Model 990 Computer
DX10 Operating System Release 3
Reference Manual

A g

AN
PP
e ST
s T Tie

Developmental Operation
Volume IV

Part No. 946250-9704 *A
15 December 1979

{@TEXAS INSTRUMENTS

©Texas Instruments Incorporated 1977, 1978, 1979
A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer DX10 Operating System Release 3 Reference Manual,
Volume IV, Developmental Operation (946250-9704)

OriginalIssue0oiiiinn . 15 August 1977

Revised. 15 March 1978 (ECN 419811)
Revised. ... 15 October 1978 (ECN 003584)
Revised...... ... 15 December 1979 (MCR 000208)

Total number of pages in this publication is 172 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NOC, NO. NO, NO. NO. NO,
Covercovivnn. 0
Effective Pages 0
111 I 0
I-1-1-2....... e 0
2-1-2-22. ... 0
3-1-3-18.........o ... 0
4-1-42. ..., 0
5-1-5-8.......ci.t. 0
6-1-6-4................ 0
7-1-7-30. ...l 0
8-1-8-8................ 0
A-1-A-2... 0
B-1-B-8............... 0
Index-1-Index-54....... 0
User’s Response......... 0
BusinessReply.......... 0
CoverBlank............ 0

Covercovvvvvnnn. 0

946250-9704

SFo

PREFACE

The Model 990 Computer DX10 Operating System Reference Manual describes the features of the
990 Disk Executive, DX10. The DX10 operating system reference manual is divided into five
volumes plus a sixth volume devoted entirely to error reporting and recovery. Each volume includes
a specific level of discussion related to a particular aspect of the DX 10 operating system. All phases
of system operation are treated throughout the volumes to enhance the development and application
of programs. The volumes are organized with both the applications programmer and the production
operation in mind, as well as providing the system or application programmer details to allow the
extension and/or modification of DX]10.

The user should consult all six volumes to become thoroughly familiar with all facets and
capabilities of the operating system. Each volume serves a particular purpose and is designed to
meet a specific goal. No one volume is intended to stand alone as a complete system tutorial.

General DX10 background information and its features, concepts, and facilities are described in this
volume. The other five volumes discuss detailed information specific to production operation,
developmental operations, applications programming, system programming and errors. The titles
and part numbers of the six volumes along with a brief comment regarding content and level of each
are as follows:

Volume I, Model 990 Computer DX10 Operating System Release 3 Reference Manual, Concepts
and Fuacilities, part number 946250-9701 — Includes features, concepts, and general background in-
formation describing the DX10 Operating System.

Volume II, Model 990 Computer DX 10 Operating System Release 3 Reference Manual, Production

Operation, part number 946250-9702 — Describes the user interface to the DX 10 Operating System -
and application programs. It also contains information required to start-up, query, control, and

maintain the DX10 Operating System. This volume describes the steps needed to run application

programs on Texas Instruments 990/10 and 990/12 computer systems under control of the DX10
operating system. Accordingly, it describes the commands an operator may use to enter, access,
execute, and control the execution of application programs. Also included is an introduction to
terminal operation, details of Log-on/Log-off and operation of each specific user terminal. It details
commands available to terminal users both in interactive and in batch mode and describes how to
enter a command.

Volume 111, Model 990 Computer DX10 Operating System Release 3 Reference Manual, Applica-
tion Programmer’s Guide, part number 946250-9703 — Includes information required by the ap-
plication programmer in the preparation or modification of application programs. It is primarily in-
tended for assembly language programming under DX10 but also supplies a reference for high level
language programmers. Included is a discussion of program design and structure under DX10. It
provides detailed information describing all calls for system services including Input/Output pro-
cessing. Information is provided describing the DX10 file structures and detailed information
describing calls to DX10 for file Input/QOutput processing.

Volume 1V, Model 990 Computer DXI10 Operating System Release 3 Reference Manual,
Developmental Operation, part number 946250-9704 — Includes operating instructions for the pro-
grammer who is creating new application programs. This volume describes software packages pro-
vided as a part of DX10 to support program development and includes a description of the Text
Editor, the Debug commands, and the program installation/deletion functions.

iii Digital Systems Division

¢]
@ 946250-9704

Additional, in-depth descriptions related to specific languages in-
cluding FORTRAN (part number 946260-9701), COBOL (part
number 946266-9701), BASIC (part number 2250304-9701), RPGII
(part number 939524-9701), TI Pascal (part number 946290-9701),
and ASSEMBLY LANGUAGE (part number 943441-9701) is found
in manuals dedicated to the appropriate programming language. A
Link Editor manual (part number 949617-9701) is provided as a
separate volume that describes the application of the link edit func-
tion in a DXI10 environment. A separate manual (part number
946252-9701) describes the use of an optional Sort/Merge package.
There are also two manuals which describe the DBMS package (part
numbers 2250425-9701 and 2250426-9701).

NOTE

Volume V, Model 990 Computer DX10 Operating System Release 3 Reference Manual, System Pro-
gramming Guide, part number 946250-9705 — Includes information required by the Systems or Ap-
plication Programmer in extending or modifying DX10. It provides detailed discussion in such areas
as System Generation, support of non-standard devices, and privileged supervisor service calls
available within DX10. Also included are detailed instructions and descriptions of how to add a
command to the System Command Interpreter (SCI) Package. In addition, it contains specific in-
formation necessary to customize DX10 for a particular configuration and application.

Volume VI, Model 990 Computer DXI10 Operating System Release 3 Reference Manual, Error
Reporting and Recovery, part number 946250-9706 — Includes information describing error report-
ing within DX10. It documents task errors, command errors, Supervisor Call (SVC) errors, SCI er-
rors, magnetic tape and other Input/Output errors. Volume VI documents all DX10 errors in cross
reference table form and includes a resolution of each message and suggested recovery techniques.

The following documents contain additional information related to the DX10 operating system:

Title Part Number

Model 990 Computer DX10 Operating System Release 3,

System Design Document 939153-9701
Model 990 Computer Model 911 CRT Display Terminal In-

stallation and Operation 945423-9701
Model 990 Computer Model 913 CRT Display Terminal In-

stallation and Operation 943457-9701
Model 733 Terminal User’s Guide 945259-9701
Model 743 KSR Data Terminal Operating Instructions 984030-9701

Model 990 Computer Interim Addendum to the TMS 9900
Microprocessor, Assembly Language Programmer’s Guide for
Model 990/12 Computer 2250077-9701

990/10 Minicomputer Hardware Reference Manual 945417-9701

iv Digital Systems Division

946250-9704

DX10 3270 User’s Guide

Model 990 Computer DX10 Remote Terminal Subsystem
(RTS) for Model 915 Remote Terminal Installation and
Operation Manual

DX10 3780/2780 Emulator Object Installation Manual

Model 990 Computer DX10 3270 Interactive Communication
Sojtware (ICS) Object Installation Manual

Model 990 Computer 306 and 588 Line Printers Installation
and Operation

Model 990 Computer PROM Programming Module Installa-
tion and Operation

Model 990 Computer Communications System Installation
and Operation

Model 990 Computer Communication System Software

Model 990 Computer Terminal Executive Development System
(TXDS) Programmer’s Guide

Model 990 Computer Model FD800 Floppy Disk System with
International Chassis Installation and Operation

Model 990 Computer Model FD1000 Flexible Disk System
with International Chassis Installation and Operation

Model 990 Computer Model 733 ASR/KSR Data Terminal In-
stallation and Operation

Model 990 Computer Model 804 Card Installation and
Operation

2250954-9701

2250356-9701

2250918-9701

2250954-9701

945261-9701

945258-9701

945409-9701

946236-9701

946258-9701

2250697-9701

2250698-9701

945259-9701

945262-9701

v/vi

Digital Systems Division

[e]
@ 946250-9704

Paragraph Title Page

TABLE OF CONTENTS

SECTION 1. INTRODUCTION

1.1 Gemeralo e e e e e e 1-1

2.1 IntrOdUCtiOn o e e e 2-1
2.2 Terminal Usage . .ottt ittt e et et i e e e 2-1
2.2.1 Hard Copy Terminal Operationvitiiirniin ittt iriainennens 2-2
2.2.2 Video Display Terminal Usagecuitiiiiiri ittt it it iiiiineenans 2-2
2.3 Text Editor Walk Throughs. it i i i ettt ci i 24
2.3.1 CreatingaNewFile..................... e 2-4
2.3.2 Editingan Existing File it i i i e, 2-5
24 Command USa e v vttt ittt ittt ettt e e e e 2-8
2.4.1 Execute Text Editor —XECommandccoiiiiiiiiininiii e 2-11
2.4.2 Execute Text Editor With Scaling — XESCommandcociiiriinnnn... 2-12
2.4.3 QuitEdit —QECommandttt i e e 2-12
244 Copy Lines —CL Commandccuiurieetnineiineeeineiiineeiinneennnns 2-13
2.4.5 Delete Lines — DL Command.ttt ittt it ineiiinennnes 2-14
2.4.6 MoveLines — ML Commandoouiiiiiititit ittt ittt it 2-14
2.4.7 Insert File —IFCommandci ittt ittt iieieannnnnn, 2-14
248 Delete String — DS Command ittt i . 2-15
249 Find String — FSCommand ottt iiianeennnn, 2-16
2.4.10 Replace String — RS Command ...ttt iiiie it 2-16
2.4.11 Modify Roll —MR Commandouuiiiiiineiiettiienenieerannneennnns 2-17
2.4.12 Modify Right Margin —MRMCommandc0iiiiiiiiiniinnninenn.. 2-17
2.4.13 Modify Tabs —MT Commandcou ittt it ittt inerineennn 2-17
2.4.14 Show Line — SL Commanduuiiiiriinriniir ittt iinineeneennennnes 2-18
2.4.15 SaveLines —SVL Commandoiiiiiiiiiitii et 2-18
2.5 Edit Control FUNCHONSottt i i i i it et et et ettt 2-19
2.5.1 Enter Command Mode. i i i i et e e 2-19
2.5.2 Edit/Compose Modeottt i i e e e e 2-19
2.5.3 New Line FunCHiOno it i it it ettt it ettt et et 2-19
2.5.4 Display/Suppress Line Numbers.ttt it it iie i 2-20
2.5.5 Duplicate to Tab FunCtiont i i i i i it e et eie i 2-20
2.5.6 Clear to Tab FUNCHOMottt it it it ittt it it et ane e 2-20
2.5.7 =Y 0 2310 Tt) o 2-20
2.5.8 Back Tab FUNCHONottt i i it it it ittt ettt 2-20
2.5.9 RO UP FUNCHON ...t i i i it i it e et ettt et e 2-20
2.5.10 RO DoWn FUNCHOM . . oottt i it it e ettt it it et st 2-21
2.5.11 Insert Line FUNCHOMottt it ittt it e e e et ittt e 2-21
2.5.12 Delete Line FUNCHONo i i it it it et et et 2-21
2.5.13 Insert Character FUNCHONovvii ittt i ettt e i et 2-21
2.5.14 Delete Character FUNCtiono oot i i i it it e it iiennne 2-21
2.5.15 Cursor Up FUnCiono i i i i i i e it e ettt et i e 2-21
2.5.16 Cursor Down Function. i i i i e e e e 2-22
2.5.17 Cursor Right Function i i i i i i i ettt et 2-22

vii Digital Systems Division

(l@ 946250-9704

TABLE OF CONTENTS (Continued)

Paragraph Title Page
2.5.18 Cursor Left Function (BackSpace)v.viiiiin ittt ittt et ettt et 2-22
2.5.19 06 0 T S0 s Lot T ¢ 2-22
2.5.20 Brase FUNCHIONiiiii it i it it et et et et 2-22

SECTION 3. ACTIVATING LANGUAGE PROCEDURES

3.1 Assembly Language Program Generation Runthrough 3-1
3.2 FORTRAN Program Generation Runthrough i i, 3-6
3.3 COBOL Program Generation Runthrough i .. 39
3.4 BASIC Program Generation Runthrough i, 3-13
35 RPG Source Program Entry oot it e et 3-14
3.5.1 L@70) 41 531 b V4o « RO 3-14
352 Bindingciii i e e e 3-16
353 210314 o) « O 3-16
3.6 Creation of Control Files and Execution of SORT/MERGE 3-17
3.6.1 Execution SORT/MERGE inBatchMode i, 3-18

SECTION 4. LINK EDITOR USE ON DX10

4.1 100 0] 703 €-Ts B 2 10 o O 4-1
4.2 Link Editor Operation With DX10 i i i 4-1

SECTION 5. INSTALLING, DELETING, AND MODIFYING PROGRAMS

5.1 018 oo Yo L1 o7 T) « KGN 5-1
5.2 e § 11 1 I 1 A 5-1
5.2.1 IRT — Install Real-Time Taskoiiiininn it iirenneraranenenennnn 5-3
53 IP — Install Procedure.ottt et e et et e e e 54
5.4 JO —Install Overlay . ..ottt i ittt e it ettt et et ettt e 54
5.5 DT —— Delete TasK. .. oottt it i et i ittt et e 5-5
5.6 DP — Delete Procedure ... oo vttt ittt it ittt et it e s 5-5
5.7 DO —Delete OVerlay oottt e i it e e et e 5-5
5.8 Modifying Program File Entriesovn vt tn i e e eia e 5-6
5.8.1 Modify Task Entry (MTE)o i ettt it e i 5-6
5.8.2 Modify Procedure Entry (MPE) i e e i e 5-7
5.8.3 Modify Overlay Entry (MOE)ttt e ettt 5-8

SECTION 6. EXECUTING PROGRAMS

6.1 64U 0o L ot 5T o Y 6-1
6.2 Executing an Assembly Language Task i, 6-1
6.2.1 ExXecute Task — X ittt ittt it it ittt ettt et ae e enraneaenanens 6-1
6.2.2 Execute Task and Suspend SCI — XISttt it 6-2
6.2.3 Executeand Halt Task — XH T i it it et et cn i 6-2
6.3 Executing Language Processors, Tasks from Language Processors,

AN SUDSY S OITIS . . ottt ettt e e 6-2

viii Digital Systems Division

o]
%@ 946250-9704

Paragraph Title Page

TABLE OF CONTENTS (Continued)

SECTION 7. DEBUGGING SUPPORT

7.1 General. ..o 7-1
7.2 Modes of Debugging.t e 7-1
7.2.1 Unconditional Suspend it 7-2
7.2.2 Command Parameter SYyNtax.coiunnnnt i 7-2
7.2.3 SYIMbOLS .« .o 7-3
7.2.4 BXDIESSIONS .« ..ottt 7-4
7.3 Commands for AIITasksoiuiiiieinii e e 7-6
7.3.1 AB — Assign Breakpointsovuuitiiiit it 7-8
7.3.2 DB — Delete Breakpointsoouiniin e 7-8
7.3.3 PB — Proceed From Breakpoint., 79
7.3.4 DPB — Delete and Proceed From Breakpointc.coueiueeeuneneunnnnnnn. 7-9
7.3.5 MM — Modify MemOry.o 7-10
7.3.6 MSM — Modify System Memoryv i e 7-10
7.3.6.1 MSM Command FOrmatouiiiniiinn et eeeieeaaneens 7-10
7.3.6.2 MSM Command User ReSpOnsSesooviinniieee e eeiianenen, 7-11
7.3.6.3 MSM Command Exampleoo i et 7-11
7.3.7 LM — LSt MemMOTY .o oe ittt ittt ettt ettt et 7-11
7.3.8 LSM — List System MemOryottt et e e et 7-12
7.3.8.1 LSMCommand Format. oot 7-12
7.3.8.2 LSM Command User ReSponsesttt eeeieeeannn, 7-12
7.3.8.3 LSM Command EXample.oouiiniii et et 7-12
7.3.9 FW —Find Wordo e 7-12
7.3.10 FB —Find Byte. ...ttt 7-13
7.3.11 AT —Activate Task i e 7-13
7.3.12 HT —HaltTask e e e e e e e 7-14
7.3.13 RT —Resume Task ... et e 7-14
7.3.14 MIR — Modify Internal Registerso, 7-15
7.3.15 SIR — Show Internal Registerst e e 7-15
7.3.16 MWR — Modify Workspace Registersuoeirtiteite e eeannnnnns 7-16
7.3.17 SWR — Show Workspace Registersooui i i 7-16
7.3.18 SP—Show Panel o i e 7-17
7.3.19 LB — List Breakpointsovtiiii ittt e 7-18
7.3.20 SV — Show Vallettt 7-18
7.3.21 SPI — Show Program Image couuiii e e e 7-18
7.3.22 MPI — Modify Program Imagecoiiviiiniiiiii .. 7-19
7.3.23 SAD — Show Absolute Diskt e e 7-20
7.3.24 MAD — Modify Absolute Disk e 7-20
7.3.25 SADU — Show Allocable Disk Unit. oovvttti ettt 7-21
7.3.26 MADU — Modify Allocable Disk Unitooivteineeneeeeeee e, 7-22
7.3.27 SRF —Show Relative to File.o e e 7-22
7.3.28 MRF — Modify Relative toFileo e 7-23
7.4 Commands for Controlled Tasksttt 7-24
7.4.1 XD —DebugCommand ...t 7-24
7.4.2 ST —SimulateTaskcoevn.... e e et e 7-25
7.4.3 ASB — Assign Simulated Breakpoint.t 7-26
7.4.4 DSB — Delete Simulated Breakpointvuivintt e eannns, 7-27

ix Digital Systems Division

946250-9704

TABLE OF CONTENTS (Continued)

Paragraph Title Page
7.4.5 RST — Resume Simulated Taskooiiriiiii i e it en i iaiaaaann 7-27
7.4.6 LSB — List Simulated Breakpointsc.oiuiiiiiiiiiiiiiiiiniiinennanns 7-27
7.4.7 QD — QUIt DEDUE .. .ottt i e 7-28
7.5 Station Dependents Displaysoournei it i 7-28

SECTION 8. EXAMPLE PROGRAM

8.1 Runthrough of an Assembly Language Example Program 8-1
APPENDIXES

Appendix Title Page

A Standard DeviCE NAIMES ovu ettt ettt ittt iraa ity A-1

B Command SUMMALYivritnrirnereenneenenn U B-1

Figure Title Page
2-1 Listing of Text Editor EXamplettt iiae e e 2-6
2-2 Modified File EXamipleo ottt i i it it it ittt et 2-9
2-3 Modifications File EXampleo vciire i i it it ittt e 2-9
3-1 Example Assembly Language Programttt 34
3-2 Example COBOL PIOgramuvunts ittt tiiiiiaaae e ereninaansaenos 3-11
33 Compiler Output LIStINg . .« .o ooit ittt it ittt i e 3-15
34 INPUL FIlE . . . oot i e e 3-17
3-5 OUtPUL LiSting . ..ottt i ittt 3-17
3-6 Interactive Options — No Control File Creation, 3-17
3.7 Example of Entries to Create a Batch File and Execute SORT/MERGE 3-18
7-1 Debug Panel Displayciiiuiiiiiiiiiii i e 7-17
7-2 Display of Simulated Breakpoints. e 7-28

LIST OF TABLES

Table Title Page
2-1 Edit Control FUNCHOMS .+« ottt ittt it it e ettt et eiaeniaananns 2-3
6-1 Locating Instructions for Executing Subsystems, Language Processors, and
Tasks from Language Processors Available With DX10, Release3 6-3
7-1 SCIDebug Commandsootvettin ittt ittt 7-6
7-2 Command Displays. vvii e e e e e e 7-29
X

Digital Systems Division

o]
@ 946250-9704

SECTION 1

INTRODUCTION

1.1 GENERAL

This manual describes the steps involved in creating and executing a working computer program.
These steps are illustrated in subsequent paragraphs by examples taken from each of the program-
ming languages. To gain familiarity with DX10, it is suggested that each programmer perform the
complete runthrough for at least one of the supported languages.

NOTE

The methods below do not use the full capabilities of DX10, but
only illustrate one of several ways to develop softwdre.

Steps in program generation include the following:

1. Planning and initial coding. This is a very important step, especially for long and
complex procedures. Modern programming techniques, such as structured programming,
can drastically reduce the number of errors committed at this step.

2. Enter the program into the computer. Under DXI10, this is usually done using the Text
Editor. Alternately, the program may be prepared on an external media (such as punched
cards) and read into the computer. The program is called source code at this step.

3. Invoke the appropriate language processor. DX10 supports FORTRAN, COBOL,
PASCAL, BASIC, and assembly language. For interpretive languages like BASIC, steps 2,
3, and 5 are often combined. The output of the language processor is called object code.

4. Link edit the output of the language processor. This step ties segmented programs
together. The output of the Link Editor is called linked object code. This step is omitted
in BASIC programs. In some cases, it is also omitted in COBOL programs. Consult the
COBOL and BASIC manuals for more information.

5. The executable program now resides on a disk file or on a sequential device such as
cassette or magnetic tape. The next step is to execute the program and debug it.
Historically, the most time consuming phase of program generation is program
debugging. Proper attention to design and coding in step 1 can drastically reduce this
time. If errors are detected, use the debug tools provided by DX10 to debug the
program. The program should be corrected at the source code level (i.e., go back to
step 2 and use the Text Editor to correct the program.).

6. All programs which are developed for use in a production system should include a stan-
dardized documentation form. Some characteristics of a good form are as follows:

a. A brief description of all globally defined routines:
e Title of routine

® Abstract description of process

1-1 Digital Systems Division

946250-9704

Calling sequence(s)
Error conditions
External references (including name of source file)

Stack requirements (assembly language)

b. A brief description of all data structures:

Abstract description of structure

List of all routines which have access to the structure

¢. A documentation of systems of interacting modules:

A cross reference of globally-defined symbols

A description of the flow of control within the program

A user oriented introduction to the use and applications of the program.

1-2

Digital Systems Division

o]
%@ 946250-9704

SECTION 2

TEXT EDITOR

2.1 INTRODUCTION

The Text Editor provides the user with the means interactively to create and modify files of
textual data. The data in these files may be assembly language source code, high level language
source code, or material that is to be printed, such as software documentation, memos, or drafts.

The interactive user invokes and operates the Text Editor from a Model 911 or 913 VDT, or a hard
copy terminal, such as the Silent 700 Model 733 ASR/KSR or 820 KSR. Most of the editing func-
tions are available at both the VDT and hard copy terminals, but the means of invoking a particular
function may vary depending on the terminal type and its current mode of operation. While a hard
copy terminal can operate only in the ‘TTY’ mode, either of the TI VDTs can operate in ‘TTY’ or
‘VDT’ modes. The Text Editor supports only the VDT mode when called from a VDT. Volume I,
DX10 Operating System Production Operations Guide, contains the descriptions of these two
modes and explains how the VDT is placed in either mode. The methods of data display and entry of

the two types also differ so that the advantages of both may be fully utilized. These differences and
methods are discussed in subsequent paragraphs within this document.

The Text Editor is invoked by use of the XE command. The prompt presented allows the user
either to specify that data contained in an existing file be edited, or to indicate that new data is
to be created.

When the Text Editor is used to modify the data in an existing file, the user specifies the file
access name when the Text Editor is entered. Each of the records in the input file is numbered,
relative to the start of the file. When the user makes modifications, the modifications are written
to another file (the modifications file) and are not made directly to the input file. When records
from the source file are deleted, the Text Editor indicates the deletions in the modifications file,
but does not delete any records from the input file. When records are inserted, they are inserted
in the modifications file, but not in the input file. Whenever the user requests display of data,
the Text Editor builds the display by applying any modifications to the input file data, but the
modifications are not made to the input file. When the editor is terminated by use of the QE
command, the user may abort the edit, in which case all modifications and new data are
discarded. If the user requests that a new file be created, the modifications are applied to the
input file as it is written to the new output file. The original input file remains intact, unless the
output file access name specified is the same as the input file access name, in which case the
modified file replaces the input file.

Errors detected by the Text Editor are defined in Volume VI, Error Reporting, of the DX10
documentation set.

2.2 TERMINAL USAGE
Text editing consists of four major types of operations, as defined in the following:

® Command selection and specification

° Edit control

2-1 Digital Systems Division

(o}
‘,]_@;’} 946250-9704

® Data display
® Data entry

Command selection and specification includes the selection of Text Editor functions that assist the
operator with the management of the text in the source file. In addition, any SCI command may be
called during Text Editor operation. It also includes the entry of parameters which are used by the
command to perform the desired operation. Examples of the commands are Find String, Modify
Tabs, and Copy Lines. These commands always have parameters that are supplied by the operator,
or, in many cases, can be defaulted. After entry of each parameter, the TAB, NEW LINE, RIGHT
FIELD, RETURN, or CARRIAGE RETURN key (depending on the terminal) is pressed to ter-
minate the parameter entry. The terminal must be in the command mode before selecting any com-
mand. The terminal is returned to the command mode by pressing the appropriate Enter Command
Mode function key listed in table 2-1.

Edit control consists of the operations that control the immediate editing of the data. All of these
operations are available in VDT mode while only some are available in TTY mode (i.e., on hard
copy devices). The operations available on hard copy devices are: altering the current file position,
adding data by line, and deleting data by line. Additional operations allowed in VDT mode are alter-
ing cursor position, adding data by character, and deleting data by character. Edit control opera-
tions have no parameters.

Data entry operations control the actual entering of data into the file, and data display manages
the display of data on the device.

2.2.1 HARD COPY TERMINAL OPERATION. A hard copy terminal is considered to be a
relatively slow input/output device, as compared to a VDT. In addition, the function keys on hard
copy terminals differ from those on the 911 and 913 VDTs. Each function available at a hard copy
terminal is invoked by the operator selecting a specific character while simultaneously pressing the
CONTROL key, thereby causing a unique control shift character to be generated.

Edit control operations are also selected by use of the control shift method. These operations
require no parameters and are usually followed by a printout of a data record, which identifies
the current position in the file.

Data display on hard copy terminals is on a line by line basis, and the line number or record
number may be displayed. Data entry on a hard copy device is generally accomplished by
retyping the desired segment of the displayed line, or by preceding the new line with a specified
control shift character that indicates that the new line is to be inserted in the file immediately
following the displayed line. The tab, clear to tab and duplicate to tab functions may be used to
speed up this operation.

The specific control shift uses are defined along with each command in subsequent paragraphs.

2.2.2 VIDEO DISPLAY TERMINAL USAGE. The Text Editor supports the Model 911 and 913
VDTs. The Model 913 provides a twelve line display screen, while Model 911 provides a twenty-four
line display screen.

Editing on the VDT occurs on a page basis, with a page being either twelve lines (Model 913 VDT) or
twenty-four lines (Model 911 VDT). Any record displayed on the screen may be edited by position-
ing the cursor anywhere within the line that contains the record to be edited. Records may be in-
serted between any lines, and may be inserted or deleted in any order. In addition, characters within

22 Digital Systems Division

946250-9704

Table 2-1. Edit Control Functions

913 VDT 911 VDT
Function Keytop Keytop
Enter Command Mode HELP CMD
Edit Compose Flip (1) F7 F7
Disp/Suprs Line No (2) Fé6 Fé6
Clear To Tab F5 F5
Roll Up ROLL UP F1
Roll Down ROLL DOWN F2
Dup To Tab F4 F4
New Line NEW LINE RETURN
Tab (3) TAB TAB SKIP
Back Tab ' BACK TAB - EIELD
Insert Line INSERT LINE Unlabeled Gray Key
Delete Line DELETE LINE ERASE INPUT
Insert Character INSERT CHAR INS CHAR
Delete Character DELETE CHAR DEL CHAR
Cursor Up))
Cursor Down ¥)
Cursor Right - -
Cursor Left (Backspace) - -
Home HOME HOME
Erase CLEAR ERASE FIELD

(1) Alternates modes on succeeding hits
(2) Alternates display of numbers (74 data characters) with no display of numbers (80 data’ characters)

TTY/820
Control

Aok Ak K
ok ok ok Kk

U

J
Aok ek

H
ok ok KK
*ok kA ok

(3) The SHIFT Key must be pressed simultaneously with the TAB SKIP key to achieve the tab function on the 911 VDT.

*#x*** Function not supported

2-3

Digital Systems Division

o]
{@ 946250-9704

a line may be inserted, deleted, or modified. Positioning of the file for display is accomplished by
use of the Show Line command, and the Roll Up, Roll Down, Cursor Up, and Cursor Down edit
control functions.

Command selection from either VDT is accomplished by keying in the command and responding
to the prompts presented on the display screen.

Edit control is performed by using the cursor control keys and some of the function keys.
Although the functions are available on both VDT types, the method of selection varies in some
cases due to the physical differences in the keyboards. These differences are defined along with
the command definitions in this section.

2.3 TEXT EDITOR WALK THROUGHS

All the commands available under the Text Editor are described in paragraph 2.4, and all the
edit control functions are described in paragraph 2.5. In this paragraph, simple walk throughs of
the Text Editor are provided for creating a new file and for modifying an existing file. The
purpose of these examples is to provide a quick reference for the more common uses of the Text
Editor.

2.3.1 CREATING A NEW FILE. The following procedure applies to creating a new file using the
Text Editor on a Model 911 Video Display Terminal in the VDT mode. The example assumes that
you are properly logged in, and that the System Command Interpreter (SCI) is active. Refer to
Volume II, DX10 Operating System Production Operations Guide for details on Log In and ac-
tivating SCI.

Key in XE and then press RETURN to activate the Text Editor. The following prompt is then
presented:

INITIATE TEXT EDITOR
FILE ACCESS NAME:

Press the RETURN key to indicate that no input file is to be edited. The screen is cleared and
the following display is presented in the first four columns of row one, with the cursor in
column one, row one:

* EOF

This display indicates that the only record in the file is the end-of-file record. To begin entering
data, press the F7 key to enter the compose mode, and then press the unlabeled grey key. The
following display is then presented:

* EOF

Note that the end-of-file record is now in line two and that the cursor is in row one, column
one, with the rest of the line blank filled. You may now begin entering data by simply keying
the data and pressing the RETURN key whenever you wish to terminate a line. In the example
(shown in figure 2-1), 35 records were entered with each record containing ten A’s.

Any of the edit control functions may be used during data entry, as may any of the commands
(prior to entering a command, press the CMD key). Note, however, that all of the commands
return the Text Editor to the edit mode once they have completed. To begin entering new data,
first position the cursor to the last data line (using the cursor control keys, such as Up Arrow
(1) and Down Arrow ({), and then press the F7 key and then press the unlabeled gray key to insert

2-4 Digital Systems Division

[o]
@ 946250-9704

a line. You may now begin entering data. Once all the data has been entered, the Text Editor
is terminated by calling the QE (Quit Editor) command. First, press the CMD key to enter the
command mode, then enter QE and press the RETURN key. The following prompt then appears:

QUIT EDIT
ABORT?: NO

The reply to the ABORT prompt allows you to either accept (N response) or discard (Y
response) the data you entered. Since you want to accept the data, press the RETURN key to
accept the initial (N) value. The example uses the N response. The following display is then
presented:

QUIT EDIT
OUTPUT FILE ACCESS NAME: .EXAMPLE
REPLACE?: NO
MOD LIST ACCESS NAME:

The cursor appears after the colon in the first line of the display. Enter the pathname of the file
to which the entered data is to be written. The pathname can be an existing file, or a new file
name. You must make an entry since there is no input file. If you had used an input file, its
pathname would be displayed and you could accept that pathname. The example uses
.EXAMPLE as the pathname for the new file.

If the file specified by the pathname currently exists and you want to replace it, respond to the
REPLACE?: prompt with a Y. If you are creating a new file, respond with an N. The N response
allows you to avoid accidentally destroying an existing file. The example uses an N response.

Press the RETURN key in response to the MOD LIST ACCESS NAME prompt. Since a new file
is being created, there are no modifications.

Once the file has been created/replaced, the Text Editor is no longer active and the terminal
returns to command mode, with the initial SCI menu displayed.

The file created in the example is shown in figure 2-1.

2.3.2 EDITING AN EXISTING FILE. The example described in this paragraph gives the general
procedures for editing an existing file by using the Text Editor. The file used as input is the one
created in paragraph 2.3.1 and shown in figure 2-1. The editing takes place at a 911 VDT in the
VDT mode.

First, enter the command mode (press the CMD key) and key in XE, followed by pressing the
RETURN key. The following is then displayed:

INITIATE TEXT EDITOR
FILE ACCESS NAME: . EXAMPLE

Press the RETURN key to display the first 24-records from the file. The Text Editor is in the
edit mode, the cursor is in column one, row one, and line numbers are displayed. In this
example, we are going to change lines one and two, insert one line after line nine, insert one line
after line 19, change line 20, and delete lines 30 through 35.

2-5 Digital Systems Division

946250-9704

Figure 2-1. Listing of Text Editor Example

First, change the first character of line one from A to B. Do this by simply keying the B while
the cursor was in row one, column one. Press the RETURN key to place the cursor in row two,
column one. To change the last character (in column ten of row two) from A to B, press the
right arrow (=) to advance the cursor one position for each stroke. To get to column ten, press
the = key nine times. Once the cursor is over the last A, the B is keyed to replace the existing
A. The RETURN key is then pressed to move the cursor to column one of line three.

The next modification is to insert a line of data after line nine. There are two ways to move the
cursor to line ten (since the insert line function causes the new line to be placed ahead of the
line the cursor is in, we have to go to line ten). One way to move the cursor is by using the
Show Line command. To use the command, press the CMD key to enter the command mode.

2-6 Digital Systems Division

o]
q_r@(p 946250-9704

When the command prompt appears, key in SL, which invokes the Show Line command, and
then press RETURN. The following display is then presented.

SHOW LINE
LINE: 1

Enter the number of the line that the inserted line is to precede. For the example, we enter 10
and press the RETURN key. The display then appears with the first line being line 10, and the
cursor in column one of that line. Press the unlabeled gray key and the display is rolled down
one line and the line containing the cursor is blank filled. The new line, BBBBBBBBBB, is then
entered and the RETURN key is pressed. The cursor goes to column one of line ten. Note that
no line number is displayed along with the inserted line.

To get to line 20 to insert the next line, use the other method of advancing the cursor, which
consists of using the down arrow ({) key. Each depression of the key causes the cursor to go
down one line in the display. The cursor remains in the same column. To get to line 20, press
the | key ten times. Press the unlabeled gray key, which caused the lines below and including
line twenty to be rolled down one line and the line containing the cursor to be blank filled. Key in
the inserted line as follows:

BBBBBBBBBB
and press the RETURN key to return the cursor to column one of line 20.

The cursor is now in line 20, which we want to change from AAAAAAAAAA to CCCCCCCCCC.
Do it by simply keying the new value and RETURN key.

Our final change is to delete lines 30 through 35. To do this, press the CMD key to enter the
command mode. When the command prompt [] is displayed, enter DL and press TAB to call the
Delete Lines command. The following display is presented:

DELETE LINES
START LINE:
END LINE:

The responses to the prompts are 30 and 35 as follows:

DELETE LINES
START LINE: 30
END LINE: 35

Press the RETURN key to perform the Delete Lines function. Since line 35 is the last input line
from the file .EXAMPLE, the following display is presented:

* EOF
Since we have completed all modifications, call the QE command to terminate processing. The

CMD key is pressed and the command prompt [] is displayed. We then enter QE and press
RETURN, and the following is displayed:

QUIT EDIT
ABORT?: N

2-7 Digital Systems Division

o]
%@ 946250-9704

Since we do not want to discard all our modifications, press RETURN to accept the N value.
The following is displayed:

QUIT EDIT
OUTPUT FILE ACCESS NAME: . EXAMPLE
REPLACE?: N
MOD LIST ACCESS NAME :

Note that the value entered in response to the FILE ACCESS NAME: prompt of the XE
command is used as the default here. We accept that value by pressing the RETURN key and get
the following display:

QUIT EDIT
OUTPUT FILE ACCESS NAME: . EXAMPLE
REPLACE?: N
MOD LIST ACCESS NAME:

Enter Y in response to the REPLACE parameter to indicate we want to replace the input file.
Press the RETURN key and enter the value .LISTA in response to the MOD LIST ACCESS
NAME prompt. Press the RETURN key. The Text Editor now terminates and the initial SCI
menu is displayed.

Figure 2-2 illustrates the file after the changes and figure 2-3 lists the modifications. On the
modifications list, the flags at the left margin have the following meanings:

O — 0Old value
N — New value
I — Inserted line
D — Deleted line.

2.4 COMMAND USAGE

The Text Editor is initiated when the operator selects and completes the XE command and ter-
minates when the operator enters and completes the QE command. Whenever the terminal is in the
command mode, the Text Editor is suspended and the operator may select any command. Note that
the commands selected when the terminal is in the command mode and the Text Editor is suspended
do not have to be Text Editor commands. The Text Editor remains suspended until the XE com-
mand or another Text Editor command is selected, at which point the Text Editor is reactivated, the
state that existed at the time of suspension is restored, and the entered command is processed. Any
Text Editor command entered after the Text Editor has been terminated with the QE command
causes the following message to be displayed:

COMMAND ONLY ALLOWED WHILE TEXT EDITING:

If the operator quits the command interpreter (by entering the Q command) while the editor is
suspended, the QE command is automatically invoked.

2-8 Digital Systems Division

[e]
@ 946250-9704

Figure 2-2. Modified File Example

Figure 2-3. Modifications File Example

BAAAAAAAAA
AMARAKAAAAR
ARAAAAARAAA
ARAARAAAAA
AAAAAALAAA
AAARAAAAAA
ARAAARAAAAA
AAANAAAAAA
AAAARAAAAA
BEEREBEBREB
ARAARAARAA
ARAAAAAAAA
AAAARAARRAA
ARAAAAAAAA
ARAAARARAAA
AARARAAAAA
AAAAAAAAAA
AAAALBAAAAA
ARAARAARAAA
AAAAAAAAAA
BREBEBRBEER
L8 10 1 1 106 36
AAAAAAAAAA
AAAARAAARAAA
AAAAAAAAAA
AAABAAAAAA
ARAAAAAALA
AAAAAARAAA
ARAAARAAAA
ARAAAAAAAA
ARAARAARAAA

Fd b o e

oy
Z

[R Y IR Y I TY R PV N

[B =R PN o

AARAARAAAAA
BAAARAAAAA
AARAARAAARAA
ARAAAAAAAR
BREREEEBRREER
BEBREREBERRE
AAAAAARAAAA
CCCCCCoCon
ARAARARAAAA
ARAAAAAAAA
AAAAAAAAAA
ARARARAAARA
AARAAAAAAA
AAAAARAARAA

29

Digital Systems Division

[o}
i‘r%\[]fp 946250-9704

Within the command descriptions in this section, the following conventions are used in the
formats of the commands:

Underscore () Indicates an initial value supplied by the command.

Braces ({ }) Indicates that a selection of the entries must be made,
or the default value used. The default value is under-
lined.

Brackets ([1) Indicates that the entry is optional.

acnm Stands for Access Name for file or device.

int Indicates that the entry may be an integer or an
expression.

prev val The previously entered value for the prompt. SCI
assigns the previous value as the default for many of
the prompts.

Boldface Type Indicates the operator keyed and system displayed
command.

Upper Case System displayed data.

Angle Brackets (< >) Data which must be entered by the operator.

Many commands have prompts that request start line and end line values. The ‘int’ expression is
used to indicate these values. The following format applies to start line entries:

i =

itj

Default

A numbered line in the input file. This value refers to an existing numbered
line. A zero value is not allowed.

A line referenced by its offset (£j) from a numbered line (i). This value is
used to reference a newly entered line. Neither i nor j may be zero.

A line referenced by its offset (#j) from the current line. In the VDT mode,
the current line is the line the cursor was in when the command was
selected. A zero value is not allowed.

The current line.

When the ‘int’ expression refers to an ending line parameter value, the following conventions

apply:

i

ij

A numbered line in the input file. A zero value is not allowed.

The ending line is offset (£j) from a numbered line (i) in the input file.
Neither i nor j may be zero.

2-10 Digital Systems Division

o]
(@ 946250-9704

+j

Default

zero value is not permitted).

NOTE

The value of the starting line parameter.

The ending line is offset (+j) from the specified starting line (a negative or

If the evaluation of the start line ‘int’ expression is greater than
the value of i in the end line ‘int’ expression (if used), the start

line value is used in place of the end line entry.

Within the command descriptions, ‘current file’ is the input file with all modifications. Note,
however, that the modifications are not actually applied to the input file until the Text Editor is

terminated, and the input file is replaced, if so specified.

The commands defined in this section are the following:

XE — Execute Text Editor
XES — Execute Text Editor with Scaling
QE — Quit Editor

CL — Copy Lines

DL — Delete Lines

DS — Delete String

FS — Find String

IF — Insert File

ML — Move Lines

MR — Modify Roll

MRM — Modify Right Margin
RS — Replace String

MT — Modify Tabs

SL — Show Line

SVL — Save Lines

2.4.1 EXECUTE TEXT EDITOR — XE COMMAND. The XE command activates the Text
Editor. When the command is entered, the system generates the following display:

INITIATE TEXT EDITOR

FILE ACCESS NAME:

<acnm>

prev val

2-11

Digital Systems Division

(o]
{—@@ 946250-9704

Response to the FILE ACCESS NAME prompt is optional and, if entered, identifies the existing
file that is to provide the data input for the Text Editor. If no file name is supplied, a new file
is created which is named when the Quit Editor command is processed. An access name cannot
reference a device.

If the Text Editor is active when the XE command is entered, the system restores the state that
existed when the Text Editor was suspended (that is, a non-Text Editor command was called)
and the data displayed by the last Text Editor command or function is restored. The file
selected when the Text Editor was originally entered remains the input file.

2.4.2 EXECUTE TEXT EDITOR WITH SCALING — XES COMMAND. The XES command is
identical to the XE command except that in VDT mode scaling information is displayed on the
bottom line of the screen. The scaling information helps the user to determine the column num-
bers associated with the data on the screen. The information has the following format: a ‘1’ is
displayed in column 10, a 2’ is displayed in column 20, a ‘3’ in column 30, etc. XES should be
used to initiate the Text Editor when editing source code in a language which requires column
oriented input.

2.43 QUIT EDIT — QE COMMAND. The QE command is entered when all processing desired

under control of the Text Editor has been completed. When the QE command is keyed, the
following display is presented:

QUIT EDIT
0 <Y>
ABORT?: NO

The response to the ABORT prompt allows the operator to immediately terminate the Text
Editor without any modification to the file specified in the XE command, or, if no file was
specified in the XE command, without any new file being created. Note that any modifications
made or data entered are lost when the ABORT prompt is answered with a ‘Y’. When the
response to the ABORT prompt is Y, the Text Editor is terminated and no other prompts are
presented. If the default response (N) is used, the following display is presented:

<acnm> §

OUTPUT FILE ACCESS NAME: { input acnm

<Y>
REPLACE?: % N }

MOD LIST ACCESS NAME: [<acnm>]

The default response to the OUTPUT FILE ACCESS NAME prompt is the value entered when
the XE command was processed. If no name was specified in the XE command, the user must
enter the name of the output file in response to the OUTPUT FILE ACCESS NAME. This
response is also entéred if the user wishes to create a new file that contains the contents of the
original file (input file specified in the XE command) as modified by the Text Editor. The
response can also be the access name of another existing file that is to contain the modified file.
The OUTPUT FILE ACCESS NAME entry cannot reference a device.

The response to the REPLACE prompt allows the user to specify whether the file specified in
response to the OUTPUT FILE ACCESS NAME prompt, which may be the input file, is to be
replaced by the modified version of the file. If the response is Y, the modified file replaces the
specified file, or, if no file exists by that name, a new file is created. If the default entry N is
made and the specified file does not exist, the Text Editor creates a new file containing the

2-12 Digital Systems Division

(o]
%@ 946250-9704

modified file, which is identified by the OUTPUT FILE ACCESS NAME entry. If the file specified
by the QUTPUT FILE ACCESS NAME entry does exist and the response to the REPLACE
prompt is N, an error message is displayed indicating that a file I/O error has occurred. The user
should then reenter the QE command and either replace the existing file by responding Y to the
REPLACE prompt or create a new file by entering a new OUTPUT FILE ACCESS NAME.

The method by which the characteristics of the output file are chosen is as follows:

I. If no input file was specified and the output file does not exist, the output file is
created as a sequential file with an initial allocation equal to one-fourth of the number
of records created with the Text Editor, with an incremental allocation value of
one-sixteenth of the number of records created. This algorithm assures efficient use of
disk space with minimum execution overhead.

2. If the output file is to replace the input file, the characteristics of the input file are used,
with the exception of the allocation values, which are described in step 1.

3. If the input file exists and the output file does not exist (the output file is not to
replace the input file), the characteristics of the input file are used, with the exception
of the allocation values, which are as described in step 1.

4. If the output file exists, its characteristics are used, except for the allocation values.

To create a relative record file, the relative record file must first be created by use of the Create
File (CF) SCI command procedure, and its assigned access name specified when the Text Editor
is initiated and terminated.

NOTE
Key indexed files cannot be edited by the Text Editor.

The user specifies an access name in response to the MOD LIST ACCESS NAME prompt if a
printable copy of the modifications is to be prepared. If the name of a device is entered, the
listing is written to that device. If no entry is made, no modifications listing file or printout is
provided.

2.4.4 COPY LINES — CL COMMAND. The CL command is used to specify which lines are to
be copied from the current file to another position in the modifications file. The following

display is presented when the CL command is entered:

COPY LINES ‘
START LINE: {<mt> . }
current line
<int>
END LINE: { current line}
. <int>
INSERT AFTER LINE: current line

2-13 ’ Digital Systems Division

o
e@ 946250-9704

The command copies the lines from the START LINE to the END LINE, inclusive, from the cur-
rent file to a temporary area, positions the modification file to the line specified in the INSERT
AFTER LINE entry and inserts the copied lines after this line. Note that the copied lines are not
deleted from the input file. Any modifications previously made to the lines being copied are applied
to the input file data as the lines are copied. No more than 380 lines may be copied in a single CL
command.

2.4.5 DELETE LINES — DL COMMAND. The DL command is used to specify those lines that
are to be deleted from the current file. The format of the DL command display is as follows:

DELETE LINES

<int>
START LINE: { current line
{<int> }
END LINE: current line

This command causes the lines from the START LINE to the END LINE, inclusive, to be

deleted from the current file. The new current line is the line immediately following the deleted
block.

24.6 MOVE LINES — ML COMMAND. The ML command is used to move lines from one
position in the current file to another position in the modifications file, and to delete the
specified lines from their original positions. The format of the ML command is as follows:

MOVE LINES <int>
START LINE: { current ling}
<int> }
END LINE: current line
<int>
INSERT AFTER LINE: { current line

This command copies the lines from the START LINE to the END LINE, inclusive, from the cur-
rent file to a temporary area, deleting each line from the current file as it is copied. The modifica-
tions file is positioned to the line specified by the INSERT LINE entry, and the copied lines are in-
serted after this line. After the ML command is executed, the lines moved are displayed on the VDT
screen, with the cursor positioned at the first line on the screen. No more than 380 lines may be
moved in a single ML command.

2.4.7 INSERT FILE — IF COMMAND. The IF command is used to insert an entire file into the
edited file after a specified record. The format of the command is as follows:

INSERT FILE
FILE PATHNAME <acnm>

<int>
INSERT AFTER LINE: M:

In response to the FILE PATHNAME prompt, the user enters the access name of the file that is
to be inserted in the edited file. Note that the file specified in response to this request is unchanged.
There is no default for the FILE PATHNAME prompt.

2-14 Digital Systems Division

[o]
@ 946250-9704

In response to the INSERT AFTER LINE prompt, the user enters the line (record) after which
the file is to be inserted in the edited file. If the file is to be inserted before the first line, place
the cursor on the first line and perform an insert line function. The cursor is positioned on the
newly-created line, which becomes the new first line of the edit file. Perform an Insert File com-
mand, entering the desired file pathname but leaving the “Insert After Line” prompt blank. The
file is inserted after the blank line. Delete the blank line at the beginning of the file.

2.4.8 DELETE STRING — DS COMMAND. The DS command causes the system to search each
line in the current file, beginning with the current line, for the specified string of characters and to
delete the string when it is found. The format of the command is as follows:

DELETE STRING <int>
NUMBER OF OCCURRENCES: { 1 g
<int>
START COLUMN: { prev val |
_ f <int>
END COLUMN: | prev val

STRING: <string>

The user enters the number of times the string is to be deleted in response to the NUMBER OF OC-
CURRENCES prompt. The system searches each line, beginning with the current line, for the
specified string and deletes it each time it is found until the number of occurrences specified has
been reached. The default response for the NUMBER OF OCCURRENCES is one.

The user enters the column in which the string begins in response to the START COLUMN prompt,
and the ending column of the string in response to the END COLUMN prompt. For example, if the
entries were 5 and 20, respectively, the system would delete the string in positions 5 through 20 of
each line, beginning with the current line.

In response to the STRING prompt, the user enters the actual string of characters that is to be
deleted. There is no default to the STRING prompt. When the string is found and deleted, all
characters to the right of the string are shifted left to fill the area occupied by the string and the
remainder of the record is blank filled. When the specified number of occurrences of the string
have been deleted, the file is positioned at the last record from which the string was deleted and
that record is displayed. If the specified number of occurrences is greater than the actual
number of occurrences, the file is positioned at the end-of-file position.

As a rule, leading and trailing blanks are stripped from the string. If the desired string contains
leading or trailing blanks, the entire string must be enclosed in double quotes. Quotes must also
be used to enclose a string containing blanks.

2-15 Digital Systems Division

Qo
%@ 946250-9704

2.4.9 FIND STRING — FS COMMAND. The FS command allows the user to specify a character
string to be found by the system, beginning with the current line. When the specified occurrence of
the string is found, the system displays the line that contains the string. The format of the FS com-
mand is as follows:

FIND STRING

<int>
OCCURRENCE NUMBER: nl
<int>
START COLUMN:;: prev val
‘ (<int>)
END COLUMN: | prev val f

STRING: <string>

In response to the OCCURRENCE NUMBER prompt, the user enters a number which corresponds
to the number of times the string is to be found before the line containing the string is displayed. For
example, if the parameter entered is 5, the system bypasses the first four occurrences of the string
and only displays the fifth line that contains the string. The default value for the prompt is one. If
the specified number of occurrences is greater than the actual number of occurrences, the file is
positioned at end-of-file.

The user enters the column in which the string begins in response to the START COLUMN prompt,
and the ending column of the string in response to the END COLUMN prompt. For example, if the
entries were 5 and 20, respectively, the system would search for the string in positions 5 through 20
of each line, beginning with the current line.

The user enters the actual string of characters to be found in response to the STRING request. There
is no default for the STRING prompt. Quotes must enclose strings containing leading or trailing
blanks, or blanks only.

2.4.10 REPLACE STRING — RS COMMAND. The RS command allows the user to replace a
specified number of occurrences of a string of characters with a new string, beginning with the cur-
rent line. The format of the RS command is as follows:

REPLACE STRING

<int>
NUMBER OF OCCURRENCES: 1
<int>
START COLUMN: | prev val
<int>
END COLUMN: | i val
<string> |
STRING: prev change string)

CHANGE: <string>

In response to the NUMBER OF OCCURRENCES prompt, the user enters the number of times
that the existing string is to be replaced by the new string. The search for the specified existing string
begins with the current line and ends when the specified number of occurrences have been found and
replaced. The file is positioned at the last line in which the string was found and replaced. The
default value for this request is one. If the specified number of occurrences is greater than the actual
number of occurrences, the file is positioned at end-of-file.

2-16 Digital Systems Division

[¢]
(@ 946250-9704

In response to the START COLUMN prompt, the user enters the position (column) in which the
search begins.

In response to the END COLUMN prompt, the user enters the position (column) in which the
search ends.

In response to the STRING prompt, the user enters the string that is to be modified (search
string). In response to the CHANGE prompt, the user enters the new string (replacement string).
There are no defaults for these entries. Double quotes must enclose strings containing leading or
trailing blanks, or blanks only.

Once all the parameters have been entered, the Text Editor examines each line in the edited file,
beginning with the current line, and checks between the specified columns for the search string.
Each time the string is found, it is replaced by the replacement string. Note that if the new string has
fewer characters than the existing string, the characters to the right of the ending column are shifted
to the left and the record is filled with trailing blanks. If the new string is larger than the existing

string, the characters to the right of the ending column and to the left of the right margin are shifted
right and some may be lost.

2.4.11 MODIFY ROLL — MR COMMAND. The MR command is used to change the increment

or decrement applied on a ROLL command or ROLL UP or ROLL DOWN function. The format
of the MR command is as follows:

MODIFY ROLL
NUMBER OF LINES TO ROLL:

<int>
12

In response to the NUMBER OF LINES TO ROLL prompt, the user enters the number of lines
by which the display is to be rolled up (incremented) or rolled down (decremented) each time
the ROLL UP or ROLL DOWN function key is pressed on the terminal. The default value is 12
lines.

2.4.12 MODIFY RIGHT MARGIN — MRM COMMAND. The MRM command allows the user to
change the edit line right margin. The system does not allow characters to be entered to the
right of the right margin position. However, editing data past the margin is not lost. The format
of the MRM command is:

MODIFY RIGHT MARGIN
RIGHT MARGIN POSITION:

<column>
prev val

The value of column may be any integer from 1 to 80, with a value of 0 being accepted, but ignored.
Note that the initial value is 80, but once a new value is entered, it becomes the default.

2.4.13 MODIFY TABS — MT COMMAND. The MT command is used to change or clear the tab
settings of the device. The format of the MT command is as follows:

MODIFY TABS

<int>
TAB COLUMNS: %

prev val

2-17 Digital Systems Division

o]
{—@@ 946250-9704

The values entered in response to TAB COLUMNS specify the columns where the cursor (on a
VDT) or the print head (on a hard copy terminal) is to be positioned when the TAB key (on a VDT)
or the CONTROL key and the I key (on a hard copy terminal) are pressed. If no value is entered, the
current tab position remains unchanged. If only the value 0 is entered, all tabs are cleared except for
the implied tab at column one. The values entered for the tab positions are separated by commas
and may be in any order. Note that if values are entered, there is no implied tab stop at column one.
The initial values are 1, 8, 13, 26, and 31, but once new values are entered, they become the defaults.
This means that when the cursor or print head is repositioned to the left margin during text editing,
it is positioned at the first tab position specified in the MT command.

2.4.14 SHOW LINE — SL COMMAND. The SL command is used to position the current file to
any one line (record). When the operator keys in SL, the system presents the following:

SHOW LINE:

<E>

1

In response to the LINE prompt, the operator may enter any one of the following:

B — The display presents the first line (record) from the edited file.

E — The display presents the last line (record) from the edited file.

int — The entry is presented to the system in the format for the ‘int’ parameter as
previously defined in this section. The display is of the specified line
(record).

Default — The default parameter is ‘1°.

2.4.15 SAVE LINES - SVL. COMMAND. The SVL command may be used to copy selected lines
from the current edit file to an external file specified by the user. The format of the SVL command is
as follows:

SAVE LINES
START LINE: <int>
END LINE: <int>
SAVE PATHNAME: <int>
REPLACE (YES/NO): NO <Yes or No>

All edit lines between the lines specified in the START LINE and END LINE parameters are written
to the file specified in the SAVE PATHNAME parameter. If no value is input for the START LINE
parameter, the SVL command defaults to the line of the edit file on which the screen’s cursor is
located. This rule also applies for the END LINE parameter. However, if no value is input for both
the START LINE and END LINE parameters, the entire edit file is saved.

2-18 Digital Systems Division

o
{_@@ 946250-9704

2.5 EDIT CONTROL FUNCTIONS

Edit Control functions are those that permit the operator to specify to the Text Editor precisely
where within the file the modifications are to be made. Refer to table 2-1 for the edit control
functions supported and keys specified on the 911 VDT, the 913 VDT, and the hard copy devices
(820 KSR and TTY) by which the functions are called. The user should note that not all of the
edit control functions are supported by hard copy devices.

The edit functions in the first group in table 2-1 are implemented as event keys, while the remainder
of the edit functions are implemented as task edit keys. The event keys are given a higher priority
and are processed before task edit keys. Therefore, if a task edit key is entered many times and an
event key is entered before all of the responses to the task edit keys are completed, the event key
request is processed before the rest of the task edit requests. An example would be entering the
“INSERT LINE” key six times followed by the “ROLLUP” key. If two of the line insertions have
been processed when the “ROLLUP” is entered, the page is rolled and then the last four remaining
insert lines are processed. This type of response results anytime when edit and event keys are mixed.

Within the following description of the edit control functions, all references to the ‘file’ imply
the input file, as modified by previous operations. Modifications are effective only as an option
of the QE command. '

2.5.1 ENTER COMMAND MODE. The enter command mode function is called by pressing the
ENTER COMMAND function key specified in table 2-1 for the appropriate terminal type. Calling
this function causes the Text Editor to be suspended. The system then prompts the operator in the
selection of a command, which need not be a Text Editor command.

2.5.2 EDIT/COMPOSE MODE. The two modes, edit and compose, under which the Text Editor
operates are selected by the use of a ‘toggle’ key. Successive depressions of the toggle key causes
the mode to switch from edit to compose to edit and so forth. For example, if the compose mode
is active and the toggle key is pressed, the mode switches to edit. If the key is pressed again, the
mode becomes compose. The Text Editor is initiated in the edit mode.

The compose mode of the Text Editor is used to enter a large volume of data into a file being
edited, or to create a new file. The edit mode is used to make modifications to existing records
in the current file, to delete records, or to insert relatively few records at the current position in
the file. All edit control functions operate the same way in the edit and compose modes, with
the exception being the new line function, which is discussed in a subsequent paragraph. Refer to
table 2-1 for the correct EDIT/COMPOSE MODE KEY of the different terminal types.

2.5.3 NEW LINE FUNCTION. The new line function is called by pressing the appropriate new
line function key (refer to table 2-1) of the terminal type in use. Note that the new line function
operates differently in the compose and edit modes, and it operates differently on the VDT and
hard copy device.

In both modes on the hard copy device, selection of the new line function causes the current
typed line to be passed to the Text Editor as a new record. In the compose mode, the record is
inserted at the current file position, or following previously inserted records at the current file
position. A carriage return line feed also occurs. In the edit mode, the current typed line replaces
the current record in the file up to the printhead position, and the next record from the file is
printed with a carriage return line feed taking place.

On either VDT, the new line function causes the current keyed line to be passed to the Text
Editor as a new record. In the compose mode, the record is inserted at the current file position,
or following previously inserted records at the current file position. In addition, all lines above
and including the one containing the cursor are rolled up one line, and the one coutaining the

2-19 Digital Systems Division

[e]
%@ 946250-9704

cursor is blank filled. In the edit mode, the current keyed line replaces the current file record
and the cursor is positioned at the first position of the next line. In either mode, if the cursor is
in the bottom line when the new line function is called, all data lines are rolled up one line and
the next record is displayed on the bottom line.

2.5.4 DISPLAY/SUPPRESS LINE NUMBERS. Displaying or suppressing line numbers on the
display is selected by a ‘toggle’ key. Successive depressions of the toggle key cause the line numbers
to be suppressed, displayed, suppressed, and so forth. For example, if line numbers are currently
being displayed and the toggle key is pressed, the display is refreshed without the line numbers. If
the toggle key is pressed again, the display is refreshed with the line numbers. Note that inserted
lines are always displayed without line numbers.

When line nu:abers are displayed, only 74 data characters of each record can be displayed. When
line numbers are suppressed, a full 80-characters can be displayed. Refer to table 2-1 for the correct
DISPLAY/SUPPRESS LINE NUMBERS key of the terminal type in use.

2.5.5 DUPLICATE TO TAB FUNCTION. The duplicate to tab function is called by pressing the
appropriate duplicate to tab function key (refer to table 2-1) of the terminal type in use. Calling
this function causes the data from the previous record to be copied into the current line, from the
current cursor (printhead) position to the next tab stop or end of record. For example, if the cursor
(printhead) is in position 35 and the next tab stop is in position 65, the data from the previous
record positions 35 through 64, inclusive, is copied into the corresponding positions of the current
line.

2.5.6 CLEAR TO TAB FUNCTION. The clear to tab function is called by pressing the appro-
priate clear to tab function key (refer to table 2-1) of the terminal type in use. Calling this function
causes the data from the current cursor (printhead) position to the next tab stop or end of record
position to be cleared. For example, if the cursor (printhead) is in position 35 and the next tab
stop is position 65, calling the clear to tab function causes the data from position 35 through 64,
inclusive, to be cleared.

2.5.7 TAB FUNCTION. The tab function is called by pressing the appropriate TAB key (refer
to table 2-1) of the terminal type in use. When the Tab function is called, it causes the cursor on
a VDT, or the print carriage on a hard copy device, to be positioned at the next tab stop to the
right of the current position within the line. If there is no tab stop between the current position
and the end of the line, the first tab stop of the line is used. On a VDT, the edit line remains un-
changed, while on a hard copy device the data from the current line is printed from the current
position to the next tab stop. The tab settings are set by use of the Modify Tabs Text Editor com-
mand.

2.5.8 BACK TAB FUNCTION. The back tab function is called by pressing the BACK TAB key.
On VDTs, the function causes the cursor to be repositioned at the first tab position to the left of
the current position within the line. The data in the line remains unchanged. On a hard copy ter-
minal, the current line is reprinted to the tab stop immediately to the left of the current position.
If there is no tab stop, a carriage return/line feed occurs. Refer to table 2-1 for the BACK TAB
FUNCTION key for the terminal in use.

2.5.9 ROLL UP FUNCTION. The roll up function is called by pressing the appropriate roll up
function key of the terminal type in use (refer to table 2-1). On the VDTs, this function causes
the display to be repositioned forward the number of lines specified by the roll parameter (this
parameter may be changed by the Modify Roll Text Editor command), with the initial roll value
being 12 lines on all devices. Note that on a hard copy device, only the record at the current file
position (after the roll) is printed.

2-20 Digital Systems Division

(o}
%@ 946250-9704

2.5.10 ROLL DOWN FUNCTION. The roll down function is called by pressing the appropriate
roll down function key of the terminal type in use (refer to table 2-1). On the VDTs, this function
causes the display to be repositioned backward within the file the number of records specified by
the roll parameter, as defined by the Modify Roll Editor command, with the initial value being 12
records on all devices. The records are displayed as newly entered, deleted, or modified. Note that
on a hard copy device, only the record at the current file position (after the roll) is printed.

2.5.11 INSERT LINE FUNCTION. The insert line function is called by pressing the appropriate
insert line function key of the terminal type in use (refer to table 2-1). When the insert line function
is called from a VDT, all lines below and including the line containing the cursor are rolled down
one line, and the one containing the cursor is blank filled. This allows for the entry of a new line
at the line in which the cursor is resident. Note that if the Text Editor is in the compose mode and
the cursor is in the bottom line of the display when the insert line function is called, all data lines
are rolled up one line and the line containing the cursor is blank filled.

On a hard copy device, the insert line function allows the operator to enter a line of data that will be
inserted into the file at the file position immediately preceding that of the current printed line.

2.5.12 DELETE LINE FUNCTION. The delete line function is called by pressing the appropriate
delete line function key of the terminal type in use (refer to table 2-1). This function causes the line
that contains the cursor (or the last displayed line on a hard copy device) to be deleted and all
lines below it rolled up one line. On the hard copy device, the current line is deleted from the file
and the next record is printed.

2.5.13 INSERT CHARACTER FUNCTION. The insert character function is only available on
the Model 911 and Model 913 VDTs and is not available on the hard copy devices. The insert
character function is called from either VDT by pressing the INSERT CHAR key and keying the
new character(s); thereby causing the character at the cursor position and all characters to right of
the cursor to be shifted to the right, and the inserted character is written over the cursor. As many
characters as desired may be inserted after the INSERT CHAR key has been pressed. Data
characters at the right margin of the display are lost as they are shifted to the right. Only data
characters may be inserted.

2.5.14 DELETE CHARACTER FUNCTION. The delete character function is only available on
the Model 911 and Model 913 VDTs and is not supported on the hard copy devices. The delete
character function is called from either VDT by pressing the DELETE CHAR key, which causes
the character at the current cursor position to be deleted. In addition, all characters to the right
of the deleted character and to the left of the right margin are left shifted one position and the
rightmost position is filled with a blank. Care must be used when columns 72 through 80 contain
text or information that should also be left shifted. Only characters visible when the delete char-
acter function is requested will be left shifted. Any characters not visible will be retained in their

current positions. Columns 72 through 80 are visible only when line numbers are suppressed (para-
graph 2.5.4).

2.5.15 CURSOR UP FUNCTION. The cursor up function is called by pressing the appropriate cur-
sor up function key of the terminal type in use (refer to table 2-1). This causes the cursor to be
moved to the previous line, into the same position as it was in the current line when the cursor up
function was called. If the cursor is currently in the top line, all lines are rolled down one line and the
cursor remains in the same position.

On a hard copy device, the cursor up function causes the previous line to be printed.

221 Digital Systems Division

[e]
% 946250-9704

2.5.16 CURSOR DOWN FUNCTION. The cursor down function is called by pressing the ap-
propriate cursor down function key of the terminal type in use (refer to table 2-1). This causes the
cursor to be moved to the next line and placed in the same position within the line as it was in the
previous line before the cursor down function was called. If the cursor is in the bottom line of the
display when the cursor down function is called, all lines are rolled up one line and the cursor re-
mains in the same position.

On a hard copy terminal, the cursor down function causes the next line to be printed.

2.5.17 CURSOR RIGHT FUNCTION. The cursor right function is called by pressing the ap-
propriate cursor right function key of the terminal type in use (refer to table 2-1). This causes the
cursor to be moved one position to the right. The data within the line remains unchanged. If the cur-
sor is in the rightmost position of the line, it remains there when the cursor right function is re-
quested.

2.5.18 CURSOR LEFT FUNCTION (BACKSPACE). The cursor left function is called by pressing
the appropriate cursor left function key of the terminal type in use (refer to table 2-1). This causes
the cursor to be backspaced one position in the line. The data within the line remains unchanged by
this function. If the cursor is in the leftmost position, it remains there when the cursor left function

is requested.

2.5.19 HOME FUNCTION. The home function is called by pressing the appropriate HOME func-
tion key of the terminal type in use (refer to table 2-1). This causes the cursor to be positioned in line
one, column one in the display. The displayed data is unchanged by the home function.

2.5.20 ERASE FUNCTION. The erase function is called by pressing the appropriate erase function
key of the terminal type in use (refer to table 2-1). All characters in the line are replaced by blanks
and the cursor is positioned in the first column of the line.

2-22 Digital Systems Division

@ 9462509704

3.1 ASSEMBLY LANGUAGE PROGRAM GENERATION RUNTHROUGH

This paragraph describes a simple procedure for creating and executing an assembly language pro-
gram using DX10. Subsequent paragraphs describe similar procedures for creating and executing
programs in higher level languages. For more detailed information on how to execute a program
using DX 10, consult the reference manual for the language in which the program is written.

SECTION 3

ACTIVATING LANGUAGE PROCEDURES

The brief assembly language program given in this section displays a message and requests the input
of three numbers. Since this program is already designed and since it is unlikely to have a long
lifetime, step 1 (design) as described in Section 1, may be omitted. The procedure given here assumes
either a913 VDT or a 911 VDT. Refer to table 2-1 for the function keys of the other terminal types
suported by DX10. It is also assumed that a printer (LPO1) is used.

1. Enter the program into the computer.

a. Power up the computer and terminal and log in using the procedures given in
Volume II.

b. Invoke the Text Editor by entering the XE command. Then select the following
parameters:

FILE ACCESS NAME: press CLEAR AND NEW LINE (913 VDT) or

ERASE FIELD and RETURN (911 VDT)
c. Place the Text Editor in the compose mode by pressing F7.

d. Press the INS LINE (913 VDT) or the unlabeled gray key (911 VDT) to move the
cursor one line above *EOF and type in the program shown in figure 3-1. (Do not

press NEW LINE or RETURN after entering the last line).

e. Press the CMD (911) or HELP (913) key to leave the compose mode.

f. Enter QE to quit the Text Editor. Select the following parameters:

ABORT?: NO
OUTPUT FILE ACCESS NAME: .SOURCE
REPLACE?: NO

MOD LIST ACCESS NAME:

Assemble the program.

Press RETURN (911 VDT)
or NEW LINE (913 VDT)

a. Invoke the macro assembler by entering XMA. Select the following parameters:

SOURCE ACCESS NAME.: .SOURCE
OBJECT ACCESS NAME.: .OBJECT
LISTING ACCESS NAME: LPO1
ERROR ACCESS NAME: (Press RETURN or NEW LINE)
OPTIONS: (Press RETURN or NEW LINE)

MACRO LIBRARY PATHNAME:
PRINT WIDTH:
PAGE LENGTH:

(Press RETURN or NEW LINE)
80
60

3-1

Digital Systems Division

946250-9704

When the assembly completes, the following message is displayed (after the
RETURN key is pressed):

MACRO ASSEMBLY COMPLETE 0000 ERRORS, 0000 WARNINGS

Press RETURN or NEW LINE to return to the command mode.

Link edit the object code.

a.

First create a command file for the Link Editor. Invoke the Text Editor by
entering XE. Specify the following parameter:

INPUT ACCESS NAME: Press ERASE FIELD and RETURN (911 VDT)
or
CLEAR and NEW LINE (913 VDT)

Place the Text Editor in compose mode by pressing F7 and then press the INS
LINE key (913 VDT) or the unlabeled gray key (911 VDT).

Enter the following lines:

TASK LANGTST
INCLUDE .OBJECT
END

Leave the compose mode by entering CMD or HELP.

Quit the Text Editor by entering QE. Select the following parameters:

ABORT?: NO
OUTPUT FILE ACCESS NAME: .CNTRLINK
REPLACE?: N
MOD LIST ACCESS NAME: Press RETURN or NEW LINE

Invoke the Link Editor by entering XLE. Select the following parameters:

CONTROL ACCESS NAME: .CNTRLINK
LINKED OUTPUT ACCESS NAME: .LNKOUT
LISTING ACCESS NAME: LPO1
PRINT WIDTH: 80

Press RETURN or NEW LINE after the PRINT WIDTH response. When the SCI
prompt ([]) appears, enter WAIT and press RETURN or NEW LINE. The
following display then appears:

WAITING FOR BACKGROUND TASK TO COMPLETE

When the Link Editor terminates, the following is displayed:

3-2 Digital Systems Division

le]
@ 946250-9704

LINK EDITOR COMPLETED, 0 ERRORS, 0 WARNINGS
Press HELP or CMD.
4. Execute the program.

a. Enter the IT (Install Task) command to place the program on the system program
file. Specify the following parameters:

PROGRAM FILE OR LUNO: 0
TASK NAME: LANGTST
TASK ID: 0
OBJECT PATHNAME OR LUNO: LNKOUT
PRIORITY: 4
DEFAULT TASK FLAGS?: YES
ATTACHED PROCEDURES: NO

The installed ID is displayed in the following form when the installation is
completed:

TASK NAME=LANGTST
TASK ID=id

Press HELP or CMD to return to the command mode.

b. Since the program uses LUNO >20, that LUNO must be assigned to the VDT.
Call the Assign LUNO (AL) command and respond as follows:

LUNO: >20
ACCESS NAME: ME
PROGRAM FILE?: NO

The message ASSIGNED LUNO = >20 is then displayed. Press CMD or HELP to
return to the command mode.

c. Execute the program using the Execute Task and Suspend SCI (XTS) command.
Select the following parameters:

PROGRAM FILE OR LUNO: 0
TASK NAME OR ID: LANGTST
PARMI: 0
PARM?2: 0
STATION ID: ME

33 Digital Systems Division

946250-9704

B L g e ey R S e e T LT

#* BEGINNING OF DATA SECTION #

LR S R R TR S T E ey T R R R
IOT "RESPONSES

L R R R R Xy Ly AR R A AT T T

® OFENING DATA WORDS *
3* 1. WIRE ACE FOINTER 3*
* . FPC O VALLE AT START OF FROGRAM *
* ENII ACTION ITEM (IF ANY) ®

%%*******%%%%****&***%*%**%%%*******%%%%********%%#*%*%*

WORKESFACE FOINTER ADDRESS
[AT PROGRAM BEGINNING
WzF e
OFEN DATA O
BYTE 0,20
DATA O
ODATA O
DATAR O
OATA O
DATA O 1/ REDIEST
BYTE =B C WRITE ASCII ON LLND 220
DATA O
DATA GREET ME? GE LIDZATION
DATA O
DATA 1-GREET ME! GE LENGTH

34 FH4E 336 36 3030 36 34 3040 5 36 38 350 3030 36 3650 36 3036 36 20 0 36 36 36 30 50 20 36 36 36 30 3040 30 36 36 36302 04 6 620 H 330303 5
3* SPECZIFY THE FIRST ME! GE #*
3t 3 33 3 3 36 36 3 3 3 3F 3 36 30 3 3 36 R 30336 36 3 3 3 3 3 3 3 3 I I H IR I W H I F I H PR RN
GREET DATA »0AOD

TEXT “HEILLLD, FLEASE

INFUT NUMRER OF ITEM=

TEXT TODAY. UWEE 4-DIGIT NUMBERS. <
DATA F0OAOD
OATA I/ REGLIEST

BYTE

WRITE To LILIND
BYTE RESFONSE FOLLOWS M SE
DATA ITEM1
LATA O CHARACTERS SPECIFIED IN INFUT ROUTE
naTA M 3
DaTA LOCATION OF INFUT PARAMETERS
STRT DATA 2 SAVE FARAMETERS IN STORE
DATA STORE FOLR CHARACTERS

CHARACTER COLUNT AFTER INFUT

I/ REGOEST

WRITE T ILLIND
READT AFTER NHIFE
MESSAGE LOCATION

ME

AGE LENGTH

STR2 DATA STORE+4 INDOITEM CHARACTER
DATA 4 STORE FOUR DIGITS
DATA O

ITEMZ DATA =0A0D

TEXT “ITEM 2

DATA O 1/0 REQLEST

BYTE =R, 520 WRITE T LUNG 3

STORE LOCATION

Figure 3-1. Example Assembly Language Program (Sheet 1 of 2)

34 Digital Systems Division

946250-9704

The test program now executes and displays the following on the screen:

DATA
DATA
LATA
DATA

~ 0,40

TTEMS
0

10
STRE

Y STORE+X

Q)
GOODRY
(%]
CLOSE-GOONRY MES:
FEFEFH 33 303338 30 I 2 3 A0 I 3 30 I 36 3 T T 36 336 T 3636 3 3030 3 35 36 3646 335 36 36 56 36 35 36 3 3636 3 36 3 3 3¢

READ AFTER WRITE

ZROOCITEM STORE LOCATION

I/0 REQUEST
WRITE T LLND 220

MESSAGE LOCATION

VWGE LENGTH

* FINAL MEZSAGE DISFLAYED
R e L R Ry L L L T T ey

GOODRY DATA
TEXT
TEXT
OATH
CLOSE DATA
BYTE
IYATA
DATA
DATA
DATA

EQF BYTE ==

ETART XOF
X
XOF
XIF
XOF
XIIF
XOF
X
END

Figure 3-1. Example Assembly Language Program (Sheet 2 of 2)

FOACD

T THANE YL,

THAT COMRLETES TODAY "=~

TRANSACTIONS, ~

=OAOD
0

@TLOSE, 15
CECP, 15
START

I/0 RERBUEST
CLOSE LIUNG

TERMINATE TASK

OFEN LLUND 2320
FPENING ME
INFPUT 1
INFUT 2
INFLIT =
EXIT ME: GE

CLSE FILE, UNLDALD/REWIND
TERMINATE TAZSEK

#

HELLO, PLEASE INPUT NUMBER OF ITEMS SOLD TODAY. USE 4-DIGIT

NUMBERS.

ITEM 1

Enter a four-digit number. The following is then displayed:

ITEM 2

Enter a four-digit number. The following is then displayed:

ITEM 3

3-5

Digital Systems Division

C
%@; 946250-9704

Enter a four-digit number. The following is then displayed:
THANK YOU. THAT COMPLETES TODAY’S TRANSACTIONS.
The screen is then blank-filled and the task’s runtime ID is displayed.

Press the HELP or CMD key to return to the initial SCI menu. Delete the task entry by using
the Delete Task (DT) command as follows:

DELETE TASK
PROGRAM FILE OR LUNO: 0
TASK NAME OR ID: LANGTST

Use the Delete File (DF) command to delete the following:

.SOURCE
.OBJECT
.LNKOUT
.CNTRLINK

3.2 FORTRAN PROGRAM GENERATION RUNTHROUGH

The brief FORTRAN program given in this section obtains (from the system) and prints the date in
military format. To implement this demonstration one must have the optional FORTRAN compiler
and runtime libraries. Since this FORTRAN program is already designed and since it is unlikely to
have a long lifetime, step one, design (as defined in Section 1) may be omitted. The following pro-
cedure assumes the use of a 911 VDT or 913 VDT and a line printer (LPO1).

1. Enter the program into the computer.

a. Power up the computer and terminal and log in using the procedure given in
Volume II.

b. 1Invoke the Text Editor by entering XE. Select the following parameters:

FILE ACCESS NAME: press CLEAR and NEW LINE (913 VDT)
or ERASE FIELD and RETURN (911 VDT).

¢. Place the Text Editor in the compose mode by pressing F7.

d. Press the INS LINE (913 VDT) or unlabeled gray key (911 VDT) key to move the
cursor one line above *EOF and type in the following FORTRAN program (do
not press NEW LINE or RETURN after entering the last line):

INTEGER*2 DATE(4)
REWIND 17
REWIND 18
CALL MDATE (DATE)
WRITE (17, 100) DATE
100 FORMAT (1X, ‘TODAYS DATE IN MILITARY FORMAT IS °, 4A2)
WRITE (17, 130)
130 FORMAT (1X, ‘FORTRAN TEST COMPLETE’)
READ (18, 140) IDUMY
140 FORMAT (Al)
STOP
END

3-6 Digital Systems Division

946250-9704

e. Press the CMD (911 VDT) or HELP (913 VDT) key to leave the compose mode.
f. Enter QE to quit the Text Editor. Select the following parameters:
ABORT?: NO
OUTPUT FILE ACCESS NAME: .TSTFORT

‘REPLACE: NO
MOD LIST ACCESS NAME: (Press RETURN)

2. Compile the program:

a. Invoke the FORTRAN compiler by entering XFC. Select the following

parameters:
SOURCE ACCESS NAME: .TSTFORT
OBIJECT ACCESS NAME: .TSTOBJ

LISTING ACCESS NAME: LPO1
OPTIONS: Press RETURN or NEW LINE)
PRINT WIDTH: 80 (Press RETURN or NEW LINE)

Enter WAIT and press NEW LINE or RETURN. The following message is then
displayed.

WAITING FOR BACKGROUND TASK TO COMPLETE

When the FORTRAN compile completes, the message

FORTRAN COMPILER NORMAL COMPLETION
is displayed. Press HELP or CMD and the message

FORTRAN COMPILER COMPLETED 0 ERRORS, 0 WARNINGS:
is displayed. Press HELP or CMD to return to the SCI command mode.

3. Link Edit the object code.

a. First, create a control file for the Link Editor. Invoke the Text Editor by entering
XE. Specify the following parameters:

FILE ACCESS NAME: Press CLEAR, then NEW LINE or
ERASE FIELD and RETURN

b. Place the Text Editor in compose mode by pressing F7 and pressing the INS
LINE key (913 VDT) or the unlabeled gray key (911 VDT).

3-7 Digital Systems Division

9462509704

c. Enter the following lines (assuming the FORTRAN libraries are on the system
disk):

LIBRARY .FORTRN.OSLOBJ
LIBRARY .FORTRN.STLOBJ

TASK ROOT
INCLUDE .TSTOBJ
END

d. Enter the command mode by entering CMD (911 VDT) or HELP (913 VDT).
e. Quit the Text Editor by entering QE. Select the following parameters:
ABORT?: NO
OUTPUT FILE ACCESS NAME: .CNTRLINK
REPLACE?: N
MOD LIST ACCESS NAME: (Press RETURN or NEW LINE)

f. Invoke the Link Editor by entering XLE. Select the following parameters:

CONTROL ACCESS NAME: .CNTRLINK
LINKED OUTPUT ACCESS NAME: .TSTFORTO
LISTING ACCESS NAME: .LSTFORTO

PRINT WIDTH: 80 (Press RETURN or NEW LINE)

Enter WAIT and press NEW LINE or RETURN. The message

WAITING FOR BACKGROUND TASK TO COMPLETE

is displayed.
When the Link Editor completes, the message

LINK EDITOR COMPLETED, 0 ERRORS, 0 WARNINGS
is displayed.

Press HELP or CMD.

3-8 Digital Systems Division

946250-9704

4. Install and execute the program

a. Enter the IT (Install Task) command to place the program on the system program

file. Specify the following parameters:

PROGRAM FILE OR LUNO: 0
TASK NAME: ROOT
TASK ID: 0
OBJECT PATHNAME OR LUNO: .TSTFORTO
PRIORITY: 4
DEFAULT TASK FLAGS?: YES
ATTACHED PROCEDURES?: NO
The message
TASK NAME = ROOT
TASK ID = id

is then displayed. Press HELP or CMD.

b. Use the Assign Synonym (AS) command to define FORTRAN 1/0 units 17 and 18
to the system. Specify the following parameters:

SYNONYM: UNIT17
VALUE: ME

SYNONYM: UNIT 18
VALUE: ME

c. Execute the program by using the XFTF command. Select the following parameters:

PROGRAM FILE LUNO: 0
TASK ID: <id>

The test program now executes and displays the date in military format. Press
RETURN or NEW LINE and the message “STOP 0 NORMAL PROGRAM COM-
PLETION™ is displayed. After the program finishes, it is recommended that one
delete the test program files to preserve disk space. Use the DF (Delete File) com-
mand to delete:

.CNTRLINK
.TSTFORTO
.TSTFORT
.TSTOBJ
.LSTFORTO

3.3 COBOL PROGRAM GENERATION RUNTHROUGH

The COBOL program shown in figure 3-2 is used in the following demonstration of COBOL
program generation techniques in DX10. To implement this demonstration, one must have the
optional COBOL language processors. The program presents the operator with a choice of cities.
When the operator selects a city, the program displays the current time of day in the city of

3-9 Digital Systems Division

[e]
@ 946250-9704

interest. Since the program is already designed and documented, steps 1 and 6, respectively, may be
omitted. The runthrough assumes the use of a 911 VDT or 913 VDT and a line printer (LPO1).

1. Enter the program into the computer.

a. Power up the computer and terminal, and log in using the procedures given in
Volume II.

b. Invoke the Text Editor by entering XE. Specify the following parameters:

FILE ACCESS NAME: Press CLEAR and NEW LINE or
ERASE FIELD and RETURN.

c. Press the F7 key to enter the compose mode.

d. Press the INS LINE key (913 VDT) or the unlabeled gray key (911 VDT) to position
the cursor above the displayed *EOF.

e. Press CMD (911 VDT) or HELP (913 VDT) to enter command mode. Enter MRM
and press RETURN or NEW LINE to modify the right margin. Respond as
follows:

MODIFY RIGHT MARGIN
RIGHT MARGIN POSITION: 72
Press RETURN or NEW LINE.

f. Type the program as shown in figure 3-2. Do not press NEW LINE or RETURN
after keying the last line since this will cause a blank line to be inserted at the
end of the source.

g. Press the CMD (911 VDT) or HELP (913 VDT) key to enter the command mode.
h. Terminate the Text Editor by entering the QE command.

1) Enter QE.

2) Specify the following parameters:

ABORT?: N
OUTPUT FILE ACCESS NAME: .TSTCBL
REPLACE?: N
MOD LIST ACCESS NAME: (Press RETURN)

3-10 Digital Systems Division

S

946250-9704

Program Instructions
begin in column 8:

TIENTIFICATION DIVISION,
PROGREM-TD, TIME-AROUND-THE-WORLD,

##p% THIS PROGRAM CALCULATES TIMES BY OBTAINING THE
¥ LOCAL TIME FROM THE SYSTEM CLOCK ANDADDING A TIME
WHICH 15 THE CHOSEN CTTY'S TIME RELATIVE TO CENTRAL

5 STANDRRD TIME,

THEREFURE. THE VALLES IN THE

#F TIME TABLE MUST BE ADLKISTED IF THE FROGRAM IS 70 BE

#errk RUN IN A TIME ZONE OTHER THAN CST,

ENVIRONMENT DIVISION,
CONFIGHRATION SECTION,
SOURCE-COMPUTER, TI-990.
OBJECT-COMPUTER, TI-990,
DATA DIVISION,
WORK ING-STORAGE SECTION.
i TIME ~VALUFS,
T FILLER PIC Hvﬁ VALIE +1,
3 FILLER PIC VALUE 1.
U< FILLER PIC 597 VALLE +2,
03 FILLER PIC 599 VALUE +12,
03 FILLER PIC 597 VALUE +4,
03 FILLER PIC 592 VALLE +14,
03 FILLER PIC 599 VaLIE +14,
03 FILLER PIC 359 VALUE +7,
0% FILUER PIC 599 VaLE +15,
0% FILLER PIC 999 VALUE -4.
03 FILLER PIC %9 VALUE +3,
03 FILLER PIC 599 VALLE 4,
0% FILLFR PIC 9% VALUE +13.
nJ FILLER PIC .
3 FILLER PIC 599 VALUE +%,
3 FILLER PIC 399 VALUE +13,
1 sIME TABLE REDEFINES TIME- ALLES,
02 OTIME OCCURS 14 TIMES PIC 599,
01 CLOCK,
03 HOUR P 99,
03 MIN PIC 99,
03 SEC PIC 99,
03 FILLER PID 99,
77 HOUR-TEMP PIC 5%%, A
77 BLANK-LINE PIC X{30) VALUE SPACES,
77 BNSWER PIC X,
77 CHOICE PIC 99,
O CLOCE-ERITED,
03 HOUR-EDITED PIC XX,
03 FILLER PIC X Valig “:v,
07 MIN-EDITED PIC XX.
0% FILLER PIC ¥ VALUE ":¥,
03 SEC-EDTTED PIC XX,

/
PROCETURE TOVISTON,
GIVE-INSTRUCTIONS,

IISPLAY "CORE. TIME-ARDUNT-THE-WORLI-PROGRAM® LINE 1 ERASE,
pis PLR¥NEFEY IN THE WUMBER OF THE CITY WHOSE TIME Yii) WANT.®

ISPLAY "‘TH ENCW: " FOSITION G,

DISPLAY " 1 NEW YORK
IISFLAY * 9 TOkYD
BISPLAY * 2 JIENVER
DISPLAY ™ 10 RONCLLLY
DISRLAY " 3 MOSCOW

LINE 3,
POSITION 0.
LINE 4,
FOSITION O,
LINE 5.

Figure 3-2. Example COBOL Program (Sheet 1 of 2)

3-11

Digital Systems Division

SFo

946250-9704

DISPLAY " 11 BUENOS AIRES *FOSITION 0,
LISPLAY * 4 DACTA *LINE 4,
nIPLAY 12 CARACA *POSITION 0.
DISPLAY * 5 ACCRA *LINE 7.
DISPLAY " 13 DANGKOK *POSITION O,
DISPLAY ® & PEKING TLINE
DISFLAY " 14 MONTREAL " FOSITION 0.
DISPLAY " 7 SYDNEY " LIMNE %,
OISPLAY " 15 BAGHDAD ! FG’ITIGN .
DISPLAY " & COPENHAGEN " LINE 10,
DISPLAY " 14 JAKARTA " POSISITON O,

ACCEPT- LHHIF"

TC !HIII! 1 np f"«!mi‘" =1 hﬁ Al rfPT—f'HﬁI‘ ’"
ACCEPT CLOCK FROM TIME.

MOVE HOUR TO HOUR-TEME.

ALT OTIME (CHOICE) TO HOUR-TEMF,

IF HOUR-TEMF > 24 SUBTRACT 74 FROM HI0UR-TEMD,
IF HOLR-TEMF < 0 ADD 24 T0 HOUR-TEMP,

MOVE HOUR-TEMP T0 HOUR,

HOVE HOUR TG HOUR-ERITED,

MIUE MIN T0 MIN-EDITED.

MOVE SEC T SEC-EDTTED

DISPLAY “TIME : " LINE 11 POSITION 15,
DISPLAY CLOCK-EDITED FOSITION 0,

DISPLAY WL Y0U LIKE 70 KNOW ANOTHER CITY’S TIMET (¥/N)"
ACCEFT ANSWER FOSITION O FRONPT,

IF ANSHER = "N" GO EHI-PROGRAM,

DTSFLAY BLANK-LINE LINE 11,

NISPLAY BLANK-LINE LINE 12

(30 GIVE-TNSTRUCTIONG,

END-PROGRAM,
STOP RUN.
END PROGRAM,

Figure 3-2. Example COBOL Program (Sheet 2 of 2)

2. Invoke the COBOL compiler by entering the XCC command.

a. Enter XCC.

b. Specify the following parameters:

SOURCE ACCESS NAME: .TSTCBL
OBJECT ACCESS NAME: .CBLOBJ
LISTING ACCESS NAME: .CBLLST
OPTIONS: (Press RETURN or NEW LINE)
PRINT WIDTH: 80 (press RETURN or NEW LINE)
PAGE SIZE.: 55
PROGRAM SIZE (LINES): 1000

3-12 Digital Systems Division

o}
@ 946250-9704

c. Enter WAIT and press RETURN or NEW LINE. The following is displayed:

WAITING FOR BACKGROUND TASK TO COMPLETE

When the compiler completes, the following is displayed:

COBOL COMPILER COMPLETED, 0 ERRORS, 0 WARNINGS:

d. Press HELP (913 VDT) or CMD (911 VDT) to return to the command mode.*

e. FExecute COBOL Program in Foreground by entering the XCPF Command. Specify
the following parameter:

OBJECT ACCESS NAME: .CBLOBJ
DEBUG MODE: NO
MESSAGE ACCESS NAME: (Press NEW LINE or RETURN)
SWITCHES: 00000000
FUNCTION KEYS: NO

The test program now executes. When the program prompts, select one of the listed cities. The
program then displays the current time of day in that city. Enter N to halt program execution.

To preserve disk space, use the delete file (DF) command to delete the files . TSTCBL, .CBLOBJ,
and .CBLLST.

3.4 BASIC PROGRAM GENERATION RUNTHROUGH

The program given below illustrates the program development cycle for BASIC programs. To im-
plement this demonstration, one must have the optional BASIC language processor. Since BASIC is
an interactive programming language, steps 2, 3, and 4 are combined. Since the program is already
designed and documented, steps 1 and S (design and documentation) may be eliminated.

The program given below accepts a number from the operator, calculates the factorial and
displays the result. (For example, 6 factorial = 6x5x4x3x2x1 = 720.)

1. Enter the program into the computer.

a. Power up the computer and log in, using the procedures given in Volume II.

b. Invoke one of the two BASIC processors. Business BASIC is used in this example,
but Scientific BASIC performs the same for this program. Enter XBB (XSB).

c. When the BASIC interpreter signifies its readiness by prompting (*), type the follow-
ing program:

10 PRINT “FACTORIAL PROGRAM?”, CLKS, DATS

15 PRINT “ENTER THE NUMBER WHOSE FACTORIAL YOU WANT;”’
20 INPUT N

25 IF N=0 THEN 140

30 IF N<57 THEN 70

*Steps 3 and 4, linking and installing the program, are combined for COBOIL..

3-13 Digital Systems Division

[e]
(_r\f@; 946250-9704

40 PRINT “AN ATTEMPT TO COMPUTE A VALUE GREATER THAN 56! WILL PRODUCE”’;
50 PRINT “MACHINE OVERFLOW”

60 GOTO 140

70 F=1

80 FORX=1TON

90 LET F=F*X

100 NEXTX
110 PRINTN,F
120 PRINT

130 GOTO20
140 END

2. The program is now in the computer. To execute the program, enter:
RUN

a. The program responds by requesting an input number. Enter a number and the pro-
gram displays the factorial.

b. To exit the program, enter zero (0) in response to the (?) prompt.

c. To quit the BASIC intetpreter, enter QU. BASIC programs may be stored on disk so
that they need not be reentered every time.

For more information about BASIC program storage, consult the BASIC manual.

3.5 RPG SOURCE PROGRAM ENTRY

There are two means of entering RPG source programs from the keyboard. The DX10 text editor
(XE) allows for entry of a program or the modification of an existing program. The RPG editor
(RPGEDIT) guides the user through each statement type and ensures that fields start in the proper
columns. Once the program has been entered, the following commands are used to compile, bind
(link), and execute the program.

3.5.1 COMPILATION. Enter either the XRPGC or XRPGCF command to compile a source pro-
gram. The following values are entered at the appropriate prompts:

EXECUTE RPGII COMPILER IN FOREGROUND
SOURCE ACCESS NAME: .EXAMPLE.SOURCE.TEST17
OBJECT ACCESS NAME: .EXAMPLE.OBJECT.TEST17
LISTING ACCESS NAME: .EXAMPLE.LIST.TEST17
MESSAGE ACCESS NAME: .EXAMPLE.MSG
PRINT WIDTH: 120

Figure 3-3 shows the listing file created by the compiler.

3-14 Digital Systems Division

946250-9704

DYRPG 2.0.0 79,180 04/20/79 11:94:12 PAGE 1
o + t 2 2 3 3 4 5 S5 & & 1 7
IS TN IR A Seren0000050000000000000000000500 00000050000 LS
0001 H TEST17
0002 FINREL IP F DIsK TESTI7
0003 FRELREC UC F 80R DISK TEST1T
0004 FOUTREL 0 F 80 PIsK TEST17
0005 IINREL AR 01 TESTL7
0006 1 1 20NEWID TESTI7
0007 I & 30 M TESTY/
0008 IRELREC NS 04 TESTL7
0009 1 1 201D TESTY/
0010 I 6 30 FIELD 9% TEST17
0011 C NEWID CHAINRELREC 99 TEST17
0012 c 98 EXCPT TESTL7
0013 ¢ END TAG TESTY7
0014 ORELREC E 01 98 TESTI7
0013 0 NEWID 2 TEST17
0016 a NAME 30 TESTI7
0017 DOUTREL. D 01 TEST17
0018 0 NEWID 3 TESTI7
0019 0 NAME 35 TESTL7
0020 0 93 47 'ADDED’ TEST17
0021 0 04N98 5t ‘DUPLICATE” TEST17
0022 0 9 45 “EOF” TEST17
0023 /# TESTL7

THE FOLLOWING INDICATORS APPEARED IN THIS PROGRAM

01 04 98 99

SORTED LABEL NAMES
NAYE LINE

END 13

SORTED FIELD NAMNES

NAME TYPE LENGTH DP

FIELD A 25

¢1] N 2 0
NAE A 2

NEWID N 2 0
UDATE N b 0
upaY N 2 0
UMONTH N 2 0
UYEAR N 2]

Figure 3-3. Compiler Output Listing

3-15 Digital Systems Division

{@2 946250-9704

3.5.2 BINDING. The XRPGB command is used to bind the RPG II program. The following values
are entered at the appropriate prompts:

BIND RPG Il PROGRAM
OBJECT ACCESS NAME: .EXAMPLE.OBJECT.TEST17
LISTING ACCESS NAME: .EXAMPLE.LNKLST.TEST17
PROGRAM FILE NAME: .EXAMPLE.PROG
NAME OF TASK: TEST17
REPLACE TASK: YES

3.5.3 EXECUTION. Execution of an RPG II program requires three steps:
1. Synonym assignment to filenames
2. LUNO assignment to the program file
3. Execution of the program.
Filename synonyms must be assigned via the Assign Synonym (AS) command as follows:

ASSIGN SYNONYM VALUE
SYNONYM: INREL
VALUE: .EXAMPLE.DATA.INREL

ASSIGN SYNONYM VALUE
SYNONYM: RELREC
VALUE: .EXAMPLE.DATA.RELREC

ASSIGN SYNONYM VALUE
SYNONYM: OUTREL
VALUE: .EXAMPLE.DATA.OUTREL

Assignment of a LUNO to the program file is accomplished via the Assign LUNO (AL) command as
follows:

ASSIGN LUNO
LUNO: OBB
ACCESS NAME: .EXAMPLE.PROG
PROGRAM FILE?: YES

The RPGII program is now ready for execution. Because a station-local LUNO was assigned, the
XRPGTF command, which executes in foreground, must be used. The following values are entered:

EXECUTE RPG II PROGRAM IN FOREGROUND
TASK NAME/ID: TEST17
PROGRAM FILE LUNO: OBB
INDICATORS: NONE
TERMINAL CONTROL: NO
TRACE OUTPUT ACCESS NAME:
MESSAGE ACCESS NAME: .EXAMPLE.MSG

Figure 3-4 displays the contents of the input file. The output from the execution of the program is
shown in figure 3-5.

3-16 Digital Systems Division

“F@P 946250-9704

05 JOHN B PLUBLIC

03 SEMORE PEOFPLE

07 ROBERT A. JONES

03 BARBARA C. GOOD

04 RACHEL R. SOMETHING
oY HOFE R. RIGHT

Figure 3-4. Input File

03 JOHN G, PUBLIC ADDED
03 SEMORE FEOFPLE ADDED
07 ROBERT A. JONES ADDED
oz BARBARA C. GOOD ADDED
04 RACHEL R. SOMETHING ADDED
o HOPE R. RIGHT ADDED

Figure 3-5. Output Listing

3.6 CREATION OF CONTROL FILES AND EXECUTION OF SORT/MERGE
The SORT/MERGE control file may be created interactively or by creating a batch stream with the
text editor. After the control file has been created, the SORT/MERGE program may be executed by

means of the XSM or XSMF procedures, as shown in figure 3-6, or by the XBSM, as shown in
figure 3-7.

BACKGROUND EXECUTION
[]XSM

NEW CONTROL FILE?: N
CONTROL FILE NAME: XYZ

RUN SORT MERGE?: Y
LISTING DEVICE NAME: LP01

Other Tasks SORT/MERGE Execution

SORT/MERGE NORMAL COMPLETION

FOREGROUND EXECUTION
(From ST02)

[XSMF

NEW CONTROL FILE?: NO
CONTROL FILE NAME: CRO1

RUN SORT MERGE?: YES
LISTING DEVICE NAME: ST02

SORT/MERGE Executes

[

Figure 3-6. Interactive Options — No Control File Creation

3-17 Digital Systems Division

{@@ 946250-9704

3.6.1 EXECUTING SORT/MERGE IN BATCH MODE. The command to execute the
SORT/MERGE in batch mode is as follows:

XBSM CFN-=filename LDN=device (or filename)
If the user has previously created the control file, only the XBSM command is required to execute
SORT/MERGE in batch mode. If the control file is being built in the batch stream, the filename on

the XBSM statement must match with the filename on the SM$SMC statement. Figure 3-7 shows a
file created by the text editor, which is then used as a batch stream with the XB command.

BATCH

SM$SMC CFN=DS03.FILNAM

SM$HD SMT=SORTR,TCL=6 ,0RL=80,MS=8000
SM$OUT FP=DS03. TEST,LRL=80 PRL=560
SMSWKF WFV=DS02,WFT=E

SMS$IN FP=DS03.EIGH4

SMSSLC RST=I

SMSREF FT=N,CP=C,BL=32,EL=37

SMS$REF FT=D,CP=C,BL=1 EL~=80

SM$CLS

XBSM CFN=DS03.FILNAM,LDN=LPO1

EBATCH

Figure 3-7. Example of Entries to Create a Batch File and Execute SORT/MERGE

3-18 Digital Systems Division

(o]
{_@? 946250-9704

SECTION 4

LINK EDITOR USE ON DX10

4.1 SUPPORTED FEATURES
The Link Editor is used to link separate object modules together to form a single program which
runs under DX10.

The disk-based operating system for the Model 990/10 computer, DXI10, is a multitasking operating
system, which supports all of the features of the Link Editor. Being a disk-resident system, DX10 is
well-suited for overlay structured programs, such as the supported automatic overlay loading
feature described in the Link Editor Reference manual.

The following Link Editor features are supported by DX10:
® Automatic overlay loading
® Random libraries
® Sequential libraries
® COBOL program linking
L FORTRAN program linking
L ASCII, compressed and image format
® Absolute memory partitioning.
For more information about these features, consult the Link Editor Reference Manual.

4.2 LINK EDITOR OPERATION WITH DX10

The first step in performing a Link Edit run is to develop a control file that defines the Link
Edit functions. The control file can be developed using the DX10 Text Editor, or it can be
developed as a card, tape, or cassette file. The control file contains Link Edit commands as well
as the names of any object modules.

The Link Editor is executed at a station by entering the XLE command. Note that the station must
be in the command mode prior to entering the command (refer to table 2-1 for the appropriate com-
mand key of the terminal type in use). When XLE is entered, the following display is presented at a
VDT (on a hard copy device, the prompts are printed one at a time).

EXECUTE LINKAGE EDITOR:
CONTROL ACCESS NAME:
LINKED OUTPUT ACCESS NAME:
LISTING ACCESS NAME:

PRINT WIDTH: 80

4-1 Digital Systems Division

(o]
{i@? 946250-9704

In response to the CONTROL ACCESS NAME: prompt, the user must enter the pathname of
the device or file from which the control stream is to be read. The control file can be on a
sequential disk file, or any sequential device such as a tape unit, cassette unit, or cards. The
following is an example of the pathname entry for a sequential disk file:

CONTROL ACCESS NAME: VOL2.EDITOR.CONFILE

There is no default for the CONTROL ACCESS NAME:. Tabbing out of the field is not possible.

In response to the LINKED OUTPUT ACCESS NAME prompt, the user enters the access name
of the sequential device or file to which the output of the Link Editor is to be written. If the object
output is not desired, the user may specify “DUMY” which will suppress the generation of the
output. Use of the DUMY value allows for a trial run to ensure that no errors occur. The following
is an example of an access name entry for a sequential disk file:

LINKED OUTPUT ACCESS NAME: VOL2.LINK.OUT1

If the FORMAT command specifies the IMAGE option, the ehtry made in response to the
LINKED OUTPUT ACCESS NAME prompt must be a DX10 program file or a DX10 system
image file.

In response to the LISTING ACCESS NAME: prompt, the user enters the access name of the
device or file to which the load map listing is to be written. If the listing output is not desired,
the user may specify “DUMY” which will suppress the generation of the output. The value entered
in response to the prompt can be any valid DX10 access name, synonym, or device name. The
following example causes the listing to be written to a line printer.

LISTING ACCESS NAME: LPOl
For a description of the load map listing, refer to the Link Editor manual.

The last prompt, LINE WIDTH:, allows the user to either specify the width of the print line, or
to accept the default value — 80 characters.

The following example shows the responses for the prompt when the control file is on
VOLI1.EDITOR.CONFILE, the listing device is line printer one (LPO1), and the default LINE
WIDTH value is accepted:

XLE
EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME: VOL1.EDITOR.CONFILE
LINKED OUTPUT ACCESS NAME.: VOL' .LINK.OUT!I
LISTING ACCESS NAME: LPO.
PRINT WIDTH: 80

42 Digital Systems Division

! o
@@ 946250-9704

INSTALLING, DELETING, AND MODIFYING PROGRAMS

SECTION 5

5.1 INTRODUCTION

Under DX10, programs are called tasks. A task may be segmented to include sharable procedures
and may also include overlays. After Link Edit, and before program execution, the task and its
procedures and overlays must be installed on a program file (unless this step is bypassed by use
of the IMAGE format option of the Link Editor). For further information about task seg-
mentation, refer to Volume III, Application Programming Guide, of the DX10 Operating System
documentation. All of the install commands in this section allow the program file and the object
file to be specified by file name or by LUNO. The manner in which the program file is selected
is arbitrary. There is an important difference between selecting the object file by LUNO and
selecting the object file by pathname:

Files specified by pathname are rewound when opened, but files specified by LUNO are not
rewound when opened.

Thus, if the same object file contains procedures, tasks, and overlays, it must be specified by
LUNO for the commands to install correctly all the object in a program.

Tasks, procedures, and overlays must be installed in the following order:
1. Procedures, if any, must be installed first.
2. The task is installed after the procedures.
3. Overlays are installed last.

Thus, object files containing more than one object (task, procedure, overlay) must be ordered
with the procedures first, task second, and overlays last.

The following paragraphs discuss the commands which install, delete, and modify programs.

Installing or modifying a task or procedure to be memory resident requires that the system be re-
booted before the task or procedure is usable.

5.2 IT — INSTALL TASK

The Install Task command places an executable task on a program file. If the task has attached pro-
cedures, the procedures must be installed before the IT command. For an explanation of the task at-
tributes priority, privileged, system, memory resident, and replicative, consult Volume III, Section
2.

NOTE

The user should not install a task on the SSDS program file. If the
SSDS program file is used, the user’s 1Ds and names will be
destroyed upon each new release of DX10. It is recommended that
the user install tasks in his own library. This recommendation also
applies to installing real-time tasks, procedures, and overlays.

5-1 Digital Systems Division

(o]
@@ 946250-9704

Syntax:
INSTALL TASK
PROGRAM FILE OR LUNO: {< gcnm> }
<int>
TASK NAME: <string>
. <int>
TASK ID: {< int }
OBJECT PATHNAME OR LUNO: {< acnm > }
<int >

PRIORITY: {< Tt >}

DEFAULT TASK FLAGS?: { YES }
<NO>
ATTACHED PROCEDURES?: {<Y ES>}
<YES>
9.
PRIVILEGED?: { = }
<YES>
9.
SYSTEM TASK?: { NS }
MEMORY RESIDENT?: {<§](5)S>}
YES These questions are asked only if the
REPLICATABLE?: { NOS } answer to DEFAULT TASK FLAGS
is NO.
DELETE PROTECTED?: { <§ 1(3)5>}
EXECUTE PROTECTED?: {<§%S> }
OVERFLOW CHECKING?: {<§ 1(5)5> }
WRITABLE CONTROL STORAGE?: {<§ EOS>}
ATTACH TASK PROCEDURES
1ST PROCEDURE ID: {< i‘(’)t > }
YES These questions are asked only if the
9.
Pl FROMTASKS PROGRAM FILE?: { <NO> } answer to ATTACHED PROCEDURES
i is YES.
2ND PROCEDURE ID: {< "(‘)t >} is
~ JYEs
P2 FROM TASKS PROGRAM FILE?: { oS }

5-2 Digital Systems Division

o}
{@ 946250-9704

The TASK NAME and TASK ID parameters need not be entered. If they are not, the system assigns
values. These parameters cannot be the same as an existing task. The P1 FROM TASKS PRO-
GRAM FILE and P2 FROM TASKS PROGRAM FILE prompts ask whether the attached pro-
cedures are resident in the same program file as the task.

5.2.1 IRT - INSTALL REAL-TIME TASK. The Install Real-Time Task Command places an exe-
cutable real-time task on a program file. If the task has attached procedures, the procedures must be
installed before the IRT command. For an explanation of the task attributes: priority, privileged,
system, memory resident, and replicative, consult Volume III. Before installing a real-time task,
refer to the NOTE in the paragraph for the Install Task command.

Syntax:
INSTALL REAL-TIME TASK
~ {<acnm>|
PROGRAM FILE OR LUNO: |<int> |
TASK NAME: <string>
<int>
TASK ID: { . l
<acnm>}
OBJECT PATHNAME OR LUNO: §<mt>
<int>
YES |
DEFAULT TASK FLAGS?: { <NO> |
<YES
ATTACHED PROCEDURES?: 2 NO ;
<YES>)
PRIVILEGED?: : NO f
<YES>|
SYSTEM TASK?: { NO |
<YES>
MEMORY RESIDENT?: { NO }
YES |
REPLICATABLE?: {<NO > | These questions are asked only if the
<YES> answer to DEFAULT TASK FLAGS
DELETE PROTECTED?: { NO ; is NO.
ES>
EXECUTE PROTECTED?: { <Y I
<YES>
OVERFLOW CHECKING?: %
<YES>
WRITABLE CONTROL STORAGE?: { ;

5-3 Digital Systems Division

(o]
i@ 946250-9704

ATTACH TASK PROCEDURES
<int>
1ST PROCEDURE ID: 0
? R YES |
P1 FROM TASKS PROGRAM FILE? <NO>| These questions are asked only if the

answer to ATTACHED PROCEDURES

2nd PROCEDURE ID: 3<“(‘)t>} is YES.
P2 FROM TASKS P ? z YES
ROGRAM FILE? | ZNo>

The TASK NAME and TASK ID parameters need not be entered. If they are not, the system assigns
values. These parameters cannot be the same as an existing task. The P1 FROM TASKS PRO-
GRAM FILE and P2 FROM TASKS PROGRAM FILE prompts ask whether the attached pro-
cedures are resident in the same program file as the task.

5.3 IP — INSTALL PROCEDURE

The IP command places a procedure on a program file and assigns a procedure 1D for use by subse-
quent IT calls. Before installing a procedure, refer to the NOTE in the paragraph for the Install
Task command.

Syntax:
INSTALL PROCEDURE
<acnm>
PROGRAM FILE OR LUNO:) <int> %
PROCEDURE NAME: <string>
PROCEDURE ID: <“(1)t>}

<acnm>|
OBJECT PATHNAME OR LUNO: | ¢ ‘
MEMORY RESIDENT?: <YES>|

NO |

<YES>

DELETE PROTECT?:
NO
<YES>
EXECUTE PROTECT?: { ;
No

- (<YES>

WRITE PROTECT?: | NO :

<YES>)

WRITABLE CONTROL STORAGE?: : NO

If the PROCEDURE NAME and PROCEDURE ID prompts are not specified, the values are
assigned by the system. If specified, they cannot be equal to existing names or IDs.

5.4 10 — INSTALL OVERLAY

The 10 command places an overlay associated with a task on the program file with the task. The
task must be installed before the overlay and may be specified by name or by installed ID. Before in-
stalling an overlay, refer to the NOTE in the paragraph for the Install Task command.

5-4 Digital Systems Division

(o}
@ 946250-9704

Syntax:

INSTALL OVERLAY

<acnm>
PROGRAM FILE OR LUNO: {<int> %

OVERLAY NAME: <string>
OVERLAY ID: <int>

<acnm>>)
<int> |

<YES>)
o |
$
l

OBJECT PATHNAME OR LUNO:

RELOCATABLE?: NO

<YES>§
NO

(<string>|
ASSOCIATED TASK NAME OR ID: |<int> !

DELETE PROTECT?:

If the OVERLAY NAME and OVERLAY ID values are not specified, they are assigned by the
system. If specified, they cannot duplicate existing names or IDs. The ID must be less than 255
and greater than zero.

5.5 DT — DELETE TASK
This command removes a previously installed task from a program file. The task may be deleted
by either name or by installed ID. If associated overlays exist, they are also deleted.

Syntax:

DELETE TASK

) <acnm>}

PROGRAM FILE OR LUNO: Cint>
. {<string>}
TASK NAME OR ID: <int>

5.6 DP — DELETE PROCEDURE
This command removes a previously installed procedure from a program file. The procedure may
be specified by name or by installed ID.

Syntax:
DELETE PROCEDURE
<acnm>
PROGRAM FILE OR LUNO: { ;;?;“ }
<string>
PROCEDURE NAME OR ID: e

5.7 DO — DELETE OVERLAY
This command removes a previously installed overlay from a program file. The overlay may be
specified by name or by installed ID.

5-5 Digital Systems Division

(o]
@ 946250-9704

Syntax:
DELETE OVERLAY
OGRAM FILE OR LUNO: <a°nm>i
PR ’ <int>
P
OVERLAY NAME OR ID: string> %
<int>

5.8 MODIFYING PROGRAM FILE ENTRIES
SCI provides commands to change the information supplied when an overlay, task, or procedure
was installed. The modifications can also be made to modules installed by the Link Editor. These

commands allow the user to modify the runtime environment of a program without reinstalling
the module.

5.8.1 MODIFY TASK ENTRY (MTE). The Modify Task Entry (MTE) command allows the user

to alter the data supplied when the task was installed. When the MTE command is called, the
following display is presented:

MODIFY TASK ENTRY
PROGRAM FILE PATHNAME: <acnm>
<string>
MODULE NAME OR ID: { <int>

The PROGRAM FILE PATHNAME: prompt is responded to with the pathname of the program

file within which the task, as identified by the response to the MODULE NAME OR ID prompt,
is resident.

Enter either the task name or the installed ID in response to the MODULE NAME or ID prompts.
Once these responses have been entered, the following is displayed.

ID:

NAME:

REAL TIME:

PRIORITY:

MODIFY FLAGS?:
ATTACHED PROCEDURES?:

The values displayed for ID, NAME, REAL TIME, and PRIORITY are the values which were
defined when the task was installed. The values displayed for MODIFY FLAGS and ATTACHED
PROCEDURES are ‘YES’ and ‘NO’ respectively. The cursor is set in the first position of the NAME
field. Any of the entries may be changed or they may be accepted by pressing the TAB key. There
are some limitations on changing the REAL TIME and PRIORITY prompts. If REAL TIME is
‘YES’, the value for PRIORITY must range between 1 and 127,, (inclusive). If REAL TIME is
‘NO’, the value must range between 0 and 4 (inclusive).

5-6 Digital Systems Division

[o]
%’} 946250-9704

After the user enters the responses to the above prompts, the task flags are displayed if MODIFY
FLAGS is ‘YES’:

SYSTEM:

PRIVILEGED:

MEMORY RESIDENT:
REPLICTABLE:

DELETE PROTECTED:

EXECUTE PROTECTED:
OVERFLOW:

WRITABLE CONTROL STORAGE:

The values defined when the task was installed are the values displayed. Any of the entries may be
changed, or they may be accepted by pressing the TAB key. If, however, the user wishes to change
the SYSTEM prompt to ‘YES’, two conditions must be met. The ATTACHED PROCEDURES
prompt in the first display must have been changed to ‘YES’ (in order to specify that the task is
linked with procedure 1), and the task’s load address must be >C000,,. Otherwise, the user will
not be able to make the change. After responses have been entered, the procedure prompts are
displayed if the ATTACHED PROCEDURES prompt was changed to ‘YES’.

1ST PROCEDURE ID:

P1 FROM TASKS PROGRAM FILE:
2ND PROCEDURE ID:

P2 FROM TASKS PROGRAM FILE:

The values displayed are the values defined when the task was installed. Any of the entries may be
changed or they may be accepted by pressing the TAB key.

5.8.2 MODIFY PROCEDURE ENTRY (MPE). The Modify Procedure Entry (MPE) command
allows the user to modify the data supplied when the procedure was installed. When the MPE
command is called, the following display is presented:

MODIFY PROCEDURE ENTRY
PROGRAM FILE PATHNAME: <acnm>

(<string>|

MODULE NAME OR ID: |<int> |

The PROGRAM FILE PATHNAME: prompt is responded to with the pathname of the program
file within which the procedure, as identified by the response to the MODULE NAME OR ID:
prompt, is resident. Enter either the procedure name or the installed ID in response to the
MODULE NAME OR ID prompt. Once these responses have been entered, the following is
displayed:

ID:

NAME:

MEMORY RESIDENT:

DELETE PROTECTED:

EXECUTE PROTECTED:

WRITE PROTECTED:

WRITABLE CONTROL STORAGE:

5-7 Digital Systems Division

[o]
(@ 946250-9704

The values displayed are those that were defined when the procedure was installed. The cursor is
in the first position of the NAME: field. Any of the displayed values may be changed, or the
displayed value can be accepted by pressing the TAB key.

5.8.3 MODIFY OVERLAY ENTRY (MOE). The Modify Overlay Entry (MOE) command allows
the user to alter the data supplied when the overlay was installed. When the MOE command is
called, the following display is presented:

MODIFY OVERLAY ENTRY
PROGRAM FILE PATHNAME: <acnm>
[<string>
MODULE NAME OR ID: | <id>

The PROGRAM FILE PATHNAME: prompt is responded to with the pathname of the program
file upon which the overlay, as identified by the response to the MODULE NAME OR ID:
prompt, is resident. Enter either the overlay name or the installed ID of the overlay in response
to the MODULE NAME OR ID: prompt. Once these responses have been entered, the following
is displayed:

ID:

NAME:
RELOCATABLE:
DELETE PROTECTED:

The values defined when the overlay was installed are displayed, with the cursor in the first
position of the NAME field. Any of the entries may be changed, or accepted by pressing the
TAB key.

5-8 Digital Systems Division

o]
%@ 946250-9704

SECTION 6

EXECUTING PROGRAMS

6.1 INTRODUCTION

Many commands are provided to execute tasks. Three of these commands are used for assembly
language tasks, while the others are used for executing tasks of the varied language processors
available for the Model 990/10 computer. Subsystems and language processors are also invoked

by SCI commands.

The symbol [}is the SCI command prompt. When the symbol is shown in the command
formats, it immediately precedes the command entry. Entry of the command is followed by
pressing the RETURN key, as is the entry of each parameter requested. The RETURN key is
also used to accept a displayed parameter value, or to indicate no entry.

6.2 EXECUTING AN ASSEMBLY LANGUAGE TASK
The three commands for executing assembly language tasks each serve a particular function.
These commands are described and their syntax given in the following paragraphs.

6.2.1 EXECUTE TASK — XT. The XT command is used to execute a task and to leave SCI
active during task execution. This command is used for most tasks, except those being debugged
and terminal interactive tasks. The format of the command is as follows:

XT
EXECUTE TASK
PROGRAM FILE OR LUNO:
TASK NAME OR ID:

PARMI:

PARM?2:

STATION ID:

<string>
<string>

In response to the PROGRAM FILE OR LUNO prompt, the user enters either the pathname
associated with the program file on which the task is resident, or the LUNO assigned to the
program file. Either the name or the installed ID of the task is entered in response to the TASK
NAME OR ID: prompt. One or two parameters, each two bytes in size, may be passed to the
task being called by entering the desired values in response to the PARM1 and PARM2 prompts.
The default for both prompts is zero. In response to the STATION ID: prompt, enter the
number of the station (i.e., 01, 02, etc.) with which the task is to be associated. All tasks are

associated with a particular station.

6-1 Digital Systems Division

o}
@ 946250-9704

6.2.2 EXECUTE TASK AND SUSPEND SCI — XTS. The XTS command activates the specified
task and suspends SCI until the task terminates. This command should be used for terminal
interactive tasks to avoid contention between SCI and the task for terminal access. The format

of the command is as follows:

XTS

EXECUTE TASK AND SUSPEND SCI
PROGRAM FILE OR LUNO:
TASK NAME OR ID:

PARMI1:
PARM2:

STATION ID:

<string>
<string>
<int>]

o
<int>|

0
<string>
vt

The prompts are as described for the XT command.

6.2.3 EXECUTE AND HALT TASK — XHT. The XHT command places a task in memory in a
suspended state so that it can be debugged. Typically, the user places the task to be debugged in
memory using XHT, establishes the debug environment (including breakpoints), and then
activates the task using the Activate Task (AT) or Resume Task (RT) command. The format of

the command is as follows:

XHT
EXECUTE AHD HALT TASK
PROGRAM FILE OR LUNO:
TASK NAME OR ID:
PARMI1:
PARM?2:
STATION ID:

<string>

<string>
j<in t>)
VI
<int>

o

{<;tring>)
ME

The responses to the prompts are as described for the XT command.

6.3 EXECUTING LANGUAGE PROCESSORS, TASKS FROM LANGUAGE PROCESSORS,

AND SUBSYSTEMS

Table 6-1 lists the different subsystem and language processors available with the DX10 operating
system and the corresponding location in the associated manual where execution instructions may

be found.

6-2 Digital Systems Division

946250-9704

Table 6-1. Locating Instructions for Executing Subsystems, Language Processors,
and Tasks From Language Processors Available With DX10, Release 3

Processor/Subsystem Execution Instructions Location

BASIC Model 990 Computer TI 990 BASIC Reference Manual,
2250304-9701

COBOL Section 13 of Model 990 Computer DX10 Operating System,
Release 3, COBOL Programmer’s Guide, 946266-9701

DBMS Section 6 of Model 990 Computer Data Base Administrator
User’s Guide, 2250426-9701

FORTRAN Appendix H of Model 990 Computer FORTRAN Programmer’s
Guide, 946260-9701

Pascal Appendix C of Model 990 Computer TI Pascal User’s Manual,
946290-9701 '

RPGII Section 2 of Model 990 Computer Report Program Generator

(RPGII) Programmer’s Guide, 939524-9701

SORT/MERGE Section 8 of Model 990 Computer SORT/MERGE User’s
Guide, 946252-9701

6-3/6-4 Digital Systems Division

[e]
(I@ 946250-9704

SECTION 7

DEBUGGING SUPPORT

7.1 GENERAL

Flaws in software are commonly called “bugs”. The process of removing flaws from software is
called debugging. Modern programming techniques can drastically reduce the number of bugs in a
program; however, the bugs which remain tend to be subtle and hard to find. Several levels of

debugging supgport are provided.

U] High-level language (FORTRAN, COBOL, BASIC, RPG, Pascal) programs are provided
with two levels of debugging:

1. The compilers and interpreters for these languages provide error messages that pin
point syntax errors in the source programs.

2. The runtime packages provide error-tracing information in addition to error messages
that describe the nature of the error.

. Several System Command Interpreter (SCI) commands provide debugging capabilities
without requiring a special mode of operation.

* A special mode of operation allows a single task to be examined in detail during the execu-
tion process.

Detailed information about debugging high-level language programs is contained in the appro-
priate high-level language programmer’s guide. Detailed information about the SCI debug com-
mands and the special mode of operation is provided in the following paragraphs.

Since all of the debug commands interact with the terminal, special care must be taken when debug-
ging a program that uses the terminal, since two processes requesting terminal support can be con-
fusing. If the program being debugged requires use of a terminal, two terminals should be used -
one for the program and one for debugging.

7.2 MODES OF DEBUGGING

There are two sets of debug commands. One set can only be used on ‘‘controlled’’ tasks, which are
tasks that have been put into ‘‘debug’” mode through the use of the Execute Debug (XD) command.
The other set of commands may be used on all tasks. In either case, beware of tasks which uncondi-
tiorﬁally suspend themselves, since some of the debug commands may inadvertently reactivate these
tasks.

NOTE

Putting a task into controlled mode affects the execution of all debug
commands as follows:

1. Symbolic expressions may be used in place of integer expres-
sions on commands involving the controlled task.

2. Every command expects the controlled task to be uncondi-
tionally suspended.

7-1 Digital Systems Division

[e]
@ 946250-9704

3. Every command leaves the controlled task unconditionally
suspended.

4. During the commands, Proceed from Breakpoint (PB), Delete
and Proceed from Breakpoint (DPB), and Resume Task (RT),
the command key automatically suspends the controlled task.

7.2.1 UNCONDITIONAL SUSPEND. Most of the debugging commands require that the task
being debugged be unconditionally suspended either before or during the debug command. The
“unconditional suspend” task state under DX10 (task state 6) is the state in which the task is
dormant until activated by a command. There are several ways for a task to become uncondi-
tionally suspended:

1. The task is bid with the suspend option selected, either with a supervisor call, see
Volume III, or the Execute and Halt Task (XHT) SCI command, or the .DBID SCI
primitive.

The .DBID primitive is used for tasks that interface through SCI, such as command
processors (which are normally bid using the .BID and .QBID primitives, as described
in Volume V) and high-level language programs (e.g., FORTRAN, COBOL programs).
When the .DBID primitive is executed through SCI, the task is bid and immediately
placed in a suspended state. The run ID of the task is saved in the synonym $$BT orit
may be obtained by issuing a Show Task Status (STS) command.

The XHT command is used for tasks that are normally executed directly by an Execute
Task (XT) command. XHT places the task in a suspended state for debugging and
displays the run ID of the task to the user. If the user desires to execute and halt the
task, and simultaneously place it in controlled mode, the Execute Debug (XD) command
may be used with no input for the RUN ID prompt. The XD command performs the
XHT and saves the run ID as the default for the debugger commands.

2. The task suspends itself.

3. The task executes a breakpoint (XOP 15, 15).

4. The task is suspended by the SCI debug commands.
Once the task has been placed in a suspended state, the debugger may be used to assign break-
points, simulate execution, display memory, and perform other debugging functions. When the
debugging session is over, the task may be terminated via the Kill Task (KT) command. If the
task was put into controlled mode by an XD command, it may be killed by responding ‘YES’
to the KILL TASK? prompt of the Quit Debug (QD) command.

7.2.2 COMMAND PARAMETER SYNTAX. In the following discussion of the commands, the
syntax shown represents the actual display. The user enters the appropriate command when the
SCI command prompt, [], appears. The following conventions are used in the discussion of the
commands:

previous — Indicates the last v.we entered for the prompt.

acnm — Indicates an access name (either a device name, or a file pathname).

string — Indicates a character string.

7-2 Digital Systems Division

(o]
%@ 946250-9704

constant exp — Indicates a decimal or hexadecimal integer or an expression composed of
decimal or hexadecimal integers and the operators +, -, *, and /.

full exp — Indicates a constant expression with the additional operators <, >, and (). String
operands are also permitted. In controlled mode, symbolic names and the symbols #PC,
#WP, #ST, and #Rn are permitted.

full exp list — Indicates a list of full expressions separated by commas. The list may contain
a single item.

constant exp list — Indicates a list of constant expressions separated by commas. The list
may contain a single item.

Y
N — Indicates a character string beginning with “Y” or “N”.

Underscore (__) — Indicates the default value.

Braces { } - Indicates that a selection of the entries must be made.
Angle brackets < > — Indicates an operator entry.

Brackets []- Indicate an optional parameter.

Boldface Type — Indicates an operator command entry.

Upper Case — Indicates system displayed data.

References to “‘Return” within the command descriptions refer to the “NEW LINE” function key
for the terminal type in use (listed in table 2-1). Entry of the command mode is accomplished by
pressing the appropriate “ENTER COMMAND” mode key for the terminal in use, also listed in
table 2-1.

7.2.3 SYMBOLS. The debug support provided allows for symbolic debugging. Symbolic
debugging allows the user to specify labels within the task being debugged rather than memory
addresses. This allows for more convenient and meaningful debugging since the source code list
can be used as reference for the symbolic labels used. Symbolic constants consist of the Link
Edit phase name, a period (.), the module identifier name (IDT), a period (.), and the symbol, an
assembly language label. The syntax is defined as:

<phase name>.<IDT name>.<symbol>

To have full symbolic capability, both the assembler and Link Editor must have used the SYMT
option. If the assembler did not use the SYMT option, but the Link Editor did, then symbols of
the form

<phase name><IDT name>

are available. If either the phase name or the IDT name of a symbol is omitted, the immediately
previous corresponding value is used. The syntax is as follows:

<IDT name> . <symbol> (no phase name)
<phase name> . . <symbol> (no IDT name)

.. <symbol> (no phase or IDT name)

73 Digital Systems Division

[o]
{@? 946250-9704

Examples:

PHASE1.MOD1.XYZ References Phase

IDT =

Label =

.MOD2.MNO References Phase =
IDT =

Label =

..ABC References Phase =

IDT
Label

Four words of memory per symbol are required to store symbol values.

PHASEI1
MOD1
XYZ
PHASE]1
MOD2
MNO
PHASE1
MOD2
ABC

If the task being debugged is a single routine that was installed without being linked, then a
symbolic constant consists of a period (.), the characters of the module identifier name, a period

€.), and the characters of the symbol.

LIDT name>.<symbol>

As with the linked module, the SYMT option of the assembler must have been selected to have full
symbolic capability. If the IDT name of a symbolic constant is omitted, the immediately previous

corresponding value is used.
Examples:

PROG.XYZ
.SYM

NOTE

Symbols may only be used for commands affecting a task which
has been placed in the controlled mode by the Execute Debug

(XD) command.

NOTE

The method used to encode the symbol does not guarantee unique
representation of the symbols. An error message appears whenever
two symbols are encoded to the same value. The second symbol

cannot be used.

7.2.4 EXPRESSIONS. Constants (and symbolic constants for tasks in the controlled mode) may
be combined using the operators +, -, *, /, <, >, and () to form expressions wWhich may be used

as command operands. The operators have the following meanings:

unary plus or addition
unary minus or subtraction
multiplication
division

) evaluation order

/\/‘*'.’.
\Y

the contents of the indicated memory location

7-4

Digital Systems Division

o]
{@ 946250-9704

In the syntax definitions in this section, use of angle brackets in expressions may be confused
with use of angle brackets to indicate items supplied by the user. To avoid confusion, items
supplied by the user are shown as lower case letters enclosed in angle brackets. When angle
brackets enclose numerals or upper case letters, the contents of an address is indicated.

Expressions are evaluated according to the following rules:

1. Subexpressions delimited by () and < > are evaluated first, with the innermost
expression evaluated before any other levels.

2, Unless directed otherwise by parentheses or angle brackets, unary + and - are evaluated
first, multiplication and division are evaluated second, and addition and subtraction last.

3. For operators at the same level, evaluation proceeds left to right.

For example, if IDTNAM.BEGIN is memory address 7A, and if memory address 7F contains 3B,
then the expression FF/(IDTNAM.BEGIN+5 + 2+3% F) is evaluated as follows:

>FF/(<IDTNAM.BEGIN+5>+-2+3*>F)
SFF/(< >TA+5>+-2+3%>F)

SFF/(< >TF>+-2+3*>F)
>FF/(>3B+-2+>2D)
>FF/(>3B+(-2)+>2D)

>FF/(>39+>2D)

>FF/>66

2

NOTE
The right angle bracket, >, will be regarded as a hexadecimal number
indicator rather than the right part of < > whenever there are
hexadecimal digits immediately following. Thus, no conflict arises.
Several special symbols are allowed in expressions. These special symbols are:
#PC — represents the contents of the Program Counter
#WP — represents the contents of the Workspace Pointer

#ST — represents the contents of the Status Register

#Rn — where n has the value 0-15, and #Rn represents the contents of the corresponding
workspace register.

NOTE

These special symbols may only be used for commands affecting a
task which has been placed in the controlled mode by the Execute
Debug (XD) command.

7-5 Digital Systems Division

946250-9704

Character strings are also allowed in expressions. A character string is of the form ‘XXXX °
where X’ is any valid ASCII character. The apostrophe can be represented in a character string
by using double apostrophes. A character string may be any length, but only the leftmost four
characters are significant. Strings shorter than four characters are right-justified. The value of a
character string is an expression in the ASCII hexadecimal representation of the characters
expressed as a 32-bit number.

Example:
String Value
‘ABCD’ 41424344
‘A’ 00000041
‘ABCDE’ 41424344
<’ 00000000
‘A ‘B’ 00412742

These symbols may be used in expression lists in the same way as constants or symbolic
constants. For example,

#PC + NAME.IDT - #R15
is a valid expression.

7.3 COMMANDS FOR ALL TASKS

The SCI commands listed in table 7-1 may be used for all tasks. These commands are classified
as commands for reference since their most frequent use is expected to be program debugging.
Nothing, however, prohibits the use of these commands for purposes other than debugging —
they may be used whenever SCI is active. To activate SCI, perform the procedure given in
Volume II. Many of the debug commands require the runtime task ID returned by the XT or
XHT commands. Make note of the runtime task ID when the task is placed in execution. The
STS (Show Task Status) command may be used to recover the runtime ID (which identifies the
task to DX10).

Table 7-1. SCI Debug Commands

Command Meaning Section
DATA DISPLAY COMMANDS

LB List Breakpoints 7.3.19
LLR List Logical Record V2-5.5
M List Memory 7.3.7

LSM List System Memory 7.3.8

SAD Show Absolute Disk 7.3.23
SADU Show Addressable Disk Unit 7.3.25
SIR Show Internal Registers 7.3.15
SP Show Panel 7.3.18
SPI Show Program Image 7.3.21
SRF Show Relative to File 7.3.27
Sv Show Value 7.3.20
SWR Show Workspace Registers 7.3.17

7-6 Digital Systems Division

946250-9704

Command

MAD
MADU
MIR
MM

MRF
MSM
MWR

AB
DB
DPB
LB
PB

AT
HT
RT

FB
Fw

ASB
DSB
LSB
QD
RST
ST

Table 7-1. SCI Debug Commands (Continued)

Meaning
DATA MODIFICATION COMMANDS

Modify Absolute Disk

Modify Addressable Disk Unit
Modify Internal Registers
Modify Memory

Modify Program Image
Modify Relative to File
Modify System Memory
Modify Workspace Registers

BREAKPOINT COMMANDS

Assign Breakpoints

Delete Breakpoints

Delete and Proceed from Breakpoint
List Breakpoints

Proceed from Breakpoint

TASK CONTROL COMMANDS

Activate Task

Halt Task

Resume Task

Change Task to Debug mode (only one task
per station at any given time)

SEARCH COMMANDS

Find Byte
Find Word

CONTROLLED TASK COMMANDS

Assign Simulated Breakpoint
Delete Simulated Breakpoint
List Simulated Breakpoint
Quit Debug

Resume Simulated Breakpoint
Simulate Task

Section

7.3.24
7.3.26
7.3.14
7.3.5

7.3.22
7.3.28
7.3.6

7.3.16

7.3.1
7.3.2
734
7.3.19
7.3.3

7.3.11
7.3.12
7.3.13

7.4.1

7.3.10
739

743
744
7.4.6
7.4.7
7.4.5
74.2

Digital Systems Division

[e}
@ 946250-9704

7.3.1 AB — ASSIGN BREAKPOINTS. This command may be issued from any terminal. The
contents of the specified address(es) in the specified task are replaced by a breakpoint (an
XOP 15,15). This effectively stops execution of the task at that location. Thus, the task may be
suspended at any location in its execution. The contents of this location are saved and can be
restored by the Delete Breakpoints command. A maximum number (specified at system genera-
tion) of breakpoints can be in effect on a DX10 system at any one time; an attempt to use more
than this number of breakpoints generates an error message. If the runtime ID specifies a system
task, the user must be a privileged user or the command is aborted. Moreover, breakpoints may not
be set in the DX 10 system area. A task need not be memory-resident to be breakpointed. The task to
be breakpointed is temporarily suspended while the breakpoints are inserted and its original state is
restored. Unless the task is the controlled task, the user must monitor the task with the Show Inter-
nal Registers (SIR) or the Show Panel (SP) command to determine when it reaches a breakpoint.
When the task reaches a breakpoint, it is placed in state 6 (unconditional suspend). To proceed, use
the Proceed from Breakpoint (PB) command, the Delete and Proceed from Breakpoint (DPB) com-
mand, or the Delete Breakpoint (DB) and Resume Task (RT) commands.

Syntax:
AB
ASSIGN BREAKPOINTS
<constant exp>1 .
RUN ID: previous ID runtime ID
ADDRESS(ES): <full exp list> address of breakpoint
Example:

ASSIGN BREAKPOINTS
RUN ID: >A0
ADDRESS(ES): >200, >30C, >41A

7.3.2 DB — DELETE BREAKPOINTS. If a breakpoint (XOP 15,15) exists in the specified task
at the specified address(es), it is replaced with the original value at the location. The parameters
are interpreted as in the Assign Breakpoints command with the following exceptions. If no
address is specified, the default is the breakpoint at which the task is currently stopped. If
“ALL” is specified, all breakpoints for that task are deleted. If the indicated breakpoint does not
exist, or a breakpoint within a list of breakpoints does not exist, the user is warned with an
error message and the panel is displayed to show the breakpoint status. Deleting a breakpoint at
which a task is stopped does not cause the task to resume execution.

The task is temporarily suspended while the breakpoints are deleted and its original state
restored.

Syntax:

DB
DELETE BREAKPOINTS
{<constant exp> }

previous 1D

RUN ID: runtime ID

<full exp list>
ADDRESS(ES): <ALL> breakpoint address
current breakpoint

7-8 Digital Systems Division

[e]
@ 946250-9704

Exampie:

DELETE BREAKPOINTS
RUN ID: >A0
ADDRESS(ES): >200, >41A, >AC, >506

DELETE BREAKPOINTS
RUN ID: 80
ADDRESS(ES): ALL

7.3.3 PB — PROCEED FROM BREAKPOINT. This command assigns new breakpoints in the
specified task at the destination addresses, if any are indicated, and the task is resumed, bypassing
the breakpoint at which it is currently stopped. The breakpoint remains active. If the task is not
currently at a breakpoint, the new breakpoints are assigned and the user is notified, by a warning
message, that the task was not at a breakpoint. The runtime ID is interpreted as in the Assign
Breakpoint command. '

Syntax:

PB
PROCEED FROM BREAKPOINT

RUN ID: {<constant exp

previous >}runtime ID of task

DESTINATION ADDRESS(ES): <full exp list> address of breakpoint(s)
to assign

Example:

PROCEED FROM BREAKPOINT
RUN ID: >9A
ADDRESS(ES): >A0, >10, >A14, >2B

7.3.4 DPB — DELETE AND PROCEED FROM BREAKPOINT. This command is exactly like
the Proceed from Breakpoint command except that the breakpoint at which the task is currently
stopped is deleted. If this breakpoint has already been deleted, the command functions as if it
were a PB command.

Syntax:

DPB
DELETE AND PROCEED FROM BREAKPOINT

<constant exp>} _
RUNID: } previous runtime ID
DESTINATION ADDRESS(ES): <full exp list> adcllress of breakpoint(s) to
assign

Example:

DELETE AND PROCEED FROM BREAKPOINT
RUNID: >4E
DESTINATION ADDRESS(ES): >1A, >2FE, >340

79 Digital Systems Division

[e]
@ 946250-9704

7.3.5 MM — MODIFY MEMORY. The memory image of the specified task is modified using the
input data, starting at the address specified. Roll-in/roll-out does not affect the modification pro-
cess. A runtime ID of S specifies the DX10 system area ROOT segment. Only users with privileged
user IDs are allowed to modify the system area or system tasks. Modify System Memory (MSM) is
available to modify the other parts of the system. If the task is not unconditionally suspended,
it is temporarily suspended while the command is interacting.

Syntax:
MM
MODIFY MEMORY
RUN ID: {<C°n5_tant exp>} runtime ID
__previous
ADDRESS: <full exp list> address to modify

The command displays the specified address followed by its value. When the user enters a new
value followed by a return, the next consecutive address and its value are displayed. The CMD
(911 VDT), HELP (913 VDT), or CNTL and X (hard copy) key returns the user to the

command mode.

Example:
MODIFY MEMORY
RUNID: >10
ADDRESS: >10
0010: >04C0 (Press RETURN)
0012: >0500 >0502 (Press RETURN)
0014 >0100 (Enter Command Mode)

7.3.6 MSM - MODIFY SYSTEM MEMORY. This command is used to modify the memory oc-
cupied by the DX10 operating system. This command is similar to the MM (MODIFY MEMORY)
debugger command (see paragraph 7.3.5) except that an overlay ID is specified instead of a run ID.
This command is intended for use only by someone who is very familiar with the DX10 source.

7.3.6.1 MSM Command Format.

[] MSM
MODIFY SYSTEM MEMORY
OVERLAY ID: <INT>
ADDRESS: <INT>

7-10 Digital Systems Division

E‘—@@ 946250-9704

7.3.6.2 MSM Command User Responses.

Response
Required or
System Prompts Optional User Responses
Overlay ID: R Number of overlay whose
memory is to be modified
Address: R Address at which to begin modifying

memory

7.3.6.3 MSM Command Example. The MSM command is used to modify the memory of system
overlay two starting at address 05900,e.

[] MSM
MODIFY SYSTEM MEMORY
OVERLAY ID: 2 v
ADDRESS: 05900
5900: >0004 6
5902: >0000 1
5904: >0429

7.3.7 LM - LIST MEMORY. This command lists the specified memory area of a program on the
specified output device or file. The runtime ID is interpreted as in the Modify Memory command.
The output defaults to the terminal. If the task is not unconditionally suspended, it is temporarily
suspended while the listing is being formatted.

Syntax:
LM
LIST MEMORY
~ j<constant exp>} :
RUN ID: { previous runtime ID
STARTING ADDRESS: <full exp> starting address
NUMBER OF BYTES: <full exp> length of display
LISTING ACCESS NAME: <acnm> output device or file name

Example:

LIST MEMORY

RUNID: >80
STARTING ADDRESS: >102
NUMBER OF BYTES: >14A
LISTING ACCESS NAME: LPOl

7-11 Digital Systems Division

[o]
@ 946250-9704

7.3.8 LSM - LIST SYSTEM MEMORY. This command lists the memory occupied by the DX10
operating system. The command is similar to the List Memory (LM) command (see paragraph 7.3.7)
except that an overlay ID is specified instead of a run ID. This command is intended for use only by
someone who is very familiar with the DX10 source.

7.3.8.1 LSM Command Format.

[} LSM
LIST SYSTEM MEMORY
OVERLAY ID: <int>
STARTING ADDRESS: <int>
NUMBER OF BYTES: [int]
LISTING ACCESS: ~ [acnm]

7.3.8.2 LSM Command User Responses.

Response

Required or
System Prompts Optional User Responses
OVERLAY ID: R Number of the overlay whose memory

is to be listed.

STARTING ADDRESS: R Address at which to begin listing memory.
NUMBER OF BYTES: 0 Number of bytes to list. Default value is 16.
LISTING ACCESS 0] Access name of file or device to which
NAME: output is to be sent. Default is the terminal

local file.

7.3.8.3 LSM Command Example. The LSM command is used to list the memory of system overlay
six from byte 0100, to byte 0120,,.

[1LSM
LIST SYSTEM MEMORY
OVERLAY ID: 6
STARTING ADDRESS: 0100
NUMBER OF BYTES: 020
LISTING ACCESS NAME:

0100 352E 0006 0006 0000 0000 1DF2 BEO3 1C40 5.
0110 1000 0000 0000 0000 0000 0000 0000 0000
[]

7.3.9 FW — FIND WORD. The specified memory area in the specified program is searched for
the value (or successive values). The search begins on a word boundary. If the value is found, the
address at which it was found is displayed. The runtime ID and addresses are interpreted as in
the Modify Memory command. If the task is not unconditionally suspended, it is temporarily
suspended while the search is performed.

7-12 Digital Systems Division

o
@ 9462509704

Syntax:
Fw
FIND WORD
RUN ID:
VALUE(S):
STARTING ADDRESS:
ENDING ADDRESS:
Example:
FIND WORD
RUNID:
VALUES:
STARTING ADDRESS:
ENDING ADDRESS:

runtime ID

<constant exp>
previous

<full exp list> value(s) to find
<full exp> starting address
<full exp> ending address

>TF

>80A, >80B, >80C, >80D

>AC

>CAE

7.3.10 FB - FIND BYTE. This command performs the same functions as the Find Word command
except it applies to bytes. The search starts on a byte boundary and increments forward one byte at a

time.
Syntax:
FB
FIND BYTE
RUN ID: {<constant exp>}
previous
VALUE(S): <full exp list>
STARTING ADDRESS: <full exp>
ENDING ADDRESS: <full exp>
Example:
FB (FIND BYTE)
RUNID: >10
VALUE(S): 6,7,>A,9,>A,>BC, 2,1
STARTING ADDRESS: >2F
ENDING ADDRESS: >3AC

7.3.11 AT - ACTIVATE TASK. This command causes the specified task to be activated if it is un-
conditionally suspended. The command is turned into a No Operation command if the task is not
unconditionally suspended.

Syntax:

AT
ACTIVATE TASK

RUN ID: <(<constant exp>}

{ previous

Example:

ACTIVATE TASK

RUNID: >A

7-13 Digital Systems Division

o]
{@ 946250-9704

7.3.12 HT - HALT TASK. The specified task is unconditionally suspended at the end of the cur-
rent time slice. The runtime ID is interpreted as in the Assign Breakpoint command. If the specified
task is already unconditionally suspended, this command is turned into a No Operation command.
If the task is not in the active state, this command will wait five seconds for the task to reach uncon-
ditional suspend and give the user the option of aborting or continuing to wait. This occurs every
five seconds.

Syntax:
HT
HALT TASK
RKUN ID: <constrant exp>}
previous

Example

HALT TASK

RUN ID: 7

If the task cannot be suspended, the following message is displayed:
UNABLE TO SUSPEND TASK. CURRENT STATE=XX. CONTINUE COMMAND?

If a YES response is entered, another attempt is made to suspend the task. If unsuccessful, the
message is displayed again. A NO response to the preceding message causes the following message
to be displayed:

DO YOU WISH TO LEAVE SUSPENSION PENDING?

A YES response leaves the suspension pending, while a NO response terminates the suspension
attempt.

7.3.13 RT — RESUME TASK. The specified task is activated at the point at which it was sus-
pended. The runtime ID is assigned when the task is executed. The specified task must be uncon-
ditionally suspended when this command is executed or an error is indicated. Either the Delete
Breakpoint and the RT commands, the Proceed from Breakpoint command, or the Delete and
Proceed from Breakpoint command, must be used to restart the task halted at a breakpoint. RT
should be used to reactivate a halted task (HT) rather than AT.

Syntax:
RT
RESUME TASK
RUN ID: {<constant exp>}
previous
Example:

RESUME TASK
RUNID: 7

7-14 Digital Systems Division

[o]
{@@ 946250-9704

7.3.14 MIR — MODIFY INTERNAL REGISTERS. The internal registers (Program Counter,
Workspace Pointer, and Status Register) for the specified task are modified according to the user
inputs. If the task being debugged is not a privileged task, then only bits O through 6 of the status
register can be modified with this command. This command acts interactively, like the Modify
Memory command. If the task is not unconditionally suspended, it is temporarily suspended while
the command is interacting. The runtime ID is interpreted as in the Assign Breakpoints command.
This command is interactive and may be terminated by entering a CMD (911VDT), HELP
(913VDT) or CNTL and X (hard-copy device) key at any time.

Syntax:

MIR
MODIFY INTERNAL REGISTERS

RUN ID: {<cons'tant exp>}
previous

Once the RUN ID: is entered, the RETURN key is pressed and the following display is
presented:

PC:XXXX
WP:XXXX
ST:XXXX

where

XXXX represents the contents of each register. Modifications to each register are entered
after the contents for the appropriate register.

Example:

MODIFY INTERNAL REGISTERS
RUNID: >24
PC: 0106 Press RETURN
WP: 0040 >60
ST: E40F >40F

Results:

No change to PC
Change WP to >60
Change ST to >40F

7.3.15 SIR — SHOW INTERNAL REGISTERS. The internal registers are displayed on the
terminal. The runtime ID is interpreted as in the Assign Breakpoint command. The displayed
state is the state of the task before it was suspended to capture the internal registers, while the
remainder of the display reflects the values in effect after the task was suspended. The character
string representation of the status register follows the hexadecimal value and may include the
following characters: L = logical greater than, A = arithmetic greater than, E = equal, C = carry,
O = overflow, P = parity, X = XOP in progress, S = privileged mode, M = map file.

7-15 Digital Systems Division

[o]
@@ 946250-9704

Syntax:

SIR
SHOW INTERNAL REGISTERS

RUN ID: {<constant exp>}
previous

Example display:
RUN ID=0E STATE=06 (BP} WP=0082 PC=0016 PC=2FCF ST=218F E M

7.3.16 MWR — MODIFY WORKSPACE REGISTERS. The specified workspace registers of the
specified task are modified according to the user inputs. This command is interactive, like the
Modify Memory command. New values must be terminated by a return. If the task is not
unconditionally suspended, it is temporarily suspended while the command is interacting. The
runtime ID is interpreted as in the Assign Breakpoint command. This is an interactive command
and may be terminated at any time by entering the command key.

Syntax:

MWR
MODIFY WORKSPACE REGISTERS

RUN ID- {<constant exp>}

previous

REGISTER NUMBER: {<constant exp>

} starting register number
0

Example:

MODIFY WORKSPACE REGISTERS
RUN ID: (Press Return)
REGISTER: 2
R2: 0200 >FFFF
R3: 0300 >3FFF
R4: 062F (Press RETURN)
R5: 8010 Return to command mode

7.3.17 SWR — SHOW WORKSPACE REGISTERS. The current workspace for the specified task
is displayed. If the task is not unconditionally suspended, it is temporarily suspended while the
workspace is displayed. If the terminal requesting the command is a VDT, the SWR command
has the same effect as the Show Panel command. The runtime ID is interpreted as in the Assign
Breakpoint command.

Syntax:

SWR
SHOW WORKSPACE REGISTERS

RUN ID: {<constant exp>}
_previous

7-16 Digital Systems Division

946250-9704

Example:

SHOW WORKSPACE REGISTERS
RUNID: >A

7.3.18 SP — SHOW PANEL. The debug panel for the specified task is displayed. The runtime
ID is interpreted as in the Assign Breakpoint command. If the task is not unconditionally sus-
pended, it will be temporarily suspended while the panel is being formatted and displayed. The
displayed task state is the state of the task before it was suspended. The debug panel consists of
the internal registers, the workspace registers, breakpoints, memory display, and task state.

Syntax:
SP
SHOW PANEL
{<constant exp>}
RUN ID: previous -
MEMORY ADDRESS: <full exp>

Example:

SHOW PANEL

RUNID: >80
MEMORY ADDRESS: >AC

Figure 7-1 is an annotated example of the debug panel display.

WORKSPACE REGISTERS
IN ASC!1. NON PRINTING
CHARACTERS ARE RE—
PRESENTED BY PERIODS.

WORKSPACE REGISTERS WORKSPACE
IN HEXADECIMAL POINTER STATUS REGISTER
HEXADECIMAL
PROGRAM
COUNTER CONTENTS OF THE
= WORD POINTED TO
ZHOM FRMEL TASK STATE
FUM ID: 1A /
MEMORY ADDREZS:
runTiMe FUM ID = 1R WF = 4106 FC o= B0SE <PC: = DERD ZT = 0N1&F ZTHTE = D&
10, ¥ WOFFEZFARCE FEGISTERS
SRS [N EARI] aonn naan oao anan oo oo (IR KRN . .- . n . . w ..
4116 QOO0 G000 oooD 00D G000 o000 0a0d a0l].. ve v h e i i e as

ERERKPOIHNT?Z

M E 1 0 B 9

ADDRESs __—U0SE DEAD 1016 244D 4149 4ESZO CEZ0 0ZR2 4215)] EMOAD MO, .. E.
SWECH IED DOEE Cl&n 4816 0OAZ4 0420 ZEIZ OFAOD OZAA OFE4)] . E. .4 . 42
COMMAND 41DE OCOE 0SAD 4216 2820 421 0B 1eFH]]A. EBE. o E.
CEEn 02As 421e Ci2n 4zie OoRId4 040 2RI .. BF. . E. .4 . +2
/ /
MEMORY CONTENTS
MEMORY ADDRESSES MEMORY CONTENTS IN ASCI1, NON PRINTING
IN HEXADECIMAL CHARACTERS ARE
REPRESENTED BY
PERIODS

Figure 7-1. Debug Panel Display

717 Digital Systems Division

[o]
@P 946250-9704

73.19 LB — LIST BREAKPOINTS. The breakpoints for the specified task are displayed.

Syntax:
LB
LIST BREAKPOINTS
RUN ID: {<cons.tant exp>}
previous
Example:
LIST BREAKPOINTS

RUNID: >4C

7.3.20 SV — SHOW VALUE. The value of the specified expression is displayed. Its hexadecimal,
decimal, and ASCII representations are given.

Syntax:
SV
SHOW VALUE
EXPRESSION: <full exp> If a “controlled’ task exists,
' the expression may be symbolic.
Example:
SHOW VALUE

EXPRESSION: >FF/#R8+ NAME.IDT

7321 SPI — SHOW PROGRAM IMAGE. The Show Program Image (SPI) command displays
the disk-resident memory image of a module (defined as a task, procedure, or overlay) for the
specified program file. The display may be directed to a device or file (default is the terminal
local file).

Syntax:
SPI
SHOW PROGRAM IMAGE
PROGRAM FILE: <acnm> location of module
OUTPUT ACCESS NAME: <acnm> define where to write
output
<Task>
MODULE TYPE: <Overlay> task, overlay, or procedure
<Procedure>
MODULE NAME OR ID: <string> name or installed ID
ADDRESS: <constant exp> address to start display
LENGTH: <constant exp> address to end display

7-18 Digital Systems Division

o]
@ 946250-9704

Examples:

[1 =FI

ZHOW FPROGRAM IMAGE

FPrROSEAM FILE: Dz iz, 2sFPROGAH
OUTPLUT RACCE:E: MAME:

MODULE TYPE: FROCEDURE
MODULE HAME DR ID: 1+2

RODRE=ZS: NZ00n

LEMGTH: =

cnon 1EFE 13206 9215 1EFA 1605 0535 0808 1220
{1

7.3.22 MPI — MODIFY PROGRAM IMAGE. The Modify Program Image command modifies a
module (defined to be task, procedure, or overlay) in the specified program file using memory
addresses and new data supplied by the operator.

Syntax:
MPI
MODIFY PROGRAM IMAGE
PROGRAM FILE: <acnm> location of module
OUTPUT ACCESS NAME: <acnm> define where to write output
<TASK> 1
MODULE TYPE: <PROCEDURE>, task, procedure, or overlay
<OVERLAY> ‘
MODULE NAME OR 1D: <string> name or installed ID
ADDRESS: <constant exp> starting memory address
VERIFICATION DATA: <constant exp> optional verification data
DATA: <constant exp list> New data to be inserted in the
module.

CHECKSUM: <constant exp> Optional verification data for
new data; checksum is an ex-
clusive OR of each word of new
data. If the checksum is not
known, leaving this field blank
causes the checksum to be
printed.

Example:

[J MPI

MODIFY PROGRAM IMAGE

PROGRAM FILE: DS02.S$PROGA
OUTPUT ACCESS NAME: LPO1
MODULE TYPE: PROCEDURE
MODULE NAME OR ID: 1 + 2
ADDRESS: 02000
VERIFICATION DATA: OIl1EFE

DATA: OI1FFF
CHECKSUM:
(]

7-19 Digital Systems Division

[o]
{@? 946250-9704

7.3.23 SAD - SHOW ABSOLUTE DISK. The Show Absolute Disk command prints the contents
of a specified absolute address on a disk. The SAD command may be entered only by privileged
users. The device is the device name assigned to the disk unit at sysgen time. It normally consists of
the characters -DS01- for the system disk and -DS0x-, where ‘‘x’’ is a digit greater than one for other

disks on the system.

The contents of sixteen bytes are printed per line. The address of the first byte printed is the
first entry on the line. The contents of each pair of bytes are shown as four hexadecimal digits.
At the right end of the line, the contents are printed as ASCII characters. The bytes that contain
values that correspond to printable ASCII characters are translated and printed as ASCII
characters. The nonprinting ASCII characters are printed as periods.

Syntax:

SAD
SHOW ABSOLUTE DISK

DISK UNIT: <name> disk drive device name
TRACK: <constant exp> starting track address
SECTOR: <constant exp> starting sector address
FIRST WORD: {<constant, pr>} starting word address
' 0
NUMBER OF WORDS: <constant exp> number of words to show
OUTPUT ACCESS NAME: <acnm> define where to write output
Example:
[] ZAD
SHOW ABSOLUTE DISK
DISK LUNIT: DSoz
TRACEK: O
SECTOR: O
FIRST WIRD: O
NUMBER OF WORDZ: 4+4-2
OUTPUT ACCESS NAME:
TRACK 0000 SECTOR 00 RECORD LENGTH Q120 BYTES (01 SECTOREI).
0000 40141 S931 30730 2020 2410 MA Y1 00 %.
L3
7324 MAD — MODIFY ABSOLUTE DISK. The Modify Absolute Disk command places

specified data on a disk at a specified absolute track, sector and word address. This command
may only be entered by privileged users. The disk unit is the device name given the disk at
sysgen time. FIRST WORD is the address of the first word on the sector to be loaded with the
data being entered. Data is entered in groups of word values to be placed on disk. Each word
value must be separated from the next with a comma and values are loaded on disk in successive
addresses. The verify parameter allows the user to enter a string of words to be compared against
the data at the load address. If a bad compare results, the load does not take place. Since the
MAD command has the capability to write anything, anywhere on the disk, and can therefore
destroy the DX10 system image, the verify option should always be used.

7-20 Digital Systems Division

(o]
@ 946250-9704

Syntax:
MAD
MODIFY ABSOLUTE DISK
DISK UNIT: <name>>
OUTPUT ACCESS NAME.: <acnm>
TRACK: <constant exp>
SECTOR: <constant exp>
FIRST WORD: <constant exp>
VERIFICATION DATA: <list>
DATA.: <list>
Example:
£1 MAD
MODIFY ABSOLUTE DISE
DISK UNIT: L[e202
OUTPUT ACCESS MNAME:
TRACE: O
SECTOR: ©
FIRST WIRD: 4
VERIFICATION DATA: O320320
DATA: 02020
0004 2020 2020 2410 0205 0120 0001 G000 0000
L1

7,

e " - - - - . .

disk drive device name
define where output goes
starting track address
starting sector address
starting word to modify
data used to verify

new data

7.3.25 SADU — SHOW ALLOCABLE DISK UNIT. All disks on a DX10 system are addressed in
allocable disk units (ADUs). The maximum number of ADUs on a disk is 65,535. Therefore, if a
disk contains more than 65,535 sectors, multiple sectors are used as ADUs. ADUs are the basic

addressable disk unit in a DX10 system.

SADU outputs the contents of the specified ADU to the specified device. Output default is to the

terminal making the request.
Syntax:

SADU
SHOW ALLOCABLE DISK UNIT
DISK UNIT:
ADU NUMBER:
SECTOR OFFSET:

FIRST WORD:

NUMBER OF WORDS:
OUTPUT ACCESS NAME:

<name>

<constant exp>
<constant exp>

{<constant exp>
0

<constant exp>
<acnm>

!

disk unit
ADU to be shown
sector offset

first word to show

number of words to show
output device or file

7-21

Digital Systems Division

[o]
q_r@} 946250-9704

Example:

L1 =AD
SHOW ALLOCABLE DISE UNIT
DISK UNIT: Ds0Z2
Al NUMBER: 1
SECTOR OFFSET: O
FIRST WORD: O
NUMBER OF WORDS: 4
OUTFPUT ACCESS NAME:

ADLL 0001 SECTOR 00 RECORD LENGTH 0120 BYTES (01 SECTORS).
Q000 D000 Q000 QOO0 OO0
[3

7.3.26 MADU — MODIFY ALLOCABLE DISK UNIT. All disks on a DX10 system are addressable
in addressable disk units (ADUs). (See SADU.)

MADU modifies the specified ADU on disk as directed by operator inputs. If verification data
does not match the data already on disk, the modification will not be performed.

Syntax:
MADU
MODIFY ALLOCABLE DISK UNIT
DISK UNIT: <name> disk drive device name
OUTPUT ACCESS NAME: <name> define where output is to go
ADU NUMBER: <constant exp> number of ADU to be shown
SECTOR OFFSET: <constant exp> which sector in ADU
FIRST WORD: <constant exp> first word of interest
VERIFICATION DATA: <constant exp list> data to verify
DATA: <constant exp list> data to load

Example:
[l M™MADu

MODIFY ALLOCABRLE DISK LUNIT
DISK UNIT: DEO2
QUTPUT ACCESS NAME:
AU NUMBER: 1
SECTOR OFF3ET: O
FIRST WORD: O
YVERIFICATION DATA: O
DATA: Q100401000

0000 1100 0000 0000 Q000 0000 0000 0000 0000 N
Ll

7.3.27 SRF - SHOW RELATIVE TO FILE. The Show Relative to File command displays any
word or group of words within a file. It assumes that the user has knowledge of the file structure and
allows the user to address any word within the file. If a word address is over 64K (65,536) bytes, the
user must supply the record number and a word offset into the record.

7-22 Digital Systems Division

[o]
(’r@; 946250-9704

Syntax:
SRF
SHOW RELATIVE TO FILE
PATHNAME: <acnm> file pathname
RECORD NUMBER: {<Con5tant eXP>} must be specified if word
0 address is over 64K bytes
FIRST WORD: <constant exp> first word to show (must
be an even byte address)
NUMBER OF WORDS: <constant exp> length of block to show
OUTPUT ACCESS NAME: <acnm> output device or file
Example:
[] =RF

ZHOW RELATIVE TO FILE

PRATHMAME: | ZEPROC.XE -

RECORD MUMEER: 0

FIRET WORD: 0

HUMEER OF WORDE: &

ODUTPLIT ACCEZ=: MAME:

FILE: .=¥PROC.®E RECORD:OO000D

000 0000 0013 1A0E SS242 2023 4552 e e. .. BB 0 EX
{]

7.3.28 MRF - MODIFY RELATIVE TO FILE. The Modify Relative to File command changes
data at an absolute word address within a file. It is assumed that the user has knowledge of the file
and disk structure. Addresses above 64K (65,536) bytes must have a record number. Words below
64K bytes can be addressed directly and the sector is located by the program. Verification should be
used if the file is critical to a program.

Syntax:
MRF
MODIFY RELATIVE TO FILE
PATHNAME: <acnm> pathname to file
OUTPUT ACCESS NAME: <acnm> output device or file
<constant exp> sector offset-required if
RECORD NUMBER: { 0 } word address is over 64K
B bytes
FIRST WORD: <constant exp> address of first word (must
' be an even byte address)
VERIFICATION DATA: <constant exp list> data to be verified
DATA: <constant exp list> data to be loaded
CHECKSUM: <constant exp> Optional verification data

for new data. If the check-
sum is not known, leaving
this field blank will cause
the checksum to be printed
out. The checksum is an
exclusive OR of each word
of new data.

723 Digital Systems Division

(o]
‘_r@:p 946250-9704

Example:

[I
MOTIIFY RELATIVE

"’:-)

T FILE
THMNAME
COITRUT &0 TOMAME
RO MUMDET
FIRET WORD:

YRS ICATION DAaTA: O
DaTay 100
CHECHSME 100

ri

7.4 COMMANDS FOR CONTROLLED TASKS

These commands may be used for tasks in the controlled mode (see XD command in the next
paragraph). The SCI commands may also be used for controlled tasks, and some SCI commands
result in additional output. For example, if a breakpoint occurs in a controlled task, then a panel
is displayed. Breakpoints in noncontrolled tasks produce no output. If the linked object was
specified in the XD command, then symbolic expressions may be used for integer parameters.
The controlled mode commands are explained in the following paragraphs.

7.4.1 XD — DEBUG COMMAND. This command places the specified task into controlled mode.
The runtime ID is optional, but cannot be that of a system task. If no runtime ID is given, an auto-
matic call is made to the Execute and Halt Task (XHT) command to place the task into execution.
The symbol table object file is optional and its presence determines whether symbolic expressions
are allowed on any of the subsequent debug commands. If a symbol table was specified to the
Link Editor (SYMT option selected) and if the controlled task symbol table object file is specified,
then symbolic expressions involving symbols in the object code symbol table may be used in com-
mands which call for string parameters. The debugger may be used to simulate 990/12 object code
(when executing on a 990/12) or 990/10 object code (when executing on a 990/10 or a 990/12).
The command defaults to object code of the type of the host computer. Only one task for each
station may be in debug mode at a given time.

Syntax:
XD
EXECUTE DEBUG
‘<int> |
RUN ID: | previous {
SYMBOL TABLE OBJECT FILE: <acnm>
Y)
990/12 OBJECT CODE?: Nf
Example:
EXECUTE DEBUG

RUN ID: >9A
SYMBOL TABLE OBJECT FILE: .OBJ.PROG
990/12 OBJECT CODE: N

7-24 Digital Systems Division

o
@ 946250-9704

Example:

EXECUTE DEBUG
RUN ID: >9A
SYMBOL TABLE OBJECT FILE: .OBJ.PROG

7.4.2 ST — SIMULATE TASK. The ST command provides controlled and traced execution of
the instructions in the controlled task. Controlled execution continues until the execution of a
specified number of instructions has been simulated, or until a specified address is placed in the
PC, or the occurrence of a breakpoint or simulated breakpoint, whichever occurs first. Simu-
lation may be continued by entering the F3 function key.

Simulated execution continues without operator intervention and locks out further SCI com-
mands. The user can regain SCI capabilities by returning to the command mode. The ST or
Resume Simulated Task (RST) commands may be used to reenter simulated execution.

Syntax:
ST
SIMULATE TASK
FOR: [<full exp>] symbolic expression
FROM: [<full exp>] symbolic expression

TO: [<full exp>] symbolic expression

The FOR operand is an expression that specifies the number of instruction simulations to be
performed. The value of the FOR operand is less than or equal to 32,767. When the specified
number of simulations has been performed, SCI displays the following message and halts
simulation:

TIME OUT

When the FOR operand is omitted, the FOR value specified in the previous ST command is
used. If there was no previous ST command, ‘1’ is used. Simulation halts if a breakpoint or
simulated breakpoint is encountered, or if the execution of an instruction at a specified address
is simulated. If simulation continues without encountering these conditions, the user may regain
control of the program by returning to the command mode of SCI.

The FROM address is a constant, variable, or expression that specifies the address of the first
instruction to be simulated. When the address is omitted, simulation begins at the instruction
whose address is in the PC.

The TO address is a constant, variable or expression that specifies the address of the last
instruction to be simulated. Following simulation of that instruction, SCI displays the panel and
halts simulation. The TO address may be less than the FROM address. When the TO address is
not entered, simulation continues until a breakpoint or simulated breakpoint is encountered, or
the user returns to the command mode.

The following example shows an ST command:

SIMULATE TASK Begin simulation of program
FOR: 25 IDTNAM at location BEGIN

FROM: JIDTNAM.BEGIN halting after simulating the
TO: . . END execution of 25 instructions,

or at location .END.

7-25 Digital Systems Division

o]
@ 946250-9704

Single instruction execution is performed by using a FOR parameter equal to 1.

7.4.3 ASB — ASSIGN SIMULATED BREAKPOINT. This command sets up a breakpoint on a
range of values for memory alteration (A), CRU access (C), PC value (P), memory references (R),
status value (S), or XOPs (X). A memory write operation which does not change the value in
memory is not a memory alteration. The breakpoints set with this command are only valid
during a Simulate command. Breakpoints, in this case, are conditions which stop execution but
allow execution to be resumed on an operator command (either RST or ‘F3’ function key). Each
simulated breakpoint is assigned a number which is displayed at the completion of the “ASB”
command. When a breakpoint occurs during simulation, a panel and the breakpoint number is
displayed along with the display string. COUNT specifies the number of times the breakpoint

will be passed before execution is halted.

Syntax:
ASB

ASSIGN SIMULATED BREAKPOINT

ON(A,C, P, R, S, X):

FROM:

THRU:

COUNT:

DISPLAY:

Examples:

(<a>

<Cc>
P

<R>

<S>

\<X>
<full exp>

<full exp>

<full exp>

<full exp>

ASSIGN SIMULATED BREAKPOINT

ON(A,C, P, R, S, X):
FROM:

THRU:

COUNT:

DISPLAY:

A

6

>1C0

(Press RETURN)
(Press RETURN)

ASSIGN SIMULATED BREAKPOINT

ON(A,C, P, R, S, X):
FROM:

THRU:

COUNT:

DISPLAY:

P
IDTNAM.BRANCH
. . BRANCH+ 24

2

. . TABLE

Alteration (memory)

-CRU Access

PC Value

Reference (memory)

ST Value

XOP Level

symbolic expression for the
lower limit for break-

pointing

symbolic expression for the
upper limit for break-

pointing

symbolic expression which
specifies the number of times
this breakpoint is to be encoun-
tered before execution is
halted

symbolic expression for the
memory address to be displayed
when this breakpoint is reached

Set a breakpoint on memory
locations 6 through 1CO.
Display the program counter
(PC) if the breakpoint is taken.
Count defaults to 1.

Set a breakpoint on the second
occurrence of a PC value between
BRANCH and BRANCH+ 24

in the module IDT NAM.

Display location TABLE in
IDTNAM if the breakpoint
occurs.

7-26

Digital Systems Division

[o]
%} 946250-9704

7.4.4 DSB — DELETE SIMULATED BREAKPOINT. This command allows the user to delete a
list of simulated breakpoints assigned with the ASB command. The only argument is the
breakpoint number assigned by the ASB command. The keyword “ALL” deletes all of the
simulated breakpoints.

Syntax:
DSB
DELETE SIMULATED BREAKPOINT
REAKPOINT NUMBERS: <full exp> number of simulated
B U ’ <ALL> breakpoint
Example:

DELETE SIMULATED BREAKPOINT
BREAKPOINT NUMBERS: 3

7.4.5 RST — RESUME SIMULATED TASK.This command allows the user to resume simulation
following a breakpoint, a simulated breakpoint or simulation of a specified number of instruc-
tions (time out). The last entered values for “FOR” and “TO” are used as the RST limits. Upon
reaching a terminating condition (breakpoint, simulated breakpoint, time out or “TO” address), a
panel and termination reason are displayed. Simulation may be continued by entering an ‘F3’
function key or terminated by returning to the command mode.

Syntax:

RST
RESUME SIMULATED TASK

74.6 LSB — LIST SIMULATED BREAKPOINTS. The List Simulated Breakpoints command is
used to display all active simulated breakpoints. The display is shown in figure 7-2. The first
column lists the numbers assigned when the breakpoints were set. In the figure, the numbers
start at one and are consecutive, because the breakpoints listed were set consecutively. The
TYPE column lists letters of the “on” parameter for Assign Simulated Breakpoints command to
identify the breakpoints shown in the ASB examples. The remaining column lists the current
count (the number of times the program has yet to go: through the breakpoint) and the COUNT
column lists the count operand entered when the breakpoints were set. The DISPLAY column
lists the display operand. The FROM and THRU columns list the corresponding operand
addresses. When the operands represent CRU addresses, ST register values, or XOP levels, the
operands are listed as hexadecimal numbers.

Syntax:

LSB
LIST SIMULATED BREAKPOINTS

7-27 Digital Systems Division

o]
{—@Pp 946250-9704

[J LZE
LIZT ZIMULATED EFERKFOIMTE
1 TYPE=F FROM=>000A THRD=: 004 COUMT=>000A REMAIMING=: 000/ DIZPLAY==>0021
= = 1P =0aan 1 = =)
4 [
b= A
& [
[1

Figure 7-2. Display of Simulated Breakpoints

7.4.7 QD — QUIT DEBUG. This command takes a task out of debug (or “controlled””) mode.
The user has the option of killing the task at this point. If the user chooses not to kill the task,
it will be left unconditionally suspended. The user may still issue any of the general SCI
commands. The “resume task™ or “‘proceed from breakpoint” commands (depending on whether
the task is at a breakpoint) may be used to activate the task.

Syntax:
QD
QUIT DEBUG MODE
KILL TASK?: $<N>I
| Y
Example:
QUIT DEBUG MODE
KILL TASK?: YES

7.5 STATION DEPENDENT DISPLAYS

As mentioned previously, the displays generated by debugging SCI commands vary in format and
content depending on the display device. High-speed display terminals (such as Video Display
Terminals) display more information than slower, hard copy terminals. Table 7-2 lists the display
generated by several of the debug commands in varying environments.

7-28 Digital Systems Division

946250-9704

Table 7-2. Command Displays

Hard Copy Hard Copy VDT VDT

Command Regular Debug Regular Debug

AB - — - PANEL

DB — — — PANEL

PB - — - PANEL

DBP — - - PANEL

LB BRKPTS BRKPTS BRKPTS BRKPTS

HT - - - PANEL

RT — - ~ PANEL

MM INTERACT INTERACT INTERACT INTERACT PANEL

LM TLF TLF TLF TLF

FW MSG ORTLF MSGORTLF MSG OR TLF MSG + PANEL OR TLF

FB MSG ORTLF MSG ORTLF MSG OR TLF MSG + PANEL OR TLF

SIR INT REG INT REG PANEL PANEL

MWR INTERACT INTERACT INTERACT INTERACT PANEL

SWR WKSPC WKSPC PANEL PANEL

SP PANEL PANEL PANEL PANEL

\Y% VALUES VALUES VALUES VALUES

XD - - - PANEL

ASB - - - BRKPT NO. + PANEL

DSB - - - PANEL

LSB - SIMULATED BRKPTS - SIMULATED BRKPTS

ST - TRAP # OR ‘TIMEOUT’ — TRAP # OR ‘TIMEOUT+PANEL

RST - TRAP # OR ‘TIMEOUT’ - TRAP # OR ‘TIMEOUT’+PANEL

QD - = - -

TLF = contents of terminal local file
PANEL = Debug Panel, figure 5-1
INT REG = Internal registers

7-29/7-30 Digital Systems Division

[o]
Qﬂ@ 946250-9704

SECTION 8

EXAMPLE PROGRAM

8.1 RUNTHROUGH OF AN ASSEMBLY LANGUAGE EXAMPLE PROGRAM

The runthrough given in this section uses a demonstration program supplied by Texas Instruments
with the DX10 operating system. The source code for the program is contained in a disk file with the
pathname DSO1.TI.SOURCE.TSTSDS. The program creates a disk file named DS01. TSTMSG and
writes a message to the file. You will be able to edit and assemble the source, link the object, and
then execute the program by installing the linked object as a task on the system program file and exe-
cuting that task.

The procedures given in this section follow those given in Section 1 of this document. Since step one,
design and initial coding, and step two, entering the program, have been done, the runthrough could
begin with step three, assembling the source code. However, to demonstrate the use of Text Editor,
we are beginning with step two to modify the source code.

Before beginning the runthrough, power up the computer and the terminal, and log in at the
terminal using the procedures described in Volume I1I.

The procedures given in this section are for use on a 911 VDT. Refer to table 2-1 for the equivalent
key for other terminals.

For this example, it is convenient to create a directory file structure to simplify file references.
A suggested syntax is as follows:

Source files: <volume name> . <programmer name>> .SOURCE. <program name>
Object files: <volume name> . <programmer name> .OBJECT. <program name>
Listing files: <volume name> . <programmer name> .LIST. <program name>

Linked Output files: <volume name> . <programmer name> .LINKED. <program name>
Error files: <volume name> . <programmer name> .ERROR. <program name>

Link Edit Control files: <volume name> . <programmer name> .CONTROL. <program name>>

8-1 Digital Systems Division

o
%@ 946250-9704

The volume name is optional if the system disk (DSO1) is used, and it may be omitted. Use
either your first or last name for the programmer name entry. The first step is to create a direct-
tory file. Enter the CFDIR command, which causes the following to be displayed:

CREATE DIRECTORY FILE

PATHNAME:
MAX ENTRIES:

Enter the programmer name you selected, preceded by a period, in response to the PATHNAME:
prompt. In response to the MAX ENTRIES: prompt, enter 10.

Repeat the command five times to create the following directories (enter these pathnames in
response to the PATHNAME prompt):

. <programmer name> .OBJECT

. <programmer name> .LIST

. <programmer name> .ERROR

. <programmer name> .CONTROL
. <programmer name> .LINKED

The MAX ENTRIES: prompt is answered with 1 each time. Since it can become tedious to enter
the full file pathname every time it is required, it is convenient to assign synonyms to the
directory pathnames and use them when required. Synonyms are assigned by use of the Assign

Synonym SCI command. The command must be called for each synonym assignment. Enter AS,
and the following is displayed:

ASSIGN SYNONYM VALUE
SYNONYM:
VALUE:

The example uses the following:

SYNONYM: S

VALUE: DSO1.TL.SOURCE
SYNONYM: 0

VALUE: DSO01 . <programmer name> .OBJECT
SYNONYM: L

VALUE: DSO01 . <programmer name> .LIST
SYNONYM: C

VALUE: DS01 . <programmer name> .CONTROL
SYNONYM: E

VALUE: DSO01 . <programmer name> .ERROR
SYNONYM: P

VALUE: DSO01 . <programmer name>> .PROG
SYNONYM: LK

VALUE: DSO1 . <programmer name> .LINKED

8-2 Digital Systems Division

[e]
{—\@@ 946250-9704

Call the Text Editor by entering XE. The following is then displayed:

INITIATE TEXT EDITOR
FILE ACCESS NAME:

Respond to the FILE ACCESS NAME: prompt with the following:

FILE ACCESS NAME: S.TSTSDS
The response could also be DSO1.TL.SOURCE.TSTSDS. To modify the message, perform the
following:

1. Enter the command mode by pressing the CMD key.

2. Key in RS to specify the Replace String command and press the RETURN key.

3. The prompts displayed and the responses are as follows:

REPLACE STRING

NUMBER OF OCCURRENCES: 1
START COLUMN: 37
END COLUMN: 39
STRING: OLD
CHANGE: NEW

Press RETURN to activate the command processor.

When the Text Editor completes the string replacement, the line containing the old
string, now changed, is displayed with the cursor in column one.

4. Press the CMD key to enter the command mode.

5. Enter QE and press RETURN to call the Quit Editor command. The following display
is then presented:

ABORT?: NO
6. Press the RETURN key. The following display is then presented:

OUTPUT FILE ACCESS NAME: S.TSTSDS
REPLACE?: NO
MOD LIST ACCESS NAME:

7. Press RETURN to accept the OUTPUT FILE ACCESS NAME entry. Enter Y in response
to the REPLACE prompt and press the RETURN key. Press the RETURN key again to
indicate that no modifications list is desired.

8-3 Digital Systems Division

[o]
% 946250-9704

Once the text edit is complete, the source code must be assembled. Perform the following steps:

1. Invoke the Macro Assembler by entering XMA and pressing the RETURN key. The
following display is then presented:

EXECUTE MACRO ASSEMBLER

SOURCE ACCESS NAME:

OBJECT ACCESS NAME:

LISTING ACCESS NAME:

ERROR ACCESS NAME:

OPTIONS:

MACRO LIBRARY PATHNAME:
PRINT WIDTH: 80
PAGE LENGTH: 60

2. Respond to the prompts in the following manner (press RETURN after each entry):

SOURCE ACCESS NAME: S.TSTSDS
OBJECT ACCESS NAME: 0.TSTSDS
LISTING ACCESS NAME: L.TSTSDS

ERROR ACCESS NAME: E.TSTSDS

OPTIONS: Press RETURN

MACRO LIBRARY PATHNAME: Press RETURN
PRINT WIDTH: 80 Press RETURN

PAGE LENGTH: 60 Press RETURN

3. Enter ‘WAIT’ and press the RETURN key. When the assembly completes, the
following message is displayed if no errors occur:

MACRO ASSEMBLY COMPLETE, 0000 ERRORS, 0000 WARNINGS

If errors are indicated, use the Show File command (SF) to view the contents of the
E.TSTSDS file, which is the error file. Enter the command mode by pressing CMD.

The output of the Macro Assembler must now be linked by the following procedures:

1. First, call the Text Editor, by entering XE, to create the Link Edit control file. The
following display is presented:

INITIATE TEXT EDITOR
FILE ACCESS NAME: S.TSTSDS

2. Press ERASE FIELD to clear the entry. Press RETURN.

3. Press F7 to enter the compose mode.

4. Press the unlabeled gray key to insert line.

5. Key the following and terminate each line by pressing the RETURN key:
TASK TSTSDS

INCL 0.TSTSDS
END

8-4 Digital Systems Division

[e]
{@ 946250-9704

6. Enter the command mode (CMD) and then enter QE to quit the editor. Respond to the
prompts as follows:

ABORT?: NO
OUTPUT FILE ACCESS NAME: C.TSTSDS
REPLACE?: Y
MOD.LIST ACCESS NAME: (Press RETURN)

7. Call the Link Editor by keying in XLE. Respond to the prompts as follows:
EXECUTE LINKAGE EDITOR

CONTROL ACCESS NAME: C.TSTSDS
LINKED OUTPUT ACCESS NAME: LK. TSTSDS
LISTING ACCESS NAME: L.TSTSDS
PRINT WIDTH: 80

When the SCI command prompt appears enter ‘WAIT” and press the RETURN key. The
following message is displayed:

WAITING FOR BACKGROUND TASK TO COMPLETE.
When the Link Editor completes, the following message is displayed:

LINK EDITOR COMPLETED, 0 ERRORS, 0 WARNINGS:

Enter the command mode (CMD).

The program must now be installed as a DX10 task by use of the Install Task command. A
program file is required for the Install Task command. You can either create your own program
file using the Create Program File command (CFPRO, described in Volume II), or use the system
program file. This runthrough uses the system program file. Perform the following to install the
task.

Call the command by entering IT. Respond to the prompts as follows:

INSTALL TASK
PROGRAM FILE OR LUNO: 0
TASK NAME: TSTSDS
TASK ID: 0
OBJECT PATHNAME OR LUNO: LK.TSTSDS
PRIORITY: 3
DEFAULT TASK FLAGS?: YES
ATTACHED PROCEDURE?: NO

8-5 Digital Systems Division

Q
J"@ 946250-9704

The installed ID is returned by the system. Return to the command mode by pressing CMD.

To execute the task, use the Execute and Halt Task (XHT) command. Use of this command
activates the task but does not begin execution. The XHT command is useful when the debugging

commands are to be used for the task. When XHT is entered, the following prompt is displayed.
Respond as shown:

EXECUTE AND HALT TASK
PROGRAM FILE NAME OR LUNO: 0
TASK NAME OR ID: TSTSDS
PARMI: 0
PARM2: 0
STATION ID: ME

Note that the runtime ID of the task is returned on the display. Remember the runtime ID for the
next step. Return to the command mode.

Place the task in the debug mode by entering the Execute Debug (XD) command. Respond to
the following prompts as shown:

INITIATE DEBUG MODE
RUN ID: runtime id
SYMBOL TABLE OBJECT FILE: 0.TSTSDS
990/12 OBJECT CODE ?:

To begin execution of the task, use the Simulate Task (ST) command. The prompts and
responses are as follows:

SIMULATE TASK
FOR: 1000
FROM: (Press RETURN)
TO: (Press RETURN)

The message TIME OUT is displayed. Return to the command mode.

Quit the debugger by entering the QD command. The prompts and responses are as follows:

QUIT DEBUG
KILL TASK: YES

The Show File command is used to verify that the test program has created a file that contains
the text message.

When SF is entered, respond to the prompt as shown:

SHOW FILE
FILE ACCESS NAME: DSO01. TSTMSG

The contents of the file are displayed and the message should read ‘THIS IS THE NEW MESSAGE’.
Press the CMD key to get the initial SCI menu. Use the Text Editor, as previously described, to
return the original value of the message (change ‘NEW’ to ‘OLD’).

8-6 Digital Systems Division

o]
%@ 946250-9704

To conserve disk space, it is recommended that the Delete File command be used to delete the
DS01.TSTMSG file, and that the Delete Directory command be used to delete the directory that
contains the files created in this runthrough. Perform the following steps:

1. Enter DF to delete the test file. Respond as follows:

DELETE FILE
FILE ACCESS NAME: DS01.TSTMSG

2. Enter DD to delete the directory. Respond as follows:
DELETE DIRECTORY

PATHNAME: . <programmer name>>
LISTING ACCESS NAME: (Press RETURN)
ARE YOU SURE: YES

The directory created and all files in it are now deleted. Return the terminal to the
command mode.

8-7/8-8 Digital Systems Division

946250-9704

APPENDIX A

STANDARD DEVICE NAMES

The following list defines the standard DX10 device name format.

Device Name!
Disk DSxx
Interactive Terminals® STxx
Cassette Drives CSxx
Flexible Diskette (single density) DKxx
Magnetic Tape MTxx
Card Readers , CRxx
Line Printers LPxx
Communications CMxx
AMPL Emulator EMxx
AMPL Trace Emulator TMxx

Notes:

'"The letters “‘xx’’ represent a two-digit number
assigned by SYSGEN. Values are sequential
within device type and are in the range 0l
through 99.

!Includes: VDTs, KSR, 820, ASR, (excluding
cassette units) and any other interactive key-
board device.

A-1/A-2 Digital Systems Division

[o]
%@ 946250-9704

APPENDIX B

COMMAND SUMMARY

ALIAS COMMANDS
AA
DA

BACKGROUND/BATCH COMMANDS

BATCH
EBATCH
KBT
SBS
WAIT
XB

BREAKPOINT COMMANDS

AB

DB

DPB

LB

PB

CREATE COMMANDS
CF
CFDIR
CFIMG
CFKEY
CFPRO
CFREL
CFSEQ
CSF
ENDKEY
KEY

COPY COMMANDS
AF
cC
CKS
CSM
CSK
DCOPY
PF
VB
VC

DEBUG COMMANDS
/BKPT
/GDEB
/SDEB

DELETE COMMANDS
DD
DF

ADD ALIAS
DELETE ALIAS FROM PATHNAME

BEGIN BATCH EXECUTION
END BATCH EXECUTION
KILL BACKGROUND TASK
SHOW BACKGROUND STATUS
WAIT FOR BACKGROUND
EXECUTE BATCH SCI

ASSIGN BREAKPOINT

DELETE BREAKPOINT

DELETE AND PROCEED FROM BREAKPOINT
LIST BREAKPOINTS

PROCEED FROM BREAKPOINT

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

FILE

DIRECTORY FILE

IMAGE FILE

KEY INDEX FILE
PROGRAM FILE
RELATIVE RECORD FILE
CREATE SEQUENTIAL FILE
CREATE SYSTEM FILES

END CFKEY SPECIFICATION
CFKEY KEY SPECIFICATION

APPEND FILE
COPY/CONCATENATE

COPY KEY TO SEQUENTIAL FILE
COPY SEQUENTIAL MEDIA

COPY SEQUENTIAL TO KEY

DISK COPY/RESTORE UTILITY
PRINT FILE

VERIFY BACKUP (DIRECTORY)
VERIFY COPY (DIRECTORY)

BREAKPOINT COMMANDS
GENERAL DEBUG COMMANDS
SPECIAL DEBUG COMMANDS

DELETE DIRECTORY
DELETE FILE

B-1 Digital Systems Division

[e]
\J’@ 946250-9704

DEVICE OPERATIONS
/DISK
/DVICE
/STAT
/TERM

DIRECTORY COMMANDS
BD
CD
CFDIR
DD
LD
RD
VB
VC

DISK COMMANDS
CKD
DCOPY
INV
IV
MAD
MADU
MD
MVI
SAD
SADU
SVS
uv
XCU

DEVICES

cC
HO
KO
PF
RO
S0S
RCRU
WCRU

TEXT EDIT COMMANDS
CL
DL
DS
FS
IF
ML
MR
MRM
MT
QE
RS

DISK COMMANDS
DEVICES

STATUS COMMANDS
TERMINALS

BACKUP DIRECTORY

COPY DIRECTORY

CREATE DIRECTORY FILE
DELETE DIRECTORY

LIST DIRECTORY

RESTORE DIRECTORY

VERIFY BACKUP (DIRECTORY)
VERIFY COPY (DIRECTORY)

CHECK DISK FOR CONSISTENCY
DISK COPY/RESTORE UTILITY
INITIALIZE NEW VOLUME
INSTALL VOLUME

MODIFY ABSOLUTE DISK

MODIFY ALLOCATABLE DISK UNIT
MAP DISK

MODIFY VOLUME INFORMATION
SHOW ABSOLUTE DISK

SHOW ALLOCATABLE DISK UNIT
SHOW VOLUME STATUS

UNLOAD VOLUME

EXECUTE 2.2 CONVERSION UTILITY

COPY/CONCATENATE

HALT OUTPUT AT DEVICE

KILL OUTPUT AT DEVICE

PRINT FILE

RESUME OQUTPUT AT DEVICE

SHOW OUTPUT STATUS

READ CONTENTS OF SPECIFIED CRU REGISTER
WRITE VALUE TO SPECIFIED CRU ADDRESS

COPY LINES

DELETE LINES

DELETE STRING

FIND STRING

INSERT FILE

MOVE LINES

MODIFY ROLL VALUE
MODIFY RIGHT MARGIN
MODIFY TAB SETTINGS
QUIT EDITOR

REPLACE STRING

B-2 Digital Systems Division

[e]
% 946250-9704

SL - SHOW LINES
XE - INITIATE TEXT EDITOR
XES - INITIATE TEXT EDITOR WITH SCALING
FILE OPERATIONS
/DIR - DIRECTORY COMMANDS
/EDIT - TEXT EDIT COMMANDS
/FILEC - FILE COMMANDS
/LUNO - LUNO
/STAT - STATUS COMMANDS
FILE COMMANDS
/AL - ALIAS COMMANDS
/CF - CREATE COMMANDS
/COPY - COPY COMMANDS
/DEL - DELETE COMMANDS
/LUNO - LUNO
/MOD - MODIFY COMMANDS
/SHOW - SHOW COMMANDS
/SYN - SYNONYM COMMANDS
GENERAL DEBUG COMMANDS
FB - FIND BYTE
FW - FIND WORD
HT - HALT TASK
KT - KILL TASK
LM - LIST MEMORY
LSM - LIST SYSTEM MEMORY
MIR - MODIFY INTERNAL REGISTERS
MM - MODIFY MEMORY
MSM ~ MODIFY SYSTEM MEMORY
MWR - MODIFY WORKSPACE REGISTERS
RT - RESUME TASK
SIR - SHOW INTERNAL REGISTERS
SF - SHOW PANEL
SV - SHOW VALUE
SWR - SHOW WORKSPACE REGISTERS
XHT - EXECUTE AND HALT TASK

LANGUAGE PROCESSORS
XLE
XMA

EXECUTE LINKAGE EDITOR
EXECUTE MACRO ASSEMBLER

B-3 Digital Systems Division

(e}
{i]@ 946250-9704

LUNO
AGL
AL
BL
FL
MLP
RAL
RGL
RL
RWL
SIS

MISCELLANEOUS COMMANDS
CM
IDT
LC
LDC
MSG
Q
RCRU
SDT
SV
WAIT
WCRU
XANAL
XCU
XGEN

MODIFY COMMANDS
MDS
MFN
MFP
MKL
MLP
MOE
MPE
MPI
MRF
MTE
STI
XE

OVERLAY COMMANDS
DO
I0
IS0
MOE

ASSIGN GLOBAL LUNO

ASSIGN (TERMINAL LOCAL) LUNO
BACKSPACE LOGICAL UNIT
FORWARD SPACE LOGICAL UNIT
MODIFY LUNO PROTECTION
RELEASE ALL LUNO'S

RELEASE GLOBAL LUNO

RELEASE LUNO

REWIND LOGICAL UNIT

SHOW I/0 STATUS

CREATE MESSAGE

INITIALIZE DATE AND TIME

LIST COMMANDS

LIST DEVICE CONFIGURATION

WRITE MESSAGE TO TERMINAL
QUIT/LOGOUT

READ CONTENTS OF SPECIFIED CRU REGISTER
SHOW DATE AND TIME

SHOW VALUE

WAIT FOR BACKGROUND

WRITE VALUE TO SPECIFIED CRU ADDRESS
ANALYZE DX10 CRASH FILE

EXECUTE 2.2 CONVERSION UTIL

EXECUTE GEN990 - AUTO SYSGEN

MODIFY
MODIFY
MODIFY
MODIFY

MODIFY
MODIFY
MODIFY
MODIFY

DEVICE STATUS

FILE NAME

FILE PROTECTION

KEY INDEXED FILE LOGGING

LUNO PROTECTION
OVERLAY ENTRY
PROCEDURE ENTRY
PROGRAM IMAGE
MODIFY RELATIVE TO FILE
MODIFY TASK ENTRY

SHOW TERMINAL INFORMATION
INITIATE TEXT EDITOR

DELETE OVERLAY

INSTALL OVERLAY
INSTALL SYSTEM OVERLAY
MODIFY OVERLAY ENTRY

Digital Systems Division

[e]
{_@@ 945250-9704

PROGRAM DEVELOPMENT
/DEBUG
JEDIT
/LANG
/OVER
/PROC
/PFIL
/SM
/SYN
/TASK
/TX
/MISC

PROGRAM FILE COMMANDS
CD
CFPRO
CPI
MOE
MPE
MPF
MPI
MTE
SPI

PROCEDURE COMMANDS
DP
IP
MPE

SPECIAL DEBUG COMMANDS
ASB
DSB
LSB
QD
RST
ST
XD

SYSGEN OPERATIONS
CSF
IS0
MVI
XANAL
XCU
XGEN

DEBUG COMMANDS

TEXT EDIT COMMANDS
PROGRAMMING LANGUAGES
OVERLAY COMMANDS
PROCEDURE COMMANDS
PROGRAM FILE COMMANDS
SORT/MERGE

SYNONYM COMMANDS

TASK COMMANDS

TX/DX CONVERSION
MISCELLANEOUS COMMANDS

COPY DIRECTORY

CREATE PROGRAM FILE
COPY PROGRAM IMAGE
MODIFY OVERLAY ENTRY
MODIFY PROCEDURE ENTRY
MAP PROGRAM FILE
MODIFY PROGRAM IMAGE
MODIFY TASK ENTRY

SHOW PROGRAM IMAGE

DELETE PROCEDURE
INSTALL PROCEDURE
MODIFY PROCEDURE ENTRY

ASSIGN SIMULATED BREAKPOINT
DELETE SIMULATED BREAKPOINTS
LIST SIMULATED BREAKPOINTS
QUIT DEBUG MODE

RESUME SIMULATED TASK
SIMULATE TASK

INITIATE DEBUG MODE

CREATE SYSTEM FILES

INSTALL SYSTEM OVERLAY

MODIFY VOLUME INFORMATION
ANALYZE DX10 CRASH FILE
EXECUTE 2.2 CONVERSION UTILITY
EXECUTE GEN990-AUTO SYSGEN

B-5 Digital Systems Division

(o]
@ 945250-9704

SHOW COMMANDS
LD
LLR
MD
MKF
MPF
PF
SF
SP1
SRF
STI

SORT/MERGE
XSM
XSMF

DX10 OPERATION
/BGB
/COPY
/DIR
/DVICE
/SM
/STAT
/TASK
/TX
/VOL
/WARM
/MISC

STATUS COMMANDS
LTS
MDS
MTS
SBS
SIS
S0S
STI
STS
SVS

SYNONYM COMMANDS
AS
LS
MS
STI

LIST DIRECTORY

LIST LOGICAL RECORD

MAP DISC

MAP KEY INDEXED FILE

MAP PROGRAM FILE

PRINT FILE

SHOW FILE

SHOW PROGRAM IMAGE

SHOW RELATIVE TO FILE
SHOW TERMINAL INFORMATION

EXECUTE SORT/MERGE
SORT/MERGE FOREGROUND

BACKGROUND/BATCH COMMANDS
COPY COMMANDS
DIRECTORY COMMANDS
DEVICES

SORT/MERGE

STATUS COMMANDS

TASK COMMANDS

TX/DX CONVERSION
VOLUME COMMANDS
WARMSTART COMMANDS
MISCELLANEOUS COMMANDS

LIST TERMINAL STATUS
MODIFY DEVICE STATE
MODIFY TERMINAL STATUS
SHOW BACKGROUND STATUS
SHOW I/0 STATUS

SHOW OUTPUT STATUS
SHOW/MODIFY TERMINAL INFO
SHOW TASK STATUS

SHOW VOLUME STATUS

ASSIGN SYNONYM VALUE

LIST SYNONYMS

MODIFY SYNONYMS

SHOW TERMINAL INFORMATION

B-6 Digital Systems Division

(o]
@ 946250-9704

TASK COMMANDS
AT
DT
HT
IT
KT
MTE
RT
STS
XHT
XT
XTS

TERMINALS
LTS
MTS
STI

TX/DX CONVERSION
DXTX
TXCP
TXDX
TXFD
TXMD
TXSF

USER ID COMMANDS
AUI
DUI
LUI
MUI

VOLUME COMMANDS
INV
Iv
MVI
SVS
uv

WARMSTART COMMANDS
IDT
INV
IS
ISL
IV
XANAL

ACTIVATE TASK

DELETE TASK

HALT TASK

INSTALL TASK

KILL TASK

MODIFY TASK ENTRY
RESUME TASK

SHOW TASK STATUS
EXECUTE AND HALT TASK
EXECUTE TASK

EXECUTE TASK AND SUSPEND SCI

LIST TERMINAL STATUS
MODIFY TERMINAL STATUS
SHOW/MODIFY TERMINAL INFO

DX10 FILE TO DISKETTE FILE
CHANGE DISKETTE FILE PROTECT
DISKETTE FILE TO DX10 FILE
FORMAT DISKETTE

MAP DISKETTE

SET SYSTEM FILE

ASSIGN USER ID
DELETE USER ID
LIST USER ID'S
MODIFY USER ID

INITIALIZE NEW VOLUME
INSTALL VOLUME

MODIFY VOLUME INFORMATION
SHOW VOLUME STATUS

UNLQAD VOLUME

INITIALIZE DATE AND TIME
INITIALIZE NEW VOLUME
INITIALIZE THE SYSTEM
INITIATE SYSTEM LOG
INSTALL VOLUME

ANALYZE DX10 CRASH FILE

B-7/B-8 Digital Systems Division

