Model 990 Computer
DX10 Operating System
Developmental Operation Manua

Cmamg

st WA

o TN

Volume IV

Part No. 946250-9704*B
15 April 1981

{@TEXAS INSTRUMENTS

© Texas Instruments Incorporated 1977, 1979, 1981
All Rights Reserved, Printed in US.A.
The information and/or drawings set forth in this document and all rights in and to inventions disclosed

herein and patents which might be granted thereon disciosing or employing the materials, methods,
techniques or apparatus described herein, are the exclusive property of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

Model 990 Computer DX10 Operating System Developmental Operation
Manual, Volume 1V (946250-9704)

Originallssue i i i i, 15 August 1977
ReviSioN. e e 15 December 1979
Revision. e 15 April 1981

The total number of pages in this publication is 140.

946250-9704

PREFACE

The Model 990 Computer DX10 Operating System Manuals describe the features of the 990 Disk
Executive, DX10. Each of the six DX 10 operating system manuals includes a specific level of discus-
sion related to a particular aspect of the DX10 operating system. All phases of system operation are
treated throughout the manuals to enhance the development and application of programs. The
manuals are organized with both the applications programmer and the production operation in
mind and provide details to the system or application programmer to allow the extension and/or
modification of DX10.

The user should consult all six manuals to become thoroughly familiar with all facets and
capabilities of the operating system. Each manual serves a particular purpose and is designed to
meet a specific goal. No single manual is intended to stand alone as a complete system tutorial. The
titles and part numbers of the six manuals along with a brief comment regarding content and level of
each are as follows:

Concepts and Facilities, Model 990 Computer DX10 Operating System — Includes features, con-
cepts, and general background information describing the DX10 operating system.

Production Operation, Model 990 Computer DX10 Operating System — Describes the user inter-
face to the DX10 operating system and application programs. It contains information required to
start-up, query, control, and maintain DX10 and describes the steps needed to run application pro-
grams on Texas Instruments 990/10 and 990/12 computer systems under control of DX10. Accord-
ingly, this manual describes the commands an operator may use to enter, access, execute, and con-
trol the execution of application programs. Also included is an introduction to terminal operation,
details of log-on/log-off and operation of each specific user terminal.

Application Programming Guide, Model 990 Computer DX10 Operating System — Includes infor-
mation required by the application programmer in the preparation or modification of application
programs. It is primarily intended for assembly language programming under DX10 but also sup-
plies a reference for high-level language programmers. Included is a discussion of program design
and structure under DX10. It provides detailed information describing all calls for system services
including input/output (I/0) processing. Information is provided describing the DX10 file struc-
tures and detailed information describing calls to DX10 for file I/O processing.

Developmental Operation Manual, Model 990 Computer DXI10 Operating System — Includes
operating instructions for the programmer who is creating new application programs. This volume
describes software packages provided as a part of DX10 to support program development and in-

cludes a description of the Text Editor, the debug commands, and program installation/deletion
functions.

Systems Programming Guide, Model 990 Computer DXI10 Operating System — Includes infor-
mation required by the systems or application programmer for extending or modifying DX10. It
provides detailed discussion in such areas as system generation, support of nonstandard devices, and
privileged supervisor service calls available within DX10. Also included are detailed instructions and
descriptions of how to add commands to the System Command Interpreter (SCI) and how to
customize DX10 for a particular configuration and application.

Error Reporting and Recovery, Model 990 Computer DX10 Operating System — Includes infor-
mation describing error reporting within DX10. It documents task errors, gommand errors, super-
visor call (SVC) errors, SCI errors, magnetic tape and other 1/ O errors. This manual documents all
DX 10 errors in cross-reference table form and includes a resolution of each message and suggested
recovery techniques.

ii Digital Systems Division

/]

946250-9704

NOTE

Additional, in-depth descriptions related to specific languages in-
cluding FORTRAN, COBOL, BASIC, RPG II, TI Pascal, Assembly
Language, and Query are found in manuals dedicated to the ap-
propriate programming language. A Link Editor manual is provided
as a separate volume that describes the application of the link edit
function in a DX10 environment. Separate manuals describe the use
of an optional Sort/Merge package and the DBMS package.

Title

Model 990 Computer DX10 Operating System Concepts and
Facilities Manual, Volume [

Model 990 Computer DX10 Operating System Production
Operation Manual, Volume I

Model 990 Computer DX10 Operating System Application
Programming Guide, Volume III

Model 990 Computer DX 10 Operating System Systems Pro-
gramming Guide, Volume V

Model 990 Computer DX10 Operating System Error Report-
ing and Recovery Manual, Volume VI

Model 990 Computer DX10 Operating System Release 3.4,
System Design Document

Model 990 Computer DX 10 Operating System — Release 3
COBOL Programmer’s Guide

Model 990 Computer FORTRAN Programmer’s Reference
Manual

Model 990 Computer Report Program Generator (RPG 11}
Programmer’s Guide

Model 990 Computer TI 990 BASIC Reference Manual
Model 990 Computer TI Pascal User’s Manual
Model 990 Computer TIFORM User’s Guide

Model 990 Computer Model 911 CRT Display Terminal
Installation and Operation

Model 990 Computer Model 913 CRT Display Terminal
Installation and Operation

The following documents contain additional information related to the DX10 operating system:

Part Number

946250-9701

946250-9702

946250-9703

946250-9705

946250-9706

939153-9701

946266-9701

946260-9701

939524-9701

2250304-9701

946290-9701

2250374-9701

945423-9701

943457-9701

iv

Digital Systems Division

946250-9704

Model 733 Terminal User’s Guide

Model 743 KSR Data Terminal Operating Instructions
Model 820 KSR Terminal Operator’s Manual

Model 781 RO Terminal Operator’s Manual

Model 783 KSR Terminal Operator’s Manual

Model 785 Communications Terminal Operator’s Manual
Model 787 Communications Terminal Operator’s Manual
Model 743 KSR Terminal Operator’s Manual

Model 745 Portable Terminal Operator’s Manual
Models 763/765 Operating Instructions

Models 763/765 Memory Terminals Systems Manual
TIBOL Programmer’s Guide

Model 990 Computer System 990/10 and /12 Assembly
Language Reference Manual

990/10 Minicomputer Hardware Reference Manual
DX10 3270 User’s Guide

Model 990 Computer DX10 Remote Terminal Subsystem
(RTS) System Generation and Programmer’s Reference

Manual

Model 990 Computer DX10 Remote Terminal Subsystem
(RTS) Operator’s Guide

Model 990 Computer DX10 Remote Terminal Subsystem
(RTS) Hardware Installation Manual

DX10 3780/2780 Emulator Object Installation Manual

Model 990 Computer DX3780/2780 Emulator User’s Guide

Model 990 Computer 306 and 588 Line Printers Installation

and Operation

Model 990 Computer PROM Programming Module
Installation and Operation

Model 990 Computer Communications System Installation
and Operation

945259-9701

984030-9701

2208225-9701

2265935-9701

2265936-9701

2265937-9701

2265938-9701

984030-9701

984024-9701

2203664-9701

2203665-9701

2263354-9701

2270509-9701

945417-9701

2250954-9701

2272034-9701

2272055-9701

2272053-9701

-2250918-9701

946289-9701

945261-9701

945258-9701

945409-9701

Digital Systems Division

[P

946250-9704

Model 990 Computer Communications Systems Software

Model 990 Computer Terminal Executive Development
System (TXDS) Programmer’s Guide

Model 990 Computer Model FD800 Floppy Disk System with
International Chassis Installation and Operation

Model 990 Computer Model FDI1000 Flexible Disk System
with International Chassis Installation and Operation

Model 990 Computer Model 733 ASR/KSR Data Terminal
Installation and Operation

Model 990 Computer Model 804 Card Installation and Operation

946236-9701

946258-9701

2250697-9701

2250698-9701

945259-9701

945262-9701

vi

Digital Systems Division

[e]
U 946250-9704
TABLE OF CONTENTS
Paragraph Title Page
SECTION 1. INTRODUCTION
1.1 L@ T =) - 1 e 1-1
SECTION 2. TEXT EDITOR

2.1 5918 oY 13T 5 (o) KA O OO 2-1
2.2 Terminal Usage i i i i e e e 2-1
2.2.1 Hard Copy Terminal Operationiuniiitintinin e ieraieanaeennens 2-2
2.2.2 Video Display Terminal Usage ..ottt 2-2
2.3 Text Editor Walk Throughs i i i e 2-4
2.3.1 Creating a New File. o i i e e e e et 2-4
2.3.2 Editingan Existing File i i et 2-5
2.4 Command U sageo ii ittt ittt e e e 2-8
2.4.1 Execute Text Editor —~ XECommandc. it 2-12
2.4.2 Execute Text Editor With Scaling — XESCommand 2-12
2.4.3 Quit Edit —QE Command 2-12
2.4.4 Recover Edit — RE Command i i 2-14
2.4.5 Copy Lines — CL Command i 2-14
2.4.6 Delete Lines — DL Command.ttt et 2-15
2.4.7 Move Lines — ML Commandoo ittt e 2-15
2.4.8 Insert File — IFCommand i, 2-15
2.4.9 Delete String — DS Commandvitiitiiiit e 2-16
2.4.10 Find String —FSCommand i 2-17
2.4.11 Replace String — RS Commandttt e 2-17
2.4.12 Modify Roll —MR Command ... 2-18
2.4.13 Modify Right Margin —MRM Commandc.oouiimminannan.. 2-18
2.4.14 Modify Tabs — MT Commandootn e 2-18
2.4.15 Show Line —SL Commandoiinne e 2-19
2.4.16 Save Lines — SVL Commandouiuuutitn e 2-19
2.5 Edit Control FURCHONS. ov ittt e ettt 2-20
2.5.1 Enter CommandMode............... D 2-20
2.5.2 Edit/Compose Modeo 2-20
2.5.3 New Line Function i e 2-20
2.54 Display/Suppress Line Numbers.oo it 2-21
2.5.5 Duplicate to Tab Functionuueit et e 2-21
2.5.6 Clearto TabFunctionottt 2-21
2.5.7 Tab FunCHOn . . oo 2-21
2.5.8 Back Tab Functionottt 2-21
2.5.9 ROITUPFUNCHON e e e 2-21

2.5.10 ROIIDOWN FUNCHON . . .ot e e e e e, 2-22

2.5.11 Insert Line FUunCtiont e 2-22

2.5.12 Delete Line FUNCHOM ..\ e 2.22
2.5.13 Insert Character Function i i e it 2-22
2.5.14 Delete Character FUNCHONottt i it e e it iaeeans 2-22
2.5.15 Cursor Up FuncCtiono ii i e e e e 2-22
2.5.16 CUrsOr Down FUNCHON. ...ttt it it i i e it et ettt e et aieeaan 2-23
2.5.17 Cursor Right FUNCHONo i i i it et eeee s 2-23

vii

Digital Systems Division

%@ 946250-9704

TABLE OF CONTENTS (Continued)

Paragraph Title Page
2.5.18 Cursor Left Function (Backspace)oootirrnniiit e 2-23
2.5.19 Home Functiont e e e 2-23
2.5.20 Erase FUNCLION i e e 2-23
SECTION 3. ACTIVATING LANGUAGE PROCEDURES
3.1 Assembly Language Program Generation Runthrough 3-1
3.2 FORTRAN Program Generation Runthrough 3-6
33 COBOL Program Generation Runthrough 3-9
34 BASIC Program Generation Runthrough i i, 3-13
3.5 RPG Source Program Entryottt ittt et e et et it e i 3-14
3.5.1 100035101021 14 1o) + OGSO 3-14
3.5.2 Binding ... e e 3-16
353 | 5 (13 15 T) + O OO AP 3-16
3.6 Pascal Program Generation Runthrough i 3-17
SECTION 4. LINK EDITOR USE ON DX10
4.1 SUPPOTted FeatUresottt ettt ettt e e 4-1
4.2 Link Editor Operation With DX10ttt iees 4-1
SECTION 5. INSTALLING, DELETING, AND MODIFYING PROGRAMS
5.1 J F918 o T¢ L (o2 o o AR 5-1
5.2 IT — Install Task ...t e e e it ettt et e e 5-1
5.2.1 IRT — Install Real-Time Taskiriin it i et et een e 5-3
5.3 TP — Install PrOCedUre . . o oottt ettt ettt ettt e e et e 5-4
5.4 JO — Install OVerlay. . ..ottt e e e e e e 5-4
5.5 | A T 1 7 I V) "< AP 5-5
5.6 DP — Delete ProcedUre . ..ottt et it ettt e e e 5-5
5.7 DO — Delete OVerlayottt it i e e 5-5
5.8 Modifying Program File ENtriesovuni ittt eaes 5-6
5.8.1 Modify Task Entry (MTE) . . o oo oot e ettt et e et ees 5-6
5.8.2 Modify Procedure Entry (MPE) o i 5-7
5.8.3 Modify Overlay Entry (MOE)ottt i et e s 5-8
SECTION 6. EXECUTING PROGRAMS

6.1 G0 oY 1T o o N G PP 6-1
6.2 Executing an Assembly Language Task il 6-1
6.2.1 Execute Task — X T oottt i i i e e ettt it i i i s 6-1
6.2.2 Execute Task and Suspend SCI — XTS ... i 6-2
6.2.3 Executeand Halt Task — XH Tottt i it et e et i e 6-2
6.3 Executing Language Processors, Tasks from Language Processors,

AN SUDSYSLEITIS + .+ v v vt vttt ettt ettt 6-2

viii

Digital Systems Division

S

946250-9704
TABLE OF CONTENTS (Continued)
Paragraph Title Page
SECTION 7. DEBUGGING SUPPORT
7.1 L@ 1= 41 | G G 7-1
7.2 Modes 0f Debugging. o e 7-1
7.2.1 Unconditional Suspendttt e e 7-2
7.2.2 Command Parameter SYyNtaX ouuntret ettt et ie e ee et iaa e 7-2
7.2.3 ST DOLS oottt e e e e e 7-3
7.2.4 554 0] C0) o3 o - J U 7-4
7.3 Commands for All Tasksot i i e et e 7-6
7.3.1 AB — Assign Breakpointsttt e e e 7-8
7.3.2 DB — Delete Breakpointsttt ittt i e e 7-8
7.3.3 PB — Proceed From Breakpoint.ooo it it 7-9
7.3.4 DPB — Delete and Proceed From Breakpoint, 7-9
7.3.5 MM — MoOodify MemOry . . oottt et e e e e e e e 7-10
7.3.6 MSM — Modify System MemoOryot e e e et e 7-10
7.3.6.1 MSM Command FOrmatouurniriiiii ittt eeia e 7-10
7.3.6.2 MSM Command User ReSPOMSESvvvttr ittt iie e iiie e einn s 7-11
7.3.6.3 MSM Command Exampleooiiii i i i e e e e 7-11
7.3.7 LM — LISt MeImMOTY ..ottt ttt ittt ettt ittt et e ee e et iain s 7-11
7.3.8 LSM — List System MemoOryot ittt ittt e et 7-12
7.3.8.1 ISMCommand Formatttt ittt e i 7-12
7.3.8.2 LSM Command User ReSPOnSeSo vvvt ettt iieeiee e iineaeiaans 7-12
7.3.8.3 LSM Command Example.ooit it ii e 7-12
7.3.9 FW — Find Word . ..o i e e e 7-13
7.3.10 FB — Find Byte. ... 7-13
7.3.11 AT — Activate Task i i e 7-13
7.3.12 HT — Halt Task e e 7-14
7.3.13 RT —Resume Taskoooii i e e 7-14
7.3.14 MIR — Modify Internal Registerso ittt 7-15
7.3.15 SIR — Show Internal Registersottt 7-16
7.3.16 MWR — Modify Workspace Registersttt 7-16
7.3.17 SWR — Show Workspace Registers i 7-16
7.3.18 SP — Show Panel 7-17
7.3.19 LB — List Breakpointso ovut e e e e 7-18
7.3.20 SV — Show Value 7-18
7.3.21 SPI — Show Program Imagettt 7-19
7.3.22 MPI — Modify Program Image ...t 7-19
7.3.23 SAD — Show AbSOIute DisK . oottt 7-20
7.3.24 MAD — Modify Absolute DisKttt 7-21
7.3.25 SADU — Show Allocable Disk Unit.o e 7-22
7.3.26 MADU — Modify Allocable Disk Unit oot 7-23
7.3.27 SRF —Show Relative toFile. oo e 7-24
7.3.28 MRF — Modify Relative to File 7-25
7.3.29 LLR — List Logical Record e 7-25
7.4 Commands for Controlled Taskso.ouiiiiiiiii e 7-26
7.4.1 XD —DebugCommandiinitni i 7-26
7.4.2 ST — Simulate Taskot e i i 7-27
7.4.3 ASB — Assign Simulated Breakpoint. i 7-28
7.4.4 DSB — Delete Simulated Breakpoint it 7-29

ix Digital Systems Division

K@ 946250-9704

TABLE OF CONTENTS (Continued)

Paragraph Title

Page
7.4.5 RST — Resume Simulated Task ..ot i i 7-29
7.4.6 LSB — List Simulated Breakpointsttt 7-29
7.4.7 QD — QUIt DEbUE . ..o 7-30
7.5 Station Dependents Displays ovit it s 7-31
SECTION 8. EXAMPLE PROGRAM
8.1 Runthrough of an Assembly Language Example Program 8-1
APPENDIXES
Appendix Title Page
A Standard Device NAITIES . ..ot vv ittt in e et ee et cia e te e neanaaaens A-1
B CommaAand SUIMINIATY ..ot ti it ettt i ettt ittt te s a e taeanens B-1
LIST OF ILLUSTRATIONS
Figure Title Page
2-1 Listing of Text Editor Exampleo 2-6
2-2 Modified File EXAMPIE . .« oottt e e e et 2-9
2-3 Modifications File EXampleottt e 29
3-1 Example Assembly Language Programveueiunmeeiiiiiiiiioiiioeas 34
3-2 Example COBOL PIrOgIamluntnunttiettineteetteeetteeroeeeesos 3-11
33 Compiler Qutput Listingot 3-15
34 INPUL FIlE . . .ottt e 3-17
3-5 OUtPUt LiSHNE ..\ttt 3-17
3-6 Example Pascal Program SOUICEoovuttiinttitt e 3-20
37 Example Pascal Program OULPULvit ittt 3-20
7-1 Debug Panel Displayoouuutii 7-18
7-2 Simulated Breakpoints DISPIay c.uuiuur 7-30
LIST OF TABLES
Table Title Page
2-1 Edit Control FUDCHODS . « « ottt ittt et ee e e ii i ie e ia e asia oot eenes 2-3
6-1 Locating Instructions for Executing Subsystems, Language Processors, and
Tasks from Language Processors Available withDX10............ ... 6-3
7-1 SCIDebug COMMANAS . . .« o\ v vttt et e e aaa e 7-6
7-2 Command DISPIAYS . - ot v ettt 7-31
X

Digital Systems Division

946250-9704

SECTION 1

INTRODUCTION

1.1 GENERAL .
This manual describes the steps involved in creating and executing a working computer program.

These steps are illustrated in subsequent paragraphs by examples taken from each of the program-
ming languages. To gain familiarity with DX10, it is suggested that each programmer perform the
complete runthrough for at least one of the supported languages.

NOTE

The methods below do not use the full capabilities of DX10, but
only illustrate one of several ways to develop softwdre.

Steps in program generation include the following:

1. Planning and initial coding. This is a very important step, especially for long and
complex procedures. Modern programming techniques, such as structured programmlng,
can drastically reduce the number of errors committed at this step.

2. Enter the program into the computer. Under DXI10, this is usually done using the Text
Editor. Alternately, the program may be prepared on an external media (such as punched
cards) and read into the computer. The program is called source code at this step.

3. Invoke the appropriate language processor. DX10 supports FORTRAN, COBOL,
Pascal, BASIC, and assembly language. For interpretive languages like BASIC, steps 2,
3, and 5 are often combined. The output of the language processor is called object code.

4. Link edit the output of the language processor. This step ties segmented programs
together. The output of the Link Editor is called linked object code. This step is omitted
in BASIC programs. In some cases, it is also omitted in COBOL programs. Consult the
COBOL and BASIC manuals for more information.

5. The executable program now resides on a disk file or on a sequential device such as
cassette or magnetic tape. The next step is to execute the program and debug it.
Historically, the most time consuming phase of program generation is program
debugging. Proper attention to design and coding in step 1 can drastically reduce this
time. If errors are detected, use the debug tools provided by DXI10 to debug the
program. The program should be corrected at the source code level (i.e., go back to
step 2 and use the Text Editor to correct the program.).

6. All programs which are developed for use in a production system should include a stan-
dardized documentation form. Some characteristics of a good form are as follows:

a. A brief description of all globally defined routines:
® Title of routine

® Abstract description of process

1-1 Digital Systems Division

g

946250-9704
[Calling sequence(s)
L] Error conditions
. External references (including name of source file)
e Stack requirements (assembly language)

b. A brief description of all data structures:

Abstract description of structure

List of all routines which have access to the structure

c. A documentation of systems of interacting modules:

A cross reference of globally-defined symbols

A description of the flow of control within the program

A user oriented introduction to the use and applications of the program.

1-2

Digital Systems Division

ISy Y

946250-9704

SECTION 2

TEXT EDITOR

2.1 INTRODUCTION)
The Text Editor provides the user with the means to create and modify files of textual data inter-

actively. The data in these files may be assembly language source code, high-level language source
code, or material that is to be printed, such as software documentation, memos, or drafts.

The interactive user invokes and operates the Text Editor from a Model 911 or 913 VDT, or a hard
copy terminal, such as the Silent 700 Model 733 ASR/KSR or 820 KSR. Most of the editing func-
tions are available at both the VDT and hard copy terminals, but the means of invoking a particular
function may vary depending on the terminal type and its current mode of operation. While a hard
copy terminal can operate only in the ‘TTY’ mode, the TI VDTs can operate in ‘TTY’ or ‘VDT’
mode. The Text Editor supports only the VDT mode when called from a VDT. The Model 990
Computer DX10 Operating System Production Operation Manual, contains the descriptions of
these two modes and explains how the VDT is placed in either mode. The methods of data display
and entry of the two types also differ so that the advantages of both may be fully utilized. These dif-
ferences and methods are discussed in subsequent paragraphs within this document.

The Text Editor is invoked by use of the XE command. The prompt presented allows the user
either to specify that data contained in an existing file be edited, or to indicate that new data is
to be created.

When the Text Editor is used to modify the data in an existing file, the user specifies the file
access name when the Text Editor is entered. Each of the records in the input file is numbered,
relative to the start of the file. When the user makes modifications, the modifications are written
to another file (the modifications file) and are not made directly to the input file. When records
from the source file are deleted, the Text Editor indicates the deletions in the modifications file,
but does not delete any records from the input file. When records are inserted, they are inserted
in the modifications file, but not in the input file. Whenever the user requests display of data,
the Text Editor builds the display by applying any modifications to the input file data, but the
modifications are not made to the input file. When the editor is terminated by use of the QE
command, the user may abort the edit, in which case all modifications and new data are
discarded. If the user requests that a new file be created, the modifications are applied to the
input file as it is written to the new output file. The original input file remains intact, unless the
output file access name specified is the same as the input file access name, in which case the
modified file replaces the input file.

Errors detected by the Text Editor are defined in the Model 990 Computer DX10 Operating System
Error Reporting and Recovery manual.

2.2 TERMINAL USAGE
Text editing consists of four major types of operations, as defined in the following:

® Command selection and specification

® Edit control

2-1 Digital Systems Division

(o]
@ 946250-9704

® Data display

® Data entry

Command selection and specification include the selection of Text Editor functions that assist the
operator with the management of the text in the source file. In addition, any SCI command may be
called during Text Editor operation. SCI commands also include the entry of parameters, which are
used by the command to perform the desired operation. Examples of the commands are Find String,
Modify Tabs, and Copy Lines. These commands always have parameters that are supplied by the
operator, or, in many cases, can be defaulted. After entry of each parameter, the TAB, NEW
LINE, RIGHT FIELD, RETURN, or CARRIAGE RETURN key (depending on the terminal) is
pressed to terminate the parameter entry. The terminal must be in the command mode before select-
ing any command. The terminal is returned to the command mode by pressing the appropriate Enter
Command Mode function key listed in table 2-1.

Edit control consists of the operations that control the immediate editing of the data. All of these
operations are available in VDT mode while only some are available in TTY mode (i.e., on hard
copy devices). The operations available on hard copy devices are: altering the current file position,
adding data by line, and deleting data by line. Additional operations allowed in VDT mode are alter-
ing cursor position, adding data by character, and deleting data by character. Edit control opera-
tions have no parameters.

Data entry operations control the actual entering of data into the file, and data display manages
the display of data on the device.

2.2.1 HARD COPY TERMINAL OPERATION. A hard copy terminal is considered to be a
relatively slow input/output device, as compared to a VDT. In addition, the function keys on hard
copy terminals differ from those on the 911 and 913 VDTs. Each function available at a hard copy
terminal is invoked by the operator selecting a specific character while simultaneously pressing the
CONTROL key, thereby causing a unique control shift character to be generated.

Edit control operations are also selected by use of the control shift method. These operations
require no parameters and are usually followed by a printout of a data record, which identifies
the current position in the file.

Data display on hard copy terminals is on a line by line basis, and the line number or record
number may be displayed. Data entry on a hard copy device is generally accomplished by
retyping the desired segment of the displayed line, or by preceding the new line with a specified
control shift character that indicates that the new line is to be inserted in the file immediately
following the displayed line. The tab, clear to tab and duplicate to tab functions may be used to
speed up this operation.

The specific control shift uses are defined along with each command in subsequent paragraphs.

2.2.2 VIDEO DISPLAY TERMINAL USAGE. The Text Editor supports the Models 911 and 913
VDTs. The Model 913 provides a 12-line display screen, while Model 911 provides a 24-line display
screen.

Editing on the VDT occurs on a page basis, with a page being either 12 lines (Model 913 VDT) or 24
lines (Model 911 VDT). Any record displayed on the screen may be edited by positioning the cursor
anywhere within the line that contains the record to be edited. Records may be inserted between any
lines, and may be inserted or deleted in any order. In addition, characters within a line may be in-
serted, deleted, or modified. Positioning of the file for display is accomplished by use of the Show
Line command, and the Roll Up, Roll Down, Cursor Up, and Cursor Down edit control functions.

Digital Systems Division

946250-9704

Table 2-1. Edit Control Functions

913 VDT 911 VDT 820 KSR Teleprinter
Function Keytop Keytop Control
Enter Command Mode HELP CMD X
Edit Compose Flip (1) F7 F7 A%
Disp/Suprs Line No (2) F6 Fé6 F
Clear To Tab F5 F5 E
Roll Up ROLL UP F1 A
Roll Down ROLL DOWN F2 B
Dup To Tab F4 F4 D
New Line NEW LINE RETURN CARG
RETN
Tab (3) TAB TAB SKIP I
Back Tab BACK TAB FIELD T
Insert Line INSERT LINE Unlabeled Gray Key O
Delete Line DELETE LINE ERASE INPUT N
Insert Character INSERT CHAR INS CHAR *Hokk ok
Delete Character DELETE CHAR DEL CHAR CNTLP
Cursor Up t 0 U
Cursor Down v ¥ J
Cursor Right - e ook
Cursor Left (Backspace) - has H
Home HOME HOME *okdok ok
Erase CLEAR ERASE FIELD *hokkkok

(1) Alternates modes on succeeding hits
(2) Alternates display of numbers (74 data ¢haracters) with no display of numbers (80 data characters)
(3) The SHIFT Key must be pressed simultaneously with the TAB SKIP key to achieve the tab function on the 911 VDT.

*#**x** Function not supported

Character positions are numbered 1 through 80. This keeps the cursor position on the line being
edited. However, it prevents any data from being entered in column 80. When line numbers are visi-
ble, 74 characters are available for text editing. When line numbers are suppressed, 80 characters are
available. In the text edit mode (with line numbers suppressed) entering a character when the cursor
is at position 80 of a line, automatically moves the cursor to the next line. The entered character is
not displayed, and no additional characters can be entered. Pressing the cursor left character func-
tion key repositions the cursor over the character in the previous line, position 80. Text editing of
that line can continue once the cursor is positioned to the left of or on position 80. Pressing the
RETURN key positions the cursor in the first input position of line 3. Text editing on line 3 can
begin.

NOTE

If you press the ERASE FIELD key after entering a character in posi-
tion 80 of a line, (which mpves the cursor automatically to the next
line), all characters in the previous line are erased. The Modify Right
Margin (MRM) command can be used to set the right margin at
column 79 or less. This eliminates the line overflow problem. (Refer
to the Model 990 Computer DX10 Operating System Systems Pro-
gramming Guide for a description of the MRM command.)

2-3 Digital Systems Division

(o)
%%[Z@ 946250-9704

Command selection from either VDT is accomplished by keying in the command and responding
to the prompts presented on the display screen.

Edit control is performed by using the cursor control keys and some of the function keys.
Although the functions are available on both VDT types, the method of selection varies in some
cases due to the physical differences in the keyboards. These differences are defined along with
the command definitions in this section.

2.3 TEXT EDITOR WALK THROUGHS

All the commands available under the Text Editor are described in paragraph 2.4, and all the
edit control functions are described in paragraph 2.5. In this paragraph, simple walk throughs of
the Text Editor are provided for creating a new file and for modifying an existing file. The

purpose of these examples is to provide a quick reference for the more common uses of the Text
Editor.

2.3.1 CREATING A NEW FILE. The following procedure applies to creating a new file using the
Text Editor on a Model 911 Video Display Terminal in the VDT mode. The example assumes that
you are properly logged on, and that the System Command Interpreter (SCI) is active. Refer to the
Model 990 Computer DX10 Operating System Production Operation manual for details about log-
ging on and activating SCI.

Key in XE and press the RETURN key to activate the Text Editor. The following prompt is
presented:

INITIATE TEXT EDITOR
FILE ACCESS NAME:

Press the TAB/SKIP key to indicate that no input file is to be edited. The screen is cleared and the
following display is presented in the first four columns of line one, with the cursor in column one,
line one:

* EOF

This display indicates that the only record in the file is the end-of-file record. Because no file access
was specified, the Text Editor begins in the compose mode. Press the RETURN key. The following
display is then presented:

* EOF

Note that the end-of-file record is now in line two and that the cursor is in line one, column one,
with the rest of the line blank-filled. You may now begin entering data by simply keying the data and
pressing the RETURN key whenever you wish to terminate a line. In the example (shown in figure
2-1), 35 records were entered with each record containing ten As.

Any of the edit control functions may be used during data entry, as may any of the commands (prior
to entering a command, press the CMD key). To begin entering new data, position the cursor to the
last data line; to do so, use the cursor control keys, such as Up Arrow (1) and Down Arrow ().
Then, press the RETURN key to insert a line. You may now begin entering data. Once all the data
has been entered, the Text Editor is terminated by calling the QE (Quit Editor) command. First,

2-4 Digital Systems Division

[o]
@ 946250-9704

press the CMD key to enter the command mode, then enter QE and press the RETURN key. The
following prompt appears:

QUIT EDIT
ABORT?: NO

The reply to the ABORT prompt allows you to either accept (N response) or discard (Y respopge)
the data you entered. Since you want to accept the data, press the RETURN key to accept the initial
(N) value. The following display is presented:

QUIT EDIT
OUTPUT FILE ACCESS NAME:
REPLACE? NO
MOD LIST ACCESS NAME:

The cursor appears after the colon in the first prompt of the display. Enter the pathname of the file
to which the entered data is to be written. The pathname can be an existing file or a new file name.
You must make an entry since there is no input file. If you had used an input file, its pathname
would be displayed and you could accept that pathname. Enter . EXAMPLE as the pathname.

If the file specified by the pathname currently exists and you want to replace it, respond to the
REPLACE?: prompt with a Y. If you are creating a new file, respond with an N. The N response
allows you to avoid accidentally destroying an existing file. The example uses an N response.

Press the RETURN key in response to the MOD LIST ACCESS NAME prompt. Since a new file
is being created, there are no modifications.

Once the file has been created/replaced, the Text Editor is no longer active and the terminal returns
to command mode. The initial SCI menu is displayed.

The file created in the example is shown in figure 2-1.

2.3.2 EDITING AN EXISTING FILE. The example described in this paragraph gives the general
procedures for editing an existing file by using the Text Editor. The file used as input is the one

created in paragraph 2.3.1 and shown in figure 2-1. The editing takes place at a 911 VDT in the
VDT mode.

First, enter the command mode (press the CMD key) and key in XE, followed by pressing the
RETURN key. The following is displayed:

INITIATE TEXT EDITOR
FILE ACCESS NAME:

The pathname .EXAMPLE is repeated automatically from the previous example. Press the
RETURN key to accept the pathname and display the first 24 records from the file. The Text Editor
is in the edit mode, the cursor is in column one, line one, and line numbers are displayed. This ex-
ample changes lines one and two, inserts one line after line nine, inserts one line after line 19,
changes line 20, and deletes lines 30 through 35.

25 Digital Systems Division

(o]

/}

946250-9704

Figure 2-1. Listing of Text Editor Example

First, change the first character of line one from A to B. Do this by simply keying the B while the
cursor is in line one, column one. Press the RETURN key to place the cursor in line two, column
one. To change the last character (in column ten of row two) from A to B, press the right arrow (—)
to advance the cursor one position for each stroke. To get to column ten, press the — key nine times.
Once the cursor is over the last A, the B is keyed to replace the existing A. The RETURN key is then
pressed to move the cursor to column one of line three.

The next modification is to insert a line of data after line nine. There are two ways to move the
cursor to line ten (since the insert line function causes the new line to be placed ahead of the
line the cursor is in, we have to go to line ten). One way to move the cursor is by using the
Show Line command. To use the command, press the CMD key to enter the command mode.

2-6 Digital Systems Division

o]
Q]@ 946250-9704

When the prompt appears, key in SL, which invokes the Show Line command, and then press
RETURN. The following display appears:

SHOW LINE
LINE: 1

Enter the number of the line that the inserted line is to precede. For the example, enter 10 and press
the RETURN key. The display then appears with the first line being line 10, and the cursor in
column one of that line. Press the unlabeled gray key and the display is rolled down one line and the
line containing the cursor is blank filled. The new line, BBBBBBBBBB, is then entered and the
RETURN key is pressed. The cursor goes to column one of line ten. Note that no line number is
displayed along with the inserted line.

To get to line 20 to insert the next line, use the other method of advancing the cursor, which
consists of using the down arrow ({) key. Each depression of the key causes the cursor to go
down one line in the display. The cursor remains in the same column. To get to line 20, press
the ¥ key ten times. Press the unlabeled gray key, which causes the lines below and including line 20
to be rolled down one line and the line containing the cursor to be blank filled. Key in the inserted
line as follows:

BBBBBBBBBB
and press the RETURN key to return the cursor to column one of line 20.

The cursor is now in line 20. Change the AAAAAAAAAA to CCCCCCCCCC by keying the new
value and pressing the RETURN key.

The final change is to delete lines 30 through 35. To do this, press the CMD key to enter the com-
mand mode. When the command prompt ([]) is displayed, enter DL and press the TAB key to call
the Delete Lines command. The following display is presented:

DELETE LINES
START LINE:
END LINE:

The responses to the prompts are 30 and 35, as follows:

DELETE LINES
START LINE: 30
END LINE: 35

Press the RETURN key after you enter each line number. Since line 35 is the last input line from the
file .EXAMPLE, the following display is presented:

* EOF

Since all modifications are completed, call the QE command to terminate processing. When you
press the CMD key, the command prompt ([]) appears. Enter QE, press the RETURN key, and the
following appears:

QUIT EDIT
ABORT?: NO

2-7 Digital Systems Division

o}
% 946250-9704

21"9 fave the modifications, press the RETURN key to accept the N value. The following is
1splayed:

QUIT EDIT
OUTPUT FILE ACCESS NAME: . EXAMPLE
REPLACE?: N
MOD LIST ACCESS NAME :

Note that the value entered in response to the FILE ACCESS NAME: prompt of the XE command
is used as the default here. Accept this value by pressing the RETURN key.

Enter Y in response to the REPLACE parameter to indicate that the input file is to be replaced.
Press the RETURN key and enter the value .LISTA in response to the MOD LIST ACCESS NAME
prompt. Press the RETURN key. The Text Editor now terminates and the initial SCI menu is
displayed.

Figure 2-2 illustrates the file after the changes and figure 2-3 lists the modifications. On the
modifications list, the flags at the left margin have the following meanings:

O — Old value
N — New value
1 — Inserted line
D -~ Deleted line.

To review the modifications file, use the Show File (SF) command with .LISTA as the pathname.
To prepare a printed listing, use the Print File (PF) command.

2.4 COMMAND USAGE

The Text Editor is initiated when the operator selects and completes the XE command; the Text
Editor terminates when the operator enters and completes the QE command. Whenever the terminal
is in the command mode, the Text Editor is suspended and the operator may select any command.
Note that the commands selected when the terminal is in the command mode and the Text Editor is
suspended do not have to be Text Editor commands. The Text Editor remains suspended until the
XE command or another Text Editor command is selected, at which point the Text Editor is re-
activated, the state that existed at the time of suspension is restored, and the entered command is
processed. Any Text Editor command entered after the Text Editor has been terminated with the
QE command causes the following message to be displayed:

COMMAND ALLOWED ONLY WHILE TEXT EDITING:

If the operator quits the command interpreter (by entering the Q command) while the editor is
suspended, the QF command is automatically invoked.

2-8 Digital Systems Division

o
% 946250-9704

Figure 2-2. Modified File Example

]

-~

BAAAAAAAAA
ARAAAAAAAR
AAAAAAAAAA
ARAAAAAAAA
AAAAAAAAAA
AAAAAAAARAA
AARARAAAAAA
AAAAAAAAAA
ARARARAAAARA
BEBERBEEBER
ARAARAAAAAA
AAAAARAAAA
AARARAAAAAAA
AAARAAAAAAA
AAAAAAAAARA
AAAARAAAAAA
ARRAAARAARAA
ARAARAKAAAAA
ARAARAAAAARA
ARAAAAAAAA
BEEBEEREEER
0] 1 I W
ARARAAAAAA
ARARARAAAA
ARARAAAAAA
AARAAARAAAAA
AAARAARAAAAA
AAAARARAAAA
AAAAAARAAAA
ARAAAAAAAA
AARARAAAAAA

]

LV

20
20
20
31
32
33
34

a5

oo Z O mM-2ZOZ

Figure 2-3. Modifications File Example

AARAAAAAAA
BAAAAAAAARA
AARAAAAARAA
ARAAAAAAAR
BBEERRBBBEE
BBBBEBEBEBE
RAAAAAAAAA
CcCcccoccoece
ARARRAAAAA
ARAAAAAAAA
ARAAAARAARAA
AARAAAAAAA
AAAAAAAAAA
ARAAAAAAAARA

29

Digital Systems Division

o}
{?\g@ 946250-9704

Within the command descriptions in this section, the following conventions are used in the
formats of the commands:

Underscore (_) Indicates an initial value supplied by the command.

Braces ({ }) Indicates that a selection of the entries must be made,
or the default value used. The default value is under-
lined.

Brackets ([1) Indicates that the entry is optional.

acnm Stands for Access Name for file or device.

int Indicates that the entry may be an integer or an
expression.

prev val The previously entered value for the prompt. SCI
assigns the previous value as the default for many of
the prompts.

Boldface Type Indicates the operator keyed and system displayed
command.

Uppercase System displayed data.

Angle Brackets (< >) Data which must be entered by the operator.

Many commands have prompts that request start line and end line values. The int expression in-
dicates these values. The following format applies to start line entries:

Default

A numbered line in the input file. This value refers to an existing numbered
line. A zero value is not allowed.

A line referenced by its offset (+j) from a numbered line (i). This value is used
to reference a newly entered line. Neither i nor j may be zero. When a negative
value is entered and the cursor is on line 1, the default is to the first line.

A line referenced by its offset (%j) from the current line. In the VDT mode,
the current line is the line the cursor was in when the command was
selected. A zero value is not allowed.

The current line.

When the int expression refers to an ending line parameter value, the following conventions apply:

itj

i

il

A numbered line in the input file. A zero value is not allowed.

The ending line is offset (j) from a numbered line (i) in the input file.
Neither i nor j may be zero.

2-10 Digital Systems Division

946250-9704

+J'

Default

It

The ending line is offset (+j) from the specified starting line (a negative or

zero value is not permitted).

The value of the starting line parameter.

NOTE

If a negative value is given for the end line parameter value, the
display goes back the amount of the requested value from where the
cursor is located.

Within the command descriptions, current file is the input file with all modifications. Note,
however, that the modifications are not actually applied to the input file until the Text Editor is ter-

minated, and the input file is replaced, if so specified.

The commands defined in this section are the following:

XE
XES
QE
RE

CL
DL
DS
FS
IF
ML
MR
MRM
RS
MT
SL

SVL

Execute Text Editor

Execute Text Editor with Scaling

Quit Editor
Recover Edit

Copy Lines
Delete Lines
Delete String
Find String
Insert File
Move Lines
Modify Roll
Modify Right Margin
Replace String
Modify Tabs
Show Line

Save Lines

2-11

Digital Systems Division

(o]
{i@? 946250-9704

2.4.1 EXECUTE TEXT EDITOR — XE COMMAND. The XE command activates the Text
Editor. When the command is entered, the system generates the following display:

INITIATE TEXT EDITOR
FILE ACCESS NAME:

<acnm>
prev val

Response to the FILE ACCESS NAME prompt is optional and, if entered, identifies the existing file
that is to provide the data input for the Text Editor. If no file name is supplied, a new file is created
which is named when the Quit Editor command is processed. The FILE ACCESS NAME entry
cannot reference a device.

If the Text Editor is active when the XE command is entered, the system restores the state that
existed when the Text Editor was suspended (that is, a non-Text Editor command was called)
and the data displayed by the last Text Editor command or function is restored. The file
selected when the Text Editor was originally entered remains the input file.

NOTE

Do not use the XE command to text edit from a logging or attention
device.

2.4.2 EXECUTE TEXT EDITOR WITH SCALING — XES COMMAND. The XES command is
identical to the XE command except that in VDT mode scaling information is displayed on the
bottom line of the screen. The scaling information helps the user determine the column numbers
associated with the data on the screen. The information has the following format: a 1 is displayed in
column 10, a 2 in column 20, a 3 in column 30, etc. Use XES to initiate the Text Editor when editing
source code in a language with column-oriented input.

NOTE

Do not use the XES command to text edit from a logging or attention
device.

2.4.3 QUIT EDIT — QE COMMAND. The QE command is entered when all processing desired
under control of the Text Editor has been completed. When the QE command is keyed, the follow-
ing display is presented:

QUIT EDIT
<¥Y>
ABORT?: NO

The response to the ABORT prompt allows the operator to immediately terminate the Text
Editor without any modification to the file specified in the XE command, or, if no file was
specified in the XE command, without any new file being created. Note that any modifications

2-12 Digital Systems Division

e]
@ 946250-9704

made or data entered are lost when the ABORT prompt is answered with a Y. When the response to
the ABORT prompt is Y, the Text Editor is terminated and no other prompts are presented. If the
default response N is used, the following display is presented:

<acnm>
input acnm

<y>
REPLACE?: | N

OUTPUT FILE ACCESS NAME:

MOD LIST ACCESS NAME: [<acnm>]

The default response to the OQOUTPUT FILE ACCESS NAME prompt is the value entered when
the XE command was processed. If no name was specified in the XE command, the user must
enter the name of the output file in response to the OUTPUT FILE ACCESS NAME. This
response is also entéred if the user wishes to create a new file that contains the contents of the
original file (input file specified in the XE command) as modified by the Text Editor. The
response can also be the access name of another existing file that is to contain the modified file.
The OUTPUT FILE ACCESS NAME entry cannot reference a device.

The response to the REPLACE prompt allows the user to specify whether the file specified in
response to the OUTPUT FILE ACCESS NAME prompt, which may be the input file, is to be
replaced by the modified version of the file. If the response is Y, the modified file replaces the
specified file, or, if no file exists by that name, a new file is created. If the default entry N is
made and the specified file does not exist, the Text Editor creates a new file containing the
modified file, which is identified by the OUTPUT FILE ACCESS NAME entry. If the file specified
by the OUTPUT FILE ACCESS NAME entry does exist and the response to the REPLACE
prompt is N, an error message is displayed indicating that a file I/0O error has occurred. The user
should then reenter the QE command and either replace the existing file by responding Y to the
REPLACE prompt or create a new file by entering a new OUTPUT FILE ACCESS NAME.

The method by which the characteristics of the output file are chosen is as follows:

1. If no input file was specified and the output file does not exist, the output file is
created as a sequential file with an initial allocation equal to one-fourth of the number
of records created with the Text Editor, with an incremental allocation value of
one-sixteenth of the number of records created. This algorithm assures efficient use of
disk space with minimum execution overhead.

2. If the output file is to replace the input file, the characteristics of the input file are used,
with the exception of the allocation values, which are described in step 1.

3. If the input file exists and the output file does not exist (the output file is not to
replace the input file), the characteristics of the input file are used, with the exception
of the allocation values, which are as described in step 1.

4, If the output file exists, its characteristics are used, except for the allocation values.
To create a relative record file, the relative record file must first be created by use of the Create

File (CF) SCI command procedure, and its assigned access name specified when the Text Editor
is initiated and terminated.

2-13 Digital Systems Division

[o]
{i@ 946250-9704

Key indexed files cannot be edited by the Text Editor.

NOTE

The user specifies an access name in response to the MOD LIST ACCESS NAME prompt if a
printable copy of the modifications is to be prepared. If the name of a device is entered, the
listing is written to that device. If no entry is made, no modifications listing file or printout is
provided.

2.4.4 RECOVER EDIT — RE COMMAND. The RE command allows partial and sometimes total
recovery of text edits after system crashes or power failures. This command must be entered as the
first command after a system has been rebooted and initialized and must be entered from the ter-
minal at which the text edit was originally in progress. When the command is entered, the system
displays the following:

RECOVER EDIT
OUTPUT FILE ACCESS NAME:
REPLACE?: NO
MOD LIST ACCESS NAME:

These prompts are identical to those that appear for the Quit Edit (QE) command after the user
responds ABORT? = NO. Response to the OUTPUT FILE ACCESS NAME prompt is the value
entered when the XE command was processed prior to the system crash or power failure. If no name
was specified in the XE command, the user must enter the name of the output file in response to the
OUTPUT FILE ACCESS NAME. This response is also entered to create a new file that contains the
contents of the original file (input file specified in the XE command) as modified by the Text Editor.
The response can also be the access name of another existing file that is to contain the modified file.
The OUTPUT FILE ACCESS NAME entry cannot reference a device.

The user specifies an access name in response to the MOD LIST ACCESS NAME prompt if a print-
able copy of the modifications is to be prepared. If the name of a device is entered, the listing is writ-
ten to that device. If no entry is made, no modifications listing file or printout is provided.

WARNING

If the user enters XE after a system crash or power failure, the Text
Editor deletes and recreates the work files. Consequently, recovery of
the previous edit session is no longer possible.

If the user enters an RE command while an edit session is in progress, an error message is returned.
Also, if the user enters an RE and no edit was in progress prior to the system crash or power failure,
an error message is returned.

2.4.5 COPY LINES — CL COMMAND. The CL command specifies which lines are to be copied
from the current file to another position in the modifications file. The following display is presented
when the CL command is entered:

COPY LINES

. <int>
START LINE: { wt_lm_e}
{<int>
END LINE: current line
<int>
INSERT AFTER LINE: current line

2-14 Digital Systems Division

o
@@ 946250-9704

The command copies the lines from the START LINE to the END LINE, inc}mx_sivq, from the cur-
rent file to a temporary area, positions the modification file to the line specxfled‘m the INSERT
AFTER LINE entry and inserts the copied lines after this line. Note that the coplegl lines are not
deleted from the input file. Any modifications previously made to the lines being goplgd are applied
to the input file data as the lines are copied. No more than 380 lines may be copied in a single CL
command.

2.4.6 DELETE LINES — DL COMMAND. The DL command specifies those lines that are to be
deleted from the current file. The format of the DL command display is as follows:

DELETE LINES <int> }
START LINE: current line

{<in > }
END LINE: current line

This command causes the lines from the START LINE to the END LINE, inclusive, to be

deleted from the current file. The new current line is the line immediately following the deleted
block.

2.4.7 MOVE LINES — ML COMMAND. The ML command moves lines from one position in the
current file to another position in the modifications file and deletes the specified lines from their
original positions. The format of the ML command is as follows:

MOVE LINES <int>
START LINE: { currentl_m;c_}
<int>
END LINE: current line
<int>
INSERT AFTER LINE: { current line

This command copies the lines from the START LINE to the END LINE, inclusive, from the cur-
rent file to a temporary area, deleting each line from the current file as it is copied. The modifica-
tions file is positioned to the line specified by the INSERT LINE entry, and the copied lines are in-
serted after this line. After the ML command is executed, the lines moved are displayed on the VDT
screen, with the cursor positioned at the first line on the screen. No more than 380 lines may be
moved in a single ML command.

2.4.8 INSERT FILE — IF COMMAND. The IF command inserts an entire file into the edited file
after a specified record. The format of the command is as follows:

INSERT FILE
INSERT AFTER LINE:

<int> ;
current line
FILE PATHNAME <acnm>

2-15 Digital Systems Division

[o]
{_@@ 946250-9704

In response to the INSERT AFTER LINE prompt, the user enters the line number after which the
file is to be inserted in the edited file. If the file is to be inserted before the first line, place the cursor
on the first line and perform an insert line function. The cursor is positioned on the newly created
line, which becomes the new first line of the edit file. Perform an Insert File command, entering the
desired file pathname but leaving the INSERT AFTER LINE prompt blank. The file is inserted
after the blank line. Delete the blank line at the beginning of the file.

In response to the FILE PATHNAME prompt, the user enters the access name of the file that is
to be inserted in the edited file. Note that the file specified in response to this request is unchanged.
There is no default for the FILE PATHNAME prompt.

2.4.9 DELETE STRING — DS COMMAND. The DS command causes the system to search each
line in the current file, beginning with the current line, for the specified string of characters and to
delete the string when it is found. The format of the command is as follows:

DELETE STRING

<int>
NUMBER OF OCCURRENCES: 1
. <int> |
START COLUMN: prev val;
‘ {<int>]
END COLUMN: | prev val |

STRING: <string>

The user enters the number of times the string is to be deleted in response to the NUMBER OF OC-
CURRENCES prompt. The system searches each line, beginning with the current line, for the
specified string and deletes it each time it is found until the number of occurrences specified has
been reached. The default response for the NUMBER OF OCCURRENCES is one.

The user enters the column in which the string begins in response to the START COLUMN prompt,
and the ending column of the string in response to the END COLUMN prompt. For example, if the
entries were 5 and 20, respectively, the system would delete the string in positions 5 through 20 of
each line, beginning with the current line.

In response to the STRING prompt, the user enters the actual string of characters that is to be
deleted. There is no default to the STRING prompt. When the string is found and deleted, all
characters to the right of the string are shifted left to fill the area occupied by the string and the
remainder of the record is blank filled. When the specified number of occurrences of the string
have been deleted, the file is positioned at the last record from which the string was deleted and
that record is displayed. If the specified number of occurrences is greater than the actual
number of occurrences, the file is positioned at the end-of-file position.

As a rule, leading and trailing blanks are stripped from the string. If the desired string contains one
or more blanks (or blanks only), the entire string must be enclosed in double quotes.

2-16 Digital Systems Division

{@ 946250-9704

2.4.10 FIND STRING — FS COMMAND. The FS command allows the user to specify a character
string to be found by the system, beginning with the current line. When the specified occurrence of
the string is found, the system displays the line that contains the string. The format of the FS com-
mand is as follows:

FIND STRING

<int>
OCCURRENCE NUMBER: 1
) <int>
START COLUMN: { prev val
. <int>
END COLUMN: prev val
STRING: <string>

In response to the OCCURRENCE NUMBER prompt, the user enters a number which corresponds
to the number of times the string is to be found before the line containing the string is displayed. For
example, if the parameter entered is 5, the system bypasses the first four occurrences of the string
and only displays the fifth line that contains the string. The default value for the prompt is one. If

the specified number of occurrences is greater than the actual number of occurrences, the file is
positioned at end-of-file.

The user enters the column in which the string begins in response to the START COLUMN prompt,
and the ending column of the string in response to the END COLUMN prompt. For example, if the
entries were 5 and 20, respectively, the system would search for the string in positions 5 through 20
of each line, beginning with the current line.

The user enters the actual string of characters to be found in response to the STRING request. There
is no default for the STRING prompt. Double quotes must enclose strings containing leading or
trailing blanks, or blanks only.

2.4.11 REPLACE STRING — RS COMMAND. The RS command allows the user to replace a
specified number of occurrences of a string of characters with a new string, beginning with the
current line. The format of the RS command is as follows:

REPLACE STRING

<int>
NUMBER OF OCCURRENCES: 1
<int>
<int>
END COLUMN. preV Val
<string>
STRING: i prev change string

CHANGE: <string>

In response to the NUMBER OF OCCURRENCES prompt, the user enters the number of times
that the existing string is to be replaced by the new string. The search for the specified existing string
begins with the current line and ends when the specified number of occurrences have been found and
replaced. The file is positioned at the last line in which the string was found and replaced. The
default value for this request is one. If the specified number of occurrences is greater than the actual
number of occurrences, the file is positioned at end-of-file.

2-17 Digital Systems Division

%@ 946250-9704

In response to the START COLUMN prompt, the user enters the position (column) in which the
search begins.

In response to the END COLUMN prompt, the user enters the position (column) in which the
search ends.

In response to the STRING prompt, the user enters the string that is to be modified (search
string). In response to the CHANGE prompt, the user enters the new string (replacement string).

There are no defaults for these entries. Double quotes must enclose strings containing leading or
trailing blanks, or blanks only.

Once all the parameters have been entered, the Text Editor examines each line in the edited file,
beginning with the current line, and checks between the specified columns for the search string.
Each time the string is found, it is replaced by the replacement string. Note that if the new string has
fewer characters than the existing string, the characters to the right of the ending column are shifted
to the left and the record is filled with trailing blanks. If the new string is larger than the existing

string, the characters to the right of the ending column and to the left of the right margin are shifted
right and some may be lost.

2.4.12 MODIFY ROLL — MR COMMAND. The MR command changes the increment or decre-
ment applied on a ROLL command or ROLL UP or ROLL DOWN function. The format of the
MR command is as follows:

MODIFY ROLL

<int>
NUMBER OF LINES TO ROLL:

12

In response to the NUMBER OF LINES TO ROLL prompt, the user enters the number of li.nes
by which the display is to be rolled up (incremented) or rolled down (decremented) each _tlme
the ROLL UP or ROLL DOWN function key is pressed on the terminal. The default value is 12
lines.

2.4.13 MODIFY RIGHT MARGIN — MRM COMMAND. The MRM command allows the user
to change the edit line right margin. The system does not allow characters to be entered to the right
of the right margin position. The format of the MRM command is as follows:

MODIFY RIGHT MARGIN

<column>
RIGHT MARGIN POSITION: %

prev val

The value of column may be any integer from 1 to 80, with a value of 0 being accepted but changed
to 1. Note that the initial value is 80, but once a new value is entered, it becomes the default.

2.4.14 MODIFY TABS — MT COMMAND. The MT command changes or clears the tab settings
of the device. The format of the MT command is as follows:

MODIFY TABS

TAB COLUMNS: <int>

prev val

2-18 Digital Systems Division

o
{@? 946250-9704

The values entered in response to TAB COLUMNS specify the columns where the cursor (on a
VDT) or the print head (on a hard copy terminal) is to be positioned when the TAB key (on a VDT)
or the CONTROL key and the I key (on a hard copy terminal) are pressed. If no value is entered, the
current tab position remains unchanged. If only the value 0 is entered, all tabs are cleared except for
the implied tab at column one. The values entered for the tab positions are separated by commas
and may be in any order. Note that if values are entered, there is no implied tab stop at column one.
The initial values are 1, 8, 13, 26, and 31, but once new values are entered, they become the defaults.
This means that when the cursor or print head is repositioned to the left margin during text editing,
it is positioned at the first tab position specified in the MT command.

2.4.15 SHOW LINE — SL COMMAND. The SL command positions the current file to any
specified line (record). When the user enters SL, the system presents the following:

SHOW LINE:

<E>
LINE: <int>

1

In response to the LINE prompt, the operator may enter any one of the following:

B — The display presents the first line (record) from the edited file.
E — The display presents the last line (record) from the edited file.
int — The entry is presented to the system in the format for the int parameter, as

previously defined in this section. The display is of the specified line (record).
For example, entering 8 positions the file at record 8.

Default — The default parameter is ‘1°.

2.4.16 SA‘VE. LINES — SVL COMMAND. The SVL command copies selected lines from the
Eurrent edit file to an external file specified by the user. The format of the SVL command is as
ollows:

SAVE LINES
START LINE: <int>
END LINE: <int>
SAVE FILE PATHNAME: <int>
REPLACE (YES/NO): NO <Yes or No>
All edit lines between the lines specified in the START LINE and END LINE parameters are written
to the file specified in the SAVE FILE PATHNAME parameter. If no value is input for the START

LINE parameter, the SVL command defaults to the line of the edit file on which the screen’s cursor
is located. This rule also applies for the END LINE parameter.

2-19 Digital Systems Division

(o]
{@ 946250-9704

2.5 EDIT CONTROL FUNCTIONS

Edit Control functions are those that permit the operator to specify to the Text Editor precisely
where within the file the modifications are to be made. Refer to table 2-1 for the edit control func-
tions supported and the keys by which the functions are called on the 911 VDT, the 913 VDT, and

the teleprinter devices. The user should note that not all of the edit control functions are supported
by hard copy devices.

Within the following descriptions of the edit control functions, all references to the file imply the
input file, as modified by previous operations. Modifications are effective only as an option of the
QE command.

2.5.1 ENTER COMMAND MODE. The enter command mode function is called by pressing the
ENTER COMMAND MODE function key specified in table 2-1 for the appropriate terminal type.
Calling this function causes the Text Editor to be suspended. The system then prompts the operator
in the selection of a command, which need not be a Text Editor command.

2.5.2 EDIT/COMPOSE MODE. The two modes, edit and compose, under which the Text Editor
operates are selected by the use of a toggle key. Successive depressions of the toggle key causes the
mode to switch from edit to compose to edit and so forth. For example, if the compose mode is
active and the toggle key is pressed, the mode switches to edit. If the key is pressed again, the mode
becomes compose. The Text Editor is initiated in the edit mode when a file access name is specified
and in the compose mode when no file access name is specified.

The compose mode of the Text Editor is used to enter a large volume of data into a file being
edited, or to create a new file. The edit mode is used to make modifications to existing records
in the current file, to delete records, or to insert relatively few records at the current position in
the file. All edit control functions operate the same way in the edit and compose modes, with
the exception being the new line function, which is discussed in a subsequent paragraph. Refer to
table 2-1 for the correct EDIT/COMPOSE MODE KEY of the different terminal types.

2.5.3 NEW LINE FUNCTION. The new line function is called by pressing the appropriate new
line function key (refer to table 2-1) of the terminal type in use. Note that the new line function
operates differently in the compose and edit modes, and it operates differently on the VDT and
hard copy device.

In both modes on the hard copy device, selection of the new line function causes the current
typed line to be passed to the Text Editor as a new record. In the compose mode, the record is
inserted at the current file position, or following previously inserted records at the current file
position. A carriage return line feed also occurs. In the edit mode, the current typed line replaces
the current record in the file up to the printhead position, and the next record from the file is
printed with a carriage return line feed taking place.

On either VDT, the new line function causes the current keyed line to be passed to the Text
Editor as a new record. In the compose mode, the record is inserted at the current file position,
or following previously inserted records at the current file position. In addition, all lines above
and including the one containing the cursor are rolled up one line, and the one containing the

2-20 Digital Systems Division

o]
%@ 946250-9704

cursor is blank filled. In the edit mode, the current keyed line replaces the current file record
and the cursor is positioned at the first position of the next line. In either mode, if the cursor is
in the bottom line when the new line function is called, all data lines are rolled up one line and
the next record is displayed on the bottom line.

2.5.4 DISPLAY/SUPPRESS LINE NUMBERS. Displaying or suppressing line numbers on the
display is selected by a toggle key. Successive depressions of the toggle key cause the line numbers to
be suppressed, displayed, suppressed, and so forth. For example, if line numbers are currently being
displayed and the toggle key is pressed, the display is refreshed without the line numbers. If the
toggle key is pressed again, the display is refreshed with the line numbers. Note that inserted lines
are always displayed without line numbers.

When line numbers are displayed, only 74 data characters of each record can be displayed. When
line numbers are suppressed, a full 80-characters can be displayed. Refer to table 2-1 for the correct
DISPLAY/SUPPRESS LINE NUMBERS key of the terminal type in use.

2.5.5 DUPLICATE TO TAB FUNCTION. The duplicate to tab function is called by pressing the
appropriate duplicate to tab function key (refer to table 2-1) of the terminal type in use. Calling
this function causes the data from the previous record to be copied into the current line, from the
current cursor (printhead) position to the next tab stop or end of record. For example, if the cursor
(printhead) is in position 35 and the next tab stop is in position 65, the data from the previous
record positions 35 through 64, inclusive, is copied into the corresponding positions of the current
line.

2.5.6 CLEAR TO TAB FUNCTION. The clear to tab function is called by pressing the appro-
priate clear to tab function key (refer to table 2-1) of the terminal type in use. Calling this function
causes the data from the current cursor (printhead) position to the next tab stop or end of record
position to be cleared. For example, if the cursor (printhead) is in position 35 and the next tab
stop is position 65, calling the clear to tab function causes the data from position 35 through 64,
inclusive, to be cleared.

2.5.7 TAB FUNCTION. The tab function is called by pressing the appropriate TAB key (refer
to table 2-1) of the terminal type in use. When the Tab function is called, it causes the cursor on
a VDT, or the print carriage on a hard copy device, to be positioned at the next tab stop to the
right of the current position within the line. If there is no tab stop between the current position
and the end of the line, the first tab stop of the line is used. On a VDT, the edit line remains un-
changed, while on a hard copy device the data from the current line is printed from the current
positcion to the next tab stop. The tab settings are set by use of the Modify Tabs Text Editor com-
mand.

2.5.8 BACK TAB FUNCTION. The back tab function is called by pressing the BACK TAB key.
On VDTs, the function causes the cursor to be repositioned at the first tab position to the left of
thg current position within the line. The data in the line remains unchanged. On a hard copy ter-
minal, the current line is reprinted to the tab stop immediately to the left of the current position.

If there is no tab stop, a carriage return/line feed occurs. Refer to table 2-1 for the BACK TAB
FUNCTION key for the terminal in use.

2.5.9. ROLL UP FUNCTION. The roll up function is called by pressing the appropriate roll up
function key of the terminal type in use (refer to table 2-1). On the VDTs, this function causes
the display to be repositioned forward the number of lines specified by the roll parameter (this
parameter may be changed by the Modify Roll Text Editor command), with the initial roll value
being 12 lines on all devices. Note that on a hard copy device, only the record at the current file
position (after the roll) is printed.

2-21 Digital Systems Division

Q—%\[Z;’P 946250-9704

2.5.10 ROLL DOWN FUNCTION. The roll down function is called by pressing the appropriate
roll down function key of the terminal type in use (refer to table 2-1). On the VDTs, this function
causes the display to be repositioned backward within the file the number of records specified by
the roll parameter, as defined by the Modify Roll Editor command, with the initial value being 12
records on all devices. The records are displayed as newly entered, deleted, or modified. Note that
on a hard copy device, only the record at the current file position (after the roll) is printed.

2.5.11 INSERT LINE FUNCTION. The insert line function is called by pressing the appropriate
insert line function key of the terminal type in use (refer to table 2-1). When the insert line function
is called from a VDT, all lines below and including the line containing the cursor are rolled down
one line, and the one containing the cursor is blank filled. This allows for the entry of a new line
at the line in which the cursor is resident. Note that if the Text Editor is in the compose mode and
the cursor is in the bottom line of the display when the insert line function is called, all data lines
are rolled up one line and the line containing the cursor is blank filled.

On a hard copy device, the insert line function allows the operator to enter a line of data that will be
inserted into the file at the file position immediately preceding that of the current printed line.

2.5.12 DELETE LINE FUNCTION. The delete line function is called by pressing the appropriate
delete line function key of the terminal type in use (refer to table 2-1). This function causes the line
that contains the cursor (or the last displayed line on a hard copy device) to be deleted and all
lines below it rolled up one line. On the hard copy device, the current line is deleted from the file
and the next record is printed.

2.5.13 INSERT CHARACTER FUNCTION. The insert character function is only available on
the Model 911 and Model 913 VDTs and is not available on the hard copy devices. The insert
character function is called from either VDT by pressing the INSERT CHAR key and keying the
new character(s); thereby causing the character at the cursor position and all characters to right of
the cursor to be shifted to the right, and the inserted character is written over the cursor. As many
characters as desired may be inserted after the INSERT CHAR key has been pressed. Data

characters at the right margin of the display are lost as they are shifted to the right. Only data
characters may be inserted.

2.5.14 DELETE CHARACTER FUNCTION. The delete character function is only available on
the Model 911 and Model 913 VDTs and is not supported on the hard copy devices. The delete
character function is called from either VDT by pressing the DELETE CHAR key, which causes
the character at the current cursor position to be deleted. In addition, all characters to the right
of the deleted character and to the left of the right margin are left shifted one position and the
rightmost position is filled with a blank. Care must be used when columns 72 through 80 contain
text or information that should also be left shifted. Only characters visible when the delete char-
acter function is requested will be left shifted. Any characters not visible will be retained in their
current positions. Columns 72 through 80 are visible only when line numbers are suppressed (para-
graph 2.5.4).

2.5.15 CURSOR UP FUNCTION. The cursor up function is called by pressing the appropriate cur-
sor up function key of the terminal type in use (refer to table 2-1). This causes the cursor to be
moved to the previous line, into the same position as it was in the current line when the cursor up
function was called. If the cursor is currently in the top line, all lines are rolled down one line and the
cursor remains in the same position.

On a hard copy device, the cursor up function causes the previous line to be printed.

2-22 Digital Systems Division

o]

[}

946250-9704

2.5.16 CURSOR DOWN FUNCTION. The cursor down function is called by pressing the ap-
propriate cursor down function key of the terminal type in use (refer to table 2-1). This causes the
cursor to be moved to the next line and placed in the same position within the line as it was in the
previous line before the cursor down function was called. If the cursor is in the bottom line of the
display when the cursor down function is called, all lines are rolled up one line and the cursor re-
mains in the same position.

On a hard copy terminal, the cursor down function causes the next line to be printed.

2.5.17 CURSOR RIGHT FUNCTION. The cursor right function is called by pressing the ap-
propriate cursor right function key of the terminal type in use (refer to table 2-1). This causes the
cursor to be moved one position to the right. The data within the line remains unchanged. If the cur-
sor is in the rightmost position of the line, it remains there when the cursor right function is re-
quested.

2.5.18 CURSOR LEFT FUNCTION (BACKSPACE). The cursor left function is called by pressing
the appropriate cursor left function key of the terminal type in use (refer to table 2-1). This causes
the cursor to be backspaced one position in the line. The data within the line remains unchanged by
this function. If the cursor is in the leftmost position, it remains there when the cursor left function
is requested.

;.5.19 HOME FUNCTION. The home function is called by pressing the appropriate HOME func-
tion key of the terminal type in use (refer to table 2-1). This causes the cursor to be positioned in line
one, column one in the display. The displayed data is unchanged by the home function.

2.5.20 ERASE.FUNCTION. The erase function is called by pressing the appropriate erase function
key of the terminal type in use (refer to table 2-1). All characters in the line are replaced by blanks
and the cursor is positioned in the first column of the line.

2-23/2-24 Digital Systems Division

{_{é@ 9462509704

3.1 ASSEMBLY LANGUAGE PROGRAM GENERATION RUNTHROUGH

This paragraph describes a simple procedure for creating and executing an assembly language pro-
gram using DX10. Subsequent paragraphs describe similar procedures for creating and executing
programs in higher level languages. For more detailed information on how to execute a program
using DX10, consult the reference manual for the language in which the program is written.

SECTION 3

ACTIVATING LANGUAGE PROCEDURES

The brief assembly language program given in this section displays a message and requests the input
of three numbers. Since this program is already designed and since it is unlikely to have a long
lifetime, step 1 (design) as described in Section 1 may be omitted. The procedure given here assumes
that a 911 VDT is used. If another terminal is used, see table 2-1. It is also assumed that a printer
(LPO1) is used.

1. Enter the program into the computer.

a. Power up the computer and terminal and log on using the procedures given in the
Model 990 Computer DX 10 Operating System Production Operation manual.

FILE ACCESS NAME: (Press TAB/SKIP)

b. Invoke the Text Editor by entering the XE command. Then select the following
parameters:

FILE ACCESS NAME: (Press TAB/SKIP)

c. Press the RETURN key to move the cursor one line above *EOF, and type in the
program shown in figure 3-1.

d. Press the CMD key to leave the compose mode.

e. Enter QE to quit the Text Editor. Select the following parameters:

ABORT?: NO
OUTPUT FILE ACCESS NAME: .SOURCE
REPLACE?: NO
MOD LIST ACCESS NAME: (Press RETURN)

2. Assemble the program.
a. Invoke the macro assembler by entering XMA. Select the following parameters:

SOURCE ACCESS NAME: .SOURCE
OBJECT ACCESS NAME: .OBJECT
LISTING ACCESS NAME: LPO1
ERROR ACCESS NAME: (Press RETURN)
OPTIONS: (Press RETURN)
MACRO LIBRARY PATHNAME: (Press RETURN)
PRINT WIDTH: 80
PAGE LENGTH: 60

3-1 Digital Systems Division

L

946250-9704

b. The assembler runs in background mode. Enter a WAIT command to wait for com-
pletion of the assembly. When the assembly completes, the following message is
displayed:

MACRO ASSEMBLY COMPLETE 0 0 0 0 ERRORS, 00 0 0 WARNINGS
Press the RETURN key to return to the command mode.
3. Link edit the object code.

a. First create a command file for the Link Editor. Invoke the Text Editor by
entering XE. Specify the following parameter:

INPUT ACCESS NAME: (Press TAB/SKIP)

b. Press the RETURN Kkey.
c. Enter the following lines:

TASK LANGTST
INCLUDE .OBJECT
END

d. Leave the compose mode by pressing CMD.
e. Quit the Text Editor by entering QE. Select the following parameters:

ABORT?: NO
OUTPUT FILE ACCESS NAME: .CNTRLINK
REPLACE?: N
MOD LIST ACCESS NAME: (Press RETURN)

f. Invoke the Link Editor by entering XLE. Select the following parameters:

CONTROL ACCESS NAME: .CNTRLINK
LINKED OUTPUT ACCESS NAME: .LNKOUT
LISTING ACCESS NAME: LPO1
PRINT WIDTH: 80

Press RETURN after the PRINT WIDTH response. When the SCI prompt ([])
appears, enter WAIT and press RETURN. The following display appears:

WAITING FOR BACKGROUND TASK TO COMPLETE

When the Link Editor terminates, the following is displayed:

3-2 Digital Systems Division

(o]
(@ 946250-9704

LINK EDITOR COMPLETED, 0 ERRORS, 0 WARNINGS

Press CMD.

4. Execute the program.

a.

Enter the IT (Install Task) command to place the program on the system program
file. Specify the following parameters:

PROGRAM FILE OR LUNO: 0
TASK NAME: LANGTST
TASK ID: 0
OBJECT PATHNAME OR LUNO: .LNKOUT
PRIORITY: 4
DEFAULT TASK FLAGS?: YES
ATTACHED PROCEDURES: NO

The installed ID is displayed in the following form when the installation is
completed:

TASK NAME=LANGTST
TASK ID=id

Press CMD to return to the command mode.

Since the program uses LUNO >20, that LUNO must be assigned to the VDT.
Call the Assign LUNO (AL) command and respond as follows:

LUNO: >20
ACCESS NAME: ME
PROGRAM FILE?: NO

The message ASSIGNED LUNO = >20 is then displayed. Press CMD to return to
the command mode.

Execute the program using the Execute Task and Suspend SCI (XTS) command.
Select the following parameters:

PROGRAM FILE OR LUNO: 0
TASK NAME OR ID: LANGTST
PARMI1: 0
PARM?2: 0
STATION ID: ME

3-3 Digital Systems Division

S PN

946250-9704

W F I R BRI R R R E W R E I E R E R H R F R R IR FNFFR

3 BEGINNING OF DATA SECTION 3

H R F R AR RS E R SRR TR R AR R FRAF TR SRR RN XFHRFTHRRHN
nT STRESFONSE S

B R B AR R H BRI FHRIRE KA BRI W R B HFR R FR R FRFRFEEI R

® CPENING DATA WORDS %
#* 1. WORKSFACE FPOINTER #*
* 2. FOOVALLE AT START OF PROGRAM 3
* Z. ENDACTION ITEM (IF ANY) #*
363 30FE 3 330 36 30 303030 36 3696 36 3 34 36 30 30 30 336 30 3 3030336 46 330 H 3 3030 A 30 S 3 H I 33N

WaF SFACE POINTER ADDRE
START AT PROGRAM BEGINNTNG
4] END ACTION (NOGNE ECIFIED)
Wap 32 2 REGIST
OFEN @] LUEST
0, 20 OFEN LLING
(8]
0
(3]
(%3
M O 1/0 REGLIEST
BYTE R, :2d WRITE &ZCTT ON LLIND 20
DATa O
ATA GREET MESSAGE LOnATION
DATA O
TAatTa MEEG1-GREET MESSAGE LENGTH

PEET RPN e P e T e L PR Y R R R R L S S L e
* SPECIFY THE FIRST MESSAGE #*
P R R T L T T TR L L 2P L R R S A R R L L R
GREFT DATA >0AOD

TEXT ”HF!LH7 FLEASE INFUT NUMRER OF ITEMZ

TEXT TODAY., USE 4-DIGIT NUMBERS. -
OeTA =
MEZG1 DATA C 1700 REGLIEST
RYTE = WRITE TO LLING 2
BYTE 40 RESFONSE FOLLOWE
AvTA ITEML
LATA O CHARACTERSZ SPECLIFIED IN INFPUT ROUTE
DATA 10 - AGE LENGTH

DATA 5

ZTR1 DATA STORE VE FARAMETERS
DATA 4 TORE FIOUR CHARALTE
C CHARALDTER COUNT AFTER INFUT
STORE
TTEML

/0 RESIEST
WRITE T LLNDG 2
READ AFTER WRITE

DATA MESSAGE LOCATION
TIATA
DATA MEZSAGE LENGTH
DATA
STR2 ATA STORE+4 IND ITEM CHARACDTERS STORE
LATA 4 STORE FOLIR DIGITS
DATA ©

TTEMZ DATA >0A0D

TEXT “ITEM =

LDATA O 1/ REGHIEST

RYTF R, 5270 WRITE Tr LUNG 30

Figure 3-1. Example Assembly Language Program (Sheet 1 of 2)

3-4 Digital Systems Division

Sy N

946250-9704

The test program now executes and displays the following on the screen:

RYTE
NaTa
OATA
DATA

DATA STRE

DATHE
DATA
TATA
DATA
TEXT
DATA

BYTE

ATA
DATA
LaTa

DATA CLOSE-GE000RY

4
(4]
S TATI K]

“ITEM =

(8]

0
GUODRY
O

READ AFTER WRITE

IRDOITEM STORE LOCATION

1700 REGUEST
WRITE T LUNGE 20

MESESAGE LOTATION

ME

AGE LENGTH

Rk R R R R R R R R O b R R T TR S

** FINAL

MESZAGE

DISPLAYED

S

3333 B3 TSR R R R IR RS U E W H A RN R AR

GOODRY DATA
TEXT
TEXT
DATH
GATA
BYTE
DATA
DATA
LATA
DATA
EOF EBYTE

ETART XOF
XF
X0
X
XOF
XCIF
X
X

[E =

Figure 3-1. Example Assembly Language Program (Sheet 2 of 2)

>ORAOD
< THANE

THAT COMFLETES TODRAY <&~

TRANZADTIONS, -

FOA0ND
8]
1,520
(8]
O

O
0
FlE0

I/700 REGUESRT
CILOSE LUNG 220

TERMINATE TaAsk

OFEN LLING
GFENTNG MES
INPLIT 1

INPLIT 2

SEAGE
CLOSE FILE, UNLOAD/REWIND
TERMINATE TASE

HELLO, PLEASE INPUT NUMBER OF ITEMS SOLD TODAY. USE 4-DIGIT

NUMBERS.

ITEM 1

Enter a four-digit number. The following is then displayed:

ITEM 2

Enter a four-digit number. The following is then displayed:

ITEM 3

3-5

Digital Systems Division

[of
@ 946250-9704

Enter a four-digit number. The following is then displayed:
THANK YOU. THAT COMPLETES TODAY’S TRANSACTIONS.
The screen is then blank-filled and the task’s runtime ID is displayed.

Press the CMD key to return to the initial SCI menu. Delete the task entry by using the Delete Task
(DT) command as follows:

DELETE TASK
PROGRAM FILE OR LUNO: 0
TASK NAME OR ID: LANGTST

Use the Delete File (DF) command to delete the following:

.SOURCE
.OBJECT
.LNKOUT
.CNTRLINK

3.2 FORTRAN PROGRAM GENERATION RUNTHROUGH

The brief FORTRAN program given in this section obtains (from the system) and prints the date in
military format. To implement this demonstration one must have the optional FORTRAN compiler
and runtime libraries. Since this FORTRAN program is already designed and since it is unlikely to
have a long lifetime, step one, design (as defined in Section 1), may be omitted. The following pro-
cedure assumes the use of a 911 VDT and a line printer (LPO1). If another terminal is used, see table
2-1.

1. Enter the program into the computer.

a. Power up the computer and terminal and log on using the procedures given in the
Model 990 Computer DX10 Operating System Production Operation manual.

b. 1Invoke the Text Editor by enfering XE. Select the following parameters:

FILE ACCESS NAME: (Press TAB/SKIP)

c. Press the RETURN key to move the cursor one line above *EOF, and type in the
following FORTRAN program:

INTEGER*2 DATE(@4)
REWIND 17
REWIND 18
CALL MDATE (DATE)
WRITE (17, 100) DATE
100 FORMAT (1X, ‘TODAYS DATE IN MILITARY FORMAT IS ’°, 4A2)
WRITE (17, 130)
130 FORMAT (1X, ‘FORTRAN TEST COMPLETE’)
READ (18, 140) IDUMY
140 FORMAT (Al)
STOP
END

3-6 Digital Systems Division

&

946250-9704

d.

€.

Press the CMD key to leave the compose mode.
Enter QE to quit the Text Editor. Select the following parameters:

ABORT?: NO
OUTPUT FILE ACCESS NAME: .TSTFORT
REPLACE: NO
MOD LIST ACCESS NAME: (Press RETURN)

2. Compile the program:

a.

Invoke the FORTRAN compiler by entering XFC. Select the following
parameters:

SOURCE ACCESS NAME: .TSTFORT
OBJECT ACCESS NAME: .TSTOBIJ
LISTING ACCESS NAME: LPO1

OPTIONS: (Press RETURN)
PRINT WIDTH: 80 (Press RETURN)

Enter WAIT and press the RETURN key. The following message appears:

WAITING FOR BACKGROUND TASK TO COMPLETE

When the FORTRAN compile completes, the message
FORTRAN COMPILER NORMAL COMPLETION

is displayed. Press CMD; the message
FORTRAN COMPILER COMPLETED 0 ERRORS, 0 WARNINGS:

is displayed. Press CMD to return to the SCI command mode.

3. Link Edit the object code.

a.

First, create a control file for the Link Editor. Invoke the Text Editor by entering
XE. Specify the following parameters:

FILE ACCESS NAME: (Press TAB/SKIP)

Press the RETURN key.

3.7 Digital Systems Division

[o]
{_@@ 946250-9704

C.

Enter the following lines (assuming the FORTRAN libraries are on the system

disk):
LIBRARY .FORTRN.OSLOBJ
LIBRARY .FORTRN.STLOBJ
TASK ROOT
INCLUDE .TSTOBJ
END

Enter the command mode by entering CMD,

Quit the Text Editor by entering QE. Select the following parameters:

ABORT?:

OUTPUT FILE ACCESS NAME:
REPLACE?:

MOD LIST ACCESS NAME:

.CNTRLINK

(Press RETURN)

Invoke the Link Editor by entering XLE. Select the following parameters:

CONTROL ACCESS NAME:
LINKED OUTPUT ACCESS NAME:
LISTING ACCESS NAME:

PRINT WIDTH:

.CNTRLINK
.TSTFORTO
.LSTFORTO
80 (Press RETURN)

Enter WAIT and press RETURN. The message

WAITING FOR BACKGROUND TASK TO COMPLETE

is displayed.

When the Link Editor completes, the message

LINK EDITOR COMPLETED, 0 ERRORS, 0 WARNINGS

is displayed.

Press CMD.

Digital Systems Division

[0}
{—i’ﬂ@ 9462509704

4. Install and execute the program

a.

Enter the IT (Install Task) command to place the program on the system program
file. Specify the following parameters:

PROGRAM FILE OR LUNO: 0
TASK NAME: ROOT
TASK ID: 0
OBJECT PATHNAME OR LUNO: .TSTFORTO
PRIORITY: 4
DEFAULT TASK FLAGS?: YES
ATTACHED PROCEDURES?: NO

The message

ROOT
id

TASK NAME
TASK ID

o

is then displayed. Press CMD.

Use the Assign Synonym (AS) command to define FORTRAN [/O units 17 and 18
to the system. Specify the following parameters:

SYNONYM: UNIT17 SYNONYM: UNIT18
VALUE: ME VALUE: ME

Execute the program by using the XFTF command. Select the following parameters:

PROGRAM FILE LUNO: 0
TASK ID: <ad>

The test program now executes and displays the date in military format. Press
RETURN and the message ‘‘STOP 0 NORMAL PROGRAM COMPLETION” is
displayed. After the program finishes, delete the test program files to preserve disk
space. Use the DF (Delete File) command to delete:

.CNTRLINK
.TSTFORTO
.TSTFORT
.TSTOBJ
.LSTFORTO

3.3 COBOL PROGRAM GENERATION RUNTHROUGH

The COBOL program shown in figure 3-2 is used in the following demonstration of COBOL
program generation techniques in DX10. To implement this demonstration, one must have the
optional COBOL language processors. The program presents the operator with a choice of cities.
When the operator selects a city, the program displays the current time of day in that city. Since the

3-9 Digital Systems Division

%}\@? 946250-9704

program is already designed and documented, steps 1 and 6, respectively, may be omitted. The run-
through assumes the use of a 911 VDT and a line printer (LPO1). If another terminal is used, see
table 2-1.

1. Enter the program into the computer.

a. Power up the computer and terminal and log on using the procedures given in the
Model 990 Computer DX10 Operating System Production Operation manual.

b. Invoke the Text Editor by entering XE. Specify the following parameters:
FILE ACCESS NAME: (Press TAB/SKIP)
c. Press the RETURN key to position the cursor above the displayed *EOF.

d. Press CMD to enter command mode. Enter MRM and press RETURN to modify the
right margin. Respond as follows:

MODIFY RIGHT MARGIN
RIGHT MARGIN POSITION: 72

Press RETURN or NEW LINE.

e. Type the program as shown in figure 3-2. Do not press the RETURN key after key-
ing the last line since this would cause a blank line to be inserted at the end of the
source.

f. Press the CMD key to enter the command mode.

g. Terminate the Text Editor by entering the QE command.

1) Enter QE.
2) Specify the following parameters:

ABORT?: N
OUTPUT FILE ACCESS NAME: JTISTCBL
REPLACE?: N
MOD LIST ACCESS NAME: (Press RETURN)

3-10 Digital Systems Division

(o]

946250-9704

Program Instructions
begin in column 8:

THENTIFICATION DIVISION,

PROGRAM-ID, TIME-ARDUND-THE-WORLE.
***** THIS PROGRAM CALCULATES TIMES BY CBTAINING THE

LOCAL TIME FROM THE SYSTEM CLOCK AND ADDING A TIME

** WHICH IS THE CHOSEN CITY’S TIME RELATIVE T0 CENTRAL
* STANDARD TIME, THEREFORE, THE VALUES IN THE

i TIME TABLE MUST BE ADJUSTED IF THE PROGRAM IS TO BE
#exe RUN IN A TIME ZONE OTHER THAN CST.

ENVIRONMENT DIVISION,

CONFIGURATION SECTION,

SOURCE-COMPUTER. TI-9%0.

OBJECT-COMPUTER. TI-990,

DATA DIVISION,

WORK ING-STORAGE SECTION,

01 TIME-VALUES,

03 FILLER PIC
03 FILLER PIC
03 FILLER PIC
03 FILLER FIC
02 FILLER PIC
03 FILLER PIC
03 FILLER PIC
03 FILLER FIC
03 FILLER PIC
03 FILLER FPIC
03 FILLER PIC ¢
03 FILLER PIC
03 FILLER PIC
03 FILLER PIC
03 FILLER PIC
03 FILLER PIC

599 VALUE +1,
399 VALUE -1,
S99 VALLE +8,

599 VALUE +12,

S99 VALUE +4,

S99 VALLE +14,
599 VALLE +1é4,

399 VALUE +7,

579 VALUE +15.

597 VALUE -4,
5%9 VALUE +3,
399 VALUE 0,

S99 VALUE +13.

599 VALLE +1,
597 VALUE +9,

399 VALLE +13,

01 TIME-TABLE REDEFINES TIME-VALUES.
QEDEQIME (CCURS 14 TIMES PIC 599,
C

03 HOUR PIC 99.

03 MIN PIC 99.

03 SEC PIC 99.

03 FILLER PIC 9.

77 HOUR-TEMP PIC 599,)
77 BLANK-LINE PIF X{&)) VALUE SPACES.
77 ANSWER PIC

77 CHOICE PIC 99

01 CLOCK-EDITED,

03 HOUR-EDITED FIL XX.

03 FILLER PIC X VALUE "i®,
03 MIN-EDITED PIC XX.

03 FILLER PIC X VALUE ":*,
03 SEC-EDITED PIC XX.

/
PROCELMRE DIVISION.
GIVE-INSTRUCTIONS.

01

DISPLAY "COBOL TIME-AROUND-THE-WORLD-PROGRAM® LINE 1 ERASE.
DISPL€¥NEKEY IN THE NUMBER OF THE CITY WHOSE TIME YOUJ WANT.®

DISPLAY “T01 KNCW:" = FOSITION 0.
DISPLAY * 1 NEW YORK " LINE 3.

DISPLAY * TOKYO * POSITION 0.
DISPLAY * 2 DENVER " LINE 4.
DISPLAY ™ 10 HONOLULY * POSITION 0.
DISPLAY * 3 MOSCOM ® LINE 3.

Figure 3-2. Example COBOL Program (Sheet 1 of 2)

3-11

Digital Systems Division

o]
%@ 946250-9704

DISPLAY *
DISPLAY *
DISFLAY ©
DISPLAY "
DISPLAY ¢
DISPLAY "
DISFLAY ¥
DISPLAY ©
DIspLAY

DISPLAY " i

DISFLAY *
ACCEPT-CHOICE.

BLENDS AIRES
DACCA
DAXACA
ACTRA
BANGH K
PEKING

BAGHTAD
COPENHAGEN
JAKARTA

" POSITION O,
" LINE b,

" FOSITION 0.

" LINE 7.

® POSITION O,
" LINE 3.
" FOSITION G.

* LINE 9,

" POSITION 0,

" LINE 10,
" POSITION 0.

ACCEPT CHOICE LINE 2 POSITION &5 PROMPT CONVERT.
IF CHOICE > 14 OR CHOICE =
ACCEPT CLOCK FROM TIME.
MOVE HOUR TO HOUR-TEMP,

ADD DTIME (CHOICE) TO HOUR-TEMP,

0 G0 ACCEPT-CHOICE,

IF HOUR-TEMP 24 SUBTRACT 24 FROM HINR-TEM?.
IF HOUR-TEMF € 0 ADD 24 TO HOUR-TEMP.
MOVE HOUR-TEMP T0O HOUR,
MOVE HOUR_TO HOUR-EDITED,
MIVE MIN TO MIN-EDITED,
MOVE SEC TO SEC-EDITED,

DISPLAY "TIME ¢ * LINE 11 POSITION 15,
DISFLAY CLOCK-EDITED POSITION 0.
DISPLAY "WOULD YOU LIKE TO KNOW ANOTHER CITY'S TIME

L] 2.
ACCEFT ANSWER FOSITION O PROMPT.
IF ANSWER = *N" GO END-PROGRAM.
DISPLAY BLANK-LINE LINE 11,
DISPLAY BLANK-LINE LINE 12,

30 GIVE-INSTRUCTIONS,

/

" END-PROGRAN,
5T0P RUN,

END PROGRAM,

Figure 3-2. Example COBOL Program (Sheet 2 of 2)

2. Invoke the COBOL compiler by entering the XCC command.

a. Enter XCC.

b. Specify the following parameters:

SOURCE ACCESS NAME:
OBJECT ACCESS NAME:
LISTING ACCESS NAME:

OPTIONS:

PRINT WIDTH:
PAGE SIZE.:
PROGRAM SIZE (LINES):

.TSTCBL
.CBLOBJ
.CBLLST
(Press RETURN)

80 (Press RETURN)

55
1000

YN

3-12

Digital Systems Division

(e
%@ 946250-9704

c. Enter WAIT and press RETURN. The following is displayed:
WAITING FOR BACKGROUND TASK TO COMPLETE

When the compiler completes, the following is displayed:

COBOL COMPILER COMPLETED, 0 ERRORS, 0 WARNINGS:

d. Press CMD to return to the command mode.*

e. Execute COBOL Program in Foreground by entering the XCPF Command. Specify
the following parameter:

OBJECT ACCESS NAME: .CBLOBJ
DEBUG MODE: NO
MESSAGE ACCESS NAME: (Press RETURN)
SWITCHES: 00000000
FUNCTION KEYS: NO

The test program now executes. When the program prompts, select one of the listed cities. The
program then displays the current time of day in that city. Enter N to halt program execution.

To preserve disk space, use the Delete File (DF) command to delete the files . TSTCBL, .CBLOBJ,
and .CBLLST.

3.4 BASIC PROGRAM GENERATION RUNTHROUGH

The program given below illustrates the program development cycle for BASIC programs. To im-
plement this demonstration, one must have the optional BASIC language processor. Since BASIC is
an interactive programming language, steps 2, 3, and 4 are combined. Since the program is already
designed and documented, steps 1 and 5 (design and documentation) may be eliminated.

The program given below accepts a number from the operator, calculates the factorial and
displays the result. (For example, 6 factorial = 6x5x4x3x2x1 = 720.)

1. Enter the program into the computer.

a. Power up the computer and terminal and log on using the procedures given in the
Model 990 Computer DX10 Operating System Production Operation manual.

b. Activate BASIC by entering the command BASIC following the SCI prompt ([]).

c. When the BASIC screen is displayed, enter the amount of core required
(WORKSPACE SIZE (KB)) prompt and press the TAB key to enter the default
value on the INITIAL PROGRAM NAME prompt.

d. When BASIC responds with its prompt (.), enter the following program:

10 PRINT “FACTORIAL PROGRAM”’, TIMES$, DATS$
15 PRINT “ENTER THE NUMBER WHOSE FACTORIAL YOU WANT:”’,

3-13 Digital Systems Division

[e]
@@ 946250-9704

20 INPUT N

30 IF N<=0 THEN 140
40 IF N<=70 THEN 70
50 PRINT “THE MAXIMUM FACTORIAL FOR THIS ROUTINE IS 69!’
60 GOTO 20

70 F=1

80 FORI=1TON

90 F=F*1

100 NEXT I

110 PRINT N,F

120 PRINT
130 GOTO 20
140 END

*Steps 3 and 4, linking and installing the program, are combined for COBOL..
2. The program is now in the computer. To execute the program, enter:
RUN

a. The program responds by requesting an input number. Enter a number and the pro-
gram displays the factorial.

b. To exit the program, enter zero (0) in response to the (?) prompt.

¢. To quit the BASIC interpreter, enter BYE. BASIC programs may be stored on disk
so that they need not be reentered every time.

For more information about BASIC program storage, consult the 77990 BASIC Reference Manual.

3.5 RPG SOURCE PROGRAM ENTRY

There are two means of entering RPG source programs from the keyboard. The DX10 Text Editor
(XE) allows for entry of a program or the modification of an existing program. The RPG editor
(RPGEDIT) guides the user through each statement type and ensures that fields start in the proper
columns. Once the program has been entered, the following commands are used to compile, bind
(link), and execute the program.

3.5.1 COMPILATION. Enter either the XRPGC or XRPGCF command to compile a source pro-
gram. The following values are entered at the appropriate prompts:

EXECUTE RPGII COMPILER IN FOREGROUND
SOURCE ACCESS NAME: .EXAMPLE.SOURCE.TEST!17
OBJECT ACCESS NAME: .EXAMPLE.OBJECT.TEST17
LISTING ACCESS NAME: .EXAMPLE.LIST.TEST17
MESSAGE ACCESS NAME: .EXAMPLE.MSG
PRINT WIDTH: 120

Figure 3-3 shows the listing file created by the compiler.

3-14 Digital Systems Division

o]

/]

946250-9704
DIRPG 2,00 79.180 04/20/79 11:54:12 PAGE 1
o 1t 2 2 3 2 4 4 5 5 6 & 7T 7
eenddn000005.,000,000.5.,0.0000.5000000,0050,..00,0.5,,0000, 0050 00U

0001 H TEST17

2 FINREL IP F 80 DISK TEST17
0003 FRELREC UC F 80R DISK TESTL
0004 FOUTREL 0 F 80 BIsK TESTL7
0005 IINREL AR O1 TESTLY
0006 1 1 Z20NEWID TEST17
0007 1 & 30 NNE TESTY/
0008 IRELREC NS 04 TESTY7
0009 I 1 201D TESTLY
0010 1 6 30 FIELD 98 TESTY7
0011 C NEWID CHAINRELREC 99 TEST17
0012 c 98 EXCPT TEST17
0013 ¢ END TAG TESTY
0014 ORELREC E 01 98 TESTL7
0015 0 NEWID 2 TEST17
0016 Q NAME 30 TESTI7
0017 OOUTREL D 01 TESTIY
0018 0 NEWID 3 TESTY7
0019 0 NANE KN TESTL7
0020 0 98 47 “ADDED’ TESTL7
0021 0 04N98 51 /DUPLICATE’ TESTYV
0022 0 99 45 EOF/ TESTY7
0023 /% TESTIV

THE FOLLOWING INDICATORS APPEARED IN THIS PROGRAM

0f 04 98 99

SORTED LAREL NAMES

NAME

END

LINE

SORTED FIELD NAMES

TYPE LENGTH P
A %
N 2 0
A %
N 2 0
N 6 0
N 2 0
N 2 0
N 2 0

Figure 3-3. Compiler Output Listing

3-15

Digital Systems Division

@ 946250-9704

3.5.2 BINDING. The XRPGB command is used to bind the RPG II program. The following values
are entered at the appropriate prompts:

BIND RPG II PROGRAM
OBJECT ACCESS NAME: .EXAMPLE.OBJECT.TEST17
LISTING ACCESS NAME: .EXAMPLE.LNKLST.TEST17
PROGRAM FILE NAME: .EXAMPLE.PROG
NAME OF TASK: TEST17
REPLACE TASK: YES

3.5.3 EXECUTION. Execution of an RPG II program requires three steps:
1. Synonym assignment to filenames
2. LUNO assignment to the program file
3. Execution of the program.
Filename synonyms must be assigned via the Assign Synonym (AS) command as follows:

ASSIGN SYNONYM VALUE
SYNONYM: INREL
VALUE: .EXAMPLE.DATA.INREL

ASSIGN SYNONYM VALUE
SYNONYM: RELREC
VALUE: .EXAMPLE.DATA.RELREC

ASSIGN SYNONYM VALUE
SYNONYM: OUTREL
VALUE: .EXAMPLE.DATA.OUTREL

Assignment of a LUNO to the program file is accomplished via the Assign LUNO (AL) command as
follows:

ASSIGN LUNO
LUNO: OBB
ACCESS NAME: .EXAMPLE.PROG
PROGRAM FILE?: YES

The RPGII program is now ready for execution. Because a station-local LUNO was assigned, the
XRPGTF command, which executes in foreground, must be used. The following values are entered:

EXECUTE RPG II PROGRAM IN FOREGROUND
TASK NAME/ID: TEST17
PROGRAM FILE LUNO: OBB
INDICATORS: NONE
TERMINAL CONTROL: NO
TRACE OUTPUT ACCESS NAME:
MESSAGE ACCESS NAME: .EXAMPLE.MSG

Figure 3-4 displays the contents of the input file. The output from the execution of the program is
shown in figure 3-5.

3-16 Digital Systems Division

[e]
QF%\QQ 946250-9704

Q5 JOHN B, FPUBLIC

03 SEMORE FEOPLE

07 ROBERT A. JONES

o] BARBARA C. GOOD

04 RACHEL R. SOMETHING
o HOFE R. RIGHT

Figure 3-4. Input File

05 JOHN . FUBLIC ADDED
03 SEMORE FEOPLE ADDRED
07 ROBERT A. JONES ADLDED
03 BARBARA C. GOOD ADDELD
04 RACHEL R. SOMETHING ADDED
0% HOFE R. RIGHT ADDED

Figure 3-5. Output Listing

3.6 PASCAL PROGRAM GENERATION RUNTHROUGH

The Pascal program shown in figure 3-6 is used in the following demonstration of Pascal program
generation techniques in DX10. This program finds the factor by which the dollar is devalued after a
certain number of years. Since the program is already designed and since it is unlikely to have a long
lifetime, step 1 (design) as described in Section 1 may be omitted. The procedure given here assumes
that a 911 VDT is used. Refer to table 2-1 for the function keys of the other terminal types sup-
ported by DX10. This procedure also assumes that a printer (LP01) is used.

1. Enter the program into the computer.

a. Power up the computer and terminal and log on using the procedures in the Model
990 Computer DX 10 Operating System Production Operation manual.

b. Create the directory TEST by entering the CFDIR command. Specify the following
parameters:

CREATE DIRECTORY FILE
PATHNAME: .TEST
MAX ENTRIES: 10
DEFAULT PHYSICAL RECORD SIZE: (Press RETURN)

c. Invoke the Text Editor by entering the XE command. Specify the following
parameters:

FILE ACCESS NAME: (Press TAB)

d. Press the RETURN key.
¢. Enter the program shown in figure 3-6.

f. Press the CMD key to leave the compose mode.

3-17 Digital Systems Division

(l:i[f@ 946250-9704

g. Enter QE to quit the Text Editor. Select the following parameters:

ABORT?: NO

OUTPUT FILE ACCESS NAME: .TEST.PASSRC
REPLACE?: NO

MOD LIST ACCESS NAME: (Press RETURN)

2. Compile the program.

a. Invoke the Pascal compiler by entering the XTIP command. Specify the following
parameters:

SOURCE: .TEST.PASSRC
OBJECT: .TEST.PASOBJ
LISTING: .TEST.PASLST
MESSAGES: (Press RETURN)
OPTIONS: (Press RETURN)
MEMI: (Press RETURN)
MEM2: (Press RETURN)
MEM3: (Press RETURN)

b. Enter WAIT and press the RETURN key. The following is displayed:
— WAITING FOR BACKGROUND TASK TO COMPLETE —
When the compiler completes, the following is displayed:
TIP COMPILATION COMPLETE:
c. Press the CMD key to return to the command mode.
3. Link edit the object code.

a. Create a link control file for the Link Editor. Invoke the Text Editor by entering XE.
Specify the following parameters:

FILE ACCESS NAME: (Press TAB/SKIP)
b. Press the RETURN key.
¢. Enter the following link control file:

FORMAT IMAGE,REPLACE
LIBRARY .TIP.OBJ

TASK INFLATE

INCLUDE (MAIN)
INCLUDE .TEST.PASOBJ
END

d. Enter the command mode by pressing the CMD key.

3-18 Digital Systems Division

[e]
{@ 946250-9704

e. Quit the Text Editor by entering QE. Specify the following parameters:

ABORT?: NO

OUTPUT FILE ACCESS NAME: .TEST.PASLINK
REPLACE?: NO

MOD LIST ACCESS NAME: (Press RETURN)

f. Invoke the Link Editor by entering XLE. Specify the following parameters:
CONTROL ACCESS NAME: .TEST.PASLINK
LINKED OUTPUT ACCESS NAME: .TEST.PASPROG
LISTING ACCESS NAME: .TEST.LINKLIST
PRINT WIDTH: 80 (Press RETURN)
g. Enter WAIT and press the RETURN key. The following message is displayed:
— WAITING FOR BACKGROUND TASK TO COMPLETE —

h. When the Link Editor completes, the following message is displayed:

LINK EDITOR COMPLETED, 0 ERRORS, 0 WARNINGS

[N

Press the CMD key.
4. Execute the Pascal task by entering the XPT command. Specify the following parameters:

PROGRAM FILE: .TEST.PASPROG
TASK NAME OR ID: INFLATE

INPUT:
OUTPUT: .TEST.PASOUT

MESSAGES:
MODE (F,B,D): FOREGROUND

MEMORY:

5. Show the file created ((TEST.PASOUT) with the Show File (SF) command. Figure 3-7
illustrates the results of execution of the program.

The test program now executes displaying the message INFLATE EXECUTION BEGINS.

To preserve disk space, use the Delete Directory (DD) command to delete the files in the directory
.TEST and the directory .TEST.

3-19 Digital Systems Division

(o]
Q]@ 946250-9704

Program INFLATION:

(* Find the factor by which the dollar is devalued after N years for N = 1, 2, ..., 10. Use annual

inflation rates if 7, 8, and 10 percent*)

Const N = 10;
Var YEAR : Integer;
R1, R2, R3: Real;
Begin
Writeln(’ YEAR 7% 8%

Ri:=1.0; R2:= 1.0; R3 = 1.0;
For YEAR := 1 To N Do

10%’;

R3:6:3)

Figure 3-6. Example Pascal Program Source

Begin
R1 := R1*1.07;
R2 := R2*1.08;
R3 := R3*1.10;
Writeln(YEAR,” ’,R1:6:3, R2:6:3,
End
End.
YEAR T%
1 1.070
2 1.145
3 1.225
4 1.311
5 1.403
6 1.501
7 1.606
8 1.718
9 1.838
10 1.967

8%

1.080
1.166
1.260
1.360
1.469
1.587
1.714
1.851
1.999
2.159

10%

1.100
1.210
1.331
1.464
1.611
1.772
1.949
2.144
2.358
2.594

Figure 3-7. Example Pascal Program Output

3-20

Digital Systems Division

o]
{@ 946250-9704

SECTION 4

LINK EDITOR USE ON DX10

4.1 SUPPORTED FEATURES

The Link Editor is used to link separate object modules together to form a single program that runs
under DX10.

The disk-based operating system for the Models 990/10 and 990/12 computers, DX10, is a
multitasking operating system that supports all of the features of the Link Editor. As a disk-resident
system, DX10 is well-suited for overlay structured programs. These programs are supported by the
automatic overlay loading feature described in the Link Editor Reference Manual.

The following Link Editor features are supported by DX10:
® Automatic overlay loading
® Random libraries
® Sequential libraries
® COBOL program linking
® FORTRAN program linking
* Pascal program linking
e ASCII, compressed and image format
* Absolute memory partitioning

For more information about these features, consult the Link Editor Reference Manual.

4.2 LINK EDITOR OPERATION WITH DX10
The first step in performing a Link Edit run is to develop a control file that defines the Link
Edit functions. The control file can be developed using the DX10 Text Editor, or it can be

developed as a card, tape, or cassette file. The control file contains Link Edit commands as well
as the names of any object modules.

The Link Editor is executed at a station by entering the XLE command. Note that the station must
be in the command mode prior to entering the command (refer to table 2-1 for the appropriate com-
mand key of the terminal type in use). When XLE is entered, the following display is presented at a
VDT (on a hard copy device, the prompts are printed one at a time).

EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME:
LINKED OUTPUT ACCESS NAME:
LISTING ACCESS NAME:

PRINT WIDTH: 80

4-1 Digital Systems Division

o
{?\[zgp 946250-9704

In response to the CONTROL ACCESS NAME: prompt, the user must enter the pathname of
the device or file from which the control stream is to be read. The control file can be on a
sequential disk file, or any sequential device such as a tape unit, cassette unit, or cards. The
following is an example of the pathname entry for a sequential disk file:

CONTROL ACCESS NAME: VOL2.EDITOR.CONFILE

There is no default for the CONTROL ACCESS NAME:. Tabbing out of the field is not possible.

In response to the LINKED OUTPUT ACCESS NAME: prompt, the user enters the access name of
the sequential device or file to which the output of the Link Editor is to be written. If the object out-
put is not desired, the user may specify DUMY, which suppresses the generation of the output. Use
of the DUMY value allows for a trial run to ensure that no errors occur. The following is an example
of an access name entry for a sequential disk file:

LINKED OUTPUT ACCESS NAME: VOL2.LINK.OUTI1

If the FORMAT command specifies the IMAGE option, the entry made in response to the
LINKED OUTPUT ACCESS NAME prompt must be a DX10 program file or a DX10 system
image file.

In response to the LISTING ACCESS NAME: prompt, the user enters the access name of the
device or file to which the load map listing is to be written. If the listing output is not desired,
the user may specify DUMY, which will suppress the generation of the output. The value entered in
response to the prompt can be any valid DX10 access name, synonym, or device name. The follow-
ing example causes the listing to be written to a line printer.

LISTING ACCESS NAME: LPOl

For a description of the load map listing, refer to the Link Editor Reference Manual.

The last prompt, PRINT WIDTH:, allows the user to either specify the width of the print line, or to
accept the default value — 80 characters.

The following example shows the responses for the prompt when the control file is on
VOL1.EDITOR.CONFILE, the listing device is line printer one (LPO1), and the default PRINT
WIDTH value is accepted:

XLE
EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME: VOLI1.EDITOR.CONFILE
LINKED OUTPUT ACCESS NAME: VOLI1.LINK.OUTI1
LISTING ACCESS NAME: LPO1
PRINT WIDTH: 80

4-2 Digital Systems Division

o]

/}

946250-9704

SECTION §

INSTALLING, DELETING, AND MODIFYING PROGRAMS

5.1 INTRODUCTION

Under DX10, programs are called tasks. A task may be segmented to include sharable procedur.es
and may also include overlays. After Link Edit, and before program execution, the task and its
procedures and overlays must be installed on a program file (unless this step is bypassed by use
of the IMAGE format option of the Link Editor). For further information about task segmen-
tation, refer to the Model 990 Computer DX 10 Operating System Application Programmer’s Guide.

All of the install commands in this section allow the program file and the object file to be specified
by file name or by LUNO. The manner in which the program file is selected is arbitrary. There is an
important difference between selecting the object file by LUNO and selecting the object file by
pathname: files specified by pathname are rewound when opened, but files specified by LUNO are
not rewound when opened. Thus, if the same object file contains procedures, tasks, and overlays, it
must be specified by LUNO for the commands to install correctly all of the object in a program.

Tasks, procedures, and overlays must be installed in the following order:
1. Procedures, if any, must be installed first.
2. The task is installed after the procedures.
3. Overlays are installed last.

Thus, object files containing more than one object (task, procedure, overlay) must be ordered
with the procedures first, task second, and overlays last.

The following paragraphs discuss the commands that install, delete, and modify programs.

Installing or modifying a task or procedure to be memory resident requires that the system be re-
booted before the task or procedure is usable.

5.2 IT — INSTALL TASK

The Install Task command places an executable task on a program file. If the task has attached pro-
cedures, the procedures must be installed before the IT command. For an explanation of the task
attributes (priority, privileged, system, memory-resident, and replicative), consult Section 2 of the
Model 990 Computer DX10 Operating System Application Programmer’s Guide.

NOTE

The user should not install a task on the SSDS program file. If the
SSDS program file is used, the user’s IDs and names will be
destroyed upon each new release of DX10. It is recommended that
the user install tasks in his own library. This recommendation also
applies to installing real-time tasks, procedures, and overlays.

5-1 Digital Systems Division

(o]
{%\gfp 946250-9704

Syntax:

IT
INSTALL TASK

TASK NAME:

TASK ID:

OBJECT PATHNAME OR LUNO:
PRIORITY:

DEFAULT TASK FLAGS?:
ATTACHED PROCEDURES?:
PRIVILEGED?:

SYSTEM TASK?:

MEMORY RESIDENT?:

REPLICATABLE?:

DELETE PROTECTED?:
EXECUTE PROTECTED?:
OVERFLOW CHECKING?:

WRITABLE CONTROL STORAGE?:

ATTACH TASK PROCEDURES

1ST PROCEDURE ID:

P1 FROM TASKS PROGRAM FILE?:
2ND PROCEDURE ID:

P2 FROM TASKS PROGRAM FILE?:

{ < acnm> }
<int>

<string>

{< int> }
<0>
{< acnm >}
<int >
<int >
4
ES

A
o
<)
wn
V

P
e

SEES
V

-
AN
2z <
t
w
V

|

O

N
2 L
Er:

Y

=<
m
n |

These questions are asked only if the
answer to DEFAULT TASK FLAGS?:
is NO.

|

"~

A

}z%Q }zg

Ovo Ov
WVVV\”/WV‘N\P/W

Zz,
o

N
-
tr
»
vV

A
s}
175
Vv

/-/b\,./\—\,./\/_.\\«‘-’\—-\ N
o)
e}
wn
V
\\

P N
A

»n of
\Y

These questions are asked only if the
answer to ATTACHED PROCEDURES?:
is YES.

®)
N S ot
T TN T ————————

o
~
en)

>
int >

PPN,
AN
=

wn O

e
A
o
vV

5-2 Digital Systems Division

(o]
% 946250-9704

The TASK NAME: and TASK ID: parameters need not be entered. If they are not, the system
assigns values. These parameters cannot be the same as an existing task. The P1 FROM TASKS
PROGRAM FILE?: and P2 FROM TASKS PROGRAM FILE?: prompts ask whether the attached
procedures reside in the same program file as the task.

5.2.1 IRT — INSTALL REAL-TIME TASK. The Install Real-Time Task command places an exe-
cutable real-time task on a program file. If the task has attached procedures, the procedures must be
installed before the IRT command. For an explanation of the task attributes (priority, privileged,
system, memory-resident, and replicative), consult the Model 990 Computer DX10 Operating
System Application Programmer’s Guide. Before installing a real-time task, refer to the NOTE in
the paragraph for the Install Task command.

Syntax:

IRT
INSTALL REAL-TIME TASK

PROGRAM FILE OR LUNO: 3<int> 5
TASK NAME: <string>

TASK ID: §<ignt>§
OBJECT PATHNAME OR LUNO: %Zf,ff;n >}\
PRIORITY: <1ir_lt1>27 :
DEFAULT TASK FLAGS?: % <YNL(§>{
ATTACHED PROCEDURES?: %<zpés>§
PRIVILEGED?: §<§)S>:
SYSTEM TASK?: §<_N_1?Qs>;
MEMORY RESIDENT?: %<§ES>§
YES
REPLICATABLE?: %<N-5; f These questions are asked only if the
DELETE PROTECTED?: 3<§Qs>; answer to DEFAULT TASK FLAGS?:
EXECUTE PROTECTED?: §<—§ES>;
OVERFLOW CHECKING?: {<§E)S>€
WRITABLE CONTROL STORAGE?: §<§]§)S>§

|

5-3 Digital Systems Division

o]
@ 9462509704

ATTACH TASK PROCEDURES

f<int>|
IST PROCEDURE ID: | o !
P1 FROM TASKS PROGRAM FILE? | YES |
T <NO> These questions are asked only if the
[<int>) answer to ATTACHED PROCEDURES
2nd PROCEDURE ID: | 0 | is YES.
P2 FROM TASKS PROGRAM FILE? 2 <§“0>§

The TASK NAME: and TASK ID: parameters need not be entered. If they are not, the system
assigns values. These parameters cannot be the same as an existing task. The P1 FROM TASKS
PROGRAM FILE?: and P2 FROM TASKS PROGRAM FILE?: prompts ask whether the attached
procedures reside in the same program file as the task.

5.3 IP - INSTALL PROCEDURE

The IP command places a procedure on a program file and assigns a procedure 1D for use by subse-
quent IT calls. Before installing a procedure, refer to the NOTE in the paragraph for the Install
Task command.

Syntax:
IP
INSTALL PROCEDURE
- {<acnm>|
PROGRAM FILE OR LUNO: | il |
PROCEDURE NAME: <string>
<int>

PROCEDURE ID: |~ |

OBJECT PATHNAME OR LUNO: | S2enm>]

: D |<ine> |

<YES>

MEMORY RESIDENT?: | I

| NO |

.. [<YES>)

DELETE PROTECT?: | ng |

(<YES>)

EXECUTE PROTECT?: | yo |

L (<YES>)

WRITE PROTECT?: | “Ng |

‘<YES>)

WRITABLE CONTROL STORAGE?: | no |

If the PROCEDURE NAME: and PROCEDURE ID: prompts are not specified, the values are
assigned by the system. If specified, they cannot be equal to existing names or 1Ds.

5.4 10 — INSTALL OVERLAY

The 10 command places an overlay associated with a task on the program file with the task. The
task must be installed before the overlay and may be specified by name or by installed ID. Before in-
stalling an overlay, refer to the NOTE in the paragraph for the Install Task command.

5-4 Digital Systems Division

[e]
@ 946250-9704

Syntax:
IO
INSTALL OVERLAY

{<acnm>|
PROGRAM FILE OR LUNO: |<int> §

OVERLAY NAME: <string>
OVERLAY ID: <int>

{<acnm>|
OBJECT PATHNAME OR LUNO: | <int> f
(<YES>|
RELOCATABLE?: | _L\LQ s
<YE
DELETE PROTECT?: % %
§<str1ng>l

ASSOCIATED TASK NAME OR ID: |<int> |

If the OVERLAY NAME: and OVERLAY ID: values are not specified, they are assigned by the
system. If specified, they cannot duplicate existing names or IDs. The ID must be less than 255 and
greater than 0.

5.5 DT — DELETE TASK

This command removes a previously installed task from a program file. The task can be specified
either by name or by installed ID. If associated overlays exist, they are also deleted.

Syntax:
DT
DELETE TASK
<acnm>|
PROGRAM FILE OR LUNO: <int> |
TASK NAME OR ID: Ef:ggﬂ

5.6 DP — DELETE PROCEDURE

This command removes a previously installed procedure from a program file. The procedure may
be specified by name or by installed ID.

Syntax:
DP
DELETE PROCEDURE | <o
PROGRAM FILE OR LUNO: | acr;n |
<string>
PROCEDURE NAME OR ID: sl P nrgg {

5.7 DO — DELETE OVERLAY

This command removes a previously installed overlay from a program file. The overlay may be
specified by name or by installed ID.

5-5 Digital Systems Division

(o]
{%\U@ 946250-9704

Syntax:
DO
DELETE OVERLAY
PROGRAM FILE OR LUNO: <?C“m>§
<int>
OVERLAY NAME OR ID: <§trmg>}
<int>

5.8 MODIFYING PROGRAM FILE ENTRIES

SCI provides commands to change the information supplied when an overlay, task, or procedure
was installed. The modifications can also be made to modules installed by the Link Editor. These
commands allow the user to modify the runtime environment of a program. without reinstaliing
the module.

5.8.1 MODIFY TASK ENTRY (MTE). The Modify Task Entry (MTE) éommand allows the user
to alter the data supplied when the task was installed. When the MTE command is called, the
following display is presented:

MTE
MODIFY TASK ENTRY
PROGRAM FILE PATHNAME: <acnm>
MODULE NAME OR ID: <string>
: <int>

In response to the PROGRAM FILE PATHNAME: prompt, the user enters the pathname of the
program file within which the task, as identified by the response to the MODULE NAME or ID:
prompt, resides.

Enter either the task name or the installed ID in response to the MODULE NAME or ID: prompts.
Once these responses have been entered, the following is displayed:

iD:

NAME:

REAL TIME:

PRIORITY:

MODIFY FLAGS?:
ATTACHED PROCEDURES?:

The values displayed for ID:, NAME:, REAL TIME:, and PRIORITY: are the values that were
defined when the task was installed. The values displayed for MODIFY FLAGS?: and
ATTACHED PROCEDURES?: are YES and NO, respectively. The cursor is set in the first position
of the NAME field. Any of the entries may be changed or they may be accepted by pressing the
RETURN key. There are some limitations on changing the REAL TIME: and PRIORITY:
prompts. If REAL TIME: is YES, the value for PRIORITY: must be between 1 and 127,
(inclusive). If REAL TIME: is NO, the value must be between 0 and 4 (inclusive).

5-6 Digital Systems Division

[¢]
%@ 946250-9704

After the user enters the responses to the above prompts, the task flags are displayed if MODIFY
FLAGS?: is YES:

SYSTEM:

PRIVILEGED:

MEMORY RESIDENT:
REPLICTABLE:

DELETE PROTECTED:

EXECUTE PROTECTED:
OVERFLOW:

WRITABLE CONTROL STORAGE:

The values defined when the task was installed are the values displayed. Any of the entries may be
changed, or they may be accepted by pressing the RETURN key. If, however, the user wishes to
change the SYSTEM: prompt to YES, two conditions must be met. The ATTACHED
PROCEDURES?: prompt in the first display must have been changed to YES (to specify that the
task is linked with procedure 1 is a dummy procedure on SSPROGA file), and the task’s load ad-
dress must be 2C000,s. Otherwise, the user cannot make the change. After responses have been
entered, the procedure prompts are displayed if the ATTACHED PROCEDURES?: prompt was
changed to YES.
1ST PROCEDURE ID:
P1 FROM TASKS PROGRAM FILE:
2ND PROCEDURE ID:
P2 FROM TASKS PROGRAM FILE:

The values displayed are the values defined when the task was installed. The user can change or can
accept them by pressing the RETURN key.

5.8.2 MODIFY PROCEDURE ENTRY (MPE). The Modify Procedure Entry (MPE) command
allows the user to modify the data supplied when the procedure was installed. When the MPE
command is called, the following display is presented:

MPE
MODIFY PROCEDURE ENTRY

PROGRAM FILE PATHNAME: <acnm>
{<string>)

MODULE NAME OR ID: I<int> |

In response to the PROGRAM FILE PATHNAME: prompt, the user enters the pathname of the
program file within which the procedure, as identified by the response to the MODULE NAME OR
ID: prompt, resides. Enter either the procedure name or the installed ID in response to the

MODULE NAME OR ID: prompt. Once these responses have been entered, the following is
displayed:

ID:

NAME:

MEMORY RESIDENT:

DELETE PROTECTED:

EXECUTE PROTECTED:

WRITE PROTECTED:

WRITABLE CONTROL STORAGE:

5-7 Digital Systems Division

o
%@ 946250-9704

The values displayed are those that were defined when the procedure was installed. The cursor is in
the first position of the NAME: field. The user can change displayed values or can accept each one
by pressing the RETURN key.

5.8.3 MODIFY OVERLAY ENTRY (MOE). The Modify Overlay Entry (MOE) command allows

the user to alter the data supplied when the overlay was installed. When the MOE command is
called, the following display is presented:

MOE
MODIFY OVERLAY ENTRY

PROGRAM FILE PATHNAME: <acnm>
[<string>)
MODULE NAME OR ID: l<id> |
The PROGRAM FILE PATHNAME: prompt is responded to with the pathname of the program
file upon which the overlay, as identified by the response to the MODULE NAME OR ID:

prompt, is resident. Enter either the overlay name or the installed ID of the overlay in response

to the MODULE NAME OR ID: prompt. Once these responses have been entered, the following
is displayed:

ID:

NAME:
RELOCATABLE:
DELETE PROTECTED:

The values defined when the overlay was installed are dispiayed, with the cursor in the first ppsition
of the NAME: field. The user can change any of the entries or can accept them by pressing the
RETURN key.

5-8 Digital Systems Division

[e]
@ 946250-9704

SECTION 6

EXECUTING PROGRAMS

6.1 INTRODUCTION

Many commands are provided to execute tasks. Three of these commands are used for assembly
language tasks, while the others are used for executing tasks of the various language processors
available for the Models 990/10 and 990/12 computers. Subsystems and language processors are

also invoked by SCI commands.

The symbol []is the SCI command prompt. When the symbol is shown in the command
formats, it immediately precedes the command entry. Entry of the command is followed by
pressing the RETURN key, as is the entry of each parameter requested. The RETURN key is
also used to accept a displayed parameter value, or to indicate no entry.

6.2 EXECUTING AN ASSEMBLY LANGUAGE TASK
The three commands for executing assembly language tasks each serve a particular function.
These commands are described and their syntax given in the following paragraphs.

6.2.1 EXECUTE TASK — XT. The XT command is used to execute a task and to leave SCI
active during task execution. This command is used for most tasks, except those being debugged
and terminal interactive tasks. The format of the command is as follows:

XT
EXECUTE TASK

PROGRAM FILE OR LUNO:
TASK NAME OR ID:

PARMI:

PARM2:

STATION ID:

<string>

<string>

<int>l
o

:<int> |

{

l

0 |

<string>|
E

=

|

In response to the PROGRAM FILE OR LUNO: prompt, the user enters either the pathname
associated with the program file on which the task resides or the LUNO assigned to the program file.
Either the name or the installed ID of the task is entered in response to the TASK NAME OR ID:
prompt. One or two parameters, each two bytes in size, may be passed to the task being called by
entering the desired values in response to the PARM1: and PARM2: prompts. The default for both
prompts is zero. In response to the STATION ID: prompt, enter the number of the station (i.e., 01,
02, etc.) with which the task is to be associated.

6-1 Digital Systems Division

946250-9704

a7

6.2.2 EXECUTE TASK AND SUSPEND SCI — XTS. The XTS command activates the specified
task and suspends SCI until the task terminates. This command should be used for terminal
interactive tasks to avoid contention between SCI and the task for terminal access. The format

of the command is as follows:

XTS

EXECUTE TASK AND SUSPEND SCI
PROGRAM FILE OR LUNO:
TASK NAME OR ID:

PARMI1:
PARM2:

STATION ID:

<string>
<string>

<string>)
ME |

The prompts are as described for the XT command.

6.2.3 EXECUTE AND HALT TASK — XHT. The XHT command places a task in memory in a
suspended state so that it can be debugged. Typically, the user places the task to be debugged in
memory using XHT, establishes the debug environment (including breakpoints), and then
activates the task using the Activate Task (AT) or Resume Task (RT) command. The format of

the command is as follows:

XHT
EXECUTE AND HALT TASK

PROGRAM FILE OR LUNO:
TASK NAME OR ID:

PARMI:

PARM2:

STATION ID:

<string>
<string>
[<int>)
L0 |
<int>)
[
%<string>}
ME

The responses to the prompts are as described for the XT command.

6.3 EXECUTING LANGUAGE PROCESSORS, TASKS FROM LANGUAGE PROCESSORS,

AND SUBSYSTEMS

Table 6-1 lists the different subsystem and language processors available with the DX10 operating
system and the corresponding location in the associated manual where execution instructions may

be found.

6-2 Digital Systems Division

946250-9704

Table 6-1. Locating Instructions for Executing Subsystems, Language Processors,
and Tasks From Language Processors Available with DX10

Processor/Subsystem Execution Instructions Location

BASIC Model 990 Computer TI 990 BASIC Reference Manual,
2250304-9701

COBOL Section 8 of Mode! 990 Computer COBOL Programmer’s
Guide, 2270521-9701

DBMS Section 6 of Model 990 Computer Data Base Administrator
User’s Guide, 2250426-9701

FORTRAN Appendix H of Model 990 Computer FORTRAN Reference
Manual, 946260-9701

FORTRAN-78 Section 2 of Model 990 Computer FORTRAN-78 User’s
Guide for the DX Operating Systems, 2268679-9701
Pascal Appendix C of Model 990 Computer TI Pascal User’s Manual,
946290-9701
RPGII Section 2 of Model 990 Computer Report Program Generator

(RPGII) Programmer’s Guide, 939524-9701

SORT/MERGE Section 8 of Model 990 Computer SORT/MERGE User’s
Guide, 946252-9701

6-3/6-4 Digital Systems Division

946250-9704

SECTION 7

DEBUGGING SUPPORT

7.1 GENERAL

Flaws in software are commonly called bugs. The process of removing flaws from software is called
debugging. Modern programming techniques can greatly reduce the number of bugs in a program;
however, the bugs that remain tend to be subtle and hard to find. Several levels of debugging sup-
port are provided:

. High-level language (FORTRAN, COBOL., BASIC, RPG, Pascal) programs are provided
with two levels of debugging:

1. The compilers and interpreters for these languages provide error messages that pin
point syntax errors in the source programs.

2. The runtime packages provide error-tracing information in addition to error messages
that describe the nature of the error.

e Several System Command Interpreter (SCI) commands provide debugging capabilities
without requiring a special mode of operation.

. A special mode of operation allows a single task to be examined in detail during the execu-
tion process.

Detailed information about debugging high-level language programs is contained in the appro-
priate high-level language programmer’s guide. Detailed information about the SCI debug com-
mands and the special mode of operation is provided in the following paragraphs.

Sjnce all of the debug commands interact with the terminal, special care must be taken when debug-
ging a program that uses the terminal, since two processes requesting terminal support can be con-

fusing. If the program being debugged requires use of a terminal, two terminals should be used -
one for the program and one for debugging.

7.2 MODES OF DEBUGGING

There are two sets of debug commands. One set can be used only on controlled tasks, which are
tasks that have been put into debug mode through the use of the Execute Debug (XD) command.
The other set of commands may be used on all tasks. In either case, beware of tasks that uncondi-

tionally suspend themselves, since some of the debug commands may inadvertently reactivate these
tasks.

NOTE

Putting a task into controlled mode affects the execution of all debug
commands as follows:

1. Symbolic expressions may be used in place of integer expres-
sions on commands involving the controlled task.

2. Every command expects the controlled task to be uncondi-
tionally suspended.

7-1 Digital Systems Division

[o]
{%\@}D 946250-9704

3. Every command leaves the controlled task unconditionally
suspended.

4. During the commands, Proceed from Breakpoint (PB), Delete
and Proceed from Breakpoint (DPB), and Resume Task (RT),
the command key automatically suspends the controlled task.

7.2.1 UNCONDITIONAL SUSPEND. Most of the debugging commands require that the task
being debugged be unconditionally suspended either before or during the debug command. The un-
conditional suspend task state under DX10 (task state 6) is the state in which the task is dormant
until activated by a command. There are several ways for a task to become unconditionally
suspended:

1 . The task is bid with the suspend option selected, either with a supervisor call (see the
Model 990 Computer — DX 10 Operating System Application Programmer’s Guide), the
Execute and Halt Task (XHT) SCI command, or the .DBID SCI primitive.

The .DBID primitive is used for tasks that interface through SCI, such as command pro-
cessors which are normally bid using the .BID and .QBID primitives, as described in the
Model 990 Computer DX10 Operating System Systems Programming Guide, and high-
level language programs (e.g., FORTRAN or COBOL programs). When the .DBID
primitive is executed through SCI, the task is bid and immediately placed in a suspended
state. The run ID of the task is saved in the synonym $$BT or it may be obtained by
issuing a Show Task Status (STS) command.

The XHT command is used for tasks that are normally executed directly by an Execute
Task (XT) command. XHT places the task in a suspended state for debugging and
displays the run ID of the task to the user. If the user desires to execute and halt the
task, and simultaneously place it in controlled mode, the Execute Debug (XD) command
may be used with no input for the RUN ID prompt. The XD command performs the
XHT and saves the run ID as the default for the debugger commands.

2. The task suspends itself.
3. The task executes a breakpoint (XOP 15, 15).
4. The task is suspended by the SCI debug commands.

Once the task has been placed in a suspended state, the debugger may be used to assign break-
points, simulate execution, display memory, and perform other debugging functions. When the
debugging session is over, the task may be terminated via the Kill Task (KT) command. If the
task was put into controlled mode by an XD command, it may be killed by responding ‘YES’
to the KILL TASK? prompt of the Quit Debug (QD) command.

7.2.2 COMMAND PARAMETER SYNTAX. In the following discussion of the commands, the
syntax shown represents the actual display. The user enters the appropriate command when the
SCI command prompt, [|, appears. The following conventions are used in the discussion of the

commands:

previous — Indicates the last value entered for the prompt.

acnm — Indicates an access name (either a device name, or a file pathname).

string — Indicates a character string.

7-2 Digital Systems Division

o

946250-9704

constant exp — Indicates a decimal or hexadecimal integer or an expression composed of
decimal or hexadecimal integers and the operators +, -, *, and /.

full exp — Indicates a constant expression with the additional operators <, >, and (). String
operands are also permitted. In controlled mode, symbolic names and the symbols #PC,
#WP, #ST, and #Rn are permitted.

full exp list — Indicates a list of full expressions separated by commas. The list may contain
a single item.

constant exp list — Indicates a list of constant expressions separated by commas. The list
may contain a single item.

Y
N — Indicates a character string beginning with Y or N.

Underscore (_) — Indicates the default value.

Braces { } — Indicates that a selection of the entries must be made.
Angle brackets << > — Indicates an operator entry.

Brackets [] Indicate an optional parameter.

Boldface Type — Indicates an operator command entry.

Upper Case — Indicates system displayed data.

References to RETURN within the command descriptions refer to different function keys, de-
pending on the terminal type in use (see table 2-1). To enter the command mode, press the ap-
propriate enter command mode key for the terminal in use (table 2-1).

7.2.3 SYMBOLS. The debug support provided allows for symbolic debugging. Symbolic
debugging allows the user to specify labels within the task being debugged rather than memory
addresses. This allows for more convenient and meaningful debugging since the source code list
can be used as reference for the symbolic labels used. Symbolic constants consist of the Link
Edit phase name, a period (.), the module identifier name (IDT), a period (.), and the symbol, an
assembly language label. The syntax is defined as:

<phase name><IDT name>.<symbol>

To have full symbolic capability, both the assembler and Link Editor must have used the SYMT
option. If the assembler did not use the SYMT option but the Link Editor did, the following sym-
bols are available:

<phase name>.<IDT name>

If either the phase name or the IDT name of a symbol is omitted, the immediately preceding cor-
responding value is used. The syntax is as follows:

ZIDT name> . <symbol> (no phase name)
<phase name> . . <symbol> (no IDT name)

.. <symbol> (no phase or IDT name)

7-3 Digital Systems Division

o]

o

946250-9704
Examples:
PHASE1.MODI1.XYZ References Phase = PHASEI
IDT = MOD!
Label = XYZ
.MOD2.MNO References Phase = PHASE!
IDT = MOD2
Label = MNO
..ABC References Phase = PHASE!
IDT = MOD2
Label = ABC

Four words of memory per symbol are required to store symbol values.

If the task being debugged is a single routine that was installed without being linked, then a
symbolic constant consists of a period (.), the characters of the module identifier name, a period

(.), and the characters of the symbol.

<IDT name>.<symbol>

As with the linked module, the SYMT option of the assembler must have been selected to have full
symbolic capability. If the IDT name of a symbolic constant is omitted, the immediately previous

corresponding value is used.
Examples:

.PROG.XYZ
.SYM

NOTE

Symbols may only be used for commands affecting a task which has
been placed in the controlled mode by the Execute Debug (XD)

command.

The method used to encode the symbol does not guarantee unique
representation of the symbols. An error message appears whenever
two symbols are encoded to the same value. The second symbol

cannot be used.

7.2.4 EXPRESSIONS. Constants (and symbolic constants for tasks in the contrqlled mode) may
be combined using the operators +, -, *, /, <, >, and () to form expressions which may be used

as command operands. The operators have the following meanings:

unary plus or addition
unary minus or subtraction
multiplication
division

) evaluation order

/\A\ * b +
\Y

the contents of the indicated memory location

7-4

Digital Systems Division

(o]
%@ 946250-9704

In the syntax definitions in this section, the use of angle brackets in expressions might be cqnfused
with the use of angle brackets to indicate items that must be supplied by the user. To avoid con-
fusion, items supplied by the user are shown as lowercase letters enclosed in angle brackets. Angle
brackets enclosing numerals or uppercase letters indicate the contents of an address.

Expressions are evaluated according to the following rules:

1. Subexpressions delimited by () and < > are evaluated first, with the innermost
expression evaluated before any other levels.

2. Unless directed otherwise by parentheses or angle brackets, unary + and - are e\(aluated
first, multiplication and division are evaluated second, and addition and subtraction last.

3. For operators at the same level, evaluation proceeds left to right.

For example, if .IDTNAM.BEGIN is memory address 7A, and if memory address 7F contains 3B,
then the expression FF/(IDTNAM.BEGIN+5 +- 2+3* F) is evaluated as follows:

>FF/(KIDTNAM.BEGIN+5>+-2+3*>F)
>FF/(K<>TA+5>+-2+3*>F)
SEFF/(<STF>+-2+3%>F)
>FF/(>3B+-2+>2D)
>FF/(>3B+(-2)+>2D)

>FF/(>39+>2D)

>FF/>66

2

NOTE
The right angle bracket, >, will be regarded as a hexadecimal number
indicator rather than the right part of < > whenever there are

hexadecimal digits immediately following. Thus, no conflict arises.

Several special symbols are allowed in expressions. These special symbols are:

#PC — represents the contents of the Program Counter

#WP — represents the contents of the Workspace Pointer

#ST — represents the contents of the Status Register

#Rn — where n has the value 0-15, and #Rn represents the contents of the corresponding

workspace register.
NOTE

These special symbols may only be used for commands affecting a
task which has been placed in the controlled mode by the Execute
Debug (XD) command.

7-5 Digital Systems Division

[}

946250-9704

Character strings are also allowed in expressions. A character string is of the form ‘XXXX °
where ‘X’ is any valid ASCII character. The apostrophe can be represented in a character string
by using double apostrophes. A character string may be any length, but only the leftmost four
characters are significant. Strings shorter than four characters are right-justified. The value of a
character string is an expression in the ASCII hexadecimal representation of the characters
expressed as a 32-bit number.

Example:
String Value
‘ABCD’ 41424344
‘A’ 00000041
‘ABCDE’ 41424344
< 00000000
‘A B’ 00412742

These symbols may be used in expression lists in the same way as constants or symbolic constants.
For example, the following is a valid expression:

#PC + NAME.IDT - #R15

7.3 COMMANDS FOR ALL TASKS

The SCI commands listed in table 7-1 may be used for all tasks. These commands are classified
as commands for reference since their most frequent use is expected to be program debugging.
Nothing, however, prohibits the use of these commands for purposes other than debugging; they
may be used whenever SCI is active. To activate SCI, perform the procedure given in the Model 990
Computer DX10 Operating System Production Operation manual. Many of the debug commands
require the runtime task ID returned by the XT or XHT commands. Make note of the runtime task
ID when the task is placed in execution. The Show Task Status (STS) command may be used to
recover the runtime ID (which identifies the task to DX10).

Table 7-1. SCI Debug Commands

Command Meaning Section
DATA DISPLAY COMMANDS

LB List Breakpoints 7.3.19
LLR List Logical Record 7.3.29
M List Memory 7.3.7
LSM List System Memory 738
SAD Show Absolute Disk 7.3.23
SADU Show Addressable Disk Unit 7.3.25
SIR Show Internal Registers 7.3.15
Sp Show Panel 7.3.18
SPI Show Program Image 7.3.21
SRF Show Relative to File 7.3.27
Sv Show Value 7.3.20
SWR Show Workspace Registers 7.317

7-6 Digital Systems Division

946250-9704

Command

MAD
MADU
MIR
MM
MPI
MRF
MSM
MWR

AB
DB
DPB
LB
PB

AT
HT
RT
XD

FB
FW

ASB
DSB
LSB
QD
RST
ST

Table 7-1. SCI Debug Commands (Continued)

Meaning
DATA MODIFICATION COMMANDS

Modify Absolute Disk

Modify Addressable Disk Unit
Modify Internal Registers
Modify Memory

Modify Program Image
Modify Relative to File
Modify System Memory
Modify Workspace Registers

BREAKPOINT COMMANDS

Assign Breakpoints

Delete Breakpoints

Delete and Proceed from Breakpoint
List Breakpoints

Proceed from Breakpoint

TASK CONTROL COMMANDS

Activate Task

Halt Task

Resume Task

Change Task to Debug mode (only one task
per station at any given time)

SEARCH COMMANDS

Find Byte
Find Word

CONTROLLED TASK COMMANDS

Assign Simulated Breakpoint
Delete Simulated Breakpoint
List Simulated Breakpoint
Quit Debug

Resume Simulated Breakpoint
Simulate Task

Section

7.3.24
7.3.26
7.3.14
7.3.5

7.3.22
7.3.28
7.3.6

7.3.16

7.3.1
7.3.2
7.34
7.3.19
7.3.3

7.3.11
7.3.12
7.3.13

7.4.1

7.3.10
739

743
744
74.6
7.4.7
7.4.5
7.4.2

Digital Systems Division

e]
@ 946250-9704

7.3.1 AB — ASSIGN BREAKPOINTS. This command may be issued from any terminal. The
contents of the specified address(es) in the specified task are replaced by a breakpoint (an
XOP 15,15). This effectively stops execution of the task at that location. Thus, the task may be
suspended at any location in its execution. The contents of this location are saved and can be
restored by the Delete Breakpoints command. A maximum number (specified at system genera-
tion) of breakpoints can be in effect on a DX10 system at any one time; an attempt to use more
than this number of breakpoints generates an error message. If the runtime ID specifies a system
task, the user must be a privileged user or the command is aborted. Moreover, breakpoints may not
be set in the DX10 system area. A task need not be memory-resident to be breakpointed. The task to
be breakpointed is temporarily suspended while the breakpoints are inserted and its original state is
restored. Unless the task is the controlled task, the user must monitor the task with the Show Inter-
nal Registers (SIR) or the Show Panel (SP) command to determine when it reaches a breakpoint.
When the task reaches a breakpoint, it is placed in state 6 (unconditional suspend). To proceed, use
the Proceed from Breakpoint (PB) command, the Delete and Proceed from Breakpoint (DPB) com-
mand, or the Delete Breakpoint (DB) and Resume Task (RT) commands.

Syntax:

AB
ASSIGN BREAKPOINTS

‘ <constant exp>})
RUN ID: previous ID runtime ID
ADDRESS(ES): <full exp list> address of breakpoint
Example:
ASSIGN BREAKPOINTS
RUN ID: >AQ0
ADDRESS(ES): >200, >30C, >41A

7.3.2 DB — DELETE BREAKPOINTS. If a breakpoint (XOP 15,15) exists in the specified task
at the specified address(es), it is replaced with the original value at the location. The parameters
are interpreted as in the Assign Breakpoints command with the following exceptions. If no
address is specified, the default is the breakpoint at which the task is currently stopped. If
“ALL” is specified, all breakpoints for that task are deleted. If the indicated breakpoint does not
exist, or a breakpoint within a list of breakpoints does not exist, the user is warned with an
error message and the panel is displayed to show the breakpoint status. Deleting a breakpoint at
which a task is stopped does not cause the task to resume execution.

The task is temporarily suspended while the breakpoints are deleted and its original state
restored.

Syntax:

DB
DELETE BREAKPOINTS
{<constant exp> }

previous ID

RUN ID: runtime ID

<full exp list>
ADDRESS(ES): <ALL> breakpoint address
current breakpoint

7-8 Digital Systems Division

@? 946250-9704

Example:

DELETE BREAKPOINTS
RUN ID: >A0
ADDRESS(ES): >200, >41A, >AC, >506

DELETE BREAKPOINTS
RUN ID: 80
ADDRESS(ES): ALL

7.3.3 PB — PROCEED FROM BREAKPOINT. This command assigns new breakpoints in the
specified task at the destination addresses, if any are indicated, and the task is resumed, bypassing
the breakpoint at which it is currently stopped. The breakpoint remains active. If the task is not
currently at a breakpoint, the new breakpoints are assigned and the user is notified, by a warning

message, that the task was not at a breakpoint. The runtime ID is interpreted as in the Assign
Breakpoint command.

Syntax:

PB
PROCEED FROM BREAKPOINT
RUN ID: {<constdnt exp

> .
previous }runnme ID of task

DESTINATION ADDRESS(ES): <full exp list> address of breakpoint(s)
to assign

Example:

PROCEED FROM BREAKPOINT
RUN ID: >9A
ADDRESS(ES): >A0,>10,>A14,>2B

7.3.4 DPB — DELETE AND PROCEED FROM BREAKPOINT. This command is exactly like
the Proceed from Breakpoint command except that the breakpoint at which the task is currently

stopped is deleted. If this breakpoint has already been deleted, the command functions as if it
were a PB command.

Syntax:

DPB
DELETE AND PROCEED FROM BREAKPOINT

<constant exp>} .
RUNID: ' previous runtime ID
DESTINATION ADDRESS(ES): <full exp list> ad(%ress of breakpoint(s) to
assign

Example:

DELETE AND PROCEED FROM BREAKPOINT
RUNID: >4E
DESTINATION ADDRESS(ES): >1A, >2FE, >340

79 Digital Systems Division

]
@ 946250-9704

7.3.5 MM — MODIFY MEMORY. The memory image of the specified task is modified using the
input data, starting at the address specified. Roll-in/roll-out does not affect the modification pro-
cess. A runtime ID of S specifies the DX10 system area ROOT segment. Only users with privileged
user IDs are allowed to modify the system area or system tasks. Modify System Memory (MSM) is
available to modify the other parts of the system. If the task is not unconditionally suspended, it is
temporarily suspended while the command is interacting. This command is interactive and may be

terminated at any time by pressing the CMD key (for the 911 VDT). See table 2-1 for equivalent keys
on other terminals.

Syntax:
MM
MODIFY MEMORY
RUN ID: {<cons‘tant exp>} runtime ID
__previous
ADDRESS: <full exp list> address to modify

The command displays the specified address followed by its value. When the user enters a new
value followed by a return, the next consecutive address and its value are displayed. The CMD

(911 VDT), HELP (913 VDT), or CNTL and X (hard copy) key returns the user to the
command mode.

Example:
MODIFY MEMORY
RUNID: >10
ADDRESS: >10
0010: >04C0 (Press RETURN)
0012: >0500 >0502 (Press RETURN)
0014: >0100 (Enter Command Mode)

7.3.6 MSM - MODIFY SYSTEM MEMORY. This command is used to modify the memory oc-
cupied by the DX10 operating system. This command is similar to the MM (MODIFY MEMORY)
debugger command (see paragraph 7.3.5) except that an overlay 1D is specified instead of a run ID.
This command is intended for use only by someone who is very familiar with the DX10 source.

7.3.6.1 MSM Command Format.
MSM
MODIFY SYSTEM MEMORY

OVERLAY ID: <INT>
ADDRESS: <INT>

7-10 Digital Systems Division

%}\i}p 946250-9704

7.3.6.2 MSM Command User Responses.

Response
Required or
System Prompts Optional
Overlay ID: R
Address: R

User Responses

Number of overlay whose
memory is to be modified

Address at which to begin modifying
memory

7.3.6.3 MSM Command Example. The MSM command modifies the memory of system overlay 2,

starting at address 05900 .

MSM
MODIFY SYSTEM MEMORY
OVERLAY ID:
ADDRESS:
5900:
5902:
5904:

7.3.7 LM — LIST MEMORY. This comman

2

05900
>0004 6
>0000 1
>0429

d lists the specified memory area of a program on the

specified output device or file. The runtime ID is interpreted as in the Modify Memory command.
The output defaults to the terminal. If the task is not unconditionally suspended, it is temporarily
suspended while the listing is being formatted.

In the output, the contents of 16 bytes are pri

nted per line. The address of the first byte is the first

entry on the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the
right end of the line, the contents are printed as ASCII characters. The bytes that contain values cor-
responding to printable ASCII characters are translated and then displayed or printed as ASCII
characters. The nonprintable ASCII characters are displayed or printed as periods.

Syntax:
LM
LIST MEMORY
~ f<constant exp>} .
RUN ID: { previous runtime 1D
STARTING ADDRESS: <full exp> starting address
NUMBER OF BYTES: <full exp> length of display
LISTING ACCESS NAME: <acnm> output device or file name
Example:
LIST MEMORY
RUNID: >80
STARTING ADDRESS: >102
NUMBER OF BYTES: >14A
LISTING ACCESS NAME: LPO!
7-11

Digital Systems Division

[of
q@ 946250-9704

7.3.8 LSM - LIST SYSTEM MEMORY. This command lists the memory occupied by the DX10
operating system. Tue command is similar to the List Memory (LM) command (see paragraph 7.3.7)

except that an overlay ID is specified instead of a run ID. This command is intended for use only by
someone who is very familiar with the DX10 source.

In the output, the contents of 16 bytes are printed per line. The address of the first byte is the first
entry on the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the
right end of the line, the contents are printed as ASCII characters. The bytes that contain values cor-
responding to printable ASCII characters are translated and then displayed or printed as ASCII
characters. The nonprintable ASCII characters are displayed or printed as periods.

7.3.8.1 LSM Command Format.

LSM
LIST SYSTEM MEMORY
OVERLAY ID: <int>
STARTING ADDRESS: <int>
NUMBER OF BYTES: [int]
LISTING ACCESS: facnm]

7.3.8.2 LSM Command User Responses.

Response

Required or
System Prompts Optional User Responses
OVERLAY ID: R Number of the overlay whose memory

is to be listed.

STARTING ADDRESS: R Address at which to begin listing memory.
NUMBER OF BYTES: o Number of bytes to list. Default value is 16.
LISTING ACCESS 0 Access name of file or device to which
NAME: output is to be sent. The default is the

terminal local file of the termal.

7.3.8.3 LSM Command Example. The LSM command lists the memory of system overlay 6 from
byte 0100, to byte 0120,.

[1LSM
LIST SYSTEM MEMORY
OVERLAY ID: 6
STARTING ADDRESS: 0100
NUMBER OF BYTES: 020
LISTING ACCESS NAME:

0100 352E 0006 0006 0000 0000 1DF2 BEO3 1C40 5.
0110 1000 0000 0000 0000 0000 0000 0000 0000
[]

7-12 Digital Systems Division

o]
@ 946250-9704

7.3.9 FW — FIND WORD. The specified memory area in the specified program is searched for
the value (or successive values). The search begins on a word boundary. If the value is found, the
address at which it was found is displayed. The runtime ID and addresses are interpreted as in
the Modify Memory command. If the task is not unconditionally suspended, it is temporarily
suspended while the search is performed.

Syntax:
FwW
FIND WORD
RUN ID: {<C°“S.ta“t e"p>} runtime ID
previous
VALUE(S): <full exp list> value(s) to find
STARTING ADDRESS: <full exp> starting address
ENDING ADDRESS: <full exp> ending address
Example:
FIND WORD

RUNID: >7F
VALUES: >80A, >80B, >80C, >80D
STARTING ADDRESS: >AC
ENDING ADDRESS: >CAE

7.3.10 FB - FIND BYTE. This command performs the same functions as the Find Word command
except it applies to bytes. The search starts on a byte boundary and increments forward one byte at a

time.
Syntax:
FB
FIND BYTE
RUN ID: {<constant exp>}
previous
VALUE(S): <fy) exp list>
STARTING ADDRESS: <full exp>
ENDING ADDRESS: <full exp>

Example:

FB (FIND BYTE)
RUNID: >10
VALUE(S): 6,7,>A,9,>A,>BC, 2, 1
STARTING ADDRESS: >2F
ENDING ADDRESS: >3AC

7.3.11 AT - ACTIVATE TASK. This command causes the specified task to be activated if it is un-

conditiqnally suspended. The command is turned into a No Operation command if the task is not
unconditionally suspended. '

7-13 Digital Systems Division

O
%j@? 946250-9704

Syntax:

AT
ACTIVATE TASK

RUN ID- (<constant exp>
) <{ previous

Example:

ACTIVATE TASK
RUNID: >A

7.3.12 HT — HALT TASK. The specified task is unconditionally suspended at the end of the
current time slice. The runtime ID is interpreted as in the Assign Breakpoints command. If the
specified task is already unconditionally suspended, this command is turned into a No Operation
command. If the task is not in the active state, this command waits five seconds for the task to reach
an unconditional suspension and gives the user the option of aborting or continuing to wait. This
occurs every five seconds.

Syntax:
HT
HALT TASK
RUN ID: {<consﬁrant exp>}
previous

Exampie

HALT TASK

RUNID: 7

If the task cannot be suspended, the following message is displayed:
UNABLE TO SUSPEND TASK. CURRENT STATE=XX. CONTINUE COMMAND?

If a YES response is entered, another attempt is made to suspend the task. If unsuccessful, the
message is displayed again. A NO response to the preceding message causes the following message
to be displayed:

DO YOU WISH TO LEAVE SUSPENSION PENDING?

A YES response leaves the suspension pending, while a NO response terminates the suspension
attempt.

7.3.13 RT — RESUME TASK. The specified task is activated at the point at which it was sus-
pended. The runtime ID is assigned when the task is executed. The specified task must be uncon-
ditionally suspended when this command is executed or an error is indicated. Either the Delete
Breakpoint (DB) and the Resume Task (RT) commands, the Proceed from Breakpoint (PB)

command, or the Delete and Proceed from Breakpoint (DPB) command must be used to restart the

task halted at a breakpoint. The RT command, rather than the Activate Task (AT) command,

should be used to reactivate a task halted by the Halt Task (HT) command.

7-14 Digital Systems Division

o
Y{@@ 9462509704

Syntax:
RT
RESUME TASK
RUN ID: {<constant exp>}
previous
Example:

RESUME TASK
RUN ID: 7

7.3.14 MIR — MODIFY INTERNAL REGISTERS. The internal registers (Program Counter,
Workspace Pointer, and Status Register) for the specified task are modified according to the user
inputs. If the task being debugged is not a privileged task, then only bits O through 6 of the status
register can be modified with this command. This command acts interactively, like the Modify
Memory command. If the task is not unconditionally suspended, it is temporarily suspended while
the command is interacting. The runtime ID is interpreted as in the Assign Breakpoints (AB) com-
mand. This command is interactive and may be terminated at any time by pressing the CMD key

(for the 911 VDT). See table 2-1 for key equivalents on other terminals.

Syntax:

MIR
MODIFY INTERNAL REGISTERS

RUN ID: {<cons’tant exp>}
previous

Once the RUN ID: is entered, the RETURN key is pressed and the following display is

presented:
PC:XXXX

WP:X XXX
ST:XXXX

where

XXXX represents the contents of each register. Modifications to each register are entered
after the contents for the appropriate register.

Example:

MODIFY INTERNAL REGISTERS

RUNID: >24

PC: 0106 Press RETURN

WP: 0040 >60

ST: EA4QF >40F

Results:
No change to PC
Change WP to >60
Change ST to >40F
7-15 Digital Systems Division

C
@ 946250-9704

7.3.15 SIR — SHOW INTERNAL REGISTERS. The internal registers are displayed on the
terminal. The runtime ID is interpreted as in the Assign Breakpoint command. The displayed
state is the state of the task before it was suspended to capture the internal registers, while the
remainder of the display reflects the values in effect after the task was suspended. The character

string 'representation of the status register follows the hexadecimal value and may include the
following characters: L = logical greater than, A = arithmetic greater than, E = equal, C = carry,

O = overflow, P = parity, X = XOP in progress, S = privileged mode, and M = map file.

Syntax:

SIR
SHOW INTERNAL REGISTERS

RUN ID: {<constant exp>}
previous

Example display:

RUN ID=0E STATE=06 (BP} WP=0082 PC=0016 PC=2FCF ST=218F E M

73.16 MWR — MODIFY WORKSPACE REGISTERS. The specified workspace registers of the
specified task are modified according to the user inputs. This command is interactive, like the
Modify Memory command. New values must be terminated by pressing the RETURN key. If the
task is not unconditionally suspended, it is temporarily suspended while the command is interacting.
The runtime 1D is interpreted as in the Assign Breakpoint command. Because this is an interactive

command, it may be terminated at any time by pressing the CMD key (for the 911 VDT). See table
2-1 for key equivalents on other terminals.

Syntax:

MWR
MODIFY WORKSPACE REGISTERS

RUN ID: {<consyant exp>}
previous
REGISTER NUMBER: {<80n5tant exp>} starting register number

Example:

MODIFY WORKSPACE REGISTERS
RUN ID: (Press Return)
REGISTER: 2
R2: 0200 >FFFF
R3: 0300 >3FFF
R4: 062F (Press RETURN)
R5: 8010 Return to command mode

7.3.17 SWR — SHOW WORKSPACE REGISTERS. The current workspace for the specified task
is displayed. If the task is not unconditionally suspended, it is temporarily suspended while the
workspace is displayed. If the terminal requesting the command is a VDT, the SWR command

7-16 Digital Systems Division

o]
{@? 946250-9704

has the same effect as the Show Panel command. The runtime ID is interpreted as in the Assign
Breakpoint command.

Syntax:

SWR
SHOW WORKSPACE REGISTERS

RUN ID: {<constant exp>}
previous

Example:

SHOW WORKSPACE REGISTERS
RUNID: >A

7.3.18 SP — SHOW PANEL. The debug panel for the specified task is displayed. The runtime
ID is interpreted as in the Assign Breakpoint command. If the task is not unconditionally sus-
pended, it will be temporarily suspended while the panel is being formatted and displayed. The
displayed task state is the state of the task before it was suspended. The debug panel consists of
the internal registers, the workspace registers, breakpoints, memory display, and task state.

Syntax:
Sp
SHOW PANEL
{<constant exp>}
RUN ID: previous
MEMORY ADDRESS: <full exp>

Example:

SHOW PANEL

RUNID: >80
MEMORY ADDRESS: >AC

7-17 Digital Systems Division

946250-9704

Figure 7-1 is an annotated example of the debug panel display.

WORKSPACE REGISTERS
IN ASC1l, NON PRINTING
CHARACTERS ARE RE-
PRESENTED BY PERIODS,

WORKSF’SCE REGISTERS WORKSPACE
IN HEXADECIMAL POINTER STATUS REGISTER
HEXADECIMAL
PROGRAM
COUNTER CONTENTS OF THE

WORD POINTED TO

“HOu PRNEL BY pe TASK STATE
FUH ID: 1A / /
MEMORY ADDRETS: '

ID =_1H WE = 4108 FOo= O0SE CPCE = DEHD ET = 018F ETRTE = 08

runTime FUM LMD = _

1D ¥ tFRCE FREGIZTER
= 10 Do anon Oo0g NG nong OOnn OGN oo e s s we we ww e ==
14115 Doan [RRERS nnan nonn NG 00 DOng OOng e su 2w es se ss se ==

EFEREFOINTS:S

O N S SR S
ADDRESs _ W03 ERD 244D CRED M AL M. .. E.
IS:K::F%IEFIED C1En RS OFAD E. .4 . FE e e e
COMMAND $1TIE OSAD e «e «. EB.oo. B.
CERED G216 Az .. B. o E. .4 . #+2
MEMOCRY CONTENTS
MEMORY ADDRESSES MEMORY CONTENTS IN ASCII, NON PRINTING
IN HEXADECIMAL CHARACTERS ARE
REPRESENTED 8Y
PERIODS

Figure 7-1. Debug Panel Display

7.3.19 LB — LIST BREAKPOINTS. The breakpoints for the specified task are displayed.

Syntax:
LB
LIST BREAKPOINTS
RUN ID: {<consﬁant exp>}
previous
Example:
LIST BREAKPOINTS

RUNID: >4C

7.3.20 SV — SHOW VALUE. The value of the specified expression is displayed. Its hexadecimal,
decimal, and ASCII representations are given.

Syntax:

SV

SHOW VALUE
EXPRESSION: <full exp> If a “controlled” task exists,

the expression may be symbolic.

7-18 Digital Systems Division

(o}
@ 946250-9704

Example:

SHOW VALUE
EXPRESSION:

>FF/#R8+ NAME.IDT

7.3.21 SPI — SHOW PROGRAM IMAGE. The Show Program Image (SPI) command displays
the disk-resident memory image of a module (defined as a task, procedure, or overlay) for the

specified program file. The display may be
Syntax:

SPI
SHOW PROGRAM IMAGE
PROGRAM FILE:
OUTPUT ACCESS NAME:

MODULE TYPE:
MODULE NAME OR ID:
ADDRESS:
LENGTH:
Examples:
[1 =ZFI

ZHOW PROGRAM IMAGE

PROGRAM FILE: D02, ZEFROGA
OUTPUT RCCESS MAME:

MODIILE TWPE: FROCEDURE

MODLULE MAME OF ID: 1+2
RODFRESS: N2 0nn

LEMGTH: o

o 1EFE 1206 3215 1EFA 1809
[]

directed to a device or a file.

<acnm> location of module

<acnm> define where to write
output

<Task>

<Overlay> task, overlay, or procedure

<Procedure>

<string> name or installed ID

address to start display
address to end display

<constant exp>
<constant exp>

ittt 0 e e

(1]
[

Oens 12

7.3.22 MPI — MODIFY PROGRAM IMAGE. The Modify Program Image (MPI) command
modifies a module (defined to be task, procedure, or overlay) in the specified program file using
memory addresses and new data supplied by the user.

Syntax:

MPI
MODIFY PROGRAM IMAGE
PROGRAM FILE:
OUTPUT ACCESS NAME:

location of module
define where to write output

<acnm>
<acnm>

7-19 Digital Systems Division

o
{i]@ 946250-9704
<TASK> 1
MODULE TYPE: <PROCEDURE>, task, procedure, or overlay
<OVERLAY> s
MODULE NAME OR ID: <string> name or installed 1D
ADDRESS: <constant exp> starting memory address
VERIFICATION DATA: <constant exp> optional verification data
DATA: <constant exp list> New data to be inserted in the
module.
CHECKSUM: <constant exp> Optional verification data for

RELOCATION OF DATA?:
N

Example:
(] MPI

new data; checksum is an ex-
clusive OR of each word of new
data. If the checksum is not
known, leaving this field blank
causes the checksum to be
printed.

Y data value relocated when task

loaded in memory for execution

MODIFY PROGRAM IMAGE

PROGRAM FILE:

DS02.S$PROGA

OUTPUT ACCESS NAME: LPO1
MODULE TYPE: PROCEDURE
MODULE NAME OR ID: 1 + 2
ADDRESS: 02000
VERIFICATION DATA: OIEFE
DATA: OI1FFF

CHECKSUM:

]

7.3.23 SAD — SHOW ABSOLUTE DISK. The Show Absolute Disk (SAD) command prints the
contents of a specified absolute address on a disk. The SAD command may be entered only by
privileged users. The device is the device name assigned to the disk unit at sysgen time. It normally
consists of the characters -DS01- for the system disk and -DSOx-, where ¢‘x’’ is a digit greater than

one for other disks on the system.

In the output, the contents of 16 bytes are printed per line. The address of the first byte is the first
entry on the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the
right end of the line, the contents are printed as ASCII characters. The bytes that contain values cor-
responding to printable ASCII characters are translated and then displayed or printed as ASCII
characters. The nonprintable ASCII characters are displayed or printed as periods.

720 Digital Systems Division

[o]
%@ 946250-9704

Syntax:
SAD
SHOW ABSOLUTE DISK .
DISK UNIT: <name> disk drive device name
TRACK: <constant exp> starting track address
SECTOR: <constant exp> starting sector address
FIRST WORD: {<constant, e.xp>} starting word address
' 0
NUMBER OF WORDS: <constant exp> number of words to show
OUTPUT ACCESS NAME: <acnm> define where to write output
Example:
[1 SAD

SHOW ABSOLUTE DISK
DISK UNIT: DEOZ
TRACK: ©
SECTOR: O
FIRST WORD: ©
NUMBER OF WORDS: 4+4-2
OUTPUT ACCESS NAME:

TRACK 0000 SECTOR OO0 RECORD LENGTH 0120 BYTES (01 SECTORS).
0000 AD41 S931 3030 2020 2410 MA Y1 0O 2.
£l

7.3.24 MAD — MODIFY ABSOLUTE DISK. The Modify Absolute Disk (MAD) command
places specified data on a disk at a specified absolute track, sector, and word address. This com-
mand may only be entered by privileged users. The disk unit is the device name given the disk at
sysgen time. FIRST WORD is the address of the first word on the sector to be loaded with the data
being entered. Data is entered in groups of word values to be placed on disk. Each word value must
be separated from the next with a comma and values are loaded on disk in successive addresses. The
verify parameter allows the user to enter a string of words to be compared against the data at the
load address. If a bad compare results, the load does not take place. Since the MAD command can
write anything anywhere on the disk and can therefore destroy the DX10 system image, the
VERIFICATION DATA prompt should always be used.

In the output, the contents of 16 bytes are printed per line. The address of the first byte is the first
entry of the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the
right end of the line, the contents are printed as ASCII characters. The bytes that contain values cor-
responding to printable ASCII characters are translated and then displayed or printed as ASCII
characters. The nonprintable ASCII characters are displayed or printed as periods.

7-21 Digital Systems Division

e}
% 946250-9704

Syntax:
MAD
MODIFY ABSOLUTE DISK
DISK UNIT: <name>
OUTPUT ACCESS NAME: <acnm>
TRACK: <constant exp>
SECTOR: <constant exp>
FIRST WORD: <constant exp>
VERIFICATION DATA: <list>
DATA: <list>
Example:
{1 MAD
MODIFY ARSOLUTE DISK
OISk LNIT: D02
OUTPUT ACCESS NAME:
TRAZE: ©
SECTOR: O
FIRZT WIRD: 4
VERIFICATION DATA: 03030

DATA:

0004 2020 2020 2410 0205 0120 0001 G000 0000

L1

Q2020

disk drive device name
define where output goes
starting track address
starting sector address
starting word to modify
data used to verify

new data

e .. - .. L] .

7.3.25 SADU — SHOW ALLOCABLE DISK UNIT. All disks on a DX10 system are addressed in
allocable disk units (ADUs). The maximum number of ADUs on a disk is 65,535. Therefore, if a
disk contains more than 65,535 sectors, multiple sectors are used as ADUs. ADUs are the basic

addressable disk unit in a DX10 system.

This command outputs the contents of the specified ADU to the specified device.

In the output, the contents of 16 bytes are printed per line. The address of the first byte is the first
entry of the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the
right end of the line, the contents are printed as ASCII characters. The bytes that contain values cor-
responding to printable ASCII characters are translated and then displayed or printed as ASCII
characters. The nonprintable ASCII characters are displayed or printed as periods.

Syntax:
SADU
SHOW ALLOCABLE DISK UNIT
DISK UNIT: <name>
ADU NUMBER: <constant exp>
SECTOR OFFSET: <constant exp>

0

FIRST WORD: {<Constant exp>}

disk unit
ADU to be shown
sector offset

first word to show

7-22

Digital Systems Division

(o]
{@fp 946250-9704

NUMBER OF WORDS: <constant exp> number of words to show
OUTPUT ACCESS NAME: <acnm> output device or file

Example:

£1 SADU
SHOW ALLOCABLE DISE LNIT
DISE UNIT: D302
ADL NUMBER: 1
SECTOR OQFFZET: ©
FIRST WORD: O
NMUMBER OF WORDZ: 4
CATPUT ACCESS NAME:

ADLE 0001 SECTOR QO RECORD LENGTH 0120 BYTEZ (01 SECTORI).
OO00 Q000 Q000 0000 OOO0O0 se ar sae s
L1

7.3.26 MADU — MODIFY ALLOCABLE DISK UNIT. All disks on a DX10 system are addressable
in addressable disk units (ADUs). (See SADU.)

This command modifies the specified ADU on disk as directed by operator inputs. If verification
data does not match the data already on disk, the modification is not performed.

In the output, the contents of 16 bytes are printed per line. The address of the first byte is the first
entry of the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the
right end of the line, the contents are printed as ASCII characters. The bytes that contain values cor-
responding to printable ASCII characters are translated and then displayed or printed as ASCII
characters. The nonprintable ASCII characters are displayed or printed as periods.

Syntax:
MADU
MODIFY ALLOCABLE DISK UNIT
DISK UNIT: <name> disk drive device name
OUTPUT ACCESS NAME: <name> define where output is to go
ADU NUMBER: <constant exp> number of ADU to be shown
SECTOR OFFSET: <constant exp> which sector in ADU
FIRST WORD: <constant exp> first word of interest
VERIFICATION DATA: <constant exp list> data to verify
DATA: <constant exp list> data to load

7-23 Digital Systems Division

(o]
{@@ 946250-9704
Example:
L1 Manu

D000

L1

174 D02
CUTFLUT ACCESS NAME:
Al NUMBER: 1

SECTOR OFF3ZET: O
FIRST WORD: ©
VERIFICATION DATA: O

DaTaA: Q100+01000

1100 0000 0000 0000 0000 Q000 OO0 0000

7.3.27 SRF - SHOW RELATIVE TO FILE. The Show Relative to File command displays any
word or group of words within a file. It assumes that the user has knowledge of the file structure and
allows the user to address any word within the file. If a word address is greater than 64K (65,536)
bytes, the user must supply the record number and a word offset into the record.

In the output, the contents of 16 bytes are printed per line. The address of the first byte is the first
entry of the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the
right end of the line, the contents are printed as ASCII characters. The bytes that contain values cor-
responding to printable ASCII charactaers are translated and then displayed or printed as ASCII
characters. The nonprintable ASCII characters are displayed or printed as periods.

Syntax:
SRF
SHOW RELATIVE TO FILE
PATHNAME:
RECORD NUMBER: {ﬁf““m“exﬂ>
FIRST WORD:
NUMBER OF WORDS:
OUTPUT ACCESS NAME:
Example:
(1 =RF

THOW RELATIVE TO FILE
PRATHHAME: . Z3PROC.XEER 7
FECORD NUMEER: 0
FIRZT WORD: O
HMUMEBER OF WORDE:R)
OQUTPUT RCCEZE MAME:

FILE: .Z%PROC,
oo Onon anis 1AOE S842 2022 43553
[]

<acnm>

<constant exp>

<constant exp>
<acnm>

}

file pathname

must be specified if word
address is over 64K bytes

first word to show (must
be an even byte address)
length of block to show

output device or file

7-24

Digital Systems Division

le]
@ 946250-9704

7.3.28 MRF — MODIFY RELATIVE TO FILE. The Modify Relative to File (MRF) command
changes data at an absolute word address within a file. It is assumed that the user has knowledge of
the file and disk structure. Addresses greater than 64K (65,536) bytes must have a record number.
Words less than 64K bytes can be addressed directly; the sector is located by the program. Verifi-
cation should be used if the file is critical to a program.

In the output, the contents of 16 bytes are printed per line. The address of the first byte is the first
entry of the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the
right end of the line, the contents are printed as ASCII characters. The bytes that contain values cor-
responding to printable ASCII characters are translated and then displayed or printed as ASCII
characters. The nonprintable ASCII characters are displayed or printed as periods.

Syntax:
MRF
MODIFY RELATIVE TO FILE
PATHNAME: <acnm> pathname to file
OUTPUT ACCESS NAME: <acnm> output device or file
<constant exp> sector offset-required if
RECORD NUMBER: { 0 } word address is over 64K
a bytes
FIRST WORD: <constant exp> address of first word (must
be an even byte address)
VERIFICATION DATA: <constant exp list> data to be verified
DATA: <constant exp list> data to be loaded
CHECKSUM: <constant exp> Optional verification data
for new data. If the check-
sum is not known, leaving
this field blank will cause
the checksum to be printed
out. The checksum is an
exclusive OR of each word
of new data.
Example:
L1 MRF
MODIIFY RELATINVE TO0 FILE
FATHNAME =
DUITFUT ACCESS NAMEE s O]
RECORD MUMBYER: O
FIRST WORD: O
VERTIFICATION DATA: O
DaTas 100
UHE TR SUM e 100
{1

7.3.29 LLR — LIST LOGICAL RECORDS. This command lists selected records from a sequen-
tial or relative record file to a device or file. The LLR command differs from the Show File (SF)
command in that it allows positioning within the file and also prints both ASCII and hexadecimal
formats for the record contents.

725 Digital Systems Division

o]
{@? 946250-9704

Syntax:
LLR
LIST LOGICAL RECORD
PATHNAME: <acnm> pathname to file
STARTING RECORD: {<int>} relative record number
{ within the file
NUMBER OF RECORDS: <acnm> length of block to show
LISTING ACCESS NAME: [acnm] listing device or file
Example:
[1LLR

LIST LOGICAL RECORD
PATHNAME: .S$PROC.XB
STARTING RECORD: 0
NUMBER OF RECORDS: 1
LISTING ACCESS NAME:

FILE ACCESS NAME: .S$PROC.XB
RECORD: 000000
000 0 5842 2028 4558 4543 5554 4520 4241 5443 XB(EX EX UTEBATCH),
00104829 2C20

7.4 COMMANDS FOR CONTROLLED TASKS

These commands may be used for tasks in the controlled mode (see XD command in the next
paragraph). The SCI commands may also be used for controlled tasks, and some SCI commands
result in additional output. For example, if a breakpoint occurs in a controlled task, then a panel
is displayed. Breakpoints in noncontrolled tasks produce no output. If the linked object was
specified in the XD command, then symbolic expressions may be used for integer parameters.
The controlled mode commands are explained in the following paragraphs.

7.4.1 XD — DEBUG COMMAND. This command places the specified task into controlled mode.
The runtime ID is optional, but cannot be that of a system task. If no runtime ID is given, an auto-
matic call is made to the Execute and Halt Task (XHT) command to place the task into execution.
The symbol table object file is optional and its presence determines whether symbolic expressions
are allowed on any of the subsequent debug commands. If a symbol table was specified to the
Link Editor (SYMT option selected) and if the controlled task symbol table object file is specified,
then symbolic expressions involving symbols in the object code symbol table may be used in com-
mands which call for string parameters. The debugger may be used to simulate 990/12 object code
(when executing on a 990/12) or 990/10 object code (when executing on a 990/10 or a 990/12).

The command defaults to object code of the type of the host computer. Only one task for each
station may be in debug mode at a given time.

Syntax:

XD
EXECUTE DEBUG
(<int>)
RUNID:) previous |
SYMBOL TABLE OBJECT FILE: <acnm>
[Y]

990/12 OBJECT CODE?: IN|

7-26 Digital Systems Division

e]
{%@ 946250-9704

Example:

EXECUTE DEBUG
RUN ID: >9A
SYMBOL TABLE OBJECT FILE: .OBJ.PROG
990/12 OBJECT CODE: N

Example:

EXECUTE DEBUG
RUN ID: >9A
SYMBOL TABLE OBJECT FILE: .OBJ.PROG

7.4.2 ST — SIMULATE TASK. The ST command provides controlled and traced execution of
the instructions in the controlled task. Controiled execution continues until the execution of a
specified number of instructions has been simulated, or until a specified address is placed in the
PC, or the occurrence of a breakpoint or simulated breakpoint, whichever occurs first. Simu-
lation may be continued by entering the F3 function key.

Simulated execution continues without operator intervention and locks out further SCI com-
mands. The user can regain SCI capabilities by returning to the command mode. The ST or
Resume Simulated Task (RST) commands may be used to reenter simulated execution.

Syntax:
ST
SIMULATE TASK
FOR: [<full exp>] symbolic expression
FROM: [<full exp>] symbolic expression

TO: [<full exp>] symbolic expression

The FOR operand is an expression that specifies the number of instruction simulations to be
performed. The value of the FOR operand is Iess than or equal to 32,767. When the specified

number of simulations has been performed, SCI displays the following message and halts
simulation:

TIME OUT

When the FOR operand is omitted, the FOR value specified in the previous ST command is
used. If there was no previous ST command, ‘1’ is used. Simulation halts if a breakpoint or
simulated breakpoint is encountered, or if the execution of an instruction at a specified address
is simulated. If simulation continues without encountering these conditions, the user may regain
control of the program by returning to the command mode of SCIL.

The FROM address is a constant, variable, or expression that specifies the address of the first

instruction to be simulated. When the address is omitted, simulation begins at the instruction
whose address is in the PC.

The TO address is a constant, variable or expression that specifies the address of the last
instruction to be simulated. Following simulation of that instruction, SCI displays the panel and
halts simulation. The TO address may be less than the FROM address. When the TO address is
not entered, simulation continues until a breakpoint or simulated breakpoint is encountered, or
the user returns to the command mode.

7-27 Digital Systems Division

(o]
q_r@g; 946250-9704

The following example shows an ST command:

SIMULATE TASK Begin simulation of program
FOR: 25 IDTNAM at location BEGIN

FROM: JIDTNAM.BEGIN halting after simulating the
TO: . . END execution of 25 instructions,

or at location .END.
Single instruction execution is performed by using a FOR parameter equal to 1.

7.4.3 ASB — ASSIGN SIMULATED BREAKPOINT. This command sets up a breakpoint on a
range of values for memory alteration (A), CRU access (C), PC value (P), memory references (R),
status value (S), or XOPs (X). A memory write operation that does not change the value in memory
is not a memory alteration. The breakpoints set with this command are valid only during a simu-
lation. Breakpoints, in this case, are conditions that stop execution but allow execution to be re-
sumed on another command, either Resume Simulated Task (RST) or F3 function key on a 911
VDT. See table 2-1 for equivalent keys on other terminals. Each simulated breakpoint is assigned a
number that is displayed at the completion of the ASB command. When a breakpoint occurs during
simulation, a panel and the breakpoint number are displayed along with the display string. COUNT
specifies the number of times the breakpoint will be passed before execution is halted.

Syntax:
ASB
ASSIGN SIMULATED BREAKPOINT /
<A> Alteration (memory)
}<C> CRU Access
ON(A,C, P, R, S, X): < P PC Value
’<R> Reference (memory)
<8> ST Value
\<X> XOP Level
FROM: <full exp> symbolic expression for the
lower limit for break-
pointing
THRU: <full exp> symbolic expression for the
upper limit for break-
pointing
COUNT: <full exp> symbolic expression which

specifies the number of times
this breakpoint is to be encoun-
tered before execution is
halted

DISPLAY: <full exp> symbolic expression for the
memory address to be displayed
when this breakpoint is reached

7-28 Digital Systems Division

[o]
{%\[_]@ 946250-9704

Examples:
ASSIGN SIMULATED BREAKPOINT Set a breakpoint on memory
ON(A,C,P, R, S, X): A locations 6 through 1CO.
FROM: 6 Display the program counter
THRU: >1C0 (PC) if the breakpoint is taken.
COUNT: (Press RETURN) Count defaults to 1.
DISPLAY: (Press RETURN)
ASSIGN SIMULATED BREAKPOINT Set a breakpoint on the second
ON(A,C,P R, S, X): P occurrence of a PC value between
FROM: IDTNAM.BRANCH BRANCH and BRANCH+ 24
THRU: . . BRANCH+ 24 in the module IDT NAM.
COUNT: 2 Display location TABLE in
DISPLAY: . . TABLE IDTNAM if the breakpoint
occurs.

7.4.4 DSB — DELETE SIMULATED BREAKPOINT. This command allows the user to delete a
list of simulated breakpoints assigned with the ASB command. The only argument is the

breakpoint number assigned by the ASB command. The keyword “ALL” deletes all of the
simulated breakpoints.

Syntax:
DSB
DELETE SIMULATED BREAKPOINT
<full exp> number of simulated
BREAKPOINT NUMBERS: <ALL> breakpoint

Example:

DELETE SIMULATED BREAKPOINT
BREAKPOINT NUMBERS: 3

7.4.5 RST — RESUME SIMULATED TASK. This command allows the user to resume simulation
following a breakpoint, a simulated breakpoint or simulation of a specified number of instructions
(time-out). The last entered values for the FOR: and TO: prompts in the Simulate Task (ST)
command are used as the RST limits. Upon reaching a terminating condition (breakpoint, simulated
breakpoint, time-out, or TO: address), a panel and termination reason are displayed. Simulation
may be continued by entering an F3 function key or terminated by pressing the CMD key (on a 911
VDT). See table 2-1 depending on the terminal type in use.

Syntax:

RST
RESUME SIMULATED TASK

7.4.6 LSB — LIST SIMULATED BREAKPOINTS. The List Simulated Breakpoints command is
used to display all active simulated breakpoints. The display is shown in figure 7-2. The first
column lists the numbers assigned when the breakpoints were set. In the figure, the numbers
start at one and are consecutive, because the breakpoints listed were set consecutively. The
TYPE column lists letters of the “on” parameter for Assign Simulated Breakpoints command to

7-29 Digital Systems Division

identify the breakpoints shown in the ASB examples. The remaining column lists the current
count (the number of times the program has yet to go: through the breakpoint) and the COUNT
column lists the count operand entered when the breakpoints were set. The DISPLAY column
lists the display operand. The FROM and THRU columns list the corresponding operand
addresses. When the operands represent CRU addresses, ST register values, or XOP levels, the
operands are listed as hexadecimal numbers.

Syntax:

LSB
LIST SIMULATED BREAKPOINTS

Figure 7-2 is an annotated example of the simulated breakpoints display.

NUMBERS
ASSIGNED COUNT OPERAND
WHEN ENTERED WHEN
BREAKPOINTS BREAKPOINTS THE DISPLAY
SET WERE SET OPERAND
{3 LEE
LIET ZIMUNARTED ERERKFDIMTE
TYFE=F FROM=% 000/ THEL=: 004 COLMT=> 000RH [FEMATHIMG=> 000R DIZFLAY=: 0021
S ST

SONNE SO0OD P
SU0LE B
SO0LE

ER AR
[ARRNR

e : =03
H IR) SR 1 O B
F DOLEEN] ey ERIFIRES ERERIF eI
LETTERS OF ON; CORRESPONDING NUMBER OF
PROMPT OF ASB OPERAND ADDRESSES TIMES THE
COMMAND SLISTED IN HEXADECIMAL PROGRAM
F OPERANDS REPRESENT HAS TO GO

CRU ADDRESSES, ST
REGISTER VALUES, OR
XOP LEVELS)

Figure 7-2. Simulated Breakpoints Display

7.4.7 QD — QUIT DEBUG. This command takes a task out of debug mode. The user has the
option of keeping the task in debug mode or killing the task. If the user chooses not to kill the task,
it will be left unconditionally suspended. The user may still issue any of the general SCI commands.
The Resume Task (RT) or Proceed from Breakpoint (PB) commands (depending on whether the
task is at a breakpoint) can be used to activate the task.

Syntax:

QD
QUIT DEBUG MODE
‘<N>)

[X

KILL TASK?:

7-30 Digital Systems Division

T

Example:

QUIT DEBUG MODE

KILL TASK?: YES

7.5 STATION DEPENDENT DISPLAYS

As mentioned previously, the displays generated by debugging SCI commands vary in format and
content depending on the display device. High-speed display terminals (such as Video Display
Terminals) display more information than hard copy terminals. Table 7-2 lists the display generated
by several of the debug commands in varying environments.

Table 7-2. Command Displays

Hard Copy Hard Copy VDT VDT
Command Regular Debug Regular Debug
AB — — — PANEL
ASB — — — BRKPT NO. + PANEL
DB —_ — — PANEL
DBP — — — PANEL
DSB — — — PANEL
FB MSG OR TLF MSG OR TLF MSG OR TLF MSG + PANEL OR TLF

Fw MSG OR TLF MSG OR TLF MSG OR TLF MSG + PANEL OR TLF
HT —_ —_ — PANEL
LB BRKPTS BRKPTS BRKPTS BRKPTS
LLR TLF TLF TLF TLF
LM TLF TLF TLF TLF
LSB — SIMULATED BRKPTS — SIMULATED BRKPTS
MM INTERACT INTERACT INTERACT INTERACT PANEL
MWR INTERACT INTERACT INTERACT INTERACT PANEL
PB -— — —_ PANEL
QD — — - -
RST — TRAP # OR ‘TIMEOUT’ — TRAP # OR ‘TIMEOUT’ + PANEL
RT — —_ — PANEL
SIR INT REG INT REG PANEL PANEL
SpP PANEL PANEL PANEL PANEL
ST — TRAP # OR ‘TIMEOUT’ — TRAP # OR ‘TIMEOUT’ + PANEL
Sv VALUES VALUES VALUES VALUES
SWR WKSPC WKSPC PANEL PANEL
XD — — —_ PANEL
TLF = contents of terminal local file
PANEL = Debug Panel, figure 7-2
INT REG = Internal registers
7-31/7-32 Digital Systems Division

SFo

946250-9704

SECTION 8

EXAMPLE PROGRAM

8.1 RUNTHROUGH OF AN ASSEMBLY LANGUAGE EXAMPLE PROGRAM

The runthrough given in this section uses a demonstration program supplied by Texas Instruments
with the DX10 operating system. The source code for the program is contained in a disk file with the
pathname DSO1.TI.SOURCE.TSTSDS. The program creates a disk file named DS01. TSTMSG and
writes a message to the file. You will be able to edit and assemble the source, link the object, and
then execute the program by installing the linked object as a task on the system program file and exe-
cuting that task.

The procedures given in this section follow those given in Section 1 of this document. Since step one,
design and initial coding, and step two, entering the program, have been done, the runthrough could
begin with step three, assembling the source code. However, to demonstrate the use of Text Editor,
begin with step two to modify the source code.

Before beginning the runthrough, power up the computer and the terminal, and log on at the ter-
minal using the procedures described in the Model 990 Computer DX10 Operating System Pro-
duction Operation manual.

The procedures given in this section are for use on a 911 VDT. Refer to table 2-1 for the equivalent
key for other terminals.

For this example, it is convenient to create a directory file structure to simplify file references. A
suggested pathname format is as follows:

Source files: <volume name> . <programmer name> .SOURCE. <program name>
Object files: <volume name> . <programmer name> .OBJECT. <program name>
Listing files: <volume name> . <programmer name> .LIST. <program name>
Linked Output files: <volume name> . <programmer name> .LINKED. <program name>
Error files: <volume name> . <programmer name> .ERROR. <program name>

Link Edit Control files: <volume name> . <programmer name> .CONTROL. <program name>

8-1 Digital Systems Division

e]
(,,@@ 946250-9704

The volume name is optional if the system disk (DSO1) is used, and it may be omitted. Use
either your first or last name for the programmer name entry. The first step is to create a direct-
tory file. Enter the CFDIR command, which causes the following to be displayed:

CREATE DIRECTORY FILE

PATHNAME:
MAX ENTRIES:

DEFAULT PHYSICAL RECORD SIZE:

Enter the programmer name you selected, preceded by a period, in response to the PATHNAME:
prompt. In response to the MAX ENTRIES: prompt, enter 10. In response to the DEFAULT
PHYSICAL RECORD SIZE: prompt, press the RETURN key.

Repeat the command five times to create the following directories (enter these pathnames in
response to the PATHNAME: prompt):

. <programmer name> .OBJECT

. <programmer name> .LIST

. <programmer name> .ERROR

. <programmer name> .CONTROL
. <programmer name> LINKED

The MAX ENTRIES: prompt is answered with 1 each time. Since it can become tedious to enter the
full file pathname every time it is required, it is convenient to assign synonyms to the directory
pathnames and use them when required. Synonyms are assigned by use of the Assign Synonym (AS)

SCI command. The command must be called for each synonym assignment. Enter AS, and the
following is displayed:

ASSIGN SYNONYM VALUE
SYNONYM:
VALUE:
The example uses the following:
SYNONYM: S
VALUE: DS01.TL.SOURCE
SYNONYM: 0
VALUE: DSO1 . <programmer name> .OBJECT
SYNONYM: L
VALUE: DSO1 . <programmer name> .LIST
SYNONYM: C
VALUE: DS01 . <programmer name> .CONTROL
SYNONYM: E
VALUE: DS01 . <programmer name> .ERROR
SYNONYM: P
VALUE: DS01 . <programmer name> .PROG

8-2 Digital Systems Division

o]
{@ 946250-9704

Call the Text Editor by entering XE. The following is then displayed:

SYNONYM: LK
VALUE: DSO1 . <programmer name> .LINKED

INITIATE TEXT EDITOR
FILE ACCESS NAME:

Respond to the FILE ACCESS NAME: prompt with the following:

FILE ACCESS NAME: S.TSTSDS
The response could also be DSO1.TL.SOURCE.TSTSDS. To modify the message, perform the

following:
1. Enter the command mode by pressing the CMD key.
2. Key in RS to specify the Replace String command and press the RETURN key.
3. The prompts displayed and the responses are as follows:

REPLACE STRING

NUMBER OF OCCURRENCES: 1
START COLUMN: 37
END COLUMN: 39
STRING: OLD
CHANGE: NEW

Press RETURN to activate the command processor.

When the Text Editor completes the string replacement, the line containing the old
string, now changed, is displayed with the cursor in column one.

4. Press the CMD key to enter the command mode.

5. Enter QE and press RETURN to call the Quit Editor command. The following display
is then presented:

ABORT?: NO

6. Press the RETURN key. The following display is then presented:

OUTPUT FILE ACCESS NAME: S.TSTSDS
REPLACE?: NO
MOD LIST ACCESS NAME:

7. Press RETURN to accept the OUTPUT FILE ACCESS NAME entry. Enter Y in response
to the REPLACE prompt and press the RETURN key. Press the RETURN key again to
indicate that no modifications list is desired.

8-3 Digital Systems Division

[¢]
% 946250-9704

Once the text edit is complete, the source code must be assembled. Perform the following steps:

1. Invoke the Macro assembler by entering XMA and pressing the RETURN key. The
following display is presented:

EXECUTE MACRO ASSEMBLER

SOURCE ACCESS NAME:

OBJECT ACCESS NAME:

LISTING ACCESS NAME:

ERROR ACCESS NAME:

OPTIONS:

MACRO LIBRARY PATHNAME:
PRINT WIDTH: 80
PAGE LENGTH: 60

2. Respond to the prompts in the following manner (press RETURN after each entry):

SOURCE ACCESS NAME: S.TSTSDS
OBJECT ACCESS NAME: 0.TSTSDS
LISTING ACCESS NAME: L.TSTSDS
ERROR ACCESS NAME: E.TSTSDS
OPTIONS: SYMT
MACRO LIBRARY PATHNAME: (Press RETURN)
PRINT WIDTH: 80
PAGE LENGTH: 60

3. Enter WAIT and press the RETURN key. When the assembly completes, the following
message is displayed if no errors occur:

MACRO ASSEMBLY COMPLETE, 0000 ERRORS, 0000 WARNINGS

If errors are indicated, use the Show File command (SF) to view the contents of the
E.TSTSDS file, which is the error file. Enter the command mode by pressing CMD.

The output of the Macro Assembler must now be linked by the following procedures:

1. First, call the Text Editor, by entering XE, to create the Link Edit control file. The
following display is presented:

INITIATE TEXT EDITOR
FILE ACCESS NAME: S.TSTSDS

2. Press the TAB/SKIP key to clear the entry.

3. Press the RETURN key to insert a line.

4. Key the following and terminate each line by pressing the RETURN Kkey:
TASK TSTSDS
SYMT

INCL 0.TSTSDS
END

8-4 Digital Systems Division

o]
@ 946250-9704

5. Enter the command mode (CMD) and then enter QE to quit the editor. Respond to the
prompts as follows:

ABORT?: NO
OUTPUT FILE ACCESS NAME: C.TSTSDS
REPLACE?: v
MOD.LIST ACCESS NAME: (Press RETURN)

6. Call the Link Editor by keying in XLE. Respond to the prompts as follows:

EXECUTE LINKAGE EDITOR

CONTROL ACCESS NAME: C.TSTSDS
LINKED OUTPUT ACCESS NAME: LK. TSTSDS
LISTING ACCESS NAME: L.TSTSDS
PRINT WIDTH: 80

When the SCI command prompt appears, enter WAIT and press the RETURN key. The following
message is displayed:

.

WAITING FOR BACKGROUND TASK TO COMPLETE.
When the Link Editor completes, the following message is displayed:

LINK EDITOR COMPLETED, 0 ERRORS, 0 WARNINGS:

Enter the command mode (CMD).

The program must now be installed as a DX 10 task by use of the Install Task command. A program
file is required for the Install Task command. You can either create your own program file using the
Create Program File (CFPRO) command, described in the Model 990 Computer DX10 Operating
System Production Operation manual, or use the system program file. This runthrough uses the
system program file. Perform the following to install the task.

Call the command by entering IT. Respond to the prompts as follows:

INSTALL TASK
PROGRAM FILE OR LUNO: 0
TASK NAME: TSTSDS
TASK ID: 0
OBJECT PATHNAME OR LUNO: LK. TSTSDS
PRIORITY: 3
DEFAULT TASK FLAGS?: YES
ATTACHED PROCEDURES?: NO

8-5 Digital Systems Division

o}
{@? 946250-9704

The installed ID is returned by the system. Return to the command mode by pressing the CMD key.

To execute the task, use the Execute and Halt Task (XHT) command. This command activates the
task but does not begin execution. The XHT command is useful when the debugging commands are

to be used for the task. When XHT is entered, the following prompts are displayed. Respond as
shown:

EXECUTE AND HALT TASK

PROGRAM FILE NAME OR LUNO: 0
TASK NAME OR ID: TSTSDS
PARMI: 0
PARM2: 0
STATION ID: ME

Note that the runtime ID of the task is returned on the display. Remember the runtime ID for the
next step. Return to the command mode by pressing the CMD key.

Place the task in the debug mode by entering the Execute Debug (XD) command. Respond to
the following prompts as shown:

INITIATE DEBUG MODE
RUN ID: runtime id
SYMBOL TABLE OBJECT FILE: LK.TSTSDS
990/12 OBJECT CODE ?: (Press RETURN)
To begin execution of the task, use the Simulate Task (ST) command. The prompts and
responses are as follows:

SIMULATE TASK
FOR: 1000
FROM: (Press RETURN)
TO: (Press RETURN)

The message TIME OUT is displayed. Return to the command mode by pressing the CMD key.

Quit the debugger by entering the QD command. The prompts and responses are as follows:

QUIT DEBUG
KILL TASK: YES

The Show File command is used to verify that the test program has created a file that contains
the text message.

When SF is entered, respond to the prompt as shown:

SHOW FILE
FILE ACCESS NAME: DSO01. TSTMSG

The contents of the file are displayed, and the message should read THIS IS THE NEW
MESSAGE. Press the CMD key to get the initial SCI menu. Use the Text Editor, as previously
described, to return the original value of the message (change NEW to OLD).

8-6 Digital Systems Division

[o]
{@ 946250-9704

To conserve disk space, it is recommended that the Delete File command be used to delete the
DS01.TSTMSG file, and that the Delete Directory command be used to delete the directory that
contains the files created in this runthrough. Perform the following steps:

1. Enter DF to delete the test file. Respond as follows:

DELETE FILE
FILE ACCESS NAME: DS01.TSTMSG

2. Enter DD to delete the directory. Respond as follows:
DELETE DIRECTORY

PATHNAME: <programmer name>>
LISTING ACCESS NAME: (Press RETURN)
ARE YQU SURE: YES

The directory created and all files in it are now deleted. Return the terminal to the
command mode by pressing the CMD key.

8-7/8-8 Digital Systems Division

946250-9704

APPENDIX A

STANDARD DEVICE NAMES

The following list defines the standard DX10 device name format.

Device Name!
Disk DSxx
Interactive Terminals? STxx
Cassette Drives CSxx
Flexible Diskette (single density) DKxx
Magnetic Tape MTxx
Card Readers CRxx
Line Printers LPxx
Communications CMxx
AMPL Emulator EMxx
AMPL Trace Emulator TMxxX
Notes:

'The letters xx represent a two-digit number
assigned by SYSGEN. Values are sequential
within device type and are in the range Ol
through 99.

‘Includes VDTs, KSRs, TPDs, ASRs, (ex-
cluding cassette units), and any other inter-
active keyboard device. N

A-1/A-2 Digital Systems Division

(o]
{ig@ 946250-9704

ALIAS COMMANDS

APPENDIX B

COMMAND SUMMARY

AA - ADD ALIAS
DA - DELETE ALIAS FROM PATHNAME
BACKGROUND/BATCH COMMANDS
BATCH - BEGIN BATCH EXECUTION
cM - CREATE MESSAGE
EBATCH - END BATCH EXECUTION
EC - ERROR COUNT
KBT - KILL BACKGROUND TASK
SBS - SHOW BACKGROUND STATUS
WAIT - WAIT FOR BACKGROUND
XB - EXECUTE BATCH SCI
BREAKPOINT COMMANDS
AB - ASSIGN BREAKPOINT
DB - DELETE BREAKPOINT
DPB - DELETE AND PROCEED FROM BREAKPOINT
LB - LIST BREAKPOINTS
PB - PROCEED FROM BREAKPOINT
COBOL COMMANDS
XCC - EXECUTE COBOL COMPILER BACKGROUND
XCCF - EXECUTE COBOL COMPILER FOREGROUND
XCP - EXECUTE COBOL PROGRAM BACKGROUND
CFPRO - CREATE PROGRAM FILE
XCPF - EXECUTE COBOL PROGRAM FOREGROUND
XLE - EXECUTE LINKAGE EDITOR
XCT - EXECUTE COBOL TASK BACKGROUND
XCTF - EXECUTE COBOL TASK FOREGROUND
CREATE COMMANDS
CF - CREATE FILE
CFDIR - CREATE DIRECTORY FILE
CFIMG - CREATE IMAGE FILE
CFKEY - CREATE KEY INDEX FILE
CFPRO - CREATE PROGRAM FILE
CFREL - CREATE RELATIVE RECORD FILE
CFSEQ - CREATE SEQUENTIAL FILE
CM - CREATE MESSAGE
CSF - CREATE SYSTEM FILES
CSK - CREATE SEQUENTIAL TO KEY
ENDKEY - END CFKEY SPECIFICATION
KEY - CFKEY KEY SPECIFICATION

B-1 Digital Systems Division

[o]
{@ 946250-9704

COPY COMMANDS
AF
BD
cc
cD
CKS
CKSR
CPI
CSM
CSK
DCOPY
IBMUTL
PF
RD
VB
Ve

DBMS 990 COMMANDS
ADBF
CPYFIL
DOL
EDBMS
ILDFIL
LSTDDL
PQUERY
RDBF
RLDFIL
SDBMS
SUMFIL
UDBF

ADDPE
ADDPSW
CMPSW
CPSW
DELPE
DELPSW
MPSWF

ADDALIAS
DLTALIAS
LSTALIAS
MODALIAS

L I N S R B |

- COPY

- DISK

| I S R |

APPEND FILE

BACKUP DIRECTORY (DISK)
COPY/CONCATENATE

COPY DIRECTORY (DISK)

COPY KEY TO SEQUENTIAL FILES
COPY KIF TO SEQUENTIAL RANDOMLY
COPY PROGRAM IMAGE
SEQUENTIAL MEDIA
SEQUENTIAL TO KEY
COPY/RESTORE UTILITY
CONVERT IBM DISKETTE

PRINT FILE

RESTORE DIRECTORY (DISK)
VERIFY BACKUP (DIRECTORY)
VERIFY COPY (DIRECTORY)

CoPY

ASSIGN DB FILE ID
COPY FILE

FORMAT DDL

END DATA BASE MANAGER
INITIAL LOAD FILE
LIST DDL

PRIMITIVE QUERY
RELEASE DB FILE ID
RELOAD FILE

START DATA BASE MGR
SUMMARIZE FILE STATUS
UNLOCK DB FILE

PASSWORD UTILITIES

ADD PASSWORD ENTRY

ADD PASSWORD

CHANGE MASTER PASSWORD
CHANGE PASSWORD

DELETE PASSWORD ENTRY
DELETE PASSWORD

MAP PASSWORD FILE

ALTAS UTILITIES

ADD ALIAS ENTRY

DELETE ALIAS ENTRY
LIST ALIAS ENTRIES
MODIFY ALIAS ENTRY

B-2 Digital Systems Division

[e]
{@@ 946250-9704

CLLOG
OPLOG
RECOVR

DEBUG COMMANDS
/BKPT
/GDEB
/PDEB
/SDEB

DELETE COMMANDS
DD
DF

DEVICE OPERATIONS
/DISK
/DVICE
/STAT
/TERM

DIRECTORY COMMANDS
BD
CD
CFDIR
DD
LD
MD
RD
VB
Ve

DISK COMMANDS
CKD
DCOPY
IBMUTL
INV
Iv
MAD
MADU
MD
MVI
RCD
SAD
SADU
SVS
uv
XCu

LOGGING UTILITIES

I

CLOSE LOG
OPEN LOG
RECOVER DBMS FILE

BREAKPOINT COMMANDS

GENERAL DEBUG COMMANDS
PASCAL DEBUG COMMANDS
SPECIAL DEBUG COMMANDS

DELETE DIRECTORY
DELETE FILE

DISK COMMANDS
DEVICES

STATUS COMMANDS
TERMINALS

BACKUP DIRECTORY

COPY DIRECTORY

CREATE DIRECTORY FILE
DELETE DIRECTORY

LIST DIRECTORY

MAP DISK (DIRECTORY)
RESTORE DIRECTORY

VERIFY BACKUP (DIRECTORY)
VERIFY COPY (DIRECTORY)

CHECK DISK FOR CONSISTENCY
DISK COPY/RESTORE UTILITY
CONVERT IBM DISKETTE
INITIALIZE NEW VOLUME
INSTALL VOLUME

MODIFY ABSOLUTE DISK

MODIFY ALLOCATABLE DISK UNIT
MAP DISK

MODIFY VOLUME INFORMATION
RECOVER DISK

SHOW ABSOLUTE DISK

SHOW ALLOCATABLE DISK UNIT
SHOW VOLUME STATUS

UNLOAD VOLUME

EXECUTE 2.2 CONVERSION UTILITY

Digital Systems Division

(o]
@ 946250-9704

DEVICES

cC
HO
KO
PF
RO
S0S
RCRU
WCRU

TEXT EDIT COMMANDS
CL
DL
DS
FS
IF
ML
MR
MRM
MT
QE
RE
RS

SL
SVL
XE
XES

FILE OPERATIONS
/DIR
JEDIT
/FILEC
/LUNO
/STAT

FILE COMMANDS
/AL
/CF
/COPY
/DEL
/LUNO
/MOD
/SHOW
/SYN

FORTRAN COMMANDS
XFC
XFCF
XLE
XFT
XFTF
XF78
XF78F

COPY/CONCATENATE

HALT OUTPUT AT DEVICE

KILL OUTPUT AT DEVICE

PRINT FILE

RESUME OUTPUT AT DEVICE

SHOW OUTPUT STATUS

READ CONTENTS OF SPECIFIED CRU REGISTER
WRITE VALUE TO SPECIFIED CRU ADDRESS

COPY LINES

DELETE LINES

DELETE STRING

FIND STRING

INSERT FILE

MOVE LINES

MODIFY ROLL VALUE
MODIFY RIGHT MARGIN
MODIFY TAB SETTINGS
QUIT EDITOR

RECOVER EDIT

REPLACE STRING

SHOW LINES

SAVE LINES

INITIATE TEXT EDITOR
INITIATE TEXT EDITOR WITH SCALING

DIRECTORY COMMANDS
TEXT EDIT COMMANDS
FILE COMMANDS

LUNO

STATUS COMMANDS

ALTAS COMMANDS
CREATE COMMANDS
COPY COMMANDS
DELETE COMMANDS
LUNO

MODIFY COMMANDS
SHOW COMMANDS
SYNONYM COMMANDS

EXECUTE FORTRAN COMPILER BACKGROUND
EXECUTE FORTRAN COMPILER FOREGROUND
EXECUTE LINKAGE EDITOR

EXECUTE FORTRAN TASK BACKGROUND
EXECUTE FORTRAN TASK FOREGROUND
EXECUTE FORTRAN-78 COMPILER BACKGROUND
EXECUTE FORTRAN-78 COMPILER FOREGROUND

B-4 Digital Systems Division

{@? 946250-9704

GENERAL DEBUG COMMANDS

FB - FIND BYTE

FW - FIND WORD

HT - HALT TASK

KT - KILL TASK

LLR - LIST LOGICAL RECORD

LM - LIST MEMORY

LSM - LIST SYSTEM MEMORY

MIR - MODIFY INTERNAL REGISTERS

MM - MODIFY MEMORY

MSM - MODIFY SYSTEM MEMORY

MWR - MODIFY WORKSPACE REGISTERS

RT - RESUME TASK

SIR - SHOW INTERNAL REGISTERS

SP - SHOW PANEL

sV ~ SHOW VALUE

SWR - SHOW WORKSPACE REGISTERS

XHT - EXECUTE AND HALT TASK
LANGUAGE PROCESSORS

XLE - EXECUTE LINKAGE EDITOR

XMA - EXECUTE MACRO ASSEMBLER
LUNO

AGL - ASSIGN GLOBAL LUNO

AL - ASSIGN (TERMINAL LOCAL) LUNO

BL - BACKSPACE LOGICAL UNIT

FL - FORWARD SPACE LOGICAL UNIT

MLP - MODIFY LUNO PROTECTION

RAL - RELEASE ALL LUNO'S

RGL - RELEASE GLOBAL LUNO

RL - RELEASE LUNO

RWL - REWIND LOGICAL UNIT

SIS - SHOW I/0 STATUS

WEOF - WRITE EOF TO LUNO
MISCELLANEOUS COMMANDS

CM - CREATE MESSAGE

EC - ERROR COUNT

IDT - INITIALIZE DATE AND TIME

LC - LIST COMMANDS

LDC - LIST DEVICE CONFIGURATION

MSG - WRITE MESSAGE TO TERMINAL

Q - QUIT/LOGOUT

RCRU - READ CONTENTS OF SPECIFIED CRU REGISTER

SDT ~ SHOW DATE AND TIME

SMS - SHOW MEMORY STATUS

SV - SHOW VALUE

WAIT - WAIT FOR BACKGROUND

WCRU - WRITE VALUE TO SPECIFIED CRU ADDRESS

XANAL - ANALYZE DX10 CRASH FILE

Xcu - EXECUTE 2.2 CONVERSION UTIL

XGEN - EXECUTE GEN990 - AUTO SYSGEN

B-5 Digital Systems Division

o]
q@ 946250-9704

MODIFY COMMANDS
MAD
MADU
MDS
MFN

MFP
MKL

MLP
MM

MOE
MPE
MPI
MRF
MSM
MTE
MVI
STI
XE

XES

OVERLAY COMMANDS
DO
I0
IS0
MOE

PASCAL COMMANDS
ABP
DBP
DPBP

LBP

LPS

PBP

SPS
XTIP
XSILT
XCODE
XPT

XPX
XCONFIG
XCONFIGI
XNESTER
XRASS
XSPLIT
P$DELETE
P$SYN

PROCEDURE COMMANDS

§ [S I B |

L S B |

- MODIFY
- MODIFY

MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY

MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY

ABSOLUTE DISK

ABSOLUTE DISK UNIT
DEVICE STATUS

FILE NAME

FILE PROTECTION

KEY INDEXED FILE LOGGING

LUNO PROTECTION
MEMORY

OVERLAY ENTRY
PROCEDURE ENTRY
PROGRAM IMAGE
RELATIVE TO FILE
SYSTEM MEMORY

TASK ENTRY

VOLUME INFORMATION
SHOW TERMINAL INFORMATION
INITIATE TEXT EDITOR
INITIATE TEXT EDITOR WITH SCALING

DELETE OVERLAY

INSTALL OVERLAY
INSTALL SYSTEM OVERLAY
MODIFY OVERLAY ENTRY

ASSIGN PASCAL BREAKPOINT

DELETE PASCAL BREAKPOINT

DELETE AND PROCEED FROM PASCAL
BREAKPOINT

LIST PASCAL BREAKPOINTS

LIST PASCAL STACK

PROCEED FROM PASCAL BREAKPOINT

SHOW PASCAL STACK

EXECUTE TI PASCAL COMPILER

EXECUTE TI PASCAL PARSER

EXECUTE TI PASCAL CODE GENERATOR

EXECUTE TI PASCAL TASK

EXECUTE TI PASCAL CROSS REFERENCE

EXECUTE CONFIGURATION PROCESSOR

EXECUTE CONFIGURATION INTERACTIVELY

EXECUTE SOURCE PROGRAM NESTER

EXECUTE REVERSE ASSEMBLER

EXECUTE SPLIT OBJECT

DELETE TI PASCAL TEMPORARY FILES

DELETE TI PASCAL GLOBAL SYNONYMS

DELETE PROCEDURE
INSTALL PROCEDURE
MODIFY PROCEDURE ENTRY

Digital Systems Division

(o]
{@@ 945250-9704

PROGRAM DEVELOPMENT
/COBOL
/DBMS
/DEBUG
/EDIT
/LANG
/OVER
/PROC
/PFIL
/SM
/SYN
/ TASK
/TX
/MISC

PROGRAM FILE COMMANDS

BD

Cb

CFPRO

CPI

MOE

MPE

MPF

MPI

MTE
RD
SPI

PROGRAMMING LANGUAGES
/BASIC
/C0BOL
/FORTRN
/MAC
/QUERY
/RPG
/TIP

REMOTE TERMINAL ANSWER

COBOL

DATA BASE MANAGEMENT SYSTEM
DEBUG COMMANDS

TEXT EDIT COMMANDS
PROGRAMMING LANGUAGES
OVERLAY COMMANDS
PROCEDURE COMMANDS
PROGRAM FILE COMMANDS
SORT/MERGE

SYNONYM COMMANDS

TASK COMMANDS

TX/DX CONVERSION
MISCELLANEOUS COMMANDS

BACKUP DIRECTORY

COPY DIRECTORY

CREATE PROGRAM FILE
COPY PROGRAM IMAGE
MODIFY OQVERLAY ENTRY
MODIFY PROCEDURE ENTRY
MAP PROGRAM FILE
MODIFY PROGRAM IMAGE

MODIFY TASK ENTRY
RESTORE DIRECTORY
SHOW PROGRAM IMAGE

BASIC COMMANDS

COBOL COMMANDS

FORTRAN COMMANDS

MACRO ASSEMBLER COMMANDS
QUERY COMMANDS

RPG COMMANDS

TI PASCAL COMMANDS

INCOMING CALL

ANS - ANSWER INCOMING CALL
CALL - CALL TERMINAL
DISC - TERMINAL DISCONNECT
LHPC - LIST HARDCOPY TERMINAL PORT
CHARACTERISTICS
MHPC - MODIFY HARDCOPY TERMINAL PORT
CHARACTERISTICS
B-7 Digital Systems Division

(o]
[@@ 946250-9704

RPG COMMANDS

XRPGB - BID RPG PROGRAM BACKGROUND

XRPGC - EXECUTE REPG COMPILER BACKGROUND
XRPGCF - EXECUTE REPG COMPILER FOREGROUND
XRPGT - EXECUTE RPG TASK BACKGROUND
XRPGTF - EXECUTE RPG TASK FOREGROUND

SPECTIAL DEBUG COMMANDS

ASB - ASSIGN SIMULATED BREAKPOINT

DSB - DELETE SIMULATED BREAKPOINTS

LSB - LIST SIMULATED BREAKPOINTS

QD - QUIT DEBUG MODE

RST - RESUME SIMULATED TASK

ST - SIMULATE TASK

XD - INITIATE DEBUG MODE
SYSGEN OPERATIONS

ALGS - ASSEMBLE/LINK GENERATED SYSTEM

CSF - CREATE SYSTEM FILES

IBMUTL - CONVERT IBM DISKETTE

IGS - INSTALL GENERATED SYSTEM

150 - INSTALL SYSTEM OVERLAY

LDC - LIST DEVICE CONFIGURATION

MDS - MODIFY DEVICE STATUS

MVI - MODIFY VOLUME INFORMATION

PGS - PATCH GENERATED SYSTEM

SMS - SHOW MEMORY STATUS

TGS - TEST GENERATED SYSTEM

XANAL - ANALYZE DX10 CRASH FILE

XCU - CONVERT DX10 2.2 DISK

XGEN - GEN990-AUTO SYSGEN

XPS - PATCH SYNONYM GENERATOR
SHOW COMMANDS

LD - LIST DIRECTORY

LLR - LIST LOGICAL RECORD

LM - LIST MEMORY

LSM - LIST SYSTEM MEMORY

MD - MAP DISK

MKF - MAP KEY INDEXED FILE

MPF - MAP PROGRAM FILE

PF - PRINT FILE

SF - SHOW FILE

SPI - SHOW PROGRAM IMAGE

SRF - SHOW RELATIVE TO FILE

STI - SHOW TERMINAL INFORMATION
SORT/MERGE

XBSM - EXECUTE BATCH SORT/MERGE

XSM - EXECUTE SORT/MERGE

XSMF - EXECUTE SORT/MERGE IN FOREGROUND

B-8 Digital Systems Division

&

945250-9704

DX10 OPERATION

/BGB
/COPY
/IR
/DVICE
/MTERM
/RTERM
/SM
/STAT
/TASK
/TX
/VOL
/WARM
/MISC

STATUS COMMANDS

LTS
MDS
MTS
SBS
SIS
SMS
SOS
STI
STS
SVS

SYNONYM COMMANDS

AS
LS

MS
Q$SYN
STI

TASK COMMANDS

TERMINALS

AT
DT
HT
IRT
IT
KT
MTE
RT
STS
XHT
XT
XTS

LTS
MDS
MTS

BACKGROUND/BATCH COMMANDS
COPY COMMANDS

DIRECTORY COMMANDS
DEVICES

MEMORY TERMINAL COMMANDS
REMOTE TERMINAL COMMANDS
SORT/MERGE

STATUS COMMANDS

TASK COMMANDS

TX/DX CONVERSION

VOLUME COMMANDS
WARMSTART COMMANDS
MISCELLANEOUS COMMANDS

LIST TERMINAL STATUS
MODIFY DEVICE STATE
MODIFY TERMINAL STATUS
SHOW BACKGROUND STATUS
SHOW I/0 STATUS

SHOW MEMORY STATUS

SHOW OUTPUT STATUS
SHOW/MODIFY TERMINAL INFO
SHOW TASK STATUS

SHOW VOLUME STATUS

ASSIGN SYNONYM VALUE

LIST SYNONYMS

MODIFY SYNONYMS

DELETE SYSTEM SYNONYMS
SHOW TERMINAL INFORMATION

ACTIVATE TASK

DELETE TASK

HALT TASK

INSTALL REAL TIME TASK
INSTALL TASK

KILL TASK

MODIFY TASK ENTRY
RESUME TASK

SHOW TASK STATUS
EXECUTE AND HALT TASK
EXECUTE TASK

EXECUTE TASK AND SUSPEND SCI

LIST TERMINAL STATUS
MODIFY DEVICE STATUS
MODIFY TERMINAL STATUS

B-9 Digital Systems Division

o]
q‘r{\[@ 946250-9704

TX/DX CONVERSION
DXTX
IBMUTL
TXCM
TXCP
TXDF
TXDX
TXFD
TXMD
TXSF

USER ID COMMANDS
AUl
DUI
LUI
MUI

VOLUME COMMANDS
CDS
CKD
INV
IV
MVI
RCD
SVS
uv

WARMSTART COMMANDS

IDT

INV

IS

ISL

Iv

MDS
XANAL

DX10 FILE TO DISKETTE FILE
CONVERT IBM DISKETTE
COMPRESS DISKETTE FILE
CHANGE DISKETTE FILE PROTECT
DELETE DISKETTE FILE
DISKETTE FILE TO DX10 FILE
FORMAT DISKETTE

MAP DISKETTE

SET SYSTEM FILE

ASSIGN USER ID
DELETE USER ID
LIST USER ID'S
MODIFY USER ID

CHECK DISK STRUCTURES
CHECK DISK FOR CONSISTENCY
INITIALIZE NEW VOLUME
INSTALL VOLUME

MODIFY VOLUME INFORMATION

- RECOVER DISK
- SHOW VOLUME STATUS

UNLOAD VOLUME

INITIALIZE DATE AND TIME
INITIALIZE NEW VOLUME
INITIALIZE THE SYSTEM
INITIATE SYSTEM LOG
INSTALL VOLUME

MODIFY DEVICE STATUS
ANALYZE DX10 CRASH FILE

B-10 Digital Systems Division

o
{i[]@ 0946250-9704

ALPHABETICAL INDEX
INTRODUCTION

This index lists the commands and concepts covered in the DX 10 manuals. It presents the entries in
alphabetical order with numerical items last. Each entry indicates where the command or concept
receives major coverage in the DX10 manuals. These are the reference types used:

®* Paragraphs — These references point to a discussion in the main body of this manual.
They follow the same format as the paragraph numbers shown in the Table of Contents:
section number (S), then top-level paragraph number (P), then lower level paragraph
numbers (p and q) as needed. A reference to an entire section uses only the section
number (S).

S.P.p.q
Section S

* Appendixes — These references guide the reader to information in one of the appendixes
in the back of this manual. Appendix references look like paragraph references, except
that appendixes are lettered instead of numbered: appendix letter (X), then paragraph
numbers (P and p) as needed. A reference to an entire appendix uses only the appendix
letter.

X.P.p
Appendix X

® Figures — Figure references guide the reader to figures mentioned in the List of Illustra-
tions at the front of this manual. The reference begins with the letter F and gives the figure
number: the number of the section (S) or letter of the appendix (X) that contains the
figure, a dash (-), and a sequence number (n).

FS-n
FX-n

® Tables — These entries refer to tables found in this manual. They consist of the letter T
followed by the table number.

TS-n
TX-n

. Manuals — These entries refer to other DX10 manuals in the set. The indexes in those
books indicate the exact location of the information needed.

CONCEPTS Concepts and Facilities Manual, Volume I

PROD OPER Production Operation Manual, Volume II

APPL PROG Application Programming Guide, Volume Il

SYS PROG Systems Programming Guide, Volume V

ERROR Error Reporting and Recovery Manual, Volume VI

Index-1 Digital Systems Division

/] 0946250-9704
AACommand PROD OPER CFCommand PROD OPER
ABCommand 7.3.1 CFDIR Command............... PROD OPER
Abort [/0 on Specified LUNO CFIMG Command PROD OPER

SVCCodes>0F APPL PROG CFKEY Command PROD OPER
Absolute Memory Partitioning, Link CFPROCommand PROD OPER

Editor Supported Feature 4.1 CFREL Command PROD OPER
Access Privilege APPL PROG CFSEQ Command PROD OPER
Activate Suspended Task CHANGE Command, GEN990 SYS PROG

SVCCodes>07 APPL PROG Change Diskette File
Activate Task Command 7.3.11 Protection Command PROD OPER
Activate Time Delay Task Change Priority SVC Codes >11 ... APPL PROG

SVCCodes>0E APPL PROG Changing:

AFCommand PROD OPER Disk............. . L. PROD OPER
AGLCommand................. PROD OPER Menus SYS PROG
ALCommand PROD OPER Chassis Configuration PROD OPER
ALGSCommand.................. SYS PROG Check Disk for Consistency

ANALZ Command................ SYS PROG Command...................... SYS PROG
Append File Command PROD OPER CKDCommand................... SYS PROG
Application Program Generation............ 1.1 CKSCommand PROD OPER
Application Programming CLCommand 2.4.5

Environment CONCEPTS Clear Secret Synonym CommandSYS PROG
ASCommand PROD OPER Clear to Tab, Text Editor Control
ASBCommand 7.4.3 Function............................. 2.5.6
ASCII Compressed and Image Format, CMCommand.................. PROD OPER

Link Editor Supported Feature 4.1 COBOL Program:

Assemble and Link Generated Example F3-2

System Command SYS PROG Generation Runthrough 33
Assembly Language Programs. APPL PROG Linking, Link Editor Supported Feature. . . .4.1

Example 8.1, F3-1 Command:

Generation Runthrough 3.1 AA ., PROD OPER
Assign Alias Command PROD OPER AB . 7.3.1
Assign Breakpoint Command 7.3.1 Activate Task 7.3.11
Assign Global LUNO Command. . . PROD OPER AF S PROD OPER
Assign LUNO Command PROD OPER AGL PROD OPER
Assign Simulated Breakpoint Command7.4.3 AL ... PROD OPER
Assign Space on Program File ALGS SYS PROG

SVCCodes>37 SYS PROG ANALZ SYS PROG
Assign Synonym Command PROD OPER AppendFile PROD OPER
Assign User ID Command PROD OPER AS PROD OPER
ATCommand 7.3.11 ASB .. 7.4.3
AUICommand PROD OPER Assemble and Link Generated
Automatic Overlay Loading, Link Editor System......... oo SYS PROG

Supported Feature 4.1 Assign Alias PROD OPER

Assign Breakpoint 7.3.1
Back Tab, Text Editor Control Function....2.5.8 Assign Global LUNO PROD OPER
Backspace Logical Unit Assign LUNO PROD OPER

Command.................... PROD OPER Assign Simulated Breakpoint 7.4.3
Backspace, Text Editor Control Function ..2.5.18 Assggn Synonym PROD OPER
Backup Directory Command PROD OPER AssignUserID................ PROD OPER
BackupDisk.................... PROD OPER AT 7.3.11
BASIC Program Generation Runthrough. 3.4 AUL ... PROD OPER
BATCHCommand.............. PROD OPER Backspace Logical Unit PROD OPER
BatchModeSCI PROD OPER Backup Directory PROD OPER
Batch Stream Programming SYS PROG BATCH PROD OPER
BDCommand PROD OPER BD ... PROD OPER
Begin Batch Execution Command . . PROD OPER Begin Batch Execution PROD OPER
Bid Task SVC Codes >1F APPL PROG BL .. PROD OPER
BLCommand PROD OPER CC . PROD OPER
Breakpoints, Display Simulated............ F7-2 CD.. PROD OPER
BUILD Command, GEN990 SYS PROG CF PROD OPER
BuildingDX10.................. PROD OPER CFDIR PROD OPER

CFIMG...................... PROD OPER

CCCommand PROD OPER CFKEY PROD OPER

CDCommand PROD OPER CFPRO...................... PROD OPER
Index-2 Digital Systems Division

0946250-9704

CFREL PROD OPER DS . e 2.4.9
CFSEQooiiiiiin PROD OPER DSB .. 7.451.«54
Change Diskette File DT e .
Progtection PROD OPER DUIL......ooiii i PROD OPER
Check Disk for Consistency SYS PROG 15,4 . S PROD OPER
CKD ... SYS PROG EBATCH PROD OPER
CKS. ... PROD OPER ECo SYS PROG
CL . 2.4.5 End Batch Execution. PROD OPER
Clear Secret Synonym SYS PROG End Key Specifications PROD OPER
CM e PROD OPER ENDKEY ..o, PROD OPER
Compress Diskette File PROD OPER Entry Control Keys:
Constants, Debug 7.2.4 TTYMode PROD OPER
Convert DX10 File to TX990 VDTMode PROD OPER
DisketteFile PROD OPER ErrorCounting SYS PROG
Convert TX990 Diskette File Executeand Halt Task 6.2.3
toDX10File................ PROD OPER Execute Batch e PROD OPER
Copy Concatenate PROD OPER Execute Conversion Utility. SYS PROG
Copy Directories PROD OPER Execute Crash Analyzer SYS PROG
Copy Key Indexed Files to ExecuteDebug 7.4.1
Sequential Files PROD OPER Execute GEN990 PROD OPER
Copy Line Text Editor 2.4.5 Execute Link Editor APPL PROG
Copy Program Image PROD OPER Execute Macro Assembler APPL PROG
Copy Sequential Files to Key Execute Patch Synonym
Indexed Files PROD OPER Processorooeeeuenun... SYS PROG
Copy Sequential Media......... PROD OPER Execute System Generation SYS PROG
CPIL ..o PROD OPER Execute Task 6.2.1, PROD OPER
CreateFile PROD OPER Execute Task and
Create File Directory PROD OPER Suspend SCI 6.2.2, PROD OPER
Create Image File.............. PROD OPER Execute Text Editor 2.1,2.4.1
Create Key Indexed File PROD OPER Execute TX990 Link Editor PROD OPER
Create Message PROD OPER Execute with Scaling Text Editor 2.4.2
Create Program File PROD OPER Expressions, Debug 7.2.4
Create Relative Record File PROD OPER FB ..o 7.3.10
Create Sequential File PROD OPER FindBytecoivunii... 7.3.10
Create System File PROD OPER Find String Text Editor 2.4.10
CSF PROD OPER FindWord 7.3.9
CSK.. ... PROD OPER FL ..o PROD OPER
CSM ... PROD OPER Format Description PROD OPER
DA ... PROD OPER Format Diskette PROD OPER
DB . 7.3.2 Forward-Space LUNO PROD OPER
DCOPY PROD OPER FS 2.4.10
DD.......o.oo PROD OPER FW 7.3.9
Definitions, SCI ...PROD OPER, SYS PROG GEN990 SYS PROG
Delete Alias PROD OPER BUILD ... SYS PROG
Delete and Proceed from Breakpoint7.3.4 CHANGE.............. SYS PROG
Delete Breakpoint 7.3.2 GENERATE SYS PROG
Delete Directory............... PROD OPER HELP i . SYS PROG
Delete Diskette PROD OPER LIST ..o, SYS PROG
DeleteFile.................... PROD OPER NEXT ..o, SYS PROG
Delete Line Text Editor e 2.4.6 SAVE SYS PROG
DeleteOverlay 5.7 STOP SYS PROG
Delete Procedure 5.6 WHAT ... SYS PROG
Delete Simulated Breakpoint 7.4.4 HaltOutput PROD OPER
Delete String Text Editor 2.49 HaltTask 7.3.12
DeleteTaskcoovviini .. 5.5 HO PROD OPER
Delete User ID PROD OPER HT ... 7.3.12
Description Message Returned IBMUTL PROD OPER
byDXI10 ...l PROD OPER IDS .. PROD OPER
DF .. PROD OPER IDT ... PROD OPER
Disk Copy/Restore PROD OPER IF 2.4.8
Displays, Debug 7.5 IGS o SYS PROG
DL 2.4.6 Index,SCI APPL PROG
DO ... 5.7 Initialize Date and Time PROD OPER
DP ... 5.6 Initialize Disk Surface.......... PROD OPER
DPB ... 7.3.4 Initialize New Volume.......... PROD OPER
Index-3 Digital Systems Division

0946250-9704

Initialize System PROD OPER MLP PROD OPER
Initialize System Log........... PROD OPER MM 7.3.5
Insert File Text Editor 2.4.8 Modify Absolute Disk 7.3.24
Install Generated System SYS PROG Modify Allocable Disk Unit 7.3.26
InstallOverlay 5.4 Modify Device State SYS PROG
Install Procedure 5.3 Modify Disk Volume
Install Real-Time Task 5.2.1 Information PROD OPER
Install System Overlay PROD OPER Modify File Name PROD OPER
Install Taskcoovonn... 5.2 Modify File Protection PROD OPER
Install Volume PROD OPER Modify Internal Registers 7.3.14
INV PROD OPER Modxfy Key Indexed File
IO . 5.4 Logging.................... PROD OPER
TP 5.3 Modlfy LUNO Protection PROD OPER
IRT o 5.2.1 Modify Memory 7.3.5
IS o PROD OPER Modify Overlay Entry 5.8.3
ISL ..o PROD OPER Modify Procedure Entrye...5.8.2
ISO PROD OPER Modify Program Image 7.3.22
5 5.2 Modify RelativetoFile................ 7.3.28
IV PROD OPER Modify Right Margin Text Editor....... 2.4.13
KBT......ooiiiii i PROD OPER Modify Roll Text Editor 2.4.12
KEY PROD OPER Modify Synonyms PROD OPER
Key Parameters PROD OPER Modify System Memory................ 7.3.6
Kill Background Task PROD OPER Modify Tabs Text Editor 2.4.14
KillOQutput PROD OPER Modify Task Entry 5.8.1
Kill Taskcoiin.s. PROD OPER Modify Terminal Status PROD OPER
KO.. .o PROD OPER ModifythelIS................. PROD OPER
KT oo PROD OPER ModifyUserID PROD OPER
LB e 7.3.19 Modify Workspace Registers........... 3.3.16
LD .. PROD OPER MOE. 5.8.3
LDC ... PROD OPER Move Line Text Editor 2.4.7
Link Editor LOAD APPL PROG MPE ... 5.8.2
Link Editor TX Program File ...PROD OPER MPF PROD OPER
List Breakpointsccovunn. 7.3.19 MPL . 7.3.22
List Directorycoovvn.. PROD OPER MR . 2.4.12
List Logical Record7.3.29, PROD OPER MRF ... 7.3.28
ListMemory ... 7.3.7 MRM ... 2.4.13
List Simulated Breakpoint 7.4.6 MS . PROD OPER
List Synonym Values........... PROD OPER MSM 7.3.6
List System Device MT 2.4.14
Configuration PROD OPER MTE 5.8.1
List SystemMemory 7.3.8 MTS . PROD OPER
List Terminal Status PROD OPER MUI .. PROD OPER
ListingUserID PROD OPER MVI. . . PROD OPER
LLR ..o 7.3.29, PROD OPER MWR .. 3.3.16
LM e 7.3.7 Patch Generated System SYS PROG
LS PROD OPER PB . 7.3.3
LSB .ot e 7.4.6 PEF .. PROD OPER
LSM o e 7.3.8 PGS.. . SYS PROG
LTS PROD OPER PrintFile..................... PROD OPER
LUI o PROD OPER Procedure...................... SYS PROG
MAD ... 7.3.24 Proceed from Breakpoint 7.3.3
MADU 7.3.26 Processorcovvvevevennnnn. SYS PROG
MapDisk PROD OPER Q PROD OPER
Map Diskette PROD OPER QD 7.4.7
Map Key Indexed QE .. . 2.1,2.4.3
File APPL PROG, PROD OPER QuitDebug ... 7.4.7
Map Program File PROD OPER Quit Text Editor 2.1,2.4.3
MD .. PROD OPER QFSYN ... SYS PROG
MDS .. SYS PROG RAL PROD OPER
MEN . PROD OPER RCD ... SYS PROG
MFP PROD OPER RCRU....................... PROD OPER
MIR .. 7.3.14 RD.. ... PROD OPER
MKF APPL PROG, PROD OPER RE. ... 2.4.4
MKL PROD OPER ReadCRU PROD OPER
ML .. 2.4.7 RecoverDisk SYS PROG
Index-4

Digital Systems Division

0946250-9704

Recover Edit Text Editor 2.4.4 TXCP ..o PROD OPER
Release ATLUNO PROD OPER TXDF .. i PROD OPER
Release Global LUNO PROD OPER TXDX . oo PROD OPER
Release LUNO PROD OPER TXMD ... PROD OPER
Replace String Text Editor............. 2.4.11 TXSF . PROD OPER
Restore Directory PROD OPER TXXLE. ... PROD OPER
Resume Output PROD OPER Unload Volume PROD OPER
Resume Simulated Task 7.4.5 UV . PROD OPER
ResumeTask 7.3.13 VB .o PROD OPER
Rewind Logical Unit PROD OPER VC . o PROD OPER
RGL PROD OPER VerifyBackup PROD OPER
RL ... PROD OPER VerifyCopy PROD OPER
RO...... ..o PROD OPER WAIT ... i PROD OPER
RS .. 2.4.11 Wait for Background
RST 7.4.5 Termination PROD OPER
RT . 7.3.13 WCRU PROD OPER
RWL PROD OPER WriteCRU PROD OPER
SAD ... 7.3.23 XANAL ... SYS PROG
SADU......... 7.3.25 XB .o PROD OPER
Save Line Text Editor................. 2.4.16 XCT oot APPL PROG
SBS .. PROD OPER XCTF ..o APPL PROG
SDT ... PROD OPER XCU oo SYS PROG
Set System File PROD OPER XD 7.4.1
SEF PROD OPER XE . 2.1,2.4.1
Show Absolute Disk 7.3.23 XES o 2.4.2
Show Allocable Disk Unit 7.3.25 XFC. ..o APPL PROG
Show Background Status PROD OPER XFCF ... i APPL PROG
Show Dateand Time PROD OPER XET APPL PROG
ShowFile PROD OPER XFTF . APPL PROG
Show Internal Registers 7.3.15 XGEN............ PROD OPER, SYS PROG
Show I/O Status PROD OPER XHT o 6.2.3
Show Line Text Editor 2.4.15 XLE. .. oo APPL PROG
Show MemoryMap............ PROD OPER XMA . APPL PROG
Show Memory Status PROD OPER XPS . o SYS PROG
Show Output Status PROD OPER XSB ..o APPL PROG
ShowPanel 7.3.18 XT oo 6.2.1, PROD OPER
Show Program Image................. 7.3.21 XTS oo 6.2.2, PROD OPER
Show RelativetoFile 7.3.27 Commands:
Show Task Status PROD OPER Controlled Task 7.4
Show Terminal InformationPROD OPER Debug, 7.3, T7-1
ShowValue 7.3.20 GEN990 SYS PROG
Show Volume Status PROD OPER Usage, Text Editor 2.2
Show Workspace Registers 7.3.17 Selection, Text Editor 2.2
Simulate Task 7.4.2 Communications:
SIR .. 7.3.15 Hardware CONCEPTS
SIS. . PROD OPER Software CONCEPTS
SL 2.4.15 Compatibility, DX10 SYS PROG
SMM ..o PROD OPER Compiler Listing, RPG F3-3
SMS. ... PROD OPER Compiling Programs APPL PROG
SOS ..o PROD OPER Compress Diskette File
SP 7.3.18 Command.................... PROD OPER
SPL .., 7.3.21 Configuration, Chassis PROD OPER
§¥F 7.73;‘2; Constants, Debug Command 7.2.4
................................... . Control Function:

gps """""""""""""""" PROD OPER Back Tab, Text Editor 2.5.8

-------------------- PROD OPER Backspace, Text Editor2.5.18
Summary ... Appendix B Clear to Tab, Text Editor............... 2.5.6
Sv 7.3 .20 Cursor Down’ Text Editor 2'5 s 16
SVL Lo 2.4.16 Cursor Left, Text Editor 2.5.18
SVS oo PROD OPER Cursor Right, Text Editor 2.5.17
SWR 7.3.17 Cursor Up’ Text Edltor 2.5'15
Test Generated System SYS PROG Delete Character, Text Editor 2.5.14
TGS SYS PROG Delete Line, Text Editor............... 2.5.12
TXCM .. PROD OPER

Index-§ Digital Systems Division

0946250-9704

Display/Suppress Line Numbers, CSMCommand................. PROD OPER
TextEditor 2.5.4 Cursor Down, Text Editor

Duplicate to Tab, Text Editor 2.5.5 Control Function 2.5.16

Edit/Compose Mode, Text Editor 2.5.2 Cursor Left, Text Editor

gnter (_Zromnéztjrgd Mode, Text Editor......2.5.1 Control Function 2.5.18

rase, TextEditor.................... 2.5.20
Home, Text Editor 25,19 Cursor Sight, Text Editor Control 5517
{nsert Character, Text Editor 2.5.13 Cursor Up, Text Editor Control
nsert Line, Text Editor 2.5.11 Function. . . 2.5.15

New Line, Text Editor 2% 75 2 ’

Roll Down TextEditor 2.5.10 D

Roll Up, Text Editor v vooeoon 2.5.9 Das S PROD OPER

Tab, Text Editor 2.5.7 Hard Copy ..o oo 391

Text Editor 2.5, T2-1 Text BAtoro....... . 2.2
Control Keys, Text Editor T2-1 Data Entry, Text Editor 2.2
Controlled Tasks, Commandsfor 7.4 Date and Time SVC Codes >03APPL PROG
Conventions: DBCommando...... 7.3.2

DebugSyntax 7.2.2 DCOPY Command PROD OPER

Text EditorSyntax 2.4 DD Commandooon.o.... PROD OPER
Conversion: Debug:

DX10. R SYS PROG Commandscu ... 7.3, T7-2

IBM Utility PROD OPER COnStantsoovvurenneannnnn.. 7.2.4

TX/DX oo PROD OPER Displays.........coviiini.. 7.5, T7-2
Convert Binary to Decimal SVC Expressionscoiivinn... 7.2.4

Codes>0A APPL PROG Display ... F7-1
Convert Binary to Hexadecimal Modesof L. 7.2

SVCCodes>0C APPL PROG SUPPOIt ottt 7.1
Convert Decimal to Binary SVC Symbolic 7.2.3

Codes>0B APPL PROG Syntax Conventions 7.2.2
Convert DX10 File to TX990 Unconditional Suspend Task............ 7.2.1

Diskette File Command PROD OPER Definitions, SCI
Convert Hexadecimal to Binary Command PROD OPER, SYS PROG

SVCCodes>0D ..o oo APPL PROG Delete Alias Command PROD OPER
Convert TX990 Diskette File to Delete and Proceed from Breakpoint

DX10 File Command PROD OPER Command . R R 7.3.4
Copy Concatenate Command PROD OPER Delete Breakpoint Command 7.3.2
Copy Directories Command. PROD OPER Delete Character, Text Editor
Copy Key Indexed Files to Contrql Function 2.5.14

Sequential Files Command. PROD OPER Delete Directory Command PROD OPER
Copy Line Text Editor Command 2.4.5 Delete Diskette Command PROD OPER
Copy Program Image Command. . . PROD OPER Delete File Command PROD OPER
Copy Sequential Files to Key Delete Line, Text Editor Command 2.4.6

Indexed Files Command PROD OPER Control Function 2.5.12
Copy Sequential Media Delete Overlay:

Command.................... PROD OPER Command,
CPICommand.................. PROD OPER SVCCodes>2A................. SYS PROG
Crash: Delete Procedure:

Analysis ERROR, SYS PROG Commandcoovvniiunnnnn .. 5.6

Codes .. vvii e ERROR SVCCodes>29 ... SYS PROG

FrontPanel ERROR Delete Simulated Breakpoint Command7.4.4
Create FileCommand PROD OPER Delete String Text Editor Command 2.4.9
Create File Directory Command . ..PROD OPER Delete Task:

Create Image File Command PROD OPER Commandccviinunn... 5.5
Create Key Indexed File SVCCodes>28 SYS PROG

Command.................... PROD OPER Delete User ID Command PROD OPER
Create Message Command PROD OPER Description Message Returned by
Create New Text Editor File 2.3.1 DX10Command PROD OPER
Create Program File CommandPROD OPER Device:

Create Relative Record Functions CONCEPTS

FileCommand PROD OPER 1/0, Programming APPL PROG
Create Sequential File Command .. PROD OPER Names....................... PROD OPER
Create System File Command PROD OPER Standard Appendix A
CSFCommand PROD OPER Service Routines DSR SYS PROG
CSKCommand PROD OPER DFCommand PROD OPER

Index-6

Digital Systems Division

0946250-9704

Direct Disk 1/0 Read by ADU

SVCCodes>00>9 SYS PROG
Direct Disk I/0O Read by Track

SVCCodes>00>A SYS PROG
Direct Disk I/0 Read Format SVC

Codes >00>5and >F............. SYSPROG
Direct Disk I/0 Store Registers

SVCCodes>00>E SYS PROG
Direct Disk 1/0 Write by ADU

SVCCodes>00>B SYS PROG
Direct Disk I/0 Write by Track

SVCCodes>00>C SYS PROG
Direct Disk I/0O Write Format SVC

Codes>00>8 SYS PROG
Direct Diskette I/0O Read ASCII

SVCCodes>00>9 SYS PROG
Direct Diskette 1/0 Read Deleted

Sector SVC Codes >00>11 SYS PROG
Direct Diskette I/0O Read Direct

SVCCodes>00>A SYS PROG
Direct Diskette 1/0 Read Format

SVC Codes >00>5and >F SYS PROG
Direct Diskette I/0O Write ASCII

SVCCodes>00>B SYS PROG
Direct Diskette I/0O Write Deleted

Sector SVC Codes >00>10 SYS PROG
Direct Diskette I/O Write Direct

SVCCodes>00>C SYS PROG
Direct Diskette 1/0 Write Format

SVCCodes>00>8 SYS PROG

Directory Creating and Deleting ...PROD OPER
Disk:

Backup PROD OPER
Changing PROD OPER
Copy/Restore Command PROD OPER
Formats CONCEPTS
Hardware CONCEPTS
Management CONCEPTS
Manager SVC Codes >22 SYS PROG
Pack Installation PROD OPER
Protection CONCEPTS
Display:

Debug F7-1

Command...................... 7.5, T7-2
Simulated Breakpoints F7-2

Display/Suppress Line Numbers, Text

Loading PROD OPER

Operationcouuueen.. PROD OPER

TextEditor ..., 2.1
EBATCH Command PROD OPER
ECCommand SYS PROG
Edit/Compose Mode, Text Editor

Control Function 2.5.2
Edit Control, Text Editor 2.2
Edit Existing Text Editor File 2.3.2
End-Action Status SVC

Codes>2F APPL PROG

End Batch Execution Command . ..PROD OPER
End Key Specifications

Command PROD OPER
ENDKEY Command PROD OPER
End-of-Program SVC Codes >16 .. APPL PROG
End-of-Task SVC Codes >04 APPL PROG
Enter Command Mode, Text Editor

ControlFunction 2.5.1

Erase, Text Editor Control Function2.5.20
ErrorControl.................... CONCEPTS
Error Counting Command SYS PROG
ErrorMessages ERROR
Estimating, Memory SYS PROG
Example:
Assembly Language Program........ 8.1, F3-1
COBOL Program F3-2
Pascal F3-7
RPG F3-5
InputFile F3-4
TextEditor F2-1, F2-2, F2-3
Execute and Halt Task Command 6.2.3
Execute Batch Command PROD OPER
Execute Conversion Utility
Command...................... SYS PROG
Execute Crash Analyzer Command...SYS PROG
Execute Debug Command 7.4.1
Execute GEN990 Command PROD OPER

Execute Link Editor Command APPL PROG
Execute Macro Assembler

Command.................... APPL PROG
Execute Patch Synonym Processor
Command...................... SYS PROG

Execute System Generation
Command ...6.2.2, PROD OPER, SYS PROG

Editor Control Function 2.5.4 Execute Task:
DLCommand.......................... 2.4.6 and Suspend SCI Command 6.2.2,
DOCommand 5.7 PROD OPER
Do Not Suspend SVC Codes >09 .. . APPL PROG Command 6.2.1, PROD OPER
DPCommand............................ 5.6 SVCCodes>2B APPL PROG
DPBCommand......................... 7.3.4 Execute Text Editor Command 2.1,2.4.1
DSCommand 2.49 Execute TX990 Link Editor
DSBCommand......................... 7.4.4 Command.................... PROD OPER
DSR, Device Service Routines SYS PROG Execute with Scaling Text Editor
DTCommand............................ . Command 2.4.2
DUICommand PROD OPER Executing Programs APPL PROG
Duplicate to Tab, Text Editor Control Execution Instructions, Language T6-1

Function............ooouveueini... 2.5.5 Expressions, Debug Command 7.2.4
DXTX Command PROD OPER
DXI10: FBCommand 7.3.10

Building PROD OPER Features:

Compatibility................... SYS PROG Hardware CONCEPTS

Conversion SYS PROG Terminal......... CONCEPTS, PROD OPER

Index-7 Digital Systems Division

0946250-9704

File: Write Protect File SVC Codes
Create New Text Editor 2.3.1 00597 ... APPL PROG
Creating and Deleting PROD OPER Find ByteCommand 7.3.10
Edit Existing Text Editor 2.3.2 Find String Text Editor Command 2.4.10
Example, RPGlInput................... F3-4 Find Word Command 7.3.9
Features I CONCEPTS FLCommand................... PROD OPER
170, Programming APPL PROG Format Description CommandPROD OPER
Managemept PROD OPER Format Diskette Command PROD OPER
Programming APPL PROG FORTRAN Program:
Standard SYS PROG Generation Runthrough 3.2
Types .o CONCEPTS Linking, Link Editor Supported Feature. .. .4.1
File Operation: Forward Space LUNO Command . . PROD OPER
Backward Space SVC FSCommand 2.4.10
Codes>00>07 APPL PROG FWCommand.......................... 7.3.9
Close EOF SVC
Codes >00>02 APPL PROG GENERATE Command, GEN990 ...SYS PROG
Close SVC Codes >00>01 APPL PROG Generation Runthrough:
Close Unload SVC Codes Assembly Language Program............. 3.1
00504 ... APPL PROG BASICProgram........................ 34
Forward Space SVC Codes COBOLProgram............ccoovvvnon.. 3.3
0006, APPL PROG FORTRANProgram 3.2
Modify Access Privileges SVC Pascal Program 3.6
Codes >00>11 APPL PROG RPGProgram..................0cunn... 3.5
Open Extend SVC Codes GEN990:
D00>12 .. APPL PROG BUILD Command............... SYS PROG
Open Rewind SVC Codes CHANGE Command SYS PROG
00503 ... APPL PROG Command...................... SYS PROG
Open SVC Codes >00>00 APPL PROG Commands SYS PROG
Read ASCII SVC Codes GENERATE Command SYS PROG
S00>09 ... APPL PROG HELP Command SYS PROG
Read Direct SVC Codes LISTCommand................. SYS PROG
S00>0A APPL PROG NEXTCommand SYS PROG
Read File Characteristics SVC SAVECommand................ SYS PROG
Codes>00>05 APPL PROG STOPCommand SYS PROG
Rewind SVC Codes >00>0E. APPL PROG WHAT Command............... SYS PROG
Rewrite SVC Codes >00>10 APPL PROG Get Common Data Address SVC
Unload SVC Codes >00>0F APPL PROG Codes>10...............c.... APPL PROG
Unlock SVC Codes >00>4A.. APPL PROG Get Event Key:
Write ASCII SVC Codes SVCCodes>30 APPL PROG
S000B APPL PROG SVCCodes>39 APPL PROG
Write Direct SVC Codes Get Memory SVC Codes >12 APPL PROG
00>0C ... APPL PROG Get Parameters SVC Codes >17 ...APPL PROG
Write EOF SVC Codes Get System Pointer Table Address
S000D. APPL PROG SVCCodes>32 SYS PROG
File Utility Operation: Getdata SVC Codes >1D APPL PROG
Add Alias SVC Codes >00>9A . . APPL PROG Global LUNO PROD OPER, SYS PROG
Assign LUNO SVC Codes Glossary ..., CONCEPTS
S00>91 ... APPL PROG
Create File SVC Codes >00>90 . . APPL PROG Halt Output Command........... PROD OPER
Define Write Mode SVC Codes Halt Task Command 7.3.12
S00>9C APPL PROG Hard Copy:
Delete Alias SVC Codes DataDisplayc..coiiioa... 2.2.1
>00>9B ... APPL PROG Terminal Operation 2.2.1
Delete File SVC Codes >00>92 .. APPL PROG Hardware:
Delete Protect File SVC Codes Communications CONCEPTS
S00>98 ... APPL PROG Features CONCEPTS
Release LUNO SVC Codes Required...................... CONCEPTS
S00>93 ... APPL PROG Supported., CONCEPTS
Rename File SVC Codes Terminals CONCEPTS
S00>95 ... APPL PROG HELP Command, GEN990 SYS PROG
Unprotect File SVC Codes HOCommand PROD OPER
00596 ... APPL PROG Home, Text Editor Control Function......2.5.19
Verify Pathname SVC Codes HTCommand......................... 7.3.12
S00>99 ... APPL PROG
Index-8

Digital Systems Division

0946250-9704

IBM Conversion Utility PROD OPER I/0 Write ASCII SVC Codes

IBMUTL Command PROD OPER S0000B APPL PROG
IDSCommand.................. PROD OPER 1/0 Write Direct SVC Codes

IDTCommand PROD OPER S00>0C APPL PROG
IFCommand........................... 2.4.8 I/0 Write EOF SVC Codes
IGSCommand.................... SYS PROG S0050D. ... APPL PROG
Index, SCICommand APPL PROG IPCommand coiioon.. 5.3
Initialize Date and Time: IRTCommand 5.2.1

Command.................... PROD OPER ISCommand PROD OPER

SVCCodes>3B................. SYS PROG ISLCommand PROD OPER
Initialize Disk Surface Command ..PROD OPER ISOCommand.................. PROD OPER
Initialize New Volume: ITCommand 5.2

Command.................... PROD OPER IVCommand PROD OPER

SVCCodes>38 SYS PROG
Initialize System Command PROD OPER KBT Command PROD OPER
Initialize System Log Command ...PROD OPER KEY Command PROD OPER
Input File Example, RPG F3-4 Key Parameters Command........ PROD OPER
Insert Character, Text Editor Control Keyboard Code Table APPL PROG

Function............................ 2.5.13 Keyboard Equivalents............ PROD OPER
Insert File Text Editor Command 2.4.8 Keys:

Insert Line, Text Editor Control Function. .2.5.11 Text Editor Control.................... T2-1
Install Disk Volume SVC Codes >20..SYS PROG TTY Mode, Command Entry
Install Generated System Command . .SYS PROG Control PROD OPER
Install Overlay: VDT Mode, Command Entry

Command 5.4 Control PROD OPER

SVCCodes>27 SYS PROG Kill Background Task Command ..PROD OPER
Install Procedure: Kill Output Command PROD OPER

Commandco.... 5.3 Kill Task:

SVCCodes>26 SYS PROG Command...........ooouo ... PROD OPER
Insctall RealaTime Task: SVCCodes>33 SYS PROG

ommand, 5.2.1 Kit, Software

SVCCodes>25 SYS PROG KOCommand Ppg(o)g (O)ggll%
Install System Overlay Command . . PROD OPER KT Command PROD OPER
Install Task:

Commandccuvunun... 5.2 Language;

SVCCodes>25 SYS PROG Execution Instructions T6-1
Install Volume Command PROD OPER SCI . SYS PROG
International Considerations APPL PROG Programming. APPL PROG, CONCEPTS
INV Command PROD OPER LBCommand 7.3.19
IOCommand 5.4 LDCommand PROD OPER
170 Backward Space SVC Codes LDCCommand................. PROD OPER

0007 ... APPL PROG Link Editor:

I/0 Close SVC Codes >00>01 APPL PROG LOAD Command APPL PROG

10 Close Unload SVC Codes OPErationooeveereeon.. 4.2
>00>04 . N R T I, APPL PROG Supported Feature:

170 Close with EOF SVC Codes Absolute Memory Partitioning. 4.1

D00>02 ... APPL PROG ASCI1 Compressed and Image Format . ..4.1
/0 Forward Space SVC Codes Automatic Overlay Loading 4.1

200206 ...l APPL PROG COBOL Program Linking 4.1
170, Logical CONCEPTS, PROD OPER FORTRAN Program Linking 4.1
1/0 Open Rewind SVC Codes Random Libraries41

200>03 APPL PROG Sequential Libraries 4,
I/0 Open SVC Codes TX Program File CommandPROD OPER

200500 APPL PROG Linking Programs APPL PROG
170 Read ASCII SVC Codes List Breakpoints Command.............. 7.3.19

200509 ... APPL PROG LIST Command, GEN990 SYS PROG
[70 Read Device Status SVC List Directory Command PROD OPER

Codes >00>05 APPL PROG List Logical Record
1/0 Read Direct SVC Codes Command 7.3.29, PROD OPER

P00>0A. APPL PROG List Memory Command 7.3.7
I70 Rewind SVC Codes List Simulated Breakpoint Command7.4.6

S000El APPL PROG List Synonym Values Command ...PROD OPER
I/0 Unload SVC Codes List System Device Configuration

S00>0F ... ool APPL PROG Command.................... PROD OPER

Index-9 Digital Systems Division

0946250-9704

List System Memory Command 7.3.8 Modify Right Margin Text Editor

List Terminal Status CommandPROD OPER Command 2.4.13
Listing, RPG Compiler F3-3 Modify Roll Text Editor Command 2.4.12
Listing User ID Command PROD OPER Modify Synonyms Command PROD OPER
LLRCommand........... 7.3.29, PROD OPER Modify System Memory Command 7.3.6
IMCommand.......................... 7.3.7 Modify Tabs Text Editor Command2.4.14
Load Overlay SVC Codes >14 APPL PROG Modify Task Entry Command 5.8.1
LoadingDX10 PROD OPER Modify Terminal Status

Log on/Log off, Terminal PROD OPER Command.................... PROD OPER
Log: Modify the IS Command PROD OPER

SVC Codes >21, System APPL PROG Modify User ID Command PROD OPER

System CONCEPTS, PROD OPER Modify Workspace Registers Command .. .3.3.16
Logical 1/O CONCEPTS, PROD OPER MOECommand 5.8.3
LSCommand................... PROD OPER Move Line Text Editor Command 2.4.7
LSBCommand 7.4.6 MPECommand 5.8.2
LSMCommand 7.3.8 MPFCommand................. PROD OPER
LTSCommand PROD OPER MPICommand 7.3.22
LUICommand PROD OPER MR Command 2.4.12
LUNO CONCEPTS, PROD OPER MRFCommand 7.3.28

Global............ PROD OPER, SYS PROG MRMCommand....................... 2.4.13

MSCommand PROD OPER
MADCommand....................... 7.3.24 MSMCommand 7.3.6
MADU Command 7.3.26 MTCommand.............c.ovvinan... 2.4.14
Map Disk Command PROD OPER MTECommand 5.8.1
Map Diskette Command.......... PROD OPER MTSCommand PROD OPER
Map Key Indexed File MUICommand PROD OPER

Command....... APPL PROG, PROD OPER MVICommand PROD OPER
Map Program File Command PROD OPER MWR Command 3.3.16
Map Program Name to ID SVC

Codes>31 APPL PROG New Line, Text Editor Control Function2.5.3
MDCommand.................. PROD OPER NEXT Command, GEN990 SYS PROG
MDSCommand................... SYS PROG)

Memory Estimating. SYS PROG Operation:
Memory Management. CONCEPTS DX10.......... e PROD OPER
Menus.............. PROD OPER, SYS PROG Hard-Copy Terminal 2.2.1

Changing SYS PROG Link Editoro it 4.2
Messages, Error.......... ERROR Terminal SRR RE R PROD OPER
MFNCommand PROD OPER Typesof Text Editor 2.2
MFPCommand................. PROD OPER Video Display Terminal 2.2.2
MIRCommand........................ 7.3.14 Overlayscoiviina.. APPL PROG
MKF Command. . .. APPL PROG, PROD OPER IDS. o SYS PROG
MKL Command PROD OPER
MLCommand.............c i 2.4.7 Pascal:

MLPCommand................. PROD OPER Example F3-7
MMCommandciiuion.. 7.3.5 Program Generation Runthrough 3.6
Modesof Debug 7.2 Source Example, F3-6
Modify Absolute Disk Command 7.3.24 Patch Generated System Command . .SYS PROG
Modify Allocable Disk Unit Command7.3.26 Patching DX10 SYS PROG
Modify Device State Command SYS PROG PBCommand 7.3.3
Modify Disk Volume Information PFCommand................... PROD OPER

Command.................... PROD OPER PGSCommand SYS PROG
Modify File Name Command PROD OPER Poll Status of Task SVC
Modify File Protection Codes>35 .. i, APPL PROG

Command. ..o PROD OPER Print FileCommand PROD OPER
Modify Internal Registers Command7.3.14 Priority, Task APPL PROG
Modify Key Indexed File Logging Privilege, Access APPL PROG

Command. . ..ovv e, PROD OPER Privileged SVC., SYS PROG
Modify LUNO Protection Procedure:

Command...........covvviin. PROD OPER Command...................... SYS PROG
Modify Memory Command 7.3.5 Definitions, SCI ...PROD OPER, SYS PROG
Modify Overlay Entry Command 5.8.3 IDS. . SYS PROG
Modify Procedure Entry Command........ 5.8.2 Index, SCI PROD OPER
Modify Program Image Command 7.3.22 Programming SCI SYS PROG
Modify Relative to File Command 7.3.28 Proceed from Breakpoint Command 7.3.3

Index-10

Digital Systems Division

0946250-9704

Processor:
Command...................... SYS PROG
SCI .o SYS PROG
Subroutines SYS PROG
Program:
Assembling APPL PROG
Compiling.................... APPL PROG
Example, Assembly Language 8.1
Executing APPL PROG, PROD OPER
Generation, Application 1.1
Linking APPL PROG
Management CONCEPTS
Writing APPL PROG
Programming:
Batch Stream SYS PROG
Device /O APPL PROG
File.........., APPL PROG
Filel1/O........ e APPL PROG
Languages APPL PROG, CONCEPTS
SCIProcedure SYS PROG
Tasks APPL PROG
Terminal APPL PROG
Putdata SVC Codes >1C APPL PROG
QCommand.................... PROD OPER
QDCommand.......................... 7.4.7
QECommand 2.1,2.4.3
Quit Debug Command 7.4.7
Quit Text Editor Command 2.1,2.4.3
Q$SYNCommand SYS PROG
RALCommand................. PROD OPER
Random Libraries, Link Editor
Supported Feature 4.1
RCDCommand................... SYS PROG
RCRUCommand PROD OPER
RDCommand PROD OPER
RECommand 2.4.4
Read CRUCommand PROD OPER

Read/Write Task SVC Codes >2D ...SYS PROG
Read/Write TSB SVC Codes >2C....SYS PROG

Recover Disk Command SYS PROG
Recover Edit Text Editor Command 2.4.4
Release All LUNO Command PROD OPER
Release Global LUNO Command . .PROD OPER
Release LUNO Command PROD OPER
Release Memory SVC Codes >13 ... APPL PROG
Replace String Text Editor Command2.4.11
Reset End-Action SVC

Codes>3E APPL PROG
Restore Directory Command PROD OPER
Resume Output Command PROD OPER
Resume Simulated Task Command 7.4.5
Resume Task Command 7.3.13
Return Common Data Address

SVCCodes>1B APPL PROG
Rewind Logical Unit Command ...PROD OPER
RGLCommand................. PROD OPER
RLCommand PROD OPER
ROCommand PROD OPER
Roll Down, Text Editor Control

Function......... 2.5.10
Roll Up, Text Editor Control

Function...........ouviii .. 2.5.9

RPG:
Compiler Listingc.... F3-3
Exampleo F3-5
Input File Example F3-4
Program Generation Runthrough 3.5
RSCommand 2.4.11
RSTCommand, 7.4.5
RTCommand, 7.3.13
RWLCommand PROD OPER
SADCommand..........coivieeennn.. 7.3.23
SADUCommand 7.3.25
SAVE Command, GEN990 SYS PROG
Save Line Text Editor Command 2.4.16
SBSCommand.................. PROD OPER
SCI:
BatchMode PROD OPER
Characteristicsoo v PROD OPER
Command Definitions PROD OPER,
SYS PROG
CommandIndex.............. APPL PROG,
PROD OPER
Language SYS PROG
Overview, CONCEPTS
Procedure Definitions PROD OPER,
SYS PROG
Procedure Programming SYS PROG
Processor SYS PROG
Subroutines SYS PROG
SDTCommand PROD OPER
Self Identification SVC Codes
S2E APPL PROG
Sequential Libraries, Link Editor
Supported Feature 4.1
Set System File Command PROD OPER
SFCommand................... PROD OPER
Show Absolute Disk Command 7.3.23
Show Allocable Disk Unit Command......7.3.25
Show Background Status
Command.................... PROD OPER
Show Date and Time Command ...PROD OPER
Show FileCommand PROD OPER
Show Internal Registers Command 7.3.15
Show I/0 Status Command PROD OPER
Show Line Text Editor Command 2.4.15

Show Memory Map CommandPROD OPER
Show Memory Status Command .. . PROD OPER
Show Output Status CommandPROD OPER

Show Panel Command 7.3.18
Show Program Image Command 7.3.21
Show Relative to File Command 7.3.27
Show Task Status Command PROD OPER
Show Terminal Information
Command.................... PROD OPER
Show ValueCommand.................. 7.3.20
Show Volume Status Command ...PROD OPER
Show Workspace Registers Command7.3.17
Simulate Task Command................. 7.4.2
Simulated Breakpoints, Display............ F7-2
SIRCommandccoeon.. 7.3.15
SISCommand PROD OPER
SLCommand 2.4.15
SMMCommand PROD OPER
SMSCommand PROD OPER

Index-11

Digital Systems Division

0946250-9704

Software: >00>07:

Communications CONCEPTS File Operation Backward

Kit oo PROD OPER Space.................l APPL PROG
SOSCommand PROD OPER 1/0 Backward Space APPL PROG
Source Example, Pascal F3-6 >00>09:

SPCommand 7.3.18 File Operation Read ASCII ...APPL PROG
SPICommand....................... .. 7.3.21 1/ORead ASCII APPL PROG
SRFCommand 7.3.27 >00>0A:

STCommand 7.4.2 File Operation Read Direct APPL PROG
Standard: I/ORead Direct............. APPL PROG

Device Names Appendix A >00>0B:

Files. ..., SYS PROG File Operation Write ASCII .. . APPL PROG
STICommand PROD OPER 1/0 Write ASCII APPL PROG
STOP Command, GEN990 SYS PROG >00>0C: o
STSCommand.................. PROD OPER File Operation Write Direct ...APPL PROG
Subroutines, Processor SYS PROG >OIO/§)OIV)W1te Direct APPL PROG
Summary, Command Appendix B : . .

Support,yDebugging pp L1 File Operation Write EOFAPPL PROG
Supported Feature: I/O erte EOF APPL PROG

Absolute Memory Partitioning, Link >00>0E:

Bt omory Paoning, Link 000G, caon Revind ... APL RO

ASCII Compressed and Image Format, I/ORewind APPL PROG

Link Editorooo o, 4.1 >00>0F:

Automatic Overlay Loading, Link Editor . . .4.1 File Operation Unload APPL PROG

COBOL Program Linking, Link Editor4.1 I/OUnload................. APPL PROG

FORTRAN Program Linking, Link >00>10: .

EditOr ©ven et 4.1 Direct Diskette I/0O Write

Random Libraries, Link Editor 4.1 DeleteSector SYS PROG

Sequential Libraries, Link Editor.......... 4.1 File Qperatlon Rewrite APPL PROG
Suspend Awaiting Queue Input >00>11:

SVC Codes >24 ..o, .. SYS PROG Direct Diskette 1/0 Read
SVCommand, 7.3.20 Deleted Sector SYS PROG
SVC: File Operatipr; Modify

Definition APPL PROG, SYS PROG Access Privileges APPLPROG

Memory Control APPL PROG >00>12, File Operation APPL PROG

Miscellaneousoovo. .. APPL PROG Open Extend. s

OVETVIEW oo CONCEPTS >00>4A, File Operation

Privilegedo SYS PROG Unlock - ----APPLPROG

Program Control APPL PROG >00>90, File Utility Operation
SVC Codes . ..o oo SYS PROG CreateFile R APPL PROG

>00>00: >00>91, File Utility Operation

File Operation Open APPL PROG Assign LUNO.......... .- -APPL PROG
/OOpenoovoeeernn... APPL PROG >00>92, File Utility Operation
>00>01: DeleteFile............. PR APPL PROG
: ionClose APPL PRO >00>93, File Utility Operation
D6 Speration Close ... APPL PROS Release LUNOAPPLPROG
>00>02: >00>95, File Utility Operation
File Operation Close EOF APPL PROG RenameFile APPL PROG
1/0 Close with EOF APPL PROG >00>96, File Utility Operation
>00>03: Ung;otgglt Ftljle_l: e e APPL PROG
: : ; B L >00>97, File Utility Operation
LG O e Rewind - A PPL PROG Write Protect FileAPPL PROG
>00>04: T >00>98, File Utility Operation
File Operation Close Unload .. APPL PROG Delete Protect File APPL PROG
1/0 Close Unload APPL PROG >00>99, File Utility Operation
>00>05: Verify PathnameAPPL PROG
File dperation Read File >00>9A, Flle Utility Operation
Characteristics APPL PROG Adggdllgsl i Greration -APPL PROG
1/0 Read Device Status. APPL PROG >00>9B, rile Utllity Operation 206G
>00>06: >013§1;ée ?TI'IIaSUt:I"t' 'Operation
Fil tion F d , File Utility Operation
Moaperation Forward APPL PROG Define Write Mode APPL PROG
170 Forward Space APPL PROG
Index-12 Digital Systems Division

0946250-9704

>00>5:
Direct Disk I/0 Read Format ...SYS PROG
Direct Diskette 170 Read
Format SYS PROG

>00>8:
Direct Disk [/O Write Format . ..SYS PROG
Direct Diskette 170 Write
Format SYS PROG
>00>9:
Direct Disk 1/0 Read by ADU...SYS PROG
Direct Diskette I/0O Read
ASCII, SYS PROG
>00>A:
Direct Disk I/0 Read by Track ..SYS PROG
Direct Diskette I/0 Read
Direct SYS PROG
>00>B:
Direct Disk 170 Write by ADU ..SYS PROG

>24, Suspend Awaiting Queue

Input ... i SYS PROG
>25:

Install Real-Time Task SYS PROG

Install Task................... SYS PROG
>26, Install Procedure SYS PROG
>27, InstallOverlay.............. SYS PROG
>28,DeleteTask SYS PROG
>29, Delete Procedure SYS PROG
>2A, DeleteOverlay SYS PROG
>2B, Execute Task............. APPL PROG
>2C, Read/Write TSB SYS PROG
>2D, Read/Write Task SYS PROG
>2E, Self Identification APPL PROG
>2F, End-Action Status APPL PROG
>30,GetEventKey APPL PROG

>31, Map Program Name to ID . . APPL PROG
>32, Get System Pointer Table

Direct Diskette 1/0 Write Address...................... SYS PROG
ASCIL ... SYS PROG >33,Kill Task SYS PROG
>00>C: >34, Unload Disk Volume SYS PROG
Direct Disk 1/0 Write by Track . .SYS PROG >35, Poll Statusof Task APPL PROG
Direct Diskette 170 Write >36, Wait on Multiple Initiate
Direct SYS PROG I/0 oo APPL PROG
>00>E, Direct Disk 1/0 Store >37, Assign Space on Program
Registers SYS PROG File SYS PROG
>00>F: >38, Initialize New Volume SYS PROG
Direct Disk I/0 Read Format ...SYS PROG >39,GetEventKey APPL PROG
Direct Diskette I/0 Read >3B, Initialize Date and Time SYS PROG
Format SYS PROG >3E, Reset End Action APPL PROG
>01, Waitfor 170 APPL PROG SVLCommand 2.4.16
>02, TimeDelay APPL PROG SVSCommand PROD OPER
>03, Dateand Time APPL PROG SWRCommand 7.3.17
>04, End-of-Task APPL PROG SymbolicDebug 7.2.3
>06, Unconditional Wait APPL PROG Syntax Conventions:
>07, Activate Suspended Task .. . APPL PROG Debug...............oo oL 7.2.2
>09, Do Not Suspend APPL PROG TextEditor 24
>0A, Convert Binary to System:
Decimal.................... APPL PROG Generation SYS PROG
>0B, Convert Decimal to Overview CONCEPTS
Binary APPL PROG Log CONCEPTS, PROD OPER
>0C, Convert Binary to Example ERROR
Hexadecimal................ APPL PROG SVCCodes>21 APPL PROG
>0D, Convert Hexadecimal to
Binary APPL PROG Tab, Text Editor Control Function 2.5.7
>0E, Activate Time Delay Task . . APPL PROG TASK:
>0F, Abort 1/0 on Specified IDs. oo SYS PROG
LUNO..................... APPL PROG Priority APPL PROG
>10, Get Common Data State Codes. APPL PROG, PROD OPER
Address.................... APPL PROG Programming APPL PROG
>11, Change Priority........... APPL PROG Terminal:
>12,GetMemory APPL PROG ACCeSS ... PROD OPER
>13, Release Memory APPL PROG Extended Support CONCEPTS
>14,Load Overlay............. APPL PROG Features CONCEPTS, PROD OPER
>16, End-of-Program APPL PROG Functions PROD OPER
>17, Get Parameters APPL PROG Keyboard Code Table APPL PROG
>1B, Return Common Data Keyboard Equivalents.......... PROD OPER
Address.................... APPL PROG Logon/Logoff PROD OPER
>1C,Putdata APPL PROG Operation PROD OPER
>1D,Getdata APPL PROG HardCopy..........cooiviiit. 2.2.1
>1F,BidTask APPL PROG VideoDisplay 2.2.2
>20, Install Disk Volume SYS PROG Programming APPL PROG
>21,SystemLlog APPL PROG Test Generated System Command..SYS PROG
>22, Disk Manager SYS PROG
Index-13 Digital Systems Division

0946250-9704

Text Editor:

TXCMCommand PROD OPER
Command: TXCP Command PROD OPER
Copy Line ... 2.4.5 TXDF Command PROD OPER
Delete Line......................... 2.4.6 TXDX Command PROD OPER
DeleteString 2.49 TX/DX Conversion PROD OPER
Execute........................ 2.1,2.4.1 TXMDCommand PROD OPER
Execute withScaling................. 2.4.2 TXSFCommand PROD OPER
FindString........................ 2.4.10 TXXLE Command PROD OPER
InsertFile.......................... 2.4.8
Modify Right Margin 2.4.13 Unconditional Suspend Task, Debug 7.2.1
ModifyRoll 2.4.12 Unconditional Wait SVC
Modify Tabs 2.4.14 Codes>06.................... APPL PROG
MoveLine 2.4.7 Unload Disk Volume SVC
Quit. ... 2.1,2.43 Codes>34...................... SYS PROG
RecoverEdit 2.4.4 Unload Volume Command PROD OPER
Replace String 2.4.11 UVCommand PROD OPER
Saveline 0ot 2.4.16
Selectiono, 2.2 VBCommand PROD OPER
ShowlLine 2.4.15 VCCommand PROD OPER
Usageo e 2.4 VDT Extended Support CONCEPTS
Control Function 2.5, T2-1 VDT Mode, Command Entry
BackTab o o il 2.5.8 ControlKeys PROD OPER
Backspace 2.5.18 VDT Operation PROD OPER
CleartoTab........................ 2.5.6 Verify Backup Command. PROD OPER
CursorDown...................... 2.5.16 Verify Copy Command........... PROD OPER
CursorLeft 2.5.18 Video Display Terminal Operation......... 2.2.2
CursorRight 2.5.17
CursorUp ..., 2.5.15 WAIT Command PROD OPER
Delete Character 2.5.14 Wait for Background
Deleteline........................ 2.5.12 Termination Command PROD OPER
Display/Suppress Line Numbers2.5.4 Wait for /O SVC Codes >01 APPL PROG
DuplicatetoTab 2.5.5 Wait on Multiple Initiate I/O
Edit/ComposeMode 2.5.2 SVCCodes>36 APPL PROG
Enter Command Mode. 2.5.1 Walk Throughs, Text Editor................ 2.3
Erase........coviiiiiinnnan. 2.5.20 WCRU Command............... PROD OPER
Home i .. 2.5.19 WHAT Command, GEN990 SYS PROG
Insert Character 2.5.13 Write CRU Command PROD OPER
InsertLine on.n. 2.5.11 Writing Programs APPL PROG
Newlinecoviiinn.. 2.5.3
RollDowncoiiiiian. 2.5.10 XANAL Command ERROR, SYS PROG
RollUp. ..o 2.5.9 XBCommand PROD OPER
Tab . 2.5.7 XCTCommand APPL PROG
ControlKeys ..., T2-1 XCTFCommand................ APPL PROG
DataDisplay ..o, 2.2 XCUCommand................... SYS PROG
DataEntrycoviniiiiiiiiaan 2.2 XDCommand........ocovviiiirennnnnnn. 7.4.1
DXI10 o e 2.1 XECommandcoovvn.n. 2.1,2.4.1
EditControlot 2.2 XESCommandcoiiiinan.. 2.4.2
Example F2-1, F2-2, F2-3 XFCCommand APPL PROG
File: XFCFCommand APPL PROG
Create Newc.cccvenena... 2.3.1 XFTCommand APPL PROG
Edit Existing 2.3.2 XFTFCommand APPL PROG
Operation, Typesof 2.2 XGEN CommandPROD OPER, SYS PROG
Syntax Conventions 2.4 XHTCommand 6.2.3
Walk Throughs........... 2.3 XLECommand APPL PROG
TGSCommand SYS PROG XMACommand APPL PROG
Time Delay SVC Codes >02 APPL PROG XPSCommand SYS PROG
TTY Mode, Command Entry XSBCommand APPL PROG
ControlKeys PROD OPER XTCommand............. 6.2.1, PROD OPER
TX Program File Command, XTSCommand............ 6.2.2, PROD OPER
Link Editor................... PROD OPER
Index-14 Digital Systems Division

CUT ALONG LINE

—— — — ——— Jo—— o— it Sttt i, et i, oottt syt i,
. ——— o——— —— S—— T— S — ——— —— —— — —— — i —— — f— ——— —— Si—— W——— — —— — ——

USER’S RESPONSE SHEET

Model 990 Computer DX10 Operating System

Manual Title:

Developmental Operation Manual, Volume IV (946250-9704)
Manual Date: 15 APril 1981 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

NO POSTAGE

NECESSARY

IF MAILED
IN THE

UNITED STATES

(BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS GROUP
ATTN: TECHNICAL PUBLICATIONS

P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

B ——
Texas Instruments U.S. District Sales and Service Offices
(A complete listing of U.S. offices is available from the
district office nearest your location)

California Ilinois Texas
831 S. Douglas Street 515 West Algonquin Road 8001 Stemmons Expressway
Et Segundo, California 90245 Arlington Heights, Illinois 60005 P.O. Box 226080
(213) 973-2571 (312) 640-2900 M/S 3108
*
100 California Street (800) 942-0609 Dza;lllta;sésgexas 75266
Suite 480 Massachusetts { -4460
San Francisco, California 94111 504 Totten Pond Road 13510 North Central Expressway
(415) 781-9470 Waltham, Massachusetts 02154 P.0. Box 225214
776 Palomar Avenue (617) 890-7400 M/S 393
P.O. Box 9064 Michigan Dallas, Texas 75265
Sunnyvale, California 94086 24293 Telegraph Road (214) 238-3881
) . . T
(408) 732-1840 (S;;g;h;gt_jégéchlgan 48034 9000 Southwest Freeway, Suite 400
318§ Airway (800) 572-8740* Houston, Texas 77074
Suite J . {713) 776-6577
Costa Mesa, California 92626 Minnesota . .
(714) 540-7311 7625 Parklawn Avenue 8585 Commerce Drive, Suite 518
Minneapolis, Minnesota 55435 Houston, Texas 77036
Colorado (612) 830-1600 (713) 776-6531
9725 East Hampden Avenue Missouri (713) 776-6553*
Suite 301 2368 Schuetz
Denver, Colorado 80231 . . .
St. Louis, Missouri 63141 N
{303) 761-1780 V;yg"“a
(314) 569-0801* 1745 Jeff. Davis High
Florida New Jerse efferson Davis Highway
1850 Lee Road e Y Crystal Square 4, Suite 600
Suite 115 (e Viestfiald Avenve Arlington, Virginia 22202
1l r
Winter Park, Florida 32789 (201)‘5723800 v (703) 553-2200
(305) 644-3535
. Ohio . .
Georgia 4124 Linden Avenue Wisconsin
3300 Northeast Expressway Dayton, Chio 45432 205 Bishops Way
Atlanta, Georgia 30341 . Brookfield, Wisconsin 53005
(404) 458-7791 Pennsylvania {414) 7841323
420 Rouser Road
Coraopolis, Pennsylvania 15108
*Service telephone number (412) 771-8550

TI-CARE*
Centralized Dispatch Telephone Numbers

for Requesting Service
. 800-
800-525-8055 292, :
4225 \ ;
800-538-1502, 800- -) -
325-4324 201-574-9800
: - 3 New Jersey
, < 800"
408 303-751-1780 »
732-1840

North of
r

Princeton

714
540-7311 800-
800-
8543273 [[oo ooes
800-241-3047

a 800-392-1488

2
@ SRP

Houston Customers-
713-776-6511
Ext. 553 or 554

808-955-2617 (Hawaiian |stands) Q

Installation for Computer Systems
800-231-2807
713-937-1200 {Texas only, collect)

Dallas Customers-
214-238-3881

*Service mark of Texas Instruments

The Tl Customer Support Line is available to answer our customers’ complex
technical questions. The extensive experience of a selected group of Tl senior
engineers and systems analysts is made available directly to our customers. The Tl
Customer Support Line telephone number is (512} 250-7407.

°. TEXAS INSTRUMENTS
[] INCORPORATED

DIGITAL SYSTEMS GROUP
POST OFFICE BOX 2909 AUSTIN, TEXAS

