990 COBOL 11

Developing the 990 COBOL
User Environment

Digital Systems Group
EDUCATION & DEVELOPMENT CENTER
TEXAS INSTRUMENTS

INCORPORAILFD

o

oKy BUM
ATOHEOX REL
ATCHEOY MIC

s
OLLECTORS trom

1D ,
JPER KIN
JIRES MILLm :
L7GMS : .

Copyright 1980
By
Texas Instruments Incorporated
All Rights Reserved
Printed In U.S.A.

The information and/or drawings set forth in this document and all rights in
and to inventions disclosed herein and patents which might be granted
thereon disclosing or employing the materials, methods, techniques or
apparatus described herein are the exclusive property of Texas Instruments
Incorporated.

coBOL 1II

This student guide 1is not a self-contained document; it is
designed to support live instruction.

ORIGINAL ISSUE JULY 11, 1979

REVISED MARCH 24, 1980

THIS STUDENT GUIDE SUPPORTS
990 CCBOL RELEASE 3.2

DX10 RELEASE 3.3

Revisions to this student guide are planned so that the most
current product releases are addressed. However, TI pnroducts may
be revised before it 1is ©possible for this student guide to be
updated. as a result, there might be slight differences between
your system and the description of products irn thisz student guide.
Therefore, reference should always be made to the most current
reference manuals.

|

990 COBOL II

This course is 1intended for the system analyst or des@gn
programmer who must know the capabilities of the DX10 operating
system and COBOL's interrelationships for proper system design.

The student participating in this course must have successfully
completed the course entitled 990 COBOL I or be experienced in the
use of 990 COBOL and the DX10 operating system.

The format of this courses uses live instruction with worksheets
to test the student's knowledge. Lab exercises comprise about 50
percent of the class time. Successful completion of this course
implies that the user has mastered the material presented for
discussion and has sucessfully completed the worksheets and 1lab
exercises.

The course materials that are provided to the student include:
* COBOL II Student Guide

* Volume V of the DX10 Reference Manuals
part no. 946250-9705

Optional materials that will be provided as needed include:
* 3780 Communication Emulator Student Guice

* DX10 378072780 Emulator User's Guide
part no. 946289-9701

* 3270 Communication Emulator Student Guide

* DX10 3270 Interactive Communication Software ICS) User's
Guide
part no. 2250954-9701

Additional reference material includes:

* Volume II of the DX10 Reference Manuals
part no. 946289-9702

* Volume III of the DX10 Reference Manuals
part no. 946289-9703

* Link Edi=or Reference Manual
part no. 949617-9701

The five day agenda for ths course is:

Monday A.M. COBOL with Reentrant Procedures
Segmentation and Overlays
Key Index Files

P.M. Lab Exercise

Tuesday A.M. System Command Interpreter
P.M. Lab Exercise
Wednesday A.M. System Customization
Lab Exercise
P.M. Lab Exercise

Batch Command Streams
Lab Exercise

Thursday A.,M. System Generation
System Backup and COBOL Installation
DX5 COBOL

P.M. Lab Exercise

Friday A.M. Communication Emulators iself-paced)

Paragraph

e o
N OO W

S Y

MO NDN
. L]
W N

wWwwww

> wwh -

. o o o . . . e .

H WO oy U1 > W N

TSN ol e

o S S S S SN S S S o

.

TABLE of CONTENTS

Title

MODULE 1 COBROL WITH REENTRANT PROCEDURES

A MULTI-PROGRAMMED SEGMENTED
USE OF MAPPING
COMPILER OUTPUT.
XCP AND XCPF« .
SHARING ONLY THE RUNTIME o .
SUMMARY. o o o e
LINKING vs. NOT LINKING. . .

ENVIRONMENT

MODULE 2 SEGMENTATION AND OVERLAYS

SHARING MEMCRY USING COBOL SEGMENTATION.

LINK EDITOR OVERLAYS
STRUCTURE CONSIDERATIONS . .
PARTIAL LINKS.

MODULE 3 KEY INDEX FILES

KEY INDEX FILES.
KIF vs. DBMS
ESTIMATING KIF FILE SIZE . .

Disk Organization
ADDITIONAL NOTES

MODULE 4 SYSTEM COMMAND INTERPRETER

SYSTEM COMMAND INTERPRETER .
KEYWORD LIST« .

SCI PRIMITIVES
DEFINE PROCEDURE
END OF PROCEDURE

ASSIGN SYNONYM . . . « o e
CONDITIONAL PRIMITIVES « o e
WRITING MESSAGES

EVALUATING NUMERIC EXPRESSIONS e e e s

ITERATIVE LOOPS.
EXIT FRCM A PROCEDURE. . . .
DISPLAYING A FILE.

e o
|
DON

L]
= e
[I I I |
WO VU WU N

= o0 00N

wWwwww
|

~l U W

L]
o>
i [TN R O N NN
[aaml e I I
N O~ U UTAY B W

.« .
o>
|

4.13
4.14
4.15
4.16
4.17

4.18
4.19

U ot LT LYt
. o o
WO IOy U WD

OO OYOY OYOYOYOY O
. . . L] .
WO oy N> WM -

.
p—

NSNS NN NN NN

L] . .

HW O~ UTd NN -
L]

(e}

. L] L) (3
.
[[

o o

TERMINATING SCI. . . .

SPECIFYING AN SCI PROCEDURE LIBRARY

BUILDING A DATA FILE+ . « .
THE .SPLIT PRIMITIVE
BIDDING A TASK OR AN OVERLAY . . .
MODIFYING THE SCI INTERFACE. . . .
DISPLAYING A MENU.,

MODULE 5 SYSTEM CUSTOMIZATION

MODIFYING EXISTING SCI
MODIFYING THE TERMINAL STATUS.
MODIFYING THE SYSTEM DISK. . .
NEWS FILE. . « « « ¢ « ¢ o o« =
MAIN MENU. « « « .
STARTUP AND SIGNOFF TASKS.

SEQUENCE OF EVENTS
COMPLETION CODES
SCI MODE « « « « & &

MODULE 6 BATCH COMMAND STREAMS

BATCH STREAMS. « « . .
EXECUTE BATCH. . « « ¢ « o o o o« &
KILL BACKGROUND TASK
SHOW BACKGROUND STATUS . . .
WAITING FOR BACKGROUND TERMINATION

BEGIN AND END BATCH.
ERROR COUNT. . . . e e e e s e e
CREATING A KEY FILB . . .« o

SUMMARY CF USER WRITTEN SCI . .

MODULE 7 SYSTEM GENERATION

DX10 TASK SCHEDULER. . . « =« « « .
SYSTEM GENERATION. . . « « +« « «
Customized System Generation. .
GENERATING A DX10 OPERATING SYSTEM
GENERATE . & & v ¢ o o o o o o o =
XGEN Prompts. « .« .
GENS90 COMMANDS. . . .
ASSEMBLE AND LINK GENERATED SYSTEM
PATCH GENERATED SYSTEM
TEST GENERATED SYSTEM.
System Checkout . . e e e e
INSTALL GENERATED SYSTEM e e s s .
SYSTEM UPKEEP. . ¢ v ¢ « @« o o o &

.4-13
.4-13
.4-14
.4-18
.4-19
.4-23
.4-24

5-2
5 11
.5-14
.5-18
.5-18
.5-18
.5-18
.5-19
.5-19

(o232 e e\ We We We \We We)
i
DN W LwW NN

L N
NN
T

N~
|

o

N UTUT 0L SN

=

[] L]

[RENEN
L] []
N

G0 00 00 0O C0 0O 00 00 00 00 00 00 0O CO 00 O GO 00 OO OO
) . . . L] L] [L] L)] L] L] L] . . [L]
VI UTUTUL B s e s b b b i W N
. . L] L) . L) . [. . [] . .
WNH o uiuls Wi w W
. . . []
= N

O WW WY LW
e e o & o o
U W wh -

MODULE 8

SYSTEM BACKUP.« . .
Copying from Disk to Dlsk Using Copy
Directory. . . O
CD Command Format. c o s s = s e e .
CD Command Example « ¢ « =
Copying from Disk to Tape U51ng Backup
Directory. . « « « « +« &« e o e o s
BD Command Format. . . « « « « « « .
BD Command Example« o .
Copying from Tape to Disk Using Restore
Directory. « « o « o « o« o o o o o o
RD Command Format. . . « « « « « « « .
RD Command Example . . .
USE OF THE MODIFY VOLUME INFORMATION COMMAND
CREATING SYSTEM FILES. . . « ¢ « « « o « &
USING DCOPY. e e e
Backing Up a System Dlsk on DlSk

Backing- Up a System Disk on Tape. . .
Restoring a System from Magnetic Tape . .
Backing Up a Data Disk.
Verifying a Directory Copy. « « « « « « =«

VC Command Example
Verifying a Backup or Restore Copy .

VB Command Example . . D

COBOL INSTALLATION

Removing COBOL Software from a Syctem
Installing COBROL from Magnetic Tape
Verifying the Operation of CGBOL. .

MODULE 9 DX5 COBOCL

INTRODUCTION . . e e e e e e e e e e

DIFFERENCES FROM DXlO e e e e s s e .

DEVELOPMENT STEPS. . .+ & « ¢ ¢ « o o o « o« o
Linking for DX5 . . ¢« ¢« « ¢ « « ¢ « « « &

DX5 COBOL EXECUTION. . . .

MODIFYING DX10 PROGRAMS TO RUN UNDER DX5

APPENDIXES
INVENTORY SUBRCUTINES. .
SAMPLE SYSGEN DIALOG

SAMPLE SOLUTIONS

SYSTEM BACKUP AND COBOL INSTALLATICN

L]
oo
|
[\

00 GO
|
W N

0 0
|
Ul

. .
Q0 00 00 0O 00 0o OO
L
HO WO WO oY W

o
|
[l el T |

MODULE 1

COBOL WITH REENTRANT PROCEDURES

OBJECTIVES
* Describe the advantages of using shared procedures.

* Specifying the DX10 Memory Mapping features and
Structure.

* Write Link Control files to install reentrant procedures.

1.1 A MULTI-PROGRAMMED SEGMENTED ENVIRONMENT

In the multi-programming environment, segmentation is highly
desirable to increase the throughput time. Segmentation also
offers an additional technique to reduce the memory requirements.
Figure 1-1 illustrates a simple multi-programming environment with
two tasks. Each task has three segments in its address space, but
both require the same payroll routine and system library. In most
cases, each user would get a separate copy of the payroll routine
and system library bound into his address space. If both payrecll
and system library routines are shareable, it is not necessary to
have two separate copies.

A reentrant routine 1is one which permits multiple calls and
executions before prior executions are complete. In order to
accomplish this, parameter addresses cshould be used by indexing
and indirect reference rather than by planting them into
instructions within the subroutine. Temporary storage access
within the program should be by indexed addresses. The index may
be set by the calling program in order to take care of multiple
calls. It then serves as a stack pointer for the temporary
storage.

*

*

*

MULTI-PROGRAMMED ADDRESS SPACE

PHYSICAL ADDRESS
SPACE

OPERATING
SYSTEM

MAIN 1

DATA 1

PAYROLL

SYSLIB
. ROUTINES

MAIN 2

DATA 2

PAYROLL

SYSLIB

FREE

WITHOUT REENTRANT
PROCEDURE

Figure 1-1

A reeentrant

p TASK 1

P TASK 2

PHYSICAL ADDRESS
SPACE

OPERATING
SYSTEM

PAYROLL

SYSLI8
ROUTINES

MAIN 1

DATA 1

MAIN 2

DATA 2

FREE

WITH REENTRANT
PROCEDURE

Multi-Programmed Address Space

routine

permits

multiple

calls and

executions before prior executions are complete.

A reentrant routine reduces the throughput time.

A reentrant routine also offers an
to reduce the memory regquirements.

1-3

additional

technigue

Figure 1-2 illustrates a memory reguirement reduction by sharing a
BASIC interpretive language processor. Should 10 jobs be running
BASIC programs at the same time, the BASIC interpreter could then
require 34,000 bytes plus 5,000 bytes data segment for the tables
and variables. Total memory required for the 10 tasks would be 10
X 134,000 + 5,000) = 390,000 bytes. By sharing a single copy of
the BASIC interpreter segment and using separate copies of the
data segment, actual memory required can be reduced to 34,000 +
50,000 = 84,000 bytes ta 78% reduction).

bt T P +
| !
! !
; BASIC INTERPRETER ; 34,000 Bytes
I I
B T e T ettt +
DATA ! 5,000 Bytes
1 SEGMENT !
Fom e e +
. 390,000
Bytes
o e e +
! !
! 1
I BASIC INTERPRETER ! 34,000 Bytes
| |
I !
e e +
! DATA) ! 5,000 Bytes
! SEGMENT |
B it +
Fm e ——————————— +
] |
! !
! BASIC INTERPRETER | 34,000 Bytes
i { 84,000
| | Bytes
Fomm————— e e tm—————— +
| pata | | DATA | 5,000 X 10
ISEGMENT ! [SEGMENT!
tm————— + tm————— +

Figure 1-2 Saving Memory Through Seagmentation

Up to this point we have assumed that it is possible to prcduce
physically segmented memories. Well, lets look at the DX10 memory
mapping features.

1.2 USE OF MAPPING

The TI 990/10 and 990/12 have a mapping scheme for memory which
may be used to divide programs into two or three sections. Under
DX10 the first and the second sections, which are optional, are
called PROCEDURES and they can be shared by more than one run
unit. The third section is called a TASK and it is the unigue
imot shared) portion of a any program. Therefore, a program
operating under DX10 may consist of one or two procedures and one
task. These sections are referred to by the names: procedure one
tiPl), procedure two (P2), and task. The following narrative will
help exhibit the mapping structure.

A SMALL BUT RAPIDLY GROWING ELECTRONICS FIRM

e —————————————————— +
| I
! COBOL !
Pl | REENTRANT |
| RUNTTIME |
I !
tmm e +
| |
| PAYROTLL]
| I
TASK] PROGRAM 1
I]
! 'y BATCH) !
|]
e - +

IMPLEMENTS THEIR PAYRCLL "SYSTEM" ON A 990

Figure 1-3

1-5

The DX10 operating system contains facilities which allow several
tasks to share a procedure.

- LATER -
THE FIRM HAS GROWN SUCH THAT THEIR PAYROLL FILE

UPDATES AND ENQUIRES ARE DONE INTERACTIVELY

Fomm e +

| |

! COBOL |

| REENTRANT |

! RUNTTIME]

! |

I M
tom——m————— R R Mt Tl P +
| I ! !
I PAYTKA | PAYTKA ! PAYTKA !
[! !]
I | ! !
fmme e o o ————— +

Figure 1-4

The DX10 operating system also has facilities which allow
subroutines mapped into Pl and/or P2 to be shared by multiple
tasks so that Pl & P2 are said to be reentrant procedures.

AS THE FIRM GROWS
MORE APPLICATIONS ARE ADDED TO THEIR 990
REQUIRING MORE EFFICIENT UTILIZATION

OF THEIR COMPUTER

it +
! J
' !
Pl ! COBOL !
! REENTRANT !
] RUNTIME !
I I
Fm e +
! |
I COMMON !
P2 ! REENTRANT J
! ROUTINES]
] iSCREEN & FILE ACCESS SUBS) !
| !
el Tt m————- tomm e tmmmm———— e +
]] ! !
]] []
] PAYTEXKSHB] PAYTIKSHB ! PAYTZKHB ;
l I !
! f |]
e et o +

THESE TASKS PERFORM THE SAME UPDATES AND ENQUIRIES
AS THE PREVIOUS TASKS
BUT

THIS TASK USES SIGNIFICANTLY LESS MEMCORY

Figure 1-5

WHEN THEY ADD NEW INTERACTIVE PAYROLL APPLICATIONS

iE.G. SPECIAL MIS-TYPE ENQUIRES NOT PREVIOUSLY SUPPORTED)

COMMON

i

!

|

| REENTRANT
!

H ROUTTINTES
|
|

ISAME AS BEFORE)

T T —— o mm— o R - +
! | ! !
| { P !
| PAYTIKHB ! PAYTIKSHB A !
!] 4 i
! ! R,
T —— e + K !

] cl

! !

T +

THE NEW TASK PAYTKC) IS A NEW I/A PAYROLL APPLICATION

Figure 1-6

TO FURTHER FILL IN THE PAYROLL PROCESSING PICTURE

fommr e e +
I I
l REENTRANT |
I COBOL RUNTIME !
| Pl |
! !

!
!

P2 ! BATCH SUBS
I P2
!

| PAYTKB | PAYTKR | PAYTKC !

! TK2] TK2 I TK3 !
| !) Fommm————— e tmm——— +
fmm—————— fom—————— + | P ! !
! I A ! PAYTKZ !
e + Y ! TK5]
[T ! I
! K 4=—ceemmmeee +
ITK4 Y |
tmmm—————— +

OF COURSE, MOST PROCESSING WILL BE BATCH!

Figure 1-7

Figure
payroll

Pl:

P2a:

P2b:

1-8 shows the memory regquirements for part of the firm's
system.

is the COBOL reentrant runtime - 16.4KB

is the reentrant I/A Screen and File Management
routines - 10KB

is the reentrant Batch Report Writer and File
Management routines - 25KB

Various I/A and Batch tasks ranging from 10 to 20 KB long.

| PAYTKB | PAYTKB | PAYTKC !

WHAT SAVINGS CAN BE GAINED BY THIS SCHEME?

T . +
! !
] Pl |
| t16.4K) |
! |
Fmm———— o ———————— o ——— o ———— +
!] !
] P2a ! !
l 110K) | P2b l
I ! 125K) !
------- thmmm e {
{
|
110K) I «10K) ! 115K) ! !
| ! tmm—————— o ——— tm————— +
Fm—————— Fmm—————— + I'p ! !
] I A | PAYTK?Z I
o —— + Y ! 115K) !
| T ! !
I K +==m———m———————m +
1120K) Y |
fomm———— +
Figure 1-8

1-10

PAYTKB PAYTKC PAYTKY PAYTKZ

B T I

—— ¢ Sy g Mg | S S Ve ey g e

__ +
Pl 16.4KB 16.4KB 16.4KB 16.4KB 2
P2a 10KB 10KB —— ——
P2b —_——- —-—— 25KB 25KB ;
TASK 20KB 15KB 20KB 15KB ;

:
TCTAL 46.4KB 41.4KB 61.4KB 56.4KB !
TOTAL is 205.6KB ;
__ +
Figure 1-9 Whithout Sharing Procedures
PAYTKB PAYTKC PAYTKY PAYTKZ

__ .,.’
Pl 16.4KB —— ———— -———]
P2 10KB —_—— —-—— —— ;
P2 ——- — 25KB —— ;
TASK 20KB 15KB 20KB 15KB |

;

TOTAL 46.4KB 15KB 45KB 15KB ;
TOTAL is 121.4KB !
__ +

Figure 1-10 With Shared Procedures

1-11

WORKSHEET

By considering the following structure, what savings can be gained
in memory by sharing Pl and P2?

el T et b +
] ! ! !
I TASKl I TASK2 ! TASK3 !
] I ! I
| 15K { 20K I 10K !
!] ! !

fomm————— e + Fmm————— +

| I
T —— +

1.3 COMPILER CUTPUT

The COBOL Compiler puts out PSEG AND DSEG tags for use by the Link
Editor. The PSEG or Program Segment Directive contains reentrant
code and the DSEG or Data Segment Directive contains the non-
reentrant portion. Since the segments are tagged, the Link Editor
is able to separate the procedure portion from the task portion in
each subroutine. Refer to Figure 1-11.)

COMPILER OUTPUT

e i T +
! !
I PROGRAM INAME) PSEG |
! !
B it +
!]
I DATA 1ISDATA) DSEG !
! {
e +
Figure 1-11

1-13

When compiler produced object modules are linked, the PSEGs are
allocated before the DSEGs. Figure 1-12 shows a portion of a link
map.

Note that the first $DATA, or DSEG module, is allocated after the
last PSEG, which in this example is PAYRO7. The SDATA or DSEG
modules are said to float to the end of the task. Thus a task
with no reentrant procedures would be allocated in memory by the
Link Editor as shown in Figure 1-12.

SAMPLE L INK M AP CORRESPONDING "MEMORY MAP"

!

!

1
PROCEDURE 1, RCOBOL ORIGIN = 0000 1

!
MCDULE NO ORIGIN LENGTH !

i
CRTIM 1 0000 34C9 !

!

!
PHASE 0, PAYTKA ORIGIN = 34EO !

I MEMORY MODULE MODULE NO
MODULE NO ORIGIN LENGTH ; ORIGIN NAME LENGTH
CXCBL 2 34EQ 9BD8] 0000 CRTIM 34C9 1
SDATA 2 6BFE 04F0 l 34E0Q CXCBL O0BDS8 2.
CSMAIN 3 40BS8 0010 ! 40B8 CSMAIN 0010 3
PAYRO1 4 40C8 0276 ! 40C8 PAYRO1 0276 4
SDATA 4 70EE 0051 | 433E PAYRO?2 0204 5
PAYRO?2 5 433E 0204 ! 4542 PAYRO3 0900 6
SDATA 5 7140 0078 I 4E42 PAYRO4 052E 7
PAYRO3 6 4542 0900 | 5370 PAYROS 0ala 8
SDATA 6 71B8 014A ! 5D8A PAYRO6 0428 9
PAYRO4 7 4E42 052E 1 61B2 PAYRO7 0A4cC 10
SDATA 7 7302 03EA ! 6BFE SDATA 04F0 2
PAYROS 8 5370 O0AlA I 70EE SDATA 0052 4
SDATA 8 76EC 031cC I 7140 SDATA 0078 5
PAYRO6 9 5D8A 0428 ! 71B8 SDATA 014A 6
SDATA 9 7A08 041C ! 7302 SDATA 03EA 7
PAYRO7 10 61C2 0A4C ! 76EC SDATA 031C 8
SDATA 10 7E24 0374 ! 7A08 SDATA 041cC 9

! 7E24 SDATA 0374 10

Figure 1-12 Example Link Edit

1.4 XCP AND XCPF

XCP or XCPF allows multiple tasks to be executed sharing a common
COBOL runtime as shown in Figure 1-13.

e +
I : !
! COBOL !
! RUNTIME !
I]
tmmm————— —t————— tm—m e ——— fmm——— fm———————-— +
| TASK LOADER | TASK LOADER | TASK LOADER !
. tmmm———————————— o — +
I | ! !
! | ! !
I PROGRAM 1] | PROGRAM 3 !
| | PROGRAM 2 I !
! I]]
e + Fmm—m e +
! |
Fmmmm e +

Figure 1-13

.XCP or XCPF consists of the COBOL runtime as Pl and a task 1loader
as the task attached to Pl. The task loader checks the size of
the user's object module; does a dynamic get memory for the amount
of memory required; loads the COBOL program into the allocated
memory; and starts execution of the loaded program.

1.5 SHARING ONLY THE RUNTIME

XCP and XCPF do share the COBOL runtime, but do not allow the user
to use P2 or overlays with a COBOL program. In addition, the

overhead for the .task loader may be significant with large
programs.

* Since you are loading an object program, instead of a
memory image from a program file, the load process will
take a few seconds longer.

* The 65KB memory address space is reduced by the small
1200-300 bytes) memory requirements of this task loader.

Thus, the Execute COROL Task 1IXCT) and Execute COBOL Task 1in

Foreground XCTF) were developed to eliminate the restrictions of
XCP and XCPF. Since XCT and XCTF are 1identical in function,

1-15

except that XCT cannot directly do I/O to the station on which it
is exeucted, the following discussion will use XCTF in text and
examples. Use of XCT or XCTF implies that the user has used the
Link Editor to link his COBOL modules with the COBOL runtime
modules. The COBOL runtime contains three modules:

* RCBPRC - Reentrant runtime intrepreter ICRTIM).

* RCBTSK - Initial task module CXCBL).

* RCBMPD - Module placed before the first COBOL module to
be executed ICSMAIN).

The modules RCBPRC amd RCBMPD are both reentrant while RCBTSK 1is
not reentrant and must be placed in the task segment. Thus, the
simple linking of one COBOL program is shown in Figure 1-14.

FORMAT IMAGE

PROC CBLRT

INCLUDE .SS$SSYSLIB.RCEBPRC
TASK PAYTK4

INCLUDE .SSSYSLIB.RCBTSK
INCLUDE .SS$SYSLIB.RCBMPD
INCLUDE .COBOL.PAYTK4
END

Figure 1-14 Link Control File for One Cobol Program

Assume that the program file to be used is named .COBOL.PROG and
that the 1link edit shown 1in Figure 1-14 was performed to
.COBOL.PROG. After linking, the program file has a copy of the
reentrant COBOL runtime linked and installed as a procedure number
1 under the name CBLRT. A map of the program file is shown in
Figure 1-15.

FILE MAP OF .COBOL.PROG J00 ;*
TODAY IS 16:06:09 TUESDAY, JAN 22, 1980./ £
TASKS: oL { /s ‘
1D NAME LENGTH LOAD PRI SPMRD OVLY Pl/é%ME P2/SAME
01 PAYTK4 11DE 3600 / 04 NNNYN 0l/Y
PROCEDURES : /
iD NAME LENGTH LCAD/ RES D
01 CBLRT 35F6 0000 N N
OVERLAYS: :
ID NAME LENGTH LOAD MAP D OVLY
Figure 1-15 Program File Map of .COBOL.PROG
. 4
N .,/‘ - _!C ~ T e s T
R / (VR /
4 Rt e ! ‘/ v
/= 7/
’.'/Zf cff/ﬁ
0’ LT N
// - A

1-17

Figure 1-16 shows why the RCBMPD is required in front of your main
COBOL program when you make up your Link Control stream. All
references within the COBOL runtime environment are direct
refererences. RCBMPD, the reentrant COBOL runtime program,
transfers control to RCBTSK, the COBOL nonreentrant runtime
program; which then transfers control to your program via RCBMPD.

Fomm e + e D ettt Tt +
| l l |
| ! ! SOME]
I RCBPRC | ! REENTRANT |
| | ! PROGRAM !
| f I |

o ——— e + Tt 0y +
I : i l |
l RCBTSK ! | !
] [| DATA !

ey + ! !
I ! ! !
] RCBMPD ! ! J
I | ! l

o e + ! !
] ! I !

l !
| {

Figure 1-16

Another way to look at this situation is as in Figure 1-16. This
figure depicts a COBOL program DATA) in relation to the COBOL
runtime interpreter, which is after all, just a 1large reentrant
program.

1-18

QUESTION?
HOW WOULD YOU HANDLE THE FOLLOWING PROBLEM:
GIVEN:
* Direct referencing regquired in COBOL runtime environment.
* Our mapping HW can accomodate three program segments.

* Programs split into program Ireentrant code) and data
inon-reentrant) segments. leg. PSEGs and DSEGs).

PROBLEM:

How to share both Pl and P2 procedures with
several, possibly different tasks simultaneously!

HINT:

The Link Editor can move all the DSEGs down into

the non-reentrant itask) segment. What would that
do?

1-19

0000] I 0000 ! l
] .RCBPRC ! ! {DUMMY) .RCBPRC |

!] ! !

tmm e + ettt +
et + tmm—m—— e ——————— - +

3600 | l 3600 | !
: SUBROUTINE { | 'DUMMY) SUBROUTINE :
o + et +
it et + ettt +

3680 l ! 3680 ! |
] l ! {

! MAIN PROGRAM I] DIFFERENT {

l I ! MAIN PROGRAM !

f ! !]
g, + ! !

42B6 | [| !
| DATA 1 ! []

! ! e +

J [430A J !
e ————— + ! !

4316] ! ! DATA 1 |
! DATA 2 ! ! |

| ! g +

! ! 43Ca l !
e e + ! !

445A !] | DATA 2 !
| DATA 3 ! i !

! ! o +

| | 450E] {

fommm + ! !

! DATA 3]

! !

e T +

Figure 1-16

The solution to this problem 1is the Link Editor ALLOCATE
command. The ALLOCATE verb allows users to share COBOL
source language programs as procedures. The ALLOCATE verb is
used in the task section of the link control file, after a
TASK or PHASE 0 command and before a PHASE 1 or a LOAD
command, if any are used. It should normally be placed
immediately following the INCLUDE .SSSYSLIB.RCBTSK statement.
Its appearance causes all data sections associated with
previously allocated executable code sections to be allocated
immediately. That 1is, all $DATA sections associated with
program sections, in either Pl or P2, are allocated space
wherever the ALLOCATE command occurs in the link control
file. However, the procedure cannot call a subroutine
included 1in the 1link edit after the ALLOCATE. Figure 1-17
will help 1illustrate what the ALLOCATE verb does by
contrasting the same 1link edit stream with and without an

ALLOCATE verb. Joot
, lfér“xi S G
oA SN S
—_
o
Fei Druiio~ «}#
’IL N SR v P -)
Ny A VAR A /7
V] A
/ 3 Lo A
INE,. —
- R
h N | :
’ - /‘.v‘:l' -
- T
. y » ,_}_, ";? ’
PP A T SR AT ol

1-21

 FORMAT IMAGE

- PROC RCOBOL

DUMMY ;
INCLUDE .SS$SYSLIB RCBPRC
PROCEDURE PSUB

INCLUDE .COBOL.PAYSCN
TASK PAYTKB _ .
INCLUDE .SS$SYSLIB.RCBTSK:

INCLUDE .SS$SSYSLIB.RCBMPD
INCLUDE .COBOL.PAYTKB
END

PROCEDURE 1, RCOBOL ORIGIN

MODULE NO ORIGIN
CRTIM 1 0000
PROCEDURE 2, PSUB ORIGIN
MODULE NO ORIGIN
PAYSCN 2 3600
SDATA 2 4316
PHASE 0, PAYTKB ORIGIN = 3
MODULE NC ORIGIN
CXCBL 3 3680
SDATA 3 4346
CSMAIN 4 4276
PAYTKR 5 42B6
SDATA 5 4832

Figure 1-17

G600
LENGTH

35F5

3600

]

LENGTH

0074
0030

680
LENGTH

0C26
04EC
0010
0060
007E

e S Am e S e tam i g e e vy e Gte e S emm MR Y el oy My e ma mm e WeM il e e e e e e M e emm S mn Ay g sy

FORMAT IMAGE

PROC RCOROL

DUMMY

INCLUDE .SS$SYSLIB.RCBPRC
PROCEDURE PSUB

INCLUDE .COBOL.PAYSCN
TASK PAYTKB

INCLUDE .SS$SYSLIB.RCBTSK
ALLOCATE
INCLUDE
INCLUDE
END

.S$SYSLIB.RCBMPD
.CCBOL.PAYTKB

PROCEDURE 1, RCOBOL ORIGIN=0000

MODULE NO ORIGIN LENGTH

CRTIM 1 0Qao 35F5

PROCEDURE 2, PSUB ORIGIN = 3600

MODULE NO ORIGIN LENGTH

PAYSCN 2 3600 0074
SDATA 2 4276 0030
PHASE 0, PAYTKE ORIGIN = 3680

MODULE NO ORIGIN LENGTH

CXCBL 3 3680 0C26

SDATA 3 42D6 0CEC
tPOST ALLOCATE)

PHASE 0, PAYTKB ORIGIN = 47C2

MODULE NO ORIGIN LENGTH

CSMAIN 4 47C2 0010
PAYTB2 5 47D2 0060
SDATA 5 4832 007E

Use of the ALLOCATE Verb

+
0000 |
!
!
!
!
+
3600 1
!
l
+
3680 1
!
I
+
42a6 !
!
]
+
42B6 {
|
|
4
l
!
!
+
4346 !
!
I
!
!
+
4832 1
!
!
+
Figure

w/0

ALLOCATE
_____________________ +
|
RCBPRC l
[
tICRTIM) !
|
..................... +
[
PAYSCN I
I
_____________________ +
I
RCBTSK ICXCRL) 1
|
_____________________ +
!
RCBMPD ICSMAIN) {
!
_____________________ +
|
PAYTK2 !
!
..................... +
|
DATA 1 I
!
_____________________ +
!
!
DATA 2 {
]
!
_____________________ +
|
DATA 3 !
!
_____________________ +

0000

3600

3680

4276

42D6

47C2

47D2

4832

WITH

ALLOCATE
5 P g g U S
!
! RCBPRC
!
! ICRTIM)
!
et o o e o e
|
! PAYSCN
I
e r e ———
I
! RCBTSK ICXCRL)
]
e crcc—crr——————
I
f DATA 1
|
b ——
|
f
| DATA 2
1}
{
+ ———————————————————
!
I .RCBMED «CSMAIN)
!
T
|
I PAYTK2
I
b ————
!
! DATA 3
!
b ———————

1-18 Memory Allocation With and Without the Allocate

1-23

This allocation of the $DATA modules is critical in achieving
the task structure as shown in Figure 1-19.

e +
J |
| COBOL !
J REENTRANT l
! RUNTTIME I
I !
| l
R R ettt +

COMMON

REENTRANT

ROUTTINES

e A e im Gmey ey -y

ISAME AS BEFORE)

Fom——————— o ——— Fmmt e tmm——————— +
] I] |
I l I p |
! PAYTIKSB I PAYTKB 1 2 !
1 ! | Y |
] ! ! T !
tm o tmm e ———— + K !

! c !

[} !

Fmm e ——— +

Figure 1-19

Figure 1-20 shows the link control stream for PAYTKC, which
is not the same task as PAYTKB, but shares the same Pl and
P2. PAYTKB must have been previously link edited.

FORMAT IMAGE
PROC RCCBOL
DUMMY
INCLUDE .SS$SYSLIB.RCBPRC -
PROC PSUBS
DUMMY
INCL .COBOL.PAYIOl
INCL .COBOL.PAYIO2
INCL .COBL. PAYFIN
INCL .COBOL.PAYCMN
INCL .COBOL.PAYSCN
TASK PAYTKC
INCL .S$SYSLIB.RCRBRTSK
ALLOCATE
INCL .S$SYSLIB.RCEBMPD
INCL .COBOL.PAYTKC
END

Figure 1-20 Link Control Stream for PAYTKC

PSUBS contains a DUMMY statement because PSUBS was already
installed on the program file by the Link Editor as shown in
Figure 1-21 which shows the link maps for both PAYTKB and
PAYTKC. Note that .PAYTKC is larger than .PAYTKB, but the
the $DATAs of PSUBS remain in the same positions in the task
due to the ALLOCATE verb. Note also that DATA 10 is not in
the same position, because of the increased size of .PAYTKC.

PROCEDURE 1,
MODULE NO

CRTIM 1

PROCEDURE 2,

RCOBOL ORIGIN=0000
ORIGIN LENGTH

0000 34C9

PSUBS ORIGIN=34EQ

MODULE NO ORIGIN LENGTH
PAYIO1 2 34EOQ 0204
SDATA 2 6978 0078
PAYIO2 3 36E4 09060
SDATA 3 69F0 0l1l4A
PAYFIN 4 3FE4 052E
SDATA 4 6B3A 03EA
PAYFOU 5 3412 0AlA
SDATA 5 6F24 031C
PAYCMN 6 4F2C 0428
SDATA 6 7240 041C
PAYSCN 7 5354 0a4cC
SDATA 7 765C 0374
PHASE 0, PAYTKB ORIGIN=5DA0
MODULE NO ORIGIN LENGTH
CXCBL 8 SDAO OBDS
SDATA 8 79D0 04F0
-------- POST ALLOCATE —-==—==—-—-
PHASE 0, PAYTKB ORIGIN=7ECO
MCDULE NO ORIGIN LENGTH
CSMAIN 9 7ECO 0010
PAYTKR 10 7EDO 0276
SDATA 10 8146 0052
Figure 1-21

PROCEDURE 1,
MODULE NO

CRTIM 1

PROCEDURE 2,

RCOBOL ORIGIN=0000
ORIGIN LENGTH

0000 34C9

PSUBS ORIGIN=34EQ

MODULE NO ORIGIN LENGTH
PAYIO1 2 34EQ 0204
SDATA 2 6978 0078
PAYIO2 3 36E4 0900
SDATA 3 69F0 014A
PAYFIN 4 3FE4 052E
SDATA 4 6B3A 03EA
PAYFOU 5 4512 0AlA
SDATA 5 6F2C 031cC
PAYCMN 6 4F2C 0428
SDATA 6 7240 041C
PAYSCN 7 5354 0A4C
SDATA 7 765C 0374
PHASE 0, PAYTKC ORIGIN=5DAQ
MODULE NO ORIGIN LENGTH
CXCBL 8 5DAO OBDS
SDATA 8 79D0 04FQ
———————— POST ALLOCATE -------
PHASE 0, PAYTKC ORIGIN=7ECO
MODULE NO ORIGIN LENGTH
CSMAIN 9 7ECO 0010
PAYTKC 10 7EDQ 1476
SDATA 10 9346 07D6

Link Maps for PAYTKE and PAYTKC

3480 |
| PSUB's PSEGs

SDAQ

6978

79D0

7ECO

7EDO

8146

PAYTKB

RCBPRC

ICRTIM)

| RCBTSK ICXCBL)

| PSUB's SDATA

I RCBTSK's $DATA

I PAYTKB MAIN)

I PAYTKB's SDATA

Pl

P2

wn

Figure 1-22

0000

34EQ

5DAQ

6978

79D0

7ECO

7EDO

9346

PAYTKC

R\\\\\\\\\\\\\\\\\l
AN\ RCBPRC \\\\\ !

AV NNNNNN
AN\ ICRTIM) \\\\!

N\\\\\\\\\\\\\\\\\I

h\\\\\\\\\\\\\\\\\l
N\ PSUB's PSEGs \\!

N\\\\\\\\\\\\\\\\\!

A\\\\\\\\\\\\\\\\\'
N RCBTSK 1CXCBL)\ !

N\\\\\\\\\\\\\\\\\'

! !
! PSUB's S$SDATA !
| i

I RCBMPD ICSMAIN) !

I
I PAYTKC IMAIN) 1
!

Another way to look at this structure 1is execute a Map
Program File MPF) command. Figure 1-23 shows the MPF's
output and the corresponding logical strucutre of the firm's
payroll system. Note that PAYTKA is a seperate program that
shares only the COBOL runtime.

FILE MAP OF .COBOL.PROG
TODAY IS 10:02:08 TUESDAY, JAN 22, 1980

ASKS:
ID NAME LENGTH LOAD PRI SPMDP OVLY Pl/SAME P2/SAME INSTALL
01 PAYTKA 3CB8 34EOQ 04 NNNYN 10/N 01,/20/80
G2 PAYTKB 23F8 5DAOQ 04 NNNYN 10/N 01/Y 01/20/80
03 PAYTKC 3D7C 5DAOQ 04 NNNYN 10/N 01/Y 01/21/80
04 PAYTKY 4E28 96A0 04 NNNYN 10/N 02/Y 01/21/80
05 PAYTKZ 3A84 06A0 04 NNNYN 10/N 02/Y 01/22/80
ROCDURES:
ID NAME LENGTH LOAD RES D
01 PSUBS 28C0 34EOQ N N
02 PSUBB 61A8 34EQ N N
VERLAYS:
ID NAME LENGTH LOAD MAP D OVLY INSTALL
e et +
I i
l REENTRANT !
] COBOL RUNTIME !
{ Pl i
! !
tmm————— tmm————— tom——————————— tm———- +
] !]
] I/A SUBS !]
! P2 | BATCH SURS !
! ! P2 !
{ ! i
tm——_————— tot— - - e e e + {
] ! ! !
JPAYTKA ! PAYTKB | PAYTKC ! !
I T™®1 ! TK2 ! TK3 ! !
tmmm————— + | e —————— Fm——————— tmm——————— +
fommmm + ' p ! !
] | A] PAYTK?Z J
Fom——— + Y ! TKS !
! T ! !
! K 4= +
l Y |
| TK4 |
tommm————— +

Figure 1-23 Program File Map for .CCBOL.PROG

1.6 SUMMARY

Using the ALLOCATE verb it is possible to construct run units
whose first procedure consists of the truly reentrant portion
of the COBOL runtime system, called .S$SYSLIB.RCBPRC, and
whose second procedure is a set of non-reentrant COBOL and/or
assembly language runtimes. The S$DATA sections for the
routines can be forced to loaded immediately after the non-
reentrant portion of the COBOL runtime system, called
.S$SSYSLIB.RCBTSK, by using the ALLOCATE verb. Even though
the tasks associated with the two different run units may be
different, the $DATA areas are located in identical
locations, thereby allowing the direct references in the
second procedure to be completed successfully. Structures as
shown in Figure 1-23 can be built by adhering to the
following rules for COBOL:

* Sharing of .S$SYSLIB.RCBPRC with multiple tasks or
multiple executions of the same task does not
require the ALLOCATE verb since RCBPRC is truly
reentrant and does not address a $DATA directly.
RCBPRC could also be in P2.

* The shared procedure must always contain the same
modules. If a module is changed in Pl or P2, the
entire group of tasks must be link edited again to
recreate the original structure.

* Modifications may be made to modules which occur
after the ALLOCATE command without reguiring a
relink of all tasks.

* Pl and/or P2 must always be installed by the first
module linked and DUMMY must be used after this
first installation.

* In COBCL, RCBTSK must always be the first module in
the TASK or PHASE 0 portion of the link edit.
ALLOCATE is usually put immediately after RCRBTSK,
but does not have to go there. Caution should be
exercised when using ALLOCATE in a different place
with COBOL.

* In debugging complex task structures, it is best to
keep a full set of memory maps produced by the Link
Editor. If problems arise, <check the addresses
generated for the $DATAs in the procedures.

1.7 LINKING vs. NOT LINKING
A COBOL program may be executed without being 1linked first

under certain conditions. The program may not call any
subroutines and may not contain overlays. The first

1-29

restriction while requiring the use of the link editor does
not require you to install the linked output on a program
file. There are three distinct advantages to linking and
installing the linked output on a program file. They are:

1. Linked programs load faster than unlinked programs
since the 1link editor converts object code into
image format which 1is executable code. A task
loader is not regquired as when using XCP.

2. COBOL ©programs, when linked into two sharable
procedure areas and a nonsharable task are, reguire
less memory at runtime when multiple executions of
the program occur at different stations at the same
time. If less memory is reguired, the necessity to
roll programs in and out of memory will be reduced.

3. Unlinked programs all run at the same priority as
the COBCL runtime interpreter ittask >8A in .SSDS).
Linked COBOL programs may each be assigned a
individual priority. This allows the wuser to
finetune a program by assigning a priority that
will improve execution.

It is advisable to link all programs of one type te.g.,
payroll, A/P, A/R, etc.) 1into the same program file. This
will allow for the maximization of shared code.

WORKSHEET 1

Write link control files to install the COBOL RUNTIME as
procedure 1, wuser specified library WULIB) as procedure 2,
and attach two tasks ITASK1, TASK2) to both Pl and P2. ULIB
consists of three sub-programs INSUB, ADDNUM, OUTSUB).
TASK1 and TASK2 consist of one program called PROGl and PROG2
respectively. All of the programs are stored in the
directory TI.COBOL.OBJ.

MODULE 2

SEGMENTATION AND OVERLAYS

OBJECTIVES

*

Use the COROL segmentation feature to share available
memory among units of the same program.

Use 1link edited overlays to load large programs into a
limited memory space.

Write and execute link control streams to create overlaid
tasks.

2-1

2.1 SHARING MEMORY USING COBCL SEGMENTATION

Since available main memory is freguently an important
consideration to the minicomputer applications programmer, such a
person should become familiar with methods of overlapping usage of
this resource, TI 990 COBOL provides two powerful technigues for
sharing main memory, COBOL segmentation and link edited overlays

COBOL segmentation 1is a syntactical division of the PROCEDURE
DIVISION of a single COBOL program into shareable units, called
segments. Link edited overlays, on the other hand, divide the
task in qguestion into shareable units which consist of separately
compilable, whole COBCL programs. Several important differences
exist between the two approaches as shown in Figure 2-1.

In general, segmentaticn 1is more nearly transportable between
different COBOL systems but 1lacks the flexibility of mecduler
program development provided by link edited overlays.

NOTE

A programmer may legally wuse both sharing
technigues 1in the same task. That is, a link
edited, overlaid program unit may also be
segmented.

o e e +
I SEGMENTATION ! LINK EDITED OVERLAYS !

+
I
|
I
i
|
1
[
|
|
|
|
1
|
[
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|

+
I
|
|
1
)
1
1
|
|
1
I
1
|
|
1
|
[
I
|
|
|
|
|
|
|
i
|
I
[

+

*

* SUBSET OF REGULAR ANSI
STANDARDS.

NOT AN ANSI FEATURE.
IMPLEMENATION VARIES
FRCM ONE OPERATING
SYSTEM TO ANOTHER.

* COMMUNICATION BETWEEN
SEGMENTS IS VIA ANY
NON-CALL CONTROL VERE
OR MECHANISM SUCH AS
GO TC, PERFORM, AND
NORMAL CONSECUTIVE
STATEMENT EXECUTION.

* COMMUNICATIONS BETWEEN
SHAREABRLE UNITS IS VIA
CALL VERB WITH AUTO-
MATIC OVERLAY LCADER
ASSISTANCE).

* SHAREABLE UNITS MAY
RESIDE ON DISK-BASED
PROGRAM FILE #XCT) CR
RELATIVE RECORD FILE
XCP). ARE LOADED BY
EITHER AUTOMATIC OVER
-LAY LOADER «XCT) CR
COBOL RUNTIME LOADER,
CSXLDR XCP).

SHAREABLE UNITS RESIDE
ON DISK-BASED PROGRAM
FILE.

* LCAD OVERLAY SVC CALL
BY AUTOMATIC OVERLAY
LOADER LOADS THEM INTO
MEMORY AS NEEDED.

ey Tedf G U Ty T Sy g mm Smny e e g Sy ey ey S Emg em e e TR G e ~mm TS am Mem S .
N wem e wmy Svn en NN Sam TS e UMY GmE Sten amg W e mmg s Gmp Smue RN Cen T hew NN Rm TR Semy Seiy ees ceam

+
|
|
|
1
|
!
i
1
1
1
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|

+
I
|
|
{
]
1
1
|
I
1
|
|
]
|
|
|
|
|
|
|
|
i
|
]
|
]
i
i
)

+

Figure 2-1

Using segmentation effectively 1is very analogous to using link
edited overlays. The user must seek out ways to divide the progam
unit into more or less independent pieces. The term independent
is used here to mean that, within each piece, a high percentage of
all control references are internal, and the piece performs one or
at most a few easily discernable logical functions such as update
a log file, generate a single report, etc.

The independent pieces, or units which share memory, are called
segments. Each segment in turn consists of one or more csections.
Segments are identified by an integer number between 0 and 127.
The formal structure of a segment is as follows:

section-name SECTION segment-number.
paragraph-name. sentence

The notation wused here 1is the same as that used in the COBOL
manual. A typical segment then might be coded as follows:
TEST-SEQ-OUTPUT SECTION 60.
DO-OUTPUT.
OPEN OUTPUT SEQ-FILE
MOVE QUOTES TO SEQ-REC.
PERFORM POST-ELAPED-TIME.
PERFORM SEQ-OUTPUT-LOOP LIMIT TIMES.
PERFORM POST-ELAPSED-TIME
CLOSE SEQ-FILE.
TEST-SEQ-INPUT SECTION 60.
DO-INPUT.
OPEN INPUT SEQ-FILE
PERFORM POST-ELAPSED-TIME.
PERFORM SEQ-OUTPUT-LOOP LIMIT TIMES.
PERFORM POST-ELAPSED-TIME.
CLOSE SEQ-FILE.
GO TO END-OF-60.
SEQ-PERFORMS SECTION 60.
SEQ-OUTPUT-LCCP.
WRITE SEQ-REC.
SEQ-INPUT-LOOP.
READ SEQ-FILE RECCRD.
END-OF-60.
Notice that in this example, the segment was divided 1into three
SECTIONs. We could have just as easily structured the segment as

one section with more paragraphs. For example, it could also have
teen coded:

TEST-I-O SECTION 60.
TEST-SEQ-OUTPUT.
OPEN OUTPUT SEQ-FILE.
MOVE QUOTES TO SEQ-REC.
PERFORM POST-ELAESED-TIME.
PERFORM SEQ-OUTPUT-LOOP LIMIT TIMES.
PERFORM POST-ELAPSED-TIME.
CLCSE SEQ-FILE.
TEST-SEQ-INPUT.
OPEN INPUT SEQ-FILE.
PERFORM POST-ELAPSED-TIME.
PERFORM SEQ-CUTPUT-LOOP LIMIT TIMES.
PERFORM PCST-ELAPSED-TIME.
CLOSE SEQ-FILE.
GO TO END-OF-60.
SEQ-OUTPUT-LOOP,
WRITE SEQ-REC.
SEQ-INPUT-LOOP.
READ SEQ-FILE RECORD.
END-OF-60.
This second configuration of the source program would be logically
identical to the first and would also have identical sharing
attributes as the first. So, while at least one SECTICN labkel
must be used to identify the segment, additional SECTICN labels
with the same segment-number could just as easily be paragraph

names.

Remember segments are the unit of sharing, not sections. All
sections of a single segment must be grouped together in the
source program.

Just as in the case with overlays, at least one segment must
remain resident at all times. This segment is called the root,

2-5

dependent, or fixed segment. The root does not share main memory
with any other segment. All the other segments are called
independent segments and one at most will be in memory at one

time. Independent segments then share a single piece of memory.
Whenever one independent segment references another, the
referenced segment is copied into memory before execution
procedes. Needless to say, one does not want to go back and forth
between segments too often. iRefer to Figure 2-2.)

N +

| FIXED !

| SEGMENTS l

fommm e ——— +

| INDEPENDENT |
| SEGMENT AREA |

! I

! I

e +] 4= + !
| | INDEPENDENT | I

COMPUTER MEMORY | ! SEGMENT I |
I 4mmmmm e + !

| Femm——————————— +

!] INDEPENDENT | |

I I SEGMENT ! I

| b + !

Figure 2-2

Segment numbers are assigned as follows:

* If one wants the segment to be in the root, assign a
number between 0 and 49, inclusive.

* If one wants the segment to be independent, 1i.e.,
shareable, assign 2 number between 50 and 127, inclusive.

* Sections without segment numbers are assigned to <csegment
number 0. :

Segment numbers should be assigned using the following additional
guidelines: :

* Logic Recuirements - Segments which must be availakble for
reference at all times, or which are referred to
frequently, are normally classified as being one of the
fixed segments. Segments which are used less freguently
are normally classified as being one of the independent
segments, depending on logic recuirements.

* Freaquency of Use - Generally, the more frecuently a

2-6

segment is referred to, the lower its segment number; the
less freguently it is referred to, the higher its segment
number.

Relationship Between Sections - Sections which frequently

communicate with one another should be given the same

segment numbers.

When segmentation is used, the entire PROCEDURE DIVISION must be

in sections. Since the DECLARATIVES must consist of segments,

using DECLARATIVES forces the entire program to be in sections.
NOTE

Segments in the DECLARATIVES always belong to

the root. Therefore, they must have segment-
numbers less than 50.

Figure 2-3 shows an example of a segmented COBROL program.

PROCEDURE DIVISION

PROCESS-LOAN SECTION.
Fixed .
Segments .

GET-CUSTOMER-NUMBER SECTICN 10.

MONTH-PROCEDURE SECTION 52.

Independent
Segments .

HOME-LOAN SECTION 100.

Figure 2-3

2.2 LINK EDITOR OVERLAYS

When memory space 1is at a premium, the user may find it
advantageous to wuse overlays in his programs. Programs that do
not use overlays are loaded in their entirety into the system and
remain in memory while execution continues. Programs that use
overlays conserve memory space since each overlay is resident in
memory only when it is called. The total memory space required by
the program 1is that memory which is required to hold the root
portion and the longest overlay path.

For example, consider the structure shown in Figure 2-4. If the
length of each path is given as in Figure 2-4, this program would
require hexadecimal 118E bvtes of memory.

PROCEDURE I PRC1
l
—-——t——
I
PROCEDURE | PRC2
I
—_——————
I
PHASE 0 ! MAINPROG
!
!
Fomm e +
H !
I !
PHASE 1 | PROG1 PHASE 1 ! PROG1A
I -—t—-
] >096E BRytes)
o ———— it +
i I
|]
PHASE 2] PROG2 PHASE 2 ! PROG3
——t—— ——t——
>10B2 Bytes) »>118E Bytes)
Figure 2-4

2.3 STRUCTURE CONSIDERATIONS

The structure of an overlaid program 1is dependent wupon the
relationships between the phases in the program. Phases that do
not have to be in memory at the same time can overlay each other.
These phases are considered to be independent in that they do not
reference each other directly or indirectly. Independent phases
can be assigned the same load address and can ke loaded only when
referenced. When a svecific phase is called, 211 nphases in 1its

2-8

path must be in memory.

Figure 2-5 shows an example of the link control file necessary to
construct the overlay structure given in Figure 2-4.

PROC PRC1

PROC PRC2

PHASE 0, MAINPROG

PHASE 1, PROGI

PHASE 2, PROG2

PHASE 2, PROG3

PHASE 1, PROGI1A

END

Figure 2-5

Figure 2-6 shows an example of an overlay that has been installed
on a program file. This assumes that a copy of the procedure
RCOBOL, which in this example is the COBOL runtime, 1is already
resident in the system program file.

* DUMMY COMMAND causes the Link Editor to suppress the
linked output for the procedure, task, or phase in which
it appears.

* PHASE COMMAND specifies the level and name of the overlay
phase. Phases at 1level 1 or higher are disk resident
overlays and are loaded into memory when called by a
phase already in memory. Phase 0 is always a memory
resident phase. iCorresponds to a module designated by a
TASK command.)

R »

LOAD CCMMAND causes the Automatic Overlay Manager to be

incl

uded in the linked output. The LOAD command is only

applicable when IMAGE format is being wused and should
appear in the root phase. The random library .SSSYSLIB
is also recuired with the LOAD command.

LIBRARY .S$SYSLIB
FORMAT 1IMAGE, REPLACE
PROC RCOBOL
DUMMY
INCL RCBPRC)
PHASE 0, CLCK
- INCL (RCBTSK)
LOAD
INCL 'RCBMPD)
INCL TI.COBROL.OBJ.CLCKMAIN
PHASE 1, CLCKl
INCL TI.COBCL.OBJ.CLCKSUBI
PHASE 2, CLCK2
INCL TI.CCBOL.CBJ.CLCKSURZ2
PHASE 1, CLCK3
INCL TI.COBOL.OBJ.CLCKSUR3
END

Figure 2-6 Link Control Stream to Install an Overlaid Task

Figure 2-7 shows the map of the program file after execution of
the link control file specified in Figure 2-6.

FILE MAP OF TI.COBOL.PROGF
TODAY IS 15:32:26 TUESDAY, JAN 22, 1980

TASKS: MAXIMUM PCSSIBLE = 10
ID NAME LENGTH LOAD PRI S PM RDE O C OVLY PIl/SAME P2/SAME
01 CLCK 15D2 3620 4 R 03 10/N
PROCEDURES: MAXIMUM POSSIBLE = 5
ID NAME LENGTH LOAD MDEWC
OVERLAYS: MAXIMUM POSSIBLE = 10
ID NAME LENGTH LOAD MAP D OVLY
01 CLCKl1 0140 49F0
02 CLCK2 0202 4C00 01
03 CLCK3 01CC 49F0 02

Figure 2-7

2.4 PARTIAL LINKS

A partial 1link 1is wuseful when a very 1large or complicated
structure is being defined as may be the case with a large overlay
structure. A partial link enables you to 1link various modules
that are to be included as part of the executable output.
References that occur within a functional grouping will be
resolved. The PARTIAL command requires that a TASK or a PHASE
command be included in the link control file. The output from the
partial link may be either normal ®ASCII) or compressed object.
The ouput 1is not executable and must be linked again before
execution.

Figure 2-8 shows an example of how a wpartial 1link would be
included as part of a larger link control file.

PARTIAL

TASK PRTPHS

INCL TI.COBOL.OBJ.REIO
INCL TI.COBOL.OBJ.IS1O
END

[] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: TI.LCF.PARTL
LINK OUTPUT ACCESS NAME: TI.COBCL.OBJ.PLOBJ
LISTING ACCESS NAME: TI.LMAP.PARTL
PRINT WIDTH: 80

FORMAT IMAGE, REPLACE
LIBR .S$SYSLIB

LIBR TI.CORBROL.OBJ
PRCC RCOBOL

DUMMY

INCL RDBPRC)

PHASE 0, STOCK

INCL 'RCBTSK)

LOAD

INCL 'RCBMPD)

INCL 1STOCKC)

PHASE 1, UPDATE

INCL 'PLOBJ)

PHASE 1, FILMNG

INCL ‘RWFILE)

END i

Figure 2-8

2-11

WORKSHEET

Write a link control file to <construct the following overlay

structure. Choose your own procedure, task, and overlay names.
Parentheses) denote modules to be included.
PROCEDURE | tRCBPRC)
|
——t——
]
! '‘RCBTSK)
!
PHASE O | «{RCBRMPD)
]
| IMAINPROG)
|
I
tmm—————————— fm———————— e e +
I !]
{ ! !
PHASE1 I 1ISUBL) ! PHASE 1 | SURD)
—-———t——] ———
!
|
I
PHASE 1 | 1ISUB2)
H
I
o —————— B +
I I
J !
PHASE 2 | 1ISUB3) PHASE 2 l 1ISUR4)

——t——

2-12

———

LAB EXERCISE

1) Create a directory for yourself, if you do not already have
one, under TI.COBOL. Allow yourself room for about 20 entries.
You may wish to create subdirectories under this directory.

[1] CFDIR

CREATE DIRECTORY FILE
PATHNAME: TI.COBOL.JONES
MAX ENTRIES: 20
DEFAULT PHYSICAL RECORD SIZE:

2) Create a key index file that has a record format that
corresponds to the sample data listed below. Use the Create Key
Indexed File CFKEY) command to create the your file. The part
number is the primary key and the descriptiea-is a secondary key.
Use the Copy Sequential File to KIF ornmand to copy the
sample data to your file. The sample data has been stored in
TI.DATA.COBOL.PARTSFL.

e mm e — e —————————— +
| I
| Part Number Description Cost Quantity Reorder !
! Level !
| Pos.1l-5 Pos.6-25 Pos.26-30 Pos.31-35 Pos.36-40 ;
|

o e e e e e e e e e e 2 e i e e o o e +
l !
I 43219 Handle 00500 10090 00400 I
| |
| 34583 Wrench 04500 00980 00080 I
I J
| 10051 Saw 04000 01650 00200]
! {
| 19768 Hammer 02000 02000 00500]
| i
I 32154 Level 02500 00900 00030 |
| !
I 61532 Pliers 01500 02500 00500]
! .]
I 34599 Wrench 05000 017C0 001c¢C0 I
! |
) 29984 Screw Driver 01000 04500 00500 !
! !
| 82314 Nails 00002 00100 00050 !
l |
o e e e e e e e e e e e e e e e e o +

2-13

3) You must write a COBOL program that will perform 3 functions:
a. receive inventory
b. issue inventory
Cc. print a report that lists those items which need

to be reordered

You will be provided with subroutines that perform these
functions. You need only code a program that will accept a part
number and the guantity from the screen and drive the subroutines.
You should display a menu of the 3 functions as well as screens
similar to these.

STOCK ISSUE
PART NUMBER
DESCRIPTION XXXXXXXXXXXXXXXXXXXX
QUANTITY

Parts Issued *Parts NOT Issued?*)

— TEmg e g e Ra ey A Smew e Seww

QUANTITY

Parts Received 1*Parts NOT Received¥®)

e +
gy gt +
! I
! STOCK RECEIPT I
! I
] PART NUMBER |
| I
| DESCRIPTION XXXXXXXXXXXXXXXXXXXX !
| I
| |
| 1
I |
J I

The subroutines, their function, and required parameters are:

SUBROUTINE FUNCTION PARAMETERS
RDINV reads inventory file PART NUMBER
must be key index DESCRIPTION
file you created) STATUS
RECPT updates file to reflect PART NUMBER
receipt of inventory QUANTITY
STATUS
ISSUE updates file to reflect PART NUMBER
inventory that has been QUANTITY
issued STATUS
REORD generates a report of all = = --=--e----

items in the inventory
that should be reordered

SSTAT displays the current status PART NUMBER
of a given part number

SSTAT does not have to be <called by your program but must be
linked since it is called by RECPT an ISSUE. The STATUS parameter
indicates whether the operation performed was successful or not.
A value of zero will be returned to your program if the operation
completed successfully. You must assign the synonym "PIF" to your

inventory file and the synonym "RR" to a cequential file or device
Eﬁﬁf”ﬁ?f%‘receive the rE%?HE%m;eport. Your program should not use
the lower half of the screen since this area will be used by the
subroutines. The object modules for these subroutines are stored
under TI.DATA.CCROIL.

4) Once you have tested your progrem without the subroutines, you
must link and execute the COBOL runtime, your program, and the
subroutines 3 different ways.

a. The subroutines should be linked so that they are
entrant. Test this with someone else. Two Or
more people should be able to link their task so
that they share a common procedure that contains
the subroutines.

b. Link wusing overlays where the subroutines called
by your program are each a separate overlay.

c. Link using overlays where 2 levels are required.
Hint -~ RECPT and ISSUE can both call SSTAT into
memorv.

5) Using the compiler listing and the link map, vyou <chould be
able to determine the amount of memory recuired for each cf these
three methods.

2-15

WORKSHEET

This worksheet requires an understanding of the material to be
tested 1in the previous exercise. It is presented here as an aid
to completing section 4 of that exercise.

Diagram the three structures that you are going to create with the
Link Editor.

2-16

MODULE 3

KEY INDEX FILES

OBJECTIVES

*

*

Utilize KIF structure in application programs.
Specify the advantages and disadvantages of KIF and DBMS.

Estimate the disk allocation required for a key index
file.

Describe the physical structure of a key index files.

3-1

3.1 KEY INDEX FILES

When using key index files KIF), the user should be aware of the
requirements and/or limitations imposed by not only the system but
also ANSI standards. KIF logic is an option that is selected at
when a system generation is performed. COBOL requires this logic
to support indexed file structures. There are some limitations
imposed on DX10 KIF when using COBOL due to the standards set
forth by ANSI. According to the ANSI X3.23-1974 COBOL standard:

* Duplicate primary keys are not allowed.

* Alternate or secondary keys may not overlap the primary
key.

* Secondary keys may overlap each other but they may not
overlap the leftmost character.

* All keys that have been defined for a file must be
defined in the COBOL program regardless of whether or not
they will be used by that application.

Release 3.3.0 and all 1later releases of DX10 support either
sequential or hashed placement of keys in a KIF file. Earlier
releases support only hashed placement. Sequential placement 1is
generally faster if the user has loaded the data in seguence. It
may become necessary to offload this data and reload it whenever
file fragmentation offsets this benefit. This module will use
examples implemented on a system with seguential placement.
Appendix A contains similar information for an implementation
using hashed placement.

With sequential placement in a KIF file, all reads to the file are
performed with the read by key supervisor call. This implies that
it 1s not any faster to perform a read by primary key than it is
to perform a read using a secondary key. This is true for all KIF

files using secuential placement and running under DX10 release
3.3.0 or later.

One consideration that may be important on a system with a
restricted amount of memory, is the memory reguirements for KIF
logic. KIF 1logic, when included, will require zpproximately 2K
words of additional memory in the operating system plus an
additional 180 words for every disk drive that is defined.

It should also ke noted here that defining a KIF file causes two
entries to be used in the directory in which it was defined. This
is due to the amount of overhead that is reqguired to store the
file attributes in the directory.

DIRECTORY LISTING OF:

TI.

COBOL

MAX # OF ENTRIES: 11 # OF ENTRIES AVAILABLE: 7
DIRECTORY ALIAS ENTRIES LAST UPDATE CREATION
CLASS * 23 03/19/80 09:42:01 03/15/80 12:10:38
FILE ALIAS RECORDS LAST UPDATE FMT TYPE BLK PROTECT
ACCT * 11 03/16/80 10:24:25 BS N SEQ YES
BATCH * 2027 02/18/80 11:37:14 BS N SEQ YES WRT DEL
SALES * 113 03/15/80 14:01:25 BS N SEQ YES
12:02:26 THURSDAY, JUN 19, 1980
After creating a KIF file the directory appears as:
DIRECTORY LISTING OF: TI.COBOL
MAX # OF ENTRIES: 11 # OF ENTRIES AVAILABLE 5
DIRECTORY ALIAS ENTRIES LAST UPDATE CREATION
CLASS * 23 03/19/80 09:42:01 03/15/80 12:10:38
FILE ALIAS RECORDS LAST UPDATE FMT TYPE BLK PROTECT
ACCT * 11 03/16/80 10:24:25 BS N SEQ YES
BATCH * 2027 02/18/80 11:37:14 BS N SEQ YES WRT DEL
PMFL * 394 03/19/80 12:04:07 BS N KEY YES
SALES * 113 03/15/80 14:01:25 BS N SEQ YES

12:04:43 THURSDAY, JUN 19,1980

3.2 KIF vs. DBMS

There are advantages and disadvantages to using either key index
files or a data base management system for the 990 which should be
weighed in light of the specific needs at each installation.
There are a couple of factors that may strongly influence any
decision regarding a change from KIF to DBMS. One, is this a new
application or is it tied to other applications, and two, is there
a large demand to insert records or portions of a record an

unpredictable or variable number of times.

The following points illustrate the advantages and benefits to be
derived from implementing a traditional file structure using KIF.

* Secquential Keys -- easy access of data in a specific
seguence.
* Multiple Keys -~ can define up to 14 different keys and

these keys may overlap texcept primary key).

* Blank Suppression =-- compression of records to ccnserve
the recuired disk storage.

3-3

* Variable Length Records -- can have records that vary in
length within the same key index file.

* Utilities =~- file utilities to ease maintainence efforts
ICSK, CKS, MD).

* ANSI COBOL specifies a standard -- while the actual file
may not be transportable, the file =<structure as
implemented in the application program 1is more nearly
transportable on computers whose compilers conform to
these standards.

* Ease of Training -- less training required when working
with KIF which has come to be known as a conventional
file structure.

When implementing a data base management system, there are some
distinct advantages to be gained.

* Variable Length Records -- can have records that vary in
length within the same DBMS file.

* Ordering of Data -- ordering of data within the record in
a manner that is not available with a conventional file.

* Faster Updates -- updating of items is in general, faster
than with KIF.

* Hashed Keys -- hashing of keys makes the 1insertion of
records much faster. INo index, table, or balance trees

to maintain.)

* Query -- simplifies inquiries to the file and may also
reduce the effort of report writing.

* Data Independence -- user need not know the actual data
structure to access a given field. Unlike a traditional
file, you do not have to know a fields position in
relation to the rest of the record.

* Security -- if security is an installed feature of the
DBMS, you can go beyond the file level wwhich is probably
the only security available, if any, in a conventional
file) and assign security to the lowest data element 1in
the file.

* Logging -- logging may be an optionally installed feature
with DBMS which provides an easier means of maintaining
an audit trail and ensuring data integricy.

* Limited Redundancy of Data -- it 1is not necessary to
duplicate fields so freguently in different files.

* QUtilities =- several wutililites are available to make
maintenance of the data base an easier job.

3-4

* Estimating File Size -- it is far easier to determine the
actual amount of disk storage that will be reguired for a
given file. The estimate is also very accurate.

PK

Fl F2 F3 F3 F3 F3 ?7?

* IS INSERTION A PROBLEM?

* WITH DBMS CAN INSERT A VARIABLE NUMBER OF FIELDS INTO THE
RECORD.

* WITH KIF CAN SOLVE PROBLEM WITH AN INDEXING SCHEME BUT IT
IS VERY DIFFICULT TO THEN DETERMINE HOW MANY RECORDS TO
ACCESS.

Figure 3-1

3.3 ESTIMATING KIF FILE SIZE

When a key index file is created using the seguential placement
scheme, the maximum size of the file can be calculated fairly
accurately. The wuser must know the wvalue of a number of

parameters before an estimate of the file size can be made. The
required parameters are:

* Physical record size

* Average blank-suppressed logical record size

* The size of each key

* ADU size of the disk which will contain the file
* Maximum number of logical records

* Will the input data be sorted when loaded?

The accuracy of the user's estimate is dependent upon the accuracy
of these parameters. The most difficult parameter to estimate 1is
the average 1logical record size. Since KIF blank suppresses all
logical records, the user must be able to estimate the actual
number of characters that will be stored.

3.3.1 Disk Organization.

KIF allocates disk space to meet three distinct reguirements. The
first area is used for prelogging. Should an error occur, such as
a power failure, the prelog area is used to restore the file to
its original state when it is next opened. The second area.
contains the nodes of the balanced trees or B-Trees. This is the
beginning of the indexing structure for each key. The third area
contains physical records that are used to store the actual data
records and additional B-Trees nodes.

The size of the prelog area may be determined as follows:

118 * K) + 3 = NPR for prelog

where:
K = number of keys
NPR = number of physical records

The space required for B-Trees may be determined as follows:

IPRS - 20|
l KS + =X
+- -+
+=- -+ +- +- -+ -+
I#LR | + ISPLIT * [#LR1{ | = NPR for B-Trees
X1 / Fx 1 1
where:
PRS = physical record size
KS = key size
#LR = maximum number of logical records
SPLIT = 0.1 if input sorted, else 0.25
! ! +- -+
I I and I ! mean round down or up to the
+- -+ ! ! nearest integer

This calculation must be performed for each key that has been
defined.

The area to be used for data records and additional B-Tree space
is determined as follows: ‘

PRS - 161!
JLRS + 6 | = X
+- -+
+= -+ :
#LR] = NPR for data
-TX 1
where:

LRS = average blank suppressed 1logical record size
1if there is only one key in the file, do not
count the key as part of the record)

The total number of physical records is then:

K
NPR data + NPR prelog + > NPR B-Tree i = NPR total
i=

3.4 ADDITIONAL NOTES

As stated earlier there are 18K + 3 physical records at the
beginning of the file for logging, where K is the number of keys.
Records are written to this area before being updated to prevent a
loss of data should an error occur before the update is complete.
Based upon the maximum number of records to be loaded, an
allocation is made for the nodes of the B-Trees. The remaining
space will contain the data. If the file grows beyond its initial
size, additional disk allocations are made to contain B-Tree nodes
and data.

Within each node of the B-Tree there are 3 few words of overhead
and several pairs of keys and pointers. At higher levels of
nodes, the key value indicates the largest key value that resides
in the node to which it points in the next lower level. At the
lowest 1level of nodes, the pointer for a key indicates the hash
bucket that the logical record is in.

It is permissable to load records for which one or more of the
secondary keys has not been given a value. The user may then
rewrite the record at a later time and give the key a value by

accessing the record using the primary key or a secondary key that
has a value.

Keys may be up to 100 characters in length, however it is more
efficient in terms of disk storage if the key is not defined as
being a large number of characters. Also, when fewer keys are
defined, less overhead is required.

3-7

ok T SRR
R T N\

s ot A R

!

/N
/ \
/ \
/
/ \
/ \
$mrmt—t—t—t—t=+ Fmtmtmt—t—t—t—+
I IFl M] RN Kememmmmeee e > 1 i1 NI
pmtmtmt—t—t—t—t tmtmtmt—t =t
/ \ \ \
/ \ \ \
/ \ \ \
/ \ \ \
/ \ \ \

/ \ \ \
Fmtmtmtmpmm e R e t $=t—t-F—t——=——t $et—tmt—t—m———t
Pact ERNN\\ K==>1 JT 1 R IMN K==>1 01 RN K==>1 1ttt R
=ttt mtm————t F=t=t=t—tmt—t=+ tt=t—t—t———=—+ +=t=t—t=t—————t

o\ / N\ o\ / U
oo / rooN oA / oA
! \ / l \ l / | \
+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
L | I ! I 1 11 1] LI | LI | L | L 1t
+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
A DI IG 1! g1 IL 1 w! P! 1o 1o (I
+—+ +-+ +-+ +-+ +-+ +-+ +—+ +=+ +-+ +—+
I 11 1 1 1ot [11 11 (| N
+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +—+
B [<=> [E [K=====~ SIH IK=> K [<K=> M IK====> 0 IK=> 0 K==, ,,=>1 K=>1 Kk=>11
+-+ +=+ +-+ +-+ +-+ +-+ +-+ +=+ +=+ +-+
o I I N AN NI U AN A U
+-~+ +-+ +=+ +\+ +\+ +\ + +=+ +\+ +\ + +-+
ic ! IF 1 7 N NI NI R ! Nt A Pt
+-+ +-+ +-+ +\+ +\+ +\ + +=+ +\ + +\+ +-+
N N n ! N N ! N N N O\ (N}
+-+ +-+ +-+ +-+ +-+ +=+ +-+ +-+ +=+ +-+

Figure 3-2 Key Index File B-Tree

MODULE 4

SYSTEM COMMAND INTERPRETER

OBJECTIVES
* Read and interpret existing SCI commands.
* Write user-defined SCI commands.

* Utilize SCI primitives to improve performance.

4-1

4.1 SYSTEM COMMAND INTERPRETER

The interface between the user and the sytem is a very powerful
tool called the System Command Interpreter SCI). This highly
flexible language enables the user to tailor the system functions,
capabilities, and resources to the needs of his specific
environment. SCI can be executed either in batch mode or from an
SCI procedure. SCI consists of SCI primitives, existing SCI
commands, and SCI menus. A procedure, or PROC, is an SCI command
procedure.

In this section, we discuss how a wuser <can write SCI command
procedures unigue to an application or modify existing commands.
A command procedure is a series of instructions written in the SCI
language which define a command to SCI. Since SCI 1is an
interpretive language, SCI interprets one statement at a time.

All SCI statements have the following format:

[blank 1s)] <operator> blank ts) [<keyword list>]

where:
operator -—- SCI primitive or an existing SCI command.
keyword 1list =-- Required prompts or parameters must be

seperated by commas).
[] -- Denotes an optional string.

< > == Denotes & string that must be supplied by the user.

4.2 KEYWORD LIST

A keyword list has the form: == —

/ A

<Keyword> = [*}kType> [KDefault Value>)]
where:
Keyword -- Any string that the user supplies for the purpose

of prompting the operator. prompts are displayed when the
PRCC is executing in foreground.)

* -— Indicates that this is zn optional keyword and that the
operator need not reply to this prompt.

4-2

Type -- 1Indicates the type of response that is valid for
this keyword.

Default Value =-- A value that will be displayed as the
default response to the keyword.

The following keyword types are valid:

* STRING - any character string tguotation marks,
parentheses, and commas are not permitted) or a character
string enclosed in guotation marks ‘guotation marks are
not permitted).

ACNM -- a file pathname or a device name.

* INT -- a hexadecimal or decimal integer expression.

* YESNO =-- any alphabetic string beginning with an Y or an
N.

* NAME =-- an alphanumeric string which begins with an
alphabetic character. : :

— 'L ! s - D\.v ¢ e LA A ’ tha
* If \no /keyword type 1is given, the keyword will not be
dispIdyed.

Whenever you desire to use the reply to a keyword as a parameter .
in the PROC, the ampersand (&) is required to properly evaluate:
the value of the keyword. Since synonyms may be used whenever a
reply 1is made to a keyword, this is a common occurence with the
type ACNM, the wuse .of the symbol @ allows synonyms to be
evaluated. If you wish to evaluate a keyword which may contain a
synonym, use the format @&<keyword>.

.PROC TEST ITEST SCI PROCEDURE) = 4,
INPUT PATHNAME = ACNM '@SPATH)

.SYN $PATH = Q@Q&INPUT PATHNAME

SF FILE PATHNAME = Q@QS$PATH

.EOP

In this example, note the use of the symbols & and & to evaluate
synonyms and Kkeywords. Also note the commands that begin with a
period, these are SCI primitives. 1Inclusion of the Show File ISF)

command demonstrates how you may include any existing SCI command
in an SCI procedure.

4,3 SCI PRIMITIVES

SCI primitives perform predefined operations. They may b
executed in an SCI procedure, in a batch stream, or interactivel
as an SCI command. All SCI primitives begin with a veriod.

e
Yy

4-3

The
par

following is a 1list of the SCI primitives and their
ameters: .

PRIMITIVE

COMMAND - PARAMETERS

.ggOC <name> [1<full name>)] [=<int>,] [<keyword list>]

.ECP

.DATA <acnm> [,EXTEND= Y/N] [,SUBSTITUTION= Y/N] [,REPLACE= Y/N]

.EQOD

.SYN <name>="<string>"

.EVAL <name>=<int expression>

.BID TASK=<int/name> [,LUNO=<int>] [,CODE=<int>] [,PARMS=1<string>)]
.QBID TASK=<int/name> [,LUNO=<int>] [,CODE=<int>] [,PARMS=i<string>)]
.DBID TASK=<int/name> [,LUNO=<int>] [,CODE=<int>] [,PARMS=1i<string>)]
.OVLY OVLY=<int/name> [,LUNO=<int>] [,CODE=<int>] [,PARMS=i<string>)]
.SPLIT LIST=<string>, FIRST=<name> [,REST=<name>]

JIF "<string>", <relational operator>, "<string>"

.ELSE - .

LENDIF

. LOOP

LUNTIL "<string>", <relational operator>, "<string>"

.WHILE "<string>", <relational operator>, "<string>"

.REPEAT

LEXIT

.USE [<acnm>] [<,acnm>]

.MENU <{menu name>

.STOP TEXT = "<string>" [,CODE = <int>]

.SHOW <acnm>

MSG TEXT = "<string>" [,REPLY = <name>] mot a primitive)
.OPTICN [,PROMPT="<string>"] [,MENU="<name>"] [,PRIMITIVES= Y/N]

4.4

DEFINE PROCEDURE

.PROC begins the definition of an SCI procedure. It has the

fol

whe

lowing format:

.PROC <name> [1<full name>)] [=<integer>] [,<keyword list>]
T 4

re:
name -- Mnemonic used to call the procedure.
full name =-- Full name of the commend which will be

displayed wken the command is called.

integer -- Integer value in the r2nge of 0 to 7 which
indicates the privledge level of the ccmmand.

4.5 END OF PROCEDURE
.EOP indicates the end of the procedure definition. It has the
following format:

. EOP

or from a batch stream. If the Text Editor is used, they fnay) be
omitted.

h TS e

.PROC and .EOP are reguired when defining the PROC interajéiifly
a

4.6 ASSIGN SYNONYM

.SYN assigns a value to a synonym. It has the following format:

.SYN <name> = "<value>"
where:
name -- The synonym name, which may be any character string.

value -- String, character string, variable or a
concatentated expression.

This is the only command used in the Assign Synonym AS)

procedure. The @ symbol will allow you to access the value of the
synonym by placing it in front of the synonym name.

SYNONYM I VALUE

........... e —————
C I TI.COROL
S I C.SOURCE
0 I .OBJECT

I

@@S.MAIN 1is equivalent to TI.COBOL.SOURCE.MAIN

@C@0.MAIN is equivalent to TI.COBOL.OBJECT.MAIN

4.7 CONDITIONAL PRIMITIVES

The primitives .IF, .ELSE, and .ENDIF provide for the conditional
execution of an SCI command stream. Their format is as follows:

.IF <operand 1>, <relation>, <operand 2>

ISCI command stream 1)

.ELSE
| 1SCI command stream 2)
\\.‘ - . ENDIFV ’ L. o, j‘(,
where:
relation -- EQ, NE, GT, GE, LT, LE

The L.ELSE primitive is not regquired when using .IF however, every
.IF must be terminated by a .ENDIF. The .IF statements may be
nested up to a maximum of 32 levels deep.

* THIS PROCEDURE IS CALLED "EXP"

*
‘EXP IEXAMPLE PROC) = 5, !PRIVLEDGE LEVEL 5
INPUT PATHNAME = ACNM (@$PATH),

DISPLAY OR PRINT? = STRING (DISPLAY)

.SYN $PATH = @&INPUT PATHNAME IASSIGN SYNONYM S$PATH
*

: IS THE FILE TO BE DISPLAYED OR PRINTED?
.IF &DISPLAY OR PRINT?, GE, P
PF FILE PATHNAME = @$PATH, IPERFORM PRINT FILE
ANSTI FORMAT = N,
LISTING DEVICE = LPO1,
DELETE = N,
NUMBER OF LINES = ""
.ELSE
SF FILE PATHNAME = Q@SPATH !PERFORM SHOW FILE
.ENDIF

The .IF determines whether or not the response to the keyword
DISPLAY OR PRINT? 1is greater than or egual to P. If it 1is, the
the file will be printed, else the file will be displayed.

Note that comments may be included by placing an asterisk in the
first position. Comments may also be placed on a command line by
using an exclamation point preceeded by one or more blanks.

Note also that the synonym S$SPATH begins with a dollar sign. If &
synonym has no value, as will be the case when this PROC is first
executed, the synonym itself will be displayed. The use of the
dollar sign will prevent this from happening.

The operator keys in:

(] EXP

and the following appears:

EXAMPLE PROC
INPUT PATHNAME:
DISPLAY OR PRINT?: DISPLAY

4.8 WRITING MESSAGES

The command MSG may be used to communicate with the operator from
an SCI procedure. While the MSG command is not an SCI primitive,
it is very useful when defining a PROC. This command may also be
used to accept a response to the message. It has the format:

MSG TEXT = "<string>" [,REPLY = <name>]

where:

string -- Any character string that is to be displayed.

name -- A synonym that will be assigned to the response if a
reply was reguested.

When the MSG command is executed, the message will be displayed at
the bottom of the screen. The procedure will then halt execution
until the operator responds to the message. tStriking the RETURN
key will cause the procedure to continue.)

4.9 EVALUATING NUMERIC EXPRESSIONS

The vprimitive .EVAL may be used tc evaluate a numeric expression.
The results of the expression will be converted to a decimal,
ASCII string and stored as the value ¢f a synonym. The format 1is:

.EVAL <name> = "<valued>"
where:
name -- The synonym to which the value of the expression is

assigned.

value -- The numeric expression.

* *

* EXAMPLE SCI PROC USING ".EVAL" AND "MSG"
*

.PROC FP (FIND PRODUCT) = 1,

ENTER MULTIPLICAND = INT,
ENTER MULTIPLIER = INT

.USE

.SYN A = &ENTER MULTIPLICAND)
.SYN B = &ENTER MULTIPLIER g
.SYN HEX = "" S0

.IF @A, GE, > !
.SYN HEX = YES b
.ENDIF !CHECK TOC SEE IF EITHER OF

.IF @B, GE, > ITHE NUMBERS ENTERED WAS A
.SYN HEX = YES 'HEXADECIMAL VALUE
.ENDIF !

.EVAL P = @A * @B
.IF @HEX, EQ, YES

MSG T = "HEX NUMBERS CONVERTED TO DECIMAL"
.ENDIF
MSG TEXT = "THE PRODUCT IS @P"
.SYN A = ""
.SYN B = "" -7
.EOP ‘

The command FP accepts two integer values and calculates the
product. If either of the values entered is a hexadecimal
number then the message HEX NUMBERS CONVERTED TO DECIMAL is
displayed. Remember, .EVAL evaluates the expression and
stores it as ASCII decimal.

Notice that the synonym 1is evaluated within the message
text. 2Also, the synonyms A and B were assigned null values
at the end of the procedure so that svnonym table overflow
may be avoided.

WORKSHEET

Write a procedure that will execute a program which updates
an inventory file. You should prompt the operator to
determine which operation is to be executed. The options
which can be selected are a receipt, an issue, or the
printing of a reorder report. Assume that there are 3
separate programs to perform each of these operations. The
task names are RECPT, ISSUE, and REORD. Assume all the
programs are stored under TI.INV.OBJ.

If the reorder option 1is selected, you should perform a
print file on TI.INV.REORD and display a completion message
when the printing is complete.

You should validate the option selected and display an error
message where appropriate.

The keywords for the Execute COBOL Program Foreground XCPF)
command are:

OBJECT ACCESS NAME:
DEBUG MODE: NO
MESSAGE ACCESS NAME:
SWITCHES: 00000000
FUNCTION KEYS: NC

The keywords for the Print File PF) command are:

FILE PATHNAME «S):

ANSI FORMAT?: NO
LISTING DEVICE:

DELETE AFTER PRINTING?: NO
NUMBER OF LINES/PAGE:

4.10 ITERATIVE LOOPS

The primitives .LCCP, .UNTIL, .WHILE, and .REPEAT may be
used to create a loop within the procedure. The format for
their use is:

.LOOP
.UNTIL "<operand 1>", <relation>, "<operand 2>"
.WHILE "<operand 1>", <relation>, "<operand 2>"

.REPEAT

where:

The loop must be initiated by a .LOOP_ statement and
terminafed by a .REPEAT statement. The loop must contain at
least one .WHILE or .UNTIL but may contain more than one.
The statements between the .LOCP and .REPEAT will be
continuously executed as long as the conditicon in the .WHILE
is true or they will be executed until the <condition in a
.UNTIL becomes true. As soon as the loop is terminated by
one of the conditions, the statement following the .REPEAT
will be executed. If either of the conditional statements
causes the loop to terminate, the branch out of the loop is

immediate, that 1is, no statements between the conditional
and .REPEAT will be executed.

. LOOP

. SCI statemetns
LONTIL or .WHILE

. SCI statements

.REPEAT

4-10

* *

* EXAMPLE SCI PRCC USING ".EVAL", "MSG", AND ".LOOP"
*

.PROC FP FIND PRODUCT) = 1,
ENTER MULTIPLICAND = INT,
ENTER MULTIPLIER = INT

.USE
.SYN A &ENTER MULTIPLICAND
.SYN B &ENTER MULTIPLIER

.SYN HEX = "", AGAIN = ""
.IF @A, GE, >
.SYN HEX = YES

.ENDIF ICHECK TO SEE IF EITHER OF

.IF @B, GE, > !THE NUMBERS ENTERED WAS A
.SYN HEX = YES |HEXADECIMAL VALUE

.ENDIF !

.EVAL P = @A * @B
.IF @HEX, EQ, YES
MSG T = "HEX NUMBERS CONVERTED TC DECIMAL"
.ENDIF
MSG TEXT = "THE PRODUCT IS @p"
* %
* COMPUTE THE SQUARE OF THE PRCDUCT
* IF REQUESTED, CONTINUE TO COMPUTE THE SQUARE
* ok

. LOOP
MSG TEXT = "FIND THE SQUARE? ¥/N)", REPLY = AGAIN
.WHILE QAGAIN, GE, Y
.EVAL S = @P * @P
MSG TEXT = "THE SQUARE OF @P IS @S"
.EVAL P = @S
. REPEAT
.S'YN A:ll", B=""
.SYN HEX="", AGAIN=""
.EOP

This extension to the previous example shows a method for
using a 1loop. As long as the operator responds in the
affirmative to the message FIND THE SQUARE?, the procedure
will <continue to perform that calculation. The last .EVAL
sets the synonym P equal to the synonym S. The same
operation could have been performed using a .SYN statement.

4-11

4.11 EXIT FROM A PROCEDURE

The .EXIT statement allows you to terminate the e
a command procedure. If a .EXIT is executed,

xecution of
the PROC 1is

terminated immediately; no other commands will be executed.
It has the format:

.EXIT

EXP /[EXAMPLE PROC) = 5, ! PRIVLEDGE LEVEL 5

INPUT PATHNAME = ACNM 1@SPATH),

.IF @DP, NE, >3C

LEXIT
.ELSE

.

.

.ENDIF

4.12 DISPLAYING A FILE

The primitive .SHCW can be used to display the contents of a

specified file. It has the format:

.SHOW <acnm>

where:

acnm -- A valid pathname.

SF SHOW FILE),

FILE PATHNAME = *ACNM (@SSFSP)
.SYN SSFSP = "&FILE PATHNAME"
.IF "&FILE PATHNAME", NE, ""
.SHOW @Q&FILE PATHNAME

.ENDIF

4.13 TERMINATING SCI

The primitive .STOP will cause execution of SCI to be
terminated. It has the following format:

.STOP [TEXT = "<string>" [,CODE = <int>]]
where :/,/ . ,;"ﬁ’ V;‘): 1\) IV, 7 W : s AR L b/l T /
"/,,-w""”")

/ TEXT -- A string which may be passed back to the foreground

{ terminal 1local file in place of the normal batch stream
/ message.

5 CODE -- May be used to set the synonym SBC.

The .STOP command mayv be used in any application of SCI. However,
the perameters TEXT and CODE, only have meaning when this
primitive is used in a batch stream. BRatch streams are discussed
in Module 6.

4.14 SPECIFYING AN SCI PROCEDURE LIBRARY

SCI normally searches the system procedure 1library, .S$PROC,
whenever it is given a command. The user may specify that an
alternate directory or library be used to find the command. The

primitive .USE may be used for this purpose. It has the following
format:

.USE [<acnm>] [,<acnm>]

where:

acnm -- The valid pathname of a directory to be used as the
SCI procedure library. The default is .S$SPROC.

This command is especially useful in the application environment.
It enables the user to place commands in different libraries and
still use them within the same command procedure. This may also
be used to make the system more secure from unauthorized use of a
command.

If two directories are specified, SCI will search the first
directory for the command to be executed. If it is not found, the
second directory will then be searched. This feature would allow
placing user-defined PRCCs for a given application in one

directory while allowing the wuse of system PROCs within these
commands.

4-13

.USE TI.GNLEDGER, .SSPROC

4.15 BUILDING A DATA FILE

Data may be copied directly into a file through the wuse of the
.DATA and .EOD primitives. All statements between these two
commands will bhe placed in a specified file. The format is:

.DATA <pathname> [,EXTEND = <YES/NO>]
[,SUBSTITUTION = <YES/NO>]
[,REPLACE = <YES/NO>]

.EOD

where:

pathname -- A valid pathname that indicates where the file
is to be stored.

EXTEND -- This indicates whether cr not the file should be
opened extended. This allows vyou to concatenate several
files together or to append additional records to the end of
a file. The default is NO.

SUBSTITUTION =-- This allows the user to use synonyms and
keywords in the text which will be evaluated and the values

substituted before being written to the file. The default
is NO.

REPLACE -- Specifies whether the data stream is to replace
an existing file. The default is YES.

This 1is a wuseful command for building files from within the
procedure. This is especially useful when you wish to build a
temporary file, add to, or substitute in an existing file.

EMPINFO (QUERY ON EMPLOYEE INFO) = 4,

PASSWORD = STRING,

EMPLOYEE NUMBER = INT

.IF @$$sT, LT, 06
MSG TEXT = "PRIVLEDGED COMMAND, FOR ACCOUNTING ONLY"
.EXIT

.ENDIF

.IF @$$ST, GT, 08
MSG TEXT = "PRIVLEDGED COMMAND, FCR ACCOUNTING ONLY"
LEXIT

.ENDIF

*

* APPEND QUALIFICATION TO QUERY STATEMENT

* *

.DATA TI.EMP.QEISRC, EXTEND=YES, SUBSTITUTION=YES
WHERE EMPN EQ &EMPLOYEE NUMBER
BY KEY BY LIST

.EOD

* *

* BID THE QUERY TASK

* %

.BID TASK=>CO, LUNO=>10, PARMS=13, 4, @S$SMRS$, &PASSWORD, 60,
80, .LIST@SSST, R, N, N, N, N, N, N, TI.QEI@SST,
.LIST@SS$ST, .TEMPQ@SSST, .QUERYLIB.ERRMSG, , @$MTS)

*

*

* SHOW THE QUERY OUTPUT
* *

;SHOW .LIST@SSST
*

* DELETE TEMPORARY LISTING AND WORK FILES

* %

DF PATHNAME
DF PATHNAME

.LISTRSSST
.TEMPQ@SSST

This procedure accepts a password and an employee number that will
be used by the QUERY 990 processor. A query file already exists
which will cause information to be retrieved from a DBMS employee
file. A statement that indicates which employee is desired must
be appended to the end of the guery file. ©Note, this PROC will
only execute from stations 6, 7, and 8. The synonym $$ST, which
contains the station number, has been concatenated with the file
names to give unigue temporary files.

4-15

WORKSHEET

Write a PROC that will accept a task name from the screen. That
name should then be used as the file name for source, object and
listing files when compiling the program. It will also be the
task name in the link control file. Build the link control file
in your procedure. Use the synonym $SLU to retrieve the luno from
the AL rtassign luno) command. Use $SLU where required. Your PROC
should then compile, link, and execute the task.

The format for the Execute COBOL Compiler Foreground IXCCF)
command is:

SOURCE ACCESS NAME: °
OBJECT ACCESS NAME:
LISTING ACCESS NAME:
OPTIONS:
PRINT WIDTH: 80
PAGE SIZE: 55
PROGRAM SIZE I(LINES): 1000

The format for the Execute Linkage Editor XLE) command is:

CONTROL ACCESS NAME:

LINKED OUPUT ACCESS NAME:

LISTING ACCESS NAME:
PRINT WIDTH: 80

The format of the Execute COBOL Task Foreground XCTF) command is:

PROGRAM FILE LUNO:
TASK ID OR NAME:
DEBUG MCDE: NO
MESSAGE ACCESS NAME:
SWITCHES: 0000000
FUNCTION KEYS: NO

The format of the Assign LUNO AL) command is:
LUNO:

ACCESE NAME:
PROGRAM FILE?: NO

The format of the Release LUNO (RL) command is:

LUNO:

A suggested sequence of events is as follows:
l. Prompt for the task name -- command name and keywords.

2. Compile the program -- XCC or XCCF.

3. Build link control file -- .DATA through .ECD.
4. Execute the link editor -- XLE.

5. Assign a luno to your program file -- AL.

6. Execute the task -- XCT or XCTF.

7. Release the luno =-- RL.

If any commands are executed 1in background, such as the Link
Editor, a WAIT command should be executed after that command.
This will prevent the next foregound command from being executed
before a required background task has terminated.

4.16 THE .SPLIT PRIMITIVE

The .SPLIT primitive assigns the first term from a value list to a

synonym and assigns the rest of the list to another synonym. It
has the following format:

.SPLIT LIST = <list>, FIRST = <name 1> [,REST = <name 2>]

where:
LIST -- Defines the value list.
FIRST -- Defines a synonym given to first term.
REST -- Defines a synonym given to the remainder of the

value list.

ADST APPEND DAILY SALES TOTALS) = 2,
DAILY SALES FILE S) = *NAME @SDSF),
OUTPUT FILE = NAME
.SYN $DSF = &DAILY SALES FILE
.SYN OF = &OUTPUT FILE
.SPLIT LIST = @SDSF,
FIRST = DAY,
REST = S$DSF
.SHCW TI.SALES.@DAY
MSG TEXT = "DOES TOTAL RALANCE WITH SUMMARY SHEEET? % /N)",
REPLY = BAL
.IF @BAL, EQ, Y
AF INPUT ACCESS NAME = TI.SALES.@DAY,

OUTPUT PATHNAME = TI.SALES.QOF
.ENDIF
.IF @$DSF, NE, ""
ADST CUTPUT FILE = QOF
.ENDIF
'SYN sDSF=" ", OF=I| “, DAY:" "' BAL=" "

This example accepts the names of several files that will be
displayed one at a time. If the operator responds 1in the
affirmative to the message DOES TCTAL BALANCE WITH SUMMARY SHEET?,
the file currently displayed will be appended to a2 common file.
The PROC then calls itself to display and append the next file.

Instead of calling itself again, the PRCC could also have been
written to use the .LOOP primitive. A third method of writting
this PROC allows the user to key in all of the file names at the
came time. Each file name 1is seperated by a comma as in the first
method, however, the keyword type is ACNM. This gives the added

4-18

advantage of allowing SCI to determine that a valid file name was
entered. Commas are not usually permitted with type ACNM,
however, they are permitted as delimiters if the keyword type has
been enclosed 1in parentheses. The Copy/Concatenate 1K CC) command
is an example of this usage.

CC iCOPY/CONCATENATE) ,
INPUT ACCESS NAME iS)= 1ACNM),

OUTPUT ACCESS NAME=ACNM,
REPLACE?=YESNO INO) ,

MAXIMUM RECORD LENGTH = *INT

.BID TASK=>34,CODE=2,

PARMS= i 1§ INPUT ACCESS NAME),

@sOUTPUT ACCESS NAME,

NO, sREPLACE,NO, sMAXIMUM RECORD LENGTH)

4.17 BIDDING A TASK OR AN OVERLAY

Most of the existing SCI commands as well as many that the wuser
will write himself, cause a task or an overlay to be bid from a
program file and executed. The primitives .BID, .Q3ID, .DBID, and
.OVLY may be used for this purpose. When used 1in place of an
existing SCI command they will cause execution to be considerably
faster since the SCI command does not have to be evaluated. .BID
bids a task to be executed in foreground and .QBID will cause the .
task to be executed in background. .DBID bids a task end then
places it 1in a suspended state state >6) for the purpose of
debugging it, e.g. setting breakpoints etc. As such, this is not
a suitable command for use with COBOL applications. The command
.OVLY 1is used by many of the existing SCI commands since they are
disk resident features of the operating system. A good example of
this is the text editor #XE), which is installed as overlay >3
IESEDIT) on the system program file.

The format for these primitives is:

»

.BID TASK=<int/name> [,LUNO=<int>] [,CODE=<int>]
[,PARMS=< tstring)>]

.QBID TASK=<int/name> [,LUNO=<int>] [,CODE=<int>]
[,PARMS=< 1string)>]

Secs it Al

_.DBIB-TASK=<int/name> [,LUNO=<int>] [,CODE=<int>]
[,PARMS=<1string)>]

/

.CVLY OVLY=<int/name> [,LUNO=<int>] [,CODE=<int>]
[,PARMS=<1string)>]

where:

TASK =-- A hexadecimal number for the task or overlay id or

4-19

the name of that task or overlay.

LUNO -- A hexedicimal number that is the 1luno assigned to
the program file from which this task or overlay is being
bid. 1If this parameter is omitted, the system program file,
.SSPROGA, is assumed. This program file should be used only
for software supplied by Texas Instruments.

CODE -- A value in the range of 0 to 255 that may be
accessed as a binary value by the task or overlay.

PARMS -~ A string of characters or parameters, seperated by
commas, that may be accessed by the task or overlay.

UPINV = 5

* *

* ASSIGN A LUNC TO THE PROGRAM FILE

* ok

.OVLY OVLY=>1B, LUNO=0, PARMS=16,0,TI.COBOL.PROGF,Y,S$SALSL,Y)
* *

* EXECUTE COBOL TASK IN FOREGROUND

* *x

.BID TASK=>02, LUNOC=@S$SALSL, PARMS=:,N,DUMY,00000000,N)
* *

* RELEASE THE LUNO

* ok

.OVLY OVLY=>1B, LUNC=0, PARMS=:30,@SALSL)

This example causes the task on the program file TI.COBOL.PROGF,
whose 1id is >Z, to be executed. First a luno must be assianed to
that program file and then the task 1is bid to execute 1in the
foreground. When the task is terminated, the assigned luno will
be released. The synonym SALSL was used instead of $$LU. This is
the synonym normally assigned by this processor.

Notice that .PROC and .EOP where not used. They are not reguired
unless the PROC 1is being defined interactively. Also, since no
keywords were defined, the operator will key in the command and
then the procedure will begin execution.

WORKSHEET

Modify the procedure of the previous worksheet so that all of the
functions are implemented using primitives. It is always a good
practice to 1include comments in your procedure, however, this

becomes a real necessity when using primitives to bid a task or an
overlay.

The procedures XCC and XCCF are written as:

XCC EXECUTE COBOL COMPILER <VERSICN 3.2.0 79173>) =2,
SCURCE ACCESS NAME = ACNM1"@ss"),
OBJECT ACCESS NAME = ACNM i"@S$XCCSOB"),
LISTING ACCESS NAME = ACNM !"@S$XCCSL"),
OPTIONS = *STRING f"@XCC0"),

PRINT WIDTH = INT 80),

PAGE SIZE = INT 55),

PROGRAM SIZE LINES) = INT +1000)

. ! +.BID should be used for XCCF)
.CBID TASK = >87, LUNO = >10,

PARMS = 1@&SOURCE ACCESS NAME, @&OBJECT ACCESS NAME,

@&LISTING ACCESS NAME, "&OPTIONS",&PRINT WIDTH,

&PAGE SIZE,@MEMORY,&PROGRAM SIZE ILINES))

The procedures AL and RL are written as:

AL »ASSIGN LUNO), RL 'RELEASE LUNO),
LUNO=*INT, LUNO=INT

ACCESS NAME=ACNM, .OVLY OVLY=>1B,LUNO=0,
PROGRAM FILE?=YESNO WNO) PARMS= 130, SLUNO)

.IF &LUNC, EQ, ""

.OVLY OVLY=>1B,LUNO=0,

PARMS= 6,0,@&ACCESS NAME,Y,SALSL,&PRCGRAM FILE?)
.SYN SSLU="@SALSL"

.ELSE

.CVLY OVLY=>1B,LUNO=0,

PARMS= 16, &LUNO, @¢ACCESS NAME,N,$ALSL,&PROGRAM FILE?)
.ENDIF

.SYN SALSL=""

The procedure XLE is written as:

The

XLE EXECUTE LINKAGE EDITOR) =2,

CONTROL ACCESS NAME = ACNM +"@SXLESC"),

LINKED CUTPUT ACCESS NAME = *ACNM 1"@SXLESCB"),
LISTING ACCESS NAME = *ACNM "@SXLESL"),

PRINT WIDTH = INT «80)

.QBID TASK = >86, LUNO = >10,
PARMS = @&CONTROL ACCESS NAME,
@&LINKED OUTPUT ACCESS NAME,
@&LISTING ACCESS NAME,

4096, sPRINT WIDTH)

procedures XCT and XCTF are written as:

XCT (EXECUTE COBOL TASK <VERSION: 3.2.0 79173>),
PROGRAM FILE LUNO = INT :"@SXCTSP"),

TASK ID OR NAME = STRING "@SXCTST"),

DEBUG MODE = YESNO «NO),

MESSAGE ACCESS NAME = *ACNM "@S$SXCTSL"),

SWITCHES = *STRING "00000000"),

FUNCTION KEYS = YESNO NO)

o

. ! 1,BID should be used for XCTF)
.QRID TASK = &TASK ID OR NAME, LUNO = "g&PROGRAM FILE LUNO",
PARMS = ,"&DEBUG MODE",@&MESSAGE ACCESS NAME,

"sSWITCHES" ,&sFUNCTION KEYS)

4.18 MODIFYING THE SCI INTERFACE

The .OPTICN primitive allows the user to modify some of the
characteristics of the SCI interface. The user may change the
command prompt, the main menu, and disallow the use of primitives.
In a user environment these features are useful for customizing a
system as well as helping to make the system more secure from
unauthorized use.

The format of the .OPTION primitive is:

.OPTION [,PROMPT=<"string">] [,MENU=<"name">]
[,PRIMITIVES=Y/N]
where:
PROMPT -- An alternate command prompt may be supplied. This
string of characters, which must be less than 50, is
displayed 1in ©place of the default prompt whenever the
terminal is in command mode. On a 911 VDT, the prompt

appears on the lower left part
MENU -- A menu name
displayed as the main menu.
in .SS$PROC.MSLC.
without

The user may

may be entered here.
The default main menu is stored

using this primitive if the file name is MSLC.

of the screen.
This menu is

menu
The

supply a different main

next paragraph in this module explains the use of menus.

PRIMITIVES =-- The use of primitives

specifying NO to this option.
primitives by users not
functions. Primitives
level only, that is from a
while SCI is in the command or
still be used from a PROC.

authorized
may be disallowed from the primary
batch

The default

may be disallowed by
This will prevent the use of
to exercise their

interactively
They may

stream or
menu display cycle.
is YES.

The following example demonstrates the use of the prompt and

menu options. This segment

the PROC M$00 so that when a specific user logs

system a new
established for that user.
Module 5.

command prompt

of code might be installed in

on to the

and main menu will be

The use of M$00 is discussed 1in

MS$00

.IF @$SUI, EQ, BCMO13

.OPTION PROMPT = "Command? ", MENU = YRMENU
.ENDIF

When user BCMOl3 1logs on the system the text Command? 1is
displayed on the terminal and the contents of the file MSYRMENU
from a specified procedure directory 1is displayed as the main
menu.

The next example demonstrates the use of the menu and primitives
options to control these features at terminals ST09 and greater.

.IF @$$ST, GE, 09

.USE TI.GNLEDGER.PROC, TI.PAYROLL.PRCC
.OPTION MENU = USER, PRIMITIVES = NO
.ENDIF

The main menu and all accessible PROCs must be stored in one or
the other of the two directories specified by the .USE command.
This 2and disellowing the wuse of primitives from these stations
will enhance security on the system.

4.19 DISPLAYING A MENU

You can cause menus to be displayed that contain either commands
to perform some function or still other menu names. The .MENU
primitive will cause the specified menu to be displayed the next
time SCI is in the menu display cycle, i.e., just before it
prompts for the next command. You may also c¢ause menus to be
displayed by wusing a slash /) in front of the menu name. All
menus must be in the procedure directory and must be a file name
of the format M$name where "name" is the menu name. "dddd" in the
next example represents the directory name. Reczll that the
default procedure directory is .SS$SPROC unless changed by a .USE
command.

MENUS
.MENU JAPPL

dddd.MSJAPPL

% JOE'S DART SHOP **%*

APPLICATION MENUS

/GEN -- GENERAL LEDGER APPLICATIONS

/PAY -- PAYROLL APPLICATIONS

/INV -- INVENTCRY APPLICATICNS

/MISC -- MISCELLANEOUS UTILITIES
dddd.MSPAY

SELECT ONE OF THE FOLLOWING PAYROLL APPLICATIONS

/HOUR -- HOURLY PAYROLL REPORTS
/SAL -- SALARIED PAYROLL REPORTS
/EOM -- MONTHLY PAYROLL REPORTS
/QURT -- QUARTERLY PAYROLL REPORTS
/YEAR -- YEARLY PAYROLL REPORTS

dddd.MSEOUR

HOURLY PAYROLL REPORTSE

/GER -—- GROSS EARNINGS REPORT
/DREG -- DEDUCTION REGISTER

/PFM -—- PAYROLL FILES MAINTENANCE
/CHECKS -- PRINT PAYROLL CHECKS
/CKREG -- CHECK REGISTER

/SSR -- FICA SUMMARY

/CR -—- CREDIT UNION TRANSFERS

dddd.MSDREG

DEDUCTION REGISTER

DRTOT -- DEDUCTION REGISTER TOTALS

DRUP -- UPDATE MASTER FILE W/REGISTER CALCULATIONS
PRDR -- PRINT DEDUCTION REGISTER
dddd.PRDR

PRDR +PRINT DEDUCTION REGISTER) = 3,
OUTPUT DEVICE = ACNM LPO2)

LAB EXERCISE

Write a procedure that will accept a number between =5 and +5,
compute the cube of that number, and then display the result. You
must test for the upper and lower bounds of the allowable range.
If the boundaries are violated, display an error message and
accept a new value. The PROC may not terminate until a value
within the allowable range has been entered.

LN .2
s f

CXICA T VA D

4-27

LAB EXERCISE

Write a procedure that will print multiple copies of a given file
and optionally delete that file when the printing is complete.
You will have to prompt for the pathname of the file, the number
of copies, and whether or not to delete the file.

LAB EXERCISE

Write a procedure that may be used to save a file while that file
is being text edited. 1If this is an existing file, then store the
new version using the existing file name. If this is a new file,
prompt for the file pathname and then store the file. Your
procedure should then reenter the text editor for that file. The
commands XE, QE, and QES$1 may be used to accomplish this.

The procedure for the Text Editor XE) ccmmand is:

XE JINITIATE TEXT EDITOR),
FILE ACCESS NAME = *ACNM 1@SXES)

.OVLY OVLY=3, LUNO=0, CODE=0,
PARMS= @&FILE ACCESS NAME,@SMRS$,@$SMRMS,@S$XEMS,@S$SMTS)

The procedure for the Quit Edit ®QE) command is:

QE «QUIT EDIT),

ABORT? = YESNO WNO)

.IF "&ABORT", LT, "Y"

QES1

.ELSE

.OVLY OVLY=4,CCDE = 9,PARMS=1%,,,)

.ENDIF

.SYN SXES="", SXES$SC="", SXESEC="", SXEMS=""

The procedure for the QES]1 command is written:

QES1 QUIT EDIT),
OUTPUT FILE ACCESS NAME=ACNM @$SXES),
REPLACE?=YESNO WNO),
MOD LIST ACCESS NAME=*ACNM
.QVLY OVLY¥=4, LUNO=0, CODE=9,
PARMS= N, "@&OUTPUT FILE ACCESS NAME",&REPLACE,
"@gMOD LIST ACCESS NAME")
.SYN S$XE§ = "&OUTPUT FILE ACCESS NAME"
.SYN $$S = "&OUTPUT FILE ACCESS NAME"

MODULE 5

SYSTEM CUSTOMIZATION

OBJECTIVES
* Modify existing SCI commands.
* Permanently modify the status of terminals.

* Utilize the news file, login and logoff, main menu, and
completion code features of SCI.

5.1 MODIFYING EXISTING SCI

Many of the existing SCI commands display default parameters to be
used 1in the execution of the procedure. Once you understand how
the procedure has been written, it is usually not very difficult
to modify the procedure to fit the needs of the wuser's
installation. An example of an existing command that the user may
wish to modify is the Initialize System IS) command. The format
of the IS command is:

3 WINITIALIZE THE SYSTEM) = 4
DT o T _

IP @SCC,NE,0

JEXIT

.ENDIF

ISL

.BID TASK=3,PARMS=P, 01
.BID TASK=3,PARMS= P, 02
.BID TASK=3,PARMS=w, 03
.BID TASK=3,PARMS=, 04
.BID TASK=3,PARMS=P, 09
.BID TASK=3,PARMS=.p, O0A
.BID TASK=3,PARMS= P, 0B
.BID TASK=3,PARMS=P, 0D
.BID TASK=3,PARMS=P, OE
.BID TASK=3,PARMS= 1, OF) /DSy

.BID TASK=3,PARMS=, (010)

.OVLY OVLY=>23, CODE=4, PARMS= "WARMSTART PROCEDURE COMPLETE",)

You may wish to modify this mmand to perform a number of chores
for you h as(ins ling certain volumé t the beginning of the
day, ﬁﬁii;;iﬂg—the e atas each station, or assigning

certain 1luncs that are reqguited by application programs executing
in the system.

N N e e’ e e e

The following example will cause a TTY device, such as a Model 820
KSR, to be assigned a priveledge level of three with no login
required. Three 911 VDTs are to reguire login, with a maximum
privilege level of 4 on two of the VDTs and 7 on the third. A
global 1luno has been assigned to a user's program file that is
used in the execution of the application tasks. The luno hes been
delete protected to ensure that it is assigned throughout the day.
Since the same volumes are used every day for most processing,
these volumes will be installed at this time as well.

5-2

IS INITIALIZE THE SYSTEM) = 4,
INSTALL DEFAULT VOLUME? = *YESNO iYES)
IDT

.IF @$$CC,NE,OQ

LEXIT

.ENDIF

ISL

%*

*:::E_I;]STALL THE DEFAULT VOLUME§]===================================
%*

.IF "&INSTALL DEFAULT VOLUMES?", GE, "Y"

IV UN="DSO02", VN="TI"

IV UN="DS0Q03", VN="APPL"

.ENDIF

%*

*===[£NITIALIZE THE TERMINAL? R R Y A
*

MTS TN="STOl", NS="ON", NM="TTY", LR="NO", UPC="3", DM="TTY"
MTS TN="ST02", NS="ON", NM="VDT", LR="YES", UPC="4"
MTS TN="ST03", NS="ON", NM="VDT", LR="YES", UPC="4"
MTS TN="ST04", NS="ON", NM="VDT", LR="YES", UPC="7"
*

#====[ASSIGN GLOBAL LUNO TO APPLICATION PROGRAM FILE AND PROTEE§7===
*

AGL LUNO=>99, AN="APPL.PROGF", PF="YES"

MLP PROTECT="P", LUNO=>99

*

.BID TASK=3,PARMS=/w, 01
.BID TASK=3,PARMS=w, 02
.BID TASK=3,PARMS=+¥, 03
.BID TASK=3,PARMS=P, 04
.BID TASK=3,PARMS=w, 09
.BID TASK=3,PARMS=w¥, O0A
.BID TASK=3,PARMS=#, 0B
.BID TASK=3,PARMS=, 0D
.BID TASK=3,PARMS=w, (E
.BID TASK=3,PARMS=1#, OF
.BID TASK=3,PARMS=, 010)

.OVLY OVLY=>23, CODE=4, PARMS= :"WARMSTART PROCEDURE COMPLETE",)

e N N N e el N e et et

In the last example several commands such as the Modify Terminal
Status MTS) and Install Volume IV) commands were used to perform
functions from the IS command. Whenever an SCI command is used as
part of another command, the writer usually supplies all the
required keywords to that command. The keywords may be
abbreviated, however, and all the keywords may not be regquired.

If the keyword is optional, such as DEFAULT MODE (ITY/VDT) in the
MTS command, it is not necessary to include it unless you do not
wish the default parameter to be used. Remember, opticnal
keywords were designated by placing an asterisk in front of the
keyword type when the procedure was defined. :

5-3

If the keyword is used, it may be abbreviated but a few guidelines
should be followed.

* The abbreviation must begin with the same character eas
the original keyword.

* Any characters used in the abbreviation must also appear
in the original keyword and in the same order.

* Digits in the original keyword must be wused 1in the
abbreviation and in the same order.

* Characters which follow a special <character in the
original keyword are ignored.

* Use the first character that follows a blank 1in the
original keyword as part of the abbreviation.

* Be careful that an abbrev1atlon could not be taken for
more than one keyword.

If a command is used without supplying the keywords and their
values, the command and all keywords will be displayed at the

station. The Initialize Date and Time +IDT) and Initialize System
Log ISL) commands are used in this manner by the IS command.

L iG] \) M - -
S Eas6 2 2k it

k Wéw, T eacl ;/Zﬁm SIOPIDG
clnif 270 tee cack

INV' ~

, : —ON
I 0196 L
X02D —

Another command that is easily modified 1is the IDT
date and time) command. It is written as follows:

IDT (INITIALIZE DATE AND TIME) =4,
YEAR = INT,
MONTH = STRING,
DAY = INT,
HOUR = INT,
MINUTE = INT
.SYN SIDTS = "&MONTH"
.SYN SYEARS = "&YEAR"
IDT$]1 M="gMONTH"
.BID TASK = >19,
PARMS = 120,Q@SYEARS,RSIDTS, sDAY,sHOUR, §MINUTE)
.SYN $IDTS = ""
.SYN SYEARS = ""

tinitialize

This command could be modified so that the user does not have to
enter the year. The procedure would then have to be modified once

a year to keep it current.

IDT INITIALIZE DATE AND TIME) =4,
MONTH = STRING,
DAY = INT,
HOUR = INT,
MINUTE = INT
.SYN $IDTS = "&MONTH"
IDTS$1 M="gMONTH"
.BID TASK = >19,
PARMS = 120,1980,@SIDTS,&DAY, &HOUR, &8MINUTE)
.SYN $IDTS = ""

WORKSHEET

Modify the command procedure Execute COBOL Compiler #XCC) so that
the wuser enters a file name a directory name, and the number of
lines in the program. These should be the only prompts or
keywords that appear on the screen. The parameter OPTIONS should
always default to a cross reference listing. PRINT WIDTH and PAGE
SIZE should always be 80 and 55 respectivley. The source, object,
and listing access names should always be ddd.SRC.nnn, or
ddd.0BJ.nnn, or ddd.LST.nnn where "ddd" is the directory name the
user entered and "nnn" is the file name.

XCC EXECUTE COBOL COMPILER <VERSION: 3.2.0 79173>) =2,
SOURCE ACCESS NAME = ACNM f@ss"),
OBJECT ACCESS NAME ACNM ™@SXCCSOBR"),
LISTING ACCESS NAME = ACNM 1"@$XCCSL"),
OPTIONS = *STRING »"@$XCCS$O"),

PRINT WIDTH = INT «80),

PAGE SIZE = INT i55), ,
PROGRAM SIZE LINES) INT +1000)

.SYN MEMX = "&PROGRAM SIZE LINES)"
.EVAL MEMORY = "@MEMX / 500 * 7168"
.IF "@MEMORY" ,GT, "30840"

.EVAL MEMORY = "30840"

.ENDIF .

.IF "@MEMORY" ,LT, "7168"
.EVAL MEMORY = "6144"
.ENDIF

.SYN $XCCSOB = "&ORBJECT ACCESS NAME"

.IF "@&SOURCE ACCESS NAME", EQ, "@&OBJECT ACCESS NAME"
MSG T="ERROR: SOURCE AND OBJECT ARE SAME NAME"

LEXIT

.ENDIF

.IF "@&SOURCE ACCESS NAME", EQ, "@&LISTING ACCESS NAME"
MSG T="ERROR: SOURCE AND LISTING ARE SAME NAME"

LEXIT

.ENDIF

.QBID TASK = >87, LUNO = >10,

PARMS = +@&SOURCE ACCESS NAME, @&OBJECT ACCESS NAME,
@&LISTING ACCESS NAME, "&OPTIONS",&PRINT WIDTH,

&§PAGE SIZE,@MEMORY,&PRCGRAM SIZE LINES))

.SYN $XCCSO = "&OPTIONS", $$S = "&SCURCE ACCES NAME",
$XCCSL = "&LISTING ACCESS NAME", MEMORY = "", MEMX = ""

One command procedure that the user may wish to modify or add to
is Q$SSYN. This command is called by the Quit «Q) command when you
sign off a terminal. 1Its function is to delete many of the system
synonyms so that synonym table overflow does not occur.

Some synonyms assigned by some of the utilities and some of the
software are not included. From time to time the user may find a
synonym that was not deleted by either the procedure that assigned
it or by Q$SYN. You could add such synonyms to this procedure or
any that are created by your own procedures. It 1is not always
desireable to delete all synonyms created by a procedure at the
termination of the procedure, but rather leave them so that they
may be accessed by other command proceudres. S$SLU is a good
example of a synonym created by the AL command. It 1is available
to other procedures that may be invoked but should be deleted

eventually to conserve storage in the synonym table. It will be
deleted by QS$SYN.

Note that the synonym table is stored in .SS$TCALIB when a user
signs off provided that the user was logged in with a user id.
Each record 1in this file 1is 864 bytes of which 804 bytes are
available to store synonyms and their values.

(Qssyy)
.SYN $$OB="", $$RI="", SSVN="", SPF$D="", SFP="",

AAP=" ll' ITT=" n’ LLRP=" "’ XCPL=" "'
SSPISA="", $SPISI="", $SPIST="", $XCTSL="",
$SRFSF="", SRFP="", SSRFS$R="", SLDSP="",
SXES = nw ’ $$BT=" " ’ XDD=" L ’ XLEOB=" " ’
ssLU=uu’ $$S=nu’ sBD$D="", BD5="",
$$LD="", SCD$M=""’ CDC="", $$PF=" n,
$$ML=" " , $$OP=" " , XLEC=" " ’ SXLE$L=" " ’
SXMASO="", S$XMASL="", S$XMASE="", $XMASOP="",

SXFCSO="", SXFCSL="", SXFCSE="", SXFCSOP="",
XCCL=" n’ sxcc$o=lt|l' XCCOB=" ll' sxcpso___" "’
XFTP="", SXFT$T="", XCTP="", XCTT="",

$CFKSL="", S$CFK$PN="", S$CFKSLRL="", SCFKSKN="",
CFKPRL="", CFKKS="", CFKSIA="", SCFKSM="",
SCFR$SA="", $SCFK$MS="", RPGPL="", S$RPGU="",
RPGP="", S$RPGSL="", S$RPG$B="", SRPGSS=""
SXMASOPL="", S$XMASMC="",

For the following software, you may wish to add:
SORT/MERGE SXSMSFNM, S$XSMSSEQ, S$XSMSNXT
~DBMS-990 __ ——-$PBSPSW;PSSE-

Misc. $SBC, HESC. Do NoT Vel

LAB EXERCISE P

Write a procedure that w1ll/accept a directory name and then use
that directory name to store from 1 to 10 files. The files are
currently in the directory TI.COBOL. There are currently 4 files
in this directory with the names TCTEMPl through TCTEMP4. Use the
command procedure UNIQUE to give unique names to the fi files as they
are copied to your directory. UNIQUE will generate names with the
format .S$TMPxn where "x" is your station number and "n" is the
Nth file to be copied. Set up a loop to increment the input file
name and prompt whether or not you wish to continue with the next
flle to be copied. —

f

LAB EXERCISE

Modify the previous lab exercise so that up to 100 files may be
copied from any directory. Also modify the output filename to be
something other than .SSTEMPxn. Be $ure UNIQUE is in your own
directory before making any modifications to it.

LAB EXERCISE
o N

Modify the Create Key Indexed File (CFKEY) command so that the
starting position of the key defaults to the next available
position after the previous key that was created. For example, if
the primary key begins in position 1 and has a length of 5, the
next key that is defined should show position 6 as a default value
for START POSITION.

Also modify the default for MODIFIABLE so that NO will be the the
default for the primary key and YES will be the default for all
other keys. Be careful with all synonym assignments.

Be sure that you have copied all necessary commands into your
directory before attempting any modifications. Execute a Map Key
File WMKF) command to verify that the file was <created with the
desired attributes. A suggested test of your PROC would be to
create a file with the following attributes.

START DUPLICATES
KEY COLUMN LENGTH MODIFIABLE ALLCWED
1 1 5 N N
2 6 20 Y Y
3 26 10 Y N

5-10

5.2 MODIFYING THE TERMINAL STATUS

The Modify Terminal Status MTS) command allows the user to modify
certain conditions associated with each station in a
configuration. The attributes associated with a station that the
user may modify include:

* On-line/off-line status
* VDT/TTY mode

* Login required-

* Privilege code

A series of MTS commands is typically included in the IS command
as was done in a previous example. This enables the user to
tailor the system to meet his requirements. One drawback to this
method is that unauthorized users can gain access to a system that
is not physically locked by performing an IPL on the system. The
user may then bid SCI before the IS command is executed.

A solution to this problem is to modify the terminal status data
on the =system disk. This will not only prevent unauthorized use
of the system, but will significantly speed up the execution of
the IS command where several terminals are involved.

Terminal status infarmation is maintained in the _System
Communications Area (EE;!‘, a procedure shared by the active SCI
procedure

tasks. This resides on the system program—&ile
».S$PROGA) and contains entries for stations

The initial status for all stations 1is set equivalent to the
following MTS responses:

MODIFY TERMINAL STATUS
TERMINAL NAME: STxx
NEW STATUS «©ON/OFF): ON
NEW MODE +ITY/VDT): TTY
LOGIN REQUIRED?: NO
USER PRIVILEGE CODE: 7
DEFAULT MODE JTTY/VDT): VDT

There 1is a 16 word area allocated in the SCA for each of the 39
stations SCI is capable of supporting. The information affected
by the MTS command is contained in two of these 16 words in the
following manner:

5-11

byte / bit: O 1 2 3 4 5 6 7

fmm——— Fm——— tm——— Fm——— Fo——— HEg R m— fm———— +

I on/ 1 ! T7VG.VDY' |

0 | off-1 user privilege I current terminal mode !
I line ! code ! !

R - to———— Fomm—— tmm——— tm———— tm———— Fm———— Fm———— +

| I

1] station ID in binary !
{ [

pm———— e Fm———— Fmm——— Fo———— Fo——— Fmm——— Fm———— +

pom——— tm———— fm———— e tm———— e tom——— fm——— +

llogin| default Vo oDy !

16 lreq'd ! user privilege | default terminal mode !
I 2 1 code ! !

pmm—— R Fom———— fm———— tm——— Fomm——— tm———— fom——— +

! '

17 0 0 0 0 0 0 0 0 !
' !

Fm———— tm———- Fmm———- tm———— tomm———— fm——— fm———— fm———— +

Byte 0, bit O:

0 oﬁ-line
1 off-line

Stations marked as off-line cannot access SCI and can only be used
as physical I/0 devices by the DX10 operating system. In
addition, stations marked off-line are not listed by the List
Terminal Status LTS) command. It may be desireable to mark all
stations not physically generated in the system as being off-line
to remove them from the LTS listing. Remember that the SCA will
contain entries for stations STO0l through ST39 regardless of the
number of stations actually specified during SYSGEN. All stations
are initially marked as being on-line.

Byte 0, bits 1-3:
0-7 = User Privilege Code
This field contains the user privilege code associated with this

station when login is not required and, therefore, a user ID and
associated privilege code are not available to SCI.

5-12

Byte 0, bits 4-7:

TTY mode - D/T Yo,
VDT mode — A¢t oW
Y——

>1
>F

This field describes the mode of the station to SCI which
determines how menus are to be displayed, etc.

Byte 1:
>01 - >27 = Station ID in binary
The station ID in binary 01 through >27) is maintained here and

must be preserved when bits in the preceding byte sbyte 0) are
modified with the Modify Program Image wMPI) command.

Byte 16, bit 0:

0
1

LOGIN not regquired
LOGIN required gq——ro

Login required indicates that a user must supply a valid User ID
and optionally a password to access SCI. All stations are
initially marked such that login is not required.

Byte 16, bits 1-3:
0-7 = Default User Privilege Code

The default wuser privilege code is used to establish a maximum
user privilege code for this station regardless of the privilege
code associated with a user ID at login or the user privilege code
assigned via the MTS command to the station. All stations azare
initially given a default privilege code value of 7. This value
can only be modified by using the MPI command.

Byte 16, bits 4-7:

>1 = Default TTY mode —DB/7 D¢
>F = Default VDT mode —A1¢ O N

This defines an wupper limit on the capabilities of the physical
device associated with this station id. Stations marked in VDT
mode can be operated in either VDT or TTY mode. Stations marked
in TTY mode may be operated only in TTY mode. An INVALID MODE
CHANGE error will be received when attempting to set NEW MODE =
VDT with the MTS command if the default mode has been established
as TTY. Actual TTY devices should be altered to indicate the
default mode as TTY.

Oyrk (7 = 2wyt P

The fields that you might wish to permanently alter on the

disk are:

*

On/Off-line status

1from

system

on to off for devices not

physically present in the system).

LOGIN required
integrity).

* Current Terminal Mode ifrom TTY to VDT for all VDT
stations).

* Default User Privilege Code from 7 to 1,2,...,6 as
appropriate). This field 1is not accessible by the MTS
command.

* Default Mode +from VDT to TTY for any physical TTY
device). This field 1is not accessible by the MTS
command.

5.3 MODIFYING THE SYSTEM DISK
Modifying the system disk 1is accomplished through the Modify .
Program Image MPI) command as follows
MODIFY PROGRAM IMAGE
i : . PROGRAM FILE: .SS$SPROGA
<o bRarg OUTPUT ACCESS NAME: iBtown Gas GrtScmésly
(g PPp 083 Q - 37 MODULE TYPE: PR or PROCEDURE)
6¢4© " /% MODULE NAME OR ID: SCA wor 02 -- verify with MPF)
so (o - 3% ADDRESE: >xxxx -
VERIFICATION DATA: >Yyyy
4f DATA: >zzzz
9 CHECKSUM: >22ZZ-—cs9vE B<pnT
where:

XXXxXx =- the address of the station entrys tbyte 0 or byte

16) to be modified

YYYY —- the current disk data

zzzz —-- the value to be written to the disk 'CHECKSUM is

optional)

The address of the station entry can be computed from the address
of ST39 which is >0020. Since each station entrv reguires 16
words, the address of ST38 would be >0040. Each station's entry
address can then be computed until then address of the entry for

STO01l is computed as >04EO.

ifrom

no to yes to insure system

User Privilege Code -from<:>to 1,2,...,6 as appropriate).

5-14

/’/_ i /HPE
<éhis example shows how you would modify ST37 to be off-line.

\.
“——MODIFY PROGRAM IMAGE
PROGRAM FILE: .SS$SPROGA
OUTPUT ACCESS NAME:
MODULE TYPE: PR
MODULE NAME OR ID: SCA
ADDRESS: >0060
VERIFICATION DATA: >7125
DATA: >F125

CHECKSUM:
byte / bit: 0 1 2 3 4 5 6 7
tm———— to——— Fom——— Fom———— tm———- tmm—- Fmm——— Fm——— +
o 11 1 1 ' 0 0 0 1 1
0 I on- ! user privilege | current terminal mode !
| line ! code ! !
$m——— to———- tm———- tom———- tmm——— tmm—— tmm——— fm———— +
I 0 0 1 0 0 1 0 1 1
1 | station ID in binary !
I |
pm———— pm———— Fm———— Fm——— tm——— Fm———- fo———— tm———- +
Becomes:
byte / bit: 0 1 2 3 4 5 6 7
tmm——— pm———— Fm———- tm——— tm———— pmm——— Fm———— tm———— +
1 v 1 1 1 1t 0 0 0 1 !
0 I off- 1 user privilege ! current terminal mode |
! line !l code ! '
pm——— Fm———— tm——— tm———- Fmm———— te———- Fomm—— tm——— +
I 0 0 1 0 0 1 0 1
1 ! station ID in binary !
! !
Fm———— pm———— tm———— tm———— tm———- tm——— Fm———— fm——— +

The following will be displayed:

VERIFICATION DATA

0060 7125

CURRENT IMAGE

0060 7125 5354 3337 0000 0000 0000 0000 0000
NEW IMAGE: CHECKSUM = F125

0060 F125 5354 3337 0000 0000 0000 0000 ©O0CGO

This example shows how you would modify STO04 to come up in VDT
mode with login required.

5-15

MODIFY PROGRAM IMAGE
PROGRAM FILE: .SSPROGA
OUTPUT ACCESS NAME:
MODULE TYPE: PR
MODULE NAME OR ID: SCA
ADDRESS: >0480 —J7 P4
VERIFICATION DATA: >7104

DATA: >7F04 ichange to VDT mode)
CHECKSUM:
byte / bit: 0 1 2 3 4 5 6 7

pm———— e tm——— t=——— Fm——— tm——— Fm———— fm———— +

I 0 1 1 1 1 10 0 0 1 !

0 ! on- | user privilege ! current terminal mode !

| line | code !]

Fmm—— fm——— Fm——— tm——— tm——— tm——— tm——— Fm———- +

I 0 0 0 0 0 1 0 o !

1 ! station ID in binary !

i i

tm——— pm——- tm——— tm———- Fm———-— e Fm———— tm——— +

Becomes:
byte / bit: 0 1 2 3 4 5 6 7

Fm——— e t=———- tm——— tm——— Fmmmm—tm———— tm———- +

!0 v 1 1 1 v 1 1 1 1 1

0 I on- ! user privilege ! current terminal mode !

| line I code ! !

Fm———- e te——— Fm———— tm——— tm———— tm——— Fem———- +

0 0 0 0 0 1 0 o !

1 ! station ID in binary !

! !

pm——— tm———- tm———— Fmm———— pmm——— R tm——— tm——— +

The following will be displayed:

VERIFICATICN DATA

0480 7104

CURRENT IMAGE

0480 7104 5354 3034 0000 0000 0000 0000 0000
NEW IMACE: CHECKSUM = 7F04

0480 7F04 5354 3034 0000 0000 0000 0000 0OO0O

This example shows how you would modify ST04 to come up in VDT
mode with login regquired.

MODIFY PROGRAM IMAGE
PROGRAM FILE: .S$PROGA
OUTPUT ACCESS NAME:
MODULE TYPE: PR
MODULE NAME OR ID: SCA
ADDRESS : >0060{ﬂ£5"
VERIFICATION DATA: >7F00

DATA: >FF00 'require login)
CHECKSUM:

byte / bit: 0 1 2 3 4 5 6 7
tm——— tomm—— fm——— tom———- fo——— fom——— to———— fm——— +
I o ' 1 1 1 v 1 1 1 1 1
16 Ww/out ! default user ! default terminal mode !
Nogin ! privilege code ! !
b st ———— fomm—— tom—— tm——— tm————- O +
- ' . ’
17 I 0 0 0 0 0 0 0 0o !
| :]
fom——— tmm——— fm———— tm———— tm———— Fm——— R fm———- +

Eecomes:
byte / bit: 0 1 2 3 4 5 6 7
fom——— tmm——— tm——— tm———— tm———— fm———— tm——— tm——- + .

I 1 v 1 1 1 11 1 1 1 1
16 login! default user I default terminal mode !
Ireq'd ! privilege code I !
Fmm———— tmm———— tom———— tm———— R fm——— fo———— Fom———— +
| !
17 0 0 0 0 0 0 0 o !
! [
tm———— tm——— tm———- tom——— fmm—— tm———— Fm———- Fmm——— +

The following will be displayed:

VERIFICATION DATA

0490 7FQ0

CURRENT IMAGE

0490 7F00 0000 0000 0000 0000 0000 0000 0000
NEW IMAGE: CHECKSUM = FFO0O0

0490 FF00 0000 0000 0000 0000 0000 0000 0000

5-17

5.4 NEWS FILE

SCI has a facilitiy for displaying messages to the user on an as
needed basis. This facility is called the news file and is a
sequential file stored in .SSNEWS. The user may create or modify
this file with the Text Editor. The news file, if it exists, will
be displayed each time a user bids SCI or logs on.

5.5 MAIN MENU

The main menu is the first menu displayed if the terminal 1is 1in
VDT mode. It will be displayed every time the terminal is in the
menu display cycle provided no other menus have been called for.
The main menu shipped with a system is stored in .S$SPROC.MSLC. If
you wish to change the main menu to something other than the one
that has been } by Texas Instruments, you may use the menu
option of the(.OPTION}primitive as explained in Module 4. You may
also wish to—havé a main menu that is system wide. If so, you
should first create a new menu with the Text Editor and store it
in a temporary file. To replace the main menu, all stations on
the system but one must be either off, in TTY mode, or displaying
a main menu other than the one supplied with the system. The
te CC) command may be used to copy your new menu to

5.6 STARTUP AND SIGNOFF TASKS
You may wish to have a <certain procedure performed every time
someone either bids or gquits SCI. An example of such a task is a
user written task that will compute the amount of time that a user
has been logged onto the system. You can write ©procedures to
perform these startup and signoff tasks and store theF~in:§he PRCC
library. The command procedures must be called\ﬂSOO;for the
startup procedure and MS$01l for the signoff procedure. -~y
[fox Toratn @
5.7 SEQUENCE CF EVENTS
The sequence of events for SCI when login is required is:

1. Accept and validate user ID and optional passcode.

2. Retrieve user synonym table and set <certain system
synonyms e.g., $$ST, $$UI, $$CC, $SMO, ME, etc.

3. Display news file if .SSNEWS exists.
4. Execute M$S00 if it exists.

5. Display main menu MSLC or menu specified by .OPTICN) if

5-18

in VDT mode.
At signoff:
6. Copy synonym table to .SSTCALIB.

7. Execute MS01l if it exists.

When login 1is not required the same sequence of events occurs
except for steps 1 and 6 and the first part of step 2.

5.8 COMPLETION CODES

Most of the existing command processors such as the assembler, the
various compilers, and the link editor, set a completion code that
may be accessed through the sysnonym $$CC. If your procedure or
batch stream executes any of the processors, it is a good practice
to check the value of §$SCC after their completion. This can be
accomplished with the .IF statement. The status of the completion
code should be one of the following:

>0000 No warnings or errors
>4000 Warnings
>8000 Errors

COBOL users - 'may also set the right most byte of the condition code
from their program. Execution of a STOP literal statement in a

COBOL program will cause the literal or code created by the user
to be set in the condition code.

>0033 Implies normal completion with a user code of 33.

5.9 ©SCI MODE

The synonym $$SMO contains a two digit hexadecimal code for the
current mode of a station.

>00 Batch mode
>01 TTY mode
>0F VDT mode

CLE COMPILE, LINK, AND EXECUTE) = 5,

FILE NAME = ACNM

.USE

.SYN CS = "TI.SRC", CO = "TI.OBJ", CL = "TI.LST"

*

* === COMPILE PROGRAM ===

*

XCCF SOURCE @CS.&FILE NAME,
OBJECT @CO.&FILE NAME,
LISTING = @CL.&FILE NAME

=== JF NO WARNINGS OR ERRORS, BUILD LINK CCNTROL FILE ===

.IF @$$CC, EQ, O
.DATA TI.LCF.&FILE NAME, SUBSTITUTION = YES
LIBRARY .SS$SSYSLIB
FORMAT IMAGE ,REPLACE

* F *

PROC RCOBOL
DUMMY

INCLUDE 'RCBPRC)
TASK &FILE NAME

INCLUDE 'RCBTSK)
INCLUDE 'RCBMPD)
INCLUDE Q@QCO.&FILE NAME
END

.EOD

*

=== EXECUTE LINK EDITOR ===

XLE CONTROL

LINKED
LISTING

TI.LCF.&FILE NAME,
TI.PROGF,
TI.LMAP.&FILE NAME

WAIT

*
1}

== IF NO WARNINGS OR ERROCRS, EXECUTE PROGRAM ==

.IF @S$SCC, EQ, O
AL LUNO = "",
ACCESS = TI.PROGF,
PROG FILE = YES
XCTF PROG FILE LUNO = @S$SSLU,
TASK ID OR NAME = &FILE NAME
RL LUNC = @S$SSLU
.ENDIF
.ENDIF
.SYN CS="", Cozllll’ CL=""
QSSYN

LAB EXERCISE

Write a procedure that will link a COBOL object program as a DX10
task. The procedure must create the link control file, execute
the link editor, and optionally create the program file if it does
not already exist. The keywords that should be used by your
procedure and their meaning are:

OBJECT ACCESS NAME -- pathname of the COBOL object program |
APPLICATION NAME -- name to be given to the task

PROGRAM FILE NAME -- name of the program file that 1is to
receive the linked output

lst LINK TO THIS OUTPUT FILE =-- has this program file been

been used before, if not, then you will have to create the
program file

LIBRARY ACCESS NAME -- library to be searched in an effort
to resolve references toptional keyword)

LISTING ACCESS NAME -- file or device to which the link map
is to be sent

Your procedure should create a temporary file to contain the link
control file and then delete this file when the 1link editor has .
terminated. Use SST to create a unigque file name. Be sure that
you erase any synonyms that are generated by your procedure.

5-21

MODULE 6

BATCH COMMAND STREAMS

OBJECTIVES
* Write and execute a batch stream.

* Use all applicable SCI functions in a batch stream.

6.1 BATCH STREAMS

The user can commmunicate with SCI in background using commands
that are in a batch stream. SCI in the batch stream does not
interact with the terminal when a batch stream is being executed.
This implies that all commands in the batch stream must be in the
proper format. That 1is, all commands must include required
keywords and responses.

The batch feature is very useful when executing a very long task
or a series of ‘tasks. Operator intervention 1is not required
except to place the batch stream into execution. Once the bkatch
stream has beqgun execution, the foreground of the station |is
available to the user.

6.2 EXECUTE BATCH

The XB command is used to place a batch stream into execution.
(] XB
EXECUTE BATCH

INPUT ACCESS NAME: (fut (aspre w| Xé - Commmn)
LISTING ACCESS NAME:

where:
INPUT ACCESS NAME -- sequential media containing the batch
commands
LISTING ACCESS NAME -- file or device to be used for listing

the batch stream and any messages that are generated by it
Commands are entered in a batch stream in the same manner that
they are entered in an SCI ©procedure. If a command is to be
entered, it must include the required keywords and a valid
response. You may abbreviate keywords but must follow the same
rules that where required for abbreviating kevwords in a3 PROC.
All primitives are valid for inclusion in a batch stream.
Certain commands may not be used in a batch stream. They are:

* All Debug and Text Editor commands

* Activate Task AT) command

* Kill Background Task KBT) command

* Show Background Status $STS) command

6-2

* Modify Synonym MS) command
* Execute GEN990 XGEN) command
* __Medify—Votume—Imrformatior MYV Er—commrand—

6.3 KILL BACKGROUND TASK

The KBT command allows you to terminate the execution of any
background activitiy at the station.

{1 KBT

6.4 SHOW BACKGROUND STATUS

The SBS command will display a message that describes the status
of background activity at the station.

[1 sBs

SHOW BACKGROUND STATUS

AWAITING COROUTINE ACTIVATION

Vol Q- #he Bow Nece £x/>m~m'w5

6.5 WAITING FOR BACKGROUND TERMINATION

The WAIT command will lockout the foreground of a terminal while a
background task is executing. After starting the execution of
background task, simply key in the command WAIT. This command may
be aborted to free up the foreground by striking the CMD key on a
911 VDT or bv striking CTRL and X on a TTY device. A message
similar to those displayed by the SBS command will then appear and
the foreground becomes available.

6-3

[] WAIT

--WAITING FOR BACKGROUND TASK TO COMPLETE--

== FOREGROUND COMMAND EXECUTING ==

6.6 BEGIN AND END BATCH

Two commands may be used to begin and terminate the batch stream.
The BATCH command will cause the user and station IDs to be listed
at the beginning of the batch stream listing as well as the input
and listing access names from the XB command. The date and time
will also be listed. You may optionally include the synonym table
by including the keyword LS = YES. The purpose of this command is
to delete all the system synonyms from the synonym table before
execution of the batch stream begins so that synonym table
overflow does not occur.

The EBATCH command will cause the date and time to be placed at
the end of the batch stream listing. The synonym table may be
included in the 1listing by using the same keyword LS = YES. 1If
the keyword TEXT = "xxxxx" is used, the user supplied text |is
supplied in place of the usual batch streem completion message.

Recall that the primitive .STOP may be used to send a message to
the for=ground terminal local file from a batch stream as well as
setting the synonym $$BC. It may be placed anywhere in the batch
stream or used in place of the EBATCH command.

6.7 ERROR COUNT

The Error Count yEC? command may be useful when working with a
very lengthv b stream. This command will check the value of
the condition code $SCC) and if it is greater than 0, increment
the synonym S$ESC by one. If placed after each batch stream
command, the user may check for successful completion of that
command. The total number of errors may be displayed at the end
of the batch stream by using .STOP. This will eliminzte the need
to check the batch stream listing if no errors were encountered
since error messages become a part of the listing.

If the user has set the condition code from a COBROL program, you

may wish to modify this PROC since it assumes that any value for
$$CC greater than zero is an error.

6-4

Use of primitives to bid a task or a system utility does not allow
the condition code to be set. If the user needs to check the
condition code after performing a specific function, the task or
utility should be bid by using a PROC and not a primitive.

BATCH

.SYN CS=TI.COBOL.SRC

.SYN CO=TI.COBOL.OBJ

.SYN CL=TI.CCBOL.LST

XCC SOURCE=CS.MAIN,
OBJECT=CO.MAIN,
LISTING=CL.MAIN

EC

XCC SOURCE=CS.SUBI,
OBJECT=CO.SUBI1,
LISTING=CL.SUB1

EC

XCC SOURCE=CS.SUR2,
OBJECT=CO.SUB2,
LISTING=CL.SUB2

EC
.IF @$ESC, GT, 0

.STOP TEXT="CANNOT LINK -- @SE$C ERRORS IN COMPILE PHASE"
.ENDIF

.DATA TI.COBCL.LCF.PROG1
LIBRARY .SS$SYSLIB
LIBRARY TI.CCBOL.CBJ
FORMAT IMAGE, REPLACE

PROC RCOBOL
DUMMY

INCL tRCBPRC)
PROC SUBS
INCL 'SUBLl) SUB2)
TASK MAIN
INCL tIRCBTSK)
ALLOCATE

INCL '‘RCBMPD)
INCL MAIN)
END

L] EOD
XLE CONTROL ACCESS NAME=TI.COBOL.LCF.PRCG1,
LINKED OUTPUT=TI.COBOL.PROGF,
LISTING ACCESS NAME=TI.COBOL.LMAP.PROG1
EC

EBATCH TEXT="@$ESC ERRORS ENCOUNTERED"

Figure 6-1

6.8

CREATING A KEY FILE

To create a key indexed file in batch mode, the batch stream must
include a CFKEY command followed by 1 to 14 KEY commands and an
ENDKEY command. The keywords for the CFKEY command are:

The

The

The

Paoe, A Lo vp Adprcr SR

PATHNAME wrequired)
LOGICAL RECORD LENGTH wreguired)
PHYSICAL RECORD LENGTH

INITIAL ALLOCATION

SECONDARY ALLOCATION

MAXIMUM SIZE rrequired)

keywords for the KEY command are:

START POSITION irequired)
KEY LENGTH irequired)
DUPLICATES?
MODIFIABLE?

ENDKEY command does not have any keywords.

commands must be entered in order and must all be present.

BATCH LS=Y
*

* === CREATE MASTER INVENTORY FILE ===

*

CFKEY PN="TI.INV.MSTR", LRL=80, MS=3500
KEY SP=1, KL=5, DUP=N, MOD=N

KEY SP=6, KL=20, DUP=Y, MOD=Y

KEY SP=48, KL=6, DUP=N, MOD=Y

ENDKEY
*

*

= MAP KEY FILE TO VERIFY ATTRIBUTES ===
= DETERMINE FILE ALLOCATION OF NEWLY CREATED FILE =

* =
*
MKF PN="TI.INV.MSTR"

MD PN="TI.INV.MSTR", SF=N
EBATCH

Figure 6-2

1 [

x5

LAB EXERCISE

Write and execute a batch stream that will compile the program
that you wrote for the 1lab exercise in Module II. The batch
stream should then build the link control files required by that
exercise and execute the Link Editor for each control file. Be
sure to check for succesful completion of the Link Editor after
each link.

6.9 SUMMARY OF USER WRITTEN SCI

SCI procedures and batch streams should be written to simplify the
execution of application programs and various system tasks. Two
basic rules should be kept in mind when writing SCI procedures and
batch streams.
T i '
&\l. Release synonyms as soon as possible. ::)

2. Use SCI primitives whenever possible.

The first rule will help prevent synonym table overflow. The
synonym table is a fixed 1length and may overflow if the user
requires the use of many synonyms. The user should always release
synonyms as soon as they are no longer needed. The following
examples delete their synonyms after the COBOL program has been
executed. If the user written SCI does «calls any system SCI
procedures, then it would be a good idea to also call QS$SYN to
delete any system synonyms.

The second rule will improve the execution speed of your procedure
or batch stream. When SCI calls a procedure, it must 1locate the
procedure file, open the file, execute the instructions, and close °
the file. All of this is time consuming. Figures 6-3 and 6-4
show the same SCI procedure written with and without SCI

primitives. Timings were run from the point when the SCI command
was entered wuntil the first application program input was
requested. When not using primitives, the ©procedure took

approximately 11.2 seconds while the =second example which used
primitives took only about 6.5 seconds. Table 6-1 <shows a
detailed comparison of timings.

DDA DEMAND DEPOSIT ACCOUNTING DEMO)

AS SYN = INDEX1l, VAL = .DATA.DDA.INDEX1l

AS SYN = MAIN, VAL = .DATA.DDA.MAIN

AS SYN = PEOPLE, VAL = .DATA.DDA.PEOPLE

AS SYN = SYSFILE, VAL = .DATA.DDA.SYSFILE

AS SYN = THINGS, VAL = .DATA.DDA.THINGS

AS SYN = STOPS, VAL = .DATA.DDA.STOPS

AS SYN = PRTFIL, VAL = .DATA.DDA.PRTFIL

AS SYN = PRTFL2, VAL = .DATA.DDA.PRTFL2

XCTF P = >51, TASK = >12, DEBUG = NC, MESS = DUMY
.SYN INDEX1 = "", MAIN = "", PECOPLE = "", SYSFIL = ""
.SYN THINGS = "", STOPS = "", PRTFIL = "", PRTFL2 = ""
QS$SYN :

Figure 6-3 Using SCI Command Procedures

STE

> W N

DDA DEMAND DEPOSIT ACCOUNTING DEMO)

.SYN INDEX1l = .DATA.DDA.INLDEX1l
.SYN MAIN = ,DATA.DDA.MAIN
.SYN PECPLE = .DATA.DDA.PEOPLE
.SYN SYSFIL = .DATA.DDA.SYSFIL
.SYN THINGS = .DATA.DDA.THINGS
.SYN STOPS = .DATA.DDA.STOPS
.SYN PRTFIL = .DATA.DDA.PRTFIL
.SYN PRTFL2 = .DATA.DDA.PRTFL2
.BID TASK = >12, LUNO = >51, PARMS = ,NO,DUMY)
.SYN INDEX1 = "", MAIN = "", PEOPLE = "",
.SYN THINGS = "", STOPS = "", PRTFIL = "",
Figure 6-4 Using Primitives
Table 6-1
PROCEDURES
STEP CUMULATIVE
P PROCEDURE FUNCTIONS TIME TIME
Assign DDA & Process Start 0.33 0.33
Process 8 Synonyms 3.70 4,03
Bid COBOL Program 2.90 6.93
Begin COBOL Processing 4,30 11.23

tincludes file and runtime
processing)

6-9

SYSFIL = ""
PRTFL2 = ""

PRIMITIVES
STEP CUMULATIVE
TIME TIME
0.33 0.33
0.33 0.66
1.50 2.16
4.30 6.46

MODULE 7

SYSTEM GENERATION

OBJECTIVES
* Describe the function of the system task scheduler.
* Perform a system generation for a given configuration.

* Assemble, link, patch, test, and 1install a generated
system.

* Modify an existing system configuration.

7.1 DX10 TASK SCHEDULER

The DX10 Operating System reguires that each task have a defined
priority level. There are 132 priority levels:

Highest 0 DX10 internal use
/\. ,9'*
R1-R127 Real-time priorities JK) Conmiset]
oK MT L
Lowest 1,2,3 Interactive and batch mcde
4 Floating priority

Level zero is intended for the most critical system functions and
is reserved fcr DX10 internal use only.

Real-time priorities provide the wuser with the capability to
supercede all but the most important system tasks. For
applications which require an expedious access to the CPU, DX10
will delay some routine maintenance of system duties in an effort
to schedule real-time tasks.

Priorities one, two, three and four are designed to satisfy the
reguirements of most 1installations. Priority level one gives
quick response for programs which interact with the users
terminal, while level two 1is adequate for programs recuiring
multiple-disk accesses. Priority four automatically switches
priority levels between levels one &and two as the program
executes.

Priority level three is for batch streams and tasks not reguiring
user interaction. At this level tasks access the CPU only when no
higher priority tasks tinteractive, real time or system) are
waiting for execution.

DX10 &always <schedules the highest ©priority task waiting for
execution.

0 - System
PRIORITY STRUCTURE
R1-R127 - Real-Time

FuaT

<::::T/’l - Foreground Interactive
L{ 2
2 3

- Foreground Compute-Round
0 Ri. . .R127 1
3 - Background Batch)

Figure 7-1

7-2

Four SYSGEN parameters determine how the scheduler works:
1. TIME SLICING -@/@\Dﬁm\nr " YES

If the time slicing option is selected, then CPU time for a given
priority 1level will be allocated on a round robin basis among all
the active tasks on that gqueue.

If time slicing is not chosen, then the first task on a queue will
be allocated CPU time until it terminates, 1is suspended, or an
external event causes a rescheduling.

2. LENGTH OF TIME SLICE

T 9-180 N
A multiple of (50 msec intervals. o~ !

‘ < - "
3. TASK SENTRY - YES/@‘\~~ Dfror) “INO
UILS 1é#
Task Sentry is a SYSGEN option which guards against CPU lock out.
DX10 always executes the highest priority task in the system;
therefore, it is ©possible to lock out lower priority tasks for
seconds at a time.

When a task remains compute bound at any priority for a2 specified
number of 50 millisecond intervals, the Task Sentry will lower the
priority of the task by one. This lowering process continues for
as long as the task remains compute bound or until the task
reaches priority three. When the task does suspend, the task
sentry will restore the task to its proper priority.

4. SENTRY TIME

B

/ \\
A multiple of @E)msec intervals.

The scheduling may be affected by these events:

* PREEMPTIVE BIDDING - A higher priority task always gets
the CPU when it becomes active. .

* The executing task suspends.
* A time delayed task is due to be activated.

* The priority of the executing task is lowered by the Task
Sentry 11if Task Sentry is active in the system).

* A task completes a time slice if the time slice option
was included in the system).

Table 7-1 Interacting Factors in Scheduling

TASK SENTRY

YES NO

e T +
] ! !
I round robin on gueue ! round robin on queue !
I !]
YES | task bumped when | when queue is !
! sentry time up ! exhausted, next queue !
! ! is called !
TIME) ! i
SLICE o e fmm—m———————mm e m—— e +
| ! !
| first task on gueue I highest task hogs CPU !
NO I gets CPU until sentry ! as long as it wants !
| time up, then bumped ! ;

I |
T o +

7.2 SYSTEM GENERATION
DX10 is a modular operating system which can be tailored for each
user's needs. Customizing the system causes resources to be
utilized more efficienctly.
7.2.1 Customized System Generation.
Tailoring the operating system provides the following benefits:

* Reduces disk and memory space requirements by eliminating

unnecessry modules, such as Device Service Routines

IDSRs) for equipment not included in the system.

* Eliminates replication of DSRs for multiple installations
of a device type.

* Adds DSRs for non-standard devices.

* Adds user defined routines as operating system Supervisor
Calls SVCs).

* Adds user defined routines as Extended Operation
Prccessors XOPs).

* Adjusts operating system parameters for best efficiency

in a given installation.

7.3 GENERATING A DX10 OPERATING SYSTEM
System creation includes the following steps:

I.ZXGENI Generate

Assemble and Link

w N

B

Patch the Generated System
TGS Test the Generated System

4.
5. Perform an IPL and checkout system

6. IGS Install the Generated System

When performing a system generation on a new disk, the following
steps must be performed initially:

1. INV Initialize the New Volume

2. CFDIR Create the Directory .SS$SSYSGEN

S—e
———

7.4 GENERATE
— N PRf

[§GENiis an interactive program that, by prompting for information,
will allow a user to generate a new DX1l0 system. The Sysgen
utility wuses prompting and tutorial displays to guide the user
through the generation process. It creates a configuration file
and, a source file which must be assembled and linked to the rest
of the system. Sysgen can be performed in a short period of time.

Regquirements include information on the device configuration and
programs to be included, =such as an interrupt decoder. This
information should be gathered before keginning the XGEN process.

7.4.1 F&%ﬁyPrompts.

DATA DISC

Disk drive Jghich contains]the standard DX10 object modules in
@YSC_;/.) The default is DSO01.

TARGET DISC

Disk drive onto [which created fileslare to be placed/ The
default is DSOl.

w7 TmE: T

INPUT —RT

}Name of the _ystetho te modified. 1If you are creating a new
system, leave this field blank.

OUTPUT Yy

Name of the Igistem"_bELng__cxgaiééj Name should be 1 to 5

characters with the first character being alphabetic.

LINE

Power fregquency for the location of the system. USA =__§§;7
hertz; Europe = 50 hertz. The default is 60 hertz.

TIME SLICING ENABLED: Y£S ,
If the system haes time slicing then a task will execute for

one time slice value before being suspended and another task
is allowed to execute. The]default is YES]

TIME SLICE VALUE ~/=¥
If Time Slicing is enabled then the length of the time slice

must be designated. Its_value i multiple of =system time
units 150 Msec). Thesystem time unit.
TASK SENTRY ENABLED = AJ®
The Task Sentry will reduce the priority of a task that has
executed for a given period of time. Without the sentry, a
task could theoretically maintain control of the CPU. The
fdefault 1s N?j
\

TASK SENTRY VALUE-—
Jf06 -Bixs & The length of time, in system time units, that a task may

1 Fors execute before 1its priority is lowered. This is applicable
,) Spen only if Task Sentry is enabled. The default 1is 60 system
3‘° &%ﬁ; time units.

.)IO /bmvf_‘AB‘E‘Ewﬂ THEw M wp fong, (5/’*/"&775
Size of the sytem table <containing system log messages,
Intertask Communication Areas, buffered SVC blocks, and many

system built tables. A memory estimator is availa he
(#c¢ 1 Appendix to Volume V of the DX10 reference mwanuals that is

very useful with this prompt. [No default value/ is given.

COMMON = (P At OME Ui 6
The wuser meay optionally include his own obiject code that
defines a common area in memory for use by user tasks. There
is fic default value.| Deenver: (/\/oNé:S

INTERRUPT DECODER ~~ DEAFAOLLT = SR)

The user may supply the object <code of his own interrupt
decoder. There ismfault vafgi/ Deipver= Ao NE

FILE MANAGEMENT TASKS = X
The number o¢f £file managers to be included in the system.
The default value is sufficient for nearly all systems unless
a large number of disk drives will be in use. The/EETEETEllc

N —
o J

ﬁcyﬂwe o /S

L‘ N

cLock = S — _teze $= 1F po Goon Gonl/upy Up = /S
This is the'ﬁhterrupt 1evéi]of the system clock. The/aefault
is M -

>

ID
The user may have a startup task executed every time an IPL
is performed. The task must be installed on the system
program file, .SS$SPROGA. If this option is desired, enter the
installed ID of the task. There is no default value. ANE
OVERLAYS = < Ui FOR OULy Comman

The number of system overlay areas. Each overlay area
equires 400 wordsfuhhdding overlays may reduce the number of
disk accesses for system tasks. The Jdefault is 7]

SYSLog % &
Maximum number of system 1log messages that may be gueued
before being sent to the 1log file. Area for this 1is
allocated 1in the sytem table. If the value supplied is .tao

small, messages may be lost. If the value supplied _is too
large, the table may overflow. The Jdefault is 6

BUFFER MANAGEMENT < |04
Size, 1in bytes, of the file buffer, This should be at least

as large as the s ical record pr at least one ADU.
The [default is 1024 bytes]= /A

I/0 BUFFERS
Area used for special devices andginitiate 1/0 galls[This
value will be added to sytem tabtle area. £Size 1s given
b

in bytes. The [default is 0 by es}

Vg4 TExAS CSIR
INTERTASK Finy ©o7 Bow nvce SEQurEL
Size of the area within the sytem table area which is
dedicated for{Inter ication,]/such as that generated

by GETDATA and RPUTDATA-SYC calls. This may be reguired for
SORT/MERGE and thf 3780 communication emulator. It 1is

required For [TIEORMJ The default is 100 bytes.
28y78s [/ PAR

XKIF zy£S
Include /ipgic to support key index files%[Reguires

approximately 2K words i system root. This is necessary
for COBOL. The [default is YES./

SEQUENTIAL PLACEMENT : ¥4 r
This determines whether the segquenti shed placement
algorithm should be used. The Fefault is YES.

COUNTRY CODE - US
This parameter identifies the country where the system iz

installed. A list of the available country codes may be
(fiﬁid by entering a gquestion (?) mark twice. The |Jd€fault is
Us.

ZJ)C;:

POWER FAIL -No - we Ponsy PHvE

If the system has a backup power supply, 911 VDTs may e
included in the power recovery feature. The ﬁ@fault is NO

SCI BACKGROUND;J;‘WWOQS

This is the/Maximumjnumber of SCI tasks/that can be executing
in the background at one time. If a regquest is made for an
additional background task, the task will(:ﬁ§> queued. Each

background task be ond_the_gizfgbrequires words of system
table area. The(ﬁ%?ault is 2.

SCI FOREGROUND /¢ fOA£ CROVW) ﬁw (72710
This is the maximum number of SCI tasks that cen be executing
in the foreground at one time. An error will be generated if
an attempt is made to exceed this number. A good practice is
to haveldne foreground task available for each terminal]that
is being used for program development or the execution of
application tasks. Each foreground task beyond the first
will require awords of system table area. The default is

8.

BREAKPOINT =S ! § @ TERAr
The maximum number of Breakpoints used in debugginicf:figk

that y be present in the system at one time. The [default
is 16.

b
CARD 1
The Zzhtergupt level for the half of the expandgﬂ card used
for expansion <chassis 1 to 4. Interrupts within those

chassis will be given distinctive interrupt vositions.
Strike]RETgRNZto indicate no expansion chassis.

CARD 2
The interrupt level for the half of the expander «card used
for expansion chassis 5 to 7.

DEVICE

At this point, each device to be included in the system must
be specified. The prompts for each device are different and
based on the characteristics of the device. Each device must
be specified seperately even though multiple devices of one
device type are to be included. The hardware <configuration
of each device mnust be known before the device may be
defined. To begin the definition of & device, enter the
appropriate device mnemonic as given below:

* CR Card Reader
* LP Line Printer
* K820 320 Terminal

* ASR 733 ASR

* KSR KSR

Tiﬂ_GB;] 911 or 913 CRT «CRT may also be entered)
L

* MT Mag Tape
* DK Floppy Diskette 1tsingle sided/density)

o
,* COM?7 Communications
—

* 8D Nonstandard Device

The following pages explain some of the parameters that must be
defined for a few of the more common devices.

K820
CRU i

What is the CRU address of the device. This is needed for
I/O0 operations. Determined by the hardware configuration.
Should be given on the top of the chassis. The default is
>00.

ACCESS TYPE
A record oriented device has exclusive access only during an
I1/0 operation. A file oriented device has -exclusive access
from open to close. The default iisECORD}

TIME OUT
Time given, 1in seconds, for an I/O operation. If operation
has not occurred during the allotted time, the system assumes
an error has occurred with the device and aborts the
operation. A time out is generally not asigned to a keyboard
device. The default is 0.

CHARACTER QUEUE <R7: 1000
The number of unsolicited characters entered at the keyboard
which will be buffered between I/0 requests. Any characters
entered over this maximum will be lost. The]ﬁéfault is 6/
ceranet

INTERRUPT
Interrupt 1level assigned to the device. This is determined
by the hardware configuration. Multiple devices may share
the same interrrupt level. A decoder will determine which
device generated the interrupt. The default is 6.

vDT 00 cRT

CRU
The default is >100.

ACCESS TYPE —
The default is ECOR

TIME OUT

The default 1sff*i>

CRT TYPE = 2// —
quica%; whether this is a 911 VDT or a 913 VDT. The [default

@ 911 —

3270 CRU ADDRESS Fop
If this device is to be used with the 3270 communicatiocn
emulator, then the CRU address of the emulator must be given
here. Strike RETURN if this option is not to be used.

CHARACTER QUEUE 1630/
The default is 6.

INTERRUPT
The default is 10.

EXPANSION CHASSIS
Indicate which expansion chassis this device is 1located on.
This prompt is only displayed if the interrupt level entered
was the same as that assigned to the expander card.

EXPANSION POSITION —
Indicate the Jinterrupt level in the expansion chassis]that is
assigned to the device. This prompt is only displayed8 if the
interrupt level entered was the same as that assigned to the
expander card.

CRU
The default is >60.
ACCESS TYPE _
The default 1=}FILEl \\)
TIME OUT . po T [/705/7’

The default is (30] seconds.

PRINT MODE (R#4l. £(0— 3D Jf

Indicate whether this is a/gggggﬁ or a parallel line printer.
The [B10 _is serialy the 22 and 2260 are parallel. The
default is SERIAL.

EXTENDED &(O - YES (0 AN

If the line printer has the extended character set, then the
logic for those characters needs to Dbe included for the
device. The default is NO.

7-10

3270 CRU ACRESS
The default is7§E57

INTERRUPT
The default isﬁ{fZ?

DS *Duy

TILINE
Indicate the]EiLINE addressf/ for this device. The default
value is device dependent.

DRIVES —
Indicate the Mer of dis drives supported by this
controller. From 1 to 4 drive can be suppororted by a
single <controller. Each will have the same TILINE address
and interrupt level. The default is 1.

DEFAULT RECORD SIZE W10 2FF =
Size of the default physical record. Should be egual _to the
size of an ADU on the system disk. The default is bytes.

sSvC
User-defined supervisor <calls may be included with the

operating system and then accessed through XOP eyel 15.
Information on SVC structure may be found iof the
DX10 reference manuals. Thi prompt is recuesti the
Toeginning label of the SVC code Strike[RETURN for noné.
XOP TExAS < /5

User-defined Extended Operati 1IXOPs) may be installed at
XOP Levels 0 through 14. olume V Dof the DX10 reference
manuals contains the informaticn needed to create an XOP. If

a user-defined XOP 1is to be included, indicate here the
level, else strike RETURN.

7.5 GEN990 COMMANDS

GEN990 operates in two modes:

1. Generate Mode <= Wwémw AnS PRos IS

2. Command Mode
The generate mode will .be used 1in responding to the prompts
described earlier. The command mode will ke used as needed zand is

entered by issuing a command. The commands are given in Table 7-
2.

7-11

COMMAND

WHAT

LIST

CHANGE

DELETE

GENERATE
STOP

HELP

SAVE

BUILD

Table 7-2 GEN990 Commands

SHORT FORM

W, ?

L, DS -
GIUE,([U’TlF DRW‘J'

RESULT

Provide an explanation of the
given parameter. If none is
is specified, an explanation
will be given of the para-
meter just prompted.

Print out value of a GEN990
parameter. If is in-
dicated, all defined para-
meter values are printed.
GEN990 requests a listing
device.

Change the value of a given
parameter. The original
value of the parameter 1is
displayed first.

Delete a device. This may
only be used after a change

command was issued and the

device name displayed.

Return to generate mode.

Terminate GEN990.

Abort whatever action 1is 1in
process and return to command
mode.

Save the oreviously defined
parameters, putting them on
the output file. Useful when
a sysgen cannot be completed
at that time.

Build the configuration, the
source, and the link control
files, and terminate GEN990.

7.6 ASSEMBLE AND LINK GENERATED SYSTEM

GEN990 will build the following:

7-12

Da&oBT FET

conrtC -
1. Configuration File D @ SouRCE PEICI Foe
2. Source File Lyon STRM
AHBSTRM
3. Link Edit Control Stream
4. The Batch Stream necessary to complete the System

Generation

NEEP LInKIOP = RPess o) £ RenSVAD
Once GEN990 has reached successful completion, it is necessary to
assemble and link the operating system. This is done with the

Assemble and Link Generated System ALGS) command as shown in
Figure 7-2.

r[]d ALGS Q5 t2 30 rua T Runl

ASSEMBLE AND LINK GENERATED SYSTEM

TARGET DISK: Disk unit which contains the GEN990
output files.
SYSTEM NAME: Name of output given in GEN990.
~DSDATA LISTING: File name for Macro Assembler listing.
g ATCH LISTING: File name for batch SCI listing.

ERROR S
— ;w%&%éf _
Josge © Figure 7-2 ALGS Command

[] ALGS
ASSEMBLE AND LINK GENERATED SYSTEM

TARGET DISK: DSO1
SYSTEM NAME: SYS1
DSDATA LISTING: .S$SYSGEN.SYS1.DSLIST
BATCH LISTING: .SS$SSYSGEN.SYS1.BTCHLIST

Figure 7-3 Example ALGS Command

As the ALGS process will execute in the background, you may wish
to issue a WAIT command. ALGS will normally take about 3C
minutes. The following message will be displayed upon successful
completion.

7_:::7ALGS NORMAL TERMINATION **x*

<

7.7 PATCH GENERATED SYSTEM

Once ALGS has sucessfully completed, the operating system must be
patched before an IPL may be performed. This 1is done with the
Patch Generated System PGS) command as shown in Figure 7-4.

[] PGS

PATCH GENERATED SYSTEM
TARGET DISK: Disk containing all of the files
output by GEN990 and ALGS.
SYSTEM NAME: Name of output given in GEN990.
BATCH LISTING: File name for batch SCI listing.

Figure 7-4° PGS Command

[1 PGS

PATCH GENERATED SYSTEM
TARGET DISK: DSO1
SYSTEM NAME: SYS1
BATCH LISTING: .S$SYSGEN.SYS1.PGSLIST

Figure 7-5 Example PGS Command

PGS executes in the background, as did ALGS. Issue a WAIT
command. PGS should take about 5 minutes.

e, (7reprr farot (7@
7.8 TEST GENERATED SYSTEM

The system is now ready to be tested. Execute the Test Generated
System IGS) command and perform and IPL to start the system
checkout procedure. Should the system fail to work properly,
performing another IPL will cause the original system image to be
reloaded.

[] TGS
TEST GENERATED SYSTEM
TARGET DISK: Disk unit specified as the target disk

during GEN990, ALGS, and PGS.
SYSTEM NAME: Name of output given in GEN990.

Figure 7-6 TGS Command

7-14

[] TGS

TEST GENERATED SYSTEM
TARGET DISK: DSO01
SYSTEM NAME: SYS1

Figure 7-7 Example TGS Command

7.8.1 System Checkout.

TGS will set the new operating system up so that it may be loaded,
by performing an IPL, and tested. Follows steps similar to these:

1. Perform an IPL.
2. Bid SCI from a terminal and initialize the system.

3. Bid SCI at each terminal. Do not exceed the foreground
limit specified in GEN990.

4, Execute an SCI command from each terminal. Send a file
to each disk and tape drive on the system as well as the
liézliz?nters, ASRs, and KSRs.

- CH aed . Detepw

Should any of these steps fail, the system 1is not fully
operational. Check the hardware configuration, does it reflect
the device descriptions given GEN990? 1If the new system does not
function properly, another IPL will load the criginal system.

c

7.9 INSTALL GENERATED SYSTEM

Once the system checks out, it is ready to be installed as the
primary operating system. This may be done with the 1Install
Generated System 1IGS) command. The IGS commend modifies the
volume information on the specified disk pack to select a new
operating system as the primary system.

[] IGS
INSTALL GENERATED SYSTEM
TARGET DISK: Disk unit specified as the target disk

during GEN990, ALGS, PGS, and TGS.
SYSTEM NAME: Name of output given in GEN990.

Figure 7-8 IGS Command

7-15

[1 IGS

INSTALL GENERATED SYSTEM
TARGET DISK: DS01
SYSTEM NAME: SYSl1

Figure 7-9 Example IGS Command

The system 1is now ready to be fully operational. Each IPL will
cause the new system to be loaded into memory.

7.10 SYSTEM UPKEEP

SCI provides several commands for maintaining your system.
Included among these are the following:

* List Device Configuration LDC)

* Show Memory Status SMS)

* Show Memory Map (SMM)

The List Device Configuration 1LDC) command causes the devices
that have been included in the system configuration to be listed.
Figure 7-10 shows an example of this command. Volume II of the
DX10 reference manuals contains a description of the output
generated by the LDC command.

[] LDC

LIST DEVICE CONFIGURATION

LISTING ACCESS NAME: heet)

/
sy,
DEVICE TYPE ADDRESS INT CHAS POS STATE COSEBV

CMO1 COMM 0020 6 ON N
Cso1 CASSETTE 0000 6 CN N
Cs02 CASSETTE 0000 6 ON N
DKO1 DISK 01co 3 ON N
DKO02 DISK 01CO 3 ON N
Ds01 DISK F800 15 ON N
DS02 DISK F800 15 ON N
DS03 DISK F820 7 ON N
EMO1 NON-STANDARDO0540 10 1 6 ON N
LPO1 PRINTER 0060 14 ON N
LP02 PRINTER 0460 10 1 15 ON N
MTO1 MAG TAPE F880 12 ON N
STO1 KEYBOARD 0000 6 ON N
ST02 VDT 0580 10 1 7 ON N
STO03 VDT 05A0 10 1 14 ON N
ST04 VDT 0480 10 1 3 ON N
STO05 VDT 04A0 10 1 11 ON N
STO06 VDT 05cCo 10 1 8 ON N
STQO7 VDT 05EQ 10 1 9 ON N
STO08 VDT 04C0 10 1 4 ON N
ST09 VDT 04EQ 10 1 10 ON N
ST10 KEYBOARD 0440 10 1 2 ON N
TMO01 NON-STANDARDO500 10 1 12 ON N

Figure 7-10 LDC Command

The sysgen dialog that produced the previous configuration example
may be found in Appendix B.

7-17

The Show Memory Status SMS) command is useful in finding the size
of the operating system, 1in seeing how much memory the system
recognizes it has, in determining the efficiency of the system
table area, and in finding the Foreground/Background limit for SCI
tasks. The output of the SMS command, which is shown in Figure 7-
11, is explained in Volume II of the DX10 reference manuals.

[1 sSMS

SHOW MEMORY STATUS
LISTING ACCESS NAME:

SHOW MEMORY STATUS

TOTAL MEMORY SIZE = 176 K woR®dS
DX10 OS SIZE = 43.5 K woRrP S USER AREA = 132.5 K woehJ

g) BREA T e T T T

CHsC TS D £ SYSTEM TABLE AREA - (10616 HORD

CURRENT USAGE = 4927 WORDS LARGEST AREA USéE:ﬁ 8087 WORDS
SCI INFORMATION

FOREGROUND LIMIT = 10 TERMINALS CURRENTLY ACTIVE = 6 TERMINALS
BACXGROUND ACTIVE LIMIT = 3 TASKS ACTIVE/WAITING = 2/ 0 TASKS

Figure 7-11 SMS Command

w By ES

The Show Memory Map nSMﬁT command also displays information about
system memory and the size of the operating system. This command
also gives the user information on the amount of memory that is in
use, the usage of the system disk, and the usage of the CPU. A
graphic representation of physical memory 1is displayed that
indicates the 1installed and run IDs of any tasks or procedures
that are active in the system. Buffers in memory are also
identified. The SMM command does not have any prompts.

[] SMM Y Sscewd .f/;h,w;u@,

LAB EXERCISE

Perform a partial sysgen but do not include all of the devices
that are currently installed on the system. Terminate the sysgen
being sure to save the configuration.

Execute the XGEN command again and complete the previous sysgen.

Assemble and 1link the generated system. Patch and test the
generated system and determine that the newly created system |is
functional. Do not install the generated system. Perform another

IPL to reload the primary system. Don't forget to use the IS
command.

MODULE 8

SYSTEM BACKUP AND CORCL INSTALLATION

5> E

The user is responsible for backing up the/system disk and data
files either on disk or on magnetic tapel. The backup copies can
be made using the Copy Directory «D), ackup Directory BD),
Restore Directory #RD), or the Disk Copy/Restore DCOPY) command.

8.1 SYSTEM BACKUP ol

The type of media idisk or tape) being used determines the command
that 1is wused to perform the copy. Copy Directory copies one
hierarchy #disk) to another hierarchy idisk). Backup Directory
copies a hierarchy idisk) to a sequential medium /magnetic tape).
Restore Directory copies a sequential medium smagnetic tape) to a
hierarchy «disk).

DCOPY can be used to copy from disk to disk, from disk to tape, or
from tape to disk.

Ps vkl CHECHERDOZRD W AL Jog Fovcremn J1erF
8.1.1 Copying from Disk to Disk Using Copy Directory.

The Copy Directory D) command allows users to copy a set of
files under one directory on a disk to another directory on a
disk. The contents of the source directory do not change as a
result of the copy operation. Files and directories that do not
exist 1in the destination directory are automatically created by
Copy Directory. The CD command creates the topmost directory
equal in size to the topmost directory being copied.

The CD command copies all files and aliases in a directory, except
files named .SSROLLA and .SSCRASH, unless the user limits the CD
command with directives and options. Directives are supplied to
the CD command in the form of a control file as described in the
Volume II of the DX10 reference manuals. The options 2zre

described in Table 8-1.
8.1.1.1 CD Command Format. //// UJZ"bbl Mane I

COPY DIRECTORY / Op: Twt) ON WPT
INPUT PATHNAME: '

OUTPUT PATENAME PsH /fr7 .
CONTROL ACCESS NAME:
LISTING ACCESS NAME:)
OPTIONS: ADD,ALIAS, fg/epck

8-1

The user should respond to the CD prompts as follows:

INPUT PATHNAME: Enter the pathname identifying the
topmost directory of the set of files to
be copied. Optionally, the pathname
identifies a single file when only one
file is being copied.

OUTPUT PATHNAME: Enter the pathname that identifies the
directory to which DX10 copies the file
or set of files identified by the input
pathname.

CAUTION

The output pathname MUST specify a directory.
For example, to copy .MY.FILES to .YOUR.FILES,
specify .MY.FILES as the input pathname and
.YOUR as the output pathname. Do not use
.YOUR.FILES for the output pathname as the

resulting file pathname would be
.YOUR.FILES.FILES.
CONTROL ACCESS Press RETURN to specify that no control
NAME: file is to be used.
LISTING ACCESS Enter the device name of the file
NAME: pathname to which DX10 should list a

summary of the results of the copy
operation. Press RETURN to have the
listing displayed at the terminal.

OPTIONS: Enter one or more of the following
options separated by commas:

ADD
ALIASES
NOALIASES
REPLACE

Press RETURN to accept the default options
of ADD,ALIASES. See Table 8-1 for a
description of the available options.

NOTE

Although a control file, a master pathname,
and a copy pathname are all optional responses
to prompting messages, a control file must be
specified if either of the other responses 1is

8-2

not given. Both a master pathname and a copy
pathname must be provided if a control file is
not specified.

8.1.1.2 CD Command Example.

The following example shows the use of the CD command to copy the
contents of the directory named VOL1.MYFILES to the directory
named VOL2.HISFILES:

[] CD
COPY DIRECTORY
INPUT PATHNAME: VOL1.MYFILES
OUTPUT PATHNAME: VOL2.HISFILES
CONTROL ACCESS NAME:
LISTING ACCESS NAME:
OPTIONS: ADD,ALIASES,REPLACE

The pathnames specified for the CD, BD, RD, VC, and VB commands
cannot start with disk wunit names ‘e.g., DS02.ABCFILES). Use
volume names such as MYDSC.ABCFILES.

Table 8-1 CD, RD, BD Options
Option Purpose

ADD Files are to be copied unless a file with
the same name and at the same level already
exists in the destination directory.

REPLACE Files are to be copied even if a file with
the same name and at the same level already
exists on the destination directory. The
existing file is deleted and replaced with
the file being copied.

ALIASES All aliases associated with a file being
copied are to be copied unless an alias
already exists with the same name and at
the same level in the destination directory.

NOALIASES No aliases are to be copied.

BLOCK BLOCK specifies that records will be grouped
in 9600-byte blocks. Each block will be
written as a physical record.

NOBLOCK NOBLOCK specifies that each record will be
written seperately without blocking.

8-3

MULTI MULTI specifies that the directory spans
more than one magnetic tape volume.

When multiple tapes must be used and the end
of the tape 1s encountered, the following
message is displayed at the terminal:

MOUNT TAPE X. TYPE TO QUIT, Y TO CONTINUE.

where X is the number of the next volume. The
command can be terminated by entering a S.
‘Control then returns to SCI without finishing
the process. Otherwise, it 1is necessary to
mount the next tape. When the tape is ready,
enter Y. If the tape is not ready or if an
error is received, such as a wrong volume
number, the error is displayed at the terminal
and the tape prompt is reprinted. The prompt
will be reprinted until the user enters $ or
the tape is in the ready position. When Y |is
entered and the tape is in the ready position,
the command continues processing.

NOMULTI Multiple tapes will not be used.

8.1.2 Copying from Disk to Tape Using Backup Directory.

The Backup Directory BD) command allows users to copy a set of
files under a directory to a sequential file or to a magnetic tape
device, excluding cassette tapes, in a format that allows later
restoration of the backup copy by a Restore Directory RD)
command. The Verify Backup VB) command can be used to verify a
copy made by Backup Directory.

Backup Directory copies all files and aliases in a directory,
except the files named .SSROLLA and .SSCRASH, unless the user
limits the BD command with directives and options. Directives are
supplied in the form of a control file as described in Volume II
of the DX10 reference manuals. Options are described in Table 8-
1.

8.1.2.1 -BD Command Format.

[l BD
BACKUP DIRECTORY
DIRECTORY PATHNAME:
SEQUENTIAL ACCESS NAME: MT6/, B2 cfc
CONTROL ACCESS NAME:
LISTING ACCESS NAME:
OPTIONS: ALIASES,NOBLOCK ,3L0CH

The user should respond to the BD prompts as follows:

DIRECTORY Enter the pathname identifying the

PATHNAME: topmost directory of the set of files to
be copied. Optionally, the pathname
identifies a single file when only one
file is being copied.

SEQUENTIAL ACCESS Enter the name of the device or a
NAME: pathname identifying the sequential file
to which DX10 should backup the directory.

CONTROL ACCESS Enter the device name or file pathname
NAME: from which DX10 reads control directives
to control the copy operation.

LISTING ACCESS Enter the device name of the file

NAME: pathname to which a summary of the results
of the backup operation are to be listed.
Press RETURN to have the listing displayed
at the terminal.

OPTIONS: Enter one or more of the following
options, separated by commas, to specify
whether files and aliases being copied
are to replace files and aliases of the
same name on the destination directory:

ALIASES
NOALIASES
BLOCK
NOBLOCK

Press RETURN to accept the default options
of ALIASES,NOBLOCK. Refer to Table 8-1 for
an explanation of the options.

8.1.2.2 BD Command Example.

The following example shows the use of the BD command to copy the
contents of the directory named .SAMPLE to the magnetic tape
mounted on the device named MTOl:

(] BD
BACKUP DIRECTORY
DIRECTCRY PATHNAME: .SAMPLE
SEQUENTIAL ACCESS NAME: MTO1l
CONTROL ACCESS NAME:
LISTING ACCESS NAME:
OPTIONS: ALIASES,NCBLOCK

8.1.3 Copying from Tape to Disk Using Restore Directory.

The Restore Directory IRD) command restores a set of files from a
sequential file or magnetic tape to a directory on a disk volume.
The options are described in Table 8-1.

8.1.3.1 | RD Command Format. —IAPE —_— ZBbrq

7 “&D
RESTORE DIRECTORY
SEQUENTIAL ACCESS NAME:
DIRECTORY PATHNAME:
LISTING ACCESS NAME:
OPTIONS: ADD

The meaning of the RD prompts is the same as in the BD command.
8.1.3.2 RD Command Example.

The following example shows the use of the the use of the RD
command to copy the contents of the magnetic tape mounted on the
device named MTOl to a directory on disk named .SAMPLE:

[l RD
RESTORE DIRECTORY
SEQUENTIAL ACCESS NAME: MTOl
DIRECTORY PATHNAME: .SAMPLE
LISTING ACCESS NAME:
OPTIONS: ADD

—r— e e e

jhvr)
8.2 USE OF THE MODIFY VCLUME INFORMATION COMMAND

If a system disk has been backed up using any of reviously
described commands, the Modify Volume Information :MVI) command
an

must be used btefore an Initial Program Load IPL) ¢ € performed
using the backup disk. This step is not regquired if the backup
was made using the DCOPY command.
The following functions may be performed by the MVI command:

* L - List

* (C - Change

* Q - Quit

The files and information that may be designated by the MVI
command are:

* S = System Image
* O - System Overlay File

* P - System Program File

8-6

* L - System Loader File

* V - Volume Name

The user should respond to the MVI command as shown in the
following example.

[] MVI

MODIFY VOLUME INFORMATION, _. , = oM v,ﬁyJEkib”
CONTROL ACCESS NAME: ME— J7°/945) iz rron Bos

MVI

DISK? DS02 tenter disk drive or volume name to be modifed)
COMMAND L/C/Q)? C

WHICH ITEM 8,0,P,L,V)? S

PRIMARY: SYysl tenter name of primary system)

SECONDARY

SELECT: P

COMMAND L/C/Q)? C

WHICH ITEM ,0,P,L,V)2 O

PRIMARY: SSOVLYA ientered by user)

SECONDARY: ’ Y

SELECT: P

COMMAND L/C/Q)? C

WHICH ITEM 5,0,P,L,V)? P

PRIMARY: S$PROGA tentered by user) k.
SECONDARY? o Yot NA

SELECT: P npAGE
COMMAND L/C/Q)? C _—¢

WHICH ITEM S,0,P,L ? L

PRIMARY: SS$LOADER entered by user)
SECONDARY: '

SELECT: P

The user should verify the entries that were made by 1listing the
information.

COMMAND L/C/Q)? L
PRIMARY SECONDARY SELECT
SYSTEM IMAGE: SYS1 P

PROGRAM FILE: SSPROGA P
OVERLAY FILE: SSOVLYA P
LOADER FILE: SSLOADER P
WCS FILE: P
DIAGNOSTIC: = W ====—=-- P

N

VOLUME NAME: TICOBOL
COMMAND L/C/Q)? Q
MVI TERMINATED:

1 f&r/?ol//—)

P T IKJMH
8.3 JCREATING SYSTEM FILES Nor (eprp oM Bueopp

If this backup is to be used as a system disk, two additional
system files must be present on the disk. They are .SSROLLA and
.S$SCRASH. These files will not be copied by any of the previous
backup procedures that have been described. They must be <created
with the Create System Files CSF) command. The CSF command
appears as:

[] CSF

CREATE SYSTEM FILES
VOLUME NAME:—
MEMORY SIZE: (64— Jo7pL NEA

The user should supply the name of the backup volume and the
amount of memory that 1is installed on his system. It is very
important that these files be created to conform to the actual
memory size.

- W/ﬂ’,?c/t — WNo sk [ﬁ’%ﬂm.

8.4 USING DCOPY

The Disk Copy/Restore COPY) command copies and optionally
verifies disks used in the operating system. The copy 1is from .
disk to magnetic tape, magnetic tape to disk, or disk to disk.
The copy is performed track by track with no disk compression.
Disk Copy requires that the destination disk be error free and of
the same type as the source disk when the copy 1is from disk to
disk.

NOTE

One or more system files on the system disk
are updated when DCOPY is terminated.
Therefore, when meking a copy of the system
disk, verify the copy before terminating
DCOPY.

Disk Copy/Restore is faster than Copy Directory, Backup Directory,
and Restore Directory because no disk compression is performed.

The following 1is an example of a DCOPY operation which transfers
data from disk to disk:

[] DCOPY
DISK COPY/RESTORE

ANSWER 1Y/N) QUESTIONS WITH Y FOR YES
OR ANY OTHER CHARACTER EXCEPT $§ FOR NO

RESPOND ANYTIME WITH § TO RESTART

LISTING DEVICE NAME LPOl
VERIFY ONLY? Y N
DEFAULT? «/N) éNl—-uf! DesmutT
COPY WITHOUT VERIFY? Y/N) N
PAUSE ON ERROR? ¥/N) Y
FORCED WRITE AFTER READ ERROR Y/N) Y
USE ADU MAPS FOR CONTROL? 1Y/N) @I - D bv/ Bro Jrven,
MASTER DEVICE DS02
VOLUME ANYTHING
COPY DEVICE DS03
VOLUME SCRATCH
MOUNT DESIRED VOLUMES. TYPE CR WHEN READY
COPY AND VERIFY COMPLETE
QUIT w/N) Y
SYSTEM DISK READY? ¥/N) Y
DISK COPY TERMINATED

For a more complete description of the DCOPY prompts, refer to
Volume II of the DX10 reference manuals.

While DCOPY 1is generally faster that CD, BD, or RD, there are
several advantages in using the directory utility commands instead
of Disk Copy/Restore. Disk fragmentation can be eliminated if the
copy is made with Copy Directory, Backup Directory and Restore
Directory; no disk compression is done when DCOPY is used to make
the copy. When the CD, BD, or RD command is being used to make a
copy, other activities can be going on at the same time; no other
activity may be taking place on the disks involved, while a Disk
Copy/Restore is executing. DCOPY requires that the destination
disk be of the same type as the source disk; Copy Directory does
not have that requirement.

8.4.1 Backing Up a System Disk on Disk.

To backup a system on disk using Copy Directory, perform the
following steps:

1. Place the backup disk in a secondary disk drive.

2. Use the Initialize New Volume INV) command to
initialize the disk in the secondary drive.

3. Use the Copy Directory D) command to copy the contents

8-9

of the system disk to the disk in the secondary drive.

4. Use the Create System Files CSF) command to create the
system roll and crash files on the disk in the secondary
drive.

5. Use the Modify Volume Information MVI) command to
establish the name of the primary system, the system
overlay file, program file, and loader file.

6. Use the Unload Volume WV) command to unload the volume
in the secondary disk drive.

7. Remcve the backup disk from the secondary drive.

Optionally, the backup copy may be perform using the DCOPY command
as as described previously.

8.4.2 Backing Up a System Disk on Tape.

The user who has only one disk drive faces a special problem in
backing up the system: the system disk must be copied to another
disk. This can be done using magnetic tape and the Disk
Copy/Restore DCOPY) command. The procedure to backup a disk with
only one disk drive is as follows:

1. Mount the tape in the tape drive.

2. Press RESET, then LOAD on the tape drive. The READY
light will come on when the tape is in position.

3. Use the DCOPY command to copy the system disk to
magnetic tape.

4. Use the DCOPY command again to copy the magnetic tape to
the backup disk. After the DCOPY command has been
entered and the 1initial prompts have been answered,
DCOPY responds with this message: '"MOUNT DESIRED
VOLUMES. TYPE CR WHEN READY.' At this point, remove
the system disk from the disk drive and mount the backup
disk. Press RETURN when the backup disk is ready.

5. After the copy, DCOPY prompts with: 'SYSTEM DISK
READY? fY/N) '. Befcre answering this prompt, remove the
backup disk and replace the system disk. Then enter a
'Y' in response to the prompt.

CAUTION
Responding with a Y to the 'SYSTEM DISK

READY? /¥/N) ' prompt with any disk in the drive
other than the system disk wused to btegin

8§-10

execution DCOPY may result in a system crash,
destruction of data on the disk, or both.

To backup a system on magnetic tape using Backup Directo
perform the following steps:

1.

8.4.3

Mount the backup tape in the tape drive.

Press RESET, then LOAD on the tape drive. The READY
light comes on when the tape is in position.

Use the Backup Directory BD) command to copy the
contents of the system disk to the tape.

Use the Assign LUNO +AL) command to assign a LUNO to the
magnetic tape drive.

Use the Rewind LUNO {RWL) command to rewind the tape.

Use the Verify Backup B) command to verify the copy,
if desired.

Press UNLOAD on the tape drive.

Remove the tape from the tape drive.

NOTE

The operating system cannot be loaded directly
from tape. A minimal system should be kept on
disk to allow the Restore Directory command or
the Disk Copy/Restore command to be used to
copy the contents of the tape to disk. 1If the
copy to tape was made with Backup Directory,
the copy back to disk must be made wusing
Restore Directory. If the copy to tape was
made by the Disk Copy/Restore DCOPY) command,
the copy back to disk must be made by DCOPY.

Restoring a System from Magnetic Tape.

To restore the system disk using Restore Directory, perform
following steps:

l.

2.

Place the disk with the minimal system on it on DSOL.
Then initialize the system.

Mount the tape in the magnetic tape drive.

8-11

ry.

the

3. Press RESET, then LOAD on the tape drive: . The READY
light will come on when the tape is in position.

4. Place the backup system disk in a secondary disk drive.

5. Use the Initialize New Volume INV) command to
initialize the disk in the secondary drive.

6. Use the Restore Directory RD) command to copy the
contents of the magnetic tape to the backup disk in the
secondary drive.

7. Use the Create System Files ¢CSF) command to create the
system roll and crash files.

8. Use the Modify Volume Information MVI) command to
establish the name of the primary system, and the system
overlay file, the program file, and the loader file.

9. Press UNLOAD on the tape drive.

10. Remove the tape from the tape drive.

8.4.4 Backing Up a Data Disk.

To make a backup copy of a data disk, follow the steps outlined
above for backing up a system disk and omit using the Create
System Files «CSF) command or the Modify Volume Information MVI)
command. The CSF and MVI commands need to be used only if the
disk is going to be used as a system disk.

8.4.5 Verifying a Directory Copy.

The Verify Copy WC) command can be used to verify a copy made by
Copy Directory. The VC command compares a set of files under a
master directory against a set of files under a copy directory to
determine which files in each set match. The VC command detects
matches by comparing the file type, file use, file name, and file
contents of files at corresponding levels of each set of files.
The results of the verify operation are listed at a device or are
copied to a file specified by the user.

8-12

8.4.5.1 VC Command Example.

The following example shows the use of the VC command to compare
the set of files under the directory named VOL1.MYFILES against
the set of files under the directory named VOL1.HISFILES:

[] VvC
VERIFY COPY
MASTER PATHNAME: VOL1.MYFILES
COPY PATHNAME: VOL1.HISFILES
CONTROL ACCESS NAME:
LISTING ACCESS NAME: LPOl

8.4.6 Verifying a Backup or Restore Copy.

The output of a Backup Directory D) command or Restore Directory
iIRD) command can be verified by wusing the Verify Backup VB)
command. The VB command compares a set of files on a sequential
file or on magnetic tape to a set of files under a given directory
on a disk file to see which files in each set match. Verify
Backup detects matches by comparing the file type, file use, file
name, and contents of files at a device or a file specified by the
user. The results of the verify operation are listed at a device
or copied to a file specified by the user.

8.4.6.1 VB Command Example.

The results of the following example are that the set of files
under the directory named VOL1.MYFILES are compared ageinst the
set of files under the directory named VOL1.HISFILES. The summary
result of the verify operation will be written to the 1line
printer.

[] VB
VERIFY BACKUP
SEQUENTIAL ACCESS NAME: VOL1.MYFILES
DIRECTORY PATHNAME: VOL1l.HISFILES
LISTING ACCESS NAME: LPOl
MULTI-VOLUME?:

8.5 COBOL INSTALLATION

The CCBOL disk COBOLINS contains both the object files and the
batch stream necessary to install COBOL on DX10 version 3.X. A
disk map of COBOLINS showing the contents of this disk, the batch
strezm listings, and problem notification are contained in <che
product documentation package.

8-13

. CoBdoMN /NS

The installation batch stream is stored as the file
COBOLINS.INSTALL on the disk volume COBCLINS. In order to install
the COBOL Compiler and runtime support on a system, 1install this
disk, assign the synonym DSC and execute the batch stream. The
synonym DSC must be assigned to the disk on which COBOL is to be
installed.

l. Put the disk with volume name COBOLINS in disk drive
DS02 on a functioning 3.X system and load it. Be sure
to leave the write/protect on as you will not be writing
out to the disk.

2. To install the disk, execute the command:
IV UNIT=DS02, VOLUME=COBOLINS

3. To assign the synonym, execute the command:
AS s=DSC, V=DS01l

4, To execute the batch stream, execute the command:
XB Input=COBOLINS.INSTALL, LIST=.LISTING

The IV command installs the volume COBOLINS on the secondary disk
unit DS02. The Assign Synonym ®AS) command causes COBOL to be
installed on DS0l. The XB command accepts commands from the file
COBOLINS.INSTALL and executes them. These commands will:

1. Automatically delete any previously installed version of
COBOL.

2. Install COBOL and its overlays.

3. Apply any patches reguired for proper execution of the
processor on your system.

4. The output generated by the batch stream output will be
placed in a file called .LISTING which may be examined
with a Show File iISF) or Print File wF) command to
insure that COBOL was properly installed. A 0027 error
on a DF command, a 285F or 3158 error on a DT command, a
0026 error on a CFDIR command, or a 0001 error on a RL
command, are normal and should be ignored.

It will normally take 3 to 5 minutes for this batch stream to
execute. During this time you may wish to check the status of the
batch stream for completion and proper execution. Executing the
SCI commands SBS or WAIT should be used for this purpocse.

If you are installing COBOL from your system disk you must first
copy the installation media to vyocur system disk. Assign the
sysnonym COBOLINS to the directory .COBOLINS and procede as
previously outlined.

8.5.1 Removing COBOL Software from a System.

If you are generating a target system, it may be necessary to
remove the COBOL software from the system disk. Executing the
following commands will achieve this result. It 1is never
necessary to have language software on a system that is not going
to be used for development. If all of the applications have been
linked and installed in program files, this 1is sufficient to
execute the applications.

AS S=DSC, V=DS01l

DT P=DSC.SSDS, T=CCBOL
DT P=DSC.S$SDS§$, T=RCOBOL
DP P=DSC.SSDS, T=RCOBOL
DP P=DSC.SS$SPROGA, P=RCOBOL
DF P=DSC.SS$SYSLIB.RCBPRC
DF P=DSC.SS$SYSLIB.RCBMPD
DF P=DSC.S$SYSLIB.RCBTSK
DD P=DSC.S$SYSLIB.S$SUBS
DF P=DSC.SSPROC.XCC

DF P=DSC.S$PROC.XCCF

DF P=DSC.SS$PROC.XCP

DF P=DSC.S$PROC.XCPF

DF P=DSC.SS$PROC.XCT

DF P=DSC.S$PROC.XCTF

The 1last four PROCs should not be deleted from .SSPROC if they
will be called by any user-written PROCs.
8.5.2 Installing COBOL from Magnetic Tape.

In order to install COBOL from a magnetic tape, the wuser must
first <create a directory on either the system disk or a secondary
disk. A Restore Directory D) 1is then 1issued to move the
contents of the magnetic tape to the directory. The same sequence
as previously described is then executed, except that the disk is
already installed.

8.5.3 Verifying the Operation of COBOL.

To test COBOL, a sample program is provided on the disk. The
program must be compiled and executed.

1. XCCF SOURCE=COBOLINS.TESTCASE, OBJECT=.TSTOBJ, LIST=ME

2. XCPF OBJECT=.TSTOBJ, DEBUG MODE?=NO

8-15

MODULE 9

DX5 COBOL

OBJECTIVES

* ggggiibe the differences between DX10 COBOL and DX5

* Explain changes necessary to execute a DX10 COBOL
application on a DX5 system.

9.1 INTRODUCTION

DX5 is an operating system which provides an applications oriented
runtime only environment. No support is given for the development
of COBOL application programs. DX5 COBOL is wupwardly compatible
with DX10 COBOL, with few or no modifications necessary. DX10
COBOL programs may be executed on DX5 systems if modifications are
made to adapt them to the DX5 system regquirements.

9.2 DIFFERENCES FROM DX10
There are three major differences between DX10 and DX5 COBOL.
1. DX5 is an unmapped system.

The memory available on systems running DX5 is 64kb. This memory
is divided between the memory resident portion of the operating
system, the user's application program, and the system overlay
area. IRefer to Figure 9-1.) The maximum size of a COBOL program
is 1limited by the amount of memory that is required by the memory
resident portion of the operating system and the COBOL runtime.
When you 1IPL the system, it responds with the amount of memory -
available to the user. Program <size <can be computed while
developing on the DX10 system during the link edit phase. The
user will then know if there is enough memory available to 1load
the program, before actually trying to do so. If the amount of
memory available is not enough to support a COBOL program, the
user will have to incorporate programming technigues, such as
overlays and segmentation, into his programs.

! !
I '
! USER PROGRAM '
! or !
! !
I]
1 '

SCI
o e +
| {
! !
! OVERLAY AREA !
! I
i !
o +

Figure 9-1 DX5 Memory

2. DX5 is a single-tasking operating system.

Since DX5 is a single-tasking operatins system, it does not
support 1intertask communication. This capasbility requires a
multi-tasking operating system. TIFORMI990, SORT /MERGE, and
DBEMSS990 all require intertask communication if these utilites are
called under program control. Therefore these utilities cannot be -
executed from program control under DXS.

NOTE

SORT/MERGE cannot be called from within a
program. SORT/MERGE is supported as a stand-
alone task.

Because DX5 is a single-user station, the UNIT clause on the
ACCEPT statement 1is not supported. All I/O is directed to the
system console. COBOL programs that interface through the
intertask communication area cannot be supported under DX5.

3. Program chaining under DX5 functions differently.
DX5 cannot support one task bidding another, with the bid task

returning control to the calling task, once the bid task has
terminated. Therefore, program chaining, wusing the CSCBID

9-3

subroutine, works differently on a DX5 system than on a DX10
system. Under DX5, the bid task cannot return control back to the
bidding task. The bid task can, however, rebid the bidding task,
placing it back into execution at the beginning of is executable
code. Under DX5 the bidding task using the C$CRID subroutine must
have a value of 8 through 12 in the FLAGS data item of the calling
sequence, otherwise an error is returned.

9.3 DEVELOPMENT STEPS

DX5 is a non-development system. Development of DX5 COBOL
application programs must be done on a DX10 system. The
development steps are:

1. Develop source code using the DX10 Text Editor.

2. Compile the source code wusing the DX1l0 XCC or XCCF
commands.

3. If the application program regquires system routines,
link the program using the DX5 libraries.

4. Use dual/sided, double/density, flexible diskettes to
transport application to the DX5 system.

As can be seen, the development process is the same up to the
linking step, as long as program size is not a factor.

9.3.1 Linking for DXS5.

Because the output of the link editor will be transported to the
DX5 system, the user must ensure that the files bteing transported
have the correct blocking factor size. The easiest way to do this
is <create a directory with a 288 byte physical record size. All
files to be moved to the DX5 system should be output to this
directory.)

NOTE

Make sure the pathnames being used cn the DX5
system do not exceed the three level
restriction.

To 1link the DX5 object code produced by the DX5 compiler the user
must change three include statements in the link control =stream.
These are the three modules that make up the COBOL runtime. The
three statements that must be modified are:

replace .S$SYSLIB.RCBPRC with .DX5.SS$SSYSLIB.RCBPRC
replace .SS$SYSLIB.RCBTSK with .DX5.S$SYSLIB.RCBTSK

replace .S$SYSLIB.RCBMPD with .DX5.S$SYSLIB.RCBMPD

NOTE

It is assumed that the DX5 COBOL object 1is
installed on the DX10 system disk under the
directory .DX5.

These three include statements will bring in the necessary DX5
system routines rather than the corresponding DX10 routines.

FORMAT IMAGE

PROC COBOLRTM

INCLUDE .DX5.S$SYSLIB.RCRPRC
TASK CBLTASKI1

INCLUDE .DX5.SS$SYSLIB.RCBTSK
INCLUDE .DX5.S$SYSLIB.RCBMPD
INCLUDE TI.MPRCG1

INCLUDE TI.SPROGI

END

Figure 9-2

If a LOAD command is used in the link contrcl stream, you must Dbe
sure to include a LIBRARY directive for the DX5 =zystem likrary.
The LOAD command will then pull in the DX5 overlay manager from
the DX5 system library.

FORMAT IMAGE
PROC COBOLRTM
LIBRARY .DX5.SS$SYSLIB

LOAD

Figure 9-3

9.4 DX5 COBOL EXECUTION

For user convience, the same commands used to execute COBOL tasks
and programs under DX10 are used with DX5. Because the DX5 system
is a single-tasking system, executing with the XCT/XCTF or
XCP/XCPF commands has basically the same effect. Executing either
in foreground or background mode places the task into execution in
a manner similar to the foreground mode of the DX10 system. When
the XCT or XCTF command is entered the system will prompt for TASK
ID or NAME. The user must enter the TASK ID for the task to be
executed. DX5 does not support mapping the name to the ID.

9.5 MODIFYING DX10 PROGRAMS TO RUN UNDER DX5

There may be a few changes that need to be made. Most of these
changes are a result of the differences between DX10 and DX5
COBOL. The areas that need to be addressed are:

* If TIFORM990 or DBMS990 are called from the COBOL program
they must be removed. DX5 does not support either of
these utilities.

* If SORT/MERGE is called from a program, the call must be
removed and the sort operation performed external to the
program.

* If program <chaining is being performed, the method of
chaining must be examined to see which must be performed;
modification or deletion.

- If a nonreturning sto the calling program) chein is
being performed, then simply modify the FLAGS in
the data item of the calling segquence.

- If return to the calling program rrafter execution
of the <called program terminates) 1is to be
performed, then this application must be redesigned
to fit the single-tasking environment of DXS5.

- After the necessary modifications have been made,
the user should recompile the source code then
estimate the program size to ensure it will fit in
the memory available on the DX5 system.

* The user should create directories that will correspond
to the blocking buffers established during the DX5
sysgen. Usually these will be 288 bytes.

The user should ncw relink the object code produced by the
compiler, making sure to use the DX5 include statements in the
link control stream. Next, ccpy the created directory <containing
the generated files to media competible with the DX5 system.
Finally, execute the COBOL applicaticn on the DXS system.

9-%

APPENDIX A

INVENTORY SUBROUTINES

IDENTIFICATION DIVISICN.
PROGRAM-ID. RDINV.
*x *

* THIS SUBROUTINE IS USED TO READ THE INVENTCRY FILE.
* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990-10.
OBJECT-COMPUTER. TI-990-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT STOCK-FILE, ASSIGN TO RANDOM, "PIF";
ORGANIZATION IS INDEXED;
ACCESS IS DYNAMIC;
RECORD KEY IS PART;
ALTERNATE RECORD KEY IS DESC WITH DUPLICATES;
FILE STATUS IS FILE-STATUS.
DATA DIVISION.
FILE SECTION.
FD STOCK-FILE
LABEL RECORD IS STANDARD.
01 STOCK-RECORD.

03 PART PIC X15).
03 DESC PIC X «20).
03 cCOosT PIC 999V99.
03 QUANTITY-ON-HAND PIC 9.5).
03 REORDER-LEVEL PIC 915).
WORKING-STORAGE SECTION.
01 FILE-STATUS PIC XX.
01 TAG PIC X.
01 BLANK-LINE PIC X 80) VALUE SPACES.
LINKAGE SECTION.
01 PART-NO PIC 915).
01 DESCRIPTION PIC X 120).
01 STATIS PIC 9.

PROCEDURE DIVISION USING PART-NO, DESCRIPTION, STATIS.
DECLARATIVES.
FILE-ERRORS SECTION 0.
USE AFTER ERROR PROCEDURE ON STOCK-FILE.
CHECK-ERRORS.
IF FILE-STATUS = 99 DISPLAY "RECORD UNAVAILABLE "
LINE 23, ACCEPT TAG POSITION 0, GO TO READ-RECORD.

IF FILE-STATUS = 23 DISPLAY "INVALID PART NUMBER "
LINE 23,

ELSE DISPLAY "ERROR =-- FILE STATUS = "
LINE 23, DISPLAY FILE-STATUS POSITION 0.
ACCEPT TAG POSITION 0.
CLOSE STOCK-FILE.
EXIT-ERRORS.
EXIT PRCOGRAM.
END DECLARATIVES.
MAIN-ROUTINE SECTION 1.
SET-KEY.
MOVE 1 TO STATIS.
MOVE SPACES TO DESCRIPTION.

A-2

OPEN INPUT STOCK-FILE.
MOVE PART-NO TO PART.
READ-RECORD.
DISPLAY BLANK-LINE LINE 23.
READ STOCK-FILE RECORD KEY IS PART.
MOVE 0 TO STATIS.
MOVE DESC TO DESCRIPTION.
CLOSE STOCK-FILE.
EXIT-ROUTINE.
EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. RECPT.
* %

* THIS SUBROUTINE ADDS TO THE QUANTITY ON HAND.
* ok
ENVIRONMENT DIVISION.
CONFIGURATION SECTICN.
SOURCE-COMPUTER. TI-990-10.
OBJECT-COMPUTER. TI-990-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT STOCK-FILE, ASSIGN TO RANDCM, "PIF";
ORGANIZATION IS INDEXED;
ACCESS IS DYNAMIC;
RECORD KEY IS PART;
ALTERNATE RECORD KEY IS DESC WITH DUPLICATES;
FILE STATUS IS FILE-STATUS.
DATA DIVISION.
FILE SECTION.
FD STOCK-FILE
LABEL RECORD IS STANDARD.
01 STOCK-RECORD.

03 PART PIC X 5).
03 DESC PIC X 120).
03 cosT PIC 999V99.
03 QUANTITY-ON-HAND PIC 915).
03 REORDER-LEVEL PIC 915).
WORKING-STORAGE SECTION.
01 FILE-STATUS PIC XX.
01 TAG PIC X.
01 BLANK-LINE PIC X 80) VALUE SPACES.
LINKAGE SECTION.
01 PART-NO PIC 915),
01 QUANTITY PIC 9 15).
01 STATIS PIC 9.

PROCEDURE DIVISION USING PART-NO, QUANTITY, STATIS.
DECLARATIVES.

FILE-ERRORS SECTION O.
USE AFTER ERRCR PROCEDURE ON STOCK-FILE.

A-3

CHECK-ERRORS.
IF FILE-STATUS = 99 DISPLAY "RECORD UNAVAILABLE "
LINE 23, ELSE MOVE 0 TO TAG.
IF TAG = 1 GO TO READ-RECORD.
IF TAG = 2 GO TO UPDATE-RECORD.
IF FILE~STATUS = 23 DISPLAY "INVALID PART NUMBER "
LINE 23,
ELSE DISPLAY "ERROR -- FILE STATUS = "
LINE 23, DISPLAY FILE-STATUS POSITIOCN O.
ACCEPT TAG POSITION 0.
CLOSE STOCK-FILE.
EXIT-ERRORS.
EXIT PROGRAM.
END DECLARATIVES.
MAIN-ROUTINE SECTION 1.
SET-KEY.
MOVE 1 TO STATIS.
OPEN I-0 STOCK-FILE.
MOVE PART-NC TO PART.
READ-RECORD. ’
DISPLAY BLANK-LINE LINE 23.
MOVE 1 TO TAG.
READ STOCK-FILE RECORD KEY IS PART.
MOVE 0 TO STATIS.
ADD QUANTITY TO QUANTITY-ON-HAND.
UPDATE-RECORD.
DISPLAY BLANK-LINE LINE 23.
MOVE 2 TO TAG.
REWRITE STOCK-RECORD.
DISPLAY "Display Stock Status? ®w/N) "
LINE 23. :
ACCEPT TAG POSITION 0.
DISPLAY BLANK-~-LINE LINE 23.
IF TAG = "Y" CALL "SSTAT" USING PART-NO.
CLOSE STOCK-FILE.
=XIT-ROUTINE.
EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. ISSUE.
*
THIS SUBROUTINE ISSUES STOCK IF THE QUANTITY ON HAND

IS AT LEAST AS LARGE AS THE QUANTITY REQUESTED.
*

ENVIRONMENT DIVISION.
CCNFIGURATICN SECTION.
SOURCE-CCMPUTER. TI-950-10.
OBJECT-COMPUTER. TI-990-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STOCK-FILE, ASSIGN TO RANDOM, "PIF";
ORGANIZATION IS INDEXED;
ACCESS IS DYNAMIC;
RECORD KEY IS PART;
ALTERNATE RECORD KEY IS DESC WITH DUPLICATES:;
FILE STATUS IS FILE-STATUS.
DATA DIVISION.
FILE SECTION.
FD STOCK-FILE
LABEL RECORD IS STANDARD.
01 STOCK-RECORD.

03 PART PIC X 5).
03 DESC PIC X :20).
03 cosT PIC 999Vv99.
03 QUANTITY-ON-HAND PIC 95).
03 REORDER-LEVEL PIC 915).
WORKING-STORAGE SECTION.
01 FILE-STATUS PIC XX.
01 TaG PIC X.
01 BLANK-LINE PIC X 80) VALUE SPACES.
LINKAGE SECTION.
01 PART-NO PIC 915).
01 QUANTITY PIC 915).
01 STATIS PIC 9.

PROCEDURE DIVISION USING PART-NO, QUANTITY, STATIS.
DECLARATIVES.
FILE-ERRORS SECTION O.
USE AFTER ERROR PROCEDURE ON STCOCK-FILE.
CHECK-ERRORS.
IF FILE-STATUS = 99 DISPLAY "RECCRD UNAVAILABLE "
LINE 23, ELSE MOVE 0 TO TAG.
IF TAG = 1 GO TO READ-RECORD.
IF TAG = 2 GO TO UPDATE-RECORD.
IF FILE-STATUS = 23 DISPLAY "INVALID PART NUMBER "
LINE 23,
ELSE DISPLAY "ERROR -- FILE STATUS = "
LINE 23, DISPLAY FILE-STATUS POSITION O.
ACCEPT TAG POSITION O.
CLOSE STOCK-FILE.
EXIT-ERRORS.
EXIT PROGRAM.
END DECLARATIVES.
MAIN-ROUTINE SECTION 1.
SET-KEY.
MOVE 1 TO STATIS.
OPEN I-O STOCK-FILE.
MOVE PART-NO TO PART.
READ-RECORD.
DISPLAY BLANK-LINE LINE 23.
MOVE 1 TO TAG.
READ STOCK-FILE RECORD KEY IS PART.

IF QUANTITY-ON-HAND < QUANTITY GO TO DISPLAY-STATUS.

MOVE 0 TO STATIS.
SUBTRACT QUANTITY FROM QUANTITY-ON-HAND.
UPDATE-RECORD.

* * * ¥ *

DISPLAY BLANK-LINE LINE 23.

MOVE 2 TO TAG.

REWRITE STCCK-RECORD.
DISPLAY-STATUS. ’

DISPLAY "Display Stock Status? «/N) "

LINE 23.

ACCEPT TAG POSITION 0.

DISPLAY BLANK-LINE LINE 23.

CLOSE STOCK-FILE.

IF TAG = "Y" CALL "SSTAT" USING PART-NO.
EXIT-ROUTINE.

EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. REORD.
*

THIS SUBROUTINE PRINTS A LISTING OF ALL ITEMS WHERE
THE QUANTITY ON HAND IS LESS THAN OR EQUAL TO THE
REORDER LEVEL.

*
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990-10.
OBJECT-COMPUTER. TI-990-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT STOCK-FILE ASSIGN TO RANDOM, "PIF";
ORGANIZATICN IS INDEXED;
ACCESS IS SEQUENTIAL;
RECORD KEY IS PART;
ALTERNATE RECORD KEY IS DESC WITH DUPLICATES;
FILE STATUS IS FILE-STATUS.
SELECT PRINT-FILE ASSIGN TO PRINT, "RR"
ORGANIZATION IS SEQUENTIAL;
ACCESS IS SEQUENTIAL;
FILE STATUS IS PRINT-STATUS.
DATA DIVISION.
FILE. SECTION.
FD STOCK-FILE
LABEL RECORD IS STANDARD.
01 STOCK-RECORD.

03 PART PIC X 15).
03 DEsSC PIC X «20).
03 COST PIC 999vV99.
03 QUANTITY-ON-HAND PIC 915).
03 REORDER-LEVEL PIC 915).

FD PRINT-FILE

LABEL RECORD IS OMITTED.
01 PRINT-RECORD PIC X 180).
WORKING-STORAGE SECTION.

A-6

01

01

01

01

01

FILE-STATUS PIC XX.
PRINT-STATUS PIC XX.
TAG PIC X.
BLANK-LINE PIC X 80) VALUE SPACES.
FLAG PIC 9.
DATE-IN.
03 YEAR PIC 99.
03 MONTH PIC 99.
03 DAYS PIC 99.
1ST-HEADING.
03 FILLER PIC X31) VALUE SPACES.
03 FILLER PIC X17) VALUE "I NVENTOR
03 FILLER PIC X 32) VALUE SPACES.
2ND-HEADING.
03 FILLER PIC X 33) VALUE SPACES.
03 FILLER PIC X 114) VALUE "REORDER REPORT".
03 FILLER PIC X+13) VALUE SPACES.
03 DATE-O.

05 MONTH-O PIC 2Z9.

05 FILLER PIC X VALUE "/".

05 DAYS-O PIC 99.

05 FILLER PIC X VALUE "/".

05 YEAR-O PIC 99.
03 FILLER PIC X 12) VALUE SPACES.
3RD-HEADING.
03 FILLER PIC X 7) VALUE SPACES.
03 FILLER PIC X 4) VALUE "PART".
03 FILLER PIC X 6) VALUE SPACES.
03 FILLER PIC X 11) VALUE "DESCRIPTION".
03 FILLER PIC X1115) VALUE SPACES.
03 FILLER PIC X «4) VALUE "COST".
03 FILLER PIC X 5) VALUE SPACES.
03 FILLER PIC X 8) VALUE "QUANTITY".
03 FILLER PIC X 5) VALUE SPACES.
03 FILLER PIC X 7) VALUE "REORDER".
03 FILLER PIC X 8) VALUE SPACES.
4TH-HEADING.
03 FILLER PIC X 6) VALUE SPACES.
03 FILLER PIC X) VALUE "NUMBER".
03 FILLER PIC X 141) VALUE SPACES.
03 FILLER PIC X 17) VALUE "ON HAND".
03 FILLER PIC X %) VALUE SPACES.
03 FILLER PIC X 5) VALUE "LEVEL".
03 FILLER PIC X19) VALUE SPACES.
DETAIL-LINE.
03 FILLER PIC X 17) VALUE SPACES.
03 PART-O PIC 915).
03 FILLER PIC X 5) VALUE SPACES.
03 DESC-0 PIC X 120).
03 FILLER PIC X 14) VALUE SPACES.
¢3 (COsT-0 PIC 22Z.99.
03 FILLER PIC X 6) VALUE SPACES.
03 QUANTITY-ON-HAND-O PIC 22,2Z9.

03 FILLER

03 REORDER-LEVEL-O

PIC X16) VALUE SPACES.
PIC 2Z,229.

A-7

Y"Q

03 FILLER PIC X 9) VALUE SPACES.
PROCEDURE DIVISION.
DECLARATIVES.
STOCK-ERRORS SECTION 0.
USE AFTER ERROR PROCEDURE CON STOCK-FILE.
CHECK-STOCK.
IF FILE-STATUS = 99 DISPLAY "RECORD UNAVAILABLE"

LINE 23, ACCEPT TAG POSITION 0, GO TO READ-RECORD,

ELSE DISPLAY "ERROR =-- FILE STATUS = "
LINE 23, DISPLAY FILE-STATUS POSITION O.
ACCEPT TAG POSITION O.
CLOSE STOCK-FILE.
IF FLAG = 1 CLOSE PRINT-FILE.
GO TO EXIT-ROUTINE.
PRINT-ERRORS SECTION 1.
USE AFTER ERROR PROCEDURE ON PRINT-FILE.
CHECK-PRINT.
IF PRINT-STATUS = 93 DISPLAY "DEVICE NOT AVAILABLE"
LINE 23,
ELSE DISPLAY "ERROR -- PRINT STATUS = "
LINE 23, DISPLAY PRINT-STATUS POSITION O.
ACCEPT TAG POSITION Q.
CLOSE STOCK-FILE, PRINT-FILE.
GO TO EXIT-ROUTINE.
END DECLARATIVES.
MAIN-ROUTINE SECTION 3.
OPEN-FILES.
OPEN INPUT STOCK-FILE.
OPEN OUTPUT PRINT-FILE.
MOVE 1 TO FLAG.
MOVE LOW-VALUES TO DESC.
START STOCK-FILE KEY > DESC.
ACCEPT DATE-IN FROM DATE.
MOVE MONTH TO MONTH-O.
MOVE DAYS TO DAYS-O.
MOVE YEAR TO YEAR-O.
PRINT-HEADINGS.
WRITE PRINT-RECORD FROM 1ST-HEADING AFTER 2 LINES.
WRITE PRINT-RECORD FROM 2ND-HEADING AFTER 1 LINE.
WRITE PRINT-RECORD FROM BLANK-LINE AFTER 1 LINE.
WRITE PRINT-RECORD FROM 3RD-HEADING AFTER 1 LINE.
WRITE PRINT-RECORD FROM 4TH-HEADING AFTER 1 LINE.
WRITE PRINT-RECORD FRCM BLANK-LINE AFTER 1 LINE.
READ-RECORD.
READ STOCK-FILE NEXT RECORD WITH NO LOCK
AT END CLOSE STCCK-FILE, PRINT-FILE,
GO TO EXIT-ROUTINE.

IF REORDER-LEVEL < QUANTITY-ON-HAND GO TO READ-RECORD.

MOVE PART TO PART-O.

MOVE DESC TO DESC-O.

MOVE COST TO COST-O0.

MOVE QUANTITY-ON-HAND TO QUANTITY-ON-HAND-O.

MOVE REORDER~-LEVEL TO RECRDER-LEVEL-O.

WRITE PRINT-RECORD FROM DETAIL-LINE AFTER 1 LINE.
GO TO READ-RECORD.

EXIT-ROUTINE.
EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. SSTAT.
* ok

* THIS SUBROUTINE DISPLAYS THE STATUS OF A PART NUMBER.
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990-10.
OBJECT-COMPUTER. TI-990-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT STOCK-FILE, ASSIGN TO RANDOM, "PIF";
ORGANIZATION IS INDEXED:;
ACCESS IS DYNAMIC;
RECORD KEY IS PART;
ALTERNATE RECORD KEY IS DESC WITH DUPLICATES:
FILE STATUS IS FILE-STATUS.
DATA DIVISION.
FILE SECTION.
FD STOCK-FILE
LABEL RECORD IS STANDARD.
01 STOCK-RECORD.

03 PART PIC X 5).
03 DESC PIC X 20).
03 cosT PIC 999V99.
03 QUANTITY-ON-HAND PIC 915).
03 REORDER-LEVEL PIC 915).
WORKING-STORAGE SECTION.
01 FILE-STATUS PIC XX.
01 TAG PIC X.
01 COST-D PIC 22Z.99.
01 QUANTITY-ON-HAND-D PIC 2Z,229.
01 REORDER-LEVEL-D PIC 22,229.
01 BLANK-LINE PIC X +80) VALUE SPACES.
01 N PIC 99.
LINKAGE SECTION.
01 PART-NO PIC 9.5).
PROCEDURE DIVISION USING PART-NO.
DECLARATIVES.

FILE-ERRORS SECTION 0.
USE AFTER ERROR PROCEDURE ON STOCK-FILE.
CHECK-ERRORS.
IF FILE-STATUS = 99 DISPLAY "RECORD UNAVAILABLE "
LINE 23, ACCEPT TAG POSITION 0, GO TO READ-RECCRD.
IF FILE-STATUS = 23 DISPLAY "INVALID PART NUMBER "
LINE 23,
ELSE DISPLAY "ERROR -- FILE STATUS = "

A-9

LINE 23.
ACCEPT TAG POSITION O.
EXIT-ERROR.
EXIT PROGRAM.
END DECLARATIVES.
MAIN-ROUTINE SECTION 1.
SET-KEY.
OPEN INPUT STOCK-FILE.
MOVE PART-NO TO PART.
READ-RECORD.
DISPLAY BLANK-LINE LINE 23.
READ STOCK-FILE RECORD KEY IS PART.
PERFORM DISPLAY-STATUS THRU DS-EXIT.
CLOSE STOCK-FILE.
EXIT-ROUTINE.
EXIT PROGRAM.
DISPLAY-STATUS.
MOVE COST TO COST-D.
MOVE QUANTITY-ON-HAND TO QUANTITY-ON-HAND-D.
MOVE REORDER-LEVEL TO REORDER-LEVEL-D. '
DISPLAY "4==-memmmc e e e +"
LINE 16, POSITION 19.
PERFORM BOUNDARY THRU B-EXIT
VARYING N FROM 17 BY 1 UNTIL N = 24.
DISPLAY "+===mmecm e e e c e e e +"
LINE 24, POSITION 19.
DISPLAY "STOCK STATUS"™ LINE 17, POSITION 35.
DISPLAY "PART NUMBER" LINE 19, POSITION 22.
DISPLAY "DESCRIPTION" POSITION 22.
DISPLAY "COST" POSITION 22.
DISPLAY "QUANTITY ON HAND" POSITION 22.
DISPLAY "REORDER LEVEL" POSITION 22.
DISPLAY PART LINE 19 POSITION 40.
DISPLAY DESC POSITION 40.
DISPLAY COST-D POSITION 40.
DISPLAY QUANTITY-ON-HAND-D POSITION 40.
DISPLAY REORDER-LEVEL-D POSITION 40.
ACCEPT TAG.
PERFORM CLEAR-SCREEN THRU CS-EXIT
VARYING N FROM 16 BY 1 UNTIL N = 25.
DS-EXIT. EXIT.

BOUNDARY.
DISPLAY " I" LINE N, POSITION 19.
DISPLAY " I" LINE N, POSITION 62.

B-EXIT. EXIT.
CLEAR-SCREEN.

DISPLAY BLANK-LINE LINE N.
CS-EXIT. EXIT.

APPENDIX B

SAMPLE SYSGEN DIALOG

==========s======== GEN99(0-AUTO SYSGEN RELEASE 3.3.0 mm====z===========I

DATA DISC: 1DSO01)
TARGET DISK: DSO01)
INPUT:

OUTPUT: SYS1

LINE: 60)

TIME SLICING ENABLED? YES)
TIME SLICE VALUE:)

TASK SENTRY ENARLED? NO)

TABLE: ?
WHAT LENGTH IN WORDS DO YOU WANT THE SYSTEM TABLE TO BE: ?

THE SYSTEM TABLE AREA IS A MEMORY RESIDENT, RESERVED AREA THAT IS USED
TO MAINTAIN SYSTEM DATA STRUCTURES. THE SIZE OF THIS AREA IS HIGHLY
DEPENDENT ON THE SYSTEM CONFIGURATION. A GUIDELINE TO FOLLOW WHEN
SPECIFING TEIS AREA IS AS FOLLOWS:

SYSTEM TABLE SIZING

FEATURE ADDITIONAL WCRDS
BASE SYSTEM AREA * 1100 WORDS
ACTIVE FCREGROUND SCI ** 300 WORDS
ACTIVE BACKGROUND SCI ** 350 WORDS
ADDITIONAL PER INSTALLED DISK 200 WORDS

>>> ENTER ANY KEY TO CONTINUE <<XK

* SYSTEM AREA FOR A SINGLE TERMINAL SYSTEM; WITH 1 FOREGRCUND \
AND 1 BACKGROUND SCI ALLOWED; AND ONLY THE SYSTEM DISK INSTALLED
** THESE ESTIMATES ARE FCR NOMINAL LOADING.

GEN990 PROVIDES NO DEFAULT FOR THIS PARAMETER:
TABLE: 5K

COMMON: NCNE)

INTERRUPT DECODER: NONE)
FILE MANAGEMENT TASKS: 12)
CLOCK: 15)

ID: NONE)

OVERLAYS: 2)

SYSLOG:)

BUFFER MANAGEMENT: 1K)
I/0 BUFFERS: 0)
INTERTASK: «00) 512

KIF? YES)

SEQUENTIAL PLACEMENT?: YES)
COUNTRY CODE: US)
POWERFAIL: NO)

SCI BACKGROUND: 2)

SCI FOREGROUND: 8) 10
BREAKPOINT: 16)

CARD 1: 10

CARD 2:

CEVICE: K820
CRU: o00)
ACCESS TYPE: {RECCRD)

TIME OUT: 0)
CHARACTER QUEUE: 16)
INTERRUPT:)

DEVICE: VDT

CRU: ©100) 0580

ACCESS TYPE: «RECORD)
TIME OUT:)

CRT TYPE: 911)

3270 CRU ADDRESS: NONE)
CHARACTER QUEUE: 1)
INTERRUPT: 10)
EXPANSION CHASSIS: 1)
EXPANSION POSITION: 7

DEVICE: VDT

CRU: »100) 05AQ

ACCESS TYPE: .RECORD)
TIME OUT: +0)

CRT TYPE: 911)

3270 CRU ADDRESS: «NONE)
CHARACTER QUEUE:)
INTERRUPT: 10)
EXPANSION CHASSIS: 1)
EXPANSION POSITION: 14

DEVICE: VDT

CRU: o100) 0480

ACCESS TYPE: RECORD)
TIME OUT: 0)

CRT TYPE: 911)

3270 CRU ADDRESS: ©NONE)
CHARACTER QUEUE: 16)
INTERRUPT: 10)
EXPANSION CHASSIS: 1)
EXPANSICN POSITION: 3

DEVICE: VDT

CRU: ©100) 04AQ

ACCESS TYPE: ‘RECORD)
TIME OUT: «0)

CRT TYPE: :911)

3270 CRU ADDRESS: NONE)
CHARACTER QUEUE: 1)
INTERRUPT: 10)
EXPANSION CHASSIS: 1)
EXPANSION POSITICN: 11

DEVICE: VDT

CRU: »100) 05CO

ACCESS TYPE: «RECORD)
TIME OUT:)

CRT TYPE: 911)

3270 CRU ADDRESS: INONE)
CEARACTER QUEUE: +6)

INTERRUPT: 10)
EXPANSION CHASSIS: 1)
EXPANSICN PCSITION: 8

DEVICE: VDT

CRU: «100) O0SEOQ

ACCESS TYPE: :RECORD)
TIME OUT: Q)

CRT TYPE: 911)

3270 CRU ADDRESS: NONE)
CHARACTER QUEUE: 16)
INTERRUPT: 10)
EXPANSION CHASSIS: 1)
EXPANSION POSITION: 9

DEVICE: VDT

CRU: ©100) 04CO

ACCESS TYPE: RECORD)
TIME OUT:)

CRT TYPE: 911)

3270 CRU ADDRESS: NCNE)
CHARACTER QUEUE:)
INTERRUPT: 10)
EXPANSION CHASSIS: 1)
EXPANSION POSITICN: 4

DEVICE: VDT

CRU: ©100) 04EQ

ACCESS TYPE: RECORD)
TIME OUT: Q)

CRT TYPE: .911)

3270 CRU ADDRESS: ®NONE)
CHARACTER QUEUE: 16)
INTERRUPT: 10)
EXPANSION CHASSIS: 1)
EXPANSION POSITION: 10

DEVICE: K820

CRU: <100) 0440
ACCESS TYPE: RECORD)
TIME CUT: Q)
CHARACTER QUEUE: +b)
INTERRUPT: 16, 10
EXPANSION CHASSIS: 1)
EXPANSION POSITICN: 2

DEVICE: DS

TILINE: F800)

DRIVES: 1) 2

DEFAULT RECORD SIZE: 364)
INTERRUPT: 13) 15

DEVICE: DS
TILINE: +w800) OF820
DRIVES: 1)

DEFAULT RECORD SIZE: 1864) 288
INTERRUPT: 13) 7

DEVICE: MT
TILINE: w800)
DRIVES: 1)
INTERRUPT: 9) 12

DEVICE: LP

CRU: 60)

ACCESS TYPE: ILE)

TIME QUT: 130)

PRINT MODE: SERIAL)
EXTENDED? NC) Y

3270 CRU ADDRESS: WNONE)
INTERRUPT: 1114)

DEVICE: LP

CRU: ©60) 0460

ACCESS TYPE: ILE)

TIME OUT: 30)

PRINT MODE: SERIAL)
EXTENDED? «NO) Y

3270 CRU ADDRESS: NONE)
INTERRUPT: :14) 10
EXPANSION CHASSIS: 1)
EXPANSICN POSITION: 15

DEVICE: CM

CRU: 140) 020

CCMM PACKRAGE: 13780)
BUFFER SIZE:) 512
INTERRUPT: +8) 6

DEVICE: SD

CRU: 20) 0500

INTERRUPT CRU BIT: NA)
NAME: TM

KSB: NONE)

DSR WCRKSPACE: PDTMO1
INTERRUPT ENTRY: TMINT2

PDT FILE: .S$SYSGEN.PDTSTMO1
DSR FILE: .S$SYSGEN.CSRS$STM2
JVERRIDE? YES)

INTERRUPT: «15) 10
EXPANSION CHASSIS: 1)
IXPANSION POSITION: 12

JEVICE: SD

CRU: ©20) 0540
INTERRUPT CRU BIT: ®A)
NAME: EM

KSB: NONE)

JSR WORKSPASE: PDEMO1
INTERRUPT ENTRY: EMINT2

PDT FILE: .SSSYSGEN.PDTEMOIl
DSR FILE: .S$SYSGEN.DSRSEM2
OVERRIDE? (YES)

INTERRUPT: 1115) 10
EXPANSION CHASSIS: 1)
EXPANSION POSITION: 6

CEVICE:

SVC:
XQP:

CONFIGURATION FILE IS COMPLETE. DO YOU WANT TC SAVE IT? +YES)
x*k*k*x*k*** CONFIGURATION FILE SAVED **¥*ktkkkx

*kkkk***x DSDATA SOURCE FILE IS NOW BEING BUILT ***kx*kxxx

****%% THE LINK EDIT COMMAND STREAM SOURCE FILE IS BEING BUILT ******
*k%***x** BATCH FILE FOR SYSGEN COMPLETION IS NOW BEING BUILT ****%kx
DO YOU NEED INSTRUCTIONS TO COMPLETE THE SYSGEN? N

% Kk Kk ok ok ok kk GENQQO TERMINATED d d k %k Kk Kk kKK

APPENDIX C

SAMPLE SOLUTIONS

c-1

MODULE 1

Worksheet 1

WITHOUT SHARED PROCEDURES

TASK1 TASK2 TASK3
Mg +
1 [
I Pl 10K 10K 10 1
I p21 15K - —— I
I P22 -— 10K 10k 1
! TASK 15K 20K 10K 1
I TOTAL 40K 40K 30K !
I l
I 1

TOTAL is 110K

+
|
|
|
t
|
i
|
|
|
|
|
i
i
|
I
[
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
1
t
|
|
|
|
+

WITH SHARED PROCEDURES

TASK1 TASK2 TASK3
g Mt +
! 1
I Pl 10K -—- — 1
1 P21 15K -— -—
1 P22 —— 10K —
I TASK 15K 20K 10K !
I TOTAL 40K 30K 108 !
: ;
I]

TOTAL is 80K

Savings is 30K

Worksheet 2

LIBRARY
PROCEDURE
DUMMY
INCLUDE
PROCEDURE
INCLUDE
INCLUDE
INCLUDE
TASK
INCLUDE
ALLOCATE
INCLUDE
INCLUDE
END

LIBRARY
PROCEDURE
DUMMY
INCLUDE
PROCEDURE
DUMMY
INCLUDE
INCLUDE
INCLUDE
TASK
INCLUDE
ALLOCATE
INCLUDE
INCLUDE
END

TI.COBOL.OBJ
RCOBOL

.S$SYSLIB.RCBPRC
ULIB

1INSUB)

‘ADDNUM)

QUTSUB)
TASK1
.S$SYSLIB.RCBTSK

.S$SYSLIB.RCBMPD
PROG1)

TI.COBOL.OBJ
RCOBOL

.S$SYSLIB.RCBPRC
ULIB

'IINSUB)

'ADDNUM)

QUTSUR)
TASK2
.S$SYSLIB.RCBTSK

.S$SYSLIB.RCBMPD
'PROG2)

MODULE 2

Worksheet 1

LIBRARY
LIBRARY
PROCEDURE
DUMMY
INCLUDE
PHASE 0,
INCLUDE
LOAD
INCLUDE
INCLUDE
PHASE 1,
INCLUDE
PHASE 1,
INCLUDE
PHASE 2,
INCLUDE
PHASE 2,
INCLUDE
PHASE 1,
INCLUDE
END

.S$SYSLIB
TI.COBOL.OBJ
RCOBOL

tIRCBPRC)
ROOT
1IRCBTSK)

'RCBMPD)
IMAINPROG)
BEGIN
1SUBL)
MANIP
1SUB2)
CALC1
iISUB3)
CALC2
'SUB4)
QUIT
1ISUBS)

MODULE 4

Worksheet 1

.PROC UPINV RECEIPT R), ISSUE

APPENDIX C

SAMPLE SOLUTIONS

MODULE 1

Worksheet 1

WITHOUT SHARED PROCEDURES

TASK1 TASK2 TASK3
o e +
| !
I Pl 10K 10K 10K !
I p21 15K —-— -—- !
! P22 - 10K 10K !
I TASK 15K 20K 10K !
I TOTAL 40K 40K 30K !
1 I
{ !

TOTAL is 110K

+
I
|
|
|
|
)
|
|
!
I
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
i
i

+

WITH SHARED PROCEDURES

TASK1 TASK2 TASK3
ittt T T e P R +
[I
| Pl 10K - -—]
' p2l 15K -—- -— 1
I P22 -—— 10K _—
I TASK 15K 20K 10K !
] TOTAL 40K 30K 10K !
] 1
! 1

TOTAL is 80K

Savings is 30K

Worksheet 2

LIBRARY
PROCEDURE
DUMMY
INCLUDE
PROCEDURE
INCLUDE

TI.COBOL.OBJ
RCOBOL

.S$SYSLIB.RCBPRC
ULIB

1IINSUB)
‘ADDNUM)

MODULE 4

Worksheet 1

.PROC UPINV RECEIPT R), ISSUE :I), REORDER REPORT #)) = 4,
ENTER OPTION = STRING -

.SYN I = TI.INV.OBJ
SYN OPT = &ENTER OPTION

=== VALIDATE OPTION ===

* ok ke

.IF QOPT, NE, R
.IF @OPT, NE, I
.IF @OPT, NE, P
MSG TEXT = "INVALID OPTION"
.ENDIF
.ENDIF
ENDIF

=== DETERMINE OPTION SELECTED ===

* k o

.IF @OPT, EQ, R
.SYN PROG = RECPT

.ENDIF '

.IF @OPT, EQ, I
.SYN PROG = ISSUE

.ENDIF

.IF @OPT, EQ, P
.SYN PROG = REORD

.ENDIF

*

* === EXECUTE PROGRAM ===

*

XCPF OBJECT ACCESS NAME = @I.@PROG,
DEBUG MODE = NO, INOT REQUIRED
MESSAGE ACCESS NAME = "", INOT REQUIRED
SWITCHES = 00000000, INOT REQUIRED
FUNCTION KEYS = NO INOT REQUIRED

*

* === IF OPTION = "P" EXECUTE "REORD" AND PRINT REPORT ===

. .

.IF @QOPT, EQ, P
PF FILE PATHNAME = TI.INV.REORD,
ANSI FORMAT = NO, INOT REQUIRED
LISTING DEVICE = LPO1,
DELETE AFTER PRINTING = YES,

NUMBER OF LINES/PAGE = "" INOT REQUIRED
MSG TEXT = "PRINTING OF REORDER REPORT CCMPLETE"
.ENDIF
.SY¥YN I = """, OPT = "", PROG = ""

.EQOP

Worksheet 2

CLE <OMPILE, LINK, AND EXECUTE)
FILE NAME = ACNM

.SYN CS=TI.COBOL.SRC

.SYN CO=TI.COBOL.OBJ

;SYN CL=TI.COBOL.LST

5,

* === COMPILE PROGRAM ===
*

XCCF SOURCE = @CS.&FILE NAME,
OBJECT = @CO.&FILE NAME,
LISTING = @CL.&FILE NAME

=== IF NO WARNINGS OR ERRORS, BUILD LINK CONTROL FILE ===

* * *

.IF @$sCC, EQ, O
.DATA TI.COBOL.LCF.&FILE NAME, SUBSTITUTION = YES
LIBRARY .SS$SYSLIB
FORMAT IMAGE ,REPLACE

PROC RCOBOL
DUMMY

INCLUDE 'RCBPRC)
TASK &FILE NAME

INCLUDE 'RCBTSK)
INCLUDE 'RCBMPD)
INCLUDE @CO.&FILE NAME
END

.EOD

*

=== EXECUTE LINK EDITOR ===

XLE CONTROL TI.COBOL.LCF.&FILE NAME,

LINKED = TI.COROL.PROGF,
LISTING = TI.COBOL.LMAP.s&FILE NAME
WAIT
*
* === IF NO WARNINGS OR ERRORS, EXECUTE PROGRAM ===

.IF @$scC, EQ, O
AL LUNO = "",
ACCESS = TI.COROL.PROGF,
PROG FILE = YES,
DISPLAY = NO
XCTF PROG FILE LUNC = @S$SLU,
TASK ID OR NAME = &FILE NAME
RL LUNO = @SSLU
.ENDIF
.ENDIF :
.SYN CS = n"’ CO = nn, CL - nn
QS$SSYN

Worksheet 3

CLE «COMPILE, LINK, AND EXECUTE) = 5,
FILE NAME = ACNM

.SYN CS=TI.COBOL.SRC

.SYN CO=TI.COBOL.OBJ

.SYN CL=TI.COBOL.LST

.SYN F=s¢FILE NAME

=== COMPILE PROGRAM ===

* % *

.BID TASK=>87, LUNO=>10, PARMS= @CS.@F, @CO.@QF, @CL.GQF,
ww, 80, 55, 6144, 1000)

*
* === JF NO WARNINGS OR ERRORS, BUILD LINK CONTROL FILE ===
*

.IF @$sCC, EQ, O

.DATA TI.COBOL.LCF.@F, SUBSTITUTION = YES
LIBRARY .SS$SYSLIB

FORMAT IMAGE ,REPLACE

PROC RCOBOL
DUMMY

INCLUDE RCBPRC)
TASK @F

INCLUDE tRCBTSK)
INCLUDE ‘RCBMPD)
INCLUDE @CO.@F
END

.EOD

* === EXECUTE LINK EDITOR ===

.QBID TASK=>86, LUNO=>10, PARMS= «"TI.COBOL.LCF.@F",

"TI.COBOL.PROGF", "TI.COBOL.LMAP.@F", 4096, 80)
WAIT

*
]
]
]

IF NO WARNINGS OR ERRORS, EXECUTE PROGRAM ===

.IF @$sCC, EQ, O
.OVLY OVLY=>1B, LUNO=0,
PARMS= %,0,"TI.COBOL.PROGF",Y,SALSL,Y,N)
.BID TASK=@F, LUNO=@S$SALSL,
PARMS: ',N, "iw R "nn ’ " ll)
.OVLY OVLY=>1B, LUNO=0, PARMS=:30,@SALSL)
.ENDIF
.ENDIF
'SY'N CS - nn R CO - nwe , CL - nn R F - nn

Lab Exercise 1

CUBE «UBE A NUMBER THAT IS BETWEEN -5 AND
ENTER A NUMBER = INT
.SYN N = &ENTER A NUMBER
.LOOP
.LOOP
.WHILE @N, GT, 5
MSG TEXT = "+NVALID NUMBER, TRY AGAIN"
CUBE
.EXIT
.REPEAT
.WHILE @N, LT, -5
MSG TEXT = "-NVALID NUMBER, TRY AGAIN"
CUBE
.EXIT
.REPEAT
.EVAL CUBEN = @N * @N * @N
MSG TEXT = "THE CUBE OF @N IS @CUBEN"
.SYN N = "", CUBEN = ""

Lab Exercise 2

PR wPRINT REPORT)=4,

FILE ACCESS NAME=ACNM,

HOW MANY COPIES?=INT,

ANSI FORMAT?=YESNO «NO),

DELETE AFTER PRINTING?=YESNO WNO)
.SYN FAN = "@&FILE ACCESS NAME"
.SYN HMC = "&HOW MANY COPIES"
.SYN AF = "&ANSI FORMAT"

.SYN DEL = "NO"

.LOOP

.WHILE @HMC, GE, 1

*

* === IF LAST COPY, SET DELETE PARAMETER =
*
.IF @HMC, EQ, 1
.SYN DEL = "&DELETE AFTER PRINTING"
.ENDIF

*

PF FILE PATHNAME = @FAN,
ANSI FORMAT = @AF,
LISTING DEVICE = LPO1,
DELETE AFTER PRINTING = @DEL
.EVAL HMC=@HMC-1
.REPEAT
.SYN FAN="", HMC="“, AF="", DEL=""

+3),

Lab Exercise 3

SAVE
oIF “@XE"’ EQ, " "
MSG TEXT = "OUTPUT FILE PATHNAME", REPLY = "SXES"
.ENDIF
QES1 OUTPUT FILE ACCESS NAME = "@S$XES",
REPLACE = YES,
MOD LIST ACCESS NAME = ""
XE FILE ACCESS NAME = "@S$SXES$"

MODULE 5

Worksheet 1

XCC EXECUTE COBROL COMPILER <VERSION: 3.2.0 79173>) =2,
FILE NAME = ACNM "@$XCCSF")
DIRECTORY NAME = ACNM "@$XCCSD"),
PROGRAM SIZE {LINES) = INT :1000)
.SYN D=@&DIRECTORY NAME

.SYN F=&FILE NAME

.SYN S=@@D.SRC.@F

.SYN 0=@@D.ORJ.@F

.SYN L=@@D.LST.@F

.SYN MEMX = "§PROGRAM SIZE LINES)"
.EVAL MEMORY = "@MEMX / 500 * 7168"
.IF "@MEMORY" ,GT, "30840"

.EVAL MEMORY = "30840"

.ENDIF

.IF "@MEMORY" ,LT, "7168"

.EVAL MEMORY = "6144"

.ENDIF

= DELETE UNNECESSARY MESSAGES AND SYNONYM ASSIGNMENT ===
= MODIFY .QBID PARAMETERS ===

* * * *

.QBID TASK = >87, LUNC = >10,
PARMS = @@@S, @@@O, @@eL, X, 80, 55,
@MEMORY, s§PROGRAM SIZE LINES))

*

* === MODIFY SYNONYM ASSIGNMENTS ===
*

.SYN $XCCSD = &DIRECTORY NAME

.SYN S$SXCCSF = &FILE NAME
.SY'N MEMORY:"II ’ MEMX=" ll’ S=" L ’ O=ll" ’ L=I| ll' D=ll L , F=" "

Lab Exercise 1

CFILE «COPY FILE) = 7,

INPUT DIRECTORY NAME = ACNM,
OUTPUT DIRECTORY NAME = ACNM

.SYN IDN @&INPUT DIRECTORY NAME
.SYN ODN @&OUTPUT DIRECTORY NAME
.SYN FN=0

*

INCREMENT INPUT FILE NUMBER
GENERATE UNIQUE FILE NAME AND COPY
AS LONG AS OPERATOR ENTERS "Y"

* % % ¥ *

*

. LOOP
.EVAL FN = @FN+1
.SYN FILE = TCTEMP@FN
UNIQUE SYNONYM = F
CC INPUT = @Q@IDN.QFILE,
OUTPUT = @ECDN.@F,
REPLACE = YES
MSG TEXT="@Q@IDN.@F COPIED TO @@ODN.@F"
MSG TEXT="CONTINUE +/N)", REPLY=ANS
.WHILE @ANS, EQ, Y
.REPEAT
.SYN IDN="", ODN="", FN="", FILE="", F="",
$$UN$1="", ssUN$2="“, ANS=““

Lab Exercise 2

UNIQUE GENERATE UNIQUE FILENAME),
SYNONYM TO BE ASSIGNED=NAME "@$SUNS$S2")
.SYN SSUNS2=&SYN

.IF “@S$SUNS1",EQ,"SSUNSL"

.EVAL SSUN$1="@$S$ST*100" !MODIFY MULTIPLIER
.ENDIF
.SYN &SYN=CFILE@S$SUNS1 !MODIFY FILE NAME

.EVAL $SUNS$1="@SSUNS1+1"

.IF @SSUNS1,GT,"@$SST*100+99" !MODIFY VALIDATION

.SYN $SUNS1=""
.ENDIF

Lab Exercise 3

CFKEY «CREATE KEY INDEXED FILE),

PATHNAME = ACNM,
LOGICAL RECORD LENGTH = INT,
PHYSICAL RECORD LENGTH = *INT,
INITIAL ALLOCATION = *INT,
SECONDARY ALLOCATION = *INT,
MAXIMUM SIZE = INT

.IF "Q@SCFKSKN", NE, "SCFKSKN"
MSG T="ERROR: INVALID CFKEY SEQUENCE; CFKEY BEFORE ENDKEY"

.SYN $CFKSL="", SCFKSPN="", SCFKSFLRL="",
SCFKSPRL="", SCFK$KS="", SCFKSIA="", SCFKSM="",
SCFKS$SA="", SCFK$MS="", SCFKSKN=""

.EXIT

.ENDIF

.SYN SCFKSKN = 1,

SCFKsL = nn ,

SCFKSKs = "1",

SCFKSPN = "@&PATHNAME",

SCFKSFLRL = "&LOGICAL RECORD LENGTH",

SCFKSPRL = "&PHYSICAL RECORD LENGTH",
SCFKSIA = "§INITIAL ALLOCATION",

$CFKSSA = "s&SECONDARY ALLOCATION",
SCFKSMS = "SMAXIMUM SIZE",

*

* === ADD FOLLOWING SYNONYM ASSIGNMENT ===
*

SCFKSM = "NO"

.IF "&PHYSICAL RECORD LENGTH", EQ, ""
.SYN SCFKSPRL = 0

.ENDIF

.IF "&INITIAL ALLOCATION", EQ, ""
.SYN SCFKSIA = 0

.ENDIF

.IF "§SECONDARY ALLOCATION", EQ, ""
.SYN SCFKS$SAa = 0

.ENDIF

.IF "@$SMO", NE, O

CFKS$1

ENDKEY

.ENDIF

KEY KEY DESCRIPTION FOR KEY NUMBER @$SCFKSKN),
START POSITION = INT +"@SCFKS$KS"),

KEY LENGTH = INT,

DUPLICATES? = YESNO NO),

*

* === MODIFY THE DEFAULT FOR THE FOLLOWING KEYWCRD ===
*

MODIFIABLE? = YESNO «@SCFKSM),

ANY MORE KEYS? = *YESNO ‘YES)

.IF "@SCFKSKN", EQ, "SCFKSKN"

MSG T="ERROR: INVALID CFKEY SEQUENCE; KEY BEFORE CFKEY"
.EXIT

.ENDIF

%*

* === DELETED .IF STATEMENT ===

%*

.SYN SCFKSKS = "&START POSITICN"

MODIFY FOLLOWING PARAMETER LIST
@SCFKSM BECOMES &MODIFIABLE

* * * *

.SYN

SCFKSL="@S$CFKSL, @SCFKSKS,&KEY LENGTH, &§DUPLICATES,&MODIFIABLE,Y)"
.EVAL S$CFKSKN = @SCFKSKN+1
*

* === ADD THE FOLLOWING .SYN AND .EVAL STATEMENTS ===
*

.SYN SCFK$M = "YES"

-EVAL $CFKSKS = "@$CFKSKS + &KEY LENGTH"

.IF "SANY MORE KEYS", LT, ¥

.SYN CFKKS = ""

.ENDIF

No modifications of CFKS$1l or ENDKEY are required.

c-12

Lab Exercise 4

ACL AUTOMATED COBOL LINK)=5,

OBJECT ACCESS NAME=ACNM {@$$XCCS$SOB),
APPLICATION NAME=NAME,

PROGRAM FILE NAME=ACNM,

lst LINK TO THIS OUTPUT FILE=YESNO NO),
LIBRARY ACCESS NAME=*ACNM @$ACLSLIB),
LISTING ACCESS NAME=ACNM

.SYN SACLSAN=&APPLICATION

.SYN $XCCS$OB=Q&OBJECT

SYN SACLSLIB=@&LIBRARY

=== IF FIRST LINK CREATE PROGRAM FILE ===

* % %

.IF &lst, GE, Y
.OVLY 0OVLY=>1B, LUNO=0,

PARMS= 114, 5PROGRAM, 25,10,20,85,"",YES)
ENDIF

=== SET LIBRARY COMMAND ===

* ¥ *

.IF @SACLSLIB, NE, ""
.SYN LIBRARY="LIBRRARY @SACLSLIB"

.ELSE
.SYN LIBRARY=";NO LIBRARY USED"
.ENDIF
*
* === BUILD LINK CONTROL FILE ===
*

.DATA .SSACL@SSST, SUBSTITUTION=YES
@LIBRARY
FORMAT 1IMAGE, REPLACE
PROCEDURE RCOBOL
DUMMY
INCLUDE .SSSYSLIB.RCBPRC
PROCEDURE @SACKSANTION
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE @S$XCCSOB
TASK @SACLSAN
INCLUDE .SS$SYSLIB.RCBTSK
END

EOD

EXECUTE LINK EDITOR ===

* * *o
[}
i
([

.QBID TASK=>86, LUNO=>10,
PARMS= «,SSACL@S$SST, &PROGRAM, &LISTING, 4096, 80)

*

OVLY OVLY=>23, CODE=10 !WAIT COMMAND

DELETE TEMPORARY LINK CONTROL FILE ===

* * %

.OVLY OVLY=>1B, LUNO=0, PARMS= .8, .SSACL@SSST)
.SYN LIBRARY="", SACLSAN="" :

Cc-13

MODULE 6

Lab Exercise 1

BATCH
.SYN C=TI.COBOL
XCC SOURCE=QC.SRC.STOCK, OBJECT=@C.OBJ.STOCK, LIST=@C.LST.STOCK
.IF @$$cc, GT, O
.STOP TEXT="ERRORS IN THE COMPILE PHASE

.ENDIF

.DATA @C.LCF.STOCKREN, SUBSTITUTION=YES
FORMAT IMAGE, REPLACE, 4
PROCEDURE RCOBOL
DUMMY
INCLUDE .S$SYSLIB.RCBPRC
PROCEDURE INVSUBS
INCLUDE @C.OBJ.RDINVO
INCLUDE @C.OBJ.RECPTO
INCLUDE @C.OBJ.ISSUEO
INCLUDE @C.0OBJ.REORDO
INCLUDE @C.OBJ.SSTATO
TASK STOCKREN
INCLUDE .S$SYSLIB.RCBTSK
ALLOCATE '
INCLUDE .SSSYSLIB.RCBMPD
INCLUDE @C.ORJ.STOCKO
END

.EOD

XLE CONTROL=@QC.LCF.STOCKREN, LINK OUT=@QC.PROGF,
LIST=@C.LMAP.STOCKREN

EC

.DATA @C.LCF.STOCKOVL, SUBSTITUTION=YES

FORMAT IMAGE, REPLACE, 4
LIBRARY .SSSYSLIB
PROCEDURE RCOBOL
DUMMY
INCLUDE ‘RCBPRC)
PHASE O, STOCKOVL
INCLUDE 'RCBTSK)
LOAD
INCLUDE 'RCBMPD)
INCLUDE @C.OBJ.STOCKO
INCLUDE @C.0OBJ.SSTATO
PHASE 1, RDINV
INCLUDE @C.OBJ.RDINVO
PHASE 1, RECPT
INCLUDE @C.OBRJ.RECPTO
PHASE 1, ISSUE
INCLUDE @C.OBJ.ISSUEO
PHASE 1, RECRD
INCLUDE @C.OBJ.REORDO
END

.EOD

XLE CONTROL=@C.LCF.STOCKOVL, LINK OUT=@C.PROGF,
LIST=@C.LMAP.STOCKOVL

EC
.DATA @C.LCF.STOCKOV2, SUBSTITUTION=YES
FORMAT IMAGE, REPLACE, 4
LIBRARY .S$SYSLIB
PROCEDURE RCOBOL
DUMMY
INCLUDE IRCEPRC) .
PHASE 0, STOCKOV2
INCLUDE 'RCBTSK)
LOAD
INCLUDE 'RCBMPD)

INCLUDE @C.0OBJ.STOCKO
PHASE 1, RDINV2
INCLUDE @C.OBJ.RDINVO
PHASE 1, RCVISU
INCLUDE @C.OBJ.RECPTO
INCLUDE @C.OBJ.ISSUEO
PHASE 2, SSTAT2
INCLUDE @C.OBJ.SSTATO
PHASE 1, REORD?2
INCLUDE @C.OBJ.REORDO
END
.EOD
XLE CONTROL=Q@C.LCF.STOCKOV2, LINK OUT=@C.PROGF,
LIST=@QC.LMAP.STOCKOV2
EC
.SYN C._.‘lll
Q$SYN
EBATCH TEXT="THERE ARE @SESC ERROCRS IN THE BATCH STREAM"

