
DNOS~

Supervisor Call (SVC)
Reference Manual

Part No. 2270507·9701 "'e
March 1985

TEXAS INSTRUMENTS

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES

Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer
margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

DNOS Supervisor Call (SVC) Reference Manual (2270507-9701)

Original Issue August 1981
Revision .. October 1982
Revision .. November 1983

Change 1 March 1985

The total number of pages in this publication is 670 consisting of the following:

PAGE
NO.

CHANGE
NO.

Cover 1
Effective Pages 1
Eff. Pages Cont. 1
iii - iv 1
v - xviii 0
1-1 - 1-8 0
2-1-2-14 0
3-1 - 3-20 0
4-1 - 4-9 0
4-10 1
4-11 - 4-14 0
5-1 0
5-2 1
5-3 - 5-24 0
6-1 - 6-3 0

PAGE
NO.

CHANGE
NO.

6-4 1
6-4A/6-4 B 1
6-5 - 6-18 0
6-19 1
6-20 - 6-25 0
6-26 1
6-27 - 6-138 0
6-139 1
6-140 - 6-163 0
6-164 1
6-165 - 6-178 0
7-1 - 7-2 0
7-3 - 7-4 1
7-5 - 7-38 0
7-39 - 7-40 1

PAGE
NO.

CHANGE
NO.

7 -41 - 7-42 0
7-43 1
7-44 - 7-67 0
7-68 1
7-69-7-93 0
7-94 1
7 -95 - 7-138 0
8-1 - 8-6 0
8-7 1
8-8 - 8-21 0
8-22 1
8-23 - 8-30 0
8-31 1
8-32 - 8-45 0
8-46 1

The computers offered in this agreement, as well as the programs that TI has created to use
with them, are tools that can help people better manage the information used in their busi­
ness; but tools- including TI computers-cannot replace sound judgment nor make the
manager's business decisions.

Consequently, TI cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

© 1981,1982,1983,1985, Texas Instruments Incorporated. All Rights Reserved.

Printed in U.S.A.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, ~rQr,ding, or otherwise, without the prior written
permission of Texas Instruments Incorporated.

~ Manual Update

MANUAL: DNOS Supervisor Call (SVC) Reference Manual (2270507-9701) *C

MCR/CHANGE NO.: MCR 004723/Change 1

EFFECTIVITY DATE: 20 March 1985

This change package contains information necessary to update your current manual. Please
remove the obsolete pages from your existing manual and replace them with the changed pages
as follows:

Remove
Obsolete Pages

Cover/Manual Revision History

iii - iv
4-9 - 4-10
5-1 - 5-2
6-3 - 6-4

6-19 - 6-20
6-25 - 6-26
6-139 - 6-140
6-163 - 6-164
7-3 - 7-4
7-39 - 7-40
7-43 - 7-44
7-67 - 7-68
7-93 - 7-94
8-7 - 8-8
8-21 - 8-22
8-31 - 8-32
8-45 - 8-46
9-3 - 9-4
1 0-53 - 1 0-54
A-9 - A-10
A-21 - A-22
User's Resp'/Bus. Reply
Inside Cover/Cover

Insert
Change 1 Pages

Cover/Effective Pages
Effective Pages Cont.
iii - iv
4-9 - 4-10
5-1 - 5-2
6-3 - 6-4
6-4A/6-4B
6-19 - 6-20
6-25 - 6-26
6-139 - 6-140
6-163 - 6-164
7-3 - 7-4
7-39 - 7-40
7-43 - 7-44
7-67 - 7-68
7-93 - 7-94
8-7 - 8-8
8-21 - 8-22
8-31 - 8-32
8-45 - 8-46
9-3 - 9-4
1 0-53 - 1 0-54
A-9-A-10
A-21 - A-22
User's Resp'/Bus. Reply
I nside Cover/Cover

9 Volume Management - Describes the organization of disk volumes used with DNOS
and describes in detail the SVCs that initialize, install, and unload volumes.

10 Task Support - Describes in detail the SVCs that support DNOS tasks by providing
system services required during task execution.

11 System Interface - Describes in detail the SVCs that a task can use to obtain system
data and to allocate and deallocate disk space.

12 SVC Compatibility - Describes in detail those SVCs that are supported by DNOS only
to allow execution of programs for other operating systems. Specifies DNOS alter­
natives for more efficient processing under DNOS.

ppendix

A SVC Index - A special index of SVCs and SVC operations (sub-opcodes).

B Device Character Sets - Detailed descriptions in tabular 'form of character sets for the
I/O devices supported by DNOS.

C Master/Slave Task Examples - Assembly listings of a typical owner task and re­
questing task for an IPC master/slave channel.

1 addition to this manual, the DNOS software manuals shown on the support manual diagram
rontispiece) contain information related to DNOS SVCs.

he following manuals, not listed on the frontispiece, are referenced in this manual or contain
1formation related to DNOS SVCs.

Title

Model 810 Printer Installation and Operation Manual

Model LP300 and LP600 Line Printers Installation and
Operation Manual

Model LQ45 Letter Quality Printer System Installation
and Operation Manual

Part Number

939460-9701

2250364-9701

2268695-9701

2270507·9701

Contents

Paragraph Title Page

1 - Introduction

1.1 How to Use This Manual .. 1-1
1.2 TheSupervisorCall .. 1-1
1.3 The Supervisor Call Block .. 1-2
1.4 Secured Supervisor Calls ... 1-5
1.5 ErrorCodes .. 1-7
1.6 Conventions ... 1-7

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8

2 - Job Management

Job Concept ... 2-1
Managing Jobs ... 2-2

Create Job ... 2-6
Halt Job ... 2-8
Resume Halted Job .. 2-9
Change Job Priority ' ... 2-10
Map Job Name to Job ID ... 2-10
Kill Executing Job .. 2-11
Delete Job .. 2-12
Get Job Information .. 2-13

3 - Program File Management

3.1 Program Files , ... 3-1
3.2 Installing a Task Segment .. 3-2
3.3 Installing a Procedure Segment or Program Segment 3-6
3.4 Installing an Overlay .. 3-10
3.5 Deleti ng a Task .. 3-13
3.6 Deleting a Procedure Segment or Program Segment 3-14
3.7 Deleting an Overlay ... 3-16
3.8 Assigning Space on a Program File 3-17
3.9 Mapping a Program Name to an ID .. 3-18

4.1
4.2

2270507·9701

4 - Task Management

Task Concept ... 4-1
Executing a Task .. 4-2

vii

:ontents

)aragraph Title Page

~.3 Scheduling a Task ... 4-5
k4 Delaying Task Execution ... 4-7
k5 Resuming Execution of Delayed Task 4-8
k6 Changing Priority of a Task ... 4-9
k7 Suspending a Task Unconditionally 4-10
k8 Activating a Suspended Task ... 4-11
k9 Inhibiting Task Preemption .. 4-12
L10 Forcing Abnormal Termination ... 4-13
L11 TerminatingaTask ············· .4-14

>.1
>.2
>.2.1
>'2.1.1
5.2.1.2
>'2.1.3
5.2.1.4
5.2.2
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.2

6.1
6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5
6.3.2.6
6.3.2.7

{iii

5 - Input/Output Operations

Input/Output Capabilities ... 5-1
Preparing for 1/0 .. 5-2

Using Logical Names .. 5-5
Obtaining Logical Name Pathname and Parameters 5-10
Creating a Logical Name ... 5-11
Deleting a Logical Name ... 5-12
Restoring a Name Segment , 5-13

Performing Utility Functions , 5-14
1/0 Operations SVC ~ 5-18

Suspending a Task During I/O .. 5-20
Wait for I/O SVC .. 5-20
Wait for Any I/O SVC .. 5-21

Forcing Termination of I/O , 5-22

6 - Device I/O

Introduction , 6-1
Device Utility Operations ... 6-1

Assigning LUNOs , 6-3
Releasing LUNOs ... 6-5
Verifying Device Names .. 6-6

VDT I/O .. 6-7
Key Categories ... 6-9

Data Keys .. 6-9
Hold Key ... 6-9
Event Keys .. 6-10
System and Task Edit Keys ... 6-11

VDT Resource-Independent I/O , ... , 6-13
Open ... 6-13
Close .. , , 6-14
Close, Write EOF ... 6-15
Open and Rewind .. , 6-15
Close and Unload , 6-15
Read Device Status , 6-15
Read ASCII , 6-17

2270507·9701

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDE"D PAGES

Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer
margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

DNOS Supervisor Call (SVC) Reference Manual (2270507-9701)

Continued:

PAGE
NO.

CHANGE
NO.

8-47 - 8-56 . ~ 0
9-1 - 9-3 0
9-4 1
9-5 - 9-8 0
1 0-1 - 1 0-53 0
10-54 1
1 0-55 - 1 0-68 0

PAGE
NO.

CHANGE
NO.

11-1-11-12 0
12-1 - 12-6 0
A-1 - A-8 0
A-9 1
A-10 - A-20 0
A-21 - A-22 1
B-1 - B-38 0

PAGE
NO.

CHANGE
NO.

C-1 - C-32 0
Index-1 - Index-8 0
User's Response 1
Business Reply 1
I nside Cover 1
Cover 1

I\)
I\)

'" o
(]I
o
'" cO
'" ~

(')
::T
I»
~

CQ
CD

"""

DNOS Software Manuals
This diagram shows the manuals supporting ONOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above that set to determine which manuals are most beneficial to your needs.

ONOS Concepts and Facilities
2270501·9701

ONOS Operations Guide
2270502·9701

High-Level
Language Users:

COBOL Reference Manual
2270518·9701

ONOSCOBOL
Programmer's Guide
2270516·9701

ONOS Performance
Package Documentation
2272109·9701

TI Pascal Reference Manual
2270519·9701

ONOS TI Pascal
Programmer's Guide
2270517·9701

FORTRAN·78 Reference
Manual
2268681·9701

ON OS FORTRAN·78
Programmer's Guide
2268680·9701

MATHSTAT·78
Programmer's Reference
Manual
2268687·9701

FORTRAN·78ISA
Extensions Manual
2268696·9701

TI BASIC Reference Manual
2308769·9701

RPG II Programmer's
Guide
939524·9701

All DNOS Users:

ONOS System Command
Interpreter (SCI) Reference Manual
2270503·9701

ONOS Text Editor
Reference Manual
2270504·9701

Assembly Productivity
Language Users: Tools Users:

990199000 Assembly ONOS Sort/Merge
Language Reference User's Guide
Manual 2272060·9701
2270509·9701

TIFORM
ONOS Assembly Reference Manual
Language 2234391·9701
Programmer's Guide
2270508·9701 ONOS Query·990

User's Guide
ONOS Link Editor 2276554·9701
Reference Manual
2270522·9701 ONOS Data Base

Management System
ONOS Supervisor Call Programmer's Guide
(SVC) Reference 2272058·9701
Manual
2270507·9701 ONOS Data Base

Administrator User's
Guide
2272059·9701

Data Dictionary
User's Guide
2276582·9701

ONOSTIPE
Reference Manual Kit
2308868·0001

ONOSTIPE
Security Exercise Guide Kit

Managers: 2308869·0001

ONOS COBOL Program
ONOS Security Generator User's Guide
Manager's Guide 2234375·9701
2308954·9701

ONOS Messages and
Codes Reference Manual
2270506·9701

ONOS Reference Handbook
2270505·9701

Communications
Software Users:

ONOS ONCS/SNA
User's Guide
2302663·9701

ONOS ONCS
Operations Guide
2302662·9701

ONOS ONCS 914A
User's Guide
2302664·9701

ONOS 3270 Interactive
Communications Software
(ICS) User's Guide
2302670·9701

ONOS 3780/2780
Emulator User's Guide
2270520·9701

ONOS ONCS System
Generation Reference
Manual
2302648·9701

ONOS ONCS X.25
Remote File Transfer
(RFT) User's Guide
2302640·9701

ONOS Remote Terminal
Subsystem (RTS)
User's Guide
2302676·9701

ONOS Distributed Network
1/0 (ONIO) User's Guide
2308793·9701

ON OS Common
Communications Utilities
2308783·9701

ONOS Master Index to
Operating System Manuals
2270500·9701

Systems
Programmers:

ONOS System Generation
Reference Manual
2270511·9701

ONOS Systems
Programmer's Guide
2270510·9701

ROM Loader User's Guide
2270534·9701

Source
Code Users:

ONOSSystem
Design Document
2270512·9701

ONOS SCI and Utilities
Design Document
2270513·9701

DNOS Software Manuals Summary

Concepts and Facilities _
Presents an overview of DNOS with topics grouped by operating system functions. All new users (or
evaluators) of DNOS should read this manual.

DNOS Operations Guide
Explains fundamental operations for a DNOS system. Includes detailed instructions on how to use each
device supported by DNOS.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Describes command procedures and gives
a detailed presentation of all SCI commands in alphabetical order for easy reference.

Text Editor Reference Manual
Explains how to use the Text Editor on DNOS and describes each of the editing commands.

Messages and Codes Reference Manual
Lists the error messages, informative messages, and error codes reported by DNOS.

DNOS Reference Handbook
Provides a summary of commonly used information for quick reference.

Master Index to Operating System Manuals
Contains a composite index to topics in the DNOS operating system manuals.

Programmer's Guides and Reference Manuals for Languages
Contain information about the languages supported by DNOS. Each programmer's guide covers oper­
ating system information relevant to the use of that language on DNOS. Each reference manual covers
details of the language itself, including language syntax and programming considerations.

Performance Package Documentation
Describes the enhanced capabilities that the DNOS Performance Package provides on the Model 990/12
Computer and Business System 800.

Link Editor Reference Manual
Describes how to use the Link Editor on DNOS to combine separately generated object modules to
form a single linked output.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and DNOS services.

DNOS System Generation Reference Manual
Explains how to generate a DNOS system for your particular configuration and environment.

User's Guides for Productivity Tools
Describe the features, functions, and use of each productivity tool supported by DNOS.

User's Guides for Communications Software
Describe the features, functions, and use of the communications software avai lable for execution
under DNOS.

Systems Programmer's Guide
Discusses the DNOS subsystems and how to modify the system for specific application environments.

ROM Loader User's Guide
Explains how to load the operating system using the ROM loader and describes the error conditions.

DNOS Design Documents
Contain design information about the DNOS system, SCI, and the utilities.

DNOS Security Manager's Guide
Describes the file access security features available with DNOS.

iv Change 1 2270507-9701

Preface

This manual describes the supervisor calls (SVCs) supported by the DNOS operating system. In
addition, the manual provides information about using SVCs and includes an example of a typical
use of each SVC.

The intended audience of this manual is the programmer who writes SVCs and the associated call
blocks in his program. The manual is assembly language oriented because the call block must be
written in assembly language. Most SVCs required for high-level language programs are included
in the run-time software and are transparent to the programmer. For those operations that require
explicit SVCs, the high-level language programmer must refer to this manual for a detailed
description of the supervisor call block. The DNOS language programmer's guide for each
language describes the interface with the supervisor call block.

The sections and appendixes of this manual are organized as follows:

Section

1 Introduction - Provides a general description of a supervisor call, and a call block. Lists
the conventions used in the manual.

2 Job Management - Describes the job concept and describes the operations of the Job
Management SVC in detai I.

3 Program File Management - Describes the program file on which the task, procedure,
and program segments and overlays are stored. Describes in detail the SVCs used in
program file management.

4 Task Management - Describes the DNOS task concept and describes in detail the
SVCs used for controlling execution of tasks.

5 1/0 Operations - Describes the supervisor call used to request 1/0 operations, and con­
tains information common to all types of 1/0.

6 Device 1/0 - Describes the 1/0 utility operations for device 1/0 and the 1/0 operations for
each device, organized by device.

7 File 1/0 - Describes the 1/0 utility operations for file 1/0 and the 1/0 operations for each
type of file, organized by file type.

8 Interprocess Communication - Describes the 1/0 utility operations for interprocess
communication (IPC) and the 1/0 operations for symmetric and masterlslave channels.

2270507-9701 v

9 Volume Management - Describes the organization of disk volumes used with DNOS
and describes in detail the SVCs that initialize, install, and unload volumes.

10 Task Support - Describes in detail the SVCs that support DNOS tasks by providing
system services required during task execution.

11 System Interface - Describes in detail the SVGs that a task can use to obtain system
data and to allocate and deallocate disk space.

12 SVC Compatibility - Describes in detail those SVCs that are supported by DNOS only
to allow execution of programs for other operating systems. Specifies DNOS alter­
natives for more efficient processing under DNOS.

Appendix

A SVC Index - A special index of SVCs and SVC operations (sub-opcodes).

B Device Character Sets - Detailed descriptions in tabular form of character sets for the
I/O devices supported by DNOS.

C Master/Slave Task Examples - Assembly listings of a typical owner task and re­
questing task for an IPC master/slave channel.

In addition to this manual, the DNOS software manuals shown on the support manual diagram
(frontispiece) contain information related to DNOS SVCs.

The following manuals, not listed on the frontispiece, are referenced in this manual or contain
information related to DNOS SVCs.

ri

Title

Mode/ 810 Printer Installation and Operation Manua/

Model LP300 and LP600 Line Printers Installation and
Operation Manua/

Model LQ45 Letter Quality Printer System Installation
and Operation Manual

Part Number

939460-9701

2250364-9701

2268695-9701

2270507-9701

Contents

Paragraph Title Page

1 - Introduction

1.1 How to Use This Manual .. 1-1
1.2 The Supervisor Call '" 1-1
1.3 The Su pervisor Call Block .. 1-2
1.4 Secured Supervisor Calls ... 1-5
1.5 Error Codes .. 1-7
1.6 Conventions ... 1-7

2 - Job Management

2.1 Job Concept ... 2-1
2.2 Managing Jobs ... 2-2
2.2.1 Create Job ... 2-6
2.2.2 Halt Job ... 2-8
2.2.3 Resume Halted Job .. 2-9
2.2.4 Change Job Priority ... 2-10
2.2.5 Map Job Name to Job 10 ... 2-10
2.2.6 Kill Executing Job .. 2-11
2.2.7 DeleteJob .. 2-12
2.2.8 Get Job Information .. 2-13

3 - Program File Management

3.1 Program Files .. , " .. '" 3-1
3.2 Installing a Task Segment .. 3-2
3.3 Installing a Procedure Segment or Program Segment 3-6
3.4 Installing an Overlay , '" 3-10
3.5 Deleti ng a Task .. 3-13
3.6 Deleting a Procedure Segment or Program Segment 3-14
3.7 Deleting an Overlay ... 3-16
3.8 Assigning Space on a Program File 3-17
3.9 Mapping a Program Name to an 10 .. 3-18

4 - Task Management

4.1 Task Concept " .. 4-1
4.2 Executing a Task .. 4-2

2270507-9701 vii

Contents

Paragraph Title Page

4.3 Scheduling a Task ... 4-5
4.4 Delaying Task Execution ... 4-7
4.5 Resuming Execution of Delayed Task 4-8
4.6 Changing Priority of a Task ... 4-9
4.7 Suspending a Task Unconditionally 4-10
4.8 Activating a Suspended Task ... 4-11
4.9 Inhibiting Task Preemption .. 4-12
4.10 Forcing Abnormal Termination ... 4-13
4.11 TerminatingaTask ... 4-14

5.1
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.1.4
5.2.2
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.2

6.1
6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5
6.3.2.6
6.3.2.7

viii

5 - Input/Output Operations

Input/Output Capabilities ... 5-1
Prepari ng for 110 .. 5-2

Using Logical Names .. 5-5
Obtaining Logical Name Pathname and Parameters 5-10
Creating a Logical Name ... 5-11
Deleting a Logical Name ... 5-12
Restoring a Name Segment .. 5-13

Performing Utility Functions ... 5-14
110 Operations SVC ... 5-18

Suspending a Task During 110 .. 5-20
Wait for 110 SVC .. 5-20
Wait for Any 110 SVC .. 5-21

Forcing Termination of 110 ... 5-22

6 - Device I/O

Introduction .. 6-1
Device Utility Operations ... 6-1

Assigning LUNOs ... 6-3
Releasing LUNOs ... 6-5
Verifying Device Names .. 6-6

VDT 110 .. 6-7
Key Categories .. 6-9

Data Keys .. 6-9
Hold Key ... 6-9
Event Keys .. 6-10
System and Task Edit Keys ... 6-11

VDT Resource-Independent 110 ... 6-13
Open ... 6-13
Close ... , .6-14
Close, Write EOF ... 6-15
Open and Rewind ... 6-15
Close and Unload ... 6-15
Read Device Status ... 6-15
Read ASCII .. 6-17

2270507·9701

Paragraph

6.3.2.8
6.3.2.9
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.3.4
6.3.3.5
6.3.3.6
6.3.3.7
6.3.3.8
6.3.3.9
6.3.3.10
6.3.3.11
6.3.3.12
6.3.3.13
6.3.3.14
6.3.3.15
6.3.3.16
6.3.3.17
6.3.3.18
6.3.3.19
6.3.3.20
6.3.3.21
6.3.3.22
6.3.4
6.3.5
6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.1.3
6.4.1.4
6.4.2
6.4.2.1
6.4.2.2
6.4.2.3
6.4.2.4
6.4.2.5
6.4.2.6
6.4.2.7
6.4.2.8
6.4.2.9
6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.4.3.4
6.4.3.5

2270507-9701

Contents

Title Page

Write ASCII .. 6-20
Rewi nd " ... 6-23

VDT Resource·Specific 1/0 ... 6-23
Field Start Position ... 6-26
Intensity .. , ... 6-26
Blink Cursor ... 6-26
Graphics .. 6-26
Eight·Bit ASCII ... 6-26
Carriage Control .. 6-26
Beep ... 6-26
Right Boundary .. 6-27
Cu rsor Position .. 6-27
Fill Character .. 6-27
Do Not Initialize Field , 6-27
Return on Termination Character 6-27
No Echo .. 6-27
Character Validation .. 6-27
Validation Error Mode ... 6-28
Warning Beep , 6-28
Examples ... 6-28
Character Validation Operation 6-32
Field Validation .. 6-34
Getti ng Event Characters .. 6-34
Read Direct .. 6-36
Write Direct .. 6-38

VDT Terminal Specific Information 6-39
VDT Read Device Status Operation 6-43

733 ASR Data Terminal 1/0 ... 6-44
Key Categories ... 6-46

Data Keys ... 6-48
Hold Key .. 6-48
Event Keys .. 6-49
System and Task Edit Keys ... 6-49

733 ASR Data Terminal Resource·lndependent 1/0 6-51
Open ... 6-51
Close ... 6-52
Close, Write EOF ... 6-53
Open and Rewind ... 6-53
Close and Unload ... 6-53
Read Device Status ... 6-53
Read ASCII ' 6-55
Write ASCII .. 6-57
Write EOF ... 6-60

733 ASR Data Terminal Resource-Specific 1/0 6-61
Eight-Bit ASCII ... 6-63
Task Edit .. 6-63
No Echo , 6-63
Character Validation .. 6-63
Validation Error Mode ... 6-63

ix

ontents

'aragraph

5.4.3.6
5.4.3.7
5.4.3.8
5.4.3.9
5.5
5.5.1
5.5.1.1
6.5.1.2
6.5.1.3
6.5.1.4
6.5.2
6.5.2.1
6.5.2.2
6.5.2.3
6.5.2.4
6.5.2.5
6.5.2.6
6.5.2.7
6.5.2.8
6.5.2.9
6.5.2.10
6.5.2.11
6.5.2.12
6.5.3
6.5.3.1
6.5.3.2
6.5.3.3
6.5.3.4
6.5.3.5
6.5.3.6
6.5.3.7
6.5.3.8
6.5.3.9
6.5.3.10
6.5.3.11
6.5.3.12
6.5.3.13
6.5.3.14
6.6
6.7
6.7.1
6.7.1.1
6.7.1.2
6.7.1.3
6.7.1.4
6.7.1.5
6.7.1.6
6.7.1.7
6.7.1.8

x

Title Page

Read ASCII Example .. 6-64
Character Validation Operation 6-64
Field Validation .. 6-66
Getting Event Characters '" ... 6-67

Teleprinter Device 1/0 ... 6-69
Key Categories ... 6-71

Data Keys ... 6-71
Hold Key .. 6-71
Event Keys .. 6-72
System and Task Edit Keys ... 6-73

TPD Terminal Resource-Independent 1/0 6-73
Open ... 6-73
Close ... 6-75
Close, Write EOF ... 6-76
Open and Rewind ... 6-76
Close and Unload ... 6-76
Read Device Status ... 6-76
Read ASCII .. 6-80
Write ASCII .. 6-83
Write EOF ... 6-86
Rewi nd ... 6-87
Unload .. 6-88
Device Dependent Communication Control 6-89

TPD Resou rce-Specific 1/0 ... 6-95
Eight-Bit ASCII or LF/CR/L T A ... 6-97
Task Edit .. 6-97
Beep ... 6-97
Forced Termination Character .. 6-97
Echo ... 6-97
Character Validation .. 6-97
Validation Error Mode ... 6-97
Warning Beep .. 6-98
Read ASCII Example .. 6-98
Character Validation Operation 6-98
Field Validation ... 6-100
Getting Event Characters ... 6-101
Read Di rect ... 6-103
Write Direct ... 6-105

Programming for Event Characters 6-107
Cassette 1/0 .. 6-108

Cassette Resource-I ndependent 1/0 6-109
Open .. 6-109
Close .. 6-110
Close, Write EOF .. 6-111
Open and Rewind .. 6-111
Close and Unload .. 6-111
Forward Space " .. 6-111
Backward Space ... 6-112
Read ASCII ... 6-113

2270507·9701

Paragraph

6.7.1.9
6.7.1.10
6.7.1.11
6.7.1.12
6.7.2
6.7.2.1
6.7.2.2
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
6.8.7
6.8.8
6.8.9
6.8.10
6.9
6.9.1
6.9.1.1
6.9.1.2
6.9.1.3
6.9.1.4
6.9.1.5
6.9.1.6
6.9.1.7
6.9.1.8
6.9.1.9
6.9.1.10
6.9.1.11
6.9.1.12
6.9.1.13
6.9.2
6.9.2.1
6.9.2.2
6.10
6.10.1
6.10.1.1
6.10.1.2
6.10.1.3
6.10.1.4
6.10.1.5
6.10.1.6
6.10.2
6.10.2.1
6.11
6.11.1
6.11.2

2270507-9701

Contents

Title Page

Write ASCII ... 6-115
Write EOF .. 6-117
Rewind .. 6-118
Unload ... 6-118

Cassette Resou rce-Specific I/O .. 6-119
Read Di rect ... 6-119
Write Direct ... 6-121

Printer Output .. 6-123
Open .. 6-125
Close .. 6-126
Close, Write EOF .. 6-127
Open and Rewind ' 6-127
Close and Unload .. 6-~ 27
Read Device Characteristics .. 6-127
WriteASCII ... 6-1$0
Write Direct .. 6-1~2
Write EOF .. 6-133
Rewind .. 6-134

Magnetic Tape I/O ... 6-135
Magnetic Tape Resource-Independent I/O 6-136

Open .. 6-136
Close .. 6-137
Close, Write EOF .. 6-138
Open and Rewind .. 6-138
Close and Unload .. 6-138
Read Device Status .. 6-138
Forward Space .. 6-140
Backward Space ... 6-141
Read ASCII ... 6-142
Write ASCII ... 6-143
WriteEOF .. 6-145
Rewind .. 6-146
Unload ... 6-146

Magnetic Tape Resou rce-Specific I/O 6-147
Read Direct ... 6-147
Write Di rect ... 6-149

Card Reader Input ... 6-151
Card Reader Resou rce-I ndependent I n put 6-152

Open .. 6-152
Close .. 6-153
Close, Write EOF .. 6-154
Open and Rewind .. 6-154
Close and Unload .. 6-154
Read ASCII ... 6-156

Card Reader Resou rce-Specific I n put 6-156
Read Di rect ... 6-156

Direct Disk I/O .. 6-158
Open .. 6-160
Close .. 6-161

xi

Contents

Paragraph

6.11.3
6.11.4
6.11.5
6.11.6
6.11.7
6.11.8
6.11.9
6.11.10
6.11.11
6.11.12
6.11.13
6.11.14
6.11.15
6.11.16
6.12

7.1
7.1.1
7.1.2
7.1.3
7.1.3.1
7.1.3.2
7.1.4
7.1.5
7.1.6
7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.1.3
7.2.1.4
7.2.1.5
7.2.1.6
7.2.1.7
7.2.1.8
7.2.1.9
7.2.1.10
7.2.1.11
7.2.1.12
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

xii

Title Page

Close, Write EOF .. 6-162
Open and Rewind ... 6-162
Close and Unload .. 6-162
Read Format .. 6-162
Write Format ... 6-165
Read by ADU ... 6-166
Read by Track ... 6-168
Write by ADU ... 6-169
Write by Track .. 6-171
Store Registers ... 6-171
Read Format .. 6-173
Write Deleted Sector ... 6-173
Read Deleted Sector ... 6-174
Write Format with Interleaving ... 6-176

Dummy Device 1/0 ... 6-177

7 - File 1/0

DNOS Files .. 7-1
Record Blocking .. 7-2
Blank Adjustment/Compression ... 7-2
File and Record Protection Features 7-2

Delete and Write Protection ... 7-2
Record Locking ... 7-3

Temporary Files ... 7-3
Concatenated and Multifile Sets ... 7-4
End-of-Fi Ie ... 7-5

File Utility Operations .. 7-6
Performing Utility Functions .. 7-6

Creating Files .. 7-10
Deleting Files .. 7-22
Assigning LUNOs .. 7-23
Releasing LUNOs ... 7-27
Verifying Path names .. 7-29
Renaming Files .. 7-30
Write Protecting Files ... 7-33
Delete Protecting Files .. 7-34
Removing File Protection .. 7-36
Adding an Alias .. 7-37
Deleting an Alias ... 7-38
Specifying the Write Mode ... 7-39

Sequential File 1/0 7-40
Open ... 7-41
Close ... 7-43
Close, Write EOF ... 7-44
Open and Rewind .. 7-44
Close and Unload ... 7-44
Read File Characteristics .. 7-44

2270507 -9701

Paragraph

7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17
7.3.18
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
7.4.12
7.4.13
7.4.14
7.4.15
7.4.16
7.4.17
7.4.18
7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.1.3
7.5.1.4
7.5.1.5
7.5.1.6
7.5.1.7
7.5.1.8
7.5.1.9
7.5.2
7.5.2.1
7.5.2.2
7.5.2.3
7.5.2.4
7.5.2.5
7.5.2.6

2270507-9701

Contents

Title Page

Forward Space ... 7-47
Backward Space ... 7-49
Read ASCII .. 7-50
Write ASCII .. 7-52
Write EOF ... 7-54
Rewind ... 7-55
Rewrite ... 7-56
Modify Access Privileges: ... _ ... 7-57
Open Extend .. 7-58
Unlock .. 7-60
Multiple Record Read ... 7-61
Multiple Record Write ... 7-63

Relative Record File 1/0 ... 7-65
Open ... 7-67
Close ... 7-68
Close, Write Logical EOF : ... 7-69
Open and Rewind .. 7-69
Close and Unload ... 7-69
Read File Characteristics : 7-69
Forward Space ... 7-72
Backward Space ... 7-74
Read ASCII .. 7-75
Write ASCII .. 7-77
'Write Logical EOF .. 7-79
Rewind ... 7-80
Rewrite ... 7-81
Modify Access Privileges .. 7-83
Open Extend -.................................... 7-84
Unlock .. 7-86
Multiple Record Read ... 7-87
Multiple Record Write ... 7-89

Key Indexed Fi Ie 1/0 .. 7-91
Key Indexed File Resource-Independent 1/0 7-91

Open ... 7-92
Close ... 7-94
Open and Rewind ... ' .. 7-95
Read File Characteristics .. 7-95
Forward Space ... 7-99
Backward Space ... 7-100
Read ASCII ... 7-102
Rewind .. 7-103
Modify Access Privileges ... 7-104

Key Indexed File Resource-Specific 1/0 7-105
Open Random ... 7-108
Read by Key .. 7-110
Read Greater .. 7-112
Read Greater or Equal .. 7-115
Set Currency Equal .. 7-117
Set Currency Greater ... 7-119

xiii

Contents

Paragraph

7.5.2.7
7.5.2.8
7.5.2.9
7.5.2.10
7.5.2.11
7.5.2.12
7.5.2.13
7.5.2.14
7.5.2.15

8.1
8.2
8.3
8.3.1
8.3.1.1
8.3.1.2
8.3.1.3
8.3.1.4
8.3.1.5
8.3.1.6
8.3.1.7
8.3.2
8.3.2.1
8.3.2.2
8.3.2.3
8.3.2.4
8.3.2.5
8.3.2.6
8.3.2.7
8.3.2.8
8.3.3
8.3.3.1
8.3.3.2
8.3.3.3
8.3.3.4
8.3.3.5
8.3.3.6
8.3.3.7
8.3.4

9.1
9.2
9.3

xiv

Title Page

Set Currency Greater or Equal 7-121
Delete by Key ... 7-123
Read Current ... 7-125
Read Previous .. 7-127
Read Next .. 7-129
Rewrite .. 7-131
Unlock ... 7-133
Delete Current .. 7-134
Ins~ert .. 7-136

8 - Interprocess Communication

Introduction .. 8-1
Communicating Between Tasks ... 8-1
IPC Utility Operations .. 8-3

Performing Utility Functions .. 8-4
Creating an IPC Channel .. 8-6
Deleting an IPC Channel ... 8-12
Assigning LUNOs .. 8-13
Releasing LUNOs ... 8-16
Write Protecting Channels ... 8-17
Delete Protecting Channels .. 8-18
Removing Channel Protection .. 8-19

Symmetric Channel I/O .. 8-20
Open ... 8-22
Close ... 8-23
Close, Write EOF ... 8-24
Open and Rewind ... 8-24
Close and Unload ... 8-24
Symmetric Read .. 8-25
Symmetric Write ... 8-26
Write EOF ... 8-28

Master/Slave Channel 1/0 .. 8-29
Open ... 8-31
Close ... 8-33
Read Device Status ... 8-34
Master Read ... 8-37
Read Call Block .. 8-50
Master Write ... 8-52
Redirect Assign LUNO .. 8-54

Master/Slave Channel Example ... 8-55

9 - Volume Management

Disk Volumes ... 9-1
Initializing a New Volume ... 9-1
Installing a Volume .. 9-5

2270507·9701

Contents

Paragraph Title Page

9.4 Unloading a Volume ... 9-6

10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.3
10.3.1
10.3.2
10.4
10.4.1
10.4.2
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.5.4.1
10.5.4.2
10.5.4.3
10.5.4.4
10.5.4.5
10.5.4.6
10.5.4.7
10.5.4.8
10.5.4.9
10.5.4.10
10.5.4.11
10.6
10.6.1
10.6.1.1
10.6.1.2
10.6.1.3
10.6.1.4
10.6.1.5
10.6.2
10.6.2.1
10.6.2.2
10.6.2.3
10.7
10.7.1
10.7.1.1
10.7.1.2
10.7.2

2270507-9701

10 - Task Support

TaskSupport Functions ... 10-1
Data Conversion ... 10-1

Converting Binary Data to Decimal ASCII 10-2
Converting Decimal ASCII to Binary Data 10-3
Converting Binary Data to Hexadecimal ASCII 10-4
Converting Hexadecimal ASCII to Binary Data 10-5

Encrypting and Decrypting of Data .. 10-6
Encrypting Data .. 10-7
Decrypting Data .. 10-8

Job Accounting .. 10-9
Logging an Accounting Entry .. 10-10
Accessing Accounting Data ... 10-11

Memory Control ... 10-13
Requesting Memory ' 10-13
Releasing Memory ... 10-14
Loading an Overlay .. 10-15
Managing Memory Segments .. 10-17

Changing Segments ... 10-21
Creating Segments .. 10-24
Reserving Segments ... 10-28
Releasing Reserved Segments 10-29
Checking Segment Status .. 10-31
Force Writing Segments .. 10-34
Setting and Resetting Segment Flags 10-36
Loading Segments ... 10-38
Unloading Segments ... 10-39
Setting Exclusive Use of Segments 10-40
Resetting Exclusive Use of Segments 10-42

Task Synchronization .. 10-44
Using Semaphore Synchronization 10-44

Signal ... 10-46
Wait ... 10-46
Test ... 10-47
Initiali;ze .. 10-48
Modify ... 10-49

Using Event Synchronization .. 10-50
Initiating an Event ... 10-50
Waiting for Events ... 10-52
Posting an Event .. 10-53

Accessing Status and System Information 10-55
Accessing System Date and Time 10-55

Get Date and Ti me SVC ... 10-56
Set Date and Time SVC ... 10-57

Obtaining Parameters .. 10-58

xv

Contents

Paragraph

10.7.3
10.7.4
10.7.5
10.7.5.1
10.7.5.2
10.7.6
10.7.7

Title Page

Logging a Message .. 10-59
Obtaining Task and Job Identifiers 10-60
Programming End Action ... 10-61

Get End Action Status SVC .. 10-61
Reset End Action Status SVC .. 10-62

Obtaining Task Status .. 10-63
Obtaining Return Code Data .. 10-66

11 - System Interface

11.1 Special System Services .. 11-1
11.2 Obtaining System Data .. 11-1
11.3 Allocating and Deallocating Disk Space 11-4
11.4 Suspending a Queue-Driven Task ... 11-8
11.5 Accessing the Task Status Block ... 11-9
11.6 Accessing Task Data .. 11-11

12.1
12.2
12.3
12.4
12.5

Appendix

A

B

C

xvi

12 - SVC Compatibility

Other Operating Systems .. 12-1
Get Common Data Address SVC .. 12-2
Return Common Data Address SVC 12-3
Put Data SVC .. 12-4
Get Data SVC .. 12-5

Appendixes

Title Page

SVC Index ... A-1

ASCII Device I/O Operations Tables .. B-1

Master/Slave Task Examples .. C-1

Index

2270507·9701

Contents

Illustrations

Figure Title Page

5-1 Overall 1/0 Operation .. 5-4

6-1 Model 911 VDT Keyboard .. 6-40
6-2 Model 931 VDT Keyboard .. 6-40
6-3 Model 940 VDT Keyboard .. 6-41
6-4 Business System Terminal Keyboard 6-41
6-5 TrackAddressing ... 6-158

Tables

Table Title Page

1-1 SVC Opcodes .. 1-3
1-2 Secu red Su pervisor Call Opcodes .. 1-6

2-1 Job State Codes .. 2-3

5-1 Access Mode Compatibility ... 5-2
5-2 Sub-Opcodes for 1/0 Operations SVC 5-18

6-1 Graphics Code Key Equivalents .. 6-29
6-2 Terminal Key Designations and Codes 6-42
6-3 733 ASR Key Designations and Codes for ASCII Mode 6-47
6-4 Status of Teleprinter Devices ... 6-78
6-5 Characteristics of Pri nter Devices .. 6-128

7-1 Key Indexed File Informative Codes 7-108

8-1 IPC Channel and LUNO Scope .. 8-16
8-2 Device/File Type Codes Returned by an Open Operation 8-32

10-1 Task State Codes ... 10-65

11-1 Disk Descriptions .. 11-5

2270507-9701 xvii/xviii

1

Introduction

1.1 HOW TO USE THIS MANUAL

This manual contains information about the use of the supervisor calls (SVCs) of ONOS and a
detailed description of each call. The manual also describes the supervisor call block required for
each SVC.

The introductory material at the beginning of each section of the manual presents general infor­
mation about the categories of supervisor calls supported by ONOS. Within each section, intro­
ductory paragraphs for the major headings provide information about the purpose and anticipated
results of executing the SVCs described under the headings.

For each SVC, the manual includes both the general information needed to use the SVC and the
detailed information required to write the code for the SVC. The manual is intended for reference
purposes as the source of detailed information.

The supervisor call block is written in assembly language; the interface between a high-level
language and assembly language for an SVC' is described in the programmer's guide for that
language.

This section includes information common to all SVCs and conventions used in the manual.

1.2 THE SUPERVISOR CALL

The interface between application programs and the DNOS operating system is the supervisor
call. In programs written in a high-level language most supervisor calls are transparent to the user
(provided in the run-time package for the language). However, the high-level language programmer
may write SVCs to perform functions not otherwise available. The assembly language programmer
must code all supervisor calls.

The supervisor call is implemented as an extended operation (XOP) in ONOS. Specifically, XOP 15
is the means of entry to the SVC processor of ONOS. The address supplied with the XOP instruc­
tion is that of the supervisor call block. The following is an example of the code for an SVC:

BlK OATAO REPRESENTS A CAll BLOCK

2270507·9701 1·1

.3 Introduction

The assembly language includes a directive that provides a convenient and meaningful substitute
for the XOP command. The DXOP directive de'fines a symbolic operation code for an XOP. The fol­
lowing example defines SVC as XOP 15:

DXOP SVC,15 DEFI N ES SVC AS XOP 15

Including the DXOP at the beginning of the program makes the following code valid for SVCs:

SVC @BLK EXECUTE SVC DEFINED IN BLOCK BLK

1.3 THE SUPERVISOR CALL BLOCK

The DNOS supervisor call block is the data structure that defines the supervisor call. The state­
ments described in the preceding paragraph apply to all DNOS supervisor calls. The difference
between SVCs is the content and format of the supervisor call block.

A supervisor call block consists of at least one byte and as many additional bytes as the SVC
requires. The first byte (and only byte for some SVCs) contains the opcode that defines the SVC.
Opcodes 0 through> 7F are reserved for SVCs supported by DNOS.

NOTE

Throughout this document a value preceded by a right angle bracket
(» indicates a hexadecimal value.

Table 1-1 lists the SVC opcodes. You may de'fine SVCs for your applications in the range of >80
through> FF. Definition of SVCs is described in the DNOS Systems Programmer's Guide.

The second byte of many SVCs is the return code byte. DNOS returns a satisfactory completion
code (zero in most cases) in this byte when the operation completes successfully. DNOS returns
an error code in this byte when the operation completes in error. Error codes are listed and
described in the DNOS Messages and Codes Reference Manual.

Several DNOS SVCs provide different operations as determined by a sub-opcode in the third byte
of the supervisor call block. In these cases, the actual operation to be performed is selected by the
opcode and the sub-opcode.

In some supervisor call blocks, deSignated bytes contain the result of the requested operation
after the operation has completed. That is, the system returns values in some fields of some super­
visor call blocks.

The additional bytes of supervisor call blocks may contain various types of information related to
the operation, such as:

• Flags

• Input or output data

1·2 2270507-9701

Introduction 1.3

• Addresses of input or output data

• Size or count values

• Identifiers

• Task parameters

• LUNOs

• Character strings

The paragraph that describes each SVC also describes the associated supervisor call block. To
locate the description of an SVC, look in the SVC index, Appendix A. The description- includes the
number of bytes required, whether or not the block must be aligned on a word (even) address, and
the type of information in each byte.

svc#

00

01
02
03
04
06
07
09
OA
OB
OC
00
OE
OF

2270507 -9701

Table 1·1. SVC Opcodes

Name

1/0 Operations

Resource-Independent Sub-opcodes:
00 - Open
01 - Close
02 - Close, Write EOF
03 - Open and Rewind
04 - Close and Unload
05 - Read Device Status
06 - Forward Space
07 - Backward Space
09 - Read ASCII
OB - Write ASCII
00 - Write EOF
OE - Rewind
OF - Unload
Many resource-specific sub-opcodes are supported.

Wait for 1/0
Time Delay
Get Date and Time
End of Task
Suspend Task
Activate Suspended Task
Extend Time Slice
Convert Binary to Decimal
Convert Decimal to Binary
Convert Binary to Hexadecimal
Convert Hexadecimal to Binary
Activate Time-Delayed Task
Abort 1/0 Request by LUNO

Paragraph Number

5.2.2,5.3

(These are described
for each device.
See Appendix A.)

(See Appendix A.)

5.3.1.1
4.4
10.7.1.1
4.11
4.7
4.8
4.9
10.2.1
10.2.2
10.2.3
10.2.4
4.5
5.3.2

1·3

.3 Introduction

Table 1·1. SVC Opcodes (Continued)

SVC# Name Paragraph Number

10 Get Common Data Address 12.2
11 Change Task Priority 4.6
12 Get Memory 10.5.1
13 Release Memory 10.5.2
14 Load Overlay 10.5.3
17 Get Task Bid Parameters 10.7.2
1B Return Common Data Address 12.3
1C Put Data 12.4
1D Get Data 12.5
1F Scheduled Bid Task 4.3
20 Install Disk Volume 9.3
21 System Log Queue Request 10.7.3
22 Disk Management 11.3
24 SuspendforQueuelnput 11.4
25 Install Task Segment 3.2
26 Install Procedure/Program Segment 3.3
27 Install Overlay 3.4
28 Delete Task 3.5
29 Delete Procedure/Program Segment 3.6
2A Delete Overlay 3.7

'" 2B Execute Task 4.2
2C Read/Write TSB 11.5
2D Read/Write Task 11.6
2E Self·ldentification 10.7.4
2F Get End Action Status 10.7.5.1
31 Map Program Name to ID 3.9
33 Kill Task 4.10
34 Unload Disk Volume 9.4
35 Poll Status of Task 10.7.6
36 Wait for Any I/O 5.3.1.2
37 Assign Program File Space 3.8
38 Initialize New Disk Volume 9.2
3B Set Date and Time 10.7.1.2
3D Semaphore Operations 10.6.1

Sub·opcodes:
00 - Signal 10.6.1.1
01 - Wait 10.6.1.2
02 - Test 10.6.1.3
03 - Initialize 10.6.1.4
04 - Modify 10.6.1.5

3E Reset End Action Status 10.7.5.2
3F Retrieve System Data 11.2
40 Segment Management 10.5.4

"

1·4 2270507-9701

Introduction 1.4

Table 1·1. SVC Opcodes (Continued)

SVC# Name Paragraph Number

Sub·opcodes:
00 - Change Segment 10.5.4.1
01 - Create Segment 10.5.4.2
02 - Reserve Segment 10.5.4.3
03 - Release Segment 10.5.4.4
04 - Check Segment Status 10.5.4.5
05 - Force Write Segment 10.5.4.6
06 - Reserved
07 - Set/Reset Not Modified and Releasable 10.5.4.7
09 - Load Segment 10.5.4.8
OA - Unload Segment 10.5.4.9
08 - Set Exclusive Use of a Segment 10.5.4.10
OC - Reset Exclusive Use of a Segment 10.5.4.11

41 Initiate Event 10.6.2.1
42 Wait for Event 10.6.2.2
43 Name Management 5.2.1

Sub·opcodes:
00 - Determine Name's Value 5.2.1.1
02 - Set Name's Value 5.2.1.2
04 - Delete Name 5.2.1.3
OF - Restore Name 5.2.1.4

45 Get Encrypted Value 10.3.1
46 Get Decrypted Value 10.3.2
47 Log Accounting Entry 10.4.1
48 Job Management 2.2

Sub·opcodes:
01 - Create Job 2.2.1
02 - Halt Job 2.2.2
03 - Resume Halted Job 2.2.2
04 - Change Job Priority 2.2.4
05 - Map Job Name to Job I D 2.2.5
06 - Kill Executing Job 2.2.6
07 - Delete Job 2.2.7
09 - Get Job Information 2.2.8

49 Get Accounting Information 10.4.2
4C Return Code Processor 10.7.7
4F Post Event 10.6.2.3

1.4 SECURED SUPERVISOR CALLS

If your system uses the file security option, access rights must be granted before some SVCs can
be performed. Table 1·2 shows the access rights required to execute these SVCs.

2270507·9701 1·5

.4 Introduction

svc#

>00

> 14
>1F
>25
>26
>26
>27
>28
>29
>29
>2A
>2B
>31
>37
>40

>43

Note:

Table 1·2. Secured Supervisor Call Opcodes

Name

FILE I/O
SUB-OPCODES
> 02 CLOSE-WRITE EOF
>09 READ ASCII
>OA READ DIRECT
>OB WRITE ASCII
>OC WRITE DIRECT
>00 WRITE EOF
>10 REWRITE
>41 READ GREATER
> 42 READ BY KEY
>44 READ EQUAL/GREATER
>45 READ NEXT
>46 INSERT
>47 REWRITE
> 48 READ PREVIOUS
> 49 DELETEBY KEY/CURNT
>59 MULTIPLE REC READ
>5B MULTIPLE RECWRITE
>91 ASSIGN LUNO
>92 DELETE FILE
>95 RENAME FILE
>96 UNPROTECT FILE
> 97 WRITE PROTECT FI LE
> 98 DELETE PROTECT FI LE
LOAD OVERLAY
SCHEDULED BID TASK
INSTALL TASK
INSTALL PROCEDURE
INSTALL SEGMENT
INSTALL OVERLAY
DELETE TASK
DELETE PROCEDURE
DELETE SEGMENT
DELETE OVERLAY
BID TASK
MAP NAME TO 10
ASSIGN PROG FILE SPACE
SEGMENT MANAGEMENT

SUB-OPCODES
>OOCHANGESEGMENT

>01CREATESEGMENT
NAME MANAGEMENT

SUB-OPCODES
>OF RESTORE NAMES

Rights

WRITE access to file
READ access to file
READ access to file
WRITE access to file
WRITE access to file
WRITE access to file
WRITE access to file
READ access to file
READ access to file
READ access to file
READ access to file
WRITE access to file
WRITE access to file
READ access to file
WRITE access to file
READ access to file
WRITE access to file
ANY access to file*
DELETE access to file
WRITE, DELETE access to file
WRITE, DELETE access to file
WRITE, DELETE access to file
WRITE, DELETE access to file
EXECUTE access to program file
EXECUTE access to program file
READ, WRITE access to program file
READ, WRITE access to program file
READ, WRITE access to program file
READ, WRITE access to program file
READ, WRITE access to program file
READ, WRITE access to program file
READ, WRITE access to program file
READ, WRITE access to program file
EXECUTE access to program file
READ or EXECUTE access to program file
READ, WRITE access to program file

Program segment-EXECUTE access to program file
Relative record-READ, WRITE access to file
Relative record-WRITE access to file

READ access to synonym file

* If the user has any access to the file, the assign LUNO will succeed.

1·6 2270507-9701

Introduction 1.5

1.5 ERROR CODES

The error codes returned in byte 1 of supervisor call blocks are listed in the DNOS Messages and
Codes Reference Manual. The codes and corresponding messages for SVC errors are listed in the
SVC error section of the manual. A table in that section lists the error codes in SVC opcode order,
with the message number that corresponds to the error code. The numbered message identifies
the error.

Many SVC processors call the 1/0 SVC, opcode 00, to perform 1/0 functions. When an 1/0 error
occurs, the 1/0 SVC returns an error code of DOnn to the SVC processor. The SVC processor
returns error nn as the error code. For example, the Scheduled Bid Task SVC, opcode > 1 F, issues
an 1/0 SVC. If the 1/0 SVC returns error code >26 to the opcode > 1 F SVC processor, the SVC pro­
cessor returns error code> 1 F26 to the calling task. This error code is not shown as > 1 F26 in the
SVC error code table, but is shown as > 0026; it is the same 1/0 error, whether the 1/0 SVC is called
by the task directly or indirectly. Thus, when you receive an error code that is not in the table,
change the first two hexadecimal digits to zeros and look again.

Often the goal in coding SVCs is to recognize that an error has occurred rather than to interpret
every type of error. In some cases it is necessary to take appropriate action in the event of a
specific error. In many cases it is adequate to display the error code.

1.6 CONVENTIONS

The following notational conventions are used in this manual:

Convention

Greater than sign (»

Angle brackets « »

Reserved

[Reserved]

Meaning

Identifies hexadecimal values.

Enclose items returned to the supervisor call block.

Designates a call block field or flag that must be set to
zero.

Designates a call block field that is reserved but may
contain any value.

A set of conventions applies to the supervisor call block diagrams used in the manual. On the top
line, at the left, the code and name of the SVC are printed. To the right, on the same line, the
requirements and attributes of the SVC are printed. Additional lines are provided when several
requirements and attributes apply. The requirements and attributes are:

• Align on word boundary

• Privileged tasks only

• System tasks only

• Can be initiated as an event

2270507·9701 1·7

1.6 Introduction

A requirement for many supervisor call blocks is that they must be aligned on word boundaries;
that is, the first byte must have an even address. This may be accomplished by immediately
preceding the first directive for the call block with an EVEN directive. However, if the first directive
is a DATA directive, the call block is automatically aligned on a word boundary.

Two of the supervisor call attributes limit the use of the SVC to tasks having special attributes. A
task may be installed as software privileged or as a system task. Those SVCs that have the
attribute privileged tasks only may be executed only by software privileged tasks. SVCs that have
the attribute system tasks only may be executed only by system tasks.

The Initiate Event SVC issues SVCs as events. The Wait for Event SVC allows a task to suspend
itself pending completion of an SVC that has been initiated as an event. The SVCs that can be
issued in this way have the attribute can be initiated as an event.

Two columns at the left of the diagram show the byte address of the left byte relative to the first
byte of the block, in decimal and in hexadecimal. When a field of the block consists of more than
two words, the first and last words are shown, with a break in the vertical lines to indicate that
words have been omitted.

1·8 2270507-9701

2

Job Management

2.1 JOB CONCEPT

A job is a collection of cooperating programs (called tasks in ONOS). Either a user or a job may
initiate another job to perform one or more functions. A job may be an interactive job or a batch
job. The tasks of an interactive job use a video display terminal (VOT) to communicate with the
user. The tasks of a batch job do not communicate with the user.

A job has a set of attributes, which are associated with the job when it is initiated. The attributes
of a job may become the attributes of a new job when the job initiates a new job. Optionally,
attributes may be specified when the new job is created. Attributes include the user 10 to identify
the job with a user, and user-specified execution parameters. In this sense, the job represents the
user by passing user information to the tasks of the job as required.

A job is also an environment of associated resources. These resources (for example, files,
devices, and interprocess communications (IPC) channels) may be shared by the tasks of the job.
Job-local LUNOs and job variables, including semaphores, synonyms, and logical names, are also
shared by tasks. A job 10 identifies this environment.

The priority of a job is specified when the job is created. It is one of the parameters used to
determine the run-time priority of the tasks of the job.

There is always at least o'ne job in the system: the system job. It is the first job in the sequence of
creation of jobs; no hierarchy of jobs is maintained. It consists of a group of cooperating tasks
that perform operating system functions, and the system resources are associated with the
system job.

2270507·9701 2-1

2.2 Job Management

2.2 MANAGING JOBS

A task may request the ONOS job manager to perform the following functions:

• Create a job

• Halt execution of a job

• Resume execution of a job

• Modify priority of a job

• Return the job 10 of a job

• Force abnormal termination of a job

• Return job information

In addition, tasks within the system job may request the DNOS job manager to:

• Delete a job

• Expand a job communications area (JCA)

The task executes a Job Management Request SVC (opcode >48) to access the job manager. The
calling task is suspended during execution of the SVC. The Job Management Request SVC
validates the requests for job manager services by performing security checks to prevent
unauthorized access. Optionally, validation may be omitted.

The following operations may normally be performed only on jobs that have the same user 10 as
the current job:

• Halt execution of a job

• Resume execution of a job

• Return the job I D of a job

• Force abnormal termination of a job

• Return job information

2-2 2270507-9701

Job Management 2.2

One of the two exceptions to the restriction is that the system operator task may request these
operations for any job. The other exception is that a task that was created with the do not verify
flag (refer to the supervisor call block description) set to one may perform any of these operations
for any job by setting the do not verify flag when requesting the operation. Only the system
operator may modify the priority of a job.

None of the operations of the Job Management Request SVC may be performed on the system
job.

Most of the operations of the Job Management Request SVC require the job run 10 to identify the
job. A task can obtain the job run 10 of the job to which it belongs by executing either a Self­
Identification SVC or a Get Job Information operation of the Job Management Request SVC. A
task can obtain the job run 10 of any job having the same user ID as the current job by executing a
Map Job Name to Job 10 operation. The task must have the job name to supply in the call block.

When a job has been initiated, a job state code may be returned by various status commands used
with SCI. The job state codes and their meaning are listed in Table 2-1.

Table 2-1. Job State Codes

Code Job State

01 Job is Being Created

02 Job is in an Executable State

03 Job is Halted

04 Job is Terminating

05 Job is Being Expanded

2270507 ·9701 2-3

2.2 Job Management

The supervisor call block for the Job Management Request SVC is as follows:

SVC > 48 -- JOB MANAGEMENT REQUEST ALIGN ON WORD BOUNDARY

DEC HEX

0 0 >48 <RETURN CODE>

2 2 SUB-OPCODE JOB PRIORITY

4 4 FLAGS

6 6 JOB RUN 10

8 8
,..I.J rV
rtJ JOB NAME (8 CHARS) r

14 E

16 10 INITIAL TASK 10 I JCA SIZE

18 12
TASK BID PARAMETERS (4 BYTES)

20 14

22 16 TASK STATION 10 I TASK PROG. FILE LUNO

24 1 8 SYNONYM SEGMENT 10

26 lA RESERVED

28 1C
,..IJ ,..J

1
USER 10 (8 CHARACTERS)

I 34 22

36 24

USER PASSWORD (8 CHARACTERS)

42 2A

44 2C

T
USER ACCOUNT NUMBER (16 CHARACTERS)

T 58 3A

2279443

2-4 2270507-9701

Job Management 2.2

The call block contains the following:

Byte

o

1

2

3

4-5

6-7

8-15

16

2270507·9701

Contents

Opcode, >48.

Return code. ONOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, ONOS returns an error
code.

Sub-opcode:
>01 - Create Job.
>02 - Halt Job.
>03 - Resume Halted Job.
>04 - Change Job Priority.
>05 - Map Job Name to Job 10.
>06 - Kill Executing Job.
>07 - Delete Job (tasks of system jobs only).
>09 - Get Job Information.

Job priority. A value in the range of 0 (highest priority) through 31 (lowest
priority). Returned by the system for a Get Job Information operation.

Flags.
Bit 0 - New user 10 flag. Set as follows:

1 - Bytes 28-59 contain the user 10, password, and account num­
ber for the new job.

o - The user 10, password, and account number of the current job
apply to the new job.

Bit 1 - Do not verify flag. This flag must have been set in the initiating
job. Set as follows:
1 - Do not validate the request.
o - Perform normal validation.

Bit 2 - Batch flag. Set as follows:
1 - Batch job. No interaction with user. Tasks run at lower priority.
o - Not a batch job.

Bits 3-15 - Reserved.

Job run 10. The run-time 10 of the job, returned by DNOS for Create Job,
Map Job Name to Job 10, and Get Job Information operations. Supplied
by the user task for other operations.

Job name. A job name consisting of no more than 8 characters, supplied
by the user to identify the job. Returned by the system for a Get Job Infor­
mation operation.

Initial task 10. The installed 10 of the initial task. For a Get Job Infor­
mation operation, the current task 10, returned by the system.

2-5

2.2.1 Job Management

Byte Contents

17 Job communications area (JCA) size. A value of 1 (smallest), 2 (medium),
or 3 (largest). For a Get Job Information operation, user privilege level,
returned by the system.

18-21 Task bid parameters. Bid parameters for the initial task.

22 Task station ID. Station 10 for the initial task. If no station is associated
with the initial task, specify >FF. When the field contains zero the calling
task's associated station is used.

23 Task program file LUNO, or zero. Program file LUNO assigned to the pro­
gram file on which the initial task is installed. When the field contains
zero, the task is loaded from the system program file, .S$SHARED. When
the field contains >FF, the task is loaded from the program file on which
the calling task resides.

24-25

26-27

28-35

36-43

44-59

Synonym segment 10, or zero. The segment 10 of the segment used for
synonyms and logical names. When the field contains zero, no synonym
segment is provided for the new job. The segment manager identifies a
segment by the segment 10. More information on segment IDs is in
paragraph 10.5.4.

Reserved. The value of this field is set to zero.

User ID. The identifier of the user in control of the job. Returned by the
system for a Get Job Information operation.

User password. The password of the user in control of the job.

User account number. The number of the account to which the job
charges are to be charged. Returned by the system for a Get Job Infor­
mation operation.

2.2.1 Create Job
ONOS automatically creates the job for execution of user tasks and any additional jobs required to
implement user commands. The Create Job operation is available to allow a user task to create a
job if desired.

Sub-opcode >01 specifies the Create Job operation with which a task creates a new job. The oper­
ation creates the specified job, and executes the new job, unless the job limit has been reached. In
that case, the new job is queued for execution when a job terminates.

A job is executed by placing a specified initial task into execution. The supervisor call block for a
Create Job operation contains the task 10, the station ID, and task parameters for the initial task.
These items correspond to those required by the Execute Task SVC.

2-6 2270507-9701

Job Management 2.2.1

The size of the JCA for a job is specified as 1, 2, or 3. Size 1 is the smallest JCA size, appropriate
for jobs that contain few tasks, when the tasks execute serially and use few files. Size 2, the next
larger JCA size, is appropriate for average jobs. Size 3, the largest JCA size, is appropriate for jobs
having tasks executing in parallel.

When synonyms, logical names, or both may be used by the job, the synonyms and names must
be initialized using the Snapshot Name Definitions (SND) command. SNO writes the contents of
the current job's synonyms and names to a disk file. If a program creates a job with a name seg­
ment, the segment must be restored to memory before the Create Job SVC is issued. The names
can be restored using the Restore Name Segment operation of the Name Management SVC
described in paragraph 5.2.1.4. The segment 10 of the name segment is returned by the Restore
Name Segment SVC and it must be placed into the Create Job SVC block. The Create Job SVC can
then be issued.

NOTE

Do not use the Set Name's Value operation (paragraph 5.2.1.2) to
create a synonym or logical name segment.

All of the fields of the supervisor call block are used for the Create Job operation. The job run ID is
returned by the system.

The value supplied in the job priority field is one of the factors that determines the run-time
priorities of the tasks in the job. The range of values is 0 through 31. The value of 31 results in the
lowest task priorities.

The job flags byte contains three flags to select three options. Set these flags as described in the
next three paragraphs.

If the user of the new job is not the user of the current job, set the new user ID flag to 1 and supply
the user ID in bytes 28 through 35, the user password in bytes 36 through 43, and the user account
number in bytes 44 through 59.

To create a job in which the tasks may issue a Job Management Request SVC with the do not
verify flag set to 1, set the do not verify flag to 1. The current job must also have been created with
the do not verify flag set to 1, however. This flag is intended for use by the tasks of the operating
system.

To create the new job as a batch job, set the batch flag to 1.

The user supplies a job name in the job name field. The job name identifies the job and may be
used by tasks in a job to obtain the job 10 (Map Job Name to Job ID operation).

The initial JCA size is determined by the value in the JCA size field. The JCA is expanded
dynamically by the system; when the initial size is too small, the expansion may occur too fre­
quently. When the initial size is too large, memory is not used efficiently. A value of 2 for the inter­
mediate size is a good choice when in doubt.

2270507·9701 2-7

2.2.2 Job Management

Four fields of the call block relate to the initial task; these items are the same items required to
place a task in execution using any SVC or System Command Interpreter (SCI) command. The
initial task ID is the installed ID of the task, the ID under which it was installed on the program file.
The task bid parameters consist of two words that may be accessed by the initial task using a Get
Parameters SVC. The contents of these two words are determined by the requirements of the
initial task. The task station 10 is the 10 of the station (terminal) with which the initial task is to be
associated. The task program file LUNO is the global LUNO assigned to the program file that con­
tains the initial task. When the task is in program file .S$SHARED, enter zero.

Use of the next two fields is optional. Each specifies the segment ID of an initialized segment.
One initialized segment contains synonyms for the job; the other contains logical names for the
job. The new job may not use synonyms unless an initialized synonym segment is specified; it
may not use logical names unless an initialized logical name segment is specified. However, the
new job may add either synonyms or logical names to the appropriate segment; it may also delete
either synonyms or logical names as required.

The following is an example of coding for a supervisor call block for a Create Job operation:

CREJOB
CJERR

2.2.2 Halt Job

EVEN
BYTE >48
BYTE 0
BYTE >01
BYTE 10
DATA >8000
DATA 0
TEXT 'DOITNOW'
BYTE >3A
BYTE 2
DATA 0,0
BYTE 12
BYTE >2E
DATA >2A
DATA 0
TEXT 'CSE010
TEXT 'P7807
TEXT '263345426'

CREATE JOB DOITNOW AT PRIORITY 10
WITH JCA SIZE 2. INITIAL TASK IS
>3A ON PROGRAM FILE LUNO >2E AT
STATION 12. SYNONYM SEGMENT IS
>2A. USER 10 IS CSE010, PASSWORD
IS P7807, AND ACCOUNT NUMBER IS
263345426.

The Halt Job operation suspends execution of the tasks of a job. Execution of the tasks resumes
when a Resume Halted Job operation is performed.

Sub-opcode >02 specifies the Halt Job operation. Only the first 16 bytes of the supervisor call
block apply. The specific fields are:

• Opcode

• Return code

• Sub-opcode

• Job run 10

2-8 2270507-9701

~

Job Management 2.2.3

A job may be halted if it has the same user 10 as the current job, the current job was created with
the do not verify flag set, or the current job is the system operator job.

The job run 10 is supplied by the user task.

The following is an example of coding for a supervisor call block for a Halt Job operation:

HLTJOB
HJERR

EVEN
BYTE >48
BYTE °
BYTE >02
BYTE °
DATA °
DATA >4F
DATA 0,0,0,0

2.2.3 Resume Halted Job

HALT JOB >4F.

The Resume Halted Job operation restores execution of the tasks of a job when execution of the
tasks was interrupted by a Halt Job operation.

Sub·opcode >03 specifies the Resume Halted Job operation. Only the first 16 bytes of the super­
visor call block apply. The specific fields are:

• Opcode

• Return code

• Sub-opcode

• Job run ID

A job may be resumed if it has the same user ID as the current job. the current job was created
with the do not verify flag set, or the current job is the system ope~ator job.

The job run ID is supplied by the user task.

The following is an example of coding for a supervisor call block for a Resume Halted Job
operation:

RESJOB
RJERR

2270507 -9701

EVEN
BYTE >48
BYTE °
BYTE >03
BYTE °
DATA °
DATA >4F
DATA 0,0,0,0

RESUME JOB >4F.

2-9

2.2.4 Job Management

2.2.4 Change Job Priority
The priority that is specified for a job when the job is created may be changed by this operation.

Sub-opcode >04 specifies the Change Job Priority operation. Only the first 16 bytes of the super­
visor call block apply. The specific fields are:

• Opcode

• Return code

• Sub-opcode

• Job priority

• Job flags

• Job run ID

The do not verify flag is the only flag that applies to the Change Job Priority operation. When the
current job was created with the do not verify flag set and the do not verify flag is set for the
Change Job Priority operation, any task may change the job priority. Otherwise, only a task in the
system operator job may change the job priority.

The job run ID is supplied by the user task.

The following is an example of coding for a supervisor call block for a Change Job Priority
operation:

CHJBPR
CPERR

EVEN
BYTE >48

BYTE °
BYTE >04
BYTE 15
DATA °
DATA >4F
DATA 0,0,0,0

2.2.5 Map Job Name to Job 10

CHANGE PRIORITY OF JOB >4F
TO 15

Any task may obtain the job ID that corresponds to a job name by performing a Map Job Name to
Job ID operation.

2-10 2270507·9701

Job Management 2.2.6

Sub-opcode >05 specifies the Map Job Name to Job 10 operation. Only the first 16 bytes of the
supervisor call block apply. The specific fields are:

• Opcode

• Return code

• Sub-opcode

• <Job run 10>

• Job name

The job run ID is returned by the system. The job name is supplied by the user task.

The following is an example of coding for a supervisor call block for a Map Job Name to Job 10
operation:

MAPJOB
MJERR

JBRID

EVEN
BYTE >48
BYTE 0
BYTE >05
BYTE 0
DATA 0
DATA 0
TEXT'REDALERT'

OBTAIN JOB 10 OF JOB
REDALERT

The Map Job Name to Job ID operation may be issued for a job that has the same user ID as the
current job, was created with the do not verify flag set, or is the system operator job. If two or more
jobs have the same job name and a Map Job Name toJob ID operation is performed, an ID is
returned along with a warning message.

2.2.6 Kill Executing Job
The Kill Executing Job operation forces abnormal termination of the tasks of a job. The job is
effectively terminated when all tasks have terminated.

Sub-opcode >06 specifies the Kill Executing Job operation. Only the first 16 bytes of the super­
visor call block apply. The specific fields are:

• Opcode

• Return code

• Sub-opcode

• Job run 10

A job may be killed by a job that has the same user 10 as the current job, was created with the do
not verify flag set, or is the system operator job.

2270507 -9701 2-11

2.2.7 Job Management

The job run ID is supplied by the user task.

The following is an example of coding for a supervisor call block for a Kill Executing Job
operation:

KILJOB
KJERR

2.2.7 Delete Job

EVEN
BYTE >48

BYTE °
BYTE >06
BYTE °
DATA °
DATA >4F
DATA 0,0,0,0

KILL JOB >4F.

The system uses the Delete Job operation to delete jobs that are no longer required. This oper­
ation is not available to user tasks.

Sub-opcode >07 specifies the Delete Job operation. Only the first 16 bytes of the supervisor call
block apply. The specific fields are:

• Opcode

• Return code

• Sub-opcode

• Job run 10

The job run ID is supplied by the system task.

The following is an example of coding for a supervisor call block for a Delete Job operation:

2-12

DELJOB
DJERR

EVEN
BYTE >48

BYTE °
BYTE >07
BYTE °
DATA °
DATA >4F
DATA 0,0,0,0

DELETE JOB >4F.

2270507-9701

Job Management 2.2.8

2.2.8 Get Job Information
A task may obtain job information related to the job to which it belongs or for any job for which it
can supply the job run 10. The job information returned consists of:

• Job run 10

• Job priority

• Job name

• Current task ID

• User 10

• User privilege level

• User account number

A job may get information for another job if it has the same user ID as the current job, was created
with the do not verify flag set, or is the system operator job.

Sub-opcode >09 specifies the Get Job Information operation. The user supplies the job run 10 or
zero as the job run 10. When the user supplies zero, the information for the current job (the job to
which the task belongs) is returned. The following fields of the supervisor call block apply:

• Opcode

• Return code

• Sub-opcode

• Job priority

• Job run 10

• Job name

• Initial task 10

• JCA size

• User 10

• User account number

The Get Job Information operation returns information in the supervisor call block. Much of the
information is returned in the same fields in which it is supplied for a Create Job operation.
However, two of the fields of the call block are redefined to return information that is not supplied
for the Create Job operation.

2270507-9701 2-13

2.2.8 Job Management

The operation returns the job run ID in the job run ID field. When zero is supplied in this field, the
returned ID is that of the current job. Otherwise the job run 10 supplied in the field is returned.

The operation returns the job priority, job name, user 10, and user account number in the cor­
respondingly designated fields of the call block.

The operation returns the user privilege level in the JCA size field, and the installed 10 of the cur­
rent task in the initial task ID field.

The following is an example of coding for a supervisor call block for a Get Job Information
operation:

2-14

GJINF
GIERR

JOBPRI

JBRTID
JBNAM
INITIO
UPRLEV

USERID

USRACN

EVEN
BYTE >48
BYTE °
BYTE >09
BYTE °
DATA °
DATA °
OATA 0,0,0,0
BYTE °
BYTE °
DATA 0,0
BYTE °
BYTE °
DATA °
OATA °
DATA 0,0,0,0
OAT A 0,0,0,0
DATA 0,0,0,0,0,0,0,0

GET JOB INFORMATION ON CURRENT JOB

2270507-9701

3

Program File Management

3.1 PROGRAM FILES

A program file is a relative record file that is organized to serve a special purpose. The purpose of a
program file is to store the linked object code of task segments, procedure segments, program
segments, and overlays in a format that allows these modules to be loaded into memory for
execution.

The task concept is described more fully in Section 4; however, with respect to the program file, a
task segment is the linked object module that contains the addresses required by ONOS to initiate
execution of the task. It contains the works paces and the data for the task. It may also include all
or part of the executable code. The task segment is loaded into a program's memory space, or into
one of the segments of a program's memory space, for execution.

A task may have one or two associated procedure segments in memory during its execution.
These procedure segments contain reentrant executable code for the task. A procedure segment
on a program file may be associated with more than one task. A procedure segment is loaded into
an area of memory that is mapped into the memory space of each task that shares the procedure.

A program segment is used either as a procedure segment or as a data portion of a task. The
management of program segments provides more flexibility than it provides for procedure
segments. No specific content or function is defined for a program segment; it may be used as the
program requires. When a program segment is diSk-resident, it resides in a program file. The task
executes a Segment Management SVC, described in Section 10, to access a program segment
from the program file.

Alternately, one or two program segments can be associated with a task instead of either or both
procedure segments. When this is done, ONOS loads the program segments along with the task
segment, and they are available to the task without executing a Segment Management SVC.

An overlay is a linked object module that is loaded from a program file while the task is executing,
often replacing a previously loaded overlay. Overlays are loaded into the task memory space at the
designated address, and do not require a special or additional segment. Overlays can be
associated with task segments and program segments.

The modules in the program file are written in blocks that correspond to file records. The program
file contains a directory record that lists information for each module in the file. The information
associates the 10 and name with the numbers of the records that contain the module. The direc­
tory also lists the characteristics of the modules.

2270507-9701 3-1

3.2 Program File Management

The task segment and overlays associated with that task segment must all be in the same program
file. The procedure segments for a task must be either in program file .S$SHAREO, or in the same
program file as the task segment. In the program file .S$SHAREO some IDs are reserved for the ex­
clusive use of Texas Instruments software products. The hexadecimal values of the reserved IDs
range from 00 to OF for tasks and from 00 to 2F for procedure segments.

When a task segment is installed, it may be installed as a hardware privileged task. A hardware
privileged task may contain the privileged instructions of the computer.

Another installation option is software privilege. A software privileged task is allowed to execute
privileged SVCs. For example, the Install Task SVC can be executed only by a software privileged
task.

A task may be installed as a system task. A system task is a task whose task memory area is
mapped with system memory.

This section consists of descriptions of the supervisor calls that install and delete all three types
of program modules. The SVC that loads an overlay, the SVC that assigns space on a program file,
and the SVC that maps a program name to an 10 are described also.

3.2 INSTALLING A TASK SEGMENT

A task may install a task segment in a program file by executing an Install Task Segment SVC (op­
code >25). The SVC processor writes the module to the program file and writes the appropriate
entry in the program file directory. The following options are available:

•

•

•

•

•

•

•

•

3-2

The task segment may be installed in the system program file.

The task segment 10 (installed 10) may be automatically assigned.

The task segment may be installed as a hardware privileged task.

The task segment may be installed as a software privileged task.

The task segment may be installed as a system task.

The task segment may be installed as memory resident. (The task does not actually
become memory resident until the next IPL. It may be executed from the disk until the
next IPL.)

The task segment may be installed as delete protected.

The task segment may be installed as replicatable.

2270507-9701

Program File Management 3.2

• The task segment may be installed as execute protected in the Model 990/12 Computer.

• The task segment may be installed as one that takes end action on an arithmetic
overflow in the Model 990/12 Computer.

• The task segment may be installed as one that uses the writable control store in the
Model 990/12 Computer.

The supervisor call block for the Install Task Segment SVC is as follows:

SVC > 25 -- INSTALL TASK SEGMENT ALIGN ON WORD BOUNDARY
PRIVILEGED TASKS ONLY

DEC HEX

0 0 >25 <RETURN CODE>

2 2 PROGRAM FILE LUNO INSTALLED 10

4 4
"'!J ,..~

r!J T ASK SEGMENT NAME rrJ

10 A

12 C FLAGS PRIORITY

14 E PROCEDURE 1 10 PROCEDURE 2 10

16 10 OBJECT FILE LUNO FLAGS

1 8 12 RESERVED OR LOAD ADDRESS

20 14 RESERVED OR TOTAL LENGTH

22 16 RESERVED OR TASK LENGTH

2279444

The call block contains the following:

Byte

o

1

2

2270507·9701

Contents

Opcode, >25.

Return code. ONOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, ONOS returns an error
code.

Program file LUNO, or zero. The LUNO assigned to the program file.
When this field contains zero, ONOS installs the task segment on
.S$SHAREO. When this field contains >FF, the system installs the task
on the program file on which the calling task resides. If the special install
flag is set to one, the LUNO must be open for exclusive write. Otherwise,
the LUNO must be closed.

3-3

3.2 Program File Management

3-4

Byte Contents

3 Installed task segment 10, or zero. When this field contains zero, ONOS
assigns an available 10 and returns the 10 in this field. The user may
specify the installed ID in this byte. Do not assign a reserved system task
10 to a task installed on the system program file.

4-11 Name of task segment, or zero. When this field contains zero, ONOS
uses the IDT in the object module as the task segment name. The task
segment name consists of not more than eight alphanumeric characters,
the first of which must be alphabetic. The name is left justified in the
field, filled to the right with spaces.

12

13

14

Flags. (Byte 17 also contains flags.)
Bit 0 - Privileged task flag. Set as follows:

1 - Task may execute privileged assembly language instructions.
0- Task may not execute privileged assembly language instructions.

Bit 1 - System task flag. Set as follows:
1 - System memory is mapped into the task memory area.
o - System memory is not mapped into the task memory area.

Bit 2 - Memory resident flag. Set as follows:
1 - Task is installed as memory resident.
o - Task is installed as disk resident.

Bit 3 - Delete protected flag. Set as follows:
1 - Task segment may not be deleted until this flag is set to zero

(refer to the SCI command, Modify Task Entry).
o - Task segment may be deleted.

Bit 4 - Replicatable flag. Set as follows:
1 - Copies of the task may be loaded into memory and executed.
o - Only one copy of the task may be loaded into memory and

executed.
Bit 5 - Procedure segment 1 program file flag. Set as follows:

1 - Procedure segment 1 is on .S$SHAREO.
o - Procedure segment 1 is on the program file on which the task

segment is being installed.
Bit 6 - Procedure segment 2 program file flag. Set as follows:

1 - Procedure segment 2 is on .S$SHAREO.
o - Procedure segment 2 is on the program file on which the task

segment is being installed.
Bit 7 - Special install flag. Set to zero. The flag is set to one only by the

system to install a task segment when the image is already on the
program file. Installation consists only of writing the file directory
entry; the task segment is not replaced.

Priority. The installed priority of the task, 0 through 4, or real-time pri­
ority, 0 through 127. Bit 0 of the field is set to one for a real-time priority.

Procedure segment 1 10. The 10 of the procedure segment or program
segment to be attached as procedure segment 1, or zero when there is no
attached procedure segment.

2270507·9701

Program File Management 3.2

Byte Contents

15 Procedure segment 2 ID. The ID of the procedure segment or program
segment to be attached as procedure segment 2, or zero when no pro­
cedure is to be attached as procedure segment 2. A procedure segment 2
is valid only if procedure segment 1 is specified.

16 Object file LUNa. The LUNa assigned to the object file. This LUNa must
not be open.

17 Flags. (Byte 12 also contains flags.)
Bit 0 - Overflow flag. Set as follows:

1 - Task transfers control to end action routine when an arithmetic
overflow occurs (Model 990/12 Computer only).

o - Task does not transfer control to end action when an arith­
metic overflow occurs.

Bit 1 - Writable control store flag. Set as follows:
1 - Task uses writable control store (Model 990112 Computer only).
o - Task does not use writable control store.

Bit 2 - Execute protect flag. Set as follows:
1 - Set hardware execute protection (Model 990/12 Computer

only). Execute protection prohibits instruction accesses to the
memory in which the task segment is loaded.

o - Do not set hardware execute protection.
Bit 3 - Software privileged.

1 - Task will be allowed to issue privileged SVCs.
o - Task will not be allowed to issue privileged SVCs.

Bit 4 - Updateable.
1 - Task segment will be rewritten to the program file by the seg­

ment manager if modified.
o - Task segment will not be rewritten to the program file by the

segment manager.
Bit 5 - Reusable.

1 - Task segment may be reused consecutively without reloading.
o - Task segment must be reloaded for each use.

Bit 6 - Copyable.
1 - Task segment may be replicated by copying an in-memory

copy.
o - Task segment may be replicated only by copying the disk­

resident copy.
Bit 7 - Reserved.

18-19 Reserved. When special install flag is set to one, the load address of the
task segment.

20-21

22-23

2270507·9701

Reserved. When special install flag is set to one, the length of the task
segment.

Reserved. When special install flag is set to one, the length of the portion
of the task segment that is not overlaid.

3-5

3.3 Program File Management

The following is an example of coding for a supervisor call block for an Install Task Segment SVC:

ITASK
ITERR

EVEN
BYTE >25
BYTE 0
BYTE >2C
BYTE >83
TEXT'MYTASK
BYTE >88
BYTE 2
DATA 0
BYTE >4A
BYTE 0
DATA 0
DATA 0
DATA 0

INSTALL TASK SEGMENT ON PROGRAM
FILE ASSIGNED TO LUNO >2C (LUNG IS
NOT OPEN). TASK ID IS >83, TASK
NAME IS MYTASK. TASK IS PRIVILEGED
AND REPLICATABLE, HAS NO PROCEDURES.
INSTALL AT PRIORITY 2.
OBJECT FILE LUNO IS >4A.

3.3 INSTALLING A PROCEDURE SEGMENT OR PROGRAM SEGMENT

A task may install a procedure segment or program segment in a program file by executing an In·
stall Procedure/Program Segment SVC (opcode >26). The SVC writes the segment to the program
file and writes the appropriate entry in the program file directory. The following options are
available:

3-6

• The procedure segment or program segment may be installed as memory resident. (The
procedure segment or program segment does not actually become memory resident
until the next IPL. It may be executed from the disk until the next IPL.)

• The procedure segment or program segment may be installed as delete protected.

• The procedure segment or program segment may be installed as execute protected in
the Model 990/12 Computer.

• The procedure segment or program segment may be installed to use the writable control
store in the Model 990/12 Computer.

• The procedure segment or program segment may be installed as write protected in the
Model 990/12 Computer.

2270507·9701

Program File Management 3.3

The supervisor call block for the SVC is as follows:

SVC > 26 -- INSTALL PROCEDURE/PROGRAM
SEGMENT

ALIGN ON WORD BOUNDARY
PRIVILEGED TASKS ONLY

DEC HEX

0 0 >26 < RElURN CODE>

2 2 PROGRAM FILE LUNa SEGMENT 10

4 4
,..i.I ,.J

PROCEDURE SEGMENT NAME
'r-' rJ

10 A

12 C FLAGS I OBJECT FILE LUNa

14 E RESERVED OR LOAD ADDRESS

16 10 RESERVED OR SEGMENT LENGTH

1 8 12 FLAGS I RESERVED

2279445

The call block contains the following:

Byte

o

1

2

3

2270507·9701

Contents

Opcode, >26.

Return code. ONOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, ONOS returns an error
code.

Program file LUNO, or zero. The LUNO assigned to the program file.
When this field contains zero, install procedure segment or program seg­
ment on program file .S$SHAREO. When this field contains >FF, install
the segment on the program file on which the calling task resides. If the
special install flag is set to one, the LUNO must be open for exclusive
write. Otherwise, the LUNO must be closed.

Procedure or program segment 10, or zero. When this field contains zero,
ONOS assigns an available 10 and returns the 10 in this field. The user
may specify the procedure or program segment 10 in this byte.

3-7

3.3 Program File Management

Byte

4-11

12

3·8

Contents

Name of procedure segment, or zero. When this field contains zero,
DNOS uses the lOT in the object module as the procedure name. The
name consists of not more than eight alphanumeric characters, the first
of which must be alphabetic. The name is left justified in the field, filled
to the right with spaces.

Flags. (Byte 18 contains flags which apply to a program segment only.)
Bit 0 - Segment flag. Set as follows:

1 - Install a program segment.
o - Install a procedure segment.

Bit 1 - For a procedure segment, reserved. For a program segment,
system flag. Set as follows:
1 - Program segment may only be accessed by system tasks.
o - Program segment may be accessed by all tasks.

Bit 2 - Memory resident flag. Set as follows:
1 - Procedure segment or program segment is installed as memory

resident.
o - Procedure segment or program segment is installed as disk

resident.
Bit 3 - Delete protected flag. Set as follows:

1 - Procedure segment or program segment may not be deleted
until this 'flag is set to zero (refer to the Modify Procedure Seg­
ment Entry (MPE) command in the ONOS SCI Reference
Manual).

o - Procedure segment or program segment may be deleted.
Bit 4 - For a procedure segment, writable control store flag. Set as

follows:
1 - Task uses writable control store (Model 990/12 Computer only).
o - Task does not use writable control store.
For a program segment, replicatable flag. Set as follows:
1 - Program segment is replicatable.
o - Program segment is not replicatable.

Bit 5 - For a procedure segment, execute protect flag. Set as follows:
1 - Set hardware execute protection (Model 990/12 Computer

only). Execute protection prohibits instruction accesses to the
memory in which the task is loaded.

o - Do not set hardware execute protection.
For a program segment, share protected flag. Set as follows:
1 - Program segment may not be shared concurrently.
o - Program segment may be shared.

Bit 6 - For a procedure segment, write protect flag. Set as follows:
1 - Set hardware write protection (Model 990/12 Computer only).

Write protection prohibits write accesses to the memory in
which the procedure or segment is loaded.

o - Do not set hardware write protection.
For a program segment, reserved.

2270507·9701

2270507 -9701

Program File Management 3.3

Byte Contents

Bit 7 - For a procedure or program segment, the special
install flag. Set to zero. The flag is set to one only by the system to
install a procedure segment when the image is already on the pro­
gram file. Installation consists only of writing the file directory
entry.

13 Object file LUNO. The LUNO assigned to the object file. This LUNO must
not be open.

Bit 0 - Segment flag. Set as follows:
1 - Install a program segment.
0- Install a procedure segment.

14-15 Reserved. When the special install flag (bit 7 of byte 12) is set to one, the
load address of the procedure segment.

Bit 0 - Segment flag. Set as follows:
1 - Install a program segment.
0- Install a procedure segment.

16-17 Reserved. When the special install flag (bit 7 of byte 12) is set to one, the
length of the procedure segment.

18 Flags. For a procedure segment, set to zero. For a program segment, set
as follows:
Bit 0 - Reserved. Set to zero.
Bit 1 - Writable control store.

1 - Program segment accesses writable control store (Model
990/12 Computer only).

o - Program segment does not access writable control store.
Bit 2 - Execute protect.

1 - Set hardware execute protection for program segment (Model
990/12 Computer only).

o - Do not set hardware execute protection.
Bit 3 - Write protect.

1 - Set hardware write protection for program segment (Model
990/12 Computer only).

o - Do not set hardware write protection.
Bit 4 - Updateable.

1 - Program segment will be rewritten to the program file by the
segment manager if modified.

o - Program segment will not be rewritten to the program file by
the segment manager.

Bit 5 - Reusable.
1 - Program segment may be used consecutively without

reloading.
o - Program segment must be reloaded for each access.

3-9

3.4 Program File Management

19

Bit 6 - Copyable.
1 - Program segment may be replicated by copying an in-memory

copy.
o - Program segment may be replicated only by copying the disk­

resident copy.
Bit 7 - Reserved.

Reserved.

The following is an example of coding for a supervisor call block for an Install Procedure/Segment
SVC:

IPROC
IPERR

PROCID

EVEN
BYTE >26
BYTE 0
BYTE >AA
BYTE 0
TEXT'MYPROC
BYTE 0
BYTE >BB
DATA 0
DATA 0
BYTE 0
BYTE 0

INSTALL PROCEDURE ON PROGRAM FILE
ASSIGNED TO LUNO >AA (LUNO IS NOT
OPEN). PROCEDURE 10 IS ASSIGNED
BY THE SYSTEM. OBJECT FILE LUNO
IS >BB. PROCEDURE NAME IS
MYPROC

3.4 INSTALLING AN OVERLAY

A task may install an overlay in a program file by executing an Install Overlay SVC (opcode >27).
The SVC writes the overlay module to the program file and writes the appropriate entry in the pro­
gram file directory. The following options are available:

• The overlay may be installed as relocatable

• The overlay may be installed as delete protected

3-10 2270507·9701

Program File Management 3.4

The supervisor call block for the SVC is as follows:

SVC > 27 -- INSTALL OVERLAY ALIGN ON WORD BOUNDARY
PRIVILEGED TASKS ONLY

OEC HEX

0 0 >27 < RETURN CODE>

2 2 PROGRAM FILE LUNO OVERLAY 10

4 4
,-v r>.JI

"1'" OVERLAY N ME A r

10 A

12 C FLAGS Assoc IATED SEGMENT 10

14 E OBJECT FILE LUNO RESERVED

16 10 RESERVED OR LOAD ADDRESS

18 12 RESERVED OR OVERLAY LENGTH

20 14 RESERVED

2279446

The call block contains the following:

Byte

o

1

2

3

2270507-9701

Contents

Opcode, >27.

Return code. ONOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, ONOS returns an error
code.

Program file LUNO, or zero. The LUNO assigned to the program file.
When this field contains zero, install overlay on .S$SHAREO. When tHis
field contains >FF, install overlay on the program file on which the call­
ing task resides. If special install flag is set to one, LUNO must be open
for exclusive write. Otherwise, LUNO must be closed.

Overlay ID, or zero. When this field contains zero, ONOS assigns an
available 10, and returns the 10 in this field. The user may specify the
overlay 10 in this byte.

3-11

3.4 Program File Management

3-12

Byte Contents

4-11 Name of overlay, or zero. When this field contains zero, ONOS uses the
lOT in the object module as the overlay name. The name consists of not
more than eight alphanumeric characters, the first of which must be
alphabetic. The name is left justified in the field, filled to the right with
spaces.

12

13

14

15

16-17

18-19

20-21

Flags.
Bit 0 - Relocation flag. Set as follows:

1 - Relocation of addresses in the overlay is performed when the
overlay is loaded.

o - The overlay is to be loaded without relocation.
Bits 1-2 - Reserved.
Bit 3 - Delete protected flag. Set as follows:

1 - Overlay may not be deleted until this flag is set to zero (refer
to the Modify Overlay Entry (MOE) command in the DNOS System
Command Reference (SCI) Reference Manual).

o - Overlay may be deleted.
Bits 4-5 - Reserved.
Bit 6 - Task/Segment flag. Set as follows:

1 - Associated segment 10 is a program segment 10.
o - Associated segment 10 is a task segment 10.

Bit 7 - Special install flag. Set to zero. The flag is set to one only by the
system to install an overlay when the program image is already on
the program file. Installation consists of writing the file directory
entry.

Associated segment 10. Installed 10 of the segment associated with the
overlay. Overlay and segment must be on the same program file. Overlay
is deleted automatically when the segment is deleted.

Object file LUNO. The LUNO assigned to the object file. This LUNO must
not be open.

Reserved.

Reserved. When special install flag is set to one, load address of overlay.

Reserved. When special install flag is set to one, length of overlay in
bytes.

Reserved.

2270507·9701

Program File Management 3.5

The following is an example of coding for a supervisor call block for an Install Overlay SVC:

IOVLY
IOERR

OVUD

EVEN
BYTE >27
BYTE 0
BYTE >CA
BYTE 0
TEXT 'OLAY1
BYTE >80
BYTE >83
DATA >OA
DATA 0
DATA 0
DATA 0

INSTALL OVERLAY ON PROGRAM FILE
ASSIGNED TO LUNO >CA (LUNO IS NOT
OPEN). OVERLAY ID IS ASSIGNED
BY THE SYSTEM. OVERLAY NAME IS
OLAY1. OBJECT FILE LUNO IS >OA.
OVERLAY IS RELOCATABLE AND
IS ASSOCIATED WITH TASK >83.

3.5 DELETING A TASK

A task may delete a task from a program file by executing a Delete Task SVC (opcode >28). The
LUNO assigned to the program file may be open or closed. When the task is delete protected, it is
not deleted. Associated overlays are also deleted unless they are delete protected.

The supervisor call block for the SVC is as follows:

SVC >28 -- DELETE TASK ALIGN ON WORD BOUNDARY
PRIVILEGED TASK ONLY

DEC HEX

o 0 >28 < RETURN CODE>

2 2 PROGRAM FILE LUNO INSTALLED 10

4 4 FLAGS RESERVED

2279448

The call block contains the following:

2270507·9701

Byte Contents

o Opcode, >28.

1 Return code. DNOSreturns zero when the operation completes satisfac­
torily. When the operation completes J,n error, DNOS returns an error
code. ""'~'.,

2 Program file LUNO. The LUNO assigned to the program file. The LUNO
must be closed unless the open flag is set to one. Enter zero when the
task is installed on .S$SHARED. Enter >FF when the task and the calling
task are installed on the same program file.

3-13

3.6 Program File Management

Byte Contents

3 Installed ID of task to be deleted. Task must not be delete protected.

4 Flags.
Bits 0-6 - Reserved.
Bit 7 - Open flag. Set as follows:

1 - Program file LUNO is open.
o - Program file LUNO is not open.

5 Reserved.

The following is an example of coding for a supervisor call block for a Delete Task SVC:

DELTSK
DELTER

EVEN
BYTE >28
BYTE 0
BYTE >4A
BYTE >83
DATA 0

DELETE TASK >83 ON PROGRAM FILE
LUNO >4A. LUNO IS NOT OPEN.

3.6 DELETING A PROCEDURE SEGMENT OR PROGRAM SEGMENT

~ task may delete a procedure segment or program segment from a program file by executing a
Delete Procedure/Program Segment SVC (opcode >29). The LUNO assigned to the program file
llay be open or closed. When the procedure segment or program segment is delete protected, it is
lot deleted. If the segment is a program segment with associated overlays, the overlays are also
jeleted if they are not delete protected.

rhe supervisor call block for the SVC is as follows:

SVC > 29 -- DELETE PROCEDURE/PROGRAM
SEGMENT

DEC HEX

o 0 >29

2 2 PROGRAM FILE LUNO

4 4 FLAGS

:279449

-14

ALIGN ON WORD BOUNDARY
PRIVILEGED TASK ONLY

<RETURN CODE>

SEGMENT 10

RESERVED

2270507 -9701

•

Program File Management 3.6

The call block contains the following:

Byte Contents

o Opcode, >29.

2

3

4

5

Return code. DNOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, DNOS returns an error
code.

Program file LUNO. The LUNO assigned to the program file. The LUNO
must be closed unless the open flag is set to one. Enter zero when the
segment is installed on .S$SHARED or >FF when the segment is installed
on the same program file as the executing task.

Segment ID of procedure segment or program segment to be deleted.
Segment must not be delete protected.

Flags.
Bits 0-6 - Reserved.
Bit 7 - Open flag. Set as follows:

1 - Program file LUNO is open.
o - Program file LUNO is not open.

Reserved.

The following is an example of coding for a supervisor call block for a Delete Procedure/Program
Segment SVC:

DELPR
DELPER

2270507·9701

EVEN
BYTE >29
BYTE 0
BYTE >4F
BYTE >35
DATA 0

DELETE PROCEDURE >35 ON PROGRAM
FILE LUNO >4F. THE LUNO IS NOT
OPEN.

3-15

3.7 Program File Management

3.7 DELETING AN OVERLAY

A task may delete an overlay from a program file by executing a Delete Overlay SVC (opcode >2A).
The LUNO assigned to the program file may be open or closed. When the overlay is delete pro­
tected, it is not deleted.

The supervisor call block for the SVC is as follows:

SVC > 2A -- DELETE OVERLAY ALIGN ON WORD BOUNDARY
PRIVI LEGED TASK ONLY

DEC HEX

o 0 >2A < RETURN CODE>

2 2 PROGRAM FILE LUNO OVERLAY 10

4 4 FLAGS RESERVED

~2 79450

The call block contains the following:

Byte

o

1

2

3

4

5

3-16

Contents

Opcode, >2A.

Return code. DNOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, DNOS returns an error
code.

Program file LUNO. The LUNO assigned to the program file. The LUNO
must be closed unless the open flag is set to one. Enter zero when the
overlay is installed on .S$SHARED or >FF when the overlay is installed
on the same program file as the executing task.

Overlay ID of overlay to be deleted. Overlay must not be delete protected.

Flags.
Bits 0-6 - Reserved.
Bit 7 - Open flag. Set as follows:

1 - Program file LUNO is open.
o - Program file LUNO is not open.

Reserved.

2270507-9701

Program File Management 3.8

The following is an example of coding for a supervisor call block for a Delete Overlay SVC:

DELOVL
DLOLER

EVEN
BYTE >2A
BYTE 0
BYTE >1F
BYTE >3B
DATA 0

DELETE OVERLAY >3B ON PROGRAM
FILE LUNO >1 F. LUNO IS NOT OPEN.

3.8 ASSIGNING SPACE ON A PROGRAM FILE

A task may request the assignment of a starting record in a program file by executing an Assign
Program File Space SVC (opcode >37). A task, procedure, segment, or overlay module may then be
written on the program file at the assigned starting record. This SVC is normally used by system
uti lities.

The supervisor call block for the SVC is as follows:

SVC > 37 -- ASSIGN PROGRAM FILE SPACE ALIGN ON WORD BOUNDARY
PRIVILEGED TASK ONLY

DEC HEX

o 0 > 37 <RETURN CODE>

2 2 PROGRAM FILE LUNO RESERVED

4 4 LENGTH

6 6 < RECORD NUMBER>

8 8 RESERVED

2279451

The call block contains the following:

Byte

o

1

2

2270507·9701

Contents

Opcode, >37.

Return code. DNOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, DNOS returns an error
code.

Program file LUNO. The LUNO assigned to the program file. Enter zero
when the program file is .S$SHARED, or>FF when the program file is the
program file on which the calling task resides. The LUNO must be open
with exclusive write access privileges.

3-17

3.9 Program File Management

Byte Contents

3 Reserved.

4-5 Length. Length in bytes of the module to be written.

6-7 Record number. DNOS returns the record number of the starting record
of the assigned disk space.

8-9 Reserved.

The following is an example of coding for a supervisor call block for an Assign Program File Space
SVC:

APRFSP
APFSER

EVEN
BYTE >37
BYTE 0
BYTE >2C
BYTE 0
DATA 100
DATA 0
DATA 0

3.9 MAPPING A PROGRAM NAME TO AN 10

ASSIGN SPACE FOR 100 BYTES ON
PROGRAM FILE LUNO >2C

A task may obtain the name or the installed ID of a task segment, procedure segment, or overlay,
when either of the two items is known. The Map Program Name to ID SVC (opcode >31) returns the
name or installed ID in the supervisor call block. A LUNO must be assigned to the program file that
contains the specified module. Flags in the block specify the desired operation.

The supervisor call block for the SVC is as follows:

SVC > 31 -- MAP PROGRAM NAME TO 10 ALIGN ON WORD BOUNDARY

DEC HEX

o 0 > 31 <RE11JRN CODE>

2 2 FLAGS [RESERVED]

4 4
I"':.J PROCEDURE, TASK, OR OVERLAY NAME '"'1...1

"....J OR ""..1

10 A <PROCEDURE, TASK, OR OVERLAY NAME>

12 C LUNO I < ID>OR 10

14 E RESERVED

2279452

3-18 2270507·9701

Program File Management 3.9

The call block contains the following:

Byte

o

1

2

3

4-11

12

13

14-15

Contents

Opcode, >31.

Return code. DNOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, DNOS returns an error
code.

User flags.
Bits 0-1 contain type of segment:

00 - Task segment.
01 - Procedure segment.
10 - Overlay.

Bit 2 defines the operation:
1 - Return program name.
o - Return program 10.

Bits 3-6 [Reserved].
Bit 7 specifies current state of LUNO:

1 - LUNO opened by this task.
0- LUNO not opened by this task. This bit must be zero to map IDs

for LUNOs >00 and >FF.

[Reserved].

Name of module (eight alphanumeric ASCII characters). Supplied by task
if flag bit 2 is 0; returned by system if flag bit 2 is 1.

LUNO assigned to the program file that contains the module. A zero in
this field specifies .S$SHARED, and >FF specifies the program file on
which the calling task resides.

Segment 10. Returned by system if flag bit 2 is 0; supplied by task if flag
bit 2 is 1.

Reserved.

The following is an example of coding for a supervisor call block for a Map Program Name to 10
SVC that requests the name of a task segment:

MPIDNA
MPNERR
FLAGA

NAME
LNUM
TID

2270507-9701

EVEN
BYTE >31
BYTE 0
BYTE >20
BYTE 0
BSS 8
BYTE >2C
BYTE >1B
DATA 0

GET NAME OF TASK >1B ON PROGRAM
FILE ASSIGNED TO LUNO >2C (LUNO IS
NOT OPEN).

3-19

3.9 Program File Management

Another example of a supervisor call block for a Map Program Name to ID SVC returns a procedure
ID:

3-20

MPNAID
MPNERC
FLAGS

PNAM
LUNO
PRID

EVEN
BYTE >31
BYTE 0
BYTE >40
BYTE 0
TEXT 'CALCFOUR'
BYTE >23
BYTE 0
DATA 0

GET ID OF PROCEDURE CALCFOUR ON
PROGRAM FILE ASSIGNED TO LUNO >23
(LUNO IS NOT OPEN).

2270507·9701

4

Task Management

4.1 TASK CONCEPT

A task, in the ONOS context, is a program executing under ONOS. Each task consists of an
address space. The CPU context of the task defines the task at any given time. The context
consists of a workspace, the address of which is in the workspace pOinter register; an instruction
address, in the program counter; and a status, stored in the status register.

The address space of the task may consist of one or more segments; no more than three segments
are accessible at a given time. Segments of an executing task may be dynamically exchanged for
other segments as required. (See the paragraph on memory control in the section on task support.)

When a task is installed in a program file on disk, it is designated as replicatable or
nonreplicatable. A replicatable task is a task that may be loaded into memory and placed in exe­
cution when one or more copies of the task already exist in memory and are being executed. A
nonreplicatable task may not be loaded into memory when a copy of the task is in memory being
executed. When a nonreplicatable task is being executed, another user must wait until execution
completes before executing that task.

Each task is assigned a priority level when it is installed. The highest priority level, 0, is reserved
for system tasks. Real-time priority levels R1 through R127 follow priority level 0. Next in
descending order of priority is priority level 1, ~ntended for interactive tasks. It is followed by
priority level 2, adequate for multiple disk accesses. The lowest priority, level 3, is automatically
assigned to background tasks. Priority level 4 is the floating priority level and ranges between
levels 1 and 2.

To optimize system performance, ONOS assigns run-time priorities dynamically, based on the
installed priority (as modified by the Change Task Priority SVC) and on other factors.

Each task is installed on a program file with an installed 10 unique with respect to the other tasks
on the file. The run-time 10 is assigned to the task when it is executed. Each task can obtain its
run-time 10 by executing a Self-Identification SVC. When a task issues an Execute Task SVC to
execute another task, the system returns the run-time 10 of the called task. If the calling task
needs to have the called task know the run-time 10 of the calling task, the calling task must pass
its own run-time 10 to the called task as a task parameter.

A task becomes a ready task when it has been loaded into memory and has been placed on a
queue for execution. A ready task is awaiting its turn to be the executing task (in control of the
CPU). The executing task may place itself in time delay, suspend itself, or request an operation
(110, for example) that suspends the task while awaiting completion of the operation. Otherwise,
the executing task completes its time slice and again becomes a ready task.

2270507·9701 4-1

4.2 Task Management

4.2 EXECUTING A TASK

One task may initiate execution of another task by issuing an Execute Task SVC (opcode >28). The
called task must have been installed on a program file. If the called task is not in execution, it is
loaded and executed. If it is a replicatable task already in execution, another copy of the task is
placed in execution. If the task shares a procedure segment with other tasks, the replication of the
task also shares the procedure segment.

The following options are supported:

• The called task may execute in the foreground of an interactive job and alternate with
the System Command Interpreter (SCI).

• The called task may execute in the background of either an interactive or batch job.

• The called task may execute in an interactive job under control of the system debug
uti lity.

• The called task may be unconditionally suspended when it is ready to execute.

• The calling task may terminate following execution of this SVC.

• The calling task may be suspended until the called task has terminated.

• The called task may be associated with a specified job other than the job of the calling
task (calling task must have been installed as a software privileged task). This option
should only be used by system tasks.

The supervisor call block for the Execute Task SVC is as follows:

SVC > 28 -- EXECUTE TASK ALIGN ON WORD BOUNDARY

DEC HEX

0 0 >28 < RE11JRN CODE>

2 2
INSTALLED 10

FLAGS
<RUN 10>

4 4 PARAMETER 1

6 6 PARAMETER 2

8 8 STATION 10 PROGRAM FI LE LU NO

10 A JOB 10

2279453

4-2 2270507·9701

Task Management 4.2

The call block contains the following:

Byte

o

1

2

3

4-7

8

9

10-11

2270507-9701

Contents

Opcode, >2B.

Return code. DNOS returns zero when the operation completes suc­
cessfully. When the operation completes in error, DNOS returns an error
code.

Installed ID of the task. DNOS returns the run-time ID in this byte.

Flags.
Bit 0 - Job ID flag. May be set by software privileged tasks only. Set as

follows:
1 - Job ID specified in bytes 10-11.
o - Same job as calling task.

Bit 1 - Reserved.
Bit 2 - Reserved.
Bit 3 - Background task flag. Set as follows:

1 - Called task is to execute in background.
o - Called task is not a background task.

Bit 4 - Terminate flag. Set as follows:
1 - Terminate calling task immediately (following successful ini­

tiation of execution of called task). All other user flags are
ignored.

o - Do not terminate calling task.
Bit 5 - Reserved.
Bit 6 - Unconditional suspend flag. Set as follows:

1 - Suspend the called task unconditionally after loading (typically
used by the system debug utility).

o - Execute the called task after loading.
Bit 7 - Calling task suspend flag. Set as follows:

1 - Suspend the calling task until the called task has terminated.
o -r- Do not suspend the calling task.

Task parameters. Enter parameters required by the called task, if any.
Called task executes a Get Parameters SVC to access these parameters.

Station ID. Enter numeric portion of station ID for the station (terminal)
with which called task is to be associated. Enter 0 when called task is to
be associated with the same station as the calling task. Enter >FF when
the task is not to be associated with a station.

Program file LUNO. The LUNO assigned to the program file on which the
called task is installed. Enter zero when the task is installed on the
S$SHARED program file. Enter> FF when the calling and called tasks
are on the same program file.

Job ID. The ID of the job with which the task is associated. Applies only
when bit 0 of flag byte (byte 3) is set to one.

4-3

4.2 Task Management

For clarification of the use of the terminate flag feature, an example follows. If task A bids task B
using the Execute Task SVC with bit 7 set in the supervisor call block, then task A is suspended in
state >17 until task B terminates. However, if task B then bids task C with the terminate flag set in
the Execute Task supervisor call block, task A is reactivated only when task C terminates. Similarly,
if task C then bids task D with the terminate flag set in the Execute Task supervisor call block, task
A is reactivated only when task D terminates. In other words, task A is reactivated only when the
last task in the task chain has terminated. In most applications, task A is SCI.

The following is an example of coding for a supervisor call block for an Execute Task SVC:

EXTSK

4-4

EVEN
BYTE >2B
BYTE 0
BYTE >3B
BYTE >01
TEXT 'HELP'
BYTE >FF
BYTE >1A
DATA 0

EXECUTE TASK >3B ON FILE ASSIGNED TO
LUNO >1A; NO ASSOCIATED STATION,
NOT BACKGROUND TASK,
EXECUTE IMMEDIATELY, SUSPEND
CALLING TASK. PASS FOUR CHARACTERS
AS PARAMETERS. SAME JOB ID AS
CALLING TASK.

2270507·9701

Task Management 4.3

4.3 SCHEDULING A TASK

A task may schedule itself to resume execution at a specified time and date, or it may schedule
another task to execute at a specified time and date. The Scheduled Bid Task SVC (opcode >1 F)
schedules execution of a task. When the called task is also the calling task, it is suspended. It
resumes execution at the instruction following the SVC call at the specified time and date. When
the calling task calls another task, control returns to the calling task following execution of the
SVC. The scheduled time should be at least several seconds later than the time the SVC is
executed to allow for execution of this SVC. Normally, the called task is installed on the system
program file and is associated with the same station (terminal) and job as the calling task.

The following options are supported:

• The program file LUNO and a different station ID may be specified.

• The called task may be associated with a different job than the calling task (calling task
must be software privileged).

The supervisor call block for the Scheduled Bid Task SVC is as follows:

SVC >1 F -- SCHEDULED BID TASK ALIGN ON WORD BOUNDARY

DEC HEX

0 0 >1F < RElURN CODE>

2 2 INSTALLED 10 YEAR

4 4 DAY

6 6 HOUR MINUTE

8 8 SECOND FLAGS

10 A PARAMETER 1

12 C PARAMETER 2

14 E STATION 10 PROGRAM FILE LUNO

16 10 JOB 10

2279454

2270507-9701 4-5

4.3 Task Management

The call block contains the following:

Byte

o

1

2

3

4-5

6

7

8

9

10-13

14

15

16-17

4-6

Contents

Opcode, >1 F.

Return code. ONOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, ONOS returns an error
code.

Installed 10 of the task.

Year. The two least significant digits of the year in which the task is to be
executed; example: 80.

Oay of the year. The ordinal (Julian) date; example: 42 for February 11.

Hour. Range of 0 (midnight) through 23; example: 13 for 1 P.M.

Minute. Range of 0 through 59.

Second. Range of 0 through 59.

Flags.
Bit 0 - Station 10/LUNO flag. Set as follows:

1 - Station 10 and program file LUNO specified in bytes 14 and 15.
o - Use station 10 of calling task and system program file.

Bit 1 - Job 10 flag. May be set by privileged tasks only. Set as follows:
1 - Job 10 specified in bytes 16-17.
o - Same job as calling task.

Bits 2-7 - Reserved.

Task parameters. Enter parameters required by the called task, if any.
Called task executes a Get Parameters SVC to access these parameters.

Station 10. Enter numeric portion of station 10 for station (terminal) with
which called task is to be associated. Enter >FF when the task is not to
be associated with a station.

Program file LUNO. The LUNO assigned to the program file on which the
called task is installed. When the program file is .S$SHAREO, enter zero.
Enter >FF when the called and calling tasks are on the same program
file.

Job 10. The 10 of the job with which the task is associated.

2270507-9701

Task Management 4.4

The following is an example of coding for a supervisor call block for a Scheduled Bid Task SVC:

SBTSK
EVEN
BYTE >1F
BYTE 0
BYTE >2A
BYTE 80
DATA 81
'BYTE 17
BYTE 0
BYTE 0
BYTE 0
TEXT 'OKAY'
BYTE 0
BYTE 0
DATA 0

EXECUTE TASK >2A ON SYSTEM PROGRAM
FILE ASSOCIATED WITH STATION AND
JOB OF CALLING TASK AT 5PM
MAR. 21, 1980. PASS FOUR
CHARACTERS AS PARAMETERS.

4.4 DELAYING TASK EXECUTION

A task may place itself in a time delay for a specified number of 50-millisecond periods. The Time
Delay SVC (opcode >02) suspends the calling task until the specified time has elapsed or until
another task executes an Activate Time Delay Task SVC that specifies the run-time ID of the time
delayed task. When a cooperating task is to terminate the delay period, the time delayed task must
communicate its run-time ID to the cooperating task before entering the time delay. The requested
delay period is specified as a multiple of 50 milliseconds; it is a minimum delay period. That is, a
count of zero provides a delay of from 0 to 50 milliseconds; a count of one provides a delay of from
50 to 100 milliseconds.

The supervisor call block for the Time Delay SVC is as follows:

SVC > 02 -- TIME DELAY ALIGN ON WORD BOUNDARY

2279455

DEC

o

2

HEX

o

2

>02 I <RETURN CODE>

TIME DELAY COUNT

Th.e call block contains the following:

Byte

o

1

2-3

2270507 ·9701

Contents

Opcode, >02.

Return code. DNOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, DNOS returns an error
code.

Time delay count. The number of 50-ms periods for the minimum delay.

4-7

4.5 Task Management

The following is an example of coding for a supervisor call block for a Time Delay SVC:

TIMEDL
EVEN
BYTE >02
BYTE 0
DATA 200

SUSPEND FOR 10 SECONDS

4.5 RESUMING EXECUTION OF OELA YEO TASK

A task may restore execution of another task that is in the time delay state. The Activate Time
Delay Task SVC (opcode >OE) changes the state of a specified task from time delay to ready. The
task to be activated is identified by its run-time ID, which must have been sent to the calling task
by the time delay task prior to initiating the delay.

The supervisor call block for the Activate Time Delay Task SVC is as follows:

SVC > OE -- ACTIVATE TIME DELAY TASK

DEC HEX

o o >OE < TASK STATE CODE> I
2 2 RUN-TIME 10

2279456

The call block contains the following:

Byte Contents

o Opcode, >OE.

1 Task-state code. DNOS returns the task-state code. Normal completion
state is >05. When the task is not in the system, the code returned is
>FF. Otherwise, when the task is not in time delay, the code is one of the
following, defined in the table of task-state codes:

>00->04, >06->4C

2 Run-time ID of task to be activated.

The following is an example of coding for a supervisor call block for an Activate Time Delay Task
SVC:

ACTDLT

RTID

4-8

BYTE >OE
BYTE 0
BYTE 0

ACTIVATE TIME DELAY TASK

RUN-TIME ID MOVED TO THIS BYTE

2270507·9701

Task Management 4.6

4.6 CHANGING PRIORITY OF A TASK

A task may change its priority level while executing. This capability is useful for a low priority task
that contains a high priority operation. The Change Task Priority SVC (opcode >11) changes the
priority of the calling task to that specified in the supervisor call block. The real-time priorities, R1
through R127, are identified by setting the most significant bit of the byte that contains the priority
to 1.

The supervisor call block for the Change Task Priority SVC is as follows:

SVC > 11 -- CHANGE TASK PRIORllY

DEC HEX

o o

2279457

> 11 NEW PRIORITY LEVEL
<OLD PRIORITY LEVEL>

The call block contains the following:

Byte Contents

o Opcode, >11.

1 New priority level for task. Bit 0 is set to 1 to identify a real-time priority
level. DNOS returns the old priority level in this byte, or error code >80 is
returned when the requested priority level is not valid.

The following is an example of coding for a supervisor call block for a Change Task Priority SVC:

CTPL

2270507·9701

BYTE >11
BYTE >DO

CHANGE PRIORITY OF CALLING
TASK TO R50

4-9

4.7 Task Management

4.7 SUSPENDING A TASK UNCONDITIONALLY

A task may unconditionally suspend itself while executing. The task remains suspended until a
cooperating task executes an Activate Suspended Task SVC that specifies the run-time ID of the
suspended task.

The Unconditional Suspend SVC (opcode >06) suspends the calling task unconditionally. When a
cooperating task has executed an Activate Suspended Task SVC for the calling task prior to
execution of the Unconditional Suspend SVC, the calling task is suspended and immediately
reactivated.

The supervisor call block for the Unconditional Suspend SVC is as follows:

SVC > 06 -- UNCONDITIONAL. SUSPEND

2279458

DEC

o
HEX

o

The call block contains the following:

Byte

o

>06

Contents

Opcode, >06.

The following is an example of coding for a supervisor call block for an Unconditional Suspend
SVC:

UNCSUS BYTE >06 UNCONDITIONAL SUSPEND

4-10 Change 1 2270507·9701

Task Management 4.8

4.8 ACTIVATING A SUSPENDED TASK

A task may activate another task that has suspended itself. The Activate Suspended Task SVC
(opcode >07) activates a suspended task specified by its run-time 10. The suspended task must
have communicated its run-time 10 to the calling task before suspending itself. When the
specified task is not yet suspended, it resumes execution immediately after executing an
Unconditional Suspend SVC.

The supervisor call block for the Activate Suspended Task SVC is as follows:

SVC > 07 -- ACTIVATE SUSPENDED TASK

2279459

DEC

o

2

HEX

o

2

>07 <TASK STATE CODE> J
RUN-TIME ID

The call block contains the following:

Byte Contents

o Opcode, >07.

1 Task-state code. DNOS returns the task-state code. Normal completion
state is >06. When the task is not in the system, the code returned is
>FF. Otherwise, when the task is not suspended, the code is one of the
following, defined in the table of task-state codes.

2

>00->05, >07 ->4C

When the task is not suspended and it executes an Unconditional Sus­
pend SVC, it resumes execution immediately.

Run-time 10. The run-time 10 of the suspended task to be activated.

The following is an example of coding for a supervisor call block for an Activate Suspended Task
SVC:

ACTTSK

RTTID

BYTE >07
BYTE 0
BYTE 0

ACTIVATE SUSPENDED TASK

RUN-TIME 10 MOVED TO THIS BYTE

If the suspended task was loaded via the XHT procedure, the Activate Suspended Task SVC will
appear to complete successfully but will actually have no effect. The Activate Suspended Task
SVC processor checks for a task being debugged and does not activate tasks with the halted flag
set.

2270507-9701 4-11

9 Task Management

·.9 INHIBITING TASK PREEMPTION

~ task may extend its time slice, inhibiting the normal preemption that occurs at the end of a time
,lice. The SVC also inhibits preemption by a higher priority task. This allows the task to complete
l critical function without interference by the system or by another task. The Extend Time Slice
,VC (opcode >09) inhibits the system from preempting the task for a specified number of 50-ms
)eriods. The task may suspend itself during the specified period by executing a Wait for I/O SVC, a
rime Delay SVC, an Unconditional Suspend SVC, or an SVC (I/O SVC, for example) that suspends
:he task awaiting completion of an operation.

fhe supervisor call block for the Extend Time Slice SVC is as follows:

SVC > 09 -- EXTEND TIME SLICE

DEC HEX

o o >09 TIME UNIT COUNT

2279460

The call block contains the following:

Byte

o

1

Contents

Opcode, >09.

Time unit count. The number of time units (50 milliseconds each) to ex­
tend the time slice. A count of zero provides a 200-millisecond extension
of the time slice.

The following is an example of coding for a supervisor call block for an Extend Time Slice SVC:

EXTISL

4-12

BYTE >09
BYTE 50

EXTEND TIME SLICE 50 TIME
UNITS - 2.5 SECONDS.

2270507·9701

~

Task Management 4.10

4.10 FORCING ABNORMAL TERMINATION

A task may force abnormal termination of another task in the same job. The Kill Task SVC (opcode
>33) forces termination of a task having the specified run-time 10. The station 10 of the station
with which the task is associated may be specified also. When no station 10 is supplied, the task
is terminated whether or not it is associated with a station. When a station 10 is supplied, the task
is not terminated unless it is associated with the station. When >FF is supplied as the station 10,
the task is terminated only if it is not associated with a terminal. Placing the appropriate value in
the station 10 field provides a degree of protection against terminating the wrong task. The Kill
Task SVC completes as soon as ONOS has begun the termination or has put the task into its end
action routine.

The supervisor call block for the Kill Task SVC is as follows:

SVC > 33 -- KILL TASK ALIGN ON WORD BOUNDARY

DEC HEX

0 0 >33 <RETURN CODE>

2 2 RUN-TIME 10 STATION 10

4 4 <TASK STATE> RESERVED

6 6 RESERVED

2279461

The call block contains the following:

Byte

°
1

2

3

4

5-7

2270507-9701

Contents

Opcode, >33.

Return code. ONOS returns zero when the operation completes suc­
cessfully. When the operation completes in error, ONOS returns an error
code.

Run-time 10. Run-time 10 of the task to be killed.

Station 10. Set to 0, the numeric portion of the 10 of the station with
which the task is associated, or to >FF. When set to 0, ONOS kills the
task without regard to whether or not it is associated with a terminal.
When set to a station 10, ONOS kills the task only if it is associated with
the specified terminal. When set to >FF, ONOS kills the task only if it is
not associated with a terminal.

Task state. ONOS returns the task state code of the terminated task in
this byte.

Reserved.

4-13

.11 Task Management

·he following is an example of coding for a supervisor call block for a Kill Task SVC:

KILTSK

RUNID

TSKST

EVEN
BYTE >33
BYTE °
BYTE °
BYTE 3
BYTE °
BYTE 0,0,0

1.11 TERMINATING A TASK

KILL TASK ASSOCIATED WITH
STATION 03

RUN-TIME ID MOVED HERE

fhe End of Task SVC (opcode >04) is the normal termination of a task. The SVC releases the local
logical device tables and performs other termination functions. For disk-resident tasks, the SVC
releases task memory and the task status block (TSB). For memory-resident tasks, the SVC
reinitializes the TSB and clears outstanding breakpoints.

The supervisor call block for the End of Task SVC is as follows:

SVC > 04 -- END OF TASK

DEC HEX

o 0 >04

2279462

The call block contains the following:

Byte Contents

° Opcode, >04.

The following is an example of coding for a supervisor call block for an End of Task SVC:

EN DTSK BYTE >04 END OF TASK

4-14 2270507·9701

5

Input/Output Operations

5.1 INPUT/OUTPUT CAPABILITIES

ONOS supports 1/0 operations to various typesof devices and to several types of files. In addition,
ONOS supports communication between programs, in which each program is analogous to a
peripheral device of the other. To include all types of I/O, this manual refers to devices, files, and
communication channels between programs as I/O resources.

This section contains information that applies to input and output (I/O) to devices, files, and inter­
process communication (IPC) channels. Section 6 discusses device I/O in detail. Section 7 dis­
cusses file I/O in detail. Section 8 discusses IPC in detail.

ONOS supports two concepts of I/O to resources. Many I/O operations apply to various resources
and are essentially the same for each resource. This concept is called resource-independent I/O.
Resource-independent I/O allows the programmer to code I/O for any of several resources. A
logical unit number (LUNO) represents the resource. The association of a specific resource with
an I/O operation is made at run time by assigning a LUNO to the appropriate resource. The
program may use different peripherals each time it is executed. Resource-independent I/O always
accesses data sequentially, and is supported for terminals, magnetic tape units, line printers, card
readers, sequential files, and communication channels.

With resource-independent I/O, operation of the resource is restricted to a mode that is common
to several other resources. Resource-specific I/O allows the programming of specific capabilities
of the device. Like resource-independent I/O, resource-specific I/O is directed to a LUNO rather
than to the resource, but the LUNO must be assigned to the proper resource. Resource-specific
I/O, which allows random access to data, is supported for terminals, relative record files, key
indexed files, and communication channels.

Both resource-independent and resource-specific I/O may be requested in the initiate mode, under
control of the initiate flag in the user flags field of the call block. In the initiate mode, control
returns to the calling task after the operation is initiated; otherwise, the task is suspended during
the entire I/O operation. Only three concurrent operations in the initiate mode per task per logical
unit number (LUNO) are allowed. Additional operations cause the task to be suspended until
completion whether the initiate mode is requested or not.

DNOS supports ANSI standard access modes to assist intertask I/O synchronization. The modes
grant access privileges to a resource through a logical unit and deny conflicting accesses using
other logical units. The Open, Open Rewind, and Open Random operations enforce access
privileges. The operation fails if the requested access conflicts with existing access privileges. An
Open operation is required for access to any I/O resource. The Modify Access Privileges operation
changes access privileges for sequential and relative record files. For devices, change the access
privileges by executing another Open operation requesting the desired privileges.

2270507-9701 5-1

5.2 Input/Output Operations

In order for the Open operations to enforce access privileges, these operations (not the Assign
LUND operation) actually associate the LUND with the device, file, or IPC channel.

With respect to an access privilege, a Write operation is any operation that transfers data to a
device, alters the contents. of a file, or transfers data from a program to a communication channel.

• Read only - Allows calling program to read but not write. Allows read-only, sha:red, and
exclusive write access by other programs.

• Shared - Allows calling program to read and to rewrite. Allows read-only and shared
access by other programs.

• Exclusive write - Allows calling program to read and write. Allows read-only access by
other programs.

• Exclusive all - Allows calling program to read and write. Allows no access by other
programs.

Table 5-1 shows the accesses allowed when a program has opened a resource with each type of
access. The column headings of the table refer to types of access for which a program has already
opened the resource. The rows of the table refer to types of access by other programs.

Proposed Access

Read Only
Shared
Exclusive Write
Exclusive All

Note:

Table 5-1. Access Mode Compatibility

Read Only·

A
A
A
F

Resource Opened for
Shared· Exclusive Write·

A
A
F
F

A
F
F
F

* A indicates allowed; F indicates forbidden.

5.2 PREPARING FOR 1/0

Exclusive All·

F
F
F
F

Every 110 resource is identified for access purposes by a pathname. A pathname identifies a
device, a file, or an IPC channel.

The pathname of a file consists of a volume name (which may be implied), directory names (if any),
and a final component, which identifies a file. The names within the path name are separated by
periods (.). The pathname can contain a maximum of 48 characters. When the volume name is that
of the system disk, it may be omitted. The pathname begins with a period in this case. The number
of directory names in the pathname depends upon the organization of the disk. The volume direc­
tory and directories at all levels may contain both directories and files. The pathname of an IPC
channel is similar to a file pathname.

5-2 Change 1 2270507·9701

Input/Output Operations 5.2

When ONOS is used in a Business System computer network, a pathname can also include the
site name for a computer in the network. The path name for a file or device at a particular site
includes the site name (followed by a colon) then the standard form for the local pathname.

A logical name may be used within a job to represent a pathname or a portion of a pathname. It
consists of no more than eight characters and is considerably easier to use than a pathname with
several elements. A logical name may have a set of parameters associated with it, which may be
accessed by the tasks in the job. File characteristics, access privileges, and file creation
parameters are examples of the types of information supplied as logical name parameters.

A logical name is also used to provide logical concatenation of files, or multivolume files. A set of
pathnames is represented by a logical name. 1/0 to a LUNO assigned to this logical name is
performed to the logical concatenation of the files. The pathnames in the set may be on more than
one volume to provide multivolume files. .

Logical names may be created using System Command Interpreter (SCI) commands or supervisor
calls. However, the use of logical names in 110 operations is optional. Logical names are required
for logically concatenated files and for resources that require parameters.

A LUNO must be assigned to a device name, logical name, or combination of logical name and
pathname to associate the device, file, or IPC channel represented by the name with the LUNO. A
LUNO may be assigned using either an SCI command or an SVC. Assigning LUNOs by command
at run time allows different resources to be assigned for each run. On the other hand, assigning
LUNOs with SVCs is more convenient and less error-prone when the same resource is always
used.

Figure 5-1 shows optional methods of assigning LUNOs. Notice that a LUNO that is assigned
using an SCI command may be either global or job-local, depending upon which command is
used. A global LUNO is available to any task in the system; a job-local LUNO is only available to
tasks of the job. Unless the LUNO must be available outside the current job, the job-local LUNO
should be used. When a LUNO is assigned by an SVC, it may be a task-local LUNO, available only
to the task. It also may be job-local or global. Once assigned, a LUNO must be opened by a task in
order for that task to use the LUNO. Only one task is allowed to open and use one of these LUNOs
at a given time.

Job-local-shared LUNOs (shared LUNOs) are job-local LUNOs that can be used by more than one
task within a given job. The LUNO must be opened by any task that uses it. The access privileges
of the LUNO are compared to those requested in the Open operation. If the Open operation
requests greater access privileges and it does not conflict with the access privileges of other
LUNOs that are assigned and opened to the resource, the privilege level of the LUNO is changed
to the greater value. The access privileges of a LUNO in order of increasing value are read only,
shared, exclusive write, and exclusive all. If the requested access privilege is less than or equal to
the present value, the privilege level of the LUNO is not changed. Thus, all tasks that use a shared
LUNO have the same access privileges to the resource regardless of how they opened it.

2270507·9701 5-3

5.2 Input/Output Operations

A count of the number of successful Open operations is kept. The same number of Close oper­
ations must be performed before the LUNO can be released. If a Close operation is not performed,
the LUNO is not released until the job terminates.

The use of shared LUNOs tends to reduce the total number of LUNOs required in the system. This
type of LUNO is not recommended for sequential files because there is no defined method of
positioning the file; that is, the task has no control of which record is read or written.

OPERATOR ACTION

1. ASSIGN
LUNO

2. OPEN LUNO

ASSIGN LUNO
SCI COMMAND

I
GLOBAL OR
JOB LOCAL
LUNO STRATEGY

3. TRANSFER DATA

4. CLOSE LUNO

5. RELEASE
LUNO

2279463

GLOBAL OR
JOB LOCAL
LUNO STRATEGY

RELEASE LUNO
SCI COMMAND

PROGRAM ACTION

ASSIGN LUNO
SVC CALL

TASK LOCAL
--- LUNO STRATEGY

"
OPEN LUNO
SVC CALL

VARIOUS
1/0 CALLS

READ t WRITE •••
ETC

CLOSE LUNO
SVC CALL

I

RELEASE LUNO
SVC CALL

RESOURCE­
INDEPENDENT
CALLS

TASK LOCAL
LU NO STRATEGY

Figure 5-1. Overall 1/0 Operation

5-4 2270507 ·9701

Input/Output Operations 5.2.1

5.2.1 Using Logical Names
The logical name is a useful way to represent a long path name. It is essential for logically conca­
tenated files and multifile sets. Logical names can be local to the job in which they are created or
global to the system.

The Name Management SVC (opcode >43) includes a number of sub-opcodes related to logical
names and synonyms. The sub-opcodes request the pathname that corresponds to a logical name
and perform other functions for the system and for the task. The SVC performs similar functions
for synonyms. However, since synonyms are SCI variables, they are normally assigned, modified,
and deleted by SCI commands and subroutines. The sub-opcodes available to the user perform
the following functions:

• Return the pathname and parameters for a logical name

• Create a logical name

• Delete a logical name

• Restore a name segment

A task that requires a new logical name performs a Set Name's Value (sub-opcode >02) operation,
supplying the logical name, the value (pathname), and the parameters, if any. When a task needs
the pathname or parameters of a logical name, it performs a Determine Name's Value (sub-opcode
>00) operation. The task supplies the logical name for the operation. The Delete Name (sub­
opcode >04) operation deletes a specified logical name. The Restore Name Segment (sub-opcode
>OF) operation restores a name segment from disk.

The other sub-opcodes of the Name Management SVC perform operations used by the system.
Systems programmers who need further details of these operations can find them in the DNOS
System Design Document.

The supervisor call block for the Name Management SVC contains the following:

SVC > 43 -- NAME MANAGEMENT ALIGN ON WORD BOUNDARY

DEC HEX

0 0 >43 < RETURN CODE>

2 2 SUB-OPCODE FLAGS

4 4 ADDRESS OF NAME

6 6 ADDRESS OF VALUE

8 8 ADDRESS OF PARAMETER LIST

10 A SEGMENT ID/<PATHNAME FLAG>

12 C RESERVED

2279464

2270507·9701 5-5

5.2.1 Input/Output Operations

The call block contains the following:

Byte

o

1

2

3

4-5

6-7

8-9

10-11

12-13

Contents

Opcode, >43.

Return code. DNOS returns zero when the operation completes satisfac­
torily. When the operation completes in error, DNOS returns an error
code.

Sub-opcode, as follows:
>00 - Determine Name's Value.
>02 - ·Set Name's Value.
>04 - Delete Name.
>OF - Restore Name Segment.

Flags.
Bit 0 - Name type. Set as follows:

1 - Logical Name.
0- Synonym.

Bits 1-2 - Reserved.
Bit 3 - Global Name.
Bits 4-7 - Reserved.

Address of name. Address of a buffer that contains the name. The first
byte of the buffer contai ns the length of the name.

Address of value. Address of a buffer that contains a pathname or other
value for a logical name. The first byte of the buffer contains the length
of the path name.

Address of parameter list. Address of a buffer that contains a parameter
list for a logical name. The first byte of the buffer contains the length of
the list.

Pathname flag, used by the Determine Name's Value operation.

Reserved.

The task that requests a Set Name's Value operation for a logical name may supply parameters in
a list. Also, if the name is a logical name that has a parameter list, the Determine Name's Value
operation returns a parameter list.

5-6 2270507·9701

Input/Output Operations 5.2.1

These parameters can be set to create a file at a later time using these same parameters.
Examples of operations that create files in this manner are the Create File operation or the Assign
LUNO operation with autocreate option. The format of the parameter list is as follows:

DEC HEX

o 0

2 2

4 4
rJ

T
2279465

LENGTH CODE 0

TYPE FOR SUBLIST LENGTH OF SUBLIST

PARAMETER

ENTRY BLOCKS

TYPE FOR SUBLIST l LENGTH OF SUBLIST

PARAMETER

ENTRY BLOCKS

r

,...",

J
The parameter list contains the following:

Byte Contents

o Length code. The total length of the structure in bytes minus the length
code byte.

Zero.

For each sublist:

2

3

4-3+ n

2270507·9701

Type for sublist. The type of the parameters in the sublist. Types of
parameters are:
o - System parameters.
1 - Spooler parameters.
2->7F - Reserved.
>80->FF - User IPC parameters.

Length of sublist. The sum of the lengths of all parameter entry blocks in
the subl ist.

Parameter entry blocks, one for each parameter. Formats of parameter
entry blocks are described in subsequent paragraphs.

5-7

5.2.1 Input/Output Operations

Three formats are defined for parameter entry blocks, any of which may be used for any type of
parameter. The three formats are related to three parameter sizes. A parameter may be a single-bit
binary value (a flag, for example). A parameter may be a value that can be stored in one byte. Or a
parameter may occupy more than one byte. Each parameter format includes a parameter number
and one or two bits that identify the format. The parameter entry block format for a single-bit value
is:

2279466

Bit

0-5

6

7

BYTE 0

Parameter
Name

Job Temporary
Expandable
Blank Suppression
Forced Write

o 567

PARAMETER No.

File Parameters

Contents

Parameter
Number

05
OD
OF
OE

Parameter number, 0 through 63. Parameter numbers need not be assigned
or ordered in sequence but must be unique within the sublist.

1.

Value, 0 or 1.

The parameter entry block format for a one-byte parameter is:

2279467

5-8

o 567

BYTE 0 PARAMETER No. J 0 10

BYTE 1 VALUE

File Parameters

Parameter
Name

Maximum Number of Tasks
Maximum Number of Procedures
Maximum Number of Overlays
Job Access Level
File Type

Parameter
Number

10
11
12
03
04

2270507·9701

Input/Output Operations 5.2.1

The parameter entry block contains the following:

Byte Contents

o Parameter number byte:
Bits 0-5 - Parameter number, 0 through 63. Parameter numbers need

not be assigned or ordered in sequence but must be unique within
the sublist.

Bit 6 - O.
Bit 7 - O.

1 Value. A numeric value, 0 through 255, or an ASCII character.

The parameter entry block format for a multibyte parameter is:

2279468

2270507·9701

0 5 6 7

BYTE 0 PARAMETER No.
1
0 l'

BYTE PARAMETER LENGTH

• • rl,.. PARAMETER •
1 VALUE

N

File Parameters

Parameter
Name

Initial Allocation
Physical Record Length
Default Physical Record Length
Secondary Allocation
Logical Record Length
Maximum Number of Directory Entries
Key Definition Block

rV

J
Parameter

Number

06
09
15
07
08
14
16

5-9

5.2.1.1 Input/Output Operations

The parameter entry block contains the following:

Byte Contents

o Parameter number byte:
Bits 0-5 - Parameter number, 0 through 63. Parameter numbers need

not be assigned or ordered in sequence but must be unique within
the sublist.

Bit 6 - O.
Bit 7 - 1.

1 Parameter length. The number of bytes required for the parameter value.

2-n Parameter value. The numbers or characters of the parameter. If the
parameter is a key definition block the parameter must be on a word
boundary; that is, an even byte address.

The parameter list consists of one or more sublists. All parameters in a sublist are of the same
type. Each parameter is defined in a parameter entry block, the format of which depends on the
size of the parameter. Each parameter is identified by a parameter number in the range of 0
through 63. The parameters in a sublist must have unique parameter numbers. They may be
numbered in any sequence, skipping numbers or not, as required.

5.2.1.1 Obtaining Logical Name Path name and Parameters. The Determine Names's Value oper­
ation (sub-opcode >00) returns the pathname (or the first of a list of path names) and a parameter
list, if any, and indicates whether or not the logical name has more pathnames. All fields of the
supervisor call block apply to the operation.

When the flag (bit 0 of the flags byte) is set to zero, the operation expects the name to be a
synonym and returns its value. You should call SCI subroutine S$MAPS to obtain the value of a
synonym instead of requesting this operation. S$MAPS is discussed in the DNOS Systems Pro­
grammer's Guide.

The address of name field is the address of a buffer that contains a logical name. The first byte of
the buffer must contain the number of bytes in the name.

The address of value field contains the address of a buffer large enough to hold the path name ex­
pected. The first byte of the buffer contains the number of bytes in the buffer (not including the
length byte). The operation returns the number of bytes in the path name, followed by the
characters of the pathname, in the buffer. When the logical name is not found, the operation
returns an error code in byte 1 of the call block.

The address of parameter list field contains the address of a buffer large enough to contain the
parameter list expected. The first byte of the buffer contains the number of bytes in the buffer (not
including the length byte). The operation returns the parameter list in the format previously
described, placing the list in the buffer. When no parameter list is found, the operation returns 0 in
the first byte of the buffer.

The operation sets the pathname flag to 1 when the pathname returned by the operation is the first
of a set of path names. The operation returns 0 in the field when the logical name represents only
one path name.

5-10 2270507·9701

Input/Output Operations 5.2.1.2

The following is an example of coding for a supervisor call block for a Determine Name's Value
operation and for the required buffers:

EVEN
ON MVAL BYTE >43
OVER BYTE 0

BYTE 0
BYTE >80
DATA LNAME
DATA PATH
DATA PARMS

MORE DATA 0
DATA 0

LNAME BYTE 6
TEXT'INFILE'

PATH BYTE 50
BSS 50

PARMS BYTE 100
BSS 100

OBTAIN THE PATH NAME AND
PARAMETERS FOR LOGICAL NAME
INFILE

5.2.1.2 Creating a Logical Name. The Set Name's Value operation (sub-opcode >02) assigns a
pathname and, optionally, a set of parameters to a logical name. A logical name segment must
have been supplied for the current job.

The following fields of the supervisor call block apply:

• Opcode - >43

• Return code

• Sub-opcode - >02

• Flags

• Address of name

• Address of value

• Address of parameter list

When the global name flag in the flags byte is set to one for a logical name, the name is defined in
the global name segment. To save this name for permanent use, issue the Snapshot Global Name
Definition (SGND) command.

When the name type flag in the flags byte is set to zero, the operation expects the name to be a
synonym and assigns its value. You should call SCI subroutine S$SETS to assign the value of a
synonym instead of requesting this operation. S$SETS is discussed in the ONOS Systems
Programmer's Guide.

The address of name field must contain the address of a buffer that contains the length of the
name in the first byte and the characters of the logical name in succeeding bytes.

2270507-9701 5-11

5.2.1.3 Input/Output Operations

The address of value field must contain the address of a buffer that contains the path name. The
first byte in the buffer contains the length of the pathname. Successive bytes contain the
characters of the path name.

The address of parameter list field contains the address of a buffer or zero (when there are no
parameters). The buffer contains the required parameters in the format previously described.

The following is an example of coding for a supervisor call block for a Set Name's Value operation
and for the required buffers:

EVEN
CRLNAM BYTE >43
CNER BYTE 0

BYTE >02
BYTE >80
DATA LNME
DATA PTHNME
DATA PARM
DATA 0
DATA 0

LNME BYTE 7
TEXT 'OUTFILE'

PTHNME BYTE 11
TEXT '.BLUE.FILE1'

PARM BYTE 10
BYTE 0
BYTE >80
BYTE 7

PARM1 BYTE >05
BYTE 5
TEXT 'LOCAL'

CREATE LOGICAL NAME OUTFILE

5.2.1.3 Deleting a Logical Name. The Delete Name operation (sub-opcode >04) deletes a logical
name. The following fields of the supervisor call block apply:

• Opcode - >43

• Return code

• Sub-opcode - >04

• Flags

• Address of name

When the name type flag in the flags byte is set to zero, the operation expects the name to be a
synonym, and attempts to delete the synonym. You should call SCI subroutine S$SETS to delete a
synonym instead of requesting this operation.

The address of name field must contain the address of a buffer that contains the length of the
name in the first byte and the characters of the logical name in succeeding bytes.

5-12 2270507·9701

Input/Output Operations 5.2.1.4

The following is an example of coding for a supervisor call block for a Delete Name operation
using the name buffer of the previous example:

DLN
DNER

EVEN
BYTE >43
BYTE 0
BYTE >04
BYTE >80
DATA LNAM
DATA 0
DATA 0
DATA 0
DATA 0

DELETE LOGICAL NAME OUTFILE

5.2.1.4 Restoring a Name Segment. The Restore Name Segment operation (sub-opcode >OF)
restores a logical name segment from a disk file. The following fields of the supervisor call block
apply:

• Opcode - >43

• Return Code

• Sub-opcode >OF

• Flags

• Address of name

• Segment ID

The only flag examined is the global flag. This operation can be performed only once. This is done
by the system restart task.

The address of name field must contain the address of a buffer that contains the length of the
name in the first byte and the characters of the logical name definition in succeeding bytes.

The address of value field must be zero.

The address of parameter list field must be zero.

If the user flag for global operation is set to 1, the global name operation will be done once,
otherwise a user segment will be created.

2270507-9701 5-13

5.2.2 Input/Output Operations

The following is an example of coding for a supervisor call block for a Restore Name Segment
operation and for the required buffers:

EVEN
RESNAM BYTE >43
RENS BYTE 0

BYTE >OF
BYTE >00
DATA LNME
DATA 0
DATA 0
DATA 0

RID DATA 0
LNME BYTE 11

TEXT '.DISK.FILE2'

5.2.2 Performing Utility Functions

RESTORE NAME SEGMENT

Some of the sub-opcodes of the I/O Operations SVC (opcode >00) perform 110 utility functions
that support device 110, file 110, and IPC. The Device 110, File 110, and Interprocess Communication
sections in this manual describe these operations in detail. These 110 utility functions allow a
program to:

• Create a file

• Delete a fi Ie

• Assign a LUNO to a file or device

• Release a LUNO

• Assign a new pathname to a file

• Verify a path name

• Apply write protection to a file

• Apply delete protection to a file

• Remove protection from a file

• Add an alias to a directory

• Delete an alias in a directory

• Specify the write mode

• Create an IPC channel

• Delete an IPC channel

5-14 2270507·9701

Input/Output Operations 5.2.2

The utility operations require an extenged supervisor call block. The following block applies to all
utility functions except creating and deleting an IPC channel:

SVC > 00 -- I/o OPERATIONS
(UTILITY SUB-OPCODE)

ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT

DEC HEX

0 0 >00 <RETURN CODE>

2 2 SUB-OPCODE LUNO

4 4 <SYSTEM FLAGS> USER FLAGS

6 6 < RESOURCE T~PE >

8 8

RESERVED

10 A

12 C KEY DEF. BLOCK ADDR/DEFo. PHYS. REC. SIZE

14 E RESERVED

16 10 UTILITY FLAGS

18 12 DEFINED LOGICAL RECORD LENGTH

20 14 DEFINED PHYSICAL RECORD LENGTH

22 16 PATH NAME ADDRESS

24 18 PARAMETER ADDRESS

26 lA RESERVED

28 1C

INITIAL FI LE ALLOCATION

30 lE

32 20

SECONDARY FILE ALLOCATION

34 22

2279581

2270507·9701 5-15

5.2.2 Input/Output Operations

The call block contains the following:

Byte

o

1

2

3

4

5

6-7

8-11

12-13

13

14

5-16

Contents

Opcode, >00.

Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code.

Utility sub-opcode for desired operation:
90 - Create File. '
91 - Assign LUNO.
92 - Delete File.
93 - Release LUNO.
95 - Assign New Path name.
96 - Unprotect File.
97 - Write Protect File.
98 - Delete Protect File.
99 - Verify Path name.
9A - Add AI ias.
98 - Delete Alias.
9C - Define Write Mode.
9D - Create IPC Channel.
9E - Delete IPC Channel.

Logical unit number (LUNO).

< System flags>. Set by the system to indicate the status of the opera­
tion. Only the error flag (bit 1) is used for utility operations.

User flags. User sets these flags for utility operations. The flags for those
operations that use this field are specified and described in the para­
graph on each operation. Flag bits marked as not used must be set to 0 to
avoid unpredictable results.

< Resource type>. Returned by the system for Assign LUNO operations.

[Reserved].

Key definition block address. When creating a key indexed file, place the
address of the definition block in this field.

Default physical record size. When creating a directory file, place the
default physical record size in this field.

Number of tasks. When creating a program file, place the maximum
number of tasks in this field.

Number of procedures. When creating a program file, place the max­
imum number of procedures in this field.

2270507·9701

Byte

15

16-17

18-19

20-21

22-23

24-25

26-27

28-31

30-31

32-35

2270507 ·9701

Input/Output Operations 5.2.2

Contents

Number of overlays. When creating a program file, place the maximum
number of overlays in this field.

Utility flags. User sets these flags for utility operations. The flags for
each operation are specified and described in the paragraph on each
operation. Set all flag bits that are marked as not used to zero to avoid
unpredictable results.

Logical record length. Applies to create operations. Set to the number of
bytes in the record or in the longest record (variable length records). A
default value appropriate to the file type is used when this field contains
zero.

Physical record length. Applies to create operations. Set to the number
of bytes in the physical record. When this field contains any value less
than twice the logical record length, the file is unblocked. A default value
appropriate for the type of disk is used when this field contains zero.

Pathname address. Applies to all operations except Release LUNO. Set
to the address of a field in memory that contains the following:
Byte 0 - Length n of pathname in bytes
Bytes 1-n - Pathname

Parameter address. See the specific sub-opcode description for usage.

Reserved.

Initial file allocation. Applies to a create operation. For an expandable
file, set to the number of logical records to be allocated initially or to zero
for the default value. For a fixed size file, set to the size of the total file, in
logical records.

Directory entries. Applies to a Create File operation for a directory file.
Set to the maximum number of directory entries.

Secondary file allocation. Applies to a create operation for an ex­
pandable file. Set to the number of logical records for subsequent allo­
cations or to zero for the default value.

5-17

5.3 Input/Output Operations

5.3 1/0 OPERATIONS SVC

The 1/0 Operations SVC (opcode >00) is common to all 1/0 operations. A basic subset of sub­
opcodes applies to resource-independent 1/0. Other subsets apply to other types of 1/0, as listed
in Table 5-2. A basic supervisor call block also applies to resource-independent 1/0. The
extensions to and variations in the supervisor call block for other types of 1/0 are shown in the
paragraphs that describe the types of 1/0. The basic supervisor call block is as follows:

SVC > 00 -- I/O OPERATIONS A LIGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT

2279470

5·18

DEC HEX

0 0 >00 < RETURN CODE>

2 2 SUB-OPCODE LUNO

4 4 < SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNTI < ACTUAL READ COUNT>

Table 5·2. Sub-Opcodes for 1/0 Operations SVC

Type of 1/0

Resource Independent
Direct Disk
Sequential and Relative Record File
Key Indexed Fi Ie
911 VDT and 940 EVT
Teleprinter Devices
Cassette Unit
Printer
MagnetiC Tape
Card Reader
Interprocess Communication
Dummy Device
I/O Utilities

Sub-Opcodes
(Hexadecimal)

00-02, 05-07, 09-0F
00,03, 05, OB-OC,OE-12
00-07, 09-0E, 10-12, 4A, 59, 58
00, 01,03, 05-07, 09,OE, 40-4A, 50-52
00-05,09-0C, OE, 15
00-05,09-00,13,15
00-07, 09-0F
00-04, 08, 00, OE
00-07,09-0F
00, 01,03, 04, 09,OA
00-05, 09-00, 19-1C
OO-OF
90-93, 95-9E

2270507-9701

Input/Output Operations 5.3

The call block contains the following:

Byte

o

1

2

3

4

5

6-7

8-9

10-11

2270507-9701

Contents

Opcode, >00.

Return code. DNOS returns zero when the operation completes satis­
factorily. When the 'operation completes in error, DNOS returns an error
code.

Sub-opcode for 'desired operation, as listed in Table 5-2. The basic 1/0
sub-opcodes are:
00 - Open.
01 - Close.
02 - Close, Write EOF.
03 - Open and Rewind.
04 - Close and Unload.
05 - Read Device Status.
06 - Forward Space.
07 - Backward Space.
09 - Read ASCII.
OA - Read Direct.
OB - Write ASCII.
OC - Write Direct.
OD - Write EOF.
OE - Rewind.
OF - Unload.

Logical unit number (LUNO).

< System flags> Set by the system to indicate the status of the opera­
tion. The flags that apply to each operation are specified and described
in the paragr~ph on the operation.

User flags. Set to define the required operation. The flags that apply to
each operation are specified and described in the paragraph on the
operation. Flag bits marked as not used must be set to 0 to avoid un­
predictable results.

Data buffer address. The address of the buffer for the operation; it must
be on a word boundary.

Read character count. For a Read operation, the maximum number of
characters that may be stored in the buffer.

Write character count. For a Write operation, the number of characters to
be written.

<Actual read count>. For a Read operation, set by the system to the
number of characters stored in the buffer.

5-19

5.3.1 Input/Output Operations

5.3.1 Suspending a Task During 110
When 1/0 has been requested in the initiate mode, control returns to the task after the 1/0 has been
initiated. The task can complete any processing that does not require the results of the 1/0 oper­
ation. When no further processing can be done, the task can issue an SVC to suspend itself until
1/0 is complete. DNOS supports two SVCs 'for this purpose. One suspends the calling task until a
specified 1/0 operation has completed; the other suspends the calling task until any pending 1/0
operation initiated by the task completes.

5.3.1.1 Wait for 110 SVC. The Wait for 1/0 SVC (opcode >01) suspends the calling task until a
specified 1/0 operation has completed. When the 1/0 has already completed, ONOS returns control
to the calling task immediately.

The supervisor call block for the SVC is as follows:

SVC > 01 -- WAIT FOR I/O ALIGN ON WORD BOUNDARY

2279471

DEC

o

2

HEX

o

2

> 01 I <RETURN CODE>

ADDRESS OF BYTE 2 OF I/O CALL BLOCK

Byte Contents

o Opcode, >01.

1 Return code. ONOS returns zero when the operation completes satis­
factorily. When the operation completes in error, ONOS returns an error
code.

2-3 1/0 address, byte 2 of the supervisor call block for the initiated 1/0 oper­
ation.

The following is an example of coding for a supervisor call block for a Wait for 1/0 SVC:

WFIO

5-20

DATA >0100
OATA IKIF +2

WAIT FOR COMPLETION OF I/O
CALL BLOCK IKIF

2270507-9701

Input/Output Operations 5.3.1.2

5.3.1.2 Wait for Any 110 SVC. The Wait for Any 1/0 SVC (opcode >36) suspends the calling task
until an 1/0 operation requested by the task completes. When the task resumes execution, it must
test the busy flag (byte 4, bit 0) in the supervisor call block for each 1/0 operation to identify the
completed operation. When all 1/0 has already completed, DNOS returns control to the calling
task immediately.

The supervisor call block for the SVC is as follows:

SVC > 36 -- WAIT FOR ANY I/O

2279472

DEC

o
HEX

o

The call block contains the following:

> 36

ALIGN ON WORD BOUNOARY

< RETU RN CODE>

Byte Contents

o Opcode, >36.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code.

The following is an example of coding for a supervisor call block for a Wait for Any I/O SVC:

WMIO DATA >3600 WAIT FOR COMPLETION OF 1/0

2270507·9701 5-21

5.3.2 Input/Output Operations

5.3.2 Forcing Termination of 1/0
ONOS supports a supervisor call that forces termination of 1/0 to the device assigned to a
specified LUNO. The SVC can abort 1/0 to the device from the calling task or from another task.
Only privileged tasks may abort 1/0 from another task. The Abort 1/0 SVC (opcode >OF) aborts 1/0
to the device, optionally closing the device when it has been opened. If the device is busy, the SVC
sets the error flag (byte 4, bit 1) in the supervisor call block for the aborted operation. The calling
task is suspended during execution of the SVC. The medium involved in the 1/0 operation remains
positioned as the aborted 1/0 operation leaves it; that is, a tape is not rewound or backspaced.

The supervisor call block for the SVC is as follows:

SVC > OF -- ABORT I/O PRIVILEGED TASK (SEE TEXT)

DEC HEX

o 0 >OF <RETURN CODE>

2 2 FLAGS LUNO

4 4 ZERO, OR ADDRESS OF TSB

6 6 ZERO, OR ADDRESS OF JSB

2279473

The call block contains the following:

5-22

Byte Contents

o Opcode, >OF.

2

3

4-5

6-7

Return code. ONOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code.

Flags.
Bit 0 - Do not close. Set as follows:

1 - Do not close files and devices.
o - Close open files and devices.

Bits 1-7 - Reserved.

LUNO assigned to the device to which 1/0 is to be aborted.

Zero, when calling task 1/0 is to be aborted. Address of Task Status Block
(TSB) of job for which 1/0 is to be aborted.

Zero, when calling task 1/0 is to be aborted. Address of Job Status Block
(JSB) of task for which 1/0 is to be aborted.

2270507-9701

Input/Output Operations 5.3.2

The following is an example of coding for a supervisor call block for an Abort 1/0 SVC:

AIO

2270507·9701

DATA >OFOO
DATA >003E
DATA 0
DATA 0

ABORT 1/0 TO LUNO >3E FROM
THIS TASK, CLOSING FILES

5-23/5-24

6

Device 1/0

6.1 INTRODUCTION

This section describes the utility operations and the I/O operations for device I/O. The descriptions
of the utility operations apply to all devices. Descriptions of the applicable I/O operations for each
device follow. These descriptions are organized by device.

6.2 DEVICE UTILITY OPERATIONS

Several utility operations are required to support device I/O. A device may be specified by either a
device name or by a logical name. A logical name promotes documentation of the program; it is
local to a job; and it may associate parameters with the device. Logical name operations are
described in the Input/Output Operations section in this manual. Utility operations include assign­
ment and deletion of LUNOs by the I/O utility._

The I/O utility functions for device I/O are:

• Assign a LUNO

• Release a LUNO

• Verify a device name

The following extended supervisor call block applies to utility functions.

2270507-9701 6·1

6.2 Device Utility Operations

6·2

SVC > 00 -- I 0 OPERATIONS
(UTILITY SUB-OPCODE)

ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT

DEC HEX

0 0 >00 < RETU RN CODE>

2 2 SUB-OPCODE LUNO

4 4 <SYSTEM FLAGS> USER FLAGS

6 6 < RESOURCE TYPE>

8 8

RESERVED

10 A

12 C KEY DEF. BLOCK ADDR/DEF. PHYS. REC. SIZE

14 E RESERVED

16 10 UTILITY FLAGS

18 12 DEFINED LOGICAL RECORD LENGTH

20 14 DEFINED PHYSICAL RECORD LENGTH

22 16 PATHNAME ADDRESS

24 18 PARAMETER ADDRESS

26 1A RESERVED

28 lC

INITIAL FILE ALLOCATION

30 1E

32 20

SECONDARY FILE ALLOCATION

34 22

2279581

2270507·9701

Device Utility Operations 6.2

6.2.1 Assigning LUNOs
To assign a LUNO, a program executes an 1/0 Operations SVC with sub-opcode >91. The fol­
lowing fields of the utility supervisor call block apply:

• SVCcode - 0

• Return code

• Utility sub-opcode - >91

• Logical unit number (LUNO)

• < Resou rce type>

• Utility flags

• Pathname address

The system returns the resource type in bytes 6 and 7 of the call block. Byte 6 indicates the device
type and byte 7 indicates the resource type.

The device types found in byte 6 are as follows:

> 00 - Dummy device
> 01 - Special device
>02 -743 KSR
>03 -733ASR
> 04 - 733 cassette drive
>06 - Single-sided diskette drive
>07 - Disk drive
>08 - Magnetic tape drive
>09 - Teleprinter device (TPD)
>OA - 911 VDT
>OB - Serial printer
>OC - Parallel printer
>OD - Four-channel communication controller (FCCC)
>OE - Communication interface module (CIM)
>OF - Industrial device
> 10 - Card reader
>11 - 940VDT
>12 - 931 VDT
> 14 - Bit-oriented/character-oriented asynchronous interface module (BCAIM)
> 15 - Virtual terminal

The resource types found in byte 7 are as follows:

>01 - File
>02 - Device
>04 - Channel
>08 - Remote

2270507 -9701 6·3

6.2 Device Utility Operations

The value in byte 7 is formed by DNOS by using one or more of the values listed above. Some of the
values are combinations of these values. For example, >06 is a channel emulating a device. If the
value in bytes 6 and 7 is OA06, the indicated resource type is a channel em.ulating a 911 VDT.

The following utility flags apply:

1-2 3-4

f
2279474

Bits 3-4 - Scope of LUNO flag. Set as follows:

00 - Task-local LUNO.
01 - Job-local LUNO.
10 - Global LUNO.
11 - Job-local-shared LUNO.

Bit 5 - Generate LUNO flag. Set as follows:

1 - Assign the next available LUNO and return it in byte 3.
0- Assign the LUNO specified in byte 3.

Set all other utility flags to zero.

A logical unit number (LUNO) must be assigned to an 1/0 resource to identify the resource for an
1/0 operation. The scope of a global LUNO is not limited to a single job or task. The LUNO applies
in all jobs and tasks executing while it remains assigned. The scope of a job-local LUNO is limited
to the tasks in the job. A job-local LUNO is assigned by one of the tasks in the job or by an SCI
command. The scope of a task-local LUNO is limited to the task that assigns the LUNO. A task­
local LUNO is assigned by a task.

Job-local-shared LUNOs (shared LUNOs) are job-local LUNOs that can be used by more than one
task within a given job. Each task that uses the LUNO must open it. The access privileges of the
LUNO are compared to those requested in the Open operation. If the Open operation requests
greater access privileges and it does not conflict with the access privileges of other LUNOs that
are assigned and opened to the resource, the privilege level of the LUNO is changed to the greater
value. The access privileges of a LUNO in order of increasing value are:

• Read only

• Shared

• Exclusive write

• Exclusive all

If the requested access privilege is less than or equal to the present value, the privilege level of the
LUNO is not changed. Thus, all tasks that use a shared LUNO have the same access privileges to
the resource regardless of how they opened it.

6·4 Change 1 2270507 ·9701

Device Utility Operations 6.2

A count of the number of successful Open operations is kept. The same number of Close oper­
ations must be performed before the LUNO can be released. If a Close operation is not performed,
the LUNO is not released until the job terminates.

The use of shared LUNOs tends to reduce the total number of LUNOs required in the system. This
type of LUNO is not recommended for sequential files because there is no defined method of posi­
tioning the file; that is, the task has no control over which record is read or written.

The Assign LUNO operation may assign the next available LUNO or a LUNO specified in the LUNO
field. When the generate LUNO flag is set to one, the system assigns the next available LUNO and
returns the number in the LUNO field. When the flag is set to zero, the system considers the con­
tents of the LUNO field of the supervisor call block to be the desired LUNO.

2270507-9701 Change 1 6·4A/6·4B

Device Utility Operations 6.2

The pathname address is the address of an area of memory that contains the pathname (device
name) of a resource to be assigned to the LUNO. The first byte of the pathname area contains four,
the number of characters in the device name. Subsequent bytes contain the ASCII characters of
the device name.

The following is an example of the source c·ode for a supervisor call block and a device name block
to assign a LUNO to a device:

ALUNO

DNME

DATA °
BYTE >91
BYTE °
DATA 0,0
DATA 0,0
DATA 0,0
BYTE >OC,O
DATA 0,0
DATA DNME
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 4
TEXT'LP02'

6.2.2 Releasing LUNOs

ASSIGN NEXT AVAILABLE JOB LOCAL
LUNO TO LINE PRINTER

UTILITY FLAGS

DEVICE NAME LENGTH

To release a LUNO, a program executes an I/O Operations SVC with sub-opcode > 93. The fol­
lowing fields of the utility supervisor call block apply:

• SVCcode - °
• Return code

• Utility sub-opcode - > 93

• LUNO

• Utility flags

The following utility flags apply:

1-2 3-4

f
2279475

Bits 3-4 - Scope of LUNO. Set as follows:
00 - Task-local LUNO
01 - Job-local LUNO
10 - Global LUNO
11 - Job-local-shared LUNO

Set all other utility flags to zero.

2270507 -9701 6-5

6.2 Device Utility Operations

A Release LUNO operation does not release a LUNO that has a different scope from that specified
by the scope of LUNO flag. For example, if global LUNO >23, job-local LUNO >23, and task-local
LUNO >23 were all assigned, and a Release LUNO operation for task-local LUNO >23 were per­
formed, the global and job-local LUNOs would remain assigned.

The following is an example of the source code for a supervisor call block to release a LUNO:

RLUNO DATA °
BYTE >93
BYTE >23
DATA 0,0
DATA 0,0
DATA 0,0
BYTE >10,0
DATA 0,0
DATA °
DATA 0,0
DATA 0,0
DATA 0,0

6.2.3 Verifying Device Names

RELEASE GLOBAL LUNO >23.

UTILITY FLAGS

To verify a device name, a program executes an 1/0 Operations SVC with sub-opcode > 99. The fol­
lowing fields of the utility supervisor call block apply:

• SVC code - °
• Return code

• Utility sub-opcode - >99

• Resource type

• Utility flags

• Pathname address

DNOS returns the resource type in bytes 6 and 7 of the supervisor call block, just as it does for the
Assign LUNO operation.

The utility flags are set to zero to verify a device name.

The Verify Device Name operation performs a syntax check on the device name.

The path name address is the address of an area of memory that contains the device name to be
verified. The byte at the pathname address contains four, the number of characters in the device
name. Subsequent bytes contain the ASCII characters of the device name.

6·6 2270507 -9701

VDTI/O 6.3

The following is an example of the source code for a supervisor call block to verify a device name:

VFY

TYPE

DEVNA

6.3 VOT 110

DATA °
BYTE >99,0
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA DEVNA
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 4
TEXT'LP01'

VERIFY DEVICE NAME LP01

UTILITY FLAGS

DNOS supports both resource-independent and resource-specific 1/0 for video display terminal
(VDT) 110. Resource-independent 1/0 for the VDT includes operations that are analogous to
sequential file operations. A record is displayed on the bottom line of the screen as it is entered by
the user or written by the program. Previously displayed lines move upward, and the top line disap­
pears from the display. Specifically, resource-independent 1/0 to a terminal implies the following
conditions.

An Open operation positions the cursor at column ° of the bottom row of the screen.

The Write operation default conditions are:

• Output is displayed at the current cursor position.

• Characters are displayed at low intensity.

• A carriage return (>00) positions the cursor at column ° of the current row.

• A line feed (>OA) or form feed (>OC) moves the current line and the lines above it up one
line and positions the cursor at column ° of the current line.

The Read operation default conditions are:

• Characters entered are displayed at the current cursor position.

• Characters entered are displayed at high intensity.

Resource-specific 1/0 for VDTs include operations that apply only to a video display device. These
operations give a program control over cursor position (which implies display position for input
and output), audible tone, function of special keys, and intensity of display. Except for the Read
Device Status operation, the device must be opened using sub-opcode >00 or >03 prior to any 1/0
operation.

2270507-9701 6·7

6.3 VDTIIO

The following I/O call block for VDT 110 operations is the basic block used for all I/O operations. If
an extension to this block is nebessary for a particular operation, it is indicated in the operation
descri ption.

SVC > 00 -- I/O OPERATIONS ALIGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT

DEC HEX

0 0 >00 < RE1URN CODE>

2 2 SUB-OPCODE LUNO

4 4 < SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNTI < ACTUAL READ COUNT>

2279470

The subset of sub-opcodes for the VDT applies to both resource-independent and resource­
specific I/O, as follows:

00 Open
01 Close
02 Close, Write EOF
03 Open and Rewind
04 Close and Unload
05 Read Device Status
09 Read ASCII
OA Read Direct
08 Write ASCII
OC Write Di rect
00 Supported by 931/940
OE Rewind
12 Supported by 931/940

The system flags (byte 4) in the supervisor call block apply to all VDT 110. These flags are:

2279476

6-8 2270507-9701

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

Bit 2 - End-of-file flag. Set by system as follows:
1 - ENTER key terminated the operation.
0- Operation terminated without the ENTER key being pressed.

Bit 3 - Event key flag. Set by system as follows:
1 - An event key terminated the operation.
o - Operation terminated without an event key being pressed.

VDr I/O 6.3

The user flags (byte 5) in the supervisor call block apply to all VDT 1/0. However, significance of
these flags differs for various operations. The flags that apply to each operation are described in
the detailed description of each operation.

The character set applicable to the VDT is the ASCII character set or the JISCII character set
appropriate to the country code for which the system was generated.

6.3.1 Key Categories
The system interprets each key on the keyboard in one or more of the following categories:

• Data

• Hold

• Event

• System edit

• Task edit

6.3.1.1 Data Keys. The data keys return the codes of printable characters to the buffer specified
in the call block. The category includes the keys that return ASCII codes >20 through> 7E.

6.3.1.2 Hold Key. The hold key suspends output to the terminal. Operation may be resumed by
pressing any other key except RETURN, exclamation point (I), or CONTROL X. The hold key is the
blank orange key on the 911 and 931, and the PREV FORM key on the 940.

When the RETURN key is pressed following the hold key, any write operation in progress is
aborted.

When the exclamation point key is pressed following the hold key, the system activates SCI and
the output continues. Contention between the interrupted output and SCI for the use of the ter­
minal may cause unpredictable results.

2270507·9701 6·9

6.3 VDTIIO

When CONTROL X is pressed following the hold key, a hard break results. The hard break termi­
nates a current task and activates SCI. When end action is specified by the task, it is performed
prior to terminating the task and activating SCI. The hard break should be used to abort tasks when
appropriate. It should be used with care because it aborts pending I/O requests.

The system selects the task to be terminated by the hard break from among the tasks of the cur­
rent job. The following rules apply in the listed order of priority:

1. When only the System Command Interpreter (SCI) task is active, SCI is terminated.

2. Any other foreground task is terminated.

3. Any other background task is terminated.

4. When other tasks are active along with SCI, SCI is terminated last.

There may be times when the hard break terminates a task other than the one intended. In that
case, press the hold key and CONTROL X again to terminate the intended task.

The effect of a subsequent hard break depends upon the timing. When the task has not yet taken
end action in response to the first hard break, the subsequent hard break terminates the next task
in the order of priority. When the task is executing the end action routine but has not completed
end action, the task is aborted as if end action had not been provided. When end action has com­
pleted, the subsequent hard break causes the task to take end action again.

The end action routine should execute a Get End Action Status SVC to obtain the error code and
identify the cause of the termination. When the task error code returned by the SVC is > 10, a hard
break has occurred. The task may process the hard break and resume execution after executing a
Reset End Action Status SVC. The task must place the WP, PC, and ST values returned by the
Get End Action Status SVC in R13, R14, and R15 and execute an RTWP instruction to resume
execution.

6.3.1.3 Event Keys. Activating the event key mode enables use of event keys as task pro­
grammable function keys. The event key mode is activated by performing an Open operation with
the event key mode bit (bit 7 of byte 5 of the call block) set to one. Event characters may be
accessed by a Remote Get Event Character operation without opening the LUNO assigned to the
VDT.

When an event key is pressed, the corresponding character code is stored in the event character
buffer. When an input operation is being performed, the operation terminates with the event key
bit (bit 3 of byte 4 of the call block) set to one.

When no input operation is being performed and an event key is pressed, the next input operation
is immediately terminated with the event key bit of the call block set to one.

The events keys are identified in Table 6-2.

6·10 2270507-9701

VDTIIO 6.3

The task decodes the event character and performs the desired function. When the input operation
that terminates with the event key bit set to one uses the extended call block (resource-specific 1/
0), the event character is returned in the event character field. The event character can be obtained
without performing a read operation (and without opening the LUNO) by performing a Remote Get
Event Character operation. When the input operation uses the basic I/O call block (resource­
independent I/O), the event character is not returned.

NOTE

Any task may access the event character buffer by performing 1/0 to
any LUNO assigned to the terminal. The first access is the only
access that returns the correct character. Tasks that perform I/O to
a terminal to which SCI is performing I/O must avoid accessing
event characters. Either the task or SCI may fail to perform the
intended function.

6.3.1.4 System and Task Edit Keys. System edit keys are cursor and display control keys that
are implemented by the system. Task edit keys are cursor and display control keys that are task
functions. Five of the keys are both system and task edit keys, for which the system performs
functions. The task may perform additional functions.

Task edit functions do not apply to resource-independent 1/0. The carriage control bit in the
extended user flags field must be set to one to enable task edit functions. When task edit func­
tions are enabled, pressing a task edit key during an input operation terminates the operation. The
device service routine (DSR) returns the character code of the task edit character in the event byte
field of the extended call block.

The following paragraphs describe the edit keys. For system edit keys, the paragraphs describe
the functions performed when the keys are pressed. For task edit keys, the paragraphs state the
code that the DSR returns to the task when the keys are pressed. For keys that are both, the para­
graphs describe the functions and state the codes. If a key is both and the task edit flag is not set,
the function is performed, but the 1/0 is not terminated. System edit keys are listed with a letter S
in the type column of Table 6-2; task edit keys are listed with a letter T in the type column.

Edit keys are related to fields of data on the screen, which are read in an I/O operation. The field
begins at the cursor position and consists of the number of characters to be read by the current
read operation. When an edit key is pressed between read operations, it is effective at the
beginning of the next read operation.

The following paragraphs discuss the edit keys on a 911 VDT; equivalent keys on other terminals
perform these functions. See the ASCII Device I/O Operations appendix to this manual for the
equivalent keys on your terminal.

ERASE FIELD Key. This system edit key positions the cursor at the beginning of the field and
·fills the field with the fill character.

Lett Arrow Key. This system edit key moves the cursor to the left unless the cursor is at the first
character position of the field. The warning beep bit of the extended user flags field controls an
audible warning if the cursor is not moved.

2270507·9701 6·11

6.3 VDTIIO

Right Arrow Key. This system edit key moves the cursor to the right one character position.
When the cursor moves beyond the end of the field, and the remain in field on field full flag is not
set, the DSR terminates the operation and returns the last character entered. The warning beep bit
of the extended user flags field controls an audible warning if the cursor moves beyond the end of
the field.

INS CHAR Key. This system edit key sets the input mode to insert characters. In the insert mode,
entering a character moves the cursor and the characters to its right one character position to the
right and displays the entered character in the position vacated by the cursor. Pressing the key
causes a warning beep when the cursor is positioned at a fill character, if the fill character is not a
blank, and the insert mode is not enabled. The warning beep bit of the extended user flags field
controls an audible warning if the field has been filled. The insert mode remains effective until a
key that is not a data key is pressed.

DEL CHAR Key. This system edit key deletes the character at the cursor position, moves the
characters in the field to the right of the cursor one position to the left, and fills the left character
position of the field with the fill character. The warning beep bit of the extended user flags field
controls an audible warning if there is no character to be deleted.

Blank Gray Key. This task edit key returns the character code> 8F in the event byte field.

Up Arrow Key. This task edit key returns the character code> 95 in the event byte field.

ENTER Key. This task edit key returns the character code> 93 in the event field byte. The DSR
interprets this code as end-of-file (EOF) and sets bit 2 of byte 4 of the call block.

Left FIELD Key. This task edit key returns the character code >94 in the event byte field.

Right FIELD Key. This task edit key returns the character code >87 in the event byte field.

Down Arrow Key. This task edit key returns the character code> 8A in the event byte field.

ERASE INPUT Key. This system and task edit key positions the cursor at the beginning of the
field, fills the field with the fill character, and returns the character code >8E in the event byte
field.

RETURN Key. This system and task edit key returns the cursor to column 1 of the current line and
returns the character code >8D in the event byte field. The device service routine (DSR) interprets
the code as end-of-record (EOR).

HOME Key. This system and task edit key returns the cursor to the beginning of the field and
returns the character code> 8e in the event byte field.

SKIP Key. This system and task edit key fills the field from the cursor position to the end of the
field with fill characters without moving the cursor and returns the character code >88 in the
event byte field.

TAB Key. This system and task edit key accepts all characters entered in the current field with­
out moving the cursor, and returns the character code> 89 in the event byte field.

6·12 2270507 ·9701

VDTIIO 6.3

6.3.2 VOT Resource·lndependent I/O
The operations appropriate for the VDT are described in subsequent paragraphs. The following
sub-opcodes, which do not apply to the VDT, produce the indicated results:

06 Ignored
07 Ignored
08 Error
OD Ignored for 911
OF Ignored

6.3.2.1 Open. Sub-opcode >00 specifies an Open operation. The Open operation is required for
a VDT. However, DNOS does not validate the Open operation; that is, it does not detect a possible
conflict with 1/0 to the same device by another task. An Open operation is not required prior to per­
forming a Read Device Status operation.

The following fields of the basic supervisor catl block apply to an Open operation:

• SVC code - 0

• Return code

• Sub-opcode - > 00

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

The following user flags apply to an Open operation:

3-4

f
2279478

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

Bit 7 - Event key mode flag. Set as follows:
1 - Enable event key mode.
o - Disable event key mode.

2270507-9701 6-13

6.3 VDTIIO

The logical unit number (LUNO) field contains the LUNO assigned to the VDT to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the VDT is 5.

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length for a VDT is > 56.

A VDT must be opened with the event key mode flag set to one if event keys are to be used as task
programmable function keys.

To access an event key character, perform a Remote Get Event Character operation.

The following is an example of the source code for a supervisor call block to open a VDT:

OVDT DATA 0
BYTE 0,>24
DATA 0
DATA 0
DATA 0
DATA 0

OPEN VDT ASSIGNED TO LUNO >24.

TYPE
DLRL

6.3.2.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends I/O to a
LUNO from the calling task. The LUNO remains assigned to the device, and may be opened again
for additional I/O operations. When a task terminates, DNOS closes all LUNOs that have been
opened by the task.

The following fields of the basic supervisor call block apply to a Close operation:

• SVCcode - 0

• Return code

• Sub-opcode - >01

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Close operation:

2279479

6·14 2270507 ·9701

VDTIIO 6.3

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close a VDT:

CVDT DATA 0
BYTE 1,>24
DATA 0
DATA 0
DATA 0
DATA 0

CLOSE VDT ASSIGNED TO LUNO >24.

6.3.2.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode > 02, is identical to the
Close operation.

6.3.2.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open opera­
tion followed by a Rewind operation. For the VDT, the Rewind operation consists of clearing the
screen. Any previously entered characters that remain in the buffer are ignored.

6.3.2.5 Close and Unload. The Close and Unload operation, sub-opcode >04, is identical to the
Close operation.

6.3.2.6 Read Device Status. Sub-opcode >05 specifies a Read Device Status operation. The
Read Device Status operation returns device status information in a buffer.

The following fields of the basic supervisor call block apply to a Read Device Status operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 05

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

• < Actual read count>

2270507·9701 6·15

6.3 VDTIIO

The following user flag applies to a Read Device Status operation:

2279480

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the device for which status
information is returned.

The data buffer address is the address of the buffer into which DNOS places the status
information.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field. If the
buffer is 4 characters, bytes 0 through 3 are returned. If the buffer is 18 characters, all bytes are
returned.

The contents of the data buffer after a Read Device Status operation has returned the status of a
VDT are:

Byte Contents

o Maximum row address.

1 Maximum column address.

2-3 Number of characters currently stored in the input character queue.

4 Device Service Routine (DSR) type. *

5 Channel number. *

6-7 Communications Register Unit (CRU) address.

8-9 Auto Call Unit (ACU) CRU address. *

10 Interface Service Routine (ISR) type. *

11 Line Control *

12-13 Opcode 15, Edit flag 1.

* For more information concerning these items, see the resource specific information for the appropriate device.

6·16 2270507 ·9701

VDTIIO 6.3

Byte Contents

14-15 Opcode 15, Edit flag 2.

16-17 Reserved.

DNOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char­
acters in the queue. The maximum size of this queue is specified when the system is generated.

The following is an example of the source code for a supervisor call block for a Read Device Status
operation and code for the read buffer:

RDSVDT

MRA
MCA
CIQ

DATA 0
BYTE 5,>32
DATA 0
DATA MRA
DATA 18
DATA 0
BSS 1
BSS 1
BSS 16

READ STATUS OF VDT ASSIGNED TO
LUNO >32.

DEVICE STATUS BUFFER

6.3.2.7 Read ASCII. Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII
operation reads a record from the keyboard and stores the characters in the specified buffer, two
characters per word.

The following fields of the basic supervisor call block apply to a Read ASCII operation:

• SVC code - 0

• Return code

• Sub-opcode - >09

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Read character count

• <Actual read count>

2270507-9701 6·17

VDr I/O 6.3

Byte Contents

14-15 Opcode 15, Edit flag 2.

16-17 Reserved.

DNOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char­
acters in the queue. The maximum size of this queue is specified when the system is generated.

The following is an example of the source code for a supervisor call block for a Read Device Status
operation and code for the read buffer:

RDSVDT

MRA
MCA
cia

DATA 0
BYTE 5,>32
DATA 0
DATA MRA
DATA 18
DATA 0
BSS 1
BSS 1
BSS 16

READ STATUS OF VDT ASSIGNED TO
LUNO >32.

DEVICE STATUS BUFFER

6.3.2.7 Read ASCII. Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII
operation reads a record from the keyboard and stores the characters in the specified buffer, two
characters per word.

The following fields of the basic supervisor call block apply to a Read ASCII operation:

• SVC code - 0

• Return code

• Sub-opcode - > 09

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Read character count

• <Actual read count>

2270507·9701 6·17

3 VDTIIO

'he following system flags apply to a Read ASCII operation:

I 0 11 1--2 1 3 1 4 1 5 1 6 1 7 1

f f f t
2279481

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
0- Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

Bit 2 - End-of-file. Set by system as follows:
1 - ENTER key terminated the operation.
o - Operation terminated without the ENTER key being pressed.

Bit 3 - Event key flag. Set by system as follows:
1 - An event key terminated the, operation.
o - Operation terminated without an event key being pressed.

The following user flags apply to a Read ASCII operation:

~I
2279482

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Read with blank adjustment.
o - Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the VOT from which a record
is to be read.

The data buffer address is the address of the buffer into which ONOS places the record.

The read character count is the length of the buffer.

ONOS returns the number of characters stor,ed in the buffer in the actual read count field.

6·18 2270507 ·9701

VDr I/O 6.3

The Read ASCII operation recognizes the characters listed in Appendix B for the VDT. The opera­
tion stores the characters, packed one per byte. When the country code in effect is not >0200
(Japan), the most significant bit is set to zero. When the country code is >0200, the eight-bit
JISCII code is stored. The operaton continues until the RETURN key is pressed, the buffer is full,
an event key is pressed (if the VDT is in the event key mode), or a task edit key is pressed (if task
edit is set).

When the ENTER key is pressed, the system sets the EOF flag in the system flags byte and termi­
nates the operation.

Characters entered between Read operations are stored in a queue and read by the next Read
operation. The maximum size of the queue is specified during system generation. When the queue
has been filled, the audible tone sounds as each additional character is entered and the additional
characters are ignored.

Errors can be corrected by pressing the left arrow key to backspace the cursor to the character in
error. Entering the correct character replaces th~ incorrect character. Only characters being cor­
rected need to be reentered.

When the RETURN key is pressed, the number of characters entered is stored in the actual read
count field and the operation terminates.

When the VDT is opened in the event key mode and an event key is pressed, the system sets the
event key flag in the system flags byte and terminates the operation. The event character may be
accessed by performing a Remote Get Event Character operation.

When an event key is pressed between Read operations, the next Read operation performed after
the pressing of the event key terminates with the event key flag set.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (>20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

The following is an example of the source code for a supervisor call block for a Read ASCII opera­
tion and code for the read buffer:

RDVDT

RBUFF

2270507-9701

DATA 0
BYTE 9,>2B
BYTE 0,>80
DATA RBUFF
DATA 80
DATA 0
BSS 80

READ RECORD FROM VDT ASSIGNED TO
LUNO >2B IN THE INITIATE I/O MODE

READ BUFFER

Change 1 6·19

6.3 vor I/O

6.3.2.8 Write ASCII. Sub-opcode >OB spe,cifies a Write ASCII operation. The Write ASCII opera­
tion transfers a record from the specified buffer to the screen of the VDT. DNOS supports a write
with reply option, which is effectively a Write operation followed by a Read ASCII operation.

The following fields of the basic supervisor call block apply to a Write ASCII operation:

• SVCcode - 0

• Return code

• Sub-opcode - >OB

• LUNO

• < System flags>

• User flags

• Data buffer add ress

• Write character count

• Reply block address (write with reply option)

The following system flags apply to a Write ASCII operation:

~ 3 141 5 I 6 I 7 I
2279483

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The following user flags apply to a Write ASCII operation:

~ 3-
4 1 5 1 6 1 7 1

~ f
2279484

6·20 2270507 -9701

VDTIIO 6.~

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 1 - Reply flag. Set as follows:
1 - Write operation followed by a Read operation.
o - All other operations.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Write with blank adjustment.
o - Write without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the VOT to which a record is
to be written.

The data buffer address is the address of the buffer which contains the record to be displayed.

The write character count is the number of characters to be displayed on the screen of the VOT.

The Write ASCII operation displays a record on the screen of a VOT. The record consists of ASCII
characters or JISCII characters, as specified by the country code.

The Write ASCII operation allows repeat character compression in the data to be displayed.
Repeat character compression represents a string of identical characters (for example, underlines)
as six hexadecimal digits. The first two digits are the hexadecimal representation of the ASCII
code of the character to be repeated. The next two digits are> 7F and the last two digits are the
hexadecimal number of identical characters. For example, >20, > 7F, >06 represents six blanks:
the blank specified by > 20 and five more. A count of zero characters is valid and allows entry of
the OEL character that corresponds to > 7F. For example, >20, > 7F, >00 represents a blank
followed by a DEL character. The character count in bytes 10 and 11 of the call block includes
three for each of the examples, not the number of characters displayed as a result of the specified
repetition.

When blank adjustment is specified, trailing blanks in the buffer are not written. The write charac­
ter count in bytes 10 and 11 is not altered.

A Write with Reply operation requires the following in addition to the requirements for a Write
ASCII operation:

• The reply flag in the user flags byte set to one

• The extension to the supervisor call block

• The reply block

The Write with Reply option requires the following extension to the basic 1/0 supervisor call block:

DEC HEX

12 c REPLY BLOCK ADDRESS

2279485

2270507-9701 6·21

~ VDrllO

1e reply block is a three-word block, containing addresses for the Read operation, as follows:

DEC

o

2

4

279486

HEX
o

2

4

DATA BUFFER ADDRESS

READ CHARACTER COUNT

< ACTUAL READ COUNT>

'he three fields are identical to the corresponding fields of the supervisor call block for a Read
~SCII operation.

'he following is an example of the source code for a supervisor call block for a Write ASCII
Iperation:

WAVDT DATA 0
BYTE >B,>4B
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 80

WRITE RECORD TO VDT ASSIGNED TO
LUNa >4B INITIATE MODE.

The following is an example of the source Gode for a supervisor call block for a Write ASCII
operation using the Write with Reply option:

WRVDT DATA 0
BYTE >8,>4B
BYTE O,>CO
DATA WRBUFF
DATA 0
DATA 80
DATA RBL

The reply block is coded as follows:

RBL

6·22

DATA REPLY
DATA 80
DATA 0

WRITE RECORD TO VDT ASSIGNED TO
LUNa >4B INITIATE MODE AND
WRITE WITH REPLY.

REPLY BUFFER ADDRESS
MAXIMUM LENGTH OF REPLY
REPLY CHARACTER COUNT

2270507-9701

VDTIIO 6.3

6.3.2.9 Rewind. Sub-opcode >OE specifies a Rewind operation. The Rewind operation clears
the screen of a VDT. Any previously-entered characters that remain in the buffer are ignored.

The following fields of the basic supervisor call block apply to a Rewind operation:

• SVC code - 0

• Return code

• Sub-opcode - > OE

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Rewind operation:

2.2.79487

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the VDT to be cleared.

The following is an example of the source code for a supervisor call block to rewind a VDT:

RWND DATA 0
BYTE >E,>4A
DATA 0
DATA 0
DATA 0
DATA 0

6.3.3 VOT Resource·Specific 1/0

REWIND VDT ASSIGNED TO LUNO >4A.

Most of the resource-specific I/O operations use an extended supervisor call block. The sub­
opcodes for the resource-independent operations apply, but the operations are modified by the
states of flags in the extended user flags field.

2270507·9701 6·23

3 VDTIIO

'he extended call flag in the user flag field (byt·e 5) of the supervisor call block must be set to one
:>r resource-specific 1/0 operations. Otherwise, the system does not use the extensions to the
upervisor call block. The flags in the user flag field that apply to resource-specific I/O operations
ore:

279488

Bit 1 - Reply flag. Set the reply flag to one for a Write with Reply or a Remote Get Event
Character. Set the reply flag to zero for all other operations.

Bit 6 - Extended call flag. Set as follows:

1 - Extended call block (required for resource-specific 1/0 to a VDT).
0- Basic supervisor call block (used for resource-independent I/O).

rhe extension to the basic supervisor call block is as follows:

DEC HEX

12 C VALIDATION TABLE/REPLY BLOCK ADDRESS

14 E EXTENDED USER FLAGS

16 10 FILL CHARACTER < EVENT BYTE>

1 8 12 CURSOR POSITION Row COLUMN

20 14 FIELD BEGINNING Row COLUMN

~279489

The extension to the call block contains the following:

Byte

12-13

14-15

16

5-24

Contents

Character validation table address (for a Read operation, sub-opcode
>09 or >OA, when character validation is specified in the extended user
flags). The address of a table of character validation data. Reply block
address (for a Write operation, sub-opcode >OB or >OC, when the reply
flag is set to one). The address of a block containing the address and
count fields for a Write with Reply operation.

Extended user flags field. Contains 16 flags that apply to all or some of
the VDT operations as described in succeeding paragraphs.

Fill character. Contains the character to be used to fill character posi­
tions when specified.

2270507-9701

Byte

17

18-19

20-21

VDTIIO 6.3

Contents

< Event byte>. The system stores an event character in this field when
the VDT has been opened in the event mode and an event key is pressed.
This is the last character entered, which terminates a read call.

Cursor position: row in byte 18, column in byte 19. Row zero is the top
row on the screen; column zero is the leftmost column on the screen. The
position to which the cursor is set in a Read operation when the cursor
position flag is set to one. The system stores the current cursor position
in this field following a Read or Write operation.

Field beginning definition: row in byte 20, column in byte 21. When the
field start position flag is set to one, Read and Write operations begin at
this position.

The extended user flags are:

2279490

The following lists the flags and the I/O operations in which they are effective. Detailed descrip­
tions of the uses of the flags follow in subsequent paragraphs.

Bit

2270507-9701

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Definition

Field start position
Intensity
Blink cursor
Graphics
Eight-bit ASCII
Task edit
Beep
Right boundary
Cursor position within a read field
Fi II character
Do not initialize field
Return on termination character
No echo
Character validation
Validation error mode
Warning beep

Used in
Operations

All
All
Read ASCII
Read/Write
Read/Write Direct
Read
Read/Write
Read
Read
Read
Read
Read
Read
Read
Read
Read

6·25

6.3 VDr 110

6.3.3.1 Field Start Position. This flag, whnn set to one, defines the start of the input or output
field as specified in bytes 20 and 21 of the extended call block. When this flag is set to zero, the
current cursor position defines the start of the field.

A Read ASCII operation with the field start position flag set to one positions the cursor at the
beginning of the field (bytes 20 and 21) and begins reading at that point. The cursor position flag
and the do not initialize field flag may also bH set to one. In that case, previously displayed charac­
ters are read up to the cursor position specified in bytes 18 and 19. Additional characters (up to the
total specified for the Read operation) are read as entered. At the completion of the Read operation
the cursor position is stored in bytes 18 and 19.

For an operation other than Read ASCII, the cursor is moved to the start of the field at the start of
the operation.

6.3.3.2 Intensity. This flag, when set to one, specifies high intensity output. When set to zero,
the flag specifies low intensity output.

6.3.3.3 Blink Cursor. This flag, when set to one, causes the cursor to blink. When set to zero, the
flag causes the cursor to be continuously displayed. The flag applies only to Read ASCII
operations.

6.3.3.4 Graphics. This flag, when set to one, causes control characters to be displayed as
graphic characters on input and output. Control characters are those represented in ASCII as >00
through> 1 F. When this flag is set to zero, control characters perform their normal (VDT) functions
when entered or written.

6.3.3.5 Eight·Bit ASCII. This flag, when set to one, causes all eight bits of the characters in the
buffer to be sent to the terminal during a Write Direct operation. The most significant bit of each
character controls the intensity of the display of the character. When bit 0 of the character is a one,
the character is displayed with low intensity, When bit 0 is a zero, the character is displayed with
high intensity. When the flag is set to zero, only the seven least significant bits of each character
are sent to the terminal, and the intensity flag controls the intensity of the display.

During a Read Direct operation with the flag set to one, the intensity of the characters on the
screen determines the value of the most significant bit stored in the buffer. The most significant
bit of a low-intensity character is set to one; the bit is set to zero for a high-intensity character.

A VDT that supports JISCII characters displays characters with one intensity only.

6.3.3.6 Carriage Control. This flag, when set to one, causes any of the programmable characters
listed in Table 6-1 that are entered during an input operation to terminate the operation and to be
returned in byte 17 (event byte field) of the extended call block. When the flag is set to zero, the
DSR ignores these characters.

6.3.3.7 Beep. This flag, when set to one:. causes the terminal to sound an audible tone to
request the first character during input operations. During output operations, the tone sounds fol­
lowing display of the last character when the flag is set to one. When the flag is set to zero, the
terminal does not sound the audible tone unless the warning beep flag is set.

6·26 Change 1 2270507-9701

VDTIIO 6.3

6.3.3.8 Right Boundary. This flag, when set to one, limits use of the INS CHAR and DEL CHAR
keys on the terminal. The flag applies to fields that extend past the right boundary of the current
row, and continue on the next row. When the INS CHAR key has been pressed, characters can only
be inserted on the current row. The DEL CHAR key is effective only on the current row. When the
flag is set to zero, the INS CHAR and DEL CHAR keys are effective across the entire field.

6.3.3.9 Cursor Position. This flag, when set to one, causes a Read ASCII operation to position
the cursor to the row and column specified in bytes 18 and 19, respectively, of the extended call
block. The Read operation reads previously displayed characters starting at the field start position
up to and including the character to the left of the cursor. Additional characters (up to the number
specified in bytes 8 and 9 of the call block) are read as entered. The do not initialize field flag deter­
mines the cursor position when both flags apply. The system returns the pOSition of the cursor in
bytes 18 and 19 at the completion of every Read and Write operation. When the flag is set to zero,
the pOSition of the cursor is altered only when the field start position flag is set to one.

6.3.3.10 Fill Character. This flag, when set to one, causes the fill character in byte 16 of the
extended call block to be used. The DELETE CHARACTER, ERASE FIELD, ERASE INPUT, and
SKIP keys write fill characters in the current field. An initialize field operation also uses the fill
character. When the flag is set to zero, a blank is used as the fill character.

6.3.3.11 Do Not Initialize Field. When this flag is set to one, the system does not initialize the
current field. When this flag is set to zero, the system initializes the field. Initializing the field con­
sists of writing fill characters in the field and pOSitioning the cursor at the beginning of the field.
When the do not initialize field flag is set to zero, the cursor pOSition flag is ignored.

6.3.3.12 Return on Termination Character. This flag, when set to one, causes a Read operation
to terminate only when a field termination character is entered. Refer to the information for the
appropriate terminal for a list of field termination characters.

When the field has been filled, additional characters are accepted but are neither displayed nor
returned to the task. An invalid entry can be corrected by positioning the cursor at a character in
error and entering the correct character, or a field termination character may be entered to termi­
nate the operation.

When the flag is set to zero, a Read operation terminates when either the field is full or a field
termination character is entered.

6.3.3.13 No Echo. This flag, when set to one, inhibits the display of characters entered at the
keyboard. When a key is pressed, the character at the cursor pOSition on the screen is replaced by
a blank and the cursor is moved to the next character pOSition. When the flag is set to zero, each
character is displayed as it is entered.

6.3.3.14 Character Validation. This flag, when set to one, enables character validation of the
field being read by a Read ASCII operation. Character validation is discussed in greater detail in a
subsequent paragraph. When the character validation flag is set to zero, no character validation is
performed.

2270507·9701 6·27

>.3 vor I/O

6.3.3.15 Validation Error Mode. The validation error mode flag, when set to one, enables correc­
tion of errors detected during validation of fiedd contents by the task. The Validation Error Mode
operation is effectively a Reread operation; this flags that apply to a read apply in the same way to
this operation. The cursor is positioned at this beginning of the previously read field, unless the
character position flag is used to position the Cursor at some other character. When the user
enters the Left arrow, ERASE FIELD, or ERASE IN PUT character, the system sets the validation
error mode flag to zero. When the calling task sets the validation error mode flag to zero, the opera­
tion is performed in the normal mode.

6.3.3.16 Warning Beep. This flag, when set to one, provides an audible warning when certain
functions that cannot be performed are requested. Specifically, the warning beep sounds when
the following keys are pressed and the indicated conditions apply:

• Left arrow, when cursor is at column one

• DEL CHAR, when there are no characters to delete

• INS CHAR, when there is no more room for characters

6.3.3.17 Examples. To build a display usinlg the graphics available for the VDT, the programmer
places graphics codes in a buffer, executes an 110 SVC with the extended call block, and sets the
graphics flag to one.

The graphics codes are those in the control code range, >00 through> 1 F. The graphics symbols
that correspond to these codes are shown in Appendix B. The keys that correspond to these codes
are listed in Table 6-1.

6·28 2270507·9701

Table 6·1. Graphics Code Key Equivalents

Graphics Code

00
01
02
03
04
05
06
07
08
09
OA
08
OC
OD
OE
-OF
10
11
12
13
14
15
16
17
18
19
1A
18
1C
1D
1E
1F

911
Key

(CONTROL) 3
(CONTROL) A
(CONTROL) 8
(CONTROL) C
(CONTROL) D
(CONTROL) E
(CONTROL) F
(CONTROL) G
(CONTROL) H
(CONTROL) I
(CONTROL) J
(CONTROL) K
(CONTROL) L
(CONTROL) M
(CONTROL) N
(CONTROL) 0
(CONTROL) P
(CONTROL) Q
(CONTROL) R
(CONTROL) S
(CONTROL)T
(CONTROL) U
(CONTROL) V
(CONTROL)W
(CONTROL) X
(CONTROL) Y
(CONTROL)Z

ESC
(CONTROL) ,
(CONTROL) +
(CONTROL) .
(CONTROL) /

To enter graphics characters, the graphics bit in the IRB must be set.

940 and Business
System Key

@

$
%
&

+

/
o
1
2
3
4
5
6
7
8
9

<

>
?

VDTIIO 6.3

To enter graphics characters using a 911, simply use the CONTROL key sequence shown in Table
6-1.

To enter graphics characters using a 940 you must first enter the graphics mode by pressing
(SHIFT) P2. Press the appropriate key as shown in Table 6-1 to generate the required symbol. Exit
the graphics mode by pressing (AL T) 9.

2270507·9701 6·29

6.3 vor 1/0

To enter graphics characters using a Business System terminal you must first enter the graphics
mode by pressing (ALT) 5 (on the numeric keypad). Press the appropriate key as shown in Table 6-1
to generate the required symbol. Exit the graphics mode by pressing (AL T) 9.

NOTE

Applications can be written for the 911 that use the key sequences
(CONTROL) S and ESC. These sequences cannot be used on the 940
and Business System terminals.

The following is an example of an extended supervisor call block for a Write ASCII operation in the
graphics mode:

WGM DATA 0
BYTE >B,>4C
DATA >2
DATA GBUFF
DATA 0
DATA 80
DATA a
DATA >9000
DATA a
DATA a
DATA a

WRITE GRAPHICS DATA TO VDT
AT LUNO >4C. FIELD BEGINS
AT ROW 0, COL O. FIELD SIZE
IS 80 CHARACTERS.

A Read ASCII operation reads a portion of ~he field from the screen and a portion from the key­
board by specifying a cursor position within the field. Characters displayed on the screen to the
left of the cursor position are read. The remainder of the field is read as the characters are entered.

An example of a Read ASCII operation has the following characteristics:

. • The field begins at row 3, column ~).

• The field contains 10 characters.

• The field contains 3 characters to be read.

• Seven or fewer additional charactl3rs are to be entered and read.

• A field termination character terminates the operation.

• Additional characters entered are displayed at high intensity.

6·30 2270507.9701

VDr I/O 6.3

The following is an example of the code for a supervisor call block for the operation described:

RAP DATA 0
BYTE 9,>2D
DATA >2
DATA RBUFF
DATA 10
DATA 0
DATA 0
DATA >COBO
DATA 0
BYTE 3
BYTE 8
BYTE 3
BYTE 5

READ FIELD OF VDT AT LUNa >2D.
FIELD SIZE IS 10 CHARACTERS,
AT ROW 3 COL 5. CHARACTER ENTRY
BEGINS AT ROW 3 COL 8. SET
INTENSITY HIGH.

When the VDT has been opened in the event key mode and task edit keys are also enabled (car­
riage control flag set to one), either an event key or a task edit key may terminate a Read operation.
The task edit character is always returned in the event byte of the extended call block, and the
event character is also returned in that byte in resource-specific I/O. The state of the event key flag
in the system flag field indicates which type of character is in the event byte when both are
enabled. The task accesses and decodes the character and performs the function corresponding
to the key.

The following is an example of the code for a Read ASCII operation with event key termination
enabled when the VDT was opened and task edit key termination enabled for the Read operation:

RETE

SYSFLG

2270507 -9701

DATA 0
BYTE 9,>3F
BYTE 0
BYTE >02
DATA RBUFF
DATA 15
DATA 0
DATA 0
DATA >0400
DATA 0
DATA 0
DATA 0

READ FIELD OF VDT AT LUNa >3F.
FI ELD SIZE IS 15 CHARACTERS,
AT CURRENT CURSOR POSITION.
EVENT KEYS AND TASK EDIT KEYS
ENABLED.

6·31

6.3 VDTIIO

6.3.3.18 Character Validation Operation. A IRead ASCII operation may specify character valida­
tion compatible with field validation performed by TIFORM software. After reading a field, the
operation only accepts those characters that are within the range or ranges applicable to the
operation. Characters that are within the rangE! or ranges are stored in the read buffer specified for
the operation. The character validation flag in the extended user flags field is set to one for a Read
with Validation operation.

Each Read operation with character validation must specify a validation table. Specifying a valida­
tion table requires:

• Setting the character validation flag to one

• Supplying a validation table

• Placing the address of the table in the character validation table address field of the
extended call block

The validation table contains one or more ranges of characters that define the valid characters for
the field. The table may define the valid characters by specifying ranges of characters that are not
valid or by specifying ranges of characters that are valid. Each range in the table requires two
bytes, and the table contains two bytes of overhead. Thus the length of the table in bytes is two
times the number of ranges, plus two. The format of the table is as follows:

DEC HEX

o 0 LENGTH FLAGS

2 2 RANGE 1 Low CHAR. RANGE 1 HIGH CHAR.

riJ rlJ

2N 2N RANGE n Low CHAR. I RANGE n Low CHAR,

2279491

6·32 2270507 -9701

VDTIIO 6.3

The validation table contains the following:

Byte Contents

a Length - Length of the validation table in bytes (2n + 2).

Flags:
Bit a - Validation flag. Set as follows:

1 - I nvalid ranges. Characters greater than or equal to the low char­
acter and less than or equal to the high character are invalid.

a - Valid ranges. Characters greater than or equal to the low char­
acter and less than or equal to the high character are valid.

Bits 1-7 - Reserved.

2 Low character for range 1.

3 High character for range 1.

Character pairs for additional ranges.

2n Low character for range n.

2n + 1 High character for range n.

Character validation is performed after each character is entered in the field, and the cursor is in
the position to read the next character. When an invalid character is entered, the beep (audible
tone) sounds.

The user must press one of the following correction keys:

• Left CHAR

• ERASE FI ELD

• ERASE INPUT

• Left FIELD

Next, the user enters the data correctly.

An example Read with Validation operation performs the following:

• Reads a 1 a-character field at row 1, column 2.

• Validates the field as an alphanumeric field with no lowercase letters.

2270507-9701 6·33

i.3 VDTIIO

fhe following is an example of the code for the supervisor call block and validation table for the
example operation:

RASCI

FLAG2

TABLE

DATA 0
BYTE 9,>2B
BYTE 0
BYTE >02
DATA BUFF
DATA 10
DATA 0
DATA TABLE
DATA >8084
BYTE 1
BYTE 2
BYTE 1
BYTE 2

EVEN
BYTE 6
BYTE 0
DATA >3039
DATA >415A

READ FIELD OF VDT AT LUNa >2B,
VALIDATING PER TABLE. FIELD
SIZE IS 10 CHARACTERS, AT ROW
1, COL 2. READ BUFFER IS
BUFF.

LENGTH OF TABLE
VALID RANGES
RANGE 1 - NUMERALS
RANG E 2 - UPPERCASE LETTERS

6.3.3.19 Field Validation. Any validation of a field must be performed by a task following the
reading of the field. This could verify that the "field contains the proper number of letters, followed
by numbers, for example. The Read ASCII operation in the validation error mode is used by the task
to obtain corrected data when an error has occurred. Character validation and cursor positioning
may be requested for the operation also. The validation error mode flag is set to one to enable the
mode.

In the validation error mode, the cursor is positioned to read the first character of the field, or at a
specified cursor position. The correction keys defined for the character validation operation apply.
Entry of a character prior to pressing a cormction key causes the beep to sound, the cursor to
remain on the same character position, and the displayed character to be unaltered.

The call block for the previous Read ASCII operation can be used by setting the validation error
mode flag to one. The following instructions set the flag in the call block of the character valida­
tion coding example:

MASK2 BYTE >2
SOCB @MASK2,@FLAG2 + 1

6.3.3.20 Getting Event Characters. The RI3mote Get Event Character operation (sub-opcode
>05) returns an event character in the event byte (byte 17) of the extended supervisor call block.
The LUNa assigned to the VDT does not have to be open. The operation is an alternative to per­
forming a Read operation to obtain an event ciharacter.

6·34 2270507 ·9701

VDTIIO 6.3

The operation is a special type of Read Device Status operation; the normal read status infor­
mation is returned.

The following fields of the extended supervisor call block apply to a Remote Get Event Character
operation:

• SVCcode - 0

• Return code

• Sub-opcode - >05

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer add ress

• Read character count

• <Actual read count>

• Event byte

The following user flags apply to a Remote Get Event Character operation:

t t
2279492

Bit 0 - I nitiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 1 - Reply flag. Set to one.

Bit 6 - Extended call flag. Set to one.

The logical unit number (LUNO) field contains the LUNO assigned to the device at which the event
character is entered.

The data buffer address is the address of the buffer into which DNOS places the status infor­
mation.

The read character count is the length of the buffer.

DNOS returns the event character in the event byte. The event character flag (bit 3 of the system
flags) is set to one if an event character is returned.

2270507 -9701 6·35

i.3 VDr 110

)NOS maintains an input character queue that stores characters input while the system is
)rocessing a previously-entered character or command. Bytes 2 and 3 contain the number of char­
lcters in the queue. The size of this queue is specified when the system is generated.

rhe following is an example of the source code fdr-a supervisor call block for a Remote Get Event
:;haracter operation and code for the read buffer:

RGEVCH

EVCHAR

MRADR
MCADR
CHINO

DATA 0
BYTE 5,>32
DATA >42
DATA MRADR
DATA 18
DATA 0
DATA 0
DATA 0
BYTE 0
BYTE 0
DATA 0,0
BSS 1
BSS 1
BSS 16

GET EVENT CHARACTER FROM VDT ASSIGNED
TO LUND >32.

DEVICE STATUS BUFFER

6.3.3.21 Read Direct. Sub-opcode >OA spl3cifies a Read Direct operation. The Read Direct
operation reads a record from the screen ancl stores the characters in the specified buffer, two
characters per word. The operation begins reading at the character at the cursor position.

The following fields of the basic supervisor call block apply to a Read Direct operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OA

• Logical unit number (LUND)

• System flags

• User flags

• Data buffer address

• Read character count

• < Actual read count>

6·36 2270507·9701

The following system flags apply to a Read Direct operation:

2279493

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
0- Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The following user flags apply to a Read Direct operation:

2279494

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Read with blank adjustment.
o - Read without blank adjustment.

VDTIIO 6.3

The logical unit number (LUNO) field contains the LUNO assigned to the VDT from which a record
is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

The Read Direct operation recognizes the ASCII or JISCII codes as specified by the country code.
The operation stores the characters in a word, packed one per byte. The most significant bit is set
to zero for the seven-bit ASCII codes; all eight bits of the JISCII code are stored. The operation
continues until the buffer is full. DNOS places the number of characters stored in the buffer in the
actual read count field.

2270507 -9701 6·37

.3 VDT I/O

-he following is an example of the source code! for a supervisor call block for a Read Direct opera­
ion and code for the read buffer:

RDDVDT DATA 0
BYTE >A,>3F
BYTE 0,0
DATA RDBUFF
DATA 80
DATA 0

RDBUFF BSS 80

READ RECORD FROM VDT ASSIGNED TO
LUNa >3F.

READ'BUFFER

).3.3.22 Write Direct. Sub-opcode >OC spelcifies a Write Direct operation. The Write Direct
)peration transfers a record from the specified buffer to the screen of the VDT.

rhe following fields of the basic supervisor call block apply to a Write Direct operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OC

• Logical unit number (LUNa)

• System flags

• User flags

• Data buffer add ress

• Write character count

The following system flags apply to a Write Direct operation:

2.279495

6·38

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

2270507 -9701

VDTIIO 6.3

The following user flags apply to a Write Direct operation:

3-4

2279496

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Write with blank adjustment.
0- Write without blank adjustment.

The logical unit number (LUNa) field contains the LUNa assigned to the VDT to which a record is
to be written.

The data buffer address is the address of the buffer that contains the record to be displayed.

The write character count is the number of characters to be displayed on the screen of the VDT.

The Write Direct operation displays a record on the screen of a VDT. The record consists of the
seven least significant bits of each byte in the buffer.

When blank adjustment is specified, trailing blanks in the buffer are not written. The write char­
acter count in bytes 10 and 11 is not altered.

The following is an example of the source code for a supervisor call block for a Write Direct
operation:

WAVDT DATA 0
BYTE >C,>4B
BYTEO,>80
DATAWRBUFF
DATA 0
DATA 80

6.3.4 VOT Terminal Specific Information

WRITE RECORD TO VDT ASSIGNED TO
LUNa >4B INITIATE MODE.

The following paragraphs describe the unique characteristics of the 911, 931, and 940 VDTs as
they apply to VDT 1/0.

Figure 6-1, Figure 6-2, Figure 6-3, and Figure 6-4 show the 911,931,940 VDT, and Business System
Terminal keyboards. Table 6-2 lists the programmable keys on the VDT keyboards, showing the
codes returned by the device service routines (DSRs) for each key. The terminal code column lists
the ASCII codes and control character designations that correspond to these keys.

2270507·9701 6·39

3,3 VDT 110

2283185

Figure 6·1. Model 911 VOT Keyboard

- J-- E lIB

>--" >---

7 E r -

>-
4- r Is
1 ~ f=

y----.

R
>---- E

T

0 [W
N
-<

2284204

Figure 6·2. Model 931 VOT Keyboard

6·40 2270507-9701

VDr I/O 6.3

(MaIER LlIJrnIDJ lEI

~m >-i Jfll
>--"'1 - HOME ->----<

~ T 1M

2283186

Figure 6·3. Model 940 VOT Keyboard

rul~ 1k#JlgQlCiJ I c;;JICiJICidI~lwl

fEto i PIINT
4-

- ME -
INS I~ DEl

CMAR ~

2283106

Figure 6·4. Business System Terminal Keyboard

MARGIN
LEFT RIGHT 'lELEASI

P 11 p

~ ~

~ ~ ~
4 5 6

)..... >---- >----

1 E gJ >-

0 L

t:l£AI

p

~
-

>----'

,
>--

s
K
I
p

>-

R
E
T

~

2270507·9701 6·41

B.3 VDTIIO

Table 6·2. Terminal K,ey Designations and Codes

DSR Type2 Business 911 931 940
Codel System Key Key Key Key

7F S ERASE FIELD ERASE FIELD ERASE FIELD ERASE EOF
80 E SHIFT F1 CONTROL 1 F9 F9
81 E F1 F1 F1 F1
82 E F2 F2 F2 F2
83 E F3 F3 F3 F3
84 E F4 F4 F4 F4
85 E F5 F5 F5 F5
86 E F6 F6 F6 F6
87 T Right FIELD Ri~lht FIELD Right FIELD LINE FEED
88 S Left Arrow Left Arrow Left Arrow Left Arrow
89 ST TAB TAB TAB TAB Right
8A T Down Arrow Down Arrow Down Arrow Down Arrow
8B ST SKIP SKIP SKIP SKIP Right
8C ST HOME HOME HOME HOME
8D STR RETURN RETURN RETURN RETURN
8E ST ERASE INPUT ERASE INPUT ERASE INPUT ERASE INPUT
8F T Blank Gray Blank Gray Blank Gray INS LINE
90 S DEL CHAR DELCHAR DEL CHAR DEL CHAR
91 S INS CHAR INS CHAR INS CHAR INS CHAR

~
92 S Right Arrow Rinht Arrow Right Arrow Right Arrow =

93 TRF ENTER ENTER ENTER SEND
94 T Left FIELD LeH FIELD Left Field SKIP Left
95 T Up Arrow Up Arrow Up Arrow Up Arrow
96 E F7 F7 F7 F7
97 E F8 F8 F8 F8
98 E CMD CMD CMD NEXT FORM
99 E PRINT PR:INT PRINT PRINT
9A E SHIFT F2 CONTROL2 F10 F10
9B H Blank Orange Blank Orange Blank Orange PREV FORM
9C E SHIFT F3 CONTROL4 F11 F11
9D E SHIFT F4 CONTROL5 F12 F12
9E E SHIFT F5 CONTROL6 SHIFT F1 F13
9F E SHIFT F6 CONTROL7 SHIFT F2 F14

Notes:

1 Codes in this column are shown as hexadecimal numbers.

2 Letters in this column denote the following:
S - System edit key; E - Event key; T - Task edit key; H - Hold key; F - End-of-file; R - End-of-
record.

6·42 2270507-9701

VDr I/O 6.3

The VOTs that support JISCII characters display characters in one intensity only.

The field termination characters for the VOTs are the RETURN and ENTER Keys.

6.3.5 VOl Read Device Status Operation
The Read Device Status operation returns four bytes of status information for VOTs. The first and
second bytes contain the maximum row and column addresses for the VOT. The third and fourth
bytes contain the number of keyboard input characters that are currently internally buffered in the
character queue. This information is returned in bytes zero through three for the 911, 940, and
Business Systems terminals.

The 911 VOT returns a total of 18 bytes of information. The 931, 940, and the Business Systems
terminals return 16 additional bytes of information, provided the buffer has sufficient space.

Byte

2270507·9701

o
1

2,3
4

5
6,7
8,9
10

11

Meaning

Maximum row address (24)
Maximum column address (80)
Number of keyboard characters in input character queue
DSR type:

> 11 = 911
> 31 = 931/940 (ONOS version 1.2)
>40 = 940 or Business Systems (earlier ONOS versions)

Reserved (> 00)
CRU address
Reserved (> FFFF)
Interface type:

>01 = Communications interface for 911
>06 = S300 EVOT port
>07 = 990/10A 9902 port
> 08 = CI402 9902 port
> 09 = CI421 9902 port
>OA = CI422 9902 port
>23 = CI403 port
> 24 = CI404 port
> 30 = CI421 9903 port

Port 10 number for 931/940
Always > 11 for 911

6·43

6.4 733 ASR Data Termina/IIO

Byte

12-13
14-15
16-21

22

23
24

25-35
36

6.4 733 ASR DATA TERMINAL 1/0

Meaning

Edit flag word 1
Edit flag word 2
Reserved
Line flags

o = half duplex
1 = switched line

2-7 = Reserved (0)
Reserved
Speed,code

>00 = 50 baud
>02 = 110 baud
>03 = 134.5 baud
>04 = 150 baud
> 05 = 200 baud
>06 = 300 baud
>07 = 600 baud
>08 = 1200 baud
>09 = 1800 baud
> OA = 2400 baud
> 08 = 3600 baud
> OC = 4800 baud
> 00 = 7200 baud
>OE = 9600 baud
>OF = 14400 baud
> 10,= 19200 baud
> 11 = 28800 baud
> 12 = 34800 baud

Reserved
Terminal type:

>A1 = 931
>80 = 940

DNOS supports both resource-independent and resource-specific I/O for the 733 ASR data ter­
minal. The keyboard/printer portion of the 733 ASR is included here. The cassette units of the 733
ASR are described in a subsequent paragraph. Resource-independent I/O for these terminals
includes operations that are analogous to sequential file operations.

Resource-specific I/O for the 733 ASR data tE~rminal includes operations that apply only to the 733
ASR. These operations give a program control over functions of special keys. Except for the Read
Device Status operation, the device must be opened using sub-opcode >00 or >03 prior to any I/O
operation.

6·44 2270507·9701

733 ASR Data Terminal 6.4

The following I/O call block for 733 ASR operations is the basic block used for all I/O operations. If
an extension to this block is necessary for a particular operation, it is indicated in the operation
description.

SVC > 00 -- I/O OPERATIONS ALIGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT

DEC HEX

0 0 >00 < RETURN CODE>

2 2 SUB-OPCODE LUNO

4 4 < SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT>

2279470

The subset of sub-opcodes for the 733 ASR applies to both resource-independent and resource­
specific I/O, as follows:

00 Open
01 Close
02 Close, Write EOF
03 Open and Rewi nd
04 Close and Unload
05 Read Device Status
09 Read ASCII
08 Write ASCII
00 Write EOF

The system flags (byte 4) in the supervisor call block apply to all 733 ASR data terminal 110. These
flags are:

2279497

2270507 -9701 6-45

6.4 733 ASR Data Termina/IIO

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

Bit 2 - End-of-file. Set by system as follows:
1 - (CTRL) S key terminated the operation.
0- Operation terminated without the (CTRL) S key being pressed.

Bit 3 - Event key flag. Set by system as follows:
1 - An event key terminated the operation.
o - Operation terminated without an event key being pressed.

The user flags (byte 5) in the supervisor call block apply to all 733 ASR data terminal 1/0. However,
significance of these flags differs for various operations. The flags that apply to each operation are
described in the detailed description of each operation.

The character set applicable to a hard-copy terminal is the ASCII character set or the JISCII charac­
ter set appropriate to the country code for wh ich the system was generated.

6.4.1 Key Categories
The system interprets each key on the keyboard in one or more of the following categories:

• Data

• Hold

• Event

• System edit

• Task edit

Table 6-3 lists the keys on 733 ASR data telrminal keyboards and the type of each key. The DSR
code column shows the codes returned by the device service routine (DSR) for each key. The ter­
minal code column lists the ASCII codes and control character designations that correspond to
these keys. The Device Character Set appendix also contains the information in Table 6-3.

6·46 2270507·9701

733 ASR Data Terminal 6.4

Table 6·3. 733 ASR Key Designations and Codes for ASCII Mode

eSR Codel Type 2 Terminal Codel Key

7F S 7F DEL RUB OUT
80 E 00 NULL (CTRL) 3
81 E 01 SOH (CTRL) A
82 E 02STX (CTRL) B
83 E 03 ETX (CTRL) C
84 E 04 EOT (CTRL) D
85 E 05ENQ (CTRL) E
86 E 06ACK (CTRL) F
87 T 07 BELL (CTRL) G
88 S 08 BS (CTRL) H
89 ST 09HT (CTRL) I
8A T OA LF (CTRL) J or LINE FEED
8B ST OBVT (CTRL) K
8C ST OC FF (CTRL) L
8D STR ODCR (CTRL) M or RETURN
8E ST OESO (CTRL) N
8F T OFSI (CTRL) 0
90 S 10 DLE (CTRL) P
91 S 11 DC1 (CTRL) Q
92 S 12 DC2 (CTRL) R
93 TRF 13 DC3 (CTRL) S
94 T 14 DC4 (CTRL) T
95 T 15 NAK (CTRL) U
96 E 16SYN (CTRL) V
97 E 17 ETB (CTRL) W
98 E 18CAN (CTRL)X
99 E 19 EM (CTRL) Y
9A E 1ASUB (CTRL) Z
9B H 1B ESC ESC
9C E 1C FS (CTRL) ,
9D E 1DGS (CTRL)_
9E3 E 1E RS (CTRL) .
9F3 E 1F US (CTRL) I

Notes:

1 Codes in this column are shown as hexadecimal numbers.

2 Letters in this column denote the following:
S - System edit key; E - Event key; T - Task edit key; H - Hold key; F - End-of-file; R - End­
of-record.

3 DSR codes >9E and >9F are not available on 733 ASR data terminals that support JISCII. Keys
(CTRL). and (CTRL) I generate codes >8E and >8F, respectively.

2270507-9701 6·47

6.4 733 ASR Data Termina//IO

6.4.1.1 Data Keys. The data keys return thEl codes of printable characters to the buffer specified
in the call block. The category includes the keys that return ASCII codes> 20 through> 7E.

6.4.1.2 Hold Key. The hold key suspends output to the terminal. Operation may be resumed by
pressing any other key except RETURN, exclama~ion point (!), or (CTRL) X. The hold key is the ESC
key.

When the RETURN key is pressed following the hold key, the current operation is aborted, and an
error code is returned to the task that requested the 110.

When the exclamation point key is pressed 'following the hold key, the system activates SCI and
the output continues. Contention between the interrupted output and SCI for the use of the ter­
minal may cause unpredictable results.

When (CTRL) X is pressed following the holel key, a hard break results. The hard break terminates
the current task and activates SCI. The end action specified by the task, if any, is performed prior
to terminating the task and activating SCI. The hard break should be used to abort tasks when
appropriate; it should be used with care because the hard break aborts pending 1/0 requests.

The system selects the task to be terminated by the hard break from among the tasks of the cur­
rent job. The following rules apply in the listed order of priority:

1. When only the SCI task is active, SCI is terminated.

2. Any other foreground task is terminated.

3. Any other background task is termiinated.

4. When other tasks are active along with SCI, SCI is terminated last.

There may be times when the hard break te!rminates a task other than the one intended. In that
case, press the hold key and (CTRL) X again to terminate the intended task.

The effect of a subsequent hard break depends upon the timing. When the task has not yet taken
end action in response to the first hard break, the subsequent hard break terminates the next task
in the order of priority. When the task is executing the end action routine but has not completed
end action, the task is aborted as if end action had not been provided. When end action has com­
pleted, the subsequent hard break causes the task to take end action again.

The end action routine should execute a Get End Action Status SVC to obtain the error code and
identify the cause of the termination. When the task error code returned by the SVC is > 10, a hard
break has occurred. The task may process the hard break and resume execution after executing a
Reset End Action Status SVC. The task must place the WP, PC, and ST values returned by the
Get End Action Status SVC in R13, R14, and R15 and execute an RTWP instruction to resume
execution.

6·48 2270507·9701

733 ASR Data Terminal 6.4

6.4.1.3 Event Keys. Activating the event~ key mode enables use of event keys as task pro­
grammable function keys. The event key mode is activated by performing an Open operation with
the event key mode bit (bit 7 of byte 5 of the call block) set to one. Event characters may be
accessed by a Remote Get Event Character operation without opening the LUNO assigned to the
terminal.

When an event key is pressed, the corresponding character code is stored in the event character
buffer. When an input operation using an extended call block is being performed, the operation
terminates with the event key bit (bit 3 of byte 4 of the call block) set to one.

When no input operation is being performed and an event key is pressed, the next input operation
is immediately terminated with the event key bit of the call block set to one.

The event keys are:

(CTRL) 3
(CTRL) C
(CTRL) F
(CTRL) X
(CTRL) ,
(CTRL) I

(CTRL) A
(CTRL) D
(CTRL) V
(CTRL) Y
(CTRL)_

(CTRL) B
(CTRL) E
(CTRL) W
(CTRL) Z
(CTRL) .

The task decodes the event character and performs the desired function. When the input operation
that terminates with the event key bit set to one uses the extended call block (resource-specific II
0), the event character is returned in the event character field. The event character can be obtained
without performing a read operation (and without opening the LUNO) by performing a Remote Get
Event Character operation. When the input operation uses the basic 1/0 call block (resource­
independent 1/0), the event character is not returned.

NOTE

Any task may access the event character buffer by performing 1/0 to
any LUNO assigned to the terminal. The first access is the only
access that returns the correct character. Tasks that perform 1/0 to
a terminal to which SCI is performing 1/0 must avoid accessing
event characters. Either the task or SCI may fail to perform the
intended function.

6.4.1.4 System and Task Edit Keys. System edit keys are control keys that are implemented by
the system. Task edit keys are control keys that are task functions. Five of the keys are both sys­
tem and task edit keys, for which the system performs a function. The task may perform an addi­
tional function.

Task edit functions do not apply to resource-independent 1/0. The carriage control bit in the
extended user flags field must be set to one to enable task edit functions. When task edit func­
tions are enabled, pressing a task edit key during an Input operation terminates the operation. The
device service routine (DSR) returns the character code of the task edit character in the event byte
field of the extended call block.

2270507·9701 6·49

6.4 733 ASR Data Terminal 110

The following paragraphs describe the edit keys. The paragraph that discusses the system edit
key describes the function performed when the key is pressed. For task edit keys, the paragraphs
state the code that the OSR returns to the task when the keys are pressed. For keys that are both
system and task edit, the paragraphs describe the functions and state the codes. System edit keys
are listed with a letter S in the type column of Table 6-3; task edit keys are listed with a letter T in
the type column.

Edit keys are related to fields of data on the screen, which are read in an 1/0 operation. The field
begins at the cursor position and consists of the number of characters to be read by the current
read operation. When an edit key is pressed between read operations, it is effective at the
beginning of the next read operation.

RUB OUT Key. This system edit key performs a carriage return followed by a line feed.

(CTRL)O Key. This task edit key returns the character code >8F in the event byte field.

(CTRL) U Key. This task edit key returns the character code >95 in the event byte field.

(CTRL) S Key. This task edit key returns the character code > 93 in the event byte field. The
device service routine (OSR) interprets this code as end-of-file (EOF) and sets bit 2 of byte 4 of the
call block.

(CTRL) T Key. This task edit key returns the character code >94 in the event byte field.

(CTRL) G Key. This task edit key returns the eharacter code >87 in the event byte field.

(CTRL) J Key. This task edit key returns the character code> 8A in the event byte field.

(CTRL) N Key. This system and task edit key fills the field with the fill character and returns the
character code> 8E in the event byte field.

RETURN Key. This system and task edit key performs a carriage return function and returns the
character code> 80 in the event byte field.

(CTRL) L Key. This system and task edit key returns the character code >8C in the event byte
field.

(CTRL) K Key. This system and task edit kEty returns the character code >88 in the event byte
field.

(CTRL) I Key. This system and task edit key returns the character code >89 in the event byte
field.

6·50 2270507-9701

733 ASR Data Terminal 6.4

6.4.2 733 ASR Data Terminal Resource·lndependent 1/0
The operations appropriate for the 733 ASR data terminals are described in subsequent para­
graphs. The following sub-opcodes, which do not apply to 733 ASR data terminals, produce the
indicated results:

06 Ignored
07 Ignored
08 Error
OE Ignored
OF Ignored

6.4.2.1 Open. Sub-opcode >00 specifies an Open operation. The Open operation causes the
terminal to perform a line feed and a carriage return and is required for 733 ASR data terminals.

The following fields of the basic supervisor call block apply to an Open operation:

• SVCcode - 0

• Return code

• Sub-opcode - >00

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

The following user flags apply to an Open operation:

3-4

f
2279498

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as folloV'{s:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

Bit 7 - Event key mode flag. Set as follows:
1 - Enable event key mode.
o - Disable event key mode.

2270507·9701 6·51

6.4 733 ASR Data Terminal 110

The logical unit number (LUNO) field contains the LUNO assigned to the 733 ASR data terminal to
be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the 733 ASR data terminal is 1.

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length for a 733 ASR data terminal is >56.

A 733 ASR data terminal must be opened with the event key flag set to one if event keys are to be
used as task programmable function keys.

To access an event key character, perform a Rl3mote Get Event Character operation.

The following is an example of the source cocle for a supervisor call block to open a 733 ASR data
terminal:

OHCT

TPE
LRL

DATA 0
BYTE 0,>20
DATA 0
DATA 0
DATA 0
DATA 0

OPEN TERMINAL ASSIGNED TO LUNO >20.

6.4.2.2 Close. Sub-opcode > 01 specifies a. Close operation. The Close operation ends 1/0 to a
LUNO from the calling task. The LUNO remains assigned to the device, and may be opened again
for additional I/O operations. When a task terminates, DNOS closes all LUNOs that have been
opened by the task.

The following fields of the basic supervisor call block apply to a Close operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 01

• Logical unit number (LUNO)

• User flags

6-52 2270507-9701

733 ASR Data Terminal 6.4

The following user flag applies to a Close operation:

2279499

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close a 733 ASR data
terminal:

CHCT DATA 0
BYTE 1,>20
DATA 0
DATA 0
DATA 0
DATA 0

CLOSE TERMINAL ASSIGNED TO LUNO >20.

6.4.2.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode >02, performs three line
feed operations on the 733 ASR data terminal, followed by a Close operation.

6.4.2.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open opera­
tion followed by a Rewind operation. For the 733 ASR data terminals, the Rewind operation con­
sists of clearing the input character queue. The Open and Rewind operation causes the terminal to
perform a line feed and a carriage return.

6.4.2.5 Close and Unload. The Close and Unload operation, sub-opcode >04, is identical to the
Close operation.

6.4.2.6 Read Device Status. Sub-opcode > 05 specifies a Read Device Status operation. The
Read Device Status operation returns the number of characters currently stored in the input char­
acter queue.

The following fields of the basic supervisor call block apply to a Read Device Status operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 05

• Logical unit number (LUNO)

• User flags

2270507 -9701 6-53

6.4 733 ASR Data Terminal 110

• Data buffer address

• Read character count

• <Actual Read Count>

The following user flag applies to a Read Device Status operation:

2279500

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field containB the LUNO assigned to the device for which status
information is returned.

The data buffer address is the address of the buffer into which DNOS places the status infor­
mation.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field. The sys­
tem returns >0004 in this field when the specified LUNO is assigned to a 733 ASR data terminal.

After a Read Device Status operation returns the 'status of a 733 ASR data terminal the data buffer
contains the following:

Byte Contents

o >FF.

1 >FF.

2-3 Number of characters currently stored in the input character queue.

DNOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char­
acters in the queue. The maximum size of this queue is specified when the system is generated.

6-54 2270507-9701

733 ASR Data Terminal 6.4

The following is an example of the source code for a supervisor call block for a Read Device Status
operation and code for the read buffer:

RDSHCT

DMY
UQ

DATA 0
BYTE 5,>35
DATA 0
DATA DMY
DATA 10
DATA 0
BSS 2
BSS 8

READ STATUS OF TERMINAL ASSIGNED TO
LUNO >35.

DEVICE STATUS BUFFER

6.4.2.7 Read ASCII. Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII opera­
tion reads a record from the keyboard and stores the characters in the specified buffer, two charac­
ters per word.

The following fields of the basic supervisor call block apply to a Read ASCII operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 09

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Read character count

• <Actual read count>

The following system flags apply to a Read ASCII operation:

2279501

2270507·9701 6·55

6.4 733 ASR Data TerminaJIIO

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

Bit 2 - End-of-file. Set by system as follows:
1 - (CTRL) S key terminated the operation.
o - Operation terminated without the (CTRL) S key being pressed.

Bit 3 - Event key flag. Set by system as follows:
1 - An event key terminated the operation.
o - Operation terminated without an event key being pressed.

The following user flags apply to a Read ASCII operation:

2279502

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Read with blank adjustment.
0- Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the terminal from which a
record is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

ONOS returns the number of characters stored in the buffer in the actual read count field.

The Read ASCII operation recognizes the characters listed in Appendix B for the 733 ASR data
terminal. The operation stores the characters, packed one per byte. When the country code in
effect is not > 0200 (Japan), the most signi'ficant bit is set to zero. When the country code is
>0200, the eight-bit JISCII code is stored. The operation continues until the RETURN key is
pressed, the buffer is full, or (if the terminal is in the event key mode) an event key is pressed.

Characters that are entered between Read operations are stored in a queue and read by the next
Read operation. The maximum size of the queue is specified when the system is generated. Addi­
tional characters entered after the queue is full are ignored.

6·56 2270507·9701

733 ASR Data Terminal 6.4

Characters can be corrected by pressing the (CTRL) H or BACKSPACE key. The terminal performs
a backspace operation and deletes the previously entered character from the data buffer each time
the key is pressed. The first time the key is pressed, the printer also performs a line feed operation.
After spacing to the character in error, reenter the characters deleted.

When the RETURN key is pressed, the number of characters entered is stored in the actual read
count field and the operation terminates.

When the terminal was opened in the event key mode and an event key is pressed, the system sets
the event key flag in the system flags byte and terminates the operation. The event character may
be accessed by performing a Remote Get Event Character operation or a Get Event Character SVC.

When an event key is pressed between Read operations, the next Read operation performed after
the pressing of the event key terminates with the event key flag set and zero in the actual read
count field.

When the (CTRL) S key is pressed, the system sets the EOF flag in the system flags byte and termi­
nates the operation.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (>20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

The following is an example of the source code for a supervisor call block for a Read ASCII opera­
tion and code for the read buffer:

RDHCT

RBUF

DATA 0
BYTE 9,>2C

BYTE 0,>80
DATA RBUF
DATA 80
DATA 0
BSS 80

READ RECORD FROM TERMINAL ASSIGNED
TO LUNa >2C IN THE INITIATE 1/0 MODE.

READ BUFFER

6.4.2.8 Write ASCII. Sub-opcode >OB specifies a Write ASCII operation. The Write ASCII opera­
tion transfers a record from the specified buffer to the terminal. DNOS supports a Write with Reply
option, which is effectively a Write operation followed by a Read ASCII operation.

The following fields of the basic supervisor call block apply to a Write ASCII operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OB

• Logical unit number (LUNa)

2270507-9701 6·57

6.4 733 ASR Data Terminal 110

• < System flags>

• User flags

• Data buffer address

• Write character count

• Reply block address (write with reply option)

The following system flags apply to a Write ASCII operation:

2279503

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The following user flags apply to a Write ASCII operation:

2279504

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 1 - Reply flag. Set as follows:
1 - Write operation followed by a Read operation.
0- All other operations.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Write with blank adjustment.
o - Write without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the terminal to which a record
is to be written.

The data buffer address is the address of the buffer that contains the record to be printed.

The write character count is the number of characters to be printed by the terminal.

6·58 2270507-9701

733 ASR Data Terminal 6.4

The Write ASCII operation prints a record on the terminal. The record consists of ASCII characters
or JISCII characters, as specified by the country code.

When the HT character (>09) is transferred to the terminal, the result is a space. When the Form
Feed character (> OC) is transferred, the printer performs eight line feed operations.

When blank adjustment is specified, trailing blanks in the buffer are not written. The write charac­
ter count in bytes 10 and 11 is not altered.

A Write with Reply operation requires the following in addition to the requirements for a Write
ASCII operation:

• The reply flag in the user flags byte set to one

• The extension to the supervisor call block

• The reply block

The extension to the basic 1/0 supervisor call block is as follows:

DEC HEX

12 0 REPLY BLOCK ADDRESS

2279505

The reply block is a three-word block, containing addresses for the Read operation, as follows:

2279506

DEC

o

2

4

HEX

o

2

4

DATA BUFFER ADDRESS

READ CHARACTER COUNT

<ACTUAL READ COUNT>

The three fields are identical to the corresponding fields of the supervisor call block for a Read
ASCII operation.

The following is an example of the source code for a supervisor call block for a Write EOF
operation:

WAHCT

2270507 -9701

DATA 0
BYTE >B,>4C
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 80

WRITE RECORD TO TERMINAL ASSIGNED TO
LUNO >4C INITIATE MODE.

6·59

6.4 733 ASR Data Termina/IIO

The following is an example of the source code for a supervisor call block for a Write ASCII opera­
tion using the Write with Reply option:

WRHCT DATA 0
BYTE >B,>4C
BYTE O,>CO
DATA WRBUFF
DATA 0
DATA 80
DATA RBK

The reply block is coded as follows:

RBK DATA REPLY
DATA 80
DATA 0

WRITE RECORD TO TERMINAL ASSIGNED TO
LUNO >4C INITIATE MODE AND
WRITE WITH REPLY.

REPLY BUFFER ADDRESS
MAXIMUM LENGTH OF REPLY
REPLY CHARACTER COUNT

6.4.2.9 Write EOF. The Write EOF operation (sub-opcode >OD) performs three line feed oper­
ations on a 733 ASR data terminal.

The following fields of the basic supervisor call block apply to a Write EOF operation:

• SVCcode - 0

• Return code

• Sub-opcode - >OD

• Logical unit number (LUNO)

• System flags

• User flags

The following system flags apply to a Write EOF operation:

2279507

6·60

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

2270507·9701

~

733 ASR Data Terminal 6.4

The following user flags apply to a Write EOF operation:

2279508

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the terminal to which a record
is to be written.

The following is an example of the source code for a supervisor call block for a Write ASCII
operation:

WEHCT DATA 0
BYTE >D,>4C
BYTE 0,>80
DATA 0
DATA 0
DATA 0

WRITE EOF TO TERMINAL ASSIGNED TO
LUNO >4C INITIATE MODE.

6.4.3 733 ASR Data Terminal Resource-Specific 1/0
Most of the resource-specific 1/0 operations use an extended supervisor call block. The sub­
opcodes for the resource-independent operations apply, but the operations are modified by the
states of flags in the extended user flags field. Sub-opcode >OA (Read Direct operation) does not
apply to the 733 ASR data terminal. DNOS returns an error code when the Read Direct operation is
specified for a 733 ASR.

The extended call flag in the user flag field (byte 5) of the supervisor call block must be set to one
for resource-specific 1/0 operations. Otherwise, the system does not use the extensions to the
supervisor call block. The flags in the user flag field that apply to resource-specific 1/0 operations
are:

2279509

Bit 1 - Reply flag. When the character validation flag is set to zero, set the reply flag to one
for a Write with Reply, Remote Get Event Character, or Read with Validation opera­
tion, or set the reply flag to zero when a previously supplied validation table applies.

Bit 6 - Extended call flag. Set as follows:
1 - Extended call block (required for resource-specific 1/0).
0- Basic supervisor call block (used for resource-independent 1/0).

2270507-9701 6-61

6.4 733 ASR Data Termina/1I0

The extension to the basic supervisor call block is as follows:

DEC HEX

12 C VALIDATION TABLE/REPLY BLOCK ADDRESS

14 E EXTENDED USER FLAGS

16 10 [RESERVED] I < EVENT BYTE>

18 12 [RESERVED]

20 14 [RESERVED]

2279510

The extension to the call block contains the following:

Byte

12-13

14-15

16

17

18-19

20-21

6·62

Contents

Character validation table address (when character validation is speci­
fied in the extended user flags). The address of a table of character vali­
dation data. Reply block address (when the reply flag is set to one). The
address of a block containing the address and count fields for a Write
with Reply operation.

Extended user flags field. Contains sixteen flags that apply to all or some
of the terminal operations as described in succeeding paragraphs.

[Reserved]. 733 ASR data terminal 1/0 ignores any data in this field, which
allows an extended call block to be used for either VOT or 733 ASR data
terminal 1/0.

< Event byte>. The system stores an event character in this field when
the terminal has bE~en opened in the event mode and an event key is
pressed.

[Reserved]. 733 ASR: data terminal 1/0 ignores any data in this field, which
allows an extended call block to be used for either VOT or 733 ASR data
terminal 1/0.

[Reserved]. 733 ASR data terminal 1/0 ignores any data in this field, which
allows an extended call block to be used for either VOT or 733 ASR data
terminal 1/0.

2270507·9701

733 ASR Data Terminal 6.4

The extended user flags are:

2279511

The following lists the flags and the 1/0 operations in which they are effective. Detailed descrip­
tions of the uses of the flags follow in subsequent paragraphs.

Bit

4
5

12
13
14

Definition

Eight-bit ASCII
Task edit
No echo
Character validation
Validation error mode

Used in Operations

Read ASCII and Write ASCII
Read
Read ASCII
Read
Read

6.4.3.1 Eight·Bit ASCII. This flag, when set to one, forces a line feed and carriage return at the
end of a record during a Read ASCII or Write ASCII operation. This flag does not apply to terminals
using JISCII.

6.4.3.2 Task Edit. This flag, when set to one, causes any of the task edit characters listed in
Table 6-3 that are entered during an input operation to terminate the operation and to be returned
in byte 17 (event byte field) of the extended call block. When the flag is set to zero, the device ser­
vice routine (DSR) ignores these characters.

6.4.3.3 No Echo. This flag, when set to one, inhibits the printing of characters entered at the
keyboard. When a key is pressed, a blank is printed. When the flag is set to zero, each character is
printed as it is entered. This flag applies only to Read ASCII operations.

6.4.3.4 Character Validation. This flag, when set to one, enables character validation of the field
being read by a Read ASCII operation. Character validation is discussed in greater detail in the
character validation paragraph of this section. When the character validation flag is set to zero, no
character validation is performed. Refer to the description of the Write ASCII operation for the use
of the reply flag when the character validation flag is set to zero.

6.4.3.5 Validation Error Mode. The validation error mode flag, when set to one, enables correc­
tion of errors detected during validation of field contents by the task. The Validation Error Mode
operation is effectively a Reread operation; the flags that apply to a Read apply in the same way to
this operation. When the user reenters one or more characters in the field, the system sets the vali­
dation error mode flag to zero. When the calling task sets the validation error mode flag to zero, the
operation is performed in the normal mode.

2270507 -9701 6·63

6.4 733 ASR Data Term ina/ 110

6.4.3.6 Read ASCII Example. When a terminal has been opened in the event key mode and task
edit keys are also enabled (carriage control flag set to one), either an event key or a task edit key
may terminate a Read operation. The task edit character is always returned in the event byte of the
extended call block, and the event character iis also returned in that byte in resource-specific 1/0.
The state of the event key flag in the system flag field indicates which type of character is in the
event byte when both are enabled. The task accesses and decodes the character and performs the
function corresponding to the key.

The following is an example of the code for a Read ASCII operation with event key termination
enabled by the previous Open operation and t~sk edit key termination enabled for the Read
operation: .

REHC

SYSFL

DATA 0
BYTE 9,>3F
BYTE 0
BYTE >02
DATA RBUFF
DATA 15
DATA 0
DATA 0
DATA >0400
DATA 0
DATA 0
DATA 0

READ FIELD OF TERMINAL AT LUNO >3F.
FIELD SIZE IS 15 CHARACTERS.
EVENT KEYS AND TASK EDIT KEYS
ENABLED.

6.4.3.7 Character Validation Operation. A Read ASCII operation may specify character valida­
tion. The characters of the field being read by the operation that are not within the range or ranges
applicable to the operation are not acceptecl. Characters that are within the range or ranges are
stored in the read buffer specified for the operation. The character validation flag in the extended
user flags field is set to one for a Read with validation operation.

Each Read operation with character validation must specify a validation table. Specifying a valida­
tion table requires:

•

•

•

6·64

Setting the character validation flag to one

Supplying a validation table

Placing the address of the table in the character validation table address field of the
extended call block

2270507 ·9701

733 ASR Data Terminal 6.4

The validation table contains one or more ranges Of characters that define the valid characters for
the field. The table may define the valid characters by specifying ranges of characters that are not
valid, or by specifying ranges of characters that are valid. Each range in the table requires two
bytes, and the table contains two bytes of overhead. Thus the length of the table in bytes is two
times the number of ranges, plus two. The format of the table is as follows:

DEC HEX

o 0 LENGTH FLAGS

2 2 RANGE 1 Low CHAR. RANGE 1 HIGH CHAR.

,.lJ ,..LJ

""J

2N 2N RANGE n Low CHAR. I RANGE n HIGH CHAR.

2279512

The validation table contains the following:

Byte Contents

o Length - Length of the validation table in bytes (2n + 2).

1 Flags:
Bit 0 - Validation flag. Set as follows:

1 - Invalid ranges. Characters greater than or equal to the low char­
acter and less than or equal to the high character are invalid.

o - Valid ranges. Characters greater than or equal to the low char­
acter and less than or equal to the high character are valid.

Bits 1-7 - Reserved.

2 Low character for range 1.

3 High character for range 1.

Character pairs for additional ranges.

2n Low character for range n.

2n + 1 High character for range n.

Character validation is performed after each character is entered in the field.

2270507-9701 6·65

6.4 733 ASR Data Terminal 110

The user must press one of the following correction keys when the last character entered is
invalid:

• (CTRL) H or BACKSPACE

• RUB OUT

• (CTRL) N

• (CTRL) T

Next, the user enters the data correctly.

An example Read with Validation operation performs the following:

• Reads a 10-character field.

• Validates the field as an alphanumeric field with no lowercase letters.

The following is an example of the code for the supervisor call block and validation table for the
example operation:

RVAL

FLG1

FLG2

TABL

DATA 0
BYTE 9,>2B
BYTE 0
BYTE >02
DATA BUFF
DATA 10
DATA 0
DATA TABL
DATA >0004
BSS 6

EVEN
BYTE 6
BYTE 0
DATA >3039
DATA >415A

READ FIELD OF TERMINAL AT"LUNO >2B,
VALIDATING PER TABL. FIELD
SIZE IS 10 CHARACTERS. READ
BUFFER IS BUFF.

LENGTH OF TABLE
VALID RANGES
RANGE 1 - NUMERALS
RANGE 2 - UPPERCASE LETTERS

6.4.3.8 Field Validation. Any validation of a. field must be performed by a task following the read­
ing of the field. This could verify that the field contains the proper number of letters, followed by
numbers, for example. The Read ASCII operation in the validation error mode is used by the task to
obtain corrected data when an error has occurred. Character validation may be requested for the
operation also. The validation error mode flag is set to one to enable the mode.

In the validation error mode, the operation rE~quires reentry of the field. The correction key is the
BACKSPACE key. When a character is entereld prior to pressing the BACKSPACE key, the charac- 1
ter is not printed (no echo).

6·66 2270507 ·9701

733 ASR Data Terminal 6.4

The difference between a normal Read ASCII operation and one that specifies the validation error
mode is that in the validation error mode input is ignored until the BACKSPACE key is pressed.
The user should backspace to the leftmost error character and enter the correct characters in the
remainder of the field.

The call block for the previous Read ASCII operation can be used by setting the validation error
mode flag to one. The following instructions set the flag in the call block of the character valida­
tion coding example:

MASK2 BYTE >2
SOCB @MASK2,@FLG2 + 1

6.4.3.9 Getting Event Characters. The Remote Get Event Character operation (sub-opcode > 05)
returns an event character in the event byte (byte 17) of the extended supervisor call block. The
LUNa assigned to the terminal does not have to be open. The operation is an alternative to per­
forming a Read operation to obtain an event character.

The operation is a special type of Read Device Status operation; the number of characters stored
in the input character queue is returned also.

The following fields of the extended supervisor call block apply to a Remote Get Event Character
operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 05

• Logical unit number (LUNa)

• User flags

• Data buffer address

• Read character count

• <Actual read count>

• Event byte

The following user flags apply to a Remote Get Event Character operation:

f f
2279513

2270507 -9701 6·67

6.4 733 ASR Data Termina/IIO

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 1 - Reply flag. Set to one.

Bit 6 - Extended call flag. Set to one.

The logical unit number (LUNO) field contains the LUNO assigned to the device at which the event
character is entered.

The data buffer address is the address of the buffer into which ONOS places the status
information.

The read character count is the length of the buffer.

ONOS returns the number of characters stored in the buffer in the actual read count field. The sys­
tem returns four in this field when the specified LUNO is assigned to a 733 ASR data terminal.

ONOS returns the event character in the event byte.

After a Remote Get Event Character operation returns the status of a 733 ASR data terminal, the
data buffer contains the following:

Byte Contents

0-1 > FFFF.

2-3 Number of characters currently buffered in the input character
queue.

ONOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char­
acters in the queue. The size of this queue is specified when the system is generated.

6·68 2270507·9701

Teleprinter Device lID 6.5

The following is an example of the source code for a supervisor call block for a Remote Get Event
Character operation and code for the read buffer:

RGEVCH DATA 0
BYTE 5,>32
DATA >42
DATA MRADR
DATA 10
DATA 0
DATA 0
DATA 0

EVCHAR BYTE 0,0
DATA 0,0

MRADR BSS 1
BSS 1

CHINQ BSS 8

6.5 TELEPRINTER DEVICE 1/0

GET EVENT CHARACTER FROM TERMINAL
ASSIGNED TO LUNO >32.

DEVICE STATUS BUFFER

DNOS supports both resource-independent (short SVC call block) and resource-specific (extended
SVC call block) I/O for both Keyboard Send/Receive (KSR) and Receive Only (RO) teleprinter ter­
minals (TPDs). These teleprinter devices are usually general purpose portable terminals.

Resource-independent I/O for the TPDs includes operations that are analogous to sequential file
operations. Resource-specific I/O for TPDs includes operations that apply only to TPDs. These
operations give a program control over functions of special keys. Except for the Read Device
Status operation, the device must be opened using sub-opcode >00 or >03 prior to any I/O
operation.

The subset of sub-opcodes for the TPDs applies to both resource-independent and resource­
specific I/O, as follows:

00 Open
01 Close
02 Close, Write EOF
03 Open and Rewind
04 Close and Unload
05 Read Device Status and Get Remote Event
09 Read ASCII
OA Read Direct
OB Write ASCII
OC Write Di rect
00 Write EOF
OE Rewind
OF Unload (Hang-up, Resource-Specific Only)
15 Set Device Characteristics (Resource-Specific Only)

2270507-9701 6.69

6.5 Teleprinter Device I/O

The following 1/0 SVC block for TPD operations is the basic block used for all operations. If an
extension to this block is necessary for a particular operation, it is indicated in the operation
description.

S VC > 00 -- I/O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN

EVENT
DEC HEX

0 0 >00 < RETURN CODE>

2 2 SUB-()PCODE LUNO

4 4 < SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNTI < ACTUAL READ COUNT>

2279470

The system flags (byte 4) in the supervisor call block apply to all TPD 1/0. These flags are:

o

f t t t
2283187

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

Bit 2 - End-of-fi Ie. Set by system as follows:
1 - (CTRL) Y key terminated thE! operation.
0- Operation terminated without the (CTRL) Y key being pressed.

Bit 3 - Event key flag. Set by system as follows:
1 - An event key terminated the operation.
0- Operation terminated without an event key being pressed.

The user flags (byte 5) in the supervisor call block apply to all TPD 1/0. However, significance of
these flags differs for various operations. The flags that apply to each operation are described in
the detailed description of each operation.

The character set applicable to a TPD is the ASCII character set or the JISCII character set appro­
priate to the country code for which the system was generated.

6·70 2270507 ·9701

Teleprinter Device I/O 6.5

6.5.1 Key Categories
The system interprets each key on the keyboard in one or more of the following categories:

• Data

• Hold

• Event

• System edit

• Task edit

The Device Character Set appendix to this manual lists the keys on TPD terminal keyboards and
the type of each key.

6.5.1.1 Data Keys. The data keys return the codes of printable characters to the buffer specified
in the call block. The category includes the keys that return ASCII codes> 20 through> 7E.

6.5.1.2 Hold Key. The hold key suspends output to the TPD. Operation may be resumed by
pressing any other key except RETURN, exclamation point (!), or (CTRL) X. The hold key is the
(CTRL) S key. The first key pressed after the hold key is not placed in the read buffer.

When the RETURN key is pressed following the hold key, the current operation is aborted, and an
error code is returned to the task that requested the lID.

When the exclamation point key is pressed following the hold key, the system activates SCI and
the output continues. Contention between the interrupted output and SCI for the use of the TPD
may cause unpredictable results.

When (CTRL) X is pressed following the hold key, a hard break results. The hard break terminates
the current task and activates SCI. The end action specified by the task, if any, is performed prior
to terminating the task and activating SCI. The hard break should be used to abort tasks when
appropriate; it should be used with care because the hard break aborts pending 110 requests.

The system selects the task to be terminated by the hard break from among the tasks of the cur­
rent job. The following rules apply in the listed order of priority:

1. When only the System Command Interpreter (SCI) task is active, SCI is terminated.

2. Any other foreground task is terminated.

3. Any other background task is terminated.

4. When other tasks are active along with SCI, SCI is terminated last.

There may be times when the hard break terminates a task other than the one intended. In that
case, press the hold key and (CTRL) X again to terminate the intended task.

2270507 ·9701 6·71

6.5 Teleprinter Device I/O

The effect of a subsequent hard break dependls upon the timing. When the task has not yet taken
end action in response to the first hard break, the subsequent hard break terminates the next task
in the order of priority. When the task is executing the end action routine but has not completed
end action, the task is aborted as if end action had not been provided. When end action has com­
pleted, the subsequent hard break causes the task to take end action again.

The end action routine should execute a Get End Action Status SVC to obtain the error code and
identify the cause of the termination. When the task error code returned by the SVC is > 10, a hard
break has occurred. The task may process the hard break and resume execution after executing a
Reset End Action Status SVC. The task must place the WP, PC, and ST values returned by the Get
End Action Status SVC in R13, R14, and Ft15 and execute an RTWP instruction to resume
execution.

6.5.1.3 Event Keys. Activating the event key mode enables use of event keys as task pro­
grammable function keys. Opening the lUNO assigned to the TPD, with the event key mode flag
(bit seven in the user flags) set to one, activates the event key mode. A Read ASCII operation, using
the extended call block with the task edit flag :set, returns the event character to the task. The Read
Operation does not return event keys to the task or remove event characters from the buffer when
the device is opened with a regular (not extended) call block. Event characters can be accessed by
a Remote Get Event Character operation without opening the lUNO assigned to the TPD.

When an event key is pressed while using an extended call block, the corresponding character
code is stored in the event character buffer. "'(hen an input operation using an extended call block
is being performed, the operation terminates with the event key bit (bit 3 of byte 4 of the call block)
set to one.

When no input operation is being performed and an event key is pressed, the next input operation
is immediately terminated with the event key bit of the call block set to one.

The Device Character Set appendix to this manual describes the event keys. The actual key
pressed to generate a code can vary with different terminals. Refer to the specific manual for the
terminal.

The event keys for the 74x, 76x, 78x TPDs are:

(CTRl) 3
(CTRl) C
(CTRl) F
(CTRl) X
(CTRl) ,
(CTRl) I

(CTRl) A
(CTRl) D
(CTRl) V
(CTRl) Y
(CTRl) +
(CTRl) [

The event keys for the 820 TPD are:

6·72

(CTRl) 3
(CTRl) C
(CTRl) F
(CTRl) X
(CTRl) \
(CTRl) -

(CTRl) A
(CTRl) D
(CTRl) V
(CTRl) Y
(CTRl) {

(CTRl) B
(CTRl) E
(CTRl) W
(CTRl) Z
(CTRl) .

(CTRl) B
(CTRl) E
(CTRl)W
(CTRl) Z
(CTRl) =

2270507-9701

Teleprinter Device I/O 6.5

The task decodes the event character and performs the desired function. When the input operation
that terminates with the event key bit set to one uses the extended call block, (resource-specific II
0) the event character is returned in the event character field. The event character can be obtained
without performing a Read operation (and without opening the LUNO) by performing a Remote Get
Event Character operation. When the input operation uses the basic 1/0 call block (resource­
independent 110), the following occurs:

1. The event character is not returned because there is no event byte.

2. Nothing is placed in the read buffer.

3. The character is not removed from the character queue.

4. The count of characters in the character queue is not decremented.

This means the next input operation will also terminate with the event bit set.

NOTE

Any task may access the event character buffer by performing 1/0 to
any LUNO assigned to the TPD. The first access is the only access
that returns the correct character. Tasks that perform 1/0 to a TPD to
which SCI is performing 1/0 must avoid accessing event characters.
Either the task or SCI may fail to perform the intended function.

6.5.1.4 System and Task Edit Keys. System edit keys are control keys that are implemented by
the system. Task edit keys are control keys that are task functions. Five of the keys are both sys­
tem and task edit keys, for which the system performs a function. The task may perform an
additional function.

Task edit functions apply only to read ASCII operations using the extended call block. The task
edit flag (byte 14, bit 5) in the extended user flags must be set to one to enable task edit functions.
The device service routine (DSR) returns the character code of the task edit character in the event
byte field of the extended call block.

6.5.2 TPD Terminal Resource·lndependent 1/0
The operations appropriate for TPDs are described in subsequent paragraphs. The following
sub-opcodes do not apply to TPDs and produce the indicated results:

Sub·opcode

06
07

Operation

Forward Space
Backward Space

Action

Ignored
Ignored

6.5.2.1 Open. Sub-opcode > 00 specifies an Open operation. The Open operation causes the
TPD to perform a line feed and a carriage return and is required for TPDs. DNOS does not automati­
cally validate the Open operation unless the device was specified with VALIDATE OPENS? YES
during system generation; that is, a possible conflict with 1/0 to the same device by another task
is not detected. An Open operation is not required prior to performing a Read Device Status
operation.

2270507·9701 6·73

6.5 Teleprinter Device I/O

rhe following fields of the basic supervisor call block apply to an Open operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 00

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

The following user flags apply to an Open operation:

I 0 I 2 3-4 5 6 7 I
f f f f

2283188

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

Bit 5 - Immediate open flag. Set as follows:
1 - System immediately returns control to the calling task.
o - System verifies that the device is connected to the port before returning control

to the calling task.

Bit 7 - Event key mode flag. Set as follows:
1 - Enable event key mode.
o - Disable event key mode.

If bit 5 of the user flags is set to one, the call completes immediately regardless of whether the
port is connected or unconnected. Otherwise, the call completes after the port is connected.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type codc~ for a TPD is >0001.

6·74 2270507 ·9701

~

Teleprinter Device I/O 6.5

When the calling tasl< places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length for a TPD is > 56.

A TPD must be opened with the event key flag set to one if event keys are to be used as task pro­
grammable function keys.

To access an event key character, perform a Remote Get Event Character operation.

The following is an example of the source code for a supervisor call block to open a TPD:

OHCT DATA 0
BYTE 0,>20
DATA 0
DATA 0
DATA 0
DATA 0

OPEN TERMINAL ASSIGNED TO LUNO >20.

TPE
LRL

6.5.2.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends 1/0 to a
LUNO from the calling task. The LUNO remains assigned to the device, and may be opened again
for additional 1/0 operations. DNOS writes a carriage return character to the device to which the
LUNO is assigned. When a task terminates, DNOS closes all LUNOs that the task opened.

The following fields of the basic supervisor call block apply to a Close operation:

• SVCcode - 0

• Return code

• Sub-opcode - >01

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Close operation:

2 3-4 5 6 7

2283189

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

2270507·9701 6·75

6.5 Teleprinter Device I/O

The following is an example of the source code for a supervisor call block to close a TPD:

CHCT DATA 0
BYTE 1,>20
DATA 0
DATA 0
DATA 0
DATA 0

CLOSE TERMINAL ASSIGNED TO LUNO >20.

6.5.2.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode >02, performs three line
feed operations on Silent 700 series devices or a form feed on 800 series printers, followed by a
Close operation.

6.5.2.4 Open and Rewind. The Open and R.ewind operation, sub-opcode >03, is an Open opera­
tion followed by a Rewind operation. For TPDs, the Rewind operation consists of clearing the
input character queue. The Open and Rewind operation causes the terminal to perform a page
eject. If the attached TPD does not support page eject, three line feeds are performed. If the Open
and Rewind operation uses an extended call block with byte 14, bit 4 set to one, the input queue is
flushed and the device is placed in the eight-bit ASCII mode. Eight-bit ASCII is intended for com­
municating with special, nonstandard devic€!s. In the eight-bit ASCII mode, all characters received
are passed directly to the calling task without checking for special characters or parity. When the
device is in this mode the calling task must assume responsibility for handling special characters
(hold, abort, etc.), line turn-around characters if the line is half-duplex, and checking parity. The
device in this mode cannot bid SCI. An Open Rewind call block with byte 14, bit 4 set to zero
restores the device to normal operating mode. The Open Rewind operation is the recommended
way to set or reset the eight-bit ASCII mode since it ensures the characters passed to the calling
task are the specified type by clearing the character queue.

6.5.2.5 Close and Unload. The Close anci Unload operation, sub-opcode >04, performs the
same function as the Close and drops the communications line.

6.5.2.6 Read Device Status. Sub-opcode > 05 specifies a Read Device Status operation. The
Read Device Status operation returns into the data buffer as much of the device information block
as specified (up to a maximum of 64 characters) by the user in the read character count field.

The following fields of the basic supervisor call block apply to a Read Device Status operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 05

• Logical unit number (LUNO)

• User flags

• Data buffer address

6·76 2270507·9701

.~

Teleprinter Device I/O 6.5

• Read character count

• <Actual read count>

The following user flag applies to a Read Device Status operation:

2 3 4 5 6 7

2283190

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO 'assigned to the device for which status
information is returned.

The data buffer address is the address of the buffer into which DNOS places the status infor­
mation.

The read character count is the number of characters of device information desired. The read
buffer must be large enough to hold the information.

DNOS returns the number of characters stored in the buffer in the actual read count field. The
number of characters cannot exceed 64.

The contents of the data buffer after a Read Device Status operation has returned the status of a
TPD is in Table 6-4.

2270507·9701 6·77

6.5 Teleprinter Device I/O

6·78

Byte

0-1
2-3
4
5
6-7
8-9

10

11
12-13
14-15
16-17
18-19
20
21
22

23
24

25
26
27
28
29
30-33
34-35

Table 6·4. Statu:s of Teleprinter Devices

Contents

>FFFF
Number of characters buffered in input character queue
DSR type: 5 = TPD
Reserved
Hardware interface CRUlTILINE address
Associated ACU hardware interface CRU address or > FFFF if no CRU is
defined
ISR type:

1 = CI401
5 = TTY/EIA
6 = Any 9902 port

Reserved
Read ASCII time·out in 1/~ seconds
Write ASCII and direct time-out in 1/4 seconds
Read direct time-out in 1f4 seconds
Read direct time-out for characters 2-N
Reserved
State flags
Line flags:

o = half-duplex
1 = switched line

2,7 = as currently deifined
Access flags
Speed code:

- 1 = modem selectl3d
o = 110 baud
2 = 300 baud
3 = 1200 baud
4 = 2400 baud
5 = 4800 baud
6 = 9600 baud

EOR character
EOF character
L T A character
Parity error substitute character
Carriage return delay count
Reserved
Count of maximum characters buffered

2270507-9701

Byte

36

37
38-39
40
41
42-43
44-45
46-47
48-49
50-51
52-53
54-55
56
57
58-59
60-61
62-63

2270507 -9701

Table 6·4. Status of Teleprinter Devices (Continued)

Terminal type:
>03 = 703
>07 = 707
>28 = 743
>2D = 745
>3F = 763
>41 = 765
>51 = 781
>53 = 783
>55 = 785
>57 = 787
>58 = 820
> 7D = 825
>8C = 840

Last character received
Saved extended flags
Reserved
Sysgen speed
Reserved

Contents

Sysgen time-out value in 250-ms increments
Number of parity errors
Number of lost characters
Number of reads
Number of writes
Number of other 1/0 calls
Numberof retries
Number of LUNOs assigned
Number of read errors
Number of write errors
Number of other 1/0 errors

Teleprinter Device 110 6.5

6·79

6.5 Teleprinter Device I/O

DNOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or c:ommand. Bytes 2 and 3 contain the number of char­
acters in the queue. The maximum size of this queue is specified when the system is generated.

The following is an example of the source codl3 for a supervisor call block for a Read Device Status
operation and the read buffer. This call block returns the first 10 characters of the device infor­
mation block (through the ACU CRU address)" The number of characters currently buffered in the
input queue is returned as part of this status information at the label UQ.

RDSHCT

DMY
UQ

DATA 0
BYTE 5,>35
DATA 0
DATA DMY
DATA 10
DATA 0
BSS 2
BSS 8

READ STATUS OF TERMINAL ASSIGNED TO
LUNO >35.

DEVICE STATUS BUFFER

6.5.2.7 Read ASCII. Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII opera­
tion reads a record from the keyboard and stores the characters in the specified buffer, two char­
acters per word.

If the number of characters received from thH device is greater than the length of the read buffer,
the excess characters are stored in the input queue and returned by the next Read Direct or Read
ASCII operation. Additional characters, received after the queue is full, are discarded and the next
operation that is performed by the DSR terminates with an error (KSB queue overflow). System
generation specifies the size of the KSB input queue.

The following fields of the basic supervisor call block apply to a Read ASCII operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 09

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Read character count

• <Actual read count>

6·80 2270507·9701

~

Teleprinter Device I/O 6.5

The following system flags apply to a Read ASCII operation:

o 2

t t t
2283187

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

Bit 2 - End-of-file. Set by system as follows:
1 - (CTRL) Y key terminated the operation.
0- Operation terminated without the (CTRL) Y key being pressed.

Bit 3 - Event key flag. Set by system as follows:
1 - An event key terminated the operation.
0- Operation terminated without an event key being pressed.

The following user flags apply to a Read ASCII operation:

2 3-4 5 6 7 I
f

2283192

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Read with blank adjustment.
o - Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD from which a record
is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

2270507-9701 6·81

6.5 Teleprinter Device I/O

The Read ASCII operation recognizes the characters listed in the Device Character Set appendix
for TPDs. When the operation stores the characters, it packs them one per byte. When the country
code in effect is not >0200 (Japan), the most significant bit is set to zero. When the country code
is >0200, the eight-bit JISCII code is stored. The operation continues until one of the following
occurs:

• The RETURN key ((CTRL)M on some terminals) is pressed or the DSR receives a >00
character

• The buffer is full

• An event key is pressed (if the TPD terminal is in the event key mode)

• The (CTRL)Y is pressed or the DSR receives a > 99 or > 19 character

• The time-out period elapses (if one is specified during system generation)

• The DSR encounters an error

Characters can be corrected by pressing the (CTRL) H or BACKSPACE key. The TPD performs a
backspace operation and deletes the previously entered character from the data buffer each time
the key is pressed. The first time the key is pressed, the printer also performs a line feed operation.
After spacing to the character in error, reenter the characters deleted.

When the RETURN key is pressed, the number of characters entered is stored in the actual read
count field and the operation terminates.

On Read ASCII operations the following edit functions are performed internally: backspace (BS),
erase field, tab, line feed (LF), carriage return (CR), end-of-record, and end-of-file (EOF). The corre­
sponding keycodes are not placed in the read buffer.

When the TPD is opened in the event key mode and an event key is pressed, the system sets the
event key flag in the system flags byte and terminates the operation. The event character is
returned in the event byte of the call block if an extended call block is used. The event character
can also be accessed by performing a Remote Get Event Character operation.

When an event key is pressed between Read operations, the next Read operation performed after
pressing the event key terminates with the event key flag set and zero in the actual read count
field.

When the (CTRL) Y key is pressed, the system sets the EOF flag in the system flags byte and termi­
nates the operation.

When blank adjustment is specified for varialble length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (>20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

6·82 2270507 -9701

Teleprinter Device I/O 6.5

The following is an example of the source code for a supervisor call block for a Read ASCII opera­
tion and code for the read buffer:

RDHCT DATA 0
BYTE 9,>2C
BYTE 0,>80
DATA RBUF
DATA 80
DATA 0

READ RECORD FROM TERMINAL ASSIGNED
TO LUNO >2C IN THE INITIATE 1/0
MODE.

RBUF BSS 80 READ BUFFER

6.5.2.8 Write ASCII. Sub-opcode >OB specifies a Write ASCII operation. The Write ASCII opera­
tion transfers a record from the specified buffer to the TPD. DNOS also supports an optional Write
with Reply operation, which is effectively a Write operation followed by a Read ASCII operation.

The following fields of the basic supervisor call block apply to a Write ASCII operation:

• SVCcode - 0

• Retu rn code

• Sub-opcode - > OB

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer add ress

• Write character count

• Reply block address (Write with Reply operation)

The following system flags apply to a Write ASCII operation:

t t
2283151

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

2270507 ·9701 6·83

6.5 Teleprinter Device 110

The following user flags apply to a Write ASCII operation:

3-4 5 6 7 I
t f f

2283193

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the callin~J task until the operation has completed.

Bit 1 - Reply flag. Set as follows:
1 - Write operation followed by a Read operation.
o - All other operations.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Write with blank adjustment.
0- Write without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD to which a record is
to be written.

The data buffer address is the address of the buffer that contains the record to be printed.

The write character count is the number of chclracters to be printed by the TPD.

The Write ASCII operation prints a record on the TPD. The record consists of ASCII characters or
JISCII characters, as specified by the country code.

The ASCII characters from> 00 through> 1 F are control and protocol characters and should be
avoided in normal data traffic. The actions tak:en by a TPD depend on the specific terminal and its
configuration; refer to the manual for the terminal being used. When these characters are transmit­
ted to the TPD these results occur:

•

•

•

•

•

•

•

6·84

ENQ (> 05) - The TPD transmits the answer back memory if it is installed.

BEL (>07) - The bell rings.

HT (>09) - The TPD prints a space.

LF (>OA) - A line feed occurs.

Form feed (> OC) - The TPD attempts a form feed if it is capable of performing a form
feed.

CR (>00) - The TPD performs a carriage return.

ESC (> 1 B) - Some TPDs interpret this as the beginning of an Extended Device Control
(EDC) sequence and attempt to interpret the following characters as meaningful
terminal orders; the results can be unexpected.

2270507 -9701

Teleprinter Device I/O 6.5

When blank adjustment is specified, trailing blanks in the buffer are not written. The write char­
acter count in bytes 10 and 11 is not altered.

A Write with Reply operation requires the following in addition to the requirements for a Write
ASCII operation:

• The reply flag in the user flags byte set to one

• The extension to the supervisor call block

• The reply block

The extension to the basic I/O supervisor call block is as follows:

DEC HEX

12 C REPLY BLOCK ADDRESS

2283194

The reply block is a three-word block, containing addresses for the Read operation, ,as follows:

DEC HEX

o o DATA BUFFER ADDRESS

2 2 READ CHARACTER COUNT

4 4 <ACTUAL READ Co UNT >

2283195

The three fields are identical to the corresponding fields of the supervisor call block for a Read
ASCII operation.

The following is an example of the source code for a supervisor call block for a Write ASCII opera­
tion:

WAHCT

2270507·9701

DATA 0
BYTE >B,>4C
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 80

WRITE RECORD TO TERMINAL ASSIGNED TO
LUNO >4C INITIATE MODE.

6·85

3.5 Teleprinter Device I/O

The following is an example of the source cod(~ for a supervisor call block for a Write ASCII opera­
tion that uses the optional Write with Reply oporation:

WRHCT DATA 0
BYTE >B,>4C
BYTE O,>CO
DATA WRBUFF
DATA 0

WRITE RECORD TO TERMINAL ASSIGNED TO
LUNa >4C INITIATE MODE AND

DATA 80
DATA RBK

The reply block is coded as follows:

RSK DATA REPLY
DATA 80
DATA 0

WRITE WITH REPLY.

REPLY BUFFER ADDRESS
MAXIMUM LENGTH OF REPLY
REPLY CHARACTER COUNT

6.5.2.9 Write EOF. The Write EOF operation (sub-opcode >OD) performs a page eject on TPDs
that support the page eject operation or three line feed operations on TPDs that do not support
page eject. .

The following fields of the basic supervisor call block apply to a Write EOF operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OD

• Logical unit number (LUNa)

• < System flags>

• User flags

The following system flags apply to a Write EOF operation:

2283196

6·86

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

2270507-9701

Teleprinter Device I/O 6.5

The following user flags apply to a Write EOF operation:

2 3-4 5 6 7

2283189

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD to which a record is
to be written.

The following is an example of the source code for a supervisor call block for a Write EOF
operation:

WEHCT DATA 0
BYTE >D,>4C
BYTE 0,>80
DATA 0
DATA 0
DATA 0

WRITE EOF TO TERMINAL ASSIGNED TO
LUNO >4C INITIATE MODE.

6.5.2.10 Rewind. Sub-opcode >OE specifies a Rewind operation. The Rewind operation clears
the input character queue and performs a page eject on TPDs that support the page eject opera­
tion or it performs three line feed operations on TPDs that do not support page eject. If the
extended call block is used and bit 4 of the extended flags is set to one, the Rewind operation is
performed and the device is placed in the eight-bit ASCII mode. If bit 4 is not set or the extended
call block is not used, the rewind is performed and the device is restored to normal mode.

The following fields of the basic supervisor call block apply to a Rewind operation:

• SVCcode - 0

• Return code

• Sub-opcode - >OE

• Logical unit number (LUNO)

• User flags

2270507 -9701 6·87

6.5 Teleprinter Device I/O

The following user flag applies to a Rewind opE~ration:

2 3-4 5 6 7

2263169

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the callinrg task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD that is to receive the
Rewind operation.

The following is an example of the source codle for a supervisor call block to rewind a TPD:

RWND DATA 0 REWIND TPD ASSIGNED TO LUNO >4A.
BYTE >E,>4A
DATA 0
DATA 0
DATA 0
DATA 0

6.5.2.11 Unload. Sub-opcode >OF specifies an Unload operation. The Unload operation discon­
nects a switched line that is attached to a TPD.

The following fields of the basic supervisor call block apply to an Unload operation:

• SVC code - 0

• Return code

• Sub-opcode - >OF

• Logical unit number (LUNO)

• User flags

The following user flag applies to an Unload operation:

~ __ 3_-_4 __ ~5~ __ 6 ___ 7 __

2283189

Bit 0 - Initiate flag. Set as follows:

6·88

1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

2270507 -9701

Teleprinter Device I/O 6.5

The logical unit number (LUNO) field contains the LUNO assigned to the TPD that is to receive the
Unload operation.

The following is an example of the source code for a supervisor call block to unload a TPD:

ULCS DATA 0
BYTE >F,>4B
DATA 0
DATA 0
DATA 0
DATA 0

UNLOAD TPD ASSIGNED TO
LUNO >4B

6.5.2.12 Device Dependent Communication Control. DNOS enables a task to access device
dependent communications control through sub-opcode > 15. The data buffer contains parame­
ters and other sub-opcodes that specify operations available with device dependent communi­
cation control. The List Hardcopy Port Characteristics (LHPC) SCI command can display the state
of most of these parameters. The Modify Hardcopy Port Characteristics (MHPC), Call Terminal
(CALL), Answer Incoming Call (ANS), or Terminal Disconnection (DISC) SCI commands can modify
most of these characteristics.

The following fields of the basic supervisor call block apply to a device dependent communication
control.

• SVC code - 0

• Return code

• Sub-opcode - > 15

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer add ress

• Write character count

The logical unit number (LUNO) field contains the LUNO assigned to the TPD.

The following system flags apply to device dependent communication control:

567

f f
2283196

2270507-9701 6·89

6.5 Teleprinter Device I/O

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The data buffer address is the address of the buffer that contains the sub-opcodes and parameters
used in device dependent communication control. Each sub-opcode designates an operation of
device dependent communication control. The parameters specify different functions and values
of an operation.

The format of the data buffer is as follows:

2283202

BYTE

o

2

2n

.... v

SUB-OPCODE >00

PARAMETER 1 PARAMETER 2

PARAMETER n-l PARAMETER n

The data buffer contains the following:

Byte Contents

o Sub-opcode Operation

> 16 Modify Timing Characteristics
> 17 Modify Line Characteristics
> 18 Modify Terminal Type
> 19 Modify Special Characters
> 1A Connect
> 1 B Clear Character Queue
> 1 C Set File Transfer Parameters
> 1 0 Set Exclusive Access
> 1 E Set Shared Access

1 >00

2-n Parameters

6-90

.... ~

r

2270507 -9701

Teleprinter Device I/O 6.5

Each parameter is described for the operation to which it applies in the following paragraphs. All
parameters are entered in hexidecimal.

The write character count is the number of characters in the data buffer.

Modify Timing Characteristics. Sub-opcode > 16 specifies the Modify Timing Characteristics
operation. This operation allows the default time-outs for a device to be changed. New values for
time-outs are specified in the parameters of the data buffer as follows:

Byte

2-3
4-5
6-7
8-9

Time·Out Value (250·ms Increments)

Read Time-Out
Write Time-Out
Primary Read Direct Time-Out
Secondary Read Direct Time-Out

Modify Line Characteristics. Sub-opcode > 17 specifies the Modify Line Characteristics opera­
tion. This operation modifies the configuration of a communication line with the following parame­
ters in the data buffer:

Byte

2

3

Line Characteristics

LTA character. Set as follows:
New L TA character.
0- Do not change current LTA character.

Speed nn (where nn is value):

Value Speed (asynchronous bps)

o 110
1 300
2 600
3 1200
4 2400
5 4800
6 9600

-1 300 or 1200 depending on the state of the interface­
board. This enables automatic speed selection in con­
junction with VA3400 and 212A modems. Not valid for
configurations using direct-connect, half-duplex, or
TTY/EIA interface.

2270507·9701 6·91

6.5 Teleprinter Device I/O

Byte

4

Line Characteristics

Bit 0 - Half-dUiplex = 1
Bit 1 - Switched
Bit 2 - DisablE~d

Bit 3 - Auto-dilsconnect enabled
Bit 4 - Requin3 DLE and EOT for auto-disconnect
Bit 5 - SCF ready/busy monitor
Bit 6 - Exclusive access
Bit 7 - LTA enable (half-duplex only)

Modify Terminal Type. Sub-opcode > 18 specifies the Modify Terminal Type operation. This
operation allows parameters related to a TPD type to be altered.

Byte

2

3

Function

Type Value Terminal Model

>03
>07
>2B
>2D
>3F
>41
>51
>53
>55
>57
>58
>7D
>8C

Bit 0 - Echo. Set as follows:
o - Echo to the TPD.

703
707
743
745
763
765
781
783
785
787
820
825
840

1 - Suppress echo to the TPD.

Modify Special Characters. Sub-opcode > 19 specifies the Modify Special Characters operation.
This operation modifies the characters that indicate end-of-record and end-of-file. Specify new
values for these parameters in the data buffer as follows:

Byte Function

2 End-of-record. Set as follows:
New end-of-record character.
00 - Do not change current end-of-record character.

3 End-af-file. Se!t as follows:
New end-of-file character.
00 - Do not change current end-of-file character.

6·92 2270507·9701

Teleprinter Device I/O 6.5

Connect. Sub-opcode > 1A specifies the Connect operation. This operation establishes a
connection to a TPD. If the initiate flag (bit 0) of the user flags is set to one, the task is not sus­
pended. The task is suspended until the connection is complete if the initiate flag is set to zero.
The values of the following parameters determine the method by which the connection to the TPD
is made.

Byte Value Function

2 Nonzero Establish request to send (RTS).
Zero Do not establish RTS.

3 Nonzero Establish data terminal ready (DTR).
Zero Do not establish DTR.

4-5 Nonzero Specify a time-out value in 250-ms increments.
Zero Zero specifies an infinite time-out.

If Ring Indicator or Data Set Ready is detected, the time-out reverts to 10 seconds for the duration
of the connection. Thus, if a communications port is set to answer incoming calls with an infinite
time-out and a device (not a modem) calls, the DSR terminates the call in 10 seconds if no connec­
tion is made. For full-duplex circuits, Data Carrier Detect must be sensed for the call to complete
successfully.

Set File Transfer Parameters. Sub-opcode > 1C specifies a Set File Transfer Parameters opera­
tion. This operation performs the following:

• Enables selection of a parity checking mode

• Selects time-outs

• Selects a parity error substitute character

• Disables the DC3-driven functions:

Bid

Hold output

Abort task

Time-out

2270507-9701 6·93

6.5 Teleprinter Device I/O

The parameters of the Set File Transfer Parameters operation are defined and stored in the data
buffer as follows:

Byte

2-3

4-5

6

7

Function

Primary time-out for Read Direct

Secondary time-out for Read Direct

Parity error substitute character

Bit 0 - Echo. Set as follows:
1- Suppress echo.
0- Enable echo.

Bit 1 - Unused
Bit 2 - Transmit parity. Set as follows:

1 - Enable transmit parity.
o - Disable transmit parity.

Bits 3-4 - Tra.nsmit parity type. Set as follows:
00 = Even.
01 = Odd.
10 = Mark.
11 = Space.

Bit 5 - Receive parity. Set as follows:
1 - Enable receive parity.
o - Disable receive parity.

Bits 6-7 - Receive parity type. Set as follows:
00 = Even.
01 = Odd.
10 = Mark.
11 = Space.

The values of the parameters disappear when the terminal is disconnected.

Clear Character Queue. Sub-opcode > 1 B specifies the Clear Character Queue operation. This
operation clears the input character queue. Depending on the state of the eight-bit ASCII flag in
the extended flags word of the call block, this operation also sets the device into the eight-bit
ASCII character mode or restores it to the normal operating mode. If the eight-bit ASCII flag is set
to one, the device is placed in the eight-bit mode. If the flag is zero or a standard call block is used,
the device is restored to the normal operatinn mode.

Set Exclusive Access. Sub-opcode > 1 D specifies the Set Exclusive Access operation. This
operation places the communications port under control of the file transfer tasks. These tasks
have bit 5 of the user flags set to one on Open operations.

Set Shared Access. Sub-opcode > 1 E speciifies the Set Shared Access operation. This operation
releases the communications port to tasks that do not have bit 5 of the user flags set to one on
Open operations.

6·94 2270507·9701

Teleprinter Device I/O 6.5

6.5.3 Teleprinter Device Resource·Specific 110
Most of the resource-specific I/O operations use an eight-byte extension to the supervisor call
block. The sub-opcodes for the resource-independent operations apply, but the operations are
modified by the states of flags in the extended user flags field.

The extended call flag in the user flag field (byte 5) of the supervisor call block must be set to one
for resource-specific I/O operations. Otherwise, the system does not use the extensions to the
supervisor call block. The flags in the user flag field that apply to resource-specific I/O operations
are:

3-4 5

2283203

Bit 1 - Reply flag. When the character validation flag is set to zero, set the reply flag to one
for a Write with Reply or Remote Get Event Character.

Bit 6 - Extended call flag. Set as follows:
1 - Extended call block (required for resource-specific I/O).
o - Basic supervisor call block (used for resource-independent I/O).

The extension to the basic supervisor call block is as follows:

DEC HEX

12 C VALIDATION TABLE/REPLY BLOCK ADDRESS

14 E EXTENDED USER FLAGS

16 10 [RESERVED] I < EVENT BYTE>

18 12 [RESERVED]

20 14 [RESERVED]

2279510

The extension to the call block contains the following:

Byte

12-13

14-15

2270507 -9701

Contents

Character validation table address (when character validation is speci­
fied in the extended user flags). The address of a table of character vali­
dation data. Reply block address (when the reply flag is set to one). The
address of a block containing the address and count fields for a Write
with Reply operation.

Extended user flags field. Contains sixteen flags thatapply to all or some
of the TPD operations as described in succeeding paragraphs.

6·95

6.5 Teleprinter Device 110

Byte

16

17

18-19

20-21

Contents

[Reserved]. TPD 1/0 ignores any data in this field, which allows an
extended call block to be used for either VDT or TPD 1/0.

< Event byte>. The system stores an event character in this field when
the TPD has been opened in the event mode and an event key is pressed.
During Read Direct eight-bit ASCII or Write Direct eight-bit ASCII with
Reply operations, if bit 5 (Task Edit) of the extended flags is set to one,
this field contains a user-specified termination character. The Read
Direct eight-bit ASCII operation terminates if a character matching the
character in this byte is encountered before the read buffer fills or before
the time-out elapses (if it is specified). The terminating character is
placed in the read buffer.

[Reserved]. TPD 1/0 ignores any data in this field, which allows an
extended call block to be used for either VDT or TPD 1/0.

[Reserved]. TPD 1/0 ignores any data in this field, which allows an
extended call block to be used for either VDT or TPD 1/0.

The extended user flags are:

o II 6

f f f f t f f t
2283152

The following lists the flags and the 1/0 operations in which they are effective. Detailed descrip­
tions of the uses of the flags follow in subsequent paragraphs.

Bit Definition Used in Operations

4 Eight-Bit ASCII Read Direct and Write Direct
Append LF/CR/L TA ReadlWrite ASCII

5 Task Edit Read ASCII
User specified Read Direct
with termination character eight-bit ASCII option

6 Beep ReadlWrite ASCII
11 Forced Termination Character Read ASCII
12 Echo Read ASCII and Read Direct
13 Character Validation Read ASCII
14 Validation Error Mode Read ASCII
15 Warning Beep Read ASCII

6·96 2270507-9701

Teleprinter Device 110 6.5

6.5.3.1 Eight·Bit ASCII or LF/CR/L TA. When this flag is set to one, DNOS supports eight-bit
ASCII data on Read Direct and Write Direct operations. If this bit is set to one, DNOS forces a line
feed (LF) and carriage return (CR) at the TPD after the end of a record during a Read or Write ASCII
operation. If the current line turnaround (L TA) character is CR, an additional CR is not output at the
TPD. If the current L TA is not CR, an additional CR is output. L TA only applies to a TPD if L TA is
specified. This flag does not apply to TPDs using JISCII.

6.5.3.2 Task Edit. This flag, when set to one on a Read ASCII operation, causes the operation to
terminate if any of the following types of characters are entered: task edit, event, system edit, or
end-of-file. These characters are listed in the Device Character Set Appendix to this manual. The
terminating character is returned in byte 17 (event byte field) of the extended call block. This flag,
when set to one on a Read Direct eight-bit ASCII operation, causes the operation to terminate if a
character is received that matches a character placed in byte 17 of the extended call block. The
termination character is placed in the read buffer.

6.5.3.3 Beep. This flag, when set to one on Read ASCII operations, causes a BEL character to be
sent to the TPD at the beginning of the operation. The TPD then sounds an audible tone to request
the first input character. When the flag is set to one on Write ASCII operations, the BEL character
is sent to the TPD at the end of the operation. The TPD sounds the tone after the last character is
displayed. When the flag is set to zero, the TPD does not sound the audible tone unless the warn­
ing beep flag is set.

6.5.3.4 Forced Termination Character. If this flag is set to one during a Read ASCII operation, a
valid termination character must be received before the operation can complete. All characters
received after the read buffer fills and before the termination character is received are discarded. If
the flag is set to zero, the operation completes without receiving a termination character.

6.5.3.5 Echo. When this flag is set to zero, each character is printed as it is entered. When a key
is pressed during Read ASCII operations and the flag is set to one, a blank is printed because the
space character is substituted for the data character before it is returned to the TPD. When a key is
pressed during Read Direct operations and the flag is set to one, no echo is produced. This flag
applies only to Read ASCII and Read Direct operations. If the communications port was specified
as no echo during system generation, this flag has no meaning, since echo is automatically sup­
pressed.

6.5.3.6 Character Validation. This flag, when set to one, enables character validation of the field
being read by a Read ASCII operation. Validation requires a validation table that specifies the char­
acters to be accepted in the field. Character validation is discussed in greater detail in a subse­
quent paragraph. When the character validation flag is set to zero, no character validation is
performed. Refer to the description of the Write ASCII operation for the use of the reply flag when
the character validation flag is set to zero.

6.5.3.7 Validation Error Mode. The validation error mode flag, when set to one, enables correc­
tion of errors detected during validation of field contents by the task. The Validation Error Mode
operation is effectively a Reread operation; the flags that apply to a Read apply in the same way to
this operation. Only the error correction keys can be used. When a user reenters one or more char­
acters in the field with an error correction key, the system sets the validation error mode flag to
zero. When the calling task sets the validation error mode flag to zero, the operation is performed
in the normal mode.

2270507 .. 9701 6·97

6.5 Teleprinter Device I/O

6.5.3.8 Warning Beep. When this flag is SE~t to one, the BEL character is sent to the TPD and an
audible tone sounds if an invalid function is requested.

6.5.3.9 Read ASCII Example. When a TPD has been opened in the event key mode and task edit
keys are also enabled (task edit flag set to one), the task edit character is always returned in the
event byte of the extended call block, and the event character is also returned in that byte in
resource-specific 110. The state of the event key flag in the system flag field indicates which type
of character is in the event byte when both a.re enabled. The task accesses and decodes the char­
acter and performs the function corresponding to the key.

The following is an example of the code for a Read ASCII operation with event key termination
enabled by the previous Open operation and task edit key termination enabled for the Read opera­
tion:

REHC

SYSFL

DATA 0
BYTE 9,>3F
BYTE 0
BYTE >02
DATA RBUFF
DATA 15
DATA 0
DATA 0
DATA >0400
DATA 0
DATA 0
DATA 0

READ FIELD OF TERMINAL AT LUNO >3F.
FIELD SIZE IS 15 CHARACTERS.
EVENT KEYS AN D TASK EDIT KEYS
ENABLED.

6.5.3.10 Character Validation Operation. A Read ASCII operation can specify character valida­
tion by specifying a range of characters to bl3 accepted or a range of characters to be rejected. If a
range(s) of characters to be accepted is specified, the characters outside the range(s) read by the
operation are rejected and characters within the range(s) specified are stored in the read buffer. If a
range(s) of characters to be rejected is speciified, characters within the range(s) read by the opera­
tion are rejected and characters outside thEI range(s) are stored in the read buffer. The character
validation flag in the extended user flags fiE}ld is set to one for a Read with Validation operation.
The flags byte of the validation table specifies whether the specified ranges are for character
acceptance or rejection.

Each Read operation with character validation must specify a validation table. Specifying a valida­
tion table requires:

•

•

•

6·98

Setting the character validation flag to one

Supplying a validation table

Placing the address of the table in the character validation table address field of the
extended call block

2270507·9701

Teleprinter Device I/O 6.5

The validation table contains one or more ranges of characters that define the valid characters for
the field. The table may define the valid characters by specifying ranges of characters that are not
valid, or by specifying ranges of characters that are valid. Each range in the table requires two
bytes, and the table contains two bytes of overhead. Thus the length of the table in bytes is two
times the number of ranges, plus two. The format of the table is as follows:

DEC HEX

o 0 LENGTH FLAGS

2 2 RANGE 1 Low CHAR_ RANGE 1 HIGH CHAR.

~~ ~~

2n 2n RANGE n Low CHAR. RANGE n HIGH CHAR.

2283204

The validation table contains the following:

Byte Contents

o Length - Length of the validation table in bytes (2n + 2).

1 Flags:
Bit 0 - Validation flag. Set as follows:

1 - Invalid ranges. Characters greater than or equal to the low
character and less than or equal to the high character are
invalid.

o - Valid ranges. Characters greater than or equal to the low
character and less than or equal to the high character are
valid.

Bits 1-7 - Reserved.

2 Low character for range 1.

3 High character for range 1.

Character pairs for additional ranges.

2n Low character for range n.

2n + 1 High character for range n.

Character validation is performed after each character is entered in the field.

2270507 -9701 6·99

6.5 Teleprinter Device 110

When an invalid key is entered, the field enters character error mode. In character error mode, only
the error correction keys operate, no echo occurs, and if Warning Beep is set, the BEL character is
sent to the TPD after entry of a nonerror correction key.

The user must press one of the following correction keys when the last character entered is
invalid:

• (CTRL) H or BACKSPACE

• RUB OUT

• (CTRL) N

• (CTRL) T

Next, the user enters the data correctly.

An example Read with Validation operation pHrforms the following:

• Reads a ten-character field

• Validates the field as an alphanume·ric field with no lowercase letters

The following is an example of the code for the supervisor call block and validation table for the
example operation:

RVAL

FLG2

TABL

DATA 0
BYTE 9,>2B
BYTE 0
BYTE >02
DATA BUFF
DATA 10
DATA 0
DATA TABL
DATA >0004
BSS6

EVEN
BYTE 6
BYTE 0
DATA >3039
DATA >415A

READ FIELD OFTERMINALAT LUNO >2B,
VALIDATING PER TABL. FIELD
SIZE IS 10 CHARACTERS. READ
BUFFER IS BUFF.

LENGTH OF TABLE
VALID RANGES
RANGE 1 - NUMERALS
RANGE 2 - UPPERCASE·LETTERS

6.5.3.11 Field Validation. Any validation of a field must be performed by a task following the
reading of the field. This could verify that the field contains the proper number of letters, followed
by numbers, for example. The Read ASCII opE~ration in the validation error mode is used by the task
to obtain corrected data when an error has occurred. Character validation may be requested for the
operation also. The validation error mode flag is set to one to enable the mode.

6·100 2270507 ·970 1

Teleprinter Device 110 6.5

In the validation error mode, the operation requires reentry of the field. The correction key is the
BACKSPACE key. When a character is entered prior to pressing the BACKSPACE key, the charac­
ter is not printed (no echo).

The difference between a normal Read ASCII operation and one that specifies the validation error
mode is that in the validation error mode input is ignored until the BACKSPACE key is pressed.
The user should backspace to the leftmost error character and enter the correct characters in the
remainder of the field.

The call block for the previous Read ASCII operation can be used by setting the validation error
mode flag to one. The following instructions set the flag in the call block of the character valida­
tion coding example:

MASK2 BYTE >2
SOCB @MASK2,@FLG2 + 1

6.5.3.12 Getting Event Characters. The Remote Get Event Character operation (sub-opcode
>05) returns an event character in the event byte (byte 17) of the extended supervisor call block.
The LUNO assigned to the TPD does not have to be open. The operation is an alternative to per­
forming a Read operation to obtain an event character.

The operation is a special type of Read Device Status operation; see previous explanation for this
operation.

The following fields of the extended supervisor call block apply to a Remote Get Event Character
operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 05

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

• <Actual read count>

• Event byte

2270507·9701 6·101

6.5 Teleprinter Device 110

The following user flags apply to a Remote Get Event Character operation:

t f
2283205

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 1 - Reply flag. Set to one.

Bit 6 - Extended call flag. Set to one.

The logical unit number (LUNO) field contains the LUNO assigned to the device at which the event
character is entered.

The data buffer address is the address of the buffer into which ONOS places the status infor­
mation.

The read character count is the length of the buffer.

ONOS returns the number of characters stored in the buffer in the actual read count field.

ONOS returns the event character in the event byte.

The contents of the data buffer after a Remote Get Event Character operation has returned the
status of a TPO is:

Byte Contents

0-1 > FFFF.

2-3 Number of characters buffered in the input character queue.

ONOS maintains an input character queue that stores characters input while the system is
processing a previously-entered character or command. Bytes 2 and 3 contain the number of char­
acters in the queue. The maximum size of this queue is specified when the system is generated.

6·102 2270507 ·9701

Teleprinter Device I/O 6.5

The following is an example of the source code for a supervisor call block for a Remote Get Event
Character operation and code for the read buffer:

RGEVCH DATA 0
BYTE 5,>32
DATA >42
DATA MRADR
DATA 10
DATA 0
DATA 0
DATA 0
BYTE 0

EVCHAR BYTE 0
DATA 0,0

MRADR BSS 1
BSS 1

CHINO BSS 8

GET EVENT CHARACTER FROM TERMINAL
ASSIGNED TO LUNO >32.

DEVICE STATUS BUFFER

6.5.3.13 Read Direct. Sub-opcode >OA specifies a Read Direct operation. The Read Direct
operation reads a record from the TPD and stores the characters in the specified buffer, two char­
acters per word. The operation does not print (echo) the characters.

The following fields of the basic supervisor call block apply to a Read Direct operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OA

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Read character count

• <Actual read count>

The following system flags apply to a Read Direct operation:

2279514

2270507·9701 6·103

6.5 Teleprinter Device 110

Bit 0 - Busy flag. Set by system as follows,:
1 - Busy.
0- Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The following user flags apply to a Read Direcjt operation:

2279515

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Read with blank adjustment
o - Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD from which a record
is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

The Read Direct operation recognizes the ASCII or JISCII codes as specified by the country code.
The operation stores the characters in a word, packed one per byte. The most significant bit is set
to zero for the seven-bit ASCII codes; all eight bits of the JISCII code are stored.

The Read Direct operation does not interpret characters. The operation terminates upon receipt of
any of the following: current record terminator, EOF character, a specified number of characters,
or expiration of the read time-out. The most significant bit of characters saved is set to zero
(unless eight-bit data is specified).

If eight-bit ASCII is specified, all data passes directly to the task exactly as received from the
device, without checking for parity or special characters. The operation terminates on receipt of
the specified number of characters or expiration of the read time-out. If a termination character is
specified (by setting the task edit flag and specifying the desired termination character in byte 17
of the call block), the operation also terminates upon receipt of a character matching the specified
termination character. If the termination character is received, it is the last character in the read
buffer.

6·104 2270507-9701

Teleprinter Device liD 6.5

If the device was previously in eight-bit ASCII mod~, eight-bit ASCII is not specified, the device is
restored to normal operating mode. If this method is used to reset the eight-bit ASCII mode, the
next read operation mayor may not check for parity, special characters, and so on.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, DNOS supplies blanks
(>20) to fill the buffer. The character count returned in bytes 10 and 11 includes the blanks sup­
plied by the system.

The following is an example of the source code for a supervisor call block for a Read Direct opera­
tion and code for the read buffer:

RDDHCT DATA 0
BYTE >A,>3E
BYTE 0,0
DATA RDBUF
DATA 80
DATA 0

RDBUF BSS 80

READ RECORD FROM TERMINAL ASSIGNED
TO LUNO >3E.

READ BUFFER

6.5.3.14 Write Direct. Sub-opcode >OC specifies a Write Direct operation. The Write Direct
operation transfers a record from the specified buffer to the TPD.

The following fields of the basic supervisor call block apply to a Write Direct operation:

• SVC code - 0

• Return code

• Sub-opcode - >OC

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Write character count

The following system flags apply to a Write Direct operation:

t t
2283196

2270507-9701 6·105

6.5 Teleprinter Device I/O

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
0- Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The following user flags apply to a Write Direct operation:

2 3-4 5 6 7 I
f

2283192

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Write with blank adjustment.
0- Write without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the TPD to which a record is
to be written.

The data buffer address is the address of the buffer that contains the record to be printed.

The write character count is the number of characters to be printed by the TPD.

The Write Direct operation prints a record on the TPD. The record consists of ASCII characters or
J ISCII characters, as specified by the country code.

Setting the eight-bit flag in the extended calli block puts the device in the eight-bit ASCII mode.
Setting the eight-bit ASCII flag to zero or using a standard call block puts the device in the normal
operating mode. If the device had been transmitting data in the eight-bit ASCII mode previously,
and this operation puts the device in the normal operating mode, the next read operation mayor
may not check and clear the parity bit on the characters received.

The ASCII characters from > 00 through > 1 F are control and protocol characters and should be
avoided in normal data traffic. The actions taken by a TPD depend on the specific terminal and how
it is configured; refer to the manual for the terminal being used. When these characters are trans­
mitted to the TPD these results occur:

• ENQ (>05) - The TPD transmits the answer back memory if it is defined.

• BEL (>07) - The bell rings.

• HT (>09) - The TPD prints a space.

• LF (>OA) - A line feed occurs.

6·106 2270507·9701

Programming for Event Characters 6.6

• Form feed (>OC) - The TPD attempts a form feed if it is capable of performing a form
feed.

• CR (>00) - The TPD performs a carriage return.

• ESC (> 1 B) - Some TPD interpret this as the beginning of an Extended Device Control
(EDC) sequence and attempt to interpret the following characters as meaningful ter­
minal orders; the results can be unexpected.

When blank adjustment is specified, trailing blanks in the buffer are not written. The write charac­
ter count in bytes 10 and 11 is not altered.

The following is an example of the source code for a supervisor call block for a Write Direct opera­
tion:

WAHCT DATA 0
BYTE >C,>4C
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 80

6.6 PROGRAMMING FOR EVENT CHARACTERS

WRITE RECORD TO TERMINAL ASSIGNED TO
LUNa >4C INITIATE MODE.

A set of event characters is defined for each type of terminal. These characters function as pro­
grammable function or edit keys. That is, the application program receives these characters,
decodes them, and performs the desired function. The terminal must be opened with event keys
enabled. Then, when an event key is pressed at the terminal, the event key flag in the system flags
byte is set. For resource-specific I/O, the application program must execute a Remote Get Event
Character operation to obtain the character. The Remote Get Event Character operation is
described for each device.

2270507 ·9701 6-107

6.7 Cassette I/O

6.7 CASSETTE 1/0

DNOS supports resource-independent and resource-specific 1/0 for the cassette units of the 733
ASR. Resource-independent 1/0 for cassette units is analogous to 1/0 to magnetic tape units.
Resource-specific 1/0 consists of the Read Direct and Write Direct operations.

The following 1/0 SVC block for cassette operations is the basic block used for all operations. If an
extension to this block is necessary for a particular operation, it is indicated in the operation
description.

SVC > 00 -- I/O OPERATIONS ALIGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT

DEC HEX

0 0 >00 < RETURN CODE>

2 2 SUB-OPCODE LUNO

4 4 < SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT>

2279470

The system flags (byte 4) in the supervisor call block apply to all cassette 1/0. These flags are:

2279520

Bit a - Busy flag. Set by system as follows:
1 - Busy.
a - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
a - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - A DC3 (X-OFF) was read as the first character of a record.
a - First character of record being read was not a DC3 (X-OFF).

Two user flags (byte 5) in the supervisor call block apply to all cassette I/O. However, significance
of these flags differs for various operations. The flags that apply to each operation are described in
the detailed description of each operation.

6·108 2270507·9701

Cassette I/O 6.7

The operations appropriate for the cassette are described in subsequent paragraphs. The fol­
lowing sub-opcodes, which do not apply to the cassette, produce the indicated results:

05 Ignored
08 Error

6.7.1 Cassette Resource·lndependent 1/0
The subset of sub-opcodes for resource-independent 1/0 to cassettes is as follows:

00 Open
01 Close
02 Close, Write EOF
03 Open and Rewind
04 Close and Unload
06 Forward Space
07 Backward Space
09 Read ASCII
OB Write ASCII
00 Write EOF
OE Rewind
OF Unload

6.7.1.1 Open. Sub-opcode >00 specifies an Open operation. The Open operation is required for
the cassette units of a 733 ASR. However, whether or not ONOS validates the Open operation is
specified when the system is generated. Validation does not allow an Open operation when the
Open operation would result in a conflict with 1/0 to the same device by another task.

The following fields of the basic supervisor call block apply to an Open operation:

• SVCcode - 0

• Return code

• Sub-opcode - >00

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

2270507 ·9701 6·109

6.7 Cassette 110

The following flags in the user flag field apply to an Open operation:

2279521

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the cassette is 3.

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length for a cassette is > 56.

The following is an example of the source code for a supervisor call block to open a cassette:

OCAS

TPE
RL

DATA 0
BYTE 0,>2A
DATA 0
DATA 0
DATA 0
DATA 0

OPEN CASSETTE ASSIGNED TO LUNO >2A.

6.7.1.2 Close. Sub-opcode > 01 specifies a Close operation. The Close operation ends 1/0 to a
LUNO from the calling task. The LUNO remains assigned to the device and may be opened again
for additional 1/0 operations. When a task terminates, DNOS closes all LUNOs that have been
opened by the task.

The following fields of the basic supervisor call block apply to a Close operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 01

• Logical unit number (LUNO)

• User flags

6·110 2270507·9701

,/

Cassette I/O 6.7

The initiate flag in the user flag field applies to a Close operation:

2279522

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close a cassette:

CCAS DATA 0
BYTE 1,>2A
DATA 0
DATA 0
DATA 0
DATA 0

CLOSE CASSETTE ASSIGNED TO LUNO >2A.

6.7.1.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode >02, consists of a Write
EOF operation followed by a Close operation.

6.7.1.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open opera­
tion followed by a Rewind operation.

6.7.1.5 Close and Unload. The Close and Unload operation, sub-opcode >04, consists of an
Unload operation followed by a Close operation.

6.7.1.6 Forward Space. Sub-opcode >06 specifies a Forward Space operation. The Forward
Space operation moves the tape forward a specified number of logical records or to the end-of-file
record.

The following fields of the basic supervisor call block apply to a Forward Space operation:

• SVCcode - 0

• Return code

• Sub-opcode - >06

• Logical unit number (LUNO)

• < System flags>

• User flags

• Write character count

2270507 -9701 6·111

6.7 Cassette 110

The system flags defined for all cassette operations apply to a Forward Space operation.

The following user flag applies to a Forward Space operation:

2279523

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette to be forward
spaced.

The write character count field (bytes 10 and 11) contains the number of logical records for the
operation. The device service routine (DSR) stores a zero in the field when the tape is moved the
specified number of records without reading an EOF record. When the operation reads an EOF
record, the tape movement stops, and the number of records remaining to be moved is stored in
the write character count field. The DSR also sets the EOF flag in the system flags byte.

The following is an example of the source code for a supervisor call block to forward space a
cassette:

FSCS DATA 0
BYTE >6,>4B
DATA 0
DATA 0
DATA 0
DATA 3

FORWARD SPACE CASSETTE ASSIGN ED TO
LUNO >4B THREE RECORDS

6.7.1.7 Backward Space. Sub-opcode >07 specifies a Backward Space operation. The Back­
ward Space operation moves the tape in the reverse direction a specified number of logical
records or to the end-of-file record.

The following fields of the basic supervisor call block apply to a Backward Space operation:

• SVCcode - 0

• Return code

• Sub-opcode - >07

• Logical unit number (LUNO)

• <System flags>

• User flags

• Write character count

5·112 2270507 -9701

•

Cassette I/O 6.7

The following user flag applies to a Backward Space operation:

2279524

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette to be backward
spaced.

The write character count field (bytes 10 and 11) contains the number of logical records for the
operation. The device service routine (DSR) stores a zero in the field when the tape is moved the
specified number of records without reading an EOF record. When the operation reads an EOF
record, the tape movement stops, and the number of records remaining to be moved is stored in
the write character count field. The DSR positions the tape so that the next Read operation reads
the EOF record. The DSR also sets the EOF flag in the system flag byte.

The following is an example of the source code for a supervisor call block to backward space a
cassette:

BSCS DATA 0
BYTE >7, >4B
DATA 0
DATA 0
DATA 0
DATA 1

BACKWARD SPACE CASSETTE ASSIGNED TO
LUNO >4B ONE RECORD

6.7.1.8 Read ASCII. Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII opera­
tion reads a record from the cassette and stores the characters in the specified buffer, two charac­
ters per word.

The following fields of the basic supervisor call block apply to a Read ASCII operation:

• SVC code - 0

• Return code

• Sub-opcode - > 09

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer add ress

2270507·9701 6·113

6.7 Cassette I/O

• Read character count

• <Actual read count>

The system flags defined for all cassette operations apply to a Read ASCII operation.

The following flags in the user flag field apply to a Read ASCII operation:

2279525

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Read with blank adjustment.
0- Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette from which a
record is to be read.

The data buffer address is the address of the buffer into which ONOS places the record.

The read character count is the length of the buffer.

ONOS returns the number of characters stored in the buffer in the input record length field.

The Read ASCII operation recognizes the characters listed in Appendix B for the cassette. The
operation stores the characters, packed one per byte. When the country code in effect is not
>0200 (Japan), the most significant bit of ealch character is set to zero. When the country code is
>0200, the JISCII code applies. The device service routine (OSR) supplies the most significant bit
for JISCII codes. A transition character transparent to the user is written between a code having
zero as the most significant bit (seven-bit JISCII) and a code having one as the most significant bit.
The maximum record length is a hardware requirement; the transition characters limit the length of
the maximum record available to the user. The Read operation continues until a carriage return
(>00) character is read or the buffer is full. The maximum number of characters in a cassette
record is 86.

When a carriage return is read, the number of characters read is stored in the actual read count
field and the operation terminates.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (OSR) supplies blanks (>20) to fill th'e buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the OSR.

6·114 2270507 -9701

Cassette 110 6.7

When a DC3 (X-OFF) character is read in the first character position, the device service routine
(DSR) sets the EOF flag in the system flags byte, stores zero in the actual read count field, and
terminates the operation.

The cassette unit does not provide a logical end-of-medium indication, but does provide a physical
end-of-tape indication, which may occur at either end of the tape. The corresponding error code is
returned by the operation that follows the detection of the physical end of tape.

The following is an example of the source code for a supervisor call block for a Read ASCII opera­
tion and the code for the read buffer:

RDCAS

RB

DATA 0
BYTE 9,>2D
BYTE 0,>80
DATA RB
DATA 80
DATA 0
BSS 80

READ RECORD FROM CASSETTE ASSIGNED
TO LUNO >2D IN THE INITIATE I/O
MODE.

READ BUFFER

6.7.1.9 Write ASCII. Sub-opcode >OB specifies a Write ASCII operation. The Write ASCII opera­
tion transfers a record from the specified buffer to the cassette.

The following fields of the basic supervisor call block apply to a Write ASCII operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OB

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Write character count

The following system flags apply to a Write ASCII operation:

2279526

2270507 -9701 6·115

6.7 Cassette 110

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The following user flags apply to a Write ASCII operation:

~_3_-4--,--1 5 1_6 __ 1 71
~ f

2279527

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operatijon and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Write with blank adjustment.
o - Write without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette to which a
record is to be written.

The data buffer address is the address of the buffer that contains the record to be written.

The write character count is the number of characters to be written on the cassette.

The Write ASCII operation writes a record on a cassette. The record consists of ASCII characters
or JISCII characters as specified by the country code. Special considerations apply to the use of
JISCII characters because the cassette units write a maximum of 86 seven-bit characters per
record, including the characters written by thl3 hardware. The device service routine (DSR) removes
the most significant bit of the JISCII code, and the cassette writes the seven least significant bits.
The DSR writes a transition character between JISCII code with zero as the most significant bit
and JISCII code with one as the most significant bit. These transition characters (transparent to
the user) allow the DSR to supply the most significant bit correctly when the record is read. How­
ever, they limit the number of characters the user can place in a record. For example, if no transi­
tion characters were required, the user task could write 80 characters per record; if two transitions
occurred, 78 user-supplied characters would fill the record.

When the record being written contains a carriage return, the DSR replaces it with an end transmit
block (ETB) character, > 17. When the specified number of characters has been written, the DSR
writes a carriage return (LCR), a line feed (LF), a record-off (DC4) character, > 14, and a rubout (DEL)
character, > 7F.

When blank adjustment is specified, trailing blanks in the buffer are not written. The output char­
acter count in bytes 10 and 11 is not altered.

6·116 2270507-9701

Cassette I/O 6.7

6.7.1.10 Write EOF. Sub-opcode >00 specifies a Write EOF operation. The Write EOF operation
writes an EOF record on the cassette tape.

The following fields of the basic supervisor call block apply to a Write EOF operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 00

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Write EOF operation:

2279528

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette on which the
EOF record is to be written.

The EOF record for a cassette consists of a DC3 character, a DC4 character, and a DEL character.

The following is an example of the source code for a supervisor call block to write an EOF record
on a cassette:

WECS

2270507 -9701

DATA 0
BYTE >D,>4B
DATA 0
DATA 0
DATA 0
DATA 0

WRITE EOF ON CASSETTE ASSIGNED
TO LUNO >4B.

6·117

6.7 Cassette liD

6.7.1.11 Rewind. Sub-opcode >OE specifies a Rewind operation. The Rewind operation rewinds
the cassette to the clear area at the beginning of the tape, then moves the tape to the beginning-of­
tape marker and lights the READY indicator on the 733 ASR.

The following fields of the basic supervisor call block apply to a Rewind operation:

• SVC code - 0

• Return code

• Sub-opcode - >OE

• Logical unit number (LUNO)

• User flags

The following userflag applies to a Rewind operation:

.,

2279529

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette to be rewound.

The following is an example of the source code for a supervisor call block to rewind a cassette:

RWCS DATA 0
BYTE >E,>4B
DATA 0
DATA 0
DATA 0
DATA 0

REWIND CASSETTE ASSIGNED TO LUNO >4B.

6.7.1.12 Unload. Sub-opcode >OF specifies an Unload operation. The Unload operation rewinds
the cassette to the clear area at the beginning of the tape.

The following fields of the basic supervisor call block apply to an Unload operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OF

6·118 2270507 ·9701

Cassette I/O 6.7

• Logical unit number (LUNa)

• User flags

The following user flag applies to an Unload operation:

2279530

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNa) field contains the LUNa assigned to the cassette to be unloaded.

The following is an example of the source code for a supervisor call block to unload a cassette:

ULCS DATA 0
BYTE >F,>4B
DATA 0
DATA 0
DATA 0
DATA 0

6.7.2 Cassette Resource·Specific 1/0

UNLOAD CASSETTE ASSIGNED TO
LUNa >4B

The sub-opcodes for resource-specific I/O to cassettes are as follows:

OA Read Di rect
OC Write Direct

6.7.2.1 Read Direct. Sub-opcode >OA specifies a Read Direct operation. The Read Direct opera­
tion reads a record from the cassette and stores the characters in the specified buffer, two charac­
ters per word. The cassette unit transfers seven-bit characters to the computer; the DSR stores
each character in the least significant bits of a byte, with a zero as the most significant bit.

The following fields of the basic supervisor call block apply to a Read Direct operation:

• SVCcode - 0

• Return code

• Sub-opcode - >OA

• Logical unit number (LUNa)

• < System flags>

• User flags

2270507 -9701 6·119

6.7 Cassette I/O

• Data buffer address

• Read character count

• <Actual read count>

The following system flags apply to a Read Direct operation:

2279531

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
0- Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The following flags in the user flag field apply to a Read Direct operation:

2279532

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Read with blank adjustment.
o - Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the cassette from which a
record is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

6·120 2270507·9701

Cassette I/O 6.7

The Read Direct operation recognizes the ASCII or JISCII codes as specified by the country code.
The operation stores the characters in a word, packed one per byte. The most significant bit of
each character is set to zero for the seven-bit ASCII codes. The device service routine (DSR) sup­
plies the most significant bit for JISCII codes. A transition character transparent to the user is writ­
ten between a code having zero as the most significant bit (seven-bit JISCII) and a code having one
as the most significant bit. The maximum record length is a hardware requirement; the transition
characters limit the length of the maximum record available to the user. The Read Direct operation
terminates when the buffer is full, a carriage return is read, or the maximum record (86 characters
including control characters) is read.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (>20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

The following is an example of the source code for a supervisor call block for a Read Direct opera­
tion and code for the read buffer:

RDDCAS DATA 0
BYTE >A,>3C
BYTE 0,0
DATA RDBUF
DATA 86
DATA 0
DATA 0

RDBUF BSS 86

READ RECORD FROM CASSETTE ASSIGNED
TO LUNO >3C.

READ BUFFER

6.7.2.2 Write Direct. Sub-opcode >OC specifies a Write Direct operation. The Write Direct
operation transfers a record from the specified buffer to the cassette.

The following fields of the basic supervisor call block apply to a Write Direct operation:

• SVCcode - 0

• Return code

• Sub-opcode --. > OC

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Write character count

2270507 ·9701 6·121

6.7 Cassette I/O

The following system flags apply to a Write Direct operation:

2279533

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The following user flags apply to a Write Direct operation:

2279534

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the callin!g task until the

Bit 7 - Blank adjustment flag. Set as follows:
1 - Write with blank adjustment.
o - Write without blank adjustment.

The logical unit number (LUNa) field contains the LUNa assigned to the cassette to which a
record is to be written.

The data buffer address is the address of the buffer that contains the record to be written.

The write character count is the number of characters to be written on the cassette.

The Write Direct operation writes a record on a cassette. The record consists of ASCII characters
or JISCII characters as specified by the country code. Special considerations apply to the use of
JISCII characters because the cassette unit~3 write a maximum of 86 seven-bit characters per
record, including the characters written by the hardware. The device service routine (DSR) removes
the most significant bit of the JISCII code, ancl the cassette writes the seven least significant bits.
The DSR writes a transition character betwee,n JISCII code with zero as the most significant bit
and JISCII code with one as the most significant bit. These transition characters (transparent to
the user) allow the DSR to supply the most si~Jnificant bit correctly when the record is read. How­
ever, they limit the number of characters the user can place in a record. For example, if no transi­
tion characters were required, the user task could write 80 characters per record; if two transitions
occurred, 78 user-supplied characters would fm the record.

6·122 2270507 ·9701

Printer Output 6.8

When the specified number of characters has been written, the DSR writes a carriage return, a line
feed, a record-off (DC4) character, > 14, and a rubout (DEL) character, > 7F. When the record con­
tains a DC4 character, the DSR writes the DC4 character followed by a record-on (DC2) character.

The last record must terminate with a carriage return to assure that the record is actually written
on the cassette.

When blank adjustment is specified, trailing blanks in the buffer are not written. The output char­
acter count in bytes 10 and 11 is not altered.

The following is an example of the source code for a supervisor call block for a Write Direct
operation:

WACAS DATA 0
BYTE >C,>4C
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 80

6.8 PRINTER OUTPUT

WRITE RECORD TO CASSETTE ASSIGNED TO
LUNO >4C INITIATE MODE.

DNOS supports resource-independent I/O for the printer. Resource-independent I/O for the printer
includes most I/O operations except the Read operations.

The subset of sub-opcodes for the printer applies, as follows:

00 Open
01 Close
02 Close, Write EOF
03 Open and Rewind
04 Close and Unload
05 Read Device Characteristics
OB Write ASCII
OC Write Direct
OD Write EOF
OE Rewind

2270507·9701 6-123

6.8 Printer Output

The following 1/0 SVC block for printer operations is the basic block used for all operations. If an
extension to this block is necessary for a particular operation, it is indicated in the operation
description.

SVC > 00 -- I/O OPERATIONS

DEC HEX

0 0 >00

2 2 SUB-()PCODE

4 4 < SYSTEM FLAGS>

ALIGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT

< REWRN CODE>

LUNO

USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNTI < ACTUAL READ COUNT>

2279470

The system flags (byte 4) in the supervisor call block apply to all printer 1/0. These flags are:

2279535

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

One user flag (byte 5) in the supervisor call block applies to printer 1/0. However, significance of
these flags differs for various operations. Th,e flags that apply to each operation are described in
the detailed description of each operation.

The operations appropriate for the printer arE! described in subsequent paragraphs. The following
sub-opcodes, which do not apply to the printer, produce the indicated results:

06
07
08
09
OA
OF

6·124

Ignored
Ignored
Error
Error
Error
Ignored

2270507-9701

Printer Output 6.8

6.8.1 Open
Sub-opcode >00 specifies an Open operation. The Open operation is required for the printer.
However, whether or not DNOS validates the Open operation is specified when the system is gen­
erated. Validation does not allow an Open operation when the Open operation would result in a
conflict with I/O to the same device by another task.

The following fields of the basic supervisor call block apply to an Open operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 00

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

The following flags in the user flag field apply to an Open operation:

3-4

f
2279536

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the printer to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the printer is 2.

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length for a printer is >86.

An Open operation causes the printer to perform a carriage return and a line feed operation.

2270507·9701 6·125

6.8 Printer Output

The following is an example of the source code for a supervisor call block to open a printer:

OLP

TYP
LEN

6.8.2 Close

DATA 0
BYTE 0,>2C
DATA 0
DATA 0
DATA 0
DATA 0

OPEN LINE PRINTER ASSIGNED
TO LUNO >2C

Sub-opcode >01 specifies a Close operation. The Close operation ends 1/0 to a LUNO from the
calling task. The LUNO remains assigned to the device, and may be opened again for additional 110
operations. When a task terminates, DNOS closes all LUNOs that have been opened by the task. A
Close operation causes the printer to perform a carriage return.

The following fields of the basic supervisor call block apply to a Close operation:

• SVCcode-O

• Return code

• Sub-opcode - > 01

• Logical unit number (LUNO)

• User flags

The initiate flag in the user flag field applies to a Close operation:

2279537

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the opera~ion and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close a printer:

CLP

6·126

DATA 0
BYTE 1,>2C
DATA 0
DATA 0
DATA 0
DATA 0

CLOSE LINE PRINTER ASSIGNED
TO LUNO >2C

2270507 -9701

~

Printer Output 6.8

6.8.3 Close, Write EOF
The Close, Write EOF operation, sub-opcode >02, consists of a Write EOF operation followed by a
Close operation. The Write EOF operation for the printer is a form feed operation.

6.8.4 Open and Rewind
The Open and Rewind operation, sub-opcode >03, is an Open operation followed by a Rewind
operation.

6.8.5 Close and Unload
On a printer, the Close and Unload operation, sub-opcode >04, is identical to a Close EOF
operation.

6.8.6 Read Device Characteristics
Sub-opcode >05 specifies a Read Device Characteristics operation. The Read Device Character­
istics operation returns into the data buffer as much of the device information block as specified
(up to a maximum of 38 characters) by the user in the read character count field.

The following fields of the basic supervisor call block apply to a Read Device Characteristics
operation:

• SVCcode - 0

• Return code

• Sub-opcode - >05

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

• <Actual read count>

The following user flag applies to a Read Device Characteristics operation:

2279537

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the device for which status
information is returned.

2270507·9701 6·127

6.8 Printer Output

The data buffer address is the address of the buffer into which DNOS places the status
information.

The read character count is the number of characters of device information desired.

DNOS returns the number of characters stored in the buffer in the actual read count field. The
number of characters cannot exceed 38.

The contents of the data buffer after a Read Device Characteristics operation has returned the
status of a printer are in Table 6-5.

6-128

Byte

o
1

2,3
4

5
6,7
8,9
10

11-21
22

23
24

Bit

0
1

2-7

Table 6-5. Charac:teristics of Printer Devices

Reserved (>00)
Reserved (> FF)
Reserved (>0000)

Contents

DSR type (>01 indicates any printer except one that uses a CI403 or
CI404 board; > 31 indicates an attached printer)
Reserved (> 00)
CRU/TILINE address of hardware interface
Reserved (> FFFF)
Hardware interface type

>05 = TTY/EIA
>06 = a 9902 port
>80 = parallel printer

Reserved (>00)
Line flags

Reserved (0)
Switched line (defined during system generation)
Reserved (0)

Reserved (> 00)
Speed code

o = 50 baud
1 = 75 baud
2 = 110 baud
3 = 134.5 baud
4 = 150 baud
5 = 200 baud
6 = 300 baud
7 = 600 baud
8 = 1200 baud
9 = 1800 baud
A = 2400 baud
B = 3600 baud
C = 4800 baud
D = 7200 baud
E = 9600 baud
F = 14400 baud
10 = 19200 baud
11 = 28800 baud
12 = 38400 baud

2270507-9701

Printer Output 6.8

Table 6·5. Characteristics of Printer Devices (Continued)

Byte Bit Contents

25-37 Reserved (> 00)

The buffer has the following format for printers that use a CI403 or CI404 board:

Byte Bit

0
1

2,3
4
5

6,7
8,9
10

11-21
22

0
1

2-7
23
24

25-37

2270507 -9701

Reserved (> 00)
Reserved (> FF)
Reserved (>0000)

Contents

DSR type (> 10 indicates a printer that uses a CI403 or CI404 board)
Port identification number
CRU/TILINE address of hardware interface
Reserved (> FFFF)
Hardware interface type

>23 = CI403 port
> 24 = CI404 port

Reserved (> 00)
Line flags

Half duplex
Switched line (defined during system generation)
Reserved (0)

Reserved (> 00)
Speed code

o = 50 baud
1 = 75 baud
2 = 110 baud
3 = 134.5 baud
4 = 150 baud
5 = 200 baud
6 = 300 baud
7 = 600 baud
8 = 1200 baud
9 = 1800 baud
A = 2400 baud
B = 3600 baud
C = 4800 baud
o = 7200 baud
E = 9600 baud
F = 14400 baud
10 = 19200 baud
11 = 28800 baud
12 = 38400 baud

Reserved (> 00)

6·129

6.8 Printer Output

The following is an example of the source code for a supervisor call block for a Read Device Char­
acteristics operation and the read buffer. This call block returns the first 10 characters of the
device information block (through the ACU CRU address). The number of characters currently buf­
fered in the input queue is returned as part of this status information at the label LlQ.

RDSHCT DATA 0
BYTE 5,>35
DATA 0
DATA DMY
DATA 10
DATA 0

DMY BSS2
LlQ BSS 8

6.8.7 Write ASCII

READ STATUS OF PRINTER ASSIGNED TO
LUNO >35.

DEVICE STATUS BUFFER

Sub-opcode > OB specifies a Write ASCII operation. The Write ASCII operation transfers a record
from the specified buffer to the printer.

The foliowinQ fields of the basic supervisor call block apply to a Write ASCII operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OB

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Write character count

The following system flags apply to a Write ASCII operation:

2279538

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

6·130 2270507 ·9701

~

Printer Output 6.8

The following user flags apply to a Write ASCII operation:

3-4

2279539

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Print with blank adjustment.
0- Print without blank adjustment.

The logical unit number (LUNO) field contains the LUNO aSSigned to the printer.

The data buffer address is the address of the buffer that contains the record to be printed.

The write character count is the number of characters to be printed.

The Write ASCII operation prints a line on the printer. The line consists of ASCII characters or JIS­
CII characters as specified by the country code.

All printers support special programmable features that increase the capability of each printer. For
further information about these features refer to the appropriate printer manual.

When blank adjustment is specified, trailing blanks in the buffer are not printed. The write charac­
ter count in bytes 10 and 11 is not altered.

The following is an example of the source code for a supervisor call block for a Write ASCII
operation:

WALP

2270507·9701

DATA 0
BYTE >B,>3C
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 80

PRINT LINE ON LINE PRINTER ASSIGNED TO
LUNO >3C INITIATE MODE.

6·131

6.8 Printer Output

6.8.8 Write Direct
Sub-opcode >OC specifies a Write Direct operation. The Write Direct operation transfers a record
from the specified buffer to the printer.

The following fields of the basic supervisor call block app!y to a Write Direct operation:

• SVCcode - 0

• Return code

• Sub-opcode - >OB

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Write character count

The following system flags apply to a Write Direct operation:

2279540

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The following user flags apply to a Write Direct operation:

2279539

6-132

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation h'as completed.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Print with blank adjustment.
o - Print without blank adjustment.

2270507-9701

Printer Output 6.8

The logical unit number (LUNO) field contains the LUNO assigned to the printer.

The data buffer address is the address of the buffer that contains the record to be printed.

The write character count is the number of characters to be printed.

The Write Direct operation prints a line on the printer. The line consists of ASCII characters or
JISCII characters as specified by the country code.

All printers support special programmable features that increase the capability of each printer. For
further information about these features refer to the appropriate printer manual.

When blank adjustment is specified, trailing blanks in the buffer are not printed. The write char­
acter count in bytes 10 and 11 is not altered.

The following is an example of the source code for a supervisor call block for a Write Direct
operation:

WALP DATA 0
BYTE >B,>3C
BYTE 0,>80
DATAWRBUFF
DATA 0

PRINT LINE ON LINE PRINTER ASSIGNED TO
LUNO >3C INITIATE MODE.

DATA 80

6.8.9 Write EOF
Sub-opcode >OD specifies a Write EOF operation. The Write EOF operation performs a form feed
operation on the printer.

The following fields of the basic supervisor call block apply to a Write EOF operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OD

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Write EOF operation:

2279540

Bit 0 - Initiate flag. Set as follows:

2270507 -9701

1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

6-133

6.8 Printer Output

The logical unit number (LUNO) field contains the LUNO assigned to the printer.

The following is an example of the source code for a supervisor call block to write an EOF to a
printer:

WELP DATA 0
BYTE >D;>2C
DATA 0

WRITE EOF TO LINE PRINTER ASSIGNED
TO LUNO >2C

DATA 0
DATA 0
DATA 0

6.8.10 Rewi nd
Sub-opcode >OE specifies a Rewind operation. The Rewind operation performs a form feed
operation' on a printer.

The following fields of the basic supervisor call block apply to a Rewind operation:

• SVC code - 0

• Return code

• Sub-opcode - > OE

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Rewind opHration:

~279541

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

rhe logical unit number (LUNO) field contains the LUNO assigned to the printer.

rhe following is an example of the source code for a supervisor call block to rewind a printer:

RWLP

.·134

DATA 0
BYTE >E,>3E
DATA 0
DATA 0
DATA 0
DATA 0

REWIND LINE PRINTER ASSIGNED
TO LUNO >3E

2270507 -9701

Magnetic Tape 110 6.9

6.9 MAGNETIC TAPE 1/0

DNOS supports both resource-independent and resource-specific I/O for the Model 979A Magnetic
Tape Units. Except for the Read Device Status operation, the device must be opened using sub­
opcode > 00 or > 03 prior to any I/O operation.

The following I/O SVC block for magnetic tape operations is the basic block used for all
operations. If an extension to this block is necessary for a particular operation, it is indicated in
the operation description.

5 VC > 00 -- I/O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN

EVENT
DEC HEX

0 0 >00 < RETURN CODE>

2 2 SUB-OPCODE LUNO

4 4 < SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNTI < ACTUAL READ COUNT>

2279470

The system flags (byte 4) in the supervisor call block apply to all magnetic tape I/O. These flags are:

2279542

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

Bit 2 - End-of-file. Set by system as follows:
1 - An EOF mark was read on the tape.
o - A read operation did not read an EOF mark.

The user flags (byte 5) in the supervisor call block apply to all magnetiC tape I/O. However, signifi­
cance of these flags differs for various operations. The flags that apply to each operation are
described in the detailed description of each operation.

2270507 -9701 6·135

6.9 Magnetic Tape I/O

The operations appropriate for magnetic tape are described in subsequent paragraphs. The fol­
lowing sub-opcode does not apply to magnetic tape; it produces the indicated result:

08 Error

6.9.1 Magnetic Tape Resource·lndependent 1/0
The sub-opcodes for resource-independent 1/0 to magnetic tape units are as follows:

00 Open
01 Close
02 Close, Write EOF
03 Open and Rewind
04 Close and Unload
05 Read Device Status
06 Forward Space
07 Backward Space
09 Read ASCII
DB Write ASCII
OD Write EOF
DE Rewind
OF Unload

6.9.1.1 Open. Sub-opcode > 00 specifies an Open operation. The Open operation is requi red for
a magnetic tape transport. However, DNOS does not validate the Open operation; that is, it does­
not detect a possible conflict with 1/0 to the same device by another task. An Open operation is not
required prior to performing a Read Device Status operation.

The following fields of the basic supervisor calli block apply to an Open operation:

• SVC code - 0

• Return code

• Sub-opcode - > 00

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

)-136 2270507 -9701

"

Magnetic Tape I/O 6.9

The following flags in the user flag field apply to an Open operation:

2279543

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

The logical unit number (LUNa) field contains the LUNa assigned to the magnetic tape transport
to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the magnetic tape is 8.

The following is an example of the source code for a supervisor call block to open a magnetic tape
transport:

OMT

MTT

DATA 0
BYTE 0,>2F
DATA 0
DATA 0
DATA 0
DATA 0

OPEN MAG TAPE ASSIGNED TO LUNa >2F.

6.9.1.2 Close. Sub-opcode > 01 specifies a Close operation. The Close operation ends 1/0 to a
LUNa from the calling task. The LUNa remains assigned to the device and may be opened again
for additional 1/0 operations. When a task terminates, DNOS closes all LUNas that have been
opened by the task.

The following fields of the basic supervisor call block apply to a Close operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 01

• Logical unit number (LUNa)

• User flags

2270507·9701 6·137

6.9 Magnetic Tape I/O

The initiate flag in the user flag field applies to a Close operation:

2279544

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the call in!;) task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close a magnetic
tape:

CMT DATA 0
BYTE 1,>2F
DATA 0
DATA 0
DATA 0
DATA 0

CLOSE MAG TAPE ASSIGNED TO LUNO >2F.

6.9.1.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode >02, consists of a Write
EOF operation followed by a Close operation.

6.9.1.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open opera­
tion followed by a Rewind operation.

6.9.1.5 Close and Unload. The Close and Unload operation, sub-opcode >04, consists of an
Unload operation followed by a Close operation.

6.9.1.6 Read Device Status. Sub-opcode >05 specifies a Read Device Status operation. The
Read Device status operation returns two bytes of status information.

The following fields of the basic supervisor call block apply to a Read Device Status operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 05

• Logical unit number (LUNO)

• User flags

• Data buffer add ress

i·138 2270507 ·9701

,.

Magnetic Tape I/O 6.9

• Read character count

• < Actual read count>

The following user flag applies to a Read Device Status operation:

2279545

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape transport.

The data buffer address is the address of the buffer into which DNOS places the status infor­
mation.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field. The sys­
tem returns >0002 in this field when the specified LUNO is assigned to a magnetic tape transport.

After a Read Device Status operation for a magnetic tape transport, the data buffer contains two
bytes of information:

Byte Contents

o Transport status:

1

>SO - Online, write ring installed on tape reel.
>40 - Online, no write ring.
> 20 - Offline.

Recording mode:
>SO - Phase encoded, 1600 or 3200 bits per inch (bpi).

00 - Nonreturn-to-zero inverted (NRZI), SOO bpi.

The following is an example of the source code for a supervisor call block for a Read Device Status
operation and code for the read buffer:

RDSMT

STL
ST

2270507 -970 1

DATA 0
BYTE 5,>3C
DATA 0
DATA ST
DATA 10
DATA 0
BSS 10

READ STATUS OF MAG TAPE ASSIGNED TO
LUNO >3C.

DEVICE STATUS BUFFER

Change 1 6·139

I

6.9 Magnetic Tape I/O

6.9.1.7 Forward Space. Sub-opcode >06 specifies a Forward Space operation. The Forward
Space operation moves the tape forwarcl a specified number of logical records or to the end-of-file
record.

The following fields of the basic supervisor call block apply to a Forward Space operation:

• SVCcode - 0

• Return code

• Sub-opcode - >06

• Logical unit number (LUNO)

• < System flags>

• User flags

• Write character count

The system flags defined for all magnetic tape operations apply to a Forward Space operation.

The following user flag applies to a Forward Space operation:

2279546

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the opHration and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape to be for­
ward spaced.

The write character count field (bytes 10 and 11) contains the number of logical records for the
operation. The device service routine (DSI,) stores a zero in the field when the tape is moved the
specified number of records without reacling an EOF record. When the operation reads an EOF
record, the tape movement stops, and the' number of records remaining to be moved is stored in
the write character count field. The DSR also sets the EOF flag in the system flags byte. When the
end of the tape is reached, the operation receives notification in the SVC call block.

6·140 2270507·9701

Magnetic Tape I/O 6.9

The following is an example of the source code for a supervisor call block to forward space a mag­
netic tape:

FSMT DATA 0
BYTE >6,>3B
DATA 0
DATA 0
DATA 0
DATA 5

FORWARD SPACE MAG TAPE ASSIGNED TO
LUNa >3B FIVE RECORDS

6.9.1.8 Backward Space. Sub-opcode >07 specifies a Backward Space operation. The Back­
ward Space operation moves the tape in the reverse direction a specified number of logical
records or to the end-of-file record.

The following fields of the basic supervisor call block apply to a Backward Space operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 07

• Logical unit number (LUNa)

• < System flags>

• User flags

• Write character count

The system flags defined for all magnetic tape operations apply to a Backward Space operation.

The following user flag applies to a Backward Space operation:

2279547

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNa) field contains the LUNa assigned to the magnetic tape to be back­
ward spaced.

2270507 -9701 6·141

6.9 Magnetic Tape I/O

The write character count field (bytes 10 .and 11) contains the number of logical records for the
operation. The device service routine (DSH) stores a zero in the field when the tape is moved the
specified number of records without reading an EOF record. When the operation reads an EOF
record, the tape movement stops, and the number of records remaining to be moved is stored in
the write character count field. The DSR positions the tape so that the next Read operation reads
the EOF record. The DSR also sets the EOF flag in the system flag byte. When the beginning of the
tape is reached, the operation receives noti'fication in the SVC call block.

The following is an example of the sourCE~ code for a supervisor call block to backward space a
magnetic tape:

BSMT DATA 0
BYTE >7,>3B
DATA 0
DATA 0
DATA 0
DATA 4

BACKWARD SPACE MAG TAPE ASSIGNED TO
LUNO >3B FOUR RECORDS

6.9.1.9 Read ASCII. Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII opera­
tion reads a record from the magnetic tape and stores the characters in the specified buffer, one
character per byte. If a Read ASCII operation is attempted at the end-of-tape, data is stored in the
buffer and an error code is returned.

The following fields of the basic supervisor call block apply to a Read ASCII operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 09

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer add ress

• Read character count

• <Actual read count>

The system flags defined for all magnetic tape operations apply to a Read ASCII operation.

6·142 2270507 -9701

Magnetic Tape 110 6.9

The initiate flag in the user flag field applies to a Read ASCII operation:

2279548

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNa) field contains the LUNa assigned to the magnetic tape from
which a record is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

The Read ASCII operation reads the characters listed in Appendix B for magnetic tape. The opera­
tion stores the characters, packed one per byte. The Read operation continues to the end of the
record, or until the buffer is full.

When the record has been read, the number of characters read is stored in the actual read count
field and the operation terminates.

When an EOF mark is read, the device service routine (DSR) sets the EOF flag in the system flags
byte, stores zero in the actual read count field, and terminates the operation.

The following is an example of the source code for a supervisor call block for a Read ASCII opera­
tion and code for the read buffer:

RDMT

ROB

DATA 0
BYTE 9,>30
BYTE 0,>80
DATA ROB
DATA 150
DATA 0
BSS 150

READ RECORD FROM MAG TAPE ASSIGNED
TO LUNa >30 IN THE INITIATE 1/0
MODE.

READ BUFFER

6.9.1.10 Write ASCII. Sub-opcode >OB specifies a Write ASCII operation. The Write ASCII
operation transfers a record from the specified buffer to the magnetic tape. If a Write ASCII opera­
tion is attempted at the end-of-tape, the specified buffer is written with an error code returned.

The following fields of the basic supervisor call block apply to a Write ASCII operation:

• SVC code - 0

• Return code

2270507-9701 6·143

6.9 Magnetic Tape liD

• Sub-opcode - > OB

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Write character count

The following system flags apply to a Write ASCII operation:

2279549

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

The following user flags apply to a Write ASCII operation:

2279550

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape to which a
record is to be written.

The data buffer address is the address of the buffer that contains the record to be written.

The write character count is the number of characters to be written on the magnetic tape.

The Write ASCII operation writes a record on the magnetic tape. The characters in the buffer are
not translated.

6-144 2270507 -9701

Magnetic Tape I/O 6.9

The following is an example of the source code for a supervisor call block for a Write ASCII
operation:

WAMT DATA 0
BYTE >B,>3C
BYTE 0,>80
DATA WRBUFF
DATA 0

WRITE RECORD TO MAG TAPE ASSIGNED TO
LUNO >3C INITIATE MODE.

DATA 60

6.9.1.11 Write EOF. Sub-opcode >OD specifies a Write EOF operation. The Write EOF operation
writes an EOF mark on the magnetic tape.

The following fields of the basic supervisor call block apply to a Write EOF operation:

• SVCcode - 0

• Return code

• Sub-opcode - >OD

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Write EOF operation:

2279551

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape on which
the EOF mark is to be written.

The following is an example of the source code for a supervisor call block to write an EOF mark on
a magnetic tape:

WEMT

2270507·9701

DATA 0
BYTE >D,>3B
DATA 0
DATA 0
DATA 0
DATA 0

WRITE EOF ON MAG TAPE ASSIGNED
TO LUNO >3B.

6·145

6.9 Magnetic Tape lID

6.9.1.12 Rewind. Sub-opcode >OE specifies a Rewind operation. The Rewind operation rewinds
the magnetic tape to the load point and places the transport in the ready state.

The following fields of the basic supervisor call block apply to a Rewind operation:

• SVC code - 0

• Return code

• Sub-opcode - > OE

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Rewind operation:

2279552

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape to be
rewound.

The following is an example of the source code for a supervisor call block to rewind a magnetic
tape:

RWMT DATA 0
BYTE >E,>4D
DATA 0
DATA 0
DATA 0
DATA 0

REWIND MAG TAPE ASSIGNED TO LUNO >4D.

6.9.1.13 Unload. Sub-opcode >OF specifiE!S an Unload operation. The Unload operation rewinds
the magnetic tape to the phYSical beginning C)f the tape, leaving the tape reel ready for removal. No
more I/O to the drive is allowed until the tape reel is remounted or another tape reel is mounted on
the transport.

The following fields of the basic supervisor call block apply to an Unload operation:

• SVCcode - 0

• Return code

6·146 2270507 -9701

Magnetic Tape I/O 6.9

• Sub-opcode - >OF

• Logical unit number (LUNa)

• User flags

The following user flag applies to an Unload operation:

2279553

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNa) field contains the LUNa assigned to the magnetic tape to be
unloaded.

The following is an example of the source code for a supervisor call block to unload a magnetic
tape:

ULMT DATA 0
BYTE >F,>42
DATA 0
DATA 0
DATA 0
DATA 0

6.9.2 Magnetic Tape Resource·Specific 1/0

UNLOAD MAG TAPE ASSIGNED TO LUNa >42.

The following sub-opcodes apply to resource-specific magnetic tape I/O:

OA Read Direct
OC Write Direct

6.9.2.1 Read Direct. Sub-opcode >OA specifies a Read Direct operation. The Read Direct opera­
tion reads a record from the magnetic tape and stores the characters in the specified buffer, two
characters per word.

The following fields of the basic supervisor call block apply to a Read Direct operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OA

• Logical unit number (LUNa)

2270507·9701 6·147

6.9 Magnetic Tape I/O

• < System flags>

• User flags

• Data buffer address

• Read character count

• <Actual read count>

The system flags defined for all magnetic tape operations apply to a Read Direct operation.

The initiate flag in the user flag field applies to a Read Direct operation:

2279554

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the magnetic tape from
which a record is to be read.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stomd in the buffer in the actual read count field.

The Read Direct operation reads the charact«3rs listed in Appendix B for magnetic tape. The opera­
tion stores the characters, packed one per byte. The Read operation continues to the end of the
record, or until the buffer is full.

When the record has been read, the number of characters read is stored in the actual read count
field and the operation terminates. If the number of characters is odd, an additional character is
stored in the buffer, but the odd value is storE!d in the read count field.

When an EOF mark is read, the device service routine (DSR) sets the EOF flag in the system flags
byte, stores zero in the actual read count field, and terminates the operation.

6-148 2270507 -9701

Magnetic Tape I/O 6.9

The following is an example of the source code for a supervisor call block for a Read Direct opera­
tion and code for the read buffer:

RDMT

ROB

DATA 0
BYTE >OA,>3D
BYTE 0,>80
DATA RDB
DATA 150
DATA 0
DATA 0
BSS 150

READ RECORD FROM MAG TAPE ASSIGNED
TO LUNO >3D IN THE INITIATE 1/0
MODE.

READ BUFFER

6.9.2.2 Write Direct. Sub-opcode >OC specifies a Write Direct operation. The Write Direct
operation transfers a record from the specified buffer to the magnetic tape.

The following fields of the basic supervisor call block apply to a Write Direct operation:

• SVCcode - 0

• Return code

• Sub-opcode - >OC

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer add ress

• Write character count

The following system flags apply to a Write Direct operation:

2279555

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

2270507 -9701 6·149

6.9 Magnetic Tape I/O

The following user flags apply to a Write Diretct operation:

2279556

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNa) field contains the LUNa assigned to the magnetic tape to which a
record is to be written.

The data buffer address is the address of the buffer that contains the record to be written.

The write character count is the number of ci1aracters to be written on the magnetic tape.

The Write Direct operation writes a record on the magnetic tape. The characters in the buffer are
not translated.

The following is an example of the source code for a supervisor call block for a Write Direct opera­
tion:

WAMT

6-150

DATA 0
BYTE >C,>3C
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 60

WRITE RECORD TO MAG TAPE ASSIGNED TO
LUNa >3C INITIATE MODE.

2270507·9701

Card Reader Input 6.10

6.10 CARD READER INPUT

DNOS supports resource-independent and resource-specific input for the card reader.

The following I/O SVC block for card reader operations is the basic block used for all operations. If
an extension to this block is necessary for a particular operation, it is indicated in the operation
description.

SVC > 00 -- I/O OPERATIONS A LJGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT

DEC HEX

0 0 >00 < RETURN CODE>

2 2 SUB-OPCODE LUNO

4 4 < SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT>

2279470

The system flags (byte 4) in the supervisor call block apply to card reader input. These flags are:

2279557

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

Bit 2 - End-of-file. Set by system as follows:
1 - A card was read with /* punched in columns 1 and 2.
0- A Read operation read a card that did not have /* in columns 1 and 2.

Two user flags (byte 5) in the supervisor call block apply to card reader input. However, signifi­
cance of these flags differs for various operations. The flags that apply to each operation are
described in the detailed description of each operation.

2270507·9701 6·151

6.10 Card Reader Input

The operations appropriate for the card reader are described in subsequent paragraphs. The fol­
lowing sub-opcodes, which do not apply to card readers, produce the indicated results:

05 Ignored
06 Ignored
07 Ignored
08 Error
OB Error
OC Error
OD Ignored
OE Ignored
OF Ignored

6.10.1 Card Reader Resource·lndependent Input
The sub-opcodes for resource-independent card reader input are as follows:

00 Open
01 Close
02 Close, Write EOF
03 Open and Rewind
04 Close and Unload
09 Read ASCII

6.10.1.1 Open. Sub-opcode >00 specifies an Open operation. The Open operation is required
for the card reader. However, whether or not DNOS validates the Open operation is specified when
the system is generated. Validation does not allow an Open operation when the Open operation
would result in a conflict with 1/0 to the saml~ device by another task.

The following fields of the basic supervisor Gall block apply to an Open operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 00

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

6·152 2270507·9701

Card Reader Input 6.10

The following flags in the user flag field apply to an Open operation:

2 3-4

f
2279558

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the card reader to be opened.

The Open operation returns the device type code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for the card reader is 4.

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the default logical record length for the device. The default
logical record length for the card reader is > 50.

The following is an example of the source code for a supervisor call block to open a card reader:

OCR

CRT
LGT

DATA 0
BYTE 0,>2A
DATA 0
DATA 0
DATA 0
DATA 0

OPEN CARD READER ASSIGNED TO
LUNO >2A.

6.10.1.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends 1/0 to a
LUNO from the calling task. The LUNO remains assigned to the device, and can be opened again
for additional 1/0 operations. When a task terminates, DNOS closes all LUNOs that have been
opened by the task.

The following fields of the basic supervisor call block apply to a Close operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 01

• Logical unit number (LUNO)

• User flags

2270507 ·9701 6·153

6.10 Card Reader Input

The initiate flag in the user flag field applies to a Close operation:

2279559

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close a card reader:

CMT DATA 0
BYTE 1,>2F
DATA 0
DATA 0
DATA 0

CLOSE CARD READER ASSIGNED TO LUNO >2F.

6.10.1.3 Close, Write EOF. The Close, V\I'rite EOF operation, sub-opcode >02, consists of a
Close operation, for the card reader.

6.10.1.4 Open and Rewind. The Open and Rewind operation, sub-opcode >03, is an Open
operation, for the card reader.

6.10.1.5 Close and Unload. The Close and Unload operation, sub-opcode >04, consists of a
Close operation, for the card reader.

6.10.1.6 Read ASCII. Sub-opcode >09 spncifies a Read ASCII operation. The Read ASCII opera­
tion reads a record from a punched card and stores the characters in the specified buffer, one char­
acter per byte.

The following fields of the basic supervisor call block apply to a Read ASCII operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 09

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

6·154 2270507 -9701

Card Reader Input 6.10

• Read character count

• <Actual read count>

The system flags defined for all card reader operations apply to a Read ASCII operation.

The following flags in the user flag field apply to a Read ASCII operation:

2279560

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 7 - Blank adjustment flag. Set as follows:
l' - Read with blank adjustment.
o - Read without blank adjustment.

The logical unit number (LUNO) field contains the LUNO assigned to the card reader.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

The Read ASCII operation recognizes the characters listed in Appendix B for the card reader. The
device service routine (DSR) returns an error code when the punches on the card cannot be trans­
lated and terminates the input. The operation stores the characters, packed two per word. The
Read operation continues until a card has been read; when the Read operation specifies more than
80 characters, the characters on the card are stored in the first 80 bytes of the buffer. When the
operation specifies fewer than 80 characters, the remaining characters on the card are not stored
in the buffer.

When the record has been read, the number of characters read is stored in the actual read count
field and the operation terminates.

When blank adjustment is specified for variable length records, blanks are stored in the buffer to
fill the record. That is, when the record length is less than the buffer size, the device service
routine (DSR) supplies blanks (>20) to fill the buffer. The character count returned in bytes 10 and
11 includes the blanks supplied by the DSR.

When column 1 of a card contains I and column 2 contains 1<, the DSR sets the EOF flag in the sys­
tem flags byte, stores zero in the actual read count field, and terminates the operation.

2270507 ·9701 6·155

6.10 Card Reader Input

The following is an example of the source code for a supervisor call block for a Read ASCII opera­
tion and code for the read buffer:

RDCR DATA 0
BYTE 9,>2D
BYTE 0,>80
DATA CDB
DATA 80
DATA 0
BSS 80

READ RECORD FROM CARD READER ASSIGNED
TO LUNa >2D IN THE INITIATE 1/0 MODE.

CDB READ BUFFER

6.10.2 Card Reader Resource·Specific Input
The card reader operation specific to the card reader is the Read Direct operation, sub-opcode
>OA.

6.10.2.1 Read Direct. Sub-opcode >OA specifies a Read Direct operation. The Read Direct
operation reads a punched card and stores the data as binary data, one card column per word.

The following fields of the basic supervisor call block apply to a Read ASCII operation:

• SVCcode - 0

• Return code

• Sub-opcode - > OA

• Logical unit number (LUNa)

• < System flags>

• User flags

• Data buffer add ress

• Read character count

• < Actual read count>

The system flags defined for all card reader operations apply to a Read Direct operation.

The initiate flag in the user flag field applies to a Read Direct operation:

2279561

Bit 0 - Initiate flag. Set as follows:

6·156

1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

2270507-9701

Card Reader Input 6.10

The logical unit number (LUNO) field contains the LUNO assigned to the card reader.

The data buffer address is the address of the buffer into which DNOS places the record.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

The Read Direct operation reads a card column and stores the data in a word of the buffer. The four
most significant bits of the word are set to zero; the holes in the card are stored as ones in card
row order (top to bottom), as follows:

CONTAINS: o 0 o 0
12 11 0

Row
2 3 4 5 6 7 8 9

2279562

The Read operation continues until a card has been read; when the Read operation specifies more
than 160 bytes (80 columns), the data on the card is stored in the 160 low order addresses of the
buffer. When the operation specifies fewer than 160 bytes (80 columns), the data in the remaining
columns on the card are not stored in the buffer.

When the record has been read, the number of characters read is stored in the actual read count
field and the operation terminates. The number of characters read is two counts per word,
although each word carries one character (12 bits) in each word.

The Read Direct operation does not recognize an EOF record.

The following is an example of the source code for a supervisor call block for a Read Direct opera­
tion and code for the read buffer:

RDDCR

CDBF

2270507·9701

DATA 0
BYTE 9,>20
BYTE 0,>80
DATA CDBF
DATA 160
DATA 0
BSS 160

READ RECORD FROM CARD READER ASSIGNED
TO LUNO >2D IN THE INITIATE 1/0 MODE.

READ BUFFER

6·157

6.11 Direct Disk I/O

6.11 01 REeT DISK 1/0

ONOS supports resource-specific direct diBk 1/0 to all ONOS disks, and to double-sided, double­
density diskettes. Direct disk 1/0 accesses data on the disk by physical address, rather than as a
physical record of a file. Because effective Lise of direct disk 1/0 requires knowledge of disk organi­
zation and of allocation techniques used by ONOS, direct disk 1/0 operations may only be exe­
cuted by privileged tasks and system tasks.

Several direct 1/0 operations require addressing the disk by track. To determine a track address
requires a knowledge of the physical organization of data on a disk. Figure 6-5 shows the concept
as it applies to a disk pack; a disk with a single platter is organized similarly. Notice that a cylinder
includes a recording band on each surface; that is, it includes all the data that could be accessed
without repositioning the heads. The recording band on each surface is called a track; in a given
head position, each head accesses a track. The track is divided into sectors by timing marks.

The formula for computing track numbers is shown in Figure 6-5. Expressed in symbols the
formula is:

T = (c x H) + h

2279565

6·158

TRACK X ADDRESS = CYLINDER .TOTAL HEADS + ADDRESSED HEAD
=2 8+5
= 21

Figure 6·5. Track Addressing

2270507-9701

Direct Disk I/O 6.11

where:

T is the track number.

c is the cylinder number. The number of the cylinder that includes the desired track.

H is the total number of heads (surfaces).

h is the head. The number of the head (surface) that includes the desired track.

For a diskette, the number of heads is two, even-numbered tracks are on surface 0, and odd
numbered tracks are on surface 1.

The following 1/0 SVC block for direct disk operations is the basic block used for all operations. If
an extension to this block is necessary for a particular operation, it is indicated in the operation
description.

SVC > 00 -- I/O OPERATIONS A LIGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT

DEC HEX

0 0 >00 < RElURN CODE>

2 2 SUB-OPCODE LUNO

4 4 < SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

2279470 10 A WRITE CHARACTER COUNTI < ACTUAL READ COUNT>

The subset of sub-opcodes for direct disk 1/0 is as follows:

00 Open
01 Close
02 Close, Write EOF
03 Open and Rewind
04 Close, Unload
05 Read Format
08 Write Format
09 Read by ADU
OA Read by Track
OB Write by ADU
OC Write by Track
OE Store Registers
OF Read Format
10 Write Deleted Sector
11 Read Deleted Sector
12 Write Format with Interleaving

2270507-9701 6·159

6.11 Direct Disk I/O

The system flags (byte 4) in the supervisor call block apply to direct disk 1/0. These flags are:

2279563

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
0- Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

User flags (byte 5) in the supervisor call block apply to direct disk 1/0. However, significance of
these flags differs for various operations. TI1e flags that apply to each operation are described in
the detailed description of each operation.

The operations appropriate for direct disk 1/0 are described in subsequent paragraphs. The fol­
lowing sub-opcodes do not apply; they produce the indicated results:

06 Ignored
07 For ONOS use only
00 Ignored

6.11.1 Open
Sub-opcode >00 specifies an Open operation. The Open operation is required for direct disk 1/0.
However, ONOS does not validate the Open operation; that is, a possible conflict with 1/0 to the
same device by another task is not detected.

The following fields of the basic supervisor call block apply to an Open operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 00

• Logical unit number (LUNO)

• User flags

• Data buffer add ress

6·160 2270507 -9701

Direct Disk I/O 6.11

The following flags in the user flag field apply to an Open operation:

2279564

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the disk.

The Open operation only returns the device type code in the data buffer address field (bytes 6 and
7) of the supervisor call block. The device type code for the disk (and also for the diskette) is 6.

The following is an example of the source code for a supervisor call block to open a disk for direct
1/0:

OD

D

6.11.2 Close

DATA 0
BYTE 0,>D4
DATA 0
DATA 0
DATA 0
DATA 0

OPEN DISK ASSIGNED TO LUNO >D4.

Sub-opcode >01 specifies a Close operation. The Close operation ends 110 to a LUNO from the
calling task. The LUNO remains assigned to the device, and may be opened again for additional 110
operations. When a task terminates, DNOS closes all LUNOs that have been opened by the task.

The following fields of the basic supervisor call block apply to a Close operation:

• SVC code - 0

• Return code

• Sub-opcode - > 01

• Logical unit number (LUNO)

• User flags

2270507-9701 6·161

6.11 Direct Disk I/O

The following user flag applies to a Close operation:

2279569

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNa) field contains the LUNa to be closed.

The following is an example of the source code for a supervisor call block to close a disk:

CVDT DATA 0
BYTE 1,>24
DATA 0
DATA 0
DATA 0
DATA 0

CLOSE VDT ASSIGNED TO LUNa >24.

6.11.3 Close, Write EOF
The Close, Write EOF operation, sub-opcodE~ >02, is identical to the Close operation.

6.11.4 Open and Rewind
The Open and Rewind operation, sub-opcode >03, is identical to the Open operation,for direct
disk 1/0.

6.11.5 Close and Unload
The Close and Unload operation, sub-opcod'9 >04, is identical to the Close operation.

6.11.6 Read Format
Sub-opcode >05 specifies a Read Format operation. The Read Format operation returns 12 bytes
of disk format and track format information 'for a specified track.

The following fields of the basic supervisor call block apply to a Read Format operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 05

• Logical unit number (LUNa)

• User flags

• Data buffer address

• < Actual read count>

6·162 2270507 ·9701

Direct Disk lID 6.11

The following extension to the basic supervisor call block applies to a Read Format operation:

DEC HEX
12 C TRACK ADDRESS

14 E SECTORS/RECORD I SECTOR No.

2279566

The track address field of the supervisor call block extension applies to a Read Format operation.
The system flags that apply to direct disk operations apply to a Read Format operation. The fol­
lowing flags in the user flag field apply to a Read Format operation:

2279567

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the disk unit. The system
assigns a reserved system LUNO to each disk unit.

The data buffer address is the address of the buffer into which ONOS places the format infor­
mation. The buffer should contain 12 bytes.

The read character count is the length of the buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field. For a
Read Format operation, the system returns >OOOC in this field.

After a Read Format operation, the data buffer contains twelve bytes of information. The twelve
bytes contain the following fields:

DEC HEX

0 0 WORDS/TRACK

2 2 SECTORS/TRACK I OVERHEAD/RECORD

4 4 No. HEADS I No. CYLINDERS

6 6 SECTORS/RECORD I RECORDS/TRACK

8 8 WORDS/RECORD

10 A INTERLEAVING FACTOR

2279568

2270507-9701 6·163

6.11 Direct Disk I/O

Disk-related data:

Byte Contents

0-1 The number of words per track on the disk.

2 The number of sectors per track on the disk.

3 The number of words of overhead per record on the disk.

4-5 Bits 0-4 - The number of heads on the disk.

Bits 5-15 - The numberof cylinders on the disk.

Track-related data:

Byte Contents

6 The number of sectors per record on the track.

7 The number of records on the track.

8-9 The number of words per record on the track.

10-11 The interleaving factor for the disk. Disks formatted by a Write Format
operation have a value of one. Disks formatted by a Write Format with
Interleaving operation receive the value supplied when the disk was for­
matted.

Before the tracks on a disk can be used for data storage, they must be formatted. Formatting, per­
formed when a disk is initialized, defines the physical record length of the records on each track.
The Read Format operation reads the format information for a specified track.

The following is an example of the source coele for a supervisor call block for a Read Format opera­
tion and code for the read buffer:

RDFMT

FTL

FT

6·164

DATA 0
BYTE 5,>D3
DATA 0
DATA FT
DATA 12
DATA 0
DATA 35
DATA 0
BSS 12

READ STATUS OF TRACK 35
ON DISK ASSIGNED TO
LUNO >D3.

FORMAT BUFFER

Change 1 2270507 -9701

Direct Disk liD 6.11

6.11.7 Write Format
Sub-opcode > 08 specifies a Write Format operation. The Write Format operation formats the
specified track of the disk.

The following fields of the basic supervisor call block apply to a Write Format operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 08

• Logical unit number (LUNO)

• < System flags>

• User flags

• Read character count

The Write Format operation requires the extension of the supervisor call block shown for the Read
Format operation. The following fields of the extension apply:

• Track address

• < Sectors/record>

The system flags defined for all direct disk operations apply to a Write Format operation.

The following flags in the user flag field apply to a Write Format operation:

2279659

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the disk.

The read character count field (bytes 8 and 9) contains the physical record length for the track to
be formatted.

The track address field contains the address of the track to be formatted.

2270507-9701 6·165

6.11 Direct Disk lID

Formatting, performed when a disk is initialized, defines the physical record length of the records
on each track. The Write Format operation fOlrmats a single track. Using the physical record length,
the system formats the track, and returns the number of sectors per record in byte 14 of the
extended supervisor call block.

CAUTION

Reformatting a track destroys; any data on the track. A track that is
formatted for a number of SE!ctors per record other than one can
only be accessed with direct disk 1/0.

The following is an example of the source code for a supervisor call block to format track 40 on a
disk:

FMT

SR

DATA 0
BYTE >8,>D4
DATA 0
DATA 0
DATA 588
DATA 0
DATA 40
DATA 0

6.11.8 Read by ADU

FORMAT TRACK 40 ON DISK ASSIGNED TO
LUNa >D4

Sub-opcode >09 specifies a Read by Allocatable Disk Unit (ADU) operation. A Read by ADU opera­
tion reads a record from the disk, starting at a specified sector of an ADU.

The following fields of the basic supervisor call block apply to a Read by ADU operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 09

• Logical unit number (LUNa)

• <System flags>

• User flags

• Data buffer address

• Read character count

• <Actual read count>

)-166 2270507-9701

•

Direct Disk I/O 6.11

The following extension to the basic supervisor call block applies to a Read by ADU operation:

2279570

DEC

12

14

HEX
C

E

ADU NUMBER

SECTOR OFFSET IN ADU

The following fields of the supervisor call block extension apply to a Read by ADU operation:

• ADU number

• Sector offset in ADU

The system flags defined for all direct disk operations apply to a Read by ADU operation.

The following flags in the user flag field apply to a Read by ADU operation:

2279571

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the disk from which a record
is to be read.

The data buffer address is the address of the buffer into which DNOS places the record. The
address must be a word address.

The read character count is the length of the buffer. The value must be an even number.

DNOS returns the number of characters stored in the buffer (the number of characters read from
the disk) in the actual read count field.

The contents of the ADU number field is the number of the ADU that contains the record to be
read.

The sector offset in the ADU field contains the number of a sector relative to the ADU. The Read
operation begins at the start of this sector.

2270507·9701 6·167

6.11 Direct Disk I/O

The following is an example of the source code for a supervisor call block for a Read by ADU opera­
tion and code for the read buffer:

RDD DATA 0
BYTE 9,>D5
BYTE 0,>80
DATA DRB
DATA 588
DATA 0
DATA 25
DATA 0
BSS 588

READ RECORD FROM DISK ASSIGNED TO
LUNO >D5 IN THE INITIATE I/O MODE

DRB READ BUFFER

6.11.9 Read by Track
Sub-opcode >OA specifies a Read by Track operation. The Read by Track operation is similar to a
Read by ADU operation. However, the record to be read is addressed by track and sector number
rather than by ADU and sector. Also, flags in the user flag field select options required for surface
analysis.

The track and sector address is supplied in the following extension to the supervisor call block:

DEC HEX

12 C TRACK ADDRESS

14 E SECTORS/REGORD I SECTOR No.

2279572

The track address field contains the address of the track for the Read operation.

The sectors/record field contains the number of sectors per record on the addressed track.

The sector number field contains the number of the sector to be read.

The following flags in the user flag field apply to a Read by Track operation:

2279573

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 3 - Head offset flag. Set as follows:
1 - Read with head offset.
o - Read with no head offset.

6·168 2270507 ·9701

Direct Disk I/O 6.11

Bit 4 - Head offset direction flag (valid only when bit 3 is set to one). Set as follows:
1 - Offset head forward.
o - Offset head backward.

Bit 5 - Transfer inhibit flag. Set as follows:
1 - Inhibit transfer of data.
o - Transfer data.

Bit 7 - Retry flag. Set as follows:
1 - Do not retry on error.
o - Retry on error.

The user flags that apply to the Read by Track operation only specify options used in surface anal­
ysis. A head offset provided by the disk drive may be applied in either a forward or backward direc­
tion under control of bits 3 and 4. A track may be read for detecting errors without actually storing
the data from the disk when bit 5 is set to one. Retries of the Read operation in case of error are
controlled by bit 7.

The following is an example of the source code for a supervisor call block for a Read by Track
operation and code for the read buffer:

RDTS

DRBF

DATA 0
BYTE >A,>D5
BYTE 0,>80
DATA DRBF
DATA 588
DATA 0
DATA 40
BYTE 1
BYTE 24
BSS 588

6.11.10 Write by ADU

READ RECORD FROM DISK ASSIGNED TO
LUNO >D5 IN THE INITIATE 1/0 MODE

READ BUFFER

Sub-opcode > OB specifies a Write by ADU operation. The Write by ADU operation writes a record
on a disk, starting at a specified sector of an ADU.

The following fields of the basic supervisor call block apply to a Write by ADU operation:

• SVCcode - 0

• Return code

• Sub-opcode - >OB

• Logical unit number (LUNO)

• < System flags>

• User flags

2270507-9701 6·169

6.11 Direct Disk I/O

• Data buffer address

• Write character count

The extension to the supervisor call block shown for the Read by ADU operation also applies to the
Write by ADU operation. All fields of the extension apply, as follows:

• ADU number

• Sector offset in ADU

The system flags defined for all direct disk op~3rations apply to a Write by ADU operation.

The following flags in the user flag field apply to a Write by ADU operation:

2279574

Bit 0 - Initiate flag. Set as fOllows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the disk.

The data buffer address is the address of the buffer which contains the record to be written. The
address must be a word address.

The write character count is the number of characters to be written on the disk. The value must be
an even number.

The contents of the ADU number field is the number of the ADU that contains the record to be
read.

The sector offset in ADU field contains the number of a sector relative to the ADU. The Write opera­
tion begins at the start of this sector.

When the number of characters written does not fill an integral number of sectors, the system
writes zeros in the remaining bytes in the partially-written sector.

6·170 2270507·9701

Direct Disk I/O 6.11

The following is an example of the source code for a supervisor call block for a Write by ADU
operation:

WDA DATA 0
BYTE >B,>D3
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 588
DATA 34
DATA 0

6.11.11 Write by Track

WRITE RECORD TO DISK ASSIGNED TO
LUNO >03 INITIATE MODE.

The Write by Track operation (sub-opcode' >OC) is similar to the Write by ADU operation. The dif­
ference is that the record to be read is addressed by track and sector number rather than by ADU
and sector.

The track and sector address is supplied in the extension to the supervisor call block shown for
the Read by Track operation.

The track address field contains the address of the track for the Write operation.

The sectors/record field contains the number of sectors per record on the addressed track.

The sector number field contains the number of the sector to be written.

The following is an example of the source code for a supervisor call block for a Write by Track
operation:

WDT DATA 0
BYTE >C,>D5
BYTE 0,>80
DATA WRBUFF
DATA 0
DATA 588
DATA 75
BYTE 1
BYTE 12

6.11.12 Store Registers

WRITE RECORD TO DISK ASSIGNED TO
LUNO >05 IN THE INITIATE I/O
MODE.

Sub-opcode > OE specifies a Store Registers operation. The Store Registers operation transfers
disk parameters from registers in the disk controller to a specified buffer.

The following fields of the basic supervisor call block apply to a Store Registers operation:

• SVC code - 0

• Return code

• Sub-opcode - > OE

2270507·9701 6·171

6.11 Direct Disk I/O

• Logical unit number (LUNO)

• User flags

• Data buffer address

• < Actual read count>

The extension to the basic supervisor call block shown for a Read Format operation applies also to
a Store Registers operation. However, all of the fields in the extension are ignored.

The system flags that apply to direct disk operations apply to a Store Registers operation.

The following flags in the user flag field apply to a Store Registers operation:

2279575

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the callinlg task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the disk unit.

The data buffer address is the address of the buffer into which ONOS places the disk information.
The buffer should contain six bytes, beginnin~1 on a word address.

The read character count is the length of the buffer.

ONOS returns the number of characters stored in the buffer in the actual read count field. The sys­
tem returns >0006 in this field.

After a Store Registers operation, the data buffer contains six bytes of information, organized in
the following fields:

WORDS/TRACK
DEC HEX

o 0

2 2 SECTORS/TRACK I OVERHEAD/RECORD

4 4 No. HEADS I No. CYLINDER

2279576

6·172 2270507·9701

;

Direct Disk 110 6.11

Byte Contents

0-1 The number of words per track on the disk.

2 The number of sectors per track on the disk.

3 The number of words of overhead per record on the disk.

4-5 Bits'O-4 - The number of heads on the disk.

Bits 5-15 - The number of cylinders on the disk.

The following is an example of the source code for a supervisor call block for a Store Registers
operation and code for the read buffer:

SRDC

RL

REGS

DATA 0
BYTE >E,>D3
DATA 0
DATA REGS
DATA 6
DATA 0
DATA 0
DATA 0
BSS 6

6.11.13 Read Format

STORE REGISTERS FOR DISK
ASSIGNED TO LUNa >D3

REGISTER BUFFER

Sub-opcode >OF is an alternate sub-opcode for the Read Format operation previously described
for sub-opcode > 05.

6.11.14 Write Deleted Sector
Sub-opcode > 10 specifies a Write Deleted Sector operation. The Write Deleted Sector operation
writes the deleted sector data pattern on a diskette sector. The sector is specified with a track and
sector address.

The following fields of the basic supervisor call block apply to a Write Deleted Sector operation:

• SVC code - 0

• Return code

• Sub-opcode - > 10

• Logical unit number (LUNa)

• User flags

The track and sector address is supplied in the extension to the supervisor call block shown for
the Read by Track operation.

The system flags defined for all direct disk operations apply to a Write Deleted Sector operation.

2270507 ·9701 6-173

6.11 Direct Disk I/O

The following flags in the user flag field apply to a Write Deleted Sector operation:

2279577

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNa) field contains the LUNa assigned to the diskette.

The track address field contains the address of the track for the Write Deleted Sector operation.

The sectors/record field contains the number of sectors per record on the addressed track.

The sector number field contains the number of the sector to be written.

The standards for diskettes define a data pattern that identifies a deleted sector. The Write
Deleted Sector operation writes this data pattern on the specified sector. A sector that has been
written as a deleted sector using this sub-opcode can only be read by a Read Deleted Sector opera­
tion.

The following is an example of the source cocle for a supervisor call block to write the deleted sec­
tor data pattern on the diskette:

WDS DATA 0
BYTE >10,>02
DATA °
DATA BUFFER
DATA 0
DATA 0
DATA 35
BYTE 1
BYTE 4

6.11.15 Read Deleted Sector

WRITE DELETED SECTOR ON DISKETTE
ASSIGNED TO LUNa >02

Sub-opcode > 11 specifies a Read Deleted Sector operation. The Read Deleted Sector operation
reads a sector of a diskette on which the deleted sector data pattern has been written.

The following fields of the basic supervisor call block apply to a Read Deleted Sector operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 11

• Logical unit number (LUNa)

6·174 2270507·9701

Direct Disk I/O 6.11

• < System flags>

• User flags

• Data buffer address

• Read character count

• < Actual read cou nt >

The track and sector address is supplied in the extension to the supervisor call block shown for
the Read Deleted Sector operation.

The system flags defined for all direct disk operations apply to a Read Deleted Sector operation.

The following flags in the user flag field apply to a Read Deleted Sector operation:

2279578

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the diskette.

The data buffer address is the address of a buffer into which the deleted sector is read. The buffer
address must be a word address.

The read character count is the number of characters in the buffer. Since a deleted sector contains
a special data pattern, it is appropriate to read only a part of the data. The read character count
must be an even number.

The system returns the number of characters transferred to the buffer in the actual read count
field.

The track address field contains the address of the track for the Read Deleted Sector operation.

The sectors/record field contains the number of sectors per record on the addressed track.

The sector number field contains the number of the sector to be read.

A Read Deleted Sector operation is the only operation that reads a deleted sector successfully.
When a Read Deleted Sector operation addresses a sector that has not been deleted, the operation
returns an error code and no data is transferred to the data buffer.

2270507 ·9701 6·175

6.11 Direct Disk I/O

The following is an example of the source code for a supervisor call block for a Read Deleted Sec­
tor operatiqn and code for the read buffer:

RDDS DATA 0
BYTE >11,>D5
BYTE 0,>80
DATA DSB
DATA 10
DATA 0

READ DELETED SECTOR FROM DISKETTE
. ASSIGNED TO LUNO >D5 IN THE

DSB

DATA 32
BYTE 1
BYTE 12
BSS 10

6.11.16 Write Format with Interleaving

INITIATE 1/0 MODE.

READ BUFFER

Sub-opcode > 12 specifies a Write Format with Interleaving operation. The Write Format with Inter­
leaving operation specifies an interleaving factor for the diskette. The operation may specify the
data pattern used in formatting the diskette. The operation is otherwise identical to the Write For­
mat operation, sub-opcode >08.

The following flags in the user flag field apply to a Write Format with Interleaving operation:

2279579

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the callin~J task until the operation has completed.

Bit 1 - Format data location flag. Set as follows:
1 - Data in buffer.
0- Data in call block.

When the format data location flag is set to '1, a two-word buffer with the following contents is
required:

DEC HEX

o 0 INITIALI ZATION WORD

2 2 INTERLEAVING FACTOR

2279580

The initialization word is a word that the system writes on the diskette during formatting. The inter­
leaving factor should be 1 for diskettes used with DNOS. For a diskette that is to be used in a
DS990 Model 1 system (DX5 or TX5), the interlE!aving factor should be 3. The address of this buffer
is placed in the data buffer address field (bytes 6 and 7) of the supervisor call block.

3·176 2270507 ·9701

Dummy Device I/O 6.12

When the format data location flag is set to zero, the write character count field (bytes 10 and 11) of
the supervisor call block contains the interleaving factor. An initialization word supplied by the
system is written on the diskette.

Interleaving arranges the sectors on the diskette to allow time for transfer of data between oper­
ations that address the sectors in sequence. An interleaving factor of 1 arranges the sectors in
sequence; a factor of 2 interleaves a sector between sectors 0 and 1, and between sectors 1 and 2,
and so on. The value of 3 means that two sectors pass the heads between consecutively-numbered
sectors. This allows the period of time required to write two sectors for the transfer of data.

The following is an example of the source code for a supervisor call block to format track 40 on a
diskette with an interleaving factor:

FMTI

SRI

DATA 0
BYTE > 12, > D4
DATA 0
DATA 0
DATA 588
DATA 3
DATA 40
DATA 0

6.12 DUMMY DEVICE 1/0

FORMAT TRACK 40 ON DISKETTE
ASSIGNED TO LUNO > D4 WITH
INTERLEAVING FACTOR OF 3

The dummy device can be assigned to a LUNO to effectively skip all 1/0 operations to that LUNO.
The device name is DUMY. The following operations to the dummy device are supported:

• Open

• Open and Rewind

• Read ASCII

• Read Di rect

The Open and Open Rewind operations to the dummy device return device type 0 in the data buffer
address field (bytes 6 and 7) of the supervisor call block. The default logical record length returned
in bytes 8 and 9 is zero. The Read ASCII and Read Direct operations set the EOF flag.

2270507-9701 6·177

6.12 Dummy Device I/O

The following sub-opcodes produce the indicated results:

01 Ignored
02 Ignored
04 Ignored
05 Ignored
06 Ignored
07 Ignored
08 Ignored
OB Ignored
OC Ignored
OD Ignored
OE Ignored
OF Ignored

6-178 2270507 -9701

7

File 1/0

7.1 DNOS FILES

File 1/0 combines the support of the file management and 1/0 capabilities of DNOS for three types
of disk files. The file types are:

• Sequential files

• Relative record files

• Key indexed files

A sequential file consists of records written in the sequence in which they are presented to file
management and read in the sequence in which they were written. Resource-independent 1/0 con­
cepts apply to sequential files; that is, input from a card reader may be substituted for input from a
sequential file of card-image records by changing the LUNO assignment. .

Relative record files consist of records that are uniquely identifiable by the position they occupy
within the file. When a record is written, it is written to a specific position within the file. The
position is identified by an integer. Position 0 identifies the first record of the file, position 1
identifies the second record, and so on. A read operation accesses the record by its record
number. Relative record files may be written or read in numeric sequence using the number
identifying the position of the record. Records may be read or written in random sequence by
specifying the record number explicitly.

Three special usage types of relative record files are supported by DNOS. The special usage types
are:

• Directory files - Contain information necessary to locate other files and to describe the
characteristics of those files.

• Program files - Store the linked object code of task segments, procedure segments,
program segments, and overlays in a format that can be executed.

• Image files - Contain the memory image code of programs stored so that the logical
record size equals the physical record size which equals the disk sector size.

Key indexed files consist of records that contain one or more keys by which they are accessed.
They provide the capability of accessing records by content instead of by position.

Several characteristics of file 1/0 apply to two or three of these file types. These subjects are
discussed in subsequent paragraphs, preceding the descriptions of File 1/0 Utility operations and
1/0 operations to each type of file.

2270507·9701 7-1

7.1 DNOS Files

7.1.1 Record Blocking
To reduce the number of disk transfers, it is often best to choose physical records large enough to
contain several logical records. The size of a physical record should be a multiple or submultiple
of the size of an allocatable disk unit (ADU). The technique of storing several logical records in a
physical record is called blocking.

When a task first issues a read request, the sys.tem actually reads an entire physical record or ADU
:whichever is larger) into memory. The physical record is stored in an area of memory called a
blocking buffer. Only the part that corresponds to the requested logical record is passed to the re­
questing task. Subsequent Read and Write opE!rations do not cause immediate disk access but in­
stead refer to the record image in memory (unless the immediate write mode is in effect). The
system keeps an accessed physical record (which usually contains several logical records) in
memory until the memory area is needed for other purposes. The blocking of logical records into
physical records, together with the deferred write capabilities, may substantially improve system
throughput. This is especially true for sequential files.

The system always processes sequential files as blocked files. For relative record files blocking
only applies when the physical record size specified is at least twice the logical record length.

7.1.2 Blank Adjustment/Compression
Blank compression conserves space on the disk that otherwise would contain blanks. Blank
compression is requested for a file when it is created. It is discussed further in the paragraph on
the Create Fi Ie operation.

Blank adjustment is also available for saving disk space on sequential files. Blank adjustment may
be specified for Write and Read operations. When blank adjustment is specified for a Write
operation, trailing blanks in each record are not written. When blank adjustment is specified for a
Read operation, the buffer is filled with blanks following the last character read.

7.1.3 File and Record Protection Features
The system provides the following features for protecting files from program flaws that might
otherwise destroy valuable data:

• Delete and write protection

• Record locking

'.1.3.1 Delete and Write Protection. The delete and write protection file attributes may be modi­
ied by utility 1/0 calls described in subsequent paragraphs. Files are created initially without pro­
ection; a subsequent call must be made to apply protection. If security was selected during
,ystem generation (answering YES to the SECURITY? prompt), delete and write protect access is
equired to perform these operations.

~n attempt to write to or delete a file with write protection will fail and return an error code. An
lttempt to delete a file with delete protection will fail and return an error code. These protective
lttributes are not intended for file security. (There are non privileged supervisor calls to remove
)rotection.) They do provide protection against program flaws and user errors that might other­
vise destroy valuable data.

'-2 2270507·9701

DNOS Files 7.1

7.1.3.2 Record Locking. Record locking means that although access to a given file may be
shared among several users, individual records may be locked to provide exclusive (single user)
read and write access. This feature is useful in ensuring that record updates occur one at a time.
For example, inventory files might be accessible from several terminals. Record locking can
prevent simultaneous updating of a record by two or more users, causing an undetected loss of
one of the updates.

EXAMPLE
Without Record Lock

1. Us~r A reads a record.

2. User 8 reads the same record.

3. User A updates his copy of the record
and writes the updated record to
disk.

4. User 8 updates his copy of the record
and writes the updated record to
disk.

Final Result: User 8's update is incor­
porated in the record, but User A's update
is not included.

With Record Lock

1. User A reads a record and locks it by
setting the lock/unlock flag (byte 5,
bit 5) in the call block.

2. User 8 attempts to read the same
record but must wait for User A to
unlock the record.

3. User A updates the record and writes
it back to disk, which unlocks it if the
lock/unlock flag is set.

4. User 8 reads the record and locks it.

5. User 8 updates the record, writes it
back to disk, and unlocks it.

Final Result: 80th updates are now in­
cluded in the record.

Record locking requires an entry in memory for each locked record, which imposes a limitation on
the numbe.r of records that can be locked at one time. The limit depends on the size of memory and
usage of memory by other system functions. It is on the order of 1000 records, and an error code is
returned when no more memory is available for locked record entries.

7.1.4 Temporary Files
DNOS supports task-temporary and job-temporary files, which are automatically deleted when the
task or job terminates.

A task-temporary file is a file used only within the scope of a task. When the temporary flag in the
supervisor call block is set to one, an Assign LUNO or Create File I/O Operation can create a task­
temporary file. When an Assign LUNO Operation creates (autocreates) a task-temporary file, the
system generates the path name. The name of the disk on which the file will be created can be
specified; if no pathname is specified, the file is created on the system disk. A file named by the
system is deleted when the LUNO is released. A file named by the user is deleted with the release
of the LUNO (or the last of several LUNOs) assigned to it.

2270507 -9701 Change 1 7-3

7.1 DNOS Files

A job-temporary file is a temporary file that is required and used only within the scope of a job.
These temporary files are local to the job to which the task that creates them is associated, and they
are deleted along with the job. A job-temporary file may be accessed by any task within the job.

Using the Assign Logical Name (ALN) SCI command and specifying a resource type of
TEMPORARY creates a job temporary file. If the CREATE NOW option is chosen, the file is created
immediately; otherwise, the file is created the first time a LUNO is assigned to the logical name.

Access to the file is by logical name. The logical name operations are described in Section 5.

Job-temporary files are deleted when the job terminates or when the logical name is released.

7.1.5 Concatenated and Multifile Sets
Sequential and relative record files may be logically concatenated by setting the values of a logical
name to the pathnames of a set of files. LO~Jical concatenation allows access to the set of files, in
sequence, without physically concatenating the files. (When required, physical concatenation may
be performed by the Copy/Concatenate (CC) SCI command.) A multifile set is a set of key indexed
files, the path names of which are the values of a logical name. The files in the set are associated in a
nonreversible manner. Individual components of concatenated and multifile sets may be on
separate disks.

Several restrictions apply to the concatenation of files. The files must be the same type and may not
be special-use files (directories, program files, key indexed files, or image files). Relative record files
to be concatenated must have the same logical record size. A concatenation of files may not contain
both blocked and unblocked records, and any LUNO assigned to a file must be released before con­
catenating the file. A file may not be concatenated or associated with itself.

Special rules apply to the combining of key indexed files in a multifile set. At the first definition of
the multifile set, all but the first file must bl9 empty; none may be a member of an existing multifile
set; they must all have the same physical relcord size; and they must have the same key definitions.
In subsequent definitions of these sets, thl3 same files must be associated in the same order, and
none of the original set may be omitted. One empty file may be added at the end (but not at any other
position). Key indexed files of a multifile set can only be individually accessed as an unblocked file.

The intended use of a multifile set of key indexed files is to permit a larger key indexed file than one
disk can store. When a key indexed file can no longer expand because there is insufficient space on
the disk, a new file can be created on another disk. By using a logical name, the two files can be
used as one. The second file is used as an extension of the first. If the first file contains 5000
physical records, when physical record 5001 is required, the first physical record of the second file,
record 0, is used.

7-4 Change 1 2270507 -9701

J

ONOS Files 7.1

Only a few of the file utility operations of the I/O Operations SVC apply to concatenated and
multivolume sets, as follows:

91 - Assign LUNO
93 - Release LUNO
99 - Verify Pathname

The Assign Logical Name (ALN) SCI command associates files collectively with a logical name.
Actual logical concatenation or creation of a multifile set occurs when a LUNO is assigned to the
logical name. A concatenated file may be accessed only for the duration of the logical name. The
user must specify the files in the concatenation order desired. Files can be specified by
pathname, synonym, logical name or a logical name and pathname combination. However, all
forms must resolve to valid pathnames. All files in the concatenation or multifile set must be
precreated and online when the logical name is used.

The last file in a concatenation set can be expandable. All other files become nonexpandable until
the logical name is released or the job terminates.

When a single end-of-fi/e mark appears at the end-of-medium, the end-of-fi/e is masked. This
allows concatenated files to be accessed logically as a single file without the hindrance of
intermediate end-of-fi/e m~rks being returned. Note that any intermediate end-of-file mark not at
the end-of-medium is always returned. If two end-of-file marks are encountered at the end-of­
medium, a single end-of-file is returned.

Several users can access the same concatenated or multifile set if the access privileges permit.
Two concatenated files are identical when they consist of the same pathnames in the same order.
To maintain file integrity, an error is returned if any of the precreated files of a concatenated file
are being accessed independently. A concatenated file is deleted by deleting the individual files.

7.1.6 End-ot-File
An end-of-file (EOF) is a logical position within a relative record or key indexed file and an actual
record within sequential files which, when read, causes the EOF status bit to be set. No data is
transferred. The EOF status bit is bit 2 of the system flags. Relative record files have one EOF that
corresponds to the record following the highest-numbered written record. Sequential files may
have more than one EOF. A sequential file is analogous to a reel of magnetic tape, which could
contain several files, separated by EOFs on the tape. Thus, a sequential file may consist of
multiple data sets, or subfiles, delimited by EOFs. A key indexed file has a logical EOF that
corresponds to the record following the record with the largest primary key. For a key indexed file,
the EOF applies only to a Read ASCII operation and a Forward Space operation, which access the
file sequentially in primary key order.

The internal representation of an EOF in a sequential file is a record of zero length; it is written by
a Write EOF operation or by a Close, Write EOF operation. Writing an EOF does not prevent writing
more records to the file.

2270507·9'701 7-5

7.2 File I/O

7.2 FILE UTILITY OPERATIONS

A file may be accessed by a pathname or by at logical name, through assignment of a LUNO. The
utility functions required for file 1/0 include ttle Assign LUNO and Release LUNO operations, and
functions to create a file, delete a file, verify or change the pathname, apply or change protection,
and add or delete an alias.

7.2.1 Performing Utility Functions
A subset of the sub-opcodes of the 1/0 Operations SVC (opcode 00) performs 1/0 utility functions
that support file 1/0. These 1/0 utility functions allow a program to:

• Create a fi Ie

• Delete a file

• Assign a LUNO

• Release a LUNO

• Assign a new pathname

• Verify a path name

• Apply write protection

• Apply delete protection

• Remove protection

• Add an alias to a file

• Delete an al ias of a fi Ie

• Specify the write mode

Only the following operations apply to concatenated files:

• Assign a LUNO

• Release a LUNO

• Verify a pathname

Many of these utility operations require pathnames. The pathname of a file consists of a volume
name (which may be implied if it is the system disk), directory names (if any), and a filename. The
names within the pathname are separated by periods (.). When the volume name is that of the
system disk, it may be omitted. The pathnalme begins with a period .in this case. The number of
directory names in the pathname depends upon the organization of the disk. The volume directory
and directories at all levels may contain both directories and files. The maximum length of a
path name is 48 characters.

7-6 2270507-9701

~

File Utility Operations 7.2

The capability of creating and deleting files with an SVC simplifies execution of the program by
creating files that otherwise would have to be created by the user prior to executing the program.
Similarly, the assignment of LUNOs and the release of LU,NO assignments by the program makes
proper execution of the program less dependent on the user.

A program can also change the pathname of a file. A change in a pathname may change either the
filename or one or more directory names, but not the volume name.

A program can verify a pathname. This consists of verifying the syntax of a pathname and also
verifying the existence of the file corresponding to the pathname.

Files are created without protection. A file may be protected from being deleted, or from being
written to, by a utility function of the 110 Operations SVC. Also, protection may be removed using
another function.

An alias is an alternate name for a directory or file, making a file accessible using a pathname with
an aJias instead of the directory name or filename. An alias may be used to avoid recoding and
reassembling a program to change a pathname when the actual pathname is no longer the
pathname that appears in the code. A program may define an alias or delete an alias.

DNOS normally defers the actual writing of a record in a file until the memory occupied by the
record is required for other purposes or until the file is closed. Any write error that occurs when the
record is written may thus be delayed beyond the point at which the program tests for a write error.
DNOS supports an immediate write mode that avoids the problem by actually writing the record in
the file when the write SVC is executed. The immediate write mode should also be used for files
that must be updated without the delay that could otherwise occur. For example, the system log
must be written in the immediate write mode to prevent loss of messages when the system fails.
The immediate write mode is specified when a file is created or whenever the specify write mode
utility function is performed. The deferred write mode may also be specified when the file is cre­
ated or with the same utility function.

Specifying parameters adds functions to many of the 110 operations. The parameter address field
of the request block points to a parameter list. The parameter list can contain multiple parameters.
Parameters that apply only to a specific 110 operation are discussed in the description of that
operation. The following discussion applies to those parameters that may apply to multiple I/O
operations.

In a secure environment, it may be necessary to issue an I/O utility operation specifying the rights
of a user other than the user issuing the call; this is useful in server jobs that process requests
from other jobs. By issuing the operation with a user ID parameter, the servor job can assume the
security of the requestor. In a secure environment, the following 110 utility operations can specify
a user I D as an SVC I/O call block parameter:

• Assign LUND - This command assigns a LUND if the specified user has any access
rights to the file. DNOS verifies the user's access rights for all subsequent 110
operations that use the assigned LUND.

• Create File - This command creates a file with full access rights given to the specified
user's creation access group.

2270507·9701 7-7

.2 File Utility Operations

• Delete file - This command deletes a file if the specified user 10 has delete access to
the file.

• Unprotect file - This command removes write and delete protection from a file if the
specified user 10 has write and delete! access to the file.

• Write protect file - This command write protects a file if the specified user 10 has write
and delete access to the file.

• Delete Protect File - This command delete protects a file if the specified user ID has
write and delete access to the file.

f specified, the user 10 must be the first entry in the parameter list. The user 10 and user passcode
:ields are eight bytes long; if the specified user 10 or user passcode is less than eight characters,
:he user 10 or user passcode must be left-justified and the field right-filled with blanks. For secu­
"ity bypass tasks, the passcode does not need to be specified. The parameter list address must be
:>Iaced in the SVC 1/0 call block, and the utility flag bit must be set. The following diagram shows a
Jser 10 and passcode as the only entry in the parameter list.

>13

>02

2.2.85030

Byte

0

1

2

7·8

>0

>10

USER 10

PASSCOOE

Contents

TOTAL LENGTH OF LIST­
LENGTH BYTE/RESERVED

SUBLlST NUMBER/LENGTH OF

USER to + PASSCOOE

8 BYTES

8 BYTES

Total parameter list minus length byte in bytes

Reserved - Must be set to zero.

>02 - User 10 sublist number

2270507 -9701

"I

File Utility Operations 7.2

3 Length of user 10 sublist in bytes

4-11 User 10 - Left-justified and right-filled with blanks

12-19 Passcode - Unencrypted, left-justified and right-filled with blanks

The utility operations require an extended supervisor call block, described in Section 5 and
displayed below.

SVC > 00 -- I/o OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN
EVENT

(UTI LITY SUB-OPCODE)

DEC HEX

0 0 >00 <RETURN CODE>

2 2 SUB-OPCODE LUNO

4 4 <SYSTEM FLAGS> USER FLAGS

6 6 < RESOURCE TYPE>

8 8

RESERVED

10 A

12 C KEY DEF. BLOCK ADDR/DEF·. PHYS. REC. SIZE

14 E RESERVED

16 10 UTILITY FLAGS

18 12 DEFINED LOGICAL RECORD LENGTH

20 14 DEFINED PHYSI CAL RECORD LENGTH

22 16 PATHNAME ADDRESS

24 18 PARAMETER ADDRESS

26 lA RESERVED

28 1C

INITIAL FILE ALLOCATION

30 IE

32 20

SECONDARY FILE ALLOCATION

34 22

2279581

2270507 -9701 7·

7.2 File Utility Operations

7.2.1.1 Creating Files. To create a file, ,a program executes an 1/0 Operations SVC with sub­
opcode > 90. The following fields of the utility supervisor call block apply:

• SVCcode-O

• Return code

• Utility sub-opcode - >90

• Key definition block address (key lindexed files)

• Default physical record size (directory files)

• Numbers of tasks, procedures, and overlays (program files)

• Uti lity flags

• Logical record length

• Physical record length

• Pathname address

• Parameter address

• Initial file allocation

• Number of directory entries (directory files)

• Secondary file allocation

The following utility flags (bytes 16 and 17 of the call block) apply:

,10

1-2

f tfff t f f
2279582

Bits 1-2 - File usage flag. Set as follows:
00 - No special usage.
01 - Directory file.
10 - Program file.
11 - Image file.

Bit 7 - Parameter flag. Set as follows:
1 - Parameters are present and pointed to by bytes> 18 and> 19.
o - No parameters.

2270507-9701

File Utility Operations 7.2

Bit 8 - LRL flag. Set as follows:
1 - Place the logical record length in bytes> 12 and> 13.
0- Place the logical record length in bytes >8 and >9. It is recommended that you

set the LRL flag to 1 and place the logical record length in bytes 12 and 13.

Bit 9 - Temporary file flag. Set as follows:
1 - Temporary file.
o - Not a temporary file.

The temporary file will exist until the last LUNO assigned to the file is released.

Bit 10 - Write mode flag. Set as follows:
1 - Immediate write mode.
o - Deferred write mode (normal mode).

The setting of the write mode flag does not apply to a key indexed file, which is
always created in the immediate write mode.

Bits 11-12 - Data format flag. Set as follows:
00 - Normal record image.
01 - Blank compressed.

The setting of the data format flag does not apply to a key indexed file, which is
always blank compressed.

Bit 13 - Allocation flag. Set as follows:
1 - Expandable file.
0- Fixed size file.

Bits 14-15 - File type flag. Set as follows:
01 - Sequential file.
10 - Relative record file.
11 - Key indexed file.

A file consists of a set of data structures called logical records. Division of a file into logical
records does not necessarily correspond to the physical division of data on the disk. That is, there
are two types of records: logical records, the data structures read and written by programs, and
physical records, the data structures actually transferred to and from the disk. Typically, the
physical record contains several logical records. Both logical and physical record sizes must be
specified, explicitly or by default, when a file is created.

The type of the file is specified when the file is created:

• Sequential

• Relative record

• Key indexed

2270507 ·9701 7·11

7.2 File Utility Operations

Within the relative record file type are three special use categories:

• Directory files

• Program files

• Image files

When creating a relative record file, the user must specify the special use category or specify that
no special use category applies.

The pathname of a file is assigned when tho file is created. The ASCII characters of the pathname
are placed in an area of memory that is preceded by a byte that contains the number of characters
in the pathname. The address of the byte that contains the character count is placed in the super­
visor call block as the pathname address.

The Performing Utility Function paragraph of this section shows how to specify user 10 parame­
ters in a secure environment. This option allows the creation of a file with full access rights given
to the user's creation access group. This option does not apply to directories.

The initial file allocation applies to all files. DNOS files may be expandable or of fixed length. The
initial allocation determines the number of logical records allocated to the file initially, in the case
of an expandable file, or the total allocation, in logical records, for a fixed length file. The
allocation flag is set to one when the file is expandable, and the secondary file allocation field
contains the number of additional logical records requested when the initial allocation has been
filled. Additional secondary allocations are made, as required.

Additional disk space is allocated contiguous to space already occupied by the file, when
possible. When the initial allocation is filled, additional space is requested. When the requested
space is available contiguous to the initial allocation, the initial allocation is extended by the
amount of the request. When contiguous space is available (but not as much as is requested), the
initial allocation is extended to occupy the available contiguous space. Only when no contiguous
space is available is a secondary allocation made. The size of the secondary allocation is the
requested size or the largest contiguous block of disk space, whichever is smaller.

The amount of disk space requested is the larger of two values, each computed by a formula. The
first formula is based on the number of secondary allocations, as follows:

A = SA x (2**n)

where:

A is the amount of disk space requested.

SA is the secondary allocation field contents (converted to ADUs).

n is the number of secondary allocations, 0 through 15.

2270507 ·9701

•

File Utility Operations 7.2

The other formula is based on the number of allocations (including extensions to an existing
allocation and secondary allocations):

A = TI MTB L(x)

where:

A is the number of AOUs of disk space requested.

x is the number of allocations, initialized to the number of secondary allocations
when the LUNO is assigned and incremented for each allocation.

TIMTBL is a table of numbers of physical records.

Table TIMTBL contains the following values:

TIMTBL(O) = 1 physical record
TIMTBL(1) = 2 physical records
TIMTBL(2) = 4 physical records
TIMTBL(3) = 8 physical records
TIMTBL(4) = 12 physical records
TIMTBL(5) = 16 physical records
TIMTBL(6) = 20 physical records
TIMTBL(7) = 24 physical records

The value of TIMTBL(7) also applies to values of x greater than 7.

Because of the conversion of SA in the first formula to AOUs, that formula applies when a physical
record is larger than an AOU.

A temporary file is a file that is deleted automatically. After the file is created, one or more LUNOs
may be assigned to the file. When the last LUNO assigned to the file is released, ONOS deletes
the file.

Normally, a physical record remains in memory until the memory it occupies is required for other
purposes. Read and Write operations transfer data from and to the record in memory, but the
actual writing of the data to the disk occurs some time after the write SVC is completed. This is a
very efficient way to manage a file, since memory accesses are much faster than disk accesses.
However, should an error occur when the physical record is actually written, the error code is
returned at completion of the next SVC to the LUNO, and the error may be misinterpreted or
ignored. The immediate write mode, which applies when the write mode flag is set, forces ONOS
to write the physical record immediately following a write SVC. If the flag is set when the file is
created, the immediate write mode remains in effect until the file is deleted or until a utility
operation resets the immediate write mode.

A user may specify blank compression when creating a sequential file. Blank compression saves
disk space within a file by storing data in a more compact format.

2270507-9701 7·13

7.2 File Utility Operations

Blank compression replaces strings of blanks by a count of blanks when writing to disk and
restores the blank string when reading from disk. In operation, blank compression is not apparent
to the user. It is generally advantageous to specify blank compression for files that usually
contain many blanks, such as:

• Source files

• Listing files

• Text files

On the other hand, it is less advantageous (but not harmful) to use blank compression for files that
contain few blanks, such as:

• Binary files (not ASCII data)

• Relocatable ASCII coded object Hies

A blank compressed record with no blanks requires one more word of disk space than if blank
compression had not been specified.

Creating Sequential Files. A sequential file~ consists of logical records that are accessed in the
sequence in which they appear in the file; that is, record 0 is accessed first, record 1 is accessed
next, and so forth. Sequential files resemblle files on magnetic tape. Examples of sequential file
use include the following:

• As an input file of card images. If a logical record length of aD is specified, the
sequential file can function as a card reader to the program reading the file.

• As an output file, to function as the line printer.

• As a listing file for assembly or Link Editor listings.

The use of sequential files for assembly and Link Editor listings is a recommended practice.
Assembly listings should be written to a sE!quential file. This saves time since the speed of the
assembler is limited by the speed of the printer when the listing is printed directly. The use of
sequential files for all input from and output to a device is usually preferable to direct input from or
output to a device.

The logical length of records in a sequential file may be fixed or variable; variable length records
may be any length including zero. When a file is created, the user may specify the logical record
size or may allow the system to use the default size of aD bytes. Specifying 0 causes the system to
use the default of aD. If the user specifies the size, the size should be an estimate of the average
logical record size of the records to be placed in the file.

The following characteristics apply to an example sequential file:

• a~-byte logical records

• 256-byte physical records

7·14 2270507·9701

File Utility Operations 7.2

• 1,000-record initial allocation

• 500-record secondary allocation

• Blank compression

Although the logical record length is 80 bytes, few records contain that many bytes because blank
compression reduces the length of each record by the number of blanks compressed from the
record. The average number of bytes per record in this file is 40 bytes. (This average does not
necessarily apply to any file other than this example.) Thus, since this is half the size of the actual
logical record, the allocation sizes should be reduced by half.

The following is an example OJ the source code for the supervisor call block to create the example
file and for the path name of the file:

CRSEQ

PATHL

NAME

DATA 0
BYTE >90,0
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 0,>8D
DATA 80
DATA 256
DATA PATHL
DATA 0,0
DATA 0,500
DATA 0,250

CREATE FILE PACK.USER.TEXT.FILE01,
LRL = 80 AND PRL = 256. FILE IS A
BLANK COMPRESSED, EXPANDABLE,
SEQUENTIAL FILE. INITIAL ALLOCATION
IS 500, SECONDARY ALLOCATION IS 250.
UTILITY FLAGS

BYTE NAME-$-1 PATHNAME LENGTH
TEXT 'PACK.USER.TEXT.FILE01'
EQU $

The following example showsthe same file created specifying a user ID and passcode:

CRSEQ

PATHL

NAME

2270507·9701

DATA 0
BYTE >90,0
DATA 0,0
DATA 0,0
DATA 0,0
DATA >018D
DATA 80
DATA 256
DATA PATHL
DATA USERID
DATA 0
DATA 0,500
DATA 0,250

CREATE FILE PACK.USER.TEXT.FILE01,
LRL = 80 AND PRL = 256. FILE IS A
BLANK COMPRESSED, EXPANDABLE,
SEQUENTIAL FILE. INITIAL ALLOCATION
IS 500, SECON DARY ALLOCATION IS 250.
UTILITY FLAGS WITH USER ID SPECIFIED

BYTE NAME-$-1 PATHNAME LENGTH
TEXT 'PACK.USER.TEXT.FILE01'
EQU $

7-15

7.2 File Utility Operations

USERID BYTE >13,0
BYTE >02,>10
TEXT'IDFIELD'
TEXT '65420

TOTAL LENGTH
SUBLIST TYPE AND LIST LENGtH
USERID
USER PASSCODE

Creating Relative Record Files. A relative rE~cord file consists of records that can be accessed
either randomly or sequentially. To access al record randomly, the user specifies a unique record
number. For example, to access record number 5, the value 5 must be placed in the appropriate
field of the 1/0 supervisor call block.

Relative record files can also be accessed s.equentially. To access records sequentially, the user
specifies a starting record number. File management automatically increments the record number'
after each read or write operation.

Relative record files are useful when each record in the file can be associated with a unique value
ranging from 0 to any number. For exampIE~, in an inventory file, item number is appropriate for
record number. In this case, to obtain in~:ormation about item number 23456, access record
number 23456.

The range of record numbers is one less than the number of records in the file. A relative record
file can contain a maximum of 16,777,216 records. Because the records in a relative record file are
fixed length, the system can convert a specified record number to a physical address on disk and
can directly obtain any record with one disk access. Essentially, the location on the disk is derived
from the calculation:

logical record position = file position + (record number x record length)

The logical record length for relative record files is fixed and is specified when the file is created.
Specifying 0 causes the system to use the default size of 80 bytes.

Relative record files may be blocked or unblocked. Unless the immediate write mode applies, the
physical record is not written to disk until the system needs the memory space occupied by the
physical record or until the file is closed.

DNOS supports three special use categories of relative record files:

• Directory files

• Program files

• Image files

The following characteristics apply to an Elxample relative record file:

• 72-byte logical records

• 256-byte physical records

• 1,000-record fixed size

7·16 2270507 ·9701

File Utility Operations 7.2

The following is an example of the source code for the supervisor call block to create the example
file and for the path name of the file:

CRREL

PTHN

NME

DATA °
BYTE >90,0
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 0,>82
DATA 72
DATA 256
DATA PTHN
DATA 0,0
DATA 0,1000
DATA 0,0
BYTE NME-$-1
TEXT'VOL2.ST02.INV'
EQU $

CREATE FILE VOL2.ST02.INV WITH
LRL = 72 AN D PRL = 256. FI LE IS
RELATIVE RECORD. FIXED SIZE IS
1000 RECORDS.

UTILITY FLAGS

PATH NAM E LENGTH

Creating Key Indexed Files. Key indexed files are collections of records that are accessed by
content, either sequentially or randomly. A primary key and optionally 1 through 13 secondary
keys may be defined in each record. A key is a character string of defined length at a defined
position in each record. Records of a key indexed file may be accessed in ascending or
descending sequence of a specified key, or by specifying the content of a key.

Other characteristics of key indexed files are:

• A key may be defined as duplicatable; that is, more than one record may contain the
same characters in the key.

• ·A key may be defined as modifiable; that is, a rewrite operation may alter the contents of
the key.

• A key may consist of 1 through 100 characters and may overlap another key.

• A record may be accessed using only the first part of a key (partial key).

• A record may be read and locked pending update.

• The logical record length is variable and may change when a record is rewritten, except
that the record length must be an even number greater than zero.

• Key indexed files are expandable and are blank compressed.

• A record to be modified is copied to a backup area, so that no data is lost in case of
system failure. The operation being performed at the time of the failure is not applied to
the file.

2270507-9701 7·17

7.2 File Utility Operations

The keys for a key indexed file are defined when the file is created and apply to all records in the
file. All of the data in the record may be included in one or more of the keys. Often, however, the
keys are only a part of the entire record, and are used to access related data in the record. Keys
may overlap other keys, be contiguous within the record, or be spread throughout the record.

A key indexed file is created in the immediate! write mode regardless of the state of the write mode
flag (bit 10 of the utility flags). Although the processing of the records of the file is significantly
faster in the deferred write mode, the probability of loss of data when errors occur is much greater.

The Modify KIF Logging (MKL) command places a key indexed file in the deferred write mode. The
file remains in the deferred write mode until a Close operation is performed to the file. Insert,
Rewrite, and Delete operations are significantly faster in this mode because the number of disk
read and write operations decreases. It is particularly appropriate to use the MKL command prior
to copying a sequential file to a key indexed file using the Copy Sequential to Key (CSK) command
or a user program that performs a similar function. Before processing a key indexed file in the
deferred write mode, copy the key indexedl file prior to entering the MKL command. You can
rebuild the file if an error or system crash should occur while the file is in the deferred write mode
using this copy. Perform the following steps if an error or system crash occurs:

1. Terminate all programs that modify the file.

2. Delete the key indexed file being processed in the deferred write mode.

3. Identify and correct the cause of the error or crash.

4. Using a copy of the original file, repeat the processing that failed. (If the file is in
deferred write mode, retain one good copy of the original file in case another recovery is
necessary.)

The following is an example of a key indexed file record. Each of the 52 characters in the record is
included in one of the keys; several characte!rs are included in two keys. Notice that a key contains
similar information in each record.

1 1-9 + 10-20 21-30

DOE JOHN
I 31-40 1 41 - 46 147148-521

2279583

7·18 2270507·9701

File Utility Operations 7.2

Key Columns Definitions

1 41-46 Employee number
2 1-9 Social security number
3 10-20 Last name
4 21-30 First name
5 31-40 Middle name
6 10-40 Full name
7 47 Sex
8 48-52 Monthly salary

The employee number field is the primary key; seven secondary keys are defined. The records of
the file can be accessed by any of the keys, in sequence. A record that contains a specific
employee number, a specific social security number, or a specific full name can be accessed. An
attempt to access a record that contains a specific monthly salary accesses the first record
inserted into the file that contains that salary; successive accesses provide additional records of
persons who receive that salary.

The employee number field is the primary key because it is the first key defined. The primary key
mayor may not be the first key in the record.

Each key may have two attributes; it may be duplicatable, and it may be modifiable. When a key is
duplicatable, more than one record can contain the same data in the field. The name fields, the sex
fields, and the monthly salary fields all should be duplicatable; it is logical to allow more than one
record having the same value in these fields. The employee number and social security fields
should not be duplicatable. It is not logical that more than one record would contain the same
social security number or the same employee number. In a file that contains thousands of records
with the same key value, operations that insert or delete and in some cases rewrite these records
process much more slowly than if the duplicates did not exist.

The value of a key having the modifiable attribute may be changed by a rewrite operation. The last
name field and the monthly salary field should be modifiable; these items may change. The
employee number and social security number fields should not be modifiable; these values do not
change. The primary key, by definition, is not modifiable. (A record that has incorrect data in a key
that is not modifiable must be deleted and inserted again, with the correct data in the key.)

2270507·9701 7·19

7.2 File Utility Operations

The key definition block defines the keys for Cl file. The address of this block is placed in bytes 12
and 13 of the supervisor call block for the CrE~ate File operation. The format of the key definition
block is:

DEC

0

2

6

8

10

12

14

M

M + 2

2279584

HEX

0

2

6

8

A

C

E

rLJ

LENGTH OF BLOCK I RESERVED

ESTIMATED NUMBER OF LOGICAL

RECORDS IN FILE

NUMBER OF KEYS (n)

FLAGS I No. OF CHARACTERS

OFFSET TO KEY

FLAGS I No. OF CHARACTERS

OF~FSET TO KEY

FLAGS I No. OF CHARACTERS

OFFSET TO KEY

The byte address of the data for the last key, m, is calculated as follows:

m = 4 x (n - 1) + 8

The key definition block contains the following:

Byte Contents

o Length of the block, in bytes.

1 Reserved.

---,
PRIMARY
KEY

-+
FIRST
SECONDARY
KEY

-+
rlJ

ADDITIONAL

SECONDARY
,.~ KEY

-+
LAST
SECONDARY

KEY.

2-5 Estimated number of logical records. The file can expand beyond this
number.

6-7 Number of keys for the file, 1 through 14.

Bytes 8 through 11 define the primary key.

7·20 2270507-9701

File Utility Operations 7.2

8 Flags for the key, as follows:
Bits 0-4 - Reserved.
Bit 5 - Zero for primary key. Modifiable flag for secondary keys.
Set as follows:

1 - Key may be modified. ° - Key may not be modified.
Bit 6 - Reserved.
Bit 7 - Duplicatable flag. Set as follows:

1 - Key may be duplicated. ° - Key is unique to one record.

9 Number of characters in key.

10-11 Offset to the key. Range is zero through number of characters in
record.

Subsequent bytes, containing similar information, define the secondary keys, as applicable.

The siz,e of a key indexed file may be calculated to assist in determining the disk space to be used
by the file. The size of the file varies as records are inserted, rewritten, and deleted. Formulas and
example calculations to estimate the size of a newly created key indexed file are shown in the
DNOS Systems Programmer's Guide.

The following characteristics apply to an example key indexed file:

• 100-character average length of logical records

• 768-character physical records

• Two keys, neither key duplicatable or modifiable

• 10,000 logical records (estimated)

The following is an example of the source code for the supervisor call block to create the example
file, for the key definition block, and for the path name:

CRKEY

PATH

NAME

2270507·9701

DATA °
BYTE >90,0
DATA 0,0
DATA 0,0
DATA KEY,O
BYTE 0,>87
DATA 100
DATA 768
DATA PATH
DATA 0,0
DATA 0,0
DATA 0,0
BYTE NAME-$-1
TEXT 'VOL 1.PA Y'
EQU $

CREATE FI LE VOL 1.PA Y WITH LRL =
100 AND PRL = 768. FILE IS KEY
INDEXED. FILE IS EXPANDABLE WITH
DEFAULT INITIALAND SECONDARY
ALLOCATIONS.
UTILITY FLAGS

PATHNAME LENGTH

7-21

7.2 File Utility Operations

KEY BYTE KEYEN 0-$-1
DATA 0,10000
DATA 2
DATA 12
DATA 0
DATA 6
DATA 5

KEYEND EQU $

KEY BLOCK LENGTH
10000 MAXIMUM LOGICAL RECORDS
2 KEYS
1 ST KEY 12 CHARACTERS
BEGINNING AT 1ST CHARACTER
2N D KEY 6 CHARACTERS
BEGINNING AT 6TH CHARACTER
OVERLAPPING 1ST KEY

7.2.1.2 Deleting Files. To delete a file, a program executes an 1/0 Operations SVC with sub­
opcode > 92. The following fields of the utility supervisor call block apply:

• SVC opcode - >00

• Return code

• Utility sub-opcode - >92

• Utility flags

• Pathname address

• Parameter address

The following flags apply:

2285024

Bit 7 - parameter flag. Set as follows:
1 - Parameters are present and pOinted to by bytes> 18 and> 19.
o - No parameters

All other utility flags should be set to zero.

The parameter address may pOint to a user ID parameter as specified in the Performing Utility
Functions paragraph in this section. If this option is specified in a secure environment, the file is
deleted if the user has delete access to the fi Ie.

A Delete File operation does not delete the! file if the file is either write protected or delete pro­
tected. A Remove Protection operation must be performed before a protected file may be deleted.

The path name address is the address of an area of memory that contains the pathname of a file to
be deleted. The first byte of the pathnarne area contains the number of characters in the
path name. Subsequent bytes contain the ASCII characters of the path name.

7·22 2270507-9701

File Utility Operations 7.2

The following is an example of the source code for a supervisor call block to delete the sequential
file used as an example in the description of the Create File operation:

DFILE DATA °
BYTE >92,0
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA NAME
DATA 0,0
DATA 0,0
DATA 0,0

DELETE FILE AT PATHNAME ADDRESS NAME.
PATHNAME BLOCK IS SHOWN IN CREATE
FI LE EXAM PLE.

UTI LlTY FLAGS

7.2.1.3 Assigning LUNOs. To assign a LUNO, a program executes an 110 Operations SVC with
sub-opcode >91. The following fields of the utility supervisor call block apply:

• SVC opcode - > 00

• Return code

• Utility sub-opcode - >91

• Logical unit number(LUNO)

• < Resource type>

• Uti lity flags

• Pathname address

• Parameter address

An Assign LUNO operation may request the autocreate option, which first creates the file, then
assigns a LUNO to it. All fields and utility flags defined for a Create File operation also apply to an
Assign LUNO with autocreate operation.

The system returns the resource type in bytes 6 and 7 of the call block. The resource type is one of
the following hexadecimal numbers:

2270507-9701

Type

0101
0201
0301
0401
0501
0601

Resource

Sequential file
Relative record fi Ie
Key indexed file
Directory file
Program file
Image file

7·23

7.2 File Utility Operations

The following utility flags apply:

2279585

7-24

Bit 0 - < Created by assign>. Set to onE! by system after creating the file (autocreate option).

Bits 1-2 - File usage flag. Set as follows:
00 - No special usage.
01 - Directory file.
10 - Program file.
11 - Image file.

Bits 3-4 - Scope of LUNO flag. Set as follows:
00 - Task-local LUNO.
01 - Job-local LUNO.
10 - Global LUNO.
11 - Job-local-shared LUNO.

Bit 5 - Generate LUNO flag. Set as follows:
1 - Assign the next available LUNO and return LUNO in byte 3.
o - Assign the LUNO specifiecl in byte 3.

Bit 6 - Autocreate flag. Set as follows:
1 -Create the file, if it does not already exist (call block must specify file

parameters).
o -Do not create file.

Bit 7 - Parameter flag. Set as follows:
1 - Parameters are present and pointed to by bytes> 18 and> 19.
o - No parameters

Bit 8 - LRL flag (autocreate option). Set as follows:
1 - Place the logical record length in bytes 12 and 13.
o -Place the logical record length in bytes> 8 and> 9. It is recommended that you

set the LRL flag to one and place the logical record length in bytes> 12 > 13.

Bit 9 - Temporary file flag (autocreate option). Set as follows:
1 - Temporary file. When pathname address in bytes 22 and 23 is zero, the temporary

file is placed on the system disk.
0- Not a temporary file.

Bit 10 - Write mode flag (autocreate option). Set as follows:
1 - Immediate write mode.
o - Deferred write mode (normal mode).

The setting of the write mode flag does not apply to a key indexed file, which is
always created in the imm43diate write mode.

2270507-9701

Bits 11-12 - Data format flag (autocreate option). Set as follows:
00 - Normal record image.
01 - Blank compressed.

File Utility Operations 7.2

The setting of the data format flag does not apply to a key indexed file, which is
always blank compressed.

Bit 13 - Allocation flag (autocreate option). Set as follows:
1 - Expandable file.
0- Fixed size file.

If the file already exists, the system returns this value.

Bits 14-15 - File type flag (autocreate option). Set as follows:
01 - Sequential file.
10 - Relative record file.
11 - Key indexed file.

If the file already exists, the system returns this value.

A logical unit number (LUNO) must be assigned to an I/O resource to identify the resource for an
I/O operation. The scope of a global LUNO is not limited to a single job or task. The LUNO applies
in all jobs and tasks executing while it remains assigned. The scope of a job-local LUNO is limited
to the tasks in the job. A job-local LUNO is assigned by one of the tasks in the job or by an SCI
command. The scope of a task-local LUNO is limited to the task that assigns the LUNO. A task­
local LUNO is assigned by a task.

Job-local-shared LUNOs (shared LUNOs) are job-local LUNOs that can be used by more than one
task within a given job. Each task that uses the LUNO must open it. The access privileges of the
LUNO are compared to those requested in the Open operation. If the Open operation requests
greater access privileges and it does not conflict with the access privileges of other LUNOs that
are assigned and opened to the resource, the privilege level of the LUNO is changed to the greater
value. The access privileges of a LUNO in order of increasing value are read only, shared,
exclusive write, exclusive all. If the requested access privilege is less than or equal to the present
value, the privilege level of the LUNO is not changed. Thus, all tasks that use a shared LUNO have
the same access privileges to the resource regardless of how they opened it.

A count of the number of successful Open operations is kept. The same number of Close oper­
ations must be performed before the LUNO can be released. If a Close operation is not performed,
the LUNO is not released until the job terminates.

The use of shared LUNOs tends to reduce the total number of LUNOs required in the system. This
type of LUNO is not recommended for sequential files because there is no defined method of
posi·tioning the file; that is, the task has no control of which record is read or written.

When assigning a LUNO to a directory, program file, or image file, the file usage flags must be set.
This prevents access to the file that is not compatible with the defined use of the file.

If a user ID parameter is specified in a secure environment as described in the Performing Utilities
Functions paragraph in this section, the LUNO is assigned only if the user ID in the parameter list
has rights to the file. Subsequent I/O operations using the LUNO are verified against the specified
user's access rights.

2270507 -9701 7·25

7.2 File Utility Operations

The Assign LUNO operation may assign the next available LUNO or a LUNO specified in the LUNO
field. When the generate LUNO flag is set to one, the system assigns the next available LUNO and
returns the number in the LUNO field. When the flag is set to zero, the system considers the
contents of the LUNO field of the supervisor call block to be the desired LUNO.

The autocreate option combines creating the file with assigning a LUNO to the file. When the
autocreate flag is set to one and the file does not already exist, the system creates a file, using the
contents of the supervisor call block. The flags and fields defined for a create file operation must
be set to valid values. The system sets the created-by-assign flag to one when it has successfully
created the file, and assigns the LUNO .

.
The autocreate option creates a task level temporary file when the temporary file bit is set. The
pathname of the temporary file is automatically asssigned by the system. A pathname, containing
the name of the disk that will contain the temporary file, can be specified. The default is the sys­
tem disk. The system deletes the file when the LUNO is released.

The pathname address is the address of an area of memory that contains the pathname of the file
to which the LUNO is assigned. The first byte of the pathname area contains the number of
characters in the pathname. Subsequent bytes contain the ASCII characters of the pathname.

The following is an example of the source code for a supervisor call block and the pathname block
to assign a LUNO to a file:

ALUNO

PNME

N4

7-26

DATA °
BYTE >91
BYTE >18
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA PNME
DATA 0,0
DATA 0,0
DATA 0,0
BYTE N4-$-1
TEXT'VOL3.BILL.INPUT'
EQU $

ASSIGN TASK LOCAL LUNO >18 TO
FILE VOL3.BILL.INPUT

UTILITY FLAGS

PATHNAME LENGTH

2270507 ·9701

File Utility Operations 7.2

The following is an example of the source code for a supervisor call block and a pathname block to
autocreate and assign a LUNO to a file:

ALCR

FNME

FNME

DATA °
BYTE >91
BYTE >25
DATA 0,0
DATA 0,0
DATA 0,0
BYTE >OA,>89
DATA 50
DATA 256
DATA FNME
DATA 0,0
DATA 0,0
DATA 0,0
BYTE FN-$-1
TEXT 'VOL6.USER.REP'
EQU $

ASSIGN JOB LOCAL LUNO >25 TO
FILE VOL6.USER.REP; AUTOCREATE
THE FILE. FILE IS
SEQUENTIAL, FIXED LENGTH,
BLANK COMPRESSED. LRL = 50,
PRL = 256.
UTILITY FLAGS

PATHNAME LENGTH

7.2.1.4 Releasing LUNOs. To release a LUNO, a program executes an 1/0 Operations SVC with
sub-opcode >93. The following fields of the utility supervisor call block apply:

• SVC code - °
• Return code

• Utility sub-opcode - >93

• Logical unit number (LUNO)

• Utility flags

The following utility flags apply:

3-4

f
2279586

Bits 3-4 - Scope of LUNO. Set as follows:
00 - Task-local LUNO.
01 - Job-local LUNO.
10 - Global LUNO.
11 - Job-local-shared LUNO.

Bit 7 - Parameter flag. Set as follows:

2270507·9701

1 - Parameters are present and pOinted to by bytes> 18 and> 19. ° - No parameters.

7·27

7.2 File Utility Operations

Set all other utility flags to zero.

A Release LUNO operation does not release a LUNO that has a different scope from that specified
by the scope of LUNO flag. For example, if g~obal LUNO >23, job-local LUNO >23, and task-local
LUNO >23 were all assigned, and a Release LUNO operation for task-local LUNO >23 were per­
formed, the global and job-local LUNOs would remain assigned.

In a networking environment, an Assign LUNO-Release LUNO pair bounds a session. If a user
desires a session to span more than one such stage, it is possible to designate a release LUNO
parameter that tells the local area network that this release LUNO does not terminate the session.
The parameter must be included in the pararneter list pointed to by the parameter address field in
the call block. The parameter flag bit must be set in the utility flags. A parameter block which
includes the release LUNO parameter only is shown below:

2285025

DEC HEX

o 0 >04 >00

2 2 >05 >01

4 4 >03

Byte Contents

° Length of the parameter list minus the length byte in bytes

1 Reserved - Must be set to zero

2 >05 - Release LUNO parameter sublist number

3 Length of the Release LUNO sublist in bytes

4 Parameter value:
> 03 - Parameter enabled
> 02 - Parameter disabled

The following is an example of the source code for a supervisor call block to release a LUNO:

RLUNO

7·28

DATA °
BYTE >93
BYTE >23
DATA 0,0
DATA 0,0
DATA 0,0

RELEASE GLOBAL LUNO >23.

2270507 ·9701

File Utility Operations 7.2

BYTE >10,0
DATA 0,0
DATA 0
DATA 0,0
DATA 0,0
DATA 0,0

UTILITY FLAGS

7.2.1.5 Verifying Pathnames. To verify a pathname, a program executes an I/O Operations SVC
with sub-opcode >99. The following fie.lds of the utility supervisor call block apply:

• SVC code - 0

• Return code

• Utility sub-opcode - >99

• Data buffer address

• Utility flags

• Pathname address

The following utility flags apply:

f
3-4 I 5 I 6 I 7 I 8 I 9 I' 0 I '1-12 I t 3 114- 15 I

f f f f
1-2

2279587

Bits 1-2 - <File usage flag>. Set by DNOS to the usage of the verified file as follows:
00 - No special usage.
01 - Directory file.
10 - Program file.
11 - Image file.

Bit 5 - <System flag>. Set by DNOS to 1.

Bits 11-12 - <Data format flag>. Set by DNOS to the format of the verified file as follows:
00 - Normal record image.
01 - Blank compressed.

Bit 13 - <Allocation flag>. Set by DNOS to the allocation of the verified file as follows:
1 - Expandable file.
o - Fixed size file.

Bits 14-15 - <File type flag>. Set by DNOS to the type of the verified file as follows:
01 - Seq uential fi Ie.

2270507·9701

10 - Relative record fi Ie.
11 - Key indexed fi Ie.

7·29

7.2 File Utility Operations

Set all other flags to zero.

The Verify Pathname operation performs a syntax check on the pathname. When the pathname is
that of an existing file, the system returns the 'file usage, file type, data format, and allocation type
in the corresponding flags of the utility flag word. The file type is returned in the data buffer
address field in the form returned for an Assi~ln LUNa operation. When the pathname is of a non­
existent file, the appropriate error code is returned and the utility flag word is cleared.

The pathname address is the address of an area of memory that contains the pathname to be
verified. The byte at the pathname address contains the number of characters in the pathname.
Subsequent bytes contain the ASCII charactors of the pathname.

The system returns the resource type in bytes 6 and 7 of the call block. The resource type is one of
the following hexadecimal numbers:

Type

0101
0201
0301
0401
0501
0601

Resource

Sequential file
Relative record file
Key indexed file
Directory file
Program file
Image file

The following is an example of the source code for a supervisor call block to verify a pathname:

VFY DATA ° VERIFY PATHNAME VOL 1.USER.SOURCE
BYTE >99,0
DATA 0,0
DATA 0,0
DATA 0,0

TYPE BYTE 0,0 UTI LlTY FLAGS
DATA 0,0
DATA NA
DATA 0,0
DATA 0,0
DATA 0,0

NA BYTE NA1-$-1 PATHNAME LENGTH
TEXT 'VOL 1.USER.SOURCE'

NA1 EQU $

7.2.1.6 Renaming Files. To assign a new pathname to a file, a program executes an 1/0 Oper­
ations SVC with sub-opcode >95. The following fields of the utility supervisor call block apply:

• SVC code - °
• Return code

• Utility sub-opcode - >95

• Logical unit number (LUNa)

7·30 2270507-9701

File Utility Operations 7.2

• User flags

• Utility flags

• Pathname address

All utility flags should be set to zero.

The Do Not Replace flag, (bit 5) in the user flag field, applies to the Rename operation.

2279588

Bit 5 - Do Not Replace flag. Set as follows:
1 - When a file already exists under the new pathname, do not rename the file.
0- Rename the file, replacing an existing file if one exists.

The following utility flags apply to the rename operation:

o 1-2 3-4 5 6 7 8 9 110 1"-12113 14-15

f
2283208

Bit 7 - Parameter flag. Set as follows:
1 - Parameters are present and pOinted to by bytes> 18 and> 19.
o - No parameters

Set all other utility flags to zero.

The operation assigns a new path name to the file assigned to the LUND specified in the LUND
field. When a file having the new path name already exists, and the do not replace flag is set to
zero, the existing file is deleted but any aliases of the new path name remain valid for the new
pathname. When the do not replace flag is set to one, a file having the new pathname is not
deleted, and the path name of the file assigned to the specified LUND is not changed.

A Rename operation can change a filename. This requires changing the name only in the
appropriate directory. If the directory is full, however, the Rename operation fails and returns an
error, meaning that it cannot successfully create a file. A Rename operation can change the name
of any directory in the path name, except that the Rename operation may not replace a directory
that contains one or more files or directories. Changing a directory name requires changes in the
entries in one or more directories. A Rename operation cannot change the volume name, which
would require copying the file and possibly the directories to another volume.

If the file security feature was specified during system generation, a Rename File SVC of a direc­
tory is not allowed unless specified by a member of the system manager access group.

2270507·9701 7-31

7.2 File Utility Operations

Some special conditions exist when the Rename operation is used to change the name of a
program file in a directory. In a Rename operation the names of channels assigned to the source
program file are also copied and are associated with the new destination program file. Aliases of
the source program file are not copied. Any adiases assigned to the renamed program filename are
associated with the new destination program filename. -

The user cannot specify the scope of the LUNO for the Rename operation. The routine that
performs the operation searches the LUNO list, which contains the task-local LUNOs, then the
job-local LUNOs, followed by the global LUNOs. To rename a file assigned to a job-local LUNO,
the task-local LUNO of the same value cannot be assigned. To rename a file assigned to a global
LUNO, neither the task-local LUNO nor the job-local LUNO of the same value can be assigned.
That is, when a Rename operation specifies LUNO >35, the operation is attempted for any
resource assigned to task-local LUNO >35. If task-local LUNO >35 is not currently assigned, the
operation is attempted for job-local LUNO >35. If neither task-local LUNO >35 nor job-local LUNO
>35 is currently assigned, the operation is attempted for global LUNO >35.

Any LUNO assigned to the file to be renamed (other than the one specified in the LUNO field) must
be released prior to renaming the file. When the Rename operation replaces an existing file, any
LUNO assigned to the existing file must be released prior to the Rename operation.

When the Rename File SVC executes, the resulting file retains the security access rights of the
original file. For example, when a file namled LlST1 is renamed to LlSTS2, LlST2 retains all the
security access rights of LlST1. .

There is a Rename File SVC option that assigns the security access rights of the destination file to
the input file. That is, if files LlST1 and LlST2 have different security access rights and LlST1 is
renamed to LlST2, the resulting file retains the security access rights of the original LlST2. This
option is available only on systems where the security feature was chosen during system
generation.

This option operates only when the following conditons are true:

• The destination file already exists.

• The replace option is specified.

If the destination file does not exist, the resulting file retains the security access rights of the
original file.

To use this option, it must be specified as an entry in a parameter list and the parameter flag must
be set. The parameter address field must pOint to the parameter block. The following diagram
shows the parameter list block:

DEC HEX

o 0 >04 >00

2 2 >04 > 01

4 4 >03

2285267

7·32 2270507-9701

File Utility Operations 7.2

Byte Contents

o Total parameter list length minus the length byte in bytes
1 Reserved - must be set to zero
2 >04 - Rename File parameter type
3 Length of the Rename File sublist in bytes
4 Sublist value:

> 03 - Parameter enabled
>02 - Parameter disabled

The path name address is the address of an area of memory that contains the new pathname. The
byte at the pathname address contains the number of characters in the pathname. Subsequent
bytes contain the ASCII characters of the path name.

The following is an example of the source code for a supervisor call block to assign a new path­
name to a file using the Rename File parameter:

RNAME

NNAM

NN1
RENAME

DATA °
BYTE >95
BYTE >25
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 0;>04
DATA 0,0
DATA NNAM
DATA RENAME
DATA 0,0
DATA 0,0,0
BYTE NN1-$-1
TEXT 'VOL4.USER2.S0URCE'
EQU $
BYTE >04,0
BYTE >04,>01
BYTE >03

RENAME FILE ASSIGNED TO
LUNO >25. DO NOT REPLACE.
NEW NAME IS VOL4.USER2.S0URCE
KEEP SECURITY OF NEW NAME

UTILITY FLAGS

PATHNAME LENGTH

TOTAL LENGTH

7.2.1.7 Write Protecting Files. To write protect a file, a program executes an I/O Operations SVC
with sub-opcode >97. The following fields of the utility supervisor call block apply:

• SVC opcode - >00

• Return code

• Utility sub-opcode - >97

• Utility flags

• Pathname address

• Parameter address

2270507 -9701 7·33

7.2 File Utility Operations

The following utility flags apply:

3-4 5 6 7 I 8 19 110 111-12113 14-15

2283208

Bit 7 - Parameter flag. Set as follows:
1 - Parameters are present and poi nted to by bytes> 18 and> 19.
a - No parameters

Set all other utility flags to zero.

Files are created with no protection. After a 'Nrite Protect operation is performed, neither a Write
nor a Delete operation may be performed on the file. Protection is removed by performing a
Remove Protection operation.

In a secure environment, a user ID can be specified as described in the File Utility Operations para­
graph in this section. If the user ID in the paralmeter list has delete and write access, this SVC write
protects the file.

The pathname address is the address of an area of memory that contains the pathname of the file
to be write-protected. The byte at the pathname address contains the number of characters in the
pathname. Subsequent bytes contain the ASCII characters of the pathname.

The following is an example of the source code for a supervisor call block to write protect a file:

WRPR

PNAM

PN1

DATA a
BYTE >97
BYTE a
DATA a
DATA a
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA PNAM
DATA 0,0
DATA 0,0
DATA 0,0
BYTE PN1-$-1
TEXT'VOL5.S0URCE.PROGA'
EQU $

APPLY WRITE AND DELETE
PROTECTION TO FI LE
VOL5.S0URCE.PROGA.

UTI LlTY FLAGS

PATHNAME LENGTH

7.2.1.8 Delete Protecting Files. To delete protect a file, a program executes an 1/0 Operations
SVC with sub-opcode >98. The following fields of the utility supervisor call block apply:

• SVC opcode - > 00

• Return code

7·34 2270507 ·9701

File Utility Operations 7.2

• Utility sub-opcode - > 98

• Utility flags

• Pathname address

• Parameter address

The following utility flags apply:

3-4 5 6 7 18 9 110 111-12113 14-15
f

2283208

Bit 7 - Parameter flag. Set as follows:
1 - Parameters are present and poi nted to by bytes > 18 and > 19. ° - No parameters

Set all other utility flags to zero.

Files are created with no protection. After a Delete Protect operation is performed, a Delete opera­
tion may not be performed on the file. Protection is removed by performing a Remove Protection
operation.

The pathname address is the address of an area of memory that contains the pathname of the file
to be delete protected. The byte at the pathname address contains the number of characters in the
pathname. Subsequent bytes contain the ASCII characters of the pathname.

In a secure environment, a user ID can be specified as described in the File Utility Operations para­
graph in this section. This SVC delete protects the file if the user ID has write and delete access to
the file.

The following is an example of the source code for a supervisor call block to delete protect a file:

DPR DATA ° APPLY DELETE PROTECTION
BYTE >98 TO FILE VOL 1.S0URCE.PROGB
BYTE °
DATA °
DATA °
DATA 0,0
DATA 0,0
BYTE 0,0 UTILITY FLAGS
DATA 0,0
DATA DPNAM
DATA 0,0
DATA 0,0
DATA 0,0

DPNAM BYTE DPN1-$-1 PATHNAME LENGTH
TEXT 'VOL 1.S0URCE.PROGB'

DPN1 EQU $

2270507-9701 7-35

7.2 File Utility Operations

7.2.1.9 Removing File Protection. To remOVC3 protection from a file, a program executes an 1/0
Operations SVC with sub-opcode >96. The following fields of the utility supervisor call block apply:

• SVC opcode - >00

• Return code

• Utility sub-opcode - > 96

• Utility flags

• Pathname address

• Parameter address

The following utility flags apply:

5 6 7 8 14-15

2283208

Bit 7 - Parameter flag. Set as follows:
1 - Parameters are present andl pointed to by bytes> 18 and> 19.
0- No parameters

Set all other utility flags to zero.

When write or delete protection is applied to a file, the file remains protected until a Remove Pro­
tection operation is performed on the file. The Remove Protection operation removes both write
and delete protection, leaving the file unprotected.

The pathname address is the address of an a.rea of memory that contains the pathname of the file
from which protection is to be removed. The byte at the pathname address contains the number of
characters in the pathname. Subsequent bytes contain the ASCII characters of the pathname.

In a secure environment, a user ID can be spe!cified as described in the File Utility Operations para­
graph in this section. This SVC removes the file delete and write-protection if the user ID has write
and delete access to the file.

7-36 2270507·9701

File Utility Operations 7.2

The following is an example of the source code for a supervisor call block to remove protection
from a file:

RPROT DATA °
BYTE >96
BYTE °
DATA °
DATA °
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA DPNAM
DATA 0,0
DATA 0,O
DATA 0,0

REMOVE PROTECTION FROM FILE USING
PATHNAME BLOCK OF PRECEDING
EXAMPLE

UTI LlTY FLAGS

7.2.1.10 Adding an Alias. To add ari alias for a file, a program executes an 1/0 Operations SVC
with sub-opcode >9A. The following fields of the utility supervisor call block apply:

• SVC code - °
• Retu rn code

• Utility sub-opcode - >9A

• Logical unit number (LUNO)

• Pathname address

All utility flags should be set to zero.

An alias is an alternate filename or directory name that may be assigned to allow access to the file
by an alternate pathname. An alias may be assigned at any directory level other than the volume
directory level. The original pathname of the file remains valid.

The pathname address is the address of an area of memory that contains the alias pathname. The
first byte contains the number of characters in the alias pathname. Subsequent bytes contain the
characters of the pathname. The alias pathname consists of the volume name of the pathname,
followed by directory names as required, followed by the alias being added. Elements of the alias
pathname are separated by periods. The alias pathname must contain any directories of the
pathname that precede the alias.

The logical unit number is the LUNOassigned to the pathname for which an alias is to be added.
The pathname must have the same number of elements as the alias pathname; it must end with
the directory name or filename for which the alias is being added.

A pathname that ends with a directory name is a directory pathname. Set the file usage flag in the
utility flags word to 01 (directory file) when you assign a LUNO to the pathname.

2270507 ·9701 7-37

7.2 File Utility Operations

For example, the pathname of a file is:

VOL2.PROJA.HICKS.SOURCE.PROGA

To add alias FORMAT for the filename PROGA, assign a LUNO to the file path name and add an
alias using alias path name:

VOL2.PROJA.HICKS.SOURCE.FORMAT

To add alias COML for directory HICKS, assign a LUNO to directory file path name:

VOL2.PROJA.HICKS

Then add the alias using alias pathname:

VOL2.PROJA.COML

The following is an example of the source code for a supervisor call block to add an alias:

AALIAS

ALPNM

ALP

DATA °
BYTE >9A
BYTE >47
DATA °
DATA °
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA ALPNM
DATA 0,0
DATA 0,0
DATA 0,0
BYTE ALP-$-1
TEXT 'VOL 1.IN'
EQU $

ADD AN ALIAS FOR FILE ASSIGNED TO
LUNO >47.

UTI LlTY FLAGS

rATHNAME LENGTH
ALIAS

7.2.1.11 Deleting an Alias. To delete an aHas for a file, a program executes an 1/0 Operations
SVC with sub-opcode >9B. The following titslds of the utility supervisor call block apply:

• SVC code - °
• Retu rn code

• Utility sub-opcode - >9B

• Path name address

All utility flags should be set to zero.

An alias is an alternate filename or directory name that allows access to the file by an alternate
pathname. A Delete Alias operation remOVElS the specified alias from the directory.

7·38 2270507-9701

File Utility Operations 7.2

The pathname address is the address of an area of memory that contains the alias path name. The
alias path name is identical to the alias pathname used to add the alias.

The following is an example of the source code for a supervisor call block to delete an alias:

DAllAS DATA a
BYTE >9B
BYTE a
DATA a
DATA a
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA ALPNM
DATA 0,0
DATA 0,0
DATA 0,0

DELETE THE ALIAS ADDED IN THE
PRECEDING EXAMPLE

UTILITY FLAGS

7.2.1.12 Specifying the Write Mode. To specify the write mode for a fi Ie, a program executes an
I/O Operations SVC with sub-opcode >9C. The following fields of the utility supervisor call block
apply:

• SVC code - a

• Return code

• Utility sub-opcode - >9C

• Logical unit number (LUND)

The following utility flag applies:

2279589

Bit 10 - Write mode flag. Set as follows:
a - Deferred write mode.
1 - Immediate write mode.

Set all other utility flags to zero.

The write mode is either the immediate or the deferred write mode. The deferred write mode is the
normal mode, because it is more efficient; writing does not actually occur until the system
requires the memory space occupied by the buffer that contains the physical record to be written.
When the immediate write mode is specified, the physical record is written each time a logical
record within the physical record is written. The immediate write mode provides more certain and
more accurate error detection and identification and reduces the amount of data lost in the event
of system failure.

2270507·9701 Change 1 7·39

7.3 Sequential File I/O

The write mode of the file assigned to the LUNa entered in the supervisor call block is specified
by the operation. When the same LUNa is assigned at more than one level of scope, the LUNa
applies in this order: task-local LUNa, job-local LUNa, and global LUNa. The write mode flag is
set to one for the immediate write mode, or to zero for the deferred write mode.

Using the immediate write mode updates the file and its file structure each time a write operation
is performed. This mode maintains file integrity, but it costs more in 1/0 execution time than the
deferred write mode.

The following is an example of the source code for a supervisor call block to set the write mode of
a file:

SWMODE DATA °
BYTE >9C
BYTE >23
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 0,>20
DATA 0,0
DATA °
DATA 0,0
DATA 0,0
DATA 0,0

7.3 SEQUENTIAL FILE 1/0

SET THE WRITE MODE FLAG TO IMMEDIATE
FOR THE FILE ASSIGNED TO LUNa >23

UTILITY FLAGS

Sequential file 1/0 uses the following basic supervisor call block to effect 1/0 transfers, file
positioning, and other 1/0 operations.

SVC > 00 -- I/O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN

EVENT
DEC HEX

0 0 >00 <RE"TURN CODE>

2 2 SUB-OPCODE LUNO

4 4 <SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT>

2279470

7·40 Change 1 2270507-9701

Sequential File I/O 7.3

The following sub-opcodes apply to sequential files:

00 Open
01 Close
02 Close, Write EOF
03 Open and Rewind
04 Close and Unload
05 Read Fi Ie Characteristics
06 Forward Space
07 Backward Space
09 Read ASCII
OB Write ASCII
OD Write EOF
OE Rewind
10 Rewrite
11 Modify Access Privileges
12 Open Extend
4A Unlock Record
59 Multiple Record Read
5B Multiple Record Write

The following sub-opcodes perform operations identical to those shown:

Sub-opcode

OA
OC

The following sub-opcodes are ignored:

08 Not used
OF Unload

Operation

Read Direct
Write Direct

Identical to .

Read ASCII
Write ASCII

Except for the Read File Characteristics operation, the file must be opened using sub-opcode >00,
>03, or >12 prior to any 1/0 operation.

7.3.1 Open
Sub-opcode >00 specifies an Open operation. The Open operation enables the calling task to
perform I/O operations on the file assigned to the specified LUNO. If the Open operation is
successful, the access privilege requested in bits 3 and 4 of byte 5 is granted to the task. An Open
operation must be performed before a task can perform any I/O operation other than Read File
Characteristics.

An Open operation does not alter the file position (the next record to be accessed). An Assign
LUNO operation positions the file at the first record. A Close operation leaves the file positioned
as it was positioned following the most recent access to the file.

The following fields of the basic call block apply to an Open operation:

• SVC code - 0

2270507·9701 7·41

7.3 Sequential File I/O

• Return code

• Sub-opcode - >00

• Logical unit number (LUNa)

• User flags

• Data buffer address

• Read character count

The following user flags apply to an Open operation:

2279590

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set GIS follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

Bit 5 - Do not replace flag. Applies to shared, exclusive write, and exclusive all access only.
Set as follows:
1 - Open file that was created with the autocreate option when the LUNa was

assigned. When file existed prior to the Assign LUNa operation, terminate in
error.

o - Open file regardless of when it was created.

The LUNa field contains the LUNa assignHd to the file to be opened.

The Open operation returns the file type code in the buffer address field. The file type code for a
sequential file is >01 FF.

When the calling task places zero in the read character count field, the Open operation returns the
logical record length specified for the file.

7·42 2270507·9701

Sequential File I/O 7.3

The following is an example of the source code for a supervisor call block to open a sequential
file:

OSF

SFT
BL

7.3.2 Close

DATA 0
BYTE 0,>4C
BYTE 0,>10
DATA 0
DATA 0
DATA 0

OPEN FILE ASSIGNED TO LUNO >4C
WITH SHARED ACCESS

Sub-opcode >01 specifies a Close operation. The Close operation ends 1/0 to a LUNO from the
calling task. The LUNO remains assigned to the file. Specifically, for the file assigned to the
LUNO, the Close operation:

• Unlocks any locked records

• Writes all modified file blocks on which write was deferred

• Releases access privi leges

• Updates file data structures maintained by the system to accurately describe the current I
file. Until the Close operation is performed, data structures on disk do not accurately
reflect the contents of the file. If a system crash occurs before a Close is performed,
new records written to the end of an existing file will be lost.

The following fields of the basic supervisor call block apply to a Close operation:

• SVC code - 0

• Return code

• Sub-opcode - >01

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Close operation:

2279591

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System su.spends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file to be closed.

2270507 -9701 Change 1 7·43

7.3 Sequential File liD

The following is an example of the source code for a supervisor call block to close a file:

CSF DATA 0
BYTE >01 ,>4C
BYTE 0,>10
DATA 0
DATA 0
DATA 0

7.3.3 Close, Write EOF

CLOSE FILE ASSIGNED TO LUNO >4C

Sub-opcode >02 specifies a Close, Write EOF operation. A Close, Write EOF operation consists of
a Write EOF operation followed by a CIOSH operation.

7.3.4 Open and Rewind
Sub-opcode >03 specifies an Open and Rewind operation. An Open and Rewind operation
performs an Open operation followed by a. Rewind operation.

7.3.5 Close and Unload
Sub-opcode >04 specifies a Close and Uniload operation. The Close and Unload operation is the
same as a Close operation.

7.3.6 Read File Characteristics
Sub-opcode >05 specifies a Read File Characteristics operation. The Read File Characteristics
operation returns file characteristics information in a buffer specified by the user. The file
characteristics consist of 10 bytes of infolrmation.

In a secure environment, this operation can be used to determine the access rights that a user has
to a file. If this option is used, a word of file-access rights is returned.

The following fields of the basic supervisor call block apply to a Read File Characteristics
operation:

• SVC code - 0

• Return code

• Sub-opcode - >05

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

• <Actual read count>

7·44 2270507·9701

Sequential File I/O 7.3

The following user flags apply to a Read File Characteristics operation:

2279592

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 2 - Security access rights flag. Set as follows:
1 - System returns a word of rights in the buffer specified by the user.
0- System returns file characteristics.

The LUND field contains the LUND assigned to the file for which characteristics are to be read.

The data buffer address is the address of the buffer into which ONDS places the file characteris­
tics. The buffer should contain at least 10 bytes if the security rights option is not used. If the secu­
rity rights option is used, the buffer should contain at least two bytes.

The read character count is the length of the buffer.

If the security access rights flag is set, a word of file access rights is returned to the buffer speci­
fied by the user. The following explains the meaning of the bits in the returned word:

2285027

Bit 0 - 1 if the user has read access
Bit 1 - 1 if the user has write access
Bit 2 - 1 if the user has delete access
Bit 3 - 1 if the user has execute access
Bit 4 - 1 if the user has control access

If the security access rights flag is not set, 10 bytes of file characteristics are returned.

2270507·9701 7·45

7.3 Sequential File I/O

DNOS returns the number of characters stored in the buffer in the actual read count field. The file
characteristics for a sequential file consist of 10 characters. The contents of the buffer following a
Read File Characteristics operation are:

DEC HEX

o 0

2 2

4 4

6 6

8 8

2279593

7·46

FILE ATTRIBUTE FLAGS

PHYSI CAL RECORD LENGTH

LOGICAL RECORD LENGTH

NUMBER OF LOGICAL RECORDS

Byte Contents

0-1 File attribute flags, as follows:
Bits 0-1 - File usage:

00 - No special usage.

Bits 2-3 - Data format:
00 - Not blank compressed.
01 - Blank compressed.

Bit 4 - Allocation type:
o - Fixed size file.
1 - Expandable file.

Bits 5-6 - File type:
01 - Sequential.

Bit 'i' - Write protection flag:
o - Not write protected.
1 - Write protected.

Bit B - Delete protection flag:
o - Not delete protected.
1 - Delete protected.

Bit 9 - Temporary file flag:
o - Permanent file.
1 - Temporary file.

Bit 10 - Blocked file flag:
o - Blocked.
1 - Not blocked.

Bit 11 - Reserved.

2270507 -9701

Byte

2-3

4-5

6-9

Contents

Bit 12 - Write mode flag:
o - Deferred write.
1 - Immediate write.

Bits 13-15 - Reserved.

Physical record length.

Logical record length.

Number of logical records.

Sequential File I/O 7.3

The following is an example of the source code for a supervisor call block to read file
characteristics, and for the required buffer:

RSFC

SFC

DATA 0
BYTE >05,>4C
BYTE 0,0
DATA SFC
DATA 10
DATA 0
BSS 10

7.3.7 Forward Space

READ CHARACTERISTICS OF FILE
ASSIGNED TO LUNO >4C

FILE CHARACTERISTICS BUFFER

Sub-opcode >06 specifies a Forward Space operation. The Forward Space operation spaces
forward over the requested number of logical records, or until an EOF record is encountered.
When an EOF record is encountered, file management sets the EOF flag and returns the number
of records remaining to be spaced. The file is positioned following the EOF record.

The following fields of the basic supervisor call block apply to a Forward Space operation:

• SVC code - 0

• Return code

• Sub-opcode - >06

• Logical unit number (LUNO)

• System flags

• User flags

• Write character count

• Record number

2270507-9701 7-47

7.3 Sequential File 110

The following system flags apply to a Forward Space operation:

2279594

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - End·of·file. Set by system as 'follows:
1 - EOF record has been rea:d, or physical end of file has been encountered.
o - EOF record has not been read and physical end of file has not been

encountered.

The following user flag applies to a Forwalrd Space operation:

2279595

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The write character count contains the number of logical records to be forward spaced. File
management returns zero when the operation forward spaces the requested number of records
without encountering EOF or the physica.1 end of the file. When the Forward Space operation
encounters EOF or the physical end of the file, the number of records remaining to be forward
spaced is returned.

The following is an example of the source code for a supervisor call block to forward space a file:

FSF

7·48

DATA 0
BYTE >06,>4C
BYTE 0,0
DATA 0
DATA 0
DATA 5

FORWARD SPACE FILE ASSIGNED
TO LUNO >4C

FIVE RECORDS

2270507·9701

Sequential File I/O 7.3

7.3.8 Backward Space
Sub-opcode >07 specifies a Backward Space operation". The Backward Space operation spaces
toward the beginning of the file over the requested number of logical records until the beginning
of the file or an EOF record is encountered. When an EOF record is encountered, file management
sets the EOF flag and returns the number of records remaining to be spaced. The file is positioned
to read the EOF record when a Read operation is performed.

The following fields of the basic supervisor call block apply to a Backward Space operation:

• SVC code - 0

• Return code

• Sub-opcode - >07

• Logical unit number (LUNO)

• System flags

• User flags

• Write character count

• Record number

The following system flags apply to a Backward Space operation:

2279596

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - ,Error.
0- No error.

Bit 2 - End-of-file. Set by system as follows:
1 - EOF record has been read, or physical beginning of file has been encountered.
o - EOF record has not been read and physical beginning of file has not been

encountered.

2270507·9701 7·49

7.3 Sequential File I/O

The following user flag applies to a Backward Space operation:

2279597

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operaltion and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The write character count contains the number of logical records to be backward spaced. File
management returns zero when the operation spaces backward the requested number of records
without encountering EOF or the physical beginning of the file. When the Backward Space oper­
ation encounters EOF or the physical beginning of the file, the number of records remaining to be
backward spaced is returned.

The following is an example of the source Gode for a supervisor call block to backward space a
file:

BSF

7.3.9 Read ASCII

DATA 0
BYTE >07,>4C
BYTE 0,0
DATA 0
DATA 0
DATA 3

BACKWARD SPACE FILE ASSIGNED
TO LUNO >4C

THREE RECORDS

Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII operation reads a record of the
file and stores the data in the buffer at the specified address. The characters are packed two per
word.

The following fields of the basic supervisor call block apply to a Read ASCII operation:

• SVC code - 0

• Return code

• Sub-opcode - >09

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

7·50 2270507·9701

Sequential File 110 7.3

• Read character count

• <Actual read count>

The following system flags apply to a Read ASCII operation:

2279598

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - EOF record has been read.
o - EOF record has not been read.

The following user flags apply to a Read ASCII operation:

f f
2279599

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks the record after reading.
o - Record remains unlocked.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Fill the buffer with blanks (>20) when the buffer length is greater than the

number of characters read.
o - Do not fill the buffer with blanks.

The LUNO field contains the LUNO assigned to the file.

2270507·9701 7·51

7.3 Sequential File I/O

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters stored in the buffer, returned by file manage­
ment. The length returned is the length of the record or the length of the buffer, whichever is less.
When an odd number of characters is read, an additional character is stored in the buffer, but the
odd number (the actual number read) is placed in the actual read count field.

When an EOF record is read, file management returns zero in the actual read count field and sets
the EOF flag in the systems flags byte.

When the lock/unlock flag is set, the Read ASCII operation locks the record. The record cannot be
read until a Write or Rewrite operation unlocks the record after updating the contents, or until an
Unlock operation for the record is performed.

When the blank adjustment flag is set, and the record length is less than the buffer length, file
management fills the buffer with blanks. The actual read count contains the buffer length (the
total number of characters stored, including blanks) following the operation.

The following is an example of the source code for a supervisor call block to read a file record, and
for the required buffer:

RASF

SFRB

DATA 0
BYTE >09,>4C
BYTE 0,>04
DATA SFRB
DATA 80
DATA 0
BSS 80

7.3.10 Write ASCII

READ A RECORD OF FILE ASSIGNED
TO LUNa >4C AND LOCK
THE RECORD

READ BUFFER

Sub-opcode >OB specifies a Write ASCII ope1ration. The Write ASCII operation transfers the data in
the buffer at the specified address to the lfile. The characters in the buffer are packed two per
word.

The following fields of the basic supervisolr call block apply to a Write ASCII operation:

• SVC code - 0

• Return code

• Sub-opcode - >OB

• Logical unit number (LUNO)

• System flags

• User flags

7·52 2270507·9701

Sequential File 110 7.3

• Data buffer address

• Write character count

The following system flags apply to a Write ASCII operation:

2279600

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Write ASCII operation:

f f
2279601

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management unlocks the record after writing.
o - Record remains unlocked.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Do not write trailing blanks in the buffer.
o - Write the entire buffer contents.

The LUNO field contains the LUNO assigned to the file.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even number.

The write character count is the 'number of characters to be written.

A Write ASCII operation clears any EOF indication for ttte current record or for a subsequent
record.

2270507·9701 7·53

7.3 Sequential File I/O

When the lock/unlock flag is set, the Write ASCII operation unlocks the record after the operation
completes.

When the blank adjustment flag is set, any trailing blanks in the buffer are not written. That is, the
last character of the record actually written is the last nonblank character in the buffer.

The following is an example of the source code for a supervisor call block to write a file record:

WASF DATA 0
BYTE >OB,>4C
BYTE 0,>04
DATA SFWB
DATA 0
DATA 80

7.3.11 Write EOF

WRITE A RECORD TO FILE ASSIGNED
TO LUNO >4C AND UNLOCK
THE RECORD

Sub-opcode >OD specifies a Write EOF operation. A Write EOF operation provides an EOF
indicator in the file. Any number of EOFs may be written to a sequential file, dividing the file into
subfiles.

The following fields of the basic supervisol: call block apply to a Write EOF operation:

• SVC code - 0

• Retu rn code

• Sub-opcode - >OD

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Write IEOF operation:

2279602

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assign,ed to the file.

7·54 2270507·9701

Sequential File I/O 7.3

The following is an example of the source code for a supervisor call block to write an EOF to a file:

WESF

7.3.12 Rewind

DATA 0
BYTE >OD,>4C
BYTE 0,0
DATA 0
DATA 0
DATA 0

WRITE AN EOF TO FILE ASSIGNED
TO LUNO >4C

Sub-opcode >OE specifies a Rewind operation. The Rewind operation simulates the rewinding of a
magnetic tape file. When the file is a sequential file, the next operation performed on the file
accesses the first record of the file (not a subfile).

The following fields of the basic supervisor call block apply to a Rewind operation:

• SVC code - 0

• Return code

• Sub-opcode - >OE

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Rewind operation:

2279603

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The following is an example of the source code for a supervisor call block to rewind a file:

RWSF

2270507·9701

DATA 0
BYTE >OE,>4C
BYTE 0,0
DATA 0
DATA 0
DATA 0

REWIND FILE ASSIGNED TO LUNO >4C

7·55

7.3 Sequential File I/O

7.3.13 Rewrite
Sub-opcode >10 specifies a Rewrite operation. The Rewrite operation backspaces a file one
logical record, and writes a record to replacE~ the record previously read. The write portion of the
operation is similar to the Write ASCII operation.

The following fields of the basic supervisor call block apply to a Rewrite operation:

• SVC code - 0

• Return code

• Sub-opcode - >10

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Write character count

The following system flags apply to a Rewrite operation:

2279604

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Rewrite operation:

2279605

7·56 2270507-9701

Sequential File I/O 7.3

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management unlocks the record after rewriting.
o - Record remains in the state it was in before the rewrite.

Bit 7 - Blank adjustment flag. Set as follows:
1 - Do not write trailing blanks in the buffer.
o - Write the entire buffer contents.

The LUNO field contains the LUNO assigned to the file.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even number.

The write character count is the number of characters to be written.

When the character count indicates that the length of the updated record is different from the
length of the record in the file, the record is not rewritten and the operation terminates in error. A
blank compressed record may be rewritten, but the length of the new record (with blank com­
pression) must remain the same as the length of the blank compressed record in the file.

A Rewrite operation does not alter the end-of-file. When a rewrite is attempted on the end-of-file
record, the rewritten record is lost.

The following is an example of the source code for a supervisor call block to rewrite a record:

RWTSF DATA 0
BYTE >10,>4C
BYTE 0,0
DATA SFWB
DATA 0
DATA 80

7.3.14 Modify Access Privileges

REWRITE RECORD OF FILE ASSIGNED
TO LUNO 4C

Sub-opcode >11 specifies a Modify Access Privileges operation. The Modify Access Privileges
,operation assigns access privileges to a file. The requested access privileges are not allowed if
,those access privileges to the file are currently" in use. In that case, the existing access privileges
continue to apply.

The following fields of the basic supervisor call block apply to a Modify Access Privileges
operation:

• SVC code - 0

• Return code

• Sub-opcode - >11

2270507·9701 7.57

7.3 Sequential File 110

• Logical unit number (LUNO)

• User flags

The following user flags apply to a Modify Access Privileges operation:

~ I ___ 3-4~1 5 1_6 1 ~71
~f

2279606

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

The LUNO field contains the LUNO assignod to the file.

The access privilege flag in the user flags byte specifies the new access privileges for the file.

The following is an example of the source code for a supervisor call block to modify the access
privi leges of a fi Ie:

MASF DATA 0
BYTE >11,>4C
BYTE 0,>18
DATA 0
DATA 0
DATA 0

7.3.15 Open Extend

MODIFY ACCESS PRIVILEGES OF FILE
ASSIGNED TO LUNO 4C TO
READ ONLY

Sub-opcode >12 specifies an Open Extend operation. The Open Extend operation opens a file and
positions the file at the EOF record that follows the last data record in the file. For a file with a
single EOF, the file is positioned at that I=OF record. For a file with multiple EOFs, the file is
positioned at the first EOF of the group. EXGept for positioning the file, the Open Extend operation
is the same as the Open operation previously described.

The following fields of the basic supervisor call block apply to an Open Extend operation:

• SVC code - 0

• Return code

• Sub-opcode - >12

7·58 2270507-9701

Sequential File I/O 7.3

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

The following user flags apply to an Open Extend operation:

f t
2279607

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

Bit 5 - Do not replace flag. Applies to shared, exclusive write, and exclusive all access only.
Set as follows:
1 - Open file that was created with the autocreate option when the LUNO was

assigned. When file existed prior to the Assign LUNO operation, terminate in
error.

o - Open file regardless of when it was created.

The LUNO field contains the LUNO assigned to the file to be opened.

The Open Extend operation returns the file type code in the buffer address field. The file type code
for a sequential file is >01 FF.

When the calling task places zero in the input character count field, the Open Extend operation
returns the logical record length specified for the file.

The following is an example of the source code for a supervisor call block to open a sequential file
to be extended:

OXSF

XSFT
XBL

2270507-9701

DATA 0
BYTE> 12,>4C
BYTE 0,>10
DATA 0
DATA 0
DATA 0

OPEN EXTEND FILE ASSIGNED TO LUNO
>4C WITH SHARED ACCESS

7·59

7.3 Sequential File I/O

7.3.16 Unlock
Sub-opcode >4A specifies an Unlock operation. The Unlock operation releases exclusive control
of the current record, whether the record was locked by another task or by the calling task.

The following fields of the basic supervisor call block apply to an Unlock operation:

• SVC code - 0

• Return code

• Sub-opcode - >4A

• Logical unit number (LUNa)

• User flags

The following user flag applies to an Unlock operation:

2279608

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNa field contains the LUNa assigned to the file.

The following is an example of the source code for a supervisor call block to unlock a file record:

USF

7·60

DATA 0
BYTE >4A,>4C
BYTE 0,0
DATA 0
DATA 0
DATA 0

UNLOCK CURRENT RECORD IN FILE ASSIGNED
TO LUNa >4C

2270507·9701

Sequential File I/O 7.3

7.3.17 Multiple Record Read
Sub-opcode >59 specifies a Multiple Record Read operation. The Multiple Record Read operation
reads an integral number of records of the file and stores the data in the buffer at the specified
address. The characters are packed one per byte. The calling task specifies the number of
characters to be stored; the operation stores complete records, each preceded by a word that
contains the length of the record. The transfer of data to the buffer continues until the number of
characters in the current record exceeds the number of characters remaining in the buffer.

The following fields of the basic supervisor call block apply to a Multiple Record Read operation:

• SVC code - 0

• Return code

• Sub-opcode - >59

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Read character count

• <Actual read count>

The following system flags apply to a Multiple Record Read operation:

2279609

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - EOF record has been read.
o - EOF record has not been read.

2270507·9701 7·61

7.3 Sequential File 110

The following user flags apply to a Multiple l=tecord Read operation:

IoGTzT 3-4 I 5 1 6 I 7 I
~ f

2279610

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks th·e records after reading.
o - Records remain unlocked.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer in which the records are to be stored.
The address must be an even number.

The read character count contains the maximum number of characters to be stored in the buffer.

The actual read count is the actual number o'f characters stored, returned by file management. The
operation reads a record and compares the number of characters in the record with the remaining
buffer space. When the record can be stored in the remaining space, the operation stores the
record length (in characters) in a word, followed by the characters of the record. The operation
continues reading and storing records until the record length is greater than the remaining space.
At this point, the operation returns the total number of characters in the records plus two for the
overhead word of each record and terminatl3s.

If the buffer is too small to hold one record, an error code is returned.

When the first record read is an EOF record, file management returns zero in the actual read count
length field and sets the EOF flag in the systems flags byte. When an EOF record is read in a
subsequent record, the operation terminates and returns the number of characters stored without
setting the EOF flag. The next Read operation sets the EOF flag.

When the lock/unlock flag .is set, the Multiple Record Read operation locks the records that are
read. These records cannot be read again until a Write or Rewrite operation unlocks each record
after updating the contents, or until an Unlock operation for each record is performed.

When a Multiple Record Read operation rE1ads a record that is locked, the operation returns an
error message and no more records are rea.d. The contents of any unlocked records read prior to
reading the locked record are stored in the data buffer, and the actual read count contains the
number of characters stored in the buffer.

If an end of medium is reached, a >0030 err()r is returned and the EOF flag is not set.

7·62 2270507·9701

Sequential File 110 7.3

The following is an example of the source code for a supervisor call block for a Multiple Record
Read to read ten 80-character records and for the required buffer:

MRRSF

MRB

DATA 0
BYTE >59,>4C
BYTE 0,0
DATA MRB
DATA 820
DATA 0
BSS 820

7.3.18 Multiple Record Write

READ MULTIPLE RECORDS OF FILE
ASSIGNED TO LUNa >4C

READ BUFFER

Sub-opcode >5B specifies a Multiple Record Write operation. The Multiple Record Write operation
transfers the data in the buffer at the specified address to the file. The characters in the buffer are
packed one per byte. The first character of each record in the buffer must be at an even (word)
address and must be preceded by a word that contains the record length (in characters). The
record length words are not written to the file.

The following fields of the basic supervisor call block apply to a Multiple Record Write operation:

• SVC code - 0

• Return code

• Sub-opcode - >5B

• Logical unit number (LUNa)

• System flags

• User flags

• Data buffer address

• Write character count

The following system flags apply to a Multiple Record Write operation:

2279611

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

2270507-9701 7-63

7.3 Sequential File I/O

The following user flags apply to a MultiplEI Record Write operation:

2279612

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management unlocks the records after writing.
o - Records remain in the state they were in before the write.

The LUNO field contains the LUNO assign1ed to the file.

The data buffer address is the address of the buffer that contains the records to be written. A word
that contains the length (in characters) precedes each record.

The write character count is the number of characters to be written. This count must include the
overhead words containing the record len~lths.

A Multiple Record Write operation clears any EOF indication for the current record or for a
subsequent record.

When the lock/unlock flag is set, all locked records that are written are unlocked following the
Multiple Record Write operation.

7·64 2270507·9701

Relative Record File 110 7.4

The following is an example of the source code for a supervisor call block for a Multiple Record
Write operation and for a typical buffer: '

MRWSF

SFWB

REC2

REC3

ENDB

DATA 0
BYTE >5B,>4C
BYTE 0,0
DATA SFWB
DATA 0
DATA ENDB-SFWB
DATA REC2-$
TEXT 'RECORD l'

DATA REC3-$
TEXT 'RECORD 2'

DATA ENDB-$
TEXT 'RECORD 3'

EVEN
EQU $

7.4 RELATIVE RECORD FilE 1/0

WRITE MULTIPLE RECORDS TO FILE
ASSIGNED TO LUNO >4C

WRITE BUFFER

Relative record file 110 uses the basic supervisor call block previously shown to effect 110
transfers, file positioning, and other 1/0 operations. Each record of a relative record file is
designated by a record number. The first record is record 0; the maximum record number is
16,777,215. A 4-byte extension contains the record number. The user must set the first byte to O.
The last three bytes are used as follows:

SVC > 00 -- I/O OPERATIONS ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN

EVENT
DEC HEX

0 0 >00 < RETURN CODE>

2 2 SUB-OPCODE LUNO

4 4 < SYSTEM FLAG,S> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COUNT/ < ACTUAL READ COUNT>

2279470

2270507-9701
7·65

7.4 Relative Record File flO

DEC HEX
12 C

14 E
2279613

Byte

12

o

Set to zero.

Contents

RECORD

NUMBER

13-15 Record number to which operation applies.

The sub-opcodes that apply to relative record files are:

00 Open
01 Close
02 Close, Write Logical EOF
03 Open and Rewind
04 Close and Unload
05 Read File Characteristics
06 Forward Space
07 Backward Space
09 Read ASCII
OB Write ASCII
00 Write Logical EOF
OE Rewind
10 Rewrite
11 Modify Access Privileges
12 Open Extend
4A Unlock Record
59 Multiple Record Read
5B Multiple Record Write

The following sub-opcodes perform operations identical to those shown:

Sub-opcode

OA
OC

The following sub-opcodes are ignored:

08 Not used
OF Unload

Operation

Ftead Direct
VVrite Direct

Identical to

Read ASCII
Write ASCII

Except for the Read File Characteristics opE3ration, the file must be opened using sub-opcode >00,
>03, or >12 prior to any I/O operation.

7·66 2270507·9701

Relative Record File 110 7.4

7.4.1 Open
Sub-opcode >00 specifies an Open operation. The Open operation enables the task to perform I/O
operations on the file assigned to the LUND. If the Open operation is successful, the access
privilege requested in bits 3 and 4 of byte 5 is granted to the task. An Open operation must be per­
formed before a task can perform any I/O operation except a Read File Characteristics operation.

The following fields of the basic call block apply to an Open operation:

• SVC code - 0

• Return code

• Sub-opcode - >00

• Logical unit number (LUND)

• User flags

• Data buffer address

• Read character count

The following user flags apply to an Open operation:

3-4

2279614 f
Bit 0 - Initiate flag. Set as follows:

1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

Bit 5 - Do not replace flag. Applies to shared, exclusive write, and exclusive all access only.
Set as follows:
1 - Open file that was created with the autocreate option when the LUND was

assigned. When file existed prior to the Assign LUND operation, terminate in
error.

o - Open file regardless of when it was created.

The LUND field contains the LUND assigned to the file to be opened.

2270507-9701 7·67

7.4 Relative Record File I/O

The Open operation returns the file type code in the buffer address field. The file type codes for
relative record fi les are:

>02FF
>04FF
>05FF
>06FF

Relative record file, no speciall usage
Directory (relative record) file
Program (relative record) file
Image (relative record) file

When the calling task places zero in the input character count field, the Open operation returns
the logical record length specified for the fille.

The following is an example of the source code for a supervisor call block to open a relative record
file:

ORRF

RRFT
BLR

DATA 0
BYTE 0,>4E
BYTE 0,>08
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

OPEN FILE ASSIGNED TO LUNa >4E
WITH EXCLUSIVE ALL ACCESS

7.4.2 Close
Sub·opcode >01 specifies a Close operatioln. The Close operation ends 1/0 to a LUNa from the
calling task. The LUNa remains assigned to the file. Specifically, for the file assigned to the
LUNa, the Close operation:

• Unlocks any locked records

• Writes all modified file blocks on which write was deferred

• Releases access privileges

• Updates file data structures maintained by the system to accurately describe the current
file. Until the Close operation is performed, data structures on disk do not accurately
reflect the contents of the file. If a system crash occurs before a Close is performed,
new records written to the end of an existing file will be lost.

The following fields of the basic supervisor call block apply to a Close operation:

• SVC code - 0

• Return code

• Sub·opcode - >01

• Logical unit number (LUNa)

• User flags

7·68 Change 1 2270507·9701

Relative Record File I/O 7.4

The following user flag applies to a Close operation:

2279615

Bit 0 - Initiate flag. Set as follows:
1 - System initiates fhe operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file to be closed.

The following is an example of the source code for a supervisor call block to close a file:

CRRF DATA 0
BYTE >01,>4E
BYTE 0,0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

7.4.3 Close, Write Logical EOF

CLOSE FILE ASSIGNED TO LUNO >4E

Sub-opcode >02 specifies a Close, Write Logical EOF operation. A Close, Write Logical EOF
operation consists of a Write Logical EOF operation followed by a Close operation.

7.4.4 Open and Rewind
Sub-opcode >03 specifies an Open and Rewind operation. An Open and Rewind operation
performs an Open operation followed by a Rewind operation.

7.4.5 Close and Unload
Sub-opcode >04 specifies a Close and Unload operation. The Close and Unload operation is the
same as a Close operation.

7.4.6 Read File Character~stlcs
Sub-opcode >05 specifies a Read File Characteristics operation. The Read File Characteristics
operation returns file characteristics information in a buffer specified by the user. The file
characteristics consist of 10 bytes of information.

In a secure environment, this operation may be used to determine which access rights a user has
to a file. If this option is used, a word of file access rights is returned.

The following fields of the basic supervisor call block apply to a Read File Characteristics
operation:

• SVC code - 0

• Retu rn code

2270507-9701 7·69

7.4 Relative Record File 110

• Sub-opcode - >05

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

• <Actual read count>

The following user flag applies to a Read File Characteristics operation:

2279616

Bit 0 - Initiate flag. Selas follows.
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 2 - Security access rights flag. Set as follows:
1 - System returns a word of rights in the buffer specified by the user.
0- System returns file characteristics.

The LUNO field contains the LUNO assignod to the file for which characteristics are to be read.

The data buffer address is the address of the buffer into which DNOS places the file characteris­
tics. The buffer should contain at least 10 bytes if the security rights option is not used. If the secu­
rity rights option is used, the buffer should contain two bytes.

The read character count is the length of the' buffer.

If the security access rights flag is set, a word of file access rights is returned to the buffer speCi­
fied by the user. The following explains the meaning of the bits in the returned word:

I 0 II I 2 I 3 I 4 I 5 I 6 I 7 I B I 9 110 111 112 113 114 115 I
t t , t f f

2285028

Bit 0 - 1 if the user has read access
Bit 1 - 1 if the user has write acces
Bit 2 - 1 if the user has delete access
Bit 3 - 1 if the user has execute access
Bit 4 - 1 if the user has control access

If the security access rights flag is not set, 10 bytes of file characteristics are returned.

7-70 2270507·9701

Relative Record File I/O 7.4

DNOS returns the number of characters stored in the buffer in the actual read count field. The file
characteristics for a relative record file (other than a program file) consist of 10 characters. Two
additional characters are required for progrart:l files. The contents of the buffer following a Read
File Characteristics operation are:

DEC HEX

o 0 FILE ATTRIBUTE FLAGS

2 2 PHYSICAL RECORD LENGTH

4 4 LOGICAL RECORD LENGTH

6 6
NUMBER OF LOGICAL RECORDS

8 8

10 A SECTORS/B LOCI< I SECTORS/ADU

2279617

Byte Contents

227,0507·9701

0-1 File attribute flags, as follows:

Bits 0-1 - File usage:
00 - No special usage.
01 - Directory file.
10 - Program file.
11 - Image file.

Bits 2-3 - Data format:
00 - Not blank compressed.
01 - Blank compressed.

Bit 4 - Allocation type:
o - Fixed size file.
1 - Expandable fi Ie.

Bits 5-6 - File type~
10 - Relative record.

Bit 7 - Write protection flag:
o - Not write protected.
1 - Write protected.

Bit 8 - Delete protection flag:
o - Not delete protected.
1 - Delete protected.

7·71

7.4 Relative Record File I/O

Bit 9 - Temporary file flag:
a - Permanent file.
1 - Temporary file.

Bit 10 - Blocked fiile flag:
a - Blocked.
1 - Not block:ed.

Bit 11 - Reserved.

Bit 12 - Write mode flag:
a - Deferred write.
1 - Immediate write.

Bits 13-15 - Reserved.

2-3 Physical record length.

4-5 Logical record len~lth.

6-9 Number of logical Irecords.

Program files only:

10 Sectors/block.

11 Sectors/ADU, varies with type of disk.

The following is an example of the source code for a supervisor call block to read file charac­
teristics, and for the required buffer:

RRRFC

RRFC

DATA a
BYTE >05,>4E
BYTE 0,0
DATA RRFC
DATA 12
DATA a
DATA a
DATA a
BSS 12

7.4.7 Forward Space

READ CHARACTERISTICS OF FILE ASSIGNED
TO LUNO >4E

FILE CHARACTERISTICS BUFFER

Sub-opcode 06 specifies a Forward Space operation. The Forward Space operation spaces forward
over the requested number of logical records, or until the end of the file is encountered. When the
end of the file is encountered, file management sets the logical EOF flag and returns the number
of records remaining to be spaced.

7-72 2270507·9701

Relative Record File I/O 7.4

The following fields of the basic supervisor call block and the relative record file extension apply
to a Forward Space operation:

• SVC code - 0

• Return code

• Sub-opcode - >06

• Logical unit number (LUNO)

• System flags

• User flags

• Write character count

The following system flags apply to a Forward Space operation:

2279618

Bit 0 - Busy flag. Set by system as .follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - Physical end-of-file has been encountered.
o - Physical end-of-file has not been encountered.

The following user flag applies to a Forward Space operation:

2279619

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

2270507·9701 7·73

7.4 Relative Record File 110

The write character count contains the nlJmber of logical records to be forward spaced. File
management returns zero when the operation forward spaces the requested number of records
without encountering the physical end of the file. When the Forward Space operation encounters
the physical end of the file, the number of records remaining to be forward spaced is returned.

The following is an example of the source c:ode for a supervisor call block to forward space a file:

FRRF DATA 0
BYTE >06,>4E
BYTE 0,0
DATA 0
DATA 0
DATA 5
DATA 0
DATA 0

7.4.8 Backward Space

FORWARD SPACE FILE ASSIGNED
TO LUNO >4E

FIVE RECORDS

Sub-opcode >07 specifies a Backward Space operation. The Backward Space operation spaces
toward the beginning of the file over the requested number of logical records, or until the
beginning of the file is encountered. When the beginning of the file is encountered, file manage­
ment sets the logical EOF flag and returns the number of records remaining to be spaced. The file
is positioned to read the last record spaced over when a Read operation is performed.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Backward Space operation:

• SVC code - 0

• Return code

• Sub-opcode - >07

• Logical unit number (LUNO)

• System flags

• User flags

• Write character count

The following system flags apply to a Backward Space operation:

7-74

2279620

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

2270507·9701

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - Physical beginning of file has been encountered.
o - Physical beginning of file has not been encountered.

The following user flag applies to a Backward Space operation:

2279621

Bit 0 - Initiate flag. Set as follows:

Relative Record File I/O 7.4

1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The write character count contains the number of logical records to be backward spaced. File
management returns zero when the operation spaces backward the requested number of records
without encountering the physical beginning of the file. When the Backward Space operation
encounters the physical beginning of the file, the number of records remaining to be backward
spaced is returned.

The following is an example of the source code for a supervisor call block to backward space a
file:

BRRF

7.4.9 Read ASCII

DATA 0
BYTE >07,>4E
BYTE 0,0
DATA 0
DATA 0
DATA 3
DATA 0
DATA 0

BACKWARD SPACE FILE ASSIGNED
TO LUNO >4E

THREE RECORDS

Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII operation reads a record of the
file and stores the data in the buffer at the specified address. The characters are packed one per
byte.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Read ASCII operation:

• SVC code - 0

• Return code

2270507.9701 7·75

7.4 Relative Record File I/O

• Sub-opcode - >09

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Read character count

• <Actual read count>

• Record number

The following system flags apply to a Read ASCII operation:

2279622

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - Logical end-of-file. Set by system as follows:
1 - Logical EOF record has been read.
o - Logical EOF record has not been read.

The following user flags apply to a Read ASCII operation:

2279623
~I

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks the record after reading.
o - Record remains in the state it was in before the read.

7·76 2270507·9701

Relative Record File I/O 7.4

The LUNO field contains the LUNO assigned to' the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less.

The record number field contains the number of the record to be read. File management
increments this number by one when a Read ASCII operation completes successfully.

When the record number just past the last record is read, file management returns zero in the
input record length field and sets the logical EOF flag in the system flags byte.

When the lock/unlock flag is set, the Read ASCII operation locks the record. The record cannot be
read until a Write OJ Rewrite operation unlocks the record after updating the contents, or until an
Unlock operation for the record is performed.

The following is an example of the source code for a supervisor call block to read a file record, and
for the required buffer: .

RARRF

SFRB

DATA 0
BYTE >09,>4E
BYTE 0,>04
DATA RRFRB
DATA 80
DATA 0
DATA 0
DATA 35
BSS 80

7.4.10 Write ASCII

READ A RECORD OF FILE ASSIGNED
TO LUNO >4E AND LOCK
THE RECORD

RECORD NUMBER

READ BUFFER

Sub-opcode >OB specifies a Write ASCII operation. The Write ASCII operation transfers the data in
the buffer at the specified address to the file. The characters in the buffer are packed two per
word.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Write ASCII operation:

• SVC code - 0

• Return code

• Sub-opcode - >OB

• Log.!cal unit number (LUNO)

• System flags

2270507-9701 7-77

7.4 Relative Record File I/O

• User flags

• Data buffer address

• Write character count

• Record number

The following system flags apply to a Write ASCII operation:

2279624

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Write ASCII operation:

2279625

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management unlocks the record after writing.
o - Record remains in the st.ate it was in before the write.

The LUNO field contains the LUNO assignHd to the file.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even number.

The write character count is the number of characters in the buffer. The number of characters to
be written is the logical record length of the file. When the buffer contains fewer characters than a
logical record, the system writes the specified number of characters- and fills the record with
zeros. When the buffer contains more characters than the logical record, the system writes the
data, truncating the data at the logical rec()rd length.

The record number field contains the number of the record to be written. File management
increments this number by one when a Write ASCII operation completes successfully.

7·78 2270507-9701

Relative Record File I/O 7.4

When a Write ASCII operation writes a record with a record number that is the highest numbered
record in the file, the next higher numbered record becomes the end-of-file record; that is, the end­
of-file record is not affected by a Write operation unless a record with a record number equal to or
greater than that of the end-of-file record is written.

Within the limits of file expandability, writing a record with a record number higher than that of the
end-of-file expands the file to include the new record. The contents of the records skipped over in
writing the new record are not altered; they contain whatever happens to be on the disk.

When the lock/unlock flag is set, the Write ASCII operation unlocks the record after the Write
operation.

The following is an example of the source code for a supervisor call block to write a file record:

WARRF DATA 0
BYTE >OB,>4E
BYTE 0,>04
DATA SFWB
DATA 0
DATA 80
DATA 0
DATA 75

7.4.11 Write Logical EOF

WRITE A RECORD TO FILE ASSIGNED
TO LUNO >4E AND UNLOCK
THE RECORD

RECORD NUMBER

Sub-opcode >00 specifies a Write Logical EOF operation. A Write Logical EOF operation stores
the record number in the call block for the Write Logical EOF operation as the end-of-file.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Write EOF operation:

• SVC code - 0

• Return code

• Sub-opcode - >00

• Logical unit number (LUNO)

• User flags

• Record number

The following user flag applies to a Write Logical EOF operation:

2 3-4 Is I 6 7

2279626

2270507-9701 7-79

7.4 Relative Record File I/O

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assignod to the file.

The record number field contains the number of the record that becomes the logical EOF record.

The following is an example of the source c()de for a supervisor call block to write a logical EOF on
a relative record file:

WEFRRF DATA 0

7.4.12 Rewind

BYTE >OD,>4E
BYTE 0,0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 85

DESIGNATE RECORD 85 AS EOF
OF FILE ASSIGNED TO LUNO >4E

RECORD NUMBER

Sub-opcode >OE specifies a Rewind operation. The Rewind operation simulates the rewinding of a
magnetic tape file. For a relative record file!, the operation stores zero in the record number field.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Rewind operation:

• SVC code - 0

• Return code

• Sub-opcode - >OE

• Logical unit number (LUNO)

• User flags

• Record number

The following user flag applies to a Rewind operation:

2279627

Bit 0 - Initiate flag. Set as follows:

7·80

1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

2270507 -9701

Relative Record File I/O 7.4

The LUNO field contains the LUNO assigned to the file.

The following is an example of the source code for a supervisor call block to rewind a file:

RWRRF

7.4.13 Rewrite

DATA 0
BYTE >OE,>4E
BYTE 0,0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 345

REWIND FILE ASSIGNED TO LUNO >4E

RECORD NUMBER -
SET TO ZERO BY REWIND

Sub-opcode >10 specifies a Rewrite operation. The Rewrite operation backspaces a file one
logical record, and writes a record to replace the record previously read. The write portion of the
operation is similar to the Write ASCII operation.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Rewrite operation:

• SVC code- 0

• Return code

• Sub-opcode - >10

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Write character count

• Record number

The following system flags apply to a Rewrite operation:

2279626

2270507·9701 7·81

7.4 Relative Record File I/O

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Rewrite operation:

2279629

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks the record after reading.
o - Record remains in the state it was in before the rewrite.

The LUNO field contains the LUNO assignE~d to the file.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even number.

The write character count is the number of characters in the buffer. The number of characters to
be written is the logical record length of the file. When the buffer contains fewer characters than a
logical record, the system writes the specified number of characters and fUls the record with
zeros. When the buffer contains more characters than the logical record, the system writes the
data, truncating the data at the logical record length.

The record number field contains a record number one greater than the number of the record to be
rewritten.

When a Rewrite is attempted on the end-of-file record number, the record is written and the end-of­
file record number is increased by one.

7-82 2270507·9701

Relative Record File I/O 7.4

The following is an example of the source code for a supervisor call block to rewrite a record:

RWTRRF DATA 0
BYTE >10,>4E
BYTE 0,0
DATA SFWB
DATA 0
DATA 80
DATA 0
DATA 954

7.4.14 Modify Access Privileges

REWRITE RECORD OF FILE ASSIGNED
TO LUNO 4E

Sub-opcode >11 specifies a Modify Access Privileges operation. The Modify Access Privileges
operation assigns access privileges to a file. When the requested access privileges are not
allowed, the existing access privileges continue to apply.

The following fields of the basic supervisor call block apply to a Modify Access Privileges
operation:

• SVC code - 0

• Return code

• Sub-opcode - >11

• Logical unit number (LUNO)

• User flags

The following user flags apply to a Modify Access Privileges operation:

3-4

+
2279630

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

The LUNO field contains the LUNO assigned to the file.

The access privilege flag in the user flags byte specifies the new access privileges for the file.

2270507·9701 7-83

7.4 Relative Record File I/O

The following is an example of the source code for a supervisor call block to modify the access
privileges of a file:

MARRF DATA 0
BYTE >11 ,>4E
BYTE 0,0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

7.4.15 Open Extend

MODIFY ACCESS PRIVILEGES OF FILE
ASSIGNED TO LUNO 4E TO
EXCLUSIVE WRITE

Sub-opcode >12 specifies an Open Extend operation. The Open Extend operation for a relative
record file is effectively an Open operation except that the file is positioned at the logical EOF
record. That is, the record number is set to the number of the logical EOF record.

The following fields of the basic supervisor call block apply to an Open Extend operation:

• SVC code - 0

• Return code

• Sub-opcode - >12

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

• Record number

The following user flags apply to an Open Extend operation:

2279631

7·84 2270507-9701

Relative Record File 110 7.4

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

Bit 5 - Do not replace flag. Applies to shared, exclusive write, and exclusive all access only.
Set as follows:
1 - Open file that was created with the autocreate option when the LUNO was

assigned. When file existed prior to the Assign LUNO operation, terminate in
error.

o - Open file regardless of wh~n it was created.

The LUNO field contains the LUNO assigned to the file to be opened.

The Open Extend operation returns the file type code in the buffer address field. The file type
codes for relative record files are:

>02FF
>04FF
>05FF
>06FF

Relative record file, no special usage
Directory (relative record) file
Program (relative record) fi Ie
Image (relative record) file

When the calling task places zero in the read character count field, the Open Extend operation
returns the logical record length specified for the file.

The following is an example of the source code for a supervisor call block to open a relative record
file with an Open Extend operation:

OXRRF

XRRFT
XBLR

2270507-9'701

DATA 0
BYTE >12,>4E
BYTE 0,>10
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

OPEN EXTEND FILE ASSIGNED TO LUNO
>4E WITH SHARED ACCESS

7·85

7.4 Relative Record File I/O

7.4.16 Unlock
Sub-opcode >4A specifies an Unlock operation. The Unlock operation releases exclusive control
of any previously locked record, a record loc:ked by another task, or a record locked by the calling
task. For a relative record file, the operation unlocks a specified record.

The following fields of the basic supervisor call block and the relative record file extension apply
to an Unlock operation:

• SVC code - 0

• Return code

• Sub-opcode - >4A

• Logical unit number (LUNa)

• User flags

• Record number

The following user flag applies to an Unlock operation:

2279632

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the ca.lling task until the operation has completed.

The LUNa field contains the LUNa assigned to the file.

The following is an example of the source code for a supervisor call block to unlock a file record:

URRF

7-86

DATA 0
BYTE >4A,>4E
BYTE 0,0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 456

UNLOCK RECORD 456 IN FILE
ASSIGNED TO LUNa >4E

2270507·9701

Relative Record File I/O 7.4

7.4.17 Multiple Record Read
Sub-opcode >59 specifies a Multiple Record Read operation. The Multiple Record Read operation
reads an integral number of records of the file and stores the data in the buffer at the specified
address. The characters are packed two per wo"rd. The calling task specifies the number of
characters to be stored; the operation stores complete records, each preceded by a word that
contains the length of the record. The transfer of data to the buffer continues until the number of
characters in the current record exceeds the number of characters remaining in the buffer. The
specified record of a relative record file is the first record to be read.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Multiple Record Read operation:

• SVC code - 0

• Return code

• Sub-opcode - >59

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Read character count

• <Actual read count>

• Record number

The following system flags apply to a Multiple Record Read operation:

2279633

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - EOF record has been read.
o - EOF record has not been read.

2270507·9701 7·87

7.4 Relative Record File I/O

The following user flags apply to a Multiple Record Read operation:

2279634

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks the records after reading.
o - Records remain in the state they were in before the read.

The LUNO field contains the LUNO assignEld to the file.

The data buffer address contains the address of the buffer in which the records are to be stored.
The address must be an even number.

The input character count contains the maximum number of characters to be stored in the buffer.

The actual read count is the number of characters stored; it is returned by file management. The
operation reads a record, beginning at the record specified in the record number field, and
compares the number of characters in thEl record with the remaining buffer space. When the
record can be stored in the remaining space, the operation stores the record length (in characters)
in a word, followed by the characters of the record. The operation continues reading and storing
records until the record length is greater than the remaining space. At this point, the operation
returns the total number of characters in the records plus two for the overhead word of each
record and term i nates.

If the buffer supplied is too small, an error code is returned.

When the first record read is a logical EOF record, file management returns zero in the actual read
count field and sets the logical EOF flag in the system flags byte. When a logical EOF record is
read in a subsequent record, the operation tl3rmiriates and returns the number of characters stored
without setting the logical EOF flag. The next read operation sets the logical EOF flag.

When the lock/unlock flag is set, the Multiple Record Read operation locks the records that are
read. These records cannot be read again until a Write or Rewrite operation unlocks each record
after updating the contents, or until an Unlock operation for each record is performed.

When a Multiple Record Read operation reads a record that is locked, the operation returns an
error message and no more records are rea:d. The contents of any unlocked records read prior to
reading the locked record are stored in thl3 data buffer, and the actual read count contains the
number of characters stored in the buffer.

Reading begins at the record specified in the record number field. The record number is
incremented by one as each record is read. At the completion of the operation, the record number
field contains the number of the record following the last record read.

7·88 2270507-9701

Relative Record File liD 7.4

The following is an example of the source code for a supervisor call block for a Multiple Record
Read, and for the required buffer:

MRRRRF DATA a
BYTE >59,>4E
BYTE 0,0
DATA MRRB
DATA 800
DATA a
DATA a
DATA 38

MRRB BSS

7.4.18 Multiple Record Write

READ MULTIPLE RECORDS OF FILE
ASSIGNED TO LUNO >4E

READ BUFFER

Sub-opcode >5B specifies a Multiple Record Write operation. The Multiple Record Write operation
transfers the data in the buffer at the specified address to the file. The characters in the buffer are
packed two per word. The first character of each record in the buffer is preceded by a word that
contains the record length (in characters). The record length words are not written to the file.

The following fields of the basic supervisor call block and the relative record file extension apply
to a Multiple Record Write operation:

• SVC code - a

• Return code

• Sub-opcode - >5B

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Write character count

• Record number

The following system flags apply to a Multiple Record Write operation:

2279635

2270507 ·9701 7·89

7.4 Relative Record File 110

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a MultiplE~ Record Write operation:

2279636

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the ca~ling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management unlocks the records after writing.
o - Records remains unlocked.

The LUNO field contains the LUNO assigned to the file.

The data buffer address is the address of th,e buffer that contains the records to be written. A word
that contains the length (in characters) precedes each record.

The write character count is the number of characters in the buffer, including the overhead words
containing the record lengths. The number of characters to be written is a multiple of the logical
record length of the file. When the record length supplied in the buffer for a record is less than the
logical record length, the system writes the specified number of characters and fills the record
with zeros. When the record length is greatt9r than the logical record length, the system writes the
data, truncating the data at the logical record length.

The record number is the number of the lirst record to be written. The system increments the
record number by one as each record is written. At the completion of the operation, the record
number field contains the number of the record following the last record written. The record
following the highest-numbered record in the file is the logical EOF record.

When the lock/unlock flag is set, all records that are written are unlocked following the Multiple
Record Write operation.

7·90 2270507·9701

Key Indexed File I/O 7.5

The following is an example of the source code. for a supervisor call block for a Multiple Record
Write operation:

WMRRRF DATA 0
BYTE >5B,>4E
BYTE 0,0
DATA RRFWB
DATA 0
DATA ENDBF-RRFWB
DATA 0
DATA 248

RRFWB DATA RREC2-$
TEXT 'RECORD 248'

RREC2

RREC3

ENDBF

DATA RREC3-$
TEXT 'RECORD 249'

DATA ENDBF-$
TEXT 'RECORD 250'

EVEN
EQU $

7.5 KEY INDEXED FILE 1/0

WRITE RECORDS TO FILE
ASSIGNED TO LUNO >4E

WRITE BUFFER

DNOS supports resource-independent operations to key indexed files. These operations access
the file as if it were a sequential file with records written in the order of the primary key. The
resource-specific operations access records in the sequence of any key defined for the file, or
access a specific record by its key. The supported operations read, insert, locate, or rewrite a
record.

7.5.1 Key Indexed File Resource-Independent 1/0
Key indexed file 1/0 uses the basic supervisor call block previously shown to effect 1/0 transfers,
file positioning, and other 1/0 operations. Except for the Read File Characteristics operation, the
file must be opened for resource-independent 1/0 using sub-opcode >00 or >03. Sub-opcode >01
(Close) is common to both resource-independent and resource-specific operations. The sub­
opcodes that apply to key indexed file resource-independent 1/0 are:

2270507 -9701 7·91

7.5 Key Indexed File 110

SVC > 00 -- I/O OPERATIONS ALIGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT

DEC

0

2

4

6
I
8

10

2279470

00 Open
01 Close

HEX

0

2

4

6

8

A

03 Open and Rewind

>00 < RETURN CODE>

SUB-()PCODE LUNO

< SYSTEM FLAGS> USER FLAGS

DATA BUFFER ADDRESS

READ CHARACTER COUNT

WRITE CHA.RACTER COUNT/ < ACTUAL READ COUNT>

05 Read File Characteristics
06 Forward Space
07 Backward Space
09 Read ASCII
OE Rewind

Sub-opcode >OA, Read Direct, is identical to a Read ASCII operation.

The following sub-opcodes return error messages:

02 Close, Write EOF
04 Close and Unload
08 Not Used
OB Write ASCII
OC Write Direct
OD Write EOF
OF Unload

7.5.1.1 Open. Sub-opcode >00 specifies an Open operation for resource-independent 1/0. The
Open operation enables the task to perform 1/0 operations on the file assigned to the LUNO. If the
Open operation is successful, the access privilege requested in bits 3 and 4 of byte 5 is granted to
the task. An Open operation must be performed before a task can access a file. However, the Read
File Characteristics operation may be performed without opening the file. The first Open oper­
ation for the LUNO positions the file at the first record (lowest-valued .primary key). Subsequent
Open operations for the same LUNO open the file as positioned by the most recent operation.

The following fields of the basic call block apply to an Open operation:

• SVC code - 0

• Return code

7·92 2270507-9701

Key Indexed File I/O 7.5

• Sub-opcode - >00

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

The following user flags apply to an Open operation:

2279637 f f
Bit 0 - Initiate flag. Set as follows:

1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

Bit 5 - Do not replace flag. Applies to shared, exclusive write, and exclusive all access only.
Set as follows:
1 - Open file that was created with the autocreate option when the LUNO was

assigned. When file existed prior to the Assign LUNO operation, terminate in
error.

o - Open file regardless of when it was created.

The LUNO field contains the LUNO assigned to the file to be opened.

The Open operation returns the file type code in the buffer address field. The file type code for a
key indexed file is >03FF.

When the calling task places zero in the read character count field, the Open operation returns the
logical record length specified for the file.

The following is an example of the source code for a supervisor call block to open a key indexed
file:

OKIF

KFT
BLK

2270507 -9701

DATA 0
BYTE O,>SE
BYTE 0,>10
DATA 0
DATA 0
DATA 0

OPEN FILE ASSIGNED TO LUNO >SE
WITH SHARED ACCESS

7·93

I

7.5 Key Indexed File I/O

7.5.1.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation ends 1/0 to a
LUNO from the calling task. The LUNO Iremains assigned to the file. Specifically, for the file
assigned to the LUNO, the Close operation:

• Unlocks any locked records

• Writes all modified file blocks on which write was deferred

• Releases access privileges

• Updates file data structures maintained by the system to accurately describe the current
file. Until the Close operation is performed, data structures on disk do not accurately
reflect the contents of the file. If a system crash occurs before a Close is performed,
new records written to the end Qif an existing file will be lost.

The Close operation is used to close files opened either for resource-independent or for resource­
specific operations.

The following fields of the basic supervisor call block apply to a Close operation:

• SVC code - 0

• Return code

• Sub-opcode - >01

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Close operation:

2279638

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assilgned to the file to be closed.

The following is an example of the source code for a supervisor call block to close a file:

CKIF

7·94

DATA 0
BYTE >01 ,>5E
BYTE 0,0
DATA 0
DATA 0
DATA 0

CLOSE FILE ASSIGNED TO LUNO >5E

Change 1 2270507·9701

Key Indexed File I/O 7.5

7.5.1.3 Open and Rewind. Sub-opcode >03 specifies an Open and Rewind operation. An Open
and Rewind operation is identical to an Open operation except that the Open and Rewind oper­
ation always positions the file to the record having the lowest-valued primary key (first record).

7.5.1.4 Read File Characteristics. Sub-opcode >05 specifies a Read Fi Ie Characteristics
operation. The Read File Characteristics operation returns file characteristics information in a
buffer specified by the user. The fi Ie characteristics consist of 12 + 4n bytes of information, in
which n is the number of keys defined for the file, 14 or fewer.

In a secure environment, this operation may be used to determine which access rights a user has
to a file. If this option is used, a word of file access rights is returned.

The following fields of the basic supervisor call block apply to a Read File Characteristics
operation:

• SVC code - 0

• Return code

• Sub-opcode - >05

• Logical unit number (LUND)

• User flags

• Data buffer address

• Read character count

• <Actual read count>

The following user flag applies to a Read File Characteristics operation:

2279639

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 2 - Security access rights flag. Set as follows:
1 - System returns a word of rights in the buffer specified by the user.
o - System returns file characteristics.

The LUND field contains the LUND aSSigned to the file for which characteristics are to be read.

2270507-9701 7·95

7.5 Key Indexed File I/O

The data buffer address is the address of the buffer into which DNOS places the file characteris­
tics. The buffer should contain at least 16 bytes (for a file with a primary key only) if the security
rights option is not used. If the security rights option is used, the buffer should contain two bytes.
Add four bytes for each secondary key. The buffer should contain at least 10 bytes if the security
rights option is not used. If the security righ1s option is used, the buffer should contain two bytes.

The read character count is the length of the buffer.

If the security access rights flag is set, a word of file access rights is returned to the buffer speci­
fied by the user. If the security access rights flag is not set, file characteristics are returned. The
following explains the meaning of the bits in the returned word:

I 0 11 I 21 3 I 41 5 I 61 71 81 9 110 111 1121131141151
f t t f t f

2285029

Bit 0 - 1 if the user has read access
Bit 1 - 1 if the user has write access
Bit 2 - 1 if the user has delete access
Bit 3 - 1 if the user has execute access
Bit 4 - 1 if the user has control access

If the security access rights flag is not set, al number of file characteristics is returned.

7·96 2270507 -9701

Key Indexed File liD 7.5

DNOS returns the number of characters stored in the buffer in the actual read count field. The file
characteristics for a key indexed file consist of 16 through 68 characters. The contents of the
buffer following a Read File Characteristics operation are:

DEC HEX
0 0

2 2

4 4

6 6

8 8

10 A

12 C

14 E

8+4N 8+4N

10+4 N A+4N

2279640

Byte

0-1

2270507·9701

FILE ATTRIBUTE FLAGS

PHYSICAL RECORD LENGTH

LOGICAL RECORD LENGTH

NUMBER OF LOGICAL RECORDS

NUM BER OF KEYS

KEY FLAGS I KEY LENGTH

OFFSET OF KEYS

..... ~

,
PRIMARY
KEY

-l-
.... v SECONDARY

_I"" KEYS

~ ______________________ ~I ______________________ ~ (IF 1NY

)

KEY FLAGS KEY LENGTH LAST KEY,
PRIMARY OR

OFFSET TO KEY SECONDARY

~------------------------------------~----~-

Contents

File attribute flags, as follows:

Bits 0-1 - File usage:
00 - No special usage.

Bits 2-3 - Data format:
01 - Blank compressed.

Bit 4 - Allocation type:
1 - Expandable fi Ie.

Bits 5-6 - File type:
11 - Key indexed.

Bit 7 - Write protection flag:
o - Not write protected.
1 - Write protected.

7·97

7.5 Key Indexed File I/O

Byte

2-3

4-5

6-9

10-11

For each of n keys:

8+4n

9+4n

10+ 4n

7·98

Bit 8 - Delete protection flag:
o - Not delete protected.
1 - Delete protected.

Bit 9 - Temporary file flag:
o - Permanent file.
1 - Temporary file.

Bit 10 - Blocked -file flag:
o - Blocked.

Bit 11 - Reserved.

Bit 12 - Write mode flag:
o - Deferred write.
1 - Immediate write.

Bits 13-15 - Reserved.

Physical record length.

Logical record length.

Number of logical records.

Contents

Number of keys for the file, 1 through 14.

Key flags, as follows:
Bits 0-4 - Reserved.
Bit 5 - Modifiable flag. Set to 1 if key may be modified, or to 0 if key may

not be modified.
Bit 6 - Reserved.
Bit 7 - Duplicatable flag. Set to 1 if key may be duplicated, or to 0 if key

may not be duplicated.

Number of characters in key.

Offset to key - The character position in the logical record where the
key begins (first position is 0).

2270507-9701

Key Indexed File I/O 7.5

The following is an example of the source code for a supervisor call block to read file
characteristics and for the buffer required for a three-key file:

RKIFC

KIFC

DATA a
BYTE >05,>5E
BYTE 0,0
DATA KIFC
DATA 24
DATA a
BSS 24

READ CHARACTERISTICS OF FILE
ASSIGNED TO LUNO >5E

FILE CHARACTERISTICS BUFFER

7.5.1.5 Forward Space. Sub-opcode >06 specifies a Forward Space operation. The Forward
Space operation spaces forward (in primary key order) over the requested number of logical
records, or until the logical EOF is encountered. When the EOF is encountered, file management
sets the EOF flag and returns the number of records remaining to be spaced. The file is positioned
before the EOF.

The following fields of the basic supervisor call block apply to a Forward Space operation:

• SVC code - a

• Return code

• Sub-opcode - >06

• Logical unit number (LUNO)

• System flags

• User flags

• Write character count

The following system flags apply to a Forward Space operation:

2279641

Bit a - Busy flag. Set by system as follows:
1 - Busy.
a - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
a - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - EOF has been encountered.
a - EOF has not been encountered.

2270507-9701 7·99

7.5 Key Indexed File

The following user flag applies to a Forward Space operation:

2279642

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assignE!d to the file.

The write character count contains the number of logical records to be forward spaced. File
management returns zero when the operation forward spaces the requested number of records
without encountering EOF. When the forward space operation encounters EOF, the number of
records remaining to be forward spaced is returned.

The following is an example of the source code for a supervisor call block to forward space a file:

FSKIF DATA 0
BYTE >06,>5E
BYTE 0,0
DATA 0
DATA 0
DATA 5

FORWARD SPACE FILE ASSIGNED
TO LUNO >5E

FIVE RECORDS

7.5.1.6 Backward Space. Sub-opcode >07 specifies a Backward Space operation. The Backward
Space operation spaces toward the beginning of the file (decreasing primary key order) over the
requested number of logical records, or until the beginning of the file is encountered. When the
beginning of the file is encountered, file management returns the number of records remaining to
be spaced. The file is positioned to read the first record when a Read operation is performed.

The following fields of the basic supervisor call block apply to a Backward Space operation:

• SVC code - 0

• Return code

• Sub-opcode - >07

• Logical unit number (LUNO)

• System flags

• User flags

• Write character count

7·100 2270507 ·9701

Key Indexed File I/O 7.5

The following system flags apply to a Backward Space operation:

2279643

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flag applies to a Backward Space operation:

2279644

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNa field contains the LUNa assigned to the file.

The write character count contains the number of logical records to be backward spaced. File
management returns zero when the operation spaces backward the requested number of records
without encountering the beginning of the file. When the backward space operation encounters
the beginning of the file, the number of records remaining to be backward spaced is returned.

The following is an example of the source code for a supervisor call block to backward space a
file:

BSKIF

2270507-9701

DATA 0
BYTE >07,>5E
BYTE 0,0
DATA 0
DATA 0
DATA 3

BACKWARD SPACE FILE ASSIGNED
TO LUNa >5E

THREE RECORDS

7·101

7.5 Key Indexed File 110

7.5.1.7 Read ASCII. Sub-opcode >09 specifies a Read ASCII operation. The Read ASCII
operation reads a record of the file and stores the data in the buffer at the specified address. The
characters are packed two per word.

The following fields of the basic supervisol' call block apply to a Read ASCII operation:

• SVC code - 0

• Return code

• Sub-opcode - >09

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Input character count

• <Input record length>

The following system flags apply to a Read ASCII operation:

2219645

~I 31 4
1 51

6
1

7
1

7·102

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - EOF has been encountered.
o - EOF has not been encountered.

2270507-9701

Key Indexed File 110 7.5

The following user flag applies to a Read ASCII operation:

2279646

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

When an EOF is encountered, file management returns zero in the actual read count field and sets
the EOF flag in the system flags byte.

The following is an example of the source code for a supervisor call block to read a file record, and
for the required buffer:

RKIF

KIFRB

DATA 0
BYTE >09,>5E
BYTE 0,0
DATA KIFRB
DATA 80
DATA 0
BSS 80

READ A RECORD OF FILE ASSIGNED
TO LUNO >5E

READ BUFFER

7.5.1.8 Rewind. Sub-opcode >OE specifies a Rewind operation. The Rewind operation simulates
the rewinding of a magnetic tape file. The operation positions the file at the first record, that is, at
the record having the lowest-valued primary key.

The following fields of the basic supervisor call block apply to a Rewind operation:

• SVC code - 0

• Return code

• Sub-opcode - >OE

2270507·9701 7·103

7.5 Key Indexed File 110

• Logical unit number (LUND)

• User flags

The following user flag applies to a Rewind operation:

2279647

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The LUND field contains the LUND assigned to the file.

The following is an example of the source code for a supervisor call block to rewind a file:

RWKIF DATA 0
BYTE >OE,>5E
BYTE 0,0
DATA 0
DATA 0
DATA 0

REWIND FILE ASSIGNED TD LUND >5E

7.5.1.9 Modify Access Privileges. Sub-opcode > 11 specifies a Modify Access Privileges opera­
tion. The. Modify Access Privileges operation assigns access privileges to a file. When the
requested access privileges are not allowed, the existing access privileges continue to apply.

The following fields of the basic supervisor call block apply to a Modify Access Privileges
operation:

• SVC opcode - >00

• Return code

• Sub-opcode - > 11

• Logical unit number (LUND)

• User flags

The following user flags apply to a Modify Access Privileges operation:

3-4

t
2279630

7·104 2270507·9701

Key Indexed File I/O 7.5

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

The LUNO field contains the LUNO assigned to the file.

The access privilege flag in the user flags byte spec.fies the new access privileges for the file.

The following is an example of the source code for a supervisor call block to modify the access
privileges of a file:

MARRF DATA 0
BYTE >11,>4E
BYTE 0,0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

7.5.2 Key Indexed File Resource-Specific 110

MODIFY ACCESS PRIVILEGES OF FILE
ASSIGNED TO LUNO 4E TO
EXCLUSIVE WRITE

DNOS supports 15 operations that exploit the capabilities of key indexed files, as follows:

40 Open Random
41 Read Greater
42 Read by Key
42 Read Current
44 Read Greater or Equal
45 Read Next
46 Insert
47 Rewrite
48 Read Previous
49 Delete by Key
49 Delete Current
4A Unlock
50 Set Currency Equal
51 Set Currency Greater or Equal
52 Set Currency Greater

The key indexed file must be opened using the Open Random operation before performing any of
the other operations listed. The Close operation described for resource-independent key indexed
file I/O applies also to files opened using the Open Random operation.

2270507 -9701 7·105

7.5 Key Indexed File I/O

Some of the resource-specific operations require a key to specify the record on which the
operation is to be performed. Other operations use information returned by file management dur­
ing a previous operation to specify the record. Operations that require a key are:

Read by Key
Read Greater
Read Greater or Equal
Set Currency Equal
Set Currency Greater
Set Currency Greater or Equal
Delete by Key

Operations that use the information suppliE~d to a previous operation are:

Read Current
Read Previous
Read Next
Rewrite
Unlock
Delete Current

Several of the operations that specify a record by its key can use a partial key to specify a record. A
partial key consists of fewer characters than the key defined for the record. The partial key begins
with the first character of the defined key. A partial key may not be taken from the center or end of
the defined key. For example, if a key consists of a telephone number (area code, exchange code,
and number) the area code (first three digits) orthe area code and exchange code (first six digits)
are valid partial keys. The exchange code (fourth through sixth digits) is not a valid partial key. The
following operations may use a partial key:

Read Greater
Read Greater or Equal
Set Currency Equal
Set Currency Greater
Set Currency Greater or Equal

The Set Currency operations locate a record by returning information that a subsequent command
may use to read or delete a record.

The key indexed file resource specific operations use a single-word extension to the basic
supervisor call block, as follows:

2279648

7·106

DEC
12

HEX
C CURRENCY BLOCK ADDRESS

Byte Contents

12 Address of the curmncy block (must be a word boundary address).

2270507·9701

Key Indexed File I/O 7.5

To access the last record of a key indexed file, several operations are needed. Use the Set
Currency Greater or Equal operation, specifying a key value larger than that for any record in the
file. This operation returns an informative code indicating that the key does not exist. Use the
currency returned by this operation and do a Read Previous operation. The Read will return the last
record of the fi Ie.

The currency block contains the address of a block that contains the key and an area in which file
management returns information that enables access to the record by commands that do not
supply a key. The structure of the currency block is:

DEC HEX

0 0

2 2

4 4

18 12

2279649

Byte

o

1

2-3

4-19

<INF. CODE>PK LENGTH I KEY NUMBER

KEY ADDRESS

"'v v

1
< CURRENCY INFORMATION>

J
Contents

System returns informative code. For partial key operations, length of
partial key.

Number of key (order of definition).

Address of block that contains the key or the partial key. The address
must be an even number.

Currency information returned by file management. This information
may be used by a subsequent operation to access the same record
without the key.

The key or partial key for the operation is in a block or buffer. The address of the block is placed in
the currency block.

All resource·specific operations except Open Random and Unlock return an informative code in
byte 0 of the currency block. The informative code is a code that gives the status of an operation.
The informative codes are listed in Table 7·1; they are not necessarily error codes, but they
indicate some abnormal condition resulting from the operation.

2270507-9701 7·107

7.5 Key Indexed File I/O

Table 7-1. Key Indexed File Informative Codes

Code
(Hexadecimal) Meaning

00 Normal completion.

83 No more records to be read.

84 Additional records with sarne key value as that specified for the current read
operation.

85 No record with specified key or currency information.

87 Record to be locked is already locked, or record to be deleted is locked.

88 Record specified by sub-opcode and currency information does not exist.

80 Next record for Read Next or Read Previous operation cannot be found. Either
the record has been deleted or currency information has been destroyed.

7.5.2.1 Open Random. Sub-opcode >40 specifies an Open Random operation for a key indexed
file. The Open Random operation enables tlhe task to perform resource-specific I/O operations to
the file assigned to the LUNO. If the Open operation is successful, the access privilege requested
in bits 3 and 4 of byte 5 is granted to the task. An Open Random operation must be performed
before a task can access a key indexed file for a resource-specific operation. The Open Random
operation does not alter the position of the' fi Ie.

The following fields of the basic call block apply to an Open Random operation:

• SVC code - 0

• Return code

• Sub-opcode - >40

• Logical unit number (LUNO)

• User flags

• Data buffer address

• Read character count

7·108 2270507·9701

Key Indexed File I/O 7.5

The following user flags apply to an Open Random operation:

2279650 t f
Bit 0 - Initiate flag. Set as follows:

1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

Bit 5 - Do not replace flag. Applies to shared, exclusive write, and exclusive all access only.
Set as follows:
1 - Open file that was created with the autocreate option when the LUNO was

assigned. When file existed prior to the Assign LUNO operation, terminate in
error.

o - Open file regardless of when it was created.

The LUNO field contains the LUNO assigned to the file to be opened.

The Open Random operation returns the file type code in the buffer address field. The file type
code for a key indexed file is >03FF.

When the calling task places zero in the read character count field, the Open Random operation
returns the logical record length specified for the file.

The following is an example of the source code for a supervisor call block for an Open Random
operation:

ORKIF

ORKFT
ORBLK

2270507·9701

DATA 0
BYTE >40,>5E
BYTE 0,>10
DATA 0
DATA 0
DATA 0

OPEN FILE ASSIGNED TO LUNO >5E
WITH SHARED ACCESS

7·109

7.5 Key Indexed File 110

7.5.2.2 Read by Key. Sub-opcode >42 specifies a Read by Key operation. The Read by Key oper­
ation reads a record of a key indexed file that contains the specified key and stores the data in the
buffer at the specified address. The characters are packed two per word. When the file contains
more than one record having the specified key, the operation reads the record that was inserted in
the fi Ie fi rst.

The following fields of the supervisor call bl:ock as extended for key indexed files apply to a Read
by Key operation:

• SVC code - 0

• Return code

• Sub-opcode - >42

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Read character count

• <Actual read cou nt>

• Currency block address

The following fields of the currency block apply to a Read by Key operation:

• <Informative code>

• Key number

• Key address

The following system flags apply to a Read by Key operation:

2279651

7·110 2270507-9701

Key Indexed File I/O 7.5

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Read by Key operation:

2279652
t f

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 1 - Key specified flag. Set to one for a Read by Key operation. (The Read Current oper­
ation uses the same sub-opcode with this flag set to 0.)

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks the record after reading.
o - Record remains in the state it was in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the actual number of characters read, returned by file management. The
count returned is the length of the record or the length of the buffer, whichever is less. When an
odd number of characters is read, an additional character is stored in the buffer, but the odd
number (the actual number read) is placed in the actual read count field.

The key number is the number of the key as defined when the file was created. The MKF command
shows the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Read by Key operation. It may be shared by various
portions of the program. The length of the key is defined when the file is created.

A Read by Key operation may return >B4 or >B5 as the informative code. "'hen the lock/unlock
flag is set to one, the operation may also return >B7 as the informative code.

2270507 -9701 7·111

7.5 Key Indexed File I/O

The following is an example of the source code to read a file record specified by key. The super­
visor call block, read buffer, currency block, and key block are as follows:

RBK

RBKRB
CRBK

CINRBK
RBKEY

DATA 0
BYTE >42,>5E
BYTE 0,>40
DATA RBKRB
DATA 80
DATA 0
DATA CRBK
BSS 80
BYTE 0
BYTE 3
DATA RBKEY
BSS 16
TEXT 'TEXAS'

READ A RECORD OF FILE ASSIGNED
TO LUNO >5E

READ BUFFER
CURRENCY BLOCK
KEY NUMBER 3

ASSUMES KEY LENGTH IS 5

7.5.2.3 Read Greater. Sub-opcode >41 specifies a Read Greater operation. The Read Greater
operation reads the first record of a key indexed file that contains a value greater than the
specified value for a specified key and stores the data in the buffer at the specified address. The
characters are packed two per word. When the file contains more than one record having the
requested key value, the operation reads the record that was inserted in the file first.

The following fields of the supervisor call block as extended for key indexed files apply to a Read
Greater operation:

• SVC code - 0

• Return code

• Sub-opcode - >41

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Read character count

• <Actual read cou nt>

• Currency block address

7·112 2270507·9701

Key Indexed File 110 7.5

The following fields of the currency block apply to a Read Greater operation:

• <Informative code>

• Length of partial key

• Key number

• Key address

The following system flags apply to a Read Greater operation:

2279653

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Read Greater operation:

2279654 t f

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 1 - Key specified flag. Set to one for a Read Greater operation.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks the record after reading.
o - Record remains in the state it was in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

2270507·9701 7·113

7.5 Key Indexed File I/O

The actual read count is the number of characters read, returned by file management. The count
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

The length of the partial key field contains the length of the partial key for operations to which a
partial key applies. The field must be set to zero or to the defined length when the defined length
of the key applies.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Read Greater operation. It may be shared by various
portions of the program. The length of the key is the length defined for the key when the file was
created, or is the partial key length specifie!d for the operation.

A Read Greater operation may return >B4 or >B8 as the informative code. When the lock/unlock
flag is set to one, the operation may also rE!turn >B7 as the informative code.

The following is an example of the source code to read a file record having a key greater than the
specified key. The supervisor call block, read buffer, currency block, and key block are as follows:

RGK DATA 0
BYTE >41,>5E
BYTE 0,>40
DATA RGKRB
DATA 80
DATA 0
DATA CRGK

RGKRB BSS 80
* -----------------------------------
CRGK BYTE 3

BYTE 3
DATA RGKEY

CINRGK BSS 16
RGKEY TEXT'TEX'

7·114

*

READ A RECORD OF FILE ASSIGNED
TO LUNa >5E

READ BUFFER
CURRENCY BLOCK
PARTIAL KEY
KEY NUMBER 3

2270507-9701

Key Indexed File liD 7.5

7.5.2.4 Read Greater or Equal. Sub-opcode >44 specifies a Read Greater or Equal operation. The
Read Greater or Equal operation reads the first record of a key indexed file that contains a value
equal to or greater than the specified value for a specified key. The operation stores the data in the
buffer at the specified address. The characters are packed two per word. When the file contains
more than one record having the requested key value or the immediately greater value, the
operation reads the record that was inserted in the file first.

The following fields of the supervisor call block as-extended for key indexed files apply to a Read
Greater or Equal operation:

• SVC code - 0

• Return code

• Sub-opcode - >44

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Read character count

• <Actual read count>

• Currency block address

The following fields of the currency block apply to a Read Greater or Equal operation:

• <Informative code>

• Length of partial key

• Key number

• Key address

The following system flags apply to a Read Greater or Equal operation:

2279655

2270507-9701 7·115

7.5 Key Indexed File 110

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Read Greater or Equal operation:

2279656

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 1 - Key specified flag. Set to one for a Read Greater or Equal operation.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks the record after reading.
o - Record remains in the state it was in before the read.

The LUNa field contains the LUNa aSSigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the It:mgth of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

The length of the partial key field contains the length of the partial key for operations to which a
partial key applies. The field must be set to zero or the defined length when the defined length of
the key applies.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Read Greater or Equal operation. It may be shared
by various portions of the program. The length of the key is the length defined when the file was
created, or the length of a partial key for a partial key operation.

A Read Greater or Equal operation may return >B4 or >B8 as the informative code. When the
lock/unlock flag is set to one, the operation may also return >B7 as the informative code.

7·116 2270507·9701

Key Indexed File liD 7.5

The following is an example of the source code to read a file record having a key equal to or
greater than the specified key. The supervisor call block, read buffer, currency block, and key
block are as follows:

RGEK DATA 0
BYTE >44,>5E
BYTE 0,>40
DATA RGEKRB
DATA 80
DATA 0
DATA CRGEK

RGEKRB BSS 80
CRGEK BYTE 0

BYTE 2
DATA RGEKEY

CNRGEK BSS 16
RG EKEY TEXT 'TX'

READ A RECORD OF FILE ASSIGNED
TO LUNO >5E

READ BUFFER
CURRENCY BLOCK
KEY NUMBER 2

ASSUMES KEY LENGTH IS 2

7.5.2.5 Set Currency Equal. Sub-opcode >50 specifies a Set Currency Equal operation. The Set
Currency Equal operation returns currency information for a record of a key indexed file that
contains the specified key. Normally, one of the key indexed file operations that use currency
information follows this operation. When the file contains more than one record having the
requested key, the operation returns information for the record that was inserted in the file first.

The following fields of the supervisor call block as extended for key indexed files apply to a Set
Currency Equal operation:

• SVC code - 0

• Return code

• Sub-opcode - >50

• Logical unit number (LUNO)

• System flags

• User flags

• Currency block address

The following fields of the currency block apply to a Set Currency Equal operation:

• <Informative code>

• Length of partial key

• Key number

• Key address

2270507·9701 7·117

7.5 Key Indexed File I/O

The following system flags apply to a Set Currency Equal operation:

2279657

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Set Currency Equal operation:

2279658

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The length of the partial key field contains tile length of the partial key for operations to which a
partial key applies. The equality of the partial key to the corresponding portion of the key in the
record determines the selection of a record. The field must be set to zero or the defined length
when the defined length of the key applies.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indHxed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Set Currency Equal operation. It may be shared by
various portions of the program. The length of the key is the length defined when the file was
created, or the length of a partial key for a parUal key operation.

A Set Currency Equal operation may return> 84 or > B8 as the informative code.

7·118 2270507·9701

Key Indexed File 110 7.5

The following is an example of the source code to obtain currency information for a file record hav­
ing a key equal to the specified key. The supervisor call block, currency block, and key block are as
follows:

SCEK

SCEBK

CEIN
SCEKEY

DATA 0
BYTE > 50, > 5E
BYTE 0,0
DATA 0
DATA 0
DATA 0
DATA SCEBK
BYTE 0
BYTE 3
DATA SCEKEY
BSS 16
TEXT 'AUSTIN'

SET CURRENCY FOR A RECORD OF
FILE ASSIGNED TO
LUNa >5E

CURRENCY BLOCK
KEY NUMBER 3

ASSUMES KEY LENGTH IS 6

7.5.2.6 Set Currency Greater. Sub-opcode >52 specifies a Set Currency Greater operation. The
Set Currency Greater operation returns currency information for the first record of a key indexed
file that contains a value greater than the specified value for a specified key. Normally, one of the
key indexed file operations that use currency information follows this operation. When the file
contains more than one record having the first key value greater than the requested key value, the
operation returns information for the record that was inserted in the file first.

The following fields of the supervisor call block as extended for key indexed files apply to a Set
Currency Greater operation:

• SVC code - 0

• Return code

• Sub-opcode - >52

• Logical unit number (LUNa)

• System flags

• User flags

• Currency block address

The following fields of the currency block apply to a Set Currency Greater operation:

• <Informative code>

• Length of partial key

• Key number

• Key address

2270507·9701 7·119

7.5 Key Indexed File 110

The following system flags apply to a Set Currency Greater operation:

2279659

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1· - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Set Curroncy Greater operation:

~_3_-4--,-I_s ~I _6 .1..-1 7~1
2279660

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The length of the partial key field contains the length of the partial key for operations to which a
partial key applies. The field must be set to zero or the defined length when the defined length of
the key applies.

The key number is the number of the key as de!fined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Set Currency Greater operation. It may be shared by
various portions of the program. The length of the key is the length defined when the file was
created, or the length of a partial key for a pclrtial key operation.

A Set Currency Greater operation may return >B4 or >B8 as the informative code.

7·120 2270507·9701

Key Indexed File I/O 7.5

The LUNa field contains the LUNa assigned to the file.

The following is an example of the source code to obtain currency information for a file record hav­
ing a key greater than the specified key. The supervisor call block, currency block, and key block
are as follows:

SCGK

CGBK

CGIN
CGKEY

DATA 0
BYTE >52,>5E
BYTE 0,0
DATA 0
DATA 0
DATA 0
DATA CGBK
BYTE 2
BYTE 2
DATA CGKEY
BSS 16
TEXT 'AL'

SET CURRENCY FOR A RECORD OF
FILE ASSIGNED TO
LUNa >5E

CURRENCY BLOCK
KEY NUMBER 2

PARTIAL KEY

7.5.2.7 Set Currency Greater or Equal. Sub-opcode >51 specifies a Set Currency Greater or Equal
operation. The Set Currency Greater or Equal operation returns currency information for the first
record of a key indexed file that contains a value equal to or greater than the specified value for a
specified key. Normally, one of the key indexed file operations that use currency information
follows this operation. When the file contains more than one record having the key equal to or
greater than the requested key, the operation returns information for the record that was inserted
in the file first.

The following fields of the supervisor call block as extended for key indexed files apply to a Set
Currency Greater or Equal operation:

• SVC code - 0

• Return code

• Sub-opcode - >51

• Logical unit number (LUNa)

• System flags

• User flags

• Currency block address

The following fields of the currency block apply to a Set Currency Greater or Equal operation:

• <I nformative code>

• Length of partial key

• Key number

• Key address

2270507.9701 7·121

7.5 Key Indexed File I/O

The following system flags apply to a Set Currency Greater or Equal operation:

2279661

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Set Currency Greater or Equal operation:

2279662

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The length of partial key field contains the length of the partial key for operations to which a
partial key applies. The field must be set to zero or the defined length when the defined length of
the key applies.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Set Currency Greater or Equal operation. It may be
shared by various portions of the program. The length of the key is the length defined when the file
was created, or the length of a partial key for a partial key operation.

A Set Currency Greater or Equal operation may return >B4 or >B8 as the informative code.

7·122 2270507·9701

Key Indexed File liD 7.5

The following is an example of the source code to obtain currency information for a file record
having a key greater than or equal to the specified key. The supervisor call block, currency block,
and key block are as follows:

SCGEK DATA 0
BYT E > 51 , > 5 E
BYTE 0,0
DATA 0
DATA 0
DATA 0
DATA CGEK

CGEK BYTE 0
BYTE 3
DATA CGEKEY

CINGE BSS 16
CGEKEY TEXT 'USA'

SET CURRENCY FOR A RECORD OF
FILE ASSIGNED TO
LUNa >5E

CURRENCY BLOCK
KEY NUMBER 3

ASSUMES KEY LENGTH IS 3

7.5.2.8 Delete by Key. Sub-opcode >49 specifies a Delete by Key operation. The Delete by Key
operation deletes the record with a specified key. When the file contains more than one record
having the specified key, the operation returns an informative code of >B4 and does not delete a
record. A Delete Current operation (described in a subsequent paragraph) must be used to delete
records having duplicate keys. A record that has been locked by a Read operation with the
lock/unlock user flag set may not be deleted.

The following fields of the supervisor call block as extended for key indexed files apply to a Delete
by Key operation:

• SVC code - 0

• Return code

• Sub-opcode - >49

• Logical unit number (LUNa)

• System flags

• User flags

• Currency block address

The following fields of the currency block apply to a Delete by Key operation:

• <Informative code>

• Key number

• Key address

2270507-9701 7·123

7.5 Key Indexed File liD

The following system flags apply to a DelE!te by Key operation:

2279663

~I 3 I 4 I 5 I 6 I 7 I
Bit 0 - Busy flag. Set by system as follows:

1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Delete by Key operation:

2279664

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 1 - Key specified flag. Set to one 1~or a Delete by Key operation. The same sub-opcode
with this flag set to 0 is a Delete Current operation.

The LUNO field contains the LUNO assigned to the file.

The key number is the number of the key as defined when the file was created. The MKF command
displays the numbers of the keys of a key indexed file.

The key address is the address of the buffer that contains the key of the requested record. The key
need not be in a buffer used exclusively by the Delete by Key operation. It may be shared by
various portions of the program. The length of the key is the length defined when the file was
created.

A Delete by Key operation may return >B4, >B5, or >B7 as the informative code.

'-124 2270507 -9701

Key Indexed File I/O 7.5

The following is an example of the source code to delete a file record having a specified key. The
supervisor call block, currency block, and key block are as follows:

DBK

DBKBK

CINDK
DKEY

DATA 0
BYTE >49,>5E
BYTE 0,>40
DATA 0
DATA 0
DATA 0
DATA DBKBK
BYTE 0
BYTE 1
DATA DKEY
BSS 16
TEXT 'LAZY LANE'

DELETE A RECORD OF FILE
ASSIGNED TO LUNa >5E

CURRENCY BLOCK
KEY NUMBER 1

ASSUMES KEY LENGTH IS 9

7.5.2.9 Read Current. Sub-opcode >42 specifies a Read Current operation. The Read Current
operation reads a record of a key indexed file defined in currency information returned by a
previous operation. The operation stores the data in the buffer at the specified address. The
characters are packed two per word.

The following fields of the supervisor call block as extended for key indexed files apply to a Read
Current operation:

• SVC code - 0

• Return code

• Sub-opcode - >42

• Logical unit number (LUNa)

• System flags

• User flags

• Data buffer address

• Read character count

• <Actual read count>

• Currency block address

The following fields of the currency block apply to a Read Current operation:

• <Informative code>

• Currency information

2270507·9701 7·125

7.5 Key Indexed File I/O

The following system flags apply to a Read Current operation:

2279665

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as fol!lows:
1 - Error.
o - No error.

The following user flags apply to a Read Current operation:

~I
2279666

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 1 - Key specified flag. Set to 0 for a. Read Current operation. The same sub-opcode is a
Read by Key operation when this flag is set to one.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks the! record after reading.
o - Record remains in the statl3 it was in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

The currency information is in the currency block of a previous operation. Typically the same
currency block is used for the Read Current operation.

~ Read Current operation may return >80 or >83 as the informative code. When the lock/unlock
flag is set to one, the operation may also return >87 as the informative code.

·126 2270507 ·9701

Key Indexed File 110 7.5

The following is an example of the source code for the supervisor call block to read the current file
record and for the read buffer. The currency block address is that of the currency block in the Set
Currency Equal example.

RCK

RCKRB

DATA a
BYTE >42,>5E
BYTE 0,0
DATA RCKRB
DATA 80
DATA a
DATA SCEBK
BSS 80

READ A RECORD OF FILE ASSIGNED
TO LUNa >5E

READ BUFFER

7.5.2.10 Read Previous. Sub-opcode >48 specifies a Read Previous operation. The Read
Previous operation reads the record of a key indexed file that precedes the record defined in
currency information returned by a previous operation, other than a Set Currency operation. When
the previous operation was a Set Currency operation, the record defined in the currency infor­
mation is read. The operation stores the data in the buffer at the specified address. The characters
are packed two per word.

The following fields of the supervisor call block as extended for key indexed files apply to a Read
Previous operation:

• SVC code - a

• Return code

• Sub-opcode - >48

• Logical unit number (LUNa)

• System flags

• User flags

• Data buffer address

• Read character count

• <Actual read count>

• Currency block address

The following fields of the currency block apply to a Read Previous operation:

• < I nformative code>

• Currency information

2270507·9701 7·127

7.5 Key Indexed File lID

The following system flags apply to a Read Previous operation:

2279667

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Read Pn~vious operation:

2279668

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks the record after reading.
0- Record remains in the state it was in before the read.

The LUNO field contains the LUNO assigned to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the actual read count field.

The currency information is in the currency block of a previous operation. Typically the same
currency block is used for the Read Previous operation.

A Read Previous operation may return >B3 or >BD as the informative code. When the lock/unlock
flag is set to one, the operation may also return >B7 as the informative code.

7·128 2270507·9701

Key Indexed File I/O 7.5

The following is an example of the source code for the supervisor call block to read the previous
record, and for the read buffer. The currency block address is that of the currency block in the
Read Greater example.

RPK

RPKRB

DATA a
BYTE >48,>5E
BYTE 0,0
DATA RPKRB
DATA 80
DATA a
DATA CRGK
BSS 80

READ A RECORD OF FILE ASSIGNED
TO LUNa >5E

READ BUFFER

7.5.2.11 Read Next. Sub-opcode >45 specifies a Read Next operation. The Read Next operation
reads the record of a key indexed file that follows the record defined in currency information
returned by a previous operation, other than a Set Currency operation. When the previous oper­
ation was a Set Currency operation, the record defined in the currency information is read. The
operation stores the data in the buffer at the specified address. The characters are packed two per
word.

The following fields of the supervisor call block as extended for key indexed files apply to a Read
Next operation:

• SVC code - a

• Return code

• Sub-opcode - >45

• Logical unit number (LUNa)

• System flags

• User flags

• Data buffer address

• Read character count

• <Actual read count>

• Currency block address

The following fields of the currency block apply to a Read Next operation:

• < I nformative code>

• Currency information

2270507 -9701 7·129

7.5 Key Indexed File liD

The following system flags apply to a Read Next operation:

2279669

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Read Next operation:

2279670

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management locks thl3 record after reading.
0- Record remains in the state it was in before the read.

The LUNO field contains the LUNO assignEld to the file.

The data buffer address contains the address of the buffer into which the record is to be read. The
address must be an even number.

The read character count contains the maximum number of characters to be read into the buffer.

The actual read count is the number of characters read, returned by file management. The length
returned is the length of the record or the length of the buffer, whichever is less. When an odd
number of characters is read, an additional character is stored in the buffer, but the odd number
(the actual number read) is placed in the aGtual read count field.

The currency information is in the currenGY block of a previous operation. Typically the same
currency block is used for the Read Next operation.

A Read Next operation may return >B3 or >BD as the informative code. When the lock/unlock flag
is set to one, the operation may also return >B7 as the informative code.

7·130 2270507 ·9701

Key Indexed File 110 7.5

The following is an example of the source code for the supervisor call block to read the next
record, and for the read buffer. The currency block address is that of the currency block in the
Read Greater example.

RNK

RNKRB

DATA a
BYTE >45,>5E
BYTE 0,0
DATA RNKRB
DATA 80
DATA a
DATA CRGK
BSS 80

READ A RECORD OF FILE ASSIGNED
TO LUNa >5E

READ BUFFER

7.5.2.12 Rewrite. Sub-opcode >47 specifies a Rewrite operation. The Rewrite operation replaces
a record, with the following conditions:

• The operation must use the currency block set up by a Read operation.

• The previous Read operation must have locked the record.

• The new record need not be the same size.

• Only modifiable keys and data that are not included in any key may be altered.

The following fields of the supervisor call block as extended for key indexed files apply to a
Rewrite operation:

• SVC code - a

• Return code

• Sub-opcode - >47

• Logical unit number (LUNa)

• System flags

• User flags

• Data buffer address

• Write character count

• Currency block address

The following fields of the currency block apply to a Rewrite operation:

• <Informative code>

• Currency information

2270507·9701 7·131

7.5 Key Indexed File 110

The following system flags apply to a Rewrite operation:

2279671

~13 141 51 61 71
Bit a - Busy flag. Set by system as follows:

1 - Busy.
a - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
a - No error.

The following user flags apply to a Rewrite operation:

2279672

Bit a - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
a - System suspends the calling task until the operation has completed.

Bit 5 - Lock/unlock flag. Set as follows:
1 - File management rewrites and unlocks the record.
a - File management rewrites the record and it remains locked.

The LUNO field contains the LUNO assign,ed to the file.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even number.

The write character count is the number o'f characters to be written.

The currency information is in the currency block of a previous Read operation. The same
currency block must be used for the Rewrite operation.

A Rewrite operation may return> BA as the informative code.

7·132 2270507·9701

Key Indexed File 110 7.5

The following is an example of the source code for a supervisor call block to rewrite a record. The
operation uses the currency block of the Read Greater example.

RWTKIF DATA 0
BYTE >47,>5E
BYTE 0,0
DATA SFWB
DATA 0
DATA 80
DATA CRGK

REWRITE RECORD OF FILE ASSIGNED
TO LUNO >5E

7.5.2.13 Unlock. Sub-opcode >4A specifies an Unlock operation. The Unlock operation releases
exclusive control of any previously locked record, a record locked by another task or a record
locked by the calling task. The record to be unlocked is identified by the currency information
from a previous operation.

The following fields of the supervisor call block as extended for key indexed files apply to an
Unlock operation:

• SVC code - 0

• Return code

• Sub-opcode - >4A

.' Logical unit number (LUNO)

• User flags

• Currency block address

The following field of the currency block applies to an Unlock operation:

• Currency information

The following user flags apply to an Unlock operation:

2

2279673

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

2270507·9701 7·133

7.5 Key Indexed File 110

The currency information is in the currency block of a previous operation. The same currency
block may be used for the Unlock operation.

The following is an example of the source code for a supervisor call block to unlock a file record.
The currency block referenced is the currency block for the Read Greater example.

UKIF DATA ° UNLOCK FILE ASSIGNED TO LUNO >5E
BYTE >4A,>5E
BYTE 0,0
DATA °
DATA °
DATA °
DATA CRGK

7.5.2.14 Delete Current. Sub-opcode >49 specifies a Delete Current operation. The Delete
Current operation deletes the record specified by the currency information from a previous
operation. A record that has been locked by a Read operation with the lock/unlock user flag set
may not be deleted.

The following fields of the supervisor call block as extended for key indexed files apply to a Delete
Current operation:

• SVC code - °
• Return code

• Sub-opcode - >49

• Logical unit number (LUNO)

• System flags

• User flags

• Currency block address

The following fields of the currency block ,apply to a Delete Current operation:

• <Informative code>

• Currency information

7·134 2270507 ·9701

Key Indexed File 110 7.5

The following system flags apply to a Delete Current operation:

2279674

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Delete Current operation:

2279675

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 1 - Key specified flag. Set to 0 for a Delete Current operation. The same sub-opcode with
this flag set to one is a Delete by Key operation.

The LUNO field contains the LUNO assigned to the file.

The currency information is in the currency block of a previous operation. The same currency
block may be used for the Delete Current operation.

A Delete Current operation may return >B4, >B5, >87, or >BD as the informative code.

The following is an example of the source code for the supervisor call block to delete the current
file record. The currency block address is that of the currency block in the Read Greater example.

DCR

2270507·9701

DATA 0
BYTE >49,>5E
BYTE 0,0
DATA 0
DATA 0
DATA 0
DATA CRGK

DELETE A RECORD OF FILE
ASSIGNED TO LUNO >5E

7-135

7.5 Key Indexed File I/O

7.5.2.15 Insert. Sub-opcode >46 specifies an Insert operation. The Insert operation writes a new
record, making it available under every key defined for the file. The file may be thought of as if it
were a set of sequential files, each corresponding to a key and sorted on its key. The effect of an
Insert operation is to insert the record in the proper position in each of these simulated files
according to the key.

The primary key of the inserted record can be a null key (all blanks or having> FF in the first byte);
the record can be accessed by this key. Any secondary key that can be modified can be a null key,
but the key is not placed in the file; therefore the record cannot be accessed by this key.

The following fields of the supervisor call block as extended for key indexed files apply to an
Insert operation:

• SVC code - 0

• Return code

• Sub-opcode - >46

• Logical unit number (LUNO)

• System flags

• User flags

• Data buffer address

• Write character count

• Currency block address

The following fields of the currency block apply to an Insert operation:

• <Informative code>

• Currency information

The following system flags apply to an Insert operation:

~I 3 I 4 I 5 I 6 I 7 I
2279676

7·136 2270507·9701

.A

Key Indexed File I/O 7.5

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to an Insert operation:

3-4

2279677

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

The LUNO field contains the LUNO assigned to the file.

The data buffer address is the address of the buffer that contains the record to be written. The
address must be an even number.

The write character count is the number of characters to be written.

The currency information that defines the inserted record is returned in the currency block.

An Insert operation may return >B4 as the informative code.

The following is an example of the source code for a supervisor call block to insert a record, and
for the currency block:

IKIF

CIK

CINIK
SFWB

2270507 ·9701

DATA 0
BYTE >46,>5E
BYTE 0,0
DATA SFWB
DATA 0
DATA 80
DATA CIK
BYTE 0,0
DATA 0
BSS 16
TEXT 'JOHN CUE PUBLIC'

INSERT RECORD IN FILE
ASSIGNED TO LUNO >5E

CURRENCY BLOCK

THE RECORD TO BE INSERTED

7·137/7·138

8

Interprocess Communication

8.1 INTRODUCTION

Communication between programs, or interprocess communication (IPC), allows programs to
exchange data. IPC operations are pseudo-I/O operations because each of the programs involved
in the exchange acts as a peripheral device or file with respect to the other.

This section describes interprocess communication (IPC) concepts, utility operations required for
IPC, and IPC I/O operations. IPC supports resource-independent I/O to symmetric channels and
resource-specific I/O to master/slave channels. Descriptions of IPC I/O operations are arranged
according to the type of channel to which they apply.

8.2 COMMUNICATING BETWEEN TASKS

DNOS provides a means of communicating between tasks called interprocess communication
(IPC). A communication path between two or more tasks is called a channel. I/O operations are
directed to channels to accomplish interprocess communication.

Utility operations create and delete IPC channels. The Assign LUNO utility operation assigns a
LUNO to a channel. I/O operations open and close the channel, and perform the actual transfers of
data to provide interprocess communication.

Resource-independent I/O is performed to symmetric IPC channels. A symmetric IPC channel pro­
vides transfer of messages between the owner task and a requesting task. The matching of a
request for an I/O operation to a symmetric channel by one task with a request from another task
provides a task synchronization function; the message transferred may be incidental to the
synchronization function. The message may be a short procedural message or a transfer of data
between tasks.

Transfer of messages in a symmetric channel is either to or from the owner task. A write request of
one task must be matched by a read request from another task. The requesting task may be any
task, as restricted by the scope of the channel (specified when the channel is created) and the
access privileges of the LUNO assigned to the channel (specified when the owner task opened the
LUNO). A message issued by the owner task is received by the task that first issues a read request.
A Read operation initiated by the owner task receives the message in the first write request
directed to the channel.

2270507·9701 8-1

8.2 Interprocess Communication

Typical applications of symmetric channels include cases of owner tasks receiving messages
from several requesting tasks. In this casle, the owner task issues a read request. When a
requesting task issues a write request, the message is transferred. The owner task performs the
function appropriate for the message and is.sues another read request. When a requesting task
has issued another write request during the processing of the first request, the second message
is transferred when the owner task completE~s the first transfer and issues another read request.
Otherwise, the owner task may be suspended until a requesting task issues a write request to the
channel. If several requesting tasks issue a write request, each request is placed into a queue and
is transferred when the owner task issues succeeding read requests. The owner task is not
suspended if several requesting tasks issue a write request to the channel.

The owner task of a symmetric channel may send messages to several requesting tasks. The
owner task prepares (or updates) the message, and issues a write request. The message is
transferred when a requesting task issues a read request. When the transfer is complete, the
owner task performs any required processi!ng and issues another write request. When a read
request from a requesting task is pending, the message is immediately transferred. Otherwise, the
owner task may be suspended until a requesting task issues a read request to the channel. These
single directional tasks may have an unlimi~ed number of requesting tasks.

A symmetric channel may perform a bidireGtional transfer of messages with a requesting task.
The owner task may prepare a message and issue a write request. If there is a read request from
the requesting task pending, the message is transferred immediately. Otherwise, the transfer
occurs when the requesting task issues a read request. Next, each task performs appropriate
processing. Then the requesting task issues a write request, and the owner task issues a read
request (or the owner task may issue a reacl request before the requesting task issues the write
request). When both requests have been iss.ued, the reply message is transferred. The tasks can
continue to communicate in this way until no further communication is required. In another type
of bidirectional exchange of messages, the first message exchanged is from the requesting task
to the owner task; the exchange continues in a similar manner. This type of bidirectional channel
may have only one requesting task.

Resource-specific I/O is performed to mastor/slave IPC channels. A default resource is specified
for each master/slave channel when it is created. For example, when the default resource for a
channel is the 911 VOT, any operation that Gould be directed to a 911 VOT may be directed to the
channel. The channel becomes a surrogate VOT to requesting tasks. The owner task of a
master/slave channel performs the functions of the default resource. It obtains the requests for
the channel and processes them appropriately. The owner task can be thought of as a software
device or file that performs functions that may be requested of a device or file. The default
resource for a channel may be a channel. In this case, any resource-independent request may be
directed to the channel.

The owner task of a master/slave IPC channel may process sub-opcodes for the default resource
in a special way. In that case, the programmer of the owner task must adequately document the
manner in which the task responds to each sub-opcode. The capabilities of master/slave channel
owner tasks are very flexible; they must be used properly to be useful.

Scope considerations apply to master/slave channels in the same way as they apply to symmetric
channels. However, the owner task of a master/slave channel may process Assign LUNO requests
(and Release LUNO requests) in addition to other I/O requests. Ih this way the owner task can
identify the task with which it is communicating and more effectively control the communication.

8-2 2270507·9701

Interprocess Communication 8.3

The basic supervisor call block shown in Section 5 applies to IPC operations. Any variations
required are noted in the descriptions of specific operations. The flags used for each operation are
shown in the description of the operation. The basic supervisor call block is as follows:

SVC > 00 -- I/O OPERATIONS ALIGN ON WORD BOUNDARY

DEC HEX
CAN BE INITIATED AS AN EVENT

0 0 >00 < RETURN CODE>

2 2 SUB-OPCODE LUNO

4 4 <SYSTEM FLAGS> USER FLAGS

6 6 DATA BUFFER ADDRESS

8 8 READ CHARACTER COUNT

10 A WRITE CHARACTER COlJNT/< ACTUAL READ COUNT>

2279678

8.3 IPC UTILITY OPERATIONS

IPC operations utilize channels in communicating between programs and require utility functions
to create and delete channels, to assign LUNOs to channels, to release LUNOs, and to apply and
remove protection to the channels.

2270507·9701 8-3

8.3.1 Interprocess Communication

8.3.1 Performing Utility Functions
A subset of the sub-opcodes of the I/O Operations SVC (opcode 00) performs I/O utility functions
that support interprocess communication. These I/O utility functions allow a program to:

• Assign a LUNO

• Release a LUNO

• Apply write protection

• Apply delete protection

• Remove protection

• Create an IPC channel

• Delete an IPC channel

Many of these utility operations require pathnames. The pathname of an IPC channel is similar to
that of the program file that contains the owner task. That is, both pathnames consist of the same
volume name and directory names. The channel name replaces the final component of the
program file pathname. The channel name iis chosen when the channel is created.

Interprocess communication requires channels to which messages are written and from which
messages are read. Utility functions create and delete IPC channels. An IPC channel is either a
symmetric channel or a master/slave channel, and is under control of a user task in either case.

Channels are created without protection. A utility function of the I/O Operations SVC applies
delete protection, and another function of 1the SVC removes protection.

A task must assign a LUNO to an IPC channel and open that LUNO before attempting to read or
write to the channel.

The first task to use a symmetric channel issues a read or write request and is suspended pending
a matching write or read request from another task (the requesting task). The functions of a
symmetric channel are resource-independelnt.

The owner task of a master/slave channel Elxercises a greater degree of control over the channel
than does the owner of a symmetric channel. The functions of a master/slave channel are
resou rce-specific.

The owner task processes requests for channel operations. A channel is created with a default
resource. Tasks request operations on the channel as if it were the default resource. The owner
task issues a master read request and receives the information supplied in a request by another
task. The owner task performs the requested operation, modifying the information in the same
way as the default resource would modify it. The owner task then issues a master write request
that returns the modified information to the requesting task.

8-4 2270507-9701

Interprocess Communication 8.3.1

The extended supervisor call blocks for creating and deleting an IPC channel are shown in the
paragraphs that describe those operations. The other utility operations use the extended call
block shown in the following:

SVC >00 -- I/O OPERATIONS
(UTILITY SUB-OPCODES)

ALIGN ON WORD BOUNDARY
CAN BE INITIATED AS AN EVENT

DEC HEX

0 0 >00 < RETURN CODE>

2 2 SUB-OPCODE LUNO

4 4 <SYSTEM FLAGS> USER FLAGS

6 6 < RESOURCE TYPE>

8 8
RESERVED

10 A

f2 C KEY DEF. BLOCK ADDR/DEF. PHYS .• REC. SIZE

14 E RESERVED

16 10 UTILITY FLAGS

18 12 DEFINED LOGICAL RECORD LENGll-I

20 14 DEFINED PHYSI CAL RECORD LENGTH

22 16 PATHNAME ADDRESS

24 f 8

RESERVED

26 fA

28 1C

INITIAL FI LE ALLOCATION

30 IE

32 20

SECONDARY FILE ALLOCATION

34 22

2279679

2270507·9701 8-5

8.3.1.1 Interprocess Communication

8.3.1.1 Creating an IPC Channel. An interprocess communication (IPC) channel is a communi­
cation path between two or more tasks, with one of the tasks designated as the owner. The owner
task has control over how the channel is USEld. The owner task is designated when the channel is
created.

A channel is created either as a symmetric channel or as a master/slave channel. A symmetric
channel provides resource-independent I/O; either the owner task or a requesting task may
request Read and Write operations. When tile owner task issues a write request, the Write oper­
ation is deferred until a requesting task issues a read request. When a requesting task issues a
write request, the Write operation is deferred until the owner task issues a read request. Note that
the destination of a message sent by the owner task is the requesting task that first issues a read
request. Also, the source of a message received by the owner task is the task that first issued a
write request.

A master/slave channel provides resource-specific I/O; the owner task processes all I/O requests
of requesting tasks. A default resource type is defined for the channel when it is created.
Requesting tasks access the channel as if it were the default resource. The default resource type
of a channel must be appropriate for the operations to be performed on the channel. For a Write
with Reply operation directed to the channel to be successful, the default resource type must be
that of a device for which the operation is valid; for file operations to be performed, the resource
type must be sequential file or relative record file. Except for those cases in which the master task
performs the functions of a device or file, channel should be specified as the default resource
type. When channel is the default resource type, the function of the master/slave channel is
primarily the transfer of messages, and no special sub-opcodes or flags are required.

The owner task performs a Master Read operation to obtain the oldest request directed to the
channel. The owner task issues a Master 'Nrite request to return information to the requesting
task. The information transferred includes a data structure derived from the supervisor call block
for the request and appropriate buffers.

The owner task of a master/slave channel has the option of processing assign LUNO requests
from other tasks. The option may be selected by setting a flag when the channel is created. When
the option is selected, the I/O utility processor passes the assign LUNO request to the owner task
of the channel after performing initial processing. The owner task returns the request to the 1/0
utility processor after processing by executing a master write request.

The owner task mayor may not be replic61table, and may be bid automatically when a LUNO is
aSSigned to the channel. The scope of the channel determines the replicatability of the owner task
as it functions as the channel owner task. The scope of the channel also determines whether or
not an Assign LUNO operation for the channel may bid the owner task. When an owner task is
executed independently of its function as at channel owner task, the replicatability specified when
the task was installed applies.

The scope of a channel is specified when a channel is created. The channel may have global, job­
local, or task-local scope.

8-6 2270507·9701

Interprocess Communication 8.3.1.1

The characteristics of a channel having global scope are:

• Any task in the system may access the channel.

• The owner task is not replicated.

• The owner task must access the channel before any other task.

• An Assign LUNO operation does not bid the owner task.

The characteristics of a channel having job-local scope are:

• Only tasks in the same job as the owner task may access the channel.

• If the owner task owns only one channel, then the owner task is never replicated in the
same job, but it may be replicated in other jobs. If the owner task owns more than one
channel but is not using the channel specified by the requestor task, it may be replicated
in the same job.

• Either the owner task or another task may access the channel first.

• An Assign LUNO operation may bid the owner task.

The characteristics of a channel having task-local scope are:

• Only one (requester) task may access the channel.

• The owner task is replicated for each requesting task.

• The requesting task must access the channel before the owner task.

• An Assign LUNO operation bids the owner task. The owner task may not be bid directly.

An owner task may be the owner of only one task-local channel at a time. An owner of a job-local or
global channel may be the owner task of other channels having the same scope. A create channel
request that would result in an owner task being the owner of channels with different scopes is
not allowed.

An IPC channel may be created as a shared channel. The shared attribute of a channel is distinct
from the access privileges specified in an Open operation. A channel that is not shared may be
opened with any type of access privileges, but it is only available to one requesting task at a time.
A channel that is shared is available to any number of requesting tasks, depending on the access
privileges specified in the Open operations. A channel that has a task-local scope may not be
shared, whether or not it is created with a shared attribute.

2270507-9701 Change 1 8-7

8.3.1.1 Interprocess Communication

To create an IPC channel, a program executes an I/O operations SVC with sub-opcode >90. The
extended supervisor call block for this operation is as follows:

SVC > 00 -- I/O OPERATIONS
(UTI LlTY SUB-OPCODE > HO)

ALIGN ON WORD BOUNDARY
CAN INITIATED AS AN EVENT

DEC HEX

o 0 >00 < RETURN CODE>

2 2 >90 LUNO

4 4 < SYSTEM F"LAGS> USER FLAGS

6 6 -.... --L."

"'1'"'" RESERVED --."

12 C

14 E RESOURCE TYPE I RESOURCE FLAGS

16 10 RESERVED

18 12 MAXIMUM MESSAGE LENGTH

20 14 OWNER TAl5K 10 I RESERVED

22 16 CHANNEL PATHNAME ADDRESS

24 18

34

.... ,.,

22 T
RESERVED

T
2279680

The call block contains the following:

Byte

o

1

2

3

8-8

Contents

Opcode, >00.

Return code. ONOS returns zero when the operation completes satis­
factorily. When the operation completes in error, ONOS returns an error
code.

Utility sub-opcode >90.

LUNO assigned to owner task program file, or zero when owner task is on
.S$SHAREO, the shared program file. .

2270507·9701

2279681

2270507·9701

Interprocess Communication 8.3.1.1

Byte Contents

4 <System flags>.

5 User flags:

0-1

t f t f t t

Bits 0-1 - Channel scope flag. Set as follows:
00 - Task-local scope.
01 - Job-local scope.
10 - Global scope.

Bit 2 - Shared channel flag. Set as follows:
1 - Shared channel.
o - Not a shared channel.

Bit 3 - Channel type flag. Set as follows:
1 - Symmetric channel.
o - Master/slave channel.

Bit 4 - Owner process assign flag. Set as follows:
1 - Owner task processes Assign LUNO operations. (Master/slave

channel only.)
o - Owner task does not process Assign LUNO operations.

Bit 5 - Owner process abort flag. Set as follows:
1 - Owner task processes Abort I/O operation (SVC >OF).(Master/

slave channel only.)
o - Owner task does not process Abort I/O operation.

Bit 6 - Owner process all utility opcodes. Set as follows:
1 - Owner task processes all I/O utility operations (SVC >00, sub­

opcodes >90 and higher) including Assign LUNO. (Master/slave
channel only.)

o - Owner task does not process all I/O uti I ity operations.
Bit 7 - Reserved.

6-13 Reserved.

14 Default resource type. Set to zero for a symmetric channel. For a masterl
slave channel, set as follows to specify default resource type:

When channel default resource flag is set in byte 15, bit 5:
o - Resource-independent operations apply.

When device default resource flag is set in byte 15, bit 6:
o - Dummy device.
1 - Special device.
2 -743 KSR.
3 -733ASR.
4 - 733 cassette drive.

8-9

8.3.1.1 Interprocess Communication

Byte

15

8-10

Contents

6 - Single-sided diskette drive.
7 - Disk drive.
8 - Magnetic tape drive.
9 - Teleprinter device (TPD).

10-911VDT.
11 - Serial printer.
12 - Parallel printer.
13 - Four-channel communication controller (FCCC).
14 - Communication interf~ce module (CIM).
15 - Industrial device.
16 - Card reader.
17 - 940 VDT.
18 - 931 VDT
20 - Bit-oriented/character-oriented asynchronous interface module
(BCAIM).
21 - Virtual Terminal.

When file default resource flag is set in byte 15, bit 7:
0- Reserved.
1 - Sequential file.
2 - Relative record file.
3 - Key indexed file.
4 - Directory file.
5 - Program file.
6 - Image file.

Default resource flags (only one may be set):
Bits 0-3 - Reserved.
Bit 4 - Remote fla~J.

1 - Opens arE! not validated.
o - Opens arE~ validated.

Bit 5 - Channel resource flag. Set to one for a symmetric channel. For a
master/slave channel, set as follows:
1 - Default resource is an IPC channel.
o - Default resource is not a channel.

Bit 6 - Device resource flag. Set as follows:
1 - Default resource is a device.
o - Default resource is not a device.

Bit 7 - File resource flag. Set as follows:
1 - Default r€!source is a file.
0- Default resource is not a file.

2270507·9701

Byte

16-17

18-19

20

21

22-23

24-35

Interprocess Communication 8.3.1.1

Contents

Reserved.

Maximum message length. Maximum length of message transferred on
this channel. The maximum size is 12,288 (>3000) characters.

Owner task 10. The installed 10 of the owner task on its program file.

Reserved.

Channel pathname address. Address of a buffer that contains the
channel pathname (see text that follows).

Reserved.

The channel path name is identical to the owner task pathname except in the final component. The
channel name is arbitrarily chosen and must be unique among the file names, directory names,
aliases, and names of any other channels listed in the directory. An LD command may be entered
to list the contents of the directory, including any channels in the directory. The following
example shows a channel pathname that would be appropriate for an owner task in program file
PROGS of directory VOL4.GREEN.COMM.

Owner Task Program File - VOL4.GREEN.COMM.PROGS

Valid Channel Name - VOL4.GREEN.COMM.CHAN1

The buffer contains the length of the pathname in the first byte, followed by the characters of the
pathname in succeeding bytes.

The following is an example of the source code for a supervisor call block to create a channel:

CCHAN DATA °
BYTE >90
BYTE >1F
BYTE °
BYTE >10
DATA 0,0,0,0
BYTE °
BYTE >04
DATA °
DATA 80
BYTE >2A
BYTE °
DATA CHPTHN
DATA 0,0,0,0,0,0

CHPTHN BYTE CNEND-$
TEXT 'VOL3.BLUE.CH2'

CNEND EQU $-1

CREATE SYMMETRIC IPC CHANNEL,
PATHNAME VOL3.BLUE.CH2. OWNER TASK
INSTALLED 10 IS >2A. PROGRAM FILE
LUNO IS >1F. CHANNEL SCOPE IS TASK
LOCAL. CHAN N EL IS NOT SHARED.
MESSAGES LIMITED TO 80
CHARACTERS

2270507-9701 8-11

8.3.1.2 Interprocess Communication

8.3.1.2 Deleting an IPC Channel. When a program file that contains channel owner tasks is
deleted, the channels owned by the owner tasks are deleted also. Channels cannot be protected
from being deleted in this manner. That is, the channel may be delete protected, but the delete
protection of the channels is ignored if the program file is not also delete protected.

An IPC channel can be deleted independently of the program file. Delete protection that has been
applied to the channel must be removed prior to deleting the channel.

To delete an IPC channel, a program executes an 1/0 operations SVC with sub-opcode >9E. The
extended supervisor call block for this operation is as follows:

SVC > 00 -- I/O OPERATION ALIGN ON WORD BOUNDARY
(UTI LITY SUB-OPCODE >91 E) CAN BE INITIATED AS AN EVENT

DEC HEX

o 0 >00 <RETURN CODE>

2 2 >9E RESERVED

4 4
..... -.,

RESERVED
20 14

22 16 CHANNEL PATHNAME ADDRESS

24 18

34 22 1 J RESERVED

2279682

The call block contains the following:

Byte

00

1

2

3-21

22-23

24-35

8-12

Contents

Opcode, >00.

Return code. DNOS returns zero when the operation completes satis­
factorily. When thEI operation completes in error, DNOS returns an error
code.

Utility sub-opcode >9E.

Reserved.

Channel pathname address. Address of a buffer that contains the
channel pathname.

Reserved.

2270507·9701

Interprocess Communication 8.3.1.3

The buffer contains the length of the pathname in the first byte, followed by the characters of the
pathname in succeeding bytes.

The following is an example of the source code for a supervisor call block to delete a channel:

DCHAN

CPTHN

CEND

DATA °
BYTE >9E
BYTE >0
DATA 0,0,0,0,0
DATA 0,0,0,0
DATA CPTHN
DATA 0,0,0,0,0,0
BYTE CEND-$
TEXT'VOL3.BLUE.CH2'
EQU $-1

DELETE IPC CHANNEL, PATHNAME
VOL3.BLUE.CH2

8.3.1.3 Assigning LUNOs. To assign a LUNO, a program executes an 110 Operations SVC with
sub-opcode >91. The following fields of the utility supervisor call block apply:

• SVC code - °
• Return code

• Utility sub-opcode - >91

• Logical unit number (LUNO)

• <Resource type>

• Utility flags

• Pathname address

The system returns the resource type in bytes 6 and 7 of the call block. Byte 6 indicates the device
type and byte 7 indicates the resource type.

2270507·9701 8-13

8.3.1.3 Interprocess Communication

The device types found in byte 6 are as follows:

> 00 - Dummy device
> 01 - Special device
>02 - 743 KSR
>03 -733ASR
> 04 - 733 cassette drive
>06 - Single-sided diskette drive
> 07 - Disk drive
>08 - Magnetic tape drive
>09 - Teleprinter device (TPD)
>OA - 911 VDT
> OB - Serial printer
>OC - Parallel printer
>OD - Four-channel communication controller (FCCC)
>OE - Communication interface module (CIM)
>OF - Industrial device
> 10 - Card reader
>11 - 940VDT
>12 - 931 VDT
> 14 - Bit-oriented/character-oriented asynchronous interface module (BCAIM)
> 15 - Virtual terminal

The resource types found in byte 7 are as follows:

>01 - File
>02 - Device
>04 - Channel
>08 - Remote

The value in byte 7 is formed by DNOS by using one or more of the values listed above. Some of the
values are combinations of these values. For example, >06 is a channel emulating a device. If the
value in bytes 6 and 7 is >OA06, the indicatl3d resource type is a channel emulating a 911 VDT. If
the value in byte 7 indicates the remote bit, the LUNO is assigned to a resource on another system
and no local checking is performed locally for open access conflicts.

The following utility flags apply:

t
I 51 6 I 7 I 8 I 9 11 0 II 1 -1 211 31 1 4-1 5 I
t

1-2 3-4

2279683

8-14

Bits 3-4 - Scope of LUNO flag. Set a.s follows:
00 - Task-local LUNG.
01 - JOb-local LUNO.
10 - Global LUNO.
11 - Job-local-shared LUNO"

2270507·9701

Interprocess Communication 8.3.1.3.

Bit 5 - Generate LUNO flag. Set as follows:
1 - Assign the next available LUNO and return LUNO in byte 3.
D - Assign the LUNO specified in byte 3.

Set all other utility flags to zero.

A logical unit number (LUNO) must be assigned to an 1/0 resource to identify the resource for an
1/0 operation. The scope of a global LUNO is not limited to a single job or task. The LUNO applies
in all jobs and tasks executing while it remains assigned. The scope of a job-local LUNO is limited
to the tasks in the job. A job-local LUNO is assigned by one of the tasks in the job or by an SCI
command. The scope of a task-local LUNO is limited to the task that assigns the LUNO. A task­
local LUNO is assigned by a task.

Job-local-shared LUNOs (shared LUNOs) are job-local LUNOs that can be used by more than one
task within a given job. Once the LUNO is opened it can be used by other tasks within the same
job. These other tasks need not open it. If they open it, the access privileges of the LUNO are
compared to those requested in the Open operation. If the Open operation requests greater ac­
cess privileges and it does not conflict with the access privileges of other LUNOs that are assign­
ed and opened to the resource, the privilege level of the LUNO is changed to the greater value. The
access privileges of a LUNO in order of increasing value are read only, shared, exclusive write,
exclusive all. If the requested access privilege is less than or equal to the present value, the
privilege level of the LUNO is not changed. Thus, all tasks that use a shared LUNO have the same
access privileges to the resource regardless of how they opened it.

A count of the number of successful Open operations is kept. The same number of Close
operations must be performed before the LUNO can be released. If a Close operation is not
performed the LUNO is not released until the job terminates.

The use of shared LUNOs tends to reduce the total number of LUNOs required in the system. This
type of LUNO is not recommended for sequential files because there is no defined method of
positioning the file; that is, the task has no control of which record is read or written.

The Assign LUNO operation may assign the next available LUNO or a LUNO specified in the LUNO
field. When the generate LUNO flag is set to one, the system assigns the next available LUNO and
returns the number in the LUNO field. When the flag is set to zero, the system considers the
contents of the LUNO field of the supervisor call block to be the desired LUNO.

The pathname address is the address of an area of memory that contains the pathname of a
channel to which the LUNO is assigned. The first byte of the pathname area contains the number
of characters in the pathname. Subsequent bytes contain the ASCII characters of the path name.

2270507-9701 8-15

8.3.1.4 Interprocess Communication

The following is an example of the source code for a supervisor call block and the pathname block
to assign a LUNO to a file:

ALUNO DATA ° ASSIGN TASK LOCAL LUNO >18 TO
BYTE >91 CHANNEL VOL3.BILL.PROGS.CHAN1
BYTE >18
DATA 0,0
DATA 0,0
DATA 0,0
BYTE 0,0 UTILITY FLAGS
DATA 0,0
DATA PNME
DATA 0,0
DATA 0,0
DATA 0,0

PNME BYTE N4-$ PATHNAME LENGTH
TEXT 'VOL3.BILL.PROGS.GHAN1'

N4 EQU $-1

Table 8-1 shows the types of LUNOs that can be assigned to IPC channels with different scopes.

Table 8-1. IPC Channel and LUNO Scope

LUNO SCOPE

CHANNEL SCOPE TASK JOB GLOBAL

GLOBAL X X X

JOB-LOCAL X X

TASK-LOCAL X X

2279760

8.3.1.4 Releasing LUNOs. To release a LUNO, a program executes an 1/0 Operations SVC with
sub-opcode >93. The following fields of tho utility supervisor call block apply:

• SVC code - °
• Retu rn code

• Utility sub-opcode - >93

• Logical unit number (LUNO)

• Utility flags

8-16 2270507-9701

The following utility flags apply:

3-4

t
2279684

Bits 3-4 - Scope of LUNO. Set as follows:
00 - Task-local LUNO
01 - Job-local LUNO
10 - Global LUNO
11 - Job-local-shared LUNO

Set all other utility flags to zero.

Interprocess Communication 8.3.1.5

A Release LUNO operation does not release a LUNO that has a different scope from that specified
by the scope of LUNO flag. For example, if global LUNO >23, job-local LUNO >23, and task-local
LUNO >23 were all assigned, and a Release LUNO operation for task-local LUNO >23 were
performed, the global and job-local LUNOs would remain assigned.

The following is an example of the source code for a supervisor call block to release a LUNO:

RLUNO DATA °
BYTE >93
BYTE >23
DATA 0,0
DATA 0,0
DATA 0,0
BYTE >10,0
DATA 0,0
DATA °
DATA 0,0
DATA 0,0
DATA 0,0

RELEASE GLOBAL LUNO >23.

UTILITY FLAGS

8.3.1.5 Write Protecting Channels. To write protect a channel, a program executes an I/O Oper­
ations SVC with sub-opcode >97. IPC channel write protection only prevents accidental deletion
of the channel. The following fields of the utility supervisor call block apply:

• SVC code - °
• Return code

• Utility sub-opcode - >97

• Pathname address

All utility flags should be set to zero.

2270507-9701 8-17

8.3.1.6 Interprocess Communication

Channels are created with no protection. When write protection is applied to an IPC channel, the
channel is protected from being deleted. The protection afforded by write protection applies to
the data structure that implements the channel, not to transfers of messages between tasks. Write
protection must be removed from an IPC channel before it may be deleted by a Delete IPC Channel
operation.

The pathname address is the address of an area of memory that contains the pathname of the
channel to be write-protected. The byte at the pathname address contains the number of
characters in the path name. Subsequent bytes contain the ASCII characters of the pathname.

The following is an example of the source' code for a supervisor call block to write protect a
channel:

WRPR

PNAM

PN1

DATA °
BYTE >97
BYTE °
DATA °
DATA °
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA PNAM
DATA 0,0
DATA 0,0
DATA 0,0

APPLY DELETE PROTECTION TO CHAN N EL
VOL5.S0URCE.PROGA.CHAN

UTILITY FLAGS

BYTE PN1-$ PATHNAME LENGTH
TEXT 'VOL5.S0URCE.PROGA.CHAN'
EQU $-1

8.3.1.6 Delete Protecting Channels. To delete protect a channel, a program executes an I/O
Operations SVC with sub-opcode >98. ThE~ following fields of the utility supervisor call block
apply:

• SVC code - °
• Retu rn code

• Utility sub-opcode - >98

• Pathname address

All utility flags should be set to zero.

Files are created with no protection. After a Delete Protect operation is performed, a Delete IPC
Channel operation may not be performed on the channel. Protection is removed by performing a
Remove Protection operation.

The pathname address is the address of an area of memory that contains the pathname of the
channel to be delete protected. The by tEl at the pathname address contains the number of
characters in the pathname. Subsequent bytes contain the ASCII characters of the pathname.

8-18 2270507·9701

Interprocess Communication 8.3.1.7

The following is an example of the source code for a supervisor call block to delete protect a
channel:

DPR DATA °
BYTE >98
BYTE °
DATA °
DATA °
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA DPNAM
DATA 0,0
DATA 0,0
DATA 0,0

APPLY DELETE PROTECTION TO CHAN N EL
VOL 1.S0URCE.PROGB.CHAN

UTILITY FLAGS

DPNAM BYTE DPN1-$ PATHNAME LENGTH
TEXT 'VOL 1.S0URCE.PROGB.CHAN'

DPN1 EQU $-1

8.3.1.7 Removing Channel Protection. To remove protection from an IPC channel, a program
executes an 1/0 Operations SVC with sub-opcode >96. The following fields of the utility supervisor
call block apply:

• SVC code - °
• Return code

• Utility sub-opcode - >96

• Pathname address

All utility flags should be set to zero.

YVhen write or delete protection has been applied to a channel, the channel remains protected
until a Remove Protection operation is performed on the channel. The Remove Protection oper­
ation removes both write protection and delete protection, leaving the channel unprotected.

The path name address is the address of an area of memory that contains the pathname of the
channel from which protection is to be removed. The byte at the pathname address contains the
number of characters in the pathname. Subsequent bytes contain the ASCII characters of the
pathname.

2270507·9701 8-19

8.3.2 Interprocess Communication

The following is an example of the source code for a supervisor call block to remove protection
from a channel:

RPROT DATA °
BYTE >96
BYTE °
DATA °
DATA °
DATA 0,0
DATA 0,0
BYTE 0,0
DATA 0,0
DATA DPNAM
DATA 0,0
DATA 0,0
DATA 0,0

8.3.2 Symmetric Channel 1/0

REMOVE PROTECTION FROM CHANNEL
USING PATHNAME BLOCK OF
PRECEDING EXAMPLE

UTILITY FLAGS

The basic supervisor call block shown in SC3ction 5 applies to symmetric channel I/O, except as
noted in the descriptions of the operations. The subset of sub-opcodes for symmetric channel I/O
is as follows:

00 Open
01 Close
02 Close, Write EOF
05 Read Device Status
09 Symmetric Read
DB Symmetric Write
OD Write EOF

The following sub-opcodes perform operatons identical to those shown:

Sub·opcode Operation Identical to

OA Read Direct Read ASCII
OC Write Direct Write ASCII
03 Open and Rewind Open
04 Close and Unload Close
12 Ope'n Extend Open

8-20 2270507-9701

Interprocess Communication 8.3.2

The system flags (byte 4) in the supervisor call block apply to all symmetric channel 110. These
flags are:

2279685

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - An EOF mark was read.
o - A read operation did not receive an EOF indication.

The user flags (byte 5) in the supervisor call block apply to all symmetric channel 1/0. However,
significance of these flags differs for various operations. The flags that apply to each operation
are described in the detailed description of each operation.

The operations appropriate for symmetric IPC channels are described in subsequent paragraphs.
The following sub-codes, which do not apply to symmetric channels, produce the indicated
results:

06 Ignored
07 Ignored
08 Ignored
OE Ignored
OF Ignored

2270507·9701 8-21

8.3.2.1 . Interprocess Communication

8.3.2.1 Open. Sub-opcode >00 specifies an Open operation. Any task must perform an Open
operation in order to access a channel. The owner task of a symmetric channel must perform an
Open operation before any other Open operation is processed for a LUNO assigned to the channel.
The access privileges of Open operations, subsequent to the first requestor open, are checked
against the access privileges of the requestor opens to determine their validity. The access privi­
leges of requestors are not checked aga~nst the access privileges of the channel owner. The
access mode compatibility defined for device and file I/O applies also to IPC access modes.

The following fields of the basic supervisor call block apply to an Open operation:

• SVC opcode - > 00

• Return code

• Sub-opcode - >00

• Logical unit number (LUNO)

• User flags

• < Data buffer address>

• < Read character count>

The following user flags apply to an Open operation:

2279686

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the ope-ration and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the IPC channel to be
opened.

Shared access is appropriate for most Open operations because it allows the calling task to both
read and write, and it also allows other tasks to both read and write. Exclusive all access should
not be used because it limits use of the ctlannel to one task. The channel should be created as a
nonshared channel when the channel is intended to serve only one requesting task.

The Open operation returns the device typo code in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for a symmetric IPC channel is >8000.

8-22 Change 1 2270507·9701

Interprocess Communication 8.3.2.2

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the maximum message length specified for the channel.

The following is an example of the source code for a supervisor call block to open a symmetric IPC
channel:

OPENCH

CHTYP
MAXMSG

DATA 0
BYTE 0,>36
BYTE 0
BYTE >10
DATAO
DATA 0
DATA 0

OPEN LUNO >36 ASSIGNED TO A
SYMMETRIC CHANNEL FOR SHARED
ACCESS

8.3.2.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation is required for a
channel. When a requesting task closes the LUNO, the task has no further access to the channel.

If the owner task closes its LUNO assigned to the channel while LUNOs assigned by requesting
tasks remain open, the channel becomes dormant. A dormant channel requires special
processing before it is again available for normal use. To recover, each requesting task should
close the LUNO assigned to the channel. When all requesting tasks have closed the channel, the
owner task can open it, restoring the channel to normal use. A requesting task that issues a close
request to the dormant channel can then open it. The Open operation remains queued and is
actually performed after the owner task'closes and then opens the channel.

This order of operations is unlikely; the capability for a dormant state is provided for cases when
an owner task has unusual capabilities of error detection and recovery. Users who write appli­
cation programs that interface with an owner task having these capabilities must be aware that
the owner task uses these capabilities.

For IPC operations, the Close operation can return several error codes which are described in the
ONOS Messages and Codes Reference Manual. The following hexadecimal error codes are
returned most frequently.

>A6 Owner task has closed leaving the channel in the dormant state.

>A7 Owner task has aborted.

>E6 Requesting task on a nonshared symmetric channel has closed.

>E7 Requesting task on a nonshared symmetric channel as aborted.

For a nonshared channel, if the requesting task has closed its LUNO or has aborted, the owner
task must issue a Close operation followed by an Open operation to be able to use the channel
again.

2270507·9701 8-23

8.3.2.3 Interprocess Communication

The following fields of the basic supervisor Gall block apply to a Close operation:

• SVC code - 0

• Return code

• Sub-opcode - >01

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Close operation:

2279687

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

The following is an example of the source code for a supervisor call block to close an IPC channel:

CLOCH DATA 0
BYTE 1,>36
DATA 0
DATA 0
DATA 0
DATA 0

CLOSE LUNO >36 ASSIGNED TO
SYMMETRIC CHANNEL

8.3.2.3 Close, Write EOF. The Close, Write EOF operation, sub-opcode > 02, has the same
effect as a Write EOF followed by a Close. The calling task can be suspended if there is no pending
read operation to the channel.

8.3.2.4 Open and Rewind. The Open and Ftewind operation, sub-opcode >03, is identical to the
Open operation for an IPC channel.

8.3.2.5 Close and Unload. The Close and Unload operation, sub-opcode >04, is identical to the
Close operation for an IPC channel.

8-24 2270507-9701

Interprocess Communication 8.3.2.6

8.3.2.6 Symmetric Read. Sub-opcode >09 specifies a Symmetric Read operation. When there is
a Symmetric Write operation pending for the channel, the Read operation transfers the message
of the Write operation to the data buffer specified for the Read operation. When there is no
pending Write operation, the calling task is suspended. The operation is completed and a
message is stored in the data buffer when a Write operation is performed.

The following fields of the basic supervisor call block apply to a Symmetric Read operation:

• SVC opcode - > 00

• Return code

• Sub-opcode - >09 (or >OA)

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Read character count

• <Actual read count>

The following system flags apply to a Symmetric Read operation:

2279688

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - Write EOF operation performed by other task on the channel.
o - Other task on the channel did not perform a Write EOF operation.

2270507-9701 8-25

8.3.2.7 Interprocess Communication

The following user flag applies to a Symmetric Read operation:

2279689

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the IPC channel from which a
message is to be read.

The data buffer address is the address of the buffer into which DNOS places the message.

The read character count is the length of thl9 buffer.

DNOS returns the number of characters stored in the buffer in the actual read count field.

When the Write operation to which the Read operation is matched is a Write EOF operation, no
data is transferred, the system sets the EOF flag in the system flags byte, and sets the actual read
count to zero.

The following is an example of the source code for a supervisor call block for a Symmetric Read
operation and code for the message buffer:

READCH DATA 0
BYTE 9,>36
BYTE 0,0
DATA MBUFF
DATA 80
DATA 0

MBUFF BSS 80

READ MESSAGE FROM LUNO >36
ASSIGNED TO SYMMETRIC CHANNEL

MESSAGE BUFFER

«.3.2.7 Symmetric Write. Sub-opcode >OB specifies a Symmetric Write operation. When there is
a Symmetric Read operation pending on the~ channel, the operation transfers the message in the
data buffer to the task that issued the Read operation. When there is no pending Read operation,
the calling task is suspended. The operation completes and the message is transferred when a
task issues a Read operation for the channc~1.

The following fields of the basic supervisor call block apply to a Symmetric Write operation:

• SVC code - 0

• Return code

• Sub-opcode - >08 (or >OC)

• Logical unit number (LUNO)

8-26 2270507·9701

Interprocess Communication 8.3.2.7

• < System flags>

• User flags

• Data buffer address

• Write character count

The following system flags apply to a Symmetric Write operation:

2279690

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flag applies to a Symmetric Write operation:

2279691

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the channel to which a
message is to be written.

The data buffer address is the address of the buffer that contains the message to be written.

The write character count is the number of characters in the message.

2270507·9701 8-27

8.3.2.8 Interprocess Communication

The following is an example of the source code for a supervisor call block for a Symmetric Write
operation:

WRITCH DATA 0
BYTE >OB,>36
BYTE 0,0
DATA WRBUFF
DATA 0
DATA 8

WRBUFF TEXT 'SEND TWO'

WRITE MESSAGE TO LUNO >36
ASSIGNED TO CHANNEL

8.3.2.8 Write EOF. Sub-opcode >OD specifiies a Write EOF operation. When there is a Symmetric
Read operation pending on the channel, thE~ operation sets the EOF flag and stores zero as the
input record length for the Read operation. \Nhen there is no pending Read operation, the calling
task is suspended. The operation completes when a task issues a Read operation for the channel.

The following fields of the basic supervisor call block apply to a Write EOF operation:

• SVC opcode - > 00

• Return code

• Sub-opcode - > OD

• Logical unit number (LUNO)

• < System flags>

• User flags

The following system flags apply to a Write EOF operation:

2279692

8-28

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as fClllows:
1 - Error.
o - No error.

2270507-9701

Interprocess Communication 8.3.~

The following user flag applies to a Write EOF operation:

10 1 121 3 I 4 I 5 I 6 I 7 I
f

2279693

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the channel to which an EOF
is to be written.

The following is an example of the source code for a supervisor call block for a Write EOF
operation:

WESC DATA 0
BYTE >0,>36
BYTE 0,0
DATA 0
DATA 0
DATA 0

WRITE EOF TO CHANNEL
ASSIGNED TO LUNO >36

When a Read operation matches a Write EOF, the end-of-file flag is set in the system flags of the
Read.

8.3.3 MasterlSlave Channel 1/0
The basic supervisor call block shown in Section 5 applies to master/slave channel 110, except as
noted in the descriptions of the operations. Two sub-opcodes apply to both master and slave
tasks, as follows:

00 Open
01 Close

Four additional operations are defined for master tasks:

05 Read Device Status
19 Master Read
1 A Read Call Block
1 B Master Write
1C Redirect Assign LUNO

2270507-9701 8-29

.3.3 Interprocess Communication

-he system flags (byte 4) in the supervisor call block apply to all master/slave channel 110. These
lags are:

~3 I 4 I 5 I 6 I 7 I
~279694

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

Bit 2 - End-of-file. Set by system as follows:
1 - An EOF was read on the channel.
o - A read operation did not read an EOF.

The user flags (byte 5) in the supervisor call block apply to all master/slave channel 110. However,
significance of these flags differs for various operations. The flags that apply to each operation
are described in the detailed description of each operation.

The operations appropriate for owner tasks of master/slave channels are described in subsequent
paragraphs. The following sub-opcodes, that do not apply to owner (master) tasks of master/slave
channels, produce the indicated results:

02 Error
03 Error
04 Error
06 Error
07 Error
08 Error
09 Error
OA Error
OB Error
OC Error
OD Error
OE Error
OF Error

In general, the requesting (slave) tasks of a master/slave channel use the set of sub-opcodes
defined for the default resource of the channel. The default resource type of channel expects that
slaves will use only simple ASCII Read and ASCII Write requests. The master task determines
which sub-opcodes apply and what occurs in response to each of them. The documentation of the
master task must include this information and must be available to programmers of slave tasks.

8-30 2270507·9701

Interprocess Communication 8.3.3.1

An example of a typical sequence of operations performed by a master (owner) task to a
master/slave channel is shown in Appendix C. In general, however, the sequence is as follows:

1. Assign LUNO to the channel. The LUNO should be a task-local LUNO.

2. Open the channel.

3. Issue a Master Read operation.

4. Process the requester operation returned in the Master Read data buffer.

5. Issue Master Write when processing of the requester operation is complete.

6. Repeat the Master Read/Master Write cycle as often as necessary.

7. Close the channel.

8. Release the LUNO to the channel.

8.3.3.1 Open. Sub-opcode > 00 specifies an Open operation. The master task of a master/slave
channel must perform an Open operation before any other Open operation may be processed for a
LUNO assigned to the channel. The access privileges of Open operations, subsequent to the first
requestor open, are checked against the access privileges of the requestor opens to determine
their validity. The access privileges of the requestors are not checked against the privileges of the
channel owner. The access mode compatibility defined for device and file I/O applies also to IPC
access modes.

The following fields of the basic supervisor call block apply to an Open operation:

• SVC opcode - >00

• Return code

• Sub-opcode - > 00

• Logical unit number (LUNO)

• User flags

• < Data buffer address>

• < Read character count>

The following user flags apply to an Open operation:

3-4

f
2279695

2270507-9701 Change 1 8-31

8.3.3.1 Interprocess ~ommunication

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bits 3-4 - Access privilege flag. Set as follows:
00 - Exclusive write.
01 - Exclusive all.
10 - Shared.
11 - Read only.

The logical unit number (LUNO) field contains the LUNO assigned to the IPC channel to be
opened.

Shared access is appropriate for most Open operations because it allows the calling task to both
read and write, and it also allows other tasks to both read and write. Exclusive all access should
not be used because it limits use of the channel to one task. To restrict use of the channel to a
single requesting (slave) task, the channel should be created as a nonshared channel.

The Open operation returns the device type Gode in the data buffer address field (bytes 6 and 7) of
the supervisor call block. The device type code for a master/slave IPC channel is >8001 when the
default resource type is IPC channel. Otherwise, the device type code returned when a calling task
opens a LUNO assigned to a master/slave channel is the code for the default resource (file or
device). The device type codes returned by an Open operation are listed in Table 8-2.

8-32

Table 8-2. Device/File Type Codes Returned by an Open Operation

Code

0000
0001
0002
0003
0004
0005
0006
0007
0008
003F

01FF
02FF
03FF
04FF
05FF
06FF

Device or File

Dummy device
ASRlKSR and teleprinter device (TPD)
Printer
Cassette unit
Card reader
911 VDT, 931 VDT, or 940 VDT
Disk drive
Communication devices
Magnetic tape drive
Special device

Sequential file
Relative record file
Key indexed file
Directory file
Pro~lram file
Imane file

2270507-9701

Interprocess Communication 8.3.3.2

When the calling task places zero in the read character count field (bytes 8 and 9) of the supervisor
call block, the Open operation returns the maximum message length specified for the channel.

Note that for a requester task, the maximum message length is the same as the maximum buffer
length. For the master channel, the maximum message length is the maximum buffer length plus
the length of the maximum Master Read Block.

The following source code example is a SVC call to open a master/slave IPC channel:

OPENCH DATA 0
BYTE 0,>4C
BYTE 0
BYTE >10
DATA 0
DATA 0
DATA 0

OPEN LUNO >4C ASSIGNED TO MASTER/
SLAVE CHANNEL FOR SHARED ACCESS

MSCTYP
MSMML

8.3.3.2 Close. Sub-opcode >01 specifies a Close operation. The Close operation is required for a
channel. When a slave task closes the LUNO, the task has no further access to the channel.

The following fields of the basic supervisor call block apply to a Close operation:

• SVC code - 0

• Return code

• Sub-opcode - >01

• Logical unit number (LUNO)

• User flags

The following user flag applies to a Close operation:

2279696

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO to be closed.

2270507-9701 8-33

8.3.3.3 Interprocess Communication

The following is an example of the source code for the supervisor call block to close an IPC channel:

CLCHAN DATA 0
BYTE 1,>4C
DATA 0
DATA 0
DATA 0
DATA 0

CLOSE LUNO >4C ASSIGNED TO
MASTER/SLAVE CHAN N EL

8.3.3.3 Read Device Status. Sub-opcode >05 specifies a Read Device Status operation. The Read
Device Status operation returns the attributes of the channel to a specified buffer in the calling task.

The following fields of the basic supervisor call block apply to a Read Device Status operation:

• SVC code - 0

• Return code

• Sub-opcode - >05

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Read character count

• <Actual read count>

The following system flags apply to a Read Device Status operation:

2279697

8-34

Bit 0 - Busy flag; Set by system as tollows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as tollows:
1 - Error.
o - No error.

2270507·9701

Interprocess Communication 8.3.3.3

The following user flag applies to a Read Device Status operation:

2279698

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the IPC channel for which the
attributes are required.

The data buffer address is the address of the buffer into which DNOS places the channel
attributes.

The read character count is the length of the buffer. The count must be at least 10 to obtain all
channel attributes. When a lesser value is entered, that number of bytes of information is returned.
The higher numbered bytes are truncated.

DNOS returns the number of characters stored in the buffer in the actual read count field. This
number is 10 or the read character cou'nt, whichever is less.

The attributes of an IPC channel consist of 10 bytes. The contents of the buffer following a Read
Device Status operation are:

2279699

DEC HEX

o 0 CHANNEL FLAGS

2 2

4 4

6 6

8 8

Byte

0-1

RESOURCE TYPE I RESOURCE TYPE FLAGS

MAXIMUM MESSAGE LENGTH

ASSIGN COUNT I
RESERVED

Contents

Channel flags, as follows:
Bits 0-1 - Channel scope:

00 - Task-local.
01 - Job-local.
10 - Global.

OPEN COUNT

2270507·9701 8-35

8.3.3.3 Interprocess Communication

B-36

Byte

Bit 2 - Shared flag:
1 - Shared.
o - Not shared.

Bit 3 - Channel type flag:
1 - Not returned.
o - Master/slave channel.

Contents

Bit 4 - Master process assign flag:
1 - Master plrocesses assigns.
o - Master does not process assigns.

Bit 5 - Master process abort flag:
1 - Master process aborts.
o - Master does not process aborts.

Bit 6 - Master process utility opcodes flag:
1 - Master processes utility opcodes.
o - Master does not process uti I ity opcodes.

Bits 7-8 - ReservE~d.

Bit 9 - Master ope!n flag:
1 - Master task has issued open.
o - Master task has not issued open.

Bit 10 - Master close flag:
1 - Master task has issued close, or has aborted.
o - Master task has not issued close.

Bits 11-15 - Reserved.

2 Default resource type (see Create Channel operation).

3 Default resource type flags (see Create Channel operation).

4-5 Maximum message length. This is the maximum number of bytes of data
transferred by a Master Read or Master Write operation. It includes space
for the user's data buffer and all header and call block fields.

6 Assign count. Number of LUNOs currently assigned to the channel.

7 Open count. Numbe!r of slave tasks to which the channel is currently
open.

8-9 Reserved.

2270507·9701

Interprocess Communication 8.3.3.4

The following is an example of the source code for a supervisor call block for a Read Device Status
operation, and code for the buffer:

RDCHST DATA 0
BYTE 5,>4C
BYTE 0,0
DATA ATTR
DATA 10
DATA 0

ATTR BSS 10

READ STATUS OF LUNO >4C ASSIGNED
TO MASTER/SLAVE CHANNEL

ATTRIBUTES BUFFER

8.3.3.4 Master Read. The Master Read operation is the means by which the master task receives
the information required to process requests. IPC returns the requests issued by the slave tasks in
response to Master Read operations.

After opening the channel, the master task issues a Master Read. If a request is pending, DNOS
returns the information in the appropriate format as described in subsequent paragraphs. When
the master task processes Assign LUNO operations, the first Master Read operation returns the
Assign LUNO operation of the first slave task to use the channel.

When a request is not pending, a flag in the supervisor call block for the Master Read operation
determines whether or not the master task is to be suspended. When the flag is set, the master
task is not suspended but receives zero as the number of bytes read. Otherwise, the master task is
suspended with the Master Read operation pending until a request is issued by a slave task. Then
the master task is reactivated and receives the information about the requested operation in the
specified buffer.

Sub-opcode >19 specifies a Master Read operation. The operation returns information from the
supervisor call block, preceded by a header that contains information about the calling task. The
master task may use the information in the header to identify the requesting task. The master task
may alter the call block from the requesting task as appropriate for the requested processing but
must not alter the contents of the header. This data should be used only for comparison with
previous headers. It must not be used to access the requester's task space. The master task sup­
plies data in a buffer when processing a read operation requested by a slave task except when
zero characters are to be returned to the slave task. The data structure consisting of the header,
the call block contents, and any required buffer is referred to as the master read buffer (MRB) in
subsequent paragraphs. The master task must issue a master write request to return the MRB to
the slave task.

The following fields of the basic supervisor call block apply to a Master Read operation:

• SVCcode - 0

• Return code

• Sub-opcode - > 19

• Logical unit number (LUNO)

• < System flags>

2270507-9701 8-37

8.3.3.4 Interprocess Communication

• User flags

• Data buffer address

• Read character count

• <Actual read count>

The following system flags apply to a Master Read operation:

W\31 4 1s 161 71

2279700

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Master I~ead operation:

2279701

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
0- System suspends the calling task until the operation has completed.

Bit 3 - Resolve logical names flag. Set as follows:
1 - The pathname in the MRB must have all logical names resolved.
0- The original pathname specified by the slave task's call block is in the MRB.

Bit 5 - Do not suspend flag. Set as follows:
1 - Return control to the mastor task immediately, whether or not a request is
pending.
0- When no request is pendinlg, suspend the master task until a request is issued.

Although it is valid to set both the initiate and the do not suspend flags for the same operation, it
is not meaningful for both to be set; either flag alone returns control to the calling task.

The logical unit number (LUNO) field contains the LUNO assigned to the master/slave channel.

The data buffer address is the address of thl9 buffer into which DNOS copies the MRB.

8-38 2270507·9701

Interprocess Communication 8.3.3.4

The read character count is the length of the buffer. The buffer should be as large as the maximum
message length specified when the channel was created. When the buffer is not large enough to
contain the MRB, as much of the data as the buffer can contain is returned, and the remainder is
truncated.

ONOS returns the number of characters stored in the buffer in the actual read count field. This
number is the length of the MRB and associated buffers or the read character count, whichever is
less.

The MRB has several variations because the supervisor call block within the MRS varies according
to the requested operation and the default resource type. Three masterlslave channel creation
options affect the MRB the master task receives:

• Assign LUNO operations (bit 4 in channel flags)

• 1/0 Utility operations (bit 5 in channel flags)

• Abort 1/0 operations (bit 6 in channel flags)

When one of the above options is in effect, the master task receives an MRB that contains one of
the following, dependent on option selected:

• Assign LUNO call block

• 1/0 Utility call block

• Abort 1/0 call block

The appropriate MRB is sent each time a slave task issues a request for Assign LUNO, 1/0 Utility
operation, or Abort 1/0 operation.

The MRB consists of a header and either the basic 1/0 block (possibly with optional extended 1/0
block) or the abort 1/0 block. Either the basic 1/0 block or the extended 1/0 block must be
specified. The components of the MRB are broken down as follows:

MASTER READ BUFFER

2283154

2270507·9701

DEC HEX

o 0

8 8

10

20

22

44

A

14

HEADER

BAS IC I/O BLOCK

OR

ABORT I/O BLOCK

(ABORT BLOCK 2 WORDS SHORTER)

EXTENDED I/o BLOCK

(OPTIONAL) J
8-39

3.3.3.4 Interprocess Communication

rhe contents of each component of the MRB are described in the following paragraphs.

CALLING TASK HEADER

DEC HEX

0 0 SYSTEM SECURITY DATA

2 2 CALL BLOCK ADDRESS

4 4 TASK STATUS BLOCK ADDRESS

6 6 JOB STATUS BLOCK ADDRESS

8 8 SYSTEM SECURITY INFORMATION
2283155

rhe calling task header of the MRB contains the following:

-40

Byte Contents

0-1 System security information.

2-3 Call block address. Address of the supervisor call block in the slave task.

4-5 Task status block address. Address of the task status block of the slave
task.

6-7 Job status block address. Address of the job status block for the job to
which the slave task belongs.

8-9 Security information.

2270507·9701

Interprocess Communication 8.3.3.4

BASIC I/O BLOCK

10 A >00 <RETURN CODE>

12 C SUB-OPCODE LUNa

14 E <SYSTEM FLAGS> USER FLAGS

16 10 DATA BUFFER OFFSET

18 12 READ CHARACTER COUNT

20 14 WRITE CHARACTER COUNT/<ACTUAL READ COUNT>

2283156

The basic 1/0 block of the MRS contains the following:

Byte

10

11

12

13

14

15

16-17

18-19

20-21

2270507-9701

Contents

Opcode, >00.

Return code. The master task may return zero when the operation com­
pletes satisfactorily. When the operation completes in error, the task
may return an error code.

Sub-opcode for desired operation. For Assign LUNO, >91.

Logical unit number (LUNO).

System flags. DNOS sets the busy flag (bit 0) before returning the call
block to the master task.

User flags. User sets these flags for utility operations. The flags for those
operations that use this field are specified and described in the
paragraph on each operation.

Data buffer offset. Not used (reserved) for an Assign LUNO operation.

Read character count. Not used (reserved) for an Assign LUNO
operation.

Write character count. Not used (reserved) for an Assign LUNO
operation.

8-41

8.3.3.4 Interprocess Communication

ABORT I/O BLOCK

10 A >OF < RETURN CODE>

12 C USER FLAGS LUNO

14 E ABORTING TS B ADDRESS

16 10 ABORTING J SB ADDRESS

2283157

The abort 1/0 block of the MRB contains thH following:

8-42

Byte Contents

10 Opcode, >OF.

11 Return code. The master task may return zero when the operation
completes satisfactorily. When the operation completes in error, the task
may return an error code.

12

13

14-15

16-17

User flags. Set as follows:
Bit 0 - Do not close flag.

1 - Do not close the LUNa if the task aborts.
o - Close the LUNa if the task aborts.

Bits 1-7 - ReservE!d.

Logical unit number (LUNa).

Aborting TSB address.

Aborting JSB address.

2270507·9701

Interprocess Communication 8.3.3.4

EXTENDED I/O BLOCK

22 16 KEY DEFINITION BLOCK OFFSET

24 18 RESERVED

26 1A UTILITY FLAGS

28 1C DEFINED LOGICAL RECORD LENGTH

30 1E DEFINED PHYSICAL RECORD LENGTH

32 20 PATHNAME OFFSET

34 22 PARAMETER OFFSET

36 24 RESERVED

38 26
INITIAL FILE ALLOCATION

40 28

42 2A
SECONDARY FILE ALLOCATION

44 2C

2283158

The MRB contains the following:

2270507-9701

Byte

22-23

24-25

Key definition block offset

Reserved.

Contents

8-43

8.3.3.4 Interprocess Communication

Byte

26-27

28-29

30-31

32-33

34-35

36-37

38-41

42-45

.9ontents

Utility flags. User Bets these flags for utility operations. The flags for
each operation are specified and described in the paragraph on each
operation. ~

Logical record length. Applies to Create operations.

Physical record length. Applies to Create operations.

Pathname offset. For all operations except Release LUNO, contains the
relative address of a buffer that contains the pathname. The address is
relative to byte 0 of the MRS. The format of the pathname buffer is:

Syte 0 - Length n of pathname in bytes.
Bytes1-n - Pathname.

Parameter offset. Address of the parameter buffer relative to byte 0 of the
MRS. The parameters are logical name parameters, in the format
described in the Name Management SVC description.

Reserved.

Initial file allocation. Appli~s to a Create operation.

Secondary file allocation. Applies to a Create operation for an expand­
able file.

The master task may return any currently defined DNOS error code for 1/0 SVCs listed in the DNOS
Messages and Codes Reference Manual. A special code, >E5, has been reserved for special
master task error reporting. This code indicates that the master task has detected an error. The
master task should return additional information about the error in response to the next read
request by the slave task. It is the responsibility of the master task to identify the slave task to
which the error applies and to return appropriate information to that task.

Most requests include data buffers and pathname buffers; some include parameter buffers and
other buffers. These buffers are placed in the MRS following the call block for the request. The
offsets of these buffers in the MRS are addrE)SSeS relative to byte 0 of the MRS. The actual number
of buffers varies for each operation.

Other 1/0 utility operations use the same MRS. Notice that it is divided into three sections. Sytes 0
through 9 contain the header, and bytes 10 through 21 contain the basic 1/0 supervisor call block.
These sections are common to all MRSs. MRSs for operations that use the basic 1/0 supervisor
call block contain only these sections.

8-44 2270507·9701

Interprocess Communication 8.3.3.4

Relative File I/O Extension. Other operations add one or more additional words to the basic
supervisor call block. For relative record file .1/0, two words are added for the relative record
number. The channel must have been created with a default resource type of relative record file.
The additional words are as follows:

DEC HEX

22 16
RECORD NUMBER

24 18

2279703

The extension contains the following:

Byte

22-25

Contents

Record number. The number of the record to be processed in a relative
record file.

Key Indexed File 110 Extension. For key indexed file I/O, the following words are used in the
extended 1/0 block. The channel must be created with a default resource type of key indexed file.
The additional words are as follows:

22 16 CURRENCY BLOCK ADDRESS

24 18 RESERVED

26 1A RESERVED

28 1C CURRENCY BLOCK I

~ '"...,

46

2283211

2270507·9701 8-45

8.3.3.4 Interprocess Communication

The extension contains the following:

Byte Contents

22-23 Currency block address.

24-25 Reserved.

26-27 Reserved.

28-46 Currency block (contains 20 bytes).

Write with Reply Extension. A Write with F~eply operation requires two additional words and the
reply block. The channel must have been created with a default resource type of a device for which
a Write with Reply operation is valid. The a.dditional words are as follows:

DEC HEX

22 16 REPLY BLOCK OFFSET

24 18 [RESERVEn]

26 1A REPLY BUFFER OFFSET

28 1C nEPLY CHARACTER COUNT

30 1E < ACTUAL REPLY COUNT>

2279704

The extension contains the following:

Byte

22-23

24-25

26-27

28-29

30-31

8-46

Contents

Reply block offset, relative to byte 0 of the MRB. Specifically, >1A.

[Reserved].

Reply buffer offsHt, relative to byte 0 of the MRB. The reply is placed in
the buffer by the master task.

Reply character count. The length of the reply buffer, set by the
requester task.

Actual reply count. The number of characters in the reply placed in the
reply buffer by th·e master task.

Change 1 2270507·9701

Interprocess Communication 8.3.3.4

Read Extension. A Read operation requested by a slave task may request validation by setting the
character validation flag in the extended user flags field. When validation is required, a two-word
extension is provided, as follows:

DEC HEX

22 16

24 18

2279705

Byte

22-23

24-25

VALIDATION BUFFER OFFSET

[RESERVEDl

Contents

Validation buffer offset, relative to byte 0 of the MRS. The buffer
contains data that defines the validation.

[Reserved].

Extension for Resource-Specific I/O to a VDT. Another extension is required for resource-specific
1/0 to a video display terminal (VOT). The channel must have been created with a default resource
type of 911 VOT. The required extension consists of the following five words:

DEC HEX

22 16 ZERO OR REPLY BLOCK OR VALIDATION OFFSET

24 18 EXTENDED USER FLAGS

26 1A FILL CHARACTER <EVENT BYTE>

28 tC CURSOR POSITION Row COLUMN

30 t E FIELD BEGINNING Row COLUMN

2279706

2270507·9701 8-47

8.3.3.4 Interprocess Communication

The extension contains the following:

Byte

22-23

24-25

26

27

28

29

30

31

Contents

Zero, for operations that require neither reply nor validation. Reply block
offset or val idation offset, as appropriate. Each offset is relative to byte 0
of the MRB.

Extended user flags. These flags define resource-specific VOT 110.

Fi II character.

Event byte. Byte in which master task returns event character.

Cursor position row.

Cursor position column.

Field beginning de)finition row.

Field beginning definition column.

When character validation is required with resource-specific 110 to the VOT, the word in bytes 22
and 23 contains the address of the validation buffer relative to byte 0 of the MRB, and a word is J

added to the M RB at the end of the VOT extension as follows:

DEC HEX

32 20 [RESERVEOl

2279707

For a Write with Reply operation to the VOT in the resource-specific 110 mode, the word in bytes 22
and 23 contains the address of the reply block relative to byte 0 of the MRB. The address is >22. An
additional word and the reply block are added to the M RB at the end of the VOT extension as
follows:

DEC HEX

32 20 [RESERVEOl

34 22 REPLY BUFFER OFFSET

36 24 REPLY CHARACTER COUNT

38 26 <ACTUAL REPLY COUNT>

2279708

8-48 2270507·9701

Interprocess Communication 8.3.3.4

The extension contains the following:

Byte

32-33

34-35

36-37

38-39

Contents

[Reserved].

Reply buffer offset, relative to byte 0 of the BRB. The reply is placed in
the buffer.

Reply character count. The length of the reply buffer, supplied by the
slave task.

Actual reply count. The number of characters in the reply placed in the
reply buffer, supplied by the slave task.

Direct Disk I/O Extension. For direct disk 1/0 two methods are used to access the desired file. To
access the file by track address and sector number, the following words are required in the
extended 1/0 block.

22 16 TRACK ADDRESS

24 18 SECTORS 'RECORD I SECTOR NUMBER

2283212

This extension contains the following:

Byte Contents

22-23 Track address. The number of the track to access in the disk.

24 Number of sectors per record.

25 Sector number.

Alternatively, to access the file by ADU number and sector offset use the following words in the
extended 1/0 block.

22 16 ADU NUMBER

24 18 SECTOR OFFSET INTO ADU

2283213

2270507·9701 8-49

8.3.3.5 Interprocess Communication

This extension contains the following:

Byte Contents

22-23 Number of the ADU to access.

24-25 Sector offset into the specified ADU.

The following is an example of the source code for a supervisor call block for a Master Read
operation, and code for the buffer:

MREAD

MRB

DATA 0
BYTE >19,>4C
BYTE 0,0
DATA MRB
DATA 100
DATA 0
BSS 100

MASTER READ OF LUND >4C ASSIGNED
TO MASTER/SLAVE CHAN N EL,
SUSPEND WHEN NO REQUEST IS
PENDING

REQU EST BU FFER

8.3.3.5 Read Call Block. The Read Call Block operation is similar to the Master Read operation,
but has two important differences. Every Master Read operation returns the entire MRB to the
master task; it must be followed by a Master Write operation. The Read Call Block operation
returns the first 24 bytes of the MRB (no buffers) and is not followed by a Master Write operation.
The first 24 bytes of the M RB consist of the 10 bytes of the header, the 12 bytes of the basic I/O
supervisor call block, and two bytes of the extension, if any. A Read Call Block operation may be
followed by any required processing.

The master task may issue a Read Call Blocl< request to obtain information about a request from a
slave task without being committed to process the request and return results to the task.

Sub-opcode >1A specifies a Read Call Block operation. When there is no request from a slave task
pending and the do not suspend flag is set, the operation returns zero as the number of characters
read and the master task resumes execution. When there is no request from a slave task pending
and the do not suspend flag is not set, the master task is suspended until there is a request from a
slave task.

The following fields of the basic supervisor call block appy to a Read Call Block operation:

• SVC code - 0

• Return code

• Sub-opcode - > 1A

• Logical unit number (LUND)

• < System flags>

• User flags

• Data buffer address

8-50 2270507·9701

Interprocess Communication 8.3.3.5

• Read character count

• <Actual read count>

The following system flags apply to a Read Call Block operation:

2279709

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flags apply to a Read Call Block operation:

10111213141516171
f f

2279710

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operatio.n and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

Bit 5 - 00 not suspend flag. Set as follows:
1 - Return control to the master task immediately, whether or not a request is

pending.
o - When no request is pending, suspend the master task until a request is issued.

Although it is valid to set both the initiate and the do not suspend flags for the same operation, it
is not meaningful for both to be set; either flag alone returns control to the calling task.

The logical unit number (LUNO) field contains the LUNO assigned to the master/slave channel.

The data buffer address is the address of the buffer into which ONOS copies the partial MRB.

The read character count is the length of the buffer. The buffer should consist of at least 24 bytes.
Otherwise, only the specified number of bytes of the MRB is returned.

ONOS returns the number of characters stored in the buffer in the actual read count field. This
number is 24 or the read character count, whichever is less.

2270507·9701 8-51

8.3.3.6 Interprocess Communication

The following is an example of the source code for a supervisor call block for a Read Call Block
operation and code for the buffer:

RCB

PMRB

DATA 0
BYTE >1A,>4C
BYTE 0,0
DATA PMRB
DATA 24
DATA 0
BSS 24

READ CALL BLOCK FOR LUNO >4C
ASSIGNED TO MASTER/SLAVE
CHANNEL, SUSPEND WHEN NO
REQUEST IS PENDING

REQUEST BUFFER

8.3.3.6 Master Write. The Master Write operation matches the Master Read operation; the
master task obtains a request with a Master Read, performs appropriate processing, and returns
the request (updated to show the results of the operation) with a Master Write operation.

Depending upon the type of operation requested, the entire message returned by the Master Read
operation may not have to be returned by thE~ Master Write. When the slave task requests a Read,
the entire MRB with the data buffer must bE~ returned. For many operations, the header and the
first two bytes of the call block (including the return code) are adequate.

Sub-opcode >1 B specifies a Master Write operation. The MRB being written must match an MRB
that was sent to the master task. OtherwisE), DNOS returns an error code. The same error code
(>A2) is returned when the requesting task has issued an Abort I/O SVC to the channel while the
master task is processing the requesting task's MRB.

The following fields of the basic supervisor call block apply to a Master Write operation:

• SVC opcode - > 00

• Return code

• Sub-opcode - > 1 B

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Write character count

The following system flags apply to a Master Write operation:

~I 314151 61 7 1

2279711

8-52 2270507-9701

Interprocess Communication 8.3.3.6

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
o - No error.

The following user flag applies to a Master Write operation:

2279712

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the master/slave channel.

The data buffer address is the address of the buffer that contains the MRB. The buffer must
contain the entire header and at least two bytes of the call block from the requesting task.

The write character count is the number of characters of the MRB to be returned.

A master task receives a special MRB when a requesting task terminates abnormally. The task
termination process sends a special block that has a Close operation sub-opcode (>01) and a call
block address of >FFFF. The master task must be able to recognize this as a termination
message, perform any processing required for correct operation of the master task, and return the
MRB using a Master Write operation.

The following is an example of the source code for a supervisor call block for a Master Write
operation:

MW

2270507·9701

DATA 0
BYTE >1B,>4C
BYTE 0,0
DATA MRB
DATA 0
DATA 24

MASTER WRITE FOR CHANNEL ASSIGNED
TO LUNO >4C

8-53

8.3.3.7 Interprocess Communication

8.3.3.7 Redirect Assign LUNO. A channel master task that processes Assign LUNO operations
can perform a Redirect Assign LUNO operation as an alternative to a Master Write. The operation
is only valid when the requester's operation causes the IPC subsystem to redirect the requester's
Assign LUNO operation to another 1/0 resource.

The master task specifies the target 1/0 resource by placing the resource name in a pathname
buffer in the MRB. The pathname buffer should be of the same format as a pathname buffer for a
utility operation (the first byte in the buffer contains the number of characters in the pathname).
The pathname pointer in the Assign LUNO Gall block should be changed to point to the target 1/0
resource pathname buffer.

Sub-opcode >1C specifies a Redirect Assign LUNO operation. The MRB being written must match
an MRB that was sent to the master task. Otherwise, DNOS returns an error code. The same error
code (>A2) is returned when the requesting task has issued an Abort 1/0 SVC to the channel while
the master task is processing the requesting task's MRB.

The following fields of the basic supervisor call block apply to a Redirect Assign LUNO operation:

• SVC opcode - > 00

• Return code

• Sub-opcode - > 1 C

• Logical unit number (LUNO)

• < System flags>

• User flags

• Data buffer address

• Write character count

The following system flags apply to a Redirect Assign LUNO operation:

2283196

8-54

Bit 0 - Busy flag. Set by system as follows:
1 - Busy.
o - Operation completed.

Bit 1 - Error flag. Set by system as follows:
1 - Error.
0- No error.

2270507·9701

Interprocess Communication 8.3.4

The following user flag applies to a Redirect Assign LUNO operation:

2 3 4 5

2283190

Bit 0 - Initiate flag. Set as follows:
1 - System initiates the operation and returns control to the calling task.
o - System suspends the calling task until the operation has completed.

The logical unit number (LUNO) field contains the LUNO assigned to the master/slave channel.

The data buffer address is the address of the buffer that contains the M RB. The buffer must
contain the entire header and the entire call block from the requesting task.

The write character count is the number of characters of the MRB to be returned.

The following is an example of the source code for a supervisor call block for a Redirect Assign
LUNO operation:

MW DATA 0
BYTE >1C,>4C
BYTE 0,0
DATA MRB
DATA 0
DATA 100

8.3.4 Master/Slave Channel Example

REDIRECT ASSIGN LUNO FOR CHANNEL
ASSIGNED TO LUNO >4C

An example illustrating the typical sequence of master/slave channel operations performed by the
master task to process a request from a slave task is shown in Appendix C.

2270507·9701 8-55/8-56

9

Volume Management

9.1 DISK VOLUMES

Any disk medium used on a disk drive is called a disk volume. A disk volume must be initialized
before being used in the system. A disk volume that contains obsolete information may be reini­
tialized and used in the system as if it were a new volume. A previously initialized volume must be
installed in the system each time it is physically mounted in the disk drive, and it must be
unloaded from the system before another volume can be installed in the drive.

9.2 INITIALIZING A NEW VOLUME

Initializing a new volume consists of the following operations:

• Optionally formatting all tracks on the disk.

• Writing volume overhead data on' sector 0, track O.

• Writing the list of bad allocatable disk units (ADUs) on sector 1, track O.

• Writing partial bit maps (showing ADU availability) on the remaining sectors of track O.

• Writing the volume directory on the disk.

• Building an .S$DIAG file

• Optionally writing a loader on track 1.

• Issuing an Install Volume SVC to install the new volume.

The Initialize New Disk Volume SVC (opcode >38) may be issued by software privileged tasks to
perform these functions. The disk must not be hardware write-protected.

Formatting the tracks on the disk destroys any data previously stored on the disk. Therefore, do
not issue this SVC for a volume that contains any data that is currently required and that does not
exist on another volume.

2270507·9701 9-1

9.2 Volume Management

The supervisor call block for the SVC is as follows:

2279713

9-2

SVC > 38 -- INITIALIZE NEW DISK VOLUME ALIGN ON WORD BOUNDARY
PRIVI LEGED TASK ONLY

DEX HEX

0 0 >3:8 I <RE11JRN CODE>

2 2

DISK DRIVE NAME

4 4

6 6
,...1

VOLUME NAME
,....1

rrJ ,...1

12 C

14 E NUMBER OF DIRECTORY ENTRIES

16 10 BAD TRAGK LU NO I FLAGS

1 8 12 DEFAULT PHYSICAL RECORD SIZE

20 14 HAIRDWARE INTERLEAVING FACTOR

22 16 LOADER LUNO I RESERVED

2270507-9701

Volume Management 9.2

The call block contains the following:

Byte

o

1

2-5

6-'13

14-15

16

17

18-19

20-21

22

23

2270507 -9701

Contents

Opcode, >38.

Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code.

Device name of disk drive (ASCII characters).

Volume name. One through eight ASCII characters (valid path name
characters)

Number of entries in volume directory. The actual number of entries in
the volume directory is the lowest prime number equal to or greater than
the number specified.

LUNO assigne~ to bad track file, or zero. Enter zero when there is no bad
track file. The bad track list on track 0 sector 1 will be combined with the
bad tracks in the bad track file.

Flags:
BitO-Sett01.
Bit 1 - Set to 1 when loader is to be written on track 1. Set to 0 when no

loader is to be written.
Bit 2 - Set to 1 when the disk is not to be formatted. Set to 0 when the

disk is to be formatted.
Bits 3-7 - Reserved.

Default physical record size for files on this volume, or zero. Enter a zero
to specify default value supplied for the disk drive during system gener­
ation.

Hardware interleaving factor used in formatting the disk. Range is 0
through n, where n is the number of sectors per track minus 2. Enter zero
for factor of 1 used for double-sided, double-density diskettes.

LUNO assigned to file that contains a loader in image format, or zero.
Enter zero to specify system default loader. This byte is ignored unless
flag byte contai ns >CO.

Reserved.

9-3

9.2 Volume Management

Disk packs are shipped with a list of bad tracks. This list must be written on a file, and the file
assigned to a LUNO. The LUNO is entered in byte 16 of the supervisor call block. The format of the
bad track file is:

Head, Cylinder;
Head, Cylinder;

or

Head, Cylinder; . Head, Cylinder;

Follow the last entry with a blank line.

The loader options allow the system default loader or a task-supplied loader to be written on track
1. A disk that is not a system disk and does not require a loader may be initialized with no loader on
track 1. When the task supplies a loader, it must be an image file of the loader, and the file must be
assigned to the LUNO specified in byte 22.

The following is an example of coding for a supervisor call block for an Initialize New Disk Volume
SVC:

INIT

9-4

EVEN
BYTE >38
BYTE 0
TEXT'DS04'
TEXT 'NEWVOL '
DATA 20
BYTE >3D
BYTE >CO
DATA 0
DATA 0
BYTE >2F
BYTE 0

INITIALIZE DISK VOLUME IN DRIVE
DS04 WITH 20 ENTRIES IN VCATALOG.
BAD TRACK FILE LUNO IS >3D AND
LOADER IMAGE FILE LUNO IS >2F.
VOLUME NAME IS NEWVOL AND DEFAULTS
FOR PHYSICAL RECORD SIZE AND
INTERLEAVING APPLY.

Change 1 2270507 -9701

Volume Management 9.3

9.3 INSTALLING A VOLUME

Installing a disk volume associates the volume name with the disk drive device name. When a disk
volume is physically installed, enter an Install Disk Volume SVC (opcode >20) to provide the
volume name to the system. Specifically, the SVC:

• Verifies that the specified drive is available.

• Verifies that the specified volume is mounted on the drive.

• Initializes memory required for the disk manager.

• Deletes any temporary files on VCATALOG on the disk.

The supervisor call block for the SVC is as follows:

SVC> 20 -- INSTALL DISK VOLUME

DEC HEX

o 0 >20

2 2

4 4

6 6
,.oJ

I

ALIGN ON WORD BOUNDARY
PRIVILEGED TASK ONLY

< RETURN CODE>

DISK DRIVE NAME

12

VOLUME NAME

C TI......--_______ T
2279714

The call block contains the following:

Byte Contents

o Opcode, >20.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code.

2-5

6-13

2270507·9701

Device name of disk drive (ASCII characters).

Volume name. One through eight ASCII characters. When another
volume is installed on the specified disk drive, DNOS returns an error
code in byte 1 and the volume name of the installed volume in this field.

9-5

9.4 Volume Management

The following is an example of coding for a supervisor call block for an Install Disk Volume SVC:

INSVOL
EVEN
BYTE >20
BYTE 0
TEXT'DS02'
TEXT 'NEWVOL '

INSTALL VOLUME NEWVOL IN DISK DRIVE
DS02.

9.4 UNLOADING A VOLUME

Unloading a volume consists of advising thc3 system "that the volume is no longer available. The
Unload Disk Volume SVC (opcode>34) should be issued before the disk is physically removed
from the drive. Specifically, the unload SVC:

• Determines the device on which tile specified volume is installed.

• Verifies that no LUNOs are currently assign.ed to any files in the volume.

• Releases all memory allocated to support this volume.

• Updates the physical device table (PDT) for the disk drive to show that the volume is
unloaded.

• Writes device statistics to the system log.

• Returns the disk drive device name.

The Unload Disk Volume SVC cannot unload the system disk.

The supervisor call block for the SVC is as follows:

2279715

9-6

SVC > 34 -- UNLOAD DISK VOLUME ALIGN ON WORD BOUNDARY
PRIVILEGED TASK ONLY

DEC HEX

0 0 >34 I < RETURN CODE>

2 2
<DISK DRIVE NAME>

4 4

6 6
rV

VOLUME NAME

12 C t T

2270507-9701

Volume Management 9.4

The call block contains the following:

Byte

o

1

2-5

6-13

Contents

Opcode, >34.

Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code.

DNOS returns the device name of the disk drive on which the specified
volume was installed.

Volume name. One through eight ASCII characters.

The following is an example of coding for a supervisor call block for an Unload Disk Volume SVC:

EVEN
UNLVOL BYTE >34

BYTE 0
DISKID BSS 4

TEXT 'OLDVOL '

2270507·9701

UNLOAD VOLUME OLDVOL.

9-7/9-8

10

Task Support

10.1 TASK SUPPORT FUNCTIONS

The group of supervisor calls described in this section provides the following support services to
all tasks:

• Data conversion

• Encryption and decryption of data

• Job accounting

• Memory control

• Task synchronization

• Supplying status and system information

10.2 DATA CONVERSION

When numbers are entered, the ASCII characters must be converted to their binary equivalent for
processing. Similarly, binary values must be converted to ASCII characters for output. ONOS
provides supervisor calls to perform conversions to and from decimal ASCII numbers and
hexadecimal ASCII numbers.

2270507·9701 10-1

10.2.1 Task Support

10.2.1 Converting Binary Data to Decimal ASCII
When a binary value is to be printed, it must be converted to ASCII characters. The Convert Binary
to Decimal ASCII SVC (opcode >OA) converts the binary contents of a word to decimal digits and
returns the ASCII characters corresponding to the digits to the calling task. The SVC converts the
contents of workspace register 0, placing the ASCII codes for the sign and for the digits in the
supervisor call block.

The supervisor call block for the SVC is as follows:

SVC > OA -- CONVERT BINARY TO DECIMAL ASCII

DEC HEX

o 0 >OA < RETURN CODE>

2 2 <ASCII MINUS/BLANK> <ASCII DIGIT>

4 4 <ASCII DIGIT> <ASCII DIGIT>

6 6 <ASCII DIGIT> <ASCII DIGIT>

2279716

The call block contains the following:

Byte Contents

o Opcode,>OA.

1 Return code.

2-7 ASCII field. DNOS returns six characters. When the result is negative,
byte 2 contains a minus sign. Otherwise byte 2 contains a blank. The
digits are placed in bytes 3 through 7, right justified, zero suppressed
with leading blanks.

The following table shows the results of converting several binary values:

Register Supervisor Call Block Bytes
0 2 3 4 5 6 7

>0001 >20 >20 >20 >20 >20 >31
>7FFF >20 >33 >32 >37 >36 >37
>FFFF >2D >20 >20 >20 >20 >31

The following is an example of coding for a. supervisor call block for a Convert Binary to Decimal
ASCII SVC:

10-2

CBNDEC BYTE >OA
BYTE 0

VALUE BYTE 0,0
BYTE 0,0
BYTE 0,0

CONVERT VALUE IN RO TO DECIMAL

2270507·9701

Task Support 10.2.2

10.2.2 Converting Decimal ASCII to Binary Data
A number entered at a terminal or supplied to the task in some other way as a group of ASCII
characters must be converted to its binary equivalent for processing. When the number is a
decimal number, the Convert Decimal ASCII to Binary SVC (opcode >OB) may be called to perform
the conversion. The ASCII characters to be converted are placed in the supervisor call block, and
the binary result is returned in workspace register O. The range of values that may be converted is
minus 32,768 through 32,767.

The supervisor call block for the SVC is as follows:

SVC > OB -- CONVERT DECIMAL ASCII TO BINARY

DEC HEX

o 0 >OB < RETURN CODE>

2 2 ASCII SIGN ASCII DIGIT

4 4 ASCII DIGIT ASCII DIGIT

6 6 ASCII DIGIT ASCII DIGIT

2279717

The call block contains the following:

Byte

o

1

2

3-7

2270507·9701

Contents

Opcode, >OB.

Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code.

ASCII sign. Allowable entries are:
>2B - ASCII plus sign.
>2D - ASCII minus sign.
>20 - ASCII blank. Appropriate when the number is positive or zero.
>30 - ASCII zero. Appropriate when the number is positive or zero.

ASCII characters that represent the number. The number must be right
justified, with leading zeros or leading blanks. Embedded blanks are not
allowed.

10-3

10.2.3 Task Support

The following table shows several values, how they are represented in the supervisor call block,
and the results of conversion in workspacl3 register 0 and in byte 1 of the block:

Value Supervisor Call Block Bytes Register Byte
0 2 3 4 5 6 7 0 1

+ 00001 >2B >30 >30 >30 >30 >31 >0001 0
1 >20 >20 >20 >20 >20 >31 >0001 0

1A >20 >20 >20 >20 >31 >41 UNDEF. >FF
032767 >30 >33 >32 >37 >36 >37 >7FFF 0
-00001 >2D >30 >30 >30 >30 >31 >FFFF 0

The following is an example of coding for a supervisor call block for a Convert Decimal ASCII to
Binary SVC:

CDECBN BYTE >OB
BYTE 0

CONVERT VALUE IN BYTES 2 THROUGH 7
TO BINARY AND PLACE RESULT IN RO.

VAL BYTE 0,0
BYTE 0,0
BYTE 0,0

The code in the example initializes bytes 2 through 7 to zero. Other code would move ASCII
characters into this field before executing the call.

10.2.3 Converting Binary Data to Hexadecimal ASCII
When a binary value is to be printed as hE~xadecimal, it must be converted to ASCII characters
representing the hexadecimal value. The Convert Binary to Hexadecimal ASCII SVC (opcode >OC)
performs this conversion. The value in workspace register 0 is converted and the results are
placed in the supervisor call block.

The supervisor call block for the SVC is as follows:

2279718

10-4

SVC > OC -- CONVERT BINARY TO HEXADECIMAL ASCII

DEC HEX

o 0

2 2

4 4

>OC

<ASCII DIGIT>

<ASCII DIGIT>

< RETURN CODE>

<ASCII DIGIT>

<ASC II DIGIT>

2270507·9701

The call block contains the following:

Byte Contents

o Opcode,>OC.

1 Return code.

2-5 ASCII field. DNOS returns four characters.

The following table shows the results of converting several binary values:

Register
o

>0001
>7FFF
>FFFF

2

>30
>37
>46

Supervisor Call Block Bytes
3 4

>30
>46
>46

>30
>46
>46

Task Support 10.2.4

5

>31
>46
>46

The following is an example of coding for a supervisor call block for a Convert Binary to
Hexadecimal ASCII SVC:

CBNHEX BYTE >OC
BYTE 0

CONVERT VALUE IN RO TO HEXADECIMAL

HVAL BYTE 0,0
BYTE 0,0

10.2.4 Converting Hexadecimal ASCII to Binary Data
Hexadecimal digits entered at a terminal or supplied to the task in some other manner as ASCII
characters must be converted to an equivalent binary word for further processing. The Convert
Hexadecimal ASCII to Binary SVC (opcode >OD) performs that function. The characters to be con·
verted are placed in the supervisor call block, and the result is returned in workspace register O.

The supervisor call block for the SVC is as follows:

SVC > OD -- CONVERT HEXADECIMAL TO BINARY

DEC HEX

o 0 >OD < RETURN CODE>

2 2 ASCII DIGIT ASCII DIGIT

4 4 ASCII DIGIT ASCII DIGIT

2279719

2270507·9701 10-5

10.3 Task Support

The call block contains the following:

Byte Contents

o Opcode, >00.

1 Return code. DNOS returns a zero in this byte when the operation com­
pletes satisfactorily. When the operation completes in error, DNOS
returns an error code.

2-5 The ASCII characters that represent the number.

The following table shows several values, how they are represented in the supervisor call block,
and the results of conversion in workspace register 0 and in byte 1 of the block:

Supervisor Call Bloc~; Bytes Register Byte

1 2 3 4 5 0 1

>0001 >30 >30 >30 >31 >0001 0
>003K >30 >30 >33 >4B UNDEF. >FF
>7FFF >37 >46 >46 >46 >7FFF 0
>FFFF >46 >46 >46 >46 >FFFF 0

The following is an example of coding for a supervisor call block for a Convert Hexadecimal to
Binary SVC:

SCBK

VAL1

BYTE >00
BYTE 0
BYTE 0,0
BYTE 0,0

CONVERT VALUE IN BYTES 2 THROUGH 5
TO BINARY AND PLACE RESULT IN RO.

The code in the example initializes bytes 2 through 5 to zero. Other code would move ASCII
characters into this field before executing the call.

10.3 ENCRYPTING AND DECRYPTING OF [)ATA

A user task may call upon DNOS to encrypt and decrypt data for any purpose. Records of files, IPC
messages, or data of any type can be encrypted. The Get Encrypted Value SVC is available to
encode the records of files, and the Ge!t Decrypted Value SVC may be used to decode an
encrypted record. The encryption algorithm does not provide a high level of security, but does
provide a degree of privacy for the data. When more sophisticated encryption is required to
provide a greater degree of security or to communicate with other systems, these SVCs should
not be used. The user must either write programs to encrypt and decrypt the data, or supply SVCs
for that purpose.

System generation must include the optional encryption SVC group for these operations to func­
tion. The encryption SVCs are included when generating file security and when requesting the
optional SVC group named ENCRYPTION.

10-6 2270507·9701

Task Support 10.3.1

10.3.1 Encrypting Data
The Get Encrypted Value SVC (opcode >45) encrypts the contents of a specified buffer using an
encryption key supplied in the supervisor call block. The SVC replaces the contents of the buffer
with the encrypted version. The encrypted version is different when a different encryption key is
used. For accurate decrypting of the data, the Get Decrypted Value SVC must use the same
encryption key.

The supervisor call block for the SVC is as follows:

SVC > 45 -- GET ENCRYPTED VALUE ALIGN ON WORD BOUNDARY

DEC HEX

1 1 0 0 >45 < RETURN CODE>

2 2

rr-' ,.~
ENCRYPTION KEY

8 8

10 A NUMBER OF BYTES OF DATA

12 C BUFFER ADDRESS

14 E RESERVED

2279720

The call block contains the following:

2270507·9701

Byte Contents

o Opcode, >45.

1 Return code. DNOS returns a zero in this byte when the operation com­
pletes satisfactorily, or an error code when the operation completes in
error.

2-9

10-11

12-13

14-15

Encryption key. May contain any eight bytes of data which will be used
by the system in the algorithm for encrypting the data. This key must be
used to decrypt the data.

Number of bytes of data. The length of the data to be encrypted.

Buffer address. Address of buffer that contains the data to be encrypted.

Reserved.

10-7

10.3.2 Task Support

The following is an example of coding for a supervisor call block for a Get Encrypted Value SVC:

GEV
EVEN
BYTE >45
BYTE 0
TEXT '34544658'
DATA 42
DATA MSG2
DATA 0

ENCRYPT DATA IN BUFFER MSG2

10.3.2 Decrypting Data
The Get Decrypted Value SVC (opcode >46} decrypts the contents of a specified buffer using an
encryption key supplied in the supervisor call block. The SVC replaces the contents of the buffer
with the decrypted version. The encryption k:ey must be the key with which the data was encrypted
using the Get Encrypted Value SVC.

The supervisor call block for the SVC is as follows:

2279721

SVC > 46 -- GET DECRYPTED VALUE ALIGN ON WORD BOUNDARY

DEC

o

2

HEX

o

2

8 8

10 A

12 C

14 E

~_4_6 ________ ~~ ____ <_R_E_T_U_R_N_C __ OD_E __ > __ ~1l

,..., E NCRYPTION K EY ,...,

NUMBER OF BYTES OF DATA

BUFFER ADDRESS

RESERVED

The call block contains the following:

10-8

Byte Contents

o Opcode, >46.

1 Return code. DNOS returns a zero in this byte when the operation com­
pletes satisfactorily, or an error code when the operation completes in
error.

2-9

10-11

Encryption key. Must contain the eight bytes of data that was used to
encrypt the data.

N umber of bytes of data. The length of the data to be decrypted.

2270507·9701

Task Support 10.4

Byte Contents

12-13 Buffer address. Address of buffer that contains the data to be decrypted.

14-15 Reserved.

The following is an example of coding for a supervisor call block for a Get Decrypted Value SVC:

GDV
EVEN
BYTE >46
BYTE 0
TEXT '34544658'
DATA 42
DATA MGS2
DATA 0

10.4 JOB ACCOUNTING

DECRYPT DATA IN BUFFER MSG2

Job accounting support provided by DNOS consists of accumulating data related to the use of
system resources by the job. The user must provide a program (or programs) to access this data
and process it to provide reports, billings, files, or other required documents.

Job accounting software is an option· that is selected when the system is generated. The
ACCOUNTING group, consisting of two SVCs, must be included to implement the job accounting
support.

Accounting information for all jobs is written to the job accounting file in chronological order. The
program supplied by the user must sort the information by job identifier to obtain the data
pertinent to each job.

DNOS automatically writes records to the accounting file at the following times:

• When the system is initially loaded (IPL)

• When a job is started

• When a spooled output terminates

• When a task term i nates

• When a job terminates

In addition to the records that are written automatically, the user program may execute a Log
Accounting Entry SVC to write a record in the file. The entry may include up to 70 bytes consisting
of whatever data the application may require.

2270507·9701 10-9

10.4.1 Task Support

The accounting records are written to files .S$ACT1 and .S$ACT2. Initial records are written to file
.S$ACT1. When the file is full, ONOS begins writing records to .S$ACT2 and calls a program (task
10 >54 on utilities program file .S$UTIL) to process the data in file .S$ACT1. When each file is full,
the program is called and subsequent records are written to the other file. The user must provide
the program on the system program file to process the file according to the requirements of the
site.

Another job accounting SVC is available to user programs. This SVC returns the accounting infor­
mation being accumulated by an executin~J task. The SVC returns the same types of information
as are written to the accounting file when the task terminates. The ON OS System Programmer's
Guide explains the structure of the accounting file and gives the details concerning how to build
an accounting log processor.

10.4.1 Logging an Accounting Entry
When the accounting requirements of a site or application require accounting entries from user
tasks, the task may assemble the data for an entry in a buffer and execute an SVC to process the
entry. The Log Accounting Entry SVC (opcode >47) passes the user's entry to the system, which
adds a header and writes the record in the accounting file.

The supervisor call block for the SVC is as follows:

SVC > 47 -- LOG ACCOUNTING ENTRY ALIGN ON WORD BOUNDARY

2279722

DEC HEX

o 0

2 2

4 4

>47 I < RETURN CODE>

BUFFER ADDRESS

RESERVED

The call block contains the following:

Byte Contents

o Opcode, >47.

1 Return code. ONOS returns a zero in this byte when the operation com­
pletes satisfactorily, or an error code when the operation completes in
error.

2-3 Buffer address. The address of the buffer that contains the user log
entry.

4-5 Reserved.

The first byte in the buffer that contains the user log entry must contain the number of bytes in the
entry. The maximum number of bytes in the entry is 70. There are no other restrictions on the
buffer contents.

10-10 2270507-9701

Task Support 10.4.2

The following is an example of coding for a supervisor call block for a Log Accounting Entry SVC:

LAE
EVEN
BYTE >47
BYTE 0
DATA ACCBUF
DATA 0

10.4.2 Accessing Accounting Data

LOG ACCOUNTING ENTRY IN BUFFER
ACCBUF

As a task is executing, information is being accumulated for the accounting file entry to be written
when the task terminates. This information is available to the task by executing a Get Accounting
Information SVC (opcode >49). To access information for a task other than the calling task, the
calling task must supply the run-time ID of the task. The system returns the following:

• Task state code (Table 10-1)

• CPU execution time

• SVC count

• 1/0 byte count

• Maximum memory used

The supervisor call block for the SVC is as follows:

SVC > 49 -- GET ACCOUNTING INFORMATION ALIGN ON WORD BOUNDARY

DEC HEX

0 0 >49 < RE11JRN CODE>

2 2 TASK 10 <STATE>

4 4
<CPU EXECUTION TIME>

6 6

8 8

< NUMBER OF SVCS ISSUED>

10 A

12 C

< NUMBER OF I/O BYTES TRANSFERRED>

14 E

16 10 < MAXIMUM MEMORY USED>

18 12 RESERVED

2279723

2270507·9701 10-11

10.4.2 Task Support

The call block contains the following:

Byte Contents

a Opcode, >49.

1 Return code. ONOS returns a zero in this byte when the operation com­
pletes satisfactorily, or an error code when the operation completes in
error.

2

3

4-7

8-11

12-15

16-17

18-19

Zero or task 10. Run-time 10 of task for which accounting information is
required. When zero is entered, ONOS returns accounting information for
the calling task.

Task state code. F~eturned by the system. The state of the task in the
form of one of the codes listed in the table of task state codes.

CPU execution time. Returned by the system. Number of clock ticks of
use of the CPU by the task.

Number of SVCs issued. Returned by the system. The count of SVCs
issued by the task:.

Number of 1/0 bytes transferred. Returned by the system. The count of
bytes transferred by 1/0 operations.

Maximum memory used. Returned by the system. The maximum number
of bytes of user memory allocated to the task at one time.

Reserved.

The user task supplies zero or a task run-time 10 in byte 2. Enter zero to access accounting infor­
mation for the calling task. Enter the run-time 10 to access accounting information for another
task. The run-time 10 is returned to the caller of the Execute Task SVC when a task is executed in
this way. A task may obtain its run-time 10 by executing a Self-Identification SVC.

The CPU execution time returned by the system is a count of clock ticks. On a computer that uses
60 Hz power, a clock tick is 8.33 ms. When the power line frequency is 50 Hz, a clock tick is 10 ms.

The following is an example of coding for a supervisor call block for a Get Accounting Information
SVC:

10-12

GAl

TRIO
STSK
TIME
SVCC
10BC
MMEM

EVEN
BYTE >49
BYTE a
BYTE a
BYTE a
DATA 0,0
DATA 0,0
DATA 0,0
DATA a
DATA a

GET ACCOUNTING INFORMATION FOR
CALLING TASK AFTER MOVING
RUN-TIME 10 INTO BYTE AT
TRIO

2270507-9701

Task Support 10.5

10.5 MEMORY CONTROL

The architecture of the Model 990 computer provides an address space approaching 64K bytes for
each task. The Model 990/10 Computer and the Model 990/12 Computer use hardware memory
mapping to provide access to any area of available memory by mapping from one to three
segments into a 64K-byte logical address space. Each segment consists of an integral number of
beets. A beet is a block of memory consisting of 32 bytes; each beet begins at an address that is
an even multiple of 32.

For example, a task may use a single segment containing the data and the executable code. In this
case, the task is in a contiguous area of memory, and that area of memory is mapped into the
task's address space.

Another task may use two segments of memory, one for the data, and the other for the executable
code. The Link Editor defines the sizes and boundaries of the segments, and the system maps
these segments into the address space of the task, regardless of the actual addresses in memory
of each segment.

An example of a three-segment task is one in which the data occupies a segment, part of the
executable code occupies another segment, and the remainder of the executable code occupies
the third segment. The sizes and boundaries of the segments are supplied by the Link Editor
according to the needs of the task; the only restriction is that segment boundaries must be beet
addresses (multiples of 32 bytes). The system sets the mapping registers to associate the actual
addresses in which the code reside's with the corresponding addresses in the task's memory area.

ONOS provides supervisor calls that allow the task to alter the size of its memory area. The task
may execute a Get Memory SVC to obtain memory for buffers required during execution of the
task. When the buffers are no longer required, the task may execute a Release Memory SVC to
release this memory. In addition, the Load Overlay SVC can be used to load an overlay into the
memory space of the task.

ONOS also provides the Segment Management SVC. This SVC allows the task to dynamically
change the current set of segments for the task, to guarantee access to a segment by the task, and
to write segments to the system disk.

10.5.1 Requesting Memory
When a task requires more memory (for a buffer, or for dynamic tables, for example), the task can
issue an SVC to increase the size of the memory allocated to the task. The Get Memory SVC (op­
code >12) allocates a specified number of beets of memory to the calling task, and returns the
beginning address of the first beet in workspace register 9. The calling task may not be a memory­
resident task, nor may it have intertask common memory mapped into its address space. (For
details of intertask common memory, see the Get Common Data Address SVC.) The segment of
the task that is being expanded must be the last segment mapped into the task. The total available
address space is >7FF beets. The sum of the number of beets allocated to the task plus the
requested number of beets must be less than >800.

When ONOS executes the SVC, it swaps the task out of memory, then swaps it again into an
expanded area of memory large enough for the original size of the task plus the requested area.
ONOS also modifies the mapping registers appropriately. A task may execute additional Get
Memory SVCs as required, until the size of the task reaches the maximum memory size.

2270507·9701 10-13

10.5.2 Task Support

The supervisor call block for the SVC is as follows:

SVC > 12 -- GET MEMORY ALIGN ON WORD BOUNDARY

DEC HEX

o 0

2 2

~_12 __________ ~ _____ <_R_E_TU __ R_N_C __ O_D_E_> ____ 4 c= BEETS

2279724

The call block contains the following:

Byte Contents

o Opcode, >12.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the! operation completes in error, DNOS returns an error
code.

2-3 Number of beets of memory to be allocated.

The following is an example of coding for a supervisor call block for a Get Memory SVC:

SCBB

BCNT

EVEN
BYTE >12
BYTE 0
DATA 16

10.5.2 Releasing Memory

ALLOCATE 16 ADDITIONAL BEETS OF
MEMORY AND RETURN ADDRESS IN R9.

When a task has no further need of memory, the task can issue an SVC to release memory. The
SVC can release memory allocated to the task when it was loaded, or memory allocated by the Get
Memory SVC call. The Release Memory SVC (opcode >13) releases all memory beyond the
address in workspace register 9. The calling task may not be a memory resident task, and it may
not have intertask common memory mappl3d into its address space. Also, any initiate mode 1/0
requested by the calling task must have completed before issuing a Release Memory SVC. DNOS
modifies the mapping registers of the task to address only the remaining memory.

The supervisor call block for the SVC is as follows:

SVC > 13 -- RELEASE MEMORY ALIGN ON WORD BOUNDARY

DEC

o

2

HEX

o

2 E ·_>_13 __________ ~ ____ < __ R_E_TU __ R_N_C __ O_DE __ > ____ ~
[RESERVED]

2279725

10-14 2270507-9701

Task Support 10.5.3

The call block contains the following:

Byte Contents

o Opcode, >13.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code.

2-3 [Reserved].

The following is an example of coding for a supervisor call block for a Release Memory SVC:

SCBC
EVEN
BYTE >13
DATA 0

RELEASE MEMORY FROM ADDRESS IN R9
THROUGH END OF TASK MEMORY.

An example of coding to place an address in workspace register 9 and execute a Release Memory
SVC is as follows:

DXOP SVC,15

LI R9,>8400
SVC @SCBC

10.5.3 Loading an Overlay

DEFINE XOP FOR SVC

RELEASE MEMORY FROM ADDRESS
>8400 THROUGH END OF TASK.

A task can load an overlay into the memory space of the task by executing a Load Overlay SVC (op­
code >14). The task must provide space for the overlay and also space for the relocation bit map
when relocation is required. Whether or not the overlay requires relocation is specified when the
overlay is installed.

The size of the relocation bit map may be computed using the following formula:

S8M = 2 x [_S_O_V-
32
-+_3_1_]

SOV is the size of the overlay in bytes. The size of the bit map (SBM, also in bytes) is rounded up to
the next higher integer.

The overlay must be loaded at the natural load address (the address provided by the Link Editor
when the task is linked) unless relocation is not required or the overlay has been installed
relocatable. In those cases, the overlay is loaded at any valid logical address.

2270507·9701 10-15

10.5.3 Task Support

The supervisor call block for the SVC is as follows:

SVC > 14 -- LOAD OVERLAY ALIGN ON WORD BOUNDARY

DEC HEX

o 0 >14
f

< RElURN CODE>

2 2 LOAD ADDRESS

4 4 OVERLAY 10

6 6 PROGRAM IFILE LUNO I
2279447

The call block contains the following:

Byte Contents

o Opcode, >14.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When th1e operation completes in error, DNOS returns an error
code.

2-3 Load address, or zero. When this field contains zero, the overlay is
loaded at the natural load address. Otherwise, the overlay is loaded at the
address in this field. When the overlay was installed as relocatable and
the address in this field is not the natural load address, relocation is
performed.

4-5 Overlay ID. The overlay ID under which the overlay was installed.

6 Program file LUNO, zero, or >FF. When this field contains zero, the
overlay is loaded from S$SHARED. When this field contains >FF, the
overlay is loaded from the program file from which the calling task was
loaded.

The following is an example of coding for a supervisor call block for a Load Overlay SVC:

10-16

EVEN
LDOVLY BYTE >14
LDOERR BYTE 0

DATA 0
DATA >6A
BYTE >1A

LOAD OVERLAY >6A AT NATURAL LOAD
ADDRESS. LOAD FROM PROGRAM FILE
LUNO >1A

2270507·9701

Task Support 10.5.4

10.5.4 Managing Memory Segments
In addition to the segments previously defined for a program, additional disk- or memory-based
segments may be provided. These segments may be dynamically mapped into or removed from
the memory area of the task.

Disk-based segments are installed on program files using either the Install Task Segment (IT),
Install Procedure Segment (IP), or Install Program Segment (IPS) commands, or the Install Task
SVC or the Install Procedure/Program Segment SVC. Disk-based segments are loaded into
memory and mapped into memory areas of tasks by the segment manager. The segment manager
maintains a count of the tasks that require the segment, and disposes of segments that are no
longer required. When the segment contents have not changed, or when changes to the disk copy
are not permitted, segment manager releases the memory space occupied by the segment. Other­
wise, segment manager writes the segment to the program file and releases the memory space.

A task may request the segment manager to hold a segment in memory even when no task current­
ly requires the segment. This allows passing data to another task that may not be currently

. executing. When the segment is no longer required, a task may request the segment manager to
release the segment.

DNOS includes a structure for retaining in physical memory recently used disk-based segments
that are no longer required by any executing task. This structure is referred to as the software
cache list. This approach presupposes that a recently used segment is likely to be reused soon.

A task can have one, two, or three map segments. The identity of the last segment depends on the
linking and execution of the task. Eac,h procedure segment, program segment, or task segment
occupies one map segment position. Procedure segments always occupy map segment positions
that precede the position occupied by the task segment. If program segments are used, they
usually occupy map segment positions that follow the position occupied by the task segment.
Program segments are dynamically mapped into the task segment or added during execution.

Memory-based segments are created by the segment manager as uninitialized segments, and are
mapped i,nto the memory area of the task that requests their creation. The task then writes the
required data into the segment. Shared memory-based segments are a means of passing data
between tasks in the same job or in different jobs. A task must reserve this type of segment or the
memory is released when the segment is released.

Attributes are defined for a segment when it is installed. The attributes of a task segment are
specified in the Install Task SVC that installs the task on a program file. Similarly, the attributes of
a procedure segment or a disk-based program segment are specified in the Install
Procedure/Program Segment SVC. The attributes of a memory-based segment are specified when
the segment is created by the segment manager. The segment attributes are as follows:

• Readable - Segment may be accessed in memory for read operations.

• System - Segment may only be accessed by system tasks.

• Memory resident - Segment remains accessible in memory.

• Replicatable - More than one copy may exist in memory.

2270507·9701 10-17

10.5.4 Task Support

• Share protected - Segment may not be sha~ed concurrently by two or more tasks.

• Writable control store - Segmemt cont~ins executable code that accesses writable
control store.

• Execute protected - Segment contents may not be executed.

• Write-protected - Segment contents may not be altered in memory.

• Updatable - Segment will be written to its permanent file position on disk if it has been
marked modified.

• Reusable - Segment may be uSl3d consecutively without reloading. This segment may
reside on the software cache list while memory space is available for it.

• Copyable - Segment may be replicated by copying the segment from the memory copy.

The following attributes apply only to task. segments:

• Privileged - Segment has been installed in a program file as a hardware privileged task
segment. The task can execute Ihardware privileged instructions.

• Software privileged - Segment has been installed in a program file as a software
privileged task segment. The task can issue privileged supervisor calls.

• Overflow protected - Segment has been installed in a program file with overflow pro­
tection. During execution, arithrnetic overflow is detected as a fatal task error.

A user program calls the Segment ManagE3ment SVC (opcode >40) to request the services of the
segment manager. The following operations may be requested by a task:

• Change Segment

• Create Segment

• Reserve Segment

• Release Segment

• Check Segment Status

• Force Write Segment

• Set or Reset Not Modified and IReleasable Flag

• Load Segment

• Unload Segment

10-18 2270507-9701

Task Support 10.5.4

• Set Exclusive Use of Segment

• Reset Exclusive Use of Segment

The Change Segment operation is not valid for the task segment. With that exception, the seg­
ment operations may be performed on ~ny segment.

The supervisor call block for the SVC is as follows:

SVC> 40 -- SEGMENT MANAGEMENT ALIGN ON WORD BOUNDARY

DEC HEX

0 0 >40 < RETURN CODE>

2 2 SUB-OPCODE SEGMENT GROUP LUNO

4 4 FLAGS

6 6
SEGMENT 10 ONE

8 8
(INSTALLED OR RUN-TIME 10)

10 A SEGMENT 10 Two (RUN-TIME 10)

12 C <SEGMENT ADDRESS IN ADDRESS SPACE>

14 E <SEGMENT LENGTH>

16 10 ATTRIBUTES

18 12 [RESERVED]

22"79726

2270507·9701 10-19

10.5.4 Task Support

The call block contains the following:

10-20

Byte Contents

o Opcode, >40.

1 Return code. ONOS returns zero when the operation completes satis­
factorily. When the' operation completes in error, ONOS returns an error
code in this byte.

2 Sub-opcode:

3

4-5

6-9

10-11

12-13

14-15

16-17

18-19

00 - Change Segment.
01 - Create Segment.
02 - Reserve Segment.
03 - Release Segment.
04 - Check Segment Status.
05 - Force Write Segment.
06 - Reserved.
07 - Set/Reset Not Modified and Releasable.
08 - Reserved.
09 - Load Segment.
OA - Unload Segment.
OB - Set Exclusive Use of Segment.
OC - Reset Exclusive Use of Segment.
00 - Reserved.

Segment group LUNO. The LUNO assigned to the segment group (pro­
gram file) that contains the segment. Ooes not apply to memory-based
segments. Enter zero when the program file is S$SHAREO, or >FF when
the program file is the file on which the calling task resides.

Flags. See descriptions of each sub-operation for details.

Segment 10 one. V\lhen bit zero of the flags word is set to 1, the installed
10 of a segment. Otherwise, nothing or the run-time 10 of a segment. Seg­
ment 10 must be right justified in the field.

Segment 10 two. Run-time 10 of a segment. ONOS returns a segment run­
time 10 in this field.

Segment address, returned by the system. The logical address within the
task of the first byte of the segment.

Segment length, supplied by the user for the Create Segment operation.
Returned by the system for other operations. The number of bytes in the
segment.

Attributes. Used 1:0 define attributes for a Create Segment operation.
Returned by the system for a Check Segment Status operation. See
descriptions of each suboperation for details.

[Reserved].

2270507·9701

Task Support 10.5.4.1

10.5.4.1 Changing Segments. A task can add a segment, exchange segments, or delete a seg­
ment by executing an SVC. When a segment is being added, the segment must be added in the
position after the last one currently in use (last segment) and must not be larger than the remain­
ing portion of the task memory area. When exchanging segments other than the last segment, for
non-system tasks the new segment must be the same size as the old segment. When exchanging
the last segment, the new segment need not be the same size as the old segment, but it must not
be larger than the portion of the task memory area remaining after the old segment is removed. The
task segment may not be exchanged. When deleting, the segment must be in the last position cur­
rently in use and may not be the task segment.

To retain the segment memory when the segment is released from the task's address space, a
reserve segment operation must have been performed prior to exchanging a segment.

The Change Segment operation (sub-opcode >00) adds a segment, exchanges segments, or
deletes a segment of the calling task. The following fields of the supervisor call block apply to the
operation:

• Opcode, >40

• Return code

• Sub-opcode, >00

• Segment group LUNO

• Flags

• Segment I DOne

• Segment ID Two

• Segment address

• Segment length

• Attributes

The flags used by the Change Segment operation are as follows:

fffffff
1

14
-

15
1

f
2279727

2270507-9701 10-21

10.5.4.1 Task Support

Bit 0 - Installed 10 flag. Set as follows:
1 - The new segment is specified by' installed 10 in Segment 10 One, bytes 6-9.
o - The new segment is spe~cified by run-time 10 in Segment 10 One, bytes 6-9.

Bit 1 - Not modified flag. Set as follows:
1 - Old segment has not been modified.
o - Old segment has been modified.

Bit 2 - Releasable flag. Set as follows:
1 - Old segment will be released from memory when it is no longer in use by tasks.
o - Old segment may be placed on the software cache list when it is no longer in

use by tasks.

Bit 3 - Memory-based segment flag. Set as follows:
1 - New segment is memory-based. LUNO in byte 3 is ignored.
0- New segment is disk-based. LUNO in byte 3 must be assigned to the file of the

segment.

Bit 4 - Run-time 10 flag. Set as follows:
1 - Old segment is specified by run-time 10 in Segment 10 Two, bytes 10-11.
o - Old segment is specified by position number, bits 14-15.

Bit 5 - Task segment flag. Set as follows:
1 - New segment is a task segment.
o - New segment is not a task segment.

Bit 6 - Verify load address. Set as follows:
1 - Verify the logical address within the task of the changed segment is the same

as the load point of the segment on the program file. If this does not verify, an
error code is returned and the segment is not changed.

o - 00 not verify the load address.

Bit 7 - Set or reset exclusive use enable flag. Set as follows:
1 - The set/reset exclusive IJse flag applies.
o - The set/reset exclusive IJse flag does not apply.

Bit 8 - Set or reset exclusive use flag. Set as follows:
1 - Set exclusive use for thc3 old segment.
o - Reset exclusive use for the old segment.

Bits 14-15 - Position number. When bit 4 is set to zero, these bits must contain a nonzero
value, as follows:

10-22

01 - Old segment is segment 1.
10 - Old segment is segment 2.
11 - Old segment is segment 3.

2270507·9701

Task Support 10.5.4.1

If the set or reset exclusive use enable flag (bit 7) is set to one, the function indicated by the
set/reset exclusive use flag (bit 8) is applied to the old segment. Thus, if bit 8 is set to one,
exclusive use is set for the old segment; and if bit 8 is set to zero, exclusive use is reset for the old
segment. The set or reset function is applied before the Change Segment operation, so that if the
set or reset fails, the Change Segment operation is not attempted. If the set or reset succeeds but
the Change Segment operation fails, the result of the set or reset is not changed.

The LUNO specified applies to the new segment. The 10 of the new segment is specified in the
Segment 10 One field. If the 10 of the old segment is supplied, it is supplied in the Segment 10 Two
field.

To use the Change Segment operation to add a segment, use one of these methods:

• Specify a run-time 10 of >FFFF for the old segment.

• Specify a position number for the old segment. This position must be one greater than
the last position currently in use.

A segment can be added only when fewer than three segments are in use. Either the installed or
run-time 10 of the new segment must be supplied.

To use the Change Segment operation to exchange segments, use the following guidelines:

• Specify either the installed 10 or the run-time 10 of the new segment.

• Specify either the run-time 10 or position of the old segment.

• If the old segment is specified by run-time 10, the new segment position is that
previously occupied by the old segment.

Only the segment in the last position currently in use may be deleted by a Change Segment oper­
ation. To delete a segment, use the following guidelines:

• Specify either the run-time 10 or position of the old segment.

• Set the memory-based flag to one.

• Specify a run-time 10 of >FFFFFFFF for the new segment.:

If the Change Segment operation completes without error, the segment manager returns the run­
time 10 of the new segment in the Segment 10 Two field of the supervisor call block. The segment
manager returns the logical address of the first byte of the segment in the segment address field;
it returns the number of bytes in the segment in the segment length field. For a Change Segment
operation that deletes a segment, only the Segment 10 Two field is altered. It contains the value
>FFFF.

2270507·9701 10-23

10.5.4.2 Task Support

The Change Segment operation can also map a physical record from a relative record file into a
task. To do this, specify a LUNO that is assigned to the desired file and opened by the requesting
task. Specify the record number of the desired physical record (not logical record) as an installed
ID in Segment ID One. In the attributes field, specify the desired values for bits 5 and 10; all other
bits are ignored. (The attributes field is not used if the LUNO is assigned to a program file.) The
meanings of bits 5 and 10 of the attributes field are as follows:

Bit 5 - Share protected. Assign as follows:
1 - Assign share protected attribute to new segment.
o - Do not assign share protected attribute to new segment.

Bit 10 - Execute protected. Assign as follows:
1 - Assign execute protected attribute to new segment.
o - Do not assign execute plrotected attribute to new segment.

The following is an example of coding for a supervisor call block for a Change Segment operation:

CHSEG

SRID
SADR
SLEN

EVEN
BYTE >40
BYTE 0
BYTE 0
BYTE >3A
DATA >E003
DATA 0,>5C
DATA 0
DATA 0
DATA 0
DATA 0,0

PLACE SEGMENT >5C ON PROGRAM
FILE LUNO >3A IN POSITION 3.
OLD SEGMENT HAS NOT BEEN MODIFIED
AND IS RELEASABLE.

10.5.4.2 Creating Segments. A task can create a memory-based program segment by executing
an SVC. When the created program segment is added to the segment set of the calling task, the
program segment must be added as the last segment, and must not be larger than the remaining
portion of the task memory area. For user tasks, when the program segment is exchanged for a
segment other than the last segment, the newly created program segment must be the same size
as the old segment. For a system task, the newly created program segment may be larger or
smaller than the segment it replaces.

For any task, when the program segment is t3xchanged for the last segment, the newly created pro­
gram segment need not be the same size as the old segment, but it must not be larger than the
portion of the task memory area remaining after the old segment is removed.

To retain the segment memory when the segment is released from the task's address space, a
reserve segment operation must be performed prior to exchanging a segment.

The Create Segment operation (sub-opcod€' >01) creates a program segment and exchanges it for
a segment of the calling task, or adds it to the calling task. The following fields of the supervisor
call block apply to the operation:

• Opcode, >40

• Return code

10-24 2270507·9701

Task Support 10.5.4.2

• Sub-opcode, >01

• Flags

• Segment 10 Two

• Segment address

• Segment length

• Attributes

The flags used by the Create Segment operation are as follows:

f f f t f f t
1

14
-

15

t
2279728

Bit 0 - Installed 10 flag. Set as follows:
1 - The new segment is specified by installed 10 in Segment 10 One, bytes 6-9.
o - The new segment is ~pecified by run-time 10 in Segment 10 One, bytes 6-9.

Bit 1 - Not modified flag. Set as follows:
1 - Old segment has not been modified.
o - Old segment has been modified.

Bit 2 - Releasable flag. Set as follows:
1 - Old segment will be released from memory when it is no longer in use by tasks.
o - Old segment may be placed on the software cache list when it is no longer in

use by tasks.

Bit 3 - Memory-based segment flag. Set as follows:
1 - New segment is memory-based. LUNa in byte 3 is ignored.
o - New segment is from a relative record file. LUNa in byte 3 must be assigned to

the file of the segment.

Bit 4 - Run-time 10 flag. Set as follows:
1 - Old segment is specified by run-time 10 in Segment 10 Two, bytes 10-11.
o - ala segment is specified by position number, bits 14-15.

Bit 7 - Set or reset exclusive use enable flag. Set as follows:
1 - The set/reset exclusive use flag applies.
o - The set/reset exclusive use flag does not apply.

2270507·9701 10-25

10.5.4.2 Task Support

Bit 8 - Set or reset exclusive use flag. Set as follows:
1 - Set exclusive use for the old segment.
o - Reset exclusive use for the old segment.

Bits 14-15 - Position number. When bit 4 is set to zero, these bits must contain a nonzero
value, as follows:
01 - Old segment is segment 1.
10 - Old segment is segment 2.
11 - Old segment is segment 3.

If the set or reset exclusive use enable flag (bit 7) is set to one, the function indicated by the
set/reset exclusive use flag (bit 8) is applied to the old segment. Thus, if bit 8 is set to one, ex­
clusive use is set for the old segment; and if bit 8 is set to zero, exclusive use is reset for the old
segment. The set or reset function is applied before the Create Segment operation, so that if the
set or reset fails, the Create Segment operation is not attempted. If the set or reset succeeds but
the Create Segment operation fails, the result of the set or reset is not changed.

When using the Create Segment operation to add a segment, use one of these methods:

• Specify a run-time 10 of >FFFF for the old segment in the Segment 10 Two field.

• Specify a position number for the old segment. This position must be one greater than
the last position currently in use.

When using the Create Segment operation to exchange segments, use one of these methods:

• Specify the run-time 10 of the old segment to be replaced in the Segment 10 Two field.

• Specify the position of the old segment to be replaced.

Specify the desired length of the new segment, in bytes, in the segment length field.

The following bits in the attributes fielcl (bytes 16-17) may be set to one to assign the
corresponding attributes:

Bit 0 - Readable. Set as follows:
1 - Assign readable attribute to new segment.
o - 00 not assign readable attribute to new segment.

Bit 1 - System. Set as follows:
1 - New segment is a system segment.
o - New segment is not a sy:stem segment.

Bit 5 - Share protected. Set as follows:
1 - Assign share protected attribute to new segment.
o - 00 not assign share protc3cted attribute to new segment.

Bit 9 - Writable control store. Set as follows:
1 - Segment uses writable control store.
o - Segment does not use wlritable control store.

10-26 2270507-9701

Task Support 10.5.4.2

Bit 10 - Execute protected. Set as follows:
1 - Assign execute protected attribute to new segment.
o - Do not assign execute protected attribute to new segment.

Bit 11 - Write protected. Set as follows:
1 - Assign write protected attribute to new segment.
o - Do not assign write protected "attribute to new segment.

Bit 13 - Reusable. Set as follows:
1 - Assign reusable attribute to new segment.
o - Do not assign reusable attribute to new segment.

If the operation completes without error, the segment manager returns the run-time ID of the new
segment in the Segment ID Two field and the mapped address of the first byte of the segment in
the segment address field.

The Create Segment operation is also used to map a physical record from a relative record file into
a task. To do this, specify the following:

• A LUNO that is both assigned to the desired file and opened by the requesting task.

• The record number of the desired physical record (not logical record) as an installed ID
in Segment ID One.

• The desired values for bits 5 and 10 in the attributes field. All other bits are ignored.

• The physical record length of the file to be the same as the segment length.

If the requested segment corresponds to an existing segment, an error is returned and the seg­
ment is not changed.

The following is an example of coding for a supervisor call block for a Create Segment operation:

GES

SRID
SADR

2270507·9701

EVEN
BYTE >40
BYTE 0
BYTE >01
BYTE 0
DATA >7800
DATA 0,0
DATA >47
DATA 0
DATA 1000
DATA >4030
DATA 0

CREATE MEMORY-BASED SEGMENT HAVING
SYSTEM,EXECUTEPROTECTED,AND
WRITE PROTECTED ATTRIBUTES. OLD
SEGMENT, RUN-TIME ID 47, HAS NOT
BEEN MODIFIED AND IS RELEASABLE.
THE SEGMENT IS TO BE 1000 BYTES.

10-27

10.5.4.3 Task Support

10.5.4.3 Reserving Segments. A task can reserve a segment by executing an SVC. This opera­
tion is used to keep a memory-based or disk·based segment from being destroyed when not in use.
A segment is reserved by entering the segment in the reserved segment list of the current job. The
operation applies to disk-based segments and memory-based segments. A segment remains
reserved until it is removed from the reserved list by a Release Segment operation, or until the cur­
rent job is terminated. The segment continues to be reserved after the job terminates if it is on the
reserved list of another job.

The Reserve Segment operation (sub-opcode >02) reserves the specified segment. The following
fields of the supervisor call block apply to the operation:

• Opcode, >40

• Return code

• Sub-opcode, >02

• Segment group LUNO

• Flags

• Segment ID One

The flags used by the Reserve Segment operation are as follows:

114
- 15

f f f f
2279729

Bit 0 - Must be set to zero.

Bit 3 - Memory-based segment flag. Set as follows:
1- Memory-based segment. LUNO in byte 3 is ignored.
o - Disk-based segment.

Bit 4 - Run-time ID flag. Set as follows:
1 - Segment is specified by run-time ID in Segment 10 One, bytes 6-9.
0- Segment is specified by position number, bits 14-15.

Bits 14-15 - Position number. When bit 4 is set to zero, these bits must contain a nonzero
value, as follows:
01 - Segment is segment 1.
10 - Segment is segment 2.
11 - Segment is segment 3.

The segment group LUNO must contain the LUNO assigned to the program file that contains the
segment unless bit 3 is set to one.

10-28 2270507·9701

Task Support 10.5.4.4

When the run-time 10 flag is set to one; the Segment 10 One field contains the run-time 10 of the
segment to be reserved. Otherwise, the· segment specified in the position number field is
reserved.

The following is an example of coding for a supervisor call block for a Reserve Segment operation:

RSS
EVEN
BYTE >40
BYTE 0
BYTE >02
BYTE >3F
DATA >0002
DATA 0,0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

RESERVE SEGMENT IN POSITION 2
PROGRAM FILE LUNO IS >3F

10.5.4.4 Releasing Reserved Segments. A task can release a reserved segment by executing an
SVC. A segment is released by removing the segment from the reserved segment list of the cur­
rent job. The operation applies to disk-based and memory-based segments that have been
reserved; an error is returned for any segment not on the for reserved list for the current job.

After removing the segment from the reserved list, the segment manager checks to determine
whether or not the segment is required in memory. If a segment is not memory-based, is not
releasable, and is reusable, it will remain in memory if space is available. Otherwise, it is deleted.

The Release Segment operation (sub-opcode >03) releases the specified segment. The following
fields of the supervisor call block apply to the operation:

• Opcode, >40

• Return code

• Sub-opcode, >03

• Segment group LUNO

• Flags

• Segment 10 One

2270507·9701 10-29

10.5.4.4 Task Support

The flags used by the Release Segment operation are as follows:

14-15

f f f f
2279730

Bit 0 - Must be set to zero.

Bit 3 - Memory-based segment flag. Set as follows:
1 - Memory-based segment. LUNO in byte 3 is ignored.
o - Disk-based segment.

Bit 4 - Run-time ID flag. Set as follows:
1 - Segment is specified by run-time ID in Segment ID One, bytes 6-9.
o - Segment is specified by position number, bits 14-15.

Bits 14-15 - Position number. When bit 4 is set to zero, these bits must contain a nonzero
val ue, as follows:
01 - Segment is segment 1.
10 - Segment is segment 2.
11 - Segment is segment 3.

The segment group LUNO must contain the LUNO assigned to the program file that contains the
segment, unless bit 3 is set to 1.

When the run-time ID flag is set to one, the Segment !D One field contains the run-time ID of the
segment to be released. Otherwise, the segment in the position specified is released.

The following is an example of coding for a supervisor call block for a Release Segment operation:

RLS

10-30

EVEN
BYTE >40
BYTE 0
BYTE >03
BYTE >3F
DATA >0800
DATA 0,>34
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

RELEASE SEGMENT WITH RUN-TIME ID >34
ON PROGRAM FILE LUNO >3F

2270507-9701

Task Support 10.5.4.5

10.5.4.5 Checking Segment Status. A task can obtain the status of a segment by executing an
SVC. The segment must either be in memory, or be swapped from memory to disk temporarily. The
calling task supplies either an installed or run-time ID or a position in the task address space for
the segment. Segment manager returns the state of the task segment flag, the segment length,
and the attributes. For a segment that is mapped into the memory area of the calling task, seg­
ment manager also returns the logical address of the first byte of the segment. The run-time ID is
returned in the Segment ID Two field. The installed ID is returned in the Segment ID One field.

The Check Segment Status operation (sub-opcode >04) returns the status of the specified seg­
ment. The following fields of the supervisor call block apply to the operation:

• Opcode, >40

• Return code

• Sub-opcode, >04

• Segment group LUNO

• Flags

• Segment ID One

• Segment ID Two

• Segment address

• Segment length

• Attributes

The flags used by the Check Segment Status operation are as follows:

114
-

15

t
2279731

Bit 0 - Installed ID flag. Set as follows:
1 - The segment is specified by installed ID in Segment ID One, bytes· 6-9.
o - The run-time ID flag applies.

Bit 3 - Memory-based segment flag. Set as follows:
1 - Memory-based segment. LUNO in byte 3 is ignored.
o - Disk-based segment.

Bit 4 - Run-time ID flag. Set as follows:

2270507·9701

1 - Segment is specified by run-time ID in Segment ID One, bytes 6-9.
o - Segment is specified by position number, bits 14-15.

10-31

10.5.4.5 Task Support

Bit 5 - Task segment flag. Set as follows:
1 - Segment is a task segm1ent.
o - Segment is not a task sogment.

Bits 14-15 - Position number. When bits 0 and 4 are set to zero, these bits must contain
nonzero value, as follows:

01 - Segment is segment 1.
10 - Segment is segment 2.
11 - Segment is segment 3.

When the memory-based segment flag is set to zero, the segment group LUNO must contain the
LUNO assigned to the program file that contains the segment for which status is being checked.
When the flag is set to one, the field is ignored.

When the installed 10 flag is set to one, thH Segment 10 One field contains the installed 10 of the
segment for which status is being checked. When the installed 10 flag is set to zero and the run­
time 10 flag is set to one, the field contains the run-time 10. In all cases, the installed 10 is returned
right-justified in the field.

If the installed 10 flag is set to zero, the memory-based segment flag should be set to indicate if
the segment for which status is sought is a memory-based segment. This flag is set to one if the
segment is memory-based and set to zero for disk segments.

If the installed 10 flag is set to one, the task segment flag should be set to indicate if the segment
for which status is sought is a task segment. This flag is set to one if the segment is installed as a
task in a program file and set to zero othelrwise.

When the run-time 10 flag is set to zero, and the position number is set in bits 14-15, the status of
the segment in the specified position is returned.

When the specified segment is mapped into the memory address space of the calling task, the
segment manager returns the mapped address of the first byte of the segment in the segment
address field.

The segment manager returns the number of bytes in the segment in the segment length field.

The attributes are returned in the attributes field. The bits in the field have a different significance
for task segments and for other segments" The attribute meanings are as follows:

10-32

Bit 0 - Readable. Set as follows:
1 - Segment may be read.
o - Segment may not be read.

- For a task segment:
1 - Privileged.
o - Not privi leged.

Bit 1 - System. Set as follows:
1 - Segment is a system seoment.
o - Segment is not a system segment.

2270507-9701

Bit 2 - Memory-resident. Set as follows:
1 - Segment is memory-resident.
o - Disk-resident segment.

Bit 3 - Reserved.

Bit 4 - Replicatable. Set as follows:
1 - Segment is replicatable.
o - Segment is not replicatable.

Bit 5 - Share protected. Set as follows:
1 - Segment is share protected.
o - Segment is not share protected.

- For a task segment:
1 - Procedure 1 on S$SHARED.
o - Procedure 1 not on S$SHARED.

Bit 6 - For a task segment:
1 - Procedure 2 on S$SHARED.
o - Procedure 2 not on S$SHARED.

Bit 7 - Reserved.

Bit 8 - For a task segment:
1 - Overflow protection is enabled.
o - Overflow protection is not enabled.

Bit 9 - Writable control store. Set as follows:
1 - Segment uses writable control store.
o - Segment does not use writable control store.

Bit 10 - Execute protected. Set as follows:
1 - Segment is execute protected.
o - Segment is not execute protected.

Bit 11 - Write protected. Set as follows:
1 - Segment is write protected.
o - Segment is not write protected.

- For a task segment:
1 - Task is software privileged.
o - Task is not software privileged.

Bit 12 - Updatable. Set as follows:
1 - Segment is updatable.
o - Segment is not updatable.

Bit 13 - Reusable. Set as follows:
1 - Segment is reusable.
o - Segment is not reusable.

2270507·9701

Task Support 10.5.4.5

10-33

10.5.4.6 Task Support

Bit 14 - Copyable. Set as follows:
1 - Segment is copyable.
o - Segment is not copyable:.

Bit 15 - For a task segment, use:
1 - Task can bypass file security
0- Task can not bypass file st9curity

The following is an example of coding for a supervisor call block for a Check Segment Status
operation:

CSS

TFLG

RTID

ADR
LEN
ATTR

EVEN
BYTE >40
BYTE 0
BYTE >04
BYTE >3F
DATA >0800
DATA 0
DATA >34
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

CHECK STATUS OF RUN-TIME SEGMENT ID
>34 ON PROGRAM FILE LUNO >3F
WHICH IS NOT A TASK SEGMENT

10.5.4.6 Force Writing Segments. A disk-based segment that has the updatable attribute and has
been modified is copied to disk after it is no longer required in memory. A task may force that seg­
ment to be written immediately by executing an SVC. If the segment is not reserved and is not
being used in a task and if the releasable flag is set to one, the segment is released from memory.

The Force Write Segment operation (sub-opcode >05) forces the specified segment to be written.
The following fields of the supervisor call block apply to the operation:

• Opcode,>40

• Return code

• Sub-opcode, >q-5

• Segment group LUNO

• Flags

• Segment I DOne

10-34 2270507 ·9701

Task Support 10.5.4.6

The flags used by the Force Write Segment operation are as follows:

f f f f f
1 14

-
15

f
2279732

Bit 0 - Installed 10 flag. Set as follows:
1 - The segment is specified by installed 10 in Segment 10 One, bytes 6-9.
o - The run-time 10 flag applies.

Bit 1 - Not modified flag. Set as follows:
1 - Segment has not been modified.
o - Segment has been modified.

Bit 2 - Releasable flag. Set as follows:
1 - Segment will be released from memory when it is no longer in use by tasks.
0- Segment may be placed on the software cache list when it is no longer in use by

tasks.

Bit 3 - Must be set to zero.

Bit 4 - Run-time 10 flag. Set as follows:
1 - The segment is specified by run-time 10 in Segment 10 One, bytes 6-9.
o - Segment is specified by position number, bits 14-15.

Bits 14-15 - Position number. When bits 0 and 4 are set to zero, these bits must contain a
nonzero val ue, as follows:
01 - Segment is segment 1.
10 - Segment is segment 2.
11 - Segment is segment 3.

The segment group LUNa must contain the LUNa assigned to the program file that contains the
segment to be written.

When the run-time 10 flag is set to one, the Segment 10 One field contains the run-time 10 right­
justified in the field.

2270507-9701 10-35

10.5.4.7 Task Support

The following is an example of coding fOlr a supervisor call block for a Force Write Segment
operation:

FWS
EVEN
BYTE >40
BYTE 0
BYTE >05
BYTE >3F
DATA >8000
DATA 0
DATA >68
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

WRITE INSTALLED PROCEDURE SEGMENT
10 >68 ON PROGRAM FILE LUNO >3F

10.5.4.7 Setting and Resetting Segment Fllags. The releasable flag and the not-modified flag of
a segment are set and reset as part of the! Change Segment, Create Segment, and Force Write
Segment operations. The releasable flag is set to cause the segment manager to release the copy
of the segment in memory. The not-modified flag should be reset by the user when the content of a
segment is altered. This causes segment manager to copy the segment to disk if it is updatable. A
task can set or reset these flags for a segment that is mapped into its memory address space by
executing an SVC.

The Set/Reset Not Modified and Releasable operation (sub-opcode >07) sets the not-modified and
releasable flags to the states specified in the call block. The following fields of the supervisor call
block apply to the operation:

• Opcode, >40

• Return code

• Sub-opcode, >07

• Segment group LUNO

• Flags

• Segment 10 One

The flags used by the Set/Reset Not Modified and Releasable operation are as follows:

1 14
-

15

f f f f f t
2279733

10-36 2270507-9701

Task Support 10.5.4.7

Bit 0 - Must be set to zero.

Bit 1 - Not-modified flag. Set as follows:
1 - Segment has not been modified.
o - Segment has been modified.

Bit 2 - Releasable flag. Set as follows:
1 - Segment will be released from memory when it is no longer in use by tasks.
0- Segment may be placed on the software cache list when it is no longer in use by

tasks.

Bit 3 - Must be set to zero.

Bit 4 - Run-time 10 flag. Set as follows:
1 - The segment is specified by run-time 10 in Segment 10 One, bytes 6-9.
o - Segment is specified by position number, bits 14-15.

Bits 14-15 - Position number. When bits 0 and 4 are set to zero, these bits must contain a
nonzero value, as follows:
01 - Segment is segment 1.
10 - Segment is segment 2.
11 - Segment is segment 3.

The segment group LUNa must contain the LUNa assigned to the program file that contains the
segment for which the flags are to be set or reset.

When the run-time 10 flag is set to one, the Segment 10 One field contains the run-time 10 right­
justified in the field.

The following is an example of coding for a supervisor call block for a Set/Reset Not Modified and
Releasable operation:

SRMR

2270507-9701

EVEN
BYTE >40
BYTE 0
BYTE >07
BYTE >3F
DATA >2002
DATA 0,0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

SET RELEASABLE AND RESET NOT
MODIFIED FOR SEGMENT IN POSITION
2. PROGRAM FILE LUNa IS >3F

10-37

10.5.4.8 Task Support

10.5.4.8 Loading Segments. The Load Sogment operation assures the user that the specified
segment will be in memory while the task that issued the SVC is executing. The segment will not
be mapped into the task address space. A segment can be loaded by more than one task,
regardless of its attributes.

The Load Segment operation (sub-opcode >09) loads the specified segment. The following fields
of the supervisor call block apply to the operation:

• Opcode,>40

• Return code

• Sub-opcode, >09

• Segment group LUNO

• Flags

• Segment 10 One

The flags used by the Load Segment operation are as follows:

o 14-15

t t t f
2283215

Bit 0 - Must be set to zero.

Bit 3 - Memory-based segment flag. Set as follows:
1 - Memory-based segment. LUNO in byte 3 is ignored.
o - Disk-based segment.

Bit 4 - Run-time 10 flag. Set as follows:
1 - Segment is specified by run-time ID in Segment 10 One, bytes 6-9.
0- Segment is specified by position number, bits 14-15.

Bits 14-15 - Position number. When bit 4 is set to zero, these bits must contain a nonzero
val ue, as follows:
01 - Segment is segment 1.
10 - Segment is segment 2.
11 - Segment is segment 3.

The segment group LUNO must contain the LUNO assigned to the program file that contains the
segment unless bit 3 is set to one.

When the run-time 10 flag is set to one, the Segment 10 One field contains the run-time 10 of the
segment to be loaded. Otherwise, the segment specified in the position number field is loaded.

10-38 2270507·9701

Task Support 10.5.4.9

The following is an example of coding for a supervisor call block for a Load Segment operation:

LDSM
EVEN
BYTE >40
BYTE 0
BYTE >09
BYTE >3F
DATA >0800
DATA 0
DATA >0204
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

LOAD SEGMENT WITH SEGMENT RUN 10
OF >0204 PROGRAM FILE LUNO IS >3F

10.5.4.9 Unloading Segments. The Unload Segment operation detaches the segment from the
task so the segment does not need to be in memory when the task is in memory. An error is
returned if the segment was not loaded by the task. If the reserve, use, and exclusive use counts
are zero, the segment can be cached or deleted.

The Unload Segment operation (sub-opcode >OA) unloads the specified segment. The following
fields of the supervisor call block apply to the operation:

• Opcode,>40

• Return code

• Sub-opcode, >OA

• Segment group LUNO

• Flags

• Segment 10 One

The flags used by the Unload Segment operation are as follows:

f f t
14-15 1
t

o

22832,16

2270507-9701 10-39

10.5.4.10 Task Support

Bit 0 - Must be set to zero.

Bit 3 - Memory-based segment flag. Set as follows:
1 - Memory-based segment. LUNO in byte 3 is ignored.
o - Disk-based segment.

Bit 4 - Run-time ID flag. Set as follows:
1 - Segment is specified by run-time ID in Segment ID Two, bytes 6-9.
o - Segment is specified by position number, bits 14-15.

Bits 14-15 - Position number. When bit 4 is set to zero, these bits must contain a nonzero
val ue, as follows:
01 - Segment is segment 1.
10 - Segment is segment 2.
11 - Segment is segment 3.

The segment group LUNO must contain thE~ LUNO assigned to the program file that contains the
segment unless bit 3 is set to one.

When the run-time ID flag is set to one, the Segment ID One field contains the run-time ID of the
segment to be reserved. Otherwise, the segment specified in the position number field is
reserved.

The following is an example of coding for a supervisor call block for a Unload Segment operation:

ULSM
EVEN
BYTE >40
BYTE 0
BYTE >OA
BYTE >3F
DATA >0002
DATA 0,0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

UNLOAD SEGMENT IN POSITION 2
PROGRAM FILE LUNO IS >3F

10.5.4.10 Setting Exclusive Use of Segments. The Set Exclusive Use of a Segment operation is
used to extend the share protection attribute to segments not currently mapped in by a task. A
segment that has exclusive use set is called an owned segment. Other users who try to map in the
owned segment get a shared segment violation error unless the segment is replicatable, in which
case a replicated copy will be mapped. The Set Exclusive Use operation also functions like a
Reserve Segment operation, in that even if an owned segment has use and reserve counts of zero,
the segment will not be deallocated.

If this SVC operation is to succeed, the foillowing conditions must be met. The segment must not
currently be owned by eithe(the task issuing the SVC or another task. The segment must not be in
use by any task other than the issuing tas'k. Exclusive use of special table areas SMT, FMT, and
PBM is not allowed.

10-40 2270507-9701

Task Support 10.5.4.10

The Set Exclusive Use of a Segment operation (sub-opcode >OB) sets exclusive use for the
specified segment. The following fields of the supervisor call block apply to the operation:

• Opcode,>40

• Return code

• Sub-opcode, >OB

• Segment group LUNO

• Flags

• Segment ID One

The flags used by the Set Exclusive Use of a Segment operation are as follows:

t f
2283216

Bit 0 - Must be set to zero.

Bit 3 - Memory-based segment flag. Set as follows:
1 - Memory-based segment. LUNO in byte 3 is ignored.
o - Disk-based segment.

Bit 4 - Run-time 10 flag. Set as follows:

14-15

f

1 - Segment is specified by run-time ID in Segment ID One, bytes 6-9.
0- Segment is specified by position number, bits 14-15.

Bits 14-15 - Position number. When bit 4 is set to zero, these bits must contain a nonzero
value, as follows:
01 - Segment is segment 1.
10 - Segment is segment 2.
11 - Segment is segment 3.

The segment group LUNO must contain the LUNO assigned to the program file that contains the
segment unless bit 3 is set to one.

When the run-time ID flag is set to one, the Segment ID One field contains the run-time ID of the
segment to be owned. Otherwise, the segment specified in the position number field is owned.

2270507-9701 10-41

10.5.4.11 Task Support

The following is an example of coding for a supervisor call block for a Set Exclusive Use of a Seg­
ment operation:

SXSM
EVEN
BYTE >40
BYTE 0
BYTE >OB
BYTE >0
DATA >1800
DATA 0,>0354
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

SET EXCLUSIVE USE FOR MEMORY-BASED
SEGMENT WITH A SEGMENT RUN ID >0354

10.5.4.11 Resetting Exclusive Use of Segments. The Reset Exclusive Use of a Segment operation
relinquishes a task's ownership of a segme!nt. The operation succeeds only if the segment is cur­
rently owned by the task issuing the SVC. The OSE is removed from the list of owned segments
linked to the TSB and its memory released., If the segment is not in use or reserved, it is deleted.

The Reset Exclusive Use of a Segment operation (sub-opcode >OC) releases the specified seg­
ment. The following fields of the supervisor call block apply to the operation:

• Opcode, >40

• Return code

• Sub-opcode, >OC

• Segment group LUNO

• Flags

• Segment ID One

The flags used by the Reset Exclusive Use of Segment operation are as follows:

14-15

t f t
2283216

10-42 2270507-9701

Task Support 10.5.4.11

Bit 0 - Must be set to zero.

Bit 3 - Memory-based segment flag. Set as follows:
1 - Memory-based segment. LUNO in byte 3 is ignored.
o - Disk-based segment.

Bit 4 - Run-time ID flag. Set as follows:
1 - Segment is specified by run-time ID in Segment ID One, bytes 6-9.
0- Segment is specified by position number, bits 14-15.

Bits 14-15 - Position number. When bit 4 is set to zero, these bits must contain a nonzero
value, as follows:
01 - Segment is segment 1.
10 - Segment is segment 2.
11 - Segment is segment 3.

The segment group LUNO m~st contain the LUNO assigned to the program file that contains the
segment unless bit 3 is set to one.

When the run-time ID flag is set to one, the Segment ID One field contains the run-time ID of the
segment to be reset. Otherwise, the segment specified in the position number field is reset.

The following is an example of coding for a supervisor call block for a Reset Exclusive Use of Seg­
ment operation:

RESM

2270507 ·9701

EVEN
BYTE >40
BYTE 0
BYTE >OC
BYTE >3F
DATA >0002
DATA 0,0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

RESET EXCLUSIVE USE FOR SEGMENT IN
POSITION 2 - PROGRAM FILE LUNO IS >3F

10-43

10.6 Task Support

10.6 TASK SYNCHRONIZATION

Task synchronization controls the execution of cooperating tasks to delay execution (or contin­
uation of execution) of a task pending completion of all or a portion of another task. Synchroniza­
tion also applies to interaction between a ~ask and DNOS. ONOS supports the following types of
task synchronization:

• Synchronization by messages

• Synchronization by semaphores

• Synchronization by events

Interprocess communication (IPC) transfers messages between tasks. The sending task issues a
write request and the receiving task issues a read request. The actual transfer occurs when both
requests have been issued. The transfer of the message synchronizes the tasks. The scope of task
synchronization by messages is global. IPC is described in Section 8 of this manual.

Semaphores provide synchronization of tasks within a job. ONOS supports the use of semaphores
with the Semaphore Operations SVC. The operations provided by this SVC can be combined in
various ways to implement a variety of synchronization techniques.

Synchronization by events synchronizes Cl task with system functions. The system function is
initiated as an event, and the task is suspended pending completion of the event. The Initiate
Event SVC and the Wait for Event SVC provide event synchronization.

10.6.1 Using Semaphore Synchronization
A semaphore is a counter with an associated queue that may contain waiting tasks. When a task
examines the semaphore, it decrements the count by one and tests for a negative count. If the
count is not negative, the task continues to execute. If the count is negative, some other task has
set the semaphore; therefore the task is suspended and is placed on the queue for the semaphore.

When a task completes, or completes the portion of the task that is synchronized by the
semaphore, it increments the count by one, activating the oldest task on the queue for the
semaphore.

Typically, the initial value of the semaphore is one. When a task examines the semaphore, the
semaphore is decremented and the value is zero. The task executes. If another task examines the
semaphore, the semaphore value becomes negative and the second task is suspended. When the
executing task completes, it increments the semaphore and the suspended task resumes exe­
cution. The value of the semaphore is now zero. Any task that examines the semaphore before the
second task completes goes on the queue. If the task completes before another task examines the
semaphore, the count is incremented again.

Semaphore operations also return the value of the semaphore, initialize the value, and modify the
value.

10-44 2270507·9701

Task Support 10.6

The Semaphore Operations SVC (opcode >30) performs the following operations:

• Signal - The calling task has completed the operation that must be synchronized.

• Wait - The calling task is ready to begin the operation that must be synchronized.

• Test - The calling task requests the value of the semaphore.

• Initialize - The calling task supplies a value for the semaphore.

• Modify - The calling task alters the value of the semaphore.

The supervisor call block for the SVC is as follows:

SVC > 3D -- SEMAPHORE

DEC HEX

o 0

2 2

>30

SUB-OPCODE

ALIGN ON WORD BOUNDARY

CAN BE INITIATED AS AN
EVENT

< RETURN CODE>

SEMAPHORE NUMBER

4 4 SEMAPHORE VALUE

6 6 RESERVED

2279734

The call block contains the following:

Byte Contents

o Opcode, >30.

1 Return code. ONOS returns zero when the operation completes satis­
factorily. When the operation completes in error, ONOS returns an error
code in this byte.

2

3

2270507·9701

Sub-opcode:
00 - Signal.
01 - Wait.
02 - Test.
03 - Initialize.
04 - Modify.

Semaphore number. The number that identifies the Semaphore, in the
range of 0 through 255.

10-45

10.6.1.1 Task Support

Byte Contents

4-5 Semaphore value. A value in the range of -128 through 127. Supplied by
the user for Initial~ze and Modify operations. Returned by the system for
Test operation.

6-7 [Reserved].

10.6.1.1 Signal. The Signal operation (sub-opcode >00) provides the synchronizing signal for a
specified semaphore. Typically, a task executes a Signal operation when it has completed the por­
tion of the task that requires synchronization of tasks. The Signal operation increments the
semaphore value and activates the oldest task on the associated queue.

When the value of the semaphore is negative, its absolute value is the number of tasks queued for
the semaphore. The Signal operation removes a task from the queue and updates the count
correspondingly.

The following fields of the supervisor call block apply to the Signal operation:

• Opcode, >3D

• Return code

• Sub-opcode, >00

• Semaphore number

The following is an example of coding for a supervisor call block for a Signal operation:

SIG
EVEN
BYTE >3D
BYTE 0
BYTE 0
BYTE 5
DATA 0,0

SIGNAL SEMAPHORE 5

10.6.1.2 Wait. The Wait operation (sub··opcode >01) decrements the semaphore value and
places the calling task on the associated queue when the value is negative.

When the value of the semaphore is positive, its value is the number of additional tasks that may
execute concurrently. The Wait operation either places a task in execution or suspends the task
awaiting its turn. Decrementing the count updates the count accordingly. When the result is
positive or zero, the task continues to execute. Otherwise, the task is placed on the queue for the
semaphore.

The following fields of the supervisor call block apply to the Wait operation:

• Opcode,>3D

• Return code

10-46 2270507·9701

Task Support 10.6.1.3

• Sub-opcode, >01

• Semaphore number

The following is an example of coding for a supervisor call block for a Wait operation:

WAIT
EVEN
BYTE >3D
BYTE 0
BYTE >01
BYTE 5
DATA 0,0

WAIT FOR SEMAPHORE 5

10.6.1.3 Test. The Test operation (sub-opcode >02) returns the value of the semaphore. A
positive value is the number of tasks (or additional tasks) under control of the semaphore that may
execute. A zero value indicates that the next task performing a wait operation is to be queued. A
negative value shows how many tasks under control of the semaphore have been placed on the
queue.

The following fields of the supervisor call block apply to the Test operation:

• Opcode,>3D

• Return code

• Sub-opcode, >02

• Semaphore number

• Semaphore val ue

The semaphore value in the range of -128 through 127 is returned in the semaphore value field.

The following is an example of coding for a supervisor call block for the Test operation:

TEST

SVAL

2270507·9701

EVEN
BYTE >3D
BYTE 0
BYTE >02
BYTE 5
DATA 0
DATA 0

TEST SEMAPHORE 5

10-47

10.6.1.4 Task Support

10.6.1.4 Initialize. The Initialize operation (sub-opcode >03) sets the semaphore to the specified
value and activates suspended tasks on the semaphore queue according to the new value, as
follows:

• When the new value is greater than or equal to zero, activate all tasks on the queue (if
any).

• When the new value is negative but the old value is more negative, subtract the old value
from the new value. The difference is the number of tasks to activate, beginning with the
oldest task on the queue.

The following examples show the numbers of tasks activated in several cases:

Old Value

Any
-1
-3
-1

New Value

1
2

-1
-2

Number of Tasks
On Queue Activated

o
1
3
1

o
1
2
o

The following fields of the supervisor call block apply to the Initialize operation:

• Opcode,>3D

• Return code

• Sub-opcode, >03

• Semaphore number

• Semaphore value

The semaphore value field contains the value to which the semaphore is initialized. The value is in
the range of -128 through 127.

The following is an example of coding for a supervisor call block for an Initialize operation:

INIT

10-48

EVEN
BYTE >3D
BYTE 0
BYTE >03
BYTE 5
DATA 1
DATA 0

INITIALIZE SEMAPHORE 5 TO
A VALUE OF 1

2270507·9701

Task Support 10.6.1.5

10.6.1.5 Modify. The Modify operation (sub-opcode >04) modifies the val ue of the semaphore by
a specified amount and activates suspended tasks on the semaphore queue according to the new
val ue, as follows:

• When the new value is greater than or equal to zero, activate all tasks on the queue.

• When the new value is negative but the old value is more negative, activate tasks, begin­
ning with the oldest task on the queue. The number of tasks to activate is equal to the
modifying value.

The following examples show the numbers of tasks activated in several cases:

Number of Tasks
Old Value Modifier New Value On Queue Activated

1 2 3 0 0
-1 2 1 1 1
-3 2 -1 3 2
-1 -2 -3 1 0

The Modify operation differs from the Initialize operation in that it alters the value of the
semaphore by a fixed amount (positive or negative). An attempt to perform a Test operation, alter
the value, and initialize the new value would provide unpredictable results because Signal or Wait
operations by other tasks could intervene between the Test and Initialize operations.

The following fields of the supervisor call block apply to the Modify operation:

• Opcode, >30

• Return code

• Sub-opcode, >04

• Semaphore number

• Semaphore val ue

The semaphore value field contains the value to be added to the semaphore value. The range of
values for the semaphore value is -128 through 127; the modifier must not cause the semaphore
value to violate these limits.

The following is an example of coding for a supervisor call block for a Modify operation:

MOD

2270507·9701

EVEN
BYTE >30
BYTE 0
BYTE >04
BYTE 5
DATA 2
DATA 0

MODIFY SEMAPHORE 5 VALUE BY 2

10-49

10.6.2 Task Support

10.6.2 Using Event Synchronization
Event synchronization allows a single task to synchronize 1/0 and semaphore operations within
that task. Specifically, any operation of the 1/0 Operations SVC or the Semaphore Operations SVC
may be initiated as an event. At any time prior to completion of the event, the task may be
suspended pending completion of the event, or of any of a specified set of events.

An 1/0 or semaphore operation is initiated as an event when the Initiate Event SVC initiates the
operation. It is not necessary to issue the I/O or semaphore SVC in the normal way; the Initiate
Event SVC processor passes the call block for the operation to the appropriate SVC processor for
execution.

The Wait for Event SVC specifies a set of eVEmts and suspends the calling task until one of these
events completes. The SVC returns the flags for the specified set of events.

The Post Event SVC terminates a Wait for Event SVC that is issued by any task in any job except
the system job. Thus, a single task can syncl1ronize I/O and semaphore operations of tasks in dif­
ferent jobs.

10.6.2.1 Initiating an Event. The Initiate EVl3nt SVC (opcode >41) initiates any I/O or semaphore
operation as an event. The supervisor call block specifies the address of the supervisor call block
that defines the operation.

The supervisor call block for the SVC is as follows:

SVC > 41 -- INITIATE' EVENT AL.IGN ON WORD BOUNDARY

DEC HEX

a a >41 <RETURN CODE>

2 2 RESERVED EVENT NUMBER

4 4 REQUEST BLOCK ADDRESS

6 6 RESERVED

2279735

10-50 2270507·9701

Task Support 10.6.2.1

The call block contains the following:

Byte Contents

o Opcode, >41.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code in this byte.

2 Reserved. Must be set to zero.

3 Event number. The number that identifies the event, in the range of 0
through 31.

4-5 Request block address. The address of the supervisor call block for the
operation initiated as an event.

6-7 [Reserved].

DNOS initiates the requested operation and returns control to the calling task. If an operation
other than an I/O operation or a semaphore operation is defined in the requested block, no oper­
ation is initiated, and DNOS returns an error code. If the requested operation is valid, DNOS
initiates the operation and returns control to the calling task.

The following is an example of coding for a supervisor call block for an Initiate Event SVC, the
Read operation it initiates, and the read buffer:

IEVT

EVTNO

RDFI

SFRB

2270507·9701

EVEN
BYTE >41
BYTE 0
BYTE 0
BYTE 6
DATA RDFI
DATA 0
DATA 0
BYTE >09,>4C
BYTE 0,>4C
DATA SFRB
DATA 80
DATA 0
BSS 80

INITIATE I/O OPERATION IN CALL
BLOCK AT RDFI AS EVENT.
USE EVENT NUMBER 6.

READ A RECORD OF FILE ASSIGNED
TO LUNO >4C AND LOCK
THE RECORD

READ BUFFER

10-51

10.6.2.2 Task Support

10.6.2.2 Waiting for Events. The Wait for Event SVC (opcode >42) specifies one or more events
and suspends the calling task until one or more of the events has completed. Each event repre­
sents an operation or event that is initiated by an Initiate Event SVC, or an event that will be initi­
ated by an Initiate Event SVC, or an event that is to be completed by a Post Event SVC. The set of
events is specified by a mask (bit vector) consisting of two words. The mask provides for the full
range of events, 0 through 31. DNOS returns a field of event bits indicating which events have
completed.

The calling task specifies a maximum wait time. When none of the specified events completes
within the maximum time, ONOS returns an eHor code to the task and the task resumes operation.
If the maximum wait time is zero, the Wait for Event SVC acts as a polling operation that returns
immediately and shows the events that have ,completed. If the maximum wait time is set to -1, no
maximum time is specified for the calling task. In this case, the Wait for Event SVC does not time
out before an event has completed.

The supervisor call block for the SVC is as follows:

SVC > 42 -- WAIT FOR EVENT ALIGN ON WORD BOUNDARY
DEC HEX

o 0 >42 I < RETURN CODE>

2 2 MAXIMUM WAIT TIME

4 4

<EVENT BITS>

6 6

8 8

EVENT MASK

10 A

14 E RESERVED

2279736

The call block contains the following:

10-52

Byte Contents

o Opcode,>42

1 Return code. ONOS returns zero when the operation completes satis­
factorily. When the operation completes in error, ONOS returns an error
code in this byte.

2-3 Maximum wait time, expressed as a number of 50-ms clock periods. If set
to - 1, no maximum wait time is specified.

4-7 Event bits. Returned by ONOS with a bit set for each selected event that
has completed.

2270507-9701

Byte

8-11

12-13

Task Support 10.6.2.3

Contents

Event mask. Set bits to one to define the desired set of events for which
to wait.

[Reserved].

The event mask and the event bits fields each consist of two words, one bit for each supported
event number. Bits 0 through 15 of the first word of each field correspond to event numbers 0
through 15, respectively. Bits 0 through 15 of the second word correspond to event numbers 16
through 31, respectively. The following shows the event numbers that correspond to the bits of the
two fields:

0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2279737

The maximum wait time prevents delaying the task indefinitely when an equipment failure or arror
prevents normal termination of the event. The time selected should be greater than the maximum
time the events would require to terminate normally.

The following is an example of coding for a supervisor call block for a Wait for Event SVC:

WFE

EFLAG

EVEN
BYTE >42
BYTE 0
DATA 10
DATA 0,0
BYTE >5AOO,0
DATA 0

WAIT FOR EVENTS 1, 3, 4, AND 6
TI M EOUT AFTER 500 MS

10.6.2.3 Posting an Event. The Post Event SVC (opcode >4F) sets a specified event bit to one to
indicate that an event is complete and terminates any Wait for Event SVC that is outstanding for
the specified event. The event bits can be set for any task of any job. The Post Event SVC indicates
that an event is complete even if that event was not initiated.

2270507 -9701 10-53

10.6.2.3 Task Support

Th~ supervisor call block for the SVC is as follows:

SVC::> 4F -- POST EVENT ALIGN ON WORD BOUNDARY

DEC HEX

o 0 >4F < RETURN CODE>

2 2 RUN 10 EVENT NUMBER

4 4 JOB 10

6 6 RESERVED

2283150

The call block contains the following:

Byte Contents

o Opcode, >4F.

1 Return code. ONOS returns zero when the operation completes satis~
factorily. When the operation completes in error, ONOS returns an error
code in this byte.

2 Run-time 10. The run-time 10 of the task whose event bits are set.

3 Event number. This number identifies the event to be posted and is in the
range of 0 through 31.

4-5 Job ID. The job ID of the job that contains the task whose event bits are
set. Must not be the system job (job 10 = 0).

6-7 Reserved. Must be set to zero.

The Post Event SVC provides intertask synchronization even if the cooperating tasks reside in dif­
ferent jobs. It is recommended that the cooperating tasks specify a particular event number and
synchronize their operations by performing Wait for Event and Post Event SVCs to that event
number. It is not necessary to initiate the events that are waited and posted.

The Post Event SVC or normal event completion leaves the event bit set to one. Specifying the
Wait for Event SVC will immediately reset tlhe event bit to zero.

10-54 Change 1 2270507·9701

f

Task Support 10.7

The following is an example of the code for a supervisor call block for a Post Event SVC:

PEV
EVEN
BYTE >4F
BYTE 0
BYTE >11
BYTE 3
DATA >13
DATA 0

POST EVENT 3 IN TASK >11, JOB >13
OPCODE
RETURN CODE
TASK RUN-TIME ID
EVENT NUMBER
JOB ID (CANNOT BE ZERO)
RESERVED

10.7 ACCESSING STATUS AND SYSTEM INFORMATION

DNOS provides SVCs that allow the task to access status and system information. Specifically, a
task can:

• Access system date and time

• Obtai n parameters

• Enter a message in the system log

• Obtain job and task identifiers

• Program end action

• Obtai n task status

• Obtain return code data

10.7.1 Accessing System Date and Time
The system maintains the date and time to supply to any task. The date and time are entered when
the first user logs on the system. A user may alter the date and time with an SCI command. A
privileged task may alter the date and time by executing a Set Date and Time SVC. Any task may
read the date and time by executing a Get Date and Time SVC.

The system stores the date and time as binary values; the year, date, hour, minute, and second
occupy one word each. The date is a Julian (day of the year) date. The hour is the hour of a 24-hour
day; the range of numbers is 0 through 23. To print these values the task may call Convert Binary to
Decimal SVC for each binary value, move the ASCII characters to a buffer, and print the contents
of the buffer. Further conversion of the date and hour is required to print the month and day and to
print the hour as AM or PM.

2270507-9701 10-55

;0.7.1.1 Task Support

10.7.1.1 Get Date and Time SVC. The systern provides date and time support for all tasks. The
Get Date and Time SVC (opcode >03) returns 1the binary date and time values in a five-word buffer
at a specified address.

The supervisor call block for the SVC is as follows:

SVC > 03 -- GET DATE AND TIME ALI GN ON WORD BOUNDARY

DEC HEX

o 0 >03 I < RETURN CODE>

2 2 BUFFER ADDRESS

2279738

The call block contains the following:

Byte Contents

o Opcode, >03.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code in this byte.

2-3 Address of a five-word buffer into which DNOS places the date and time.

The following table shows the representation of a date and time in the five-word buffer. The time is
25 seconds past 3:24 PM on September 20, 1'979:

Relative address

Year
o

>07BB >0107

Hour
4

>OOOF

Minute
6

>0018

Second
8

>0019

The following is an example of coding for a supervisor call block for a Get Date and Time SVC, and
for the buffer required for the operation:

DTBUF

GSDT

10-56

BSS 10
EVEN
BYTE 3
BYTE 0
DATA DTBUF

OBTAIN SYSTEM DATE AND TIME IN
BUFFER DTBUF.

2270507-9701

Task Support 10.7.1.2

10.7.1.2 Set Date and Time SVC. Initializing the system includes initializing the date and time. A
software privileged task may issue a Set Date and Time SVC (opcode >38) to set the date and time
stored by the system. The values to which the date and time are set are binary values similar to
those returned by the Get Time and Date SVC. These values are placed in a six-word buffer prior to
issuing the SVC.

The supervisor call block for the SVC is as follows:

SVC > 3B -- SET DATE AND TIME ALIGN ON WORD BOUNDARY
PRIVILEGED TASK ONLY

DEC HEX

o 0 >38 I < RETURN CODE>

2 2 BUFFER ADDRESS

4 4 RESERVED

2279739

The call block contains the following:

Byte Contents

o Opcode, >38.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code in this byte.

2-3 Address of a six-word buffer which contains the binary values to DNOS
stores as the date and time.

The calling task places values of date and time in a six-word buffer as follows:

DEC HEX

0 0 YEAR

2 2 DAY OF THE YEAR

4 4 HOUR (0 THROUGH 23)

6 6 MINUTE (0 THROUGH 59)

8 8 SECOND (0 THROUGH 59)

10 A RESERVED

2279740

2270507·9701 10-57

10.7.2 Task Support

The following is an example of coding for a supervisor call block for a Set Date and Time SVC, and
for the buffer that contains the new values for the date and time:

DTBFF

IDATM

DATA 1979
DATA 267
DATA 8
DATA 47
DATA 15
DATA 0
EVEN
BYTE >3B
BYTE 0
DATA DTBFF
DATA 0

SET SYSTEM DATE AND TIME TO 8:47:15
AM SEPT. 25,1979. IN AN ACTUAL
APPLICATION PROGRAM THESE VALUES
WOULD BE ENTERED AT A TERMINAL,
CONVERTED TO BINARY, AND MOVED TO
THESE LOCATIONS.

10.7.2 Obtaining Parameters
The Bid Task and Scheduled Bid Task SVCs pass two parameters to the task being bid. The cor­
responding SCI commands also pass parameters. A task accesses the parameters supplied when
it was bid by executing a Get Task Bid Parameters SVC (opcode >17). Each parameter consists of
two bytes. The SVC returns the four bytes of parameters in the supervisor call block.

The supervisor call block for the SVC is as follows:

SVC > 17 -- GET TASK BID PARAMETERS ALIGN ON WORD BOUNDARY

DEC HEX

o 0 >17 I <RETURN CODE>

2 2 < PARAMETER 1>·

-
4 4 <PARAMETER 2>

2279741

The call block contains the following:

Byte

o

1

2-3

4-5

10-58

Contents

Opcode, >17.

Return code.

DNOS returns para.meter 1 (supplied when the· calling task was bid) in
this field.

DNOS returns par8lmeter 2 (supplied when the calling task was bid) in
this field.

2270507·9701

Task Support 10.7.3

The following is an example of coding for a supervisor call block for a Get Task Bid Parameters
SVC:

GTBP

PAR1
PAR2

EVEN
BYTE >17
BYTE 0
DATA 0
DATA 0

GET PARAMETERS ENTERED WHEN TASK
WAS BID.

10.7.3 Logging a Message
A task may write a message in the system log by executing a System Log SVC (opcode >21). The
message must be stored in a buffer that contains the length of the message in the first byte. The
characters of the message occupy subsequent bytes of the buffer. The maximum message length
is 255 characters.

The supervisor call block for the SVC is as follows:

SVC > 21 -- SYSTEM LOG ALIGN ON WORD BOUNDARY

2279742

DEC HEX

o 0

2 2

4 4

6 6

> 21 I < RETURN CODE>

RESERVED

BUFFER ADDRESS

RESERVED

The call block contains the following:

Byte

o

1

2-3

4-5

6-7

2270507·9701

Contents

Opcode, >21.

Return code. DNOS returns zero when the operationzcompletes satis­
factorily. When the operation completes in error, DNOS returns an error
code in this byte.

Reserved.

Address of buffer that contains the length of the message in the first
byte, followed by the characters of the message.

Reserved.

10-59

10.7.4 Task Support

The following is an example of coding for a supervisor call block for a System Log SVC, and for the
buffer that contains the message to be written to the system log:

MESS11 BYTE MSGEND-$-1
TEXT 'TEXT OF MESSAGE'

MSGEND EQU $
EVEN

SCBSL BYTE >21
BYTE 0
DATA 0

WRITE MESSAGE IN BUFFER MESS11 TO
SYSTEM LOG.

DATA MESS11
DATA 0

10.7.4 Obtaining Task and Job Identifiers
A task can obtain its run-time and installed IDs, the 10 of the station under which it is executing,
and the 10 of the job under which it is executing.

To obtain these IDs, the task executes the Self-Identification SVC (opcode >2E). The installed 10 is
the 10 that identifies the task on the program file. The run-time 10 is the identifier assigned to the
task when it began execution. The station 10 is specified in the SCI command or SVC that initiated
execution of the task. Interaction with the user is by means of that station (terminal). The job 10 is
the identifier of the current job.

The supervisor call block for the SVC is as 'follows:

2279743

SVC > 2E -- SELF-IDENTIFICATION

DEC HEX

o 0 >2E

2 2 < INSTAI ... LED 10 >

4 4 < JOB 10>

The call block contains the following:

Byte Contents

o Opcode, >2E.

1 Run-time 10. Returned by the system.

2 Installed 10. Returned by the system.

3 Station 10. Returnod by the system.

4-5 Job 10. Returned by the system.

10-60

< RUN-TIME 10>

<STATION 10>

2270507·9701

Task Support 10.7.5

The following is an example of coding for a supervisor call block for a Self-Identification SVC:

SID
RTID
INSTID
STID
JID

BYTE >2E
BYTE 0
BYTE 0
BYTE 0
DATA 0

OBTAIN IDENTIFIERS OF CALLING TASK

10.7.5 Programming End Action
A task executes the end action routine at the address in the third word of the task when execution
terminates abnormally. The end action routine should identify the error that caused abnormal ter­
mination, and take corrective action when appropriate, or terminate. DNOS provides two super­
visor calls that may be used in end action routines.

10.7.5.1 Get End Action Status SVC. The end action routine of a task often requires status infor­
mation and the error code of the error that caused termination. The Get End Action Status SVC
(opcode >2F) returns the workspace pointer, the program counter contents, and the status
register contents that indicate the environment of the terminating error. The call also returns the
error code of the terminating error.

The supervisor call block for the SVC is as follows:

SVC > 2F -- GET END ACTION STATUS ALIGN ON WORD BOUNDARY

2279744

DEC HEX

o 0

2 2

4 4

6 6

8 8

>2F I <ERROR CODE>

< WORKSPACE POI NTER >

<PROGRAM COUNTER>

< STATUS REGISTER>

RESERVED

The call block contains the following:

Byte

o

1

2-3

4-5

2270507 ·9701

Contents

Opcode, >2F.

Error code. DNOS returns the code of the error that caused abnormal
termination.

DNOS returns the address of the workspace in effect when the error
occurred.

DNOS returns the contents of the program counter when the error
occurred.

10-61

10.7.5.2 Task Support

Byte Contents

6-7 DNOS returns the contents of the status register when the error
occurred.

8-9 Reserved.

The following is an example of coding for a supervisor call block for a Get End Action Status SVC:

GEAS
TERR
WPREG
PCREG
STREG

EVEN
BYTE >2F
BYTE 0
DATA 0
DATA 0
DATA 0
DATA 0

GET STATUS OF TASK WHEN END ACTION IS
BEING TAKEN.

10.7.5.2 Reset End Action Status SVC. Normally, a task may take end action only once. However,
an end action routine may be able to correct an error and allow the task to continue. The Reset End
Action Status SVC (opcode >3E) resets a fla!J in the task status block to allow end action to be
taken again. This SVC is appropriate in an end action routine that allows the task to continue. The
SVC may be executed to reset end action for another task (other than the calling task). When the
SVC is issued, and end action has either not been taken or has been reset, the SVC is effectively
ignored. Also, the SVC is effectively ignored when the task was terminated by execution of a Kill
Task SVC or a Kill Task SCI command.

The supervisor call block for the SVC is as follows:

SVC > 3E -- RESET END ACTION STATUS

DEC HEX

o o >3E < REiURN CODE>

2 2 RUN-TIME 10 RESERVED

22.79745

The call block contains the following:

10-62

Byte Contents

o Opcode, >3E.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code in this byte.

2

3

Run-time 10 of task for which end action is to be reset, or zero to reset
end action for the calling task.

Reserved.

2270507-9701

Task Support 10.7.6

The following is an example of coding for a supervisor call block for a Reset End Action Status
SVC:

REAS
RCODE
RTID

BYTE >3E
BYTE 0
DATA 0

RESET EN D ACTION FOR CALLI NG TASK.

10.7.6 Obtaining Task Status
A task can obtain the task status code for itself or for any task in the same job. Task status codes
are listed in Table 10-1. The Poll Status of Task SVC (opcode >35) returns the task status code of
the task in a byte of the supervisor call block. The SVC searches a list of tasks to locate the run­
time ID specified. When the run-time ID is found, the SVC compares the station ID of the task to
the station ID specified in the call block. The SVC may specify any task in the job, any task
assigned to a terminal (station), or any task assigned to the same terminal as the calling task.

The supervisor call block for the SVC is as follows:

SVC > 35 -- POLL STATUS OF TASK

O.::c HEX

o 0 >35 < RETURN CODE>

2 2 FLAGS <TASK STATE CODE>

4 4 STATION 10 RUN-TIME 10

6 6 RESERVED

2279746

2270507-9701 10-63

10.7.6 Task Support

The call block contains the following:

Byte Contents

o Opcode, >35.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code in this byte.

2 Flags:
Bit 0 - Set to 1 when station ID is specified in byte 4. Set to 0 when

station ID is the station ID of the calling task.
Bits 1-7 - Reserved.

3 DNOS returns the task state code in this byte.

4 Station ID (ignored when user flag bit 0 is set to 0). DNOS polls tasks
assigned to station ID, or all tasks in the job when this field contains
>FF.

5 Run-time ID of task. for which the task state code is required.

6-7 Reserved.

The following is an example of coding for a supervisor call block for a Poll Status of Task SVC:

10-64

PSTC
RCDE
FLGTS
TSKSC
STAN
TRID

BYTE >35
BYTE 0
BYTE >80
BYTE 0
BYTE 8
BYTE >3F
DATA 0

GET TASK STATE CODE OF TASK WITH
RUN-TIME ID OF >3F ASSIGNED TO
TERMINAL WITH STATION ID 8.

2270507-9701

2270507-9701

Code
(Hexadecimal)

00
01
02
03
04
05
06
07
09
OF
14
17
19
1E
1F
20
22
24
25
26
27
28
29
2A
2B
2D
30
31
34
36
37
38
3D
40
42
43
48
4A
4C

Table 10-1. Task State Codes

Significance

I n ready state
Awaiting memory
Job in a nonexecutable state
Task being loaded into memory
Terminated
In time delay
Unconditionally suspended
Awaiting Ten-X processor completion
Suspended for 1/0
Suspended for aborted 1/0
Awaiting overlay load services
Awaiting co-routine activation
Awaiting completion of initiated 1/0
Awaiting system semaphore
Awaiting scheduled task bid
Awaiting install volume completion
Awaiting disk management services
Awaiting queue input
Awaiting task installation
Awaiting procedure installation
Awaiting overlay installation
Awaiting completion of task deletion
Awaiting completion of procedure deletion
Awaiting completion of overlay deletion
Suspended by Bid Task SVC
Awaiting readlwrite task completion
Awaiting system table area
Awaiting map program name to 10 completion
Awaiting unload volume completion
Awaiting any 1/0
Awaiting assignment of program file space
Awaiting initialize new volume completion
Suspended by Semaphore SVC
Awaiting segment management services
Awaiting event completion
Awaiting name management services
Awaiting job management services
Awaiting forced swap completion
Awaiting return code processing completion

Task Support 10.i

10-65

10.7.7 Task Support

10.7.7 Obtaining Return Code Data
When an SVC is executed, it may return an error or status code in byte 1. The nature of the error or
status may require that some data from the call block of the SVC that returns the code be available
to any task that builds a meaningful error mossage. The Return Code Processing SVC (opcode
>4C) returns appropriate data in a specified buffer. The SVC supplies the address of the call block
that contains the error or status code. ONOS Clccesses the code in that block anp returns the data
from the block as selected by an internal table of codes. The system also returns the number of
the message corresponding to the code.

The supervisor call block for the SVC is as follows:

SVC > 4C -- RETURN CODE PROCESSING ALIGN ON WORD BOUNDARY

2279747

DEC HEX

o 0

2 2

4 4

6 6

8 8

>4C ' I < RETURN CODE>

SVC BLOCK ADDRESS

BUFFER ADDRESS

< MESSAGE NUMBER>

RESERVED

The call block contains the following:

Byte Contents

o Opcode, >4C.

1 Return code. ONOS returns zero when the operation completes satis­
factorily. When the operation completes in error, ONOS returns an error
code in this byte.

2-3 SVC block address. The address of the call block that contains the
return code to be processed.

4-5 Buffer address. Address of a buffer into which the SVC places data from
the call block.

6-7 <Message number>. ONOS returns the number of the error or warning
message that corresponds to the return code.

8-9 Reserved.

The return code in byte 1 is that of the Return Code Processing SVC, not the code to be processed.

10-66 2270507·9701

Task Support 10.7.7

The SVC block address in bytes 2-3 is the address of the call block that contains the code to be
processed. The contents of this block must not be altered after the unsuccessful completion of
the SVC until the Return Code Processing SVC has completed.

The buffer address, bytes 4-5, is the address of the buffer in which the SVC returns the data. The
first byte of the buffer must contain the buffer size, in bytes. The buffer should contain a minimum
of 50 bytes.

The message number returned by DNOS in bytes 6-7 is the number by which the message cor­
responding to the return code is identified. This number can be used to access the message in the
DNOS error message file or in the DNOS Messages and Codes Manual. A task can directly use the
DNOS error message files by an application program that uses the interface routines S$TERM and
S$CMSG. These routines are described in the DNOS Systems Programmer's Guide.

At the completion of the Return Code Processing SVC, the first byte of the buffer contains the
number of characters returned. The data from the relevant fields of the process call block follows,
with semicolons separating the fields of the call block.

The following is an example of coding for a supervisor call block for a Return Code Processing
SVC and the required buffer:

RCPSVC

MESSNO

BUFFER
BUFTXT
BUFEND

2270507·9701

DATA >4COO
DATAIOSVC
DATA BUFFER
DATA 0
DATA 0
BYTE BUFEND-$
BSS 50
EaU $

PROCESS RETURN CODE IN CALL.
BLOCK IOSVC.
BUFFER ADDRESS.

10-67/10-68

11

System Interface

11.1 SPECIAL SYSTEM SERVICES

This section describes a group of supervisor calls that interface with the system for special ser­
vices. The SVCs in the group are:

• Retrieve System Data

• Disk Management

• Suspend for Queue Input

• Read/Write TSB

• Read/Write Task

Only system tasks are allowed to execute the Suspend for Queue Input SVC, and only software
privileged tasks may execute Disk Management, Read/Write TSB, and Read/Write Task SVCs.

11.2 OBTAINING SYSTEM DATA

Many of the system data structures shown in the DNOS System Design Document may be ac­
cessed by a task using the Retrieve System Data SVC (opcode >3F). The SVC returns a specified
portion of any of the following system data structures:

• PDTs

• TILlNE* peripheral control space (TPCS)

• CSEG area LGLCOM

• CSEG area N FCLKD

• CSEG area NFDATA

• CSEG area NFPTR

• CSEG area PM DATA

• CSEG area N FJOBC

*TILINE is a registered trademark of Texas Instruments Incorporated.

2270507-9701 11-1

11-2 System Interface

The contents of the supervisor call block de1fine the structure to be accessed, the portion to be
returned, and the number of words to be returned. The user must be familiar with the desired
structure in order to use the SVC. The SVC rEtturns the requested data to the calling task; it does
not allow the task to modify the contents of system data structures.

SVC > 3F -- RETRIEVE SYSTEM DA1'A ALIGN ON WORD BOUNDARY

DEC HEX

0 0 >3F' < RETURN CODE>

2 2 DATA STRUCTURE TYPE FLAGS

4 4 INDEX

6 6 OFFSET (BYTES)

8 8 BUFFER LENGTH (BYTES)

10 A LENGTH RETURNED (BYTES)

12 C BUFFER ADDRESS

14 E RESERVED

2279749

The call block contains the following:

Byte

o

1

2

11·2

Contents

Opcode, >3F.

Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code in this byte.

Data structure type. Enter the appropriate code, as follows:
>81 PDT (Physical Device Table)
>82 TPCS (TILINE Peripheral Device Space)
>83 CSEG LGLCOM (Log Common Data)
>84 CSEG N FGLKD (Clock Data)
>85 CSEG NFDATA (Nucleus Data)
>86 CSEG N FPTR (System Pointers)
>87 CSEG PM DATA (Program Management Data)
>88 CSEG N F,JOBC (Job Management Data)

2270507 -9701

Byte

3

4-5

6-7

8-9

10-11

12-13

14-15

System Interface 11.2

Contents

Flags:
Bit 0 - Block format flag. Set as follows:

1 - Short format block. Returns one word, in bytes 10 and 11.
o - Long format block. Returns data in a specified buffer.

Bit 1 - Address flag. Set as follows:
1 - Value in bytes 6-7 is to be used as an indirect address.
0- Value in bytes 6-7 is to be used as an offset (relative to first byte

of structure).

Index. The number of a specific data structure of the type specified in
byte 2. Applies to POTs.

Address of requested data within the specified data structure. When
address flag is set to 1, address is an indirect address. Otherwise,
address is an offset (relative address) from the first byte of the data
structure.

Buffer length. The length of the buffer in which system returns requested
data. Set to zero when block format flag is set to one.

When block format flag is zero, the system returns the number of bytes
of data stored in the buffer. When block format flag is set to one, system
returns the data from the specified address of data structure. When the
block format and return address flags are set to one, ONOS returns the
address of the data structure here.

Buffer address. Address of buffer for data requested from the system.
Set to zero when block format flag is set.

Reserved.

The data structure type selected controls the content of certain fields of the call block. The index
field, bytes 4-5, applies to data structure type >81, physical device table. The system includes one
PDT for each device. The contents of the index field specify which PDT to access. The field is not
used for other data structures.

Most of these data structures consist of data values and pointers. When accessing a data value or
pointer in the PDT or TPCS, use an offset (address flag set to 0). Data structure types >83 through
>88 specify CSEG structures of ONOS. When accessing a data value via a pOinter in the CSEG, use
an indirect address (address flag set to 1).

Since some POTs are alternates for a master PDT, the maximum size of a PDT varies. Attempting
to access a field not defined in an alternate PDT returns an error code.

2270507·9701 11-3

1.3 System Interface

fhe following is an example of coding for a supervisor call block for a Retrieve System Data SVC
and for the buffer in which the data is returned:

RSD

BLEN

PDTDAT

EVEN
BYTE >3F
BYTE 0
BYTE >81
BYTE 0
DATA 1
DATA 0
DATA 10
DATA 0
DATA PDTDAT
DATA 0
BSS 10

GET FIRST TEN BYTES OF PDT 1
IN BUFFER AT PDTDAT

11.3 ALLOCATING AND DEALLOCATING DISK SPACE

When performing file 1/0 as described in Section 5, you need not allocate or deallocate disk space
for the file; file management automatically allocates and deal locates the space. Space for writing
directly to a disk must be allocated, and should be deallocated when it is no longer required. To
allocate or deallocate space on a disk or on a double-sided, double-density diskette, request the
services of the disk manager by executing a Disk Management SVC (opcode >22). The disk
manager allocates and deallocates space in allocatable disk units' (ADUs). An ADU, by definition,
is the smallest amount of disk storage that Gan be allocated on a disk. An ADU consists of an
integer number of sectors; the number varies according to the type of disk. The numbers of sec­
tors per ADU for the types of disks supported by DNOS are shown in Table 11-1. These numbers
were chosen to provide no more than 65,535 ADUs per disk; the ADU address is 16 bits or less.

Four sub-opcodes specify the type of operation to be performed. Sub-opcode 0 requests deallo­
cation of a specified number of ADUs startin'Q at a specified ADU. Sub-opcode 1 requests alloca­
tion of a specified number of blocks of a specified number of bytes each. When that large an area
is not available, disk manager returns an error code. Sub-opcode 2 also requests allocation of a
specified number of blocks of a specified size. When the requested space is not available, disk
manager allocates the space available and d()es not return an error code. Disk manager allocates
space for sub-opcodes 1 and 2 as close as possible to the specified ADU location. When ADU 0 is
requested, the lowest available area is alloca.ted. Sub-opcode 3 requests allocation of a specified
number of blocks of a specified size at the specified ADU location. When the specified ADU is not
available, disk manager returns an error code. When the total area requested is not available at the
specified ADU location, disk manager allocates the space available, and does not return an error
code. Disk manager allocates space as a contiguous area of disk.

Access to a disk for allocation or deallocation requires the address of the PDT for the disk. This
may be obtained by executing a Retrieve System Data SVC.

11-4 2270507·9701

f

System Interface 11.3

Table 11-1. Disk Descriptions

Number of Number Sectors Bytes
Disk Type Sectors of ADUs per ADU per ADU

F01000 4,004 4,004 1 288
OS31 9,744 9,744 1 288
OS32 9,744 9,744 1 288
OS10 16,320 16,320 1 288
OS25 77,520 .25,840 3 864
OS50 154,850 51,616 3 864
OS80 244,915 40,819 6 1,536
OS200 588,430 65,381 9 2,592
OS300 930,677 62,045 15 3,840
W0800/18 72,261 24,087 3 768
W0800/43 168,609 56,203 3 768

SVC > 22 -- DISK MANAGEMENT ALIGN ON WORD BOUNDARY
PRIVI LEGED TASK ONLY

DEC HEX

0 0 >22 < RETURN CODE>

2 2 SUB-OPCODE RESERVED

4 4 DISK PDT ADDRESS

6 6 BLOCK SIZE (BYTES)

8 8 NUMBER OF BLOCKS

OR

10 A
NUMBER OF ADUS

12 C ADU NUMBER

2279750

2270507·9701 11-5

1.3 System Interface

rhe call block contains the following:

11-6

Byte Contents

o Opcode, >22.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the operation completes in error, DNOS returns an error
code.

2 Sub-opcode, as follows:
o - Deallocate disk space.
1 - Allocate requested number of blocks of specified size, or return an

error code.
2 - Allocate requested number of blocks of specified size, or as much

as is available.
3 - Allocate requested number of blocks of specified size (or as much

as is available), at the requested ADU. Return an error code when
the ADU is not available.

3 Reserved.

4-5

6-7

8-11

12-13

Address of the physical device table (PDn for the disk on which space is
to be allocated or deallocated.

For allocation, size (lin bytes) of blocks. Ignored for deallocation.

For allocation, number of blocks to be allocated. For deallocation, bytes
8-9 are ignored and bytes 10-11 contain the number of ADUs to
deallocate.

For allocation, the requested ADU number. For deallocation, the starting
ADU of the area to be deallocated.

2270507·9701

System Interface 11.3

At the completion of a successful allocation, bytes 8 through 13 of the supervisor call block con­
tain the following allocation values:

DEC HEX

8 8 . ADU/BLOCK I BLOCKS/ ADU

10 A NUMBER OF ADU S ALLOCATED

12 c STARTING ADU NUMBER

2279751

The fields returned define the allocated area, as follows:

Byte Contents

8 Number of ADUs allocated per block (set to 1 if less than 1).

9 Number of blocks per aliocatedADU (set to 0 if less than 1).

10-11 Number of ADUs allocated.

12-13 ADU number of the first ADU in the allocated area.

The following is an example of coding for a supervisor call block for a Disk Management SVC,
assuming the address of the PDT has been moved to the call block after having been obtained with
a Retrieve System Data SVC:

DSCMGR
ERRCOD

DPDT

ADUBLK
BLKADU
SIZE
START

2270507·9701

EVEN
BYTE >22
BYTE 0
BYTE 2
BYTE 0
DATA 0
DATA 128
BYTE 0
BYTE 0
DATA 64
DATA 0

ALLOCATE AS MUCH DISK SPACE AS
POSSIBLE UP TO 64 128-BYTE BLOCKS
ON THE DISK STARTING AT LOWEST­
NUMBERED AVAILABLE ADU. THE PDT
ADDRESS IS PLACED IN LOCATION
DPDT BY OTHER CODE.

11-7

11.4 System Interface

11.4 SUSPENDING A QUEUE-DRIVEN TASK

A task that is driven by a queue need not terminate, but may be suspended pending another entry
in its queue. That is, when a queue-driven task has processed all current entries in the queue, it
may either terminate or be suspended awaiting another entry in the queue. When the task ter­
minates, it must be bid again before it can process a queue entry. When it suspends, it is
automatically reactivated when an entry is placed in the queue. The Suspend for Queue Input SVC
(opcode >24) suspends a queue-driven task until some other task places an entry in the queue.
This SVC serves the same purpose, for a queue-driven task, as the End of Task SVC, except that
the suspended task is not terminated. The sUispended task is not necessarily rolled out, but may
be chosen for rollout by task management.

CAUTION

This SVC can interfere with norrnal system operation unless the calling
task performs additional processing. The calling task must execute an
Extend Time Slice SVC (or othEtrwlse disable task scheduling), check
the queue for any entry that mltJht have been made during processing
of last entry, and then execute this SVC. The scheduler must remain
disabled while this is done.

The supervisor call block for the SVC is as follows:

2279752

SVC > 24 -- SUSPEND FOR QUEUE INPUT

DEC HEX

o 0 > 24

SYSTEM TASK ONLY

The call block contains the following:

Byte Contents,

o Opcode, >24

The following is an example of coding for a supervisor call block for a Suspend for Queue Input
SVC:

SAQI BYTE >24

11-8

SUSPEND CALLING TASK AWAITING QUEUE
INPUT.

2270507·9701

System Interface 11.5

11.5 ACCESSING THE TASK STATUS BLOCK

The task status block (TSB) is a DNOS data structure. Each task in the system is represented by a
TSB. The Read/Write TSB SVC (opcode >2C) reads or writes a specified word in the TSB of a
specified task. Access to TSBs is limited to those of tasks in the same job as the calling task. Do
not attempt to execute this SVC without first examining the structure of the TSB (described in the
DNOS System Design Document).

CAUTION

The Read/Write TSB SVC processor does not prevent alteration of the
TSB. Such alteration of the TSB could interfere with continued normal
system operation.

The normal sequence of SVCs for altering the TSB is as follows:

1. Execute an Extend Time SI ice SVC for the task that is altering the TSB.

2. Read a value from the TSB.

3. Write a new value to the TSB.

The time slice should be extended while accessing the TSB of an active task because the con­
tents of the TSB of an active task are continually being changed. The TSB contents read in step 2
might not be valid at the time the write function in step 3 is performed if the altering task is
suspended between steps 2 and 3. The extend period should allow time for steps 2 and 3, and for
the processing of alterations performed between these steps.

The supervisor call block for the SVC is as follows:

SVC > 2C -- READ/WRITE TSB

2279753

2270507-9701

OEF HEX

o 0

2 2

4 4

6 6

8 8

>2C

TASK RUN 10

I
FLAGS

I
VALUE

ALIGN ON WORD BOUNDARY
PRIVILEGED TASK ONLY

< RETURN CODE>

OFFSET INTO TSB

RESERVED

11-9

11.5 System Interface

The call block contains the following:

Byte Contents

o Opcode,>2C

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When the, operation completes in error, DNOS returns an error
code.

2-3 Flags:
Bits 0-14 - Reserved.
Bit 15 - Set to 1 for write, to 0 for read.

4 Run-time ID of tasl< whose TSB is to be accessed. Must be in the same
job as the calling task.

5 TSB offset. Relative address within the TSB of the word to be accessed.
It must be a byte address and should be an even number.

6-7 Value. For a read, DNOS places the value read from the TSB in this field.
For a write, contents of this field are written to the TSB.

8-9 Reserved.

The following is an example of coding for a supervisor call block for a Read/Write TSB SVC:

EVEN
RWTTSB BYTE >2C

BYTE 0
SVCFLG DATA 0

BYTE >83
BYTE 10

VALUE DATA 0
DATA 0

READ WORD AT BYTE OFFSET 10 IN TSB OF
THE TASK WITH RUN-TIME 10 OF >83.

The following additional code illustrates the context in which the Read/Write TSB SVC is used:

11-10

DXOP SVC,15
EVEN

EXTEND BYTE 9,4
WRTFLG DATA 1

SVC @EXTEND
SVC @RWTTSB

MOV @WRTFLG,@SVCFLG
SVC @RWTTSB

THIS EXAMPLE SHOWS AN EXTEND TIME
SLICE SVC, A READ TSB SVC, AND A
WRITE TSB SVC. CODE TO PROCESS THE
VALUE READ FROM THE TSB WOULD
FOLLOW TH E READ TSB CALL.

2270507-9701

System Interface 11.6

11.6 ACCESSING TASK DATA

Under ONOS, a task can access data within another task of the same job. The task may be an
application task or the system root. The system root contains:

1. Interrupt and XOP vectors

2. Nucleus common support routines

3. Common data segments

4. System table area

The system root is described in detail in the DNOS System Design Document.

CAUTION

If this SVC is used to modify a system overlay, system operation may
cease.

The Read/Write Task SVC (opcode >20) reads or writes as many as 16 words of data from or to a
task in memory.

The supervisor call block for the SVC is as follows:

SVC> 20 -- READ/WRITE TASK

OEC HEX

o 0 >20

2 2 TASK RUN 10

4 4

6 6
,..L"

1 36 24

38 26:

2279754

ADDRESS

BUFFER

ALIGN ON WORD BOUNDARY
PRIVILEGED TASK ONLY

< RE11JRN CODE>

FL.AGS

,",v

(16 WORDS)

j RESERVED

2270507-9701 11-11

11.6 System Interface

The call block contains the following:

Byte

o

1

2

3

4-5

6-37

38-39

Contents

Opcode, >2D.

Return code. DNOS returns zero when the operation completes satis­
factorily. When thE3 operation completes in error, DNOS returns an error
code.

Run-time ID of ta:sk to be accessed. Must be in the same job as the
call i ng task. Set to 0 to access the system root.

Flags:
Bit 0 - Set to 1 for write, to 0 for read.
Bit 1 - ID flag.

o - Task run ID specified in byte 2
1 - SystE~m overlay ID specified in byte 2

Bits 2-3 - Reserved
Bits 4-7 - NumbE~r of words to be read or written; specify 0 to read or

write 16 words

Relative address in the specified task of the first word of data to be read
or written.

16-word buffer. DNOS places the data read in this buffer. For a write, con­
tents of this buffElr are written.

Reserved.

The following is an example of coding for a supervisor call block for a Read/Write Task SVC:

RDTSK

DATA

11-12

EVEN
BYTE >2D
BYTE 0
BYTE >83
BYTE 0
DATA 6
BSS 32
DATA 0

READ WORKSPACE (16 WORDS) OF TH E TASK
WITH RUN-TIME ID OF >83. ASSUME
WORKSPACE IS AT ADDRESS 6.

2270507·9701

12

SVC Compatibility

12.1 OTHER OPERATING SYSTEMS

This section describes four supervisor calls that are included in DNOS for compatibility with other
operating systems. You may execute a program that was written to be executed under an earlier
operating system without altering the program to replace these supervisor calls with others more
appropriate for DNOS. You should use other supervisor calls that exploit the capabilities of DNOS
in programs written to be executed under DNOS. The supervisor calls are:

• Get Common Data Address

• Return Common Data Address

• Put Data

• Get Data

These SVCs may be omitted when generating a system. Groups of optional SVCs are defined for
system generation. The COMMON group consists of the Get Common Data Address and the
Return Common Data Address SVCs. The INTERTASK group consists of the Put Data and Get
Data SVCs. When a task executing under a system that does not include a group of SVCs calls an
SVC in that group, DNOS returns >FO in the return code byte of the supervisor call block.

The intertask common memory area must be defined when a system is generated. When the
COMMON group of SVCs is to be included, also supply the required size of the intertask common
memory area during system generation.

2270507-9701 12-1

12.2 SVC Compatibility

12.2 GET COMMON DATA ADDRESS SVC

The Get Common Data Address SVC (opcode >10) obtains the address of the beginning of the
intertask common memory area and returns that address in workspace register 9. The SVC also
returns the size of the area in workspace rE!gister 8.

The supervisor call block for the SVC is as follows:

SVC > 10 -- GET COMMON DATA AODRESS

DEC HEX

o o >10 <RETURN CODE>

2279755

The call block contains the following:

Byte Contents

o Opcode, >10.

1 Return code. DNOS returns zero when the operation completes satis­
factorily. When thE! operation completes in error, DNOS returns an error
code in this byte.

DNOS offers several alternatives to the USE! of an intertask common area. Some alternatives are:

• Transferring common data throu~lh interprocess communication.

• Using a shared segment to pass data.

The following is an example of coding for a supervisor call block for a Get Common Data Address
SVC:

SCBD BYTE >10,0 GET THE ADDRESS OF INTERTASK COMMON.

12-2 2270507·9701

SVC Compatibility 12.3

12.3 RETURN COMMON DATA ADDRESS SVC

The Return Common Data Address SVC (opcode >1 B) releases the intertask common memory
obtained by the Get Common Data Address SVC. One more segment of memory is available to the
program when intertask common memory is released.

The supervisor call block for the SVC is as follows:

2279756

SVC > 1 8 -- RETURN COMMON DATA ADDRESS

DEC HEX

o 0 >18

The call block contains the following:

Byte Contents

o Opcode, >1 B.

The following is an example of coding for a supervisor call block for a Return Common Data
Address SVC: .

SCBE BYTE >1B

2270507·9701

RELEASE THE MEMORY SEGMENT USED FOR
INTERTASK COMMON.

12-3

12.4 SVC Compatibility

12.4 PUT DATA SVC

The Put Data SVC (opcode >1 C) transfers messages from a buffer in the calling task to the DNOS
dynamic memory area for subsequent retrieval by a Get Data SVC. The identifier of the message is
also the identifier of the queue in memory into which the message is placed, in a first-in, first-out
manner.

The supervisor call block for the SVC is as follows:

SVC > 1 C -- PUT DATA ALIGN ON WORD BOUNDARY

DE;C HEX

0 0 >lC < RE1URN CODE>

2 2 RESI::RVED MESSAGE 10

4 4 BUFFER ADDRESS

6 6 [RESERVED]

8 8 MESSAGE LENGTH

10 A RESERVED

2279757

The call block contains the following:

Byte

o

1

2

3

4-5

6-7

8-9

10-11

12-4

Contents

Opcode, >1C.

Return code. DNOS returns zero when the operation completes satis­
factorily. When tho operation completes in error, DNOS returns an error
code in this byte.

Reserved.

Message identifielr.

Address of the buffer in the task that contains the message. The address
must be an even (word boundary) address.

[Reserved].

Length of the buHer that contains the message. The length must be an
even number of characters.

Reserved.

2270507·9701

SVC Compatibility 12.5

The preferred alternative to the use of Put Data to send a message to another task is to use the
interprocess communication capability of DNOS.

The following is an example of coding for a message buffer, and a supervisor call block for a Put
Data SVC:

BUFF2 TEXT 'DATA TO BE SENT TO ANOTHER TASK IS PLACED'
TEXT 'IN A BUFFER IN THE CALLING TASK.

SCBG
EVEN
BYTE >1C
BYTE 0
BYTE 0
BYTE >1F
DATA BUFF2
DATA 0
DATA 80
DATA 0

12.5 GET DATA SVC

PLACE THE MESSAGE IN THE BUFFER AT
BUFF2 IN THE MESSAGE QUEUE FOR
IDENTIFIER >1 F.

The Get Data SVC (opcode >1 D) retrieves a message placed in the DNOS dynamic memory area by
a Put Data SVC and moves the message to the specified buffer in the calling task. The message
returned is the oldest message on a message queue corresponding to the message identifier
specified in the call. Alternatively, the SVC deletes all messages in the queue without returning
any.

The supervisor call block for the SVC is as follows:

SVC > 1 D -- GET DATA ALIGN ON WORD BOUNDARY

DEC HEX

0 0 >ID <RETURN CODE>

'2 '2 f'l.,.AGS MESSAGE ID

4 4 BUFFER ADDRESS

6 6 BUFFER LENGTH

8 8 ACTUAL MESSAGE LENGTH

10 A RESERVED

2279758

2270507-9701 12-5

SVC Index

svc Paragraph

Write Direct >OC Operation ... 6.7.2.2
Write EOF>OD Operation ... 6.7.1.10

Change Job Priority >04 Operation, Job Management >48 2.2.4
Change Segment >00 Operation, Segment Management >40 10.5.4.1
Change Task Priority >11 .. 4.6
Check Segment Status >04 Operation, Segment Management >40 10.5.4.5
Close and Unload >04 Operation:

Card Reader, 1/0 Operations >00 .. 6.10.1.5
Cassette, 1/0 Operations >00 ... 6.7.1.5
IPC, I/O Operations >00 .. 8.3.2.5
Line Printer, I/O Operations >00 ... 6.8.5
Magnetic Tape, I/O Operations >00 .. 6.9.1.5
Relative Record File, 1/0 Operations >00 ... 7.4.5
Sequential File, 1/0 Operations >00 .. 7.3.5
TPD, I/O Operations >00 .. 6.5.2.5
VDT, I/O Operations >00 .. 6.3.2.5
733 ASR, 1/0 Operations >00 .. 6.4.2.5

Close >01 Operation:
Card Reader, I/O Operations >00 .. 6.10.1.2
Cassette, I/O Operations >00 ... 6.7.1.2,
I PC, 1/0 Operations >00 .. 8.3.2.2,8.3.3.2
KIF, 1/0 Operations >00 .. 7.5.1.2
Line Printer, I/O Operations >00 ... 6.8.2
Magnetic Tape, I/O Operations >00 ... -6.9.1.2
Relative Record File, I/O Operations >00 ... 7.4.2
Sequential File, I/O Operations >00 .. 7.3.2
TPD, I/O Operations >00 .. 6.5.2.2
VDT, I/O Operations >00 .. 6.3.2.2
733 ASR, I/O Operations >00 .. 6.4.2.2

Close, Write EOF >02 Operation:
Cassette, I/O Operations >00 ... 6.7.1.3
I PC, 1/0 Operations >00 .. 8.3.2.3
Line Printer, I/O Operations >00 ... 6.8.3
Magnetic Tape, 1/0 Operations >00 .. 6.9.1.3
Relative Record File, 1/0 Operations >00 .. 7.4.3
Sequential File, I/O Operations >00 ... 7.3.3
TPD, 1/0 Operations >00 .. 6.5.2.3
VDT, I/O Operations >00 .. 6.3.2.3
733 ASR, 1/0 Operations >00 .. 6.4.2.3

Convert Binary to:
Decimal ASCII >OA ... 10.2.1
Hexadecimal ASCII >OC ... 10.2.3

Convert Decimal ASCII to Binary>OB ... 10.2.2
Convert Hexadecimal ASCII to Binary >00 ... 10.2.4
Create File>90 Operation Utility, I/O Operations >00 7.2.1.1
Create IPC Channel >90 Operation Utility, I/O Operations >00 8.3.1.1
Create Job >01 Operation, Job Management >48 2.2.1
Create Segment >01 Operation, Segment Management >40 10.5.4.2

SVC Index

svc Paragraph

Decimal ASCII >OA, Convert Binary to ... 10.2.1
Define Write Mode >9C Operation Utility, 1/0 Operations >00 7.2.1.12
Delete Alias >9B Operation Utility, 1/0 Operations> 7.2.1.11
Delete by Key >49 Operation KIF, 1/0 Operations >00 7.5.2.8
Delete Current >49 Operation KIF, 1/0 Operations >00 7.5.2.14
Delete File >92 Operation Utility, 1/0 Operations >00 7.2.1.2
Delete IPC Channel >9E Operation Utility, 1/0 Operations >00 8.3.1.2
Delete Job >07 Operation, Job Management >48 2.2.7
Delete Name >04 Operation, Name Management >43 5.2.1.3
Delete Overlay >2A ... 3.7
Delete ProcedurelProgram Segment >29 ... 3.6
Delete Protect Channel >98 Operation Utility, 1/0 Operations >00 8.3.1.6
Delete Protect Fi Ie >98 Operation Uti I ity, 1/0 Operations >00 7.2.1.8
Delete Task >28 ... 3.5
Determi ne Name's Value >00 Operation, Name Management >43 5.2.1.1
Device Dependent Communication Control >15 TPD, 1/0 Operations >00 6.5.2.12
Disk 1/0 Operations >00:

Open and Rewi nd >03 Operation ... 6.11.4
Open>OOOperation ... 6.11.1
Read by ADU >09 Operation ... 6.11.8
Read by Track >OA Operation .. 6.11.9
Read Deleted Sector>11 Operation ... 6.11.15
Read Format >05 Operation ... 6.11.6
Store Registers >OE Operation .. 6.11.12
Write by ADU >OB Operation ... 6.11.10
Write by Track >OC Operation .. 6.11.11
Write Deleted Sector>10 Operation ... 6.11.14
Write Format wll nterleavi ng >12 Operation 6.11.16
Write Format >08 Operation ... 6.11.7

Disk Management >22 ... 6.11.3
Dummy Device, 1/0 Operations >00 .. 6.12

End of Task >04 ... 4.11
Execute Task >2B .. 4.2
Extend Time Slice >09 .. 4.9

Force Write Segment >05 Operation, Segment Management >40 10.5.4.6
Forward Space >06 Operation:

Cassette, 1/0 Operations >00 ... 6.7.1.6
KIF, 1/0 Operations >00 .. 7.5.1.5
Magnetic Tape, 1/0 Operations >00 .. 6.9.1.7
Relative Record File, 1/0 Operations >00 ... 7.4.7
Sequential File, 1/0 Operations >00 .. 7.3.7

Get Accounting Information >49 ... 10.4.2
Get Common Data Address >10 ... 12.2
Get Data >1 D ... 12.5
Get Date and Time >03 .. 10.7.1.1

2270507·9701 A-3

SVC Index

svc Paragraph

Get Decrypted Value >46 ... 10.3.2
Get Encrypted Value >45 ... 10.3.1
Get End Action Status >2F .. 10.7.5.1
Get Job Information >09 Operation, Job Management >48 2.2.8
Get Memory>12 ... 10.5.1
Get Task Bid Parameters >17 .. 10.7.2

Halt Job >02 Operation, Job Management >48 .. 2.2.2
Hexadecimal ASCII >OC, Convert Binary to .. 10.2.3

ID >05 Operation, Job Management >48 Map Name to Job 2.2.5
ID >31, Map Program Name to .. 3.9
Initialize New Disk Volume >38 ~ ... 9.2
Initialize >03 Operation, Semaphore >3D ... 10.6.1.4
Initiate Event >41 .. 10.6.2.1
Insert >46 Operation KIF, 1/0 Operations >00 7.5.2.15
Install Disk Volume >20 ... 9.3
Install Overlay >27 ... 3.4
Install Procedure/Program Segment >26 ... 3.3
Install Task Segment >25 .. 3.2
I PC I/O Operations >00:

Close and Unload >04 Operation .. 8.3.2.5
Close >01 Operation .. 8.3.2.2,8.3.3.2
Close, Write EOF >02 Operation ... 8.3.2.3
Master Read >19 Operation ... 8.3.3.4
Master Write >1 B Operation .. 8.3.3.6
Open and Rewind >03 Operation .. 8.3.2.4
Open >00 Operation ... 8.3.2.1, 8.3.3.1
Read Call Block >1A Operation .. 8.3.3.5
Read Device Status >05 Operation ... 8.3.3.3
Redirect Assign LUNO >1C Operation .. 8.3.3.7
Symmetric Read >09 Operation ... 8.3.2.6
Symmetric Write >OB Operation ... 8.3.2.7
Write EOF >OD Operation .. 8.3.2.8

1/0 Operations >00 .. 5.2.2, 5.3
Add Alias>9A Operation Utility .. 7.2.1.10
Assign LUNO>91 Operation Utility 6.2.1,7.2.1.3,8.3.1.3
Assign New Pathname >95 Operation Utility 7.2.1.6
Backward Space >07 Operation Cassette ... 6.7.1.7
Backward Space >07 Operation KIF .. 7.5.1.6
Backward Space >07 Operation Magnetic Tape 6.9.1.8
Backward Space >07 Operation Relative Hecord File 7.4.8
Backward Space >07 Operation Sequential File 7.3.8
Close and Unload >04 Operation Card Reader 6.10.1.5
Close and Unload >04 Operation Cassette .. 6.7.1.5
Close and Unload >04 Operation IPC ... 8.3.2.5
Close and Unload >04 Operation Line Printer .. 6.8.5
Close and Unload >04 Operation MagneUc Tape 6.9.1.5

A-4 2270507-9701

SVC Index

svc Paragraph

Close and Unload >04 Operation Relative Record File 7.4.5
Close and Unload >04 Operation Sequential File 7.3.5
Close and Unload >04 Operation TPD .. 6.5.2.5
Close and Unload >04 Operation VDT .. 6.3.2.5
Close and Unload >04 Operation 733 ASR ... 6.4.2.5
Close>01 Operation Card Reader ... 6.10.1.2
Close>01 Operation Cassette .. 6.7.1.2
Close >01 Operation IPC ... 8.3.2.2,8.3.3.2
Close >01 Operation KIF ... 7.5.1.2
Close >01 Operation Line Printer .. 6.8.2
Close >01 Operation Magnetic Tape ... 6.9.1.2
Close >01 Operation Relative Record File .. 7.4.2
Close >01 Operation Sequential File ... 7.3.2
Close >01 Operation TPD ... 6.5.2.2
Close >01 Operation VDT ... 6.3.2.2
Close >01 Operation 733 ASR ... 6.4.2.2
Close, Write EOF >02 Operation Cassette ... 6.7.1.3
Close, Write EOF >02 Operation IPC ... 8.3.2.3
Close, Write EOF >02 Operation Line Printer .. 6.8.3
Close, Write EOF >02 Operation Magnetic Tape 6.9.1.3
Close, Write EOF>02 Operation Relative Record File 7.4.3
Close, Write EOF >02 Operation Sequential ... 7.3.3
Close, Write EOF >02 Operation TPD ... 6.5.2.3
Close, Write EOF >02 Operation VDT ... 6.3.2.3
Close, Write EOF >02 Operation 733 ASR ... 6.4.2.3
Create File >90 Operation Utility ... 7.2.1.1
Create IPC Channel >9D Operation Utility ... 8.3.1.1
Define Write Mode >9C Operation Utility ... 7.2.1.12
Delete Alias>98 Operation Utility .. 7.2.1.11
Delete by Key >49 Operation KIF .. 7.5.2.8
Delete Current >49 Operation KIF ... 7.5.2.14
Delete File >92 Operation Utility ... 7.2.1.2
Delete IPC Channel >9E Operation Utility ... 8.3.1.2
Delete Protect Channel >98 Operation Utility 8.3.1.6
Delete Protect File >98 Operation Utility .. 7.2.1.8
Device Dependent Communication Control >15 TPD 6.5.2.12
Dummy Device ... 6.12
Forward Space >06 Operation Cassette ... 6.7.1.6
Forward Space >06 Operation KIF ... 7.5.1.5
Forward Space >06 Operation Magnetic Tape 6.9.1.7
Forward Space >06 Operation Relative Record File 7.4.7
Forward Space >06 Operation Sequential File 7.3.7
Insert >46 Operation KIF .. 7.5.2.15
Master Read >19 Operation IPC ... 8.3.3.4
Master Write >1 8 Operation IPC ... 8.3.3.6
Modify Access Privileges >11 Operation Relative Record File 7.4.14
Modify Access Privileges >11 Operation Sequential File 7.3.14
Multiple Record Read >59 Operation ... 7.4.17
Multiple Record Read >59 Operation Sequential File 7.3.17

2270507-9701 A-5

SVC Index

svc Paragraph

Multiple Record Write>5B Operation ... " ... 7.4.18
Multiple Record Write>5B Operation Sequential File 7.3.18
Open and Rewind >03 Operation Card Reader 6.10.1.4
Open and Rewind >03 Operation Cassette~ .. 6.7.1.4
Open and Rewind >03 Operation Disk ... 6.11.4
Open and Rewind >03 Operation IPC ... 8.3.2.4
Open and Rewind >03 Operation KIF ... 7.5.1.3
Open and Rewind >03 Operation Line Printer 6.8.4
Open and Rewind >03 Operation Magnetic Tape 6.9.1.4
Open and Rewind >03 Operation Relative Record File 7.4.4
Open and Rewind >03 Operation Sequential File 7.3.4
Open and Rewind >03 Operation TPD .. 6.5.2.4
Open and Rewind >03 Operation VDT .. 6.3.2.4
Open and Rewind >03 Operation 733 ASR ... 6.4.2.4
Open Extend >12 Operation Relative Record File 7.4.15
Open Extend >12 Operation Sequential File 7.3.15
Open Random >40 Operation KIF .. 7.5.2.1
Open >00 Operation Card Reader ... 6.10.1.1
Open >00 Operation Cassette ... 6.7.1.1
Open >00 Operation Disk ... 6.11.1
Open >00 Operation I PC ... 8.3.2.1,8.3.3.1
Open >00 Operation KIF ... 7.5.1.1
Open >00 Operation Line Printer .. 6.8.1
Open >00 Operation Magnetic Tape .. 6.9.1.1
Open >00 Operation Relative Record File ... 7.4.1
Open >00 Operation Sequential File ... 7.3.1
Open >00 Operation TPD ... 6.5.2.1
Open >00 Operation VDT ... 6.3.2.1
Open >00 Operation 733 ASR ... 6.4.2.1
Read ASCII >09 Operation Card Reader .. 6.10.1.6
Read ASCII >09 Operation Cassette .. 6.7.1.8
Read ASCII >09 Operation KIF .. 7.5.1.7
Read ASCII >09 Operation Magnetic Tape! ... 6.9.1.9
Read ASCII >09 Operation Relative Record File 7.4.9
Read ASCII >09 Operation Sequential Filo .. 7.3.9
Read ASCII >09 Operation TPD .. 6.5.2.7
Read ASCII >09 Operation VDT .. 6.3.2.7
Read ASCII >09 Operation 733 ASR .. 6.4.2.7
Read by ADU >09 Operation Disk ... 6.11.8
Read by Key >42 Operation KIF .. ~ ... 7.5.2.2
Read by Track >OA Operation Disk ... 6.11.9
Read Call Block>1A Operation IPC .. 8.3.3.5
Read Current >42 Operation KIF ... _ 7.5.2.9
Read Deleted Sector>11 Operation Disk ... 6.11.15
Read Device Status >05 Operation IPC .. " ... 8.3.3.3
Read Device Status >05 Operation Magnotic Tape ' 6.9.1.6
Read Device Status >05 Operation TPD . " ... 6.5.2.6
Read Device Status >05 Operation VDT . " ; 6.3.2.6
Read Device Status >05 Operation 733 ASR 6.4.2.6

A-6 2270507·9701

SVC Index

svc Paragraph

Read Di rect >OA Operation Card Reader ... 6.10.2.1
Read Direct>OA Operation Cassette , 6.7.2.1
Read Direct >OA Operation Magnetic Tape .. 6.9.2.1
Read Direct>OA Operation TPD .. 6.5.3.13
Read Direct >OA Operation VDT .. 6.3.3.21
Read File Characteristics >05 Operation KIF 7.5.1.4
Read File Characteristics >05 Operation Relative Record File 7.4.6
Read File Characteristics >05 Operation Sequential File 7.3.6
Read Format >05 Operation Disk ... 6.11.6
Read Greater or Equal >44 Operation KIF ... 7.5.2.4
Read Greater>41 Operation KIF ... 7.5.2.3
Read Next >45 Operation KIF .. 7.5.2.11
Read Previous >48 Operation KIF ... 7.5.2.10
Redirect Assign LUNO >1 C Operation IPC .. 8.3.3.7
Release LUNO >93 Operation Utility 6.2.2,7.2.1.4,8.3.1.4
Remote Get Event Character>05 Operation TPD 6.5.3.12
Remote Get Event Character >05 Operation VDT 6.3.3.20
Remote Get Event Character >05 Operation 733 ASR 6.4.3.9
Remove Channel Protection >96 Operation Utility 8.3.1.7
Rewind >OE Operation Cassette .. 6.7.1.11
Rewind >OE Operation KIF ... 7.5.1.8
Rewind >OE Operation Line Printer ... 6.8.10
Rewi nd >OE Operation Magnetic Tape ... 6.9.1.12
Rewind >OE Operation Relative Record File .. 7.4.12
Rewind >OE Operation Sequential File .. 7.3.12
Rewind >OE Operation TPD .. 6.5.2.10
Rewind >OE Operation VDT ... 6.3.2.9
Rewrite >10 Operation Relative Record File .. 7.4.13
Rewrite >10 Operation Sequential Fi Ie .. 7.3.13
Rewrite >47 Operation KIF .. 7.5.2.12
Set Currency Equal >50 Operation KIF .. 7.5.2.5
Set Currency Greater>52 Operation KIF .. 7.5.2.6
Set Currency Greater or Equal >51 Operation KIF 7.5.2.7
Store Registers >OE Operation Disk ... 6.11.12
Symmetric Read >09 Operation I PC .. 8.3.2.6
Symmetric Write>08 Operation IPC ... 8.3.2.7
Unload>OFOperationCassette ... , 6.7.1.12
Unload >OF Operation Magnetic Tape ... 6.9.1.13
Unload >OF Operation TPD .. 6.5.2.11
Unlock >4A Operation KIF ... 7.5.2.13
Unlock >4A Operation Relative Record File .. 7.4.16
Unlock>4A Operation Sequential File .. 7.3.16
Unprotect File >96 Operation Utility .. 7.2.1.9
Verify Device Name >99 Operation Utility ... 6.2.3
Verify Pathname >99 Operation Utility .. 7.2.1.5
Write ASCII >08 Operation Cassette ... 6.7.1.9
Write ASCII >08 Operation Line Printer .. 6.8.7
Write ASCII >08 Operation Magnetic Tape 6.9.1.10
Write ASCII >08 Operation Relative Record File 7.4.10

2270507·9701 A-7

SVC Index

svc Paragraph

Write ASCII >08 Operation Sequential Fil13 .. 7.3.10
Write ASCII >OB Operation TPD ... 6.5.2.8
Write ASCII >OB Operation VDT ... 6.3.2.8
Write ASCII >OB Operation 733 ASR .. 6.4.2.8
Write by ADU >OB Operation Disk , .. 6.11.10
Write by Track >OC Operation Disk , .. 6.11.11
Write Deleted Sector>10 Operation Disk, .. 6.11.14
Write Direct >OC Operation Cassette ... 6.7.2.2
Write Direct >OC Operation Magnetic Tap,e .. 6.9.2.2
Write Direct>OC Operation TPD .. 6.5.3.14
Write Direct >OC Operation VDT .. 6.3.3.22
Write EOF>OD Operation Cassette ... 6.7.1.10
Write EOF >00 Operation I PC ... 8.3.2.8
Write EOF >00 Operation Line Printer ... 6.8.9
Write EOF >00 Operation Magnetic Tape .. 6.9.1.11
Write EOF>OD Operation Sequential File ... 7.3.11
Write EOF >00 Operation TPD .. 6.5.2.9
Write EOF >00 Operation 733 ASR ... 6.4.2.9
Write Format with Interleaving >12 Operation Disk 6.11.16
Write Format >08 Operation Disk ... 6.11.7
Write Logical EOF >00 Operation Relativ(~ Record File 7.4.11
Write Protect Channel >97 Operation Utility 8.3.1.5
Write Protect File >97 Operation Utility ... 7.2.1.7

Job Management >48 ... 2.2
Change Job Priority >04 Operation .. 2.2.4
Create Job >01 Operation .. 2.2.1
Delete Job >07 Operation .. 2.2.7
Get Job Information >09 Operation .. 2.2.8
Halt Job >02 Operation .. 2.2.2
Kill Executing Job >06 Operation ... 2.2.6
Map Name to Job 10 >05 Operation .. 2.2.5
Resume Halted Job >03 Operation .. 2.2.3

Key Indexed File Operations ' See KIF
KIF 110 Operations >00:

Backward Space >07 Operation ... 7.5.1.6
Close >01 Operation ... 7.5.1.2
Delete by Key >49 Operation .. 7.5.2.8
Delete Current >49 Operation .. 7.5.2.14
Forward Space >06 Operation ... 7.5.1.5
Insert >46 Operation .. 7.5.2.15
Open and Rewind >03 Operation .. 7.5.1.3
Open Random >40 Operation ... 7.5.2.1
Open >00 Operation ... 7.5.1.1
Read ASCII >09 Operation .. 7.5.1.7
Read by Key >42 Operation ... 7.5.2.2

A-a 2270507-9701

SVC Index

svc Paragraph

Read Current >42 Operation ... 7.5.2.9
Read File Characteristics >05 Operation 7.5.1.4
Read Greater or Equal >44 Operation .. 7.5.2.4
Read Greater>41 Operation .. 7.5.2.3
Read Next >45 Operation .. 7.5.2.11
Read Previous >48 Operation .. 7.5.2.10
Rewind >OE Operation ... 7.5.1.8
Rewrite >47 Operation .. 7.5.2.12
Set Currency Equal >50 Operation ... 7.5.2.5
Set Currency Greater>52 Operation .. 7.5.2.6
Set Currency Greater or Equal >51 Operation 7.5.2.7
Unlock >4A Operation .. 7.5.2.13

Kill Executing Job >06 Operation, Job Management >48 2.2.6
Kill Task >33 ... 4.10

Line Printer 1/0 Operations >00:
Close and Unload >04 Operation .. 6.8.5
Close >01 Operation .. 6.8.2
Close, Write EOF >02 Operation .. 6.8.3
Open and Rewind >03 Operation .. 6.8.4
Open >00 Operation .. 6.8.1
Rewind >OE Operation ... 6.8.10
Write ASCII >OB Operation ... 6.B. 7
Write EOF >OD Operation .. 6.8.9

Load Overlay>14 -... 10.5.3
Load Segment >09 Operation, Segment Management >40 10.5.4.8
Log Accounting Entry>47 .. 10.4.1

Magnetic Tape 1/0 Operations >00:
Backward Space >07 Operation ... 6.9.1.8
Close and Unload >04 Operation .. 6.9.1.5
Close >01 Operation ... 6.9.1.2
Close, Write EOF >02 Operation ... 6.9.1.3
Forward Space >06 Operation ... 6.9.1.7
Open and Rewind >03 Operation .. 6.9.1.4
Open >00 Operation ... 6.9.1.1
Read ASCII >09 Operation .. 6.9.1.9
Read Device Status >05 Operation ... 6.9.1.6
Read Direct >OA Operation ... 6.9.2.1
Rewi nd >OE Operation .. 6.9.1.12
Unload >OF Operation .. 6.9.1.13
Write ASCII >OB Operation .. 6.9.1.10
Write Direct >OC Operation ... 6.9.2.2
Write EOF >OD Operation ; 6.9.1.11

Map Name to Job ID >05 Operation, Job Management >48 2.2.5
Map Program Name To ID >31 .. 3.9
Master Read >19 Operation IPC, I/O Operations >00 8.3.3.4

2270507 -9701 Change 1 A-9

SVC Index

svc Paragraph

Master Write >1 B Operation I PC, 1/0 Operations >00 8.3.3.6
Modify Access Privileges >11 Operation:

Relative Record File, 1/0 Operations >00 .. 7.4.14
Sequential File, 1/0 Operations >00 ... 7.3.14

Modify >04 Operation, Semaphore >3D , 10.6.1.5
Multiple Record Read >59 Operation:

Relative Record Fi Ie, 1/0 Operations >00 .. 7.4.17
Sequential File, 1/0 Operations >00' 7.3.17

Multiple Record Write >5B Operation:
Relative Record Record File, 1/0 Operations >00 7.4.18
Sequential File, 1/0 Operations >00 ; 7.3.18

Name Management >43 ... 5.2.1
Delete Name >04 Operation .. 5.2.1.3
Determine Name's Value >00 Operation .. 5.2.1.1
Restore Name Segment >OF Operation ... 5.2.1.4
Set Name's Value >02 Operation .. 5.2.1.2

Open and Rewind >03 Operation:
Card Reader, 1/0 Operations >00 .. 6.10.1.4
Cassette, 1/0 Operations >00 ... 6.7.1.4
Disk, 1/0 Operations >00 .. 6.11.4
I PC, 1/0 Operations >00 .. 8.3.2.4
KIF, 1/0 Operations >00 .. 7.5.1.3
Line Printer, 1/0 Operations >00 ... 6.8.4
Magnetic Tape, 1/0 Operations >00 .. 6.9.1.4
Relative Record File, 1/0 Operations >00 ... 7.4.4
Sequential File, 1/0 Operations >00 .. 7.3.4
TPD, 1/0 Operations >00 .. 6.5.2.4
VDT, 1/0 Operations >00 .. 6.3.2.4
733 ASR, 1/0 Operations >00 .. , 6.4.2.4

Open Extend >12 Operation:
Relative Record File, 1/0 Operations >00 , ... 7.4.15
Sequential Fi Ie, 1/0 Operations >00 " ... 7.3.15

Open Random >40 Operation KIF, 1/0 Operations >00 7.5.2.1
Open >00 Operation:

Card Reader, 1/0 Operations >00 .. 6.10.1.1
Cassette, 1/0 Operations >00 ... 6.7.1.1
Disk, 1/0 Operations >00 .. 6.11.1
IPC, 1/0 Operations >00 , 8.3.2.1,8.3.3.1
KIF, 1/0 Operations >00 .. 7.5.1.1
Line Printer, 1/0 Operations >00 ... 6.8.1
Magnetic Tape, 1/0 Operations >00 .. 6.9.1.1
Relative Record Fi Ie, 1/0 Operations >00 ... 7.4.1
Sequential File, 1/0 Operations >00 .. 7.3.1
TPD, 1/0 Operations >00 .. 6.5.2.1
VDT, 1/0 Operations >00 .. 6.3.2.1
733 ASR, 1/0 Operations >00 .. 6.4.2.1

A-10 2270507-9701

SVC Index

svc Paragraph

Poll Status of Task >35 ... 10.7.6
Post Event >4F .. 10.6.2.3
Put Data >1 C ... 12.4

Read ASCII >09 Operation:
Card Reader, I/O Operations >00 .. 6.10.1.5
Cassette, I/O Operations >00 ... 6.7.1.8
KIF, I/O Operations >00 .. 7.5.1.7
Magnetic Tape, I/O Operations >00 .. 6.9.1.9
Relative Record File, I/O Operations >00 ... 7.4.9
Sequential File, I/O Operations >00 .. 7.3.9
TPD, I/O Operations >00 .. 6.5.2.7
VDT, I/O Operations >00 .. 6.3.2.7
733 ASR, I/O Operations >00 .. 6.4.2.7

Read by ADU >09 Operation Disk, I/O Operations >00 6.11.8
Read by Key >42 Operation KI F, I/O Operations >00 7.5.2.2
Read by Track >OA Operation Disk, I/O Operations >00 6.11.9
Read Call Block >1A Operation IPC, I/O Operations >00 8.3.3.5
Read Current >42 Operation KIF, I/O Operations >00 7.5.2.9
Read Deleted Sector >11 Operation Disk, I/O Operations >00 6.11.15
Read Device Status >05 Operation I PC, I/O Operations >00 8.3.3.3
Read Device Status >05 Operation:

Magnetic Tape, I/O Operations >00 .. 6.9.1.6
TPD, I/O Operations >00 .. 6.5.2.6
VDT, I/O Operations >00 .. 6.3.2.6
733 ASR, I/O Operations >00 .. 6.4.2.6

Read Direct >OA Operation:
Card Reader, I/O Operations >00 .. 6.10.2.1
Cassette, I/O Operations >00 ... 6.7.2.1
Magnetic Tape, I/O Operations >00 .. 6.9.2.1
TPD, I/O Operations >00 ... 6.5.3.13
VDT, I/O Operations >00 ... 6.3.3.21

Read File Characteristics >05 Operation:
KI F, I/O Operations> 00, ... 7.5.1.4
Relative Record File, I/O Operations >00 ... 7.4.6
Sequential File, I/O Operations >00 .. 7.3.6

Read Format >05 Operation Disk, I/O Operations >00 6.11.6
Read Greater or Equal >44 Operation KIF, I/O Operations >00 7.5.2.4
Read Greater>41 Operation KIF, I/O Operations >00 7.5.2.3
Read Next >45 Operation KIF, I/O Operations >00 7.5.2.11
Read Previous >48 Operation KIF, I/O Operations >00 7.5.2.10
Read/Write Task >20 .. 11.6
Read/Write TSB >2C ... 11.5
Redirect Assign LUNO >1C Operation IPC, I/O Operations >00 8.3.3.7
Release LUNO >93 Operation Utility, I/O Operations >00 6.2.2,7.2.1.4,8.3.1.4
Release Memory >13 ... 10.5.2
Release Segment >03 Operation, Segment Management >40 10.5.4.4

2270507·9701 A-11

SVC Index

svc Paragraph

Relative Record File 1/0 Operations >00:
Backward Space >07 Operation ',' 7.4.8
Close and Unload >04 Operation .. 7.4.5
Close >01 Operation .. 7.4.2
Close, Write EOF >02 Operation .. 7.4.3
Forward Space >06 Operation .. 7.4.7
Modify Access Privilege >11 Operation ... 7.4.14
Open and Rewind >03 Operation .. 7.4.4
Open Extend >12 Operation ... 7.4.15
Open >00 Operation .. 7.4.1
Read ASCII >09 Operation ... 7.4.9
Read File Characteristics >05 Operation ... 7.4.6
Rewind >OE Operation , .. 7.4.12
Rewrite >10 Operation ... 7.4.13
Unlock >4A Operation .. 7.4.16
Write ASCII >OB Operation .. 7.4.10
Write Logical EOF >OD Operation .. 7.4.11

Remote Get Event Character >05 Operation:
TPD, 1/0 Operations >00 ... 6.5.3.12
VDT, 1/0 Operations >00 , 6.3.3.20
733 ASR, 1/0 Operations >00 .. 6.4.3.9

Remove Channel Protection >96 Operation Util ity, 1/0 Operations >00 8.3.1.7
Reserve Segment >02 Operation, Segment Management >40 10.5.4.3
Reset End Action Status >3E .. 10.7.5.2
Reset Exclusive Use of Segment >OC Operation, Segment Management >40 10.5.4.11
Restore Name Segment >OF Operation, Name Management >43 5.2.1.4
Resume Halted Job >03 Operation, Job Management >48 2.2.3
Retrieve System Data >3F .. 11.2
Return Code Processing >4C .. 10.7.7
Return Common Data Address >1 B .. 12.3
Rewind >OE Operation:

Cassette, 1/0 Operations >00 .. 6.7.1.11
KIF, 1/0 Operations >00 .. 7.5.1.8
Line Printer, 1/0 Operations >00 .. 6.8.10
Magnetic Tape, 1/0 Operations >00 ... 6.9.1.12
Relative Record File, 1/0 Operations >00 .. 7.4.12
Sequential File, 1/0 Operations >00 ... 7.3.12
TPD, 1/0 Operations >00 ... 6.5.2.10
VDT, 1/0 Operations >00 .. 6.3.2.9

Rewind >03 Operation Cassette, 1/0 Operations >00 Open and 6.7.1.4
Rewrite >10 Operation:

Relative Record File, 1/0 Operations >00 .. 7.4.13
Sequential Fi Ie, 1/0 Operations >00 ... 7.3.13

Rewrite >47 Operation KIF, 1/0 Operations >00 7.5.2.12

A-12 2270507·9701

SVC Index

svc Paragraph

Scheduled Bid Task >1 F .. 4.3
Segment Management >40 " .. 10.5.4

Change Segment >00 Operation .. 10.5.4.1
Check Segment Status >04 Operation ... 10.5.4.5
Create Segment >01 Operation ... 10.5.4.2
Force Write Segment >05 Operation .. 10.5.4.6
Load Segment >09 Operation .. 10.5.4.8
Release Segment >03 Operation ... 10.5.4.4
Reserve Segment >02 Operation ... 10.5.4.3
Reset Exclusive Use of Segment >OC Operation 10.5.4.11
Set Exclusive Use of Segment >OB Operation 10.5.4.10
SetlReset Not Modified and Releasable >07 Operation 10.5.4.7
Unload Segment >OA Operation .. 10.5.4.9

Segment >29, Delete ProcedurelProgram .. 3.6
Self Identification >2E ... 10.7.4
Semaphore >3D ... 10.6.1

Initialize>03 Operation ... 10.6.1.4
Modify>04 Operation ... 10.6.1.5
Signal >00 Operation ... 10.6.1.1
Test >02 Operation ... 10.6.1.3
Wait >01 Operation , ... 10.6.1.2

Sequential File 1/0 Operations >00:
Backward Space >07 Operation ... 7.3.8
Close and Unload >04 Operation .. 7.3.5
Close >01 Operation .. 7.3.2
Close, Write EOF >02 Operation .. 7.3.3
Forward Space >06 Operation .. 7.3.7
Modify Access Privilege >11 Operation ... 7.3.14
Multiple Record Read >59 Operation ... 7.3.17
Multiple Record Write >5B Operation ... 7.3.18
Open and Rewind >03 Operation .. 7.3.4
Open Extend >12 Operation ... 7.3.15
Open >00 Operation .. 7.3.1
Read ASCII >09 Operation ... 7.3.9
Read File Characteristics >05 Operation ... 7.3.6
Rewind >OE Operation ... 7.3.12
Rewrite >10 Operation ... 7.3.13
Unlock >4A Operation .. 7.3.16
Write ASCII >OB Operation .. 7.3.10
Write EOF >OD Operation ... 7.3.11

Set Currency Equal >50 Operation KIF, 1/0 Operations >00 7.5.2.5
Set Currency Greater>52 Operation KIF, 1/0 Operations >00 7.5.2.6
Set Currency Greater or Equal >51 Operation KIF, 1/0 Operations >00 7.5.2.7
Set Date and Time>3B .. 10.7.1.2
Set Exclusive Use of Segment >08 Operation, Segment Management >40 10.5.4.10
Set Name's Value >02 Operation, Name Management >43 5.2.1.2
SetlReset Not Modified and Releasable >07 Operation, Segment Management >40 10.5.4.7
Signal >00 Operation, Semaphore>3D .. 10.6.1.1

2270507·9701 A-13

SVC Index

svc Paragraph

Store Registers >OE Operation Disk, 1/0 Opelrations >00 6.11.12
Suspend for Queue Input >24 _ 11.4
Symmetric Read >09 Operation IPC, 1/0 Operations >00 8.3.2.6
Symmetric Write >08 Operation IPC, 1/0 Ope-rations >00 8.3.2.7
System Log >21 ... 10.7.3

Test >02 Operation, Semaphore >3D .. 10.6.1.3
Time Delay >02 .. 4.4
TPD 1/0 Operations >00:

Close and Unload >04 Operation .. 6.5.2.5
Close >01 Operation ... 6.5.2.2
Close, Write EOF >02 Operation ... 6.5.2.3
Open and Rewind >03 Operation .. 6.5.2.4
Open >00 Operation ... 6.5.2.1
Read ASCII >09 Operation .. 6.5.2.7
Read Device Status >05 Operation ... 6.5.2.6
Read Direct >OA Operation .. 6.5.3.13
Remote Get Event Character>05 Operation 6.5.3.12
Rewind >OE Operation .. 6.5.2.10
Unload>OFOperation .. 6.5.2.11
Write ASCII >08 Operation ... 6.5.2.8
Write Direct >OC Operation .. 6.5.3.14
Write EOF >OD Operation .. 6.5.2.9

Unconditional Suspend >06 ... 4.7
Unload Disk Volume >34 .. 9.4
Unload Segment >OA Operation, Segment Management >40 ; 10.5.4.9
Unload >OF Operation:

Cassette, 1/0 Operations >00 .. 6.7.1.12
Magnetic Tape, 1/0 Operations >00 ... 6.9.1.13
TPD, 1/0 Operations >00 ... 6.5.2.11

Unlock >4A Operation:
KIF, 1/0 Operations >00 ... 7.5.2.13
Relative Record File, 1/0 Operations >00 .. 7.4.16
Sequential File, 1/0 Operations >00 ... 7.3.16

Unprotect File >96 Operation Utility, 1/0 Operations >00 7.2.1.9
Utility 1/0 Operations >00:

Add Alias>9A Operation .. 7.2.1.10
Assign LUNO >91 Operation ... 6.2.1,7.2.1.3,8.3.1.3
Assign New Pathname >95 Operation .. 7.2.1.6
Create Fi Ie >90 Operation .. 7.2.1.1
Create IPC Channel >9D Operation .. 8.3.1.1
Define Write Mode >9C Operation .. 7.2.1.12
Delete Alias >98 Operation .. 7.2.1.11
Delete File>92 Operation .. 7.2.1.2
Delete I PC Channel >9E Operation ... 8.3.1.2
Delete Protect Channel >98 Operation .. 8.3.1.6
Delete Protect File >98 Operation ... 7.2.1.8

A-14 2270507·9701

SVC Index

svc Paragraph

Delete Protect File >98 Operation ... 7.2.1.8
Release LUNO >93 Operation 6.2.2,7.2.1.4,8.3.1.4
Remove Channel Protection >96 Operation 8.3.1.7
Unprotect Fi Ie >96 Operation ... 7.2.1.9
Verify Device Name >99 Operation .. 6.2.3
Verify Pathname >99 Operation ... 7.2.1.5
Write Protect Channel >97 Operation ... 8.3.1.5
Write Protect File >97 Operation .. 7.2.1.7

VDT I/O Operations >00:
Close and Unload >04 Operation .. 6.3.2.5
Close >01 Operation ... 6.3.2.2
Close, Write EOF >02 Operation ... 6.3.2.3
Open and Rewind >03 Operation .. 6.3.2.4
Open >00 Operation ... 6.3.2.1
Read ASCII >09 Operation .. 6.3.2.7
Read Device Status >05 Operation ... 6.3.2.6
Read Direct >OA Operation .. 6.3.3.21
Remote Get Event Character >05 Operation 6.3.3.20
Rewind >OE Operation ... 6.3.2.9
Write ASCII >08 Operation ... 6.3.2.8
Write Direct >OC Operation .. 6.3.3.22

Verify Device Name >99 Operation Utility, I/O Operations >00 6.2.3
Verify Pathname >99 Operation Utility, I/O Operations >00 7.2.1.5

Wait for Any I/O >36 ... 5.3.1.2
Wait for Event >42 .. 10.6.2.2
Wait for I/O >01 ... 5.3.1.1
Wait >01 Operation, Semaphore >3D .. 10.6.1.2
Write ASCII >08 Operation:

Cassette, I/O Operations >00 ... 6.7.1.9
Line Printer, I/O Operations >00 , 6.8.7
Magnetic Tape, I/O Operations >00 ... 6.9.1.10
Relative Record File, I/O Operations >00 .. 7.4.10
Sequential File, I/O Operations >00 ... 7.3.10
TPD, I/O Operations >00 .. 6.5.2.8
VDT, I/O Operations >00 .. 6.3.2.8
733 ASR, I/O Operations >00 .. 6.4.2.8

Write by ADU >08 Operation Disk, I/O Operations >00 6.11.10
Write by Track >OC Operation Disk, I/O Operations >00 6.11.11
Write Deleted Sector>10 Operation Disk, I/O Operations >00 6.11.14
Write Direct >OC Operation:

Cassette, I/O Operations >00 ... 6.7.2.2
Magnetic Tape, I/O Operations >00 .. 6.9.2.2
TPD, I/O Operations >00 ... 6.5.3.14
VDT, I/O Operations >00 .. '.' 6.3.3.22

2270507-9701 A-15

SVC Index

svc Paragraph

Write EOF >OD Operation:
Cassette, 1/0 Operations >00 .. 6.7.1.10
IPC, 1/0 Operations >00 .. 8.3.2.8
Line Printer, 1/0 Operations >00 ... 6.8.9
Magnetic Tape, 1/0 Operations >00 ... 6.9.1.11
Sequential File, I/O Operations >00 ... 7.3.11
TPD, I/O Operations >00 .. 6.5.2.9
733 ASR, I/O Operations >00 .. 6.4.2.9

Write Format with Interleaving >12 Operation Disk, I/O Operations >00 6.11.16
Write Format >08 Operation Disk, I/O Operations >00 6.11.7
Write Logical EOF >OD Operation Relative l=tecord File, I/O Operations >00 7.4.11
Write Protect Channel >97 Operation Utility, I/O Operations >00 8.3.1.5
Write Protect File >97 Operation Utility, I/O Operations >00 7.2.1.7

733 ASR I/O Operations >00:
Close and Unload >04 Operation .. 6.4.2.5
Close >01 Operation ... 6.4.2.2
Close, Write EOF >02 Operation ... 6.4.2.3
Open and Rewi nd >03 Operation .. 6.4.2.4
Open >00 Operation ... 6.4.2.1
Read ASCII >09 Operation .. 6.4.2.7
Read Device Status >05 Operation ... 6.4.2.6
Remote Get Event Character >05 Operation 6.4.3.9
Write ASCII >OB Operation ... 6.4.2.8
Write EOF >OD Operation .. 6.4.2.9

>OA, Convert Binary to Decimal ASCII ... 10.2.1
>08, Convert Decimal ASCII to Binary ... 10.2.2
>OC, Convert Binary to Hexadecimal ASCII .. 10.2.3
>OD, Convert Hexadecimal ASCII to Binary .. 10.2.4
>OE, Activate Time Delay Task ... 4.5
>OF, Abort I/O .. 5.3.2
>00:

Add Alias >9A Operation Utility, I/O Operations 7.2.1.10
Assign LUNO >91 Operation Utility, I/O Operations 6.2.1,7.2.1.3,8.3.1.3
Assign New Pathname >95 Operation Utility, I/O Operations 7.2.1.6
Backward Space >07 Operation:

Cassette, I/O Operations ... 6.7.1.7
KIF, I/O Operations .. 7.5.1.6
Magnetic Tape, I/O Operations .. 6.9.1.8
Relative Record File, I/O Operations ... 7.4.8
Sequential File, I/O Operations ... 7.3.8

Close and Unload >04 Operation:
Card Reader, I/O Operations ... 6.10.1.5
Cassette, I/O Operations ... 6.7.1.5
IPC, I/O Operations .. 8.3.2.5
Line Printer, I/O Operations .. 6.8.5
Magnetic Tape, I/O Operations .. 6.9.1.5

A·16 2270507·9701

SVC Index

svc Paragraph

Relative Record File, I/O Operations ... 7.4.5
Sequential Fi Ie, 1/0 Operations ... 7.3.5
TPD, 1/0 Operations ... 6.5.2.5
VDT, 1/0 Operations " 6.3.2.5
733 ASR, 1/0 Operations .. 6.4.2.5

Close >01 Operation:
Card Reader, 1/0 Operations ... 6.10.1.2
Cassette, 1/0 Operations ... 6.7.1.2
IPC, I/O Operations ... 8.3.2.2,8.3.3.2
KIF, 1/0 Operations .. 7.5.1.2
Line Printer, I/O Operations .. 6.8.2
Magnetic Tape, I/O Operations .. 6.9.1.2
Relative Record File, I/O Operations ... 7.4.2
Sequential File, I/O Operations ... 7.3.2
TPD, I/O Operations ... 6.5.2.2
VDT, I/O Operations ... 6.3.2.2
733 ASR, I/O Operations ... 6.4.2.2

Close, Write EOF >02 Operation:
Cassette, I/O Operations ... 6.7.1.3
IPC, I/O Operations .. 8.3.2.3
Line Printer, I/O Operations .. 6.8.3
Magnetic Tape, 1/0 Operations .. 6.9.1.3
Relative Record File, I/O Operations ... 7.4.3
Sequential File, 1/0 Operations ... 7.3.3
TPD, 1/0 Operations ... 6.5.2.3
VDT, I/O Operations ... 6.3.2.3
733 ASR, I/O Operations .. 6.4.2.3

Create File >90 Operation Utility, I/O Operations 7.2.1.1
Create IPC Channel >9D Operation Utility, I/O Operations 8.3.1.1
Define Write Mode >9C Operation Utility, I/O Operations 7.2.1.12
Delete Alias >98 Operation Utility, I/O Operations 7.2.1.11
Delete by Key >49 Operation KIF, I/O Operations 7.5.2.8
Delete Current >49 Operation KIF, I/O Operations 7.5.2.14
Delete File >92 Operation Utility, I/O Operations 7.2.1.2
Delete IPC Channel >9E Operation Utility, I/O Operations 8.3.1.2
Delete Protect Channel >98 Operation Utility, I/O Operations 8.3.1.6
Delete Protect Fi Ie >98 Operation Uti I ity, I/O Operations 7.2.1.8
Device Dependent Communication Control >15 TPD, I/O Operations 6.5.2.12
Dummy Device, I/O Operations .. 6.12
Forward Space >06 Operation:

Cassette, I/O Operations ... 6.7.1.6
KIF, I/O Operations " .. 7.5.1.5
Magnetic Tape, I/O Operations .. 6.9.1.7
Relative Record File, I/O Operations ... 7.4.7
Sequential File, 1/0 Operations ... 7.3.7

Insert >46 Operation KIF, 1/0 Operations ... 7.5.2.15
I/O Operations .. 5.2.2,5.3
Master Read >19 Operation IPC, I/O Operations 8.3.3.4
Master Write >1 8 Operation IPC, I/O Operations 8.3.3.6

2270507·9701 A-17

SVC Index

svc Paragraph

Modify Access Privilege >11 Operation:
Relative Record File, 1/0 Operations .. 7.4.14
Sequential File, I/O Operations .. 7.3.14

Multiple Record Read >59 Operation:
Relative Record File, I/O Operations .. 7.4.17
Sequential File, I/O Operations .. 7.3.17

Multiple Record Write >58 Operation:
Relative Record File, I/O Operations .. 7.4.18
Sequential File, 1/0 Operations .. 7.3.18

Open and Rewind >03 Operation Card Reader, I/O Operations 6.10.1.4
Open and Rewind >03 Operation Cassette, I/O Operations 6.7.1.4
Open and Rewind >03 Operation:

Disk, I/O Operations ... 6.11.6
I PC, I/O Operations .. 8.3.2.4
KIF, I/O Operations .. 7.5.1.3
Line Printer, I/O Operations .. 6.8.4
Magnetic Tape, I/O Operations .. 6.9.1.4
Relative Record File, I/O Operations ... 7.4.4
Sequential File, I/O Operations ... 7.3.4
TPD, I/O Operations ... 6.5.2.4
VDT, I/O Operations ... 6.3.2.4
733 ASR, I/O Operations .. 6.4.2.4

Open Extend >12 Operation:
Relative Record File, I/O Operations .. 7.4.15
Sequential File, I/O Operations .. 7.3.15

Open Random >40 Operation KIF, I/O OpE~rations 7.5.2.1
Open >00 Operation:

Card Reader, I/O Operations ... 6.10.1.1
Cassette, I/O Operations ... 6.7.1.1
Disk, I/O Operations ... 6.11.1
I PC, I/O Operations ... 8.3.2.1,8.3.3.1
KIF, I/O Operations .. 7.5.1.1
Line Printer, I/O Operations .. 6.8.1
Magnetic Tape, I/O Operations .. 6.9.1.1
Relative Record File, I/O Operations ... 7.4.1
Sequential Fi Ie, 1/0 Operations ... 7.3.1
TPD, I/O Operations ... 6.5.2.1
VDT, I/O Operations ... 6.3.2.1
733 ASR, I/O Operations .. 6.4.2.1

Read ASCII >09 Operation:
Card Reader, I/O Operations " .. 6.10.1.6
Cassette, I/O Operations " ... 6.7.1.8
KIF, I/O Operations " ... 7.5.1.7
Magnetic Tape, I/O Operations ... 6.9.1.9
Relative Record File, I/O Operations ... 7.4.9
Sequential File, I/O Operations ... 7.3.9
TPD, I/O Operations .. 6.5.2.7
VDT, I/O Operations .. 6.3.2.7
733 ASR, I/O Operations ... 6.4.2.7

A-18 2270507·9701

SVC Index

svc Paragraph

Read by ADU >09 Operation Disk, 110 Operations 6.11.8
Read by Key >42 Operation KIF, 110 Operations 7.5.2.2
Read by Track >OA Operation Disk, 110 Operations 6.11.9
Read Call Block>1A Operation IPC, 110 Operations 8.3.3.5
Read Current >42 Operation KIF, 110 Operations 7.5.2.9
Read Deleted Sector>11 Operation Disk, 110 Operations 6.11.15
Read Device Status >05 Operation IPC, 110 Operations 8.3.3.3
Read Device Status >05 Operation:

Magnetic Tape, 110 Operations .. 6.9.1.6
TPD, 110 Operations ... 6.5.2.6
VDT, 110 Operations ... , 6.3.2.6
733 ASR, I/O Operations , 6.4.2.6

Read Direct >OA Operation:
Card Reader, I/O Operations , 6.10.2.1
Cassette, I/O Operations ... 6.7.2.1
Magnetic Tape, I/O Operations .. 6.9.2.1
TPD, I/O Operations .. 6.5.3.13
VDT, I/O Operations .. 6.3.3.21

Read File Characteristics >05 Operation:
KI F, I/O Operations .. 7.5.1.4
Relative Record File, I/O Operations ... 7.4.6
Sequential File, 110 Operations ... 7.3.6

Read Format >05 Operation Disk, I/O Operations 6.11.6
Read Greater or Equal >44 Operation KIF, I/O Operations 7.5.2.4
Read Greater>41 Operation KIF, I/O Operations 7.5.2.3
Read Next >45 Operation KIF, I/O Operations 7.5.2.11
Read Previous >48 Operation KIF, I/O Operations 7.5.2.10
Redirect Assign LUNO >1C Operation IPC, I/O Operations 8.3.3.7
Release LUNO >93 Operation Utility, I/O Operations 6.2.2,7.2.1.4,8.3.1.4
Remote Get Event Character >05 Operation:

TPD, I/O Operations .. 6.5.3.12
VDT, I/O Operations .. 6.3.3.20
733 ASR, I/O Operations .. 6.4.3.9

Remove Channel Protection >96 Operation Utility, I/O Operation 8.3.1.7
Rewind >OE Operation:

Cassette, I/O Operations .. 6.7.1.11
KI F, I/O Operations .. 7.5.1.8
Line Printer, I/O Operations .. 6.8.8
Magnetic Tape, I/O Operations ... 6.9.1.12
Relative Record File, I/O Operations .. 7.4.12
Sequential File, I/O Operations .. 7.3.12
TPD, I/O Operations .. 6.5.2.10
VDT, I/O Operations ... 6.3.2.9

Rewrite >10 Operation:
Relative Record File, I/O Operations .. 7.4.13
Sequential File, I/O Operations .. 7.3.13

Rewrite >47 Operation KIF, I/O Operations 7.5.2.12
Set Currency Equal >50 Operation KIF, I/O Operations 7.5.2.5
Set Currency Greater>52 Operation KIF, I/O Operations 7.5.2.6

2270507-9701 A-19

SVC Index

svc Paragraph

Set Currency Greater or Equal >51 Operation KIF, 110 Operations 7.5.2.7
Store Registers >OE Operation Disk, 1/0 Operations 6.11.12
Symmetric Read >09 Operation IPC, 1/0 Operations 8.3.2.6
Symmetric Write >08 Operation IPC, 1/0 Operations 8.3.2.7
Unload >OF Operation:

Cassette, 1/0 Operations , 6.7.1.12
Magnetic Tape, 1/0 Operations , 6.9.1.13
TPD, 1/0 Operations , 6.5.2.11

Unlock >4A Operation:
KIF, 1/0 Operations ... 7.5.2.13
Relative Record File, 1/0 Operations .. 7.4.16
Sequential File, 1/0 Operations .. 7.3.16

Unprotect File >96 Operation Utility, 1/0 Operations 7.2.1.9
Verify Device Name >99 Operation Utility, 1/0 Operations 6.2.3
Verify Pathname >99 Operation Utility, 1/0 Operations .. , 7.2.1.5
Write ASCII >08 Operation:

Cassette, 1/0 Operations ... 6.7.1.9
Line Printer, 1/0 Operations .. 6.8.6
Magnetic Tape, 1/0 Operations ... 6.9.1.10
Relative Record File, 1/0 Operations .. 7.4.10
Sequential File, 1/0 Operations ... ' ... 7.3.10
TPD, 1/0 Operations ... 6.5.2.8
VDT, 1/0 Operations ... 6.3.2.8
733 ASR, 1/0 Operations .. 6.4.2.8

Write by ADU >08 Operation Disk, 1/0 OpE!rations 6.11.10
Write by Track >OC Operation Disk, 1/0 Operations 6.11.11
Write Deleted Sector >1 0 Operation Disk, 1/0 Operations 6.11.14
Write Direct >OC Operation:

Cassette, 1/0 Operations ... 6.7.2.2
Magnetic Tape, 1/0 Operations .. 6.9.2.2
TPD, 1/0 Operations .. 6.5.3.14
VDT, 1/0 Operations .. 6.3.3.22

Write EOF >OD Operation:
Cassette, 1/0 Operations '," 6.7.1.10
I PC, 1/0 Operations .. 8.3.2.8
Line Printer, 1/0 Operations .. 6.8.7
Magnetic Tape, 1/0 Operations ... 6.9.1.11
Sequential Fi Ie, 1/0 Operations .. 7.3.11
TPD, 1/0 Operations ... 6.5.2.9
733 ASR, 1/0 Operations .. 6.4.2.9

Write Format with Interleaving >12 Operation Disk, 1/0 Operations 6.11.16
Write Format >08 Operation Disk, 1/0 Operations 6.11.7
Write Logical EOF >OD Operation Relativl3 Record File, 1/0 Operations 7.4.11
Write Protect Channel >97 Operation Util ity, 1/0 Operations O.V. 1.0

Write Protect File >97 Operation Utility, 1/0 Operations 7.2.1.7
>01, Wait for 1/0 , ... 5.3.1.1
>02, Time Delay ... 4.4

A·20 2270507-9701

SVC Index

svc Paragraph

>03, Get Date and Time ... 10.7.1.1
>04, End of Task ; ' '" .4.11
>06, Unconditional Suspend ... 4.7
>07, Activate Suspended Task ... 4.8
>09, Extend Time Slice .. 4.9
>1 B, Return Common Data Address .. 12.3
>1 C, Put Data .. 12.4
>1D,GetData ' ' 12.5
>1 F, Scheduled Bid Task , ... 4.3
>10, Get Common Data Address ... 12.2
>11 j Change Task Priority ... 4.6
>12, Get Memory .. 10.5.1
>13, Release Memory .. 10.5.2
>14, Load Overlay ... 10.5.3
>1'7, Get Task Bid Parameters ... 10.7.2
>2A, Delete Overlay .. 3.7
>2B, Execute Task ' 4.2
>2C, Read/Write TSB ... 11.5
>20, Read/Write Task ; ... 11.6
>2E, Self Identification ... 10.7.4
>2F, Get End Action Status .. 10.7.5.1
>20, Install Disk Volume .. 9.3
>21, System Log .. 10.7.3
>22, Disk Management ... 11.3
>24, Suspend for Queue Input ... 11.4
>25, Install Task Segment ... 3.2
>26, Install Procedure/Program Segment .. 3.3
>27, I nstall Overlay ... 3.4
>28, Delete Task ... 3.5
>29, Delete Procedure/Program Segment .. 3.6
>3B, Set Date and Time ... 10.7.1.2
>30:

Initialize >03 Operation, Semaphore ,. ~ 10.6.1.4
Modify >04 Operation, Semaphore .. 10.6.1.5
Semaphore .. 10.6.1
Signal >00 Operation, Semaphore .. 10.6.1.1
Test >02 Operation, Semaphore .. 10.6.1.3
Wait >01 Operation, Semaphore .. 10.6.1.2

>3E, Reset End Action Status .. 10.7.5.2
>3F, Retrieve System Data ... 11.2
>31, Map Program Name To 10 ... 3.9
>33, Kill Task ... 4.10
>34, Unload Disk Volume .. 9.4
>35, Poll Status of Task ... 10.7.6
>36, Wait for Any I/O ... 5.3.1.2
>37, Assign Program File Space .. 3.8
>38, Initialize New Disk Volume .. 9.2

2270507·9701 Change 1 A-21

SVC Index

svc Paragraph

>40:
Change Segment >00 Operation, Segment Management 10.5.4.1
Check Segment Status >04 Operation, Segment Management 10.5.4.5
Create Segment >01 Operation, Segment Management 10.5.4.2
Force Write Segment >05 Operation, Se9ment Management 10.5.4.6
Load Segment >09 Operation, Segment Management 10.5.4.8
Release Segment >03 Operation, Segment Management 10.5.4.4
Reserve Segment >02 Operation, Segment Management 10.5.4.3
Reset Exclusive Use of Segment >OC Operation, Segment Management 10.5.4.11
Segment Management ... 10.5.4
Set Exclusive Use of Segment >08 Operation, Segment Management 10.5.4.10
Set/Reset Not Modified and Releasable >07 Operation, Segment Management 10.5.4.7
Unload Segment >OA Operation, Segment Management 10.5.4.9

>41, Initiate Event .. 10.6.2.1
>42, Wait for Event ... 10.6.2.2
>43:

Delete Name >04 Operation, Name Mana.gement 5.2.1.3
Determi ne Name's Value >00 Operation, Name Management 5.2.1.1
Name Management ... 5.2.1
Restore Name Segment >OF Operation, Name Management 5.2.1.4
Set Name's Value >02 Operation, Name Management 5.2.1.2

>45, Get Encrypted Value ... 10.3.1
>46, Get Decrypted Value ... 10.3.2
>47, Log Accounting Entry .. 10.4.1
>48:

Change Job Priority >04 Operation, Job Management 2.2.4
Create Job >01 Operation, Job Management .. 2.2.1
Delete Job >07 Operation, Job Management .. 2.2.7
Get Job Information >09 Operation, Job Management 2.2.8
Halt Job >02 Operation, Job Management .. 2.2.2
Job Management .. 2.2
Kill Executing Job >06 Operation, Job Management 2.2.6
Map Name to Job ID >05 Operation, Job Management 2.2.5
Resume Halted Job >03 Operation, Job Management 2.2.3

>49, Get Accounting Information ... 10.4.2
>4C, Return Code Processing ... 10.7.7
> 4F, Post Event .. 10.6.2.3

A-22 Change 1 2270507·9701

Appendix B

ASCII Device 1/0 Operations Tables

B.1 GENERAL

DNOS supports ASCII I/O operations with all devices. This appendix consists of the following
tables that show key codes generated by DNOS supported terminals and an explanation of what
the DSRs do with the codes according to the requested operation, tables that show graphics char­
acter sets, and a table that shows KIF collating sequences according to country code.

B.2 CHARACTER TYPES

Table B-1 through Table B-6 show how the DSR treats the ASCII characters for each key on the 911
VDT, 931 VDT, 940 VDT, Business System terminal, 820 KSR, and 783 TPD, respectively. The 783
TPD is representative of the TPD class of terminals. The column headings for each table mean the
following:

ASCII Character
The defined ASCII character. Characters >00 through> 1 F and> 7F are control characters
and are not printable.

Terminal Key
The key you press on the terminal to generate the ASCII character.

Terminal Generated Code

Type

The hexadecimal code generated by the terminal for that key. In the notation A/B, A is the
code when the terminal is set to transmit even parity, and B is the code when the terminal is
set to transmit odd parity. For the TPD DSR, this code is returned to your task when the
device is in eight-bit ASCII mode and your task issues a Read Direct operation with the eight­
bit data option. In pass thru mode on the 931,940, and Business System terminals, this code
is returned to your task, except for DC1 and DC3, which the DSR never returns. The 931, 940,
and Business System terminals generate two or three character escape sequences for some
keys. For example, the F1 key on the 931 generates 1 B6931 (ESC i 1).

Indicates one of the following:

S = System edit character
E = Event key
T = Task edit character
H = Hold character
F = End-of-file
R = End-of-record

2270507 ·9701 B·1

ASCII Device I/O Operations Tables

ASCII Task Edit
Lists the codes returned to your task for this key when your task is doing a Read ASCII opera­
tion with the task edit flag set and the dHvice has been opened in event key mode.

Buffer
The code placed in the read buffer. If there is no entry, no code is placed in the read
buffer.

Event

Flag

The code placed in the event byte of the call block. If there is no entry, no code is placed
in the event byte.

The flag or flags set in the system flags byte of the call block when this key is received.
EVT means the event flag is set. EOF means the end-of-file flag is set.

ASCII
The code returned to your task for thiis key when your task is doing a simple Read ASCII
operation with no special flags set. If there is no entry in this column, nothing is returned.

Direct
The code returned to your task for this key when your task is doing a Read Direct operation
with no special flags set. This column is not applicable to a 911,931,940, or Business System
terminal since a Read Direct on these terminals does not interact with the keyboard.

Figure B-1 through Figure B-3 show graphics character sets. To read or write graphics characters,
an extended call block must be used with the graphics bit set in the extended flags. Figure B-1
shows the keyboard positions of the keys that produce graphics on the 911.

Figure B-2 shows the graphics characters for the 931. The chart on the left shows the characters
and the ASCII codes they produce. For exa.mple, an uppercase A produces ASCII code >41. The
top row contains the first digit of the code; the left column contains the second digit. If you are
using the special character set, the chart on the right shows the graphics characters and the ASCII
codes they produce. For example, the question mark (?) key produces the graphics character asso­
ciated with the ASCII code >3F.

Figure B-3 shows the graphics characters for the 940. The chart on the left shows the graphics
characters and the ASCII codes they produce. For example, a left arrow (-) produces ASCII
code >4E. The top row contains the first digit of the code; the left column contains the second
digit. The chart on the left shows the keyboard positions of the keys that produce these graphics
characters.

8·2 2270507-9701

ASCII Device I/O Operations Tables

Table B·1. 911 VOT Key Character Code Transformations

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

NULL (CONTROL) 3 00 20 80 00 N/A*
SOH (CONTROL) A 01 20 81 00
STX (CONTROL) B 02 20 82 00
ETX (CONTROL) C 03 20 83 00
EOT (CONTROL) D 04 20 84 00
ENQ (CONTROL) E 05 20 85 00
ACK (CONTROL) F 06 20 86 00
BELL (CONTROL)G 07 20 87
BS (CONTROL) H 08
HT (CONTROL) I 09 20 89
LF (CONTROL) J OA 20 8A
VT (CONTROL) K OB 20 8B
FF (CONTROL) L OC 20 8C
CR (CONTROL) M OD 20 8D 00
CR RETURN OD STR 20 8D 00
SO (CONTROL) N OE 20 8E
SI (CONTROL) 0 OF 20 8F
DLE (CONTROL) P 10
DC1 (CONTROL)Q 11
DC2 (CONTROL) R 12 20 20 00
DC3 (CONTROL) S 13 F 20 93 EOF OOEOF
DC4 (CONTROL)T 14 20 94
NAK (CONTROL) U 15 20 95
SYN (CONTROL) V 16 20 96 00
ETB (CONTROL)W 17 20 97 00
CAN (CONTROL) X 18 20 98 00
EM (CONTROL) Y 19 20 99 00
SUB (CONTROL)Z 1A 20 9A 00
ESC ESC 1B 20 9B 00
FS (CONTROL) , 1C 20 9C 00
GS (CONTROL) + 1D 20 9D 00
RS (CONTROL) . 1E 20 9E 00
US (CONTROL) I 1F 20 9F 00
Space Space bar 20 20 20 20
! ! 21 21 21 21

22 22 22 22
23 23 23 23
$ $ 24 24 24 24
% % 25 25 25 25
& & 26 26 26 26

27 27 27 27
(28 28 28 28
) 29 29 29 29
* 2A 2A 2A 2A

Note:

* Not applicable, does not interact with keyboard.

2270507·9701 B·3

ASCII Device I/O Operations Tables

Table B·1. 911 VOT Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

+ + 28 28 28 28
2C 2C 2C 2C
2D 2D 2D 2D
2E 2E 2E 2E

I I 2F 2F 2F 2F
0 0 30 30 30 30
1 1 31 31 31 31
2 2 32 32 32 32
3 3 33 33 33 33
4 4 34 34 34 34
5 5 35 35 35 35
6 6 36 36 36 36
7 7 37 37 37 37
8 8 38 38 38 38
9 9 39 39 39 39

3A 3A 3A 3A
38 38 38 38

< < 3C 3C 3C 3C
= = 3D 3D 3D 3D
> > 3E 3E 3E 3E
? ? 3F 3F 3F 3F
@ @ 40 40 40 40
A A 41 41 41 41
8 8 42 42 42 42
C C 43 43 43 43
D D 44 44 44 44
E E 45 45 45 45
F F 46 46 46 46
G G 47 47 47 47
H H 48 48 48 48
I I 49 49 49 49
J J 4A 4A 4A 4A
K K 48 48 48 48
L L 4C 4C 4C 4C
M M 4D 4D 4D 4D
N N 4E 4E 4E 4E
0 0 4F 4F 4F 4F
P P 50 50 50 50
Q Q 51 51 51 51
R R 52 52 52 52
S S 53 53 53 53
T T 54 54 54 54
U U 55 55 55 55
V V 56 56 56 56
W W 57 57 57 57

Note:

* Not applicable, does not interact with keyboard.

B·4 2270507 ·9701

ASCII Device I/O Operations Tab/es

Table B·1. 911 VOT Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

X X 58 58 58 58
y y 59 59 59 59
Z Z 5A 5A 5A 5A
[[58 58 58 58
\ (CONTROL)_ 5C 5C 5C 5C
]] 50 50 50 50
1\ A 5E 5E 5E 5E

5F 5F 5F 5F
(CONTROL) 9 60 60 60 60

a a 61 61 61 61
b b 62 62 62 62
c c 63 63 63 63
d d 64 64 64 64
e e 65 65 65 65
f f 66 66 66 66
9 9 67 67 67 67
h h 68 68 68 68

69 69 69 69
j j 6A 6A 6A 6A
k k 68 68 68 68
I 6C 6C 6C 6C
m m 60 60 60 60
n n 6E 6E 6E 6E
0 0 6F 6F 6F 6F
P P 70 70 70 70
q q 71 71 71 71

72 72 72 72
s s 73 73 73 73
t t 74 74 74 74
u u 75 75 75 75
v v 76 76 76 76
w w 77 77 77 77
x x 78 78 78 78
Y Y 79 79 79 79
z z 7A 7A 7A 7A
{ (CONTROL) ; 78 78 78 78
I (CONTROL) 8 7C 7C 7C 7C
} (CONTROL) , 70 70 70 70

(CONTROL) 0 7E 7E 7E 7E
OEL (CONTROL) . 7F

ERASE FIELO 80 S
ERASE INPUT 81 ST 20 8E
HOME 82 ST 20 8C
TA8 83 ST 20 89

Note:

* Not applicable, does not interact with keyboard.

2270507·9701 B·5

ASCII Device I/O Operations Tables

Table B·1. 911 VOT Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Typ'9 Buffer Event Flag ASCII Direct

DELCHAR 84 S
SKIP 85 ST 20 8B
INS CHAR 86 S
FIELD left 87 T 20 94
Left arrow 88 S
Up arrow 89 T 20 95
Right arrow 8A S 20 20 20
Down arrow 8B T 20 8A
FIELD right 8C T 20 87
(CONTROL) 5 80 E 20 90 EVT
(CONTROL) 6 8E E 20 9E EVT
(CONTROL) 7 8F E 20 9F EVT
(CONTROL) 1 90 E 20 80 EVT
(CONTROL) 2 91 E 20 9A EVT
F1 92 E 20 81 EVT
F2 93 E 20 82 EVT
F3 94 E 20 83 EVT
F4 95 E 20 84 EVT
F5 96 E 20 85 EVT
F6 97 E 20 86 EVT
F7 98 E 20 96 EVT
F8 99 E 20 97 EVT
PRINT 9A E 20 99 EVT
CMD 9B E 20 98 EVT
Blank orange 9C H
Blank gray 9F T 20 8F
ENTER AO TF OOEOF 93 EOF
(CONTROL) 4 A1 EF 20 9C EVT

Note:

* Not applicable, does not interact with keyboa.rd.

B·6 2270507·9701

ASCII Device I/O Operations Tables

Table B·2. 931 VOT Key Character Code Transformations

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

NULL (ALT) 1 00
SOH (CTRL) A 01 N/A1
STX (CTRL) B 02
ETX (CTRL) C 03
EOT (CTRL) 0 04
ENQ (CTRL) E 05
ACK (CTRL) F 06
BELL (CTRL) G 07
BS BACKSPACE 08
BS (CTRL) H 08
HT TAB 09 20 89
HT (CTRL) I 09 20 89 00
LF (CTRL) J OA 20 87 00
VT (CTRL) K OB
FF (CTRL) L OC
CR (CTRL) M 00 20 80 00
CR RETURN 00 20 80 00
CR ENTER 00 F 20 93 EOF OOEOF
SO (CTRL) N OE
SI (CTRL) 0 OF
OLE (CTRL) P 10
OC1 (CTRL) Q 112
OC2 (CTRL) R 12
OC3 (CTRL) S 132 H
OC4 (CTRL) T 14
NAK (CTRL) U 15
SYN (CTRL) V 16
ETB (CTRL) W 17
CAN (CTRL) X 18 20 98 00
EM (CTRL) Y 19
SUB (CTRL) Z 1A
ESC ESC 1B
ESC (CTRL) [1B
FS (CTRL) , 1C
GS (CTRL)] 10
RS (CTRL) . 1E
US (CTRL) I 1F
Space Space bar 20 20 20 20
! ! 21 21 21 21

22 22 22 22
23 23 23 23
$ $ 24 24 24 24
% % 25 25 25 25

Notes:

1 Not applicapable, does not interact with the keyboard.
2 The OSR recognizes OC1 and OC3 but it never returns them to the application.

2270507 ·9701 8·7

ASCII Device I/O Operations Tables

Table B·2. 931 VOT Key Charac:ter Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code TypEt Buffer Event Flag ASCII Direct

& & 26 26 26 26
27 27 27 27

((28 28 28 28
)) 29 29 29 29
2A 2A 2A 2A
+ + 28 28 28 28

2C 2C 2C 2C
2D 2D 2D 2D
2E 2E 2E 2E

I I 2F 2F 2F 2F
0 0 30 30 30 30
1 1 31 31 31 31
2 2 32 32 32 32
3 3 33 33 33 33
4 4 34 34 34 34
5 5 35 35 35 35
6 6 36 36 36 36
7 7 37 37 37 37
8 8 38 38 38 38
9 9 39 39 39 39

3A 3A 3A 3A
38 38 38 38

< < 3C 3C 3C 3C
= = 3D 3D 3D 3D
> > 3E 3E 3E 3E
? ? 3F 3F 3F 3F
@ @ 40 40 40 40
A A 41 41 41 41
8 8 42 42 42 42
C C 43 43 43 43
D D 44 44 44 44
E E 45 45 45 45
F F 46 46 46 46
G G 47 47 47 47
H H 48 48 48 48
I I 49 49 49 49
J J 4A 4A 4A 4A
K K 48 48 48 48
L L 4C 4C 4C 4C
M M 40 40 40 40
N N 4E 4E 4E 4E
0 0 4F 4F 4F 4F
P P 50 50 50 50
Q Q 51 51 51 51

Notes:

1 Not applicapable, does not interact with the keyboard.
2 The OSR recognizes OC1 and OC3 but it never returns them to the application.

B·8 2270507·9701

ASCII Device I/O Operations Tables

Table B·2. 931 VOT Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

R R 52 52 52 52
S S 53 53 53 53
T T 54 54 54 54
U U 55 55 55 55
V V 56 56 56 56
W W 57 57 57 57
X X 58 58 58 58
Y Y 59 59 59 59
Z Z 5A 5A 5A 5A
[[58 58 58 58

5C 5C 5C 5C
50 50 50 50

1\ 1\ 5E 5E 5E 5E
5F 5F 5F 5F
60 60 60 60

a a 61 61 61 61
b b 62 62 62 62
c c 63 63 63 63
d d 64 64 64 64
e e 65 65 65 65
f f 66 66 66 66
g g 67 67 67 67
h h 68 68 68 68

69 69 69 69
j j 6A 6A 6A 6A
k k 68 68 68 68
I I 6C 6C 6C 6C
m m 60 60 60 60
n n 6E 6E 6E 6E
0 0 6F 6F 6F 6F
P P 70 70 70 70
q q 71 71 71 71
r r 72 72 72 72
s s 73 73 73 73
t t 74 74 74 74
u u 75 75 75 75
v v 76 76 76 76
w w 77 77 77 77
x x 78 78 78 78
Y Y 79 79 79 79
z z 7A 7A 7A 7A
{ 78 78 78 78
I 7C 7C 7C 7C

Notes:

1 Not applicapable, does not interact with the keyboard.
2 The OSR recognizes OC1 and OC3 but it never returns them to the application.

2270507-9701 B·9

ASCII Device flO Operations Tables

Table B·2. 931 VOT Key Charac:ter Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Typc~ Buffer Event Flag ASCII Direct

70 70 70 70
7E 7E 7E 7E

(SHIFT) TA8 1832
(SHIFT) 81ank
gray 183C
ERASE FIELD 1830
Up arrow 1841 20 95
Down arrow 1842 20 8A
Right arrow 1843 20 20 20
Left arrow 1844
HOME 1848 20 8C
(SHIFT) ERASE
FIELD 1849
(SHIFT) ERASE
INPUT 184A
ERASE INPUT 1848 20 8E
(SHIFT)CMD 184C
81ank gray 184E 20 8F
(SHIFT)DEL S
CHAR 184F S
INS CHAR 1850 S
DELCHAR 1851 S
PRINT 1857 STE 20 99 EVT
(SHIFT) 81ank S
orange 1865
(SHIFT) ESC 1866 STE 20 98 00
81ank orange 1867 S
CMD 1868 SE 20 98 EVT
F1 186931 E 20 81 EVT
F2 186932 E 20 82 EVT
F3 186933 E 20 83 EVT
F4 186934 E 20 84 EVT
F5 186935 E 20 85 EVT
F6 186936 E 20 86 EVT
F7 186937 E 20 96 EVT
F8 186938 E 20 97 EVT
F9 186939 E 20 80 EVT
F10 18693A E 20 9A EVT
F11 186938 E 20 9C EVT
F12 18693C E 20 90 EVT
(SHIFT) F1 186930 E 20 9E EVT
(SHIFT) F2 18693E E 20 9F EVT

Notes:

1 Not applicable, does not interact with the keyboard.
2 The DSR recognizes DC1 and DC3 but never returns them to the application.

8·10 2270507 ·9701

ASCII Device I/O Operations Tab/es

Table B·2. 931 VOT Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated

Character Key Code Type

(SHIFT) F3 18693F
(SHIFT) F4 186940
(SHIFT) F5 186941
(SHIFT) F6 186942
(SHIFT) F7 186943
(SHIFT) F8 186944
(SHIFT) F9 186945
(SHIFT) F10 186946
(SHIFT) F11 186947
(SHIFT) F12 186948
FIELD right 18696F
SKIP 1873
FIELD left 1874

Notes:

1 Not applicapable, does not interact with the keyboard.

ASCII Task Edit
Buffer Event Flag

ST
ST
ST

20
20
20

87
88
94

2 The DSR recognizes DC1 and DC3 but it never returns them to the application.

ASCII

Table B·3. 940 VOT Key Character Code Transformations

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII

NULL (CTRL) 00
SOH (CTRL) A 01
STX (CTRL) 8 02
ETX (CTRL) C 03
EOT (CTRL) D 04
ENQ (CTRL) E 05
ACK (CTRL) F 06
8ELL (CTRL) G 07
8S 8ACKSPACE 08
8S (CTRL) H 08
HT TA8 right 09 20 89 00
HT (CTRL) I 09 20 89 00
LF LINE FEED OA 20 87
LF (CTRL) J OA 20 87
VT (CTRL) K 08

Notes:

1 Not applicable, does not interact with the keyboard.
2 The DSR recognizes DC1 and DC3 but never returns them to the application.

2270507-9701

Direct

Direct

N/A1

B·11

ASCII Device I/O Operations Tables

Table B·3. 940 VOT Key Chara(:ter Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

FF (CTRL) L OC
CR (CTRL) M 00 20 80 00
CR RETURN 00 20 80 00
SO (CTRL) N OE
SI (CTRL) 0 OF
OLE (CTRL) P 10
OC1 (CTRL) Q 112
OC2 (CTRL) R 12
OC3 (CTRL) S 132 H
OC4 (CTRL) T 14
NAK (CTRL) U 15
SYN (CTRL) V 16
ETB (CTRL)W 17
CAN (CTRL) X 18 20 98 00
EM (CTRL) Y 19
SUB (CTRL) Z 1A
ESC ESC 1B
ESC (CTRL) [1B
FS (CTRL) \ 1C
GS (CTRL)] 10
RS SH I FT/(CTRL) " 1E
US SHIFT/(CTRL) _ 1F

Space Space bar 20 20 20 20
! ! 21 21 21 21

22 22 22 22
23 23 23 23
$ $ 24 24 24 24
% % 25 25 25 25
& & 26 26 26 26

27 27 27 27
28 28 28 28
29 29 29 29
2A 2A 2A 2A

+ + 2B 2B 2B 2B
2C 2C 2C 2C
20 20 20 20
2E 2E 2E 2E

I I 2F 2F 2F 2F
0 0 30 30 30 30
1 1 31 31 31 31
2 2 32 32 32 32
3 3 33 33 33 33
4 4 34 34 34 34

Notes:

1 Not applicable, does not interact with the keyb()ard.
2 The OSR recognizes OC1 and DC3 but never retlurns them to the application.

B·12 2270507·9701

ASCII Device I/O Operations Tables

Table B·3. 940 VOT Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

5 5 35 35 35 35
6 6 36 36 36 36
7 7 37 37 37 37
8 8 38 38 38 38
9 9 39 39 39 39

3A 3A 3A 3A
38 38 38 38

< < 3C 3C 3C 3C
= 3D 3D 3D 3D
> > 3E 3E 3E 3E
? ? 3F 3F 3F 3F
@ @ 40 40 40 40
A A 41 41 41 41
8 8 42 42 42 42
C C 43 43 43 43
0 0 44 44 44 44
E E 45 45 45 45
F F 46 46 46 46
G G 47 47 47 47
H H 48 48 48 48
I I 49 49 49 49
J J 4A 4A 4A 4A
K K 48 48 48 48
L L 4C 4C 4C 4C
M M 40 40 40 40
N N 4E 4E 4E 4E
0 0 4F 4F 4F 4F
P P 50 50 50 50
Q Q 51 51 51 51
R R 52 52 52 52
S S 53 53 53 53
T T 54 54 54 54
U U 55 55 55 55
V V 56 56 56 56
W W 57 57 57 57
X X 58 58 58 58
Y Y 59 59 59 59
Z Z 5A 5A 5A 5A
[[58 58 58 58
\ \ 5C 5C 5C 5C
]] 50 50 50 50
A A 5E 5E 5E 5E

Notes:

1 Not applicable, does not interact with the keyboard.
2 The OSR recognizes OC1 and OC3 but never returns them to the application.

2270507 ·9701 B·13

ASCII Device I/O Operations Tables

.~

Table B·3. 940 VOT Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

5F 5F 5F 5F
60 60 60 60

a a 61 61 61 61
b b 62 62 62 62
c c 63 63 63 63
d d 64 64 64 64
e e 65 65 65 65
f f 66 66 66 66
g g 67 67 67 67
h h 68 68 68 68

69 69 69 69
j j 6A 6A 6A 6A
k k 6B 6B 6B 6B
I I 6C 6C 6C 6C
m m 60 60 60 60
n n 6E 6E 6E 6E
0 0 6F 6F 6F 6F
P P 70 70 70 70
q q 71 71 71 71

r 72 72 72 72
s s 73 73 73 73
t t 74 74 74 74
u u 75 75 75 75
v v 76 76 76 76
w w 77 77 77 77
x x 78 78 78 78
Y Y 79 79 79 79
z z 7A 7A 7A 7A
{ { 7B 7B 7B 7B
I I 7C 7C 7C 7C
} } 70 70 70 70

7E 7EI 7E 7E
TAB left 1B32
ERASE EOS 1B30
Up arrow 1B41 20 95
Down arrow 1B42 20 8A
Right arrow 1B43 20 20 20
Left arrow 1B44
HOME 1B48 20 8C
ERASE MSG 1B49
ERASE ALL 1B4B 20 8E
INS LINE 1B50 S

Notes:

1 Not applicapable, does not interact with the keylJoard.

2 The OSR recognizes OC1 and OC3 but it never returns them to the application.

B·14 2270507 -9701

ASCII Device 110 Operations Tables

Table B·3. 940 VOT Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

DEL LINE 1851 S
PRINT 1857 STE 20 99 EVT
SCROLL DOWN 1861
PREV REGN 1863
NEXT REGN 1864
PREV PAGE 1865
NEXT PAGE 1866 STE 20 98 00
PREV FORM 1867 S
NEXT FORM 1868 S
F1 186931 E 20 81 EVT
F2 186932 E 20 82 EVT
F3 186933 E 20 83 EVT
F4 186934 E 20 84 EVT
F5 186935 E 20 85 EVT
F6 186936 E 20 86 EVT
F7 186937 E 20 96 EVT
F8 186938 E 20 97 EVT
F9 186939· E 20 80 EVT
F10 18693A E 20 9A EVT
F11 186938 E 20 9C EVT
F12 18693C E 20 9D EVT
F13 18693D E 20 9E EVT
F14 18693E E 20 9F EVT
F15 18693F
F16 186940
F17 186941
F18 186942
F19 186943
F20 186944
F21 186945
F22 186946
F23 186947
F24 186948
SKIP left 1874 20 94
SKIP right 187330 20 88
SEND 18E9F1 F 20 93 EOF OOEOF

Notes:

1 Not applicable. does not interact with the keyboard.

2 The DSR recognizes DC1 and DC3 but never returns them to the application.

2270507·9701 B·15

ASCII Device I/O Operations Tables

Table B·4. Business System Terminal Key Character Code Transformations

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code TYPEI Buffer Event Flag ASCII Direct

NULL (CTRL) , 00 N/A1

SOH (CTRL) A 01
STX (CTRL) B 02
ETX (CTRL) C 03
EOT (CTRL) 0 04
ENQ (CTRL) E 05
ACK (CTRL) F 06
BELL (CTRL) G 07
BS BACKSPACE 08
BS (CTRL) H 08
HT TAB 09 20 89 00
HT (CTRL) I 09 20 89 00
LF (CTRL) J OA 20 87
VT (CTRL) K OB
FF (CTRL) L OC
CR (CTRL) M 00 20 80 00
~R RETURN 00 20 80 00
'~R ENTER 1 B6971 F 20 93 EOF OOEOF
SO (CTRL) N OE
SI (CTRL) 0 OF
OLE (CTRL) P 10
OC1 (CTRL) Q 112
OC2 (CTRL) R 12
OC3 (CTRL) S 132 H
OC4 (CTRL) T 14
NAK (CTRL) U 15
SYN (CTRL) V 16
ETB (CTRL)W 17
CAN (CTRL) X 18 20 98 00
EM (CTRL) Y 19
SUB (CTRL) Z 1A
ESC ESC 1B
ESC (CTRL) [1B
ESC (CTRL) { 1B
FS (CTRL) \ 1C
GS CTRLI(SHIFT) 1 10
RS CTRU(SHIFT) 6 1E
US CTRU(SHIFT) _ 1F
Space Space bar 20 20 20
! ! 21 21 21

Notes:

1 Not applicable, does not interact with keyboard.

2 The OSR recognizes OC1 and OC3 but never retUirns them to the application.

3 The numbers are on the numeric keypad, not across the second row of the keyboard.

B·16 2270507·9701

ASCII Device I/O Operations Tables

Table B·4. Business System Terminal Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated. ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

22 22 22
23 23 23
$ $ 24 24 24
% % 25 25 25
& & 26 26 26

27 27 27
28 28 28
29 29 29
2A 2A 2A

+ + 28 28 28
2C 2C 2C
2D 2D 2D
2E 2E 2E

/ / 2F 2F 2F
0 0 30 30 30
1 1 31 31 31
2 2 32 32 32
3 3 33 33 33
4 4 34 34 34
5 5 35 35 35
6 6 36 36 36
7 7 37 37 37
8 8 38 38 38
9 9 39 39 39

3A 3A 3A
38 38 38

< < 3C 3C 3C
= = 3D 3D 3D
> > 3E 3E 3E
? ? 3F 3F 3F
@ @ 40 40 40
A A 41 41 41
8 8 42 42 42
C C 43 43 43
D D 44 44 44
E E 45 45 45
F F 46 46 46
G G 47 47 47
H H 48 48 48
I I 49 49 49
J J 4A 4A 4A

Notes:

1 Not applicable, does not interact with keyboard.

2 The DSR recognizes DC1 and DC3 but never returns them to the application.

3 The numbers are on the numeric keypad, not across the second row of the keyboard.

2270507-9701 B·17

ASCII Device 110 Operations Tables

,.
Table B·4. Business System Terminal KEty Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer' Event Flag ASCII Direct

K K 48 48 48
L L 4C 4C 4C
M M 40 40 40
N N 4E 4E 4E
0 0 4F 4F 4F
P P 50 50 50
Q Q 51 51 51
R R 52 52 52
S S 53 53 53
T T 54 54 54
U U 55 55 55
V V 56 56 56
W W 57 57 57
X X 58 58 58
Y Y 59 59 59
Z Z 5A 5A 5A
[[58 58 58

\ \ 5C 5C 5C
]] 50 50 50
A A 5E 5E 5E

5F 5F 5F
60 60 60

a a 61 61 61
b b 62 62 62
c c 63 63 63
d d 64 64 64
e e 65 65 65
g g 67 67 67
h h 68 68 68

69 69 69
j j 6A 6A 6A
k k 68 68 68
I I 6C 6C 6C
m m 60 60 60
n n 6E 6E 6E
0 0 6F 6F 6F

P P 70 70 70
q q 71 71 71

72 72 72

s s 73 73 73
t t 74 74 74

Notes:

1 Not applicable, does not interact with keyboard.

2 The OSR recognizes OC1 and OC3 but never returns them to the application.

3 The numbers are on the numeric keypad, not across the second row of the keyboard.

8·18 2270507 ·9701

ASCII Device 110 Operations Tables

Table B·4. Business System Terminal Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

u u 75 75 75
v v 76 76 76
w w 77 77 77
x x 78 78 78
Y Y 79 79 79
z z 7A 7A 7A
{ { 78 78 78
I I 7C 7C 7C
} } 7D 7D 7D

7E 7E 7E
Left arrow 1844
Up arrow 1841 20 95
Right arrow 1843 20 20 20
Down arrow 1842 20 8A
(ALT) ERASE
INPUT 1861
(ALT) ERASE
FIELD 1862
FIELD right OA 20 87
8ACKSPACE 08
SKIP 1873 20 88
FIELD left 1874 00 94
TA8 09 00 89 00
(SH 1FT) 8ACK
SPACE 1832
DEL CHAR 1851 S
(SHIFT) ESC 1866 STE 00 98 00
(SHIFT) 81ank S
orange 1865
(ALT) CMD 1864
(ALT) 81ank
orange 1863
CMD 1868 SE 00 98 EVT
81ank orange 1867
HOME 1848
(SHIFT) HOME 00 8C
ERASE 1848
FIELD :83D
(SH I FT) ERASE
INPUT 184A
(SHIFT) ERASE

Notes:

1 Not applicapable, does not interact with the keyboard.

2 The DSR recognizes DC1 and DC3 but it never returns them to the application.

3 The numbers are on the numberic kiy pad, not across the second row of the keyboard.

2270507 -9701 8·19

ASCII Device I/O Operations Tables

Table B·4. Business System Terminal KEIY Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

FIELD 1849
(SH 1FT) 81ank
gray 183C
INS CHAR 1850 S
81ank gray 184E 00 8F
PRINT STE 00 99 EVT
(ALT) 13 A2
(ALT) 43 187931 31 31 31
(ALT) 23 A4
(AL T) 53 187932 32 32 32
(ALT) 33 A6
(ALT) 63 187933 33 33 33
ERASE INPUT 1848 48 48
F1 186931 E 20 81 EVT
F2 186932 E 20 82 EVT
F3 186933 E 20 83 EVT
F4 186934 E 20 84 EVT
F5 186935 E 20 85 EVT
F6 186936 E 20 86 EVT
F7 186937 E 20 96 EVT
F8 186938 E 20 97 EVT
(SHIFT) F1 186939 E 20 80 EVT
(SHIFT) F2 18693A E 20 9A EVT
(SHIFT) F3 186938 E 20 9C EVT
(SHIFT) F4 18693C E 20 90 EVT
(SHIFT) F5 186930 E 20 9E EVT
(SHIFT) F6 18693E E 20 9F EVT

Notes:

1 Not applicable, does not interact with keyboard.

2 The OSR recognizes DC1 and DC3 but never returns them to the application.

3 The numbers are on the numeric keypad, not across the second row of the keyboard.

B·20 2270507·9701

ASCII Device I/O Operations Tables

Table 8·5. 820 KSR Key Character Code Transformations

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

NULL (CTRL) [00/80 ES 00 80 EVT 00
SOH (CTRL) A 81/01 EST 00 81 EVT 01
STX (CTRL) B 82102 EST 00 82 EVT 02
ETX (CTRL) C 03/83 EST 00 83 EVT 03
EOT (CTRL) 0 84/04 ES 00 84 EVT 04
ENQ (CTRL) E 05/85 EST 00 85 EVT 05
ACK (CTRL) F 06/86 ES 00 86 EVT 06
BELL (CTRL) G 87/07 07
BS (CTRL) H 88/08 08
BS (BACKSPACE 88/08 08
HT (CTRL) I 09/89 ST 00 89 09 09
HT TAB 09/89 ST 00 89 09 09
LF (CTRL) J OA/8A S 00 8A OA OA
LF LINE FEED OA/8A S 00 8A OA OA
VT (CTRL) K 8B/OB ST 00 8B OB
FF (CTRL) L OC/8C ST 00 8C OC
CR (CTRL) M 80/00 S 00 80 00 00
CR RETURN 80/00 S 00 80 00 00
SO (CTRL) N 8E/OE EST 00 8E OE
SI (CTRL)0 OF/8F E 00 8F OF
OLE (CTRL) P 90/10 10
OC1 (CTRL) Q 11/91 11
OC2 (CTRL) R 12/92 12
OC3 (CTRL) S 93/13 H
OC4 (CTRL) T 14/94 T 00 94 14
NAK (CTRL) U 95/15 T 00 95 15
SYN (CTRL) V 96/16 E 00 96 EVT 16
ETB (CTRL) W 17/97 E 00 97 EVT 17
CAN (CTRL) X 18/98 E 00 98 EVT 18
EM (CTRL) Y 99/19 EF 00 93 EVT EOF 00 EOF 00
SUB (CTRL) Z 9A/1A E 00 9A EVT 1A
ESC ESC 1B/9B 1B
FS (CTRL) \ 9C/1C E 00 9C EVT 1C
GS (CTRL) { 10/90 E 00 90 EVT 10
RS (CTRL) = 1 E/9E E 00 9E EVT 1E
US (CTRL) - 9F/1 F ET 00 9F EVT 1F
Space Space bar AO/20 20 20 20
! ! 21/A1 21 21 21

22/A2 22 22 22
3/23 23 23 23
$ $ 24/A4 24 24 24
% % A5/25 25 25 25
& & A6/26 26 26 26

27/A7 27 27 27
28/A8 28 28 28
A9/29 29 29 29
AA/2A 2A 2A 2A

+ + 2B/AB 2B 2B 2B

2270507 -9701 8·21

ASCII Device I/O Operations Tables

Table B·5. 820 KSR Key Char'aeter Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code TYlpe Buffer Event Flag ASCII Direct

AC/2C 2C 2C 2C
20/AO 20 20 20
2E/AE 2E 2E 2E

I I AF/2F 2F 2F 2F
0 0 30/80 30 30 30
1 1 81/31 31 31 31
2 2 82/32 32 32 32
3 3 33/83 33 33 33
4 4 84/34 34 34 34
5 5 35/85 35 35 35
6 6 36/86 36 36 36
7 7 87/37 37 37 37
8 8 88/38 38 38 38
9 9 39/89 39 39 39

3A/8A 3A 3A 3A
88/38 38 38 38

< < 3C/8C 3C 3C 3C
80/3D 3D 3D 3D

> > 8E/3E 3E 3E 3E
? ? 3F/8F 3F 3F 3F
@ @ CO/40 40 40 40
A A 41/C1 41 41 41
8 8 42/C2 42 42 42
C C C3/43 43 43 43
0 0 44/C4 44 44 44
E E C5/45 45 45 45
F F C6/46 46 46 46
G G 47/C7 47 47 47
H H 48/C8 48 48 48
I I C9/49 49 49 49
J J CA/4A 4A 4A 4A
K K 48/C8 48 48 48
L L CC/4C 4C 4C 4C
M M 40/CO 40 40 40
N N 4E/CE 4E 4E 4E
0 0 CF/4F 4F 4F 4F
P P 50/00 50 50 50
Q Q 01/51 51 51 51
R R 02/52 52 52 52
S S 53/03 53 53 53
T T 04/54 54 54 54
U U 55/05 55 55 55
V V 56/06 56 56 56
W W 07/57 57 57 57
X X 08/58 58 58 58
Y Y 59/09 59 59 59
Z Z 5A/OA 5A 5A 5A

B·22 2270507·9701

ASCII Device I/O Operations Tables

Table B·5. 820 KSR Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

[[DB/5B 5B 5B 5B
\ \ 5C/DC 5C 5C 5C

]] DD/5D 50 50 5D
A A DE/5E 5E 5E 5E

5F/DF 5F 5F 5F , , 60/EO 60 60 60
a a E1/61 61 61 61
b b E2/62 62 62 62
c c 63/E3 63 63 63
d d E4/64 64 64 64
e e 65/E5 65 65 65
f f 66/E6 66 66 66
9 9 E7/67 70 67 67
h h E8/68 68 68 68

69/E9 69 69 69
j j 6A/EA 6A 6A 6A
k k EB/6B 6B 6B 6B
I I 6C/EC 6C 6C 6C
m m ED/6D 6D 6D 6D
n n EE/6E 6E 6E 6E
0 0 6F/EF 6F 6F 6F
P P FO/70 70 70 70
q q 71/F1 71 71 71

72/F2 72 72 72
s s F3/73 73 73 73
t t 74/F4 74 74 74
u u F5/75 75 75 75
v v F6/76 76 76 76
w w 77/F7 77 77 77
x x 78/F8 78 78 78
Y Y F9/79 79 79 79
z z FA/7A 7A 7A 7A
{ { 7B/FB 7B 7B 7B
I I FC/7C 7C 7C 7C
} } 7D/FD 7D 7D 7D

7E/FE 7E 7E 7E
DEL DEL 00/7F

2270507 ·9701 B·23

ASCII Device I/O Operations Tables

Table B·6. 783 TPD Ke!y Character Code Transformations

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code T)'pe Buffer Event Flag ASCII Direct

NULL (CTRL)[00/80 SE 00 80 EVT 00
SOH (CTRL) A 81/01 STE 00 81 EVT 01
STX (CTRL) B 82/02 STE 00 82 EVT 02
ETX (CTRL) C 03/83 STE 00 83 EVT 03
EOT (CTRL) D 84/04 SE 00 84 EVT 04
ENQ (CTRL) E 05/85 STE 00 85 EVT 05
ACK (CTRL) F 06/86 SE 00 86 EVT 06
BELL (CTRL) G 87107 07
BS (CTRL) H 88/08 08
HT (CTRL) I 09/89 ST 00 89 09 09
LF (CTRL) J OA/8A S 00 8A OA OA
LF LINE FEED OA/8A S 00 8A OA OA
VT (CTRL) K 8B/OB ST 00 8B DB
FF (CTRL) L OC/8C ST 00 8C DC
CR (CTRL) M 8D/OD S 00 8D 00 OD
CR RETURN 8D/OD S 00 8D 00 OD
CR ENTER 8D/OD S 00 8D 00 OD
SO (CTRL) N 8E/OE STE 00 8E DE
SI (CTRL) 0 OF/8F E 00 8F OF
DLE (CTRL) P 90/10 10
DC1 (CTRL) Q 11/91 11
DC2 (CTRL) R 12/92 12
DC3 (CTRL) S 93/13 H
DC4 (CTRL) T 14/94 T 00 94 14
NAK (CTRL) U 95/15 T 00 95 15
SYN (CTRL) V 96/16 E 00 96 EVT 16
ETB (CTRL) W 17/97 E 00 97 EVT 17
CAN (CTRL) X 18/98 E 00 98 EVT 18
EM (CTRL) Y 99/19 EF 00 93 EVT EOF OOEOF 00
SUB (CTRL) Z 9A/1A E 00 9A EVT 1A
ESC ESC 1B/9B 1B
FS (CTRL) \ 9C/1C E 00 9C EVT lC
GS (CTRL) { 1D/9D E 00 9D EVT 1D
RS (CTRL) = 1 E/9E E 00 9E EVT 1E
US (CTRL) - 9F/1F ET 00 9F EVT 1F
Space Space bar AO/20 20 20 20
! ! 21/A1 21 21 21

22/A2 22 22 22
A3/23 23 23 23
$ $ 24/A4 24 24 24
% % A5/25 25 25 25
& & A6/26 26 26 26

27/A7 27 27 27
((28/A8 28 28 28
)) A9/29 29 29 29
* * AA/2A 2A 2A 2A
+ + 2B/AB 2B 2B 2B

B·24 2270507-9701

ASCII Device 110 Operations Tables

Table 8·6. 783 TPD Key Character Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code Type Buffer Event Flag ASCII Direct

AC/2C 2C 2C 2C
20/AO 20 20 20
2E/AE 2E 2E 2E

I I AF/2F 2F 2F 2F
0 0 30/80 30 30 30
1 1 81/31 31 31 31
2 2 82/32 32 32 32
3 3 33/83 33 33 33
4 4 84/34 34 34 34
5 5 35/85 35 35 35
6 6 36/86 36 36 36
7 7 87/37 37 37 37
8 8 88/38 38 38 38
9 9 39/89 39 39 39

3A/8A 3A 3A .3A
88/38 38 38 38

< < 3C/8C 3C 3C 3C
= = 80/30 3D 3D 3D
> > 8E/3E 3E 3E 3E
? ? 3F/8F 3F 3F 3F
@ @ CO/40 40 40 40
A A 41/C1 41 41 41
8 8 42/C2 42 42 42
C C C3/43 43 43 43
0 0 44/C4 44 44 44
E E C5/45 45 45 45
F F C6/46 46 46 46
G G 47/C7 47 47 47
H H 48/C8 48 48 48
I I C9/49 49 49 49
J J CA/4A 4A 4A 4A
K K 48/C8 48 48 48
L L CC/4C 4C 4C 4C
M M 40/CO 40 40 40
N N 4E/CE 4E 4E 4E
0 0 CF/4F 4F 4F 4F
P P 50/00 50 50 50
Q Q 01/51 51 51 51
R R 02/52 52 52 52
S S 53/03 53 53 53
T T 04/54 54 54 54
U U 55/05 55 55 55
V V 56/06 56 56 56
W W 07/57 57 57 57
X X 08/58 58 58 58
Y Y 59/09 59 59 59
Z Z 5A/OA 5A 5A 5A

2270507·9701 8·25

ASCII Device 110 Operations Tables

Table B·6. 783 TPC Key Char,acter Code Transformations (Continued)

Terminal
ASCII Terminal Generated ASCII Task Edit

Character Key Code TYlile Buffer Event Flag ASCII Direct

[[08/58 58 58 58
\ (CTRL) 7 5C/OC 5C 5C 5C
]] 00/50 50 50 50
A A OE/5E 5E 5E 5E

5F/OF 5F 5F 5F , (CTRL) 0 60/EO 60 60 60
a a E1/61 61 61 61
b b E2/62 62 62 62
c c 63/E3 63 63 63
d d E4/64 64 64 64
e e 65/E5 65 65 65
f f 66/E6 66 66 66
9 9 E7/67 67 67 67
h h E8/68 68 68 68

69/E9 69 69 69
j j 6A/EA 6A 6A 6A
k k E8/68 68 68 68
I I 6C/EC 6C 6C 6C
m m EO/60 60 60 60
n n EE/6E 6E 6E 6E
0 0 6F/EF 6F 6F 6F
P P FOl70 70 70 70
q q 71/F1 71 71 71

r 72/F2 72 72 72
s s F3/73 73 73 73
t t 74/F4 74 74 74
u u F5/75 75 75 75
v v F6/76 76 76 76
w w 77/F7 77 77 77
x x 78/F8 78 78 78
Y Y F9/79 79 79 79
z z FA/7A 7A 7A 7A
{ { 78/F8 78 78 78
I (CTRL) 8 FC/7C 7C 7C 7C
} } 70/FO 70 70 70

(CTRL) 9 7E/FE 7E 7E 7E
DEL DEL 0017F

B·26 2270507 ·9701

N
N
--..J o
01
o
--..J
cO
--..J

~

til
N
~

ERASE
FIELD

PRINT

+-

INS
CHAR

2283184

(SEE NOTE 2)

(SEE NOTE 1)
I Fl I F2 I F3 I F4 I F5 I F6 I F7 I FB I CMD I 6

ERASE r
INPUT

t REPEAT

HOME --+

+ DEL
CHAR

NOTE: 1. GENERATES HEX CODE 9F
2. GENERATES HEX CODE 9C

SPACE

Figure B·1. 911 vor Graphics Character Keyboard Positions

7 8

4 5

1 2

0

9

6

3

•

~
(f.)

g
I::)
(J)
<: o·
(J)

8
o
1)
(J)

~ o·
:3
C/)

~
t)"

CD
C/)

ASCII Device I/O Operations Tables

~ 0 1 2 3 4 5 6 7

0 NUL OLE SP 0 @ P - P
1 SOH OC1 ! 1 A Q a q
2 STX OC2 " 2 B R b r
3 ETX OC3 # 3 C S c s
4 EaT OC4 $ 4 0 T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 BEL ETB 7 G W 9 w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y i Y
A LF SUB * J Z j z

B VT ESC + , K [k {
C FF FS < L \ I I , I

0 CR GS = M] m }
E SO RS 0 > N A n '" F SI US I ? a - 0 DEL

2284669

Figure B·2. 931 VOl Graphics Characters

B·28 2270507·9701

i

~ 0 , 2 3 4 5

0 DL ~ Tr -
1Jr

. , SH D, • L •
2 Sx D2 • ~ - y.

3 EX D3 • - 0 r·
4 ET D4 • - ~ · ..
5 EO NK I - 3- 'Y'

AK Sy I - p · 6 ·
7 BL EB I • T ...n..

~;
-

8 BS CN

9 HT EM -
A LF • •• e Px
B VT EC • • f L
C FF FS • l J
D CR GS L .. - r
E So RS / ~ - •
F SI ~-- l ~ 00--

SC2 Character Set

2280966

ASCII Device I/O Operations Tables

6 7

""-' 1Y -
ex: 1/1

13 p

0 (T

d 'C'
3456 890

E U

¢ ~
Q:.J!J!J!J!J.=..J I JfJ IfJ.:JlJ:j

OWE R T Y U lOP [\

I ar

11. O~J;J~]f Jql]~J~j:~-j~j q JJ
-

n I
e 1-

AS D F G H J K L ; ,{

o ; J ;] ~ J !] ~ J ~ J ! J ~ J ~ J : J I J J)
K J
?.. l

z x C VB N M, . /

Q ~J =J~J~J;J'J~J~J~J~j
,(.I, f
• "......,

0 I

SC2 Keyboard Layout

Figure B·3. 940 VOT Graphics Characters

2270507 -9701 8·29

Table B·7. Model 911 VOl Graphics Character Sets

CODE CHARACTER CODE CHARACTE~ . CODE CHARACTER CODE CHARACTER

ool~ 011* 02 I~ 031'
,

041* 051~ 061* 071*
081~ 091* OA 1* OBI*
ocl* 001* OE I~ OFI*
101* 111* 121* 13 1*
141* 15 1* 16 1* 171*
181* "* "* IBI* 19 1A

Icl* 10 1* IE 1* IFI*
"

2ZJ9759

1·30 2270507·9701

ASCII Device I/O Operations Tables

B.3 733 AND 743 DATA TERMINALS

Table 8-8 lists the character set of the 733 and 743 data terminals (when they are included in sys-
tem generation as ASR or KSR device types) followed by an explanation of the characters that per-
form special functions on these terminals.

Table B·8. 733 and 743 Data Terminal Character Set

Character Hexadecimal Character Hexadecimal Character Hexadecimal

Space 20 @ 40 60
! 21 A 41 a 61

22 8 42 b 62
23 C 43 c 63
$ 24 D 44 d 64
% 25 E 45 e 65
& 26 F 46 f 66

27 G 47 9 67
28 H 48 h 68
29 I 49 69
2A J 4A j 6A

+ 28 K 48 k 68
2C L 4C I 6C
2D M 4D m 6D
2E N 4E n 6E

I 2F 0 4F 0 6F
0 30 P 50 P 70
1 31 Q 51 q 71
2 32 R 52 72
3 33 S 53 s 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 V 56 v 76
7 37 W 57 w 77
8 38 X 58 x 78
9 39 y 59 Y 79

3A Z 5A z 7A
38 [58 { 78

< 3C I 5C I 7C
= 3D] 5D } 7D
> 3E A 5E 7E
? 3F 5F

2270507 ·9701 B·31

ASCII Device I/O Operations Tables

1·32

Table B·8. 733 and 743 Data Terminal Character Set (Continued)

Character Hexadecimal Character Hexadecimal Character Hexadecimal

Notes:

Keyboard:
1. BS character (> 08) is returned to printer as LF and BS. Deletes most recently entered character

in buffer.
2. HT character (> 09) is returned to the printer as space. Character is placed in buffer.
3. LF character (> OA) is returned to printer as LF, but is not stored in buffer.
4. CR character (> 00) is returned to printer as CR, and character is not placed in buffer. Character

terminates the record.
5. DC3 character (> 13) is not stored in buffer. When DC3 is first character of record, the record is

an end-of-file record.
6. ESC character (> 1 B), when entered during output, terminates output with a write error.
7. DEL character (> 7F) is returned to printer as a line feed and carriage return. Character deletes

current input record.
8. Maximum buffer size is 83 characters.

Printer:
1. BS character (> 08) results in a backspace operation.
2. HT character (>09) results in printing a space.
3. LF character(>OA) results in a line feHd operation.
4. CR character (> 00) results in a carria~le return operation.
5. End-of-record occurs when specified number of characters have been printed.
6. Maximum buffer size is 83 characters.

Cassette Input:
1. The characters LF (>OA) and DEL (> ~7F) or the character DEL at the beginning of a record are

ignored. The first valid character of thEl record is the character following the DEL.
2. The characters HT (>09), FF (>OC), BEL (>07), and BS (>08) are stored in the user's buffer.
3. The character ETB (> 17) is stored in the user's buffer as a CR (.00).
4. The character DC3 (> 13) as the first character of a record indicates an end-of-file record. The

system returns end-of-file status after positioning the tape at the beginning of the next record.
The DC3 is not stored in the buffer.
An EOF may be added to a cassette by the following procedure:

a. Position the cassette for recording the EOF record.
b. With the cassette drive in the local record mode, type the character sequence DC3

(CTRL S), RETURN, and NEW LINE on the keyboard.
c. Press the RECORD OFF button.
d. Rewind the cassette.

5. The character CR (> 00) indicates end-of-record, and is not stored in the buffer.
6. Maximum buffer size is 83 characters for U.S. and European terminals, and 80 characters for

Katakana terminals.

Cassette Output:
1. The end-of-block character sequence is CR (> 00) LF (> OA) DC4(> 14) DEL (> 7F). The end-of­

file character sequence is DC3 (> 13) GR DC4 DEL. These characters are supplied by the sys­
tem, not by the user.

2. The characters HT (> 09), FF (> OC), BEL (> 07), and BS (> 08) are written unchanged.
3. The character CR (> 00) is translated to ETB (> 17) and written.
4. The character DC3 (> 13) may be placed within a record, but may not be the first character of a

record other than the end-of-file record.
5. End-of-record occurs when specified number of characters have been written.
6. Maximum buffer size is 83 characters 'for U.S. and European terminals, and 80 characters for

Katakana terminals.

2270507-9701

ASCII Device I/O Operations Tables

B.3.1 End·of·File Sequence
The end-of-file sequence for the 733 and 743 data terminals is a DC3 character.

B.3.2 End·of·Record Sequence
The end-of-record sequence for the 733 and 743 data terminals is a CR character.

B.4 CARD READER

Table 8-9 provides a hexadecimal to row punch conversion table.

Table B·9. Card Reader Character Set

Hexadecimal Row Punches Hexadecimal Row Punches

00 12-0-9-8-1 2F 0-1
01 12-9-1 30 0
02 12-9-2 31 1
03 12-9-3 32 2
04 9-7 33 3
05 0-9-8-5 34 4
06 0-9-8-6 35 5
07 0-9-8-7 36 6
08 11-9-6 37 7
09 12-9-5 38 8
OA 0-9-5 39 9
OB 12-9-8-3 3A 8-2
OC 12-9-8-4 3B 11-8-6
OD 12-9-8-5 3C 12-8-4
OE 12-9-8-6 3D 8-6
OF 12-9-8-7 3E 0-8-6
10 12-11-9-8-1 3F 0-8-7
11 11-9-1 40 8-4
12 11-9-2 41 12-1
13 11-9-3 42 12-2
14 9-8-4 43 12-3
15 9-8-5 44 12-4
16 9-2 45 12-5
17 0-9-6 46 12-6
18 11-9-8 47 12-7
19 11-9-8-1 48 12-8
1A 9-8-7 49 12-9
1B 0-9-7 4A 11-1
1C 11-9-8-4 4B 11-2
1D 11-9-8-5 4C 11-3
1E 11-9-8-6 4D 11-4
1F 11-9-8-7 4E 11-5
20 None 4F 11-6
21 12-8-7 50 11-7
22 8-7 51 11-8
23 8-3 52 11-9

2270507 -9701 B·33

ASCII Device 110 Operations Tables

Table B·9. Card Re,ader Character Set (Continued)

Hexadecimal Row Punches Hexadecimal Row Punches

24 11-8-3 53 0-2
25 0-8-4 54 0-3
26 12 55 0-4
27 8-5 56 0-5
28 12-8-5 57 0-6
29 11-8-5 58 0-7
2A 11-8-4 59 0-8
28 12-8-6 5A 0-9
2C 0-8-3 58 12-8-2
20 11 5C 0-8-2
2E 12-8-3 50 11-8-2
5E 11-8-7 6F 12-11-6
5F 0-8-5 70 12-11-7
60 8-1 7~ 12-11-8
61 12-0-1 72 12-11-9
62 12-0-2 73 11-0-2
63 12-0-3 74 11-0-3
64 12-0-4 75 11-0-4
65 12-0-5 76 11-0-5
66 12-0-6 77 11-0-6
67 12-0-7 78 11-0-7
68 12-0-8 79 11-0-8
69 12-0-9 7A 11-0-9
6A 12-11-1 78 12-0
68 12-11-2 7C 12-11

6C 12-11-3 70 11-0
60 12-11-4 7E 11-0-1
6E 12-11-5 7F 12-9-7

Notes:

End of record occurs when the spHcified number of characters, or 80 characters have been
read.

Maximum buffer size is 80 characters.

B.4.1 End·of·File Sequence
The end-of-file sequence for the card reader is a slash (/) in column one and an asterisk (*) in
column two.

B.5 LINE PRINTER

DNOS provides support for various types of line printers, including line printers supporting the 8-
bit Katakana code. The characters which have special significance for the line printer are listed in
Table 8-10.

B·34 2270507-9701

A

ASCII Device 110 Operations Tables

Table 8·10. Line Printer Character Set

Character Hexadecimal Character Hexadecimal Character Hexadecimal

Space 20 @ 40 60
! 21 A 41 a 61

22 8 42 b 62
23 C 43 c 63
$ 24 0 44 d 64
% 25 E 45 e 65
& 26 F 46 f 66

27 G 47 g 67
28 H 48 h 68
29 I 49 69
2A J 4A j 6A

+ 28 K 48 k 68
2C L 4C I 6C
20 M 40 m 60
2E N 4E n 6E

I 2F 0 4F 0 6F
0 30 P 50 P 70
1 31 Q 51 q 71
2 32 R 52 72
3 33 S 53 s 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 V 56 v 76
7 37 W 57 w 77
8 38 X 58 x 78
9 39 Y 59 y 79

3A Z 5A z 7A
38 [58 { 78

< 3C I 5C I 7C
= 3D] 50 } 70
> 3E 1\ 5E 7E
? 3F 5F DEL 7F

Notes:

The character 8S (> 08) results in a backspace operation.

The character HT (> 08) results in a single space.

The character LF (> OA) results in a line feed operation.

The character CR (> 00) results in a carriage return operation.

The character FF (> OC) results in a form feed operation.

The character 8EL (> 07) results in a tone signal.

For Model 306, Model 810, and Model 588 Line Printers, the character SO (>OE) results in character
elongation for the line of characters following the SO. Elongation doubles the width of the characters,
and a line of elongated characters contains one-half the number of characters on a normal line; i.e., 40
or 66. Fifty is ignored by 2230 and 2260 line printers.

2270507-9701 B·35

ASCII Device I/O Operations Tables

B.5.1 810 Line Printer Control Characters
The following control characters can be sent using the write direct call:

VT (Vertical Tab) causes data, if any, in the line buffer to be printed and advances the paper to the
next vertical tab location or top of form, whichever occurs first. If no vertical tabs are set, a VT
command causes the paper to be advanced to top of form.

HT (Horizontal Tab) causes spaces to be entered in the line buffer up to the next horizontal tab
location, where printing will begin.

DC1 (Select) selects the printer, enabling it to receive data. The controller responds to this control
character but does not transmit a verification.

DC2 + n (Tab to Line) causes the paper drive system to advance to the line specified by n. The value
n must be greater than the present line.

DC3 (Does not select) causes the printer to go offline and any subsequent characters transmitted
to be discarded until a DC1 character is received. The printer does not go offline until an LF charac­
ter is received after the DC3; any characters received before the DC3 are printed. The controller
responds to this control character but does not transmit a verification.

DEL (Delete) clears the line buffer.

NUL (Null) terminates the tab setting sequence (see below); otherwise it is ignored.

DC4 + n (Tab to Address) causes the carriage to advance at high speed to the column specified
by n. The value n must be greater than the present carriage position. If n is less than the present
carriage position, this command is ignored.

ESC + 1 + n1 + n2 + ... + nk + NUL (Set Vertical Tabs) clears all existing vertical tabs and sets
new tabs at lines n1, n2 , ... , and nk •

ESC + 2 + n (Set Form Length) sets the form length used by the Form Feed (FF) command to n.
Lines per form is set to a default value of 66 at power up.

ESC + 3 + n1 + n2 + ... + nk + NUL (Set Horizontal Tabs) clears existing horizontal tabs and sets
new tabs at locations n1 , n2 , ... , and nk •

ESC + 4 sets paper drive system to 6 lines per inch.

ESC + 5 sets paper drive system to 8 lines per inch.

ESC + 6 sets carriage system to 10 characters. per inch.

ESC + 7 sets carriage system to 16.5 characters per inch.

ESC + 8 enters parameters into the VFC or veo channel.

B·36 2270507 -9701

ASCII Device I/O Operations Tables

ESC + 9 retrieves parameters from the VFC or VCO channel.

ESC +; sets the line length to 132 characters.

ESC +: + n sets the line length to n characters (where n equals 2 through 126).

NOTE

The values n, nl, n2 , and so on, used in the ESC commands represent
seven-bit binary numbers. If' the parity option is selected on the
printer, correct parity must be supplied also.

A horizontal or vertical control character sequence affects lines following the control character
sequence only.

B.6 KIF COLLATING SEQUENCE

A description of the collating sequences for the various country codes supported by ONOS
appears in Table 8-11.

2270507 -9701 B·37

ASCII Device 110 Operations Tables

Table 8·11. KIF Collating Sequence

France/Belgium AlBCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

France Word Processing ABCDEFGHIJKLMNOPQRSTUVWXYZ
aabc9de€~fghijklmnopqrstu~vwxyz

Germany/Austria ~\BCDEFGHIJKLMNOOPQRSTUtiVWXYZ
a~bcdefghijklmno8pqrs~tuUvwxyz

Japan (Katakana) ABCDEFGHIJKLMNOPQRSTUVWXYZ

Norway/Denmark

Sweden/Finland

Spanish-speaking
countries

Switzerland

United Kingdom

abcdefghijklmnopqrstuvwxyz

_.' 7 -.... -:» :J: :;t "f7 .:::a. :I It.' - Y
.-'(' r::;.:::r:: :::=t ::fl =t= ? 7 :::J ...,. =-, ::?

~~ ~.'" '5J ~ I ~J:r t ... :r-= x ~ .-~
I t:::: 7 -... iii -:::? =: L..:t. _-:~ ~ ..,... ..:L
=1 ~ '.J Ja.. L .. -0 ---:J =-~...... Go

ABCDEFGHIJKLMNOPQRSTUVWXYZ lE0A
abcdefghijklmnopqrstuvwxyz~0A

ABCDEEFGHIJKLMNOPQRSTUVWXYUZAAO
abcdeAfghijklmnopqrstuvwxylizA§8

ABCDEFGHIJKLMNNOPQRSTUVWXYZ
abc~defghijklmnfiopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
a~~bc9defi~fghijklmnoopqrstuUvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

2283037

8·38 2270507·9701

Appendix C

Master/Slave Task Examples

An example illustrating the typical sequence of master/slave channel operations performed by the
master task to process a request from a slave task is shown in Figure C-1. The request from the
slave task is shown in Figure C-2.

SDSMAC
ACCESS NAMES TABLE

SOURCE ACCESS NAME=
OBJECT ACCESS NAME=
LISTING ACCESS NAME=
ERROR ACCESS NAME=
OPTIONS=
MACRO LIBRARY PATHNAME=

16:11:02 TUESDAY, JUN 15, 1982.

VOL1.IPC.IPCMSM
VOL1.IPC.IPCMSMO
VOL1.IPC.IPCMSML

XREF,TUNLST,BUNLST,DUNLST

Figure C-1. Master Task (Sheet 1 of 19)

2270507·9701

PAGE 0001

C-1

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0002

C-2

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
Ob30
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050

0000 0006--
0006

IDT --IPCMSM--
*-----
* NAME: IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK

* * ABSTRACT: 1) THIS TASK EXERCISES SOME OF THE OPERATIONS
* OF A MASTER/SLAVE IPC CHANNEL FROM THE
* VIEWPOINT OF THE MASTER (OWNER) TASK.
* 2) THIS TASK IS WRITTEN TO BE USED IN
* CONJUNCTION WITH THE SLAVE TASK "IPCMSS".
* 3) THIS TASK CREATES A CHANNEL AS A VDT DEVICE
* AND PROCESSES WRITE WITH REPLY REQUESTS
* ISSUED BY THE SLAVE TASK "IPCMSS".
* 4) THIS TASK USES THE VDT ("ME") TO LOG ALL
* ACTIVITY ON THE CHANNEL, AND TO ALLOW YOU
* TO ENTER THE "REPLY" DATA TO BE RETURNED TO
* THE SLAVE TASK.
* LUNO USE: 1) THIS TASK REQUIRES THE (JOB LOCAL) LUNO >IF
* TO BE PRE-ASSIGNED TO THE PROGRAM FILE THAT
* CONTAINS THIS TASK. SEE INSTRUCTIONS BELOW.
* 2) TASK LOCAL LUNO >lE IS ASSIGNED TO THE
* MASTER/SLAVE CHANNEL.
* 3) TASK LOCAL LUNO >lD IS ASSIGNED TO "ME".
* * ENTRY: .BID TASK (OR XTS)

* * EXIT: SVC >04
* * REVISION: 11/13/80 - ORIGINAL

* * ENVIRONMENT: 990 ASSEMBLER

* * EXECUTION REQUIREMENTS: TO EXECUTE THIS EXAMPLE,
* 1) ASSIGN LOGICAL NAME (ALN) "VOL1" TO USER DISK
* VOLUME NAME.
* 2) CREATE DIRECTORY (CFDIR) "VOL1.IPC"
* 3) CREATE PROGRAM FILE (CFPRO) "VOL1.IPC.PROG"
* 4) ASSEMBLE ·THIS TASK
* 5) INSTALL THIS TASK IN "VOL1.IPC.PROG" (TID=Ol)
* 6) ASSIGN LUNO (AL) >IF TO "VOL1.IPC.PROG",
* SPECIFYING "PROGRAM FILE=YES"
* 7) EXECUTE THIS TASK VIA XTS
* 8) TO TERMINATE THE TASK -- WHEN SLAVE SENDS
* A STRING BEGINNING WITH "Q", SEND SLAVE A
* STRING BEGINNING WITH "Q".
*-----

DATA MSMWP,MSMOOO,O
MSMWP BSS 32
*

DXOP SVC,15

WORKSPACE

DEFINE SVC XOP

Figure C-1. Master Task (Sheet 2 of 19)

2270507·9701

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0003

0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
00183
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103

0026 075E"-
002A 0000
002C 9D
002D IF

002E 00
002F A8

0030 0000
0038 OA
0039 02

003A 0000
003C 0124
003E 01
003F 00
0040 0114"-
0042 0000

004E 078D"-
0052 0000
0054 91
0055 lE
0056 0000
0062 0000

0064 0000
0068 0114"-
006A 0000

0076 07BC"-
007A 0000
007C 00
007D lE
007E 00
007F 10

0080 0000
0082 0000
0084 0000

2270507·9701

----- CREATE IPC MASTER/SLAVE CHANNEL SVC BLOCK
*-----

DATA LGCCR,ERRCCR
CCREAT DATA 0

*
*

*
*
*
*

*
*

*-----

BYTE >9D
BYTE >IF

BYTE 0
BYTE >A8

DATA 0,0,0,0
BYTE 10
BYTE >02

DATA 0
DATA MRBEND-MRB
BYTE >01
BYTE 0
DATA CHPTHN
DATA 0,0,0,0,0,0

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
PROGRAM FILE LUNO
(LUNO >IF MUST BE ASSIGNED

MANUALLY BEFORE EXECUTING TES'
SYS FLAGS
USER FLAGS=1010 1XXX
BITS 0-1= GLOBAL CHANNEL
BITS 2 = SHARED CHANNEL
BITS 3 = MASTER/SLAVE
BITS 4 = PROCESS ASSIGNS
RESERVED
DEFLT RESRC TYPE=911
DEFLT RESRC FLGS=XXXX X010
BITS 5-7= DEFAULT RESOURCE

IS A DEVICE
RESERVED
MAX MSG LEN
OWNER TASK ID
RESERVED
CHANNEL PATHNAME POINTER

* ASSIGN LUNO TO IPC MASTER/SLAVE CHANNEL SVC BLOCK
*-----

DATA LGCAL,ERRCAL
CALUNO DATA 0

BYTE >91
BYTE >lE

*

*-----

DATA 0,0,0,0,0,0
DATA >0000

DATA 0,0
DATA CHPTHN
DATA 0,0,0,0,0,0

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
RESERVED
UTILITY FLAGS=XXXO OXXX
BITS 3-4= TASK LOCAL LUNO
RESERVED
CHANNEL PATHNAME POINTER
RESERVED

* OPEN IPC MASTER/SLAVE CHANNEL sve BLOCK
*-----

DATA LGCOP,ERRCOP
COPEN DATA 0

BYTE >00
BYTE >lE
BYTE 0
BYTE >10

*
COPTYP DATA 0
COPMML DATA 0

DATA 0

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNOOF CHANNEL
SYS FLAGS
USER FLAGS=OXX1 OXXX
BIT 3-4= SHARED ACCESS
RETURNED CHANNEL TYPE
RETURNED MAX MSG LEN
RESERVED

Figure C-1. Master Task (Sheet 3 of 19)

C-3

Master/Slave Task Examples

C-4

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL .. MASTER TASK PAGE 0004

0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150

0086
0088
008A
008B
008C
008D
008E
0090
0092

0094
0098
009A
009B
009C
009D
009E
OOAO
00A2

00A4
00A8
OOM
OOAB
OOAC
OOAD
OOAE
OOBO
00B2

00B4
00B8
OOBA
OOBB
OOBC
OOBD
OOBE

0508~

0000
05
IE
00
00

0124~

OOOA
0000

081A~

0000
19
IE
00
00

012E~

0124
0000

0848~

0000
1B
IE
00
00

012E~

0000
0124

0869'"
0000

01
IE
00
00

0000

*-----
* READ IPC ~~STER/SLAVE CHANNEL STATUS SVC BLOCK
*-----

DATA ERRCnS
CRSTS DATA 0

BYTE >05
BYTE >lE
BYTE 0
BYTE >00
DATA CSBUP
DATA 10
DATA 0

*-----

ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
SYS FLAGS
USER FLAGS
CHANNEL STATUS BUFFER POINTER
CHANNEL STATUS BUFFER LENGTH
RESERVED

* MASTER REJm IPC MASTER/SLAVE CHANNEL SVC BLOCK
*-----

DATA LGCMH,ERRCMR
CMREAD DATA 0

BYTE >19
BYTE >lE
BYTE 0
BYTE >00
DATA MRB

*-----
DATA MRBEND-MRB
DATA 0

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
SYS FLAGS
USER FLAGS= OX XX XOXX
MASTER READ BUFFER POINTER
MAX MSG LEN
RESERVED

* MASTER WRITE IPC MASTER/SLAVE CHANNEL SVC BLOCK
*-----

DATA LGCM~l, ERRCMW
CMWRIT DATA 0

BYTE >lB
BYTE >lE
BYTE 0
BYTE >00
DATA MRB
DATA 0
DATA MRBEND-MRB

*-----

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
SYS FLAGS
USER FLAGS= OX XX XXXX
MASTER READ BUFFER POINTER
RESERVED
RETURN CALL BLOCK AND BUFFER

* CLOSE IPC MASTER/SLAVE CHANNEL SVC BLOCK
*-----

DATA LGCCI" ERRCCL
CCLOSE DATA 0

BYTE >01
BYTE >lE
BYTE 0
BYTE >00
DATA 0,0,0

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
SYS FLAGS
USER FLAGS= 0 XXXXXXX
RESERVED

Figure C-1. Master Task (Sheet 4 of 19)

2270507·9701

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0005

0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174

00C4
00C8
OOCA
OOCB
OOCC
00D8
OODA
OODE
OOEO

OOEC
OOFO
00F2
00F3
00F4
0100
0106
0108

2270507·9701

0898"
0000

93
IE

0000
0000
0000
0000
0000

08C7"
0000

9E
00

0000
0000
0114"
0000

*-----
* *-----
CRLUNO

*-----
* *-----
CDELET

RELEASE LUNO FROM IPC MASTER/SLAVE CHANNEL

DATA LGCRL,ERRCRL
DATA 0
BYTE >93
BYTE >lE
DATA 0,0,0,0,0,0
DATA >0000
DATA 0,0
DATA 0
DATA 0,0,0,0,0,0

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
RESERVED
UTILITY FLAGS= XXX 00 XXX
RESERVED
RESERVED
RESERVED

DELETE IPC MASTER/SLAVE CHANNEL SVC BLOCK

DATA LGCDL,ERRCDL
DATA 0
BYTE >9E
BYTE 0
DATA 0,0,0,0,0,0
DATA 0,0,0
DATA CHPTHN
DATA 0,0,0,0,0,0

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
RESERVED
RESERVED
RESERVED
CHANNEL PATHNAME POINTER

Figure C-1. Master Task (Sheet 5 of 19)

C-5

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0006

C-6

0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226

*-----
* IPC MASTER/SLAVE CHANNEL - PATHNAME

0114
0115

*-----
OF CHPTHN BYTE CNEND-·$
56 TEXT ~VOL1.IPC.MSCHAN~

0123~ CNEND EQU $-1
*-----

CHANNEL PATHNAME LENGTH
CHANNEL PATHNAME

CHANNEL PATHNAME END

* IPC MASTER/SLAVE CHANNEL - READ STATUS BUFFER

0124
0124
0126
0127
0128
012A
012B
012C

0000
00
00

0000
00
00

0000

*-----
CSBUF
CSCFLG
CSRTYP
CSRTFL
CSMML
CSACT
CSOCT

*-----

EVEN
DATA 0
BYTE 0
BYTE 0
DATA 0
BYTE 0
BYTE 0
DATA 0

CHANNEL STATUS BUFFER
CHANNEL FLAGS
RESOURCE TYPE
RESOURCE TYPE FLAGS
MAXIMUM MESSAGE LENGTH
ASSIGN COUNT
OPEN COUNT
RESERVED

* IPC MASTER/SLAVE CHANNEL - MASTER READ BUFFER

012E
012E 0000
0130 0000
0132 0000
0134 0000
0136 0000
0138 00
0139 00
013A 00
013B 00
013C 00

0000
0001
0002
0003

0130 00
0000
0001
0001

013E 0000
0140 0000
0142 0000
0144 0000

*-----
MRB EVEN
MRBSID DATA 0
MRBRCB DATA 0
MRBTSB DATA 0
MRBJSB DATA 0
MRBSSI DATA 0
MRBSOC BYTE 0
MRBEC BYTE 0
MRBOC BYTE 0
MRBLUN BYTE 0
MRBSFL BYTE 0
MRFBSY EQU 0
MRFERR EQU 1
MRFEOF EQU 2
MRFVNT EQU 3
MRBUFL BYTE 0
MRFINT EQU 0
MRFRPY EQU 1
MRFVAL EQU MRFRPY
*
MRBDBA DATA 0
MRBICC DATA 0
MRBOCC DATA 0
MRBRPY DATA 0
*

0146 0000 MRBRES DATA 0
0148 0000 MRBRPA DATA 0
014A 0000 MRBRIC DATA 0
014C 0000 MRBROC DATA 0
014E BSS 260

0252~ MRBEND EQU $

SYSTEM SECURITY DATA
REQUESTOR CALL BLOCK ADDRESS
TSB ADDRESS OF SLAVE TASK
JSB ADDRESS OF SLAVE TASK
SYSTEM SECURITY INFORMATION
I/O OPCODE (>00)
I/O RETURN CODE (POSTED BY MAST
I/O SUB-OPCODE
I/O LUNO
SYSTEM FLAGS

BUSY
ERROR
END OF FILE
EVENT CHAR

USER FLAGS
INITIATE REQUEST
WRITE WITH REPLY
READ WITH VALIDATION
BITS 2-7 RESERVED

DATA BUFFER OFFSET
READ CHARACTER COUNT
WRITE CHAR COUNT/ACTUAL READ CO
REPLY BLOCK OFFSET

RESERVED
REPLY BUFFER OFFSET
REPLY CHARACTER COUNT
ACTUAL REPLY COUNT
DATA/REPLY BUFFER(S)

Figure C-1. Master Task (Sheet 6 of 19)

2270507·9701

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0007

0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269

0252 061C'"
0254 0000
0258 0000
0264 0000
026A 0278'"
026C 0000
0278 02
0279 4D

027A'"

027C 064A'"
027E 0000
0282 0000

028A 0678'"
028C 0000
0290 0000
0292 0000
0294 0000
0296 0000

0298 06A6'"
029A 0000
029E 0040
02AO 091E'"
02A2 0000
02A4 0019
02A6 02A8'"

02A8
02A8 0000
02AA 0000
02AC 0000

2270507·9701

*-----
* ASSIGN LUNa TO VDT SVC BLOCK
*-----

DATA ERRVAL
VALUNO DATA 0,>911D

DATA 0,0,0,0,0,0
DATA 0,0,0
DATA VPATH
DATA 0,0,0,0,0,0

VPATH BYTE VPATHE-$
TEXT "'ME'"

VPATHE EQU $-1
*-----

ERROR MSG POINTER
ASSIGN LUNa >lD TO VDT
RESERVED
RESERVED
VDT PATHNAME POINTER
RESERVED
PATHNAME LENGTH

PATHNAME END POINTER

* OPEN, REWIND VDT SVC BLOCK
*-----

DATA ERRVOP
VOPEN DATA 0,>031D

DATA 0,0,0,0
*-----
* WRITE TO VDT SVC BLOCK
*-----

DATA ERRVW
VWRITE DATA 0,>OB1D

DATA 0
VWBUF DATA $-$

DATA 0
VWLEN DATA $-$
*-----

ERROR MSG POINTER
OPEN, REWIND LUNa >lD
RESERVED

ERROR MSG POINTER
WRITE ASCII TO LUNa >lD

WRITE BUFFER POINTER
RESERVED
WRITE BUFFER LENGTH

* WRITE (WITH REPLY) VDT SVC BLOCK
*-----

DATA ERRVWR
VWRPLY DATA 0,>OB1D

DATA >0040
DATA LGWRBF
DATA 0

*

DATA LGWRBE-LGWRBF
DATA VWRRBA

VWRRBA EVEN
VWRRBF DATA $-$
VWRRLN DATA $-$
VWRRCC DATA $-$

ERROR MSG POINTER
WRITE ASCII TO LUNa >lD

WITH REPLY
WRITE BUFFER POINTER
RESERVED
WRITE BUFFER LENGTH
REPLY BLOCK ADDRESS

REPLY BUFFER POINTER
REPLY BUFFER LENGTH
REPLY ACTUAL COUNT

Figure C-1. Master Task (Sheet 7 of 19)

C-7

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTEl{ TASK PAGE 0008

0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311

C-8

02AE 06D4'-
02BO 0000
02B4 0000

02BC 0702'-
02BE 0000
02C2 0000
02CE 0000
02D6 0000

02E2 0400

02E4 0730'-
02E6 0200
02E8 0014

02EA OCOO
02EC 0000
02EE 0000

02FO 0000

02F2 0000

02F4 51

*-----
* CLOSE VDT BVC BLOCK
*-----

DATA ERRVC]~

VCLOSE DATA 0,>011D
DATA 0,0,0,0

*-----

ERROR MSG POINTER
CLOSE LUNO >lD
RESERVED

* RELEASE VD~r LUNO SVC BLOCK
*-----

DATA ERRVRI~
VRLUNO DATA 0,>931D

DATA 0,0,0 ,/0,0,0
DATA 0,0,0,/0
DATA 0,0,0,/0,0,0

*-----

ERROR MSG POINTER
RELEASE LUNO >lD
RESERVED
RESERVED
RESERVED

* TASK TERMINATION SVC BLOCK
*-----
ETASK DATA >0400
*-----
* TIME DELAY SVC BLOCK
*-----

DATA ERRTD
TDELAY DATA >0200

DATA 20
*-----

TASK TERMINATION SVC

ERROR MSG POINTER
TIME DELAY, RETURN CODE
DELAY COUNT=l SECOND

* CONVERT BINARY TO HEX ASCII SVC BLOCK
*-----
CBHA
CBHAO
CBHA2
*-----

DATA >OCOO
DATA $-$
DATA $-$

OPCODE, RETURN CODE
ASCII DIGIT 0,1
ASCII DIGIT 2,3

* MISCELLANEOUS DATA ITEMS
*-----
TDLYCT DATA $-$
*
ENDTSK DATA 0

*
*
*
*
QUIT BYTE '-Q'-

NUMBER OF TIME DELAYS
BETWEEN "NO ASSIGNS" MSGS
AFTER SLAVE ISSUES '-Q'-,
THIS FLAG IS SET TO -1;
THE NEXT TIME THE SLAVE
ISSUES A RELEASE LUNO (>93),
THE MASTER TASK WILL END.

Figure C-1. Master Task (Sheet 8 of 19)

2270507·9701

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0009

0313 *-----
0314 * TASK ENTRY POINT,
0315 * -ASSIGN, OPEN VDT
0316 * -CREATE, ASSIGN, OPEN MASTER/SLAVE CHANNEL
0317 *-----
0318 02F6 MSMOOO EVEN
0319 02F6 020A LI R10,VALUNO

02F8 0254'"
0320 02FA 06AO BL @MSM910 ASSIGN LUNO TO "ME"

02FC 042C'"
0321 02FE 020A LI R10,VOPEN

0300 027E'"
0322 0302 06AO BL @MSM910 OPEN VDT

0304 042C'"
0323 0306 020A LI R10,CCREAT

0308 002A'"
0324 030A 06AO BL @MSM900 CREATE MASTER/SLAVE CHANNEL

030C 0422'"
0325 030E 020A LI R10,CALUNO

0310 0052'"
0326 0312 06AO BL @MSM900 ASSIGN LUNO TO CHANNEL

0314 0422'"
0327 0316 020A T .. I R10,COPEN

0318 007A'"
0328 031A 06AO BL @MSM900 OPEN CHANNEL

031C 0422'"
0329 031E 020B LI R11,10 SET TO LOG "NO ASSIGNS"

0320 OOOA
0330 0322 C80a MOV R11,@TDLYCT MSG EVERY 10 SECONDS

0324 02FO'"

Figure C-1. Master Task (Sheet 9 of 19)

2270507-9701 e-9

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0010

0332
0333
0334
0335
0336
0337
0338 0326 020A

0328 0088'"
0339 032A 06AO

032C 042C'"
0340 032E D020

0330 012A'"
0341 0332 0990
0342 0334 1510
0343
0344
0345
0346
0347
0348 0336 0620

0338 02FO'"
0349 033A 1508
0350 033C 020B

033E OOOA
0351 0340 C80B

0342 02FO'"
0352 0344 0209

0346 07EB'"
0353 0348 06AO

034A 043A'"
0354 034C 020A

034E 02E6'"
0355 0350 06AO

0352 042C'"
0356 0354 10E8

C-10

*-----
* READ CHANNEL STATUS~ IF ASSIGN COUNT = 1,
* GO DO OTHER PROCESSING, THEN COME BACK.
* (NOTE: THE ASSIGN AND OPEN COUNTS WILL ALWAYS
* BE AT LEAST 1, TO ACCOUNT FOR THE MASTER TASK)
*-----
MSMI00 LI RI0,CRSTS

*-----

BL @MSM910

MOVB @CSACT,RO

SRL RO, 9
JGT MSM2QO

READ CHANNEL STATUS

GET ASSIGN COUNT

COUNT> I?
YES, GO DO MASTER READ

* TIME DELAY LOOP~ DELAY 1 SECOND, THEN RE-ISSUE
* READ CHANNEL STATUS~ LOG "NO ASSIGNS" MSG TO VDT
* EVERY 10 SECONDS
*-----

DEC @TDLYCT

JGT MSM150
LI Rll,10

MOV Rll,@TDLYCT

LI R9,LGNOA

BL @MSM920

MSM150 LI RI0,TDELAY

BL @MSM910

JMP MSMI00

TIME TO LOG AGAIN?

NO
YES, RESET COUNT

TO 10

LOG TIME DELAY MSG

TIME DELAY FOR 1 SECOND

TIME FOR A CHANNEL CHECK AGAIN

Figure C-1. Master Task (Sheet 10 of 19)

2270507 -9701

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0011

0358
0359
0360
0361
0362 0356 020A

0358 0098--
0363 035A 06AO

035C 042C--
0364 035E D020

0360 013A--
0365 0362 0980
0366 0364 COCO
0367 0366 2FEO

0368 02EA--
0368 036A C820

036C 02EE--
036E 0846--

0369 0370 0209
0372 081A--

0370 0374 06AO
0376 043A--

0371 0378 0283
037A 0093

0372 037C 1603
0373 037E C020

0380 02F2--
0374 0382 1135
0375 0384 0283

0386 OOOB
0376 0388 1305
0377 038A 020A

038C 00A8--
0378 038E 06AO

0390 0422--
0379 0392 10C9

2270507-9701

*-----
* A SLAVE TASK HAS ISSUED AN ASSIGN~
* DO MASTER READ AND PROCESS THE SLAVE I/O REQ.
*----
MSM200 LI R10,CMREAD

BL @MSM910

MOVB @MRBOC,RO

SRL RO, 8
MOV RO,R3
SVC @CBHA

MOV @CBHA2,@LGCMRO

LI R9,LGCMR

BL @MSM920

CI R3,>0093

JNE MSM210
MOV @ENDTSK , RO

JLT MSM700
MSM210 CI R3,>000B

JEQ MSM250
MSM220 LI R10,CMWRIT

BL @MSM900

JMP MSM100

MASTER READ CHANNEL

GET SLAVE I/O SUB-OPCODE

SHIFT TO LSB
SAVE FOR LATER COMPARE
CONVERT OPCODE TO HEX

AND MOVE TO M/R MSG

POINT TO LOG MSG

LOG MASTER READ MSG

RELEASE LUNO?

NO
END MASTER TASK FLAG SET?

YES, END MASTER TASK
SLAVE REQUESTING WRITE?

YES, GO CHECK FOR REPLY

MASTER WRITE CHANNEL

GO CHECK FOR MORE SLAVES

Figure C-1. Master Task (Sheet 11 of 19)

C-11

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0012

0381
0382
0383
0384
0385
0386
0387

0388

0389

0390

0391

0392
0393

0394

0395

0396

0397

0398
0399
0400
0401

0402

0403

0404
0405

0406

0407

0408

0409

0410

0411

C-12

0394 0209
0396 08F6""
0398 06AO
039A 043A""
039C 0209
039E 012E""
03AO A260
03A2 013E""
03A4 9819
03A6 02F4""
03A8 1602
03AA 0720
03AC 02F2""
03AE C809
03BO 0292""
03B2 C820
03B4 0142""
03B6 0296""
03B8 2FEO
03BA 028C""
03BC D020
03BE 013D""
03CO OA20

03C2 17E3
03C4 C820
03C6 013E""
03C8 0148"-
03CA 0208
03CC 012E""
03CE A220
03DO 0144""
03D2 C038
03D4 0220
03D6 012E""
03D8 C800
03DA 02A8""
03DC C838
03DE 02AA""
03EO 020A
03E2 029A""
03E4 06AO
03E6 042C'"
03E8 C620
03EA 02AC""
03EC 10CE

*-----
* SLAVE HAS I~QUESTED A WRITE ASCII:
* LOG THE WRITE BUFFER, AND CHECK FOR REPLY.
* IF REPLY, }!~CCEPT RESPONSE FROM MASTER VDT,
* THEN SATISIFY THE REPLY.
*-----
MSM250 LI R9, LG~1D

BL @MSM920

LI R9,MREI

A @MRBDElA,R9

CB *R9,@QUIT

JNE MSM26C1
SETO @ENDTSK

MSM260 MOV R9,@VWBUF

*

MOV @MRBOCC,@VWLEN

SVC @VWRI'l'E

MOVB @MRBUF'L, RO

SLA RO ,MRF'RPY+1

JNC MSM2'20
MOV @MRBDBA,@MRBRPA

LI R8,MRB

A @MRBRP'Y , R8

MOV *R8+,RO
AI RO,MRB

MOV RO , @VWRRBF

MOV *R8+,@VWRRLN

LI RIO,VWRPLY

BL @MSM910

MOV @VWRRCC , * R8

JMP MSM220

POINT TO LOG MSG

LOG "SLAVE WRITE" MSG

POINT TO

WRITE BUFFER IN MRB

REQUEST TO END MASTER TASK?

NO
YES, SET END TASK FLAG

SET WRITE BUFFER POINTER

SET WRITE LENGTH

LOG SLAVE WRITE BUFFER

GET USER FLAGS

SHIFT OUT REPLY FLAG (BIT 2)
WAS REPLY FLAG ON?
NO, GO DO MASTER WRITE
ESTABLISH REPLY BUFFER OFFSET

YES, POINT TO

REPLY BLOCK IN MRB

GET REPLY BUFFER OFFSET
MAKE POINTER ABSOLUTE

SET REPLY BUFFER POINTER

SET REPLY BUFFER LENGTH

WRITE VDT WITH REPLY

SET ACTUAL READ COUNT IN MRB

GO DO MASTER WRITE

Figure C-1. Master Task (Sheet 12 of 19)

2270507·9701

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 19S2.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0013

0413 *----
0414 * END MASTER TASK
0415 *-----
0416 03EE 020A MSM700 LI RIO,CMWRIT

03FO OOAS'"
0417 03F2 06AO BL @MSM900 MASTER WRITE CHANNEL

03F4 0422'"
041S 03F6 020A LI R10,CCLOSE

03FS OOBS'"
0419 03FA 06AO BL @MSM900 CLOSE MASTER/SLAVE CHANNEL

03FC 0422'"
0420 03FE 020A LI R10,CRLUNO

0400 OOCS'"
0421 0402 06AO BL @MSM900 RELEASE LUNO TO CHANNEL

0404 0422'"
0422 0406 020A LI R10,CDELET

040S OOFO'"
0423 040A 06AO BL @MSM900 DELETE MASTER/SLAVE CHANNEL

040C 0422'"
0424 040E 020A LI R10,VCLOSE

0410 02BO'"
0425 0412 06AO BL @MSM910 CLOSE VDT

0414 042C'"
0426 0416 020A LI RIO, VRLUNO

041S 02BE'"
0427 041A 06AO BL @MSM910 RELEASE VDT LUNO

041C 042C'"
042S 041E 2FEO SVC @ETASK TERMINATE TASK

0420 02E2'"

Figure C-1. Master Task (Sheet 13 of 19)

2270507-9701 C-13

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL -MASTER TASK PAGE 0014

C-14

0430
0431
0432
0433
0434
0435
0436
0~37

0438
0439
0440
0441
0442

0443
0444
0445
0446
0447
0448
0449
0450
0451

0452

0453

0454
0455

0456
0457
0458

0459

0460
0461

0462

0463

0464

0465

0466

0467

0422 C24A
0424 0229
0426 FFFC
0428 C259
042A 1001
042C 04C9
042E 2FDA
0430 D02A
0432 0001
0434 160B
0436 C249
0438 1308

043A 0039
043C 0980
043E C800
0440 0296"
0442 C809
0444 0292"
0446 2FEO
0448 028C"
044A 045B
044C C06A
044E FFFE
0450 13FC
0452 0980
0454 2FEO
0456 02EA"
0458 0020
045A 02EB"
045C 1606
045E C860
0460 02EC"
0462 OOOA
0464 C860
0466 02EE"
0468 OOOC
046A C801
046C 0292"
046E 0201
0470 0020
0472 C801
0474 0296"
0476 2FEO
0478 028C"
047A 2FEO
047C 02E2"

*-----
*
*
*
*

ISSUE SVC AND CHECK FOR ERROR UPON COMPLETION
ENTRY POINTS: MSM900 DO I/O AND IJOG TO VDT

MSM910 DO I/O ONLY (NO LOGGING)
MSM920 LOG ONLY (NO I/O)

*-----
MSM900 MOV R1·0, R9

AI R9,-4

MOV *R9,R9
JMP MSM915

MSM910 CLR R9
MSM915 SVC *R10

MOVB @1(R10) ,RO

JNE MSM960
MOV R9, It9
JEQ MSM950

*-----

POINT TO
MESSAGE TO BE LOGGED

UPON SUCCESSFUL COMPLETION

SET DUMMY LOG POINTER
ISSUE SVC
GET RETURN CODE: ANY ERROR?

YES, GO SEE IF ERR MSG NEEDED
MSG TO BE LOGGED?
NO

* LOG THE I/O (JUST COMPLETED) ON THE VDT
*-----
MSM920 MOVB *R9+,RO

SRL RO, EI
MOV RO , €I VWLEN

MOV R9, €'VWBUF

SVC @VWRITE

MSM950 RT
MSM960 MOV @-2(R10) ,R1

JEQ MSM950
SRL RO, 0
SVC @CBHA

MOVB @CBHA+1,RO

JNE MSM990
MOV @CBliAO , @ 10 (R1)

MOV @CBBA2,@12(R1)

MSM990 MOV R1, I~VWBUF

LI R1 , :e:RRLEN

MOV Rl , I~VWLEN

SVC @VWRITE

SVC @ETASK

GET MSG LENGTH
SHIFT TO LSB
SET WRITE LENGTH

SET BUFFER POINTER

LOG MSG TO VDT

NO, EXIT
IS ERROR MSG NEEDED?

NO, EXIT
SHIFT ERROR CODE TO LSB
CONVERT TO HEX ASCII

CONVERT OK?

NO, DON"T PLUG INTO MSG
MOVE HEX ERR

TO ERROR MSG

SET BUFFER POINTER

SET ERROR

MESSAGE LENGTH

LOG ERROR MSG ON VDT

TERMINATE TASK

Figure C-1. Master Task (Sheet 14 of 19)

2270507·9701

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL - MASTER TASK PAGE 0015

0469 *-----
0470 * I/O ERROR MESSAGES
0471 *-----
0472 047E ODOA ERRCCR DATA >ODOA
0473 0480 49 TEXT "'IPCMSM- XXX X - ERROR ON CREATE CHANNEL
0474 002D ERRLEN EQU $-ERRCCR-1
0475 04AC ODOA ERRCAL DATA >ODOA
0476 04AE 49 TEXT "'IPCMSM- XXX X - ERROR ON ASSIGN CHANNEL LUNO ...
0477 04DA ODOA ERRCOP DATA >ODOA
0478 04DC 49 TEXT "'IPCMSM- XXX X - ERROR ON OPEN CHANNEL
0479 0508 ODOA ERRCRS DATA >ODOA
0480 050A 49 TEXT "'IPCMSM- XXXX - ERROR ON READ CHANNEL STATUS ...
0481 0536 ODOA ERRCMR DATA >ODOA
0482 0538 49 TEXT "'IPCMSM- XXXX - ERROR ON MASTER READ CHANNEL ...
0483 0564 ODOA ERRCMW DATA >ODOA
0484 0566 49 TEXT "'IPCMSM- XXX X - ERROR ON MASTER WRITE CHANNEL'"
0485 0592 ODOA ERRCCL DATA >ODOA
0486 0594 49 TEXT "'IPCMSM- XXXX - ERROR ON CLOSE CHANNEL
0487 05CO ODOA ERRCRL DATA >ODOA
0488 05C2 49 TEXT "'IPCMSM- XXX X - ERROR ON RELEASE CHANNEL LUNO'"
0489 OSEE ODOA ERRCDL DATA >ODOA
0490 05FO 49 TEXT "'IPCMSM- XXXX - ERROR ON DELETE CHANNEL
0491 *
0492 061C ODOA ERRVAL DATA >ODOA
0493 061E 49 TEXT "'IPCMSM- XXXX - ERROR ON ASSIGN VDT LUNO
0494 064A ODOA ERRVOP DATA >ODOA
0495 064C 49 TEXT "'IPCMSM- XXXX - ERROR ON OPEN VDT
0496 0678 ODOA ERRVW DATA >ODOA
0497 067A 49 TEXT "IPCMSM- XXXX - ERROR ON WRITE VDT
0498 06A6 ODOA ERRVWR DATA >ODOA
0499 06A8 49 TEXT "IPCMSM- XXXX - ERROR ON WRITE VDT W/REPLY
0500 06D4 ODOA ERRVCL DATA >ODOA
0501 06D6 49 TEXT "IPCMSM- XXXX - ERROR ON CLOSE VDT
0502 0702 ODOA ERRVRL DATA >ODOA
0503 0704 49 TEXT "IPCMSM- XXXX - ERROR ON RELEASE VDT LUNO
0504 *
0505 0730 ODOA ERRTD DATA >ODOA
0506 0732 49 TEXT "IPCMSM- XXXX - ERROR ON TIME DELAY

Figure C-1. Master Task (Sheet 15 of 19)

2270507·9701 C-1S

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
IPCMSM- IPC MASTER/SLAVE CHANNEL .. MASTER TASK

0508
0509
0510

*-----
* CHANNEL I/O ACTIVITY MESSAGES LOGGED TO VDT
*-----

2E LGCCR BYTE LGCCFtE-$
00 BYTE >OO,>OA

PAGE 0016

0511 075E
0512 075F
0513 0761
0514

49 TEXT ~IPCfoIlSM-001 IPC MASTER/SLAVE CHANNEL CREATED ~

0515
0516 078D
0517 078E
0518 0790
0519
0520
0521 07BC
0522 07BO
0523 07BF
0524
0525
0526 07EB
0527 07EC
0528 07EE
0529

078C~ LGCCRE EQU $-1

*
2E LGCAL BYTE LGCAI,E-$
00 BYTE >OO,>OA
49 TEXT ~IPCMSM-002 IPC MASTER/SLAVE CHANNEL ASSIGNEO~

07BB~ LGCALE EQU $-1
*

2E LGCOP BYTE LGCOPE-$
00 BYTE >OO,>OA
49 TEXT ~IPCfoIlSM-003 IPC MASTER/SLAVE CHANNEL OPENED

07EA~ LGCOPE EQU $-1
*

2E LGNOA BYTE LGNOll.E-$
00 BYTE >00, >OA
49 TEXT ~IPC~!SM-004 NO ASSIGNS ON IPC CHANNEL

0819~ LGNOAE EQU $-1
* 0530

0531
0532
0533
0534
0535
0536

081A 20
081B 00
0810 49
0846 0000

LGCMR BYTE LGCMRE-$
BYTE >OO,>OA
TEXT ~IPC~!SM-005 MASTER REAO~ I/O SUB-OPCOOE= ~

LGCMRO DATA $-$

0537 0848
0538 0849
0539 084B
0540
0541
0542 0869
0543 086A
0544 086C
0545
0546
0547 0898
0548 0899
0549 089B
0550
0551
0552 08C7
0553 08C8
0554 08CA
0555
0556
0557 08F6
0558 08F7
0559 08F9
0560

0847~ LGCMRE EQU $ - i
*

20 LGCMW BYTE LGCM~rE-$
00 BYTE >OO,>OA
49 TEXT ~IPC~!SM-006 MASTER WRITE ISSUEO~

0868~ LGCMWE EQU $-1
*

2E LGCCL BYTE LGCCLE-$
00 BYTE >OD,>OA
49 TEXT ~IPCMSM-007 IPC MASTER/SLAVE CHANNEL CLOSED

0897~ LGCCLE EQU $-1
*

2E LGCRL BYTE LGCRLE-$
00 BYTE >OO,>OA
49 TEXT ~IPCM:SM-008 IPC MASTER/SLAVE CHANNEL RELEASEO~

08C6~ LGCRLE EQU $-1
*

2E LGCOL BYTE LGCOLE-$
00 BYTE >OO,>OA
49 TEXT ~IPCMSM-009 IPC MASTER/SLAVE CHANNEL DELETED ~

08F5~ LGCOLE EQU $-1
*

26 LGWD
00
49

091C~ LGWDE
*

BYTE LGWDE-$
BYTE >00, >OA
TEXT ~IPCMSM-010 DATA WRITTEN FROM SLAVE: ~
EQU $-1

0561
0562
0563
0564
0565

091E OAOO LGWRBF DATA >OAOO
0920 49 TEXT ~IPCMSM-011 ENTER REPLY: ~

0937~ LGWRBE EQU $-1
END

NO ERRORS, NO WARNINGS

Figure C-1. Master Task (Sheet 16 of 19)

C-16 2270507-9701

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, .JON 15, 1982.
LABEL VALUE DEFN REFERENCES PAGE 0017

$ 0938~ 0179 0181 0226 0237 0239 0252 0252 0254 0254
0267 0267 0268 0268 0269 0269 0299 0299 0300
0300 0304 0304 0474 0511 0514 0516 0519 0521
0524 0526 0529 0531 0534 0534 0535 0537 0540
0542 0545 0547 0550 0552 0555 0557 0560 0564

CALUNO 0052~ 0082 0325
CBHA 02EA~ 0298 0367 0458 0459
CBHAO 02EC~ 0299 0461
CBHA2 02EE~ 0300 0368 0462
CCLOSE 00B8~ 0145 0418
CCREAT 002A~ 0056 0323
CDELET OOFO~ 0168 0422
CHPTHN 0114~ 0179 0076 0089 0173
CMREAD 0098~ 0121 0362
CMWRIT 00A8~ 0133 0377 0416
CNEND 0123~ 0181 0179
COPEN 007A~ 0095 0327
COPMML 0082~ 0102
COPTYP 0080~ 0101
CRLONO 00C8~ 0156 0420
CRSTS 0088~ 0109 0338
CSACT 012A~ 0190 0340
CSBUF 0124~ 0185 0114
CSCFLG 0124~ 0186
CSMML 0128~ 0189
CSOCT 012B~ 0191
CSRTFL 0127~ 0188
CSRTYP 0126~ 0187
ENDTSK 02F2~ 0306 0373 0393
ERRCAL 04AC~ 0475 0081
ERRCCL 0592~ 0485 0144
ERRCCR 047E~ 0472 0055 0474
ERRCDL 05EE~ 0489 0167
ERRCMR 0536~ 0481 0120
ERRCMW 0564~ 0483 0132
ERRCOP 04DA~ 0477 0094
ERRCRL 05CO~ 0487 0155
ERRCRS 0508; 0479 0108
ERRLEN 002D 0474 0464
ERRTD 0730~ 0505 0292
ERRVAL 061C~ 0492 0231
ERRVCL 06D4~ 0500 0274
ERRVOP 064A; 0494 0243
ERRVRL 0702~ 0502 0280
ERRVW 0678~ 0496 0249
ERRVWR 06A6; 0498 0258
ETASK 02E2~ 0288 0428 0467
LGCAL 078D~ 0516 0081
LGCALE 07BB~ 0519 0516
LGCCL 0869~ 0542 0144
LGCCLE 0897~ 0545 0542
LGCCR 075E~ 0511 0055
LGCCRE 078C~ 0514 0511
LGCDL 08C7~ 0552 0167
LGCDLE 08F5'" 0555 0552
LGCMR 081A; 0531 0120 0369
LGCMRE 0847~ 0535 0531
LGCMRO 0846~ 0534 0368
LGCMW 0848; 0537 0132
LGCMWE 0868'" 0540 0537

Figure C-1. Master Task (Sheet 17 of 19)

2270507·9701 C-17

Master/Slave Task Examples

IPCMSM SDSMAC 3.4.0 81.117 16:11:02 TUESDAY, JUN 15, 1982.
LABEL VALUE DEFN REFERENCES PAGE 0018

LGCOP 07BC~ 0521 0094
LGCOPE 07EA~ 0524 0521
LGCRL 0898~ 0547 0155
LGCRLE 08C6~ 0550 0547
LGNOA 07EB~ 0526 0352
LGNOAE 0819~ 0529 0526
LGWD 08F6~ 0557 0387
LGWDE 091C~ 0560 0557
LGWRBE 0937~ 0564 0263
LGWRBF 091E~ 0562 0261 0263
MRB 012E~ 0196 0073 0126 0127 0138 0140 0389 0402 0405
MRBDBA 013E~ 0216 0390 0401
MRBEC 0139~ 0203
MRBEND 0252~ 0226 0073 0127 0140
MRBICC 0140' 0217
MRBJSB 0134~ 0200
MRBLUN 013B~ 0205
MRBOC 013A~ 0204 0364
MRBOCC 0142~ 0218 0395
MRBRCB 0130~ 0198
MRBRES 0146~ 0221
MRBRIC 014A~ 0223
MRBROC 014C~ 0224
MRBRPA 0148~ 0222 0401
MRBRPY 0144~ 0219 0403
MRBSFL 013C~ 0206
MRBSID 012E~ 0197
MRBSOC 0138~ Q202
MRBSSI 0136~ 0201
MRBTSB 0132~ 0199
MRBUF~ 013D~ 0211 0397
MRFBSY 0000 0207
MRFEOF 0002 0209
MRFERR 0001 0208
MRFINT 0000 0212
MRFRPY 0001 0213 0214 0398
MRFVAL 0001 0214
MRFVNT 0003 0210
MSMOOO 02F6~ 0318 0047
MSM100 0326~ 0338 0356 0379
MSM150 034C~ 0354 0349
MSM200 0356~ 0362 0342
MSM210 0384~ 0375 0372
MSM220 038A~ 0377 0400 0411
MSM250 0394~ 0387 0376
MSM260 03AE~ 0394 0392
MSM700 03EE~ 0416 0374
MSM900 0422~ 0436 0324 0326 0328 0378 0417 0419 0421 0423
MSM910 042C~ 0440 0320 0322 0339 0355 0363 0409 0425 0427
MSM915 042E~ 0441 0439
MSM920 043A~ 0449 0353 0370 0388
MSM950 044A~ 0454 0445 0456
MSM960 044C~ 0455 0443
MSM990 046A~ 0463 0460
MSMWP 0006~ 0048 0047
QUIT 02F4~ 0311 0391
RO 0000 0340 0341 0364 0365 0366 0373 0397 0398 0404

0405 0406 0442 0449 0450 0451 0457 0459
R1 0001 0455 0461 0462 0463 0464 0465
RIO OOOA 0319 0321 0323 0325 0327 0338 0354 0362 0377

~

Figure C-1.' Master Task (Sheet 18 of 19)

C-18 2270507·9701

Master/Slave Task Examples

IPCMSM SDSMAC 16:11:02 TUESDAY, JUN 15, 1982.
LABEL VALUE DEFN REFERENCES PAGE 0019

0408 0416 0418 0420 0422 0424 0426 0436 0441
0442 0455

R11 OOOB 0329 0330 0350 0351
R3 0003 0366 0371 0375
R8 0008 0402 0403 0404 0407 0410
R9 0009 0352 0369 0387 0389 0390 0391 0394 0436 0437

0438 0438 0440 0444 0444 0449 0452
SVC 0050
TDELAY 02E6' 0293 0354
TDLYCT 02FO' 0304 0330 0348 0351
VAL UN 0 0254' 0232 0319
VCLOSE 02BO' 0275 0424
VOPEN 027E' 0244 0321
VPATH 0278' 0237 0235
VPATHE 027A' 0239 0237
VRLUNO 02BE' 0281 0426
VWBUF 0292' 0252 0394 0452 0463
VWLEN 0296' 0254 0395 0451 0465
VWRITE 028C' 0250 0396 0453 0466
VWRPLY 029A' 0259 0408
VWRRBA 02A8' 0266 0264
VWRRBF 02A8' 0267 0406
VWRRCC 02AC' 0269 0410
VWRRLN 02AA' 0268 0407

Figure C-1. Master Task (Sheet 19 of 19)

2270507 ·9701 C-19

Master/Slave Task Examples

SDSMAC
ACCESS NAMES TABLE

16:05:41 TUESDAY, JUN 15, 1982.
PAGE 0001

SOURCE ACCESS NAME=
OBJECT ACCESS NAME=
LISTING ACCESS NAME=
ERROR ACCESS NAME=
OPTIONS=

VOLl.IPC.IPCMSS
VOLI. IPC. I'PCMSSO
VOLl.IPC.I'PCMSSL

XREF,TUNLST,BUNLST,DUNLST
MACRO LIBRARY PATHNAME=

IPCMSS SDSMAC 115:05:41 TUESDAY, JUN 15, 1982.
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE 0002

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038 0000 0006'"
0039 0006
0040
0041

C-20

IDT "'IPCM8S'"
*-----
* NAME: IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK

* * ABSTRACT: 1) THIS TASK EXERCISES SOME OF THE OPERATIONS
* OF AN IPC MASTER/SLAVE CHANNEL FROM THE
* VIE:WPOINT OF THE SLAVE (REQUESTOR) TASK.
* 2) THIS TASK IS WRITTEN TO BE USED IN
* CONJUNCTION WITH THE MASTER TASK "IPCMSM".
* 3) THIS TASK USES THE CHANNEL CREATED BY
* "IPCMSM", BY ISSUING WRITE WITH REPLY
* I/O REQUESTS TO THE CHANNEL.
* 4) THIS TASK USES THE VDT ("ME") TO LOG ALL
* AC'I'IVITY DIRECTED TO THE CHANNEL, AND TO
* ALI,OW YOU TO ENTER THE DATA TO BE WRITTEN
* IN THE WRITE WITH REPLY REQUEST.
* LUNO USE: 1) TASK LOCAL LUNO >IC IS ASSIGNED TO THE
* MASTER/SLAVE CHANNEL.
* 2) TASK LOCAL LUNO >ID IS ASSIGNED TO "ME".

* * ENTRY:
* * EXIT:
*

.BID TASK (OR XTS)

SVC >04

* REVISION: 11/13/80 - ORIGINAL
* * ENVIRONMENT: 990 ASSEMBLER
* * EXECUTION REQUIR8MENTS: READ THE REQUIREMENTS FOR THE
* MASTER TASK (IPCMSM) FIRST: THEN
* 1) ASS8MBLE THIS TASK
* 2) INS'rALL THIS TASK ON "VOLI. IPC. PROG" (TID=2)
* 3) EXECUTE THIS TASK VIA XTS
* 4) TO 'rERMINATE THE TASK - SEND A STRING
* BEGINNING WITH "Q".
*-----

DATA MSSWP ,~1SS000, 0
MSSWP BSS 32
*

DXOP SVC,15

WORKSPACE

DEFINE SVC XOP

Figure C-2. Slave Task (Sheet 1 of 12)

2270507-9701

Master/Slave Task Examples

IPCMSS SDSMAC 16:05:41 TUESDAY, JUN 15, 1982.
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE 0003

0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
00174
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097

0026 048C'"
002A 0000
002C 91
002D 1C
002E 0000
003A 0000

003C 0000
0040 OOAE'"
0042 0000

004E 04BB'"
0052 0000
0054 00
0055 1C
0056 00
0057 10

0058 0000
005A 0000
005C 0000

005E 04EA'"
0062 0000
0064 OB
0065 1e
0066 00
0067 40

0068 OOBE'"
006A 0000
006C 0000
006E 0070'"

0070
0070 00E6'"
0072 0028
0074 0000

0076 0519'"
007A 0000
007C 01
007D 1C
007E 00
007F 00
0080 0000

2270507 ·9701

*-----
* ASSIGN LUNO TO IPC MASTER/SLAVE CHANNEL SVC BLOCK
*-----

DATA LGCAL,ERRCAL
CALUNO DATA 0

BYTE >91
BYTE >1C

*

*-----

DATA 0,0,0,0,0,0
DATA >0000

DATA 0,0
DATA CHPTHN
DATA 0,0,0,0,0,0

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
RESERVED
UTILITY FLAGS=XXXO OXXX
BITS 3-4= TASK LOCAL LUNO
RESERVED
CHANNEL PATHNAME POINTER
RESERVED

* OPEN IPC MASTER/SLAVE CHANNEL SVC BLOCK
*-----

DATA LGCOP,ERRCOP
COPEN DATA 0

BYTE >00
BYTE >1C.
BYTE 0
BYTE >10

*
COPTYP DATA 0
COPMML DATA 0

DATA 0
*-----

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
SYS FLAGS
USER FLAGS=OXX1 OXXX
BITS 3-4= SHARED ACCESS
RETURNED CHANNEL TYPE
RETURNED MAX MSG LEN
RESERVED

* WRITE (W/REPLY) IPC MASTER/SLAVE CHANNEL SVC BLOCK
*-----

DATA LGCWR,ERRCWR
CWRPLY DATA 0

BYTE >OB
BYTE >1C
BYTE 0
BYTE >40

* DATA CWBUF
DATA 0

CWRWCC DATA $-$
DATA CWRRBA

*
CWRRBA EVEN

DATA CRBUF
CWRRBL DATA CRBUFE-CRBUF
CWRRCC DATA $-$
*-----

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
SYS FLAGS
USER FLAGS= 01XX XXXO
BIT 1= REPLY BLOCK PRESENT
CHANNEL WRITE BUFFER POINTER
RESERVED
WRITE CHARACTER COUNT
REPLY BLOCK ADDRESS

CHANNEL REPLY BUFFER POINTER
REPLY BUFFER LENGTH
ACTUAL REPLY CHARACTER COUNT

* CLOSE IPC MASTER/SLAVE CHANNEL SVC BLOCK
*-----

DATA LGCCL,ERRCCL
CCLOSE DATA 0

BYTE >01
BYTE >1C
BYTE 0
BYTE >00
DATA 0,0,0

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
SYS FLAGS
USER FLAGS= OXXX XXXX
RESERVED

Figure C-2. Slave Task (Sheet 2 of 12)

C-21

Master/Slave Task Examples

IPCMSS SDSMAC 16:05:41 TUESDAY, JUN 15, 19S2.
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE 0004

C-22

0099
0100
0101
0102
0103
0104
0105
0106
0107
010S
0109
0110
0111
0112
0113
0114
0115
0116
0117
OIlS
0119
0120
0121
0122
0123
0124
0125
0126
0127
012S

00S6
OOSA
OOSC
OOSD
OOSE
009A
009C
OOAO
00A2

OOAE
OOAF

OOBE
OOBE

00E6
00E6

054S'"
0000

93
lC

0000

*-----
* RELEASE LUNO FROM IPC MASTER/SLAVE CHANNEL
*-----

DATA LGCRL,ERRCRL
CRLUNO DATA 0

BYTE >93
BYTE >lC

LOG/ERROR MSG POINTER
OPCODE, RETURN CODE
SUB-OPCODE
LUNO OF CHANNEL
RESERVED

0000
0000
0000
0000

DA TA 0, 0 , 0 " 0 , 0 , 0
DATA >0000
DATA 0,0

UTILITY FLAGS= XXXO OXXX
RESERVED

DATA 0 RESERVED
DA TA 0, 0 , 0 I' 0 , 0 , 0 RESERVED

*-----
* IPC MASTER/SLAVE CHANNEL - PATHNAME
*-----

OF CHPTHN BYTE CNEND·-$
56 TEXT "'VOLl .. IPC .MSCHAN'"

OOBD'" CNEND EQU $-1
*-----

CHANNEL PATHNAME LENGTH
CHANNEL PATHNAME

CHANNEL PATHNAME END

* IPC MASTER/SLAVE CHANNEL - WRITE BUFFER
*-----
CWBUF EVEN

BSS 40
00E6'" CWBUFE EQU $

*-----
* IPC MASTER/SLAVE CHANNEL - REPLY BUFFER
*-----
CRBUF EVEN

BSS 40
010E'" CRBUFE EQU $

Figure C-2. Slave Task (Sheet 3 of 12)

2270507·9701

Master/Slave Task Examples

IPCMSS SDSMAC 16:05:41 TUESDAY, JUN 15, 1982.
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE 0005

0130
0131
0132
0133 010E
0134 0110
0135 0114
0136 0120
0137 0126
0138 0128
0139 0134
0140 0135
0141
0142
0143
0144

0378'"
0000
0000
0000
0134'"
0000

02
4D

0136'"

0145 0138 03A6'"
0146 013A 0000
0147 013E 0000
0148
0149
0150
0151 0146
0152 0148
0153 014C
0154 014E
0155 0150
0156 0152
0157
0158
0159
0160 0154
0161,0156
0162 015A
0163 015C
0164 015E
0165 0160
0166 0162
0167
0168 0164

03D4'"
0000
0000
0000
0000
0000

0402'"
0000
0040
059E'"
0000
001F
0164'"

0169 0164 0000
0170 0166 0000
0171 0168 0000
0172
0173
0174
0175 016A 0430'"
0176 016C 0000
0177 0170 0000
0178
0179
0180
0181
0182
0183
0184
0185

0178 045E'"
017A 0000
017E 0000
018A 0000
0192 0000

2270507-9701

*-----
* ASSIGN LUNO TO VDT SVC BLOCK
*-----

DATA ERRVAL
VALUNO DATA 0,>911D

DATA 0,0,0,0,0,0
DATA 0,0,0
DATA VPATH
DATA 0,0,0,0,0,0

VPATH BYTE VPATHE-$
TEXT "'ME'"

VPATHE EQU $-1
*-----

ERROR MSG POINTER
ASSIGN LUNO >lD TO VDT
RESERVED
RESERVED
VDT PATHNAME POINTER
RESERVED
PATHNAME LENGTH

PATHNAME END POINTER

* OPEN, REWIND VDT SVC BLOCK
*-----

DATA ERRVOP
VOPEN DATA 0,>031D

DATA 0,0,0,0
*-----
* WRITE TO VDT SVC BLOCK
*-----

DATA ERRVW
VWRITE DATA 0,>OB1D

DATA 0
VWBUF DATA $-$

DATA 0
VWLEN DATA $-$
*-----

ERROR MSG POINTER
OPEN, REWIND LUNO > 1D
RESERVED

ERROR MSG POINTER
WRITE ASCII TO LUNO >lD

WRITE BUFFER POINTER
RESERVED
WRITE BUFFER LENGTH

* WRITE (WITH REPLY) VDT SVC BLOCK
*-----

DATA ERRVWR
VWRPLY DATA 0,>OB1D

DATA >0040
DATA LGWRBF
DATA 0

*

DATA LGWRBE-LGWRBF
DATA VWRRBA

VWRRBA EVEN
VWRRBF DATA $-$
VWRRLN DATA $-$
VWRRCC DATA $-$
*-----
* CLOSE VDT SVC BLOCK
*-----

DATA ERRVCL
VCLOSE DATA O,>OllD

DATA 0,0,0,0
*---_.-

ERROR MSG POINTER
WRITE ASCII TO LUNO >lD

WITH REPLY
WRITE BUFFER POINTER
RESERVED
WRITE BUFFER LENGTH
REPLY BLOCK ADDRESS

REPLY BUFFER POINTER
REPLY BUFFER LENGTH
REPLY ACTUAL COUNT

ERROR MSG POINTER
CLOSE LUNO >lD
RESERVED

* RELEASE VDT LUNO SVC BLOCK
*-----

DATA ERRVRL
VRLUNO DATA 0,>931D

DATA 0,0,0,0,0,0
DATA 0,0,0,0
DATA 0,0,0,0,0,0

ERROR MSG POINTER
RELEASE LUNO >lD
RESERVED
RESERVED
RESERVED

Figure C-2. Slave Task (Sheet 4 of 12)

C-23

Master/Slave Task Examples

IPCMSS SDSMAC 16:05:41 TUESDAY, JUN 15, 1982.
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE 0006

0187 *-----
0188 * TASK TERMINATION SVC BLOCK
0189 *-----
0190 019E 0400 ETASK DATA >0400 TASK TERMINATION SVC
0191 *-----
0192 * CONVERT BINARY TO HEX ASCII SVC BLOCK
0193 *-----
0194 01AO OCOO CBHA DATA >OCOO OPCODE, RETURN CODE
0195 01A2 0000 CBHAO DATA $-$ ASCII DIGIT 0,1
0196 01A4 0000 CBHA2 DATA $-$ ASCII DIGIT 2,3
0197 *-----
0198 * MISCELLANEOUS DATA ITEMS
0199 *-----
0200 01A6 51 QUIT BYTE ~Q~

IPCMSS SDSMAC 16:05:41 TUESDAY, JUN 15, 1982.
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE 0007

0202 *-----
0203 * TASK ENTRY POINT~
0204 * -ASSIGN, OP:e:N VDT
0205 * -ASSIGN, OP:e:N MASTER/SLAVE CHANNEL
0206 *-----
0207 01A8 MSSOOO EVEN
0208 01A8 020A LI RIO, VAlLUNO

01AA 0110~
0209 01AC 06AO BL @MSS910 ASSIGN LUNO TO "ME"

OlAE 0240~
0210 01BO 020A LI R10,VOPEN

01B2 013A~
0211 01B4 06AO BL @MSS910 OPEN VDT

01B6 0240~
0212 01B8 020A LI RIO ,CA]~UNO

01BA 002A~
0213 01BC 06AO BL @MSS900 ASSIGN LUNO TO CHANNEL

OlBE 0236~
0214 OlCO 020A LI R10,COPEN

01C2 0052~
0215 01C4 06AO BL @MSS900 OPEN CHANNEL

01C6 0236~

Figure C-2. Sla"e Task (Sheet 5 of 12)

C-24 2270507·9701

Master/Slave Task Examples

IPCMSS SOSMAC 16:05:41 TUESDAY, JUN 15, 19S2.
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE OOOS

0217
021S
0219
0220
0221

0222

0223

0224

0225

0226

0227

022S

0229

0230

0231

0232

0233

0234

0235

0236

0237
023S

01CS 0200
01CA OOBE'"
01CC CSOO
01CE 0164'"
0100 0200
0102 002S
0104 CSOO
0106 0166'"
01DS 020A
01DA 0156'"
01DC 06AO
01DE 0240'"
OlEO CS20
01E2 016S'"
01E4 006C'"
01E6 020A
01ES 0062'"
OlEA 06AO
01EC 0236'"
01EE 0209
01FO 0577'"
01F2 06AO
01F4 024E'"
01F6 0200
01FS 00E6'"
01FA CSOO
01FC 014E'"
01FE CS20
0200 0074'"
0202 0152'"
0204 2FEO
0206 014S'"
020S 9S20
020A 00E6'"
020C 01A6'"
020E 1301
0210 10DB

2270507-9701

*-----
* ISSUE VDT WRITE W/REPLY~ ACCEPT MSG TO
* TO BE WRITTEN TO CHANNEL
*----
MSS100 LI RO,CWBUF

MOV RO , @VWRRBF

LI RO,CWBUFE-CWBUF

MOV RO , @VWRRLN

LI R10,@VWRPLY

SET REPLY BUFFER

POINTER IN VOT SVC BLOCK

SET REPLY LENGTH

IN VDT SVC BLOCK

BL @MSS910 WRITE VDT WITH REPLY

MOV @VWRRCC,@CWRWCC SET CHANNEL WRITE CHAR COUNT

LI R10,CWRPLY

BL @MSS900 WRITE TO CHANNEL WITH REPLY

LI R9,LGWD POINT TO LOG MSG

BL @MSS920 LOG "REPLY" MSG

LI RO,CRBUF

MOV RO,@VWBUF SET WRITE BUFFER POINTER

MOV @CWRRCC,@VWLEN SET WRITE LENGTH

SVC @VWRITE LOG SLAVE WRITE BUFFER

CB @CRBUF,@QUIT DID MASTER REPLY "QUIT"?

YES JEQ MSS700
JMP MSS100 NO, GO GET NEXT MSG FOR MASTER

Figure C-2. Slave Task (Sheet 6 of 12)

C-25

Master/Slave Task Examples

IPCMSS SDSMAC 16:05:41 TUESDAY, JUN 15, 1982.
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE 0009

0240 *----
0241 * END SLAVE r.I'ASK
0242 *-----
0243 0212 020A MSS700 LI RI0,CCLOSE

0214 007A'
0244 0216 06AO BL @MSS900 CLOSE MASTER/SLAVE CHANNEL

0218 0236'
0245 021A 020A LI RI0,CRLUNO

021C 008A'
0246 021E 06AO BL @MSS900 RELEASE LUNO TO CHANNEL

0220 0236'
0247 0222 020A LI RI0,VCLOSE

0224 016C'
0248 0226 06AO BL @MSS910 CLOSE VDT

0228 0240'
0249 022A 020A LI RI0,VRLUNO

022C 017A'
0250 022E 06AO BL @MSS910 RELEASE VDT LUNO

0230 0240'
0251 0232 2FEO SVC @ETASK TERMINATE TASK

0234 019E'

Figure C-2. Slave Task (Sheet 7 of 12)

C-26 2270507·9701

MasterlSlave Task Examples

IPCMSS SDSMAC 16:05:41 TUESDAY, JUN 15, 1982.
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE 0010

0253
0254
0255
0256
0257
0258
0259
0260

0261
0262
0263
0264
0265

0266
0267
0268
0269
0270
0271
0272
0273
0274

0275

0276

0277
0278

I

0279
0280
0281

0282

0283
0284

0285

0286

0287

0288

0289

0290

0236 C24A
0238 0229
023A FFFC
023C C259
023E 1001
0240 04C9
0242 2FDA
0244 D02A
0246 0001
0248 160B
024A C249
024C 1308

024E D039
0250 0980
0252 C800
0254 0152'"
0256 C809
0258 014E'"
025A 2FEO
025C 0148'"
025E 045B
0260 C06A
0262 FFFE
0264 13FC
0266 0980
0268 2FEO
026A 01AO'"
026C D020
026E 01A1'"
0270 1606
0272 C860
0274 01A2'"
0276 OOOA
0278 C860
027A 01A4'"
027C OOOC
027E C801
0280 014E'"
0282 0201
0284 002D
0286 C801
0288 0152'"
028A 2FEO
028C 0148'"
028E 2FEO
0290 019E'"

2270507·9701

*-----
* ISSUE SVC AND CHECK FOR ERROR UPON COMPLETION
* ENTRY POINTS: MSS900 DO I/O AND LOG TO VDT
* MSS910 DO I/O ONLY (NO LOGGING)
* MSS920 LOG ONLY (NO I/O)
*-----
MSS900 MOV R10,R9

AI R9,-4
POINT TO

MESSAGE TO BE LOGGED

MOV *R9,R9
JMP MSS915

UPON SUCCESSFUL COMPLETION

MSS910 CLR R9
MSS915 SVC *R10

MOVB @1(R10) ,RO

JNE MSS960
MOV R9,R9
JEQ MSS950

*-----

SET DUMMY LOG POINTER
ISSUE SVC
GET RETURN CODE~ ANY ERROR?

YES, GO SEE IF ERR MSG NEEDED
MSG TO BE LOGGED?
NO

* LOG THE rio (JUST COMPLETED) ON THE VDT
*-----
MSS920 MOVB *R9+,RO

SRL RO, 8
MOV RO , @VWLEN

MOV R9,@VWBUF

SVC @VWRITE

MSS950 RT
MSS960 MOV @-2 (RIO) ,R1

JEQ MSS950
SRL RO, 8
SVC @CBHA

MOVB @CBHA+1,RO

JNE MSS990
MOV @CBHAO,@10(R1)

MOV @CBHA2,@12(R1)

MSS990 MOV R1,@VWBUF

LI R1,ERRLEN

MOV R1, @VWLEN

SVC @VWRITE

SVC @ETASK

GET MSG LENGTH
SHIFT TO LSB
SET WRITE LENGTH

SET BUFFER POINTER

LOG MSG TO VDT

NO, EXIT
IS ERROR MSG NEEDED?

NO, EXIT
SHIFT ERROR CODE TO LSB
CONVERT TO HEX ASCII

CONVERT OK?

NO, DON"'T PLUG INTO MSG
MOVE HEX ERR

TO ERROR MSG

SET BUFFER POINTER

SET ERROR

MESSAGE LENGTH

LOG ERROR MSG ON VDT

TERMINATE TASK

Figure C-2. Slave Task (Sheet 8 of 12)

C-27

Master/Slave Task Examples

IPCMSS SDSMAC 16:05:41 TUESDAY, • TUN 15, 1982 •
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE 0011

0292 *-----
0293 * I/O ERROR MESSAGES
0294 *-----
0295 0292 ODOA ERRCAL DATA >ODOA
0296 0294 49 TEXT "IPCMSS- XXXX - ERROR ON ASSIGN CHANNEL
0297 002D ERRLEN EQU $-ERRCAL-1
0298 02CO ODOA ERRCOP DATA >ODOA
0299 02C2 49 TEXT "IPCMSS- XXXX - ERROR ON OPEN CHANNEL
0300 02EE ODOA ERRCWR DATA >ODOA
0301 02FO 49 TEXT "IPCMSS- XXXX - ERROR ON WRITE CHANNEL W/RPLY"
0302 031C ODOA ERRCCL DATA >ODOA
0303 031E 49 TEXT "IPCMBS- XXXX - ERROR ON CLOSE CHANNEL
0304 034A ODOA ERRCRL DATA >ODOA
0305 034C 49 TEXT "'IPCMBS- XXXX - ERROR ON RELEASE CHANNEL LUNO"
0306 *
0307 0378 ODOA ERRVAL DATA >ODOA
0308 037A 49 TEXT "IPCMBS- XXXX - ERROR ON ASSIGN VDT
0309 03A6 ODOA ERRVOP DATA >ODOA
0310 03A8 49 TEXT "IPCMBS- XXXX - ERROR ON OPEN VDT
0311 03D4 ODOA ERRVW DATA >ODOA
0312 03D6 49 TEXT "IPCMBS- XXXX - ERROR ON WRITE VDT
0313 0402 ODOA ERRVWR DATA >ODOA
0314 0404 49 TEXT "IPCM8S- XXXX - ERROR ON WRITE VDT W/REPLY
0315 0430 ODOA ERRVCL DATA >ODOA
0316 0432 49 TEXT "IPCMSS- XXXX - ERROR ON CLOSE VDT
0317 045E ODOA ERRVRL DATA >ODOA
0318 0460 49 TEXT "IPCMSS- xxxx - ERROR ON RELEASE VDT LUNO

Figure C-2. Slave Task (Sheet 9 of 12)

C-28 2270507-9701

Master/Slave Task Examples

IPCMSS SDSMAC 16:05:41 TUESDAY, JUN 15, 1982.
IPCMSS- IPC MASTER/SLAVE CHANNEL - SLAVE TASK PAGE 0012

0320 *-----
0321 * CHANNEL I/O ACTIVITY MESSAGES LOGGED TO VDT
0322 *-----
0323 048C 2E LGCAL BYTE LGCALE-$
0324 048D OD BYTE >OD,>OA
0325 048F 49 TEXT --IPCMSS-001 IPC MASTER/SLAVE CHANNEL ASSIGNED--
0326 04BA-- LGCALE EQU $-1
0327 *
0328 04BB 2E LGCOP BYTE LGCOPE-$
0329 04BC OD BYTE >OD,>OA
0330 04BE 49 TEXT --IPCMSS-002 IPC MASTER/SLAVE CHANNEL OPENED
0331 04E9-- LGCOPE EQU $-1
0332 *
0333 04EA 2E LGCWR BYTE LGCWRE-$
0334 04EB OD BYTE >OD, >OA
0335 04ED 49 TEXT --IPCMSS-003 CHANNEL WRITE W/REPLY ISSUED
0336 0518-- LGCWRE EQU $-1
0337 *
0338 0519 2E LGCCL BYTE LGCCLE-$
0339 051A OD BYTE >OD,>OA
0340 051C 49 TEXT --IPCMSS-004 IPC MASTER/SLAVE CHANNEL CLOSED
0341 0547-- LGCCLE EQU $-1
0342 *
0343 0548 2E LGCRL BYTE LGCRLE-$
0344 0549 OD BYTE >OD,>OA
0345 054B 49 TEXT --IPCMSS-005 IPC MASTER/SLAVE CHANNEL RELEASED--
0346 0576-- LGCRLE EQU $-1
0347 *
0348 0577 26 LGWD BYTE LGWDE-$
0349 0578 OD BYTE >OD,>OA
0350 057A 49 TEXT --IP.CMSS-006 DATA REPLY FROM MASTER:
0351 059D-- LGWDE EQU $-1
0352 *
0353 059E OAOD LGWRBF DATA >OAOD
0354 05AO 49 TEXT --IPCMSS-007 ENTER WRITE DATA:
0355 05BD-- LGWRBE EQU $-1
0356 END

NO ERRORS, NO WARNINGS

Figure C-2. Slave Task (Sheet 10 of 12)

2270507 -9701 C-29

Master/Slave Task Examples

IPCMSS SOSMAC 16:05:41 TUESOAY, JON 15, 1982.
LABEL VALUE OEFN REFERENCES PAGE 0013

$ 05BE'- 0081 0081 0087 0087 0114 0116 0122 0128 0139
0141 0154 0154 0156 0156 0169 0169 0170 0170
0171 0171 0195 0195 0196 0196 0297 0323 0326
0328 0331 0333 0336 0338 0341 0343 0346 0348
0351 0355

CALUNO 002A'- 0047 0212
CBHA 01AO'- 0194 0281 028:2
CBHAO 01A2'- 0195 0284
CBHA2 01A4'- 0196 0285
CCLOSE 007A'- 0092 0243
CHPTHN OOAE'- 0114 0054
CNENO OOBO'- 0116 0114
COPEN 0052'- 0060 0214
COPMML 005A'- 0067
COPTYP 0058'- 0066
CRBUF 00E6'- 0126 0085 0086 0232 0236
CRBUFE 010E'- 0128 0086
CRLUNO 008A'- 0103 0245
CWBUF OOBE'- 0120 0079 0221 0223
CWBUFE 00E6'- 0122 0223
CWRPLY 0062'- 0073 0228
CWRRBA 0070'- 0084 0082
CWRRBL 0072'- 0086
CWRRCC 0074'- 0087 0234
CWRWCC 006C'- 0081 0227
ERRCAL 0292'- 0295 0046 0297
ERRCCL 031C'- 0302 0091
ERRCOP 02CO'- 0298 0059
ERRCRL 034A'- 0304 0102
ERRCWR 02EE'- 0300 0072
ERRLEN 0020 0297 0287
ERRVAL 0378'- 0307 0133
ERRVCL 0430'- 0315 0175
ERRVOP 03A6'- 0309 0145
ERRVRL 045E'- 0317 0181
ERRVW 0304'- 0311 0151
ERRVWR 0402'- 0313 0160
ETASK 019E'- 0190 0251 0290
LGCAL 048C'- 0323 0046
LGCALE 04BA'- 0326 0323
LGCCL 0519'- 0338 0091
LGCCLE 0547'- 0341 0338
LGCOP 04BB'- 0328 0059
LGCOPE 04E9'- 0331 0328
LGCRL 0548'- 0343 0102
LGCRLE 0576'- 0346 0343
LGCWR 04EA'- 0333 0072
LGCWRE 0518'- 0336 0333
LGWD 0577'- 0348 0230
LGWDE 0590'- 0351 0348
LGWRBE 05BO'- 0355 0165
LGWRBF 059E'- 0353 0163 0165
MSSOOO 01A8'- 0207 0038
MSS100 01C8'- 0221 0238
MSS700 0212'- 0243 0237
MSS900 0236'- 0259 0213 0215 0229 0244 0246
MSS910 0240'- 0263 0209 0211 0226 0248 0250
MSS915 0242'- 0264 0262
MSS920 024E'- 0272 0231
MSS950 025E'- 0277 0268 0279

Figure C-2. Sla've Task (Sheet 11 of 12)

C-30 2270507-9701

Master/Slave Task Examples

IPCMSS SDSMAC 16:05:41 TUESDAY, JUN 15, 1982.
LABEL VALUE DEFN REFERENCES PAGE 0014

MSS960 0260'- 0278 0266
MSS990 027E'- 0286 0283
MSSWP 0006'- 0039 0038
QUIT 01A6'- 0200 0236
RO 0000 0221 0222 0223 0224 0232 0233 0265 0272 0273

0274 0280 0282
R1 0001 0278 0284 0285 0286 0287 0288
RIO OOOA 0208 0210 0212 0214 0225 0228 0243 0245 0247

0249 0259 0264 0265 0278
R9 0009 0230 0259 0260 0261 0261 0263 0267 0267 0272

0275
SVC 0041
VAL UN 0 0110'- 0134 0208
VCLOSE 016C'- 0176 0247
VOPEN 013A'- 0146 0210
VPATH 0134'- 0139 0137
VPATHE 0136'- 0141 0139
VRLUNO 017A'- 0182 0249
VWBUF 014E'- 0154 0233 0275 0286
VWLEN 0152'- 0156 0234 0274 0288
VWRITE 0148'- 0152 0235 0276 0289
VWRPLY 0156'- 0161 0225
VWRRBA 0164'- 0168 0166
VWRRBF 0164'- 0169 0222
VWRRCC 0168'- 0171 0227
VWRRLN 0166'- 0170 0224

Figure C-2. Slave Task (Sheet 12 of 12)

2270507 -9701 C-31/C-32

Alphabetical Index

Introduction

HOW TO USE INDEX

The index, table of contents, list of illustrations, and list of tables are used in conjunction to ob­
tain the location of the desired subject. Once the subject or topic has been located in the index,
use the appropriate paragraph number, figure number, or table number to obtain the corre­
sponding page number from the table of contents, list of illustrations, or list of tables.

INDEX ENTRIES

The following index lists key words and concepts from the 'subject material of the manual together
with the area(s) in the manual that supply major coverage of the listed concept. The numbers along
the right side of the listing reference the following manual areas:

• Sections - Reference to Sections of the manual appear as "Sections x" with the sym­
bol x representing any numeric quantity.

• Appendixes - Reference to Appendixes of the manual appear as "Appendix y" with the
symbol y representing any capital letter.

• Paragraphs - Reference to paragraphs of the manual appear as a series of
alphanumeric or numeric characters punctuated with decimal points. Only the first
character of the string may be a letter; all subsequent characters are numbers. The first
character refers to the section or appendix of the manual in which the paragraph may be
found.

• Tables - References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number.

Tx-yy

• Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number.

Fx-yy

• Other entries in the Index - References to other entries in the index preceded by the
word "See" followed by the referenced entry.

2270507 -9701 Index-1

Index

Abnormal Termination 4.10 Resource-Independent I/O 6.7.1
Access: Resource-Specific I/O 6.7.2

Mode Compatibility T5-1
Modes, ANSI Standard 5.1
Privilege 5.1,8.2,8.3.2.1,8.3.3.1

Action, End 6.3.1.2,6.4.1.2,6.5.1.2
Activate:

Categories:
Key 6.3.1
Special Use 7.2.1.1

Category, Key 6.4.1,6.5.1
Channel and LUNO Scope, IPC T8-1

Delayed Task 4.5 Channel:
Task 4.8

Addressing, Track F6-5
Adjustment, Blank Section 6, Section 7
Alias 7.2.1,7.2.1.10,7.2.1.11

Delete, I PC 8.3.1.2
Dormant 8.3.2.2
Master/Slave 8.2, 8.3.1.1, 8.3.3
Protection, I PC 8.3.1.5,8.3.1.6

Allocations, Secondary 7.2.1.1
Analysis, Surface 6.11.9
ANS Command 6.5.2.12

Shared 8.3.1.1, 8.3.2.1, 8.3.3.1
Symmetric 8.2,8.3.1.1, 8.3.2

Character:
ANSI Standard Access Modes 5.1
Answer Incoming Call (ANS)

Compression, Repeat 6.3.2.8
Queue, Input 6.3.2.6,6.4.2.6,6.5.3.12

Command 6.5.2.12 Validation:
Append LF/CR/L TA 6.5.3.1
Area, Job Communications See JCA
ASCII Mode, 733 ASR Key Designations

Example 6.3.3.18,6.4.3.7
Flag 6.3.3.14,6.4.3.4

TPD 6.5.3.6
and Codes for T6-3

Attributes, Job 2.1
Operation 6.5.3.10
Table 6.3.3.18,6.4.3.7,6.5.3.10

Auto-Create Option 7.2.1.3 VDT 6.3.3.18
733 ASR 6.4.3.7

Bad Tracks 9.2 Characteristics:
Beep Flag 6.3.3.7,6.5.3.3
Blank:

Pri nter 6.8.6, T6-5
TPD Communication 6.5.2.12

Adjustment Section 6, Section 7 Characters:
Compression 7.1.2,7.2.1.1

Blink Cursor Flag 6.3.3.3
Elongated 6.8.7,6.8.8
VDT Field Termination 6.3.4

Block: Clear Screen 6.3.2.8
Currency 7.5.2 Code Key Equivalents, Graphics T6-1
Key Defi nition 7.2.1.1 Codes:
SVC 1.3 Device Type T8-2
Task Status See TSB Error 1.5

Blocking, Record 7.1.1
Break, Hard 6.3.1.2,6.4.1.2,6.5.1.2

File Type T8-2
For ASCII Mode, 733 ASR Key

Buffer:
Data 6.3.2.6

Designations and T6-3
Job State T2-1

Master Read See MRB KIF Informative T7-1
Business System Terminal VDT

Keyboard F6-4
Returned by an Open Operation,

Device/File Type T8-2
Terminal Key T6-3

Call Block: Terminal Key Designations and T6-2
Conventions 1.6 VDT DSR 6.3.4
Extended 5.2.2 Command:
Extension 6.3.3, 6.4.3, 6.5.3, ANS 6.5.2.12

6.11.6, 6.11.8, 6.11.9
I/O 5.3,6.3,6.5,6.7,6.8,6.9,

Answer Incoming Call (ANS) 6.5.2.12
CALL 6.5.2.12

6.10,6.11,7.3,7.4,7.5.1
CALL Command 6.5.2.12

Call Terminal (CALL) 6.5.2.12
DiSC 6.5.2.12

Call Terminal (CALL) Command 6.5.2.12 LH PC 6.5.2.12
Capabilities, I/O 5.1
Card Reader 6.10

Open 6.10.1.1

List Hardcopy Port Characteristics
(LH PC) 6.5.2.12

MHPC 6.5.2.12
Resource-Independent I/O 6.10.1 MKL 7.2.1.1
Resource-Specific I/O 6.10.2

Carriage Control Flag 6.3.3.6
Modify Hardcopy Port Characteristics

(M H PC) 6.5.2.12
Cassette 6.7

Open 6.7.1.1
Modify KIF Logging 7.2.1.1
Terminal Disconnection (DISC) 6.5.2.12

Index·2 2270507·9701

Communication:
Characteristics, TPD 6.5.2.12
Control, Device Dependent 6.5.2.12
Interprocess See IPC

Communications Area, Job See JCA
Compatibility, Access Mode T5-1
Compression:

Blank 7.1.2,7.2.1.1
Repeat Character 6.3.2.8

Computations, Disk Space 7.2.1.1
Concatenated File 7.1.5
Concept:

Job 2.1
Task 4.1

Conditions:
Read Operation 6.3
Write Operation 6.3

Control, Device Dependent
Communication 6.5.2.12

Conventions:
Call Block 1.6
Notational 1.6

Conversion, Data 10.2
Create, Job 2.2.1
Currency Block 7.5.2
Cursor Position Flag 6.3.3.9

Data:
Buffer 6.3.2.6
Conversion 10.2
Key 6.3.1.1, 6.4.1.1, 6.5.1.1
Terminal I/O, 733 ASR 6.4

Default Resource 8.2, 8.3.3
Deferred Write Mode 7.2.1,7.2.1.12
Definition Block, Key , .7.2.1.1
Delayed Task, Activate 4.5
Delete:

File 7.2.1.2
IPC Channel , . " .8.3.1.2
Overlay 3.7
Protection 7.1.3.1
Task 0 •••• 3.5

Deleted Sector 6.11.14,6.11.15
Designations and Codes, Terminal Key .. T6-2
Device:

Dependent Communication
Control 6.5.2.12

Dummy 6.12
I/O 6.1

Utility Operations 6.2
Name 5.2,6.2.2
Service Routine See DSR
Tables, Logical 4.11
Type 8.3.3.1

Codes T8-2
Device/File Type Codes Returned

by an Open Operation T8-2
Direct Disk I/O 6.11
Directory File 7.2.1.1
DISC Command 6.5.2.12

2270507 -9701

Index

Disk:
I/O, Direct 6.11
Open 6.11.1
Space Computations 7.2.1.1
Volume 9.1

Display Terminal, Video See VDT
Do Not I nitialize Field Flag 6.3.3.11
Dormant Channel 8.3.2.2
DSR Codes, VDT 6.3.4
Dummy Device 6.12

Echo Flag 6.5.3.5
Edit Key:

System 6.3.1.4, 6.4.1.4, 6.5.1.4
Task 6.3.1.4,6.4.1.4,6.5.1.4

Eight-Bit ASCII Flag ... 6.3.3.5,6.4.3.1, 6.5.3.1
Elongated Characters 6.8.7,6.8.8
End Action 6.3.1.2,6.4.1.2,6.5.1.2
End-of-Fi Ie 7.1.6, 7.4.10
Entry Block, Parameter 5.2.1
Environment, Job 2.1
Equivalents, Graphics Code Key T6-1
Error Codes 1.5
Event Characters, Programming for 6.6
Event Key 6.3.1.3,6.4.1.3,6.5.1.3

Example, VDT 6.3.3.17
Mode 6.3.2.1, 6.3.2.7, 6.4.2.1,

6.4.2.7, 6.5.2.1, 6.5.2.7
Example:

Character Validation 6.3.3.18,6.4.3.7
Read ASCII 6.5.3.9
SVC 1.2
VDT:

Event Key : 6.3.3.17
Graphics 6.3.3.17
Read 6.3.3.17

733 ASR Read 6.4.3.6
Extended:

Call Block 5.2.2
User Flags 6.3.3,6.4.3,6.5.3

Extension, Call Block 6.3.3,6.4.3,
6.5.3,6.11.6,6.11.8,6.11.9

Field:
Start Position Flag 6.3.3.1
Termination Characters, VDT 6.3.4
Validation 6.3.3.19,6.4.3.8,6.5.3.11

File:
Concatenated 7.1.5
Delete 7.2.1.2
Directory 7.2.1.1
Image 7.2.1.1
Open:

Relative Record 7.4.1
Sequential 7.3.1

Program 3.1,3.8, 4.2, 4.3, 7.2.1.1
Relative Record 7.1,7.2.1.1,7.4
Sequential 7.1,7.2.1.1,7.3
Temporary 7.1.4,7.2.1.3
Type Codes T8-2

Index-3

Index

Uti lity:
Functions 7.2.1
Operations 7.2

Fill Character Flag 6.3.3.10
Flag:

Beep 6.3.3.7, 6.5.3.3
Blink Cursor 6.3.3.3
Carriage Control 6.3.3.6
Character Validation 6.3.3.14,6.4.3.4
Cursor Position 6.3.3.9
Do Not Initialize Field 6.3.3.11
Echo 6.5.3.5
Eight-Bit ASCII 6.3.3.5,6.4.3.1,6.5.3.1
Field Start Position 6.3.3.1
Fill Character 6.3.3.10
Forced Termination Character 6.5.3.4
Graphics 6.3.3.4
Intensity 6.3.3.2
No Echo 6.3.3.13,6.4.3.3
Return on Termination Character .. 6.3.3.12
Right Boundary 6.3.3.8
Task Edit 6.4.3.2,6.5.3.2
TPD Character Validation 6.5.3.6
Validation Error Mode 6.3.3.15,6.4.3.5
Warning Beep 6.3.3.16,6.5.3.8

Flags:
Extended User 6.3.3,6.4.3,6.5.3
VDT 1/0 System 6.3

Forced 1/0 Termination 5.3.2
Forced Termination Character Flag ... 6.5.3.4
Functions:

File Utility 7.2.1
IPC Utility 8.3.1
Task Support 10.1

Global Scope 5.2,6.2.1,6.2.2,

Graphics:

7.2.1.3,7.2.1.4,7.2.1.6,
8.3.1.1, 8.3.1.3, 8.3.1.4

Code Key Equivalents T6-1
Example, VDT 6.3.3.17
Flag 6.3.3.4

Hard Break 6.3.1.2,6.4.1.2,6.5.1.2
Hold Key 6.3.1.2,6.4.1.2,6.5.1.2

D:
Installed ; 4.1
Job Run 2.2
Run-Time 4.1,4.4,4.5,4.7,4.8,4.10
Station 4.10

mage File 7.2.1.1
mmediate Write Mode. 7.2.1,7.2.1.1,7.2.1.12
nformation, VDT Terminal-Specific 6.3.4
nformative Codes, KIF T7-1
nitiate Mode 5.1
nput Character Queue 6.3.2.6,

6.4.2.6,6.4.3.9,6.5.3.12
nputlOutput See 1/0
nstall Overlay 3.4
nstalled ID 4.1

ldex·4

Intensity Flag 6.3.3.2
Interleaving 6.11.16,9.2
Interprocess Communication See IPC
IPC 8.2

Channel and LUNO Scope T8·1
Channel:

Delete 8.3.1.2
Protection 8.3.1.5, 8.3.1.6

Pathname 5.2
Scope 8.2
Utility Functions 8.3.1

1/0:
Call Block 5.3,6.3,6.5,

6.7,6.8,6.9,6.10,6.11, 7.3, 7.4, 7.5.1
Capabilities 5.1
Card Reader:

Resource-Independent 6.10.1
Resource-Specific 6.10.2

Cassette:
Resource-Independent 6.7.1
Resource-Specific 6.7.2

Device 6.1
Direct Disk 6.11
Magnetic Tape:

Resource-Independent 1/0 6.9.1
Resource-Specific 6.9.2

Operation, Overall F5-1
Operations SVC, Sub-opcodes for T5-2
Resou rces 5.1
Resource-Independent 5.1,7.5.1
Resource-Specific 5.1
ub-Opcodes T5-2
System Flags, VDT 6.3
Termination, Forced 5.3.2
TPD 6.5

Resource-Independent 6.5.2
Resource-Specific 6.5.3

Uti lity:
Operations 5.2.2
Operations, Device 6.2

VDT 6.3
Resource·lndependent 6.3.2
Resource·Specific 6.3.3

733 ASR:
Data Terminal 6.4
Resource-Independent 6.4.2
Resource-Specific 6.4.3

JCA 2.2.1,2.2.8
JISCII 6.3.2.8,6.4.2.7,6.5.2.7,6.5.3.1,

Job:

6.5.3.13,6.5.3.14,6.7.1.8,6.7.1.9,6.7.2.1,
6.7.2.2

Attributes 2.1
Communications Area See JCA
Concept 2.1
Create 2.2.1
Environment 2.1
Manager 2.2
Priority 2.1,2.2.1,2.2.4
Run ID 2.2,2.2.5,2.2.7

2270507·9701

Index

State 2.2
Codes T2-1

System 2.1, 2.2
Job-Local Scope 5.2,6.2.1,6.2.2,

7.2.1.3,7.2.1.4,7.2.1.6,8.3.1.1,8.3.1.3,8.3.1.4

Magnetic Tape 6.9
Open 6.9.1.1
Resource-I ndependent 1/0 6.9.1
Resource-Specific I/O 6.9.2

Management, Name 5.2.1
Manager, Job 2.2

Key: Manual, Use of 1.1
Categories 6.3.1
Category 6.4.1,6.5.1
Codes, Terminal T6-3

Mapping, Program Name 3.9
Master Read Buffer See MRB
Master/Slave Channel 8.2,8.3.1.1,8.3.3

Data 6.3.1.1, 6.4.1.1, 6.5.1.1 M H PC Command 6.5.2.12
Definition Block 7.2.1.1 MKLCommand 7.2.1.1
Designations and Codes for ASCII

Mode, 733 ASR T6-3
Equivalents, Graphics Code T6-1
Event 6.3.1.3, 6.4.1.3, 6.5.1.3

Mode:
Compatibility, Access T5-1
Event Key 6.3.2.1, 6.3.2.7, 6.4.2.1,

6.4.2.7,6.5.2.1,6.5.2.7
Example, VDT Event 6.3.3.17 Immediate Write 7.2.1.1
Hold 6.3.1.2,6.4.1.2,6.5.1.2 Initiate 5.1
Indexed File See KIF Validation Error 6.5.3.7
Mode, Event 6.3.2.1,6.3.2.7,6.4.2.1,

6.4.2.7,6.5.2.1,6.5.2.7
Modifiable 7.2.1.1
Partial 7.5.2,7.5.2.3,7.5.2.4,7.5.2.5,

7.5.2.6,7.5.2.7
Primary 7.2.1.1

Modes, ANSI Standard Access 5.1
Modifiable Key 7.2.1.1
Modify Hardcopy Port

Characteristics (M H PC) Command 6.5.2.12
Modify KIF Logging Command 7.2.1.1
MRB 8.3.3.4,8.3.3.5,8.3.3.6

Secondary 7.2.1.1
System Edit 6.3.1.4,6.4.1.4,6.5.1.4

Multiple File Sets 7.1.5

Task Edit 6.3.1.4,6.4.1.4,6.5.1.4 Name:
Keyboard:

Business System Terminal VDT F6-4
911 VDT F6-1

Device 5.2,6.2.2
Logical 5.2.1,5.2.1.1,

5.2.1.2, 5.2.1.3, 5.2.1.4
931 VDT F6-2
940 VDT F6-3

KIF 7.1,7.1.5,7.2.1.1,7.5
Informative Codes T7-1
Logging Command, Modify 7.2.1.1

Management 5.2.1
Mapping, Program 3.9
Program 3.9

No Echo Flag 6.3.3.13,6.4.3.3
Notational Conventions 1.6

Open 7.5.1.1 Number, Track 6.11
Open Random 7.5.2.1
Record Example 7.2.1.1
Size 7.2.1.1

Opcodes:
Secured SVC T1-2
SVC T1-1

Level, Priority 4.1,4.6
LFICRIL TA, Append 6.5.3.1

Open:
Card Reader 6.10.1.1

LH PC Command 6.5.2.12 Cassette 6.7.1.1
List Hardcopy Port Characteristics Disk , .6.11.1

(LHPC) Command 6.5.2.12
List, Parameter 5.2.1, 5.2.1.1, 5.2.1.2
Loading, Volume 9.3

KIF 7.5.1.1
Magnetic Tape 6.9.1.1
Pri nter 6.8.1

Locking, Record Section 7
Logging Command, Modify KIF 7.2.1.1
Logical:

Device Tables 4.11

Random, KIF 7.5.2.1
Relative Record File 7.4.1
Sequential File 7.3.1
TPD 6.5.2.1

Name 5.2,5.2.1,5.2.1.1, VDT 6.3.2.1
5.2.1.2, 5.2.1.3, 5.2.1.4 733 ASR , 6.4.2.1

Records 7.2.1.1
Unit Number See LUNO

Operation:
Character Validation 6.5.3.10

LUNO 5.1,5.2,6.2.1,6.2.2 Overall 1/0 F5-1
Scope T8-1

IPC Channel and T8-1
Shared 6.2.1

Rewrite 7.2.1.1
Operations:

Device I/O Utility 6.2

2270507-9701 Index-5

Index

File Utility 7.2
1/0 Utility 5.2.2

Option, Auto-Create 7.2.1.3
Overall 1/0 Operation F5-1
Overlay 3.1,3.5,3.8,3.9

Delete 3.7
Owner Task 8.2,8.3.1.1

Parameter:
Entry Block 5.2.1
List 5.2.1,5.2.1.1, 5.2.1.2

Partial Key 7.5.2,7.5.2.3,
7.5.2.4,7.5.2.5,7.5.2.6,7.5.2.7

Path name 5.2,5.2.1,5.2.1.1,
5.2.1.2,6.2.1, 7.2.1, 8.3.1

IPC 5.2
Verification 7.2.1.5

Period, Time Delay 4.4
Physical Records 7.2.1.1
Preemption 4.9
Primary Key 7.2.1.1
Printer 6.8

Characteristics 6.8.6, T6-5
Open 6.8.1

Priority:
Job 2.1, 2.2.1, 2.2.4
Level 4.1, 4.6
Real-Time 4.1,4.6

Privilege:
Access 5.1, 8.2, 8.3.2.1, 8.3.3.1
Software 3.1, 3.2

Procedure Segment 3.1,3.3,3.6,
3.8,3.9,4.2,4.3

Program:
File 3.1,3.8,4.2,4.3,7.2.1.1
Name 3.9

Mapping 3.9
Segment 3.1, 3.3, 3.6, 3.8, 3.9

Programming for Event Characters 6.6
Protection:

Delete 7.1.3.1
I PC Channel 8.3.1.5,8.3.1.6
Write 7.1.3.1

Queue, Input Character 6.3.2.6,
6.4.2.6,6.4.3.9,6.5.3.12

Read:
ASCII Example 6.5.3.9
Buffer, Master See MRB
Example:

VDT 6.3.3.17
733 ASR 6.4.3.6

Operation Conditions 6.3
Ready Task 4.1
Real-Time Priority 4.1,4.6
Record:

Blocking 7.1.1
Example, KIF 7.2.1.1
Locking" Section 7

Index·6

Records:
Logical 7.2.1.1
Physical 7.2.1.1

Relative Record:
File 7.1,7.2.1.1,7.4

Open 7.4.1
Repeat Character Compression 6.3.2.8
Replication, Task 4.1, 4.2, 8.3.1.1
Requesting Task 8.2
Resource:

Defau It 8.2, 8.3.3
Type 6.2.1, 6.2.3

Resources, 1/0 5.1
Resource-I ndependent:

1/0 5.1,7.5.1
Card Reader 6.10.1
Cassette 6.7.1
Magnetic Tape 6.9.1
TPD 6.5.2
VDT 6.3.2
733 ASR 6.4.2

Resource-Specific:
1/0 5.1

Card Reader 6.10.2
Cassette 6.7.2
Magnetic Tape 6.9.2
TPD 6.5.3
VDT 6.3.3
733 ASR 6.4.3

Return on Termination
Character Flag 6.3.3.12

Rewrite Operation 7.2.1.1
Right Boundary Flag 6.3.3.8
Routine, Device Service See DSR
Run ID, Job 2.2,2.2.5,2.2.7
Run-Time ID 4.1,4.4,4.5,4.7,4.8,4.10

Scheduling, Task 4.3
Scope:

Global 5.2,6.2.1,6.2.2,
7.2.1.3, 7.2.1.4, 7.2.1.6,
8.3.1.1, 8.3.1.3, 8.3.1.4

IPC 8.2
Channel and LUNO T8-1

Job-Local 5.2,6.2.1,6.2.2,
7.2.1.3,7.2.1.4,7.2.1.6,
8.3.1.1, 8.3.1.3, 8.3.1.4

LUNO T8-1
Task-Local 5.2,6.2.1,6.2.3,

7.2.1.3,7.2.1.4,7.2.1.6,
8.3.1.1, 8.3.1.3, 8.3.1.4

Screen, Clear 6.3.2.8
Secondary:

Allocations 7.2.1.1
Key 7.2.1.1

Sector, Deleted 6.11.14, 6.11.15
Secu red SVC Opcodes T1-2
Security 1.4
Segment:

Procedure 3.1,3.3,3.6,3.8,3.9,4.2,4.3

2270507-9701

Program 3.1,3.3, 3.6, 3.8, 3.9
Task 3.1, 3.2, 3.8, 3.9

Segments 4.1
Sequential:

File 7.1,7.2.1.1,7.3
Open 7.3.1

Service Routine, Device See DSR
Sets, Multiple File 7.1.5
Shared:

Channel 8.3.1.1, 8.3.2.1,8.3.3.1
LUNO 6.2.1

Size, KIF 7.2.1.1
Slice, Time 4.9
Software Privilege 3.1, 3.2
Space Computations, Disk 7.2.1.1
Special Use Categories 7.2.1.1
State:

Codes, Job T2-1
Job 2.2

Station ID 4.10
Status:

Block, Task See TSB
TPD 6.5.2.6, T6-4

Sub-opcodes for I/O Operations SVC T5-2
Supervisor Call See SVC
Support Functions, Task 10.1
Surface Analysis 6.11.9
Suspending, Task 4.7
Suspension, Task 5.3.1
SVC 1.2

Block 1.3
Exam pie 1.2
Opcodes T1-1

Secured T1-2
Sub-opcodes for I/O Operations T5-2

Symmetric Channel 8.2,8.3.1.1,8.3.2
Synonym 5.2.1,5.2.1.1, 5.2.1.2, 5.2.1.3
System:

Edit Key 6.3.1.4,6.4.1.4,6.5.1.4
Flags, VDT I/O 6.3
Job 2.1,2.2
Task 3.1,3.2

Table, Character Validation 6.3.3.18,
6.4.3.7, 6.5.3.10

Tables, Logical Device 4.11
Task:

Activate 4.8
Concept 4.1
Delete 3.5
Edit Flag 6.4.3.2,6.5.3.2
Edit Key 6.3.1.4,6.4.1.4, 6.5.1.4
Owner 8.2, 8.3.1.1
Ready 4.1
Replication 4.1,4.2,8.3.1.1
Requesting 8.2
Scheduling 4.3
Segment 3.1,3.2,3.8,3.9
Status Block See TSB
Support Functions 10.1
Suspending 4.7

2270507 -9701

Index

Suspension 5.3.1
System 3.1,3.2

Task-Local Scope 5.2,6.2.1,6.2.3,
7.2.1.3,7.2.1.4,7.2.1.6,
8.3.1.1, 8.3.1.3, 8.3.1.4

Teleprinter Device See TPD
Temporary File 7.1.4,7.2.1.3
Terminal:

Disconnection (DISC) Command .. 6.5.2.12
Key Codes T6-3
Key Designations and Codes T6-2
Video Display See VDT

Terminal-Specific Information, VDT 6.3.4
Termination:

Abnormal 4.10
Forced 1/0 5.3.2

Time Delay Period 4.4
Time Slice 4.9
TPD:

Character Validation Flag 6.5.3.6
Communication Characteristics ... 6.5.2.12
I/O 6.5
Open 6.5.2.1
Resource-Independent 1/0 6.5.2
Resource-Specific I/O 6.5.3
Status 6.5.2.6, T6-4

Track:
Addressing F6-5
Number 6.11

Tracks, Bad 9.2
TSB 4.11
Type:

Codes:
Device TB-2
File TB-2

Device B.3.3.1
Resource 6.2.1

Unloading, Volume 9.4
Use Categories, Special 7.2.1.1
Use of Manual 1.1
User Flags, Extended 6.3.3,6.4.3,6.5.3
Utility:

Functions:
File 7.2.1
IPC B.3.1

Operations:
Device 1/0 6.2
File 7.2
I/O 5.2.2

Validation:
Error Mode 6.5.3.7

Flag 6.3.3.15,6.4.3.5
Field 6.3.3.19, 6.4.3.B, 6.5.3.11

VDT:
Character Validation 6.3.3.1 E
DSR Codes 6.3.4
Event Key Example 6.3.3.1i
Field Termination Characters 6.3)
Graphics Example 6.3.3.1 j

Index·7

Index

I/O 6.3 Operation Conditions 6.3
System Flags 6.3 Protection 7.1.3.1

Open 6.3.2.1 With Reply 6.3.2.8
Read Example 6.3.3.17
Resource-Independent I/O 6.3 .. 2 .S$SHARED 3.1
Resource-Specific I/O 6.3.:3 733 ASR:
Terminal-Specific Information 6.3.4 Character Validation 6.4.3.7

Verification, Pathname 7.2.1.5 Data TerminalI/O 6.4
Video Display Terminal See VDT Key Designations and
Volume: Codes for ASCII Mode .. " T6-3

Disk 9."1 Open 6.4.2.1
Loading " " ... 9.~3 Read Example 6.4.3.6
Unloading 9.4 Resource-Independent I/O 6.4.2

Resource-Specific I/O 6.4.3
Warning Beep Flag 6.3.3.16, 6.5.3.B 911 VDT Keyboard F6-1
Write Mode: 931 VDT Keyboard F6-2

Deferred 7.2.1, 7.2.1.1~~ 940 VDT Keyboard F6-3
Immediate"" 7.2.1, 7.2.1.1, 7.2.1.1~~

Idex·8 2270507-9701

w
z
::i
Cl
z
o
..J
III(

....
:l
o

USER'S RESPONSE SHEET

Manual Title: DNOS Supervisor Call (SVC) Reference Manual (2270507-9701)

Manual Date: March 1985 Date of This Letter: ---------

User's Name: _________________ _ Telephone: _____________ _

Company: ____________________________ __ Office/Department: ______ _

Street Address: ______________________________ _

City/State/Zip Code: ______________________________ _

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

111111

~~~~~E~~IT~;~8~Y D~!I~ ~I 
POSTAGE WILL BE PAID BY ADDRESSEE 

TEXAS INSTRUlMENTS INCORPORATED 
DATA SYSTEMS GROUP 

. ATTN: TECHNICAL PUBLICATIONS 
P.O. Box 2909 MIS 2146 
Austin, Texi:ls 78769 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

- -- -- -- -- -- -- -- -- -- -- -- --,- -- -- --
FOLD 



Appendix A 

SVC Index 

This appendix contains an index of supervisor calls (SVCs). Several SVCs consist of operations 
designated by sub-opcodes. Both SVCs and operations appear in the index. The 1/0 resources are 
also listed in the index to direct you to the descriptions of the operations for each resource. 

svc Paragraph 

Abort 1/0 >OF .................................................................... 5.3.2 
Activate Suspended Task >07 ........................................................ 4.8 
Activate Time Delay Task >OE ........................................................ 4.5 
Add Alias >9A Operation Utility, 1/0 Operations >00 ................................. 7.2.1.10 
Assign LUNO >91 Operation Utility, 1/0 Operations >00 .................... 6.2.1,7.2.1.3,8.3.1.3 
Assign New Pathname >95 Operation Utility, 1/0 Operations >00 ....................... 7.2.1.6 
Assign Program File Space >37 ...................................................... 3.8 

Backward Space >07 Operation: 
Cassette, 1/0 Operations >00 ................................................... 6.7.1.7 
KIF, 110 Operations >00 ........................................................ 7.5.1.6 
Magnetic Tape, 1/0 Operations >00 .............................................. 6.9.1.8 
Relative Record File, 1/0 Operations >00 ........................................... 7.4.8 
Sequential File, 1/0 Operations >00 ................................................ 7.3.8 

Card Reader 1/0 Operations >00: 
Close and Unload >04 Operation ............................................... 6.10.1.5 
Close >01 Operation .......................................................... 6.10.1.2 
Open and Rewind >03 Operation ............................................... 6.10.1.4 
Open >00 Operation .......................................................... 6.10.1.1 
Read ASCII >09 Operation ......................... " .......................... 6.10.1.6 
Read Direct>OA Operation .................................. , ................. 6.10.2.1 

Cassette 1/0 Operations >00: 
Backward Space >07 Operation ................................................. 6.7.1.7 
Close and Unload >04 Operation ................................................ 6.7.1.5 
Close >01 Operation ........................................................... 6.7.1.2 
Close, Write EOF >02 Operation ................................................. 6.7.1.3 
Forward Space >06 Operation ................................................... 6.7.1.6 
Open and Rewind >03 Operation ................................................ 6.7.1.4 
Open >00 Operation ........................................................... 6.7.1.1 
Read ASCII >09 Operation ...................................................... 6.7.1.8 
Read Direct >OA Operation ..................................................... 6.7.2.1 
Rewind >OE Operation ........................................................ 6.7.1.11 
Unload>OFOperation ........................................................ 6.7.1.12 
Write ASCII >OB Operation ..................................................... 6.7.1.9 

2270507·9701 A-1 



SVC Index 

svc Paragraph 

Write Direct >OC Operation ..................................................... 6.7.2.2 
Write EOF >OD Operation ..................................................... 6.7.1.10 

Change Job Priority >04 Operation, Job Management >48 ............................... 2.2.4 
Change Segment >00 Operation, Segment Management >40 .......................... 10.5.4.1 
Change Task Priority >11 ............................................................ 4.6 
Check Segment Status >04 Operation, Segml3nt Management >40 ..................... 10.5.4.5 
Close and Unload >04 Operation: 

Card Reader, I/O Operations >00 ................................................ 6.10.1.5 
Cassette, I/O Operations >00 ................................................... 6.7.1.5 
IPC, I/O Operations >00 ........................................................ 8.3.2.5 
Line Printer, I/O Operations >00 ................................................... 6.8.5 
Magnetic Tape, I/O Operations >00 .............................................. 6.9.1.5 
Relative Record File, I/O Operations >00 ........................................... 7.4.5 
Sequential File, I/O Operations >00 ................................................ 7.3.5 
TPD, I/O Operations >00 ........................................................ 6.5.2.5 
VDT, I/O Operations >00 ........................................................ 6.3.2.5 
733 ASR, I/O Operations >00 .................................................... 6.4.2.5 

Close >01 Operation: 
Card Reader, I/O Operations >00 .................... " ........................... 6.10.1.2 
Cassette, I/O Operations >00 ........... " ....................................... 6.7.1.2, 
IPC, I/O Operations >00 .................................................. 8.3.2.2,8.3.3.2 
KIF, I/O Operations >00 ........................................................ 7.5.1.2 
Line Printer, I/O Operations >00 ................................................ ',' .6.8.2 
Magnetic Tape, I/O Operations >00 ............................................. -6.9.1.2 
Relative Record File, I/O Operations >00 ........................................... 7.4.2 
Sequential File, 1/0 Operations >00 ................................................ 7.3.2 
TPD, 1/0 Operations >00 ........................................................ 6.5.2.2 
VDT, 1/0 Operations >00 ........................................................ 6.3.2.2 
733 ASR, 1/0 Operations >00 .................................................... 6.4.2.2 

Close, Write EOF >02 Operation: 
Cassette, 1/0 Operations >00 ................................................... 6.7.1.3 
IPC, 1/0 Operations >00 ........................................................ 8.3.2.3 
Line Printer, I/O Operations >00 ................................................... 6.8.3 
Magnetic Tape, 1/0 Operations >00 .............................................. 6.9.1.3 
Relative Record File, 1/0 Operations >00 ........................................... 7.4.3 
Sequential File, 1/0 Operations >00 ................................................ 7.3.3 
TPD, 1/0 Operations >00 ........................................................ 6.5.2.3 
VDT, 1/0 Operations >00 ........................................................ 6.3.2.3 
733 ASR, 1/0 Operations >00 .................................................... 6.4.2.3 

Convert Binary to: 
Decimal ASCII >OA ............................................................ 10.2.1 
Hexadecimal ASCII >OC ........................................................ 10.2.3 

~onvert Decimal ASCII to Binary>OB ............................................... 10.2.2 
:;onvert Hexadecimal ASCII to Binary >OD ........................................... 10.2.4 
:;reate File >90 Operation Utility, 1/0 Operations >00 .................................. 7.2.1.1 
~reate IPC Channel >9D Operation Utility, 1/0 Operations >00 .......................... 8.3.1.1 
~reate Job >01 Operation, Job Management >48 ...................................... 2.2.1 .. 
~reate Segment >01 Operation, Segment Management >40 ........................... 10;5.4.2 

·2 2270507·9701 

4 



SVC Index 

svc Paragraph 

Close and Unload >04 Operation Relative Record File ................................ 7.4.5 
Close and Unload >04 Operation Sequential File ..................................... 7.3.5 
Close and Unload >04 Operation TPD ............................................ 6.5.2.5 
Close and Unload >04 Operation VDT ............................................ 6.3.2.5 
Close and Unload >04 Operation 733 ASR ......................................... 6.4.2.5 
Close>01 Operation Card Reader ............................................... 6.10.1.2 
Close >01 Operation Cassette .................................................. 6.7.1.2 
Close >01 Operation IPC ................................................. 8.3.2.2,8.3.3.2 
Close>01 Operation KIF ................................... " .................. 7.5.1.2 
Close >01 Operation Line Printer .................................................. 6.8.2 
Close >01 Operation Magnetic Tape ............................................. 6.9.1.2 
Close >01 Operation Relative Record File .......................................... 7.4.2 
Close >01 Operation Sequential File ............................................... 7.3.2 
Close >01 Operation TPD ....................................................... 6.5.2.2 
Close >01 Operation VDT ....................................................... 6.3.2.2 
Close >01 Operation 733 ASR ................................................... 6.4.2.2 
Close, Write EOF>02 Operation Cassette ......................................... 6.7.1.3 
Close, Write EOF >02 Operation I PC ............................................. 8.3.2.3 
Close, Write EOF >02 Operation Line Printer ........................................ 6.8.3 
Close, Write EOF >02 Operation Magnetic Tape .................................... 6.9.1.3 
Close, Write EOF >02 Operation Relative Record File ................................. 7.4.3 
Close, Write EOF >02 Operation Sequential ......................................... 7.3.3 
Close, Write EOF >02 Operation TPD ............................................. 6.5.2.3 
Close, Write EOF >02 Operation VDT ............................................. 6.3.2.3 
Close, Write EOF >02 Operation 733 ASR ......................................... 6.4.2.3 
Create File >90 Operation Utility ................................................. 7.2.1.1 
Create IPC Channel >9D Operation Utility ......................................... 8.3.1.1 
Define Write Mode >9C Operation Utility ......................................... 7.2.1.12 
Delete Alias >9B Operation Utility .............................................. 7.2.1.11 
Delete by Key >49 Operation KIF ................................................ 7.5.2.8 
Delete Current >49 Operation KIF ............................................... 7.5.2.14 
Delete File >92 Operation Utility ................................................. 7.2.1.2 
Delete IPC Channel >9E Operation Utility ......................................... 8.3.1.2 
Delete Protect Channel >98 Operation Utility ...................................... 8.3.1.6 
Delete Protect Fi Ie >98 Operation Uti lity .......................................... 7.2.1.8 
Device Dependent Communication Control >15 TPD ............................... 6.5.2.12 
Dummy Device ................................................................. 6.12 
Forward Space >06 Operation Cassette ........................................... 6.7.1.6 
Forward Space >06 Operation KIF ............................................... 7.5.1.5 
Forward Space >06 Operation Magnetic Tape ...................................... 6.9.1.7 
Forward Space >06 Operation Relative Record File .................................. 7.4.7 
Forward Space >06 Operation Sequential File ....................................... 7.3.7 
Insert >46 Operation KIF ...................................................... 7.5.2.15 
Master Read >19 Operation IPC ................................................. 8.3.3.4 
MasterWrite >1 B Operation IPC ................................................. 8.3.3.6 
Modify Access Privileges>11 Operation Relative Record File ......................... 7.4.14 
Modify Access Privileges >11 Operation Sequential File ............................. 7.3.14 
Multiple Record Read >59 Operation ............................................. 7.4.17 
Multiple Record Read >59 Operation Sequential File ................................ 7.3.17 

2270507 -9701 A-5 



SVC Index 

svc Paragraph 

Multiple Record Write>5B Operation .............................. " .............. 7.4.18 
Multiple Record Write >5B Operation Sequential File ................. " .............. 7.3.18 
Open and Rewind >03 Operation Card Reade!r .................................... 6.10.1.4 
Open and Rewind >03 Operation Cassette ........................................ 6.7.1.4 
Open and Rewind >03 Operation Disk ............................................. 6.11.4 
Open and Rewind >03 Operation IPC ............................................. 8.3.2.4 
Open and Rewind >03 Operation KIF ............................................. 7.5.1.3 
Open and Rewind >03 Operation Line Printer ....................................... 6.8.4 
Open and Rewind >03 Operation Magnetic Tape ................................... 6.9.1.4 
Open and Rewind >03 Operation Relative Record File ................................ 7.4.4 
Open and Rewind >03 Operation Sequential File .................................... 7.3.4 
Open and Rewind >03 Operation TPD ............................................ 6.5.2.4 
Open and Rewind >03 Operation VDT ............................................ 6.3.2.4 
Open and Rewind >03 Operation 733 ASR ......................................... 6.4.2.4 
Open Extend >12 Operation Relative Record File ................................... 7.4.15 
Open Extend >12 Operation Sequential File ....................................... 7.3.15 
Open Random >40 Operation KIF ................................................ 7.5.2.1 
Open >00 Operation Card Reader ............................................... 6.10.1.1 
Open >00 Operation Cassette ................................................... 6.7.1.1 
Open >00 Operation Disk ....................................................... 6.11.1 
Open >00 Operation IPC ................................................. 8.3.2.1,8.3.3.1 
Open >00 Operation KIF ................ " ...................................... 7.5.1.1 
Open >00 Operation Line Printer .................................................. 6.8.1 
Open >00 Operation Magnetic Tape ........ ' ...................................... 6.9.1.1 
Open >00 Operation Relative Record File ........................................... 7.4.1 
Open >00 Operation Sequential File ............................................... 7.3.1 
Open >00 Operation TPD ....................................................... 6.5.2.1 
Open >00 Operation VDT ....................................................... 6.3.2.1 
Open >00 Operation 733 ASR ................................................... 6.4.2.1 
Read ASCII >09 Operation Card Reader .......................................... 6.10.1.6 
Read ASCII >09 Operation Cassette .............................................. 6.7.1.8 
Read ASCII >09 Operation KIF .................................................. 7.5.1.7 
Read ASCII >09 Operation Magnetic Tape ......................................... 6.9.1.9 
Read ASCII >09 Operation Relative Record Fiile ...................................... 7.4.9 
Read ASCII >09 Operation Sequential File .......................................... 7.3.9 
Read ASCII >09 Operation TPD .................................................. 6.5.2.7 
Read ASCII >09 Operation VDT .................................................. 6.3.2.7 
Read ASCII >09 Operation 733 ASR .............................................. 6.4.2.7 
Read by ADU >09 Operation Disk ................................................. 6.11.8 
Read by Key >42 Operation KIF .............................................. ~ ... 7.5.2.2 
Read by Track >OA Operation Disk ............................................... 6.11.9 
Read Call Block >lA Operation IPC .............................................. 8.3.3.5 
Read Current >42 Operation KIF ......................................... _ ....... 7.5.2.9 
Read Deleted Sector>11 Operation Disk ......................................... 6.11.15 
Read Device Status >05 Operation IPC ............................................ 8.3.3.3 
Read Device Status >05 Operation Magnetic Tape ...... ' ............................ 6.9.1.6 
Read Device Status >05 Operation TPD ........................................... 6.5.2.6 
Read Device Status >05 Operation VDT ........................................... 6.3.2.6 
Read Device Status >05 Operation 733 ASR ....................................... 6.4.2.6 

·6 2270507·9701 




