CLOSE or RESTORE. Close the file and reopen it,
or restore the file to the beginning. This error occurs only with
sequential files.

CANNOT APPEND TO RELATIVE FILE

The program is attempting to open a relative record file, specify-
ing the APPEND option. This option is valid only with sequential
files.

DESIRED 1/O VIOLATES OPEN MODE

The indicated 1/O operation conflicts with the mode specified
when the file was opened. A PRINT statement referenced a file
not opened OUTPUT, UPDATE, or APPEND. An INPUT or
ACCEPT statement referenced a file not opened INPUT or
UPDATE. An attempt was made to RESTORE a device. A REC
clause was used with a sequential file.

INVALID OPEN ATTRIBUTE MIX

The program has executed an OPEN statement with an illegal
combination of attributes (for example, RELATIVE, APPEND).
Refer to the OPEN statement discussion for legal combinations.

INCORRECT FILE TYPE

The program is attempting to open a file with specifications
different from those used when the file was created. This error
occurs if you attempt to open a relative record file with the
SEQUENTIAL specification implied or listed in the OPEN state-
ment, or vice versa.

IMPROPER LENGTH SPECIFICATION

The OPEN statement specified an illegal record length of less
than 2 or greater than 32,544 bytes. Also, if the record length is
fixed and the length specified is not equal to the length
specified when the file was created, this error results.

D-11

Error Messages and Codes

Table D-1. BASIC Error Messages (Continued)

D-12

Error Error
Number Message/Description

109 KEY FILE ERROR
The indicated key number is beyond the number of keys
specified when the file was created.

115 BAD VALUE IN A REC CLAUSE
This error appears when you are performing file /O if you supply
a value greater than five trillion or supply a negative value.

128 ERROR IN DISK OPERATION
BASIC detected an error during a disk operation. This error
message can indicate a bad area on the disk or a hardware
failure. Retry the operation.

135 UNKNOWN SUBPROGRAM
The CALL statement attempted to transfer program control to a
subprogram that could not be located. Refer to the discussion of
the CALL statement for the location and calling sequence of
subprograms.

138 DUPLICATE FILE NAMES
The user or program is attempting to create or rename a file by
using the name of an already existing file.

145 INVALID REAL NUMBER
The program is attempting to input data from a relative record
file but the data is inconsistent with the type of variables in the
input list.

148 END-OF-FILE

You attempted to read past the last record in a file.

23087699701

Error Messages and Codes

Table D-1. BASIC Error Messages (Continued)

Error Error
Number Message/Description

160 FATAL INTERNAL ERROR
Either the computer malfunctioned or an unanticipated se-
quence of events occurred. Please report this occurrence to your
Texas Instruments representative. This error is also generated if
you attempt to execute a program that was not saved in the LIST
format with an earlier system.

164 BAD LITERAL STRING
You used a non-ASCII character inside a literal string.

171 INTERNAL ERROR
This error should not occur. 1t indicates an error in Tl BASIC.

172 SYSTEM ERROR
A fatal error occurred in BASIC. BASIC terminates and returns
control to the operating system.

173 WORK FILE ERROR
A fatal error occurred in attempting to create or access the work
file. BASIC terminates and returns control to the operating
system. Make sure that the work file specified has adequate
available disk space and directory entries, and that the work file
volume is not write-protected.

174 OVERLAY FILE I/O ERROR
A fatal error; if BASIC is installed correctly, this is a system
error.

175 OVERLAY MANAGER STACK OVERFLOW
A system error. ‘

1000 OPERATING SYSTEM ERROR NUMBER

Error numbers greater than 1000 refer to operating system error
codes. The number of the error is equal to 1000 plus the decimal
equivalent of operating system error code. For example, the er-
ror number for DX10 error > B7 (decimal 183) is ERROR #1183.
For details, refer to the error messages and codes manual that
accompanies your operating system.

2308769-9701

D-13

Error Messages and Codes

D.2 SUBROUTINE ERROR MESSAGES

Table D-2 contains a description by subroutine of error codes returned by the KFP and sort
subroutines. This table contains both error codes returned by the subroutine error status argument
(STAT) and errors that may occur in the BASIC CALL statement.

Table D-2. Subroutine Error Messages

Error
Code Subroutine Meaning
0 All* Subroutine executed successfully; no error detected.

39 All* Subroutine required more freespace than was available. This error is
an error in the BASIC CALL statement.

74 All* One of the arguments used in calling the subroutine does not have the
attributes required by that subroutine. This may be the result of im-
proper data type (e.g., supplying a REAL value when an INTEGER value
is required), or improper argument initialization (e.g., supplying a
string whose length is less than that required by the subroutine or an
integer whose value is not within a required range). This error is an
error in the BASIC CALL statement.

75 All* Wrong number of arguments used when calling the subroutine. This
error is an error in the BASIC CALL statement.

80 All* The user has provided more data in an input line than is requested.
Reenter the entire corrected line.

86 All* A name has been specified that is not a properly formed or legal file
name, device name, or volume name.

97 All* Hardware protection violation. The user has attempted to write to a
disk protected from output.

107 All* Invalid file type. The user has attempted to sort a sequential file.

110 All* An attempt has been made to access a file in a manner contrary to its

‘ protection status (e.g., delete a write or delete protected file).

128 All* BASIC detected an error during a disk operation, which can indicate a
bad area on the disk or a hardware failure. Retry the operation.

129 All* An attempt has been made to perform 1/O with a disk drive without a
properly installed disk.

134 All* The user attempted to access a file that is not on the specified disk

D-14

drive or a device that is not in the system configuration.

23087699701

Error Messages and Codes

Table D-2. Subroutine Error Messages (Continued)

Error
Code Subroutine Meaning

148 All* The user has attempted to read beyond the last record of a file.

149 All* The program is attempting to write to a file beyond the space
allocated when the file was created. To write more data, copy the file
to a file with a larger allocation. This error occurs when the user at-
tempts to save a file in list format with insufficient space on the disk.

204 All* An attempt has been made to perform an operation that is illegal for
the specified device (e.g., input from an 810 printer).

275 SORT* Too many key fields (more than ten).

MERGE*
276 SORT* Key fields too long. The combined length of all of the key fields is
MERGE* larger than the size parameter.
278 SORT* Too many records to sort. See the subroutine sorting limits descrip-
tion in Section 12.
279 SORT* Too many variables in input record (more than 100 fields).
MERGE*

280 SORT* Not enough memory.
MERGE*

281 SORT* Error in key field description.
MERGE*

350 KFCLOS The KFP data base buffer is not configured into the system. Run the
KFOELR BLDBUF utility, then load the buffer file created by BLDBUF (see
KFGET Section 12).
KFINIT
KFOPEN
KFPUT
KFREAD
KFWRIT

351 KFCLOS An attempt has been made to execute a KFP subroutine prior to ini-
KFDELR tializing the data base buffer. Run the KFINIT subroutine to initialize
KFGET the buffer.
KFOPEN
KFPUT
KFREAD
KFWRIT

2308769-9701

D-15

Error Messages and Codes

Table D-2. Subroutine Error Messages (Continued)

D-16

Error
Code Subroutine Meaning
352 KFCLOS A KFP subroutine has attempted to access a file using an invalid file
KFDELR unit number.
KFGET
KFPUT
KFREAD
KFWRIT
353 KFCLOS A KFP subroutine has attempted to access an unopened file.
KFDELR
KFGET
KFPUT
KFREAD
KFWRIT
354 KFCREA The maximum key size argument (MAXKEY) is larger than ((page size
-6)/2)-2.
355 KFINIT The subroutine has been called with a keyed file currently open.
356 KFINIT The configured KFP data base buffer size is too small for the
parameters specified.
357 KFINIT One of the input values is too small or too large.
358 KFINIT The maximum record size supplied is greater than (page size -6)/2.
359 KFINIT The page or record size supplied has an odd value.
360 KFINIT The maximum number of fields supplied is greater than (record size)/2.
361 KFINIT The maximum number of files supplied is greater than (number of
pages)/2.
362 KFOPEN The maximum number of open files has been exceeded.
363 KFWRIT The record buffer is empty during execution of a write operation. The
KFPUT subroutine may not have been executed before the write.
364 KFOPEN The user has attempted to open a file not created as a KFP file.
365 KFOPEN The physical record size of this keyed file exceeds the maximum page
size.
366 KFCREA The field number argument is out of range.
KFGET
KFPUT
367 KFGET The supplied data arguments do not match the record format template
KFPUT used during file creation.

2308769-9701

Error Messages and Codes

Table D-2. Subroutine Error Messages (Continued)

Error

Code Subroutine Meaning

368 KFGET The user has attempted to access the record buffer prior to initializing
KFPUT it.

369 KFPUT The record buffer is too small to initialize for this keyed file (too many

data elements).

370 KFPUT The user has attempted to overflow the record buffer during the put
operation. No arguments have been placed in the buffer.

371 KFCREA A syntax error has occurred in the record field format template or in
the key field template, or the maximum number of fields in the
template has been exceeded (100 for record field template; 10 for key
field template). This error can also occur if the number of key fields ex-
ceeds the number of fields defined.

372 KFWRIT The user attempted to rewrite an existing record within the keyed file
without selecting the replace option.

373 KFDELR A page search error has occurred (e.g., the specified record cannot be
KFREAD found). If this error occurs, file integrity has probably been lost. Close
KFWRIT and then reopen the keyed file and retry the operation. If the error per-

sists, restore the file from the back-up media.

374 KFDELR The supplied key argument does not match the key type specified
KFREAD during file creation.

375 KFREAD An invalid read opcode was used.

376 KFREAD The keyed file record just read does not fit into the record buffer. The

contents of the buffer is unchanged.

377 KFDELR An attempt has been made to delete or read (equal) by a key that does
KFREAD not exist in the file.

378 KFWRIT The pending write operation may exceed the file allocation. Data is not

written to the file. Enlarge the file to accommodate more records.

379 KFREAD The read operation attempted to read beyond the end or beginning of
the file.

380 KFWRIT The concatenated length of the keyed field(s) exceeds the maximum

KFREAD composite key size established by KFCREA.
KFDELR
Note:

* These errors may have a prefix indicating that the error occurred on an input file (1XXX), output file
(2XXX), or work file (3XXX), where XXX indicates the error number. This notation occurs only with errors
returned by the sort subroutine.

2308769-9701 D-17/D-18

Appendix E
BASIC System Differences

E.1 INTRODUCTION
TI BASIC includes the following:

. DX10 BASIC — Operates on members of the Tl family of computers that use the DX10
operating system

. DNOS BASIC — Operates on members of the Tl family of computers that use the DNOS
operating system

. DX10 Micro BASIC — Operates on the Business System 200 computers that use the DX10
Micro (DXM) operating system

The following paragraphs identify system differences for users who are familiar with TI BASIC
. systems and for those who wish to become famiiiar with them for future use.

E.2 KEYBOARD AND FUNCTION KEYS

The keyboard and function keys vary according to the hardware configuration. Appendix | lists the
functions supported by each terminal device and specifies which keys control each function.

E.3 FILE CHARACTERISTICS

The following paragraphs describe the significant file characteristics that differ among the Ti
BASIC systems.

E.3.1 Temporary Files
DXM does not support temporary files; DX10 and DNOS do. If you attempt to create a temporary file
on a system using the DXM operating system, an error message appears.

E.3.2 DXM File Size Restrictions

The size of buffers on the DXM operating system limits the size of files you can use. Any attempt to
open a file exceeding the maximum record length results in an overflow of the system table area.
The preferred physical record length for files on the Winchester disk is 256; the preferred physical
record size for files on an 8-inch diskette is 288 bytes.

E.3.3 Pathnames

The pathnames that you can use in BASIC statements and commands are completely operating-
system dependent.

2308769-9701 Change 1 E-1

BASIC System Differences

E.3.3.1 DX10 and DNOS Pathnames. In DX10 and DNOS, a pathname consists of a volume name,
the directory names leading to a file, and the file name. The names in the pathname are separated by
periods. The volume name need not be included if the file or directories leading to the file reside on
the system disk. The number of directories leading to the filename are not restricted except that the
total number of characters in the pathname must not exceed 48. The first character of each name
must be alphabetic. The following is an example of a DX10 pathname:

' MYVOL.MYDIR.OBJ.PB04

E.3.3.2 DXM Pathnames. DXM allows a maximum of three levels of structure in a file name: the
volume name, an optional user-created directory name, and a file name. For example, a file name
can be DXM.FILENAME or can be DXM.DIRECTRY.FILENAME. There are a maximum of 26 letters in
a valid DXM pathname (including the periods).

CAUTION

You can begin a file pathname with a device rather than a volume
name, but we advise against it. If you do begin a pathname with a
device name, be sure that the correct volume is in the requested
drive.

DXM does not have the built-in precaution that the DX10 and DNOS systems have, of requiring you
to install a volume by entering the Install Volume (IV) command. DXM automatically installs el
volumes physically in the system. If you send output to DS01.CONTRL and you meant to send it to
USERVOL.CONTRL that is actually in drive DS02, output will go automatically to DS01. If you have
another file by the name CONTRL on that disk, you may get an error message or you may replace the
original file.

E.4 DXM PROGRAM SIZE RESTRICTIONS
The total amount of memory available on the DXM system is 64K bytes. The maximum size of a

BASIC task that can be run on a DXM system is limited by the size of the resident part of the
operating system and the size of the DXM BASIC interpreter.

E-2 23087699701

BASIC System Differences

E.5 INTERTASK SUPPORT
DX10 and DNOS support intertask communications; DXM does not. BASIC application programs
that interface to another task through intertask communications or via shared procedures are not

supported on DXM because the operating system does not have multitasking capabilities. For this
reason, you cannot execute programs that have calls to other programs such as Sort/Merge on a

DXM system.

E.6 THE BELL

The bell will not sound on an S300 computer or on a 940 terminal.
E.7 DNOS SPOOLER DEVICES

Under DNOS, you cannot open a printer that is defined as a spooler device. If you attempt to do
s0, a >9D error message appears.

2308769-9701 E-3/E-4

Appendix F

~ Logical Operators
with Integer Operands

F.1 INTRODUCTION

Whenever a relational operator is evaluated, the resuit is true or false. The numeric values of true
and false resulting from these operations are -1 and 0, respectively. These values are stored as in-
tegers. Thus, the logical value false is stored as hexadecimal 0000, and the logical value true is
stored as hexadecimal FFFF.

Logical operators use the full 16-bit representations for true and false. As long as 0 and -1 are the
- only values used, the result of any AND, OR, or NOT operation is always 0 or -1. Thus, the logical
operators provide the logic value operations described in Section 4. However, BASIC also allows
logic operations to apply to any numeric value. If a noninteger argument is applied to a logical
operator, it is first converted to an integer. Although the results no longer necessarily equal logic
values, they are still valid integers and the operations are frequently useful. Since hexadecimal
numbers cannot be directly represented in BASIC, the corresponding integer values must be used.

F.2 LOGICAL OR OPERATOR

The following indicates the results of applying the logical OR operator to bits X and Y:

Value Value Value of
of X of Y XORY
0 0 0
0] 1 1
1 0 1
1 1 1

As indicated by the table, the result of two bits being ORed is equal to 1 if either or both bits equal 1.
The following example ORs two 16-bit words.

WORD #1: 00100110000 7100 11
WORD #2: 00000000 1111111 1
WORD #3: 001001101111 111 1

This example demonstrates how an OR operator can set bits to 1. The lefimost byte of word 1 was
ORed with a zero byte; the leftmost byte of the resulting word remained the same as that of word 1.
However, the rightmost byte of word 1 was ORed with a byte of all ones; the rightmost byte of the
result was then equal to all ones, regardiess of the contents of word 1.

2308769-9701 F-1

Logical Operators with Integer Operands

To perform the OR operation in the preceding example, the system must convert the values of words
1 and 2 to base-10 integers. Using base-10, word 1 equals 9747 and word 2 equals 255. Executing the
following command produces the result 9983, which is the base 10 equivalent of word 3:

.PRINT 9747 OR 255

F.3 LOGICAL AND OPERATOR

The following indicates the results of applying the logical AND operator to bits X and Y:

Value Value Value of
of X of Y XANDY
0 0 0
0 1 0
1 0 0
1 1 1

As indicated by the table, the result of two bits being ANDed is equal to 1 only if both bits are equal
to 1. The following example ANDs two 16-bit words.

WORD #1: 0o 01001100O0OO0OT1TO0O0T1T1
WORD #2: c oooo0o0o0©o0+1T1 111111
WORD #3: 000OOOOOOOOTOOT1T1

This example demonstrates how an AND operation can set bits to 0. The leftmost byte of word 1 was
ANDed with a zero byte; the leftmost byte of the result was then equal to all zeros, regardless of the
contents of word 1. However, the rightmost byte of word 1 was ANDed with a byte of all ones; the
rightmost byte of the resulting word remained the same as that of word 1.

For BASIC to perform the AND operation in the above example, the values of words 1 and 2 must
first be converted to base-10 integers. Executing the following command produces the result 19,
which is the base-10 equivalent of word 3:

.PRINT 9747 AND 255

F.4 LOGICAL NOT OPERATOR

The NOT operator takes only one operand. The following indicates the results of applying the logical
NOT operator to bit X:

Value Value of
of X NOT X
0 1
1 0

F-2 2308769-9701

Logical Operators with Integer Operands

As indicated by the table, applying the NOT operator to a bit changes a 0 to a 1 and vice versa. The
following example executes the NOT operation on a full 16-bit word:

WORD #1: 00100110000 T100 11

WORD #2: 11011001111 01100
This example indicates how the NOT operator inverts the bits in a full 16-bit word. For BASIC to per-
form this NOT operation, the system must convert the value of word 1 to a base-10 integer.
Executing the following command produces the result -9748, which is the base-10 equivalent of
word 2:

.PRINT NOT 9747
F.5 TABLE OF POWERS OF TWO
Table F-1 gives the powers-of-two values up to 2A15. It provides a useful aid for converting base 2 to

base 10.

Table F-1. Powers of Two

N 2N
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

The following examples show how you can use Table F-1 to convert a base-2 integer to a base-10 in-
teger. Notice, however, that bit 0 is a sign bit and is not equal to 2A15. If bit 0 is set, calculate the
two’s complement of the negative number. To convert a negative base-2 value to base 10, invert the
full 16-bit word, add 1, calculate the base 10 equivalent as described in the preceding table, and use
the negative of the result.

2308769-9701 F-3

Logical Operators with Integer Operands

(o] (o] 1 o] 1 1 (o] 1 [o] (o] 1 (o] 1 1 0 1
15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
13
1% 2 = Bt192
11 +
1% 2 = 2048
10 +
1% 2 = 1024
8 +
Tk 2 = 256
5 +
1%k 2 = 32
3 +
1k 2 = 8
2+
1*2 = 4
(] +
1% 2 = 1
11565

F-4 2308769-9701

Appendix G

Syntax Diagrams

The syntax diagrams in this appendix describe the statement formats (syntax) that Tl BASIC sup-
ports. The appropriate sections of this manual discuss the interstatement relationships and seman-
tics of the language.

The syntax diagrams are presented in “railroad” normal form. The diagrams are presented in
alphabetic order by diagram name. Starting on the left, trace the optional paths along the line to
determine the order of the statement elements. Any capitalized words or special characters en-
countered must be included in the statement in the order encountered. Groups of lowercase letters,
including underscores, indicate information specified in separate diagrams with that name.

2308769-9701 G-1

Syntax Diagrams

acc _stmt: ACCEPT -vdt _opt f ‘var .. name
I 1 str_ exp [

Hnum _exp

Key .. clause

L,REC num _exp —j L,Locj

SRR R AR AR RRRRRRRRRRRRRRRRARR
ABCDEFGHIJKLMNOPQRSTUVWXYZe_[1{}\
Tt e e et

array _ parm: ————var _name |)

L

‘assgn -~ stmt: ASSIGN str_ exp USING —j
r

e
N type _ clause ——L—num —var_name (—[- uns _ int _ const J)

(uns _ int _const)] J
') *uns _int _ const -

basic_ program: line _num exec _stmt end_line

basic . program: line _ num rem _ stmt end_line
l | : exec _stmt ;

BRKPNT
1(—- line . num ——{

T1 BASIC Syntax Diagrams (Sheet 1 of 10)

N str_var_ name (

brk . stmt:

2283813 (1/10)

G-2 23087699701

Syntax Diagrams

bye _ stmt: BYE

L str _ exp —J
call _stmt: CALL sub_ name
L(sub_ arg _ list) J

close _. stmt:

CLOSE__# num _exp

L str _ exp —]

data _stmt: DATA num _ const

quo _ str_ const

ung— str _const

del _stmt: DELETE str_.exp

TN
Leeeeetd

((uns _ int _ const T)

.

.

end _stmt: END

err_ret _stmt: ——___ RETURN

- line_num
—_— NEXT
STOP

PRINT

2283813 (2/10)

TI BASIC Syntax Diagrams (Sheet 2 of 10)

2308769-9701 G-3

Syntax Diagrams

esub_ stmt: _ESUB

exec - stmt:

2283813 (3/10)

L type . clause —J

cC —stmt

sub_ name

(sub_ parm _list} .

assgn _ stmt

y.

brk _stmt

bye _ stmt

call — stmt
close _ stmt

data _stmt

del . stmt

dim - stmt

end_stmt

err_ret _stmt

esub _ stmt

fnend _stmt

for _stmt

y,

go — stmt

if . stmt

image _ stmt

inp . stmt
let _ stmt

lib _ stmt

next _stmt

num _ fun_ stmt

on_err_stmt

on _ stmt

open _ stmt

opt _stmt

out _ stmt

punct _ stmt

read _ stmt

J)

reprint __stmt

res — strnt

ret _ stmt
rnd _ stmt

scrat_ stmt

o

stop —stmt

str_ fun _stmt

sub _ stmt

subend _stmt

subx — stmt

JJJJ

type _stmt

uni _ stmt

ret _strat

Tl BASIC Syntax Diagrams (Sheet 3 of 10)

2308769-9701

Syntax Diagrams

t - exp
str— exp

file . access: >

N INPUT
N OUTPUT
M— UPDATE

\— APPEND

file . format: —1——,SEQUENTIAL L
\— KEYED _J L.DISPLAY—J ;VARIABLE

L,RELATIVE , INTERNAL , FIXED num_exp

file _ life:
E PERMANENT j
,TEMPORARY

frend _ stmt: FNEND

Lnum_exp

for_stmt: FOR num_var_name = num_exp TO num _exp

LSTEP num _exp ——J

fun _ arg _ list

C

fun _ name:—————var _ name

fun _ parm _ list var _name

L type _clause —J

go — stmt: —[GOTO T line _ num
GOsuB

if _ stmt: IF exp THEN line _ nu f ELSE line - num
E_. Xec . stmt 5 exec .. stmt
2283813 (4/10)

Tl BASIC Syntax Diagrams (Sheet 4 of 10)

2308769-9701 G-5

Syntax Diagrams

image .. stmt: IMAGEIunq_str_constj

QuUO — Str _ const

inp - list: num _ var \
l :str _ var ———-j : I

inp. stmt: INPUT vdt _ opt

#num _exp
t,l(ey _ clause —
.REC num _ exp ____J L,LOCK—’

uns _ int __const
% + j

int —. const:

__J r
str _exp

Ginp o list e—

key.clause:___ KEY
L— # num_ exp _J L str_exp _J

fet _ stmt: L j num _var = num_ exp
LET Lstr_ var = str_ exp —-J

lib_ stmt: LIBRARY———Cquo_ str __ const j

’

line _ num: uns_ int

local list: var _ name

L type _ clause J

next .. strat: NEXT num _ var_ name

num _ const: uns _ num _ const

—_—

2283813 (5/10)

TI BASIC Syntax Diagrams (Sheet 5 of 10)

G-6

2308769-9701

Syntax Diagrams

num _ exp: num _ var

— + uns _ Num _ cons
e — num _ fun _ ref

___ NOT rel —exp

{ num_exp)

\ + /

R

num _. fun_ref: num _ fun _ name

L (fun_arg._ Iist)——j
num_ fun_ name
L type _ clause J L— (fun _ parm _list)

num . fun_ stmt: DEF

nuUM _. var: ———— num _ var _. name ~ >
| —Cir_“ —e_)jj_)
num_, var__ name: —— alpha
alpha
digit
on_err_stmt: ON ERROR line.num
sSTOP
on_stmt: ON num_ exp GOTO line_. num
GO TO L_ s ___J
GOsus
GO SuB

2283813 (6/10)

Tl BASIC Syntax Diagrams (Sheet 6 of 10)

2308769-9701 G-7

Syntax Diagrams

open _ Stmt: ____ OPEN # num _exp: str_exp
1 file _ format

file _access

file _ life

opt _ stmt:; ———ee—eeme OPTION BASE

out _stmt: PRINT vdt _ option
DISPLAY] [# pum _ exp j
(sprint _ list

JKEY num_exp str_exp j
,REC num _exp line — num

- ©

J

S R R RN AR R RRARRRRRRR
alpha digit / * *A) $ > =<—-H(%. +7?
[\ N L N L O W O O O O e -

print _list: num_ exp ‘l
str_ exp J ’ E

punct _stmt: PUNCTUATION str_exp

q'uo _str _chr: \) \ w

! & ung . str __ chr

quo - str _ const:

quo str chr

rae

2283813 (7/10)

TI BASIC Syntax Diagrams (Sheet 7 of 10)

G-8 2308769-9701

Syntax Diagrams
read _stmt: READ inp _ list

rel _op num _exp

rel _exp: num _exp
E str _exp rel _op str_exp A—j

rel _op:

—
p—
—
E—
—
Vo
—]
— I —

]
< > <> >< <= =«
L

rem _ chr: Tquo_ str_ chr J
rem _ stmt: REM]
L ! J L rem __char
reprint _stmt: ___REPRINT_ # num _exp print _list
L Key _ clause —-J

res_.stmt:__RESTORE

line — num

~ #num _exp ——&— Key _ clause 1
— ,REC num _exp *——j
ret _stmt: RETURN

rnd _ stmt: RANDOMIZEL num — exp [

scrat _ stmt: ___ SCRATCH _ # —_ num_exp

l—-- key _clause —j

stop —stmt: STOP

str _exp: : quo _str _ const

{ str_exp) ——

&

2283813 (8/10)

TI BASIC Syntax Diagrams (Sheet 8 of 10)

23087699701 G-9

Syntax Diagrams

str — fun _ref: str _fun _ name
N—— (fun _arg _ list) —
str_ fun _ stmt: DEF str_ var _ name L
(fun _ parm _ list) —J

| U A U
num _exp ~—1—7
()

str _var _ name; =—————— alpha \ $

str _var: —

str _var . name
N

alpha

\ digit _

exp
L— array— parm —j

sub — name: num _var _name

sub_ arg.. list:

sub_ parm _list: var _name
L L— type _clause ———J L array.. parm

)

sub . stmt: SUB sub __name —J
L type _ clause —J — {sub _ parm _ list}

subend _ stmt: SUBEND
subx _ stmt: SUBEXIT
2283813 (9/10)

TI BASIC Syntax Diagrams (Sheet 9 of 10)

2308769-9701

Syntax Diagrams

type ._ clause: INTEGER

REAL

DECIMAL
L(int _const)

REAL ALL
i

type _. stmt:
k INTEGER num _var _ name
DECIMAL ,

L (int _const) ——J
@ num _exp t ,Key _. clause:
LREC num _exp ——J
ung - str— chr; T pin - str — chr j

unl _stmt: UNLOCK

pin _ str _ chif ——eee———ee

ung .. str_ const: ——plin _ str _chr
t- unq —str _ chr v)
uns _—int _ const: [digit J
uns — num — const: T uns _int __ const 1
+ uns _int _ const —-J' L E —int _const J

var _name: T str _ var _ name e
num _var _ name

vdt _ opt: IL f
LERASE ALLJ LAT (num _exp,num _exp)—J' LSIZE (num_ exp) BELL

2283813 (10/10)

Tl BASIC Syntax Diagrams (Sheet 10 of 10)

2308769-9701 G-11/G-12

Appendix H

Example Programs

H.1 INTRODUCTION

This section includes four example programs that illustrate the following:
* The use o‘f seduential files
* The use of relative record files
. Several special features supported by TI BASIC

* The use of event keys

H.2 USE OF SEQUENTIAL FILES

The program in Figure H-1 demonstrates the use of sequential files. The program calculates
squares of integer values and saves the results in a sequential file. When a maximum value is ex-
ceeded, the file is restored to reposition the internal pointer to the beginning of the file. Records
from the file are then read and printed until the end-of-file is reached.

100 1=1 ! INITIALIZE COUNTER

110 OPEN #l: ".SQUARES",OUTPUT,INPUT

120 ! calculate the squares of integers until limit exceeded
130 J = I*I ::IF J>1000 THEN 170

140 PRINT #1l: I°J

150 I=I+1 :: J=I*I

160 GOoTO 130

170 CLOSE #1 :: OPEN #1l: ".SQUARES"

180 ! Print the table of squares

190 PRINT ERASE ALL "TABLE OF SQUARES LESS THAN 1000" :: PRINT
200 IF EOF(l) THEN 240

210 INPUT #1:J,K

220 PRINT TAB(5); "The SQUARE of ";J;"=";K

230 GOTO 200

240 CLOSE #1

250 END

Figure H-1. Example Program Using Sequential Files

2308769-9701 H-1

Example Programs

H.3 USE OF RELATIVE FILES

The BASIC program in Figure H-2 illustrates relative file access in which three string values are
entered. The first is hashed, or converted to a numeric value by means of a function, giving a record
number within the file. The data is then stored at that record number location. To store, retrieve, or
delete data from the file, enter the function codes I, F, and D, respectively.

The program handles hashing collisions (multiple values that reference the same record number) by
using a linked list structure on all colliding values. To change the data filename, replace the string

assignment at line 110 with the desired filename. To modify the total number of records (TABSIZ),
change the assignment at line 120; use a prime number for maximum hashing efficiency.

H.4 Tl BASIC SPECIAL FEATURES

Figure H-3 is an example program called HANGMAN that uses the following Tl BASIC special
features:

e Display with AT clause

. Display with ERASE ALL clause

] Double quotes within strings

. Double colon statement separator
. Long variable names

e String arrays

e ON-GOSUB statement

. SEG$, POS, LEN, and UPRC$ functions

H-2 2308769-9701

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700

2308769-9701

INTEGER ALL

FILE$=".RELFILE" ! RELATIVE DATA FILE

TABSIZ=211 ! MAXIMUM TABLE SIZE OR # OF RECORDS
CALL HEADER { CLEAR SCREEN & PRINT HEADER

IF FTYPE (FILE$) THEN 260 { FILE EXISTS.

! INITIAL RUN -- CREATE FILE

Example Programs

PRINT AT (12,1);"CREATING DATA FILE: """;FILES$;""" . . .";
OPEN #1:FILES$,OUTPUT,INPUT,RELATIVE TABSIZ,INTERNAL,FIXED 80

! CREATE EMPTY RECORDS
VALUE=0 :: ZER$=""

FOR I=0 TO TABSIZ

PRINT #1,REC I:VALUE,ZER$,ZERS$,ZERS

NEXT I

PRINT AT (12,1) "v t ERASE MESSAGE

GO TO 280

! OPEN FILE IF NOT FIRST RUN.

OPEN #1:FILE$,RELATIVE,INTERNAL,FIXED 80

! DISPLAY MENU

PRINT AT (10,20) ;"NAME: "

PRINT AT (12,20) ;"ADDRESS: "

PRINT AT (14,20);"CITY/STATE: "

! GET ENTRY

ACCEPT AT (10,26) SIZE(20) "":NAMES$

IF NAMES$="" THEN CLOSE #1 :: STOP

ACCEPT AT (12,29) SIZE(20) "" :ADDRS

ACCEPT AT (14,32) SIZE(20) """ :STATES

! GET INSERT/FIND/DELETE FUNCTION

ACCEPT SIZE(l) "FUNCTION (I/F/D): ":FNCTNS

! HASH NAME

ERRFLG=1 ! ASSUME AN ERROR

CALL HASH (ERRFLG,TABSIZ,FNCTNS,NAMES,ADDR$,STATES)
IF ERRFLG THEN 480 ! ERROR IN HASH ROUTINE
't DISPLAY RETRIEVED INFO

PRINT AT (9,26) ;NAMES

PRINT AT (11,29) ;ADDRS

PRINT AT (13,32);STATES$

ACCEPT AT (24,40) "PRESS RETURN TO CONTINUE: ":RETS$
{ RESET SCREEN & TRY FOR ANOTHER

CALL HEADER :: GO TO 280

SUB INTEGER HEADER

PRINT ERASE ALL AT (2,1);"9 90 BASIC HASH ROUTINE"

PRINT AT (3,1);RPT$("-",40)

PRINT AT (2,60);"TIME: ";TIME$:: PRINT AT (3,60);"DATE:
SUBEND

SUB INTEGER HASH (ERRFLG,TABSIZ,FNCTNS$,NAMES ,ADDRS,STATES)
! INITIALIZE HASH PARAMETERS

NAMINGTH=LEN (NAMES$) :: VALUE=0 :: EOL=-1

ZERO=0 :: ZER$="" :: OLDREC=0

! HASH NAME

FOR I=1 TO NAMINGTH

VALUE=VALUE+ASC (SEG$ (NAMES$,I,1))

NEXT I

! MOD VALUE TABLE SIZE

TEMP=INT (VALUE/TABSIZ)

RECORD=VALUE~ (TEMP*TABSIZ)

! GET RECORD

INPUT #1,REC RECORD :HSHCNT,NAMS$,ADRSS,STATS
IF HSHCNT=0 THEN 740 ! EMPTY RECORD

IF NAMES$=NAMS$ THEN 780 ! FOUND RECORD

IF HSHCNT<0 THEN 740 ! END OF LIST
OLDREC=RECORD ! SAVE LAST RECORD NO. READ

Figure H-2. Example Program Using Relative Record Files (Sheet 1

" :DATS

of 2)

H-3

Example Programs

710 RECORD=HSHCNT ! GET NEXT LINK

720 GO TO 660 | MORE COLLISIONS TO CHECK

730 ' ENTRY NOT FOUND - O.K. IF FUNCTION = INSERT
740 IF FNCTNS$="I" THEN 900

750 PRINT AT (24,38) "ENTRY: ";NAMES;" :NOT FOUND: "
760 GO TO 800

770 | ENTRY FOUND - O.K. IF FUNCTION NEQ INSERT

780 IF FNCTN$<>"I" THEN 830

790 PRINT AT (24,38) "DUPLICATE ENTRY: ";NAMES;" ";
800 ACCEPT SIZE(l) "":TEMPS
810 SUBEXIT f RETURN W/ERROR CODE SET

820 | FUNCTION=DELETE OR FIND?

830 IF FNCTNS$="D" THEN 980

840 1| FUNCTION = FIND (SET VALUES & RETURN)

850 NAMES=NAMS

860 ADDR$=ADRSS$

870 STATE$=STATS

880 GO TO 950

890 ! INSERT NEW ENTRY

900 INPUT #1,REC 0:NUMENT ! GET # OF TABLE ENTRIES
910 IF NUMENT>=TABSIZ THEN 960 ! TABLE FULL

920 IF HSHCNT THEN CALL GETREC (RECORD,TABSIZ,NAMS,ADRS$,STATS)
930 PRINT #1,REC RECORD :EOL,NAMES$,ADDRS$,STATES

940 PRINT #1,REC 0:NUMENT+1 ! 1 MORE ENTRY

950 ERRFLG=0 ! CLEAR ERROR FLAG

960 SUBEXIT

970 ! DELETE ENTRY- SUBTRACT 1 FROM TOTAL

980 INPUT #1,REC O:NUMENT

990 PRINT #1,REC O:NUMENT-1 ! 1 LESS ENTRY.

1000 ! DETERMINE POSITION OF RECORD

1010 ! W/RESPECT TO LINK LIST (PRIMARY VS. SECONDARY)
1020 IF OLDREC=0 THEN 1100 { PRIMARY RECORD IN CHAIN
1030 ! REWRITE SECONDARY RECORD W/ADJUSTED LINK

1040 INPUT #1,REC OLDREC:VALUE,NAMS$,ADRSS$,STATS

1050 PRINT #1,REC OLDREC:HSHCNT,NAMS,ADRS$,STATS

1060 ! DELETE RECORD BY CLEARING HASH COUNT

1070 PRINT #1,REC RECORD :ZERO,ZERS$,ZER$,ZER$

1080 GO TO 950

1090 ! CHECK PRIMARY RECORD FOR LINK

1100 IF HSHCNT<=0 THEN 1070 ! NO LINK- JUST ZERO HSHCNT
1110 | IF LINK, ALWAYS SAVE PRIMARY RECORD

1120 INPUT #1,REC HSHCNT:VALUE,NAMS,ADRSS$,STATS

1130 PRINT #1,REC RECORD :VALUE,NAMS,ADRS$,STATS

1140 RECORD=HSHCNT | ZERO SECONDARY RECORD

1150 GO TO 1070

1160 SUBEND

1170 SUB INTEGER GETREC (RECORD,TABSIZ,NAMS$,ADRS$,STATS)
1180 ! ROUTINE TO RETURN FREE RECORD NUMBER

1190 OLDREC=RECORD

1200 FOR I=1 TO TABSIZ

1210 RECORD=RECORD+1 ! TRY NEXT LARGER RECORD NO.
1220 IF RECORD>TABSIZ THEN RECORD=1 ! MOD TABSIZ

1230 INPUT #1,REC RECORD :VALUE,TEMP$,TEMP$,TEMP$

1240 IF VALUE=0 THEN 1300 \ EMPTY RECORD FOUND

1250 NEXT I

1260 ! EMPTY RECORD SHOULD ALWAYS BE FOUND

1270 PRINT "-- FATAL ENTRY ERROR IN GETREC --"

1280 CLOSE #1 :: STOP

1290 ! SET LINK TO NEW ENTRY

1300 PRINT #1,REC OLDREC:RECORD,NAMS,ADRS$,STATS

1310 SUBEND

Figure H-2. Example Program Using Relative Record Files (Sheet 2 of 2)

H-4 2308769-3701

100

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710

Example Programs

REM THIS PROGRAM USES THE FOLLOWING SPECIAL FEATURES:

REM DISPLAY WITH POSITION CLAUSE; DISPLAY WITH ERASE CLAUSE;

REM DOUBLE QUOTES WITHIN STRINGS; DOUBLE COLON STATEMENT SEPARATOR;

REM ACCEPT STATEMENT WITH POSITION-CLAUSE AND INPUT PROMPT;

REM LONG VARIABLE NAMES; STRING ARRAYS; ON-GOSUB STATEMENT; AND

REM THE FUNCTIONS SEGS, POS, LEN, AND UPRCS$

DISPLAY ERASE ALL

DISPLAY AT (3,15): "INSTRUCTIONS FOR HANGMAN:"

DISPLAY AT (4,5): "THIS GAME OF HANGMAN ALLOWS YOU ELEVEN (11) INCORRECT"
DISPLAY AT (5,5): "GUESSES. TO START THE GAME, TYPE A WORD OR PHRASE WHEN"
DISPLAY AT (6,5): "ASKED ""WHAT PHRASE?"". THE COMPUTER WILL ERASE YOUR"
DISPLAY AT (7,5): "PHRASE AND PUT _ WHERE LETTERS WERE AND BLANKS BETWEEN"
DISPLAY AT (8,5): "WORDS OF THE PHRASE. IT WILL THEN ASK "'"YOUR GUESS?""."
DISPLAY AT (9,5): "IN RESPONSE, TYPE A LETTER OR YOUR GUESS OF THE WHOLE"
DISPLAY AT (10,5): "PHRASE. IF YOU ARE WRONG, A PIECE OF THE HANGMAN WILL"
DISPLAY AT (11,5): "BE PUT UP., AFTER ELEVEN WRONG GUESSES, OR WHEN YOU"
DISPLAY AT (12,5):"GUESS THE PHRASE, YOU WILL BE ASKED IF YOU WANT TO PLAY"
DISPLAY AT (13,5): "AGAIN. IF YOU DO, TYPE Y. IF YOU NEED INSTRUCTIONS"
ACCEPT AT (14,5) "AGAIN, TYPE I. DO YOU UNDERSTAND (Y/N)?": YESS

IF SEG$(YESS$,1,1) = "Y" THEN 350

DISPLAY AT (16,5): "THERE ARE NO MORE INSTRUCTIONS, SO REREAD THESE AND"
DISPLAY AT (17,5): "TRY OUT THE GAME. GOOD LUCK!"

DISPLAY AT (19,5): "ARE YOU READY TO PLAY";

ACCEPT AT(19,26):YESS

GO TO 290

ComAs = " n

AS = N

DIM B$(11), POSITION(100)

Bs(l) = "Q" . B$(2) n'n T BS(3) = n/n) 33(4) = u\n s BS(S) =nmn
BS(6) =" " :: B$(7) = "|" :: BS(8) = "/" :: BS(9) = "\" :: B§(10) = " "
BS(11)= "_"
DISPLAY ERASE ALL
DISPLAY AT (2,25): "H A N G M A N

KOUNTOFBLANKS = 0 :: KOUNT = O :: B = 0 :: LETTERS USED$ = "LETTERS USED: "
FOR I = 1 TO 100 -

POSITION(I) = 0

NEXT I

DISPLAY AT (5,50): " = commmm——ee "

DISPLAY AT (6,50): " | "

DISPLAY AT (7,50): " "

DISPLAY AT (8,50): " "

DISPLAY AT (9,50): " "

DISPLAY AT (10,50): " "

DISPLAY AT (11,50): " "

DISPLAY AT (12,50): " /777"
DISPLAY AT (13,50): " o annne
DISPLAY AT (14,50): " /177177771

DISPLAY AT (15,50): " —e——e—m—e—— "

ACCEPT AT (20,7) "WHAT PHRASE?": TEMPS

IF LEN(TEMP$) = O THEN 580

A$ = UPRCS(TEMPS)

X = LEN(AS)

DISPLAY AT (20,6+X): " "
DISPLAY AT (20,7): " "

FOR I = 1 TO X :: DISPLAY AT (20,9+I) SIZE (1): " ";:: NEXT I
CS = nn

Y=1

Z = POS(AS$,C$,Y)

IF Zz = 0 THEN 740

DISPLAY AT (20,9+Z) SIZE (1): " ';

Y=2+1

KOUNTOFBLANKS = KOUNTOFBLANKS + 1

Figure H-3. Example Program, HANGMAN (Sheet 1 of 3)

2308769-9701 Change 1 H-5

Example Programs

720 GO TO 670

730 IF KOUNTOFBLANKS + KOUNT = X THEN 980

740 ACCEPT AT (22,7) "YOUR GUESS?": TS

750 IF LEN(T$) = O THEN 740

760 D$ = UPRCS(TS)

770 DISPLAY AT (23,10): " "
780 IF LEN(DS$) 1 THEN 1010

790 IF LEN(DS$) X THEN 950

800 R = 1

810 SEGPOS = POS(A$,D$,R)

820 IF SEGPOS = 0 THEN IF R = 1 THEN 960 ELSE 890 ELSE 830

830 DISPLAY AT (20,9+SEGPOS)SIZE (LEN(D$)): SEGS$ (TEMP$,SEGPOS,LEN (DS)) ;
840 R = SEGPOS + LEN (D$)

850 FOR I = SEGPOS TO LEN (D$)+SEGPOS-1

860 POSITION(I) = 1

870 NEXT I

880 GO TO 810

890 KOUNT = 0

900 FOR I = 1 TO X

910 KOUNT = KOUNT + POSITION(I)

920 NEXT I

930 IF KOUNTOFBLANKS + KOUNT = X THEN 980

940 GO TO 1220

950 IF D$ = A$ THEN 980

960 B = B + 1 :: DISPLAY AT (23,10): "WRONG PHRASE" :: GOSUB 1460

970 GO TO 1230

980 DISPLAY AT (23,10): "CONGRATULATIONS, YOU WON WITH" ;B;" INCORRECT GUESSES"
990 GO TO 1290

1000 DISPLAY AT (22,5): " "
1010 CHECK = POS (LETTERS USED$,D$,13)

1020 IF CHECK <> 0 THEN 1160

1030 ¢ =1

1050 IF D = 0 THEN IF C = 1 THEN 1190 ELSE 1210 ELSE 1060

1060 X$ = SEG$ (TEMPerrl)

1070 DISPLAY AT (20,9+D)SIZE (1): X3;

1080 POSITION(D) = 1

1090 ¢c =D + 1

1100 KOUNT = 0

1110 FOR I = 1 TO X

1120 KOUNT = KOUNT + POSITION(I)
1130 NEXT I

1140 IF KOUNTOFBLANKS + ROUNT = X THEN 980

1150 GO TO 1040

1160 DISPLAY AT (23,10): " YOU“VE TRIED THAT ALREADY!"

1170 B = B + 1 :: GOSUB 1460

1180 GO TO 1230

1190 DISPLAY AT (23,10): "THAT LETTER ISN“T IN THE PHRASE"

1200 B =B + 1 :: GOSUB 1460

1210 LETTERS_USED$ = LEI‘TERS_USED$ & COMMAS & D$

1220 DISPLAY AT (24,1): LETTERS_USEDS

1230 IF B = 11 THEN 1260

1240 DISPLAY AT (22,1): " "

1250 GO TO 740

1260 DISPLAY AT (23,25): " "
1270 DISPLAY AT (23,10):."YOU IOSE!"

1280 DISPLAY AT (22,5): " "
1290 DISPLAY AT (20,10): TEMPS

1300 DISPLAY AT (24,1): "DO YOU WANT TO PLAY AGAIN";

1310 INPUT ANSWERS

1320 IF SEGS (ANSWERS,1,1)
1330 IF SEGS (ANSWERS,1,1)

"y" THEN 410
"I" THEN 160

Figure H-3. Example Program, HANGMAN (Sheet 2 of 3)

H-6 2308769-9701

Example Programs

1340 RUN "DS02.DEMO"

1350 DISPLAY AT (7,57) SIZE (1) :B$ (1) ;::RETURN
1360 DISPLAY AT (8,57)SIZE (l): B$(2);:: RETURN
1370 DISPLAY AT (8,56)SIZE (Ll): B$(3);:: RETURN
1380 DISPLAY AT (8,58)SIZE (l): B$(4);:: RETURN
1390 DISPLAY AT (8,55)SIZE (1): B$(5)::: RETURN
1400 DISPLAY AT (8,59)SIZE (1): B$(6);:;:: RETURN
1410 DISPLAY AT (9,57)SIZE (l): B$(7);:: RETURN
1420 DISPLAY AT (10,56)SIZE (l): B$(8);:: RETURN
1430 DISPLAY AT (10,58)SIZE (1): B$(9);:: RETURN
1440 DpISPLAY AT (10,55)SIZE (1): B$(10);:: RETURN
1450 DISPLAY AT (10,59)STZE (1): B$(1ll);:: RETURN
1460 ON B GosuB 1350,1360,1370,1380,1390,1400,1410,1420,1430,1440,1450
1470 RETURN

1480 END

Figure H-3. Example Program, HANGMAN (Sheet 3 of 3)

H.5 EVENT KEY IMPLEMENTATION

The program in Figure H-4 illustrates the use of an event key. Event keys allow you to interrupt
execution of a program by entering a function key. in this program, entering a Command or Atten-
tion key generates error number 1. The ON ERROR statement traps this error and causes the pro-
gram to query you for further instructions. These instructions are accepted through the ACCEPT
statement; however, they could be input by either an INKEY$ function or an INPUT statement.
After you have executed the event function, you can resume execution of the main program by
executing the RETURN NEXT command.

H.6 KEY-INDEXED FILE EXAMPLE

The program in Figure H-5 shows an example of the use of key indexed files (KIFs) with BASIC. Prior
to the execution of this program, the file BASIC.KEY was generated using the Create Key Indexed
File (CFKEY) command. The logical record length was set to 64, the physical record length was set
to 300, and the initial and secondary allocations were defaulted. The maximum size was set to 100.
The primary key was started in position 1, given a length of 20, and specified nonmodifiable with no
duplicates. The second key was started in position 22 with a length of 20 and modification and
duplicates permitted. Note that position 21 was not allocated to provide space for the comma that
BASIC generates when multiple data items are printed using the apostrophe separator. Similarly,
the third key begins in position 43 and in all other aspects is identical to the second key.

This program allows you to add records to a KIF, locate records within the file on any of the three
keys, and delete records from the file.

2308769-9701 Change 1 H-7

Example Programs

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

250

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

OPEN #1:"BASIC.KEY",KEYED

PRINT ERASE ALL AT (2 18);" BASIC KEY ROUTINE"
PRINT AT (10,30);"NAME: " :: PRINT AT (12,30);"CITY: "
PRINT AT (14,30);:"STATE: "

ACCEPT AT (10,37) SIZE(20) "" :NAMES

IF NAMES = "STOP" THEN CLOSE #1 :: STOP

CALL FILL (NAMES)

ACCEPT AT (12,37) SIZE(20) "":CITYS

CALL FILL(CITYS)

ACCEPT AT (14,37) SIZE(20) "" :STATES

CALL FILL (STATES)

ACCEPT AT (24,1) SIZE(l) "KEY NUMBER: ":K :: IF K<l OR K>3 THEN 210
ACCEPT AT (16,20) SIZE(l) "I-INSERT,D-DELETE,F-FIND: ":Y$
IF Y$ = "I" THEN 390 ELSE IF Y$ = "D" THEN 430

IF Y$ <> "F" THEN 110

ON K GO TO 300,280,260

INPUT #1,KEY #3 STATE$:AS$,B$,CS$

GO TO 330

INPUT #1,KEY #2 CITYS$:A$,BS$,C$

GO TO 330

INPUT $#1, KEY#1 NAMES$:AS$,BS$,C$

GO TO 330

INPUT #1:4$,B$,CS$

IF EOF(1) THEN 370

PRINT AT (10,37);A$:: PRINT AT (12,37);B$:: PRINT AT (14,37);C$
ACCEPT AT (16,20) "RETURN - CONTINUE/N - NEXT: ":Y$

IF Y$ <> "N" THEN 110 ELSE 320

ACCEPT AT (16,20) "NO ENTRY! —- ENTER? (Y/N): ":Y$

IF Y$ <> "Y" THEN 110

PRINT #1,KEY #1 NAME$:NAMES$ CITY$”STATES

IF DUP(1) = 0 THEN 110

ACCEPT AT (16,14) "DUPLICATE NAME! -- DELETE PREVIOUS ENTRY? (Y/N): ":Y$
IF Y$ <> "Y" THEN 110
SCRATCH #1,KEY NAMES$:: GO TO 110
SUB FILL (TEMP$)
! PAD KEY WITH BLANKS TO THE RIGHT
IF LEN (TEMPS) < 20 THEN TEMPS$ = TEMPS$ & RPTS$(" ",20-LEN(TEMPS))
SUBEND
END

Figure H-4. Sample KIF Program

2308769-9707

Appendix | |

BASIC Systems Function Keys

Table I-1.
911, S200
BASIC Function or S300 Key 940 Key ASRI/IKSR
Space Forward Space Bar Space Bar Space Bar
Move Cursor Right Right Arrow Right Arrow —
Right CHAR
Move Cursor Left Left Arrow Left Arrow BACKSPACE
Left CHAR BACK SPACE
Back Tab Left FIELD SKIP Left —
Return RETURN RETURN RETURN
Return with EOF ENTER SEND CTRLS
Display Current
or Preteding Line Up Arrow Up Arrow —
Display Current
or Succeeding Line Down Arrow Down Arrow —
Insert Character INS CHAR INS CHAR —
Delete Character DEL CHAR DEL CHAR —
Erase Input ERASE INPUT ERASE INPUT RUB OUT
DEL (KSR)
Erase Field SKIP SKIP Right —
Tab TAB TAB Right —
Repeat REPEAT Typamatic —
Typamatic
Replay Blank Gray INS LINE —
F2 F2
Calculate F1 F1 CTRLA
2308769-9701 Change 1 I-1

BASIC Systems Function Keys

Table I-1. (Continued)

911, S200
BASIC Function or S300 Key 940 Key ASR/KSR

Break Execution Blank Orange, Blank Orange, ESC/

CTRL X CTRL X CTRL X
Resume Execution F7 F7 CTRLV
Step F8 F8 CTRLW
Reset Cursor HOME HOME —
Suspend Output Blank Orange PREV FORM ESC

The following keys have no special functions in BASIC. Some keys have functions in SCI; others can
be assigned functions as desired. The function codes returned by the operating system are as

follows:
Command CMD NEXT FORM CMD
Erase ERASE FIELD ERASE EOF —
Print PRINT PRINT
F3 F3 F3
F4 F4 Fa4
F5 F5 F5
Fé Fé F6

-2 Change 1 2308769-9701

Alphabetical Index

Introduction

HOW TO USE INDEX

The index, table of contents, list of illustrations, and list of tables are used in conjunction to ob-
tain the location of the desired subject. Once the subject or topic has been located in the index,
use the appropriate paragraph number, figure number, or table number to obtain the corre-
sponding page number from the table of contents, list of illustrations, or list of tables.

INDEX ENTRIES

The following index lists key words and concepts from the subject material of the manual together
with the area(s) in the manual that supply major coverage of the listed concept. The numbers along
the right side of the listing reference the following manual areas:

Sections — Reference to Sections of the manual appear as ““Sections x”’ with the sym-
bol x representing any numeric quantity.

Appendixes — Reference to Appendixes of the manual appear as “Appendix y” with the
symbol y representing any capital letter.

Paragraphs — Reference to paragraphs of the manual appear as a series of
alphanumeric or numeric characters punctuated with decimal points. Only the first
character of the string may be a letter; all subsequent characters are numbers. The first
character refers to the section or appendix of the manual in which the paragraph may be
found.

Tables — References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number.

Tx-yy

Figures — References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number.

Fx-yy

Other entries in the Index — References to other entries in the index preceded by the
word ““See” followed by the referenced entry.

2308769-9701 Index-1

Index

Absolute Vaiue (ABS) Function........ 8.2.1
ACCEPT Statement 6.6,6.6.4
Access Mode:
APPEND6. 3.5.4
File ..o i 6.3.5
INPUT ... 6.3.5.2
OQUTPUT ... 6.3.5.1
UPDATE 6.3.5.3
Accessing:
AITAY .ot e 11.8
NumericArrayoovv i 11.8.1
StringArray ... e 11.8.2
AlphanumericField 6.5.5.5
ANSI|Enhancements 1.1
Apostrophe Data Separator6.5.23
APPEND AccessMode 6.3.5.4
Arctangent (ATN) Function 8.2.2
Arithmetic:
EXpression............oouienia.. 5.11.1
Operatorvnnt. 5.9.1, T5-1
Array ... 5.6
Accessing..........c.iiiiat, 11.8
Numeric 11.8.1
String ..o 11.8.2
V|rtual 5.7
ASCli CharacterSet Appendix B
ASCII Character/Graphic Character
(0o Yo [- T TB-1

ASCII to Decimal (ASC) Function8.3.1
Assembly Language:

Subroutine........... Section 11
Creationo 11.2
Linking i 11.3
ASSIGN Statement 5.7.1
ATOption ..., 6.5.3.2
Back Tab FunctionKey............... 4.8.3
BASIC:
Command 2.1,2.2.1
Commands................... Section 3
Elements i, 1.3
FunctionKeys TI-2
Intrinsic Function.................. T8-1
Subroutine Library............ Section 12
Subroutine Arguments 1.2.2.1
Subroutine ErrorCodes 1.2.2.2
Supported Devices T1-1
BELL Option 6.5.3.4,E-6
Bit Positions of FunctionKey.......... T4-1
BLDBUF ... i n 1.4.6.1
Break:

Execution FunctionKey 4.8.15

FunctionKey 10.2.2
Break (BREAK) Function 8.3.2
BRKPNTCommand 10.2.1
BYECommand.............. 2.1,2.2.5,3.14
Calculate FunctionKey 4.8.14
CALL:

Statement 9.3.1,11.5
Variablesin............. 11.5

Index-2 Change 1

Character:

Function Key:

Deletecviieiiii... 4.8.8
Insert ... 4.8.7

Set, ASCll.................. Appendix B

Strmg Data........ .o, 5.2
Character(CHR$) Function 8.3.10
Characteristics, File E.3
Characters in Buffer (INKEY)

Function..........o, 8.5.4
Clause,KEY, 6.6.3.3
CLOSE Statement 5.7.2,6.4
Code Example,Source F11-6
Codes:

ASCI| Character/Graphic

Character.............coovvvv... TB-1

Error ... Appendix D
Comma Data Separator............. 6.5.2.1
Command:

BASIC 2.1,2.2.1

BRKPNT ... e 10.2.1

BYE.......ciiiiiiii 2.1,2.25,3.14

DELETEt 3.8,4.6

ESUB 3.8.2
File .o 3.8.1
Lines....coiiiiii i 3.8.3

EDIT . it e 3.6

ESUB ... 3.6.2
MAIN ... 3.6.1

LIST . i e e 3.7,4.4

MERGEcciviirin.. 3.10,4.7

NEW e 2.2.2,3.2,6.4

NUM. ... o 222,33

OLD ...t 35,4.4,45,6.4

RENAME i 3.9

RESEQUENCE.................. 3.4,45

RUN......... ...t 2.2.4,3.13,6.4

SAVE 2.2.2,312

TRACE 10.5

UNBRKPNT i 10.2.1

UNTRACE ... 10.5

UPDATE i 3.11
Commands,BASIC.............. Section 3
Computed GOSUB Statement 7.7
ConfigurationSystem 1.2
Constantt 5.3

NUMEeriC ..ot 5.3.1

String 5.3.2
Control Statement Section 7
Cosine (COS) Function............... 8.2.3
Creation, Assembly Language

Subroutine L L 11.2
Cross-Reference Example, Object

Listing........... .. o tt. F11-8
Current Line Function Key,

Display ..., 48.5,4.8.5
Cursor Left FunctionKey 4.8.2
Cursor Right FunctionKey 4.8.2
Datacovei i Section 5

CharacterString. 5.2

2308769-9701

DataEntry,KIF 6.6.3.3
Data Format:
Decimal 11.

NNN

String.....................
DataNumeric
DataSeparator 6

Apostrophe 6.5

Comma 6.5.

6.5
6

Semicolon......................6.
DATA Statement
Data Values, Parameter 11.
Date (DATS) Function 00000 8.4.
Debugging.................... Section
Decimal:

DataFormat..................... 1

Field

DEF Statement Variablesin 9.5

Define (DEF) Statement 9.2,9.2.1

Delete Character FunctionKey 4.8.8
DELETE:

Command...................... 3. 6

ESUBCommand 2

FileCommand.................... 1

LinesCommand 3

DeviceOutput 1

Devices, BASIC Supported T1é

1

6

1

5

5

.6

ouNIvawhNGAGL

IhaNbddDOO

4.
.8.
8.
8.
5.

O ww w®

Q

Dlagrams Syntax Appendix
DIM Statement
Display Current Line Function Key 4.8.5,
DISPLAYFormat 6.
Display Preceding Line Function Key. .
DISPLAY Statement...................
Display Succeeding Line Function Key .4
DNOS:

PWWhrO

6.
8.
2.
4.8.

GJO‘}

OperatingSystem E.A
Pathnames E.3.3.1
SpoolerDevices.................... E.7
XM:
File Restrictions E.3.2
OperatingSystem E.1
Pathnames E.3.3.2
Program Size Restriction E.4
DX10:
OperatingSystem E.1
Pathnames E.3.3.1
EDIT:
Command 3.6
ESUBCommand 3.6.2
Edit Function 4.8
EDIT MAIN Command 3.6.1
EditProgram......................... 4.4
Editing Capabilities Section 4
End of File (EOF) Function............ 8.5.6
END Statement 7.9
Enhancements, ANSI 1.1
ERASE ALL Option 6.5.3.1

2308769-9701

Index

Erase:
Field FunctionKey 4.8.10
Input FunctionKey 4.8.9
ERRFunction 7.8,85.9
Error:
Codes Appendix D
Messages............. Appendix D, TD-1
Errors,Input, 6.6.2. 6
ESUB:
Command:
DELETE 3.8.2
EDIT ... 3.6.2
Statement 9.3.2.2
Evaluation, Expression 5.11
Example Program Appendix H
Exclamation Point — See Remark
Statement, 4.3.2
Execution:
Function Key:
Break 4.8.15
Resume 4.8.16,10.3
StepbyStep, 10.4
Exponential (EXP) Function........... 8.2.4
Exponential Field.................. 6.5.5.4
Expression..................... Section 5
Arithmetic 5.11.1
Evaluation................ PR 5.11
Logical 5.11.2
Relational 5.11.4
String ... 5.11.3
Expressions 58
External Subprogram.................. 9.3
Field:
Alphanumeric................... 6.5.5.5
Decimal......................... 6.5.5.3
Exponential 6.5.5.4
FunctionKey,Erase 4.8.10
integer. L. 6.5.5.2
Literal 6.5.5.6
File:
AccessMode 6.3.5
Characteristics E.3
Command,DELETE 3.8.1
Format 6.3.2
INPUT:
Statement with Relative Record. .6.6.3.2
Statement with Sequential6.6.3.1
Life ... 6.3.4
OPEN:
Statement with, Relative
Record..................... 6.3.1.2
Statement with, Sequential6.3.1.1
Output 6.5.6
Relative Record 6.5.6.2
Sequential.................... 6.5.6.1
RecordLength.................... 6.3.3
RelativeRecord 6.2.2
Restrictions,DXM E.3.2
Sequential 6.2.1
Shared........... 6.9
Index-3

Index

File (See KIF), Key Indexed 6.3.1.3
Find Available Space (FREESPACE)
Function.........ccviiiiiinn. 8.5.3
Fixed RecordLength 6.3.3.2
FORStatement 7.5
Format Control Characters............ T6-1
Format:
DISPLAY ... i 6.3.2.1
File ..o e 6.3.2
INTERNAL e 6.3.2.2
Function:
Absolute Value(ABS) 8.2.1
Arctangent(ATN) 8.2.2
ASCIll to Decimal (ASC) 8.3.1
BASICIntrinsic T8-1
Break (BREAK).................... 8.3.2
Character(CHRS) 8.3.10
Characters in Buffer (INKEY) 8.5.4
Cosine(COS)oviivnnnt. 8.2.3
Date(DATS)covvniiiin.. 8.4.1
End (FNEND) Statement 9.2,9.22
Endof File(EOF)t 8.5.6
ERR ... e 78,859
Exponential (EXP) 8.2.4
Find Available Space (FHEESPACE) .8.5.3
Integer(INT)oviiiiniann, 8.25
Intrinsiccoia Section 8
Key:
BackTab, 4.8.3
Bit Positionsof T41
Breakciiiiieniannnnn 10.2.2
Execution................... 4.8.15
Calculatecoiiitt 4.8.14
Cursorleft............. ..ot 48.2
CursorRight 4.8.2
Delete Character................ 4.8.8
Display:
CurrentLine............. 4.8.5,4.8.6
Precedingline 4.8.5
SucceedinglLine 4.8.6
Erase:
Field ...t 4.8.10
Input il 4.8.9
Insert Character 4.8.7
Repeat 4.8.12
Repilay ot 4.8.13
ResetCursor 4.8.18
Resume Execution......... 4.8.16,10.3
Return.........coviiiieann, 48.4
Return withEOF 4.8.20
SpaceForward 4.8.1
Step ... o 4.8.17,10.4
Suspend Execution............. 4.8.19
Tab ..o 4.8.11
Values Associated with T4-1
lLength(LEN) 8.3.3
Match String(SPAN) 8.3.7
Mathematical 8.2
Natural Logarithm (LOG) 8.2.6
Numeric(NUM) 8.3.4
Position(POS) 8.3.5

Index-4

Random Number(RND) 8.5.1
Recursiveo, 9.2.3
Repeat(RPT$) 8.3.6
Return Character (INKEYS$) 8.5.5
Segment(SEGS) 8.3.11
Sign(SGN)827
Sine(SIN) ot 8.2.8
Square Root(SQR)8.29
String.......cviiii i 8.3
Strin% (STRS)oiiiient 8.3.12
Tab(TAB)coovvniiiiin 8.5.8
Tangent(TAN) 8.2.10
Test for Duplicate Keys (DUP) . .8.56.10
Time(TIMES)ot 8.4.2
Uppercase (UPRCS$)................ 8.3.8
Value (VALY, 8.3.9
Verify File (FTYPE) 8.5.7
GOSUB:
Statement i 7.6
Computedcoviinnt 7.7
GOTOStatement 7.2
. IF-THEN-ELSE Statement 7.4
IMAGE Statement 6.5.5
Immediate Execution Mode 4.2.2
Information Block, Parameter 11.6
INPUT Access Mode 6.3.5.2
Input:
Ermors. ..o e 6.6.2.6
FunctionKey,Erase 4.8.9
Promptingoiivnt. 6.6.2.5
INPUT:
Statement 6.6,6.6.1,6.6.3
Statement with:
Relative Record File 6.6.3.2
SequentialFile 6.6.3.1
With AT Option Statement6.6.2.2
With BELL Option Statement6.6.2.4
With SIZE Option Statement.......6.6.2.3
Input/Output Statement Section 6
Insert Character FunctionKey 48.7
Instruction,Loop 75
Integer:
DataFormat 11.7.1, F11-3
Field it 6.5.5.2
Operands, Operator Logical
with. Appendix F
Integer (INT) Function 8.2.5
INTEGER Statement 5.4.3.3
INTERNALFormat................. 6.3.2.2
INTERNAL Format Data, Memory
Requirementsfor.................. T6-1
Internal Subprogram 9.3
Intrinsic:
Function Section 8
BASIC e T81
Invader i F2-1
KeY .« 6.2.3
KEYClause 6.6.3.3
23087699701

Key Indexed File (SeeKIF) 6.3.1.3
Key:

Primary.............. 6.2.3

Secondaryc..in... 6.2.3

Value i, 6.2.3

Keyboard Differences E.2
KeyedFile.......................... 12.4

Creation 12.4.4

Data Base Buffer Creation......... 12.4.3

Example 12.4.7

Format 12.4.2

Organization 12.4.1

Package (SeeKFP)................. 12.4

KFP:

Memory Management............. 12.4.5
Keyed File Data Base Buffer....12.4.5.2
Record Buffer................ 12.4.5.3
Subroutine Memory

Requirements.............. 12.4.5.1

Subroutines 12.4.6
KFP ... 12.4,12.4.6
SORT ... it 12.3

KFCLOS i 12.4.6.10
KFCREA i, 12.4.6.3
KFDELRt 12.4.6.9
KFGET it 12.4.6.8
KFEINIT .. 12.4.6.2
KFOPEN 12.4.6.4
KFPUT e 12.4.6.5
KFREAD, 12.4.6.7
KFWRIT12.4.6.6
KIF o 6.2.3
Data Entry (INPUT Statement)6.6.3.3
Example Program 4.4
OPEN Statementwith 6.3.1.3
Output 6.5.6.3
Shared, 6.9.2
With RESTORE Statement6.7.3.2
Length (LEN) Function 8.3.3
LET Statement 5.5
LIBRARY Statement 11.4
Life,File 6.3.4
Lines Command, DELETE 3.8.3
Link Control File Example F11-1
Linking, Assembly Language

Subroutine, 11.3
LISTCommand 3.7,4.4
Listing Example,Object F11-6
LiteralField 6.5.5.6
Locked,Record 6.9
Logical 'AND Operator 5.9.4.3,F.3
Logical, Expression 5.11.2
Logical NOT Operator................. F.4
LogicalOperator.................... 5.9.4
Logical OROperator F.2
LooplInstruction...................... 7.5
MAIN Command,EDIT 3.6.1
Match String (SPAN) Function 8.3.7
Mathematical Function................ 8.2

2308769-9701

Index

Memory Requirements for INTERNAL

FormatData T6-1
MERGECommand 3.10,4.7
Messages,Error Appendlx D
Mode:

Immediate Execution 4.2.2

Program Development 421
Multiple, Statement 422
Natural Logarithm (LOG) Functlon .8.2.6
NEWCommand2. 2.2. 2, 3 2,6.4
NEXT Statement 75,7.8
NUMCommand 222,33
Numeric:

Array Accessing 11.8.1

Constant 5.3.1

Data.............. 5.2

Function......................... 8.3.4

Names, Variable 5.4.2

TYPeS oo 5.4.3

Variable 5.4.1
Object Listing Cross Reference

Example F11-8
Object Listing Example P F11-6
OLDCommand 3.5,4.4,45,6.4
ON ERROR Statement................. 7.8
ON-GOTO Statement 7.3
OPEN:

Statement With:

KIF 6.3.1.3

Relative Record File 6.3.1.2

Sequential File................ 6.3.1.1
Operating:

System:

DNOS i E.1
DXM. . . . E.A1
DX10o E.1
Pathnames E.3.3
Operations Initial Section 2
Operator................c..oo. ... 5.1,5.9

Arithmetic................... 5.9.1, T5-1

Logical 5.9.4

Logical AND 5.9.43,F.3

Logical NOT F.4

LogicalOR F.2

Logical with Integer

Operands Appendix F

Priority. ... 5.10

Relational 5.9.3,T5-2

String oL 5.9.2
Option, AT 6.5.3.2
OPTION BASE Statement 5.6.2
Option:

BELL 6.5.3.4

ERASEALL 6.5.3.1

SIZE 6.5.3.3
OPTION Statement 4.9
Option,USING 6.5.4
OPTION 1 Statement 4.91
OPTION 2 Statement 4.9.2

Index-5

Index

Options, Output 6.5.3
OUTPUT AccessMode 6.3.5.1
Output:

Devicec.iiiii i 6.5.1

File .. e e 6.5.6

KIF © e e e et e e 6.5.6.3

Options ... v 6.5.3

Relative RecordFile 6.5.6.2

Sequential File 6.5.6.1
Parameter:

DataValuescvvvvn. 1.7

InformationBlock 11.6
Pathnames:

DNOS ... e E.3.3.1

DXM . . e E.3.3.2

DXA0 ..t E.3.3.1

OperatingSystem................. E.3.3
Physical Record Length 6.3.3.3
Position (POS) Function.............. 8.3.5
Preceding Line Function Key,

Displayooiiiiiiiii 4.8.5
Primary,Key 6.2.3
PRINT Statement 6.5
Priority,Operator 510
ProcedureShared E.5
Procedures, User-Defined Section 9
Program DevelopmentMode 421
Program Development................. 1.4
Program:

Edit ... e 4.4

Example................... Appendix H

Size Restriction,DXM E.4
Prompt....... ..o 4.2
Prompting,Input 6.6.2.5
PUNCTUATION Statement 6.8
Random Number (RND) Function8.5.1
RANDOMIZE Statement. 8.5.2
READ Statement 6.7.2
RealDataFormat............. 11.7.2, F11-4
REAL Statement................... 5.4.3.1
Record Length:

File i 6.3.3

Fixedoiiii i 6.3.3.2

Physical 6.3.3.3

Variable............. 6.3.3.1
RecordLocked 6.9
Recursive Function.................. 9.2.3
Relational:

Expression............oiaan 5.11.4

Operator 5.9.3, T5-2
Relative Record:

File ..o e 6.2.2
INPUT Statementwith.......... 6.6.3.2
OPEN Statementwith 6.3.1.2
Output it 6.5.6.2

Remark (REM) Statement 4.3.1
RENAMECommand 3.9
Repeat FunctionKey 48.12

Index-6

Repeat (RPT$) Function 8.3.l
Replay FunctionKey 4.8.1
REPRINT Statement 6.5.
RESEQUENCECommand 3.4,4.
Reset Cursor FunctionKey 4.8.1
RESTORE:

o

adl

Restrictions, DXMFile
Resume Execution Function Key. .4.8. 16, 1
Return Character (INKEY$) Function8.
Return FunctionKey 4.8.
RETURN Statement e 7.5
Return With EOF FunctionKey........ 4.8.20
RUNCommand.............. 2.2.4,3.13,6.4

SAVECommand................ 2.2.2,3.12
SCRATCH Statement 6.5.8
Secondary,Key 6.2.3
Segment (SEG$) Function 8.3.11
Semicolon Data Separator 6.5.2.:
Sequential:

File ..o
INPUT Statement with6
OPEN Statementwith 6.
Qutput ot 6

Shared:
File. ... e e e
KIF o e e 6

Sign (SGN)Function. 8

Sine(SIN)Function.................. 8.2.

SIZEOptioniiiiiin.. 6.5.3.

Size Restriction, DXM Program

Source Code Example............... F11-

Space Forward FunctionKey 4.8.

Square Root (SQR) Function 8.2.

Statement:

ACCEPT...... ..t 6.6, 6.6.
ASSIGN 5
CALL ... 9.3.1,
CLOSEt 5.7.2,
ComputedGOSUB
Control, Sectio
DATA ... e 6.7.
DECIMAL 5.4.3.
2,9

5

Define(DEF) 9.2,

FOR .o e e
Function End (FNEND) 9.2,9.
GOSUB e
GOTO e

23087699701

Input/Qutput Section 6
INTEGER....................... 5.4.3.3
KIF With RESTORE 6.7.3.2
LET .. e
LIBRARYo 1
Multiple 4.2.
NEXT. ... 7.5,
ONERROR
ON-GOTO e
OPTION i,
OPTIONBASE 5
OPTIONT 4.
OPTION2.............. .. 4
PRINT i
PUNCTUATION

su.... o S 9.32.1,9.3.:
9.3.2.
3

SUBEXIT 9.3.
TO e e
Variables in:
CALL
DEF
Statement With:
KIFOPEN 6
Relative Record:
File,INPUT 6
FileOPEN, 6.
6
6

©w©
oY W o, mwamommmwwsAmmmmmAmbbbmmhm

Seq_uential:

Step by Step Execution 1
Step FunctionKey 4.8.17,1
STEPStatement...................... 7.
STOP Statement 7.1
String:
Array Accessing 11.8
Constant 5.3.
DataFormat 11.7.4,F11-
EXpression.......... ..., 5.11
Function 8.
Operator......................... 5.9.
Variable 5.4.
String (STR$) Function 8.3.1
SUB Statement 9.3.2.1,9.3.2.

—

2308769-9701

Index

SUBEND Statement................ 9.3.2.4
SUBEXIT Statement 9.3.2.3
Subprogram:
External....... 9.3
Internal 9.3
Subroutine:
Assembly Language Section 11
Creation, Assembly Language. 11.2
Linking, Assembly Language......... 113
Succeeding Line Function Key, Display . .4.8.6
Suspend Execution Function Key4.8.19
Syntax Diagrams Appendlx G
System:
Differences Appendix E
DNOSOperating E.A
DXM Operating E.1
DX100Operating E.1
Pathnames, Operating............. E.3.3
Tab FunctionKey 4.8.11
Tab (TAB) Function.................. 8.5.8
Table, Truth T5-3
Tangent (TAN) Function............. 8.2.10
Test for Duplicate Keys (DUP) Function 8.5.10
Time (TIMES$) Function 8.4.2
TOStatement 7.5
TRACECommand P, 10.5
TruthTable T5-3
Types,Numeric 543
UNBRKPNT Command 10.2.1
UNLOCKCommand................... 6.9
UNTRACECommand................. 105
UPDATE:
AccessMode 6.3.5.3
Command........................ 3.1
Uppercase (UPRCS$) Function 8.3.8
User-Defined Procedures......... Section 9
USINGOption 6.5.4
Valug,Key 6.2.3
Value (VAL) Function 8.3.9
Values Associated With, Function Key . .T4-1
Variable. oL 5.4
Numeric 541
NumericNames 5.4.2
RecordlLength 6.3.3.1
String 5.4.4
Variables in:
CALL Statement.................... 9.5
DEF Statement 9.5
Verify File (FTYPE) Function 8.5.7
Virtual, Array i 5.7
Index-7/Index-8

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: __T1! BASIC Reference Manual (2308769-9701)

Manual Date: _1 December 1983 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

(BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS GROUP

ATTN: TECHNICAL PUBLICATIONS

P.O. Box 2909 M/S 2146
Austin, Texas 78769

FCOLD

	0001
	0002
	0003
	0004
	0005
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	I-01
	I-02
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	replyA
	replyB

