DNOS Query-990 User’s Guide

Part No. 2276554-9701 *A
15 July 1982

(8]

TEXAS INSTRUMENTS

INCORPORATED







© Texas Instruments Incorporated 1981, 1982
All Rights Reserved, Printed in U.S.A.
The information and/or drawings set forth in this document and all rights in and to inventions disclosed

herein and patents which might be granted thereon disclosing or employing the materials, methods,
techniques or apparatus described herein, are the exciusive property of Texas Instruments Incorporated.

MANUAL REVISION HISTORY
Query-990 User's Guide (2276554-9701)

Original Issue .. ...... ... i, 1 August 1981
ReviSioON. . ... i e e 15 July 1982

The total number of pages in this publication is 196.







DNOS

Distributed Network Operating System

Software Manuals

The manuals supporting DNOS are arranged in this diagram according to the type of user. The manuals most
beneficial to your needs are those contained in the block identified as your user group and in all the blocks

above that set.

all users and

management
DNOS Concepts and
Facilities
2270501-9701

DNOS Operations
Guide
2270502-9701

DNOS System Command
Interpreter (SCI)
Reference Manual
2270503-9701

all users

DNOS Text Editor
Reference Manual
2270504-9701

DNOS Online Diagnostics
and System Log Analysis
Tasks User’s Guide
2270532-9701

DNOS Messages and
Codes Reference
Manual
2270506-9701

DNOS Master Index to
Operating System Manuals
2270500-9701

language users and

users

Language Reference
Manuals

DNOS Language
Programmer’s Guides

DNOS Link Editor
Reference Manual
2270522-9701

DNOS Productivity Tools
User’s Guides

DNOS Communications
Software User’s Guides and
Programmer’s Guides

communications software

assembly language users

Assembly Language
Reference Manual
2270509-9701

DNOS Assembly Language
Programmer’s Guide
2270508-9701

DNOS Link Editor
Reference Manual
2270522-9701

DNOS Supervisor Call
(SVC) Reference Manual
2270507-9701

systems programmers

DNOS Systems
Programmer’s Guide
2270510-9701

DNOS System Generation
Reference Manual
2270511-9701

source code users

DNOS System Design
Document
2270512-9701

DNOS SCI and Utilities
Design Document
2270513-9701

,,?280078

2276554-9701



DNOS

Distributed Network Operating System
Software Manuals Summary

Concepts and Facilities

Presents an overview of DNOS with topics grouped into functions of the operating system. All new users
(or evaluators) of DNOS should read this manual.

Operations Guide
Provides the information necessary to perform daily tasks at a Tl 990 Computer installation using DNOS.
Step-by-step procedures are presented for such tasks as operating peripherals, initializing the system,
backing up the system, and manipulating disk files.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCl in both interactive and batch jobs. Command procedures and primitives are

described, followed by a detailed presentation of all SCI commands in alphabetical order for easy
reference.

Text Editor Reference Manual

Shows how to use the Text Editor interactively on DNOS and includes a detailed description of each of the
editing commands and function keys.

Messages and Codes Reference Manual
Lists the error messages, informative messages, and error codes reported by DNOS.

Online Diagnostics and System Log Analysis Tasks User’s Guide

Provides the information necessary to execute the online diagnostic tasks and the system log analysis
tasks and to interpret the results.

Master Index to Operating System Manuals
Contains a composite index to topics in the DNOS operating system manuals.

Programmer’s Guides and Reference Manuals for Languages
Each programmer’s guide describes one of the languages supported by DNOS (for example, assembly
language, Pascal, COBOQOL). Each guide covers operating system information relevant to the use of that
language in the DNOS environment. The details of the language itself, including language syntax and pro-
gramming considerations, are in the language reference manual.

Link Editor Reference Manual

Describes how to use the Link Editor on DNOS to combine separately generated object modules to form a
single linked output.

User’s Guides for Productivity Tools
Each user's guide describes one of the productivity tools (for example, TIFORM, Query-990, DBMS-990,
Sort/Merge) supported by DNOS. Each guide explains the function of the processor, its features, and its
interface requirements.

User’s Guides and Programmer’s Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution under
DNOS. For example, there is a user’s guide for the DNOS 3780/2780 Emulator software package.

Supervisor Call (SVC) Reference Manual

Presents detailed information about each DNOS supervisor call and general information about DNOS
services.

Systems Programmer’s Guide
Discusses the DNOS nucleus and subsystems at a conceptual and functional level and describes how to
modify the system for a specific application environment.

System Generation Reference Manual
Contains the information needed to perform system generation, including pregeneration requirements,
generation procedures, and information about postgeneration resuits.

System Design Document
Contains the information needed to understand the functioning of the system when using a source kit. This
includes descriptions of the subsystems in detail, naming and coding conventions, module cross-
references, data structure details, and information not found in other manuals.

SCI and Utilities Design Document
Presents design information about SCI and the DNOS utilities.

iv 2276554-9701



Preface

This manual is intended for programmers, managers, operations personnel, and users of
Query-990.

This manual is organized into the following sections and appendixes:

Section
1

2

Appendix

A

2276554-9701

General Description — Briefly describes the major features of Query-990.

Basic Concepts of Query-990 — Provides an introduction to the language, elements,
and syntax of Query-990.

Functions — Discusses the four available functions and the special clauses associated
with them.

Clauses — Describes the Query-990 clauses and explains report formatting and change
data constants.

Optimization — Discusses how to optimize Query-990.

Program Language Interface Subroutines — Describes the subroutines used in appli-
cation programs to execute Query.

The Guided Query Utility — Describes the Guided Query utility and familiarizes users
with the Query language.

Error Messages — Explains the error messages associated with the Query processor
and the Guided Query utility.

Query-990 Syntax — Provides the syntax definitions for the elements of the Query
language.

Calculation Data Types — Describes the data types used for Query calculations and in
DBMS-990 files.

Alternate Collating Sequences — Describes the alternate collating sequences for the
Germany/Austria and the Sweden/Finland character sets.



Preface

DDL Listings for Example Files — Lists the DDL descriptions of files used for examples

in this manual.

Example Query Application — Provides examples of interactive data-retrieval appli-

cations.

The following documents contain additional information related to operating Query-990 under the
DNOS operating system:

vi

Title

Model 990 Computer DNOS Data Base Management
System Programmer’s Guide

Model 990 Computer DNOS Data Base Administrator
User’s Guide

Model 990 Computer DNOS Operations Guide

Model 990 Computer Data Dictionary User’s Guide

Part Number

2272058-9701

2272059-9701

2270502-9701

2276582-9701

2276554-9701



Contents

Paragraph

[ S N e T I Y
o =

13 I NI NI NI NI A O

2.1
2.2
2.2.1
222
223
23
2.31
23.2
233
234
235
2.3.6
24
2.5
2.6
2.6.1
2.6.2
2.6.3

3.1
3.2
3.2.1
3.2.2
3.3

2276554-9701

Title Page

1 — General Description

INtrOdUCHiON . . . e e e 11
Query-990 Capabilities .. ...t i e e e e 1-1
ENVIrONMENtS ... e e 11
DBMS-990 and DD-990 . ... ..ttt e 11
DBMS-990 File Structures ..ottt e 1-2
Data Dictionary (DD-990). . . ... ..ottt i i i e 1-2
Data Dictionary File Structures . .......... ... it et 1-2
EXampPles ... o e e e e 1-4

)4 o Yo [0 o § o o T 2-1
The QUery LanQUagQe . .. ..ottt ittt ittt ittt e ettt ittt et e teteneeennnns 2-1
LU e { ] o T 7 2-1
103 - T -7 - 2-2
Punctuation .............. ...t PR 2-2
Query Statement Elements .......... ... i i e 2-4
Fille Blements. .. .. o i i ettt ettt ittt et e 2-4
AliasFeature ........... ... i ittt e 2-4
RV 2= L =1 o] 1= - 2-4
ReServed WoOrdS ... ..ttt ittt it it et e e e e 2-5
107 o1 =3 - 15 | - 2-5
Special Constants. . ... i e e e et 2-5
L@ T =T VY 1 1 7 G 2-6
1€ 1T o [T @ T U1 o 2-6
Executing the Query Processor. .. ..ottt ittt ettt st aeanenns 29
QUERY ComMMaNd . ..ottt ettt et ettt e e et e et e e 2-9
QCOMPILECOmMMaAaNd . ... .ot it e ettt it i 2-11
L@ 1T 1= VN Lo T (o] 2-13

1) 0T [ T3 { Lo o T 3-1
I S I ¥ 34 o) o T 3-1
ReportLine Elements ... ... i i e e e e 3-2
LY £ - G 3-2
INSERT FUNCHION ... i i e it et e e e e e it e e i e e aae s 3-3
vii



Contents

Paragraph

3.3.1
3.3.2
3.3.3
3.34
3.4

3.5

3.5.1

4.1
4.2
4.2.1
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4.41
44.2
443
4.4.4
445
4.5
451
45.1.1
45.1.2
4.5.1.3
4.5.2
4.5.3
45.4
4.6
4.6.1
4.6.2
4.6.3
4.7
4.7.1
4.8
4.8.1
4.8.2
483
4.9
4.9.1
49.2
4.9.3
4.9.4

viii

Title Page

CONTENTS ClaUsSe . ..ot ittt ittt it e e et ettt et ettt e e 3-3
POSITION Clause . . oottt ittt et e et e et ettt e anness 3-3
BEFORE, AFTER,and FIRSTFeatures .......... i i e it 3-4
Identifyingthe Primary Key . ... ... i i e e e e 3-4
UPDATE FUNCHION . ..ottt it e et e ettt ettt et e nnens 3-5
DELETE FUNCHON ... i i ittt i e e e e ettt i et e 3-6
TRACE ClaUuse . ... i i i ettt it et e e e e e e 3-6

LN (o [1 T 4 o] o 4-1
FROM Clause ..ottt ittt it ettt ittt a s at s anraerennananns 4-2
LS 1 G 4-2
HEADERaANA FOOTING ClausSe . . .. oot i ittt et et vt st et e et ie e anns 4-2
S MAX . o oo e et 4-3
Main Headingsand FOOtings . . ... ...ttt i i et ettt e e 4-3
Report Line Headingsand Footings . . ........ ... .o i, 4-4
Special HeadingConstants . ............ . i ittt it it 4-7
System Headingand NOHEADERClause .. ............ .. 4-8
[RT=] 0o 5 A T 1§ o1 U ) 4-8
Formatting . ... ... e e et 4-8

L I7,2 = 2 4-10
SPACE . .. e e e et e e et e e 410
PAGE aNd SKIP . ... i e i it et ettt e e e e 4-11

I (=T - - 4-11
WHERE Clause . ... . i i i i it e e e et et e e e e 4-11
L1 4-13
Simple Conditions . ... . e e 4-13
String Operators .. ... i e e et e 4-14
ComplexConditions . .. ... .ot e e e e 4-15
Record-Level Conditions . ... ...t it et 4-16
EVERY and ANY Quantifiers ..........co ittt iiienannen 417
Line-Level Conditions. ... i i e e e e 4-18
SORT ClaUSe . oot ittt ittt it et i e e et e ettt e e e 4-18
L1 - 4-18
Record-Level Sort . ... ... i i i i e e e e 4-19
Line-Level SORT ...t i i i i it it e st e e 4-20
TRACE Clause . .. ittt it et it e e e e e e e 4-22
YA . .o e e e e 4-22
BY ClauUse. . . e e e e e e 4-24
BY KEY BY LIST . ..o i i e e e e et e et 4-24
BY KEY . e e e e 4-25
BY LIS T . ittt i e e e e e e 4-30
DEFINE Clause ..ottt i it e ettt e ettt e 4-30
£S5V 1 - 4-30
Where VariablesCanBeUsed ........... ..ottt iennenn. 4-33
DEFINE EXPression . ... i i e e e e e 4-33
Mixed Mode Arithmetic ........ ... . i i i i i e e 4-36

2276554-9701



Paragraph

495
4.10
4.11
4.12
4121
4.12.2
4.12.3
4.12.4
4.13
4.131
4.13.2
4.13.3

5.1
5.2
5.2.1
5.2.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.11.1
6.11.2
6.11.3
6.12
6.12.1
6.12.2
6.12.3

7.1
7.2
7.3

2276554-9701

Totals and Counts
BREAK Clause
UNIQUE Clause
LINKED BY Clause

LINKED BY File Hierarchy
THRU Clause

Change Data Constants
Change Data Constants and Stand-Alone Query
Change Data Constants and Application Programs
Change Data Constant Format

5 — Optimization

Introduction
Optimization
Record-Level Conditions
Line-Level Conditions

6 — Program Language Interface Subroutines

Introduction
Calling Formats
QCOMP — Compile and Initialize
QINIT — Initialize Query Interpreter
QEXEC — Execute and List Query Results
QRECV — Receive Query Data
QSEND — Send Change Data Constants
QCLR — Reinitialize Query Processor
QEND — End Query Processor
Using the Interface Subroutines
Example Programs
Example Pascal Program
Example FORTRAN Program
Example COBOL Program
Linking the Interface Subroutines
Linking Pascal Programs
Linking FORTRAN Programs
Linking COBOL Programs

7 — Guided Query Utility
Introduction

GQUERY Command
Control Keys

Contents



Contents

Paragraph

7.4
741
7.4.2
7.4.2.1
7422
7423
74.2.4
7425
7.4.2.6
7.4.3
7.4.4
745

St s

Appendix

m O O W

Title Page
GUIded QUEIY SCrEENS . .. ittt ittt ittt teaenteanaran et rnerannans 7-2
File Identification (Step 1) ... ..o i e ittt 7-3
Report Specifications . . ... it i e e e e e, 7-4
Main Heading (Step 2). . ... oo ittt i it ettt e e 7-4
Line and Field Specifications (Steps3and4) .............. ... ... vt 7-5
List, Count, Total,and Average (Step5) .........cciiiiiiiiiiinnnnnn.. 7-8
Line Heading (Step ) . ..ottt i e i it et e 79
Line-Level Conditions (Steps7,8,and9) ............ ... i, 7-10
Output Continuation (Step 10) . ... .. ..ot e 7-14
Record-Level Conditions (Steps 11 Through13) .............. ... .. oot 7-15
Sort Specifications (Steps 14 Through17) . ...... ... .. o oot 7-18
Termination SCreens . ... ..t it e ettt 7-23
8 — Error Messages
INtrOdUCHION . . .o e et 8-1
QUErY ProCesSOr ErrOrS . ..o ittt i ittt ettt it 8-1
RUN-TIME ErTOrS ... it it e et et e et et e et 8-1
Query Statement ErrOrs ... ... it i it e i e e e e, 8-1
Miscellaneous Query StatementErmors ... ... .. 8-2
322G = ¢ o ¢ 8-2
Query-990 Error Message Format . ..........cotiiiiinin it 83
Guided QUETIY ErmOrs .. ... it i e et e e 8-25
Internal Message Codes .......ii ittt ettt it et et e e 8-29
Appendixes
Title Page
QUEry-990 Syntax . ... ... e e A-1
CalculationDataTypes ...t i B-1
Alternate CollatingSequences . ........ ... it e e C-1
DDL Listings forExample Files .................... oot D-1
Example Query Application.............. e ettt e E-1
Index
2276554-9701



Contents

lllustrations
Figure Title Page
1-1 DBMS-990 File Structure ......... ... i i i et 1-3
2-1 Punctuation Example . .. ... i e 23
2-2 Guided Query EXample. . ... .ottt i e e e 2-8
4-1 Main Headings Example. . ... ..o i e e e et 4-4
4-2 ReportLine Heading Example . ... ... ittt ittt e e 4-5
4-3 Default Heading Example ........ ... it it 4-6
4-4 Special Heading Example . ..... ...t it e e et 4-7
4-5 NO HEADER Clause Example . ... ..t it e e ittt e i 4-9
4-6 Space, Tab, and FormattingExample ............. ... .. 4-10
4-7 Record-Level Condition withWHEREClause .................iiiiinann. 4-12
4-8 Line-Level Condition withWHEREClause.............. ... . i, 4-13
4-9 Simple Condition Example ......... . it i i et e 4-13
4-10 Relational Operators Example. . ... e e et e 4-14
4-11 String Operators EXxample . ... ... i e e e e e 4-15
4-12 Complex Condition with Logical OperatorsExample.......................... 4-15
4-13 Record-Level EXample .. ... ..ottt et et e e 4-16
4-14 Record-Level ConditionExample ........... .. ... ittt 4-17
4-15 Record-Level SORT ... .. ittt i it e e e et ettt i e 4-19
4-16 Record-Level SORT on TWO Fields ..ottt ittt ie e 4-20
4-17 Line-Level SORT BY KEY BY LIST .. ...ttt it c i ii e i ciiiee 4-21
4-18 DELETE Function Used with TRACE Clause ...........ccoviiiiineinnnnnnn.. 4-23
4-19 BY KEY BY LISTEXample . ..o e i i et st e it e ieaeas 4-26
4-20 BY KEY BY LISTwithUnwantedResults ................................... 4-27
4-21 BY KEY EXample . ..ottt it it it e st e e e 4-29
4-22 BY LIST EXample. ... i e e e e e, 4-31
4-23 BY LISTwithUnwanted Results ............ ... ittt 4-32
4-24 DEFINEClause Example ... ...t it e it it e e e e e i e eae 4-33
4-25 DEFINE Expression Example UsingCOUNT ....... ... .. i, 4-34
4-26 DEFINE Expression Example Using TOTAL. . ... ... ... 4-35
4-27 DEFINE Clause withRECORD COUNT . . ... ..ttt i i ittt e i i 4-36
4-28 DEFINE Clause With RECORD TOTAL ... .ottt it i e e e e eeean 4-37
4-29 BREAK Clause Example Using BEFORE,ON,and TOTAL ..................... 4-39
4-30 BREAK Clause EXample . ... ...t i e et st c et et et 4-40
4-31 Record-Level Without UNIQUEExample .......... ... ... i iiiiiiiiinnnn. 4-41
4-32 UNIQUE Clause . . . ..ottt it et st st et et ettt et e s 4-42
4-33 UNIQUE EXample . ... i e et et et et e e 4-42
4-34 LINKED BY Example. ... ..o i e e e ettt et e et 4-43
4-35 LINKED BY Clause .. ..ottt ittt sttt ettt e e e et i e e e eanen 4-44
4-36 LINKED BY Example Usingthe THRUClause ............ ... ... coiiiann... 4-45
4-37 Query with INSERT Without Change DataConstants . ........................ 4-48
4-38 Change Data File Contents forINSERTExample ........... ... ... .. 4-49
4-39 Change Data Constants and INSERT Function ................. ... ... ...... 4-50
71 Guided Query EXample. ... ... it i e e e e e e 7-24
8-1 Example Syntax Errors .. ... .. i e e e 8-2
2276554-9701 xi



Contents

Tables

Table

41
6-1
8-1

xii

Title Page

Relational Operators. . ... i i e et it e e e 4-14

Interface Subroutine Status Codes .. ...ttt e 6-7

Internal Message Codes. . ... ... it i e e e e 8-29
2276554-9701



General Description

1.1 INTRODUCTION

This manual discusses the conceptual and functional characteristics of Query-990. It contains
both user information and reference material needed to understand and operate Query-990.

This section introduces Query-990. Topics covered include Query-990 capabilities and
environments.

1.2 QUERY-990 CAPABILITIES

Query-990 is a powerful retrieval system that allows you to access, modify, and display infor-
mation contained in a file. Query-990 uses the English language in simple, logical statements to
generate reports. Query statements can replace application programs that produce reports.
Both experienced programmers and users without programming knowledge can use Query-990.
You can use Query-990 as a stand-alone utility, or the application interface subroutines can
execute Query-990 from an application program.

1.3 ENVIRONMENTS

The combination of Query-990 and the Data Dictionary (DD-990) provides access to key indexed
files (KIFs), relative record (random access) files, and sequential files. The combination of
Query-990 and DBMS-990 provides access to data base files. Combining all three systems results
in an efficient and versatile self-documenting data management system.

1.4 DBMS-990 AND DD-990

Prior to detailed discussion of DBMS-990 and Data Dictionary, it is necessary to establish a com-
mon definition for DBMS-990, key indexed, relative record, and sequential files. The following ter-
minology is used to refer to a file and its components:

. FILE — A collection of records

. RECORD — A collection of all lines (regardless of type) with primary keys having the
same value

. LINE — An occurrence of a line type

. KEY — A field whose value can be used to access like-valued lines directly

2276554-9701 11



General Description

U GROUP — A collection of fields within a line
. FIELD — A named element in a line

Query-990 requires either DBMS-990 or DD-990 (or both) in order to operate. DBMS-990 accesses
DBMS-990 files, and DD-990 accesses key indexed, relative record, and sequential files. DD-990
can also enhance DBMS-990.

DBMS-990 is the data base management system that executes on the Texas Instruments Model
990 Computer. DBMS-990 is a data manager, allowing you to establish the contents, grouping,
relationships, and security of all data elements within a DBMS-990 file. DBMS-990 is easy to use
and provides a logical viewpoint of the data. Normal physical constraints such as access method,
record size, block size, and relative field position should not concern you.

DBMS-990 is a mechanism for organizing, storing, updating, and retrieving data through mass-
storage devices. The 990 computer's mass-storage media is disk, which facilitates the use of
random-access techniques.

1.4.1 DBMS-990 File Structures

The highest-level element in DBMS-990 is the file (Figure 1-1). A file is composed of records, each
of which has a unique primary key value. Each record is composed of one or more lines, and-each
line is composed of fields. The DDL processor in DBMS-990 defines the file structurally. File and

field IDs are four characters long; the first character must be a letter, but the other three

characters can be either letters or numbers. Line IDs are two characters long, in the range of AA
through ZZ and 01 through 99.

Lines have a unique order within a record. You establish this order when you insert the lines. The
01 line type is a special line type. If you define a 01 line for a file, that line can occur only once per
record, and it must be the first line added and the last line deleted. Other line types can have zero
or more occurrences in a particular record. Also, a given line type (other than 01) can occur in dif-
ferent records a different number of times.

To create a record, add a line to the DBMS-990 file, specifying a new primary key value. You can
then add additional lines to the record. When the last line in a record is deleted, the record is
deleted.

1.4.2 Data Dictionary (DD-990)

DD-990 is a data manager providing data base descriptions for key indexed, relative record, and se-
gquential files.

1.4.2.1 Data Dictionary File Structures. Query-990 allows DD-990 access to key indexed, relative
record, and sequential files. Only a subset of the Query syntax is allowed for sequential and
relative record files. You need not specify in the Query statement which file type is being
accessed.

Key Indexed Files (KIFs). The structure of a KIF is almost identical to that of a data base file. A
record in a KIF is all records with primary keys having the same value. If duplicates are not allowed
for primary keys, a KIF is a collection of records containing one line each. A key is anything de-
fined to the operating system as a key when the KIF is created. Therefore, KIFs may have both
primary and secondary keys.

1-2 2276554-9701



General Description

PRIMARY KEY N
INVOICE
NUMBER
S LOGICAL
RECORD
&
LINE 01 LINE 02 LINE 05 LINE 60
7~
DATE STREET *PART NUMBER SUBTOTAL
TERMS CITY QUANTITY TAX
NAME STATE DESCRIPTION TOTAL
Z2IP PRICE

* PART NUMBER IS A SECONDARY KEY FOR LINE 05

2277678

Figure 1-1. DBMS-990 File Structure

Relative Records Files. In arelative record file, each record is also a data base record. Each record
contains one line. The primary key for each record is the record number the operating system
associates with each record. Relative records do not have secondary keys.

When you are using Query-990 with relative record files, a restriction applies to the POSITION
clause. Records are positioned only by the value of their record number. Therefore, the POSITION
clause in the INSERT function is not allowed. Also, the DELETE and DELETE RECORD statements
are not legal for relative record files.

Sequential Files. Sequential files are treated much like relative record files. Each line in the file is
a record. Each record contains only one line. The primary key is the record number. Sequential
files do not have secondary keys.

The only restriction when using Query-990 with sequential files occurs in the POSITION clause
and the DELETE function. Since operating systems do not provide any delete capability for
sequential files, the DELETE and DELETE RECORD statements in Query-990 are not allowed.

Since you can add records to the end of the file, you cannot specify the POSITION clause on the
INSERT function.

2276554-9701 1-3



General Description

1.5 EXAMPLES

The examples in this manual are based on the files PAY1, CUST, ITEM and SOFL. These files are
included on the Query installation disk. The example information is duplicated in two files; one is
a DBMS-990 file for users with only DBMS-990, the other is a KIF for users with only DD-990.
Users with both products can run the examples on either file. The DBMS-990 files are located
in the directory DNQRYOBJ.TESTFILE.DBMS. The KIFs are located in the directory
DNQRYOBJ.TESTFILE.DD. A dictionary containing the descriptions of the KIF files is located at
DNQRYOBJ.TESTFILE.DD.DICT. Appendix D contains the DDL declarations for these files.

The restriction that no two IDs in a dictionary can be the same has caused slight DDL changes for
the KIF files CUST and SOFL. In CUST, the ADDR group ID is changed to ADRS. In SOFL, the ITEM
field ID is changed to SITM.

NOTE

The Query examples shown in this manual were all executed using
DBMS-990 files. Since KIFs order data differently than data base
files, the output of examples using KIFs might differ from the ex-
amples illustrated in this manual.

In order to use examples with KIFs, the following figures should be changed:

Figure 4-1 The field name ITEM should be changed to SITM

Figure 4-2 The field name ITEM should be changed to SITM

Figure 4-8 The field name ITEM should be changed to SITM

Figure 4-20  The field name ITEM should be changed to SITM

Figure 4-21 The field name ITEM should be changed to SITM

Figure 4-28  The field name ITEM should be changed to SITM (do not change the file name
ITEM in the FROM clause) '

Figure 4-30  The field name ITEM should be changed to SITM (do not change the file name
ITEM in the FROM clause)

Figure 4-31 The field name ITEM should be changed to SITM

Figure 4-32  The field name ITEM should be changed to SITM

Figure 4-33  The field name ITEM should be changed to SITM

Figure 4-34  The field name ITEM should be changed to SITM (do not change the file name
ITEM in the FROM clause) .

Figure 4-35  The field name ITEM should be changed to SITM (do not change the file name
ITEM in the FROM clause)

Figure 4-36  The field name ITEM should be changed to SITM (do not change the file name
ITEM in the FROM clause)

CAUTION

It is possible to assign both a data base and KIF with the same four
character ID.

1-4 2276554-9701



2

Basic Concepts of Query-990

2.1 INTRODUCTION
This section explains the Query language and the elements and syntax of Query statements. This

section also introduces the Guided Query utility as a training tool for learning the syntax of Query
statements. Finally, execution of the Query processor is explained.

2.2 THE QUERY LANGUAGE
The Query language is a nonprocedural language that resembles English. A Query statement con-
sists of one or more lines of instructions. You can easily read a Query statement and understand
the instructions to be executed. An example Query statement is as follows:

LIST EMPLOYEE-INFO FROM PAYROLL-FILE WHERE EMPLOYEE-NUMBER EQ 65

Query statements consist of functions and clauses. The function is the operation that the Query
statement performs. Each statement must include only one function. Clauses are conditions or
modifications to the function. Each statement must include one FROM clause and as many addi-
tional clauses as necessary.

In the preceding example, LIST is the function, and FROM and WHERE are clauses. The function
and clauses in a Query statement can be positioned in any order. (However, the order of the
clauses sometimes affects the output; see Section 4 for more information.) For example, the
following is equivalent to the preceding Query statement:

WHERE EMPLOYEE-NUMBER EQ 65 FROM PAYROLL-FILE LIST EMPLOYEE-INFO

2.2.1 Functions
Query-990 can perform any of the following functions:

. LIST — Produces reports or generates data for further processing

e UPDATE — Modifies information that is currently stored in a file

. INSERT — Adds new lines to a file

. DELETE — Deletes one or more lines from a record, an entire record, or an entire file

A Query statement must include only one of the functions LIST, UPDATE, INSERT, or DELETE.
Consequently, to both list and update a file, you must use two separate statements.

2276554-9701 2-1



Basic Concepts of Query-990

2.2.2 Clauses

There are two types of clauses: record-level and line-level. Record-level clauses apply to the entire
Query statement and act in a global manner, affecting all report lines or modification lines. They
should be specified after the FROM clause or before the function.

Line-level clauses affect only the single report line with which they are specified. They must be
specified after the list of fields and literals in a report line and before the semicolon.

Several of the clauses are as foilows:

FROM — Identifies which file the Query statement will process.

WHERE — Specifies test conditions that identify which records or lines in the file will
be listed or modified.

SORT — Orders output data based on the two levels of sorting (line-level and record-
level). This clause can order lines within a record or order records in a file.

TRACE — Allows you to see a listing that shows changes to the file before the file has
actually been modified. The use of this clause is recommended with the DELETE
function.

BY — Controls the order in which the Query processor reads the data in the fiie.
DEFINE — Specifies calculations on fields and allows the use of the calculations as
report elements or operands in a condition.

BREAK — Allows control break processing on totals, counts, and duplicate values.

UNIQUE — Indicates a single occurrence of a specified line type per record. Fields
within a UNIQUE line type can act as primary keys when used in report lines. Secondary
keys within that line can be optimized.

LINKED BY — Defines the relationship between files when using more than one fileina
Query statement.

2.2.3 Punctuation
The punctuation conventions for Query statements are as follows:

Double quotes (‘" Data surrounded by single or double quotes is printed or
Single quotes ‘" displayed exactly as written. This type of data is referred

to as either a literal or a literal constant.

Exclamation point " The Query processor treats the exclamation point on a

line as a comment. (Comments are a recommended form
of internal documentation for the Query statement.)

Semicolon _ ;) Report lines used to group data for listing or conditioning

are separated by semicolons.

The example in Figure 2-1 shows a Query using punctuation.

2-2

2276554-9701



Query Statement:

Basic Concepts of Query-990

' This comment is included for internal documentation

LIST "EMPLOYEE NAME:

" MNAMS

SALARY: < MRAT:

FAY PERIOD:

FROM FAY1

Query Output:

EMFLOYEE NAME:
SALARY:

FAY FPERICOND:
EMPLOYEE NAME:
SAlLARY:

FAY FERIOD:
FEMFLOYEE NAME:
SALLARY:

FAY FERION:
EMPLOYEE NAME:
SALARY:

FAY FERIMAD:
EMFLOYEE NAME:
SALARY:

FAY FERIOD:
FMPLOYERE NAME:
SALARY:

FAY PERIOD:
EMFLOYEE NAME:
SALARY:

FAY FERIOD:
EMPLOYEE MAME:
SALARY:

FAY PERION:
EMFLOYEE NAME:
SALARY S

FAY FERIOD:

2276554-9701

MFYF " DAYE"S

L.I. KIM
230,00

15 DAYES

PASCHAL, JIMMY
2800, 00

=20 DAYS

MEREDNT TH, JOHN
200, 00

20 DAaYs

HOWELL. . JOHN
375,00

& DAYS

BROWN, WILLIE
215,00

5 ODAYS

STEFHENS, JANET
SRS, 00

7 DAYS

ABLE, CHARLIE
1250, 00

=0 DAYS

HAYMES=, BILL
750, 00

15 DAY:E

FARES, FREID
SEe, 00

7 DAYES

Figure 2-1. Punctuation Example

2-3



Basic Concepts of Query-990

2.3 QUERY STATEMENT ELEMENTS

Query statements use file elements (such as PAY1), aliases (such as PAYROLL-FILE), variables,
reserved words (such as SORTED BY), and constants to select and define the output or content of
the report. The following paragraphs describe each of these items.

2.3.1 File Elements

You can specify file elements such as field, group, line, and file IDs in a Query statement. The file
ID must match the Data Definition Language (DDL) ID specified when the file was created unless
you have defined an alias for that file name. An example of a Query statement using several file
elements is as follows:

FROM PAY1 LIST MNUM ADDR CuU

PAY1 is the file, MNUM a field, ADDR a group, and CU a line. Appendix D lists file specifications
for all examples in this manual.

2.3.2 Alias Feature

Aliases are substitute names for field, group, line, and file IDs. These longer substitute names are
easier to remember than the short names they replace. An alias name can be up to 20 characters
long for DBMS-990. Alternate names of up to 30 characters are used for DD-990. It must start with
an alphabetic character and can include letters, numbers, dollar signs ($), underscores (_), or

a fallnwe
dashes {-}. An example of a Query statement using aliases is as follows:

LIST EMPLOYEE-NUMBER EMPLOYEE-NAME FROM PAY1
WHERE SALARY$ =700

The three names EMPLOYEE-NUMBER, EMPLOYEE-NAME, and SALARYS$ are aliases. The actual
field names cannot be greater than four characters. The Model 990 Computer DNOS Data Base
Administrator User’s Guide contains further discussion of aliases. The Model 990 Computer Data
Dictionary User’s Guide contains further discussion of alternate names.

2.3.3 Variables

Variables are the user-defined names that are specified in the DEFINE clause (Section 4) and are
used for calculation. They follow the same naming conventions as aliases. If the same name is
used for a DEFINE variable and an alias, the name is assumed to specify the DEFINE variable. If
the same name is used for a DDL element and an alias, it is assumed to specify the alias. In the
following example of a Query statement using variables, assume A and B are elements in the file
PAY1:

DEFINE C:CN/4.2 = A + B;
LISTC FROM PAY1

2.4 22765549701



2.3.4 Reserved Words
The following reserved words cannot be used as user-assigned variables, aliases, or DDL IDs:

2.3.5 Constants

AFTER
ALL

AND

ANY
AVERAGE
BEFORE
BREAK

BY
CONTENTS
COUNT
DEFAULT
DEFINE
DELETE
EQ

EVERY
EXCLUSIVE

FALSE
FIRST
FOOTING
FROM
GE

GT
HEADER
IN
INSERT
KEY

LE
LINKED
LIST

LT

NE

NO

The three types of constants are as follows:

Basic Concepts of Query-990

NULL
OFF

ON
ONLY
OR
PAGE
RECORD
SKIP
SPACE
TAB
TOTAL
TRACE
TRUE
UNIQUE
UPDATE
WHERE

. Literals — Composed of a character string enclosed by single or double quotes. Both
single or double quotes can be mixed in the same Query statement. However, each
literal must begin and end with either single or double quotes.

. Numeric constants — Used in conditions, calculations, and content lists. Numeric con-
stants can begin with a number, plus sign (+), minus sign (-), or period (.). Decimal

points can be included.

° Change data constants — Allow you to supply a series of values for one variable while
the Query statement is executing. This applies only to CONTENTS clauses, WHERE
conditions, DEFINE clauses, and report line literals. See Section 4 for more information.

2.3.6 Special Constants
NULL, TRUE, and FALSE are special constants. When a NULL constant is specified, the constant
value is automatically defined to be of the same length and data type as the field being compared.
The NULL constant contains binary zeros. TRUE and FALSE constants are valid only for fields of
type Boolean and result in a constant (two bytes long) that contains either binary 1 (for TRUE) or 0

(for FALSE).

2276554-9701

2-5



Basic Concepts of Query-990

2.4 QUERY SYNTAX

Certain symbols are used to clarify statement definitions.

Symbol Description
n= Used in writing definitions; means “‘is defined to be”
[ Encloses entities that are optional
| Indicates alternatives (e.g., A| B| C means A or B or C)

{} Encloses one or more entities from which you must select
at least one

Indicates the position at which a previous item may be
repeated as required

_ Underlined keywords and symbols must appear exactly as
shown

A Query statement has the following basic syntax:

—r s

Only the FROM clause and one of the functions are always required. You can include additional
clauses as needed. Although Query-990 is a free-format language, the order of the clause in the
Query statement will affect the output.

2.5 GUIDED QUERY

The Guided Query utility allows you to gather data from a file without having extensive knowledge
of Query-990. Although it does not have all the capabilities of Query-990, Guided Query is
excellent for training. The following exercise will help you become familiar with writing and
executing a Query statement. Guided Query can perform only the LIST function.

NOTE

Refer to the Model 990 Computer DNOS Data Base Administrator
User’s Guide, part number 2272059-9701, or refer to the Mode/ 990
Computer Data Dictionary User’s Guide, part number 2276582-9701
forinstructions on starting the Data Base manager.

The following example shows each step of building a Guided Query statement. In the first column,
the screens are numbered to coincide with the screen numbers you will see on the video display
terminal (VDT). In the second column, enter input as written. The SKIP instruction does not refer to
the SKIP control key; it means enter the word SKIP. Your password is the password assigned
when Query-990 was installed. After entering the input, press the control key indicated in the last
column.

2-6 2276554-9701



Basic Concepts of Query-990

In the following exercise, use the F4 key to return to previous screens if you need to change your
input.

To begin this exercise, enter the input GQUERY as shown below and then follow the example.

Screen Input Control Key
GQUERY RETURN
(Your Password) RETURN (if security is installed)
1. PAY1 F3
2. Y RETURN
SKIP RETURN
“ EMPLOYEE ADDRESSES” RETURN
SKIP F3
3. 01 F3
4. 2 RETURN
3 RETURN
4 RETURN
5 RETURN
6 F3
5. RETURN
RETURN
RETURN
RETURN
RETURN
6. Y RETURN
Y F3
7. N F3
10. N F3
11. Y F3
12. EVERY RETURN
MNAM RETURN
NE RETURN
RETURN
“PASCHAL, JIMMY” F3
13. N F3
14. Y F3
15. 01 F3
16. 2 F3
17. F3
18. F3
<directory pathname>.TESTIN RETURN
RETURN
CMD
CMD
RETURN
<directory pathname>.TESTOUT RETURN
CMD
SF <directory pathname>.TESTOUT (to see the Guided Query results)

2276554-9701 2-7



Basic Concepts of Query-990

At the end of the Guided Query session, you can display and then save the resulting Query state-
ment. The Query processor can then execute the saved statement.

NOTE

While the Guided Query is an aid to the beginner, it is not intended
to be the primary mode of operation for Query sessions.

Figure 2-2 shows the results of the Guided Query exercise example.

Query Statement:

LIST

MNAM MSTR

MOCTY MSTT MZIF
HEADER

K

BRY KEY BY LIST

FROM FAY1

SORTED BY MNAM

HEADER

SEIF

" EMFLOYEE ADDRESSES!
SEIP

WHERE,

ANY MNAM NE "FASCHAL, JIMMY"

Query Output;

EMPLOYEE ADDRESSES

MNAM METR MCTY
ABLE, UHARLIE 2EBOO SEYWAY ASFERMONT
MNAM METR MCTY
BROWN, WILLTE OO W OEETH NEW YORE
MNAM METR MCTY
HAYNES, BILL HOO LAIRD DEL CURTO
MNAM METR MCTY
HOWELL . JOHN HIE RIO GRANDE GRANGER
MNAM MCTY

LT, KIM TONEAWA TRAIL BROODESTDE
MNAM MCTY
MERELTITH, JIHN @3 N. LAMAR GOLIAD
MNAM METR METY
FARES, FRED 200 NEW YORE AVE. RLEEE

MNAM MSTR METY
ETEPHENS, JANET S6 FLURNAM DR ECHD

Figure 2-2. Guided Query Example

2-8 2276554-9701



Basic Concepts of Query-990

2.6 EXECUTING THE QUERY PROCESSOR

Complete processing of a Query statement involves compiling, loading, and executing. Query-990
gives you the option of executing the Query processor (that is, performing the entire process) or
only compiling the statement for later execution from an application program. You can perform
either operation in foreground mode or in a batch stream.

To execute the operation in foreground, enter the appropriate command (QUERY or QCOMPILE) at
a terminal that is ready to execute in foreground mode. Execute the operation in a batch stream in
the same manner as for other System Command Interpreter (SCl) commands executed in batch
mode; in the batch command file, write the command followed by the required keywords and their
values.

2.6.1 QUERY Command
The Query processor is executed through the SCI command processor by entering the following:

QUERY
The following prompts appear:

QUERY-990 <VERSION L.V.R YY.DDD>
PASSWORD: (if security is installed)
INPUT STATEMENT PATHNAME: :
OUTPUT STATEMENT PATHNAME:
REPORT/TRACE ACCESS NAME:
DEFAULT REPORT PARAMETERS: YES

PASSWORD
This prompt appears only if your system includes security. In response, enter a valid
password that has appropriate access to the files to be used in the Query statement. If data
base alias names are to be used, the password must also have access to the alias file. Usu-
ally, the data administrator for your system assigns these passwords. Refer to the Mode/ 990
Computer DNOS Data Base Administrator User’s Guide, part number 2272059-9701 for more
information on assigning passwords.

INPUT STATEMENT PATHNAME
If the Query statement to be executed has been created previously through the Text Editor or
the Query Editor and you wish to execute or modify the statement, enter the file pathname
that indicates where the statement is stored. To enter a new Query statement, respond to this
prompt by pressing the TAB key or the NEW LINE/RETURN key and leaving the prompt blank.

OUTPUT STATEMENT PATHNAME
This prompt has two functions. It identifies the file that stores the results of the Query edit
session, and it executes the Query Editor. If you respond with a pathname or DUMY, the
Query Editor executes. Use DUMY when you want to edit the statement but you do not want
to save the results of the Query edit. If you do not respond to this prompt, the Editor executes
only if you also enter no response to the prompt INPUT STATEMENT PATHNAME.

REPORT/TRACE ACCESS NAME
This prompt requests the file to which the results of executing the Query statement will be
sent. To specify that the results appear on the VDT, press the RETURN key. If output is unfor-
matted, a file name must be specified.

2276554-9701 . 29



Basic Concepts of Query-990

DEFAULT REPORT PARAMETERS
To enter the default response (YES), press the NEW LINE/RETURN key or the TAB key. When
executing a modification function, use the default. However, when executing a LIST func-
tion, you might need to reset the report parameters; in this case, enter NO. A response of NO
causes the following screen to appear:

REPORT PARAMETERS
REPORT/UNFORMATTED?: R
NUMBER OF LINES PER PAGE: 60
NUMBER OF COLUMNS PER LINE: 80
LIST QUERY TEXT?: YES
CHANGE DATA PATHNAME:

NOTE

Refer to paragraph 4.4 for a discussion of report output.

REPORT/UNFORMATTED
This parameter determines whether output will be formatted for readability or left in its
original form. This is significant for binary, integer, real, computational, or packed data. To

i i H hat n o siand oo imeiid £ o
obtain output in report form, enter R. To obtain ocutput that can be used as input for some

other program or processor, enter U; as a result, the data remains in its original format.

NUMBER OF LINES PER PAGE

In response to this prompt, specify the page length for reports produced in report format. Any
value entered is ignored if the report is unformatted.

NUMBER OF COLUMNS PER LINE
In response to this prompt, enter any number from 1 through 132 to specify the number of
columns per line. This value applies only to report-formatted queries; it has no effect when
the Query output is unformatted.

LIST QUERY TEXT?
A YES response to this prompt lists the Query statement text on page 1 of the output. Any
syntax errors are listed with the text. Output from executing the Query statement begins on
page 2 of the report. Syntax errors are listed only when the Query text is also listed. If
executing a Query statement produces the message FATAL ERRORS IN QUERY STATE-
MENT, reexecute the statement with this option set to YES to determine the nature of the
errors.

With unformatted output, the Query statement is listed at the beginning of the file, but pages
are not numbered. Generally, list the Query text for unformatted output only while syntax
errors still occur.

CHANGE DATA PATHNAME
A Query statement can contain change data constants (described in Section 4), the values of
which are stored in a separate file. If you are using change data constants, enter the
pathname of the file that contains their values.

2-10 2276554-9701



Basic Concepts of Query-990

2.6.2 QCOMPILE Command
Use QCOMPILE to compile a Query statement and to store the object code in a file for use within
an application program. The application calls the subroutine QINIT to load the object.

Execute the stand-alone compiler by entering the command as follows:
QCOMPILE
The following prompts appear:

QUERY-990 STANDALONE COMPILER <VERSION LV.R  YY.DDD>
PASSWORD: (if security is installed)
INPUT STATEMENT PATHNAME:
OUTPUT STATEMENT PATHNAME:
OBJECT PATHNAME:
LISTING PATHNAME:
DEFAULT REPORT PARAMETERS: YES

PASSWORD
This prompt appears only if your system includes security. In response, enter a valid
password that has appropriate access to the files to be used in the Query statement. |f data
base alias names are to be used, the password must also have access to the alias file. Usu-
ally, the data administrator for your system assigns these passwords. Refer to the Model 990
Computer DNOS Data Base Administrator User’s Guide, part number 2272059-9701 for more
information on assigning passwords.

INPUT STATEMENT PATHNAME
If the Query statement to be executed has been created previously through the Text Editor or
the Query Editor and you wish to execute or modify the statement, enter the file pathname
that indicates where the statement is stored. To enter a new Query statement, respond to this
prompt by pressing the TAB key or the NEW LINE/RETURN key.

OUTPUT STATEMENT PATHNAME
This prompt has two functions. It both identifies the file that will store the results of the
Query edit session and signals that the Query Editor is to be invoked. If you respond with a
pathname or DUMY, the Query Editor executes. Use DUMY when you want to edit the state-
ment but do not want to save the results. If you do not respond to this prompt, the editor is
invoked only if you enter no response to the prompt INPUT STATEMENT PATHNAME.

OBJECT PATHNAME
This prompt requires the name of the file in which the statement object code is to be stored.

"LISTING PATHNAME
This prompt requests the name of the file to which the compiler sends the compilation
listing. The file includes any compiler error messages and a listing of the Query statement.

2276554-9701 2-11



Basic Concepts of Query-990

DEFAULT REPORT PARAMETERS
To enter the default response (YES), press the NEW LINE/RETURN key or the TAB key. When
executing a modification function, use the default. However, when executing a LIST func-
tion, you might need to reset the report parameters; in this case, enter NO. Responding NO
causes the following screen to appear:

REPORT PARAMETERS
REPORT/UNFORMATTED: R
NUMBER OF LINES PER PAGE: 60
NUMBER OF COLUMNS PER LINE: 80
LIST QUERY TEXT?: YES
CHANGE DATA PATHNAME:

REPORT/UNFORMATTED
This parameter determines whether output will be formatted for readability or left in its
original form. This is significant for binary, integer, real, computational, or packed data. To
obtain output in report form, enter R. To obtain output that can be used as input for some
other program or processor, enter U; as a result, the data remains in its original format.

NUMBER OF LINES PER PAGE

In response to this prompt, specify the page length for reports produced in report format. Any
value entered is ignored if the report is unformatted.

NUMBER OF COLUMNS PER LINE
In response to this prompt, enter any number from 1 through 132 to specify the number of
columns per line. This value applies only to report-formatted queries; it has no effect when
the Query output is unformatted.

LIST QUERY TEXT?
A YES response to this prompt lists the Query statement text on page 1 of the output. Any
syntax errors are listed with the text. Output from executing the Query statement begins on
page 2 of the report. Syntax errors are listed only when the Query text is also listed.
If executing a Query statement produces the message FATAL ERRORS IN QUERY
STATEMENT, reexecute the statement with this option set to YES to determine the nature
of the errors.

With unformatted output, the Query statement is listed at the beginning of the file, but pages
are not numbered. Generally, list the Query text for unformatted output only while syntax
errors still occur.

CHANGE DATA PATHNAME
A Query statement can contain change data constants, the values of which are stored in a

separate file. If you are using change data constants, enter the pathname of the file that con-
tains their values.

2.42 2276554-9701



Basic Concepts of Query-990

2.6.3 AQuery Editor

The Query Editor is activated if the response to the prompt INPUT STATEMENT PATHNAME is
blank or the response to OUTPUT STATEMENT PATHNAME is not blank when the Query pro-
cessor or compiler is initialized. The words ENTER YOUR QUERY appear at the top of the screen.
If you entered a response for INPUT STATEMENT PATHNAME, the contents of the input state-
ment file appear on the VDT followed by the end-of-file indicator (* EOF). Otherwise, the *EOF ap-
pears on the second line of the screen, and the cursor is positioned at the top of the screen in the
left-hand corner.

Use the following keys on the VDT keyboard to compose or edit a Query statement:

Key Description
Up arrow (1) Moves cursor up.
Down arrow (V) Moves cursor down.
Left arrow (<) Moves cursor to the left.
Right arrow (—) Moves cursor to the right.
DEL CHAR Deletes character.
INS CHAR Inserts character.
ERASE INPUT Deletes line.
Blank gray Inserts a line.
SKIP Erases characters at and to the right of the cursor on the current

line (uppercase SKIP is the TAB key).

TAB and Uses the tab stops set for the system Text Editor.

FIELD back

Roll up (F1) and The F1 key scrolls the screen forward (toward the end of
Roll down (F2) the file), and the F2 key scrolls the screen backwards. The value

specified in the Modify Roll (MR) SCI command determines the
number of lines scrolled.

F4 Copies the preceding line from the current cursor position to the
end of the line.

RETURN The cursor moves to the first character position of the next line. If
the cursor is on the last line of the screen when you press this key,
a new line is inserted at the bottom of the screen and the cursor
moves to that line.

2276554-9701 2-13



Basic Concepts of Query-990

Pressing either the SEND/ENTER key or the HELP/CMD key causes the following to appear:
DO YOU WANT TO ABORT(A), EXECUTE(E), OR CONTINUE EDITING(C)?
Respond by entering A, C, or E and pressing the RETURN or ENTER key. Entering A aborts the

Query Editor and does not save the results of the edit. Entering E executes the Query statement.
Entering C allows you to continue the editing process.

2-14 2276554-9701



3

Functions

3.1 INTRODUCTION

A function is the operation that the Query statement performs. Each Query statement performs
one of the following functions:

. LIST — Produces reports or generates data for further processing

e UPDATE — Modifies information currently stored in a file

. INSERT — Adds new lines to a file

. DELETE — Deletes one or more lines, one or more records, or every record in a file

The syntax for a function statement is as follows:

LIST-clause
INSERT-clause
UPDATE-clause
DELETE-clause

function-clause :: =

Clauses expand the capabilities of each function. This section discusses several clauses with

each function. Clauses are discussed in greater detail in Section 4.

3.2 LIST FUNCTION

The format of the LIST function is as follows:
LIST-clause ::= LIST report-line [; report-line]. . .[; ]

When the specified function is LIST, you must specify the contents of each report line to be listed.
A report line can be composed of any or all of the following:

U] Entire lines
. Groups or fields from one or more lines
¢  The results of calculations (such as totals and averages)

e  Literals

2276554-9701 3-1



Functions

3.2.1 Report Line Elements

A report line is a unique group of data that can be listed or conditioned. You can specify lines,
groups, or fields in a file as the elements of a report line. If you specify a line or group, it is broken
down into its component fields in the report output. These fields are listed in the order in which
they were specified in the DDL,; the following rules apply:

. If the order is BY LIST, each report line must be composed of fields from the same line
type and/or the primary key.

° If the order is BY KEY or BY KEY BY LIST, each report line can be composed of fields
from any line, but the grouping for output follows a fixed traversal rule.

In general, if line type A is specified along with other line types and line type A occurs more often
than the others, some of the data from line type A will not be listed. Consequently, you should use
caution grouping report line fields from different line types unless this order is clearly understood
and appropriate.

A report line specification includes file elements, literals, and formatting information. The output
for a report line consists of fields, literals, and spaces; the line length ranges from 1 to 480. The
output for a report line may require only one line or many lines. For instance, if a report specifies
270 characters of data, literals, and spacing and the page width is 80, the report line uses 4 output
lines. When the Query statement is to produce unformatted output, no spacing occurs. When the

-~ ] P P P N T Oy N [ R S

Query statement is to produce a formatted repoit, two blanks are automatically inserted between
fields. No blanks are inserted between literals or between a field and a literal. In report format, if a
field spans two lines of output and its output length is shorter than the page width, the field is ad-
justed so that it starts on a new line. ‘

3.2.2 Syntax
The syntax for a report line is as follows:

report-line :: = report-line-element [[,] report-line-element ] . ..
[HEADER-clause] [WHERE-clause] [SORT-clause]

field-type [option] [THRU-clause]
line-type [option]
key-type [option]
variable [option]
report-line element :: = BREAK-clause
X length
SPACE length
TAB digit [digit]
string
change-data

3-2 2276554-9701



Functions

3.3 INSERT FUNCTION

The INSERT function adds new lines or new information to a file. The basic format of the INSERT
function is as follows:

INSERT-clause ::= INSERT [trace-indicator] insert-line [; insert-line). . .[;]

insert-line :: = line-type [position-clause] CONTENTS-clause [WHERE-clause]

When using the INSERT function, you need not insert values for all fields in a line type. Only the
fields specified in the Query statement are added. An example of a Query statement using the
INSERT function is as follows: ’

INSERT 01 CONTENTS MNUM = 4444, MNAM = ‘JONES, BILL’
FROM PAY1

You must specify both the line identifier and the CONTENTS clause for every inserted line. The
fields listed in the CONTENTS clause must be in the line type specified as the line ID. Lines are
inserted in the order in which you specify them. Therefore, in data base files you must specify a 01
line type first if the INSERT is creating a new record.

3.3.1 CONTENTS Clause

The INSERT function requires the use of the CONTENTS clause. The CONTENTS clause serves a
purpose similar to the report line in the LIST function. You specify both the field IDs to be affected
and their new values. The format of the CONTENTS clause is as follows:

fiold constant
CONTENTS-clause ::= CONTENTS {k'e _;tyze} = {variable
ey-1yp change-data

constant

a iotme) = |
change-data

3.3.2 POSITION Clause
The POSITION clause identifies the place where the new line will be inserted in every qualified
record of the file. The format of the POSITION clause is as follows:

BEFORE FIRST line-type [WHERE-clause]
AFTER KEY

position-clause :: = [

The POSITION clause is not used for relative record or sequential files.

2276554-9701 3-3



Functions

3.3.3 BEFORE, AFTER, and FIRST Features
BEFORE KEY inserts a new line before any existing line in the record. AFTER KEY inserts the line
after any existing lines in the record.

You can specify a positioning line type to insert the new line after or before every occurrence of
the positioning line type in a record. For example, if you specify a WHERE condition, the new line
is inserted before or after every occurrence of the positioning line type that meets the WHERE
condition. If you include the word FIRST, the line is inserted before or after only the first occur-
rence in a record of the positioning line type that meets the WHERE condition. If you do not
specify a POSITION clause, AFTER KEY is assumed. The positioning clause affects only the
single insertion line with which it is associated. If multiple lines are being inserted, those that re-
quire more than the default positioning must have their own POSITION clause. The default for the
POSITION clause is the last line in the record.

Some examples of the INSERT function using the POSITION clause are as follows:

INSERT 03 CONTENTS FLD1 = 1; FROM PAY1
One 03 line is inserted after every line in every record in the file.

INSERT 03 AFTER 02 CONTENTS FLD = 1; FROM PAY1
One 03 line is inserted after every 02 line in the file.

INSERT 03 AFTER 02 WHERE FLD2 GT 10 CONTENTS FLD1 = 1 FROM PAY1
One 03 line is inserted after every 02 line with FLD2 greater than 10. If more than one 02
line meets this condition in a record, a 03 line is inserted after each 02 line that meets
the condition.

INSERT 03 AFTER FIRST 02 WHERE FLD2 GT 10 CONTENTS FLD1 = 1 FROM PAY1
One 03 line is inserted after the first 02 line in each record with FLD2 greater than 10.
Oniy one 03 is inserted per record.

3.3.4 ldentifying the Primary Key

To insert a 01 line in a data base file or any line type in a relative record file, specify the primary
key; otherwise, an error condition resuits. If you do not specify conditions or primary key values
for data base files, the line is inserted in every record in the file. If you specify a record-level con-
dition, the line is inserted only in the records that meet that condition. If the primary key is a KIF .
group key, the individual field names within the group key must be specified, not the group key
name.

3-4 2276554-9701



Functions

You can identify the primary key in any of the'fo|lowing three ways:

° Include the primary key in the CONTENTS clause for every line to be inserted, not just
the first line or the 01 line.

o Specify the primary key in the condition for the POSITION clause by testing the equality
of the primary key to a value. Again, you must specify the primary key for each separate
line to be inserted. This does not apply to key indexed, relative record, or sequential
files.

. Specify the primary key in the record-level condition by testing the primary key’s equal-
ity to a value or values. This affects all lines to be inserted, and the single record-level
condition is sufficient to identify the primary key for all line types. To specify a group
key in this manner, set each element of the group key equal to a value “AND”.

NOTE

If the primary key is a KIF group key, the individual field names
within the group key must be specified, not the group key name.

3.4 UPDATE FUNCTION

The UPDATE function modifies information stored in a file. The UPDATE function requires the
CONTENTS clause and has the following format:

UPDATE-clause :: = UPDATE [trace-indicator] modification-line

[; modification-line]...[;]

modification-line :: = line-type [position-clause] CONTENTS-clause [WHERE-clause]

The fields specified in the CONTENTS clause must be in the line type specified by the line ID. The
WHERE condition can test only fields from that line and the primary key. This condition is a line-
level condition and applies only to the preceding single update line. UPDATE functions can have
line-level conditions associated with each line ID specified and a single record-level condition.

UPDATE does not automatically modify secondary keys. To modify secondary keys, first delete
the line and then reinsert it with the new values. Rewriting of secondary keys is not allowed.

Some examples of the UPDATE function using the CONTENTS clause are as follows:
UPDATE 01 CONTENTS MNAM = ‘JONES, MARY’ FROM PAY1 WHERE MNUM = 12345

Updates the name of employee #12345, changing it from SMITH, MARY to JONES,
MARY.

UPDATE CU CONTENTS MLOC = ‘DOWNTOWN’ WHERE MLOC = “MT. VIEW”; FROM PAY1

All employees at the MT. VIEW site are being relocated to the DOWNTOWN site. This
Query changes all current job locations accordingly.

2276554-9701 3-5



Functions

3.5 DELETE FUNCTION

The DELETE function deletes one or more lines or entire records. The DELETE RECORD function
deletes the entire file. In the DELETE function, you need specify only the line type identifiers. The
format of the DELETE function is as follows:

DELETE-clause ::= DELETE [trace-indicator] {&@—@—Q } [:]

delete-~line [ ; delete-line]. ..

delete-line :: = line type [WHERE-clause]

The WHERE clause is a line-level condition and applies only to the single delete line with which it
is specified. The line-level condition can test only fields from the delete line type or the primary
key. You can specify a single record-level condition.

Lines are deleted in the order in which you specify them. Therefore, if you are deleting a 01 line
type (that is, the entire record is being deleted), specify the 01 line type last. This is necessary
because a 01 line must be the last line deleted in a record.

Some examples of the DELETE function using the WHERE clause are as follows:

DELETE RECORD FROM PAY1 WHERE EVERY MSTT NE “TEXAS”
Ail empioyees who do not iive in Texas have aii information about them deieted.

DELETE ED WHERE DEGR = ‘AA’ FROM PAY1
Delete all education information on Associate of Arts degrees from all employee files.

DELETE PE WHERE JOBT = ‘SALESMAN’ FROM PAY1 WHERE MNUM = 55555.
A PE line was mistakenly entered for employee 55555; this Query deletes that line.

If you specify DELETE RECORD, all qualified records are deleted. Note that the DELETE RECORD
FROM XXXX deletes all data from file XXXX. Line-level conditions do not apply to DELETE
RECORD. You can specify a single record-level condition. The DELETE function is not legal for
relative record or sequential files.

3.5.1 TRACE Clause

The DELETE RECORD deletes an entire file. To be sure that this is what you want, use the TRACE
clause to view the results of DELETE RECORD on the file. TRACE allows you to see the results
without actually making changes to the file. See Section 4 for more information.

3-6 2276554-9701



4

Clauses

4.1 INTRODUCTION

This section contains detailed information about Query-990 clauses and explains report format-
ting and change data constants.

Several of the clauses are as follows:
. FROM — ldentifies which file the Query statement will process.

. WHERE — Specifies test conditions that identify which records or lines in the file will
be listed or modified.

U SORT — Orders output data based on the two levels of sorting (line-level and record-
level). This clause can order lines within a record or order records in a file.

® TRACE — Allows you to see a listing that shows changes to the file before the file has
actually been modified. The use of this clause is recommended with the DELETE
function.

. BY — Controls the order in which the Query processor reads the data in the file.

. DEFINE — Specifies calculations on fields and allows the use of the calculations as
report elements or operands in a condition.

. BREAK — Allows control break processing on totals, counts, and duplicate values.

. UNIQUE — Indicates a single occurrence of a specified line type per record. Fields
within a UNIQUE line type can act as primary keys when used in report lines. Secondary
keys within that line can be optimized.

. LINKED BY — Defines the relationship between files when using more than one file ina
Query statement.

There are two types of clauses: record-level and line-level. Record-level clauses apply to the entire
Query statement and act in a global manner, affecting all report lines or modification lines. They
should be specified after the FROM clause or before the function.

Line-level clauses affect only the single report line with which they are specified. They must be
specified after the list of fields and literals in a report line before the FROM clause.

2276554-9701 4-1



Clauses

Clauses are record-level, line-level, or both, depending on where the clauses are specified in the
Query statement. A list of the different kinds of clauses is as follows:

Record-Level Line-Level Both
FROM CONTENTS WHERE
LINKED BY TRACE SORT
UNIQUE BREAK HEADER
DEFINE THRU FOOTING
BY

4.2 FROM CLAUSE

The FROM clause identifies which files the Query processor will use to modify or build the report.
If the function is INSERT, DELETE, or UPDATE, you can specify only one file. You can specify any
number of files for the LIST function; however, if you specify more than one file, you must include
the LINKED BY clause. Specify the main headings and footings, record-level sorting information,
and record-level conditions after the FROM clause.

4.2.1 Syntax
The basic syntax of the FROM clause for the LIST function is as follows:

FROM-clause :: = FROM file-name [EXCLUSIVE] [file-name [EXCLUSIVE]] . . .
[LINKED-BY-clause] [SORT-clause] [HEADER-clause]
[BY-clause] [UNIQUE-clause]

The file-name is the logical DBMS-990 or DD-990 file name to be accessed. If the keyword
EXCLUSIVE is included after a file name, the file will be opened with exclusive access. This can be
used to ensure that no updates are being made to the file while it is being accessed by Query-990.

4.3 HEADER AND FOOTING CLAUSE

You can specify headings and footings of several types. Main headings and footings appear at the
top or bottom of each page. Report line headings and footings precede or follow areport line when
either the record or the report line type has changed. Default report line headings are available to
automatically list DDL or alias names above the columns that contain data for that field.

4-2 2276554-9701



Clauses

4.3.1 Syntax
The basic syntax of a HEADER or FOOTING clause is as follows:

HEADER-clause :: = {[NO HEADER] [HEADER [header-element])
[ FOOTING [header-element] ]

PAGE [digit] [digit] \
SKIP [digit] [digit]

—~

HEADER-element :: =

DEFAULT
header-literal J
"
header-literal :: = ‘‘ [literal-element]...” _[Iuteral—element]...,,__

_ [literal-element]...

\

ascii-character
ASYSTIME
ASYSDATE
APAGENUM

literal-element :: =

You can specify any number of HEADER and FOOTING clauses. You must specify report line
headings before the semicolon that terminates specification of the associated report line. Specify
main headings and footings after the FROM clause. Literals, paging, and skipping of lines occur in
the order in which you specify them within the clause. Heading and footing literals should not be
longer than the width of a page. If they are longer than the page width, the Query statement
executes, but the literal is right-truncated after the page width and a warning message appears.

4.3.2 Main Headings and Footings

Main headings and footings appear at the top and bottom of each page of output. You can specify
them in a HEADER or FOOTING clause that follows the FROM clause. The number of main
headings and footings cannot exceed the number of lines per page. Figure 4-1 shows a Query
using main headings.

2276554-9701 4-3



Clauses

Query Statement:

LIST ‘SALES ORDER NUMBER: ‘ SONM
‘QUANTITY ORDERED: ‘ QUAN
WHERE ITEM = 555

FROM SOFL
BY KEY BY LIST
HEADER * ORDER INFORMATION FOR ITEM NUMBER 555

FOOTING  ### ITEM NUMBER 555 = GREEN JEANS”

Query Output:

ORDER INFORMATION FOR ITEM NUMBER 555
SALES ORDER NUMBER: 100 GUANTITY URDERED: =
SALES ORDER NUMBER: 75 QUANTITY ORDERED: e
SALES ORDER NUMBER: 50 QUANTITY ORDERED: 101

Figure 4-1. Main Headings Example

4.3.3 Report Line Headings and Footings
Specify report line headings and footings within the report line to which they apply. You can use
SKIP and PAGE in a report line HEADER or FOOTING clause. Report line headings for a specific
report line are printed when the following hold true:

*  The next output line has the report line type of those headings.

e  The previous output line had a different report line type or was in a different record.
Report line footings are printed when the following hold true:

e  The last output line printed has the same report line type of those footings.

. The next output line has a different report line type or is in a different record.

Figure 4-2 shows a Query using report line header and footing and introduces the PAGE option.

4-4 2276554-9701



Clauses

Query Statement:

LIST “INVOICE NUMBER: ‘ SONM
HEADER “###%# SALES ORDER — “~SYSDATE #3485 5# #8500 00088817 SKIP;

“ITEM NUMBER: ‘ ITEM ‘ QUANITY ORDERED: ‘' QUAN
FOOTING SKIP 2
SORTED BY ITEM:

FROM SOFL

NO HEADER

FOOTING ¢ “PAGENUM ——
SORTED BY SONM

BY KEY BY LIST

Query Output:

####% SALES ORDER - 06/02/82 ##3###4###ERFHEHARSRB IR B HF4F

INVOICE NUMBER: 50
ITEM NUMBER: 5955 QUANITY ORDERED: 101
ITEM NUMBER: 777 QUANITY ORDERED: 5

##4#% SALES ORDER — 06/02/82 3334683434430 30363 3 3 3 3 33 30 3 30 H 30 3038

INVOICE NUMBER: 75

ITEM NUMBER: 111 QUANITY ORDERED:
ITEM NUMBER: 333 QUANITY ORDERED:
ITEM NUMBER: 555 QUANITY ORDERED:
ITEM NUMBER: 777 GUANITY ORDERED:

PR W

##### SALES ORDER — 0&6/02/82 ##3#4e433 8383833038303 4 43 6 5 4 H 33
INVOICE NUMBER: 100

ITEM NUMBER: 333 QUANITY ORDERED: i
ITEM NUMBER: 555 QUANITY ORDERED: 2

####% SALES ORDER - 06/702/8B2 ##3### 8888888848588 H5 54434345

INVOICE NUMBER: 300
ITEM NUMBER: 777 GUANITY ORDERED: 5

—— PAGE 1 -

Figure 4-2. Report Line Heading Example

Each report line has a special default report line literal. The Query processor automatically com-
poses this literal, which consists of the DDL ID of all fields in the report line above the columns in
which the fields appear. If you include the word HEADER or FOOTING with no literal, PAGE com-
mand, or SKIP command, the default heading is assumed. You can also specify the default literal
by using the word DEFAULT in the HEADER or FOOTING clause. Only one default heading or
footing is built for a report line.

2276554-9701 4-5



Clauses

Figure 4-3 shows a Query using the default report line header.

Query Statement:

LIST ‘EMPLOYEE NAME: ‘ MNAM

HEADER 7336303 30 36 30 3 303 I 36303 304 3 36 300 30 S I R WS H R H R R E W HHE RS HHE

£D HEADER DEFAULT

FOOTING /8338303038303 303030 3 3 30 330 30 0 S 00 030 36 303 B UM H U R S H B RS A F SR HHHHHR

FROM PAY1 SORTED BY DEGR BY KEY BY LIST

Query Output:

B R L T )
EMPLOYEE NAME: MEREDITH, JOHN

DEGR YEAR COLL GPA

AA 1968 PLUMBERS SCHOOL 2.5

A6 3 AR S I B R 33 3 R B R IR S S S R R
T R L L T )
EMPLOYEE NAME: HOWELL, JOHN

e e e 2 2 T A Ry R S A
EMPLOYEE NAME: BROWN, WILLIE

Y R R T 2 L L T Ty
EMPLOYEE NAME: STEPHENS, JANET

DEGR YEAR COLL GPA
BA 1278  JOURNALISHM SCHOOL 2.9

TR I S 3 I R I I I R R R R R A SRR
R R T o X Ly
EMPLOYEE MeME: SRLE. CHARLIE

DEGR YEAR COLL GPA

BA 1971 DETECTIVE COLLEGE 3.9

L e S e Ty T T
L R L L X e s e A T e
EMPLOYEE NAME: PARKS, FRED

DEGR YEAR COLL GPA

BA 1966 SALES COLLEGE 3.6

B T e Y e s S L o
34 3630 340 30 2 3 3 20 3 6 30 3030 300 0 I A0 I 3030 33 300 BB B 03 3 IR R S S
EMPLOYEE NAME: LI, KIM

DEGR YEAR COLL GPA
BS 1977 PROGRAMMING SCHOOL 3.9
M5 1979 GRADUATE SCHOOL 3.7

A 3 S R S R I R R R R R R R R R R
A S R R I S 03 B G B I 0 B B I
EMPLOYEE WNAME: PABCHAL, JIMMY

DEGR YEAR COLL GPA
MA 1946 M™MT. VIEW COLLEGE 3.1
BEA 1941 BUSINESS COLLEGE 2.4

R L T BT R R R X A B R R L ST SN
B Y T L L TR R Y Y Y
EMPLOYEE NAME: HAYNES, BILL

DEGR YEAR COLL GPA

MA 1976 SUPERVISOR COLLEGE 3.0

B s E L R S e = S e T R )

Figure 4-3. Default Heading Example

2276554-9701



Clauses

4.3.4 Special Heading Constants

The three special constants that can be included in any heading or footing literal are APAGENUM,
ASYSDATE, and ASYSTIME. These constants are replaced as follows with the page number, cur-
rent date, and current time when the heading or footing is printed:

e APAGENUM is replaced with PAGE nnn, where nnn is the current page number. Page
numbering is automatic and begins with page 1 if the Query statement is not listed;
otherwise, it begins with page 2.

e  ASYSDATE is replaced with a date in the form MM/DD/YY, where MM is the month, DD is
the day of the month, and YY is the last two digits of the year.

e  ASYSTIME is replaced with the time in the form HH:MM:SS, where HH is the hour in the
range of 0 through 23, MM is the minutes, and SS is the seconds.

Figure 4-4 shows a Query using a main heading, the SKIP option, and special heading constants.

Query Statement:

LIST MNAM MJOR MCTY

FROM FAY1 SORTED BY MNAM BY KEY BY LIST
HEADER SKIF 2
i’ MONTHLY EMPLOYEE REFORT® SKIP

. PREFARED ON ~SYSDATE”  SKIP 2
“EMPLOYEE NAME JOB TITLE CITY STATIONED”
e 4 GKIP

FOOTING “# COPY TO MR. SMITH. PERSONNEL DIRECTORA

Query Output:
MONTHLY EMPLOYEE REPORT

PREFARED ON MM/DD/VYY

EMPLOYEE NAME JOB TITLE CITY STATIONED
ABLE. CHARLIE DETECTIVE ASPERMONT
BROWN, WILLIE SHOEMAKER NEW YORK
HAYNES. BILL PROD SUPV DEL CURTO
HOWELL, JOHN MECHANILC GRANGER

LI, KIM PROGRAMMER BROOKSIDE
MEREDITH, JOHN PLLUMBER GOLIAD

FARKEZ, FRED SALESMAN RUSK

PASCHAL , JIMMY VICE FPRES LIBERTY HILL
STEPHENS. JANET REFORTER ECHID

# COPY TO MR. SMITH, PERSONNEL DIRECTOR

Figure 4-4. Special Heading Example

2276554-9701 4-7



Clauses

4.3.5 System Heading and NO HEADER Clause
A system heading with the following format is automatically printed at the top of every page:

QUERY L.V.R. YY.DDD AQUERY-990 MM/DD/YY HH:MM:SS APAGE nnn
where:

L.V.R identifies the version of the Query processor.

YY.DDD is the Julian release date for that version.

MM/DDI/YY indicates the month, day, and year (referenced as ASYSDATE).
HH:MM:SS indicates the hour, minutes, and seconds (referenced as ASYSTIME).
APAGE nnn indicates the page number (referenced as APAGENUM).

You can suppress the system heading by specifying NO HEADER after the FROM clause. Since
NO HEADER applies only to the system header, you can still define other main headings and
footings.

Figure 4-5 shows a Query using the NO HEADER clause.

4.4 REPORT OUTPUT

You can obtain two types of output when using the LiST function: formatied report and unfor-
matted. You select the type of output when the Query-990 processor is initiated in the REPORT
PARAMETERS screen.

. Formatted report output is intended to be read by users. If the outputis in report format,
Query-990 converts all data to a readable format with carriage controls included to make
the report print correctly.

. Unformatted data serves as input to another program or utility. If output is unformatted,
Query-990 does not convert the data, and headings and footings are not allowed. Each
report line produces one record in the output file, with no carriage control included.

4.41 Formatting
You control the formatting of a report line by changing the output length of a field, specifying tab
stops, and specifying spacing between fields or literals.

To change the output length of a field, enter a colon and the new output length after the field ID.
The data types with their default lengths are as follows:

Data Type Default Length
CH Number of characters defined
CN, AN Number of digits plus 1 if decimal point is needed
CS, AS, PK Number of digits plus 1 for sign and plus 1 for
decimal point, if needed
IS 5 characters
ID, RS 10 characters
RD 18 characters
LG 5 characters (TRUE or FALSE)

4-8 2276554-9701



Clauses

Query Statement:

LIST MNAM
HEADER /#4040 36 3 43 3646 30 95 3 46 96 36 31 30 30 36 0 3 S 3036 2 3036 7 5
MSTR;
MCTY 7, ¢ MSTT ‘/ 7 MZIP
FOOTING /%% %8 538 HHHHHHHHFHHHHFHHHE2% 7
FROM PAY1 SORTED BY MNAM BY KEY BY LIST
NO HEADER HEADER ‘MAILING LABELS FOR EMPLOYEE MAIL’ SKIP 2

Query Output:
MAILING LABELS FOR EMPLOYEE MAIL

B e T L s e 2
ABLE, CHARLIE

2800 SKYWAY

ASPERMONT » MO 32145

L e R N e T S
a2l e Lt 2 L
BROWN, WILLIE

600. W 55TH

NEW YORK » NY 88889

L gl a g R S e
Ll 2 T e S Y R 2 g
HAYNES, BILL

500 LAIRD

DEL CURTO . TX 85269
L2222t SRR F YR ST L A2 2
Sa st I E PR IS T S 2
HOWELL, JOHN

555 RID GRANDE

GRANGER . TX 78787
Ll T R T T T
LR R ad s SR 2 e R E R L T

LI, KIM
3800 TONKAWA TRAIL
BROOKSIDE ., MO 2222z

R e T s
R e R
MEREDITH, JOHN

98 N. LAMAR

GOLIAD ,» TX 89898
e S L S T )
L L s s T

PARKS, FRED
200 NEW YORK AVE.
RUSK » NY 7B998

HWHRIEREREHF RS RERERRERFR

L2 T Y R R
PASCHAL, JIMMY

1000 ACORN OAKS

LIBERTY HILL s MO 796b66
3 I AR IR 3 I S T
L T T L s
STEPHENS, JANET

5& PURNAM DR

ECHOD » TX 87989
e L T X

Figure 4-5. NO HEADER Clause Example

2276554-9701 4-9



Clauses

If you specify an output length greater than the defauit length, the field is blank filled to the right.
If you specify an output length less than the default length, all data is truncated to the right.

44.2 TAB

To specify a tab stop, enter the word TAB followed by a column number. Specify tab stops in in-
creasing values. The field that follows the tab stop specification begins in the column specified in
the tab stop. Fields that follow are positioned in the normal manner after the end of the field or
literal preceding them, with a default value of two spaces between fields. If a report line requires
more than one line of output, you can specify tab stops on lines other than the first line.

4.4.3 SPACE

To specify spacing other than the default between fields and literals, enter the word SPACE
followed by a number. The specified number of blanks are written in the current position in the
report line. For example, if you write SPACE 0 between two field names, no spaces are written be-
tween the fields; if you write SPACE 30, 30 spaces are written between them. In the initial release
of Query-990, the user indicated spacing by specifying the number of spaces, followed by an X.
Although the current release supports this method (for compatibility), use of SPACE is en-
couraged for its readability.

Figure 4-6 shows a Query using SPACE, TAB, and output lengths.

Query Statement:

LIST MNAM: 1S TAR 19 JOBT:11 SPACE S COMP:Z0 TAB 40 FPISAL
FROM FAY1 SORTED BY MNAM BY KEY BY LIST

NO HEADER HEADER
- FREVIOUS POSITIONS HELD BY QUR EMFLOYEESS SHIP 2
“EMPLOYEE NAME JOB TITLE COMPANY FPREVIOLE SALARY”

Query Output:
PREVIOUS POSITIONS HELD BY OUR EMPLOYEES

EMPLOYEE NAME JOB TITLE COMPANY FREVIOUS SALARY
ABLE, CHARLIE POLTCEMAN POLICE DEPT 1700, 00
HAYNES, BILL SALESMAN EQUIPMENT MFG. 1500.00
HOWELL ., JOHN MECHANIC GREASE MONKEY LTD 270,00
MEREDITH> oI0OHN JOURNEYMAN H & H COMPANY 750, 00
FARKS, FRED SALESMAN DEEP HOLE SALES INC 7950
FASCHAL, JIMMY SALESMAN EQUIPMENT MFU. 1500. 00
STEFHENS, JANET  COPY EDITOR  JOURNALISM SCHOOL 150, 00

Figure 4-6. Space, Tab, and Formatting Example

4-10 2276554-9701



Clauses

4.4.4 PAGE and SKIP
You can use the PAGE command to skip a specified number of pages. To specify the number,
enter the following in any report line heading or footing clause:

PAGE n
where:

n is the number of pages to skip.
If you do not specify a number, one page is skipped. Any main footings are printed before the next
page begins, and any main headings are printed at the top of the next page. PAGE is not allowed in

a main heading or footing.

Use the SKIP command in any heading or footing clause to skip a specified number of lines. If you
do not specify a number, one line is skipped. The format of the SKIP command is as follows:

SKIP n
where:

n is the number of lines to skip.

4.4.5 Literals

You can include any literal in areport line. Literals appear in the order in which you specify them. If
you specify a literal between two fields, two spaces are not inserted between the values for each
field. You can use change data constants as literals in the report line. They are treated as
character data, and you must specify their length.

4.5 WHERE CLAUSE

The WHERE clause specifies test conditions that identify which records or lines in the file will be
listed or modified. Test conditions are Boolean expressions consisting of fields, DEFINE
variables, constants, relational operators, the Boolean operators AND and OR, and parentheses to
control the order of evaluation. The two types of test conditions are record-level conditions and
line-level conditions. The syntax for the WHERE clause is as follows:

WHERE-clause :: = WHERE condition

simple-condition }

condition :: = { complex-condition

2276554-9701 4-11



Clauses

A record-level condition tests all of the information in a record and determines whether to print
any data from the record. You can specify only one record-level condition in a Query statement.
Each record in the file must pass the record-level condition before any of the lines in that record
can be listed or modified. Record-level tests can compare fields from different line types. Because
a line type can occur any number of times in a record, record-level conditions require that you
specify the quantifier ANY or EVERY before each field name tested. If ANY is specified, only one
occurrence of the field in the record must meet the condition; if EVERY is specified, all occur-
rences of the field in the record must meet the condition. A condition must have at least one ANY
or EVERY or test only the primary key for Query-990 to recognize it as the record-level condition.

Figure 4-7 shows a Query using a record-level condition on a primary key with the WHERE clause.

Query Statement:

LIST TAB 11 MSTR:
TAB 11 MCTY ‘, ‘ MSTT;
TAB 17 MZIP; ,

FROM PAY1 WHERE MNUM = 55555 BY KEY BY LIST

ND HEADER HEADER ‘ADDRESS OF EMPLOYEE NUMBER 55555: ‘ SKIP 2

Query Output:
ADDRESS OF EMPLOYEE NUMBER 55555:

1000 ACORN DAKS
LIBERTY HILL » MO
79646

Figure 4-7. Record-Level Condition with WHERE Clause

A line-level condition tests only the data being used for a single report line to determine whether
the line is to be used. You can specify line-level conditions for every single report or modification
line in the Query statement. If a record is qualified for output or modification by the record-level
condition or if no record-level condition exists, each line-level test must also be met before the
report or modification line with which the test is associated will be listed or modified. Line-level
tests in modification functions can test only fields in the line with which they are associated. Line-
level conditions in the LIST function can test fields from several line types, but such conditions
follow rules specified for multiline report lines.

Figure 4-8 shows a Query using the line-level condition with the WHERE clause.

4-12 2276554-9701



Clauses

Query Statement:
LIST ‘SALES ORDER NUMBER: ‘ SONM

7 {__ —— __“) s

‘QUANTITY ORDERED: ‘ QUAN
WHERE ITEM = 555 SORTED BY QUAN
FROM SOFL. BY KEY BY LIST

Query Output:

SALES ORDER NUMBER: 100 L > QUANTITY ORDERED: 2
SALES ORDER NUMBER: 75 Lmmmmm—— > QUANTITY ORDERED: 2
SALES ORDER NUMBER: 50 o e > QUANTITY ORDERED: 101

Figure 4-8. Line-Level Condition with WHERE Clause

Query-990 allows you to specify a WHERE clause inside each report line specification. This condi-
tion applies only to the single report line specified. If several report lines have the same line type,
each report line can have its own individual line-level conditions. Query statements containing
line-level conditions and formatted in the Query-990 1.0 release should be reformatted so that the
line-level conditions are included with the report line to which they apply. The meaning of the con-
dition is clearer in the current format.

4.5.1 Syntax
A WHERE clause can define either simple conditions or complex conditions formed from simple
conditions connected by the logical operators AND and OR.
4.5.1.1 Simple Conditions. A simple condition has the following form:
simple-condition ::= [ (] [quantifier] op1 rel-op [quantifier] op2[)]

Figure 4-9 shows a Query using a simple condition.

LIST MNAM MDEP FROM PAY1 BY KEY BY LIST
WHERE MNUM = S$5555

Figure 4-9. Simple Condition Example

The relational operators have two forms: a two-letter mnemonic and a character symbol. Since the
Query processor considers the two forms equivalent, they can be mixed in a single Query state-
ment. Table 4-1 lists and explains the relational operators.

2276554-9701 413



Clauses

Table 4-1. Relational Operators

Symbol Mnemonic Meaning
= EQ Equal to
<> NE Not equal to
> GT Greater than
< LT Less than
>= GE Greater than or equal to
<= LE Less than or equal to

Figure 4-10 shows a Query using relational operators.

LIST MNAM MRAT WHERE MRAT GT 1000
FROM PAY1 BY KEY BY LIST

Figure 4-10. Relational Operators Example

Use numeric constants only for numeric data types and literals for character data. You can
enclose numeric constants in quotation marks. A numeric constant must be compatible with the
type of field to which it is being compared; otherwise, a conversion error results. If two fields are
being compared, they must have exactly the same format.

4.5.1.2 String Operators. For character fields, certain string operators are available. You can
compare the beginning characters of a field by specifying a literal with the required beginning
characters followed by an ellipsis (. . .). Compare the ending characters of a field by specifying a
literal preceded by an ellipsis. You can use any of the relational operators. For example, to deter-
mine whether a NAME field 20 characters long begins with 5 characters greater than or equal to
“SMITH”, the test condition is as follows:

NAME GE “SMITH"”. ..
To specify a search to determine whether a field contains a certain string, compare testing for
equality between a field and a literal that is surrounded by ellipses. For example, to determine
whether an address field (ADDR) 50 characters long contains “CHICAGO”, the test condition is as
follows:

ADDR = ...“CHICAGO"...

414 2276554-9701



Clauses

Figure 4-11 shows a Query using string operators.

Query Statement:

LIST TAB 4 ITMN TAB 18 DESC WHERE DESC = ... ‘RING’. .

FROM ITEM BY KEY BY LIST

HEADER ‘ITEM NUMBER DESCRIPTION
i

B e e e e o ot 2 s

i
¢

Query Output:

ITEM NUMBER DESCRIPTION
777 RED HERRING
333 GOLDEN RING

Figure 4-11. String Operators Example

4.5.1.3 Complex Conditions. Complex conditions are formed from simpie conditions connected
by AND and OR. The basic syntax of a complex condition is as follows.

complex-condition ::= [(] simple-condition [log-op complex-condition] [) ]
Notice that the right-hand side of this definition is a complex condition itself. This means that any
number of simple conditions can be connected together.

The result of a complex condition using AND is true only if both conditions are true. The result of a
complex condition using OR is true if one of the conditions is true.

Figure 4-12 shows a Query using a complex condition using the logical operators AND and OR and
parentheses. )

Query Statement:

LIST MNAM MCTY MSTT
WHERE (MCTY = ‘GOLIAD’ OR MCTY = ‘ECHO’) AND
MSTT = ‘TX’
FROM PAY1 BY KEY BY LIST
HEADER ‘EMPLOYEE NAME CITY STATIONED STATE

Query Output:

EMPLOYEE NAME CITY STATIONED STATE
MEREDITH, JOHN GOLIAD TX
STEPHENS, JANET ECHO TX

Figure 4-12. Complex Condition with Logical Operators Example

2276554-9701 4-15



Clauses

The components of a condition are evaluated in the following order:
1. All simple conditions are evaluated.
2. All AND operations are performed from left to right.

3. All OR operations ére performed from left to right.

You can use parentheses to change the order of evaluation. The condition inside the innermost
parentheses is evaluated first, effectively removing them. Then, the expression in the next inner-

most parentheses is evaluated, until all parentheses are removed.

4.5.2 Record-Level Conditions

You can test arecord by using a record-level condition. Only one record-level condition is allowed
per Query statement. The record-level condition must be specified in the main WHERE clause.
Record-level conditions are not allowed when the function is LIST and the sequence is BY LIST.

The record-level condition can test any field(s) within a record. Record-level conditions require the
use of quantifiers unless only the primary key is tested. Conditions that test only the primary key
are assumed to be record-level conditions if they are in the main WHERE clause. Otherwise, the

condition will be treated as line-level and applied to only one of the report lines.

Figure 4-13 shows a Query using the record-level condition with a primary key

Query Statement:
LIST ‘EMPLOYEE RECORD FOR: ‘ MNAM;

TaB 8t

‘ ADDRESS: ‘ MCTY MSTT MZIP:

’ JOB TITLE: ‘ MJOB;

g DEPARTMENT: ‘/ MDEP;

’ RATE OF PAY: ‘' MRAT;

TAB 81

* PREVIOUS JOB TITLE: * JOBT:

*  COMPANY EMPLOYED BY: ‘ COMP;
FROM PAYi
WHERE MNUM = 55555
Query Output:
EMPLOYEE RECORD FOR: PASCHAL, JIMMY

ADDRESS: LIBERTY HILL MO 79666
JOB TITLE: VICE PRES
DEPARTMENT: SALES
RATE OF PAY: 2500.00
PREVIOUS JOB TITLE: SALESMAN

COMPANY EMPLOYED BY:

4-16

EQUIPMENT MFG.

Figure 4-13. Record-Level Example

2276554-9701



Clauses

4.5.3 EVERY and ANY Quantifiers

Quantifiers are EVERY and ANY. When the word EVERY precedes a field name, every occurrence
of that field in the record must meet the specified condition. Otherwise, the condition is false.
When the word ANY precedes a field name, only one occurrence of the field must meet the con-
dition for the condition to be true. You must use at least one quantifier in a condition that tests
fields other than the primary key in order to identify it as a record-level condition. If one quantifier
is used, any fields not preceded by a quantifier are treated as if they are preceded by ANY. Quan-
tifiers cannot precede constants.

When both operands of the simple condition are fields, the following cases are possible:

. ANY field1 operator ANY field2 — Any occurrence of field1 must satisfy the relational
operator for any field2 in the record.

. EVERY field1 operator EVERY field2 — Every occurrence of field1 in the record must
satisfy the relational operator for every occurrence of field2 in the record.

. ANY field1 operator EVERY field2 — Any occurrence of field1 in the record must satisfy
the relational operator for every occurrence of field2 in the record. )

. EVERY field1 operator ANY field2 — Every occurrence of field1 in the record must
satisfy the relational operator for some occurrence of field2 in the record.

If a record-level condition exists, it is tested first, before any of the lines in the record are con-
sidered for output or modification. If the condition is false, the record is skipped. If the condition
is true, individual lines in the record must also meet their line-level condition, if one exists, before
they are modified or output.

Figure 4-14 shows a Query using ANY and EVERY quantifiers.

Query Statement:

LIST ‘SALESMAN: ‘ MNAM

l<:__‘_____:} 2

‘SALES FOR LAST MONTH: * MSLS:
FROM PAY1 WHERE ANY MSLE GT O BY KEY BY LIST
NO HEADER HEADER
’ SALESHMAN REPORT’ SKIP 2

Query Output:
SALESMAN REPORT

SALESMAN: LI, KIM L= > BALES FOR LAST MONTH: 5000. 0CC
SALESMAN:  BROWN, WILLIE Lo > SALES FOR LAST MONTH: 150, GOC
SALESMAN: PARKS, FRED L-—-==3 SALES FOR LAST MONTH: 300. 0G4

Figure 4-14. Record-Level Condition Example

2276554-9701 4-17



Clauses

4.5.4 Line-Level Conditions

You can specify line-level conditions in a WHERE clause included with a report line or modifi-
cation line specification. If a record has passed the record-level condition or no record-level con-
dition exists, each set of data for each report line or modification line must meet a line-level con-
dition, if one exists. If the function is LIST and the sequence is BY KEY or BY KEY BY LIST, fields
from several line types can be tested in the same line-level condition. Otherwise, line-level con-
ditions can test fields only from one line type and/or the primary key. Quantifiers cannot be used
in line-level conditions.

4.6 SORT CLAUSE

The SORT clause orders output data based on the values of fields in the file. The two levels of
sorting are record level and line level. Record-level sorting orders retrieved records on the basis of
field values and key values within the record. Line-level sorting orders lines within a record or
report based on the values within the line.

To specify arecord-level sort use a SORT clause after the FROM clause. To specify a line-level sort
use a SORT clause within a report line specification. Both a record-level and line-level sort can be
specified in a single Query statement if the statement is sequenced BY KEY BY LIST.

4.6.1 Syntax
The syntax for the SORT clause is as follows

field-type
SORT-clause :: = SORTED BY key-type [order-indicator]
variable
field-type
key-type [order-indicator]
variable
A
order-indicator :: = SSCENDlNG
: DESCENDING

where:

:A is equivalent to :ASCENDING.
:D is equivalent to :DESCENDING.

The order indicators :A and :D specify whether a particular field is to be sorted in ascending or
descending order. The indicator is not required; if it is omitted, the field is sorted in ascending
order. The order indicator applies only to the field preceding it. You can specify more than one sort
field, and the sort order can be mixed (that is, some fields ascending and some descending). The
sort fields are used as sort keys in the order in which they are specified.

4-18 2276554-9701



Clauses

4.6.2 Record-Level Sort ‘
Indicate a record-level sort by placing the SORT clause after the FROM clause. This type of sorting
is meaningful only for Query statements ordered BY KEY or BY KEY BY LIST. All fields in a record
are valid sort fields, as are DEFINE variables. If fields are specified from a line type that is not
unique, the values in the first occurrence of that line type in each record are used as the sort value.
If a specified line type does not occur in a record, the value of the sort key for that record is binary
zeros.

Note that a record is composed of all of the lines associated with a primary key. (When records are
sorted by fields that are not included in the report, the ordering scheme is not always obvious.)
The order by which individual lines within the record are printed is not affected by the record-level
SORT clause.

Figure 4-15 shows a Query using a record-level SORT clause.

Query Statement:

LIST TAB & MSSN TAB 28 MRAT TAB 45 MDDT
FROM PAY1 SORTED BY MSSN BY KEY BY LIST
HEADER

’BOCIAL SECURITY NUMBER SALARY DEDUCTIONS
T ———— /7 BKIP
Query Output:

SOCIAL SECURITY NUMBER SALARY DEDUCTIONS
485298745 900. 00 93. 0O
487265478 750. 00 7%.88
453878954 215. 00 30. 56
654789622 385. 00 58. 30
852106987 1950. 00 99. 50
852369741 558. 00 50. 00
852417931 230. 00 55. 50
875247964 2500. 00 87. 20
888894564 375. 00 44. 00

Figure 4-15. Record-Level SORT
2276554-9701 4-19



Clauses

Figure 4-16 shows a Query using a record-level SORT clause on two fields.

Query Statement:

LIST TAB 3 MSTT TAB 20 MNAM
FROM PAY1 SORTED BY MSTT MNAM BY KEY BY LIST
HEADER ‘STATE NAME

R ———=' SKIP

STATE NAME

MO ABLE, CHARLIE
MO LI, KIM

MO PASCHAL, JIMMY
NY BROWN, WILLIE
NY PARKS, FRED

TX HAYNES, BILL

TX HOWELL, JOHN

TX MEREDITH, JOHN
TX STEPHENS, JANET

Figure 4-16. Record-Level SORT on Two Fields

4.6.3 Line-Level SORT

Indicate a line-level sort by including a SORT clause after all of the report line elements but before
the semicolon. This type of sort is legal only when the output sequence is BY KEY BY LIST or BY
LIST. You can use any number of fields in the specified line type as sort fields. These fields need
not be listed as output fields to be used as sort fields. If the Query is sequenced BY LIST, the en-
tire report line output is sorted. If the Query is sequenced BY KEY BY LIST, report lines are sorted
separately within each record for each line-level sort. Figure 4-17 shows a Query using the line-

level SORT.

4-20

2276554-9701



Query Statement:

LIST ‘EMPLOYEE NAME: ‘ MNAM

TAB 81 ——

HEADER SKIP 2 ‘EDUCATION INFORMATION';

ED SORTED BY DEGR

HEADER ‘DEGR YEAR COLLEGE GPA';

FROM PAY1
BY KEY BY LIST
WHERE ANY GPA > 3.0

Query Output:

EDUCATION INFORMATION
EMPLOYEE NAME: LI, KIM

DEGR YEAR COLLEGE
BS 1977 PROGRAMMING SCHOOL
M8 1979 GRADUATE SCHOOL

EDUCATION INFORMATION :
EMPLOYEE NAME: PABCHAL, JIMMY

DEGR YEAR COLLEGE
BBA 1941 BUSINESS COLLEGE
MA i946 MT. VIEW COLLEGE

EDUCATION INFORMATION
EMPLOYEE NAME: ABLE. CHARLIE

wme
- 5>

DEGR YEAR COLLEGE
BA 1971 DETECTIVE COLLEGE

EDUCATION INFORMATION
EMPLOYEE NAME: PARKS, FRED

DEGR YEAR COLLEGE
BA 1266 SALES COLLEGE

Figure 4-17.

2276554-9701

Line-Level SORT BY KEY BY LIST

Clauses

4-21



Clauses

4.7 TRACE CLAUSE

Executing an untested Query statement that performs an INSERT, UPDATE, or DELETE function
can cause unwanted changes to the file due to logical or typing errors. The TRACE clause shows
you a listing of the changes made to the file before the file is modified. This clause is particularly
important when you are using the DELETE function.

4,71 Syntax
The syntax of the TRACE clause is as follows:

trace-indicator :: = TRACE ONLY
OFF

The TRACE clause foilows the word INSERT, DELETE, or UPDATE in the Query statement. Specify
TRACE ONLY to check the modifications to be made to the file. TRACE OFF does not perform the
trace for the file and a listing file is not created. If neither TRACE ONLY nor TRACE OFF is
specified, TRACE ON is assumed. TRACE ON performs both the trace and the modifications to
the file. If this is not what was intended, the results can be undesirable. Generally, TRACE ONLY
and TRACE OFF should be specified. For each change made to the file, a TRACE line will be writ-
ten with the following format:

LINE LOC1 LOC2 key field1  field2... fieldn
XX XXXXXXXXX  XXXXXXXXX ~ XXXXXX  XXXXXX ~ XXXXXX  XXXXXX

Enter TRACE OFF to cancel the TRACE clause.

Figure 4-18 shows a Query that uses the DELETE function with the TRACE clause.

4-22 2276554-9701



Clauses

Query Statement:

DELETE TRACE OMLY ED FROM PAY1

Query Output:

LINE LOC1 Locz MNUM DEGR YEAR COLL GF A
ED OOOCOE40 00000B40 895203 BS 1977 PROGRAMMING SCHOOL 37
LINE LOC1 Locz MNUM  DEGR  YEAR COLL GPA
ED 00000B40 ik 895203 M5 1979 GRADUATE SCHCOL 3.7
LINE LOC1 Locz MNUM  DEGR YEAR CoOLL GP &
ED O00000BAOD 006000CGO 55555 MA 1944 WMT. VIEW COLLEGE 3.1
LINE LOCH Locz MNUM  DEGR  YEAR coLt GPA
ED 000011A0 00000C&0 55555 BBA 1941 BUSINMESS COLLEGE = 4
LINE LOC1 Locz MNUM DEGR YEAR coLL GPA
ED 00000960 OOO00AED 632566 AA 1968 PLUMBERS SCHGOL Z. 3
LINE LOC1 Locz2 MMUM DEGR YEA&R COLL GPA
ED 00000420 00000480 963285 BA 1975 JOURMALISM SCHOOL 2%

LINE LOCH Locz MNUM ~ DEGR YEAR COLL
ED OOO0DiEO 00000240 997335 BA 1971 DETECTIVE COLLEGE

-
[B R
T

RS

LINE LOCi Laca MNUM DEGR YEAR COLL GP A
ED 0OO00C0O7EO0 00001200 458775 MA 1976 SUPERVISOR COLLEGE 3.0
LINE LOC1 Locz MNUM DEGR YEAR CoLL GF&
ED 000CO600 000006&0 89745 BA 1966 SALES COLLEGE 36

Figure 4-18. DELETE Function Used with TRACE Clause

2276554-9701 ' 4-23



Clauses

4.8 BY CLAUSE

The BY clause controls the order in which the Query statement reads and gathers the file; conse-
quently, it also controls the output sequence order. The three possible orders are BY KEY BY LIST,
BY KEY, and BY LIST. The BY clause syntax is as follows:

BY KEY BY LIST
BY-clause :: = BY KEY
BY LIST

For most Query statements, the best order is BY KEY BY LIST. Use BY KEY when you have im-
posed a meaningful order on the lines in arecord. Use BY LIST to gain speed or efficiency or when
record boundaries should be ignored. BY KEY sequencing follows the order in the file and keeps
together all of the data for a single primary key. BY LIST sequencing refers to the order of the
report lines in the Query statement. Therefore, BY KEY orders output according to the order of the
data in the file; BY LIST orders data according to the order of the report lines in the Query state-
ment; and BY KEY BY LIST combines the two methods.

4.8.1 BY KEY BY LIST

Query reads a file one record at a time. All data requested from each record is listed together. The
report lines are cutput in the order in which you have listed them. The Query processor begins
with the first report line. Starting at the beginning of the line, the processor reads this line and
then every occurrence of the same line type, building a new report line. The processor outputs the
line if it meets any line-level test and then proceeds to the next report line, and so on, until all
report lines have been printed.

BY KEY BY LIST recognizes that lines have been grouped into records. However, it does not make
use of the order of the different line types within the record. BY KEY BY LIST is useful when the
lines in a record have no special order or when the report line order supersedes the file order.

Record-level conditions and record-level sorting are allowed when the output sequence is BY KEY
BY LIST. When you use BY KEY BY LIST, optimum data access occurs when a record-level con-
dition tests the primary key for equality to a specified value(s), provided the record-level condition
does not contain an OR clause with another type of condition. A line-level condition of this type
also optimizes access if you have only one report line.

4-24 2276554-9701



Clauses

You can build report lines from more than one line when the output sequence is BY KEY BY LIST.
Lines that have not been designated as UNIQUE within the record are associated with each other
on a one-to-one basis for each report line, as follows: If a report line references line types a, b, and
c, the first report line for a given record will be built from the first occurrence of line type a, the
first occurrence of line type b, and the first occurrence of line type c; the second output line for the
report line will be built from the second occurrences of all of its member lines, and so on, until one
of the member line types has no more occurrences.

If one of the line types used in a report line has no occurrence in a record, that report line will not
be listed for that record, even if the other components exist. The line-level condition associated
with a report line can also test fields from more than one line type. In fact, it can test fields from
line types not used in the report line. However, a one-to-one correspondence exists between the
report line and the line types (as described for output elements in the preceding paragraph).

4.8.2 BY KEY

All data requested from each record is listed together. When reading the lines in a record, the
Query processor looks for any line type listed in a report line. When it finds an appropriate line
type, the processor tests the report lines that use that line type to see if a line-level condition
exists; if the lines meet the condition, the processor outputs them.

Record-level conditions are legal when the sequence is BY KEY. The Query processor optimizes
the Query when a record-level condition tests the primary key for equality to a specified value(s),
provided the record condition does not contain an OR clause with another type of condition. A
line-level condition of this type also optimizes access if you have only one report line. BY KEY
allows record-level sorts.

Use BY KEY when you have added lines under a key in a meaningful order. The order of the lines
defines a structure within the record. For example, assume that you have created a customer file
that contains a line, CC, to include information about customer complaints (such as the date of
the complaint, the name of the person who handled the complaint, and the current disposition of
the complaint). The file also contains a complaint description (CD) line which contains text that
describes the nature of the complaint. Each CC line might require several CD lines. The CD lines
immediately follow the associated CC line. For example, CC, CD, CD, CD, CC, CD, CC, CD, CD
represents three complaints. The first requires three description lines, the second requires one
description line, and the third requires two description lines. Use BY KEY to list the CC and CD
lines in the order in which they appear in the record (that is, to avoid listing the CC lines together
and then the CD lines together).

Figure 4-19 shows a Query using BY KEY BY LIST with the desired results.

2276554-9701 4-25



Clauses

4-26

Query Statement:

LIST TAD 81
‘EMPLOYEE NAME: "/ MNAM;
! SALARY: ‘ MRAT;
‘DEGREE EARNED: ‘ DEGR SORTED BY DEGR;
FROM PAY1
SORTED BY MNAM
BY KEY BY LIST

Query Output:

EMPLOYEE NAME:
SALARY:
DEGREE EARNED:

EMPLOYEE NAME:
SALARY:

EMPLOYEE NAME:
SALARY:
DEGREE EARNED:

EMPLOYEE NAME:
SALARY:

EMPLOYEE NAME:

SALARY:
DEGREE EARNED:
DEGREE EARNED:

EMPLOYEE NAME:
SALARY:
DEGREE EARMNED:

EMPLOYEE NAME:
SALARY:
DEGREE EARNED:

EMPLOYEE NAME:

SALARY:
DEGREE EARNED:
DEGREE EARNED:

EMPLOYEE NaAME:
SALARY:
DEGREE EARNED:

ABLE, CHARLIE
1950. 00
BA

BROWN, WILLIE
215. 00

HAYNES, BILL
750. 00
MA

HOWELL, JOHN
37%. 00

MEREDITH, JOHN
?00. 00
AA

PARWKS, FRED
558. 00
BA

PASCHAL, JIMMY
2500. 00

BBA

MA

STEPHENS, JANET

385. 00
BA

Figure 4-19. BY KEY BY LIST Example

2276554-9701



Figure 4-20 shows a Query using BY KEY BY LIST with unwanted results.

Query Statement:

LIST ‘##x’ ' SALES ORDER NUMBER: ‘ SONM ‘3%’

HEADER SKIP 2
FOOTING SKIP;

ITEM NUMBER ——- ‘ ITEM:

: *  QUANTITY DESIRED ---' GQUAN;
FROM SOFL SORTED BY SONM BY KEY BY LIST

Query Output:

### SALES ORDER NUMBER: 50 #E %
ITEM NUMBER --- 555
ITEM NUMBER —--- 777
QUANTITY DESIRED --- 101
QUANTITY DESIRED ——- 5
##% SALES ORDER NUMBER: 795 G
ITEM NUMBER --- 333
ITEM NUMBER —-—— 555
ITEM NUMBER —--- 111
ITEM NUMBER --— 777
QUANTITY DESIRED —-- 1
QUANTITY DESIRED -——- 2
QUANTITY DESIRED ~—- 3
QUANTITY DESIRED —-—- 4
###% SALES ORDER NUMBER: 100 #H#
ITEM NUMBER --- 333
ITEM NUMBER —-- 555
QUANTITY DESIRED --—— 1
QUANTITY DESIRED -——- 2
##3# SALES ORDER NUMBER: 300 L2 3
ITEM NUMBER --- 777
QUANTITY DESIRED -—-- ]

Clauses

Figure 4-20. BY KEY BY LIST with Unwanted Results

2276554-9701 4-27



Clauses

NOTE

Figure 4-21 illustrates the correct results for the Query using BY
KEY.

If you specify the BY KEY sequence in a report line built from several nonunique line types, the
lines in a record are grouped together to build each line of output. Users control the number and
position of each line in a record when they insert lines. The Query processor reads through the
lines for a record, looking for line types used in report lines and building the report lines as it finds
the specified line types. When a report line is complete, it is written and reinitialized to empty. If a
report line contains information from line type XX and Query reads another XX line, the second set
of XX data is written over the first. If a record does not include all of the line types specified in a
report line, that report line will not be written for that record. A line-level condition can also test
fields from several line types or from a line type different from the line types in the report line. The
tested and reported fields are associated in the same way that different lines in a report line are
associated.

Query can only write data from one occurrence of each line type used in a report line or line-level
condition. For example, assume that you need to build a report line from AA, BB, and CC lines and
that the order of the lines under one key is as follows:

1-B8B1

4 mn
1 wo

O

AAND nmNr AAND oDn faladr] AAA nnNnn
AA T RARAL T VUV T ARV T DD T Uwae T A4 < DD

The following report lines result from the Query statement LIST AA BB CC; BY KEY:
AA2 BB1 CC1
AA3 BB2 CC2
AA4 BB3 CC3

The data from AA1 has been written over by AA2. To include AA1 in the report, you must specify
AA, BB, and CC as different report lines, as follows:

LIST AA; BB; CC;
The resulting report is as follows:
AA1
BB1
AA2
CC1

The report continues in this manner, in the same order as the lines exist in the record.

Figure 4-21 shows a Query using BY KEY with the desired results.

4-28 2276554-9701



Clauses

Query Statement:

LIST ’###’ ¢ SALES ORDER NUMBER: ‘ SONM ‘#%x%/
HEADER SKIP 2
FOOTING SKIP;
‘ ITEM NUMBER --— ‘' ITEM:
¢ QUANTITY DESIRED ---' QUAN;
FROM SOFL. SORTED BY SONM BY KEY

Query Output:

### SALES ORDER NUMBER: 50 *HH

ITEM NUMBER —-—- 5595
QUANTITY DESIRED -—— 101
ITEM NUMBER --- 777
QUANTITY DESIRED ——— 5

### SALES ORDER NUMBER: 75 waE

ITEM NUMBER --- 333
QUANTITY DESIRED -—- 1
ITEM NUMBER --- 555
QUANTITY DESIRED ——- 2
ITEM NUMBER -—— 111
QUANTITY DESIRED --—- 3
ITEM NUMBER -—— 777
QUANTITY DESIRED —-- 4

###% SALLES ORDER NUMBER: 100 £ 220

ITEM NUMBER --— 332
QUANTITY DESIRED ——- 1
ITEM NUMBER --- 595
GUANTITY DESIRED --- a2

##% SALES ORDER NUMBER: 300 $ 23

ITEM NUMBER —-~- 777
QUANTITY DESIRED —-- 5

Figure 4-21. BY KEY Example

2276554-9701 4-29



Clauses

4.8.3 BY LIST

BY LIST does not organize lines into records when building the report. Instead, it lists all of the
data for a single report line together. The first report line is listed first, then the second, and so on,
until all report lines are listed.

Report lines must be built from the same line type and/or the primary key. Record-level conditions
and record-level sorting are not allowed.

For arelatively full file, BY LIST executes faster than BY KEY or BY KEY BY LIST. However, if a file
is almost empty, BY LIST might be significantly slower than BY KEY and BY KEY BY LIST since it
causes Query to read numerous empty records. Using BY LIST optimizes access to the data for
line-level conditions that test the primary key or any secondary key for equality with a value(s), pro-
vided the line-level conditions do not contain an OR clause with a condition that does not involve a
key.

4.9 DEFINE CLAUSE

The DEFINE clause specifies calculations on fields and allows the use of the calculations as
report elements or operands in a condition.

4.9.1 Syntax
T

e - £ il
|

he syntax of the DEFINE cilause is as foiiows:

DEFINE-clause :: = DEFINE [variableitype = define-expression [_;_]] .

define-expression:: = [(_] subexpression [operator define-expression] [) ]

Variable names must follow the syntax rules for aliases. If a variable is used as an operand in a
DEFINE expression, its definition must precede its use as an operand. Each variable must have its
data type defined. The data types are those defined in the DDL specification of fields. Data types
have the following syntax:

type-code / digits . decimal-places

The following data types are legal for calculation: IS, ID, RS, RD, CN, CS, AN, AS, and PK. For an
explanation of these data types, see Appendix B.

4-30 ' 2276554-9701



Figure 4-22 shows a Query using BY LIST with the desired results.

Query Statement:

LIST MNUM MRAT SORTED BY MRAT: DESCENDING

HEADER

‘EMPLOYEES RANKED BY SALARY‘;

MNUM MCOM SORTED BY MCOM: DESCENDING

HEADER

‘EMPLOYEES RANKED BY COMMISSION’;

MNUM MSLS SORTED BY MSLS: DESCENDING

HEADER
FROM PAY1 BY LIST

Query Output:

EMPLOYEES RANKED
55555  2500. 00
997335  1950. 00
5632566 900. 00
458795 750. 00
89745 558. 00
963285 385. 00
50005 375. 00
895203 230. 00
441887 215. 00
EMPLOYEES RANKED
55555 . 300
89745 .200
441887 . 200
895202 . 100
632564 . 000
458795 . 000
597335 . 000
963285 , . 000
50005 . 000
EMPLOYEES RANKED
895203 5000
89745 200
441887 150.
997335
963285
632566
56005
458795
55555 -1000.

2276554-9701

‘EMPLOYEES RANKED BY SALES’;

BY SALARY

BY COMMISSION

BY SALES
000
000
000

. 000
. 000
. 000
. 000
. 000

000

Figure 4-22. BY LIST Example

Clauses

4-31



Clauses

Figure 4-23 shows a Query using the BY LIST with unwanted results.

4-32

Query Statement:

LIST ’‘EMPLOYEE NAME:

‘Y MNAM;

’ DEBREE EARNED: ‘ DEGR:
! COLLEGE ATTENDED: ‘ COLL;

FROM PAYi1 BY LIST

Query Output:

EMPLOYEE NAME: PARKS, FRED
EMPLOYEE NAME: HAYNES, BILL

EMPLOYEE NAME: ABLE,

CHARL.IE

EMPLOYEE NAME: STEPHENS, JANET
EMPLOYEE NAME: BROWN, WILLIE

EMPLOYEE NAME:
EMPLOYEE NAME: LI,

HOWELL, JOHN
KIM

EMPLOYEE NAME: MEREDITH, JOHN
EMPLOYEE NAME: PABCHAL, JIMMY

DEGREE EARNED:
DEGREE EARNED:
DEGREE EARNED:
DEGREE EARNED:
DEGREE EARNED:
DEGREE EARNED:
DEGREE EARNED:
DEGREE EARNED:
DEGREE EARNED:

COLLEGE ATTENDED:
COLLEGE ATTENDED:
COLLEGE ATTENDED:
COLLEGE ATTENDED:
COLLEGE ATTENDED:
COLLEGE ATTENDED:
COLLEGE ATTENDED:
COLLEGE ATTENDED:
COLLEGE ATTENDED:

Figure 4-23. BY LIST with Unwanted Results

BA

BA

BA

MA

AA

M8

MA

BS

BBA

DETECTIVE COLLEGE
JOURNALISM SCHOOL
SALES COLLEGE
SUPERVISOR COLLEGE
PLUMBERS SCHOOL
GRADUATE SCHOOL
MT. VIEW COLLEGE
PROGRAMMING SCHOOL
BUSINESS COLLEGE

2276554-9701.



Clauses

Figure 4-24 shows a Query using the DEFINE clause with different data types.

Query Statement:

DEFINE RAISE : CN/7.2 = .20 % MRAT;
NEW-SALARY : AN/7.2 = MRAT + RAISE;:
LIST MNAM: 14 TAB 20 MRAT TAB 34 RAISE TAB 50 NEW-SALARY;
FROM FAYL
BY WKEY BY LIST
WHERE ANY MPYP = 30
NO HEADER HEADER
! YEARLY RAISE REPORT FOR MONTHLY PAID EMPLOYEES’ SKIP 2
‘EMPLOYEE NAME OLD SALARY AMDUNT OF RAISE NEW SALARY

Query Output:

YEARLY RAISE REPORT FOR MONTHLY PAID EMPLOYEES

EMPLOYEE NAME OLD SALARY AMODUNT OF RAISE NEW SALARY
PASCHAL, JIMMY 2500. 00 500. 00 3000. 00
yMEREDITH, JOHN 900. 00 180. 00 1080. 00
ABLE. CHARLIE 1950. 00 390. 00 2340. 00

Figure 4-24. DEFINE Clause Example

4.9.2 Where Variables Can Be Used

Variables specified in the DEFINE clause can be used in the LIST function anywhere that field IDs
can be used. The variables can be output, sorted, or tested. In modification functions, they can be
used as test variables or on the right side of an equal sign in the CONTENTS clause.

4.9.3 DEFINE Expression
A DEFINE expression uses the operators +, —, *, and /. Totals, counts, record totals, and record
counts are also allowed. You can use parentheses to change the order of evaluation, Expressions
are evaluated according to the following rules, in the order shown:

1. Innermost parentheses are evaluated first.

2. TOTAL, COUNT, RECORD TOTAL, and RECORD COUNT are performed left to right.

3. Multiply and divide (* and /) are performed left to right.

4, Addition and subtraction (+ and —) are performed left to right.

2276554-9701 4-33



Clauses

The syntax for a DEFINE expression is as follows:
define expression ::= [ (] subexpression [operator define-expression] [) ]
A subexpression is defined as follows:

[RECORD] TOTAL field-type
[RECORD] COUNT field-type
subexpression :: = [_] field-type 1

variable
change-data

Notice that the right side of the definition of a DEFINE expression is itself a DEFINE expression.
Accordingly, DEFINE expressions can be built up to be as complex as is necessary.

Figure 4-25 shows a Query using the DEFINE expression with COUNT.

Query Statement:

DEFINE ADJUSTED-SALARY & CN/7.2 = 30 / MPYP # MRATS
OVER-1000 ¢ CTN/2.0 = COUNT MNAMS
LIST TAER % MNAM TAER 42 ADJUSTED-SALARY:
TAB 141 “NUMBER OF EMFLOYEES THAT MAKE OVER $1000.00 A MONTH:
OVER-10003
FROM FPAY1 BY KEY BY LIST WHERE ANY ADJUSTED-SALARY GT 1000
N HEADER HEADER
- EMPLOYEES IN THE 1000 CLUBY SKIF 2
4 EMPLOYEE NAME MONTHLY SALARYS

Query Output:
EMPLOYEES IN THE 1000 CLUR

EMPLOYEE NAME MONTHLY SALARY
FASCHAL ., JIMMY 2500.00
HOWELL . JOHN 1875.00
BROWN, WILLIE 1290.00
STEFHENS, JANET 14647.80
ABLE, CHARLIE 1950, 00
HAYNES, EBILL 1500, 00
FARKS, FRED 2388.2

NUMBER OF EMFLOYEES THAT MAKE OVER $1000.00 A MONTH: 7

Figure 4-25. DEFINE Expression Example Using COUNT

4-34 2276554-9701



Clauses

Figure 4-26 shows a Query using the DEFINE expression with TOTAL.

Query Statement:

DEFINE ADJUSTED-SALARY @ CN/7.2 = 30 / MFPYF ¥ MRATS
MONTHLY-SALARY-EXPENSE @ CN/8.2 = TOTAL ADJUSTED-SALARYS
LLIST TAR 7 MNAM TAR S5 ADJUSTED-SALARY:
TAR S5 7 ———————— ’
TAR &7 -“TOTAL SALARY EXPENSE FOR THIS MONTH: <
TAE 134 MONTHLY-SALARY-EXPENSES
FROM FAY1 RBRY KEY BY LIST
N HEADER HEADER
- MONTHLY SALARY REPORT® SKIF
” PREFARED ON A SYSDATE® SKIP 2
- EMPLOYEE NAME SALARY

-~ .

Query Output:
MONTHLY SALARY REFORT

FREPARED ON MM/DD/YY

EMPLOYEE NAME SALARY
LI, KIM 460,00
FASCHAL, JIMMY 2500, 00
MEREDITH. JOHN 200, 00
HOWELL, JOHN 1375.00
BROWN, WILLIE 1290.00
STEPHENS, JANET 1647 ,30
ABLE, CHARLIE 1950.00
HAYNES, BILL 1500, 00
PARKS., FRED 2388, 24
TOTAL SALARY EXFENSE FOR THIS MONTH: 14511.04

Figure 4-26. DEFINE Expression Example Using TOTAL

2276554-9701 4-35



Clauses

4.9.4 Mixed Mode Arithmetic

You can mix COBOL data types (CS, CN, AS, AN, IS, and PK) in the same expression. You can also
mix FORTRAN or Pascal data types (IS, ID, RS, and RD). However, you cannot mix COBOL types
with FORTRAN/Pascal types. For example, an expression cannot mix operands RD and CN.

Before the calculation is performed, constants in the DEFINE expression are converted to the
same type as the result.

4.9.5 Totals and Counts
Totals and counts are legal only for the LIST function. The two types of totaling and counting are
as follows:

e  When you specify the word TOTAL or COUNT for a field or expression, a total or count of
the field or expression is accumulated over the entire file.

] When you precede TOTAL or COUNT by the word RECORD, the total or count is per-
formed on a record basis only and the value is reinitialized to zero when a new record is
being read.

Figure 4-27 shows a Query using the DEFINE clause with RECORD COUNT.

Query Statement:

DEFINE NUMBER-DEGREES : CN/1.0 = RECORD COUNT DEGRS
LIST “DEGREE INFORMATION ON: < MNAM;

TAR 2 DEGR TABR 12 CoOLL

HEADER SKIP “DEGREE COLLEGE

-~
o s dams otaan vomn oo B

TAE 21 “TOTAL NUMBER 0OF DDEGREES EARNED: ° NUMBER-DEGREESS
FROM PAY1 WHERE ANY MNAM = “LI, KIM“
NO HEADER BY KEY BY LIST

Query Output:
DEGREE INFORMATION ON: LI, KIM

DEGREE COLLEGE
EBS FPROGRAMMING SCHOOL
M= GRADUATE SCHOOL

TOTAL NUMBER OF DDEGREES EARNED: 2

Figure 4-27. DEFINE Clause with RECORD COUNT

4-36 2276554-9701



Clauses

Figure 4-28 shows a Query using the DEFINE clause with RECORD TOTAL.

Query Statement:

DEFINE TOTAL-FOR-ITEM : CN/B.2 = QUAN # UPRC;
INVOICE-TOTAL : CN/9.2 = RECORD TOTAL TOTAL-FOR-ITEM;
LIST "SALES ORDER NUMBER: ‘ SONM
HEADER /3433 3 33836 3 3630 3 3030303604 3030 3030 3036 303030 30 3090 3030 30 30 30 30 3030 300 30 30 30 30030 3 30 M 303 30000030
TAB 5 ITEM TAB 17 GQUAN TAB 28 UPRC TAB 38 TOTAL-FOR-ITEM
HEADER SKIP ‘ITEM NUMBER QUANTITY UNIT PRICE TOTAL PRICE’
I z

’
TAB 81 ‘TOTAL AMOUNT OF INVOICE: ‘ INVOICE-TOTAL
FOOTING /3033836303 33053 3 330 3 30 30 3 3 30 304036 30303 30300 S 40300 336 3 3030 30 3 HE 0 B3 2 S M RS 7
FROM SOFL ITEM
LINKED BY ITEM = ITMN
BY KEY BY LIST

0

Query Output:

34 33 48 3030 3036 363 33 SR I SR S I I I I I I R I
SALES ORDER NUMBER: 300

ITEM NUMBER QUANTITY UNIT PRICE TOTAL PRICE

777 5 500

n

50

TOTAL AMOUNT OF INVOICE: 2. 50

L A L e o e a2t s e
B R T 2t
SALES DORDER NUMBER: 100

ITEM NUMBER QUANTITY UNIT PRICE TOTAL PRICE

333 1 100. 000 100. 00
555 2 15. 000 30. 00
TOTAL AMOUNT OF INVOICE: 130. 00

S A 30 303 I 630 303 I A0 S0 S 3 I 2 BRI RS S S S S 3
TS S S 3 3 3 30 30 36 36 30 30 36 3 30 36 3030 3 30 36 46 4R 3630 30 36 36 34 30 30 30 3 030 33 3G 0
SALEE ORDER NUMBER: 795

ITEM NUMBER QUANTITY UNIT PRICE TOTAL PRICE

333 i 100. 000 100. 00

555 2 15. 000 30. 00

1il 3 1. 500 4. 50

777 4 . 500 2. 00
TOTAL AMDUNT OF INVOICE: 136. 50

R R s 2 L B s R S 2 e R S R s e
S et 5 A A3 BRI SR 0 I3 3030 3 3 363 30 3R AR A I R
SALES ORDER NUMBER: SO

ITEM NUMBER QUANTITY UNIT PRICE TOTAL PRICE

553 101 15. 000 1515. 00
777 5 . 900 2. 50
TOTAL. AMOUNT OF INVOICE: 1517. 50

FoF R 3 5 30 3 3 M A 03 I S I I M R I I RN R R HR R

Figure 4-28. DEFINE Clause with RECORD TOTAL

2276554-9701 4-37



Clauses

If a report line is composed only of literals and DEFINE variables that result from TOTAL or
COUNT and/or calculations performed with TOTAL, COUNT, and constants, that report line is
printed only once at the end of the report. If the fields of a report line include any RECORD TOTAL
or RECORD COUNT operations but no fields or results of calculations performed directly on a
field, the report line is printed at the end of processing for each record.

If a field or a calculation performed on a field is included in a report line, that report line is printed
every time a qualified occurrence of the field would normally be printed; this holds true whether or
not the report line includes TOTAL, COUNT, RECORD TOTAL, and RECORD COUNT fields. A
value for the current result of expressions on TOTAL, COUNT, RECORD TOTAL, and RECORD
COUNT is printed for the current report line. BREAK TOTAL or BREAK COUNT keeps calculating
the total on count total until the break field(s) for a report line changes. The value is then printed
and the total or count is cleared. In this manner, running totals, counts, subtotals, and subcounts
can be printed. Running counts can be used to produce line numbers within a record or for the en-
tire report. Also, you can determine an average for a field or DEFINE variable by specifying the
calculation TOTAL fieldx/COUNT fieldx.

4.10 BREAK CLAUSE

The BREAK clause allows control break processing on totals, counts, and duplicate values. This
type of processing uses data that is ordered on certain fields and needs to detect when the values
of these fields change. Changing heading lines, starting a new page, and printing or clearing new
totals or counts are examples of such field changes. BREAK is allowed only with the LIST func-
tion. BREAK can be used with multiple files.

There are two places in a Query statement that BREAK is specified to produce reports using con-
trol breaks. A BREAK clause is included in break-controlled report lines to designate the fields
whose values will be tested to detect the break condition. The syntax of the BREAK clause is as
follows:

ON . .
BREAK-cl = BREAK | =—— field-t field-t
clause [BEFORE } ie ype [fie ype]

Control break reports typically should include a record-level SORT clause that sorts the report on
all BREAK fields. If this is not the case, the fields should already be in the required sorted order.

4-38 2276554-9701



Clauses

Control break reports include three types of lines: heading lines, detail lines, and summary lines.
Heading lines contain data, headings, paging, and spacing that should be printed only when a par-
ticular field changes data. Use the BREAK ON clause to indicate these fields. This will cause them
to be printed out only when the BREAK field(s) value changes. Detail lines have no associated
BREAK clause and are printed as normal report lines. Summary lines include BREAK TOTAL and
BREAK COUNT define variables and should be indicated by specifying a BREAK clause BREAK
BEFORE. This will cause report lines to be printed with the value that was current immediately
before the BREAK condition is detected and then cleared.

Figure 4-29 shows a Query using the BREAK clause with BEFORE, ON, and TOTAL.

Query Statement:

DEFINE TOTAL-STATE-SALARY: CN/7.2 = BREAK TOTAL MRAT;

LIST

FROM

TAB 34 ‘-—————m ’

TAB 81 ‘TOTAL SALARY EXPENSE FOR STATE:

BREAK BEFORE MSTT:
‘STATE = ‘' MSTT HEADER SKIP

EREAK ON MSTT;
MNAM TAB 33 MRAT;
PAYL

SORTED BY MSTT
BY KEY BY LIST

Query Output:

STATE

= MO

EMPLOYEE NAME

PASCHAL, JIMMY

ABLE.

CHARLIE

LI, KIM

TOTAL

STATE

SALARY EXPENSE FOR STATE:

= NY

EMPLOYEE NAME

BROWN, WILLIE
PARKS. FRED

TOTAL

STATE

Sal.ARY EXPENSE FOR STATE:

= TX

EMPLOYEE NAME

STEPHENS, JANET
HAYNES, BILL

MERED

{TH, JOHN

HOWELL, JOHN

TOTAL

2276554-9701

SaLARY EXPENSE FDR STaTE:

Figure 4-29. BREAK Clause Example Using BEFORE, ON, and TOTAL

SALARY

2500. 00
1950. 00
230. 00

4680. 00

SALARY

‘ TOTAL-STATE-SALARY

SALARY

I3
’

4-39



Clauses

The BREAK clause is used with TOTAL and COUNT operators in the DEFINE clause.

Specifying BREAK TOTAL or BREAK COUNT in a DEFINE variable definition causes that DEFINE
variable to be printed and cleared when a break condition is detected in the report line in which it
is included.

Figure 4-30 shows a Query using the BREAK clause with TOTAL, COUNT, BEFORE, and ON.

4-40

Query Statement:

DEFINE TOTAL-FOR-ITEM : CN/9.2 = QUAN * UPRC;

INVDICE-TOTAL : CN/9.2 = RECORD TOTAL TOTAL-FOR-ITEM;
TOTAL-DUE : CN/9.2 = BREAK TOTAL TOTAL-FOR-ITEM;
LIST TAB i4 ‘TOTAL DUE --->’ TOTAL-DUE BREAK BEFORE BILL
HE4DER *©  meee——— 3
‘CUSTOMER: ‘ NAME BREAK ON BILL
HEADER SKIP 2 /#3388 80008030 30330 03 3 33 3 0 0 B H HH R H R H 2%
FOOTING SKIP;

! INVOICE NUMBER - / SONM:

TAB 28 INVOICE-TOTAL ’ (INVOICE TOTAL)

FROM SOFL ITEM CUST

LINKED BY ITEM = ITMN BILL = CUSN

UNTQUE BL

SORTED BY BILL

Query Output:

Y L s
CUSTOMER: ED JONES

INVOICE NUMBER - 100

130. 00 (INVOICE TOTAL)
INVOICE NUMBER - 50

1517. 50 (INVOICE TOTAL)

TOTAL DUE ---2 1647. 50

e L L S T oy e
CUSTOMER: PAT 8BMITH

INVOICE NUMBER - 795
136. 50 (INVOICE TOTAL)

TOTAL DUE ~——3 136. 50

Ry L e e e e
CUSTOMER: HARRY ABLE

INVOICE NUMBER - 300
2. 50 (INVOICE TOTAL)

TOTAL DUE ——-Z 2. 50

Figure 4-30. BREAK Clause Example

2276554-9701



Clauses

4.11 UNIQUE CLAUSE
‘The UNIQUE clause tells the Query processor that there is only one occurrence of the specified
line type per record. This allows that line type to act like an 01 line. Fields in a UNIQUE line type
can act as primary keys when used in report lines and secondary keys within that line can be
optimized. The syntax for the UNIQUE clause is as follows:

UNIQUE-clause :: = UNIQUE line-type [line-type]. ..

Figure 4-31 shows a Query using LIST showing the results without the UNIQUE clause.

Query Statement:

iTEMS PURCHASED THIS MONTH

CUSTUOMER NUMBER ITEM NUMBER QUANTITY

5 777 5
10 333 i
3 333 i
10 555 101

Query Output:

LIST TAB 8 BILL TAB 23 ITEM TAB 35 QUAN

FROM SOFL

BY KEY BY LIST

MO HEADER HEADER / ITEMS PURCHASED THIS MONTH’ SKIP
‘CUSTOMER NUMBER ITEM NUMBER QUANTITY’
s

7

Figure 4-31. Record-Level Without UNIQUE Example

Figure 4-32 shows the same Query using the UNIQUE clause. Notice that the restriction is removed
that requires an occurrence of each line type in a report line before that report line can be output.
The value of the field BILL (line type BL) is repeated in a new output line with each additional
occurrence of the fields ITEM and QUAN (line type 03) within a record.

2276554-9701 4-41



Clauses

Query Statement:

ITEMS PURCHASED THIS MONTH

CUSTIOMER NUMBER ITEM NUMBER QUANTITY

5 777 5
10 333 1
10 555 2
3 333 1
3 555 2
3 111 3
3 777 4
10 555 101
i0 777 5

Query Output:

LIST TAB B8 BILL TAB 23 ITEM TAB 35 QUAN

FROM SOFL

UNIGQUE BL

BY KEY BY LIST

NGO HEADER HEADER '’ ITEMS PURCHASED THIS MONTH’ SKIP
‘CUSTDMER NUMBER ITEM NUMBER QUANTITY'

.

Figure 4-32. UNIQUE Clause

Figure 4-33 shows Query using the UNIQUE clause and a record-level condition that tests a
secondary key. Query-990 will optimize access to the file by using BILL, a secondary key.

Query Statement:

LIST TAE 8 BILL TAB 23 ITEM TAB 35 QUAN

FROM SOFL

UNIQUE BL

WHERE ANY BILL = 5

BY KEY BY LIST

NGO HEADER HEADER ITEME PURCHASED THIS MONTH’ SKIP
‘CUSTOMER NUMBER ITEM NUMBER QUANTITY

Query Output:

ITEMS PURCHASED THIS MONTH

CUSTOMER NUMBER ITEM NUMBER QUANTITY

5 777 5

Figure 4-33. UNIQUE Example

The UNIQUE clause should follow the FROM clause.

4-42 ' 2276554-9701



Clauses

4.12 LINKED BY CLAUSE

The LINKED BY clause is used when the Query processor must access fields from two or more
files. When two fields from different files are linked, a logical hierarchy is formed with the first file
specified in the FROM clause being the top-level file. The field linked to in the lower-level file must
be a primary or secondary key. Multifile queries cannot be sequenced BY LIST.

4.12.1 Syntax
The LINKED BY clause has the following syntax:

field-type
concat-field

field-type
= key-t .
[i lconcat—fie|d} = ey ype]

Each specification of field ID = key ID specifies an access path between the file that contains the
field ID and the file that contains the key ID. These must be two different files. When more than
one field in the file is required for the key value in the linked-to file, the caret (A) is used to specify
concatenation of the linking fields. For example, if a primary key EKEY from a file PAYR is com-
posed of the fields SSN and NAME in the EMP file, the linkage is specified by “LINKED BY
SSNANAME = EKEY”.

LINKED-BY-clause :: = LINKED BY ] = key-type

Figure 4-34 shows a Query using the LINKED BY clause.

Query Statement:

LIST SONM ITEM ITMN DESC

FROM SOFL ITEM LINKED BY ITEM = ITMN
NO HEADER

SORTED BY SONM BY KEY BY LIST

Query Output:

50 555 555 GREEN JEANS
50 777 777 RED HERRING
75 333 333 GOLDEN RING
75 85 5T GREEN JEANS
75 114 1114 PURPLE WIDGET
75 777 777 RED HERRING
100 333 333 GOLDEN RING
100 555 955 GREEN JEANS
300 777 777 RED HERRING

Figure 4-34. LINKED BY Example

2276554-9701 4-43



Clauses

Figure 4-35 shows a Query using the LINKED BY clause.

Query Statement:

LIST “SALES ORDER NUMBER: < SONM TAB 31
HEADER 7 35 365 36 36 3636 3036 36 3636 3536 30 36 36 3696 3036 3 396 303694 3636 38 36 36 3036 3036 30 36 3 35 36 30 303 30 40303634 7 3
ITEM TAB 15 QUAN TAB 30 DESC
HEADER “ITEM QUANTITY DESCRIPTION”

”

FOOTING 7 336363636 36 36 38 38 36 30 36 36 36 36 36 36 36 36 36 36 36 3 36 36 3 36 36 3 35 3630 36 36 30 3 36 36 36 3 36 36 3 3 3436 H 363434 7 3

FROM SOFL ITEM LINKED BY ITEM = ITMN
WHERE ANY ITEM = 111 BY KEY BY LIST

Query Output:

336330303363 30 36 30 30 30 36 3 46 3030 3036 3030 30 3030 330 300 30 30 303 I 0303 3430 AN
SALES ORDER NUMBER: 73

ITEM QUANTITY DESCRIPTION
333 1 GOLDEN RING
555 2 GREEN JEANS
111 3 PURPLE WIDGET
777 4 RED HERRING

363636 3 36 34 36 36 36 36 36 36 36 36 36 38 34 3 35 3636 34 36 36 36 3 36 036 3 303 30 IE 3 363 30 3 34 3630 3 30 330 303 33

Figure 4-35. LINKED BY Clause

4.12.2 LINKED BY File Hierarchy
Multifile relationships have the following characteristics:

e  Asingle top-level file is required. This is the first file specified in the FROM clause.

. The LINKED BY clause must define an access path from the top-level file to all other
files. However, the access path need not follow directly from the top-level file to the
lower-level files; the path can be indirect (through another lower-level file).

. Access paths must link a higher-level file to a lower-level file. This is achieved by linking
a field or key in the higher-level file to a primary or secondary key in the lower-level file.
An example of a Query statement using a secondary key (ITEM) in a lower-level file is as
follows:

LIST SONM ITEM DESC
FROM ITEM SOFL LINKED BY ITMN = ITEM

4-44 2276554-9701



Clauses

Access through the primary key of the lower-level file associates a lower-level file record with
each occurrence of the top-leve! file. An example of a Query statement using the primary key
(ITMN) of the lower-level file is as follows:

LIST SONM ITEM DESC
FROM SOFL ITEM LINKED BY ITEM = ITMN

Access through a secondary key in the lower-level file associates all lines having that secondary
key value with each occurrence of the top-level file.

When more than one access path has been defined for a lower-level file, a THRU clause must be
used in each report line that uses fields from the lower-level file to indicate which access path to
use. The syntax for the THRU clause is as follows:

THRU-clause ::= THRU file-type

Figure 4-36 shows a Query using the LINKED BY with three fields and the THRU clause.

Query Statement:

LIST “SALES DRDER NUMBER: - S0ONM
FOOTING < 73
“SHIP TO: - NAME THRU SHIPS
TAB 10 STRT THRU SHIPS
TAB 10 CITY:® 7, STAT ZIPC THRW SHIPS
TAR 4 ITEM TAR 13 QUAN TAR 21 DESC:12 UPRC
HEADER SKIP

-«

 ITEM NQ.  QUAN. DESCRIPTION  UNIT COSTS

FOQTING

o e e e e e e e e - — T SKIP S
FROM SOFL CUST ITEM LINKED BY BILL = CUSN SHIP = CIUSN ITEM = ITMN
Nt HEADER
Query Output:

SALES ORDER NUMBER: 3200

SHIFP TO: HARRY ABLE
122 MAIN
AUSTIN ,TX 78701

ITEM N, BUJAN. DESCRIPTION UNIT C0sT
777 ] RED HERRING - 00

Figure 4-36. LINKED BY Example Using the THRU Clause (Sheet 1 of 2)

2276554-9701 4-45



Clauses

SALES ORDER NUMBER: 100

SHIP TD: ED JONES
4242 12TH

CHICAGO , IL 33333
ITEM N1, RAUAN. DESCRIPTION UNIT COsT
233 1 GOLDEN RING 100, 000
S55 2 GREEN JEANS 15,000
SALES ORDER NUMBER: 75
SHIP TO: PAT SMITH
292 WEST
MIAMI »FL 12345
ITEM NO. BUAN. DESCRIPTION LNIT COST
233 1 GOLDEN RING 100,000
555 2 GREEN JEANS 15,000
111 2 PURPLE WIDGE 1.500
777 4 RED HERRING . 200
SALES DORDER NUMBRER: S0
SHIFP TO: ED JONES
4242 12TH
CHICAGD , I 33333
ITEM NO. GUAN. DESCRIPTION UNIT COST
o855 101 GREEN JEANS 15,000
777 a RED HERRING « S00

Figure 4-36. LINKED BY Example Using the THRU Clause (Sheet 2 of 2)

4-46

2276554-9701



Clauses

4.12.3 THRU Clause
The THRU clause is used in a report line to specify an access path between two different link
fields to one file. The THRU clause indicates which link field accesses the key. Only one THRU
clause should be used per report line. If no THRU clause is used, the access path defaults to the
first linkage defined.

4.12.4 IN Clause
When more than one file specified in the LINKED BY clause has fields with a common field name,
the IN clause designates which field name is used with the file ID.

4.13 CHANGE DATA CONSTANTS

Change data constants allow you to supply constant values while the Query statement is exe-
cuting for use in CONTENTS clauses, WHERE conditions, DEFINE clauses, and report-line
literals. You can use change data constants in both stand-alone Query and in the application pro-
gram interface. You can also use change data constants to chain Query executions together by
using the output of one Query statement to drive another Query statement as change data input.

4.13.1 Change Data Constants and Stand-Alone Query

When used in stand-alone Query, the constant values must be stored in a file. Answer NO to the
DEFAULT REPORT PARAMETERS prompt in the Query command; then, enter the change data file
pathname in response to the CHANGE DATA PATHNAME prompt of the REPORT PARAMETERS
screen.

The Query statement reads a single record from the change data file and picks up all change data
constant values from that record. The constant values are incorporated into the executing Query
statement. Then, the statement completes execution, writing all report lines or performing all
modifications indicated. The processor is then reinitialized except for totals, counts, and the main
heading. Another record is then read from the change data file, the new constants are incorpor-
ated into the statement, and the execution is repeated. The process continues until the entire
change data file has been read. Then, the totals, counts, and main footings are written.

4.13.2 Change Data Constants and Application Programs

When using the application program interface, initialize the Query statement by calling either the
QINIT or QCOMP subroutine. Use the QSEND subroutine to pass a buffer containing the change
data constants for the entire Query statement. You can then execute the Query by using either
subroutine QEXEC or QRECV. When you use the application program interface, totals, counts,
averages, main headings, and footings are returned or listed every time you call QSEND.

4.13.3 Change Data Constant Format
The format for a change data constant is as follows:

change data::=? | : [-t-;-i] [Iength-change][g_change—offsetl]

2276554-9701 4-47



Clauses

The U and F specify whether the value is unformatted or formatted. If you specify U (unformatted),
no conversion on the change data value occurs before it is incorporated into the Query statement.
If you specify F (formatted), numeric literals are converted to the proper format for the context in
which they are used. If you specify neither U nor F, the parameter defaults to F.

Length is an integer specifying the field length of the change data constant in the records of either
the change data file or the QSEND buffer. Offset is an integer specifying the character position in
the record where the change data constant field begins. You must specify length for constants
used as report line literals. In a CONTENTS clause, length defaults to the length of the field to
which the change data is being assigned. In a WHERE clause, length defaults to the length of the
field to which the change data is being compared. In a DEFINE clause, length defaults to the
length of the DEFINE variable. If the constant is unformatted, the length specified in either the
DDL declaration for the file or the DEFINE variable definition is used. If no offset is specified, it
defaults to the next character position after the end of the previous change data field.

The following condition reads 15 characters, starting in the 30th character position in the change
data file record, and converts them to the proper format for the field MNAM:

“WHERE MNAM = ?:F,15(30)”

The following examples illustrate how change data constants make it easier to write Query
statements when large numbers of constant values are needed.

Figure 4-37 shows how the test file CUST is loaded with data using the INSERT function without
using change data constants:

Query Statement:

DXQUERY 1.3.0 81 273 QUERY-290 0z/16/782 08:19: 01 PAGE 1
INGERT 01 CONTENTS CUBN= ‘37, NaME='PAT SMITH’, STRT='99%9 WEST’,
CITY="MIAMI", STAT=FL‘, ZIPC=712345’'. CRED='EXCELLENT;
01 CONTENTS CUSN= ’35‘, NAME='HARRY ABLE’. STRT='123 MAIN’,
CITY="AUBTIN', STAT='TX’, ZIPC='78701‘, CRED=/GDOD’;
01 CONTENTS CUSBN= ‘10°, NAME='ED JONES’, B8TRT=‘4242 12TH’,
CITY='CHICAGD ", STAT='IL", ZIPC='33333°, CRED=‘PUOR‘;
01 CONTENTE CUSBN= ‘157, NAME=‘MARY BROWN‘. STRT='23 PECAN’,
CITY=‘0AKLAND’, STAT=‘CA‘., ZIPC='29157‘, CRED='G00D‘;
01 CONTENTS CUSN= ‘22’, NAME='BOB CARTER’, STRT=-187 MONEY‘,
CITY="LAS VEGAS’, SBTAT='NE’, ZIPC='93487’, CRED=‘EXCELLENT;
FROM CUST

Figure 4-37. Query with INSERT Without Change Data Constants (Sheet 1 of 2)

4-48 2276554-9701



Query Output:

DXQUERY
LINE LOC1
CITyY

01
MIAMI

00000000

LINE LOC1
CITY

01 00000066
AUSTIN

LINE LOC1
CITY

01 000000CC
CHICAGOD

LINE LOC1
CITY

1 00000132
OAKLAND

LINE LOC1
CITY

1 00000198
LaS VEGAS

Figure 4-37.

1.3.0 81.275

Lacz2

33343

Locz

Rt

Locz

R HH

Locz

I H

Loca

43

QUERY-290 02/16/82
CUSN NAME
STAT ZIPC CRED
3 PAT SMITH
FL 12345 EXCELLENT
CUSBN NAME
STAT ZIPC CRED
5 HARRY ABLE
TX 78701 GOOD
CUSN NAME
STAT ZIPC CRED
10 ED JONES
IL 33333 POOR
CUSN NAME
STAT ZIPC CRED
15 MARY BROWN
CA 29157 GOOD
CUSN NAME
STAT ZIPC CRED
22 BOB CARTER
NE 23487 EXCELLENT

Clauses

08: 19: 01 PAGE e
STRT

P99 WEST

STRT

123 MAIN

STRT

4242 12TH

STRT

23 PECAN

STRT

187 MONEY

Query with INSERT Without Change Data Constants (Sheet 2 of 2)

Figure 4-38 shows the change data constants loading file for the test file CUST.

3 PAT SMITH
3 HARRY ABLE
10 ED JONES

15 MARY BROWN
Z2 BOB CARTER

999 WEST MAIMI FL 12345 EXCELLENT
123 MAIN AUSTIN TX 78701 GOOD
4242 12TH CHICAGO IL 33333 POOR
23 PECAN OAKLAND CA 29157 GOOD
187 MONEY LAS VEGAS NE 93487 EXCELLENT

Figure 4-38. Change Data File Contents for INSERT Example

2276554-9701

4-49



Clauses

Figure 4-39 shows a Query using both the INSERT function and the change data constants. This
Query has the same results as the Query in Figure 4-37 and could be used to insert more than 5

lines with a single execution.

~ Query Statement:

DXRLERY L,2.0 21,275 HUERY—-2%0

INSERT Ol CONTENTS CLUSN = 2iF,2(1). MNAME = 7
CITY = TiF,2(28), STAT = 7
CREDN = TiF,%(50)3

FROM CUST
Query Output:

OXRLERY - 1.2.0 21.275 PUERY-920 Q2/14/82 02333157 PAGE b
LINE LOC1 Locz CUISN NAME STRT
CITY STAT ZIFC CRED

01 00000000 RN e PAT SMITH P9 WEST
MAIMI FL 12245 EXCELLENT
LINE LOC1 LaCcz cus NAME STRT
CITY ETAT ZIPC CRED

Ol QO0000&A H3H3H = HARRY ARLE 1232 MAIN
ALIETIN TX 72701 Goon
LINE (0o LoC2 CLEN NAME STRT
DITY STAT ZIFC CRED

01 000000CC 3 10 El JONES 4242 12TH
CHICAGD L JEEIT OPOOR

LINE LOC1 LoCz CUSN: NAME ZTRT
ZITY STAT  ZIPC CRED

01 00000132 I 15 MARY BROWN 23 PECAN
CIAELAND A 2157 GOOn

LINE Lacl Locz CLISN NAME STRT

ZITY STAT ZIPC CRED

01 00000193 384 22 BOB CARTER 27 MONEY
LAS VEGAS NE 22487 EXCELLENT

Figure 4-39.

4-50

Change Data Constants and INSERT Function

2276554-9701



5

Optimization

5.1 INTRODUCTION

This section discusses optimization of Query-990 using key and clause combinations.

5.2 OPTIMIZATION

Optimization of Query-990 consists of using conditions with key combinations in such a way that
the Query processor need not read all the keys in the file. The Query processor reads only the keys
that meet the condition specified in the WHERE clause, creating a condition of optimum data
access.

5.2.1 Record-Level Conditions
Record-level conditions have the following combinations:

RANDOM PRIMARY KEY IN DATA BASE FILES
Use BY KEY BY LIST or BY KEY for optimization. The record-level condition must test only
the primary key for equality to a specific value. Therefore, the only relational operator allowed
is EQ or =. You can use an OR connector as long as the remaining record conditions test
only the primary key for equality to a specific value.

LIST MNAM MRAT FROM PAY1 BY KEY
WHERE MNUM = 55555

SEQUENTIAL PRIMARY KEY IN DATA BASE OR KIFs
Use BY KEY BY LIST or BY KEY for optimization. The record-level condition can test the
primary key using all relational operators except NE or < >. You can use an OR or an AND
connection as long as the remaining record conditions test only the primary key against a
specific value.

LIST MNAM MRAT FROM PAY1 BY KEY BY LIST
WHERE MNUM GT 40000 AND MNUM LT 60000

RANDOM SECONDARY KEY IN DATA BASE FILES
Use BY KEY BY LIST or BY KEY with UNIQUE for optimization. The record-level condition can
test for equality to a specific value when the line type that contains the secondary key has
zero or one occurrence per record. The line type must be declared UNIQUE. The only rela-
tional operator allowed is EQ or =. You can use an OR connector if the remaining record con-
ditions test only the secondary key for equality to a specific value.

LIST MJOB DEGR FROM PAY1
UNIQUE CU BY KEY
WHERE ANY MSSN = 487265478 OR ANY MSSN = 852417931

2276554-9701 5-1



Optimization

SEQUENTIAL SECONDARY KEY IN DATA BASE OR KiFs
Use BY KEY BY LIST or BY KEY with UNIQUE for optimization. The record-level condition can
test for equality to a specific value when the line type that contains the secondary key has
zero or one occurrence per record. The line type must be declared UNIQUE. All relational
operators are allowed except NE or < >. You can use the connectors AND and OR if the re-
maining record conditions test the secondary key against a specific value.

LIST MJOB DEGR FROM PAY1
UNIQUE CU BY KEY BY LIST
WHERE ANY MSSN NE 487265478 AND ANY MSSN NE 852417931

5.2.2 Line-Level Conditions
Line-level conditions have the following combinations:

RANDOM PRIMARY KEY IN DATA BASE FILES
Use BY KEY BY LIST, BY KEY, or BY LIST for optimization. The line-level condition can test
the primary key for a specific value as long as there is only one report line. The relational
operator EQ or = is allowed. You can use the connectors AND and OR if the remaining line-
level conditions test only the primary key for equality to a specific value.

LIST MNAM MJOB WHERE MJOB = ‘PROGRAMMER’
FROM PAY1 BY KEY BY LIST

SEQUENTIAL PRIMARY KEY IN DATA BASE FILES
Use BY KEY BY LIST, BY KEY, or BY LIST for optimization. The line-level condition can test
the primary key for a specific value as long as there is only one report line. All relational
operators except NE or < > are allowed. You can use the connectors AND and OR if the re-
maining line-level conditions test only the primary key against a specific value.

LIST MNAM MRAT WHERE MRAT GT 1000 AND MRAT LT 2000
FROM PAY1 BY KEY

RANDOM SECONDARY KEY IN DATA BASE FILES
Use BY LIST for optimization. The line-level condition can test the secondary key for equality
to a specific value. The relational operator EQ or = is allowed. You can use the OR connector
if the remaining line-level conditions test only the secondary key for equality to a specific
value.

LIST MNAM ADDR WHERE MSSN = 487265478
FROM PAY1 BY LIST

SEQUENTIAL SECONDARY KEY IN DATA BASE KIFs
Use BY LIST for optimization. The line-level condition can test the secondary key against a
specific value. All relational operators are allowed except NE or < >. You can use the AND
and OR connectors if the remaining line-level conditions test only the secondary key against
a specific value.

LIST MNAM ADDR WHERE MSSN GT 400000000 AND MSSN NE 487265478
FROM PAY1 BY LIST

5-2 2276554-9701



6

Program Languége Interface Subroutines

6.1 INTRODUCTION

You can access Query from Pascal, COBOL, and FORTRAN programs through a set of assembly
language subroutines. These subroutines interface between the Query processor and the appli-
cation task. Data is transferred between the calling program and Query via interprocess communi-
cation. You can link the following subroutines to the calling task:

QCOMP — Compiles, loads, and prepares a Query statement for execution. The Query
statement is passed from the application task as an array of characters.

QINIT — Loads and prepares for execution a Query statement that has already been
compiled (using QCOMP) and stored as an object file.

QEXEC — Executes a Query statement started by QCOMP or QINIT and lists the results
to an output file.

QRECV — Processes one cycle of a Query statement. For example, if the Query is a
LIST function, QRECV returns one logical report line.

QSEND — Resets and sends change data values, using the contents of the data buffer.

QCLR — Reinitializes the Query processor for a particular Query statement (a clearing
function).

QEND — Terminates the Query processor for a particular Query statement.

6.2 CALLING FORMATS

The calling formats for COBOL, Pascal, and FORTRAN are similar. Example calls to the QCOMP
subroutine from each language are as follows:

COBOL

CALL “QCOMP” USING QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,

QUERY-STATEMENT, STATEMENT-LENGTH,
PASSWORD, FORMAT, LIST-TEXT,
LISTING-PATHNAME, PAGELENGTH, PAGEWIDTH,
ALT-FILE.

2276554-9701 6-1



‘ Program Language Interface Subroutines

Pascal

QCOMP(QUERY__NUMBER, RETURN__STATUS, RETURN__CODE, EXECUTE__FLAG,
QUERY__STATEMENT, STATEMENT__LENGTH, PASSWORD, FORMAT,
LIST_TEXT, LISTING_PATHNAME, PAGE__LENGTH, PAGE__WIDTH,
ALT_FILE);

FORTRAN

CALL QCOMP(QRYNUM,STATUS,CODE,QSTATE,STLEN,PASSW,
FORMAT,LIST,LPATH,PGLEN,PGWDTH,ALTFIL)

6.3 QCOMP — COMPILE AND INITIALIZE
The format of QCOMP syntax is as follows:

CALL QCOMP(QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
QUERY-STATEMENT,STATEMENT-LENGTH,PASSWORD,
FORMAT,LIST-TEXT,LIST-PATHNAME,PAGELENGTH-0,
PAGEWIDTH-0,ALT-FILE)

QCOMP compiies a Query staiement that you supply in the application program as an array of
characters. The compiler builds a Query object file, bids a Query executor, and loads the Query ob-
ject. The parameters are as follows:

QUERY-NUMBER

The data type is integer or COMP-1. Assign an integer to be associated with the Query pro-
cessor that this call bids. Subsequent Query subroutine calls will use this number to identify
the Query processor that is to receive the command. The main purpose of this number is to
allow multiple Query executions (up to five) to operate simultaneously. If the Query state-
ment contains change data constants, the Query processor waits for a QSEND call with a buf-
fer containing these constants. After QSEND has been called or if there are no change data
constants, call QEXEC or QRECV to execute the statement.

RETURN-STATUS
The data type is integer or COMP-1. The status is returned to the application program upon
completion of the call. The status is zero if no error occurs; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

RETURN-CODE
The data type is a two-character string. If an 1/0, DBMS, or DD error terminates execution,
RETURN__CODE is the two-character system /O, DBMS, or DD status code.

QUERY-STATEMENT
The data type is a string of no more than 480 characters. This is the Query text to be compiled
and executed.

STATEMENT-LENGTH
The data type which is integer or COMP-1; specifies the length in bytes of the Query text.

6-2 2276554-9701



Program Language Interface Subroutines

PASSWORD
The data type is a four-character string. If security is used, this must be a valid password.

FORMAT
The data type is Boolean, integer, or COMP-1. FORMAT is set to 1 to indicate Query outputin
report format and set to 0 to specify unformatted binary.

LIST-TEXT
The data type is BOOLEAN, integer, or COMP-1. LIST-TEXT is set to 1 to include the Query
statement listing in the listing file (specified by LIST-PATHNAME) and set to 0 for no listing.

LIST-PATHNAME
The pathname contains the Query statement and any errors detected by the compiler.

PAGELENGTH
The page length for formatted output. If you enter 0, the default (60) is used.

PAGEWIDTH
The page width for formatted output. If you enter 0, the default (80) is used.

ALT-FILE
The pathname contains the alternate collating sequence file. Set to blanks if none is desired.

6.4 QINIT — INITIALIZE QUERY INTERPRETER
The format of QINIT syntax is as follows:

CALL QINIT(QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
OBJECT-PATHNAME, PASSWORD)

Use this procedure to bid a Query executor using Query object that has already been compiled by
the stand-alone compiler before execution of the application program. The parameters are as
follows:

QUERY-NUMBER

The data type is integer or COMP-1. Assign an integer to be associated with the Query pro-
cessor that this call bids. Subsequent Query subroutine calls use this number to identify the
Query processor that is to receive the command. The main purpose of this number is to allow
multiple Query executions (up to five) to operate simultaneously. If the Query statement con-
tains change data constants, the Query processor waits for a QSEND call with a buffer con-
taining these constants. After the QSEND or if there are no change data constants, call the
QEXEC or QRECV subroutine to execute the statement.

RETURN-STATUS
The data type is integer or COMP-1. The status is returned to the application program upon
completion of the call. If no error occurs, the status is zero; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

2276554-9701 6-3



" Program Language Interface Subroutines -

RETURN-CODE
The data type is a two-character string. If an 1/O, DBMS, or DD error that terminates execution
occurs, RETURN-CODE is the two-character system 1/0, DBMS, or DD status code.

OBJECT-PATHNAME
The data type is a 48-character string that indicates the file pathname where the Query object
can be found. Synonym substitution is performed. The pathname must end with a blank if it is
less than 48 characters long.

PASSWORD
The data type is a four-character string. If security is used, this must be a valid password.

6.5 QEXEC — EXECUTE AND LIST QUERY RESULTS
The format of QEXEC syntax is as follows:

CALL QEXEC(QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
OUTPUT-PATHNAME, EXTEND)

QEXEC completes execution and lists the results of a Query statement started by QINIT or
QCOMP. The listing is sent to the file or device indicated by the output pathname parameter. if the

+ At 1£ 4k 1 + N
last Query executed was a LIST function, the output is a report or data. If the last Query was a

modification function, the output is the trace. The parameters are as follows:

QUERY-NUMBER
The data type is integer or COMP-1. This is the number associated with the desired Query
processor, assigned by QCOMP or QINIT.

RETURN-STATUS
The data type is integer or COMP-1. The status is returned to the application program upon
completion of the call. If no error occurs, the status is zero; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

RETURN-CODE
The data type is a two-character string. If an /O, DBMS, or DD error that terminates execution
occurs, RETURN-CODE is the two-character system 1/0, DBMS, or DD status code.

OUTPUT-PATHNAME
The data type is a 48-character string that indicates the file pathname or device name that is
to receive the Query output. Synonym substitution is performed. The pathname must end
with a blank if it is less than 48 characters long.

EXTEND
The data type is integer, Boolean, or COMP-1. To initialize the output file, set the extend
parameter to 0. To open the file extended so that the results of the Query will be added to the
end of the file, set the extend parameter to 1.

6-4 2276554-9701



Program Language Interface Subroutines

6.6 QRECV — RECEIVE QUERY DATA
The format of QRECV syntax is as follows:

CALL QRECV(QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
DATA-BUFFER, BUFFER-LENGTH)

Use this procedure to retrieve the results of one execution cycle of the Query processor
associated with the specified Query number. The results are returned in the defined data buffer. If
the Query performs a LIST function, the data buffer receives one logical report line. if the Query is
a modification function, the data buffer receives a trace line. The parameters are as foliows:

QUERY-NUMBER
The data type is integer or COMP-1 and indicates the number associated with the desired
Query processor, assigned by QCOMP or QINIT.

RETURN-STATUS
The data type is integer or COMP-1. This is returned to the application program upon com-
pletion of the call. The status is set to indicate normal operation, end of processing, or an
error status. (See Table 6-1 for status codes.) If the end of processing is signaled, the Query
processor does not terminate. Use QEND to terminate it.

RETURN-CODE
The data type is a two-character string. If an /10, DBMS, or DD error that terminates execution
occurs, RETURN-CODE is the two-character system 1/0, DBMS, or DD status code.

DATA-BUFFER
The data type is a string with a maximum length of 480 characters. The resuits of the exe-
cution are returned in this buffer.

LENGTH
The data type is integer or COMP-1, defining the length of the data buffer.

6.7 QSEND — SEND CHANGE DATA CONSTANTS

The format of QSEND syntax is as follows:

CALL QSEND(QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
DATA-BUFFER, BUFFER-LENGTH)

This procedure resets change data constant values in the Query statement. These values are
indicated in the text by a question mark (?). The contents of DATA-BUFFER are the change data
values (Section 4). The parameters are as follows:

QUERY-NUMBER

The data type is integer or COMP-1 and specifies the number associated with the desired
Query processor, assigned by QCOMP or QINIT.

2276554-9701 6-5



Program Language Interface Subroutines

RETURN-STATUS
The data type is integer or COMP-1. The status is returned to the application program upon
completion of the call. If no error occurs, the status is zero; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

RETURN-CODE

The data type is a two-character string. If an /O, DBMS, or DD error that terminates execution
occurs, RETURN-CODE is the two-character system 1/0, DBMS, or DD status code.

DATA-BUFFER

The data type is a string with a maximum length of 480 characters. This buffer contains the
change data values.

LENGTH
The data type is integer or COMP-1. This defines the length of the data buffer.

6.8 QCLR — REINITIALIZE QUERY PROCESSOR
The format of QCLR syntax is as follows:
CALL QCLR(QUERY-NUMBER, RETURN-STATUS)

QCLR reinitializes the Query processor associated with the Query number. Specifically, QCLR
resets location pointers to asterisks and clears conditions. The parameters are as follows:

QUERY-NUMBER
The data type is integer or COMP-1 and specifies the number associated with the desired
Query processor, assigned by QCOMP or QINIT.

RETURN-STATUS
The data type is integer or COMP-1. The status is returned to the application program upon
completion of the call. If no error occurs, the status is zero; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

6.9 QEND — END QUERY PROCESSOR
The format of QEND syntax is as follows:

CALL QEND(QUERY-NUMBER, RETURN-STATUS)
QEND terminates the Query processor associated with the designated Query number. Files built
by that Query processor in its last execution are lost if QEXEC or QRECV are not executed. The
parameters are as follows:
QUERY-NUMBER

The data type is integer or COMP-1 specifying the number associated with the desired Query
processor, assigned by QCOMP or QINIT.

6-6 22765549701



Program Language Interface Subroutines

RETURN-STATUS
The data type is integer or COMP-1. The status is returned to the application program upon
completion of the call. If no error occurs, the status is zero; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

Table 6-1. Interface Subroutine Status Codes

Code Meaning
1 Number table is full. A maximum of five different queries can be bid at
one time.
2 Query number does not exist. You have attempted to access a Query

task that was not initialized (by a QCOMP or QINIT call), or the
previous call returned a fatal error.

3 Data Base or Data Dictionary error (Query interpreter). Check the
return code field for the error returned by the Query processor.

4 Unable to bid interpreter task. The Query interpreter task is not in-
stalled on the program file SSQUERY.PROG.

5 Unable to bid compiler task. The Query compiler task is not installed
on the program file SSQUERY.PROG.

6 Query task no longer active. The Query task terminated either because
it could not get an interprocess communication buffer or because of
an abnormal task termination. Check the system log for an abnormai
termination message for installed task ID <C3 or <81 through <85.

7 Cannot allocate buffer for message. The language interface was
unable to get an interprocess communication buffer.

8 Bad parameter list. The wrong number of parameters was passed to
the language interface routine.

9 Invalid command. The command sequence was incorrect; e.g., QRECV
or QEXEC must follow a QSEND call.

10 Duplicate Query number. The same Query number was used for more
than one QCOMP or QINIT call.

1 Invalid Query number. Zero is an invalid Query number.

12 Syntax errors (Query compiler). Check the QCOMP listing pathname
for a description of the syntax errors.

13 Unable to access object pathname. Check the return code for the
operating system error code.

2276554-9701 6-7



Program Language Interface Subroutines

Table 6-1. Interface Subroutine Status Codes (Continued)

Code Meaning

14 Unable to access listing pathname. Check the return code for the
operating system error code.

15 Unable to access alternate collating pathname. Check the return code
for the operating system error code.

16 Bad object file (Query interpreter). The object file does not contain
valid Query object. Check that the correct object pathname was used.

17 High-order truncation of numeric constant. A number larger than the
field size was sent in the QSEND buffer.

18 Negative sign used in unsigned number. Invalid data was entered for
an unsigned field.

19 Number conversion error. Invalid data was sent for a numeric field.

6.10 USING THE INTERFACE SUBROUTINES

The interface subroutines provide a flexible interface and can accommodate many possible
applications by using different sequences and combinations of calls. Descriptions of three
common designs and implementations are as follows.

Design:

The application generates a Query statement by prompting the user for the necessary infor-
mation. The results are listed to a file or displayed on the screen.

Implementation:
1. Prompt the user for the required information (§uch as field names, file name, and so on).
2. Use this information to build a Query statement in a buffer in memory.
3. Call QCOMP and pass the statement buffer.
4. Prompt the user for the output destination. If the output goes to a file, call QEXEC with
the file pathname. If it goes to the user’s screen, call QRECV repeatedly and display

each report line as it is processed.

5. Call QEND to terminate the Query processor.

6-8 2276554-9701



Design:

Program Language Interface Subroutines

The application displays descriptions of several reports and prompts the user to choose one.
The user also specifies the records to be used in the report. The application writes the
resulting report to a file. A single execution of the application program can generate more
than one report. :

Implementation:

1.

Design:

Write the Query statement for each standard report, using change data constants for
selection criteria values that will be obtained from the user. Compile the Query
statements by using the QCOMP command, and store the object output in a file.

Prompt the user to choose a report, and call QINIT with the proper Query object file
pathname.

Prompt the user for selection criteria (such as primary key values) and position the
values in a buffer so that they match the corresponding change data constant positions
in the precompiled Query statements.

Call QSEND with this buffer of change data values.

Call QEXEC to complete execution and write the output to the file.

If the user wants another report using different selection criteria, call QCLR and return
to step 3; otherwise, call QEND.

The user has two (or more) interdependent files. One file contains new data used to update
another file. The objective is to read the file of new data and use that information to change
the other file.

Implementation:

1.

2276554-9701

Write two Query statements. One retrieves data from the new data file with a LIST state-
ment. The second applies the changes by using change data constants in the
CONTENTS clause of an UPDATE function. Compile the statements by using the
QCOMP command, and store the object output in a file.

. In the application program, call QINIT for both Query statements.

Call QRECYV for the LIST Query. If the data in the buffer is not in the proper locations for
the change data constants in the UPDATE Query statement, move the data to the proper
positions.

Call QSEND for the UPDATE Query with the change data constant values just obtained
from the LIST Query.

Call QEXEC for the UPDATE Query and execute the updates. Call QCLR for the UPDATE
Query.

6-9



Program Language Interface Subroutines

6. Loop to step 3 until no more data is received.

7. Call QEND for both Queries.

6.11 EXAMPLE PROGRAMS

The following examples demonstrate calls to the Query subroutines from Pascal, FORTRAN, and
COBOL language programs. The Pascal, and FORTRAN programs are equivalent, using four of the
seven Query subroutines. The COBOL program demonstrates all seven subroutines.

6.11.1 Example Pascal Program

PROGRAM PEXPL:

(# This program provides examples of the external definitions needed

in a TI Pascal
In addition, PEXPL illustrates calls to th
following subroutines: :

GINIT (initializes a Query processor!}
QGEXEC (executes the Query obgyect and lists
QRECV (performs the function of QEXEC, but

QEND (deactivates a Query processor)

#*)

TYPE

CRC = PACKED ARRAYL1.. 801 OF CHAR:

C4C = PACKED ARRAYL1..401 OF CHAR;

Cié = PACKED ARRAYL1..161 OF CHAR:

C4 = PACKED ARRAYL1..41 OF CHAR;

C2 = PACKED ARRAYL1..21 OF CHAR;
VAR

QUERY_NUMBER, R_ETATUS, EXTEND, LNG : INTEGER;
PATHNM : C40;

R_CODE : C2;

PASSWORD : C4;

DBUFF CBOG;

{# The external definitions needed to call all of the

routines are as follows:

#*}

PROCEDURE QCOMP (VAR QUERY_NUMBER : INTEGER;
VAR RETURN_STATUS : INTEGER;
VAR RETURN_CODE : ¢C2;

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

QUERY_STATEMENT :
STATEMENT_LENGTH :
PASSWORD : C4;
FORMAT . INTEGER;
LIST_TEXT : INTEGER:
LIST_PATHNAME C2;:
PAGE_LENGTH; PAGE_WIDTH :
ALT_FILE : C2); EXTERNAL;

Ci

INTEGER;

6-10

program to access any of the Query subroutines.

the results to a file?
one line at a time)

interface

INTEGER;

2276554-9701



Program Language Interface Subroutines

(% NOTE-—QCOMP is not used in this example. #)

PROCEDURE QINIT(VAR QUERY_NUMBER INTEGER;

YAR RETURN_NUMBER INTEGER:

VAR RETURN_CODE : C2;

VAR PATHNM : C2;

VAR PASSWORD : C4); EXTERNAL;
PROCEDURE QEXEC (VAR QUERY_NUMBER : INTEGER;

VAR RETURN_STATUS : INTEGER;

VAR RETURN_CODE : C2:

VAR OUTPUT_PATHNAME : C2;

VAR EXTEND : INTEGER); EXTERNAL;
PROCEDURE QCLR(VAR QUERY_NUMBER : INTEGER:

VAR RETURN_STATUS : INTEGER): EXTERNAL:
(# NOTE--QCLR is not used in this example. %)
PROCEDURE QEND(VAR QUERY_NUMBER : INTEGER:;

VAR RETURN_STATUS : INTEGER); EXTERNAL;
PROCEDURE GRECV(VAR QUERY_NUMBER : INTEGER:

VAR RETURN_STATUS : INTEGER;

VAR RETURN_CODE : Ca;

VAR DATA_BUFFER : Ca;

VAR BUFFER_LENGTH : INTEGER): EXTERNAL;
PROCEDURE QSEND(VAR QUERY_NUMBER INTEGER;

VAR RETURN_STATUS : INTEGER:;

VAR RETURN_CODE : C2;

VAR DATA_BUFFER : C2;

VAR BUFFER_LENGTH : INTEGER); EXTERNAL.;:

(#NOTE--QSEND is not used in this

BEGIN(#PEXPL¥*}

REWRITE(QUTPUT);
PASSWORE := ‘DBMS’;

{5
Assume that prior
has been compiled
object resides on

Assign the object

processor, and
*)

PATHNM: : C16 @ =
QUERY_NUMBER := 2;

QINIT(QUERY_NUMBER, R_STATUS, R_CODE, PATHNM: : C2, PASSWORD
WRITELN( ‘RETURN STATUS FROM GQINIT

example. #)

to the execution of this program the

using QCOMP,

and further assume that

’X. TEST. QUERYOBW’

pathname.

’X. TEST. QUERYOBY

7i (¥ NOTE-Trailing blank

= ', R_BTATUS);

desired Query
the resulting

choose a number to associate with a Query
initialize that processor

is mandatory#)

(# Check for normal completion of the initialization, specify a

pathname for the result of the Query execution,

and end the Query
#*)

2276554-9701

processor.

execute the Query.

6-11



Program Language Interface Subroutines

IF R_STATUS = O THEN

BEGIN
PATHNM: : C1é6 = ‘X. TEST. QUERYLEBT ‘; (#NOTE-Trailing blank =*)
EXTEND := O:
QEXEC (GUERY NUMBER., R_STATUS, R_CODE, PATHNM: : C2, EXTEND);

WRITELN( 'RETURN STATUS FROM QEXEC = ‘. R_STATUS:

QEND (QUERY_NUMBER, R_STATUS);

WRITELN¢ 'RETURN STATUS FROM QEND = ‘, R_STATUS):
END;

{#This section demonstrates a3 call to QGRECY. Note that QEND has
disassociated the Query processor and the assigned Query number;
consequently, this association must be reset. The pathname
must he reset to the object file

¥}

QUERY_NUMBER := 2;

PATHNM: : C1é6 = ‘X. TEST. QUERYOBJ ‘; (#NOTE-Trailing blank#)
QINIT(QUERY_NUMBER, R_STATUS, R_CODE, PATHNM: : C2, PASSWORD);
WRITELN( 'RETURN STATUS FROM QINIT = /, R_STATUS);

(# Make repeated calls to GRECV until there are no more output lines

IF R_STATUS = O THEN
BEGIN
REPEAT
LNG := B0,
QRECV(QUERY_NUMBER, R_STATUS, R_CODE. DBUFF: : C2, LNG);
IF LNG <> O AND R_CODE = ‘#%’ THEN
WRITELN(DBUFF )i
UNTIL LNG = O OR R_CODE <> ‘#%#';

WRITELN('RETURN STATUS FROM QRECVY = ‘,R_STATUS);
WRITELN('RETURN CODE FROM QRECV = 7, R_CODE);

QEND (QUERY_NUMBER, R_STATUS);
WRITELN( ‘RETURN STATUS FROM GEND = ‘,R_STATUS);
END;
END.

6-12

*)

2276554-9701



Program Language Interface Subroutines

6.11.2 Example FORTRAN Program

C This program i= equivalent to the Pascal example program, PEXPL.
C and demonstrates calls to the following Query subroutines:
C (for FORTRAN-78}
c
c QINIT (initializes a Query processor)
C QEXEC (executes the Query object and lists the results to a file)
C QRECV (performs the functions of QRECY. one line at a time)
C QEND (deactivates a Query processor)
c
C DECLARATIDNSG:
C
INTEGER GMUMBR, ANT., RSTAT, RCODE, EXTEND, LNG
INTEGER OBPATH(8), LSPATH(8). PSWORD(2), DBUFF (40)
c
C INITIALIZATIONS
c
DATA PSWORD //'DBMS'/
DATA OBPATH /‘X. TEST. QUERYOB.J '/
DATA LSPATH /’X. TEST. QUERYLST ‘/
I
C Assume that prior to the execution of this program, the desirved
C Query has been compiled using GCOMP, and further assume that the
C resulting cbject resides on ‘X. TEST. QUERYOBJ”’.
C
¢ The pathname has been assigned in the initializations section
C Choose an integer to associate with a Guery processor and
C initialize that processor.
c

QANUMBR=2
CALL QINIT(QNUMBR, RSTAT, RCODE, OBPATH, PSWORD )
WRITE (A, 1)RSTAT

1 FORMAT( ‘RETURN STATUS FROM QINIT= ‘I2)
C
¢ Check for normal completion of the initialization. execute the
C GQuery, and end the Query processor. Note that the pathname in the
C call to QEXEC is different from the pathname in the call to QINIT.
c
IF(RSTAT.EG. 0G0 TO 2
G0 TO 3
2 EXTEND=0
CALL QEXEC (QNUMBR, RSTAT. RCODE, LSPATH., EXTEND?
WRITE (4, 5IRSTAT . )
3 FORMAT( ‘RETURN STATUS FROM QEXEC= ‘1I2)
CAIlLL QEND(QNUMBR. RSTAT)
WRITE (&, 8)RSTAT
b FORMAT( ‘RETURN STATUS FROM QEND= ‘1I2)
2 CONTINUE
c
C END SCOPE 0OF LAST IF
c
C This section demonstrates a call of QRECVY. Note that QEND has
C disassociated the Query processor and the assigned Query number:
C consequently, this association must be reset. The pathname
C must be reset to the object file
c

GNUMBR=2
CALLL GINIT(GNUMBR.RSTAT,RCODE, OBPATH: PSWORD
WRITE (&, 1IRETAT

lele]

IF(RETAT. £G. 0)60 TO @
GO TO 10

2276554-9701 6-13



Program Language Interface Subroutines

c

C Make repeated calls to QRECV until no more lines exict

C

? LNG=80
CALL QRECV(GNUMBR, RSTAT, RCODE, DBUFF . LNG)
IF((LNG. EQ. 03. OR. (RCODE. NE. >2A24) G0 TU 11
WRITE (4, 12)DBUFF

12 FORMAT (40A2)

11 CONTINUE

c

C THE "UNTIL" TEST NOTE-— 2424 I5 HEX FOR “## -

C

IFCCLNG. NE. Q). AND. (RCODE. EG. »2A2A1:G0 TO 9

END OF THE REPEAT LOOP

[N e Ne]

WRITE(&, 13)RSTAT

13 FORMAT ( ‘RETURN STATUS FROM QRECV= ‘I2)
WRITE(&: 14)RCODE

i4 FORMAT ( ‘RETURN CODE FROM QRECV= ‘A2)
CALL QEND(GNUMBR, RSTAT)
WRITE(&, &)RETAT

10 CONTINUE

C END THE SCOPE OF LAST IF
END

6.11.3 Example COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. QUERY-COBOL-INTERFACE-TEST.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OQUT-FILE
ASSIGN TO OUTPUT, "UNIT&"
FILE STATUS IS ERROR-CODE.

SELECT IN-FILE
ASSIGN TO INPUT, "“UNITS"
FILE STATUS IS ERROR1-CODE.

DATA DIVISION.

FILE SECTION.
FD OQUT-FILE

RECORD CONTAINS 80 CHARACTERS.
01 QUT-REC PIC X(80).

FD IN-FILE

RECORD CONTAINS 80 CHARACTERS.
01 IN-REC PIC X(B80).

6-14 2276554-9701



sk % ok % % %k

% %k ok %k

* ok % 3k X

F3

¥ ok ok ok %

Program Language Interface Subroutines

WORKING-STORAGE SECTION.

01 ERRCR-CODE PIC XX
01 ERROR1-CODE PIC XX
01 ALT-FILE PIC XX
01 QUERY~-NUMBER PIC 9(5) COMP-1.
01 RESULT-STATUS PIC 9(5) COMP-1.
01 EXT PIC 9(5) COMP-1.
01 LNG PIC 9(5) COMP-1.
01 RESUL.T-CODE PIC XX.
01 BUFFER PIC X(BO).
01 PN PIC X(48).
o1 PASSWORD PIC X(4).
21 PAGEILEN PIC 2(5) COMP-1.
o1 PAGEWID PIC 9(5) COMP-1
01 R—-CNT PIC 9(5) COMP-1
01 P—~LIME.

05 W-LITERAL PIC X(30)

05 W—-STAT PIC X(10).

01 QUERY-STATEMENT.
05 @-STMT-LINE OCCURS 4 TIMES INDEXED BY Q-KNT

PIC X(80).
01 Q--STMT-LENGTH PIC 9(5) COMP-1.
a1 QG-FORMAT PIC (5 COMP-1.
01 LIST-TEXT PIC 9(35) COMP-1
PROCEDURE DIVISION.
MAIN
OPEN OQUTPUT OUT-FILE
INPUT IN-FILE.
Assume that a Query source statement already exists on
the file designated "UNIT3" and is known to be four lines
long. Read the Query statement into the variable of the
same name.

PERFORM READ-LINE VARYING @-KNT FROM 1 BY 1
UNTIL
{ G-KNT IS > 5 ) OR ( QG-KNT EQUAL 5 .

Compile the Query source statement by calling QCOMP.
First, set up the arguments for the call.

PERFORM SET-ARGS~-COMP.

CALL "“QCOMP" USING QUERY-~NUMBER. RESULT-STATUS,
RESULT-CODE. QUERY-STATEMENT,
Q-STMT-LENGTH: PASSWORD., Q-FORMAT,
LIST-TEXT:, PN. PAGELEN,
PAGEWID, ALT-FILE.

MOVE “RETURN STATUS FROM QCOMP = " TO W-LITERAL

PERFORM WRITE-STAT

The next step is to execute the GQuery object using GEXEC.
Specify that the Query listing be sent to a file whose
pathname is X. TEST. QUERYCHM

PERFORM CALL-EXEC THRU CALL-END.

This section of the program demonstrates the use of
GSEND, which allows you to replace a3 question mark {7
in the Guery statement with actual text f{assume that the
Guery has already been compiled using QCOMP.

2276554-9701

6-15



Program Language Interface Subroutines

6-16

% ok k & ok 3k

s % % ko ok 3k

% ok %k ok k %k ok & % %

MOVE "X. TEST. QUERYOB3" TO PMN.

MOVE 2 TO QUERY-NUMBER.

CALL "GQINIT" USING QUERY-NUMBER, RESULT-STATUS,
RESULT-CODE, PN, PASSWORD.

MOVE “RETURN STATUS FROM QINIT = " TO W-LITERAL.

PERFORM WRITE-STAT.

First send a 4 to replace the question mark and specify
that the listing be sent to X. TEST. QUERYLST. Then.
send a 3 to replace the question mark and end the
processor.

IF RESULT-STATUS EQUAL ZERO
PERFORM SEND-4
PERFORM SEND-3.
MOVE 2 TO QUERY-NUMBER.
PERFORM CALL-END.

This section demonstrates the use of QRECY and QCLR.

QRECVY performs essentially the same function as QEXEC
except that QRECV returns ocutput lines one at a time.
GCLR allows the application to abort a QRECV without
having to accept every line of output.

BAMVES S TY QAVIETEINS R IRATIED
NUYE & 1y WURRT “HWIIDER .

MOVE “X. TEST. QUERYOBJ" TO PN
CALL "QINIT" USING QUERY-NUMBER, RESULT-STATUS,
RESULT-CODE, PN, PABSWORD.
MOVE "RESULT STATUS FROM QINIT = " TO W-LITERAL.
PERFORM WRITE-STAT.
IF RESULT-STATUS EQUAL ZERO
PERFORM G-RECV VARYING R-CNT FROM 1
BY 1 UNTIL R-CNT EQUAL 4

PERFORM Q-CLR.
MOVE 2 TO QUERY-NUMBER.
PERFCRM CALL-END.
CLOSE OUT-FILE

IN-FILE.
STOP RUN

READ-LINE.
READ IN-FILE.
MOVE IN-REC TO Q@-STMT-LINE(G-KNT?
MOVE SPACES TO IN-REC.

Set up the arguments for a call %o QCOMP and specify
the following options:
assign the integer 2 to the Query processor to bs bid
set the Query statement length to 320 characters (4 lines:’
request a report format for the output
request that the Query statement listing #from the
compiler be included in the output
assign the file that resides at X. TEST. GCOMLST as the
listing file
request default page length and width for the listing

2276554-9701



Program Language Interface Subroutines

3#*

SET-ARGS~COMP.
MOVE 2 TO QUERY-NUMBER.
MOVE SPACES TO ALT-FILE
MOVE 320 TO Q-STMT-LENGTH
MOVE 1 TO Q-FORMAT.
MOVE 1 TO LIST-TEXT.
MOVE "X. TEST. QCOMLST" TO PN.
MOVE ZERO TO PAGELEN.
MOVE ZERO TO PAGEWID.
MOVE "DBMS" TO PASSWORD

CALL-EXEC.
MOVE "X. TEST. QUERYCM" TO PN.
MOVE ZERO TO EXT.
CALL "QEXEC" USING QUERY~NUMBER: RESULT-STATUS,
RESULT-CODE, PN, EXT.
MOVE “RETURN STATUS FROM QEXEC=" TO W-LITERAL.
MOVE RESULT-STATUS TO W-STAT
WRITE OUT-REC FROM P-LINE.
MOVE SPACES TO QUT-REC

CALL~END.
CALL "GEND" USING QUERY-NUMBER, RESULT-GETATUS.
MOVE "RETURN STATUS FROM QEND=" TO W-LITERAL.
MOVE RESULT-STATUS TO W-STAT.
WRITE OUT-REC FROM P-LINE.
MOVE SPACES TO OUT-REC

#*
# Replace the "%" with "4".
*
SEND-4.
MOVE "4 * TO BUFFER.
MOVE 4 TO LNG.
CALL "QSEND" USING QUERY-NUMBER, RESULT-STATUS,
RESULT-CODE, BUFFER. ING.
MOVE “RESULT STATUS FROM QSEND = " TO W-LITERAL
PERFORM WRITE-STAT.
IF RESULT-STATUS EQUAL ZERD
MOVE "X. TEST. QUERYLST" TO PR
MOVE ZERO TO EXT
CALL "QEXEC" USING QUERY-NUMBER, RESULT-STATUS,
RESULT-CODE, PN, EXT
MOVE "RETURN STATUS FRGOM QEXEC = " TQ W-LITERAL
PERFORM WRITE-STAT.

2276554-9701 6-17



Program Language Interface Subroutines

+*
# Replace the "7?" with a "3". Note that the extension
# argument in GEXEC is set to 1 in this call, indicating.
# a request to extend (not rewrite) the listing file
#
SEND-3.
MOVE "3 " TO BUFFER.
MOVE 4 TO LNG.
CALL "GSEND" USING QUERY-NUMBER, RESULT-STATUS.
RESULT—-CODE. BUFFER, LNG
MOVE “RESULT STATUS FROM QSEND = " TO W-LITERAL.
PERFORM WRITE-STAT.
IF RESULT-STATUS EQUAL. ZERD
MOVE *“X. TEST. QUERYLST" TO PN
MOVE 1 TO EXT
CaLL “QEXEC" USING GQUERY-NUMBER, RESULT-BTATUS,
RESULT-CODE. PN, EXT
MOVE “RETURN STATUS FROM QEXEC = " 70 W-LITERAL
PERFORM WRITE-STAT.
WRITE-STAT.
MOVE RESULT-STATUS TO W-STAT
WRITE OUT-REC FROM P-LINE.
MOVE SPACES TO OUT-REC.
Q—-RECV.
MOVE 80 TO LNG.
CALL "QRECV" USING QUERY-NUMBER, REBULT-STATUS.
RESULT-CODE, BUFFER, LN&.
MOVE "RETURN STATUS FROM GRECV = " TO W-LITERAL.
PERFORM WRITE-STAT.
IF RESULT-8TATUS EQUAL ZERO
WRITE OUT-REC FROM BUFFER
MOVE SPACES TO OUT-REC.
#*
# At this point, the application can manipulate the data
# returned in buffer and determine whether %his particular
# Query i3 rveturning the required data. Using QCLR, the
# program can abort the QRECY without making repeated calls
# to return all the Query output.
#*

4-CLR.

CALi. "GCLR" USING QUERY-NUMBER. RESULT-STATUS.
MOVE "RETURN STATUS FROM QCLR = " TO W-LITERAL.
PERFORM WRITE-STAT.

6.12 LINKING THE INTERFACE SUBROUTINES

The program language interface subroutines are located in the directory SSQUERY.PLIOBJ. The
link control file for a program includes this directory and an interface module specific to the pro-
gram language, along with the run-time modules and your task. The following paragraphs contain
example link control files for Pascal, FORTRAN, and COBOL programs.

6-18

2276554-9701



6.12.1 Linking Pascal Programs
An example link control file for a Pascal program is as follows:

FORMAT IMAGE,REPLACE
LIBRARY .SCI990.S$OBJECT
LIBRARY .S$TIP.OBJ

TASK <task name>

INCLUDE (MAIN)

INCLUDE <user task pathname>
INCLUDE S$QUERY.PSCINT
INCLUDE S$QUERY.PLIOBJ
END

6.12.2 Linking FORTRAN Programs
An example link control file for a FORTRAN program is as follows:

FORMAT IMAGE,REPLACE
NOSYMT

LIBRARY .SCI990.S$OBJECT
LIBRARY .FORT78.0SLOBJ
LIBRARY .FORT78.STLOBJ
TASK <task name>

INCLUDE <user task pathname>
INCLUDE S$QUERY.FTNINT
INCLUDE S$QUERY.PLIOBJ
END

6.12.3 Linking COBOL Programs
An example link control file for a COBOL program is as follows:

FORMAT IMAGE,REPLACE
LIBRARY .SCI990.S$OBJECT
PROC RCOBOL

INCLUDE .S$SYSLIB.RCBPRC
DUMMY

TASK <task name>

INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD

INCLUDE <user task pathname>

INCLUDE S$SQUERY.COBINT
INCLUDE S$QUERY.PLIOBJ
END

2276554-9701

Program Language Interface Subroutines

6-19/6-20






7

Guided Query Utility

7.1 INTRODUCTION

The Guided Query utility allows you to gather data from a file without extensive knowledge of
Query-990. You can also use this utility as a training tool for learning the syntax of the Query state-
ment. The Guided Query utility provides easy-to-read displays of the structure for the file being ac-
cessed. Guided Query builds a Query statement containing all of the necessary elements. At the

end of each Guided Query session, you can display and then save the resulting Query statement.
The Query processor can then edit or execute the saved statement.

NOTE

Although the Guided Query utility is an aid to the beginner, it is not
intended to be the primary mode of operation for Query sessions.

Refer to the Model 990 Computer Data Base Administrator User’s Guide for instructions on
starting the data base.
7.2 GQUERY COMMAND
To initiate the Guided Query utility, enter the SCI command GQUERY, as follows:
[1 GQUERY
If security is installed, the following prompt appears:

GUIDED QUERY <VERSION L.V.R YY.DDD>
PASSWORD:

Respond to this prompt by entering a bassword that allows read access to the file name you in-

tend to query. Get the password and the file ID from your data base administrator (DBA) or from the
person handling such duties. The password entered is saved for later verification.

2276554-9701 7-1



Guided Query Utility

7.3 CONTROL KEYS

The control keys used in the Guided Query utility are the NEW LINE/RETURN key and the function
keys. Pressing the NEW LINE/RETURN key processes the current entry. It also passes control to
the next prompt or to the next screen. The NEW LINE/RETURN key is the orange key on the right
side of the main (alphabetic) keyboard.

The function keys used throughout the Guided Query session are the F1 through F5 keys located
above the main keyboard. Function key one is F1, function key two is F2, and so on. The F1 and F2
keys are the scroll keys. The F1 key causes the display on the screen to move up (toward the end
of the file), while the F2 key causes the screen display to move down.
Pressing the F3 key transfers control to the next step if the information displayed is sufficient to
continue. Pressing the F4 key transfers control to the previous step. During the Guided Query ses-
sion, you can press the F4 key at any time to display the previous step. The only step that will not
be redisplayed is Step 1.
The F5 function key displays help information when it is available. The help information assists
you in completing specific screens.
7.4 GUIDED QUERY SCREENS
Guided Query screens are divided into five main categories:

. File identification

° Report specifications

. Record-level conditions

. Sort specifications

U] Final screens
Except for the final screens, each screen is identified with a step number (for example, Step 1).
The screens appear in consecutive order unless you make a request to repeat a group of screens.
For example, you can repeat both the report specification and condition screens. However, you

cannot repeat the overall sequence. To obtain the help screens, (associated with the more com-
plex steps), press the F5 key. The following paragraphs describe the screens in detail.

7-2 2276554-9701



Guided Query Utility

7.4.1 File Identification (Step 1)
The following screen appears after the password (if needed) is entered. Note the use of keys F1

through F5.

PAY1

QUERY-990 GUIDED QUERY
SPECIFY THE NAME OF THE DATA BASE FILE FROM WHICH YDU WISH
TO RETRIEVE THE DATA THAT IS TOD BE PRINTED IN YOUR REPORT:

FUNCTION KEY 1 : To
FUNCTION KEY 2 : To
FUNCTION KREY 3 : To
FUNCTION KEY 4 : To
FUNCTION KEY 5 : To

(The following function keys will be used throughout the session:

scroll up through displays of data base information
scroll down through displays of data base information
go on to the next step

go back to the previous step

see various HELP info when indicated )

This screen requests the file name. The file name specified can be the four-character ID for the’
file’'s DDL, such as PAY1 in the example, or an alias name from 1 to 20 characters long. When
accessing a key indexed, relative record, or sequential file, alternate names can be up to 30 char-
acters long. For information on alias names, refer to the model Model 990 Computer Data Base

Administrator User’s Guide.

Get the alias or standard DDL ID for the file from the DBA or from the person handling the DBA
duties. Confirm the availability of the file with the DBA.

2276554-9701

7-3



Guided Query Utility

7.4.2 Report Specifications
You specify the report lines with nine screens and must complete at least one full cycle of the
screens. The nine screens are as follows:

e  Main heading (Step 2)

. Line specification (Step 3)

. Field specification (Step 4)

. Listing, counting, totaling, and averaging (Step 5)

. Line heading (Step 6)

° Line-level conditions (Steps 7 through 9)

L Output continuation (Step 10)
7.4.2.1 Main Heading (Step 2). The main heading screen requests the heading that is to appear
on your report immediately after the system heading. The system heading identifies the system,
date, and time. The main heading should contain general information pertaining to the entire
Query. The main heading appears on each page of the output.
For the Guided Query utility, the standard length of the report line is 80 columns. Although the
length of the main heading is not limited to any specific number, the heading is truncated if it is
longer than 80 characters for a Guided Query execution.

If you specify multiple lines for the heading, the report left justifies all of them. Each line of the
heading must begin and end with double quotation marks.

7-4 22765654-9701



Guided Query Utility

The following example shows the Step 2 screen with a main heading entry:

DO YO WANT ONE OR MORE LINES OF HEADING AT THE TOP
OF EACH PAGE OF YOUR REPORT? Y (Y/N)

IF YES, THEN ENTER HEADING LINE(S).
(Beain and end each header line with double Aauctes. :
(Headines mav be as lon® as number of columns/line in rerport.)
(Headinss may extend to more than one VDT line. )
"EMPLOYEE INFORMATION ~3YSDATE “~SYSTIME ¢
SKIP 2

You must respond to the first prompt. If you want to include a main heading, answer Y (yes) to this
prompt; if not, answer N (no). If your response is Y, use the available lines to specify the heading
you want. Then, press the F3 or NEW LINE/RETURN key to proceed to the next prompt. If your
response is N, proceed to the next prompt by pressing the F3 or NEW LINE/RETURN key.

7.4.2.2 Line and Field Specifications (Steps 3 and 4). The line specification screen requests the
name of the data base line to be used in building the next report line. This name is chosen from the
display on the lower portion of the screen. Enter the name of the desired line in the upper portion
of the screen where the prompt characters appear. Use the scroll up (F1) and scroll down (F2) keys
to view the display.

Alternate names up to 30 characters long or alias names up to 20 characters long appear on the

screen if they have been assigned. Otherwise, the standard DDL ID appears. The format and length
of each field is also displayed. Group key fields have type GRP.

2276554-9701 7-5



Guided Query Utility

The screen displays the lines, the respective fields, and the corresponding format and length of
the fields from the file specified in Step 1. The format code for character fields is CHAR, and the
code for numeric fields is NUM. Each field displayed in the lower half of the screen contains a
length specification to aid in defining column headings. Step 6 specifies headings. To build effec-
tive column headings, consider the length of each field. For each output line, two spaces are auto-
matically placed between each output field.

The following example shows the Step 3 screen with a line specification:

YOU ARE NOW GDING TC BUILD A LINE OF YDUR REPGRTY. S3TEP 3
SELECT THE DATA BASE LINE YOU WISH TO RETRIEVE FIELDS FROM NEXT.

01

{Use FUNCTION KEY 1 & 2 to scroll thru the data base lines and their fields)
(I# you need additional explanation at this point, press FUNCTION KEY S5)

INFORMATION FOR FILE PAY1
FIELDS FOR LINE: O1

Setetelate!
' e teturene.

BRI E N

T uTeT"
"o tel!

FIELD
MNUM
METR
METT
MSEN

FIELD
TR
MLOC
MTHMR
MTEX

FIELD
MNUM
MPYP
MCOM

FIELDS FOR LINE:

FIELDS FOR LINE:

FORMAT
NUM
CHAR
CHAR
NUM
cu
FORMAT
pt e
CHAR
CHAR
NUM
CR
FORMAT
NUM
NUM
NUM

LENGTH
b
20

&

9

LENGTH
&
10

1
2

LENGTH

FORMAT
CHAR
CHAR
NUM

FORMAT
TR
CHAR
NUM

FORMAT
NUM
NUM
NUM

LENGTH
20

15

5

SRR

1T eTes’
oJatecers:

LENGTH

15

2

LENGTH
5

7

11

2276554-9701



Guided Query Utility

The HELP 1 screen associated with Step 3 is as follows:

#x#% HOW TO BUILD REPORT LINES ####% HELP 1

THE FIELDS OF DATA BELONGING TO THE SPECIFIED DATA BASE FILE WILL BE DISPLAYED
THESE FIELDS WILL BE DISPLAYED IN GROUPS AS THEY EXIST IN THE DATA BASE.

THESE GROUPS ARE CALLED DATA BASE LINES.

A REPORT LINE IS COMPRISED ONLY OF FIELDS FROM A SINGLE DATA BASE LINE.

FIELDS IN THE REPORT LINE WILL BE PRINTED IN THE ORDER THAT THEY ARE SPECIFIED
HEREIN. NORMALLY, TWO SPACES WILL BE WRITTEN BETWEEN ALL FIELDS IN THE REPORT
LINE.

IF YOU WANT ALL THE FIELDS IN A DATA BASE LINE TO BE INCLUDED IN THE

REPORT LINE, IN THE SAME ORDER THEY OCCUR IN THE DATA BASE LINE.

YOU MAY SPECIFY "ALL". (Press FUNCTION KEY 3 to return)

Press the F3 key to proceed to the next prompt.

The field specification screen requests the fields that are to be listed, counted, averaged, or
totaled in the generated report line. All of the fields for the line specified in Step 3 are displayed
with numbers to the left of each field name.

Enter the number associated with each field in the space provided near the middle of the screen.
Leading zeros are not required. You can enter a maximum of 20 numbers. Press the NEW
LINE/RETURN key to enter each field number and to pass control to the next entry. Press F3 when
you complete the number entries for this report line.

Enter ALL to specify all fields of a line. Then, press F3 to proceed to the next screen.

The fields are listed on the report in the order specified in this step. If you enter ALL, the order of
the output is the order of the fields in the line.

2276554-9701 7-7



Guided Query Utility

The following example shows the Step 4 screen with a field specification:

ENTER THE ASSOCIATED NUMBERS OF THE FIELDS YOU WANT
- IM THE REPORT LINE (In the order you want them to occur)
~ COUNT, TOTAL., OR AVERAGE LINES AT THE END OF THE REPORT
- DR BOTH
2___3__4__
FIELDS FOR LINE:
1 MNUM
4 MCTY
7 MSSN

!

epre]
Oy
OO

R
2
e

3,

N PRV EXE
2 !
SOOI, 4 X0 %

ee e v e e

o,

o X
RSO

0

Tejsle sole,

7.4.2.3 List, Count, Total, and Average (Step 5). This screen allows you to select various field
options: listing for output, counting occurrences, averaging values of all occurrences, and totaling
the values of all occurrences.

You can select one or all of the options by entering an X below the appropriate letter, to the left of
the field name. L represents list output, C represents counting, T represents totaling, and A
represents averaging. To select the default option (L), press the NEW LINE/RETURN key. After you
finish selecting the options, display the next screen by pressing either the F3 or the NEW
LINE/RETURN key.

Fields that are listed for output are positioned two spaces apart in the report.

7-8 2276554-9701



Guided Query Utility

The following example shows the Step 5 screen with entries for listing data from five fields:

ENTER AN ‘X‘ IN THE COLUMNS TO THE LEFT OF EACH OF THE FIELDS
! YOU JUST SPECIFIED TO INDICATE WHETHER YOU WANT THE FIELD TD BE

LISTED (L), COUNTED (C), TOTALED (T), AND/OR AVERAGED (A)

TO GET THE DEFAULT, "L", FOR ANY FIELD, JUST PRESS THE RETURN KEY.
LCTA FIELD LCTA FIELD LCTA FIELD
X___ MNAM X___ MSTR X___ MCTY
X___ MSTT X__ MZIP

7.4.2.4 Line Heading (Step 6). The line heading screen requests line headings that are to appear
above the report line. Any information can be used for a heading. Normally, a column heading is
built with field descriptions above each output field. Use the field lengths specified in Step 4 to
aid in the calculation of the heading sizes, centering, and so on.

You must respond to the first prompt. A response of N (no) indicates that no headings are desired
and passes control to the next screen. If you respond Y (yes), you can choose either the default
line headings or supply your own headings. The default heading contains the names of the fields
specified in Step 4, positioned above the data for that field. Answer yes to this question to accept
the default heading. Control immediately passes to the next screen. To enter headings other than
the default heading, answer no to this question and enter the headings as you want them to
appear on the report.

2276554-9701 7-9



Guided Query Utility

If you request line headings, enter each heading within double quotation marks in the space pro-
vided at the bottom of the screen. Specify a blank line heading by entering two consecutive quo-
tation marks or by entering SKIP 1. Headings can be a maximum of 132 characters long, but those
over 80 characters will be truncated when displayed on a VDT. Once you have entered your
headings, press the F3 key to display the next screen.

The following example shows the Step 6 screen specifying the default line header:

DD YOU WANT ONE OR MORE HEADER LINES TO PRECEDE THIS
REPORT LINE? Y (Y/N)

IF YES, DO YOU WANT TO USE THE DEFAULT HEADER LINE? Y (Y/N)
(The default heading is comprised of the field names shown previously)
IF YOU DO NOT WANT THE DEFAULT HEADER., ENTER YDUR OWN HEADING LINE(S) BELOW:

7.4.2.5 Line-Level Conditions (Steps 7, 8, and 9). You can select lines for output based on the
value of a specific field within a line. This screen allows you to select those lines.

To build a test condition, you need to know the type of condition to be built, the fields involved,
and the desired relationships of the fields. A condition consists of two operands, or fields, and a
relational operator. The second operand must be from the same line as the first operand or it must
be a constant. Relational operators form the comparison between the two operands. (See Table
4-1 for a list of the operators and the meaning of each.) Group key identifiers (type GRP) cannot be
specified as operands.

7-10 2276554-9701



Guided Query Utility

A condition can have multiple statements of relationships or conditions. The Boolean operators
AND and OR combine relationships to form complex conditions. If two conditions are connected
by AND, both conditions must be true in order for the entire test condition to be true. If two con-
ditions are connected by OR, only one condition need be true for the entire complex condition to
be true. If AND and OR operators are mixed in the same complex condition, AND conditions are

evaluated first in a left-to-right sequence. Any complex condition is evaluated in a left-to-right
sequence.

The first screen (Step 7) for entering the conditions asks if you want to specify a line-level con-
dition. The screen for Step 7 is as follows:

DO YOU WANT TO SPECIFY A TEST CONDITION THAT APPLIES ONLY TO
THIS REPORT LINE? Y (Y/N)

(Press FUNCTION KEY 5 for an explanation of the types of tests you may make)

RN
20t %]
wtatele?

wTale,
SO

; 2:1;;;;)2:.

2276554-9701 7-11



Guided Query Utility

I1f you want the report to contain all of the lines in the file, answer N (no) to this prompt. As a resulvt,
control transfers to Step 10. If you want to establish selection conditions, answer Y (yes). The next
screen displayed is Step 8, which allows you to specify the test condition.

The following example screen shows test condition MSTT EQ “TX”. Within every eligible line, the
field MSTT must equal TX for that line to be included in the report.

CREATE YOUR TEST CONDITION: (Hit FUNCTION KEY 5 for an explanation) STEP 8
FIELD 1 OPERATOR
MBTT EQ
FIELD 2 OR CONSTANT
HTX(I

Telelelelee

%als,

]

SEEEEEEAND
X2025%
RNARNRHAS

POSSIBLE TEST FIELD FORMAT LENGTH POSSIBLE TEST FIELD FORMAT LENGTH
MNUM NUM MNAM CHAR 20
METR CHAR 20 MCTY CHAR i5
MSTT CHAR MZIP NUM o
MSSN NUMR

s

aled

RS

SR

ote

e
05

*e%e

X0
Lalsle!

ORI
OO RIN

The first prompt requests the field ID or alias to be used as the first operand. The second prompt
requests the relational operator for the condition: EQ for equal, LT for less than, and so on. The
HELP screen for this step explains the relational operators.

7-12 . 2276554-9701



Guided Query Utility

The third prompt requests the second operand. This can be either a field ID alias or alternate name
selected from the names listed on the screen, or a numeric constant or literal string. if the second
operand is a field ID or alias, the format and length must match the format and length of the FIELD
1 entry. Otherwise, if the format of the first operand is NUM, the second operand must be a
numeric constant; if the format of the first operand is CHAR, the second operand must be a
character string. You must enclose a literal string in double quotation marks. After you have
entered the second operand, press the F3 key to pass control to the next step.

The third screen (Step 9) allows you to attach another condition to the one just created. An
example of the screen for Step 9 is as follows:

STEP 9/i3 |
DO YOU WANT TO CONNECT ANOTHER TEST CONDITION TO THE ONE YOU JUST CREATED?
N (Y/N)

CONNECT WITH ‘AND’ OR ‘OR‘? (AND/OR)

To create a compound condition, answer Y (yes) to the first prompt. If no other conditions are
required for this line, answer N (no) to this prompt. If your response is no, control passes to Step
10. If your response is yes, answer the second prompt with AND or OR. After you respond to this
prompt, control returns to Step 8.

2276554-9701 7-13



Guided Query Utility

7.4.2.6 Output Continuation (Step 10). The output continuation screen asks if more report lines
are to be built. The screen for Step 10 is as follows:

STEP 10

DO YOU WANT TO BUILD ANOTHER REPORT LINE? N (Y/N)

A'Y (yes) response passes control back to Step 3 to build another report line. An N (no) response
passes control to Step 11.

7-14 2276554-9701



Guided Query Utility

7.4.3. Record-Level Conditions (Steps 11 Through 13)

A record-level condition applies to an entire record. You can apply a record-level test to fields in
different lines of the file. Although you can specify multiple line-level conditions, you can specify
only one record-level condition.

Before you can select a record for output, the record-level conditions must be met. The variable
aspect of record-level conditions is in the use of quantifiers ANY and EVERY. ANY means that
only one occurrence need be true for the condition to be true, and EVERY means that every occur-
rence must be true for the condition to be true. For a complete explanation of conditions and
quantifiers, refer to Section 3.

The screens for record-level conditions are similar to the screens for line-level conditions; the
primary difference is in the use of ANY and EVERY for record-level tests.

The first screen (Step 11) asks if you want to specify a record-level condition. The following is an
example of the screen for Step 11:

STEP 11

DO YOU WANT TO SPECIFY A TEST CONDITION THAT APPLIES TO
ALL REPORT LINES AT ONCE? Y (Y/N)
(Press FUNCTION KEY 5 for an explanation of test conditions.)

If you respond Y (yes) to this question, control transfers to the next screen, Step 12; otherwise,
control transfers to Step 14.

2276554-9701 7-15



Guided Query Utility

The following example shows the Step 12 screen specifying a record-level test condition:

CREATE YOUR TEST CONDITION: (Hit FUNCTION KEY 5 for an explanation) STEP 12
ANY/EVERY FIELD 1 ' OPERATOR ANY /EVERY
EVERY MNUM NE
FIELD 2 OR CONSTANT
8500

POSSIBLE TEST FIELD FORMAT LENGTH POSSIBLE TEST FIELD FORMAT LENGTH
MNUM NUM b6 MNAM CHAR 20
MSTR CHAR 20 MCTY CHAR 15
MSTT CHAR MZIP NUM 5
MSSN NUM MJOB CHAR 10
MLOC CHAR MDEP CHAR 15
MTMR CHAR MTES NUM
MTEX NUMR MDDT NUM
MPYP NUM MRAT NUM
MCOM NUM MSLS NUM
DEGR CHAR YEAR
CoLL CHAR GPA
JOBT CHAR COomMP
STAT CHAR PSAL

PLOC CHAR PDEP

=}

&
e

K

2!
B
o
.
»,

O
X
e

0
i
e
I

RRTLLILE
OO0

Seter
oEat

RIS

o O

Lol SR ARAR SRV

<

oJoreleinie

a%%e]e!
o

For the first prompt, enter ANY or EVERY. ANY means that only one occurrence in a record of
FIELD 1 must meet the test condition for the condition to be true. EVERY means that every occur-
rence in a record of FIELD 1 must meet the condition for the condition to be true.

The second prompt requests the first operand (FIELD 1). Enter the desired field ID or alias to be
used as the first operand in the test condition. Make a selection from the fields displayed in the
lower half of the screen. Use the F1 and F2 function keys to scroll up and down through the
various fields.

For the third prompt, enter the desired relational operator that defines the relationship of the
operands (such as EQ for equal or LT for less than). The HELP screen describes the relational
operators. To display the HELP screen, press the F5 function key. To return from the HELP screen,
press the F3 function key.

If FIELD 2 is to be a field ID alias or alternate name, enter either ANY or EVERY for the fourth

prompt. If FIELD 2 is to be a numeric constant or a literal string, skip the fourth prompt by pressing
the NEW LINE/RETURN Kkey.

7-16 2276554-9701



Guided Query Utility

The fifth prompt requests the field name, alias, alternate name or constant for the second operand
(FIELD 2) of the condition. A nonconstant operand shouid be a field ID, alias, or alternate name
from one of the possible test fields displayed in the lower half of the screen. The format and
length of the field ID, alias, or alternate name must match the format and length of the field ID,
alias, or alternate name specified for FIELD 1. You must enclose a litera! string in double quo-
tation marks, but a numeric constant does not require them. Use the format of the field specified
in FIELD 1 to determine the type of constant to enter. If the format of FIELD 1 is CHAR, specify a
literal string. If the format of FIELD 1 is NUM, specify a numeric constant.

The third screen allows you to build compound statements for the record-level condition. An
example of the screen for Step 13 is as follows:

STEP 9/13 B
DO YOU WANT TO CONNECT ANOTHER TEST CONDITION TO THE ONE YOU JUST CREATED? :
N (Y/N)

CONNECT WITH ‘AND’ OR ‘OR‘? (AND/GR)

If you respond N (no) to the first prompt, control immediately passes to Step 14; otherwise, you
must answer the second prompt. Enter either AND or OR in this field. When you press either the
NEW LINE/RETURN key or the F3 key, control returns to Step 12.

2276554-9701 717



Guided Query Utility

7.4.4 Sort Specifications (Steps 14 Through 17)

You can specify the order in which the report lines are printed by completing the sort specification
screens. However, you cannot select the sort option uniess the Sort/Merge utility has been
installed on your system program file.

The first screen of the sort specifications (Step 14) asks if the report lines are to be sorted. An
example of this screen is as follows:

STEP 14

DO YOU WANT TO SORT THE REPORT LINES? Y (Y/N)

R R R R
S T

oo
o
0

S RS
O ORI
A AR I

e
x5
65

O

SO0

R,
TR ves

Patagece:
" etetely
o%ete’s

If you respond N (no) to this prompt, control passes to Step 18. If you respond Y (yes), the next
screen (Step 15) appears.

The next screen allows you to specify the line on which to sort. You can specify sorting on more
than one data base field, but all sort fields must be from the same data base line.

718 . 22765549701



Guided Query Utility

Enter the number of the line to be sorted. Then, press the F3 key or the NEW LINE/RETURN key to

proceed to the next screen. The following is an example of the screen for Step 15 when sorting is
specified on the line EMPLOYEE-INFO:

STEP 15

¥ SELECT THE DATA BASE LINE YOU WISH TO SORT ON.
4 01
{Use FUNCTION KEY 1 & 2 to scroll thru the data base lines and their fields)

INFORMATION FOR FILE PAY1
FIELDS FOR LINE: 01

FIELD FORMAT LENGTH FORMAT LENGTH
MNUM NUM -3 CHAR ao
METR CHAR 20 CHAR 15
METT CHAR 2 NUM 5
MESN NUM ?
FIELDS FOR LINE: CU

FIELD FORMAT LENGTH FORMAT LENGTH
MNUM NUM 6 CHAR 10
MLOC CHAR 10 CHAR 15
MTHMR CHAR i NUM 2
MTEX NUM 2

FIELDS FOR LINE: CR
FI1ELD FORMAT LENGTH FORMAT
MNUM NUM b NUM
MPYP : NUM 2 NUM

2276554-9701 7-19



Guided Query Utility

The next screen (Step 16) requests the fields that are to be used as the sort keys. This screen is
similar to the screen used in Step 4. You can enter a maximum of 20 numbers. After you have
entered all of the numbers, press the F3 or NEW LINE/RETURN key to proceed to the next screen.
The following is the screen for Step 16 when the field to be sorted is the fourth field, MCTY:

YOU CAN SORT ON MORE THAN ONE FIELD AT A TIME AS LONG AS STEP 16
ALL THE FIELDS ARE FROM THE SAME DATA BASE LINE.

ENTER THE ASSOCIATED NUMBERS OF THE FIELDS THAT YDU WANT

TO SORT ON.

FIELDS FROM LINE: 01
1 MNUM 2 MNAM 3 MSTR
4 MCTY 5 MBTT & MZIP
7 MSEN

o
52
oy
0

3

(3
o
oae
e
2!
0}

TmaTe e u e e e 0 b e
e
AN

7-20 2276554-9701



Guided Query Utility

You can sort the field in either ascending or descending order. Since the default sort order is
ascending, you need not enter anything to sort in ascending order. Enter a D next to each field to
be sorted in descending order. When you have completed all entries, press the F3 or NEW
LINE/RETURN key to proceed to the next screen.

In the following example of Step 17, descending order is selected:

THE DEFAULT SORT DRDER IS ASCENDING ORDER. ENTER A ‘D’ IN THE STEP 17
COLUMN TO THE LEFT OF EACH OF THE FIELDS YOU JUST SPECIFIED IF YOU
WANT THE FIELD TO BE SORTED IN DESCENDING ORDER.
TD GET THE DEFAULT -~ ASCENDING ORDER, JUST PRESS THE RETURN KEY.
FIELD FIELD FIELD
D MCTY

2276554-9701 7-21



Guided Query Utility

The next step, Step 18, allows you to return to any of the Guided Query screens and make changes
or corrections, If all of the data has been entered correctly, press F3 key to proceed to the termi-
nation screens. If corrections or changes are necessary, press the F4 key until the appropriate
step appears. You can return all the way to Step 2; however, you cannot return to Step 1 to change

the file ID.

An example of the screen for Step 18 is as follows:

AT THIS PODINT, ALL OF THE INFORMATION REQUIRED TO BUILD A QUERY
STATEMENT HAS BEEN ENTERED. IF aALL OF THE DATA HAS BEEN ENTERED
CORRECTLY, PRESS THE F3 KEY TO TERMINATE THIS PORTION OF THE
GUIDED QUERY UTILITY. HOWEVER, IF YOU WANT TOD MAKE ANY CHANGES TO
ANY BTEP, PRESS THE F4 KEY UNTIL YOU GET TO THE STEP THAT YOU WANT
TO CHANGE. YOU MAY GD ALL THE WAY BACK TO STEP 2, BUT YOU MAY NOT
RETURN TO STEP 1 TO CHANGE THE DATA BASE FILE NAME.

PRESS EITHER THE F3 OR F4 KEY.

STEP 1B

OO IR R ISR ST
IRERE: IR e
e

RXERS
5
ARN

7-22

2276554-9701



Guided Query Utility

7.4.5 Termination Screens

At this point, you have entered all of the data required to build a Query statement. The information
collected has been formatted into an input Query statement. The termination screens save the
Query statement and execute it.

The Guided Query utility has two termination screens. The first has two prompts, as follows:

END OF GUIDED QUERY ENTRY
SAVE FILE PATHNAME:
DO YOU WANT TO SEE IT?: YES

For the first prompt, enter the pathname of the file in which you want to save the Query statement
that the Guided Query utility just built. The Query processor can execute the saved Query infor-
mation or statement again by using the QUERY command. Press the NEW LINE/RETURN key,
leaving a blank as your response, if you do not want to save the statement.

The next prompt asks if the Query statement just built should be displayed on the screen. Enter
either Y (yes) or N (no). You can accept the default entry (Y) by pressing the NEW LINE/RETURN
key; as a result, the statement appears. Enter N (no) when you do not want to display the
statement.

By displaying the Query statement, you become familiar with Query statement syntax (Sections 2
through 5). To proceed to the next screen after observing the Query statement, press the
HELP/CMD key.

The final termination screen allows you to execute the Query that the Guided Query utility built:
END OF GUIDED QUERY ENTRY

DO YOU WANT TO EXECUTE IT?: YES
REPORT OUTPUT PATHNAME:

An N (no) response causes immediate termination of the session. To select the Y (yes) response,
press the NEW LINE/RETURN key. Control then passes to the next prompt. When you enter the
pathname for the output of the execution and execute the Query statement, the session ends.

Figure 7-1 shows the statement and output produced using the responses provided in the pre-
ceding example screens.

2276554-9701 7-23



Guided Query Utility

7-24

Query Statement:

LIST

MNAM MSTR

MCTY MSTT MZIP
HEADER

WHERE

MS8TT EQ "TX*

BY KEY BY LIST
FROM PAY1
SORTED BY MCTY :D

HEADER

"EMPLOYEE ONFORMATION “8YBDATE
SKIP 2

WHERE

EVERY MNUM NE 8500

Query Output:

EMPLOYEE ONFORMATION 06/07/82
MNAM MSTR

HOWELL, JOHN 555 RID GRANDE

MNAM MSTR

MEREDITH, JOHN 78 N. LAMAR

MNAM MSTR

STEPHENS, JANET 56 PURNAM DR

MiNAM MSTR

HAYMNES, BILL 500 LAIRD

~BYSTIME

13: 20: 37

MCTY
GRANGER
MCTY
GOL.IAD
MCTY

ECHO

MCTY

DEL. CURTO

Figure 7-1. Guided Query Example

MZIP
78787
MZIP
89898
MZIP
87989
MZIP
85269

2276554-9701



8

Error Messages

8.1 INTRODUCTION

This section describes Query-990 error messages and defines the action to be taken in response
to each message. A table of corresponding internal message codes, Table 8-1, is included at the
end of this section.

The two main categories of errors are Query processor errors and Guided Query errors. Error mes-
sages in this section are listed in numerical order within the appropriate error category.

The prescribed actions are guidelines only. The action might be inappropriate when a mistake
other than the one noted is causing the problem. For example, the beginning quotation mark for a
literai could be missing and Query-990 would most likely examine it as an alias. If the literal were
more than 20 characters, it would be flagged because an alias cannot be over 20 characters in
length. Although the corresponding error and action would seem correct to Query-990, they would
be inappropriate. Therefore, use judgement in determining the problem, and the action to take fol-
lowing an error.

8.2 QUERY PROCESSOR ERRORS

Query processor errors occur during the execution of the Query processor. The two categories of
Query processor errors are run-time errors and Query statement errors.

8.2.1 Run-Time Errors

Run-time errors have similar meanings but involve different files; consequently, you should read
carefully all information associated with the error message. Run-time errors appear on the ter-
minal after execution of the statement. When you are running a batch stream Query, run-time
errors appear in the batch stream listing.

8.2.2 Query Statement Errors

Invalid syntax or semantic errors used in the Query statement cause Query statement errors.
These are errors in the way the Query statement is worded or errors in the meaning of the Query
statement as it relates to the current DBMS-990 or DD-990 environment. When Query statement
errors occur, the message FATAL ERRORS IN QUERY STATEMENT appears on the screen. (The
message is written in the batch stream listing instead of the screen if the Query is executed in
batch mode.) The individual errors that caused this message are output to the listing file. When
you request a listing of the Query statement, Query statement errors appear on the first page of
the listing file along with the Query statement. The two types of Query statement errors are mis-
cellaneous Query statement errors and syntax errors.

2276554-9701 8-1



Error Messages

8.2.2.1 Miscellaneous Query Statement Errors. Miscellaneous Query statement errors relate to
the overall conformity of the Query statement. Miscellaneous Query statements appear at the end
of the Query listing and involve the construction of the entire statement. These errors are often
general in nature and do not relate to any specific line in the Query statement.

8.2.2.2 Syntax Errors. Syntax errors deal with the formulation of the Query statement. Each error
message appears on a single line below the Query line that contains the error. A corresponding
exclamation point directs you to the error in the statement. When you request a listing of the
Query statement, the syntax errors appear on the first page of the listing file along with the Query
statement.

Figure 8-1 is an example of an invalid Query statement that contains two errors following the BY
clause. The first error resulted from a missing second operand in the third condition of the
WHERE clause. The exclamation point for the first error is positioned after the error, which is as
close as Query-990 can determine. The exclamation point for the second error points to the
second BY clause because only one BY clause is needed. Query-990 assumes that the first one is
correct and flags any subsequent BY clauses.

WHERE EVERY LTR1 E& "A" AND
EVERY CLR1 E& "BLUE"
ANY CLR2 ELR
BY KEY FROM EXMP RY L IST
] t
## ERROR #% MISSING OFERAND
#3# ERROR ## LISTING ORDER ALREADY SFPECIFIED
LIST LTR1.CLR1s
LTRZ,CLRZ HEADER “LINE & INFO"3
LTRZ3:

Figure 8-1. Example Syntax Errors

8-2 2276554-9701



Error Messages

8.2.2.3 Query-990 Error Message Format. Query-990 error messages are in the following form:
aaa QUERY-nnnn <message>
The aaa is the error source, which can be one, two, or three characters as follows:

| — informative
W — warning
U — user fatal error
S — system fatal error
H — hardware fatal error
US — user or system fatal error
UH — user or hardware fatal error
SH — system or hardware fatal error
USH — user, system, or hardware fatal error

The nnnn is the QUERY message number.

For example, if the message number is 0001, you can use the Show Expanded Message (SEM)
command to display the message explanation, as follows:

SHOW EXPANDED MESSAGE
MESSAGE CATEGORY: QUERY
MESSAGE ID: 0001

The following appears:
Explanation:
The Query aborts because the user has executed a Kill Task (KT). This message can also
indicate an internal Query error.
User Action:
Resubmit the Query. If an internal Query error is suspected, you might need to restart
DBMS-990. Contact customer support if necessary.
The Query processor error messages are as follows:
US QUERY-0001 INTERNAL QUERY ERROR — CODE:?1 WP:?2 PC:?3 ST:?4
Explanation:
The Query aborts because the user has executed a Kill Task (KT). This message can also
indicate an internal Query error.
User Action:

Resubmit the Query. If an internal Query error is suspected, you might need to restart
DBMS-990. Contact customer support if necessary.

22765549701 8-3



Error Messages

US QUERY-0002 FATAL ERRORS IN QUERY STATEMENT

Explanation:
Errors were encountered in compilation of the Query statement that prevented it from
being executed.

User Action:
Check the Query listing to see what the errors were and correct them.

US QUERY-0003 ERROR STATUS RETURNED FROM DBMS/DM—?1

Explanation:
DBMS-990 or DD-990 returned an abnormal status code during the execution phase of
the Query. ?1 is the status code.

User Action:
Find the exact meaning of this status code in Appendix A of the Model 990 Computer
Data Base Management System Programmer’s Guide or Section 8.5 of the Mode/ 990
Computer Data Dictionary User's Guide. Take the necessary and appropriate action
based on the description of the error.

US QUERY-0004 UNABLE TO OPEN CHANGE DATA FILE PATHNAME

Explanation:
Change data constants were included in the Query statement, but no change data file
pathname was specified in the QUERY procedure.

User Action:
Respond with NO to the prompt DEFAULT REPORT PARAMETERS?, and give the
pathname of the data file as the response to CHANGE DATA PATHNAME.

US QUERY-0005 UNABLE TO OPEN INPUT QUERY STATEMENT PATHNAME

Explanation:
This file is the input file for using a saved Query statement. The cause of the error could
be an incorrect pathname, a full directory, or a full disk space.

User Action:
Locate the cause of the problem by executing a List Directory (LD) command to get the
number of entries or a Show Volume Status (SVS) command to determine the amount of
available disk space. Check other possible causes for the error, and then respond
accordingly.

US QUERY-0006 UNABLE TO RETRIEVE PARAMETERS ON BID OF QUERY

Explanation: .
Query was unable to retrieve one of the required parameters on the bid of the Query task.

User Action:

Check that the bid parameters are in their proper order and contain valid values. Contact
customer support if necessary.

8-4 2276554-9701



Error Messages

US QUERY-0007 UNABLE TO OPEN OUTPUT QUERY STATEMENT PATHNAME

Explanation:
This file is the output file for saving the Query statement text. The cause of the error
could be an incorrect pathname, a full directory, or a full disk space.

User Action:
Locate the cause of the problem by executing a List Directory (LD) command to get the
number of entires or a Show Volume Status (SVS) to determine the amount of available
disk space. Check other possible causes of the error, and then respond accordingly.

US QUERY-0008 UNABLE TO OPEN REPORT/TRACE ACCESS NAME

Explanation:
The output file contains the retrieved data from the files. The cause of the error could be
an incorrect pathname, a full directory, or a full disk space.

User Action:
Locate the cause of the problem by executing a List Directory (LD) command to get the

number of entries or a Show Volume Status (SVS) to determine the amount of available
disk space. Check other possible causes for the error, and then respond accordingly.

W QUERY-00098 NO DATA SELECTED FOR OUTPUT

Explanation:
No data was found that met all of the conditions specified.

User Action:
No action is needed (informative message).

US QUERY-0010 DATA TYPE NOT SUPPORTED BY QUERY

Explanation:
One of the data types not supported was encountered.

User Action:

Verify that all fields used in the Query statement have supported data types. Use the
DDL listing of the file for verification.

US QUERY-0011 QUERY ABORTED
Explanation:
The user entered “A” (for abort) after pressing the CMD or ENTER key during the edit of

a Query statement.

User Action:
None required.

2276554-9701 8-5



Error Messages

US QUERY-0012 UNFORMATTED CAN’T BE OUTPUT TO DEVICE

Explanation:
Unformatted output was requested in the report parameters, and the REPORT/TRACE
ACCESS NAME was a device name rather than a file name.

User Action:
Send unformatted output, which contains binary data, only to a sequential or relative
record file.
US QUERY-0013 EXPRESSION OPERAND MISSING

Explanation:
An operand is missing in the expression portion of a DEFINE clause.

User Action:
Check to see that the expression syntax is valid.

US QUERY-0014 UNMATCHED RIGHT PARENTHESES

Explanation:
A DEFINE expression has more right parentheses than left parentheses.

User Action:
Count the parentheses and correct the expression.

US QUERY-0015 READ PAST EOF — QUERY ENDS UNEXPECTEDLY
Explanation:
The Query parser has reached an end-of-file before the logical end of the Query state-

ment.

User Action:
Check the listing and verify that the Query statement is valid.

US QUERY-0016 SYNTAX ERROR IN DEFINE EXPRESSION

Explanation:
A syntax error of an indeterminate nature was detected in a DEFINE expression.

User Action:
Check the syntax and spelling in the DEFINE clause.

US QUERY-0017 DEFINE VARIABLE EXPECTED
Explanation:
A DEFINE variable is expected after the keyword DEFINE or after a semicolon within the
DEFINE clause.

User Action:
Check to see if the DEFINE clause syntax is valid.

8-6 2276554-9701



Error Messages

US QUERY-0018 EXPRESSION OPERATOR MISSING

Explanation:
An operator is missing in the expression portion of a DEFINE clause.

User Action:
Check to see if the expression syntax is valid.

W QUERY-0019 NO DATA SELECTED FOR MODIFICATION
Explanation:
No data was found that met all conditions specified while performing an INSERT,
DELETE, or UPDATE.

User Action:
No action is needed (informative message).

US QUERY-0020 UNABLE TO ACCESS ALTERNATE COLLATING SEQUENCE FILE

Explanation:
The format for the alternate collating sequence file is incorrect.

User Action:
Verify that the file is in the exact format as specified in Appendix C.

US QUERY-0021 QUERY BEGINS WITH INVALID FUNCTION

Explanation:
Query has detected an invalid clause as the first element of the statement.

User Action:
Check the statement and move the offending clause to its proper position.

US QUERY-0022 FIELD NAME OR LINE IDENTIFIER EXPECTED
Explanation:

An invalid element, character, etc., in the field list was found. Query-990 looks for a field
list element such as a semicolon, field name, alias, line type, literal, or space character.

User Action:
Examine the field list at the indicated position.

US QUERY-0023 INVALID SYNTAX — UNABLE TO PROCESS

Explanation:
A meaningless character or word was encountered in the Query statement.

User Action:
Examine the statement where the exclamation point occurs for a possible typing error.

2276554-9701 8-7



Error Messages

US QUERY-0024 DIGIT EXPECTED
Explanation:
A colon following a field name was not followed by a number specifying the output
length.

User Action:
Follow the colon with a number specifying the output length or remove the colon.

US QUERY-0025 INVALID REPORT LINE ELEMENT IN UNFORMATTED OUTPUT
Explanation:
Requests were made for headers, spacing, output lengths, or embedded literals in
unformatted output.

User Action:
Remove the syntax causing the error, as indicated by the exclamation point.

US QUERY-0026 NO REPORT LINES DEFINED

Explanation:
No report line was specified with the LIST function or the keyword LIST was omitted.

User Action:
Insert the necessary report lines after the keyword LIST.

US QUERY-0027 MULTIPLE REPORT LINES WITH NO ORDER GIVEN

Explanation:
Mulitiple report lines were specified and no BY clause was entered.

User Action:
Insert the required BY clause.

US QUERY-0028 NO FILE DEFINED WITH “FROM” CLAUSE

Explanation:
The FROM clause was not specified anywhere in the Query statement.

User Action:
Insert the required FROM clause.

US QUERY-0029 FILE IDENTIFIER MUST FOLLOW “FROM”

Explanation:
The file name was not specified after the keyword FROM.

User Action:
Specify the required file name.

8-8 2276554-9701



Error Messages

US QUERY-0030 INCOMPLETE QUERY STATEMENT
Explanation:
A Query statement was processed but not all of the indicated clauses and/or elements
were included.

User Action:
Complete the statement where the exclamation point is shown.

US QUERY-0031 “KEY” OR “LIST” MUST FOLLOW “BY”

Explanation:
Something other than BY KEY, BY LIST, or BY KEY BY LIST was specified.

User Action:
Correct the BY clause where indicated by the exclamation point.

US QUERY-0032 LISTING ORDER ALREADY SPECIFIED

Explanation:
More than one BY clause was specified in a Query statement.

User Action:
Remove the extra BY clause(s).

US QUERY-0033 UNEXPECTED CHARACTER IN CONDITION

Explanation:
Within a condition, an invalid character was specified.

User Action:
Correct the character where the exclamation point occurs.

US QUERY-0034 MULTIPLE FILES DEFINED IN MODIFICATION FUNCTION

Explanation:
Multiple FROM clauses were specified.

User Action:
Choose one FROM clause and eliminate the others.

US QUERY-0035 MISSING OPERAND

Explanation:
An operand was omitted in a simple or complex condition.

User Action:

Check each relational operator for two operands and each Boolean expression for two
simple conditions.

2276554-9701 8-9



Error Messages

US QUERY-0036 UNBALANCED PARENTHESES

Explanation:
A parenthesis is missing somewhere in the WHERE clause.

User Action:
Match all left parentheses with right parentheses.

US QUERY-0037 MISSING OPERATOR

Explanation:
A relational operator is missing in a condition.

User Action:
Insert the required relational operator.

US QUERY-0038 ALIAS LONGER THAN 30 CHARACTERS

Explanation:
A DBMS-990 or DD-990 element assumed to be an alias contained more than 30
characters.

Specify the correct identifier.

US QUERY-0039 END OF REPORT LINE INDICATED WITH NO FIELDS SPECIFIED

Explanation:
A semicolon was encountered before any DBMS-990 or DD-990 elements were specified.

User Action:
A report line must specify at least one DBMS-990 or DD-990 element. Either specify one
or more elements or make this report line into a report line heading or main heading.

W QUERY-0040 HEADING LITERAL PAST PAGE WIDTH — TRUNCATED HERE

Explanation:
This is a warning and does not prevent the Query statement from executing. A heading
or footing literal cannot be longer than the page width specified.

User Action:
Break the literal into two or more literals, if necessary.

US QUERY-0041 ALL FIELDS IN REPORT LINE MUST COME FROM SAME LINE TYPE — CHECK ?1

Explanation:
A report line contains at least one field ?1 that is not part of the same line type.

User Action:

Check the report line containing the field or alias mentioned in the message, and verify
that it is part of the same line type as the rest of the fields.

8-10 2276554-9701



Error Messages
PAGE 8-10

US QUERY-0042 DBMS/DD ERROR IN COMPILE PHASE — STATUS 1

Explanation:

Query-990 is unable to retrieve information about a field because of a data base or data
manager error.

User Action:
Refer to Appendix A of the Model 990 Computer Data Base Management System Pro-
grammer’s Guide or Section 8.5 of the Model 990 Computer Data Dictionary User’s
Guide for the exact meaning of this error code.

US QUERY-0043 UNABLE TO PROCESS FIELD — ?1

Explanation:
In this case, Query-990 was unable to retrieve information about the field.

User Action:
Check the spelling of the field name; check to see that the field name corresponds to the
DDL name.

W QUERY-0044 CONDITIONS WITH NO QUANTIFIERS DEFAULT TO “ANY”

Explanation:
If a quantifier is specified in a simple condition, both operands should contain a quanti-
fier. ANY is the default for the operand that does not contain the quantifier. Since this
message is only a warning, the statement will be executed.

User Action:
Check the meaning of the statement that has ANY as the default. Add the appropriate
quantifier where applicable uniess ANY is desired as the default in all cases.

US QUERY-0045 CONDITION FIELDS MUST BE IN SAME LINE TYPE IF NO QUANTIFIERS USED
Explanation:
Operands must be of the same line type if you are comparing fields in a simple condition
when not using quantifiers.

User Action:
Change the appropriate operands to correspond to the same line type.

US QUERY-0046 FIELDS COMPARED WITH DIFFERENT FORMATS, SEE FIELD ?1
Explanation:
In a simple condition, both operands were specified as fields but are of different lengths
or formats.

User Action:
Ensure that both fields in a condition have the same format.

2276554-9701 8-11



Error Messages

US QUERY-0047 QUANTIFIERS NOT ALLOWED WHEN ORDERED “BY LIST”

Explanation:
Record-level conditions are allowed only when output is ordered BY KEY or BY KEY BY
LIST.

User Action:
Remove the quantifiers or change the order.

US QUERY-0048 LINE-LEVEL CONDITION NOT SAME LINE TYPE AS REPORT LINE

Explanation: :
When the sequence is BY LIST or modification is being performed, line-level conditions
must come from the same line type as the report or modification line.

User Action:
Check the DDL to see if the fields are in the same line.

US QUERY-0049 MAIN HEADINGS AND FOOTINGS LONGER THAN PAGE LENGTH

Explanation:
The total number of main headings and footings specified is longer than the specified

naae lenath
page engin.

User Action:
Increase the number of lines per page.

US QUERY-0050 TOTALING A NON-NUMERIC FIELD IS NOT ALLOWED — SEE FIELD ?1

Explanation:
Totaling is permitted only on numeric fields.

User Action:
Remove the totaling option from the field specified in the message.

US QUERY-0051 DATA TYPE NOT SUPPORTED BY QUERY — SEE FIELD ?1

Explanation:
One of the data types not supported was encountered.

User Action:
Verify that all fields used in the Query statement have supported data types. Use the

DDL listings for verification.

8-12 2276554-9701



Error Messages

US QUERY-0052 MORE THAN ONE RECORD LEVEL CONDITION IS SPECIFIED

Explanation:
Multiple record-level conditions were specified in the WHERE clause. You can specify
only one record-level condition containing quantifiers.

User Action:
Retain the one record-level condition desired. Remove the other conditions with ANY or
EVERY contained in them.

W QUERY-0053 REPORT LINE LONGER THAN MAXIMUM — TRUNCATED

Explanation:
After formatting, the total length of all elements of a report line exceeds 480 characters.

User Action:
Split the report line into two lines or include length parameters with fields that are
longer than necessary.

US QUERY-0054 HIGH ORDER TRUNCATION OF NUMERIC CONSTANT 21

Explanation:
A constant was specified that contained too many significant digits.

User Action:
Check all constants to see if they conform with the type of the field with which they are
associated (as defined in the DDL).

US QUERY-0055 MORE THAN ONE LINE-LEVEL CONDITION SPECIFIED FOR LINE 21

Explanation:
When all line-level conditions are specified in the main WHERE clause, only one line-
level condition per line type is allowed.

User Action:
Respecify the Query statement with line-level conditions specified with the report line
to which they apply, using separate individual WHERE clauses.
US QUERY-0056 CONDITION WITH NO ASSOCIATED REPORT LINE — LINE 71

Explanation:
When line-level conditions were specified in the main WHERE clause, one of them used
a line type that had no corresponding report line.

User Action:
Check all conditions for a corresponding report line.

2276554-9701 8-13



Error Messages

US QUERY-0057 LINE LEVEL SORT NOT ALLOWED WITH “BY KEY”
Explanation:
Individual report lines come out in file order when the sequence is BY KEY and cannot
be sorted.

User Action:
Change the sequence to BY KEY BY LIST.

US QUERY-0058 RECORD LEVEL SORT NOT ALLOWED WITH “BY LIST”
Explanation:
The BY LIST sequence does not use records in outputs, so output cannot be sorted on a

record :basis.

User Action:
Change the sequence to BY KEY BY LIST.

US QUERY-0059 SORT AND OUTPUT FIELDS TOO LARGE — MUST TOTAL <350

Explanation:
The sort key length plus the total output line length must be less than 350 characters.

User Action:
Reduce the sort keys or the output line size.

US QUERY-0060 INVALID SORT CLAUSE ELEMENT
Explanation:
An invalid word or symbol was included in a SORT clause. For instance, a line identifier
was specified.

User Action:
Check the SORT clause syntax.

US QUERY-0061 NUMBER OR LITERAL EXPECTED IN CONTENTS CLAUSE

Explanation:
A number or literal should follow the equal sign in a CONTENTS clause.

User Action:
Check the CONTENTS clause syntax.

US QUERY-0062 “ =" EXPECTED IN CONTENTS CLAUSE

Explanation:
A field name was specified in a CONTENTS clause but was not followed by an equal
sign (=).

User Action:
Check the CONTENTS clause syntax.

314 2276554-9701



Error Messages

US QUERY-0063 FIELD NAME EXPECTED IN CONTENTS CLAUSE

Explanation:
A field name should appear at this point in a CONTENTS clause.

User Action:
Check the CONTENTS clause syntax.

US QUERY-0064 SEMICOLON EXPECTED

Explanation:
A semicolon is expected at this point in the Query statement.

User Action:
Insert a semicolon.

US QUERY-0065 “CONTENTS” EXPECTED

Explanation:
You must specify a CONTENTS clause for each modification line when the function is
INSERT or UPDATE.

User Action:
Specify the CONTENTS clause.

US QUERY-0066 ASCENDING OR DESCENDING INDICATOR EXPECTED

Explanation:
A colon was specified after a field name in a SORT clause but was not followed by A, D,
ASCENDING, or DESCENDING.

User Action:
Include the appropriate keyword or do not specify the colon.

W QUERY-0067 PAGE COMMAND NOT ALLOWED IN MAIN HEADING OR FOOTING

Explanation:
A PAGE command in a main heading or footing would cause the processor to loop in-
definitely, printing the main heading or footing. This message is a warning only; the
Query executes but the PAGE is not performed.

User Action:

Move the page to the first report line heading or the last report line footing expected to
be performed.

2276554-9701 8-15



Error Messages

US QUERY-0068 INVALID TAB SETTING — MUST BE GREATER THAN PREVIOUS TAB
Explanation:
Tab settings in a report line must be specified in ascending order to avoid overwriting
fields.

User Action:
Rearrange the report line elements so that tab settings are in ascending order.

US QUERY-0069 “=" EXPECTED WITH .. .“XXX” ... FUNCTION
Explanation:
The condition contains a string surrounded by ellipses. You can perform this string
operation only when the relational operator is EQ or =.

User Action:
Change the relational operator to EQ or =.

US QUERY-0070 INVALID FIELD FORMAT FOR TYPE OF COMPARE — SEE FIELD ?1

Explanation:
You attempted to perform string operations on noncharacter data.

User Action:
Do not use string operations on numeric data.

US QUERY-0071 INVALID TYPE SPECIFICATION ?1

Explanation:
You specified an invalid type in defining a format for a DEFINE variable.

User Action:
Check the DDL types for ali DEFINE variables. CH is not allowed.

US QUERY-0072 ILLEGAL LENGTH ?1

Explanation:
You used an illegal length in defining a format for a DEFINE variable.

User Action:
Check the length to see if it matches the DDL type.

US QUERY-0073 CANNOT MIX COBOL WITH FORTRAN/PASCAL TYPES ?1
Explanation:
The result type of the expression does not match the type catagory of the fields used in
the expression, or fields within the expression are in different type categories.

User Action: .
Check all of the components of the expression to see if they fall in the same category.

8-16 2276554-9701



Error Messages

US QUERY-0074 ILLEGAL TYPE FOR FIELD IN EXPRESSION ?1

Explanation:
A field was used in an expression that has a DDL format definition of CH.

User Action:
Do not use the field, or redefine the file to use numeric types.

US QUERY-0075 ERROR IN CONVERSION OF REAL OR INTEGER CONSTANT 71

Explanation:
An error was produced on conversion of a constant associated with a field of type in-
teger or real.

User Action:
Check all constants for too many digits or decimal points in integer constants.

US QUERY-0076 NEGATIVE SIGN USED IN UNSIGNED CONSTANT 21

Explanation:
You cannot specify a negative constant when the DDL field type is AN or CN.

User Action:
Specify only unsigned constants.

US QUERY-0077 UNABLE TO INITIALIZE SORT/MERGE DUE TO INTERNAL QUERY ERRORS

Explanation:
When Query-990 attempted to initialize Sort/Merge, an abnormal termination occurred.

User Action:
Check to see that a current version of Sort/Merge is installed properly. If a new version
has been installed since the last QGEN (Query Generation) has been performed, redo
the QGEN and reinstall Query-990.

US QUERY-0078 UNABLE TO BID SORT/MERGE

Explanation:
Sorting was specified in Query but Query-990 could not bid Sort/Merge.

User Action:
Check the state of the system to see why the task cannot be bid. Check the system log
to see if the Sort/Merge aborted.
US QUERY-0079 UNABLE TO INITIALIZE SORT/MERGE — NOT INSTALLED ON THE SYSTEM

Explanation:
Query-990 must have a Sort/Merge package installed in the system to perform sorting.

User Action:
Install Sort/Merge, then reinstall Query-990.

2276554-9701 8-17



Error Messages

US QUERY-0080 UNABLE TO INITIALIZE SORT/MERGE — SORT/MERGE ABNORMAL TERMINATION

Explanation:
When Query-990 attempted to initialize Sort/Merge, an abnormal termination occurred.

User Action:
Check to see that a current version of Sort/Merge is installed properly. If a new version
has been installed since the last QGEN (Query Generation) has been performed, redo
the QGEN and reinstall Query-990.

US QUERY-0081 ERROR IN SENDING RECORD TO SORT/MERGE

Explanation:

Should not occur during normal operation of Query-990. An internal error condition has
occurred.

User Action:
Report the problem to the customer support line.

US QUERY-0082 INTERTASK ERROR IN SENDING RECORD TO SORT/MERGE

Explanation:
Query-990 was unable to use intertask communication to send a record to Sort/Merge.

User Action:

Check that intertask was generated as greater than 500 bytes long. Reboot the system.
Make sure all Sort/Merge patches have been applied.

US QUERY-0083 ERROR IN RECEIVING RECORD FROM SORT/MERGE
Explanation:
Should not occur during normal operation of Query-990. An internal error condition has
occurred.

User Action:
Report the problem to the customer support line.

US QUERY-0084 INTERTASK ERROR IN RECEIVING RECORD FROM SORT/MERGE

Explanation:

Query-990 was unable to use intertask communication to receive a record from
Sort/Merge.

User Action:

Check that intertaskkwas generated as greater than 500 bytes long. Reboot the system.
Make sure all Sort/Merge patches have been applied.

8-18 2276554-9701



Error Messages

US QUERY-0085 FIELD IN CONTENTS CLAUSE MUST HAVE SAME FORMAT 1
Explanation:
A field in the CONTENTS clause has been set equal to another field or define variable
that has different format or length.

User Action:
Check to see that the formats and lengths of the fields are identical.

US QUERY-0086 RECORD TOTAL OR COUNT NOT ALLOWED WITH “BY LIST”
Explanation:
The BY LIST sequence does not use records in outputs, so fields cannot be counted or
totaled on a record basis.

User Action:
Change the sequence to BY KEY BY LIST.

US QUERY-0087 CANNOT SORT GROUP OR LINE ?1

Explanation:
You cannot specify a group or line as a sort key.

User Action:
Specify all of the field components of the group or line.

US QUERY-0088 LINE-LEVEL CONDITION NOT ALLOWED IN MAIN “WHERE” CLAUSE
Explanation:
In a modification function, all line-level conditions should be specified with their cor-
responding modification lines.

User Action:
Check the syntax for modification lines. Move the condition to its correct location.

US QUERY-0089 COUNT ALLOWED ONLY ON DBMS-990 FIELDS 71

Explanation:
The count operator must have a DBMS-990 field as its only operand.

User Action:
Change the expression to count a DBMS-990 field.

US QUERY-0090 DEFINE FIELD IN CONDITION MUST COME FROM SAME LINETYPE — 71

Explanation: ,
The define fields in a condition must come from the same line type.

User Action:
Verify that all the define fields in the condition come from the same line type.

2276554-9701 8-19



Error Messages

US QUERY-0091 “BY” EXPECTED AFTER “LINKED”
Explanation:
The keyword LINKED in the FROM clause was followed by something other than the
word BY.

User Action:
Correct the syntax of the LINKED BY clause.

US QUERY-0092 FILE NAME EXPECTED AFTER ‘IN’
Explanation:
The IN clause was used after a field name to identify a file in which the field is located.

The IN was not followed by a field name identifier.

User Action:
Check the spelling and syntax.

US QUERY-0093 “=" EXPECTED IN “LINKED BY” CLAUSE

Explanation:
An equal sign is missing between two linkage fields in the LINKED BY clause.

User Action:
Check the syntax; there should be no commas or semicolons.

US QUERY-0094 CANNOT USE GROUP NAME IN CONTENTS CLAUSE ?1

Explanation:
In a modification function, the user is attempting to assign a value to a group. This is not
allowed since the members of a group may have different formats and types.

User Action:
Break the group into its component fields and assign a value to each separately.

US QUERY-0095 REPORT LINES MUST ACCESS SINGLE PATH IN MULTI-FILE
Explanation:
In a muitiple-file Query, a single report line cannot be composed from fields that follow
more than one access path between the files.

User Action:
Break the report line into several report lines that follow a single access path.

8-20 2276554-9701



Error Messages

US QUERY-0096 CHARACTER FIELDS MUST BE USED WITH STRING OPERATORS

Explanation:
When a condition contains a string with ellipses (.. ."XXX". . .), only CH fields may be
compared to the string.

User Action:
Modify the condition to reflect a numeric comparison or change the DDL of the file to
make the field a CH type.

US QUERY-0097 LINKED TO FIELD MUST BE PRIMARY OR SECONDARY KEY 71

Explanation: :
In the FROM clause of a multifile Query, the link field in the lower-level file must be a
primary or secondary key and should be on the right side of the equal sign (=).

User Action:
Make sure the link fields are on the proper sides of the equal sign. Execute a CPYFIL on
the file, change the DDL so that the link field is a secondary key, and execute a RLDFIL.
(See the Model 990 Computer DNOS Data Base Management System Programmer’s
Guide.)

US QUERY-0098 TOP-LEVEL FILE MAY NOT BE LINKED TO

Explanation:
The first file following the keyword FROM is the top-level file. No lower-level file can link
to a field in this file.

User Action:
Redefine the order of the files so that no lower-level files link to the top-level file.

US QUERY-0099 LOWER-LEVEL FILE DEFINED WITHOUT PATH TO TOP-LEVEL ?1

Explanation:
All files must have some access route defined to them from the top-level file, directly or
indirectly. This means that some field in the top-level file must be linked to a key in the
lower-level file or to a key of another lower-level file that links to this lower-level file.

User Action:
Define an access path to all lower-level files or do not include that file in this Query
statement.

US QUERY-0100 CYCLE DETECTED IN LINKAGE ?1
Explanation:
In the LINKED BY clause, you have defined a sequence of linkages that loops back to a
higher-level file.

User Action:
Determine which linkage makes a loop and omit it.

2276554-9701 8-21



Error Messages

US QUERY-0101 LINK FROM FIELDS MUST COME FROM THE SAME FILE — ?1

Explanation: ,
When using a concatenated key in a LINKED BY, all fields must come from the same
file.

User Action:
Alter the concatenated key to use only fields from the same file.

US QUERY-0102 LINKED FIELDS DO NOT HAVE SAME LENGTH — SEE ?1

Explanation:
The fields must have the same format, length, and number of decimal places to be
linked in the LINKED BY ciause.

User Action:
Check the DDL to see if the formats differ. Change the DDL to match the formats.

US QUERY-0103 FILE NAME EXPECTED AFTER “IN”

Explanation:
The IN clause was used after a field name to identify the file in which the field is located.
~A

i i +ifine
The IN clause was not followed by a file name identifier.

User Action:
Check spelling and syntax.

US QUERY-0104 NO LINK FIELD DEFINED ?1

Explanation:
THRU was used to indicate a report line’s access path. The field used in the THRU
clause was not found among any of the link fields in the LINKED BY clause.

User Action:
Check spelling. Make sure all linkages have been specified.

US QUERY-0105 MULTIPLE FILES NOT ALLOWED WHEN SEQUENCE IS “BY LIST”

Explanation:
Multifile Queries require record association and cannot be sequenced BY LIST.

User Action:
Change the sequence to BY KEY or BY KEY BY LIST.

US QUERY-0106 NO LINK FILE DEFINED ?1
B
Explanation:
A THRU clause was used to indicate a report line's access path. The file name used after
IN to indicate the origin of the link field was not found in the FROM clause.

User Action:
Check spelling. Make sure all file names have been defined.

8-22 2276554-9701



Error Messages

US QUERY-0107 LINE IDENTIFIER EXPECTED IN UNIQUE CLAUSE

Explanation:
A valid line type indentifier must follow UNIQUE in the UNIQUE clause.

User Action:
Check the syntax and spelling.

US QUERY-0108 DEFINE FIELD IS NOT A LEGAL EXPRESSION

Explanation:
The define field flagged is not a legal expression.

User Action:
Correct the define field syntax.

US QUERY-0109 QUANTIFIERS NOT ALLOWED IN LINE-LEVEL CONDITION

Explanation:
Quantifiers are allowed only in record-level conditions and should not be used in con-
ditions that are specified with a report line.

User Action:
If the condition is meant to be record-level, move it to the main WHERE clause; other-
wise, remove the quantifiers.
us QUERY;O110 LINE ID OR “KEY” EXPECTED IN POSITIONING CLAUSE
Explanation:
The word AFTER or BEFORE was used in a modification function but was not followed
by the word KEY or a line identifier.

User Action:
Check syntax and spelling.

US QUERY-0111 ATTEMPT TO SPECIFY MORE THAN ONE ‘““FROM” CLAUSE

Explanation:
The user specified FROM more than once.

User Action:
Combine all files into one FROM clause. Eliminate extra FROM clauses.

2276554-9701 8-23



Error Messages

US QUERY-0112 ATTEMPT TO SPECIFY MORE THAN ONE FUNCTION CLAUSE

Explanation:
Only one function keyword (LIST, INSERT, UPDATE, or DELETE) is allowed in a single

Query statement.

User Action:
Decide which function you wish the Query statement to perform and eliminate all

others.
US QUERY-0113 UNABLE TO ACCESS FILE ?1

Explanation:
Query was unable to access the file indicated.

User Action:
This message is followed by DBMS/DM ERROR IN COMPILE PHASE and the bad status

received. Check the Model 990 Computer DNOS Data Base Management System Pro-
grammer’s Guide or the Model 990 Computer Data Dictionary User’s Guide for the exact
meaning of the error code.

US QUERY-0114 ATTEMPT TO INSERT OR UPDATE PRIMARY KEY ONLY

Explanation:
Insert or update was specified without any fields named other than the primary key.

User Action:
Specify at least one other field name in the CONTENTS clause.

US QUERY-0120 DELETE NOT ALLOWED ON SEQUENTIAL FILES

Explanation:
It is illegal to delete from a sequential file.

User Action:
Ensure that no delete is attempted on any sequential files.

US QUERY-0121 POSITION CLAUSE NOT ALLOWED ON NON-DBMS FILES
Explanation:
It is illegal to indicate a position when inserting to a non-DBMS file. No BEFORE or
AFTER position clauses are allowed.

User Action:
Remove the position clause from the Query statement.

8-24 2276554-9701



Error Messages

US QUERY-0122 MUST NOT SPECIFY KEY VALUE FOR SEQUENTIAL FILE INSERT

Explanation:
Since all inserts to a sequential file occur at the end-of-file, it is meaningless to specify
a key value.

User Action:
Remove the key value from the Query statement.

US QUERY-0123 LINE LEVEL CONDITION SPECIFIED IN RECORD LEVEL WHERE CLAUSE

Explanation:
Query has taken the WHERE clause that occurred after the FROM clause and made it a

line-level condition.

User Action:
To make a true record-level condition, include the keyword ANY or EVERY before the
conditional field or remove any nonkey fields from the condition.

US QUERY-0124 PARTIAL GROUP KEY SPECIFIED IN CONTENTS CLAUSE

Explanation:
Each field in a group key must be inciuded when the key is used in a CONTENTS clause.

User Action:
Add the missing fields to the Query statement.

US QUERY-0125 ‘ON’ OR ‘BEFORE’ SHOULD FOLLOW ‘BREAK’

Explanation:
The keyword BREAK in a report line must be followed by the sequencing word ON or
BEFORE.

User Action:
If the report line is a header line, use ON. If it is a total line, use BEFORE.

8.3 GUIDED QUERY ERRORS

Guided Query errors pertain to error conditions that occur while using the Guided Query utility.
Guided Query errors appear at the bottom of the screen. In response, press either the NEW
LINE/RETURN key or the HELP/CMD key. The NEW LINE/RETURN key positions the cursor at the
origin of the error. The HELP/CMD key aborts the Guided Query. The Guided Query error mes-
sages are as follows:

US QUERY-0151 DOUBLE QUOTE MARKS MISSING OR MISMATCHED

Explanation:
A double quotation mark is missing for an alphabetic constant. This message applies to
Steps 2 and 6.

User Action:
Ensure that all beginning quotation marks have a corresponding ending quotation mark.

2276554-9701 8-25



Error Messages

US QUERY-0152 NOT A VALID LINE NAME 71

Explanation: '
The line name entered in Step 3 or 10 does not match any of the displayed line names.

User Action:
Locate the intended line name and enter it.

US QUERY-0153 INVALID FIELD # — ?1

Explanation:
The number displayed to the right of this message is not a valid number.

User Action:
Reenter the correct field number from the selections at the bottom of the screen.

US QUERY-0154 MARK YOUR OPTIONS WITH AN “X”

Explanation:

To choose LIST, COUNT, TOTAL, or AVERAGE options, you must mark the appropriate
column with an X.

User Action:
Change other characters to X.
US QUERY-0155 AT LEAST ONE OPTION MUST BE MARKED
Explanation:
When a field is specified for the report, you must choose at least one option (such as,
LIST, COUNT, TOTAL, or AVERAGE).

User Action:
Mark one option.

US QUERY-0156 CANNOT SPECIFY TOTAL OR AVERAGE ON CHARACTER FIELD

Explanation:
You can specify TOTAL or AVERAGE only on numeric fields.

User Action:
Delete the X under TOTAL or AVERAGE.

US QUERY-0157 NOT A VALID LINE TYPE ?1

Explanation:
The user has entered a line type identifier that is not legal. If an alias or long name is
available for a line type, the alias or long name must be used rather than the DDL name.

User Action:
Check the displayed line identifiers and make sure your entry matches.

3-26 2276554-9701



Error Messages

US QUERY-0158 INVALID FIELD NAME FOR OPERAND 1 71

Explanation:
The specified field name does not match any field name listed.

User Action:
Correct the operand field name to match a listed field name.

US QUERY-0159 NO QUANTIFIERS FOR OPERAND 2 CONSTANT

Explanation:
When entering record-level conditions, quantifiers are not meaningful for constants.

User Action:
Leave the quantifier field for operand 2 blank.

US QUERY-0160 OPERAND 1 AND OPERAND 2 MUST HAVE MATCHING FORMATS

Explanation:
Operands 1 and 2 must have the same format and length.

User Action:
Compare only matching operands.

US QUERY-0161 INVALID FIELD NAME FOR OPERAND 2 71

Explanation:
The specified field name does not match any field name listed.

User Action:
Correct the operand field name to match a listed field name.

US QUERY-0162 NOT A VALID FILE NAME ?1
Explanation:
The file name specified in Step 1 does not correspond to a valid file. The cause could be
an incorrect file name, DBMS-990 or DD-990 down, or access privileges not granted.

User Action:
Locate the cause and take the appropriate action.

US QUERY-0163 FIRST OPERAND MUST BE PRECEDED BY “ANY” OR “EVERY”

Explanation:
Record test must have ANY or EVERY specified before the first operand.

User Action:
Specify ANY or EVERY or return to Step 9.

2276554-9701 8-27



Error Messages

US QUERY-0164 ILLEGAL OPERATOR, PRESS FUNCTION KEY 5 FOR LIST OF LEGAL OPERATORS

Explanation:
Operator must be specified and be one of the six legal relational operators.

User Action:
Correct the operator.

US QUERY-0165 DBMS/DM DOWN

Explanation:
Data base or data manager is not running.

User Action:
Start data base or data manager.

US QUERY-0166 INVALID PASSWORD 7?1

Explanation:
You do not have proper security access privileges for the file specified.

User Action:
Obtain a valid password from the DBA.

US QUERY-0167 ENTER “A” OR “D” ONLY

Explanation:
You have entered a bad response to the sort specification prompt.

User Action:
Enter the correct response.

US QUERY-0168 OPERAND MUST NOT BE A GROUP — SEE FIELD ?1

Explanation:
You may not use a group name in a conditional.

User Action:
Specify acomplex condition which contains all the necessary group conditions.

US QUERY-0169 GROUPS MAY NOT BE USED IN CONDITIONS

Explanation:
Groups may not be used in conditions.

User Action:
Specify a complex condition which contains all the necessary group conditions.

8-28 2276554-9701



Error Messages

8.4 INTERNAL MESSAGE CODES

If the error message file is not installed, the user receives internal message codes. Table 8-1
allows the user to look up the message ID and obtain the expanded text for the error message.

Table 8-1. Internal Message Codes

Internal Message Internal Message Internal Message
Code ID Code ID Code ID
>0001 0001 >002D 0045 >0056 0086
>0002 0002 >002E 0046 >0057 0087
>0003 0003 >002F 0047 >0058 0088
>0004 0004 >0030 0048 >0059 0089
>0005 0005 >0031 0049 >005B 0091
>0007 0007 >0032 0050 >005D 0093
>0008 0008 >0033 0051 >005E 0094
>0009 0009 >0034 0052 >005F 0095
>000A 0010 >0035 0053 >0061 0097
>000B 0011 >0036 0054 >0062 0098
>000C 0012 >0037 0055 >0063 0099
>000D 0013 >0038 0056 >0064 0100
>000E 0014 >0039 0057 >0066 0102
>0010 0016 >003A 0058 >0067 0103
>0011 0017 >003B 0059 >0068 0104
>0012 0018 >003C 0060 >0069 0105
>0013 0019 >003D 0061 >006A 0106
>0014 0020 >003E 0062 >006D 0109
>0016 0022 >003F 0063 >006E 0110
>0017 0023 >0040 0064 >006F 0111
>0018 0024 >0041 0065 >0070 0112
>0019 0025 >0042 0066 >0071 0113
>001A 0026 >0043 0067 >0072 0114
>001B 0027 >0044 0068 >0097 0151
>001C 0028 >0045 0069 >0098 0152
>001D 0029 >0046 0070 >0099 0153
>001E 0030 >0047 0071 >009A 0154
>001F 0031 >0048 0072 >009B 0155
>0020 0032 >0049 0073 >009C 0156
>0021 . 0033 >004A 0074 >009D 0157
>0022 0034 >004B 0075 >009E 0158
>0023 0035 >004C 0076 >009F 0159
>0024 0036 >004D 0077 >00A0 0160
>0025 0037 >004E 0078 >00A1 0161
>0026 0038 >004F 0079 >00A2 0162
>0027 0039 >0050 0080 >00A3 0163
>0028 0040 >0051 0081 >00A4 0164
>0029 0041 >0052 0082 >00A5 0165
>002A 0042 >0053 0083 >00A6 0166
>002B 0043 >0054 0084 >00A7 0167
>002C 0044 >0055 0085 >00A8 0168
>00A9 0169

2276554-9701 8-29/8-30






Appendix A

Query-990 Syntax

A.1 GENERAL
The Query-990 syntax consists of definitions using words, brackets, braces, and ellipses.
Each element of the language is defined by an equation-like rule. The entity being defined is writ-
ten to the left of the symbol ::= and the definition is written to the right. The definition can be
expressed in terms of the language elements that are defined separately. The following symbols
are used in writing definitions:
Symbol Description
n= Used in writing definitions; means “is defined to be”
[1 Encloses entities that are optional

| Indicates alternatives (e.g., A| B| C means A or B or C)

{} Encloses one or more entities from which you must select
at least one

Indicates the position at which a previous item may be
repeated as required

Underlined keywords and symbols must appear exactly as
shown

For both brackets and braces, a choice is indicated by vertically stacking the possibilities. When
brackets or braces enclose a portion of a definition but only one possibility is shown, the brackets
or braces delimit the portion of the format to which a following ellipsis applies.

Underlined uppercase words are keywords. Lowercase words are symbols representing a lan-
guage element defined elsewhere in the syntax definition.

A.2 SYNTAX DEFINITION

The syntax definition for Query-990 is as follows:

alias :: = longname

alphaz= A|B|C|...|Z_

2276554-9701 A-1



Query-990 Syntax

alphanum :: = {alpha}
digit
alpha
digit
ascii-character ;: = { <space>
LIV I#I81% &1L+ 1701-
ALt =0>1?21 @ [IAI =

ON . .
BREAK-cl n= A —_— Id- -
clause BREAK ’BEFORE] field-type [field-type]

BY KEY BY LIST
BY-clause :: = BY KEY
BY LIST

F,

change data::= ? _[i] [length-change] [ ( change-offset )]

change-offset :: = unsigned-integer
complex-condition ::= [ (] simple-condition [log-op complex-condition] [)]
concat-field ::= field-type [A concat-field]

simple-condition }

condition :: = .
complex-condition

conditional-literal ::= [.. ] string [. . .]
constant ::= {strlng }
number

A-2 " 2276554-9701



Query-990 Syntax

field-tvpe constant
CONTENTS-clause ::= CONTENTS { Vp} = {variable
—— | key-type
change-data

field-type constant
[_,_] key-type = variable
change-data

DEFINE-clause ::= DEFINE [variable :type = define-expression [_;]]

define-expression:: = [L] subexpression [operator define-expression] [) ]

RECORD

DELETE-clause ::= DELETE [trace-indicator] delete-line [ ; delete-line]

L]

delete-line :: = line type [WHERE-clause]

digitz=01112]3]1415(6/819

field-name :: = {'d, } [IN file-name]
alias —

. id

file-name :: = { }
alias

fractional-part :: = _._digit [digit). . .

FROM-clause ::= FROM file-name [EXCLUSIVE] [file-name [EXCLUSlVE]]
[LINKED-BY-clause] [SORT-clause] [HEADER-clause]
[BY-clause] [UNIQUE-clause]

2276554-9701 A-3



Query-990 Syntax

LIST-clause
INSERT-clause
UPDATE-clause
DELETE-clause

function-clause :: =

HEADER-clause :: = [NO HEADER] [HEADER [header-element]]
[ FOOTING [header-element] ]

PAGE [digit] [digit]
SKIP [digit] [digit]
DEFAULT
header-literal

HEADER-element :: =

header-literal ::= ‘‘[literal-element]. .. ” j Y literal-element]. . . 2 1
- _Niteral-element]. . . 2_ J
alpha
id o= alpha alphanum
"~ ] alpha alphanum alphanum
alpha alphanum alphanum alphanum
INSERT-clause :: = INSERT [trace-indicator] insert-line [; insert-line]. . .[ ;]
insert-line ::= line-type [position-clause] CONTENTS-clause [WHERE-clause]
. + C
integer 1= {—_— } digit [digit]. . .
key-type i = {id } [IN file-type
y "7 lalias) — ypel
Iength:::l_l_2_|_3_|i|...| 256

length-change :: = unsigned-integer

2276554-9701



Query-990 Syntax

digit digit
line-type ::= { alpha alpha [I_Nfile—type]
alias

LINKED-BY-clause ::= LINKED BY {f'e'd‘type }

concat-field

field-type } _ _
[.Z. {concat-field — key type]

= key-type

LIST-clause ::= LIST report-line [_;_report-line]. . .[_;]

ascii-character
ASYSTIME
ASYSDATE
APAGENUM

literal-element :: =

OR
log-op i = [ ND]

alphanum ]

il_'_l_:

longname :: = alpha {

modification-line :: = line-type [position-clause] CONTENTS-clause [WHERE-clause]

integer
number ::= ({integer fractional-part
+ fractional-part

field-type
opl = {key-type
variable

op1
conditional-literal
number
change-data

op2:=

2276554-9701



Query-990 Syntax

operator::= + |- ]* ]/

option ::= [ length] [TOTAL [ONLY]] [AVERAGE [ONLY]] [COUNT [ONLY]]

A

: ASCENDING
: D

: DESCENDING

order-indicator :: =

- BEFORE FIRST line-type [WHERE-clause]
position-clause :: =
AFTER KEY

EVERY

- ANY
quantifier 1= {——

query ::= [DEFINE-clause] function-clause FROM-clause [WHERE-clause]

rel-op = EQ | GT | LT | NE|LE|GE| = [<|2]<>]<= 2=
report-line :: = report-line-element [ [, ] report-line-element ...]

[HEADER-clause] WHERE-clause] [SORT-clause]

field-type [option] [THRU-clause]

line-type [option]

key-type [option]

variable [option]
report-line-element :: = BREAK-clause

X length

SPACE length

TAB digit [digit]

string

change-data

simple-condition :: = { (] [quantifier] op1 rel-op [quantifier] op2[)]

A-6 ’ 2276554-9701



Query-990 Syntax

field-type |
SORT-clause :: = SORTED BY key-type [order-indicator]
variable I

[ ( field-type
key-type » [order-indicator]
variable

=N

string ::= “ [ascii-character]...”

[RECORD] TOTAL field-type

[RECORD] COUNT field-type
subexpression ::= [(] | field-type D]

variable

change-data

THRU-clause :: = THRU file-type

- . ONLY
trace-indicator ::= TRACE [_—OFF ]

type ::= (see Appendix B)
UNIQUE-clause :: = UNIQUE line-type [line-type]. ..
unsigned-integer :: = digit [digit]. . .

UPDATE-clause :: = UPDATE [trace-indicator] modification-line

[; modification-line]. ..

p—
—

variable :: = longname

WHERE-clause :: = WHERE condition

2276554-9701 A-7/A-8






Calculation Data Types

Appendix B

Code

AN

AS

CH

CN

CS

2276554-9701

Description

Arithmetic without sign. Decimal
ptaces are allowed. User zero for
no decimal places.

Arithmetic signed. Length (n)
must include sign, and decimal
places are allowed. Use zero for
no decimal places.

Character string. Length in-
cludes total characters. Deci-
mal places not allowed.

Character numeric. Decimal
places are allowed. Use zero for
no decimal places.

Character numeric signed.
Length (n) must include the sign.
Decimal places are allowed. Use
zero for no decimal places.

Double precision integer. Con-
tained in two 16-bit words and
may be signed. Length (n)
default is 4; if specified, it must
be 4.

Example

AN/8.2
COBOL:

FORTRAN:

Pascal:

AS/8.2
COBOL:

FORTRAN:

Pascal:

CH/20
COBOL:

FORTRAN:

Pascal:

CN/6.2
COBOL:

FORTRAN:

Pascal:

CS/8.5
COBOL:

FORTRAN:

Pascal:

ID/4
COBOL:

FORTRAN:

Pascal:

Formats

PIC 9(6)V9(2) COMP.

<none>
<none>

PIC S9(5)V9(2) COMP.
-<none>

<none>

PIC X(20).

<A format>
PACKED ARRAY
[1...20] OF CHAR;

PIC X(20).
<none>
<none>

PIC S9(2)V9(5)
<none>
<none>

<none>
INTEGER*4
LOGINT;



Calculation Data Types

Code

LG

PK

RD

RS

Description

Single-precision integer. Con-
tained in one 16-bit word. Length
(n) default is 2; if specified, it
must be 2. Field may contain a
sign. :

Logical variable. Length (n)
default is 2; if specified, it must
be 2.

Packed decimal. Digit length (n)
must be even and includes the
sign. Decimal places are
allowed, and zero indicates no
decimal places. Contained in n/2
bytes.

Double-precision real. Contained
in four 16-bit words and may be
signed. Length (n) default is 8; if
specified, it must be 8.

Single-precision real. Contained
in two 16-bit words and may be
signed. Length (n) default is 4; if
specified, it must be 4.

Example

1S/2
COBOL:

FORTRAN:

Pascal:

LG/2
COBOL:

FORTRAN:

Pascal:

PK/6.2
COBOL:

FORTRAN:

Pascal:

RD/8
COBOL:

FORTRAN:

Pascal:

RS/4
COBOL:

FORTRAN:

Pascal:

BOOLEAN

PIC 9(5) COMP-1.
INTEGER*2

PIC S9(3)V9(2) COMP-3.

2276554-9701



Appendix C

Alternate Collating Sequences

Query-990 supports collating sequences other than the standard USASCIl collating sequence. The
current release of Query-990 includes two alternate collating sequence files. These are the
collating sequences for the Germany/Austria and Sweden/Finland character sets. These collating
sequences are compatible with the operating systems’ international support for key indexed files
(KIFs).

The format for the collating sequence file has been strictly defined. It contains eight records, and
each record contains eight pairs of characters, left justified. Alternate character pairs must be
defined for all of the characters in the set (hexadecimal 40 through 7F).

The file SSQUERY.ALTSEQGA contains the collating sequence for the Germany/Austria character
set; the file SSQUERY.ALTSEQSF contains the collating sequence for the Sweden/Finland charac-
ter set. The following is an example of the collating sequence for the Germany/Austria character
set:

404041415B4242434344444545464647 GERMAN/AUSTRIAN
47484849484A4A4BABACACADADAEAEAF TO U.S. ASCHI
4F505C51505251535254535554565557 LTE'RN ATE COLLATIN
5D585459575A585B595C SASDSE SESF SF A ATING
606061517Bb626246356364646565660667 SEQUENCE TABLE

67686B69696ALA6BLBLCECHDEDSELELF
&F707C7170727173727473757E767477
75787D79787A777B787C797D7A7E7F7F

You can use the right haif of each record for comments.

You can select the internationalization option at Query-990 generation. If you do select this option,
you must specify the file name containing the desired collating sequence. The QGEN processor
then builds the correct SCI QUERY command procedure.

To specify alternate collating sequencing to the Query processor, use the bid parameters in the
QUERY command procedure. The seventeenth argument indicates the file name containing the
desired collating sequence. If you do not specify a parameter for this argument, the USASCII col-
lating sequence is used.

2276554-9701 C-1



Alternate Collating Sequences

The following is an example of the bid parameters for the SCI procedure QUERY. These param-

eters specify the collating sequence contained in the file SSQUERY.ALTSEQGA:

BID TASK = 0CO, LUNO = @S3$QUERY.PROG

PARMS = (2000, 3000, @$MR$, XPASSWORD, @sQ$LPP,
25QECPL. @$Q$0UT. @sQ$FMT.

RFQENEW, @$QS$EDT, @$Q3LS8T, NO, @$QA$SAVE. @$As$VCF,
"@LINPUT STATEMENT PATHNAME™,

RLISTING, S$QUERY. ALTSEQGA,

S€QUERY. ERRMSG,

"eLOUTPUT STATEMENT PATHNAME", @3MT4$)

To specify a different collating sequence, change the seventeenth argument in the bid parameters
for the SCI Query command procedure.

To use an alternate collating sequence for the Query output from the Guided Query utility, modify
the SCI procedure GQUERY2 to contain the file name for the desired collating sequence.

2276554-9701



Appendix D

DDL Listings for Example Files

The following DDL listings are for data base example files.

Item File

FILE=ITEM, LINES=64
ID=1ITMN=CH/4, VOL=50, ACCESS=RANDOM/ 1
#*
LINE=01
FIELD=DESC=CH/Z20
FIELD=UPRC=CN/6&.3
FIELD=RTYD=CN/4.0
FIELD=RTYH=CN/4.0
ENDL
END.

Customer File

FILE=CUST,LINES=S7
ID=CUSN=CH/ S, VOL=50, ACCESS=RANDOM/ 1
#*

LINE=01
FIELD=NAME=CH/20
GROUP=ADDR

FIELD=STRT=CH/20
FIELD=CITY=CH/Z0
FIELD=STAT=CH/Z
FIELD=ZIPC=CH/S
ENDG
FIELD=CRED=CH/20
ENDL
END.

2276554-9701 D-1



DDL Listings for Example Files

PAY1 File

FILE=PAY1,LINES=300
ID=MNLIM=CN/&. 0, VOL=30, ACCESS=RANDIM/ 1
3*

LINE=01

GROUP=ADDR
FIELD=MNAM=CH/20
FIELD=MSTR=LCH/20
FIELD=MCTY=CH/15
FIELD=MSTT=CH/2
FIELD=MZIP=UN/T.0
ENDG

FIELD=MISN=CN/?.0

ENDL

3*

LINE=CLU
FIELD=MJOB=CH/10
FIELD=MLOC=CH/10
FIELD=MDEF=CH/1%
FIELD=MTMR=CH/1
FIELD=MTES=CN/2.0
FIELD=MTEX=CN/2.0
ENDL

*

L INE=CR
FIELD=MDDT=CN/S. 2
FIELD=MPYP=CN/2.0
FIELD=MRAT=CN/7.2
FIELD=MCOM=CN/3.3
FIELD=MSLS=CE/11.3
ENDL.

*

LINE=ED
FIELD=DEGR=CH/3
FIELD=YEAR=CN/4.0
FIELD=COLL=CH/20
FIELD=GPA =CN/2.1
ENDL

3#*

LINE=PE
FIELD=JORT=CH/20
FIELD=COMP=CH/25
FIELD=STAT=CH/2
FIELD=PSAL=CN/7.2
ENDL

3

LINE=PF
FIELD=PLOC=CH/10
FIELD=PDEP=CH/1%
FIELD=PJOEB=CH/10

N ENDL

SECONDARY-REFERENCES
MSSN=VOL=30, ACCESS=RANDOM/ 1
END.

2276554-9701



DDL Listings for Example Files

Sales Order File

FILE=SOFL,LINES=344
ID=S0ONM=CH/ &, VOL=50, ACCESS=RANDOM/ 1
3
LINE=BL
FIELD=BILL=CH/S
FIELD=LQCK=CH/2
ENDL.
*
LINE=02
FIELD=SHIP=CH/S
ENDL.
*
LINE=0Z
FIELD=ITEM=CH/4
FIELD=0LIAN=CN/4. O
ENDL
3*
SECONDARY~REFERENCES
BILL=VOL=50,ACCESS=RANDOM/1
SHIP=VOL=50, ACCESS=RANDOM/ 1
ITEM=VOL=200, ACCESS=RANDOM/ 1
ENI.

The following DDL listings are for KIF example files.

Item File

FILE=ITEM, TYPE=KIF
#*
ID=ITMN=CH/4, DLIP=Y, MOD=N
#

LINE=01
FIELD=ITMN=CH/4
FIELD=DESC=CH/Z20
FIELD=UPRC=CN/6L. 2
FIELD=QTYO=CN/4.0
FIELD=0OTYH=CN/4.0
ENDL

#

END.

2276554-9701 D-3



DDL Listings for Example Files

Customer File

FILE=CUST, TYPE=KIF
*
ID=CLEN=CH/S, [ILF=Y, MODO=N
3*

LINE=0O1
FIELD=CUSN=CH/S
FIELD=NAME=CH/20
GROUP=ADRS
FIELD=STRT=CH/20
FIELD=CITY=CH/20
FIELD=STAT=CH/2
FIELD=ZIPC=CH/S
ENDG
FIELD=CRED=CH/20
ENDL

3*

END.

PAY1 File

FILE=FAY1, TYPE=KIF, TAG
ID=MNLUM=CN/&. O, OUP=Y , MOD=N
3*

LINE=01
FIELD=TAGI=IS/2,VALIUE=1
FIELD=MNIM=CN/A.O
GROUFP=ADDR
FIELD=MNAM=IZH/ 20
FIELD=MZTR=CH/ 20
FIELD=MCTY=CH/ 15
FIELD=MSTT=CH/2
FIELD=MZIP=CN/S.0

ENDG

FIELD=MESSN=CN/%.0

ENIIL.

3+

L.INE=CLI
FIELD=TAGZ=I%/2, VALLE=2
FIELD=MNIUM=CN/&. O
FIELD=MJOR=CH/10
FIELD=MLOC=CH/10
FIELD=MDEF=CH/15
FIELD=MTMR=CH/1
FIELD=MTES=CN/Z.0
FIELD=MTEX=CN/Z2.0

ENDL

2276554-9701



DDL Listings for Example Files

#*
LINE=CR
FIELD=TAGZ=I3/2,VALLE=3
FIELD=MNLUM=CN/A.0O
FIELD=MDOOT=CN/S.2
FIELD=MPYP=CN/2.0
FIELD=MRAT=CN/7.2
FIELD=MCOM=CN/2,3
FIELD=MSLS=C5/11.3

ENDL

#

LINE=ED
FIELD=TAG4=15/2,VALUE=4
FIELD=MNLM=CN/&. O
FIELD=DEGR=CH/3
FIELD=YEAR=CN/4.0Q
FIELD=COLL=CH/20
FIELD=GPA=CN/2.1

ENDL.

3*

LINE=PE
FIELD=TAGG=I1S/2, VALLUE=S
FIELD=MNILIM=CN/A.Q
FIELD=JOBT=CH/ 20
FIELD=COMP=CH/ 23
FIELD=STAT=CH/2
FIELD=PSAL=CN/7.2

ENDL.

#*

L.INE=PP
FIELD=TAG&L=1S/2, VALLIE=é&
FIELD=MNLM=CN/&, O
FIELD=PLOC=CH/10
FIELD=PDEP=CH/15
FIELD=FJ0BR=_H/10

ENDL

*

SECONDARY~REFERENCES
MSSN, DUP=Y , MOD=Y

ENI.

2276554-9701 D-5



DDL Listings for Example Files

Sales Order File

FILE=3S0FL ., TYPE=KIF,TAG

3*

ID=S0NM=CH/ &, DUP=Y , MOD=N

#*
L. INE=EL

FIELD=TAG1=I5/2,VALLE=1

FIELD=S0ONM=CH/A
FIELD=RILL=CH/S
FIELD=LOCKE=CH/2
ENDL.

*

LINE=0Z

FIELD=TAG2=15/2, VALUE=2

FIELD=50NM=CH/6
FIELD=SHIP=CH/S
ENDL

#*

LINE=0OZ

FIELD=TAGI=IS/2, VALLE

FIELD=S50NM=CH/&
FIELD=SITM=CH/4

FIELD=DQUAN=CN/4.0

ENDL

SECONDARY-REFERENCES

BILL, DUP=Y,MOO=Y
SHIF, DUP=Y, MOD=Y
SITM, DUP=Y, MOD=Y
END.

=
=3

2276554-9701



Appendix E

Example Query Application

E.1 GENERAL

This appendix describes a simple way to produce interactive data-retrieval applications for
DBMS-990 and Query-990 users. The application described displays a predefined report based on
variable selection criteria. Some examples are as follows:

o A personnel report lists an employee’s name, department, job title, mailing address,
social security number, and previous work experience after a user enters the empioyee
number.

. A sales organization report displays current credit information for a specified customer.

. A report for an airline ticket agent shows the remaining seats on a specified flight, or
whether a certain passenger’s reservation is still active and the corresponding flight
number.

The example in this appendix uses the Query and SCI languages. For information on the SCI
language, consult the Model 990 Computer DNOS System Command Interpreter (SCI) Reference
Manual.

E.2 CREATING THE PROCEDURE

To generate the appropriate report, first develop an SCI procedure to prompt the operator for the
selection criteria (for example, employee number, customer number, or flight number). Then,
within the same procedure, use the SCI primitive .DATA to build the Query statement. The follow-
ing Query displays information for the employee whose number is entered by the operator.

LIST “"MASTER EMPLOYEE NUMBER =" MNUM ¥ SSN# = " MSSN;

MNAM MSTR MCTY MSTT MZIP HEADER SKIP

"NAME ADDRESS";

MJOB MLOC MDEP HEADER SKIP "CURRENT JOB"

"TITLE LOCATION DEPARTMENT";

PE HEADER SKIP "PREVIOUS JOBS"

"TITLE COMPANY STATE SALARY";
NO HEADER HEADER "###% MASTER EMPLOYEE INFORMATION s#%#" SKIP
FROM PAY1

WHERE MNUM EQ ‘@$EMPNO’
BY KEY BY LIST

2276554-9701 E-1



Example Query Application

The employee number entered is substituted for ‘@$EMPNO’ by using the SUBSTITUTION option
of the SCI primitive .DATA. Because the SUBSTITUTION option removes double quotes, thereby
invalidating the report heading definitions, divide the Query at the point shown by the line of
asterisks. This line separates the fixed part, which contains all of the double quotes, from the
variable part, which contains the selection criteria (employee number).

Next, execute the Query using the .BID primitive; finally, display the results using the .SHOW
primitive.

The following steps build an example employee information report using the data base file PAY1.
You can follow these steps, with appropriate modifications, to create similar reports.

1. Choose a name for your SCl command. This one is called EMPINFO and displays the
following prompts:

QUERY ON EMPLOYEE INFO
PASSWORD:
ENTER EMPLOYEE NUMBER:
VIEW GENERATED QUERY:

The password is required only if security is installed on your system. The operator
enters the employee number, which is then inserted into the text of a Query statement.
The operator can choose whether or not to view the generated report.

2. Use the Text Editor to create an SCl language procedure to display the desired prompts.
The following lines are needed for EMPINFO:

EMPINFO (QUERY ON EMPLOYEE INFO),
FPASSWORD = STRING.

ENTER EMPLOYEE NUMBER = INT.

VIEW GENERATED GUERY = YESNO

«SYN $EMPNO = "&ENTER EMFLOYEE NUMBER"

The .SYN primitive assigns the employee number entered to the synonym $EMPNO.

3. Enter the first part of the Query in a .DATA primitive without any options. Send the out-
put of .DATA (the Query statement) to a file, such as .QSRC@$$ST in the example. It is
good practice to use a file name of six or fewer characters with the synonym @$$ST
concatenated to it. $$ST is the operator’s station number. Using a file name with @$$ST
appended to it allows all stations to use the command simultaneously. The first .DATA
primitive for EMPINFO is as follows:

E-2 2276554-9701



Example Query Application

*

# Build the Guery, beginning with the fixed portion

*

. DATA . QSRC@$$5T

LLIST "MASTER EMPLOYEE NUMBER =" MNUM " SE8N# = " MSSN;

MNAM MSTR MCTY MSTT MZIP HEADER SKIP

"NAME , ADDRESS";

MJOB MLOC MDEP HEADER SKIP "CURRENT JOB*®

"TITLE LOCATION DEPARTMENT®;

PE HEADER SKIP "PREVIOUS JOBS"

"TITLE COMPANY STATE SALARY"Y;
NO HEADER HEADER " #*##% MASTER EMPLOYEE INFORMATIDN *%*%#" SKIP
FROM PAY1
. EOD

4. Next, define a second .DATA primitive with the EXTEND and SUBSTITUTION options set
to YES, as follows:

*

* Append the variable portion, inserting the

* employee number into the condition

»*

. DATA . GSRC@$$ST, EXTEND = YES, SUBSTITUTION = YES
WHERE MNUM EQ ‘@$EMPNO’

BY KEY BY LIST

. EGD

The EXTEND option appends this second .DATA primitive to the previous one, com-
pleting the Query statement.

2276554-9701



Example Query Application

E-4

5. Add the following to execute the Query and display the listing:

#

# Bid Query

&

.BID TASK=0C0O, LUNO=S$QUERY.PROG,
#*

PARMS=(2000, 3000, @sMR$, XPASSWORD, &0, 80,
.LISTIN@$$ST, R, NO., NO. &VIEW GENERATED QUERY,
NO, NO. ,.QSRCE$$ST, - . LISTINE$$5T, ., , ,@sMT$)

i

# Display the listing file
#

. BHOW . LISTIN@$$S5T
#

% Delete the employee number synonym and the listing file
#

. 8YN SEMPNO=""
DF P=. LISTIN@$$ST

Depending on the application, you might want to make the following changes to the
.BID parameters:

a. Change the file name .QSRC@ $$ST; be sure to match the file name used in the
.DATA sections.

b. Replace the string &VIEW GENERATED QUERY with NO if you choose not to use
this prompt. (Also, remove VIEW GENERATED QUERY from the list of prompts.)

Cc. To direct the output to a printer or file, replace the pathname .LISTIN@ $$ST with
the printer or file name and delete the .SHOW command.

6. Store the file containing your command procedure under the directory .S$CMDS. The

EMPINFO command procedure file would have the pathname .S$§CMDS.EMPINFO. The
complete command procedure is as follows:

2276554-9701



2276554-9701

-

Example Query Application

EMPINFO (QUERY ON EMPLOYEE INFO),

PASSWORD = STRING,

ENTER EMPLOYEE NUMBER = INIT,

VIEW GENERATED QUERY = YESNO

. 8BYN $EMPNO = "&ENTER EMPLOYEE NUMBER"

#

# Build the query, beginning with the fixed portion
+*

. DATA . QSRCe$45T

LIST “MASTER EMPLOYEE NUMBER =" MNUM " SSN# = " MSSEN;

MNAM MSTR MCTY MSTT MZIP HEADER SKIP

"NAME ADDRESS";

MJOB MLOC MDEP HEADER SKIP "CURRENT JOB"

"TITLE - LOCATION DEPARTMENT";

PE HEADER SKIP "PREVIOUS JOBS"

"TITLE COMPANY STATE SALARY";

NO HEADER HEADER " ##x#% MASTER EMPLOYEE INFORMATION s####" SKIP
FROM PAY1L

. EOD

346 3638 353 3026 303 3030 3030 363 3636 3 30330 3033030 3030 2030 20 30 3630 30 30 3 30 3 3 S I H I H AR HH W R
#*

# Append the variable portion, inserting the

# employee number into the condition

#*

.DATA . QSRCR$$S8T, EXTEND = YES, SUBSTITUTION = YES

WHERE MNUM EG ‘@$EMPNO-

BY KEY BY LIST

. EOD

#

# Bid Query

*

.BID TASK=0CO0, LUNDO=S$GUERY. PROG,

*

PARMS={2000, 3000, @$%$MR$, JPASSWORD, &0, 80,

. LISTIN@®$ST, R, NO., NO, %VIEW GENERATED QUERY.

NO. NO, . GSRCE*$ST, . LISTIN@$%$ST, . ., ,@$MT%)

#*

¥ Display the listing file

*

. SHOW | LISTIN@#45T

#*

# Dalete the employee number synonym and the listing file
3+

. 3YH SEMPNO=""

DF P=. LISTIN@$$ST



Example Query Application

7. Enter the name of the command (EMPINFQ) to execute the procedure. The following
prompts appear on the screen:

QUERY ON EMPLOYEE INFO
PASSWORD:
ENTER EMPLOYEE NUMBER:
VIEW GENERATED QUERY:

The operator responds as follows:

QUERY ON EMPLOYEE INFO
PASSWORD: 7777
ENTER EMPLOYEE NUMBER: 55555
VIEW GENERATED QUERY: YES

As a result, the following appears on the screen:

DNGUERY 1.3.0 B82.167 QUERY-990 06/07/82 13:32:11 PAGE 1
LIST "MASTER EMPLOYEE NUMBER =" MNUM * SEN# = " MSSBN;
MNAM MSTR MCTY MSTT MZIP HEADER SKIP
"NAME ADDRESS";
MJOB MLOC MDEP HEADER SKIP “CURRENT JOB"
"TITLE LOCATION DEPARTMENT™;
PE HEADER SKIP “PREVIOUS JOBS"
"TITLE COMPANY STATE SALARY™;
NDO HEADER HEADER " #### MASTER EMPLOYEE INFORMATION #%##" SKIP
FROM PAY1

WHERE MNUM EQ ‘55555°
BY KEY BY LIST

###% MASTER EMPLOYEE INFORMATION ####
MASTER EMPLOYEE NUMBER = S5555  S5N# = B7S247964

NAME ADDRESS
PASCHAL, JIMMY 1000 ACORN DAKS LIBERTY HILL MO 79666

CURRENT J0OB
TITLE LOCATION DEPARTMENT
VICE PRES MT. VIEW SALES

PREVIQUS JORES

TITLE COMPANY STATE SALARY
SALESMAN EQUIPMENT MFG. CA 1500. 00

2276554-9701



Alphabetical Index

Introduction

HOW TO USE INDEX

The index, table of contents, list of illustrations, and list of tables are used in conjunction to ob-
tain the location of the desired subject. Once the subject or topic has been located in the index,
use the appropriate paragraph number, figure number, or table number to obtain the corre-
sponding page number from the table of contents, list of illustrations, or list of tables.

INDEX ENTRIES

The following index lists key words and concepts from the subject material of the manual together
with the area(s) in the manual that supply major coverage of the listed concept. The numbers along
the right side of the listing reference the following manual areas:

L]

Sections — Reference to Sections of the manual appear as “Sections x” with the sym-
bol x representing any numeric quantity.

Appendixes — Reference to Appendixes of the manual appear as ““Appendix y”’ with the
symbol y representing any capital letter.

Paragraphs — Reference to paragraphs of the manual appear as a series of
alphanumeric or numeric characters punctuated with decimal points. Only the first
character of the string may be a letter; all subsequent characters are numbers. The first
character refers to the section or appendix of the manual in which the paragraph may be
found.

Tables — References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number.

Tx-yy

Figures — References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number.

Fx-yy

Other entries in the Index — References to other entries in the index preceded by the
word “See” followed by the referenced entry.

2276554-9701 Index-1



Index

AFTERFeature ..................... 3.33
AliasElements ..................... 2.3.2
Alternate Collating Sequences . .Appendix C
ANY, Quantifier..................... 453
Application Programs, Change Data
Constants ...................... 4.13.2
Arithmetic, MixedMode . . ............ 49.4
BEFOREFeature.................... 3.3.3
Braces ......... . i A.1.2
Brackets ............ ... ... ... A1.2
BREAKClause ...................... 4.10
Example................... F4-29, F4-30
Syntax ... e 410
BYClause ........... ... 4.8
Syntax ... i 4.8
BYKEY ... 4.8.2
Example.................... F3-5, F4-21
BYKEYBYLIST..................... 4.8.1
Example .............. F3-4, F4-19, F4-20
BYLIST.........i e 4.8.3
Example .............. F3-6, F4-22, F4-23
Calculation Data Types ........ Appendix B
Calling Format Subroutines ............ 6.2
Change DataConstants.......... 2.3.5,4.13
Application Programs............. 4.13.2
Example .........ccovviiniian.. F4-38
Format ......................... 4.13.3
Stand-AloneQuery ............... 4.13.3
Clause:
BREAK ......... ... .. il 4.10
BY .. e 4.8
CONTENTS ......... ..o 3.3.1
DEFINE ....... ... ... .. ... ... ... 4.9
FROM . ... ... . . i, 4.2
HEADERand FOOTING ............. 4.3
IN 4.12.4
LINKEDBY ...........c.c. vt 4.12
NOHEADER ..................... 4.3.5
POSITION ....................... 3.3.2
SORT ... e 4.6
THRU ... i 4.12.3
TRACE ................. 3.5.1,4.7, F4-18
UNIQUE.......................... 411
WHERE ........................... 4.5
Clause Example:
BREAK.................... F4-29, F4-30
DEFINE......................... F4-24
NOHEADER...................... F4-5
THRU. ... ... F4-36
Clause Syntax:
BREAK ......... ... .. L. 4.10
BY ... 4.8
DEFINE ........... ... ... ... ... 4.9.1
FROM ... ... ... . . i, 4.2.1
HEADERand FOOTING ............ 4.31
LINKEDBY.......... ..ot 4121
SORT ... e 4.6.1
THRU ... i 4.12.3

Index-2

TRACE ... e 4.71
UNIQUE................. ... .. ... 4.11
WHERE ............. ..., 451
Clauses:
Introduction ................... L...44
Language ............. ... 222
COBOLProgram ................... 6.11.4
Example .......... ... it 6.11.3
Linking ............ ... ... .. 6.12.3
Command:
GQUERY ........ .. i e 7.2
QCOMPILE ...................... 2.6.2
Query-990..........coiiiinnien.. 2.6.1
Compile and Initialize, QCOMP ......... 6.3
Complex:
ConditionExample ............... F4-12
Conditions ..................... 45.1.3
SORT ...ttt i F3-3
Condition Example:
Complex ..........coiiviin.. F4-12
Line-Level ........... ... ... ovuat. F4-8
Simple........... ... o i ...F49
Conditions:
Complex ........coiviiiiinnn.. 45.1.3
Line-Level ............... 45,454,522
Record-Level............. 45,4.5.2,5.2.1
Simple...................oo 4511
Constants:
ChangeData ..................... 2.3.5
Elements ........................ 2.3.5
Special ............ ... . .. 2.3.6
Example,ChangeData ............ F4-38
FALSE ........... ..., 4511
Heading, Special .................. 4.3.4
Literal ............ i, 2.35
NULL ... e 45.1.1
Numeric .......... ... 235
TRUE ... 4511
CONTENTSClause.................. 3.3.1
ControlKeys............oovivinnnnn. 7.3
COUNTOperator...........cocevvn. 495
Data Base Management System......... 1.4
DataDictionary ..................... 1.4.2
File Structures. ................... 1.4.2
DBMS-990 .........cciviiiiiii . 1.4
FileStructures. ................... 1.4.1
DDL ListingsFile ............. Appendix D
Default Heading Example. ............ F4-3
DEFINEClause....................... 4.9
Example .................. F4-24, F4-25,
F4-26, F4-27, F4-28
Expression....................... 49.3
Syntax.............. ... ... 4.9.1,49.3
Definition:
File....... .. i, 1.4
Syntax........cooiiiiiiiiii i A2
DELETEFunction..................... 3.5
Description, Query General .. ..... Section 2
2276554-9701



Editor,Query-990.................... 2.6.3
Elements:
Alias ... 2.3.2
Constants ....................... 2.3.5
File ... e 2.3.1
ReportLine ............ . ... ..... 3.21
ReservedWords ............ e 234
SpecialConstants. . ............... 2.3.6
Variables ........................ 2.3.3
Ellipsis.......cooiiiiiii i, A1.3
End Query Processor, QEND ........... 6.9
ErrorMessages . ................ Section 8
EVERY, Quantifier................... 45.3
Example:
BREAKClause ............. F4-29, F4-30
BYKEY .........cccvooon.. F3-5, F4-21
BYKEYBY LIST........ F3-4, F4-19, F4-20
BYLIST............... F3-6, F4-22, F4-23
Change DataConstants ........... F4-38
COBOLProgram ................. 6.11.3
Complex Condition ............... F4-12
DefaultHeading................... F4-3
DEFINEClause ............ F4-24, F4-25,
F4-26, F4- 27 Fa4-28
Formatting ....................... F4-6
FORTRAN Program............... 6.11.2
GuidedQuery ................ 7.4.6,F2-2
Heading ......................... F4-1
Line-Level:
Condition ...................... F4-8
SORT ...t F4-17
LINKEDBYClause ............... F4-34
NO HEADERClause ............... F4-5
PascalProgram .................. 6.11.1
Query Application ........... Appendix E
Record-Level .......... F4-7,F4-13, F4-14
SORT ... i F4-15
Relational Operators . ............. F4-10
ReportLineHeading ............... F4-2
Simple Condition.................. F4-9
SPACE ... ...t F4-6
SpecialHeader.................... F4-4
Strmg Operators ................. F4-11
............................. F4-6
THRU Clause .................... F4-36
" UNIQUECIlause....... F4-31, F4-32, F4-33
Execute and List Query
Results,QEXEC .................... 6.5
Executing the Query Processor ......... 2.6
Expression, DEFINEClause .......... 4.9.3
FALSEConstants.................. 4.5.1.1
Feature:
AFTER ... ... i 3.3.3
BEFORE..........cciiiiiiaant, 3.33
FIRST ... e 3.3.3
File:
DDL Listings ............... Appendix D
Definition ................ .. .. .. ... 1.4
Elements ............. ... ... ..., 2.3.1
2276554-9701

Index

File Structures:

DataDictionary ................... 1.4.2
DBMS-990 ....................... 1.4.1
Files:
Keylndexed...................... 1.4.2
RelativeRecord................... 1.4.2
Sequential ....................... 1.4.2
FIRSTFeature ...................... 3.3.3
Footing............. ... .. ........ 3.2.2
Format, Change Data Constants . ... .. 4133
Formatting:

Example ....... ... ... ... ... .. ... F4-6

Output ............ ... ... ... 441
FORTRAN Program:

Example ........................ 6.11.2

Linking......................... 6.12.2
FROMClause .................covnt.. 4.2

Syntax ......... ... . i, 4.2.1
Function:

DELETE. ...ttt 3.5

INSERT ......... ... i, 3.3

LIST .o 3.2

UPDATE .......... i, 3.4

FunctionsLanguage................. 2.2.1
General Description, Query ... .... Section 2
GQUERY ... ... 7.2
GuidedQuery ..., 7.1
Example .................... 7.4.6, F2-2
Introduction ....................... 25
SCreens ...t e 7.4
Steps ... 7.4.1
TerminationScreens .............. 7.45
HEADER and FOOTING Clause ......... 4.3

Syntax .......... ... ... .. 4.3.1
HEADER and FOOTING, Main......... 432
HEADER and FOOTING, Report Line ...4.3.3
Heading:

Example ............ ... ... .. ... F4-1
Default ........................ F4-3
ReportLine..................... F4-2

SpecialConstants................. 4.3.4

INClause ............ ... ...t 4.12.4
Initialize Query Interpreter, QINIT .. ..... 6.4
INSERT Function . .................... 3.3
Interface Subroutines . ............... 6.10

Linking ......... ... .. i i, 6.12

Introduction:
Clauses . ..........cciiiiiiinna.. 4.1
GuidedQuery ........... ... .. ... 2.5
KeyIndexedFiles ................... 1.4.2
Keys,Control ........................ 7.3
Language:

Clauses ............ ... ... 22.2

Functions........................ 2.2.1

Punctuation...................... 223

Query-990 .......... i, 2.2

Index-3



Index

Line-Level:
ConditionExample ................ F4-8
Conditions. . ............. 45,45.4,5.2.2
SORT ...t 4.6.3,F3-2
Example ...................... F4-17
LINKEDBYClause................... 412
Example ................. ... .... F4-34
Syntax ........... . i, 4.12.1
Linking:
COBOLProgram ................. 6.12.3
FORTRAN Program............... 6.12.2
Interface Subroutines .............. 6.12
Pascal Program ............ . 6.12.1
LISTFunction........................ 3.2
LiteralConstants.................... 2.3.5
Literals . ........ ... .o i i 4.4.5
Main HEADER and FOOTING ......... 4.3.2
Messages, Error ................ Section 8
Mixed Mode Arithmetic .............. 49.4
NOHEADERClause ................. 4.3.5
Example .......... ... ... .. ... F4-5
NULLConstants................... 451.1
NumericConstants. . ................ 2.3.5
Operator:
COUNT ... . i 4.9.5
TOTAL ... e 4.9.5
Operators.. ..o, 493
Relational ...................... 4511
Example ...........cceia. . Fa4-10
String. ... 4.5.1.2
Example .............. ... ... F4-11
Optimization, Query-990 . .............. 5.2
Orderindicators .................... 4.6.1
Output:
Formatting....................... 441
PAGE .......... ... ..., 444
Report ....... ..., 4.4
SKIP ... 4.4.4
SPACE .......... i 443
TAB . ... e i 4.4.2
Unformatted ....................... 4.4
PAGEOQutput....................... 4.4.4
Pascal Program:
Example ............ ... o L, 6.11.1
Linking ......................... 6.12.1
POSITIONClause ................... 3.3.2
PrimaryKey ........................ 3.34
Processor,Query-990 ................. 2.6
Program:
COBOL........coiiiiiia.. 6.11.3
Example:
COBOL.........c.iiiiinnn.. 6.11.3
FORTRAN .................... 6.11.2
Pascal........................ 6.11.1
Linking:
COBOL............... ot 6.12.3
FORTRAN .................... 6.12.2
Index-4

Pascal........................ 6.12.1
Prompts, Query-990 ................. 2.6.1
Punctuation:

Language ..........coiiiiinnnn 223
QUErY ... e e F2-1
QCLR. ... 6.8
QCOMP .. .. e 6.3
QCOMPILE .......... ... ot 2.6.2
QEND ... ... . e 6.9
QEXEC. ... .. e 6.5
QINIT ... e 6.4
QRECV . ... ... i i i 6.6
QSEND ........ ... 6.7
Quantifier:
ANY 453
EVERY ... ... . i 453
Query:
Application, Example ........ Appendix E
Example,Guided .................. F2-2
General Description . .......... Section 2
Guided............. ..ottt 7.1
Procedure......................... E.2
Punctuation ...................... F2-1
Query-990:
Command ....................... 2.6.1
Editor ....... ... .. 2.6.3
Language .......... ..o, 2.2
Optimization....................... 5.2
Processor ......... ... it 2.6
Prompts ..., 2.6.1
StatementElements ................ 2.3
StatementSyntax................... 2.4
Syntax ............ . ..., Appendix A
Receive Query Data, QRECV............ 6.6
Record-Level:
Conditions............... 45,45.2,52.1
Example .............. F4-7, F4-13, F4-14
SORT ................. 4.6.2, F3-1, F4-16

Example ...................... F4-15
Reinitialize Query Processor, QCLR ... .. 6.8
Relational Operators ............... 45.1.1

Example ........... ... ... ... F4-10
Relative Record Files ................ 1.4.2
Report:

Output ... 4.4

Specifications .................... 7.4.2
Report Line:

Elements ........................ 3.2.1

HEADERand FOOTING ............ 4.3.3

Heading Example ................. F4-2

Syntax ........... ... ... L. 3.2.2
Reserved Words Elements............ 2.3.4
Screens GuidedQuery ................ 7.4

Termination . ..................... 7.4.5
Send Change Data Constants, QSEND .. .6.7
SequentialFiles .................... 1.4.2
Simple:

ConditionExample ................ F4-9

2276554-9701



Conditions ..................... 4511
SKIPOutput................. ... .... 4.4.4
SORTClause ...........civiiinnnnnn. 4.6

Complex .............. .. F3-3

Example, Line-Level .............. F4-17

Example, Record-Level ............ F4-15

Line-Level ................... 46.3, F3-2

Record-Level ........... 4.6.2, F3-1, F4-16

Syntax ... 4.6.1
SPACE:

Example .............. ... .. ... F4-6

Output .......... ... i, 443
Special Constants:

Elements ........................ 2.3.6

Heading ......................... 4.3.4
Special Header Example.............. F4-4
Specifications,Report ............... 7.4.2
Stand-Alone Query, Change Data

Constants ...................... 4.13.1
Statement Elements, Query-990......... 2.3
Statement Syntax, Query-990 ........... 2.4
Steps, GuidedQuery................. 7.4.1
StringOperators. . ................. 451.2

Example ............... ... .. ... F4-11
Subroutines:

CallingFormat ..................... 6.2

Interface .............. .. ... .. .... 6.10

Linking Interface .................. 6.12
Syntax:

BREAKClause .................... 4.10

BYClause ..................ccvt. 4.8

DEFINEClause .............. 49.1,493

Definition ......................... A.2

FROMClause .................... 4.21

HEADER and FOOTING Clause. .4.3.1
2276554-9701

Index

LINKEDBYClause ............... 4.12.1
Query-990.................. Appendix A
Statement ....................... 2.4
Reportline ...................... 3.2.2
SORTClause ..................... 46.1
THRUClause .................... 412.3
TRACECIlause.................... 4.7.1
UNIQUEClause ................... 4.1
WHEREClause ................... 4.5.1
SystemHeading .................... 4.3.5
TAB:
Example ............ ... ... ... ..., F4-6
Output ...... ... ..l 4.4.2
Termination Screens, Guided Query....7.4.5
THRUClause ...................... .4.12.3
Example ............ ... ... ...... F4-36
Syntax ............. .. 0l 4.12.3
TOTALOperator .................... 4.9.5
TRACEClause............. 3.5.1,4.7, F4-18
Syntax ............ ... .. 4.7 .1
TRUE Constants................... 4511
Unformatted Qutput................... 4.4
UNIQUEClause ..................... 4.11
Example ............. F4-31, F4-32, F4-33
Syntax ... 4.1
UPDATE Function .................... 3.4
VariablesElements.................. 2.3.3
WHEREClause....................... 4.5
Syntax ......... ... .. i, 4.5.1
Words....................... Appendix A
Elements,Reserved ............... 2.3.4

Index-5/Index-6






CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: _Query-990 User's Guide (2276554-9701)

Manual Date: _19July 1982 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manuai Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL



FOLD

[ BUSINESS REPLY MAIL )
\_FIRST CLASS PERMIT NO. 7284  DALLAS, X )
POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS GROUP

ATTN: TECHNICAL PUBLICATIONS
P.0O. Box 2909 M/S 2146
Austin, Texas 78769

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD






TEXAS INSTRUMENTS

INCORPORATED

DIGITAL SYSTEMS GROUP
P.0. BOX 2909 » AUSTIN, TEXAS 78769



