
ONOS Query-990 User's Guide

Part No. 2276554·9701 * A
15 July 1982

TEXAS INSTRUMENTS
INCORPORATED

© Texas Instruments Incorporated 1981, 1982

All Rights Reserved, Printed in U.S.A.

The Information and/or drawings set forth In this document and all rights In and to Inventions disclosed
herein and patents which might be granted thereon disclosing or employing the materials, methods,
techniques or apparatus described herein, are the exclusive property of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

Query-990 User's Guide (2276554-9701)

Original Issue 1 August 1981
Revision .. 15 July 1982

The total number of pages in this publication is 196.

DNOS
Distributed Network Operating System

Software Manuals

The manuals supporting ONOS are arranged in this diagram according to the type of user. The manuals most
beneficial to your needs are those contained in the block identified as your user group and in all the blocks
above that set.

ONOS Operations
Guide
2270502-9701

ONOS System Command
Interpreter (SCI)
Reference Manual
2270503-9701

language users and
communications software

users

Language Reference
Manuals

ONOS Language
Programmer's Guides

ONOS Link Editor
Reference Manual
2270522-9701

ONOS Productivity Tools
User's Guides

ONOS Communications
Software User's Guides and
Programmer's Guides

2280078

2276554·9701

all users and
management

ONOS Concepts and
Facilities
2270501-9701

all users

ONOS Text Editor
Reference Manual
2270504-9701

ONOS Online Diagnostics
and System Log Analysis
Tasks User's Guide
2270532-9701

assembly language users

Assembly Language
Reference Manual
2270509-9701

ON OS Assembly Language
Programmer's Guide
2270508-9701

ONOS Link Editor
Reference Manual
2270522-9701

ON OS Supervisor Call
(SVC) Reference Manual
2270507-9701

ONOS Messages and
Codes Reference
Manual
2270506-9701

DNOS Master Index to
Operating System Manuals
2270500-9701

systems programmers

DNOS Systems
Programmer's Guide
2270510-9701

ONOS System Generation
Reference Man ual
2270511-9701

source code users

DNOS System Design
Document
2270512-9701

DNOS SCI and Utilities
Design Document
2270513-9701

iii

DNOS
Distributed Network Operating System

Software Manuals Summary
Concepts and Facilities

Presents an overview of ONOS with topics grouped into functions of the operating system. All new users
(or evaluators) of ONOS should read this manual.

Operations Guide
Provides the information necessary to perform daily tasks at a TI 990 Computer installation using ONOS.
Step-by-step procedures are presented for such tasks as operating peripherals, initializing the system,
backing up the system, and manipulating disk files.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Command procedures and primitives are
described, followed by a detailed presentation of all SCI commands in alphabetical order for easy
reference.

Text Editor Reference Manual
Shows how to use the Text Editor interactively on ONOS .and includes a detailed description of each of the
editing commands and function keys.

Messages and Codes Reference Manual
Lists the error messages, informative messages, and error codes reported by ONOS.

Online Diagnostics and System Log Analysis Tasks User's Guide
Provides the information necessary to execute the online diagnostic tasks and the system log analysis
tasks and to interpret the results.

Master Index to Operating System Manuals
Contains a composite index to topics in the ONOS operating system manuals.

Programmer's Guides and Reference Manuals for Languages
Each programmer's guide describes one of the languages supported by ONOS (for example, assembly
language, Pascal, COBOL). Each guide covers operating system information relevant to the use of that
language in the ONOS environment. The details of the language itself, including language syntax and pro­
gramming conSiderations, are in the language reference manual.

Link Editor Reference Manual
Describes how to use the Link Editor on ONOS to combine separately generated object modules to form a
single linked output.

User's Guides for Productivity Tools
Each user's guide describes one of the productivity tools (for example, TIFORM, Query-990, OBMS-990,
Sort/Merge) supported by ONOS. Each guide explains the function of the processor, its features, and its
interface requirements.

User's Guides and Programmer's Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution under
ONOS. For example, there is a user's guide for the ONOS 3780/2780 Emulator software package.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each ONOS supervisor call and general information about ONOS
services.

Systems Programmer's Guide
Discusses the ONOS nucleus and subsystems at a conceptual and functional level and describes how to
modify the system for a specific application environment.

System Generation Reference Manual
Contains the information needed to perform system generation, including pregeneration requirements,
generation procedures, and information about postgeneration results.

System Design Document
Contains the information needed to understand the functioning of the system when using a source kit. This
includes descriptions of the subsystems in detail, naming and coding conventions, module cross­
references, data structure details, and information not found in other manuals.

SCI and Utilities Design Document
Presents design information about SCI and the ONOS utilities.

iv 2276554-9701

Preface

This manual is intended for programmers, managers, operations personnel, and users of
Query-990.

This manual is organized into the following sections and appendixes:

Section

1 General Description - Briefly describes the major features of Query-990.

2 Basic Concepts of Query-990 - Provides an introduction to the language, elements,
and syntax of Query-990.

3 Functions - Discusses the four available functions and the special clauses associated
with them.

4 Clauses - Describes the Query-990 clauses and explains report formatting and change
data constants.

5 Optimization - Discusses how to optimize Query-990.

6 Program Language Interface Subroutines - Describes the subroutines used in appli­
cation programs to execute Query.

7 The Guided Query Utility - Describes the Guided Query utility and familiarizes users
with the Query language.

8 Error Messages - Explains the error messages associated with the Query processor
and the Guided Query utility.

Appendix

A Query-990 Syntax - Provides the syntax definitions for the elements of the Query
language.

B Calculation Data Types - Describes the data types used for Query calculations and in
DBMS-990 files.

C Alternate Collating Sequences - Describes the alternate collating sequences for the
Germany/Austria and the Sweden/Finland character sets.

2276554·9701 v

Preface

o DOL Listings for Example Files - Lists the DOL descriptions of files used for examples
in this manual.

E Example Query Application - Provides examples of interactive data-retrieval appli­
cations.

The following documents contain additional information related to operating Query-990 under the
ONOS operating system:

vi

Title

Model 990 Computer DNOS Data Base Management
System Programmer's Guide

Model 990 Computer DNOS Data Base Administrator
User's Guide

Model 990 Computer DNOS Operations Guide

Model 990 Computer Data Dictionary User's Guide

Part Number

2272058-9701

2272059-9701

2270502-9701

2276582-9701

2276554-9701

Paragraph

1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.2.1
1.5

Contents

Title Page

1 - General Description

Introduction .. 1-1
Query-990 Capabilities ... 1-1
Environments .. 1-1
DBMS-990 and 00-990 ... 1-1

DBMS-990 Fi Ie Structu res .. 1-2
Data Dictionary (00-990) .. 1-2

Data Dictionary File Structures .. 1-2
Examples .. " 1-4

2 - Basic Concepts of Query-990

2.1 Introduction .. 2-1
2.2 The Query Lang uage ... 2-1
2.2.1 Functions .. 2-1
2.2.2 Clauses ... 2-2
2.2.3 Punctuation ~ 2-2
2.3 Query Statement Elements ... 2-4
2.3.1 File Elements ... 2-4
2.3.2 Alias Feature ' 2-4
2.3.3 Variables .. 2-4
2.3.4 Reserved Words .. 2-5
2.3.5 Constants ... 2-5
2.3.6 Special Constants ... 2-5
2.4 Query Syntax ... 2-6
2.5 Guided Query ... 2-6
2.6 Executing the Query Processor .. 2-9
2.6.1 QUERY Command ... 2-9
2.6.2 QCOMPILE Command .. 2-11
2.6.3 Query Editor ... 2-13

3.1
3.2
3.2.1
3.2.2
3.3

2276554-9701

3 - Functions

Introduction .. 3-1
LIST Function .. 3-1

Report Li ne Elements .. 3-2
Syntax ... 3-2

INSERT Function ... 3-3

vii

Contents

Paragraph Title Page

3.3.1 CONTENTS Clause .. 3-3
3.3.2 POSITION Clause ... 3-3
3.3.3 BEFORE, AFTER, and FIRST Features 3-4
3.3.4 Identifying the Primary Key ... 3-4
3.4 UPDATE Function ... 3-5
3.5 DELETE Function ... 3-6
3.5.1 TRACE Clause .. 3-6

4.1
4.2
4.2.1
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.5
4.5.1
4.5.1.1
4.5.1.2
4.5.1.3
4.5.2
4.5.3
4.5.4
4.6
4.6.1
4.6.2
4.6.3
4.7
4.7.1
4.8
4.8.1
4.8.2
4.8.3
4.9
4.9.1
4.9.2
4.9.3
4.9.4

viii

4 - Clauses

Introduction .. 4-1
FROM Clause .. 4-2

Syntax ... 4-2
HEADER and FOOTING Clause .. 4-2

Syntax ... 4-3
Main Headings and Footings .. 4-3
Report Line Headings and Footings 4-4
Special Heading Constants ... 4-7
System Heading and NO H EADER Clause 4-8

Report Output .. 4-8
Formatting ... 4-8
TAB .. 4-10
SPACE ... 4-10
PAGE and SKIP .. 4-11
Literals ... 4-11

WH ERE Clause .. 4-11
Syntax .. 4-13

Simple Conditions ... 4-13
String Operators ... 4-14
Complex Conditions .. 4-15

Record-Level Conditions .. 4-16
EVERY and ANY Quantifiers ... 4-17
Line-Level Conditions ... 4-18

SORT Clause .. 4-18
Syntax .. 4-18
Record-Level Sort .. 4-19
Line-Level SORT ... 4-20

TRACE Clause ... 4-22
Syntax .. 4-22

BY Clause ... 4-24
BY KEY BY LIST .. 4-24
BY KEy ... 4-25
BY LIST ... 4-30

DEFINE Clause .. 4-30
Syntax .. 4-30
Where Variables Can Be Used .. 4-33
DEFINE Expression .. 4-33
Mixed Mode Arithmetic ... 4-36

2276554-9701

Paragraph

4.9.5
4.10
4.11
4.12
4.12.1
4.12.2
4.12.3
4.12.4
4.13
4.13.1
4.13.2
4.13.3

Contents

Title Page

Totals and Counts .. 4-36
BREAK Clause ... 4-38
UNIQUE Clause .. 4-41
LINKED BY Clause ... 4-43

Syntax .. 4-43
LINKED BY File Hierarchy ... 4-44
TH RU Clause .. 4-47
IN Clause ... 4-47

Change Data Constants ... 4-47
Change Data Constants and Stand-Alone Query 4-47
Change Data Constants and Application Programs 4-47
Change Data Constant Format ... 4-47

5 - Optimization

5.1 Introduction .. 5-1
5.2 Optimization ... 5-1
5.2.1 Record-Level Conditions ... 5-1
5.2.2 Line-Level Conditions .. 5-2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.11.1
6.11.2
6.11.3
6.12
6.12.1
6.12.2
6.12.3

6 - Program Language Interface Subroutines

Introduction .. 6-1
Calling Formats ... 6-1
QCOMP - Compile and Initialize .. 6-2
QINIT - Initialize Query Interpreter ' .. 6-3
QEXEC - Execute and List Query Results 6-4
QRECV - Receive Query Data .. 6-5
QSEND - Send Change Data Constants 6-5
QCLR - Reinitialize Query Processor 6-6
QEN D - End Query Processor .. 6-6
Using the Interface Subroutines ... 6-8
Example Programs ... 6-10

Example Pascal Program .. 6-10
Example FORTRAN Program ... 6-13
Example COBOL Program ... 6-14

Linking the Interface Subroutines ... 6-18
Linking Pascal Programs .. 6-19
Linking FORTRAN Programs ... 6-19
Linking COBOL Programs ... 6-19

7 - Guided Query Utility

7.1 Introduction .. 7-1
7.2 GQUERY Command ... 7-1
7.3 Control Keys ... 7-2

2276554·9701 ix

Contents

Paragraph

7.4
7.4.1
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3
7.4.2.4
7.4.2.5
7.4.2.6
7.4.3
7.4.4
7.4.5

8.1
8.2
8.2.1
8.2.2
8.2.2.1
8.2.2.2
8.2.2.3
8.3
8.4

Appendix

A

B

C

D

E

x

Title Page

Guided Query Screens ... 7-2
File Identification (Step 1) ; 7-3
Report Specifications .. 7-4

Main Heading (Step 2) .. 7-4
Line and Field Specifications (Steps 3 and 4) 7-5
List, Count, Total, and Average (Step 5) 7-8
Line Heading (Step 6) .. 7-9
Line-Level Conditions (Steps 7, 8, and 9) 7-10
Output Continuation (Step 10) .. 7-14

Record-Level Conditions (Steps 11 Through 13) 7-15
Sort Specifications (Steps 14 Through 17) 7-18
Termination Screens ... 7-23

8 - Error Messages

Introduction .. 8-1
Query Processor Errors .. 8-1

Run-Time Errors .. 8-1
Query Statement Errors .. 8-1

Miscellaneous Quer/ Statement Errors 8-2
Syntax Errors ... 8-2
Query-990 Error Message Format 8-3

Guided Query Errors ... 8-25
I nternal Message Codes .. 8-29

Appendixes

Title Page

Query-990 Syntax ... A-1

Calculation Data Types .. B-1

Alternate Collating Sequences .. C-1

DDL Listings for Example Files ... D-1

Example Query Application ... E-1

Index

2276554·9701

Contents

Illustrations

Figure Title Page

1-1 DBMS-990 File Structure ... 1-3

2-1 Punctuation Example .. 2-3
2-2 Guided Query Example ... 2-8

4-1 Main Headings Example .. 4-4
4-2 Report Line Heading Example ... 4-5
4-3 Default Heading Example .. 4-6
4-4 Special Heading Example .. 4-7
4-5 NO H EADER Clause Example ... 4-9
4-6 Space, Tab, and Formatting Example 4-10
4-7 Record-Level Condition with WHERE Clause 4-12
4-8 Line-Level Condition with WHERE Clause 4-13
4-9 Simple Condition Example .. 4-13
4-10 Relational Operators Example .. 4-14
4-11 String Operators Example ... 4-15
4-12 Complex Condition with Logical Operators Example 4-15
4-13 Record-Level Example .. 4-16
4-14 Record-Level Condition Example ... 4-17
4-15 Record-Level SORT ... 4-19
4-16 Record-Level SORT on Two Fields 4-20
4-17 Line-Level SORT BY KEY BY LIST .. 4-21
4-18 DELETE Function Used with TRACE Clause 4-23
4-19 BY KEY BY LIST Example .. 4-26
4-20 BY KEY BY LIST with Unwanted Results 4-27
4-21 BY KEY Example ... 4-29
4-22 BY LIST Example ... 4-31
4-23 BY LIST with Unwanted Results .. 4-32
4-24 DEFINE Clause Example .. 4-33
4-25 DEFINE Expression Example Using COUNT 4-34
4-26 DEFINE Expression Example Using TOTAL 4-35
4-27 DEFINE Clause with RECORD COUNT 4-36
4-28 DEFINE Clause with RECORD TOTAL 4-37
4-29 BREAK Clause Example Using BEFORE, ON, and TOTAL 4-39
4-30 BREAK Clause Example ... 4-40
4-31 Record-Level Without UNIQUE Example 4-41
4-32 UNIQUE Clause .. 4-42
4-33 UNIQUE Example .. 4-42
4-34 LINKED BY Example .. 4-43
4-35 LINKED BY Clause ... 4-44
4-36 LINKED BY Example Using the THRU Clause 4-45
4-37 Query with INSERT Without Change Data Constants 4-48
4-38 Change Data File Contents for INSERT Example 4-49
4-39 Change Data Constants and INSERT Function 4-50

7-1 Guided Query Example .. 7-24

8-1 Example Syntax Errors ... 8-2

2276554-9701 xi

Contents

Tables

Table Title Page

4-1 Relational Operators .. 4-14

6-1 Interface Subroutine Status Codes ... 6-7

8-1 Internal Message Codes ... 8-29

xii 2276554-9701

1

General Description

1.1 INTRODUCTION

This manual discusses the conceptual and functional characteristics of Query-990. It contains
both user information and reference material needed to understand and operate Query-990.

This section introduces Query-990. Topics covered include Query-990 capabilities and
environments.

1.2 aUERY-990 CAPABILITIES

Query-990 is a powerful retrieval system that allows you to access, modify, and display infor­
mation contained in a file. Query-990 uses the English language in simple, logical statements to
generate reports. Query statements can replace application programs that produce reports.

Both experienced programmers and users without programming knowledge can use Query-990.
You can use Query-990 as a stand-alone utility, or the application interface subroutines can
execute Query-990 from an application program.

1.3 ENVIRONMENTS

The combination of Query-990 and the Data Dictionary (00-990) provides access to key indexed
files (KIFs), relative record (random access) files, and sequential files. The combination of
Query-990 and DBMS-990 provides access to data base files. Combining all three systems results
in an efficient and versatile self-documenting data management system.

1.4 DBMS-990 AND 00-990

Prior to detailed discussion of DBMS-990 and Data Dictionary, it is necessary to establish a com­
mon definition for DBMS-990, key indexed, relative record, and sequential files. The following ter­
minology is used to refer to a file and its components:

• FILE - A collection of records

• RECORD - A collection of all lines (regardless of type) with primary keys having the
same value

• LINE - An occurrence of a line type

• KEY - A field whose value can be used to access like-valued lines directly

2276554·9701 1-1

General Description

• GROUP - A collection of fields within a line

• FIELO - A named element in a line

Query-990 requires either OBMS-990 or 00-990 (or both) in order to operate. OBMS-990 accesses
OBMS-990 files, and 00-990 accesses key indexed, relative record, and sequential files. 00-990
can also enhance OBMS-990.

OBMS-990 is the data base management system that executes on the Texas Instruments Model
990 Computer. OBMS-990 is a data manager, allowing you to establish the contents, grouping,
relationships, and security of all data elements within a OBMS-990 file. DBMS-990 is easy to use
and provides a logical viewpoint of the data. Normal physical constraints such as access method,
record size, block size, and relative field position should not concern you.

OBMS-990 is a mechanism for organizing, storing, updating, and retrieving data through mass­
storage devices. The 990 computer's mass-storage media is disk, which facilitates the use of
random-access techniques.

1.4.1 DBMS-990 File Structures
The highest-level element in OBMS-990 is the file (Figure 1-1). A file is composed of records, each
of which has a unique primary key value. Each record is composed of one or more lines, and each
line is composed of fields. The ODL processor in OBMS-990 defines the file structurally. File and
field !Ds are four characters long; the first character must be a letter, but the other three
characters can be either letters or numbers. Line lOs are two characters long, in the range of AA
through ZZ and 01 through 99.

Lines have a unique order within a record. You establish this order when you insert the lines. The
01 line type is a special line type. If you define a 01 line for a file, that line can occur only once per
record, and it must be the first line added and the last line deleted. Other line types can have zero
or more occurrences in a particular record. Also, a given line type (other than 01) can occur in dif­
ferent records a different number of times.

To create a record, add a line to the OBMS-990 file, specifying a new primary key value. You can
then add additional lines to the record. When the last line in a record is deleted, the record is
deleted.

1.4.2 Data Dictionary (00-990)
00-990 is a data manager providing data base descriptions for key indexed, relative record, and se­
quential files.

1.4.2.1 Data Dictionary File Structures. Query-990 allows 00-990 access to key indexed, relative
record, and sequential files. Only a subset of the Query syntax is allowed for sequential and
relative record files. You need not specify in the Query statement which file type is being
accessed.

Key Indexed Files (KIFs). The structure of a KIF is almost identical to that of a data base file. A
record in a KIF is all records with primary keys having the same value. If duplicates are not allowed
for primary keys, a KIF is a collection of records containing one line each. A key is anything de­
fined to the operating system as a key when the KIF is created. Therefore, KIFs may have both
primary and secondary keys.

1-2 2276554-9701

DATE
TERMS
NAME

2277678

LINE 02

STREET
CITY
STATE
ZIP

PRIMARY KEY
INVOICE

NUMBER

~f LINE 05

*PART NUMBER
QUANTITY
DESCRIPTION
PRICE

* PART NUMBER IS A SECONDARY KEY FOR LINE 05

Figure 1-1. DBMS-990 File Structure

SUBTOTAL
TAX
TOTAL

General Description

LOGICAL

RECORD

Relative Records Files. In a relative record file, each record is also a data base record. Each record
contains one line. The primary key for each record is the record number the operating system
associates with each record. Relative records do not have secondary keys.

When you are using Query-990 with relative record files, a restriction applies to the POSITION
clause. Records are positioned only by the value of their record number. Therefore, the POSITION
clause in the INSERT function is not allowed. Also, the DELETE and DELETE RECORD statements
are not legal for relative record fi les.

Sequential Files. Sequential files are treated much like relative record files. Each line in the file is
a record. Each record contains only one line. The primary key is the record number. Sequential
fi les do not have secondary keys.

The only restriction when using Query-990 with sequential files occurs in the POSITION clause
and the DELETE function. Since operating systems do not provide any delete capability for
sequential files, the DELETE and DELETE RECORD statements in Query-990 are not allowed.

Since you can add records to the end of the file, you cannot specify the POSITION clause on the
INSERT function.

2276554-9701 1-3

General Description

1.5 EXAMPLES

The examples in this manual are based on the files PAY1, GUST, ITEM and SOFL. These files are
included on the Query installation disk. The example information is duplicated in two files; one is
a DBMS-990 file for users with only DBMS-990, the other is a KIF for users with only DD-990.
Users with both products can run the examples on either file. The DBMS-990 files are located
in the directory DNQRYOBJ.TESTFILE.DBMS. The KIFs are located in the directory
DNQRYOBJ.TESTFILE.DD. A dictionary containing the descriptions of the KIF files is located at
DNQRYOBJ.TESTFILE.DD.DIGT. Appendix D contains the DDL declarations for these files.

The restriction that no two IDs in a dictionary can be the same has caused slight DDL changes for
the KIF files GUST and SOFL. In GUST, the ADDR group ID is changed to ADRS. In SOFL, the ITEM
field ID is changed to SITM.

NOTE

The Query examples shown in this manual were all executed using
DBMS-990 files. Since KIFs order data differently than data base
files, the output of examples using KIFs might differ from the ex­
amples illustrated in this manual.

In order to use examples with KI Fs, the following figures should be changed:

1-4

Figure 4-1
Figure 4-2
Figure 4-8
Figure 4-20
Figure 4-21
Figure 4-28

Figure 4-30

Figure 4-31
Figure 4-32
Figure 4-33
Figure 4-34

Figure 4-35

Figure 4-36

The field name ITEM should be changed to SITM
The field name ITEM should be changed to SITM
The field name ITEM should be changed to SITM
The field name ITEM should be changed to SITM
The field name ITEM shou Id be changed to SITM
The field name ITEM should be changed to SITM (do not change the file name

ITEM in the FROM clause)
The field name ITEM should be changed to SITM (do not change the file name

ITEM in the FROM clause)
The field name ITEM should be changed to SITM
The field name ITEM should be changed to SITM
The field name ITEM should be changed to SITM
The field name ITEM should be changed to SITM (do not change the file name

ITEM in the FROM clause)
The field name ITEM should be changed to SITM (do not change the file name

ITEM in the FROM clause)
The field name ITEM should be changed to SITM (do not change the file name

ITEM in the FROM clause)

CAUTION

It is possible to assign both a data base and KIF with the same four
character I D.

2276554-9701

2

Basic Concepts of Query-990

2.1 INTRODUCTION

This section explains the Query language and the elements and syntax of Query statements. This
section also introduces the Guided Query utility as a training tool for learning the syntax of Query
statements. Finally, execution of the Query processor is explained.

2.2 THE QUERY LANGUAGE

The Query language is a nonprocedural language that resembles English. A Query statement con­
sists of one or more lines of instructions. You can easily read a Query statement and understand
the instructions to be executed. An example Query statement is as follows:

LIST EMPLOYEE-INFO FROM PAYROLL-FILE WHERE EMPLOYEE-NUMBER EQ 65

Query statements consist of functions and clauses. The function is the operation that the Query
statement performs. Each statement must include only one function. Clauses are conditions or
modifications to the function. Each statement must include one FROM clause and as many addi­
tional clauses as necessary.

In the preceding example, LIST is the function, and FROM and WHERE are clauses. The function
and clauses in a Query statement can be positioned in any order. (However, the order of the
clauses sometimes affects the output; see Section 4 for more information.) For example, the
following is equivalent to the preceding Query statement:

WHERE EMPLOYEE-NUMBER EO 65 FROM PAYROLL-FILE LIST EMPLOYEE-INFO

2.2.1 Functions
Query-990 can perform any of the following functions:

• LIST - Produces reports or generates data for further processing

• UPDATE - Modifies information that is currently stored in a file

• INSERT - Adds new lines to a file

• DELETE - Deletes one or more lines from a record, an entire record, or an entire file

A Query statement must include only one of the functions LIST, UPDATE, INSERT, or DELETE.
Consequently, to both list and update a file, you must use two separate statements.

2276554-9701 2-1

Basic Concepts of Query-990

2.2.2 Clauses
There are two types of clauses: record-level and line-level. Record-level clauses apply to the entire
Query statement and act in a global manner, affecting all report lines or modification lines. They
should be specified after the FROM clause or before the function.

Line-level clauses affect only the single report line with which they are specified. They must be
specified after the list of fields and literals in a report line and before the semicolon.

Several of the clauses are as follows:

• FROM - Identifies which file the Query statement will process.

• WHERE - Specifies test conditions that identify which records or lines in the file will
be listed or modified.

• SORT - Orders output data based on the two levels of sorting (line-level and record­
level). This clause can order lines within a record or order records in a file.

• TRACE - Allows you to see a listing that shows changes to the file before the file has
actually been modified. The use of this clause is recommended with the DELETE
function.

• BY - Controis the order in which the Query processor reads the data in the fiie.

• DEFINE - Specifies calculations on fields and allows the use of the calculations as
report elements or operands in a condition.

• BREAK - Allows control break processing on totals, counts, and duplicate values.

• UNIQUE - Indicates a single occurrence of a specified line type per record. Fields
within a UNIQUE line type can act as primary keys when used in report lines. Secondary
keys within that line can be optimized.

• LINKED BY - Defines the relationship between files when using more than one file in a
Query statement.

2.2.3 Punctuation
The punctuation conventions for Query statements are as follows:

Double quotes
Single quotes

Exclamation pOint

Semicolon

(" ")
(")

(!)

(;)

Data surrounded by single or double quotes is printed or
displayed exactly as written. This type of data is referred
to as either a I iteral or a I iteral constant.

The Query processor treats the exclamation pOint on a
line as a comment. (Comments are a recomm"ended form
of internal documentation for the Query statement.)

Report lines used to group data for listing or conditioning
are separated by semicolons.

The example in Figure 2-1 shows a Query using punctuation.

2-2 2276554-9701

Basic Concepts of Query-990

Query Statement:

! This comment is included fo~ inte~nal documentation

LIST "EMPLOYEE NAME: /I MNAM;
.. ' MRAT; .. ' SALARY:

.. ' PAY PER I OD: .. ' MPYP .. DAYS";
FRO"" PAY1

Query Output:

EMPLOYEE NAME:
SALAHY:

PAY PER I on:
EMPLOYEE NAME:

:::;AL.AF<Y:
PAY PERIOD:

E.MPL.OYEE NAME:
SALAIiY:

PAY PERI on:
EMPLOYEE NAME:

SAL.ARY:
PAY PERIOD:

EMPLOYEE NAME:
:3ALARY:

PAY F'FF<IO[l:
EMPLOYEE NAI'1E:

SALARY:
PAY PERIOD:

FMPL. OYFE NF-)MF:
SAL{~RY:

PAY PEFt! I ()[I:
EfVlPLOYEE NAt/lr::-~:

SAL AF\Y:
PAY PERIOD:

EMPL.OYEE "'{~ME:
SALAIiY:

PAY F'EF~ I on:

2276554-9701

l..1, KIM
:2:30.00

15 DAY:::
PASCHAL, ,JIMMY

:;;:'500.00
::::0 DAYS
MERED I 1'H, .JOHN

';ilOO.OO
::::0 DAYS
HOWELL, ,..fOHN

:;:75.00
/:.. DAY::;

BROWN, WILLIE
:21~i. 00

5 DAYS
STEPHENS, ,JANET

"7 DAYS
ABL.E, CHARL.IE'

1950.00
::::0 DAYS
HAYNES, BILL

750.00
15 DAYS
PAR~::::::;, FRED

~i~i:::. 00

Figure 2-1. Punctuation Example

2-3

Basic Concepts of Query-990

2.3 QUERY STATEMENT ELEMENTS

Query statements use file elements (such as PAY1), aliases (such as PAYROLL-FILE), variables,
reserved words (such as SORTED BY), and constants to select and define the output or content of
the report. The following paragraphs describe each of these items.

2.3.1 File Elements
You can specify file elements such as field, group, line, and file IDs in a Query statement. The file
ID must match the Data Definition Language (DDL) ID specified when the file was created unless
you have defined an alias for that file name. An example of a Query statement using several file
elements is as follows:

FROM PAY1 LIST MNUM ADDR CU

PAY1 is the file, MNUM a field, ADDR a group, and CU a line. Appendix D lists file specifications
for all examples in this manual.

2.3.2 Alias Feature
Aliases are substitute names for field, group, line, and file IDs. These longer substitute names are
easier to remember than the short names they replace. An alias name can be up to 20 characters
long for DBMS-990. Alternate names of up to 30 characters are used for DD-990. It must start with
an alphabetic character and can include letters, numbers, dollar signs ($), underscores (_), or
dashes (=). An example of a Query statement usi ng aliases is as fo!!o'v"v's:

LIST EMPLOYEE-NUMBER EMPLOYEE-NAME FROM PAY1
WH ERE SALARY$ = 700

The three names EMPLOYEE-NUMBER, EMPLOYEE-NAME, and SALARY$ are aliases. The actual
field names cannot be greater than four characters. The Model 990 Computer DNOS Data Base
Administrator User's Guide contains further discussion of aliases. The Model 990 Computer Data
Dictionary User's Guide contains further discussion of alternate names.

2.3.3 Variables
Variables are the user-defined names that are specified in the DEFINE clause (Section 4) and are
used for calculation. They follow the same naming conventions as aliases. If the same name is
used for a DEFINE variable and an alias, the name is assumed to specify the DEFINE variable. If
the same name is used for a DDL element and an alias, it is assumed to specify the alias. In the
following example of a Query statement using variables, assume A and B are elements in the file
PAY1:

2-4

DEFI N E C:CN/4.2 = A + B;
LIST C FROM PA Y1

2276554-9701

Basic Concepts of Query-990

2.3.4 Reserved Words
The following reserved words cannot be used as user-assigned variables, aliases, or DDL IDs:

2.3.5 Constants

AFTER
ALL
AND
ANY
AVERAGE
BEFORE
BREAK
BY
CONTENTS
COUNT
DEFAULT
DEFINE
DELETE
EQ
EVERY
EXCLUSIVE

FALSE
FIRST
FOOTING
FROM
GE
GT
HEADER
IN
INSERT
KEY
LE
LINKED
LIST
LT
NE
NO

The three types of constants are as follows:

NULL
OFF
ON
ONLY
OR
PAGE
RECORD
SKIP
SPACE
TAB
TOTAL
TRACE
TRUE
UNIQUE
UPDATE
WHERE

• Literals - Composed of a character string enclosed by single or double quotes. Both
single or double quotes can be mixed in the same Query statement. However, each
literal must begin and end with either single or double quotes.

• Numeric constants - Used in conditions, calculations, and content lists. Numeric con­
stants can begin with a number, plus sign (+), minus sign (-), or period (.). Decimal
pOints can be included.

• Change data constants - Allow you to supply a series of values for one variable while
the Query statement is executing. This applies only to CONTENTS clauses, WHERE
conditions, DEFINE clauses, and report line literals. See Section 4 for more information.

2.3.6 Special Constants
NULL, TRUE, and FALSE are special constants. When a NULL constant is specified, the constant
value is automatically defined to be of the same length and data type as the field being compared.
The NULL constant contains binary zeros. TRUE and FALSE constants are valid only for fields of
type Boolean and result in a constant (two bytes long) that contains either binary 1 (for TRUE) or 0
(for FALSE).

2276554·9701 2-5

Basic Concepts of Query·990

2.4 QUERY SYNTAX

Certain symbols are used to clarify statement definitions.

Symbol

[]

I

{ }

Description

Used in writing definitions; means "is defined to be"

Encloses entities that are optional

Indicates alternatives (e.g., A I B I C means A or B or C)

Encloses one or more entities from which you must select
at least one

Indicates the position at which a previous item may be
repeated as required

Underlined keywords and symbols must appear exactly as
shown

A Query statement has the following basic syntax:

[DEFiNE-ciause] function-ciause FROivi-ciause [VvHERE-ciausej

Only the FROM clause and one of the functions are always required. You can include additional
clauses as needed. Although Query-990 is a free-format language, the order of the clause in the
Query statement will affect the output.

2.5 GUIDED QUERY

The Guided Query utility allows you to gather data from a file without having extensive knowledge
of Query-990. Although it does not have all the capabilities of Query-990, Guided Query is
excellent for training. The following exercise will help you become familiar with writing and
executing a Query statement. Guided Query can perform only the LIST function.

NOTE

Refer to the Model 990 Computer DNOS Data Base Administrator
User's Guide, part number 2272059-9701, or refer to the Model 990
Computer Data Dictionary User's Guide, part number 2276582-9701
for instructions on starting the Data Base manager.

The following example shows each step of building a Guided Query statement. In the first column,
the screens are numbered to coincide with the screen numbers you will see on the video display
terminal (VDT).ln the second column, enter input as written. The SKIP instruction does not refer to
the SKIP control key; it means enter the word SKIP. Your password is the password assigned
when Query-990 was installed. After entering the input, press the control key indicated in the last
column.

2-6 2276554·9701

Basic Concepts of Query·990

In the following exercise, use the F4 key to return to previous screens if you need to change your
input.

To begin this exercise, enter the input GQUERY as shown below and then follow the example.

Screen Input Control Key

GQUERY RETURN
(Your Password) RETURN (if security is installed)

1. PAY1 F3
2. Y RETURN

SKIP RETURN
" EM PLOYEE ADDRESSES" RETURN
SKIP F3

3. 01 F3
4. 2 RETURN

3 RETURN
4 RETURN
5 RETURN
6 F3

5. RETURN
RETURN
RETURN
RETURN
RETURN

6. Y RETURN
Y F3

7. N F3
10. N F3
11. Y F3
12. EVERY RETURN

MNAM RETURN
NE RETURN

RETURN
"PASCHAL, JIMMY" F3

13. N F3
14. Y F3
15. 01 F3
16. 2 F3
17. F3
18. F3

<directory pathname>.TESTIN RETURN
RETURN
CMD
CMD
RETURN

<d i rectory path name>. TESTOUT RETURN
CMD

SF <directory pathname>.TESTOUT (to see the Guided Query results)

2276554·9701 2-7

Basic Concepts of Query-990

At the end of the Guided Query session, you can display and then save the resulting Query state­
ment. The Query processor can then execute the saved statement.

NOTE

While the Guided Query is an aid to the beginner, it is not intended
to be the primary mode of operation for Query sessions.

Figure 2-2 shows the results of the Guided Query exercise example.

Query Statement:

LIST
MNAM M!3TR
MCTY M!:::TT /VIZ I P
HEADER

BY KEY BY LIST
FI~OM PAYl
SOF~TED BY /vINAt1
HEADER
S~::: I F'

EMPLOYEE ADDRESSES"

,WHERE
ANY MNAM NE II F'A!:::CHAL, .J I MMY II

Query Output:

MNAM
ABLE, CHARLIE
~1NAM
BIiOt,..JN, W ILL IE
~'INAM

HAYNF.S, BILL
MNAM
HOt.JELL, ,.lCI/-IN
I'lNAM
L.,(, KIM
MNAM
MERED I TH , ".IIJHN
MNAM
F'ARK!:~ '/ FRED
MNAM
!3TEPHFN::;; , "JANET

M!:;;TR
2::;:00 :::;KYWAY
M:::;TR
600 W 5~iTH
~1!::;TR

500 LAIRD
M!::;TR
~i~i~i RIO GRANDE
MSTR
3800 TONKAWA TRAIL
MSTF~

9:::: N. LAMAli
MSTF~

200 NEW YORK AVE.
MSTn
56 PURNA/v1 DR

MCTY
A!;:;r":'ER/VIONT
MCTY
NEW YORK
MCTY
DEL CURro
MCTY
GF~ANCiER

MCTY
BROO~:::!::; I DE
MCTY
GOLIAD
MC:TY
r-\:u!:;~::

MCTY
ECHO

Figure 2-2. Guided Query Example

2-8

M!:::TT
/VIC!
M:::;TT
NY
JVI!::;TT
TX
M::::TT
TX
/v1:;:;TT
riO
MSTT
TX
~1:::;rr

NY
I"'I!:;'~TT

TX

MZIP
::::214~i

/VIZ I P
::::::::::::=:''iJ
MZIP
:::~i:21:..·~)

MZIP
'7:'37:'-37
/VIZ IP
~~22~:2
/VIZ I P
:::'"iJ:::'"iJ:~:

MZIP
78998
MZIP
:::::79::::9

2276554-9701

Basic Concepts of Query-990

2.6 EXECUTING THE QUERY PROCESSOR

Complete processing of a Query statement involves compiling, loading, and executing. Query-990
gives you the option of executing the Query processor (that is, performing the entire process) or
only compiling the statement for later execution from an application program. You can perform
either operation in foreground mode or in a batch stream.

To execute the operation in foreground, enter the appropriate command (QUERY or QCOMPILE) at
a terminal that is ready to execute in foreground mode. Execute the operation in a batch stream in
the same manner as for other System Command Interpreter (SCI) commands executed in batch
mode; in the batch command file, write the command followed by the required keywords and their
values.

2.6.1 QUERY Command
The Query processor is executed through the SCI command processor by entering the following:

QUERY

The following prompts appear:

QUERY-990 <VERSION L.V.R YY.DDD>
PASSWORD: (if security is installed)

INPUT STATEMENT PATH NAME:
OUTPUT STATEMENT PATH NAME:

REPORT/TRACE ACCESS NAM E:
DEFAULT REPORT PARAMETERS: YES

PASSWORD
This prompt appears only if your system includes security. In response, enter a valid
password that has appropriate access to the files to be used in the Query statement. If data
base alias names are to be used, the password must also have access to the alias file. Usu­
ally, the data administrator for your system assigns these passwords. Refer to the Mode/990
Computer DNOS Data Base Administrator User's Guide, part number 2272059-9701 for more
information on assigning passwords.

INPUT STATEMENT PATHNAME
If the Query statement to be executed has been created previously through the Text Editor or
the Query Editor and you wish to execute or modify the statement, enter the file pathname
that indicates where the statement is stored. To enter a new Query statement, respond to this
prompt by pressing the TAB key or the NEW LINE/RETURN key and leaving the prompt blank.

OUTPUT STATEMENT PATHNAME
This prompt has two functions. It identifies the file that stores the results of the Query edit
session, and it executes the Query Editor. If you respond with a pathname or DUMY, the
Query Editor executes. Use DUMY when you want to edit the statement but you do not want
to save the results of the Query edit. If you do not respond to this prompt, the Editor executes
only if you also enter no response to the prompt INPUT STATEMENT PATHNAME.

REPORT/TRACE ACCESS NAME
This prompt requests the file to which the results of executing the Query statement will be
sent. To specify that the results appear on the VDT, press the RETURN key. If output is unfor­
matted, a file name must be specified.

2276554-9701 2·9

Basic Concepts of Query-990

DEFAULT REPORT PARAMETERS
To enter the default response (YES), press the NEW LINE/RETURN key or the TAB key. When
executing a modification function, use the default. However, when executing a LIST func­
tion, you might need to reset the report parameters; in this case, enter NO. A response of NO
causes the following screen to appear:

REPORT PARAMETERS
REPORT/UNFORMATTED?: R

NUMBER OF LINES PER PAGE: 60
NUMBER OF COLUMNS PER LINE: 80

LIST QU ERY TEXT?: YES
CHANGE DATA PATHNAME:

NOTE

Refer to paragraph 4.4 for a discussion of report output.

REPORTIUNFORMATTED
This parameter determines whether output will be formatted for readability or left in its
original form. This is significant for binary, integer, real, computational, or packed data. To
obtain output in report form, enter R. To obtain output that can be uSed as input fOi some
other program or processor, enter U; as a result, the data remains in its original format.

NUMBER OF LINES PER PAGE
In response to this prompt, specify the page length for reports produced in report format. Any
value entered is ignored if the report is unformatted.

NUMBER OF COLUMNS PER LINE
In response to this prompt, enter any number from 1 through 132 to specify the number of
columns per line. This value applies' only to report-formatted queries; it has no effect when
the Query output is unformatted.

LIST QUERY TEXT?
A YES response to this prompt lists the Query statement text on page 1 of the output. Any
syntax errors are listed with the text. Output from executing the Query statement begins on
page 2 of the report. Syntax errors are listed only when the Query text is also listed. If
executing a Query statement produces the message FATAL ERRORS IN QUERY STATE­
MENT, reexecute the statement with this option set to YES to determine the nature of the
errors.

With unformatted output, the Query statement is listed at the beginning of the file, but pages
are not numbered. Generally, list the Query text for unformatted output only while syntax
errors still occur.

CHANGE DATA PATHNAME

2-10

A Query statement can contain change data constants (described in Section 4), the values of
which are stored in a separate file. If you are using change data constants, enter the
pathname of the file that contains their values.

2276554-9701

Basic Concepts of Query-990

2.6.2 QCOMPILE Command
Use QCOMPILE to compile a Query statement and to store the object code in a file for use within
an application program. The application calls the subroutine QINIT to load the object.

Execute the stand-alone compiler by entering the command as follows:

QCOMPILE

The following prompts appear:

QUERY-990 STANDALONE COMPILER <VERSION L.V.R YY.DDD>
PASSWORD: (if security is installed)

INPUT STATEMENT PATHNAME:
OUTPUT STATEMENT PATHNAME:

OBJECT PATHNAME:
LISTING PATHNAME:

DEFAULT REPORT PARAMETERS: YES

PASSWORD
This prompt appears only if your system includes security. In response, enter a valid
password that has appropriate access to the files to be used in the Query statement. If data
base alias names are to be used, the password must also have access to the alias file. Usu­
ally, the data administrator for your system assigns these passwords. Refer to the Mode/990
Computer DNOS Data Base Administrator User's Guide, part number 2272059-9701 for more
information on assigning passwords.

INPUT STATEMENT PATHNAME
If the Query statement to be executed has been created previously through the Text Editor or
the Query Editor and you wish to execute or modify the statement, enter the file pathname
that indicates where the statement is stored. To enter a new Query statement, respond to this
prompt by pressing the TAB key or the NEW LINE/RETURN key.

OUTPUT STATEMENT PATHNAME
This prompt has two functions. It both identifies the file that will store the results of the
Query edit session and signals that the Query Editor is to be invoked. If you respond with a
pathname or DUMY, the Query Editor executes. Use DUMY when you want to edit the state­
ment but do not want to save the results. If you do not respond to this prompt, the editor is
invoked only if you enter no response to the prompt INPUT STATEMENT PATHNAME.

OBJECT PATHNAME
This prompt requires the name of the file in which the statement object code is to be stored .

. LISTING PATHNAME
This prompt requests the name of the file to which the compiler sends the compilation
listing. The file includes any compiler error messages and a listing of the Query statement.

2276554-9701 2-11

Basic Concepts of Query-990

DEFAULT REPORT PARAMETERS
To enter the default response (YES), press the NEW LINE/RETURN key or the TAB key. When
executing a modification function, use the default. However, when executing a LIST func­
tion, you might need to reset the report parameters; in this case, enter NO. Responding NO
causes the following screen to appear:

REPORT PARAMETERS
REPORTIUNFORMATTED: R

NUMBER OF LINES PER PAGE: 60
NUMBER OF COLUMNS PER LINE: 80

LIST QUERY TEXT?: YES
CHANGE DATA PATHNAME:

REPORT/U N FORMATTED
This parameter determines whether output will be formatted for readability or left in its
original form. This is significant for binary, integer, real, computational, or packed data. To
obtain output in report form, enter R. To obtain output that can be used as input for some
other program or processor, enter U; as a result, the data remains in its original format.

NUMBER OF LINES PER PAGE
In response to this prompt, specify the page length for reports produced in report format. Any
value entered is ignored if the report is unformatted.

NUMBER OF COLUMNS PER LINE
In response to this prompt, enter any number from 1 through 132 to specify the number of
columns per line. This value applies only to report-formatted queries; it has no effect when
the Query output is unformatted.

LIST QUERY TEXT?
A YES response to this prompt lists the Query statement text on page 1 of the output. Any
syntax errors are listed with the text. Output from executing the Query statement begins on
page 2 of the report. Syntax errors are listed only when the Query text is also listed.
If executing a Query statement produces the message FATAL ERRORS IN QUERY
STATEMENT, reexecute the statement with this option set to YES to determine the nature
of the errors.

With unformatted output, the Query statement is listed at the beginning of the file, but pages
are not numbered. Generally, list the Query text for unformatted output only while syntax
errors still occur.

CHANGE DATA PATHNAME

2-12

A Query statement can contain change data constants, the values of which are stored in a
separate file. If you are using change data constants, enter the pathname of the file that con­
tains their values.

2276554-9701

Basic Concepts of Query-990

2.6.3 Query Editor
The Query Editor is activated if the response to the prompt INPUT STATEMENT PATHNAME is
blank or the response to OUTPUT STATEMENT PATHNAME is not blank when the Query pro­
cessor or compiler is initialized. The words ENTER YOUR QUERY appear at the top of the screen.
If you entered a response for INPUT STATEMENT PATHNAME, the contents of the input state­
ment file appear on the VDT followed by the end-of-file indicator ('" EOF). Otherwise, the'" EOF ap­
pears on the second line of the screen, and the cursor is positioned at the top of the screen in the
left-hand corner.

Use the following keys on the VDT keyboard to compose or edit a Query statement:

Key

Up arrow (t)

Down arrow (~)

Left arrow (+-)

Right arrow (-)

DEL CHAR

INS CHAR

ERASE INPUT

Blank gray

SKIP

TAB and
FIELD back

Roll up (F1) and
Roll down (F2)

F4

RETURN

2276554-9701

Description

Moves cursor up.

Moves cursor down.

Moves cursor to the left.

Moves cursor to the right.

Deletes character.

Inserts character.

Deletes line.

Inserts a line.

Erases characters at and to the right of the cursor on the current
line (uppercase SKIP is the TAB key).

Uses the tab stops set for the system Text Editor.

The F1 key scrolls the screen forward (toward the end of
the file), and the F2 key scrolls the screen backwards. The value
specified in the Modify Roll (MR) SCI command determines the
number of lines scrolled.

Copies the preceding line from the current cursor position to the
end of the line.

The cursor moves to the first character position of the next line. If
the cursor is on the last line of the screen when you press this key,
a new line is inserted at the bottom of the screen and the cursor
moves to that line.

2-13

Basic Concepts of Query-990

Pressing either the SEND/ENTER key or the HELP/CMD key causes the following to appear:

DO YOU WANT TO ABORT(A), EXECUTE(E), OR CONTINUE EDITING(C)?

Respond by entering A, C, or E and pressing the RETURN or ENTER key. Entering A aborts the
Query Editor and does not save the results of the edit. Entering E executes the Query statement.
Entering C allows you to continue the editing process.

2-14 2276554-9701

3

Functions

3.1 INTRODUCTION

A function is the operation that the Query statement performs. Each Query statement performs
one of the following functions:

• LIST - Produces reports or generates data for further processing

• UPDATE - Modifies information currently stored in a file

• INSERT - Adds new lines to a file

• DELETE - Deletes one or more lines, one or more records, or every record in a file

The syntax for a function statement is as follows:

. INSERT-clause

{

LIST-clause)

function-clause :: = UPDATE-clause

DELETE-clause

Clauses expand the capabilities of each function. This section discusses several clauses with
each function. Clauses are discussed in greater detail in Section 4.

3.2 LIST FUNCTION

The format of the LIST function is as follows:

LIST-clause :: = LIST report-line [1. report-line] .. l.J

When the specified function is LIST, you must specify the contents of each report line to be listed.
A report line can be composed of any or all of the following:

• Entire lines

• Groups or fields from one or more lines

• The results of calculations (such as totals and averages)

• Literals

2276554·9701 3-1

Functions

3.2.1 Report Line Elements
A report line is a unique group of data that can be listed or conditioned. You can specify lines,
groups, or fields in a file as the elements of a report line. If you specify a line or group, it is broken
down into its component fields in the report output. These fields are listed in the order in which
they were specified in the DOL; the following rules apply:

• If the order is BY LIST, each report line must be composed of fields from the same line
type and/or the primary key.

• If the order is BY KEY or BY KEY BY LIST, each report line can be composed of fields
from any line, but the grouping for output follows a fixed traversal rule.

In general, if line type A is specified along with other line types and line type A occurs more often
than the others, some of the data from line type A will not be listed. Consequently, you should use
caution grouping report line fields from different line types unless this order is clearly understood
and appropriate.

A report line specification includes file elements, literals, and formatting information. The output
for a report line consists of fields, literals, and spaces; the line length ranges from 1 to 480. The
output for a report line may require only one line or many lines. For instance, if a report specifies
270 characters of data, literals, and spacing and the page width is 80, the report line uses 4 output
lines. When the Query statement is to produce unformatted output, no spacing occurs. When the
Query statement is to produce a formatted report, two blanks are automatically inserted between
fields. No blanks are inserted between literals or between a field and a literal. In report format, if a
field spans two lines of output and its output length is shorter than the page width, the field is ad­
justed so that it starts on a new line.

3.2.2 Syntax
The syntax for a report line is as follows:

report-line :: = report-line-element [t..!J report-line-element] ...

[HEADER-clause] [WHERE-clause] [SORT-clause]

3-2

field-type [option] [THRU-clause]
line-type [option]
key-type [option]
variable [option]

report-line element :: = BREAK-clause
2S length
SPACE length
TAB digit [digit]
string
change-data

2276554·9701

Functions

3.3 INSERT FUNCTION

The INSERT function adds new lines or new information to a file. The basic format of the INSERT
function is as follows:

INSERT-clause :: = INSERT [trace-indicator] insert-line [; insert-line] ... [;]

insert-line :: = line-type [position-clause] CONTENTS-clause [WHERE-clause]

When using the INSERT function, you need not insert values for all fields in a line type. Only the
fields specified in the Query statement are added. An example of a Query statement using the
INSERT function is as follows:

INSERT 01 CONTENTS MNUM = 4444, MNAM = 'JONES, BILL'
FROM PAY1

You must specify both the line identifier and the CONTENTS clause for every inserted line. The
fields listed in the CONTENTS clause must be in the line type specified as the line 10. Lines are
inserted in the order in which you specify them. Therefore, in data base files you must specify a 01
line type first if the INSERT is creating a new record.

3.3.1 CONTENTS Clause
The INSERT function requires the use of the CONTENTS clause. The CONTENTS clause serves a
purpose similar to the report line in the LIST function. You specify both the field IDs to be affected
and their new values. The format of the CONTENTS clause is as follows:

CONTENTS-clause :: = CONTENTS

3.3.2 POSITION Clause

{
field-type}
key-type {

constant }
= variable

change-data

{
field-type}
key-type {

constant }]
= variable

change-data

The POSITION clause identifies the place where the new line will be inserted in every qualified
record of the file. The format of the POSITION clause is as follows:

't' I { BEFORE} POSt ton-c ause :: =
AFTER {

FIRST line-type [WHERE-clausel}
KEY

The POSITION clause is not used for relative record or sequential files.

2276554-9701 3·3

Functions

3.3.3 BEFORE, AFTER, and FIRST Features
BEFORE KEY inserts a new line before any existing line in the record. AFTER KEY inserts the line
after any existing lines in the record.

You can specify a positioning line type to insert the new line after or before every occurrence of
the positioning line type in a record. For example, if you specify a WHERE condition, the new line
is inserted before or after every occurrence of the positioning line type that meets the WHERE
condition. If you include the word FIRST, the line is inserted before or after only the first occur­
rence in a record of the positioning line type that meets the WHERE condition. If you do not
specify a POSITION clause, AFTER KEY is assumed. The positioning clause affects only the
single insertion line with which it is associated. If multiple lines are being inserted, those that re­
quire more than the default positioning must have their own POSITION clause. The default for the
POSITION clause is the last line in the record.

Some examples of the INSERT function uSing the POSITION clause are as follows:

INSERT 03 CONTENTS FLD1 = 1 ; FROM PAY1
One 03 line is inserted after every line in every record in the file.

INSERT 03 AFTER 02 CONTENTS FLD = 1 ; FROM PA Y1
One 03 line is inserted after every 02 line in the file.

INSERT 03 AFTER 02 WH ERE FLD2 GT 10 CONTENTS FLD1 = 1 FROM PA Y1
One 03 line is inserted after every 02 line with FLD2 greater than 10. If more than one 02
line meets this condition in a record, a 03 line is inserted after each 02 line that meets
the condition.

INSERT 03 AFTER FI RST 02 WH ERE FLD2 GT 10 CONTENTS FLD1 = 1 FROM PA Y1
One 03 line is inserted after the first 02 line in each record with FLD2 greater than 10.
Only one 03 is inserted per record.

3.3.4 Identifying the Primary Key
To insert a 01 line in a data base file or any line type in a relative record file, specify the primary
key; otherwise, an error condition results. If you do not specify conditions or primary key values
for data base files, the line is inserted in every record in the file. If you specify a record-level con­
dition, the line is inserted only in the records that meet that condition. If the primary key is a KIF
group key, the individual field names within the group key must be specified, not the group key
name.

3-4 2276554·9701

Functions

You can identify the primary key in any of the following three ways:

• Include the primary key in the CONTENTS clause for every line to be inserted, not just
the first line or the 01 line.

• Specify the primary key in the condition for the POSITION clause by testing the equality
of the primary key to a value. Again, you must specify the primary key for each separate
line to be inserted. This does not apply to key indexed, relative record, or sequential
files.

• Specify the primary key in the record-level condition by testing the primary key's equal­
ity to a value or values. This affects all lines to be inserted, and the single record-level
condition is sufficient to identify the primary key for all line types. To specify a group
key in this manner, set each element of the group key equal to a value "AND".

NOTE

If the primary key is a KIF group key, the individual field names
within the group key must be specified, not the group key name.

3.4 UPDATE FUNCTION

The UPDATE function modifies information stored in a file. The UPDATE function requires the
CONTENTS clause and has the following format:

UPDATE-clause :: = UPDATE [trace-indicator] modification-line

[; modification-line] ... [;]

modification-line :: = line-type [position-clause] CONTENTS-clause [WHERE-clause]

The fields specified in the CONTENTS clause must be in the line type specified by the line ID. The
WHERE condition can test only fields from that line and the primary key. This condition is a line­
level condition and applies only to the preceding single update line. UPDATE functions can have
line-level conditions associated with each line ID specified and a single record-level condition.

UPDATE does not automatically modify secondary keys. To modify secondary keys, first delete
the line and then reinsert it with the new values. Rewriting of secondary keys is not allowed.

Some examples of the UPDATE function using the CONTENTS clause are as follows:

UPDATE 01 CONTENTS MNAM = 'JONES, MARY' FROM PAY1 WHERE MNUM = 12345
Updates the name of employee #12345, changing it from SMITH, MARY to JONES,
MARY.

UPDATECU CONTENTS MLOC = 'DOWNTOWN'WHERE MLOC = "MT. VIEW"; FROM PAY1
All employees at the MT. VIEW site are being relocated to the DOWNTOWN site. This
Query changes all current job locations accordingly.

2276554-9701 3-5

Functions

3.5 DELETE FUNCTION

The DELETE function deletes one or more lines or entire records. The DELETE RECORD function
deletes the entire file. In the DELETE function, you need specify only the line type identifiers. The
format of the DELETE function is as follows:

DELETE-clause :: = DELETE [trace-indicator] { RECORD } [.1)
delete-line [; delete-line] ...

delete-line :: = line type [WHERE-clause]

The WHERE clause is a line-level condition and applies only to the single delete line with which it
is specified. The line-level condition can test only fields from the delete line type or the primary
key. You can specify a single record-level condition.

Lines are deleted in the order in which you specify them. Therefore, if you are deleting a 01 line
type (that is, the entire record is being deleted), specify the 01 line type last. This is necessary
because a 01 line must be the last line deleted in a record.

Some examples of the DELETE function using the WHERE clause are as follows:

DELETE RECORD FROM PAY1 WHERE EVERY MSTT NE "TEXAS"
Aii empioyees who do not iive in Texas have aii information about them deieted.

DELETE ED WHERE DEGR = 'AA' FROM PAY1
Delete all education information on Associate of Arts degrees from all employee files.

DELETE PE WHERE JOST = 'SALESMAN' FROM PAY1 WHERE MNUM = 55555.
A PE line was mistakenly entered for employee 55555; this Query deletes that line.

If you specify DELETE RECORD, all qualified records are deleted. Note that the DELETE RECORD
FROM XXX X deletes all data from file XXXX. Line-level conditions do not apply to DELETE
RECORD. You can specify a single record-level condition. The DELETE function is not legal for
relative record or sequential files.

3.5.1 TRACE Clause
The DELETE RECORD deletes an entire file. To be sure that this is what you want, use the TRACE
clause to view the results of DELETE RECORD on the file. TRACE allows you to see the results
without actually making changes to the file. See Section 4 for more information.

3-6 2276554·9701

4

Clauses

4.1 INTRODUCTION

This section contains detailed information about Query-990 clauses and explains report format­
ting and change data constants.

Several of the clauses are as follows:

• FROM - Identifies which fi Ie the Query statement wi II process.

• WHERE - Specifies test conditions that identify which records or lines in the file will
be listed or modified.

• SORT - Orders output data based on the two levels of sorting (line-level and record­
level). This clause can order lines within a record or order records in a file.

• TRACE - Allows you to see a listing that shows changes to the file before the file has
actually been modified. The use of this clause is recommended with the DELETE
function.

• BY - Controls the order in which the Query processor reads the data in the file.

• DEFINE - Specifies calculations on fields and allows the use of the calculations as
report elements or operands in a condition.

• BREAK - Allows control break processing on totals, counts, and duplicate values.

• UNIQUE - Indicates a single occurrence of a specified line type per record. Fields
within a UNIQUE line type can act as primary keys when used in report lines. Secondary
keys within that line can be optimized.

• LINKED BY - Defines the relationship between files when using more than one file in a
Query statement.

There are two types of clauses: record-level and line-level. Record-level clauses apply to the entire
Query statement and act in a global manner, affecting all report lines or modification lines. They
should be specified after the FROM clause or before the function.

Line-level clauses affect only the single report line with which they are specified. They must be
specified after the list of fields and literals in a report line before the FROM clause.

2276554-9701 4-1

Clauses

Clauses are record-level, line-level, or both, depending on where the clauses are specified in the
Query statement. A list of the different kinds of clauses is as follows:

4.2 FROM CLAUSE

Record-Level

FROM
LINKED BY
UNIQUE
DEFINE
BY

Line-Level

CONTENTS
TRACE
BREAK
THRU

Both

WHERE
SORT
HEADER
FOOTING

The FROM clause identifies which files the Query processor will use to modify or build the report.
If the function is INSERT, DELETE, or UPDATE, you can specify only one file. You can specify any
number of files for the LIST function; however, if you specify more than one file, you must include
the LINKED BY clause. Specify the main headings and footings, record-level sorting information,
and record-level conditions after the FROM clause.

4.2.1 Syntax
The basic syntax of the FROM clause for the LIST function is as follows:

FROM-clause:: = FROM file-name [EXCLUSIVE] [file-name [EXCLUSIVE]] ...
[U N KED-BY -clause] [SORT-clause] [H EADER-clause]

[BY-clause] [UNIQUE-clause]

The file-name is the logical DBMS-990 or DD-990 file name to be accessed. If the keyword
EXCLUSIVE is included after a file name, the file will be opened with exclusive access. This can be
used to ensure that no updates are being made to the file while it is being accessed by Query-990.

4.3 HEADER AND FOOTING CLAUSE

You can specify headings and footings of several types. Main headings and footings appear at the
top or bottom of each page. Report line headings and footings precede or follow a report line when
either the record or the report line type has changed. Default report line headings are available to
automatically list DDL or alias names above the columns that contain data for that field.

4-2 2276554-9701

4.3.1 Syntax
The basic syntax of a HEADER or FOOTING clause is as follows:

HEADER-clause :: = [NO HEADER] [HEADER [header-element]]

[FOOTING [header-element]]

HEADER-element :: =

1
PAGE [digit] [digit])
SKIP [digit] [digit]
DEFAULT
header-I iteral

, I " [I' I I t]" I ~ [literal-element] .. ,.::.) header-litera :: = _ Itera -e emen .,. _ ~ [literal-element]:..

aSCii-Character)
literal-element :: = ASYSTIME

ASYSDATE
APAGENUM

Clauses

You can specify any number of HEADER and FOOTING clauses. You must specify report line
headings before the semicolon that terminates specification of the associated report line. Specify
main headings and footings after the FROM clause. Literals, paging, and skipping of lines occur in
the order in which you specify them within the clause. Heading and footing literals should not be
longer than the width of a page. If they are longer than the page width, the Query statement
executes, but the literal is right-truncated after the page width and a warning message appears.

4.3.2 Main Headings and Footings
Main headings and footings appear at the top and bottom of each page of output. You can specify
them in a HEADER or FOOTING clause that follows the FROM clause. The number of main
headings and footings cannot exceed the number of lines per page. Figure 4-1 shows a Query
using main headings.

2276554·9701 4-3

Clauses

Query Statement:

LIST 'SALES ORDER NUMBER: ' SONM
'QUANTITY ORDERED: I QUAN

WHERE ITEM = 555
FROM SOFL
BY KEY BY LIST
HEADER ORDER INFORMATION FOR ITEM NUMBER 555'
FOOTING ' *** ITEM NUMBER 555 = GREEN JEANS'

Query Output:

ORDER INFORMATION FOR ITEM NUMBER 555
SALE f:; ORDER ~J!t'1BER: 100 Q)JAl'n 1 TY ORDERED: 2
SALES ORDER NUMBER: 75 QUANTITY ORDERED: 2
SALES ORDER NUMBER: 50 QUANTITY ORDERED: 101

Figure 4-1. Main Headings Example

4.3.3 Report Line Headings and Footings
Specify report line headings and footings within the report line to which they apply. You can use
SKIP and PAGE in a report line HEADER or FOOTING clause. Report line headings for a specific
report line are printed when the following hold true:

• The next output line has the report line type of those headings.

• The previous output line had a different report line type or was in a different record.

Report line footings are printed when the following hold true:

• The last output line printed has the same report line type of those footings.

• The next output line has a different report line type or is in a different record.

Figure 4-2 shows a Query using report line header and footing and introduces the PAGE option.

4·4 2276554-9701

Query Statement:

LIST i INVOICE NUMBER: ' SONM
HEADER ,***** SALES ORDER - ASYSDATE ***************************' SKIP;

'ITEt"! NUMBER: ' ITEM
F'OOTING SKIP 2
SORTED BY ITEM;

QUANITY ORDERED: 'QUAN

FRat"j SOFL
NO HEADER
FOOTING ,-- APAGENUM --'
SORTED BY SONM
BY KEY BY LIST

Query Output:

***** SALES ORDER - 06/02/82 ***************************

INVOICE NUMBER:
ITEM NUMBER: 555
ITEM NUMBER: 777

50
QUANITY ORDERED:
QUANITY ORDERED:

101
5

***** SALES ORDER - 06/02/82 ***************************

INVOICE NUMBER:
ITEM NUMBER: 111
ITEM NUI-1BER: 333
ITEM NUMBER: 555
ITEM NUMBER: 777

75
QUANITY ORDERED:
QUANITY ORDERED:
QUANITY ORDERED:
QUANITY ORDERED:

3
1
2
4

***** SALES ORDER - 06/02/82 ***************************

INVOICE NUMBER: 100
ITEM NUMBER: 333 QUANITY ORDERED:
ITEM NUMBER: 555 QUANITY ORDERED: 2

***** SALES ORDER - 06/02/82 ***************************

INVOICE NUMBER: 300
ITEM NUMBER: 777 QUANITY ORDERED: 5

-- PAGE 1--

Figure 4-2. Report Line Heading Example

Clauses

Each report line has a special default report line literal. The Query processor automatically com­
poses this literal, which consists of the DDL ID of all fields in the report line above the columns in
which the fields appear. If you include the word HEADER or FOOTING with no literal, PAGE com­
mand, or SKIP command, the default heading is assumed. You can also specify the default literal
by using the word DEFAULT in the HEADER or FOOTING clause. Only one default heading or
footing is built for a report line.

2276554-9701 4-5

Clauses

Figure 4-3 shows a Query using the default report line header.

Query Statement:

LIST 'EMPLOYEE NAME: I MNAM
HEADER '***'j
ED HEADER DEFAULT
FOOTING '***' j

FROM PAYi SORTED BY DEGR BY KEY BY LIST

Query Output:

EMPLOYEE NAME: MEREDITH, JOHN
DEGR YEAR COLL GPA
AA 1968 PLUMBERS SCHOOL 2.5

EMPLOYEE NAME: HOWEll, JOHN

EMPLOYEE NAME: BROWN, WILLIE

EMPLOYEE NAME: STEPHENS, JANET
DEGR YEAR COlL GPA
BA 1975 JOURNALISM SCHOOL 2. 9
*****~.***

E~P·LQ:";.E£ .~{A~..E: 1>2,LE·.. ·':.WP ... L 1·£
DEGR YEAR COLL
BA 1971 DETECTIVE COLLEGE

GPA
3. 9

~.
EMPLOYEE NAME: PARKS, FRED
DEGR YEAR COLL
BA 1966 SALES COLLEGE

GPA
3.6

~.
EMPLOYEE NAME: LI, KIM
DEGR YEAR COLl
BS 1977 PROGRAMMING SCHOOL
MS 1979 GRADUATE SCHOOL

GPA
3. 9
3. 7

EMPLOYEE NAME: PASCHAL, JIMMY
DEGR YEAR COlL GPA
MA 1946 MT. V I EW COLLEGE 3. 1
BBA 1941 BUSINESS COLLEGE 2.4
****~.**

EMPLOYEE NAME: HAYNES, BILL
DEGR YEAR COLl
MA 1976 SUPERVISOR COLLEGE

GPA
3. 0

******.***

Figure 4-3. Default Heading Example

4-6 2276554·9701

Clauses

4.3.4 Special Heading Constants
The three special constants that can be included in any heading or footing literal are APAGENUM,
ASYSDATE, and ASYSTIME. These constants are replaced as follows with the page number, cur­
rent date, and current time when the heading or footing is printed:

• APAGENUM is replaced with PAGE nnn, where nnn is the current page number. Page
numbering is automatic and begins with page 1 if the Query statement is not listed;
otherwise, it begins with page 2.

• ASYSDATE is replaced with a date in the form MM/DD/YY, where MM is the month, DO is
the day of the month, and YY is the last two digits of the year.

• ASYSTIME is replaced with the time in the form HH:MM:SS, where HH is the hour in the
range of 0 through 23, MM is the minutes, and SS is the seconds.

Figure 4-4 shows a Query using a main heading, the SKIP option, and special heading constants.

Query Statement:

LIST MNAM MJOB MCTY
FROM PAYl SORTED BY MNAM BY KEY BY LIST
HEADER SKIP 2
.~ MONTHL Y EMPLOYEE REPORT .. ' SI< I P

PREPARED ON ASYSDATE~ SKIP 2
"EMPLOYEE NAME JOB TITLE CITY STATIONED'"
." ------------- --------- -------------- ... SKIP
FOOTING "* COPY TO MR. SMITH, PERSONNEL DIRECTOR'"

Query Output:

EMPLOYEE NAME

ABLE, CHARLIE
BROWN, WILLIE
HAYNES, BILL
HOWELL, .JOHN
LI, J<IM
MERED I TH, .,JOHN
PARI<S 7 FRED
PASCHAL, JIMMY
STEPHENS, JANET

MONTHLY EMPLOYEE REPORT

PREPARED ON MM/DD/YY

JOB TITLE

DETECTIVE
SHOEMAI<ER
PROD SUPV
MECHANIC
PROGRAMMER
PLUMBER
SALESMAN
VICE PRES
REPORTER

CITY STATIONED

ASPERMONT
NEW YORK
DEL CURTO
GRANGER
BROOKSIDE
GOLIAD
RUSK
LIBERTY HILL
ECHO

* COPY TO MR. SMITH, PERSONNEL DIRECTOR

Figure 4-4. Special Heading Example

2276554-9701 4-7

Clauses

4.3.5 System Heading and NO HEADER Clause
A system heading with the following format is automatically printed at the top of every page:

QUERY L.V.A. YY.DDD QUERY-990 MM/DD/YY HH:MM:SS APAGE nnn

whe"re:

L.V.R identifies the version of the Query processor.
YY.DDD is the Julian release date for that version.
MM/DD/YY indicates the month, day, and year (referenced as ASYSDATE).
HH:MM:SS indicates the hour, minutes, and seconds (referenced as ASYSTIME).
APAGE nnn indicates the page number (referenced as APAGENUM).

You can suppress the system heading by specifying NO HEADER after the FROM clause. Since
NO HEADER applies only to the system header, you can still define other main headings and
footings.

Figure 4-5 shows a Query using the NO HEADER clause.

4.4 REPORT OUTPUT

You can obtain two types of output when using the liST function: formatted report and unfor­
matted. You select the type of output when the Query-990 processor is initiated in the REPORT
PARAM ETERS screen.

• Formatted report output is intended to be read by users. If the output is in report format,
Query-990 converts all data to a readable format with carriage controls included to make
the report print correctly.

• Unformatted data serves as input to another program or utility. If output is unformatted,
Query-990 does not convert the data, and headings and footings are not allowed. Each
report line produces one record in the output file, with no carriage control included.

4.4.1 Formatting
You control the formatting of a report line by changing the output length of a field, specifying tab
stops, and specifying spacing between fields or literals.

To change the output length of a field, enter a colon and the new output length after the field 10.
The data types with their default lengths are as follows:

4-8

Data Type

CH
CN,AN
CS,AS, PK

IS
ID, RS
RD
LG

Default Length

Number of characters defined
Number of digits plus 1 if decimal point is needed
Number of digits plus 1 for sign and plus 1 for

decimal point, if needed
5 characters
10 characters
18 characters
5 characters (TRUE or FALSE)

2276554·9701

Query Statement:

LIST MNAM
HEADER '.***************************';
MSTR;
MCTY I, ' MSTT' I MZIP
FOOTING '****************************';

FROM PAY1 SORTED BY MNAM BY KEY BY LIST
NO HEADER HEADER 'MAILING LABELS FOR EMPLOYEEMAIL.SKIP 2

Query Output:

MAILING LABELS FOR EMPLOYEE MAIL

ABLE, CHARLIE
2800 SKYWAY
ASPERMONT , MO 32145

BROWN, WILLIE
600·W 55TH
NEW YORK , NY 88889

HAYNES, BILL
500 LAIRD
DEL CURTO , TX 85269

HOWELL JOHN
555 RIO GRANDE
GRANGER , TX 78787

LI, KIM
3800 TONKAWA TRAIL
BROOKSIDE , MO 22222
********.",,*******************

MEREDITH, JOHN
98 N. LAMAR
GOLIAD , TX 89898
**************'**************
**************"**************
PARKS, FRE:D
200 NEW YORK AVE.
RUSK , NY 78998

PASCHAL JIMMY
1000 ACORN OAKS
LIBERTY HILL ,MO 79666

STEPHENS, JANET
56 PURNAM DR
ECHO , TX 87989

Figure 4-5. NO HEADER Clause Example

Clauses

2276554·9701 4-9

Clauses

If you specify an output length greater than the default length, the field is blank filled to the right.
If you specify an output length less than the default length, all data is truncated to the right.

4.4.2 TAB
To specify a tab stop, enter the word TAB followed by a column number. Specify tab stops in in­
creasing values. The field that follows the tab stop specification begins in the column specified in
the tab stop. Fields that follow are positioned in the normal manner after the end of the field or
literal preceding them, with a default value of two spaces between fields. If a report line requires
more than one line of output, you can specify tab stops on lines other than the first line.

4.4.3 SPACE
To specify spacing other than the default between fields and literals, enter the word SPACE
followed by a number. The specified number of blanks are written in the current position in the
report line. For example, if you write SPACE 0 between two field names, no spaces are written be­
tween the fields; if you write SPACE 30, 30 spaces are written between them. In the initial release
of Query-990, the user indicated spacing by specifying the number of spaces, followed by an X.
Although the current release supports this method (for compatibility), use of SPACE is en­
couraged for its readability.

Figure 4-6 shows a Query using SPACE, TAB, and output lengths.

4-10

Query Statement:

LIST MNAM:15 TAB 19 JOBT:11 SPACE 5 COMP:20 TAB 60 PSAL
FROM PAYI SORTED BY MNAM BY KEY BY LIST
NO HEADER HEADER

... EMPLOYEE NAME

Query Output:

EMPLOYEE NAME

ABLE, CHARLIE
HAYNE:::;, BILL
HOWELL, .JOHN
MEREDITH, JOHN
PARI<S, FRED
PASCHAL, JIMMY
STEPHENS, JANET

PREVIOUS POSITIONS HELD BY OUR EMPLOYEES~ SKIP 2
JOB TITLE COMPANY PREVIOUS SALARY~

PREVIOUS POSITIONS HELD BY OUR EMPLOYEES

.JOB TITLE

POLICEMAN
SALESMAN
MECHANIC
JOURNEYMAN
SALESMAN
SALESMAN
COPY EDITOR

COMPANY PREVIOUS SALARY

POLICE DEPT 1700.00
EQUIPMENT MFG. 1500.00
GREASE MONKEY LTD 270.00
H & H COMPANY 750.00
DEEP HOLE SALES INC 379.50
EQUIPMENT MFG. 1500.00
JOURNALISM SCHOOL 150.00

Figure 4-6. Space, Tab, and Formatting Example

2276554·9701

Clauses

4.4.4 PAGE and SKIP
You can use the PAGE command to skip a specified number of pages. To specify the number,
enter the following in any report line heading or footing clause:

PAGE n

where:

n is the number of pages to skip.

If you do not specify a number, one page is skipped. Any main footings are printed before the next
page begins, and any main headings are printed at the top of the next page. PAGE is not allowed in
a main heading or footing.

Use the SKIP command in any heading or footing clause to skip a specified number of lines. If you
do not specify a number, one line is skipped. The format of the SKIP command is as follows:

SKIP n

where:

n is the number of lines to skip.

4.4.5 Literals
You can include any literal in a report line. Literals appear in the order in which you specify them. If
you specify a literal between two fields, two spaces are not inserted between the values for each
field. You can use change data constants as literals in the report line. They are treated as
character data, and you must specify their length.

4.5 WHERE CLAUSE

The WHERE clause specifies test conditions that identify which records or lines in the file will be
listed or modified. Test conditions are Boolean expressions consisting of fields, DEFINE
variables, constants, relational operators, the Boolean operators AN D and OR, and parentheses to
control the order of evaluation. The two types of test conditions are record-level conditions and
line-level conditions. The syntax for the WHERE clause is as follows:

WHERE-clause :: = WHERE condition

dT {SimPle-conditiOn}
con I Ion :: = complex-condition

2276554-9701 4-11

Clauses

A record-level condition tests all of the information in a record and determines whether to print
any data from the record. You can specify only one record-level condition in a Query statement.
Each record in the file must pass the record-level condition before any of the lines in that record
can be listed or modified. Record-level tests can compare fields from different line types. Because
a line type can occur any number of times in a record, record-level conditions require that you
specify the quantifier ANY or EVERY before each field name tested. If ANY is specified, only one
occurrence of the field in the record must meet the condition; if EVERY is specified, all occur­
rences of the field in the record must meet the condition. A condition must have at least one ANY
or EVERY or test only the primary key for Query-990 to recognize it as the record-level condition.

Figure 4-7 shows a Query using a record-level condition on a primary key with the WHERE clause.

Query Statement:

LIST TAB 11 MSTRi
TAB 11 MCTY I, I MSTTi
TAB 17 MZIPi

FROM PAY1 WHERE MNUM = 55555 BY KEY BY LIST
NO HEADER HEADER 'ADDRESS OF EMPLOYEE NUMBER 55555: I SKIP 2

Query Output:

ADDRESS OF EMPLOYEE NUMBER 55555:

1000 ACORN OAKS
LIBERTY HILL ,MO

79666

Figure 4·7. Record·Level Condition with WHERE Clause

A line-level condition tests only the data being used for a single report line to determine whether
the line is to be used. You can specify line-level conditions for every single report or modification
line in the Query statement. If a record is qualified for output or modification by the record-level
condition or if no record-level condition exists, each line-level test must also be met before the
report or modification line with which the test is associated will be listed or modified. Line-level
tests in modification functions can test only fields in the line with which they are associated. Line­
level conditions in the LIST function can test fields from several line types, but such conditions
follow rules specified for multiline report lines.

Figure 4-8 shows a Query using the line-level condition with the WHERE clause.

4·12 2276554-9701

Query Statement:

LIST 'SALES ORDER NUMBER: I SONM
I (_______ > I

'QUANTITy ORDERED: I QUAN
WHERE ITEM = 555 SORTED BY QUAN
FROM SOFL BY KEY BY LIST

Query Output:

SALES ORDER NUMBER: 100
SALES ORDER NUMBER: 75
SALES ORDER NUMBER: 50

(-------)
<-------)
(-------)

QUANTITY ORDERED: 2
QUANTITY ORDERED: 2
QUANTITY ORDERED: 101

Figure 4-8. Line-Level Condition with WHERE Clause

Clauses

Query-990 allows you to specify a WHERE clause inside each report line specification. This condi­
tion applies only to the single report line specified. If several report lines have the same line type,
each report line can have its own individual line-level conditions. Query statements containing
line-level conditions and formatted in the Query-990 1.0 release should be reformatted so that the
line-level conditions are included with the report line to which they apply. The meaning of the con­
dition is clearer in the current format.

4.5.1 Syntax
A WH ERE clause can define either simple conditions or complex conditions formed from simple
conditions connected by the logical operators AND and OR.

4.5.1.1 Simple Conditions. A simple condition has the following form:

simple-condition :: = [J] [quantifier] op1 rel-op [quantifier] op2 [)]

Figure 4-9 shows a Query using a simple condition.

LIST MNAM MDEP FROM PAY1 BY KEY BY LIST
WHERE MNUM = 55555

Figure 4-9. Simple Condition Example

The relational operators have two forms: a two-letter mnemonic and a character symbol. Since the
Query processor considers the two forms equivalent, they can be mixed in a single Query state­
ment. Table 4-1 lists and explains the relational operators.

2276554·9701 4-13

Clauses

Table 4-1. Relational Operators

Symbol

=
<>
>
<

>=
<=

Mnemonic

EQ
NE
GT
LT
GE
LE

Figure 4-10 shows a Query using relational operators.

LIST MNAM MRAT WHERE MRAT GT 1000
FROM PAYl BY KEY BY LIST

Meaning

Equal to
Not equal to
Greater than
Less than
Greater than or equal to
Less than or equal to

Figure 4-10. Relational Operators Example

Use numeric constants only for numeric data types and literals for character data. You can
enclose numeric constants in quotation marks. A numeric constant must be compatible with the
type of field to which it is being compared; otherwise, a conversion error results. If two fields are
being compared, they must have exactly the same format.

4.5.1.2 String Operators. For character fields, certain string operators are available. You can
compare the beginning characters of a field by specifying a literal with the required beginning
characters followed by an ellipsis (...). Compare the ending characters of a field by specifying a
literal preceded by an ellipsis. You can use any of the relational operators. For example, to deter­
mine whether a NAME field 20 characters long begins with 5 characters greater than or equal to
"SM ITH", the test condition is as follows:

NAME GE "SMITH" ...

To specify a search to determine whether a field contains a certain string, compare testing for
equality between a field and a literal that is surrounded by ellipses. For example, to determine
whether an address field (ADDR) 50 characters long contains "CHICAGO", the test condition is as
follows:

ADDR = ... "CHICAGO" ...

4-14 2276554·9701

Figure 4-11 shows a Query using string operators.

Query Statement:

LIST TAB 4 ITMN TAB 18 DESC WHERE DESC
FROM ITEM BY KEY BY LIST
HEADER 'ITEM NUMBER DESCRIPTION'

,------------ -----______ 1

Query Output:

ITEM NUMBER

777
333

DESCRIPTION

RED HERRING
GOLDEN RING

... 'RING' ...

Figure 4-11. String Operators Example

Clauses

4.5.1.3 Complex Conditions. Complex conditions are formed from simple conditions connected
by AND and OR. The basic syntax of a complex condition is as follows.

complex-condition :: = [(] simple-condition [Iog-op complex-condition] [)]

Notice that the right-hand side of this definition is a complex condition itself. This means that any
number of simple conditions can be connected together.

The result of a complex condition using AND is true only if both conditions are true. The result of a
complex condition using OR is true if one of the conditions is true.

Figure 4-12 shows a Query using a complex condition using the logical operators AND and OR and
parentheses.

Query Statement:

LIST MNAM MCTY MSTT
WHERE (MCTY = 'GOLIAD ' OR MCTY = 'ECHO') AND

MSTT = 'TX'
FROM PAY1 BY KEY BY LIST
HEADER '£MPLOYEE NAME CITY STATIONED STATE'

,-------------

Query Output:

EMPLOYEE NAME

MEREDITH, JOHN
STEPHENS, JANET

CITY STATIONED

GOLIAD
ECHO

STATE

TX
TX

_____ 1

Figure 4-12. Complex Condition with Logical Operators Example

2276554-9701 4-15

Clauses

The components of a condition are evaluated in the following order:

1. All simple conditions are evaluated.

2. All AND operations are performed from left to right.

3. AilOR operations are performed from left to right.

You can use parentheses to change the order of evaluation. The condition inside the innermost
parentheses is evaluated first, effectively removing them. Then, the expression in the next inner­
most parentheses is evaluated, until all parentheses are removed.

4.5.2 Record-Level Conditions
You can test a record by using a record-level condition. Only one record-level condition is allowed
per Query statement. The record-level condition must be specified in the main WHERE clause.
Record-level conditions are not allowed when the function is LIST and the sequence is BY LIST.

The record-level condition can test any field(s) within a record. Record-level conditions require the
use of quantifiers unless only the primary key is tested. Conditions that test only the primary key
are assumed to be record-level conditions if they are in the main WHERE clause. Otherwise, the
condition will be treated as line-level and applied to only one of the report lines.

Figure 4-13 sho'v"Vs a Query using the record-level condition with a primary key.

4-16

Query Statement:

LIST 'EMPLOYEE RECORD FOR: I MNAMj
TAB 81

ADDRESS: I MCTY MSTT MZIPj
JOB TITLE: I MJOBj

DEPARTMENT: I MDEPj
RATE OF PAY: 'MRATj

TAB 81
PREVIOUS JOB TITLE: 'JOBTj

COMPANY EMPLOYED BY: I COMPj
FROM PAY1
WHERE i"tNUM = 55555

Query Output:

EMPLOYEE RECORD FOR: PASCHAL, JIMMY

ADDRESS: LIBERTY HILL
JOB TITLE: VICE PRES

DEPARTMENT: SALES
RATE OF PAY: 2500.00

PREVIOUS JOB TITLE: SALESMAN
COMPANY EMPLOYED BY: EGUIPMENT MFG.

MO 79666

Figure 4-13. Record-Level Example

2276554-9701

Clauses

4.5.3 EVERY and ANY Quantifiers
Quantifiers are EVERY and ANY. When the word EVERY precedes a field name, every occurrence
of that field in the record must meet the specified condition. Otherwise, the condition is false.
When the word ANY precedes a field name, only one occurrence of the field must meet the con­
dition for the condition to be true. You must use at least one quantifier in a condition that tests
fields other than the primary key in order to identify it as a record-level condition. If one quantifier
is used, any fields not preceded by a quantifier are treated as if they are preceded by ANY. Quan­
tifiers cannot precede constants.

When both operands of the simple condition are fields, the following cases are possible:

• ANY field1 operator ANY field2 - Any occurrence of field1 must satisfy the relational
operator for any field2 in the record.

• EVERY field1 operator EVERY field2 - Every occurrence of field1 in the record must
satisfy the relational operator for every occurrence of field2 in the record.

• ANY field1 operator EVERY field2 - Any occurrence of field1 in the record must satisfy
the relational operator for every occurrence of field2 in the record.

• EVERY field1 operator ANY field2 - Every occurrence of field1 in the record must
satisfy the relational operator for some occurrence of field2 in the record.

If a record-level condition exists, it is tested first, before any of the lines in the record are con­
sidered for output or modification. If the condition is false, the record is skipped. If the condition
is true, individual lines in the record must also meet their line-level condition, if one exists, before
they are modified or output.

Figure 4-14 shows a Query using ANY and EVERY quantifiers.

Query Statement:

LIST 'SALESMAN: 'MNAM
'(-----:>
I SALES FOR LAST MONTH: I r-iSLS j

FROM PAY1 WHERE ANY MSLS OT 0 BY KEY BY LIST
NO HEADER HEADER

SALESMAN REPORT' SKIP 2

Query Output:

SALESMAN REPORT

SALESMAN: LL KIM <:-----:> SALES FOR LAST MONTH:
SALESMAN: BROWN, WILLIE .~:-----:> SALES FOR LAST MONTH:
SALESMAN: PARKS, FRED .,:-----) .. SALES FOR LAST MONTH:

Figure 4-14. Record-Level Condition Example

2276554-9701

5000. O()f::
i50.0()C
300. C,Cj{)

4-17

Clauses

4.5.4 Line-Level Conditions
You can specify line-level conditions in a WHERE clause included with a report line or modifi­
cation line specification. If a record has passed the record-level condition or no record-level con­
dition exists, each set of data for each report line or modification line must meet a line-level con­
dition, if one exists. If the function is LIST and the sequence is BY KEY or BY KEY BY LIST, fields
from several line types can be tested in the same line-level condition. Otherwise, line-level con­
ditions can test fields only from one line type and/or the primary key. Quantifiers cannot be used
in line-level conditions.

4.6 SORT CLAUSE

The SORT clause orders output data based on the values of fields in the file. The two levels of
sorting are record level and line level. Record-level sorting orders retrieved records on the basis of
field values and key values within the record. Line-level sorting orders lines within a record or
report based on the values within the line.

To specify a record-level sort use a SORT clause after the FROM clause. To specify a line-level sort
use a SORT clause within a report line specification. Both a record-level and line-level sort can be
specified in a single Query statement if the statement is sequenced BY KEY BY LIST.

4.6.1 Syntax
The syntax fOi the SORT clause is as follows:

{

field-type}
SORT-clause :: = SORTED BY key-type [order-indicator]

variable

order-indicator :: =

where:

:A
: ASCENDING
:D
: DESCENDING

:A is equivalent to :ASCENDING.
:D is equivalent to :DESCENDING.

[{~:~~~;~~e} [order-indicator]]
vanable

The order indicators :A and :D specify whether a particular field is to be sorted in ascending or
descending order. The indicator is not required; if it is omitted, the field is sorted in ascending
order. The order indicator applies only to the field preceding it. You can specify more than one sort
field, and the sort order can be mixed (that is, some fields ascending and some descending). The
sort fields are used as sort keys in the order in which they are specified.

4-18 2276554-9701

Clauses

4.6.2 Record-Level Sort
Indicate a record-level sort by placing the SORT clause after the FROM clause. This type of sorting
is meaningful only for Query statements ordered BY KEY or BY KEY BY LIST. All fields in a record
are valid sort fields, as are DEFINE variables. If fields are specified from a line type that is not
unique, the values in the first occurrence of that line type in each record are used as the sort value.
If a specified line type does not occur in a record, the value of the sort key for that record is binary
zeros.

Note that a record is composed of all of the lines associated with a primary key. (When records are
sorted by fields that are not included in the report, the ordering scheme is not always obvious.)
The order by which individual lines within the record are printed is not affected by the record-level
SORT clause.

Figure 4-15 shows a Query using a record-level SORT clause.

Query Statement:

LIST TAB 6 MSSN TAB 28 MRAT TAB 45 MDDT
FROM PAYI SORTED BY MSSN BY KEY BY LIST
HEADER
'SOCIAL SECURITY NUMBER SALARY
,----------------------

Query Output:

SOCIAL SECURITY NUMBER

485298742-
487265478
653878954
654789622
852106987
852369741
852417931
875247964
8888945b~

SALARY

900.00
750.00
215.00
385.00

1950.00
558.00
230.00

2500.00
375.00

DEDUCTIONS'
----------' SKIP

DEDUCTIONS

99.00
79.88
30. 56
58.30
99. 50
50. 00
55. 50
87. 20
46.00

Figure 4-15. Record-Level SORT

2276554-9701 4-19

Clauses

Figure 4-16 shows a Query using a record-level SORT clause on two fields.

Query Statement:

LIST TAB 3 MSTT TAB 20 MNAM
FROM PAY1 SORTED BY MSTT MNAM BY KEY BY LIST
HEADER 'STATE NAME'

,----- ----, SKIP

Query Output:

STATE

MO
MO
MO
NY
NY
TX
TX
TX
TX

4.6.3 Line-Level SORT

NAME

ABLE, CHARLIE
LX, KIM
PASCHAL JIMMY
BROWN, WILLIE
PARKS, FRED
HAYNES, BILL
HOWELL, JOHN
MEREDITH, JOHN
STEPHENS, JANET

Figure 4-16. Record-Level SORT on Two Fields

Indicate a line-level sort by including a SORT clause after all of the report line elements but before
the semicolon. This type of sort is legal only when the output sequence is BY KEY BY LIST or BY
LIST. You can use any number of fields in the specified line type as sort fields. These fields need
not be listed as output fields to be used as sort fields. If the Query is sequenced BY LIST, the en­
tire report line output is sorted. If the Query is sequenced BY KEY BY LIST, report lines are sorted
separately within each record for each line-level sort. Figure 4-17 shows a Query using the line­
level SORT.

4-20 2276554-9701

Query Statement:

LIST 'EMPLOYEE NAME: I MNAM
TAB 81 ,--------------------------------------,
HEADER SKIP 2 'EDUCATION INFORMATION';
ED SORTED BY DEGR
HEADER 'DEGR YEAR COLLEGE GPA';

FROM PAY1
BY KE\/ BY LIST
WHERE ANY GPA) 3.0

Query Output:

EDUCATION INFORMATION
EMPLOYEE NAME: LI, KIM

DE(iR YEAR
BS 1977
MS 1979

COLLEGE
PROGRAMMING SCHOOL
GRADUATE SCHOOL

EDUCATION INFORMATION
EMPLOVEE t~AHE: PASCHAL JIHMY

DEGR YEAR
BBA 1941
MA 1946

COLLEGE
BUSINESS COLLEGE
MT. VIEW COLLEGE

EDUCATION INFORMATION
EMPLOYEE NAME: ABLE, CHARLIE

GPA
3. 9
3. 7

GPA
2. 4
3. 1

DEGR YEAR COLLEGE GPA
BA 1971 DETECTIVE COLLEGE 3.9

EDUCATION INFORMATION
EMPLOYEE NAME: PARKS, FRED

DEGR YEAR COLLEGE
BA 1966 SALES COLLEGE

GPA
3. 6

Figure 4-17. Line-Level SORT BY KEY BY LIST

2276554·9701

Clauses

4-21

Clauses

4.7 TRACE CLAUSE

Executing an untested Query statement that performs an INSERT, UPDATE, or DELETE function
can cause unwanted changes to the file due to logical or typing errors. The TRACE clause shows
you a listing of the changes made to the file before the file is modified. This clause is particularly
important when you are using the DELETE function.

4.7.1 Syntax
The syntax of the TRACE clause is as follows:

trace-indicator :: = TRACE [{ ~~~ y J]
The TRACE clause follows the word INSERT, DELETE, or UPDATE in the Query statement. Specify
TRACE ONLY to check the modifications to be made to the file. TRACE OFF does not perform the
trace for the file and a listing file is not created. If neither TRACE ONLY nor TRACE OFF is
specified, TRACE ON is assumed. TRACE ON performs both the trace and the modifications to
the file. If this is not what was intended, the results can be undesirable. Generally, TRACE ONLY
and TRACE OFF should be specified. For each change made to the file, a TRACE line will be writ­
ten with the following format:

LINE LOC1 LOC2 key field1 field2 ... fieldn
xx xxxxxxxxx xxxxxxxxx xxxxxx xxxxxx xxxxxx xxxxxx

Enter TRACE OFF to cancel the TRACE clause.

Figure 4-18 shows a Query that uses the DELETE function with the TRACE clause.

4-22 2276554·9701

Clauses

Query Statement:

DELETE TRACE ONLY ED FROM PAYi

Query Output:

L.INE lOC1 LOC2 MNUM DEGR YEAR COLl GPA
ED 00000E40 00000B40 895203 BS 1977 PROGRAMMING SCHOOL :3 '-i

LINE LOC1 LOC2 MNUM DEGR YEAR COll ''}PA
ED 00000B40 **** 895203 t1S 1979 GRADU,~TE SCHODl :3. 7

lINE LOC1 LOC2 MNUM DEGR YEAR COll GPA
ED OOOOOBAO OOOOOCOO 55555 MA 1946 MT. VIEW COllEGE 3 i

lINE lOCi LOC2 MNUM DEGR YEAR COll GPA
ED 00OOllAO 00000C60 55555 BBA 1941 BUSINESS COLLEGE 2. 4

lINE LOCi LOC2 MNUM DEGR YEAR COlL GPA
ED 00000960 OOOOOAEO 632566 AA 1968 PLUMBERS SCHOOL 2. 5

LINE LOCi LOC2 MNUM DEGR YEAR COll GPA
ED 00000420 00000480 963285 BA 1975 JOURN,6,LISM SCHOOL d. 7'

lINE LOCi LOC2 MNUM DEGR YEAR COll GPA
ED 000001EO 00000240 997335 BA 1971 DETECTIVE COLLEGE 'J 9

LINE LOC1 LOC2 MNUM DEGR YEAR COLl GPA
ED 000007EO 00001200 458795 MA 1976 SUPER'JISOR COLLEGE 3. 0

LINE LOC1 LOC2 MNUM DEGR YEAR COll GPA
ED 00000600 00000660 89745 BA 1966 SALES COLLEGE :3. 6

Figure 4-18. DELETE Function Used with TRACE Clause

2276554-9701 4-23

Clauses

4.8 BY CLAUSE

The BY clause controls the order in which the Query statement reads and gathers the file; conse­
quently, it also controls the output sequence order. The three possible orders are BY KEY BY LIST,
BY KEY, and BY LIST. The BY clause syntax is as follows:

t
BY KEY BY LIST)

BY -clause :: = BY KEY
BY LIST

For most Query statements, the best order is BY KEY BY LIST. Use BY KEY when you have im­
posed a meaningful order on the lines in a record. Use BY LIST to gain speed or efficiency or when
record boundaries should be ignored. BY KEY sequencing follows the order in the file and keeps
together all of the data for a single primary key. BY LIST sequencing refers to the order of the
report lines in the Query statement. Therefore, BY KEY orders output according to the order of the
data in the file; BY LIST orders data according to the order of the report lines in the Query state­
ment; and BY KEY BY LIST combines the two methods.

4.8.1 BY KEY BY LIST
Query reads a file one record at a time. All data requested from each record is listed together. The
ronnrt lino~ ~ro nlltnllt in tho nrrlor in \A/hif'h \/nll h~\Io li~torl thom Tho ()lIor\l nrnf'o~~nr not'1in~ ."',.,"'."" •••• "'..., ""'.'" "' "t''''''' ••• "II"" "' "'.1.1 ••••• "' •• J"''-A '1"""""" •• "''''''''''' "I'''''''. III"" ""","""''''-'IJ ,.,."""'''''''''...,....., • ...,...,~ •• I...,

with the first report line. Starting at the beginning of the line, the processor reads this line and
then every occurrence of the same line type, building a new report line. The processor outputs the
line if it meets any line-level test and then proceeds to the next report line, and so on, until all
report lines have been printed.

BY KEY BY LIST recognizes that lines have been grouped into records. However, it does not make
use of the order of the different line types within the record. BY KEY BY LIST is useful when the
lines in a record have no special order or when the report line order supersedes the file order.

Record-level conditions and record-level sorting are allowed when the output sequence is BY KEY
BY LIST. When you use BY KEY BY LIST, optimum data access occurs when a record-level con­
dition tests the primary key for equality to a specified value(s), provided the record-level condition
does not contain an OR clause with another type of condition. A line-level condition of this type
also optimizes access if you have only one report line.

4-24 2276554·9701

Clauses

You can build report lines from more than one line when the output sequence is BY KEY BY LIST.
Lines that have not been designated as UNIQUE within the record are associated with each other
on a one-to-one basis for each report line, as follows: If a report line references line types a, b, and
c, the first report line for a given record will be built from the first occurrence of line type a, the
first occurrence of line type b, and the first occurrence of line type c; the second output line for the
report line will be built from the second occurrences of all of its member lines, and so on, until one
of the member line types has no more occurrences.

If one of the line types used in a report line has no occurrence in a record, that report line will not
be listed for that record, even if the other components exist. The line-level condition associated
with a report line can also test fields from more than one line type. In fact, it can test fields from
line types not used in the report line. However, a one-to·one correspondence exists between the
report line and the line types (as described for output elements in the preceding paragraph).

4.8.2 BY KEY
All data requested from each record is listed together. When reading the lines in a record, the
Query processor looks for any line type listed in a report line. When it finds an appropriate line
type, the processor tests the report lines that use that line type to see if a line-level condition
exists; if the lines meet the condition, the processor outputs them.

Record-level conditions are legal when the sequence is BY KEY. The Query processor optimizes
the Query when a record-level condition tests the primary key for equality to a specified value(s),
provided the record condition does not contain an OR clause with another type of condition. A
line·level condition of this type also optimizes access if you have only one report line. BY KEY
allows record-level sorts.

Use BY KEY when you have added lines under a key in a meaningful order. The order of the lines
defines a structure within the record. For example, assume that you have created a customer file
that contains a line, CC, to include information about customer complaints (such as the date of
the complaint, the name of the person who handled the complaint, and the current disposition of
the complaint). The file also contains a complaint description (CD) line which contains text that
describes the nature of the complaint. Each CC line might require several CD lines. The CD lines
immediately follow the associated CC line. For example, ec, CD, CD, CD, CC, CD, CC, CD, CD
represents three complaints. The first requires three description lines, the second requires one
description line, and the third requires two description lines. Use BY KEY to list the CC and CD
lines in the order in which they appear in the record (that is, to avoid listing the CC lines together
and then the CD lines together).

Figure 4-19 shows a Query using BY KEY BY LIST with the desired results.

2276554·9701 4-25

Clauses

4-26

Query Statement:

LIST TAB 81
'EMPLOYEE NAME

SALARY
. I MNAMi

I MRATi
I DEGR 'DEGREE EARNED

FROM PAY!.
SORTED BY MNAM
BY KEY BY LIST

Query Output:

EMPLOYEE NAME: ABLE, CHARLIE
SALARY: 1950.00

DEGREE EARNED: BA

EMPLOYEE NAME: BROWN, WILLIE
SALARY: 215.00

EMPLO'O{EE NAME: HAYNES, BILL
SALARY: 750.00

DEGREE EARNED: MA

EMPLOYEE NAME: HOWELL, JOHN
SALARY: 375.00

EMPLOYEE NAME: LI. KIM
SALARY: 230.00

DEGREE EARNED: BS
DEGREE EARNED: MS

EMPLOYEE NAME: MEREDITH, JOHN
SALARY: 900.00

DEGREE €AA.NED: AA

EMPLOYEE NAME: PARKS, FRED
SALARY: 558. 00

DEGREE EARNED: BA

EMPLOYEE NAME: PASCHAL. JIMMY
SALARY: 2500.00

DEGREE EARNED: BBA
DEGREE EARNED: MA

SORTED BY DEGRi

EMPLOYEE NAME: STEPHENS, JANET
SALARY: 385.00

DEGREE EARNED: BA

Figure 4-19. BY KEY BY LIST Example

2276554-9701

Figure 4-20 shows a Query using BY KEY BY LIST with unwanted results.

Query Statement:

LIST '***' I SALES ORDER NUMBER: 'SONM '***'
HEADER SKIP 2
FOOTING SKIP;

ITEM NUMBER --- , ITEM;
QUANTITY DESIRED ---' GUAN;

FROM SOFL SORTED BY SONM BY KEY BY LIST

Query Output:

1l. * ii· SALES ORDER NUMBER: 50 ***
ITEM NUMBER 555
ITEM NUMBER 777

QUANTITY DESIRED 101
QUANTITY DESIRED 5

*** SALES ORDER NUMBER: 75 ***
ITEM NUMBER 333
ITEM NUMBER 555
ITEM NUMBER 111
ITEM NUMBER 777

QUANTITY DESIRED 1
QUANTITY DESIRED 2
QUANTITY DESIRED 3
QUANTITY DESIRED 4

~. SALES ORDER NUMBER: 100 *
ITEM NUMBER 333
ITEM NUMBER 555

QUANTITY DESIRED 1
QUANTITY DESIRED 2

*** SALES ORDER NUMBER: 300 ***
ITEM NUMBER 777

QUANTITY DESIRED --- 5

Figure 4·20. BY KEY BY LIST with Unwanted Results

2276554-9701

Clauses

4·27

Clauses

NOTE

Figure 4-21 illustrates the correct results for the Query using BY
KEY.

If you specify the BY KEY sequence in a report line built from several nonunique line types, the
lines in a record are grouped together to build each line of output. Users control the number and
position of each line in a record when they insert lines. The Query processor reads through the
lines for a record, looking for line types used in report lines and building the report lines as it finds
the specified line types. When a report line is complete, it is written and reinitialized to empty. If a
report line contains information from line type XX and Query reads another XX line, the second set
of XX data is written over the first. If a record does not include all of the line types specified in a
report line, that report line will not be written for that record. A line-level condition can also test
fields from several line types or from a line type different from the line types in the report line. The
tested and reported fields are associated in the same way that different lines in a report line are
associated.

Query can only write data from one occurrence of each line type used in a report line or line-level
condition. For example, assume that you need to build a report line from AA, BB, and CC lines and
that the order of the lines under one key is as follows:

AA~ DD~ AA~ ~~~ AA~ DD~ ~~~ AAA nn~ ~~~
1"\1"\ I-&;;) &;;) I - I"\I"\L - VV I - I"\I"\,;} - &;;) &;;)L - VVL - 1"\1-\"+ - &;;) D';} - VV,;}

The following report lines result from the Query statement LIST AA BB CC; BY KEY:

AA2 BB1 CC1
AA3 BB2 CC2
AA4 BB3 CC3

The data from AA 1 has been written over by AA2. To include AA 1 in the report, you must specify
AA, BB, and CC as different report lines, as follows:

LIST AA; BB; CC;

The resulting report is as follows:

AA1
BB1
AA2
CC1

The report continues in this manner, in the same order as the lines exist in the record.

Figure 4-21 shows a Query using BY KEY with the desired results.

4-28 2276554·9701

Clauses

Query Statement:

LIST '***' , SALES ORDER NUMBER: ' SONM '*** '
HEADER SKIP 2
FOOTING SKIP;

ITEM NUMBER --- , ITEMi
QUANTITY DESIRED ___ I QUANi

FROM SOFL SORTED BY SONM BY KEY

Query Output:

*** SALES ORDER NUMBER: 50 ***

ITEM NUMBER 555
QUANTITY DESIRED 101

ITEM NUMBER 777
QUANTITY DESIRED 5

*** SALES ORDER NUMBER: 75 ***

ITEM NUMBER 333
QUANTITY DESIRED 1

ITEM NUMBER 555
QUANTITY DESIRED 2

ITEM NUMBER 111
QUANTITY DESIRED 3

ITEM NUMBER 777
QUANTITY DESIRED 4

*** SALES ORDER NUMBER: 100 ***

ITEM NUMBER 333
QUANTITY DESIRED 1

ITEM NUMBER 555
QUANTITY DESIRED 2

*** SAL.ES ORDER NUMBER: 300 ***

ITEM NUMBER 777
QUANTITY DESIRED --- 5

Figure 4·21. BY KEY Example

2276554-9701 4·29

Clauses

4.8.3 BY LIST
BY LIST does not organize lines into records when building the report. Instead, it lists all of the
data for a single report line together. The first report line is listed first, then the second, and so on,
until all report lines are listed.

Report lines must be built from the same line type and/or the primary key. Record-level conditions
and record-level sorting are not allowed.

For a relatively full file, BY LIST executes faster than BY KEY or BY KEY BY LIST. However, if a file
is almost empty, BY LIST might be significantly slower than BY KEY and BY KEY BY LIST since it
causes Query to read numerous empty records. Using BY LIST optimizes access to the data for
line-level conditions that test the primary key or any secondary key for equality with a value(s), pro­
vided the line-level conditions do not contain an OR clause with a condition that does not involve a
key.

4.9 DEFINE CLAUSE

The DEFINE clause specifies calculations on fields and allows the use of the calculations as
report elements or operands in a condition.

4.9.1 Syntax
The syntax of the DEFiNE ciause is as foiiows:

DEFINE-clause :: = DEFINE [variable.:. type:: define-expression [i.]] ...

define-expression:: = [~] subexpression [operator define-expression] [J]

Variable names must follow the syntax rules for aliases. If a variable is used as an operand in a
DEFINE expression, its definition must precede its use as an operand. Each variable must have its
data type defined. The data types are those defined in the DDL specification of fields. Data types
have the following syntax:

type-code / digits. decimal-places

The following data types are legal for calculation: IS, ID, RS, RD, CN, CS, AN, AS, and PK. For an
explanation of these data types, see Appendix B.

4-30 2276554·9701

Figure 4-22 shows a Query using BY LIST with the desired results.

Query Statement:

LIST MNUM MRAT SORTED BY MRAT:DESCENDING
HEADER 'EMPLOYEES RANKED BY SALARY';
MNUM MCOM SORTED BY MCOM:DESCENDING
HEADER 'EMPLOYEES RANKED BY COMMISSION';
MNUM MSLS SORTED BY MSLS:DESCENDING
HEADER 'EMPLOYEES RANKED BY SALES';

FROM PAY1 BY LIST

Query Output:

EMPLOYEES RANKED BY SALARY
55555 2500.00

997335 1950.00
632566 900.00
458795 750.00

89745 558.00
963285 385.00

50005 375.00
895203 230.00
441887 215.00
EMPLOYEES RANKED BY COMMISSION

55555 . 300
89745 . 200

441887 .200
895203 . 100
632566 .000
458795 . 000
997335 . 000
963285, .000

50005 . 000
EMPLOYEES RANKED BY SALES
895203 5000. 000

89745 300 000
441887 150.000
997335 .000
963285 .000
632566 .000

50005 .000
458795 .000

55555 -1000.000

2276554-9701

Figure 4-22. BY LIST Example

Clauses

4-31

Clauses

Figure 4-23 shows a Query using the BY LIST with unwanted results.

4-32

Query Statement:

LIST 'EMPLOYEE NAME: I MNAMi
I DEGREE EARNED: I DEGRi

COLLEGE ATTENDED: I COLLi
FROM PAY1 BY LIST

Query Output:

EMPLOYEE NAME: PARKS, FRED
EMPLOYEE NAME: HAYNES, BILL
EMPLOYEE NAME: ABLE, CHARLIE
EMPLOYEE NAME: STEPHENS, JANET
EMPLOYEE NAME: BROWN, WILLIE
EMPLOYEE NAME: HOWELL, JOHN
EMPLOYEE NAME: LI, KIM
EMPLOYEE NAME: MEREDITH, JOHN
EMPLOYEE NAME: PASCHAL, JIMMY

DEGREE EARNED: BA
DEGREE EARNED: BA
DEGREE EARNED: BA
DEGREE EARNED: MA
DEGREE EARNED: AA
DEGREE EARNED: MS
DEGREE EARNED: MA
DEGREE EARNED: BS
DEGREE EARNED: BBA
COLLEGE ATTENDED: DETECTIVE COLLEGE
COLLEGE ATTENDED: JOURNALISM SCHOOL
COLLEGE ATTENDED: SALES COLLEGE
COLLEGE ATTENDED: SUPERVISOR COLLEGE
COLLEGE ATTENDED: PLUMBERS SCHOOL
COLLEGE ATTENDED: GRADUATE SCHOOL
COLLEGE ATTENDED: MT. VIEW COLLEGE
COLLEGE ATTENDED: PROGRAMMING SCHOOL
COLLEGE ATTENDED: BUSINESS COLLEGE

Figure 4-23. BY LIST with Unwanted Results

2276554-9701

Figure 4-24 shows a Query using the DEFINE clause with different data types.

Query Statement:

DEFINE RAISE: CN/7.2 = .20 * MRATi
NEW-SALARY : AN/7. 2 = MRAT + RAISEi

LIST MNAM: 14 TAB 20 MRAT TAB 34 RAISE TAB 50 NEW-SALARYi
FROM PAYl
B·1 KE·y' BY LIST
WHERE ANY MPYP = 30
NO HEADER HEADER

YEARLY RAISE REPORT FOR MONTHLY PAID EMPLOYEES' SKIP 2
'EMPLOYEE NAME OLD SALARY AMOUNT OF RAISE NEW SALARY'
,------------- ----______ 1

Query Output:

YEARLY RAISE REPORT FOR MONTHLY PAID EMPLOYEES

EMPLOYEE NAME

PASCHAL JIMMY
,MEREDITHI JOHN
ABLE, CHARLIE

OLD SALARY

2500.00
900.00

1950.00

AMOUNT OF RAISE

500.00
180.00
390.0.0

NEW SALARY

3000. 00
1080. 00
2340.00

Figure 4-24. DEFINE Clause Example

4.9.2 Where Variables Can Be Used

Clauses

Variables specified in the DEFINE clause can be used in the LIST function anywhere that field IDs
can be used. The variables can be output, sorted, or tested. In modification functions, they can be
used as test variables or on the right side of an equal sign in the CONTENTS clause.

4.9.3 DEFINE Expression
A DEFIN E expression uses the operators +, -, *, and I. Totals, counts, record totals, and record
counts are also allowed. You can use parentheses to change the order of evaluation. Expressions
are eval uated accord i ng to the followi ng ru les, in the order shown:

1. Innermost parentheses are evaluated first.

2. TOTAL, COUNT, RECORD TOTAL, and RECORD COUNT are performed left to right.

3. Multiply and divide (* and I) are performed left to right.

4. Addition and subtraction (+ and -) are performed left to right.

2276554-9701 4-33

Clauses

The syntax for a DEFINE expression is as follows:

define expression :: = [JJ subexpression [operator define-expression] [)]

A subexpression is defined as follows:

subexpression :: = [(]

[RECORD] TOTAL field-type
[RECORD] COUNT field-type
field-type
variable
change-data

[)]

Notice that the right side of the definition of a DEFINE expression is itself a DEFINE expression.
Accordingly, DEFINE expressions can be built up to be as complex as is necessary.

Figure 4-25 shows a Query using the DEFINE expression with COUNT.

4-34

Query Statement:

DEFINE ADJUSTED-SALARY: CN/7.2 = 30 / MPYP * MRAT;
OVER-l000 : CN/2.0 = COUNT MNAM;

LIST TAB 9 MNAM TAB 42 ADJUSTED-SALARY;
TAB 161 """NUMBER OF EMPLOYEES THAT M.AKE OVER $1000.00 A MONTH: """
OVER-l000;

FROM PAYl BY KEY BY LIST WHERE ANY ADJUSTED-SALARY GT 1000
NO HEADER HEADER

EMPLOYEES IN THE 1000 CLUB~ SKIP 2
EMPLOYEE NAME MONTHLY SALARY~

-------------- .. "

Query Output:

EMPLOYEES IN THE 1000 CLUB

EMPLOYEE NAME

PASCHAL, ,...I I MMY
HOWELL, ..JOHN
BROWN, WILLIE
STEPHENS, ,JANET
ABLE, CHARLIE
HAYNES, BILL
PARKS, FRED

MONTHLY SALARY

2500.00
1875.00
1290.00
1647.80
1 ';'50.00
1500.00
2388.24

NUMBER OF EMPLOYEES THAT MAKE OVER $1000.00 A MONTH: 7

Figure 4-25. DEFINE Expression Example Using COUNT

2276554·9701

Figure 4-26 shows a Query using the DEFINE expression with TOTAL.

Query Statement:

DEFINE ADJUSTED-SALARY: CN/7.2 = 30 / MPYP * MRAT;
MONTHLY-SALARY-EXPENSE : CN/S.2 = TOTAL ADJUSTED-SALARY;

LIST TAB 7 MNAM TAB 55 ADJUSTED-SALARY;
TAB 55 ,--------,
TAB 87 'TOTAL SALARY EXPENSE FOR THIS MONTH:'
TAB 134 MONTHLY-SALARY-EXPENSE;

FROM PAY1 BY KEY BY LIST
NO HEADER HEADER

EMPLOYEE NAME

Query Output:

EMPLOYEE NAME

LI, KIM
PASCHAL, JIMMY
MERED I TH, . .JOHN
HOWELL, .JOHN
BROWN, WILLIE
STEPHENS, .JANET
ABLE, CHARLIE
HAYNES, BILL
PARI<~S, FRED

MONTHLY SALARY REPORT' SKIP
PREPARED ON 1\ SYSDATE'- SKIP 2

MONTHLY SALARY REPORT

PREPARED ON MM/DD/YV

SALARY'"

SALARY

460.00
2500.00
900.00

1:375.00
1290.00
1647.80
1950.00
1500.00
238:=:.24

TOTAL SALARY EXPENSE FOR THIS MONTH: 14511.04

Figure 4-26. DEFINE Expression Example Using TOTAL

2276554-9701

Clauses

4-35

Clauses

4.9.4 Mixed Mode Arithmetic
You can mix COBOL data types (CS, CN, AS, AN, IS, and PK) in the same expression. You can also
mix FORTRAN or Pascal data types (IS, ID, RS, and RD). However, you cannot mix COBOL types
with FORTRAN/Pascal types. For example, an expression cannot mix operands RD and CN.

Before the calculation is performed, constants in the DEFINE expression are converted to the
same type as the result.

4.9.5 Totals and Counts
Totals and counts are legal only for the LIST function. The two types of totaling and counting are
as follows:

• When you specify the word TOTAL or COUNT for a field or expression, a total or count of
the field or expression is accumulated over the entire file.

• When you precede TOTAL or COUNT by the word RECORD, the total or count is per­
formed on a record basis only and the value is reinitialized to zero when a new record is
being read.

Figure 4-27 shows a Query using the DEFINE clause with RECORD COUNT.

4-36

Query Statement:

DEFINE NUMBER-DEGREES: CN/l.0 = RECORD COUNT DEGR;
LIST 'DEGREE INFORMATION ON: ' MNAM;

TAB 2 DEGR TAB 18 COll
HEADER SKIP 'DEGREE COllEGE'

... _----- -------_ ... ;
TAB 81 'TOTAL NUMBER OF DDEGREES EARNED: ' NUMBER-DEGREES;

FROM PAY1 WHERE ANY MNAM = 'lI, KIM'
NO HEADER BY KEY BY lIST

Query Output:

DEGREE INFORMATION ON: LI, KIM

DEGREE

Be·
'-'

M'-. .;:.

COLLEGE

PROGRAMMING SCHOOL
GRADUATE ~=;CHOOL

TOTAL NUMBER OF DDEGREES EARNED: 2

Figure 4-27. DEFINE Clause with RECORD COUNT

2276554-9701

Figure 4-28 shows a Query using the DEFINE clause with RECORD TOTAL.

Query Statement:

DEFINE TOTAL-FOR-ITEM : CN/8.2 = GUAN * UPRC;
INVOICE-TOTAL: CN/9.2 = RECORD TOTAL TOTAL-FOR-ITEM;

LIST 'SALES ORDER NUMBER: ' SONM
HEADER '***';
TAB 5 ITEM TAB 17 GUAN TAB 28 UPRC TAB 38 TOTAL-FOR-ITEM
HEADER SKIP 'ITEM NUMBER GUANTITY UNIT PRICE TOTAL PRICE'

,----------- ___________ I ;

TAB 81 'TOTAL AMOUNT OF INVOICE: I INVOICE-TOTAL
FOOTING '***';

, FR OM SOFL ITEM
LINKED BY ITEM = ITMN
BY KEY BY LIST

Query Output:

SALES ORDER NUMBER: 300

ITEM NUMBER GUANTITY UNIT PRICE TOTAL PRICE

777 5 500 2. 50

TOTAL AMOUNT OF INVOICE: 2. 50

SALES ORDER NUMBER: 100

ITEM NUMBER

333
555

GUANTITY

2

TOTAL AMOUNT OF INVOICE:

UNIT PRICE

100.000
15.000

130.00

TOTAL PRICE

100.00
30.00

SALES ORDER NUMBER: 75

ITEt"! NUMBER GUANTITY UNIT PRICE TOTAL PRICE
----_ ... , ------ -------- ---------- -----------

333 100. 000 100.00
555 2 15.000 30. 00
111 3 1. 500 4. 50
777 4 .500 2.00

TOTAL AMOUNT OF INVOICE: 136. 50

SALES ORDER NUMBER: 50

ITEM I\lUMBER GUANTITY UNIT PRICE TOTAL PRICE
____ .w __ .•• __ •• ___ -------- ---------- ----------_.-

555 101 15.000 1515.00
~7'7-7 5 .500 2. 50

TOTAL At10UNT OF INVOICE: 1517.50

Figure 4-28. DEFINE Clause with RECORD TOTAL

Clauses

2276554·9701 4-37

Clauses

If a report line is composed only of literals and DEFINE variables that result from TOTAL or
COUNT and/or calculations performed with TOTAL, COUNT, and constants, that report line is
printed only once at the end of the report. If the fields of a report line include any RECORD TOTAL
or RECORD COUNT operations but no fields or results of calculations performed directly on a
field, the report line is printed at the end of processing for each record.

If a field or a calculation performed on a field is included in a report line, that report line is printed
every time a qualified occurrence of the field would normally be printed; this holds true whether or
not the report line includes TOTAL, COUNT, RECORD TOTAL, and RECORD COUNT fields. A
value for the current result of expressions on TOTAL, COUNT, RECORD TOTAL, and RECORD
COUNT is printed for the current report line. BREAK TOTAL or BREAK COUNT keeps calculating
the total on count total until the break field(s) for a report line changes. The value is then printed
and the total or count is cleared. In this manner, running totals, counts, subtotals, and subcounts
can be printed. Running counts can be used to produce line numbers within a record or for the en­
tire report. Also, you can determine an average for a field or DEFINE variable by specifying the
calculation TOTAL fieldx/COUNT fieldx.

4.10 BREAK CLAUSE

The BREAK clause allows control break processing on totals, counts, and duplicate values. This
type of processing uses data that is ordered on certain fields and needs to detect when the values
of these fields change. Changing heading lines, starting a new page, and printing or clearing ne'v"~
totals or counts are examples of such field changes. BREAK is allowed only with the LIST func­
tion. BREAK can be used with multiple files.

There are two places in a Query statement that BREAK is specified to produce reports using con­
trol breaks. A BREAK clause is included in break-controlled report lines to designate the fields
whose values will be tested to detect the break condition. The syntax of the BREAK clause is as
follows:

BREAK-clause :: = BREAK {ON } field-type [field-type] ...
BEFORE

Control break reports typically should include a record-level SORT clause that sorts the report on
all BREAK fields. If this is not the case, the fields should already be in the required sorted order.

4-38 2276554·9701

Clauses

Control break reports include three types of lines: heading lines, detail lines, and summary lines.
Heading lines contain data, headings, paging, and spacing that should be printed only when a par­
ticular field changes data. Use the BREAK ON clause to indicate these fields. This will cause them
to be printed out only when the BREAK field(s) value changes. Detail lines have no associated
BREAK clause and are printed as normal report lines. Summary lines include BREAK TOTAL and
BREAK COUNT define variables and should be indicated by specifying a BREAK clause BREAK
BEFORE. This will cause report lines to be printed with the value that was current immediately
before the BREAK condition is detected and then cleared.

Figure 4-29 shows a Query using the BREAK clause with BEFORE, ON, and TOTAL.

Query Statement:

DEFINE TOTAL-STATE-SALARY: CN/7. 2 = BREAK TOTAL MRATi
LIST TAB 34 ,-------,

TAB 81 'TOTAL SALARY EXPENSE FOR STATE: ' TOTAL-STATE-SALARY
BREAK BEFORE MSTTi
(STATE = ' MSTT HEADER SKIP
FOOTING 'EMPLOYEE NAME SALARY'

1 ______ -------

BREAK ON MSTTi
MNAM TAB 33 MRATi

FROM PAYl
SORTED BY MSTT
BY ~EY BY LIST

Query Output:

STATE = MO
EMPLOYEE NAME

PASCHAL, JIMMY
ABLE, CHARLIE
LL j.<.IM

TOTAL SALARY EXPENSE FOR

STATE = NY
EMPLOYEE NAME
------.-------
BROWN, WILLIE
PARKS, FRED

TOTAL SALARY EXPENSE FOR

STATE = TX
ErtPLOYEE NAME

STEPHENS, JANET
HAYNES, BILL
MEREDITH, JOHN
HOWELL JOHN

TOTAL SALARY EXPENSE rDR

STATE:

STATE:

STATE:

------,

SALARY

2500.00
1950.00

230. 00

4680.00

SALARY

215.00
558. 00

773. 00

SALARY

385. 00
750. 00
900.00
375. 00

2410. 00

Figure 4-29. BREAK Clause Example Using BEFORE, ON, and TOTAL

2276554·9701 4-39

Clauses

The BREAK clause is used with TOTAL and COUNT operators in the DEFINE clause.

Specifying BREAK TOTAL or BREAK COUNT in a DEFINE variable definition causes that DEFINE
variable to be printed and cleared when a break condition is detected in the report line in which it
is included.

Figure 4-30 shows a Query using the BREAK clause with TOTAL, COUNT, BEFORE, and ON.

4-40

Query Statement:

DEFINE TOTAL-FOR-ITEM : CN/9.2 = GUAN * UPRC;
INVOICE-TOTAL : CN/9. 2 = RECORD TOTAL TOTAL-FOR-ITEM;
TOTAL-DUE : CN/9. 2 = BREAK TOTAL TOTAL-FOR-ITEM;

LIST TAB 14 'TOTAL DUE ---)' TOTAL-DUE BREAK BEFORE BILL
HEADER ' -------,;
'CUSTOMER: 'NAME BREAK ON BILL

HEADER SKIP 2 '**'
FOOTING SKIP i

INVOICE NUMBER - , SONM;
TAB 28 INVOICE-TOTAL' (INVOICE TOTAL)';

FROM SaFL ITEM CUST
LINKED BY ITEM = ITMN BILL = CUSN
UNIGUE BL
SORTED BY BILL

Query Output:

**
CUSTOMER: ED JONES

INVOICE NUMBER - 100
130.00 (INVOICE TOTAL)

INVOICE NUMBER - 50
1517.50 (INVOICE TOTAL)

TOT AL DUE ---_> 1647. 50

**
CUSTOMER: PAT SMITH

INVOICE NUMBER - 75
136.50 (INVOICE TOTAL)

TOTAL DUE ---) 136. 50

**
CUSTOMER: HARRY ABLE

INVOICE NUMBER - 300
2.50 (INVOICE TOTAL)

TOTAL DUE ---) 2. 50

Figure 4-30. BREAK Clause Example

2276554-9701

Clauses

4.11 UNIQUE CLAUSE

'The UNIQUE clause tells the Query processor that there is only one occurrence of the specified
line type per record. This allows that line type to act like an 01 line. Fields in a UNIQUE line type
can act as primary keys when used in report lines and secondary keys within that line can be
optimized. The syntax for the UNIQUE clause is as follows:

UNIQUE-clause :: = UNIQUE line-type [line-type] ...

Figure 4-31 shows a Query using LIST showing the results without the UNIQUE clause.

Query Statement:

ITEMS PURCHASED THIS MONTH

CUSTOMER NUMBER ITEM NUMBER QUANTITY
--------------- ----------- --------

5 777 5
10 333 1
3 333 1
10 555 lOl

Query Output:

LIST TAB 8 BILL TAB 23 ITEM TAB 35 QUAN
FROM SOFL
BY KEY BY LIST
NO HEADER HEADER ' ITEMS PURCHASED THIS MONTH' SKIP

'CUSTOMER NUMBER ITEM NUMBER QUANTITY'
,--------------- --------,

Figure 4-31. Record-Level Without UNIQUE Example

Figure 4-32 shows the same Query using the UNIQUE clause. Notice that the restriction is removed
that requires an occurrence of each line type in a report line before that report line can be output.
The value of the field BILL (line type BL) is repeated in a new output line with each additional
occurrence of the fields ITEM and QUAN (line type 03) within a record.

2276554-9701 4-41

Clauses

Query Statement:

ITEMS PURCHASED THIS MONTH

CUSTiJl"lER NUMBER ITEM NUMBER QUANTITY
- _ ,,_. __ ._---.--- -_._--_._--_.- ---_._---.

5 777 5
10 333 1
10 555 2
3 333 1
3 555 2
3 111 3
3 777 4
10 555 101
10 777 5

Query Output:

LIST TAB 8 BILL TAB 23 ITEM TAB 35 QUAN
FROt·1 SDFL
UNIQUE BL
BY i-\E\i BY LIST
NO HEADER HEADER ' ITEMS PURCHASED THIS MONTH' SKIP

'CUSTOMER NUMBER ITEM NUMBER QUANTITY'
,--------------- --------,

Figure 4-32. UNIQUE Clause

Figure 4-33 shows Query using the UNIQUE clause and a record-level condition that tests a
secondary key. Query-990 will optimize access to the file by using BILL, a secondary key.

Query Statement:

LIST TAB 8 B!LL TAB 23 ITEM TAB 35 QUAN
FRDt'1 SOFL
UNIQUE BL
WHERE ANY BILL = 5
BY KEY BY LIST
NO HEADER HEADER ' ITEMS PURCHASED THIS MONTH' SKIP

'CUSTOMER NUMBER ITEM NUMBER QUANTITY'
,--------------- --------,

Query Output:

ITEMS PURCHASED THIS MONTH

CUSTOMER NUMBER ITEM NUMBER QUANTITY

5 777 5

Figure 4-33. UNIQUE Example

The UNIQUE clause should follow the FROM clause.

4-42 2276554-9701

Clauses

4.12 LINKED BY CLAUSE

The LINKED BY clause is used when the Query processor must access fields from two or more
files. When two fields from different files are linked, a logical hierarchy is formed with the first file
specified in the FROM clause being the top·level file. The field linked to in the lower-level file must
be a primary or secondary key. Multifile queries cannot be sequenced BY LIST.

4.12.1 Syntax
The LINKED BY clause has the following syntax:

LlNKED-BY-clause :: = LINKED BY
{

field-type } key-type
concat-field =

[~ {~;~~~;~~eld} -=- key-type]

Each specification of field ID = key ID specifies an access path between the file that contains the
field ID and the file that contains the key ID. These must be two different files. When more than
one field in the file is required for the key value in the linked-to file, the caret (A) is used to specify
concatenation of the linking fields. For example, if a primary key EKEY from a file PAYR is com­
posed of the fields SSN and NAME in the EMP file, the linkage is specified by "LINKED BY
SSNANAME = EKEY".

Figure 4-34 shows a Query using the LINKED BY clause.

Query Statement:

LIST SONM ITEM ITMN DEse
FROM SOFL ITEM LINKED BY ITEM = ITMN
NO HEADER
SORTED BY SONM BY KEY BY LIST

Query Output:

50
50
75
75
75
75

100
100
300

2276554·9701

555 555
777 777
333 333
555 555
111 111
777 777
333 333
555 555
777 777

GREEN JEANS
RED HERRING
GOLDEN RING
GREEN JEANS
PURPLE WIDGET
RED HERRING
GOLDEN RING
GREEN JEANS
RED HERRING

Figure 4-34. LINKED BY Example

4-43

Clauses

Figure 4-35 shows a Query using the LINKED BY clause.

Query Statement:

LIST ~SALES ORDER NUMBER: ~ SONM TAB 81
HEADER ~***~;
ITEM TAB 15 QUAN TAB 30 DESC
HEADER ~ITEM QUANTITY DESCRIPTION~ .1' ___ _

----------_.1'
FOOTING .1'***.1';

FROM SOFL ITEM LINKED BY ITEM = ITMN
WHERE ANY ITEM = 111 BY KEY BY LIST

Query Output:

SALES ORDER NUMBER: 75
ITEM QUANTITY DESCRIPTION

-------- -----------
333 1 GOLDEN RING
555 2 GREEN JEANS
111 3 PURPLE WIDGET
777 4 RED HERRING

Figure 4-35. LINKED BY Clause

4.12.2 LINKED BY File Hierarchy
Multifile relationships have the following characteristics:

• A single top-level file is required. This is the first file specified in the FROM clause.

• The LINKED BY clause must define an access path from the top-level file to all other
files. However, the access path need not follow directly from the top-level file to the
lower-level files; the path can be indirect (through another lower-level file).

• Access paths must link a higher-level file to a lower-level file. This is achieved by linking
a field or key in the higher-level file to a primary or secondary key in the lower-level file.
An example of a Query statement using a secondary key (ITEM) in a lower-level file is as
follows:

LIST SONM ITEM DESC
FROM ITEM SOFL LINKED BY ITMN = ITEM

4-44 2276554-9701

Clauses

Access through the primary key of the lower-level file associates a lower-level file record with
each occurrence of the top-level file. An example of a Query statement using the primary key
(ITM N) of the lower-level file is as follows:

LIST SONM ITEM DESC
FROM SOFL ITEM LINKED BY ITEM = ITMN

Access through a secondary key in the lower-level file associates all lines having that secondary
key value with each occurrence of the top-level file.

When more than one access path has been defined for a lower-level file, a THRU clause must be
used in each report line that uses fields from the lower-level file to indicate which access path to
use. The syntax for the THRU clause is as follows:

THRU-clause :: = THRU file-type

Figure 4-36 shows a Query using the LINKED BY with three fields and the THRU clause.

Query Statement:

LIST 'SALES ORDER NUMBER: ' SONM
FOOTING .' .';
'SHIP TO: ' NAME THRU SHIP;
TAB 10 STRT THRU SHIP;
TAB-l0 CITY:8 ',' STAT ZIPC THRU SHIP;
TAB 4 ITEM TAB 13 QUAN TAB 21 DESC:12 UPRC
HEADER SKIP
,---,
... ITEM NO.
FOOTING

QUAN. DESCRIPTION UNIT COST···

,---, SKIP 5;
FROM SOFL CUST ITEM LINKED BY BILL = CUSN SHIP = CUSN ITEM = ITMN
NO HEADER

Query Output:

SALES ORDER NUMBER: 300

SHIP TO: HARRY ABLE
12:::: MAIN

ITEM NO.
777

AUSTIN ,TX 78701

QUAN. DESCRIPTION UNIT COST
5 RE[I HERR I NG • 500

Figure 4-36. LINKED BY Example Using the THRU Clause (Sheet 1 of 2)

2276554·9701 4-45

Clauses

4-46

SALES ORDER NUMBER: 100

SHIP TO: ED JONES
4242 12TH
CHICAGO ,IL 33333

ITEM NO. I~UAN. DESCRiPTION
-j.?", --.. -.~ 1 GOLDEN RING
555 2 GREEN ,JEANS

SALES ORDER NUMBER: 75

SHIP TO: PAT SMITH
9';>';> WEST
MIAMI ,FL 12345

ITEM NO. I~UAN. DESCRIPTION
:3:3:3 1 GOLDEN RING
555 2 GREEN . ..IEANS
111 0':)

0_' PURPLE WIDGE
777 4 RED HERRING

SALES ORDER NUMBER: 50

SHIP TO: ED JONES
4242 12TH
CHICAGO ,IL 33333

UNIT COST
100.000

15.000

UNIT COST
100.000

15.000
1.500

.500

ITEM NO. I~J.UAN.

101
5

DESCRIPTION UNIT COST
555 GREEN JEANS 15.000
777 RED HERRING .500

Figure 4-36. LINKED BY Example Using the THRU Clause (Sheet 2 of 2)

2276554-9701

Clauses

4.12.3 THRU Clause
The THRU clause is used in a report line to specify an access path between two different link
fields to one file. The THRU clause indicates which link field accesses the key. Only one THRU
clause should be used per report line. If no THRU clause is used, the access-path defaults to the
first linkage defined.

4.12.4 IN Clause
When more than one file specified in the LINKED BY clause has fields with a common field name,
the IN clause designates which field name is used with the file ID.

4.13 CHANGE DATA CONSTANTS

Change data constants allow you to supply constant values while the Query statement is exe­
cuting for use in CONTENTS clauses, WHERE conditions, DEFINE clauses, and report-line
literals. You can use change data constants in both stand-alone Query and in the application pro­
gram interface. You can also use change data constants to chain Query executions together by
using the output of one Query statement to drive another Query statement as change data input.

4.13.1 Change Data Constants and Stand-Alone Query
When used in stand-alone Query, the constant values must be stored in a file. Answer NO to the
DEFAULT REPORT PARAMETERS prompt in the Query command; then, enter the change data file
path name in response to the CHANGE DATA PATHNAME prompt of the REPORT PARAMETERS
screen.

The Query statement reads a single record from the change data file and picks up all change data
constant values from that record. The constant values are incorporated into the executing Query
statement. Then, the statement completes execution, writing all report lines or performing all
modifications indicated. The processor is then reinitializedexcept for totals, counts, and the main
heading. Another record is then read from the change data file, the new constants are incorpor­
ated into the statement, and the execution is repeated. The process continues until the entire
change data file has been read. Then, the totals, counts, and main footings are written.

4.13.2 Change Data Constants and Application Programs
When using the application program interface, initialize the Query statement by calling either the
QINIT or QCOMP subroutine. Use the QSEND subroutine to pass a buffer containing the change
data constants for the entire Query statement. You can then execute the Query by using either
subroutine QEXEC or QRECV. When you use the application program interface, totals, counts,
averages, main headings, and footings are returned or listed every time you call QSEND.

4.13.3 Change Data Constant Format
The format for a change data constant is as follows:

change data :: = Z [.:. {~: l},ength-Changell,L change-offsetl]

2276554-9701 4-47

Clauses

The U and F specify whether the value is unformatted or formatted. If you specify U (unformatted),
no conversion on the change data value occurs before it is incorporated into the Query statement.
If you specify F (formatted), numeric literals are converted to the proper format for the context in
which they are used. If you specify neither U nor F, the parameter defaults to F.

Length is an integer specifying the field length of the change data constant in the records of either
the change data file or the QSEND buffer. Offset is an integer specifying the character position in
the record where the change data constant field begins. You must specify length for constants
used as report line literals. In a CONTENTS clause, length defaults to the length of the field to
which the change data is being assigned. In a WHERE clause, length defaults to the length of the
field to which the change data is being compared. In a DEFINE clause, length defaults to the
length of the DEFINE variable. If the constant is unform~tted, the length specified in either the
DDL declaration for the file or the DEFINE variable definition is used. If no offset is specified, it
defau Its to the next character position after the end of the previous change data field.

The following condition reads 15 characters, starting in the 30th character position in the change
data file record, and converts them to the proper format for the field M NAM:

"WHERE MNAM = ?:F,15(30)"

The following examples illustrate how change data constants make it easier to write Query
statements when large numbers of constant val ues are needed.

Figure 4-37 shows how the test file CUST is loaded with data using the INSERT function without
using change data constants:

4-48

Query Statement:

DXGUERY 1.3.0 81.275 GUERY-990 02/16/82 08: 19:01 PAGE
INSERT 01 CONTENTS (USN= '3', NAME='PAT SMITH', STRT='999 WEST',

CITY='MIAt1I', STAT="FL', ZIPC='·12345' .. CRED='EXCELLENT'.;
01 CONTENTS eUSN::: '5', NAME='HARRY ABLE', STRT='123 MAIN' ..

CITY= I AUSTIN I, STAT::: 'TX I, Z I PC:::: '78701', CREO= 'GOOD i;

01 CONTENTS eUSN:::: '10', NAME='ED JONES', STRT='4242 12TH',
C ITY=! CHI CAGO '., ST,t~T= I IL f, Z IPC::: '33333", CRED:::: 'POOR i;

01 CONTENTS eUSN= '15', NAME=iMARY BROWN', STRT:::'23 PECAN',
CITY::: "OAKLAND I, STAT:::: ICA '... ZIPC= '29157', CRED::: 'GOOD ';

01 CONTENTS eUSN= '22', NAME='BOB CARTER', STRT='187 MONEY',
CITY='LAS VEGAS', STAT='NE', ZIPC='93487', CRED= 'EXCELLENT ';

FROM CUST

Figure 4-37. auery with INSERT Without Change Data Constants (Sheet 1 of 2)

2276554-9701

Clauses

Query Output:

DXGUERY 1.3.0 81. 275 GUERY-990 02/16/82 08: 19:01 PAGE 2
LINE LOC1 LOC2 CUSN NAME STRT
CITY STAT ZIPC CRED

01 00000000 **** 3 PAT SMITH 999 WEST
MIAMI FL 12345 EXCELLENT

L.INE LOCi LOC2 CUSN NAME STRT
CITY STAT ZIPC CRED

01 00000066 ***'1} 5 HARRY ABLE 123 MAIN
AUSTIN TX 78701 GOOD

LINE LOC1 LOC2 CUSN NAME STRT
CITY STAT ZIPC CRED

01 OOOOOOCC **** 10 ED JONES 4242 12TH
CHICAGO IL 33333 POOR

LINE LOC1 LOC2 CUSN NAME STRT
CITY STAT ZIPC CRED

01 00000132 **** 15 MARY BROWN 23 PECAN
OAKLAND CA 29157 GOOD

L.INE LOC1 LOC2 CUSN NAME STRT
CITY STAT ZIPC CRED

01 00000198 **** 22 BOB CARTER 187 MONEY
LAS VEGAS NE 93487 EXCELLENT

Figure 4-37. Query with INSERT Without Change Data Constants (Sheet 2 of 2)

Figure 4-38 shows the change data constants loading file for the test file CUST.

• .;:l PAT SMITH 999 WEST MAIMI FL 12345 EXCELLENT
5 HARRY ABLE 123 MAIN AUSTIN TX 78701 GOOD
iO ED JONES 4242 12TH CHICAGO IL 33333 POOR
15 MARY BROWN 23 PECAN OAKLAND CA 29157 GOOD
. ...,~
t=.i!! .. BOB CARTER 187 MONEY LAS VEGAS NE 93487 EXCELLENT

Figure 4-38. Change Data File Contents for INSERT Example

2276554-9701 4-49

Clauses

Figure 4-39 shows a Query using both the INSERT function and the change data constants. This
Query has the same results as the Query in Figure 4-37 and could be used to insert more than 5
lines with a single execution.

4-50

Query Statement:

DXQUERY 1.3.0 81.275 QUERY-990 02/16/82 08=33:57 PAGE
INSERT 01 CONTENTS CUSN ?:F,2(1), NAME ?:F,12(5), STRT = ?:F.9(17),

CITY ?:F,9(28), STAT = ?:F,2(39). ZIPe = ?:F,5(43).

Query Output:

DXG!UERY'
LINE LOCl
CITY

01 00000000
IVIA II''II

LINE LOCl
CITY

01 00000066
AU!::TIN

LINE LOCl
C;ITY

01 OOOOOOCC
CHICAGO

LINE LOCl
CITY

01 00000132
CIA~::LAND

L.INE LOCl
CITY

01 0000019::::
LA!::; VEGAS

CRED = ?:F,9(50);

1.3.0 81.275 QUERY-990
LOC2 CUSN NAME

STAT ZIPC CRED
**** 2: PAT SMITH

02/16/82 08:33:57 PAGE
!:;TRT

99'~'" WE!:;T
FL 12::::45 EXCELLENT

LOC2 CUSN NAME STRT
!:::TAT ZIPC CRED

**** C'
,_I HARRY ABLE 1 '?:':: MAIN

TX 78701 GOOD

Loe2 CUSN NAME STRT
!:;TAT ZIPC CRED

**** 10 ED ,JONE!:; 4242 12TH
II.., :~:~:::::~:~: POOR

Loe2 CUSN· NAME !:;TRT
STAT ZIPC CRED

**** 15 MARY BROWN 2:~: PECAN
CA 29157 GOOD

Loe2 CUSN NAME STRT
!::;TAT ZIPC CRED

**** 22 BOB CARTER 187 MONEY
NE 9:~:487 EXCELLENT

Figure 4-39. Change Data Constants and INSERT Function

2276554-9701

5

Optimization

5.1 INTRODUCTION

This section discusses optimization of Query-990 using key and clause combinations.

5.2 OPTIMIZATION

Optimization of Query-990 consists of using conditions with key combinations in such a way that
the Query processor need not read all the keys in the file. The Query processor reads only the keys
that meet the condition specified in the WHERE clause, creating a condition of optimum data
access.

5.2.1 Record-Level Conditions
Record-level conditions have the following combinations:

RANDOM PRIMARY KEY IN DATA BASE FILES
Use BY KEY BY LIST or BY KEY for optimization. The record-level condition must test only
the primary key for equality to a specific value. Therefore, the only relational operator allowed
is EQ or =. You can use an OR connector as long as the remaining record conditions test
only the primary key for equality to a specific value.

LIST MNAM MRAT FROM PAY1 BY KEY
WHERE MNUM = 55555

SEQUENTIAL PRIMARY KEY IN DATA BASE OR KIFs
Use BY KEY BY LIST or BY KEY for optimization. The record-level condition can test the
primary key using all relational operators except NE or < >. You can use an OR or an AND
connection as long as the remaining record conditions test only the primary key against a
specific value.

LIST MNAM MRAT FROM PAY1 BY KEY BY LIST
WHERE MNUM GT 40000 AND MNUM LT 60000

RANDOM SECONDARY KEY IN DATA BASE FILES
Use BY KEY BY LIST or BY KEY with UNIQUE for optimization. The record-level condition can
test for equality to a specific value when the line type that contains the secondary key has
zero or one occurrence per record. The line type must be declared UNIQUE. The only rela­
tional operator allowed is EQ or =. You can use an OR connector if the remaining record con­
ditions test only the secondary key for equality to a specific value.

2276554-9701

LIST MJOB DEGR FROM PAY1
UNIQUE CU BY KEY
WH ERE ANY MSSN = 487265478 OR ANY MSSN = 852417931

5-1

Optimization

SEQUENTIAL SECONDARY KEY IN DATA BASE OR KIFs
Use BY KEY BY LIST or BY KEY with UNIQUE for optimization. The record-level condition can
test for equality to a specific value when the line type that contains the secondary key has
zero or one occurrence per record. The line type must be declared UNIQUE. All relational
operators are allowed except NE or < >. You can use the connectors AND and OR if the re­
maining record conditions test the secondary key against a specific value.

LIST MJOB DEGR FROM PAY1
UNIQUE CU BY KEY BY LIST
WHERE ANY MSSN NE 487265478 AND ANY MSSN NE 852417931

5.2.2 Line-Level Conditions
Line·level conditions have the following combinations:

RANDOM PRIMARY KEY IN DATA BASE FILES
Use BY KEY BY LIST, BY KEY, or BY LIST for optimization. The line-level condition can test
the primary key for a specific value as long as there is only one report line. The relational
operator EQ or = is allowed. You can use the connectors AND and OR if the remaining line­
level conditions test only the primary key for equality to a specific value.

LIST MNAM MJOB WHERE MJOB = 'PROGRAMMER'
FROM PA Y1 BY KEY BY LIST

SEQUENTIAL PRIMARY KEY IN DATA BASE FILES
Use BY KEY BY LIST, BY KEY, or BY LIST for optimization. The line-level condition can test
the primary key for a specific value as long as there is only one report line. All relational
operators except NE or < > are allowed. You can use the connectors AND and OR if the re­
maining line-level conditions test only the primary key against a specific value.

LIST MNAM MRAT WHERE MRAT GT 1000 AND MRAT LT 2000
FROM PAY1 BY KEY

RANDOM SECONDARY KEY IN DATA BASE FILES
Use BY LIST for optimization. The line-level condition can test the secondary key for equality
to a specific value. The relational operator EQ or = is allowed. You can use the OR connector
if the remaining line-level conditions test only the secondary key for equality to a specific
value.

LIST MNAM ADDR WHERE MSSN = 487265478
FROM PA Y1 BY LIST

SEQUENTIAL SECONDARY KEY IN DATA BASE KIFs

5-2

Use BY LIST for optimization. The line-level condition can test the secondary key against a
specific value. All relational operators are allowed except NE or < >. You can use the AND
and OR connectors if the remaining line-level conditions test only the secondary key against
a specific value.

LIST MNAM ADDR WHERE MSSN GT 400000000 AND MSSN NE 487265478
FROM PA Y1 BY LIST

2276554·9701

6

Program Language Interface Subroutines

6.1 INTRODUCTION

You can access Query from Pascal, COBOL, and FORTRAN programs through a set of assembly
language subroutines. These subroutines interface between the Query processor and the appli­
cation task. Data is transferred between the calling program and Query via interprocess communi­
cation. You can link the following subroutines to the calling task:

• QCOMP - Compiles, loads, and prepares a Query statement for execution. The Query
statement is passed from the application task as an array of characters.

• QINIT - Loads and prepares for execution a Query statement that has already been
compiled (using QCOMP) and stored as an object file.

• QEXEC - Executes a Query statement started by QCOMP or QINIT and lists the results
to an output file.

• QRECV - Processes one cycle of a Query statement. For example, if the Query is a
LIST function, QRECV returns one logical report line.

• QSEND - Resets and sends change data values, using the contents of the data buffer.

• QCLR - Reinitializes the Query processor for a particular Query statement (a clearing
function).

• QEND - Terminates the Query processor for a particular Query statement.

6.2 CALLING FORMATS

The calling formats for COBOL, Pascal, and FORTRAN are similar. Example calls to the QCOMP
subroutine from each language are as follows:

COBOL

CALL "QCOMP" USING QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
QUERY-STATEMENT, STATEMENT-LENGTH,
PASSWORD, FORMAT, LIST-TEXT,
LlSTING-PATHNAME, PAGELENGTH, PAGEWIDTH,
ALT-FILE.

2276554·9701 6-1

Program Language Interface Subroutines

Pascal

QCOMP(QUERY _NUMBER, RETURN_STATUS, RETURN_CODE, EXECUTE_FLAG,
QUERY_STATEMENT, STATEMENT_LENGTH, PASSWORD, FORMAT,
LIST_TEXT, LlSTING_PATHNAME, PAGE_LENGTH, PAGE_WIDTH,
ALT_FILE);

FORTRAN

CALL QCOMP(QRYNUM,STATUS,CODE,QSTATE,STLEN,PASSW,
FORMAT,LlST,LPATH,PGLEN,PGWDTH,ALTFIL)

6.3 QCOMP - COMPILE AND INITIALIZE

The format of QCOM P syntax is as follows:

CALL QCOMP(QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
QUERY-STATEMENT,STATEMENT-LENGTH,PASSWORD,
FORMAT, LIST-TEXT, LIST-PATH NAM E, PAG ELENGTH-O,
PAG EWI DTH-O,A L T -FI LE)

QCOiviP compiies a Query statement that you suppiy in the appiication program as an array of
characters. The compiler builds a Query object file, bids a Query executor, and loads the Query ob­
ject. The parameters are as follows:

QUERY-NUMBER
The data type is integer or COMP-1. Assign an integer to be associated with the Query pro­
cessor that this call bids. Subsequent Query subroutine calls will use this number to identify
the Query processor that is to receive the command. The main purpose of this number is to
allow multiple Query executions (up to five) to operate simultaneously. If the Query state­
ment contains change data constants, the Query processor waits for a QSEND call with a buf­
fer containing these constants. After QSEN D has been called or if there are no change data
constants, call QEXEC or QRECV to execute the statement.

RETURN-STATUS
The data type is integer or COMP-1. The status is returned to the application program upon
completion of the call. The status is zero if no error occurs; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

RETURN-CODE
The data type is a two-character string. If an 1/0, DBMS, or DD error terminates execution,
RETURN_CODE is the two-character system 1/0, DBMS, or DD status code.

QUERY-STATEMENT
The data type is a string of no more than 480 characters. This is the Query text to be compiled
and executed.

STATEMENT-LENGTH
The data type which is integer or COMP-1; specifies the length in bytes of the Query text.

6-2 2276554-9701

Program Language Interface Subroutines

PASSWORD
The data type is a four-character string. If security is used, this must be a valid password.

FORMAT
The data type is Boolean, integer, or COMP-1. FORMAT is set to 1 to indicate Query output in
report format and set to 0 to specify unformatted binary.

LIST-TEXT
The data type is BOOLEAN, integer, or COMP-1. LIST-TEXT is set to 1 to include the Query
statement listing in the listing file (specified by LIST-PATH NAME) and set to 0 for no listing.

LlST-PATHNAME
The pathname contains the Query statement and any errors detected by the compiler.

PAGELENGTH
The page length for formatted output. If you enter 0, the default (60) is used.

PAGEWIDTH
The page width for formatted output. If you enter 0, the default (80) is used.

ALT-FILE
The pathname contains the alternate collating sequence file. Set to blanks if none is desired.

6.4 QINIT - INITIALIZE QUERY INTERPRETER

The format of QI N IT syntax is as follows:

CALL QINIT(QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
OBJ ECT-PATH NAM E, PASSWORD)

Use this procedure to bid a Query executor using Query object that has already been compiled by
the stand-alone compiler before execution of the application program. The para"meters are as
follows:

QUERY-NUMBER
The data type is integer or COM P-1. Assign an integer to be associated with the Query pro­
cessor that this call bids. Subsequent Query subroutine calls use this number to identify the
Query processor that is to receive the command. The main purpose of this number is to allow
multiple Query executions (up to five) to operate simultaneously. If the Query statement con­
tains change data constants, the Query processor waits for a QSEND call with a buffer con­
taining these constants. After the QSEND or if there are no change data constants, call the
QEXEC or QRECV subroutine to execute the statement.

RETURN-STATUS
The data type is integer or COM P-1. The status is returned to the application program upon
completion of the call. If no error occurs, the status is zero; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

2276554·9701 6-3

· Program Language Interface Subroutines

RETURN-CODE
The data type is a two-character string. If an 1/0, DBMS, or DD error that terminates execution
occurs, RETURN-CODE is the two-character system 1/0, DBMS, or DD status code.

OBJECT-PATHNAME
The data type is a 48-character string that indicates the file pathname where the Query object
can be found. Synonym substitution is performed. The path name must end with a blank if it is
less than 48 characters long.

PASSWORD
The data type is a four-character string. If security is used, this must be a valid password.

6.5 QEXEC - EXECUTE AND LIST QUERY RESULTS

The format of QEXEC syntax is as follows:

CALL QEXEC(QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
OUTPUT-PATHNAME, EXTEND)

QEXEC completes execution and lists the results of a Query statement started by QINIT or
QCOMP. The listing is sent to the file or device indicated by the output pathname parameter. If the
l!3o+ nllo.nl o.Vo.","+o.~ \A'~O ~ I leT oF "'+;" ... +h"" ""+ ,,+ ;.,. " .. "" " .. + "' .. ,"""+,, loF +h"" 1 + 1""\ .. "" .. .,
I~~~ _uvil V"'VVU~VU YYQO Q ~IVI IUllv,"VII, LillO VULtJUL I~ Q IvtJVIL VI UQLQ. II '"Iv IQ~L ,,",UuIY VVQ;:) Q

modification function, the output is the trace. The parameters are as follows:

QUERY-NUMBER
The data type is integer or COMP-1. This is the number associated with the desired Query
processor, assigned by QCOMP or QINIT.

RETURN-STATUS
The data type is integer or COMP-1. The status is returned to the application program upon
completion of the call. If no error occurs, the status is zero; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

RETURN-CODE
The data type is a two-character string. If an 1/0, DBMS, or DD error that terminates execution
occurs, RETURN-CODE is the two-character system 1/0, DBMS, or DD status code.

OUTPUT-PATHNAME
The data type is a 48-character string that indicates the file pathname or device name that is
to receive the Query output. Synonym substitution is performed. The path name must end
with a blank if it is less than 48 characters long.

EXTEND

6-4

The data type is integer, Boolean, or COMP-1. To initialize the output file, set the extend
parameter to O. To open the file extended so that the results of the Query will be added to the
end of the file, set the extend parameter to 1.

2276554-9701

Program Language Interface Subroutines

6.6 QRECV - RECEIVE QUERY DATA

The format of QRECV syntax is as follows:

CALL QRECV(QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
DATA-BUFFER, BUFFER-LENGTH)

Use this procedure to retrieve the results of one execution cycle of the Query processor
associated with the specified Query number. The results are returned in the defined data buffer. If
the Query performs a LIST function, the data buffer receives one logical report line. If the Query is
a modification function, the data buffer receives a trace line. The parameters are as follows:

QUERY-NUMBER
The data type is integer or COMP-1 and indicates the number associated with the desired
Query processor, assigned by QCOMP or QINIT.

RETURN-STATUS
The data type is integer or COMP-1. This is returned to the application program upon com­
pletion of the call. The status is set to indicate normal operation, end of processing, or an
error status. (See Table 6-1 for status codes.) If the end of processing is signaled, the Query
processor does not terminate. Use QEND to terminate it.

RETURN-CODE
The data type is a two-character string. If an 110, DBMS, or DD error that terminates execution
occurs, RETURN-CODE is the two-character system 110, DBMS, or DD status code.

DATA-BUFFER
The data type is a string with a maximum length of 480 characters. The results of the exe­
cution are returned in this buffer.

LENGTH
The data type is integer or COM P-1, defining the length of the data buffer.

6.7 QSEND - SEND CHANGE DATA CONSTANTS

The format of QSEN D syntax is as follows:

CALL QSEND(QUERY-NUMBER, RETURN-STATUS, RETURN-CODE,
DATA-BUFFER, BUFFER-LENGTH)

This procedure resets change data constant values in the Query statement. These values are
indicated in the text by a question mark (?). The contents of DATA-BUFFER are the change data
values (Section 4). The parameters are as follows:

QUERY-NUMBER
The data type is integer or COMP-1 and specifies the number associated with the desired
Query processor, assigned by QCOMP or QINIT.

2276554-9701 6-5

Program Language Interface Subroutines

RETU RN-ST ATUS
The data type is integer or COMP-1. The status is returned to the application program upon
completion of the call. If no error occurs, the status is zero; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

RETURN-CODE
The data type is a two-character string. If an I/O, DBMS, or DD error that terminates execution
occurs, RETURN-CODE is the two-character system I/O, DBMS, or DD status code.

DATA-BUFFER
The data type is a string with a maximum length of 480 characters. This buffer contains the
change data val ues.

LENGTH
The data type is integer or COMP-1. This defines the length of the data buffer.

6.8 QCLR - REINITIALIZE QUERY PROCESSOR

The format of QCLR syntax is as follows:

CALL QCLR(QUERY-NUMBER, RETURN-STATUS)

QCLR reinitializes the Query processor associated with the Query number. Specifically, QCLR
resets location pointers to asterisks and clears conditions. The parameters are as follows:

QUERY-NUMBER
The data type is integer or COMP-1 and specifies the number associated with the desired
Query processor, assigned by QCOMP or QINIT.

RETURN-STATUS
The data type is integer or COMP-1. The status is returned to the application program upon
completion of the call. If no error occurs, the status is zero; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

6.9 QEND - END QUERY PROCESSOR

The format of QEND syntax is as follows:

CALL QEND(QUERY-NUMBER, RETURN-STATUS)

QEND terminates the Query processor associated with the designated Query number. Files built
by that Query processor in its last execution are lost if QEXEC or QRECV are not executed. The
parameters are as follows:

QUERY-NUMBER

6-6

The data type is integer or COMP-1 specifying the number associated with the desired Query
processor, assigned by QCOMP or QINIT.

2276554-9701

Program Language Interface Subroutines

RETURN-STATUS
The data type is integer or COM P-1. The status is returned to the application program upon
completion of the call. If no error occurs, the status is zero; if an error does occur, the status
is a nonzero integer indicating the particular error condition. (See Table 6-1 for status codes.)

Code

1

2

3

4

5

6

7

8

9

10

11

12

13

2276554·9701

Table 6-1. Interface Subroutine Status Codes

Meaning

Number table is full. A maximum of five different queries can be bid at
one time.

Query number does not exist. You have attempted to access a Query
task that was not initialized (by a QCOMP or QINIT call), or the
previous call returned a fatal error.

Data Base or Data Dictionary error (Query interpreter). Check the
return code field for the error returned by the Query processor.

Unable to bid interpreter task. The Query interpreter task is not in­
stalled on the program file S$QUERY.PROG.

Unable to bid compiler task. The Query compiler task is not installed
on the program file S$QUERY.PROG.

Query task no longer active. The Query task terminated either because
it could not get an interprocess communication buffer or because of
an abnormal task termination. Check the system log for an abnormal
termination message for installed task 10 <C3 or <81 through <85.

Cannot allocate buffer for message. The language interface was
unable to get an interprocess communication buffer.

Bad parameter list. The wrong number of parameters was passed to
the language interface routine.

Invalid command. The command sequence was incorrect; e.g., QRECV
or QEXEC must follow a QSEND call.

Duplicate Query number. The same Query number was used for more
than one QCOMP or QINIT call.

Invalid Query number. Zero is an invalid Query number.

Syntax errors (Query compiler). Check the QCOMP listing path name
for a description of the syntax errors.

Unable to access object path name. Check the return code for the
operati ng system error code.

6-7

Program Language Interface Subroutines

Table 6-1. Interface Subroutine Status Codes (Continued)

Code Meaning

14 Unable to access listing path name. Check the return code for the
operating system error code.

15 Unable to access alternate collating pathname. Check the return code
for the operating system error code.

16 Bad object file (Query interpreter). The object file does not contain
valid Query object. Check that the correct object pathname was used.

17 High-order truncation of numeric constant. A number larger than the
field size was sent in the QSEND buffer.

18 Negative sign used in unsigned number. Invalid data was entered for
an unsigned field.

19 Number conversion error. Invalid data was sent for a numeric field.

6.10 USING THE INTERFACE SUBROUTINES

The interface subroutines provide a flexible interface and can accommodate many possible
applications by using different sequences and combinations of calls. Descriptions of three
common designs and implementations are as follows.

Design:

The application generates a Query statement by prompting the user for the necessary infor­
mation. The results are listed to a file or displayed on the screen.

Implementation:

6-8

1. Prompt the user for the required information (~uch as field names, file name, and so on).

2. Use this information to build a Query statement in a buffer in memory.

3. Call QCOM P and pass the statement buffer.

4. Prompt the user for the output destination. If the output goes to a file, call QEXEC with
the file pathname. If it goes to the user's screen, call QRECV repeatedly and display
each report line as it is processed.

5. Call QEND to terminate the Query processor.

2276554-9701

Program Language Interface Subroutines

Design:

The application displays descriptions of several reports and prompts the user to choose one.
The user also specifies the records to be used in the report. The application writes the
resulting report to a file. A single execution of the application program can generate more
than one report.

Implementation:

1. Write the Query statement for each standard report, using change data constants for
selection criteria values that will be obtained from the user. Compile the Query
statements by using the QCOMP command, and store the object output in a file.

2. Prompt the user to choose a report, and call QINIT with the proper Query object file
pathname.

3. Prompt the user for selection criteria (such as primary key values) and position the
values in a buffer so that they match the corresponding change data constant positions
in the precompiled Query statements.

4. Call QSEND with this buffer of change data values.

5. Call QEXEC to complete execution and write the output to the file.

6. If the user wants another report using different selection criteria, call QCLR and return
to step 3; otherwise, call QEND.

Design:

The user has two (or more) interdependent files. One file contains new data used to update
another file. The objective is to read the file of new data and use that information to change
the other fi Ie.

Implementation:

1. Write two Query statements. One retrieves data from the new data file with a LIST state­
ment. The second applies the changes by using change data constants in the
CONTENTS clause of an UPDATE function. Compile the statements by using the
QCOMP command, and store the object output in a file.

2. - In the application program, call QINIT for both Query statements.

3. Call QRECV for the LIST Query. If the data in the buffer is not in the proper locations for
the change data constants in the UPDATE Query statement, move the data to the proper
positions.

4. Call QSEND for the UPDATE Query with the change data constant values just obtained
from the LIST Query.

5. Call QEXEC for the UPDATE Query and execute the updates. Call QCLR for the UPDATE
Query.

2276554·9701 6-9

Program Language Interface Subroutines

6. Loop to step 3 until no more data is received.

7. Call QEND for both Queries.

6.11 EXAMPLE PROGRAMS

The following examples demonstrate calls to the Query subroutines from Pascal, FORTRAN, and
COBOL language programs. The Pascal, and FORTRAN programs are equivalent, using four of the
seven Query subroutines. The COBOL program demonstrates all seven subroutines.

6.11.1 Example Pascal Program

6-10

PROGRAM PEXPLi

(* This program provides examples of the external definitions needed
in a TI Pascal program to access any of the Guery subroutines.
In addition, PEXPL illustrates calls to the
follo~ing subroutines:

GINIT (initializes a Query processor)
GEXEC (executes the Guery obJect and lists the results to a file)
GRECV (performs the function of GEXEC, but one line at a time)
QEND (deactivates a Guery processor)

*>
TYPE

C80 = PACKED ARRAY[l .. 80) OF CHAR;
C40 = PACKED ARRAY[1. . 40) OF CHAR .•
C16 PACKED ARRAY[1 .. 16) OF CHAR;
C4 PACKED ARRAY[1 .. 4J OF CHARi
C2 PACKED ARRAY[1 .. 2J OF CHARi

VAR

GUERY_NUMBER, R_STATUS, EXTEND, LNG
PATHNM : C40;

INTEGER;

R_CODE : C2i
PASSWORD : C4i
DBUFF : C80i

<* The external definitions needed to call all of the interface
routines are as follows:

PROCEDURE GCOMP(VAR GUERY_NUMBER : INTEGER;
VAR RETURN_STATUS : INTEGER;
VAR RETURN_CODE : C2.
VAR GUERY _STATEMENT : C2;
VAR STATEMENT_LENGTH: INTEGERi
VAR PASSWORD : C4i
VAR FORMAT : INTEGERi
VAR LIST_TEXT: INTEGER;
VAR LIST_PATHNAME C2;
VAR PAGE_LENGTHi PAGE_WIDTH INTEGER;
VAR ALT_FILE : C2)i EXTERNAL;

2276554-9701

Program Language Interface Subroutines

(* NOTE--GCOMP is not used in this example.*>

PROCEDURE GINIT(VAR GUERY_NUMBER : INTEGER;
VAR RETURN_NUMBER : INTEGER;
VAR RETURN_CODE : C2;
VAR PATHNM : C2;
VAR PASSWORD: C4)i EXTERNAL;

PROCEDURE GEXEC(VAR QUERY_NUMBER: INTEGER;
VAR RETURN_STATUS : INTEGER;
VAR RETURN_CODE : C2;
VAR OUTPUT_PATHNAME : C2;
VAR EXTEND: INTEGER); EXTERNAL;

PROCEDURE QCLR(VAR QUERY_NUMBER: INTEGER;
VAR RETURN_STATUS: INTEGER); EXTERNAL;

(* NOTE--QCLR is not used in this example. *)

PROCEDURE GEND(VAR QUERY_NUMBER: INTEGER;
VAR RETURN_STATUS : INTEGER); EXTERNAL.;

PROCEDURE QRECV(VAR QUERY_NUMBER INTEGER;
VAR RETURN_STATUS INTEGER;
VAR RETURN_CODE C2i
VAR DATA_BUFFER C2;
VAR BUFFER _LENGTH INTEGER) ;

PROCEDURE QSEND(VAR QUERY_NUMBER INTEGER;
VAR RETURN_STATUS INTEGER;
VAR RETURN_CODE C2;
VAR DATA_BUFFER C..,·

" VAR BUFFER _LENGTH INTEI~ER) ;

<*NOTE--QSEND is not used in this example. *)

BEGIN<*PEXPL*>

REWR I TE (OUTPUT) ;
PASSWORD := 'DBMS';

(*

EXTERNAL;

EXTERNAL;

Assume that prior to the execution of this program the desired Query
has been compiled using QCOMP, and further assume that the resulting
obJect resides on 'X. TEST.OUERYOBJ'.

*>

Assign the object pathname, choose a number to associate with a Guery
processor, and initialize that processor.

PATHNM: :C16 := 'X.TEST.GUERYOBJ '; <* NOTE-Trailing blank is mandatory*)
QUERY_NUMBER := 2;
QINIT(QUERY_NUM13ER,R_STATUS,R_CODE,PATHNM: :C2,PASSWORD);
WRITELN('RETURN STATUS FROM QINIT = ',R_STATUS),

<* Check for normal completion of the initialization, specify a
pathname for the result of the Query execution, execute the Query,
and end the Query processor.

2276554-9701 6-11

Program Language Interface Subroutines

IF R_STATUS = 0 THEN
BEGIN

PATHNM: :C16 := 'X. TEST. GUERYLST '; (*NOTE-Trailing blank *)
EXTEND := 0:
QEXEC (QUERY ._NUMBER, R_STATUS, R_CODE, PATHNM: : C2, EXTE:ND) i

WR ITELN('RETURN STATUS FROM GEXEC = ! .. R_STATUS);
GEND(QUERY_NUMBER,R_STATUS)i
WRITELN('RETURN STATUS FROM GEND = " R_STATUS);

END;

<*This section demonstrates a call to GRECV. Note that GEND has
disassociated the Query processor and the assigned Query nu~ber;

conseqL'entl'J' this association must be reset. The pathname
must be reset to the object file

GUERY_NUMBER := 2;
PATHNM: : C16 : = 'X. TEST. GUERYOB~ 'i <*NOTE-Trailing blank*>
GINIT(GUERY_NUMBER,R_STATUS,R_CODE,PATHNM: :C2,PASSWORD);
WRITELN{ 'RETURN STATUS FROM GINIT = ',R_STATUS);

<* Make repeated calls to GRECV until there are no more output lines *>

6-12

IF R_STATUS = 0 THEN
BEGIN

REPEAT
LNG: = 80;
GRECV(GUERY_NUMBER,R STATUS,R CODE,DBUFF: :C2,LNG);
IF LNG ·C> 0 AND R_CODE = '**' THEN

WR I TELN (DBUFF) ;
UNTIL LNG = 0 OR R_CODE <> '**';

WRITELN('RETURN STATUS FROM GRECV = ',R_STATUS);
WRITELN('RETURN CODE FROM GRECV = " R_CODE);

GEND(GUERY_NUMBER,R_STATUS);
WRITELN('RETURN STATUS FROM GEND = '/R_STATUS);

END;
END.

2276554·9701

Program Language Interface Subroutines

6.11.2 Example FORTRAN Program

~ This program is equivalent to the Pascal example program, PEXPL,
~ and demonstrates calls to the following Guery subroutines:
C (for FORTRAN-78)
C
C GINIT (initializes a Query processor)
~ QEXEC (executes the Query obJect and lists the results to a file)
C QRECV (p.rforms the functions of GRECV, one line at a time)
C GEND (deactivates a Query processor)
C
C DECLARATIONS:

C

INTEGER QNUMBR,KNT,RSTAT,RCODE,EXTEND, LNG
INTEGER OBPATH(S),LSPATH(S),PSWORD(2),DBUFF(40)

C INITIALIZATIONS
C

c

DATA PSWORD /'DBMS'I
DATA OBPATH !'X.TEST.GUERYOBJ 'I
DATA LSPATH /'X. TEST. GUERYLST 'I

C Assume that prior to the execution of this program, the desired
C Query has been compiled using GCOMP, and further assume that the
C resulting obJ~ct resides on 'X. TEST. GUERYOBJ'.
C
C The pathname has been assigned in the initializations section.
C Choose an int~ger to associate with a Query processor and
C initialize that processor.
c

GNUMBR=2
CALL GINIT(GNUMBR,RSTAT,RCODE,OBPATH,PSWORD)
WRITE(6,1)RSTAT

1 FORMAT ('RETURN STATUS FROM GINIT= (12)
C
C Check for normal completion of the initialization. e~ecute the
C Query, and end the Guery processor. Note that the pathname in the
C call to GEXEC is different from the pathname in the call to QINIT.
C

IF(RSTAT.EG.O)GO TO 2
GO TO 3

2 EXTEND=O
CALL GEXEC(GNUMBR,RSTAT,RCODE,LSPATH, EXTEND)
WRITE(6,S)RSTAT

5 FORMAT('RETURN STATUS FROM GEXEC= '12)
CALL GEND(GNUMBR,RSTAT)
WRITE(6,6)RSTAT

6 FORMAT(/RETURN STATUS FROM GEND= 'I2}
3 CONTINUE
C
C END SCOPE OF LAST IF
C
C This section demonstrates a call of GRECV. Note that QEND has
C disassociated the Query processor and the assigned Query number;
C consequently, this association must be reset. The path name
C must be reset to the obJect file'.
C

c
c

2276554-9701

GNUMBR=2
CALL GINIT{GNUMBR,RSTAT, RCODE,OBPATH.PSWORD)
WRITE(6,1)RSTAT

IF(RSTAT.EG. O)GO TO 9
GO TO 10

6-13

Program Language Interface Subroutines

G
C Make repeated calls to GRECV until no more lines exi:t.
C
9 LNG=SO

12
11
! ...

C THE
C

c

CALL GRECV(GNUMBR,RSTAT,RCODE/DBUFF,LNG)
11=((LNG. EG. 0). OR. (RCODE. NE. >2A2A))1;0 TO 1 i
WRITE(6,12)DBUFF
FORMAT(40A;:;?)
CONTINUE

IIUNTILf! TEST NOTE-- :;:.2A2A IS HEX r:'OR f**.'

IF«LNG.NE. 0). AND. (RCODE.EG. >2A2A»GO TO 9

C END OF THE REPEAT LOOP

WRITE(6, 13)RSTAT
13 FORMAT('RETURN STATUS FROM GRECV= '12)

WRITE(6, 14)RCODE
14 FORMAT('RETURN CODE FROM GRECV= 'A2)

CALL GEND(GNUMBR,RSTAT)
WRITE(6,6)RSTAT

10 CONTINUE
C END THE SCOPE OF LAST IF

END

6.11.3 Example COBOL Program

6-14

IDENTIFICATION DIVISION.
PROGRAM-ID. GUERY-COBOL-INTERFACE-TEST.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA

FILE
FD

01

FD

01

SELECT OUT-FILE
ASSIGN TO OUTPUT, IUNIT6"
FILE STATUS IS ERROR-CODE.

SELECT IN-FILE
ASSIGN TO INPUT, "UNITS"
FILE STATUS IS ERROR1-CODE.

DIVISION.

SECTION.
OUT-FILE
RECORD CONTAINS SO CHARACTERS.
OUT-REC PIC X (SO >.

IN-FILE
RECORD CONTAINS 80 CHARACTERS.
IN-REC PIC X (80 >.

2276554-9701

Program Language Interface Subroutines

*

WORKING-STORAGE SECTION.
01 ERROR-CODE PIC
01 ERROR1-CODE PIC
01 ALT-FILE PIC
01 aUERY-NUMBER PIC
01 RESULT-STATUS PIC
01 EXT PIC
01 LNG PIC
01 RESULT-CODE PIC
01 BUFFER PIC
01 PN PIC
01 PASSWORD PIC
01 PAGELEN PIC
01 PAGEWID PIC
01 R-CNT PIC
01 P-LINE.

xx.
XX.
XX.
9(S)
9(S)
9(S)
9(S)
XX.

COMP-1.
COMP-1.
COMP-1.
COMP-1.

X (80).
X (48).
X (4).
9 (S) C OMP - 1.
9(S) COMP-l.
9 (S) C OMP -1.

OS W-LITERAL
OS W-STAT

PIC X (30).
PIC X(10).

01

01
01
01

QUERY -ST A TEMENT.
OS Q-STMT-LINE

G--ST!"1 T -LENGTH
G-FORMAT
LIST-TEXT

PROCEDURE DIVISION.
MAIN.

OCCURS 4 TIMES INDEXED BY G-KNT
PIC X (80).
PIC 9(S) COMP-1.
PIC 9 (S) C OMP -1.
PIC 9 (S) C OMP -1 .

OPEN OUTPUT OUT-FILE
INPUT IN-FILE.

* Assume that a Query source statement already exists on
* the file designated "UNITS" and is known to be four lines
* long. Read the Query statement into the variable of the
* same name.

*

*

PERFORM READ-LINE VARYING Q-KNT FROM BY
UNTIL

(Q-KNT IS > S) OR (G-KNT EQUAL S).

* Compile the Query source statement by calling aCOMP.
* First, set up the arguments for the call.

*

*

PERFORM SET-ARGS-COMP.
CALL "QCOMP" USING GUERY-NUMBER, RESULT-STATUS,

RESULT-CODE, GUERY-STAfEMENT,
Q-STMT-LENGTH, PASSWORD, Q-FORMAT,
LIST-TEXT, PN, PAGELEN,
PAGEWID, ALT-FILE.

MOVE "RETURN STATUS FROM QCOt1P = tl TO W-LITERAL.
PERFORM WRITE-STAT.

* The next step is to execute the Query object using GEXEC.
* Specify that the Guery listing be sent to a file whose
* pathname is X. TEST. QUERYCM.

*
PERFORM CALL-EXEC THRU CALL-END.

* * This section of the program demonstrates 'the :Jse of
* aSEND, which allows you to replace a question mark (7)
* in the Guery statement with actual text (assume that the
* Query has already been compiled using QCOMP.)

*
2276554-9701 6-15

Program Language Interface Subroutines

6-16

*

MOVe: "X. TEST. QUERYOB3" TO PN.
MOVE 2 TO QUERY-NUMBER.
CALL "QINIT" USING QUERY-NUMBER, RESULT-STATUS,

RESULT-CODE, PN, PASSWORD.
MOVE "RETURN STATUS FROM GINIT = II TO W-LITERAL.
PERFORM WRITE-STAT.

* First send a 4 to replace the question mark and specify
* that the listing be sent to X. TEST. QUERYLST. Then,
* send a 3 to replace the question mark and end the
* processor.
*

*

IF RE:SULT-STATUS EGUAL ZERO
PERFORM SEND-4
PERFORM SEND-3.

MOVE 2 TO QUERY-NUMBER.
PERFORM CALL-END.

* This section demonstrates the use of GRECV and QCLR.
* QRECV performs essentially the same function as GEXEC
* except that QRECV returns output lines one at a time.
* QCLR allows the application to abort a GRECV without
* having to accept every line of output.

*

*

t10VE
MOVE IIX. TEST. GUERYOBJ II TO PN.
CALL IIGINITII USING QUERY-NUMBER, RESULT-STATUS,

RESULT-CODE, PN, PASSWORD.
MOVE: "RESUL T STATUS FROM GINIT = /I TO {;J-LITERAL.
PERFORM WRITE-STAT.
IF RE:8ULT-STATUS EQUAL ZERO

PERFORM Q-RECV VARYING R-CNT FROM
BY 1 UNTIL R-CNT EQUAL 4.

PERFORM Q-CLR.
MOVE: 2 TO QUERY-NUMBER.
PER~ORM CALL-END.
CLOSE: OUT-FILE

IN-FILE.
STOP RUN.

READ-LINE.
READ IN-FILE.
MOVE IN-REC TO Q-STMT-LINE(Q-KNT).
MOVE SPACES TO IN-REC.

* Set up the arguments for a call to QCOMP and specify
* the following options:
* assign the integer 2 to the Query processor to be bid
* set ,the Query statement length to 320 characters (4 lines;
* request a report format for the output
* request that the Query statement listing from the
* compiler be included in the output
* assign the file that resides at X. TEST. GCOMLST as the
* listing file
* request default page length and width for the listing

2276554-9701

Program Language Interface Subroutines

*

*'

SET-ARGS-COMP.
MOVE 2 TO QUERY-NUMBER.
MOVE SPACES TO ALT-FILE.
MOVE 320 TO Q-STMT-LENGTH.
MOVE 1 TO Q-FORMAT.
MOVE 1 TO LIST-TEXT.
MOVE IIX. TEST. QCOMLSTII TO PN.
MOVE ZERO TO PAGELEN.
MOVE ZERO TO PAGEWID.
MOVE IIDBMSII TO PASSWORD.

CALL-EXEC.
MOVE IIX. TEST. QUERYCM II TO PN.
MOVE ZERO TO EXT.
CALL IIQEXEC" USING QUERY-NUMBER, RESULT-STATUS,

RESULT-CODE, PN, EXT.
MOVE IIRETURN STATUS FROM QEXEC=II TO W-LITERAL.
MOVE RESULT-STATUS TO W-STAT.
WRITE OUT-REC FROM P-LINE.
MOVE SPACES TO OUT-REC.

CALL-END.
CALL "(lEND" USING QUERY-NUMBER, RESULT-STATUS.
MOVE IIRETURN STATUS FROM QEND=" TO W-LITERAL.
MOVE RESULT-STATUS TO W-STAT.
WRITE OUT-REC FROM P-LINE.
MOVE SPACES TO OUT-REC

*' Replace the II'"?" with "4".

* SEND-4.

2276554-9701

MOVE II 4 II TO BUFFER.
MOVE 4 TO LNG.
CALL "QSEND II USING QUERY-NUMBER, RESULT-STATUS,

RESULT-CODE, BUFFER, LNG.
MOVE "RESULT STATUS FROM GSEND = II TO W-LITERAL.
PERFORM WRITE-STAT.
IF RESULT-STATUS EGUAL ZERO

MOVE !IX. TEST. QUERYLST" TO PN
MOVE ZERO TO EXT
CALL "QEXEC" USING QUERY-NUr'1BER, RESULT-STATUS,

RESULT-CODE, PN, EXT
MOVE "RETURN STATUS FRGM QEXEC = " TO W'-LITERAL
PERFORM WRITE-STAT,

6-17

Program Language Interface Subroutines

* * Replace the "?II with a 113 11
• Note that the extension

* argument in GEXEC is set to 1 in this call, indicating
* a request to extend (not rewrite) the listing file.

*

*

SEND-3.
MOVE "3 II TO BUFFER.
MOVE 4 TO LNG.
CALL "GSENDII USING GUERY-NUMBER, RESULT-STATUS,

RESULT-CODE, BUFFER, LNG
MOVE IIRESUL T STATUS FROM GSEND = II TO W-·LITERAL.
PERFORM WRITE-STAT.
IF RESULT-STATUS EGUAL ZERO

MOVE IIX. TEST. GUERYLST" TO PN
MOvE 1 TO EXT
CALL IIGEXEC" USING GUERY-NUMBER, RESULT-STATUS,

RESULT-CODE, PN, EXT
MOVE IIRETURN STATUS FROM GEXEC = .. TO W-LITERAL
PERFORM WRITE-STAT.

WRITE-STAT.
MOVE RESULT-STATUS TO W-STAT.
WRITE OUT-REC FROM P-LINE.
MOVE SPACES TO OUT-REC.

G-RECV.
MOVE 80 TO LNG.
CALL "QRECV II USING QUERY-NUMBER, RESULT-STATUS,

RESULT-CODE, BUFFER, LNG.
MOVE "RETURN STATUS FROM GRECV :::: II TO hi-LITERAL.
PERFORM WRITE-STAT.
IF RESULT-STATUS EGUAL ZERO

WRITE OUT-REC FROM BUFFER
MOVE SPACES TO OUT-REC.

* At this point, the application can manipulate the data
* returned in buffer and determine whether this particular
* G u e r y i s ret urn i n 9 the r e qui red d a t a . Us in 9 GC LR , the
* program can abort the GRECV without making repeated calls
* to return all the Guery output.

*
Q-CLR.

CALL "QCLR" USING QUERY-NUMBER, RESULT-STATUS.
MOVE "RETURN STATUS FROM GCLR :::: II TO W-LITERAL
PERFORM WRITE-STAT.

6.12 LINKING THE INTERFACE SUBROUTINES

The program language interface subroutines are located in the directory S$QUERY.PLlOBJ. The
link control file for a program includes this directory and an interface module specific to the pro­
gram language, along with the run-time modules and your task. The following paragraphs contain
example link control files for Pascal, FORTRAN, and COBOL programs.

6-18 2276554·9701

Program Language Interface Subroutines

6.12.1 Linking Pascal Programs
An example link control file for a Pascal program is as follows:

FORMAT IMAGE,REPLACE
LlBRARY.SCI990.S$OBJECT
LlBRARY.S$TIP.OBJ
TASK <task name>
INCLUDE (MAIN)
INCLUDE <user task pathname>
INCLUDE S$QUERY.PSCINT
INCLUDE S$QUERY.PLlOBJ
END

6.12.2 Linking FORTRAN Programs
An example link control file for a FORTRAN program is as follows:

FORMAT IMAGE,REPLACE
NOSYMT
LlBRARY.SCI990.S$OBJECT
LlBRARY.FORT78.0SLOBJ
LlBRARY.FORT78.STLOBJ
TASK <task name>
INCLUDE <user task path name>
INCLUDE S$QUERY.FTNINT
INCLUDE S$QUERY.PLlOBJ
END

6.12.3 Linking COBOL Programs
An example link control file for a COBOL program is as follows:

FORMAT IMAGE,REPLACE
LlBRARY.SCI990.S$OBJECT
PROC RCOBOL
INCLUDE .S$SYSLlB.RCBPRC
DUMMY
TASK <task name>
INCLUDE .S$SYSLlB.RCBTSK
INCLUDE .S$SYSLlB.RCBMPD
INCLUDE <user task pathname>
INCLUDE S$QUERY.COBINT
INCLUDE S$QUERY.PLlOBJ
END

2276554·9701 6-19/6-20

7

Guided Query Utility

7.1 INTRODUCTION

The Guided Query utility allows you to gather data from a file without extensive knowledge of
Query-990. You can also use this utility as a training tool for learning the syntax of the Query state­
ment. The Guided Query utility provides easy-to-read displays of the structure for the file being ac­
cessed. Guided Query builds a Query statement containing all of the necessary elements. At the
end of each Guided Query session, you can display and then save the resulting Query statement.
The Query processor can then edit or execute the saved statement.

NOTE

Although the Guided Query utility is an aid to the beginner, it is not
intended to be the primary mode of operation for Query sessions.

Refer to the Model 990 Computer Data Base Administrator User's Guide for instructions on
starting the data base.

7.2 GQUERY COMMAND

To initiate the Guided Query utility, enter the SCI command GQUERY, as follows:

[] GQUERY

If security is installed, the following prompt appears:

GUIDED QUERY <VERSION L.V.R YY.DDD>
PASSWORD:

Respond to this prompt by entering a password that allows read access to the file name you in­
tend to query. Get the password and the file ID from your data base administrator (DBA) or from the
person handling such duties. The password entered is saved for later verification.

2276554-9701 7-1

Guided Query Utility

7.3 CONTROL KEYS

The control keys used in the Guided Query utility are the NEW LINE/RETURN key and the function
keys. Pressing the NEW LINE/RETURN key processes the current entry. It also passes control to
the next prompt or to the next screen. The NEW LINE/RETURN key is the orange key on the right
side of the main (alphabetic) keyboard.

The function keys used throughout the Guided Query session are the F1 through F5 keys located
above the main keyboard. Function key one is F1, function key two is F2, and so on. The F1 and F2
keys are the scroll keys. The F1 key causes the display on the screen to move up (toward the end
of the file), while the F2 key causes the screen display to move down.

Pressing the F3 key transfers control to the next step if the information displayed is sufficient to
continue. Pressing the F4 key transfers control to the previous step. During the Guided Query ses­
sion, you can press the F4 key at any time to display the previous step. The only step that will not
be redisplayed is Step 1.

The F5 function J<ey displays help information when it is available. The help information assists
you in completing specific screens.

7.4 GUIDED QUERY SCREENS

Guided Query screens are divided into five main categories:

• File identification

• Report specifications

• Record-level conditions

• Sort specifications

• Final screens

Except for the final screens, each screen is identified with a step number (for example, Step 1).
The screens appear in consecutive order unless you make a request to repeat a group of screens.
For example, you can repeat both the report specification and condition screens. However, you
cannot repeat the overall sequence. To obtain the help screens, (associated with the more com­
plex steps), press the F5 key. The following paragraphs describe the screens in detail.

7-2 2276554-9701

Guided Query Utility

7.4.1 File Identification (Step 1)
The following screen appears after the password (if needed) is entered. Note the use of keys F1
through F5.

:: ;::::::::: :::;:: :::::::: :::::}~:}~}?~ ~~:\\\~~:

GUERY-990 GUIDED GUERY
SPECIFY THE NAME OF THE DATA BASE FILE FROM WHICH YOU WISH
TO RETRIEVE THE DATA THAT IS TO BE PRINTED IN YOUR REPORT: PAY1 ______________________ __

(The following function keys will be used throughout the session:
FUNCTION KEY 1 To scroll up through displays of data base information
FUNCTION KEY 2 To scroll down through displays of data base information
FUNCTION KEY 3 To go on to the nex~ step
FUNCTION KEY 4 To go back to the previous step
FUNCTION KEY 5 To see various HELP info when indicated)

:::::: ,

::::::
=::::

~!llli
:[llt
,

;.;.:.:.:.:.:.:.:.:.:.:.:::;:::::::::::::::::::::::::::::::::::::: ~: ~ ~ ~ ~ ~ ~~~ ~. ~.: ~::: ~::::: ~:.'

This screen requests the file name. The file name specified can be the four-character ID for the"
file's DDL, such as PAY1 in the example, or an alias name from 1 to 20 characters long. When
accessing a key indexed, relative record, or sequential file, alternate names can be up to 30 char­
acters long. For information on alias names, refer to the model Model 990 Computer Data Base
Administrator User's Guide.

Get the alias or standard DDL ID for the file from the DBA or from the person handling the DBA
duties. Confirm the availability of the file with the DBA.

2276554-9701 7·3

Guided Query Utility

7.4.2 Report Specifications
You specify the report lines with nine screens and must complete at least one full cycle of the
screens. The nine screens are as follows:

• Main heading (Step 2)

• Line specification (Step 3)

• Field specification (Step 4)

• Listing, counting, totaling, and averaging (Step 5)

• Line heading (Step 6)

• Line-level conditions (Steps 7 through 9)

• Output continuation (Step 10)

7.4.2.1 Main Heading (Step 2). The main heading screen requests the heading that is to appear
on your report immediately after the system heading. The system heading identifies the system,
date, and time. The main heading should contain general information pertaining to the entire
Query. The main heading appears on each page of the output.

For the Guided Query utility, the standard length of the report line is 80 columns. Although the
length of the main heading is not limited to any specific number, the heading is truncated if it is
longer than 80 characters for a Guided Query execution.

If you specify multiple lines for the heading, the report left justifies all of them. Each line of the
heading must begin and end with double quotation marks.

7-4 2276554-9701

Guided Query Utility

The following example shows the Step 2 screen with a main heading entry:

DO YOU WANT ONE OR MORE LINES OF HEADING AT THE TOP
OF EACH PAGE OF YOUR REPORT? Y (YIN)

:::t:t!il"

l
IF YES, THEN ENTER HEADING LINE(S).

(Besin and end each header line with double quotes.
(Headinss may be as long as number of columnslline in report~)
(Headings may extend to more than one VDr line.)

"EMPLOYEE INFORMATION ASYSDATE "'SYSTIME _________________ _
SKIP 2 ___ -----------------

..•..
~:~:i

You must respond to the first prompt. If you want to include a main heading, answer Y (yes) to this
prompt; if not, answer N (no). If your response is Y, use the available lines to specify the heading
you want. Then, press the F3 or NEW LINE/RETURN key to proceed to the next prompt. If your
response is N, proceed to the next prompt by pressing the F3 or NEW LINE/RETURN key.

7.4.2.2 Line and Field Specifications (Steps 3 and 4). The line specification screen requests the
name of the data base line to be used in building the next report line. This name is chosen from the
display on the lower portion of the screen. Enter the name of the desired line in the upper portion
of the s(freen where the prompt characters appear. Use the scroll up (F1) and scroll down (F2) keys
to view the display.

Alternate names up to 30 characters long or alias names up to 20 characters long appear on the
screen if they have been assigned. Otherwise, the standard DOL ID appears. The format and length
of each field is also displayed. Group key fields have type GRP.

2276554·9701 7-5

Guided Query Utility

The screen displays the lines, the respective fields, and the corresponding format and length of
the fields from the file specified in Step 1. The format code for character fields is CHAR, and the
code for numeric fields is NUM. Each field displayed in the lower half of the screen contains a
length specification to aid in defining columnheadings. Step 6 specifies headings. To build effec­
tive column headings, consider the length of each field. For each output line, two spaces are auto­
matically placed between each output field.

The following example shows the Step 3 screen with a line specification:

7-6

YOU ARE NOW GOING TO BUILD A LINE OF 'lOUR REPORT. STEP 3
SELECT THE DATA BASE LINE YOU WISH TO RETRIEVE FIELDS FROM NEXT.
01
(Use FUNCTION KEY 1 & 2 to scroll thru the data base lines and their fields)
(If you need additional explanation at this point, press FUNCTION KEY 5)
==
I NFORt'IAT ION FOR FILE PAYl
FIEL.DS FOR LINE: 01

FIELD FORMAT LENGTH FIELD FORMAT LENGTH
MNUM NUM 6 MNAM CHAR 20
MSTR CHAR 20 ~lCTY CHAR 15
t1STT CHAR 2 MZIP NUM 5
MSSN NUM 9

FIELDS FOR LINE: CU
FIELD FORMAT LENGTH FIELD FORMAT LENGTH
·~~N·Q,I>~· .~~,* b .~t003·B ·B-I~ l·(}

MLOC CHAR 10 MDEP CHAR 15
MH1R CHAR 1 MTES NU~l 2
MTEX NUM 2

FIEL.DS FOR LINE: CR
FIELD FORMAT LENGTH FIELD FORMAT LENGTH
MNiJM NUM 6 MDDT NUM 5
t1PYP NUM 2 MRAT NUM 7
MCOM NUM 3 MSLS NUM 11 ~~ll

;::: :::: :::::::::::::::::::;:~:~:~:~:~:~:~:~~~t\l~~t~~~~'I!!~l

2276554·9701

Guided Query Utility

The HELP 1 screen associated with Step 3 is as follows:

.......
::!::

**** .HOW TO BUILD REPORT LINES **** HELP 1

THE FIELDS OF DATA BELONgING TO THE SPECIFIED DATA BASE FILE WILL BE DISPLAYED.
THESE FIELDS WILL BE DISPLAYED IN GROUPS AS THEY EXIST IN THE DATA BASE.
THESE GROUPS ARE ·CALLED DATA BASE LINES.
A REPORT LINE IS COMPRISED ONLY OF FIELDS FROM A SINGLE DATA BASE LINE.
FIELDS IN THE REPORT LINE WILL BE PRINTED IN THE ORDER THAT THEY ARE SPECIFIED
HEREIN. NORMALLY, TWO SPACES WILL BE WRITTEN BETWEEN ALL FIELDS IN THE REPORT
LINE.
IF YOU WANT ALL THE FIELDS IN A DATA BASE LINE TO BE INCLUDED IN THE
REPORT LINE, IN THE SAME ORDER THEY OCCUR IN THE DATA BASE LINE,
YOU MAY SPECIFY "ALL". (Press FUNCTION KEY 8 to return)

~'llj!::: :::::::::::::: ::::: ::::::: ::::::::: :::::::::
•••• ~ ••••••••••••••••••••••• * ••••••••••.•.•.•. '0' ••

Press the F3 key to proceed to the next prompt.

The field specification screen requests the fields that are to be listed, counted, averaged, or
totaled in the generated report line. All of the fields for the line specified in Step 3 are displayed
with numbers to the left of each field name.

Enter the number associated with each field in the space provided near the middle of the screen.
Leading zeros are not required. You can enter a maximum of 20 numbers. Press the NEW
LINE/RETURN key to enter each field number and to pass control to the next entry. Press F3 when
you complete the number entries for this report line.

Enter ALL to specify all fields of a line. Then, press F3 to proceed to the next screen.

The fields are listed on the report in the order specified in this step. If you enter ALL, the order of
the output is the order of the fields in the line.

2276554·9701 7-7

Guided Query Utility

The following example shows the Step 4 screen with a field specification:

ll~l\~~?t~}}f~{:}}~:~:::::::}::::::::::::::::::::::

ENTER THE ASSOCIATED NUMBERS OF THE FIELDS YOU WANT
- IN THE REPORT LINE (In the order you want them to occur)
- COUNT, TOTAL, OR AVERAGE LINES AT THE END OF THE REPORT
- OR DOTH

!lll\~~
_ 3_ 4_ 5_ 6 __________________ _

===

:.:-:

~\ll~

FIELDS FOR LINE: 01
1 MNUM
Lj. MCTY
7 MSSN

\\\\\\~t?\{}}}::::::::::::::::::::::::

2 MNAM
5 MSTT

3 MSTR
6 MZIP

7.4.2.3 List, Count, Total, and Average (Step 5). This screen allows you to select various field
options: listing for output, counting occurrences, averaging values of all occurrences, and totaling
the values of all occurrences.

You can select one or all of the options by entering an X below the appropriate letter, to the left of
the field name. L represents list output, C represents counting, T represents totaling, and A
represents averaging. To select the default option (L), press the NEW LINE/RETURN key. After you
finish selecting the options, display the next screen by pressing either the F3 or the NEW
LINE/RETURN key.

Fields that are listed for output are positioned two spaces apart in the report.

7·8 2276554-9701

Guided Query Utility

The following example shows the Step 5 screen with entries for listing data from five fields:

~~~~!, 
:::Z:: 

ENTER AN 'XI IN THE COLUMNS TO THE LEFT OF EACH OF THE FIELDS 
YOU JUST SPECIFIED TO INDICATE WHETHER YOU WANT THE FIELD TO BE 
LISTED (L), COUNTED (C), TOTALED (T), AND/OR AVERAGED (A) 
TO GET THE DEFAULT, "L", FOR ANY FIELD. JUST PRESS THE RETURN KEY. 

LCTA FIELD LeTA FIELD LCTA FIELD 
X MNAM X MSTR X MCTY 
X MSTT X MZIP 

iiii .:.: •. : 
,~~) 
}} 

'llii!i\?ti:}i:::;::::::::::::::::::::::: .......... ' .... :.:.:.:.:.:.:.: 
::::::::::::::::::::::::::::::: ~: ~:;::::::::::::::: :.:::::::' 

7.4.2.4 Line Heading (Step 6). The line heading screen requests line headings that are to appear 
above the report line. Any information can be used for a heading. Normally, a column heading is 
built with field descriptions above each output field. Use the field lengths specified in Step 4 to 
aid in the calculation of the heading sizes, centering, and so on. 

You must respond to the first prompt. A response of N (no) indicates that no headings are desired 
and passes control to the next screen. If you respond Y (yes), you can choose either the default 
line headings or supply your own headings. The default heading contains the names of the fields 
specified in Step 4, positioned above the data for that field. Answer yes to this question to accept 
the default heading. Control immediately passes to the next screen. To enter headings other than 
the default heading, answer no to this question and enter the headings as you want them to 
appear on the report. 

2276554·9701 7-9 



Guided Query Utility 

If you request line headings, enter each heading within double quotation marks in the space pro­
vided at the bottom of the screen. Specify a blank line heading by entering two consecutive quo­
tation marks or by entering SKIP 1. Headings can be a maximum of 132 characters long, but those 
over 80 characters will be truncated when displayed on a VDT. Once you have entered your 
headings, press the F3 key to display the next screen. 

The following example shows the Step 6 screen specifying the default line header: 

....................................................... 
$Ir~i~i~~~~~~~~~~:~:~:~:~::::::::::::::::::::::::::::: :::.:.:.:.:. 
' ...... . 

:~!!ir 
::::: .:-:. :.:.: 

DO YOU WANT ONE OR MORE HEADER LINES TO PRECEDE THIS 
REPORT LINE? Y (YIN) 

IF YES, DO YOU WANT TO USE THE DEFAULT HEADER LINE? Y (YIN) 
(The default heading is comprised of the field names shown previously) 
IF YOU DO NOT WANT THE DEFAULT HEADER, ENTER YOUR OWN HEADING LINE(S) BELOW: 

7.4.2.5 Line-Level Conditions (Steps 7, 8, and 9). You can select lines for output based on the 
value of a specific field within a line. This screen allows you to select those lines. 

To build a test condition, you need to know the type of condition to be built, the fields involved, 
and the desired relationships of the fields. A condition consists of two operands, or fields, and a 
relational operator. The second operand must be from the same line as the first operand or it must 
be a constant. Relational operators form the comparison between the two operands. (See Table 
4-1 for a list of the operators and the meaning of each.) Group key identifiers (type GRP) cannot be 
specified as operands. 

7-10 2276554-9701 



Guided Query Utility 

A condition can have multiple statements of relationships or conditions. The Boolean operators 
AND and OR combine relationships to form complex conditions. If two conditions are connected 
by AND, both conditions must be true in order for the entire test condition to be true. If two con­
ditions are connected by OR, only one condition need be true for the entire complex condition to 
be true. If AND and OR operators are mixed in the same complex condition, AND conditions are 
evaluated first in a left-to-right sequence. Any complex condition is evaluated in a left-to-right 
sequence. 

The first screen (Step 7) for entering the conditions asks if you want to specify a line-level con­
dition. The screen for Step 7 is as follows: 

DO YOU WANT TO SPECIFY A TEST CONDITION THAT APPLIES ONLY TO 
THIS REPORT LINE? Y (YIN) 
(Press FUNCTION KEY 5 for an explanation of the t~pes of tests ~ou ma~ make) 

2276554·9701 7-11 



Guided Query Utility 

If you want the report to contain all of the lines in the file, answer N (no) to this prompt. As a result, 
control transfers to Step 10. If you want to establish selection conditions, answer Y (yes). The next 
screen displayed is Step 8, which allows you to specify the test condition. 

The following example screen shows test condition MSTT EO "TX". Within every eligible line, the 
field MSTT must equal TX for that line to be included in the report. 

CREATE YOUR TEST CONDITION: (Hit FUNCTION KEY 5 for an explanation) STEP B 
FIELD 1 OPERATOR 
MSTT EQ 
FIELD 2 OR CONSTANT 

_' __ 00 

POSSIBLE TEST FIELD FORMAT LENGTH 
MNUM NUM 6 
MSTR CHAR 20 
MSTT CHAR 2 
MSSN NUMR 9 

:=:=: 

t~ 
::~:~:~ 

lll\lll\mm~~ttI{t~\{{:~:::::::::::::::::::::::::::::: 

POSSIBLE TEST FIELD 
MNAM 
MCTY 
MZIP 

FORMAT LENGTH 
CHAR 20 
CHAR 15 
NUM 5 

The first prompt requests the field 10 or alias to be used as the first operand. The second prompt 
requests the relational operator for the condition: EO for equal, L T for less than, and so on. The 
HELP screen for this step explains the relational operators. 

7-12 2276554-9701 



Guided Query Utility 

The third prompt requests the second operand. This can be either a field 10 alias or alternate name 
selected from the names listed on the screen, or a numeric constant or literal string. If the second 
operand is a field 10 or alias, the format and length must match the format and length of the FIELD 
1 entry. Otherwise, if the format of the first operand is NUM, the second operand must be a 
numeric constant; if the format of the first operand is CHAR, the second operand must be a 
character string. You must enclose a literal string in double quotation marks. After you have 
entered the second operand, press the F3 key to pass control to the next step. 

The third screen (Step 9) allows you to attach another condition to the one just created. An 
example of the screen for Step 9 is as follows: 

STEP 
DO YOU WANT TO CONNECT ANOTHER TEST CONDITION TO THE ONE YOU JUST CREATED? 
N (YIN) 
CONNECT WITH 'AND' OR 'OR'? ___ (AND/OR) 

"11.: 

~1~i~/?~:~:}~{: :::::::: :::::: :;:: :::,: ,: 
To create a compound condition, answer Y (yes) to the first prompt. If no other conditions are 
required for this line, answer N (no) to this prompt. If your response is no, control passes to Step 
10. If your response is yes, answer the second prompt with AND or OR. After you respond to this 
prompt, control returns to Step 8. 

2276554-9701 7-13 



Guided Query Utility 

7.4.2.6 Output Continuation (Step 10). The output continuation screen asks if more report lines 
are to be built. The screen for Step 10 is as follows: . 

DO YOU WANT TO BUILD ANOTHER REPORT LINE? N (YIN) 

A Y (yes) response passes control back to Step 3 to build another report line. An N (no) response 
passes control to Step 11. 

7-14 2276554·9701 



Guided Query Utility 

7.4.3. Record-Level Conditions (Steps 11 Through 13) 
A record-level condition applies to an entire record. You can apply a record-level test to fields in 
different lines of the file. Although you can specify multiple line-level conditions, you can specify 
only one record-level condition. 

Before you can select a record for output, the record-level conditions must be met. The variable 
aspect of record-level conditions is in the use of quantifiers ANY and EVERY. ANY means that 
only one occurrence need be true for the condition to be true, and EVERY means that every occur­
rence must be true for the condition to be true. For a complete explanation of conditions and 
quantifiers, refer to Section 3. 

The screens for record-level conditions are similar to the screens for line-level conditions; the 
primary difference is in the use of ANY and EVERY for record-level tests. 

The first screen (Step 11) asks if you want to specify a record-level condition. The following is an 
example of the screen for Step 11: 

.. ::::::':::::::::::::::::::::::::::::::::::::::::::::::: . ....................................... --:::::::: .......... . 

mr 
~f: ..... 
t~ DO YOU WANT TO SPECIFY A TEST CONDITION THAT APPLIES TO 

ALL REPORT LINES AT ONCE? Y (YIN) 

::: ::::::::::::::: ::::: :::::::: ~ :~:~ :}~:~ )}j11~ii 

:!Iil: 
.".~. 

(Press FUNCTION KEY 5 for an explanation o~ test conditions. ) 

:.:-: .•..•. 
::::: 
.t~ 
:::::: 

t@ 
:.:.:.: . 

............... :.:.:.:.:.:.:::::::::::::::::::::::::::: ~: ~: ~: ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~;i .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: ..................................... . 

If you respond Y(yes) to this question, control tran'sfers to the next screen, Step 12; otherwise, 
control transfers to Step 14. 

2276554-9701 7-15 



Guided Query Utility 

The following example shows the Step 12 screen specifying a record-level test condition: 

CREATE YOUR TEST CONDITION: (Hit FUNCTION KEY 5 for an e~planation) 
ANY/EVERY FIELD 1 OPERATOR ANY/EVERY 

EVERY MNUM NE 
FIELD 2 OR CONSTANT 

8500 

POSSIBLE TEST FIELD FORMAT LENGTH POSSIBLE TEST FIELD FORMAT LENGTH 
t1NUr"l NUM 6 MNAM CHAR 20 
t1STR CHAR 20 MCTY CHAR 15 
MSTT CHAR 2 MZIP NUM 5 
t"lSSN NUM 9 MJOB CHAR 10 
MLOC CHAR 10 MDEP CHAR 15 
I'1TMR CHAR 1 MTES NUM 2 
MTEX NUMR 2 MDDT NUM 5 
MPYP NUM 2 MRAT NUM 7 
MCOM NUM 3 MSLS NUM 11 
DEGR CHAR 3 YEAR NUM 4 
COLL CHAR 20 GPA NUM 2 
JOBT CHAR 20 COMP CHAR 25 
STAT CHAR 2 PSAL NUM 7 

CHAR 10 PDEP CHAR i5 

For the first prompt, enter ANY or EVERY. ANY means that only one occurrence in a record of 
FIELD 1 must meet the test condition for the condition to be true. EVERY means that every occur­
rence in a record of FIELD 1 must meet the condition for the condition to be true. 

The second prompt requests the first operand (FIELD 1). Enter the desired field ID or alias to be 
used as the first operand in the test condition. Make a selection from the fields displayed in the 
lower half of the screen. Use the F1 and F2 function keys to scroll up and down through the 
various fields. 

For the third prompt, enter the desired relational operator that defines the relationship of the 
operands (such as EQ for equal or LT for less than). The HELP screen describes the relational 
operators. To display the HELP screen, press the F5 function key. To return from the HELP screen, 
press the F3 function key. 

If FIELD 2 is to be a field ID alias or alternate name, enter either ANY or EVERY for the fourth 
prompt. If FIELD 2 is to be a numeric constant or a literal string, skip the fourth prompt by pressing 
the NEW LINE/RETURN key. 

7-16 2276554·9701 



Guided Query Utility 

The fifth prompt requests the field name, alias, alternate name or constant for the second operand 
(FIELD 2) of the condition. A nonconstant operand should be a field 10, alias, or alternate name 
from one of the possible test fields displayed in the lower half of the screen. The format and 
length of the field 10, alias, or alternate name must match the format and length of the field 10, 
alias, or alternate name specified for FIELD 1. You must enclose a literal string in double quo­
tation marks, but a numeric constant does not require them. Use the format of the field specified 
in FIELD 1 to determine the type of constant to enter. If the format of FIELD 1 is CHAR, specify a 
literal string. If the format of FIELD 1 is NUM, specify a numeric constant. 

The third screen allows you to build compound statements for the record-level condition. An 
example of the screen for Step 13 is as follows: 

~TEP 9/13 
DO YOU WANT TO CONNECT ANOTHER TEST CONDITION TO THE ONE YOU JUST CREATED? 
N (YIN) 
CONNECT WITH 'AND' OR 'OR'? ___ (AND/OR) 

::=;:: 
.~t~ 
::::::: 

...... -......... :.:.:.::::::::: ..... -........................................... . 
::::::::::::::::::::::::::: ~: ~: .. : .. : .. : .. : .. : .. : .. :.: .. : .. : .. " 

If you respond N (no) to the first prompt, control immediately passes to Step 14; otherwise, you 
must answer the second prompt. Enter either AND or OR in this field. When you press either the 
NEW LINE/RETURN key or the F3 key, control returns to Step 12. 

2276554-9701 



Guided Query Utility 

7.4.4 Sort Specifications (Steps 14 Through 17) 
You can specify the order in which the report lines are printed by completing the sort specification 
screens. However, you cannot select the sort option unless the Sort/Merge utility has been 
installed on your system program file. 

The first screen of the sort specifications (Step 14) asks if the report lines are to be sorted. An 
example of this screen is as follows: 

~lllj·j~{))}~~~{:~:}f}t::::::::::::::::::::::::: 

, ...... ..••.. 
:!:!:: 

~mr 
DO YOU WANT TO SORT THE REPORT LINES? Y (YIN) 

If you respond N (no) to this prompt, control passes to Step 18. If you respond Y (yes), the next 
screen (Step 15) appears. 

The next screen allows you to specify the line on which to sort. You can specify sorting on more 
than one data base field, but all sort fields must be from the same data base line. 

7-18 2276554·9701 



Guided Query Utility 

Enter the number of the line to be sorted. Then, press the F3 key or the NEW LINE/RETURN key to 
proceed to the next screen. The following is an example of the screen for Step 15 when sorting is 
specified on the line EMPLOYEE-INFO: 

::::::::::::::::::::::::::::::::::::::::::::::):::i!I!.~ 

STEP 
SELECT THE DATA BASE LINE YOU WISH TO SORT ON. 
01 
(Use FUNCTION KEY 1 & 2 to scroll thru the data base lines and their fields> ~:~:~ 
================================================================================ 

i~? ..... ..•... 
:=:::: 
;::::: . . '.'.', ....... 

INFORMATION 
FIELDS FOR 

FIELD 
MNUM 
MSTR 
MSTT 
MSSN 

FIELDS FOR 
FIELD 
MNUM 
MLOC 
MTMR 
MTEX 

FIELDS FOR 
F1ELD 
MNUM 
MPVP 

FOR FILE PAYl 
LINE: 01 

FORMAT 
NUM 
CHAR 
CHAR 
NUM 

LINE: CU 
FORMAT 

NUM 
CHAR 
CHAR 
NUM 

LINE: CR 
FOR~tA" 

NUM 
NUM 

~r{:::::::::::::;:-:.:.:.;-:.; ................................ . 
~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~:::::::::::::::::: 

2276554-9701 

LENGTH FIELD FORMAT LENGTH 
6 MNAM CHAR 20 
20 MCTY CHAR 15 
2 MZIP NUM 5 
9 

LENGTH FIELD FORMAT LENGTH 
6 M-JOB CHAR 10 
10 MDEP CHAR 15 
1 MTES NUM 2 
2 

LENGTH FIELD FOR~tA" LEI\i·G7H 
6 MDDT NUM 5 
2 MRAT NUM 7 

7-19 



Guided Query Utility 

The next screen (Step 16) requests the fields that are to be used as the sort keys. This screen is 
similar to the screen used in Step 4. You can enter a maximum of 20 numbers. After you have 
entered all of the numbers, press the F3 or NEW LINE/RETURN key to proceed to the next screen. 
The following is the screen for Step 16 when the field to be sorted is the fourth field, MCTY: 

YOU CAN SORT ON MORE THAN ONE FIELD AT A TIME AS LONG AS 
ALL THE FIELDS ARE FROM THE SAME DATA BASE LINE. 
ENTER THE ASSOCIATED NUMBERS OF THE FIELDS THAT YOU WANT 
TO SORT ON. 

4 ____________ . ________ . ____ _ 

================================================================================ 

7-20 

FIELDS FROM LINE: 01 
1 MNUM 
4 MCTY 
7 MSSN 

2 MNAM 
5 MSTT 

3 MSTR 
6 MZIP 

2276554·9701 



Guided Query Utility 

You can sort the field in either ascending or descending order. Since the default sort order is 
ascending, you need not enter anything to sort in ascending order. Enter a D next to each field to 
be sorted in descending order. When you have completed all entries, press the F3 or NEW 
LINE/RETURN key to proceed to the next screen. 

In the following example of Step 17, descending order is selected: 

THE DEFAULT SORT ORDER IS ASCENDING ORDER. ENTER A 'D' IN THE STEP 17 
COLUMN TO THE LEFT OF EACH OF THE FIELDS YOU JUST SPECIFIED IF YOU 
WANT THE FIELD TO BE SORTED IN DESCENDING ORDER. 
TO GET THE DEFAULT - ASCENDING ORDER, JUST PRESS THE RETURN KEY. 

FIELD FIELD FIELD 
D MCTY 

2276554·9701 7-21 



Guided Query Utility 

The next step, Step 18, allows you to return to any of the Guided Query screens and make changes 
or corrections. If all of the data has been entered correctly, press F3 key to proceed to the termi­
nation screens. If corrections or changes are necessary, press the F4 key until the appropriate 
step appears. You can return all the way to Step 2; however, you cannot return to Step 1 to change 
the file 10. 

An example of the screen for Step 18 is as follows: 

AT THIS POINT, ALL OF THE INFORMATION REQUIRED TO BUILD A QUERY 
STATEMENT HAS BEEN ENT£RED. IF ALL OF THE DATA HAS BEEN ENTERED 
CORRECTLY, PRESS THE F8 KEY TO TERMINATE THIS PORTION OF THE 
GUIDED QUERY UTILITY. HOWEVER, IF YOU WANT TO MAKE ANY CHANGES TO 
ANY STEP, PRESS THE F4 KEY UNTIL YOU GET TO THE STEP THAT YOU WANT 
TO CHANGE. YOU MAY GO ALL THE WAY BACK TO STEP 2, BUT YOU MAY NOT 
RETURN TO STEP 1 TO CHANGE THE DATA BASE FILE NAME. 

PRESS EITHER THE F3 OR F4 KEY. 

STEP 18 

:~~;i 
:::::: 

:::::::::::::::::::::::::::::::::~:~:~:~:~:~:~:?~t{I~~~~tj~!i:lr 

7-22 2276554-9701 



Guided Query Utility 

7.4.5 Termination Screens 
At this point, you have entered all of the data required to build a Query statement. The information 
collected has been formatted into an input Query statement. The termination screens save the 
Query statement and execute it. 

The Guided Query utility has two termination screens. The first has two prompts, as follows: 

END OF GUIDED QUERY ENTRY 
SAVE FILE PATHNAME: 

DO YOU WANT TO SEE IT?: YES 

For the first prompt, enter the pathname of the file in which you want to save the Query statement 
that the Guided Query utility just built. The Query processor can execute the saved Query infor­
mation or statement again by using the QUERY command. Press the NEW LINE/RETURN key, 
leaving a blank as your response, if you do not want to save the statement. 

The next prompt asks if the Query statement just built should be displayed on the screen. Enter 
either Y (yes) or N (no). You can accept the default entry (Y) by pressing the NEW LINE/RETURN 
key; as a result, the statement appears. Enter N (no) when you do not want to display the 
statement. 

By displaying the Query statement, you become familiar with Query statement syntax (Sections 2 
through 5). To proceed to the next screen after observing the Query statement, press the 
HELP/CMD key. 

The final termination screen allows you to execute the Query that the Guided Query utility built: 

END OF GUIDED QUERY ENTRY 
DO YOU WANT TO EXECUTE IT?: YES 

REPORT OUTPUT PATHNAME: 

An N (no) response causes immediate termination of the session. To select the Y (yes) response, 
press the NEW LINE/RETURN key. Control then passes to the next prompt. When you enter the 
pathname for the output of the execution and execute the Query statement, the session ends. 

Figure 7-1 shows the statement and output produced using the responses provided in the pre­
ceding example screens. 

2276554·9701 7-23 



Guided Query Utility 

Query Statement: 

LIST 
MNAM MSTR 
MCTY t1STT MZ IP 
HEADER 
WHERE 
MSTT EG IITX II 

BY KEY BY LIST 
FROl"l PAYl 
SORTED BY MCTY :D 

HEADER 
"Ef"1PLOYEE ONFORMATION 
SKIP 2 
WHERE 
EVERY MNUM NE 8500 

Query Output: 

EMPLOYEE ONFORMATION 

t1NAI'1 
HOWELL I ,jOHN 
MNAM 
MEREDITH; JOHN 
!'-lNAM 
STEPHENS; JANET 
MNAM 
HAY'NES, BILL 

·····SYSDATE · ... ·SYSTIME 

06/07/82 13:20:37 

MSTR MCTY MSTT MZIP 
555 RIO GRANDE GRANGER TX 78787 
MSTR MCTY M8,T NlIP 
98 N. LAMAR GOLIAD TX 89898 
MSTR NCTY MSTT MZIP 
56 PURNAM DR ECHO TX 87989 
MSTR I"1CTY I"1STT tolZ IP 
500 LAIRD DEL CURTO TX 85269 

Figure 7-1. Guided auery Example 

7-24 2276554-9701 



8 

Error Messages 

8.1 INTRODUCTION 

This section describes Query·990 error messages and defines the action to be taken in response 
to each message. A table of corresponding internal message codes, Table 8-1, is included at the 
end of this section. 

The two main categories of errors are Query processor errors and Guided Query errors. Error mes­
sages in this section are listed in numerical order within the appropriate error category. 

The prescribed actions are guidelines only. The action might be inappropriate when a mistake 
other than the one noted is causing the problem. For example, the beginning quotation mark for a 
literal could be missing and Query-990 would most likely examine it as an alias. If the literal were 
more than 20 characters, it would be flagged because an alias cannot be over 20 characters in 
length. Although the corresponding error and action would seem correct to Query-990, they would 
be inappropriate. Therefore, use judgement in determining the problem, and the action to take fol­
lowing an error. 

8.2 QUERY PROCESSOR ERRORS 

Query processor errors occur during the execution of the Query processor. The two categories of 
Query processor errors are run-time errors and Query statement errors. 

8.2.1 Run-Time Errors 
Run-time errors have similar meanings but involve different files; consequently, you should read 
carefully all information associated with the error message. Run-time errors appear on the ter­
minal after execution of the statement. When you are running a batch stream Query, run-time 
errors appear in the batch stream listing. 

8.2.2 Query Statement Errors 
Invalid syntax or semantic errors used in the Query statement cause Query statement errors. 
These are errors in the way the Query statement is worded or errors in the meaning of the Query 
statement as it relates to the current OBMS-990 or 00-990 environment. When Query statement 
errors occur, the message FATAL ERRORS IN QUERY STATEMENT appears on the screen. (The 
message is written in the batch stream listing instead of the screen if the Query is executed in 
batch mode.) The individual errors that caused this message are output to the listing file. When 
you request a listing of the Query statement, Query statement errors appear on the first page of 
the listing file along with the Query statement. The two types of Query statement errors are mis­
cellaneous Query statement errors and syntax errors. 

2276554·9701 8-1 



Error Messages 

8.2.2.1 Miscellaneous Query Statement Errors. Miscellaneous Query statement errors relate to 
the overall conformity of the Query statement. Miscellaneous Query statements appear at the end 
of the Query listing and involve the construction of the entire statement. These errors are often 
general in nature and do not relate to any specific line in the Query statement. 

8.2.2.2 Syntax Errors. Syntax errors deal with the formulation of the Query statement. Each error 
message appears on a single line below the Query line that contains the error. A corresponding 
exclamation point directs you to the error in the statement. When you request a listing of the 
Query statement, the syntax errors appear on the first page of the listing file along with the Query 
statement. -

Figure 8-1 is an example of an invalid Query statement that contains two errors following the BY 
clause. The first error resulted from a missing second operand in the third condition of the 
WHERE clause. The exclamation point for the first error is positioned after the error, which is as 
close as Query-990 can determine. The exclamation point for the second error points to the 
second BY clause because only one BY clause is needed. Query-990 assumes that the first one is 
correct and flags any subsequent BY clauses. 

8-2 

WHERE EVERY L TR 1 E';! II A II AND 
EVERY CLR 1 EfJ. "BLUE" 
ANY CLR2 EG! 

BY KEY FROM EXMP BY LIST 

** ERROR ** MISSING OPERAND 
** ERROR ** LISTING ORDER ALREADY SPECIFIED 
LIST L TR1, CLR1; 

LTR2,CLR2 HEADER "LINE 2 INFO II
; 

LTR:3; 

Figure 8-1. Example Syntax Errors 

2276554-9701 



Error Messages 

8.2.2.3 Query-990 Error Message Format. Query-990 error messages are in the following form: 

aaa QUERY-nnnn <message> 

The aaa is the error source, which can be one, two, or three characters as follows: 

I - informative 
W - warning 
U - user fatal error 
S - system fatal error 
H - hardware fatal error 

US - user or system fatal error 
U H - user or hardware fatal error 
SH - system or hardware fatal error 

USH - user, system, or hardware fatal error 

The nnnn is the QUERY message number. 

For example, if the message number is 0001, you can use the Show Expanded Message (SEM) 
command to display the message explanation, as follows: 

SHOW EXPANDED MESSAGE 
MESSAGE CATEGORY: 

MESSAGE ID: 

The following appears: 

Explanation: 

QUERY 
0001 

The Query aborts because the user has executed a Kill Task (KT). This message can also 
indicate an internal Query error. 

User Action: 
Resubmit the Query. If an internal Query error is suspected, you might need to restart 
DBMS-990. Contact customer support if necessary. 

The Query processor error messages are as follows: 

US QUERY-0001 INTERNAL QUERY ERROR - CODE:?1 WP:?2 PC:?3 ST:?4 

Explanation: 
The Query aborts because the user has executed a Kill Task (KT). This message can also 
indicate an internal Query error. 

User Action: 

2276554·9701 

Resubmit the Query. If an internal Query error is suspected, you might need to restart 
DBMS-990. Contact customer support if necessary. 

8-3 



Error Messages 

US QUERY-0002 FATAL ERRORS IN QUERY STATEMENT 

Explanation: 
Errors were encountered in compilation of the Query statement that prevented it from 
being executed. 

User Action: 
Check the Query listing to see what the errors were and correct them. 

US QUERY-0003 ERROR STATUS RETURNED FROM DBMS/DM-?1 

Explanation: 
DBMS-990 or DO-990 returned an abnormal status code during the execution phase of 
the Query. ?1 is the status code. 

User Action: 
Find the exact meaning of this status code in Appendix A of the Model 990 Computer 
Data Base Management System Programmer's Guide or Section 8.5 of the Model 990 
Computer Data Dictionary User's Guide. Take the necessary and appropriate action 
based on the description of the error. 

US QUERV-0004 UNABLE TO OPEN CHANGE DATA FILE PATHNAME 

Explanation: 
Change data constants were included in the Query statement, but no change data file 
pathname was specified in the QUERY procedure. 

User Action: 
Respond with NO to the prompt DEFAULT REPORT PARAMETERS?, and give the 
pathname of the data file as the response to CHANGE DATA PATHNAME. 

US QUERY-0005 UNABLE TO OPEN INPUT QUERY STATEMENT PATHNAME 

Explanation: 
This file is the input file for using a saved Query statement. The cause of the error could 
be an incorrect pathname, a full directory, or a full disk space. 

User Action: 
Locate the cause of the problem by executing a List Directory (LD) command to get the 
number of entries or a Show Volume Status (SVS) command to determine the amount of 
available disk space. Check other possible causes for the error, and then respond 
accordingly. 

US QUERY-0006 UNABLE TO RETRIEVE PARAMETERS ON BID OF QUERY 

8-4 

Explanation: 
Query was unable to retrieve one of the required parameters on the bid of the Query task. 

User Action: 
Check that the bid parameters are in their proper order and contain valid values. Contact 
customer support if necessary. 

2276554·9701 



Error Messages 

US QUERY-0007 UNABLE TO OPEN OUTPUT QUERY STATEMENT PATHNAME 

Explanation: 
This file is the output file for saving the Query statement text. The cause of the error 
could be an incorrect pathname, a full directory, or a full disk space. 

User Action: 
Locate the cause of the problem by executing a List Directory (LD) command to get the 
number of entires or a Show Volume Status (SVS) to determine the amount of available 
disk space. Check other possible causes of the error, and then respond accordingly. 

US QUERY-OOOa UNABLE TO OPEN REPORT/TRACE ACCESS NAME 

Explanation: 
The output file contains the retrieved data from the files. The cause of the error could be 
an incorrect pathname, a full directory, or a full disk space. 

User Action: 
Locate the cause of the problem by executing a List Directory (LD) command to get the 
number of entries or a Show Volume Status (SVS) to determine the amount of available 
disk space. Check other possible causes for the error, and then respond accordingly. 

W QUERY-0009 NO DATA SELECTED FOR OUTPUT 

Explanation: 
No data was found that met all of the conditions specified. 

User Action: 
No action is needed (informative message). 

US QUERY-0010 DATA TYPE NOT SUPPORTED BY QUERY 

Explanation: 
One of the data types not supported was encountered. 

User Action: 
Verify that all fields used in the Query statement have supported data types. Use the 
DDL listing of the file for verification. 

US QUERY-0011 QUERY ABORTED 

Explanation: 
The user entered "A" (for abort) after pressing the CMD or ENTER key during the edit of 
a Query statement. 

User Action: 
None required. 

2276554·9701 8-5 



Error Messages 

US QUERY-0012 UNFORMATTED CAN'T BE OUTPUT TO DEVICE 

Explanation: 
Unformatted output was requested in the report parameters, and the REPORT/TRACE 
ACCESS NAME was a device name rather than a file name. 

User Action: 
Send unformatted output, which contains binary data, only to a sequential or relative 
record file. 

US QUERY-0013 EXPRESSION OPERAND MISSING 

Explanation: 
An operand is missing in the expression portion of a DEFINE clause. 

User Action: 
Check to see that the expression syntax is valid. 

US QUERY-0014 UNMATCHED RIGHT PARENTHESES 

Explanation: 
A DEFINE expression has more right parentheses than left parentheses. 

User Action: 
Count the parentheses and correct the expression. 

US QUERY-0015 READ PAST EOF - QUERY ENDS UNEXPECTEDLY 

Explanation: 
The Query parser has reached an end-of-file before the logical end of the Query state­
ment. 

User Action: 
Check the listing and verify that the Query statement is valid. 

US QUERY-0016 SYNTAX ERROR IN DEFINE EXPRESSION 

Explanation: 
A syntax error of an indeterminate nature was detected in a DEFINE expression. 

User Action: 
Check the syntax and spelling in the DEFINE clause. 

US QUERY-0017 DEFINE VARIABLE EXPECTED 

8-6 

Explanation: 
A DEFINE variable is expected after the keyword DEFINE or after a semicolon within the 
DEFINE clause. 

User Action: 
Check to see if the DEFINE clause syntax is valid. 

2276554-9701 



Error Messages 

US QUERY-0018 EXPRESSION OPERATOR MISSING 

Explanation: 
An operator is missing in the expression portion of a DEFINE clause. 

User Action: 
Check to see if the expression syntax is valid. 

W QUERY-0019 NO DATA SELECTED FOR MODIFICATION 

Explanation: 
No data was found that met all conditions specified while performing an INSERT, 
DELETE, or UPDATE. 

User Action: 
No action is needed (informative message). 

US QUERY-0020 UNABLE TO ACCESS ALTERNATE COLLATING SEQUENCE FILE 

Explanation: 
The format for the alternate collating sequence file is incorrect. 

User Action: 
Verify that the file is in the exact format as specified in Appendix C. 

US QUERY-0021 QUERY BEGINS WITH INVALID FUNCTION 

Explanation: 
Query has detected an invalid clause as the first element of the statement. 

User Action: 
Check the statement and move the offending clause to its proper position. 

US QUERY-0022 FIELD NAME OR LINE IDENTIFIER EXPECTED 

Explanation: 
An invalid element, character, etc., in the field list was found. Query-990 looks for a field 
list element such as a semicolon, field name, alias, line type, literal, or space character. 

User Action: 
Examine the field list at the indicated position. 

US QUERY-0023 INVALID SYNTAX - UNABLE TO PROCESS 

Explanation: 
A meaningless character or word was encountered in the Query statement. 

User Action: 
Examine the statement where the exclamation pOint occurs for a possible typing error. 

2276554-9701 8-7 



Error Messages 

US QUERY-0024 DIGIT EXPECTED 

Explanation: 
A colon following a field name was not followed by a number specifying the output 
length. 

User Action: 
Follow the colon with a number specifying the output length or remove the colon. 

US QUERY-0025 INVALID REPORT LINE ELEMENT IN UNFORMATTED OUTPUT 

Explanation: 
Requests were made for headers, spacing, output lengths, or embedded literals in 
unformatted output. 

User Action: 
Remove the syntax causing the error, as indicated by the exclamation point. 

US QUERY-0026 NO REPORT LINES DEFINED 

Explanation: 
No report line was specified with the LIST function or the keyword LIST was omitted. 

User Action: 
Insert the necessary report lines after the keyword LIST. 

US QUERY-0027 MULTIPLE REPORT LINES WITH NO ORDER GIVEN 

Explanation: 
Multiple report lines were specified and no BY clause was entered. 

User Action: 
Insert the required BY clause. 

US QUERY-0028 NO FILE DEFINED WITH "FROM" CLAUSE 

Explanation: 
The FROM clause was not specified anywhere in the Query statement. 

User Action: 
Insert the required FROM clause. 

US QUERY-0029 FILE IDENTIFIER MUST FOLLOW "FROM" 

Explanation: 
The file name was not specified after the keyword FROM. 

User Action: 
Specify the required file name. 

8-8 2276554-9701 



Error Messages 

US QUERY-0030 INCOMPLETE QUERY STATEMENT 

Explanation: 
A Query statement was processed but not all of the indicated clauses and/or elements 
were included. 

User Action: 
Complete the statement where the exclamation point is shown. 

US QUERY-0031 "KEY" OR "LIST" MUST FOLLOW "BY" 

Explanation: 
Something other than BY KEY, BY LIST, or BY KEY BY LIST was specified. 

User Action: 
Correct the BY clause where indicated by the exclamation point. 

US QUERY-0032 LISTING ORDER ALREADY SPECIFIED 

Explanation: 
More than one BY clause was specified in a Query statement. 

User Action: 
~emove the extra BY clause(s). 

US QUERY-0033 UNEXPECTED CHARACTER IN CONDITION 

Explanation: 
Within a condition, an invalid character was specified. 

User Action: 
Correct the character where the exclamation point occurs. 

US QUERY-0034 MULTIPLE FILES DEFINED IN MODIFICATION FUNCTION 

Explanation: 
Multiple FROM clauses were specified. 

User Action: 
Choose one FROM clause and eliminate the others. 

US QUERY-0035 MISSING OPERAND 

Explanation: 
An operand was omitted in a simple or complex condition. 

User Action: 
Check each relational operator for two operands and each Boolean expression for two 
simple conditions. 

2276554·9701 8-9 



Error Messages 

US QUERY-0036 UNBALANCED PARENTHESES 

Explanation: 
A parenthesis is missing somewhere in the WHERE clause. 

User Action: 
Match all left parentheses with right parentheses. 

US QUERY-0037 MISSING OPERATOR 

Explanation: 
A relational operator is missing in a condition. 

User Action: 
Insert the required relational operator. 

US QUERY-0038 ALIAS LONGER THAN 30 CHARACTERS 

Explanation: 
A DBMS·990 or DD·990 element assumed to be an alias contained more than 30 
characters. 

Specify the correct identifier. 

US QUERY-0039 END OF REPORT LINE INDICATED WITH NO FIELDS SPECIFIED 

Explanation: 
A semicolon was encountered before any DBMS·990 or DD·990 elements were specified. 

User Action: 
A report line must specify at least one DBMS·990 or DD·990 element. Either specify one 
or more elements or make this report line into a report line heading or main heading. 

W QUERY-0040 HEADING LITERAL PAST PAGE WIDTH - TRUNCATED HERE 

Explanation: 
This is a warning and does not prevent the Query statement from executing. A heading 
or footing literal cannot be longer than the page width specified. 

User Action: 
Break the literal into two or more literals, if necessary. 

US QUERY-0041 ALL FIELDS IN REPORT LINE MUST COME FROM SAME LINE TYPE - CHECK?1 

8-10 

Explanation: 
A report line contains at least one field ?1 that is not part of the same line type. 

User Action: 
Check the report line containing the field or alias mentioned in the message, and verify 
that it is part of the same line type as the rest of the fields. 

2276554·9701 



Error Messages 

PAGE 8-10 

US QUERY-0042 DBMS/DO ERROR IN COMPILE PHASE - STATUS?1 

Explanation: 
Query-990 is unable to retrieve information about a field because of a data base or data 
manager error. 

User Action: 
Refer to Appendix A of the Model 990 Computer Data Base Management System Pro­
grammer's Guide or Section 8.5 of the Model 990 Computer Data Dictionary User's 
Guide for the exact meaning of this error code. 

US QUERY-0043 UNABLE TO PROCESS FIELD -?1 

Explanation: 
In this case, Query-990 was unable to retrieve information about the field. 

User Action: 
Check the spelling of the field name; check to see that the field name corresponds to the 
DOL name. 

W QUERY-0044 CONDITIONS WITH NO QUANTIFIERS DEFAULT TO "ANY" 

Explanation: 
If a quantifier is specified in a simple condition, both operands should contain a quanti­
fier. ANY is the default for the operand that does not contain the quantifier. Since this 
message is only a warning, the statement will be executed. 

User Action: 
Check the meaning of the statement that has ANY as the default. Add the appropriate 
quantifier where applicable unless ANY is desired as the default in all cases. 

US QUERY-0045 CONDITION FIELDS MUST BE IN SAME LINE TYPE IF NO QUANTIFIERS USED 

Explanation: 
Operands must be of the same line type if you are comparing fields in a simple condition 
when not using quantifiers. 

User Action: 
Change the appropriate operands to correspond to the same line type. 

US QUERY-0046 FIELDS COMPARED WITH DIFFERENT FORMATS, SEE FIELD?1 

Explanation: 
In a simple condition, both operands were specified as fields but are of different lengths 
or formats. 

User Action: 
Ensure that both fields in a condition have the same format. 

2276554·9701 8-11 



Error Messages 

US QUERY-0047 QUANTIFIERS NOT ALLOWED WHEN ORDERED "BY LIST" 

Explanation: 
Record-level conditions are allowed only when output is ordered BY KEY or BY KEY BY 
LIST. 

User Action: 
Remove the quantifiers or change the order. 

US QUERY-0048 LINE-LEVEL CONDITION NOT SAME LINE TYPE AS REPORT LINE 

Explanation: 
When the sequence is BY LIST or modification is being performed, line-level conditions 
must come from the same line type as the report or modification line. 

User Action: 
Check the DOL to see if the fields are in the same line. 

US QUERY-0049 MAIN HEADINGS AND FOOTINGS LONGER THAN PAGE LENGTH 

Explanation: 
The total number of main headings and footings specified is longer than the specified 
n~n~ I~nnth t' ..... ~~ .~ •• ~ •••• 

User Action: 
Increase the number of lines per page. 

US QUERY-0050 TOTALING A NON-NUMERIC FIELD IS NOT ALLOWED - SEE FIELD?1 

Explanation: 
Totaling is permitted only on numeric fields. 

User Action: 
Remove the totaling option from the field specified in the message. 

US QUERY-0051 DATA TYPE NOT SUPPORTED BY QUERY - SEE FIELD ?1 

8·12 

Explanation: 
One of the data types not supported was encountered. 

User Action: 
Verify that all fields used in the Query statement have supported data types. Use the 
DOL listings for verification. 

2276554-9701 



Error Messages 

US QUERY-0052 MORE THAN ONE RECORD LEVEL CONDITION IS SPECIFIED 

Explanation: 
Multiple record-level conditions were specified in the WHERE clause. You can specify 
only one record-level condition containing quantifiers. 

User Action: 
Retain the one record-level condition desired. Remove the other conditions with ANY or 
EVERY contained in them. 

W QUERY-0053 REPORT LINE LONGER THAN MAXIMUM - TRUNCATED 

Explanation: 
After formatting, the total length of all elements of a report line exceeds 480 characters. 

User Action: 
Split the report line into two lines or include length parameters with fields that are 
longer than necessary. 

US QUERY-0054 HIGH ORDER TRUNCATION OF NUMERIC CONSTANT ?1 

Explanation: 
A constant was specified that contained too many significant digits. 

User Action: 
Check all constants to see if they conform with the type of the field with which they are 
associated (as defined in the DOL). 

US QUERY-0055 MORE THAN' ONE LINE-LEVEL CONDITION SPECIFIED FOR LINE ?1 

Explanation: 
When all line-level conditions are specified in the main WHERE clause, only one line­
level condition per line type is allowed. 

User Action: 
Respecify the Query statement with line-level conditions specified with the report line 
to which they apply, using separate individual WHERE clauses. 

US QUERY-0056 CONDITION WITH NO ASSOCIATED REPORT LINE - LINE ?1 

Explanation: 
When line-level conditions were specified in the main WHERE clause, one of them used 
a line type that had no corresponding report line. 

User Action: 
Check all conditions for a corresponding report line. 

2276554·9701 8-13 



Error Messages 

US QUERY-0057 LINE LEVEL SORT NOT ALLOWED WITH "BY KEY" 

Explanation: 
Individual report lines come out in file order when the sequence is BY KEY and cannot 
be sorted. 

User Action: 
Change the sequence to BY KEY BY LIST. 

US QUERY-0058 RECORD LEVEL SORT NOT ALLOWED WITH "BY LIST" 

Explanation: 
The BY LIST sequence does not use records in outputs, so output cannot be sorted on a 
record basis. 

User Action: 
Change the sequence to BY KEY BY LIST. 

US QUERY-0059 SORT AND OUTPUT FIELDS TOO LARGE - MUST TOTAL <350 

Explanation: 
The sort key length plus the total output line length must be less than 350 characters. 

User Action: 
Reduce the sort keys or the output line size. 

US QUERY-0060 INVALID SORT CLAUSE ELEMENT 

Explanation: 
An invalid word or symbol was included in a SORT clause. For instance, a line identifier 
was specified. 

User Action: 
Check the SORT clause syntax. 

US QUERY-0061 NUMBER OR LITERAL EXPECTED IN CONTENTS CLAUSE 

Explanation: 
A number or literal should follow the equal sign in a CONTENTS clause. 

User Action: 
Check the CONTENTS clause syntax. 

US QUERY-0062 "=" EXPECTED IN CONTENTS CLAUSE 

8-14 

Explanation: 
A field name was specified in a CONTENTS clause but was not followed by an equal 
sign (=). 

User Action: 
Check the CONTENTS clause syntax. 

2276554-9701 



Error Messages 

US QUERY-0063 FIELD NAME EXPECTED IN CONTENTS CLAUSE 

Explanation: 
A field name should appear at this point in a CONTENTS clause. 

User Action: 
Check the CONTENTS clause syntax. 

US QUERY-0064 SEMICOLON EXPECTED 

Explanation: 
A semicolon is expected at this point in the Query st~tement. 

User Action: 
Insert a semicolon. 

US QUERY-0065 "CONTENTS" EXPECTED 

Explanation: 
You must specify a CONTENTS clause for each modification line when the function is 
INSERT or UPDATE. 

User Action: 
Specify the CONTENTS clause. 

US QUERY-0066 ASCENDING OR DESCENDING INDICATOR EXPECTED 

Explanation: 
A colon was specified after a field name in a SORT clause but was not followed by A, 0, 
ASCENDING, or DESCENDING. 

User Action: 
Include the appropriate keyword or do not specify the colon. 

W QUERY-0067 PAGE COMMAND NOT ALLOWED IN MAIN HEADING OR FOOTING 

Explanation: 
A PAGE command in a main heading or footing would cause the processor to loop in­
definitely, printing the main heading or footing. This message is a warning only; the 
Query executes but the PAGE is not performed. 

User Action: 
Move the page to the first report line heading or the last report line footing expected to 
be performed. 

2276554·9701 8-15 



Error Messages 

US QUERY-0068 INVALID TAB SETTING - MUST BE GREATER THAN PREVIOUS TAB 

Explanation: 
Tab settings in a report line must be specified in ascending order to avoid overwriting 
fields. 

User Action: 
Rearrange the report line elements so that tab settings are in ascending order. 

US QUERY-0069 "=" EXPECTED WITH ... "XXX" ... FUNCTION 

Explanation: 
The condition contains a string surrounded by ellipses. You can perform this string 
operation only when the relational operator is EQ or =. 

User Action: 
Change the relational operator to EQ or =. 

US QUERY-0070 INVALID FIELD FORMAT FOR TYPE OF COMPARE - SEE FIELD ?1 

Explanation: 
You attempted to perform string operations on noncharacter data. 

User Action: 
Do not use string operations on numeric data. 

US QUERY-0071 INVALID TYPE SPECIFICATION ?1 

Explanation: 
You specified an invalid type in defining a format for a DEFINE variable. 

User Action: 
Check the DDL types for all DEFINE variables. CH is not allowed. 

US QUERY-0072 ILLEGAL LENGTH ?1 

Explanation: 
You used an illegal length in defining a format for a DEFINE variable. 

User Action: 
Check the length to see if it matches the DDL type. 

US QUERY-0073 CANNOT MIX COBOL WITH FORTRAN/PASCAL TYPES?1 

8-16 

Explanation: 
The result type of the expression does not match the type catagory of the fields used in 
the expression, or fields within the expression are in different type categories. 

User Action: 
Check all of the components of the expression to see if they fall in the same category. 

2276554·9701 



Error Messages 

US QUERY-0074 ILLEGAL TYPE FOR FIELD IN EXPRESSION ?1 

Explanation: 
A field was used in an expression that has a DDL format definition of CH. 

User Action: 
Do not use the field, or redefine the file to use numeric types. 

US QUERY-0075 ERROR IN CONVERSION OF REAL OR INTEGER CONSTANT?1 

Explanation: 
An error was produced on conversion of a constant associated with a field of type in­
teger or real. 

User Action: 
Check all constants for too many digits or decimal points in integer constants. 

US QUERY-0076 NEGATIVE SIGN USED IN UNSIGNED CONSTANT ?1 

Explanation: 
You cannot specify a negative constant when the DOL field type is AN or CN. 

User Action: 
Specify only unsigned constants. 

US QUERY-0077 UNABLE TO INITIALIZE SORT/MERGE DUE TO INTERNAL QUERY ERRORS 

Explanation: 
When Query-990 attempted to initialize Sort/Merge, an abnormal termination occurred. 

User Action: 
Check to see that a current version of Sort/Merge is installed properly. If a new version 
has been installed since the last QGEN (Query Generation) has been performed, redo 
the QGEN and reinstall Query-990. 

US QUERY-0078 UNABLE TO BID SORT/MERGE 

Explanation: 
Sorting was specified in Query but Query-990 could not bid Sort/Merge. 

User Action: 
Check the state of the system to see why the task cannot be bid. Check the system log 
to see if the Sort/Merge aborted. 

US QUERY-0079 UNABLE TO INITIALIZE SORT/MERGE - NOT INSTALLED ON THE SYSTEM 

Explanation: 
Query-990 must have a Sort/Merge package installed in the system to perform sorting. 

User Action: 
Install Sort/Merge, then reinstall Query-990. 

2276554-9701 8-17 



Error Messages 

US QUERY-0080 UNABLE TO INITIALIZE SORT/MERGE - SORT/MERGE ABNORMAL TERMINATION 

Explanation: 
When Query-990 attempted to initialize Sort/Merge, an abnormal termination occurred. 

User Action: 
Check to see that a current version of Sort/Merge is installed properly. If a new version 
has been installed since the last QGEN (Query Generation) has been performed, redo 
the QGEN and reinstall Query-990. 

US QUERY-0081 ERROR IN SENDING RECORD TO SORT/MERGE 

Explanation: 
Should not occur during normal operation of Query-990. An internal error condition has 
occurred. 

User Action: 
Report the problem to the customer support line. 

US QUERY-0082 INTERTASK ERROR IN SENDING RECORD TO SORT/MERGE 

Explanation: 
QU6iy-990 was unable to use inter-task communication to send a record to SortiMerge. 

User Action: 
Check that intertask was generated as greater than 500 bytes long. Reboot the system. 
Make sure all Sort/Merge patches have been applied. 

US QUERY-0083 ERROR IN RECEIVING RECORD FROM SORT/MERGE 

Explanation: 
Should not occur during normal operation of Query-990. An internal error condition has 
occurred. 

User Action: 
Report the problem to the customer support line. 

US QUERY-0084 INTERTASK ERROR IN RECEIVING RECORD FROM SORT/MERGE 

8-18 

Explanation: 
Query-990 was unable to use intertask communication to receive a record from 
Sort/Merge. 

User Action: 
Check that intertask was generated as greater than 500 bytes long. Reboot the system. 
Make sure all Sort/Merge patches have been applied. 

2276554-9701 



Error Messages 

US QUERY-OOB5 FIELD IN CONTENTS CLAUSE MUST HAVE SAME FORMAT?1 

Explanation: 
A field in the CONTENTS clause has been set equal to another field or define variable 
that has different format or length. 

User Action: 
Check to see that the formats and lengths of the fields are identical. 

US QUERY-OOB6 RECORD TOTAL OR COUNT NOT ALLOWED WITH "BY LIST" 

Explanation: 
The BY LIST sequence does not use records in outputs, so fields cannot be counted or 
totaled on a record basis. 

User Action: 
Change the sequence to BY KEY BY LIST. 

US QUERY-OOB7 CANNOT SORT GROUP OR LlNE?1 

Explanation: 
You cannot specify a group or line as a sort key. 

User Action: 
Specify all of the field components of the group or line. 

US QUERY-OOBB LINE-LEVEL CONDITION NOT ALLOWED IN MAIN "WHERE" CLAUSE 

Explanation: 
In a modification function, all line-level conditions should be specified with their cor­
responding modification lines. 

User Action: 
Check the syntax for modification lines. Move the condition to its correct location. 

US QUERY-OOB9 COUNT ALLOWED ONLY ON DBMS-990 FIELDS?1 

Explanation: 
The count operator must have a DBMS-990 field as its only operand. 

User Action: 
Change the expression to count a DBMS-990 field. 

US QUERY-0090 DEFINE FIELD IN CONDITION MUST COME FROM SAME LINE TYPE -?1 

Explanation: 
The define fields in a condition must come from the same line type. 

User Action: 
Verify that all the define fields in the condition come from the same line type. 

2276554-9701 8-19 



Error Messages 

US QUERY-0091 "BY" EXPECTED AFTER "LINKED" 

Explanation: 
The keyword LINKED in the FROM clause was followed by something other than the 
word BY. 

User Action: 
Correct the syntax of the LINKED BY clause. 

US QUERY-0092 FILE NAME EXPECTED AFTER 'IN' 

Explanation: 
The IN clause was used after a field name to identify a file in which the field is located. 
The I N was not followed by a field name identifier. 

User Action: 
Check the spelling and syntax. 

US QUERY-0093 "=" EXPECTED IN "LINKED BY" CLAUSE 

Explanation: 
An equal sign is missing between two linkage fields in the LINKED BY clause. 

User Action: 
Check the syntax; there should be no commas or semicolons. 

US QUERY-0094 CANNOT USE GROUP NAME IN CONTENTS CLAUSE ?1 

Explanation: 
In a modification function, the user is attempting to assign a value to a group. This is not 
allowed since the members of a group may have different formats and types. 

User Action: 
Break the group into its component fields and assign a value to each separately. 

US QUERY-0095 REPORT LINES MUST ACCESS SINGLE PATH IN MULTI-FILE 

8-20 

Explanation: 
In a multiple-file Query, a single report line cannot be composed from fields that follow 
more than one access path between the files. 

User Action: 
Break the report line into several report lines that follow a single access path. 

2276554·9701 



Error Messages 

US QUERY-0096 CHARACTER FIELDS MUST BE USED WITH STRING OPERATORS 

Explanation: 
When a condition contains a string with ellipses ( ... 'XXX' ... ), only CH fields may be 
compared to the string. 

User Action: 
Modify the condition to reflect a numeric comparison or change the DDL of the file to 
make the field a CH type. 

US QUERY-0097 LINKED TO FIELD MUST BE PRIMARY OR SECONDARY KEY ?1 

Explanation: 
In the FROM clause of a multifile Query, the link field in the lower-level file must be a 
primary or secondary key and should be on the right side of the equal sign (=). 

User Action: 
Make sure the link fields are on the proper sides of the equal sign. Execute a CPYFIL on 
the file, change the DDL so that the link field is a secondary key, and execute a RLDFIL. 
(See the Model 990 Computer DNOS Data Base Management System Programmer's 
Guide.) 

US QUERY-0098 TOP-LEVEL FILE MAY NOT BE LINKED TO 

Explanation: 
The first file following the keyword FROM is the top-level file. No lower-level file can link 
to a field in this file. 

User Action: 
Redefine the order of the files so that no lower-level files link to the top-level file. 

US QUERY-0099 LOWER-LEVEL FILE DEFINED WITHOUT PATH TO TOP-LEVEL ?1 

Explanation: 
All files must have some access route defined to them from the top-level file, directly or 
indirectly. This means that some field in the top-level file must be linked to a key in the 
lower-level file or to a key of another lower-level file that links to this lower-level file. 

User Action: 
Define an access path to all lower-level files or do not include that file in this Query 
statement. 

US QUERY-0100 CYCLE DETECTED IN LINKAGE ?1 

Explanation: 
In the LINKED BY clause, you have defined a sequence of linkages that loops back to a 
higher-level file. 

User Action: 
Determine which linkage makes a loop and omit it. 

2276554-9701 8-21 



Error Messages 

US QUERY-0101 LINK FROM FIELDS MUST COME FROM THE SAME FILE - ?1 

Explanation: 
When using a concatenated key in a LINKED BY, all fields must come from the same 
file. 

User Action: 
Alter the concatenated key to use only fields from the same file. 

US QUERY-0102 LINKED FIELDS DO NOT HAVE SAME LENGTH - SEE ?1 

Explanation: 
The fields must have the same format, length, and number of decimal places to be 
linked in the LINKED BY clause. 

User Action: 
Check the DDL to see if the formats differ. Change the DDL to match the formats. 

US QUERY-0103 FILE NAME EXPECTED AFTER "IN" 

Explanation: 
The IN clause was used after a field name to identify the file in which the field is located. 
The !N clause was not fo!!o'Ned by a file name identifi6i. 

User Action: 
Check spelling and syntax. 

US QUERY-0104 NO LINK FIELD DEFINED ?1 

Explanation: 
THRU was used to indicate a report line's access path. The field used in the THRU 
clause was not found among any of the link fields in the LINKED BY clause. 

User Action: 
Check spelling. Make sure all linkages have been specified. 

US QUERY-0105 MULTIPLE FILES NOT ALLOWED WHEN SEQUENCE IS "BY LIST" 

Explanation: 
Multifile Queries require record association and cannot be sequenced BY LIST. 

User Action: 
Change the sequence to BY KEY or BY KEY BY LIST. 

US QUERY-0106 NO LINK FILE DEFINED ?1 

8-22 

Explanation: 
A THRU clause was used to indicate a report line's access path. The file name used after 
IN to indicate the origin of the link field was not found in the FROM clause. 

User Action: 
Check spelling. Make sure all file names have been defined. 

2276554-9701 



Error Messages 

US QUERY-0107 LINE IDENTIFIER EXPECTED IN UNIQUE CLAUSE 

Explanation: 
A valid line type indentifier must follow UNIQUE in the UNIQUE clause. 

User Action: 
Check the syntax and spelling. 

US QUERY-0108 DEFINE FIELD IS NOT A LEGAL EXPRESSION 

Explanation: 
The define field flagged is not a legal expression. 

User Action: 
Correct the define field syntax. 

US QUERY-0109 QUANTIFIERS NOT ALLOWED IN LINE-LEVEL CONDITION 

Explanation: 
Quantifiers are allowed only in record-level conditions and should not be used in con­
ditions that are specified with a report line. 

User Action: 
If the condition is meant.to be record-level, move it to the main WHERE clause; other­
wise, remove the quantifiers. 

US QUERY-0110 LINE 10 OR "KEY" EXPECTED IN POSITIONING CLAUSE 

Explanation: 
The word AFTER or BEFORE was used in a modification function but was not followed 
by the word KEY or a line identifier. 

User Action: 
Check syntax and spelling. 

US QUERY-0111 ATTEMPT TO SPECIFY MORE THAN ONE "FROM" CLAUSE 

Explanation: 
The user specified FROM more than once. 

User Action: 
Combine all files into one FROM clause. Eliminate extra FROM clauses. 

2276554-9701 8-23 



Error Messages 

US QUERY-0112 ATTEMPT TO SPECIFY MORE THAN ONE FUNCTION CLAUSE 

Explanation: 
Only one function keyword (LIST, INSERT, UPDATE, or DELETE) is allowed in a single 
Query statement. 

User Action: 
Decide which function you wish the Query statement to perform and eliminate all 
others. 

US QUERY-0113 UNABLETO ACCESS FILE?1 

Explanation: 
Query was unable to access the file indicated. 

User Action: 
This message is followed by DBMS/OM ERROR IN COMPILE PHASE and the bad status 
received. Check the Mode/ 990 Computer DNOS Data Base Management System Pro­
grammer's Guide or the Mode/990 Computer Data Dictionary User's Guide for the exact 
meaning of the error code. 

US QUERY-0114 ATTEMPT TO INSERT OR UPDATE PRIMARY KEY ONLY 

Explanation: 
Insert or update was specified without any fields named other than the primary key. 

User Action: 
Specify at least one other field name in the CONTENTS clause. 

US QUERY-0120 DELETE NOT ALLOWED ON SEQUENTIAL FILES 

Explanation: 
It is illegal to delete from a sequential file. 

User Action: 
Ensure that no delete is attempted on any sequential files. 

US QUERY-0121 POSITION CLAUSE NOT ALLOWED ON NON-DBMS FILES 

8-24 

Explanation: 
It is illegal to indicate a position when inserting to a non-DBMS file. No BEFORE or 
AFTER position clauses are allowed. 

User Action: 
Remove the position clause from the Query statement. 

2276554-9701 



Error Messages 

US QUERY-0122 MUST NOT SPECIFY KEY VALUE FOR SEQUENTIAL FILE INSERT 

Explanation: 
Since all inserts to a sequential file occur at the end-of-file, it is meaningless to specify 
a key value. 

User Action: 
Remove the key value from the Query statement. 

US QUERY-0123 LINE LEVEL CONDITION SPECIFIED IN RECORD LEVEL WHERE CLAUSE 

Explanation: 
Query has taken the WHERE clause that occurred after the FROM clause and made it a 
line-level condition. 

User Action: 
To make a true record-level condition, include the keyword ANY or EVERY before the 
conditional field or remove any nonkey fields from the condition. 

US QUERY-0124 PARTIAL GROUP KEY SPECIFIED IN CONTENTS CLAUSE 

Explanation: 
Each field in a group key must be included when the key is used in a CONTENTS clause. 

User Action: 
Add the missing fields to the Query statement. 

US QUERY-0125 'ON' OR 'BEFORE' SHOULD FOLLOW 'BREAK' 

Explanation: 
The keyword BREAK in a report line must be followed by the sequencing word ON or 
BEFORE. 

User Action: 
If the report line is a header line, use ON. If it is a total line, use BEFORE. 

8.3 GUIDED QUERY ERRORS 

Guided Query errors pertain to error conditions that occur while using the Guided Query utility. 
Guided Query errors appear at the bottom of the screen. In response, press either the NEW 
LINE/RETURN key or the HELP/CMD key. The NEW ,LINE/RETURN key positions the cursor at the 
origin of the error. The HELP/CMD key aborts the Guided Query. The Guided Query error mes­
sages are as follows: 

US QUERY-0151 DOUBLE QUOTE MARKS MISSING OR MISMATCHED 

Explanation: 
A double quotation mark is missing for an alphabetic constant. This message applies to 
Steps 2 and 6. 

User Action: 
Ensure that all beginning quotation marks have a corresponding ending quotation mark. 

2276554-9701 8-25 



Error Messages 

US QUERY-0152 NOT A VALID LINE NAME ?1 

Explanation: 
The line name entered in Step 3 or 10 does not match any of the displayed line names. 

User Action: 
Locate the intended line name and enter it. 

US QUERY-0153 INVALID FIELD # - ?1 

Explanation: 
The number displayed to the right of this message is not a valid number. 

User Action: 
Reenter the correct field number from the selections at the bottom of the screen. 

US QUERY-0154 MARK YOUR OPTIONS WITH AN "X" 

Explanation: 
To choose LIST, COUNT, TOTAL, or AVERAGE options, you must mark the appropriate 
column with an X. 

User l\ction: 
Change other characters to X. 

US QUERY-0155 AT LEAST ONE OPTION MUST BE MARKED 

Explanation: 
When a field is specified for the report, you must choose at least one option (such as, 
LIST, COUNT, TOTAL, or AVERAGE). 

User Action: 
Mark one option. 

US QUERY-0156 CANNOT SPECIFY TOTAL OR AVERAGE ON CHARACTER FIELD 

Explanation: 
You can specify TOTAL or AVERAGE only on numeric fields. 

User Action: 
Delete the X under TOTAL or AVERAGE. 

US QUERY-0157 NOT A VALID LINE TYPE ?1 

8-26 

Explanation: 
The user has entered a line type identifier that is not legal. If an alias or long name is 
available for a line type, the alias or long name must be used rather than the DOL name. 

User Action: 
Check the displayed line identifiers and make sure your entry matches. 

2276554·9701 



Error Messages 

US QUERY-0158 INVALID FIELD NAME FOR OPERAND 1 ?1 

Explanation: 
The specified field name does not match any field name listed. 

User Action: 
Correct the operand field name to match a I isted field name. 

US QUERY-0159 NO QUANTIFIERS FOR OPERAND 2 CONSTANT 

Explanation: 
When entering record-level conditions, quantifiers are not meaningful for constants. 

User Action: 
Leave the quantifier field for operand 2 blank. 

US QUERY-0160 OPERAND 1 AND OPERAND 2 MUST HAVE MATCHING FORMATS 

Explanation: 
Operands 1 and 2 must have the same format and length. 

User Action: 
Compare only matching operands. 

US QUERY-0161 INVALID FIELD NAME FOR OPERAND 2?1 

Explanation: 
The specified field name does not match any field name listed. 

User Action: 
Correct the operand field name to match a listed field name. 

US QUERY-0162 NOT A VALID FILE NAME ?1 

Explanation: 
The file name specified in Step 1 does not correspond to a valid file. The cause could be 
an incorrect file name, DBMS-990 or DD-990 down, or access privileges not granted. 

User Action: 
Locate the cause and take the appropriate action. 

US QUERY-0163 FIRST OPERAND MUST BE PRECEDED BY "ANY" OR "EVERY" 

Explanation: 
Record test must have ANY or EVERY specified before the first operand. 

User Action: 
Specify ANY or EVERY or return to Step 9. 

2276554-9701 8-27 



Error Messages 

US QUERY-0164 ILLEGAL OPERATOR, PRESS FUNCTION KEY 5 FOR LIST OF LEGAL OPERATORS 

Explanation: 
Operator must be specified and be one of the six legal relational operators. 

User Action: 
Correct the operator. 

US QUERY-0165 DBMS/OM DOWN 

Explanation: 
Data base or data manager is not running. 

User Action: 
Start data base or data manager. 

US QUERY-0166 INVALID PASSWORD ?1 

Explanation: 
You do not have proper security access privileges for the file specified. 

User Action: 
Obtai n a val id password from the DBA. 

US QUERY-0167 ENTER "A" OR "0" ONLY 

Explanation: 
You have entered a bad response to the sort speCification prompt. 

User Action: 
Enter the correct response. 

US QUERY-0168 OPERAND MUST NOT BE A GROUP - SEE FIELD?1 

Explanation: 
You may not use a group name in a conditional. 

User Action: 
Specify a complex condition which contains all the necessary group conditions. 

US QUERY-0169 GROUPS MAY NOT BE USED IN CONDITIONS 

Explanation: 
Groups may not be used in conditions. 

User Action: 
Specify a complex condition which contains all the necessary group conditions. 

8-28 2276554-9701 



Error Messages 

8.4 INTERNAL MESSAGE CODES 

If the error message file is not installed, the user receives internal message codes. Table 8-1 
allows the user to look up the message 10 and obtain the expanded text for the error message. 

Table 8-1. Internal Message Codes 

Internal Message Internal Message Internal Message 
Code 10 Code 10 Code 10 

>0001 0001 >0020 0045 >0056 0086 
>0002 0002 >002E 0046 >0057 0087 
>0003 0003 >002F 0047 >0058 0088 
>0004 0004 >0030 0048 >0059 0089 
>0005 0005 >0031 0049 >0058 0091 
>0007 0007 >0032 0050 >0050 0093 
>0008 0008 >0033 0051 >005E 0094 
>0009 0009 >0034 0052 >005F 0095 
>OOOA 0010 >0035 0053 >0061 0097 
>0008 0011 >0036 0054 >0062 0098 
>OOOC 0012 >0037 0055 >0063 0099 
>0000 0013 >0038 0056 >0064 0100 
>OOOE 0014 >0039 0057 >0066 0102 
>0010 0016 >003A 0058 >0067 0103 
>0011 0017 >0038 0059 >0068 0104 
>0012 0018 >003C 0060 >0069 0105 
>0013 0019 >0030 0061 >006A 0106 
>0014 0020 >003E 0062 >0060 0109 
>0016 0022 >003F 0063 >006E 0110 
>0017 0023 >0040 0064 >006F 0111 
>0018 0024 >0041 0065 >0070 0112 
>0019 0025 >0042 0066 >0071 0113 
>001 A 0026 >0043 0067 >0072 0114 
>0018 0027 >0044 0068 >0097 0151 
>001C 0028 >0045 0069 >0098 0152 
>0010 0029 >0046 0070 >0099 0153 
>001E 0030 >0047 0071 >009A 0154 
>001F 0031 >0048 0072 >0098 0155 
>0020 0032 >0049 0073 >009C 0156 
>0021 ,0033 >004A 0074 >0090 0157 
>0022 0034 >0048 0075 >009E 0158 
>0023 0035 >004C 0076 >009F 0159 
>0024 0036 >0040 0077 >OOAO 0160 
>0025 0037 >004E 0078 >00A1 0161 
>0026 0038 >004F 0079 >00A2 0162 
>0027 0039 >0050 0080 >00A3 0163 
>0028 0040 >0051 0081 >00A4 0164 
>0029 0041 >0052 0082 >00A5 0165 
>002A 0042 >0053 0083 >00A6 0166 
>0028 0043 >0054 0084 >00A7 0167 
>002C 0044 >0055 0085 >00A8 0168 

>00A9 0169 

2276554·9701 8-2918-30 





Appendix A 

Query-990 Syntax 

A.1 GENERAL 

The Query-990 syntax consists of definitions using words, brackets, braces, and ellipses. 

Each element of the language is defined by an equation-like rule. The entity being defined is writ­
ten to the left of the symbol :: = and the definition is written to the right. The definition can be 
expressed in terms of the language elements that are defined separately. The following symbols 
are used in writing definitions: 

Symbol 

.. -.. -

[ ] 

I 

{ } 

Description 

Used in writing definitions; means "is defined to be" 

Encloses entities that are optional 

Indicates alternatives (e.g., A I B I C means A or B or C) 

Encloses one or more entities from which you must select 
at least one 

Indicates the position at which a previous item may be 
repeated as required 

Underlined keywords and symbols must appear exactly as 
shown 

For both brackets and braces, a choice is indicated by vertically stacking the possibilities. When 
brackets or braces enclose a portion of a definition but only one possibility is shown, the brackets 
or braces delimit the portion of the format to which a following ellipsis applies. 

Underlined uppercase words are keywords. Lowercase words are symbols representing a lan­
guage element defined elsewhere in the syntax definition. 

A.2 SYNTAX DEFINITION 

The syntax definition for Query-990 is as follows: 

alias :: = longname 

alpha ::= ~J.!!.I~I ... I~ 

2276554-9701 A-1 



Query-990 Syntax 

A ... 2 

alphanum :: = {
alPha} 
digit 

alpha 
digit 

ascii-character :: = <space> 

11"1#1$10/01&1,1(1)1*1 + 1'1-
- =-1L"1.:.1i.1 < 1 = r~ I? 1 ~ 11111 ~ 1 ==-

BREAK-clause :: = BREAK { ON 1 field-type [field-type] ... 
BEFORE 

BY -clause :: = BY KEY 
{ 

BY KEY BY LIST} 

BY LIST 

change data :: =? t: {~: l},ength-change 1 [i c hange-offsetll 

change-offset :: = unsigned-integer 

complex-condition :: = [(] simple-condition [Iog-op complex-condition] [ ) ] 

concat-field :: = field-type [A concat-field] 

condition :: = {
simple-condition } 
complex-condition 

conditional-literal :: = [: ... : . ..:1 string [.: ... : . .:1 

{
string } constant :: = 
number 

- 2276554-9701 



Query-990 Syntax 

CONTENTS-clause :: = CONTENTS {
field-t e} {co~stant } yp = vanable 
key-type -

change-data 

[ 
{ 
f ' Id t} {constant }] Ie - ype , 

[..:...] ke -t e ~ vanable 
y yp change-data 

DEFINE-clause :: = DEFI~E [variable.:. type =- define-expression liJ] ... 

define-expression:: = [(] subexpression [operator define-expression] [) ] - -

DELETE-clause :: = DELETE [trace-indicator] 

delete-line :: = line type [WHERE-clause] 

lid } field-name :: = [IN file name] 
alias - -

file-name :: = lid } 
alias 

fractional-part :: = . digit [digit] ... 

{
RECORD } [ ; ] 
delete-line [ ; delete-line] ... 

FROM-clause :: = FROM file-name [EXCLUSIVE] [file-name [EXCLUSIVE]] 

[UNKED-BY-clause] [SORT-clause] [HEADER-clause] 

[BY-clause] [UNIQUE-clause] 

2276554-9701 A-3 



Query-990 Syntax 

A-4 

! LIST-clause 1 
. INSERT-clause 

function-clause :: = UPDATE-clause 

DELETE-clause 

HEADER-clause :: = [NO HEADER] [H EADER [header-element]] 

[FOOTING [header-element]] 

HEADER-element :: = ! 
PAGE [digit] [digit] ) 
SKIP [digit] [digit] 
DEFAULT 
header-literal 

header-literal :: = "[literal-element] ... " r.:: [literal-element] ... .::.. 1 - -1 ...: [!itera!-elementJ ... .:... J 

id :: = ! ::~~: alphanum ) 
alpha alphanum alphanum 
alpha alphanum alphanum alphanum 

INSERT-clause :: = INSERT [trace-indicator] insert-line [; insert-line] .. '[il 

insert-line :: = line-type [position-clause] CONTENTS-clause [WHERE-clause] 

integer :: = {~} digit [digit] ... 

key-type :: = { id
l
. } [IN file-type] 

alas -

length :: = .!.I ~ 1 ! 1 i I· ··1 256 

length-change :: = unsigned-integer 

2276554-9701 



Query-990 Syntax 

{

digit digit } 
line-type :: = al~ha alpha [IN file-type] 

alias 

LlNKED-BY-clause :: = LINKED BY {field-type} key type 
concat-field = -

[ {
field-type} k t 1 

..:.. concat-field ~ ey- ypeJ 

LIST-clause :: = ~T report-line [i.report-line] .. {i) 

! 
ascii-character I 

. ASYSTIME 
literal-element :: = ASYSDATE 

APAGENUM 

log-op :: = { ~~D } 

long name :: = alpha [{ 
alphanum }] 
$ I - I -- . . . 
- --

modification-line :: = line-type [position-clause] CONTENTS-clause [WHERE-clause] 

(

integer ) 
number :: = integer fractional-part 

± fractional-part 

{

field-type} 
op1 :: = key-type 

variable 

lOP1 ) 
o 2:: = conditional-literal 

p number 

change-data 

2276554-9701 A-5 



Query-990 Syntax 

A-6 

operator :: = + I - I * II 

option ::= [.:.Iength] [TOTAL [ONLY]] [AVERAGE [ONLY]] [COUNT [ONLY]] 

order-indicator :: = ! jSCENDING ). 

: DESCENDING 

, 'I { BEFORE} {FIRST line-type [WHERE-ClaUSe]} posltlon-c ause :: = 
AFTER KEY 

t 'f' {ANY} quan I ler :: = MRY 

query:: = [DEFINE-clause] function-clause FROM-clause [WHERE-clause] 

rel-op::= EO I GT I LT I NE I LE I GE I-=.I ~12:1 <> I <= I >= 

report-line :: = report-line-element [[.2....1 report-line-element ,.,] 

[HEADER-clause] [WHERE-clause] [SORT-clause] 

field-type [option] [THRU-clause] 
line-type [option] 
key-type [option] 
variable [option] 

report-line-element :: = BREAK-clause 
~Iength 

SPACE length 
TAB digit [digit] 
string 
change-data 

simple-condition :: = [(] [quantifier] op1 reJ-op [quantifier] op2 [ ) ] 

2276554-9701 



Query-990 Syntax 

! field-type) 
SORT-clause :: = SORTED BY key-type [order-indicator] 

variable 

[f ::~~~;~~e) [order-indicator]] ... l vanable 

string :: = ~ [ascii-character] . .. .: 

[RECORD] TOTAL field-type 
[RECORD] COUNT field-type 

subexpression :: = lJJ field-type [ ) ] 
variable 
change-data 

THRU-clause :: = THRU file-type 

trace-indicator :: = TRACE {~~~ y } 

type :: = (see Appendix B) 

UNIQUE-clause :: = UNIQUE line-type [line-type] . .. 

unsigned-integer :: = digit [digit] . .. 

UPDATE-clause :: = UPDATE [trace-indicator] modification-line 

[ ; modification-line] . .. [ ; ] 

variable :: = long name 

WH ERE-clause :: = WH ERE condition 

2276554-9701 A-7/A-8 





Code 

AN 

AS 

CH 

CN 

CS 

ID 

2276554·9701 

Appendix B 

Calculation Data Types 

Description 

Arithmetic without sign. Decimal 
places are allowed. User zero for 
no decimal places. 

Arithmetic signed. Length (n) 
must include sign, and decimal 
places are allowed. Use zero for 
no decimal places. 

Character string. Length in­
cludes total characters. Deci­
mal places not allowed. 

Character numeric. Decimal 
places are allowed. Use zero for 
no decimal places. 

Character numeric signed. 
Length (n) must include the sign. 
Decimal places are allowed. Use 
zero for no decimal places. 

Double precision integer. Con­
tained in two 16-bit words and 
may be signed. Length (n) 
default is 4; if specified, it must 
be 4. 

Example 

AN/B.2 
COBOL: 
FORTRAN: 
Pascal: 

AS/B.2 
COBOL: 
FORTRAN: 
Pascal: 

CH/20 
COBOL: 
FORTRAN: 
Pascal: 

CN/6.2 
COBOL: 
FORTRAN: 
Pascal: 

CS/B.5 
COBOL: 
FORTRAN: 
Pascal: 

ID/4 
COBOL: 
FORTRAN: 
Pascal: 

Formats 

PIC 9(6)V9(2) COM P. 
<none> 
<none> 

PIC S9(5)V9(2) COMPo 
<none> 
<none> 

PIC X(20). 
<A format> 
PACKED ARRAY 
[1 ... 20] OF CHAR; 

PIC X(20). 
<none> 
<none> 

PIC S9(2)V9(5) 
<none> 
<none> 

<none> 
INTEGER*4 
LOGINT; 

8-1 



Calculation Data Types 

Code Description Example Formats 

IS Single-precision integer. Con- IS/2 
tained in one 16-bit word. Length COBOL: PIC 9(5) COMP-1. 
(n) default is 2; if specified, it FORTRAN: INTEGER*2 
must be 2. Field may contain a Pascal: INTEGER; 
sign. 

LG Logical variable. Length (n) LG/2 
default is 2; if specified, it must COBOL: <none> 
be 2. FORTRAN: LOGICAL 

Pascal: BOOLEAN 

PK Packed decimal. Digit length (n) PK/6.2 
must be even and includes the COBOL: PIC S9(3)V9(2) COMP-3. 
sign. Decimal places are FORTRAN: <none> 
allowed, and zero indicates no Pascal: <none> 
decimal places. Contained in n/2 
bytes. 

RD Double-precision real. Contained RD/S 
in four 16-bit words and may be COBOL: <none> 
signed. Length (n) default is 8; if FORTRAN: REAL *8 
specified, it must be S. Pascal: REAL(16) 

RS Single-precision real. Contained RS/4 
in two 16-bit words and may be COBOL: <none> 
Signed. Length (n) default is 4; if FORTRAN: REAL *4 
specified, it must be 4. Pascal: REAL 

8-2 2276554-9701 



Appendix C 

Alternate Collating Sequences 

Query-990 supports collating sequences other than the standard USASCII collating sequence. The 
current release of Query-990 includes two alternate collating sequence files. These are the 
collating sequences for the Germany/Austria and Sweden/Finland character sets. These collating 
sequences are compatible with the operating systems' international support for key indexed files 
(KIFs). 

The format for the collating sequence file has been strictly defined. It contains eight records, and 
each record contains eight pairs of characters, left justified. Alternate character pairs must be 
defined for all of the characters in the set (hexadecimal 40 through 7F). 

The file S$QUERY.AL TSEQGA contains the collating sequence for the Germany/Austria character 
set; the file S$QUERY.AL TSEQSF contains the collating sequence for the Sweden/Finland charac­
ter set. The following is an example of the collating sequence for the Germany/Austria character 
set: 

404041415B42424343444445454b4b47 
47484849484A4A4B4B4C4C4D4D4E4E4F 
4F505C515052515352545355545b5557 
SD585659575A585B 595C 5A5D5E5E5F5F 
bOb061b17Bb262b3b3b4b4b5b5bbbbb7 
676868b9b9bA6AbBbBbCbCbDbDbEbEbF 
bF707C7170727173727473757E7b7477 
75787D797b7A777B787C797D7A7E7F7F 

You can use the right half of each record for comments. 

GERMAN/AUSTRIAN 
TO U.S. ASCII 
ALTERNATE COLLATING 
SEQUENCE TABLE 

You can select the internationalization option at Query-990 generation. If you do select this option, 
you must specify the file name containing the desired collating sequence. The QGEN processor 
then builds the correct SCI QUERY command procedure. 

To specify alternate collating sequencing to the Query processor, use the bid parameters in the 
QUERY command procedure. The seventeenth argument indicates the file name containing the 
desired collating sequence. If you do not specify a parameter for this argument, the USASCII col­
lating sequence is used. 

2276554-9701 C-1 



Alternate Collating Sequences 

The following is an example of the bid parameters for the SCI procedure QUERY. These param­
eters specify the collating sequence contained in the file S$QUERY.AL TSEQGA: 

BID TASK = OCO, LUND = @S$QUERY, PROG 

PARMS = (2000, 3000, @SMR$, &PASSWORD, @$QSLPP, 
e$QSCPL, @SG$OUT, @SGSFMTI 
@$QSNEWI @SGSEDT, @$G$LST, NO, @SQ$SAVE, @$Q$VCF, 
"@1.~INPUT STATEMENT PATHNAME", 
@LISTINGI SSQUERY,ALTSEGGA, 
S$QUERY. ERRMSG, 
"el!-.(OUTPUT STATEMENT PATHNAME fI

, @SMT$) 

To specify a different collating sequence, change the seventeenth argument in the bid parameters 
for the SCI Query command procedure. 

To use an alternate collating sequence for the Query output from the Guided Query utility, modify 
the SCI procedure GQUERY2 to contain the file name for the desired collating sequence. 

C-2 2276554-9701 



Appendix D 

DDL Listings for Example Files 

The following DDL listings are for data base example files. 

Item File 

FILE=ITEM,LINES=64 
ID=ITMN=CH/4,VOL=50,ACCESS=RANDOM/l 
* 
LINE=Ol 

F I EL[I=DESC=CH/20 
FIELD=UPRC=CN/6.3 
FIELD=QTYO=CN/4.0 
FIELD=QTYH=CN/4.0 
ENDL 

END. 

Customer Fi Ie 

FILE=CUST,LINES=57 
ID=CUSN=CH/S,VOL=50,ACCESS=RANDOM/1 

* LINE=Ol 
FIELD=NAME=CH/20 
GROUP=ADDR 

FIELD=STRT=CH/20 
FIELD=CITY=CH/20 
FIELD=STAT=CH/2 
FIELD=ZIPC=CH/5 
ENDG 

FIELD=CRED=CH/20 
ENDL 

END. 

2276554·9701 0-1 



DOL Listings for Example Files 

0-2 

PAY1 File 

FILE=PAV1,LINES=300 
ID=MNUM=CN/6. 0, VOL=30, ACCESS=RANDOM/l 
* LINE=Ol 

* 

GROUP=ADDR 
FIELD=MNAM=CH/20 
FIELD=MSTR=CH/20 
FIELD=MCTV=CH/15 
FIELD=MSTT=CH/2 
FIELD=MZIP=CN/5.0 
END13 

FIELD=MSSN=CN/9.0 
ENDL 

LINE=CU 

* 

FIELD=M.JOB=CH/l0 
FIELD=MLOC=CH/l0 
FIELD=MDEP=CH/15 
FIELD=MTMR=CH/l 
FIELD=MTES=CN/2.0 
FIELD=MTEX=CN/2.0 
ENDL 

LINE=CR 

* 

FIELD=MDDT=CN/5.2 
FIELD=MPVP=CN/2.0 
FIELD=MRAT=CN/7.2 
FIELD=MCOM=CN/3.3 
FIELD=MSLS=CS/l1.3 
ENDL 

LINE=ED 

* 

FIELD=DEGR=CH/3 
FIELD=VEAR=CN/4.0 
FIELD=COLL=CH/20 
FIELD=GPA =CN/2.1 
ENDL 

LINE=PE 

* 

FIELD=JOBT=CH/20 
FIELD=COMP=CH/25 
FIELD=STAT=CH/2 
FIELD=PSAL=CN/7.2 
ENDL 

LINE=PP 

* 

FIELD=PLOC=CH/I0 
FIELO=PDEP=CH/15 
F IELD=P.JOB=CH/l 0 
ENOL 

SECONDARV-REFERENCES 
MSSN=VOL=30,ACCESS=RANDOM/l 
END. 

2276554-9701 



Sales Order File 

FILE=SOFL,LINE8=344 
ID=80NM=CH/6,VOL=50,ACCESS=RANDOM/l 
* LINE=BL 

* 

FIELD=BILL=CH/5 
FIELD=LOCK=CH/2 
EN[IL 

LINE=02 

* 

FIELD=SHIP=CH/5 
ENDL 

LINE=03 

* 

FIELD=ITEM=CH/4 
FIELD=QUAN=CN/4.0 
EN[IL 

SECONDARY-REFERENCES 
BILL=VOL=50,ACCESS=RANDOM/l 
SHIP=VOL=50,ACCESS=RANDOM/l 
ITEM=VOL=200,ACCESS=RANDOM/l 
END. 

The following DDL listings are for KIF example files. 

Item File 

FILE=ITEM,TYPE=KIF 

* ID=ITMN=CH/4,DUP=Y,MOD=N 
* 
LINE=Ol 
FIELD=ITMN=CH/4 
FIELD=DE8C=CH/20 
FIELD=UPRC=CN/6.3 
FIELD=QTYO=CN/4.0 
FIELD=QTYH=CN/4.0 
ENDL 

* END. 

2276554·9701 

DDL Listings for Example Files 

0-3 



DDL Listings for Example Files 

0-4 

Customer Fi Ie 

FILE=CUST,TYPE=KIF 

* ID=CUSN=CH/5,DUP=Y,MOD=N 

* LINE=Ol 
FIELD=CUSN=CH/5 
FIELD=NAME=CH/20 
GROUP=ADRS 
FIELD=STRT=CH/20 
FIELD=CITY=CH/20 
FIELD=STAT=CH/2 
FIELD=ZIPC=CH/5 
ENDG 
FIELD=CRED=CH/20 
ENDL 

* END. 

PAY1 File 

FILE=PAY1,TYPE=KIF,TAG 

* ID=MNUM=CN/6.0,DUP=Y,MOD=N 
* LINE=Ol 
FIELD=TAG1=IS/2,VALUE=1 
FIELD=MNUM=CN/6.0 
GROUP=ADDR 
FIELD=MNAM=CH/20 
FIELD=MSTR=CH/20 
FIELD=MCTY=CH/15 
FIELD=MSTT=CH/2 
FIELD=MZIP=CN/5.0 
ENDG 
FIELD=MSSN=CN/9.0 
ENDL 
* 
LINE=CU 
FIELD=TAG2=IS/2,VALUE=2 
FIELD=MNUM=CN/6.0 
F I ELD=M,.JOB=CH 11 I) 

FIELD=MLOC=CH/l0 
FIELD=MDEP=CH/15 
FIELD=MTMR=CH/l 
FIELD=MTES=CN/2.0 
FIELD=MTEX=CN/2.0 
ENDL 

2276554·9701 



* 
LINE=CR 
FIELD=TAG3=IS/27VALUE=3 
FIELD=MNUM=CN/6.0 
FIELD=MDDT=CN/S.2 
FIELD=MPVP=CN/2.0 
FIELD=MRAT=CN/7.2 
FIELD=MCOM=CN/3.3 
FIELD=MSLS=CS/l1.3 
ENDL 
* 
LINE=ED 
FIELD=TAG4=IS/27VALUE=4 
FIELD=MNUM=CN/6.0 
FIELD=DEGR=CH/3 
FIELD=VEAR=CN/4.0 
FIELD=COLL=CH/20 
FIELD=GPA=CN/2.1 
ENDL 

* LINE=PE 
FIELD=TAG5=IS/27VALUE=5 
FIELD=MNUM=CN/6.0 
F I ELD=.JOBT=CH/20 
FIELD=COMP=CH/25 
FIELD=STAT=CH/2 
FIELD=PSAL=CN/7.2 
ENDL 

* LINE=PP 
FIELD=TAG6=IS/27VALUE=6 
FIELD=MNUM=CN/6.0 
FIELD=PLOC=CH/I0 
FIELD=PDEP=CH/15 
FIELD=P.JOB=CH/I0 
ENDL 
* 
SECONDARV-REFERENCES 
MSSN7DUP=V7MOD=V 
END. 

2276554-9701 

DDL Listings for Example Files 

0-5 



DDL Listings for Example Files 

0-6 

Sales Order File 

FILE=SOFL, TYPE=KIF, TAG 
* 
ID=SONM=CH/6,DUP=Y,MOD=N 

* LINE=BL 
FIELD=TAG1=IS/2,VALUE=1 
F I ELD=!:::ONM=CH I 6 
FIELD=BILL=CH/5 
F I ELD=LOCI<=CH/2 
ENDL 

* LINE=02 
FIELD=TAG2=IS/2,VALUE=2 
FIELD=SONM=CH/6 
FIELD=SHIP=CH/5 
ENDL 

* LINE=O:::: 
FIELD=TAG3=IS/2,VALUE=3 
FIELD=SONM=CH/6 
FIELD=SITM=CH/4 
FIELD=QUAN=CN/4.0 
ENDL 
SECONDARY-REFERENCES 
BILL, DUP=Y, MOD=Y 
SHIP, DUP=Y,MOD=Y 
SITM, DUP=Y, MOD=Y 
END. 

2276554·9701 



Appendix E 

Example Query Application 

E.1 GENERAL 

This appendix describes a simple way to produce interactive data-retrieval applications for 
DBMS-990 and Query-990 users. The application described displays a predefined report based on 
variable selection criteria. Some examples are as follows: 

• A personnel report lists an employee's name, department, job title, mailing address, 
social security number, and previous work experience after a user enters the employee 
number. 

• A sales organization report displays current credit information for a specified customer. 

• A report for an airline ticket agent shows the remaining seats on a specified flight, or 
whether a certain passenger's reservation is still active and the corresponding flight 
number. 

The example in this appendix uses the Query and SCI lang uages. For information on the SCI 
language, consult the Model 990 Computer DNOS System Command Interpreter (SCI) Reference 
Manual. 

E.2 CREATING THE PROCEDURE 

To generate the appropriate report, first develop an SCI procedure to prompt the operator for the 
selection criteria (for example, employee number, customer number, or flight number). Then, 
within the same procedure, use the SCI primitive .DATA to build the Query statement. The follow­
ing Query displays information for the employee whose number is entered by the operator. 

LIST IIMASTER EMPLOYEE NUMBER =11 MNUM 
MNAM MSTR MCTY MSTT MZIP HEADER SKIP 
"NAME ADDRESS"; 
MJOB MLOC MDE.p HEADER SKIP "CURRENT 
"T I TLE LOCAT I ON DEPARTMENT" j 

PE HEADER SKIP "PREVIOUS JOBS II 
IITITLE COMPANY 

NO HEADER HEADER "**** MASTER EMPLOYEE 
FROM PAY1 

WHERE MNUM EQ '~.EMPNO' 
BY KEY BY LIST 

2276554-9701 

II SSNi = \I MSSNi 

JOB" 

STATE SALARY" i 
INFORMATION ****" SKIP 

E-1 



Example Query Application 

The employee number entered is substituted for '@$EMPNO' by using the SUBSTITUTION option 
of the SCI primitive .DATA. Because the SUBSTITUTION option removes double quotes, thereby 
invalidating the report heading definitions, divide the Query at the point shown by the line of 
asterisks. This line separates the fixed part, which contains all of the double quotes, from the 
variable part, which contains the selection criteria (employee number). 

Next, execute the Query using the .BID primitive; finally, display the results using the .SHOW 
primitive. 

The following steps build an example employee information report using the data base file PAY1. 
You can follow these steps, with appropriate modifications, to create similar reports. 

E-2 

1. Choose a name for your SCI command. This one is called EMPINFO and displays the 
following prompts: 

QUERY ON EMPLOYEE INFO 
PASSWORD: 

ENTER EMPLOYEE NUMBER: 
VIEW GENERATED QUERY: 

The password is required only if security is installed on your system. The operator 
enters the employee number, which is then inserted into the text of a Query statement. 
The operator can choose whether or not to view the generated report. 

2. Use the Text Editor to create an SCI language procedure to display the desired prompts. 
The following lines are needed for EMPINFO: 

EMPINFO (QUERY ON EMPLOYEE INFO), 
PASSWORD = STRING, 
ENTER EMPLOYEE NUMBER = INT, 
VIEW GENERATED QUERY = YESNO 
• SYN $EMPNO = "8(ENTER EMPLOYEE NUMBER II 

The .SYN primitive assigns the employee number entered to the synonym $EMPNO. 

3. Enter the first part of the Query in a .DATA primitive without any options. Send the out­
put of .DATA (the Query statement) to a file, such as .QSRC@$$ST in the example. It is 
good practice to use a file name of six or fewer characters with the synonym @$$ST 
concatenated to it. $$ST is the operator's station number. Using a file name with @$$ST 
appended to it allows all stations to use the command simultaneously. The first .DATA 
primitive for EMPINFO is as follows: 

2276554·9701 



Example Query Application 

* * Build the Ouery, beginning with the fixed portion 

* · DATA . GSRC@$$ST 
LIST "MASTER EMPLOYEE NUMBER =" MNUM \I SSN* = " MSSN,; 

HNAH HSTR HCTY MSTT HZIP HEADER SKIP 
II NAME ADDRESS II ,; 
H~B MLOC HDEP HEADER SKIP "CURRENT JOBII 
IITITLE LOCATION DEPARTMENT",; 
PE HEADER SKIP "PREVIOUS ,",OBS" 
"TITLE COMPANY STATE SALARY"; 

NO HEADER HEADER " **** MASTER EMPLOYEE INFORMATION ****" SKIP 
FROM PAY1 
· EOD 

4. Next, define a second .DATA primitive with the EXTEND and SUBSTITUTION options set 
to YES, as follows: 

* * Append the variable portion, inserting the 
* emplovee number into the condition 

* . DATA .GSRC@$$ST, EXTEND = YES, SUBSTITUTION = YES 
WHERE MNUM EO '@$EMPNO' 
BY KEY BY LIST 
· EOD 

The EXTEND option appends this second .DATA primitive to the previous one, com­
pleting the Query statement. 

2276554-9701 E-3 



Example Query Application 

E·4 

5. Add the following to execute the Query and display the listing: 

* * Bid Guery 
i!:' 

.BID TASK=OCO, LUNO=S$GUERY.PROG, 

* PARMS=(2000, 3000, @$MR$, &PASSWORD, 60, 80, 
.LISTIN@$$ST, R, NO, NO, &VIEW GENERATED GUERY, 
NO, NO, ,.GSRC@$$ST, .LISTIN@$$ST, , , ,@$MT$) 

* * Display the listing file 
-If 

. SHOW .LISTIN@$$ST 
* * Delete the employee number synonym and the listing file 

* . SYN $EMPNO= II II 
OF P=.LISTIN@$$ST 

Depending on the application, you might want to make the following changes to the 
.BID parameters: 

a. Change the file name .QSRC@$$ST; be sure to match the file name used in the 
.DATA sections. 

b. Replace the string &VIEW GENERATED QUERY with NO if you choose not to use 
this prompt. (Also, remove VIEW GENERATED QUERY from the list of prompts.) 

c. To direct the output to a printer or file, replace the pathname .LlSTIN@$$ST with 
the printer or file name and delete the .SHOW command. 

6. Store the file containing your command procedure under the directory .S$CMDS. The 
EMPINFO command procedure file would have the pathname .S$CMDS.EMPINFO. The 
complete command procedure is as follows: 

2276554-9701 



2276554·9701 

Example Query Application 

EMPINFO (QUERY ON EMPLOYEE INFO), 
PASSWORD = STRING, 
ENTER EMPLOYEE NUMBER = INJT, 
VIEW GENERATED QUERY = YESNO 
.SYN $EMPNO = II&CENTER EMPLOYEE NUMBER II 
{I' 

* Build the query, beginning with the ~ixed portion 
11: 

. DATA .QSRC@$$ST 
LIST "MASTER EMPLOYEE NUMBER =" MNUM " SSN* = " MSSN; 

'MNAM MSTR MCTY MSTT MZIP HEADER SKIP 
II NAME ADDRESS"; 
MJOB MLOC MDEP HEADER SKIP IICURRENT JOB" 
IITITLE . LOCATION DEPARTMENT"; 
PE HEADER SKIP "PREVIOUS JOBS" 
"TITLE COMPANY STATE SALARYll j 

NO HEADER HEADER II **** MASTER EMPLOYEE INFORMATION ****" SKIP 
FROM PAYl 
· EOO 
************************************************************** 
* * Append the variable portion, inserting the 
* employee number into the condition 

* · DATA .GSRC@$$ST. EXTEND = YES. SUBSTITUTION YES 
WHERE MNUM EQ '@$EMPNO' 
BY KEY BY LIST 
· EOO 
* * Bid Query 

* .BIO TASK=OCO, LUNO=S$QUERY.PROG, 

* PARMS={2000, 3000, @$HR$, &PASSWORD, 60, 80, 
.LISTIN@$$ST, R, NO, NO, &VIEW GENERATED QUERY, 
NO, NO, ,. QSRC@$$ST, . LISTIN@$$ST, , , ,@$MT$) 

* * Display the listing file 

* · SHOW . LISTIN@$$ST 

* * Delete the employee number synonym and the listing file 

* .3YN '$EMPNO="" 
DF P= LISTIN@$$ST 

E-5 



Example Query Application 

E-6 

7. Enter the name of the command (EMPINFO) to execute the procedure. The following 
prompts appear on the screen: 

QUERY ON EMPLOYEE INFO 
PASSWORD: 

ENTER EMPLOYEE NUMBER: 
VIEW GENERATED QUERY: 

The operator responds as follows: 

QUERY ON EMPLOYEE INFO 
PASSWORD: 

ENTER EMPLOYEE NUMBER: 
VIEW GENERATED QUERY: 

ZZZZ 
55555 
YES 

As a result, the following appears on the screen: 

DNGUERY 1.3.0 82.167 GUERY-990 06/07/82 13:32: 11 PAGE 
LIST "MASTER EMPLOYEE NUMBER =" MNUM SSN# = ,. MSSNi 
MNAM MSTR MCTY MSTTMZIP HEADER SKIP 
II NAME ADDRESS IIi 
MJOB MLOC MDEP HEADER SKIP "CURRENT JOB II 
UTT.,..I r­

I J. It....t::. 
• M}"\ATTM.d 
t....u .... ,." A.U''I 

T\I:'OAOTMI:'IlI'TII • 
IJ'L..r "no I "I~I" I , 

PE HEADER SKIP IIPREVIOUS JOBS II 
"TITLE COMPANY STATE SALARY II i 

NO HEADER HEADER II **** MASTER EMPLOYEE INFORMATION ****" SKIP 
FROM PAYl 
WHERE MNUM EQ '55555' 
BY KEY BY LIST 

**** MASTER EMPLOYEE INFORMATION **** 

Ml-tSTER EMPLOYEE ~..uMBER = 55555 SSN# 875247964 

NAME ADDRESS 
PAse HAL JIMMY 1000 ACORN OAKS LIBERTY HILL MO 79666 

CURRENT JOB 
TITLE LOCATION DEPARTMENT 
VICE PRES MT. VIEW SALES 

PREVIOUS ·JOBS 
TITLE 
SALESMAN 

COMPANY 
EQUIPMENT MFG. 

STATE SALARY 
CA 1500. 00 

2276554-9701 



Alphabetical Index 

Introduction 

HOW TO USE INDEX 

The index, table of contents, list of illustrations, and list of tables are used in conjunction to ob­
tain the location of the desired subject. Once the subject or topic has been located in the index, 
use the appropriate paragraph number, figure number, or table number to obtain the corre­
sponding page number from the table of contents, list of illustrations, or list of tables. 

INDEX ENTRIES 

The following index lists key words and concepts from the subject material of the manual together 
with the area(s) in the manual that supply major coverage of the listed concept. The numbers along 
the right side of the listing reference the following manual areas: 

• Sections - Reference to Sections of the manual appear as "Sections x" with the sym­
bol x representing any numeric quantity. 

• Appendixes - Reference to Appendixes of the manual appear as "Appendix y" with the 
symbol y representing any capital letter. 

• Paragraphs - Reference to paragraphs of the manual appear as a series of 
alphanumeric or numeric characters punctuated with decimal points. Only the first 
character of the string may be a letter; all subsequent characters are numbers. The first 
character refers to the section or appendix of the manual in which the paragraph may be 
found. 

• Tables - References to tables in the manual are represented by the capital letter T 
followed immediately by another alphanumeric character (representing the section or 
appendix of the manual containing the table). The second character is followed by a 
dash (-) and a number. 

Tx-yy 

• Figures - References to figures in the manual are represented by the capital letter F 
followed immediately by another alphanumeric character (representing the section or 
appendix of the manual containing the figure). The second character is followed by a 
dash (-) and a number. 

Fx-yy 

• Other entries in the Index - References to other entries in the index preceded by the 
word "See" followed by the referenced entry. 

2276554·9701 Index-1 



Index 

AFTER Feature ..................... 3.3.3 
Alias Elements ..................... 2.3.2 
Alternate Collating Sequences .. Appendix C 
ANY, Quantifier ..................... 4.5.3 
Application Programs, Change Data 

Constants ...................... 4.13.2 
Arithmetic, Mixed Mode .............. 4.S.4 

TRACE .......................... 4.7.1 
UNIQUE .......................... 4.11 
WHERE ......................... 4.5.1 

Clauses: 
Introduction ................... ' .... 4.1 
Language ........................ 2.2.2 

COBOL Program ................... 6.11.4 
Example ........................ 6.11.3 

BEFORE Feature .................... 3.3.3 
Braces ............................ A.1.2 

Linking ......................... 6.12.3 
Command: 

Brackets .......................... A.1.2 GQUERY .......................... 7.2 
BREAK Clause ...................... 4.10 QCOMPILE ...................... 2.6.2 

Example ................... F4-2S, F4-30 
Syntax ........................... 4.10 

BY Clause ........................... 4.8 
Syntax ............................ 4.8 

BY KEY ............................ 4.8.2 
Example .................... F3-5, F4-21 

BY KEY BY LIST ..................... 4.8.1 
Example .............. F3-4, F4-1S, F4-20 

BY LIST ............................ 4.8.3 
Example .............. F3-6, F4-22, F4-23 

Query-SSO ........................ 2.6.1 
Compile and Initialize, QCOMP ......... 6.3 
Complex: 

Condition Example ............... F4-12 
Conditions ..................... 4.5.1.3 
SORT ............................ F3-3 

Condition Example: 
Complex ........................ F4-12 
Line-Level ........................ F4-8 
Simple ........................... F4-S 

Conditions: 
Calculation Data Types ........ Appendix B 
Calling Format Subroutines ............ 6.2 
Change Data Constants .......... 2.3.5, 4.13 

Application Programs ............. 4.13.2 
Example ........................ F4-38 
Format ......................... 4.13.3 
Stand-Alone Query ............... 4.13.3 

Clause: 
BREAK .......................... 4.10 

Complex ....................... 4.5.1.3 
Line-Level ............... 4.5,4.5.4,5.2.2 
Record-Level ............. 4.5,4.5.2,5.2.1 
Simple ......................... 4.5.1.1 

Constants: 
Change Data ..................... 2.3.5 
Elements ........................ 2.3.5 

Special ........................ 2.3.6 
Example, Change Data ............ F4-38 

BY ............................... 4.8 FALSE ......................... 4.5.1.1 
CONTENTS ...................... 3.3.1 Heading, Special .................. 4.3.4 
DEFINE ........................... 4.S Literal ........................... 2.3.5 
FROM .............................. 4.2 
HEADER and FOOTING ............. 4.3 

NULL .......................... 4.5.1.1 
Numeric ......................... 2.3.5 

IN ............................. 4.12.4 
LINKED BY ....................... 4.12 
NO HEADER ..................... 4.3.5 
POSITION ....................... 3.3.2 

TRUE .......................... 4.5.1.1 
CONTENTS Clause .................. 3.3.1 
Control Keys ......................... 7.3 
COU NT Operator .................... 4.S.5 

SORT ............................. 4.6 
THRU .......................... 4.12.3 
TRACE ................. 3.5.1,4.7, F4-18 
UNIQUE .......................... 4.11 
WHERE ........................... 4.5 

Clause Example: 
BREAK .................... F4-2S, F4-30 
DEFINE ......................... F4-24 
NO HEADER ...................... F4-5 
THRU ........................... F4-36 

Clause Syntax: 
BREAK .......................... 4.10 
BY ............................... 4.8 
DEFINE ......................... 4.S.1 
FROM ........................... 4.2.1 

Data Base Management System ......... 1.4 
Data Dictionary ..................... 1.4.2 

File Structures .................... 1.4.2 
DBMS-SSO ........................... 1.4 

File Structures .................... 1.4.1 
DDL Listings File ............. Appendix D 
Default Heading Example ............. F4-3 
DEFINE Clause ....................... 4.S 

Example .................. F4-24, F4-25, 
F4-26, F4-27, F4-28 

Expression ....................... 4.S.3 
Syntax ...................... 4.S.1 , 4.S.3 

Definition: 
File ............................... 1.4 

HEADER and FOOTING ............ 4.3.1 Syntax ............................ A.2 
LINKED BY ...................... 4.12.1 DELETE Function ..................... 3.5 
SORT ........................... 4.6.1 Description, Query General ....... Section 2 
THRU .......................... 4.12.3 

Index-2 2276554·9701 



Index 

Editor, Query-990 .................... 2.6.3 File Structures: 
Elements: 

Alias ............................ 2.3.2 
Data Dictionary ................... 1.4.2 
DBMS-990 ....................... 1.4.1 

Constants ....................... 2.3.5 Files: 
File ............................. 2.3.1 Key Indexed ...................... 1.4.2 
Report Li ne ...................... 3.2.1 Relative Record ................... 1.4.2 
Reserved Words .................. 2.3.4 Sequential ....................... 1.4.2 
Special Constants ................. 2.3.6 
Variables ........................ 2.3.3 

FIRST Feature ...................... 3.3.3 
Footing ............................ 3.2.2 

Ellipsis ............................ A.1.3 
End Query Processor, QEN D ........... 6.9 

Format, Change Data Constants ...... 4.13.3 
Formatting: 

Error Messages ................. Section 8 
EVERY, Quantifier ................... 4.5.3 

Example ......................... F4-6 
Output .......................... 4.4.1 

Example: 
BREAK Clause ............. F4-29, F4-30 

FORTRAN Program: 
Example ........................ 6.11.2 

BY KEY .................... F3-5, F4-21 Linking ......................... 6.12.2 
BY KEY BY LIST ........ F3-4, F4-19, F4-20 FROM Clause ........................ 4.2 
BY LIST ............... F3-6, F4-22, F4-23 Syntax .......................... 4.2.1 
Change Data Constants ........... F4-38 
COBOL Program ................. 6.11.3 

Function: 
DELETE ........................... 3.5 

Complex Condition ............... F4-12 
Default Heading ................... F4-3 
DEFINE Clause ............ F4-24, F4-25, 

INSERT ........................... 3.3 
LIST .......... , ................... 3.2 
UPDATE .......................... 3.4 

F4-26, F4-27, F4-28 
Formatting ....................... F4-6 
FORTRAN Program ............... 6.11.2 
Guided Query ................ 7.4.6, F2-2 

Functions Language ................. 2.2.1 

General Description, Query ....... Section 2 
GQUERY ............................ 7.2 

Heading ......................... F4-1 
Line-Level: 

Condition ...................... F4-8 

Guided Query ........................ 7.1 
Example .................... 7.4.6, F2-2 
Introduction ....................... 2.5 

SORT ... , ..................... F4-17 Screens ........................... 7.4 
LI N KED BY Clause ............... F4-34 
NO H EADER Clause ............... F4-5 

Steps ........................... 7.4.1 
Termination Screens .............. 7.4.5 

Pascal Prog ram .................. 6.11.1 
Query Application ........... Appendix E HEADER and FOOTING Clause ......... 4.3 
Record-Level .......... F4-7, F4-13, F4-14 Syntax .......................... 4.3.1 

SORT ......................... F4-15 HEADER and FOOTING, Main ......... 4.3.2 
Relational Operators .............. F4-1 0 HEADER and FOOTING, Report Line ... 4.3.3 
Report Line Heading ............... F4-2 Heading: 

Example ......................... F4-1 
Simple Condition .................. F4-9 Defau It ........................ F4-3 
SPACE .......................... F4-6 Report Li ne ..................... F4-2 
Special Header .................... F4-4 Special Constants ................. 4.3.4 
String Operators ................. F4-11 
TAB ............... " ............. F4-6 I N Clause ......................... 4.12.4 
TH RU Clause .................... F4-36 
UNIQUE Clause ....... F4-31 , F4-32, F4~33 

Initialize Query Interpreter, QINIT ....... 6.4 
INSERT Function ..................... 3.3 

Execute and List Query Interface Subroutines ................ 6.10 
Results, QEXEC .................... 6.5 

Executing the Query Processor ......... 2.6 
Expression, DEFINE Clause .......... 4.9.3 

Linking .......................... 6.12 
Introduction: 

Clauses ........................... 4.1 

FALSE Constants .................. 4.5.1.1 
Guided Query ...................... 2.5 

Feature: 
AFTER .......................... 3.3.3 

Key Indexed Files ................... 1.4.2 
Keys, Control ........................ 7.3 

BEFORE ......................... 3.3.3 
FIRST ........................... 3.3.3 Language: 

File: Clauses ......................... 2.2.2 
DDL Listings ............... Appendix D Functions ........................ 2.2.1 
Definition ......................... 1.4 Punctuation ...................... 2.2.3 
Elements ........................ 2.3.1 Query-990 ......................... 2.2 

2276554·9701 Index-3 



Index 

Line-Level: Pascal ........................ 6.12.1 
Condition Example ................ F4-B Prompts, Query-990 ................. 2.6.1 
Conditions ............... 4.5,4.5.4,5.2.2 Punctuation: 
SO RT ....................... 4.6.3, F3-2 Language ........................ 2.2.3 

Example ...................... F4-17 Query ........................... F2-1 
LINKED BY Clause ................... 4.12 

Example ........................ F4-34 QCLR .............................. . 6.B 
Syntax ......................... 4.12.1 QCOMP ............................. 6.3 

Linking: 
CO BO L Prog ram ................. 6.12.3 
FORTRAN Program ............... 6.12.2 
Interface Subroutines .............. 6.12 

QCOM PI LE ........................ 2.6.2 
QEND .............................. 6.9 
QEXEC .............................. 6.5 
QINIT ............................... 6.4 

Pascal Prog ram .................. 6.12.1 QRECV ............................. 6.6 
LIST Function ........................ 3.2 QSEND ............................. 6.7 
Literal Constants .................... 2.3.5 Quantifier: 
Literals ............................ 4.4.5 ANy ............................ 4.5.3 

EVERY .......................... 4.5.3 
Main HEADER and FOOTING ......... 4.3.2 Query: 
Messages, Error ................ Section B Application, Example ........ Appendix E 
Mixed Mode Arithmetic .............. 4.9.4 Example, Guided .................. F2-2 

General Description ........... Section 2 
NO H EADER Clause ................. 4.3.5 Guided ............................ 7.1 

Example ......................... F4-5 Proced u re ......................... E.2 
NULL Constants ................... 4.5.1.1 Punctuation ...................... F2-1 
Numeric Constants .................. 2.3.5 Query-990: 

Command ....................... 2.6.1 
Operator: 

COU NT .......................... 4.9.5 
TOTAL .......................... 4.9.5 

Operators .......................... 4.9.3 
Relational ...................... 4.5.1.1 

Editor ........................... 2.6.3 
Language ......................... 2.2 
Optimization ....................... 5.2 
Processor ......................... 2.6 
Prom pts ......................... 2.6.1 

Example ...................... F4-10 
Stri ng .......................... 4.5.1.2 

Example ...................... F4-11 

Statement Elements ................ 2.3 
Statement Syntax ................... 2.4 
Syntax .................... Appendix A 

Optimization, Query-990 ............... 5.2 
Order Indicators .................... 4.6.1 Receive Query Data, QRECV ............ 6.6 
Output: Record-Leve I: 

Formatting ....................... 4.4.1 
PAGE ........................... 4.4.4 

Conditions ............... 4.5,4.5.2,5.2.1 
Example .............. F4-7, F4-13, F4-14 

Report ............................ 4.4 SORT ................. 4.6.2, F3-1, F4-16 
SKiP ............................ 4.4.4 
SPACE .......................... 4.4.3 

Example ...................... F4-15 
Reinitialize Query Processor, QCLR ..... 6.B 

TAB ............................. 4.4.2 Relational Operators ............... 4.5.1.1 
Unformatted ....................... 4.4 Example ........................ F4-10 

Relative Record Files ................ 1.4.2 
PAGE Output ....................... 4.4.4 Report: 
Pascal Program: 

Example ........................ 6.11.1 
Output ............................ 4.4 
Specifications .................... 7.4.2 

Linking ......................... 6.12.1 Report Li ne: 
POSITION Clause ................... 3.3.2 Elements ........................ 3.2.1 
Pri mary Key ........................ 3.3.4 HEADER and FOOTING ............ 4.3.3 
Processor, Query-990 ................. 2.6 
Program: 

Heading Example ................. F4-2 
Syntax .......................... 3.2.2 

COBOL ......................... 6.11.3 Reserved Words Elements ............ 2.3.4 
Example: 

COBOL ....................... 6.11.3 Screens Guided Query ................ 7.4 
FORTRAN .................... 6.11.2 Termination ...................... 7.4.5 
Pascal ........................ 6.11.1 Send Change Data Constants, QSEN D ... 6.7 

Linking: 
COBOL ....................... 6.12.3 

Sequential Files .................... 1.4.2 
Simple: 

FORTRAN .................... 6.12.2 Condition Example ................ F4-9 

Index-4 2276554·9701 



Index 

Conditions ..................... 4.5.1.1 LINKED BY Clause ............... 4.12.1 
SKI P Output ........................ 4.4.4 
SORT Clause ........................ 4.6 

Query-990 .................. Appendix A 
Statement ....................... 2.4 

Complex ......................... F3-3 Report Li ne ...................... 3.2.2 
Example, Line-Level .............. F4-17 SORT Clause ..................... 4.6.1 
Example, Record-Level ............ F4-15 TH RU Clause .................... 4.12.3 
Line-Level ................... 4.6.3, F3-2 TRACE Clause .................... 4.7.1 
Record-Level ........... 4.6.2, F3-1, F4-16 UNIQUE Clause ................... 4.11 
Syntax .......................... 4.6.1 WHERE Clause ................... 4.5.1 

SPACE: 
Example ......................... F4-6 

System Heading .................... 4.3.5 

Output .......................... 4.4.3 TAB: 
Special Constants: 

Elements ........................ 2.3.6 
Heading ......................... 4.3.4 

Special Header Example .............. F4-4 
Specifications, Report ............... 7.4.2 

Example ......................... F4-6 
Output .......................... 4.4.2 

Termination Screens, Guided Query .... 7.4.5 
TH RU Clause ...................... 4.12.3 

Example ........................ F4-36 
Stand-Alone Query, Change Data 

Constants ...................... 4.13.1 
Syntax ......................... 4.12.3 

TOTAL Operator .................... 4.9.5 
Statement Elements, Query-990 ......... 2.3 
Statement Syntax, Query-990 ........... 2.4 
Steps, Guided Query ................. 7.4.1 

TRACE Clause ............. 3.5.1,4.7, F4-18 
Syntax .......................... 4.7.1 

TRU E Constants ................... 4.5.1.1 
String Operators ................... 4.5.1.2 

Example ........................ F4-11 
Subroutines: 

Unformatted Output. .................. 4.4 
UN IQUE Clause ..................... 4.11 

Calling Format ..................... 6.2 
Interface ......................... 6.10 

Example ............. F4-31, F4-32, F4-33 
Syntax ........................... 4.11 

Linking Interface .................. 6.12 UPDATE Function .................... 3.4 
Syntax: 

BREAK Clause .................... 4.10 Variables Elements .................. 2.3.3 
BY Clause ......................... 4.8 
DEFI N E Clause .............. 4.9.1, 4.9.3 
Definition ......................... A.2 
FROM Clause .................... 4.2.1 
HEADER and FOOTING Clause ...... 4.3.1 

WH ERE Clause ....................... 4.5 
Syntax .......................... 4.5.1 

Words ....................... Appendix A 
Elements, Reserved ............... 2.3.4 

2276554·9701 Index-S/lndex-6 





w 
'z 
::::; 
CJ 
Z 
o 
-' c( ... 
::=) 
o 

I· 

I 
I 
I 
I 
I 
I 
I 

USER'S RESPONSE SHEET 

Manual Title: Query-990 User's Guide (2276554-9701) 

Manual Date: _1_5_J_u...::;ly_1_9_B_2 _________ _ Date of This Letter: - _____ _ 

User's Name: _____________ _ Telephone: _________ _ 

Company: ______________ _ Office/Department: ______ _ 

Street Address: __________________________ _ 

City/State/Zip Code: _________________________ _ 

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the 
following space. If there are any other suggestions that you wish to make, feel free to include 
them. Thank you. 

Location In Maiiuai Comment/Suggestion 

NO POSTAGE NECESSARY IF MAILED IN U.S.A. 
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL 



FOLD 

111111 

(~~~!~E~E~IT~:~~Y !1!IT~) 
POSTAGE WILL BE PAID BY ADDRESSEE 

TEXAS INSTRUMENTS INCORPORATED 
DIGITAL SYSTEMS GROUP 

ATTN: TECHNICAL PUBLICATIONS 
P.O. Box 2909 MIS 2146 
Austin, Texas 78769 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 





TEXAS INSTRUMENTS 
INCORPORATED 

DIGITAL SYSTEMS GROUP 
P.O. BOX 2909· AUSTIN, TEXAS 78769 


