DX10 OPERATING SYSTEM %

Concepts
and Facilities

Volume |

TEXAS INSTRUMENTS

i ey L .
S, . .
s s oo .

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES
Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer

margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

DX10 Operating System Concepts and Facilities; VQIumé 1(946250-9701)

Originallssue i, August 1977
Revision. i March 1978
Revision..December 1979
Revision. April 1981
Revision. i September 1982
Revision. September 1983
Changet i, January 1985

Total number of pages in this publication is 144 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.
Cover 1 X 0 35/36............... 1
Effective Pages....... 1 b 1 1. 1
Eff. Pages Cont. 1 Xi=Xil vovniiiaL, 0 42, 0
fli-iv.. o oo 1 1-1-1-2..........0 43-46.............. 1
Vo e 0 21-26........... .. 0 5. 0
Vi 1 31-32.............. 0 52. . . 1
Vil Lo 0 33 1 53-54.............. 0
Vil oo 1 4. 0 61-66.............. 0

The computers, as well as the programs that Tl has created to use with them, are tools that
can help people better manage the information used in their business; but tools—including
Tl computers—cannot replace sound judgment nor make the manager’s business
decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment af what is best for his or her business.

__

© 1977, 1978, 1979, 1981, 1982, 1983, 1985, Texas Instruments Incorporated. All Rights Reserved
Printed in U.S.A.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or

by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of Texas Instruments Incorporated.

“

LIST OF EFFECTIVE PAGES

”

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES
Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer

margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

DX10 Operating System Concepts and Facilities, Volume 1 (946250-9701)

Continued:

Continued:

PAGE CHANGE PAGE CHANGE PAGE CHANGE

NO. NO. NO. NO. NO. NO.

71-72 .0 i 0 Glossary-1 -

81-82....c00vvinnnn 0 Glossary-18 0

91-93........ .00 0 Index-1-Index-2 1

Od . 1 index-3/Index-4 0

10-1-10-10........... 0 Masterindex-1 0

2 s 1 Masterindex-2 1

11-2-11-21........... 0 Master Index-3 -

11-22-11-28.......... 1 Masterindex-6...... 0

11-24-11-26.......... 0 User’s Response...... 1

121-128............ 0 Business Reply 1

131-132............ 0 InsideCover 1

A1-A14 0 1070)77-1 (N 1

|

1046-95920€C L026-9¢¥052¢
10£6-95680£2 enuey apiny
8piny 280UaJ343y 1011p3 10.6-99¥0S22 §,JasM Jojessiuipy
$,19s I0jRlaURD abed sjuswnuisu] 8pIng aseg eleq 0LxXa
weiboid 108909 0LXa sexal 3diloLtxXa s.48sM 066-419ND 01XQ
10£6-G2¥0522
10262859222 10.6-2529Y6 L026-16EVE2Z spiny s Jawwesboid
apIng apiny s asn abiaw/uos |lenuep aouaiajay wa)sAg juswabeuey
s,4as Areuonjoiqg eleq XQ@ 43)ndwod 066 19POW WHO4IL aseq eled 0+ Xa
sjenuep sjooj
AnAaponpold
1046-18989¢¢
lenuey souasajoy
8/-NVH140d 1026-£8920¢€C
1L026-860052C apINY s,498(¥ sed|ay
[euoIN [108$820.d 1026-969892C Jole|nwi3 0822/082€ 0k XA
uoneinbiyuo) [eosed | L [enuep suoisualx3
1026-G/20v2C V¥Si8/-Nvd1d0d 10£6-G902.¢22
V00g WelsAg ssauisng 1046°61G0.2¢ sping s Jojessdo
‘aping s Jojesedo lenuepy 10266298922 (S14) weysAsgng
20udlsaY fedsed | L apinn wLQEEQ‘_wO._Q fetiua) sjoway g1 Xa
10/6-¥£50.22 8/-NvH1HOS 01Xd
/pIny 10/6-8250.22 1046-¥50cL2¢
$.43sN 18peo] WOY apingy w.hmEEmhmohn_ 1046-81602¢2 fenuepy
|eosed (L 0LXAa [enuey 90Ud1d}2Y 10900 aduslejey wLwEEmhmo._&
¢0./6-81EEESE pue uoljeisuay
(onsawoq) 10266928062 10261250222 wayss (S14) weishsang
00€ walsAg sssuisng lenuep spIng s Jawweibold [euiua | ajowsy 0LXa
‘aping s Jojesado 9ouaiB4ey OISVE IL . 70902 0LXa
10£6-v560922
L06-8LEEEST 106725656 10£6-6050.22 apIny
(leuoijeusaju)) apiny s Jawweiboid lenuep $,1980 (SD)) 8iemp0s
00¢ WalsAg ssauisng (Il ©dY) J01eI8USD aouala)ay abenbue SUOHBOIUNWILLIOCY)
‘aping s,JojesadQ weiboid podey A|lQwassy 00066/066 SAIIOBIBIU| 0£2E O0LXA
sjenuepy alem}jos sjenuep sjenuepy
snoauejjaasiN abenbue suoneduUNWwWod
9026-0529V6
(1A dWNIOA) ¥026-0529v6 2026-0529v6
1026-2196Y6 [enuey AiaA0o9Y (Al Bwn|oA) (11 swnjop)
fenuew pue Buipoday Jou3 fenuew Joup3 1Xa aping suonesadg
9ousIajay 101Ip3 Yu wa)sAg BunesadQ 0L Xa w)sAg Bunesado 0Lxa walsAg Buneledo oLxa
10L6-€SL6ES S0.6-0529v6 £026-0G¢9v6 10£6-0G29¥6
uawinooq ubisaq (Aawnjop) 8ping (111 3Wwnjop) spIng (18WwnjoA)
WalsAS /¢ oses|sy Buiwwesboid swaisAs BulwuseiBoid uonesyddy saiji|10e4 pue sydeouod
wasAg bunesadQ gL Xa widskg bunesado oLXa wdjsAg buireledQ g1 XA waisAg bunesado 0L xa

sjenuepy waisAs bunesad 0L XA

sjenuejy axemijos 01Xd

Change 1

946250-9701

1026-86E¥£22
lenuey uonduossg

[BJSUSD 0ZELIN/00BAM

1026-2925¥6

uoneissdQ

pue uoie|[ElISU|
ispesay pied y08 9poi
181ndwod 066 19po

1046-2¥920€2

uotjesadQ pue
uone|[elIsu| weysAg ade
oieuben 0ogLLIN 1I9PON

L026-622976

uoljesadQ pue
uole|[elsuj weisAg ade|
oieube v6.6 1BPOW
181ndwo) 066 ISPOIN

1046-8690522
uolesadQ

pue uoiejelsuy)
SISSBYY [BUOIIBUISIU|
Ulm walsAg ysig
2|q!xal4 0001 A4 1I9POW
Ja1ndwo) 066 19POW

1016-9881922
uolesadQ pue
uolie|jeisu)
os1qg Addo|4
3NITIL 066

+0.26-1690522

lenuey uonesadg
pue uolie|EISU}
sisseyd [euone iU}
ylim waisAg osig
Addol4 008ad fepon
18ndwo) 066 1epow

1026-£525v6

uoneladQ pue
uolle||Bisuj WaisAg osiqg
Addol4 0084 19POW
J31ndwod 066 BPOW

L046-0¥190€2
uonesadQ pue
uoliejelsu] WalsAg
abesoig ssepy
¥008aQM/008AM

10,6°61££852

(saueg

walsAg ssauisng)
nunysia
Y008AM/008GM (PO
apIng s JojesadQ

10.6-692€€52

(seueg

we)sAg ssauisng)

Hun ysia
VY00SOM/00SAM 19po
apiny s ojesado

1026-1£920¢€2

|enuey uoneiadQ

pue uole|eisu| waisAg
3$13.00€SA I9POW

10/6-G196v6
uonesadQ pue
UoijB||e1SU} WaISAg
9810 002SA 19pPow
12IndWwo) 066 1I9POW

10.6-62920€2

lenuepy uonesadg

pue uoiejeisuj

waisAg %s1q 08SQA IBPOW
Jeindwog 066 19POW

10/6-88920€2

(sauas wajisAg
ssauisng) uonesado
pue uolje|jeisu| WasAg
abeiolg ssep
Y00SAM/00SAM

sjenuepy
891A8Qq abei0}s

10£6-0925¥6
uoneiadQ pue
uolie||eisu| wasAg
9s1g pesH buirop
19Indwo) 066 1I9POW

102671£29V6

uoneiadQ pue
uoiie([e1suj swalsAg
9$10 055Q/52Sd 19Pon
J8Indwo) 066 IBPO

L026°1929¥6

uoneiadQ pue
uonejieIsu| WalsAg osig
abpuues oLsa lepo
191ndwo) 066 19POW

1026-9vELLIET

(souag walsig
ssauisng) uonesadg
pue uolR|[RISU| WB)SAS
3810 00v1 Q0 J1eaul|itoey

1046-180z22

fenuey uolesadQ

pue uole|jelsu| WasAg
%S1Q 00¥1 a0 19PON

L0/6-28EvETe
uolessdo

pue uole|jeisu|
18juld Alifenp
18197 6GD1 1spo

10/6-6698922

lenuep uolesadg

pue uolejeISU]
WalsAg ialuld Aleny
19187 Gy Ispo
J2Indwog 066 |9POW

L0/6-€v920€2

(sauag waysig
ssauisng) uolleiadg pue
uole|feIsu| s1ajulld sul
009d7 PUe 00£d T SISpPOW

10.6-79£0522

fenuejy uoesadgp pue
uoiiejjeisuj siajuld suiq
00947 Pue 00ed 1 19po
18Indwo) 066 i2POW

10/6-9529¥6

uoneladQ pue
uolje|ieisuj siajuud aur
09c¢e pue 0gzz [13POo
191ndwog 066 1I9pow

1000-06861¢2
[fenuep s asn
I8jund 068 1Ispo

1026-02¢£€52

S8118S WalSAg

sseauisng Jojulid OY 08
12PON ‘@pIng s JojesadO

1026-56920€2

lenuepy uoijelado
puUE UCHE|[eISU}
J8iulld OY 0v8 1I9PO
181ndwo) 066 1PPOW

10.6-¥S¥052¢2
uonesadQ pue
uoljg[jeIsu| [euiuile |
Bleq HSM 028 I2POW
121ndwo) 066 IBPOW

1026-G2280¢22
{enuey s ojelsdo

BUILLIB] HSY 028 [BPOW

sjenuey
uug

1026-95282¢22

S89LIag WalsAg

ssauisng 18)ulid 018
19POW ‘apiny sJojesado

L0.6-0976£6
uonesadp

pue uoNEjEISU|
Jajuud 018 ISPOw
191ndwWoD 066 19POW

10.6-G£65922
[enuey sJojeladg
[eullls| OY 8/ 1epon

106719256

uonesadQ pue
uoiie|leisuj sieuig
2Ul7 885 PUB G0E SISPOW
s21ndwo) 066 19POW

L026-25YEv6

uonesadQ pue
uolejeisu) |leuiwia]
Aeidsig 190 €16 19PON
Jeindwog 066 Ispo

L026-€2VSP6

uonesadQ pue
uonejleisul reuiwual
Ae|dsiq 08pIA L16 19pO

Je1ndwos 066 19PO AeidsiQ OSPIA LEG 19POW

s|enuep
Jeutunia] Aeydsiqg

10£6-89€0622
fenuepy uonesado
pue uolje|EISU|
(LA3) feuiwa 09pIA
O1U0110813 0v6 1SPON
J81ndWod 066 19POW

1000-8226¢2C
uoiieiadQ pue
uoljg||e1su| [eURLIS |

1046-022££52

31185 WaIsAg
SSauISNg J9juUlld OY 0¥8
I9pOW ‘apiny s sojesadQ

10£6-G6920€2

lenuey uonelado
pue uonejeisu;
Ja)uld OY 0¥8 19PoW
Jayndwog 066 12POW

L0L6-¥G¥0G2C
uonjesadQ pue
uOiIB|[BISU| feUiuS |
Bleg HSH 028 19pow
191ndwos 066 18PCW

10265228022
[enuep sJoieisdo
fEUILIB | YSH 0Z8 I9POW

10/6-8£65922
fenuepy

s,J01e49dQ jBUILIS)
suolediunwwo)
282 19POW

L0L6-2£6G92C
lenuep

s JojesadQ [euiwia)
SUOIEDIUNWIWIOD

10.6-9€65922
renuepy sJojes2do
[BUILLIB | HSY €87 PO

10£6-G99€022
lenuepy
SWoISAS Sfeuswa |

Klowa 592/£92 siepon

1046-799€022
suononjsuj buneladg
G9.2/€9/ S18po

10.6-¥20v86
|lenuep
s JojesadQ [eulwis |

G8/ 19PO 3|qeuod Gyl 1I9POW
sjenuep
jeuiwray Adoy-pre

10.6-0£0v86
|enuep s.JojesadQ
[BUIWLIB | HGY €72 I9POW

10/6-29vEv6
uoilesadQ pue
uone|[eIsuj| feulwia
BleQ 4SH €¥L ISPON
121ndwo) 066 [SPOW

10/6-6525¥6
uoilesadp

pue uonejelsu|
Jeuiwa] eyeq
HSM/IYSY €82 18poW
J91ndwoD 066 12POW

104624 ¥5¥6
[enue aouaIaey

[euiwa | ajoway
1a1ndwog 066 1I9POW

[eulwa | ajoway
18INdwo 066 19POW

L0L6-¥E£S0L22
spiny
s,Jasq 19peo] WOY

10266202222
uonelsadQ pue
uoilejjelsuj uoisuedxy

aiempleH waisAg INITILNYD 066
191ndwo) O1/066 19POW
1026-8898922
2026-€502.2C apino
(uonyip3g onsewoq) S.49sn 481dNOD INITIL
fenuely Ja1ndwog 066 IBPOW
uolje|[eysu| sarempieH
(S1H) weishsang 10£6-8525v6

uonesadQ pue
uolie|fejsu| 2[Npow
BuiwweiBoid WOUd

1026-€50z222 1@ndwoD 066 [8POW
(uo1ipg ueadoin3)

fenueiy 10£6-60vS16

uolje|jeisu| asemple uoljeladQ pue

(S1Y) weishsgng uolje|eIsu} WAlSAS

SUOIIEDIUNWWOYD
133ndwoD 066 19POW

s|enuepy arempiey
snoauejjoasiy

!

sjenuepy axempieH 0 IXd

946250-9701

Change 1

Preface

This manual provides general background information about the DX10 operating system and
describes its features, concepts and facilities. It also contains a glossary and a master index.

This manual is one of a set of six volumes that describes the operational characteristics and
features of DX10. In addition to the six volumes, several support manuals are available for DX10
functions. Also each language supported by DX10 has its own associated manuals.

Become acquainted with these volumes and related DX10 manuals as necessary to prepare and
execute application programs under DX10. The following paragraphs each contain a brief com-
ment regarding the content of each volume. (The full titles and part numbers of all manuals asso-
ciated with the DX10 operating system are provided in the frontispiece.) The six volumes are as
follows:

Concepts and Facilities (Volume 1) includes features, concepts, and general background
information describing the DX10 operating system. It also contains a master subject index to help

you find the information you need.

The Operations Guide (Volume 1) contains information on how to perform an initial program load
(IPL start procedure) and how to log on and operate a terminal. Additionally, this manual contains
an introduction to your interface with DX10, the System Command Interpreter (SCI), and includes a
complete description of the SCl commands required to operate DX10. (The Text Editor and Link
Editor commands are not included in Volume !l but can be found in their respective manualis.
Debugger commands are in Volume 1ll.)

The Application Programming Guide (Volume Ill) contains information required by the application
programmer to prepare, modify, and execute application programs on DX10. Much of the material
is relevant to both high-level language programmers as well as assembly language programmers,
since it concerns program structure, program operation, file structure, and file 1/0. The SCI
programming language is included, since it is a major part of constructing applications under
DX10. Complete descriptions for nonprivileged SVCs and the DX10 Debugger are included for

assembly language programs.

The Text Editor Manual (Volume 1V) includes operating instructions, examples, and exercises for
the interactive Text Editor provided on DX10. The SCI commands and error messages related to
the Text Editor are included.

The Systems Programming Guide (Volume V) includes information required by the system
programmer to maintain or extend a computer system running under DX10. The disk build
procedure required for building your initial system disk, and the system generation procedure and
troubleshooting guide required for system start-up are located in this manual. The manual also
includes support of nonstandard devices and the privileged SVCs available on DX10.

946250-9701 v

Preface

The Error Reporting and Recovery Manual (Volume VI) describes each error message you can
receive while operating DX10 and gives suggested procedures for recovery. It documents task
errors, command errors, SVC errors, SCI errors, and /O errors, including those from disk and
magnetic tape. Also included are sections on system crash analysis and system troubleshooting.

Vi

NOTE

Additional, in-depth descriptions related to specific languages
including FORTRAN, COBOL, BASIC, RPG I, Tl Pascal, assembly
language, and Query are found in manuals dedicated to the appro-
priate programming language. A Link Editor manual is provided as a
separate volume that describes the application of the link edit func-
tion in a DX10 environment. Separate manuals describe the use of
optional Sort/Merge, Data Base Management System (DBMS), and
COBOL Program Generator (CPG) packages.

Change 1

946250-9701

Contents

Paragraph

—) b
WN -

2.1
2.2
2.2.1
222
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3

41

4.2

4.21
422
4.2.3
4.2.4
4.3

431
4.3.2
4.3.3
4.3.4
4.3.5

946250-9701

Title Page

1 — General Description

The Disk Executive Operating System (DX10) i, 11
DX10Capabilitiescoiii i e e 1-1
XA FeatUres . ..t it e e e e e e 1-2

2 — Documentation Overview

General Introduction i e e e 2-1
Volume | — Concepts and Facilitieso i i i e 2-2

Concepts POortioN. ... i i i e e e e e 2-2

Facilities POrtion o e s 2-2
Volume Il — Operations Guide e s 2-2
Volume Il — Application ProgrammersGuideot innn., 2-3
Volume IV — Text EditorManual i it 2-3
Volume V — Systems ProgrammingGuideot 2-3
Volume VI — Error Reporting and Recovery Messagescovvevunnnn. 2-4

3 — Supported System Hardware
Hardware Features of the 990/10A, 990/12LR, and Business System Computers .. .3-1

Required Hardwaret i it it it ittt 3-1
Supported Hardwareottt et ittt e e e 3-3

4 — Supported System Software

General Information it e e e e e e 4-1
Program Development TOOIS oottt it et e e 4-2
TexXt EditOr .. e e e e 4-2
Macro Assembler. e e e 4-2
LiNK EQItOr ..o i e e e e e 4-2

1 1Y o 11 T o 1= 4-2
High Level Languagesviiir ittt nt st 4-3
COBOL ...t S 4-3
] 2 | 4-3
FORTRAN ... i i e i e ettt s P, 4-3
BASIC . e e e e e 4-3
T - 4-3
vii

Contents

Paragraph

4.4

4.41
4.4.2
4.4.3
4.4.4
4.5

451
452
45.3
4.6

4.6.1
4.6.2

5.1

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

6.1

6.2
6.2.1
6.2.2
6.2.3
6.2.3.1
6.2.3.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.4

viii

Title Page

Productivity AlOS . ..o e e 4-3
SO IMEIgE .o e e e e e 4-4
TIFORM L e e e e e e 4-4
TEPE . o e e e 4-4
COBOL Program Generator (CPG)ot e e 4-4
DataManagement TooIS.t i i e e e, 4-4
DBMS (Data Base Management System). ittt 4-4
QUYL e e e e 4-4
DD (Data Dictionary)vu ettt e e s 4-5
Advanced CommUNICAtiONSt i e 4-6
378012780 Emulator e e 4-6
3270 Interactive Communications Software(ICS) o, 4-6

5 — System Command Interface

IntroductiontoSCI e e e 5-1
Foreground and Backgroundttt e 5-1
Interactive Mode i e e 5-1
Batch Stream Modeo e e 5-2
Writing Your Own Command Procedurescoviiiii i, 5-3
S MOy S . ot ittt i e e e e e e 5-3
Available CommaNndsot e 5-3

6 — File Structures and Features

General Information o i 6-1
File S rUCtUreS . oo i e e e e e 6-1
Sequential Files i it e e e e 6-1
Relative Record Filest i e e et 6-1
Key Indexed Files (KIFS)t i e e e e e et e e e 6-2
KeY Values ..o e e e e 6-2
File Stabilityo i e 6-2
File Features ... it e e e e e e e 6-2
File Applicabilityto Languagesttt it 6-3
Delete and Write Protection i e 6-3
File ACCess Privilegesot e e e e 6-3
Record LOCKING . ..ot e e e 6-3
Temporary Fileso i e e e 6-3
Blocked Files e 6-4
Deferred orImmediate Write i i 6-4
Blank Suppression and Adjustment e 6-4
Expandable Files i e e e 6-4
Directory and File Arrangement. ittt ittt 6-4

Change 1 946250-9701

Paragraph . Title

7 — System Generation

7.1 General INnformationovi it i i e
711 Communicating the System ConfigurationtoDX10
7.1.2 Assembling and Linking the Generated System
713 Patching the Generated Systemoooiiiinnn.
7.1.4 Testing the Generated System
715 Installing the Generated Systemo
8 — Error Control
8.1 General Information e e
8.2 Error REPOTtiNG .« oo v ittt it it
8.3 System Crashesooiiiiniiiiin i
8.4 SYStEMLOQ .« v ittt
8.5 Memory Mapping . ..oovviniin it
8.6 ENd-ACtion ROULINES . . ot vt it i ittt et e
8.7 Error Prevention ... c.oivin ettt i

9 — Disk Management and Organization

9.1 General Information ...t
9.2 Disk Managementt
9.3 Disk Volume Content and Attributes
9.3.1 SystemOverhead Files
9.3.2 SySteMFilesot e
9.3.2 Y=Y o 1 7=

10 — Device and File Services

10.1 General Information ...t e e
10.2 AccessNames.............. e e e
10.2.1 DEVICENAMES .ttt iiiittte et e e s
10.2.2 VOlUME NAMES . . ot oottt ittt ettt e
10.2.3 File Pathnames ... covv it iiiine e erian ey
10.3 Logical Unit Numbers (LUNOS)
10.3.1 Scope of LUNO Assignments. ..o
10.4 Device Orientation e
10.5 Deviceand FileOperationsciviiiii i
10.5.1 Step1 — Disk Preparationcoviiiiiiiiiin
10.5.2 Step2 —FileCreation ...
10.5.3 Step3 — LUNO Assignment ...,
10.5.4 Step4 — Normal /O Operationscooiiiiiinnen
946250-9701

Contents

Page

ix

Contents

Paragraph

10.5.5
10.5.6
10.5.7
10.6
10.7

11.1
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.3
11.3.1
11.3.1.1
11.3.1.2
11.3.1.3
11.3.1.4
11.3.1.5
11.3.1.6
11.3.1.7
11.3.2
11.3.3
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
11.5.1
11.6.2
11.5.3
11.5.4
11.6
11.6.1
11.6.1.1
11.6.1.2
11.6.2
11.6.2.1
11.6.2.2
11.6.3

Title Page

Step7 — LUNOReleaseoivii it e e 10-6
Step8 — Temporary FileDeletiont 10-6
Step 9 — Unloading DiskVolume oot 10-6
Perform /O Operation SupervisorCall oo, 10-7
Extended Video Display Terminal Supportt 10-8

11 — Application Programming Environment

General INformationt i e e e s 11-1
Program Development TOOISot i i i e 11-3
Interactive Text Editor. ..ottt i it et e e s 11-3
Macro ASSEmMbler. . oo it e e s 11-3
T £ =T 11 { Y 114
Interactive Debugger. . ..ot e e 11-7
DX10 Advanced CommuNiCatioNS . o . vt vt v ittt ettt e et 11-8
Communications Hardware Equipment i, 11-8
(0] 1 0 1 11-10

07 11 01 11-10
(0] 7 11-10

0] 7 o 11-12
0] 11-12

(0] =0 11-12

107 =25 12 11-14
3780/2780 Emulators Communications Software 11-14
3270 Emulator Interactive Communications Software 11-15
High Level ProgrammingLanguagest iiiiniaeennnans 11-17
FORTRAN . .ttt e e e e e st et et e e 11-17
(1970] =] 11-19

[1Yo | 11-19
BASIC oo e e e e e 11-21
= T 11-21
Productivity Aldso e 11-22
T I ORM i i e e e 11-22
Texas Instruments Page Editor (TIPE) Utilityo it 11-22
Sort/Merge Utility. i e 11-23
COBOL Program Generator(CPG) oot 11-23
DataManagement TOOIS. ottt i e e e i et 11-25
Data Base Management System(DBMS). i i 11-25
Features of DBMS ...ttt et e i i 11-25
DBMS UserInterfaceot ittt ittt s e e 11-25
QUEBIY oottt et e e e e 11-25
Query Environment i e e 11-26
QUEINY LanQUage . .. o vttt et et e e e 11-26

15 11-26

Change 1 946250-9701

Paragraph

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.8.1
12.8.2
12.9
12.10
12.11
12.12

13.1
13.2
13.3
13.4

Appendix

A

946250-9701

Title

12 — Program Management

General Information ..., i i e
Tasks and Programsccviiiiniiii it
Shared Procedures and Replicated Tasks
Sharing DataAmongTasks .:......viiiiiiiiiiniininnene.
[0 1= = Y
Sample Application of Tasks and Procedures
Task Activationt i e e i e
Priority Schedulingt s

PriorityLevelst s

SchedulingOperationttt i
Program Filesooiuniiiiiii ittt
Program Identificationo o i
TasK SNt Y ..o i e s
SupervisorCalls(SVCS) .. .ot

13 — Memory Management

General Information ...ttt i e e
Dynamic Allocation.co i
ROIFINJROI-OUL ..ot i e ittt i e
Memory-Resident Taskst
Appendixes

Title

Keycap Cross-Reference ...,
Glossary
Index

Master Index

Contents

Page

xi

Contents

lllustrations
Figure Title Page
3-1 A Texas Instruments Computerinstallation.o i, 3-2
5-1 The Standard SCIMeENU i e e i et et et e e e ieaa 5-2
6-1 Example Directory Structure for EMPLOYO1 i, 6-6
9-1 Physical Layoutof aDiskVolume it i i e e 9-3
9-2 Files and Directory Structure e e e e e 9-4
10-1 Derivationof aFile Pathname i i e iie e 10-2
10-2 Device and File Operation Flowchart i, 10-5
10-3 Model 931 Video Display Terminal i, 10-9
10-4 Model 911 Video Display Terminal i i 10-9
10-5 Business System Terminal. it it i i e i e 10-10
111 Commercial Application Environment 11-2
11-2 Example Assembly Program Listing 115
11-3 Partial Listing Produced by the Link Editor 11-7
11-4 Interactive Debugging ottt i e e 11-8
115 Sample Business System 600 or 800 Asynchronous
Communications Configuration i, 119
11-6 Sample Business System 300 Communications Configuration................ 11-11
17 Sample Business System 600 or 800 Synchronous
Communications Configuration i, 1113
11-8 Typical Application of 3780/2780 Emulatorin
Distributed Processing Environment i i, 11-15
11-9 IBM 3270 Information Display System Configuration and ICS Configuration11-16
11-10 Sort/Merge Process Showing Printouts of Resultsat EachStep............... 11-24
121 Task/Procedure Structure i i e i e i 12-4
Tables
Table Titie Page
3-1 DX10 Hardware DeviCesttt it e e e e e 3-3
10-1 Device and File Operations Available Through 110 SupervisorCalls 10-7
12-1 DX10 General-Purpose Operating System SupervisorCalls.................... 12-8

Xii 946250-9701

General Description

1.1 THE DISK EXECUTIVE OPERATING SYSTEM (DX10)

DX10 is a general-purpose, multitasking operating system designed to operate with the Texas
Instruments 990/10A, 990/12LR, and Business System Series minicomputers using the memory
mapping feature. DX10 is a versatile disk-based operating system capable of supporting a wide
range of commercial and industrial applications. DX10 is also a multiterminal system capable of
making each of several users appear to have exclusive control of the system.

DX10 is an international operating system designed to meet the commercial requirements of the
United States, most European countries, and Japan. DX10 supports several models of video dis-
play terminals (VDTs), most of which permit users to enter, view, and process data in their own
language.

1.2 DX10 CAPABILITIES

DX10 requires a basic hardware configuration, but allows additional members of an extensive group
of peripherals to be included in the configuration. Section 3 describes the available optional
devices. During system generation, you can configure DX10 to support peripheral devices that are
not members of the 990 family and devices that require realtime support. This capability requires
that you also provide software control for these devices.

You can communicate with DX10 easily through the System Command Interpreter (SCI). SCI is
designed to provide simple, convenient interaction between the user and DX10 in a conversational
format. Through SCI you have access to complete control of DX10. SCl is flexible in its mode of com-
munication. While SClI is convenient for interactive communication through a data terminal, SCl can
be accessed in batch mode as well. Section 5 provides an in-depth discussion of SCI.

DX10 is capable of extensive file management. The built-in file structures include key indexed files,

relative record files, and sequential files. A group of file control utilities exists for copying and modi-
fying files, and controlling file parameters. Section 6 describes the file types and features.

946250-9701 ' 1-1

General Description

1.3 DX10 FEATURES

DX10 offers a number of features that provide convenient use of your system’s capabilities.

1-2

Easy system generation for systems with custom device configurations. With proper
preparation, peripheral devices that are not part of the 990 computer family can be inter-
faced through DX10.

A macro assembler for translating assembly language programs into executable
machine code.

A text editor for entering source code ordata into accessible files.

Support of high-level languages, including FORTRAN, COBOL, Pascal, RPG Ii, and
BASIC.

A link editor and extended debugging facilities are provided to further support program
development.

946250-9701

2

Documentation Overview

21 GENERAL INTRODUCTION

The core of DX10 documentation is a six volume set consisting of these manuals:

Volume | — Concepts and Facilities
Volume Il — Operations Guide
Volume Il — Application Programmer’s Guide

Volume IV — Text Editor Manual
Volume V — Systems Programming Guide

Volume VI — Error Reporting and Recovery Messages

Each manual serves a particular purpose and is designed to meet a specific goal. No single manual
is intended to stand alone as a complete system tutorial. You should consult all six manuals to
become thoroughly familiar with all facets and capabilities of the operating system.

NOTE

The names of keys in these manuals are generic key names. In some
cases, the names on the key caps of the terminals match the
generic key names, but in many cases they do not. Each manual in
the DX10 set contains a table in Appendix A of key equivalents to
identify the specific keys on the terminal you are using.

Other manuals are available in addition to the DX10 set. A user’s guide to the Link Editor is provided
as are user’s guides and reference manuals for each available programming language. The preface
to this volume includes an extensive list of related software and hardware manuals.

946250-9701

21

Documentation Overview

2.2 VOLUME| — CONCEPTS AND FACILITIES

This volume provides general background information about the DX10 Operating System. To
address readers with all levels of computer experience, Volume | consists of two parts: Concepts —
a general introduction for readers of all levels; and Facilities — a more technically oriented
introduction to DX10’s features.

Volume | also contains a DX10 glossary, a word index for this volume only, and the master subject
index for all six volumes.

2.2.1 Concepts Portion

This first part of Volume | presents material that every owner or user of DX10 should know. Discus-
sions in this part of the manual are general and frequently include references to more detailed
discussions in other manuals.

Sections 3 and 4 describe the optional hardware and software that DX10 supports. Section 5
introduces you to the System Command Interpreter (SCI), the interactive interface between you and
DX10. Section 6 discusses the features of the three file types available under DX10. Section 7
reports how, with DX10’s flexible System Generation utility, you can generate a system image to
match your computer’s physical hardware configuration exactly.

2.2.2 Facilities Portion
The sections in the Facilities half of Volume I, while still introductory material, have a more
technical point of view and are concerned with the internal functions of DX10.

Section 8 of this manual discusses the error control features of DX10. Section 9 discusses the
organization and management of disk storage resources. Section 10 presents a general overview of
device and file services. Section 11, titled Application Programming Environment, discusses the
various program development tools that DX10 provides and the optional software packages that
DX10 supports. Section 12 describes the basic considerations of program management under DX10.
Section 13 contains a discussion of DX10 memory management techniques.

2.3 VOLUME Il — OPERATIONS GUIDE

This volume supplies the information needed to operate a DX10-based system in a production
environment. Volume Il introduces you to the video display terminals (VDTs) supported by DX10. 1t
introduces other data terminals and describes the method of operating DX10 from a terminal.
Drawings that show the layout of the keyboards of each type of terminal are included. Volume |l
also describes system initialization from hardware power-up through Initial Program Load (IPL)
and initialization of system internal values. Also included is a section on maintaining your system,
including backup and recovery methods.

This volume also describes the functions and use of the System Command Interpreter (SCI). Fol-

lowing this introduction is a comprehensive description of the SCI commands used to direct the
operating system.

2.2 ' 946250-9701

Documentation Overview

2.4 VOLUME Il — APPLICATION PROGRAMMER’S GUIDE

DX10 supports programming languages ranging from assembly code to high-level languages such
as FORTRAN and Pascal. Volume lil.is directed to the needs of applications programmers who use
these languages. This volume lays the groundwork for more sophisticated concepts with discus-
sions of DX10 program management (including program mapping, program segmentation, priority
scheduling, and code and data sharing), disk management and file support.

Other sections deal with manipulating assembly language programs with DX10, that is, installing,
linking, and modifying assembly language programs. Section 8 provides instructions for using the
Debugger to debug programs written in both assembly language and high-level languages.
Section 9 of this volume covers the SCI programming language. Knowledge of this material enables

you to write your own command procedures and use SCI to its fullest extent to complement your ap-
plications and system programming requirements.

Sections 10 through 14 provide detailed information about Supervisor Calls (SVCs). SVCs are
requests from a task for operating system services in the following functional groups:

. Device and file 1/O

. Program control

. Memory control

. File Utilities
In addition to comprehensive descriptions of the available SVCs, these sections explain how to
employ SVCs in assembly language programs.
2.5 VOLUME IV — TEXT EDITOR MANUAL
The Text Editor that DX10 provides is an interactive tool for modifying text files such as program
source code and manuscripts. Volume IV-is a guide to productive use of the Text Editor. This
volume describes the set of SCi commands that direct the Text Editor and the control keys that

direct entry into the edited text. Also included are examples and exercises using the Text Editor at
a VDT and at a hard-copy data terminal.

26 VOLUMEV — SYSTEMS PROGRAMMING GUIDE

Volume V discusses those topics concerning the maintenance and extension of DX10. This volume
provides information on the following topics:

. Building and maintaining your system disk
. System Generation

o Privileged SVCs

946250-9701 2.3

Documentation Overview

. User-written SVC processors

. User-written Device Service Routines (DSRs)

. System DSRs

U System compatibility with earlier releases of DX10

Section 2 describes how to build your system disk from DX10 software provided on either disk or
magnetic tape. Also included are instructions on making a backup copy of the system disk in case
the primary copy is destroyed. This section contains other paragraphs concerning system files and
the methods available to you for modifying their contents and, thus, the performance of your
system.

Section 3 describes the system generation (sysgen) process, with instructions and examples. This
section provides tips for optimizing your system response by selecting parameter values and op-
tions that suit your needs and use system resources thriftily. Section 4 provides Sysgen
troubleshooting techniques in case you encounter difficulty in generating your system.

Although the standard DX10 package is usually sufficient in itself, you are able to install your own
SVCs and DSRs to perform non-standard functions. Sections 5 and 6 teach you how to write your

own SVCs and DSRs. Section 7 discusses privileged SVCs and defines the benefits and hazards of
accessing them.

If you are upgrading a computer system using an early release of DX10 (earlier than release 3.0), you
must convert your data files to the current format. Section 8 of this volume discusses this
requirement and provides instructions for making the conversion.
2.7 VOLUME VI -— ERROR REPORTING AND RECOVERY MESSAGES
Volume VI functions in two ways: as a reference manual to error messages, and as a
troubleshooting guide to identify and rectify error conditions. Comprehensive tables provide cross-
references between error codes, the error conditions that they indicate, and appropriate recovery ac-
tion.
The following list presents the major topics covered in Volume VI.

U System loader errors

. SCI, command, Debugger, and Text Editor errors

. The system log

2.4 946250-9701

Documentation Overview

U Supervisor call errors
. System crashes
— System crash codes
— Instructions for the XANAL utility to study memory at the time of a crash

— A troubleshooting guide that givés a step-by-step procedure for dealing with a
system crash.

946250-9701 2-5/2-6

3

Supported System Hardware

3.1 HARDWARE FEATURES OF THE 990/10A, 990/12LR, AND BUSINESS SYSTEM COMPUTERS

The 990/10A, 990/12LR, and Business System Series computer systems are high-speed, flexible,
and powerful minicomputers of the Texas Instruments Model 990 computer family with the capa-
bility of handling a wide range of computer applications at low cost. The 990 computer family
includes a wide variety of compatible terminals, printers, mass storage devices, and other periph-
eral devices to suit the needs and convenience of any computer user. The 990 systems allow you
to increase the size of your system memory using a memory mapping feature that enables you to
add more memory to a maximum capacity of two million bytes.

3.2 REQUIRED HARDWARE
DX10 requires certain minimum hardware consisting of the following items:
e The 990/10A, 990/12LR, or Business System CPU with the mapping option and a mini-
mum random access memory of 128K bytes. It is recommended that at least 256K bytes

of random access memory be used.

. A system disk with at least 4.7 megabytes of memory storage. This disk contains the
DX10 software.

. A video display terminal (VDT) for communicating with the DX10 operating system.

J A means for disk backup — either a magnetic tape drive, a second disk drive, a flexible
diskette drive, or a cartridge tape drive.

Additional memory beyond 128K bytes is strongly recommended and is required to support addi-
tional terminals.

Figure 3-1 shows a typical DX10 hardware installation.

946250-9701 ' 3.1

Supported System Hardware

2284757

Figure 3-1.

A Texas Instruments Computer Installation

946250-9701

3.3 SUPPORTED HARDWARE

DX10 supports the full line of 990 hardware. Table 3-1 describes the mass storage devices and

Supported System Hardware

Input/Output terminals available to users of DX10.

Table 3-1. DX10 Hardware Devices

Device Model
Type Number Description
Disk DS80 Moving-head disk drive with five-platter removable disk pack;
Drives provides 67 megabytes storage.
DS300 Moving-head disk drive with 10-platter removable disk pack; pro- .
vides 250 megabytes storage.
CD1400/32 Moving-head disk drive with two platters, one fixed and one
removable. Each platter provides 13 megabytes storage.
CD1400/96 Moving-head disk drive with fixed and removable units. Fixed
unit contains three platters that provide 67 megabytes storage.
Removable unit is one platter with 13 megabytes storage.
WD500A 514-inch Winchester disk systems with FD1000 backup. Two
configurations are available: one fixed disk with 5 megabytes of
formatted storage or two fixed disks with 17 megabytes.
wWD800/18 8-inch Winchester disk systems with cartridge tape backup. The
wD800/43 WD800/18 has 18.5 megabytes of formatted storage, and the
WD800/43 has 43.2 megabytes of formatted storage.
WDB800A/38 514-inch Winchester disk systems with cartridge tape backup.
WDB800A/69 The WD800A/38 has 38.5 megabytes of formatted storage, the
WDB800A/114 WD800A/69 has 69.5 megabytes of formatted storage, and the
WD800A/114 has 114.6 megabytes of formatted storage.
WD900/138 9-inch Winchester disk systems available with 138 or 425 mega-
wWD900/425 bytes of formatted storage.
Data Business Combinés a customized computer/cabinet/chassis and asso-
Terminals System ciated ports for the Business System 300 Series of computers.
Terminal The Business System 300 supports Winchester-type mass stor-
with age devices, optional line printers, and data terminals. The video
Keyboard display presents 80 characters per line, 24 lines per screen (1920
characters). A 25th line provides selectable information display.
The Business System Terminal supports a 128-displayable-
ASCli-character set including true character descenders for
lowercase. International versions are available for use in the fol-
lowing countries: Denmark, England, Finland, France, Germany,
Japan, Norway, Sweden, and Spanish-speaking countries.
946250-9701 Change 1

Supported System Hardware

Table 3-1. DX10 Hardware Devices (Continued)

Device Model
Type * Number Description

911 VDT Video display terminal (VDT), displays 80 characters per line 24
lines per screen (1920 characters). The 911 VDT supports
uppercase and-lowercase characters and displays them in high
or low intensity; control characters are also supported. The 911
VDT is available in international versions, supporting the local
character set in both uppercase and lowercase. International
versions are available for use in the following countries:
Denmark, England, Finland, France, Germany, Japan, Norway,
Sweden, Switzerland, Arab countries, and Spanish-speaking
countries.

931 VDT VDT, displays 80 characters per line, 24 lines per screen (1920
characters). A 25th line is reserved for status information and
diagnostic tests. The 931 VDT supports all 128 characters of the
ASCII set. This includes 96 displayable alphanumeric characters
and 32 special line drawing characters. Alphabetic characters
are displayable in both uppercase and lowercase, with true des-
cenders for lowercase. The 931 VDT also supports reverse
images, true underlining, blinking characters, and high or low
intensity. International versions are available for use in the fol-
lowing countries: Denmark, England, Finland, France, Germany,
Norway, Sweden, Switzerland, and Spanish-speaking countries.

Silent 700 Portable keyboard send/receive hard-copy data terminals using

Terminals a thermal dot-matrix printhead. Terminals support ASCII stan-
dard (64 printable characters) or optional (95 characters) key-
boards. Standard keyboard includes numeric keypad. Some
models include an acoustic coupler for remote capabilities.

Printers 810 The Model 810 printer with a 9 x 7 dot-matrix printhead prints 132
columns bidirectionally at 150 cps. Vertical forms control is
supported. Optionally, the printer provides a full ASCII character
set (both uppercase and lowercase characters) and vertical
forms control.

850 The Model 850 is a desktop-size, light-duty printer. [thas a9x 9
dot-matrix printhead and prints at 150 cps with a maximum line
width of 8 inches. It has true character descenders for
lowercase.

855 The Model 855 printer is a desktop-size printer with two modes
of operation. The fast draft mode prints bidirectionally at 150
cps, with a 9 x 9 dot-matrix printhead. The correspondence
mode (near letter quality) makes two passes per line at 35 cps,
with a 32 x 18 dot-matrix printhead. Both modes have a maxi-
mum line width of 8 inches. The Model 855 uses interchangable
plug-in font modules.

3-4 946250-9701

Supported System Hardware

Table 3-1. DX10 Hardware Devices (Continued)

Device Model
Type Number Description

LP300 The LP300 printer is a medium-speed line printer that prints 132-
character lines at a rate of 300 lines per minute.

LP600 The LP600 line printer is a high-speed line printer that prints 132-
character lines at up to 600 lines per minute.

LQ45 The LQ45 printer is a letter-quality printer using a daisywheel
printing element to print at speeds up to 45 characters per
second. The printer supports a full 96-character printwheel.

Other MT1600 Serial-access 9-track magnetic tape transport. Standard record-
110 Magnetic ing density of 800 bits per inch (bpi) (NRZI); optionally supports
Devices Tape 1600 bpi (phase encoded).

MT3200 Streaming cache, serial-access, 9-track magnetic tape transport.

Magnetic Standard recording density of 1600 or 3200 bpi (phase-encoded).

Tape

946250-9701 Change 1 3-5/3-6

4

Supported System Software

41 GENERAL INFORMATION “
A set of four program development tools is provided as an integral part of DX10.
. Text Editor
o Macro Assembler
e Link Editor
U Debugger
In addition to the intrinsic capabilities of DX10, you can purchase several powerful software

packages to expand the scope of your computing power. DX10 supports the following groups of
software packages:

. High-level languages
— COBOL
— RPGII
— FORTRAN
— BASIC
— Pascal
. Productivity aids
— Sort/Merge
— TIFORM
— TIPE

— CPG
. Data Management

— Query
— DD (Data Dictionary)
— DBMS (Data Base Management System)

946250-9701 - Change1 441

Supported System Software

. Advanced communication software packages
— 3780/2780 Emulator

— 3270 Interactive Communications Software

42 PROGRAM DEVELOPMENT TOOLS
DX10 includes the following four major program devel.opment tools:
. Text Editor
o Macro Assembler
. Link Editor
. Debugger

421 Text Editor

DX10 provides a powerful, interactive, full-screen text editor. Edit operations allow modification, in-
sertion, and deletion of entire records or of character strings within records. You can direct edit
operations through the keyboard of your data terminal using either special function edit keys or SCI
commands. DX10 Text Editor Manual , Volume 1V, is devoted solely to explanation of the Text Editor.

4,22 Macro Assembler

The DX10 Macro Assembler is the most powerful member of the 990 family assemblers. In addition
to accepting the standard 990 assembly language instructions, the Macro Assembler is extended to
include a macro facility, support for FORTRAN common segments, and conditional assembly. The
macro facility provides character string manipulation, access to binary values in the symbol table,
and support of macro definition libraries. A sequence of assembly language statements may be con-
ditionally processed depending on the value of an assembler arithmetic or logical expression.
990/10 and 990/12 Assembly Language Reference Manual contains a more extensive report concern-
ing the features of the macro assembler.

4.2.3 Link Editor

The DX10 Link Editor accepts relocatable object code generated by the assembler or language com-
pilers and combines the individual modules into a linked and loadable module. During this process,
the Link Editor resolves references between modules to their correct values. You can direct the out-
put of the Link Editor to an installable object file or directly into memory image form in a program

file or system image file. Refer to the Link Editor Reference Manual for a more extensive discussion
of the Link Editor.

4.2.4 Debugger

The Debugger is an interactive utility which aids you in diagnosing and correcting errors in pro-
grams under development. The Debugger provides for controlled execution of a program by allowing
you to set breakpoints for the Debugger to begin and end program execution. The Debugger also
provides commands by which you can monitor or modify the arithmetic unit registers, workspace
registers, and memory. Application Programmer’s Guide, Volume lll, contains a detailed description
of the Debugger functions and commands.

4-2 , 946250-9701

Supported System Software

4.3 HIGH LEVEL LANGUAGES

DX10 supports sophisticated implementations of the most frequently used high-level languages.
COBOL and RPG |l are suitable for business applications. FORTRAN is a popular scientific lan-
guage. BASIC is used for interactive applications and Pascal is well suited for development of
either type of software.

You can find a more technical discussion of these high-level languages in Section 11 of this
manual and in the Application Programmer’s Guide (Volume lll).

4.3.1 COBOL :

COBOL is the preferred programming language for commercial data processing environments.
Using program statements with familiar business-like terminology, COBOL programs can perform
data capture, data manipulation, data base management, file handling, computation, and report
generation. The COBOL compiler supported by DX10 significantly exceeds the Level 1 require-
ments of ANSI Standard X3.23-1974. Documentation for COBOL in the DX10 environment is avail-
able in the DX10 COBOL Programmer’s Guide.

432 RPGII

RPG Il is an easy-to-use high level language for business data processing. RPG Il is especially
suited for applications requiring file maintenance or report generation. More information about RPG
Il is available in the Report Program Generator (RPG ll) Programmer’s Guide.

4.3.3 FORTRAN ‘

FORTRAN is a high level language widely used for scientific and numeric problem solving. The TI
FORTRAN-78 compiler conforms to and exceeds the ANSI standard X3.9-1978. Numerous exten-
sions are provided for compatibility with the previous FORTRAN ANSI standard, X3.9-1966. The
DX10 FORTRAN-78 Programmer’s Guide contains extensive information about FORTRAN-78 in
the DX10 environment.

4.3.4 BASIC

DX10 BASIC includes the popular features of ANSI standard BASIC and supplies valuable exten-
sions as well. These extensions include integer arithmetic type, expanded string handling, calling
ability, virtual arrays, and subprograms. DX10 BASIC commands and utilities simplify and speed
program development in both scientific and business environments. Refer to the T/ BASIC Refer-
ence Manual for more information about BASIC programming language.

4.3.5 Pascal

Pascal is a block-oriented procedural language that is particularly useful for systems programming
because of its bit manipulation capabilities, recursive routines, self-documenting block structure,
and efficient compilation and execution. For a more detailed discussion of Pascal in a DX10 en-
vironment, refer to the T/ Pascal User’s Guide.

4.4 PRODUCTIVITY AIDS

Sort/Merge, TIFORM, TIPE, and CPG are useful, time-saving data manipulation tools. A more tech-
nical discussion of these aids is included in Section 11.

946250-9701 ~ Change1 43

Supported System Software

4.41 Sort/Merge

Sort/Merge is a fast, convenient utility for handling file sorting and merging operations. The com-
prehensive DX10 Sort/Merge package may be accessed in several ways. SCI commands access
Sort/Merge interactively or in batch mode. BASIC, COBOL, FORTRAN and RPG Il programs may in-
terface with Sort/Merge by using the CALL statement. Refer to the Sort/Merge User’s Guide.

4.4.2 TIFORM

TIFORM is a dynamic software utility used for interactively managing forms, editing data for accu-
racy, and displaying stored data on a video display screen. To reduce costly program development
time, TIFORM allows you to design and test forms interactively on a video display terminal rather
than having to write a program. TIFORM may be accessed by COBOL, FORTRAN, and Pascal appli-
cations. The TIFORM Reference Manual contains more material relating to the use of TIFORM.

4.4.3 TIPE

TIPE is a word-processing package for DX10 users. The Tl Page Editor (TIPE) includes multi-
terminal word processing functions for efficient creating, editing, and printing of letters and docu-
ments. Refer to the TIPE User’s Guide for a more extensive discussion of TIPE.

4.4.4 COBOL Program Generator (CPG)

The CPG is an easy-to-use programming system that generates complete, error-free COBOL
source code. CPG generates both interactive and batch programs for business applications, such
as data file creation and update, or generates reports from data files. Refer to the DX70 COBOL
Program Generator User’s Guide for acomplete discussion of CPG.

4.5 DATA MANAGEMENT TOOLS

DBMS, DD, and Query facilitate the management and retrieval of data. See Section 11 for a more
technical discussion of these data management tools.

4.5.1 DBMS (Data Base Management System)

DBMS is a data base management system that lets you control your information assets in an
organized fashion and retrieve information upon demand.You can modify your data base quickly
and economically because there are no unnecessary costs or delays due to program rewrites.
Information stored by DBMS can be accessed directly through Query or through COBOL,
FORTRAN, or Pascal programs. In addition, you can protect sensitive information by using secu-
rity passwords. For more information about DBMS, refer to DX10 Data Base Management System
Programmer’s Guide and DX10 Data Base Management System Administrator User’'s Guide.

4.5.2 Query

Query is an interactive inquiry language designed for accessing DBMS data bases to generate
reports on demand and to update DBMS files in a quick, cost-efficient manner. Not having to write
a formal program to access data means that you spend less time accessing your data and more
time making decisions. Query has optional step-by-step facilities to guide inexperienced users
through inquiry procedures. The Query User’s Guide provides more information about Query.

4-4 Change 1 946250-9701

Supported System Software

4.5.3 DD (Data Dictionary)

DD is a data dictionary system that allows central definition and control of your data assets. Cen-
tralized control permits enforcement of data standards, a clearer view of the impact of proposed
changes to a data base, and the reduction of data redundancy. DD supports the definition of data
base structures in addition to conventional files (sequential, relative record, and key indexed files).
Additionally, DD provides access to conventional files using English-like Query statements. Utili-
ties are provided to convert COBOL record definitions to data dictionary definitions and vice versa.
You can find more information about DD in the Data Dictionary User’s Guide.

4.6 ADVANCED COMMUNICATIONS

DX10 supports several software packages that allow your computer system to communicate with
other computer systems, both Texas Instruments models and those of other manufacturers. These
packages allow you to transfer data from one point to another quickly and easily, often using
regular telephone lines. The following paragraphs discuss the software packages available in this
group. A more technical discussion of these packages can be found in Section 11.

4.6.1 3780/2780 Emulator

The 3780/2780 Emulator allows 990 computers to communicate from remote locations with IBM
host computers or other computers equipped with the 3780/2780 Emulator. The 3780/2780
package can work unattended at night when phone rates are low to distribute data to other com-
puter systems in your network. More information about the 3780/2780 Emulator can be found in
the DX 3780/2780 Emulator User’s Guide

4.6.2 3270 Interactive Communications Software (ICS)

The 3270 ICS lets your 990 computer communicate interactively with an IBM host computer. The
3270 ICS can control as many as sixteen video display terminals and printers. You can also use
3270 ICS with COBOL, FORTRAN, and Pascal. The DX10 3270 Interactive Communication Soft-
ware (ICS) User’s Guide contains full documentation about the 3270 ICS.

946250-9701 Change 1 4-5/4-6

5

System Command Interface

5.1 INTRODUCTION TO SCI

You communicate with the DX10 operating system through the System Command Interpreter
(SCI). You can direct SCI by entering any of over 200 brief SCI commands through the keyboard of
an interactive data terminal. Communication with SCl is in a conversational manner; that is, if SCI
needs more information before executing your command, it displays questioning messages or
“prompts’” on your VDT screen (or printout paper if you are communicating through a hard-copy
data terminal). You respond to the prompts by entering the required information, called
“parameters,” at your terminal.

SCI can reply to you through DX10-supported interactive devices including VDTs and hard copy
data terminals. SCI operations on a VDT allow all parameter values to appear at once. When using
a hard copy data terminal, SCI prompts you for parameter entries one line at a time.

You can direct SCI to process your commands in background, which allows you to issue com-
mands to SCI from a batch command stream as well as to continue issuing commands directly
from your terminal.

SCI gives you control over DX10 while requiring minimal effort from you. With a short SCI com-
mand, you can perform file operations requiring complex functions from DX10. You can add to the
library of SCI commands by writing your own SCI command procedures. The SCI programming
language is discussed in Volume lil.

The remainder of this section discusses these SCI concepts briefly. For a full evaluation of SCI’s
power and flexibility, refer to Volume Il

5.1.1 Foreground and Background

An SCI command procedure can execute in foreground or background. At any one time, a terminal
can execute two tasks, one foreground task and one background task. When you issue a com-
mand procedure that executes as a foreground task, SCl suspends its activity at your terminal and
enters a waiting state until the task completes. No other activity can occur at that terminal until
the foreground task finishes, allowing the foreground task to directly access your terminal if
necessary. A command procedure executing as a background task executes independently of
your terminal. You can issue an SCI command in foreground while the background task is
executing.

5.1.2 Interactive Mode

Communication with SCI can be in one of two modes: interactive and batch. In the interactive
mode, you and SCI communicate back and forth in foreground. Typically, you enter a command
and SCI activates the appropriate command procedure, which executes in foreground mode. If the
command procedure requires parameters in order to execute, SCI requests the information from
you by sending prompts to your terminal. When the command procedure completes execution,
SCI reactivates itself and you can issue another command.

946250-9701 ' 5.1

System Command Interface

When SCl is not processing a command, it displays a menu of commands on your data terminal
screen. The standard DX10 menu is depicted in Figure 5-1. The DX10 menu presents a list of com-
mand groups. If you enter the name of one of the command groups, SCI displays a secondary
menu (Each command group leads to a unique secondary menu.). This new menu presents a list
of sub-groups of commands. Each level of the hierarchy of menus is more narrowly defined than
the preceding level. The lower-most levels consist of lists of commands rather than command
groups. With this system of menus, the new user of SCI can easily and quickly access a list of
commands that are functionally related.

5.1.3 Batch Stream Mode

Commands issued from a batch command stream execute in background mode. To issue a com-
mand in a batch stream, you must enter a command procedure (in batch command stream format
specified in Volume i) in a sequential file and initiate its execution with the Execute Batch (XB)
command. Since a batch stream command procedure executes in background, it cannot interact
with your terminal; consequently, all parameters must be supplied within the batch stream.

N

TEXA
D

I ST U
10 SY T
SELECT ONE OF THE FOLLOWING CCMMAND GROUPS

/DEV DEVICE ZiERATIONS
/FILE FILE OPERATIONS
/PDEV PROGRAM DEVELOPMENT
/SMAIN DX10 MAINTENANCE
/80P DX10 OPZRATION

Figure 5-1. The Standard SCI Menu

5-2 Change 1 946250-9701

System Command Interface

5.1.4 Writing Your Own Command Procedures

SCl is designed so that you can write your own command procedures. When you issue a com-
mand, SCI processes the contents of a file of the same name in the command library (the system
directory, .S$PROC). This file contains the appropriate command procedure, a set of instructions
written in the SCI command language. For instance, the SF (for Show File) command directs SCi
to process the command procedure in the file . S$PROC.SF. With this SCl command language, you
can write command procedures suited to your own needs, or rewrite existing command pro-
cedures. You can install new commands in either the system command library or in one or several
of your own command libraries. For a description of the SCl command language and instructions
on writing your own commands and command procedures, refer to Volume II.

5.1.5 Synonyms
You can assign SCI variables called synonyms. A synonym is a relatively short string of
alphanumeric characters that substitutes for a longer string. When you enter a synonym as a
response to an SCI prompt (for instance, as a file pathname), SCI translates the synonym into its
substituted value. SCI maintains a separate list of synonyms for each user. Each user can assign
several synonyms and then use those synonyms without interfering with the synonym list of other
users. ’
5.1.6 Available Commands
DX10 has a comprehensive set of SCl commands that perform various utility operations. Many
other commands are supplied for programmers to use as they develop applications under DX10.
Refer to Volume Il for extensive documentation of SCl commands. The following is a list of the
activities served by one or more SClI commands.

. Log on and log off

. Set and display the time and date

. Analyze, initialize, install, and unload disk volumes

. Restore, backup, and copy disk directories

. Create and delete directories and files

U Support synonyms

. Allow file alias name(s)

. Change file names and protection

. View and list directories and files

. Copy files

. Assign, position, and release logical units

U Display I/O status

. Display task status

946250-9701 5-3

System Command Interface

5-4

Activate and control programs

Activate and monitor batch status -
Maintain terminal status

Install and delete programs

Activate the system log

Debug programs, including activities such as the following:

— Set breakpoints

— Dump or display memory

— Perform decimal/hexadecimal arithmetic
— Trace program execution interactively
Control Text Editor

Activate high-leve! language support
Activate Link Editor

Activate productivity aids

Activate data management software

Activate communication software

946250-9701

6

File Structures and Features

6.1 GENERAL INFORMATION

Under DX10, data is stored on disk memory in a formal structure called a file. Within the general
category of files, there are several particular types of files. Furthermore, an individual file can
possess optional characteristics and capabilities to enhance its usefulness and efficiency. This
section is divided into three parts: a discussion of the three major file types, a description of the
featured characteristics of files, and an explanation of the hierarchy of files and directories in a

volume and the pathnames that identify files. You can find more detailed information about using
files in Volume lli.

6.2 FILE STRUCTURES

DX10 supports three major file types: sequential, relative record, and key indexed. The following
paragraphs describe these file types.

6.2.1 Sequential Files

Sequential files are useful for recording variable length data records in the same order in which they
were received. Similarly, records must be read back in the same order in which they were recorded.
The design of sequential files lends them to uses which require the rapid input and output of textual
data, such as printing a report. Random access to sequential files is impractical since, to reach a
given random record, all intervening records must be processed. A pointer to the current file position
is kept by DX10 for each active assignment to the file. As each record is read or written, the pointer
is advanced.

Several programs can read a sequential file concurrently at different positions in the file. However,
only one program can write to a sequential file at a time. The current reading position of one pro-

gram is retained while the file is logically assigned, even though the file is closed and reopened by
other programs.

You can modify the content of textual data, such as a letter or program source code, in a sequential
file using the Text Editor. When using the Text Editor, you can add and delete text in records of a se-
quential file without the constraint of sequential access. That is, you can freely move the cursor of
your VDT about on a copy of a sequential file and modify the content of the file a letter at a time or
even several records at a time. Refer to Volume IV for more information on the Text Editor.

6.2.2 Relative Record Files

A relative record file is a file in which all logical records have a fixed record length and each record
can be randomly accessed by its unique record number. Relative record files are designed for rapid
retrieval of a single record from the file. Records are accessed by supplying DX10 with the record
number within the file. Such files are useful when the nature of the data lends itself to computation
of a record number. Records can be accessed randomly by record number or DX10 can increment
the caller’s record number after each read or write so that sequential access is permitted.

946250-9701 ' 6-1

File Structures and Features

6.2.3 Key Indexed Files (KIFs)

The most sophisticated file type supported by DX10 is the key indexed file (KIF). When accessing
KIFs, programs access individual records by providing DX10 with any one of up to 14 keys by which
the data is known. A key (in a KIF) is an identifying string of up to 100 characters. For example, with
this file type you can construct a file of employee information so that the data record for any given
employee is accessed by supplying the employee name, employee number, social security number,
or any other designated key. Except for the primary key, keys may be declared to overlay one
another within the record. Although keys may be structured anywhere within the record, they must
appear in the same relative position in all records in the file. You must select one of the keys to be
the primary key. All other keys are known as secondary keys. All records must include the primary
key, but secondary keys are optional in any given record within the file.

6.2.3.1 Key Values. Key values for both primary and secondary keys are kept in indexes within
the KIF. These indexes are structured for rapid random access while still allowing sequential
access in the sorted order of any selected key. in a manner similar to that for sequential files, a
pointer to the current position within the file is maintained by DX10 for each key. When updating
any given record of a KIF, you can add, delete, or change a secondary key value if allowed by the
attributes selected for that key. A primary key cannot be modified.

When you create a KIF, you assign the attributes of duplicability and modifiability to each key
value. If a key is not duplicable, then no other record may use the same value in the same key. For
instance, each value in a key designed to store social security numbers for a list of employees
should be unique, but a key storing employees’ marital status must be duplicable since the two
possible values (single and married) are used repeatedly. Values in a key of social security
numbers never change and should receive the attribute of nonmodifiability, but marital status can
be modified and the corresponding key should be modifiable, too.

6.2.3.2 File Stability. When a Read or Write operation is to be performed on a record in a key
indexed file, DX10 makes a copy of the record before performing the operation. Thus, if a system
failure occurs during the /O operation, the prelogged record copy replaces the master copy,
guaranteeing the stability of the file.

6.3 FILE FEATURES

DX10 supports a variety of file features that add to the flexibility of the system and promote its
overall usefulness. The file features include the following:

. File use from high-level languages
. Delete and write protection

o File access privileges

U Record locking

. Temporary files

. Blocked files

6-2 946250-9701

File Structures and Features

. Deferred or immediate write options
. Blank compression and adjustment
. Expandable files

6.3.1 File Applicability to Languages

The various file features and file types are all available to the assembly language programmer.
High-level languages may access any given feature depending on the syntax of the language.
Assembly language programs can be written and called from high-level language programs, pro-
viding indirect access to features not supported directly by the language syntax.

6.3.2 Delete and Write Protection

When a file is created, it is vulnerable to deletion and rewriting. You can modify a file’s protection to
prevent the destruction of its contents. If you declare a file to be delete-protected, no program or
user can delete that file until the protection status is modified. You may wish to further protect the
content of some files by write-protecting them. A write-protected file can only be read. Write-
protected files are automatically delete-protected. Delete-protecting a directory does not prevent
the deletion of files cataloged in that directory; it only guarantees the existence of the directory
node.

6.3.3 File Access Privileges ,

An application program run under DX10 can request specific access privileges for any use of a file.
A use may be defined as the entire file transaction from open through close. The following list
describes the access privilege modes for files:

. Exclusive access — only the calling program can read or write to the file.

. Exclusive write access — only the calling program can write to the file; all programs may
read the file.

. Shared access — the calling program and other programs share access to the file for
read and write operations; shared access to a sequential file allows read and write only.

. Read only — the calling program cannot write to the file, but can read from it; other pro-
grams can both read and write to the file.

6.3.4 Record Locking

DX10 supports locking individual records within a file. This feature allows a program exclusive
access to the locked record until that record is unfocked. An example of the use of record locking is
locking an inventory record while updating the quantity in stock. The lockout prevents programs
responding to other terminals from updating the same quantity before the first update is complete.

6.3.5 Temporary Files

DX10 allows the creation and use of temporary files by tasks running under DX10. These files are un-
named and subject to subsequent deletion by the operating system. This feature allows a trial
preparation of a file. If the prepared file is satisfactory, it may be renamed and designated perma-
nent. If the prepared file is not renamed, it is purged by DX10.

946250-9701 6-3

File Structures and Features

6.3.6 Blocked Files

Multiple logical records may be automatically combined by DX10 into larger physical records. These
larger records are called file blocks or physical records. Blocking conserves disk space and reduces
the number of physical transfers of data between memory and the disk and so improves throughput
of the system.

6.3.7 Deferred or Inmediate Write

DX10 supports both immediate and deferred writing of logical record blocks to disk. The physical
transfer to disk of logical record blocks is normally deferred by DX10 until the memory space held by
the blocking buffer is required for some other purpose. This reduces the number of physical disk ac-
cesses since data may be recalled from memory. DX10 updates the image to the record on the disk
before the file is closed. In some cases (for example, for data integrity in highly sensitive files), you
may prefer that all writes to a file occur immediately upon request. DX10 supports this with the im-
mediate write option.

6.3.8 Blank Suppression and Adjustment

For file types that support variable length records (that is, all except relative record), you can
instruct DX10 to remove extraneous blank characters from each record. Blank suppression is a
feature in which strings of consecutive blanks within the record are encoded in a shortened form.
Blank adjustment is the removal of trailing blanks on a write operation and replacement of them on
a subsequent read operation. Blank adjustment is available to devices as well as files.

6.3.9 Expandable Files

DX10 permits declaration of the initial file size at file creation. Unless otherwise specified, when the
file exceeds this initial allocation, DX10 automatically allocates additional space. In this way, files
can continue to grow beyond their initial bounds. These secondary allocations to the file become in-
creasingly larger as the file expands beyond its allocated size.

6.4 DIRECTORY AND FILE ARRANGEMENT

DX10 arranges each disk volume into a hierarchical structure. The highest level of access in this
hierarchy is the name of the volume itself. Within the volume are directories and files. A directory is
a specialized file which contains only other files and directories. A file can be stored directly under
the disk volume or under a directory. To access a file, you must specify not just the file name, but the
file's entire pathname of the overall volume and any intermediate directories. To construct the
pathname, you must string together the names of the volume, any intermediate directories, and the
file. Be sure to separate each name with a period (.). If the disk volume is the system disk, you can
omit the volume name from the pathname and begin the pathname with a period. The following ex-
amples illustrate this concept.

EXAMPLE

VOLONE — This is the name of a hypothetical disk volume. If you wanted to access this
volume, you would refer to it by the pathname, VOLONE.

6-4 ' 946250-9701

File Structures and Features

EXAMPLE

VOLONE.FILE1 — This is the pathname for a file named FILE1 created on volume named
VOLONE. If you wanted to access the contents of FILE1, you would refer to the file by its
pathname, VOLONE.FILE1.

EXAMPLE

VOLONE.DIR1.FILE1 — This pathname refers to the file FILE1 in the directory DIR1 on
volume VOLONE.

EXAMPLE

EMPLOYO01.USRA.PAYROLL
EMPLOYO01.USRB.PAYROLL
EMPLOY01.USRB.CATALOGX.PAYROLL

Figure 6-1 shows the relationships between the files and directories on the volume, EMPLOYO1.
Notice that two or more files can have the same file name if they are located in different
directories; that is, if they have different pathnames.

EXAMPLE

.FILE1 — This is a valid pathname for a file named FILE1 created on the system disk with no
intermediate directories.

946250-9701 6-5

File Structures and Features

EMPLOYO01
(VCATALOG)

|

USRB

{Directory)
CATALOGX PAYROI.L
(Directory) (Data File)
PAYROLL
(Data File)

2283110
Figure 6-1.

6-6

]

USRA
{Directory)

l

PAYROLL

(Data File)

Example Directory Structure for EMPLOYO1

__ _ LEVEL 1

___LEVEL 2

— —LEVEL 3

946250-9701

7

System Generation

7.1 GENERAL INFORMATION

When you first receive DX10 software, it has a built-in image of a basic computer system. That is,
DX10 expects to oversee a computer with at least one VDT. A magnetic tape transport may also be
required. For DX10 to support your particular system configuration, you must supply it with an
accurate system image. This process is system generation, also called sysgen. This section pro-
vides a general description of system generation. You can find detailed instructions for perform-
ing a system generation in Volume V.

The DX10 software exists on a variety of media: disk cartridge, flexible diskette, magnetic tape, or
cartridge tape. Before you can use DX10, it must be available on disk media. If your softwareisona
sequentially accessible medium, such as magnetic tape or tape cartridge, you must transfer DX10
to arandomly accessible medium. Instructions for making this transfer by means of the Disk Build
utility are provided in Volume V.

Generating a system involves five stages:

. Communicating the system configuration to DX10 by issuing the Execute System Gen-
eration (XGEN) command

o Assembling and linking the system with the Assemble and Link Generated System
(ALGS) command

° Patching the system using the Patch Generated System (PGS) command

e Testing the system with the Test Generated System (TGS) command

Installing the generated system with the Install Generated System (1GS) command

7.1.1 Communicating the System Configuration to DX10

When you issue the XGEN command, the SCI activates the GEN990 utility. GEN990 is an inter-
active program. Through your terminal, GEN990 questions you about the physical makeup of your
computer, such as, the number of disk drives present or the number and kinds of terminals and
printers present. During this phase of System Generation, you can incorporate special device driv-
ers, custom supervisor call processors, and an initialized system common module. Also at this
time, you can select optional task management features, such as time slicing and the task sentry.
GEN990 takes this information and processes it into files that can be further processed, in the
next stage, assembling and linking the generated system.

946250-9701 71

System Generation

7.1.2 Assembling and Linking the Generated System

You direct DX10 to process the information gathered during the execution of the XGEN utility by
issuing the ALGS command. After entering the letters ALGS at the terminal keyboard and respond-
ing to the five prompts identifying the system to be assembled and linked, wait 15 to 30 minutes
while DX10 further processes the generated system. When the ALGS command has finished
processing, continue to the next step of system generation, patching the generated system.

7.1.3 Patching the Generated System

When you issue the Patch Generated System (PGS) command, DX10 applies the data from the
patch file to your generated system. This process makes additional software implementations and
updates to your generated system and enables IPL completion. After you have identified the sys-
tem to be patched, the PGS utility proceeds without your further direction.

7.1.4 Testing the Generated System

After you have patched your generated system, it should be tested before being installed as the
primary system. Issue the TGS command and perform an IPL to test your system. This utility exe-
cutes in avery short time and insures that your system functions correctly.

7.1.5 Installing the Generated System

The final step in System Generation is installing the generated system. Until this point, the
installed system has been a generalized utility system that can direct any variety of system config-
urations, but at less than optimum efficiency. Your custom generation, when installed, will provide
efficient use of your systems resources.

At this point, issue the IGS command, and DX10 establishes your newly generated system as the
primary system each time you perform an Initial Program Load (IPL).

7-2 946250-9701

8

Error Control

8.1 GENERAL INFORMATION

DX10 incorporates several features to prevent and diagnose error conditions. The following list
introduces the topics of error control discussed in this section:

. Error reporting

. System crashes

. System logs

. Memory mapping

. End action routines

* Error prevention

8.2 ERRORREPORTING

DX10 has the ability to detect errors caused by a variety of sources, both hardware and software.
When an error is detected, DX10 issues a message reporting the error to the terminal or terminals
that control the erring task or device. Volume VI contains a complete listing of error messages,
provides the material necessary for interpreting the error messages, and recommends recovery
techniques for each error.

8.3 SYSTEM CRASHES

In severe circumstances, a fatal system error occurs. For example, failure of the system disk on a
critical operation is a fatal system error. When fatal system errors occur, the system itself comes
to an abnormal termination. This condition is also called a system crash. In these circumstances,
an error code is reported to the LEDs on the system control panel. Volume VI contains instructions
for preserving a post-crash image of memory on the disk when a system crash occurs.

DX10 includes ANALZ, a system crash analysis utility. Volume VI includes instructions for execut-
ing ANALZ and forinterpreting the output of ANALZ.

946250-9701 ' 8-1

Error Control

8.4 SYSTEM LOG

The system log maintains a record of device and task execution errors, status messages, and the
time at which they occurred. Abnormally terminated tasks provide task error messages to the sys-
tem log. Application programs can log additional messages by issuing the System Log supervisor
call. DX10 provides a system command to start the system log. The system log consists of a pair of
files. After one fills, log messages transfer to the second file.

8.5 MEMORY MAPPING
The 990 memory mapping feature prevents application programs from accidently destroying any
other application programs. Without memory mapping, even system functions would be
vulnerable to corruption. When a task performs an illegal function (such as requesting memory
outside its legal range or requesting an illegal instruction), DX10 abnormally terminates the task.
In this case, DX10 sends an advisory message to the system log. This message contains code
indicating the cause of abnormal termination. You should analyze this message to determine the
appropriate recovery procedure.
8.6 END-ACTION ROUTINES
Any task can optionally include a sequence of instructions designated as an end-action routine. If
you have selected this option and an abnormal termination occurs, DX10 returns to the task one
final time at the entrance of the end-action routine in that task. The application programmer must
provide code in the end-action routine to analyze the termination code returned by DX10 and to
take appropriate recovery steps.
8.7 ERROR PREVENTION
Use the following measures to avoid failures and minimize losses should they occur:

. Back up disk files regularly.

. Schedule regular equipment preventive maintenance.

. Always analyze error codes of both user and program errors.

. Build self-checking into application programs.

U Design application procedures and programs to allow a smooth degradation wherever
possible.

8-2 946250-9701

9

Disk Management and Organization

9.1 GENERAL INFORMATION

The primary mass storage medium for DX10 systems is the magnetic disk. DX10 provides the
necessary management for allocation of disk space to files. Allocatable Disk Units (ADUs) are the
most basic logical unit into which DX10 divides disks. ADUs are grouped into files either by DX10
for its own use or by you for your purposes. This section discusses the management of disk
memory space at the ADU level and the general structure of files in a disk volume.

9.2 DISK MANAGEMENT

DX10 provides the management for allocation of disk space to the files. Disk space is allocated in
units referred to as ADUs. An ADU is a space on the disk surface measured in sectors (sectors
being a permanent physical division of the disk surface). The specific size of an ADU varies
depending on the model of disk being measured. Larger disks have larger ADUs than smaller
disks, but an ADU is always smaller than a track. On some disks they are as small as one sector.

The amount of space allocated to a file may be as small as one ADU or as large as the total space
on the disk cartridge not occupied by system data. When you create a file, you can specify the
maximum amount of space to be allocated to it. At this time, you can also designate the file to be
expandable and DX10 wil! increase the file’s allotment of space as the file fills up. DX10 supports
automatic allocation of disk space to files with a sophisticated disk management strategy
designed to meet two performance objectives:

. Provide access to any physical record of the file using one disk access

° Provide for wide dynamic range of file size without incurring excessive allocation
overhead

The first objective also applies to the logical record of a file as seen by the application program.
An exception is the case of key indexed files where several disk accesses are often required to
process a logical record read or write.
Allocation overhead under DX10 refers to the following:

. The time spent in the allocation function

. Any disk space wasted by allocating more disk space than is really used

. Any memory space used to catalog allocated disk segments

946250-9701 9-1

Disk Management and Organization

DX10 creates the initial allocation according to the size specified during file creation (by you or a
task). The allocation size increases as additional segments are required. The first and second
additional segments are equal in size to the initial allocation. The third additional is equal to twice
the size of the second allocation. Subsequent allocations (up to a maximum of 16) continue to be
double the size of the previous allocation.

9.3 DISK VOLUME CONTENT AND ATTRIBUTES

Each disk drive contains a single disk volume. One disk volume is designated to be the system
disk. It contains the DX10 software and the system files. Every disk volume contains system over-
head files and space reserved for user files. Figure 9-1 shows the physical layout of a disk volume.

9.3.1 System Overhead Files
Track 0 and part of Track 1 of each disk volume are always allocated to system overhead as
follows:

J Volume ID — Each disk cartridge under DX10 is identified by a user-assigned name
called the disk’s Volume ID. DX10 records each disk’s Volume ID on the first track of the
disk (Track 0).

° Allocation Map — Also on Track 0 is a map (in ADUs) of the disk space currently in use.

. Bad Disk ADU List — DX10 maintains a list of unusable ADUs on the disk. When the disk
is initialized, DX10 inspects it for unusable ADUs and writes the Bad Disk ADU List on
Track 0.

. System Intermediate Loader — A system loader is optionally stored on disks. During an
Initial Program Load (IPL), the bootstrap loader (stored in read-only memory on the CPU
itself) accesses this loader program which then reads the DX10 software into memory.

. Volume Catalog (VCATALOG) — Each disk volume has a specific file directory begin-
ning in Track 2 named VCATALOG which acts as table of contents for the volume. The
files described in VCATALOG may be data files or directory files as illustrated in Figure
9-2.

. Diagnostic file (S$DIAG) — The innermost cylinder of the disk is reserved for use with
online diagnostics.

9.3.2 System Files
DX10 includes special system files to support itself. System files follow a strict naming conven-
tion in order to minimize conflict with user-assigned file names. Each system file has a name
beginning with S$.

9.3.3 User Files

All of your own files are stored on disk volumes in the space not required for system overhead and
system files. Section 6 of this manual describes the types of data files supported by DX10.

9.2 ' 946250-9701

Disk Management and Organization

S$DIAG

USER FILES
AND DIRECTORIES

2
O,
L(IM SYSTEM LOADER

N,
AME P‘o\)

W

2283111

Figure 9-1. Physical Layout of a Disk Volume

946250-9701

Disk Management and Organization

LEVEL 1 %

LEVEL 2 i

LEVEL 3 <

LEVEL 4 <

LEVEL N T

2278899

9.4

VCATALOG
FILE

DIRECTORY
USER FILES USER - SYSTEM SYSTEM
DIRECTORIES FILES DIRECTORIES

USER
DIRECTORIES

Change 1

USER
FILES DIRECTORIES
N e — — a— — — — — — — — ~——
USER
FILES
Figure 9-2. Files and Directory Structure

946250-9701

10

Device and File Services

10.1 GENERAL INFORMATION

This section discusses device and file services under the control of DX10. The section has three
major divisions:

. Logical input/output
— Access names for devices and files
— Logical unit numbers (LUNOSs)
— Device orientation

. Device and file operations

. Extended video display terminal support

10.2 ACCESS NAMES

DX10 identifies peripheral devices and files with access names. Access names can be divided
into three categories:

. Device names
. Volume names
. File pathnames

10.2.1 Device Names

DX10 identifies each peripheral device by a unique device name. Each device name is four charac-
ters long. The first two characters are alphabetic and identify the device type; the last two charac-
ters are digits with a range from 01 to 99 and identify a particular device in its serial order in the
system image. DX10 assigns device names during system generation. The following list demon-
strates the format for device names and includes all device type acronyms. In this list, xx substi-
tutes for an integer from 01 to 99.

946250-9701 10-1

Device and File Services

. CMxx — a communication device

. CRxx — a card reader

. CSxx — a cassette unit of a Model 733 ASR terminal

U DKxx — a flexible diskette drive

. DSxx — a disk drive

. EMxx — an AMPL Emulator

. LPxx — aline printer

. MTxx —a magnetic tape transport

. STxx — an interactive data terminal

. TMxx — an AMPL Trace Module
10.2.2 Volume Names
A volume is a logical device that represents a physical disk pack. You assign each volume a name
when you initialize it (with either the Initialize Disk Surface (IDS) or Initialize New Volume (INV)
commands). Refer to a disk by its volume name when logically installing or unloading it into a disk
drive.
10.2.3 File Pathnames
Identify a file by its unique pathname. A pathname is a string of shorter names, beginning with an
access name of the volume that stores the file, followed by the file names of the directories, if

any, that you have created to catalog the file, and ending with the file name. Figure 10-1
demonstrates the derivation of the pathname of a file.

VOLUME NAME VCATALOG SUBDIRECTORY SUBDIRECTORY FILE NAME
l NAME NAME
OMITTED IF PRESENT IF PRESENT
VOL.1 DIR1 DIR2 FILE1

\/7

VOL 1.DIR1.DIR2.FILE1

2283103

Figure 10-1. Derivation of a File Pathname

10-2 946250-9701

Device and File Services

You can refer to the volume that a file resides on either by its logical volume name or, in some
cases, by its physical device name. You can imply that the file is on the system disk by simply
omitting an access name for the volume and beginning the pathname with a period. The following
list contains valid pathnames:

File Identifier Meaning
DS02.MYCAT.MYFILE Device name, directory name, file name.
.MYCAT.MYFILE System disk, directory name, file name.
VOLID.MYCAT.MYFILE Volume name, directory name, file name.

Although more than one file can share a file name, each pathname is unique. The following
examples demonstrate how several files can share the same file name, FILE1, and still have dif-
ferent pathnames.

VOL1.FILE1
VOL1.DIR1.FILE1
VOL1.DIR1.DIR1.FILE1
VOL1.DIR2.FILE1
VOL2.FILE1

10.3 LOGICAL UNIT NUMBERS (LUNOs)

Tasks executing under DX10 perform input/output to logical units instead of physical units. DX10
refers to a logical input/output unit by an assigned logical unit number (LUNO). LUNOs are
assigned either by you, using either the SCI or a supervisor call in the code of a program, or by
DX10. As many as 256 LUNOs can be assigned at one time, ranging from >0to >FF.

The use of LUNOs allows DX10 to direct the input and output resources of a single program to any
single system device or file.

For example, suppose you have written a program designed to send its output to LUNO 82. Before
you execute this program, assign LUNO 82 (using the AL command) to the output device or file
that you require, for example, ST03. In this example, the program sends its output to STO03. If you

were to assign LUNO 82 to the line printer, LP02, and reexecute the same program, then the pro-
gram would send its output to LP02.

10.3.1 Scope of LUNO Assignments
DX10 arranges LUNOs in these three classes:

. Task local LUNOs — accessible only by the task that assigned the LUNO
U] Station local LUNOs — accessible only by tasks associated with a given terminal

U] Global LUNO — accessible by all stations and tasks

946250-9701 ' 10-3

Device and File Services

DX10 attempts to map a LUNO to a device by first searching LUNO assignments local to the
requesting program (task local LUNO), then LUNO assignments local to the terminal with which
the program is associated (station local LUNO), and finally the LUNO assignments which are avail-
able in scope to all programs (global LUNO). The use of task and station local LUNO assignments
allow different programs and different users of the same program to have exclusive use of aLUNO
even though the LUNO may be in use by another program or user. Some global LUNOs are pre-
assigned by the system, as listed in Volume V. Also, only one task at a time can open and use a
global LUNO assigned to a file or file-oriented device. See Volumes Il and V for more information
on LUNOs. :

10.4 DEVICE ORIENTATION

During system generation, you can declare certain devices to be either file-oriented or record-
oriented. File-oriented devices support exclusive access privileges only. That is, if a task opens a
LUNO assigned to a file-oriented device, no other task may read from or write to that device.
Record-oriented devices, on the other hand, support only shared-access privileges. Different
tasks can read and write records from an open record-oriented device regardless of which task
opened it.

Whether a particular device is record-oriented or file-oriented depends on the nature of the device
and on what kind of organization it imposes on the data. The orientation can also depend on the
intended use of the device; a line printer used for logging by several programs would be record-
oriented while one used for printing reports should be file-oriented to prevent one report from
interleaving its lines into another report.

Magnetic tape drives are usually file-oriented, although you might choose record-orientation if it is
used for logging. Disk devices themselves are always record-oriented to allow access to several
files, which are controlled by access privileges, not orientation. VDTs are usually record-oriented.

10.5 DEVICE AND FILE OPERATIONS

The flowchart in Figure 10-2 illustrates the progress of typical device and file operations. The
following paragraphs comment on the flowchart.

10.5.1 Step 1 — Disk Preparation

Steps 1, 2A, 2B and 2C apply only to disk files. Note that for any disk-resident file, the volume on
which the file is stored must be installed first, both physically in disk drive, and logically by use of
the Install Volume command. Disk volumes that have not previously been used must be initialized
by use of the Initialize Disk Surface and Initialize New Volume commands.

10.5.2 Step 2 — File Creation

Before a file can be accessed, it must be created under a directory on the disk volume. If the direc-
tory does not exist, it, too, must be created. Both directories and files can be created either by
you, using SCI commands, or by a task, (assembly language task or high level language runtime
task) using 1/0 service calls. DX10 can create files automatically with the Assign LUNO SVC using
the autocreate option.

10-4 946250-9701

1! OPERATOR

TEP
INSTALLS DISK VOLUME

)

Device and File Services

7

STEP 2A: OPERATOR
CREATES DIRECTORY
AND,OR FILE.

STEP 2B: PROGRAM
CREATES DIRECTORY
AND/OR FILE,

STEP 2C: PROGRAM
ASSIGNS LUNO IN FILE
WITH AUTOMATIC CREATION,

’

STEP 3A: OPERATOR
ASSIGNS LUNO TO
ACCESS NAME.,

STEP 3B: PROGRAM
ASSIGNS LUNO TO
ACCESS NAME,

STEP 4: PROGRAM
OPENS LUNO,

STEP 5: PROGRAM
READS , WRITES, AND
POSITIONS LUNO,

STEP 6: PROGRAM
CLOSES LUNO,

5

>

STEP 7A: OPERATOR
RELEASES LUNO,

STEP 7B: PROGRAM
RELEASES LUNO,

STEP 7C: DX10
RELEASE PROGRAM
LOCAL LUNOS WHEN

PROGRAM TERMINATES,

?

STEP BA! OPERATOR
DELETES FILE AND/OR
DIRECTORY .

STEP 88! PROGRAM
DELETES FILE AND/OR
DIRECTORY .

STEP 8C. DX10
DELETES TEMPORARY FILE
WHEN PROGRAM TERMINATES,

2283112

STEP 9: OPERATOR
UNLOADS DISK VOLUME

Figure 10-2. Device and File Operation Flowchart

946250-9701

10-5

Device and File Services

10.5.3 Step 3 — LUNO Assignment

Since files or devices are accessed by tasks through a LUNO, the LUNO must be assigned to the
appropriate access name (steps 3A and 3B). Either you or a task (possibly a high-level language
run-time task) can request a LUNO assignment.

10.5.4 Step 4 — Normal 1/0 Operations

Steps 4, 5 and 6 constitute a typical /O operation of a task. When a task requests a read or write
operation, it may be designated as either an execute operation or an initiate operation. If the task
is an execute operation, DX10 does not return to the requesting task until the operation is com-
plete. If the task is an initiate operation, DX10 returns to the requesting task as soon as the opera-
tion has begun. This option on all data transfers allows the program to elect whether to overlap
computation and input/output in the user program (initiate 1/0), or to wait for the I/O operation to
compiete.

10.5.5 Step 7 — LUNO Release

When a particular LUNO assignment is no longer required, you should release that LUNO. You
can release a global or station-local LUNO by issuing the appropriate SCI command, either
Release Global LUNO or Release LUNO. A task can release a LUNO by issuing an appropriate
SVC. DX10 automatically releases task-local LUNOs when the assigning task terminates. DX10
automatically releases station-local LUNOs when one of the following conditions occurs:

. The terminal user logs off
. All tasks initiated from the terminal complete
. All batch streams associated with the terminal complete

10.5.6 Step 8 — Temporary File Deletion

Any temporary files (described in Section 6) used by a task are automatically deleted from the disk
volume by DX10 when the file’s LUNO is released or when the task terminates. You can delete any
other unnecessary files by issuing the SCI command, Delete File. A task can delete a file with an
SVC, possibly through a language run-time routine.

10.5.7 Step 9 — Unloading Disk Volume
When you no longer need to access files on a given volume, logically unload the volume by issu-
ing the Unload Volume SCI command. After you have logically unloaded the disk volume, you can
physically remove it from the disk drive.

10-6 946250-9701

Device and File Services

10.6 PERFORM 1/O OPERATION SUPERVISOR CALL
The 1/0 SVC supports all task-initiated record transfer and file positioning operations on devices
and files. The I/O SVC also controls utility operations such as file creation and LUNO assignment.
A complete list of these operations is provided in Table 10-1. SVCs are discussed in greater detail
in Volume I11.
Additional SVCs provided with DX10 structure are designed to complement and support |/O opera-
tions. Most of these functions are available only through assembly language programs. Consult
the appropriate high level language programmer’s guide for instructions on accessing these
facilities. These functions are listed below:

U] Wait for previously initiated 1/0O to complete

. Wait for any initiated 1/0s to complete

. Abort previously initiated I/0 operation

. Fetch keyboard event character (function key)

Table 10-1. Device and File Operations Available Through 1/O Supervisor Calls

Assign LUNO

Release LUNO

Fetch characteristics of device or file
Verify legality of access name

Open LUNO

Close LUNO

Close LUNO and write end-of-file

Open LUNO and rewind

Forward space record

Backward space record

Read record

Write record

Read direct (used to acquire data with special
formats)

Write direct (used for special data formats)
Write end-of-file

Rewind

Unload

Rewrite the record previously read
Create a file

Delete a file

Establish immediate/deferred write mode
Change a file name

Write protect/delete protect/unprotect a file
Add an alias name for a file

Delete an alias name for a file

Unlock a record

Key-indexed file operations

Open Extend

Modify access privileges

946250-9701

10-7

Device and File Services

10.7 EXTENDED VIDEO DISPLAY TERMINAL SUPPORT

DX10 offers extended /O support for video display terminals (VDTs). The Model 931 VDT is shown
in Figure 10-3, the Model 911 VDT in Figure 10-4, and the Business System Terminal in Figure 10-5.
Device-dependent 1/0 support provides access to many unique features available in these ter-
minals as described below:

10-8

Intensity Control — The programmer is able to control the high or low intensity of data
displayed.

Beep Control — Optional beep signals may be issued on read or write operations.

Field Definitions — The calling program is able to establish screen (row and column)
limits on input fields.

Default Data and Fill Character — Fields for data entry may be prefilled with default
data. In addition, the field may be filled (beyond the default data if any) with an operator
specified fill character such as underscore, period, or blank.

Scrolling — Optionally the screen image may be moved (scrolled) upward or downward
any specified number of records by the user.

System Handled Editing — Within an input field, DX10 allows editing for Previous Char-
acter and Next Character keys, Insert Character or Delete Character keys, field boundary
checking, and the Erase Field key for rekeying.

Special Event Characters — Function keys and certain keystrokes are set aside and
routed to a requesting task upon demand. Two event characters are buffered.

Buffering Keystrokes — Up to n keystrokes are buffered by DX10 and saved pending a
read request. The value n is defined during system generation with a default value of six.

Graphics — The 931 VDT, the 911 VDT sand the Business System Terminal provide
graphics capability through special graphics character sets.

946250-9701

Device and File Services

2284759

2283113

Figure 10-4. Model 911 Video Display Terminal

946250-9701 109

Device and File Services

2283093

Figure 10-5. Business System Terminal

10-10 ' 946250-9701

11

Application Programming Environment

11.1 GENERAL INFORMATION

This section describes the software available for developing and enhancing your application pro-
grams. The section consists of five parts:

. Program development tools; DX10 provides these features to every purchaser.
— Interactive Text Editor
— Macro Assembler
— Link Editor
— Interactive Debugger

The remaining software packages are supported by DX10 but must be purchased separately.

. Advanced communications software
— 3780/2780 Communications Software

— 3270 Emulator Communications Software

. High-level languages
— FORTRAN
— COBOL
— Pascal
— BASIC

— RPGII

° Productivity aids
— TIFORM
— Texas Instruments Page Editor (TIPE)
— Sort/Merge

— COBOL Program Generator (CPG)

946250-9701 ' Change 1 11-1

Application Programming Environment

. Data management tools
— Data Base Management System (DBMS)
— Interactive DBMS Retrieval (Query)
— Data Dictionary (DD)
Each software package provides specialized features for use in the different functional areas of
data processing. You can combine the various languages and utilities into a total information sys-

tem best adapted to your individual requirements. Figure 11-1 illustrates the interrelationships of
the system software tools available from Texas Instruments.

DX10 OPERATING SYSTEM

| I —
| R
| | |
| | |
COMMUNI- TI FORMS COBOL, FORTRAN, bEMS
CATIONS PROCESSOR ! OR PASCAL l (MASS STORAGE | | QueERY
CONTROLLER (HUMAN APPLICATION INTERFACE)
INTERFACE) | PROGRAM l I
OPERATOR / i | | T MANAGER
A
I SORT I —— I
DISK
|lsToRAGE MERGEL | |
D
W | . SEQ | [
. REL. REC.
I . KIF I [
| | |
DATA INPUT/OUTPUT DATA PROCESSING DATA MANAGEMENT INQUIRY

2282021

Figure 11-1. Commercial Application Environment

11-2 946250-9701

Application Programming Environment

11.2 PROGRAM DEVELOPMENT TOOLS

In addition to a comprehensive set of utilities that operate in conjunction with DX10, Texas
Instruments provides four major program development tools including:

o Interactive Text Editor
o Macro Assembler

o Link Editor

° Interactive Debugger

11.2.1 Interactive Text Editor

DX10 provides an interactive text editor for the creation and modification of a sequential file of
textual data, such as program’s source code or documentation. The Text Editor operates on files
with lines up to 240 characters long. The Text Editor also provides a wrap-around mode in which
the cursor automatically moves to the next line as you reach the right-hand margin.

To make full use of the Text Editor’s capabilities, use the Text Editor from a video display ter-
minal. The Text Editor can operate on an interactive hard-copy data terminal, but only displays
one line at a time.

When you initiate the Text Editor on a text file, a copy of the text file appears on the VDT screen.
You can modify any part of this copy by adding, deleting or replacing individual characters. You
can make modifications by keying new characters into the copy, by using special edit function
keys on your terminal, or by issuing Text Editor commands (these commands are a subset of SCI
commands). You can send portions of your file to auxiliary files and insert auxiliary files into the
file being edited by using Text Editor commands. Text Editor commands also allow copying or
moving lines of text from one location of the edit copy to another. When you end an edit session,
you can replace the original contents of the text file with the edited copy or send the edited copy
to another file. For more details, refer to Volume. IV.

11.2.2 Macro Assembler
The DX10 assembler implements the standard 990 assembly language instructions and includes a
macro facility.

When implemented on a 990/10 computer, the standard 990 assembler language includes a set of
72 instructions that provide for the input, output, manipulation, and comparison of integer and
ASCI| character data. The 990/10 instruction set provides five modes of addressing memory. The
990/12 instruction set includes 72 instructions in addition to the 72 instructions of the 990/10
instruction set. The additional instructions provide the capability to manipulate stacks, lists,
strings, individual memory bits, multiple-precision integers, and single- and double-precision real
numbers; enable or disable interrupts; execute microcode diagnostics; load the writable control
store; and convert one type of data to another.

946250-9701 11-3

Application Programming Environment

The macro assembler offers the capability of defining macro-instructions (called macros). A
macro is a user-defined set of assembler language source statements. Macro definitions assign a
name to the macro and define its source statements. The macro name may then be used in the
operation field of a program’s source statement to cause the assembler to insert the predefined
source statements and assemble them along with the other source statements of the program.
The macro capability allows you to perform the following functions:

. Define macros to specify frequently used sequences of source code

. Define macros for problem-oriented sequences of instructions to provide a means of
programming more meaningful to users who are not computer-oriented.

The 990/10 and 990/12 Assembly Language Reference Manual provides a complete description of
the macro assembler. An example of the macro assembler listing is found in Figure 11-2.

11.2.3 Link Editor

The Link Editor provides you with the means of combining separately generated object modules
to form a single linked output. The Link Editor accepts modules that have been generated by the
assembler, the COBOL compiler, the FORTRAN compiler, the Pascal compiler, or a previous par-
tial link.

The major function of the Link Editor is to resolve external definitions and references in each of
the individual unlinked or partially linked object modules. The Link Editor also provides for the
design and use of overlays, which allow the user to design memory efficient programs. The Link
Editor resolves references to these overlays.

Using control statements, you can specify the use of Link Editor options. These options include
the following:

. Generation of a load map
. Search of a set of object libraries for referenced values

° Production of a partial link that leaves external references to be resolved at a later time.
Figure 11-3 shows a partial listing produced by the Link Editor.

You can direct the output of the Link Editor to an installable object file or, as a memory image, to a
program file or DX10 image file.

For a more detailed discussion of the Link Editor, refer to the Link Editor Reference Manual.
Figure 11-3 displays a typical Link Editor listing output.

114 946250-9701

TETSDS

0001
0003
0004
0005
Q0046
0007
0008
000%
0010
0011
o012
0013
G014
0015
0016
0017
o103 =]
0019
0020
0021

0000
0002
0004
0006

0004
0008
oozz
0023
0024 000A
000C
000E
0010
0012
0026
0027
ooza

0025

0014
0016
002
0030
0031 0018
0014A
0o0icC

001E

0032
0033
0034
G035 0020
o022
0024
0026
0028
0024
002C
002E

0036

0037

0038
0039
0040
0041
Q042

0030
0030
0032
0034
0043
0044 0036
0038
0045 003A
0046

0047

946250-9701

SDsMAC 3.5.0 82. 130

Application Programming Environment

14: 33: 16 WEDNESDAY, MAR 14, 1983.

PAGE 0002
IDT ‘TSTSDS'
#*
3533036 I I SEH I 3 30 3 30 I3 SIS I R 2 I A NN
* .
SIMPLE EXAMPLE OF ASSEMBLY LANGUAGE PROGRAM
#* TO CREATE. OPEN, WRITE, & CLOSE A FILE.
*
3306 H 03 I 03 00 3 30 303 SR I S 3 S S I SR R
#

DXOP SVC, 15
REF WSPACE

0001 Ri EGU 1
0002 R2 EQU 2

3*
0000 DATA WSPACE
0006 DATA TSTEDS
0000 DATA ©

TSTSDS EVEN

* CREATE FILE "DS01. TSTMSG"
2FEO SVC eFUsCH
OOFO 1

L

ASSIGN LUNO TO FILE
D820 MOVB eai_, @FUSDPC
0044/
QOF2
2FEO SVC @FUsCB
OOFO’

+#

OPEN THE FILE
2FEO SVC @SEQIRB
0114’

*

WRITE ASCII
0201 LI R1, ADRTBL
003C
COB1 LOOP MOV #R1i+,R2 R2 = @ OF NEXT LINE TO WRITE
1308 JEQ DONE

3#
cao2 MOV R2Z, @IRBDBA STORE BUFFER ADDRESS
Q11A7
D820 MOVB @A, RIRBOPC STORE ‘WRITE ASCII‘’ OP CODE
0045
01167
2FEO SVC @SEQIRB WRITE QUT THE LINE
0114/
10F6 JMP LOOF LaoP

+#*

#* DONE

DONE
D820 MOVB @CLWEDF, @IRBOPC
0046
0116

CLOSE FILE AND WRITE E-O-F
2FEO SVC @SERIRB
01147
10FF JMP %

H*

* ——

Figure 11-2. Example Assembly Program Listing (Sheet 1 of 2)
115

Application Programming Environment

o048

TETSDS
TSTSDS ~ SDS VERIFICATION PRDGRAM

0047
0050
0051
G052
G033
0054
G055
0056
0057
G058
G059
00&0
0061
0062
0063
0064
0065
0066
004&7
0068
0069
0070
0071
0072
0e73
0074
G075
0076
QG077
078
0079
0080
ocB1
ocaz2
o083
00B4
Go83
0086
coa7
oces
008
0090
G091
Q092
0093
G094
G095
00946
0097
0098
0099
0i0o
G101
G102
0103
0104
3108
G106
0107

11-6

003C

003C
O03E
0040
0042

0044
0045
0046

0048
0048
0070

0098
0098
00COo

OOES8
00E?

O0OFO
QoF2
O0F3
OOF4
OOFC
OOFE
G100

0102
0104
0106
0108
010A
010C
010k
0110
0112

0114
0116
0117
0118
0119
0114
01i1ic
O1l1E
0120
ciz2

#

SDSMAC 3.5.0 82. 130

#*

#*

0048’ ADRTBL

0098

0048

0000

*
91 AL
OB WA
02 CLWEOF
#*
LINEL
24
2A
*
LINE2
2A
20
#
0048’ LINE3
#*
07 PATHNM
2E
#
*
3#

0000 FUSCB
20 FUSOPC
20 FUSLUNM

FUSRES

0000 FUSKIF

0000 FUSPRO
008D FUSFLG
#*

0050 FUSLRL
0000 FUSPRL

QOEB '’ FUSPNA
0000 FUSPAS
0000

0000 FUSINA

0000

0000 FUGSNA

0000

#*
*
#
#*

0000 SEGIRB
00 IRBOPC
20 IRBLUN
00 IRBSFL
00 IRBUFL

0000 IRBDBA

0000 IRBICC

0050 IRBOCC

0000 IRBRN1

0000 IRBRNZ2
#*

EVEN

DATA
DATA
DATA
DATA

BYTE
BYTE
BYTE

EVEN
TEXT
TEXT

EVEN
TEXT
TEXT

EQU

BYTE
TEXT

FILE

DATA
BYTE
BYTE
BSS

DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

LINEL
LINEZ
LINES
0

»31
il
o2

16: 33: 16 WEDNESDAY, MAR 16, 1983.

PAGE 0003
DATA

e TR T T R e e R R
T IR EE LIS ELELE LSRR Y

“H%

LINEL

7

‘. TSTMSG

THIS 18 THE OLD MESSAGE ‘

H#34

LENGTH OF PATHNAME TO FOLLOW

UTILITY SUPERVISOR CALL BLOCK

>00NC 0

>90 2

>20 3

8 4

0 i2
(v i4
»8D i6
80 i8
Y 20
PATHNM 22
G 24
0 26
o 28
o 30
G 3z
0 34

I0 REQUEST

DATA
BYTE
BYTE
BYTE
BYTE
DATA
DATA
DATA
DATA
DATA

>006C

4

S

OC38(3C3013M50

SVC CODE/RETURN CODE

UTILITY OP CODE >0 = CREATE

LUNO (WILL USE LUND >20}

NOT USED FOR FILE UTILITY SET TGO O
USED FOR KIF FILES SET TO O

UBED FOR PROGRAM FILES ZET TD O
UTILITY FLAGS =>-USE 18,19 SEQ FILE,
EXPANDABLE, Bl ANK SUPPRESSED RECORD
LOGICAL RECORD LENGTH

PHYSICAL RECORD LENGTH(USE DEFAULT)
PATHNAME POINTER

PASSCODE POINTER(NOT IMPLEMENTED)
PASSCODE POINTER(NOT IMPLEMENTED)
INITIAL ALLOCATION(DEFAULT}

SECONDARY ALLOCATION(DEFAULT)

BLOCK FOR SEQUENTIAL IO

SVC CODE/ERROR CODE

I0 SUB ORP-CODE

L.UND

SYSTEM FLAGS

USER FLAGS == EXCLUSIVE WRITE SET
DATA BUFFER ADDRESS

INFUT CHARACTER COUNT

OUTPUT CHARACTER COUNT

RELATIVE RECURD NUMBER (NOT USED)
RELATIVE RECUORD MUMBER (NDT USED)

Figure 11-2. Example Assembly Program Listing (Sheet 2 of 2)

946250-9701

Application Programming Environment

TI 290/10 07/1%/77 15804158 FAGE =

FHASE O, TSTISOE ORIGIN = 0000 LENGTH = 0130

MODULE (R[n] ORIGIN LENGTH TYFE DATE TIME CREATOR

TETEDE i QOO0 OLOF INCLUDE OL/1D/T77 142558 58 SDEMAL

WEFACE 2z 0110 OQZ0 ITNCLUDE Q&/12/T77 14857213 SOEMAC
DEFINITIODNS:S

NAME VALLIE NO NAME VALLE N NAME VALLIE WO NAME VALLE NO

WIEFAZE o011 2

#3d LINEING COMPLETEDR
Figure 11-3. Partial Listing Produced by the Link Editor

11.2.4 Interactive Debugger

The Debugger is an interactive symbolic debugging program for assembly language tasks run-
ning under DX10. It operates from either an interactive video display terminal (VDT) or an interac-
tive hard-copy terminal. The Debugger allows you to display and modify CPU registers, workspace
registers and memory, and to control execution of a task.

The Debugger can operate in one of two modes: run or simulation. In the run mode, a task may be
halted and started at will. Also, you can set breakpoints for a more controlled execution of a task.
In the simulation mode, a task’s execution is analyzed between each instruction. You can set trap
conditions that interrogate the program counter or memory content. In simulation mode, you can
set conditional breakpoints dependent on the state of the task. Breakpoints designed to halt or
continue task execution as required can be conditional on a given number of accesses within a
specified range of Program Counter (PC) values, memory locations, or CRU addresses. Break-
points may be incurred on given Status Register (SR) values or supervisor calls. A task is debug-
ged in its own address space and, therefore, may be a full 32K words in length having any desired
task structure.

For detailed instructions on using the Debugger, refer to Volume lll. A simulated debugging ses-
sion is depicted in Figure 11-4.

946250-9701 11-7

Application Programming Environment

L] XHT
EXECUTE AND HALT TASK
FROGRAM FILE OR LUING: . SEFPROGA
TAZE, NAME OR ID: TSTEDE
PARM1: O
FPARMZ: O
STATION ID: HE
RUNTIME TAzE ID = 20T
£y Xno
INITIATE LDEEBLG MOLE
RN I [l
SYMBOL. TARLE ORJECT FILE: L TISOURCE, TSTSIED
RN ID = 20 WF = 0ZEO Foo= 0110 <SPG = 0000 2T = Q1aF STATE = L&
L[] MIR R=0Z2C
WF: ZOZEOQ
PC: 0110 O
ST H0O1&F
L1 AR
S2IGHN BREAFFPOINTS
RIIN ID: Q20
ANDRESS(ED) ¢ TETEDE, TSTEDE
L1 AT
ACTIVATE TASE
RUN TO: O
TASE ZTATE: 04
Ll PR
LM
LIST MEMORY
RN I OZC
STARTING ADDRES
NUMBER OF BYTES
LISTING ACCE=S NAME:
Q000 ZFCF 0110 ZFEO QOES [DEIZ0 0044 OOEA ZFEO Fe we S e N
[l FR
FROCEED FROM BREAEFOINT
RN ID: O2C
DESTINATION ADDRESZ(ES) OE

Figure 11-4. Interactive Debugging

11.3 DX10 ADVANCED COMMUNICATIONS

DX10 supports several methods of cornputer-to-computer communication using specially
designed software packages and hardware devices. Depending on the application, you generate a
custom DX10 system to meet your needs. The available software includes 3780/2780 emulator
support and 3270 interactive communications software. The following paragraphs describe these
software packages and the hardware controllers necessary for their implementation, as well as
other controllers that can provide a wide variety of communication applications.

11.3.1 Communications Hardware Equipment

The 990 communications controllers supported by DX10 include the Ci402, Cl403, Cl1404, Cl421,
Cl422, CP501, and CP502. The following paragraphs discuss the communications controllers,
Figures 11-5, 11-6, and 11-7 illustrate sample configurations using the controllers.

11-8 946250-9701

Application Programming Environment

- FIBER OPTIC
FIBER OPTIC CABLE TO EIA
CONVERTER ng{%;a
FIBER OPTIC
TO EVA ASYNC
cla04 FIBER OPTIC CABLE conoeR R SYN
FIBER OPTIC CABLE
A 931 VDT
A
FIBER OPTIC CABLE ERIAL
os1 vor |U L | S5Her
BUSINESS SYSTEM X
600 OR 800 1
COMPUTER
A
ASYNC u SERIJAL
vDT x — PRINTER
1
PHONE LINK
14 ASYNC <
C1403 MODEM
PHONE LINK
ASYNC S
MODEM
SERIAL
PRINTER
TELEPRINTER
crao02 DEVICE
SERIAL
PRINTER
2284761

Figure 11-5. Sample Business System 600 or 800 Asynchronous Communications Configuration

9462509701 ' 11.9

Application Programming Environment

11.3.1.1 Cl402. The Cl402 provides two independent, serial, asynchronous interfaces that allow
a Business System 600 or 800 series computer to communicate with two asynchronous modems
or other asynchronous devices compatible with RS-232-C or CCITT (V.24). The C1402 supports half-
duplex or full-duplex communications at speeds from 75 bits per second (bps) through 19.2K bps
on each channel. Character size is selectable from 5 to 8 data bits with programmable parity (odd,
even, or none). Other features include a programmable timer and stop-bit selection. The Cl402
supports local asynchronous peripherals via direct cables, or remote asynchronous peripherals via
modems.

11.3.1.2 Cl403. The Cl403 is an asynchronous, buffered multiplexer that provides a TILINE slave
interface between a Business System 600 or 800 series computer and four asynchronous serial
channels. The four channels are RS-232-C and CCITT (V.24) compatible, programmable for speeds
up to 19.2K bps, and support half-duplex or full-duplex communication. Character size is select-
able from 5 to 8 data bits with programmable parity (odd, even, mark, space, or none). Other
features include break detection/generation, a 250-millisecond timer, and stop-bit selection. The
Cl1403 supports local asynchronous peripherals via direct cables, or remote asynchronous peri-
pherals via modems.

11.3.1.3 Cl404. The Cl404 is an asynchronous, buffered multiplexer that provides a TILINE slave
interface between a Business System 600 or 800 series computer and four fiber optic channels.
The four channels are programmable for speeds up to 19.2K bps and support half-duplex or full-
duplex communication. Character size is selectable from 5 to 8 data bits with programmable parity
(odd, even, mark, space, or none). Other features include a 250-millisecond timer and stop-bit
selection. The Cl404 supports local fiber optic peripherals for distances up to 1 kilometer.

11-10 946250-9701

Application Programming Environment

c9Lv8ee

d3LNi1dd
aviy3s

uoneinbyuo) suonedUNWWO) Q0E WalsAs ssauisng sjdweg *g9-}| ainbi4
i
X | YNINYAL
JdIANIYd n WILSAS
aviyas A4 SSANISNng
AT ENoHd T SRR
g2eprio
YALNINdETAL
i v " 2
x| "vNiwaaz 11
d3ANTHd n W3LSAS o
RAALELS v SsaNisng ol z
d
v
|
1
wW3aaow L1o
m ONASY ONAS o
MNITT INOHJ n_O

00E NW3LSAS
SsSaNisng

1111

946250-9701

Application Programming Environment

11.3.1.4 Cl421. The Ci421 provides a CRU interface between a Business System 300 series
computer and two RS-232-C or CCITT (V.24) compatible communications channels, one asyn-
chronous and the other either synchronous or asynchronous. It provides full modem control and
status capability for interfacing to remote sites.

The asynchronous channel supports half-duplex or full-duplex communications at speeds from 75
through 9600 bps. Character size is selectable from 5 to 8 data bits with programmable parity (odd,
even, or none). Other features of the asyrichronous channel include a programmable timer and
stop-bit selection.

The synchronous channel can be programmed to support synchronous, asynchronous, or iso-
chronous operation. It supports bit rates from 50 to 9600 baud by an internally generated clock
signal. When programmed for synchronous operation, the channel supports character-oriented
protocols such as Binary Synchronous Communication (BSC), or bit-oriented protocols such as
Synchronous Data Link Control (SDLC).

11.3.1.5 Cl422. The Cl422 provides a CRU interface between a Business System 300 series
computer and four RS-232-C or CCITT (V.24) compatible communications channels. The Cl422
supports half-duplex or full-duplex communications at speeds from 75 through 9600 bps. Charac-
ter size is selectable from 5 to 8 data bits with programmable parity (odd, even, or none). Other
features include a programmable timer and stop-bit selection.

11.3.1.6 CP501. The CP501 provides an interface between RS-232-C or RS-423 compatible
devices and a Business System 600 or 800 series computer. It provides full modem control and
status capability for interfacing to remote sites, and also supports power-isolated T! local line driv-
ers and receivers. The CP501 supports half-duplex or full-duplex communications at speeds from
50 through 9600 bps. Character size is selectable from 5 to 8 data bits with programmable parity
(odd, even, or none).

The CP501 can be programmed to support synchronous, asynchronous or isochronous operation.
When programmed for synchronous operation, the CP501 supports bit-oriented protocols such as
SDLC and Advanced Data Communications Control Procedures (ADCCP). Synchronous operation
also supports BSC and Digital Data Communications Message Protocol (DDCMP).

The CP501 contains routines that provide complete support including message blocking, error
detection, and cyclic redundancy checks for BSC, SDLC, and ADCCP protocols. The BSC protocol
(Extended Binary-Coded Decimal Interchange Code, EBCDIC) supports IBM 3780/2780 emulation.
The CP501 also supports download of character detect software.

Synchronous protocols can be externally clocked (NRZ) or internally clocked (NRZI), with bit rates
up to 9600 baud.

11-12 946250-9701

Application Programming Environment

uoneInBiuos SUCHEIIUNWWOY SNOUOIYIUAS 008 10 009 Wwalshg sseuisng ajdwes -Z-1| ainbiy

20SdD

008 ¥O 009
W3LlSAS SSANIsNg

LNITIVAIND3
40 ‘802" 10¢
13S viva 71138

—

S

MNITT INOHJ

YNITT INOHJ

LNITIVAINDO3
¥0 "80¢2° 10¢
13s viva 173g

9e0e8Ze

208dD

008 d0 009
W3ILSAS SS3INISNG

1113

946250-9701

Application Programming Environment

11.3.1.7 CP502. The CP502 provides an interface between EIA (RS-232-C/CCITT V.24, RS-422) or
X.21 compatible devices and a Business System 600 or 800 series computer. The EIA interface
provides full modem control and status capability for interfacing to remote sites. The X.21 inter-
face includes full DCE (Data Carrier Equipment) control and status capability for interfacing to
DCE connected to an X.21 leased line or an X.21 switched circuit. The CP502 supports half-duplex
or full-duplex communications at speeds from 50 through 9600 bps. Character size is selectable
from 5 to 8 data bits with programmable parity (odd, even, or none).

The CP502 can be programmed to support synchronous, asynchronous or isochronous operation.
When programmed for synchronous operation, the CP502 supports bit-oriented protocols such as
SDLC and ADCCP. Synchronous operation also supports character-oriented protocols such as
BSC or DDCMP, and non-sync protocols (bit stream).

The CP502 contains routines that support message blocking, error detection, and cyclic redun-
dancy checks for BSC, SDLC, and ADCCP protocols. The BSC protocol (Extended Binary-Coded
Decimal Interchange Code, EBCDIC) supports IBM 3780/2780 emulation. For switched X.21 oper-
ation, X.21 Call Establishment and Call Reception protocols are supported. The CP502 also sup-
ports download of character detect software.

Synchronous protocols can be externally or internally clocked, NRZ (direct) or NRZI encoded, with
bit rates up to 9600 baud.

11.3.2 3780/2780 Emulators Communications Software

The 3780/2780 emulator communications software packages provide the 990 family of computers
with a means of Remote-Job-Entry (RJE) communications with an IBM 360/370 host computer or
another 3780/2780 emulator-equipped 990 computer. Communications consist of exchanging data
files between master and slave stations over leased point-to-point or switched telephone lines as
shown in Figure 11-8.

The 3780/2780 emulator communications software simulates the operation of the IBM 3780 Data
Communications Terminal and the IBM 2780 Data Transmission Terminal, respectively. Unlike the
IBM devices, the source and destination of the transferred files are not restricted to the card
reader/punch and line printer. Any file or input device can be the input source; likewise, any file or
output device can be the output destination.

Using the 3780/2780 emulator, 990 computer systems can serve as satellite stations or as central
stations in distributed-processing networks or can handle remote-job or batch-data entry for
processing by a host. Remote stations can be dialed manually or automatically with an optional
auto-call unit and internal modem. They can also operate in an unattended mode as a called
station in a distributed network. The 3780/2780 emulator operates over switched comunications
lines, leased multipoint lines, or private communications lines. Communications require one of
the synchronous controllers discussed earlier (C1421, CP501 or CP502), along with the appropriate
modem.

1114 946250-9701

Application Programming Environment

990
COMPUTER

MASTER
DATA
BASE

HOST
COMPUTER

TELEPHONE LINK

3780/2780
EMULATOR

(LEASED OR
SWITCHED LINE)

990 TO 990 LINK

990
COMPUTER

3780/2780
EMULATOR

2278077

Figure 11-8. Typical Application of 3780/2780 Emulator in Distributed Processing Environment

11.3.3 3270 Emulator Interactive Communications Software

The 3270 Interactive Communications Software (ICS) provides a means of connecting IBM main-
frame computers to 990 computer systems. ICS allows interactive access to applications on the
IBM that support the 3270 terminal family. The software provides interactive access through the
911 VDT, 931 VDT, or Business System Terminal. ICS also supports batch access through user-
written COBOL, FORTRAN, Pascal, or 990 assembly language programs that control the linkable
Programmed Station Control (PSC) emulator.

ICS operates over leased multipoint lines or private communications lines. Communications
require one of the synchronous controllers discussed earlier (Cl421, CP501 or CP502), along with
the appropriate modem. When operating with ICS, a 990 computer can share a multipoint line with
IBM 3270 terminals using BSC protocol.

ICS maintains comprehensive statistics about data-link and application performance to aid net-
work trouble-shooting. Figure 11-9 shows the IBM 3270 Information Display System configuration
being emulated by ICS. ICS can communicate with any IBM host system that supports the IBM
3271 Model 2 Control Unit, IBM 3277 Model 2 Display Station, and IBM 3284 Model 2 Printer.

946250-9701 1115

Application Programming Environment

3271 3277
MODEM CONTROL DISPLAY
UNIT STATION
MODEL 2 MODEL 2

IBM HOST
THAT
SUPPORTS
3270
MULTIPLEXER
CHANNEL
LEASED
LINE

—

TRANSMISSION

KEY3O0OARD

3277
DISPLAY
STATION
MODEL. 2

KEYBOARD

3284
PRINTER
MODEL 2

ADDITIONAL IBM 3271

AND 3275 CONTROL

UNITS (MODELS 1 OR 2)
AND/OR THEIR APPROPRIATE
PERIPHERALS MA BE
ATTACHED TO TH
COMMUNICATION LINE. I

MODEM

- - — - __

IBM CONFIGURATION EMULATED WITH ICS

COMMUNICATIONS

CONTROLLER

CONTROL —— MODEM [~
NIT
MODEM
IBM HOST
THAT SUPPORTS
3270
MULTIPLEXER
CHANNEL
LEASED
/ LINE

—

TRANSMISSION
CONTROL
UNIT

MODEM }—-o

T1
COMPUTER WITH
DX10 OPERATING

SYSTEM AND
1CS INSTALLED

KEYBOARD

KEYBOARD

< <
o g
4 S

* DX10 -
SUPPORTED;
PRINTERS

ADDITIONAL

AT LEAST ONE 3277
DISPLAY STATION,
EQUIPPED WITH A KEY-
BOARD, MUST BE ATTACHED

OPTIONAL — UP TO 7
OF ANY COMBINATION
OF THE FOLLOWING
MODEL 2 DEVICES:

3277 DISPLAY STATIONS
3284 PRINTERS

MAY BE ATTACHED TO
THE SYSTEM.

AT LEAST

ONE VDT

MUST BE CONFIGURED
AS AN ICS DISPLAY
STATION

MORE VDTS AND/OR DX10-—
SUPPORTED PRINTERS MAY
EIE CONFIGURED A
STATIONS .,
THE _NUMBER OF STAT!ONS
THAT ICS CAN SUPPOR
DEPENDS ON THE PARTICULAR
CONFIGURATION OF THE TI
COMPUTER AND THE RESPONSE
TIME REQUIRED FOR ICS AND
HOST APPLICATIONS

l SYSTEMS, IBM 3
SONTROULAVES (gbevs
MODEM 3275 CONTROL UNITS l
(MODELS 1| OR 2) AND
PERIPHERALS MAY BE
PERATION, A SEQUENTIAL FILE OR E 2
* AR SEQUENTIAL INBUT/OUTPUT DEVICE MAY ATTACHED TO THE
BE USED AS AN ICS PRINTER_STATION. ONLY COMMUNICATION LINE.
PRINTERS ARE ALLOWED WHEN USING PsC, | . __ . __ __ __ __ __ __ __ __ __
2280079 ICS CONFIGURATION
Figure 11-9. IBM 3270 Information Display System Configuration and ICS Configuration
11-16

946250-9701

Application Programming Environment

11.4 HIGH-LEVEL PROGRAMMING LANGUAGES

DX10 supports several high-level languages:
o FORTRAN for mathematical and scientific applications
e COBOL for business environments

J Pascal for a variety of applications including system software development and scien-
tific applications.

. BASIC for interactive scientific programming and business application programming

. RPG li for business applications reqdiring file maintenance or report generation.

11.4.1 FORTRAN

FORTRAN is a high-level computer language that allows complex problems to be stated in com-
mon mathematical expressions for input to the computer. The FORTRAN-78 software package
provides for the processing of your source code in three major steps:

. Compilation, to translate the source code from FORTRAN programming language to
machine code

. Linking, performed by the Link Editor, to join the compiled program with run-time sup-
port and called subroutines

° Execution

The FORTRAN-78 compiler translates FORTRAN language input code into computer machine
code. The FORTRAN-78 compiler conforms to the American National Standards Institute (ANSI)
standard FORTRAN 3.9-1978. The compiler also incorporates the extensions recommended by the
Instrument Society of America in their document ISA-S-61.1, 1975 and in their document ISA-61.2,
1976.

Under your direction the Link Editor, an integral component of DX10, takes the modules of object
code developed by the FORTRAN-78 compiler and links them together, resolving references
between modules, to produce a single, executable module of code.

946250-9701 ' 1117

Application Programming Environment

Texas Instruments has incorporated several useful attributes into the FORTRAN-78 compiler that
provide for more effective coding and program development. These added features include:

o Overlapped /0

. Free format source input

. Internal data manipulation statements

. Variable names of any length

. Double-word (32-bit) integer data type

. implicit variable typing

. General integer expressions in subscripts

. Data statement array names

] Mixed mode expressions

° Hollerith and hexadecimal constants and assignments

o Scaled binary data types

. Copy directives

. Accept and display directives for interfacing with aVDT
Optionally, the compiler can generate a cross-reference listing for each variable in the program,
provide a debug module that references specific line numbers in the source program input during
execution, provide a list of generated object code in readable form, provide conditional compila-
tion, allow free format, and generate assembly language source code.
The FORTRAN-78 function library includes all intrinsic functions and basic external functions
defined in the ANSI standard. This library contains all run-time support to interface with the DX10

operating system. In addition, several useful routines such as a multiple-key indexed file handler
are provided.

11-18 946250-9701

Application Programming Environment

11.4.2 COBOL

COBOL is a high-level computer language that allows problems to be stated in words and syntax
similar to the English language. COBOL consists of a set of English words and symbols that the
programmer may use to define the problem and create a program to solve that problem. Because
of its similarity to English, programs written in COBOL are nearly self-documenting, and the time
required to train a new programmer in the language is greatly reduced.

The COBOL compiler conforms to the ANS|I COBOL subset as defined in ANSI documentation
and incorporates extensions to this subset to provide added capabilities. The compiler package
employs the following ANSI standard COBOL modules at the level indicated.

Features
Level 1 : ‘ Level 1+ *
Interprogram communications Table handling
Library Nucleus
Segmentation Relative 110
Sequential /1O
_Indexed 110

* Selected features from level 2.
The debug and accept/display modules are nonstandard and designed for ease of use on VDTs.

COBOL programs may be executed directly with SCI Execute COBOL commands, or they may be
link edited and installed in DX10 program files.

11.4.3 Pascal

Texas Instruments Pascal for the 990 computer is a general-purpose language well suited for a
variety of applications. Originally designed as a language for teaching a systematic concept of
programming, Pascal is straightforward to learn and use. Its readability makes the language
especially useful when programs must be maintained by users other than the originator.

A common application of Pascal is the development of system software. The Pascal compiler is
itself written in Pascal as are a number of other 990-system software modules. Pascal is useful for
scientific or engineering applications that are usually written in FORTRAN or ALGOL. lts general-
purpose structure is also useful for many business applications.

The minimum system required to support Pascal consists of the 990 CPU with 256K bytes (where K
equals 1024) of memory, plus 10 megabytes of disk memory.

946250-9701 1119

Application Programming Environment

The Pascal system consists of five major components:

. Nester utility

. Configuration processor

. Pascal compiler

J Pascal run-time library

. Reverse assembler
The nester utility generates source code indented on a standard format to improve readability.
The configuration processor supports the separate compilation of nested program modules. The
Pascal compiler with optimizing features produces linkable object modules. The Pascal run-time
lirary provides operating-system interface. The reverse assembler optionally produces
assembly-language source files or listings.
The object license for the Pascal software provides a complete package including all of the soft-
ware components with the exception of the link editor, which is included with the license for the
DX10 operating system. The DX10 system provides a powerful multiuser environment for Pascal.
Some of the more significant features of Pascal include:

. Block-structured format that directly supports structured programming concepts

. Stack allocation of variables for each routine

. Recursive routine capability

. User-defined data structures that are adaptable to data used in application

. User-defined data types and type checking

. Excellent bit-manipulation capability

11-20 » 946250-9701

Application Programming Environment

11.4.4 BASIC

BASIC is an easily understood programming language that is applicable to scientific and
business problem solving. BASIC is an interactive language designed for several different users,
each working from a separate terminal. The computer provides feedback to each command
entered on a terminal and points out any programming errors by displaying diagnostic messages
during execution time.

The BASIC language provided is a greatly extended implementation of ANSI Minimal BASIC. The
extensions include support of multiple file organizations, closed subroutines, character strings
and VDT screen handling. The system includes the following components:

. A compatible language, Tl BASIC, executable on all members of the 990 and Business
System product lines

. An interactive reentrant editor/interpreter for creating and executing Tl BASIC programs

TI BASIC is directed to the user who is most concerned with program development time. The pow-
erful editor and fast system response almost eliminate turnaround time. The 13-digit precision
provides the accuracy needed for scientific calculations. The decimal representation of noninte-
ger variables eliminates the round-off problems of most other BASICs when used for commercial
applications. Language compatibility with smaller members of the 990 family permits develop-
ment of BASIC programs on large systems that can be used on smaller systems. Tl BASIC sup-
ports key indexed files and temporary files in addition to relative record and sequential files.

11.4.5 RPG I

RPG Il (Report Program Generator, version ll) is an easy-to-use, high-level language for business
data processing. Based upon a predetermined sequence that reads a record, processes the data,
and outputs the results, RPG Il is especially suited for applications requiring file maintenance or
report generation. A series of six basic specification formats is used to input the specific actions
to be taken within the RPG Il sequence execution.

Texas Instruments version of the RPG Il language is closely compatible with the widely used IBM
System/3 RPG II. Extensions of many of the System/3 features have been included in RPG Il to pro-
vide more flexible programming. A utility program is provided with RPG Il to copy System/3 or
System/32 source programs or files from diskette to 990 disk files.

The RPG |l package also includes an RPG ll-oriented VDT text editor and a trace feature that
prints each major step occurring in the execution of an RPG Il program. An industry compatible
sort/merge capability is provided by the optional Sort/Merge package. Communication of RPG li
files is available through the optional DX10 3780 Emulator package.

The minimum system required to run RPG Il consists of a 990 CPU with 128K bytes of memory and
10M bytes of disk memory.

946250-9701 ‘ 11-21

Application Programming Environment

The RPG Il compiler has the following significant features:
. Efficient one-pass compiler
U Run-time trace that speeds the checking of the program
o Right- or left-hand sign handling
. ASCII or EBCDIC internal character set
. Capability to produce more than 500 unique diagnostic messages
. Alphabetic summary listing of all fields, labels, arrays, and tables

. Listing of all indicators specified in a program

11.5 PRODUCTIVITY AIDS

Texas Instruments supplies the TIFORM, TIPE, Sort/Merge, and CPG utility packages for applica-
tion programming.

11.5.1 TIFORM

TIFORM is a utility package for controlling the interactive interface to an application. It provides
convenient control of complex screen formats for COBOL, FORTRAN, and Pascal applications.
Included in the package are both an interactive screen generator (formatter) and a screen descrip-
tion language compiler. Through these two tools, TIFORM isolates the description of the screen
format from the application’s procedural code, allowing applications to become independent of
the terminal. TIFORM also provides:

. All available terminal features (blink, dim, highlight, no display, etc.)

. Character and field level editing

. Up to 40 percent improvement in interactive application development time
11.5.2 Texas Instruments Page Editor (TIPE) Utility
The TIPE package offers word processing features for creating, editing, and printing pages of text
that complement the data processing capabilities of the Tl commercial computer systems. TIPE
efficiently produces letters and documents, is easy to use, and requires minimal training. The TIPE
package operates on standard 990 and Business System hardware, including VDTs and the 810
matrix printer. Letter-quality printing is also available, using the optional Model LQ45 printer.
The following functions are available with TIPE:

. Create anew TIPE document

. Edit an existing TIPE document

. File the document now being created/edited

11-22 Change 1 946250-9701

Application Programming Environment

o Disregard changes made since last Create or Edit Command
. Print a TIPE document
U Quit using the creation/editing program

11.5.3 Sort/Merge Utility

The DX10 system supports a comprehensive Sort/Merge package that can be accessed in several
ways. SCI provides commands to access Sort/Merge in batch or interactive modes. COBOL, FOR-
TRAN, BASIC, Pascal and assembly language programs can interface to Sort/Merge by using the
CALL statement. Both sort and merge support the following features:

. Record selection
. Reformatting on input
o Summarizing on output

Ascending key order, descending key order, or an alternate collating sequence may be specified.
Any number of keys may be specified as long as their total length is less than 256 characters. The
merge process supports up to five input files. The sort process allows the following:

. Key sort (Tag-Along)
. Summary sort (summary Tag-Along)
. Address Only sort

Figure 11-10 shows an example of the Sort/Merge process with printouts of results at each step.
Additional information describing Sort/Merge is found in the Sort/Merge manual.

11.5.4 COBOL Program Generator (CPG)

CPG generates complete COBOL source programs that can be compiled and executed under DX10
or any system that supports RM™/COBOL. CPG reduces the time and effort normally associated
with COBOL program development by performing routine coding that is tedious and time-
consuming. Menus, fill-in-the-blank screens, prompts, and explanation screens guide you in using
CPG.

CPG generates both batch and interactive programs. Batch programs can update files and prepare
reports with no user interaction. interactive programs accept data entry from formatted screens or
modify data files by adding to, deleting from, or performing calculations on the current data fields
in the file.

The CPG system provides two levels of usage: standard and advanced. The standard operation of
CPG can be used by both experienced and inexperienced COBOL programmers to generate pro-
grams that perform routine tasks such as preparing reports and accepting data entry for file up-
dating. The advanced operation of CPG can be used by experienced COBOL programmers to
generate complex programs and define all program parameters.

RM is a trademark of Ryan-McFarland Corporation.

946250-9701 Change 1 11-23

Application Programming Environment

MONTH. DEPT A

DEPARTMENT A SALES FOR MONTH
TOTAL
PART NO | aTY AMT NAME
7000 1 5 350 ABLE
8000 1 40 400 DOGGER
2000 1 10 200 BAKER
STEP 1: &
SORT DEPARTMENT A
BY CUSTOMER NAME
ABLE 7000 1 5 350
BAKER 2000-1 10 200
DOGGER 8000 1 40 400

MONTH. DEPT B

STEPS 1 AND 2:

SALES DEPT A

NOTE: STEPS 3 AND 4

SHOWN HERE ARE EXAMPLES;

BOTH CAN BE REPLACED BY
A SUMMARY MERGE

2278896

11-24

Figure 11-10. Sort/Merge Process Showing Printouts of Results at Each Step

'SORT BOTH FILES INTO
ALPHABETICAL ORDER.

DEPARTMENT B SALES FOR MONTH
PART NO aTy TONTE | Name
1000 1 10 100 |BAKER
3000-1 10 300 |CHARLES
2000 1 20 400 |ABLE
5000 i 20 1000 |CHARLES
4000 1 20 200 |BAKER
STEP 2: l
SORT DEPARTMENT 8
BY CUSTOMER NAME
ABLE 2000-1 20 400
BAKER 1000-1 10 100
BAKER 40001 20 200
CHAALES 30001 10 300
CHARLES 5000-1 20 1000

SALES DEPT B

STEP 3:

MERGE
ABLE 200(%1 20 400
ABLE 7000-1 5 350
BAKER 1000 1 10 100
BAKER 2000-1 10 200
BAKER 4000-1 20 200
CHARLES 3000-1 10 300
CHARLES 5000-1 20 1000
DOGGER 8000-1 40 400

'

SUMMARY SORT

AMOUNT

[ABLE $

750
BAKER $ 500
CHARLES $ 1300
DOGGER S 400

MERGE DEPARTMENT A AND
DEPARTMENT B CUSTOMER DATA
INTO ONE SORTED FILE

PURCHASED

STEP 4: SUMMARIZE TOTAL MONTHLY
SALES FOR EACH CUSTNMER. FORCE
A DOLLAR SIGN IN FRONT OF THE

PRINTOUT OF CUSTOMERS IN ALPHABETICAL
ORDER SHOWS TOTAL AMOUNT TO BILL EACH

946250-9701

Application Programming Environment

11.6 DATA MANAGEMENT TOOLS

DX10 supports several related data management packages that streamline file handling:
. Data Base Management System (DBMS)
o Query
. Data Dictionary (DD)

11.6.1 Data Base Management System (DBMS)

The DBMS (Data Base Management System) is designed for minicomputer data-base applications.
Specifically, this system handles applications with fast data-access requirements which need to
be accessed in a logical format that can be easily equated with physical documents or records
used in daily business transactions. The DBMS allows you to define and access a centralized, inte-
grated data base using logical format without the physical data-access requirements imposed by
conventional file-management software. Physical considerations such as access method, record
size, blocking, and relative-field positions are resolved when the data base is initially defined.
Thus, the user can concentrate fully on the logical data structures needed for interface.

11.6.1.1 Features of DBMS. The independence of the data definitions from the application soft-
ware allows modification of the data base without impact to existing programs. It provides a
single, centralized copy of the data for all application subsystems. (Conventional file management
provides fragmented and multiple copies of data held in a wide variety of files with each used by
only one application.) The centralized copy results in more efficient data storage on disk, uniform
processing of data requests, and centralized control of the Data Base Maintenance function. In
addition, DBMS provides optional password security for the most elementary data level; this pro-
vides control and protection of the data base from unauthorized access or tampering.

11.6.1.2 DBMS User Interface. The primary user interfaces to DBMS consist of the Data-
Definition Language (DDL) and Data-Manipulation Language (DML).

DDL provides the means to completely describe the DBMS data base and its associated data ele-
ments. The DDL logical data-base definition source is compiled by the DDL compiler, and the out-
put is stored with its associated data on disk.

DML provides the user the means to manipulate DBMS data by supporting the reading and/or
writing of DBMS data. DBMS data can be accessed by imbedding the appropriate DML syntax in a
COBOL, Pascal, or FORTRAN application program. The call construct of the language is used to
call DBMS and specify a function to be performed, and the data element to be manipulated. DBMS
processes the request and returns the results to the application program.

11.6.2 Query

Query is a general-purpose data base application that interactively retrieves DBMS files through
the standard DML interface. Query allows a user familiar with DBMS file structure but unfamiliar
with programming languages or the DML language to obtain complex formatted reports.

946250-9701 . 11-25

Application Programming Environment

11.6.2.1 Query Environment. The Query processor produces a report or data file by accepting
and executing a Query language statement. Two ways to build and execute a Query statement are
as follows:

. The user may invoke the Query processor directly and pass to it a Query statement file
(interactively or in batch mode) built through either the Query editor or the system Text
Editor.

e The user may build a Query language statement by executing the Guided Query utility,
which constructs the statement by prompting the user with questions to determine the
contents and format of the report.

11.6.2.2 Query Language. The Query language is an English-like nonprocedural language with
statements composed of several clauses. The clauses allow the user to specify the contents and
format of each line as well as complex conditions that a data base record or line must meet to be
qualified for output. Totals, counts, or averages may be performed on output fields, and default
columnar headings and user-defined headings are supported.

By using the Query language, a complex report may be specified in a few lines, while an applica-
tion program to obtain the same report may take several hundred lines.

11.6.3 DD

The DD data dictionary allows you to define all the data used in an organization and store these
definitions in a central location. This centralization aids in the enforcement of data standards, clar-
ifies the impact of changes to the data, and limits data redundancy.

The DD system consists of a dictionary file, a data librarian, utilities, and a data manager. The dic-
tionary file contains the definitions of data in other files. (Note that the dictionary file does not
contain the actual data from these other files.) The dictionary file controls and maintains key
indexed, relative record, sequential, and data base files. You use the data librarian to enter infor-
mation into the dictionary. The data librarian is responsible for the accuracy of all definitions in the
dictionary file. The utilities generate detail, summary, and cross-reference reports. This is an effec-
tive means of managing file definitions in the dictionary file and understanding the relationships
of the definitions to each other. The data manager provides the DD interface to Query. This allows
total control and access to conventional (non-DBMS) files for inquiry processing.

DD can be used in a stand-alone manner or in combination with Query and DBMS for full data file
control. Query does not require the data manager to access data base files.

11-26 946250-9701

12

Program Management

12.1 GENERAL INFORMATION

DX10 provides the means for you to install and execute your own application programs. This sec-
tion discusses program structure and the characteristics of program installation and execution.

User programs operating under control of the DX10 operating system can include a composite of
data, procedures, and overlays as required. Programs are installed and stored in program files in
memory image form. When a program is activated, the Link Editor separates the program into
segments of data and segments of procedure. DX10 loads the linked segments into any available
memory areas. These areas in memory may be located together or they may be widely separated.
The 990 hardware memory mapping facility handles the relocation of programs.

An active program may be rolled in and out of various memory locations several times by DX10
during its execution to efficiently share memory and available CPU execution time. When in
memory and active, a program competes with other programs for CPU execution time on a priority
basis. When a program terminates, DX10 releases all program-owned resources including files,
devices, and memory. This DX10 program structure is made possible by the 990 hardware memory
mapping capability that allows three separately loaded program segments to be mapped into a
single logically contiguous program address space.

DX10 provides services to tasks through SVCs. These common routines handle the complex func-
tions of file and device 1/O, task control, memory control and other service needs. Assembly
language tasks have direct access to SVCs. High level language statements requiring SVCs are
processed by the compiler or interpreter. Services that may be needed by a program written in a
high level language but which are not available through the language can often be made
available. Consult the appropriate language programmer’s guide for instructions on accessing
SVCs.

12.2 TASKS AND PROGRAMS

A program is an ordered collection of instructions that directs the activities of a computer. Under
DX10, a task is a specific activation of a program. DX10 is able to concurrently share the memory,
machine execution time, and peripheral resources of the system among several tasks. While one
task is actually active (executing) others are suspended awaiting reactivation. In a typical mixture
of tasks, most are awaiting execution pending completion of some input or output operation.
While these tasks await input/output completion, other tasks (one at a time) access system
resources and execute instructions.

946250-9701 12-1

Program Management

12.3 SHARED PROCEDURES AND REPLICATED TASKS

DX10 provides an efficient task replicating mechanism that allows several concurrent executions
of a single program. Such is the case in many multiterminal environments or in industrial applica-
tions where several similar device types are controlled. An example might be a bookkeeping pro-
gram interacting with several bank tellers concurrently. Similarly, multiple copies of one program
can control many sewing machines at the same time.

In many cases the procedural part of a program may be common to each of a number of concur-
rent executions, whereas, the data for each execution may be unique to that execution. Therefore,
the user may develop differentiated functions while employing the same procedures. Under DX10,
the shared procedural part is called a procedure while the unique data part is called the task. A
program operating under DX10 may consist of a task and one, two or no procedures. The pro-
cedures may be shared with other executing tasks. Sharing of procedures conserves memory
usage by eliminating the necessity of replicating the procedural part of a program. Conversely,
the task portion is unique to each separate execution.

In cases where each concurrent program activation has the same initial state (data), only one pro-
gram image need be stored on disk. Each task needed may be replicated from a single image
installed in a program file on disk for each activation. Replication of tasks conserves disk space
and time by avoiding the requirement of installing a copy of the same task with different IDs for
each possible concurrent activation of a program.

12.4 SHARING DATA AMONG TASKS

Sometimes two or more tasks need to share a block of data. A convenient method for
accomplishing this under DX10 is through the use of a shared procedure segment. A procedure
may contain data that is shared among several tasks. A program can update or modify data in a
shared procedure with the sharing tasks using the updated version.

An alternative way to share data is by storing it in the system common.

12.5 OVERLAYS

A large program may need to be partitioned in such a way as to allow only a portion of the program
to be resident in memory at a given time. The overlay support provided by DX10 provides the
mechanism to establish disk-resident program modules. One initial module of the program, called
the root, remains in memory during the entire execution of the program. The Link Editor, under
your control, divides the remainder of the program into disk-resident overlays.

When an overlay module is required, the program initiates a supervisor call that loads it into
memory. Alternatively, the Link Editor can include an automatic overlay manager. The Link Editor,
following your specifications, may further segment overlay modules into a lower level of root and
overlays.

12-2 946250-9701

Program Management

12.6 SAMPLE APPLICATION OF TASKS AND PROCEDURES

Figure 12-1 shows three examples of task and procedures structures of increasing complexity. In
the simplest case, a single task includes its own procedural part. In this case the program can be
replicated, but the procedural part for each task occupies memory. Generally, choose this
scheme when you judge that the task is small enough or is executed infrequently enough that its
execution does not overload your system’s memory.

In the second sample structure, a single procedure X is shared by tasks A, B, and C. Such a struc-
ture might be useful where tasks A, B, and C are each serving different terminals collecting data
from three locations in a parts warehouse. Procedure X might be an inventory inquiry program.
Note that tasks A, B, and C may be replicated copies of a single disk-resident image.

The third sample structure is an example of tasks operating with two procedures. A program writ-
ten in COBOL may operate in this manner. One procedure (X in the example) that may be shared
by all stations is the COBOL run-time support package. This package is required in support of any
application program written in COBOL. A second procedure is the procedural part of the COBOL
program itself (Y and Z). Note that multiple terminals, each with its own task, may share the same
COBOL procedure (Y in the sample). The task portion contains the data in use by the COBOL pro-
gram (unique to each program usage) and any overlays required by the COBOL procedure.
Overlays are placed in the task segment since different tasks (or program activations) may require
different overlay modules at the same time.

12.7 TASK ACTIVATION

Any task can activate another task. As a result, both tasks are active concurrently. DX10 identifies
a task with the station that calls it. As a result of this station/task link, all the station-local LUNO
assignments are available to the new task. Also, the requesting task may suspend itself until the
activated task terminates. This provides a convenient mechanism for a master application pro-
gram serving a station to activate subprocesses either in parallel with or instead of the master
program. When the subprocess completes in the former case, the master program resumes
execution,

A frequent employment of this task-activated-task feature occurs when you execute a task
through the SCI. Although the SCI appears to be the voice of DX10, it is actually the output of a
task named SCI990. When you command the SCI to execute a task (using the XTS command),
SCI990 activates the task and suspends itself until the called task is completed.

Additionally, a DSR can activate a task. A DSR is memory resident code which processes external
interrupts for a specific device. Once the device signals the computer that an event has occurred,
a special application task may be executed by the DSR to perform various control functions such
as turning on fire extinguishers, sounding an alarm through a smoke detector, or activating a
burglar alarm. For emergency situations, these application tasks can be installed to be memory
resident with real-time priorities to facilitate their execution.

946250-9701 ’ 12-3

Program Management

TASK TASK A TASK B TASK C
PROCEDURE X
NO PROCEDURE ONE PROCEDURE
PROCEDURE X
(TASK A,TASK B,
OR TASK C)
PROCEDURE Y PROCEDURE Z
(TASK A OR TASK B) (TASK C)
TASK A TASK B TASK C
2283117 TWO PROCEDURES
Figure 12-1. Task/Procedure Structure
946250-9701

12-4

Program Management

12.8 PRIORITY SCHEDULING

DX10 provides for efficient sharing of CPU time by more than one active task through a system of
priority scheduling. When you install a task, you are required to assign it a priority level. DX10
schedules tasks to use the CPU in order of their assigned priority levels. DX10 always schedules
the waiting task with the highest priority to be executed next.

The following two paragraphs describe the available priority levels and the events that trigger
scheduling. :

12.8.1 Priority Levels
DX10 requires that each task have a defined priority level. There are 132 priority levels. The follow-
ing list displays the assignable levels in order of their priority:

Highest 0 DX10 internal use

R1-R127 Real-time priorities
Lowest 1,2,3 Interactive and batch mode
Floating 4

Level zero is intended for the most critical system functions and is reserved for DX10 internal use
only.

The assignment of réal-time priority levels provides your tasks with the capability to supersede all
but the most important system tasks. For applications that require expeditious access to the
CPU, DX10 will delay some routine maintenance of system duties in an effort to schedule real-
time tasks.

Assignment of priority levels one, two, three, and four satisfies the requirements of most installa-
tions. Priority level one gives quick response for programs which interact with the user’s terminal,
while level two is adequate for programs requiring multiple-disk accesses.

Assign priority level three to batch executed tasks that do not require user interaction. Tasks at
this level can access the CPU only when no higher priority tasks (interactive, real-time, or system)
are waiting for execution.

The floating-priority level four provides rapid response to input/output events and de-emphasizes
the task during periods of heavy CPU operation. Application programs that function interactively
are typically installed with a level four priority assignment. When a task with level four priority
begins to execute, DX10 initially sets it to priority level one. DX10 lowers the task’s priority level to
level two after a specified number of time slices when the task is performing computations. DX10
sets the task’s priority level to one when the task is performing terminal input and to two when the
task is communicating with other I/O devices. '

946250-9701 125

Program Management

12.8.2 Scheduling Operation
DX10 reschedules all waiting tasks when one of the following conditions exists:

. An external interrupt bids up a task.

The executing task suspends.

U The task sentry lowers the priority of the executing task (if task sentry is enabled).
. A time slice of the executing task expires (if time slicing is enabled).

. A task which was in a time delay becomes active.

. An /O operation completes for the task waiting for it.

When a peripheral device sends an external interrupt to the CPU, the appropriate DSR may
request that a program be scheduled for execution. DX10 then reschedules the tasks for execu-
tion because the newly-bid task may be the highest priority task in the system.

If the current task suspends (relinquishes control of the CPU), the scheduler finds the next
highest priority task and gives control of the CPU to that task.

The task sentry monitors the length of time that a task runs. If a task continues execution without
voluntarily suspending execution, the Task Sentry halts that task and lowers its priority. Note that
you enable the Task Sentry and set the Task Sentry value during system generation. If the Task
Sentry lowers the priority of the currently executing task, DX10 reschedules all waiting tasks in
case a task of higher priority is in the system.

Time slicing allows the active tasks of the highest priority to share the CPU, each task receiving a
slice of CPU time in turn. After a task has executed for its allotment of time, DX10 reschedules the
tasks in the system to allow another task to execute. Note that you must enable time slicing and
set the time slice value during system generation.

When a time delayed task is due to become active, the scheduler reactivates the task and
reschedules the task for execution.

DX10 suspends tasks waiting for an I/O operation to complete. When the I/0 operation completes,
DX10 makes the task active and reschedules all waiting tasks in case the newly active task has
the highest priority.

12:6 ' 946250-9701

Program Management

12.9 PROGRAM FILES

All tasks, procedures, and overlays are installed in structures referred to as program files. These
files are based on the expandable relative record file type, and contain program images in blocks
corresponding to file records. The program file is structured so that an internal directory is main-
tained within the file itself. This internal directory contains pointers to each image on the file, as
well as relevant information about the images. DX10 requires two disk accesses to load a disk-
resident task, procedure, or overlay. In some cases, a program image may not be stored con-
tiguously on the disk and additional accesses are necessary.

DX10 has its own program file, created during system build at the factory. This system program
file, . SSPROGA, initially contains only programs that constitute parts of the DX10 operating sys-
tem. You may add other programs to .S§PROGA if you need them to be memory resident. (Refer to
paragraph 13.4 for a discussion of memory resident programs.) You should create your own pro-
gram files to store application programs. For the most part the capabilities of the system and user
program files are identical. The following list describes the differences between the system pro-
gram file, .S$PROGA, and your own program files:

. Memory-resident programs and procedures must be installed on the single system pro-
gram file.

. Procedures installed on the single system program file, SSPROGA may be used by any
task. Procedures installed on a user program file may only be used by tasks installed on
the same user program file.

. A nonreplicatable program installed on the system program file uses the same number
for its run-time ID and its installed ID. A nonreplicatable program installed on a user pro-
gram file uses a run-time ID that differs from the its installed ID. If a program is
nonreplicatable, multiple executions of that program cannot occur concurrently.

12.10 PROGRAM IDENTIFICATION

You can retrieve a program or its parts by task number, procedure numbers or overiay numbers
specified at install time. The program file internal directory can also call a program by its name as
well as its number.

You can install a task with or without the replicatable attribute. The activated image of a
replicatable task is assigned a run-time identification number that differs from its installed number.
A nonreplicatable task installed on the system program file uses the same number as its run-time ID
as for its installed ID. A nonreplicatable task installed on a user program file is allocated a run-time
ID that is different from its installed ID.

946250-9701 12-.7

Program Management

12.11 TASK SENTRY

The Task Sentry is an option you can select during system generation that guards against CPU
lockout. CPU lockout occurs when a task of the highest priority retains control over the CPU with-
out suspending itself; in this case, tasks with a lower priority are effectively locked out of the CPU
and the higher priority task is compute bound. Since DX10 always executes the highest priority
task in the system, lower priority tasks can be locked out for seconds at atime.

When a task remains compute bound at any priority for a specified number of 50-millisecond inter-
vals, the Task Sentry will lower the priority of the task by one. The lowering process continues for
as long as the task remains compute bound or until the task reaches priority three. When the task
finally does suspend, the Task Sentry restores the task to its proper priority.

12.12 SUPERVISOR CALLS (SVCs)

Assembly language application programs request service from DX10 by issuing SVCs. AnSVC is
initiated by a 990 instruction that transfers execution control to the operating system. Each SVC
includes a block of information containing the detailed parameters associated with the service
requested.

Table 12-1 delineates all SVCs supported by DX10 that are usable by an application program.
Volume Il discusses each SVC and how to use them. Certain other unlisted SVCs are available
only for privileged tasks and are explained in the Volume V.

Table 12-1. DX10 General-Purpose Operating System Supervisor Calls

* File and 1/0 Calls.

. Program Control Calis:

Execute a task.
Execute a task at a specified future time.

- Reactivate a suspended task.
Load an overlay.
End of task.
Momentarily suspend a task.
Suspend a task for time period.
Change task priority level.
Determine status of task.
Retrieve input parameters.
Task identification services.

. Memory Control:
Expand the task’s memory segment.
Contract the task’s memory segment.

. Other Calls:
ASCIlI/Binary conversion services.
Intertask communications.
Log a message.
Fetch time and Julian date.

12-8 946250-9701

13

Memory Management

13.1 GENERAL INFORMATION
This section discusses three major topics concerning memory management by DX10:

. Dynamic allocation of memory

. Roll-in/roll-out

. Memory-resident tasks
DX10 uses the 990 mapping option to dynamically allocate memory to disk-resident task and pro-
cedure segments, as well as file blocking buffers. DX10 uses a mechanism called roll-in/roll-out to
manage memory efficiently. When a program requires the use of a disk-resident task or pro-
cedure, DX10 rolls the program into dynamic memory. If a program with higher priority needs to
use that memory space, DX10 rolls the lower-priority program back out to disk memory until
memory space is available for it. In cases in which it is desirable, a program may be memory-
resident and bypass the roll-in/roll-out mechanism.
13.2 DYNAMIC ALLOCATION
DX10 places tasks and procedures in memory wherever space is available. The memory mapping
feature of the 990/10A and 990/12LR permits dynamic memory allocation. For the purpose of mak-
ing the most efficient use of available memory, DX10 can execute a program with as many as three
separate areas of physical memory. Although an application program consisting of a task and two
procedures has three segments physically separated in memory, the mapping feature causes the
program to see avirtual environment as described in the following:

. All three segments appear to be contiguous in memory with no gaps in addressability.

. The first segment appears to begin at memory address 0.

U The maximum addressable memory space for any one program is 64K bytes.

. Each program segment of a program must begin on a 32-byte boundary. The Lmk Editor
locates procedures and tasks on such boundaries.

946250-9701 131

Memory Management

13.3 ROLL-IN/ROLL-OUT

DX10 memory management features permit programs of high priority to preempt memory space
from those of lesser or equal priority. Any program may preempt space from a suspended pro-
gram. Whenever insufficient memory space is available to permit the operating system to execute
a program, DX10 seeks out suitable lower priority or suspended task segments and writes those
programs to disk. This process is called roll-out. Similarly, when the task and priority levels
indicate, DX10 rolls the program back in from the disk and execution resumes. The memory map-
ping feature permits a program segment to be restored into available physical memory space,
possibly different from that which it had occupied at the time it was rolled out. In this way, the roll-
infroll-out mechanism guarantees high priority tasks immediate access to memory, allowing the
task to respond rapidly to users or other external events.

Shared procedures do not become eligible for roll-out unless all the tasks that use them are also
rolled out. Similarly, tasks with disk or magnetic tape input or output transfers in progress are not
eligible for roll-out until the transfer is complete.

DX10 allocates space in dynamic memory to file blocks as well as to tasks and procedures. DX10
writes to disk memory any file blocks left in memory after a task completes if that memory space
is needed. DX10 writes these file blocks to their appropriate file location on the disk.

13.4 MEMORY-RESIDENT TASKS

Tasks are usually disk-resident in program files and loaded by DX10 each time they are activated.
DX10 supports the designation of selected programs as memory-resident. Memory-resident tasks
are loaded when the system is loaded from the disk (that is, during initial program load) and
remain in memory even after execution termination. Since the task is memory-resident, it is never
rolled out, saving operating system overhead by eliminating disk accesses otherwise required for
roll-in/roll-out. Because they are never rolled out, memory-resident tasks reduce the size of
available dynamic memory. You must install memory-resident tasks in the system program file
(S$PROGA). Memory-resident tasks can be installed in a user created program file, but will never
be loaded by the system as memory-resident.

13-2 946250-9701

Appendix A

Keycap Cross-Reference

Generic keycap names that apply to all terminals are used for keys on keyboards throughout this
manual. This appendix contains specific keyboard information to help you identify individual keys
on any supported terminal. For instance, every terminal has an Attention key, but not all Attention
keys look alike or have the same position on the keyboard. You can use the terminal information in
this appendix to find the Attention key on any terminal.

The terminals supported are the 931 VDT, 911 VDT, 915 VDT, 940 EVT, the Business System
terminal, and hard-copy terminals (including teleprinter devices). The 820 KSR has been used as a
typical hard-copy terminal. The 915 VDT keyboard information is the same as that for the 911 VDT
except where noted in the tables.

Appendix A contains three tables and keyboard drawings of the supported terminals.

Table A-1 lists the generic keycap names alphabetically and provides illustrations of the
corresponding keycaps on each of the currently supported keyboards. When you need to press
two keys to obtain a function, both keys are shown in the table. For example, on the 940 EVT the
Attention key function is activated by pressing and holding down the Shift key while pressing the
key labeled PREV FORM NEXT. Table A-1 shows the generic keycap name as Attention, and a
corresponding illustration shows a key labeled SHIFT above a key named PREV FORM NEXT.

Function keys, such as F1, F2, and so on, are considered to be already generic and do not need
further definition. However, a function key becomes generic when it does not appear on a certain
keyboard but has an alternate key sequence. For that reason, the function keys are included in the
table. :

Multiple key sequences and simultaneous keystrokes can also be described in generic keycap
names that are applicable to all terminals. For example, you use a multiple key sequence and
simultaneous keystrokes with the log-on function. You log on by pressing the Attention key, then
holding down the Shift key while you press the exclamation (!) key. The same information in a table
appears as Attention/(Shift)!.

Table A-2 shows some frequently used multiple key sequences.

Table A-3 lists the generic names for 911 keycap designations used in previous manuals. You can
use this table to translate existing documentation into generic keycap documentation.

Figures A-1 through A-5 show diagrams of the 911 VDT, 915 VDT, 940 EVT, 931 VDT, and Business
System terminal, respectively. Figure A-6 shows a diagram of the 820 KSR.

2274834 (1/14)

946250-9701 A1

‘Keycap Cross-Reference

Table A-1. Generic Keycap Names

Business
. 911 940 931 820
Generic Name ‘ System
VDT EVT VDT Terminal KSR
Alternate N
Mode one None
Attention?
PRFV
FORM 3
NE X
S
Back Tab (o]
Command? {;?égva
Control l CONTROL §
Delete
Character
Enter
Erase Field .g

Notes:

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions.

20n a 315 VDT the Command Key has the label F9 and the Attention Key has the label F10.

2284734 (2/14)

A-2 946250-9701

Keycap Cross-Reference

Table A-1. Generic Keycap Names (Continued)
Business
. 911 940 931 820"
Generic Name System
VDT EVT VDT Terminal KSR
Erase Input 5&35&3
o
Forward Tab CTRLE
F1 cmé
F2
F3 CTRLE

Notes:

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions.

2284734 (3/14)

946250-9701

Keycap Cross-Reference

Table A-1. Generic Keycap Names (Continued)
Business
. 911 940 931 820"
Syste
Generic Name VDT EVT VDT T KSR
F5
Fé6 i i chlE
(]

F7
F8
F9
F10

Notes:

‘The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions.

2284734 (4714)

946250-9701

Keycap Cross-Reference

Table A-1. Generic Keycap Names (Continued)
Business
. 911 940 931 820'
Generic Name System
VDT EVT VDT Terminal KSR
F11 CONTROL ;
F12
F13
F14 SHIFT
Home
Initialize Input .g ser |
LINE E
INS
l CHAR
e

Notes:

"The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions.

2284734 (5/14)

946250-9701

A-5

Keycap Cross-Reference

A-6

Table A-1. Generic Keycap Names (Continued)
911 940 931 Business 820
Generic Name System
VDT EVT VDT Terminal KSR
insert LINE | '
INS } None
Character
Next N
one
Character
Next Field SHIET None
Next Line
or
UNEE
FEED
s,
Previous N
one
Character a
Previous Field I SHIFT] \§ @ None
@\\»\\\«\\\\\\\\\\\w\\\\\\§
—
Skip §
Notes:
‘The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service

Routine {DSR). Keys on other TPD devices may be missing or have different functions.

2284734 (6/14)

946250-9701

Keycap Cross-Reference

Table A-1. Generic Keycap Names (Continued)

Generic Name \%1[232_ 33} %‘z%i‘isl ‘gg
Previous Line \ m
Print None
Repeat N%?gs N%?ga None
Return
Shift
Skip
Uppercase
Lock

Notes:

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service
Routine (DSR). Keys on other TPD devices may be missing or have different functions

*The keyboard is typamatic. and no repeat key is needed.

2284734 (7:14)

946250-9701 A-7

Keycap Cross-Reference

Table A-2. Frequently Used Key Sequences

Function Key Sequence
Log-on Attention/(Shift)!
Hard-break Attention/(Control)x
Hold Attention
Resume Any key

Table A-3. 911 Keycap Name Equivalents

911 Phrase Generic Name
Blank gray Initialize Input
Blank orange Attention
Down arrow Next Line
Escape Exit
Left arrow Previous Character
Right arrow Next Character
Up arrow Previous Line

A-8

2284734 (8/14)

946250-9701

Keycap Cross-Reference

inofeT pieoqha) piepuels 1AA L6 "LV ainbig

(vi/6) veLvaee

AYILN3 V1iva
7\

1103 ANV
TTOHLNOD ¥OSdND

avd OId3INNN

TTOYLNOD TIVYID3dS

A-9

946250-9701

Keycap Cross-Reference

946250-9701

inofe pieoqha)y piepuels LAASLE "2V ainbig

(r1/01) veLv8ee

SAIN
AYLNT Vvivad

/N

avd AT ’ \ SAI¥ 1103 ANV
SININNN 104LNOD HOS¥ND

20Sa 10SA 30OW HY3
o O

WWOD 1S31 023x3 314l

o O O O

®)
O

Sa371 snivis SAIM
NOI.LONNA

A-10

Keycap Cross-Reference

nofe pieoghay piepuels INI Ov6 "€V ainbiy

(ri/41) verveee

PIEE 4

d d d

HY31D 3SvaT 1HOIY
NIDHVN

p—

E_E_

M[

Ry |

FHNDMINOD 13S3Y UMWI zu_mm<!

By
M QN3S -

— et

a8

MDD HVYH

A

L4
£ed

Qua_m

mcrH_

Ry
64
L4

o SRR

m‘._. SgvL 7ad

NI 1HOIYE 110HJS a.»wv_m 3 y w SNLYIS

1]
AVIdSIa HLOONWS 440/

A-11

946250-9701

Keycap Cross-Reference

InoAeT pieoqhay piepuels 10A €6 bV ainbig

(ri/21) vreLvsee

BOEMSIE 4 H = ; ; : : - : : 8 A %
JNNTOA HYHOD wia LHOIHE aNoXg 3N SNivis
RREL:] 23ds AVIdSig A3d 340/NO

946250-9701

A-12

Keycap Cross-Reference

jnoken pieoqgAay piepuels [eulwia] walsAg ssauisng °G-y ainbig

T
=l

(vi/€1) vELYBZZ

NdN\ SE

M wﬂﬁ 55

A-13

946250-9701

Keycap Cross-Reference

Inofe pieoqhay| piepuels 4SH 028 9V ainbiy

(r8/v3) veLveee

946250-9701

A-14

Glossary

The terms defined in this glossary are used to describe the structure and operation of DX10. All
members of the DX10 family of manuals contain some of these terms. The terms are arranged
alphabetically.

Access Name — A name used to access an 1/O resource. An access name can be a device or
volume name, or a file pathname.

Access Privileges — An attribute of a task that defines the task’s mode of access to a particular
file. The task is said to have one of the following types of access privileges:

. Shared access (more than one task can read and write)

. Read only access (this task will only read)

. Exclusive write access (while others can read, only this task can both read and write)
. Exclusive all access (only this task can read or write)

Active State — The state of a task that is ready to use CPU time. An active task has all of its
required resources except for CPU time. See Executing Task.

Address — A group of characters that specifies the location of an area of memory. The operating
system uses addresses to correctly access data and instructions. For example, an address
can be 4 hexadecimal digits that represent the location of a byte of memory.

Address Space — The memory that can be addressed by an addressing scheme. The memory that
a task can address differs from the memory that the computer can address. A task can
address 65,504 bytes while the computer can address 2048K bytes. This difference is
resolved by the mapping hardware and DX10.

ADU — See Allocatable Disk Unit

Alias — An alternate for a file pathname component.

Allocatable Disk Unit (ADU) — The smallest disk space that can be allocated for file creation or
expansion. This space varies from 1 to n sectors depending on the type of disk drive.

Application Program File — A program file on which users install applications programs that are
not memory resident.

Array — A logical data structure consisting of one or more ordered sets of elements of the same
type (such as integers or literal strings.)

9462509701 ' Glossary-1

Glossary

ASR — See Automatic Send/Receive

Asynchronous Transmission — Transmission in which the receiving device is not dependent upon
the time relationship of the sending device. Start and stop bits frame each character to
maintain necessary control of timing.

Automatic Send/Receive (ASR) — A line-oriented terminal device with attached cassette tape
drives or paper tape drives.

Autocreate — The process performed by the operating system when the autocreate bit is set in the
Assign LUNO supervisor call block, specifying that the operating system is to create the file
to which the LUNO is being assigned if that file does not already exist.

Background Mode — A type of system use in which a task executes without interacting with the
terminal. The user can do other processing in the foreground while a background activity
proceeds. The initiated background task receives as its environment a copy of the current SCI
environment and proceeds to run simultaneously with SCI. SCI commands entered in a batch
stream always execute in background mode.

Base System — The initial system image shipped to the customer. The base system is aminimum
system capable of performing system generation, and supports VDTs and multiple disk and
tape drives.

Batch Mode — A mode of execution in which a task executes independent of a terminal. Under
DX10, SCI commands can be executed from any terminal, sequential file, or sequential
device. When the input device is other than a terminal, that is, it is a sequential file or device,
SCl is said to be running in Batch Mode. In this mode, all parameters must be supplied in
‘KEYWORD = value’ format.

Beet — A 32-byte block of memory starting at amemory address that is exactly divisible by 32.

Bid — To place a task in the active state (ready for execution), requesting the system bring the task
into memory, if necessary, and place the task on the active list at the appropriate priority.

Bit — A binary digit. In the binary numbering system, each bit has a value of either one or zero.

Blank Adjusted — An attribute of records in a file, denoting the padding of records with trailing
blanks on input, or the removal of trailing blanks on output. This attribute, when desired, is
specified at the time of the I/O operation.

Blank Suppressed — An attribute of a file indicating that each occurrence of a string of
consecutive blanks is replaced by a code that represents the number of blanks. Consecutive
blanks are not actually stored. This attribute of a sequential file, when desired, is specified
during file creation. It is used to reduce the disk space required for afile. '

Blocked Data Transfer — The movement of data through a system-supplied buffer as an
intermediary between a disk and the user buffer. This employs packing of one or more logical
user records into a single physical record and reduces the number of physical accesses to
the hardware storage device.

Blocked File — A file in which a physical record includes more than one logical record.

Glossary-2 946250-9701

Glossary

Bootstrap — A technique for loading the first few instructions of a routine into memory, and then
using these instructions to load the rest of the routine. For DX10, this bootstrap sequence
begins in a ROM loader after the initial program load sequence is keyed. Also see Initial
Program Load.

Boundary Error — An error in which a task tries to access memory outside its allowed address
space. The error causes task termination.

Bounded File — A file which cannot grow beyond its initial allocation.
Breakpoint — A place in a routine at which execution halts. Under DX10 a breakpoint is specified
by XOP 15,15. Except in the controlled mode of the Debugger, breakpoints do not

automatically return control to a monitor program.

Buffer — Storage used to compensate for différences in the rate of data flow, time of occurrence
of events, repacking of data, or transmitting data from one location to another.

Byte — A group of bits operated on as a unit. The Business System computers use bytes
consisting of eight bits.

Cache Memory — A portion of memory that operates much faster than primary memory and in
which the controller stores frequently used data from primary memory.

Call Block — A list of parameters passed to various DX10 supervisor calls. The call block contains
all information needed by the supervisor call and may be quite extensive in some calls, for
example, 1/0. Also see Supervisor Call Block.

Coded Error — An error for which the type is indicated by a numeric code. The numeric code may
be returned on a call, displayed, or posted in a special area (usually byte 1 for most supervisor
calls).

Central Processing Unit (CPU) — The arithmetic and logic unit of acomputer.

Collating Sequence — A method of specifying an order for a collection of character strings. For
example, the usual collating sequence for English is alphabetical order. The natural collating
sequence for DX10 is the numerical order sequence of the ASCII character codes.

Command — A directive to perform an action. The SCl is provided to interpret commands and to
initiate utilities as needed to perform the desired functions.

Command Mode — A processor mode in which the processor interprets input as commands rather
than as data. The Text Editor and system generation utilities have a command mode.

Command Procedure — A program in the SCI language that implements a command.

Command Processor — A task bid by a command procedure to perform an SCl command or part of
an SCl command.

946250-9701 Glossary-3

Glossary

Common — The System Common memory area; an area of memory accessible to all tasks through
the get common data address supervisor call. The size of system common memory area is a
system parameter supplied at system generation. The system common memory area is
accessed as one of the memory segments of every task that uses it.

Communications Register Unit (CRU) — The general-purpose, command-driven I/O mechanism of
the Business System computer. The CRU is used to control 1/0 to low-speed peripherals such
as video display terminals, cassette drives, EIA devices, card readers, line printers,
communication devices, and ASR and KSR devices.

Compose Mode —- A mode of operation in the Text Editor in which keyed data is entered into the
file being edited without special commands to cause entry. This is the mode enabled when
creating a new file.

Concurrent Tasks — Tasks which are simultaneously active. Only one task may be executing at a
given instant. See also Active Task and Executing Task.

Configuration File — A configuration file is a file describing a DX10 System created by the system
generation utility.

Context Switch — A transfer of control (to a program or subroutine) that activates a workspace
associated with the program or subroutine as control passes to the new PC contents. The
context switch stores the program environment, that is, the workspace address, the address
of the next instruction in sequence, and the program status. The 990/70 and 990/12 Assembly
Language Reference Manual discusses context switching fully.

Country Code — An indicator carried within system data structures to indicate the country, or
language character collating sequence, that was specified for support during system
generation.

CPU — See Central Processing Unit

CPU-Bound — A characteristic of a program that spends more execution time in CPU operations
than 1/O operations. Also see |/O-bound.

Crash Code — A numeric code displayed on the programmer panel indicator lights (if present)
showing that the operating system has detected an uncorrectable system error and has
aborted itself (crashed). Most Business System computers do not have a programmer panel.

CRU — See Communications Register Unit

Currency — A block of memory that contains information about the current record position while
processing afile.

Glossary-4 946250-9701

Glossary

Customer Representative — System software support personnel; the person or agency
responsible for providing support to you for software related problems. If you purchased your
software directly from Texas Instruments, then you have access to the Customer Support
Line for help with software problems. If you bought your system (or software) from an
intermediate dealer or an Original Equipment Manufacturer, then that dealer is your customer
representative. .

Texas Instruments is not responsible for error conditions that may degrade DX10 operation in
systems where modifications have been made to its software by the user or intermediate
vendors.

Cylinder — The group of tracks on the recording surfaces of a muiti-platter disk that are accessed
when the disk heads are in a particular Iocation.

Deadlock — A system state in which two or more programs are stalled contending for resources in
such a way that none can continue unless others release resources they already hold and
none can release the resources they already hold. Also see Thrashing.

Dealer — The company that sold your computer or software to you. See Customer Representative.

Debug — To remove flaws from a program. Debug aids under DX10 include extensive error detec-
tion capabilities and the interactive Debugger.

Default Value — A value supplied by the operating system if a user enters a null response to a field
prompt. Also see Initial Value.

Deferred Write — A file attribute that causes logical records to be written to disk after they are
buffered in memory. File /0 normally uses a deferred write operation to place logical records,
being written to disk files, into an area of memory that corresponds to a physical record. For
disk files, deferring disk writes can dramatically increase system throughput. When you cre-
ate afile, deferred write is the default value. Also see Immediate write.

Device — Physical equipment such as a card reader or line printer to which DX10 allows input or
output.

Device Name — A unique four-character pathname for a physical peripheral device. The first two
letters are alphabetic and indicate generic class. The second two characters are numeric and
indicate sequence number of the device.

Device Service Routine (DSR) — A routine that communicates directly with an I/O Device. As an
intrinsic part of the operating system, it services interrupts, and performs necessary input
and output operations.

Diagnostics — Information, messages, and routines that provide assistance in eliminating errors
and clarifying special conditions. See Online Diagnostics.

Directory — A relative record file that contains the information necessary to locate other files and
describe the characteristics of those files. It does not contain user data.

Disk-Resident — An attribute of a task that resides on disk when it is in a terminated state or is not
yet used. Also see Memory-Resident.

946250-9701 Glossary-5

Glossary

Disk Volume — A disk cartridge that has been named and initialized; a disk volume may be
installed on a disk drive and be known to the system by the volume name.

DSR — See Device Service Routine.

Drive — A peripheral device that holds and operates a disk volume, magnetic tape reel, a cassette,
or other similar medium.

Edit Mode — A mode in the Text Editor in which lines may be entered in atext file.

End Action — A routine specified by a task, that is to be executed before aborting the task if a fatal
error occurs or if the task is killed. This routine is called the end action routine, and the task is
said to have taken end action.

End-of-File — A marker or other identification that denotes the end of a sequential file of data.

End-of-Medium — A mark or other identification that denotes the end of available storage space
for afile of data.

End-of-Record — The character of a record that marks the end of arecord on a file or dévice.
Error Code — A numeric code returned when an error is detected. Depending upon the cause of
the error, this code can be returned in a supervisor cail block, displayed to a terminal, or dis-

played on the programmer panel.

Event Character — Characters generated by certain keys (event keys) on the keyboard that have
special significance to executing tasks.

EVT — Electronic Video Terminal. A type of VDT.

Executing Task — The task that has control of the CPU.

Expandable File — A file that can be extended beyond its initial size.

Fatal Error — An error in a task that causes the task to be terminated. Examples of fatal errors
include boundary errors, memory parity errors, use of illegal instructions, and other non-

recoverable situations.

Field Prompt — A word or phrase displayed to the user by an SCI command procedure in order to
gather information needed by the procedure. Also see “prompt.”

Field Service — Repair and maintenance service at your computer installation provided by your
dealer.

File — A named, organized collection of data records. Disk files can be organized in a sequential,
relative record, or key indexed format. Special forms of relative record files include directory
files, program files, and image files.

File Attribute — A declared characteristic of a file that limits the types of operations performed on

a file. For example, delete-protected is an attribute and files with this attribute cannot be
deleted until the attribute is removed.

Glossary-6 946250-9701

\ Glossary

File-Oriented — A device or file reserved through an OPEN call in order to perform 1/O to the
device. Typically, the device remains assigned to a requesting task until explicitly released
and no other task can access it until the requesting task releases it.

Foreground — The mode in which an executing task interacts with the terminal. After SCI bids a
foreground task, SCI is suspended and releases access to the terminal and the foreground
terminal local file. The task that is bid shares the environment in use by SCI. Also see Back-
ground Mode.

Front Panel — See Programmer Panel.

Function Key — A key on a terminal, such as the F4 key, that causes the system to perform a pre-
defined function for the user.

Generate Mode — A mode in the system generation program in which a new system configuration
is described.

Global LUNO — A logical unit number that is available to any task or station.
Hard-Copy Terminals — An I/O device that prints its output onto paper. Aiso see Teleprinter.

Hashing — A technique for mathematically processing key words or filenames to produce
numbers, usually record numbers.

Hexadecimal — A numbering system that uses a radix of 16. Hexadecimal values are indicated to
SCl by aleading right angle bracket, “>", or by a leading zero, “0.”

Hollerith Code — An alphanumeric coding system for punched cards.

Image File — A special form of relative record file that usually contains the memory image of a
program. It differs from a program file in that there is no directory and only one program.

Immediate Write — A file attribute that forces output to a disk file to occur immediately. Ordinarily,
file /O is buffered in memory and writing is deferred until the memory space is required.

Initial Program Load (IPL) — The operation of pressing a series of buttons on the Business System
computer chassis that trigger the work of the ROM loader in performing the bootstrap
sequence when the computer is first powered up. The term is also used to refer to the entire
sequence of placing the initial program load program in memory and loading the operating
system.

Initial Value — A value shown next to a field prompt from an SCI command procedure. You can
choose to use this value as the response to the prompt or can replace it with another
response. If the initial value is replaced by a null value, the system will use a default value for
the field prompt, if one exists. The initial value is specified by the command procedure to be a
constant value or to be the current value of some synonym. Also see Default Value.

Initialization, Disk — The process of writing required system overhead tracks and formatting a
disk prior to using the disk under DX10.

946250-9701 Glossary-7

Glossary

Initiate 1/0 — An 1/0 call that causes 1/0 to be started but does not cause the requesting task to be
suspended while the 1/O is in progress. This mode of 1/0 is specified by a flag in the SVC
block.

Inquiry Mode — A mode in the system generation program in which a new system configuration is
described through specific prompts.

Install — When applied to programs, to load a task, procedure, or overlay on a program file. When
applied to volumes, to direct the systemn to reference an initialized volume on a given drive by
the supplied name.

Installed ID — A unique identification number from >1 to >FF assigned to a task, procedure, or
overlay that is installed in a program file. The operating system uses this ID to locate that
module in the program file.

Interrupt — A coded signal that can transfer CPU control; thus enabling the CPU to service
devices, power up/down procedures, and error conditions. The Business System computers
support interrupts with 16 levels of priority. The interrupt that is currently executing prevents
interrupts of a lower priority from interrupting the CPU.

Interrupt Service Routine — A system module that directs the system to take action according to
the interrupt received. Examples include: power up or down, error instructions, and clock
operations.

/O — An abbreviation for input/output operations. Input/output operations involve transferring
information between the CPU and peripheral devices.

1/0-Bound — A property that describes a task when it spends more time waiting for /O operations
than executing CPU operations. See CPU-bound.

IPL — See Initial Program Load.

Isochronous Transmission — The process of transmitting and receiving asynchronous data (with
start and stop bits) using a clocking connection between transmitter and receiver (synchro-
nous mode).

K — An abbreviation for 1024, often used when referring to a number of bytes in memory.

Key — A character field within a record in a key indexed file, used to determine the order of the
record in relation to other records in the file.

Keyboard Send/Receive (KSR) — A line-oriented terminal device, such as a teletypeWriter.

Keyboard Status Block (KSB) — A block of memory used as a workspace by an interrupt service
routine for a keyboard device.

Key Indexed File (KIF) — A file in which records may be accessed by the value of a character string
called a key. Each record can have up to 14 unique keys, with access through each key inde-
pendent of the other keys.

Key Value — A particular character string being used in a key field.

Glossary-8 946250-9701

Glossary

KIF — See Key Indexed File. -

Least Recently Used Strategy — A strategy used by the operating system to choose task seg-
ments to be rolled out of memory. The segment that has been inactive the longest is consid-
ered the least likely candidate for immediate future use and is thus the first chosen for rolling
to disk.

Link Control File — A file created by the user that contains instructions for the Link Editor.

Link Editor — A system utility that takes related object modules and links them together into a
single object module.

Linked Object File — A file created by the Link Editor that contains one or more program object
modules that have been linked together to produce linked object modules.

Load — To copy a task or segment from an external storage medium into the memory of the com-
puterin preparation for execution.

Logical Address Space — The memory accessible to a task. The maximum extent of any logical
address space is 65,504 bytes.

Logical Device Table (LDT) — A memory structure in the system that contains a LUNO and point-
" ers to system tables that correspond to the resource to which the LUNO is assigned.

Logical Record — A logical division of datain a file that can be transferred with a single supervisor
call.

Logical Record Length — The length (in bytes) of records in a file. This length does not necessarily
correspond to any physical division of the disk.

Logical Unit Number (LUNO) — A number specified in an /O operation which represents a file or
device.

LUNO — See Logical Unit Number.

Log-Off — The action that ends a work session. Using the System Command Interpreter, log-off is
accomplished by typing a Q when the command prompt appears. (Q calls the QUIT
procedure.)

Log-On — The action that begins a work session. It identifies a user to the system so he can gain
access to it. Refer to Volume Il for instructions for logging-on.

M — An abbreviation for 1,048,576, when referring to bytes of memory or disk storage.

Mark-Sense Card — A data-entry card designed so that a user can specify its data by marking it
with a special conducting-lead pencil.

Memory — A device designed to store data.

946250-9701 ‘ Glossary-9

Glossary

Memory Mapping — A hardware feature of the 990 computer controlled by DX10, which allows the
990 to contain 2048K bytes of physical memory and use whichever segments of physical
memory it decides for the segments comprising a task’s logical address space. In this way,
memory mapping allows control of system resources during roll-in and roll-out. Memory
mapping is not available on some models of the Business System series.

Memory-Resident — The attribute assigned to a task indicating that the operating system loads
this task into physical memory at the next initial program load and retains the task in memory
even when itis in aterminated state.

Modem — A modulator-demodulator; a device that interfaces between the digital signals of a
computer and the analog signals of data transmission wires.

Module — A set of computer program instructions treated as a unit by an assembler, compiler, link
editor, or other similar processor.

Multiprogramming — A mode of operation in which more than one computer program can be in
memory and queued for execution. This differs from multiprocessing, in which two or more
programs can execute simultaneously.

Multitasking — Another term for multiprogramming. Several tasks may be in memory simulta-
neously, each allotted execution time in turn.

Natural Load Address — The address, relative to atask’s address, at which an overlay is loaded.

Nonblank Suppressed — The file characteristic that indicates consecutive blanks in a record are
stored as consecutive blanks rather than being stored in a compressed format.

Nonexpandable File — A file that cannot grow beyond its initial size.

Object Code — Machine language code together with load control code; object code is usually
created by an assembler or compiler.

Object File — A file that contains one or more program object modules comprised of object code,
usually created by an assembler or compiler.

Online Diagnostics — Nonprivileged diagnostic routines that operate concurrently with program
execution. See diagnostics.

Overlay — A part of a task that resides on disk until explicitly requested. When requested, the
overlay replaces part of the task previously in memory. Using overlays can reduce the amount
of memory required by a task to the amount required for the largest segment requiring
memory at one time.

Password — A character string supplied by a user for validation of access and security privileges,
primarily forlog-on.

Pathname — A character string that indicates a path to a resource such a file or device. For a file,
the pathname components include an optional volume name, 0 to 24 directory names, and a
final component identifying the file. A pathname should not exceed 48 characters in total
length.

Glossary-10 946250-9701

Glossary

PC — See Program Counter.
PDT — See Physical Device Table.

Peripheral Device — Any equipment in a computer system that is separate from the CPU and can
provide information, communication, and capabilities to the system. Examples include: disk
units, VDTs, printers, and communication equipment.

Physical Address Space — The addressable memory of the computer. This term also refers to the
range of memory addresses available to the computer although the memory may not actually
be implemented in a particular configuration.

Physical Device Table (PDT) — A data structure associated with a device and used by device ser-
vice routines. '

Physical Record Length — The length in bytes of blocks of data transferred to and from a disk.
Often, a physical record includes several logical records.

Port — A physical interface between a processing unit and a peripheral device.
Powerup — Aninitial application of electric current to a computer or peripheral device.

Priority, Floating — One of four priority levels assigned to tasks to order their execution. DX10
supports four levels of priority (0, 1, 2, 3) for tasks, zero priority being the highest and 3 the
lowest. Tasks may be executed with a constant priority or with a floating priority. Floating
priority is specified as priority level 4, but the actual priority of the task is dynamically
adjusted by DX10 to 1, 2 or 3, depending on the type of activity of the task (I/O, Terminal |/O,
and computation are considered).

Privileged — Attribute of tasks installed on a program file. Nonprivileged tasks are prohibited from
performing certain reserved functions while privileged tasks may execute any code and any
supervisor call.

Procedure Segment — A segment of a task that can be shared with any other tasks; usually con-
sists of executable code.

Procedure Library — A directory of files containing command procedure definitions.
Program — The instructions and data to perform a particular function; a program consists of one
or more segments that define a logical address space for a set of instructions and data. Also

see Task.

Program Counter — A hardware register that indicates to the computer the next instruction to be
executed. :

Program File — A special form of relative record file used to contain executable programs and

segments in memory image form. A program file contains system generated information that
enables more than one program to be stored in the file.

946250-9701 Glossary-11

Glossary

Programmer Panel — A peripheral device mounted on the front of the computer providing an ele-
mentary interface to the computer. Most Business System computers do not have a pro-
grammer panel.

Prompt — See Field Prompt

Queue — A first-in, first-out waiting list. A queue is a'data structure consisting of a list of objects
to be processed where the order of the list is chronological. The first object entered on the
list (first-in) is the first object removed for processing (first-out).

Ready Task — A task that is ready to execute, that is, queued in memory for a given priority level
awaiting its turn for execution.

Record Locking — A procedure used to restrict access to a record in a file. A locked record cannot
be accessed until it is unlocked. This process is useful when controlling file access by sev-
eral contending tasks.

Record Oriented — An I/O device is said to be record oriented if access to the device is granted to
users on a record basis. Usually, a record corresponds to a single /O operation.

Reentrant Program — A program that may be shared among several users in a multitasking envi-
ronment without conflict of dataamong the users.

Relative Record File — A directly addressable file in which the records are numbered from the
beginning of the file. The length of records in the file is a fixed number specified during file
creation. Any record can be easily accessed after calculating the record’s displacement from
the beginning of the file. The calculation is based only on the record number and the fixed
record length attribute of the file.

Relocatable — An attribute of an overlay that allows that overlay to be loaded at an address other
than its natural load address. Addresses within the overlay are resolved at load time.

Resource — A logical or physical commodity such as a peripheral device, file, or memory, that can
be allocated to a program. An l/O resource is any such commodity other than computer
memory.

Resource Contention — The situation in which two or more tasks attempt to use the same
resource at the same time.

Replicatable Task — An installation attribute for a task, indicating that multiple copies of the task
can be simultaneously in memory. Each of these copies is aduplicate of a single master copy
on a program file. Utility tasks such as the FORTRAN compiler or SClI are frequently assigned
this attribute.

Roll-in — To load a task into memory.

Roll-Out — To move a task or procedure segment from memory to disk so that its memory space
can be used by another task.

Glossary-12 946250-9701

Glossary

ROM Loader — A program in Read-Only Memory (ROM) on the system memory interface board at a
dedicated memory address that is triggered by the IPL sequence to initiate loading of the
operating system into memory.

Run-Time ID — An identification number unique to an active task for the duration of its execution.

Scheduler — The part of the operating system that decides which task is to receive execution
time.

SCI — See System Command Interpreter.

Scrolling — Moving the contents of the screen of a video display terminal up or down in order to
view a file that contains more data than the screen can display at one time. This is accom-
plished by using the Previous Line key, Next Line key, or some other special key.

Secondary Allocation — A block of disk space automatically allocated by the system to an expand-
able file that requires more space than its present allocation. The size of the secondary allo-
cation is specified when the file is created, but increases with each subsequent secondary
allocation.

Segment — A piece of software occupying a single block of memory, or an in-memory image on
disk.

Sequential File — A variable record length file which must be accessed in successive order, that
is, the orderin which the records are written to the file.

Shareable — An attribute of a procedure segment that specifies that the procedure segment can
be shared concurrently by more than one task.

Source File — A file containing one or more program source modules (source code or statements)
that is usually created using the Text Editor.

ST — See Status Register.
STA — See System Table Area.

Station — An interactive terminal with an associated Keyboard Status Block. Physically, a station
may be a VDT or a hard-copy device such as the 733 ASR terminal.

Status Register (ST) — A hardware register on the computer that holds condition codes set by pre-
ceding operations, fault flags, mode control information, and the interrupt mask.

Subdirectory — A directory which is pointed to by another directory. Every directory on a disk
except VCATALOG is a subdirectory. If directory A contains the name “B’ and a pointer to
directory B then B is said to be a subdirectory of A.

Supervisor Call (SVC) — A user task request for operating system services. A supervisor call is an

XOP 15 instruction which performs a context switch into DX10 which then interprets the call
and performs the desired service (if legal).

946250-9701 ’ Glossary-13

Glossary

Supervisor Call Block — A list of necessary parameter values for a supervisor call. The size and
content of the supervisor call block depends on the particular call being made.

Suspended Task — A task that was temporarily removed from the active list and from execution as
a result of a supervisor call. When reactivated, a suspended task executes from the point of
suspension.

SVC — See Supervisor Call

Synchronous Transmission — Transmission in which data character bits are transmitted at a fixed
rate with equal time intervals between characters.

Synonym — A text string that functions as an alternative for another string, under SCI. Usually a
synonym is shorter than the text it replaces and is more convenient to use.

Sysgen — An acronym for System Generation. Also see System Generation.
System Command Interpreter (SCI) — The user interface to DX10. It prompts the user, accepts
inputs, interprets them as commands, and directs activities in DX10 to satisfy those com-

mands.

System Command Interpreter Language — The language in which commands to SCI are written. It
has a detailed syntax defined in Volume Ill.

System Disk — The disk (or other randomly accessable medium) on which the DX10 software and
the system files reside.

System File — A disk file used internally by the operating system. All system filenames begin with
‘IS$H.

System Generation — An interactive process wherein a new version of DX10 is configured to
match a particular hardware installation. A set of static data structures is created that repre-
sents the configuration. Also, certain parameters supplied at system generation allow the
fine tuning of system performance. Also see Command Mode and Inquiry Mode.

System Log Reporting — The part of the system that reports hardware and task errors to a speci-
fied logging device and to a file. Any task can also write a message to the system log using
the System Log SVC.

System Operator — The person who controls system start and restart, places information media
into the input devices, removes the output, and performs other related functions.

System Table Area — Memory reserved for DX10 and used for system data structures and buffers.
The size of the system table area is specified during system generation. '

System Task — A task that maps into the root portion of the operating system.

System Time Unit — A standard operating system measurement of 50 milliseconds.

Glossary-14 946250-9701

Glossary

Task — A particular activation of a program under DX10. Each activation of a program is a separate
task. The address space of the task can consist of one or more segments. Segments can be
overlaid with other segments during task execution, with a limit of three segments compris-
ing the address space at one time. Also see Procedure Segment, and Task Segment.

Task Local LUNO — A logical unit number that can be used only by the task that assigns it.

Task Segment — The part of a program that contains the initial portion of the program (transfer
vector, optional data, and optional program code). Also see Program, Task, and Procedure
Segment.

Task Sentry — A part of DX10 that monitors task activity to prevent CPU lockout by lowering the
priority of a CPU-bound task at set intervals. You can enable or disable the Task Sentry during
System Generation.

Task State — The current disposition of a task. For example, a task can be in execution (executing
state), suspended for any of a number of reasons (with separate states to describe these), or
any of several other states.

Teleprinter Device (TPD) — A type of device used for input and/or output. The TPD prints a hard
copy of the output. If used for input, the device also has a keyboard. This category of device
includes printers and hard-copy terminals.

Temporary File — A file that DX10 deletes automatically after the LUNO assigned to the file is
released. : ' ‘

TCA — See Terminal Communications Area.
TCA File — A file of images of users’ TCAs. Also see Terminal Communications Area.

Teleprinter — One of the following hard-copy terminals: 733, 743, 745, 763, 765, 781, 783, 785, 787,
820, or 840. : ‘

Terminal — Any interactive user device. Also see Station.

Terminal Communications Area (TCA) — An area of memory set aside for each user ID that con-
tains user ID information and synonym names and values.

Terminal Local File (TLF) — A file associated with a background task or a foreground task when
using the System Command Interpreter. This file is used for communicating information from
a command processor to the user.

Terminated Task — A task that has been removed from execution and from the active list. Termina-
tion occurs when the task completes normally, when the system detects a fatal error on the
part of the task, or when a user directs the operating system to kill the task. When reactivated
from the terminated state, a task executes from its beginning.

Textual Errors — Errors that are registered by a displayed or printed text string that indicates the
type and perhaps cause of the error.

946250-9701 Glossary-15

Glossary

Thrashing — The state of the system in which the overhead required to resolve resource conten-
tion occupies most of the system’s time.

TILINE* — The 990 asynchronous 50-megabit per second memory bus, used by the CPU, memory,
and disk and tape controllers.

TILINE Peripheral Control Space — A range of TILINE addresses reserved for TILINE device con-
troller interfacing.

Time-Out — Expiration of the time period during which a device must respond to remain an active
device.

Time Slice — A unit of execution time allotted to a task. The length of a time slice is determined
from the clock interrupt rate (100 or 120 Hz) and the number of clock interrupts per time slice.
The number of clock interrupts per time slice is set during system generation.

TLF — See Terminal Local File.

TPCS — See TILINE Peripheral Control Space.

TPD — See Teleprinter Device.

Transfer Vector — A pair of memory addresses in two consecutive words of memory. The first
word contains the address of a 16 word area of memory, called a workspace. The second word
contains the address of a subroutine entry point. Also see Context Switch.

TTY — Aline-oriented terminal, such as a teletypewriter.

TTY Mode — Line-oriented I/O access to a terminal. A VDT can be accessed in either TTY or VDT
mode by the System Command Interpreter.

Unblocked File -— A file in which each physical record contains one logical record. During data
transfer to or from such a file, no internal buffering is required.

Unload — Both the logical action of preparing a disk cartridge for removal and the act of physicalily
removing the cartridge or a tape reel cor cartridge.

User ID — A six-character identifier that identifies a userto the SCI.

VCATALOG — The highest Ie\)el directory on each disk volume which specifies (either directly or
indirectly) all files on the volume.

VDT — Avideo display terminal.
VDT Mode — A screen-oriented mode, with the ability to read and write fields at any position on

the screen. Video Display Terminals under DX10 can be used as hard-copy emulators (TTY
mode) or can be used in the VDT mode to utilize their full power and intrinsic speed.

* TILINE is a trademark of Texas Instruments Incorporated.

Glossary-16 946250-9701

Glossary

Volume — A logical device, such as adisk pack or flexible diskette, that can be uniquely identified
by name, and that can store one or more logical files.

Volume Information — Data stored in track 0, sector 0 of every initialized disk volume, describing
system information and the address of VCATALOG.

Volume Name — A character string that identifies a volume. It is used when installing and unload-
ing the volume and can be used as part of the pathname for files contained within it. Disk
volume names can have up to eight alphanumeric characters, but must begin with aletter.

WCS — See Writable Control Storage.

Word — A group of binary digits that can be operated on as a single unit. The Business System
computers have 16 binary digits in a word.

Workspace — A 16-word area of memory addressed as work space register 0 through 15. The
active work space is defined by the contents of the workspace pointer.

Workspace Pointer — The hardware register that contains the address of work space register 0,
and indicates the currently active work space.

Workspace Register — A memory word accessible to an instruction of the computer as a general
purpose register. It may be used as an accumulator, a data register, an index register, or an
address register.

WP — See Workspace Pointer.

Writable — An attribute of a segment that specifies the segment can be modified when in memory.
(This attribute is not available on some models of the Business System series.)

Writable Control Store (WCS) — A portion of computer memory that is separate from primary com-
puter memory. WCS can contain microcode instructions that perform the operations of
assembly language instructions.

XOP — Exténded operation; a 990 Assembly Language instruction which generates a software
interrupt.

946250-9701 Glossary-17/Glossary-18

Index

This index lists key topics of this manual and specifies where each topic appears, as follows:

. Sections — Section references appear as Section n, where n represents the section
number.

. Appendixes — Appendix references appear as Appendix Y, where Y represents the
appendix letter.

. Paragraphs — Paragraph references appear as alphanumeric characters separated by
decimal points. The first character refers to the section or appendix containing the para-
graph, and any other numbers indicate the sequence of the paragraph within the section
or appendix. For example:

— 3.5.2 refers to Section 3, paragraph 5.2.
— A.2refers to Appendix A, paragraph 2.

U] Figures — Figure references appear as Fn-x or FY-x, where n represents the section and
Y represents the appendix containing the figure; x represents the number of the figure
within the section or appendix. For example:

— F2-7 refers to the seventh figure in Section 2.
— FG-1 refers to the first figure in Appendix G.

. Tables — Table references appear as Tn-x or TY-x, where n represents the section and Y
represents the appendix containing the table; x represents the number of the table
within the section or appendix. For example:

— T3-10 refers to the tenth table in Section 3.
— TB-4 refers to the fourth table in Appendix B.

o See and See also references — See and See also direct you to other entries in the index.
For example:

Logical Unit NUMber ...t See LUNO
DeviCe .. e See also individual device names or numbers

Page numbers that correspond to these index references appear in the Table of Contents.

946250-9701 : Change 1 Index-1

Index

AccessName 10.2
Access Privileges, File 6.3.3
Activation,Task 12.7
Allocatable DiskSpace 9.2
Allocation,Memory 13.2
ANALZ 8.3
Assembler 11.2.2
Asynchronous Controllers 11.3.1
Background Execution,SCl........... 5.1.1
Backup,System 3.2
BASICLanguage 4.3.4,11.4.4
Batch Stream Mode,SCI 51.3
Blank Supression and
Adjustment,File 6.3.8
Blocked,File 6.3.6
Business System Hardware 3.1
Calls, Supervisor See SVC
COBOL Language 43.1,11.4.2
COBOL Program Generator4.4.4,115.4
Command Interpreter, System See SCI
Command Procedures,SCl 51.4
Commands,SCl..................... 5.1.6
Communications 11.3
Controllerso ... 11.3.1
Hardware 11.3.1
Software:
3270 Emulator Interactive 11.3.3
3780/2780 Emulator 11.3.2
Contents,Disk 9.3
Controllers, Communications 11.3.1
Crash,System 8.3
Data Base Management
System 4.5.1,11.6.1
Data Dictionary 45.3,11.6.3
Data ManagementTools 4.5
DBMS 45.1,11.6.1
DD ... 453,11.6.3
Debugger 42.4,11.24
DeferredWrite 6.3.7
Delete Protection 6.3.2
Device:
Name 10.2.1
Orientation 10.4
Service Routine See DSR
Devices,Hardware T3-1
Disk:
Contents 9.3
Management 9.2
System........ ... 3.2
R 26,127
Emulator:
Communications Software,
3780/2780 11.3.2
Interactive Communications
Software, 3270 11.3.3
End ActionRoutines 8.6

Index-2 Change 1

Error:
Prevention............... 8.7
Reporting.............. 8.2

ExpandableFile..................... 6.3.9

Features,File 6.3

File:

Access Privileges 6.3.3

Blank Supression and Adjustment ...6.3.8

Blocked 6.3.6

Expandable 6.3.9

Features 6.3

Keylndex 6.2.3

Pathname 10.2.3

Program.................. 12.9

Protection........................ 6.3.2

RecordLocking 6.3.4

RelativeRecord 6.2.2

Sequential 6.2.1

Stability 6.2.3.2

Structures 6.2

Temporary 6.3.5
Files,SystemOverhead 9.3.1
Foreground Execution,SCI 5.1.1
FORTRAN Language 4.3.3,11.4.1
Generation,System 7.1
Generic Keycap Names. .. .Appendix A, TA-1
Hardware:

BusinessSystem 3.1

Communications 11.3.1

Devices i, T3-1

Required 3.2

990/10A 3.1

990/M12LR 3.1
High Level Languages 24,443,114
Identification, Program 12.10
ImmediateWrite 6.3.7
Interactive Communications Software,

3270 Emulator 11.3.3
Interactive Mode,SCI 5.1.2
Key (. 6.2.3
KeylIndexFile 6.2.3
KeySequences TA-2
KeyValues 6.2.3.1
Keycap Names, Generic . . .Appendix A, TA-1
Language:

BASIC 4.3.4,11.4.4

COBOL 4.3.1,11.4.2

FORTRAN.................. 4.3.3,11.4.1

Pascal 4.35,11.43

RPGIH 4.3.2,11.45
Languages, High Level......... 24,43,11.4
LinkEditor 4.2.3,11.23
Lockout 12.11

946250-9701

Log,System ol 8.4
LogicalUnitNumber 10.3
LUNO ... e 10.3
Macro Assembler 4.2.2,11.2.2
Management:

Disk ... 9.2

Memory ... 13.1
Mapping,Memory 8.5,13.2
Memory:

Allocation it 13.2

Management o... 13.1

Mapping, 8.5,13.2
Memory-Resident Task 13.4
Menu,SCl....... ... oot 5.1.2
Name:

ACCESS .o ittt e 10.2

Device........cciiiiiiiiiinnnn. 10.2.1

Volume ..o oii i 10.2.2
Orientation, Device 10.4
Overhead Files,System 9.3.1
Overlayccoiiiiiiinnnnnnnn. 12.5
Parameters,SClt 5.1
Pascal Language 4.3.5,11.4.3
Pathname, File 10.2.3
Preloggmg 6.2.3.2
Prevention,Error 8.7
Priority, Task 12.8
Procedure,Shared............... 12.3,12.4
ProductivityAids, 4.4
Program............ ..o it 12.2
Program DevelopmentTools 4.2
Program:

File .o e 12.9

Identification 12.10
Prompts,SCl........ ... it 5.1
Protection:

Delete ..o 6.3.2

File ... i 6.3.2

Write .. e e 6.3.2
QUEBTY ittt 45.2,11.6.2
Record Locking,File................. 6.3.4
Relative Record File 6.2.2
ReplicatedTask, 12.3
Reporting,Error o oo ol 8.2
Required,Hardware 3.2
ROU-INMRON-OUL . + v v v vveeeee e 13.3
RPGllLanguage 4.3.2,11.4.5
Scheduling,Task 12.8
SCl o e 2.3,5.1

Background Execution 5.1.1

Batch StreamMode 5.1.3

946250-9701

Index

Command Procedures 51.4
CommandsSoooveitiiiiniien 5.1.6
Foreground Execution 5.1.1
InteractiveMode 5.1.2
Menu......ooiiiiiiiiii i e 5.1.2
Parameters, 5.1
Prompts......... ..., 5.1
SYNONYMSt i it e e 5.1.5
Segment. ... ol 12.2,12.3
SequentialFile 6.2.1
Service Routine, Device........... See DSR
Shared Procedure 12.3,12.4
Software:
3270 Emulator Interactive
Communications 11.3.3
3780/2780 Emulator
Communications 11.3.2
Sort/Merge 4.4.1,11.53
Stability,File. 6.2.3 2
Structures, File.......... 6.2
Superwsor Calls................. See SVC
SVC .. e 24,1212
Synchronous Controllers 11.3.1
Synonyms,SCIl 5.1.5
System:
Backup........ovviiiiiiiiii et 3.2
Command Interpreter See SCI
CCrash . e 8.3
Disk oot e 3.2
Generation i 7.1
1o o T 8.4
OverheadFiles 9.3.1
TasK ..o oo e e 12.2
Activation 12.7
Memory-Resident 13.4
Priority i 12.8
Replicatedt 12.3
Schedulingt 12.8
TaskSentry i 12.11
Temporary File 6.3.5
TextEditor................ 2.5,4.2.1,11.21
TIFORM 4.42,11.5.1
TimeSlicing.............. .. oL 12.8.2
TIPE ... e i 4.43,11.5.2
Values,Keyot 6.2.3.1
VolumeName 10.2.2
Write:
Deferredcciiiiii... 6.3.7
Immediate, 6.3.7
Protection............. 6.3.2
3270 Emulator Interactive
Communications Software......... 11.3.3
3780/2780 Emulator
Communications Software......... 11.3.2
990/10A Hardwarec.ccouvn.... 3.1
990/12LR Hardware 3.1
Index-3/index-4

Master Index

This index is a master index to the major subjects covered in the DX10 operating system manuals.
The subject listings are arranged in alphabetical order. Subject headings that start with numbers
appear at the end of the index. Each listing contains a subject heading and the volume numbers of
the DX10 operating system manuals in which the subject appears.

Use the master index to locate the volume(s) that give information about the subject that you wish
to find. Then use the index of the volume(s) listed to find references to sections, appendixes,
paragraphs, tables, or figures. If you want to find the page numbers corresponding to the index
references, refer to the table of contents of the volume that contains the desired information.

Plural subject headings are used for general information, for tables, indexes or lists, or for groups
orclasses within a subject heading. Singular subject headings are used for all other entries.

The volume numbers refer to the DX10 operating system manuals as follows:
Volume No. ‘ Manual
| DX10 Operating System Concepts and Facilities (Volume)
i DX10 Operating System Operations Guide (Volume ll)

1| DX10 Operating System Application Programming Guide (Volume lll)

v DX 10 Operating System Text Editor Manual (Volume V)
Vv DX10 Operating System Systems Programming Guide (Volume V)
Vi DX10 Operating System Error Reporting and Recovery Manual (Volume Vi)

You can find a complete list of the System Command Interpreter (SCl) commands in the DX10
Operating System Operations Guide (Volume ll). Use that manual to locate full details about
specific SCl commands. Details about the SCI programming language are contained in the DX710
Operating System Application Programming Guide (Volume Ill).

You can find a complete list and discussion of the nonprivileged Supervisor Calls (SVCs) in DX10
Operating System Application Programming Guide (Volume lll) and a list and discussion of the
privileged SVCs in the DX10 Operating System Systems Programming Guide (Volume V).

SCl commands and SVCs are not listed individually in this index.

946250-9701 Index-1

Index

Subject Volume Number
Absolute Address, VI
AccessNames I
Access Privileges, File I, 1l
ACNM e i
Activating:
SCl......... e e iV
Task |
TextEditor v
AddErrorCode oo, 1l
AddErrorMessagec.c0un.. Vi
Address Vi
Absolute oL, Vi
Beet........ ... VI
Block ... Vi
CRU ... Vv
Relative il Vi
TILINE ... e \"
Address-Dependent Procedure 1
Address-Independent Procedure I
Allocatable DiskSpace |
ANALZ Utility [, 11, VI
ANSI Carriage Control Characters 1]
Assemble and Linkthe System \)
AssembleTask........................ 1
Assembler I, 11
Assembly Language................ L,V
Assembly Language Program Segments . .1l
AssignLUNO 1, 1
Assistance Vi
AsynchronousDSR \Y
Local PDT Extension \
Long-Distance Device Extension \
Background |
Backup Procedure Il
Base System Configuration.............. Vv
BASIC |
BatchMode i,u, 0l
BeetAddress Vi
Block,SVCCall ", v
Boards, Interface Y
Boot(System) See IPL
Bubble Memory Terminal I
SupportSystem...................... \
Buffered /O RequestBlock Vv
Business System Terminal I
CallBlock,SVC ", v
Call,Supervisor See SVC
COM ... I, Vv, Vvl
ChangeDiskPack...................... Il
Change ErrorMessage il
Change System Generation Parameters ...V
COBOL ... i I
COBOL Program Generator |
Code:
Country e I, th
Error I, Vi
NonprivilegedSVC................... I

Index-2 Change 1

Subject Volume Number
PrivilegedSVC....................... Vv
SystemCrash Vi

Command:

For individual commands, see name or
mnemonic of command in the appropriate
volume listed under Commands

Entry ControlKeys Il

Error. Vi

Files .. . I

Format........................... I, Hi

Interpreter, System See SCI

Library,SCl i

List,SCI Il

Mode, GEN99O....................... Y

Procedure............ ... ovvvn... 1, HI

Processor]
Commands:

Debugger i . 1]

GEN990 \Y

Privileged oL, 1]

SCl L 1

TextEditor v

XANAL Vi
Communication:

Intertask(ITC) i

Hardware Equipment |

Software |
Control/Display Module (CDM) H,V, Vi
ControlFilesc...... 1
Conversion,DX10toIBM H
Conversion, DX10 to TX990,

TX990toDX10 I
CountryCodes I,
Crash:

Code Vi

Error. ... Vi

File.. ... VI

System V, Vi
CRUAdAressccoviieiun . \Y
Customer Representative............... Vi
Data:

Entry ... e v

Keys . .. il

Locate Vi

ManagementTools.................... |

Protection 1

Sharedo, il

Terminals i I
Deactivating,SCI I
Deadlock Vi
Dealer 4
Debug:

Commandscvuuu.n.]

Error. Vi

Modes 1|
Debugger............. [, 11
DefaultValues i, n

946250-9701

Subject Volume Number
DEVICE ..ttt e ey 1
HOSVCS oot i e et e 1l
QUEUES ..ttt ieiie e 1, VI
Service Routine(DSR). LIV
Table, Physical (PDT) Vv
Directory Management......... See also File
Management, Il
Disk:
BuildUtility oot v
Contents ..ot |
File Organization i
HODirectoiviii e \)
Management 1L,
StructUre . ..o 1
System.o |
Disk-Resident Procedures and Tasks 11
DSR ..ttt e e s I,V
ASYNChronouscoovvuvinnnnns Y
DumpFormatooiviinnn, Vi
Dump,Memory......oovvneina e, Vi
DX10 ...ttt See System
DX10to TX990 Conversion............... il
DX102.XConversion i,V
Edit: .
Control FunctionslIV
MOdE ..ttt e v
Editor,Textccuviiiiiininen 1,1V
Electronic Video Terminal. See 940 EVT
Emulator, 3270t L,V
Emulator,3780/2780 I,V
Equivalents, Keyboard Appendix A
of all Manuals
| =15 (o) G Vi
(00 Yo [XA i, 1, Vi
Messagesc.uiiuiiinannnn I, 1, vi
Prevention..........coiiiiiininanns |
Reporting e I, VI
TYPES . vttt e Vi
EVT,040 ...t 1,1V
Execution:
Program.c.ociiiniiiienniannns 1
TasK . oo e 11
Expanded:
ErrorMessagecciiiininn. \
MesSsSagec.coviiiiiiiiiie |
ExpansionChassis..................... \)
ExpertMode ot "
Extended Operation(XOP) 1l
Extension for Terminals
with Keyboards (XTK) \
File:
CommMand. .. ovvei i il
CoNtrol ..ot e 1l
Conversion, TXIDX int, H
(01 ¢- 1-1 1 IV Vi
FeatuUresvviiiiiiiiiiii s I
GENO90o ittt \
946250-9701

Index

Subject Volume Number
HOSVCS .t 1
Keylndexed oo, (A
Management 1
NeWS ...t i e e e e et e e i e i, 1
Pathname I,
Programccoviiiiiiiia, [,
Relative Recordc.aut. I, Hi
SequentialL I, 10
SV o e i
System o i I, v
Terminal Local (TLF) i
TYPES &ttt ittt 1,1, 1l

ForcingaSystemCrash Vi

Foreground Execution,SCl 1, I

Format,Command H

Format,Disk o, 11

Format,Dumpccinnt. Vi

FORTRAN e e s |

Function Keys (Keyboard) i, 1Iv

O T 11, VI

Generic KeyNames Appendix A

of all Manuals

GENO990 ... i e \

Hard Break Key Sequence Appendix A

of all Manuals, lll
Hardware:
Featurescviiiiiiiiiii e L1
PowerDown....... oo 1
PowerUp.......... oo, I, Vi
Service Routine(HSR) \

HSR .ot e \
Subroutines ... \

IBM Conversion Utility I

Initial Program Load (IPL). i,V

Initial Valueso 1

Initialization, System 1Y

Initialize NewVolume I,V

Input/Output, See l/O

Install Task vt 11,

Instructions, XOPt Il

InteractiveModet |

Interface:

Boardscciiiii i \"
Routinesc.coviiiiiiinnnanennn, 1]

Interleaving Factor \"

IntermittentError. Vi

Internal Error i Vi

International Considerations i

Interpreter, System Command See SCI

Interrupt Service Routine See ISR

Interrupt, Terminal i

Interrupts.. i \'

l/n(t)ertask Communication(ITC) i

.................................. 1l

HOEIOrS et e e e Vi

IIOSVCSubopcodescovvnnn. i

Index-3

Index

Subject Volume Number
IPL . I, VI
ISR . Vv
Asynchronous \'
TG 1
Key Indexed Files (KIF) L
Keyboard:
EquivalentsAppendix A of all Manuals
Layouts., I
Status Block(KSB) \
Key Names, Generic Appendix A
of all Manuals
Keys(File)......... 1l
Keys(Terminal)................... i, i, v
KIF . LILI
KSB .o Vv
Language:
Assembly, ", v
Assembly, Program Segments HI
High-Level o
SCl ... 1
Library, SCl Procedure I
Line Control, Remote Terminal I
Link:
Editor........ L
TasK ..o I
List,SCICommand I
LoaderError Vi
Loader,System H
Loading YourSystem \'
Local File,Terminal fl
Log-Off 1l
Log-On ... I, m
Logging, Transaction Ml
LogicalRecords 11
Logical Unit Number............ See LUNO
LPSX . . 1LHI
LUNO 1,1, 1
Macro Assembler (I
Maintenance,System................... I
Management:
Disk ... (Nl
File i
Memory I, 1
MapFiles i, Vi
Mapping:
Memory [, 1, Vi
Program................ i
Memory:
Bubble i, v
Estimator............. \"
Management I,
Mapping I, v
Memory-Resident:
Procedure]
Task ... [
Menu [, 1,1

Index-4

Subject Volume Number
Message Handling I, Vi
Mode:
Debug i, il
Expert, Il
TTY il
VDT . fl
Name:
ACCESS . ..ttt e |
Device ... 1, 11
Volume L
NewsFile I, Hi
Opcodes See Subopcodes
Operating System See System
Overlay ..., I
Parameters:
Change System Generation \
GEN990, \Y
SCl L 1L,
Pascal i, |
PatchtheSystem \'
Pathname I,
PDT . o Y
Physical:
Device Table(PDT) \Y
Records...........coovuun. .. H, 1l
PowerUp,Hardware I, VI
Power Down, Hardware il
Primitives 1]
Priority I,
Privileged:
Commandscevvnnn. i, i
SVCS . .t \"
Procedures 1]
Reentrant 1
Shared i, (]
Processor Interface Subroutines 11
Program, 1l
Example 1l
File ... |, I
Identification |
Segments, Assembly Language H
ProgrammerPanel................... 1, vi
Prompt:
Field...... "
Responseccuui.... 1l
Prompts (|
TextEditor i, v
Protection:
Delete i l
File . .. I
Write |
Query |
Queue i
Device I, vl
FUTIL. ..o 7
946250-9701

Subject Volume Number
Records:
KeyIndexedFile..................... 11
Logical.......... .. i Hi
Physical................c..iiinint. 1
Recovery See also Backup, Il
Reentrant Procedures 1]
Relative Addressccvivunn. Vi
Relative Record File 1,11
Remote Terminal Line Control l
Remote Terminal Subsystem (RTS) LV
ReplicatableTask (1
Roll-in/Roll-Qutot LN
Routines See also Subroutines
HSR Subroutines \Y
Interface ..., 1, vV
Processor Interface Subroutines i
15T O i
S$Subroutinesoiiiiin, mn
UserSubroutines ..., i
RPGI i i i e e e]
RIS . i i i i e e LV
SchedulingTask i .|=, m
Activating ", 1v
CommandEntry...................... i
CommandFormat 1]
Command Library.................. i, m
CommandlLlist...............covint H
Command Procedure................. 1]
CommandProcessor................. 1]
Commands........coviiiiiiirennnnn]
Deactivating................ I
Errors. ... e Vi
Featurescciiiiiinn, 1]
Interface Routines 1
Languagecciihiiiiiiiinn, i
Menu.........iiiii i e e]
Parameters........................ I, I
Primitivesot]
Proceduresot 1
Subroutines L, 1l
SYNONYMS .. .ot i it i i 1]
Secondary Loader Program Il
Segments e 11
Self-Testscoiviiiiiiiiiiian, Vi
Sequential File I, 1l
Service Routine:
Device(DSR)covvn.. (Y
Terminal (TSR), Vv
SharedProcedures 1,1
Sort/Merge ...t I,V
Startingthe System 1l
Status Block:
Keyboard(KSB)ovvunn.. \Y
Task(TSB) .. .o mn,v
String ... i
Structures, File............. ... L. [

946250-9701

Index

Subject Volume Number
Subopcodes oL, 1
Subroutines........ See also Routines, I,V
SupervisorCall See SV(C, SVCs
SuspendSCIl I
SV . e L,V
CallBlock ...oovviii i i,V
Error ... e V, VI
Structure i, {, 1,V
SVCs:
DevicellOo .. Hi
FilellO........o i, i
Nonprivileged 1"l
Privileged i i, \')
Program Support HI
USing ...t Hi
Writing oo Vv
SYNONYMS . .. oot e I, H
System:
Command Interpreter See SCI
Crash....................... See Crash
Disk ... LI,V
Files ... i, L,V
Generation e, I,V
Initialization....................... in,v
LoaderError, Vi
Log ..o e 1, VI
Error.. ..o Vi
QUEUE .« .ttt e Vi
Logbook........... i, Vv
Maintenance 1l
Patching............................ \Y
PointerTable Address \Y
Structure............... .ot Vv, Vi
S$Subroutines. i
Tape Build Utility I,V
TasK. ..ov i it e i i e 1, 1l
Attributes o L Hi
Execution oL, It
Scheduling 1
StateCodesc.cvuu... i
Status Block(TSB) I
Terminating m
Teleprinter Characteristics H
Temporary File |
Terminal:
BubbleMemory in,v
interrupt L il
Local File(TLF) I
Service Routine(TSR) \
Subsystem, Remote (RTS) TAY
Terminals See also model
number of terminal, 1
Terminating:
Systemo e e i
TasK ..o Hl
TextEditor v

Index-5

Index

Subject Volume Number
TextEditor ... 1,1V
[076) 111017: 18 [0 - TP TR v
=16 (o) PETEPEP Vi
EXErCiSesS .o vvvii et v
TIFORM . oottt e ie e |
TILINEAdAIresS . ..o oo v vieciiieee e \)
TimeSlicing . ..ovvin i |
TIPE © ot e |
TLF ottt e e I
TransactionbLoggingc.oovtn 1l
TransferVectorcooiiviianen. i
TroubleshootingGuide Vi
Troubleshooting, System Generation \Y
TOB it Y
TOR . et \
TTYMOdE. . oot 1
TX990 to DX10Conversion. 1l
User:
MEMOTY .« o vt i e Vi
ProgramFiles, i
Subroutines 1
TASKS « o i e it 1
Utility:
ANALZ . . e VI
DiskBuild. ... TR
File Conversion, TX/IDXoontn "
Remote Terminal oot i
System Generation \)
TapeBuild ...t 1,V
Index-6

Subject Volume Number
Values,Defaultt i
Values, Initial.o o I
Values, Key . .. vvvv i |
VDT e e 1,1V
VDTMOE .ot iie e i
Video Display Terminal T
VolumeNames ... Il
VOlUMES . vttt e et eiiie e I
Write Protected Filesov e |
Writing,SVC Vv
XOP Instructions ..o 1
KT e e e et \
2. X Conversion,DX10 1,V
3270 Emulatoro Y
3780/2780 Emulatort I,V
733 ASR/KSR DataTerminal H,1v
703/707 KSR DataTerminals 1,1
743/745 KSR DataTerminals i, H
763/765 Bubble Memory Terminals I
781 RODataTerminalo vn.. 1
783/785/787 KSR DataTerminals I
820 KSR/RO DataTerminal I
840 KSR Teleprinter Device ", v
1T VDT ot e i,V
931 VDT ..t e e LV
Q40 EVT . ot e I, v

946250-9701

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: __DPX10 Operating System Concepts and Facilities, Volume | (946250-9701)

Manual Date: __January 1985 _ Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

NO POSTAGE -
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL. BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DATA SYSTEMS GROUP

_ATTN: TECHNICAL PUBLICATIONS
P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-01
	13-02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	I-1
	I-2
	I-3
	I-4
	MI-1
	MI-2
	MI-3
	MI-4
	MI-5
	MI-6
	replyA
	replyB

