ovos ki

Supervisor Call (SVC)
Reference Manual

TEXAS INSTRUMENTS

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES
Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer

margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

DNOS Supervisor Call (SVC) Reference Manual (2270507-9701)

Originallssue i i August 1981

Revision. e e October 1982

RevisSioN. November 1983
Change l e e March 1985

The total number of pages in this publication is 670 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. . NO. NO. NO. NO.
Cover 1 6-4.. 1 T-41-7-42 0
Effective Pages....... 1 6-4A/6-4B 1 7-43 .. . 1
Eff. Pages Cont. 1 65-6-18............. 0 7-44-767 0
fii-iv. ... 1 6-19., 1 7-68. 1
Vexvili oL 0 6-20-6-25............ 0 769-793............ 0
11-18.............. 0 6-26................. 1 794. 1
2-1-214 0 6-27-6-138 0 7-95-7138........... 0
31-320............. 0 6-139................ 1 8-1-86.............. 0
4-1-49 0 6-140-6-163 0 87 .. i 1
410, .. 1 6-164................ 1 88-821............. 0
4-11-414 0 6-165-6-178 0 822....... 1
5 R 0 7-1-72. 0 8-23-830............ 0
B2 1 7-3-74.............. 1 831.... 1
5-3-5-24............. 0 75-738............. 0 8-32-845............ 0
6-1-6-3.............. 0 7-39-740 1 846................. 1

The computers offered in this agreement, as well as the programs that Tl has created to use
with them, are tools that can help people better manage the information used in their busi-
ness; but tools— including Tl computers—cannot replace sound judgment nor make the
manager’s business decisions.

Consequently, TI cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

...]
© 1981, 1982, 1983, 1985, Texas Instruments Incorporated. All Rights Reserved.
Printed in U.S.A.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or

by any means, electronic, mechanical, photocopying, e2~arding, or otherwise, withaut the prior written
permission of Texas Instruments Incorporated.

e

J{ﬁ? Manual Update

MANUAL: DNOS Superviéor Cail (SVC) Reference Manual (2270507-9701) *C
MCR/CHANGE NO.: MCR 004723/Change 1

EFFECTIVITY DATE: 20 March 1985

This change package contains information necessary to update your current manual. Please

remove the obsolete pages from your existing manual and replace them with the changed pages
as follows: ‘

Remove
Obsolete Pages

Cover/Manual Revision History

iii - iv

Insert
Change 1 Pages

Cover/Effective Pages
Effective Pages Cont.
ii - iv

4-9-4-10 4-9-4-10
5-1-5-2 5-1-5-2
6-3-6-4 6-3-6-4

— 6-4A/6-4B
6-19-6-20 6-19-6-20
6-25 - 6-26 6-25 - 6-26
6-139-6-140 6-139-6-140
6-163 - 6-164 6-163 -6-164
7-3-7-4 7-3-7-4
7-39-7-40 7-39-7-40
7-43-7-44 7-43-7-44
7-67 -7-68 7-67-7-68
7-93 - 7-94 7-93-7-94
8-7-8-8 8-7-8-8
8-21.8-22 8-21-8-22
8-31-8-32 8-31-8-32
8-45 - 8-46 8-45 - 8-46
9-3-9-4 9-3-9-4
10-63 - 10-54 10-53 - 10-54
A-9-A-10 A-9-A-10
A-21-A-22 A-21-A-22

User’s Resp./Bus. Reply
Inside Cover/Cover

User’s Resp./Bus. Reply
Inside Cover/Cover

10

1

12

ppendix

A

B

Volume Management — Describes the organization of disk volumes used with DNOS
and describes in detail the SVCs that initialize, install, and unload volumes.

Task Support — Describes in detail the SVCs that support DNOS tasks by providing
system services required during task execution.

System Interface — Describes in detail the SVCs that a task can use to obtain system
data and to allocate and deallocate disk space.

SVC Compatibility — Describes in detail those SVCs that are supported by DNOS only

to allow execution of programs for other operating systems. Specifies DNOS alter-
natives for more efficient processing under DNOS.

SVC Index — A special index of SVCs and SVC operations (sub-opcodes).

Device Character Sets — Detailed descriptions in tabular form of character sets for the
I/O devices supported by DNOS.

Master/Slave Task Examples — Assembly listings of a typical owner task and re-
questing task for an IPC master/slave channel.

1 addition to this manual, the DNOS software manuals shown on the support manual diagram
rontispiece) contain information related to DNOS SVCs.

he following manuals, not listed on the frontispiece, are referenced in this manual or contain
formation related to DNOS SVCs.

Title : Part Number
Model 810 Printer Instaliation and Operation Manual 939460-9701

Model LP300 and LP600 Line Printers Installation and
Operation Manual 2250364-9701

Model LQ45 Letter Quality Printer System Installation
and Operation Manual 2268695-9701

2270507-9701

. -

Contents

Paragraph

[I N U G e
[33, I NIRRT CRR

2.1

2.2

2.2.1
222
223
224
225
226
2.2.7
228

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

41
4.2

2270507-9701

Title

1 — Introduction

HowtoUseThisManual i,
The SupervisorCall i
The SupervisorCallBlock,
Secured SupervisorCallso i
ErrorCodes ... i e
CoNVENtIONS ... e e

JobConcept
Managingdobs e
Createdob
HaltJob
ResumeHaltedJob L
Change Job Priorityo v
Map JobNametoJobID..........
Kill ExecutingJob
Deletedob i
GetJobInformation L.

3 — Program File Management

Program Files e
InstallingaTaskSegment
Installing a Procedure Segment or Program Segment
InstallinganOverlay,
DeletingaTask i,
Deleting a Procedure Segment or Program Segment
DeletinganOverlay i i
Assigning SpaceonaProgramFile
Mapping a Program NametoanID

4 — Task Management

Task Concept. e
ExecutingaTask

Page

‘ontents

Yaragraph

L3
L4
L5
L6
L7
1.8
L9
110
L1

5.1

5.2
3.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.21.4
5.2.2
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.2

6.1

6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5
6.3.2.6
6.3.2.7

vifi

Title Page
Scheduling aTask . ..o vt e e 4-5
Delaying Task EXECULIONot 4-7
Resuming Executionof Delayed Taskot 4-8
Changing PriorityofaTask iviiii 4-9
Suspending a Task Unconditionallyot 4-10
ActivatingaSuspended TasK.uiiit i 4-11
Inhibiting Task Preemption ... i 4-12
Forcing Abnormal Termination 4-13
Terminating aTaskout i 4-14

5 — Input/Output Operations

Input/Output Capabilities 5-1
Preparing forl/O o e 5-2
UsingLogical Namesot 5-5
Obtaining Logical Name Pathname and Parameters 5-10
CreatingalogicalName 5-11
Deletingalogical Nameot 5-12
RestoringaName Segment e 5-13
Performing Utility FUNCLIONS s 5-14
JO OperationsS SVC . . oot 5-18
SuspendingaTask During /O o i 5-20
Wait for /O SV C ottt e 5-20
Wait for Any /O SV .. o s 5-21
Forcing Termination of /O oo i 5-22

6 — Device /1O

INErOAUCTION « o o et it et e et e e 6-1
Device Utility Operationso 6-1
Assigning LUNOS e 6-3
Releasing LUNOS ittt 6-5
Verifying Device Nameso 6-6
VDT O ettt e e 6-7
Key Categories.oovviunionnnnn. e 6-9
Data KBYS .. ittt e 6-9
HOId KBY ottt et e 6-9
EVeNt KBYS . oottt e 6-10
Systemand Task Edit Keyso 6-11
VDT Resource-Independent /O i 6-13
10 oY= 2 Y R 6-13
(0] 1o 1= 1= NP IR 6-14
Close, Wrte EOF . . . e e 6-15
Openand ReWINd it 6-15
Close and Unloadttt e e e 6-15
Read Device StatUst ii i e e 6-15
Read ASCH ...t e e e 6-17

2270507-9701

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES

Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer
margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change

DNOS Supervisor Call (SVC) Reference Manual (2270507-9701)

Continued:
PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.

847-856............ 0 111-1112 0 C1-C32............ 0
91-93.............. 0 121-126............ 0 Index-1-Index-8 0
Q4. . 1 A1-A8 0 User’'s Response...... 1
95-98.............. 0 A9 ... 1 Business Reply 1
10-1-1053 0 A-10-A-20 e 0 Inside Cover 1
1054 oo 1 A-21-A-22 1 Coverccovvnn. 1
10-55-10-68.......... 0 B-1-B-38 0

DNOS Software Manuals

This diagram shows the manuals supporting DNOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above that set to determine which manuals are most beneficial to your needs.

1026-2050.2¢

I 9bueysn

AlIDNOS Users:
DNOS Concepts and Facilities DNOS System Command DNOS Messages and DNOS Master Index to
2270501-9701 Interpreter (SCI) Reference Manual Codes Reference Manual Operating System Manuals
2270503-9701 2270506-9701 2270500-9701
DNOS Operations Guide DNOS Text Editor DNOS Reference Handbook
2270502-9701 Reference Manual 2270505-9701
2270504-9701
High-Level Assembly Productivity Communications Systems
Language Users: Language Users: Tools Users: Software Users: Programmers:
DNOS DNCS/SNA
COBOL Reference Manual 990/99000 Assembly DNOS Sort/Merge User's Guide DNOS System Generation
2270518-9701 Language Reference User’'s Guide 2302663-9701 Reference Manual
Manual 2272060-9701 2270511-9701
DNOS COBOL 2270509-9701 DNOS DNCS
Programmer’s Guide TIFORM Operations Guide . DNOS Systems
2270516-9701 DNOS Assembly Reference Manual 2302662-9701 Programmer’s Guide
Language 2234391-9701 2270510-9701
DNOS Performance Programmer’s Guide DNOS DNCS 914A ..
Package Documentation 2270508-9701 DNOS Query-990 User’s Guide ROM Loader User’s Guide
2272109-9701 User’s Guide 2302664-9701 2270534-9701
DNOS Link Editor 2276554-9701
Tl Pascal Reference Manual Reference Manual DNOS 3270 Interactive
2270519-9701 2270522-9701 DNOS Data Base Communications Software
Management System (ICS) User’s Guide
DNOS Tl Pascal DNOS Supervisor Call Programmer’s Guide 2302670-9701
Programmer’s Guide (SVC) Reference 2272058-9701
2270517-9701 Manual DNOS 3780/2780
2270507-9701 DNOS Data Base Emulator User’s Guide
FORTRAN-78 Reference Administrator User’s 2270520-9701
Manual Guide
2268681-9701 2272059-9701 DNOS DNCS System
Generation Reference
DNOS FORTRAN-78 Data Dictionary Manual
Programmer’s Guide User’s Guide 2302648-9701
2268680-9701 2276582-9701
DNOS DNCS X.25
MATHSTAT-78 DNOS TIPE Remote File Transfer
Programmer’s Reference Reference Manual Kit (RFT) User’s Guide
Manual 2308868-0001 2302640-9701
2268687-9701
DNOS TIPE DNOS Remote Terminal
F(:):!TI‘%AN-?I\E;I ISA l Security Exgggissge Guide Kit 3ubsyséerr:j(RTS) Source
Extensions Manua . 23 -0001 ser’s Guide .
22686969701 Managers: 2302676-9701 Code Users:
DNOS COBOL Program DNOS System
TI BASIC Reference Manual DNOS Security Generator User’s Guide DNOS Distributed Network Design goc ent
2308769-9701 Manager’s Guide 2234375.9701 1/0 (DNI0) User's Guide 2208120001
2308954-9701 2308793-9701

RPG Il Programmer’s
Guide
939524-9701

DNOS Common
Communications Utilities
2308783-9701

DNOS SCl and Utilities
Design Document
2270513-9701

DNOS Software Manuals Summary

Concepts and Facilities .
Presents an overview of DNOS with topics grouped by operating system functions. All new users (or
evaluators) of DNOS should read this manual.

DNOS Operations Guide
Explains fundamental operations for a DNOS system. Includes detailed instructions on how to use each
device supported by DNOS.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Describes command procedures and gives
a detailed presentation of all SCl commands in alphabetical order for easy reference.

Text Editor Reference Manual
Explains how to use the Text Editor on DNOS and describes each of the editing commands.

Messages and Codes Reference Manual
Lists the error messages, informative messages, and error codes reported by DNOS.

DNOS Reference Handbook
Provides a summary of commonly used information for quick reference.

Master Index to Operating System Manuals
Contains acomposite index to topics in the DNOS operating system manuals.

Programmer’s Guides and Reference Manuals for Languages
Contain information about the languages supported by DNOS. Each programmer’s guide covers oper-
ating system information relevant to the use of that language on DNOS. Each reference manual covers
details of the language itself, including language syntax and programming considerations.

Performance Package Doc‘umentation
Describes the enhanced capabilities that the DNOS Performance Package provides on the Model 990/12
Computer and Business System 800.

Link Editor Reference Manual
Describes how to use the Link Editor on DNOS to combine separately generated object modules to
form a single linked output.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and DNOS services.

DNOS System Generation Reference Manual
Explains how to generate a DNOS system for your particular configuration and environment.

User’s Guides for Productivity Tools
Describe the features, functions, and use of each productivity tool supported by DNOS.

User’s Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution
under DNOS.

Systems Programmer’s Guide
Discusses the DNOS subsystems and how to modify the system for specific application environments.

ROM Loader User’s Guide
Explains how to load the operating system using the ROM loader and describes the error conditions.

DNOS Design Documents
Contain design information about the DNOS system, SCI, and the utilities.

DNOS Security Manager’s Guide
Describes the file access security features available with DNOS.

iv Change 1 2270507-9701

Preface

This manual describes the supervisor calis (SVCs) supported by the DNOS operating system. In
addition, the manual provides information about using SVCs and includes an example of a typical
use of each SVC.

The intended audience of this manual is the programmer who writes SVCs and the associated call
blocks in his program. The manual is assembly language oriented because the call block must be
written in assembly language. Most SVCs required for high-level language programs are included
in the run-time software and are transparent to the programmer. For those operations that require
explicit SVCs, the high-level language programmer must refer to this manual for a detailed
description of the supervisor call block. The DNOS language programmer’s guide for each
language describes the interface with the supervisor call block.

The sections and appendixes of this manual are organized as follows:

Section

1 Introduction — Provides a general description of a supervisor call, and a call block. Lists
the conventions used in the manual.

2 Job Management — Describes the job concept and describes the operations of the Job
Management SVC in detail.

3 Program File Management — Describes the program file on which the task, procedure,
and program segments and overlays are stored. Describes in detail the SVCs used in
program file management.

4 Task Management — Describes the DNOS task concept and describes in detail the
SVCs used for controlling execution of tasks.

5 1/O Operations — Describes the supervisor call used to request /O operations, and con-
tains information common to all types of |/O.

6 Device I/O — Describes the I/O utility operations for device |/O and the I/O operations for
each device, organized by device.

7 File /O — Describes the 1/0 utility operations for file I/O and the I/O operations for each
type of file, organized by file type.

8 Interprocess Communication — Describes the I/O utility operations for interprocess
communication (IPC) and the I/O operations for symmetric and master/slave channels.

2270507-9701 v

10

11

12

Appendix

A

B

Volume Management — Describes the organization of disk volumes used with DNOS
and describes in detail the SVCs that initialize, install, and unload volumes.

Task Support — Describes in detail the SVCs that support DNOS tasks by providing
system services required during task execution.

System Interface — Describes in detail the SVCs that a task can use to obtain system
data and to allocate and deallocate disk space.

SVC Compatibility — Describes in detail those SVCs that are supported by DNOS only

to allow execution of programs for other operating systems. Specifies DNOS alter-
natives for more efficient processing under DNOS.

SVC Index — A special index of SVCé and SVC operations (sub-opcodes).

Device Character Sets — Detailed descriptions in tabular form of character sets for the
/O devices supported by DNOS.

Master/Slave Task Examples — Assembly listings of a typical owner task and re-
questing task for an IPC master/slave channel.

In addition to this manual, the DNOS software manuals shown on the support manual diagram
(frontispiece) contain information related to DNOS SVCs.

The following manuals, not listed on the frontispiece, are referenced in this manual or contain
information related to DNOS SVCs.

Title . Part Number
Model 810 Printer Installation and Operation Manual 939460-9701
Model LP300 and LP600 Line Printers Installation and
Operation Manual 2250364-9701
Model LQ45 Letter Quality Printer System Installation
and Operation Manual 2268695-9701
2270507-9701

Contents

Paragraph

- ad d o d
OO WN =

21

2.2

2.2.1
2.2.2
2.2.3
224
225
2.2.6
2.2.7
2.2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

2270507-9701

Title

1 — Introduction

HowtoUseThisManual
The SupervisorCall i i i
The SupervisorCallBlock
Secured SupervisorCalls i,
ErrorCodes i e
Conventions

JobConcept ...
ManagingJobs e
Createdob
HaltJob ...
ResumeHalteddob i
Change Job Priority
Map JobNametodJdobID........
Kill ExecutingdJdob
Deletedob
GetJob Information oL

ProgramFiles i
InstallingaTaskSegmentc. ...
Installing a Procedure Segment or Program Segment
InstallinganOverlay,
DeletingaTasko i e
Deleting a Procedure Segment or Program Segment
DeletinganOverlay i
Assigning SpaceonaProgramFile
Mapping a Program NametoaniID

4 — Task Management

TaskConcept............... e e
ExecutingaTaskcoivi i

Page

Contents

Paragraph

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1

5.2
5.2.1
5.2.1.1
5.21.2
5.2.1.3
52.1.4
5.2.2
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.2

6.1

6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5
6.3.2.6
6.3.2.7

viii

Title Page
SchedulingaTask i e e e 4-5
Delaying Task EXeCUtioN i e e 4-7
Resuming Executionof Delayed Task i 4-8
Changing Priorityof aTask e i 4-9
Suspending aTask Unconditionally i i i 4-10
ActivatingaSuspended TasK. i it e 4-11
Inhibiting Task Preemption 4-12
Forcing Abnormal Termination i e 4-13
Terminating aTask i e e e 4-14

5 — Input/Output Operations

Input/Output Capabilities i e e 5-1
Preparing for 11O ... e e e 5-2
Using Logical Names e e e e 5-5
Obtaining Logical Name Pathname and Parameters 5-10
Creatingalogical Name i e e 5-11
Deletingalogical Name e e 5-12
RestoringaName Segment i 5-13
Performing Utility Functions i e e 5-14
O Operations SVC i e e 5-18
SuspendingaTask During l/O 5-20
Wait for /O SVC .. e 5-20
Wait for Any /O SVC ..o e 5-21
Forcing Termination of /O e et 5-22

6 — Device I/O

INrOdUCH ON L o e 6-1
Device Utility Operations e e 6-1
Assigning LUNOS e 6-3
Releasing LUNOS e e e e e 6-5
Verifying Device Names e e e 6-6
VDT O e e e e 6-7
Key Categories . ot e e 6-9
Data KBy S . oot e e e e e 6-9
HOId KBY .ottt e e e e e e 6-9
Event KeYS ..o e e e e e 6-10
Systemand Task Edit Keys i e e e e e e e 6-11
VDT Resource-Independent /O i e 6-13

L o - o T 6-13
Lo 1= X 6-14
Close, Write EOF ... e e e e e e e e 6-15
Openand Rewind e 6-15
CloseandUnload e e e e 6-15
Read Device Status e e e 6-15
Read ASCIl .. i e e 6-17
2270507-9701

ta

Paragraph

6.3.2.8
6.3.2.9
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.3.4
6.3.3.5
6.3.3.6
6.3.3.7
6.3.3.8
6.3.3.9
6.3.3.10
6.3.3.11
6.3.3.12
6.3.3.13
6.3.3.14
6.3.3.15
6.3.3.16
6.3.3.17
6.3.3.18
6.3.3.19
6.3.3.20
6.3.3.21
6.3.3.22
6.3.4
6.3.5
6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.1.3
6.4.1.4
6.4.2
6.4.2.1
6.4.2.2
6.4.2.3
6.4.2.4
6.4.2.5
6.4.2.6
6.4.2.7
6.4.2.8
6.4.2.9
6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.4.3.4
6.4.3.5

2270507-9701

Contents

Title Page
Write ASCI . o e e e e e 6-20
Rewind S 6-23
VDT Resource-Specificl/O e 6-23
Field Start PoSition i i e e 6-26
IMtenSity ... e 6-26
BlNK CUISOr ot e e e 6-26
GraphiCs .. e e 6-26
EBight-Bit ASCIl e 6-26
Carriage Control e 6-26
B . e e e e 6-26
Right Boundary e e e e 6-27
CUrsOr PoSition ... i 6-27
Fill Character e e e e e e e e 6-27
Do Not Initialize Field i e i 6-27
Returnon Termination Character. i, 6-27
NO EChO .. e e e e 6-27
CharacterValidation i e i e 6-27
Validation Error Mode i e e e e 6-28
WarningBeep i b e et e 6-28
EXamMPIES i e e e e 6-28
Character Validation Operation i i 6-32
Field Validation i i e e e 6-34
Getting Event Characterst e e e 6-34
Read DireCt e 6-36
Write DireCt . . e e e e e 6-38
VDT Terminal Specific Information i i 6-39
VDT Read Device Status Operation i i 6-43
733 ASR DataTerminal /O i e e e 6-44
Key Categories . oottt e e e e e 6-46
Data KeYS ..ot e e e 6-48
Hold KeY .o e s e e e 6-48
Event Keys ... e e e 6-49
Systemand Task Edit Keys i i i e e e it 6-49
733 ASR Data Terminal Resource-Independentl/O 6-51
10 7 -1 o e 6-51
97 T -7 T 6-52
Close, Write EOF i e i e e e e e e 6-53
Openand ReWind i i ittt e i e e e e, 6-53
CloseandUnloadttt i e e e e 6-53
Read Device Status it i i e e 6-53
Read ASCIl e e e e e e 6-55
Write ASCI .. e e 6-57
WHte EOF . i e e e e e 6-60
733 ASR Data Terminal Resource-Specificl/O i, 6-61
Bight-Bit ASCH e e e e e e 6-63
Task Edit ..ot i i i e e 6-63
NoEcho e e i e et et e 6-63
CharacterValidation i i 6-63
Validation ErrorMode e e e e e e 6-63
ix

ontents

‘aragraph Title Page
5.4.3.6 Read ASCII Example e e 6-64
5.4.3.7 Character Validation Operation 6-64
5.4.3.8 Field Validation i e e 6-66
3.4.3.9 GettingEventCharacters i i i 6-67
8.5 Teleprinter Device /Oo e 6-69
5.5.1 Key Categories. i e e 6-71
6.5.1.1 Data ey s ..o e e 6-71
6.5.1.2 Hold KBY .t e e e 6-71
6.5.1.3 Event Keys ... 6-72
6.5.1.4 Systemand Task Edit Keys e e e 6-73
6.5.2 TPD Terminal Resource-Independent /O i, 6-73
6.5.2.1 L 071 o 6-73
6.5.2.2 ClOSE o i e e e e 6-75
6.5.2.3 Close, Write EOF e e e e e 6-76
6.5.2.4 Openand Rewind i e 6-76
6.5.2.5 Closeand Unload i e e e e e 6-76
6.5.2.6 Read Device Statuso e 6-76
6.5.2.7 Read ASCIl ... 6-80
6.5.2.8 Write ASCIl . .o e 6-83
6.5.2.9 Wit EOF Lo e e e 6-86
6.5.2.10 REeWING .. 6-87
6.5.2.11 UNload . ..o e e e 6-88
6.5.2.12 Device Dependent CommunicationControl 6-89
6.5.3 TPD Resource-Specific /O e 6-95
6.5.3.1 Eight-Bit ASCI or LF/CRILTA . . e e e e 6-97
6.5.3.2 Task Edit e 6-97
6.5.3.3 B . e e e 6-97
6.5.3.4 Forced Termination Character 6-97
6.5.3.5 EChO o e 6-97
6.5.3.6 CharacterValidation i i i e 6-97
6.5.3.7 Validation ErrorMode e 6-97
6.5.3.8 Warming Beep . .. e e 6-98
6.5.3.9 Read ASCII Example e 6-98
6.5.3.10 Character Validation Operation i, 6-98
6.5.3.11 Field Validation i e e e 6-100
6.5.3.12 Getting Event Characters ... i e 6-101
6.5.3.13 Read DireCt e 6-103
6.5.3.14 Write DireCt e e 6-105
6.6 Programming for EventCharacters e 6-107
6.7 Cassette 110 e 6-108
6.7.1 Cassette Resource-Independent /O 6-109
6.7.1.1 L 0 =Y o 6-109
6.7.1.2 ClOSE ot e e e 6-110
6.7.1.3 Close, Write EOF e e e 6-111
6.7.1.4 Openand RewWind e e 6-111
6.7.1.5 Closeand Unload e 6-111
6.7.1.6 Forward Spaceottt e e 6-111
6.7.1.7 Backward Space e e 6-112
6.7.1.8 Read ASCHl ... e 6-113

X 2270507-9701

Paragraph

6.7.1.9
6.7.1.10
6.7.1.11
6.7.1.12
6.7.2
6.7.2.1
6.7.2.2
6.8

6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
6.8.7
6.8.8
6.8.9
6.8.10
6.9
6.9.1
6.9.1.1
6.9.1.2
6.9.1.3
6.9.1.4
6.9.1.5
6.9.1.6
6.9.1.7
6.9.1.8
6.9.1.9
6.9.1.10
6.9.1.11
6.9.1.12
6.9.1.13
6.9.2
6.9.2.1
6.9.2.2
6.10
6.10.1
6.10.1.1
6.10.1.2
6.10.1.3
6.10.1.4
6.10.1.5
6.10.1.6
6.10.2
6.10.2.1
6.11
6.11.1
6.11.2

2270507-9701

Contents

Title Page

Write ASCIl e 6-115
Wit EOF o e e e 6-117
REeWind ..o e e e e e 6-118
Unload . .o e e e e 6-118
Cassette Resource-Specific /O i i e 6-119
Read DireCt e e 6-119
Write DireCt. . .o e e e 6-121
Printer OULpUL . .. e e 6-123
1 7= o 1 6-125
(07 == 6-126
Close, Write EOF . .. e e 6-127
Openand Rewindc.oiiiiiineeiiineeiinnaaenns e 6-127
ClOSE ANA UNIOAA . « « o v v e e e e et e e e e 6-127
Read Device CharacteristiCs i i i s 6-127
WrHite ASCI . . e e e e 6-130
W DIFECE . .ot ee e e 6-132
W EOF . ettt et et e e e e e 6-133
ReWIiNd .. e e e e e 6-134
Magnetic Tape /O ... e e e 6-135
Magnetic Tape Resource-Independent 1/O 6-136
L0 o 7= o 1 6-136
107 Y= 6-137
Close, Write EOF ... oo e e e 6-138
Openand Rewind it e e 6-138
CloseandUnload i e e e e 6-138
Read Device Status i e e 6-138
FOrward Spaceot e 6-140
Backward Space. e e 6-141
Read ASCH ..o i e e 6-142
Write ASCH ... 6-143
Write EOF . e e e 6-145
ReWind ..o e 6-146
UNload . .o e e e e 6-146
Magnetic Tape Resource-Specificl/O i i i i 6-147
Read DireCt . .. o e e e e e 6-147
Write Direct. e 6-149
Card Reader Input i e e 6-151
Card Reader Resource-Independentinput o 6-152
OPBN Lo e e e e e 6-152
ClOSE o ot e e 6-153
Close, Write EOF e e e e 6-154
Openand Rewind it et e e e 6-154
CloseandUnload i i e e 6-154
Read ASC Il ... e e e e e e 6-156
Card Reader Resource-Specificlnput i 6-156
Read Direct S 6-156
Direct Disk 1O .. e e 6-158
1 0 7= o 6-160
ClOS e . it e e e 6-161

Contents

Paragraph Title Page
6.11.3 Close, Write EOF e e e e 6-162
6.11.4 Openand Rewind e 6-162
6.11.5 Closeand Unload.t e e 6-162
6.11.6 Read Format. e e 6-162
6.11.7 Write Format ... 6-165
6.11.8 Read by ADU e 6-166
6.11.9 Read by TracK. . ..ot e e e 6-168
6.11.10 Write by ADU Lo e 6-169
6.11.11 Write by Track o e 6-171
6.11.12 Store Registers e 6-171
6.11.13 Read Format. e e e 6-173
6.11.14 Write Deleted Sector e 6-173
6.11.15 Read Deleted SecCtoro i e e 6-174
6.11.16 Write Format with Interleaving.o 6-176
6.12 Dummy Device 11O . .. e e 6-177

7.1 DNOS Files ...ttt e e e e e e 7-1
711 Record BIOCKING ... oo e e 7-2
7.1.2 Blank Adjustment/Compression e 7-2
713 File and Record Protection Features. i 7-2
7.1.3.1 Delete and Write Protection i 7-2
7.1.3.2 ReCOrd LOCKING .« . ittt e e e 7-3
71.4 Temporary Files e 7-3
7.1.5 Concatenated and Multifile Sets o i i e 7-4
7.1.6 ENd-Of-File e 7-5
7.2 File Utility Operations i e 7-6
7.2.1 Performing Utility Functions e 7-6
7211 Creating Fileso e e 7-10
7.21.2 Deleting Fileso e e e e e e 7-22
7.21.3 Assigning LUNOS ... e e 7-23
7.21.4 Releasing LUNOS i e e e e e 7-27
7.2.1.5 Verifying Pathnames i i e 7-29
7.2.1.6 Renaming Files i e e 7-30
7.21.7 Write Protecting Files i e e 7-33
7.2.1.8 Delete Protecting Files i e i i 7-34
7.21.9 Removing File Protection i i e 7-36
7.2.1.10 Addingan Alias e 7-37
7.21.11 Deletingan Alias i e e 7-38
7.2.1.12 SpecifyingtheWriteMode i i e 7-39
7.3 Sequential File /O o 7-40
7.3.1 DN i e e 7-41
7.3.2 0] o 1= 7-43
7.3.3 Close, Write EOFttt e e e e e 7-44
7.3.4 Openand Rewindt e e e e 7-44
7.35 Closeand Unload. e e e e e e e 7-44
7.3.6 Read File Characteristics i i i 7-44

Xii 2270507-9701

Contents

Paragraph Title Page
7.3.7 Forward Space e e e 7-47
7.3.8 BacKward Spacet e e e 7-49
7.3.9 Read ASCIl .. i e e e e 7-50
7.3.10 Wrte AS Gl . . o e e e e e e 7-52
7.3.11 WHte EOF .. o i e e e e e e e e 7-54
7.3.12 ReWind ... e e e e e 7-55
7.3.13 ReWrite . .o e e e 7-56
7.3.14 Modify ACCeSS Privileges © .ottt e i e e e e 7-57
7.3.15 OpPEN EX N ... i i i e e e e e 7-58
7.3.16 UnNIOCK . .o e e e e e 7-60
7.3.17 Multiple Record Readottt ittt e e ettt e 7-61

7.3.18 Multiple Record Write it e i s e e e 7-63
7.4 Relative Record File 110 i e et e e e ennns 7-65
7.41 (0 o= o 7-67
7.4.2 107 o =T 7-68
7.4.3 Close,Write Logical EOFt e i e e e e 7-69
7.4.4 Openand Rewindt i i e e e e e e 7-69
745 Closeand Unload. o e e e 7-69
7.4.6 Read File Characteristics e e e 7-69
7.4.7 FOrWard SpPaCE . . vttt et e e e e e 7-72
7.4.8 Backward Spacet e e 7-74

7.4.9 Read ASCH ... i e e e 7-75
7.4.10 Wit ASCIl . L o e 7-77
7.4.11 ‘Write Logical EOF e e e e 7-79
7.412 ReWINd ..o e e e e e e 7-80
7.4.13 ReWri e .. e e e e e 7-81

7.414 Modify Access Privileges ... i e 7-83
7.4.15 OpenExtend e e e e 7-84
7.4.16 L0] 1o 7-86

7.417 Multiple Record Read it et e 7-87
7.4.18 Multiple Record Write it e e e et 7-89
7.5 Keyindexed File HO i e e e e e 7-91

7.5.1 Key Indexed File Resource-Independent /O 7-91

7.5.1.1 £ o 7= o 1 7-92

7.5.1.2 GOS8 it e e e e e 7-94
7.5.1.3 Openand Rewind i i i i e e e 7-95
75.1.4 Read File Characteristics i i e e i e 7-95
7515 FOrward SpPacCe . ..ottt e e e e e e 7-99
75.1.6 BaCKkward Space. e e e e e 7-100
7517 Read ASCIl .. o e e e 7-102
7.5.1.8 ReWind ... e e e e e e e 7-103
7519 Modify Access Privileges i e e e 7-104
7.5.2 Key Indexed File Resource-Specificl/O i i, 7-105
75.21 10 o =T 4 T8 = F-1 2 o T o o 1 7-108
7.5.2.2 Read by KeY ..o e e e e e 7-110

75.2.3 Read Greater. i i e e e 7-112
75.2.4 Read GreaterorEqual it e it it e e 7-115
75.25 SetCurrency Equal i e e e 7-117
75.2.6 SetCurrency Greater i e e e 7-119

2270507-9701 xiil

Contents

Paragraph Title Page
7527 Set Currency GreaterorEqual i 7-121
7.5.2.8 Delete by Key e e e e e 7-123
7.5.2.9 Read Current e e 7-125
7.5.2.10 Read PrevioUs ... i e e 7-127
7.5.2.11 Read NeXt .o e 7-129
75212 REWHIE ..o e e e e 7-131
7.5.2.13 UNIOCK . . e e e 7-133
7.5.2.14 Delete Current e e e 7-134
7.5.2.15 0 7= o 7-136

8.1 INtrodUCtiON e e 8-1
8.2 Communicating Between Tasksttt i it e e it inanns 8-1
8.3 IPC Utility Operationst e e e et e e 8-3
8.3.1 Performing Utility Functions i .. 8-4
8.3.1.1 CreatinganIPCChannel i i i e i iii e 8-6
8.3.1.2 DeletinganIPC Channel i i i i e 8-12
8.3.1.3 AsSsigning LUNOS e e 8-13
8.3.1.4 Releasing LUNOS e e e 8-16
8.3.1.5 Write ProtectingChannels it i, 8-17
8.3.1.6 Delete ProtectingChannels i i i 8-18
8.3.1.7 Removing Channel Protection i i .. 8-19
8.3.2 SymmetricChannel /O e 8-20
8.3.2.1 L0 T = o 8-22
8.3.2.2 107 [0 T 8-23
8.3.2.3 Close, Write EOF e e e e e e 8-24
8.3.2.4 Openand ReWindt i e it e e e e e 8-24
8.3.2.5 CloseandlUnloadt i e e e e e e e 8-24
8.3.2.6 SymmetricRead e e e 8-25
8.3.2.7 SymmetriC Write ... e e 8-26
8.3.2.8 Write EOF ... e e 8-28
8.3.3 Master/Slave Channel 11O e e v 8-29
8.3.3.1 PN Lt e e e e e 8-31
8.3.3.2 L [0 T 8-33
8.3.3.3 Read Device Status i e 8-34
8.3.3.4 MasterRead e e e e 8-37
8.3.3.5 Read Call Block 8-50
8.3.3.6 MasterWrite e e e 8-52
8.3.3.7 Redirect Assign LUNO ... i e e 8-54
8.3.4 Master/Slave Channel Example i e e 8-55

9 — Volume Management

9.1 Disk VolUMES e e 9-1
9.2 Initializing aNew VoluUMeE oo e e et 9-1
9.3 InstallingaVolume e 9-5

Xiv 2270507-9701

Paragraph

9.4

10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.3
10.3.1
10.3.2
10.4
10.4.1
10.4.2
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.5.4.1
10.5.4.2
10.5.4.3
10.5.4.4
10.5.4.5
10.5.4.6
10.5.4.7
10.5.4.8
10.5.4.9
10.5.4.10
10.5.4.11
10.6
10.6.1
10.6.1.1
10.6.1.2
10.6.1.3
10.6.1.4
10.6.1.5
10.6.2
10.6.2.1
10.6.2.2
10.6.2.3
10.7
10.7.1
10.7.1.1
10.7.1.2
10.7.2

2270507-9701

Contents

Title Page

UnloadingaVolume i e e e e 9-6

10 — Task Support

Task SUppPOrt FUNCHIONS e e e e 101
Data CoNVErSION ..o e e e e 10-1
Converting Binary Datato Decimal ASCIl i, 10-2
Converting Decimal ASClltoBinaryData................ oot 10-3
Converting Binary Datato Hexadecimal ASCIl oo, 10-4
Converting Hexadecimal ASClltoBinaryData............................. 10-5
Encrypting and DecryptingofData i i 10-6
Encrypting Data e e 10-7
Decrypting Data. o e e e 10-8
JOD ACCOUNTING e e 10-9
Loggingan Accounting Entry e 10-10
Accessing AccountingData. e 10-11
Memory Control. e 10-13
RequestingMemory e e 10-13
Releasing Memory e 10-14
Loadingan Overlayt e e e 10-15
Managing Memory Segments. i i e e e, 10-17
Changing SegmeNnts ... ottt i e e e 10-21
Creating Segments i e e 10-24
Reserving Segments i e e 10-28
Releasing Reserved Segments......... ... o i i i 10-29
CheckingSegment Status i i i e e 10-31
Force Writing Segments e i e e e e 10-34
Setting and ResettingSegmentFlagso i i, 10-36
Loading Segments i e e e 10-38
Unloading Segments it e e 10-39
Setting ExclusiveUseofSegments i, 10-40
Resetting ExclusiveUseof Segments.ottt 10-42
Task Synchronization i 10-44
Using Semaphore Synchronization i 10-44
Signal .. e e e e 10-46

LA = L 10-46
= 10-47
INItialize e e 10-48
MOdifY Lt e e e 10-49
Using Event Synchronization i 10-50
Initiatingan Event 10-50
Waiting for Events e 10-52
Postingan Event e e 10-53
Accessing Status and System Information oL 10-55
AccessingSystemDateand Time i 10-55
GetDateand Time SV C i e e e e 10-56
SetDateand Time SVC e e e 10-57
Obtaining Parameterst e e 10-58

Contents

Paragraph

10.7.3
10.7.4
10.7.5
10.7.5.1
10.7.5.2
10.7.6
10.7.7

11.1
11.2
11.3
11.4
11.5
11.6

12.1
12.2
12.3
12.4
12.5

Appendix

[us}

Xvi

LoggingaMessage i e
Obtaining Task and Job Identifiers
Programming End Action i L

Get End Action StatusSVC.o i,

Reset End Action StatusSVC
ObtainingTaskStatus...............
ObtainingReturnCodeData

11 — System Interface

Special System Services ...t i e
ObtainingSystemData............. oL,
Allocating and Deallocating DiskSpace....................
SuspendingaQueue-DrivenTask
Accessingthe Task StatusBlock
AccessingTaskData i,

12 — SVC Compatibility

OtherOperatingSystems
Get CommonDataAddressSVC
Return Common DataAddressSVC
PutData SVl ... e e
GetDataSVC e

Appendixes

Title

SV O INAEX .ot e e e
ASCI| Device /O OperationsTablescooviiiiinnn...
Master/Slave Task Examples.......... i,

2270507-9701

Contents

Illustrations
Figure Title Page
51 Overall /O Operation e 5-4
6-1 Model 911 VDT Keyboard o e e 6-40
6-2 Model 931 VDT Keyboard e 6-40
6-3 Model 940 VDT Keyboard i i i e e e e e 6-41
6-4 Business System Terminal Keyboard i, 6-41
6-5 Track AdAresSing . ..ot e 6-158

Table Title Page

1-1 SV O OPCOAES .ottt e e 1-3
1-2 Secured SupervisorCall OpCodes . . . oot e 1-6
2-1 JOb State Codes ... i e e 2-3
5-1 Access Mode Compatibility e 5-2
5-2 Sub-Opcodes for /O Operations SVC i e 5-18
6-1 Graphics Code Key Equivalentst 6-29
6-2 Terminal Key Designationsand Codes i i e 6-42
6-3 733 ASR Key Designations and Codes forASClIMode 6-47
6-4 Status of Teleprinter Deviceso i e 6-78
6-5 Characteristics of PrinterDevices i e 6-128
7-1 Key Indexed File Informative Codes 7-108
8-1 IPC Channel and LUNO SCOPEttt e e e 8-16
8-2 Device/File Type Codes Returned by an Open Operation 8-32
10-1 Task State Lo To [10-65
11-1 Disk DesCriptions ... e e 11-5

2270507-9701 xvii/xviii

Introduction

1.1 HOW TO USE THIS MANUAL

This manual contains information about the use of the supervisor calls (SVCs) of DNOS and a
detailed description of each call. The manual also describes the supervisor call block required for
each SVC.

The introductory material at the beginning of each section of the manual presents general infor-
mation about the categories of supervisor calls supported by DNOS. Within each section, intro-
ductory paragraphs for the major headings provide information about the purpose and anticipated
results of executing the SVCs described under the headings.

For each SVC, the manual includes both the general information needed to use the SVC and the
detailed information required to write the code for the SVC. The manual is intended for reference
purposes as the source of detailed information.

The supervisor call block is written in assembly language; the interface between a high-level
language and assembly language for an SVC is described in the programmer’s guide for that
language.

This section includes information common to all SVCs and conventions used in the manual.

1.2 THE SUPERVISOR CALL

The interface between application programs and the DNOS operating system is the supervisor
call. In programs written in a high-level language most supervisor calls are transparent to the user
(provided in the run-time package for the language). However, the high-level language programmer
may write SVCs to perform functions not otherwise available. The assembly language programmer
must code all supervisor calls.

The supervisor call is implemented as an extended operation (XOP) in DNOS. Specifically, XOP 15
is the means of entry to the SVC processor of DNOS. The address supplied with the XOP instruc-
tion is that of the supervisor call block. The following is an example of the code for an SVC:

BLK DATAO REPRESENTS A CALL BLOCK

2270507-9701 11

.3 Introduction

The assembly language includes a directive that provides a convenient and meaningful substitute
for the XOP command. The DXOP directive defines a symbolic operation code for an XOP. The fol-
lowing example defines SVC as XOP 15:

DXOP SVC,15 DEFINES SVC AS XOP 15
Including the DXOP at the beginning of the program makes the following code valid for SVCs:

SVC @BLK EXECUTE SVC DEFINED IN BLOCK BLK

1.3 THE SUPERVISOR CALL BLOCK

The DNOS supervisor call block is the data structure that defines the supervisor call. The state-
ments described in the preceding paragraph apply to all DNOS supervisor calls. The difference
between SVCs is the content and format of the supervisor call block.

A supervisor call block consists of at least one byte and as many additional bytes as the SVC
requires. The first byte (and only byte for some SVCs) contains the opcode that defines the SVC.
Opcodes 0 through >7F are reserved for SVCs supported by DNOS.

NOTE

Throughout this document avalue preceded by aright angle bracket

(>)indicates a hexadecimal value.
Table 1-1 lists the SVC opcodes. You may define SVCs for your applications in the range of >80
through >FF. Definition of SVCs is described in the DNOS Systems Programmer’s Guide.
The second byte of many SVCs is the return code byte. DNOS returns a satisfactory completion
code (zero in most cases) in this byte when the operation completes successfully. DNOS returns
an error code in this byte when the operation completes in error. Error codes are listed and
described in the DNOS Messages and Codes Reference Manual.
Several DNOS SVCs provide different operations as determined by a sub-opcode in the third byte
of the supervisor call block. In these cases, the actual operation to be performed is selected by the
opcode and the sub-opcode.
In some supervisor call blocks, designated bytes contain the result of the requested operation
after the operation has completed. That is, the system returns values in some fields of some super-

visor call blocks.

The additional bytes of supervisor call blocks may contain various types of information related to
the operation, such as:

° Flags

. Input or output data

1-2. 2270507-9701

Addresses of input or output data
Size or count values

Identifiers

Task parameters

LUNOs

Character strings

Introduction 1.3

The paragraph that describes each SVC also describes the associated supervisor call block. To
locate the description of an SVC, look in the SVC index, Appendix A. The description includes the
number of bytes required, whether or not the block must be aligned on a word (even) address, and
the type of information in each byte.

Table 1-1. SVC Opcodes

SVC # Name

Paragraph Number

00

01
02
03
04
06
07
09
0A
0B
0C
oD
OE
OF

2270507-9701

110 Operations

Resource-Independent Sub-opcodes:
00 — Open

01 — Close

02 — Close, Write EOF
03 — Open and Rewind
04 — Close and Unload
05 — Read Device Status
06 — Forward Space

07 — Backward Space

09 — Read ASCII

0B — Write ASCII

0D — Write EOF

0E — Rewind

OF — Unload

Many resource-specific sub-opcodes are supported.

Wait for 1/0

Time Delay

Get Date and Time

End of Task

Suspend Task

Activate Suspended Task
Extend Time Slice

Convert Binary to Decimal
Convert Decimal to Binary
Convert Binary to Hexadecimal
Convert Hexadecimal to Binary
Activate Time-Delayed Task
Abort 1/0 Request by LUNO

5.2.2,5.3

(These are described
for each device.
See Appendix A.)

(See Appendix A.)

5.3.1.1
4.4
10.7.11
4.11
4.7
4.8
49
10.2.1
10.2.2
10.2.3
10.2.4
4.5
5.3.2

1-3

.3 Introduction

Table 1-1. SVC Opcodes (Continued)

1-4

SVC # Name Paragraph Number

10 Get Common Data Address 12.2

11 Change Task Priority 4.6

12 Get Memory 10.5.1

13 Release Memory 10.5.2

14 Load Overlay 10.5.3

17 Get Task Bid Parameters 10.7.2

1B Return Common Data Address 123

1C Put Data 12.4

1D Get Data 12.5

1F Scheduled Bid Task 4.3

20 Install Disk Volume 9.3

21 System Log Queue Request 10.7.3

22 Disk Management 113

24 Suspend for Queue Input 11.4

25 Install Task Segment 3.2

26 Install Procedure/Program Segment 3.3

27 Iinstall Overlay 3.4

28 Delete Task 3.5

29 Delete Procedure/Program Segment 3.6

2A Delete Overlay 3.7

2B Execute Task 4.2

2C Read/Write TSB 115

2D Read/Write Task 11.6

2E Self-ldentification 10.7.4

2F Get End Action Status 10.7.51

31 Map Program Name to ID 3.9

33 Kill Task 4.10

34 Unload Disk Volume 9.4

35 Poll Status of Task 10.7.6

36 Wait for Any 1/O 5.3.1.2

37 Assign Program File Space 3.8

38 Initialize New Disk Volume 9.2

3B Set Date and Time 10.7.1.2

3D Semaphore Operations 10.6.1
Sub-opcodes:
00 — Signal 10.6.1.1
01 — Wait 10.6.1.2
02 — Test 10.6.1.3
03 — Initialize 10.6.1.4
04 — Modify 10.6.1.5

3E Reset End Action Status 10.7.5.2

3F Retrieve System Data 11.2

40 Segment Management 10.5.4

2270507-9701

Introduction 1.4

Table 1-1. SVC Opcodes (Continued)

SVC # Name Paragraph Number

Sub-opcodes:

00 — Change Segment 10.5.4.1
01 — Create Segment 10.5.4.2
02 — Reserve Segment 10.5.4.3
03 — Release Segment 10.5.4.4
04 — Check Segment Status 10.5.4.5
05 — Force Write Segment 10.5.4.6
06 — Reserved
07 — Set/Reset Not Modified and Releasable 10.5.4.7
09 — Load Segment 10.5.4.8
OA — Unload Segment 10.5.4.9
0B — Set Exclusive Use of a Segment 10.5.4.10
0C — Reset Exclusive Use of a Segment 10.5.4.11
41 Initiate Event 10.6.2.1
42 Wait for Event) 10.6.2.2
43 Name Management 5.2.1
Sub-opcodes:
00 — Determine Name’s Value 5.2.1.1
02 — Set Name’s Value 5.21.2
04 — Delete Name 5.2.1.3
OF — Restore Name 5.2.1.4
45 Get Encrypted Value 10.3.1
46 Get Decrypted Value 10.3.2
47 Log Accounting Entry 10.4.1
48 Job Management 2.2
Sub-opcodes:
01 — Create Job 2.21
02 — Halt Job 2.2.2
03 — Resume Halted Job 222
04 — Change Job Priority 224
05 — Map Job Name to Job ID 225
06 — Kill Executing Job 2.26
07 — Delete Job 2.2.7
09 — Get Job Information 2.2.8
49 Get Accounting Information 10.4.2
41C Return Code Processor 10.7.7
4F Post Event 10.6.2.3

1.4 SECURED SUPERVISOR CALLS

If your system uses the file security option, access rights must be granted before some SVCs can
be performed. Table 1-2 shows the access rights required to execute these SVCs.

2270507-9701 1-5

.4 Introduction

Table 1-2. Secured Supervisor Call Opcodes

SVC# Name Rights
>00 FILE IO

SUB-OPCODES

>02 CLOSE-WRITE EOF WRITE access to file

>09 READ ASCII READ access to file

>0A READ DIRECT READ access to file

>0B WRITE ASClHI WRITE access to file

>0C WRITE DIRECT WRITE access to file

>0D WRITE EOF WRITE access to file

>10 REWRITE WRITE access to file

>41 READ GREATER READ access to file

>42 READ BY KEY READ access to file

>44 READ EQUAL/GREATER READ access to file

>45 READ NEXT READ access to file

>46 INSERT WRITE access to file

>47 REWRITE WRITE access to file

>48 READ PREVIOUS READ access to file

>49 DELETEBY KEY/CURNT WRITE access to file

>59 MULTIPLE REC READ READ access to file

>5B MULTIPLE REC WRITE WRITE access to file

>91 ASSIGN LUNO ANY access to file*

>92 DELETEFILE DELETE access to file

>95 RENAME FILE WRITE, DELETE access to file

>96 UNPROTECT FILE WRITE, DELETE access to file

>97 WRITE PROTECT FILE WRITE, DELETE access to file

>98 DELETE PROTECT FILE WRITE, DELETE access to file
>14 LOAD OVERLAY EXECUTE access to program file
>1F SCHEDULED BID TASK EXECUTE access to program file
>25 INSTALL TASK READ, WRITE access to program file
>26 INSTALL PROCEDURE READ, WRITE access to program file
>26 INSTALL SEGMENT READ, WRITE access to program file
>27 INSTALL OVERLAY READ, WRITE access to program file
>28 DELETE TASK READ, WRITE access to program file
>29 DELETE PROCEDURE READ, WRITE access to program file
>29 DELETE SEGMENT READ, WRITE access to program file
>2A DELETE OVERLAY READ, WRITE access to program file
>2B BID TASK EXECUTE access to program file
>31 MAP NAMETOID READ or EXECUTE access to program file
> 37 ASSIGN PROG FILE SPACE READ, WRITE access to program file
>40 SEGMENT MANAGEMENT

SUB-OPCODES

>00 CHANGE SEGMENT Program segment-EXECUTE access to program file

Relative record-READ, WRITE access to file

>01 CREATE SEGMENT Relative record-WRITE access to file
>43 NAME MANAGEMENT

SUB-OPCODES

>0F RESTORE NAMES READ access to synonym file
Note:

* If the user has any access to the file, the assign LUNO will succeed.

1-6

2270507-9701

Introduction 1.5

1.5 ERROR CODES

The error codes returned in byte 1 of supervisor call blocks are listed in the DNOS Messages and
Codes Reference Manual. The codes and corresponding messages for SVC errors are listed in the
SVC error section of the manual. A table in that section lists the error codes in SVC opcode order,
with the message number that corresponds to the error code. The numbered message identifies
the error.

Many SVC processors call the /O SVC, opcode 00, to perform I/O functions. When an /O error
occurs, the 1/0 SVC returns an error code of 00nn to the SVC processor. The SVC processor
returns error nn as the error code. For example, the Scheduled Bid Task SVC, opcode > 1F, issues
an |/O SVC. If the I/O SVC returns error code >26 to the opcode >1F SVC processor, the SVC pro-
cessor returns error code >1F26 to the calling task. This error code is not shown as >1F26 in the
SVC error code table, but is shown as >0026; it is the same /O error, whether the I1/O SVC is called
by the task directly or indirectly. Thus, when you receive an error code that is not in the table,
change the first two hexadecimal digits to zeros and look again.

Often the goal in coding SVCs is to recognize that an error has occurred rather than to interpret
every type of error. In some cases it is necessary to take appropriate action in the event of a
specific error. In many cases it is adequate to display the error code.

1.6 CONVENTIONS

The following notational conventions are used in this manual:

Convention Meaning
Greater than sign (>) Identifies hexadecimal values.
Angle brackets (< >) Enclose items returned to the supervisor call block.
Reserved Designates acall block field or flag that must be set to
zero.
[Reserved] Designates a call block field that is reserved but may

contain any value.
A set of conventions applies to the supervisor call block diagrams used in the manual. On the top
line, at the left, the code and name of the SVC are printed. To the right, on the same line, the
requirements and attributes of the SVC are printed. Additional lines are provided when several
requirements and attributes apply. The requirements and attributes are:
. Align on word boundary
. Privileged tasks only

. System tasks only

. Can be initiated as an event

2270507-9701 1.7

1.6 Introduction

A requirement for many supervisor call blocks is that they must be aligned on word boundaries;
that is, the first byte must have an even address. This may be accomplished by immediately
preceding the first directive for the call block with an EVEN directive. However, if the first directive
is a DATA directive, the call block is automatically aligned on a word boundary.

Two of the supervisor call attributes limit the use of the SVC to tasks having special attributes. A
task may be installed as software privileged or as a system task. Those SVCs that have the
attribute privileged tasks only may be executed only by software privileged tasks. SVCs that have
the attribute system tasks only may be executed only by system tasks.

The Initiate Event SVC issues SVCs as events. The Wait for Event SVC allows a task to suspend
itself pending completion of an SVC that has been initiated as an event. The SVCs that can be
issued in this way have the attribute can be initiated as an event.

Two columns at the left of the diagram show the byte address of the left byte relative to the first
byte of the block, in decimal and in hexadecimal. When a field of the block consists of more than
two words, the first and last words are shown, with a break in the vertical lines to indicate that
words have been omitted.

1-8 2270507-9701

2

Job Management

2.1 JOB CONCEPT

A job is a collection of cooperating programs (called tasks in DNOS). Either a user or a job may
initiate another job to perform one or more functions. A job may be an interactive job or a batch
job. The tasks of an interactive job use a video display terminal (VDT) to communicate with the
user. The tasks of a batch job do not communicate with the user.

A job has a set of attributes, which are associated with the job when it is initiated. The attributes
of a job may become the attributes of a new job when the job initiates a new job. Optionally,
attributes may be specified when the new job is created. Attributes include the user ID to identify
the job with a user, and user-specified execution parameters. In this sense, the job represents the
user by passing user information to the tasks of the job as required.

A job is also an environment of associated resources. These resources (for example, files,
devices, and interprocess communications (IPC) channels) may be shared by the tasks of the job.
Job-local LUNOs and job variables, including semaphores, synonyms, and logical names, are also
shared by tasks. A job ID identifies this environment.

The priority of a job is specified when the job is created. It is one of the parameters used to
determine the run-time priority of the tasks of the job.

There is always at least one job in the system: the system job. It is the first job in the sequence of
creation of jobs; no hierarchy of jobs is maintained. It consists of a group of cooperating tasks
that perform operating system functions, and the system resources are associated with the
system job.

2270507-9701 2-1

2.2 Job Management

2.2 MANAGING JOBS
A task may request the DNOS job manager to perform the following functions:

J Create a job

. Halt execution of a job

L Resume execution of a job

. Modify priority of a job

e Return the job ID of a job

. Force abnormal termination of a job

. Return job information
In addition, tasks within the system job may request the DNOS job manager to:

. Delete a job

. Expand a job communications area (JCA)
The task executes a Job Management Request SVC (opcode >48) to access the job manager. The
calling task is suspended during execution of the SVC. The Job Management Request SVC
validates the requests for job manager services by performing security checks to prevent

unauthorized access. Optionally, validation may be omitted.

The following operations may normally be performed only on jobs that have the same user ID as
the current job:

. Halt execution of a job

. Resume execution of a job

. Return the job ID of a job

. Force abnormal termination of a job

. Return job information

2-2 2270507-9701

Job Management 2.2

One of the two exceptions to the restriction is that the system operator task may request these
operations for any job. The other exception is that a task that was created with the do not verify
flag (refer to the supervisor call block description) set to one may perform any of these operations
for any job by setting the do not verify flag when requesting the operation. Only the system
operator may modify the priority of a job.

None of the operations of the Job Management Request SVC may be performed on the system
job.

Most of the operations of the Job Management Request SVC require the job run ID to identify the
job. A task can obtain the job run ID of the job to which it belongs by executing either a Self-
Identification SVC or a Get Job Information operation of the Job Management Request SVC. A
task can obtain the job run ID of any job having the same user ID as the current job by executing a
Map Job Name to Job ID operation. The task must have the job name to supply in the call block.

When a job has been initiated, a job state code may be returned by various status commands used
with SCI. The job state codes and their meaning are listed in Table 2-1.

Table 2-1. Job State Codes

Code Job State
01 Job is Being Created
02 Job is in an Executable State
03 Job is Halted
04 Job is Terminating
05 Job is Being Expanded

2270507-9701 2-3

2.2 Job Management

The supervisor call block for the Job Management Request SVC is as follows:

SVC >48 —— JoB MANAGEMENT REQUEST

DEec

18

20

22

24

26

28

34

36

42

44

58

2279443

2-4

HEX

10

12

14

16

18

1A

1C

22

24

2A

2C

3A

ALIGN ON WORD BOUNDARY

>48 <RETURN CODE>
SuB—-OPCODE JoB PRIORITY
FLAGS
JoB Run ID
~V Ju
v JoB NAME (8 CHARS) ~
INITIAL TASK ID JCA SizE
Task Bib PARAMETERS (4 BYTES)
TASK STATION ID TAskK ProGg. FILE LUNO
SYNONYM SEGMENT ID
RESERVED
FL ~J
fTJ UseRr ID (8 CHARACTERS) v
ﬂL/ ~
71’ USER PAsSsSWORD (8 CHARACTERS) T
rJU P d

UseR ACCOUNT NUMBER (16 CHARACTERS)

2270507-9701

Job Management 2.2

The call block contains the following:

Byte
0

1

4-5

6-7

16

2270507-9701

Contents
Opcode, >48.

Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

Sub-opcode:

>01 — Create Job.

>02 — Halt Job.

>03 — Resume Halted Job.

>04 — Change Job Priority.

>05 — Map Job Name to Job ID.

>06 — Kill Executing Job.

>07 — Delete Job (tasks of system jobs only).
>09 — Get Job Information.

Job priority. A value in the range of 0 (highest priority) through 31 (lowest
priority). Returned by the system for a Get Job Information operation.

Flags.
Bit 0 — New user ID flag. Set as follows:
1 — Bytes 28-59 contain the user ID, password, and account num-
ber for the new job.
0 — The user ID, password, and account number of the current job
apply to the new job. {
Bit 1 — Do not verify flag. This flag must have been set in the initiating
job. Set as follows:
1 — Do not validate the request.
0 — Perform normal validation.
Bit 2 — Batch flag. Set as follows:
1 — Batch job. No interaction with user. Tasks run at lower priority.
0 — Not a batch job.
Bits 3-15 — Reserved.

Job run ID. The run-time ID of the job, returned by DNOS for Create Job,
Map Job Name to Job ID, and Get Job Information operations. Supplied
by the user task for other operations.

Job name. A job name consisting of no more than 8 characters, supplied
by the user to identify the job. Returned by the system for a Get Job Infor-
mation operation.

Initial task ID. The instalied ID of the initial task. For a Get Job Infor-
mation operation, the current task ID, returned by the system.

2-5

2.21 Job Management

Byte Contents

17 Job communications area (JCA) size. A value of 1 (smallest), 2 (medium),
or 3 (largest). For a Get Job Information operation, user privilege level,
returned by the system.

18-21 Task bid parameters. Bid parameters for the initial task.

22 Task station {D. Station ID for the initial task. If no station is associated
with the initial task, specify >FF. When the field contains zero the calling
task’s associated station is used.

23 Task program file LUNO, or zero. Program file LUNO assigned to the pro-
gram file on which the initial task is installed. When the field contains
zero, the task is loaded from the system program file, .S$SHARED. When
the field contains >FF, the task is loaded from the program file on which
the calling task resides.

24-25 Synonym segment ID, or zero. The segment ID of the segment used for
synonyms and logical names. When the field contains zero, no synonym
segment is provided for the new job. The segment manager identifies a
segment by the segment ID. More information on segment IDs is in
paragraph 10.5.4.

26-27 Reserved. The value of this field is set to zero.

28-35 User ID. The identifier of the user in control of the job. Returned by the
system for a Get Job Information operation.

36-43 User password. The password of the user in control of the job.

44-59 User account number. The number of the account to which the job

charges are to be charged. Returned by the system for a Get Job Infor-
mation operation.

2.2.1 Create Job

DNOS automatically creates the job for execution of user tasks and any additional jobs required to
implement user commands. The Create Job operation is available to allow a user task to create a
job if desired.

Sub-opcode >01 specifies the Create Job operation with which a task creates a new job. The oper-
ation creates the specified job, and executes the new job, uniess the job limit has been reached. In
that case, the new job is queued for execution when a job terminates.

A job is executed by placing a specified initial task into execution. The supervisor call block for a

Create Job operation contains the task ID, the station ID, and task parameters for the initial task.
These items correspond to those required by the Execute Task SVC.

2-6 2270507-9701

Job Management 2.2.1

The size of the JCA for a job is specified as 1, 2, or 3. Size 1 is the smallest JCA size, appropriate
for jobs that contain few tasks, when the tasks execute serially and use few files. Size 2, the next
larger JCA size, is appropriate for average jobs. Size 3, the largest JCA size, is appropriate for jobs
having tasks executing in parallel.

When synonyms, logical names, or both may be used by the job, the synonyms and names must
be initialized using the Snapshot Name Definitions (SND) command. SND writes the contents of
the current job’s synonyms and names to a disk file. If a program creates a job with a name seg-
ment, the segment must be restored to memory before the Create Job SVC is issued. The names
can be restored using the Restore Name Segment operation of the Name Management SVC
described in paragraph 5.2.1.4. The segment ID of the name segment is returned by the Restore
Name Segment SVC and it must be placed into the Create Job SVC block. The Create Job SVC can
then be issued.

NOTE

Do not use the Set Name’s Value operation (paragraph 5.2.1.2) to
create a synonym or logical name segment.

All of the fields of the supervisor call block are used for the Create Job operation. The jobrunID is
returned by the system.

The value supplied in the job priority field is one of the factors that determines the run-time
priorities of the tasks in the job. The range of values is 0 through 31. The value of 31 results in the
lowest task priorities.

The job flags byte contains three flags to select three options. Set these flags as described in the
next three paragraphs.

If the user of the new job is not the user of the current job, set the new user ID flag to 1 and supply
the user ID in bytes 28 through 35, the user password in bytes 36 through 43, and the user account
number in bytes 44 through 59.

To create a job in which the tasks may issue a Job Management Request SVC with the do not
verify flag set to 1, set the do not verify flag to 1. The current job must also have been created with
the do not verify flag set to 1, however. This flag is intended for use by the tasks of the operating
system.

To create the new job as a batch job, set the batch flag to 1.

The user supplies a job name in the job name field. The job name identifies the job and may be
used by tasks in a job to obtain the job ID (Map Job Name to Job ID operation).

The initial JCA size is determined by the value in the JCA size field. The JCA is expanded
dynamically by the system; when the initial size is too small, the expansion may occur too fre-
quently. When the initial size is too large, memory is not used efficiently. A value of 2 for the inter-
mediate size is a good choice when in doubt.

2270507-9701 2-7

2.2.2 Job Management

Four fields of the call block relate to the initial task; these items are the same items required to
place a task in execution using any SVC or System Command Interpreter (SCl) command. The
initial task ID is the installed ID of the task, the ID under which it was instalied on the program file.
The task bid parameters consist of two words that may be accessed by the initial task using a Get
Parameters SVC. The contents of these two words are determined by the requirements of the
initial task. The task station ID is the ID of the station (terminal) with which the initial task is to be
associated. The task program file LUNO is the global LUNO assigned to the program file that con-
tains the initial task. When the task is in program file .S$SHARED, enter zero.

Use of the next two fields is optional. Each specifies the segment ID of an initialized segment.
One initialized segment contains synonyms for the job; the other contains logical names for the
job. The new job may not use synonyms unless an initialized synonym segment is specified; it
may not use logical names unless an initialized logical name segment is specified. However, the
new job may add either synonyms or logical names to the appropriate segment; it may also delete
either synonyms or logical names as required.

The following is an example of coding for a supervisor call block for a Create Job operation:

EVEN CREATE JOB DOITNOW AT PRIORITY 10
CREJOB BYTE >48 WITH JCA SIZE 2. INITIAL TASK IS
CJERR BYTE O >3A ON PROGRAM FILE LUNO >2E AT

BYTE >01 STATION 12. SYNONYM SEGMENT IS

BYTE 10 >2A. USER ID IS CSE010, PASSWORD

DATA >8000 IS P7807, AND ACCOUNT NUMBER IS

DATA O 263345426.

TEXT ‘DOITNOW’

BYTE >3A

BYTE 2

DATA 0,0

BYTE 12

BYTE >2E

DATA >2A

DATA O

TEXT ‘CSE010 ’

TEXT ‘P7807 ’

TEXT ‘263345426’

2,2.2 Halt Job
The Halt Job operation suspends execution of the tasks of a job. Execution of the tasks resumes
when a Resume Halted Job operation is performed.

Sub-opcode >02 specifies the Halt Job operation. Only the first 16 bytes of the supervisor call
block apply. The specific fields are:

. Opcode

. Return code

Sub-opcode

. Job run (D

2-8 2270507-9701

£

Job Management 2.2.3

A job may be halted if it has the same user ID as the current job, the current job was created with
the do not verify flag set, or the current job is the system operator job.

The job run ID is supplied by the user task.
The following is an example of coding for a supervisor call block for a Halt Job operation:

EVEN HALT JOB >4F.
HLTJOB BYTE >48
HJERR BYTE O

BYTE >02

BYTE O

DATA O

DATA >4F

DATA 0,0,0,0

2.2.3 Resume Halted Job
The Resume Halted Job operation restores execution of the tasks of a job when execution of the
tasks was interrupted by a Halt Job operation.

Sub-opcode >03 specifies the Resume Halted Job operation. Only the first 16 bytes of the super-
visor call block apply. The specific fields are:

. Opcode

J Return code
. Sub-opcode
. Job run ID

A job may be resumed if it has the same user ID as the current job. the current job was created
with the do not verify flag set, or the current job is the system operator job.

The job run ID is supplied by the user task.

The following is an example of coding for a supervisor call block for a Resume Halted Job
operation:

EVEN RESUME JOB >4F.
RESJOB BYTE >48
RJERR BYTE O

BYTE >03

BYTE O

DATA O

DATA >4F

DATA 0,0,0,0

2270507-9701 2-9

2.2.4 Job Management

2.2.4 Change Job Priority
The priority that is specified for a job when the job is created may be changed by this operation.

Sub-opcode >04 specifies the Change Job Priority operation. Only the first 16 bytes of the super-
visor call block apply. The specific fields are:

. Opcode

. Return code
. Sub-opcode
. Job priority

. Job flags

Job run ID

The do not verify flag is the only flag that applies to the Change Job Priority operation. When the
current job was created with the do not verify flag set and the do not verify flag is set for the
Change Job Priority operation, any task may change the job priority. Otherwise, only a task in the
system operator job may change the job priority.

The job run ID is supplied by the user task.

The following is an example of coding for a supervisor call biock for a Change Job Priority
operation:

EVEN CHANGE PRIORITY OF JOB >4F
CHJBPR BYTE >48 TO 15
CPERR BYTE O

BYTE >04

BYTE 15

DATA O

DATA >4F

DATA 0,0,0,0

2.2.5 Map Job Name to Job ID

Any task may obtain the job ID that corresponds to a job name by performing a Map Job Name to
Job ID operation.

2-10 2270507-9701

Job Management 2.2.6

Sub-opcode >05 specifies the Map Job Name to Job ID operation. Only the first 16 bytes of the
supervisor call block apply. The specific fields are:

Opcode
Return code
Sub-opcode
<Job run ID>

Job name

The job run ID is returned by the system. The job name is supplied by the user task.

The following is an example of coding for a supervisor call block for a Map Job Name to Job ID

operation:
EVEN OBTAIN JOB ID OF JOB
MAPJOB BYTE >48 REDALERT
MJERR BYTE O
BYTE >05
BYTEO
DATA O

JBRID DATAO

TEXT ‘REDALERT’

The Map Job Name to Job ID operation may be issued for a job that has the same user ID as the
current job, was created with the do not verify flag set, oris the system operator job. If two or more
jobs have the same job name and a Map Job Name to Job ID operation is performed, an ID is
returned along with a warning message.

2.2.6 Kill Executing Job
The Kill Executing Job operation forces abnormal termination of the tasks of a job. The job is
effectively terminated when all tasks have terminated.

Sub-opcode >06 specifies the Kill Executing Job operation. Only the first 16 bytes of the super-
visor call block apply. The specific fields are:

Opcode
Return code
Sub-opcode

Job run ID

A job may be killed by a job that has the same user ID as the current job, was created with the do
not verify flag set, or is the system operator job.

2270507-9701 2-11

2.2.7 Job Management

The job run ID is supplied by the user task.

The following is an example of coding for a supervisor call block for a Kill Executing Job
operation:

EVEN KILL JOB >4F.
KILJOB BYTE >48
KJERR BYTE O

BYTE >06

BYTE O

DATA O

DATA >4F

DATA 0,0,0,0

2.2.7 Delete Job

The system uses the Delete Job operation to delete jobs that are no longer required. This oper-
ation is not available to user tasks.

Sub-opcode >07 specifies the Delete Job operation. Only the first 16 bytes of the supervisor call
block apply. The specific fields are:

. Opcode
. Return code
. Sub-opcode
o Job run iD
The job run ID is supplied by the system task.
The following is an example of coding for a supervisor call block for a Delete Job operation:
EVEN DELETE JOB >4F.
DELJOB BYTE >48
DJERR BYTE O
BYTE >07
BYTE O
DATA O

DATA >4F
DATA 0,0,0,0

2-12 2270507-9701

Job Management 2.2.8

2.2.8 Get Job Information
A task may obtain job information related to the job to which it belongs or for any job for which it
can supply the job run ID. The job information returned consists of:

. Job run ID

. Job priority

. Job name

o Current task ID

. User ID

N User privilege level

o User account number

A job may get information for another job if it has the same user ID as the current job, was created
with the do not verify flag set, or is the system operator job.

Sub-opcode >09 specifies the Get Job Information operation. The user supplies the job run ID or
zero as the job run ID. When the user supplies zero, the information for the current job (the job to
which the task belongs) is returned. The following fields of the supervisor call block apply:

. Opcode

o Return code

U Sub-opcode

. Job priority

o Job run ID

e Job name

. Initial task ID

. JCA size

. User ID

. User account number
The Get Job Information operation returns information in the supervisor call block. Much of the
information is returned in the same fields in which it is supplied for a Create Job operation.

However, two of the fields of the call block are redefined to return information that is not supplied
for the Create Job operation.

2270507-9701 2-13

2.2.8 Job Management

The operation returns the job run ID in the job run ID field. When zero is supplied in this field, the
returned ID is that of the current job. Otherwise the job run ID supplied in the field is returned.

The operation returns the job priority, job name, user ID, and user account number in the cor-
respondingly designated fields of the call block.

The operation returns the user privilege level in the JCA size field, and the installed ID of the cur-
rent task in the initial task ID field.

The following is an example of coding for a supervisor call block for a Get Job Information

operation:
GJINF
GIERR
JOBPRI
JBRTID
JBNAM

INITID
UPRLEV

USERID

USRACN

2-14

EVEN

BYTE >48
BYTE O
BYTE >09
BYTE O
DATA O
DATA O
DATA 0,0,0,0
BYTEO
BYTE O
DATA 0,0
BYTE O
BYTE O
DATA O
DATA O
DATA 0,0,0,0
DATA 0,0,0,0
DATA 0,0,0,0,0,0,0,0

GET JOB INFORMATION ON CURRENT JOB

2270507-9701

3

Program File Management

3.1 PROGRAM FILES

A program file is a relative record file that is organized to serve a special purpose. The purpose of a
program file is to store the linked object code of task segments, procedure segments, program
segments, and overlays in a format that allows these modules to be loaded into memory for
execution.

The task concept is described more fully in Section 4; however, with respect to the program file, a
task segment is the linked object module that contains the addresses required by DNOS to initiate
execution of the task. It contains the workspaces and the data for the task. It may also include all
or part of the executable code. The task segment is loaded into a program’s memory space, or into
one of the segments of a program’s memory space, for execution,

A task may have one or two associated procedure segments in memory during its execution.
These procedure segments contain reentrant executable code for the task. A procedure segment
on a program file may be associated with more than one task. A procedure segment is loaded into
an area of memory that is mapped into the memory space of each task that shares the procedure.

A program segment is used either as a procedure segment or as a data portion of a task. The
management of program segments provides more flexibility than it provides for procedure
segments. No specific content or function is defined for a program segment; it may be used as the
program requires. When a program segment is disk-resident, it resides in a program file. The task
executes a Segment Management SVC, described in Section 10, to access a program segment
from the program file.

Alternately, one or two program segments can be associated with a task instead of either or both
procedure segments. When this is done, DNOS loads the program segments along with the task
segment, and they are available to the task without executing a Segment Management SVC.

An overlay is a linked object module that is loaded from a program file while the task is executing,
often replacing a previously loaded overlay. Overlays are loaded into the task memory space at the
designated address, and do not require a special or additional segment. Overlays can be
associated with task segments and program segments.

The modules in the program file are written in blocks that correspond to file records. The program
file contains a directory record that lists information for each module in the file. The information
associates the ID and name with the numbers of the records that contain the module. The direc-
tory also lists the characteristics of the modules.

2270507-9701 3-1

3.2 Program File Management

The task segment and overlays associated with that task segment must all be in the same program
file. The procedure segments for a task must be either in program file . S$SHARED, or in the same
program file as the task segment. In the program file . S$SHARED some IDs are reserved for the ex-
clusive use of Texas Instruments software products. The hexadecimal values of the reserved IDs
range from 00 to OF for tasks and from 00 to 2F for procedure segments.

When a task segment is instalied, it may be installed as a hardware privileged task. A hardware
privileged task may contain the privileged instructions of the computer.

Another installation option is software privilege. A software privileged task is allowed to execute
privileged SVCs. For example, the Install Task SVC can be executed only by a software privileged
task.

A task may be installed as a system task. A system task is a task whose task memory area is
mapped with system memory.

This section consists of descriptions of the supervisor calls that install and delete all three types
of program modules. The SVC that loads an overlay, the SVC that assigns space on a program file,
and the SVC that maps a program name to an ID are described also.
3.2 INSTALLING A TASK SEGMENT
A task may install a task segment in a program file by executing an Install Task Segment SVC (op-
code >25). The SVC processor writes the module to the program file and writes the appropriate
entry in the program file directory. The following options are available:
. The task segment may be installed in the system program file.
. The task segment ID (installed ID) may be automatically assigned.
. The task segment may be installed as a hardware privileged task.
. The task segment may be installed as a software privileged task.
. The task segment may be installed as a system task.
. The task segment may be installed as memory resident. (The task does not actually
become memory resident until the next IPL. It may be executed from the disk until the
next IPL.)

. The task segment may be installed as delete protected.

° The task segment may be installed as replicatable.

3-2 2270507-9701

Program File Management 3.2

. The task segment may be installed as execute protected in the Model 990/12 Computer.

o The task segment may be installed as one that takes end action on an arithmetic
overflow in the Model 990/12 Computer.

. The task segment may be installed as one that uses the writable control store in the
Model 990/12 Computer.

The supervisor call block for the Install Task Segment SVC is as follows:

SVC > 25 —— INSTALL TASK SEGMENT ALIGN ON WORD BOUNDARY
PRIVILEGED TASKS ONLY
DeEc HEX
0 0 >25 <RETURN CODE>
2 2 ProcrAM FILE LLUNO INSTALLED 1D
4 4
4 ~
—~ TASK SEGMENT NAME -
10 A
12 C FLAGS PRIORITY
14 E PROCEDURE 1 ID PROCEDURE 2 ID
16 10 OBJECT FILE LUNO FLAGS
18 12 RESERVED OR L.OAD ADDRESS
20 14 RESERVED OR TOTAL LENGTH
22 16 RESERVED OR TASK LENGTH

2279444

The call block contains the following:

Byte
0

1

2270507-9701

Contents
Opcode, >25.

Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

Program file LUNO, or zero. The LUNO assigned to the program file.
When this field contains zero, DNOS installs the task segment on
.S$SHARED. When this field contains >FF, the system installs the task
on the program file on which the calling task resides. If the special install
flag is set to one, the LUNO must be open for exclusive write. Otherwise,
the LUNO must be closed.

3-3

3.2 Program File Management

Byte

4-11

12

13

14

Contents

Installed task segment ID, or zero. When this field contains zero, DNOS
assigns an available ID and returns the ID in this field. The user may
specify the installed ID in this byte. Do not assign a reserved system task
ID to a task installed on the system program file.

Name of task segment, or zero. When this field contains zero, DNOS
uses the IDT in the object module as the task segment name. The task
segment name consists of not more than eight alphanumeric characters,
the first of which must be alphabetic. The name is left justified in the
field, filled to the right with spaces.

Flags. (Byte 17 also contains flags.)

Bit 0 — Privileged task flag. Set as follows:

1 — Task may execute privileged assembly language instructions.

0 — Task may not execute privileged assembly language instructions.
Bit 1 — System task flag. Set as follows:

1 — System memory is mapped into the task memory area.

0 — System memory is not mapped into the task memory area.

Bit 2 — Memory resident flag. Set as follows:

1 — Task is installed as memory resident.
0 — Task is installed as disk resident.

Bit 3 — Delete protected flag. Set as follows:

1 — Task segment may not be deleted until this flag is set to zero
(refer to the SCI command, Modify Task Entry).
0 — Task segment may be deleted.

Bit 4 — Replicatable flag. Set as follows:

1 — Copies of the task may be loaded into memory and executed.
0 — Only one copy of the task may be loaded into memory and
executed.

Bit 5 — Procedure segment 1 program file flag. Set as follows:

1 — Procedure segment 1 is on .S$§SHARED.
0 — Procedure segment 1 is on the program file on which the task
segment is being installed.

Bit 8 — Procedure segment 2 program file flag. Set as follows:

1 — Procedure segment 2 is on .S$SHARED.
0 — Procedure segment 2 is on the program file on which the task
segment is being installed.

Bit 7 — Special install flag. Set to zero. The flag is set to one only by the
system to install a task segment when the image is already on the
program file. Installation consists only of writing the file directory
entry; the task segment is not replaced.

Priority. The installed priority of the task, 0 through 4, or real-time pri-
ority, 0 through 127. Bit 0 of the field is set to one for a real-time priority.

Procedure segment 1 ID. The ID of the procedure segment or program

segment to be attached as procedure segment 1, or zero when there is no
attached procedure segment.

2270507-9701

Byte

15

16

17

18-19

20-21

22-23

2270507-9701

Program File Management 3.2

Contents

Procedure segment 2 ID. The ID of the procedure segment or program
segment to be attached as procedure segment 2, or zero when no pro-
cedure is to be attached as procedure segment 2. A procedure segment 2
is valid only if procedure segment 1 is specified.

Object file LUNO. The LUNO assigned to the object file. This LUNO must
not be open.

Flags. (Byte 12 also contains flags.)
Bit 0 — Overflow flag. Set as follows:
1 — Task transfers control to end action routine when an arithmetic
overflow occurs (Model 920/12 Computer only).
0 — Task does not transfer control to end action when an arith-
metic overflow occurs.
Bit 1 — Writable control store flag. Set as follows:
1 — Task uses writable control store (Model 990/12 Computer only).
0 — Task does not use writable control store.
Bit 2 — Execute protect flag. Set as follows:
1 — Set hardware execute protection (Model 990/12 Computer
only). Execute protection prohibits instruction accesses to the
memory in which the task segment is loaded.
0 — Do not set hardware execute protection.
Bit 3 — Software privileged.

1 — Task will be allowed to issue privileged SVCs.

0 — Task will not be allowed to issue privileged SVCs.
Bit 4 — Updateable,

1 — Task segment will be rewritten to the program file by the seg-
ment manager if modified.

0 — Task segment will not be rewritten to the program file by the
segment manager.

Bit 5 — Reusable. ST
1 — Task segment may be reused consecutively without reloading.
0 — Task segment must be reloaded for each use.

Bit 6 — Copyable.

1 — Task segment may be replicated by copying an in-memory
copy.

0 — Task segment may be replicated only by copying the disk-
resident copy.

Bit 7 — Reserved.

Reserved. When special install flag is set to one, the load address of the
task segment.

Reserved. When special install flag is set to one, the length of the task
segment.

Reserved. When special install flag is set to one, the length of the portion
of the task segment that is not overlaid.

3.3 Program File Management

The following is an example of coding for a supervisor call block for an Install Task Segment SVC:

EVEN INSTALL TASK SEGMENT ON PROGRAM
ITASK BYTE >25 FILE ASSIGNED TO LUNO >2C (LUNO IS
ITERR BYTE O NOT OPEN). TASK ID IS >83, TASK

BYTE >2C NAME IS MYTASK. TASK IS PRIVILEGED

BYTE >83 AND REPLICATABLE, HAS NO PROCEDURES.

TEXT ‘MYTASK INSTALL AT PRIORITY 2.

BYTE >88 OBJECT FILE LUNO IS >4A.

BYTE 2

DATA O

BYTE >4A

BYTE O

DATA O

DATA O

DATA O

3.3 INSTALLING A PROCEDURE SEGMENT OR PROGRAM SEGMENT

A task may install a procedure segment or program segment in a program file by executing an In-
stall Procedure/Program Segment SVC (opcode >26). The SVC writes the segment to the program
file and writes the appropriate entry in the program file directory. The following options are
available:

. The procedure segment or program segment may be installed as memory resident. (The
procedure segment or program segment does not actually become memory resident
until the next IPL. It may be executed from the disk until the next IPL.)

. The procedure segment or program segment may be installed as delete protected.

. The procedure segment or program segment may be installed as execute protected in
the Model 990/12 Computer.

e The procedure segment or program segment may be installed to use the writable control
store in the Model 990/12 Computer.

. The procedure segment or program segment may be installed as write protected in the
Model 990/12 Computer.

3-6 2270507-9701

Program File Management 3.3

The supervisor call block for the SVC is as follows:

SVC >26 —— INSTALL PROCEDURE/PROGRAM ALIGN ON WORD BOUNDARY
SEGMENT PRIVILEGED TASKS ONLY
DEC HEX
0 0 > 26 <RETURN CODE>
2 2 PROGRAM FiILE LUNO SEGMENT ID
4 4
~J

16

18

2279445

10

12

PROCEDURE SEGMENT NAME

FLAGS OBJECT FILE LUNO

RESERVED OR L.OAD ADDRESS

RESERVED OR SEGMENT LENGTH

FLaGs RESERVED

The call block contains the following:

Byte
0

1

2270507-9701

Contents
Opcode, >26.

Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

Program file LUNO, or zero. The LUNO assigned to the program file.
When this field contains zero, install procedure segment or program seg-
ment on program file .S$SHARED. When this field contains >FF, install
the segment on the program file on which the calling task resides. If the
special install flag is set to one, the LUNO must be open for exclusive
write. Otherwise, the LUNO must be closed.

Procedure or program segment ID, or zero. When this field contains zero,

DNOS assigns an available ID and returns the ID in this field. The user
may specify the procedure or program segment ID in this byte.

3-7

3.3 Program File Management

12

3-8

Contents

Name of procedure segment, or zero. When this field contains zero,
DNOS uses the IDT in the object module as the procedure name. The
name consists of not more than eight alphanumeric characters, the first
of which must be alphabetic. The name is left justified in the field, filled
to the right with spaces.

Flags. (Byte 18 contains flags which apply to a program segment only.)
Bit 0 — Segment flag. Set as follows:

1 — Install a program segment.

0 — Install a procedure segment.

Bit 1 — For a procedure segment, reserved. For a program segment,
system flag. Set as follows:

1 — Program segment may only be accessed by system tasks.

0 — Program segment may be accessed by all tasks.

Bit 2 — Memory resident flag. Set as follows:

1 — Procedure segment or program segment is installed as memory
resident.

0 — Procedure segment or program segment is installed as disk
resident.

Bit 3 — Delete protected flag. Set as follows:

1 — Procedure segment or program segment may not be deleted
until this flag is set to zero (refer to the Modify Procedure Seg-
ment Entry (MPE) command in the DNOS SCI/ Reference
Manual).

0 — Procedure segment or program segment may be deleted.

Bit 4 — For a procedure segment, writable control store flag. Set as
follows:

1 — Task uses writable control store (Model 990/12 Computer only).

0 — Task does not use writable control store.

For a program segment, replicatable flag. Set as follows:

1 — Program segment is replicatable.

0 — Program segment is not replicatable.

Bit 5 — For a procedure segment, execute protect flag. Set as follows:

1 — Set hardware execute protection (Model 990/12 Computer
only). Execute protection prohibits instruction accesses to the
memory in which the task is loaded.

0 — Do not set hardware execute protection.

For a program segment, share protected flag. Set as follows:

1 — Program segment may not be shared concurrently.

0 — Program segment may be shared.

Bit 6 — For a procedure segment, write protect flag. Set as follows:

1 — Set hardware write protection (Model 990/12 Computer only).
Write protection prohibits write accesses to the memory in
which the procedure or segment is loaded.

0 — Do not set hardware write protection.

For a program segment, reserved.

2270507-9701

Byte

13

14-15

16-17

18

2270507-9701

Program File Management 3.3

Contents

Bit 7 — For a procedure or program segment, the special
install flag. Set to zero. The flag is set to one only by the system to
install a procedure segment when the image is already on the pro-
gram file. Installation consists only of writing the file directory
entry.

Object file LUNO. The LUNO assigned to the object file. This LUNO must
not be open.
Bit 0 — Segment flag. Set as follows:
1 — Install a program segment.
0 — Install a procedure segment.

Reserved. When the special install flag (bit 7 of byte 12) is set to one, the
load address of the procedure segment.
Bit 0 — Segment flag. Set as follows:
1 — Install a program segment.
0 — Install a procedure segment.

Reserved. When the special install flag (bit 7 of byte 12) is set to one, the
length of the procedure segment.

Flags. For a procedure segment, set to zero. For a program segment, set
as follows:
Bit 0 — Reserved. Set to zero.
Bit 1 — Writable control store.
1 — Program segment accesses writable control store (Model
990/12 Computer only).
0 — Program segment does not access writable control store.
Bit 2 — Execute protect.
1 — Set hardware execute protection for program segment (Model
990/12 Computer only).
0 — Do not set hardware execute protection.
Bit 3 — Write protect.
1 — Set hardware write protection for program segment (Model
990/12 Computer only).
0 — Do not set hardware write protection.
Bit 4 — Updateable.
1 — Program segment will be rewritten to the program file by the
segment manager if modified.
0 — Program segment will not be rewritten to the program file by
the segment manager.
Bit 5 — Reusable.
1 — Program segment may be used consecutively without
reloading.
0 — Program segment must be reloaded for each access.

3-9

3.4 Program File Management

Bit 6 — Copyable.
1 — Program segment may be replicated by copying an in-memory
copy.
0 — Program segment may be replicated only by copying the disk-
resident copy.
Bit 7 — Reserved.

19 Reserved.

The following is an example of coding for a supervisor call block for an Install Procedure/Segment
SVC:

EVEN INSTALL PROCEDURE ON PROGRAM FILE
IPROC BYTE >26 ASSIGNED TO LUNO >AA (LUNO IS NOT
IPERR BYTE O OPEN). PROCEDURE iD IS ASSIGNED

BYTE >AA BY THE SYSTEM. OBJECT FILE LUNO
PROCID BYTE O IS >BB. PROCEDURE NAME IS

TEXT ‘MYPROC MYPROC

BYTE O

BYTE >BB

DATA O

DATA O

BYTE O

BYTE O

3.4 INSTALLING AN OVERLAY

A task may install an overlay in a program file by executing an Install Overlay SVC (opcode >27).
The SVC writes the overlay module to the program file and writes the appropriate entry in the pro-
gram file directory. The following options are available:

o The overlay may be installed as relocatable

. The overlay may be installed as delete protected

3-10 2270507-9701

Program File Management 3.4

The supervisor call block for the SVC is as follows:

SVC > 27 -- INSTALL OVERLAY ALIGN ON WORD BOUNDARY
PRIVILEGED TASKS ONLY
DEc HEX

(0] 0 >27 <RETURN CODE>

2 2 PRrROGRAM FILE LUNO OVERLAY ID

4 4

r~s AJ
,T OVERLAY NAME FF

10 A

12 fot FLAGS ASSOCIATED SEGMENT ID

14 E OBJECT FILE LUNO RESERVED

16 10 RESERVED OR L.OAD ADDRESS

18 12 RESERVED OR OVERLAY LENGTH

20 14 RESERVED

2279446
The call block contains the following:
Byte Contents

0 Opcode, >27.

1 Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

2 Program file LUNO, or zero. The LUNO assigned to the program file.
When this field contains zero, install overlay on .S$SHARED. When this
field contains >FF, install overlay on the program file on which the call-
ing task resides. If special install flag is set to one, LUNO must be open
for exclusive write. Otherwise, LUNO must be closed.

3 Overlay ID, or zero. When this field contains zero, DNOS assigns an

2270507-9701

available ID, and returns the ID in this field. The user may specify the
overlay ID in this byte.

3-11

3.4 Program File Management

Byte

4-11

12

13

14

15
16-17

18-19

20-21

3-12

Contents

Name of overlay, or zero. When this field contains zero, DNOS uses the
IDT in the object module as the overlay name. The name consists of not
more than eight alphanumeric characters, the first of which must be
alphabetic. The name is left justified in the field, filled to the right with
spaces. '

Flags.

Bit 0 — Relocation flag. Set as follows:

1 — Relocation of addresses in the overlay is performed when the

overlay is loaded.

0 — The overlay is to be loaded without relocation.

Bits 1-2 — Reserved.

Bit 3 — Delete protected flag. Set as follows:

1 — Overlay may not be deleted until this flag is set to zero (refer
to the Modify Overlay Entry (MOE) command in the DNOS System
Command Reference (SCI) Reference Manual).

0 — Overlay may be deleted.

Bits 4-5 — Reserved.

Bit 6 — Task/Segment flag. Set as follows:

1 — Associated segment ID is a program segment ID.

0 — Associated segment ID is a task segment ID.

Bit 7 — Special install flag. Set to zero. The flag is set to one only by the
system to install an overlay when the program image is already on
the program file. Installation consists of writing the file directory
entry.

Associated segment ID. Installed ID of the segment associated with the
overlay. Overlay and segment must be on the same program file. Overlay
is deleted automatically when the segment is deleted.

Object file LUNO. The LUNO assigned to the object file. This LUNO must
not be open.

Reserved.
Reserved. When special install flag is set to one, load address of overlay.

Reserved. When special install flag is set to one, length of overlay in
bytes.

Reserved.

2270507-9701

Program File Management 3.5

The following is an example of coding for a supervisor call block for an Install Overlay SVC:

EVEN INSTALL OVERLAY ON PROGRAM FILE
IOVLY BYTE >27 ASSIGNED TO LUNO >CA (LUNO IS NOT
IOERR BYTE O OPEN). OVERLAY ID IS ASSIGNED

BYTE >CA BY THE SYSTEM. OVERLAY NAME IS
OvLID BYTE O OLAY1. OBJECT FILE LUNO IS >0A.

TEXT ‘OLAY1 OVERLAY IS RELOCATABLE AND

BYTE >80 IS ASSOCIATED WITH TASK >88.

BYTE >83

DATA >0A

DATA O

DATA O

DATA O

3.5 DELETING A TASK

A task may delete a task from a program file by executing a Delete Task SVC (opcode >28). The
LUNO assigned to the program file may be open or closed. When the task is delete protected, it is
not deleted. Associated overlays are also deleted unless they are delete protected.

The supervisor call block for the SVC is as follows:

SVC >28 -- DELETE TAsK ALIGN ON WORD BOUNDARY
PRIVILEGED TASK ONLY

DEc HEX
0 0 >28 <RETURN CODE >
2 2 PROGRAM FI1LE LLUNO INSTALLED ID
4 4 FLAGS RESERVED

2279448

The call block contains the following:

Byte Contents

0 Opcode, >28.

1 Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completés in error, DNOS returns an error
code.

2 Program file LUNO. The LUNO assigned to the program file. The LUNO

must be closed unless the open flag is set to one. Enter zero when the
task is installed on .S$SHARED. Enter >FF when the task and the calling
task are installed on the same program file.

2270507-9701 3-13

3.6 Program File Management

Byte Contents
3 Installed ID of task to be deleted. Task must not be delete protected.
4 Flags.

Bits 0-6 — Reserved.
Bit 7 — Open flag. Set as follows:
1 — Program file LUNO is open.
0 — Program file LUNO is not open.

5 Reserved.
The following is an example of coding for a supervisor call block for a Delete Task SVC:

EVEN DELETE TASK >83 ON PROGRAM FILE
DELTSK BYTE >28 LUNO >4A. LUNO IS NOT OPEN.
DELTER BYTE O

BYTE >4A

BYTE >83

DATA O

3.6 DELETING A PROCEDURE SEGMENT OR PROGRAM SEGMENT

A task may delete a procedure segment or program segment from a program file by executing a
Delete Procedure/Program Segment SVC (opcode >29). The LUNO assigned to the program file
may be open or closed. When the procedure segment or program segment is delete protected, it is
1ot deleted. If the segment is a program segment with associated overlays, the overlays are also
deleted if they are not delete protected.

The supervisor call block for the SVC is as follows:

SVC >29 -- DELETE PROCEDURE/PROGRAM ALIGN ON WORD BOUNDARY
SEGMENT PRIVILEGED TASK ONLY

DEc HEX

0 0 > 29 <RETURN CODE>
2 2 PrRoGRAM FILE LUNO SEGMENT ID
4 4 FLAGS RESERVED

279449

-14 2270507-9701

Program File Management 3.6

The call block contains the following:

Byte

0

1

5

Contents
Opcode, >29.

Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

Program file LUNO. The LUNO assigned to the program file. The LUNO
must be closed unless the open flag is set to one. Enter zero when the
segment is installed on .S$SHARED or >FF when the segment is installed
on the same program file as the executing task.

Segment ID of procedure segment or program segment to be deleted.
Segment must not be delete protected.

Flags.
Bits 0-6 — Reserved.
Bit 7 — Open flag. Set as follows:
1 — Program file LUNO is open.
0 — Program file LUNO is not open.

Reserved.

The folvlowing is an example of coding for a supervisor call block for a Delete Procedure/Program

Segment SVC:

DELPR
DELPER

2270507-9701

EVEN DELETE PROCEDURE >35 ON PROGRAM
BYTE >29 FILE LUNO >4F. THE LUNO IS NOT
BYTE O OPEN.

BYTE >4F

BYTE >35

DATA O

3-15

3.7 Program File Management

3.7 DELETING AN OVERLAY

A task may delete an overlay from a program file by executing a Delete Overlay SVC (opcode >2A).
The LUNO assigned to the program file may be open or closed. When the overlay is delete pro-

tected, it is not deleted.

The supervisor call block for the SVC is as follows:

SVC >2A -- DELETE OVERLAY ALIGN ON WORD BOUNDARY

DEcC

2279450

HEX

PRIVILEGED TASK ONLY

The call block contains the following:

Byte
0

1

>2A <RETURN CODE>
PROGRAM FILE LUNO OVERLAY ID
FLAGs RESERVED
Contents

Opcode, >2A.

Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

Program file LUNO. The LUNO assigned to the program file. The LUNO
must be closed unless the open flag is set to one. Enter zero when the
overlay is installed on .S$SHARED or >FF when the overlay is installed
on the same program file as the executing task.

Overlay ID of overlay to be deleted. Overlay must not be delete protected.

Flags.
Bits 0-6 — Reserved.
Bit 7 — Open flag. Set as follows:
1 — Program file LUNO is open.
0 — Program file LUNO is not open.

Reserved.

2270507-9701

Program File Management 3.8

The following is an example of coding for a supervisor call block for a Delete Overlay SVC:

EVEN
DELOVL BYTE >2A
DLOLER BYTEO
BYTE >1F
BYTE >3B
DATA O

3.8 ASSIGNING SPACE ON A PROGRAM FILE

DELETE OVERLAY >3B ON PROGRAM
FILE LUNO >1F. LUNO IS NOT OPEN.

A task may request the assignment of a starting record in a program file by executing an Assign
Program File Space SVC (opcode >37). A task, procedure, segment, or overlay module may then be
written on the program file at the assigned starting record. This SVC is normally used by system

utilities.

The supervisor call block for the SVC is as follows:

SVC >37 -~ AssiGN PROGRAM FILE SPACE

ALIGN ON WORD BOUNDARY

PRIVILEGED TASK ONLY

DEc HEX
0 0 > 37 <RETURN CODE>
2 2 PROGRAM FI1LE LUNO RESERVED
4 4 LENGTH
6 6 <RECORD NUMBER>
8 8 RESERVED
2279451
The call block contains the following:
Byte Contents

0 Opcode, >37.

1 Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

2 Program file LUNO. The LUNO assigned to the program file. Enter zero

when the program file is .S$SHARED, or >FF when the program file is the
program file on which the calling task resides. The LUNO must be open
with exclusive write access privileges.

2270507-9701

3-17

3.9 Program File Management

Byte Contents
3 Reserved.
4-5 Length. Length in bytes of the module to be written.
6-7 Record number. DNOS returns the record number of the starting record

of the assigned disk space.
8-9 Reserved.

The following is an example of coding for a supervisor call block for an Assign Program File Space
SVC:

EVEN ASSIGN SPACE FOR 100 BYTES ON
APRFSP BYTE >37 PROGRAM FILE LUNO >2C
APFSER BYTEO

BYTE >2C

BYTE O

DATA 100

DATA O

DATA O

3.9 MAPPING A PROGRAM NAME TO AN ID

A task may obtain the name or the installed ID of a task segment, procedure segment, or overlay,
when either of the two items is known. The Map Program Name to ID SVC (opcode >31) returns the
name or installed ID in the supervisor call block. A LUNO must be-assigned to the program file that

contains the specified module. Flags in the block specify the desired operation.

The supervisor call block for the SVC is as follows:

SVC >31 -- MarP PrRoGrRAM NAME TO ID ALIGN ON WORD BOUNDARY
DEC HEX

0 0 > 31 <RETURN CODE>

2 2 FLAGS [ReEservED])

4 4
~ PROCEDURE, TASK, OR OVERLAY NAME ~
~N OR [

10 A <PROCEDURE, TASK, OR OVERLAY NAME >

12 C LUNO <ID>0R ID

14 E RESERVED

2279452

3-18 2270507-9701

Program File Management 3.9

The call block contains the following:

Byte
0

1

4-11

12

13

14-15

Contents
Opcode, >31.

Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

User flags.
Bits 0-1 contain type of segment:
00 — Task segment.
01 — Procedure segment.
10 — Overlay.
Bit 2 defines the operation:
1 — Return program name.
0 — Return program ID.
Bits 3-6 [Reserved].
Bit 7 specifies current state of LUNO:
1 — LUNO opened by this task.
0 — LUNO not opened by this task. This bit must be zero to map IDs
for LUNOs >00 and >FF.

[Reserved].

Name of module (eight alphanumeric ASCII characters). Supplied by task
if flag bit 2 is 0; returned by system if flag bit 2 is 1.

LUNO assigned to the program file that contains the module. A zero in
this field specifies .S§SHARED, and >FF specifies the program file on
which the calling task resides.

Segment ID. Returned by system if flag bit 2 is 0; supplied by task if flag
bit 2 is 1.

Reserved.

The following is an example of coding for a supervisor call block for a Map Program Name to ID
SVC that requests the name of a task segment:

MPIDNA
MPNERR
FLAGA

NAME

LNUM
TID

2270507-9701

EVEN GET NAME OF TASK >1B ON PROGRAM
BYTE >31 FILE ASSIGNED TO LUNO >2C (LUNO IS
BYTE 0 NOT OPEN).

BYTE >20

BYTE 0

BSS 8

BYTE >2C

BYTE >1B

DATA 0

3-19

3.9 Program File Management

Another examplie of a supervisor call block for a Map Program Name to ID SVC returns a procedure
ID:

EVEN GET ID OF PROCEDURE CALCFOUR ON
MPNAID BYTE >31 PROGRAM FILE ASSIGNED TO LUNO >23
MPNERC BYTEO (LUNO IS NOT OPEN).
FLAGS BYTE >40

BYTEO
PNAM TEXT ‘CALCFOUR’
LUNO BYTE >23
PRID BYTEO

DATA O

3-20 2270507-9701

4

Task Management

4.1 TASK CONCEPT

A task, in the DNOS context, is a program executing under DNOS. Each task consists of an
address space. The CPU context of the task defines the task at any given time. The context
consists of a workspace, the address of which is in the workspace pointer register; an instruction
address, in the program counter; and a status, stored in the status register.

The address space of the task may consist of one or more segments; no more than three segments
are accessible at a given time. Segments of an executing task may be dynamically exchanged for
other segments as required. (See the paragraph on memory control in the section on task support.)

When a task is installed in a program file on disk, it is designated as replicatable or
nonreplicatable. A replicatable task is a task that may be loaded into memory and placed in exe-
cution when one or more copies of the task already exist in memory and are being executed. A
nonreplicatable task may not be loaded into memory when a copy of the task is in memory being
executed. When a nonreplicatable task is being executed, another user must wait until execution
completes before executing that task.

Each task is assigned a priority level when it is installed. The highest priority level, 0, is reserved
for system tasks. Real-time priority levels R1 through R127 follow priority level 0. Next in
descending order of priority is priority level 1, intended for interactive tasks. It is followed by
priority level 2, adequate for multiple disk accesses. The lowest priority, level 3, is automatically
assigned to background tasks. Priority level 4 is the floating priority level and ranges between
levels 1 and 2.

To optimize system performance, DNOS assigns run-time priorities dynamically, based on the
installed priority (as modified by the Change Task Priority SVC) and on other factors.

Each task is installed on a program file with an installed ID unique with respect to the other tasks
on the file. The run-time ID is assigned to the task when it is executed. Each task can obtain its
run-time ID by executing a Self-lIdentification SVC. When a task issues an Execute Task SVC to
execute another task, the system returns the run-time ID of the called task. If the calling task
needs to have the called task know the run-time ID of the calling task, the calling task must pass
its own run-time ID to the called task as a task parameter.

A task becomes a ready task when it has been loaded into memory and has been placed on a
queue for execution. A ready task is awaiting its turn to be the executing task (in control of the
CPU). The executing task may place itself in time delay, suspend itself, or request an operation
(11O, for example) that suspends the task while awaiting completion of the operation. Otherwise,
the executing task completes its time slice and again becomes a ready task.

2270507-9701 4-1

4.2 Task Management

4.2 EXECUTING A TASK

One task may initiate execution of another task by issuing an Execute Task SVC (opcode >2B). The
called task must have been installed on a program file. If the called task is not in execution, it is
loaded and executed. If it is a replicatable task already in execution, another copy of the task is
placed in execution. If the task shares a procedure segment with other tasks, the replication of the
task also shares the procedure segment.

The following options are supported:

The called task may execute in the foreground of an interactive job and alternate with
the System Command Interpreter (SCI).

The called task may execute in the background of either an interactive or batch job.

The called task may execute in an interactive job under control of the system debug
utility.

The called task may be unconditionally suspended when it is ready to execute.

The calling task may terminate following execution of this SVC,

The calling task may be suspended until the called task has terminated.

The called task may be associated with a specified job other than the job of the calling

task (calling task must have been installed as a software privileged task). This option
should only be used by system tasks.

The supervisor call block for the Execute Task SVC is as foliows:

SVC > 2B -—- EXECUTE TASK ALIGN ON WORD BOUNDARY

2279453

DEc HEX

0 0] >2B <RETURN CODE>
INSTALLED ID

2 2 <RuN ID> Fracs

4 4 PARAMETER 1

6 6 PARAMETER 2

8 8 STATION ID PROGRAM FILE LLUNO

10 A Jos ID

2270507-9701

Task Management 4.2

The call block contains the following:

Byte
0

1

4-7

10-11

2270507-9701

Contents
Opcode, >2B.

Return code. DNOS returns zero when the operation completes suc-
cessfully. When the operation completes in error, DNOS returns an error
code.

Instalied ID of the task. DNOS returns the run-time ID in this byte.

Flags.
Bit 0 — Job ID flag. May be set by software privileged tasks only. Set as
follows:

1 — Job ID specified in bytes 10-11.

0 — Same job as calling task.

Bit 1 — Reserved.
Bit 2 — Reserved.
Bit 3 — Background task flag. Set as follows:
1 — Called task is to execute in background.
0 — Called task is not a background task.
Bit 4 — Terminate flag. Set as follows:

1 — Terminate calling task immediately (following successful ini-
tiation of execution of called task). All other user flags are
ignored.

0 — Do not terminate calling task.

Bit 5 — Reserved.
Bit 6 — Unconditional suspend flag. Set as follows:

1 — Suspend the called task unconditionally after loading (typically
used by the system debug utility).

0 — Execute the called task after loading.

Bit 7 — Calling task suspend flag. Set as follows:
1 — Suspend the calling task until the called task has terminated.
0 — Do not suspend the calling task.

Task parameters. Enter parameters required by the called task, if any.
Called task executes a Get Parameters SVC to access these parameters.

Station ID. Enter numeric portion of station ID for the station (terminal)
with which called task is to be associated. Enter 0 when called task is to
be associated with the same station as the calling task. Enter >FF when
the task is not to be associated with a station.

Program file LUNO. The LUNO assigned to the program file on which the
called task is installed. Enter zero when the task is installed on the
S$SHARED program file. Enter >FF when the calling and called tasks
are on the same program file.

Job ID. The ID of the job with which the task is associated. Applies only
when bit 0 of flag byte (byte 3) is set to one.

4.2 Task Management

For clarification of the use of the terminate flag feature, an example follows. If task A bids task B
using the Execute Task SVC with bit 7 set in the supervisor call block, then task A is suspended in
state >17 until task B terminates. However, if task B then bids task C with the terminate flag set in
the Execute Task supervisor cali block, task A is reactivated only when task C terminates. Similarly,
if task C then bids task D with the terminate flag set in the Execute Task supervisor call block, task
A is reactivated only when task D terminates. In other words, task A is reactivated only when the
last task in the task chain has terminated. In most applications, task A is SCI.

The following is an example of coding for a supervisor call block for an Execute Task SVC:

EVEN EXECUTE TASK >3B ON FILE ASSIGNED TO
EXTSK BYTE >2B LUNO >1A; NO ASSOCIATED STATION,

BYTE O NOT BACKGROUND TASK,

BYTE >3B EXECUTE IMMEDIATELY, SUSPEND

BYTE >01 CALLING TASK. PASS FOUR CHARACTERS

TEXT ‘HELP’ AS PARAMETERS. SAME JOB ID AS

BYTE >FF CALLING TASK.

BYTE >1A

DATA O

4-4 2270507-9701

Task Management 4.3

4.3 SCHEDULING A TASK

A task may schedule itself to resume execution at a specified time and date, or it may schedule
another task to execute at a specified time and date. The Scheduled Bid Task SVC (opcode >1F)
schedules execution of a task. When the called task is also the calling task, it is suspended. It
resumes execution at the instruction following the SVC call at the specified time and date. When
the calling task calls another task, control returns to the calling task following execution of the
SVC. The scheduled time should be at least several seconds later than the time the SVC is
executed to allow for execution of this SVC. Normally, the called task is installed on the system
program file and is associated with the same station (terminal) and job as the calling task.

The following options are supported:
e The program file LUNO and a different station ID may be specified.

. The called task may be associated with a different job than the calling task (calling task
must be software privileged).

The supervisor call block for the Scheduled Bid Task SVC is as follows:

SVC >1F —— SCHEDULED BID TAsK ALIGN ON WORD BOUNDARY

DEc HEX

(0] (o] >1F <RETURN CODE>

2 2 INSTALLED ID YEAR

4 4 DAY

6 6 Hour MINUTE

8 8 SECOND FLaGs

10 A PARAMETER 1

12 Cc PARAMETER 2

14 E STATION ID ProGrAM FILE LUNO
16 10 Jos ID

2279454

2270507-9701 4-5

4.3 Task Management

The call block contains the following:

Byte Contents

0 Opcode, >1F.

1 Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

2 Installed ID of the task.

3 Year. The two least significant digits of the year in which the task is to be

executed; example: 80.

4-5 Day of the year. The ordinal (Julian) date; example: 42 for February 11.
6 Hour. Range of 0 (midnight) through 23; example: 13 for 1 P.M.
7 Minute. Range of 0 through 59.
8 Second. Range of 0 through 59.
9 Flags.

Bit 0 — Station ID/LUNO flag. Set as follows:
1 — Station ID and program file LUNO specified in bytes 14 and 15.
0 — Use station ID of calling task and system program file.

Bit 1 — Job ID flag. May be set by privileged tasks only. Set as follows:
1 — Job ID specified in bytes 16-17.
0 — Same job as calling task.

Bits 2-7 — Reserved.

10-13 Task parameters. Enter parameters required by the called task, if any.
Called task executes a Get Parameters SVC t0 access these parameters.

14 Station ID. Enter numeric portion of station ID for station (terminal) with
which called task is to be associated. Enter >FF when the task is not to
be associated with a station.

15 Program file LUNO. The LUNO assigned to the program file on which the
called task is installed. When the program file is .S$SHARED, enter zero.
Enter >FF when the called and calling tasks are on the same program
file.

16-17 Job ID. The ID of the job with which the task is associated.

4-6 2270507-9701

Task Management 4.4

The following is an example of coding for a supervisor call block for a Scheduled Bid Task SVC:

EVEN EXECUTE TASK >2A ON SYSTEM PROGRAM
SBTSK BYTE >1F FILE ASSOCIATED WITH STATION AND

BYTE O JOB OF CALLING TASK AT 5PM

BYTE >2A MAR. 21, 1980. PASS FOUR

BYTE 80 CHARACTERS AS PARAMETERS.

DATA 81

BYTE 17

BYTE O

BYTE O

BYTE O

TEXT ‘OKAY’

BYTE O

BYTE O

DATA O

4.4 DELAYING TASK EXECUTION

A task may place itself in a time delay for a specified number of 50-millisecond periods. The Time
Delay SVC (opcode >02) suspends the calling task until the specified time has elapsed or until
another task executes an Activate Time Delay Task SVC that specifies the run-time ID of the time
delayed task. When a cooperating task is to terminate the delay period, the time delayed task must
communicate its run-time ID to the cooperating task before entering the time delay. The requested
delay period is specified as a multiple of 50 milliseconds; it is a minimum delay period. That is, a
count of zero provides a delay of from 0 to 50 milliseconds; a count of one provides a delay of from
50 to 100 milliseconds.

The supervisor call block for the Time Delay SVC is as follows:

SVC > 02 -- TIME DELAY ALIGN ON WORD BOUNDARY
DEcC HEX
0 0 >02 <RETURN CODE >
2 2 TIME DELAY COUNT

2279455

The call block contains the following:

Byte Contents

0 Opcode, >02.

1 Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

2-3 Time delay count. The number of 50-ms periods for the minimum delay.

2270507-9701 4-7

4.5 Task Management

The following is an example of coding for a supervisor call block for a Time Delay SVC:

EVEN SUSPEND FOR 10 SECONDS
TIMEDL BYTE >02

BYTE O

DATA 200

4.5 RESUMING EXECUTION OF DELAYED TASK

A task may restore execution of another task that is in the time delay state. The Activate Time
Delay Task SVC (opcode >0E) changes the state of a specified task from time delay to ready. The
task to be activated is identified by its run-time ID, which must have been sent to the calling task
by the time delay task prior to initiating the delay.

The supervisor call block for the Activate Time Delay Task SVC is as follows:

SVC >0E ~-- AcCTIVATE TIME DELAY TASK

DEC HEX

0 6] >0E <TAsSK STATE CODE >

2 2 RuN-TIME ID

2279456

The call block contains the following:

Byte Contents
0 Opcode, >0E.
1 Task-state code. DNOS returns the task-state code. Normal completion

state is >05. When the task is not in the system, the code returned is
>FF. Otherwise, when the task is not in time delay, the code is one of the
following, defined in the table of task-state codes:
>00->04, >06->4C
2 Run-time ID of task to be activated.

The following is an example of coding for a supervisor call block for an Activate Time Delay Task
SVC:

ACTDLT BYTE >0E ACTIVATE TIME DELAY TASK
BYTE O
RTID BYTE O RUN-TIME ID MOVED TO THIS BYTE

4-8 2270507-9701

Task Management 4.6

4.6 CHANGING PRIORITY OF A TASK

A task may change its priority level while executing. This capability is useful for a low priority task
that contains a high priority operation. The Change Task Priority SVC (opcode >11) changes the
priority of the calling task to that specified in the supervisor call block. The real-time priorities, R1
through R127, are identified by setting the most significant bit of the byte that contains the priority
to 1. '

The supervisor call block for the Change Task Priority SVC is as follows:

SVC >11 == CHANGE TASK PRIORITY

DEc HEx

o 0 >11 NEw PRIORITY LLEVEL
<OLwD PRIORITY LEVEL >

2279457

The call block contains the following:

Byte Contents
0 Opcode, >11.
1 New priority level for task. Bit 0 is set to 1 to identify a real-time priority

level. DNOS returns the old priority level in this byte, or error code >80 is
returned when the requested priority level is not valid.

The following is an example of coding for a supervisor call block for a Change Task Priority SVC:

CTPL BYTE >11 CHANGE PRIORITY OF CALLING
BYTE >DO0 TASK TO R50

2270507-9701 4-9

4.7 Task Management

4.7 SUSPENDING A TASK UNCONDITIONALLY

A task may unconditionally suspend itself while executing. The task remains suspended until a
cooperating task executes an Activate Suspended Task SVC that specifies the run-time 1D of the
suspended task.

The Unconditional Suspend SVC (opcode >06) suspends the calling task unconditionally. When a
cooperating task has executed an Activate Suspended Task SVC for the calling task prior to
execution of the Unconditional Suspend SVC, the calling task is suspended and immediately
reactivated.

The supervisor call block for the Unconditional Suspend SVC is as follows:

SVC > 06 —— UNCONDITIONAL SUSPEND

DEc HEX
0 0} >06

2279458
The call block contains the following:
Byte Contents
0 Opcode, >06.

The following is an example of coding for a supervisor call block for an Unconditional Suspend
SVC:

UNCSUS BYTE >06 UNCONDITIONAL SUSPEND

4-10 Change 1 2270507-9701

Task Management 4.8

4.8 ACTIVATING A SUSPENDED TASK

A task may activate another task that has suspended itself. The Activate Suspended Task SVC
(opcode >07) activates a suspended task specified by its run-time ID. The suspended task must
have communicated its run-time ID to the calling task before suspending itself. When the
specified task is not yet suspended, it resumes execution immediately after executing an
Unconditional Suspend SVC.

The supervisor call block for the Activate Suspended Task SVC is as follows:

SVC > 07 —- ACTIVATE SUSPENDED TASK

DEc HEX
0 0 >07 <TAsk STATE CODE>

2 2 RuN-TIME ID

2279459

The call bilock contains the following:

Byte Contents
0 Opcode, >07.
1 Task-state code. DNOS returns the task-state code. Normal completion

state is >06. When the task is not in the system, the code returned is
>FF. Otherwise, when the task is not suspended, the code is one of the
following, defined in the table of task-state codes.

>00->05, >07->4C

When the task is not suspended and it executes an Unconditional Sus-
pend SVC, it resumes execution immediately.

2 Run-time ID. The run-time ID of the suspended task to be activated.

The following is an example of coding for a supervisor call block for an Activate Suspended Task
SVC:

ACTTSK BYTE >07 ACTIVATE SUSPENDED TASK
BYTE O
RTTID BYTE O RUN-TIME ID MOVED TO THIS BYTE

If the suspended task was loaded via the XHT procedure, the Activate Suspended Task SVC will
appear to complete successfully but will actually have no effect. The Activate Suspended Task
SVC processor checks for a task being debugged and does not activate tasks with the halted flag
set.

2270507-9701 4-11

9 Task Management

.9 INHIBITING TASK PREEMPTION

\ task may extend its time slice, inhibiting the normal preemption that occurs at the end of a time
slice. The SVC also inhibits preemption by a higher priority task. This aliows the task to complete
1 critical function without interference by the system or by another task. The Extend Time Slice
5VC (opcode >09) inhibits the system from preempting the task for a specified number of 50-ms
eriods. The task may suspend itself during the specified period by executing a Wait for /O SVC, a
rime Delay SVC, an Unconditional Suspend SVC, or an SVC (I/0 SVC, for example) that suspends

‘he task awaiting completion of an operation.
The supervisor call block for the Extend Time Slice SVC is as follows:
SVC >09 —— EXTEND TIME SLICE

DEc HEX
0 0 > 09 TIME UNIT COUNT

2279460

The call block contains the following:

Byte Contents
0 Opcode, >09.
1 Time unit count. The number of time units (50 milliseconds each) to ex-

tend the time slice. A count of zero provides a 200-millisecond extension
of the time slice.

The following is an example of coding for a supervisor call block for an Extend Time Slice SVC:

EXTISL BYTE >09 EXTEND TIME SLICE 50 TIME
BYTE 50 UNITS — 2.5 SECONDS.

4-12 2270507-9701

Task Management 4.10

4.10 FORCING ABNORMAL TERMINATION

A task may force abnormal termination of another task in the same job. The Kill Task SVC (opcode
>33) forces termination of a task having the specified run-time ID. The station ID of the station
with which the task is associated may be specified also. When no station ID is supplied, the task
is terminated whether or not it is associated with a station. When a station ID is supplied, the task
is not terminated unless it is associated with the station. When >FF is supplied as the station ID,
the task is terminated only if it is not associated with a terminal. Placing the appropriate value in
the station ID field provides a degree of protection against terminating the wrong task. The Kill
Task SVC completes as soon as DNOS has begun the termination or has put the task into its end
action routine.

The supervisor call block for the Kill Task SVC is as follows:

SVC >33 == KILL TAskK ALIGN ON WORD BOUNDARY
DEC HEX
(0} 0 >33 <RETURN CODE>
2 2 RuN-TIME ID STATION ID
4 4 <'TASK STATE > RESERVED
6 6 RESERVED
2279461

The call block contains the following:

Byte : Contents

0 Opcode, >33.

1 Return code. DNOS returns zero when the operation completes suc-
cessfully. When the operation completes in error, DNOS returns an error
code.

2 Run-time ID. Run-time ID of the task to be killed.

3 Station ID. Set to 0, the numeric portion of the ID of the station with

which the task is associated, or to >FF. When set to 0, DNOS Kkills the
task without regard to whether or not it is associated with a terminal.
When set to a station ID, DNOS Kkills the task only if it is associated with
the specified terminal. When set to >FF, DNOS kills the task only if it is
not associated with a terminal.

4 Task state. DNOS returns the task state code of the terminated task in
this byte. '

5-7 Reserved.

2270507-9701 4-13

A1 Task Management

‘he following is an example of coding for a supervisor call block for a Kill Task SVC:

EVEN KILL TASK ASSOCIATED WITH
KILTSK BYTE >33 STATION 03
BYTE O
RUNID BYTE O RUN-TIME ID MOVED HERE
BYTE 3
TSKST BYTE O
BYTE 0,0,0

.11 TERMINATING A TASK

The End of Task SVC (opcode >04) is the normal termination of a task. The SVC releases the local
logical device tables and performs other termination functions. For disk-resident tasks, the SVC
releases task memory and the task status block (TSB). For memory-resident tasks, the SVC

reinitializes the TSB and clears outstanding breakpoints.

The supervisor call block for the End of Task SVC is as follows:

SVC > 04 -- END OF TASK

DEC HEX
0 0 >04

2279462
The call block contains the following:
Byte Contents
0 Opcode, >04.
The following is an example of coding for a supervisor call block for an End of Task SVC:

ENDTSK BYTE >04 END OF TASK

414 2270507-9701

5

Input/Output Operations

5.1 INPUT/OUTPUT CAPABILITIES

DNOS supports I/0 operations to various types of devices and to several types of files. In addition,
DNOS supports communication between programs, in which each program is analogous to a
peripheral device of the other. To include all types of IO, this manual refers to devices, files, and
communication channels between programs as I/O resources.

This section contains information that applies to input and output (I/O) to devices, files, and inter-
process communication (IPC) channels. Section 6 discusses device 1/O in detail. Section 7 dis-
cusses file /O in detail. Section 8 discusses IPC in detail.

DNOS supports two concepts of 1/0 to resources. Many l/O operations apply to various resources
and are essentially the same for each resource. This concept is called resource-independent /0.
Resource-independent /0 allows the programmer to code /O for any of several resources. A
logical unit number (LUNO) represents the resource. The association of a specific resource with
an /O operation is made at run time by assigning a LUNO to the appropriate resource. The
program may use different peripherals each time it is executed. Resource-independent I/O always
accesses data sequentially, and is supported for terminals, magnetic tape units, line printers, card
readers, sequential files, and communication channels.

With resource-independent /O, operation of the resource is restricted to a mode that is common
to several other resources. Resource-specific /O allows the programming of specific capabilities
of the device. Like resource-independent I/O, resource-specific /O is directed to a LUNO rather
than to the resource, but the LUNO must be assigned to the proper resource. Resource-specific
110, which allows random access to data, is supported for terminals, relative record files, key
indexed files, and communication channels.

Both resource-independent and resource-specific I/O may be requested in the initiate mode, under
control of the initiate flag in the user flags field of the call block. In the initiate mode, control
returns to the calling task after the operation is initiated; otherwise, the task is suspended during
the entire I/O operation. Only three concurrent operations in the initiate mode per task per logical
unit number (LUNOQO) are allowed. Additional operations cause the task to be suspended until
completion whether the initiate mode is requested or not.

DNOS supports ANSI standard access modes to assist intertask I/O synchronization. The modes
grant access privileges to a resource through a logical unit and deny conflicting accesses using
other logical units. The Open, Open Rewind, and Open Random operations enforce access
privileges. The operation fails if the requested access conflicts with existing access privileges. An
Open operation is required for access to any /O resource. The Modify Access Privileges operation
changes access privileges for sequential and relative record files. For devices, change the access
privileges by executing another Open operation requesting the desired privileges.

2270507-9701 5-1

5.2 Input/Output Operations

In order for the Open operations to enforce access privileges, these operations (not the Assign
LUNO operation) actually associate the LUNO with the device, file, or IPC channel.

With respect to an access privilege, a Write operation is any operation that transfers data to a
device, alters the contents of afile, or transfers data from a program to a communication channel.

. Read only — Allows calling program to read but not write. Allows read-only, shared, and
exclusive write access by other programs.

o Shared — Allows calling program to read and to rewrite. Allows read-only and shared
access by other programs.

. Exclusive write — Allows calling program to read and write. Allows read-only access by
other programs.

. Exclusive all — Allows calling program to read and write. Allows no access by other
programs.

Table 5-1 shows the accesses allowed when a program has opened a resource with each type of

access. The column headings of the table refer to types of access for which a program has already
opened the resource. The rows of the table refer to types of access by other programs.

Table 5-1. Access Mode Compatibility

Resource Opened for

Proposed Access Read Only* Shared* Exclusive Write* Exclusive All*
Read Only A A A F
Shared A A F F
Exclusive Write A F F F
Exclusive All F F F F

Note:

* A indicates allowed; F indicates forbidden.

5.2 PREPARING FORI1/O

Every 1/0 resource is identified for access purposes by a pathname. A pathname identifies a
device, a file, or an IPC channel.

The pathname of a file consists of a volume name (which may be implied), directory names (if any),
and a final component, which identifies a file. The names within the pathname are separated by
periods (.). The pathname can contain a maximum of 48 characters. When the volume name is that
of the system disk, it may be omitted. The pathname begins with a period in this case. The number
of directory names in the pathname depends upon the organization of the disk. The volume direc-
tory and directories at all levels may contain both directories and files. The pathname of an IPC
channel is similar to a file pathname.

5-2 Change 1 2270507-9701

Input/Output Operations 5.2

When DNOS is used in a Business System computer network, a pathname can also include the
site name for a computer in the network. The pathname for a file or device at a particular site
includes the site name (followed by a colon) then the standard form for the local pathname.

A logical name may be used within a job to represent a pathname or a portion of a pathname. It
consists of no more than eight characters and is considerably easier to use than a pathname with
several elements. A logical name may have a set of parameters associated with it, which may be
accessed by the tasks in the job. File characteristics, access privileges, and file creation
parameters are examples of the types of information supplied as logical name parameters.

A logical name is also used to provide logical concatenation of files, or multivolume files. A set of
pathnames is represented by a logical name. I/O to a LUNO assigned to this logical name is
performed to the logical concatenation of the files. The pathnames in the set may be on more than
one volume to provide multivolume files.

Logical names may be created using System Command Interpreter (SCI) commands or supervisor
calls. However, the use of logical names in /O operations is optional. Logical hames are required
for logically concatenated files and for resources that require parameters.

A LUNO must be assigned to a device name, logical name, or combination of logical name and
pathname to associate the device, file, or IPC channel represented by the name with the LUNO. A
LUNO may be assigned using either an SCl command or an SVC. Assigning LUNOs by command
at run time allows different resources to be assigned for each run. On the other hand, assigning

LUNOs with SVCs is more convenient and less error-prone when the same resource is always
used.

Figure 5-1 shows optional methods of assigning LUNOs. Notice that a LUNO that is assigned
using an SCI command may be either global or job-local, depending upon which command is
used. A global LUNO is available to any task in the system; a job-local LUNO is only available to
tasks of the job. Unless the LUNO must be available outside the current job, the job-local LUNO
should be used. When a LUNO is assigned by an SVC, it may be a task-local LUNO, availabie only
to the task. It also may be job-local or global. Once assigned, a LUNO must be opened by a task in

order for that task to use the LUNO. Only one task is allowed to open and use one of these LUNOs
at a given time.

Job-local-shared LUNOs (shared LUNOs) are job-local LUNOs that can be used by more than one
task within a given job. The LUNO must be opened by any task that uses it. The access privileges
of the LUNO are compared to those requested in the Open operation. If the Open operation
requests greater access privileges and it does not conflict with the access privileges of other
LUNOs that are assigned and opened to the resource, the privilege level of the LUNO is changed
to the greater value. The access privileges of a LUNO in order of increasing value are read only,
shared, exclusive write, and exclusive all. If the requested access privilege is less than or equal to
the present value, the privilege level of the LUNO is not changed. Thus, all tasks that use a shared
LUNO have the same access privileges to the resource regardless of how they opened it.

2270507-9701 5-3

5.2 Input/Output Operations

A count of the number of successful Open operations is kept. The same number of Close oper-
ations must be performed before the LUNO can be released. If a Close operation is not performed,

the LUNO is not released until the job terminates.

The use of shared LUNOs tends to reduce the total number of LUNOs required in the system. This
type of LUNO is not recommended for sequential files because there is no defined method of
positioning the file; that is, the task has no control of which record is read or written.

OPERATOR ACTION

1. ASSIGN ASSIGN LUNO
LUNO SCI COMMAND

PROGRAM ACTION

ASSIGN LUNO
SVC CALL

GLOBAL OR
JOB LOCAL
LUNO STRATEGY

2. OPEN LUNO

3. TRANSFER DATA

4. CLOSE LUNO

GLOBAL OR
JOB LOCAL
LUNO STRATEGY

OPEN LUNO
SVC CALL

VARIOUS
1/0 CALLS
READ,WRITE. . .
ETC

CLOSE LUNO
SVC CALL

T

5. RELEASE
LUNO RELEASE LUNO
SCI COMMAND

2279463

Figure 5-1.

RELEASE LUNO
SVC CALL

Overall /0 Operation

ﬁ

e

TASK LOCAL

= =™ LUNO STRATEGY

RESOURCE—
INDEPENDENT
CALLS

TASK LOCAL

LUNO STRATEGY

2270507-9701

Input/Output Operations 5.2.1

5.2.1 Using Logical Names

The logical name is a useful way to represent a long pathname. It is essential for logically conca-
tenated files and multifile sets. Logical names can be locai to the job in which they are created or
global to the system.

The Name Management SVC (opcode >43) includes a number of sub-opcodes related to logical
names and synonyms. The sub-opcodes request the pathname that corresponds to a logical name
and perform other functions for the system and for the task. The SVC performs similar functions
for synonyms. However, since synonyms are SCI variables, they are normally assigned, modified,
and deleted by SCI commands and subroutmes The sub-opcodes available to the user perform
the following functions:

U Return the pathname and parameters for a logical name

. Create a logical name

. Delete a logical name

U Restore a name segment
A task that requires a new logical name performs a Set Name’s Value (sub-opcode >02) operation,
supplying the logical name, the value (pathname), and the parameters, if any. When a task needs
the pathname or parameters of a logical name, it performs a Determine Name’s Value (sub-opcode
>00) operation. The task supplies the logical name for the operation. The Delete Name (sub-
opcode >04) operation deletes a specified logical name. The Restore Name Segment (sub-opcode
>0F) operation restores a name segment from disk.
The other sub-opcodes of the Name Management SVC perform operations used by the system.
Systems programmers who need further details of these operations can find them in the DNOS
System Design Document.

The supervisor call block for the Name Management SVC contains the following:

SVC >43 ——- NAME MANAGEMENT ALIGN ON WORD BOUNDARY
DEC HEX
0] 0] >43 <RETURN CODE>
2 2 SuB-OPCODE FLAGS
4 4 ADDRESS OF NAME
6 6 ADDRESS OF VALUE
8 8 ADDRESS OF PARAMETER LiIST
10 A SEGMENT ID/<PATHNAME FLAG>
12 C RESERVED
2279464

2270507-9701 5-5

5.2.1 Input/Output Operations

The call block contains the following:

Byte Contents

0 Opcode, >43.

1 Return code. DNOS returns zero when the operation completes satisfac-
torily. When the operation completes in error, DNOS returns an error
code.

2 Sub-opcode, as follows:

>00 — Determine Name's Value.
>02 — Set Name’s Value.

>04 — Delete Name.

>0F — Restore Name Segment.

3 Flags.
Bit 0 — Name type. Set as follows:
1 — Logical Name.
0 — Synonym.
Bits 1-2 — Reserved.
Bit 3 — Global Name.
Bits 4-7 — Reserved.

4-5 Address of name. Address of a buffer that contains the name. The first
byte of the buffer contains the length of the name,

6-7 Address of value. Address of a buffer that contains a pathname or other
value for a logical name. The first byte of the buffer contains the length
of the pathname.

8-9 Address of parameter list. Address of a buffer that contains a parameter
list for a logical name. The first byte of the buffer contains the length of
the list.

10-11 Pathname flag, used by the Determine Name’s Value operation.
12-13 Reserved.

The task that requests a Set Name’s Value operation for a logical name may supply parameters in
a list. Also, if the name is a logical name that has a parameter list, the Determine Name’s Value
operation returns a parameter list.

5-6 2270507-9701

Input/Output Operations 5.2.1

These parameters can be set to create a file at a later time using these same parameters.
Examples of operations that create files in this manner are the Create File operation or the Assign
LUNO operation with autocreate option. The format of the parameter list is as follows:

DEc

2279465

Hex

LENGTH CODE 0
TYPE FOR SUBLIST LLENGTH OF SUBLIST
PARAMETER

~ ~
'T ENTRY BLOCKS 'T

TYPE FOR SUBLIST LENGTH OF SUBLIST
~ PARAMETER ~
T ENTRY BLOCKS T

The parameter list contains the following:

Byte

0

1
For each sublist:

2

4-3+n

2270507-9701

Contents

Length code. The total length of the structure in bytes minus the length
code byte.

Zero.

Type for sublist. The type of the parameters in the sublist. Types of
parameters are:

0 — System parameters.

1 — Spooler parameters.

2->7F — Reserved.

>80->FF — User IPC parameters.

Length of sublist. The sum of the lengths of all parameter entry blocks in
the sublist.

Parameter entry blocks, one for each parameter. Formats of parameter
entry blocks are described in subsequent paragraphs.

5.2.1 Input/Output Operations

Three formats are defined for parameter entry blocks, any of which may be used for any type of
parameter. The three formats are related to three parameter sizes. A parameter may be a single-bit
binary value (a flag, for example). A parameter may be a value that can be stored in one byte. Ora
parameter may occupy more than one byte. Each parameter format includes a parameter number
and one or two bits that identify the format. The parameter entry biock format for a single-bit value

is:

2279466

Bit

0-5

6

7

0 5 6 7
ByTE O PARAMETER No, 11V
File Parameters
Parameter Parameter
Name Number
Job Temporary 05
Expandable oD
Blank Suppression OF
Forced Write 0] 3
Contents

Parameter number, 0 through 63. Parameter numbers need not be assigned
or ordered in sequence but must be unique within the sublist.

1.

Value, 0 or 1.

The parameter entry block format for a one-byte parameter is:

2279467

5-8

0 5 6 7
BYyTE O PARAMETER No, 0|0
ByTE 1 VALUE
File Parameters
Parameter Parameter
Name Number
Maximum Number of Tasks 10
Maximum Number of Procedures 11
Maximum Number of Overlays 12
Job Access Level 03
File Type 04

2270507-9701

Input/Output Operations 5.2.1

The parameter entry block contains the following:
Byte Contents

0 Parameter number byte:

Bits 0-5 — Parameter number, 0 through 63. Parameter numbers need
not be assigned or ordered in sequence but must be unique within
the sublist.

Bit 6 — 0.

Bit7 — 0.

1 Value. A numeric value, 0 through 255, or an ASCII character.

The parameter entry block format for a multibyte parameter is:

0 56 7
ByTE O PARAMETER No, 0|1
ByTE 1 PARAMETER LENGTH
[
e A PARAMETER ~
® ~ ~
VALUE
N
2279468
File Parameters
Parameter Parameter
Name Number
Initial Allocation 06
Physical Record Length 09
Default Physical Record Length 15
Secondary Allocation 07
Logical Record Length 08
Maximum Number of Directory Entries 14
Key Definition Block 16

2270507-9701 5-9

5.2.1.1 Input/Output Operations

The parameter entry block contains the following:
Byte Contents

0 Parameter number byte:

Bits 0-5 — Parameter number, 0 through 63. Parameter numbers need
not be assigned or ordered in sequence but must be unique within
the sublist.

Bit6 — 0.

Bit 7 — 1.

1 Parameter length. The number of bytes required for the parameter value.

2-n Parameter value. The nufmbers or characters of the parameter. If the
parameter is a key definition block the parameter must be on a word
boundary; that is, an even byte address.

The parameter list consists of one or more sublists. All parameters in a sublist are of the same
type. Each parameter is defined in a parameter entry block, the format of which depends on the
size of the parameter. Each parameter is identified by a parameter number in the range of 0
through 63. The parameters in a sublist must have unique parameter numbers. They may be
numbered in any sequence, skipping numbers or not, as required.

5.2.1.1 Obtaining Logical Name Pathname and Parameters. The Determine Names’s Value oper-
ation (sub-opcode >00) returns the pathname (or the first of a list of pathnames) and a parameter
list, if any, and indicates whether or not the logical name has more pathnames. All fields of the
supervisor call block apply to the operation.

When the flag (bit 0 of the flags byte) is set to zero, the operation expects the name to be a
synonym and returns its value. You should call SCI subroutine S$MAPS to obtain the value of a
synonym instead of requesting this operation. SSMAPS is discussed in the DNOS Systems Pro-
grammer’s Guide.

The address of name field is the address of a buffer that contains a logical name. The first byte of
the buffer must contain the number of bytes in the name.

The address of value field contains the address of a buffer large enough to hold the pathname ex-
pected. The first byte of the buffer contains the number of bytes in the buffer (not including the
length byte). The operation returns the number of bytes in the pathname, followed by the
characters of the pathname, in the buffer. When the logical name is not found, the operation
returns an error code in byte 1 of the call block.

The address of parameter list field contains the address of a buffer large enough to contain the
parameter list expected. The first byte of the buffer contains the number of bytes in the buffer (not
including the length byte). The operation returns the parameter list in the format previously
described, placing the list in the buffer. When no parameter list is found, the operation returns 0 in
the first byte of the buffer.

The operation sets the pathname flag to 1 when the pathname returned by the operation is the first
of a set of pathnames. The operation returns 0 in the field when the logical name represents only
one pathname.

5-10 2270507-9701

Input/Output Operations 5.2.1.2

The following is an example of coding for a supervisor call block for a Determine Name’s Value
operation and for the required buffers:

EVEN OBTAIN THE PATHNAME AND
DNMVAL BYTE >43 PARAMETERS FOR LOGICAL NAME
DVER BYTE O INFILE

BYTE O

BYTE >80

DATA LNAME

DATA PATH

DATA PARMS
MORE DATA O

DATA O
LNAME BYTE 6

TEXT ‘INFILE’
PATH BYTE 50

BSS 50
PARMS BYTE 100

BSS 100

5.2.1.2 Creating a Logical Name. The Set Name’s Value operation (sub-opcode >02) assigns a
pathname and, optionally, a set of parameters to a logical name. A logical name segment must
have been supplied for the current job.
The following fields of the supervisor call block apply:

. Opcode — >43

. Return code

. Sub-opcode — >02

. Flags

U Address of name

. Address of value

. Address of parameter list
When the global name flag in the flags byte is set to one for a logical name, the name is defined in
the global name segment. To save this name for permanent use, issue the Snapshot Global Name
Definition (S§GND) command.
When the name type flag in the flags byte is set to zero, the operation expects the name to be a
synonym and assigns its value. You should call SCI subroutine S$SETS to assign the value of a
synonym instead of requesting this operation. S$SETS is discussed in the DNOS Systems

Programmer’s Guide.

The address of name field must contain the address of a buffer that contains the length of the
name in the first byte and the characters of the logical name in succeeding bytes.

2270507-9701 5-11

5.2.1.3 Input/Qutput Operations

The address of value field must contain the address of a buffer that contains the pathname. The
first byte in the buffer contains the length of the pathname. Successive bytes contain the
characters of the pathname.

The address of parameter list field contains the address of a buffer or zero (when there are no
parameters). The buffer contains the required parametérs in the format previously described.

The following is an example of coding for a supervisor call block for a Set Name’s Value operation
and for the required buffers:

EVEN CREATE LOGICAL NAME OUTFILE
CRLNAM BYTE >43
CNER BYTE O
BYTE >02
BYTE >80
DATA LNME
DATA PTHNME
DATA PARM
DATA O
DATA O
LNME BYTE 7
TEXT ‘OUTFILE’
PTHNME BYTE 11
TEXT “.BLUE.FILE?1’
PARM BYTE 10
BYTE O
BYTE >80
BYTE 7
PARM1 BYTE >05
' BYTE 5
TEXT ‘LOCAL’

5.2.1.3 Deleting a Logical Name. The Delete Name operation (sub-opcode >04) deletes a logical
name. The following fields of the supervisor call block apply:

. Opcode — >43

o Return code

. Sub-opcode — >04

* Flags

. Address of name
When the name type flag in the flags byte is set to zero, the operation expects the name to be a
synonym, and attempts to delete the synonym. You should call SCI subroutine S$SETS to delete a

synonym instead of requesting this operation.

The address of name field must contain the address of a buffer that contains the length of the
name in the first byte and the characters of the logical name in succeeding bytes.

5-12 2270507-9701

£\

Input/Qutput Operations 5.2.1.4

The following is an example of coding for a supervisor call block for a Delete Name operation
using the name buffer of the previous example:

EVEN - DELETE LOGICAL NAME OUTFILE
DLN BYTE >43
DNER BYTE 0

BYTE >04

BYTE >80

DATA LNAM

DATA O

DATA O

DATA O

DATA O

5.2.1.4 Restoring a Name Segment. The Restore Name Segment operation (sub-opcode >0F)
restores a logical name segment from a disk file. The following fields of the supervisor call block
apply:

. Opcode — >43

. Return Code

. Sub-opcode >0F

. Flags

. Address of name

. Segment ID

The only flag examined is the global flag. This operation can be performed only once. This is done
by the system restart task.

The address of name field must contain the address of a buffer that contains the length of the
name in the first byte and the characters of the logical name definition in succeeding bytes.

The address of value field must be zero.
The address of parameter list field must be zero.

If the user flag for global operation is set to 1, the global name operation will be done once,
otherwise a user segment will be created.

2270507-9701 5-13

5.2.2 Input/Output Operations

The following is an example of coding for a supervisor call block for a Restore Name Segment
operation and for the required buffers:

RESNAM
RENS

RID
LNME

EVEN RESTORE NAME SEGMENT
BYTE >43

BYTE O

BYTE >0F

BYTE >00

DATA LNME
DATA O

DATA O

DATA O

DATA O

BYTE 11

TEXT ‘.DISK.FILE2’

5.2.2 Performing Utility Functions

Some of the sub-opcodes of the 1/0 Operations SVC (opcode >00) perform I/O utility functions
that support device /O, file 1/0, and IPC. The Device l/O, File 1/0, and Interprocess Communication
sections in this manual describe these operations in detail. These 1/O utility functions allow a

program to:

5-14

Create a file

Delete a file

Assign a LUNO to a file or device
Release a LUNO

Assign a new pathname to a file
Verify a pathname

Apply write protection to a file
Apply delete protection to a file
Remove protection from a file
Add an alias to a directory
Delete an alias in a directory
Specify the write mode

Create an IPC channel

Deiete an IPC channel

2270507-9701

Input/Output Operations

522

The utility operations require an extended supervisor call block. The following block applies to all
utility functions except creating and deleting an IPC channel:

SVC >00 —— |I/O OPERATIONS

2279581

2270507-9701

DEec

20

22

24

26

28

30

32

34

HEX

10

12

14

18

1A

1C

1E

20

22

(UTILITY SUB~OPCODE)

ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT

> 00 <RETURN CODE>
SuB~-OPCODE LUNO
<SYSTEM FLAGS> USER FLAGS

<RESOURCE TY¥PE>

RESERVED

KEy DEF. BLocKk ADDR/DEF. PHYs. REc. SI1ZE

RESERVED

UTiLiTYy FLAGS

DEFINED L.OGICAL RECORD LENGTH

DEFINED PHYSICAL RECORD LENGTH

PATHNAME ADDRESS

PARAMETER ADDRESS

RESERVED

INITIAL FILE ALLOCATION

SECONDARY FILE ALLOCATION

5.2.2

Input/Qutput Operations

The cali block contains the following:

5-16

Byte
0

.1

13

14

Contents
Opcode, >00.

Return code. DNOS returns zero when the operation completes satis-
factorily. When the operation completes in error, DNOS returns an error
code.

Utility sub-opcode for desired operation:
90 — Create File. ‘

91 — Assign LUNO.

92 — Delete File.

93 — Release LUNO.

95 — Assign New Pathname.
96 — Unprotect File.

97 — Write Protect File.

98 — Delete Protect File.

99 — Verify Pathname.

9A — Add Alias.

9B — Delete Alias.

9C — Define Write Mode.
9D — Create IPC Channel.
9E — Delete IPC Channel.

Logical unit number (LUNO).

< System flags>. Set by the system to indicate the status of the opera-
tion. Only the error flag (bit 1) is used for utility operations.

User flags. User sets these flags for utility operations. The flags for those
operations that use this field are specified and described in the para-
graph on each operation. Flag bits marked as not used must be setto 0 to
avoid unpredictable results.

< Resource type >. Returned by the system for Assign LUNO operations.
[Reserved].

Key definition block address. When creating a key indexed file, place the
address of the definition block in this field.

Default physical record size. When creating a directory file, place the
default physical record size in this field.

Number of tasks. When creating a program file, place the maximum
number of tasks in this field.

Number of procedures. When creating a program file, place the max-
imum number of procedures in this field.

2270507-9701

2270507-9701

Byte

15

16-17

18-19

20-21

22-23

24-25
26-27

28-31

30-31

32-35

Input/Output Operations 5.2.2

Contents

Number of overlays. When creating a program file, place the maximum
number of overlays in this field.

Utility flags. User sets these flags for utility operations. The flags for
each operation are specified and described in the paragraph on each
operation. Set all flag bits that are marked as not used to zero to avoid
unpredictable results.

Logical record length. Applies to create operations. Set to the number of
bytes in the record or in the longest record (variable length records). A
default value appropriate to the file type is used when this field contains
zero.

Physical record length. Applies to create operations. Set to the number
of bytes in the physical record. When this field contains any value iess
than twice the logical record length, the file is unblocked. A default value
appropriate for the type of disk is used when this field contains zero.

Pathname address. Applies to all operations except Release LUNO. Set
to the address of a field in memory that contains the foliowing:

Byte 0 — Length n of pathname in bytes

Bytes 1-n — Pathname

Parameter address. See the specific sub-opcode description for usage.
Reserved.

Initial file allocation. Applies to a create operation. For an expandable
file, set to the number of logical records to be allocated initially or to zero
for the default value. For a fixed size file, set to the size of the total file, in
logical records.

Directory entries. Applies to a Create File operation for a directory file.
Set to the maximum number of directory entries.

Secondary file allocation. Applies to a create operation for an ex-
pandable file. Set to the number of logical records for subsequent allo-
cations or to zero for the default value.

5.3 Input/Output Operations

5.3 1/0 OPERATIONS SVC

The 1/0 Operations SVC (opcode >00) is common to all I/O operations. A basic subset of sub-
opcodes applies to resource-independent I/O. Other subsets apply to other types of I/O, as listed
in Table 5-2. A basic supervisor call block also applies to resource-independent 1/O. The
extensions to and variations in the supervisor call block for other types of I/O are shown in the
paragraphs that describe the types of I/O. The basic supervisor call block is as follows:

SVC > 00 -- I/O OPERATIONS

ALIGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT
DEC HEX

0 o >00 <RETURN CODE>

2 2 SuB-~-OPCODE LUNO

4 4 <SysTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

2279470
Table 5-2. Sub-Opcodes for /O Operations SVC
Sub-Opcodes
Type of 1/O (Hexadecimal)
Resource Independent 00-02, 05-07, 09-0F
Direct Disk 00, 03, 05, 08-0C, 0E-12
Sequential and Relative Record File 00-07, 09-0E, 10-12, 4A, 59, 5B
Key Indexed File 00, 01, 03, 05-07, 09, OE, 40-4A, 50-52
911 VDT and 940 EVT 00-05, 09-0C, OE, 15
Teleprinter Devices 00-05, 09-0D, 13, 15
Cassette Unit 00-07, 09-0F
Printer 00-04, 0B, 0D, OE
Magnetic Tape 00-07, 09-0F
Card Reader 00, 01, 03, 04, 09, OA
Interprocess Communication 00-05, 09-0D, 19-1C
Dummy Device 00-0F
1/0 Utilities 90-93, 95-9E
5-18 2270507-9701

Input/Output Operations 5.3

The call block contains the following:

2270507-9701

Byte
0

1

6-7

8-9

10-11

Contents
Opcode, >00.

Return code. DNOS returns zero when the operation completes satis-
factorily. When the operation completes in error, DNOS returns an error
code.

Sub-opcode for desired operation, as listed in Table 5-2. The basic /O
sub-opcodes are:

00 — Open.

01 — Close.

02 — Close, Write EOF.
03 — Open and Rewind.
04 — Close and Unload.
05 — Read Device Status.
06 — Forward Space.

07 — Backward Space.
09 — Read ASCIL.

0OA — Read Direct.

0B — Write ASCII.

0C — Write Direct.

0D — Write EOF.

0E — Rewind.

OF — Unload.

Logical unit number (LUNO).

<S8ystem flags> Set by the system to indicate the status of the opera-
tion. The flags that apply to each operation are specified and described
in the paragraph on the operation.

User flags. Set to define the required operation. The flags that apply to
each operation are specified and described in the paragraph on the
operation. Flag bits marked as not used must be set to 0 to avoid un-
predictable results.

Data buffer address. The address of the buffer for the operation; it must
be on a word boundary.

Read character count. For a Read operation, the maximum number of
characters that may be stored in the buffer.

Write character count. For a Write operation, the number of characters to
be written.

<Actual read count>. For a Read operation, set by the system to the
number of characters stored in the buffer.

5-19

5.3.1 Input/Output Operations

5.3.1 Suspending a Task During 110)

When I/O has been requested in the initiate mode, control returns to the task after the I/O has been
initiated. The task can complete any processing that does not require the results of the I/O oper-
ation. When no further processing can be done, the task can issue an SVC to suspend itself until
110 is complete. DNOS supports two SVCs for this purpose. One suspends the calling task until a
specified I/O operation has completed; the other suspends the calling task until any pending I/0O
operation initiated by the task completes.

5.3.1.1 Wait for /0 SVC. The Wait for I/O SVC (opcode >01) suspends the calling task until a
specified I/0 operation has completed. When the I/O has already completed, DNOS returns control
to the calling task immediately.

The supervisor call block for the SVC is as follows:

SVC >01 -- WAIT FoRr I/O ALIGN ON WORD BOUNDARY

DEcC HEX

(o] 0 > 01 - <RETURN CODE >
2 2 ADDRESS oF BYTE 2 oF /0 CaLL BLocK
2279471
Byte Contents

0 Opcode, >01.

1 Return code. DNOS returns zero when the operation completes satis-
factorily. When the operation completes in error, DNOS returns an error
code.

2-3 I/0 address, byte 2 of the supervisor call block for the initiated 1/0 oper-
ation.

The following is an example of coding for a supervisor call block for a Wait for /0 SVC:

WFIO DATA >0100 ' WAIT FOR COMPLETION OF 1/0
DATA IKIF +2 CALL BLOCK IKIF

5-20 2270507-9701

Input/Output Operations 5.3.1.2

5.3.1.2 Wait for Any /O SVC. The Wait for Any /O SVC (opcode >36) suspends the calling task
until an I/O operation requested by the task completes. When the task resumes execution, it must
test the busy flag (byte 4, bit 0) in the supervisor call block for each 1/0 operation to identify the
completed operation. When all 1/0 has already completed, DNOS returns control to the calling
task immediately.

The supervisor call block for the SVC is as follows:

SVC >36 —— WAIT FOR ANY I/O ALIGN ON WORD BOUNDARY
DEC HEX
0 0 > 36 <RETURN CODE>
2279472

The call block contains the following:

Byte Contents
0 Opcode, >36.
1 Return code. DNOS returns zero when the operation completes satis-
factorily. When the operation completes in error, DNOS returns an error
code.

The following is an example of coding for a supervisor call block for a Wait for Any /0O SVC:

WMIO DATA >3600 WAIT FOR COMPLETION OF I/O

2270507-9701 5-21

5.3.2 Input/Output Operations

5.3.2 Forcing Termination of 1/O

DNOS supports a supervisor call that forces termination of 1/0 to the device assigned to a
specified LUNO. The SVC can abort I/O to the device from the calling task or from another task.
Only privileged tasks may abort I/O from another task. The Abort I/O SVC (opcode >0F) aborts I/O
to the device, optionally closing the device when it has been opened. If the device is busy, the SVC
sets the error flag (byte 4, bit 1) in the supervisor call block for the aborted operation. The calling
task is suspended during execution of the SVC. The medium involved in the I/O operation remains
positioned as the aborted I/0 operation leaves it; that is, a tape is not rewound or backspaced.

The supervisor call block for the SVC is as follows:

SVC > O0F -- ABORT [/O PRIVILEGED TASK (SEE TEXT)
DEc HEX
0 0} >0F <RETURN CODE>
2 2 FLAGS ' LUNO
4 4 ZERO, OR ADDRESS OF TSB
6 6 ZERO, OR ADDRESS OF JSB

2279473

The call block contains the following:

Byte
0

1

5-22

Contents
Opcode, >0F.

Return code. DNOS returns zero when the operation completes satis-
factorily. When the operation completes in error, DNOS returns an error
code.

Flags.
Bit 0 — Do not close. Set as follows:
1 — Do not close files and devices.
0 — Close open files and devices.
Bits 1-7 — Reserved.

LUNO assigned to the device to which I/O is to be aborted.

Zero, when calling task I/O is to be aborted. Address of Task Status Block
(TSB) of job for which I/O is to be aborted.

Zero, when calling task 1/O is to be aborted. Address of Job Status Block
(JSB) of task for which I/O is to be aborted.

2270507-9701

Input/Output Operations 5.3.2

The following is an example of coding for a supervisor call block for an Abort I/O SVC:

AlO DATA >0F00 ABORT /O TO LUNO >3E FROM
DATA >003E THIS TASK, CLOSING FILES
DATA O :
DATA O

2270507-9701 5-23/5-24

6
Device /O

6.1 INTRODUCTION
This section describes the utility operations and the I/O operations for device /0. The descriptions
of the utility operations apply to all devices. Descriptions of the applicable I/O operations for each
device follow. These descriptions are organized by device.
6.2 DEVICE UTILITY OPERATIONS
Several utility operations are required to support device I/O. A device may be specified by either a
device name or by a logical name. A logical name promotes documentation of the program; it is
local to a job; and it may associate parameters with the device. Logical nhame operations are
described in the Input/Output Operations section in this manual. Utility operations include assign-
ment and deletion of LUNOs by the I/O utility._
The 1/O utility functions for device /O are:

J Assign a LUNO

. Release a LUNO

. Verify adevice name

The following extended supervisor call block applies to utility functions.

2270507-9701 6-1

6.2 Device Utility Operations

6-2

SVC >00 == | O OPERATIONS
(UTILITY SUB-OPCODE)

2279581

DEcC

10

14

16

18

20

22

24

26

28

30

32

34

HEx

10

12

18

1A

1C

1E

20

22

ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT
> 00 <RETURN CODE>
SuB-OPCODE LUNO

<SYSTEM FLAGS>

UsSeER FLAGS

<RESOURCE TYPE>

RESERVED

KEYy DEF. BLocK ADDR/DEF. PHYS. REc. SIzZE

RESERVED

UTILITY FLAGS

DEFINED LOGICAL RECORD LLENGTH

DEFINED PHYSICAL RECORD LENGTH

PATHNAME ADDRESS

PARAMETER ADDRESS

RESERVED

INITIAL FILE ALLOCATION

SECONDARY FILE ALLOCATION

2270507-9701

S

Device Utility Operations 6.2

6.2.1 Assigning LUNOs
To assign a LUNO, a program executes an 1/0 Operations SVC with sub-opcode >91. The fol-
lowing fields of the utility supervisor call block apply:

e SVCcode—0

* Returncode

. Utility sub-opcode — >91

. Logical unit number (LUNO)
. < Resource type >

. Utility flags

o Pathname address

The system returns the resource type in bytes 6 and 7 of the call block. Byte 6 indicates the device
type and byte 7 indicates the resource type.

The device types found in byte 6 are as follows:

>00 — Dummy device

>01 — Special device

>02 — 743 KSR

>03 — 733 ASR

>04 — 733 cassette drive

>06 — Single-sided diskette drive

>07 — Disk drive

>08 — Magnetic tape drive

>09 — Teleprinter device (TPD)

>0A — 911 VDT

>0B — Serial printer

>0C — Parallel printer

>0D — Four-channel communication controller (FCCC)
>0E — Communication interface module (CIM)

>0F — Industrial device

>10 — Card reader

>11 — 940 VDT

>12 — 931 VDT

>14 — Bit-oriented/character-oriented asynchronous interface module (BCAIM)
>15 — Virtual terminal

The resource types found in byte 7 are as follows:

>01 — File
>02 — Device
>04 — Channel

>08 — Remote

2270507-9701 6-3

6.2 Device Utility Operations

The value in byte 7 is formed by DNOS by using one or more of the values listed above. Some of the
values are combinations of these values. For example, >06 is a channel emulating a device. If the
value in bytes 6 and 7 is 0A06, the indicated resource type is a channel emulating a911 VDT.

The following utility flags apply:

0 1-2 3-4 5161|7819 }|10] 11-12113 | 14-15

T

2279474
Bits 3-4 — Scope of LUNO flag. Set as follows:

00 — Task-local LUNO.

01 — Job-local LUNO.

10 — Global LUNO.

11 — Job-local-shared LUNO.

Bit 5 — Generate LUNO flag. Set as follows:

1 — Assign the next available LUNO and return it in byte 3.
0— Assignthe LUNO specified in byte 3.

Set all other utility flags to zero.

A logical unit number (LUNO) must be assigned to an I/O resource to identify the resource for an
110 operation. The scope of a global LUNO is not limited to a single job or task. The LUNO applies
in all jobs and tasks executing while it remains assigned. The scope of a job-local LUNO is limited
to the tasks in the job. A job-local LUNO is assigned by one of the tasks in the job or by an SCI
command. The scope of a task-local LUNO is limited to the task that assigns the LUNO. A task-
local LUNO is assigned by a task.

Job-local-shared LUNOs (shared LUNOSs) are job-local LUNOs that can be used by more than one
task within a given job. Each task that uses the LUNO must open it. The access privileges of the
LUNO are compared to those requested in the Open operation. If the Open operation requests
greater access privileges and it does not conflict with the access privileges of other LUNOs that
are assigned and opened to the resource, the privilege level of the LUNO is changed to the greater
value. The access privileges of a LUNO in order of increasing value are:

. Read only
o Shared
. Exclusive write
o Exclusive all
if the requested access privilege is less than or equal to the present value, the privilege level of the

LUNO is not changed. Thus, all tasks that use a shared LUNO have the same access privileges to
the resource regardless of how they opened it.

6-4 Change 1 2270507-9701

Device Utility Operations 6.2

A count of the number of successful Open operations is kept. The same number of Close oper-
ations must be performed before the LUNO can be released. If a Close operation is not performed,
the LUNOQ is not released until the job terminates.

The use of shared LUNOs tends to reduce the total number of LUNOs required in the system. This
type of LUNO is not recommended for sequential files because there is no defined method of posi-
tioning the file; that is, the task has no control over which record is read or written.

The Assign LUNO operation may assign the next available LUNO or a LUNO specified in the LUNO
field. When the generate LUNO flag is set to one, the system assigns the next available LUNO and
returns the number in the LUNO field. When the flag is set to zero, the system considers the con-
tents of the LUNO field of the supervisor call block to be the desired LUNO.

2270507-9701 Change 1 6-4A/6-4B

Device Utility Operations 6.2

The pathname address is the address of an area of memory that contains the pathname (device
name) of a resource to be assigned to the LUNO. The first byte of the pathname area contains four,
the number of characters in the device name. Subsequent bytes contain the ASCII characters of
the device name.

The following is an example of the source code for a supervisor call block and a device name block
to assign a LUNO to adevice:

ALUNO DATA O ASSIGN NEXT AVAILABLE JOB LOCAL
BYTE >91 LUNO TO LINE PRINTER
BYTE O
DATA 0,0
DATA 0,0
DATA 0,0
BYTE >0C,0 UTILITY FLAGS
DATA 0,0
DATA DNME
DATA 0,0
DATA 0,0
DATA 0,0
DNME BYTE 4 DEVICE NAME LENGTH
TEXT ‘LP02’

6.2.2 Releasing LUNOs
To release a LUNO, a program executes an 1/O Operations SVC with sub-opcode >93. The fol-
lowing fields of the utility supervisor call block apply:

. SVCcode — 0

o Return code

o Utility sub-opcode — >93

o LUNO

Utility flags

The following utility flags apply:

0 1-2 3-4 516 71819110} 11=-12]113 | 14-15

f

Bits 3-4 — Scope of LUNO. Set as follows:
00 — Task-local LUNO
01 — Job-local LUNO
10 — Global LUNO
11 — Job-local-shared LUNO

2279475

Set all other utility flags to zero.

2270507-9701 6-5

6.2 Device Utility Operations

A Release LUNO operation does not release a LUNO that has a different scope from that specified
by the scope of LUNO flag. For example, if global LUNO >23, job-local LUNO >23, and task-local
LUNO >23 were all assigned, and a Release LUNO operation for task-local LUNO >23 were per-
formed, the global and job-local LUNOs would remain assigned.

The following is an example of the source code for a supervisor call block to release a LUNO:

RLUNO DATA O RELEASE GLOBAL LUNO >23.

BYTE >93

BYTE >23

DATA 0,0

DATA 0,0

DATA 0,0

BYTE >10,0 UTILITY FLAGS
DATA 0,0

DATA O

DATA 0,0

DATA 0,0

DATA 0,0

6.2.3 Verifying Device Names
To verify a device name, a program executes an I/Q Operations SVC with sub-opcode >99. The fol-
lowing fields of the utility supervisor call block apply:

o SVCcode — 0

. Return code

. Utility sub-opcode — >99

. Resource type

. Utility flags

. Pathname address

DNOS returns the resource type in bytes 6 and 7 of the supervisor call block, just as it does for the
Assign LUNO operation.

The utility flags are set to zero to verify a device name.
The Verify Device Name operation performs a syntax check on the device name.
The pathname address is the address of an area of memory that contains the device name to be

verified. The byte at the pathname address contains four, the number of characters in the device
name. Subsequent bytes contain the ASCII characters of the device name.

6-6 2270507-9701

VDTI/IO 6.3

The following is an example of the source code for a supervisor call block to verify a device name:

VFY DATA O ‘ VERIFY DEVICE NAME LPO1
BYTE >99,0
DATA 0,0
DATA 0,0
DATA 0,0
TYPE BYTE 0,0 UTILITY FLAGS
DATA 0,0
DATA DEVNA
DATA 0,0
DATA 0,0
DATA 0,0
DEVNA BYTE 4
TEXT ‘LPO?Y’

6.3 VDTIIO
DNOS supports both resource-independent and resource-specific 1/0 for video display terminal
(VDT) 1/O. Resource-independent 1/O for the VDT includes operations that are analogous to
sequential file operations. A record is displayed on the bottom line of the screen as it is entered by
the user or written by the program. Previously displayed lines move upward, and the top line disap-
pears from the display. Specifically, resource-independent 1/0 to a terminal implies the following
conditions.
An Open operation positions the cursor at column 0 of the bottom row of the screen.
The Write operation default conditions are:

. Output is displayed at the current cursor position.

. Characters are displayed at low intensity.

. A carriage return (>0D) positions the cursor at column 0 of the current row.

. A line feed (>0A) or form feed (>0C) moves the current line and the lines above it up one
line and positions the cursor at column 0 of the current line.

The Read operation default conditions are:

e Characters entered are displayed at the current cursor position.

° Characters entered are displayed at high intensity.
Resource-specific /0 for VDTs include operations that apply only to a video display device. These
operations give a program control over cursor position (which implies display position for input
and output), audible tone, function of special keys, and intensity of display. Except for the Read

Device Status operation, the device must be opened using sub-opcode >00 or >03 prior to any 1/O
operation.

2270507-97011 6-7

6.3 VDTIIO

The following I/O call block for VDT 1/O operations is the basic block used for all I/O operations. If
an extension to this block is netessary for a particular operation, it is indicated in the operation
description.

SVC > 00 -— [/O OPERATIONS

2279470

The subset of sub-opcodes for

ALIGN ON WORD BOUNDARY

(CAN BE INITIATED AS AN
EVENT

>00

<RETURN CODE >

Sus—~-OPCODE

LUNO

<SYSTEM FLAGS>

User FLAGS

DATA BUFFER ADDRESS

READ CHARACTER COUNT

DEc HEX
(o] 0]
2 2
4 4
6 6
8 8
10 A

WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

specific 1/0, as follows:

00
01

02
03
04
05
09
0A
0B
0C
0D
OE
12

Open

Close

Close, Write EOF
Open and Rewind
Close and Unload
Read Device Status
Read ASCII

Read Direct

Write ASCII

Write Direct
Supported by 931/940
Rewind

Supported by 931/940

the VDT applies to both resource-independent and resource-

The system flags (byte 4) in the supervisor call block apply to all VDT l/O. These flags are:

2279476

6-8

1

F T

2270507-9701

VDTI/O 6.3

Bit 0 — Busy flag. Set by system as_follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — Noerror.

Bit 2 — End-of-file flag. Set by system as follows:
1 — ENTER key terminated the operation.
0 — Operation terminated without the ENTER key being pressed.

Bit 3 — Event key flag. Set by system as follows:
1 — An event key terminated the operation.
0 — Operation terminated without an event key being pressed.

The user flags (byte 5) in the supervisor call block apply to all VDT I/O. However, significance of
these flags differs for various operations. The flags that apply to each operation are described in
the detailed description of each operation.

The character set applicable to the VDT is the ASCII character set or the JISCIl character set
appropriate to the country code for which the system was generated.

6.3.1 Key Categories
The system interprets each key on the keyboard in one or more of the following categories:

¢ Data
e Hold
e Event

. System edit
¢ Taskedit

6.3.1.1 Data Keys. The data keys return the codes of printable characters to the buffer specified
in the call block. The category includes the keys that return ASCIl codes >20 through >7E.

6.3.1.2 Hold Key. The hold key suspends output to the terminal. Operation may be resumed by
pressing any other key except RETURN, exclamation point (!), or CONTROL X. The hold key is the
blank orange key on the 911 and 931, and the PREV FORM key on the 940.

When the RETURN key is pressed following the hold key, any write operation in progress is
aborted.

When the exclamation point key is pressed following the hold key, the system activates SC| and

the output continues. Contention between the interrupted output and SCI for the use of the ter-
minal may cause unpredictable results.

2270507-9701 6-9

6.3 VDTI/O

When CONTROL X is pressed following the hold key, a hard break results. The hard break termi-
nates a current task and activates SCi. When end action is specified by the task, it is performed
prior to terminating the task and activating SCI. The hard break should be used to abort tasks when
appropriate. It should be used with care because it aborts pending I/O requests.

The system selects the task to be terminated by the hard break from among the tasks of the cur-
rent job. The following rules apply in the listed order of priority:

1. When only the System Command Interpreter (SCl) task is active, SCl is terminated.
2. Any other foreground task is terminated.

3. Anyother background task is terminated.

4. When other tasks are active along with SCI, SCl is terminated last.

There may be times when the hard break terminates a task other than the one intended. In that
case, press the hold key and CONTROL X again to terminate the intended task.

The effect of a subsequent hard break depends upon the timing. When the task has not yet taken
end action in response to the first hard break, the subsequent hard break terminates the next task
in the order of priority. When the task is executing the end action routine but has not completed
end action, the task is aborted as if end action had not been provided. When end action has com-
pleted, the subsequent hard break causes the task to take end action again.

The end action routine should execute a Get End Action Status SVC to obtain the error code and
identify the cause of the termination. When the task error code returned by the SVC is > 10, a hard
break has occurred. The task may process the hard break and resume execution after executing a
Reset End Action Status SVC. The task must place the WP, PC, and ST values returned by the
Get End Action Status SVC in R13, R14, and R15 and execute an RTWP instruction to resume
execution.

6.3.1.3 Event Keys. Activating the event key mode enables use of event keys as task pro-
grammable function keys. The event key mode is activated by performing an Open operation with
the event key mode bit (bit 7 of byte 5 of the call block) set to one. Event characters may be
accessed by a Remote Get Event Character operation without opening the LUNO assigned to the
VDT.

When an event key is pressed, the corresponding character code is stored in the event character
buffer. When an input operation is being performed, the operation terminates with the event key
bit (bit 3 of byte 4 of the call block) set to one.

When no input operation is being performed and an event key is pressed, the next input operation
is immediately terminated with the event key bit of the call block set to one.

The events keys are identified in Table 6-2.

6-10 2270507-9701

vVDTI/IO 6.3

The task decodes the event character and performs the desired function. When the input operation
that terminates with the event key bit set to one uses the extended call block (resource-specific I/
0), the event character is returned in the event character field. The event character can be obtained
without performing a read operation (and without opening the LUNO) by performing a Remote Get
Event Character operation. When the input operation uses the basic 1/0 call block (resource-
independent 1/0), the event character is not returned.

NOTE

Any task may access the event character buffer by performing I/O to
any LUNO assigned to the terminal. The first access is the only
access that returns the correct character. Tasks that perform /O to
a terminal to which SCI is performing /O must avoid accessing
event characters. Either the task or SCI may fail to perform the
intended function.

6.3.1.4 System and Task Edit Keys. System edit keys are cursor and display control keys that
are implemented by the system. Task edit keys are cursor and display control keys that are task
functions. Five of the keys are both system and task edit keys, for which the system performs
functions. The task may perform additional functions.

Task edit functions do not apply to resource-independent I/O. The carriage control bit in the
extended user flags field must be set to one to enable task edit functions. When task edit func-
tions are enabled, pressing a task edit key during an input operation terminates the operation. The
device service routine (DSR) returns the character code of the task edit character in the event byte
field of the extended call block.

The following paragraphs describe the edit keys. For system edit keys, the paragraphs describe
the functions performed when the keys are pressed. For task edit keys, the paragraphs state the
code that the DSR returns to the task when the keys are pressed. For keys that are both, the para-
graphs describe the functions and state the codes. If a key is both and the task edit flag is not set,
the function is performed, but the 1/0 is not terminated. System edit keys are listed with a letter S
in the type column of Table 6-2; task edit keys are listed with a letter T in the type column.

Edit keys are related to fields of data on the screen, which are read in an 1/O operation. The field
begins at the cursor position and consists of the number of characters to be read by the current
read operation. When an edit key is pressed between read operations, it is effective at the
beginning of the next read operation.

The following paragraphs discuss the edit keys on a 911 VDT, equivalent keys on other terminals
perform these functions. See the ASCII Device I/O Operations appendix to this manual for the
equivalent keys on your terminal.

ERASE FIELD Key. This system edit key positions the cursor at the beginning of the field and
fills the field with the fill character.

Left Arrow Key. This system edit key moves the cursor to the left unless the cursor is at the first

character position of the field. The warning beep bit of the extended user flags field controls an
audible warning if the cursor is not moved.

2270507-9701 6-11

6.3 VDTIIO

Right Arrow Key. This system edit key moves the cursor to the right one character position.
When the cursor moves beyond the end of the field, and the remain in field on field full flag is not
set, the DSR terminates the operation and returns the last character entered. The warning beep bit
of the extended user flags field controls an audible warning if the cursor moves beyond the end of
the field.

INS CHAR Key. This system edit key sets the input mode to insert characters. In the insert mode,
entering a character moves the cursor and the characters to its right one character position to the
right and displays the entered character in the position vacated by the cursor. Pressing the key
causes a warning beep when the cursor is positioned at a fill character, if the fill characteris not a
blank, and the insert mode is not enabled. The warning beep bit of the extended user flags field
controls an audible warning if the field has been filled. The insert mode remains effective until a
key that is not adata key is pressed.

DEL CHAR Key. This system edit key deletes the character at the cursor position, moves the
characters in the field to the right of the cursor one position to the left, and fills the left character
position of the field with the fill character. The warning beep bit of the extended user fiags field
controls an audible warning if there is no character to be deleted.

Blank Gray Key. This task edit key returns the character code >8F in the event byte field.

Up Arrow Key. This task edit key returns the character code >95in the event byte field.

ENTER Key. This task edit key returns the character code >93 in the event field byte. The DSR
interprets this code as end-of-file (EOF) and sets bit 2 of byte 4 of the call block.

Left FIELD Key. This task edit key returns the character code >94 in the event byte field.

Right FIELD Key. This task edit key returns the character code >87 in the event byte field.

Down Arrow Key. This task edit key returns the character code >8A in the event byte field.
ERASE INPUT Key. This system and task edit key positions the cursor at the beginning of the
field, fills the field with the fill character, and returns the character code >8E in the event byte
field.

RETURN Key. This system and task edit key returns the cursor to column 1 of the current line and
returns the character code >8D in the event byte field. The device service routine (DSR) interprets

the code as end-of-record (EOR).

HOME Key. This system and task edit key returns the cursor to the beginning of the field and
returns the character code >8C in the event byte field.

SKIP Key. This system and task edit key fills the field from the cursor position to the end of the
field with fill characters without moving the cursor and returns the character code >8B in the
event byte field.

TAB Key. This system and task edit key accepts all characters entered in the current field with-
out moving the cursor, and returns the character code >89 in the event byte field.

6-12 2270507-9701

VDTI/O 6.3

6.3.2 VDT Resource-Independent I/O
The operations appropriate for the VDT are described in subsequent paragraphs. The following
sub-opcodes, which do not apply to the VDT, produce the indicated results:

06
07
08
0D
OF

Ignored
Ignored

Error

Ignored for 911
Ignored

6.3.2.1 Open. Sub-opcode >00 specifies an Open operation. The Open operation is required for
a VDT. However, DNOS does not validate the Open operation; that is, it does not detect a possible
conflict with 1/0 to the same device by another task. An Open operation is not required prior to per-
forming a Read Device Status operation.

The following fields of the basic supervisor call block apply to an Open operation:

SVCcode —0

Return code

Sub-opcode — >00

Logical unit number (LUNO)
User flags

Data buffer address

Read character count

The following user flags apply to an Open operation:

2279478

o]1 2 3-4 5|6

T i i

Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:

00 — Exclusive write.
01 — Exclusive all.
10 — Shared.

11 — Read only.

Bit 7 — Event key mode flag. Set as follows:

2270507-9701

1 — Enable event key mode.
0 — Disable event key mode.

6-13

6.3 VDTIIO

The logical unit number (LUNO) field contains the LUNO assigned to the VDT to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the VDT is 5.

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length fora VDT is >56.

A VDT must be opened with the event key mode flag set to one if event keys are to be used as task
programmable function keys.

To access an event key character, perform a Remote Get Event Character operation.

The following is an example of the source code for a supervisor call block to open aVDT:

ovDT DATA O OPEN VDT ASSIGNED TO LUNO >24.
BYTE 0,>24
DATA O

TYPE DATA O

DLRL DATA O
DATA O

6.3.2.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends 1/O to a
LUNO from the calling task. The LUNO remains assigned to the device, and may be opened again
for additional /O operations. When a task terminates, DNOS closes all LUNOs that have been
opened by the task.
The following fields of the basic supervisor call block apply to a Close operation:

. SVCcode — 0

. Return code

. Sub-opcode — >01

o Logical unit number (LUNO)

. User flags

The foliowing user flag applies to a Close operation:

0 1]2 3-4 51617

2279479

6-14 2270507-9701

VDTI/O 6.3

Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close a VDT:

CVvDT DATA O CLOSE VDT ASSIGNED TO LUNO >24.

BYTE 1,>24

DATA O

DATA O -
DATA O

DATA O

6.3.2.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode >02, is identical to the
Close operation.

6.3.2.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open opera-
tion followed by a Rewind operation. For the VDT, the Rewind operation consists of clearing the
screen. Any previously entered characters that remain in the buffer are ignored.

6.3.2.5 Close and Unload. The Close and Unload operation, sub-opcode >04, is identical to the
Close operation.

6.3.2.6 Read Device Status. Sub-opcode >05 specifies a Read Device Status operation. The
Read Device Status operation returns device status information in a buffer.

The following fields of the basic supervisor call block apply to a Read Device Status operation:

SVCcode — 0

Return code

Sub-opcode — >05

Logical unit number (LUNO)
User flags

Data buffer address

Read character count

< Actual read count >

2270507-9701 6-15

6.3 VDTI/O

The following user flag applies to a Read Device Status operation:

o1 2 3-4 516 |7

2279480

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the device for which status
information is returned.

The data buffer address is the address of the buffer into which DNOS places the status
information.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field. If the
buffer is 4 characters, bytes 0 through 3 are returned. If the buffer is 18 characters, all bytes are
returned.

The contents of the data buffer after a Read Device Status operation has returned the status of a
VDT are:

Byte Contents
0 Maximum row address.
1 Maximum column address.
2-3 Number of characters currently stored in the input character queue.
4 Device Service Routfne (DSR) type.*
5 Channel number.*
6-7 Communications Register Unit (CRU) address.
8-9 Auto Call Unit (ACU) CRU address.*
10 Interface Service Routine (ISR) type.*
11 Line Control*
12-13 Opcode 15, Edit flag 1.

* For more information concerning these items, see the resource specific information for the appropriate device.

6-16 2270507-9701

Byte
14-15

16-17

VDTI/O 6.3

Contents
Opcode 15, Edit flag 2.

Reserved.

DNOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char-
acters in the queue. The maximum size of this queue is specified when the system is generated.

The following is an example of the source code for a supervisor call block for a Read Device Status
operation and code for the read buffer:

RDSVDT

MRA
MCA
clQ

DATA O READ STATUS OF VDT ASSIGNED TO
BYTE 5,>32 LUNO >32.

DATA O

DATA MRA

DATA 18

DATA O

BSS 1 DEVICE STATUS BUFFER

BSS 1

BSS 16

6.3.2.7 Read ASCIl. Sub-opcode >09 specifies a Read ASCIlI operation. The Read ASCII
operation reads a record from the keyboard and stores the characters in the specified buffer, two
characters per word.

The following fields of the basic supervisor call block apply to a Read ASCI! operation:

. SVC code — 0

. Return code

. Sub-opcode — >09

° Logical unit number (LUNO)

. <8ystem flags >

o User flags

. Databuffer address

] Read character count

. < Actual read count >

2270507-9701

6-17

Byte
14-15

16-17

VDTI/IO 6.3

Contents
Opcode 15, Edit flag 2.

Reserved.

DNOS maintains an input character queue that stores characters input whiie the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char-
acters in the queue. The maximum size of this queue is specified when the system is generated.

The following is an example of the source code for a supervisor call block for a Read Device Status
operation and code for the read buffer:

RDSVDT

MRA
MCA
ciQ

DATA O READ STATUS OF VDT ASSIGNED TO
BYTE 5,>32 LUNO >32.

DATA O

DATA MRA

DATA 18

DATA O

BSS 1 DEVICE STATUS BUFFER

BSS 1

BSS 16

6.3.2.7 Read ASCIl. Sub-opcode >09 specifies a Read ASCIl operation. The Read ASCII
operation reads a record from the keyboard and stores the characters in the specified buffer, two
characters per word.

The following fields of the basic supervisor call block apply to a Read ASCII operation:

U SVCcode — 0

. Return code

. Sub-opcode — >09

o Logical unit number (LUNO)

o <System flags >

. User flags

. Data buffer address

. Read character count

U] < Actual read count >

2270507-9701

6-17

3 VDTIO

he following system flags apply to a Read ASCI! operation:

3145|617

o1 |2
FfTs

2279481

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:
1 — ENTER key terminated the operation.
0 — Operation terminated without the ENTER key being pressed.

Bit 3 — Event key flag. Set by system as foliows:
1 — An event key terminated the operation.
0 — Operation terminated without an event key being pressed.

The following user flags apply to a Read ASCI| operation:

o112 3-4 5167

P 7

2279482

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
Bit 7 — Blank adjustment flag. Set as follows:
1 — Read with blank adjustment.
0 — Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the VDT from which a record
is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.
The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

6-18 2270507-9701

VDTI/IO 6.3

The Read ASCII operation recognizes the characters listed in Appendix B for the VDT. The opera-
tion stores the characters, packed one per byte. When the country code in effect is not >0200
(Japan), the most significant bit is set to zero. When the country code is >0200, the eight-bit
JISCII code is stored. The operaton continues until the RETURN key is pressed, the buffer is full,
an event key is pressed (if the VDT is in the event key mode), or a task edit key is pressed (if task
edit is set).

When the ENTER key is pressed, the system sets the EOF flag in the system flags byte and termi-
nates the operation.

Characters entered between Read operations are stored in a queue and read by the next Read
operation. The maximum size of the queue is specified during system generation. When the queue
has been filled, the audible tone sounds as each additional character is entered and the additional
characters are ignored.

Errors can be corrected by pressing the left arrow key to backspace the cursor to the character in
error. Entering the correct character replaces the incorrect character. Only characters being cor-
rected need to be reentered.

When the RETURN key is pressed, the number of characters entered is stored in the actual read
count field and the operation terminates.

When the VDT is opened in the event key mode and an event key is pressed, the system sets the
event key flag in the system flags byte and terminates the operation. The event character may be
accessed by performing a Remote Get Event Character operation.

When an event key is pressed between Read operations, the next Read operation performed after
the pressing of the event key terminates with the event key flag set.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (> 20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

The following is an example of the source code for a supervisor call block for a Read ASCII opera-
tion and code for the read buffer:

RDVDT DATA O READ RECORD FROM VDT ASSIGNED TO
BYTE 9,>2B LUNO >2B IN THE INITIATE /O MODE
BYTE 0,>80
DATA RBUFF
DATA 80
DATA O

RBUFF BSS 80 READ BUFFER

2270507-9701 Change 1 6-19

6.3 VDTIIO

6.3.2.8 Write ASCIl. Sub-opcode >0B specifies a Write ASCIl operation. The Write ASCII opera-
tion transfers a record from the specified buffer to the screen of the VDT. DNOS supports a write
with reply option, which is effectively a Write operation followed by a Read ASCII operation.
The following fields of the basic supervisor call block apply to a Write ASCI| operation:

e SVCcode—0

. Return code

. Sub-opcode — >0B

. LUNO

. < System flags >

° User flags

. Data buffer address

e Write character count

. Reply block address (write with reply option)

The following system flags apply to a Write ASCIl operation:

o|1]1213[415}]|6]|7

T

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

2279483

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Write ASCIi operation:

0|1 2 3-4 5|67

2279484

6-20 2270507-9701

VDTI/O 6.

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the caliing task until the operation has completed.

Bit 1 — Reply flag. Set as follows:
1 — Write operation followed by a Read operation.
0 — Ali other operations.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Write with blank adjustment.
0 — Write without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the VDT to which arecord is
to be written.

The data buffer address is the address of the buffer which contains the record to be displayed.
The write character count is the number of characters to be displayed on the screen of the VDT.

The Write ASCII operation displays a record on the screen of a VDT. The record consists of ASCII
characters or JISCIl characters, as specified by the country code.

The Write ASCII operation allows repeat character compression in the data to be displayed.
Repeat character compression represents a string of identical characters (for example, underlines)
as six hexadecimal digits. The first two digits are the hexadecimal representation of the ASCII
code of the character to be repeated. The next two digits are >7F and the last two digits are the
hexadecimal number of identical characters. For example, >20, >7F, >06 represents six blanks:
the blank specified by >20 and five more. A count of zero characters is valid and allows entry of
the DEL character that corresponds to >7F. For example, >20, >7F, >00 represents a blank
followed by a DEL character. The character count in bytes 10 and 11 of the call block includes
three for each of the examples, not the number of characters displayed as a result of the specified
repetition.

When blank adjustment is specified, trailing blanks in the buffer are not written. The write charac-
ter count in bytes 10 and 11 is not altered.

A Write with Reply operation requires the following in addition to the requirements for a Write
ASCIl operation:

. The reply flag in the user flags byte set to one
. The extension to the supervisor call block
. The reply block
The Write with Reply option requires the following extension to the basic I/O supervisor call block:

DeEc HEX
12 C REPLY BLOCK ADDRESS

2279485

2270507-9701 6-21

3 VDTIIO

e reply block is a three-word block, containing addresses for the Read operation, as follows:

DEC HEX
0 0 DATA BUFFER ADDRESS
2 2 READ CHARACTER COUNT
4 4 <ACTUAL READ COUNT >
279486

he three fields are identical to the corresponding fields of the supervisor call block for a Read
\SCll operation.

‘he following is an example of the source code for a supervisor call block for a Write ASCII
yperation:

WAVDT DATA O WRITE RECORD TO VDT ASSIGNED TO
BYTE >B,>4B LUNO >4B INITIATE MODE.
BYTE 0,>80
DATA WRBUFF
DATA O
DATA 80

The following is an example of the source c¢ode for a supervisor call block for a Write ASCII
operation using the Write with Reply option:

WRVDT DATA O WRITE RECORD TO VDT ASSIGNED TO
BYTE >B,>4B LUNO >4B INITIATE MODE AND
BYTE 0,>C0 WRITE WITH REPLY.
DATA WRBUFF
DATA O
DATA 80
DATA RBL

The reply block is coded as follows:

RBL DATA REPLY REPLY BUFFER ADDRESS
DATA 80 MAXIMUM LENGTH OF REPLY
DATAO REPLY CHARACTER COUNT

6-22 2270507-9701

VDTI/O 6.3

6.3.2.9 Rewind. Sub-opcode >O0E specifies a Rewind operation. The Rewind operation clears
the screen of a VDT. Any previously-entered characters that remain in the buffer are ignored.

The following fields of the basic supervisor call block apply to a Rewind operation:
. SVCcode — 0
. Return code
. Sub-opcode — >0E
. Logical unit number (LUNO)
. User flags

The following user flag applies to a Rewind operation:

o1 2 3-4 5|6 7

2279487

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the VDT to be cleared.
The following is an example of the source code for a supervisor call block to rewind a VDT:

RWND DATA O REWIND VDT ASSIGNED TO LUNO >4A.
BYTE >E,>4
DATAO0
DATA O
DATA O
DATA O

6.3.3 VDT Resource-Specific 110

Most of the resource-specific 1/0 operations use an extended supervisor call block. The sub-
opcodes for the resource-independent operations apply, but the operations are modified by the
states of flags in the extended user flags field.

2270507-9701 6-23

3 VvDTIlO

he extended call flag in the user flag field (byte 5) of the supervisor call block must be set to one
or resource-specific 1/0 operations. Otherwise, the system does not use the extensions to the

upervisor call block. The flags in the user flag field that apply to resource-specific 1/O operations
re:

279488

Bit 1 — Reply flag. Set the reply flag to one for a Write with Reply or a Remote Get Event
Character. Set the reply flag to zero for all other operations.

Bit 6 — Extended call flag. Set as follows:

1 — Extended call block (required for resource-specific /0 to a VDT).
0 — Basic supervisor call block (used for resource-independent 1/0O).

lhe extension to the basic supervisor call block is as follows:

Dec HEX

12 (o} V ALIDATION TABLE/REPL.Y BLOCK ADDRESS
14 E EXTENDED USER FLAGS

16 10 FiLL CHARACTER <EVENT BYTE >
18 i2 CuRsoR PosiITION Row COLUMN

20 14 F1ELD BEGINNING Row CoLUMN

2279489
The extension to the call biock contains the following:

Byte Contents

12-13 Character validation table address (for a Read operation, sub-opcode
>09 or >0A, when character validation is specified in the extended user
flags). The address of a table of character validation data. Reply block
address (for a Write operation, sub-opcode >0B or >0C, when the reply
flag is set to one). The address of a block containing the address and
count fields for a Write with Reply operation.

14-15 Extended user flags field. Contains 16 flags that apply to all or some of
the VDT operations as described in succeeding paragraphs.

16 Fill character. Contains the character to be used to fill character posi-
tions when specified.

5-24 2270507-9701

Byte

17

18-19

20-21

Contents

VDTI/IO 6.3

< Event byte>. The system stores an event character in this field when
the VDT has been opened in the event mode and an event key is pressed.

This is the last character entered, which terminates a read call.

Cursor position: row in byte 18, column in byte 19. Row zero is the top
row on the screen; column zero is the leftmost column on the screen. The
position to which the cursor is set in a Read operation when the cursor
position flag is set to one. The system stores the current cursor position
in this field following a Read or Write operation.

Field beginning definition: row in byte 20, column in byte 21. When the
field start position flag is set to one, Read and Write operations begin at

this position.

The extended user flags are:

1

7| 819

10

11

12 113114 {15

0o
f

2279490

f

213145
Frrf

I

Fres

The following lists the flags and the I/O operations in which they are effective. Detailed descrip-
tions of the uses of the flags follow in subsequent paragraphs.

Bit

—
QO OWONOOAWN-=SO

[N (T QN G Y
O WN =

2270507-9701

Definition

Field start position

Intensity

Blink cursor

Graphics

Eight-bit ASCII

Task edit

Beep

Right boundary

Cursor position within aread field
Fill character

Do not initialize field

Return on termination character
No echo

Character validation

Validation error mode

Warning beep

Usedin
Operations

All

All

Read ASCII
Read/Write
Read/Write Direct
Read
Read/Write
Read

Read

Read

Read

Read

Read

Read

Read

Read

6-25

6.3 VDTIIO

6.3.3.1 Field Start Position. This flag, when set to one, defines the start of the input or output
field as specified in bytes 20 and 21 of the extended call block. When this flag is set to zero, the
current cursor position defines the start of the field.

A Read ASCII operation with the field start position flag set to one positions the cursor at the
beginning of the field (bytes 20 and 21) and begins reading at that point. The cursor position flag
and the do not initialize field flag may also be set to one. In that case, previously displayed charac-
ters are read up to the cursor position specified in bytes 18 and 19. Additional characters (up to the
total specified for the Read operation) are read as entered. At the completion of the Read operation
the cursor position is stored in bytes 18 and 19.

For an operation other than Read ASCII, the cursor is moved to the start of the field at the start of
the operation.

6.3.3.2 Intensity. This flag, when set to one, specifies high intensity output. When set to zero,
the flag specifies low intensity output.

6.3.3.3 Blink Cursor. This flag, when set to one, causes the cursor to blink. When set to zero, the
flag causes the cursor to be continuously displayed. The flag applies only to Read ASCII
operations.

6.3.3.4 Graphics. This flag, when set to one, causes control characters to be displayed as
graphic characters on input and output. Control characters are those represented in ASCli as >00
through >1F. When this flag is set to zero, control characters perform their normal (VDT) functions
when entered or written.

6.3.3.5 Eight-Bit ASCIl. This flag, when set to one, causes all eight bits of the characters in the
buffer to be sent to the terminal during a Write Direct operation. The most significant bit of each
character controls the intensity of the display of the character. When bit 0 of the characteris aone,
the character is displayed with low intensity. When bit 0 is a zero, the character is displayed with
high intensity. When the flag is set to zero, only the seven least significant bits of each character
are sent to the terminal, and the intensity flag controls the intensity of the display.

During a Read Direct operation with the flag set to one, the intensity of the characters on the
screen determines the value of the most significant bit stored in the buffer. The most significant
bit of alow-intensity character is set to one; the bit is set to zero for a high-intensity character.

A VDT that supports JISCIl characters displays characters with one intensity only.

6.3.3.6 Carriage Control. This flag, when set to one, causes any of the programmable characters
listed in Table 6-1 that are entered during an input operation to terminate the operation and to be
returned in byte 17 (event byte field) of the extended call block. When the flag is set to zero, the
DSRignores these characters.

6.3.3.7 Beep. This flag, when set to one, causes the terminal to sound an audible tone to
request the first character during input operations. During output operations, the tone sounds fol-
lowing display of the last character when the flag is set to one. When the flag is set to zero, the
terminal does not sound the audible tone unless the warning beep flag is set.

6-26 Change 1 2270507-9701

VDTI//O 6.3

6.3.3.8 Right Boundary. This flag, when set to one, limits use of the INS CHAR and DEL CHAR
keys on the terminal. The flag applies to fields that extend past the right boundary of the current
row, and continue on the next row. When the INS CHAR key has been pressed, characters can only
be inserted on the current row. The DEL CHAR key is effective only on the current row. When the
flagis set to zero, the INS CHAR and DEL CHAR keys are effective across the entire field.

6.3.3.9 Cursor Position. This flag, when set to one, causes a Read ASCII operation to position
the cursor to the row and column specified in bytes 18 and 19, respectively, of the extended call
block. The Read operation reads previously displayed characters starting at the field start position
up to and including the character to the left of the cursor. Additional characters (up to the number
specified in bytes 8 and 9 of the call block) are read as entered. The do not initialize field flag deter-
mines the cursor position when both flags apply. The system returns the position of the cursor in
bytes 18 and 19 at the completion of every Read and Write operation. When the flag is set to zero,
the position of the cursor is altered only when the field start position flag is set to one.

6.3.3.10 Fill Character. This flag, when set to one, causes the fill character in byte 16 of the
extended call block to be used. The DELETE CHARACTER, ERASE FIELD, ERASE INPUT, and
SKIP keys write fill characters in the current field. An initialize field operation also uses the fill
character. When the flag is set to zero, a blank is used as the fill character.

6.3.3.11 Do Not Initialize Field. When this flag is set to one, the system does not initialize the
current field. When this flag is set to zero, the system initializes the field. Initializing the field con-
sists of writing fill characters in the field and positioning the cursor at the beginning of the field.
When the do not initialize field flag is set to zero, the cursor position flag is ignored.

6.3.3.12 Return on Termination Character. This flag, when set to one, causes a Read operation
to terminate only when a field termination character is entered. Refer to the information for the
appropriate terminal for a list of field termination characters.

When the field has been filled, additional characters are accepted but are neither displayed nor
returned to the task. An invalid entry can be corrected by positioning the cursor at a character in
error and entering the correct character, or a field termination character may be entered to termi-
nate the operation.

When the flag is set to zero, a Read operation terminates when either the field is full or a field
termination character is entered.

6.3.3.13 No Echo. This flag, when set to one, inhibits the display of characters entered at the
keyboard. When a key is pressed, the character at the cursor position on the screen is replaced by
a blank and the cursor is moved to the next character position. When the flag is set to zero, each
character is displayed as it is entered.

6.3.3.14 Character Validation. This flag, when set to one, enables character validation of the
field being read by a Read ASCII operation. Character validation is discussed in greater detail in a
subsequent paragraph. When the character validation flag is set to zero, no character validation is
performed.

2270507-9701 6-27

3.3 VDTIIO

6.3.3.15 Validation Error Mode. The validation error mode flag, when set to one, enables correc-
tion of errors detected during validation of field contents by the task. The Validation Error Mode
operation is effectively a Reread operation; the flags that apply to a read apply in the same way to
this operation. The cursor is positioned at the beginning of the previously read field, unless the
character position flag is used to position the c¢ursor at some other character. When the user
enters the Left arrow, ERASE FIELD, or ERASE INPUT character, the system sets the validation
error mode flag to zero. When the calling task sets the validation error mode flag to zero, the opera-
tion is performed in the normal mode.

6.3.3.16 Warning Beep. This flag, when set to one, provides an audible warning when certain
functions that cannot be performed are requested. Specifically, the warning beep sounds when
the following keys are pressed and the indicated conditions apply:

. Left arrow, when cursor is at column one

. DEL CHAR, when there are no characters to delete

. INS CHAR, when there is no more room for characters
6.3.3.17 Examples. To build a display using the graphics available for the VDT, the programmer
places graphics codes in a buffer, executes an 1/O SVC with the extended call block, and sets the
graphics flag to one.
The graphics codes are those in the control code range, >00 through >1F. The graphics symbols

that correspond to these codes are shown in Appendix B. The keys that correspond to these codes
are listed in Table 6-1.

6-28 2270507-9701

‘ui

vDTI/O 6.3

Table 6-1. Graphics Code Key Equivalents

911 940 and Business
Graphics Code Key System Key
00 (CONTROL) 3 @
01 (CONTROL) A !
02 (CONTROL)B “
03 (CONTROL)C #
04 (CONTROL)D $
05 (CONTROL) E %
06 (CONTROL) F &
07 (CONTROL) G ’
08 (CONTROL)H (
09 (CONTROL) |)
0A (CONTROL)J *
0B (CONTROL) K +
oC (CONTROL) L ,
oD (CONTROL) M -
OE (CONTROL) N .
OF (CONTROL) O /
10 (CONTROL) P 0
11 (CONTROL)Q 1
12 (CONTROL)R 2
13 (CONTROL) S 3
14 (CONTROL) T 4
15 (CONTROL) U 5
16 (CONTROL) V 6
17 (CONTROL)W 7
18 (CONTROL) X 8
19 (CONTROL) Y 9
1A (CONTROL)Z :
1B ESC ;
1C (CONTROL), <
1D (CONTROL) + =
1E (CONTROL). >
1F (CONTROL)/ ?

To enter graphics characters, the graphics bit in the IRB must be set.

To enter graphics characters using a 911, simply use the CONTROL key sequence shown in Table
6-1.

To enter graphics characters using a 940 you must first enter the graphics mode by pressing
(SHIFT) P2. Press the appropriate key as shown in Table 6-1 to generate the required symbol. Exit
the graphics mode by pressing (ALT) 9.

2270507-9701 6-29

6.3 VDTIIO

To enter graphics characters using a Business System terminal you must first enter the graphics
mode by pressing (ALT) 5 (on the numeric keypad). Press the appropriate key as shown in Table 6-1
to generate the required symbol. Exit the graphics mode by pressing (ALT) 9.

NOTE

Applications can be written for the 911 that use the key sequences
(CONTROL) S and ESC. These sequences cannot be used on the 940
and Business System terminals.

The following is an example of an extended supervisor call block for a Write ASCIi operation in the
graphics mode:

WGM DATA O WRITE GRAPHICS DATA TO VDT
BYTE >B,>4C AT LUNO >4C. FIELD BEGINS
DATA >2 AT ROW 0, COL 0. FIELD SIZE
DATA GBUFF IS 80 CHARACTERS.

DATA O
DATA 80
DATA O
DATA >9000
DATA O
DATA O
DATA O

A Read ASCII operation reads a portion of the field from the screen and a portion from the key-
board by specifying a cursor position within the field. Characters displayed on the screen to the
left of the cursor position are read. The remainder of the field is read as the characters are entered.
An example of a Read ASCIl operation has the following characteristics:
K The field begins at row 3, column 5.

e The field contains 10 characters.

* The field contains 3 characters to be read.

. Seven or fewer additional characters are to be entered and read.

. A field termination character terminates the operation.

. Additional characters entered are displayed at high intensity.

6-30 2270507-9701

VDTI/O 6.3

The following is an example of the code for a supervisor call block for the operation described:

RAP DATA O READ FIELD OF VDT AT LUNO >2D.
BYTE 9,>2D FIELD SIZE IS 10 CHARACTERS,
DATA >2 AT ROW 3 COL 5. CHARACTER ENTRY
DATA RBUFF BEGINS AT ROW 3 COL 8. SET
DATA 10 INTENSITY HIGH.

DATA O
DATA O
DATA >C0BO
DATA O
BYTE 3
BYTE 8
BYTE 3
BYTE 5

When the VDT has been opened in the event key mode and task edit keys are also enabled (car-
riage control flag set to one), either an event key or a task edit key may terminate a Read operation.
The task edit character is always returned in the event byte of the extended call block, and the
event character is also returned in that byte in resource-specific /0. The state of the event key flag
in the system flag field indicates which type of character is in the event byte when both are
enabled. The task accesses and decodes the character and performs the function corresponding
to the key.

The following is an example of the code for a Read ASCII operation with event key termination
enabled when the VDT was opened and task edit key termination enabled for the Read operation:

RETE DATA O READ FIELD OF VDT AT LUNO >3F.
BYTE 9,>3F FIELD SIZE IS 15 CHARACTERS,
SYSFLG BYTE O AT CURRENT CURSOR POSITION.
BYTE >02 EVENT KEYS AND TASK EDIT KEYS
DATA RBUFF ENABLED.
DATA 15
DATA O
DATA O
DATA >0400
DATA O
DATA O
DATA O

2270507-9701 6-31

6.3 VDTI/O

6.3.3.18 Character Validation Operation. A Read ASCI!| operation may specify character valida-
tion compatible with field validation performed by TIFORM software. After reading a field, the
operation only accepts those characters that are within the range or ranges applicable to the
operation. Characters that are within the range or ranges are stored in the read buffer specified for
the operation. The character validation flag in the extended user flags field is set to one for a Read
with Validation operation.

Each Read operation with character validation must specify a validation table. Specifying a valida-
tion table requires:

e Setting the character validation flag to one
° Supplying avalidation table

o Placing the address of the table in the character validation table address field of the
extended call block

The validation table contains one or more ranges of characters that define the valid characters for
the field. The table may define the valid characters by specifying ranges of characters that are not
valid or by specifying ranges of characters that are valid. Each range in the table requires two
bytes, and the table contains two bytes of overhead. Thus the length of the table in bytes is two
times the number of ranges, plus two. The format of the table is as follows:

DeEc HEX
0 0 LENGTH FLAGS
2 2 RANGE 1 Low CHAR. RANGE 1 HIGH CHAR.
AL ~
~J N
2N 2N RANGE n Low CHAR. RANGE n L.ow CHAR.

2279491

6-32 2270507-9701

VDTI/O 6.3

The validation table contains the foilowing:

Byte Contents
0 Length — Length of the validation table in bytes (2n + 2).
1 Flags:
Bit 0 — Validation flag. Set as follows:
1 — Invalid ranges. Characters greater than or equal to the low char-

acter and less than or equal to the high character are invalid.
0 — Valid ranges. Characters greater than or equal to the low char-
acter and less than or equal to the high character are valid.
Bits 1-7 — Reserved.
2 Low character for range 1.
3 High character for range 1.
Character pairs for additional ranges.
2n Low character for range n.
2n+1 High character for range n.
Character validation is performed after each character is entered in the field, and the cursoris in
the position to read the next character. When an invalid character is entered, the beep (audible
tone) sounds.
The user must press one of the following correction keys:
o Left CHAR \
J ERASE FIELD
U ERASE INPUT
o Left FIELD
Next, the user enters the data correctly.
An example Read with Validation operation performs the following:

. Reads a 10-character field at row 1, column 2.

. Validates the field as an alphanumeric field with no lowercase letters.

2270507-9701 6-33

w3 VDTIO

The following is an example of the code for the supervisor call block and validation table for the
axample operation: ‘

RASCI DATA O READ FIELD OF VDT AT LUNO >2B,
BYTE 9,>2B VALIDATING PER TABLE. FIELD
BYTE O SIZE IS 10 CHARACTERS, AT ROW
BYTE >02 1, COL 2. READ BUFFER IS
DATA BUFF BUFF.
DATA 10
DATA O
DATA TABLE
FLAG2 DATA >8084
BYTE 1
BYTE 2
BYTE 1
BYTE 2
EVEN
TABLE BYTE 6 LENGTH OF TABLE
BYTE O VALID RANGES
DATA >3039 RANGE 1 — NUMERALS
DATA >415A RANGE 2 — UPPERCASE LETTERS

6.3.3.19 Field Validation. Any validation of a field must be performed by a task following the
reading of the field. This could verify that the field contains the proper number of letters, followed
by numbers, for example. The Read ASCIl operation in the validation error mode is used by the task
to obtain corrected data when an error has occurred. Character validation and cursor positioning
may be requested for the operation also. The validation error mode flag is set to one to enable the
mode.

In the validation error mode, the cursor is positioned to read the first character of the field, orat a
specified cursor position. The correction keys defined for the character validation operation apply.
Entry of a character prior to pressing a correction key causes the beep to sound, the cursor to
remain on the same character position, and the displayed character to be unaltered.

The call block for the previous Read ASCII operation can be used by setting the validation error
mode flag to one. The following instructions set the flag in the call block of the character valida-
tion coding example:

MASK2 BYTE >2
SOCB @MASK2,@FLAG2 + 1

6.3.3.20 Getting Event Characters. The Remote Get Event Character operation (sub-opcode
>05) returns an event character in the event byte (byte 17) of the extended supervisor call block.
The LUNO assigned to the VDT does not have to be open. The operation is an alternative to per-
forming a Read operation to obtain an event character.

6-34 2270507-9701

VDTI/O 6.3

The operation is a special type of Read Device Status operation; the normal read status infor-
mation is returned.

The following fields of the extended supervisor call block apply to a Remote Get Event Character
operation:

e SVCcode—0

o Return code

o Sub-opcode — >05

. Logical unit number (LUNO)
. < System flags >

. User flags

e Databufferaddress

o Read character count

° < Actual read count >

L Event byte

The following user flags apply to a Remote Get Event Character operation:

1123 14]|5]|]6]|7

T T

2279492
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
Bit 1 — Reply flag: Set to one.
Bit 6 — Extended call flag. Set to one.

The logical unit number (LUNO) field contains the LUNO assigned to the device at which the event
character is entered.

The data buffer address is the address of the buffer into which DNOS places the status infor-
mation.

The read character count is the length of the buffer.

DNOS returns the event character in the event byte. The event character flag (bit 3 of the system
flags) is set to one if an event character is returned.

2270507-9701 6-35

3 VDTIIO

JNOS maintains an input character queue that stores characters input while the system is
yrocessing a previously-entered character or command. Bytes 2 and 3 contain the number of char-
icters in the queue. The size of this queue is specified when the system is generated.

"he following is an example of the source code fdr'a supervisor call block for a Remote Get Event
Sharacter operation and code for the read buffer:

RGEVCH

EVCHAR

MRADR
MCADR
CHINQ

DATA O GET EVENT CHARACTER FROM VDT ASSIGNED
BYTE 5,>32 TO LUNO >32.

DATA >42

DATA MRADR

DATA 18

DATA O

DATA O

DATA O

BYTE O

BYTE O

DATA 0,0

BSS 1 DEVICE STATUS BUFFER
BSS 1

BSS 16

6.3.3.21 Read Direct. Sub-opcode >0A specifies a Read Direct operation. The Read Direct
operation reads a record from the screen and stores the characters in the specified buffer, two
characters per word. The operation begins reading at the character at the cursor position.

The following fields of the basic supervisor call block apply to a Read Direct operation:

. SVCcode — 0

. Return code

. Sub-opcode — >0A -

* Logical unit number (LUNO)

. System flags

. User flags

. Data buffer address

. Read character count

. < Actual read count >

6-36

2270507-9701

VDTI/O 6.3

The following system flags apply to a Read Direct operation:

112 (3145]6]|7

T

2279493

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — Noerror.

The following user flags apply to a Read Direct operation:

0 112 3-4 516]|7

7 1

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279494

Bit 7 — Blank adjustment flag. Set as follows:
1 — Read with blank adjustment.
0 — Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the VDT from which a record
is to be read.

The data buffer address is the address of the bufferinto which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

The Read Direct operation recognizes the ASCIH or JISCII codes as specified by the country code.
The operation stores the characters in a word, packed one per byte. The most significant bit is set
to zero for the seven-bit ASCII codes; all eight bits of the JISCII code are stored. The operation

continues until the buffer is full. DNOS places the number of characters stored in the bufferin the
actual read count field.

2270507-9701 6-37

3 VDTII0

"he following is an example of the source code for a supervisor call block for a Read Direct opera-
ion and code for the read buffer:

RDDVDT DATAO READ RECORD FROM VDT ASSIGNED TO
BYTE >A>3F LUNO >3F.
BYTE 0,0
DATA RDBUFF
DATA 80

DATA O
RDBUFF BSS 80 READ BUFFER

3.3.3.22 Write Direct. Sub-opcode >0C specifies a Write Direct operation. The Write Direct
yperation transfers a record from the specified buffer to the screen of the VDT.

Fhe following fields of the basic supervisor call block apply to a Write Direct operation:
e SVCcode—0
. Return code
. Sub-opcode — >0C
. Logical unit number (LUNO)
J System flags
. User flags
o Data buffer address
. Write character count

The following system flags apply to a Write Direct operation:

o112 |3|4|5|6]|7

T

2279495

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:

1 — Error.
0 — No error.

6-38 2270507-9701

VDT /O 6.3

The following user flags apply to a Write Direct operation:

(0] 112 3-4 5167

2279496

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Write with blank adjustment.
0 — Write without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the VDT to which arecord is
to be written.

The data buffer address is the address of the buffer that contains the record to be displayed.
The write character count is the number of characters to be displayed on the screen of the VDT.

The Write Direct operation displays a record on the screen of a VDT. The record consists of the
seven least significant bits of each byte in the buffer.

When blank adjustment is specified, trailing blanks in the buffer are not written. The write char-
acter count in bytes 10 and 11 is not altered.

The following is an example of the source code for a supervisor call block for a Write Direct
operation:

WAVDT DATAO WRITE RECORD TO VDT ASSIGNED TO
BYTE >C,>4B LUNO >4BINITIATE MODE.
BYTE0,>80
DATA WRBUFF
DATAO
DATA 80

6.3.4 VDT Terminal Specific Information
The following paragraphs describe the unique characteristics of the 911, 931, and 940 VDTs as
they apply to VDT 1/O.

Figure 6-1, Figure 6-2, Figure 6-3, and Figure 6-4 show the 911, 931, 940 VDT, and Business System
Terminal keyboards. Table 6-2 lists the programmable keys on the VDT keyboards, showing the
codes returned by the device service routines (DSRs) for each key. The terminal code column lists
the ASCII codes and control character designations that correspond to these keys.

2270507-9701 6-39

3.3 VDTIIO

F7r
7

] | 9 NIBIRIERIBIDIC
pant| | 4] | foeeenr 1]{{O]|{ P)|{chr] | (i RETURN | 41115116
- | | {Howe| || - controL| | | A S D F G H J K L : ’,9 Jag 2 3
ome) L 4)] o seer | (ZTIOX)ICIVIIB] NI LML (S IILZ ||| smer 0 .
| |
2283185
Figure 6-1. Model 911 VDT Keyboard
F1 F2 F3 F4 5 8 [8 F9 F10 M F12 o = it @ ok e PRINT
=][4 S al e [e e Lo Nl [28|
%, J (@] (W] [EIRT I ol O o] { P T (T z i BIDIDS
2 EIBIBIRIEIEIB BRI e = =[] | = T
ALT f%smrr Z X C V B N M < > } SHIFT{> [ENTER Y 1 2 3 E
| | au|t
Figure 6-2. Model 931 VDT Keyboard
6-40 2270507-9701

VDTI/O 6.3

BIEIEIEI8) 616166183 16| Il R [
oer SHR® SHR OMGE" BBl ORI anerr o 808G ciElc MAEAM MEEE necer connayne err_ndiio
e ST a e o= T 1 (2] 15]a
O (O WHGLBHBIGIOIBHIRGNBISNES R IS R IBISIDIE
e I VAT STIDIFTIGHHIINIKTI(L ' RETURN o— || Inome}| (— 4(1I5/11 6
act| Loswer HEZTIXHCH VB INJIIMIUS T S L ser) s s%w i Em 100(2])13 s

|] 0 "’
2283186
Figure 6-3. Model 940 VDT Keyboard
F1 F2 ‘ F3 i Fa4
\ 1/ pa \ 1/ A
Esc 1' 4 g g 4 é ¢ ME D7) ek 7118019 -
= OTIGIBIBIGINIDIRIRIGI8ER =2 1B RIBIBIC
wf [LA LSTIDILFHGIHH) W KL) RETURN o)| [wome){ [— 1)[[2)|(3))] =
- T
) L Iz I e v T NI T e o J
l I
2283106

Figure 6-4. Business System Terminal Keyboard

2270507-9701 6-41

6.3 VDTIIO

Table 6-2. Terminal Key Designations and Codes

DSR Type? Business 911 931 940

Code' System Key Key Key Key
7F S ERASE FIELD ERASE FIELD ERASE FIELD ERASE EOF
80 E SHIFT F1 CONTROL 1 F9 F9
81 E F1 F1 . F1 F1
82 E F2 F2 ' F2 F2
83 E F3 F3 F3 F3
84 E F4 F4 F4 F4
85 E F5 - F5 F5 F5
86 E F6 F6 F6 F6
87 T Right FIELD Right FIELD Right FIELD LINE FEED
88 S Left Arrow Left Arrow Left Arrow Left Arrow
89 ST TAB TAB TAB TAB Right
8A T Down Arrow Down Arrow Down Arrow Down Arrow
8B ST SKIP SKIP SKIP SKIP Right
8C ST HOME HOME HOME HOME
8D STR RETURN RETURN RETURN RETURN
8E ST ERASE INPUT ERASE INPUT ERASE INPUT ERASE INPUT
8F T Blank Gray Blank Gray Blank Gray INS LINE
90 S DEL CHAR DEL CHAR DEL CHAR DEL CHAR
91 S INS CHAR INS CHAR INS CHAR INS CHAR
92 S Right Arrow Right Arrow Right Arrow Right Arrow
93 TRF ENTER ENTER ENTER SEND
94 T Left FIELD Left FIELD Left Field SKIP Left
95 T Up Arrow Up Arrow Up Arrow Up Arrow
96 E F7 F7 F7 F7
97 E F8 F8 F8 F8
98 E CMD CMD CMD NEXT FORM
99 E PRINT PRINT PRINT PRINT
9A E SHIFT F2 CONTROL 2 F10 F10
9B H Blank Orange Blank Orange Blank Orange PREV FORM
aC E SHIFTF3 CONTROL 4 F11 F11
9D E SHIFT F4 CONTROLS5 F12 F12
9E E SHIFT F5 CONTROL B SHIFT F1 F13
9F E SHIFT F6 CONTROL7 SHIFT F2 F14

Notes:

' Codes in this column are shown as hexadecimal numbers.

2 Letters in this column denote the following:
S — System edit key; E — Event key; T — Task edit key; H — Hold key; F — End-of-file; R — End-of-

record.

6-42

2270507-9701

£ N

VDTI/IO 6.3

The VDTs that support JISCII characters display characters in one intensity only.

The field termination characters for the VDTs are the RETURN and ENTER Keys.

6.3.5 VDT Read Device Status Operation

The Read Device Status operation returns four bytes of status information for VDTs. The first and
second bytes contain the maximum row and column addresses for the VDT. The third and fourth
bytes contain the number of keyboard input characters that are currently internally buffered in the
character queue. This information is returned in bytes zero through three for the 911, 940, and
Business Systems terminals.

The 911 VDT returns a total of 18 bytes of information. The 931, 940, and the Business Systems
terminals return 16 additional bytes of information, provided the buffer has sufficient space.

Byte

0
1
2,3
4

6,7
8,9
10

11

2270507-9701

Meaning

Maximum row address (24)
Maximum column address (80)
Number of keyboard characters in input character queue
DSR type:
>11 = 911
>31 = 931/940 (DNOS version 1.2)
>40 = 940 or Business Systems (earlier DNOS versions)
Reserved (>00)
CRU address
Reserved (> FFFF)
Interface type:
>01 = Communications interface for 911
>06 = S300 EVDT port
>07 = 990/10A 9902 port
>08 = Cl402 9902 port
>09 = Cl421 9902 port
>0A = Cl422 9902 port
>23 = CIl403 port
>24 = Cl404 port
>30 = Cl421 9903 port
Port ID number for 931/940
Always >11 for 911

6-43

6.4 733 ASR Data Terminal I/O

Byte Meaning
12-13 Edit flag word 1
14-15 Edit flag word 2
16-21 Reserved
22 Line flags
0 = half duplex

1 = switched line
2-7 = Reserved (0)

23 Reserved
24 Speed code
>00 = 50 baud

>02 = 110 baud
>03 = 134.5 baud
>04 = 150 baud
>05 = 200 baud
>06 = 300 baud
>07 = 600 baud
>08 = 1200 baud
>09 = 1800 baud
>0A = 2400 baud
>0B = 3600 baud
>0C = 4800 baud
>0D = 7200 baud
>0E = 9600 baud
>0F = 14400 baud
>10 = 19200 baud
>11 = 28800 baud
>12 = 34800 baud

25-35 Reserved
36 Terminal type:
>A1 = 931
>B0 = 940

6.4 733 ASR DATA TERMINAL I/O

DNOS supports both resource-independent and resource-specific 1/O for the 733 ASR data ter-
minal. The keyboard/printer portion of the 733 ASR is included here. The cassette units of the 733
ASR are described in a subsequent paragraph. Resource-independent I/O for these terminals
includes operations that are analogous to sequential file operations.

Resource-specific /O for the 733 ASR data terminal includes operations that apply only to the 733
ASR. These operations give a program control over functions of special keys. Except for the Read
Device Status operation, the device must be opened using sub-opcode >00 or >03 prior to any 1/0
operation.

6-44 2270507-9701

733 ASR Data Terminal 6.4

The following I/O call block for 733 ASR operations is the basic block used for all 1/0 operations. If

an extension to this block is necessary for a particular operation, it is indicated in the operation
description.

SVC > 00 —— I/O OPERATIONS ALIGN ON WORD BOUNDARY

2279470

CAN BE INITIATED AS AN

Dec HEeX EVENT
0] 0] >00 <RETURN CODE >
2 2 SuB—OPCODE LUNO
4 4 <SYSTEM FLAGS> UseR FLAGS
6 6 DATA BUFFER ADDRESS
8 8 READ CHARACTER COUNT
10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

The subset of sub-opcodes for the 733 ASR applies to both resource-independent and resource-
specific 1/0, as follows:

00
01
02
03
04
05
09
0B
0D

Open

Close

Close, Write EOF
Open and Rewind
Close and Unload
Read Device Status
Read ASCII

Write ASCII

Write EOF

The system flags (byte 4) in the supervisor call block apply to all 733 ASR data terminal 1/0. These

flags are:

2279497

2270507-9701

.—.w

6-45

6.4 733 ASR Data Terminal 1/0

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:
1 — (CTRL) S key terminated the operation.
0 — Operation terminated without the (CTRL) S key being pressed.

Bit 3 — Event key flag. Set by system as follows:
1 — An event key terminated the operation.
0 — Operation terminated without an event key being pressed.

The user flags (byte 5) in the supervisor call block apply to all 733 ASR data terminal 1/O. However,
significance of these flags differs for various operations. The flags that apply to each operation are
described in the detailed description of each operation.

The character set applicable to a hard-copy terminal is the ASCIlI character set or the JISCII charac-
ter set appropriate to the country code for which the system was generated.

6.4.1 Key Categories
The system interprets each key on the keyboard in one or more of the following categories:

° Data
. Hold
. Event

. System edit

U Task edit
Table 6-3 lists the keys on 733 ASR data terminal keyboards and the type of each key. The DSR
code column shows the codes returned by the device service routine (DSR) for each key. The ter-

minal code column lists the ASCIl codes and control character designations that correspond to
these keys. The Device Character Set appendix also contains the information in Table 6-3.

6-46 2270507-9701

733 ASR Data Terminal 6.4

Table 6-3. 733 ASR Key Designations and Codes for ASCIl Mode

DSR Code! Type? Terminal Code’ Key
7F S 7F DEL RUB OUT
80 E 00 NULL (CTRL) 3
81 E 01SOH (CTRL) A
82 E 02 STX (CTRL)B
83 E 03 ETX (CTRL)C
84 E 04 EOT (CTRL)D
85 E 05 ENQ (CTRL) E
86 E 06 ACK (CTRL) F
87 T 07 BELL (CTRL) G
88 S 08 BS (CTRL)H
89 ST 09 HT (CTRL) I
8A T OALF (CTRL)J or LINE FEED
8B ST 0B VT (CTRL)K
8C ST OCFF (CTRL) L
8D STR ODCR (CTRL) M or RETURN
8E ST OESO (CTRL)N
8F T OF SI (CTRL)O
90 S 10 DLE (CTRL) P
91 S 11 DC1 (CTRL)Q
92 S 12DC2 (CTRL)R
93 TRF 13DC3 (CTRL)S
94 T 14 DC4 (CTRL)T
95 T 15 NAK (CTRL)U
96 E 16 SYN (CTRL)V
97 E 17 ETB (CTRL)W
98 E 18 CAN (CTRL) X
99 E 19 EM (CTRL) Y
9A E 1A SUB (CTRL) Z
9B H 1B ESC ESC
9C E 1CFS (CTRL),
9D E 1D GS (CTRL) _
9E, E 1ERS (CTRL).
9F, E 1FUS (CTRL)/

Notes:

' Codes in this column are shown as hexadecimal numbers.

2 Letters in this column denote the following:
S — System edit key; E — Event key; T — Task edit key; H — Hold key; F — End-of-file; R — End-
of-record.

3 DSR codes >9E and >9F are not available on 733 ASR data terminals that support JISCII. Keys
(CTRL). and (CTRL)/ generate codes >8E and > 8F, respectively.

2270507-9701 6-47

6.4 733 ASR Data Terminal 1/0O

6.4.1.1 DataKeys. The datakeys return the codes of printable characters to the buffer specified
in the call block. The category includes the keys that return ASCIl codes >20 through >7E.

6.4.1.2 Hold Key. The hold key suspends output to the terminal. Operation may be resumed by
pressing any other key except RETURN, exclamation point (1), or (CTRL) X. The hold key is the ESC
key.

When the RETURN key is pressed following the hold key, the current operation is aborted, and an
error code is returned to the task that requested the /0.

When the exclamation point key is pressed following the hold key, the system activates SC| and
the output continues. Contention between the interrupted output and SCI for the use of the ter-
minal may cause unpredictable results.

When (CTRL) X is pressed following the holc key, a hard break results. The hard break terminates
the current task and activates SCI. The end action specified by the task, if any, is performed prior
to terminating the task and activating SCI. The hard break should be used to abort tasks when
appropriate; it should be used with care because the hard break aborts pending I/O requests.

The system selects the task to be terminated by the hard break from among the tasks of the cur-
rent job. The following rules apply in the listed order of priority:

1. When only the SCI task is active, SCl is terminated.

2. Anyotherforeground task is terminated.

3. Anyother background task is terminated.

4. When other tasks are active along with SCI, SCl is terminated last.

There may be times when the hard break terminates a task other than the one intended. In that
case, press the hold key and (CTRL) X again to terminate the intended task.

The effect of a subsequent hard break depends upon the timing. When the task has not yet taken
end action in response to the first hard break, the subsequent hard break terminates the next task
in the order of priority. When the task is executing the end action routine but has not completed
end action, the task is aborted as if end action had not been provided. When end action has com-
pleted, the subsequent hard break causes the task to take end action again.

The end action routine should execute a Get End Action Status SVC to obtain the error code and
identify the cause of the termination. When the task error code returned by the SVC is >10, a hard
break has occurred. The task may process the hard break and resume execution after executing a
Reset End Action Status SVC. The task must place the WP, PC, and ST values returned by the
Get End Action Status SVC in R13, R14, and R15 and execute an RTWP instruction to resume
execution.

6-48 2270507-9701

733 ASR Data Terminal 6.4

6.4.1.3 Event Keys. Activating the event key mode enables use of event keys as task pro-
grammable function keys. The event key mode is activated by performing an Open operation with
the event key mode bit (bit 7 of byte 5 of the call block) set to one. Event characters may be
accessed by a Remote Get Event Character operation without opening the LUNO assigned to the
terminal.

When an event key is pressed, the corresponding character code is stored in the event character
buffer. When an input operation using an extended call block is being performed, the operation
terminates with the event key bit (bit 3 of byte 4 of the call block) set to one.

When no input operation is being performed and an event key is pressed, the next input operation
is immediately terminated with the event key bit of the call block set to one.

The event keys are:

(CTRL) 3 (CTRL) A (CTRL) B
(CTRL) C "~ (CTRL)D (CTRL)E
(CTRL)F (CTRL) V (CTRL)W
(CTRL) X (CTRL)Y (CTRL)Z
(CTRL), (CTRL) _ (CTRL).
(CTRL)/

The task decodes the event character and performs the desired function. When the input operation
that terminates with the event key bit set to one uses the extended call block (resource-specific I/
0), the event character is returned in the event character field. The event character can be obtained
without performing a read operation (and without opening the LUNO) by performing a Remote Get
Event Character operation. When the input operation uses the basic I/O call block (resource-
independent I/O), the event character is not returned.

NOTE

Any task may access the event character buffer by performing 1/0O to
any LUNO assigned to the terminal. The first access is the only
access that returns the correct character. Tasks that perform 1/O to
a terminal to which SCI is performing I/O must avoid accessing
event characters. Either the task or SCI may fail to perform the
intended function.

6.4.1.4 System and Task Edit Keys. System edit keys are control keys that are implemented by
the system. Task edit keys are control keys that are task functions. Five of the keys are both sys-
tem and task edit keys, for which the system performs a function. The task may perform an addi-
tional function.

Task edit functions do not apply to resource-independent |/O. The carriage control bit in the
extended user flags field must be set to one to enable task edit functions. When task edit func-
tions are enabled, pressing a task edit key during an Input operation terminates the operation. The
device service routine (DSR) returns the character code of the task edit character in the event byte
field of the extended call block.

2270507-9701 6-49

6.4 733 ASR Data Terminal I/O

The following paragraphs describe the edit keys. The paragraph that discusses the system edit
key describes the function performed when the key is pressed. For task edit keys, the paragraphs
state the code that the DSR returns to the task when the keys are pressed. For keys that are both
system and task edit, the paragraphs describe the functions and state the codes. System edit keys
are listed with a letter S in the type column of Table 6-3; task edit keys are listed with a letter T in
the type column.

Edit keys are related to fields of data on the screen, which are read in an 1/O operation. The field
begins at the cursor position and consists of the number of characters to be read by the current
read operation. When an edit key is pressed between read operations, it is effective at the
beginning of the next read operation.

RUB OUT Key. This system edit key performs a carriage return followed by a line feed.

(CTRL)O Key. This task edit key returns the character code > 8F in the event byte fieid.

(CTRL) U Key. This task edit key returns the character code >95 in the event byte field.

(CTRL) S Key. This task edit key returns the character code >93 in the event byte field. The
device service routine (DSR) interprets this code as end-of-file (EOF) and sets bit 2 of byte 4 of the
call block.

(CTRL) T Key. This task edit key returns the character code >94 in the event byte field.

(CTRL) G Key. This task edit key returns the character code > 87 in the event byte field.

(CTRL)J Key. This task edit key returns the character code >8A in the event byte field.

(CTRL) N Key. This system and task edit key fills the field with the fill character and returns the
character code >8E in the event byte field.

RETURN Key. This system and task edit key performs a carriage return function and returns the
character code >8D in the event byte field.

(CTRL) L Key. This system and task edit key returns the character code >8C in the event byte
field.

(CTRL) K Key. This system and task edit key returns the character code >8B in the event byte
field.

(CTRL) | Key. This system and task edit key returns the character code >89 in the event byte
field.

6-50 2270507-9701

733 ASR Data Terminal 6.4

6.4.2 733 ASR Data Terminal Resource-Independent 1/O

The operations appropriate for the 733 ASR data terminals are described in subsequent para-
graphs. The following sub-opcodes, which do not apply to 733 ASR data terminals, produce the
indicated results:

06 Ignored
07 Ignored
08 Error

OE Ignored
OF Ignored

6.4.2.1 Open. Sub-opcode >00 specifies an Open operation. The Open operation causes the
terminal to perform aline feed and a carriage return and is required for 733 ASR data terminals.

The following fields of the basic supervisor call block apply to an Open operation:
e SVCcode—0
o Return code
¢ Sub-opcode — >00
. Logical unit number (LUNO)
. User flags
o Data buffer address
. Read character count

The following user flags apply to an Open operation:

2279498

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

Bit 7 — Event key mode flag. Set as follows:

1 — Enable event key mode.
0 — Disable event key mode.

2270507-9701 6-51

6.4 733 ASR Data Terminal I/O

The logical unit number (LUNO) field contains the LUNO assigned to the 733 ASR data terminal to
be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the 733 ASR data terminal is 1.

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length for a733 ASR data terminal is >56.

A 733 ASR data terminal must be opened with the event key flag set to one if event keys are to be
used as task programmable function keys.

To access an event key character, perform a Remote Get Event Character operation.

The following is an example of the source code for a supervisor call block to open a 733 ASR data
terminal:

OHCT DATA O OPEN TERMINAL ASSIGNED TO LUNO >20.
BYTE 0,>20
DATA O

TPE DATA O

LRL DATA O
DATA O

6.4.2.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends I/O to a
LUNO from the calling task. The LUNO remains assigned to the device, and may be opened again
for additional 1/0 operations. When a task terminates, DNOS closes all LUNOs that have been
opened by the task.
The following fields of the basic supervisor call block apply to a Close operation:

. SVCcode — 90

. Return code

o Sub-opcode — >01

. Logical unit number (LUNO)

. User flags

6-52 2270507-97011

733 ASR Data Terminal 6.4

The following user flag applies to a Close operation:

0] 1 2 3-4 5|16 7

?

2279499

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close a 733 ASR data
terminal:

CHCT DATA O CLOSE TERMINAL ASSIGNED TO LUNO >20.
BYTE 1,>20
DATA O
DATA O
DATA O
DATA O

6.4.2.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode >02, performs three line
feed operations on the 733 ASR data terminal, followed by a Close operation.

6.4.2.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open opera-
tion followed by a Rewind operation. For the 733 ASR data terminals, the Rewind operation con-
sists of clearing the input character queue. The Open and Rewind operation causes the terminal to
perform aline feed and a carriage return.

6.4.2.5 Close and Unload. The Close and Unload operation, sub-opcode >04, is identical to the
Close operation.

6.4.2.6 Read Device Status. Sub-opcode >05 specifies a Read Device Status operation. The
Read Device Status operation returns the number of characters currently stored in the input char-
acter queue.
The following fields of the basic supervisor call block apply to a Read Device Status operation:

. SVCcode — 0

. Return code

. Sub-opcode — >05

. Logical unit number (LUNO)

. User flags

2270507-9701 6-53

6.4 733 ASR Data Terminal I/0

. Data buffer address
o Read character count
U < Actual Read Count > ,

The following user flag applies to a Read Device Status operation:

0 1 {2 3-4 5|16 |7

f

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279500

The logical unit number (LUNO) field contains the LUNO assigned to the device for which status
information is returned.

The data buffer address is the address of the buffer into which DNOS places the status infor-
mation.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field. The sys-
tem returns >0004 in this field when the specified LUNO is assigned to a 733 ASR data terminal.

After a Read Device Status operation returns the status of a 733 ASR data terminal the data buffer
contains the following:

Byte Contents
0 >FF.
1 >FF.
2-3 Number of characters currently stored in the input character queue.

DNOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char-
acters in the queue. The maximum size of this queue is specified when the system is generated.

6-54 ’ 2270507-9701

733 ASR Data Terminal 6.4

The following is an example of the source code for a supervisor call block for a Read Device Status
operation and code for the read buffer:

RDSHCT

DMY
LiQ

DATA O READ STATUS OF TERMINAL ASSIGNED TO
BYTE 5,>35 LUNO >35.

DATA O

DATA DMY

DATA 10

DATA O

BSS 2 DEVICE STATUS BUFFER

BSS 8

6.4.2.7 Read ASCIl. Sub-opcode >09 specifies a Read ASCIl operation. The Read ASCII opera-
tion reads arecord from the keyboard and stores the characters in the specified buffer, two charac-

ters per word.

The following fields of the basic supervisor call block apply to a Read ASCI| operation:

. SVCcode — 0

. Return code

. Sub-opcode — >09

. Logical unit number (LUNO)

. <System flags >

. User flags

e Data buffer address

[Read character count

U < Actual read count >

The following system flags apply to a Read ASClI operation:

2279501

2270507-9701

415 6|7

213
1

6-55

5.4 733 ASR Data Terminal /O

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — Noerror.

Bit 2 — End-of-file. Set by system as follows:
1 — (CTRL) S key terminated the operation.
0 — Operation terminated without the (CTRL) S key being pressed.

Bit 3 — Event key flag. Set by system as follows:
1 — An event key terminated the operation.
0 — Operation terminated without an event key being pressed.

The following user flags apply to a Read ASCI| operation:

0 1] 2 3-4 5167

1

2279502

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Read with blank adjustment.
0 — Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the terminal from which a
record is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

The Read ASCI| operation recognizes the characters listed in Appendix B for the 733 ASR data
terminal. The operation stores the characters, packed one per byte. When the country code in
effect is not >0200 (Japan), the most significant bit is set to zero. When the country code is
>0200, the eight-bit JISCII code is stored. The operation continues until the RETURN key is
pressed, the bufferis full, or (if the terminal is in the event key mode) an event key is pressed.
Characters that are entered between Read operations are stored in a queue and read by the next

Read operation. The maximum size of the queue is specified when the system is generated. Addi-
tional characters entered after the queue is full are ignored.

6-56 2270507-9701

733 ASR Data Terminal 6.4

Characters can be corrected by pressing the (CTRL) H or BACKSPACE key. The terminal performs
a backspace operation and deletes the previously entered character from the data buffer each time
the key is pressed. The first time the key is pressed, the printer also performs a line feed operation.
After spacing to the character in error, reenter the characters deleted.

When the RETURN key is pressed, the number of characters entered is stored in the actual read
count field and the operation terminates.

When the terminal was opened in the event key mode and an event key is pressed, the system sets
the event key flag in the system flags byte and terminates the operation. The event character may
be accessed by performing a Remote Get Event Character operation or a Get Event Character SVC.

When an event key is pressed between Read operations, the next Read operation performed after
the pressing of the event key terminates with the event key flag set and zero in the actual read
count field.

When the (CTRL) S key is pressed, the system sets the EOF flag in the system flags byte and termi-
nates the operation.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (>20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

The following is an example of the source code for a supervisor call block for a Read ASCII opera-
tion and code for the read buffer:

RDHCT DATA O READ RECORD FROM TERMINAL ASSIGNED
BYTE 9,>2C TO LUNO >2C IN THE INITIATE I/O MODE.

BYTE 0,>80
DATA RBUF
DATA 80
DATA O
RBUF BSS 80 READ BUFFER

6.4.2.8 Write ASCIl. Sub-opcode >0B specifies a Write ASCII operation. The Write ASCII opera-
tion transfers a record from the specified buffer to the terminal. DNOS supports a Write with Reply
option, which is effectively a Write operation followed by a Read ASCI| operation.

The following fields of the basic supervisor call block apply to a Write ASCIl operation:

SVCcode — 0
° Return code

. Sub-opcode — >0B

Logical unit number (LUNO)

2270507-9701 6-57

6.4 733 ASR Data Terminal 110

. < System flags >

. User flags

e Databuffer address

¢ Write character count

. Reply block address (write with reply option)

The foliowing system flags apply to a Write ASCII operation:

o1 12|34 |5]|]6|7

r

2279503

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Write ASClI operation:

0 1 2 3-4 516 7

?

2279504
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
Bit 1 — Reply flag. Set as follows:
1 — Write operation followed by a Read operation.
0 — All other operations.
Bit 7 — Blank adjustment flag. Set as follows:
1 — Write with blank adjustment.
0 — Write without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the terminal to which arecord
is to be written.

The data buffer address is the address of the buffer that contains the record to be printed.

The write character count is the number of characters to be printed by the terminal.

6-58 2270507-9701

733 ASR Data Terminal 6.4

The Write ASCII operation prints a record on the terminal. The record consists of ASCII characters
or JISCII characters, as specified by the country code.

When the HT character (>09) is transferred to the terminal, the result is a space. When the Form
Feed character (>0C) is transferred, the printer performs eight line feed operations.

When blank adjustment is specified, trailing blanks in the buffer are not written. The write charac-
ter count in bytes 10 and 11 is not altered.

A Write with Reply operation requires the following in addition to the requirements for a Write
ASCl| operation:

. The reply flag in the user flags byte set to one
. The extension to the supervisor call block
. The reply block

The extension to the basic I/0 supervisor call block is as follows:

DEc HEX
12 (0] REPLY BLOCK ADDRESS

2279505

The reply block is a three-word block, containing addresses for the Read operation, as follows:

DEc HEX
0 0 DATA BUFFER ADDRESS
2 2 READ CHARACTER COUNT
4 4 <ACTUAL READ COUNT >

2279506

The three fields are identical to the corresponding fields of the supervisor call block for a Read
ASCIl operation.

The following is an example of the source code for a supervisor call block for a Write EOF
operation:

WAHCT DATA O WRITE RECORD TO TERMINAL ASSIGNED TO
BYTE >B,>4C LUNO >4C INITIATE MODE.
BYTE 0,>80
DATA WRBUFF
DATA O
DATA 80

2270507-9701 6-59

6.4 733 ASR Data Terminal I/O

The following is an example of the source code for a supervisor call block for a Write ASCIl opera-
tion using the Write with Reply option:

WRHCT DATA O WRITE RECORD TO TERMINAL ASSIGNED TO
BYTE >B,>4C LUNO >4C INITIATE MODE AND
BYTE 0,>C0 WRITE WITH REPLY.
DATA WRBUFF
DATA O
DATA 80
DATA RBK

The reply block is coded as follows:

RBK DATA REPLY REPLY BUFFER ADDRESS
DATA 80 MAXIMUM LENGTH OF REPLY
DATA O REPLY CHARACTER COUNT

6.4.2.9 Write EOF. The Write EOF operation (sub-opcode >0D) performs three line feed oper-
ations on a 733 ASR data terminal.

The following fields of the basic supervisor call block apply to a Write EOF operation:
e SVCcode—0
. Return code
° Sub-opcode — >0D
. Logical unit number (LUNO)
. System flags
. User flags

The following system flags apply to a Write EOF operation:

11 2|13}14]5] 6] 7

T

2279507

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:

1 — Error.
0 — Noerror.

6-60 2270507-9701

733 ASR Data Terminal 6.4

The following user flags apply to a Write EOF operation:

o] 1 2 3-4 5(16(7

1

2279508

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the terminal to which a record
is to be written.

The following is an example of the source code for a supervisor call block for a Write ASCII
operation:

WEHCT DATA O WRITE EOF TO TERMINAL ASSIGNED TO
BYTE >D,>4C LUNO >4C INITIATE MODE.
BYTE 0,>80
DATA O
DATA O
DATA O

6.4.3 733 ASR Data Terminal Resource-Specific 1/0

Most of the resource-specific 1/0 operations use an extended supervisor call block. The sub-
opcodes for the resource-independent operations apply, but the operations are modified by the
states of flags in the extended user flags field. Sub-opcode >0A (Read Direct operation) does not
apply to the 733 ASR data terminal. DNOS returns an error code when the Read Direct operation is
specified fora733 ASR.

The extended call flag in the user flag field (byte 5) of the supervisor call block must be set to one
for resource-specific 1/O operations. Otherwise, the system does not use the extensions to the
supervisor call block. The flags in the user flag field that apply to resource-specific /O operations
are:

0 112 3-4 5167

T

2279509

Bit1 — Reply flag. When the character validation flag is set to zero, set the reply flag to one
for a Write with Reply, Remote Get Event Character, or Read with Validation opera-
tion, or set the reply flag to zero when a previously supplied validation table applies.

Bit 6 — Extended call flag. Set as follows:

1 — Extended call block (required for resource-specific 1/0).
0 — Basic supervisor call block (used for resource-independent 1/O).

2270507-9701 6-61

6.4 733 ASR Data Terminal 110

The extension to the basic supervisor call block is as follows:

DEcC HEX

12 C
14 E
16 10
18 12
20 14

2279510

VALIDATION TABLE/REPLY BLOCK ADDRESS

EXTENDED USER FLAGS

[(REsERVED) <EVENT BYTE >

[REsSERVED]

[RESERVED]

The extension to the call block contains the following:

Byte

12-13

14-15

16

17

18-19

20-21

6-62

Contents

Character validation table address (when character validation is speci-
fied in the extended user flags). The address of a table of character vali-
dation data. Reply block address (when the reply flag is set to one). The
address of a block containing the address and count fields for a Write
with Reply operation.

Extended user flags field. Contains sixteen flags that apply to all or some
of the terminal operations as described in succeeding paragraphs.

[Reserved]. 733 ASR data terminal l/O ignores any datain this field, which
allows an extended call block to be used for either VDT or 733 ASR data
terminal |/O.

<Event byte>. The system stores an event character in this field when
the terminal has been opened in the event mode and an event key is
pressed.

[Reserved]. 733 ASR data terminal /O ignores any data in this field, which
allows an extended call block to be used for either VDT or 733 ASR data
terminal 1/O.

[Reserved]. 733 ASR data terminal |/O ignores any datain this field, which

allows an extended call block to be used for either VDT or 733 ASR data
terminal 1/O.

2270507-9701

733 ASR Data Terminal 6.4

The extended user flags are:

ol 1 213

—
—p U
—»
—»
—>

2279511

The following lists the flags and the /O operations in which they are effective. Detailed descrip-
tions of the uses of the flags follow in subsequent paragraphs.

Bit Definition Used in Operations
4 Eight-bit ASCII Read ASCII and Write ASCII
5 Task edit Read

12 No echo Read ASCI|

13 Character validation Read

14 Validation error mode Read

6.4.3.1 Eight-Bit ASCIl. This flag, when set to one, forces a line feed and carriage return at the
end of arecord during a Read ASCII or Write ASCH operation. This flag does not apply to terminals
using JISCII.

6.4.3.2 Task Edit. This flag, when set to one, causes any of the task edit characters listed in
Table 6-3 that are entered during an input operation to terminate the operation and to be returned
in byte 17 (event byte field) of the extended call block. When the flag is set to zero, the device ser-
vice routine (DSR) ignores these characters.

6.4.3.3 No Echo. This flag, when set to one, inhibits the printing of characters entered at the
keyboard. When a key is pressed, a blank is printed. When the flag is set to zero, each character is
printed as it is entered. This flag applies only to Read ASCII operations.

6.4.3.4 Character Validation. This flag, when set to one, enables character validation of the field
being read by a Read ASCII operation. Character validation is discussed in greater detail in the
character validation paragraph of this section. When the character validation flag is set to zero, no
character validation is performed. Refer to the description of the Write ASCIl operation for the use
of the reply flag when the character validation flag is set to zero.

6.4.3.5 Validation Error Mode. The validation error mode flag, when set to one, enables correc-
tion of errors detected during validation of field contents by the task. The Validation Error Mode
operation is effectively a Reread operation; the flags that apply to a Read apply in the same way to
this operation. When the user reenters one or more characters in the field, the system sets the vali-
dation error mode flag to zero. When the calling task sets the validation error mode flag to zero, the
operation is performed in the normal mode.

2270507-9701 6-63

6.4 733 ASR Data Terminal 1/0

6.4.3.6 Read ASCII Example. When a terminal has been opened in the event key mode and task
edit keys are also enabled (carriage control flag set to one), either an event key or a task edit key
may terminate a Read operation. The task edit character is always returned in the event byte of the
extended call block, and the event character is also returned in that byte in resource-specific 1/0.
The state of the event key flag in the system flag field indicates which type of character is in the
event byte when both are enabled. The task accesses and decodes the character and performs the
function corresponding to the key. ‘

The following is an example of the code for a Read ASCI| operation with event key termination
enabled by the previous Open operation and task edit key termination enabled for the Read
operation: ’

REHC DATAO READ FIELD OF TERMINAL AT LUNO >3F.
BYTE 9,>3F FIELD SIZE IS 15 CHARACTERS.
SYSFL BYTEO EVENT KEYS AND TASK EDIT KEYS
BYTE >02 ENABLED.
DATA RBUFF
DATA 15
DATA O
DATA O
DATA >0400
DATA O
DATA O
DATA O

6.4.3.7 Character Validation Operation. A Read ASCII operation may specify character valida-
tion. The characters of the field being read by the operation that are not within the range or ranges
applicable to the operation are not accepted. Characters that are within the range or ranges are
stored in the read buffer specified for the operation. The character validation flag in the extended
user flags field is set to one for a Read with validation operation.

Each Read operation with character validation must specify a validation table. Specifying a valida-
tion table requires:

o Setting the character validation flag to one
. Supplying a validation table

° Placing the address of the table in the character validation table address field of the
extended call block

6-64 2270507-9701

733 ASR Data Terminal 6.4

The validation table contains one or more ranges of characters that define the valid characters for
the field. The table may define the valid characters by specifying ranges of characters that are not
valid, or by specifying ranges of characters that are valid. Each range in the table requires two
bytes, and the table contains two bytes of overhead. Thus the length of the table in bytes is two
times the number of ranges, plus two. The format of the table is as follows:

DEC HEX

o) 0 LENGTH FLaGs
2 2 RANGE 1 Low CHAR. RANGE 1 HIGH CHAR.
JL ~
qu s
2N 2N RANGE n Low CHAR. RANGE n HIGH CHAR.

2279512

The validation table contains the following:

Byte Contents
0 Length — Length of the validation table in bytes (2n + 2).
1 Flags:

Bit 0 — Validation flag. Set as follows:
1 — Invalid ranges. Characters greater than or equal to the low char-
acter and less than or equal to the high character are invalid.
0 — Valid ranges. Characters greater than or equal to the low char-
acter and less than or equal to the high character are valid.
Bits 1-7 — Reserved.
2 Low character forrange 1.
3 High character for range 1.
Character pairs for additional ranges.
2n Low character for range n.

2n+1 High character for range n.

Character validation is performed after each character is entered in the field.

2270507-9701 6-65

6.4 733 ASR Data Terminal I/0

The user must press one of the following correction keys when the last character entered is
invalid:

e (CTRL)Hor BACKSPACE

* RUBOUT
¢ (CTRL)N
e (CTRLT

Next, the user enters the data correctly.
An example Read with Validation operation performs the following:
. Reads a 10-character field.
. Validates the field as an alphanumeric field with no lowercase letters.

The foilowing is an example of the code for the supervisor call block and validation table for the
example operation:

RVAL DATA O READ FIELD OF TERMINAL AT'LUNO >2B, -
BYTE 9,>2B VALIDATING PER TABL. FIELD
BYTE O SIZE IS 10 CHARACTERS. READ
FLG1 BYTE >02 BUFFER IS BUFF.
DATA BUFF
DATA 10
DATA O
DATA TABL
FLG2 DATA >0004
BSS 6
EVEN
TABL BYTE 6 LENGTH OF TABLE
BYTE O VALID RANGES
DATA >3039 RANGE 1 — NUMERALS
DATA >415A RANGE 2 — UPPERCASE LETTERS

6.4.3.8 Field Validation. Any validation of a field must be performed by a task following the read-
ing of the field. This could verify that the field contains the proper number of letters, followed by
numbers, for example. The Read ASCII operation in the validation error mode is used by the task to
obtain corrected data when an error has occurred. Character validation may be requested for the
operation also. The validation error mode flag is set to one to enable the mode.

In the validation error mode, the operation requires reentry of the field. The correction key is the

BACKSPACE key. When a character is entered prior to pressing the BACKSPACE key, the charac-
teris not printed (no echo).

6-66 2270507-9701

o

733 ASR Data Terminal 6.4

The difference between a normal Read ASCII operation and one that specifies the validation error
mode is that in the validation error mode input is ignored until the BACKSPACE key is pressed.
The user should backspace to the leftmost error character and enter the correct characters in the
remainder of the field.

The call block for the previous Read ASCII operation can be used by setting the validation error
mode flag to one. The following instructions set the flag in the call block of the character valida-
tion coding example:

MASK?2 BYTE >2
SOCB @MASK2,@FLG2 + 1

6.4.3.9 Getting Event Characters. The Remote Get Event Character operation (sub-opcode > 05)
returns an event character in the event byte (byte 17) of the extended supervisor call block. The
LUNO assigned to the terminal does not have to be open. The operation is an alternative to per-
forming a Read operation to obtain an event character.

The operation is a special type of Read Device Status operation; the number of characters stored
in the input character queue is returned also.

The following fields of the extended supervisor call block apply to a Remote Get Event Character
operation:

e SVCcode—0

. Return code

. Sub-opcode — >05

. Logical unit number (LUNO)
. User flags

e Databufferaddress

o Read character count

. < Actual read count >

. Event byte

The following user flags apply to a Remote Get Event Character operation:

of1 2|13 |4 5|16|7

2279513

2270507-9701 6-67

6.4 733 ASR Data Terminal I/O

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
Bit 1 — Reply flag. Set to one.
Bit 6 — Extended call flag. Set to one.

The logical unit number (LUNO) field contains the LUNO assigned to the device at which the event
character is entered.

The data buffer address is the address of the buffer into which DNOS places the status
information.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field. The sys-
tem returns four in this field when the specified LUNO is assigned to a 733 ASR data terminal.

DNOS returns the event character in the event byte.

After a Remote Get Event Character operation returns the status of a 733 ASR data terminal, the
data buffer contains the following:

Byte Contents

0-1 >FFFF.

2-3 Number of characters currently buffered in the input character
queue.

DNOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char-
acters in the queue. The size of this queue is specified when the system is generated.

6-68 2270507-9701

Teleprinter Device /0 6.5

The following is an example of the source code for a supervisor call block for a Remote Get Event

Character operation and code for the read buffer:

RGEVCH DATAO GET EVENT CHARACTER FROM TERMINAL

BYTES5,>32 ASSIGNED TO LUNO >32.

DATA >42
DATA MRADR
DATA 10
DATAO
DATAO
DATAO
EVCHAR BYTEO0,0
DATA 0,0

MRADR BSS 1 DEVICE STATUS BUFFER

BSS 1
CHINQ BSS 8

6.5 TELEPRINTER DEVICE /O

DNOS supports both resource-independent (short SVC call block) and resource-specific (extended
SVC call block) /0O for both Keyboard Send/Receive (KSR) and Receive Only (RO) teleprinter ter-
minals (TPDs). These teleprinter devices are usually general purpose portable terminals.

Resource-independent I/O for the TPDs includes operations that are analogous to sequential file
operations. Resource-specific 1/0 for TPDs includes operations that apply only to TPDs. These
operations give a program control over functions of special keys. Except for the Read Device
Status operation, the device must be opened using sub-opcode >00 or >03 prior to any 1/O

operation.

The subset of sub-opcodes for the TPDs applies to both resource-independent and resource-

specific 1/O, as follows:

00 Open

01 Close

02 Close, Write EOF

03 Open and Rewind

04 Close and Unload

05 Read Device Status and Get Remote Event
09 Read ASCII

OA Read Direct

0B Write ASCII

0C Write Direct

0D Write EOF

OE Rewind

OF Unload (Hang-up, Resource-Specific Only)
15 Set Device Characteristics (Resource-Specific Only)

2270507-9701

6-69

6.5 Teleprinter Device I/O

The following I/O SVC block for TPD operations is the basic block used for all operations. If an
extension to this block is necessary for a particular operation, it is indicated in the operation
description.

sSVC >00 -— I/O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT
DEcC HEX

0 0 >00 <RETURN CODE >

2 2 Sus-~-QOPCODE LUNO

4 4 <SYSTEM FLAGS> UseER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

2279470

The system flags (byte 4) in the supervisor call block apply to all TPD 1/O. These flags are:

1 213 4 |56 7

0
3

2283187

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — Noerror.

Bit 2 — End-of-file. Set by system as follows:
1 — (CTRL) Y key terminated the operation.
0 — Operation terminated without the (CTRL) Y key being pressed.

Bit 3 — Event key flag. Set by system as follows:
1 — An event key terminated the operation.
0 — Operation terminated withcout an event key being pressed.

The user flags (byte 5) in the supervisor call block apply to all TPD 1/O. However, significance of

these flags differs for various operations. The flags that apply to each operation are described in
the detailed description of each operation.

The character set applicable to a TPD is the ASCII character set or the JISCII character set appro-
priate to the country code for which the system was generated.

6-70 2270507-9701

Teleprinter Device I/O 6.5

6.5.1 Key Categories
The system interprets each key on the keyboard in one or more of the following categories:

] Data
. Hold
U Event

U System edit
o Task edit

The Device Character Set appendix to this manual lists the keys on TPD terminal keyboards and
the type of each key.

6.5.1.1 Data Keys. The datakeys return the codes of printable characters to the buffer specified
in the call block. The category includes the keys that return ASCIl codes >20 through >7E.

6.5.1.2 Hold Key. The hold key suspends output to the TPD. Operation may be resumed by
pressing any other key except RETURN, exclamation point (!), or (CTRL) X. The hold key is the
(CTRL) S key. The first key pressed after the hold key is not placed in the read buffer.

When the RETURN key is pressed following the hold key, the current operation is aborted, and an
error code is returned to the task that requested the I/O.

When the exclamation point key is pressed following the hold key, the system activates SCI and
the output continues. Contention between the interrupted output and SCI for the use of the TPD
may cause unpredictable results.

When (CTRL) X is pressed following the hold key, a hard break results. The hard break terminates
the current task and activates SCI. The end action specified by the task, if any, is performed prior
to terminating the task and activating SCI. The hard break should be used to abort tasks when
appropriate; it should be used with care because the hard break aborts pending I/O requests.

The system selects the task to be terminated by the hard break from among the tasks of the cur-
rent job. The following rules apply in the listed order of priority:

1. When only the System Command Interpreter (SCI) task is active, SCl is terminated.
2. Any other foreground task is terminated.

3. Any other background task is terminated.

4. When other tasks are active along with SCI, SCl is terminated last.

There may be times when the hard break terminates a task other than the one intended. In that
case, press the hold key and (CTRL) X again to terminate the intended task.

2270507-9701 6-71

6.5 Teleprinter Device I/O

The effect of a subsequent hard break depends upon the timing. When the task has not yet taken
end action in response to the first hard break, the subsequent hard break terminates the next task
in the order of priority. When the task is executing the end action routine but has not completed
end action, the task is aborted as if end action had not been provided. When end action has com-
pleted, the subsequent hard break causes the task to take end action again.

The end action routine should execute a Get End Action Status SVC to obtain the error code and
identify the cause of the termination. When the task error code returned by the SVC is >10, a hard
break has occurred. The task may process the hard break and resume execution after executing a
Reset End Action Status SVC. The task must place the WP, PC, and ST values returned by the Get
End Action Status SVC in R13, R14, and R15 and execute an RTWP instruction to resume
execution.

6.5.1.3 Event Keys. Activating the event key mode enables use of event keys as task pro-
grammable function keys. Opening the LUNC assigned to the TPD, with the event key mode flag
(bit seven in the user flags) set to one, activates the event key mode. A Read ASCII operation, using
the extended call block with the task edit flag set, returns the event character to the task. The Read
Operation does not return event keys to the task or remove event characters from the buffer when
the device is opened with a regular (not extended) call block. Event characters can be accessed by
a Remote Get Event Character operation without opening the LUNO assigned to the TPD.

When an event key is pressed while using an extended call block, the corresponding character
code is stored in the event character buffer. When an input operation using an extended call block
is being performed, the operation terminates with the event key bit (bit 3 of byte 4 of the call block)
set toone.

When no input operation is being performed and an event key is pressed, the next input operation
is immediately terminated with the event key bit of the call block set to one.

The Device Character Set appendix to this manual describes the event keys. The actual key
pressed to generate a code can vary with different terminals. Refer to the specific manual for the
terminal.

The event keys for the 74x, 76x, 78x TPDs are:

(CTRL)3 (CTRL) A (CTRL) B
(CTRL)C (CTRL)D (CTRL E
(CTRL) F (CTRL) V (CTRL)W
(CTRL) X (CTRL)Y (CTRL)Z
(CTRL), (CTRL) + (CTRL).
(CTRL)/ (CTRL) [

The event keys for the 820 TPD are:

(CTRL) 3 (CTRL) A (CTRL) B

(CTRL)C (CTRL)D (CTRL E

(CTRL)F (CTRL)V (CTRL)W
(CTRL) X (CTRL) Y (CTRL)Z

(CTRL) \ (CTRL) { (CTRL) =
(CTRL) -

6-72 2270507-9701

Teleprinter Device I/0 6.5

The task decodes the event character and performs the desired function. When the input operation
that terminates with the event key bit set to one uses the extended call block, (resource-specific |/
0) the event character is returned in the event character field. The event character can be obtained
without performing a Read operation (and without opening the LUNO) by performing a Remote Get
Event Character operation. When the input operation uses the basic I/0 call block (resource-
independent 1/0), the following occurs:

1. The event characteris not returned because there is no event byte.
2. Nothingis placed in the read buffer.
3. Thecharacteris not removed from the character queue.
4, The count of characters in the character queue is not decremented.
This means the next input operation will also terminate with the event bit set.
NOTE

Any task may access the event character buffer by performing 1/0 to
any LUNO assigned to the TPD. The first access is the only access
that returns the correct character. Tasks that perform 1/0 to aTPD to
which SCl is performing /0 must avoid accessing event characters.
Either the task or SCI may fail to perform the intended function.

6.5.1.4 System and Task Edit Keys. System edit keys are control keys that are implemented by
the system. Task edit keys are control keys that are task functions. Five of the keys are both sys-
tem and task edit keys, for which the system performs a function. The task may perform an
additional function.

Task edit functions apply only to read ASCII operations using the extended call block. The task
edit flag (byte 14, bit 5) in the extended user flags must be set to one to enable task edit functions.
The device service routine (DSR) returns the character code of the task edit character in the event
byte field of the extended call block.

6.5.2 TPD Terminal Resource-Independent I/O
The operations appropriate for TPDs are described in subsequent paragraphs. The following
sub-opcodes do not apply to TPDs and produce the indicated results:

Sub-opcode Operation Action
06 Forward Space Ignored
07 Backward Space ignored

6.5.2.1 Open. Sub-opcode >00 specifies an Open operation. The Open operation causes the
TPD to perform aline feed and a carriage return and is required for TPDs. DNOS does not automati-
cally validate the Open operation unless the device was specified with VALIDATE OPENS? YES
during system generation; that is, a possible conflict with 1/0 to the same device by another task
is not detected. An Open operation is not required prior to performing a Read Device Status
operation.

2270507-9701 6-73

6.5 Teleprinter Device I/0

The following fields of the basic supervisor call block apply to an Open operation:
. SVCcode — 0
o Return code
. Sub-opcode — >00
. Logical unit number (LUNO)
. User flags
. Data buffer address
. Read character count

The following user flags apply to an Open operation:

I—O(123—4567
T

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2283188

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write. '
01 — Exclusive all.
10 — Shared.
11 — Read only.

Bit 5 — Immediate open flag. Set as follows:
1 — System immediately returns control to the calling task.
0 — System verifies that the device is connected to the port before returning control
to the calling task.

Bit 7 — Event key mode flag. Set as follows:
1 — Enable event key mode.
0 — Disable event key mode.

If bit & of the user flags is set to one, the call completes immediately regardless of whether the
port is connected or unconnected. Otherwise, the call completes after the port is connected.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code foraTPD is >0001.

6-74 2270507-9701

Teleprinter Device IO 6.5

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length foraTPD is >56.

A TPD must be opened with the event key flag set to one if event keys are to be used as task pro-
grammable function keys.

To access an event key character, perform a Remote Get Event Character operation.

The following is an example of the source code for a supervisor call block to open a TPD:

OHCT DATA O OPEN TERMINAL ASSIGNED TO LUNO >20.
BYTE 0,>20
DATA O

TPE DATA O

LRL DATA O
DATA O

6.5.2.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends 1/O to a
LUNO from the calling task. The LUNO remains assigned to the device, and may be opened again
for additional 1/O operations. DNOS writes a carriage return character to the device to which the
LUNO is assigned. When atask terminates, DNOS closes all LUNOs that the task opened.
The following fields of the basic supervisor call block apply to a Close operation:

e SVCcode—0

. Return code

. Sub-opcode — >01

o Logical unit number (LUNO)

. User flags

The following user flag applies to a Close operation:

0 1 2 3-4 5 6 7

?

2283189
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

2270507-9701 6-75

6.5 Teleprinter Device I/O

The following is an example of the source code for a supervisor call block to close a TPD:

CHCT DATA O CLOSE TERMINAL ASSIGNED TO LUNO >20.
BYTE 1,>20
DATA O
DATA O
DATA O
DATAO

6.5.2.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode >02, performs three line
feed operations on Silent 700 series devices or a form feed on 800 series printers, followed by a
Close operation.

6.5.2.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open opera-
tion followed by a Rewind operation. For TPDs, the Rewind operation consists of clearing the
input character queue. The Open and Rewind operation causes the terminal to perform a page
eject. If the attached TPD does not support page eject, three line feeds are performed. If the Open
and Rewind operation uses an extended call block with byte 14, bit 4 set to one, the input queue is
flushed and the device is placed in the eight-bit ASCIl mode. Eight-bit ASCII is intended for com-
municating with special, nonstandard devices. In the eight-bit ASCil mode, all characters received
are passed directly to the calling task without checking for special characters or parity. When the
device is in this mode the calling task must assume responsibility for handling special characters
(hold, abort, etc.), line turn-around characters if the line is half-duplex, and checking parity. The
device in this mode cannot bid SCI. An Open Rewind call block with byte 14, bit 4 set to zero
restores the device to normal operating mode. The Open Rewind operation is the recommended
way to set or reset the eight-bit ASCIl mode since it ensures the characters passed to the calling
task are the specified type by clearing the character queue.

6.5.2.5 Close and Unload. The Close and Unload operation, sub-opcode >04, performs the
same function as the Close and drops the communications line.

6.5.2.6 Read Device Status. Sub-opcode >05 specifies a Read Device Status operation. The
Read Device Status operation returns into the data buffer as much of the device information block
as specified (up to a maximum of 64 characters) by the user in the read character count field.
The following fields of the basic supervisor call block apply to a Read Device Status operation:

. SVCcode — 0

. Return code

. Sub-opcode — >05

. Logical unit number (LUNO)

° User flags

. Data buffer address

6-76 2270507-9701

Teleprinter Device /0 6.5

U Read character count
] < Actual read count >

The following user flag applies to a Read Device Status operation:

olt|l2]3|a|5] 6|7

2283190
Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the device for which status
information is returned.

The data buffer address is the address of the buffer into which DNOS places the status infor-
mation. ’

The read character count is the number of characters of device information desired. The read
buffer must be large enough to hold the information.

DNOS returns the number of characters stored in the buffer in the actual read count field. The
number of characters cannot exceed 64.

| The contents of the data buffer after a Read Device Status operation has returned the status of a
TPDisin Table 6-4.

2270507-9701 6-77

6.5 Teleprinter Device /O

Table 6-4. Status of Teleprinter Devices

6-78

Byte Contents
0-1 >FFFF
2-3 Number of characters buffered in input character queue
4 DSRtype:5 = TPD
5 Reserved
6-7 Hardware interface CRU/TILINE address
8-9 Associated ACU hardware interface CRU address or >FFFF if no CRU is
defined
10 ISR type:
1 = Cl401
5 = TTY/EIA
6 = Any 9902 port
11 Reserved
12-13 Read ASCII time-out in ¥4 seconds
14-15 Write ASCII and direct time-out in ¥4 seconds
16-17 Read direct time-out in 14 seconds
18-19 Read direct time-out for characters 2-N
20 Reserved
21 State flags
22 Line flags:
0 = half-duplex
1 = switched line
2,7 = as currently defined
23 Access flags
24 Speed code:
—1 = modem selectad
0 = 110 baud
2 = 300 baud
3 = 1200 baud
4 = 2400 baud
5 = 4800 baud
6 = 9600 baud
25 EOR character
26 EOF character
27 LTA character
28 Parity error substitute character
29 Carriage return delay count
30-33 Reserved
34-35 Count of maximum characters buffered

2270507-9701

Table 6-4. Status of Teleprinter Devices (Continued)

Teleprinter Device /O 6.5

Byte Contents

36 Terminal type:

>03 = 703

>07 = 707

>2B = 743

>2D = 745

>3F = 763

>41 =765

>51 = 781

>53 = 783

>55 = 785

>57 = 787

>58 = 820

>7D = 825

>8C = 840
37 Last character received
38-39 Saved extended flags
40 Reserved
41 Sysgen speed
42-43 Reserved
44-45 Sysgen time-out value in 250-ms increments
46-47 Number of parity errors
48-49 Number of lost characters
50-51 Number of reads
52-53 Number of writes
54-55 Number of other /O calls
56 Number of retries
57 Number of LUNOs assigned
58-59 Number of read errors
60-61 Number of write errors
62-63 Number of other I/O errors

2270507-9701 6-79

6.5 Teleprinter Device I/0

DNOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char-
acters in the queue. The maximum size of this queue is specified when the system is generated.

The following is an example of the source code for a supervisor call block for a Read Device Status
operation and the read buffer. This call block returns the first 10 characters of the device infor-
mation block (through the ACU CRU address). The number of characters currently buffered in the
input queue is returned as part of this status information at the label LIQ.

RDSHCT DATAO READ STATUS OF TERMINAL ASSIGNED TO
BYTE 5,>35 LUNO >35.
DATA O
DATA DMY
DATA 10
DATA O

DMY BSS 2 DEVICE STATUS BUFFER
LIQ BSS 8

6.5.2.7 Read ASCIl. Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII opera-
tion reads a record from the keyboard and stores the characters in the specified buffer, two char-
acters per word.
If the number of characters received from the device is greater than the length of the read buffer,
the excess characters are stored in the input queue and returned by the next Read Direct or Read
ASCIl operation. Additional characters, received after the queue is full, are discarded and the next
operation that is performed by the DSR terminates with an error (KSB queue overflow). System
generation specifies the size of the KSB input queue.
The following fields of the basic supervisor call block apply to a Read ASCIl operation:

. SVCcode — 0

. Return code

. Sub-opcode — >09

. Logical unit number (LUNO)

U < System flags >

. User flags

U Data buffer address

. Read character count

. < Actual read count >

6-80 2270507-9701

i

Teleprinter Device I/O 6.5

The following system flags apply to a Read ASCIi operation:

0o 1 213
Fr Tt
2283187

Bit 0 — Busy flag. Set by system as follows:

1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:
1 — (CTRL) Y key terminated the operation.
0 — Operation terminated without the (CTRL) Y key being pressed.

Bit 3 — Event key flag. Set by system as follows:
1 — An event key terminated the operation.
0 — Operation terminated without an event key being pressed.

The following user flags apply to a Read ASCII operation:

0 1 2 3-4 5 6 |7

T f

2283192

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Read with blank adjustment.
0 — Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD from which a record
is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

2270507-9701 6-81

6.5 Teleprinter Device I/O

The Read ASCII operation recognizes the characters listed in the Device Character Set appendix
for TPDs. When the operation stores the characters, it packs them one per byte. When the country
code in effect is not >0200 (Japan), the most significant bit is set to zero. When the country code
is >0200, the eight-bit JISCII code is stored. The operation continues until one of the following
occurs:

. The RETURN key ((CTRL)M on some terminals) is pressed or the DSR receives a >0D
character

e The bufferis full

. An event key is pressed (if the TPD terminal is in the event key mode)

e The(CTRL)Y is pressed or the DSR receives a >99 or >19 character

e Thetime-out period elapses (if one is specified during system generation)
e The DSR encounters an error

Characters can be corrected by pressing the (CTRL) H or BACKSPACE key. The TPD performs a
backspace operation and deletes the previously entered character from the data buffer each time
the key is pressed. The first time the key is pressed, the printer also performs a line feed operation.
After spacing to the character in error, reenter the characters deleted.

When the RETURN key is pressed, the number of characters entered is stored in the actual read
count field and the operation terminates.

On Read ASCII operations the following edit functions are performed internally: backspace (BS),
erase field, tab, line feed (LF), carriage return (CR), end-of-record, and end-of-file (EOF). The corre-
sponding keycodes are not placed in the read buffer.

When the TPD is opened in the event key mode and an event key is pressed, the system sets the
event key flag in the system flags byte and terminates the operation. The event character is
returned in the event byte of the call block if an extended call block is used. The event character
can also be accessed by performing a Remote Get Event Character operation.

When an event key is pressed between Read operations, the next Read operation performed after
pressing the event key terminates with the event key flag set and zero in the actual read count
field.

When the (CTRL) Y key is pressed, the system sets the EOF flag in the system flags byte and termi-
nates the operation.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (> 20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

6-82 2270507-9701

Teleprinter Device 1/O0 6.5

The following is an example of the source code for a supervisor call block for a Read ASClI opera-
tion and code for the read buffer: '

RDHCT DATA O READ RECORD FROM TERMINAL ASSIGNED
BYTE 9,>2C TO LUNO >2C IN THE INITIATE 110
BYTE 0,>80 MODE.
DATA RBUF
DATA 80
DATA O
RBUF BSS 80 READ BUFFER

6.5.2.8 Write ASCIl. Sub-opcode >0B specifies a Write ASCII operation. The Write ASCIl opera-
tion transfers a record from the specified buffer to the TPD. DNOS also supports an optional Write
with Reply operation, which is effectively a Write operation followed by a Read ASCII operation.

The following fields of the basic supervisor call block apply to a Write ASCIH operation:

U SVCcode —0

. Return code

. Sub-opcode — >0B

. Logical unit number (LUNO)

. < System flags >

U User flags

. Data buffer address

] Write character count

. Reply block address (Write with Reply operation)

The following system flags apply to a Write ASCI! operation:

2283151

0 1
Tt

Bit 0 — Busy flag. Set by system as follows:

1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:

1 — Error.
0 — No error.

2270507-9701

6.5 Teleprinter Device IO

The following user flags apply to a Write ASCII operation:

~

0 1 2 34 5 6

2283193

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
Bit 1 — Reply flag. Set as follows:
1 — Write operation followed by a Read operation.
0 — All other operations.
Bit 7 — Blank adjustment flag. Set as follows:
1 — Write with blank adjustment.
0 — Write without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD to which a record is
to be written.

The data buffer address is the address of the buffer that contains the record to be printed.
The write character count is the number of characters to be printed by the TPD.

The Write ASCII operation prints a record on the TPD. The record consists of ASCIl characters or
JISCIl characters, as specified by the country code.

The ASCII characters from >00 through >1F are control and protocol characters and should be
avoided in normal data traffic. The actions taken by a TPD depend on the specific terminal and its
configuration; refer to the manual for the terminal being used. When these characters are transmit-
ted to the TPD these results occur:

. ENQ (>05) — The TPD transmits the answer back memory if it is installed.

. BEL (>07) — The bell rings.

. HT (>09) — The TPD prints a space.

. LF (>0A) — A line feed occurs.

. Form feed (>0C) — The TPD attempts a form feed if it is capable of performing a form
feed.

. CR (>0D) — The TPD performs a carriage return.
. ESC (> 1B) — Some TPDs interpret this as the beginning of an Extended Device Control

(EDC) sequence and attempt to interpret the following characters as meaningful
terminal orders; the results can be unexpected.

6-84 2270507-9701

Teleprinter Device 110 6.5

When blank adjustment is specified, trailing blanks in the buffer are not written. The write char-
acter count in bytes 10 and 11 is not altered.

A Write with Reply operation requires the following in addition to the requirements for a Write
ASCI| operation:

. The reply flag in the user flags byte set to one
o The extension to the supervisor call block
. The reply block
The extension to the basic 1/0 supervisor call block is as follows:

DEC HEX
12 C REPLY BLOCK ADDRESS

2283194

The reply block is a three-word block, containing addresses for the Read operation, as follows:

DEC HE X

0 0 DATA BUFFER ADDRESS
2 2 READ CHARACTER COUNT
4 4 <AcTuAL READ COUNT>

2283195

The three fields are identical to the corresponding fields of the supervisor call block for a Read
ASCII operation.

The following is an example of the source code for a supervisor call block for a Write ASCI| opera-
tion:

WAHCT DATA O WRITE RECORD TO TERMINAL ASSIGNED TO
BYTE >B,>4C LUNO >4C INITIATE MODE.
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 80

2270507-9701 6-85

3.5 Teleprinter Device /O

The following is an example of the source code for a supervisor call block for a Write ASCII opera-
tion that uses the optional Write with Reply operation:

WRHCT DATA O WRITE RECORD TO TERMINAL ASSIGNED TO
BYTE >B,>4C LUNO >4C INITIATE MODE AND
BYTE 0,>C0 WRITE WITH REPLY.
DATA WRBUFF
DATA O
DATA 80
DATA RBK

The reply block is coded as follows:

RBK DATA REPLY REPLY BUFFER ADDRESS
DATA 80 MAXIMUM LENGTH OF REPLY
DATA O REPLY CHARACTER COUNT

6.5.2.9 Write EOF. The Write EOF operation (sub-opcode >0D) performs a page eject on TPDs
that support the page eject operation or three line feed operations on TPDs that do not support
page eject.
The following fields of the basic supervisor call block apply to a Write EOF operation:

e SVCcode—0

. Return code

° Sub-opcode — >0D

. Logical unit number (LUNO)

. < System flags >

o User flags

The following system flags apply to a Write EOF operation:

0 1
2283196
Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — Noerror.

\Z)!,‘

6-86 2270507-9701

Teleprinter Device /0 6.5

The following user flags apply to a Write EOF operation:

0 1 2 3-4 5 6 7

AT

2283189

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD to which a record is
to be written.

The following is an example of the source code for a supervisor call block for a Write EOF
operation: '

WEHCT DATA O WRITE EOF TO TERMINAL ASSIGNED TO
BYTE >D,>4C LUNO >4C INITIATE MODE.
BYTE 0,>80
DATAO
DATA O
DATA O

6.5.2.10 Rewind. Sub-opcode >O0E specifies a Rewind operation. The Rewind operation clears
the input character queue and performs a page eject on TPDs that support the page eject opera-
tion or it performs three line feed operations on TPDs that do not support page eject. If the
extended call block is used and bit 4 of the extended flags is set to one, the Rewind operation is
performed and the device is placed in the eight-bit ASCIl mode. If bit 4 is not set or the extended
call block is not used, the rewind is performed and the device is restored to normal mode.
The following fields of the basic supervisor call block apply to a Rewind operation:

. SVCcode — 0

. Return code

. Sub-opcode — >0E

. Logical unit number (LUNO)

. User flags

2270507-9701 6-87

6.5 Teleprinter Device I/O

The following user flag applies to a Rewind operation:

0 1 2 3-4 5 6 7

f

2283189
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD that is to receive the
Rewind operation.

The following is an example of the source code for a supervisor call block to rewind a TPD:
RWND DATA O REWIND TPD ASSIGNED TO LUNO >4A.
BYTE >E,>4A
DATA O
DATA O

DATA O
DATA O

6.5.2.11 Unload. Sub-opcode >0F specifies an Unload operation. The Unload operation discon-
nects a switched line that is attached to a TPD.

The following fields of the basic supervisor call block apply to an Unload operation:
s SVCcode—0
. Return code
. Sub-opcode — >0F
U Logical unit number (LUNO)
. User flags

The following user flag applies to an Unload operation:

0 1 2 3-4 5 6 7

2283189
Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns contro! to the calling task.
0 — System suspends the calling task until the operation has completed.

6-88 2270507-9701

Teleprinter Device I/0 6.5

The logical unit number (LUNO) field contains the LUNO assigned to the TPD that is to receive the
Unload operation.

The following is an example of the source code for a supervisor call block to unload a TPD:
ULCS DATA 0 UNLOAD TPD ASSIGNED TO

BYTE >F,>4B LUNO >4B

DATA O

DATA O

DATA O

DATA O
6.5.2.12 Device Dependent Communication Control. DNOS enables a task to access device
dependent communications control through sub-opcode >15. The data buffer contains parame-
ters and other sub-opcodes that specify operations available with device dependent communi-
cation control. The List Hardcopy Port Characteristics (LHPC) SCl command can display the state
of most of these parameters. The Modify Hardcopy Port Characteristics (MHPC), Call Terminal
(CALL), Answer Incoming Call (ANS), or Terminal Disconnection (DISC) SClI commands can modify
most of these characteristics.

The following fields of the basic supervisor call block apply to a device dependent communication
control.

e SVCcode—0
o Return code
. Sub-opcode — >15
. Logical unit number (LUNO)
. <System flags >
. User flags
o Data buffer address
e Write character count
The logical unit number (LUNO) field contains the LUNO assigned to the TPD.

The following system flags apply to device dependent communication control:

0 1
3

2283196

2270507-9701 6-89

6.5 Teleprinter Device I/O

Bit 0 — Busy flag. Set by system as follows:

1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:

1 — Error.
0 — Noerror.

The data buffer address is the address of the buffer that contains the sub-opcodes and parameters
used in device dependent communication control. Each sub-opcode designates an operation of
device dependent communication control. The parameters specify different functions and values

of an operation.

The format of the data bufferis as follows:

))
€49

BYTE
0 SUB-OPCODE >00
2 PARAMETER 1 PARAMETER 2
A
N
2n PARAMETER nNn-1 PARAMETER n

2283202
The data buffer contains the following:

Byte

0 Sub-opcode

>16
>17
>18
>19
>1A
>1B
>1C
>1D
>1E

1 >00

Parameters

6-90

Contents

Operation

Modify Timing Characteristics
Modify Line Characteristics
Modify Terminal Type

Modify Special Characters
Connect

Clear Character Queue

Set File Transfer Parameters
Set Exclusive Access

Set Shared Access

2270507-9701

Teleprinter Device /O 6.5

Each parameter is described for the operation to which it applies in the following paragraphs. All
parameters are entered in hexidecimal. -

The write character count is the number of characters in the data buffer.

Modify Timing Characteristics. Sub-opcode >16 specifies the Modify Timing Characteristics
operation. This operation allows the default time-outs for a device to be changed. New values for
time-outs are specified in the parameters of the data buffer as follows:

Byte Time-Out Value (250-ms Increments)

2-3 Read Time-Out

4-5 Write Time-Out

6-7 Primary Read Direct Time-Out
8-9 Secondary Read Direct Time-Out

Modify Line Characteristics. Sub-opcode >17 specifies the Modify Line Characteristics opera-
tion. This operation modifies the configuration of acommunication line with the following parame-
ters in the data buffer:

Byte Line Characteristics

2 LTA character. Set as follows:
New LTA character.
0 — Do not change current LTA character.

3 Speed nn (where nn is value):
Value Speed (asynchronous bps)

110

300

600

1200

2400

4800

9600

300 or 1200 depending on the state of the interface-
board. This enables automatic speed selection in con-
junction with VA3400 and 212A modems. Not valid for
configurations using direct-connect, half-duplex, or
TTY/EIA interface.

- O hHhWON-=-O

2270507-9701 6-91

6.5 Teleprinter Device I/O

Byte Line Characterjstics

4 Bit 0 — Half-duplex = 1
Bit 1 — Switched
Bit 2 — Disabled
Bit 3 — Auto-disconnect enabled
Bit 4 — Require DLE and EOT for auto-disconnect
Bit 5 — SCF ready/busy monitor
Bit 6 — Exclusive access
Bit 7 — LTA enable (half-duplex only)

Modify Terminal Type. Sub-opcode >18 specifies the Modify Terminal Type operation. This
operation allows parameters related to a TPD type to be altered.

Byte Function

2 Type Value Terminal Model
>03 703
>07 707
>2B 743
>2D 745
>3F 763
>41 765
>51 781
>53 783
>55 785
>57 787
>58 820
>7D 825
>8C 840

3 Bit 0 — Echo. Set as follows:

0 — Echotothe TPD.
1 — Suppress echo to the TPD.

Modify Special Characters. Sub-opcode >19 specifies the Modify Special Characters operation.
This operation modifies the characters that indicate end-of-record and end-of-file. Specify new
values for these parameters in the data buffer as follows:

Byte Function
2 End-of-record. Set as follows:
New end-of-record character.
00 — Do not change current end-of-record character.
3 End-cf-file. Set as follows:

New end-of-file character.
00 — Do not change current end-of-file character.

6-92 2270507-9701

Teleprinter Device 1|0 6.5

Connect. Sub-opcode >1A specifies the Connect operation. This operation establishes a
connection to a TPD. If the initiate flag (bit 0) of the user flags is set to one, the task is not sus-
pended. The task is suspended until the connection is complete if the initiate flag is set to zero.
The values of the following parameters determine the method by which the connection to the TPD
is made.

Byte Value Function

2 Nonzero Establish request to send (RTS).
Zero Do not establish RTS.

3 Nonzero Establish data terminal ready (DTR).
Zero Do not establish DTR.

4-5 Nonzero Specify atime-out value in 250-ms increments.
Zero Zero specifies an infinite time-out.

If Ring Indicator or Data Set Ready is detected, the time-out reverts to 10 seconds for the duration
of the connection. Thus, if a communications port is set to answer incoming calls with an infinite
time-out and a device (not a modem) calls, the DSR terminates the call in 10 seconds if no connec-
tion is made. For full-duplex circuits, Data Carrier Detect must be sensed for the call to complete
successfully.

Set File Transfer Parameters. Sub-opcode >1C specifies a Set File Transfer Parameters opera-
tion. This operation performs the following:

. Enables selection of a parity checking mode
¢ Selects time-outs
. Selects a parity error substitute character
o Disables the DC3-driven functions:
— Bid
— Hold output
— Abort task

— Time-out

2270507-9701 6-93

6.5 Teleprinter Device I/O

The parameters of the Set File Transfer Parameters operation are defined and stored in the data
buffer as follows:

Byte Function

2-3 Primary time-out for Read Direct
4-5 Secondary time-out for Read Direct
6 Parity error substitute character

7 Bit 0 — Echo. Set as follows:

1— Suppress echo.
0— Enable echo.
Bit 1 — Unused
Bit 2 — Transmit parity. Set as follows:
1 — Enable transmit parity.
0 — Disable transmit parity.
Bits 3-4 — Transmit parity type. Set as follows:

00 = Even.
01 = Odd.
10 = Mark.
11 = Space.

Bit 5 — Receive parity. Set as follows:
1 — Enable receive parity.
0 — Disable receive parity.
Bits 6-7 — Receive parity type. Set as follows:

00 = Even.
01 = Odd.
10 = Mark.
11 = Space.

The values of the parameters disappear when the terminal is disconnected.

Clear Character Queue. Sub-opcode > 1B specifies the Clear Character Queue operation. This
operation clears the input character queue. Depending on the state of the eight-bit ASCII flag in
the extended flags word of the call block, this operation also sets the device into the eight-bit
ASCII character mode or restores it to the normal operating mode. If the eight-bit ASCII flag is set
to one, the device is placed in the eight-bit mode. If the flag is zero or a standard call block is used,
the device is restored to the normal operating mode.

Set Exclusive Access. Sub-opcode >1D specifies the Set Exclusive Access operation. This
operation places the communications port under control of the file transfer tasks. These tasks
have bit 5 of the user flags set to one on Open operations.

Set Shared Access. Sub-opcode >1E specifies the Set Shared Access operation. This operation

releases the communications port to tasks that do not have bit 5 of the user flags set to one on
Open operations.

6-94 2270507-9701

Teleprinter Device I/0 6.5

6.5.3 Teleprinter Device Resource-Specific /10

Most of the resource-specific 1/O operations use an eight-byte extension to the supervisor call
block. The sub-opcodes for the resource-independent operations apply, but the operations are
modified by the states of flags in the extended user flags field.

The extended call flag in the user flag field (byte 5) of the supervisor call block must be set to one
for resource-specific 1/0 operations. Otherwise, the system does not use the extensions to the
supervisor call block. The flags in the user flag field that apply to resource-specific I/O operations
are: :

2283203

Bit 1 — Reply flag. When the character validation flag is set to zero, set the reply flag to one
for a Write with Reply or Remote Get Event Character.

Bit 6 — Extended call flag. Set as follows:
1 — Extended call block (required for resource-specific 1/0).
0 — Basic supervisor call block (used for resource-independent 1/0).

The extension to the basic supervisor call block is as follows:

Dec HEX
12 c VALIDATION TABLE/REPLY BLOCK ADDRESS
14 E EXTENDED USER FLAGS
16 10 [REsERVED) <EVENT BYTE >
18 12 [RESERVED]
20 14 [RESERVED]

2279510
The extension to the call block contains the following:
Byte Contents
12-13 Character validation table address (when character validation is speci-
fied in the extended user flags). The address of a table of character vali-
dation data. Reply block address (when the reply flag is set to one). The
address of a block containing the address and count fields for a Write
with Reply operation.

14-15 Extended user flags field. Contains sixteen flags thatapply to all or some
of the TPD operations as described in succeeding paragraphs.

2270507-9701 , 6-95

6.5 Teleprinter Device I/O

Byte

16

17

18-19

20-21

Contents

[Reserved]. TPD I/O ignores any data in this field, which allows an
extended call block to be used for either VDT or TPD 1/O.

< Event byte>. The system stores an event character in this field when
the TPD has been opened in the event mode and an event key is pressed.
During Read Direct eight-bit ASCIl or Write Direct eight-bit ASCII with
Reply operations, if bit 5 (Task Edit) of the extended flags is set to one,
this field contains a user-specified termination character. The Read
Direct eight-bit ASCII operation terminates if a character matching the
character in this byte is encountered before the read buffer fills or before
the time-out elapses (if it is specified). The terminating character is
placed in the read buffer.

[Reserved]. TPD I/O ignores any data in this field, which allows an
extended call block to be used for either VDT or TPD I/O.

[Reserved]. TPD 1/O ignores any data in this field, which allows an
extended call block to be used for either VDT or TPD 1/O.

The extended user flags are:

2283152

7 |8 9 10 | 11 {12113 |14 |15

f FFfrd

- w1

?

The following lists the flags and the I/O operations in which they are effective. Detailed descrip-
tions of the uses of the flags follow in subsecquent paragraphs.

Bit Definition Used in Operations
4 Eight-Bit ASCII Read Direct and Write Direct
Append LF/CR/LTA Read/Write ASCII
5 Task Edit Read ASCII
User specified Read Direct
with termination character eight-bit ASCII option
6 Beep Read/Write ASCII
11 Forced Termination Character Read ASCII
12 Echo Read ASCIl and Read Direct
13 Character Validation Read ASCII
14 Validation Error Mode Read ASCII
15 Warning Beep Read ASCII

6-96

2270507-9701

Teleprinter Device I/O 6.5

6.5.3.1 Eight-Bit ASCIH or LF/ICR/ILTA. When this flag is set to one, DNOS supports eight-bit
ASCH data on Read Direct and Write Direct operations. If this bit is set to one, DNOS forces a line
feed (LF) and carriage return (CR) at the TPD after the end of a record during a Read or Write ASCII
operation. If the current line turnaround (LTA) character is CR, an additional CR is not output at the
TPD. If the current LTA is not CR, an additional CR is output. LTA only applies to a TPD if LTA is
specified. This flag does not apply to TPDs using JISCII.

6.5.3.2 Task Edit. This flag, when set to one on a Read ASCII operation, causes the operation to
terminate if any of the following types of characters are entered: task edit, event, system edit, or
end-of-file. These characters are listed in the Device Character Set Appendix to this manual. The
terminating character is returned in byte 17 (event byte field) of the extended call block. This flag,
when set to one on a Read Direct eight-bit ASCIl operation, causes the operation to terminate if a
character is received that matches a character placed in byte 17 of the extended call block. The
termination character is placed in the read buffer.

6.5.3.3 Beep. This flag, when set to one on Read ASCII operations, causes a BEL character to be
sent to the TPD at the beginning of the operation. The TPD then sounds an audible tone to request
the first input character. When the flag is set to one on Write ASCII operations, the BEL character
is sent to the TPD at the end of the operation. The TPD sounds the tone after the last character is
displayed. When the flag is set to zero, the TPD does not sound the audible tone unless the warn-
ing beep flag is set.

6.5.3.4 Forced Termination Character. |f this flag is set to one during a Read ASCI| operation, a
valid termination character must be received before the operation can complete. All characters
received after the read buffer fills and before the termination character is received are discarded. If
the flag is set to zero, the operation completes without receiving a termination character.

6.5.3.5 Echo. When this flag is set to zero, each characteris printed as it is entered. When a key
is pressed during Read ASCI| operations and the flag is set t0o one, a blank is printed because the
space character is substituted for the data character before it is returned to the TPD. When a key is
pressed during Read Direct operations and the flag is set to one, no echo is produced. This flag
applies only to Read ASCI| and Read Direct operations. If the communications port was specified
as no echo during system generation, this flag has no meaning, since echo is automatically sup-
pressed.

6.5.3.6 Character Validation. This flag, when set to one, enables character validation of the field
being read by a Read ASCII operation. Validation requires a validation table that specifies the char-
acters to be accepted in the field. Character validation is discussed in greater detail in a subse-
quent paragraph. When the character validation flag is set to zero, no character validation is
performed. Refer to the description of the Write ASCII operation for the use of the reply flag when
the character validation flag is set to zero.

6.5.3.7 Validation Error Mode. The validation error mode flag, when set to one, enables correc-
tion of errors detected during validation of field contents by the task. The Validation Error Mode
operation is effectively a Reread operation; the flags that apply to a Read apply in the same way to
this operation. Only the error correction keys can be used. When a user reenters one or more char-
acters in the field with an error correction key, the system sets the validation error mode flag to
zero. When the calling task sets the validation error mode flag to zero, the operation is performed
in the normal mode.

2270507-9701 6-97

6.5 Teleprinter Device I/O

6.5.3.8 Warning Beep. When this flag is set to one, the BEL character is sent to the TPD and an
audible tone sounds if an invalid function is requested.

6.5.3.9 Read ASCII Example. When a TPD has been opened in the event key mode and task edit
keys are also enabled (task edit flag set to one), the task edit character is always returned in the
event byte of the extended call block, and the event character is also returned in that byte in
resource-specific I/0. The state of the event key flag in the system flag field indicates which type
of character is in the event byte when both are enabled. The task accesses and decodes the char-
acter and performs the function corresponding to the key.

The following is an example of the code for a Read ASCII operation with event key termination
enabled by the previous Open operation and task edit key termination enabled for the Read opera-
tion:

REHC DATA O READ FIELD OF TERMINAL AT LUNO >3F.
BYTE 9,>3F FIELD SIZE IS 156 CHARACTERS.
SYSFL BYTE O EVENT KEYS AND TASK EDIT KEYS
BYTE >02 ENABLED.
DATA RBUFF
DATA 15
DATA O
DATA O
DATA >0400
DATA O
DATA O
DATA O

6.5.3.10 Character Validation Operation. A Read ASCI| operation can specify character valida-
tion by specifying a range of characters to be accepted or a range of characters to be rejected. If a
range(s) of characters to be accepted is specified, the characters outside the range(s) read by the
operation are rejected and characters within the range(s) specified are stored in the read buffer. If a
range(s) of characters to be rejected is specified, characters within the range(s) read by the opera-
tion are rejected and characters outside the range(s) are stored in the read buffer. The character
validation flag in the extended user flags field is set to one for a Read with Validation operation.
The flags byte of the validation table specifies whether the specified ranges are for character
acceptance or rejection.

Each Read operation with character validation must specify a validation table. Specifying a valida-
tion table requires:

. Setting the character validation flag to one
. Supplying avalidation table

o Placing the address of the table in the character validation table address field of the
extended call block

6-98 2270507-9701

Teleprinter Device /10 6.5

The validation table contains one or more ranges of characters that define the valid characters for
the field. The table may define the valid characters by specifying ranges of characters that are not
valid, or by specifying ranges of characters that are valid. Each range in the table requires two
bytes, and the table contains two bytes of overhead. Thus the length of the table in bytes is two
times the number of ranges, plus two. The format of the table is as follows:

DEec HEX
0 0
2 2
2n 2n
2283204

LLENGTH

FLAGS

RANGE 1 Low CHAR.

RANGE 1 HiGH CHAR.

3

- ((

J)

¢

RANGE n LLow CHAR.

RANGE N HiGH CHAR.

The validation table contains the following:

Byte
0

1

2n

2n +1

Length — Length of the validation table in bytes (2n + 2).

Flags:

Contents

Bit 0 — Validation flag. Set as follows:
1 — Invalid ranges. Characters greater than or equal to the low
character and less than or equal to the high character are

invalid.

0 — Valid ranges. Characters greater than or equal to the low
character and less than or equal to the high character are

valid.
Bits 1-7 — Reserved.

Low character for range 1.

High character for range 1.

Character pairs for additional ranges.

Low character forrange n.

High character for range n.

Character validation is performed after each character is entered in the field.

2270507-9701

6-99

6.5 Teleprinter Device I/O

When an invalid key is entered, the field enters character error mode. In character error mode, only
the error correction keys operate, no echo occurs, and if Warning Beep is set, the BEL character is
sent to the TPD after entry of a nonerror correction key.

The user must press one of the following correction keys when the last character entered is
invalid:

e (CTRL)H or BACKSPACE

e« RUBOUT
e (CTRLN
« (CTRLT

Next, the user enters the data correctly.
An example Read with Validation operation performs the following:
o Reads a ten-character field
. Validates the field as an alphanumeric field with no lowercase letters

The following is an example of the code for the supervisor call block and validation table for the
example operation:

RVAL DATAO READ FIELD OF TERMINAL AT LUNO >2B,
BYTE9,>2B VALIDATING PER TABL. FIELD
BYTEO SIZE IS 10 CHARACTERS. READ
BYTE >02 BUFFER IS BUFF.
DATA BUFF
DATA 10
DATAO
DATATABL
FLG2 DATA >0004
BSS 6
EVEN
TABL BYTE®6 LENGTH OF TABLE
BYTEO VALID RANGES
DATA >3039 RANGE 1 — NUMERALS
DATA >415A RANGE 2 — UPPERCASE LETTERS

6.5.3.11 Field Validation. Any validation of a field must be performed by a task following the
reading of the field. This could verify that the field contains the proper number of letters, followed
by numbers, for example. The Read ASCII operation in the validation error mode is used by the task
to obtain corrected data when an error has occurred. Character validation may be requested for the
operation also. The validation error mode flag is set to one to enable the mode.

T

6-100 2270507-9701

Teleprinter Device I/O 6.5

In the validation error mode, the operation requires reentry of the field. The correction key is the
BACKSPACE key. When a character is entered prior to pressing the BACKSPACE key, the charac-
teris not printed (no echo).

The difference between a normal Read ASCII operation and one that specifies the validation error
mode is that in the validation error mode input is ignored until the BACKSPACE key is pressed.
The user should backspace to the leftmost error character and enter the correct characters in the
remainder of the field.

The call block for the previous Read ASCIl operation can be used by setting the validation error
mode flag to one. The following instructions set the flag in the call block of the character valida-
tion coding example:

MASK2 BYTE >2
SOCB @MASK2,@FLG2 + 1

6.5.3.12 Getting Event Characters. The Remote Get Event Character operation (sub-opcode
>05) returns an event character in the event byte (byte 17) of the extended supervisor call block.
The LUNO assigned to the TPD does not have to be open. The operation is an alternative to per-
forming a Read operation to obtain an event character.

The operation is a special type of Read Device Status operation; see previous explanation for this
operation.

The following fields of the extended supervisor call block apply to a Remote Get Event Character
operation:

. SVCcode — 0

¢ Returncode

. Sub-opcode — >05

. Logical unit number (LUNO)
. User flags

. Data buffer address

. Read character count

o < Actual read count >

. Event byte

2270507-9701 6-101

6.5 Teleprinter Device /O

The following user flags apply to a Remote Get Event Character operation:

2283205
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
Bit 1 — Reply flag. Set to one.
Bit 6 — Extended call flag. Set to one.

The logical unit number (LUNO) field contains the LUNO assigned to the device at which the event
character is entered.

The data buffer address is the address of the buffer into which DNOS places the status infor-
mation.

The read character count is the length of the buffer.
DNOS returns the number of characters stored in the bufferin the actual read count field.
DNOS returns the event character in the event byte.

The contents of the data buffer after a Remote Get Event Character operation has returned the
statusof aTPD is:

Byte Contents
0-1 >FFFF.
2-3 Number of characters buffered in the input character queue.

DNOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char-
acters in the queue. The maximum size of this queue is specified when the system is generated.

6-102 2270507-9701

Teleprinter Device /0 6.5

The following is an example of the source code for a supervisor call block for a Remote Get Event

Character operation and code for the read buffer:

RGEVCH DATAO GET EVENT CHARACTER FROM TERMINAL

BYTE 5,>32 ASSIGNED TO LUNO >32.

DATA >42

DATA MRADR

DATA 10

DATA O

DATA O

DATA O

BYTE O
EVCHAR BYTEO

DATA 0,0

MRADR BSS 1 DEVICE STATUS BUFFER

BSS 1
CHINQ BSS 8

6.5.3.13 Read Direct. Sub-opcode >0A specifies a Read Direct operation. The Read Direct
operation reads a record from the TPD and stores the characters in the specified buffer, two char-

acters per word. The operation does not print (echo) the characters.

The following fields of the basic supervisor call block apply to a Read Direct operation:

e SVCcode—0

. Return code

. Sub-opcode — >0A

. Logical unit number (LUNO)
. < System flags >

. User flags

o Data buffer address

. Read character count

. < Actual read count >

The following system flags apply to a Read Direct operation:

L;123456
?

2279514

2270507-9701

6-103

6.5 Teleprinter Device /O

Bit 0 — Busy flag. Set by system as follows;
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — Noerror.

The following user flags apply to a Read Direct operation:

0] 1 2 3-4 |5 |6 7

2279515

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Read with blank adjustment.
0 — Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD from which a record
is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.
The read character count is the length of the buffer.
DNOS returns the number of characters stored in the bufferin the actual read count field.

The Read Direct operation recognizes the ASCII or JISCII codes as specified by the country code.
The operation stores the characters in a word, packed one per byte. The most significant bit is set
to zero for the seven-bit ASCII codes; all eight bits of the JISCII code are stored.

The Read Direct operation does not interpret characters. The operation terminates upon receipt of
any of the following: current record terminator, EOF character, a specified number of characters,
or expiration of the read time-out. The most significant bit of characters saved is set to zero
(unless eight-bit data is specified).

If eight-bit ASCI| is specified, all data passes directly to the task exactly as received from the
device, without checking for parity or special characters. The operation terminates on receipt of
the specified number of characters or expiration of the read time-out. If a termination character is
specified (by setting the task edit flag and specifying the desired termination character in byte 17
of the call block), the operation also terminates upon receipt of a character matching the specified
termination character. If the termination character is received, it is the last character in the read
buffer.

6-104 2270507-9701

Teleprinter Device I/O 6.5

If the device was previously in eight-bit ASCIl mode, eight-bit ASCII is not specified, the device is
restored to normal operating mode. If this method is used to reset the eight-bit ASCIl mode, the
next read operation may or may not check for parity, special characters, and so on.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, DNOS supplies blanks
(>20) to fill the buffer. The character count returned in bytes 10 and 11 includes the blanks sup-
plied by the system.

The following is an example of the source code for a supervisor call block for a Read Direct opera-
tion and code for the read buffer:

RDDHCT DATAO READ RECORD FROM TERMINAL ASSIGNED

BYTE >A,>3E TO LUNO >3E.
BYTE 0,0

DATA RDBUF

DATA 80

DATAO

RDBUF BSS 80 ~ READ BUFFER

6.5.3.14 Write Direct. Sub-opcode >0C specifies a Write Direct operation. The Write Direct
operation transfers a record from the specified buffer to the TPD.

The following fields of the basic supervisor call block apply to a Write Direct operation:

SVCcode — 0

Return code

Sub-opcode — >0C
Logical unit number (LUNO)
< System flags >

User flags

Data buffer address

Write character count

The following system flags apply to a Write Direct operation:

2283196

—
N
w
Fy
“
o)}
~I

TF

2270507-9701 6-105

6.5 Teleprinter Device I/O

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — Noerror.

The following user flags apply to a Write Direct operation:

(O 2 34 5 6 | 7

2283192
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
Bit 7 — Blank adjustment flag. Set as follows:
1 — Write with blank adjustment.
0 — Write without blank adjustment.

The logical unit number (LUNOQ) field contains the LUNO assigned to the TPD to which a record is
to be written.

The data buffer address is the address of the buffer that contains the record to be printed.
The write character count is the number of characters to be printed by the TPD.

The Write Direct operation prints a record on the TPD. The record consists of ASCII characters or
JISCll characters, as specified by the country code.

Setting the eight-bit flag in the extended call block puts the device in the eight-bit ASCIl mode.
Setting the eight-bit ASCIl flag to zero or using a standard call block puts the device in the normal
operating mode. If the device had been transmitting data in the eight-bit ASCIl mode previously,
and this operation puts the device in the normal operating mode, the next read operation may or
may not check and clear the parity bit on the characters received.
The ASCII characters from >00 through > 1F are control and protocol characters and should be
avoided in normal data traffic. The actions taken by a TPD depend on the specific terminal and how
it is configured; refer to the manual for the terminal being used. When these characters are trans-
mitted to the TPD these results occur:

. ENQ (>05) — The TPD transmits the answer back memory if it is defined.

. BEL (>07) — The bell rings.

. HT (>09) — The TPD prints a space.

. LF (>0A) — Aline feed occurs.

6-106 2270507-9701

Programming for Event Characters 6.6

. Form feed (>0C) — The TPD attempts a form feed if it is capable of performing a form
feed.

. CR(>0D) — The TPD performs a carriage return.

o ESC (>1B) — Some TPD interpret this as the beginning of an Extended Device Control
(EDC) sequence and attempt to interpret the following characters as meaningful ter-
minal orders; the results can be unexpected.

When blank adjustment is specified, trailing blanks in the buffer are not written. The write charac-
tercount in bytes 10 and 11 is not altered.

The following is an example of the source code for a supervisor call block for a Write Direct opera-
tion:

WAHCT DATA O WRITE RECORD TO TERMINAL ASSIGNED TO
BYTE >C,>4C LUNO >4C INITIATE MODE.
BYTE 0,>80
DATA WRBUFF
DATA O
DATA 80

6.6 PROGRAMMING FOR EVENT CHARACTERS

A set of event characters is defined for each type of terminal. These characters function as pro-
grammable function or edit keys. That is, the application program receives these characters,
decodes them, and performs the desired function. The terminal must be opened with event keys
enabled. Then, when an event key is pressed at the terminal, the event key flag in the system flags
byte is set. For resource-specific 1/O, the application program must execute a Remote Get Event
Character operation to obtain the character. The Remote Get Event Character operation is
described for each device.

2270507-9701 6-107

6.7 Cassettel/O

6.7 CASSETTEI/IO

DNOS supports resource-independent and resource-specific 1/0 for the cassette units of the 733
ASR. Resource-independent 1/0O for cassette units is analogous to I/O to magnetic tape units.
Resource-specific I/0 consists of the Read Direct and Write Direct operations.

The following /O SVC block for cassette operations is the basic block used for all operations. If an
extension to this block is necessary for a particular operation, it is indicated in the operation
description.

SVC >00 —— /O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT
DEec HEX

0] 0 >00 <RETURN CODE >

2 2 Sue-OPCODE LUNO

4 4 <SYSTEM FLAGS> UsSER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 ReEAD CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

2279470

The system flags (byte 4) in the supervisor call block apply to all cassette 1/0. These flags are:

o|1]|]2]3j4|5]| 6|7

T

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

2279520

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — Noerror.

Bit 2 — End-of-file. Set by system as follows:
1 — A DC3 (X-OFF) was read as the first character of a record.
0 — First character of record being read was not a DC3 (X-OFF).

Two user flags (byte 5) in the supervisor call block apply to all cassette /0. However, significance

of these flags differs for various operations. The flags that apply to each operation are described in
the detailed description of each operation.

6-108 2270507-9701

Cassette l/0 6.7

The operations appropriate for the cassette are described in subsequent paragraphs. The fol-
lowing sub-opcodes, which do not apply to the cassette, produce the indicated results:

05 ignored
08 Error

6.7.1 Cassette Resource-Independent /O
The subset of sub-opcodes for resource-independent |/O to cassettes is as follows:

00 Open

01 Close

02 Close, Write EOF
03 Open and Rewind
04 Close and Unload
06 Forward Space
07 Backward Space
09 Read ASCII

0B Write ASCII

0D Write EOF

OE Rewind

OF Unload

6.7.1.1 Open. Sub-opcode >00 specifies an Open operation. The Open operation is required for
the cassette units of a 733 ASR. However, whether or not DNOS validates the Open operation is
specified when the system is generated. Validation does not allow an Open operation when the
Open operation would result in a conflict with /O to the same device by another task.
The following fields of the basic supervisor call block apply to an Open operation:

. SVC code — 0

. Return code

. Sub-opcode — >00

. Logical unit number (LUNO)

. User flags

. Data buffer address

. Read character count

2270507-9701 6-109

6.7 Cassettel/O

The following flags in the user flag field apply to an Open operation:

|_OF 1 2 3-4 51617
?

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279521

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the cassette is 3.

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length for a cassette is >56.

The following is an example of the source code for a supervisor call block to open a cassette:

OCAS DATA O OPEN CASSETTE ASSIGNED TO LUNO >2A.
BYTE 0,>2A
DATA O

TPE DATAO

RL DATA O
DATA O

6.7.1.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends |/0 to a
LUNO from the calling task. The LUNO remains assigned to the device and may be opened again
for additional {/O operations. When a task terminates, DNOS closes all LUNOs that have been
opened by the task.
The following fields of the basic supervisor call block apply to a Close operation:

. SVCcode — 0

. Return code

. Sub-opcode — >01

. Logical unit number (LUNO)

. User flags

6-110 2270507-9701

Cassette I/0 6.7

The initiate flag in the user flag field applies to a Close operation:

oj11]2 .3-4 5|16]|7

T

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279522

The logical unit number (LUNO) field contains the LUNO to be closed.
The following is an example of the source code for a supervisor call block to close a cassette:
CCAS DATAO CLOSE CASSETTE ASSIGNED TO LUNO >2A.
BYTE 1,>2A
DATAO
DATAO
DATAOQ
DATAO

6.7.1.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode >02, consists of a Write
EOF operation followed by a Close operation.

6.7.1.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open opera-
tion followed by a Rewind operation.

6.7.1.5 Close and Unload. The Close and Unload operation, sub-opcode >04, consists of an
Unload operation followed by a Close operation.

6.7.1.6 Forward Space. Sub-opcode >06 specifies a Forward Space operation. The Forward
Space operation moves the tape forward a specified number of logical records or {0 the end-of-file
record.
The following fields of the basic supervisor call block apply to a Forward Space operation:

o SVC code — 0

o Return code

e Sub-opcode — >06

. Logical unit number (LUNO)

. < System flags >

. User flags

. Write character count

2270507-9701 6-111

6.7 Cassette l/O

The system flags defined for all cassette operations apply to a Forward Space operation.

The following user flag applies to a Forward Space operation:

0|1 2 3-4 516 |7

2279523

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette to be forward
spaced.

The write character count field (bytes 10 and 11) contains the number of logical records for the
operation. The device service routine (DSR) stores a zero in the field when the tape is moved the
specified number of records without reading an EOF record. When the operation reads an EOF
record, the tape movement stops, and the number of records remaining to be moved is stored in
the write character count field. The DSR also sets the EOF flag in the system flags byte.

The following is an example of the source code for a supervisor call block to forward space a
cassette:

FSCS DATAO FORWARD SPACE CASSETTE ASSIGNED TO
BYTE >6,>4B LUNO >4B THREE RECORDS
DATAO
DATAOQ
DATAOQ
DATA3
6.7.1.7 Backward Space. Sub-opcode >07 specifies a Backward Space operation. The Back-
ward Space operation moves the tape in the reverse direction a specified number of logical
records or to the end-of-file record.
The following fields of the basic supervisor call block apply to a Backward Space operation:
. SVCcode — 0
. Return code
o Sub-opcode — >07
. Logical unit number (LUNO)
. < System flags >

° User flags

] Write character count

5-112 2270507-9701

Cassettel/0 6.7

The following user flag applies to a Backward Space operation:

o|11]2 3-4 516]| 7

2279524

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette to be backward
spaced.

The write character count field (bytes 10 and 11) contains the number of logical records for the
operation. The device service routine (DSR) stores a zero in the field when the tape is moved the
specified number of records without reading an EOF record. When the operation reads an EOF
record, the tape movement stops, and the number of records remaining to be moved is stored in
the write character count field. The DSR positions the tape so that the next Read operation reads
the EOF record. The DSR also sets the EOF flag in the system flag byte.

The following is an example of the source code for a supervisor call block to backward space a
cassette:

BSCS DATA O BACKWARD SPACE CASSETTE ASSIGNED TO
BYTE >7, >4B LUNO >4B ONE RECORD
DATA O
DATA O
DATA O
DATA 1

6.7.1.8 Read ASCIl. Sub-opcode >09 specifies a Read ASCH operation. The Read ASCII opera-
tion reads a record from the cassette and stores the characters in the specified buffer, two charac-
ters per word.
The following fields of the basic supervisor call block apply to a Read ASCIl operation:

e SVCcode—0

. Return code

. Sub-opcode — >09

. Logical unit number (LUNO)

. < System flags >

. User flags

. Data buffer address

2270507-9701 6-113

6.7 Cassettel/O

. Read character count
. < Actual read count >
The system flags defined for all cassette operations apply to a Read ASCII operation.

The following flags in the user flag field apply to a Read ASCI| operation:

t 2 3-4 516 |7

2279525

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Read with blank adjustmerit.
0 — Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette from which a
record is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.
The read character count is the length of the buffer.
DNOS returns the number of characters stored in the buffer in the input record length field.

The Read ASCII operation recognizes the characters listed in Appendix B for the cassette. The
operation stores the characters, packed one per byte. When the country code in effect is not
>0200 (Japan), the most significant bit of each character is set to zero. When the country code is
>0200, the JISCII code applies. The device service routine (DSR) supplies the most significant bit
for JISCII codes. A transition character transparent to the user is written between a code having
zero as the most significant bit (seven-bit JISCIl) and a code having one as the most significant bit.
The maximum record length is a hardware requirement; the transition characters limit the length of
the maximum record available to the user. The Read operation continues until a carriage return
(>0D) character is read or the buffer is full. The maximum number of characters in a cassette
record is 86.

When a carriage return is read, the number of characters read is stored in the actual read count
field and the operation terminates.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (> 20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

6-114 2270507-9701

Cassette I/0 6.7

When a DC3 (X-OFF) character is read in the first character position, the device service routine
(DSR) sets the EOF flag in the system flags byte, stores zero in the actual read count field, and
terminates the operation. :

The cassette unit does not provide a logical end-of-medium indication, but does provide a physical
end-of-tape indication, which may occur at either end of the tape. The corresponding error code is
returned by the operation that follows the detection of the physical end of tape.

The following is an example of the source code for a supervisor call block for a Read ASCII opera-
tion and the code for the read buffer:

RDCAS

RB

DATA O READ RECORD FROM CASSETTE ASSIGNED
BYTE 9,>2D TO LUNO >2D IN THE INITIATE I/O

BYTE 0,>80 MODE.

DATA RB

DATA 80

DATA O

BSS 80 READ BUFFER

6.7.1.9 Write ASCIl. Sub-opcode >0B specifies a Write ASCIl operation. The Write ASCII opera-
tion transfers a record from the specified buffer to the cassette.

The following fields of the basic supervisor call block apply to a Write ASCH operation:

. SVCcode — 0

° Return code

e Sub-opcode — >0B

. Logical unit number (LUNO)

. < System flags >

. User flags

J Data buffer address

. Write character count

The following system f’lags apply to a Write ASCII operation:

2279526

2270507-9701

o{1|12|3}4|5]|] 6]7

T

6-115

6.7 Cassette /O

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Write ASCII operation:

o} 1 2 3-4 5] 6

N

2279527

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Write with blank adjustment.
0 — Write without blank adjustrnent.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette to which a
record is to be written.

The data buffer address is the address of the buffer that contains the record to be written.
The write character count is the number of characters to be written on the cassette.

The Write ASCII operation writes a record on a cassette. The record consists of ASCll characters
or JISCII characters as specified by the country code. Special considerations apply to the use of
JISCII characters because the cassette units write a maximum of 86 seven-bit characters per
record, including the characters written by the hardware. The device service routine (DSR) removes
the most significant bit of the JISCIl code, and the cassette writes the seven least significant bits.
The DSR writes a transition character between JISCIl code with zero as the most significant bit
and JISCII code with one as the most significant bit. These transition characters (transparent to
the user) allow the DSR to supply the most significant bit correctly when the record is read. How-
ever, they limit the number of characters the user can place in a record. For example, if no transi-
tion characters were required, the user task could write 80 characters per record; if two transitions
occurred, 78 user-supplied characters would fill the record.

When the record being written contains a carriage return, the DSR replaces it with an end transmit
block (ETB) character, >17. When the specified number of characters has been written, the DSR
writes a carriage return (LCR), a line feed (LF), a record-off (DC4) character, > 14, and a rubout (DEL)
character, >7F.

When blank adjustment is specified, trailing blanks in the buffer are not written. The output char-
actercountin bytes 10 and 11 is not altered.

6-116 2270507-9701

Cassette I/0 6.7

6.7.1.10 Write EOF. Sub-opcode >0D specifies a Write EOF operation. The Write EOF operation
writes an EOF record on the cassette tape.

The following fields of the basic supervisor call block apply to a Write EOF operation:
. SVCcode — 0
. Return code
U Sub-opcode — >0D
U Logical unit number (LUNO)
. User flags

The following user flag applies to a Write EOF operation:

o] 1 2 3-4 5|67

2279528

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette on which the
EOF record is to be written.

The EOF record for a cassette consists of a DC3 character, a DC4 character, and a DEL character.

The following is an example of the source code for a supervisor call block to write an EOF record
on a cassette: :

WECS DATAO WRITE EOF ON CASSETTE ASSIGNED
BYTE >D,>4B TO LUNO >4B.
DATA O
DATAO
DATA O
DATA O

2270507-9701 6-117

6.7 Cassettel/lO

6.7.1.11 Rewind. Sub-opcode >0E specifies a Rewind operation. The Rewind operation rewinds
the cassette to the clear area at the beginning of the tape, then moves the tape to the beginning-of-
tape marker and lights the READY indicator on the 733 ASR.
The following fields of the basic supervisor call block apply to a Rewind operation:

o SVCcode — 0

. Return code

. Sub-opcode — >0E

. Logical unit number (LUNO)

. User flags

The following user flag applies to a Rewind operation:

- 0|1 2 3-4 5|16 |7

2279529
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
The logical unit number (LUNO) field contains the LUNO assigned to the cassette to be rewound.
The following is an example of the source code for a supervisor call block to rewind a cassette:
RWCS DATA O REWIND CASSETTE ASSIGNED TO LUNO >4B.
BYTE >E,>4B
DATA O
DATA O

DATA O
DATA O

6.7.1.12 Unload. Sub-opcode >0F specifies an Unload operation. The Unload operation rewinds
the cassette to the clear area at the beginning of the tape.

The following fields of the basic supervisor call block apply to an Unload operation:
. SVCcode — 0
. Return code

° Sub-opcode — >0F

6-118 2270507-9701

Cassettel/O 6.7

. Logical unit number (LUNO)
. User flags

The following user flag applies to an Unload operation:

o}1 2 3-4 516 7

2279530
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
The logical unit number (LUNO) field contains the LUNO assigned to the cassette to be unloaded.
The following is an example of the source code for a supervisor call block to unload a cassette:
ULCS DATA O UNLOAD CASSETTE ASSIGNED TO
BYTE >F,>4B LUNO >4B
DATA O
DATA O
DATA 0
DATA O

6.7.2 Cassette Resource-Specific I/O
The sub-opcodes for resource-specific /O to cassettes are as follows:

0A Read Direct
0oC Write Direct

6.7.2.1 Read Direct. Sub-opcode >0A specifies a Read Direct operation. The Read Direct opera-
tion reads a record from the cassette and stores the characters in the specified buffer, two charac-
ters per word. The cassette unit transfers seven-bit characters to the computer; the DSR stores
each character in the least significant bits of a byte, with a zero as the most significant bit.
The following fields of the basic supervisor call block apply to a Read Direct operation:

. SVCcode — 0

. Return code

. Sub-opcode — >0A

o Logical unit number (LUNO)

. <System flags >

. User flags

2270507-9701 6-119

6.7 Cassette I/0

. Data buffer address
. Read character count
. < Actual read count >

The following system flags apply to a Read Direct operation:

o1 |2 |3|4]5]|6]|7

T3

2279531

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following flags in the user flag field apply to a Read Direct operation:

ol 1 2 3-4 5|6

T

— N

2279532
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
Bit 7 — Blank adjustment flag. Set as follows:
1 — Read with blank adjustment.
0 — Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette from which a
record is to be read.

The data buffer address is the address of the bufferinto which DNOS places the record.
The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

6-120 2270507-9701

Cassettel/0O 6.7

The Read Direct operation recognizes the ASCIl or JISCII codes as specified by the country code.
The operation stores the characters in a word, packed one per byte. The most significant bit of
each character is set to zero for the seven-bit ASCII codes. The device service routine (DSR) sup-
plies the most significant bit for JISCIl codes. A transition character transparent to the user is writ-
ten between a code having zero as the most significant bit (seven-bit JISCII) and a code having one
as the most significant bit. The maximum record length is a hardware requirement; the transition
characters limit the length of the maximum record available to the user. The Read Direct operation
terminates when the buffer is full, a carriage return is read, or the maximum record (86 characters
including control characters) is read.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (> 20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

The following is an example of the source code for a supervisor call block for a Read Direct opera-
tion and code for the read buffer:

RDDCAS DATAO READ RECORD FROM CASSETTE ASSIGNED
BYTE >A>3C ‘ TO LUNO >3C.
BYTE 0,0
DATA RDBUF
DATA 86
DATA O
DATA O
RDBUF BSS 86 READ BUFFER

6.7.2.2 Write Direct. Sub-opcode >0C specifies a Write Direct operation. The Write Direct
operation transfers a record from the specified buffer to the cassette.

The following fields of the basic supervisor call block apply to a Write Direct operation:
U SVCcode — 0
o Return code
o Sub-opcode — >0C
. Logical unit number (LUNO)
. < System flags >
. User flags
e Databufferaddress

. Write character count

2270507-9701 6-121

6.7 Cassettel/O

The following system flags apply to a Write Direct operation:

2|1 3|14} 5617

0 1
T
2279533

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Write Direct operation:

0 1 2| 3-4 516} 7

2279534

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the

Bit 7 — Blank adjustment flag. Set as follows:
1 — Write with blank adjustment.
0 — Write without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette to which a
record is to be written.

The data buffer address is the address of the buffer that contains the record to be written.
The write character count is the number of characters to be written on the cassette.

The Write Direct operation writes a record on a cassette. The record consists of ASCH characters
or JISCII characters as specified by the country code. Special considerations apply to the use of
JISCII characters because the cassette units write a maximum of 86 seven-bit characters per
record, including the characters written by the hardware. The device service routine (DSR) removes
the most significant bit of the JISCII code, and the cassette writes the seven least significant bits.
The DSR writes a transition character between JISCIl code with zero as the most significant bit
and JISCII code with one as the most significant bit. These transition characters (transparent to
the user) allow the DSR to supply the most significant bit correctly when the record is read. How-
ever, they limit the number of characters the user can place in a record. For example, if no transi-
tion characters were required, the user task could write 80 characters per record; if two transitions
occurred, 78 user-supplied characters would fill the record.

6-122 2270507-9701

Printer Output 6.8

When the specified number of characters has been written, the DSR writes a carriage return, aline
feed, a record-off (DC4) character, >14, and a rubout (DEL) character, >7F. When the record con-
tains a DC4 character, the DSR writes the DC4 character followed by a record-on (DC2) character.

The last record must terminate with a carriage return to assure that the record is actually written
on the cassette.

When blank adjustment is specified, trailing blanks in the buffer are not written. The output char-
acter countin bytes 10 and 11 is not altered.

The following is an example of the source code for a supervisor call block for a Write Direct
operation:

WACAS DATA O WRITE RECORD TO CASSETTE ASSIGNED TO
BYTE >C,>4C LUNO >4C INITIATE MODE.
BYTE 0,>80
DATA WRBUFF
DATA O
DATA 80

6.8 PRINTER OUTPUT

DNOS supports resource-independent 1/O for the printer. Resource-independent 1/O for the printer
includes most I/0 operations except the Read operations.

The subset of sub-opcodes for the printer applies, as follows:

00 Open

01 Close

02 Close, Write EOF

03 Open and Rewind

04 Close and Unload

05 Read Device Characteristics
0B Write ASCII

0C Write Direct

0D Write EOF

OE Rewind

2270507-9701 6-123

6.8 Printer Output

The following 1/0 SVC block for printer operations is the basic block used for all operations. If an

extension to this block is necessary for a particular operation, it is indicated in the operation
description.

SVC >00 -- /O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT
DEc HEX

0 0 >00 <RETURN CODE >

2 2 SuB=-QOPCODE LUNO

4 4 <SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

2279470

The system flags (byte 4) in the supervisor call block apply to all printer I/O. These flags are:

0 1 2|1 3|4 |5 |6 7
Bit 0 — Busy flag. Set by system as follows:

1 — Busy.
0 — Operation completed.

2279535

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — Noerror.

One user flag (byte 5) in the supervisor call block applies to printer 1/0. However, significance of
these flags differs for various operations. The flags that apply to each operation are described in
the detailed description of each operation.

The operations appropriate for the printer are described in subsequent paragraphs. The following
sub-opcodes, which do not apply to the printer, produce the indicated results:

06 Ignored

07 Ignored

08 Error

09 Error

0A Error .

OoF Ignored
6-124

2270507-9701

Printer Output 6.8

6.8.1 Open
Sub-opcode >00 specifies an Open operation. The Open operation is required for the printer.
However, whether or not DNOS validates the Open operation is specified when the system is gen-
erated. Validation does not allow an Open operation when the Open operation would result in a
conflict with 1/O to the same device by another task.
The following fields of the basic supervisor call block apply to an Open operation:

. SVCcode — 0

U Return code

. Sub-opcode — >00

. Logical unit number (LUNO)

. User flags

. Data buffer address

. Read character count

The following flags in the user flag field apply to an Open operation:

o1 2 3-4 5|16| 7

; T

2279536

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the printer to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the printeris 2.

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length for a printer is > 86.

An Open operation causes the printer to perform a carriage return and a line feed operation.

2270507-9701 6-125

6.8 Printer Output

The following is an example of the source code for a supervisor call block to open a printer:

OLP DATA O OPEN LINE PRINTER ASSIGNED
BYTE 0,>2C TO LUNO >2C
DATA O
TYP DATA O
LEN DATA O
DATA O
6.8.2 Close

Sub-opcode >01 specifies a Close operation. The Close operation ends 1/0 to a LUNO from the
calling task. The LUNO remains assigned to the device, and may be opened again for additional I/O
operations. When a task terminates, DNOS closes all LUNOs that have been opened by the task. A
Close operation causes the printer to perform a carriage return.
The following fields of the basic supervisor call block apply to a Close operation:

. SVCcode — 0

. Return code

* Sub-opcode — >01

. Logical unit number (LUNO)

. Userflags

The initiate flag in the user flag field applies to a Close operation:

0 112 3-4 56| 7

2279537

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.
The following is an example of the source code for a supervisor call block to close a printer:

CLP DATA O CLOSE LINE PRINTER ASSIGNED
BYTE 1,>2C TO LUNO >2C
DATA O
DATA O
DATA O
DATA O

6-126 2270507-9701

Printer Output 6.8

6.8.3 Close, Write EOF

The Close, Write EOF operation, sub-opcode >02, consists of a Write EOF operation followed by a
Close operation. The Write EOF operation for the printer is a form feed operation.

6.8.4 Open and Rewind

The Open and Rewind operation, sub-opcode >03, is an Open operation followed by a Rewind
operation.

6.8.5 Close and Unload

On a printer, the Close and Unload operation, sub-opcode >04, is identical to a Close EOF
operation.

6.8.6 Read Device Characteristics

Sub-opcode >05 specifies a Read Device Characteristics operation. The Read Device Character-
istics operation returns into the data buffer as much of the device information block as specified
(up to amaximum of 38 characters) by the user in the read character count field.

The following fields of the basic supervisor call block apply to a Read Device Characteristics
operation:

e SVCcode—0
e Return code
. Sub-opcode — >05
. Logical unit number (LUNO)
. User flags
. Data buffer address
. Read character count
. <Actual read count >

The following user flag applies to a Read Device Characteristics operation:

o|1]2 3-4 56| 7

?

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279537

The logical unit number (LUNO) field contains the LUNO assigned to the device for which status
information is returned.

2270507-9701 6-127

6.8 Printer Output

The data buffer address is the address of the buffer into which DNOS places the status
information.

The read character count is the number of characters of device information desired.

DNOS returns the number of characters stored in the buffer in the actual read count field. The
number of characters cannot exceed 38.

The contents of the data buffer after a Read Device Characteristics operation has returned the
status of a printer are in Table 6-5.

Table 6-5. Characteristics of Printer Devices

Byte Bit Contents
0 Reserved (>00)
1 Reserved (> FF)
2,3 Reserved (>0000)
4 DSR type (>01 indicates any printer except one that uses a Cl403 or
Cl404 board; > 31 indicates an attached printer)
5 Reserved (>00)
6,7 CRUITILINE address of hardware interface
8,9 Reserved (> FFFF)
10 Hardware interface type
>05 = TTY/EIA

>06 = a 9902 port
>80 = paraliel printer

11-21 Reserved (> 00)
22 Line flags
0 Reserved (0)
1 Switched line (defined during system generation)
2-7 Reserved (0) ’

23 Reserved (>00)

24 Speed code
0 = 50 baud
1 = 75 baud
2 = 110 baud
3 = 134.5 baud
4 = 150 baud
5 = 200 baud
6 = 300 baud
7 = 600 baud
8 = 1200 baud
9 = 1800 baud
A = 2400 baud
B = 3600 baud
C = 4800 baud
D = 7200 baud
E = 9600 baud
F = 14400 baud
10 = 19200 baud
11 = 28800 baud
12 = 38400 baud

6-128 2270507-9701

Printer Output 6.8

Table 6-5. Characteristics of Printer Devices (Continued)

Byte Bit Contents

25-37 Reserved (> 00)

The buffer has the following format for printers that use a C1403 or Cl404 board:

Byte Bit Contents
0 Reserved (>00)
1 Reserved (> FF)
2,3 Reserved (>0000)
4 DSR type (> 10 indicates a printer that uses a Cl403 or Cl404 board)
5 Port identification number
6,7 CRUITILINE address of hardware interface
8,9 Reserved (> FFFF)
10 Hardware interface type

>23 = Cl403 port
>24 = Cl404 port

11-21 Reserved (>00)
22 Line flags
0 Half duplex
1 Switched line (defined during system generation)
2-7 Reserved (0)
23 Reserved (>00)
24 Speed code
0 = 50 baud
1 = 75 baud
2 = 110 baud
3 = 134.5 baud
4 = 150 baud
5 = 200 baud
6 = 300 baud
7 = 600 baud
8 = 1200 baud
9 = 1800 baud
A = 2400 baud
B = 3600 baud
C = 4800 baud
D = 7200 baud
E = 9600 baud
F = 14400 baud

10 = 19200 baud
11 = 28800 baud
12 = 38400 baud
25-37 Reserved (>00)

2270507-9701 6-129

6.8 Printer Output

The following is an example of the source code for a supervisor call block for a Read Device Char-
acteristics operation and the read buffer. This call block returns the first 10 characters of the
device information block (through the ACU CRU address). The number of characters currently buf-
fered in the input queue is returned as part of this status information at the label LIQ.

RDSHCT

DMY
LiQ

DATAO READ STATUS OF PRINTER ASSIGNED TO
BYTES5,>35 LUNO > 35.

DATAO

DATA DMY

DATA 10

DATAO

BSS 2 DEVICE STATUS BUFFER

BSS 8

6.8.7 Write ASCII

Sub-opcode >0B specifies a Write ASCIl operation. The Write ASCII operation transfers a record
from the specified buffer to the printer.

The following fields of the basic supervisor call block apply to a Write ASCII operation:

. SVC code — 0

. Return code

. Sub-opcode — >0B

. Logical unit number (LUNO)

. < System flags >

e Userflags

. Data buffer address

Write character count

The following system flags apply to a Write ASCl| operation:

2279538

|0|1234567

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as foliows:
1 — Error.
0 — Noerror.

6-130

2270507-9701

The following user flags apply to a Write ASCHl operation:

01

2

3-4

5

2279539

Bit 0 — Initiate flag. Set as follows:

Printer Output 6.8

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 7 — Blank adjustment flag. Set as follows:

1 — Print with blank adjustment.

0 — Print without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the printer.

The data buffer address is the address of the buffer that contains the record to be printed.

The write character count is the number of characters to be printed.

The Write ASCII operation prints a line on the printer. The line consists of ASCIl characters or JIS-
Cll characters as specified by the country code.

All printers support special programmable features that increase the capability of each printer. For

further information about these features refer to the appropriate printer manual.

When blank adjustment is specified, trailing blanks in the buffer are not printed. The write charac-

ter count in bytes 10 and 11 is not altered.

The following is an example of the source code for a supervisor call block for a Write ASCII

operation:

WALP DATA 0
BYTE >B,>3C
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 80

2270507-9701

PRINT LINE ON LINE PRINTER ASSIGNED TO
LUNO >3C INITIATE MODE.

6-131

6.8 Printer Output

6.8.8 Write Direct

Sub-opcode >0C specifies a Write Direct operation. The Write Direct operation transfers a record

from the specified buffer to the printer.

The following fields of the basic supervisor call block apply to a Write Direct operation:

¢ SVCcode—0

o Return code

. Sub-opcode — >0B

. Logical unit number (LUNO)
° < System flags >

. User flags

e Databuffer address

. Write character count

The following system flags apply to a Write Direct operation:

oj1 2] 3-4 51617

2279540
Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.
Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Write Direct operation:

l_; 1 2| 3-4 516 7

Bit 0 — Initiate flag. Set as follows:

2279539

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Print with blank adjustment.
0 — Print without blank adjustment.

6-132

2270507-9701

'S

Printer Output 6.8

The logical unit number (LUNO) field contains the LUNO assigned to the printer.
The data buffer address is the address of the buffer that contains the record to be printed.
The write character count is the number of characters to be printed.

The Write Direct operation prints a line on the printer. The line consists of ASCIl characters or
JISCII characters as specified by the country code.

All printers support special programmable features that increase the capability of each printer. For
further information about these features refer to the appropriate printer manual.

When blank adjustment is specified, trailing blanks in the buffer are not printed. The write char-
acter count in bytes 10 and 11 is not altered.

The following is an example of the source code for a supervisor call block for a Write Direct
operation:

WALP DATAOQ PRINT LINE ON LINE PRINTER ASSIGNED TO
BYTE >B,>3C LUNO >3C INITIATE MODE.
BYTE0,>80
DATA WRBUFF
DATAO
DATA 80
6.8.9 Write EOF
Sub-opcode >0D specifies a Write EOF operation. The Write EOF operation performs a form feed
operation on the printer.
The following fields of the basic supervisor call block apply to a Write EOF operation:
. SVCcode — 0
U Return code
. Sub-opcode — >0D
. Logical unit number (LUNO)

. User flags

The following user flag applies to a Write EOF operation:

o1l 1 2| 3-4 5|16 |7

?

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279540

2270507-9701 6-133

6.8 Printer Output

The logical unit number (LUNO) field contains the LUNO assigned to the printer.

The following is an example of the source code for a supervisor call block to write an EOF to a

printer:
WELP DATAOQ WRITE EOF TO LINE PRINTER ASSIGNED

BYTE >D,>2C TO LUNO >2C
DATA O
DATA O
DATA O
DATA O

6.8.10 Rewind

Sub-opcode >0E specifies a Rewind operation. The Rewind operation performs a form feed

operation on a printer.
The following fields of the basic supervisor call block apply to a Rewind operation:
. SVCcode — 0
* Returncode
. Sub-opcode — >0E
U Logical unit number (LUNO)
. User flags

The following user flag applies to a Rewind operation:

o1 |2 3-4 516 |7

?

Bit 0 — Initiate flag. Set as follows:

2279541

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

T'he logical unit number (LUNO) field contains the LUNO assigned to the printer.

rhe following is an example of the source code for a supervisor call block to rewind a printer:

RWLP DATA O REWIND LINE PRINTER ASSIGNED

134

BYTE >E,>3E TO LUNO >3E
DATA O
DATA O
DATA O
DATA O

2270507-9701

Magnetic Tape /O 6.9

6.9 MAGNETICTAPEIIO

DNOS supports both resource-independent and resource-specific I/O for the Model 979A Magnetic
Tape Units. Except for the Read Device Status operation, the device must be opened using sub-
opcode >00o0r >03 prior to any I1/O operation.

The following /O SVC block for magnetic tape operations is the basic block used for all
operations. If an extension to this block is necessary for a particular operation, it is indicated in
the operation description.

SVC > 00 -- 1/O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT
DEC HEX '

0] 0 >00 <RETURN CODE >

2 2 SuB—-OPCODE LUNO

4 4 <SYsTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

2279470

The system flags (byte 4) in the supervisor call block apply to all magnetic tape 1/0. These flags are:

o1 {23 |4|5]|6]|7

FrT

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

2279542

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:
1 — An EOF mark was read on the tape.
0 — A read operation did not read an EOF mark.

The user flags (byte 5) in the supervisor call block apply to all magnetic tape /0. However, signifi-

cance of these flags differs for various operations. The flags that apply to each operation are
described in the detailed description of each operation.

2270507-9701 6-135

6.9 Magnetic Tape !/O

The operations appropriate for magnetic tape are described in subsequent paragraphs. The fol-
lowing sub-opcode does not apply to magnetic tape; it produces the indicated result:

08 Error

6.9.1 Magnetic Tape Resource-Independent I/0
The sub-opcodes for resource-independent I/0O to magnetic tape units are as follows:

00 Open

01 Close

02 Close, Write EOF
03 Open and Rewind
04 Close and Unload
05 Read Device Status
06 Forward Space
07 Backward Space
09 Read ASCII

0B Write ASCII

0D Write EOF

OE Rewind

OF Unload

6.9.1.1 Open. Sub-opcode >00 specifies an Open operation. The Open operation is required for

a magnetic tape transport. However, DNOS does not validate the Open operation; that is, it does.

not detect a possible conflict with I/O to the same device by another task. An Open operation is not
required prior to performing a Read Device Status operation.

The following fields of the basic supervisor call block apply to an Open operation:
o SVCcode — 0
o Return code
L Sub-opcode — >00
° Logical unit number (LUNO)
. User flags
U Data buffer address

° Read character count

3-136 2270507-9701

a

Magnetic Tape I/0 6.9

The following flags in the user flag field apply to an Open operation:

opt 2 3-4 5(61}7

f f

2279543

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape transport
to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the magnetic tape is 8.

The following is an example of the source code for a supervisor call block to open a magnetic tape
transport:

OMT DATA O OPEN MAG TAPE ASSIGNED TO LUNO >2F.
BYTE 0,>2F
DATAO
MTT DATA O
DATA O
DATA O

6.9.1.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends I/O to a
LUNO from the calling task. The LUNO remains assigned to the device and may be opened again
for additional 1/O operations. When a task terminates, DNOS closes all LUNOs that have been
opened by the task.
The following fields of the basic supervisor call block apply to a Close operation:

. SVCcode — 0

. Return code

. Sub-opcode — >01

. Logical unit number (LUNO)

o User flags

2270507-9701 6-137

6.9 Magnetic Tape I/0

The initiate flag in the user flag field applies to a Close operation:

o
N

3-4 516 |7

2279544
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
The logical unit number (LUNO) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close a magnetic
tape:
CMT DATA O CLOSE MAG TAPE ASSIGNED TO LUNO >2F.
BYTE 1>2F
DATA O
DATA O

DATA O
DATA O

6.9.1.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode >02, consists of a Write
EOF operation followed by a Close operation.

6.9.1.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open opera-
tion followed by a Rewind operation.

6.9.1.5 Close and Unload. The Close and Unload operation, sub-opcode >04, consists of an
Unload operation followed by a Close operation.

6.9.1.6 Read Device Status. Sub-opcode >05 specifies a Read Device Status operation. The
Read Device status operation returns two bytes of status information.

The following fields of the basic supervisor call block apply to a Read Device Status operation:
e SVCcode—0
o Return code
U Sub-opcode — >05
. Logical unit number (LUNO)
o User flags

. Data buffer address

138 2270507-9701

U Read character count

. < Actual read count >

The following user flag applies to a Read Device Status operation:

2279545

Bit 0 — Initiate flag. Set as follows:

0]

21 3-4 51617

f

Magnetic Tape /0 6.9

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape transport.

The data buffer address is the address of the buffer into which DNOS places the status infor-

mation.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field. The sys-
tem returns >0002 in this field when the specified LUNO is assigned to a magnetic tape transport.

After a Read Device Status operation for a magnetic tape transport, the data buffer contains two
bytes of information:

Byte

0

Transport status:

Contents

>80 — Online, write ring installed on tape reel.
>40 — Online, no write ring.

>20 — Offline.

Recording mode:
>80 — Phase encoded, 1600 or 3200 bits per inch (bpi).

00 — Nonreturn-to-zero inverted (NRZI), 800 bpi.

The following is an example of the source code for a supervisor call block for a Read Device Status

operation and code for the read buffer:

RDSMT

STL
ST

2270507-9701

DATA O
BYTE 5,>3C
DATA O
DATA ST
DATA 10
DATA O
BSS 10

READ STATUS OF MAG TAPE ASSIGNED TO

LUNO >3C.

DEVICE STATUS BUFFER

Change 1

6-139

6.9 Magnetic Tape /O

6.9.1.7 Forward Space. Sub-opcode >06 specifies a Forward Space operation. The Forward
Space operation moves the tape forward a specified number of logical records or to the end-of-file
record.
The following fields of the basic supervisor call block apply to a Forward Space operation:

e SVCcode—0

. Return code

e Sub-opcode — >06

. Logical unit number (LUNO)

U < System flags >

. User flags

. Write character count

The system flags defined for all magnetic tape operations apply to a Forward Space operation.

The following user flag applies to a Forward Space operation:

0 }1 2 3-4 516 |7

2279546

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape to be for-
ward spaced.

The write character count field (bytes 10 and 11) contains the number of logical records for the
operation. The device service routine (DSR) stores a zero in the field when the tape is moved the
specified number of records without reacding an EOF record. When the operation reads an EOF
record, the tape movement stops, and the number of records remaining to be moved is stored in
the write character count field. The DSR also sets the EOF flag in the system flags byte. When the
end of the tape is reached, the operation receives notification in the SVC cali block.

6-140 2270507-9701

Magnetic Tape 110 6.9

The following is an example of the source code for a supervisor call block to forward space a mag-
netic tape:

FSMT DATA O FORWARD SPACE MAG TAPE ASSIGNED TO
BYTE >6,>3B LUNO >3B FIVE RECORDS
DATA O
DATA O
DATA O
DATA 5
6.9.1.8 Backward Space. Sub-opcode >07 specifies a Backward Space operation. The Back-
ward Space operation moves the tape in the reverse direction a specified number of logical
records or to the end-of-file record.
The following fields of the basic supervisor call block apply to a Backward Space operation:
L SVCcode — 0
o Return code
U Sub-opcode — >07
. Logical unit number (LUNO)
o <System flags >
. User flags
o Write character count

The system flags defined for all magnetic tape operations apply to a Backward Space operation.

The following user flag applies to a Backward Space operation:

ol 1}2 3-4 5|16 1|7

f

2279547

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape to be back-
ward spaced.

2270507-9701 6-141

6.9 Magnetic Tape I/0

The write character count field (bytes 10 and 11) contains the number of logical records for the
operation. The device service routine (DSR) stores a zero in the field when the tape is moved the
specified number of records without reading an EOF record. When the operation reads an EOF
record, the tape movement stops, and the number of records remaining to be moved is stored in
the write character count field. The DSR positions the tape so that the next Read operation reads
the EOF record. The DSR also sets the EOF flag in the system flag byte. When the beginning of the
tape is reached, the operation receives notification in the SVC call block.

The following is an example of the source code for a supervisor call block to backward space a
magnetic tape:

BSMT DATA O BACKWARD SPACE MAG TAPE ASSIGNED TO
BYTE >7,>3B LUNO >3B FOUR RECORDS
DATA O
DATA O

DATA O
DATA 4

6.9.1.9 Read ASCIl. Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII opera-
tion reads a record from the magnetic tape and stores the characters in the specified buffer, one
character per byte. |f a Read ASCIl operation is attempted at the end-of-tape, data is stored in the
buffer and an error code is returned.
The following fields of the basic supervisor call block apply to a Read ASCII operation:

. SVCcode — 0

o Return code

. Sub-opcode — >09

. Logical unit number (LUNO)

. < System flags >

. User flags

. Data buffer address

o Read character count

[< Actual read count >

The system flags defined for all magnetic tape operations apply to a Read ASCI| operation.

6-142 2270507-9701

Magnetic Tape I/0 6.9

The initiate flag in the user flag field applies to a Read ASCll operation:

o1 2 3-4 5|67

2279548
Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns control to the calling task.

0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape from
which arecord is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

The Read ASCII operation reads the characters listed in Appendix B for magnetic tape. The opera-
tion stores the characters, packed one per byte. The Read operation continues to the end of the

record, or until the bufferis full.

When the record has been read, the number of characters read is stored in the actual read count
field and the operation terminates.

When an EOF mark is read, the device service routine (DSR) sets the EOF flag in the system flags
byte, stores zero in the actual read count field, and terminates the operation.

The following is an example of the source code for a supervisor call block for a Read ASCll opera-
tion and code for the read buffer:

RDMT DATA O READ RECORD FROM MAG TAPE ASSIGNED
BYTE 9,>3D TO LUNO >3D IN THE INITIATE 1/O
BYTE 0,>80 MODE.
DATA RDB
DATA 150
DATA O
RDB BSS 150 READ BUFFER

6.9.1.10 Write ASCIl.. Sub-opcode >0B specifies a Write ASCIl operation. The Write ASCII
operation transfers a record from the specified buffer to the magnetic tape. If a Write ASCII opera-
tion is attempted at the end-of-tape, the specified bufferis written with an error code returned.
The following fields of the basic supervisor call block apply to a Write ASCII operation:

° SVC code — 0

. Return code

2270507-9701 6-143

6.9 Magnetic Tape I/O

. Sub-opcode — >0B

. Logical unit number (LUNO)
. < System flags >

. User flags

. Data buffer address

o Write character count

The following system flags apply to a Write ASCII operation:

1{2|3|a|5|6]|7

T

2279549

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — Noerror.

The following user flags apply to a Write ASCII operation:

0 1 2 3-4 5|6 7

?

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279550

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape to which a
record is to be written.

The data buffer address is the address of the buffer that contains the record to be written.
The write character count is the number of characters to be written on the magnetic tape.

The Write ASCII operation writes a record on the magnetic tape. The characters in the buffer are
not translated.

6-144 2270507-9701

Magnetic Tape 110 6.9

The following is an example of the source code for a supervisor call block for a Write ASCIi
operation:

WAMT DATAO WRITE RECORD TO MAG TAPE ASSIGNED TO
BYTE >B,>3C LUNO >3C INITIATE MODE.
BYTE 0,>80
DATA WRBUFF

DATA O
DATA 60

6.9.1.11 Write EOF. Sub-opcode >0D specifies a Write EOF operation. The Write EOF operation
writes an EOF mark on the magnetic tape.

The following fields of the basic supervisor call block apply to a Write EOF operation:
e SVCcode—0
o Return code
. Sub-opcode — >0D
. Logical unit number (LUNO)
. User flags

The following user flag applies to a Write EOF operation:

o] 2 3-4 516]| 7

f

2279551

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape on which
the EOF mark is to be written.

The following is an example of the source code for a supervisor call block to write an EOF mark on
amagnetic tape:

WEMT DATAO WRITE EOF ON MAG TAPE ASSIGNED
BYTE >D,>3B TO LUNO >3B.
DATA O
DATA O
DATA O
DATA O

2270507-9701 6-145

6.9 Magnetic Tape I/O

6.9.1.12 Rewind. Sub-opcode >0E specifies a Rewind operation. The Rewind operation rewinds
the magnetic tape to the load point and places the transport in the ready state.

The following fields of the basic supervisor call block apply to a Rewind operation:
¢ SVCcode—0
o Return code
o Sub-opcode — >0E
° Logical unit number (LUNO)
. User flags

The following user flag applies to a Rewind operation:

0j1 2 3-4 5]6 7

f

2279552

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has compieted.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape to be
rewound.

The following is an example of the source code for a supervisor call block to rewind a magnetic
tape:

RWMT DATA O REWIND MAG TAPE ASSIGNED TO LUNO >4D.
BYTE >E,>4D
DATA O
DATA O
DATA O
DATA O

6.9.1.13 Unload. Sub-opcode >O0F specifies an Unload operation. The Unload operation rewinds
the magnetic tape to the physical beginning of the tape, leaving the tape reel ready for removal. No
more /O to the drive is allowed until the tape reel is remounted or another tape reel is mounted on
the transport.
The following fields of the basic supervisor call block apply to an Unload operation:

e SVCcode —0

. Return code

6-146 2270507-9701

Magnetic Tape I/0 6.9

. Sub-opcode — >0F
. Logical unit number (LUNO)
. User flags

The following user flag applies to an Unload operation:

ol 1 2 3-4 516 1|7

2279553

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape to be
unloaded.

The following is an example of the source code for a supervisor call block to unload a magnetic
tape:

ULMT DATAO UNLOAD MAG TAPE ASSIGNED TO LUNO >42.
BYTE >F>42
DATA O
DATA O

DATA O
DATA O

6.9.2 Magnetic Tape Resource-Specific 1/0
The following sub-opcodes apply to resource-specific magnetic tape 1/O:

0A Read Direct
0C Write Direct

6.9.2.1 Read Direct. Sub-opcode >0A specifies a Read Direct operation. The Read Direct opera-
tion reads a record from the magnetic tape and stores the characters in the specified buffer, two
characters per word.
The following fields of the basic supervisor call block apply to a Read Direct operation:

o SVCcode — 0

. Return code

. Sub-opcode — >0A

. Logical unit number (LUNO)

2270507-9701 6-147

6.9 Magnetic Tape /O

. < System flags >
. User flags
* Data buffer address
° Read character count
o <Actual read count >
The system flags defined for all magnetic tape operations apply to a Read Direct operation.

The initiate flag in the user fiag field applies to a Read Direct operation:

0 112 3-4 516 |7

2279554
Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape from
which arecord is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.
The read character count is the length of the buffer.
DNOS returns the number of characters stored in the buffer in the actual read count fieid.

The Read Direct operation reads the characters listed in Appendix B for magnetic tape. The opera-
tion stores the characters, packed one per byte. The Read operation continues to the end of the
record, or until the buffer is full.

When the record has been read, the number of characters read is stored in the actual read count
field and the operation terminates. If the number of characters is odd, an additional character is
stored in the buffer, but the odd value is stored in the read count field.

When an EOF mark is read, the device service routine (DSR) sets the EOF flag in the system flags
byte, stores zero in the actual read count field, and terminates the operation.

6-148 2270507-9701

Magnetic Tape /0 6.9

The following is an example of the source code for a supervisor call block for a Read Direct opera-
tion and code for the read buffer:

RDMT

RDB

DATA O READ RECORD FROM MAG TAPE ASSIGNED
BYTE >0A,>3D TO LUNO >3D IN THE INITIATE I/O

BYTE 0,>80 MODE.

DATA RDB

DATA 150

DATA O

DATA O

BSS 150 READ BUFFER

6.9.2.2 Write Direct. Sub-opcode >0C specifies a Write Direct operation. The Write Direct
operation transfers a record from the specified buffer to the magnetic tape.

The following fields of the basic supervisor call block apply to a Write Direct operation:

. SVCcode — 0

. Return code

e Sub-opcode — >0C

. Logical unit number (LUNO)

. < System flags >

o User flags

U] Data buffer address

Write character count

The following system flags apply to a Write Direct operation:

2279555

Bit 0 — Busy flag. Set by system as follows:

1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:

2270507-9701

1 — Error.
0 — No error.

6-149

6.9 Magnetic Tape /O

The following user flags apply to a Write Direct operation:

0

3-4

2279556

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape to which a

record is to be written.

The data buffer address is the address of the buffer that contains the record to be written.

The write character count is the number of characters to be written on the magnetic tape.

The Write Direct operation writes a record on the magnetic tape. The characters in the buffer are

not translated.

The following is an example of the source code for a supervisor call block for a Write Direct opera-

tion:

WAMT DATA O
BYTE >C,>3C
BYTE 0,>80
DATA WRBUFF
DATA O
DATA 60

6-150

WRITE RECORD TO MAG TAPE ASSIGNED TO

LUNO >3C INITIATE MODE.

2270507-9701

Card Reader Iinput 6.10

6.10 CARD READER INPUT
DNOS supports resource-independent and resource-specific input for the card reader.
The following I/O SVC block for card reader operations is the basic block used for all operations. If

an extension to this block is necessary for a particular operation, it is indicated in the operation
description.

sSvVC > 00 -—- [/O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT
DEecC HEX

0 0 >00 <RETURN CODE >

2 2 SuB—~-OPCODE LUNO

4 4 <SYSTEM FLAGS> UseR FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

2279470

The system flags (byte 4) in the supervisor call block apply to card reader input. These flags are:

ofj1|12| 3|14 (|5)6]7

TF T

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

2279557

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:
1 — A card was read with /* punched in columns 1 and 2.
0 — A Read operation read a card that did not have /* in columns 1 and 2.

Two user flags (byte 5) in the supervisor call block apply to card reader input. However, signifi-

cance of these flags differs for various operations. The flags that apply to each operation are
described in the detailed description of each operation.

2270507-9701 6-151

6.10 Card Reader Input

The operations appropriate for the card reader are described in subsequent paragraphs. The fol-
lowing sub-opcodes, which do not apply to card readers, produce the indicated results:

05 Ignored
06 Ignored
07 Ignored
08 Error
0B Error
0C Error
0D Ignored
OE Ignored
OF Ignored

6.10.1 Card Reader Resource-Independent Input
The sub-opcodes for resource-independent card reader input are as follows:

00 Open

01 Close

02 Close, Write EOF
03 Open and Rewind
04 Close and Unload
09 Read ASCII

6.10.1.1 Open. Sub-opcode >00 specifies an Open operation. The Open operation is required
for the card reader. However, whether or not DNOS validates the Open operation is specified when
the system is generated. Validation does not allow an Open operation when the Open operation
would result in a conflict with I/0 to the same device by another task.

The following fields of the basic supervisor call block apply to an Open operation:

. SVCcode —0

Return code

. Sub-opcode — >00

. Logical unit number (LUNO)
o User flags

. Data buffer address

. Read character count

6-152 2270507-9701

Card Reader Input 6.10

The following flags in the user flag field apply to an Open operation:

ot 2 3-4 5|67

2279558

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the card reader to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the card reader is 4.

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length for the card reader is >50.

The following is an example of the source code for a supervisor call block to open a card reader:

OCR DATA O OPEN CARD READER ASSIGNED TO
BYTE 0,>2A LUNO >2A.
DATA O

CRT DATA O

LGT DATA O
DATA O

6.10.1.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends /O to a
LUNO from the calling task. The LUNO remains assigned to the device, and can be opened again
for additional 1/O operations. When a task terminates, DNOS closes all LUNOs that have been
opened by the task.
The following fields of the basic supervisor call block apply to a Close operation:

. SVCcode — 0

. Return code

. Sub-opcode — >01

. Logical unit number (LUNO)

User flags

2270507-9701 6-153

6.10 Card Reader Input

The initiate flag in the user flag field applies to a Close operation:

|_C; 1t 2 3-4 5|6|7

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279559

The logical unit number (LUNOQ) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close a card reader:
CMT DATA O CLOSE CARD READER ASSIGNED TO LUNO >2F.
BYTE 1,>2F
DATA O
DATA O
DATA O

6.10.1.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode >02, consists of a
Close operation, for the card reader.

6.10.1.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open
operation, for the card reader.

6.10.1.5 Close and Unload. The Close and Unload operation, sub-opcode >04, consists of a
Close operation, for the card reader.

6.10.1.6 Read ASCIl. Sub-opcode >09 specifies a Read ASCIl operation. The Read ASCI! opera-
tion reads arecord from a punched card and stores the characters in the specified buffer, one char-
acter per byte.
The following fields of the basic supervisor call block apply to a Read ASCII operation:

e SVCcode—0

o Return code

] Sub-opcode — >09

. Logical unit number (LUNO)

o < System flags >

. User flags

. Data buffer address

6-154 2270507-9701

Card Reader input 6.10

. Read character count
. < Actual read count >
The system flags defined for all card reader operations apply to a Read ASCI| operation.

The following flags in the user flag field apply to a Read ASCII operation:

o1 |2 3-4 5|16 |7

2279560

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Read with blank adjustment.
0 — Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the card reader.

The data buffer address is the address of the buffer into which DNOS places the record.
The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

The Read ASCII operation recognizes the characters listed in Appendix B for the card reader. The
device service routine (DSR) returns an error code when the punches on the card cannot be trans-
lated and terminates the input. The operation stores the characters, packed two per word. The
Read operation continues until a card has been read; when the Read operation specifies more than
80 characters, the characters on the card are stored in the first 80 bytes of the buffer. When the
operation specifies fewer than 80 characters, the remaining characters on the card are not stored
in the buffer.

When the record has been read, the number of characters read is stored in the actual read count
field and the operation terminates.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (>20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

When column 1 of a card contains / and column 2 contains *, the DSR sets the EOF flag in the sys-
tem flags byte, stores zero in the actual read count field, and terminates the operation.

2270507-9701 6-155

6.10 Card ReaderInput

The following is an example of the source code for a supervisor call block for a Read ASCI| opera-
tion and code for the read buffer:

RDCR DATA O READ RECORD FROM CARD READER ASSIGNED
BYTE 9,>2D TO LUNO >2D IN THE INITIATE 1/0 MODE.
BYTE 0,>80
DATA CDB
DATA 80

DATA O
CDB BSS 80 READ BUFFER

6.10.2 Card Reader Resource-Specific Input
The card reader operation specific to the card reader is the Read Direct operation, sub-opcode
>0A.

6.10.2.1 Read Direct. Sub-opcode >0A specifies a Read Direct operation. The Read Direct
operation reads a punched card and stores the data as binary data, one card column per word.

The following fields of the basic supervisor call block apply to a Read ASCII operation:
¢ SVCcode—0
L Return code
o Sub-opcode — >0A
. Logical unit number (LUNO)
. < 8System flags >
o User flags
e Databufferaddress
. Read character count
. < Actual read count >
The system flags defined for all card reader cperations apply to a Read Direct operation.

The initiate flag in the user flag field applies to a Read Direct operation:

Oo1]1 2 3-4 516 7

T

2279561
Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

6-156 2270507-9701

Card Reader Input 6.10

The logical unit number (LUNO) field contains the LUNO assigned to the card reader.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

The Read Direct operation reads a card column and stores the data in a word of the buffer. The four

most significant bits of the word are set to zero; the holes in the card are stored as ones in card
row order (top to bottom), as follows:

BIT: ol1l2!3ta|s|e| 7|8 oliolti|12|13]14]1s
. Row
Contams: 0 0 0 0 ., v o |y 2 3°4 56 7 8 9
2279562

The Read operation continues until a card has been read; when the Read operation specifies more
than 160 bytes (80 columns), the data on the card is stored in the 160 low order addresses of the
buffer. When the operation specifies fewer than 160 bytes (80 columns), the data in the remaining
columns on the card are not stored in the buffer.

When the record has been read, the number of characters read is stored in the actual read count
field and the operation terminates. The number of characters read is two counts per word,
although each word carries one character (12 bits) in each word.

The Read Direct operation does not recognize an EOF record.

The following is an example of the source code for a supervisor call block for a Read Direct opera-
tion and code for the read buffer:

RDDCR DATA O READ RECORD FROM CARD READER ASSIGNED
BYTE 9,>2D TO LUNO >2D IN THE INITIATE I/O MODE.
BYTE 0,>80
DATA CDBF
DATA 160
DATA O
CDBF BSS 160 READ BUFFER

2270507-9701 6-157

6.11 Direct Disk I/O

6.11 DIRECT DISK /O

DNOS supports resource-specific direct disk 1/0 to all DNOS disks, and to double-sided, double-
density diskettes. Direct disk I/O accesses data on the disk by physical address, rather than as a
physical record of afile. Because effective use of direct disk /O requires knowledge of disk organi-
zation and of allocation techniques used by DNOS, direct disk I/O operations may only be exe-
cuted by privileged tasks and system tasks.

Several direct /O operations require addressing the disk by track. To determine a track address
requires a knowledge of the physical organization of data on a disk. Figure 6-5 shows the concept
as it applies to a disk pack; a disk with a single platter is organized similarly. Notice that a cylinder
includes a recording band on each surface; that is, it includes all the data that could be accessed
without repositioning the heads. The recording band on each surface is called a track; in a given
head position, each head accesses a track. The track is divided into sectors by timing marks.

The formula for computing track numbers is shown in Figure 6-5. Expressed in symbols the
formulais:

T=@xH) +h

CYLINDERS

e
TRACK X :

7\ v

TRACK X ADDRESS = CYLINDER # TOTAL HEADS + ADDRESSED HEAD
2 8+5
2

W

2279565 1

Figure 6-5. Track Addressing

6-158 2270507-9701

where:

T is the track number.

Direct Disk 110 6.11

c is the cylinder number. The number of the cylinder that includes the desired track.

H isthe total number of heads (surfaces).

h is the head. The number of the head (surface) that includes the desired track.

For a diskette, the number of heads is two, even-numbered tracks are on surface 0, and odd

numbered tracks are on surface 1.

The following 1/0 SVC block for direct disk operations is the basic block used for all operations. If
an extension to this block is necessary for a particular operation, it is indicated in the operation
description.

SVC >00 -- 1/O OPERATIONS

2279470

The subset of sub-opcodes for direct disk I/0 is as follows:

00
01

02
03
04
05
08
09
0A
oB
0C
OE
OF
10
11

12

2270507-9701

DEcC HEX

0 0
2 2
4 4
6 6
8 8
10 A

Open

Close

Close, Write EOF
Open and Rewind
Close, Uniload
Read Format
Write Format
Read by ADU
Read by Track
Write by ADU
Write by Track
Store Registers
Read Format

Write Deleted Sector
Read Deleted Sector

ALIGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT

>00

<RETURN CODE >

SuB-OPCODE

LUNO

<SYSTEM FLAGS>

UseER FLAGS

DATA BUFFER ADDRESS

READ CHARACTER COUNT

WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

Write Format with Interleaving

6-159

6.11 Direct Disk I/0

The system flags (byte 4) in the supervisor call block apply to direct disk 1/0. These flags are:

1123]|]4]|516 |7

T

2279563

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

User flags (byte 5) in the supervisor call block apply to direct disk 1/0. However, significance of
these flags differs for various operations. The flags that apply to each operation are described in
the detailed description of each operation.

The operations appropriate for direct disk 1/O are described in subsequent paragraphs. The fol-
lowing sub-opcodes do not apply; they produce the indicated results:

06 Ignored
07 For DNOS use only
0D Ignored

6.11.1 Open

Sub-opcode >00 specifies an Open operation. The Open operation is required for direct disk I/O.
However, DNOS does not validate the Open operation; that is, a possible conflict with I/O to the
same device by another task is not detected.
The following fields of the basic supervisor call block apply to an Open operation:

. SVCcode — 0

. Return code

U Sub-opcode — >00

o Logical unit number (LUNO)

. User flags

. Data buffer address

6-160 2270507-9701

Direct Disk 110 6.11

The following flags in the user flag field épply to an Open operation:

ojt] a2 3-4 516 |7

2279564

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the disk.

The Open operation only returns the device type code in the data buffer address field (bytes 6 and
7) of the supervisor call block. The device type code for the disk (and also for the diskette) is 6.

The following is an example of the source code for a supervisor call block to open a disk for direct
1/0:

oD DATA O OPEN DISK ASSIGNED TO LUNO >Da4.
BYTE 0,>D4
DATA O
D DATA O
DATA O
DATA O
6.11.2 Close

Sub-opcode >01 specifies a Close operation. The Close operation ends 1/O to a LUNO from the
calling task. The LUNO remains assigned to the device, and may be opened again for additional I/0
operations. When a task terminates, DNOS closes all LUNOs that have been opened by the task.
The following fields of the basic supervisor call block apply to a Close operation:

. SVCcode — 0

. Return code

. Sub-opcode — >01

. Logical unit number (LUNO)

. User flags

2270507-9701 6-161

6.11 Direct Disk I/O

The following user flag applies to a Close operation:

ol]1]2 3-4 51|67

?

Bit 0 — initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279569

The logical unit number (LUNO) field contains the LUNO to be closed.
The following is an example of the source code for a supervisor call block to close a disk:
CvDT DATAO CLOSE VDT ASSIGNED TO LUNO >24.
BYTE 1,>24
DATAO
DATAO
DATAO
DATAO

6.11.3 Close, Write EOF
The Close, Write EOF operation, sub-opcode >02, is identical to the Close operation.

6.11.4 Open and Rewind
The Open and Rewind operation, sub-opcode >03, is identical to the Open operation, for direct
disk 1/0.

6.11.5 Close and Unload
The Close and Unload operation, sub-opcode > 04, is identical to the Close operation.

6.11.6 Read Format
Sub-opcode >05 specifies a Read Format cperation. The Read Format operation returns 12 bytes
of disk format and track format information for a specified track.
The following fields of the basic supervisor zall block apply to a Read Format operation:
e SVCcode—0
. Return code
. Sub-opcode — >05
. Logical unit number (LUNO)
. User flags

. Data buffer address

] < Actual read count >

6-162 2270507-9701

Direct Disk 110 6.11

The following extension to the basic supervisor call block applies to a Read Format operation:

DeEc HEX
12 C TRACK ADDRESS
14 E . SECTORS/RECORD SECTOR No.

2279566

The track address field of the supervisor call block extension applies to a Read Format operation.
The system flags that apply to direct disk operations apply to a Read Format operation. The fol-
lowing flags in the user flag field apply to a Read Format operation:

o 1} 2 3-4 516]|7

2279567
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the disk unit. The system
assigns areserved system LUNO to each disk unit.

The data buffer address is the address of the buffer into which DNOS places the format infor-
mation. The buffer should contain 12 bytes.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field. For a
Read Format operation, the system returns >000C in this field.

After a Read Format operation, the data buffer contains twelve bytes of information. The twelve
bytes contain the following fields:

DEC HEx
o 0 WORDS/TRACK
2 2 SECTORS/TRACK OVERHEAD/RECORD
4 4 No. HEADs No. CYLINDERS
6 6 SECTORS/RECORD RECORDS/TRACK
8 8 WoRDS/RECORD
10 A INTERLEAVING FACTOR
2279568

2270507-9701 6-163

6.11 Direct Disk I/O

Disk-related data:
Byte
0-1
2
3

4-5

Track-related data:

Byte

Contents
The number of words per track on the disk.
The number of sectors per track on the disk.
The number of words of overhead per record on the disk.
Bits 0-4 — The number of heads on the disk.

Bits 5-15 — The number of'cylinders on the disk.

Contents
The number of sectors per record on the track.
The number of records on the track.
The number of words per record on the track.
The interleaving factor for the disk. Disks formatted by a Write Format
operation have a value of one. Disks formatted by a Write Format with

interleaving operation receive the value supplied when the disk was for-
matted.

Before the tracks on a disk can be used for data storage, they must be formatted. Formatting, per-
formed when a disk is initialized, defines the physical record length of the records on each track.
The Read Format operation reads the format information for a specified track.

The following is an example of the source code for a supervisor call block for a Read Format opera-
tion and code for the read buffer:

RDFMT DATA O READ STATUS OF TRACK 35
BYTE 5,>D3 ON DISK ASSIGNED TO
DATA O LUNO >Da3.
DATA FT
DATA 12

FTL DATA O
DATA 35
DATA O

FT BSS 12 FORMAT BUFFER

6-164 Change 1 2270507-9701

Direct Disk 110 6.11

6.11.7 Write Format
Sub-opcode >08 specifies a Write Format operation. The Write Format operation formats the
specified track of the disk.
The following fields of the basic supervisor call block apply to a Write Format operation:
e SVCcode—0
. Return code
. Sub-opcode — >08
o Logical unit number (LUNO)
. < System flags >
. User flags

. Read character count

The Write Format operation requires the extension of the supervisor call block shown for the Read
Format operation. The following fields of the extension apply:

e Track address
. < Sectors/record >
The system flags defined for all direct disk operations apply to a Write Format operation.

The following flags in the user flag field apply to a Write Format operation:

o] 1
LI
2279659
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the disk.

The read character count field (bytes 8 and 9) contains the physical record length for the track to
be formatted.

The track address field contains the address of the track to be formatted.

2270507-9701 6-165

6.11 Direct Disk I/10

Formatting, performed when a disk is initialized, defines the physical record length of the records
on each track. The Write Format operation formats a single track. Using the physical record length,
the system formats the track, and returns the number of sectors per record in byte 14 of the
extended supervisor call block.

CAUTION
Reformatting a track destroys any data on the track. A track that is

formatted for a number of sectors per record other than one can
only be accessed with direct disk 1/0.

The following is an example of the source code for a supervisor call block to format track 40 on a
disk:
FMT DATA O FORMAT TRACK 40 ON DISK ASSIGNED TO
BYTE >8,>D4 LUNO >D4
DATA O
DATA 0
DATA 588
DATA O

DATA 40
SR DATA O

6.11.8 Read by ADU
Sub-opcode >09 specifies a Read by Allocatable Disk Unit (ADU) operation. A Read by ADU opera-
tion reads arecord from the disk, starting at a specified sector of an ADU.
The following fields of the basic supervisor call block apply to a Read by ADU operation:
¢ SVCcode—0
J Return code
. Sub-opcode — >09
. Logical unit number (LUNO)
U] <System flags >
. User flags
. Data buffer address

o Read character count

. < Actual read count >

-166 2270507-9701

Direct Disk 1/O 6.11

The following extension to the basic supervisor call block applies to a Read by ADU operation:

DEecC HEX
12 C ADU NuMBER
14 E SECTOR OFFSET IN ADU

2279570

The following fields of the supervisor call block extension apply to a Read by ADU operation:
o ADU number
e Sectoroffsetin ADU

The system flags defined for all direct disk operations apply to a Read by ADU operation.

The following flags in the user flag field apply to a Read by ADU operation:

011 2 3-4 516 |7

?

2279571
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the disk from which a record
is to be read.

The data buffer address is the address of the buffer into which DNOS places the record. The
address must be aword address.

The read character count is the length of the buffer. The value must be an even number.

DNOS returns the number of characters stored in the buffer (the number of characters read from
the disk) in the actual read count field.

The contents of the ADU number field is the number of the ADU that contains the record to be
read.

The sector offset in the ADU field contains the number of a sector relative to the ADU. The Read
operation begins at the start of this sector.

2270507-9701 6-167

6.11 Direct Disk I/10

The following is an example of the source code for a supervisor cail block for a Read by ADU opera-
tion and code for the read buffer:

RDD DATA O READ RECORD FROM DISK ASSIGNED TO
BYTE 9,>D5 LUNO >D5 IN THE INITIATE 1/0O MODE
BYTE 0,>80
DATA DRB
DATA 588
DATA O
DATA 25
DATA O
DRB BSS 588 READ BUFFER

6.11.9 Read by Track

Sub-opcode >0A specifies a Read by Track operation. The Read by Track operation is similar to a
Read by ADU operation. However, the record to be read is addressed by track and sector number
rather than by ADU and sector. Also, flags in the user flag field select options required for surface
analysis.

The track and sector address is supplied in the following extension to the supervisor call block:

DEC HEX
12 c TRACK ADDRESS
14 E SECTORS/RECORD SECTOR NoO,

2279572
The track address field contains the address of the track for the Read operation.

The sectors/record field contains the number of sectors perrecord on the addressed track.
The sector number field contains the number of the sector to be read.

The following flags in the user flag field apply to a Read by Track operation:

o
N

N B

2279573

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 3 — Head offset flag. Set as follows:

1 — Read with head offset.
0 — Read with no head offset.

6-168 2270507-9701

Direct Disk 1/0 6.11

Bit 4 — Head offset direction flag (valid only when bit 3 is set to one). Set as follows:
1 — Offset head forward.
0 — Offset head backward.

Bit 5 — Transfer inhibit flag. Set as follows:
1 — Inhibit transfer of data.
0 — Transfer data.

Bit 7 — Retry flag. Set as follows:
1 — Do not retry on error.
0 — Retry on error.

The user flags that apply to the Read by Track operation only specify options used in surface anal-
ysis. A head offset provided by the disk drive may be applied in either a forward or backward direc-
tion under control of bits 3 and 4. A track may be read for detecting errors without actually storing
the data from the disk when bit 5 is set to one. Retries of the Read operation in case of error are
controlled by bit 7.

The following is an example of the source code for a supervisor call block for a Read by Track
operation and code for the read buffer:

RDTS DATA O READ RECORD FROM DISK ASSIGNED TO
BYTE >A>D5 LUNO >D5 IN THE INITIATE 1/0O MODE
BYTE 0,>80
DATA DRBF
DATA 588
DATA O
DATA 40
BYTE 1
BYTE 24
DRBF BSS 588 READ BUFFER

6.11.10 Write by ADU
Sub-opcode >0B specifies a Write by ADU operation. The Write by ADU operation writes a record
on adisk, starting at a specified sector of an ADU.
The following fields of the basic supervisor call block apply to a Write by ADU operation:
. SVC code — 0
o Return code
. Sub-opcode — >0B
. Logical unit number (LUNO)
. < System flags >

. User flags

2270507-9701 6-169

6.11 Direct Disk I/0

. Data buffer address
U Write character count

The extension to the supervisor call block shown for the Read by ADU operation also applies to the
Write by ADU operation. All fields of the extension apply, as follows:

. ADU number
. Sector offset in ADU
The system flags defined for all direct disk operations apply to a Write by ADU operation.

The following flags in the user flag field apply to a Write by ADU operation:

o|1 2 3-4 51617

2279574
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
The logical unit number (LUNO) field contains the LUNO assigned to the disk.

The data buffer address is the address of the buffer which contains the record to be written. The
address must be a word address.

The write character count is the number of characters to be written on the disk. The value must be
an even number.

The contents of the ADU number field is the number of the ADU that contains the record to be
read.

The sector offset in ADU field contains the number of a sector relative to the ADU. The Write opera-
tion begins at the start of this sector.

When the number of characters written does not fill an integral number of sectors, the system
writes zeros in the remaining bytes in the partially-written sector.

6-170 2270507-9701

Direct Disk 110 6.11

The following is an example of the source code for a supervisor call block for a Write by ADU
operation:

WDA DATA O WRITE RECORD TO DISK ASSIGNED TO
BYTE >B,>D3 LUNO >D3 INITIATE MODE.
BYTE 0,>80
DATA WRBUFF
DATA O
DATA 588
DATA 34
DATA O

6.11.11 Write by Track

The Write by Track operation (sub-opcode >0C) is similar to the Write by ADU operation. The dif-
ference is that the record to be read is addressed by track and sector number rather than by ADU
and sector.

The track and sector address is supplied in the extension to the supervisor call block shown for
the Read by Track operation.

The track address field contains the address of the track for the Write operation.
The sectors/record field contains the number of sectors per record on the addressed track.
The sector number field contains the number of the sector to be written.

The following is an example of the source code for a supervisor call block for a Write by Track
operation:

WDT DATA O WRITE RECORD TO DISK ASSIGNED TO
BYTE >C,>D5 LUNO >D5 IN THE INITIATE I/O
BYTE 0,>80 MODE.
DATA WRBUFF
DATA O
DATA 588
DATA 75
BYTE 1
BYTE 12

6.11.12 Store Registers
Sub-opcode >0E specifies a Store Registers operation. The Store Registers operation transfers
disk parameters from registers in the disk controller to a specified buffer.
The following fields of the basic supervisor call block apply to a Store Registers operation:
. SVCcode —0

. Return code

. Sub-opcode — >0E

2270507-9701 6-171

6.11 Direct Disk I/O

. Logical unit number (LUNO)
. User flags

. Data buffer address

. < Actual read count >

The extension to the basic supervisor call block shown for a Read Format operation applies also to
a Store Registers operation. However, all of the fields in the extension are ignored.

The system flags that apply to direct disk operations apply to a Store Registers operation.

The following flags in the user flag field apply to a Store Registers operation:

(O 2 3-4 5|16|7

?

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279575

The logical unit number (LUNO) field contains the LUNO assigned to the disk unit.

The data buffer address is the address of the buffer into which DNOS places the disk information.
The buffer should contain six bytes, beginning on a word address.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field. The sys-
tem returns >0006 in this field.

After a Store Registers operation, the data buffer contains six bytes of information, organized in
the following fields:

DeEc HEX .
WORDS/TRACK
0 0
2 2 SECTORS/TRACK OVERHEAD/RECORD
4 4 No. HEADs No. CYLINDER

2279576

6-172 2270507-9701

Direct Disk 1/O 6.11

Byte Contents
0-1 The number of words per track on the disk.

2 The number of sectors per track on the disk.

3 The number of words of overhead per record on the disk.
4-5 Bits'0-4 — The number of heads on the disk.

Bits 5-15 — The number of cylinders on the disk.

The following is an example of the source code for a supervisor call block for a Store Registers
operation and code for the read buffer:

SRDC DATA O STORE REGISTERS FOR DISK
BYTE >E,>D3 ASSIGNED TO LUNO >D3
DATAO
DATA REGS
DATA 6

RL DATA O
DATA O
DATA O

REGS BSS 6 REGISTER BUFFER

6.11.13 Read Format
Sub-opcode >0F is an alternate sub-opcode for the Read Format operation previously described
for sub-opcode >05.

6.11.14 Write Deleted Sector
Sub-opcode >10 specifies a Write Deleted Sector operation. The Write Deleted Sector operation
writes the deleted sector data pattern on a diskette sector. The sector is specified with a track and
sector address.
The following fields of the basic supervisor call block apply to a Write Deleted Sector operation:

. SVCcode — 0

J Return code

. Sub-opcode — >10

. Logical unit number (LUNO)

. User flags

The track and sector address is supplied in the extension to the supervisor call block shown for
the Read by Track operation.

The system flags defined for all direct disk operations apply to a Write Deleted Sector operation.

2270507-9701 6-173

6.11 Direct Disk I/O

The following flags in the user flag field apply to a Write Deleted Sector operation:

0 1] 2 3-4 5| 6|7

2279577

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the diskette.

The track address field contains the address of the track for the Write Deleted Sector operation.
The sectors/record field contains the number of sectors per record on the addressed track.

The sector number field contains the number of the sector to be written.

The standards for diskettes define a data pattern that identifies a deleted sector. The Write
Deleted Sector operation writes this data pattern on the specified sector. A sector that has been
written as a deleted sector using this sub-opcode can only be read by a Read Deleted Sector opera-
tion.

The following is an example of the source code for a supervisor call block to write the deleted sec-
tor data pattern on the diskette:

WDS DATA O WRITE DELETED SECTOR ON DISKETTE
BYTE >10,>D2 ASSIGNED TO LUNO >D2
DATA O
DATA BUFFER
DATAO
DATAO
DATA 35
BYTE 1
BYTE 4

6.11.15 Read Deleted Sector
Sub-opcode > 11 specifies a Read Deleted Sector operation. The Read Deleted Sector operation
reads a sector of a diskette on which the deleted sector data pattern has been written.
The following fields of the basic supervisor cell block apply to a Read Deleted Sector operation:
o SVCcode — 0
° Return code

U Sub-opcode — > 11

. Logical unit number (LUNO)

6-174 2270507-9701

Direct Disk 110 6.11

. < 8System flags >

. User flags

. Data buffer address

. Read character count
° < Actual read count >

The track and sector address is supplied in the extension to the supervisor call block shown for
the Read Deleted Sector operation.

The system flags defined for all direct disk operations apply to a Read Deleted Sector operation.

The following flags in the user flag field apply to a Read Deleted Sector operation:

0 112 3-4 5(16]7

2279578
Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
The logical unit number (LUNO) field contains the LUNO assigned to the diskette.

The data buffer address is the address of a buffer into which the deleted sector is read. The buffer
address must be a word address.

The read character count is the number of characters in the buffer. Since a deleted sector contains
a special data pattern, it is appropriate to read only a part of the data. The read character count
must be an even number.

The system returns the number of characters transferred to the buffer in the actual read count
field.

The track address field contains the address of the track for the Read Deleted Sector operation.
The sectors/record field contains the number of sectors per record on the addressed track.

The sector number field contains the number of the sector to be read.

A Read Deleted Sector operation is the only operation that reads a deleted sector successfully.

When a Read Deleted Sector operation addresses a sector that has not been deleted, the operation
returns an error code and no data is transferred to the data buffer.

2270507-9701 6-175

6.11 Direct Disk I/O

The following is an example of the source code for a supervisor call block for a Read Deleted Sec-
tor operation and code for the read buffer:

RDDS DATA O READ DELETED SECTOR FROM DISKETTE
BYTE >11,>D5 - ASSIGNED TO LUNO >D5 IN THE
BYTE 0,>80 INITIATE /O MODE.
DATA DSB
DATA 10
DATA O
DATA 32
BYTE 1
BYTE 12
DSB BSS 10 READ BUFFER

6.11.16 Write Format with Interleaving

Sub-opcode >12 specifies a Write Format with Interleaving operation. The Write Format with Inter-
leaving operation specifies an interleaving factor for the diskette. The operation may specify the
data pattern used in formatting the diskette. The operation is otherwise identical to the Write For-
mat operation, sub-opcode >08.

The following flags in the user flag field apply to a Write Format with Interleaving operation:

1 2 3-4 5| 6}7

T T

2279579

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 1 — Format data location flag. Set as follows:
1 — Datain buffer.
0 — Datain call block.

When the format data location flag is set to 1, a two-word buffer with the following contents is
required:

DeEc HEX
0 0 INITIALIZATION WORD
2 2 INTERLEAVING FACTOR

2279580

The initialization word is a word that the system writes on the diskette during formatting. The inter-
leaving factor should be 1 for diskettes used with DNOS. For a diskette that is to be used in a
DS990 Model 1 system (DX5 or TX5), the interleaving factor should be 3. The address of this buffer
is placed in the data buffer address field (bytes 6 and 7) of the supervisor call block.

3-176 2270507-9701

Dummy Device I/0 6.12

When the format data location flag is set to zero, the write character count field (bytes 10 and 11) of
the supervisor call block contains the interleaving factor. An initialization word supplied by the
system is written on the diskette.

Interleaving arranges the sectors on the diskette to allow time for transfer of data between oper-
ations that address the sectors in sequence. An interleaving factor of 1 arranges the sectors in
sequence; a factor of 2 interleaves a sector between sectors 0 and 1, and between sectors 1 and 2,
and so on. The value of 3 means that two sectors pass the heads between consecutively-numbered
sectors. This allows the period of time required to write two sectors for the transfer of data.

The following is an example of the source code for a supervisor call block to format track 40 on a
diskette with an interleaving factor:

FMTI DATA O FORMAT TRACK 40 ON DISKETTE
BYTE >12,>D4 ASSIGNED TO LUNO >D4 WITH
DATA © INTERLEAVING FACTOR OF 3
DATA 0O
DATA 588
DATA 3
DATA 40

SR DATA O

6.12 DUMMY DEVICEI/O

The dummy device can be assigned to a LUNO to effectively skip all I/O operations to that LUNO.
The device name is DUMY. The following operations to the dummy device are supported:

. Open
. Open and Rewind
e Read ASCII
o Read Direct
The Open and Open Rewind operations to the dummy device return device type 0 in the data buffer

address field (bytes 6 and 7) of the supervisor call block. The default logical record length returned
in bytes 8 and 9 is zero. The Read ASCII and Read Direct operations set the EOF flag.

2270507-9701 6-177

6.12 Dummy Device I/O

The following sub-opcodes produce the indicated results:

6-178

01

02
04
05
06
07
08
0B
oc
0D
OE
OF

Ignored
Ignored
Ignored
Ignored
Ignored
Ignored
Ignored
Ignored
Ignored
Ignored
Ignored
ignored

2270507-9701

7

File 1/O

7.1 DNOS FILES

File /O combines the support of the file management and I/O capabilities of DNOS for three types
of disk files. The file types are:

. Sequential files
o Relative record files
. Key indexed files

A sequential file consists of records written in the sequence in which they are presented to file
management and read in the sequence in which they were written. Resource-independent I/O con-
cepts apply to sequential files; that is, input from a card reader may be substltuted forinput froma
sequential file of card-image records by changing the LUNO assignment.

Relative record files consist of records that are uniquely identifiable by the position they occupy
within the file. When a record is written, it is written to a specific position within the file. The
position is identified by an integer. Position 0 identifies the first record of the file, position 1
identifies the second record, and so on. A read operation accesses the record by its record
number. Relative record files may be written or read in numeric sequence using the number
identifying the position of the record. Records may be read or written in random sequence by
specifying the record number explicitly.

Three special usage types of relative record files are supported by DNOS. The special usage types
are:

. Directory files — Contain information necessary to locate other files and to describe the
characteristics of those files.

. Program files — Store the linked object code of task segments, procedure segments,
program segments, and overlays in a format that can be executed.

. Image files — Contain the memory image code of programs stored so that the logical
record size equals the physical record size which equals the disk sector size.

Key indexed files consist of records that contain one or more keys by which they are accessed.
They provide the capability of accessing records by content instead of by position.

Several characteristics of file I/0O apply to two or three of these file types. These subjects are

discussed in subsequent paragraphs, preceding the descriptions of File /O Utility operations and
110 operations to each type of file.

2270507-9701 7-1

7.1 DNOS Files

7.1.1 Record Blocking

To reduce the number of disk transfers, it is often best to choose physical records large enough to
contain several logical records. The size of a physical record should be a multiple or submultiple
of the size of an allocatable disk unit (ADU). The technique of storing several logical records in a
physical record is called blocking.

When a task first issues a read request, the system actually reads an entire physical record or ADU
‘whichever is larger) into memory. The physical record is stored in an area of memory called a
blocking buffer. Only the part that corresponds to the requested logical record is passed to the re-
guesting task. Subsequent Read and Write operations do not cause immediate disk access but in-
stead refer to the record image in memory (unless the immediate write mode is in effect). The
system keeps an accessed physical record (which usually contains several logical records) in
memory until the memory area is needed for other purposes. The blocking of logical records into
physical records, together with the deferred write capabilities, may substantially improve system
throughput. This is especially true for sequential files.

The system always processes sequential files as blocked files. For relative record files blocking
only applies when the physical record size specified is at least twice the logical record length.

7.1.2 Blank Adjustment/Compression

Blank compression conserves space on the disk that otherwise would contain blanks. Blank
compression is requested for a file when it is created. It is discussed further in the paragraph on
the Create File operation.

Blank adjustment is also available for saving disk space on sequential files. Blank adjustment may
be specified for Write and Read operations. When blank adjustment is specified for a Write
operation, trailing blanks in each record are not written. When blank adjustment is specified fora
Read operation, the buffer is filled with blanks following the last character read.

7.1.3 File and Record Protection Features
The system provides the following features for protecting files from program flaws that might
otherwise destroy valuable data:

° Delete and write protection
° Record locking

'.1.3.1 Delete and Write Protection. The delete and write protection file attributes may be modi-
ied by utility I/O calls described in subsequent paragraphs. Files are created initially without pro-
ection; a subsequent call must be made to apply protection. If security was selected during
iystem generation (answering YES to the SECURITY? prompt), delete and write protect access is
equired to perform these operations.

\n attempt to write to or delete a file with write protection will fail and return an error code. An
ittempt to delete a file with delete protection will fail and return an error code. These protective
ittributes are not intended for file security. (There are nonprivileged supervisor calls to remove
yrotection.) They do provide protection against program flaws and user errors that might other-
vise destroy valuable data.

-2 2270507-9701

DNOS Files 7.1

7.1.3.2 Record Locking. Record locking means that although access to a given file may be
shared among several users, individual records may be locked to provide exclusive (single user)
read and write access. This feature is useful in ensuring that record updates occur one at a time.
For example, inventory files might be accessible from several terminals. Record locking can
prevent simultaneous updating of a record by two or more users, causing an undetected loss of
one of the updates.

EXAMPLE
Without Record Lock With Record Lock

1. User A reads a record. 1. User Areads arecord and locks it by
setting the lock/unlock flag (byte 5,
bit 5) in the call block.

2. User B reads the same record. 2. User B attempts to read the same
record but must wait for User A to
unlock the record.

3. UserA updates his copy of the record 3. User A updates the record and writes

and writes the updated record to
disk.

User B updates his copy of the record
and writes the updated record to
disk.

it back to disk, which unlocks it if the
lock/unlock flag is set.

User B reads the record and locks it.

User B updates the record, writes it

back to disk, and unlocks it.
Final Result: User B’s update is incor-
porated in the record, but User A’s update
is not included.

Final Result: Both updates are now in-
cluded in the record.

Record locking requires an entry in memory for each locked record, which imposes a limitation on
the number of records that can be locked at one time. The limit depends on the size of memory and
usage of memory by other system functions. It is on the order of 1000 records, and an error code is
returned when no more memory is available for locked record entries.

7.1.4 Temporary Files
DNOS supports task-temporary and job-temporary files, which are automatically deleted when the
task or job terminates.

A task-temporary file is a file used only within the scope of a task. When the temporary flag in the
supervisor call block is set to one, an Assign LUNO or Create File I/O Operation can create a task-
temporary file. When an Assign LUNO Operation creates (autocreates) a task-temporary file, the
system generates the pathname. The name of the disk on which the file will be created can be
specified; if no pathname is specified, the file is created on the system disk. A file named by the
system is deleted when the LUNO is released. A file named by the user is deleted with the release
of the LUNO (or the last of several LUNOs) assigned to it.

2270507-9701 Change 1 7-3

7.1 DNOS Files

A job-temporary file is a temporary file that is required and used only within the scope of a job.
These temporary files are local to the job to which the task that creates them is associated, and they
are deleted along with the job. A job-temporary file may be accessed by any task within the job.

Using the Assign Logical Name (ALN) SClI command and specifying a resource type of
TEMPORARY creates a job temporary file. If the CREATE NOW option is chosen, the file is created
immediately; otherwise, the file is created the first time a LUNO is assigned to the logical name.

Access to the file is by logical name. The logical name operations are described in Section 5.
Job-temporary files are deleted when the job terminates or when the logical name is released.

7.1.5 Concatenated and Multifile Sets

Sequential and relative record files may be logically concatenated by setting the values of a logical
name to the pathnames of a set of files. Logical concatenation allows access to the set of files, in
sequence, without physically concatenating the files. (When required, physical concatenation may
be performed by the Copy/Concatenate (CC) SCI command.) A multifile set is a set of key indexed
files, the pathnames of which are the values of a logical name. The files in the set are associated ina
nonreversible manner. Individual components of concatenated and multifile sets may be on
separate disks.

Several restrictions apply to the concatenation of files. The files must be the same type and may not
be special-use files (directories, program files, key indexed files, or image files). Relative record files
to be concatenated must have the same logical record size. A concatenation of files may not contain
both blocked and unblocked records, and any LUNO assigned to a file must be released before con-
catenating the file. A file may not be concatenated or associated with itseif.

Special rules apply to the combining of key indexed files in a multifile set. At the first definition of
the multifile set, all but the first file must be empty; none may be a member of an existing muitifile
set; they must all have the same physical record size; and they must have the same key definitions.
In subsequent definitions of these sets, thie same files must be associated in the same order, and
none of the original set may be omitted. One empty file may be added at the end (but not at any other
position). Key indexed files of a multifile set can only be individually accessed as an unblocked file.

The intended use of a multifile set of key indexed files is to permit a larger key indexed file than one
disk can store. When a key indexed file can no longer expand because there is insufficient space on
the disk, a new file can be created on another disk. By using a logical name, the two files can be
used as one. The second file is used as an extension of the first. If the first file contains 5000
physical records, when physical record 5001 is required, the first physical record of the second file,
record 0, is used.

7-4 Change 1 2270507-9701

DNOS Files 7.1

Only a few of the file utility operations of the 1/0O Operations SVC apply to concatenated and
multivolume sets, as follows:

91 — Assign LUNO
93 — Release LUNO
99 — Verify Pathname

The Assign Logical Name (ALN) SCI command associates files collectively with a logical name.
Actual logical concatenation or creation of a multifile set occurs when a LUNO is assigned to the
logical name. A concatenated file may be accessed only for the duration of the logical name. The
user must specify the files in the concatenation order desired. Files can be specified by
pathname, synonym, logical name or a logical name and pathname combination. However, all
forms must resolve to valid pathnames. All files in the concatenation or muitifile set must be
precreated and online when the logical name is used.

The last file in a concatenation set can be expandable. All other files become nonexpandable until
the logical name is released or the job terminates.

When a single end-of-file mark appears at the end-of-medium, the end-of-file is masked. This
allows concatenated files to be accessed logically as a single file without the hindrance of
intermediate end-of-file marks being returned. Note that any intermediate end-of-file mark not at
the end-of-medium is always returned. If two end-of-file marks are encountered at the end-of-
medium, a single end-of-file is returned.

Several users can access the same concatenated or multifile set if the access privileges permit.
Two concatenated files are identical when they consist of the same pathnames in the same order.
To maintain file integrity, an error is returned if any of the precreated files of a concatenated file
are being accessed independently. A concatenated file is deleted by deleting the individual files.

7.1.6 End-of-File

An end-of-file (EOF) is a logical position within a relative record or key indexed file and an actual
record within sequential files which, when read, causes the EOF status bit to be set. No data is
transferred. The EOF status bit is bit 2 of the system flags. Relative record files have one EOF that
corresponds to the record following the highest-numbered written record. Sequential files may
have more than one EOF. A sequential file is analogous to a reel of magnetic tape, which could
contain several files, separated by EOFs on the tape. Thus, a sequential file may consist of
multiple data sets, or subfiles, delimited by EOFs. A key indexed file has a logical EOF that
corresponds to the record following the record with the largest primary key. For a key indexed file,
the EOF applies only to a Read ASCII operation and a Forward Space operation, which access the
file sequentially in primary key order.

The internal representation of an EOF in a sequential file is a record of zero length; it is written by

a Write EOF operation or by a Close, Write EOF operation. Writing an EOF does not prevent writing
more records to the file.

2270507-8701 7-5

7.2 FilellO

7.2 FILE UTILITY OPERATIONS
A file may be accessed by a pathname or by & logical name, through assignment of a LUNO. The
utility functions required for file I/O include the Assign LUNO and Release LUNO operations, and
functions to create a file, delete a file, verify or change the pathname, apply or change protection,
and add or delete an alias.
7.2.1 Performing Utility Functions
A subset of the sub-opcodes of the 1/O Operations SVC (opcode 00) performs 1/O utility functions
that support file I/O. These 1/Q utility functions allow a program to:

. Create a file

. Delete a file

. Assign a LUNO

. Release a LUNO

° Assign a new pathname

. Verify a pathname

] Apply write protection

. Apply delete protection

. Remove protection

. Add an alias to a file

° Delete an alias of a file

. Specify the write mode
Only the following operations apply to concatenated files:

. Assign a LUNO

. Release a LUNO

. Verify a pathname
Many of these utility operations require pathnames. The pathname of a file consists of a volume
name (which may be implied if it is the system disk), directory names (if any), and a filename. The
names within the pathname are separated by periods (). When the volume name is that of the
system disk, it may be omitted. The pathname begins with a period in this case. The number of
directory names in the pathname depends upon the organization of the disk. The volume directory

and directories at all levels may contain both directories and files. The maximum length of a
pathname is 48 characters.

7-6 2270507-9701

1Y

File Utility Operations 7.2

The capability of creating and deleting files with an SVC simplifies execution of the program by
creating files that otherwise would have to be created by the user prior to executing the program.
Similarly, the assignment of LUNOs and the release of LUNO assignments by the program makes
proper execution of the program less dependent on the user.

A program can also change the pathname of a file. A change in a pathname may change either the
filename or one or more directory names, but not the volume name.

A program can verify a pathname. This consists of verifying the syntax of a pathname and also
verifying the existence of the file corresponding to the pathname.

Files are created without protection. A file may be protected from being deleted, or from being
written to, by a utility function of the I/0 Operations SVC. Also, protection may be removed using
another function.

An alias is an alternate name for a directory or file, making a file accessible using a pathname with
an alias instead of the directory name or filename. An alias may be used to avoid recoding and
reassembling a program to change a pathname when the actual pathname is no longer the
pathname that appears in the code. A program may define an alias or delete an alias.

DNOS normally defers the actual writing of a record in a file until the memory occupied by the
record is required for other purposes or until the file is closed. Any write error that occurs when the
record is written may thus be delayed beyond the point at which the program tests for a write error.
DNOS supports an immediate write mode that avoids the problem by actually writing the record in
the file when the write SVC is executed. The immediate write mode should also be used for files
that must be updated without the delay that could otherwise occur. For example, the system log
must be written in the immediate write mode to prevent loss of messages when the system fails.
The immediate write mode is specified when a file is created or whenever the specify write mode
utility function is performed. The deferred write mode may also be specified when the file is cre-
ated or with the same utility function.

Specifying parameters adds functions to many of the 1/0 operations. The parameter address field
of the request block points to a parameter list. The parameter list can contain multiple parameters.
Parameters that apply only to a specific 1/O operation are discussed in the description of that
operation. The following discussion applies to those parameters that may apply to multiple 1/O
operations.

In a secure environment, it may be necessary to issue an I/O utility operation specifying the rights
of a user other than the user issuing the call; this is useful in server jobs that process requests
from other jobs. By issuing the operation with a user ID parameter, the servor job can assume the
security of the requestor. In a secure environment, the following 1/0 utility operations can specify
auser ID as an SVC I/O call block parameter:

° Assign LUNO — This command assigns a LUNO if the specified user has any access
rights to the file. DNOS verifies the user’s access rights for all subsequent |/O
operations that use the assigned LUNO.

. Create File — This command creates a file with full access rights given to the specified
user’s creation access group.

22705079701 7-7

.2 File Utility Operations

. Delete file — This command deletes a file if the specified user ID has delete access to

the file.

. Unprotect file — This command removes write and delete protection from a file if the
specified user ID has write and delete access to the file.

¢ Write protect file — This command write protects afile if the specified user ID has write
and delete access to the file.

. Delete Protect File — This command delete protects a file if the specified user ID has
write and delete access to the file.

f specified, the user ID must be the first entry in the parameter list. The user ID and user passcode
ields are eight bytes long; if the specified user ID or user passcode is less than eight characters,
‘he user ID or user passcode must be left-justified and the field right-filled with blanks. For secu-
ity bypass tasks, the passcode does not need to be specified. The parameter list address must be
dlaced in the SVC 1/O call block, and the utility flag bit must be set. The following diagram shows a
iser ID and passcode as the only entry in the parameter list.

ToTaL LLENGTH OF LisT-
>13 >0 LENGTH BYTE/RESERVED
02 10 SuBLIST NUMBER/LLENGTH OF
User Ip + PASSCODE
N
User Ip > & BYTES
P
N
PASSCODE >8 BYTES
7
2285030
Byte Contents
0 Total parameter list minus length byte in bytes
1 Reserved — Must be set to zero.
2 >02 — User ID sublist number
7-8 2270507-9701

a

File Utility Operations 7.2

3 Length of user ID sublist in bytes
4-11 User ID — Left-justified and right-filled with blanks
12-19 Passcode — Unencrypted, left-justified and right-filled with blanks

The utility operations require an extended supervisor call block, described in Section 5 and
displayed below. '

SVC >00 —— /O OPERATIONS ALIGN ON WORD BOUNDARY
(UTILITY SUB-OPCODE) CAN BE INITIATED AS AN
EVENT

Dec HEX

0 0 > 00 <RETURN CODE>
2 2 Sus-OPCODE LUNO
4 4 <SYSTEM FLAGS> UseER FLAGS
6 6 <RESOURCE TYPE>
8 8

RESERVED
10 A
12 C KEYy DErF. BLock AbbR/DEF. PHYS. REC, SIzZE
14 E RESERVED
16 10 UTILITY FLAGS
t8 12 DEFINED L.OGICAL RECORD L.ENGTH
20 14 DEFINED PHYSICAL RECORD LENGTH
22 16 PATHNAME ADDRESS
24 18 PARAMETER ADDRESS
26 1A RESERVED
28 1C

INITIAL FILE ALLOCATION
30 1E
32 20
SECONDARY FILE ALLOCATION
34 22
2279581

2270507-9701 7-

7.2 File Utility Operations

7.2.1.1 Creating Files. To create a file, a program executes an I/O Operations SVC with sub-
opcode >90. The following fields of the utility supervisor call block apply:

e SVCcode —0

. Return code

. Utility sub-opcode — >90

. Key definition block address (key indexed files)
. Default physical record size (directory files)

L Numbers of tasks, procedures, and overlays (program files)
* Utility flags

. Logical record length

° Physical record length

. Pathname address

o Parameter address

e |nitial file allocation

U Number of directory entries (directory files)

e Secondary file allocation

The foilowing utility flags (bytes 16 and 17 of the call block) apply:

11-12 13| 14-15

7
P ?
2279582

Bits 1-2 — File usage flag. Set as follows:
00 — No special usage.
01 — Directory file.
10 — Program file.
11 — Image file.

Bit 7 — Parameter flag. Set as follows:

1 — Parameters are present and pointed to by bytes >18 and >19.
0 — No parameters.

10 2270507-9701

File Utility Operations 7.2

Bit 8 — LRL flag. Set as follows:
1 — Place the logical record length in bytes >12 and >13.
0 — Place the logical record length in bytes >8 and >9. It is recommended that you
set the LRL flag to 1 and place the logical record length in bytes 12 and 13.

Bit 9 — Temporary file flag. Set as follows:
1 — Temporary file.
0 — Not atemporary file.

The temporary file will exist until the last LUNO assigned to the file is released.

Bit 10 — Write mode flag. Set as follows:
1 — Immediate write mode.
0 — Deferred write mode (normal mode).

The setting of the write mode flag does not apply to a key indexed file, which is
always created in the immediate write mode.

Bits 11-12 — Data format flag. Set as follows:
00 — Normal record image.
01 — Blank compressed.

The setting of the data format flag does not apply to a key indexed file, which is
always blank compressed.

Bit 13 — Allocation flag. Set as follows:
1 — Expandabie file.
0 — Fixed size file.

Bits 14-15 — File type flag. Set as follows:
01 — Sequential file.
10 — Relative record file.
11 — Key indexed file.

A file consists of a set of data structures called logical records. Division of a file into logical
records does not necessarily correspond to the physical division of data on the disk. That is, there
are two types of records: logical records, the data structures read and written by programs, and
physical records, the data structures actually transferred to and from the disk. Typically, the
physical record contains several logical records. Both logical and physical record sizes must be
specified, explicitly or by defauit, when a file is created.

The type of the file is specified when the file is created:

. Sequential
U] Relative record

. Key indexed

2270507-9701 7-11

7.2 File Utility Operations

Within the relative record file type are three special use categories:
. Directory files
. Program files
. Image files

When creating a relative record file, the user must specify the special use category or specify that
no special use category applies.

The pathname of a file is assigned when the file is created. The ASCII characters of the pathname
are placed in an area of memory that is preceded by a byte that contains the number of characters
in the pathname. The address of the byte that contains the character count is placed in the super-
visor call block as the pathname address.

The Performing Utility Function paragraph of this section shows how to specify user ID parame-
ters in a secure environment. This option allows the creation of a file with full access rights given
to the user’s creation access group. This option does not apply to directories.

The initial file allocation applies to all files. DNOS files may be expandable or of fixed length. The
initial allocation determines the number of logical records allocated to the file initially, in the case
of an expandable file, or the total allocation, in logical records, for a fixed iength file. The
allocation flag is set to one when the file is expandable, and the secondary file allocation field
contains the number of additional logical records requested when the initial allocation has been
filled. Additional secondary allocations are made, as required.

Additional disk space is allocated contiguous to space already occupied by the file, when
possible. When the initial allocation is filled, additional space is requested. When the requested
space is available contiguous to the initial allocation, the initial allocation is extended by the
amount of the request. When contiguous space is available (but not as much as is requested), the
initial allocation is extended to occupy the available contiguous space. Only when no contiguous
space is available is a secondary allocation made. The size of the secondary allocation is the
requested size or the largest contiguous biock of disk space, whichever is smaller.

The amount of disk space requested is the larger of two values, each computed by a formula. The
first formula is based on the number of secondary allocations, as follows:

A = SA X (2**n)
where:
A is the amount of disk space requested.
SA is the secondary allocation field contents (converted to ADUs).

n is the number of secondary allocations, 0 through 15.

r12 2270507-9701

File Utility Operations 7.2

The other formula is based on the number of allocations (including extensions to an existing
allocation and secondary allocations):

A = TIMTBL(x)
where:
A is the number of ADUs of disk space requested.
X is the number of allocations, initialized to the number of secondary allocations

when the LUNO is assigned and incremented for each allocation.
TIMTBL is a table of numbers of physical records.

Table TIMTBL contains the following values:

TIMTBL(0) = 1 physical record

TIMTBL(1) = 2 physical records
TIMTBL(2) = 4 physical records
TIMTBL(3) = 8 physical records

TIMTBL(4) = 12 physical records
TIMTBL(5) = 16 physical records
TIMTBL(6) = 20 physical records
TIMTBL(7) = 24 physical records

The value of TIMTBL(7) also applies to values of x greater than 7.

Because of the conversion of SA in the first formula to ADUs, that formula applies when a physical
record is iarger than an ADU.

A temporary file is a file that is deleted automatically. After the file is created, one or more LUNOs
may be assigned to the file. When the last LUNO assigned to the file is released, DNOS deletes
the file.

Normally, a physical record remains in memory until the memory it occupies is required for other
purposes. Read and Write operations transfer data from and to the record in memory, but the
actual writing of the data to the disk occurs some time after the write SVC is completed. This is a
very efficient way to manage a file, since memory accesses are much faster than disk accesses.
However, should an error occur when the physical record is actually written, the error code is
returned at completion of the next SVC to the LUNO, and the error may be misinterpreted or
ignored. The immediate write mode, which applies when the write mode flag is set, forces DNOS
to write the physical record immediately following a write SVC. If the flag is set when the file is
created, the immediate write mode remains in effect until the file is deleted or until a utility
operation resets the immediate write mode.

A user may specify blank compression when creating a sequential file. Blank compression saves
disk space within a file by storing data in a more compact format.

2270507-9701 7-13

7.2 File Utility Operations

Blank compression replaces strings of blanks by a count of blanks when writing to disk and
restores the blank string when reading from disk. In operation, blank compression is not apparent
to the user. It is generally advantageous to specify blank compression for files that usually
contain many blanks, such as:

. Source files

. Listing files

. Text files

On the other hand, it is less advantageous (but not harmful) to use blank compression for files that
contain few blanks, such as:

. Binary files (not ASCII data)
. Relocatable ASCII coded object files

A blank compressed record with no blanks requires one more word of disk space than if blank
compression had not been specified.

Creating Sequential Files. A sequential file consists of logical records that are accessed in the
sequence in which they appear in the file; that is, record 0 is accessed first, record 1 is accessed
next, and so forth. Sequential files resemble files on magnetic tape. Examples of sequential file
use include the following:

o As an input file of card images. If a logical record length of 80 is specified, the
sequential file can function as a card reader to the program reading the file.

. As an output file, to function as the line printer.

. As a listing file for assembly or Link Editor listings.
The use of sequential files for assembly and Link Editor listings is a recommended practice.
Assembly listings should be written to a sequential file. This saves time since the speed of the
assembler is limited by the speed of the printer when the listing is printed directly. The use of
sequential files for all input from and output to a device is usually preferable to direct input from or
output to a device.
The logical length of records in a sequential file may be fixed or variable; variable length records
may be any length including zero. When a file is created, the user may specify the logical record
size or may allow the system to use the default size of 80 bytes. Specifying 0 causes the system to
use the default of 80. If the user specifies the size, the size should be an estimate of the average
logical record size of the records to be placed in the file.
The following characteristics apply to an example sequential file:

. 80-byte logical records

. 256-byte physical records

7-14 2270507-9701

File Utility Operations 7.2

. 1,000-record initial allocation
o 500-record secondary allocation
] Blank compression

Although the logical record length is 80 bytes, few records contain that many bytes because blank
compression reduces the length of each record by the number of blanks compressed from the
record. The average number of bytes per record in this file is 40 bytes. (This average does not
necessarily apply to any file other than this example.) Thus, since this is half the size of the actual
logical record, the allocation sizes should be reduced by half.

The following is an example or the source code for the supervisor call block to create the example
file and for the pathname of the file:

CRSEQ DATA O CREATE FILE PACK.USER.TEXT.FILEO1,
BYTE >90,0 LRL = 80 AND PRL = 256. FILE IS A
DATA 0,0 BLANK COMPRESSED, EXPANDABLE,
DATA 0,0 SEQUENTIAL FILE. INITIAL ALLOCATION
DATA 0,0 IS 500, SECONDARY ALLOCATION IS 250.
BYTE 0,>8D UTILITY FLAGS
DATA 80
DATA 256
DATA PATHL
DATA 0,0
DATA 0,500
DATA 0,250

PATHL BYTE NAME-$-1 PATHNAME LENGTH

TEXT ‘PACK.USER.TEXT.FILEO?’
NAME EQU $

The following example shows the same file created specifying a user ID and passcode:

CRSEQ DATA O CREATE FILE PACK.USER.TEXT.FILEO1,
BYTE >90,0 LRL = 80 AND PRL = 256. FILEIS A
DATA 0,0 BLANK COMPRESSED, EXPANDABLE,
DATA 0,0 SEQUENTIAL FILE. INITIAL ALLOCATION
DATA 0,0 IS 500, SECONDARY ALLOCATION IS 250.
DATA >018D UTILITY FLAGS WITH USER ID SPECIFIED
DATA 80
DATA 256
DATA PATHL
DATA USERID
DATA 0
DATA 0,500
DATA 0,250

PATHL BYTE NAME-$-1 PATHNAME LENGTH

TEXT 'PACK.USER.TEXT.FILEO?1’
NAME EQU $

2270507-9701 7-15

7.2 File Utility Operations

USERID BYTE >13,0 TOTAL LENGTH
BYTE >02,>10 SUBLIST TYPE AND LIST LENGTH
TEXT ’IDFIELD’ USERID
TEXT 65420 USER PASSCODE

Creating Relative Record Files. A relative record file consists of records that can be accessed
either randomly or sequentially. To access & record randomly, the user specifies a unique record
number. For example, to access record number 5, the value 5 must be placed in the appropriate
field of the I/O supervisor call block.
Relative record files can also be accessed sequentially. To access records sequentially, the user
specifies a starting record number. File management automatically increments the record number
after each read or write operation.
Relative record files are useful when each record in the file can be associated with a unique value
ranging from 0 to any number. For example, in an inventory file, item number is appropriate for
record number. In this case, to obtain information about item number 23456, access record
number 23456.
The range of record numbers is one less than the number of records in the file. A relative record
file can contain a maximum of 16,777,216 records. Because the records in a relative record file are
fixed length, the system can convert a specified record number to a physical address on disk and
can directly obtain any record with one disk access. Essentially, the location on the disk is derived
from the calculation:

logical record position = file position + (record number x record length)

The logical record length for relative record files is fixed and is specified when the file is created.
Specifying 0 causes the system to use the default size of 80 bytes.

Relative record files may be blocked or unblocked. Unless the immediate write mode applies, the
physical record is not written to disk until the system needs the memory space occupied by the
physical record or until the file is closed.
DNOS supports three special use categories of relative record files:

. Directory files

. Program files

. image files
The following characteristics apply to an example relative record file:

° 72-byte logical records

. 256-byte physical records

o 1,000-record fixed size

7-16 ; 2270507-9701

File Utility Operations 7.2

The following is an example of the source code for the supervisor call block to create the example
file and for the pathname of the file:

CRREL DATA O CREATE FILE VOL2.STO2.INV WITH
BYTE >90,0 LRL = 72 AND PRL = 256. FILE IS
DATA 0,0 RELATIVE RECORD. FIXED SIZE IS
DATA 0,0 1000 RECORDS.
DATA 0,0
BYTE 0,>82 UTILITY FLAGS
DATA 72
DATA 256
DATA PTHN
DATA 0,0
DATA 0,1000
DATA 0,0
PTHN BYTE NME-$-1 PATHNAME LENGTH

NME

TEXT ‘VOL2.STO2.INV’
EQU %

Creating Key Indexed Files. Key indexed files are collections of records that are accessed by
content, either sequentially or randomly. A primary key and optionally 1 through 13 secondary

keys may

be defined in each record. A key is a character string of defined length at a defined

position in each record. Records of a key indexed file may be accessed in ascending or
descending sequence of a specified key, or by specifying the content of a key.

Other characteristics of key indexed files are:

A key may be defined as duplicatable; that is, more than one record may contain the
same characters in the key.

-A key may be defined as modifiable; that is, a rewrite operation may alter the contents of

the key.

A key may consist of 1 through 100 characters and may overlap another key.
A record may be accessed using only the first part of a key (partial key).

A record may be read and locked pending update.

The logical record length is variable and may change when a record is rewritten, except
that the record length must be an even number greater than zero.

Key indexed files are expandable and are blank compressed.
A record to be modified is copied to a backup area, so that no data is lost in case of

system failure. The operation being performed at the time of the failure is not applied to
the file.

2270507-9701 717

7.2 File Utility Operations

The keys for a key indexed file are defined when the file is created and apply to all records in the
file. All of the data in the record may be included in one or more of the keys. Often, however, the
keys are only a part of the entire record, and are used to access related data in the record. Keys
may overlap other keys, be contiguous within the record, or be spread throughout the record.

A key indexed file is created in the immediate write mode regardiess of the state of the write mode
flag (bit 10 of the utility flags). Although the processing of the records of the file is significantly
faster in the deferred write mode, the probability of loss of data when errors occur is much greater.

The Modify KIF Logging (MKL) command places a key indexed file in the deferred write mode. The
file remains in the deferred write mode until a Close operation is performed to the file. Insert,
Rewrite, and Delete operations are significantly faster in this mode because the number of disk
read and write operations decreases. It is particularly appropriate to use the MKL command prior
to copying a sequential file to a key indexed file using the Copy Sequential to Key (CSK) command
or a user program that performs a similar function. Before processing a key indexed file in the
deferred write mode, copy the key indexed file prior to entering the MKL command. You can
rebuild the file if an error or system crash should occur while the file is in the deferred write mode
using this copy. Perform the following steps if an error or system crash occurs:

1. Terminate all programs that modify the file.

2. Delete the key indexed file being processed in the deferred write mode.

3. Identify and correct the cause of the error or crash.

4. Using a copy of the original file, repeat the processing that failed. (If the file is in
deferred write mode, retain one good copy of the original file in case another recovery is
necessary.)

The foliowing is an example of a key indexed file record. Each of the 52 characters in the record is

included in one of the keys; several characters are included in two keys. Notice that a key contains
similar information in each record.

1-9 10-20 21-30 31-40 41-46 (471 48-52
| 123456789 l DOE I JOHN I ANDREW |987654 IMI OZOOOI

2279583

7-18 2270507-9701

File Utility Operations 7.2

Key Columns Definitions
1 41-46 Employee number
2 1-9 Social security number
3 10-20 Last name
4 21-30 First name
5 31-40 Middle name
6 10-40 Full name
7 47 Sex
8 48-52 Monthly salary

The employee number field is the primary key; seven secondary keys are defined. The records of
the file can be accessed by any of the keys, in sequence. A record that contains a specific
employee number, a specific social security number, or a specific full name can be accessed. An
attempt to access a record that contains a specific monthly salary accesses the first record
inserted into the file that contains that salary; successive accesses provide additional records of
persons who receive that salary.

The employee number field is the primary key because it is the first key defined. The primary key
may or may not be the first key in the record.

Each key may have two attributes; it may be duplicatable, and it may be modifiable. When a key is
duplicatable, more than one record can contain the same data in the field. The name fields, the sex
fields, and the monthly salary fields all should be duplicatable; it is logical to allow more than one
record having the same value in these fields. The employee number and social security fields
should not be duplicatable. It is not logical that more than one record would contain the same
social security number or the same employee number. In a file that contains thousands of records
with the same key value, operations that insert or delete and in some cases rewrite these records
process much more slowly than if the duplicates did not exist.

The value of a key having the modifiable attribute may be changed by a rewrite operation. The last
name field and the monthly salary field should be modifiable; these items may change. The
employee number and social security number fields should not be modifiable; these values do not
change. The primary key, by definition, is not modifiable. (A record that has incorrect data in a key
that is not modifiable must be deleted and inserted again, with the correct data in the key.)

2270507-9701 719

7.2 File Utility Operations

The key definition block defines the keys for a file. The address of this block is placed in bytes 12
and 13 of the supervisor call block for the Create File operation. The format of the key definition

block is:

DEc HEXx

0 (o}
2 2
6 6
8 8
10 A
12 C
14 E
M

M+ 2

2279584

LENGTH OF BLOCK : RESERVED
EsTIMATED NUMBER OF LOGICAL
RECORDS IN FILE
NUMBER OF KEYS (n)
No. CHA T
FLAGS OF CHARACTERS PRIMARY
OFFSET To KEY KEYI
FLAGS No. oF CHARACTERS FIRST
SECONDARY
OFFSET TO KEY KEY‘
ADDITIONAL
/ ./
SECONDARY
r T’ KEY
¥
[3
FLAGS No. oF CHARACTERS LAsT
SECONDARY
OFFSET TO KEY KEYL

The byte address of the data for the last key, m, is calculated as follows:

m=4x(n-1+38

The key definition block contains the following:

Byte

0

1

2-5

6-7

7-20

Contents
Length of the block, in bytes.
Reserved.

Estimated number of logical records. The file can expand beyond this
number.

Number of keys for the file, 1 through 14.

Bytes 8 through 11 define the primary key.

2270507-9701

9

10-11

File Utility Operations 7.2

Fiags for the key, as follows:
Bits 0-4 — Reserved.
Bit 5 — Zero for primary key. Modifiable flag for secondary keys.
Set as follows:
1 — Key may be modified.
0 — Key may not be modified.
Bit 6 — Reserved.
Bit 7 — Duplicatable flag. Set as follows:
1 — Key may be duplicated.
0 — Key is unique to one record.

Number of characters in key.

Offset to the key. Range is zero through number of characters in
record.

Subsequent bytes, containing similar information, define the secondary keys, as applicable.

The size of a key indexed file may be calculated to assist in determining the disk space to be used
by the file. The size of the file varies as records are inserted, rewritten, and deleted. Formulas and
example calculations to estimate the size of a newly created key indexed file are shown in the
DNOS Systems Programmer’s Guide.

The following characteristics apply to an example key indexed file:

J 100-character average length of logical records

. 768-character physical records

U] Two keys, neither key duplicatable or modifiable

. 10,000 logical records (estimated)

The following is an example of the source code for the supervisor call block to create the example
file, for the key definition block, and for the pathname:

CRKEY DATA
BYTE
DATA
DATA
DATA
BYTE
DATA
DATA
DATA
DATA
DATA
DATA
PATH BYTE
TEXT
NAME EQU

2270507-9701

0 CREATE FILE VOL1.PAY WITH LRL =
>90,0 100 AND PRL = 768. FILE IS KEY

0,0 INDEXED. FILE IS EXPANDABLE WITH
0,0 DEFAULT INITIAL AND SECONDARY
KEY,0 ALLOCATIONS.

0,>87 UTILITY FLAGS

100

768

PATH

0,0

0,0

0,0

NAME-$-1 PATHNAME LENGTH

'VOL1.PAY’

$

7-21

7.2 File Utility Operations

KEY BYTE KEYEND-$-1 KEY BLOCK LENGTH
DATA 0,10000 10000 MAXIMUM LOGICAL RECORDS
DATA 2 2 KEYS
DATA 12 1ST KEY 12 CHARACTERS
DATA O BEGINNING AT 1ST CHARACTER
DATA 6 2ND KEY 6 CHARACTERS
DATA 5 BEGINNING AT 6TH CHARACTER
KEYEND EQU $ OVERLAPPING 1ST KEY

7.2.1.2 Deleting Files. To delete a file, a program executes an /O Operations SVC with sub-
opcode >92. The following fields of the utility supervisor call block apply:

. SVC opcode — >00

o Return code

. Utility sub-opcode — >92
. Utility flags

. Pathname address

. Parameter address

The following flags apply:

2285024

Bit 7 — parameter flag. Set as follows:
1 — Parameters are present and pointed to by bytes >18 and > 19.
0 — No parameters

All other utility flags should be set to zero.

The parameter address may point to a user ID parameter as specified in the Performing Utility
Functions paragraph in this section. If this option is specified in a secure environment, the file is
deleted if the user has delete access to the file.

A Delete File operation does not delete the file if the file is either write protected or delete pro-
tected. A Remove Protection operation must be performed before a protected file may be deleted.

The pathname address is the address of an area of memory that contains the pathname of a file to

be deleted. The first byte of the pathname area contains the number of characters in the
pathname. Subsequent bytes contain the ASCII characters of the pathname.

7-22 2270507-9701

File Utility Operations 7.2

The following is an example of the source code for a supervisor call block to delete the sequential
file used as an example in the description of the Create File operation:

DFILE DATA O

7.2.1.3 Assigning LUNOs.

BYTE >92,0
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA NAME
DATA 0,0
DATA 0,0
DATA 0,0

DELETE FILE AT PATHNAME ADDRESS NAME.
PATHNAME BLOCK IS SHOWN IN CREATE
FILE EXAMPLE.

UTILITY FLAGS

To assign a LUNO, a program executes an I/0 Operations SVC with

sub-opcode >91. The following fields of the utility supervisor call block apply:

SVC opcode — >00

Return code

Utility sub-opcode — >91

Logical unit number (LUNO)

<Resource type >
Utility flags
Pathname address

Parameter address

An Assign LUNO operation may request the autocreate option, which first creates the file, then
assigns a LUNO to it. All fields and utility flags defined for a Create File operation also apply to an

Assign LUNO with autocreate operation.

The system returns the resource type in bytes 6 and 7 of the call block. The resource type is one of

the following hexadecimal numbers:

Type

0101
0201
0301
0401
0501
0601

2270507-9701

Resource

Sequential file
Relative record file
Key indexed file
Directory file
Program file
Image file

7-23

7.2 File Utility Operations

The following utility flags apply:

0 1-2 3-4 516 8|9 {10] 11-12 |13 | 14-15

FF F frTfffrf 1T 1 1

2279585

7-24

Bit 0 — <Created by assign>. Set to one by system after creating the file (autocreate option).

Bits 1-2 — File usage flag. Set as follows:
00 — No special usage.
01 — Directory file.
10 — Program file.
11 — Image file.

Bits 3-4 — Scope of LUNO flag. Set as follows:
00 — Task-local LUNO.
01 — Job-local LUNO.
10 — Giobal LUNO.
11 — Job-local-shared LUNO.

Bit 5 — Generate LUNO flag. Set as follows:
1 — Assign the next available LUNO and return LUNO in byte 3.
0 — Assign the LUNO specified in byte 3.

Bit 6 — Autocreate flag. Set as follows:
1 —Create the file, if it does not already exist (call block must specify file
parameters).
0 —Do not create file.

Bit 7 — Parameter flag. Set as follows:
1 — Parameters are present and pointed to by bytes > 18 and >19.
0 — No parameters

Bit 8 — LRL flag (autocreate option). Set as follows:
1 — Place the logical record length in bytes 12 and 13.
0 —Place the logical record length in bytes >8 and > 9. It is recommended that you
set the LRL flag to one and place the logical record length in bytes >12 >13.

Bit 9 — Temporary file flag (autocreate option). Set as follows:
1 — Temporary file. When pathname address in bytes 22 and 23 is zero, the temporary
file is placed on the system disk.
0 — Not atemporary file.

Bit 10 — Write mode flag (autocreate option). Set as follows:
1 — Immediate write mode.
0 — Deferred write mode (normal mode).
The setting of the write mode flag does not apply to a key indexed file, which is
always created in the immediate write mode.

2270507-9701

File Utility Operations 7.2

Bits 11-12 — Data format flag (autocreate option). Set as foliows:
00 — Normal record image.
01 — Blank compressed.
The setting of the data format flag does not apply to a key indexed file, which is
always blank compressed.

Bit 13 — Allocation flag (autocreate option). Set as follows:
1 — Expandable file.
0 — Fixed size file.
If the file already exists, the system returns this value.

Bits 14-15 — File type flag (autocreate option). Set as follows:
01 — Sequential file.
10 — Relative record file.
11 — Key indexed file. _
If the file already exists, the system returns this value.

A logical unit number (LUNO) must be assigned to an I/O resource to identify the resource for an
I/0 operation. The scope of a global LUNO is not limited to a single job or task. The LUNO applies
in all jobs and tasks executing while it remains assigned. The scope of a job-local LUNO is limited
to the tasks in the job. A job-local LUNO is assigned by one of the tasks in the job or by an SCI
command, The scope of a task-local LUNO is limited to the task that assigns the LUNO. A task-
local LUNO is assigned by a task.

Job-local-shared LUNOs (shared LUNOSs) are job-local LUNOs that can be used by more than one
task within a given job. Each task that uses the LUNO must open it. The access privileges of the
LUNO are compared to those requested in the Open operation. If the Open operation requests
greater access privileges and it does not conflict with the access privileges of other LUNOs that
are assigned and opened to the resource, the privilege level of the LUNO is changed to the greater
value. The access privileges of a LUNO in order of increasing value are read only, shared,
exclusive write, exclusive all. If the requested access privilege is less than or equal to the present
value, the privilege level of the LUNO is not changed. Thus, all tasks that use a shared LUNO have
the same access privileges to the resource regardless of how they opened it.

A count of the number of successful Open operations is kept. The same number of Close oper-
ations must be performed before the LUNO can be released. If a Close operation is not performed,
the LUNO is not released until the job terminates.

The use of shared LUNOs tends to reduce the total number of LUNOSs required in the system. This
type of LUNO is not recommended for sequential files because there is no defined method of
positioning the file; that is, the task has no control of which record is read or written.

When assigning a LUNO to a directory, program file, or image file, the file usage flags must be set.
This prevents access to the file that is not compatible with the defined use of the file.

If auser ID parameter is specified in a secure environment as described in the Performing Utilities
Functions paragraph in this section, the LUNO is assigned only if the user ID in the parameter list
has rights to the file. Subsequent I/O operations using the LUNO are verified against the specified
user’s access rights.

2270507-9701 7-25

7.2 File Utility Operations

The Assign LUNO operation may assign the next available LUNO or a LUNO specified in the LUNO
field. When the generate LUNO flag is set to one, the system assigns the next available LUNO and
returns the number in the LUNO field. When the flag is set to zero, the system considers the
contents of the LUNO field of the supervisor call block to be the desired LUNO.

The autocreate option combines creating the file with assigning a LUNO to the file. When the
autocreate flag is set to one and the file does not already exist, the system creates a file, using the
contents of the supervisor call block. The flags and fields defined for a create file operation must
be set to valid values. The system sets the created-by-assign flag to one when it has successfully
created the file, and assigns the LUNO.

The autocreate option creates a task level temporary file when the temporary file bit is set. The
pathname of the temporary file is automatically asssigned by the system. A pathname, containing
the name of the disk that will contain the temporary file, can be specified. The default is the sys-
tem disk. The system deletes the file when the LUNO is released.

The pathname address is the address of an area of memory that contains the pathname of the file
to which the LUNO is assigned. The first byte of the pathname area contains the number of
characters in the pathname. Subsequent bytes contain the ASCII characters of the pathname.

The following is an example of the source code for a supervisor call block and the pathname block
to assign a LUNO to a file:

ALUNO DATA O ASSIGN TASK LOCAL LUNO >18 TO
BYTE >91 FILE VOL3.BILL.INPUT
BYTE >18
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 0,0 UTILITY FLAGS
DATA 0,0
DATA PNME
DATA 0,0
DATA 0,0
DATA 0,0
PNME BYTE N4-$-1 PATHNAME LENGTH
TEXT ‘VOL3.BILL.INPUT’
N4 EQU §

7-26 2270507-9701

File Utility Operations 7.2

The following is an example of the source code for a supervisor call block and a pathname block to
autocreate and assign a LUNO to a file:

ALCR DATA O ASSIGN JOB LOCAL LUNO >25 TO
BYTE >91 FILE VOL6.USER.REP; AUTOCREATE
BYTE >25 THE FILE. FILE IS
DATA 0,0 SEQUENTIAL, FIXED LENGTH,
DATA 0,0 BLANK COMPRESSED. LRL = 50,
DATA 0,0 PRL = 256.
BYTE >0A,>89 , UTILITY FLAGS
DATA 50
DATA 256
DATA FNME
DATA 0,0
DATA 0,0
DATA 0,0

FNME BYTE FN-$-1 PATHNAME LENGTH

TEXT ‘VOL6.USER.REP’
FNME = EQU §

7.2.1.4 Releasing LUNOs. To release a LUNO, a program executes an 1/0 Operations SVC with
sub-opcode >93. The following fields of the utility supervisor call block apply:

. SVC code — 0

o Return code

. Utility sub-opcode — >93

. Logical unit number (LUNO)
e Utility flags

The following utility flags apply:

0 1-2 3-4 51]6 7189 |10 11-12|13 | 14-15

T

Bits 3-4 — Scope of LUNO. Set as follows:
00 — Task-local LUNO.
01 — Job-local LUNO.
10 — Global LUNO.
11 — Job-local-shared LUNO.

2279586

Bit 7 — Parameter flag. Set as follows:

1 — Parameters are present and pointed to by bytes >18 and >19.
0 — No parameters.

2270507-9701 7-27

7.2 File Utility Operations

Set all other utility flags to zero.

A Release LUNO operation does not release a LUNO that has a different scope from that specified
by the scope of LUNO flag. For example, if giobal LUNO > 23, job-local LUNO > 23, and task-local
LUNO >23 were all assigned, and a Release LUNO operation for task-local LUNO >23 were per-
formed, the global and job-local LUNOs would remain assigned.

In a networking environment, an Assign LUNO-Release LUNO pair bounds a session. If a user
desires a session to span more than one such stage, it is possible to designate a release LUNO
parameter that tells the local area network that this release LUNO does not terminate the session.
The parameter must be included in the parameter list pointed to by the parameter address field in
the call block. The parameter flag bit must be set in the utility flags. A parameter block which
includes the release LUNOQ parameter only is shown below:

Dec Hex
0 (o] >04 >00
2 2 >05 >01
4 4 >03
2285025
Byte Contents

0 Length of the parameter list minus the length byte in bytes

1 Reserved — Must be set to zero

2 >05 — Release LUNO parameter sublist number

3 Length of the Release LUNO sublist in bytes

4 Parameter value:

> 03 — Parameter enabled
>02 — Parameter disabled

The following is an example of the source code for a supervisor call block to release a LUNO:

RLUNO DATA O RELEASE GLOBAL LUNO >23.
BYTE >93
BYTE >23
DATA 0,0
DATA 0,0
DATA 0,0

7-28 2270507-9701

File Utility Operations 7.2

BYTE >10,0 UTILITY FLAGS
DATA 0,0

DATA 0

DATA 0,0

DATA 0,0

DATA 0,0

7.2.1.5 Verifying Pathnames. To verify a pathname, a program executes an /0 Operations SVC
with sub-opcode >99. The following fields of the utility supervisor call block apply:

e SVCcode —0

. Return code

. Utility sub-opcode — >99
o Data buffer address

o Utility flags

U Pathname address

The following utility flags apply:

) 1-2 3-4 51678 |9 |t0]11-12 |13 | 14-15

T f 1

2279587

Bits 1-2 — <File usage flag>. Set by DNOS to the usage of the verified file as follows:
00 — No special usage.
01 — Directory file.
10 — Program file.
11 — Image file.

Bit 5 — <System flag>. Set by DNOS to 1.

Bits 11-12 — <Data format flag>. Set by DNOS to the format of the verified file as follows:
00 — Normal record image.
01 — Blank compressed.

Bit 13 — <Allocation flag>. Set by DNOS to the allocation of the verified file as follows:
1 — Expandable file.
0 — Fixed size file.

Bits 14-15 — <File type flag>. Set by DNOS to the type of the verified file as follows:
01 — Sequential file.
10 — Relative record file.
11 — Key indexed file.

2270507-9701 7-29

7.2 File Utility Operations

Set all other flags to zero.

The Verify Pathname operation performs a syntax check on the pathname. When the pathname is
that of an existing file, the system returns the file usage, file type, data format, and allocation type
in the corresponding flags of the utility flag word. The file type is returned in the data buffer
address field in the form returned for an Assign LUNO operation. When the pathname is of a non-
existent file, the appropriate error code is returned and the utility flag word is cleared.

The pathname address is the address of an area of memory that contains the pathname to be
verified. The byte at the pathname address contains the number of characters in the pathname.
Subsequent bytes contain the ASCII characters of the pathname.

The system returns the resource type in bytes 6 and 7 of the call block. The resource type is one of
the following hexadecimal numbers:

Type Resource
0101 Sequential file
0201 Relative record file
0301 Key indexed file
0401 Directory file

0501 Program file

0601 Image file

The foliowing is an example of the source code for a supervisor call block to verify a pathname:

VFY DATA O VERIFY PATHNAME VOL1.USER.SOURCE
BYTE >99,0
DATA 0,0
DATA 0,0
DATA 0,0
TYPE BYTE 0,0 UTILITY FLAGS
DATA 0,0
DATA NA
DATA 0,0
DATA 0,0
DATA 0,0
NA BYTE NA1-$-1 PATHNAME LENGTH
TEXT ‘VOL1.USER.SOURCFE’
NA1 EQU §

7.2.1.6 Renaming Files. To assign a new pathname to a file, a program executes an 1/O Oper-
ations SVC with sub-opcode >95. The following fields of the utility supervisor call block apply:

. SVC code — 0
. Return code
. Utility sub-opcode — >95

. Logical unit number (LUNO)

7-30 2270507-9701

File Utility Operations 7.2

. User flags
. Utility flags
. Pathname address
All utility flags should be set to zero.

The Do Not Replace flag (bit 5) in the user flag field, applies to the Rename operation.

2279588

Bit 5 — Do Not Replace flag. Set as follows:

1 — When afile already exists under the new pathname, do not rename the file.
0 — Rename the file, replacing an existing file if one exists.

The following utility flags apply to the rename operation:

0 1-2 34 5 6 7|8 9 |10| 11-12 |13 14—-15

2283208

Bit 7 — Parameter flag. Set as follows:

1 — Parameters are present and pointed to by bytes >18 and >19.
0 — No parameters

Set all other utility flags to zero.

The operation assigns a new pathname to the file assigned to the LUNO specified in the LUNO
field. When a file having the new pathname already exists, and the do not replace flag is set to
zero, the existing file is deleted but any aliases of the new pathname remain valid for the new
pathname. When the do not replace flag is set to one, a file having the new pathname is not
deleted, and the pathname of the file assignhed to the specified LUNO is not changed.

A Rename operation can change a filename. This requires changing the name only in the
appropriate directory. If the directory is full, however, the Rename operation fails and returns an
error, meaning that it cannot successfully create a file. A Rename operation can change the name
of any directory in the pathname, except that the Rename operation may not replace a directory
that contains one or more files or directories. Changing a directory name requires changes in the
entries in one or more directories. A Rename operation cannot change the volume name, which
would require copying the file and possibly the directories to another volume.

If the file security feature was specified during system generation, a Rename File SVC of a direc-
tory is not allowed unless specified by a member of the system manager access group.

2270507-9701 7-31

7.2 File Utility Operations

Some special conditions exist when the Rename operation is used to change the name of a
program file in a directory. In a Rename operation the names of channels assigned to the source
program file are also copied and are associated with the new destination program file. Aliases of
the source program file are not copied. Any aliases assigned to the renamed program filename are
associated with the new destination program filename.

The user cannot specify the scope of the LUNO for the Rename operation. The routine that
performs the operation searches the LUNO list, which contains the task-local LUNOs, then the
job-local LUNOs, followed by the global LUNOs. To rename a file assigned to a job-local LUNO,
the task-local LUNO of the same value cannot be assigned. To rename a file assigned to a global
LUNO, neither the task-local LUNO nor the job-local LUNO of the same value can be assigned.
That is, when a Rename operation specifies LUNO >35, the operation is attempted for any
resource assigned to task-local LUNO >35. If task-local LUNO >35 is not currently assigned, the
operation is attempted for job-local LUNO >35. If neither task-local LUNO >35 nor job-local LUNO
>35 is currently assigned, the operation is attempted for global LUNO >35.

Any LUNO assigned to the file to be renamed (other than the one specified in the LUNO field) must
be released prior to renaming the file. When the Rename operation replaces an existing file, any
LUNO assigned to the existing file must be released prior to the Rename operation.

When the Rename File SVC executes, the resulting file retains the security access rights of the
original file. For example, when a file named LIST1 is renamed to LISTS2, LIST2 retains all the
security access rights of LIST1.

There is a Rename File SVC option that assigns the security access rights of the destination file to
the input file. That is, if files LIST1 and LIST2 have different security access rights and LIST1 is
renamed to LIST2, the resulting file retains the security access rights of the original LIST2. This
option is available only on systems where the security feature was chosen during system
generation.

This option operates only when the following conditons are true:
* The destination file already exists.
* Thereplace option is specified.

If the destination file does not exist, the resulting file retains the security access rights of the
original file.

To use this option, it must be specified as an entry in a parameter list and the parameter flag must
be set. The parameter address field must point to the parameter block. The following diagram
shows the parameter list block:

DEC HEX
0 0 >04 >00
2 2 >04 >01
4 4 >03
2285267

7-32 2270507-9701

File Utility Operations 7.2

Byte Contents
0 Total parameter list length minus the length byte in bytes
1 Reserved — must be set to zero
2 >04 — Rename File parameter type
3 Length of the Rename File sublist in bytes
4 Sublist value:

>03 — Parameter enabled
>(02 — Parameter disabled

The pathname address is the address of an area of memory that contains the new pathname. The
byte at the pathname address contains the number of characters in the pathname. Subsequent
bytes contain the ASCII characters of the pathname.

The following is an example of the source code for a supervisor cali block to assign a new path-
name to a file using the Rename File parameter:

RNAME DATA 0O RENAME FILE ASSIGNED TO
BYTE >95 LUNO >25. DO NOT REPLACE.
BYTE >25 NEW NAME IS VOL4.USER2.SOURCE
DATA 0,0 KEEP SECURITY OF NEW NAME
DATA 0,0
DATA 0,0
BYTE 0,>04 UTILITY FLAGS
DATA 0,0
DATA NNAM
DATA RENAME
DATA 0,0
DATA 0,0,0
NNAM BYTE NN1-$-1 PATHNAME LENGTH
TEXT 'VOL4.USER2.SOURCEFE’
NN1 EQU §
RENAME BYTE >04,0 TOTAL LENGTH
BYTE >04,>01
BYTE >03

7.2.1.7 Write Protecting Files. To write protect a file, a program executes an I/O Operations SVC
with sub-opcode >97. The following fields of the utility supervisor call block apply:

. SVC opcode — >00

. Return code

. Utility sub-opcode — >97
e Utility flags

. Pathname address

. Parameter address

2270507-9701 7-33

7.2 File Utility Operations

The following utility flags apply:

0 1-2 3-4 5 6 7|8 9 (10 11—-12 |13 14—15

2283208

Bit 7 — Parameter flag. Set as follows:
1 — Parameters are present and pointed to by bytes >18 and >19.
0 — No parameters

Set all other utility flags to zero.

Files are created with no protection. After a Write Protect operation is performed, neither a Write
nor a Delete operation may be performed on the file. Protection is removed by performing a
Remove Protection operation.

In a secure environment, a user ID can be specified as described in the File Utility Operations para-
graph in this section. If the user ID in the parameter list has delete and write access, this SVC write
protects the file.

The pathname address is the address of an area of memory that contains the pathname of the file
to be write-protected. The byte at the pathname address contains the number of characters in the
pathname. Subsequent bytes contain the ASCIl characters of the pathname.

The following is an example of the source code for a supervisor call block to write protect a file:

WRPR DATA O APPLY WRITE AND DELETE
BYTE >97 PROTECTION TO FILE
BYTE O VOLS5.SOURCE.PROGA.
DATA O
DATA O
DATA 0,0
DATA 0,0
BYTE 0,0 UTILITY FLAGS
DATA 0,0
DATA PNAM
DATA 0,0
DATA 0,0
DATA 0,0

PNAM BYTE PN1-$-1 PATHNAME LENGTH
TEXT ‘VOL5.SOURCE.PROGA’

PN1 EQU $

7.2.1.8 Delete Protecting Files. To delete protect a file, a program executes an 1/0 Operations
SVC with sub-opcode >98. The following fields of the utility supervisor call block apply:

. SVC opcode — >00

] Return code

7-34 2270507-9701

File Utility Operations 7.2

° Utility sub-opcode — >98
° Utility flags
. Pathname address

] Parameter address

The following utility flags apply:

0 1-2 34 5 6117 |8 9 |10 11—-12 |13 14—15

2283208

Bit 7 — Parameter flag. Set as follows:

1 — Parameters are present and pointed to by bytes >18 and >19.
0 — No parameters

Set all other utility flags to zero.

Files are created with no protection. After a Delete Protect operation is performed, a Delete opera-
tion may not be performed on the file. Protection is removed by performing a Remove Protection
operation.

The pathname address is the address of an area of memory that contains the pathname of the file
to be delete protected. The byte at the pathname address contains the number of characters in the
pathname. Subsequent bytes contain the ASCII characters of the pathname.

In a secure environment, a user ID can be specified as described in the File Utility Operations para-
graph in this section. This SVC delete protects the file if the user ID has write and delete access to
the file.

The following is an example of the source code for a supervisor call block to delete protect a file:

DPR DATA O APPLY DELETE PROTECTION
BYTE >98 TO FILE VOL1.SOURCE.PROGB
BYTE O
DATA O
DATA O
DATA 0,0
DATA 0,0
BYTE 0,0 UTILITY FLAGS
DATA 0,0
DATA DPNAM
DATA 0,0
DATA 0,0
DATA 0,0
DPNAM BYTE DPN1-$-1 PATHNAME LENGTH
TEXT ‘VOL1.SOURCE.PROGB’
DPN1 EQU $

2270507-9701 7-35

7.2 File Utility Operations

7.2.1.9 Removing File Protection. To remove protection from a file, a program executes an 1/O
Operations SVC with sub-opcode >96. The following fields of the utility supervisor call block apply:

° SVC opcode — >00

. Return code

. Utility sub-opcode — >96
. Utility flags

. Pathname address

. Parameter address

The following utility fiags apply:

0 1-2 3-4 5 6|7]8 9 |10| 11—-12 |13 14—15

2283208

Bit 7 — Parameter flag. Set as follows:
1 — Parameters are present and pointed to by bytes >18 and >19.
0 — No parameters

Set all other utility flags to zero.

When write or delete protection is applied to a file, the file remains protected until a Remove Pro-
tection operation is performed on the file. The Remove Protection operation removes both write
and delete protection, leaving the file unprotected.

The pathname address is the address of an area of memory that contains the pathname of the file
from which protection is to be removed. The byte at the pathname address contains the number of
characters in the pathname. Subsequent bytes contain the ASCII characters of the pathname.

In a secure environment, a user ID can be specified as described in the File Utility Operations para-
graph in this section. This SVC removes the file delete and write-protection if the user ID has write
and delete access to the file.

7.36 2270507-9701

File Utility Operations 7.2

The following is an example of the source code for a supervisor call block to remove protection
from a file:

RPROT DATA O REMOVE PROTECTION FROM FILE USING
BYTE >96 _ PATHNAME BLOCK OF PRECEDING
BYTEO EXAMPLE
DATA O
DATA O
DATA 0,0
DATA 0,0
BYTE 0,0 UTILITY FLAGS
DATA 0,0
DATA DPNAM
DATA 0,0
DATA 0,0
DATA 0,0

7.2.1.10 Adding an Alias. To add an alias for a file, a program executes an /O Operations SVC
with sub-opcode >9A. The following fields of the utility supervisor call block apply:

. SVC code — 0

. Return code

. Utility sub-opcode — >9A

. Logical unit number (LUNO)

. Pathname address
All utility flags should be set to zero.
An alias is an alternate filename or directory name that may be assigned to allow access to the file
by an alternate pathname. An alias may be assigned at any directory level other than the volume
directory level. The original pathname of the file remains valid.
The pathname address is the address of an area of memory that contains the alias pathname. The
first byte contains the number of characters in the alias pathname. Subsequent bytes contain the
characters of the pathname. The alias pathname consists of the volume name of the pathname,
followed by directory names as required, followed by the alias being added. Elements of the alias
pathname are separated by periods. The alias pathname must contain any directories of the
pathname that precede the alias.
The logical unit number is the LUNO-assigned to the pathname for which an alias is to be added.
The pathname must have the same number of elements as the alias pathname; it must end with
the directory name or filename for which the alias is being added.

A pathname that ends with a directory name is a directory pathname. Set the file usage flag in the
utility flags word to 01 (directory file) when you assign a LUNO to the pathname.

2270507-9701 7-37

7.2 File Utility Operations

For example, the pathname of a file is:
VOL2.PROJA.HICKS.SOURCE.PROGA

To add alias FORMAT for the filename PROGA, assign a LUNO to the file pathname and add an
alias using alias pathname:

VOL2.PROJA.HICKS.SOURCE.FORMAT

To add alias COML for directory HICKS, assign a LUNO to directory file pathname:
VOL2.PROJA.HICKS

Then add the alias using alias pathname:
VOL2.PROJA.COML

The following is an example of the source code for a supervisor call block to add an alias:

AALIAS DATA O ADD AN ALIAS FOR FILE ASSIGNED TO
BYTE >9A LUNO >47.
BYTE >47
DATA O
DATA O
DATA 0,0
DATA 0,0
BYTE 0,0 UTILITY FLAGS
DATA 0,0
DATA ALPNM
DATA 0,0
DATA 0,0
DATA 0,0
ALPNM BYTE ALP-$-1 FATHNAME LENGTH
TEXT ‘VOL1.IN’ ALIAS
ALP EQU $

7.2.1.11 Deleting an Alias. To delete an alias for a file, a program executes an /O Operations
SVC with sub-opcode >9B. The following fizlds of the utility supervisor call block apply:

e SVCcode —0
. Return code
. Utility sub-opcode — >9B
o Pathname address
All utility flags should be set to zero.

An alias is an alternate filename or directory name that allows access to the file by an alternate
pathname. A Delete Alias operation removes the specified alias from the directory.

7-38 2270507-9701

File Utility Operations 7.2

The pathname address is the address of an area of memory that contains the alias pathname. The
alias pathname is identical to the alias pathname used to add the atlias.

The following is an example of the source code for a supervisor call block to delete an alias:

DALIAS

DATA O DELETE THE ALIAS ADDED IN THE
BYTE >9B PRECEDING EXAMPLE
BYTE O

DATA O

DATA O

DATA 0,0

DATA 0,0

BYTE 0,0 UTILITY FLAGS

DATA 0,0 :

DATA ALPNM

DATA 0,0

DATA 0,0

DATA 0,0

7.2.1.12 Specifying the Write Mode. To specify the write mode for a file, a program executes an
110 Operations SVC with sub-opcode >9C. The following fields of the utility supervisor call block

apply:

. SVC code — 0

U Return

code

. Utility sub-opcode — >9C

L Logical unit number (LUNO)

The following utility flag applies:

1-2 3-4 51617 8|9 |10]11-12}13 | 14-15

2279589

Bit 10 — Write mode flag. Set as follows:
0 — Deferred write mode.
1 — Immediate write mode.

Set all other utility flags to zero.

The write mode is either the immediate or the deferred write mode. The deferred write mode is the
normal mode, because it is more efficient; writing does not actually occur until the system
requires the memory space occupied by the buffer that contains the physical record to be written.
When the immediate write mode is specified, the physical record is written each time a logical

record within the

physical record is written. The immediate write mode provides more certain and

more accurate error detection and identification and reduces the amount of data lost in the event

of system failure

2270507-9701

Change 1 7-39

7.3 Sequential File I_/O

The write mode of the file assigned to the LUNO entered in the supervisor call block is specified

by the operation.

When the same LUNO is assigned at more than one level of scope, the LUNO

applies in this order: task-local LUNO, job-local LUNO, and global LUNO. The write mode flag is
set to one for the immediate write mode, or to zero for the deferred write mode.

Using the immediate write mode updates the file and its file structure each time a write operation
is performed. This mode maintains file integrity, but it costs more in I/O execution time than the
deferred write mode.

The following is an exampie of the source code for a supervisor call block to set the write mode of

a file:

SWMODE

DATA O SET THE WRITE MODE FLAG TO IMMEDIATE
BYTE >9C FOR THE FILE ASSIGNED TO LUNO >23
BYTE >23

DATA 0,0

DATA 0,0

DATA 0,0

BYTE 0,>20 UTILITY FLAGS

DATA 0,0

DATA O

DATA 0,0

DATA 0,0

DATA 0,0

7.3 SEQUENTIAL FILE 1/O

Sequential file I/O uses the following basic supervisor call block to effect I/O transfers, file
positioning, and other IO operations.

SVC > 00 -- I/O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT
DEc HEX

0 0 >00 <RETURN CODE >

2 2 SuB-OPCODE ’ LUNO

4 4 <SYSTEM FLAGS> UsgeR FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

2279470
7-40 Change 1 2270507-9701

Sequential File /0 7.3

The following sub-opcodes apply to sequential files:

00 Open

01 Close

02 Close, Write EOF

03 Open and Rewind

04 Close and Unload

05 Read File Characteristics
06 Forward Space

07 Backward Space

09 Read ASCII

0B Write ASCII

0D Write EOF

OE Rewind

10 Rewrite

11 Modify Access Privileges
12 Open Extend

4A Unlock Record

59 Multiple Record Read

5B Multipie Record Write

The following sub-opcodes perform operations identical to those shown:

Sub-opcode Operation Identical to .
0A Read Direct Read ASCII
0oC Write Direct Write ASCII

The following sub-opcodes are ignored:

08 Not used
OF Unload

Except for the Read File Characteristics operation, the file must be opened using sub-opcode >00,
>03, or >12 prior to any I/O operation.

7.3.1 Open

Sub-opcode >00 specifies an Open operation. The Open operation enables the calling task to
perform 1/O operations on the file assigned to the specified LUNO. If the Open operation is
successful, the access privilege requested in bits 3 and 4 of byte 5 is granted to the task. An Open
operation must be performed before a task can perform any 1/0 operation other than Read File
Characteristics.

An Open operation does not alter the file position (the next record to be accessed). An Assign
LUNO operation positions the file at the first record. A Close operation leaves the file positioned
as it was positioned following the most recent access to the file.

The following fields of the basic call block apply to an Open operation:

. SVC code — 0

2270507-9701 7-41

7.3 Sequential File 110

. Return code

. Sub-opcode — >00

e Logical unit number (LUNO)
o User flags

e Data buffer address

. Read character count

The following user flags apply to an Open operation:

o]1]2 3-4 56| 7

? T

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279590

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

Bit5 — Do notreplace flag. Applies to shared, exclusive write, and exclusive all access only.
Set as follows:

1 — Open file that was created with the autocreate option when the LUNO was
assigned. When file existed prior to the Assign LUNO operation, terminate in

error,
0 — Open file regardless of when it was created.
The LUNO field contains the LUNO assigned to the file to be opened.

The Open operation returns the file type code in the buffer address field. The file type code for a
sequential file is >01FF.

When the calling task places zero in the read character count field, the Open operation returns the
logical record length specified for the file.

7-42 2270507-9701

Sequential File /O 7.3

The following is an example of the source code for a supervisor call block to open a sequential
file:

OSF DATA O OPEN FILE ASSIGNED TO LUNO >4C
BYTE 0,>4C WITH SHARED ACCESS
BYTE 0,>10
SFT DATA O
BL DATA O
DATA O
7.3.2 Close

Sub-opcode >01 specifies a Close operation. The Close operation ends /0 to a LUNO from the
calling task. The LUNO remains assigned to the file. Specifically, for the file assigned to the
LUNO, the Close operation:

. Unlocks any locked records

* Writes all modified file blocks on which write was deferred

. Releases access privileges

. Updates file data structures maintained by the system to accurately describe the current
file. Until the Close operation is performed, data structures on disk do not accurately

reflect the contents of the file. If a system crash occurs before a Close is performed,
new records written to the end of an existing file will be lost.

The following fields of the basic supervisor call block apply to a Close operation:
. SVC code — 0
o Return code
. Sub-opcode — >01
. Logical unit number (LUNO)
L User flags

The following user flag applies to a Close operation:

0 112 3-4 516 7

2279591 T

Bit 0 — initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file to be closed.

2270507-9701 Change 1 7-43

7.3 Sequential File I/O

The following is an example of the source code for a supervisor call block to close a file:

CSF DATA O CLOSE FILE ASSIGNED TO LUNO >4C
BYTE >01,>4C
BYTE 0,>10
DATA O
DATA O
DATA O

7.3.3 Close, Write EOF

Sub-opcode >02 specifies a Close, Write EOF operation. A Close, Write EOF operation consists of
a Write EOF operation followed by a Close operation.

7.3.4 Open and Rewind

Sub-opcode >03 specifies an Open and Rewind operation. An Open and Rewind operation
performs an Open operation followed by a Rewind operation.

7.3.5 Close and Unload

Sub-opcode >04 specifies a Close and Unload operation. The Close and Unload operation is the
same as a Close operation.

7.3.6 Read File Characteristics

Sub-opcode >05 specifies a Read File Characteristics operation. The Read File Characteristics
operation returns file characteristics information in a buffer specified by the user. The file
characteristics consist of 10 bytes of information.

In a secure environment, this operation can be used to determine the access rights that a user has
to afile. If this option is used, a word of file-access rights is returned.

The following fields of the basic supervisor call block apply to a Read File Characteristics
operation:

o SVC code — 0

. Return code

. Sub-opcode — >05

. Logical unit number (LUNO)
. User flags

J Data buffer address

o Read character count

. <Actual read count>

7-44 2270507-9701

Sequential File 1/0 7.3

The following user flags apply to a Read File Characteristics operation:

0 1 2 3-4 516 7

F 1

2279592

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.

0 — System suspends the calling task until the operatlon has completed.
Bit 2 — Security access rights flag. Set as follows:

1 — System returns a word of rights in the buffer specufled by the user.

0 — System returns file characteristics.
The LUNO field contains the LUNO assigned to the file for which characteristics are to be read.
The data buffer address is the address of the buffer into which DNOS places the file characteris-
tics. The buffer should contain at least 10 bytes if the security rights option is not used. If the secu-
rity rights option is used, the buffer should contain at least two bytes.

The read character count is the length of the buffer.

If the security access rights flag is set, a word of file access rights is returned to the buffer speci-
fied by the user. The following explains the meaning of the bits in the returned word:

0 1

T

T3

- N

2285027

Bit 0 — 1 if the user has read access

Bit 1 — 1if the user has write access
Bit 2 — 1if the user has delete access
Bit 3 — 1if the user has execute access
Bit 4 — 1if the user has control access

If the security access rights flag is not set, 10 bytes of file characteristics are returned.

2270507-9701 7-45

7.3 Sequential File I/O

DNOS returns the number of characters stored in the buffer in the actual read count field. The file
characteristics for a sequential file consist of 10 characters. The contents of the buffer following a
Read File Characteristics operation are:

DeEc HEX
0 0 FILE ATTRIBUTE FLAGS
2 2 PHYSICAL RECORD LENGTH
4 4 L.oGcicAL RECORD LENGTH
6 5
NUMBER OF L.OGICAL RECORDS
8 8
2279593
Byte Contents
0-1 File attribute flags, as follows:

Bits 0-1 — File usage:
00 — No special usage.

Bits 2-3 — Data format:
00 — Not blank compressed.
01 — Blank compressed.

Bit 4 — Allocation type:
0 — Fixed size file.
1 — Expandable file.

Bits 5-6 — File type:
01 — Sequential.

Bit 7 — Write protection flag:
0 — Not write protected.
1 — Write protected.

Bit 8 — Delete protection flag:
0 — Not delete protected.
1 — Delete protected.

Bit 9 — Temporary file flag:
0 — Permanent file.
1 — Temporary file.
Bit 10 — Blocked file flag:
0 — Blocked.
1 — Not blocked.

Bit 11 — Reserved.

7-46 2270507-9701

Byte

2-3
4-5

6-9

Contents

Bit 12 — Write mode flag:
0 — Deferred write.

1 — Immediate write.

Bits 13-15 — Reserved.
Physical record length.

Logical record length.

Number of logical records.

Sequential File 110 7.3

The following is an example of the source code for a supervisor call block to read file

characteristics, and for the required buffer:

RSFC DATA O
BYTE >05,>4C
BYTE 0,0
DATA SFC
DATA 10
DATA O

SFC BSS 10

7.3.7 Forward Space

READ CHARACTERISTICS OF FILE

ASSIGNED TO LUNO >4C

FILE CHARACTERISTICS BUFFER

Sub-opcode >06 specifies a Forward Space operation. The Forward Space operation spaces
forward over the requested number of logical records, or until an EOF record is encountered.
When an EOF record is encountered, file management sets the EOF flag and returns the number
of records remaining to be spaced. The file is positioned following the EOF record.

The following fields of the basic supérvisor call block apply to a Forward Space operation:

e S8VCcode —0

¢ Return code

. Sub-opcode — >06

. Logical unit number (LUNO)
. System flags

. User flags

* Write character count

] Record number

2270507-9701

7-47

7.3 Sequential File /O

The following system flags apply to a Forward Space operation:

o1} 2| 3| 4| 5|61 7

T T

2279594

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:
1 — EOF record has been read, or physical end of file has been encountered.
0 — EOF record has not been read and physical end of file has not been
encountered.

The following user flag applies to a Forward Space operation:

oj 1|2 3-4 516| 7

2279595

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The write character count contains the number of logical records to be forward spaced. File
management returns zero when the operation forward spaces the requested number of records
without encountering EOF or the physical end of the file. When the Forward Space operation
encounters EOF or the physical end of the file, the number of records remaining to be forward
spaced is returned.

The following is an example of the source code for a supervisor call block to forward space a file:

FSF DATA O FORWARD SPACE FILE ASSIGNED
BYTE >06,>4C TO LUNO >4C
BYTE 0,0
DATA O
DATA O
DATA 5 FIVE RECORDS

7-48 2270507-9701

Sequential File 110 7.3

7.3.8 Backward Space
Sub-opcode >07 specifies a Backward Space operation. The Backward Space operation spaces
toward the beginning of the file over the requested number of logical records until the beginning
of the file or an EOF record is encountered. When an EOF record is encountered, file management
sets the EOF flag and returns the number of records remaining to be spaced. The file is positioned
to read the EOF record when a Read operation is performed.
The following fields of the basic supervisor call block apply to a Backward Space operation:

° SVC code — 0

. Return code

U Sub-opcode — >07

. Logical unit number (LUNO)

° System flags

] User flags

. Write character count

L Record number

The following system flags apply to a Backward Space operation:

—{ N

0
1
2279596

Bit 0 — Busy flag. Set by system as follows:
1 — Busy. :
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:
1 — EOF record has been read, or physical beginning of file has been encountered.
0 — EOF record has not been read and physical beginning of file has not been
encountered.

2270507-9701 7-49

7.3 Sequential File I/O

The following user flag applies to a Backward Space operation:

0|1 2 3-4 516 7

—f

2279597

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The write character count contains the number of logical records to be backward spaced. File
management returns zero when the operation spaces backward the requested number of records
without encountering EQF or the physical beginning of the file. When the Backward Space oper-
ation encounters EOF or the physical beginning of the file, the number of records remaining to be
backward spaced is returned.

The following is an example of the source code for a supervisor call block to backward space a
file:

BSF DATAO BACKWARD SPACE FILE ASSIGNED
BYTE >07,>4C TO LUNO >4C
BYTE 0,0
DATA O
DATA O
DATA 3 THREE RECORDS

7.3.9 Read ASCII
Sub-opcode >09 specifies a Read ASCIl operation. The Read ASCII operation reads a record of the
IAi’ Igrca’\.nd stores the data in the buffer at the specified address. The characters are packed two per
The following fields of the basic supervisor call block apply to a Read ASCII operation:

e SVCcode —0

. Return code

. Sub-opcode — >09

. Logical unit number (LUNO)

. System flags

. User flags

° Data buffer address

7-50 2270507-9701

Sequential File 1/O0 7.3

. Read character count
U] <Actual read count>

The following system flags apply to a Read ASCII operation:

1

TTr

2279598

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:
1 — EOF record has been read.
0 — EOF record has not been read.

The following user flags apply to a Read ASCII operation:

o)l 12 3-4 5|16] 7

2279599

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management locks the record after reading.
0 — Record remains unlocked.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Fill the buffer with blanks (>20) when the buffer length is greater than the
number of characters read.
0 — Do not fill the buffer with blanks.

The LUNO field contains the LUNO assigned to the file.

2270507-9701 7-51

7.3 Sequential File 1/0

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters stored in the buffer, returned by file manage-
ment. The length returned is the length of the record or the length of the buffer, whichever is less.
When an odd number of characters is read, an additional character is stored in the buffer, but the
odd number (the actual number read) is placed in the actual read count field.

When an EOF record is read, file management returns zero in the actual read count field and sets
the EOF flag in the systems flags byte.

When the lock/unlock flag is set, the Read ASCII operation locks the record. The record cannot be
read until a Write or Rewrite operation unlocks the record after updating the contents, or until an
Unlock operation for the record is performed.

When the blank adjustment flag is set, and the record length is less than the buffer length, file
management fills the buffer with blanks. The actual read count contains the buffer length (the
total number of characters stored, including blanks) following the operation.

The following is an example of the source code for a supervisor call block to read a file record, and
for the required buffer:

RASF DATA O READ A RECORD OF FILE ASSIGNED
BYTE >09,>4C TO LUNO >4C AND LOCK
BYTE 0,>04 THE RECORD
DATA SFRB
DATA 80
DATAO
SFRB BSS 80 READ BUFFER

7.3.10 Write ASCII
Sub-opcode >0B specifies a Write ASCII operation. The Write ASCII operation transfers the data in
the buffer at the specified address to the file. The characters in the buffer are packed two per
word.
The following fields of the basic supervisor call block apply to a Write ASCII operation:

e SVCcode — 0

. Return code

. Sub-opcode — >0B

. Logical unit number (LUNO)

. System flags

. User flags

7-52 2270507-9701

Sequential File 110

. Data buffer address
. Write character count

The following system flags apply to a Write ASClI operation:

0
T
2279600

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Write ASCII operation:

o1 2 3-4 5167

ot

2279601

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management unlocks the record after writing.
0 — Record remains unlocked.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Do not write trailing blanks in the buffer.
0 — Write the entire buffer contents.

The LUNO field contains the LUNO assigned to the file.

7.3

The data buffer address is the address of the buffer that contains the record to be written. The

address must be an even number.

The write character count is the number of characters to be written.

A Write ASCII operation clears any EOF indication for the current record or for a subsequent

record.

2270507-9701 7-53

7.3 Sequential File I/O

When the lock/unlock flag is set, the Write ASCII operation unlocks the record after the operation
completes.

When the blank adjustment flag is set, any trailing blanks in the buffer are not written. That is, the
last character of the record actually written is the last nonblank character in the buffer.

The following is an example of the source code for a supervisor call block to write a file record:

WASF DATA O WRITE A RECORD TO FILE ASSIGNED
BYTE >0B,>4C TO LUNO >4C AND UNLOCK
BYTE 0,>04 THE RECORD
DATA SFWB
DATA O
DATA 80

7.3.11 Write EOF
Sub-opcode >0D specifies a Write EOF operation. A Write EOF operation provides an EOF
indicator in the file. Any number of EOFs may be written to a sequential file, dividing the file into
subfiles.
The following fields of the basic supervisor call block apply to a Write EOF operation:

. SVC code — 0

° Return code

° Sub-opcode — >0D

. Logical unit number (LUNO)

. User flags

The following user flag applies to a Write EOF operation:

0 1(2 3-4 516 | 7

2279602

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

7-54 2270507-9701

Sequential File /0 7.3

The following is an example of the source code for a supervisor call block to write an EOF to afile:
WESF DATA O WRITE AN EOF TO FILE ASSIGNED
BYTE >0D,>4C TO LUNO >4C
BYTE 0,0
DATA O
DATA O
DATA O

7.3.12 Rewind
Sub-opcode >0E specifies a Rewind operation. The Rewind operation simulates the rewinding of a
magnetic tape file. When the file is a sequential file, the next operation performed on the file
accesses the first record of the file (not a subfile).
The following fields of the basic supervisor call block apply to a Rewind operation:

. SVC code — O

. Return code

. Sub-opcode — >0E

. Logical unit number (LUNO)

. User flags

The following user flag applies to a Rewind operation:

o] 1 2 3-4 5] 6] 7

‘T

2279603

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.
The following is an example of the source code for a supervisor call block to rewind a file:

RWSF DATA O REWIND FILE ASSIGNED TO LUNO >4C
BYTE >0E,>4C
BYTE 0,0
DATA O
DATA O
DATAO

22705079701 7-55

7.3 Sequential File 110

7.3.13 Rewrite
Sub-opcode >10 specifies a Rewrite operation. The Rewrite operation backspaces a file one
logical record, and writes a record to replace the record previously read. The write portion of the
operation is similar to the Write ASCII operation.
The following fields of the basic supervisor call block apply to a Rewrite operation:

e SVCcode —0

. Return code

. Sub-opcode — >10

. Logical unit number (LUNO)

° System flags

° User flags

. Data buffer address

Write character count

The following system flags apply to a Rewrite operation:

0
2279604
Bit 0 — Busy flag. Set by system as follows:

1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as fcllows:
1 — Error.
-0 — No error.

The following user flags apply to a Rewrite operation:

0 112 3-4 5| 6}|7

2279605

7-56 2270507-9701

Sequential File 110 7.3

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management unlocks the record after rewriting.
0 — Record remains in the state it was in before the rewrite.

Bit 7 — Blank adjustment flag. Set as follows:
1 — Do not write trailing blanks in the buffer.
0 — Write the entire buffer contents.

The LUNO field contains the LUNO assigned to the file.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even number.

The write character count is the number of characters to be written.

When the character count indicates that the length of the updated record is different from the
length of the record in the file, the record is not rewritten and the operation terminates in error. A
blank compressed record may be rewritten, but the length of the new record (with blank com-
pression) must remain the same as the length of the blank compressed record in the file.

A Rewrite operation does not alter the end-of-file. When a rewrite is attempted on the end-of-file
record, the rewritten record is lost.

The following is an example of the source code for a supervisor call block to rewrite a record:

RWTSF DATA O REWRITE RECORD OF FILE ASSIGNED
BYTE >10,>4C TO LUNO 4C
BYTE 0,0
DATA SFWB
DATA O
DATA 80

7.3.14 Modify Access Privileges v

Sub-opcode >11 specifies a Modify Access Privileges operation. The Modify Access Privileges
operation assigns access privileges to a file. The requested access privileges are not allowed if
-those access privileges to the file are currently in use. In that case, the existing access privileges
continue to apply.

The following fields of the basic supervisor cail block apply to a Modify Access Privileges
operation:

. SVC code — 0
. Return code

* Sub-opcode — >11

2270507-9701 7.57

7.3 Sequential File 110

. Logical unit number (LUNO)
. User flags

The following user flags apply to a Modify Access Privileges operation:

2279606

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

The LUNO field contains the LUNO assigned to the file.
The access privilege flag in the user flags byte specifies the new access privileges for the file.

The following is an example of the source code for a supervisor call block to modify the access
privileges of a file:

MASF DATAO MODIFY ACCESS PRIVILEGES OF FILE
BYTE >11,>4C ASSIGNED TO LUNO 4C TO
BYTE 0,>18 READ ONLY
DATA O
DATA O
DATA O

7.3.15 Open Extend
Sub-opcode >12 specifies an Open Extend operation. The Open Extend operation opens a file and

positions the file at the EOF record that follows the last data record in the file. For a file with a
single EOF, the file is positioned at that EOF record. For a file with multiple EOFs, the file is
positioned at the first EOF of the group. Except for positioning the file, the Open Extend operation
is the same as the Open operation previously described.
The following fields of the basic superviscor call block apply to an Open Extend operation:

. SVC code — 0

. Return code

. Sub-opcode — >12

7-58 2270507-9701

Sequential File 1/0 7.3

. Logical unit number (LUNO)
U User flags

. Data buffer address

* Read character count

The following user flags apply to an Open Extend operation:

2279607

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

Bit 5 — Do not replace flag. Applies to shared, exclusive write, and exclusive all access only.

Set as follows:

1 — Open file that was created with the autocreate option when the LUNO was
assigned. When file existed prior to the Assign LUNO operation, terminate in
error.

0 — Open file regardless of when it was created.

The LUNO field contains the LUNO assigned to the file to be opened.

The Open Extend operation returns the file type code in the buffer address field. The file type code
for a sequential file is >01FF.

When the calling task places zero in the input character count field, the Open Extend operation
returns the logical record length specified for the file.

The following is an example of the source code for a supervisor call block to open a sequential file
to be extended:

OXSF DATA O OPEN EXTEND FILE ASSIGNED TO LUNO
BYTE >12,>4C >4C WITH SHARED ACCESS
BYTE 0,>10

XSFT DATA O

XBL DATAO
DATA O

2270507-9701 7-59

7.3 Sequential File /O

7.3.16 Unlock
Sub-opcode >4A specifies an Unlock operation. The Unlock operation releases exclusive control
of the current record, whether the record was locked by another task or by the calling task.
The following fields of the basic supervisor call block apply to an Unlock operation:
. SVC code — 0
. Return code
° Sub-opcode — >4A
. Logical unit number (LUNO)

° User flags

The following user flag applies to an Unlock operation:

0 1] 2 3-4 5(61{7

2279608

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.
The following is an example of the source code for a supervisor call block to unlock a file record:

USF DATA O UNLOCK CURRENT RECORD IN FILE ASSIGNED
BYTE >4A>4C TO LUNO >4C
BYTE 0,0
DATA O
DATA O
DATA O

7-60 2270507-9701

Sequential File 1/O 7.3

7.3.17 Multiple Record Read
Sub-opcode >59 specifies a Multiple Record Read operation. The Multiple Record Read operation
reads an integral number of records of the file and stores the data in the buffer at the specified
address. The characters are packed one per byte. The calling task specifies the number of
characters to be stored; the operation stores complete records, each preceded by a word that
contains the length of the record. The transfer of data to the buffer continues until the number of
characters in the current record exceeds the number of characters remaining in the buffer,
The following fields of the basic supervisor cail block apply to a Multiple Record Read operation:

e SVCcode — 0

U Return code

. Sub-opcode — >59

. Logical unit number (LUNO)

e System flags

e User flags

. Data buffer address

. Read character count

] <Actual read count>

The following system flags apply to a Multiple Record Read operation:

1

0 2
Tt

2279609

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:

1 — EOF record has been read.
0 — EOF record has not been read.

2270507-9701 7-61

7.3 Sequential File 110

The following user flags apply to a Multiple Record Read operation:

o} 1 2 3-4 516 |7

2279610

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management locks the records after reading.
0 — Records remain unlocked.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer in which the records are to be stored.
The address must be an even number.

The read character count contains the maximum number of characters to be stored in the buffer.

The actual read count is the actual number of characters stored, returned by file management. The
operation reads a record and compares the number of characters in the record with the remaining
buffer space. When the record can be stored in the remaining space, the operation stores the
record length (in characters) in a word, followed by the characters of the record. The operation
continues reading and storing records until the record length is greater than the remaining space.
At this point, the operation returns the total number of characters in the records plus two for the
overhead word of each record and terminates.

If the buffer is too small to hold one record, an error code is returned.

When the first record read is an EOF record, file management returns zero in the actual read count
length field and sets the EOF flag in the systems flags byte. When an EOF record is read in a
subsequent record, the operation terminates and returns the number of characters stored without
setting the EOF flag. The next Read operation sets the EOF flag.

When the lock/unlock flag.is set, the Multiple Record Read operation locks the records that are
read. These records cannot be read again until a Write or Rewrite operation unlocks each record
after updating the contents, or until an Unlock operation for each record is performed.

When a Multiple Record Read operation reads a record that is locked, the operation returns an
error message and no more records are read. The contents of any unlocked records read prior to

reading the locked record are stored in the data buffer, and the actual read count contains the
number of characters stored in the buffer.

If an end of medium is reached, a >0030 error is returned and the EOF flag is not set.

7-62 2270507-9701

Sequential File 1/0 7.3

The following is an example of the source code for a supervisor call block for a Multiple Record
Read to read ten 80-character records and for the required buffer:

MRRSF DATA O READ MULTIPLE RECORDS OF FILE

BYTE >59,>4C ASSIGNED TO LUNO >4C
BYTE 0,0

DATA MRB
DATA 820
DATA. O

MRB BSS 820 READ BUFFER

7.3.18 Multiple Record Write

Sub-opcode >5B specifies a Multiple Record Write operation. The Multiple Record Write operation
transfers the data in the buffer at the specified address to the file. The characters in the buffer are
packed one per byte. The first character of each record in the buffer must be at an even (word)
address and must be preceded by a word that contains the record length (in characters). The
record length words are not written to the file.

The following fields of the basic supervisor call block apply to a Multiple Record Write operation:

SVC code — 0

Return code

Sub-opcode — >5B

Logical unit number (LUNO)
System flags

User flags

Data buffer address

Write character count

The following system flags apply to a Multiple Record Write operation:

2279611

1 {2 |3|4]|]5]|6}|7

T

Bit 0 — Busy flag. Set by system as follows:

1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:

2270507-9701

1 — Error.
0 — No error.

7-63

7.3 Sequential File 1/0

The following user flags apply to a Multiple Record Write operation:

L;1z 3-4 5167
T .

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279612

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management unlocks the records after writing.
0 — Records remain in the state they were in before the write.

The LUNO field contains the LUNO assigned to the file.

The data buffer address is the address of the buffer that contains the records to be written. A word
that contains the length (in characters) precedes each record.

The write character count is the number of characters to be written. This count must include the
overhead words containing the record lengths.

A Multiple Record Write operation clears any EOF indication for the current record or for a
subsequent record.

When the lock/uniock flag is set, all locked records that are written are unlocked following the
Multiple Record Write operation.

7-64 2270507-9701

Relative Record File IO 7.4

The following is an example of the source code for a supervisor call block for a Multiple Record
Write operation and for a typical buffer::

MRWSF DATA O WRITE MULTIPLE RECORDS TO FILE
BYTE >6B,>4C ASSIGNED TO LUNO >4C
BYTE 0,0
DATA SFWB
DATA O
DATA ENDB-SFWB
SFWB - DATA REC2-% WRITE BUFFER
TEXT ‘RECORD 71’

REC2 DATA REC3-$
TEXT ‘RECORD 2’

REC3 DATA ENDB-$
TEXT ‘RECORD 3’

EVEN
ENDB EQU §$

7.4 RELATIVE RECORD FILE /O

Relative record file I/O uses the basic supervisor call block previously shown to effect 1/O
transfers, file positioning, and other /0 operations. Each record of a relative record file is
designated by a record number. The first record is record 0; the maximum record number is
16,777,215. A 4-byte extension contains the record number. The user must set the first byte to 0.
The last three bytes are used as follows:

SVC >00 —- 1/O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EN

DEcC HEX EVENT
0 0 >00 <RETURN CODE>
2 2 SuB—-OPCODE LUNO
4 4 <SYSTEM FLAGS> UseR FLAGS
6 6 DATA BUFFER ADDRESS
8 8 ReEAD CHARACTER COUNT
10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >

2279470

2270507-9701 7-65

7.4 Relative Record File I/O

DEC HEeX
12 C 0
RECORD
14 E NUMBER
2279613
Byte Contents
12 Set to zero.
13-15 Record number to which operation applies.

The sub-opcodes that apply to relative record files are:

00 Open

01 Close

02 Close, Write Logical EOF
03 Open and Rewind

04 Close and Unload

05 Read File Characteristics
06 Forward Space

07 Backward Space

09 Read ASCII

0B Write ASCII

0D Write Logical EOF

OE Rewind

10 Rewrite

11 Modify Access Privileges
12 Open Extend

4A Unlock Record

59 Multiple Record Read

5B Multiple Record Write

The following sub-opcodes perform operations identical to those shown:

Sub-opcode Operation Identical to
0A Read Direct Read ASCII
0C Write Direct Write ASCII

The following sub-opcodes are ignored:

08 Not used
OF Unload

Except for the Read File Characteristics operation, the file must be opened using sub-opcode >00,
>03, or >12 prior to any /O operation.

7-66 2270507-9701

7.41

Relative Record File I/0 7.4

Open .

Sub-opcode >00 specifies an Open operation. The Open operation enables the task to perform 1/O
operations on the file assigned to the LUNO. If the Open operation is successful, the access
privilege requested in bits 3 and 4 of byte 5 is granted to the task. An Open operation must be per-
formed before a task can perform any I/O operation except a Read File Characteristics operation.

The following fields of the basic call block apply to an Open operation:

SVC code — 0

Return code

Sub-opcode — >00

Logical unit number (LUNO)
User flags

Data buffer address

Read character count

The following user flags apply to an Open operation:

o1 2 3-4 |5 |6 |7

2279614 T f

Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has compileted.

Bits 3-4 — Access privilege flag. Set as follows:

00 — Exclusive write.
01 — Exclusive all.
10 — Shared.

11 — Read only.

Bit5 — Do not replace flag. Applies to shared, exclusive write, and exclusive all access only.

Set as follows:

1 — Open file that was created with the autocreate option when the LUNO was
assigned. When file existed prior to the Assign LUNO operation, terminate in

error.
0 — Open file regardless of when it was created.

The LUNO field contains the LUNO assigned to the file to be opened.

2270507-9701

7-67

7.4 Relative Record File I/O

The Open operation returns the file type code in the buffer address field. The file type codes for
relative record files are:

>02FF Relative record file, no special usage
>04FF Directory (relative record) file

>05FF Program (relative record) file

>06FF Image (relative record) file

When the calling task places zero in the input character count field, the Open operation returns
the logical record length specified for the file.

The following is an example of the source code for a supervisor call block to open a relative record

file:
ORRF DATA O OPEN FILE ASSIGNED TO LUNO >4E
BYTE 0,>4E WITH EXCLUSIVE ALL ACCESS
BYTE 0,>08
RRFT DATA O
BLR DATAOQ
DATA O
DATA O
DATA O
7.4.2 Close

Sub-opcode >01 specifies a Close operation. The Close operation ends /0O to a LUNO from the
calling task. The LUNO remains assigned to the file. Specifically, for the file assigned to the
LUNO, the Close operation:

Unlocks any locked records

Writes all modified file blocks on which write was deferred

Releases access privileges

Updates file data structures maintained by the system to accurately describe the current
file. Until the Close operation is performed, data structures on disk do not accurately

reflect the contents of the file. If a system crash occurs before a Close is performed,
new records written to the end of an existing file will be lost.

The following fields of the basic supervisor call block apply to a Close operation:

7-68

SVC code — 0

Return code

Sub-opcode — >01

Logical unit number (LUNO)

User flags

Change 1 2270507-9701

Relative Record File /0 7.4

The following user flag applies to a Close operation:

L; 12| 3-4 |s]|6 |7
2279615

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file to be closed.
The following is an example of the source code for a supervisor call block to close a file:

CRRF DATA O CLOSE FILE ASSIGNED TO LUNO >4E

BYTE >01,>4E

BYTE 0,0

DATA O

DATA O

DATA O

DATA O

DATA O

7.4.3 Close, Write Logical EOF
Sub-opcode >02 specifies a Close, Write Logical EOF operation. A Close, Write Logical EOF
operation consists of a Write Logical EOF operation followed by a Close operation.

7.4.4 Open and Rewind
Sub-opcode >03 specifies an Open and Rewind operation. An Open and Rewind operation
performs an Open operation followed by a Rewind operation.

7.4.5 Close and Unload
Sub-opcode >04 specifies a Close and Unload operation. The Close and Unload operation is the
same as a Close operation.

7.4.6 Read File Characterjstics
Sub-opcode >05 specifies a Read File Characteristics operation. The Read File Characteristics

operation returns file characteristics information in a buffer specified by the user. The file
characteristics consist of 10 bytes of information.

In a secure environment, this operation may be used to determine which access rights a user has
to afile. If this option is used, a word of file access rights is returned.

The following fields of the basic supervisor call block apply to a Read File Characteristics
operation:

U SVC code — 0

° Return code

2270507-9701 7-69

7.4 Relative Record File I/O

. Sub-opcode — >05

. Logical unit number (LUNO)
° User flags

o Data buffer address

o Read character count

. <Actual read count>

The following user flag applies to a Read File Characteristics operation:

2279616

Bit 0 — Initiate flag. Set-as follows.
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
Bit 2 — Security access rights flag. Set as follows:
1 — System returns a word of rights in the buffer specified by the user.
0 — System returns file characteristics.

The LUNO field contains the LUNO assigned to the file for which characteristics are to be read.
The data buffer address is the address of the buffer into which DNOS places the file characteris-
tics. The buffer should contain at least 10 bytes if the security rights option is not used. if the secu-
rity rights option is used, the buffer should contain two bytes.

The read character count is the length of the buffer.

If the security access rights flag is set, a word of file access rights is returned to the buffer speci-
fied by the user. The following explains the meaning of the bits in the returned word:

(5]
o)}
~
w
[}

0 1 2

T

10 |11 | 1213 |14 |15

4
T

—- w

2285028

Bit 0 — 1 if the user has read access

Bit 1 — 1if the user has write acces

Bit 2 — 1if the user has delete access
Bit 3 — 1if the user has execute access
Bit 4 — 1 if the user has control access

If the security access rights flag is not set, 10 bytes of file characteristics are returned.

7-70 2270507-9701

Relative Record File IO 7.4

DNOS returns the number of characters stored in the buffer in the actual read count field. The file
characteristics for a relative record file (other than a program file) consist of 10 characters. Two
additional characters are required for program files. The contents of the buffer following a Read
File Characteristics operation are:

DEc HEX

0 0 FILE ATTRIBUTE FLAGS
2 2 PHYsSICAL RECORD LENGTH
4 4 LoGicAL RECORD LLENGTH
6 6
NUMBER OF L.OGICAL RECORDS
8 8
10 A SECTORS/BLOCK SECTORS/ADU
2279617
Byte Contents
0-1 File attribute flags, as follows:

Bits 0-1 — File usage:
00 — No special usage.
01 — Directory file.
10 — Program file.
11 — Image file.

Bits 2-3 — Data format:
00 — Not blank compressed.
01 — Blank compressed.

Bit 4 — Allocation type:
0 — Fixed size file.
1 — Expandable file.

Bits 5-6 — File type:
10 — Relative record.

Bit 7 — Write protection flag:
0 — Not write protected.
1 — Write protected.

Bit 8 — Delete protection flag:

0 — Not delete protected.
1 — Delete protected.

2270507-9701 7-71

7.4 Relative Record File I/O

Bit 9 — Temporary file flag:
0 — Permanent file.
1 — Temporary file.

Bit 10 — Blocked file flag:
0 — Blocked.
1 — Not blocked.

Bit 11 — Reserved.

Bit 12 — Write mode flag:
0 — Deferred write.
1 — Immediate write.

Bits 13-15 — Reserved.

2-3 Physical record length.
4-5 Logical record length.
6-9 Number of logical records.

Program files only:
10 Sectors/block.
11 Sectors/ADU, varies with type of disk.

The following is an example of the source code for a supervisor call block to read file charac-
teristics, and for the required buffer:

RRRFC DATA O READ CHARACTERISTICS OF FILE ASSIGNED
BYTE >05,>4E TO LUNO >4E
BYTE 0,0
DATA RRFC
DATA 12
DATA O
DATAO
DATA O

RRFC BSS 12 FILE CHARACTERISTICS BUFFER

7.4.7 Forward Space
Sub-opcode 06 specifies a Forward Space operation. The Forward Space operation spaces forward
over the requested number of logical records, or until the end of the file is encountered. When the

end of the file is encountered, file management sets the logical EOF flag and returns the number
of records remaining to be spaced.

7-72 2270507-9701

Relative Record File 10 7.4

The following fields of the basic supervisor call block and the relative record file extension apply
to a Forward Space operation:

e SVCcode —0

o Return code

. Sub-opcode — >06

. Logical unit number (LUNO)
. System flags

. User flags

¢ Write character count

The following system flags apply to a Forward Space operation:

- N

0
Tt
2279618

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:
1 — Physical end-of-file has been encountered.
0 — Physical end-of-file has not been encountered.

The following user flag applies to a Forward Space operation:

o| 1]2 3-4 5|6 |7

T

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279619

The LUNO field contains the LUNO assigned to the file.

2270507-9701 7-73

7.4 Relative Record File I/O

The write character count contains the number of logical records to be forward spaced. File
management returns zero when the operation forward spaces the requested number of records
without encountering the physical end of the file. When the Forward Space operation encounters
the physical end of the file, the number of records remaining to be forward spaced is returned.

The following is an example of the source c¢ode for a supervisor call block to forward space a file:

FRRF DATA O FORWARD SPACE FILE ASSIGNED

BYTE >06,>4E TO LUNO >4E

BYTE 0,0

DATA O

DATA O

DATA 5 FIVE RECORDS

DATA O

DATA O
7.4.8 Backward Space
Sub-opcode >07 specifies a Backward Space operation. The Backward Space operation spaces
toward the beginning of the file over the requested number of logical records, or until the
beginning of the file is encountered. When the beginning of the file is encountered, file manage-
ment sets the logical EOF flag and returns the number of records remaining to be spaced. The file
is positioned to read the last record spaced over when a Read operation is performed.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Backward Space operation:

e SVCcode —0

J Return code

. Sub-opcode — >07

J Logical unit number (LUNO)
. System flags

. User flags

. Write character count

The following system flags apply to a Backward Space operation:

w
LY
[$;]
[+]
~

- ©
—» -
N

2279620
Bit 0 — Busy flag. Set by system as follows:

1 — Busy.
0 — Operation completed.

7-74 2270507-9701

Relative Record File I/O 7.4

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:
1 — Physical beginning of file has been encountered.
0 — Physical beginning of file has not been encountered.

The following user flag applies to a Backward Space operation:

o} 1 2 3-4 51617

*

2279621

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The write character count contains the number of logical records to be backward spaced. File
management returns zero when the operation spaces backward the requested number of records
without encountering the physical beginning of the file. When the Backward Space operation
encounters the physical beginning of the file, the number of records remaining to be backward
spaced is returned.

The following is an example of the source code for a supervisor call block to backward space a
file:

BRRF DATA O BACKWARD SPACE FILE ASSIGNED
BYTE >07,>4E TO LUNO >4E
BYTE 0,0
DATA O
DATA O
DATA 3 THREE RECORDS
DATA O
DATA O

7.4.9 Read ASCII

Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII operation reads a record of the
file and stores the data in the buffer at the specified address. The characters are packed one per
byte.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Read ASCII operation:

° SVC code — 0

J Return code

2270507-9701 7-75

7.4 Relative Record File I/O

. Sub-opcode — >09

° Logical unit number (LUNO)
e System flags

. User flags

. Data buffer address

e Read character count

. <Actual read count>

. Record number

The following system flags apply to a Read ASCII operation:

2
3

- O
- -

2279622

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — Logical end-of-file. Set by system as follows:
1 — Logical EOF record has been read.
0 — Logical EOF record has not been read.

The following user flags apply to a Read ASCII operation:

L:IZ 3-4
*

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

[$)]
[0}
~N

2279623

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management locks the record after reading.
0 — Record remains in the state it was in before the read.

7-76 ‘ 2270507-9701

Relative Record File 110 7.4

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less.

The record number field contains the number of the record to be read. File management
increments this number by one when a Read ASCII operation completes successfully.

When the record number just past the last record is read, file management returns zero in the
input record length field and sets the logical EOF flag in the system flags byte.

When the lock/unlock flag is set, the Read ASCII operation locks the record. The record cannot be
read until a Write or Rewrite operation unlocks the record after updating the contents, or until an
Unlock operation for the record is performed.

The following is an example of the source code for a supervisor call block to read a file record, and
for the required buffer:

RARRF DATA O READ A RECORD OF FILE ASSIGNED
BYTE >09,>4E TO LUNO >4E AND LOCK
BYTE 0,>04 THE RECORD
DATA RRFRB
DATA 80
DATA O
DATA O RECORD NUMBER
DATA 35
SFRB BSS 80 READ BUFFER

7.4.10 Write ASCII

Sub-opcode >0B specifies a Write ASCI| operation. The Write ASCII operation transfers the data in
the buffer at the specified address to the file. The characters in the buffer are packed two per
word.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Write ASCII operation:

e SVCcode — 0

. Return code

. Sub-opcode — >0B

. Logical unit number (LUNO)

. System flags

22705079701 7-77

7.4 Relative Record File 110

. User flags

. Data buffer address

e Write character count
. Record number

The following system flags apply to a Write ASCII operation:

oj112]3| 4| 51617

?

2279624

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Write ASCII operation:

ol 2 3-4 51617

*

2279625

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management unlocks the record after writing.
0 — Record remains in the state it was in before the write.

The LUNO field contains the LUNO assigned to the file.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even number.

The write character count is the number of characters in the buffer. The number of characters to
be written is the logical record length of the file. When the buffer contains fewer characters than a
logical record, the system writes the specified number of characters. and fills the record with
zeros. When the buffer contains more characters than the logical record, the system writes the
data, truncating the data at the logical record length.

The record number field contains the number of the record to be written. File management
increments this number by one when a Write ASCII operation completes successfully.

7-78 : 2270507-9701

Relative Record File /0 7.4

When a Write ASCII operation writes a record with a record number that is the highest numbered
record in the file, the next higher numbered record becomes the end-of-file record; that is, the end-
of-file record is not affected by a Write operation unless a record with a record number equal to or
greater than that of the end-of-file record is written.

Within the limits of file expandability, writing a record with a record number higher than that of the
end-of-file expands the file to include the new record. The contents of the records skipped over in
writing the new record are not altered; they contain whatever happens to be on the disk.

When the lock/unlock flag is set, the Write ASCIl operation unlocks the record after the Write
operation.

The following is an example of the source code for a supervisor call block to write a file record:

WARRF DATA O WRITE A RECORD TO FILE ASSIGNED
BYTE >0B,>4E TO LUNO >4E AND UNLOCK
BYTE 0,>04 THE RECORD
DATA SFWB
DATA 0
DATA 80
DATA O RECORD NUMBER
DATA 75

7.4.11 Write Logical EOF
Sub-opcode >0D specifies a Write Logical EOF operation. A Write Logical EOF operation stores
the record number in the call block for the Write Logical EOF operation as the end-of-file.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Write EOF operation:

e §8VCcode —0

. Return code

] Sub-opcode — >0D

. Logical unit number (LUNO)
. User flags

. Record number

The following user flag applies to a Write Logical EOF operation:

o1 2 3-4 5|67

2279626

2270507-9701 7-79

7.4 Relative Record File I/O

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The record number field contains the number of the record that becomes the logical EOF record.

The following is an example of the source code for a supervisor call block to write a logical EOF on
a relative record file:

WEFRRF

7.4.12 Rewind

DATA O DESIGNATE RECORD 85 AS EOF
BYTE >0D,>4E OF FILE ASSIGNED TO LUNO >4E
BYTE 0,0

DATA O

DATA O

DATA O

DATA O RECORD NUMBER

DATA 85

Sub-opcode >0E specifies a Rewind operation. The Rewind operation simulates the rewinding of a
magnetic tape file. For a relative record file, the operation stores zero in the record number field.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Rewind operation:

. SVC code — 0

] Return code

. Sub-opcode — >0E

. Logical unit number (LUNO)

U User flags

. Record number

The following user flag applies to a Rewind operation:

2279627

ol 1 2 3-4 516 |7

Bit 0 — Initiate flag. Set as follows:

7-80

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2270507-9701

The LUNO field contains the LUNO assigned to the file.

Relative Record File 10 7.4

The following is an example of the source code for a supervisor call block to rewind a file:

RWRRF DATA O REWIND FILE ASSIGNED TO LUNO >4E

BYTE >0E,>4E

BYTE 0,0

DATA O

DATA O

DATA O

DATA O RECORD NUMBER —

DATA 345 SET TO ZERO BY REWIND

7.4.13 Rewrite

Sub-opcode >10 specifies a Rewrite operation. The Rewrite operation backspaces a file one
logical record, and writes a record to replace the record previously read. The write portion of the

operation is similar to the Write ASCII operation.

The following fields of the basic supervisor call block and the relative record file extension apply

to a Rewrite operation:
e S8SVCcode—0
. Return code
° Sub-opcode — >10
. Logical unit number (LUNO)
. System flags
. User flags
o Data buffer address
. Write character count
. Record number

The following system flags apply to a Rewrite operation:

0
7

2279628

2270507-9701

7-81

7.4 Relative Record File I/O

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Rewrite operation:

ol 112} 3-4 51617

2279629

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management locks the record after reading.
0 — Record remains in the state it was in before the rewrite.

The LUNO field contains the LUNO assigned to the file.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even nhumber.

The write character count is the number of characters in the buffer. The number of characters to
be written is the logical record length of the file. When the buffer contains fewer characters than a
logical record, the system writes the specified number of characters and fills the record with
zeros. When the buffer contains more characters than the logical record, the system writes the
data, truncating the data at the logical record length.

The record number field contains a record number one greater than the number of the record to be
rewritten.

When a Rewrite is attempted on the end-of-file record number, the record is written and the end-of-
file record number is increased by one.

7-82 2270507-9701

Relative Record File I/10 7.4

The following is an example of the source code for a supervisor call block to rewrite a record:

RWTRRF DATAO REWRITE RECORD OF FILE ASSIGNED
BYTE >10,>4E TO LUNO 4E
BYTE 0,0
DATA SFWB
DATA O
DATA 80
DATA O
DATA 954

7.4.14 Modify Access Privileges

Sub-opcode >11 specifies a Modify Access Privileges operation. The Modify Access Privileges
operation assigns access privileges to a file. When the requested. access privileges are not
allowed, the existing access privileges continue to apply.

The following fields of the basic supervisor call block apply to a Modify Access Privileges
operation: ‘

e SVCcode —0

. Return code

. Sub-opcode — >11

. Logical unit number (LUNO)
. User flags

The following user flags apply to a Modify Access Privileges operation:

of 1 2 3-4 51617

¥ ¥

2279630

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.
The LUNO field contains the LUNO assigned to the file.

The access privilege flag in the user flags byte specifies the new access privileges for the file.

2270507-9701 7-83

7.4 Relative Record File I/0

The following is an example of the source code for a supervisor call block to modify the access
privileges of a file:

MARRF DATA 0 MODIFY ACCESS PRIVILEGES OF FILE
BYTE >11,>4E ASSIGNED TO LUNO 4E TO
BYTE 0,0 . EXCLUSIVE WRITE
DATA O
DATA O
DATA O
DATA O
DATA O
7.4.15 Open Extend
Sub-opcode >12 specifies an Open Extend operation. The Open Extend operation for a relative
record file is effectively an Open operation except that the file is positioned at the logical EOF
record. That is, the record number is set to the number of the logical EOF record.
The following fields of the basic supervisor call block apply to an Open Extend operation:
. SVC code — 0
. Return code
. Sub-opcode — >12
. Logical unit number (LUNO)
. User flags
° Data buffer address
. Read character count

° Record number

The following user flags apply to an Open Extend operation:

2279631

7-84 2270507-9701

Relative Record File 110 7.4

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

Bit5 — Do not replace flag. Applies to shared, exclusive write, and exclusive all access only.

Set as follows:

1 — Open file that was created with the autocreate option when the LUNO was
assigned. When file existed prior to the Assign LUNO operation, terminate in
error.

0 — Open file regardless of when it was created.

The LUNO field contains the LUNO assigned to the file to be opened.

The Open Extend operation returns the file type code in the buffer address field. The file type
codes for relative record files are:

>02FF Relative record file, no special usage
>04FF Directory (relative record) file

>05FF Program (relative record) file

>06FF Image (relative record) file

When the calling task places zero in the read character count field, the Open Extend operation
returns the logical record length specified for the file.

The folowing is an example of the source code for a supervisor call block to open a relative record
file with an Open Extend operation:

OXRRF DATA O OPEN EXTEND FILE ASSIGNED TO LUNO
BYTE >12,>4E >4E WITH SHARED ACCESS
BYTE 0,>10
XRRFT DATA O
XBLR DATA O
DATAO
DATA O
DATA O

2270507-9701 7-85

7.4 Relative Record File I/O

7.4.16 Unlock

Sub-opcode >4A specifies an Unlock operation. The Unlock operation releases exclusive control
of any previously locked record, a record locked by another task, or a record locked by the calling

task. For a relative record file, the operation unlocks a specified record.

The following fields of the basic supervisor call block and the relative record file extension apply

to an Unlock operation:
. SVC code — 0
. Return code

. Sub-opcode — >4A

. Logical unit number (LUNO)

. User flags

] Record number

The following user flag applies to an Unlock operation:

0

3-4

f

2279632

Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The following is an example of the source code for a supervisor call block to unlock a file record:

URRF DATA O
BYTE >4A>4E
BYTE 0,0
DATA O
DATA O
DATA O
DATA O
DATA 456

7-86

UNLOCK RECORD 456 IN FILE
ASSIGNED TO LUNO >4E

2270507-9701

Relative Record File /O 7.4

7.4.17 Multiple Record Read

Sub-opcode >59 specifies a Multiple Record Read operation. The Multiple Record Read operation
reads an integral number of records of the file and stores the data in the buffer at the specified
address. The characters are packed two per word. The calling task specifies the number of
characters to be stored; the operation stores complete records, each preceded by a word that
contains the length of the record. The transfer of data to the buffer continues until the number of
characters in the current record exceeds the number of characters remaining in the buffer. The
specified record of a relative record file is the first record to be read.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Multiple Record Read operation:

e SVCcode —0

. Return code

. Sub-opcode — >59

. Logical unit number (LUNO)
. System flags

. User flags

o Data buffer address

. Read character count

. <Actual read count>

. Record number

The following system flags apply to a Multiple Record Read operation:

112)] 314) 5] 6 7

0
Frs

2279633

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:

1 — EOF record has been read.
0 — EOF record has not been read.

2270507-9701 7-87

7.4 Relative Record File I/O

The following user flags apply to a Multiple Record Read operation:

ol 1 2| 3-4 5(6] 7

K3

2279634

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management locks the records after reading.
0 — Records remain in the state they were in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer in which the records are to be stored.
The address must be an even number.

The input character count contains the maximum number of characters to be stored in the buffer.

The actual read count is the number of characters stored; it is returned by file management. The
operation reads a record, beginning at the record specified in the record number field, and
compares the number of characters in the record with the remaining buffer space. When the
record can be stored in the remaining space, the operation stores the record length (in characters)
in a word, followed by the characters of the record. The operation continues reading and storing
records until the record length is greater than the remaining space. At this point, the operation
returns the total number of characters in the records plus two for the overhead word of each
record and terminates.

If the buffer supplied is too small, an error code is returned.

When the first record read is a logical EOF record, file management returns zero in the actual read
count field and sets the logical EOF flag in the system flags byte. When a logical EOF record is
read in a subsequent record, the operation terminates and returns the number of characters stored
without setting the logical EOF flag. The next read operation sets the logical EOF flag.

When the lock/unlock flag is set, the Multiple Record Read operation locks the records that are
read. These records cannot be read again until a Write or Rewrite operation unlocks each record
after updating the contents, or until an Unlock operation for each record is performed.

When a Multiple Record Read operation reads a record that is locked, the operation returns an
error message and no more records are read. The contents of any unlocked records read prior to
reading the locked record are stored in the data buffer, and the actual read count contains the
number of characters stored in the buffer.

Reading begins at the record specified in the record number field. The record number is

incremented by one as each record is read. At the completion of the operation, the record number
field contains the number of the record following the last record read.

7-88 2270507-9701

Relative Record File /0O 7.4

The following is an example of the source code for a supervisor call block for a Multiple Record

Read, and for the required buffer:

MRRRRF DATAO READ MULTIPLE RECORDS OF FILE
BYTE >569,>4E ASSIGNED TO LUNO >4E

BYTE 0,0
DATA MRRB
DATA 800
DATA O
DATA O
DATA 38
MRRB BSS READ BUFFER

7.4.18 Multiple Record Write

Sub-opcode >5B specifies a Multiple Record Write operation. The Multiple Record Write operation
transfers the data in the buffer at the specified address to the file. The characters in the buffer are
packed two per word. The first character of each record in the buffer is preceded by a word that
contains the record length (in characters). The record length words are not written to the file.

The following fields of the basic supervisor call block and the relative record file extension apply

to a Multiple Record Write operation:
. SVC code — 0
o Return code
U Sub-opcode — >5B
. Logical unit number (LUNO)
U System flags
. User flags
. Data buffer address
. Write character count
. Record number

The following system flags apply to a Multiple Record Write operation:

2279635

2270507-9701

7-89

7.4 Relative Record File l/O

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Multiple Record Write operation:

o 1 2| 3-4 5|6 7

f f

2279636

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management unlocks the records after writing.
0 — Records remains unlocked.

The LUNO field contains the LUNO assigned to the file.

The data buffer address is the address of the buffer that contains the records to be written. A word
that contains the length (in characters) precedes each record.

The write character count is the number of characters in the buffer, including the overhead words
containing the record lengths. The number of characters to be written is a multiple of the logical
record length of the file. When the record length supplied in the buffer for a record is less than the
logical record length, the system writes the specified number of characters and fills the record
with zeros. When the record length is greater than the logical record length, the system writes the
data, truncating the data at the logical record length.

The record number is the number of the first record to be written. The system increments the
record number by one as each record is written. At the completion of the operation, the record
number field contains the number of the record following the last record written. The record
following the highest-numbered record in the file is the logical EOF record.

When the lock/unlock flag is set, all records that are written are unlocked following the Multiple
Record Write operation.

7-90 2270507-9701

Key Indexed File I/O 7.5

The following is an example of the source code for a supervisor call block for a Multiple Record
Write operation:

WMRRRF DATA O WRITE RECORDS TO FILE
BYTE >5B,>4E ASSIGNED TO LUNO >4E
BYTE 0,0
DATA RRFWB
DATA O
DATA ENDBF-RRFWB
DATA O
DATA 248
RRFWB DATA RREC2-$ WRITE BUFFER
TEXT ‘RECORD 248’

RREC2 DATA RREC3-$
TEXT ‘RECORD 249’

RREC3 DATA ENDBF-$
TEXT ‘RECORD 250"

EVEN
ENDBF EQU $

7.5 KEY INDEXED FILE I/O

DNOS supports resource-independent operations to key indexed files. These operations access
the file as if it were a sequential file with records written in the order of the primary key. The
resource-specific operations access records in the sequence of any key defined for the file, or
access a specific record by its key. The supported operations read, insert, locate, or rewrite a
record.

7.5.1 Key Indexed File Resource-Independent 1/0

Key indexed file 1/0 uses the basic supervisor call block previously shown to effect I/O transfers,
file positioning, and other I/0O operations. Except for the Read File Characteristics operation, the
file must be opened for resource-independent I/O using sub-opcode >00 or >03. Sub-opcode >01
(Close) is common to both resource-independent and resource-specific operations. The sub-
opcodes that apply to key indexed file resource-independent I/O are:

2270507-9701 7-91

7.5 KeyIndexed File /O

SVC > 00 —- 1/0 OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT
DEec HEX
(0] 0 >00 <RETURN CODE >
2 2 SuB-QOPCODE LUNO
4 4 <SYSTEM FLAGS> UseR FLAGS
6 6 DATA BUFFER ADDRESS
|
8 8 READ CHARACTER COUNT
10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT >
2279470
00 Open
01 Close

03 Open and Rewind

05 Read File Characteristics
06 Forward Space

07 Backward Space

09 Read ASCII

OE Rewind

Sub-opcode >0A, Read Direct, is identical to a Read ASCH operation.
The following sub-opcodes return error messages:

02 Close, Write EOF
04 Close and Unload
08 Not Used

0B Write ASCI!

0C Write Direct

0D Write EOF

OF Unload

7.5.1.1 Open. Sub-opcode >00 specifies an Open operation for resource-independent 1/O. The
Open operation enables the task to perform /O operations on the file assigned to the LUNO. If the
Open operation is successful, the access privilege requested in bits 3 and 4 of byte 5 is granted to
the task. An Open operation must be performed before a task can access a file. However, the Read
File Characteristics operation may be performed without opening the file. The first Open oper-
ation for the LUNO positions the file at the first record (lowest-valued primary key). Subsequent
Open operations for the same LUNO open the file as positioned by the most recent operation.

The following fields of the basic call block apply to an Open operation:
. SVC code — 0

. Return code

7-92 2270507-9701

Key Indexed File 1/0 7.5

. Sub-opcode — >00

. Logical unit number (LUNO)
. User flags

. Data buffer address

o Read character count

The following user flags apply to an Open operation:

2279637 T f

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all,
10 — Shared.
11 — Read only.

Bit5 — Do notreplace flag. Applies to shared, exclusive write, and exclusive all access only.

Set as follows: '

1 — Open file that was created with the autocreate option when the LUNO was
assigned. When file existed prior to the Assign LUNO operation, terminate in
error.

0 — Open file regardless of when it was created.

The LUNO field contains the LUNO assigned to the file to be opened.

The Open operation returns the file type code in the buffer address field. The file type code for a
key indexed file is >03FF.

When the calling task places zero in the read character count field, the Open operation returns the
logical record length specified for the file.

The following is an example of the source code for a supervisor call block to open a key indexed
file:

OKIF DATA O OPEN FILE ASSIGNED TO LUNO >5E
BYTE 0,>6E WITH SHARED ACCESS
BYTE 0,>10

KFT DATA O

BLK DATA O
DATA O

2270507-9701 7-93

7.5 KeyIndexed File I/0

7.5.1.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends 1/O to a
LUNO from the calling task. The LUNO remains assigned to the file. Specifically, for the file

assigned

to the LUNO, the Close operaticn:

Unlocks any locked records

Writes all modified file blocks on which write was deferred

Releases access privileges

Updates file data structures maintained by the system to accurately describe the current
file. Until the Close operation is performed, data structures on disk do not accurately

reflect the contents of the file. If a system crash occurs before a Close is performed,
new records written to the end of an existing file will be lost.

The Close operation is used to close files opened either for resource-independent or for resource-
specific operations.

The following fields of the basic supervisor call block apply to a Close operation:

SVC code — 0

Return code

Sub-opcode — >01

Logical unit number (LUNO)

User flags

The following user flag applies to a Close operation:

2279638

Bit 0

— Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file to be closed.

The following is an example of the source code for a supervisor call block to close a file:

CKIF

7-94

DATA O CLOSE FILE ASSIGNED TO LUNO >5E
BYTE >01,>5E

BYTE 0,0

DATA O

DATA O

DATA O

Change 1 2270507-9701

Key Indexed File I/0 7.5

7.5.1.3 Open and Rewind. Sub-opcode >03 specifies an Open and Rewind operation. An Open
and Rewind operation is identical to an Open operation except that the Open and Rewind oper-
ation always positions the file to the record having the lowest-valued primary key (first record).

7.5.1.4 Read File Characteristics. Sub-opcode >05 spécifies a Read File Characteristics
operation. The Read File Characteristics operation returns file characteristics information in a

buffer specified by the user. The file characteristics consist of 12+ 4n bytes of information, in
which n is the number of keys defined for the file, 14 or fewer.

In a secure environment, this operation may be used to determine which access rights a user has
to afile. If this option is used, a word of file access rights is returned.

The following fields of the basic supervisor call block apply to a Read File Characteristics
operation:

. SVC code — 0

o Return code

. Sub-opcode — >05

. Logical unit number (LUNO)
. User flags

o Data buffer address

. Read character count

. <Actual read count>

The following user flag applies to a Read File Characteristics operation:

of1 2 3-4 56| 7

F T

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.
Bit 2 — Security access rights flag. Set as follows:
1 — System returns a word of rights in the buffer specified by the user.
0 — System returns file characteristics.

2279639

The LUNO field contains the LUNO assigned to the file for which characteristics are to be read.

2270507-9701 795

7.5 Keylindexed File I/O

The data buffer address is the address of the buffer into which DNOS places the file characteris-
tics. The buffer should contain at least 16 bytes (for a file with a primary key only) if the security
rights option is not used. If the security rights option is used, the buffer should contain two bytes.
Add four bytes for each secondary key. The buffer should contain at ieast 10 bytes if the security
rights option is not used. If the security rights option is used, the buffer should contain two bytes.

The read character count is the length of the buffer.
If the security access rights flag is set, a word of file access rights is returned to the buffer speci-

fied by the user. If the security access righis flag is not set, file characteristics are returned. The
following explains the meaning of the bits in the returned word:

213 4 5
2285029 f f 1 ? f

Bit 0 — 1if the user has read access

Bit 1 — 1 if the user has write access
Bit 2 — 1if the user has delete access
Bit 3 — 1if the user has execute access
Bit 4 — 1if the user has control access

If the security access rights flag is not set, a number of file characteristics is returned.

7-96 2270507-9701

Key Indexed File I/0 7.5

DNOS returns the number of characters stored in the buffer in the actual read count field. The file
characteristics for a key indexed file consist of 16 through 68 characters. The contents of the
buffer following a Read File Characteristics operation are:

DEC
0o

10

12

14

8+4N

10+4N

2279640

2270507-9701

ng FILE ATTRIBUTE FLAGS
2 PHYSICAL RECORD L_LENGTH
4 LoGicaL RECORD LLENGTH
6
NUMBER OF LOGICAL RECORDS
8
A NUMBER OF KEYS
N t
C KEY FLAGS KEY LENGTH PRIMARY
KEY
E OFFSET OF KEYS
~ L SECONDARY
- KEYs
- ~ (IF ANY)
L
8+4N KEY FLAGS KEY LENGTH LAasT KEY,
PRIMARY OR
A+4N OFFSET TO KEY SECONDARY
Byte Contents
0-1 File attribute flags, as follows:

Bits 0-1 — File usage:
00 — No special usage.

Bits 2-3 — Data format:
01 — Blank compressed.

Bit 4 — Allocation type:
1 — Expandable file.

Bits 5-6 — File type:
11 — Key indexed.

Bit 7 — Write protection flag:
0 — Not write protected.
1 — Write protected.

7-97

7.5 KeyIndexed File /O

Byte

2-3
4-5
6-9
10-11
For each of n keys:

8+4n

9+4n

10+ 4n

7-98

Contents
Bit 8 — Delete protection flag:
0 — Not delete protected.
1 — Delete protected.
Bit 9 — Temporary file flag:
0 — Permanent file.
1 — Temporary file.

Bit 10 — Blocked file flag:
0 — Blocked.

Bit 11 — Reserved.
Bit 12 — Write mode flag:
0 — Deferred write.
1 — Immediate write.
Bits 13-15 — Reserved.
Physical record length.
Logical record length.

Number of logical records.

Number of keys for the file, 1 through 14.

Key flags, as follows:

Bits 0-4 — Reserved. :

Bit 5 — Modifiable flag. Set to 1 if key may be modified, or to 0 if key may
not be modified.

Bit 6 — Reserved.

Bit 7 — Duplicatable flag. Set to 1 if key may be duplicated, or to 0 if key
may not be duplicated.

Number of characters in key.

Offset to key — The character position in the logical record where the
key begins (first position is 0).

2270507-9701

Key Indexed File /O 7.5

The following is an example of the source code for a supervisor call block to read file
characteristics and for the buffer required for a three-key file :

RKIFC DATA O READ CHARACTERISTICS OF FILE
BYTE >05,>5E ASSIGNED TO LUNO >5E
BYTE 0,0
DATA KIFC
DATA 24
DATA O
KIFC BSS 24 FILE CHARACTERISTICS BUFFER

7.5.1.5 Forward Space. Sub-opcode >06 specifies a Forward Space operation. The Forward
Space operation spaces forward (in primary key order) over the requested number of logical
records, or until the logical EOF is encountered. When the EOF is encountered, file management
sets the EOF flag and returns the number of records remaining to be spaced. The file is positioned
before the EOF. :
The following fields of the basic supervisor call block apply to a Forward Space operation:

. SVC code — 0

. Return code

U] Sub-opcode — >06

. Logical unit number (LUNO)

. System flags

. User flags

. Write character count

The following system flags apply to a Forward Space operation:

11 2]3|]4]|5]|6]|7

0
Frt

2279641

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:

1 — EOF has been encountered.
0 — EOF has not been encountered.

2270507-9701 7-99

7.5 KeyIndexed File

The following user flag applies to a Forward Space operation:

o1 1|2 3-4 516)7

2279642 *

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The write character count contains the number of logical records to be forward spaced. File
management returns zero when the operation forward spaces the requested number of records
without encountering EOF. When the forward space operation encounters EOF, the number of
records remaining to be forward spaced is returned.

The following is an example of the source code for a supervisor call block to forward space a file:

FSKIF DATA O FORWARD SPACE FILE ASSIGNED
BYTE >06,>5E TO LUNO >5E
BYTE 0,0
DATA O
DATA O
DATA 5 FIVE RECORDS

7.5.1.6 Backward Space. Sub-opcode >07 specifies a Backward Space operation. The Backward
Space operation spaces toward the beginning of the file (decreasing primary key order) over the
requested number of logical records, or until the beginning of the file is encountered. When the
beginning of the file is encountered, file management returns the number of records remaining to
be spaced. The file is positioned to read the first record when a Read operation is performed.
The following fields of the basic supervisor call block apply to a Backward Space operation:

. SVC code — 0

. Return code

. Sub-opcode — >07

. Logical unit number (LUNO)

. System flags

U User flags

] Write character count

7-100 2270507-9701

Key Indexed File II0 7.5

The following system flags apply to a Backward Space operation:

ot112]3|4]5]|]6]7

*

2279643

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flag applies to a Backward Space operation:

0 112 3-4 5|6 7

2279644 ’

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The write character count contains the number of logical records to be backward spaced. File
management returns zero when the operation spaces backward the requested number of records
without encountering the beginning of the file. When the backward space operation encounters
the beginning of the file, the number of records remaining to be backward spaced is returned.

The following is an example of the source code for a supervisor call block to backward space a
file:

BSKIF DATA O BACKWARD SPACE FILE ASSIGNED
BYTE >07,>5E TO LUNO >5E
BYTE 0,0
DATA O
DATA O
DATA 3 THREE RECORDS

2270507-9701 7-101

7.5 KeyIndexed File /O

7.5.1.7 Read ASCIl. Sub-opcode >09 specifies a Read ASCIlI operation. The Read ASCII
operation reads a record of the file and stores the data in the buffer at the specified address. The
characters are packed two per word.
The following fields of the basic supervisor call block apply to a Read ASCII operation:

. SVC code — 0

. Return code

. Sub-opcode — >09

L Logical unit number (LUNO)

. System flags

o User flags

. Data buffer address

. Input character count

. <Input record length>

The following system flags apply to a Read ASCII operation:

of112]3]4]|5]|]6]7

2279645 ? T ?

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

Bit 2 — End-of-file. Set by system as follows:

1 — EOF has been encountered.
0 — EOF has not been encountered.

7-102 2270507-9701

Key Indexed File /O 7.5

The following user flag applies to a Read ASCII operation:

ot 1 2 3-4 51617

2279646 *

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

When an EOF is encountered, file management returns zero in the actual read count field and sets
the EOF flag in the system flags byte.

The following is an example of the source code for a supervisor call block to read a file record, and
for the required buffer:

RKIF DATA O READ A RECORD OF FILE ASSIGNED
BYTE >09,>5E TO LUNO >5E
BYTE 0,0
DATA KIFRB
DATA 80
DATA O

KIFRB BSS 80 READ BUFFER
7.5.1.8 Rewind. Sub-opcode >0E specifies a Rewind operation. The Rewind operation simulates
the rewinding of a magnetic tape file. The operation positions the file at the first record, that is, at
the record having the lowest-valued primary key.
The following fields of the basic supervisor call block apply to a Rewind operation:

. SVC code — 0

U Return code

. Sub-opcode — >0E

2270507-9701 7-103

7.5 KeylIndexed File /0

. Logical unit number (LUNO)
. User flags

The following user flag applies to a Rewind operation:

0 112 3-4 516 7

?

2279647
Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.
The following is an example of the source code for a supervisor call block to rewind a file:
RWKIF DATA O REWIND FILE ASSIGNED TO LUNO >5E

BYTE >0E,>5E

BYTE 0,0

DATA O

DATA 0

DATA O
7.5.1.9 Modify Access Privileges. Sub-opcode > 11 specifies a Modify Access Privileges opera-
tion. The Modify Access Privileges operation assigns access privileges to a file. When the
requested access privileges are not allowed, the existing access privileges continue to apply.

The following fields of the basic supervisor call block apply to a Modify Access Privileges
operation:

. SVC opcode — >00

e Return code

. Sub-opcode — >11

o Logical unit number (LUNO)
. User flags

The following user flags apply to a Modify Access Privileges operation:

2279630

7104 2270507-9701

Key Indexed File /O 7.5

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

The LUNO field contains the LUNO assigned to the file.
The access privilege flag in the user flags byte specifies the new access privileges for the file.

The following is an example of the source code for a supervisor call block to modify the access
privileges of afile:

MARRF DATA O MODIFY ACCESS PRIVILEGES OF FILE

BYTE >11,>4E ASSIGNED TO LUNO4ETO

BYTE 0,0 ‘ EXCLUSIVEWRITE

DATA O

DATA O

DATA O

DATA O

DATA O

7.5.2 Key Indexed File Resource-Specific 1/10
DNOS supports 15 operations that exploit the capabilities of key indexed files, as follows:

40 Open Random

41 Read Greater

42 Read by Key

42 Read Current

44 Read Greater or Equal
45 Read Next

46 Insert

47 Rewrite

48 Read Previous

49 Delete by Key

49 Delete Current

4A Unlock

50 Set Currency Equal

51 Set Currency Greater or Equal
52 Set Currency Greater

The key indexed file must be opened using the Open Random operation before performing any of

the other operations listed. The Close operation described for resource-independent key indexed
file I/O applies also to files opened using the Open Random operation.

2270507-9701 7-105

7.5 KeylIndexed File IO

Some of the resource-specific operations require a key to specify the record on which the
operation is to be performed. Other operations use information returned by file management dur-
ing a previous operation to specify the record. Operations that require a key are:

Read by Key

Read Greater

Read Greater or Equal

Set Currency Equal

Set Currency Greater

Set Currency Greater or Equal
Delete by Key

Operations that use the information supplied to a previous operation are:

Read Current
Read Previous
Read Next
Rewrite
Unlock

Delete Current

Several of the operations that specify a record by its key can use a partial key to specify arecord. A
partial key consists of fewer characters than the key defined for the record. The partial key begins
with the first character of the defined key. A partial key may not be taken from the center or end of
the defined key. For example, if a key consists of a telephone number (area code, exchange code,
and number) the area code (first three digits) or the area code and exchange code (first six digits)
are valid partial keys. The exchange code (fourth through sixth digits) is not a valid partial key. The
following operations may use a partial key:

Read Greater

Read Greater or Equal

Set Currency Equal

Set Currency Greater

Set Currency Greater or Equal

The Set Currency operations locate a record by returning information that a subsequent command
may use to read or delete a record. ,

The key indexed file resource specific operations use a single-word extension to the basic
supervisor call biock, as follows:

DEc Hex
12 (o4 CURRENCY BLOCK ADDRESS
2279648
Byte Contents
12 Address of the currency block (must be a word boundary address).

7-106 2270507-9701

Key Indexed Filel/lO 7.5

To access the last record of a key indexed file, several operations are needed. Use the Set
Currency Greater or Equal operation, specifying a key value larger than that for any record in the
file. This operation returns an informative code indicating that the key does not exist. Use the
currency returned by this operation and do a Read Previous operation. The Read will return the last
record of the file.

The currency block contains the address of a block that contains the key and an area in which file
management returns information that enables access to the record by commands that do not
supply a key. The structure of the currency block is:

DEC HEX
0 0 <INF. CopE>PK LENGTH KEY NUMBER
2 2 KEY ADDRESS

N
LN
)
(
)
{

i o < CURRENCY INFORMATION > 3
18 12
2279649
Byte Contents

0 System returns informative code. For partial key operations, length of
partial key.

1 Number of key (order of definition).

2-3 Address of block that contains the key or the partial key. The address
must be an even number.

4-19 Currency information returned by file management. This information

may be used by a subsequent operation to access the same record
without the key.

The key or partial key for the operation is in a block or buffer. The address of the block is placed in
the currency block.

All resource-specific operations except Open Random and Unlock return an informative code in
byte 0 of the currency block. The informative code is a code that gives the status of an operation.
The informative codes are listed in Table 7-1; they are not necessarily error codes, but they
indicate some abnormal condition resulting from the operation.

2270507-9701 7107

7.5 KeyIndexed File I/O

Table 7-1. Key Indexed File Informative Codes

Code
(Hexadecimal) Meaning
00 Normal completion.
B3 No more records to be read.
B4 Additional records with same key value as that specified for the current read
operation.
B5 No record with specified key or currency information.
B7 Record to be locked is already locked, or record to be deleted is locked.
B8 Record specified by sub-opcode and currency information does not exist.
BD Next record for Read Next or Read Previous operation cannot be found. Either

the record has been deleted or currency information has been destroyed.

7.5.2.1 Open Random. Sub-opcode >40 specifies an Open Random operation for a key indexed
file. The Open Random operation enables the task to perform resource-specific I/O operations to
the file assigned to the LUNO. If the Open operation is successful, the access privilege requested
in bits 3 and 4 of byte 5 is granted to the task. An Open Random operation must be performed
before a task can access a key indexed file for a resource-specific operation. The Open Random
operation does not alter the position of the file.

The following fields of the basic call block apply to an Open Random operation:

. SVC code — 0

Return code

° Sub-opcode — >40

. Logical unit number (LUNO)
. User flags

. Data buffer address

U] Read character count

7-108 2270507-9701

Key Indexed File /0 7.5

The following user flags apply to an Open Random operation:

0 1 2 3-4 51617

2279650 f ?

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bits 3-4 — Access privilege flag. Set as follows:
00 — Exclusive write.
01 — Exclusive all.
10 — Shared.
11 — Read only.

Bit5 — Do not replace flag. Applies to shared, exclusive write, and exclusive all access only.
Set as follows:

1 — Open file that was created with the autocreate option when the LUNO was

assigned. When file existed prior to the Assign LUNO operation, terminate in
error.

0 — Open file regardless of when it was created.
The LUNO field contains the LUNO assigned to the file to be opened.

The Open Random operation returns the file type code in the buffer address field. The file type
code for a key indexed file is >03FF.

When the calling task places zero in the read character count field, the Open Random operation
returns the logical record length specified for the file.

The following is an example of the source code for a supervisor call block for an Open Random
operation:

ORKIF DATA O OPEN FILE ASSIGNED TO LUNO >5E
BYTE >40,>5E WITH SHARED ACCESS
BYTE 0,>10

ORKFT DATA O
ORBLK DATA O
DATA O

2270507-9701 7-109

7.5 Keylindexed File I/O

7.5.2.2 Read by Key. Sub-opcode >42 specifies a Read by Key operation. The Read by Key oper-
ation reads a record of a key indexed file that contains the specified key and stores the data in the
buffer at the specified address. The characters are packed two per word. When the file contains
more than one record having the specified key, the operation reads the record that was inserted in
the file first.

The following fields of the supervisor call block as extended for key indexed files apply to a Read
by Key operation:

. SVC code — 0

. Return code

U Sub-opcode — >42

) Logical unit number (LUNO)

. System flags

. User flags

. Data buffer address

. Read character count

. <Actual read count>

. Currency block address
The following fields of the currency block apply to a Read by Key operation:

o <Informative code>

. Key number

. Key address

The following system flags apply to a Read by Key operation:

—» o
- -

2279651

7-110 2270507-9701

Key Indexed File 1/0 7.5

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Read by Key operation:

2 3-4

ot 1
FF f

(6]
[0}
N

2279652

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 1 — Key specified flag. Set to one for a Read by Key operation. (The Read Current oper-
ation uses the same sub-opcode with this flag set to 0.)

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management locks the record after reading.
0 — Record remains in the state it was in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the actual number of characters read, returned by file management. The
count returned is the length of the record or the length of the buffer, whichever is less. When an
odd number of characters is read, an additional character is stored in the buffer, but the odd
number (the actual number read) is placed in the actual read count field.

The key number is the number of the key as defined when the file was created. The MKF command
shows the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Read by Key operation. It may be shared by various
portions of the program. The length of the key is defined when the file is created.

A Read by Key operation may return >B4 or >B5 as the informative code. Nhen the lock/unlock
flag is set to one, the operation may also return >B7 as the informative code.

2270507-9701 7-111

7.5 Key Indexed File I/O

The following is an example of the source code to read a file record specified by key. The super-

visor call block, read buffer, currency block, and key block are as follows:
RBK DATA O READ A RECORD OF FILE ASSIGNED
BYTE >42,>5E TO LUNO >5E
BYTE 0,>40
DATA RBKRB
DATA 80
DATA O
DATA CRBK
RBKRB BSS 80 READ BUFFER
CRBK BYTE O CURRENCY BLOCK
BYTE 3 KEY NUMBER 3
DATA RBKEY
CINRBK BSS 16 ASSUMES KEY LENGTH IS 5

RBKEY TEXT ‘TEXAS’

7.5.2.3 Read Greater. Sub-opcode >41 specifies a Read Greater operation. The Read Greater

operation
specified

reads the first record of a key indexed file that contains a value greater than the
value for a specified key and stores the data in the buffer at the specified address. The

characters are packed two per word. When the file contains more than one record having the
requested key value, the operation reads the record that was inserted in the file first.

The following fields of the supervisor call block as extended for key indexed files apply to a Read
Greater operation:

7-112

SVC code — 0

Return code

Sub-opcode — >41

Logical unit number (LUNO)
System flags

User flags

Data buffer address

Read character count
<Actual read count>

Currency block address

2270507-9701

Key Indexed File I/0 7.5

The following fields of the currency block apply to a Read Greater operation:
. <Informative code>
. Lethh of partial key
. Key number
. Key address

The following system flags apply to a Read Greater operation:

o 1
2279653 ot
Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Read Greater operation:

1 2 3-4 5|6 7

0
F T 7

2279654
Bit 0 — Initiate flag. Set as follows:

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 1 — Key specified flag. Set to one for a Read Greater operation.
Bit 5 — Lock/unlock flag. Set as follows:

1 — File management locks the record after reading.
0 — Record remains in the state it was in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

2270507-9701 7-113

7.5 KeylIndexed File I/0

The actual read count is the number of characters read, returned by file management. The count
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

The length of the partial key field contains the length of the partial key for operations to which a
partial key applies. The field must be set to zero or to the defined length when the defined length
of the key applies.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Read Greater operation. It may be shared by various
portions of the program. The length of the key is the length defined for the key when the file was
created, or is the partial key length specified for the operation.

A Read Greater operation may return >B4 or >B8 as the informative code. When the lock/unlock
flag is set to one, the operation may also return >B7 as the informative code.

The following is an example of the source code to read a file record having a key greater than the
specified key. The supervisor call block, read buffer, currency block, and key block are as follows:

RGK DATA O READ A RECORD OF FILE ASSIGNED
BYTE >41,>5E TO LUNO >5E
BYTE 0,>40
DATA RGKRB
DATA 80
DATA O
DATA CRGK

RGKRB BSS 80 READ BUFFER

e e e * CURRENCY BLOCK

CRGK BYTE 3 PARTIAL KEY
BYTE 3 KEY NUMBER 3
DATA RGKEY

CINRGK BSS 16
RGKEY TEXT ‘'TEX

7-114 2270507-9701

Key Indexed File 1/0 7.5

7.5.2.4 Read Greater or Equal. Sub-opcode >44 specifies a Read Greater or Equal operation. The
Read Greater or Equal operation reads the first record of a key indexed file that contains a value
equal to or greater than the specified value for a specified key. The operation stores the data in the
buffer at the specified address. The characters are packed two per word. When the file contains
more than one record having the requested key value or the immediately greater value, the
operation reads the record that was inserted in the file first.

The following fields of the supervisor call block as extended for key indexed files apply to a Read
Greater or Equal operation:

o SVC code — 0

o Return code

. Sub-opcode — >44

. Logical unit number (LUNO)

. System flags

U User flags

. Data buffer address

o Read character count

o <Actual read count>

. Currency block address
The following fields of the currency block apply to a Read Greater or Equal operation:

. <Informative code>

. Length of partial key

. Key number

o Key address

The following system flags apply to a Read Greater or Equal operation:

o
T3

2279655

2270507-9701 7115

7.5 KeylIndexed File I/O

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Read Greater or Equal operation:

1 2 3-4 5167

0
T

2279656

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 1 — Key specified flag. Set to one for a Read Greater or Equal operation.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management locks the record after reading.
0 — Record remains in the state it was in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

The length of the partial key field contains the length of the partial key for operations to which a
partial key applies. The field must be set to zero or the defined length when the defined length of
the key applies.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Read Greater or Equal operation. It may be shared
by various portions of the program. The length of the key is the length defined when the file was
created, or the length of a partial key for a partial key operation.

A Read Greater or Equal operation may return >B4 or >B8 as the informative code. When the
lock/unlock flag is set to one, the operation may also return >B7 as the informative code.

7-116 2270507-9701

Key Indexed File /O 7.5

The following is an example of the source code to read a file record having a key equal to or
greater than the specified key. The supervisor call block, read buffer, currency block, and key
block are as follows:

RGEK

RGEKRB
CRGEK

CNRGEK
RGEKEY

7.5.2.5 Set Currency Equal.

DATA O

BYTE >44,>5E
BYTE 0,>40
DATA RGEKRB
DATA 80

DATA O

DATA CRGEK
BSS 80

BYTE O

BYTE 2

DATA RGEKEY
BSS 16

TEXT ‘TX

READ A RECORD OF FILE ASSIGNED
TO LUNO >5E

READ BUFFER
CURRENCY BLOCK
KEY NUMBER 2

ASSUMES KEY LENGTH IS 2

Sub-opcode >50 specifies a Set Currency Equal operation. The Set

Currency Equal operation returns currency information for a record of a key indexed file that
contains the specified key. Normally, one of the key indexed file operations that use currency
information follows this operation. When the file contains more than one record having the
requested key, the operation returns information for the record that was inserted in the file first.

The following fields of the supervisor call block as extended for key indexed files apply to a Set
Currency Equal operation:

. SVC code — 0

. Return code

¢ Sub-opcode — >50

U Logical unit number (LUNO)

e System flags

. User flags

. Currency block address

The following fields of the currency block apply to a Set Currency Equal operation:

. <Informative code>

. Length of partial key

. Key number

. Key address

2270507-9701

7117

7.5 Key Indexed File I/O

The following system flags apply to a Set Currency Equal operation:

112|3]14)] 5| 6] 7

0
FT

2279657

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Set Currency Equal operation:

2279658

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The length of the partial key field contains the length of the partial key for operations to which a
partial key applies. The equality of the partial key to the corresponding portion of the key in the
record determines the selection of a record. The field must be set to zero or the defined length
when the defined length of the key applies.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Set Currency Equal operation. It may be shared by
various portions of the program. The length of the key is the length defined when the file was
created, or the iength of a partial key for a partial key operation.

A Set Currency Equal operation may return >B4 or > B8 as the informative code.

7-118 2270507-9701

Key Indexed FileI/0 7.5

The following is an example of the source code to obtain currency information for a file record hav-
ing a key equal to the specified key. The supervisor call block, currency block, and key block are as

follows:

SCEK DATA O SET CURRENCY FOR A RECORD OF
BYTE >50,>5E FILE ASSIGNED TO
BYTE 0,0 LUNO >5E
DATA O
DATA 0
DATA O
DATA SCEBK

SCEBK BYTE O CURRENCY BLOCK
BYTE 3 KEY NUMBER 3
DATA SCEKEY

CEIN BSS 16 ASSUMES KEY LENGTH IS 6

SCEKEY TEXT ’AUSTIN’

7.5.2.6 Set Currency Greater. Sub-opcode >52 specifies a Set Currency Greater operation. The
Set Currency Greater operation returns currency information for the first record of a key indexed
file that contains a value greater than the specified value for a specified key. Normally, one of the
key indexed file operations that use currency information follows this operation. When the file
contains more than one record having the first key value greater than the requested key value, the

oOperation

returns information for the record that was inserted in the file first.

The following fields of the supervisor call block as extended for key indexed files apply to a Set
Currency Greater operation:

SVC code — 0

Return code

Sub-opcode — >52

Logical unit number (LUNO)
System flags

User flags

Currency block address

The following fields of the currency block apply to a Set Currency Greater operation:

2270507-9701

<Informative code>
Length of partial key
Key number

Key address

7-119

7.5 KeyIndexed File 110

The following system flags apply to a Set Currency Greater operation:

2279659

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1. — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Set Currency Greater operation:

2279660

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The length of the partial key field contains the length of the partial key for operations to which a
partial key applies. The field must be set to zero or the defined length when the defined length of
the key applies.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Set Currency Greater operation. It may be shared by
various portions of the program. The length of the key is the length defined when the file was
created, or the length of a partial key for a partial key operation.

A Set Currency Greater operation may return >B4 or >B8 as the informative code.

7120 2270507-9701

Key Indexed File /O 7.5

The LUNO field contains the LUNO assigned to the file.

The following is an example of the source code to obtain currency information for a file record hav-
ing a key greater than the specified key. The supervisor call block, currency block, and key block
are as follows:

SCGK DATA O SET CURRENCY FOR A RECORD OF
BYTE >52,>5E FILE ASSIGNED TO
BYTE 0,0 LUNO >5E
DATA O
DATA O
DATA 0
DATA CGBK

CGBK BYTE 2 CURRENCY BLOCK
BYTE 2 KEY NUMBER 2
DATA CGKEY

CGIN BSS 16 PARTIAL KEY

CGKEY TEXT AL’

7.5.2.7 Set Currency Greater or Equal. Sub-opcode >51 specifies a Set Currency Greater or Equal
operation. The Set Currency Greater or Equal operation returns currency information for the first
record of a key indexed file that contains a value equal to or greater than the specified value for a
specified key. Normally, one of the key indexed file operations that use currency information
follows this operation. When the file contains more than one record having the key equal to or
greater than the requested key, the operation returns information for the record that was inserted
in the file first.

The following fields of the supervisor call block as extended for key indexed files apply to a Set
Currency Greater or Equal operation:

e SVCcode —0

¢ Return code

. Sub-opcode — >51

. Logical unit number (LUNO)

. System flags

. User flags

e Currency block address
The following fields of the currency block apply to a Set Currency Greater or Equal operation:

o <Informative code>

. Length of partial key

. Key number

. Key address

2270507-9701 7-121

7.5 KeyIndexed File I/O

The following system flags apply to a Set Currency Greater or Equal operation:

1 2|1 3| 45| 6] 7

0
2279661 f *

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Set Currency Greater or Equal operation:

ol 1 2 3-4 5] 6 7

2279662 ’

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The length of partial key field contains the length of the partial key for operations to which a
partial key applies. The field must be set to zero or the defined length when the defined length of
the key applies.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Set Currency Greater or Equal operation. [t may be
shared by various portions of the program. The length of the key is the length defined when the file
was created, or the length of a partial key for a partial key operation.

A Set Currency Greater or Equal operation may return >B4 or >B8 as the informative code.

7-122 2270507-9701

Key Indexed File 110 7.5

The following is an example of the source code to obtain currency information for a file record
having a key greater than or equal to the specified key. The supervisor call block, currency block,
and key block are as follows:

SCGEK DATA O SET CURRENCY FOR A RECORD OF
BYTE >51,>5E FILE ASSIGNED TO
BYTE 0,0 LUNO >5E
DATA O
DATA O
DATA O
DATA CGEK
CGEK BYTE O CURRENCY BLOCK
BYTE 3 KEY NUMBER 3

DATA CGEKEY

CINGE BSS 16 ASSUMES KEY LENGTH IS 3
CGEKEY TEXT 'USA’

7.5.2.8 Delete by Key. Sub-opcode >49 specifies a Delete by Key operation. The Delete by Key
operation deletes the record with a specified key. When the file contains more than one record
having the specified key, the operation returns an informative code of >B4 and does not delete a
record. A Delete Current operation (described in a subsequent paragraph) must be used to delete
records having duplicate keys. A record that has been locked by a Read operation with the
lock/unlock user flag set may not be deleted.

The following fields of the supervisor call block as extended for key indexed files apply to a Delete
by Key operation:

SVC code — 0

Return code

Sub-opcode — >49

Logical unit number (LUNO)
System flags

User flags

Currency block address

The following fields of the currency block apply to a Delete by Key operation:

<Informative code>
Key number

Key address

2270507-9701 7-123

7.5 KeylIndexed File 1/O

The following system flags apply to a Delete by Key operation:

0 1
2279663 v
Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Delete by Key operation:

ojf 2 3-4 516 |7

f

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

2279664

Bit 1 — Key specified flag. Set to one for a Delete by Key operation. The same sub-opcode
with this flag set to 0 is a Delete Current operation.

The LUNO field contains the LUNO assigned to the file.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Delete by Key operation. It may be shared by
various portions of the program. The length of the key is the length defined when the file was
created.

A Delete by Key operation may return >B4, >BS5, or >B7 as the informative code.

124 22705079701

Key Indexed File /0 7.5

The following is an example of the source code to delete a file record having a specified key. The
supervisor call block, currency block, and key block are as follows:

DBK DATA O DELETE A RECORD OF FILE
BYTE >49,>5E ASSIGNED TO LUNO >5E
BYTE 0,>40
DATA O
DATA O
DATAO
DATA DBKBK

DBKBK BYTE O CURRENCY BLOCK

BYTE 1 KEY NUMBER 1
DATA DKEY

CINDK BSS 16 ASSUMES KEY LENGTH IS 9

DKEY TEXT ‘LAZY LANF’
7.5.2.9 Read Current. Sub-opcode >42 specifies a Read Current operation. The Read Current
operation reads a record of a key indexed file defined in currency information returned by a
previous operation. The operation stores the data in the buffer at the specified address. The
characters are packed two per word.

The following fields of the supervisor call block as extended for key indexed files apply to a Read
Current operation:

o SVC code — 0

. Return code

. Sub-opcode — >42

. Logical unit number (LUNO)

. System flags

° User flags

. Data buffer address

. Read character count

o <Actual read count>

. Currency block address
The following fields of the currency block apply to a Read Current operation:

. <Informative code>

. Currency information

2270507-9701 7-125

7.5 KeyIndexed File /O

The following system flags apply to a Read Current operation:

1{2]3(4|5|617

(0]
Ff

2279665

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Read Current operation:

112 3-4 51617

0
7 F

2279666

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 1 — Key specified flag. Set to 0 for a Read Current operation. The same sub-opcode is a
Read by Key operation when this flag is set to one.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management locks the record after reading.
0 — Record remains in the state it was in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

The currency information is in the currency block of a previous operation. Typically the same
currency block is used for the Read Current cperation.

A Read Current operation may return >B0 or >B3 as the informative code. When the lock/uniock

flag is set to one, the operation may also return >B7 as the informative code.

126 2270507-9701

Key Indexed File I/O 7.5

The following is an example of the source code for the supervisor call block to read the current file
record and for the read buffer. The currency block address is that of the currency block in the Set
Currency Equal example.

RCK DATA O READ A RECORD OF FILE ASSIGNED
BYTE >42>5E TO LUNO >5E
BYTE 0,0
DATA RCKRB
DATA 80
DATA O
DATA SCEBK
RCKRB BSS 80 READ BUFFER
7.5.2.10 Read Previous. Sub-opcode >48 specifies a Read Previous operation. The Read
Previous operation reads the record of a key indexed file that precedes the record defined in
currency information returned by a previous operation, other than a Set Currency operation. When
the previous operation was a Set Currency operation, the record defined in the currency infor-
mation is read. The operation stores the data in the buffer at the specified address. The characters
are packed two per word.

The following fields of the supervisor call block as extended for key indexed files apply to a Read
Previous operation:

. SVC code — 0

. Return code

U Sub-opcode — >48

. Logical unit number (LUNO)

. System flags

U] User flags

. Data buffer address

. Read character count

. <Actual read count>

. Currency block address
The following fields of the currency block apply to a Read Previous operation:

. <Informative code>

. Currency information

2270507-9701 7127

7.5 KeyIndexed File 110

The following system flags apply to a Read Previous operation:

o|1j2|3]|]4|5|6]| 7

T T

Bit 0 — Busy flag. Set by system as fcllows:
1 — Busy.
0 — Operation completed.

2279667

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Read Previous operation:

0] 1) 2 3-4 51617

2279668 4

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:

1 — File management locks the record after reading.
0 — Record remains in the state it was in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.
The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

The currency information is in the currency block of a previous operation. Typically the same
currency block is used for the Read Previous operation.

A Read Previous operation may return >B3 or >BD as the informative code. When the lock/unlock
flag is set to one, the operation may also return >B7 as the informative code.

7-128 2270507-9701

Key Indexed File /0 7.5

The following is an example of the source code for the supervisor call block to read the previous
record, and for the read buffer. The currency block address is that of the currency block in the
Read Greater example.
RPK DATA O READ A RECORD OF FILE ASSIGNED
BYTE >48,>5E TO LUNO >5E
BYTE 0,0
DATA RPKRB
DATA 80
DATA O
DATA CRGK ‘
RPKRB BSS 80 READ BUFFER
7.5.2.11 Read Next. Sub-opcode >45 specifies a Read Next operation. The Read Next operation
reads the record of a key indexed file that follows the record defined in currency information
returned by a previous operation, other than a Set Currency operation. When the previous oper-
ation was a Set Currency operation, the record defined in the currency information is read. The

operation stores the data in the buffer at the specified address. The characters are packed two per
word.

The following fields of the supervisor call block as extended for key indexed files apply to a Read
Next operation:

° SVC code — 0

. Return code

. Sub-opcode — >45

. Logical unit number (LUNO)

. System flags

U User flags

. Data buffer address

. Read character count

o <Actual read count>

. Currency block address
The following fields of the currency block apply to a Read Next operation:

. <Informative code>

. Currency information

2270507-9701 7-129

7.5 KeyIndexed File I/O

The following system flags apply to a Read Next operation:

112 (3145|617

0
F ¥

2279669

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Read Next operation:

0 112 3-4 5|67

2279670 7}

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:
1 — File management locks the record after reading.
0 — Record remains in the state it was in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

The currency information is in the currency block of a previous operation. Typically the same
currency block is used for the Read Next operation.

A Read Next operation may return >B3 or >BD as the informative code. When the lock/unlock flag
is set to one, the operation may also return >B7 as the informative code.

7-130 2270507-9701

Key Indexed File /0 7.5

The following is an example of the source code for the supervisor call block to read the next
record, and for the read buffer. The currency block address is that of the currency block in the
Read Greater example.

RNK DATA O READ A RECORD OF FILE ASSIGNED
BYTE >45,>5E TO LUNO >5E
BYTE 0,0 '
DATA RNKRB
DATA 80
DATA O
DATA CRGK
RNKRB BSS 80 READ BUFFER

7.5.2.12 Rewrite. Sub-opcode >47 specifies a Rewrite operation. The Rewrite operation replaces
a record, with the following conditions:

. The operation must use the currency block set up by a Read operation.

. The previous Read operation must have locked the record.

. The new record need not be the same size.

. Only modifiable keys and data that are not included in any key may be altered.

The following fields of the supervisor call block as extended for key indexed files apply to a
Rewrite operation:

e SVCcode—0

. Return code

. Sub-opcode — >47

. Logical unit number (LUNO)

. System flags

U User flags

. Data buffer éddress

. Write character count

U Currency block address
The following fields of the currency block apply to a Rewrite operation:

. <Informative code>

. Currency information

2270507-9701 7-131

7.5 KeyIndexed File 110

The following system flags apply to a Rewrite operation:

o{1|12]|3}14|15] 6|7

L

2279671

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error.

The following user flags apply to a Rewrite operation:

of 1 {2 3-4 5(6{7

2279672 ?

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 5 — Lock/unlock flag. Set as follows:

1 — File management rewrites and unlocks the record.
0 — File management rewrites the record and it remains locked.

The LUNO field contains the LUNO assigned to the file.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even number.

The write character count is the number of characters to be written.

The currency information is in the currency block of a previous Read operation. The same
currency block must be used for the Rewrite operation.

A Rewrite operation may return >BA as the informative code.

7-132 2270507-9701

Key Indexed File 110 7.5

The following is an example of the source code for a supervisor call block to rewrite a record. The
operation uses the currency block of the Read Greater example.

RWTKIF DATA O REWRITE RECORD OF FILE ASSIGNED
BYTE >47,>5E TO LUNO >5E
BYTE 0,0
DATA SFWB
DATAO
DATA 80
DATA CRGK

7.5.2.13 Unlock. Sub-opcode >4A specifies an Unlock operation. The Unlock operation releases

exclusive control of any previously locked record, a record locked by another task or a record

locked by the calling task. The record to be unlocked is identified by the currency information
from a previous operation.

The following fields of the supervisor call block as extended for key indexed files apply to an
Unlock operation:

o SVC code — 0
o Return code
. Sub-opcode — >4A
e Logical unit number (LUNO)
o User flags
. Currency block address
The following field of the currency block applies to an Unlock operation:
. Currency information

The following user flags apply to an Unlock operation:

o} 1 2 3-4 5|6 |7

2279673 *

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

2270507-9701 7-133

7.5 Key Indexed File I/O

The currency information is in the currency block of a previous operation. The same currency
block may be used for the Unlock operation.

The following is an example of the source code for a supervisor call block to unlock a file record.
The currency block referenced is the currernicy block for the Read Greater example.

UKIF DATA O UNLOCK FILE ASSIGNED TO LUNO >5E

BYTE >4A,>5E

BYTE 0,0

DATA O

DATA O

DATA O

DATA CRGK
7.5.2.14 Delete Current. Sub-opcode >49 specifies a Delete Current operation. The Delete
Current operation deletes the record specified by the currency information from a previous
operation. A record that has been locked by a Read operation with the lock/unlock user flag set
may not be deleted.

The following fields of the supervisor call block as extended for key indexed files apply to a Delete
Current operation:

o SVC code — 0

° Return code

. Sub-opcode — >49

. Logical unit number (LUNO)
. System flags

. User flags

. Currency block address

The following fields of the currency block apply to a Delete Current operation:
. <Informative code>

. Currency information

7-134 2270507-9701

Key Indexed File I/0 7.5

The following system flags apply to a Delete Current operation:

1{23]| 4| 51 6] 7

0o
FF

2279674

Bit 0 — Busy flag. Set by system as follows:
1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:
1 — Error.
0 — No error,

The following user flags apply to a Delete Current operation:

1 2 3-4 5|1 6| 7

0
1

2279675

Bit 0 — Initiate flag. Set as follows:
1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

Bit 1 — Key specified flag. Set to 0 for a Delete Current operation. The same sub-opcode with
this flag set to one is a Delete by Key operation.

The LUNO field contains the LUNO assigned to the file.

The currency information is in the currency block of a previous operation. The same currency
block may be used for the Delete Current operation.

A Delete Current operation may return >B4, >B5, >B7, or >BD as the informative code.

The following is an example of the source code for the supervisor call block to delete the current
file record. The currency block address is that of the currency block in the Read Greater example.

DCR DATA O DELETE A RECORD OF FILE
BYTE >49,>6E ASSIGNED TO LUNO >5E
BYTE 0,0
DATA O
DATA O
DATAO
DATA CRGK

2270507-9701 7-135

7.5 Keylindexed File /O

7.5.2.15 |Insert. Sub-opcode >46 specifies an Insert operation. The Insert operation writes a new
record, making it available under every key defined for the file. The file may be thought of as if it
were a set of sequential files, each corresponding to a key and sorted on its key. The effect of an
Insert operation is to insert the record in the proper position in each of these simulated files
according to the key.

The primary key of the inserted record can be a null key (all blanks or having > FF in the first byte);
the record can be accessed by this key. Any secondary key that can be modified can be a null key,
but the key is not placed in the file; therefore the record cannot be accessed by this key.

The following fields of the supervisor call block as extended for key indexed files apply to an
Insert operation:

J SVC code — 0

. Return code

. Sub-opcode — >46

. Logical unit number (LUNO)

° System flags

. User flags

o Data buffer address

o Write character count

. Currency block address
The following fields of the currency block apply to an Insert operation:

. <Informative code>

L Currency information

The following system flags apply to an Insert operation:

—Do4
._,

2279676

7-136 2270507-9701

Bit 0 — Busy flag. Set by system as follows:

1 — Busy.
0 — Operation completed.

Bit 1 — Error flag. Set by system as follows:

1 — Error.
0 — No error.

The following user flags apply to an Insert operation:

2279677 ?

0 1] 2

Bit 0 — Initiate flag. Set as follows:

The LUNO field contains the LUNO assigned to the file.

Key Indexed File /0 7.5

1 — System initiates the operation and returns control to the calling task.
0 — System suspends the calling task until the operation has completed.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even number,

The write character count is the number of characters to be written.

The currency information that defines the inserted record is returned in the currency block.

An Insert operation may return >B4 as the informative code.

The following is an example of the source code for a supervisor call block to insert a record, and
for the currency block:

IKIF

CIK

CINIK
SFWB

2270507-9701

DATA O

BYTE >46,>5E
BYTE 0,0
DATA SFWB
DATA O

DATA 80
DATA CIK
BYTE 0,0
DATA O

BSS 16

TEXT ‘JOHN CUE PUBLIC’

INSERT RECORD IN FILE
ASSIGNED TO LUNO >5E

CURRENCY BLOCK

THE RECORD TO BE INSERTED

7-13717-138

8

Interprocess Communication

8.1 INTRODUCTION

Communication between programs, or interprocess communication (IPC), allows programs to
exchange data. IPC operations are pseudo-1/O operations because each of the programs involved
in the exchange acts as a peripheral device or file with respect to the other.

This section describes interprocess communication (IPC) concepts, utility operations required for
IPC, and IPC /O operations. IPC supports resource-independent 1/0 to symmetric channels and
resource-specific 1/0 to master/slave channels, Descriptions of IPC I/O operations are arranged
according to the type of channel to which they apply.

8.2 COMMUNICATING BETWEEN TASKS

DNOS provides a means of communicating between tasks called interprocess communication
(IPC). A communication path between two or more tasks is called a channel. I/O operations are
directed to channels to accomplish interprocess communication.

Utility operations create and delete IPC channels. The Assign LUNO utility operation assigns a
LUNO to a channel. I/O operations open and close the channel, and perform the actual transfers of
data to provide interprocess communication.

Resource-independent I/0 is performed to symmetric IPC channels. A symmetric IPC channel pro-
vides transfer of messages between the owner task and a requesting task. The matching of a
request for an I/O operation to a symmetric channel by one task with a request from another task
provides a task synchronization function; the message transferred may be incidental to the
synchronization function. The message may be a short procedural message or a transfer of data
between tasks.

Transfer of messages in a symmetric channel is either to or from the owner task. A write request of
one task must be matched by a read request from another task. The requesting task may be any
task, as restricted by the scope of the channel (specified when the channel is created) and the
access privileges of the LUNO assigned to the channel (specified when the owner task opened the
LUNO). A message issued by the owner task is received by the task that first issues a read request.
A Read operation initiated by the owner task receives the message in the first write request
directed to the channel.

2270507-9701 8-1

8.2 Interprocess Communication

Typical applications of symmetric channels include cases of owner tasks receiving messages
from several requesting tasks. In this case, the owner task issues a read request. When a
requesting task issues a write request, the message is transferred. The owner task performs the
function appropriate for the message and issues another read request. When a requesting task
has issued another write request during the processing of the first request, the second message
is transferred when the owner task completes the first transfer and issues another read request.
Otherwise, the owner task may be suspended until a requesting task issues a write request to the
channel. If several requesting tasks issue a write request, each request is placed into a queue and
is transferred when the owner task issues succeeding read requests. The owner task is not
suspended if several requesting tasks issue a write request to the channel.

The owner task of a symmetric channel may send messages to several requesting tasks. The
owner task prepares (or updates) the message, and issues a write request. The message is
transferred when a requesting task issues a read request. When the transfer is complete, the
owner task performs any required processing and issues another write request. When a read
request from a requesting task is pending, the message is immediately transferred. Otherwise, the
owner task may be suspended until a requesting task issues a read request to the channel. These
single directional tasks may have an unlimited number of requesting tasks.

A symmetric channel may perform a bidirectional transfer of messages with a requesting task.
The owner task may prepare a message and issue a write request. If there is a read request from
the requesting task pending, the message is transferred immediately. Otherwise, the transfer
occurs when the requesting task issues a read request. Next, each task performs appropriate
processing. Then the requesting task issues a write request, and the owner task issues a read
request (or the owner task may issue a read request before the requesting task issues the write
request). When both requests have been issued, the reply message is transferred. The tasks can
continue to communicate in this way until no further communication is required. In another type
of bidirectional exchange of messages, the first message exchanged is from the requesting task
to the owner task; the exchange continues in a similar manner. This type of bidirectional channel
may have only one requesting task.

Resource-specific 1/0 is performed to master/slave IPC channels. A default resource is specified
for each master/slave channel when it is created. For example, when the default resource for a
channel is the 911 VDT, any operation that could be directed to a 911 VDT may be directed to the
channel. The channel becomes a surrogate VDT to requesting tasks. The owner task of a
master/slave channel performs the functions of the default resource. It obtains the requests for
the channel and processes them appropriately. The owner task can be thought of as a software
device or file that performs functions that may be requested of a device or file. The default
resource for a channel may be a channel. In this case, any resource-independent request may be
directed to the channel.

The owner task of a master/siave IPC channel may process sub-opcodes for the default resource
in a special way. In that case, the programmer of the owner task must adequately document the
manner in which the task responds to each sub-opcode. The capabilities of master/slave channel
owner tasks are very flexible; they must be used properly to be useful.

Scope considerations apply to master/slave channels in the same way as they apply to symmetric
channels. However, the owner task of a master/slave channel may process Assign LUNO requests
(and Release LUNO requests) in addition to other |/O requests. Ih this way the owner task can
identify the task with which it is communicating and more effectively control the communication.

8-2 2270507-9701

Interprocess Communication 8.3

The basic supervisor call block shown in Section 5 applies to IPC operations. Any variations
required are noted in the descriptions of specific operations. The flags used for each operation are
shown in the description of the operation. The basic supervisor call block is as follows:

SVC > 00 -- [/O OPERATIONS ALIGN ON WORD BOUNDARY
Dec HEX CAN BE INITIATED AS AN EVENT
0 0 >00 <RETURN CODE >
2 2 Sue~OPCODE LLUNO
4 4 <SYSTEM FLAGS> UseRrR FLAGS
6 6 DATA BUFFER ADDRESS
8 8 READ CHARACTER COUNT
10 A WRITE CHARACTER COUNT/< ACTUAL READ COUNT>

2279678

8.3 IPC UTILITY OPERATIONS
IPC operations utilize channels in communicating between programs and require utility functions

to create and delete channels, to assign LUNOs to channels, to release LUNOs, and to apply and
remove protection to the channels.

2270507-9701 8-3

8.3.1 Interprocess Communication

8.3.1 Performing Utility Functions
A subset of the sub-opcodes of the 1/0 Operations SVC (opcode 00) performs 1/O utility functions
that support interprocess communication. These |/O utility functions allow a program to:

° Assign a LUNO

o Release a LUNO

U Apply write protection
° Apply delete protection
. Remove protection

e Create an IPC channel
. Delete an IPC channel

Many of these utility operations require pathnames. The pathname of an IPC channel is similar to
that of the program file that contains the owner task. That is, both pathnames consist of the same
volume name and directory names. The channel name replaces the final component of the
program file pathname. The channel name is chosen when the channel is created.

Interprocess communication requires channels to which messages are written and from which
messages are read. Utility functions create and delete IPC channels. An IPC channel is either a
symmetric channel or a master/slave chanrel, and is under controi of a user task in either case.

Channels are created without protection. A utility function of the 1/0 Operations SVC applies
delete protection, and another function of the SVC removes protection.

A task must assign a LUNO to an IPC channel and open that LUNO before attempting to read or
write to the channel.

The first task to use a symmetric channel issues a read or write request and is suspended pending
a matching write or read request from another task (the requesting task). The functions of a
symmetric channel are resource-independent.

The owner task of a master/slave channel exercises a greater degree of control over the channel
than does the owner of a symmetric channel. The functions of a master/slave channel are
resource-specific.

The owner task processes requests for channel operations. A channel is created with a default
resource. Tasks request operations on the channel as if it were the default resource. The owner
task issues a master read request and receives the information supplied in a request by another
task. The owner task performs the requesied operation, modifying the information in the same
way as the default resource would modify it. The owner task then issues a master write request
that returns the modified information to the requesting task.

8-4 2270507-9701

Interprocess Communication 8.3.1

The extended supervisor call blocks for creating and deleting an IPC channel are shown in the
paragraphs that describe those operations. The other utility operations use the extended call
block shown in the following:

SVC >00 -~ [/O OPERATIONS ALIGN ON WORD BOUNDARY
(UTn_rrY SUB—OPCODES) CAN BE INITIATED AS AN EVENT
DEec HEX

0 0 >00 < RETURN CODE>
2 2 SuB~OPCODE LUNO
4 4 <SYSTEM FLAGS> USER FLAGS
6 6 <RESOURCE TYPE>
8 8

RESERVED
10 A
12 C Key DEF. BrLock ADDR/DEF. PHYsS. REcC. SIZE
14 E RESERVED
16 10 UTILITY FLAGS
18 12 DEFINED LoGgicAL RECORD LENGTH
20 14 DEFINED PHYSICAL RECORD LENGTH
22 16 PATHNAME ADDRESS
24 18

RESERVED
26 1A
28 1C

INFTIAL FILE ALLOCATION
30 1E
32 20
SECONDARY FILE ALLOCATION

34 22

2279679

2270507-9701 8-5

8.3.1.1 Interprocess Communication

8.3.1.1 Creating an IPC Channel. An interprocess communication (IPC) channel is a commu