{@ Manual Update

MANUAL: Tl Pascal Configuration Processor Tutorial (2250098-9701)
MCR/CHANGE NO.: MCR 003154/Change 1
EFFECTIVITY DATE: 18 January 1984

This change package contains information necessary to update your current manual. Please

remove the obsolete pages from your existing manual and replace them with the changed pages
as follows:

Remove
Obsolete Pages

Cover/Manual Revision History
iii - iv

1-1-1-2

2-3-2-8

3-1-3-2

4-9-4-12

4-15-4-16

4-21-4-22

5-1-5-2

6-3 - 6-4

7-1-7-4

User’s Resp./Bus. Reply
Inside Cover/Cover

Insert
Change 1 Pages

Cover/Effective Pages
iii - iv

1-1-1-2

2-3-2-8

3-1-3-2

4-9-4-12

4-15-4-16

4-21-4.22

5-1-5-2

6-3-6-4

71-7-4

User’s Resp./Bus. Reply
Inside Cover/Cover

CONFIGURATION PROCESSOR TUTORIAL %

Tl Pascal

TEXAS INSTRUMENTS

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES

Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer
margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

Tl Pascal Configuration Processor Tutorial (2250098-9701)

Originalissue i, 15 January 1979
Revision.......... S 1 August 1981
Change 1 15 January 1984

Total number of pages in this publication is 72 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.
Cover 1 4-1-49 0 6-3-6-4.............. 1
Effective Pages....... 1 4-10-412............ 1 [P 0
i-iv. .o oo 1 4-13-414 0 7-2-73.............. 1
Vevill oo 0 4-15-416 1 7T-4 .. 0
11-1-2. . 0 497-421............ 0 Index-1-Index-4 0
2-1-23 0 4-22. . 1 User's Response...... 1
2426 1 4-23-4-28............ 0 Business Reply 1
2-7 0 51, 0 Inside Cover 1
28, 1 52. . 1 Cover 1
K 1 53-56.............. 0
3-2-34.............. 0 6-1-6-2.............. 0

The computers, as well as the programs that Tl has created to use with them, are tools that
can help people better manage the information used in their business; but tools—including
Tl computers—cannot replace sound judgment nor make the manager's business
decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

L -

o Texas Instruments Incorporated 1979, 1981, 1984
All Rights Reserved

The information and/or drawings set forth in this document and all rights in
and to inventions disclosed herein and patents which might be granted
thereon disclosing or employing the materials, methods, techniques, or
apparatus described herein are the exclusive property of Texas Instruments
Incorporated.

Preface

This manual is a tutorial about the T! Pascal Configuration Processor. This manual is designed to
help you become familiar with the configuration processor, which provides for the separate compi-
lation of Tl Pascal (TIP) source modules and configuration management support.

This manual consists of seven sections. Since each section develops information that was
presented in the preceding section, you shouid begin with Section 1 and work through the
sections in order.

Section 1 provides an overview of the separate compilation process to give you a basic
understanding of how the configuration processor works. This section describes the functions of
the configuration processor and other utilities used in this manual. It also lists the steps
necessary to compile an entire program or individual routines.

Sections 2 through 7 deal with the actual use of the configuration processor. Each section deals
with one phase of the preparation, compilation, linking, and execution of an example program.
First, you are told how to create the program by using the Text Editor. Then you are told how to
develop this example program step-by-step from creation to execution by using the configuration
processor.

Use this manual while sitting at a terminal. This manual directs your activities by first telling you
which command to enter and then describing the results. You will need the following equipment:

. DS990 computer system with a DX10 operating system or Distributed Network
Operating System (DNOS) and TIP installed

e AVideo Display Terminal (VDT)
After completing this tutorial, you should be able to do the following:
o Use the NESTER utility to format a source program.
. Use the SPLITPGM utility to split a source program into separate modules.

. Use the CONFIG utility to create a hierarchical description (process configuration) of
the program.

. Execute the CONFIG utility interactively to prepare one or more source modules for
compilation.

o Create alink control file to link the recompiled object modules for execution.

2250098-9701 ' Change 1 iii

Preface

Users of this tutorial should be familiar with SCI commands and the TIP language and should be
able to do the following:

. Create a user directory
. Assign asynonym to adirectory pathname
. Use the Text Editor to create a source program
. Compile, link, and execute a TIP program
Some commands used in this tutorial display a version number and release date. These are

represented as < VERSION: X.X.X YYDDD >, where X.X.X is the version, YY is the year, and DDD is
the Juiian date.

Return. See Appendix A of the T/ Pascal Reference Manual, or the T/ Pascal Programmer’s Guide

g Several discussions and instructions in this tutorial refer to the generic key names Enter and
(either the DNOS or DX10 version), to identify these keys on specific VDTSs.

The following documents contain additional information related to the configuration processor:

Title Part Number
Tl Pascal Reference Manual 946290-9701
DNOS TI Pascal Programmer’s Guide 2270517-9701
DX10 Tl Pascal Programmer’s Guide 2270528-9701
DX10 Operating System Concepts and Facilities 946250-9701
DNQOS Concepts and Facilities 2270501-9701
Link Editor Reference Manual 949617-9701
DNOS Link Editor Reference Manual 2270522-9701

You are now ready to begin Section 1.

iv Change 1 2250098-9701

Overview

1.1 GENERAL

Development of a large program is less expensive when the modules of the program can be recom-
piled for correction or changed without recompiling the entire program. in a block-structured lan-
guage such as TIP, separate compilation is more difficult than in assembly language or in a
nonstructured, high-level language. This is because of the scope rules of TIP and its ability to pass
parameters by reference or by value.

To separately compile a TIP routine, you must include all global declarations in the source code so
that the environment is identical to that in which the routine is to execute. These declarations
must include the declaration sections of all routines within which the routine is nested. Merging

the declaration sections manually is tedious and error prone; in contrast, using the configuration
processor is both quicker and more efficient. '

1.2 FUNCTIONAL DESCRIPTION OF UTILITIES

You will use the following utilities in the separate compilation process:
¢ Configuration Processor utility (CONFIG)
. Source Formatter utility (NESTER)
J Split Program utility (SPLITPGM)

CONFIG performs the foilowing functions:

. Maintains a library of source modules to be combined as required for separate compi-
lation of each module of a program

. Builds a process configuration that contains information about the program structure
and the iocations of the individual modules

. Prepares a source program for each separate compilation, using the process configu-
ration to gather declarations needed by the modules being compiled

. Maintains a library of object modules of the program from which appropriate object
modules are linked

2250098-9701 Change 1 1-1

1.3 Overview

NESTER restructures the source code so that the indentation is consistent with the logical

structure.

SPLITPGM performs the following:

Divides a TIP program into modules and catalogs them as members of a directory

Writes an input command file for the CONFIG utility to contain the commands required
to build the process configuration corresponding to the original source program
structure

1.3 SEPARATE COMPILATION PROCEDURE

The steps for separate compilation used in this manual are as follows:

1.

Prepare the source code (Section 2). Preparation of the source code includes using the
Text Editor to write a TIP program, using NESTER to format the source program, and
using SPLITPGM to split the source program into individual library members.

Execute CONFIG to create a process configuration. You can execute CONFIG in either
of two modes: batch or interactive. In the batch mode, CONFIG builds the process con-
figuration automatically, using information supplied in the output file of SPLITPGM.
When using the interactive mode, you can enter commands that direct CONFIG in
building or modifying the process configuration. In Section 3, you will execute CONFIG
in the batch mode. Section 4 discusses the user commands. In Section 5, you will
execute CONFIG interactively to prepare the entire program for compilation.

Compile, link, and execute the program (Section 6). After compiling and before linking,
you will execute CONFIG to split the object code into a separate module for each
routine that was compiled.

Modify a subroutine and recompile it separately. In Section 7, you will modify one of the
subroutines of your example program, recompile only that routine, link it, and execute
the program.

Now, proceed to Section 2 to prepare the source code.

2250098-9701

Preparing the Source Code 2.3

PROGRAM TCONFIG;
(***
* MAIN *
***)
PROCEDURE SUB2; FORWARD;

PROCEDURE SUB1;
it e e R R e A S e R SR SRR AR R S LA LA AL AL LA LA

* SUB1 *
***)
BEGIN

WRITELN(“HI! FROM SUBLl”);

SUB2

END; (* SUBL *)

PROCEDURE SUB2;

(***

* SUB2 *
***)
BEGIN

WRITELN(“HI! FROM SUB2”);

END; (* SUB2 *)

PROCEDURE SUB3;

(***#*****************************

* SUB3 *
***)
PROCEDURE SUBS; FORWARD;

PROCEDURE SUB4;

(**************************i**

* SUB4 *
***)
BEGIN

WRITELN(“HI! FROM SUB4~”);

SUB5

END; (* SUB4 *)

PROCEDURE SUB5;

(**f**t*********

* SUBS *
***)
BEGIN

WRITELN(“HI! FROM SUB57);

END; (* SUB5 *)

BEGIN (* SUB3 *)

WRITELN(“HI! FROM SUB3”);

SUB4;

SUBS

END; (* SUB3 *)

BEGIN (* TCONFIG *)

WRITELN{“HI! FROM TCONFIG”);

SUBL;

SUB2;

SUB3

END. (* TCONFIG ¥*)

Figure 2-1. Example Program Source File

2250098-9701 2-3

2.3 Preparing the Source Code

The following prompts appear on your screen; the responses you should enter are
shown next to the prompts:

EXECUTE PASCAL SRC PROGRAM NESTER <VERSION: X.X.X YYDDD>
SQURCE: .(yourname).CONFIG.SRC.MAIN
NESTED SOURCE: .(your name).CONFIG.SRC.NMAIN
NESTER OPTION: SLIM(0)
ERRORLISTING: ME((see note)
MESSAGES: ME (see note)
MODE: FOREGROUND

NOTE

Entering ME for this response causes messages to be displayed on
your terminal. You can have the messages put on a file by entering
the pathname of a file such as .(your name).CONFIG.MSSG.

After NESTER is executed, the file .(your name).CONFIG.SRC.NMAIN will contain your
nested source code. The contents of the file should be the same as in Figure 2-2.

Prepare the nested source file for SPLITPGM. Use the Text Editor to add the following to
your nested source file:

a. A forward declaration for each routine.

b. A marker for the main program and one for each routine. The markers begin in
column 1 and appear before the program statement and before each procedure
statement. Each marker consists of a doubie quote, an ampersand, and the routine
name (for example, “&SUB1). After completing this step, your file should look like
that shown in Figure 2-3.

Assign the synonym LIBRARY to your directory. Enter the Assign Synonym (AS) com-
mand as follows:

[1AS

The following prompts appear on your screen; the responses you shouid enter are
shown next to the prompts:

ASSIGN SYNONYM VALUE
SYNONYM: LIBRARY
VALUE: .(your name).CONFIG.SRC

Execute SPLITPGM to divide your source code into separate modules. SPLITPGM
catalogs these modules as members of the directory to which you assigned the
synonym LIBRARY. SPLITPGM is executed as a Pascal task. Enter the following:

[1XPT

Change 1 2250098-9701

Preparing the Source Code 2.3

PROGRAM TCONFIG; 00000010
(**!**********00000020
* MAIN *00000030
***)00000040
PROCEDURE SUB2; FORWARD; 00000050
PROCEDURE SUB1; . 00000060
(***00000070
* SUB1 : *00000080
***)Oooooogo
BEGIN WRITELN('HI! FROM SUB{'); 00000100

SUB2 00000110
END; (* SUB1 *) 000001270
PROCEDURE SUB2; 00000173 .
(***OOOOO140
* SUB2 *00000150
***)00000160
BEGIN WRITELN('HI! FROM SUB2'); 00000170
END; (* SUB2 *) 00000180
PROCEDURE SUB3; 00000190
(***OOOOOZOO
* SUB3 *00000210
***)00000220
PROCEDURE SUB5; FORWARD; 00000230
PROCEDURE SUB4; 00000240
(***00000250
* , SUB4 *00000260
***)00000270
BEGIN WRITELN('HI! PROM SUB4'); 00000280

SUB5 00000290
END; (* SUB4 *) 00000300
PROCEDURE SUBS; 00000310
(***00000320
* SUBS *00000330
***)00000340
BEGIN WRITELN('HI! FROM SUBS'); 00000350
END; (* SUB5 *) 00000360
BEGIN (* SUB3 *) 00000370

WRITELN('HI! FROM SUB3'); 00000380

SUB4; 00000390

SUBS 00000400
END; (* SUB3 *) 00000410
BEGIN (* TCONFIG *) 00000420

WRITELN('HI! FROM TCONFIG'); 00000430

SUB1; 00000440

SUB2; 00000450

SUB3 00000460
END. (* TCONFIG *) 00000470

Figure 2-2. Example Program Nested Source File

2250098-9701 Change 1 2-5

2.3 Preparing the Source Code

"eTCONFIG

PROGRAM TCONFIG; 2COCo0o10
(68633 R KRR XK X HRE AR XXX XX ¥ X% 00000020
* MAIN *20000030
I TR I MR X KRR XXX %) 00000040
PROCEDURE SUB1; FORWARD; 00C00050
PROCEDURE SUB2; FORWARD; :

PROCEDURE SUB3; FORWARD;

"%SUB1
PROCEDURE SUB1; 00000060
(***00000070
* SUB1 *00000080
***)Oooooogo
BEGIN WRITELN('HI! FROM SUB1'); 20000100
SUB2 00000110
END; (* SUB1 *) 00000120
"%3UB2
PROCEDURE SUB2; 00000130
(***OOOOO140
* SUB2 *00000150
***)00000160
BEGIN WRITELN('HI! FROM SUB2'); 00000170
END; (* SUB2 *) 00000180
"%SUB3
PROCEDURE SUB3; 20000190
(***Ooooozoo
* SUB3 *00000210
***)00000220
PROCEDURE SUBS; FORWARD; 00000230
"2.3UB4
PROCEDURE SUB4; 00000240
(***OOOOOZSO
* SUB4 *00000260
*****%**ﬁ********)00000270
BEGIN WRITELN('HI'! FROM SUB4'); 00000280
SUBS 00000230
IND; (* SUB4 *) 00000300
"%SUBS
PROCEDURE SUES; 00000310
(***00000320
* SUB5 *00000330
***)00000340
BEGIN WRITELN('HI! FROM SUB5'); N00003%50
TND; (* SUBS *) 00000362
BEGIN (* 3SUB3 *) 00000370
WRITELN('4I!' FROM SUB3'); . 00000380
STR4; 00000330
3URS5 00000400
IND; (* SURBRZ *) 20000410
BEGIN (* TCONFIG *) 00000420
WRITELN('HI! FROM TCONFIG'); 00000430
SUB1; 20000440
SUB2; 20000450
SUB3 00000469
END. (* TCONFIZ *) 20000472

Figure 2-3. Example Program Edited, Nested Source File

2-6 Change 1 2250098-9701

' Preparing the Source Code 2.3

The following prompts appear on your screen; the responses. you should enter are
shown next to the prompts:

EXECUTE Ti PASCAL TASK
PROGRAM FILE: .TIP.PROGRAM
TASK NAME OR ID: SPLITPGM
INPUT: (your name).CONFIG.SRC.NMAIN
OUTPUT: .(your name).CONFIG.OUTPUT
MESSAGES: .(your name).CONFIG.MSSG
MODE (F, B, D): F (foreground)
MEMORY: leave blank

Respond to the prompt PROGRAM FILE by entering the name of the program file where
SPLITPGM is stored.

Respond to the prompt OUTPUT by entering the name of the output file that SPLITPGM
produces. This file will contain the commands needed to build the process configu-
ration.

7. Execute a List Directory (LD) command to be sure that a separate module for each
routine has been stored in your directory (assigned synonym LIBRARY). Enter the com-
mand as follows:

[ILD

The foilowing prompts appear on your screen; the responses you should enter are
shown next to the prompts:

LIST DIRECTORY
PATHNAME: LIBRARY
LISTING ACCESS NAME: leave blank
The following appears on your screen:

DIRECTORY LISTING OF: .JANE.CONFIG.SRC

MAX # OF ENTRIES: 17 4 OF ENTRIES AVAILABLE: 9
FILE ALIAS OF RECORDS LAST UPDATE FMT TYPE BLK PROTECT
MAIN * 52 10/09/80 15:54:12 BS N SEQ YES

NMAIN * 53 10/09/80 16:04:55 BS N SEQ YES

SUB1 * 8 10/09/80 15:58:15 BS N SEQ YES

SUB2 * 7 10/09/80 15:58:22 BS N SEQ YES

SUB3 * 10 10/09,/80 15:58:31 BS N SEQ YES

SUB4 * 8 10/09/80 15:58:30 BS N SEQ YES

SUB5 * 7 10/09/80 15:58:30 BS N SEQ VYES

TCONFI * 12 10/09/80 15:58:33 BS N SEQ VYES

16:05:51 THURSDAY, OCT 09, 1980.

50098-9701 2-7

2.3 Preparing the Source Code

You have now finished preparing the source code. Proceed to Section 3.

8. Now, execute a Show File (SF) command to look at the output file that SPLITPGM pro-
duces. It contains commands that CONFIG will use to build the process configuration.

Enter the following:

[ISF

The following prompts appear on your screen; the response you should enter is shown
next to the prompt FILE PATHNAME:

SHOW FILE

FILE PATHNAME:

.(your name).CONFIG.QUTPUT

The file should contain the following:

*BUILD PROCESS

*ADD
*ADD
*ADD
*ADD
*ADD
*CAT

TCONFIG
TCONFIG
TCONFIG
SUB3
SUB3
PROCESS

“ or e oo o0

SUB1
SUB2
SUB3
SUB4
SUBS

<LIBRARY, PROCESS>

Change 1

2250098-9701

3

Creating a Process Configuration

3.1 GENERAL

In this section, you will execute CONFIG in the background (BATCH) mode to create a process
configuration. The process configuration is a structural description of your program. CONFIG
uses this description to prepare your program for compilation.

CONFIG uses the commands listed in the output file of SPLITPGM to build the process configu-
ration. CONFIG then stores the process configuration in a file called PROCES and catalogs itas a
member of your source library (the directory you created and to which you assigned the synonym
LIBRARY). Also, CONFIG produces a command listing file that contains a listing of the commands
from the SPLITPGM output file, a copy of the process configuration, and a list of the files and
synonyms used.

After executing CONFIG, you will execute two SF commands: one to look at the PROCES file and
one to look at the command listing file.

3.2 PROCEDURE
Perform each step in the following procedure to create the process configuration:
1. Execute the CONFIG utility. Enter the following command:
[] XCONFIG

The following prompts appear on your screen; the responses you should enter are
shown next to the prompts:

EXECUTE CONFIGURATION PROCESSOR <VERSION: X.X.X YYDDD>
COMMANDS: .(yourname).CONFIG.OUTPUT
CRT FILE: DUMY
~ LISTING: .(yourname).CONFIG.LISTING
MESSAGES: .(your name).CONFIG.MSSG
MODE: BATCH/Background
SOURCE: leave blank
OBJECT: leave blank
MEMORY: 4,8

Respond to the prompt COMMANDS by entering the name of the output file that
SPLITPGM created. This file contains the commands needed to build the process con-
figuration.

Respond to the prompt LISTING by entering the name of the command listing file.

2250098-3701 Change 1 3-1

3.2 Creating a Process Configuration

3-2

In response to the prompt MESSAGES, enter the name of the file to which messages are
sent.

Respond to the prompt MEMORY by specifying the stack and heap allocations.
Execute an SF command to look at the PROCES file. Enter the following:
[1SF

The following prompts appear on your screen. The response you should enter is shown
next to the prompt FILE PATHNAME.

SHOW FILE
FILE PATHNAME: LIBRARY.PROCES

The displayed file should be similar to that shown in Figure 3-1.

Execute another SF command to look at the command listing. Respond to the prompt
FILE PATHNAME as shown in the following:

[]1SF
SHOW FILE
FILE PATHNAME: .(your name).CONFIG.LISTING

The displayed file should be similar to that shown in Figure 3-2. The file contains a
listing of commands SPLITPGM produces, a copy of the process configuration, and a
list of the files and synonyms used, in that order. Note that files .COMPFI16,
.CPTEMP16, and .OBJECT16 are empty; LIBRARY is the only synonym that has been
assigned; and 16 denotes the station from which CONFIG was executed. (Also, note that

16 wiil be replaced by the station number of your terminal.)

VERSION1l 00 10/09/80 00 16:10:09 0006 0000 0000 0000 0000 0C 00 00 00

02 PROCESS 00 0001 0001 0000 0001 0000 02 80 00 0O
TCONFIG 02 TCONFIG 00 0002 0000 0000 0002 0000 02 80 00 OO
SUBl 02 SUB1 00 0000 0003 0001 0000 0003 02 80 00 00
SUB2 02 SUB2 00 0000 0004 0001 0000 0004 02 80 00 00
SUB3 02 SUB3 00 0000 0005 0001 0005 0000 02 80 00 0O
SUB4 02 SuB4 00 0000 0006 0004 0000 0006 02 80 00 00
SUBS 02 SUBS 00 0000 0000 0004 0000 0000 02 80 0O 0O
LIBTBL 00 00000000 00 00000000 0004 0000 0000 0000 0000 00 00 00 0O
MASTER 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 0O 00 OO
LIBRARY 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 0O 00 0O
OBJLIB 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 GO 00 0O
ALTOBJ 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 00 00 00
FLAGTBL 00 00000000 00 00000000 0000 0000 0000 0000 0000 00 00 00 0O

Figure 3-1. PROCES File
2250098-9701

User Commands 4.4.10

This example specifies that the directory associated with the synonym OBJLI will be the default
object library. When a node is added with an ADD command, its object module will be in a file
cataloged in the directory associated with synonym OBJLI.

Now, enter the following commands:
*DEFAULT OBJECT OBJLI
*ADD SUB1:S1B
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY, TCONFIG>

suB1 <LIBRARY, SuB1>

S1A <SRCLIB, S1A>

S1B <SRCLIB, S1B> <OBJLI, S1B>
sSuB2 <LIBRARY, SuB2> <OBJLIB, SuB2>
suB3 <LIBRARY, SUB3>

SuB4 <LIBRARY, SUB4>

SuBS <LIBRARY, SUB5>

Synonym ALTOBUJ is the default object library synonym until the DEFAULT OBJECT command is
used. Synonym OBJLIB is the initially defined alternate object library synonym. However, you can
specify any library synonym in the command. Note that the location of the object module is not
listed in the process configuration unless the DEFAULT OBJECT or USE OBJECT command is
entered.

Now, enter the following commands:

*DELETE S1A
*DELETE S1B

4.410 COMPILE Command
The COMPILE command causes CONFIG to prepare a source file for compilation and specifies
‘the module or modu:es to be compiled. All source modules to be compiled are put on one file, in
the proper order for compilation. You must specify the modules to be compiled as parameters of
the command. For example, the following command causes only SUB1 to be compiled:
*COMPILE SUB1
The following command causes SUB1 and all of its descendents to be compiled:
*COMPILE SUB1 ALL
You can specify more than one module as follows:

*COMPILE SuUB1, SuB2

2250098-9701 4-9

4.4.10 User Commands

The following command specifies that the entire program is to be compiled:
*COMPILE ALL

The optional keyword NO allows you to inhibit the compilation of a module. For example, the
following command specifies that SUB1 is not to be compiled:

*NO COMPILE suB1
You should consider several guidelines when selecting modules for recompilation. However,
since you have not compiled any modules yet, these guidelines will be discussed in a later sec-
tion. Now, enter the following commands:

*COMPILE ALL
*DISPLAY ALL

The following is displayed:

TCONFIG < LIBRARY, TCONFIG > 01
SUB1 <LIBRARY, SUB1 > 01
sSuB2 <LIBRARY, SUB2 > <OBJLIB, suB2> 01
SUB3 <LIBRARY, SUB3 > 01

SuB4 <LIBRARY, SUB4 > 01
SuUBS <LIBRARY, SUBS5 > 01

Notice that the COMPILE command has set two flags: the declaration flag (0) and the body flag (1).
When the declaration flag for a module is set, it indicates that the declaration section for that
module is to be included in the modules to be compiled. When the body flag for a module is set, it
indicates that the body of that module is to be included in the modules to be compiled. Now, enter
the following commands:

*NO COMPILE ALL
*DISPLAY ALL

The following is displayed:

TCONFIG < LIBRARY, TCONFIG >
SUBH1 <LIBRARY, SUB1 >
SuUB2 <LIBRARY, SUB2 > <OBJLIB, SUB2>
SUB3 <LIBRARY, SUB3 >
SuB4 < LIBRARY, SUB4 >
SuBS < LIBRARY, SUBS >

Notice that both flags have been turned off. Now enter the following commands:

*COMPILE SuB2
*DISPLAY ALL

4-10 Change 1 2250098-9701

User Commands 4.4.11

The following is displayed:

TCONFIG <LIBRARY, TCONFIG > 0
SUB1 <LIBRARY, SUB1 >
SuB2 < LIBRARY, SUB2 > <OBJLIB, SUB2> 01
SUB3 <LIBRARY, SUB3 >
SuB4 <LIBRARY, SUB4 >
SuUBS <LIBRARY, SUBS >

The declaration flags (0) for TCONFIG and SUB2 have been turned on, indicating that the decla-
ration sections are to be included in the module to be compiled. The body flag (1) for SUB2 has
also been turned on. Only the code for SUB2 needs to be included in the module to be compiied.
Now, enter the following commands:

*NO COMPILE suB2
*DISPLAY ALL

The following is displayed:

TCONFIG < LIBRARY, TCONFIG >
SuUB1 <LIBRARY, SUB1 >
suB2 <LIBRARY, SUB2 > <0OBJLIB, SUB2>
SUB3 . <LIBRARY, SUB3 >
SuB4 <LIBRARY, SUB4 >
sSuBS <LIBRARY, SUB5 >

The declaration flags and the body flag have been turned off.
4.4.11 EXIT Command
You can use the EXIT command to abort the execution of CONFIG without processing the
command stream. Now, enter the following command:
*EXIT

CONFIG terminates, and no files are saved. If, on the other hand, you had wanted to save and pro-

cess the command stream you built, you would press the Enter key instead of entering the EXIT

command.

CONFIG also uses the EXIT command in the deferred command list to terminate processing.

4.4.12 LIST Command

The LIST command causes one or more source modules specified in the current process con-

figuration to be listed in the listing file. You must specify the modules you want listed as

parameters cf the command. For example, the following command lists the source for SUB1:
*LIST suB1

The following command lists the source for SUB1 and all of its descendents:

*LIST SuB1 ALL

2250098-9701 Change 1 4-11

4.4.12 User Commands

The following command lists the source for SUB1 and SUB2:
*LIST suB1,sUB2

The following command lists the entire program:
*LIST ALL

The optional keyword NO allows you to inhibit the listing of the source for a module. For example,
as a result of the following command, the source of SUB2 is not listed:

*NO LIST suB2

Since you aborted execution of CONFIG with the EXIT command, you need to reexecute it to con-
tinue. Enter the following:

[] XCONFIGI
The following prompts appear and the responses you should enter are shown next to the prompts:

EXECUTE CONFIGURATION PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 48

Now, enter the following commands:

*USE PROCESS <LIBRARY, PROCES>
*LIST ALL

After pressing the Return key, press the Enter key to process the commands. Now, enter an SF
command to look at the listing file. Enter the following:

[]SF
The following prompts appear. Respond to the prompt FILE PATHNAME as shown:

SHOW FILE
FILE PATHNAME: .(your name).CONFIG.LISTING

The file shown in Figure 4-1 now appears. A listing of all of the source modules has been added in
addition to the information usually contained in the listing file. The source modules are listed in
the order in which they appeared in the process configuration. Notice that the LIST command sets
the list flag (2), indicating that all modules are to be listed.

4-12 Change 1 2250098-9701

User Commands 4.4.13

4.4.13 LISTDOC Command
The LISTDOC command causes the documentation section of one or more source modules
specified in the current process configuration to be listed in the listing file. You must specify the
modules as parameters of the command. For example, the following command lists the documen-
tation section for SUB1:
*LISTDOC SuUB1
The foliowing command lists the documentation for SUB1 and all of its descendents:
*LISTDOC SUB1 ALL
The following command lists the documentation for SUB1 and SUB2:
*LISTDOC SuUB1,SUB2
The following command lists the documentation for the entire program:

*LISTDOC ALL

The optional keyword NO allows you to inhibit the listing of the documentation for a module. For
example, as a result of the following command, the documentation for SUB2 is not listed:

*NO LISTDOC suB2

Since you terminated CONFIG by pressing the Enter key, you must reexecute it to continue. Enter
the following:

[] XCONFIGI
The following prompts appear and the responses you should enter are shown next to the prompts:

EXECUTE CONFIGURATION PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 4.8

Now enter the following commands:

*USE PROCESS SOURCE <LIBRARY, PROCES>
*LISTDOC ALL

After pressing the last Return key, press the Enter key to process the commands. Now enter a
Show File command to look at the listing file. Enter the following:

[]SF

2250098-9701 Change 1 4-15

4.4.14 User Commands

The following prompts appear. Respond to the prompt FILE PATHNAME as shown:

SHOW FILE
FILE PATHNAME: .(your name).CONFIG.LISTING

The file shown in Figure 4-2 is displayed. Notice that the LISTDOC command set the LISTDOC
flag (3).

4.4.14 LISTORDER Command

The LISTORDER command specifies the listing order for the LIST and LISTDOC commands. The
command has two options:

*LISTORDER ALPHA — Lists the source modules and documentation sections in alphabetic
order.

*LISTORDER PROCESS — Lists the source modules and documentation sections in the
order in which they appear in the process configuration.

Note that the LIST and LISTDOC commands list the source modules and documentation sections

in the order in which they appear in the current process configuration unless the LISTORDER
command is used to specify alphabetic order.

Execute CONFIG by entering the following:
[] XCONFIGI
The following prompts appear. The responses you should enter are shown next to the prompts:
EXECUTE CONFIG PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 438
Now, enter the following commands:
*USE PROCESS <LISRARY, PROCES>
*LISTORDER ALPHA
*LIST ALL
Press the Enter key, then enter the following to ook at the listing file:
[1SF
The following prompts appear. Respond to the prompt FILE PATHNAME as shown:

SHOW FILE
FILE PATHNAME: .(your name).CONFIG.LISTING

The file shown in Figure 4-3 appears.

4-16 Change 1 2250098-9701

User Commands 4.4.16

The following is displayed:

TCONFIG <LIBRARY ,TCONFIG>
SuB1 <LIBRARY ,SUB1>
sSuB2 <LIBRARY ,SUB2>

SUB2A <LIBRARY ,SUB2A>
SUB3 <LIBRARY ,SUB3>

SuB4 <LIBRARY ,SUB4>

SuBS <LIBRARY ,SUB5>

The original process, PROCES, is still in the directory unmodified. Enter the following commands:

*USE PROCESS <LIBRARY, PROCES>
*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY ,TCONF!G>
SuB1 <LIBRARY ,SUB1>
suB2 <LIBRARY ,SUB2>
SuB3 <LIBRARY ,SUB3>

SuB4 <LIBRARY ,SUB4>
SuBS <LIBRARY ,SUB5>

4.4.16 BUILD PROCESS Command

Until now, you have been using an existing process configuration that was originally built by
SPLITPGM. However, you can create a new process with the BUILD PROCESS command, which
initializes the building of a process configuration. Specify the location in which your new process
is to be stored as a parameter of this command (or specify the location in a CAT PROCESS com-
mand). For example, the following command initializes the building of a process that will be
stored in a file called NPROCS in the directory associated with the synonym LIBRARY:

*BUILD PROCESS <LIBRARY, NPROCS>

In the following exercise, you will build a process configuration for the following program
structure:

MAIN
SUBR1 SUBR2
\ /

SUBR1A SUBR1B SUBR2A SUBR2B

2250098-9701 4-21

4.416 User Commands

Now, enter the following commands:

*BUILD PROCESS <LIBRARY, NPROCS>

*ADD MAIN (this command specifies MAIN as the root node or main program)
*ADD MAIN:SUBR1

*ADD SUBR1:SUBR1A

*ADD SUBR1:SUBR1B

*ADD MAIN:SUBR2

*ADD SUBR2:SUBR2A

*ADD SUBR2:SUBR2B

*CAT PROCESS

*DISPLAY ALL

The following is displayed:

MAIN <LIBRARY ,MAIN>
SUBR1 <LIBRARY ,SUBR1>
SUBR1A <LIBRARY ,SUBR1A>
SUBR1B <LIBRARY ,SUBR1B>
SUBR2 <LIBRARY ,SUBR2>
SUBR2A <LIBRARY ,SUBR2A>
SUBR2B <LIBRARY ,SUBR2B>

Press the Enter key to process the command and terminate CONFIG.

Three separate process configurations shouid now be stored in the directory that has been as-
signed the synonym LIBRARY, as follows:

PROCES — Created by the SPLITPGM utility
PROCS2 — Created by modifying PROCES
NPROCS — Created using the BUILD PROCESS command

Enter a List Directory (LD) command to ensure that these files exist in the directory associated
with synonym LIBRARY, as follows:

[JLD
The following prompts appear. Respond to the prompt PATHNAME as shown:
LIST DIRECTORY

PATHNAME: LIBRARY
LISTING ACCESS NAME:

4-22 Change 1 2250098-9701

5

Preparing the Entire
Program for Compilation

5.1 GENERAL

In this section, you will prepare the source code for compilation. First, you will execute CONFIG
interactively. Next, you will assign a synonym for the object library and specify the process con-
figuration you wish to use. After adding a couple of commands to the current process, you will
process the commands. Then, you will look at the listing file and two other files prepared by
CONFIG. One file contains a copy of the process configuration and a list of deferred commands.
CONFIG uses these commands in the next run (after compilation). The other file contains the
prepared source, which is ready to be compiled.

5.2 PROCEDURE
Prepare your source for compilation by performing the following steps:
1. Execute CONFIG interactively. Enter the following:

[1 XCONFIGI
EXECUTE CONFIG PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 4,8

Since no file name was entered in response to the prompt SOURCE, CONFIG will store
the prepared source in a file called .COMPFInn (where nn is the station number of your
terminal).

2. Enter the following command:
*SETLIB ALTOBJ .(your name).CONFIG.0OBJ
This command assigns the synonym ALTOBJ to the directory in which the object
modules will be stored. This could have been done using the Assign Synonym (AS)
command before executing CONFIG. (The pathname of the object directory cannot con-
tain a synonym.)
3. Enter the following commands:
*USE PROCESS <LIBRARY, PROCES>

*COMPILE ALL
*COLLECT ALL

2250098-9701 5-1

5.2 Preparing the Entire Program for Compilation

The COLLECT ALL command turns on the collect flag for all source modules and

causes CONFIG to include a COLLECT OBJECT command in the deferred command
list.

4. Now display the current process configuration. Enter the following:
*DISPLAY ALL

The following should appear:

TCONFIG <LIBRARY ,TCONFIG> 017
SuB1 <LIBRARY ,SUB1> 017
suB2 <LIBRARY ,SuB2> 017
suB3 <LIBRARY ,SUB3> 017

SuB4 <LIBRARY ,SUB4> 017
SuB5S <LIBRARY ,SuB5> 017

Notice that the declaration flag (0), the body flag (1), and the collect flag (7) have been set
for al! modules.

5. Press the Enter key to process the commands.
6. Look at the listing file. Enter the following:

[]SF
SHOW FILE
FILE PATHNAME: .(your name).CONFIG.LISTING

The listing file shown in Figure 5-1 appears. Notice that the declaration flag, the body
flag, and the collect flag have been set for all modules. Also, the library synonym
ALTOBJ has been assigned a directory pathname.

7. Now look at the file containing the process configuration and the deferred command
list. The file is named .CPTEMPnn (where nn is the station number of your terminal).
Enter the following:

[1SF

SHOW FILE
FILE PATHNAME: .CPTEMPnn

5.2 Change 1 2250098-9701

The following should appear:

DIRECTORY LISTING OF:
MAX # OF ENTRIES: 11

FILE
SUBl
SuUB2
SUB3
SUB4
SUBS
TCONFI

ALIAS OF RECORDS
*

* % * ¥

*

8 10/09/80
8 10/09/80
9 10/09/80
8 10/09/80
8 10/09/80

13 10/09/80

16:57:40 THURSDAY, OCT 09, 1980.

5. Create a link control file using the Text Editor. Enter the following in the edit file:

NOSYMT

LIBRARY .TIP.OBJ

FORMAT IMAGE, REPLACE, 3
TASK MAIN

INCLUDE (MAIN)

INCLUDE .OBJECTnn

END

Compiling, Linking, and Executing the Program 6.2

.JANE.CONFIG.OBJ
OF ENTRIES AVAILABLE:

LAST UPDATE
16:56:
16:56:
16:56:
16:56:
16:56:
16:56:

2ZZ2222

SEQ
SEQ
SEQ
SEQ
SEQ
SEQ

BLK PROTECT

YES
YES
YES
YES
YES
YES

Recall that the COLLECT OBJECT command in the deferred command list caused the
object modules to be collected on file .OBJECTnn.

Store this link control file under the pathname .(your name).CONFIG.LC.

6. Execute the Linkage Editor. Enter the following:

[1XLE

EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME:
LINKED OUTPUT ACCESS NAME:

LISTING ACCESS NAME:
PRINT WIDTH (CHARS):
PAGE LENGTH:

.(your name).CONFIG.LC

.(your name).CONFIG.PROG

(your name).CONFIG.LINKLIST

80
59

If the Linkage Editor executed with no errors and no warnings, you are ready to proceed

to step 7. If not, determine the cause of the error and relink.

2250098-9701

Change 1

6.2 Compiling, Linking, and Executing the Program

7. Execute your program. Enter the following:

[1XPT
EXECUTE TI PASCAL TASK
PROGRAM FILE: .(your name).CONFIG.PROG
TASKNAMEORID: MAIN '
INPUT:
OUTPUT: .(your name).CONFIG.OUTPUT
MESSAGES: .(your name).CONFIG.MSSG
MODE (F,B,D): FOREGRQOUND
MEMORY:

8. Enter a Show File (SF) command to look at your output. It should appear as follows:

HI! FROM TCONFIG
HI! FROM SUBL
HI! FROM SUB2
HI! FROM SUB2
HI! FROM SUB3
HI! FROM SUB4
HI! FROM SUBS
HI! FROM SUBS

9. You can print the file if you wish, using the Print File (PF) command.

Now that you have successfully compiled, linked, and executed your program, you are ready to
recompile a routine separately. Proceed to Section 7.

6-4 Change 1 2250098-9701

7

Recompiling a Routine Separately

7.1 GENERAL

In this section, you will modify the source code of one of the routines in your example program
and recompile that routine only. First, you will modify the source module of a routine by using the
Text Editor. Next, you will execute CONFIG to prepare that module for compilation. Next, you will
execute the compiler and look at the message file. Then, you will execute CONFIG for the deferred
command run. Finally, you will link and execute your program.

Keep in mind the following guidelines when selecting modules for recompilation:

e When a statement within the compound statement of a program or routine is changed,
recompile the module that contains the program or routine.

e When a declaration of a program is changed (global declaration), recompile the entire
program.

e When a declaration of a routine is changed, recompile the module that contains the
declaration and the modules of all nodes that are descendents of the node containing
the declaration.

7.2 PROCEDURE
Perform each step in the following procedure:

1. Modify SUB1. Recall that the source modules are stored in the directory assigned
synonym LIBRARY. Use the Text Editor to modify module SUB1 as follows:

PROCEDURE SUBHT;
BEGIN WRITELN (‘H!! FROM SUBY’);
suUB2;
SuUB3
END;

2. Execute CONFIG interactively to prepare SUB1 for compilation. Enter the following:

[1 XCONFIGI
EXECUTE CONFIG PROCESSOR INTERACTIVELY <VERSION: X.X.X YYDDD>
LISTING: .(your name).CONFIG.LISTING
SOURCE:
OBJECT:
MEMORY: 4.8

2250098-9701 7-1

7.2 Recompiling a Routine Separately

Now, enter the following commands:

*USE PROCESS <LIBRARY, PROCES>
*SETLIB ALTOBJ .(your name).CONFIG.0BJ
*COMPILE SUBH1

*DISPLAY ALL

The following is displayed:

TCONFIG <LIBRARY ,TCONFIG> 0
SuB1 <LIBRARY ,SUB1> 01
suB2 <LIBRARY ,SUB2> -

SuUB3 <LIBRARY ,SUB3>
SuB4 <LIBRARY ,SUB4>
SuUBS <LIBRARY ,SUB5>

Notice that the compile flag has been set for SUB1; only SUB1 will be recompiled.
Add the following command:
*COLLECT ALL

This command causes the object modules to be collected on an object file during the
next run of CONFIG.

Now, press the Enter key to process the commands.
Execute the TIP compiler. Enter the following:

[]XTIP
EXECUTE TI PASCAL COMPILER <VERSION: X.X.X YYDDD>
SOURCE: .COMPFIinn
OBJECT:
LISTING: .(your name).CONFIG.LISTING
MESSAGES: .(your name).CONFIG.MSSG
OPTIONS:
MEM1:
MEM2:
MEMS3:

Recall that CONFIG stores the source file in file .CONFInn (where nn is the station
number of your terminal). Since no file is specified for the OBJECT: prompt, the object
code will be stored in file .OBJECTnn.

4. Now look at the message file. Enter the following:

[]SF
SHOW FILE
FILE PATHNAME: .(your name).CONFIG.MSSG

Change 1 2250098-9701

Recompiling a Routie Separately 7.2

If the compiler executed with no errors, proceed to step 5. Otherwise, determine the
cause of the error from the compiler listing file and repeat steps 1 through 4.

Execute CONFIG in batch mode to process the deferred commands. During this run,
CONFIG performs the following:

a. Stores the object code for SUB1 in the object library (assigned synonym ALTOBJ)
b. Collects all object modules and stores them on the object file (OBJECTnn)

Enter the following:
[] XCONFIG
EXECUTE CONFIG PROCESSOR <VERSION: X.X.X YYDDD>
COMMANDS: .CPTEMPnn
CRT FILE: DUMY
LISTING: .(your name).CONFIG.LISTING
MESSAGES: ME
MODE: FOREGROUND

SOURCE:
OBJECT: .OBJECTnn
MEMORY: 438

Respond to the prompt COMMANDS by entering the file containing the deferred
command list. Recall that during the last run of CONFIG, the deferred commands were
stored in file .CPTEMPnn (where nn is the station number of your terminal).

At this point, the object code for SUB1 has been stored in the object library and all
object modules have been collected and stored on the object file.

Execute the Linkage Editor. Since all object modules have been collected and stored on
the object file, use the link control file that was created in Section 6. The file should still
be stored under the pathname .(your name).CONFIG.LC. You will also use the program
file created in Section 6. The program file should be stored under the pathname
.(your name).CONFIG.PROG. Enter the following:

[1XLE
EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME: .(your name).CONFIG.LC
LINKED OUTPUT ACCESS NAME: (your name).CONFIG.PROG
LISTING ACCESS NAME: .(your name).CONFIG.LINKLIST
PRINT WIDTH (CHARS): 80
PAGE LENGTH: 59

- If the Linkage Editor executed with no errors and no warnings, proceed to step 7. Other-
wise, determine the cause of the errors and relink.

2250098-9701 Change 1 7-3

7.2 Recompiling & Routine Separately

7. Execute your program. Enter the following:

[1XPT

EXECUTE Ti PASCAL TASK

PROGRAM FILE:
TASK NAME OR ID:

MAIN

INPUT:

OUTPUT:
MESSAGES:
MODE:

MEMORY:

.(your name).CONFIG.PROG

.(your name).CONFIG.OUT
.(your name).CONFIG.MSSG
FOREGROUND

8. Enter a Show File (SF) command to look at your output. It should appear as follows:

HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM
HI! FROM

TCONFIG
SUBl
SUB2
SUB3
SUB4
SUBS
SUBS
SUB2
SUB3
SUB4
SUBS
SUB5S

Congratulations, you have now completed the tutorial on the TIP configuration processor.

2250098-9701

CUT ALON\. .INE

USER’S RESPONSE SHEET

T1 Pascal Configuration Processor Tutorial (2250098-9701)

Manual Title:

Manual Date: __15 January 1984 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

(BUSINESS REPLY MAIL

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DATA SYSTEMS.GROUP

. ATTN: TECHNICAL PUBLICATIONS
P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

Cover Part No. 2310002-0001

Xip
TeExas
INSTRUMENTS

	000
	001
	002
	003
	004
	1-01
	1-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	4-09
	4-10
	4-11
	4-12
	4-15
	4-16
	4-21
	4-22
	5-01
	5-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	replyA
	replyB
	xBack

