Model 990 Computer
Tl Pascal
Configuration Processor Tutorial

D s

g WENT

sl

s P

Part No. 2250098-9701 *A
1 August 1981

Y@TEXAS INSTRUMENTS

”

© Texas Instruments Incorporated 1979, 1981
All Rights Reserved, Printed in U.S.A.
The information and/or drawings set forth in this document and all rights in and to inventions disclosed

herein and patents which might be granted thereon disclosing or employing the materials, methods,
techniques or apparatus described herein, are the exclusive property of Texas Iinstruments Incorporated.

MANUAL REVISION HISTORY

Model 990 Computer Tl Pascal Configuration Processor Tutorial
(2250098-9701)

.............. 15 January 1979

Originallssue R
1 August 1981

ReVISION. . .o e e

The total number of pages in this publication is 72.

Preface

This manual is a tutorial about the TiI Pascal Configuration Processor. The manual is designed to
help you become familiar with the configuration processor, which provides for the separate com-
pilation of Tl Pascal (TIP) source modules and configuration management support.

This manual consists of seven sections. Since each section develops information that was
presented in the preceding section, you should begin with Section 1 and work through the sec-
tions in order.

Section 1 provides an overview of the separate compilation process to give you a basic under-
standing of how the configuration processor works. This section describes the functions of the
configuration processor and other utilities used in this manual; it also lists the steps necessary to
compile an entire program or individual routines.

Sections 2 through 7 deal with the actual use of the configuration processor. Each section deals
with one phase of the preparation, compilation, linking, and execution of an example program.
First, you are told how to create the program by using the Text Editor; then, you are told how to

develop this example program step-by-step from creation to execution by using the configuration
processor.

Use this manual while sitting at a terminal. The manual directs your activities by first telling you
which command to enter and then describing the results. You will need the following equipment:

. DS990 computer system with a DX10 or DNOS operating system and TIP installed
. Model 911 or Model 913 Video Display Terminal (VDT)
After completing this tutorial, you should be able to do the following:
* Use the NESTER utility to format a source program.
. Use the SPLITPGM utility to split a source program into separate modules.

. Use the CONFIG utility to create a hierarchical description (process configuration) of
the program.

. Execute the CONFIG utility interactively to prepare one or more source modules for
compilation.

. Create a link control file to link the recompiled object modules for execution.

2250098-9701 jiii

Preface

Users of this tutorial should be familiar with SCI commands and the TIP language and should be
able to do the following:

e Create a user directory

. Assign a synonym to a directory pathname

. Use the Text Editor to create a source program
. Compile, link, and execute a TIP program

Some commands used in this tutorial display a version number and release date. These are
represented as <VERSION: X.X.X YYDDD>, where X.X.X is the version, YY is the year,and DDD is
the Julian date.

The following documents contain additional information related to the configuration processor:

Title Part Number

Model 990 Computer Tl Pascal User’s Manual 946290-9701
Model 990 Computer DNOS TI Pascal Programmer’s

Guide 2270517-9701
Model 990 Computer DX10 Operating System Concepts

and Facilities Manual 946250-9701
Model 990 Computer DNOS Concepts and Facilities 2270501-9701
Model 990 Computer Link Editor Reference Manual 949617-9701

Model 990 Computer DNOS Link Editor Reference
Manual 2270522-9701

You are now ready to begin Section 1.

iv 2250098-9701

Contents

Paragraph

-tk b
WN =

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.41
4.4.2
443
4.4.4
445
446
4.4.7
4438
449
4.4.10
4.411
4.4.12
4.4.13
4.4.14
4.4.15

2250098-9701

Title

1 — Overview

7= 311 - O
Functional Description of Utilities
Separate Compilation Procedure

2 — Preparing the Source Code

LT 2 T-" - |1 AN P
SoUrCe FOrMAat . . .ottt it i i i et e e
ProCedUIe. . . oo e e e e

General................. e e e e e e
[oY o=Yo [1] ¢ YA AP

(7= =] - |
Executing CONFIG Interactivelyot
Process Configuration it
CommandDescription i,
USEPROCESSCommandcccviiiiiiinnnnnnnn.
DISPLAYCommandcuiiiiiriiiinennnaannn
ADDCommandccii it e e e
MOVE COomMMaNd. i ittt ittt i e i v ieeinaeeeaeeannn
DELETECOommandciiiiiiiiiiiiii i
USEOBJECTCommand...........cciiiiiiiiiennann.
USECOMMAND ..ottt ittt iie it ineiaennennn
DEFAULTSOURCECommandcccvvinnennn
DEFAULTOBJECTCommandc.ivvieinennnnns
COMPILECommand. ...ttt iiiiiieee s
EXITCommandciiiiiiii i ittt i i e
LISTCommandccoiiiiitiiiiiiiiieeennnnns
LISTDOCCommandcovviii it iiiiinnnnnnnns
LISTORDERCommand. ...ttt iiinennannn
CATPROCESSCommand ...ttt

Page

Contents

Paragraph Title Page
4.4.16 BUILD PROCESS ComMaANdvvitititieieitiinnneeiniaenanneneenns 4-21
4417 Library Commandsuuuntiiin i 4-23
44171 SETLIBCommand............ U 4-24
44172 MASTERCommand S 4-24
44173 LIBRARY COmMMaANG . ..ottt et e i e et ittt e cnaaeannes 4-24
4.417.4 OBJLIBCOMMANA ...ttt it et et e sttt 4-24
44175 ALTOBJ COmMMANG . ..t oot i et ittt ettt i n e iaananenananas 4-24
4.4.18 FlagCommandsuuiunureireeat et 4-25
4.4.18.1 SETFLAG COMMANAottt et iee i ti it cinia e ens 4-26
1 4.4.18.2 FIag CoOMMANG ..o\t tteieet it ae et anens 4-26
4.4.18.3 Conditional FlagCommandciiiiiiiiiii it 4-27
5 — Preparing the Entire Program for Compilation
5.1 (Y=Y 1= - 5-1
5.2 Yo e L 1« - A 5-1
6 — Compiling, Linking, and Executing the Program
6.1 General........ e R R 6-1
6.2 oo Yo =Yo LU |« - R P 6-1
7 — Recompiling a Routine Separately
741 Genera|71
7.2 (=T Co Yot o | | ¢ - AU T 7-1
Index .

lllustrations

Figure Title Page
2-1 Example Program Source File 2-3
2-2 Example Program Nested Source File, 25
2-3 Example Program Edited, Nested Source File.............o, 2-6
31 PROCES FIle ..ottt ittt ettt ettt e e ettt aens 32
3-2 Command Listing File 33
4-1 Listing File — SOUMCeottt i i i e 413
4-2 Listing File — Documentation 4-17
4-3 Listing File — AlphabeticOrder 4-18
vi 2250098-9701

Contents

Figure ~ Title Page
51 1= 3T Vo [] - P 5-3
5-2 Prepared Process Filettt ittt 5-4
5-3 PreparedSource Fileo ittt i i, 5-5

Table | Title Page
4-1 0= 07 11112 F- V1 To - 4.2
4-2 SystemF Flagsco i e i e e 4-25

2250098-9701 viilviii

Overview

1.1 GENERAL

Development of a large program is less expensive when the modules of the program can be recom-
piled for correction or change without recompiling the entire program. In a block-structured
language such as TIP, separate compilation is more difficult than in assembly language or in a
nonstructured, high-level language. This is because of the scope rules of TIP and its ability to pass
parameters by reference or by value.

To separately compile a TIP routine, you must include all global declarations in the source code so
that the environment is identical to that in which the routine is to execute. These declarations
must include the declaration sections of all routines within which the routine is nested. Merging

the declaration sections manually is tedious and error prone; in contrast, using the configuration
processor is both quicker and more efficient.

1.2 FUNCTIONAL DESCRIPTION OF UTILITIES

You will use the following utilities in the separate compilation process:
e Configuration Processor utility (CONFIG)
. Source Formatter utility (NESTER)
. Split Program utility (SPLITPGM)

CONFIG performs the following functions:

° Maintains a library of source modules to be combined as required for separate compi-
lation of each module of a program

. Builds a process configuration that contains information about the program structure
and the locations of the individual modules

° Prepares a source program for each separate compilation, using the process configu-
ration to gather declarations needed by the modules being compiled

. Maintains a library of object modules of the program from which appropriate object
modules are linked

2250098-9701 1-1

1.3 Overview

NESTER restructures the source code so that the indentation is consistent with the logical

structure.

SPLITPGM performs the following:

Divides a TIP program into modules and catalogs them as members of a directory

Writes an input command file for the CONFIG utility to contain the commands required
to build the process configuration corresponding to the original source program
structure

1.3 SEPARATE COMPILATION PROCEDURE

The steps for separate compilation used in this manual are as follows:

1.

Prepare the source code (Section 2). Preparation of the source code includes using the
Text Editor to write a TIP program, using NESTER to format the source program, and
using SPLITPGM to split the source program into individual library members.

Execute CONFIG to create a process configuration. You can execute CONFIG in either
of two modes: batch or interactive. In the batch mode, CONFIG builds the process con-
figuration automatically, using information supplied in the output file of SPLITPGM.
When using the interactive mode, you can enter commands that direct CONFIG in
building or modifying the process configuration. In Section 3, you will execute CONFIG
in the batch mode. Section 4 discusses the user commands. In Section 5, you will
execute CONFIG interactively to prepare the entire program for compilation.

Compile, link, and execute the program (Section 6). After compiling and before linking,
you will execute CONFIG to split the object code into a separate module for each
routine that was compiled.

Modify a subroutine and recompile it separately. In Section 7, you will modify one of the
subroutines of your example program, recompile only that routine, link it, and execute
the program.

Now, proceed to Section 2 to prepare the source code.

2250098-9701

2

Preparing the Source Code}

2.1 GENERAL

To prepare the source code of the program, first you must create three user directories: one for the
source modules, one for the object modules, and one for miscellaneous files such as listings and
messages. Next, you must use the Text Editor to create an example program. Then, execute
NESTER to format your program. To your nested program, add forward declarations and then mark
the start of each routine for SPLITPGM. After executing SPLITPGM you should check the output
files.

Some utilities recognize only the first six characters of routine names. Therefore, when preparing
source code, use routine names whose first six characters are unique.

The temporary files used by the utilities described in this manual (.COMPFIxx, .CPTEMPxx,
.OBJECTXxx, etc., where xx is your station number) are automatically deleted when you execute the
P$DELETE command or when you log off the system. When the utilities are executed from a batch
stream or batch job (DNOS), the name of a temporary directory is prefixed to the default pathname.
Synonym $TIP is automatically assigned to this directory. For batch streams initiated by the Exe-
cute Batch (XB) command, the temporary directory is .T$STxx, where xx is the station number of
the initiating terminal. For batch jobs initiated by the Execute Batch Job (XBJ) command (DNOS),
the directory is .T$Jn, where n is the job number (from one to five decimal digits long). in both
cases, the temporary directory is automatically deleted when the batch stream ends. To place the
files elsewhere, assign synonym $TIP to a directory you have created. However, you must delete
the files yourself when finished with them.

2.2 SOURCE FORMAT

You must separate source modules for input to CONFIG and store them as members of a user
source library. A source module consists of one program, procedure, or function in which all con-
tained procedures and functions have been replaced by forward declarations. You will use
SPLITPGM to divide your example program into source modules in accordance with this rule. In
addition, the source modules must conform to the following rules:

e Each procedure and function requires a forward declaration to ensure that each calling
sequence is correctly defined.

. Keyword BEGIN of the compound statement that contains the statements of the pro-
gram, procedure, or function must be in character positions 1 through 5. The component
statements must be indented. (Use NESTER to indent the statements.)

. Keyword END of the compound statement that contains the statements of the program,

procedure, or function must be in character positions 1, 2, and 3. The component
statements must be indented. (Use NESTER to indent the statements.)

2250098-9701 2-1

2.3 Preparing the Source Code

. Compiler option NULLBODY should not be specified in any of the source modules.
. Character position 1 should never contain an asterisk (*) except inside a comment.

e Character position 1 should not contain a minus sign (-) unless character position 2 also
contains a minus sign.

e Acomment in the declaration section that begins in character position 1 must be closed
by a brace (}) in character position 72 or an asterisk and a closed parenthesis (*)) in
character positions 71 and 72 of the same or succeeding line.

CONFIG recognizes one or more comments in the declaration section of a module. These com-
ments precede the TYPE or VAR declaration and serve as the documentation section of the
module. Comments in this section must begin in character position 1 and end in character posi-
tion 72 of the same or a succeeding line; you can list these comments separately from the source
code. Section 4 describes the LISTDOC command that specifies the modules for which the
documentation section is to be listed.

2.3 PROCEDURE
You are now ready to prepare the source code by using the following procedure:
1. Create three user directories, using the following pathnames:

(your name).CONFIG This directory will contain miscellaneous files. The
maximum number of entries for this directory shouid
be 10 (for example, .JANE.CONFIG).

(your name).CONFIG.SRC This directory will contain the source modules. The
maximum number of entries for this directory should
be 14 (for example, .JANE.CONFIG.SRC).

(your name).CONFIG.OBJ This directory will contain the object modules. The

maximum number of entries for this directory should
be 8 (for example, .JANE.CONFIG.OBJ).

2. Use the Text Editor to create the program listed in Figure 2-1 and store it in a file called
MAIN under the directory .(your name).CONFIG.SRC.

3. Execute NESTER to nest the source code in accordance with the indentation rules
previously described.

Enter the following:

[] XNESTER

2-2 2250098-9701

Preparing the Source Code 2.3

PROGRAM TCONFIG;
(***
* MAIN *
Tkhkhkhhhkhhhhhhhhhhhhhhkhkhhhhhkkhhhdhhhhhhhhhkhhhdhhhhhhhkhkkkhkkhhkhhdkkk)
PROCEDURE SUB2; FORWARD;

PROCEDURE SUB1L;
(***

* SUBL *
***)
BEGIN

WRITELN(“HI! FROM SUBL”);

SUB2

END; (* SUBL *)

PROCEDURE SUB2;
(***

* SUB2 *
***)
BEGIN

WRITELN("HI! FROM SUB2”);

END; (* SUB2 *)

PROCEDURE SUB3;
(***

* SUB3 *
***)
PROCEDURE SUB5; FORWARD;

PROCEDURE SUB4;
(***

* SUB4 *
***)
BEGIN

WRITELN(“HI! FROM SUB4~);

SUB5

END; (* SUB4 *)

PROCEDURE SUB5;
(**w**

* SUB *
********************************E**************************************)
BEGIN

_WRITELN(“HI! FROM SUB57);

END; (* SUB5 *)

BEGIN (* SUB3 *)

WRITELN(“HI! FROM SUB3”);

SUB4;

SUB5

END; (* SUB3 *)

BEGIN (* TCONFIG *)

WRITELN(“HI! FROM TCONFIG”);

SUBL;

SUB2;

SUB3

END. (* TCONFIG *)

Figure 2-1. Example Program Source File

2250098-9701 2-3

23 Preparing the Source Code

2-4

The following prompts appear on your screen; the responses you should enter are
shown next to the prompts:

EXECUTE PASCAL SRC PROGRAM NESTER <VERSION: X.X.X YYDDD>
SOURCE: .(your name).CONFIG.SRC.MAIN
NESTED SOURCE: .(your name).CONFIG.SRC.NMAIN
ERROR LISTING: ME (see note)
MESSAGES: ME (see note)
MODE: FOREGROUND

NOTE

Entering ME for this response causes messages to be displayed on
your terminal. You can have the messages put on a file by entering
the pathname of a file such as .(your name).CONFIG.MSSG.

After NESTER is executed, the file .(your name).CONFIG.SRC.NMAIN will contain your
nested source code. The contents of the file should be the same as in Figure 2-2.

Prepare the nested source file for SPLITPGM. Use the Text Editor to add the following to
your nested source file:

a. A forward declaration for each routine.

b. A marker for the main program and one for each routine. The markers begin in
column 1 and appear before the program statement and before each procedure
statement. Each marker consists of a double quote, an ampersand, and the routine
name (for example, “&SUB1). After completing this step, your file should look like
that shown in Figure 2-3.

Assign the synonym LIBRARY to your directory. Enter the Assign Synonym (AS) com-
mand as follows:

[1AS

The following prompts appear on your screen; the responses you should enter are
shown next to the prompts:

ASSIGN SYNONYM VALUE
SYNONYM: LIBRARY
VALUE: .(your name).CONFIG.SRC
Execute SPLITPGM to divide your source code into separate modules. SPLITPGM
catalogs these modules as members of the directory to which you assigned the
synonym LIBRARY. SPLITPGM is executed as a Pascal task. Enter the following:

[1XPT

2250098-9701

Preparing the Source Code 2.3

PROGRAM TCONFIG; 00000010
(***00000020
* MAIN *00000030
***)00000040
PROCEDURE SUB2; FORWARD; 00000050
PROCEDURE SUBL; 00000060
(***00000070
* SUB1 *00000080
***)00000090
BEGIN WRITELN(”HI! FROM SUBl”); 00000100

SUB2 00000110
END; (* SUBL *) 00000120
PROCEDURE SUB2; 00000130
(***00000140
* SUB2 *00000150
***)00000160
BEGIN WRITELN(“HI! FROM SUB2”); _ 00000170
END; (* SUB2 *) 00000180
PROCEDURE SUB3; 00000190
(***00000200
* SUB3 *00000210
***)00000220
PROCEDURE SUB5; FORWARD; 00000230
PROCEDURE SUB4; 00000240
(***00000250
* SUB4 *00000260
***)00000270
BEGIN WRITELN(“HI! FROM SUB4~); 00000280

SUB5 00000290
END; : (* SUB4 *) 00000300
PROCEDURE SUB5 ; 00000310
(***00000320
* SUBS *00000330
***y00000340
BEGIN WRITELN(“HI! FROM SUB5”); 00000350
END; (* SUB5 *) 00000360
BEGIN (* SUB3 *) 00000370

WRITELN(“HI! FROM SUB3”); SUB4; 00000380

SUB5 00000390
END; (* SUB3 *) 00000400
BEGIN (* TCONFIG *) 00000410

WRITELN(”HI! FROM TCONFIG”); _ 00000420

SUBl; SUB2; SUB3 00000430
END. (* TCONFIG *) 00000440

Figure 2-2. Example Program Nested Source File

2250098-9701 2-5

2.3 Preparing the Source Code

"&TCONFIG

PROGRAM TCONFIG; 00000010
(Fkkkdeddddddh Rk Rk khkkkh kR AR R kR h kAR dhdhhkhkhkhhkh kR AR AAR KRRk Xk kX xk****x00000020
* MAIN *00000030
KkkkhkhhhhhkhhhhRhRhkhkhhhrkhrhhkhhhhhkkhhhhkkhkhhhrkkhhkhkrkdkkkkkkkkx*%%) 00000040
PROCEDURE SUBl; FORWARD; 00000050

PROCEDURE SUB2; FORWARD;
PROCEDURE SUB3; FORWARD;

"&SUBL
PROCEDURE SUB1; 00000060
(***00000070
* SUB1 *00000080
***)00000090
BEGIN WRITELN(“HI! FROM SUBL”); 00000100
SUB2 00000110
END; (* SUBL *) 00000120
"&SUB2
PROCEDURE SUB2; 00000130
(***00000140
* SUB2 *00000150
***)00000160
BEGIN WRITELN(“HI! FROM SUB2”); 00000170
END; (* SUB2 *) 00000180
"&SUB3
PROCEDURE SUB3; 00000190
(***00000200
* SUB3 *00000210
***)00000220
PROCEDURE SUBS5; FORWARD; 00000230
"§SUB4
PROCEDURE SUB4; 00000240
(***00000250
* SUB4 *00000260
***)00000270
BEGIN WRITELN(“HI! FROM SUB4~); 00000280
SUB5 00000290
END; (* SUB4 *) 00000300
"§SUBS
PROCEDURE SUBS5; 00000310
(***00000320
* SUBS *00000330
khkkhkdkhkkhhhkhhhhkhhhhhkkhkhkkkkkhhhkhkkhhhhkkkhkkkhhhkkkkkkhkhkkkkkkhkkxk*x*) 00000340
BEGIN WRITELN(“HI! FROM SUB5”): 00000350
END; (* SUB5 *) 00000360
BEGIN (* SUB3 *) 00000370
WRITELN(“HI! FROM SUB3”); SUB4; 00000380
SUB5 00000390
END; (* SUB3 *) 00000400
BEGIN (* TCONFIG *) 00000410
WRITELN(“HI! FROM TCONFIG”); 00000420
SUBl; SUB2; SUB3 00000430
END. (* TCONFIG *) 00000440

Figure 2-3. Example Program Edited, Nested Source File

2-6 2250098-9701

Preparing the Source Code 2.3

The following prompts appear on your screen; the responses you should enter are
shown next to the prompts:

EXECUTE Tl PASCAL TASK
PROGRAM FILE: .TIP.PROGRAM
TASK NAME OR ID: SPLITPGM
INPUT: .(your name).CONFIG.SRC.NMAIN
OUTPUT: .(your name).CONFIG.OUTPUT
MESSAGES: .(your name).CONFIG.MSSG
MODE (F, B, D): F (foreground)
MEMORY: leave blank

Respond to the prompt PROGRAM FILE by entering the name of the program file where
SPLITPGM is stored.

Respond to the prompt OUTPUT by entering the name of the output file that SPLITPGM
produces. This file will contain the commands needed to build the process configu-
ration.

7. Execute a List Directory (LD) command to be sure that a separate module for each
routine has been stored in your directory (assigned synonym LIBRARY). Enter the com-
mand as follows:)

[ILD

The following prompts appear on your screen; the responses you should enter are
shown next to the prompts:

LIST DIRECTORY
PATHNAME: LIBRARY
LISTING ACCESS NAME: leave blank
The following appears on your screen:

DIRECTORY LISTING OF: .JANE.CONFIG.SRC

MAX. # OF ENTRIES: 17 4 OF ENTRIES AVAILABLE: 9
FILE ALIAS OF RECORDS LAST UPDATE FMT TYPE BLK PROTECT
MAIN * 52 10/09/80 15:54:12 BS N SEQ YES

NMAIN * 53 10/09/80 16:04:55 BS N SEQ YES

SUB1 * 8 10/09/80 15:58:15 BS N SEQ YES

SUB2 * 7 10/09/80 15:58:22 BS N SEQ YES

SUB3 * 10 10/09/80 15:58:31 BS N SEQ YES

SUB4 * 8 10/09/80 15:58:30 BS N SEQ YES

SUBS * 7 10/09/80 15:58:30 BS N SEQ YES

TCONFI * 12 10/09/80 15:58:33 BS N SEQ YES

16:05:51 THURSDAY, OCT 09, 1980.

2250098-9701 2-7

2.3 Preparing the Source Code

Now, execute a Show File (SF) command to look at the output file that SPLITPGM pro-
duces. It contains commands that CONFIG will use to build the process configuration.
Enter the following:

[ISF

The following prompts appear on your screen; the response you should enter is shown
next to the prompt FILE PATHNAME:

SHOW FILE
FILE PATHNAME: .(your name).CONFIG.OUTPUT

The file should contain the following:

*BUILD PROCESS

*ADD TCONFIG

*ADD TCONFIG : SUB1

*ADD TCONFIG : SUB2

*ADD TCONFIG : SUB3

*ADD SUB3 : SUB4

*ADD SUB3 : SUBS

*CAT PROCESS <LIBRARY,PROCESS>

You have now finished preparing the source code. Proceed to Section 3.

2-8

2250098-9701

3

Creating a Process Configuration

3.1 GENERAL

In this section, you will execute CONFIG in the batch mode to create a process configuration. The
process configuration is a structural description of your program. CONFIG uses this description
to prepare your program for compilation.

CONFIG uses the commands listed in the output file of SPLITPGM to build the process configu-
ration. CONFIG then stores the process configuration in a file called PROCES and catalogs it as a
member of your source library (the directory you created and to which you assigned the synonym
LIBRARY). Also, CONFIG produces a command listing file that contains a listing of the commands
from the SPLITPGM output file, a copy of the process configuration, and a list of the files and
synonyms used.

After executing CONFIG, you will execute two SF commands: one to look at the PROCES file and
one to look at the command listing file.

3.2 PROCEDURE
Perform each step in the following procedure to create the process configuration:
1. Execute the CONFIG utility. Enter the following command:
[]1 XCONFIG

The following prompts appear on your screen; the responses you should enter are
shown next to the prompts:

EXECUTE CONFIGURATION PROCESSOR <VERSION: X.X.X YYDDD>
COMMANDS: .(your name).CONFIG.OUTPUT
CRT FILE: DUMY
LISTING: .(your name).CONFIG.LISTING
MESSAGES: .(your name).CONFIG.MSSG
MODE: BATCH
SOURCE: leave blank
OBJECT: leave blank
MEMORY: 48

Respond to the prompt COMMANDS by entering the name of the output file that
SPLITPGM created. This file contains the commands needed to build the process con-
figuration.

Respond to the prompt LISTING by entering the name of the command listing file.

2250098-9701 3-1

3.2 Creating a Process Configuration

3-2

In response to the prompt MESSAGES, enter the name of the file to which messages are
sent.

Respond to the prompt MEMORY by specifying the stack and heap allocations.
Execute an SF command to look at the PROCES file. Enter the following:

[]1SF

The fo.llowing prompts appear on your screen. The response you should enter is shown
next to the prompt FILE PATHNAME.

SHOW FILE
FILE PATHNAME: LIBRARY.PROCES

The displayed file should be similar to that shown in Figure 3-1.

Execute another SF command to look at the command listing. Respond to the prompt
FILE PATHNAME as shown in the following:

[1SF
SHOW FILE
FILE PATHNAME: .(your name).CONFIG.LISTING

The displayed file should be similar to that shown in Figure 3-2. The file contains a
listing of commands SPLITPGM produces, a copy of the process configuration, and a
list of the files and synonyms used, in that order. Note that files .COMPFI16,
.CPTEMP16, and .OBJECT16 are empty; LIBRARY is the only synonym that has been
assigned; and 16 denotes the station from which CONFIG was executed. (Also, note that

16 will be replaced by the station number of your terminal.)

VERSION1 00 10/09/80 00 16:10:09 0006 0000 0000 0000 0000 00 00 00 00

02 PROCESS 00 0001 0001 0000 0001 0000 02 80 00 00
TCONFIG 02 TCONFIG 00 0002 0000 0000 0002 0000 02 80 00 0O
SUB1 02 suBl 00 0000 0003 0001 0000 0003 02 80 00 0O
SUB2 02 sSuB2 00 0000 0004 0001 0000 0004 02 80 00 00
SUB3 02 SUB3 00 0000 0005 0001 0005 0000 02 80 00 0O
SUB4 02 SUB4 00 0000 0006 0004 0000 0006 02 80 00 0O
SUB5 02 SUBS 00 0000 0000 0004 0000 0000 02 80 00 0O
LIBTBL 00 00000000 00 00000000 0004 0000 0000 0000 0000 00 00 00 00
MASTER 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 00 00 00
LIBRARY 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 00 00 00
OBJLIB 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 00 00 00
ALTOBJ 00 00000000 GO 00000000 0000 0000 0000 0000 0000 00 00 0C 00
FLAGTBL 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 00 00 0O

Figure 3-1. PROCES File
2250098-9701

Creating a Process Configuration 3.2

DXPSCLCP 1.7.0 81.211 TI 990 CONFIGURATION PROCESSOR 10/09/80 16:10:08
*BUILD PROCESS
*ADD TCONFIG

*ADD TCONFIG : SUBl

*ADD TCONFIG : SUB2

*ADD TCONFIG : SUB3

*ADD SUB3 : SUB4

*ADD SUEB3 s SUBS

*CAT PRCOCESS <LIBRARY,PROCESS>

PROCESS NAME : SOURCE LOCATION OBJECT LOCATION FLAGS SET

TCONFIG <LIBRARY ,TCONFIG >
SUB1 <LIBRARY ,SUBl >
SUB2 <LIBRARY ,SUB2 >
SUB3 <LIBRARY ,SUB3 >

SUB4 <LIBRARY ,SUB4 >
SUBS <LIBRARY ,SUB5 >

INPUT = ,JANE.CONFIG.OUTPUT

CRTFIL = DUMY

OUTPUT = .JANE.CONFIG.LISTING

COMPFILE = .COMPFIl6

CPTEMP = ,CPTEMP16

OBJECT = ,OBJECT1é6

MASTER = .MASTER16

LIBRARY = ,JANE.CONFIG.SRC

OBJLIB = ,0BJLIB16

ALTOBJ = ,ALTOBJ16

Figure 3-2. Command Listing File

You have now completed Section 3. You have finished preparing your source code, and
the process configuration has been created and stored in your source library. Now proceed to
Section 4.

2250098-9701 3-3/3-4

4

User Commands

4.1 GENERAL

This section discusses the commands you can use while executing CONFIG interactively. These
commands direct the CONFIG to build or modify a process configuration and prepare one or more
source modules for compilation. You will not use the example program in this section. You will
continue the preparation of the example program in Section 5.

This section discusses each command and then directs you in executing the command so that
you can see how it works. Before beginning, you must execute CONFIG interactively.

4.2 EXECUTING CONFIG INTERACTIVELY

To execute CONFIG interactively, enter the following command:

[] XCONFIGI

The following prompts appear on your screen; the responses you should enter are next to the
prompts:
EXECUTE CONFIG PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 4,8

Respond to the prompt LISTING by entering the name of the file that will contain the command
listing.

The SOURCE and OBJECT prompts request the names of files that will contain the source and ob-
ject code, respectively, used by CONFIG. The default files .COMPFIxx and .OBJECTxx (xx is your
station number) are used when no file name is specified.

4.3 PROCESS CONFIGURATION

The process configuration contains the following information about the structure of the program:

. Name of the main program

] Names of the routines

2250098-9701 4-1

4.4 User Commands

. Name of the routine within which each routine is declared (or the main program name
for global routines). CONFIG writes, maintains, and uses the process configuration. The
user commands specify the structure and contents of the process configuration.

The process configuration is structured as a tree with each node representing a source module of
the program. The root node represents the main program module. Your example program is struc-
tured as follows:

TCONFIG
suB3
sSuB1 SUB2 ///\\\
SUB4 SUB5

All of the routines are descendents o\f the main program. Routines SUB1, SUB2, and SUB3 are
sons of TCONFIG; routines SUB4 and SUBS are sons of SUB3. If another routine were nested in
SUBS, it would become the son of SUB5 and a descendent of SUB3.

4.4 COMMAND DESCRIPTION.
Table 4-1 lists and describes the commands available to you. The commands are listed in the order

in which they are discussed. Each command is preceded by an asterisk (*) when it is entered.
Some of the commands use other special characters, which are explained with the command.

Table 4-1. User Commands

Command Explanation
USE PROCESS Specifies which process configuration you intend to use.
DISPLAY Displays the tabular representation of all or part of the
current process configuration.
ADD Adds a node to the process configuration being built or
modified.
MOVE Moves a node and its descendents to become the son of

another node.

DELETE Deletes a node and its descendents from the current
process configuration.

USE OBJECT Specifies a location for the object module of a specified
node.

4-2 2250098-9701

User Commands 4.4

Table 4-1. User Commands (Continued)

Command

Explanation

SE

DEFAULT SOURCE

DEFAULT OBJECT

COMPILE

EXIT

LIST

LISTDOC
LISTORDER
CAT PROCESS

BUILD PROCESS

 SETLIB
MASTER
LIBRARY
OBJLIB
ALTOBJ

SETFLAG
Flag

Conditional Fiag

Specifies a location for the source module of a specified
node. '

Specifies a library synonym for the default source library.

Specifies a library synonym for the default object library
(the library where the object modules will be stored).

Specifies the source module or modules to be compiled.
CONFIG uses this command in the deferred command list
to terminate processing. You may enter this command to

abort execution of CONFIG without processing the
commands entered.

Lists one or more source modules in the current process
configuration.

Lists the documentation section of one or more source
modules in the current process configuration.

Specifies the listing order for the LIST and LISTDOC
commands.

Stores (catalogs) the current process configuration at a
specified location.

Initializes the building of a process configuration.

Defines a library synonym and assigns a value to the
synonym.

Specifies a library synonym to replace the initially defined
synonym MASTER as the first entry in the library table.

Specifies a library synonym to replace the initially defined
synonym LIBRARY as the second entry in the library table.

Specifies a library synonym to replace the initially defined
synonym OBJLIB as the third entry in the library table.

Specifies a library synonym tc replace the initially defined
synonym ALTOBJ as the fourth entry in the library table.

Defines a user flag or deletes the definition of a user flag.
Turns certain system flags and all user flags on or off.

Allows you to turn the system flags on or off selectively.

2250098-9701

4.41 User Commands

4.4.1 USE PROCESS Command

The USE PROCESS command specifies that an existing process configuration is to be used as the
current process configuration. Specify the location of the process as a parameter of the
command. The following is an example:

*USE PROCESS <LIBRARY, PROCES>

Note that the location parameter is enclosed in angle brackets (< >) and consists of the synonym
for the library and the file name, separated by a comma. The above command specifies the use of
the process configuration that is stored in file PROCES in the directory associated with the
synonym LIBRARY.

Now enter the command *USE PROCESS <LIBRARY, PROCES>. Only the commands you enter
will be displayed on the screen until you enter a DISPLAY command.

4.4.2 DISPLAY Command

The DISPLAY command displays the tabular representation of all or part of the current process
configuration. Thus, the DISPLAY command allows you to see the effects of the commands you
enter on the current process. You must specify the node if you want only part of the process con-
figuration displayed. For example, the following command displays the configuration of SUB1 and
all of its descendents (if it has any):

*DISPLAY SUB1 ALL
Now display the entire process by omitting the node name from the command, as follows:
*DISPLAY ALL

The following is displayed, showing each node and the location of its source module:

TCONFIG <LIBRARY, TCONFIG>
SuB1 <LIBRARY, SUB1>
SuB2 <LIBRARY, SUB2>
SuB3 <LIBRARY, SUB3>

SuB4 <LIBRARY, SUB4>
SuB5s <LIBRARY, SUB5>

4.4.3 ADD Command
The ADD command adds a node to the current process. You must specify both the node to which
you are adding a new node and the new node that you are adding; the following is an example:

*ADD MAIN:SUB1

This example adds the node SUB1 as the son of MAIN. Note that the two nodes are separated by a
colon,

Now, add a node to your current process, by entering the following commands:
*ADD SUB1:S1A
*DISPLAY ALL

4-4 2250098-9701

User Commands 4.4.4

The following is displayed, showing S1A as a son of SUB1:

TCONFIG <LIBRARY, TCONFIG>
SUB1 <LIBRARY, SUB1>
S1A <LIBRARY, S1A>
SuB2 <LIBRARY, SUB2>
SUB3 <LIBRARY, SUB3>
SuB4 <LIBRARY, SUB4>
SuUB5 <LIBRARY, SUB5>

Note that the source module for the new node does not have to exist at this time.
Now, enter the following commands:

*ADD S1A:XYZ
*DISPLAY ALL

The following is displayed, showing XYZ as a son of S1A:

TCONFIG <LIBRARY, TCONFIG>

SUB1 <LIBRARY, SUB1>
S1A <LIBRARY, S1A>
XYZ <LIBRARY, XYZ>

SuB2 <LIBRARY, SUB2>

SuB3 <LIBRARY, SUB3>

SuB4 <LIBRARY, SUB4>

SuB5S <LIBRARY, SUB5>

4,44 MOVE Command

The MOVE command moves a node and all of its descendents to become the son and
descendents of another node. You must specify the node you are moving and the node to which
you are moving it. The following is an example:

*MOVE SUB1 TO SUB2
This example moves SUB1 to become the son of SUB2. All descendents of SUB1 (if any) are also
moved to become the descendents of SUB2. Note that the second node specified cannot be a
descendent of the first node (the node being moved).

Now, enter the following commands:

*MOVE S1A TO SUB2
*DISPLAY ALL

2250098-9701 4-5

445 User Commands

The following is displayed:

TCONFIG <LIBRARY, TCONFIG>
SuUB1 <LIBRARY, SUB1>
SuB2 <LIBRARY, suB2>

S1A <LIBRARY, S1A>

XYz <LIBRARY, XYZ>
SuB3 <LIBRARY, SUB3>
SuB4 <LIBRARY, SUB4>
SUB5 <LIBRARY, SUB5>

S1A and its son, XYZ, have been moved to become descendents of SUB2.
4.4.5 DELETE Command
The DELETE command deletes a node and its descendents from the current process configu-
ration. You must specify the node to be deleted as a parameter of the command, as in the follow-
ing example:

*DELETE SuB1
This example deletes SUB1 and all of its descendents from the current process.

Now, enter the following commands:

*DELETE S1A
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY, TCONFIG>
SuB1 <LIBRARY, SUB1>
SuB2 <LIBRARY, SUB2>
SuB3 <LIBRARY, SUB3>

SuB4 <LIBRARY, SUB4>
SUBS <LIBRARY, SUB5>

S1A and its son, XYZ, have been deleted.
4.4.6 USE OBJECT Command
The USE OBJECT command specifies a location for the object module of a specified node. You
must specify the node and the location of its object module as parameters of the command, as in
the following example:

*USE OBJECT SUB1<OBJLIB, SUB1>

This example stores the object modules for SUBI under the directory that has been assigned the
synonym OBJLIB.

4-6 2250098-9701

User Commands 4.4.7

Now, enter the following commands:

*USE OBJECT SUB2 <OBJLIB, SUB2>
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY, TCONFIG>
suB1 <LIBRARY, SUB1>
SuB2 <LIBRARY, SUB2> <OBJLIB, SUB2>
sSuB3 <LiBRARY, SUB3>
SuB4 <LIBRARY, SUB4>
SuBS <LIBRARY, SUB5>

Notice that the location of the object module for SUB2 is also shown.

4.4.7 USE Command

The USE command specifies a location for the source module of a specified node. You must
specify the node and the location of its source module as parameters of the command, as in the
following example:

*USE SUB1 <SRCLIB, NODE1A>

This example stores the source module for SUB1 in file NODE1A under the directory that has been
assigned the synonym SRCLIB.

Now, enter the following commands:

*USE SUB1 <OTHRLIB, SUB001>
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY, TCONFIG>
SUB1 <OTHRLIB, SUB001>
suB2 <LIBRARY, SUB2> <OBJLIB, SUB2>
sSuB3 <LIBRARY, SUB3>
SuB4 <LIBRARY, SUB4>
SuB5 <LIBRARY, SUBS5>

The source library for the source module of SUB1 has been changed to OTHRLIB. The name under
which SUB1 will be cataloged has been changed to SUB0O01.

Now, enter the following commands:

*USE SUB1 <LIBRARY, SUB1>
*DISPLAY ALL

2250098-9701 4-7

4.48 User Commands

The following is displayed:

TCONFIG <LIBRARY, TCONFIG>
SuB1 <LIBRARY, SuB1>
SuB2 <LIBRARY, SuB2> <OBJLIB, sSuB2>
SUB3 <LIBRARY, SUB3>
SuB4 <LIBRARY, SUB4>
SuB5 <LIBRARY, SUB5>

The source library for SUB1 has been changed back to LIBRARY, and the name under which SUB1
will be cataloged has been changed back to SUB1.

4.4.8 DEFAULT SOURCE Command

The DEFAULT SOURCE command specifies the synonym for the default source library. The
default source library synonym is LIBRARY until this command is entered. The synonym specified
in this command will apply to all modules defined by subsequent ADD commands. The following
is an example of the DEFAULT SOURCE command:

*DEFAULT SOURCE SRCLIB
This example specifies that the directory associated with synonym SRCLIB will be the default
source library. When a new node is added with an ADD command, its source module will be in a
file cataloged in the directory associated with synonym SRCLIB.
Now, enter the following commands:

*DEFAULT SOURCE SRCLIB

*ADD SUB1:S1A

*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY, TCONFIG>
SuB1 <LIBRARY, SUB1>
S1A <SRCLIB, S1A>
SuB2 <LIBRARY, SuUB2> <OBJLIB, suB2>
SuB3 <LIBRARY, SUB3>
suB4 <LIBRARY, SUB4>
SUB5 <LIBRARY, SUB5>

4.4.9 DEFAULT OBJECT Command

The DEFAULT OBJECT command specifies a synonym for the default object library. This synonym
is associated with the directory in which the object modules will be stored. The synonym
specified in this command will apply to all modules defined by subsequent ADD commands. The
following is an example of this command:

*DEFAULT OBJECT OBJLI

4-8 2250098-9701

User Commands 4.4.10

This example specifies that the directory associated with the synonym OBJLI will be the default
object library. When a node is added with an ADD command, its object module will be in a file
cataloged in the directory associated with synonym OBJLI.

Now, enter the following commands:
*DEFAULT OBJECT OBJLI
*ADD SUB1:S1B
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY, TCONFIG>

suB1 <LIBRARY, SuB1>

S1A <SRCLIB, S1A>

S1B <SRCLIB, S1B> <0BJLI, S1B>
suB2 <LIBRARY, SUB2> <0BJLiIB, SUB2>
suB3 <LIBRARY, SUB3>

SuB4 <LIBRARY, SUB4>

suBS <LIBRARY, SUB5>

Synonym ALTOBJ is the default object library synonym until the DEFAULT OBJECT command is
used. Synonym OBJLIB is the initially defined alternate object library synonym. However, you can
specify any library synonym in the command. Note that the location of the object module is not
listed in the process configuration unless the DEFAULT OBJECT or USE OBJECT command is
entered.

Now, enter the following commands:

*DELETE S1A
*DELETE S1B

4.4.10 COMPILE Command
The COMPILE command causes CONFIG to prepare a source file for compilation and specifies
the module or modules to be compiled. All source modules to be compiled are put on one file, in
the proper order for compilation. You must specify the modules to be compiled as parameters of
the command. For example, the following command causes only SUB1 to be compiled:
*COMPILE SuB1
The following command causes SUB1 and all of its descendents to be compiled:
*COMPILE SUB1 ALL

You can specify more than one module as follows:

*COMPILE SUB1, SUB2

2250098-9701 4-9

4410 User Commands

The following command specifies that the entire program is to be compiled:
*COMPILE ALL

The optional keyword NO allows you to inhibit the compilation of a module. For example, the
following command specifies that SUB1 is not to be compiled:

*NO COMPILE SuB1

You should consider several guidelines when selecting modules for recompilation. However,
since you have not compiled any modules yet, these guidelines will be discussed in a later sec-
tion. Now, enter the following commands:

*COMPILE ALL
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY, TCONFIG> 01
SuB1 <LIBRARY, SUB1> 01
sSuB2 <LIBRARY, SUB2> 01
SuB3 <LIBRARY, SUB3> 01

SuB4 <LIBRARY, SUB4> 01
SuUBS <LIBRARY, SUB5> 01

Notice that the COMPILE command has set two flags: the declaration flag (0) and the body flag (1).
When the declaration flag for a module is set, it indicates that the declaration section for that
module is to be included in the modules to be compiled. When the body flag for a module is set, it
indicates that the body of that module is to be included in the modules to be compiled. Now, enter
the following commands:

*NO COMPILE ALL
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY, TCONFIG>
SuUB1 <LIBRARY, SUB1>
SuB2 <LIBRARY, SuB2>
SuUB3 <LIBRARY, SUB3>

SuB4 <LIBRARY, SUB4>
SuB5S <LIBRARY, SUB5>

Notice that both flags have been turned off. Now enter the following commands:

*COMPILE SuB2
*DISPLAY ALL

4-10 2250098-9701

User Commands 4.4.11

The following is displayed:

TCONFIG <LIBRARY, TCONFIG> 0
suB1 <LIBRARY, SUB1>
suB2 <LIBRARY, SUB2> 01
suB3 <LIBRARY, SUB3>
suB4 <LIBRARY, SUB4>
suBS <LIBRARY, SUB5>

The declaration flags (0) for TCONFIG and SUB2 have been turned on, indicating that the decla-
ration sections are to be included in the module to be compiled. The body flag (1) for SUB2 has
also been turned on. Only the code for SUB2 needs to be included in the module to be compiled.
Now, enter the following commands:

*NO COMPILE SUB2
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY, TCONFIG>
SuB1 <LIBRARY, SUB1>
SsuB2 <LIBRARY, SUB2>
SuUB3 <LIBRARY, SUB3>

suB4 <LIBRARY, SUB4>
SuUBS <LIBRARY, SUB5>

The declaration flags and the body flag have been turned off.

4.4.11 EXIT Command
You can use the EXIT command to abort the execution of CONFIG without processing the
command stream. Now, enter the following command:

*EXIT

CONFIG terminates; no files are saved. If, on the other hand, you had wanted to save and process
the command stream you built, you would press the ENTER key instead of entering the EXIT
command.

CONFIG also uses the EXIT command in the deferred command list to terminate processing.

4.4.12 LIST Command

The LIST command causes one or more source modules specified in the current process con-
figuration to be listed in the listing file. You must specify the modules you want listed as
parameters of the command. For example, the following command lists the source for SUB1:

*LIST SuB1
The following command lists the source for SUB1 and all of its descendents:

*LIST SuB1 ALL

2250098-9701 4-11

4.412 User Commands

The following command lists the source for SUB1 and SUB2:
*LIST SuB1,SuUB2

The following command lists the entire program:
*LIST ALL

The optional keyword NO allows you to inhibit the listing of the source for a module. For example,
as a result of the following command, the source of SUB2 is not listed:

*NO LIST SuB2

Since you aborted execution of CONFIG with the EXIT command, you need to reexecute it to con-
tinue. Enter the following:

[1 XCONFIGI
The following prompts appear; the responses you should enter are shown next to the prompts:

EXECUTE CONFIGURATION PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
. OBJECT:
MEMORY: 438

Now, enter the following commands:

*USE PROCESS <LIBRARY, PROCES>
*LIST ALL

After pressing the RETURN key, press the ENTER key to process the commands. Now, enter an SF
command to look at the listing file. Enter the following:

[]1SF
The following prompts appear; respond to the prompt FILE PATHNAME as shown:

SHOW FILE
FILE PATHNAME: .(your name).CONFIG.LISTING

The file shown in Figure 4-1 now appears. A listing of all of the source modules has been added in
addition to the information usually contained in the listing file. The source modules are listed in
the order in which they appeared in the process configuration. Notice that the LIST command sets
the list flag (2), indicating that all modules are to be listed.

4-12 ’ 2250098-9701

User Commands 4.4.12

DXPSCLCP 1.7.0 81.211 TI 990 CONFIGURATION PROCESSOR 10/09/80 16:21:30
*USE PROCESS <LIBRARY, PROCES>
*LIST ALL
PROCESS NAME SOURCE LOCATION OBJECT LOCATION FLAGS SET
TCONFIG <LIBRARY ,TCONFIG > 2

SUBL <LIBRARY ,SUBl > 2

SUB2 <LIBRARY ,SUB2 > 2

SUB3 <LIBRARY ,SUB3 > 2

SUB4 <LIBRARY ,SUB4 > 2
SUB5 <LIBRARY , SUB5 > 2

INPUT = ST16
CRTFIL = ST16
OUTPUT = ,JANE.CONFIG.LISTING
COMPFILE = .COMPFI16
CPTEMP = .CPTEMPl6
OBJECT = .OBJECT16
MASTER = .MASTERl6
LIBRARY = .JANE.CONFIG.SRC
OBJLIB = .OBJLIB16
ALTOBJ = .ALTOBJ16
CONFIGURATION PROCESSOR 10/09/80 16:22:31

TCONFIG = .JANE.CONFIG.SRC(TCONFIG)

PROGRAM TCONFIG; 00000010
(***00000020
* MAIN *00000030
***) 00000040
PROCEDURE SUBl; FORWARD; 00000050
PROCEDURE SUB2; FORWARD; 00000060
PROCEDURE SUB3; FORWARD; 00000070
BEGIN (* TCONFIG *) 00000080
WRITELN(“HI! FROM TCONFIG”); _ 00000090
SUBl; SUB2; SUB3 00000100
END. (* TCONFIG *) 00000110
CONFIGURATION PROCESSOR 10/09/80 16:22:32
SUB1 = ,JANE.CONFIG.SRC(SUB1)
PROCEDURE SUBL; 00000010
(***00000020
* SUB1 *00000030
********‘***) 00000040
BEGIN WRITELN(“HI! FROM SUBl”); 00000050
SUB2 00000060
END; (* SUBl ¥*) 00000070

Figure 4-1. Listing File — Source (Sheet 1 of 2)

2250098-9701 4-13

4412 User Commands

CONFIGURATION PROCESSOR 10/09/80 16:22:32
SUB2 = .JANE.CONFIG. SRC(SUB2)
PROCEDURE SUB2; 00000010
(***00000020
* SUB2 *00000030
***)00000040
BEGIN WRITELN(“HI! FROM SUB2”); 00000050
END; (* SUB2 *) 00000060
CONFIGURATION PROCESSOR - 10/09/80 16:22:32
SUB3 = .JANE.CONFIG.SRC(SUB3)
PROCEDURE SUB3; 00000010
(***00000020
* SUB3 *00000030
***)00000040
PROCEDURE SUB5; FORWARD; 00000050
BEGIN (* SUB3 *) 00000060
WRITELN(“HI! FROM SUB3”); SUB4; 00000070
SUBS 00000080
END; (* SUB3 *) 00000090
CONFIGURATION PROCESSOR 10/09/80 16:22:33
SUB4 = ,JANE.CONFIG. SRC (SUB4)
PROCEDURE SUB4; 00000010
(***00000020
* SUB4 *00000030
***)00000040
BEGIN WRITELN(“HI! FROM SUB4”); 00000050
SUB5 00000060
END; (* SUB4 *) 00000070
CONFIGURATION PROCESSOR 10,/09/80 16:22:33
SUBS = .JANE.CONFIG.SRC (SUB5)
PROCEDURE SUBS; 00000010
(***00000020
* SUB5 *00000030
***)00000040
BEGIN WRITELN(“HI! FROM SUBS5”); 00000050
END; (* SUB5 *) 00000060

Figure 4-1. Listing File — Source (Sheet 2 of 2)

4-14 2250098-9701

User Commands 4.4.13

4.4.13 LISTDOC Command
The LISTDOC command causes the documentation section of one or more source modules
specified in the current process configuration to be listed in the listing file. You must specify the
modules as parameters of the command. For example, the following command lists the documen-
tation section for SUBT:
*LISTDOC SuB1
The following command lists the documentation for SUB1 and all of its descendents:
*LISTDOC SUB1 ALL
The following command lists the documentation for SUB1 and suB2:
*LISTDOC SuUB1,SUB2
The following command lists the documentation for the entire program:

*LISTDOC ALL

The optional keyword NO allows you to inhibit the listing of the documentation for a module. For
example, as a result of the following command, the documentation for SUB2 is not listed:

*NO LISTDOC SuB2

Since you terminated CONFIG by pressing the ENTER key, you must reexecute it to continue.
Enter the following:

[1 XCONFIGI
The following prompts appear; the responses you should enter are shown next to the prompts:

EXECUTE CONFIGURATION PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 48

Now enter the following commands:

*USE PROCESS SOURCE <LIBRARY, PROCES>
*LISTDOC ALL

After pressing the last RETURN key, press the ENTER key to process the commands. Now enter a
Show File command to look at the listing file. Enter the following:

[]SF

2250098-9701 415

4.414 User Commands

The following prompts appear; respond to the prompt FILE PATHNAME as shown:

SHOW FILE
FILE PATHNAME: (your name).CONFIG.LISTING

The file shown in Figure 4-2 is displayed. Notice that the LISTDOC command set the LISTDOC
flag (3). ’

4.4.14 LISTORDER Command
The LISTORDER command specifies the listing order for the LIST and LISTDOC commands. The
command has two options:

*LISTORDER ALPHA — Lists the source modules and documentation sections in alphabetic
order.

*LISTORDER PROCESS — Lists the source modules and documentation sections in the
order in which they appear in the process configuration.

Note that the LIST and LISTDOC commands list the source modules and documentation sections

in the order in which they appear in the current process configuration unless the LISTORDER
command is used to specify alphabetic order.

Execute CONFIG by entering the following:
[] XCONFIGI
The following prompts appear; the responses you should enter are shown next to the prompts:
EXECUTE CONFIG PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 48
Now, enter the following commands:
*USE PROCESS <LIBRARY, PROCES>
*LISTORDER ALPHA
*LIST ALL
Press the ENTER key, then enter the following to look at the listing file:
[1SF
The following prompts appear; respond to the prompt FILE PATHNAME as shown:

SHOW FILE
FILE PATHNAME: .(your name).CONFIG.LISTING

The file shown in Figure 4-3 appears.

4-16 2250098-9701

User Commands 4.4.14

DXPSCLCP 1.7.0 81.211 TI 990 CONFIGURATION PROCESSOR 10/09/80 16:29:24
*USE PROCESS SOURCE <LIBRARY, PROCES>
*LISTDOC ALL

PROCESS NAME SOURCE LOCATION OBJECT LOCATION FLAGS SET
TCONFIG <LIBRARY ,TCONFIG > 3
SUB1 <LIBRARY ,SUBl > 3
SUB2 <LIBRARY ,SUB2 > 3
SUB3 <LIBRARY ,SUB3 > 3
SUB4 <LIBRARY ,SUB4 > 3
SUB5 <LIBRARY ,SUB5 > 3
INPUT = ST16
CRTFIL = ST16
OUTPUT = ,JANE.CONFIG.LISTING
COMPFILE = .COMPFIlé6
CPTEMP = .CPTEMPl6
OBJECT = .OBJECT1é6
MASTER = .MASTER16
LIBRARY = .JANE.CONFIG.SRC
OBJLIB = ,OBJLIB16
ALTOBJ = .ALTOBJ16

TCONFIG = .JANE.CONFIG.SRC(TCONFIG)
(KRErRA IR RRRIREERKRIRE IR AR RRR R IR KRR KRR KI AR AR AR IR AR AR AKX A XXX N X XX XX*00000020

* MAIN *00000030
Khhkkhhrkhhhhhhhhhdhhhkhkhrhhhhhhkhthhkhrhhhhkhkhhhhkhhhhkkkhkhhkkkkkkkx*x*) 00000040

SUB1 = ,JANE.CONFIG.SRC(SUBl)
(Rkhhdd Rk k kR kAR AR AR AR AR AR AR AR AR RARRR AR Kk khkhkkkkh kA XXX Xx**00000020
* SUB1 *00000030

***)00000040

SUB2 = ,JANE.CONFIG.SRC(SUB2)
(***00000020
* SUB2 *00000030

***)00000040

SUB3 = ,JANE.CONFIG.SRC(SUB3)
(FRkhdkkk kR Rk kAR R AR IR KR IR AR R AR AR R AR R R IA IR KKk hh ke kkkk Rk kkkk kR ¥ **%00000020
* SUB3 *00000030

***)00000040

SUB4 = ,JANE,.CONFIG.SRC(SUB4)
(hdkkddhk ok ke k ok kR Rk kAR kR R kAR AR AR Rk k Ak d ek khkk kA kXA XX XXX X00000020
* SUB4 *00000030

***)00000040

SUB5 = .JANE.CONFIG.SRC(SUB5 |
(FHkkdkhdk kR kA kR R R AR IR ARk ARk Rk KRR AR IR KA R IR IR AR KA R IR hkkkdkkkkkkk*k%%00000020
* SUBS5 *00000030

***)00000040

Figure 4-2. Listing File — Documentation

2250098-9701 4-17

4.414 User Commands

DXPSCLCP 1.7.0 81.211 TI 990 CONFIGURATION PROCESSOR 10/09/80 16:37:18
*USE PROCESS <LIBRARY, PROCES>
*LISTORDER ALPHA

*LIST ALL
PROCESS NAME SOURCE LOCATION OBJECT LOCATION FLAGS SET
TCONFIG <LIBRARY ,TCONFIG > 2

SUBL <LIBRARY ,SUBl > 2

SUB2 <LIBRARY ,SUB2 > 2

SUB3 <LIBRARY ,SUB3 > 2

SUB4 <LIBRARY ,SUB4 > 2
SUBS <LIBRARY ,SUBS5 > 2

INPUT = ST16
CRTFIL = ST16
OUTPUT = .JANE.CONFIG.LISTING
COMPFILE = .COMPFIlé6
CPTEMP = .CPTEMP1l6
OBJECT = ,OBJECT1é6
MASTER = .MASTER16
LIBRARY = .JANE.CONFIG.SRC
OBJLIB = .OBJLIB16
ALTOBJ = .ALTOBJ16
CONFIGURATION PROCESSOR 16/09/80 16:37:48
SUB1 = .JANE.CONFIG.SRC(SUBL)
PROCEDURE SUB1; 00000010
(Rdekkkhdhkkhhh ok kk Rk Rk kAR Ak kIR KRk kR AR ARk k kR hkhhhkkkhkrkh kA khkkkkkk kX k2 ***00000020
* SUB1 *00000030
FARKAIRIRRIR AR AR R KA AR AR AR Rk kR kR AR A AR AR XK K KA K KR A KRR IR kAKX RAXKXRXXX*) 00000040
BEGIN WRITELN(“HI! FROM SUBL”); 00000050

SUB2 00000060
END; (* SUBL *) 00000070
CONFIGURATION PROCESSOR 10/09/80 16:37:49
SUB2 = .JANE.CONFIG.SRC(SUB2)
PROCEDURE SUB2; 00000010
(***00000020
* SuB2 *00000030
FAREIIRIIR KRR R ARk Ak ARk kAR kAR kKA I AR I KRR I AR IR RI KRR IR AR KXk * kX **%%) 00000040
BEGIN WRITELN(“HI! FROM SUB2"); 00000050
END; (* SUB2 *) 00000060

Figure 4-3. Listing File — Alphabetic Order (Sheet 1 of 2)

4-18 2250098-9701

User Commands 4.4.14

CONFIGURATION PROCESSOR 10/09/80 16:37:49
SUB3 = .JANE.CONFIG.SRC (SUB3)
PROCEDURE SUB3; 00000010
(*******#***00000020
* SUB3 *00000030
********ﬁ**)00000040
PROCEDURE SUB5; FORWARD; 00000050
BEGIN (* SUB3 *) 00000060
WRITELN(”HI! FROM SUB3”); SUB4; 00000070
SUB5 00000080
END; : (* SUB3 *) 00000090
CONFIGURATION PROCESSOR 10,/09/80 16:37:49
SUB4 = ,JANE.CONFIG.SRC (SUB4)
PROCEDURE SUB4; 00000010
(***00000020
* SUB4 *00000030
***)00000040
BEGIN WRITELN(“HI! FROM SUB4~); 00000050
SUB5 00000060
END; (* SUB4 *) 00000070
CONFIGURATION PROCESSOR 10/09/80 16:37:50
SUB5 = .JANE.CONFIG.SRC (SUB5)
PROCEDURE SUB5; 00000010
(***00000020
* SUBS *00000030
***)00000040
BEGIN WRITELN(”HI! FROM SUB5”); 00000050
END; (* SUBS *) 00000060
CONFIGURATION PROCESSOR 10/09/80 16:37:50
TCONFIG = .JANE.CONFIG.SRC(TCONFIG)
PROGRAM TCONFIG; 00000010
(***00000020
* MAIN *00000030
***)00000040
PROCEDURE SUBl; FORWARD; 00000050
PROCEDURE SUB2; FORWARD; 00000060
PROCEDURE SUB3; FORWARD; 00000070
BEGIN (* TCONFIG *) 00000080
WRITELN(“HI! FROM TCONFIG”); 00000090
SUBl; SUB2; SUB3 00000100
END. (* TCONFIG *) 00000110

Figure 4-3. Listing File — Alphabetic Order (Sheet 2 of 2)

2250098-9701 4-19

4.4.15 User Commands

4.4.15 CAT PROCESS Command

The CAT PROCESS command causes the current process configuration to be stored (cataloged)
at a specified location. You specify the location as a parameter of the command if it is not
specified in a BUILD PROCESS command. For example, the following command stores the cur-
rent process in the PROCES in the directory associated with the synonym LIBRARY:

*CAT PROCESS <LIBRARY, PROCES>
Execute CONFIG by entering the following:
[1 XCONFIGI
The following prompts appear; the responses you should enter are shown next to the prompts:
EXECUTE CONFIG PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 48

Enter the following commands:

*USE PROCESS <LIBRARY, PROCES>
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY ,TCONFIG>
suB1 <LIBRARY ,SUB1>
suB2 <LIBRARY ,SuB2>
SuB3 <LIBRARY ,SUB3>

SuB4 <LIBRARY ,SUB4>
SuB5 <LIBRARY ,SUB5>

You are going to use this process, modify it, and then store it in a new location. Enter the following
commands:

*ADD SUB2:SUB2A
*CAT PROCESS <LIBRARY, PROCS2>

The new process, which includes SUB2A, is stored in a file called PROCS2 in the directory as-
signed synonym LIBRARY.

Now you will use this new process. Enter the following commands:

*USE PROCESS <LIBRARY, PROCS2>
*DISPLAY ALL

4-20 2250098-9701

User Commands 4.4.16

The following is displayed:

TCONFIG <LIBRARY ,TCONFIG>
SuBt1 <LIBRARY ,SUB1>
suB2 <LIBRARY ,SUB2>

SUB2A <LIBRARY ,SUB2A>
SuB3 <LIBRARY ,SUB3>

SuB4 <LIBRARY ,SUB4>

SuB5 <LIBRARY ,SUB5>

The original process, PROCES, is still in the directory unmodified. Enter the following commands:

*USE PROCESS <LIBRARY, PROCES>
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY ,TCONFIG>
sSuB1 <LIBRARY ,SUB1>
suB2 <LIBRARY ,SUB2>
suB3 <LIBRARY ,SUB3>

SuB4 <LIBRARY ,SUB4>
SuB5 <LIBRARY ,SUB5>

4.4.16 BUILD PROCESS Command

Until now, you have been using an existing process configuration that was originally built by
SPLITPGM. However, you can create a new process with the BUILD PROCESS command, which
initializes the building of a process configuration. Specify the location in which your new process
is to be stored as a parameter of this command (or specify the location in a CAT PROCESS com-
mand). For example, the following command initializes the building of a process that will be
stored in a file called NPROCS in the directory associated with the synonym LIBRARY:

*BUILD PROCESS <LIBRARY, NPROCS>

In the following exercise, you will build a process configuration for the following program

structure:
/—MAIN—\

SUBR1 SUBR2
\

/

SUBR1A SUBR1B SUBR2A SUBR2B

2250098-9701 4-21

4.416 User Commands

Now, enter the following commands:

*BUILD PROCESS <LIBRARY, NPROCS>

*ADD MAIN (this command specifies MAIN as the root node or main program)
*ADD MAIN:SUBR1

*ADD SUBR1:SUBR1A

*ADD SUBR1:SUBR1B

*ADD MAIN:SUBR2

*ADD SUBR2:SUBR2A

*ADD SUBR2:SUBR2B

*CAT PROCESS

*DISPLAY ALL

The following is displayed:

MAIN <LIBRARY ,MAIN>
SUBR1 <LIBRARY ,SUBR1>
SUBR1A <LIBRARY ,SUBR1A>
SUBR1B <LIBRARY ,SUBR1B>
SUBR2 <LIBRARY ,SUBR2>
SUBR2A <LIBRARY ,SUBR2A>
SUBR2B <LIBRARY ,SUBR2B>

Press the ENTER key to process the command and terminate CONFIG.

Three separate process configurations should now be stored in the directory that has been as-
signed the synonym LIBRARY, as follows:

PROCES — Created by the SPLITPGM utility
PROCS2 — Created by modifying PROCES
NPROCS — Created using the BUILD PROCESS command

Enter a List Directory (LD) command to ensure that these files exist in the directory associated
with synonym LIBRARY, as follows:

[1LD
The following prompts appear; respond to the prompt PATHNAME as shown:
LIST DIRECTORY

PATHNAME: LIBRARY
LISTING ACCESS NAME:

4-22 2250098-9701

User Commands 4.4.17

The following files should be listed:

MAIN
NMAIN
NPROCS
PROCES
PROCS2
SuB1
SuB2
suB3
sSuUB4
SuB5
TCONFI

The remaining paragraphs in this section discuss the library and flag commands. It is not
necessary for you to read these paragraphs in order to compiete the remaining exercises in this
manual. However, you may wish to read them to become familiar with the library and flag com-
mands; if not, proceed to Section 5.

4.4.17 Library Commands

The following paragraphs discuss the commands associated with the library synonyms. A library
is identified to CONFIG by using a library synonym. The value of this synonym is the pathname of
a library file. To assign a synonym, either use the Assign Synonym (AS) command prior to exe-
cuting CONFIG (as you did with the synonym LIBRARY) or use the SETLIB command while
executing CONFIG.

CONFIG initially defines the following library synonyms:

. MASTER — Intended for source modules of tested (fully developed) programs

° OBJLIB — Intended for object modules corresponding to source modules in MASTER

* LIBRARY — Intended for source modules of programs under development

e ALTOBJ — Intended for object modules corresponding to source modules in LIBRARY
The default source library synonym, LIBRARY, is the logical default because it is intended for pro-
grams under development. Similarly, the default object library synonym, ALTOBJ, is appropriate
because it is intended for object modules corresponding to the source modules in LIBRARY. You
can change either default value using the DEFAULT SOURCE or DEFAULT OBJECT commands.
CONFIG maintains a library table in the process configuration. The first four entries in the table
are the initially defined library synonyms MASTER, LIBRARY, OBJLIB, and ALTOBJ. When you
enter a library synonym in any of the commands that may include a library synonym parameter, the
synonym is added to the library table (unless it already appears in the table). The commands are

BUILD PROCESS, CAT PROCESS, USE PROCESS, ADD, USE, USE OBJECT, DEFAULT SOURCE,
DEFAULT OBJECT, and EDIT.

2250098-9701 4-23

4.4.17.1 User Commands

You can substitute other synonyms for the initially defined library synonyms. The MASTER com-
mand specifies a library synonym to replace MASTER. Similarly, the LIBRARY, OBJLIB, and
ALTOBJ commands specify library synonyms to replace LIBRARY, OBJLIB, and ALTOBJ,
respectively.

The following paragraphs that discuss the library commands do not require you to enter any
commands on the terminal.

4.4.17.1 SETLIB Command. The SETLIB command defines a library synonym and assigns a value
to the synonym. Instead of using the AS command before executing CONFIG, you can use SETLIB
while executing CONFIG interactively to assign a library synonym such as LIBRARY or ALTOBJ.
For example, the following command assigns the value of .JANE.CONFIG.SRC to the synonym
SRCLIB:

*SETLIB SRCLIB .JANE.CONFIG.SRC

4.4.17.2 MASTER Command. The MASTER command specifies a library synonym to replace the
initially defined synonym MASTER as the first entry in the library table. When you use the
MASTER command, it should precede the ADD commands that define the nodes of the process
configuration.

For example, the following command replaces the synonym MASTER with synonym SRCLIB1 as
the first entry in the library table:

*MASTER SRCLIB1

4.4.17.3 LIBRARY Command. The LIBRARY command specifies a library synonym to replace the
initially defined synonym LIBRARY as the second entry in the library table. When you use the
LIBRARY command, it should precede the ADD commands that define the process configuration.

For example, the following command replaces the synonym LIBRARY with synonym SRCLIB2 as
the second entry in the library table:

*LIBRARY SRCLIB2
4.4.17.4 OBJLIB Command. The OBJLIB command specifies a library synonym to replace the ini-
tially defined synonym OBJLIB as the third entry in the library table. When the OBJLIB command
is used, it should precede the ADD commands that define the process configuration.

For example, the following command replaces the synonym OBJLIB with synonym OTHLIB as the
third entry in the library table:

*OBJLIB OTHLIB
4.4.17.5 ALTOBJ Command. The ALTOBJ command specifies a library synonym to replace the

initially defined synonym ALTOBJ as the fourth entry in the library table. When the ALTOBJ com.-
mand is used, it should precede the ADD commands that define the process configuration.

4-24 2250098-9701

User Commands 4.4.18

For example, the following command replaces the synonym ALTOBJ with synonym OTHLIB2 as
the fourth entry in the library table:

*ALTOBJ OTHLIB2

4.4.18 Flag Commands

The following paragraphs discuss the commands associated with the various flags. The process
configuration contains a set of flags for each node; these flags control the processing of the
nodes. Each flag is either on or off. Flags are turned on or off by commands.

When all commands have been processed, the states of all flags resulting from processing the
commands are passed to the deferred processing run of CONFIG in the external representation of
the process configuration that follows the USE PROCESS # command in the deferred command
list.

The two categories of flags are system flags and user flags. System flags are predefined and are
set to an initial state when a process configuration is built or accessed. The states of system flags
are not stored when the process configuration is stored. Table 4-2 lists and explains the system
flags.

Table 4-2. System Flags

Flag Flag Initial
Number . Name Description Value
0 Declaration Set when declarations of this module are Off

required in the source file.

1 Body Set when statements of this module are Off
required in the source file.

2 List Set when the source module is to be Off
listed.
3 Listdoc Set when the documentation section' of Off

this module is to be listed.

4 Changed Set when contents of a source module are Off
changed by an edit operation.

5 Nest Cannot be set or cleared by the user. Off

6 Split Set when the object module is to be On
written as a member of library OBJLIB or
ALTOBJ.

7 Collect Set when the object module is to be Off

written on the file specified for the
OBJECT prompt.

8 Check Set when the IDT of the module is to be On
compared to the name of the node.

2250098-9701 4-25

4.4.18.1 User Commands

You should already be acquainted with the first four flags listed in Table 4-2.

The COMPILE command turns the declaration flag on for each module for which the declarations
are required in the source file being written. The command turns on both the declaration and body
flags for modules being compiled. Similarly, the NO COMPILE command turns off the declaration
and body flags.

The LIST command turns on the list flag for modules to be listed, and the NO LIST command turns
the list flag off for the specified module or modules. Similarly, the LISTDOC command turns on
the listdoc flag and the NO LISTDOC command turns the listdoc flag off.

The remaining system flags are discussed in the following paragraphs and in the T/ Pascal User’s
Manual and the T/ Pascal Programmer’s Guide.

You can define up to 21 user flags with the SETFLAG command. User flags are turned on and off
by the flag command. The states of user flags are stored when the process configuration is stored.
You can use the user flags to mark routines that have something in common.

4.4.18.1 SETFLAG Command. The SETFLAG command defines or deletes a user flag. You must
specify the flag name and description as parameters of the command. The flag name consists of
from one to eight characters and cannot be a keyword of CONFIG. The flag description is a string
of up to 64 characters that describes the flag. The flag description begins with the first nonblank
character following the flag name and extends to the first asterisk (*), normally the asterisk that
begins the next command. The flag description may contain blanks and serves as a comment to
identify the flag. When the flag description is omitted, the definition of that flag is deleted, and the
flag is turned off in all nodes in the program.

For example, the following command defines flag NEW, which may now be used to mark new
subroutines:

*SETFLAG NEW NEW SUBROUTINE
4.4.18.2 Flag Command. The flag command turns certain system flags and all user flags on or
off. For example, the following command turns on the collect flag for SUB1 and causes CONFIG to
include a collect object in the deferred command list following the SPLIT OBJECT command:

*COLLECT suB1

The deferred processing run of CONFIG writes the modules for which the collect flag is on in the
object file. The object file can then be specified in an INCLUDE command to the Linkage Editor.

As another example, the following command turns off the split flags for all modules; conse-
quently, the deferred processing run of CONFIG will not catalog the object modules:

*NO SPLIT ALL

4-26 2250098-9701

User Commands 4.4.18.3

4.4.18.3 Conditional Flag Command. The Conditional Flag command allows you to turn the
system flags on or off selectively. For example, the following command causes modules marked
with the flag NEW to be compiled:

*IF NEW THEN COMPILE

In the following exercise, you will create and set a user-defined flag. Enter the following
command:

[1 XCONFIGI
The following prompts appear; the responses you should enter are shown next to the prompts:

EXECUTE CONFIG PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 4,8

Now, enter the following commands:

*USE PROCESS <LIBRARY, PROCES>
*SETFLAG NEW NEW SUBROUTINE
*NEW SUB1

*NEW SuB2

*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY ,TCONFIG>
SuUB1 <LIBRARY ,SUB1> 9
- SuB2 <LIBRARY ,SuB2> 9
SuB3 <LIBRARY ,SUB3>
sSuB4 <LIBRARY ,SUB4>
SuBS <LIBRARY ,SUB5>

Notice that flags marking SUB1 and SUB2 are included.
Now, enter the following commands:

*IF NEW THEN COMPILE
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY ,TCONFIG> 0
SuBt1 <LIBRARY ,SUB1> 019
SuB2 <LIBRARY ,SUB2> 019
SuB3 <LIBRARY ,SUB3>

SuB4 <LIBRARY ,SUB4>
SuBs <LIBRARY ,SUB5>

2250098-9701 4-27

4.4.18.3 User Commands

Notice that the body flag (1) has been set for SUB1 and SUB2 as well as the declaration flag (0) for
TCONFIG, SUB1, and SUB2.

Now, enter the following command:
*EXIT
This command terminates CONFIG without any processing.

You have now completed Section 4. Now that you are familiar with the user commands, you are
ready to prepare your program for compilation. Proceed to Section 5.

4-28 2250098-9701

S

Preparing the Entire
Program for Compilation

5.1 GENERAL

In this section, you will prepare the source code for compilation. First, you will execute CONFIG
interactively. Next, you will assign a synonym for the object library and specify the process con-
figuration you wish to use. After adding a couple of commands to the current process, you will
process the commands. Then, you will look at the listing file and two other files prepared by
CONFIG. One file contains a copy of the process configuration and a list of deferred commands.
CONFIG uses these commands in the next run (after compilation). The other file contains the
prepared source, which is ready to be compiied.

5.2 PROCEDURE
Prepare your source for compilation by performing the following steps:
1. Execute CONFIG interactively. Enter the foliowing:

[1 XCONFIGI
EXECUTE CONFIG PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 48

Since no file name was entered in response to the prompt SOURCE, CONFIG will store
the prepared source in a file called .COMPFInn (where nn is the station number of your
terminal).

2. Enter the following command:
*SETLIB ALTOBJ .(your name).CONFIG.OBJ
This command assigns the synonym ALTOBJ to the directory in which the object
modules will be stored. This could have been done using the Assign Synonym (AS)
command before executing CONFIG. (The pathname of the object directory cannot con-
tain a synonym.)
3. Enter the following commands:
*USE PROCESS <LIBRARY, PROCES>

*COMPILE ALL
*COLLECT ALL

2250098-9701 5-1

5.2 Preparing the Entire Program for Compilation

The COLLECT ALL command turns on the coliect flag for all source modules and
causes CONFIG to include a COLLECT OBJECT command in the deferred command
list.
4. Now display the current process configuration. Enter the following:
*DISPLAY ALL

The following should appear:

TCONFIG ‘ <LIBRARY ,TCONFIG> 017
SuUB1 <LIBRARY ,SuUB1> 017
SuB2 <LIBRARY ,SuB2> 017
SUB3 <LIBRARY ,SUB3> 017

SuB4 <LIBRARY ,SuB4> 017
SuB5S <LIBRARY ,SUB5> 017

Notice that the declaration flag (0), the body fiag (1), and the collect flag (7) have been set
for all modules.

5. Press the ENTER key to process the commands.
6. Look at the listing file. Enter the following:

[1SF
SHOW FILE
FILE PATHNAME: .(your name).CONFIG.LISTING

The listing file shown in Figure 5-1 appears. Notice that the declaration flag, the body
flag, and the collect flag have been set for all modules. Also, the library synonym
ALTOBJ has been assigned a directory pathname.

7. Now look at the file containing the process configuration and the deferred command
list. The file is named .CPTEMPnn (where nn is the station number of your terminal).
Enter the following:

[]SF

SHOW FILE
FILE PATHNAME: .CPTEMPnn

5-2 2250098-9701

Preparing the Entire Program for Compilation 5.2

TI 990 CONFIGURATION PROCESSOR. 10/09/80 16:45:42

DXPSCLCP 1.7.0 81l.211

*SETLIB ALTOBJ .JANE.CONFIG.OBJ

*USE PROCESS <LIBRARY, PROCES>

*COMPILE ALL

*COLLECT ALL

*DISPLAY ALL

PROCESS NAME SOURCE LOCATION

TCONFIG <LIBRARY ,TCONFIG >
SUB1 <LIBRARY ,SUBl >
SUB2 <LIBRARY ,SUB2 >
SUB3 <LIBRARY ,SUB3 >

SUB4 <LIBRARY ,SUB4 >
SUB5 <LIBRARY ,SUBS >

INPUT = ST16

CRTFIL = ST16

OUTPUT = .JANE.CONFIG.LISTING

COMPFILE = .COMPFI1é6

CPTEMP = .CPTEMPl6

OBJECT = .OBJECT16

MASTER = .MASTER16

LIBRARY = .JANE.CONFIG.SRC

OBJLIB = .OBJLIB16

ALTOBJ = .JANE.CONFIG.OBJ

Figure 5-1.

OBJECT LOCATION FLAGS SET
017
017
017
017
017
017

Listing File

The file listed in Figure 5-2 appéars. The USE PROCESS # command that appears at the
beginning of the file is different from the USE PROCESS user command. The former
specifies that the process that immediately follows is to be used.

The deferred commands (SPLIT OBJECT, COLLECT OBJECT, and EXIT) are used on the
next run of CONFIG (after compilation). The SPLIT OBJECT command causes CONFIG
to split the object code into object modules and catalog them in the directory that has

been assigned synonym ALTOBJ.

2250098-9701

5.2 Preparing the Entire Program for Compilation

*USE PROCESS #
VERSION1 00 10/09/80 00 16:47:44 0006 0000 0000 0000 0000 00 00 00 00

02 PROCESS 00 0001 0001 0000 0001 0000 C3 80 00 00
TCONFIG 02 TCONFIG 00 0002 0000 0000 0002 0000 43 80 00 00
SUB1 02 SuBl 00 0000 0003 0001 0000 0003 43 80 00 00
SUB2 02 SuB2 0o 0000 0004 0001 0000 0004 43 80 00 00
SUB3 02 suB3 00 0000 0005 0001 0005 0000 43 80 00 00
SUB4 02 suB4 00 0000 0006 0004 0000 0006 43 80 00 00
SUB5 02 SUBS 00 0000 0000 0004 0000 0000 43 80 00 00

LIBTBL 00 00000000 00 00000000 0004 0000 0000 0000 0000 0O 00 00 00
MASTER 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 0C 00 00
LIBRARY 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 GO 00 00
OBJLIB 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 00 00 00
ALTOBJ 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 00 00 0O
FLAGTBL 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 00 00 00

*SPLIT OBJECT
*COLLECT OBJECT
*EXIT

Figure 5-2. Prepared Process File

The COLLECT OBJECT command causes CONFIG to collect the object modules for
which the collect flag has been set and store them in the object file. This object file is
then specified to the Linkage Editor.

The EXIT command terminates CONFIG.

8. Now look at the prepared source file .COMPFInn (where nn is the station number of your
terminal). Enter the following:

[1SF
SHOW FILE
FILE PATHNAME: .COMPFInn
The file listed in Figure 5-3 appears. This file is now ready to be compiled.

You are finished preparing your source file. Now you are ready to compile, link, and execute your
program. Proceed to Section 6.

5-4 2250098-9701

Preparing the Entire Program for Compilation 5.2

(*+ TCONFIG
+ SUB1
’ SUB2
' SUB3
+ SUB4
’ SUBS
- — - *) .

PROGRAM TCONFIG; 00000010

(***00000020

* MAIN *00000030

***)00000040

PROCEDURE SUBLl; FORWARD; 00000050

PROCEDURE SUB2; FORWARD; 00000060

PROCEDURE SUB3; FORWARD; 00000070

(*+ *)

PROCEDURE SUB1; 00000010

(***00000020

* SUBL *00000030

***)00000040

BEGIN WRITELN(“HI! FROM SUBL”) ; 00000050
SUB2 00000060

END; , (* SUB1l *) 00000070

(*, *)

PROCEDURE SUB2; 00000010

(***00000020

* SUB2 *00000030

***)00000040

BEGIN WRITELN(“HI! FROM SUB2”) ; 00000050

END; (* SUB2 *) 00000060

(*, *)

PROCEDURE SUB3; 00000010

(***00000020

* SUB3 *00000030

***)00000040

PROCEDURE SUB5; FORWARD; 00000050

(*+ *)

PROCEDURE SUB4; 00000010

(***00000020

* SUB4 *00000030

***)00000040

BEGIN WRITELN(“HI! FROM SUB47); 00000050
SUBS 00000060

END; (* SUB4 *) 00000070

(*, *)

PROCEDURE SUBS5; 00000010

(***00000020

* SUBS *00000030

***)00000040

BEGIN WRITELN(“HI! FROM SUB5”); 00000050

END; (* SUBS5 *) 00000060

(*_ *)

BEGIN (* SUB3 *) 00000060
WRITELN(“HI! FROM SUB3°); SUB4; 00000070
SUBS 00000080

END; (* SUB3 *) 00000090

(*= *)

BEGIN (* TCONFIG *) 00000080
WRITELN(“HI! FROM TCONFIG”); 00000090
SUBl; SUB2; SUB3 00000100

END. (* TCONFIG *) 00000110

Figure 5-3. Prepared Source File

2250098-9701 5-5/5-6

6

Compiling, Linking, and
Executing the Program

6.1 GENERAL

In this section you will compile, link, and execute the entire example program. First, you will
-execute the TIP compiler to compile the source file and look at the message file to check for com-
pilation errors. Next, you will execute CONFIG for the deferred command run and check the object
library to ensure that all object modules have been cataloged. After creating a link control file and
program file, you will execute the Linkage Editor. Finally, you will execute your program.

6.2 PROCEDURE
Perform each step in the following procedure:
1. Execute the TIP compiler. Enter the following:

[1XTIP
EXECUTE Tl PASCAL COMPILER <VERSION: X.X.X YYDDD>
SOURCE: .COMPFInn
OBJECT:
LISTING: .(your name).CONFIG.LISTING
MESSAGES: .(your name).CONFIG.MSSG
OPTIONS:
MEM1:
MEM2:
MEM3:

Respond to the prompt SOURCE by entering the name of the prepared source file that
CONFIG produces. Recall that CONFIG stored the prepared source in file .COMPFinn
(where nn is the station number of your terminal).
You may specify a file for the prompt OBJECT. However, if you do not specify one, the
object code will be stored in file . OBJECTnn (where nn is the station number of your
terminal).
2. Now, look at the message file produced by the compiler.

Enter the following:

[1SF

SHOW FILE
FILE PATHNAME: .(your name).CONFIG.MSSG

2250098-9701 6-1

6.2 Compiling, Linking, and Executing the Program

If the compiler executed with no errors, you are ready to proceed to step 3. If you had
errors, perform the following steps:

a. Look at the compiler listing file .(your name) CONFIG.LISTING to determine the
cause of the errors.

b. Correct the individual source modules stored in the source directory assigned
synonym LIBRARY. Do not correct the source file that CONFIG prepared
{.COMPFInn).

c. Repeat the procedure listed in Section 5 and repeat steps 1 and 2 of this section.

3. Execute CONFIG in the background (batch) mode to process the deferred commands. In
this run, CONFIG uses the deferred command list written during its last execution.
Recall that commands were stored on file .CPTEMPnn. The deferred commands cause
CONFIG to perform the following:

a. Split the object code into separate modules and store them in the directory you
assigned synonym ALTOBJ.

b. Collect the modules and store them in object file .OBJECTnn. You will specify this
object file to the Linkage Editor. This saves you the trouble of writing a separate
INCLUDE statement in the link control file for each object module.

Enter the following:

[] XCONFIG
EXECUTE CONFIG PROCESSOR <VERSION: X.X.X YYDDD>
COMMANDS: .CPTEMPnn
CRT FILE: DUMY
LISTING: .(your name).CONFIG.LISTING
MESSAGES: .(your name).CONFIG.MSSG
MODE: BACKGROUND
SOURCE:
OBJECT: .OBJECTnn
MEMORY:

4. Look at the object library to ensure that object modules have been cataloged in the
directory assigned synonym ALTOBJ. Enter the following:

[1LD
LIST DIRECTORY

PATHNAME: .(your name).CONFIG.OBJ
LISTING ACCESS NAME:

2250098-9701

The following should appear:

DIRECTORY LISTING OF:
MAX # OF ENTRIES: 11

FILE
SUBl
SUB2
SUB3
SUB4
SUB5
TCONFI

ALIAS OF RECO
*

* ¥ * *

*

.JANE.CONFIG.OBJ

Compiling, Linking, and Executing the Program 6.2

4 OF ENTRIES AVAILABLE: 5

8

@ 0 \©

13

RDS

LAST UPDAT FMT TYPE BLK PROTECT
10/09/80 16:56:36 BS N SEQ YES
10/09/80 16:56:37 BS N SEQ YES
10/09/80 16:56:40 BS N SEQ YES
10/09/80 16:56:38 BS N SEQ YES
10/09/80 16:56:39 BS N SEQ YES
10/09/80 16:56:42 BS N SEQ YES

16:57:40 THURSDAY, OCT 09, 1980.

5. Create a link control file using the Text Editor. Enter the following in the edit file:

NOSYMT

LIBRARY .TIP.OBJ
FORMAT IMAGE, REPLACE, 3

TASK MAIN
INCLUDE (MAIN)

INCLUDE .OBJECTnn

END

Recall that the COLLECT OBJECT command in the deferred command list caused the
object modules to be collected on file .OBJECTNN.

Store this link control file under the pathname .(your name).CONFIG.LC.

6. Execute the Linkage Editor. Enter the following:

[] XLE

EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME:

LINKED OUTPUT ACCESS NAME:

LISTING ACCESS NAME:
PRINT WIDTH:

{your name).CONFIG.LC

{your name).CONFIG.PROG
your name).CONFIG.LINKLIST
80

If the Linkage Editor executed with no errors and no warnings, you are ready to proceed
to step 7. If not, determine the cause of the error and relink.

2250098-9701

6.2 Compiling, Linking, and Executing the Program

7. Execute your program. Enter the following:

[1XPT
EXECUTE Ti PASCAL TASK
PROGRAM FILE: .(your name).CONFIG.PROG
TASK NAME OR ID: MAIN
INPUT:
OUTPUT: LPO1
MESSAGES: .(your name).CONFIG.MSSG
MODE (F,B,D): FOREGROUND
MEMORY:

8. Enter a Show File (SF) command to look at your output. It should appear as follows:

HI! FROM TCONFIG
HI! FROM SUBL
HI! FROM SUB2
HI! FROM SUB2
HI! FROM SUB3
HI! FROM SUB4
HI! FROM SUB5
HI! FROM SUB5

9. You can print the file if you wish, using the Print File (PF) command.

Now that you have successfully compiled, linked, and executed your program, you are ready to
recompile a routine separately. Proceed to Section 7.

6-4 2250098-9701

7

Recompiling a Routine Separately

7.1 GENERAL

In this section, you will modify the source code of one of the routines in your example program
and recompile that routine only. First, you will modify the source module of a routine by using the
Text Editor. Next, you will execute CONFIG to prepare that module for compilation. Next, you will
execute the compiler and look at the message file. Then, you will execute CONFIG for the deferred
command run. Finally, you will link and execute your program.

Keep in mind the following guidelines when selecting modules for recompilation:

e When a statement within the compound statement of a program or routine is changed,
recompile the module that contains the program or routine.

e When a declaration of a program is changed (global declaration), recompile the entire
program.

e When a declaration of a routine is changed, recompile the module that contains the
declaration and the modules of all nodes that are descendents of the node containing
the declaration.

7.2 PROCEDURE
Perform each step in the following procedure:

1. Modify SUB1. Recall that the source modules are stored in the directory assigned
synonym LIBRARY. Use the Text Editor to modify module SUB1 as follows:

PROCEDURE SUBT;
BEGIN WRITELN (‘HI! FROM SUBT?’);
SUB2;
SUB3
END;

2. Execute CONFIG interactively to prepare SUB1 for compilation. Enter the following:

[] XCONFIGI
EXECUTE CONFIG PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 48

2250098-9701 71

7.2 Recompiling a Routine Separately

Now, enter the following commands:

*USE PROCESS <LIBRARY, PROCES>
*SETLIB ALTOBJ .(your name).CONFIG.OBJ
*COMPILE SUB1

*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY ,TCONFIG> 0
suB1 <LIBRARY ,SUB1> 01
SuB2 <LIBRARY ,SUB2>
SuUB3 <LIBRARY ,SUB3>

SuB4 <LIBRARY ,SUB4>
SuUBS <LIBRARY ,SUB5>

Notice that the compile flag has been set for SUB1; only SUB1 will be recompiled.
Add the following command:
*COLLECT ALL

This command causes the object modules to be collected on an object file during the
next run of CONFIG.

Now, press the ENTER key to process the commands.
Execute the TIP compiler. Enter the following:

[1XTIP
EXECUTE TI PASCAL COMPILER <VERSION: X.X.X YYDDD>
SOURCE: .COMPFInn
OBJECT:
LISTING: .(your name).CONFIG.LISTING
MESSAGES: .(your name).CONFIG.MSSG
OPTIONS:
MEM1:
MEM2:
MEMB3:

Recall that CONFIG stores the source file in file .CONFInn (where nn is the station
number of your terminal). Since no file is specified for the OBJECT: prompt, the object
code will be stored in file . OBJECTnn.

4. Now look at the message file. Enter the following:

[1SF
SHOW FILE
FILE PATHNAME: .(your name).CONFIG.MSSG

2250098-9701

Recompiling a Routine Separately 7.2

If the compiler executed with no errors, proceed to step 5. Otherwise, determine the
cause of the error from the compiler listing file and repeat steps 1 through 4.

Execute CONFIG in batch mode to process the deferred commands. During this run,
CONFIG performs the following:

a. Stores the object code for SUB1 in the object library (assigned synonym ALTOBJ)
b. Collects all object modules and stores them on the object file (OBJECTnn)
Enter the following:

[]1 XCONFIG
EXECUTE CONFIG PROCESSOR <VERSION: X.X.X YYDDD>
COMMANDS: .CPTEMPnn
CRT FILE: DUMY
LISTING: .(your name).CONFIG.LISTING
MESSAGES: ME
MODE: FOREGROUND

SOURCE:
OBJECT: .OBJECTnn
MEMORY: 48

Respond to the prompt COMMANDS by entering the file containing the deferred
command list. Recall that during the last run of CONFIG, the deferred commands were
stored in file .CPTEMPnn (where nn is the station number of your terminal).

At this point, the object code for SUB1 has been stored in the object library and all
object modules have been collected and stored on the object file.

Execute the Linkage Editor. Since all object modules have been collected and stored on
the object file, use the link control file that was created in Section 6. The file should still
be stored under the pathname .(your name).CONFIG.LC. You will also use the program
file created in Section 6. The program file should be stored under the pathname
.(your name).CONFIG.PROG. Enter the following: '

[] XLE
EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME: .(your name).CONFIG.LC
LINKED OUTPUT ACCESS NAME: .(your name).CONFIG.PROG
LISTING ACCESS NAME: .(your name).CONFIG.LINKLIST
PRINT WIDTH: 80

If the Linkage Editor executed with no errors and no warnings, proceed to step 7. Other-
wise, determine the cause of the errors and relink.

2250098-9701 7-3

7.2 Recompiling a Routine Separately

7. Execute your program. Enter the following:

[1XPT

EXECUTE Tl PASCAL TASK
(your name).CONFIG.PROG

PROGRAM FILE:
TASK NAME OR ID:
INPUT:

OUTPUT:
MESSAGES:
MODE:

MEMORY:

MAIN

(your name).CONFIG.OUT
.(your name).CONFIG.MSSG
FOREGROUND

8. Enter a Show File (SF) command to look at your output. It should appear as follows:

HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM

TCONFIG
SUBL
SUB2
SUB3
SUB4
SUB5
SUBS
SUB2
SUB3
SUB4
SUB5
SUB5S

Congratulations, you have now completed the tutorial on the TIP configuration processor.

2250098-9701

Alphabetical Index

Introduction

HOW TO USE INDEX

The index, table of contents, list of illustrations, and list of tables are used in conjunction to ob-
tain the location of the desired subject. Once the subject or topic has been located in the index,
use the appropriate paragraph number, figure number, or table number to obtain the corre-
sponding page number from the table of contents, list of illustrations, or list of tables.

INDEX ENTRIES

The following index lists key words and concepts from the subject material of the manual together
with the area(s) in the manual that supply major coverage of the listed concept. The numbers along
the right side of the listing reference the following manual areas:

Sections — Reference to Sections of the manual appear as “Sections x”’ with the sym-
bol x representing any numeric quantity.

Appendixes — Reference to Appendixes of the manual appear as “Appendix y” with the
symbol y representing any capital letter.

Paragraphs — Reference to paragraphs of the manual appear as a series of
alphanumeric or numeric characters punctuated with decimal points. Only the first
character of the string may be a letter; all subsequent characters are numbers. The first
character refers to the section or appendix of the manual in which the paragraph may be
found.

Tables — References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number.

Tx-yy

Figures — References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number.

Fx-yy

Other entries in the Index — References to other entries in the index preceded by the
word “See” followed by the referenced entry. :

2250098-9701 Index-1

Index

ADDCommand 443
ALTOBJ Command 4.417.5,5.2
ASCommand 23
Assign Synonym (AS) Command 23
BUILD PROCESS Command 4.4.16
CAT PROCESSCommand 4.4.15
Code:
Format,Source..................... 2.2
PreparingSource Section 2
Procedure 2.3
Command:
ADD 4.4.3
ALTOBJ 4.4.17.5,5.2
Assign S nonym(AS) 2.3
BUILDPROCESS................. 4.4.16
CATPROCESS 4.4.15
COMPILE.................... 4.410,5.2
Conditional Flag................ 4.4.18.3
DEFAULT:
OBJECTcoviiinnn.. 449
SOURCE....................... 4.4.8
DELETEcoouut. 445
DISPLAY ciiiiiin... 4.4.2
Execute:
Linkage Editor (XLE) 6.2,7.2
NESTER(XNESTER) 2.3
Pascal Task (XPT) 2.3,6.2,7.2
Tl Pascal Compller(XTIP) 6.2,7.2
EXIT .. 4.4.11
Flagcoviiii i 4.4.18.2
LIBRARY 4.417.3
LIST ... 4.4.12
List Directory(LD) 2.3,4.4.16,6.2
LISTDOC 4.4.13
ListingFile F3-2
LISTORDER..................... 4.4.14
MASTER 4.4.17.2
MOVE i, 4.4.4
OBJECT..............c.ovoe.t. 4.417.4
SETFLAG 4.4.18.1
SETLIB 4.4.17.1,5.2
Show File(SF) 2.3,3.2,4.4.12,5.2,6.2
USE. 447
OBJECT ..., 446
PROCESS...................... 4.4.1
XCONFIG 3.2,6.2,7.2
XCONFIGI 424414441552 7.2
Commands Sectio n 4, T4-1
Flag............ooiiii ... 4418
Librarycoiiii.t. 4.417
Process Configuration 44
Compilation Procedure, Separate 1.3
COMPILECommand4. 4.4.10,5.2
Compiler, Execute Command 6.2,7.2
Compiling:
Procedurefor 7.2
Entire Program, Preparation for. . Section 5
Routines Separately Section7
theProgram.................. Section 6

Index-2

Compiling, Linking, Executing,
Procedurefor 6.
Conditional FlagCommand 4.4.18.
CONFIG:
Interactive Execution................ .
Utilityo
Configuration:
Commands, Process
‘CreatingaProcess Section
Procedure, Creating Process
Processcoviviiiiiinn..
Control File, LinkEdit
Creating:
Directoriest
Process Configuration Section
Procedure

DEFAULT:
OBJECTCommand................ 4.9
SOURCECommand 4.8

DELETECommand 4.5

Description, Utilities 1.2

2.2
4.2
4-2

: orwds wa
DO MDwbwh NN Wi

w3 N

b

Directoriescovvvvnn.. 2.1,2.
DISPLAYCommand4. .
Documentation Listing File Fa-

Edited Nested Source File F2-3
Entire Program, Preparation
for Compulmg Section 5
Example:
Nested SourceFile F2-2
SourceFile....................... F2-1
Execute:
Linkage Editor (XLE) Command6.2,7.2
Nester (XNESTER) Command......... 2.3
Pascal Task (XPT) Command...2.3,6.2,7.2
Tl Pascal Compiler

—

(XTIP)Command 6.2,7.2
Executing:
CONFIG Interactively 4.2
Procedurefor 6.2
theProgram.................. Section 6
EXITCommand 4.4.11
File:
Command Listing F3-2
Documentation Listing F4-2
Edited, Nested Source F2-3
Example
NestedSource F2-2
Source........oiii F2-1
LinkControl 6.2
Listing.............. F5-1
Prepared:
Process........................ F5-2
Source.............. F5-3
PROCESt F3-1
Sourcelisting F4-1
Flag:
Command 4.4.18.2
Conditional 4.4.18.3
2250098-9701

Commandsccevvunnnn 4.4.18
Flags,System............... T4-2
Format, SourceCode.................. 2.2
Generalc.i i e 4.1
Interactive Execution of CONFIG........ 4.2
LDCommand............... 2.3,4.4.16,6.2
LIBRARY Command............... 44173
Library:

Commandsccovvuvnn.. 4417

SYynonyms ...t 4.417
LinkControlFile...................... 6.2
Linkingthe Program Section 6

Procedurefor 6.2
LIST:

Command 4412
List Directory (LD) Command . .2.3, 4.4.16, 6.2
LISTDOCCommand 4413
ListingFilet F5-1

Command............cciiivinn.. F3-2

Documentation F4-2

in AlphabeticOrder Fa4-3

SOUICE. . ittt et e Fa-1
LISTORDERCommand.............. 4.4.14
MASTERCommand............... 4.417.2
MOVECommand.................... 44.4
Nested Source File:

Editedciiiiiiiiiii F2-3

Example ... F2-2
Nester:

Utility . .o 2.2

XNESTER Command, Execute 2.3
OBJECTCommand 4.4.17.4

DEFAULT ... 449

USE ..o e e e 446
Overviewcviiineennns Section 1
Pascal:

Compiler Execute Command...... 6.2,7.2

Task Execute Command 2.3,6.2,7.2
Preparation for Compiling

Entire Program Section 5
Prepared:

ProcessFile F5-2

SourceFile..........ccviiant. F5-3
Preparing:

Source:

Code......vviviiinnnnns Section 2
Procedureccoveeennn. 2.3
Procedure:

Creating Process Configuration....... 3.2

for Compiling a Routine Separately7.2

for Compiling, Linking, and

Executing 6.2
Preparing SourceCode 23
Separate Compilation 1.3

2250098-9701

Index

PROCESFileccoviinann.. F3-1
PROCESS:
Command:
BUILD ... 4.4.16
CAT .t e e 4.4.15
USE... ...t 4.4.1
Configuration 4.3
commandsovirinnannnn 4.4
Creatinga Section 3
Procedure, Creating............... 3.2
File,Prepared..................... F5-2
Program:
Compiling, Section6
Executing.................... Section 6
Linking.........cooooiin Section 6
Preparation for Compiling
Entire, Section 5
Structure 4.3,4.4.16
Utility, Split 2.3,3.1
Routine:
Procedure for Compiling............. 7.2
Separate Compilation.......... Section 7
Separate Compilation Procedure 1.3
Separately:
CompilingaRoutine........... Section 7
Procedure for Compiling a Routine7.2
SETFLAGCommand 4.4.18.1
SETLIBCommand............. 4.417.1,5.2
SFCommand 2.3,3.2,4.4.12, 5.2, 6.2
Show File (SF)
Command......... 2.3,3.2,4.412,5.2,6.2
Source:
Code:
Format.........cooiiiiiiiinn.. 2.2
Preparing Section 2
|:_IProcedure, Preparing.............. 2.3
ile:
Edited,Nested F2-3
Examplecoiiiiiiiaat F2-1
Example,Nested F2-2
Prepared F5-3
ListingFile o, F4-1
SOURCE command, DEFAULT 4.48
Split Program Utlhty 2.3,3.1
Structure, Program.............. 4.3,4.4.16
Synonyms, Library 4417
SystemFlagsot T4-2
Task, Execute Command........ 2.3,6.2,7.2
TI Pascal Compiler, Execute
Command...........covivininnn 6.2,7.2
USE:
Commandcovvivniiinnnn. 4.4.7
OBJECTCommand................ 4.46
PROCESSCommand 4.4.1
Utilities Description................... 1.2
Utility:
CONFIG ...t 3.2
Index-3

Index

NESTER 2.2
SPLITPGM 2.3,3.1
XCONFIGCommand 3.2,6.2,7.2
XCONFIGICommand 4.2,4.4.14,
4.4.15,5.2,7.2
XLECommand.................... 6.2,7.2
Index-4

XNESTERCommand 2.3
XPT Command, Execute Pascal

Task ..o oo 2.3,6.2,7.2
XTIP Command, Execute Tl

Pascal Compiler 6.2,7.2
TP . 2.1

2250098-9701

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: _Model 990 Computer T| Pascal Configuration Processor Tutorial (2250098-9701)

Manual Date: _1 August 1981 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS GROUP

ATTN: TECHNICAL PUBLICATIONS
P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

ITIIINNNNNNNNNN_————————_———_——)
Texas Instruments U.S. District Sales and Service Offices
(A complete listing of U.S. offices is available from the
district office nearest your location)

California
831 S. Douglas Street
El Segundo, California 90245
(213) 973-2671

100 California Street

Suite 480

San Francisco, California 94111
(415) 781-9470

776 Palomar Avenue

P.0O. Box 9064

Sunnyvale, California 94086
(408) 732-1840*

3186 Airway

Suite J

Costa Mesa, California 92626
(714) 540-7311

Colorado
9725 East Hampden Avenue
Suite 301
Denver, Colorado 80231
(303) 751-1780

Florida
1850 Lee Road
Suite 115
Winter Park, Florida 32789
(305) 644-3535

Georgia
3300 Northeast Expressway
Building 9
Atlanta, Georgia 30341
(404) 458-7791

*Service telephone number

Ilinois
515 West Algonquin Road
Arlington Heights, lilinois 60005
(312) 640-2900
(800) 942-0609*

Massachusetts
504 Totten Pond Road
Waltham, Massachusetts 02154
(617) 890-7400

Michigan
24293 Telegraph Road
Southfield, Michigan 48034
(313) 353-0830
(800) 572-8740*

Minnesota
7625 Parklawn Avenue
Minneapolis, Minnesota 55435
(612) 830-1600

Missouri
2368 Schuetz
St. Louis, Missouri 63141
(314) 569-0801*

New Jersey
1245 Westfield Avenue
Clark, New Jersey 07066
(201) 574-9800

Ohio
4124 Linden Avenue
Dayton, Ohio 45432
(513) 258-3877

Pennsylvania
420 Rouser Road

Coraopolis, Pennsylvania 15108

(412) 771-8550

Texas
8001 Stemmons Expressway
P.0. Box 226080
M/S 3108
Dallas, Texas 75266
(214) 689-4460
13510 North Central Expressway
P.O. Box 225214
M/S 393
Dallas, Texas 75265
{214) 238-3881

9000 Southwest Freeway, Suite 400
Houston, Texas 77074
(713) 776-6577

8685 Commerce Drive, Suite 518
Houston, Texas 77036

(713) 776-6531

(713) 776-6553*

Virginia
1745 Jefferson Davis Highway
Crystal Square 4, Suite 600
Arlington, Virginia 22202
(703) 553-2200

Wisconsin
205 Bishops Way
Suite 214
Brookfield, Wisconsin 53005
(414) 784-1323

/800-538-1502,

408-
732-1840

r

800-525-8055

303-751-1780
325-4553

TI-CARE*

Centralized Dispatch Telephone Numbers

for Requesting Service

800-
392-
4225

800-
325-4324

201-574-9800
New Jersey
North of

714-

800-

. 800-
540-7311 854.307 3254324

800-241-3047
a 800-392-1488
< 2
] QQ,

Houston Customers-
713-776-6511
Ext. 553 or 554

808-955-2617 (Hawaiian Islands) Q

Installation for Computer Systems Dallas Customers-
800-231-2807 214-238-3881

. 713-937-1200 (Texas only, collect)
*Service mark of Texas Instruments

The Tl Customer Support Line is available to answer our customers’ complex
technical questions. The extensive experience of a selected group of TI senior
engineers and systems analysts is made available directly to our customers. The Tl
Customer Support Line telephone number is (612) 250-7407.

.
T
.

°~ TEXAS INSTRUMENTS

INCORPORATED

DIGITAL SYSTEMS GROUP
POST OFFICE BOX 2909 AUSTIN, TEXAS

T

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	Index-1
	Index-2
	Index-3
	Index-4
	replyA
	replyB
	xBackA
	xBackB

