DNOS w

COBOL
Programmer’s Guide

TEXAS INSTRUMENTS

© 1981, 1984, 1985, Texas Instruments Incorporated. All Rights Reserved.
Printed in U.S.A.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or

by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

DNOS COBOL Programmer’s Guide (2270516-9701)

Originallssue it i August 1981
Revision. ... e January 1984
RevViSiON. i e e March 1985

The total number of pages in this publication is 304.

The computers, as well as the programs that Tl has created to use with them, are tools that
can help people better manage the information used in their business; but tools—including

Tl computers—cannot replace sound judgment nor make the manager's business
decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must relyron judgment of what is best for his or her business.

10.6-91504¢¢C

DNOS Software Manuals

This diagram shows the manuals supporting DNOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above that set to determine which manuals are most beneficial to your needs.

Al DNOS Users:
DNOS Concepts and Facilities DNOS System Command DNOS Messages and DNOS Master Index to
2270501-9701 Interpreter (SCI) Reference Manual Codes Reference Manual Operating System Manuals
2270503-9701 2270506-9701 2270500-9701
DNOS Operations Guide DNOS Text Editor DN®OS Reference Handbook
2270502-9701 Reference Manual 2270505-9701
2270504-9701
High-Level Assembly Productivity Communications Systems
Language Users: Language Users: Tools Users: Software Users: Programmers:
DNOS DNCS/SNA
COBOL Reference Manual 990/99000 Assembly DNOS Sort/Merge User’s Guide DNOS System Generation
2270518-9701 Language Reference User’s Guide 2302663-9701 Reference Manual
Manuai 2272060-9701 2270511-9701
DNOS COBOL 2270509-9701 DNOS DNCS
Programmer’s Guide TIFORM Operations Guide DNOS Systems
2270516-9701 DNOS Assembly Reference Manual 2302662-9701 Programmer’s Guide
Language 2234391-9701 2270510-9701
DNOS Performance Programmer’s Guide DNOS DNCS 914A
Package Documentation 2270508-9701 DNOS Query-990 User’s Guide ROM Loader User’s Guide
2272109-9701 User’s Guide 2302664-9701 2270534-9701
DNOS Link Editor 2276554-9701
Ti Pascal Reference Manual Reference Manual DNOS 3270 Interactive
2270519-9701 2270522-9701 DNOS Data Base Communications Software
Management System (ICS) User’s Guide
DNOS Tl Pascal DNOS Supervisor Calil Programmer’s Guide 2302670-9701
Programmer’s Guide (SVC) Reference 2272058-9701
2270517-9701 Manual DNOS 3780/2780
2270507-9701 DNOS Data Base Emulator User’s Guide
FORTRAN-78 Reference Administrator User’s 2270520-9701
Manual Guide
2268681-9701 2272059-9701 DNOS DNCS System
Generation Reference
DNOS FORTRAN-78 Data Dictionary Manual
Programmer’s Guide User’s Guide 2302648-9701
2268680-9701 2276582-9701
DNOS DNCS X.25
MATHSTAT-78 DNOS TIPE Remote File Transfer
Programmer’s Reference Reference Manual Kit (RFT) User’s Guide
Manual 2308868-0001 2302640-9701
2268687-9701
DNOS TIPE DNOS Remote Terminal
EORTRAN-?;ISI ISA | Security gggggg;ge(%u:de Kit 3ubsys(t;ena(RTS) Source
xtensions Manua . -000 ser’s Guide .
268696.9701 Managers: 2302676-9701 Code Users:
DNOS COBOL Program DNOS System
TI BASIC Reference Manual DNOS Security Generator User’s Guide DNOS Distributed Network Design gocument
2308769-9701 Manager’s Guide 2234375-9701 110 (DNI0) User’s Guide 227()%12.9701
2308954-9701 2308793-9701
RPG Il Programmer’s i
Guide 9 DNOS Common DNOS SCl and Utilities

939524-9701

Communications Utilities
2308783-9701

Design Document
2270513-9701

DNOS Software Manuals Summary

Concepts and Facilities
Presents an overview of DNOS with topics grouped by operating system functions. All new users (or
evaluators) of DNOS should read this manual.

DNOS Operations Guide
Explains fundamental operations for a DNOS system. Includes detailed instructions on how to use each
device supported by DNOS.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Describes command procedures and gives
a detailed presentation of all SCl commands in alphabetical order for easy reference.

Text Editor Reference Manual
Explains how to use the Text Editor on DNOS and describes each of the editing commands.

Messages and Codes Reference Manuail
Lists the error messages, informative messages, and error codes reported by DNOS.

DNOS Reference Handbook
Provides a summary of commonly used information for quick reference.

Master Index to Operating System Manuals
Contains acomposite index to topics in the DNOS operating system manuals.

Programmer’s Guides and Reference Manuals for Languages
Contain information about the languages supported by DNOS. Each programmer’s guide covers oper-
ating system information relevant to the use of that language on DNOS. Each reference manual covers
details of the language itself, including language syntax and programming considerations.

Performance Package Documentation
Describes the enhanced capabilities that the DNOS Performance Package provides on the Model 990/12
Computer and Business System 800.

Link Editor Reference Manual
Describes how to use the Link Editor on DNOS to combine separately generated object modules to
form a single linked output.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNGS supervisor call and DNOS services.

DNOS System Generation Reference Manual
Explains how to generate a DNOS system for your particular configuration and environment.

User’s Guides for Productivity Tools
Describe the features, functions, and use of each productivity tool supported by DNOS.

User’s Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution
under DNOS.

Systems Programmer’s Guide
Discusses the DNOS subsystems and how to modify the system for specific application environments.

ROM Loader User’s Guide
Explains how to load the operating system using the ROM loader and describes the error conditions.

DNOS Design Documents
Contain design information about the DNOS system, SCI, and the utilities.

DNOS Security Manager’s Guide
Describes the file access security features available with DNOS.

iv ' 2270516-9701

Preface

This manual contains information about the Texas Instruments version of COBOL (COmmon

Business

Oriented Language), which is designed to operate on Texas Instruments computers.

This information supports the experienced programmer in developing COBOL programs intended
for execution under the DNOS Operating System. For additional descriptions of COBOL, refer to
the COBOL Reference Manual.

This manual contains the following sections and appendices:

Section

1

2270516-9701

introduction — Describes DNOS as it relates to COBOL and the operating system
environment. This introduction also includes an overview of the processes necessary to
create and execute a COBOL program (task) and includes notations that are used to
describe commands in this manual.

Operating System Concepts — Describes features related to program development.
Includes description of interactive tasks and batch execution, the System Command
Interpreter (SCI), directory and file structure, pathnames, access names, and synonyms.

Building a COBOL Source Program Module — Discusses how to build a COBOL
program source module, beginning with directory and file development, and how to use
the Text Editor utility.

Compilation — Explains how a COBOL source program module is compiled and
discusses compiler completion codes and error messages.

Link Edit — Explains the link editing process, COBOL segmentation, overlays, and
installation of COBOL task and procedure segments. Includes information on memory
mapping and the COBOL run-time interpreter.

Execution — Discusses execution of COBOL object modules, linked object modules,
and program images. Provides necessary SCl commands, completion codes, and error
messages.

Debugging — Discusses COBOL debugging for COBOL routines and the operating
system debugging for assembly language object modules that are linked to a COBOL
object module.

Calling Subroutines — Describes the process for calling COBOL and assembly
language modules.

Interfacing to Productivity Tools — Introduces the productivity tools that can interface
with COBOL and explains how these tools can be linked with COBOL object modules.

Preface

10

11

12

13

Appendix

A

Using SCI Command Procedures to Execute COBOL Tasks — Describes how to design a
system to interact with application environment processors and SCI.

COBOL Device-Dependent Attributes — Describes the ACCEPT/DISPLAY command
option that allows access to function keys, low volume Input/Output (//O), and graphic
1/0.

Error Processing — Describes the COBOL file status data item and error processing
under program control.

Optimizing Run-Time Performance — Discusses various ways to optimize COBOL code.

Keycap Cross-Reference — This appendix contains specific keyboard information to
help the user identify individual keys on any supported terminal.

COBOL Compiler Error Messages — Lists COBOL user and system compiler error
messages.

COBOL Run-Time Error Messages — Lists COBOL user and system run-time error
messages.

COBOL Subroutine Library Package — Describes COBOL subroutine library modules.

COBOL Compiler Listing Format — Gives example of the results from using the M, O,
and X options on the COBOL compiler.

In addition to the software manuals shown on the frontispiece, the following documents contain
information related to this manual:

vi

Title Part Number
COBOL System Design Document 2250953-9901
SCI: A Self-Study Approach to Writing Command 2267649-0001

Procedures and Batch Streams

2270516-970¢

Contents

Paragraph

2.1

2.2
221
222
23
2.3.1
23.2
233
2.3.31
2.3.3.2
234
2.3.41
2.3.4.2
2.3.43
2344
2.4
2.41
242
243
25

2.6
2.6.1
26.2
2.7
2.71
2711

2270516-9701

Title Page

1 — Introduction

COBOL ..o 1-1
A COBOL Program DevelopmentOverview i, 1-1
SCI Command Prompt Format and Notation 1-8
Command Name e 1-8
Command Prompts Returned i e i 1-8
Typeof Response Expected it i e 1-8
Initial Valueso e e e 19
Default Values 1-9

2 — Operating System Concepts

INtrOdUCHION . . . e e 241
JOb StruCtUTE . . . e e 2-1
Interactive JobS e e 2-1
BatCh JobS .. o e e e 241
USIiNG SCl .o e e 2-2
SCI DS CriPION ..t i e e e e 2-2
Entry of SCICommandsinVDTMode it i 2-2
Examples of USing SCl i 2-3
The Show Background Status (SBS)Command 2-3
The List Directory (LD)Command i 2-3
Batch Use of SCI 2-4
Batch Stream Format. 2-4
BatchCommand Format e 2-4
Interactive Executionof Batch Streams 2-6
Entering Programs From SequentialDevices 2-7
Directoryand FileStructure 2-7
EstablishingVolume Names it 2-7
Establishing Directories i 2-7
Establishing Files i e e 29
Pathnames and Access Names i e i it 29
Synonyms and Logical Names. e e 2-10
S N ONMY IS . . ittt et e e e 2-10
Logical Names 2-10
Fle TYPeS . . oo e e e e e e e 2-11
Sequential Files i i e 2-11
Sequential File Attributes 2-12

vii

Contents

Paragraph

2.7.1.2
2.7.2
2.7.21
2722
2723
2.7.3
274
2.8

29
2.9.1
2.9.1.1
29.1.2
2.9.2
29.21
2922
2.9.2.3
2924
2925
2.9.3
294
2.9.5
2.10
2.11
2.11.1
2.11.2
2.11.21
211.22
2113

3.1
3.2
3.3
3.3.1
3.3.2
3.4
3.5

4.1
4.2
4.21
4.2.2
4.3
4.4

viii

Title Page

CreatingSequential Files i e e e 2-12
Relative Record Files o e e e 2-16
Relative Record Attributes e 2-16
CreatingRelative Record Files o 2-17
Special Types of Relative Record Files 2-21
KeyIndexed Files (KIF) i e e e e e e 2-22
Concatenated and MultifileSets i 2-25

S UMY - o o e e e 2-26
110 Facilities. e e e e e e e e e e 2-27
HO Methods e 2-28
Resource-Specific /O i e e e 2-28
Resource-Independent /O e 2-28
Interprocess Communication (IPC) e i 2-28
PO USES ..ottt 2-28

IPC Channels e 2-29
Channel SCoPE e 2-29
System-Level IPCFunctions. i i 2-29
Program-Level IPCFunctions i 2-29
File O o 2-29
DeviCe /O L e e e 2-30
SPOO NG . e e e e e 2-30
S BOMENES . i e 2-31
Message Facilities oo e e 2-31
ErrOr MeSSageS - .ottt it e e 2-31
Online Expanded Error Message Documentation 2-32
Show Expanded Message (SEM)Command 2-32
The 2 RESPONSE . .ttt ittt e e e e 2-33
StatuUS MESSageS . . . ot i 2-33

3 — Building a COBOL Source Program Module

GEneral . .o e 3-1
Directoryand File Preparation e 31
Alternate Directory Structures 3-2

Organization by Programs 3-2

Organization by File Typeot e e 3-2
Creating Directoriesand Files i e 3-3
Building the Program Module Viathe Text Editor 3-3

4 — Compilation

GEneral . . . e e e e 4-1
Compiler EXEeCULION e 4-1
Execute COBOL Compilerin Foreground (XCCF) 41
Execute COBOL Compilerin Background(XCC) 4-6
Compiler QUIPUL . ..o s 4-7
CompilerCompletion Codest e e e 4-7

2270516-9701

~_=

Paragraph

4.5
4.6

5.1
5.2
5.2.1
5.2.2
5.3
5.4
5.4.1
5.4.1.1
54.1.2
5.4.2
5.4.3
5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8

56.9

5.6.10
5.7
5.8

6.1
6.1.1
6.2
6.2.1
6.2.2
6.3
6.4
6.4.1
6.4.2
6.5
6.6

2270516-9701

Contents

Title Page
CompPIler Error MeSSageS . . .o i ittt i ittt et e 4-7
CompilerLimitations i 4-7

General . . e e e 5-1
Object ModUIES . ..o e e e 5-3
Differences in the Treatment of Shareable Vs. Reentrant Modules 5-3
COBOLObject Modules i e e e e e 5-3
Program Mappingt e e e e 5-3
Program Files e e e 5-4
SBgMENES . ..o e e 5-5
TaskSegments................. e e 5-5
Procedure Segments e e e 5-6
OVET Y S . ottt e e e e e 5-10
COBOL Module Segmentation.......... i 5-10
Creating Linked Object Modules 5-11
Creating Program Imagesttt e e e 5-13
COBOL RUN TIME ot ittt e e e e e e et 5-14
Linking a Single Procedure Segment With a Single Task Segment 5-14
Linking a Single Procedure Segment With Multiple Task Segments 5-15
Linking Two Procedure Segments With a Single Task Segment 5-15
Linking Two Procedure Segments With Multiple Task Segments 5-19
Overlay StruCtUreSo e e 5-22
SharingMain ProgramModule i e 5-24
Linking a Single Procedure One Segment
and Multiple Procedure TwoSegments. ...t inenn.. 5-24
Linking a Single Procedure Segment With a '
Single Task SegmentonaUserProgramFile oot 5-24
Installing Program Images From aRelativeFile. 5-27
Linking Libraries e e 5-27
Linking Limitations P 5-29

GeNeral e 6-1
Use of aSynonyminthe COBOL SelectClauseooint. 6-1
Object Modules Execution. i e 6-1
Execute COBOL Program in Foreground (XCPF) i, 6-2
Execute COBOL Program in Background (XCP) iiiint. 6-4
Execution Completion Codes and Run-Time ErrorMessages 6-4
Program Image Execution i e 6-5
Execute COBOL Taskin Foreground (XCTF), 6-5
Execute COBOL Taskin Background (XCT)ttt 6-7
Execution Completion Codes and Run-Time ErrorMessages 6-7
Program Termination Messagest ittt ae s 6-8
ix

Contents

Paragraph

7.1

7.2
7.21
7.2.2
7221
7222
7.2.2.3
7224
7225
7226
7227
7228
7229
7.2.2.10
7.3

8.1
8.2
8.3

9.1
9.2
9.3
9.4
9.4.1
9.4.2
943
9.5
9.6
9.7
9.8

10.1
10.2
10.3
10.3.1
10.3.2
10.3.3

Title Page

7 — Debugging

DebUg MOde. . .ttt e e e e e e 7-1
DebuggingaCOBOL Module. ...t i i e e e e iaee s 741
Activatingthe Debugger.o i e e 7-1
COBOL Debug Commandso vttt et et e et e e 7-3
Assign Address StopCommand (A)ottt e e 7-7
Dump DataltemCommand (D) ittt i 7-7
Exit DebugMode Command (E)vviriitiin ittt 7-9
Change Program LocationCommand(L).......... ..., 7-10
Modify Dataltem Command (M) it inienan 7-11
Quit ExecutionCommand (Q) ottt e e e 7-14
Resume Program ExecutionCommand(R) it 7-14
Execute Next Singie StatementCommand(S) it 7-15
Undo Address StopCommand (U) ...ttt 7-15
Write Screen to Message FileCommand (W)ot 7-16
Debugging of Assembly Language Subroutines Linked to COBOL Programs 7-16

8 — Calling Subroutines

(7= 01T - | 8-1
COBOL Subroutine LibraryPackage oottt it e e e e 8-1
Assembly Language Subroutines i e 8-3

9 — Interfacing to Productivity Tools

LT 1= - | Ot 9-1
T IFORM i e e e e e e e e e 9-1
SO MBI . oot e e e e e 9-7
Database Management System e e 9-15

DBMS-990 Featuresottt ittt et e e e e e, 9-16

DBMS-990UserInterface i e e e 9-16

Linking DBMS-990 and COBOL Modules ...ttt iiniinennnnnns 9-16
QUEIY-090 . . .ottt e e e e e 9-30
CoOMMUNICAtIONS it e et e e e e 9-34
Communication Equipment e 9-34
3780 Emulator Communications Software i i 9-35

10 — Using SCI Command Procedures to Execute COBOL Tasks

L= o 1= - 10-1
SClCommand Procedure Elementsttt e 10-1
Example Command Proceduresottt it 10-2
Example 1. . . e e e 10-2
EXample 2 . . e e 10-4
EXample 3 .. e e e 10-7

2270516-9701

Contents

Paragraph Title Page

11 — COBOL Device-Dependent Attributes

11.1 FUNCHION KBY S . oottt it it i et et et et et e e 111
11.2 Low Volume Input/Output (I/1O) ot e e e 11-2
11.3 Graphic Input/Output e 11-8

12.1 L€ T=1 2 =] - 12-1
12.2 Fille /O Status ..ot e e e e e e 12-1
12.3 Filel/OStatus Values i e ettt 12-3

12.4 Useof Declaratives ittt i e e et e e e 12-8

13 — Optimizing Run-Time Performance

13.1 1 7= 0T - 1 13-1
13.2 Object Size Considerations ... ittt i e e st 13-1
13.3 Arithmetic Operations i i i i e e 13-2
13.4 Control Operations i e e e 13-4
13.5 Move Operations i e e 13-6
13.6 L@ @) o =T =3 o] o - 13-8
Appendixes
Appendix Title Page
A Keycap Cross-Referencettt i et A-1
B COBOL Compiler Error MeSSages . ..o vvvitt it iee e i iie i eaaea e B-1
C COBOLRUN-TIMe Error Messages -o viiiiiiii it e et CA1
D COBOL Subroutine LibraryPackage ittt D-1
E COBOL Compiler ListingFormat ittt E-1
Index

2270516-9701 xi

Contents

lllustrations

Figure Title Page
1-1 Program Source Module — MANUAL.PG.SRC.FIGO101........................ 1-3
1-2 Compiler Listing — MANUAL.PG.LST.FIGO102. it 1-4
2-1 Directoryand File Structure i 2-8
2-2 Sequential File Descriptionand Creation............. 2-13
2-3 Sequential Files: Physical Record Size < SectorSize < ADUSize.............. 2-14
2-4 Sequential Files: Physical Record Size = Sector Size < ADUSize 2-15
2-5 Sequential Files: Sector Size < Physical Record Size < ADUSize.............. 2-15
2-6 Sequential Files: Sector Size < Physical Record Size=ADUSize 2-15
2-7 Sequential Files: Physical Record Size > ADU Size = SectorSize.............. 2-16
2-8 Relative Record File Descriptionand Creation, 2-18
29 Relative Record Files: Physical Record Size < Sector Size < ADUSize 2-20
2-10 Relative Record Files: Physical Record Size = Sector Size < ADU Size 2-20
2-1 Relative Record Files: Sector Size < Physical Record < ADUSize 2-20
2-12 Relative Record Files: Sector Size < Physical Record Size=ADU Size 2-21
213 Relative Record Files: Physical Record Size > ADU Size = SectorSize 2-21
2-14 KIF Description, CFKEY Creation,and MKF Listing 2-24
3-1 Organizationof Filesin Directory i i et 3-2
3-2 Sample COBOL Program Source Module — VOLUME.SOURCE.EXAMPLE2. 3-4
4-1 Sample COBOL CompilerListing ... i i i i i 4-3
5-1 Determining Link Edit Requirements for COBOLPrograms..................... 5-2
5-2 Memory Mapping . ..ot e e e 5-4
5-3 ContentsofaProgram File i e 5-5
5-4 Multiple Tasks SharingSame Pl1and P2. it 5-7
5.5 Multiple Tasks Sharing Same P1 but DifferentP2s 5-8
5-6 Multiple Tasks on Separate Program Files i, 5-9
5-7 Comparison of Memory Requirements it 5-10
5-8 COBOL Segmentation Within Overlay PhaseModules 5-11
5-9 Linking a Single Procedure Segment With aSingle Task Segment 5-16
5-10 Linking a Single Procedure Segment With Multiple Task Segments............. 5-17
5-11 Linking Two Procedure Segments With aSingle Task Segment 5-18
5-12 Linking Two Procedure Segments With Multiple TaskSegments 5-20
5-13 Linking Two Procedure Segments With Multiple Task Segments (ALLOCATE). . . .5-21
5-14 An Overlay Structure With the Accompanying Link Control File 5-23
5-15 Sharing the Main Program Module WithP2 it 5-24
5-16 LinkingaP1With Different P2s 5-25
5-17 Linking a Single Procedure Segment WithaSingleTask 5-26
5-18 Random Library Structure i e e 5-28
6-1 SPECIAL-NAMES Paragraph Example i, 6-3
xii 2270516-9701

Figure

71
7-2
7-3
7-4
7-5

8-1
82

9-2
9-3
9-4
9-5
9-6

10-1
102
10-3
10-4
11-1
112
113
11-4

12-1

Compiler Qutput Listing
Interactive Debugging Example
COBOL Program Calling Assembly Language Modules
Assembly Language Module ADDRES
Assembly Language Module IOCALL

Example of COBOL Routine Calling Assembler Subroutine
Example of Assembler Subroutine Called by COBOL

COBOL Module Interfacing With TIFORM
TIFORM VDT Screen Description
COBOL Routine Calling Sort/Merge
COBOL Interfacing With DBMS-990
Data Definition Language (DDL) File
COBOL Module Linked to Query

Simple SCI Procedure
Tailored SCI Procedure
COBOL Procedure

Use of ACCEPT and DISPLAY Statements
Contents of VDT Screen at Program Completion

Graphic Characters
Checking Error-Handling Capabilities Through DECLARATIVES

Contents

Table

1-1
3-1
41
5-1
7-1
8-1
8-2
9-1
11-1

12-1
122
123
124

2270516-9701

Command Prompt Notation
Files Required for Program Development
COBOL Compiler Options
Valid Link Editor Commands With COBOL Object
Debug Commands

COBOL Subroutines Library
Format Codes for Calling Module

COBOL Entry Points to the Applications Interface Routines

Function Key Mapping

File Status Table
Operating System Errors and COBOL File Status Errors
COBOL /O Operation Validity Table
Device Correspondence Table

xiiilxiv

Introduction

1.1 COBOL

The COBOL compiler conforms to the American National Standards Institute (ANSI) COBOL sub-
set as defined in ANSI document X3.23-1974. The COBOL compiler incorporates extensions to this
subset to provide added capabilities. The compiler package employs the following ANSI 74 stan-
dard COBOL modules at the level indicated:

Level 1 Features Level 1 + Features*
Interprogram communications Nucleus
Library , Table handling
Segmentation Sequential I/O
Relative 11O
Indexed I/O

* Selected features from level 2
COBOL debug support and ACCEPT and DISPLAY statements are nonstandard and are designed
forinteractive use on video display terminals (VDTs).
1.2 ACOBOL PROGRAM DEVELOPMENT OVERVIEW

The operating system provides developmental and operational support for program modules
written in COBOL. The information presented in this section is an overview of the following:

. Building program source modules via the text editor

. Compiling program source modules to produce object program modules

. Linking program object modules to produce program images on a program file

. Executing program images on a program file

. Executing a program object module or a linked object module
Refer to the appropriate sections in this manual for specific details about developmental and
operational support for program modules written in COBOL. The details of the language are dis-
cussed in the COBOL Reference Manual.
During the preparation of this manual, some assumptions have been made for the sake of a clear

presentation. You are assumed to have a DNOS system with SCI, a terminal operating in VDT
mode, avalid user ID, and a passcode.

2270516-9701 11

Introduction

The following definitions are provided to assist you when reading this manual:

Module — A set of computer program instructions treated as a unit by an assembler, compiler, link
editor, or other similar processor.

Object File — A file (usually created by the compiler) containing one or more object program
modules.

Program — A collection of object instructions that directs the activities of a computer; can consist
of task segments, procedure segments, and overlays.

Task — A program that executes under control of the operating system.

Source File — A file (usually created by using the text editor) containing one or more program
source modules (source code or statements).

Linked Object File — A file (created by the link editor) containing one or more program object
modules that have been linked together to produce linked object modules.

Program File — A file (created by you or by the link editor) containing executable program com-
ponents in memory image form.

Link Control File — A file (created by you) containing instructions for the link editor.

Subroutine — A sequenced set of statements that may be used in one or more programs and at
one or more points in a program. :

Primitive — An SCI system routine, the lowest level component in the SCl language.

Logical Unit Number (LUNO) — A number that represents a file or device and is specified in an I/O
operation.

Synonym — A text string that functions as an alternative for another string.

Normally, you write COBOL program source modules from a VDT under the control of the text edi-
tor. The text editor allows you to create or modify an existing program source module. This file is
used as input to the COBOL compiler. A pathname is assigned to the source file at its creation.

Pathnames are discussed in Section 2. Figure 1-1 shows a sample COBOL program source
module.

When SCI commands are invoked during compilation or execution, a command heading and infor-
mation concerning the software release level are displayed. The software release information
appears as follows:

VERSION <L.R.V YYDDD>

where:
L is the software level.

R is the software release of level L.

1-2 : 2270516-9701

Introduction

V is the software version of release R (operating system).
YY is the year the software was released.
DDD is the day of the year wher the software was released.

IDENTIFICATION DIVISION.
PROGRAM-ID. LRV.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT LISTFILE ASSIGN TO RANDOM '"LST".
DATA DIVISION.
FILE SECTION.
FD LISTFILE LABEL RECORDS STANDARD.

01 LISTING.
02 cc PIC X(3).
02 DNCBL PIC X(15).
02 L-R-V PIC X(7).
02 YY-DDD PIC X(7).

02 COMPILED PIC X(9).
02 MM-DD-YY PIC X(9).
02 HH-MM-SS PIC X(9).

02 FILLER PIC X(10).
02 PAG PIC X(4).
02 FILLER PIC X(7).

WORKING-STORAGE SECTION.
01 ACTION PIC X.
01 EOF PIC X VALUE " ".
PROCEDURE DIVISION.
MAIN-PROG.
OPEN I-0 LISTFILE.
PERFORM READ-WRITE UNTIL EOF > ' ',
CLOSE LISTFILE.
STOP RUN.
READ-WRITE.
READ LISTFILE AT END MOVE 1 TO EOF.
IF DNCBL = '""DNCBL"
IF COMPILED = "COMPILED:"
IF PAG = '"PAGE"
MOVE "L.R.V'" TO L-R-V
MOVE "YY.DDD" TO YY-DDD
MOVE ''MM/DD/YY' TO MM-DD-YY
MOVE '"HH:MM:SS' TO HH-MM-SS
REWRITE LISTING.

Figure 1-1. Program Source Module — MANUAL.PG.SRC.FIG0101

2270516-9701 1-3

Introduction

To compile a COBOL program source module, enter one of the Execute COBOL Compiler (XCC or
XCCF) commands. The command prompts for the XCCF command (with sample responses
included) are as follows:

EXECUTE COBOL COMPILER FOREGROUND <VERSION: L.R.V. YYDDD>

SOURCE ACCESS NAME: MANUAL.PG.SRC.FIGO102
OBJECT ACCESS NAME: MANUAL.PG.OBJ.FIG0102
LISTING ACCESS NAME: MANUAL.PG.LST.FIG0102

OPTIONS: M

PRINT WIDTH: 80

PAGE SIZE: 55

PROGRAM SIZE(LINES): 1000

After responding to the prompts, press the Return key to activate the compiler. When the compila-
tion completes, a completion message appears on the video display terminal (VDT) screen. If an
error occurs, check the error message in the appropriate appendix, correct the error, and recompile
the program source module. Section 4 has complete instructions for compiling COBOL source
program modules.

Figure 1-2 shows an example of a compiler listing. Notice that the number of errors and warnings
as aresult of the compilation are included near the end of the listing.

DNCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 1
SOURCE ACCESS NAME: MANUAL.PG.SRC.FIG0102
OBJECT ACCESS NAME: MANUAL.PG.0BJ.FIG0102
LISTING ACCESS NAME: MANUAL.PG.LST.FIG0102
OPTIONS: M
PRINT WIDTH: 80
PAGE SIZE: 55

PROGRAM SIZE (LINES): 1000

DNCBL L.R.V. YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2
LINE DEBUG PG/LN A....B.iiiiiiinennieneearnnnsnesannnsnnnasosnasssnsasaannns
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. LRV.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. TI-990.
6 OBJECT-COMPUTER. TI-990.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT LISTFILE ASSIGN TO RANDOM "LST".
10 DATA DIVISION.
1" FILE SECTION.
12 FD LISTFILE LABEL RECORDS STANDARD.
13 01 LISTING.
14 02 ccC PIC X(3).

Figure 1-2. Compiler Listing — MANUAL.PG.LST.FIG0102 (Sheet 1 of 3)

1-4 2270516-9701

DNCBL

ADDRESS

>0026
>0026
>0029
>0038
>003F
>0046
>004F
>0058
>0068B

>007A

>007¢C

2270516-9701

>0000
>0000
>0006
>0010
>0016
>0018
>0018
>0022

SI1Z

—

HFOOVO~N~NVNWOO

02

DNCBL PIC X(15).
L-R-V PIC X(7).
YY-DDD PIC X(7).
COMPILED PIC X(9).

MM-DD-YY PIC X(9).
HH~MM-SS PIC X(9).

FILLER PIC X(10).
PAG PIC X(4).
FILLER PIC X(7).

WORKING-STORAGE SECTION.
ACTION PIC X.

EOF PIC X VALUE " .
PROCEDURE DIVISION.
MAIN-PROG.

OPEN I-0 LISTFILE.
PERFORM READ-WRITE UNTIL EOF > ' ',
CLOSE LISTFILE.
STOP RUN.
READ-WRITE.

READ LISTFILE AT END MOVE 1 TO EOF.

01
01

IF

DNCBL = ''DNCBL"

IF COMPILED = "*COMPILED:"

IF PAG = '"PAGE"
MOVE "L.R.V'" TO

L-R-V

MOVE "YY.DDD" TO YY-DDD

MOVE "MM/DD/YY"
MOVE ''HH:MM:SS"
REWRITE LISTING.

Z22ZZZ END PROGRAM.

E

-—

TO MM-DD-YY
TO HH-MM-SS

L.R.V. YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M
DEBUG ORDER TYPE

GRP
ANS
ANS
ANS
ANS
ANS
ANS
ANS
ANS

ANS

ANS

QOO0 O0OODOOCO

FILE

GROUP
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC

ALPHANUMERIC

ALPHANUMERIC

NAME

LISTFILE
LISTING

cC
DNCBL
L-R-V
YY-DDD
COMPILED
MM-DD-YY
HH-MM-SS
PAG

ACTION

EOF

Introduction

%% END OF FILE

PAGE

Figure 1-2. Compiler Listing — MANUAL.PG.LST.FIG0102 (Sheet 2 of 3)

3

1-5

Introduction

READ ONLY BYTE SIZE = >012A

READ/WRITE BYTE SIZE = >00CE

OVERLAY SEGMENT BYTE SIZE = >0000

TOTAL BYTE SIZE = >01F8
0 ERRORS

0 WARNINGS
Figure 1-2. Compiler Listing — MANUAL.PG.LST.FIG0102 (Sheet 3 of 3)

After compilation, the compiled object module is either executed, linked to create a linked object
module, or linked to create a program image on a program file. Refer to Section 6 for details and
restrictions regarding execution of a compiled object module. Section 5 contains details and
restrictions for linking.

Before MANUAL.PG.OBJ.FIG0101 is executed, external file assignments must be resolved if syn-
onyms are specified in the source module. In Figure 1-1, the synonym LST must be assigned to the
pathname of the compiler listing file. To assign the synonym LST, enter the Assign Synonym (AS)
SCl command. The command prompts are as follows (with sample responses included):

ASSIGN SYNONYM VALUE
SYNONYM: LST
VALUE: MANUAL.PG.LST.FIGO101

To execute COBOL object modules, use the Execute COBOL Program (XCP or XCPF) SCI com-
mand. When the XCPF command is activated, enter the COBOL object file access name or linked
object file access name defined when the COBOL program module was compiled or linked. The
SCI commands associated with execution of a COBOL program are described in detail in Section
6. The command prompts are as follows (with sample responses included):

EXECUTE COBOL PROGRAM FOREGROUND <VERSION: L.R.V. YYDDD>
OBJECT ACCESS NAME: MANUAL.PG.0BJ.FIG0101
DEBUG MODE: NO
MESSAGE ACCESS NAME:
SWITCHES: 00000000
FUNCTION KEYS: NO

To create a linked object modUIe, the Link Editor utility and a link control file are required. If a link
control file is not available, you must create one. An example link control file is as follows:

TASK LRV
INCLUDE MANUAL.PG.OBJ.FIG0101
END

1-6 2270516-9701

Introduction

You also need a link control file to link an object module for producing a program image using the
Link Editor utility. An example link control file is as follows:

FORMAT IMAGE,REPLACE
PROCEDURE RCOBOL

DUMMY

INCLUDE .S$SYSLIB.RCBPRC
TASK LRV

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE MANUAL.PG.OBJ.FIG0101
END

In this link control file, named MANUAL.PG.CONTROL.EXAMPLE1, the IMAGE in the FORMAT
statement ensures that the object file output from the link editor is written directly to a program
file in memory image form. The word REPLACE ensures that any task segment in the program file
with the name LRV is deleted before this task segment is written to the program file. The DUMMY
command prevents the shared procedure segment (RCOBOL) from being replaced in the program
file.

To initiate the link editor, enter the Execute Link Editor (XLE) SCI command. Respond to the
prompts to link and install the LRV task on a program file named MANUAL.PG.PROGRAM. The
command prompts are as follows (with sample responses included):

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: MANUAL.PG.CONTROL.EXAMPLE1
LINKED OUTPUT ACCESS NAME: MANUAL.PG.PROGRAM
LISTING ACCESS NAME: MANUAL.PG.LINKLIST.EXAMPLE1
PRINT WIDTH (CHARS): 80
PAGE LENGTH: 59

To execute linked object modules, use the Execute COBOL Program (XCP or XCPF) commands.
You can execute the object module as a program image on a program file by using the Execute
COBOL Task (XCT or XCTF) commands.

Now, to execute the installed program image, use the XCT or XCTF commands. Once the call has
been issued, the COBOL task executes under control of the run-time interpreter; the interpreter is
included as part of the task at link edit time.

To execute the task LRV on program file MANUAL.PG.PROGRAM, enter the XCTF command and
respond to the command prompts. Section 6 describes the SCl commands associated with exe-
cution of a COBOL task. The command prompts are as follows (with sample responses included):

EXECUTE COBOL TASK FOREGROUND <VERSION: L.R.V. YYDDD>
PROGRAM FILE : >7
TASK ID OR NAME: LRV
DEBUG MODE: NO
MESSAGE ACCESS NAME:
SWITCHES: 00000000
FUNCTION KEYS: NO

2270516-9701 17

Introduction

After responding to the prompts, the program executes. If an error occurs: 1) check the error mes-
sage in the appropriate appendix; 2) correct the error; and 3) compile, link edit, and execute the
task again.

COBOL debug mode is available only with the XCPF and XCTF commands. The debug mode pro-
vides for controlled execution of a program or task. When running in debug mode, a program or
task can be halted and resumed. The debug mode allows you to specify address stops, single
COBOL statement execution, or data item dumps. Also, it is possible to exit from debug mode or
quit execution of a task. For further information about debugging, refer to Section 7.

1.3 SCICOMMAND PROMPT FORMAT AND NOTATION

When SCI command prompts are described in this manual, a standard format and notation is used.
The notation is described in the following paragraphs.

1.3.1 Command Name

The characters of a command represent the full command name. For example, the characters of
the Show Date and Time command are SDT. To enter a command, type the characters of the com-
mand and signal when finished by pressing the Return key.

When you enter SDT and press the Return key

[l SDT <RETURN>

the system responds as follows:

13:48:30 WEDNESDAY, MAY 14, 1980.

Since the Show Date and Time command includes no command prompts, the command executes
without further user interaction.

1.3.2 Command Prompts Returned

Upon entry of a command, the system displays the full name of the command and any associated
command prompts. Command prompts provide you with information and request parameters to
complete execution of the command. In the Show File example that follows, the cursor appears
after the “FILE PATHNAME:” prompt. The system waits for you to enter a file pathname. (A path-
name is a character string that indicates a path to aresource such as afile, channel, ordevice.)

1.3.3 Type of Response Expected

For each command prompt, a response of a given type is expected. In the remainder of this
manual, the expected response type is given after each command prompt. In the Show File
example that follows, the expected response type is a pathname. To enter a response, proceed as
follows:

1. Type the desired response. The response must be of the type expected. To show the
contents of a file named .MYFILE, type .MYFILE in response to the FILE PATHNAME:
prompt of the Show File (SF) SCI command.

2. Pressthe Return key to signal that the entry is complete.

1-8 2270516-9701

Introduction

The following example illustrates the description of the SF command:

[1 SF
SHOW FILE
FILE PATHNAME: pathnamed

Following the response to the first prompt, the cursor is positioned after the next prompt and
waits for your response. After entry of the response to the last prompting message, the command
executes. You can press the Command key prior to entering the last prompt to prevent execution
of acommand.

To help you respond to the prompts, the system sometimes displays an initial value after a prompt
or has adefault value available for a response. The following paragraphs describe initial values and
default values.

1.3.3.1 Initial Values. An initial value is a value that the system automatically displays as a
response to some prompting messages. Users can accept an initial value by pressing the Return
key. They can erase the initial value by pressing the Erase Field or Skip key. Finally, they can reject
the initial value by entering a different value.

The initial values for some prompts are fixed, therefore, the same initial value always appears for
that prompt. In other cases, the system saves a value entered with a command and displays it as
an initial value for a later entry of the same command or for the entry of a related command. Some
variable initial values are also saved from one terminal session to another.

1.3.3.2 Default Values. A default value is a value that the system automatically supplies as the
response to a prompt when you do not enter a value. The system often provides default values to
speed up the entry of responses to prompts. This is especially true for optional user responses. To
enter the default value for a prompt (where a default value exists), press the Return key without
entering any other data. Such an entry is called a null entry.

Notation symbols (Table 1-1) enclose some prompt responses in the command descriptions to
help explain how the responses are entered.

2270516-9701 19

Introduction

Table 1-1. Command Prompt Notation

Notation Meaning

Uppercase Enter the response as listed.

Lowercase Enter aresponse of this type.

No marks The response is required.

[] The response is optional.

{} The response must be exactly one of the enclosed
items or must be a type of one of the enclosed items.
(Choices separated by a slash.)

item. . .item More than one item of this type may be entered in
reponse to the prompt. Items should be separated by
commas.

@ Synonyms or logical names are allowed (as responses).

The item enclosed in parentheses represents the initial
value. If (*) is shown, the value may be supplied from a
synonym set by a previously used command procedure.
If a list is supplied in a form other than interactive
(batch mode or a procedure calling a command proce-
dure), the list must be enclosed in parentheses.

1-10

2270516-9701

2

Operating System Concepts

2.1 INTRODUCTION

This section provides an overview and describes some important system capabilities. For more
information, refer to the operating system manuals listed on the frontispiece of this manual.

2.2 JOBSTRUCTURE

DNOS uses a structure composed of jobs and tasks to perform the functions of a muititasking
operating system. This job structure facilitates effective resource usage and subsystem isolation.

A job is a collection of cooperating tasks (programs) initiated by command procedures or from
within an executing program. When you log on at a terminal, an interactive job begins. This job is
associated with the terminal that started it. When you initiate a batch job, that job is not asso-
ciated with any particular terminal.

At each terminal, it is possible to have one foreground task and one background task concurrently
active in the interactive job. Any number of jobs can be created as batch jobs.

2.2.1 Interactive Jobs

An interactive job can include tasks operating in either foreground, background, or batch mode. A
foreground task can accept data from the terminal as it is executing. In background mode, SCI
does not expect interaction with terminals. You can start a task (for example, updating a database)
in background mode and perform other activities (such as data collection) in foreground mode
while the background task is active. When complete, the background task returns a message to
the terminal, indicating completion. :

Commands entered from interactive terminals are entered in foreground mode. The operating sys-
tem responds by displaying the appropriate command prompts. Enter the required information;
the task now begins execution. While the task executes in foreground, SCl is suspended to avoid
interference. User interaction now occurs directly with the foreground task. The DNOS Operations
Guide describes the commands that initiate tasks in all modes.

2.2.2 Batch Jobs

Batch streams use SCI in background mode to process batch commands. In batch mode, SCI
accepts commands from any sequentially oriented device but not from a terminal. When you enter
commands in a batch command stream, include all parameters required for the operation. Also, be
sure that the commands included are suitable for execution in background mode. Commands that
initiate operations requiring user interaction (for example, text editing and debugging commands)
are not permitted.

2270516-9701 2.1

Operating System Concepts

2.3 USING SCI

The following paragraphs discuss the use of SCI. Section 10 gives information for designing your
own command procedures. The DNOS System Command Interpreter Reference Manual contains
complete descriptions of SCI commands, plus procedures for creating new commands and
menus.

2.3.1 SCI Description

SCl is the interface between you and the operating system, system utilities, the software develop-
ment programs, and application programs. Application programs can interface with you through
user-defined SCl commands and menus.

You can use SCI to activate programs and to pass parameters to the programs during execution.
SCl also allows you to build and maintain tables of variables, called synonyms and logical names,
and their values. SCI allows application programs to access these variables for use in the pro-
grams.

To execute an application program via SCI, you can use predefined execution commands such as
Execute Task (XT), Execute FORTRAN Task (XFT), Execute Pascal Task (XPT), and Execute COBOL
Task (XCT), or you can write your own SCI command to initiate a program. You can add user-
defined commands to the system library, or you can group them in a separate command library.
The .USE primitive allows you to specify which command library SCI should use.

You can enter SCI commands from interactive terminals or in batch command streams. In
response to commands entered interactively, SCI displays command prompts associated with the
command.

When all required prompts have been properly answered, SCI interprets the responses and
initiates the requested operation.

2.3.2 Entry of SCI Commands in VDT Mode

To enter an SCI command in VDT mode, type the characters (in uppercase letters) of the command
and press the Return key. If you set the lowercase option with the .OPTION primitive, you can use
either upper or lowercase characters. Upon entry of a command, SCI displays the full name of the
command entered and all the field prompts associated with the command. Field prompts provide
information and request parameters to complete command execution. For example, the following
field prompt requests that you identify an output pathname:

OUTPUT PATHNAME:

2-2 2270516-9701

Operating System Concepts

2.3.3 Examples of Using SCI
The following paragraphs contain examples of specific uses of SCl commands. Consuit the DNOS
System Command Interpreter Reference Manual for a complete discussion of the SCl commands.

2.3.3.1 The Show Background Status (SBS) Command. Use the SBS command to view the
status of a program that is currently executing in background mode and that was initiated from
your terminal. Since this command has no associated prompts, the command executes immedi-
ately after you enter SBS and press the Return key. A message indicating the state of the back-
ground activity appears, as follows:

[] SBS
SHOW BACKGROUND STATUS
TASK IS ACTIVE

2.3.3.2 The List Directory (LD) Command. Use the List Directory command to list the names of
all files and subdirectories in a directory. The display for this command is as follows:

{1 Lo

LIST DIRECTORY
PATHNAME: [site:] pathnamed
LISTING ACCESS NAME: [site:] [pathnameld

In response to the prompt PATHNAME, enter the pathname of the directory whose filenames and
subdirectory names will be listed. The @ indicates that you can specify the pathname as a
synonym or logical name. Also, [site:] indicates that the pathname can include a site name if you
issue the command from a system with access to a DNOS network.

In response to LISTING ACCESS NAME, enter the pathname of the device or file to which the
listing should be written. The brackets ([]) indicate that the response is optional. The default value
is the terminal at which the command is entered. A null response (pressing the Return key while
the cursor is in a blank field) causes the default value to be accepted. In the following case, the
directory SYS2.DP0080 is listed to the terminal from which the command was executed. Synonym
D represents the directory pathname.

2270516-9701 23

Operating System Concepts

(1 LD

LIST DIRECTORY
PATHNAME: SYS2.DP0080
LISTING ACCESS NAME:

DIRECTORY LISTING OF: SYS2.DP0080
MAX # OF ENTRIES: 101 # OF ENTRIES AVAILABLE: 78

DIRECTORY ALIAS OF ENTRIES LAST UPDATE CREATION

ML * 5 05/30/80 13:44:48 03/17/80 12:51:06

TIP * 11 05/07/80 12:02:20 02/11/80 16:44:21

FILE ALIAS OF RECORDS LAST UPDATE FMT TYPE BLK PROTECT
BATCH * 24 06/03/80 08:16:56 BS N SEQ YES

CoBOL * 3550 05/30/80 14:06:46 NBS N SEQ YES

DATA * 17 05/07/80 15:31:57 BS N SEQ YES

16:21:50 TUESDAY, JUN 03, 1980.
2.3.4 Batch Use of SCI
To use SCl in a batch mode with a batch stream, use the Execute Batch (XB) or the Execute Batch
Job (XBJ) ccmmand. The XB command starts a background task that is associated with your ter-
minal. XBJ starts a new job not associated with aterminal.

The following paragraphs discuss the characteristics of batch SCI and the differences in format
between batch commands and commands entered interactively.

2.3.4.1 Batch Stream Format. The first and last commands of a batch stream should be the
BATCH and EBATCH commands, respectively. The BATCH command initiates the batch SCI envi-
ronment. EBATCH indicates that the batch stream contains no more commands to be processed
by SCI.

Upon normal completion of the batch stream executing in background mode, the following mes-
sage appears:

BACKGROUND SCI HAS COMPLETED:

2.3.4.2 Batch Command Format. When supplying SCI commands in batch stream format,
include the following information for each command:

. The characters of the command
. All required prompts associated with the command

. The parameter values (responses) for the command prompts

2.4 2270516-9701

Operating System Concepts

The following examples demonstrate the Execute Link Editor (XLE) command in both interactive
and batch form. (Refer to the Link Editor Reference Manual for a complete description of the XLE
command.)

When you enter XLE interactively, the command prompts appear:

[1 XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: [site:] pathnamed
LINKED OUTPUT ACCESS NAME: [site:] [pathnameld
LISTING ACCESS NAME: [site:] [pathnameld
PRINT WIDTH (CHARS): integer (80)
PAGE LENGTH: integer (59)

To execute the command, respond to the CONTROL ACCESS NAME prompt by specifying the
pathname of the file or device from which the control stream is to be read. Then, either specify
values or accept the default values for the remaining prompts. If the control stream is contained in
the file .M.CONTROL, the linked output is to be written to the file .M.OBJECT, the Link Editor
listing is to be written to the file .M.LIST, and an 80-character line with 59 lines per page is
acceptabla respond as follows:

[J XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: .M.CONTROL
LINKED OUTPUT ACCESS NAME: .M.OBJECT
LISTING ACCESS NAME: .M.LIST
PRINT WIDTH (CHARS): 80
PAGE LENGTH: 59

To execute this command in a batch stream, include the characters of the command, all required
and any optional prompts that are specified, and the responses to those prompts. The following
batch command is equivalent to the interactive version shown previously:

XLE CONTROL=.M.CONTROL, LINKED OUTPUT=.M.OBJECT, LISTING=.M.LIST

Notice that you can accept the default values for the PRINT WIDTH and PAGE LENGTH prompts
by omitting them from the batch command. Also, you can use abbreviated versions of the speci-
fied command prompts. The abbreviation must be sufficient to uniquely identify the prompt.
Often, only the first character of acommand prompt need be entered. For example, the following is
equivalent to the previous example:

XLE C=.M.CONTROL, LO=.M.OBJECT, LIST=.M.LIST
A batch stream consists of one command or a series of commands in this format, preceded by the

BATCH command and followed by the EBATCH command. The file containing the batch command
stream is the input file for the XB and XBJ commands.

2270516-9701 2-5

Operating System Concepts

2.3.4.3 Interactive Execution of Batch Streams and Batch Jobs. Use the XB command to exe-
cute batch streams as background activities from an interactive job. After you enter the XB com-
mand and the batch stream begins execution, you can continue to execute SCI commands in
foreground mode. After the batch stream completes, the completion message appears the next
time you press the CMD key. To monitor batch stream execution, enter the Show Background
Status (SBS) command from time to time, or use the Wait command. Also, you can use the Show
File (SF) command to view the listing file for the batch stream during the run.

An example of the XB command is as follows:

[1xs

EXECUTE BATCH
INPUT ACCESS NAME: [site:] pathnamea
LISTING ACCESS NAME: [site:] pathnamed

The INPUT ACCESS NAME is the pathname of the device or file that contains the batch stream.
The LISTING ACCESS NAME is the pathname of the device or file that is to receive the results of
-the batch stream execution. This device or file must not be used by any command in the batch
stream.

The XBJ command allows you to execute a batch SCI job. Once initiated, the job runs indepen-
dently from the terminal where it was initiated. Consequently, you are free to execute additional
SCI commands in foreground or background mode. The XBJ command is very similar to the XB
command if you start the batch job at your local site with your own user |D.

2-6 2270516-9701

Operating System Concepts

2.3.4.4 Entering Programs From Sequential Devices. You can use any sequential file of program
source code for input to the compilers or the assembler. If necessary, copy source code that has
been key-punched on a card deck to a sequential disk file. Program source code, entered by the
Text Editor or Copy Concatenate (CC) command, can be read from devices. An example of using
the CC command to copy the source code from cards to adisk file is as follows:

{1 cc

COPY/CONCATENATE
INPUT ACCESS NAME(S): CRO1
OUTPUT ACCESS NAME: .USER.SOURCE
REPLACE?: NO
MAXIMUM RECORD LENGTH:

2.4 DIRECTORY AND FILE STRUCTURE

File management allows you to build, organize, and access directories and files. A file consists of
a named collection of data. The data in the file can be generated by you (for example, source code
or documentation) or by the system (for example, object code or listing files). A directory is a rela-
tive record file that contains the information necessary to locate other files and describes the char
acteristics of those files. It does not contain user data.

2.4.1 Establishing Volume Names

Volume names are alphanumeric character strings of as many as eight characters that identify the
disk on which a file is found. The first character of a volume name must be an alphabetic character.
For example, VOL1 could be the volume name of a disk.

The Initialize Disk Surface (IDS) command prepares the disk surface for initialization by the
Initialize New Volume (INV) command. The IDS command must be performed prior to the first INV
command. It is not necessary to perform another IDS before any further initializations of the disk.

The INV command assigns volume names to disks. Once a volume is initialized by an INV com-
mand, all access to files on that volume must include the volume name in the pathname or access
name, unless the volume is the system disk or unless a device is specified.

One disk drive on each system (usually DS01) is designated to hold the system disk. The system
disk contains all required operating system components, including the loader program, system
program files, and temporary system files. The system disk is the default volume when no volume
name is specified. For example, .PROOF designates a file named .PROOF on the system disk.

2.4.2 Establishing Directories

Each disk volume has a file directory named VCATALOG, to contain the volume table of contents.
The files described in VCATALOG are data files or directory files (Figure 2-1).

2270516-9701 2-7

Operating System Concepts

VCATALOGCG
LEVEL 1 S FILE
DIRECTORY
__—_—__—___—___—_—_—___—_
-
LEVEL 2 < USER FILES USER SYSTEM SYSTEM
DIRECTORIES FILES DIRECTORIES
e]]
f r——-t-=--9
| |
LEVEL 3 < USER USER
FILES DIRECTORIES
S —— e e e e e — — -
LEVEL 4 < USER USER
FILES DIRECTORIES
\]
S e . . . e o . —— — — e - — o o o e o e o o e e — —
- 1
, =——t———n
LEVEL N < ! i

2278899

Figure 2-1. Directory and File Structure

Directory files contain the names of, and pointers to, other files; they do not contain user data.
Typically, related files are contained in a directory. Directories can also contain subdirectories.
Both directories and subdirectories are created by the Create Directory File (CFDIR) command. A
subdirectory can be created under a directory only after the directory has been created.
For example, subdirectory VOL1.SOURCE.PROGRAMA cannot be created unless directory
VOL1.SOURCE already exists.

It is convenient to group related files into a single directory. For example, all source files for a pro-
gram might be in a directory named VOL1.SOURCE.PROGRAMA; all listings generated from
assembly or compilation of source modules for this program might be in a directory named
VOL1.LISTING.PROGRAMA.

Do not assign file names that might be confused with system file names. Most system file or direc-
tory names begin with S$.

2-8 2270516-9701

Operating System Concepts

2.4.3 Establishing Files

After initializing a disk volume and creating directories and subdirectories, you can create files
that are accessible either under the volume or under a directory or subdirectory. The following
commands are available to create files:

e Create Key Indexed File (CFKEY)

e Create Relative Record File (CFREL)
e Create Sequential File (CFSEQ)

o Create Program File (CFPRO)

J Create Image File (CFIMG)

o Create File (CF)

The CF command requires the subsequent selection of afile type.

2.5 PATHNAMES AND ACCESS NAMES

A file on a disk volume is referenced by its pathname. A pathname is a concatenation of the
volume name, names of the directory levels leading to the file (excluding VCATALOG), and the file
name itself. Each component of a pathname cannot exceed eight characters in length. A complete
pathname must not exceed 48 characters, including the periods used to separate directories, sub-
directories, and file names. The components of the pathname are separated by periods, as in the
following examples:

VOL1.AGENCY.RECORDS
MYDIRECT.MYDIRCTA.MYFILE
VOLTWO.DEB
EMPLOYO1.USRA.PAYROLL
EMPLOYO01.USRB.CATALOGX.PAYROLL

An access name can be a device name, volume name, or file pathname. For device names, you
must use certain default names (except for special devices). Example device names include ST02
for terminal number 2, LPO1 for line printer number 1, and DS03 for disk number 3.

2270516-9701 2-9

Operating System Concepts

You can reference a volume on which a file resides through either the device name or the volume
name. Omitting the volume name and beginning the pathname with a period indicates that the file
is on the system disk. Samples of valid names for devices and files are as follows:

File Identifier Meaning
CRO1 Device name
DS02.MYCAT.MYFILE Device name, directory name, file name
.MYCAT.MYFILE System disk, directory name, file name
VOLID.MYCAT.MYFILE Volume name, directory name, file name

When you use DNOS is a network of DNOS systems, you can access files and devices at any site in
the network by using the site name and a colon as the first part of an access name. For instance, to
use LP02 at the site named Dallas, you can specify DALLAS:LP02. To access the file
DS02.S$NEWS at the site named Dallas, you can specify DALLAS:DS02.S$NEWS. The 48-charac-
ter-close limit for file names includes the site name, if you specify one.

2.6 SYNONYMS AND LOGICAL NAMES

DNOS supports the use of synonyms and logical names for 1/O resources. Synonyms are used to
abbreviate long text strings. Logical names are used to abbreviate resource names, define
resource access, and define parameters associated with a resource, such as a spooler device.

2.6.1 Synonyms

Synonyms are abbreviations of one of more characters in length that are commonly used in place
of long pathnames or portions of pathnames. These synonyms are always available to foreground
tasks. Background tasks receive a copy of the foreground synonyms when the background task is
initiated. At terminals requiring log-on, user-defined synonyms are associated with the user’s ID
and are available whenever that user logs on at any terminal. Use the Assign Synonym (AS) and
Modify Synonym (MS) commands to define synonyms and to modify defined synonyms. When you
enter a synonym in response to an SCl command prompt, the synonym is replaced by the actual
text string.

When an SCl command is executed in foreground mode, you can use a synonym only as the first or
only component of a pathname (device name or file name). For example, if A is a synonym for direc-
tory VOL1.SOURCE and B is a synonym for PROGRAMA in that directory, A.PROGRAMA is an
acceptable file name. However, VOL1.SOURCE.B or A.B is not acceptable.

2.6.2 Logical Names

A logical name is a user-specified, alphanumeric string of up to eight characters. Programs use
logical names to access /O resources. An I/O resource can be a device, a file, or a set of concate-
nated files. You have the option of assigning a LUNO to a logical name that maps to an access
name. (A LUNO is a logical unit number that represents a file or device.)

Since each logical name is associated with a set of parameters (the set assigned to the corre-
sponding I/O resource), logical names provide a means of passing the parameters assigned to a
given resource. Use the Assign Logical Name (ALN) command to specify values for these parame-
ters. The DNOS System Command Interpreter (SCI) Reference Manual contains a detailed descrip-
tion of this command.

2-10 2270516-9701

Operating System Concepts

Some examples of the types of parameters associated with logical names are as follows:

. File characteristics

. Spoolerinformation

o File creation

. Job temporary files
Logical names can be either global or job local. You specify the scope of alogical name when you
assign the name. Global names are available to all users on the system. Job-local names are avail-
able only to the job for which they are assigned. Like synonyms, logical names are saved when you
log off and retrieved at the next log-on.
2.7 FILETYPES
A file consists of a collection of data groupings called logical records. This division into logical
records does not necessarily correspond to the physical division of data on disk or other media.
Thus, in addition to logical records, files also have physical records.
A logical record is the amount of information transferred in one (not multiple) Read or Write 1/10
request. A physical record is the amount of data actually transferred by the operating system
during an 1/O operation to the file. The ratio of the physical record size to the logical record size is
called the blocking factor. The logical record length (LRECL) in a file can be constant or can vary,
depending on the file type.
Disk space is assigned in allocatable disk units (ADUs). An ADU is anintegral number of disk sec-
tors. The size of an ADU depends on disk capacity; larger disks have larger ADUs. An ADU is
always smaller than a track. On some disks, ADUs are as small as one sector.
The following file types are supported: sequential, relative record, and key indexed.
2.7.1 Sequential Files
Sequential files are variable-record-length files whose records are always read, written, and
accessed serially (that is, record 0 must be accessed first, record 1 must be accessed next, and so

on). Some examples of using sequential files are as follows:

e Asaninput file for card images. If a logical record length of 80 is specified, the sequen-
tial file can be treated as a card reader by the program reading the file.

. As an output file. In this function, the file can resemble the line printer.

. AsaloCationforIistingfiles.

2270516-9701 2-11

Operating System Concepts

2.7.1.1 Sequential File Attributes. Sequential files have the following attributes:

U Each logical record or partial record is preceded by a header word and followed by a
trailer word. The content of the header and trailer is the number of characters of data
between the header word and trailer word.

. Each physical record contains a one-word header to indicate if the first and/or last logi-
cal record in the physical record is a partial record.

. Sequential file logical records must be an even number of bytes in length.

. Sequential files can be created expandable. To extend the file, it must be opened in the
open extend mode.

. Record-level locking is supported.

. Blank suppression and blank adjustment are allowed on sequential files that are used
for input purposes. However, neither is performed on sequential files that are automati-
cally created by COBOL. COBOL does not perform blank suppression or blank adjust-
ment on sequential files so that they can be used in the I/O operation Rewrite. Rewrite
verifies that the length of the record read has not changed before the rewrite is
attempted.

If the logical record length defined in the program is larger than the actual record read from the
file, the characters in the buffer beyond those of the actual record are undefined. For example, if
the defined record length is 80 and the file contains variable-length records with the specific
record read having a length of 50, the buffer area described in the file record-description-entry con-
tains the 50-character record plus 30 characters undefined. COBOL does not automatically initial-
ize its buffer area prior to a read operation. When reading variable-length records, the program
should initialize the buffer area prior to each read operation.

Files assigned to the device name PRINT are created as sequential files with carriage control char-
acters appended. With the appended characters, the logical record length is six characters larger
than that specified in the program. The six characters are split, with from one to four characters
preceding the record, and from one to four characters following the record, with a maximum of six
characters per record.
2.7.1.2 Creating Sequential Files. Consider the following rules when creating sequential files:

° Logical record fength must be less than or equal to the physical record length.

. Logical records can span sector boundaries.

o Logical records can span physical records; thus, partial records are created in both
physical records.

U Logical records can span ADU boundaries.
° Physical records must begin on sector boundaries.

J Physical records beginning in the middle of an ADU cannot span the ADU boundary.

212 2270516-9701

Operating System Concepts

Figure 2-2 shows both a file description for a sequential file in a COBOL program and the creation
of asequential file using the Create Sequential File (CFSEQ) SCl command.

SELECT SEQ-EMPLOYEE
ASSIGN TO RANDOM, 'EMPL"
ORGANIZATION SEQUENTIAL
ACCESS SEQUENTIAL
FILE STATUS SEQ-STATUS.

FD SEQ-EMPLOYEE LABEL RECORDS STANDARD.
01 SEQ-RECORD.

02 SOCIAL-SECURITY PIC X(9).
02 EMPLOYEE-NAME.

03 EMPLOYEE-FIRST-INITIAL PIC X.

03 EMPLOYEE-SECOND-INITIAL PIC X.

03 EMPLOYEE-LAST-NAME PIC X(20).
02 REST-OF-DATA PIC X(113).

e e e = —_———— = = o = = o —— ——————

CREATE SEQUENTIAL FILE
PATHNAME: EMPL
LOGICAL RECORD LENGTH: 144
PHYSICAL RECORD LENGTH:
INITIAL ALLOCATION:
SECONDARY ALLOCATION:
EXPANDABLE ?: YES
BLANK SUPPRESS ?: NO
FORCED WRITE ?: NO

Figure 2-2. Sequential File Description and Creation

To minimize wasted disk space, the physical record size should be an integral multiple or factor
both of the ADU size and of the sector size.

The following figures illustrate the relationships between the logical record, physical record, sec-
tor, and ADU sizes. In some instances, disk space is wasted; in others, no space is wasted,
depending on the physical record size chosen. Each figure defines the relationship between logi-
cal record, physical record, sector, and ADU sizes. The boxed information represents a linear
description of the logical records on a file. Below the logical record are the physical record, sector,
and ADU divisions of the data.

2270516-9701 2-13

Operating System Concepts

Figure 2-3 indicates the relationship between the physical record, sector, and ADU sizes when the
physical record size is less than the sector size and the sector size is less than the ADU size. In
this case, logical records are spanning physical records. Space is wasted within each sector
because the physical record must begin on the next sector boundary.

Figure 2-4 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is equal to the sector size and the sector size is less than the ADU size. In this
case, logical records are spanning physical, sector, and ADU boundaries.

Figure 2-5 indicates the relationship between physical record, sector, and ADU sizes when the sec-
tor size is less than the physical record size and the physical record size is less than the ADU size.
In this case, the physical record is two times the sector size. One sector for every ADU is wasted
because there is not enough space in the ADU to hold another physical record.

Figure 2-6 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is equal to the ADU size. When the physical record size is not specified at file
creation, the default value used is the defined default of the directory on which the file is created.
Logical records span physical records, sectors, and ADU boundaries.

Figure 2-7 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is greater than the ADU size and the ADU size is greater than or equal to the
sector size. In this case, space is wasted on the disk because the remaining space of the ADU is
too small to contain another physical record. Therefore, the next physical record must begin on
the next ADU boundary. Note that the logical record spans to the next physical record, which
begins on the next ADU.

7777 [| vos | wos U [wos | wor | ~U77))

le—— PHYSICAL —-| le—— PHYSICAL —-| le—— PHYSICAL. —-I
———— SECTOR ___.' e SECTOR ___.I ——— SECTOR —

ADU

RO1 RO2 R

[=]

NOTES?
1., LOGICAL RECORD SPANS PHYSICAL RECORD AND SECTOR BOUNDARY
2, PHYSICAL RECORD MUST BEGIN ON SECTOR BOUNDARY

2277253 3, LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY

Figure 2-3. Sequential Files: Physical Record Size < Sector Size < ADU Size

2-14 2270516-9701

Operating System Concepts

o | w2 | wos | wof o] woe] owos | eor] 1/////////////////////, A
e sECTOR __.I I.__ sz::n — I._ SECTOR ~ —

NOTES:
1. LOGICAL RECORD SPANS PHYSICAL RECORD AND SECTOR BOUNDARY
2., LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY

2277255 3. PHYSICAL RECORD BEGINNING IN MIDDLE OF ADU CANNOT SPAN ADU BOUNDARY

Figure 2-4. Sequential Files: Physical Record Size = Sector Size < ADU Size

RO1 RO2 RO3 RO 4 ROS RO6 RO7 ROS8 RO9 R10 R
1 1 2
fo—— PHYSICAL — r— PHYSICAL - PHYSICAL —
lo—o SECTOR SECTOR — f— SECTOR —]
ADU
NOTES:

1. LOGICAL RECORD SPANS PHYSICAL RECORD AND SECTOR BOUNDARY

2., LOGICAL. RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY
2277254

Figure 2-5. Sequential Files: Sector Size < Physical Record Size < ADU Size

RO1 RO2 RO3 RO 4 ROS RO6 RO?7 RO 8 RO9 R10 R
1 1 2
PHYSICAL.
le— SECTOR __-l l'_— SECTOR __..| I._— SECTOR —_—
ADU
NOTES:

1. LOGICAL RECORD SPANS PHYSICAL RECORD AND SECTOR BOUNDARY
2. LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY

2277256

Figure 2-6. Sequential Files: Sector Size < Physical Record Size = ADU Size

2270516-9701 215

Operating System Concepts

4
RO1 RO2 RO3 RO4 ROS5 ROS5 RO6 RO ////////////////// A
1 2
PHYSICAL
jo— SECTOR + SECTOR —"’— SECTOR -JQ— SECTOR -—'lﬂ— SECTOR —+— SECTOR ‘j
ADU » ADU
NOTES: —]

1. LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY
2. PHYSICAL RECORD BEGINNING IN MIDDLE OF ADU CANNOT SPAN ADU BOUNDARY

2277257

Figure 2-7. Sequential Files: Physical Record Size > ADU Size = Sector Size

2.7.2 Relative Record Files

Relative record files are also called random-access files. Unlike sequential files, relative record
files can be accessed in any order. Each record has a unique record number, which you specify to
access that individual record. The operating system increments the caller’s record number after
each read or write so that sequential access is permitted. One end-of-file (EOF) record is main-
tained wherever it was last specified by a program. The range of record numbers is from zero to
one less than the number of records in the file. The maximum number of records in a relative
record file is 2 to the 24th power. The records are fixed in length, and the length must be specified
during file creation.

Relative record files are useful when each record in the file is already associated with a unique
value ranging from 0 to n; for example, in an inventory file, the item number can be specified as the
record number. Consequently, information about item number 1 can be obtained by accessing
record number 1.
2.7.2.1 Relative Record Attributes. Relative record files have the following attributes:
. Relative record files can be accessed sequentially in ascending order.
. Relative record files can be accessed randomly in any order.
. Records of odd or zero length are not allowed.
o All records are fixed in length, and the length must be specified during file creation.
¢ Variable length records are not allowed.
. Blank suppression and blank adjustment are not allowed.
. Deleted records in a relative record file are flagged by COBOL with a hexadecimal FF
(>FF) in the first character of the record. These flagged records are ignored by COBOL
during sequential read operations. Therefore, data records should not contain binary

datain the first character position. The concept of deleted records is not recognized by
the file management of the operating system.

2-16 2270516-9701

Operating System Concepts

J Record-level locking is supported.

o Relative record files can be expanded by adding a record or records whose record
number is greater than the highest record number currently in the file. During this opera-
tion, any record between the current last record and the new last record is added to the
file. Each of the deleted records has >FF in the first character position, flagging the
records as being deleted. All records between the lowest and highest record numbers on
the file must be present as either data records or deleted records (place holders) in order
to locate any given record on a random 1/O request.

Each record is uniquely identified by its position. The operating system increments the caller’s
record number after each read or write to allow sequential access. One EOF record is maintained
wherever it was last specified by a program. To access record number n, record number n is
requested. The range of record numbers is from 0 to one less than the number of records in the
file. The maximum number of records in a relative record file is 2 to the 24th power.

2.7.2.2 Creating Relative Record Files. Consider the following rules when creating relative
record files:

. Logical record length must be less than or equal to the physical record length.

o Logical records can span sector boundaries.

. Logical records cannot span physical records.

o Physical records must begin on sector boundaries.

. Physical records beginning in the middle of an ADU cannot span ADU boundaries.
. Physical records should be an integral multiple of sectors.

Figure 2-8 shows both a file description for a relative record file in a COBOL program and the crea-
tion of arelative record file using the Create Relative Record File (CFREL) SCl command.

2270516-9701 217

Operating System Concepts

SELECT REL-EMPLOYEE
ASSIGN TO RANDOM, '"EMPL"
ORGANIZATION RELATIVE
ACCESS RELATIVE
RELATIVE KEY REL-KEY
FILE STATUS REL-STATUS.

FD REL-EMPLOYEE LABEL RECORDS STANDARD.
01 REL-RECORD.

02 SOCIAL-SECURITY PIC X(9).
02 EMPLOYEE-NAME.

03 EMPLOYEE-FIRST-INITIAL PIC X.

03 EMPLOYEE-SECOND-INITIAL PIC X.

03 EMPLOYEE-LAST-NAME PIC X(20).
02 REST-0F-DATA PIC X(113).

WORKING-STORAGE SECTION.
01 REL-KEY PIC 9(6).

CREATE RELATIVE RECORD FILE
PATHNAME: EMPL

LOGICAL RECORD LENGTH: 144
PHYSICAL RECORD LENGTH:
INITIAL ALLOCATION:
SECONDARY ALLOCATION:

EXPANDABLE ?: YES

FORCED WRITE ?: NO

Figure 2-8. Relative Record File Description and Creation

2-18 2270516-9701

Operating System Concepts

To minimize wasted disk space, choose the physical record length (PRECL) such that it is one of
the following: either it is the largest integral multiple of the logical record size that is less than or
equal to the ADU size, or it is an integral multiple of the ADU size.

The following figures illustrate the relationships between the logical record, physical record, sec-
tor, and ADU sizes. In all cases, some disk space is wasted; the amount depends on the physical
record size chosen. Each figure defines the relationship between logical record, physical record,
sector, and ADU sizes. The boxed information represents alinear description of the logical records
on afile. Below the logical records are physical record, sector, and ADU divisions of the data.

Figure 2-9 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is less than the sector size, and the sector size is less than the ADU size.
Space is wasted within each sector because the physical record must begin on the next sector
boundary.

Figure 2-10 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is equal to the sector size and the sector size is less than the ADU size. In this
case, if a logical record does not fit into the remaining space of a physical record, the space is
unused and the logical record begins in the next physical record.

Figure 2-11 indicates the relationship between physical record, sector, and ADU sizes when the
sector size is less than the physical record size and the physical record size is less than the ADU
size. In this case, the physical record is two times the sector size. More than one sector for every
ADU is wasted because there is not enough space in the ADU to hold another physical record.

Figure 2-12 indicates the relationship between physical record, sector, and ADU sizes when the
sector size is less than the physical record size and the physical record size is equal to the ADU
size. When the physical record size is not specified at file creation, the default value used is the
defined default of the directory on which the file is created. Logical records can span only sector
and ADU boundaries. If a logical record does not fit into the space of a physical record, the space
is unused and the logical record begins on the next physical record.

Figure 2-13 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is greater than the ADU size and the ADU size is greater than or equal to the
sector size. In this case, space is wasted on the disk because the remaining space of the ADU is
too small to contain another physical record. Therefore, the next physical record must begin on
the next ADU boundary. Note that the logical record must span to the next physical record, which
begins on the next ADU.

2270516-9701 2-19

Operating System Concepts

4
RO1 RO2 ///2;/// RO3 RO4 /////// ROS RO6 ///////
1,2 1,2 1, 2
e— PHYSICAL —f t—- PHYSICAL —»f le— PHYSICAL. —-I
je——— SECTOR I | SECTOR -———-I ——— SECTOR
ADU
NOTES:

1. LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD
2, PHYSICAL RECORD MUST BEGIN ON SECTOR BOUNDARY

2277258

Figure 2-9. Relative Record Files: Physical Record Size < Sector Size < ADU Size

RO1 RO2 RO3 / A RO4 ROS5 RO6 / y RO7 ROS8 RO9 / /
1 1 1
je—— PHYSICAL PHYSICAL PHYSICAL —_—
j— SECTOR — e SECTOR SECTOR —_—
ADU
NOTE:

1. LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD

2277259

Figure 2.10. Relative Record Files: Physical Record Size = Sector Size < ADU Size

o [vor [woo [oo e | wes | e WA WAL 3
e SECTOR ___.I I.__ SECTOR ! SECTOR —_—

1. LOGICAL RECORD SPANS SECTOR BOUNDARY
2, LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD
3. PHYSICAL RECORD BEGINNING IN MIDDLE OF ADU CANNOT SPAN ADU BOUNDARY

2277260

Figure 2-11. Relative Record Files: Sector Size < Physical Record Size < ADU Size

2-20 2270516-9701

Operating System Concepts

RO1 RO2 RO3 RO 4 ROS5 RO6 RO7 RO8 RO9 R10 /,
1 1 2
PHYSICAL
le———— SECTOR _.l I._ SECTOR -l }‘ SECTOR ———
ADU
NOTES?

1. LOGICAL RECORD SPANS SECTOR BOUNDARY
2, LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD

2277261

Figure 2-12. Relative Record Files: Sector Size < Physical Record Size = ADU Size

not [woa [mos [wos [mos | wo | wov WiA) W///7//1IIITITITTAR |
le— SECTOR —+— SECTOR _+_ SECTOR ——pte—~ SECTOR _+—- SECTOR + SECTOR —-l
ADU ADU |

NOTES:
1. LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD

2. PHYSICAL RECORD BEGINNING IN MIDDLE OF ADU CANNOT SPAN ADU BOUNDARY

22772262

Figure 2-13. Relative Record Files: Physical Record Size > ADU Size = Sector Size

2.7.2.3 Special Types of Relative Record Files. There are three special types of relative record
files available: directory, program, and image files. These files provide special interface mecha-
nisms that are used primarily for memory images, memory swapping, and diagnostic dumps.

. Directory files — Contain names of and pointers to other files

. Program files — Contain program images and an internal directory of the images

. Image files — Special-purpose files used primarily by the operating system for memory
images, memory swapping, and diagnostic dumps

None of these special types of relative record files can be accessed through COBOL programs.

2270516-9701 2-21

Operating System Concepts

2.7.3 Key Indexed Files (KIF)
A KIF allows random access to its records via a key. The key is a character string of up to 100 char-
acters, located in a fixed position within each file record. From 1 to 14 individual keys can be speci-
fied. For example, the records in an employee file can be accessed by keys that indicate the
employee’s ID, name, and social security number.
Keys can overlap one another, with certain restrictions, within the record. Although the keys can
be structured anywhere within a record, they must appear in the same relative position in all
records in the file. One key must be specified as the primary key; the other keys are secondary
keys. The primary key must be present in all records, but secondary keys are optional.
In addition to supporting random access, KIFs include the following characteristics:

o Records can be accessed sequentially in the sort order of any key.

o At file creation, any key can be designated as allowing duplicates, which means that two
or more records in the file can have the same value for this key.

o At file creation, any key except the primary key can be designed as being modifiable.
This means that when a record is being rewritten, the key value may change. Also, a sec-
ondary key value that is missing in the record can be added later on a rewrite.

. Alternate keys cannot overlap the primary key.

o Alternate keys cannot overlap the first character position of any other alternate key.

. Records can be of variable length.

. A START is allowed on the first portion of a key.

. Records are automatically blank-suppressed.

. Record-level locking is supported.

* Thefileis expanded dynamically allocating space when needed.

o File integrity is maintained through pre-image logging of modified blocks. Before a
record is modified on disk, it is copied to a backup area in the file overhead area. Conse-
quently, system failures cause the loss of only the last |/O operation.

. Records of odd or zero length are not allowed.

The physical record length must be greater than or equal to 22 pius the logical record length. For

maximum efficiency, the physical record length should equal the ADU size of the disk on which
the file is to reside or amultiple of the ADU size.

2-22 2270516-9701

Operating System Concepts

To ensure that a sufficient buffer is allocated at execution time, the COBOL program source
module must define the maximum record size in the file description. If the file was created using
the average blank-suppressed logical record length, an invalid record length error is returned on an
Open request. Under these conditions, the USE procedures of the DECLARATIVES can be speci-
fied to intercept and ignore the invalid record length error returned on the OPEN request. (Refer to
Section 12 for more details on intercepting and ignoring 1/O errors.) The T/ COBOL Reference
Manual contains a detailed explanation of the USE and OPEN statements and the keyword
DECLARATIVES.

If a KIF is created with the Create Key Indexed File (CFKEY) command and the KIF is to be used in
COBOL programs, the keys must be defined in the following order:

o Primary key

. Alternate key with the lowest displacement

. Alternate key with the next lowest displacement
. Alternate key with the highest displacement

The number of keys must exactly match the number of keys declared in the source program. The
key lengths, flags (modifiable and duplicate attributes), and offsets must also match those
declared in the program. The primary key cannot have duplicates or be modifiable. Alternate keys
must all be modifiable and can have duplicates only when the duplicates are declared as such in
the program. Alternate keys can overlap in any character position except the first, thereby
preventing any two keys from having the same displacement. Alternate keys must never overlap
the primary key in any character position. If any of the preceding conditions fails to match at open
time, an invalid open error occurs (status code 94).

Figure 2-14 shows both the file description for a KiF in a COBOL program and the creation of the

KIF using the Create Key Indexed File (CFKEY) SCI command. After the KIF is created, use a Map
Key Indexed File (MKF) SCI command to view the key attributes.

2270516-9701 2-23

Operating System Concepts

SELECT EMPLOYEE-MASTER

ASSIGN TO RANDOM, "EMPL"

ORGANIZATION INDEXED

ACCESS RANDOM

RECORD KEY SOCIAL-SECURITY

ALTERNATE RECORD KEY EMPLOYEE-NAME

ALTERNATE RECORD KEY EMPLOYEE-LAST-NAME
WITH DUPLICATES

FILE STATUS EMPLOYEE-STATUS.

FD EMPLOYEE-MASTER LABEL RECORDS STANDARD.
01 EMPLOYEE-RECORD.

02 SOCIAL-SECURITY PIC X(9).
02 EMPLOYEE-NAME.

03 EMPLOYEE-FIRST-INITIAL PIC X.

03 EMPLOYEE-SECOND-INITIAL PIC X.

03 EMPLOYEE-LAST-NAME PIC X(20).
02 REST-OF-DATA PIC X(113).

CREATE KEY INDEXED FILE
PATHNAME: EMPL
LOGICAL RECORD LENGTH: 144
PHYSICAL RECORD LENGTH:
INITIAL ALLOCATION:
SECONDARY ALLOCATION:
MAXIMUM SIZE: 1000

KEY DESCRIPTION FOR KEY NUMBER 1
START POSITION: 1
KEY LENGTH: 9
DUPLICATES?: NO
MODIFIABLE?: NO
ANY MORE KEYS?: YES

KEY DESCRIPTION FOR KEY NUMBER 2
START POSITION: 10
KEY LENGTH: 22
DUPLICATES?: NO
MODIFIABLE?: YES
ANY MORE KEYS?: YES

Figure 2-14. KIF Description, CFKEY Creation, and MKF Listing (Sheet 1 of 2)

2-24 2270516-9701

Operating System Concepts

KEY DESCRIPTION FOR KEY NUMBER 3
START POSITION: 12
KEY LENGTH: 20
DUPLICATES?: YES
MODIFIABLE?: YES
ANY MORE KEYS?: NO

FILE MAP OF .MASTER
TODAY IS 09:00:41 FRIDAY, SEPTEMBER 26, 1980

KEYS:
START DUPLICATES
KEY COLUMN LENGTH MODIFIABLE ALLOWED
1 1 9 N N
2 10 22 Y N
3 12 20 Y Y

Figure 2-14. KIF Description, CFKEY Creation, and MKF Listing (Sheet 2 of 2)

2.7.4 Concatenated and Multifile Sets

Sequential and relative record files can be logically concatenated by setting the values of a logical
name to the pathnames of a set of files. Logical concatenation allows access to the set of files, in
sequence, without physically concatenating the files. (When required, physical concatenation can
be performed by the Copy/Concatenate SCl| command.) A multifile set is a set of key indexed files,
the pathnames of which are the values of a logical name. The files in the set are associated in a
nonreversible manner. Individual components of concatenated and multifile sets can be on
separate disks.

Several restrictions apply to the concatenation of files. The files must be the same type and
cannot be special-use files such as directories, program files, key indexed files, or image files.
Relative record files to be concatenated must have the same logical record size. A concatenation
cannot contain both blocked and unblocked records, and any LUNO assigned to a file must be
released before concatenating the file.
The following special rules apply to combining key indexed files in a multifile set:

o At the first definition of the multifile set, all but the first file must be empty.

. None can be amember of an existing multifile set.

. All of the files must have the same physical record size.

2270516-9701 ; 2-25

Operating System Concepts

* The files must have the same key definitions. In subsequent definitions of these sets,
the same files must be associated in the same order, and none of the original set can be
omitted. One empty file can be added at the end (but not at any other position.)

. You cannot use key indexed file operations to individually access key indexed files of a
multifile set. You can access these files only by using operations that examine physical
record or absolute disk addresses.

The multifile set of key indexed files permits a larger key indexed file than one disk can store.
When a key indexed file can no longer expand because there is insufficient space on the disk, you
can create a new file on another disk. By using a logical name, you can use the two files as one.
The system uses the second file as an extension of the first. For example, assume that the first file
contains 5000 physical records. When physical record 5001 is required, the first physical record of
the second file, record 0, is used.

The Assign Logical Name (ALN) SCI command associates files collectively with a logical name.
Actual logical concatenation or creation of a multifile set occurs when a LUNO is assigned to the
logical name. A concatenated file can be accessed only for the duration of the logical name. You
must specify the files in the concatenation order desired. Files can be specified by pathname,
synonym, logical name, or a logical name and pathname combination. However, all forms must
resolve to valid pathnames. All files in the concatenation or multifile set must be precreated and
online when the logical name is used.

The last file in a concatenation set can be expandable. All other files become nonexpandable until
the logical name is released or the job terminates.

When a single end-of-file mark appears at the end of medium, the end of file is masked. This allows
concatenated files to be accessed logically as a single file without the hindrance of intermediate
end-of-file marks being returned. Note that any intermediate end-of-file mark not at the end of
medium is always returned. If two end-of-file marks are encountered at the end of medium, a single
end of file is returned.

Several users can access the same concatenated or multifile set if the access privileges permit.
Two concatenated files are identical when they consist of the same pathnames in the same order.
To maintain file integrity, the system returns an error if any of the precreated files of a concate-
nated file are accessed independently. You delete a concatenated file by deleting the individual
files.

2.8 FILE SECURITY

In a DNOS system that has been generated with the file security option, two factors affect how you
can access a file. These factors are the access groups to which you belong and the access rights
for those groups for any particular file you wish to use. The DNOS Security Manager’s Manual
describes how to set up a secure environment. In most cases, your security manager will deter-
mine what access groups exist in your environment and will assign you to one or more access
groups. The security manager or some other access group leader may also be responsible for
determining which files have what access rights for particular groups.

2-26 2270516-9701

Operating System Concepts

The commands for creating access groups and allowing various groups to access particular files
can be availabie to you, or they can be restricted to the security manager or some select group of
users. Access rights to the command procedures, in addition to their privilege level, determine
who can use which commands.

If you have file security, you will need the appropriate access to files you manipulate with the
commands. The access rights available are read, write, delete, execute, and control.

In general, you need the read access to access a file with a command that shows data in the file or
examines the file for input. For example, the Show File (SF) command requires that you have read
access to the file being shown. If you do not have read access, you will receive an error message
from SF.

You need write access to access a file with a command that modifies or updates the file. For
example, the Append File (AF) command requires access to the file used for OUTPUT
PATHNAME. AF also requires read access to the file used as INPUT ACCESS NAME(S).

If you issue a command that deletes a file, you must have delete access right to that file. Delete
File (DF), for example, requires that you have delete access to the file(s) specified for PATH-
NAME(S). Since the text editor replaces an existing file with a new one, you need delete access to
the file specified for FILE ACCESS NAME if you are replacing that file when using the Execute
Text Editor (XE) and Quit Editor (QE) commands.

A command that executes a task from a program file requires that you have the execute access for
that program file. The Execute Task (XT) command, for example, requires that you have execute
access to the file specified for PROGRAM FILE OR LUNO.

You need control access for any command that changes the access rights to afile. If you want to
use the Modify Security Access Rights (MSAR) command, for example, you must have control
access to the file specified for FILE NAME.

The DNOS SCI Reference Manual describes the security commands. It also points out unexpected
security implications for the various SCI commands.

2.9 1/OFACILITIES

/0 resource management in DNOS allows a program to request resources dynamically during
execution. When a resource is requested but is not available, the program or the user is notified
immediately. The request for resources is not queued, and the program is not suspended. This
allows the program to either abort or retry the request, thereby avoiding a deadlock situation.

1/O resources are allocated to programs according to access privileges that the program requests
when issuing an open operation. If the requested privilege is compatible with previously granted
requests, the open completes without error. The program is then guaranteed the type of access
requested (exclusive, exclusive-write, shared, or read-only).

2270516-9701 2.27

Operating System Concepts

2.9.1 1/0 Methods

DNOS supports I/O operations to various types of devices, files, and Interprocess Communication
(IPC) channels, all of which are referred to as 1/0 resources. DNOS also supports communication
between programs using IPC channels.

Two methods of I/O are available: resource-specific and resource-independent. Resource-specific
I/O uses special features of one particular device or file. Resource-independent 1/O allows you to
specify 1/O for any of several devices without concern for special features. Both types of I/0 allow
a program to interact with predefined devices, files, and channels. The interaction occurs through
the use of LUNOs.

2.9.1.1 Resource-Specific I/0. Resource-specific /0 operations assume device, channel, or file
peculiarities. For example, activating the graphics capability on the VDT is a resource-specific 1/O
operation. Other such operations include the following:

. Extended VDT operations

U Create/delete files and other file-specific /O utility operations

. Direct disk 1/0

. Random access operations to key indexed and relative record files

. IPC master/slave channel owner operations
2.9.1.2 Resource-Independent 1/0. When resource-independent /O is used, application pro-
grams do not distinguish between devices, files, and channels. Also, a program can read and write
data records independently of the type of device or file used. Examples of such types of oper-
ations include read, write, forward space, and write EOF. All devices, files (including key indexed
files (KIF), and channels support resource-independent access.
2.9.2 ' Interprocess Communication
Interprocess Communication (IPC) enables two or more tasks to exchange information via com-
munication channels. IPC channels are created by the Create IPC Channel (CIC) command, or the
Create IPC Channel 1/0 Supervisor Call (SVC). In each channel, one task must be designated as the
owner of the channel. The channel owner task controls use of the channel. Requester tasks
(slaves) have less flexibility and fewer privileges.
2.9.2.1 IPCUses. IPCis used forfour primary reasons:

. Synchronization — Tasks can synchronize activities by passing messages via IPC.

. Queue serving — A channel owner can serve a queue of requests from other tasks.

o Interception — Channel owner tasks receive requests from queues, interpret or modify
the information, and pass the changed data to another task or device.

. Messages — Any variety of uses determined by the programs involved.

2.28 2270516-9701

Operating System Concepts

2.9.2.2 IPC Channels. An IPC channel is a logical path used for communications between two
tasks. Two types of IPC channels are available in DNOS: master/siave channels and symmetric
channels. For a master/sliave channel, the owner of the channel (the master) interprets and/or exe-
cutes messages transmitted on the channel by requesters (slaves). Special commands must be
used by the owner to appropriately read and write the messages. For a symmetric channel, the
owner and requester(s) issue simple Read and Write commands. These commands must match
each other. The Read command of one task is processed as soon as the other task issues a Write
command and vice versa.

2.9.2.3 Channel Scope. The scope of a channel governs access to various jobs and tasks. The
scope is determined by the channel type: global, job-local, or task-local.

U Global Channel — This channel is not replicated (only one exists in the whole system)
and is accessible by any task in the system. The channel must first be used by the owner
task. The owner task cannot be automatically bid (made ready for execution) by an
Assign Luno (AL) command. Multiple tasks can concurrently use a global channel that
permits shared access.

° Job-Local Channel — This channel is replicated once for each job and is accessible by
any task in the job. The channel can be shared and the owner task can be automatically
bid by an AL command.

. Task-Local Channel — This channel is replicated once for each requester task (many per
job) in any job. The channel cannot be shared, and the owner must be automatically bid
by an AL command from a requester task. :

2.9.2.4 System-Level IPC Functions. SCI commands are available to perform the following sys-
tem-level IPC functions:

o Create IPC Channel (CIC)

o Delete IPC Channel (DIC)

o Assign LUNO (AL)

J Release LUNO (RL)

. Show Channel Status (SCS)

2.9.2.5 Program-Level IPC Functions. All program-level access to IPC occurs through the use of
SVCs. Operations used by a master/slave channel owner are special |/O SVCs; operations used by
requesters and by symmetric channel owners are standard 1/O SVCs. In general, owner tasks get
information from the channels and return an owner-determined response. However, requester
tasks use IPC SVCs in a transparent manner; the effect of each call depends on the owner task.
Refer to the DNOS Supervisor Call (SVC) Reference Manual for more details about channel
operations.

29.3 Filel/O

DNOS provides disk file 1/0 support for application and system programs. Disk file 1/O is per-
formed through the same SVC mechanism used to perform I/O to devices. Assembly language
programs must directly incorporate the SVC mechanism to perform 1/0.

2270516-9701 2.29

Operating System Concepts

2.9.4 DevicellO

A device can be specified by either a device name or by a logical name. All standard DNOS 1/O is
performed to LUNOs rather than to physical resources. A LUNO, specified in an /O operation, is a
hexadecimal number that represents a file, channel, or device. DNOS maintains a list of LUNOs
that indicate corresponding physical devices. LUNOs can be assigned by the AL command, or by
use of an Assign LUNO SVC, and can have one of four scopes as follows:

o Global LUNOs are defined (and are available) for all tasks and jobs.
e Job-local LUNOs are defined (and are available) for all tasks in a job.

e Job-local shared LUNOs are defined (and are available) for all tasks in a job. Unlike job-
local LUNOs, these LUNOs can be opened by more than one task at atime.

e Task-local LUNOs are defined only for the task that assigns them.
2.9.5 Spooling
The spooling of data can occur during job execution as output is generated by one or more tasks.
Spooling is the process of receiving data destined for a particular device (or type of device) and
writing that data to a temporary file (or files). The spooler subsystem schedules the printing of job-
local and permanent files among available printing devices. You can implement spooling in two
ways: by the Print File (PF) command or by sending output to a logical name. DNOS creates a tem-
porary file only in the latter case.
If you use the PF command, you can specify the following options:
. Banner sheet — A cover sheet containing the job name, user ID, time, and date
. Forms — A particular form for printing devices
U Device class type — Any of a class of devices (class name definition). For example, you
can specify any line printer, or any printer that prints uppercase/lowercase, without nam-
ing a specific printer.

. Format selection — Either ANSI control characters (blank, 0, 1, or + in column one) or
ASCII control characters

o Multiple copies — Multiple copies for a file or files
To use a logical name you must assign a spooler logical name using the ALN command and spec-
ify the options (which are the same as those for the PF command). You can use the logical name in
programs and utility commands, such as SClI, in either batch or interactive mode.

As an example, assume you have assigned the logical name OUT and specified the following
options:

. LP0O2
. Standard format

. Two copies

2-30 2270516-9701

Operating System Concepts

Each time you send a file or listing to OUT, the spooler schedules two copies of OUT to print on
LP02 in standard format. You can design strategies according to your specific needs.

2.10 SEGMENTS

A task in DNOS consists of various program sections, each of which has certain features (attri-
butes). The attributes of some sections can be different from others. A program section is called a
segment. A task in DNOS can consist of up to three segments. The number of segments in a task
depends partially on the attributes that can be assigned to the various sections of the program. In
general, if all sections of a program have the same attributes, only one segment is needed. If a divi-
sion of the program is made into sections with differing attributes, multiple segments may be
needed.

You build the program, specify the appropriate divisions of the program to the link editor, and
install the segments on a program file. The actual movement of segments into memory during
execution varies, depending on whether or not the program explicitly requests certain segments.
In most cases, DNOS handles segment changes without user action required.

To install a task, specify an initial set of segments (up to three) and the desired mode of access to
those segments. To execute a task from an executing program, load the initial segment set (if nec-
essary) and grant the desired access. Use the appropriate SCI command to execute a task from
SCI.

2.11 MESSAGE FACILITIES

The DNOS Messages and Codes Reference Manual describes all system codes and messages in
detail and should be consulted if the system displays only the error code. For users of systems
that display the full message , the following paragraphs are provided to clarify the components of
termination messages. Later sections discuss the use of condition codes and messages in appli-
cation programs. The DNOS Systems Programmer’s Guide gives instructions for creating and
modifying messages.

2.11.1 Error Messages

When an error occurs, SCI displays the message on the bottom line of the terminal screen and
inhibits further operation until you acknowledge the message by pressing the Command key or the
Return key. Errors can be generated within SCI during SCl command execution or by any utility
activated by an SCl command.

The error messages consist of three parts: the error source indicator, a unique identifier, and the
message. The error source indicators are as follows:

. Informative message
. Warning message
o User error message

U System error message

2270516-9701 2-31

Operating System Concepts

. Hardware error

. User or system error

. User or hardware error

. System or hardware error

U] User, hardware, or system error

The unique identifier is a code containing the category of the message (such as SVC, PASCAL, or
UTILITY). This code may be followed by an identifier for a specific message within that category.

Forexampile, if you attempt to access a nonexistent file, the following error message appears:
U SVC-0315 filename DOES NOT EXIST (SF;5)
where:

filename is the name of the file you tried to access.

If you need additional information about an error, use online expanded error messages or refer to
the DNOS Messages and Codes Reference Manual.

2.11.2 Online Expanded Error Message Documentation
If your system supports expanded message information online, both the Show Expanded
Message (SEM) command and the ? response to the error messages are available.

2.11.2.1 Show Expanded Message (SEM) Command. Use the SEM command to display an
expanded description of a termination code. Enter SEM to activate the procedure. You are
prompted to specify the type of error (such as SVC or SCl), the message ID, and the internal error
code. The message ID appears in the second field of the termination message. An example of the
SEM command display is as follows:

SHOW EXPANDED MESSAGE
MESSAGE CATEGORY: SVC
MESSAGE ID: 0315
INTERNAL ERROR CODE: UNKNOWN

The following information appears on the terminal:

Explanation
The specified file or channel does not exist.

Action

If the file or channel pathname is specified as intended,
create the file or channel and retry the operation.
Otherwise, retry the operation specifying the intended
pathname.

2-32 2270516-9701

Operating System Concepts

If you are analyzing an SVC error in a program, looking for a crash code, or otherwise have access
to the internal error code, then specify that code instead of the message ID.

2.11.2.2 The ? Response. |f you enter a question mark (?) immediately after receiving an error
message, SCI uses the error category and message ID to display the expanded description of the
error. SCl displays the original message and the same information as the SEM command.

2.11.3 Status Messages

Several SCl commands display status messages to inform you of the actions being taken during
command execution. These messages appear on the bottom line of the terminal screen. Acknowl-
edge the message by pressing the Command key or Return key so that operation can continue.
Expanded status messages are secured in the same way as error messages.

2270516-9701 2-33/2-34

3

Building a COBOL

Source Program Module

3.1 GENERAL

The initial phase of COBOL program development involves building the program source module.
This process requires preparing the necessary directories and files and entering the program

source code (presumably via the text editor).

3.2 DIRECTORY AND FILE PREPARATION

Table 3-1 lists and describes the files that are typically used when developing and executing
COBOL programs. (Optional procedures may require additional files.)

Table 3-1.

Files Required for Program Development

File

Description

Source file

Object file

Compiler listing file

Link control file

Link editor listing

Program file

Contains program source module code,
which is created by using the text editor and
input to the COBOL compiler.

Contains program object module code,
which is output from the COBOL compiler
and input to the link editor or the Execute
COBOL Program (XCP) command. (Refer to
Section 6 for details about the XCP
command.)

Contains the program source module listing
with any errors detected by the COBOL
compiler. The COBOL compiler produces
this listing.

Contains instructions for the link editor,
such as which object modules, run-time
libraries, user libraries, and external routines
are to be linked.

Contains the link map, which is produced by
the link editor.

The user’s program file; contains programs
in image format.

2270516-9701

3-1

Building a COBOL Source Program Module

3.3 ALTERNATE DIRECTORY STRUCTURES

File organization varies according to the requirements of a specific installation. Several methods
of organization are possible, including the following:

° Organization according to related programs
o Organization according to file type

3.3.1 Organization by Programs

When files are organized by programs, all necessary files for a given program are located in a
single directory; the directory name is associated with the program name. In the following
example, all files for PROGRAMA are in directory PROGA, and all files for PROGRAMB are in direc-
tory PROGB:

VOLUME.PROGA.SRCFILE VOLUME.PROGB.SRCFILE
VOLUME.PROGA.OBJFILE VOLUME.PROGB.OBJFILE
VOLUME.PROGA.LSTFILE VOLUME.PROGB.LSTFILE
VOLUME.PROGA.CTRFILE VOLUME.PROGB.CTRFILE
VOLUME.PROGA.LINKMAP VOLUME.PROGB.LINKMAP
VOLUME.PROGA.PRGFILE VOLUME.PROGB.PRGFILE

3.3.2 Organization by File Type

In the diagram in Figure 3-1, files are arranged under a single directory (PROJECT). Subdirectories
are created for source, object, listing, link control, and link map files. This type of file organization
allows for a network of programs where the same module may be linked into different programs.

PRO|JECT
SOIURCE OBIJECT LISIT LII\IJK LINII'(MAP PR'OG
MOD1 MOID1 MOID1 LINKA LINKA
MOlD2 MO|D2 M(;DZ LINKB LINKB
MOD3 MOD3 M(gDS

Figure 3-1. Organization of Files in Directory

3-2 2270516-9701

Building a COBOL Source Program Module

3.4 CREATING DIRECTORIES AND FILES

To create a directory or subdirectory, enter the Create Directory File (CFDIR) SCI command. The
following display appears:

CREATE DIRECTORY FILE
PATHNAME: pathnamed (%)
MAX ENTRIES: integer
DEFAULT PHYSICAL RECORD SIZE: [integer]

Assume that the pathname has a volume name of VOLUME and a directory name of SOURCE.
SOURCE will contain all source files for programs. Respond to the prompt PATHNAME by entering
VOLUME.SOURCE. Respond to the prompt MAX ENTRIES by entering the maximum number of
entries (files and subdirectories) that the directory may contain.

Files that are output from utilities (such as the text editor or the compiler) need not be created
prior to executing the utility; the utility automatically creates the files if they do not already exist.
However, pathnames must be specified before termination of the utility. Pathnames must be
unique unless the information in a file is being replaced. Directories are not automatically created.
The compiler automatically creates the compiler listing file and the object file if they do not
already exist. Since the link control file is a utility input file, it must be created (usually via the text
editor) prior to executing the link editor.

3.5 BUILDING THE PROGRAM MODULE VIA THE TEXT EDITOR

COBOL source program modules are generated on a VDT using SCI. Editing on the VDT occurs on
a page basis; each page can have any consecutive 24 lines displayed on the screen. You can edit
any record displayed on the screen by positioning the cursor anywhere within the line that con-
tains the record. You can insert records between any lines, and you can insert or delete them in
any order. Also, you can insert, delete, or modify characters within a line. Use the Show Line (SL)
SCI command and the F2 (Roll Up Function), F1 (Roll Down Function), Previous Line and Next Line
control keys to access specific lines, records, or characters.

To enter a source program module via the text editor (assuming a directory has been created pre-
viously), enter the Initiate Text Editor (XE) SCI command, and press the Return key. A display simi-
lar to the following appears: ‘

EXECUTE TEXT EDITOR
FILE ACCESS NAME:

EXCLUSIVE EDIT?: YES
LINE LENGTH: 80

Press the Return key to indicate that no file exists. The Text Editor clears the VDT screen and dis-
plays the following in the first four columns of row 1 with the cursorin column 1, row 1:

*EQF

2270516-9701 3-3

Building a COBOL Source Program Module

This display indicates that the end-of-file (EOF) record is the only record in the file. To begin
entering data, press the Return key. Notice that a blank line appears before the *EOF notation.
Press the Command key and enter the Modify Tabs (MT) SCI command to adjust the tabs for cod-
ing. Set the tabs at 1, 8, 12, 24, and 73 (standard tabs for a COBOL coding sheet), and press the
Return key. Now, begin entering the source code shown in Figure 3-2. Each time you enter a new
line and press the Return key, a new blank line appears beneath the previously entered line of

information.

IDENTIFICATION DIVISION.

PROGRAM-ID.

* % ¥ Ok *

FUNCTION.
THIS PROGRAM WAS DESIGNED AS A FUNCTIONAL

DEMONSTRATION TEST FOR CHECKING FUNCTION KEY
ACCESSIBILITY.
FUNCTION KEYS MUST HAVE BEEN ACTIVATED VIA THE
SCI EXECUTION COMMAND.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. TI-990.
0BJECT-COMPUTER. TI-990.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ACTION PIC XX.

01 FUNC

01 X
01 XX

PIC 99.

PIC S99 COMP-1.
PIC S99 COMP-1.

01 HEADS.

02

02

02

02

02

02

02

02

02

02

02

02

Figure 3-2. Sample COBOL Program Source Module —
VOLUME.SOURCE.EXAMPLE2 (Sheet 1 of 3)

34

FILLER
"01 -
FILLER
ll02 -
FILLER
1103 -
FILLER
!004 -
FILLER
1'05 -
FILLER
l106 -
FILLER
llO? -
FILLER
ll08 -
FILLER
1109 -
FILLER
"0 -
FILLER
ll11 -
FILLER
"2 -

PIC
F1.
PIC
F2u.
PIC
F3n.
PIC
Fa,
PIC
F5".
PIC
Fo!.
PIC
F7m.
PIC
Fa".
PIC
Fo".
PIC

X(21) VALUE

X(21) VALUE

X(21) VALUE

X(21) VALUE

X(21) VALUE

X(21) VALUE

X(21) VALUE

X(21) VALUE

X(21) VALUE

X(21) VALUE

F10'.

PIC

X(21) VALUE

F11'.

PIC

X(21) VALUE

F12m.

2270516-9701

Building a COBOL Source Program Module

02 FILLER PIC X(21) VALUE

"3 - F13n,
02 FILLER PIC X(21) VALUE
"4 - F14",

02 FILLER PIC X(21) VALUE
"40 - Command'.
02 FILLER PIC X(21) VALUE
"49 - Print'.
02 FILLER PIC X(21) VALUE
"52 - Previous Line".
02 FILLER PIC X(21) VALUE
"53 - Next Line".
02 FILLER PIC X(21) VALUE
"S54 - Home'.
02 FILLER PIC X(21) VALUE
"55 - Next Field".
02 FILLER PIC X(21) VALUE
"56 - Previous Field".
02 FILLER PIC X(21) VALUE
n57 - Skip".
02 FILLER PIC X(21) VALUE
"S8 - Forward Tab".
02 FILLER PIC X(21) VALUE
"59 - Initialize Input".
02 FILLER PIC X(21) VALUE
"61 - Erase Input'.
02 FILLER PIC X(21) VALUE
"64 - Enter'.
01 HEADINGS REDEFINES HEADS.
02 HEAD PIC X(21) OCCURS 26.
PROCEDURE DIVISION.
MAIN-PROG.
RD-INPUT.
DISPLAY ''COBOL FUNCTION KEYS TEST"
LINE 1 POSITION 20 ERASE.
PERFORM DSP-13 THRU E-13 VARYING X FROM 1
BY 1 UNTIL X > 13.
PERFORM DSP-26 THRU E-26 VARYING X FROM 14
BY 1 UNTIL X > 26.
DISPLAY ""DEPRESS DESIRED KEY'" LINE 20 POSITION 20.
PERFORM GET-FUNC UNTIL ACTION = "'X''.
STOP RUN.
GET-FUNC.
ACCEPT ACTION LINE 20 POSITION 40
ON EXCEPTION FUNC
DISPLAY FUNC LINE 20 POSITION 40.
DISPLAY '"HIT 'CR' TO CONTINUE, 'X' TO STOP"
LINE 22 POSITION 20.
ACCEPT ACTION LINE 22 POSITION 54.
DISPLAY ' ' LINE 20 POSITION 40.

Figure 3-2. Sample COBOL Program Source Module —
VOLUME.SOURCE.EXAMPLE2 (Sheet 2 of 3)

2270516-9701 35

Building a COBOL Source Program Module

DSP-13.

COMPUTE XX = X + 1.

DISPLAY HEAD (X) LINE XX POSITION 20.
E-13. EXIT.
DSP-26.

COMPUTE XX = X - 12.

DISPLAY HEAD (X) LINE XX POSITION 45.
E-26. EXIT.
END PROGRAM.

Figure 3-2. Sample COBOL Program Source Module —
VOLUME.SOURCE.EXAMPLEZ2 (Sheet 3 of 3)

After entering the program source module, check for errors. To return to the first page of the
source code, press the Command key and enter the SL command. The following display appears:

SHOW LINE
LINE: 1

Press the Return key to accept the initial value of 1. To review the source code, use the F1 and F2
keys. Each time the F1 key is pressed, the display scrolis forward; each time the F2 key is pressed,
the display scrolls backward. To change the number of lines that are scrolled, enter the Modify
Roll (MR) SCl command, and press the Return key. The following display appears:

MODIFY ROLL
NUMBER OF LINES TO ROLL: 23

A different value may appear as the initial value of this command prompt. In any case, the
response to this prompt should be 23. This allows the last line of the display to appear as the first
line on the next display when the F1 key is pressed or the first line of the display to appear as the
last line on the next display when the F2 key is pressed. Now, press the Return key.

Certain keys can be helpful when verifying the source code. Each of these keys may be used in
conjunction with the Repeat key. The keys and their functions are as follows:

. Previous Line — Moves the cursor up one line from the current line. If the cursor is on
the top line, the screen scrolls backward one line.

¢ Next Line — Moves the cursor down one line from the current line. If the cursoris on the
bottom line, the screen scrolls forward one line.

. Previous Character — Moves the cursor to the left one character from the current posi-
tion of the cursor.

. Next Character — Moves the cursor to the right one character from the current position
of the cursor.

3-6 2270516-9701

Building a COBOL Source Program Module

If no errors are found, press the Command key again and enter the Quit Edit (QE) SCI command.
The following display appears:

QUIT EDIT
ABORT?: NO

A YES response to the prompt ABORT? terminates the text editor without any modification to the
input file; if no input file was specified in the XE command, no new file is created. Any modifi-
cations made or data entered are lost when the response to the ABORT? prompt is YES. Accept
the initial value (NO) and press the Return key. The following display appears:

QUIT EDIT
OUTPUT FILE ACCESS NAME: VOLUME.SOURCE.EXAMPLE2
REPLACE?: YES
MOD LIST ACCESS NAME:

Enter a valid pathname such as VOLUME.SOURCE.EXAMPLE2 for the output file access name,
and press the Return key. The response to the prompt REPLACE? determines whether the desig-
nated output file is to be replaced by the edited file. If the response is NO and the output file
exists, the edited file does not replace the existing file. If the response is NO and no file exists by
that name, a new file is created. If the response is YES, the edited file replaces the specified file; if
no file exists by that name, a new file is created. Press the Return key in response to the prompt
MOD LIST ACCESS NAME. The program is now entered and has a file name of
VOLUME.SOURCE.EXAMPLE2.

When you are editing a source file, the functions of various keys can be helpful. For instance, the
F4 key duplicates information on a previous line to a preset tab when the cursor is placed beneath
the line to be copied. The F5 key acts as a tab key and clears the line to the preset tab positions,

. and the F6 key displays or suppresses line numbers. When line numbers are displayed, only 74
characters of each record are displayed. When line numbers are suppressed, a full 80 characters
are displayed. Other keys of importance include the following:

° Initialize Input key — Inserts a blank line above the line containing the cursor

. Insert Character key — Inserts characters at the current cursor position and moves all
characters that are to the right of the cursor one position to the right (truncates charac-
ters if line is full)

. Delete Character key — Deletes characters at the current cursor position and moves ali
characters that are to the right of the cursor one position to the left

. Home key — Positions the cursorin row 1, column 1 of the display
. Erase Field key — Replaces all characters in a line with blanks

] Erase Input key — Deletes the line on which the cursor is positioned and rolls up all
lines beneath it

2270516-9701 37

Building a COBOL Source Program Module

Certain SCI commands can also be helpful when editing a file. These commands include the

following:

3-8

FS (Find String) — Locates a predefined string in the source file for a specified number
of occurrences

DL (Delete Lines) — Deletes certain lines specified by the user

- ML (Move Lines) — Moves specified lines in a file and inserts them after a specified line

number

CL (Copy Lines) — Duplicates the specified lines and inserts them after a specified line
number

IF (Insert File) — Inserts an existing file into the file that is being edited, after a specified
line number

2270516-9701

4

Compilation

4.1 GENERAL

Compilation is the process of translating a COBOL program source module into a series of instruc-
tions (interpretive object code) comprehensible to the computer. The interpretive object code is
interpreted by the COBOL. run-time interpreter at execution time. (Refer to Section 5 for a descrip-
tion of the COBOL run-time interpreter.)

4.2 COMPILER EXECUTION

To execute the COBOL compiler, enter the Execute COBOL Compiler in Background (XCC) com-
mand for background compiles or the Execute COBOL Compiler in Foreground (XCCF) command
for foreground compiles. The XCC command allows the terminal to be used for foreground pur-
poses during the background compilation.

4.2.1 Execute COBOL Compilerin Foreground (XCCF)
For the XCCF command, the following prompts appear with the indicated initial values:

EXECUTE COBOL COMPILER FOREGROUND <VERSION: L.R.V YYDDD>
SOURCE ACCESS NAME: pathnamed
OBJECT ACCESS NAME: pathnamed
LISTING ACCESS NAME: pathnamed
OPTIONS: [{D/I/M/0/X}]

PRINT WIDTH: integer (80)
PAGE SIZE: integer (55)
PROGRAM SIZE (LINES): integer (10000

Press the Return key after each entry.

SOURCE ACCESS NAME — Enter the input device name, pathname, or synonym for the file that
contains the source module to be compiled.

OBJECT ACCESS NAME — Enter the pathname or synonym of the output object file. The compiler
places the generated object code in the object file. The pathname must refer to a mass storage file
with relative record organization. If the file does not exist, the compiler automatically creates arel-
ative record file for the object file. If the file exists but is not a relative record file, the compiler ter-
minates and an error is generated. (Refer to Appendix C for a listing of the compiler error
messages.) |f DUMY is specified for the object access name, the output object file is not
generated. '

LISTING ACCESS NAME — Enter the listing device name, pathname or synonym. The name
entered is the name of the device or sequential file to which the compiler outputs the requested
listings. If afile is specified and does not exist, the compiler automatically creates a sequential file
for the listing file. Enter ME to have the listing displayed on the screen as it is generated.

2270516-9701 41

Compilation

OPTIONS — To request options, enter (without intervening commas) one or more of the characters
listed in Table 4-1.

Table 4-1. COBOL Compiler Options

Character Option
D Debug
| Information Message
M Data Maps
(0] List Object
X Cross-Reference Listing

Entering the M option causes a listing similar to Figure 4-1.

The order in which the options are listed is not important. However, invalid options generate warn-
ings and then are ignored. Descriptions of the options are as follows:

4.2

Debug Option (D) — Causes the compiler to compile source statements that have aD in
character position seven, along with rest of the statements in the program source
module. Otherwise, the source statements with D in position seven are treated as
comments.

Information Message Option (I) — Causes the compiler to list any informative mes-
sages. These messages are not errors or warnings. See Table B-3 in Appendix B for the
list of informative messages.

Data Maps Option (M) — Causes the data map to be listed as part of the compiler listing
(listing access name). Otherwise, no data map is listed. Refer to Appendix E for a
COBOL object listing example including data maps.

List Object Option (O) — Causes the compiler to include the object code in the listing
file, following the listing of the corresponding source statement. Refer to Appendix E for
a COBOL object listing example including object code.

Cross-Reference Listing Option (X) — Causes the compiler to produce a cross-reference
listing following the source listing or data maps if requested. Data names, index names,
condition names, file names, section names, and paragraph names (contained in the
Procedure Division of the program) are listed in the cross-reference. The line numbers of
all appearances of a name are printed to the right of the name. When a line number is
enclosed in slashes (/nnnn/), the statement on that line defines the item. When a line
number is enclosed in asterisks (*nnnn*), the statement on that line may alter the con-
tents of the item. When a line number is enclosed in blanks (nnnn), the statement on
that line references the item.

2270516-9701

Compilation

PRINT WIDTH — Enter the appropriate print width to specify the number of characters to be for-
matted on a line of the listing. The compiler truncates the compiler listing lines if the print width is
less than the compiler-generated line length. The initial value print width is 80 positions.

PAGE SIZE — Enter the maximum number of print lines per page for the compiler listing file. The
initial value page size is 55 lines per page.

PROGRAM SIZE (LINES) — Enter an estimate of the number of program source module lines con-
tained in the program source module. This estimate determines the amount of initial memory used
in the compilation. If more memory is requested, compilation is faster provided memory is avail-
able. The initial value program size is 1000 lines.

After the program module is compiled, if an error occurs, correct the error and recompile the
source module before attempting to link edit or execute the code. When the compilation com
pletes successfully, the following message appears:

COBOL COMPILER COMPLETED, O ERRORS, O WARNINGS

DNCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 1
SOURCE ACCESS NAME: MANUAL.PG.SRC.FIGO0401
OBJECT ACCESS NAME: DUMY
LISTING ACCESS NAME: MANUAL.PG.LST.FIG0401
OPTIONS: M
PRINT WIDTH: 80
PAGE SIZE: 55

PROGRAM SIZE (LINES): 1000

DNCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2
LINE DEBUG PG/LN S -

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. FUNCTION.

3 * THIS PROGRAM WAS DESIGNED AS A FUNCTIONAL

4 * DEMONSTRATION TEST FOR CHECKING FUNCTION KEY

5 * ACCESIBILITY.

6 * FUNCTION KEYS MUST HAVE BEEN ACTIVATED VIA THE

7 * SCI EXECUTION COMMAND.

8 ENVIRONMENT DIVISION.

9 CONFIGURATION SECTION.

10 SOURCE-COMPUTER. TI-990.

11 OBJECT-COMPUTER. TI-990.

12 DATA DIVISION.

Figure 4-1. Sample COBOL Compiler Listing (Sheet 1 of 4)

2270516-9701 4.3

Compilation

DNCBL

LINE

4-4

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
bh
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS
DEBUG PG/LN S

/

OPT=M

WORKING-STORAGE SECTION.
01 ACTION PIC XX.

01 FUNC

01 X
01 XX

PIC 99.
PIC S99 COMP-1.
PIC S99 COMP-1.

01 HEADS.

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

02

Figure 4-1.

FILLER PIC X(21) VALUE
"01 - F1'.

FILLER PIC X(21) VALUE
"02 - F2".

FILLER PIC X(21) VALUE
"03 - £3",

FILLER PIC X(21) VALUE
"04 - F4',

FILLER PIC X(21) VALUE
"05 - F5".

FILLER PIC X(21) VALUE
"06 - Fé'.

FILLER PIC X(21) VALUE
"o7 - F7'.

FILLER PIC X(21) VALUE
"08 - F8".

FILLER PIC X(21) VALUE
"09 - F9".

FILLER PIC X(21) VALUE
"0 - F10".

FILLER PIC X(21) VALUE
"1 - F11".

FILLER PIC X(21) VALUE
"2 - F12".

FILLER PIC X(21) VALUE
"3 - F13".

FILLER PIC X(21) VALUE
"4 - F14".

FILLER PIC X(21) VALUE
"40 - Command'.

FILLER PIC X(21) VALUE
"49 - Print'".

FILLER PIC X(21) VALUE
"52 - Previous Line'".
FILLER PIC X(21) VALUE
"53 - Next Line'".
FILLER PIC X(21) VALUE
"S54 - Home'".

FILLER PIC X(21) VALUE
"S5 - Next Field".
FILLER PIC X(21) VALUE
"S56 - Previous Field".
FILLER PIC X(21) VALUE
"S57 -~ Skip".

Sample COBOL Compiler Listing (Sheet 2 of 4)

PAGE

2270516-9701

Compilation

64 02 FILLER PIC X(21) VALUE

65 "58 - Forward Tab'".

66 02 FILLER PIC X(21) VALUE

67 "59 - Initialize Input'.

68 02 FILLER PIC X(21) VALUE

DNCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4
LINE DEBUG PG/LN S .

69 "61 - Erase Input'.

70 02 FILLER PIC X(21) VALUE

71 "64 - Enter'.

72 01 HEADINGS REDEFINES HEADS.

73 02 HEAD PIC X(21) OCCURS 26.

DNCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 5
LINE DEBUG PG/LN -

74 /

75 PROCEDURE DIVISION.

76 >0000 MAIN-PROG.

77 >0002 RD-INPUT.

78 >0002 DISPLAY '""COBOL FUNCTION KEYS TEST"

79 LINE 1 POSITION 20 ERASE.

80 >000¢C PERFORM DSP-13 THRU E-13 VARYING X FROM 1

81 BY 1 UNTIL X > 13.

82 >0020 PERFORM DSP-26 THRU E-26 VARYING X FROM 14

83 BY 1 UNTIL X > 26.

84 >0034 DISPLAY '"'DEPRESS DESIRED KEY'" LINE 20 POSITION 20.

85 >003cC PERFORM GET-FUNC UNTIL ACTION = "X'",

86 >0046 STOP RUN.

87 >0048 GET-FUNC.

88 >0048 ACCEPT ACTION LINE 20 POSITION 40

89 ON EXCEPTION FUNC

90 DISPLAY FUNC LINE 20 POSITION 40.

91 >005E DISPLAY "HIT 'CR' TO CONTINUE, 'X' TO STOP'"

92 LINE 22 POSITION 20.

93 >0066 ACCEPT ACTION LINE 22 POSITION 54.

94 >006E DISPLAY ' ** LINE 20 POSITION 40.

95 >0078 DSP-13.

96 >0078 COMPUTE XX = X + 1.

97 >007E DISPLAY HEAD (X) LINE XX POSITION 20.

98 >008E E-13. EXIT.

99 >0090 DSP-26.

100 >0090 COMPUTE XX = X - 12.

101 >0096 DISPLAY HEAD (X) LINE XX POSITION 45.

102 >00A6 E-26. EXIT.

103 2227727 END PROGRAM. *x*x END OF FILE

Figure 4-1. Sample COBOL Compiler Listing (Sheet 3 of 4)

2270516-9701 4.5

Compilation

DNCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 6
ADDRESS SIZE DEBUG ORDER TYPE NAME
>002A 2 ANS 0 ALPHANUMERIC ACTION
>002¢C 2 NsuU 0 NUMERIC UNSIGNED FUNC
>002E 2 NBS 0 BINARY SIGNED X

>0030 2 NBS 0 BINARY SIGNED XX

>0032 520 GRP 0 GROUP HEADS
>0032 520 GRP 0 GROUP HEADINGS
>0032 20 ANS 1 ALPHANUMERIC HEAD
READ ONLY BYTE SIZE = >01C8

READ/WRITE BYTE SIZE = >0248

OVERLAY SEGMENT BYTE SIZE = >0000
TOTAL BYTE SIZE = >0410
0 ERRORS

0 WARNINGS

Figure 4-1. Sample COBOL Compiler Listing (Sheet 4 of 4)

4.2.2 Execute COBOL Compilerin Background (XCC)
For the XCC command, the following prompts appear with the indicated initial values:

EXECUTE COBOL COMPILER <VERSION: L.R.V YYDDD>
SOURCE ACCESS NAME: pathnamea
OBJECT ACCESS NAME: pathnamea
LISTING ACCESS NAME: pathnamed
OPTIONS: [{D/I/M/0/X}]
PRINT WIDTH: integer (80)
PAGE SIZE: integer (55)
PROGRAM SIZE (LINES): integer (1000)

The parameters are the same as those for the XCCF command except that ME should not be used
as the listing access name.

4-6 2270516-9701

Compilation

4.3 COMPILER OUTPUT

The compiler output consists of the object file and the listing file. The object file contains the
object modules (interpretive code) generated by the computer. The reentrant code (instructions) is
generated as a group named PSEG. The nonreentrant code (data) is generated as a group named
DSEG. DSEGs are often referred to as $DATA. The object file may be executed by the run-time
interpreter or linked to another object module. The listing file contains the listing of the program
source code and lists any error messages detected by the compiler.

4.4 COMPILER COMPLETION CODES

The COBOL compiler returns a system completion code for the most severe diagnostic
encountered in the compilation. The completion code is returned in the synonym $$CC. The values
and meanings of these codes are as follows:

Value Meaning

0000 No warnings or errors occurred
4000 Warnings occurred

8000 Errors occurred

The synonym $$CC should be checked in batch streams immediately after compiler execution.
$$CC is used by other processors, and its integrity is not guaranteed after completion of the batch
stream or execution of another command.
4.5 COMPILER ERROR MESSAGES
The compiler generates user and system error messages. User error messages are included in the
compiler listing. Compilation of a program source module proceeds to the end of a program
module regardless of the number of errors found.
Errors that prevent proper execution of the COBOL compiler are system errors. When one of these
errors occurs, the system displays an error message and terminates the execution of the compiler.
Refer to Appendix B for a listing of user and system error messages and their meanings.
4.6 COMPILER LIMITATIONS
Each of the following items is limited to 2047 entries:

o Level-88 condition names

o Nesting of IF statements

. Nesting of PERFORM statements

2270516-9701 4.7

Compilation

Using parameters in CALL statements

Unigue index names

Unique spellings (identifiers, paragraph/section/internally generated labels)
Unique literal values

Unique identifiers (data names)

Unique paragraph/section/internally generated labels

Unique references to data items

In practice, because of interactions between different statements and related temporary infor-
mation during the compilation process, the actual limits may be somewhat less than 2047. How-
ever, the limits for all practical purposes should be higher than typical program modules require.

4-8

2270516-9701

5
Link Edit

5.1 GENERAL

Link editing is the process of preparing object modules for execution. It can also combine two or
more separately compiled object modules to form a single linked object module. This process is
performed by one of the operating system utilities, the link editor. The process of link editing
resolves external definitions and references between object modules.

Object modules do not always require linking before execution. They must be linked as a linked
object module if subroutines are present. (Refer to the section entitled Creating Linked Object
Modules.) Also, object modules must be linked to a program file when task and procedure seg-
ments or overlays are needed. (Refer to the section entitled Creating Program Images.)

The following features are supported with linked object modules:

. Callable subroutines

o COBOL program module segmentation

o Object file compression
The following features are supported on program files:

. Callable subroutines

o Reentrant user modules

. Shared procedure segments

U Overlay phases

. COBOL program module segmentation
The diagram in Figure 5-1 shows the link edit and execution options available with COBOL pro-
grams. in the logical flow labeled A, no linking is necessary to execute an object module. (Refer to
Object Modules Execution in Section 6 for a description of how to execute object modules.) The
logical flow labeled B indicates that object modules must be linked when they contain CALL state-
ments. The linked object modules are then executed using the same SCI commands as used for
object modules. The logical flow labeled C shows how to execute a program (task) installed in a
program file. (Refer to Program Image Execution in Section 6 for a description of how to execute
program images on program files.) The Execute COBOL Program (XCP) and Execute COBOL Pro-
gram in Foreground (XCPF) commands shown in Figure 5-1 reflect the method of executing com-
piled object files and linked object files. The Execute COBOL Task (XCT) and Execute COBOL Task
in Foreground (XCTF) commands show the method of executing linked program images on pro-
gram files.

2270516-9701 5-1

Link Edit

COMPILATION

COBOL
OBJECT

EXECUTE PROGRAM EXECUTE TASK

(OBJECT FILE)

(PROGRAM F1ILE)

OVERLAY

PHASES YES

NO

LINK EDIT
STEP

CONTAIN
CALL
STATEMENTS

NO EXECUTE
IN FOREGROUND FOREGROUND
OR BACKGROUND

YES BACKGROUND

XCcT XCTF

EXECUTE
IN FOREGROUND
OR BACKGROUND

BACKGROUND FOREGROUND XCP - EXECUTE COBOL PROGRAM BACKGROUND
N FORESRTE D XCPF - EXECUTE COBOL PROGRAM FOREGROUND
OR BACKGROUND XCT =~ EXECUTE COBOL TASK BACKGROUND
Xcp XCPF
XCTF - EXECUTE COBOL TASK FOREGROUND
BACKGROU ND FOREGROUND
XcP XCPF
2277264

Figure 5-1. Determining Link Edit Requirements for COBOL Programs

5-2 2270516-9701

Link Edit

User programs that operate under control of the operating system can include a combination of
data, procedures, and overlays as required. Programs are installed and stored on program files in
memory image form. When a program is activated, the images of its program segments are loaded
into available memory areas. The hardware mapping facility precludes the necessity of relocating
program images. Thus, the operating system can swap an active program to various locations in
memory several times during execution. This process assists in sharing memory and making CPU
execution time available (time-slicing). The hardware mapping capability also allows three sepa-
rately loaded program segments to be mapped into a single, logically contiguous program address
space.

5.2 OBJECT MODULES

The following paragraphs discuss object modules constructed using PSEGS and DSEGS. An
object module can contain a PSEG only, a DSEG only, or both a PSEG and a DSEG.

An object module using the PSEG/DSEG structure should contain only the following in the PSEG
portion:

° Unmodifiable instructions.
. Constant data.
If the object module contains a DSEG, the DSEG can contain modifiable data.

The Link Editor always positions the PSEG portion of an object module in the segment in which it
is included. It always positions the DSEG portion in the task segment.

5.2.1 Differences in the Treatment of Sharable Vs. Reentrant Modules

In a sharable object module, data outside the PSEG can be directly addressed if the ALLOCATE
command of the Link Editor is properly used during link edit. In a reentrant object module, all refer-
encing of data outside the PSEG must be by means of indirect addressing.

5.2.2 COBOL Object Modules

An object module generated by the COBOL compiler is constructed using the PSEG/ DSEG struc-
ture. PSEGs directly address data in DSEGs; therefore, the ALLOCATE command of the Link Editor
must be used in order to share COBOL object modules. COBOL object modules that use segmen-
tation cannot be shared.

5.3 PROGRAM MAPPING

The hardware has a 20-bit memory address bus and can address 2048 bytes of memory. The logical
address space available to a task (program) is limited to 64K bytes. This difference is resolved by
mapping the task’s logical address space into the computer’s physical address space. The seg-
ments in physical address space need not be contiguous. Since the operating system maintains
separate mapping parameters for each task, each task may consist of one, two, or three segments
with a total extent of 64K bytes. Furthermore, several tasks may share one or two procedure seg-
ments. However, one segment is unique to each instance of a program. This unique segment is
called the task segment (T). The sharable segments of a task are called procedure segments (P1)
and (P2). Refer to Figure 5-2.

2270516-9701 5-3

Link Edit

PHYSICAL ADDRESS
SPACE

N

SEGMENT
ONE
LLLLLLLLLL,

Il

N

N

NN
N

TASK
/ SEGMENT
Q) A74777777774

2277265

Figure 5-2. Memory Mapping

5.4 PROGRAM FILES

All task and procedure segments and overlays are installed in structures referred to as program
files. These files are similar to the expandable relative record files and contain program images in
blocks corresponding to file records. An internal directory is maintained within the file itself. This
internal directory contains pointers to each image on the file as well as relevant information about
the images. Figure 5-3 shows a listing of a program file produced by the Map Program File (MPF)
command.

5-4 2270516-9701

Link Edit

FILE MAP OF VOLUME.PROG
TODAY IS 15:58:24 WEDNESDAY, JUN 04, 1980.

TASK SEGMENTS: MAXIMUM POSSIBLE = 255

1D NAME LENGTH LOAD PRI S P M R D E O C OVLY P1/SAME P2/SAME INSTALLED
01 TSKSEG1 136A 0000 3 R 04 3/26/80
02 TSKSEG2 7082 0000 3 R 5/ 7/80
03 TSKSEG3 122 4440 4 R 01/Y 5/17/80
04 TSKSEG4 AFA4 4060 4 R 06 02/Y 6/10/80
PROCEDURE: MAXIMUM POSSIBLE = 255

1D NAME LENGTH LOAD MDEWC INSTALLED
01 PRCSEG1 4438 0000 5/17/80
02 PRCSEG2 4050 0000 6/10/80
OVERLAYS: MAXIMUM POSSIBLE = 255

1D NAME LENGTH LOAD MAP D OVLY INSTALLED
01 ovLY1 0586 0006 5/ 7/80
02 oOvLY2 13Fr4 0006 01 5/ 7/80
03 O0VLY3 1394 0006 02 5/ 7/80
04 OVLY4 1148 0006 03 5/ 7/80
05 O0VLYS 119E AE9SA 6/10/80
06 0VLY6 2E7C AE9A 05 6/10/80

Figure 5-3. Contents of a Program File

in Figure 5-3, task 1 consists'of task segment 1. Task 2 consists of task segment 2 and overlays 1
through 4. Task 3 consists of task segment 3 and procedure segment 1. Task 4 consists of task
segment 4, procedure segment 2, and overlays 5 and 6. Various examples of how to create linked
program images with one, two, or three segments are provided in the Section 5 paragraph entitled
Creating Linked Object Modules.

5.4.1 Segments

Because the operating system maintains separate mapping parameters for each task, each task
can consist of one, two, or three segments with a total extent of 64K bytes. Furthermore, several
tasks may share one or two segments. One segment, however, is unique to each instance of a pro-
gram. This unique segment is called the task segment. The sharable segments of a task are called
procedure segments.

5.4.1.1 Task Segments. Task segments contain the initial portion of the program such as entry
vectors, optional data, and optional program code. The task segment is unique to each separate
execution and cannot be shared. A task segment may be uniquely replicated from a single image
installed in a program file on disk for each activation. Replication of tasks, therefore, conserves
disk space and time by eliminating the need to install a copy of the same task with different IDs for
each possible concurrent activation of a program.

2270516-9701 5-5

Link Edit

5.4.1.2 Procedure Segments. A COBOL task can be linked with two or fewer procedure seg-
ments. Code linked in the procedure segments can be shared by more than one task. A procedure
is considered sharable if more than one task can share one copy of the module during execution
without loss of data. Reentrant (or pure) procedures must contain only unmodifiable code and
constant data. Data modified by the reentrant module is usually stored in the task segment and
can be located at different addresses in the tasks without loss of data. The COBOL run-time inter-
preter module is reentrant. All reentrant procedures are sharable.

The procedure portion (PSEG) of the object generated by the COBOL compiler is not reentrant. It
can be made sharable through the use of the ALLOCATE command in the link control file. (Refer to
paragraph 5.6.5 entitled Linking Two Procedure Segments With Multiple Task Segments for an
explanation of how to use the ALLOCATE command.) Procedure segments are linked by use of the
PROCEDURE command as referenced in the Link Editor Reference Manual. Sharing procedure
segments conserves memory by precluding the replication of a task’s procedure segment.

Procedure segments installed on the system program file can be shared by tasks in any user pro-
gram file. Procedure segments installed on a user program file can be shared only by tasks on that
program file.

The COBOL run-time interpreter (RCOBOL) is stored in the system program file. To conserve both
memory and disk space, it is recommended that COBOL tasks share this procedure.

If task 1 and task 2 reside on the same program file and each share the same procedure(s) (either
on the same program file as the task or on the system program file), only one copy of any shared
procedure segment is in memory during execution of the tasks.

Conversely, if task 1 and task 2 are on separate program files and each has a copy of the same pro-
cedure(s), then two copies of the procedure(s) occur in memory during simultaneous execution of
the tasks.

Figure 5-4 shows a construct with multiple task and procedure segments on the same program
file. Each task segment is attached to the procedure segment. Therefore, sharing P1 and P2
reduces the amount of memory required to run the application. The task segments may be identi-
cal (that is, duplicated and/or executed from two different terminals) or they may be unique task
segments. Tasks on separate program files that share the same procedure(s) on the system pro-
gram file require only one copy of the procedure(s) in memory during concurrent execution of the
tasks.

5-6 2270516-9701

Link Edit

PHYSICAL ADDRESS
SPACE

ovave 0 0 b
SOOI
SRR ARAAN

TASK 1 0% %
LOGICAL ADDRESS KRR . LOGI cxﬁsxorzmess
SPACE SPACE

0777777777777, }

\\\\\\\\\\

\ PROCEDURE \\
SEGMENT
N

PROCEDURE
/ SEGMENT

SEGMENT
TWO

ONE /

PV IIIYIIIIIS
V S/ 7777777,

/PROCEDURE/

g \ ONE
; WNARKRRRRRSN
\\\\\\\\\\\ \
\ PROCEDURE \
SEGMENT \

TWO
\\\\\\\\\\\\

7,

% 7

UL, //(/7 NN

« A /////' /4 NEEEER
27277077/ M.

Figure 5-4. Multiple Tasks Sharing Same P1 and P2

2277266

Figure 5-5 shows another construct with multiple task and procedure segments on the same pro-
gram file. Task segments 1 and 2 share the first P2 with P1 while task segments 3 and 4 share the
second P2 with P1.

Figure 5-6 shows a construct with task and procedure segments on separate nonsystem program
files.

Figure 5-7 illustrates the importance of sharing procedure segments. The total memory required to
execute the group of tasks shown in Figure 5-7 is 215K bytes (1K = 1024 bytes) if procedure seg-
ments are not shared. If procedure segments are shared, only 130K bytes are required. Nearly half
of the memory required to execute this group of tasks has been eliminated. In many cases, such a
reduction can mean reduced swapping and, consequently, faster execution time.

2270516-9701 5-7

Link Edit

TASK 1
LOGICAL ADDRESS
SPACE

7//////////
PROCEDURE
/ SEGMENT

oNE]
FAPPPPPP074

Yl sddd

% PROCEDURE
/ SEGMENT %
TWO

S0P 990P0P77,

7 LSS/

TASK %
SEGMENT
%///////// 7

TASK 3
LOGICAL ADDRESS
SPACE

TTRETTTTTTrT
PROCEDURE
SEGMENT
ONE

IRERRNNREEEEN
IRORLLARALARE
PRgCEDURE,
SEGMENT
TWO
LELLELLL L

] L
TRV

TASK
SEGMENT

PULIULLEEL

2277267

Figure 5-5. Multiple Tasks Sharing Same P1 but Ditferent P2s

5-8

)

= A

PHYSICAL ADDRESS
SPACE

NN

. KN
ZINVINCINVINYINY INVINAT
R LN DY N INAN

077
i

|1 [Tl

sl LL11])

SK

N~

TASK 2
LOGICAL ADDRESS

SPACE
SNNNNNNNNN
%PROCEDURE N\
SEGMENT \

ONE

A

‘\\\\\\\\\\ \‘
\PROCEDURE\
\ SEGMENT \\
N TW

NN
NN
\SEG MENT \
S NN

TASK 4
LOGICAL ADDRESS
SPACE

——PROCEDURE —
[SEGMENT /]
ONE

——PROCEDURE

——— SEGMENT
TWO

—— TASK —]
—— SEGMENT —

2270516-9701

Link Edit

PHYSICAL ADDRESS
077
/////} //
Y% 7z
LOGICAL ADDRESS // Te 7/ LOGICAL. ADDRESS
SPACE / 771119, SPACE

SIS, OSNNNANNANNN
) e _ {§M§
s I NN\ e N
Nty RN NN
/ SEGMENT / N SEGMENT]

/////;}v/o///ﬂ N
W / NN
RN NN

e,
NS
Ty
f17774 %

7 }\

NN

2277268

Figure 5-6. Multiple Tasks on Separate Program Files

2270516-9701 5-9

Link Edit

REENTRANT PROCEDURES REENTRANT PROCEDURES
NOT SHARED SHARED

P1 P2, P2, TASK TOTAL P1 P2, P2, TASK TOTAL

T, 20K 10K - 10K 40K 20K 10K - 10K 40K

T 20K 10K - 10K 40K - - - 10K 10K

L 20K - 15K 5K 40K - - 15K 5K 20K
T4 20K - 15K 5K 40K - - - 5K 5K 7

TOTAL MEMORY 160K TOTAL MEMORY 75K

2277269

Figure 5-7. Comparison of Memory Requirements

5.4.2 Overlays

Overlays are parts of a task that reside on disk until explicitly requested by the task. When
requested, an overlay is loaded into an area of the task reserved for overlays and replaces any
other overlay which may have been present at the time of the request. The use of overlays can
reduce the amount of memory required by a task segment.

An overlay phase is the smallest functional unit that can be loaded as a logical entity during exe-
cution. A phase consists of one or more object modules. The structure of an overlaid program
depends on the relationships between the phases in the program. Phases that need not be in
memory at the same time can overlay each other. These phases are independent in that they do not
reference each other, either directly or indirectly. Independent phases can be assigned the same
load address and are loaded into memory only when referenced. The Link Editor Reference Manual
contains a detailed description of overlays and overlay phases.

5.4.3 COBOL Module Segmentation

COBOL module segmentation is a type of overlay. COBOL segmentation provides a means of
communicating with the compiler when specifying requirements of the object program module
overlay. A task (program) may be structured to include COBOL segment overlays and also may
include overlay phases.

Any COBOL module in the task segment, including modules within overlay phases, can contain
segments. COBOL module segments are automatically generated in the object module when
specified in the source module. All segments are assigned the name COBOVY. Figure 5-8 shows a
map program file listing containing overlay phases with embedded COBOL segments. When creat-
ing program images on program files, segments are contained in the program file as overlay
entries. Refer to Figure 5-8. The module T.SEGMENT is a segmented COBOL module in an overlay
phase. T.NONSEG is a nonsegmented COBOL module in an overlay phase. Both overlay phases
and the COBOL segments are listed as overlay entries in the map program file listing.

5-10 2270516-9701

Link Edit

COBOL segmentation deals only with the segmentation of the Procedure Division (PSEGs) of a
COBOL program module. Two types of PSEGs are fixed and independent. The fixed portion is the
part of the object program that is logically treated as if it were always in memory. An independent
segment is the part of the object program that can overlay or be overlaid by another independent
segment. The TI COBOL Reference Manual contains a detailed description of COBOL
segmentation.

FILE MAP OF .DON020.PROG
TODAY IS 12:57:26 WEDNESDAY, SEP 10, 1980.

TASKS: MAXIMUM POSSIBLE = 1
1D NAME LENGTH LOAD PRI S P MR D E O C OVLY P1/SAME P2/SAME INSTALLED
01 ovLY 1ASE 3D20 4 R 05 01/v 9/10/80
PROCEDURES: MAXIMUM PQSSIBLE = 1
ID NAME LENGTH LOAD MDEWC INSTALLED
01 RTCOBOL 3D18 0000 9/10/80
OVERLAYS: MAXIMUM POSSIBLE = 5
ID NAME LENGTH LOAD MAP D OVLY INSTALLED
01 SEGMNT 0200 533cC 9/10/80
02 NONSEG 0442 533C 01 9/10/80
03 coBOvY 00DA 5530 02 9/10/80
04 cosovy 00DA 5530 03 9/10/80
05 coBovy 00DA 5530 04 9/10/80

Figure 5-8. COBOL Segmentation Within Overlay Phase Modules

5.5 CREATING LINKED OBJECT MODULES

Table 5-1 contains alist of valid link editor commands for COBOL linking object modules.

2270516-9701 5-11

Link Edit

Table 5-1. Valid Link Editor Commands With COBOL Object

Command Execute Execute
(Default Underscored) Partial Link (From Object File) (From Program File)

ADJUST Y Y Y
ALLOCATE NO NO Y
AUTO ! Y Y
COMMON NO NO NO
DATA NO NO NO
DUMMY Y NO Y
END Y Y Y
ERROR/NQO ERROR Y Y Y
FORMAT ASCII Y Y NO
FORMAT COMPRESSED Y Y NO
FORMAT IMAGE NO NO Y
FORMAT IMAGE, REPLACE NO NO Y
GLOBAL/ALL GLOBAL/

NOT GLOBAL Y NO NO
INCLUDE Y 2 s
LIBRARY Y Y Y
LOAD/NO LOAD NO NO Y
MAPF/NO MAP Y Y Y
NOAUTO Y Y Y
NOSYMT Y Y Y
PAGE/NO PAGE Y Y Y
PARTIAL Y NO NO
PHASEO Y Y Y
PHASE 1,2,...n NO NO Y
PROCEDURE NO NO Y
PROGRAM NO NO NO
SEARCH Y Y Y
SHARE NO NO NO
SYMT Y Y NO
TASK Y Y Y
Notes:

' Fora PARTIAL link, the default is NO AUTO and these commands should be omitted.
2 Main program must be included first.

3 COBOL run-time procedure, task, and main program designator modules must be included as part of the
link.

5-12 2270516-9701

Link Edit

Overlay phases are not allowed with linked object modules.

A linked object module must be produced in one of the following distinct formats:
U Tagged
. Compressed

Tagged object modutes consist of ASC!l characters with ASCII TAGS. Compressed object
modules also have TAGS, but the numeric characters are changed to binary representations.

Compared to the normal tagged object, the compressed object saves approximately 47 percent of
disk space.

The following example of a link control file shows how to generate a tagged object module:

TASK CBLTSK1
INCLUDE EX.MAINPRG1
INCLUDE EX.SUBPRGM
END

The following example of a link control file shows how to generate a compressed object module:

FORMAT COMPRESSED
TASK CBLTSK1
INCLUDE EX.MAINPRG1
INCLUDE EX.SUBPRGM
END

Note that the only difference between the two sets of link control commands is the FORMAT
command. The default format of the linked output is tagged (ASCIIl). The FORMAT command is not
required for tagged format. In both cases, the link editor resolves external addresses or refer-
ences. Object modules or linked object modules are executed by using the XCP or XCPF com-
mands. Section 6 contains information for executing an object module or alinked object module.

5.6 CREATING PROGRAM IMAGES

For object modules produced by the link editor and installed on program files, the link editor must
link the program modules to the run-time interpreter module. Object modules are installed and
stored on program files in memory image form. The link editor may install the memory image
object directly on a program file. When the necessary program file does not exist, it is automati-
cally created. The link editor creates a program file with only enough room for the task and proce-
dure segments and overlays defined for the program. If a program file is created by the Create
Program File (CFPRO) command, the operating system allows a maximum of 255 task segments,
255 procedure segments, and 255 overlays.

Program images are executed by using the XCT or XCTF commands. Section 6 contains infor-
mation for executing object modules produced by the link editor and instalied on program files.

2270516-9701 5-13

Link Edit

5.6.1 COBOL RunTime
COBOL run time consists of the following prelinked object modules:

o .S$SYSLIB.RCBTSK — This module contains the task entry vector plus the data area
portion of COBOL run time needed by the reentrant module RCBPRC. It must be
included as the first module in the task segment of the task. It is not reentrant.

. .S$SYSLIB.RCBTSKD — This module includes everything contained in
.S$SYSLIB.RCBTSK and the COBOL debugger module needed when performing inter-
active debugging of COBOL modules.

. .S$SYSLIB.RCBPRC — This is the reentrant module that contains the COBOL run-time
interpreter and can be included in a procedure segment of a task when desired.

e .S$SYSLIB.RCBNOIO — This module is similar to .S$SYSLIB.RCBPRC with the excep-
tion that any modules comprising the run-time interpreter relating to 1/0 operations are
omitted.

. .S$SYSLIB.RCBMPD — This module must be stored during Link Edit immediately pre-
ceding the COBOL object module intended to receive control at execution time. It then
designates to the run time where the object module begins. Since it is reentrant, it can
be used in either task or procedure segments.

The run-time entry module (.S$SYSLIB.RCBTSK), one of the two reentrant modules
(.S$SYSLIB.RCBPRC or .S$SYSLIB.RCBNOIO), and the main program designator module
(.S$SYSLIB.RCBMPD) can be specifically included in the appropriate places in the link control file.
The reentrant module .S$SYSLIB.RCBNOIO cannot be linked with the run-time entry module
.S$SYSLIB.RCBTSKD. The reentrant module .S$SYSLIB.RCBPRC (or .S$SYSLIB.RCBNOIO) can be
included anywhere in the link control file except as the first module in the task segment (phase
zero). If .S$SYSLIB.RCBPRC is used, it is suggested that it be made P1, so that the shared proce-
dure segment on the system program file can be used. If .S$SYSLIB.RCBPRC is anywhere other
than P1, a separate copy is generated in the user program file and in memory when the program is
executed. When the first program module to receive control is a COBOL program module, the run-
time entry module (.S$SYSLIB.RCBTSK or .S$SYSLIB.RCBTSKD) must be the first module
included in the task (phase zero) since it contains the task entry vector. The main program designa-
tor (S$SYSLIB.RCBMPD) module must be included just prior to the COBOL program module that
receives control. The following paragraphs demonstrate various techniques for linking these
modules with user modules to build tasks.

5.6.2 Linking a Single Procedure Segment With a Single Task Segment

The COBOL reentrant run-time interpreter module is installed by the COBOL installation on the
system program file as the reentrant procedure segment RCOBOL. This procedure segment is
identical to .S$SYSLIB.RCBPRC and can be shared by all user tasks that have been linked and
installed on user-defined program files. Using this procedure segment eliminates the need for a
copy of .S$SYSLIB.RCBPRC on each user-defined program file, thus saving disk storage. If you
have two user-defined program files and .S$SYSLIB.RCBPRC is installed on each, executing one
task from each program file loads two copies of .S$SYSLIB.RCBPRC into memory. If the procedure
segment on the system program file is used, only one copy of the reentrant procedure segment is
in memory during the execution of the tasks, thus saving memory space and minimizing swapping.

5-14 2270516-9701

Link Edit

Figure 5-9 shows a simple link edit using the system program file procedure segment RCOBOL.

The presence of the DUMMY command in the link control file prevents the procedure segment
from being replaced in the program file.

This procedure segment (RCOBOL) on the system program file must be used only in the link proce-
dure segment one (P1).

The procedure segment two (P2) and the task segments (T) may be structured using any of the
techniques mentioned in paragraphs 5.6.3 through 5.6.5. All examples use the shared procedure
segment RCOBOL. The origin addresses and lengths in the following figures do not necessarily
reflect the actual origin and lengths of the T COBOL run time.

To use RCOBOL on the system program file, the DUMMY command must always be specified,
even on the first link edit to a new program file. The procedure segment RCOBOL must not aiready
exist on the user program file. The reentrant procedure segment on the system program file is
identical to .S$SYSLIB.RCBPRC.

5.6.3 Linking a Single Procedure Segment With Multipie Task Segments

A single procedure segment may be shared by multiple tasks. The task segments must be linked
and installed on the same program file. They will then be attached to this shared procedure seg-
ment. Figure 5-10 presents the structure shown in Figure 5-9 with an additional task segment
attached to the procedure segment. A link control file is shown on the right side of Figure 5-9.
When sharing a single procedure segment, all link control files must be identical within the proce-
dure segment. If any change is required in the procedure segment, all tasks on the program file
must be linked again.

5.6.4 Linking Two Procedure Segments With a Single Task Segment

A task segment may be attached to multiple procedure segments. Figure 5-11 shows the structure
of Figure 5-9 with an additional procedure segment added. Note that the DSEG or $DATA (nonreen-
trant object module code in the form of data) from the procedure segment is relocated to the task
segment immediately following the task PSEG aliocations. All data referenced in procedure seg-
ments P1 and P2 must be referenced using indirect or indexed addressing. No direct references
can be made to the DSEG. Although the COBOL compiler segregates executable code from data
items and the link editor relocates DSEGs by moving them to the task segment, the PSEGs (reen-
trant object module code in the form of instructions) still reference data items with direct relocata-
ble addresses. Reentrant execution is permitted by locating the DSEG at the same absolute
location in each task segment. Assembly language object modules can also be made reentrant
through the use of PSEG and DSEG assembler directives.

2270516-9701 5-15

Link Edit

COMMAND LIST

FORMAT IMAGE, REPLACE
PROC RCOBOL.

DUMMY

INCLUDE .S$SYSLIB.RCBPRC
TASK CBLTSKI

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE EX. MAINPRGI1
INCLUDE EX.SUBPRGM

END

> LINK CONTROL. FILE

PROCEDURE 1, RCOBOL. ORIGIN = 0000

MODULE NO ORIGIN! LENGTH?Z
RCBPR PSEG P
CRTIM 1 0000 3DF4 ——¥ CBPRC) !
RCBTSK (PSEG)
PHASE 0, CBLTSKI ORIGIN = 3E00]
MODULE NO ORIGIN1 LENGTH2 RCBMPD (PSEG)
cXCBL 2 3E00 oCcD4 MAINPRGI (PSEG)
$DATA 2 4C32 04EC
Cs$MAIN 3 4AD4 0010 — - - T T =]
MAINPRGT1 4 4AE4 00AC SUBPRGM (PSEG) T'
$DATA 4 S1E 010E]
SUBPRG 5 4B90 00A2)
$ DATA 5 522C OOEA RCBTSK (DSEG)
NOTES: MAINPRG1 (DSEG)
1. ORIGIN ADDRESSES MAY DIFFER
2. LENGTHS MAY DIFFER e
SUBPRGM (DSEG)
2277270

Figure 5-9. Linking a Single Procedure Segment With a Single Task Segment

5-16

2270516-9701

COMMAND LIST

FORMAT IMAGE, REPLACE
PROC RCOBOL

DUMMY

INCLUDE .S$SYSLIB.RCBPRC
TASK CBLTSKI1

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE EX. MAINPRGH1
INCLUDE EX.SUBPRGM

END

1026-9150.¢2¢

PROCEDURE 1, RCOBOL

MODULE NO ORIGIN

CRTIM 1 0000

PHASE O, CBLTSK!

ORIGIN'

MODULE NO

CcXCBL 2 3E00
$DATA 2 4C32
C$MAIN 3 4AAD4
MAINPRG! 4 AAEA4
$DATA 4 S11E
SUBPRG 5 4B90
$DATA 5 5220

NOTE:
1. ORIGIN ADDRESSES MAY DIFFER

2277271

LIS

/

Figure 5-10.

LINK CONTROL FILES

/'

RCBPRC (PSEG) Pt

RCBTSK (PSEG)

RCBMPD (PSEG)

MAINPRG!1 (PSEG)

SUBPRGM (PSEG)

RCBTSK (DSEG)

MAINPRG1 (DSEG)

SUBPRGM (DSEG)

RCBTSK (PSEG)

RCBMPD (PSEG)

MAINPRG2 (PSEG)

SUBPRGM (PSEG)

e s —— — — — — —

RCBTSK (DSEG)

SUBPRGM (DSEG)

Ty

-T,

COMMAND LIST

FORMAT IMAGE, REPLACE
PROC RCOBOL

DU MMY

INCLUDE .S$SYSLIB.RCBPRC
TASK CBLTSK2

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE EX. MAINPRG2

INCLUDE EX.SUBPRGM
END

N\

PROCEDURE 1, RCOBOL

MODULE NO ORIGIN

CRTIM 1 0000

PHASE 0, CBLTSK2

MODU LE NO. ORIGIN!
cXCcBL 2 3E00
$DATA 2 4C50
C$MAIN 3 4ADA
MAINPRG2 4 AAE4
$DATA P 513C
SUBPRG 5 4BAE
$DATA 5 5292

Linking a Single Procedure Segment With Multiple Task Segments

1p3 yur

Link Edit

COMMAND LIST

FORMAT IMAGE, REPLACE
PROC RCOBOL

DUMMY

INCLUDE .S$SYSLIB.RCBPRC
PROC SHRSUB

INCLUDE EX.SUBPRGM
TASK CBLTSKI1

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE EX.MAINPRG!

END

7
PROCEDURE 1, RCOBOL. ORIGIN = 0000

MODULE NO ORIGIN LENGTH

CRTIM 1 0000 3DE4

> LINK CONTROL FILE

~

RCBPRC (PSEG) P1
PROCEDURE 2, SHRSUB ORIGIN = 3E00
MODULE NO ORIGIN1 LENGTH 2 SUBPRGM (PSEG) P2
U
SUBPRG 2 3E00 00a2 —
$DATA 2 4C50 00EA
RCBTSK (PSEG)
P G G Ct— —— — — Gw— Gt—
MODULE NO ORIGIN1 LENGTH2 T
MAINPRG1! (PSEG) T
CXCBL 3 3ECO oCcDbh4 o e o e