PASCAL
Student Guide

Digital Systems Group
EDUCATION & DEVELOPMENT CENTER
TEXAS INSTRUMENTS R

i LATHE
INCORPORATED WEN HONT

o UTGH
pewy BUN
\TOHRBOX R

B T RE - -
OLLECTORS U
b TIC FIGUR
'- GoLD WY ATOMS

Copyright 1979
By
Texas Instruments Incorporated
All Rights Reserved
Printed In U.S.A.

The information and/or drawings set forth in this document and all rights in
and to inventions disclosed herein and patents which might be granted thereon
disclosing or employing the materials, methods, techniques or apparatus
described herein are the exclusive property of Texas Instruments Incorporated.

FASCAL COLIRSE AGENDA

MIIND&Y

1. Y10 OVERVIEW
- ¥R ARCHITECTURE OVERVIEW
- Sk SYSTEM OVERMIEL
- EYSTEM COMMAMD INTERFRETER (301D

2 FALDAL OVERVIEW

e FATIZAL DECLARATIONS
- VARIARLE DECIARATIONS
~- TYPE DECLARATIONG
~ DONSTANT DECLARATIONS

LLINCH
4, SIMPLE PROGRAM ZONTROL STRUCTURES

~ IF-THEN STATEMENT
IF-THEN-ELSE STATEMENT

~ COMPOUNTD STATEMENT
- WHILE LR

- FiR Loop

S, SIMFLE I/0
~ TYFE CHAR
~ READ STATEMENT (UNFORMATTEDD
- WRITE STATEMENT (UNFORMATTED)
-~ WRITELN STATEMENT

SIFFLE FPROCEDURES AMD FUNMCT TOME
— TIEFTNITION
FARAMETERS

i

7. AZZIGNMENT 1 (HOMEWORE)
COMPTLER OFTIONS AMD RUNTIME THECES
REATIING A MEMORY DLIMF

1

!

THEST

1.

LIINCH

WEDNEZTA

1‘

LLINTH

4,

Ul

o~
B

AY

OX10 SIYSTEM LSAGE

- RBOOTING NX10

- SOFTWARE MAINTEMANCE ST COMMANDES
— FILLE MANAGEMEMT STRIICTURE

= EYNONYMS

FRETAL DEVELOFPPMENT UMDER DE L0
- FPastal COMPILER

= LINK EDITOR

- INSTALLATION AND EXECUTION
- TEXT EDITOR

LABRORATORY

—- ASSTIGNMENT #1

hd

FRZCALL DATA TYPES
~ BODL_EAN

- ARRAYS

- RECORDS

FROGRAM CONTROL STATEMENTS
- REFEAT-INTIL LOoF

- CAZE STATEMENT

= WITH STATEMEMT

FORMATTEDR I/0

NESTED PROCEDURES

= TEFINITICN

- FARAMETER FPAZSTING

- SCOPE OF VARIARBLES

- RIOUITINE ACCESSIRILITY
= TR DOWN DESTIGM

STACE MEMORY ALLOCATION

ASSIGNMENT #2 (HOMEWORE)

95

THURSDAY
1. ILABORATORY
~ ASEIGNMENT #2

LUINCH

FOINTERS

3. SETE AND TYPE TRAMSFER
4, SERUENTIAL AND RELATIYE RECORD FILES

=, ASSTGNMENT #3 (HOMEWORE)

FRIDAY

1. LABORATORY
- ASSIGNMENT #3

LLLINIZH

2. DECLARING EXTERNAL FROCEDURES
=] DIRECT DX1¢0 INTERFACE

4, REENTRANT FASCAL

. RATCH ST FOR PASCAL

MODO1

D920 SYSTEM OVERVIEW

OBJECTIVE

T3 ABUAINT THE STUDENT WITH THE OVERALL CHARACTERISTICS
OF THE DX10 DEVELOPMENT SYSTEM.

AGENDA

HARDWARE CHARACTERISTICS 0OF THE DS770

- MEMORY ORGAMIZATION
CPU CHARACTERISTICS
REGISTER ORGANIZATION
I/0 PORTS

PERIFPHERALS

- CRU PERIPHERALS .
- TILINE PERIPHERALS

Dxio

— FEATURES

- MEMORY UTILIZATION

- MULTI-TASKING PRIORITIEZ

- SY3TEM COMMAND INTERFRETER (SCI)
~ PROGRAM DEVELOFPMENT UTILITIES

- HIGH LEVEL LANGUAGES

220/10 ARCHITECTURE

MEMORY

P70 SYSTEM OVERVIEW

- 14 BIT MEMORY WORDSZ
— FULL BYTE ADDRESSING CAPABILITY

- TWO-“3S COMPLEMENT REFRESENTATION OF - INTEGERS

MEMORY
&4 k- BYTE AIDDRESSES
> 1 BYTE O = BYTE -1 |
! 322 K WORD ALDDRESSES
0 | 15 ! BYTE 2 - BYTE ‘2 |
! MEMORY ADDRESS | H ! H
/ / /
/ / /
i BYTE i BYTE |
MSB LSE
o 1 2 2 4 -5 6 7
H H H H H H H : H BYTE = 8 BITS
H H : H H H H H Q
i H H H H H] ——— Xz
H H H H H ' H 1
H H H H H | —e—————— Xz
H H H H H Xz
! : i H X2
| H : H 4
4 H H Xz
H H : 4
i : A
! 7
- Xz or sisn bit
MSB L=R
O 1 2 2 4 5 & 7 g 2 1011 12 12 14 15
MINIMUM MEMORY - 32k WIRDS

MAXIMUIM MEMORY — 1 MILLION WORDS

CPU — CENTRAL PROCESSING UNIT

- 2 BROARDS OF TTL LOGIC
- 72 INSTRUCTIONS

INSTRUCTION TYFE

ARITHMETIC 13
BRANCH 13
COMFARE S
CONTROL/CRU 10
LOAD/MOVE =2
LOGICAL 10
SHIFT 4
XOp 1
MAFP ING 3

TOTAL 72

o

REGISTERS

0 PROGRAM COUNTER
0O STATUS REGISTER
0 WORESFACE

#% NOTE: THERE ARE NO H/W ARITHMETIC REGIZTER

U

HARDWARE REGISTERES

FPROGRAM COUNTER

a
(]

N

0
n}

WORD ADDRESSES

CONTROL FPROGRAM EXECUTION SEQUENCE

TELLS PROCESSOR WHERE TO FETCH NEXT INSTRUCTION
AUTOMATICALLY INCREMENTS BY 2 UNLESS MODIFIED
BY BRANCH-TYPE INSTRUCTION

STATUS REGISTER

)
u]

CONSTANTLY INDICATES PRESENT STATUWS OF CPL
EX. COMPARE RESULTS

ARITHMETIC RESULTS

INTERRUPT MASK

PARITY. XOP, MAPFILE, ETC.

WORKSPACE POINTER

[

WORDT ADDRESSES
INDICATES BEGINNING ADDRESS OF REGISTER FILE

REGISTER FILE I% ANY 1& SEQUENTIAL WORDS ANYWHERE
IN MEMORY

- WORKSPACE REGISTERS

MEMORY l REGISTER USE I

MEMORY

ADORESS REGISTER _
| workspPacE POINTER Ji> WP + 00 0 R T ~OPTIONAL SHIFT COUNT
) WP + 02 1
WP + 04 2
WP + 06 3
WP + 08 4 DATA
WP + 0A 5 OR
WP + 0C 6 ADDRESSES
WP + OE 7 INDEX
WP + 10 8 CAPABILITY
WP + 12 9
WP + 14 10
WP + 16 1 — BL RETURN ADDRESS
WP + 18 12 ~ CRU BASE ADDRESS
WP+ 1A 13 — SAVED WP
Wp +1C 14 - SAVEDPC
WP + 1E 16 1 1 - SAVEDST

~

INPUT/ZQUTPUT

COMMUNICATIONS REGISTER UNIT (CRLUD)

¢ BRIT SERIAL 1/0 BUZ
N SUPPORTS SLOWER 990 PERIFPHERAL DEVICES

- CRT =

— LINE PRINTERS

FLOPPY DISKS

DATA TERMINALSZ
ETC.

TILINE

0 - 16 BIT PARALLEL I/0 BUS
Q0 ASYNCHRONOUS COMMUNICATION FOR TRANSFERS
0 SUPPORTS HIGH SPEED PERIPHERAL DEVICES

- “HARD“ DISKS
~ MAGNETIC TAPE
- MEMORY

ETC.

e}

CARLD

il

]

LINE

]

LINE
o

2

a

CRU DEVICES

READER - 504
400 CARDS/MINUTE

READS FRAYED AND DAMAGED CARDS

PRINTER - 210
IMPACT
P4 ASCII CHARACTER SET
132 COLUMN PAPER - SIX PART MULTICOPY
130 CHAR/SEC

BIDIRECTIONAL PRINTING

PRINTER - 2230

DRUM LINE PRINTER

300 LINES/MINUTE -

64 ASCII CHARACTER SET

132 COLUMN FPAPER

PRINTER - 2260

DRUM LINE PRINTER

400 LINES/MINUTE

44 ASCII CHARACTER SET

132 COLUMN FAFER

772 ASR/KSER

2

a

-3 PRINTABLE CHARACTERS
30 CHAR/SECOND
KEYBOARD, FRINTER, 2 CASSETTES

CASSETTE SPEED 120 CPZ TO XMISS LINE

D

CRU DEVICES (CONTINUEDD

@11 CRT

213A CRT

O P& CHARACTER ASCII
0 12 PROGRAMMAEBLE FUNCTION KEYS
0 P60 CHAR (12 X 80) OR 1920 CHAR (24 X 20) FULL 3SCREEN

0 FULL CURSOR CONTROL. INCLUDING PROGRAMMABLE CURSOR INTENSITY

0 57 CHARACTERS + 32 CONTROL (14 FOR IMSER DEFINITION)
0 960 CHAR FULL SCREEN (12 X 80)

0 LOCATED UP-TO 2000“ FROM CPU

FLOPFY DISK

0 IBM COMPATIBLE FLEXIBLE DISKETTE (REMOVABLE)
0 - 4 DRIVES PER CONTROLLER

0 256K BYTES PER DISKETTE

0 TRANSFER RATE 250K BITS PER SECOND (154 WORDS)
0 ACCESS TIME 260 MS AVERAGE

0 PROCESSOR CONTROLLED I/0

2?90 COMMUNICATIONS INTERFACE

16

0 RS -~ 232C INTERFACE

0 SELECTABLE BALD RATES

0 SELECTABLE CHARACTER SIZE., 3-9 BIDS WITH FROGRAMMABLE
PARITY

I/0 DATA MODULE - TTL

O 1& INPUT LINES -~ SINGLE LINE ADDRESSABLE

0 14 QUTPUT LINETS - SINGLE LINE ADDRESSABLE

0O IMSER END OF MQDULE IS TTL COMPATIELE

CRU DEVICES (CONTINUED)

14 I/0 DATA MODULE - EIA

14 INPUT LINES — ZINGLE LINE ADDRESSABLE
14 QUTPUT LINES — SINGLE LINE ADDRESSABLE

WSER END OF MODULE IS EIA COMPATIBLE

PROGRAMMER

PERMANENTLY CODES PROGRAMS INTO PROM-3S ON COMMAND FROM
PROM BURNING SOFTWARE

PROGRAMS TTL PROMS AND EROMS

USED TO CREATE CUSTOM LOADERS. CONTROL PROGRAMS, ETC..
FOR 2?90/R CPU

/I

TILINE DEVICES

MOVING HEAD DISE — DOIABLO 21

4 DRIVES PER CONTROLLER

REMOVABLE CARTRIDGE

1,15M WORDS PER CARTRIDGE

TRANSFER RATE 2¢&k WORDS FER SECOND
ACCESS TIME 70MS AVERAGE

ALUTOMATIC TRANSFER

MOVING HEAD DISK — DS10

MOVING

2 DRIVES FER CONTROLLER
DUAL PLATTER. SINGLE ACCESS
9.4 MEGABYTES OF FORMATTELD STORAGE

TRANSFER RATE IS 212K BYTES PER SECOND

HEAL DISK — DS23
5 PLATTER REMOVABLE DIZE FACK
4 DORIVEZ PER CONTROLLER

25 MEGABYTES PER DISKE FACK

AVERAGE TRANSFER RATE I% 403,000 BYTES PER SECOND

MOVING HEAD DISKE - DS50

o

i

= PLATTER REMOVABLE DISK PACE
4 DRIVES FER CONTROLLER
=0 MEGARYTES FER DISK PACHK

AVERAGE TRANSFER RATE IS 403,000 BYTESZ PER SECOND

MAGNETIC TAFE DRIVE - MODEL 27°A

o

SUPPORT UF TO 4 TRANSFORTS FER CONTROLLER
VACLIUM COLUMNS, 27.5 IPS

?=TRACK 3200 - BPI NRZI VERSION OR 1400 - BPI
FE VERTION

Iy

[

DX10 OPERATING SYSTEM

FEATURES

Q

(4]

0

Q

]

MULTI-TASKING

0 SUPPORTS UP TO 255 LOGICALLY CONCURRENT TASKS
0 PRIODRITY ROLL- IN/ROLL OUT DISCIPLINE
0 MULTILEVEL PRIORITY TIME SLICE DISCIPLINE

MULTI-USER DEVELOFPMENT
2 SUPPORTS UP TO 40 CONCURRENT DEVELOPMENT STATIONS
COMFLETE FILE MANAGEMENT PACKAGE

0 UJSER DEFINED FILE DIRECTORY STRUCTURE
 FILE TYFES SUPPORTEL

- SEQUENTIAL

- RELATIVE RECCORD

- MULTIKEY INDEX

GENERAL FURPOSE AFPPLICATIONS 0.3,

0 PROCESZ CONTROL
0 DATA PROCESSING
0 SCIENTIFIC AFPLICATIONS

GENERAL 0.S5./USER INTERFACE (SCI)

0 FLEXIBLE COMMAND LANGUAGE
0 NEW COMMANDZ MAY BE CREATED
0 aLD COMMANDS MAY BE MODIFIED

HIGH LEVEL LANGUAGE SUPPORT

COBOL
FASCAL
FORTRAN
0 BASIC
0 RPG II

Lo R e

0OxX10 REQUIRED H/W

0 20/10 WITH MEMORY MAPPING
0O 44K WORDS OF MEMORY

0 MOVING HEAD DISK(S)

O VIDEC DISPLAY TERMINAL(S)
0 DIsSK BACKUFP CAFPABILITY

13

DX10 OPERATING SYSTEM (CONTINUEDD

OX10 ORGANIZATION

0OX10 RESIDES IN LOW
MEMORY AND IS
MEMORY RESIDENT

MANY LUSERS FPROGRAMS
(TASKSZ) MAY BE IN
MEMORY AT THE
SAME TIME

THE USER TASKS ~SHARE-
CPU-S TIME AND I/0
RESOURCES (MULTI-
TATK ING)

OX10 ALLOCATES

“TIME SLICEZ”

TQ ALL OR

IN THE ZYSTEM ON A PRIORITY BAZSIZ.

MEMORY

Oxi1io0

I

ISER
TASK

—
wnm
-

|
1
|
|

THE “ACTIVE” (RUNNING)

DX10 3.2 TASK SCHEDULER

" THE TASEK SCHEDULER ALLOCATES THE CPLU TO THE HIGHEST
FRIORITY TASK AWAITING EXECUTION.

Friority Structure:

|
l...}
X

vetem

R1 - R127 - Real-Time
1 ->» Foaresround Interactive

Faoreasraound Compute—Bound

8]
|
pY

ol
!
“

Backaround (Batch)

Foaur SYSGEN parameters determine how the scheduler works:

(1) TIME SLICING - YES/NO

If the time slicings option is selected, then CPUJ time
for a aiven pPriority level will be allacated on a round
rabin basis among all the active tasks on that aueue.

If time slicing is not chaosen, then the first task on a
quede will be allocated CPU time until it terminates, is
suspended, or an external event causes a rescheduling.
(2) LENGTH QF TIME SLICE
a multirple af S0 msec intervals
(2) TAsSKE SENTRY — YES/NO
it chosen durineg the system aeneration, the Task Sentry
will Tower the prioritv - of a task bw one when the task

has had control of the CPU for a specified amount of time.

if the Task Sentrv is not enabled, then a CPU-bound task
may lock aut all tasks of a lower pPriority level.

(4) SENTRY TIME

A multiP]e af S50 msec intervals.

[5

INTERACTING FACTORS IN SCHEDULING

TIME
SLICE

TASK SENTRY

YES

NCi

round robin on Queue
YES

task bumped when
sentry time up

round raobin on auede

when aueue is exhausted
next aqueue is called

first task on queue aets
CPU until sentrv time
ur, then bumped

hishest task hoas CPL
as lons as it wants

THE SCHEDULING MAY BE AFFECTED BY THEZE EVENTE:

¥*

FPREEMPTIVE RIDDING - A hisher
the CPU when it becomes

The executine task suspends
A time delaved task is due to

The priority of the executing

priority task alwars aets
active

be activated

trask is lowered bw the

Task Sentrv (if task sentrv

A task completes a time slice
was included in the swstem)

{

is

if

active in the swstem)

the time slice aoption

/I

FROV

0

TWC

SYSTEM COMMAND INTERPRETER (3SCI)

IDES

IISER INTERFACE TO DX10 INLCUDING:
- LOG IN AND QUT.
- TIME AND DATE SETUP AND INGUIRY.
— DISK VOLUME INITIALIZATION, INSTALL. AND UNLOAL.
- OISK DIRECTORY BACZKUF, RESTORE. AND COFY.
— CREATING AND DELETING DIRECTORIES AND FILES.
- CHANGING FILE NAMES AND PROTECTION.
- VIEWING AND LISTING DIRECTORIEZS AND FILES.
- COPYING DIRECTORIES AND FILES.
- LOGICAL UNIT ASSIGNMENT. POSITIONING. AND RELEASE.
- SYSTEM I/0 STATUS DISPLAY.
- SYSTEM TASK STATUS DISPLAY.
- PROGRAM ACTIVATION AND CONTROL.
- BATCH COMMANL INPUT. ACTIVATION, AND STATUZS.
- STATION CONTROL (USER ID. TERMINAL STATUS,. ETC.)
— INSTALLING AND DELETING PROGRAMS.
- ACTIVATION OF THE SYSTEM LO0G.
- PROGRAM DEBUGGING INCLUDING SUCH ITEME AS:
o BREAKPOINTS.
o MEMORY/DISK DUMF OR DISPLAY.
0 DECIMAL/HEXADECIMAL ARITHMETIC AID.
i INTERACTIVELY CONTROLLED FROGRAM TRACE.
— TEXT EDIT CONTROL.
- LINK EDIT ACTIVATION.
- ASSEMBLER, COBOL, FORTRAN, PASCAL. RFG II. AND BASIC
ACTIVATION.
- SORT/MERGE ACTIVATION.

MODES OF OPERATION

(R}

o

CONVERSATIONAL
INTERACTIVE COMMAND ENTRY AND RESPONSE

BATCH
BATCH COMMAND ENTRY FROM A SEQUENTIAL DEVICE OR FILE.

FROGRAM DEVELOFPMENT

TEXT EDITOR
O CONTROLLED VIA SCI
7 CHARACTER ORIENMTEDR EDRITING CAPARILITY

0 FILES ARE AUTOMATICALLY CREATED WHEN CREATING
NEW FROGRAM

O ANY ASCII TEXT FILE MAY BE EDITED

LINE EDITOR

O DONTROLLED VIA 50T

0 LINEES TOGETHER SLHRROUITINES AND RLUNTIME
LIBRARY ORJECT (MACHINE) FPROGRAMT FOR
INSTALLATION ANDY EXECUTION UNDER DX10.

0 PROVIDES FOR AUTO-INSTALLATION OF PROGRAMS
WHEN LINEING IS COMPLETEL.

0 FROVIDES CAFARILITY TO ZREATE AN “OVERLAYY
FROGRAM STRUCTURE.

O PROVIDES CAFARILITY TO CREATE A "REENTRANT
FROGRAM STRUCTURE.

A

A

[\

X100 SUFPORTED HIGH LEVEL LANGUAGES

e S o e G308 Sy S S A RS A 4O 04 e S S S S e} Sanst Sren® S SR S oS e S99 O e 4 SS04D St Semem s o

0 BUSINESS ORIENTED DATA FROCESSING LANGLIAGE

CONFORME TO THE ANSI COBOL SUBSET WITH SELECTED FEATURES
FROM LEVEL =2

0 INCLUDES SOME EXTENSIONS BEYOND THE LEVELS DEFINED BY ANSI

O INCLUDES A STATEMENT LEVEL DEBRUG PACKAGE FOR EASE IN DERUGGING
COROL PROGRAMSE

UTILIZESZ A REENTRANT RUNTIME FACKAGE FOR EXECUTION

TI??0 FORTRAN

0 SCIENTIFIC PROGRAMMING LANGLIAGE
1 ANSZI STANDARD FORTRAN TV PLIEE ALL RECOMMENDED ISA EXTEMSIONS
0 OTHER EXTENTIONS INCLUDE:

- VARIABLE NAMES 0OF ANY LENGTH

- GENERAL INTEGER EXFRESSIONT AS SUBCRIFTS

= VOT I/0 HANDLING STATEMENTS

= DIRECT CRU I/0 CAFPABILITY

- MIXED MODE EXPRESZIONS

— EXTENDED PRECISION INTEGERS

- 1& BIT FIXED-FPOINT ARITHMETIC
- IMFLICIT VARIABLE TYFING

TIZ%0 RFGTI

0 ORIENTED TOWARD BUSINESS PROGRAMMING AND REFORT GENERATION
O INCLUDES A PRE-FORMATTING FORM EDITOR

0 COMFATIBLE WITH THE IBM SYSTEM/Z2 RFG 11 WHERE HARDWARE AND
NFERATING SYSTEM CHARACTERISTICE PERMIT

00 ONE PASE COMPILER WILL EXECUTE IN AROUT 10K WIRDES OF MEMORY
O COMFILER GENERATES ALPHABETIC SUMMARY LISTINGS OF ALL VARIABLES

0 FACEAGE INCLUDES A UNISUE DEBLG PACKAGE

TI?Z0 PASCAL

0 GENERAL PURFOSE PROGRAMMING LANGUAGE

0 BASED ON THE “PASCAL LUSER MANUAL AND REFORT S BY EATHLEEN
JENZEN AND NIKLALIS WIRTH

n CAFABILITIES
- FROVIDESZ SCIENTIFIC PROGRAMMING CAFARILITIEZ SIMILAR T
FORTRAN WITH Z0OME IMPORTANT IMPROVEMENTS (EXTENDED FPRECISION
REAL. NUMEERZ, GENERALIZED ARRAY INDEXING CAFABILITY. ETC)
= TBLOCE STRUCTURED® ZIMILAR TO ALGOL AND FL/1

- ACCEZES TO ASSEMBLY LANGLUAGE SLRROUTINES FOR FRIMITIVE
LEVEL FROGRAMMING

~ ACCEZE TO ROUTINES WRITTEM IN OTHER LANGUAGES

- PROGRAM CONTROL STRUCTURES FIT THE CLASSICAL DEFINTTIONS
FOR - STRUCTURED® PROELEM SOLYING

TIZ20 RASIC

0 GENERAL. FLIRFOSE INTERACTIVE FROEBLEM SOLVING LANGUAGE
0 CONFORMZ TO DARTMOUTH BASIC WITH CERTAIN EXTENSIONS
0 FACKAGE TINCLUDES A MULTI-TERMINAL INTERFACE MODULE TO

COORDINATE THE INTERACTIONS OF THE EXECUTIVE. THE BASIC
INTERFRETER. AND THE OFERATING SYSTEM

Mopoz2

PASCAL OVERVIEW

PASCAL IS A "BLOCK STRUCTURED LANGUAGE". IT WAS WRITTEN WITH
THE FOLLOWING ADVANTAGES IN MIND:

EASE OF DEFINING ALGORITHM=

G020 DATA STRUCTURING FACILITIES

BIT MANIPULATION CAPABILITIES

TO FACILITATE CONSTRUCTION OF RELIABLE AND TRANSFORTABLE CODE.
- RESTRICTS FUNCTION SIDE EFFECTS
~ EXPLICIT TYPE CHECKING FOR VARIABLES
~ STRONG TYPE CHECEKEING FOR PARAMETERS

EASE OF MODIFICATION
- READABILITY
- WELL THOUGHT OUT CONTROL 3TRUCTURES FPROVIDE IMPROVED

CAPARILITIES FOR ORGANIZING THE FLOW- OF A FROGRAM

LOOKS FORWARD TO THE DEVELOPMENT OF MORE SOPHISTICATED TECHNIGUES
FOR VERIFYING THE CORRECTNESS OF PROGRAME

USES

SYSTEM PROGRAMMING

SCIENTIFIC APPLICATIONS

DYNAMIC BOUNDS FOR ARRAYS AND SETS
MULTIPRECISIOM REAL VARIABLES
MULTIPRECISION INTEGER VARIABLES
FIXED DATA TYPE

SGENERAL PURFOSE

SUPPORTS SEGUENTIAL FILES AND RANDOM ACCESS FILES
READABLE ANLDI EASILY MODIFIED

COMPARISONS WITH OTHER LANGUAGES

COMPARISON WITH ALGOL 40

ALGOL

PRINCI
FORM O

&0 WAS THE BASIS FOR FPASCAL

PLES QF STRUCTURING
F EXFRESSIONS

ALGOL &0 WAS NOT ADOPTED AS A SUBSET OF PASCAL BECAUSE

SOME C

ONSTRUCTION PRINCIPLES ESPECIALLY THOSE OF DECLARATIONS

WOULD NOT HAVE ALLOWED A CONVANIENT REFRESENTATION OF THE

ADDITI

EXTENS

RECORD

(THE
CONZ
oF A

ONAL FEATURES OF PASCAL.
IONS TO ALGOL &0

ANDN FILE STRUCTURES
LACK OF DATA STRUCTURING FACILITIES IN ALGOL 40 WAS
IDERED THE PRIME CAUSE OF ITS RELATIVELY NARROW RANGE
PPLICABILITY.)

COMPARISON WITH PL/1

FASCAL
FAZCAL
PASCAL
FASCAL
FASCAL

FASCAL

CAN BE PROCESSED BY IMPLEMENTATIONS ON SMALL COMPUTERS
MORE EASILY PRODUCES COPTIMIZELD CODE

PROVIDES BETTER CONTROL STRUCTURES

REGUIRES EXFLICIT DATA TYFES

REAUIRES EXPLICIT TYFE TRANSFERS

AVOIDS UNNECESSARY ALTERNATIVE FUNCTIONZ

S
'S

COMPARISON WITH FORTRAN

MOST OF THE DIFFERENCES BETWEEN PASCAL AND FORTRAN ARE A RESULT
OF PASCAL"S DATA STRUCTURING FACILITIES AND ITS EMFHASIS ON
PRODUCING STRUCTURED. RELIABLE CODE THAT I3 READABLE AND EASILY
MODIFIEI.

- PASCAL HAS IMPROVED CONTROL STRUCTURES FOR CONTROLLING THE
FLOW OF A PROGRAM

- THE “30TO7 STATEMENT IS IUNNECESSARY

—- CERTAIN UNRELIABLE STATEMENTS HAVE BEEN OMITTELD FROM PASCAL:
THE ARITHMETIC -“IF” STATEMENT
THE COMPUTED -“GOTO“ STATEMENT
THE “EGUIVALENCE® STATEMENT

- PASCAL IS A S5TACK IMPLEMENTED LANGUAGE.

ONLY THE ROUTINES WHICH ARE CURRENTLY INVOKED HAVE STACK SPACE
ALLOCATED.

SUBROUTINE VARIABLE VALIIES ARE NOT SAVED ONCE THE SUBROUTINE
ENDE

~ PASCAL RESTRICTS FUNCTION SIDE EFFECTS
- PASCAL REGUIRES EXPLICIT VARIABLE DECLARATIONE
- PASCAL HAS STRONG TYFE CHECEING

- PASCAL IS NATURALLY REENTRANT

&

EXTENSIONS TO THE PASCAL LANGUAGE

TI PASCAL CONFORMS TO THE DESCRIPTION OF THE FASCAL LANGUAGE

GIVEN IN THE "PASCAL USER MANUAL AND REFORT" BY KATHLEEN JENSEN AND
NIKLAUZ WIRTH. IN ADDITION, TI PASCAL OFFERS A NUMBER OF ENHANCEMENTS

#*

COMMON VARIABLES
- RERUIRE AN “ACCESS” DECLARATION
- MAY BE SHARELD WITH EXTERNAL ROUTINES

= EXIST BEYOND THE EXECUTION OF THE ROUTINE IN WHICH THEY ARE
DECLARED

DYNAMIC BOUNDS FOR ARRAYS AND SETS
MULTIFRECISION INTEGER VARIABLES
MULTIPRECISION REAL VARIABLES

“FIXED” DATA TYPE

- MAXIMUM PRECISION IS 21 BITS

“DECIMAL - DATA TYPE

= MAXIMUM PRECISION IS 15 DECIMAL DIGITS
"ESCAPE” STATEMENT

EXPLICIT TYPE OVERRIDE OJPERATOR

ASSERT STATEMENT

- TESTS A CONDITION WHICH SHOULD BE TRUE AT A GIVEN POINT IN THE
PROGRAM. IF THE CONDITION IS NOT TRUE. A RUNTIME ERROR OCCURZ.

LINKAGE TO EXTERNAL FORTRAN AND ASSEMBLY LANGUAGE SUBROUTINESD
USING FORTRAN LINKAGE

ADDITIONAL TYFE CHECKING FOR PROCEDURE AND FUNCTION FARAMETERS:

35

MODIFICATIONS TO PASCAL

RESTRICTION OF FUNCTION SIDE EFFECTS

- A FUNCTION MAY NOT CHANGE THE VALUE OF THE FOLLOWING:
A NONLOCAL VARIABLE
A VARIABLE FARAMETER OF THE FUNCTION
A “COMMON- VARIABLE
A POINTER VARIABLE FOLLOWED BY @

-~ A USER DEFINED FUNCTION MAY NOT CONTAIN:
CALLS TO UJSER DEFINED PROCEDURES OR THE STANDARD PROCEDURE
“REALD”

CALLS TO EXTERNALLY DEFINED FUNCTIONS
PROCEDURES OR EXTERNALLY DEFINED FUNCTIONS AT PARAMETERS

A “WITH” STATEMENT THAT CONTAINS A RECORD VARIABLE FOLLOWED
BY e

CALLS TO “NEW‘ OR “DISPOSE” THAT HAVE FARAMETERS THAT ARE
NOT EITHER LOCAL VARIABLES OR VALUE PARAMETERS

THE ARRAY INTO WHICH DATA IS PACKED BY “PACK” MUST BE A
LOCAL VARIABLE DR A VALUE PARAMETER

THE ARRAY INTO WHICH DATA IS UNPACKED RBY “UNPACK- MUST BE A
LOCAL VARIABLE OR A VALUE PARAMETER

THE STRING INTQ WHICH DATA IS PLACED BY “ENCODE“ MUST BE A
LOCAL VARIAELE OR A VALUE FARAMETER

THE VARIABLE INTQ WHICH DATA IS FLACED BY “DECODES MUST BE A
LOCAL VARIABLE OR A VALUE PARAMETER

THE NONFILE PARAMETERS OF A “READ” PROCEDURE AND THE “0OVAL”
PARAMETER OF AN “IOTERM‘ PROCEDURE MUST BE LOCAL VARIABLES
OR VALUE PARAMETERS

PROCEDIURES “RESET”, “REWRITE-, “EXTEND“. “WRITEECF-,
"SKIPFILES, “CLDOSE“, “SETNAME“, “SETMEMBER”. AND “IOTERM-
MAY BE USED ONLY WITH FARAMETERS OF FILE TYFPE THAT ARE
LOCAL VARIABLES

LIMITED USE OF THE “GOTOD” STATEMENT

- A PROCEDURE, FUNCTION, OR PROGRAM WITH LABEL DECLARATICONS
WILL NOT HAVE ITS CODE OQPTIMIZED BY THE TIP COMPILER

- YOu MAY NOT JUMP INTC DR OUT OF A PROCEDURE OR FUNCTION

- YOLE MAY NOT JUMP INTO A “FOR” OR “WITH” STATEMENT
EXTENDEDY FORM OF THE “WITH” STATEMENT
LOCAL SCOPE OF “FOR“ STATEMENT INDEX

“OTHERWISE- CLAUSE AND SUBRANGE CASE LABELS WITH THE “CASE”
STATEMENT

MORE FLEXIBLE I/0

- AUTOMATIC CREATION OF FILES FOR THE DEFAULT FILES “INPUTS
AND “OUTPUT~

- CRU I/0

CONSTANTS AS PROGRAM FARA&ETERS

THE PREDEFINED SYMEBOL “MAXINT” IS NOT SUPFORTELD

ALTERED FPRECEDENCE FOR LOGICAL OPERATORE “NOTY, “AND“, AND “OR-".

- THESE OPERATORZ ARE EVALUATED IN THIS ORDER AND HAVE
THE LOWEST OPERATOR FRIORITY

PROGRAM SAMPLE: .
VAR TIME. MAX. MIN : REAL;

FPROCEDURE READ.ECHO (VAR TIME : REAL):
BEGIN

READ(TIME) 3

WRITELN(“TIME = “,TIME)s
ENDs

PROCEDIIRE DETERMINE_MAX_MIN (VAR MAX, MIN : REAL:
BEGIN

IF TIME > MAX THEN MAX 1= TIME

ELSE IF TIME < MIN THEN MIN = TIME
END3

(3 MAIN)
BEGIN
RESET (INPUT)3
IF NOT EOF THEN BEGIN
READ_ECHO (TIME)3
MAX = TIMEs MIN = TIME 3
IF EOLN THEN READLNS
ENLis
WHILE NOT EOQOF DO
IF NOT EOLN THEN BEGIN
READ_ECHO (TIME)3
DETERMINE_MAX_MIN(MAX. MIN, TIME):
END
ELSE READLNS
WRITELNS

TIME

WRITELN("MAX TIME IS “,MAX,“ MIN TIME IS -“,MIN);

END -

b
5N
v

REAL)3

S0

N

MQODOZ

DATA TYPES

QBJECTIVES

STUDENTS SHOULD BE ABLE TO WRITE DECLARATIONS FOR VARIABLES AND
CONSTANTS OF THE FOLLOWING TYFES:

0 INTEGER
O LONG INTEGER
0 REAL

STUDENTS SHOULD BE ABLE TO USE THESE DATA TYFES IN EXPRESSIONS
TO S0LVE A SPECIFIED PROBLEM.

AGENDA

1. IDENTIFIERS

2. VARIAEBLE [DECLARATIONS

Z. DATA TYFES
— INTEGER
= LONG INTEGER ¢ LONGINT)
- REAL

4. EXPRESZIONS

S. TYFE DECLARATIONS

to CONSTANT DECLARATIONS

D

o

IDENTIFIERS

"
e

DEF:

VARIABLES AND DATA TYPES

NAMES DENOQTING ONE OF THE FOLLOWING:

SYNTAX:

— CONSTANTS

- TYPES

- VARIABLEZS

- PROCEDURES
- FLUNCTIONZ

- ESCAPE LABELS

- = PROGRAMSZ

0 MUST BEGIN WITH A LETTER OR &

G REST OF

- LETTER

- DIGIT

- %

- LINDERSCORE

O NO LIMIT ON LENGTH

CHARACTERS MAY BE

(-)

0 CANNOT BE THE SAME AS A REZERVED IDENTIFIER

RESERVEL IDENTIFIERS:

ACCESS
AND
ARRAY
ASSERT
BEGIN
BOOLEAN
CASE
CHAR
COMMON
CONET
DECIMAL
nIv

oo

EXAMPLES:

DOWNTO INTEGER RANDOM
ELSE LAREL REAL
END LONGINT RECORD
ESCAPE MO REPEAT
FALSE NIL SET
FILE NGT TEXT
FIXED oF THEN
FOR OR TO
FUNCTION OTHERWISE TRUE
GOTO QuUTPUT TYPE
IF FACKED LUNTIL
IN PROCEDURE VAR
INPUT PROGRAM WHILE
WITH
LEGAL ILLEGAL

READ_CHARACTER _VALLE

REAL_CHAR ARRAY

ARRAY3 2TIMES

ABRS VAR

VARIABLES AND DATA TYFES

VARIABLES

DEF: IDENTIFIER WHICH MAY BE IISED TO STORE A DATA VALLE OF A
SPECIFIED TYPE.

EVERY VARIABLE USED IN A FASCAL PROGRAM, MUST BE
DECLARED IN A “VAR“ DECLARATIONM.

“VARY DECLARATIONS

SYNTAX:
VAR < V LIST > = < TYPE >3 [< V LIST > ¢ < TYPE > 1 ...
WHERE
< V LIST > — LIST OF VARIABLE NAMES WHICH ARE BEING DECLARED

< TYPE » - THE DATA TYPE WHICH MAY BE STORED IN ANY OF THE
IDENTIFIERS IN < V LIZST

< TYPE » MAY BE:

O INTEGER

O LONGINT

D BOOLEAN ENUMERATION TYPES
O CHAR

0 SCALAR

O SUBRANGE

0 REAL

0 FIXED

0 DECIMAL
0 POINTER
7 ARRAY

0 RECORID

n SET ‘
0 FILE

0 LISER DEFINED TYFE
EXAMPLE: VAR COUNTER, INDEX, MAX @ INTEGER:
SALARY, CO=T. RATE @ REAL:S

#¥NOTE: THE KEY WORD “VAR” AFPEARS ONLY ONCE.

NUN}

\J

VARIARBLE TYFES

et e e unre oo e oo o Soren S S e o0t St

INTEGER TYFE

B L T E——

=327468 .. ERT7LET7 ¢ 1& RBIT. 275 COMPLEMENT
DECLARATION:
VAR <V LIST » 2 INTEGER:
EXAMFLE:

VAR COLNT, TEST @ INTEGER?

INTEGER DOFERATORS

+ - * Iy Mon

DIV — INTEGER DIVISION (E.G. S DIV &

[
I
P2

MO - REMAINDER (MODULO) (E.G.

d

MODb 2 = 1)

EXTENMDED INTEGERS (LONGINT)

RANGE s
-2147423464% ., 2147483647 (ZF BIT. 2% COMFLEMENT)
DECLARAT ION:
VAR < YV LIST > = LONGINTS
OFERATORS

SAME AS FOR INTEGERS

#ENOTE: CONSTANTS MAY BE LONGINT BY USING THE SUFFIX 7L<

E.G. 7257 L61L

3/

[§N)
A

INTEGER EXFRESSIONS

VAR VAL, NVAL. IVAL : INTEGER:

VAL = 273 (# THIS I3 A COMMENT #)
NVAL == VAL MOD &3 (# <=7 IS5 THE ASSIGNMENT OFERATOR #)

(# WHAT VALUE IS ASSIGNED TO IVAL IN THE FOLLOWING “STATEMENT 77?7 #)

IVAL = NVAL + 92 DIV 25 (¥ _____.___ #)
VAL := #FF3 (# “#° MEANS HEXADECIMAL #)

OPERATOR FRECEDENCE

/ MoD oIy HIGHEST PRECEDENCE

< = > A=] a2 IN

oOR LOWEST PRECEDENCE

#4# NOTE: OFERATORS WITH THE SAME PRECEDENCE ARE EVALUATED LEFT TO RIGHT

COMPILER OPTION CROVER

- ENABLES OR DISABLES CHECKING OVERFLOW WHEN EVALUATING INTEGER,
LONGINT. DECIMAL, AND FIXED EXPRESSIONZ

-~ DEFALULT IS FALSE

Y
1
S

REAL TYFE

RANGE:
FRACTION - & TO 7 DECIMAL DIGITS OF FPRECISION
EXPONENT ~ 1.0 X 10##-78 .. 1.0 X 10##75

##NOTE: THIS STANDARD FRECISION MAY BE OVERRIDDEN EY SPECIFYING
THE DESIRED ACCHRACY WHEN A VARIARLE I3 DECLARELD

E.G. VAR X @ REAL (1%) ——3 12 DECIMAL DIGITS

DECLARATION:

VAR < V LIST » ¢ REAL [(< ACCURACY >) 13

EXAMFLE:

VAR TEST. NEW
A, B

REAL. ¢ 132)
REAL.

(K9
By

ALY
(LY

REAL CONSTANTS

SYNTAX:
E +
< DIGITS > . < DIGITS > < DIGITS >
Q -
OR
E +
< DIGITS == < DIGITS >
o) -
WHERE »

< DIGITE 2> =0 .. %

SCIENTIFIC NOTATION

m
]

NUMBER IS REFRESENTED INTERNALLY AS AN EXTENDED
PRECISION REAL NLUMBER

Un)
i

EXAMPLES:
LEGAL : 0.3, SE-32, 827.326E2, 12.7E-5

ILLEGAL: 32, 450, 24.ES, .001, @ #120.1

##NOTE: THE DECIMAL POINT MUST BE SURROUNDED BY DIGITS!!!

(v
O

REAL NUMRBRER REFRESENTATION

SINGLE PRECIZION REAL NUMBERS ARE STORED IN 2 14-RIT WORDS

o

AT FOLLOWS:
radi=x point

first i S 1 exponent i most sianificant! normalized

werd H H 1 2 hits of number he=zadecimal
———————————————————————————————————— e e e fractian

secand i least significant 14 hits H

word H '

B i e e L T S SN S VS SR S S —

» — SIGN OF THE FRACTION

EXPONENT - HEXADECZIMAL EXPONENT FOR THE FRACTION,.
EXFONENT IZ RIASED BY 40 (I.E. 41 = 1,
40 = O, 3F = -1, ETC.)

NMLIMEBER - 24 BIT HEXADECIMAL NORMALIZED FRACTION

EXTENDED FRECISION REAL NUMBERS ARE STORED IN 4 14-RIT WIRDS,
THE =IZE OF THE EXPONENT IS NOT INCREASEL.

EXAMPLES

1.0 O 41 100000 4110 Q000
100.0 0 42 &£40000 4264 QOO0
-1.0 1 41 100000 C110 0000
. 03125 O ZF S00000 SFS0 0 Q000

T4

«ad

(f\

REAL COPERATORS

##NOTE: THERE IS NO EXPONENTIATION OPERATOR

REAL EXPRESSIONS

VAR A. B & REAL;

MIXED' MODE

< EXPRESSION > < OPERATOR > < EXPREZSION -

- REAL RESULT IF AT LEAST ONE OPERAND IS REAL.
- INTEGER REZULT IF BOTH OPERANDS ARE INTEGER.

WHERE.,

< OPERATOR Z» IS +, —, #

< EXPRESSION Z / < EXFRESZION > IZ ALWAYS REAL

-

— DIV AND MOD MAY ONLY OPERATE ON INTEGER EXFRESSIONS

- INTEGER VALUEZ= MAY BE IMPLICITLY CONVERTED TG REAL
BY ASSIGNING IT TO A REAL VARIABLE.

< INTEGER VARIABLE > := < REAL EXPRESSIOM 2 -— ILLEGAL

< REAL VARIABLE » := < INTEGER EXFRESSION > —-— LEGAL

##NOTE: IN ALL OTHER CASES,. THE TYFPE OF THE EXFRESZION SHOULD MATCH
THAT OF THE VARIABLE ON THE LEFT 0OF THE EGUAL SIGN,

+ 15.0) # (B - Z.1) (# PAREN“S HAVE THE USUAL MEANING #)

MIXED MODE EXAMPLES

EXFREZZION REAL VALUE
S /02 = 2.5
S DIV 2 # 10,0 = 20.0
SERT (9) = 3.0
4.0 OIV 2.0 = # ILLEGAL #
3/ 03 % 10.0) = 0.1

EXAMFLE:
FROGRAM ERRORS:

(# THIZ PROGRAM ILLUSTRATES MODE ERRORS #)

VAR FI, FIOVERTWO : REALS
INT : INTEGERS:

BEGIN (3% ERRORZ #)
FI := 3.1415%3

FIOVERTWO == FI DIV 23 (% ILLEGAL #)
INT = FI / 23 (# TLLEGAL #)
INT := ROUND ¢ PI /7 2 (¥*] #*)

ENL. (# ERRORS 3#)

CONSTANT DECLARATIONS

VALLES MAY BE ASSIGNED TO VARIABLE NAMES BY USING CONSTANT
DECLARATIONS.

SYNTAX :

)

CONST < C NAME > = < © EXPRESSION 5 [< & NAME » = <« © EXPR = 1 ..

&
5,

WHERE,
< C NAME > - IDENTIFIER FOR CONSTANT

< C EXPRESSION > — EXPRESSION WHICH MAY BE EVALUATED AT COMPILE TIME.

NOTES:

- THE TYPE OF THE EXPRESSION DETERMINES THE TYPE
OF THE CONSTANT

- NEW VALLIES MAY ## NOT ## BE ASSIGNED TO A CONSTANT AT RUN TIME!

EXAMPLE:
CONST PI = 32.14159;
R = 27.03
VAR AREA : REAL:

AREA := PI # R # R3%-

PI == 2.7; (3# ILLEGAL +)

TYFE DECLARATIONS

NEW DATA TYPES MAY BE SPECIFIED OR STANDARD DATA TYFES RENAMED
BY USING A “TYPE” DECLARATICON.

SYNTAX:
TYPE < T NAME 2> = < TYPE 23 [< T NAME > = < TYPE 25 1 ...

WHERE»
< T NAME > - NEW TYPE IDENTIFIER

<. TYPE > - SAME AS FOR THE “VAR- DECLARATION
EXAMPLE:
TYPE XREAL = REAL¢ 15)3
LI = LONGINT;

VAR As B : REALS

Cy, D : XREAL3

W: X = INTEGER:

Y, Z = LIs

##NOTE: OTHER USES FOR THE “TYPE- DECLARATION WILL BRE ADDRESSED LATER.

>

~N

0
L]

WORKSHEET 1

DECLARE A CONSTANT C TO HAVE A VALLIE OF 200.
DECLARE A VARIABLE I_NUM TO BE OF TYPE INTEGER
DECLARE A VARIABLE RNUM1 AND RNUM2 TO BE OF TYPE REAL.

WRITE A STATEMENT TO ASSIGN RNUM1 THE VALUE OF THE
FOLLOWING EXPRESSION. (C IS A CONSTANT. B IS A REAL
VARIABLE.)

RNUMZ X 2.0

C-(B+ 1)

DECLARE A NEW TYPE R& WHICH WILL BE & REAL NUMBER WITH
3 DECIMAL PLACES OF ACCURACY.

GIVEN THE FOLLOWING DECLARATIONS, INDICATE WHETHER THE
EXPRESSIONS ARE LEGAL: ~

CONST RC = 5.234
VAR R1, R2 : REALS
I1, IZ : INTEGER;
Rl = R2 / 25 Q. 12 2= 3/ 43
R2 2= I1 + 123 10. Iz = 2.0 DIV 4.0;3
I1 == RZ;

4/0

STATEMENTS
D STATEMENTS PERFORM ARITHMETIC AND LOGIC OPERATIONS
E.G.
- CALL PROCEDURES AND FUNCTIONS

- CONTROL SERUENCE OF PROGRAM EXECUTION
- PERFORM EVALUATION AND ASSIGNMENTS OF VALUES

SIMPLE STATEMENTS

- ASSIGNMENT
- PROCEDURE
- ESCAPE

- 5070

- ASSERT

- EMPTY

STRUCTUREL STATEMENTS

COMPCOUND
CONDITIONAL
REPETITIVE
- WITH

PASCAL PROGRAM FORMAT

PROGRAM < PROG. NAME >3

LABEL DECLARATIONS 23

CONSTANT DECLARATIONS >3

TYPE DECLARATIONS >3

VARIABLE DECLARATIONS >3

COMMON DECLARATIONS 23

ACCESS DECLARATIONS 23

PROCEDURE AND FUNCTION DECLARATIONS 5

ST A AN

BEGIN
L BODY OF PROGRAM (BLOCK) 1

ENL.

o

MoDo4

MODULE 4
PROGRAM CONTROL STRUCTURES I

OBJECTIVES

- BE ABLE TO EVALUATE BOOLEAN EXPRESSIONS

- BE ABLE TO USE THE FOLLOWING PROGRAM STRUCTURES
IF-THEN-ELSE STATEMENT
COMPOUNLD STATEMENT
WHILE STATEMENT
FOR LOOP

TESTING METHOD: WORKSHEET
PROGRAMMING ASSIGNMENT 1

AGENDA

1. BOOLEAN EXPRESSIONS
- RELATIONAL OPERATORS

2. PROGRAMMING STRUCTURES

-~ IF-THEN-STATEMENT
COMPOUND STATEMENT
IF-THEN-ELSE STATEMENT
NESTED IF STATEMENT
WHILE LOOP
FOR LOOP

i

WORKSHEET

PROGRAM CONTROL STRUCTURES

BOOLEAN EXFRESSIONS

DEFINITION: A BOOLEAN EXPRESSION IS AN EXPRESSION WHICH EVALUATES
TG TRUE OR FALSE

RELATIONAL DPERATORS

A BOOLEAN EXPRESSION CONTAINS ONE OF THE FOLLOWING RELATIONAL
QOPERATORS:

= EQUALITY
< LESS THAN
> GREATER THAN

<> INEQUALITY

<= LESS THAN OR EQUAL TO
>= GREATER THAN OR EQUAL TO
EXAMPLES:
A =3 IS TRUE WHEN A IS 3 AND FALSE THEN A IS5 NOT 2
A <> B IS TRUE WHEM A IS NOT EQUAL TO B AND FALSE

WHEN A AND B ARE ERUAL
o9+ 3< 2+ 4 IS FALSE

##¥NOTE: =7 IS A RELATIONAL OPERATOR. ~:=- ASSIGNS A VALLE

IF-THEN STATEMENT

SYNTAX: IF < EXPRESSION > THEN < STATEMENT -
THE STATEMENT WILL BE EXECUTED IF THE EXPRESZION IS TRUE.
IT WILL NOT BE EXECUTED IF THE EXFPRESSION I3 FALSE.

EXAMPLE: IF NUMBER > MAX THEN MAX &= NUMBER:

™~ FALSE
NUMBER > MAx\?

TRUE

MAX = NUMBER

NEXT STATEMENT

4

IF-THEN-ELSE STATEMENT

SYNTAX: IF < BOOLEAN EXPRESSION > THE <« STATEMENT1 >
ELSE < STATEMENTZ =

NOTE: THERE IS5 NO “3“ BEFORE “ELSE-

IF THE EXPRESSION IS TRUE THEN ONLY STATEMENT! WILL EXECUTE.
IF THE EXFRESSION IS FALSE THEN ONLY STATEMENTZ WILL EXECUTE.

EXAMPLE: FIND THE ABSOLUTE VALUE ABSX OF REAL NUMBER X.

VAR X, ABSX : REAL3

-

IF X >= 0 THEN

ABSX = X

ELSE ABSX =

=X3

FALSE

TRUE

ABSX :

]
b

ABSX := -X

yér

COMPOUND STATEMENT

SOMETIMES YOU MAY WISH T EXECUTE A GROUP OF STATEMENTS WHEN A CERTAIN
CONDITION IS TRUE INSTEAD OF ONLY ONE. PASCAL ALLOWZ STATEMENTS TO BE
GROUPED TOSETHER BY UUSING A “BEGIN-END- BLOCEK.

SYNTAX: BEGIN
CSTATEMENT>;

<STATEMENTZ> (#NO <37 #)
END

#% NOTE: THERE IS NO “3“ BEFORE “END”

WHEN ONE OR MORE STATEMENTS ARE ENCLOSED WITHIM A “BEGIN-END~” BLOCK.
THE ENTIRE GROUP FROM “BEGIN” TO “END” FUNCTIONS AS A SINGLE STATE-
MENT.

EXAMPLE: IF COUNTER = MAX THEN
BEGIN
NUM 2= NUM + 13
AVG := SUM / COUNTER;
COUNTER == (# NO 757)

END3

4

NESTED “IF“ STATEMENT

SYNTAX: IF <EXPRESSIONZ THEN
IF <EXPRESSIONZ THEN <STATEMENTX
ELSE <STATEMENT>
ELSE <STATEMENTZ

EXAMPLE: IF CODE = O THEN

DEDUCTION == ZERODEP (# NO 757 #)
ELSE IF CODE = 1 THEN
DEDUCTION = ONEDEP (# NO 757 #)

ELSE IF CODE = Z THEN
DEDUCTION = TWODEPS

##NOTE: EACH “ELSE- IS ASSOCIATED WITH THE CLOSEST “IF”

BUT —— WHAT IF YOU WANT THIS?
IF <EXPRESSION> THEN
IF <EXPRESSION> THEN <STATEMENT>
ELSE <STATEMENT>
IN SPITE OF THE FORMAT. THE “ELSE- WILL BE ASS0OCIATED WITH THE
SECOND “IF- SINCE IT IS THE CLOSEST ONE.
THIS PROBLEM CAN BE SOLVED BY USING A “BEGIN-END” BLOCK:
IF <EXPRESSIONZ THEN
BEGIN
IF <EXPRESSION> THEN <STATEMENTZ
END . (% NO "3 #)

ELSE <STATEMENT>S

EXAMPLE:

A SURVEY I3 BEING MADE DQF THE
RECEIVED BY DRIVERS. DRIVERS

- SEX
- AGE (< 21, > = 21)

- # 0OF TICKETS (< =%, & TO

GROUP1 MIGHT BE FEMALES LINDER

NUMBER OF TRAFFIC TICKETS
ARE GROUPELD BY:

10, > 10)

21 WITH S OR FEWER TICKETS.

WRITE AN “IF- STATEMENT TO SUM THE GROUPS FOR MEN.

ASSUME SEX CODES ARE “F“ AND

.fM/-

WHILE LOOF

SYNTAX: WHILE <BOOLEAN EXPRESSfDN} D0 <STATEMENTZ

- THE WHILE STATEMENT SPECIFIES THAT A CERTAIM STATEMENT
WILL BE REPEATEDLY EXECUTED WHILE A CERTAIN CONDITION IS TRLUE.

IF THE STATEMENT IS INITIALLY FALSE THE EXPRESZION WILL NOT BE

EXECUTED AT ALL.
- THE STATEMENT MAY BE A COMPOUND STATEMENT.

- THE EXPRESSION IS EVALUATED BEFORE EACH ITERATION OF THE LOOP,
S0 KEEP IT SIMPLE.

START

FALSE

TRUE

STATEMENT,

##NOTE: THE VARIABLE CONTROLLING THE LOOP MUST BE MODIFIED IN
THE STATEMENT T0O AVOID AN INFINITE LOOP.

-~

EXAMPLE 5 FIND THE SMALLEST N SUCH THAT

1+ 1/2 + 1/ +...+ 1/N IS GREATER THAN SOME
CONSTANT C

FROGRAM FINDN3

CONST C = 2.5%
VAR N @ INTEGERS
SUM = REALS

BEGIN
:= 03
SUM = 03
WHILE SUM <= C DD
BEGIN
N =N
sSuMm :=
END3

+ 13
SUM + 1 / N

(# PRINT QUT N)

END. (# FINDN *)

EXAMPLE: COMPUTE N FACTORIAL
PROGRAM NFACTORIAL;
VAR I, J, N : INTEGERS

BEGIN (# NFACTORIAL)
L READ A VALUE FOR N 1

I := 13
J o= 13
WHILE I < N DO
BEGIN
I :=1 + 13
J =TI # J
END3

[WRITE OUT J 1
END. (% NFACTORIAL #)

A

(@

FOR-LOOP

THE FOR-LOOP IS LIKE THE -“D0“ STATEMENT IN FORTRAN.

SYNTAX: FOR <VARIABLE> := J{EXPRESSION> TO <EXPRESSICONZ DO
<STATEMENT>
OR

FOR <VARIABLE> := <{EXPRESSION> DOWNTO <EXPRESSION> DO
<STATEMENT>

EXAMPLE: PROGRAM FORLOOPS

VAR N ¢ INTEGER;
SUM1. SUM2 : REAL3

BEGIN
READ(N) 3
SUM1 = 03
SUM2 == 03
FOR I == 1 TO N DO
BEGIN
SUM1 2= SIML + 1 / I3
SUM2 := SUM2 + SUM1
END3

WRITE(SUM1, SUM2)
END.

A

LT

ErTHE 1LLTHMIT
TMEINE THE

IF N Was

THEZ TNOEX

COFPTLER OFTION

F &,

E

AT I

NEFALLT I3

SnE
i

T

..4 i. S Be

i

THE

O,

L

TR

N D

CRTIGINALLY

oF

THE

FOR

FORTNDF X

FALGE

I R R T
LR ERCT S TR

PO L0 i

U T A

10, THE LOOF WILL

LU THHES

NOT HAY

4 T

BT

BRI ART R

ESECUTED 1o TIFED,

TR DL AREIN

\
(/;

G)

SUMMARY

THE “IF“ STATEMENT SPECIFIES THAT A STATEMENT BE EXECUTEDR IF
A CERTAIN CONDITION IS TRUE. IF IT IS FALSE. EITHER NO STATEMENT
IS EXECUTED OR THE STATEMENT FOLLOWING THE “ELSE” IS EXECUTED.

“IF“ STATEMENTS MAY BE NESTED. THE “ELSE” IS ASSOCIATED WITH THE
MOST RECENT “IF”.

PASCAL ALLOWS US TO FORM A COMPOUND STATEMENT CONSISTING OF ONE
OR MORE STATEMENTS ENCLOSED BY A BEGIN-END. A COMPOUND STATEMENT
ACTS EXACTLY LIKE A SINGLE STATEMENT.

A BOOLEAN EXPRESSION EVALUATES TO TRUE OR FALSE. IT CONTAINS
ONE OF THE RELATIONAL OPERATORS =, <, 3, <=, =,

THE WHILE STATEMENT ALLOWS A STATEMENT TO BE EXECUTED REPEATEDLY
WHILE A CERTAIN CONDITION IS TRUE.

THE FOR LOOP ALLOWS A STATEMENT TG BE EXECUTED REPEATEDLY A
SPECIFIED NUMBER OF TIMES. IT IS SIMILAR TO THE ‘DO LOOP IN
FORTRAN.

N
)
Csy

1.

ta

)

4.

WORKSHEET 2

EVALUATE THE FOLLOWING EROOLEAN EXFRESSIONS:

4 1

N <= 10
WHEN N = 7
WHEN N = 10
WHEN N = 11

WRITE AN “IF- STATEMENT FOR EACH OF THE FOLLOWING:

S

1(:).

ADD 1 TO THE VALUE OF I WHENM I IS LESS THAN N.

IF A IS LARGER THAN B THEN DIFF IS EQUAL TO A — B, BUT
IF B IS LARGER THAN A THEN DIFF IS EQUAL TO B - A.

USE A COMPOUND STATEMENT IN WRITING THIS “IF” STATEMENT:
IF A IS LESS THAN OR EQUAL TO B THEN A EQUALS A TIMES B AND
COUNTER EGIUJALS COUNTER PLUS 1. OTHERWISE COUNTER EQUALS 0.

USE A NESTED “IF“ STATEMENT IN WRITING THE FOLLOWING:
IF A=BAND IF C =D THEN SUM = SUM + D

BUT IF C = E THEN SUM = SUM + E

BUT IF C IS ANYTHING ELSE, SUM = O.

WRITE A “WHILE- STATEMENT THAT WILL ADL 1 TO COQUNTER AND
ADD GRADE TD SUM AS LONG AS COUNTER IS LESS THAN OR EQUAL TO
NUMGRADES.

USING A FOR LOOP CALCULATE THE VALUE OF THE FOLLOWING
SUM WHEN I GOES FROM 1 TO 20: 1 + 1/72 + 1/2 + ... + 1/1

MODOS

INPUT/QUTPUT

OBJECTIVES:

BE ABLE TO DECLARE A VARIABLE TO BE OF TYPE CHAR
ANDI ASSIGN IT A VALUE.

BE ABLE T READ AND WRITE CHARACTERS OR NUMBERS UUSING A TEXTFILE
OR THE DEFAULT FILES “INPUT< AND “OUTPUT”.

BE ABLE TO SHOW ON A DIAGRAM HOW THE INPUT MUST LOOK FOR A GIVEN
REALl STATEMENT

BE ABLE TO SHOW HOW THE QUTPUT WILL LOOK AFTER A GIVEN WRITE
STATEMENT IS EXECUTED.

BE ABLE TO USE THE BOOLEAN FUNCTIONS EOF AND EOLN TO TEST FOR
THE END OF FILE AND THE ENLI OF A LINE.

AGENDA

1.

CHAR DATA TYPE

2. TEXTFILES
3. INPUT

~ READ STATEMENT
WORKSHEET

- RESET

~ READLN

- EOF

- EOLN
4. OUTPUT
WORKSHEET

v

TR ORDERIRG T8 TMPLEMENTAT IO DEPPNDENT .

SERTAYT VAR OH T THARS

WETTIMGE CHARACTERR:

UL N

TENTER VALUFE GRE WRTITTEN A% A SINGLE b
BY AFGSTROFHES

T e e s
f = +

SR TED By 2

""" THE AFOETROFHE -~ AND THE NUMBER TGN # ARE
CONSECUTIVE CHARACTERS

A CHARACTER MAY BE WRITTEN A5 & # FOLLOWED Ry T7T5 2 DUGIT
HEX TOECTMAL CHARATTER CODE

BE WRITTEN T IR #4413
HE O WRITTEM A I HE5

G WRTTTEN i [R #01

~ I
.
R b

=

‘.-
m

ot
_l
Ix
=
=
toal
)

= RMOTINE THAT THE NHARATTER REFPRESIMTATION OF 1 13
THE NUMEBER 1. YO CANNOT FERFORM SARITHAETTC
CHARACTERS,

7
f g DR

Giatermines Which of the followins are ieasld

aa
11
Hi
oA
13

TEXTFILES

DEFINITION: A FILE WHOSE COMPONENTS ARE CHARACTERS. TEXTFILES ARE
THE MOST COMMONLY USED FILES.

— THE TYPES WHICH MAY BE READ TO OR FROM A TEXTFILE ARE

CHAR

INTEGER

LONGINT

REAL

DECIMAL

FIXED

BOOLEAN TRUE, FALSE. T» OR F
STRINGS

- FOR TYPES OTHER THAN CHAR AN IMPLICIT DATA CONVERSION IS MADE.

SYNTAX: VAR FILENAME : TEXTs

DEFINES A FILE OF TYPE TEXT

EXAMPLE: VAR TFILE : TEXT:

DEFINES TFILE AS A TEXTFILE

FILES “INPUT- AND “OUTPUT”

PASCAL PROVIDES TWO DEFAULT FILES, “INPUT- AND “OUTPUT”
WHICH THE PROGRAMMER CAN USE WITHOUT SPECIFYING
THE FILE NAME.

READ STATMENT - LINFORMATTED

SYNTAX: READ (FILENAME., V1, ..., VN) READS FROM FILE FILENAME

READ (VL. ...» VN) READZ FROM DEFAULT FILE INPUT
EXAMPLES:
READ (TFILE. CH) READS A CHARACTER FROM FILE
TFILE AND ASSIGNS ITS VALUE TO
CH.
READ (DATA. NUM1. NUM2) READS 2 VALUEZ FROM FILE DATA
AND ASSIGNS THEM TO NUM1 AND
NUMz.
READ (CH) READ FROM THE DEFAULT FILE “INPUT”

NUMBERS —-- THE ENTIRE FIELD IS READ

GIVEN THE DECLARATIONS
VAR I : INTEGERS;

NOTE: FIELDS MUST BE SEPARATED BY A BLANK

CHARACTERES -- MUST BE READ ONE AT A TIME

GIVEN THE DECLARATIONS
VAR CH ': CHAR:

t T 2 H 2 I &2 5 2 1 I 2 5 ¢

EXECUTING READ (CH) RESULTS IN

= I =

—
I
-
)
)
I
il
-

WORKSHEET =

GIVEN CH OF TYPE CHAR, WRITE A STATEMENT ASZIGNING CH

THE VALUE “A“.

ASSIGN CH THE VALUE OF THE CHARACTER WHOQSE HEX CHARACTER ZODE IS 41

WRITE A DECLARATION STATEMENT TO DECLARE A FILE

WRITE A READ STATEMENT FOR EACH OF THE FOLLOWING:

4.

S.

b.

7.

READ ONE INTEGER N FROM A FILE CALLED “DATA”

READ TWO NUMBERS R1 AND R2 FROM THE DEFAULT FILE

SHOW HOW THE DATA FOR THE PREVIOUS READ WOULD LOQK ON A CARD

IF Rl = 12345 AND R2 = 4762

“INPUT”

“NAMES”

READ A CHARACTER CH FROM THE DEFAULT FILE

“ INPUT”

AS A TEXTFILE

RESET STATEMENT

DEFINITION: A FILE MUST BE “RESET- BEFORE 'IT MAY BE READ. RESET
OFPENZ THE FILE AND POSITIONS THE FILE POINTER TO THE BEGINNING OF THE FILE.

SYNTAX: RESET (FILENAME)

EXAMPLE: RESET (INPUT) RESETS THE FILE “INFUT”
RESET (DATA) RESETS THE FILE -“DATA”

SUPPOSE THE INPUT FILE CONSIST OF THE THREE LINES

THEN RESET (INPUT) YIELDS

(1]
s
s
(1]
[1]
s
.
(1]
=s

EXAMPLE: READ A CHARACTER FROM DEFAULT FILE “INPUT”

RESET (INPUT)3
WHILE CH <> - “* Da
BEGIN
READ (CH)s
(#PROCESS CH3)
END3

NOTE: “INFLIT” MUST BE SPECIFIED IN THE RESZET STATEMENT.

L0

EOF FUNCTION -- HAS VALUES TRUE OR FALS

DEFINITION: INDICATES IF THE END OF THE FILE HAS BEEN REACHED.

ECF WILL HAVE A VALUE OF TRUE IF THE LAST RECORD

IN THE FILE HAS BEEN READ AND FALSE OTHERWIZE.
SYNTAX: EOF (FILENAME)

EOQOF - DEFAULT FILE “INPUT” IS ASSUMED

EXAMPLE: IF NOT EOF THEN

BESIN

(# PROGRAM #)

END3

EODLN FUNCTION —— HAS VALUES TRUE OR FALSE

DEFINITION: INDICATES WHEN THE END OF LINE HAS BEEN REACHED. EOLN WILL
HAVE A VALUE OF TRUE IF THE LAST CHARACTER ON THE LINE HAS
BEEN READ.

)

SYNTAX: EOLN (FILENAME)
EOLN - DEFAULT FILE “INPUT” IS ASSUMED

EXAMPLE: WHILE NOT EQF DO
IF NOT EOLN THEN
BEGIN
READ (CH) 3

(# PROCESS (CH) #)
END3

##NOTE: WHEN READING CHARACTERS. IF THE EODLN MARKER
IS ENCOUNTERED. A BLANK IS READ

: : : : : t EQLN = EOF =

N

AT THIS FPOINT EOLM = TRUE, EOF = FALSE

READ (CH) => CH = , EOLN = FALSE, EOF = TRUE

()l

READLN =STATEMENT

SYNTAX:

EXAMPLE:

-

SKIPS TO THE BEGINNING OF THE NEXT LINE.
READLNM DOES NOT READ A CHARALTER.

THE NEXT CHARACTER READ AFTER EXECUTING A
A “READLN" WILL BE THE FIRST CHARACTER OF
THE NEXT LINE.

READLN (FILENAME)

READLN ASSUMES DEFAULT FILE INPUT

VAR CH:CHAR3

WHILE NOT EOF DO
IF NOT EOLN DO
BEGIN
READ (CH)3
WRITE (CH)3
END
ELSE READLN;

Wi
Ts
)

BEFORE A READ IS EXECUTED EOLN = FALS
EQF = FALSE
READ (CH) YIELDS

H = H : a : N : EOLN:
H T H I H ™M H E : ECQLN:
H = : Q : 0 : N : EOLN : EOF:

THE FIRST CHARACTER HAS BEEN ASSIGNED TO CH. SUCCESSIVE READ STATEMEN
EVENTUALLY RESULT IN THE FILE POSITIONM BEING AT THE END' OF THE LINE.

: 5 : 0 : N = EOLN:
EOLN = TRUE
EOF = FALSE
: T ¢ I : M = E 1 EOLN:
: S : O & O : Nz EOLN:

EOLN IS TRUE AND EOF IS STILL FALSE. < READ (CH) RESULTS
INCH = - “, EOLN (INPUT) = FALSE, EOF (INPUT) = FALSE AND THE FILE
POSITION IS:

: s : : 8] : N : EOLN: EOLN = FALSE
EOF = FALSE

: T : I : M : E : EOLN:

:] : 0 : 0 : N : EQLN: EOF =

FROM THIS POSITION IF A READLN (INPUT) IS EXECUTED, THE POSITION WOULD
AT THE BEGINNING OF THE NEXT LINE.

: S H : 0 : N : EOLN:
H T H I : M z E : ECQLN:z
= : 0 H 0 H N : EQLN: EOF =

:;.'n

[7

SUCCESSIVE READS WILL YIELD:

z = H H 0 : N ! EOLN s
: T : I H M : E : ECGLN ¢
: =] : 0 : 2 : N : EQLN = EQF =

AT WHICH POINT EOQOLN (INPUT) IS TRUE AND ECOF (INPUT) I3 FALSE.

ANOTHER READ (INPUT. CH) RESULTS IN

:) H : 0 H N : EQOLN =
: T : I : M : E : EOLN &
: s : 0 H 0 : N ! EOLN ¢ EQF =

~

FALSE., AND EOF (INPUT) = TRUE.

NOW CH = © 7, ECOLN (INPUT)

##NOTE: WHEN THE END OF A TEXTFILE IS REACHED, FIRST EOLN IS TRUE ANDFALSE.
EQF IS FALSE. THEN THE NEXT READ MAKES EOLN FALSE AND EOF
TRUE.

YOU DO NOT HAVE TO DO A "READLN” TO GET TOJ THE START 0OF THE
NEXT LINE.

WHEN READING NUMBERS, YOU MUST CHECK FOR EOLN IF YOU CHECK
FOR EOF. THIS IS BECAUSE EOF IS NOT SET TG TRUE UNLESS EOLN
IS READ FIRST. IF YOU ARE READING NUMEBERS, EOLN WILL NEVER
BE READ SINCE IT IS NOT A NUMBER.

[

2.REZET (INPUT)

WORK=SHEET 4

WRITE A STATEMENT TO RESET THE DEFAULT FILE “INPUT-

INDICATE BY DRAWING AN ARROW ON THE CHART WHEN THE FILE POINTER
WILL BE AFTER THE EXECTUTION OF EACH STATEMENT & FILL IN THE

VALUE FOR CH,

NLUM,

ECQLN.,

AND EOF.

ASSUME THE FOLLOWING DECLARATION HAS BEEN MADE:
VAR CH

CHAR;

NUM : INTEGER:

: J 2 A: Nz E s 2 EOLN:

s T s 1 : 11 ¢ 2 ¢ EOLN:

t 4 3 2 3 t N O : EOLN: EOF:
3. READ(CH) 3

t Jr AT Ns E ¢ 2 = EOQOLN:

: T =2 1I: : 1 2 2 = EOLN:

t 4 : 3 :t N3 O EOLN: EOF:
4.READ (NUM)

t Jdf A s Nz E s 28 EOLN:

: T 2 1 = t 1 ¢ 2 @ EOLN:

s 4 3 3 3 * N & 2 EQOLN: EOF:
5. READLN

t Jd s A s Ns E s 2 s EOQLN:

: T = 1 = = 1 & 2 ¢ EOLN:

LI S A : N = 0 : EOLN: EOF:

EOLN =

EOF =

CH

EOLN =

EQOF =

NLM =

EOQLN

EOF =

EGLN

EQF

2

7.

READ (CH)

st Jdr A N E =z 2 1 EQLN: CH =
EQLN =

: T 21 2 1 2 2 ¢ EOQLN:

---------- EQF =

s 4 2 2o : N = O & EQOLN: EOF:

GIVEN VAR CH

CHARS

WRITE AN IF-THEN-ELSE TO READ CH IF THE END 0OF LINE HASN‘T BEEN

REACHELD,

AND IF IT HAS.

DO A REALDLN TO POSITION THE FILE POINTER

TO THE FIRST OF THE NEXT LINE.

WRITE STATEMENT
SYNTAX: WRITE (FILENAME. Xi: ...: XN) WRITES TO FILE NAME GIVEN
WRTTE (X1s XM) WRITES 70 DEFAULT “OUTRUTS
EXAMPLE: PRINT OUT VALUES OF SUMLI AND SUME ON ONE LINE T THE TEFELLT
FILE “OUTEUTS
WRITE C(SUMI. SUME) 3
CIR

WRITE (SLIM1D)
WRITE CZLIMZ)

s am

----- COMSECUTIVE WRITES CONTIME T WRTTI Of THE o

CEFAULT FIELS WIDTH: DTS

T T

—~ i

4 T
AR

P S B B P S B
{Feals are eprairhad S B Fopmat

WRITING COMMENTS: COMMENTS MAY BE WRITTENM BY ENCLOSING IN APOSTROPHES

EXAMPLE: WRITE (“WEEKLY SALES REFORT)
RESULTE IN
WEEKLY SALETS REPORT
WRITE (N1, ~ TOTAL 137, N2)

FOR N1 = 1, N2 = 52
RESULTS IN
_________ 1 TOTAL 15 ____.52

##NOTE: REMEMBER THE APOSTROPHE IS REPRESENTED BY °7

WRITELN STATEMENT

- TERMINATES A LINE

SYNTAX: WRITELN (F., X1, . . .3 XN)
WRITES X1, . . .» XN AND TERMINATES THE LINE

WRITELN WRITES FROM FILE “QUTPUT”
TERMINATES THE LINE WITHOUT WRITING ANYTHING

EXAMPLES: WRITELN (5UM1, SUMZ)3

SUM1 AND SUMZ WILL BE WRITTEN ON ONE LINE TO THE DEFAULT
FILE “QUTPUT” AND THE LINE WILL BE TERMINATED

WRITELN (3UM1)
WRITELN (SUM2)

WRITES SUM1 AND SUM2Z ON DIFFERENT LINES

WHILE CH <> - < DO
BEGIN
READ (CH) 3
WRITE (ZH)
END3
WRITELNS

CONTINUES WRITING ON SAME LINE UNTIL CH IS A BLANEK
THEN GOES TO THE NEXT LINE.

SUMMARY

A VALUE OF TYPE CHAR IS A CHARACTER. THE CHARACTER ZET IS
DEPENDENT ON THE MACHINE. A CHARACTER IS REPRESENTED AS A NUMEER
INSIDE THE MACHINE WHICH RECOGNIZES THAT NUMBER AS A CODE FOR
THAT PARTICULAR CHARACTER. A NUMBER SUCH A% T IS NOT REPRESENTELD
IN THE SAME WAY AS THE CHARACTER S.

CHARACTERS MAY BE WRITTEN AS A SINGLE CHARACTER SURRCLUNDED BY
APDSTROPHES R AS A # SIGN FOLLOWED BY ITS 2 DIGIT HEXADECIMAL
CHARACTER CODE.

A TEXTFILE IS A FILE OF CHARACTERS DIVIDED LOGICALLY INTO LINES.
SEVERAL TYPES MAY BE WRITTEN TO OR REALI FROM A TEXTFILE.

PASCAL PROVIDES DEFAULT FILES -“INPUT” AND “OUTPUT” . ©ON THE ?%0
THE FILES TO BE ASSIGNED TO “INPUT” AND “OUTPUT- MUST BE
SPECIFIED WHEN GIVING THE 3CI COMMAND “XPTY TO EXECUTE THE FASCAL
PROGRAM.

THE READ STATEMENT “READ (FILENAME, X1, . . » XN) WILL READ ONE
OR MORE VALUES FROM FILE “FILENAME-. IF NQ FILE IS SPECIFIED,
“READ (X1, . . » XN) THE FILE ASSIGNED TO “INFUTY I3 ASSUMED.

THE RESET STATEMENT OFENS A FILE AND POSITIONS IT TO THE BEGIN-
NING. A RESET STATEMENT MUST BE EXECUTED BEFORE READING FROM

A FILE. THE DEFAULT FILE -“INPUT” MUST BE SPECIFIED IN THE
REZET STATEMENT.

THE WRITE STATEMENT WRITE (FILENAME, X1, . . , XN) WRITE ONE

OR MORE VALUES TO THE FILE “FILENAME-”. CONSECUTIVE WRITE STATE-
MENTZ WRITE ON THE SAME LINE. COMMENTS MAY BE WRITTEN OUT BY
ENCLOSING THEM IN APOSTROPHES.

THE WRITELN STATEMENT FINISHES WRITING A LINE. THE NEXT WRITE
WILL BEGIN OM A NEW LINE.

THE REWRITE STATEMENT OPENS A FILE FOR OUTPUT. FILEZ OTHER THAN
THE DEFAULT FILE “QUTPUT- MUST BE COFENED BEFORE BEING WRITTEN TO.

WORKSHEET S

WRITE NUM1, NUMZ, NUMZ ON ONE LINE

USING 1 STATEMENT:
USING = STATEMENT:

WRITE “RQUARTERLY REFORT”

WRITE A STATEMENT WHICH WILL WRITE OUT THE WORD
A LINE ANDN THEN BEGIN A NEW LINE.

GIVEN THE FOLLOWING CODE SHOW THE QUTPUT

VAR, X, Y: INTEGER
X &= 5%

Y i= 103

WRITE (X)3

WRITE (Y)s

WRITELNS

WRITE (X, Y)3

“NAME“ AT THE END

MODO&

SIMPLE PROCEDURES

OBJECTIVES

STUDENTS SHOULD BE ABLE TO DECLARE AND UTILIZE PROCEDURES TO
PERFORM SPECIFIED OPERATIONS ON A SET OF PARAMETERS.

STUDENTS SHOULD BE ABLE TO DECLARE A FUNCTION.

STUDENTS SHOULD BE ABLE TO SPECIFY WHETHER A VARIAELE I% GLOBAL
OR LOCZAL TO A ROUTINE.

STUDENTS SHOULD BRE ABLE TO PASS FRARMETERS BY “VALUE” AND
“REFERENCE .

AGENDA
1. SIMPLE PROCEDURES

- SYNTAX
- PARAMETER PASSING

Z. SCOPE OF VARIABLES

- GLOBAL
~ LIOCAL

3. PROCEDURE ACCESSING RULES

4, FUNCTIONZ

g

SIMPLE PROCEDURES

PASCAL PROCEDURES ARE FUNCTIONALLY VERY SIMILAR TO FORTRAN
SUBPROUTINES.

FURFOSE: TO PERFORM A SET OF PREDEFINED OPERATIONS ON A SET
OF FARAMETERS.

EXAMPLE:
PROGRAM TESTPROCS

INTEGERS
LONGINTS

VAR VAL1, VALZ
RESULT

PROCEDURE ADDUFP (X, Y & INTEGER; VAR Z : LONGINT)3
VAR TEMP : LONGINT;

BEGIN (+# ADDUF)
TEMP == X+Y3
IF TEMFP < O THEN
Z :t=Q
ELSE
= TEMP
ENLDs (% ADDUF #)

BEGIN (# TESTPROLC #)
RESET (INPUT)3
WHILE NOT EOQF DO
BEGIN
READ (VAL1, VALZ)3
ADDUF (VALL. VALZ, RESULT)3
IF RESULT <> O THEN
WRITELN (- RESULT IS = -, RESULT)
ELZE
WRITELN(< REZULT IS < QO 7)3
READLN
END
END. (# TESTPROC #)

Y

PASCAL PROGRAM SYNTAX

FPROGRAM < PROG. NAME >3

A,
D]

LABEL DECLARATIONS >3

CONSTANT DECLARATIONS =3

TYPE DECLARATIONS >3

VARIABLE DECLARATICONS >3

COMMON DECLARATIONS >3

ACCESS DECLARATIONS >3

PROCEDURE AND FUNCTION DECLARATICONS >3

-~

™ ™y N

-,
L]

BEGIN
[BODY OF PROGRAM (BLOCK) 1]

ENI.

PASCAL PROCEDURE DECLARATION SYNTAX

PROCEDURE < PROCEDURE NAME > [(< PARAMETER LIST >) 15
[DECLARATIONE
BEGIN
L BODY QOF PROCEDURE (BLOCK) 1]

ENDs

FRFaMETE

ST

Féamar NaMe

oo

e

r

ACTUAL V5 FORMAL PARAMETERS

ACTUAL ¢ CALLING) PARAMETERS - THOSE APPEARING IN A FPROCEDURE CALL

FORMAL ¢ DUMMY) FPARAMETERS — THOSE APPEARING IN THE PROCEDURE
DEFINITION

##RULE: CORRESFONDING ACTUAL AND FORMAL PARAMETERS MUST BE OF
EXACTLY THE 3AME TYFPE. (THERE IS ONE EXCEFTION
TO THIS RULE TO ALLOW FOR VARIABLE SIZE ARRAYS)

EXAMPLE:

VAR X

ARRAY [1..10 1 OF INTEGER:
VAR Y ¢ ARRAY [0..% 1 QF INTEGER3;
HERE, X AND Y ARE NOT COMPATIBLE AS MATCHING ACTUAL AND

FORMAL PARAMETERS SINCE THEY DO NOT START AND END WITH THE
SAME INDICES.

EXAMPLE:

PROGRAM TEZSTS
VAR I, . t REAL3
PROCEDURE ONE (X = REAL: VAR Y @ REAL) FORMAL FARMS
BEGIN (# ONE #)
ENDs (¥ ONE #)

BEGIN (% TEST #)

ONE ¢ I, J)35 ACTUUAL FPARMES

END. (% TEST *)

“VAR” FORMAL PARAMETERS (CALLED BY REFERENCE)

WHEN A VALIJE IS ASSIGNED TO A “VAR® PARAMETER. THE CORRESFONDING
ACTUAL PARAMETERS VALUE IS CHANGED AL3ZO0.

THIS ALLOWS COMPUTED VALUES TO BE RETURNED TQ THE CALLING ROUTINE.

FORMAL PARAMETERS WITH NO “VAR“ (CALLED BY VALUE)

A COPY OF THE ACTUAL PARAMETER I% MADE FOR LIZE IN THE PROCEDURE.

IF A “VALUE” PARAMETER IS CHANGED, ONLY THE COPY IZ CHANGED AND
THE CORRESPONDING ACTUAL PARAMETER DOES NOT CHANGE.

EXAMPLE:
PROGRAM
MEMORY

I . I

I . I

I . I FRIOGRAM FPARMSS

I I

I-———————— I VAR VAL1l, VAL2. REZULT : INTEGER:
VAL1 I AAAA I

[-———————— I PROCEDURE TEST (X, Y @ INTEGER:
VALZ I EBEBB I VAR Z : INTEGER)3

I-———————— I .
RESULT I [I 2z .

I —————————— I "

I I

I . I ENLD; (# TEST 3#)

I - I

I . I BEGIN (¥ FARMS #)

I 1

- e I

I AARAA I X TEST (VAL1, VALZ, RESULT)3

[~ e I

I BBBB I Y

I I END. (# PARMS #)

I I

I-————— I

WORESHEET &

FILL IN THE SFACES IN THE COMMENTS.
THE VARIARLE AT THE FOINT WHERE THE

FROGRAM TEST:

VAR A, B ¢ INTEGER:
FROZCEDURE ADC X =
BEGIN (% AN #)

Y == X + Y3

ENMDOs (% A %)

INTEGER: VAR Y @

BEGIN (# TEST #)
= 143

o ?

TFF A

ANC B, A)3
2 (%

ENOL (% TEST %)

RESFOND WITH THE VALUE OF
COMMENT APFEARE IN THE FRUOGRAM.

INTEGER)3

3*)

#)

~I

2. GIVEN THE FOLLOWING PROGRAM, SPECIFY WHICH OF THE CALLS TGO THE

FROCEDURE “HELP“ ARE LEGAL.

DON‘T WORRY ABOUT WHAT THE FPROCEDURE DOES!!!!! s

PROGRAM TESTS

TYFE NEW = ARRAY [11..20 1 OF INTEGER:

VAR A ¢ ARRAY [1..10] OF INTEGER;:
B : INTEGERS
C : LONGINT:
D = NEW3

PROCEDURE HELP (X & NEW;

VAR Y LONGINT s

VAR MAX : INTEGER3

BEGIN (% HELF #)
MAX := X [11 13
FOR I == 12 TO 20 DO
IF MAX < X L I 1 THEN
MAX = LI 13
X = MAX
END3 (# HELP #)

BEGIN (% TEST #)
FOR I == 1 TO 10 DO
READ ¢ A L I 1)3
FOR I == 11 TO 20 [O
READ AL I 1)3

(# A) HELP (B: Ty A)5 (# Y » N 2 WHY

(# B #) HELFP (B» A)3 (# Y——‘—, N-——_ : WHY_ o
(# = #) HELP (A, B)3 (# Y__T_, N_——— : WHY)

(# D %) HELP (D, C)3 (# Y—_--, N‘—_— : WHY o

(# E #) HELP (A,'C)3 (# Y—_—-, N_-_- 2 WHY o

END. (% TEST)

~)

Ga

SCOPE OF VARIABLES

GLOBAL VARIABLES - ACCESSIBLE FROM ANYWHERE IN THE FROGRAM.
- GLOBAL VARIABLES MUST BE DECLARELD AT THE
"PROGRAM” LEVEL.

LOCAL VARIABLES — ACCESSIBLE INSIDE THE PROCEDURE IN WHICH THEY
ARE DECLAREL.

EXAMPLE

s e sosen G e e

PROGRAM SCOPES
VAR X, Y & INTEGER;
PROCEDURE ONE (& @ INTEGER);
VAR A @ INTEGER3:

BEGIN (# ONE +#)

. (# X, Y, A ARE ACCESSIBLE #)
END3; (# ONE +#)

BEGIN (# SCOPE #)
) (# X» Y ARE ACCE

END. (# SCOPE #)

]
)
iy

SIBLE #)

##NOTES:

- A IS SAID TO BE LOCAL TO THE FPROCEDURE “ONE-
— X AND' Y ARE GLOBRAL VARIAEBLEZ

EXAMPLE

PROGRAM SCOPELS

VAR X: Y * INTEGERS

PROCEDURE ONE (@ 2

INTEGER)3

VAR A ¢ INTEGER3

FROCEDURE TWO (R = INTEGER)3

VAR B : INTEGER:

BEGIN (# TWQ)

. (# X, Y,
END3 (; TWO #)
BEGIN (# ONE #)
: (# X, Y,
END3 (; ONE #)
PROCEDURE THREE ¢ S = INTEGER)3
VAR T @ INTEGERS

BEGIN (¥ THREE #)

: (* Xs Y,
END: (% THREE #)
BEGIN (% SCOPE1 #)
) (* Xa

END. (# SCOPE1L #)

NQOTE:
I CALLED,
IS EXITED.

L

B ARE ACCESSIBLE #)

A ARE ACCESSIBLE #)

-

ARE ACCESSIBLE #)

Y ARE ACCESSIBLE #)

SPACE FOR LOCAL VARIABLES I35 ALLOCATED WHEN THE FROCEDURE
AND THE SPACE IS RELEASELD WHEN THE FROCEDLRE

¢ “x

(§<?

DUPLICATING VARIABLE NAMES

##RIULE: IF A VARIABLE I35 DECLARED IN A FROCEDURE WHICH HAS
THE SAME NAME AS A VARIABLE WHICH IS GLOBAL TO THAT

PROCEDURE, THE NEWLY DECLARED VARIABLE WILL BE “ACTIVE~
UNTIL THE PROCEDURE IS EXITED.

EXAMPLE:

PROGRAM TEZT:
VAR 1 : INTEGERS

FROCEDURE A (..)3
VAR I : REAL3

HERE I IS REAL

FROCEDURE B (..)3
VAR I : BOOLEANS

HERE I I% BOOLEAN

HERE I I3 INTEGER

##RULE:

EXAMPLE:

IF A FORMAL PARAMETER IS DEFINED WHICH HAS THE SAME
NAME AS A VARIABLE WHICH IS GLOBAL TO THE FROCEDURE,
THEN THE FORMAL PARAMETER IS “ACTIVE-” AND THE GLOBAL
VARIABLE IS NOT “ACTIVE~

FROGRAM TESTS

VAR : INTEGER:

I
J REALS

—-— PROCEDURE CONE (I = REAL)5

I TAKES ON THE VALLIE 2JF 1 AT THE TIME
OF THE CALL. THE VALUE OF THE GLOEBAL
VARIABLE “I° IS NOT AFFECTED.
~—=— END3 (# ONE #)

BEGIN (# TEST #)

CONE ¢ o)5

END. (# TEST #)

ACCESSIBILITY OF PROCEDURES

THE ORDER IN WHICH PRDCEDUREQ ARE DEFINED AND THE “LEVEL” AT
WHICH THEY ARE DEFINED WILL DETERMINE WHICH QTHER FROCEDURES MAY
CALL THEM.
A PROGRAM DR FROCEDURE MAY CALL ITSELF
A PROCEDURE MAY CALL ANOTHER PROCEDURE WHICH IS DEFINELD WITHIN IT
FROGRAM T
PROCEDLURE A
PROCEDURE B

PROGRAM T MAY CALL ITSELF, PROCEDURE A, AND PROCEDURE BE.

#% A PROCEDURE MAY CALL ANOTHER PROCEDURE AT THE SAME LEVEL IF IT
HAS ALREADY BEEN DEFINED.

PROGRAM T
FROCEDURE A
FROCEDLURE B
FROCEDURE

PROCEDURE = MAY CALL ITSELF. PROCEDURE A, PROCEDURE RB.
AND PROGRAM T

PROCEDURE B MAY CALL ITSELF. AND PROGRAM T, FROCEDURE A

$3

FUNCTIONS

T

PURPQSE:
TO RETURN A SINGLE VALUE A3 THE RESIULT OF OPERATING
ON A SET OF PARAMETERS.
FUNCTION CALLS MAY BE USED IN AN EXPRESSION SINCE THE
FUNCTION NAME TAKES ON THE VALUE WHICH IZ RETURNEL BY
THE CALL.

SYNTAX:

JFUNCTION < FUNC. NAME > [(< PARAMETER LIST =) 1 & < TYPE =3
[DECLARATIONS 1
BEGIN
L BODY OF FUNCTION ¢ BLOCK) 1

END3

RULES:

- < TYFE > MAY BE

INTEGER SUBRANGE
LONGINT REAL
BOOLEAN FIXED
CHAR ' DECIMAL
SIZALAR POINTER

— THE NAME OF THE FUNCTION MUST APPEAR ON THE LEFT COF AN
ASSIGNMENT AT LEAST ONCE IN THE BODY OF THE FUNCTION.

- THE LAST VALUE ASSIGNED TO THE FUNCTION NAME IS THE VALLUE
RETURNED BY THE FIUUNCTION.

##NCOTES:

- ALL VARIABLE SCOPE RULES ARE THE SAME FOR FLUNCTIONE
AT THEY ARE FOR PROCEDURES

-~ THE FUNCTION ACCESS RULES ARE THE SAME FOR FUNCTIONES
AS THEY ARE FOR PROCEDURES

EXAMPLE:

(354530 30 3040 36 3636 96 3 35 3 3036 30 30 030 3 3036 35340 30 200 36 6 6 36 0 3 3096 36 3030 30 30 30 0 30 303 3133 330 3030 030 3
FUNCTION TITLE: POWER
FUNCTION AUTHOR: JDSEPH PRO GRAMMER
PURPOSE: TO RAISE A REAL NUMBER TO AN INTEGER
POWER AND RETURM THAT REAL VALUE A%
THE VALUE OF THE FUNCTION
FORMAL PARAMETERS:
RVAL - REAL NUMBER TD BE RAISED TO AN INTEGER POWER
EXPON — INTEGER POWER

CONSTRAINTS: IT IS ASSUMED THAT THE INTEGER FOWER
IS A POSITIVE INTEGER.

d ok & % %k ok k %k ok ok k % & k ok %k ¥ Kk & %
— de ok sk ok ok ok % sk & ok ok ok % ok % %k & % K *

J6 36 3 36 46 3 36 30 36 35 3 30 35 36 35 3 336 303 3 36 3636 36 30 3636 0 30 36 34 0303 I 3030 0003036 J0 3 30 00 0SSR

FUNCTION FPOWER (RVAL : REAL;
EXPON : INTEGER) : REAL:

VAR TEMF @ REALS

BEGIN (# POWER #)
TEMF = 13
FOR I == 1 TO EXFON DO
TEMF := TEMP # RVAL:
POWER := TEMP
END3 (% POWER #)

SAMPLE CALL:

NEWVAL := 37.4 + POWER(X, NUM) # 33

SIDE EFFECTS IN FUNCTIONS

DEFINITION: A SIDE EFFECT IS THE CHANGING OF A VALUE OF ANY VARIABLE
WHICH IS NOT LOCAL TO THE FUNCTION.

TI PASCAL HANDLING OF SIDE EFFECTS

THE TIP COMPILER WILL NOT ALLOW THE USER TO DO THINGS WHICH
COULD CAUSE SIDE EFFECTS TO OCCUR. TO FPREVENT THEM THE FOLLOWING
RULESZ APPLY:

~ THE LEFT-HAND SIDE 0OF AN ASSIGNMENT STATEMENT QCCURRING IN
A USER DEFINED FUNCTICON MAY NOT CONTAIN:
0 A VARIABLE DECLARED EXTERNAL TO THE FUNCTION (GLOBAL)
T A VARIABLE PARAMETER 0OF THE FUNCTION (MAKING “VAR- USELESS
0 A COMMON VARIABLE ACCESSED WITHIN THE FUNCTION

O A POINTER VARIABLE FOLLOWED BY @

- IN ADDITION, USER DEFINED FUNCTIONS MAY NOT CONTAIN
O FROCEDURE STATEMENTS INVOLVING USER DEFINELD FROCEDURES
R THE STANDARD PROCEDURES “READ?, -“NEW’, OR -DISPOSE”
0 CALLS TO EXTERNALLY DEFINEL FUNCTIONS

0 @ IN A RECORD VARIABLE IISED IN THE HEADING OF A WITH
STATEMENT

O PROCEDURES OR EXTERNALLY DEFINED FUNCTIONS A% FARAMETERS

- THE FOLLOWING MAY ONLY BE USED WITH ARGUMENTS WHICH ARE LOCAL
TO THE FUNCTION.

ENCODE DECODE
RESET REWRITE
FACE UNPACE

)

I

SIDE EFFECTS EXAMFLE

PROGRAM SIDEEFS

FUNCTION 5@ (VAR A : REAL) : REAL:

BEGIN (% SC #)
1= A#AS
S o=
ENDs (% SQ 3#)

BEGIN (3 SIDEEF #)
X 1= 53
Y := X + S@C X)3 (# Y = 20 #)
X s= 33 :
Y 1= 5Q¢C X) + X (# Y = 50 #)
END. (3% SIDEEF #)

MODO7

ASSIGNMENT 1

OBJIECTIVES:

- TO BE ABLE TO CREATE AND RUN A FASCAL PROGRAM ON THE DX =YSTEM

- TO USE A WHILE-LOOF, IF STATEMENT AND INPUT/OUTFUT STATEMENTS

AND ASSIGNMENT STATEMENTS IN WRITING A PASCAL FROGRAM.
- TO CREATE AND USE A DATA FILE.
- TO BE ABLE T0O WRITE AND CALL PROCEDURES.

A series of sconar tests were made in the Pacific ocean at
various locations. Sound was emitted from a sonar. bounced aff
the ocean floor, and was “heard” bv a receiver. the time the
sound took to travel from the senerator to the receiver was
recorded on the file PASCAL.DATA.DATAL.

1A Read in each travel time.
Echo print each number as it is beins read in,
Duteut one number per line alone with a message.

Write proagram 1A without usina procedures. The PurPose is
aive wou some experience in wusing PASCAL and in rumning a
PASCAL prosram usina the DOX10 orPeratine svstem.

Ty

1B

Read in each travel time and echo print with a messagse about which
test was takins pPlace.

Find the maximum and minimum travel time and print them out with
A message. It is not necessary to use arravys to do this.

© IMPLEMENT THIS PROGRAM BY WRITING TWO PROCEDURES:

REALD_ECHO & Reads in a value for the depth and echo prints with
a messase

DETERMINE_MAX_AND_MIN : Compares the number Jjust read in to MAX.
I+ the number is larsger than MAX: reset MAX.
If not Tarser than MAX. comPare to MIN. If smaller
tharn MIN, reset MIN.

PARAMETERS : MAX, MIN, and NLM.
YOUR MAIN PROGRAM SHOULD DO THE FOLLOWING:

Reset the data file
Call READ_ECHO to read in first travel time
Initialize variables for max and min to first travel time
Do the following until vou reach the end—-of-file
call READ_ECHO
call SET_MAX_AND_MIN
Print ocut the maximum and minimum travel times

Add a funpction to wvour Progsram 1B to calculate the ocean depth
at the location of a test.

use the following formula &

(TRAVEL TIME) # (35000 FT/SEC)
DEPTH =

YOUR PROGRAM SHOULD DO THE FOLLOWING =

Read in each travel time and echo print.

Calculate the ocean depth for each test. Cutput this with
a message.

Find the maximum and minimum depths. Write these out with
a messase.

COMFILER OPTIONS

THERE IS A SET OF OPTIONS FOR THE FASCAL COMPILER WHICH MAY

USED TOs

0 SPECIFY CONTENT OF COMPILED LISTING
0 CONTROL CONTENT OF COMPILED OBJECT
0 CONTROL RUNTIME CHECES

SPFECIFYING CQFPTION

[£)]

OPTIONS ARE SPECIFIED IN SPECIAL COMMENTS

SYNTAX:

(#% <OPTIONZ:, <OPTIONZ . o . #)
WHERE»

COPTIONZ — [NO1 <OPTION NAMEZ
OR [RESUME] <OFTIONNAMEZ-

EXAMPLE:

(#$N2 IST,. MAF, RESUME CKOVER #)

SEMANTICS:
<OPTIONZ — OPTION BECOMES TRUE
NC ZOPTIONZ: - OPTION BECOMES FALSE

RESUME JOPTION> - OPTION IS SET TO THE VALLE IT HADl WHEN
THE ROUTIMNE (PROGRAM) WAS ENTERED

SCOPE OPTIONS

OPTION COMMENTS ARE EFFECTIVE WITHIN THE SCOFE OF THE ROUTINE OR
PROGRAM IN WHICH THEY OCCUR

IF AN OPTION I3 CHANGED IN A ROUTINE, IT WILL TAKE ON THE VALLUE
BEFORE IT WAS CHANGED WHEN THE ROUTINE IS EXITED.

(I.E. YOU GET A NEW COPY OF THE OPTIONS WHEN A ROUTINE IS
ENTEREL)

CHANGING OPTION VALUES

FROGRAM LEVEL OPTIONS

= MAY ONLY BE CHANGED BREFORE THE “PROGRAM‘Z STATEMENT

ROUTINE LEVEL OPTIONS

- MAY BE CHANGED
0 BEFORE THE “FROGRAMZ STATEMENT
0 RIGHT BEFORE THE “BEGIN“ STATEMENT
FOR THE BODY OF THE PROGRAM OR ROUTINE.
0 RIGHT AFTER THE “BEGIN” STATEMENT FOR
THE BODY OF A ROUTINE.

STATEMENT LEVEL OPFTIONS

~ MAY BE CHANGED ANYWHERE IN THE FROGRAM

3

7]

LIST CONTROL OPTIONS

LIST (STATEMENT - TRLUE)

= ENABLEZ OR DISARLES PROGRAM SOURCE LISTING
= WHEN SET TO FALSE. ONLY LINES WITH ERRORS AND THE
ERROR MESSAGES ARE FRINTED

WIDELIZT (FROGRAM - FALSE)

— EMARLEZS OR DISARLES SOURCE LINE NUMBER AND COMFOLINMD
STATEMENT NUMBERS

MAF (ROUTINE - FALSE)

- ENABLEZ OR DISABLETZ A “MAP” OF THE VARIARLES DEFINED
IN THE ROUTINE

#ENOTE: THIS IS LSEFUL WHEN ATTEMFTING TO READ AN ERROR [ILIMF
STACK AND HEAF MEMORY

MAF INFORMATION

IDENTIFIER MAME

EIND--VARIABLE, FARAMETER. ETI.
SIZE--IN BYTES AND RITS

STACE DISPLACEMENT

FICTURE-—-WHERE DATA 1% STORED. FOR FACKED FIELDE OMLY

ASSERTS (STATEMENT - TRUE)

- ENABLES 0OR DIZABLES RECOGNITION OF ASSERT STATEMENTS IN A
PROGRAM

ASSERT STATEMENT

FURFOSE: TO GENERATE A RUNTIME ERROR IF A SFECIFIED
BOOLEAN CONDITION IS FALSE.

SYNTAX:
ASSERT <BOOLEAN EXPRESSIONZ
SYMANTICS:

= IF <BOOLEAN EXPRESSIONZ> IS TRUE, THEN CONTINUE EXECUTION
OF PROGRAM

- IF <BOOLEAN EXPRESSIONZ IS FALSE. THEN GENERATE A RUNTIME
ERROR.

MEMORY DUMPS

THE CONTENTS OF THE STACK WILL BE PRINTED OUT WHEN
= A RUNTIME ERRCR OCCURS

- AN “ASSERT STATEMENT IS FALSE

THE COMPILER OFTION (*% MAP #) MUST BE USED

PIXFTCL 1.5.0

FROGRAM DLUMF . TTS
(% MAF. ASSERTES #)

VAR COLNTER, NUM, S1UM

FROCEDURE SUM_oIT (VAR
NIIM z

REGIN
=i
€

SLIM O+ NUM
ENDs SUM_TIT %)

MAF OF IDENTIFIERT FOR
IDENTIFIER NAME EIND

LM
NLIM

FARAMETER
FARAMETER

FROCEDURE READ_ECHO
BEGIN
READ (NLM)3
WRITELN ¢
ENII3

(VAR

{(# REALD_ECHO)
MAF OF IDENTIFIERS FOR

IDENTIFIER NAME FE.IND

NLIM FARAMETER
(# MATN #)
REGIN
REZET (INPLT
ZIM 1= O3
COLUNTER 1= O3
WHTILE NOT EQF [0
TF NOT EOLN THEN
BEGIN
REALD_ECHD
ZOUNTER
SLUM_IT (
END
ELLSE READLNS -
ASSERT COUNTER =

1003

WRITELN(" THE NUMERER OF INTEGERZ READ
SHM WAS 7,

WRITELNC(THE FINAL
ENIT,
MAF

0OF IDENTIFIERS FOR

TOFENTIFIER NAME BTN

COLINTER VARTAEBLE

72,3217

=M

“THE NLIMBER REAID

TI 220 PASCAL COMFPILER O1/705/7%

1085301

INTEGERS

: INTEGER;:
INTEGER)3

SLM_IT

=5I1ZE STACK
(BYTES.RITS) DISFLACEMENT
LEVEL(DISFL) (BYTE.RIT)

FICTURE
(FACEED FIELDS ONLY)

(Z2:0)
(2.0)

$OOZS
HOOZA

INDIRECT
DIRECT
NiIM 2

INTEGER) 3

I 7,

NLIM) 3

READ_ECH

SIZE
(BYTE=S.RITSD
LEVEL(OIZPL)

STACE
DISPLACEMENT
(RYTE-RIT)

FICTURE
(FACKED FIELDS ONLY)

(2.0) #O02E INDIRECT

¢ NLUM)3
COUNTER + 15
SLIM,

NLIM)3

WAz

COLINTER DY 3
SUIM)

DLMP_TT
SI7ZE STACE

(BEYTES.BITS) DISFLACEMENT
LEVEL(OI=RLD (BYTE.-RBIT?

FICTLRE

CPACEED FIELDE ONNLY 2

(.00 HOOE0 DIRECT

- il

MM VARIARLE (2,0) HOOZT ODIRECT
SLM VARIABLE (Z2:0) #0024 DIRECT

MAXIMUM NMUMBER OF IDENTIFIERS UUZED = 11

INSTRUCTIONS = 4 (LESS O WORDE OF DEAD CODE REMOVELD)
SUMLTIT LITERALE = 14 CODE = 12 DATA = 44

INSTRUCTIONES = 23 (LEsS O WIRDE OF DEAD CODE REMOVEIDD
FEALD_ECH LITERALS = 40 CODE = 104 DATA = 4z

TNSTRLUCTIONG = 73 (LEZS O WORDE: OF DEAD CODE REMOVELDD
DHME_TT LITERALS = ¥4 CODE = 212 DATA = 1=4

DXFECL 1.5%.0 72,217 TI 990 PASCAL COMFILER 01/705/7% 1015381

~>

KI\

THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

NLUMBER
NUMEER
NUMEBER
NLIMBER
NUMBER
NUMERER
NLIMBER
NUMERER
NLIMRER
NLUMRER

"ASSERT"

FATLED

READ
READN
READ
REAL
READ I=
READ
READ
READ
READ I3
READ

RURORN RO I B A N

—_
]
!

b

STATEMENT 12

##% [LMF OF PROCESS #3##

FPROCESS
SFEC
SFFC
LO0C
AHO10C

(O000)
(0010)
(O0OZ0)
(O03=0)

TOF OF

T242 (0000)
SEEZ (0010)
SCTAZ (D020)

S272 (00zZ0)

S (0050)

SCAZ (D0AD)
SCR2Z (0070)

RELC

STAL

NRO FOR
4E4A
FFOQO
FFOO
SO0

SRAA
FFOO
SC1A
SFEA

4

O3200 0000
SAFE =042
SAOE Z12F

=244
QOO0
26BE
cis

SFEC

Q020
sTelele)

S244A
Z1BA

2RO

DATA AREA FOR HALT$

SC1A (0000)
SCEFA (0010)
SC2Aa (00Z0)

FFFE FFFF
K001 SC1A

0001
4EBA SRFO

DATA AREA FOR ASSERS$

SRFO (O000)

SCO0 (0010)

=010 (0020)

DATA AREA FOR

SRAA (OO00)
SB7A (QO10)
SRZA (QOZO)
SEYA (0030)
SHEAA (0040)
SBREA (QO50)
SRIZA (DDAOQ)
SBROA (00O70)
SREA (O0=0)

##% DLIMF

FROCEZS
4E44 (0OO0)
4ESA (0010)
4ELA (OOZ0)
4E7H (D0O3Z0)

DATA AREA
AERBA (D0OO0)

RECORD

SFAA 0000
SBEO SRBRFO
QOO0 0000

SF&A
=00
0000
Q000
SRAA

0000
SR&A
SRS2
0000

0011

4FE5E S450
SROCA Q000G
44FE SOS8S

0O00Aa 0000

FOR
SFEC SE4AA
FFOO FFOO
FFOO 4EBA
S14A D294

FIOR TERMS

Sela 0000

OUMP_IT

DIMP_TT

SC1A
FFOO
1594
0000

QOO
SCAL
QOO00
QOO0
OOz
DiaF
QOS50
SC1A

5420
S04z

4p=Z=

QOO0
SC1A
FFFF

QOO0
SBFO
Q20
QOO0
004F
SE54
FFFE
5420

oozl

OF PROCESSE

GOs

4F 50
FFOO
S014&

QOO0

QOOC0

FFOQO
FFOO
Z1aF
0000

Q000
QOORZ
362
=040
QO3=1
SCEA
0001

]

FFOO
FFOO
4E4A
5710

Qo220
SFEC
0000
SR40
SC73
oo1ln

0000
H1EF

LEVEL=2

2020
OO
SC5E

Q001
SFEC

LEVEL=2

QOO0
1584
QOO0

QOO0
SFEC
0000

LEVEL=1

Q000
4A%E
0000
Q000
SAnz
2020
ShA44

2020

H# 34 3

FFOO
FFDO
FFFF
0000

0000
SRCA
0000
0000
0141
Q001

0z41

0001

FFOO
FFOO
SFEC
5710

LEVEL=2Z

Q000

Q000

(430

FFOQO
FFOO
S000
SLFE

QO01E
S2A0
Pt of
QO1F
SCAZ
0000
S420
Q000

0050
SRFO

SRCA
SR&A

OO00
SRSZ
QOO0
0000
0001
0100
Q02
0100

FFOO
FFOO
=000

SAFE

Q000

FFOOQ
FFOO

Q000

D200

QOO0
2772
SR40
0000
ZASA
SFEC
S

QOO0

0001

BT
wlFtud

FFFE
4704

D000
Qs
Q000
OO00
QOR0
OO0O0
D050
QOO0

FFOO
FFOD
Q000
FFFF

GO0l

FFOO
FFOQO
SR&S

SZA0
Cl1aF
SADZ
QOO1F
SFEC
SR40
STCE

FFFF

S720
nDisF

20

SE&A

AYRA
0O1:=F
QOO0
QOO0
DSR40
QOO0
TATATAY
0000

FFOOQ
FFOO
4E&RC

D000

(ML LN,
(eewnnna
(.oNewn
(Je e

I N P
-N-v.-.

(VoABN .. L R0 l)
(Goleebn s % [RZ.

Co NDLONJERL oL an)
(G I A T
(NFRo s o N e oo [®)
(leweePoao T NG\
(/N N 3 R

(eannnnn I S
)

(oauaeT e FalW)
CowNoNBa. L LB L)
(M. DL RN)

Can)
i
.
»
=
.
-
-
-
.
™~
.
.
.
™~

-
o b
=

.

(s isnnnnannnnaa

(v BoleduLulR. ..
L

(ewneanenannnsans

(L..4.0Z2..A...FPL@
(DLTFUT ase s ans
(CueeoZbAL.FZ.
CINFPUT e

B N

Connnn

L R |
(eecncnnnannsnnns
LSRN A R 0 O |
(LR WY,

ettt e e

L

ceew s usansn)

Ky

05~

4ECA
4ETIA
4EEA
4EFA
4FOA

(D010
(QOZ0)
(OO20)
(O0N40)
{QOO=0)
TIATA
4E

4EZE
4EAE

(QOQ0)
(OO10)
(0020)

AREA FOR

ZE4E
FFOO
SF49
4245
4F 00

4ERA
4EZE
5420
4742
4F =

4F 14
1540
2020
4ES:
4E4A

O&ZE
QOO0
45752
ZEDD
Q003

GO%
S214 0000 QOO0
0000 4EZE 4ERA

QOO0 O000 FFFF

QOO0
202

QOO00

#¥¥ END OF PROCESS DUMP

##% [DUMF OF HEAF ##%

4nz4 (C)C)C)C))
4004 (0010)
40E4 (00Z0)
4TIF4-4E0Q3

4E04 (0O040)
4E14 (0O000)
4EZ2 (0000)
4EZZ (Q010)
4E4Z2 (Q020)

SA44 (0000)
SAS4 (DO1O)
SAA4 (00Z0)
SA74-0ARS

SAS4 (0040)

SATA

SAAL

(O000)
(0010)

SAAA (D000)
SABA (0010)
SACA (00Z0)

SADZ
SAEZ
SAF 2
SROZ
SR1Z

(OO00)

(0010)
(0OOZ0)
(00320)

(O040)

CERZ4 (0000)
SEI4 (0010)

SR40
RS0
SREO

(Q000)
(O010)
(0020)

SAME AS

441 4054 2047
474F 4E20 4245
0000 G000 Q000

4141
474%
Q000
LAZT LINE

QOO0 0000 O0OQ0 0000
QYZ2E 5259

34D

on
[AX]

47

Q000 ORO4
06E0 0000
0000 0000

QOO
Q000
Q1FF

4nc4
4E14

B120 3220 3320 3420
IW20 2020 2020 2020
2020 2020 2020 2020

SAME AS LAST LINE

2020 2020 2020 2020

112E
4954

4A41 4E4S 2E44

Q000
0400
0000

Q7064
Q000

0000

201z
aInlele]
Q1FF

SA44
SATA

20325

o

'’

4144 2220

eI
3520 2431 12033
SEEZ 3320 233
230 2020 2820
2020 Z23I0 2329

4A41

S4ZE 40150

[alslvls)
SARN
QOO0

OROS
0000

D000

QOO
QOO0

OL1FF

4FAS
SE24

4FE4A
SFEC
4545
QEHO3
Q000

LEVEL=2

Q0 00
4E4A
SFEC

4045
4ES:
QOO0

QOO0

Lot

203!

i

QOS50

QOO0

bar]

{
{

[Y

{
{

[N
be]

RO
fe]

2020

4154

0050

Q000

ZESO S

Q050
Qo0o

0

SFEC
A4
SE54

Q000
4F 0L

QOO0

BE74
SFEC

4420
0000
QOO0

0000

000
0000

2L20
2020
2020
2020
412E

0000
QOO0

2029 2

1540
4455
494F
OO00

Q000

QETE

445
0000
Q000

O000

QOO0
QOO0

3720
2020
2020

2020

4455

Q000

Q000

3120 32

2033 32

TAIO

Q000

4753

Lt

Q00
OO00

Q000

ZE4F !

QOO0
2000

SB&A
41150
4EZ0
0400

4E4A
O1aF

4420
Q000

0000

Q000

QOO0
Q000

IRZ0
2020
2020

2020

4050

0000
ulalsle]

QOO0
QOO01

QR | I TR | I M S |
(o aNewooo oo, OUMF)
(_IT EXECUTION)
(BEGIMNS. v asevaaas)
LA L oY L R o)

L S N)
CoaMaML e NN a0 W)

Ceeentnnomnn)

(HALT CALLED LED)
(ION BEGINS......)

(eeseconanannanns)

.)

(. SYSMZGO3)

(veveeaMoFoaa.

IINIIIIIII

L]
L]

> -
RO
[AY]

Y

in

>

~N

[x]

()

(.. JANE.DOATA. DLMF)
(IT)

4 1
(.l'.llz.l.llll")

(eneean)

(uvas

(SADZ (0000) Z03)

(O 2431 3231 2033
DEI0 2023 2233)
= (22320 2032

(2320

(B)C D R |

(oo JAME. PROGS, (HIT)
(FUT.DUMPIT)

(vewnealdeuFPanans)

(ansewa[H..

)

X100 USAGE

ORJECTIVES

AGENDA

1.

L]
)

STUDENTS =SHOULD BE ABLE ToO:

!

BIO =CI
ASSIGN A UUSER ID

MODIFY THE TERMINAL STATUS TO REQUIRE LOG ON
REEID =CI LUSING THE ASSIGNED USER ID

MOoDoS

STUDENTS SHOULD UTILIZE THE DIRECTORY STRUCTURE OF THE

TRAINING DISK TO DEVELOP PROGRAMS

FOR THE CLASS.

STUDENTS SHOULD UTILIZE SYNONYMS TO DECREASE THE NUMEBER

OF KEYSTROKES REGUIRED TO ENTER FILE PATHNAMES.

STUDENTS SHOULD BE ABLE TO USE THE TEXT EDITOR.

LOADING DX10

sCI

- MODES OF OPERATION

- SYSTEM INITIALIZATION

- USER ID“5

OISk FILE MANAGEMENT

- FILE TYFES AND ACCESS METHODS
- DIsk VOLUMES

- DIRECTORY STRUCTURE

- SUPPORTELD DISE CHARACTERISTICE
DISK RELATED SCI COMMANDS

SLIMMARY

14
R

C

LJADING (BOOTING) DX10

X100 MAY BE LOADED (ROOTED) FROM:

CARDS
CASSETTE
ROM =
MAG TAPE

ok ok %

DEFENDING ON YOUR SYSTEM CONFIGURATION

LOADING OX10 USING A ROM LOADER

1
)
)

4)

FRESS THE “HALT/SIE” SWITCH
FRES= THE “RESET” SWITCH
PRESS THE “LOAD” SWITCH

THE BOOT/LOADER EXECUTES AND DX10 IS LOADED INTO MEMORY

LOADING DX10 WITH A LOADER ON FUNCHED CARDS ,

1)

P

e}
~

B

]

o~
~

~

[xa
—

LOAD BOOT CARD DECK INTO CARD READER HOFPER
AND RESET THE CARD READER

FRESZ “HALT/ZIE” SWITCH

PREZS THE -“RESET” SWITCH

PRESS THE “CLR” SWITCH

SET THE DATA‘SWITEHES TO HEX 0030
PRESS “MA ENTER” SWITCH

PRESS “"MDE” SWITCH

PRESS THE “LOADY SWITCH

THE LDADER PROGRAM IS READ FROM CARDS AND
DX10 I= LOADED

O
Up)

LOADING DX10 WITH A LOADER ON CASSETTE

1) LOAD THE CASSETTE CONTAINING THE LOADER FROGRAM INTO
EITHER CASSETTE UNIT ON THE MODEL 733 ASR AND PLACE
THAT CASSETTE UNIT IN “PLAYBACK® MODE

2) FRESS "HALT/SIE” SWITCH

3) PRESS “RESET” SWITCH

4) PRESS THE LOAD” SWITCH

3) THE LOADER PROGRAM IS READ FROM CASZSETTE AND
OX10 Is LOADED

##4 NOTE: ONCE THE SYSTEM IS BOOTED, YOI MAY ACTIVATE “"SCI-

SYSTEM COMMANLD INTERPRETER

SINGLE UNIFORM INTERFACE BETWEEN USERET AND:

- DX10

- SO0FTWARE DEVELOPMENT UTILITIES
- SYSTEM UTILITIES

- APFLICATION PROGRAME

SCI MODES OF COPERATION

TTY MODE - TELETYFE MODE

- ISED FOR EBi EXECUTION ON A HARD COFY DATA
TERMINAL LIKE A 7332 ASR

- FPRINTZ EACH PROMPT AND WAITS FOR USER TO
REZFONDN BEFORE PRINTING THE NEXT ONE

- SRUARE BRQCHET (L1) IS SCI PROMPT
VIOT MODE - VIDEQ DISPLAY TERMINAL MODE
- IUSE FOR CRT TYFE DEVICES (211, 713)
- DISPLAYS ALL PROMFTS AND POSITIONS CURSOR TO FIRST FIELD

- RETURN (NEW LINE - #13%) POSITIONS CURSOR TO FIRST FIELD
CHARACTER 0OF NEXT FIELD

J OO

VOT MODE SCI COMMAND PROMFT

TEXAGS INSTRUMENT

=
>
-
(X))
<
Ul
—
m
X
00
-

SELECT ONE OF THE FOLLOWING COMMAND GROUFS

/DEV - DEVICE OPERATIONS
/FILE - FILE OPERATIONE
/FDEV - PROGRAM DEVELOFMENT
/3MAIN — DX10 MAINTENANCE
/S0F - DX10 OPERATICN

L1

BATCH MODE - SCI COMMAND STREAM IS READ FROM
A ZERJENTIAL FILE OR A DEVICE.

- MAY BE USED FOR BATCH COMPILATIONE
AND EXECUTIONS 0OF HIGH LEVEL LANGLAGE
FPROGRAMS

SCI ACTIVATION

FOLLOWING IS THE KEY STROKE SEQUENCE TO ACTIVATE
SZI AT THE DIFFERENT STATION TYPEZ.

2B/74% 211 VDT 212 VDT

P e e e ceane s oo e —— — v oot it e

FEY 1 - ESC REZET (BLANKE KEY) RESET

KEY Z - s ! !

[Of -

SYSTEM INITIALIZATON

AFTER BOOTING DX10, YO SHOULD INITIALIZE THE SYSTEM.

SYSTEM LIOG

THE FOLLOWING INFORMATION MAY BE AUTOMATICALLY RECORDED ON A

FILE OR DEVICE:

INPUT/0UTFUT ERRORE

DEVICE HARDWARE ERRUORS

FROGRAM (TASK) ERRORES
MESSAGES GENERATED BY A USER FROGRAM

INITIALIZE SYSTEM ¢ IS) COMMAND

FURFOZE: DX10 INITIALIZATION INCLUDING:

- INITIALIZE DATE AND

- INITIALIZE SYSTEM LOG
~ ASSIGN NEEDED GLOBAL LUNOS

FORMAT:
[1 Is

INITIALIZE SYSTEM
INITIALIZE SYSTEM LOG:
YEAR!
MONTH:
DAY:
HOUR:
MINUTE:
ATTENTION DEVICE:
LOGGING DEVICE:

FILES:

YES/NO

TIME

(24 HOUR CLOCK

MESSAGE

YES /NGO

LOGGEING

)

DEVICE

THESE FROMFTE
CONLY FPRINTELD
IF “YESY WAS
ENTERED FOR

“ISLT FPROMFT

DX10 MAINTENANCE

USER IDF%S

s ot caere (e ot o sn e e

A TERMINAL MAY BE “SET UP7 =0 THAT A LUSER MUST LOG ON BEFORE

SCI IS ACTIVATELD.

USER ID“S ARE QUITE USEFUL BE
ENVIRCONMENT BETWEEN DEVELOFMENT

ASEIGN LUSER ID (AUI) COMMAND

PURFOSE: TO ESTABLISH A NEW USER ID WHICH DX10 WILL RECOGNIZE

FORMAT:
L1 AUI
ASSIGN USER ID
IJSER DESCRIFPTION:
NEW USER ID:
NEW PASSCODE:

USER PRIVILEGE CODE (O-7):

EXAMFLE:
L1 AUI
ASSIGN USER ID
ISER DESCRIPTIONS
NEW USER ID:
NEW FASSCODE:

USER PRIVILEGE CODE (O-7)=

CAUSE THEY MAINTAIN THE IISER-S

SESSIONS (SYNONYMS)

1 - 1& CHARACTER STRING
AAANNN — A=LETTER., N=(0-%)
1-2 CHARACTER FASSCODE

FRIVILEGE CODE

JOHN, PASZAL
JONQO1
CHECE1

7

et

/D

2

OTHER USER ID RELATED =SCI COMMANDS

%

MUTI - MODIFY USER ID

USED TO CHANGE THE PASSCODE AND/OR FRIVILEGE CODE
ASSOCIATED WITH A USER ID

DUI - DELETE USER ID
USED TO DELETE AN EXISTING USER ID
LU — LIST USER ID-Z

USED TO LIST ALL EXISTING USER IDVS
PAZZCODES AND PRIVILEGE CODES ARE NOT LISTED

MTS - MODIFY TERMINAL STATUS

USED TO MODIFY THE “STATUS” OF A TERMINAL
TO REQUIRE LOGIN

MODIFY TERMINAL STATUS (MTZ) CIOMMAND

FURFOZE: TO CHANGE THE CURRENT “STATUS- OF A TERMINAL
(I.E. ENABLE SCI OPERATION. REGUIRE LOGIN, ETC)

FORMAT:
L1 MT=

MODIFY TERMINAL =STATUES

TERMINAL NAME: =TOS (STATION ID O
TERMINAL STATUS: ON (ON/OFF SCI OFERATION ENABLED)
NEW MODE (TTY/VDT): VOT (SCI MODE)
LOGIN REGUIRED: YES (YES/NO — LOGIN FOR THIZ STATION)
USER PRIVILEGE CoDE: 7 (0-7, PRIVILEGE ZODE FOR STATION)
DEFALLT MODE: (STANDARD MODE FOR STATION)

NOTE: STATION STATWS CHANGES DO NOT TAKE EFFECT UNTIL A
SEUIT ¢ @) COMMAND IS ENTEREL.

(]
v

.

0X10 DEVICE NAMES

ALL DX10 SUFPORTED DEVICES HAVE 4 CTHARACTER NAMESD

“HARD” DISKS

0s01 - PRIMARY DISE DRIVE
DS02 - SECONDARY DISK DRIVE
ETC.

LINE PRINTERS

LPO1
LPOZ
ETC.

KEYBOARD DEVICES

5TO1
sTOZ
ETC.

CARD READERS

CRO1
CROZ
ETC.

FLOPPY DISKS

I ARR
Doz
ETC.

MAG TAPE DRIVES

MTO1
MTOZ
ETC.

CAZSETTE TRANSFORTES

o011
os02

ETC.

SPECIAL DEVICES

USER DEFINED
1-4 CHARACTERZ

AS FOLLOWE

105

OX10 DISK FILE MANAGEMENT

FILE ORGANIZATIONS

EXFANDABLE — FILE =IZE CAN GROW AS MORE =ZFACE IS NEEDED

NON-EXFANDABLE — FILE SIZE IS FIXED WHEN FILE IS CREATED

FILE TYFES (ACCESS)

SERMIENTIAL — “STANDARD” SEQUENTIAL LOGICAL DEVICE
RELATIVE RECORD - FIXED LENGTH RECORDS ARE ACCESSED BY RECORD NUMEBER

MULTI-KEY INDEX — RECORDS ARE ACCESSED BY KEY

ACCEDS PRIVILEGES (SPECIFIED WHEN COPENED)

READ ONLY = ONLY READ OFPERATIONES ARE LEGAL
READ/WRITE - ALL OPERATIUONS ARE [LEGAL

EXCLUSIVE WRITE - ONLY OPENING TASE MAY WRITE To FILE
OTHERS MAY READ

EXCLUSIVE ALL - ONLY OPENING TASKE MAY PERFORM I/0 TO FILE

RECORD LOCKING

A RECORD IN A FILE MAY BE “LOCKED” WHEN AN UPDATE OFERATION IS
PERFORMED TO PREVENT OTHER PROGRAMS FROM ACCESSING IT DURING
THE LIFDATE DOFERATION.

je€ [0(;

FILE HIERARCHY

DIsSE VOLUMES

EACH DISK HAS A VOLIIME NAME WHICH IS ESTABLISHED WHEN THE DIZK

IS INITIALIZED (SEE INSTALL NEW VOLUME COMMAND (INV) VOL.
EACH VOLUME HAS A CENTRAL DIRECTORY CALLED “VCATALDG
VCATALDG MAINTAINS INFORMATION ON:

- S3YSTEM FILES

- LISER DIRECTORIES
- USER FILES

DIRECTIRIES AND FILES ARE MAINTAINED IN A “TREE” ZTRUCTURE

VCATALOG

USER
DIR T IES

DIR'T'IES

1Ce

II

)

~\

FILE ACCESS FPATHNAMES

FILES ARE ACCESSED BY PATHNAME

FPATHNAME FORMAT

- VOLUME NAME
. <DOIR MAMEZ ... <DIR NAME> . <FILE
ODRIVE NAME
NOTE: THE DIRECTORY NAME “VCATALOGY NEED NOT BE INCLUDED.

EXAMFPLES:

D02, VCATALOG. CLASS. SRC.MYFPROG
VOL1.COBOL.LST.NEWFPROG

«PARSCAL . SRC.SORT

NAMEZ:

~

[\

NIsK ALLOCATION

ALLOCATION UNITS (ADUTE)

DISK SPACE IS ALLOCATED IN “CHUNKSY CALLED ALLOCATION ILINITZ. THE
SIZE OF AN ADL AND THE TOTAL NUMBER OF ADUE ON A DISK IS DEPENDENT
ON THE TYFE OF DISK BEING LUSED.

DISK STATISTICSE

oezl 0Ds10 T25 TS50 200
HEADS/DISK 2 4 5 3 19
TRACKES/DISE 404 1432 2040 4075 15425
SECTORS/ TRACK 2 20 2 a2 e
WORDS/SECTOR 144 144 144 144 144
SECTORS/ADU 1 1 2 3 ?

DISK RELATED SCI COMMANDE

CREATE FILE DIRECTORY (CFDIR) COMMAND

PURPOSE: TO CREATE A USER FILE DIRECTORY
FORMAT =
L1 CFRIR
CREATE DIRECTORY FILE
PATHNAME: COMFLETE DIRECTORY FATHNAME

MAX ENTRIES: MAXIMUM NUMBER OF FILEZ OR DIRECTORIES
WHIZH MAY BE KEFT LINDER THIS DIRECTORY

EXAMPLE:
L1 CFDIR
CREATE DIRECTORY FILE
FATHNAME: VOL1.PROJL.SRC

MAX ENTRIES: 100

y
L

107

DIRECTORY AND FILE STRUCTURE OF A
VOLUME USED FOR DEVELOPMENT

PROJECT PROJECT o PROJECT
NAME NAME A NAME

MASTER
PROJECT

PROG'M'R
NAME

PROG'M'R
NAME FILES

cfcfcicicRT

PROGRAM
FILE

MAIN 6 oo
SUBCON © oo

MASTER
PROGRAM
FILE

(VOLUHE NAME)

/DXlO COURS—E\ ﬂ’ASCAL COURSE /COBOL COURSE\
CLASS / k PASCAL \ COBOL /
CHONBONRS

X111

DISE ALLOCATION

ALLOCATION UNITZ (ADUTS)

S. THE

ALLDCATION UNITS
ENTENT

OIZE SPACE IS ALLOCATEDR IM “CHUMESS CALLED T
OM & DIk IS DEF

SIZE OF AN ADL AND THE TOTaAL NUMBER OF AL =
ONG THE TYFE OF OISk BEING LUSED.

DIk STATISTIC

n=E Os10 TZS TH0 pEiuie

HEADZ /DISE = 4 = 5 1%
TRACKSZ/DISK 404 1422 2040 4075 L S=4Es
SECTORS/TRACE =4 20 o= i T
WORDS / SECTOR 144 144 144 144 144
= bt

SECTORZ /AT 1 1 < =

OISR RELATED =CI COMMANDE

CREATE FILE DIRECTORY (CFDIR) COMMAND

FURFPO=ZES TO CREATE A USER FILE DIRECTORY
FORMAT =
L1 CFOIR
CREATE LDIRECTORY FILE
FATHNAME: COMPLETE DIRECTORY FATHRNAME

OIRECTORIED
DIRECTORY

MAXIMUM NUMBER OF FILEZ OR
WHICH MAY BE FEFT LUNDER THIZ

MAX ENTRIEZ:

EXAMFLE:
L1 CFOIR
ZREATE DIRECTORY FILE

FATHNAME: VoL 1. FROJL . SRO

MAX ENTRIEZ: 100

LIST FILE DIRECTORY (LD) COMMAND

PURPOSE: TO LIST NAMES OF FILES AND SUBDIRECTORIET
IN A DIRECTORY

FORMAT:
L1 LD
LIST DIRECTORY
PATHNAME: PATHNAME OF DIRECTORY TO BE LISTED

LISTING ACCESZS NAME: DEVICE WHERE LISTING WILL BE DISPLAYED

EXAMPLE:®
L1 LD
LIST DIRECTORY
PATHNAME: LES.DX10

LISTING ACCESS NAME: LFO1

GIRECTORY LISTIMG OF: LES.DX10 -
MAX # OF ENTRIEZ: =23 # OF ENTRIEZ AVAILABLE: 13

RIRECTORY ALIAS OF ENTRIES LAST UFPDATE CREATION
DATA #* 23 OZ/702/75 13Z:14:24 QZ/02/75 1323113154
GEN =1 Qz/02/72 1Z2:597:08 Q2/02/7% 13
LET ch Q=/02/75 13205:47 OR/02/75 1300545
OB 1 Oz/02/7%2 1Z2:0%:44 Q2/02/752 123309143
=RE 31 0Z/02/7% 13:57:4% QZ/02/7% 1310928

¥ ¥ Xx X

FILE ALLTAS OF RECORDE LAST UFDATE
FEIGL 3 47 QZ/05/773 20311217
PEGE * 10A O2/14/73 O2: 20352
FEGE +#* 40 D2/05/758 20233197
FEG4 # 41 OZ/0&/72 14&217220
FEGS # 102 O3/02/75 15:50219

10300220 TUESDAY, MAR 07, 1273,

—

B_E FROTECT
YE=
YE=
YES
YES
YEZ

X B) A

o i

s

I

MAF DISK (MD) ZOMMAND

FURPOSE: T LIST INFORMATION

ABOLT THE CONTENTS OF

A DISK, VOLUME, OR DIRECTORY

FORMAT =
L1 Mo
MAF DISC

PATHNAME:

LISTING ACCESE NAME:
SHORT FORM™:

TOFP LEVEL ONLY™:

DIRECTORY NODES ONLY™:

EXAMPLE:
[1 MmO
MAF DISC
PATHNAME =
LISTING ACCESES NAME:
SHORT FORM:
TOF LEVEL ONLY™:

OIRECTORY NODES ONLY™Y:

PATHNAME OF DISE OR DIRECTORY TO MAF
DEVICE WHERE LISTING WILL BE PRINTED
YES/NQ — ABBREVIATED MAF

YES/NC — LIST ONLY DIRECTVEDNS (DAUGHTERS

YES/ND — ONLY LIST DIRECTORY NODES

JANE
LFO1
YES
NO

N

w
T—
~—

DISC MAR OF
TODAY IS 17:13:40 TUESDAY,

LV NAME

JANE

0O VCATALOG:
FOIL:
LISTING
OB
OBJIECT
SOURCE
VCATALQG
Lz
LMAF
PROG

1 FOILZ:

REVIEWZ
REVIEW4
REVIEWS
REVIEW7
SETS
TRANEZ
JANE. FOILS
1 LISTING:
TEST
TESTING
JANE. LLISTING
1 IR
TEST
#4JANE . OB
1 QBJECT:
TESTINT
JANE . OB JECT
1 SOURCE:
ASZNLIA
SEN1B
ASENIC
ASSNZA
ASSNZE
ASSNZC
AZSNZD
ASSNZA
ASENZR
ASSNZC
##JANE . SOLURCE
#4 JANE

NOV 14,

1973.

NUMBER CURRENT TOTAL

FILE oF EOm ALLOC
TYPE RECORD=Z ADU ADL LAST UFDATE
FILES=10 AVAILABLE=ZZ
juj 54 =4 =4 11714773 1751023264
i 1z 2 1z 11714772 17:10:47
o 4 4 4 11/14/772 17 2% &
i 2 1z 1z 11/14/72 17 2:1z
D =4 54 54 11714772 17 2@ 0
D z4g 0 242 11/14/72 17:10:42
S 7 3 = 11714772 17: 2:2%9
=S 22 =z 2 11/14/72 17:10:40
P 1464 1464 1464 11714772 17: 2:2
FILES=4 AVAILABLE=47
3 242 15 15 11714772 1721022
2 28z 21 21 11714772 17:10:24
S 246 12 12 11714772 17:10:22
= 141 2 12 11714772 17:10:25
] 239 2 21 11714772 17:10:327
] 2 & & 11/714/72 17:10: 321
TOTAL SIZE = 147 ADUS
FILES=2 AVAILABLE=Y
K o3 & & 11714772 17:10:145
s 20 = z 11/14/72 17:10:47
TOTAL SIZE = 21 ADUS
FILES= AVAILARBLE=Z2
= 17 & & 11714772 173 3: &
TOTAL =IZE = 10 ADUEZ
FILES=1 AVAILABLE=10
= 4z 15 15 11/14/78 17: 2314
TOTAL SIZE = 27 ADUE
FILES=10 AVAILABLE=4Z
3 27 3 2 11714772 17: 23159
= 4z & & 11714772 17« 2:52
5 51) A 11714772 17 2:50
= &4 4 o 11/714/72 17 2 1
= = 12 2 11714772 17 2:47
= 14z 1= ia 11/14/72 17: Z:5&2
= 122 24 24 11714772 17: 2:4%5
= 111 15 15 11714778 17 23325
3 113 15 15 11714772 17 2:i41
= 121 15 1= 11/14/77= 17: 238
TOATAL SIZE = 177 ALUS
TOTAL SI1ZE = 25994 ADLE
Jid

IN

STALL VOLUME ¢ IV) COMMAND

FURPOSE: TO INSTALL AN “0OLDT (ONE WHICH HAS GOOD DATA ON IT)

VOLUME FOR USAGE UNDER DX10
FORMAT:
£1 1v
INSTALL VOLUME
INIT NAME: DS03

VOLUME NAME: JANE

##NOITE — IF YOU WISH TO INSTALL A “NEW” (ONE WHICH HAZ
ON IT) VOLUME, YOU SHOULD USE THE INSTALL NEW

COMMAND.

##¥NOTE - IF A VOLUME IS INSTALLED AND YOU WISH TO INSTALL ANOTHER
VOLUME IN THE SAME DRIVE, YOU MUST UNLOAD THE CURRENT

VOLIME USING THE UNLOAD VOLUME ¢ UV) COMMANLL

UNLCOAD VOLUME ¢ LWV) COMMAND

FURPOSE: TO UNLOAD A FREVIOUSLY INSTALLED VOLUME
FORMAT:

L1 uv

LINLOAD VOLUME

VOLIUME NAME: JANE

ND Go0D DATA
VOLUME |

INV)

SYNONYME
LISED TO SAVE AN OPERATOR KEYSTROKES
ALLOWS ONE STRING TO REFLACE ANOTHER STRING
SYNONYM RELATED SCI COMMANDS
- ASSIGN SYNONYM (AS)
= LIST SYNONYMS ¢ Lz)

= MORIFY SYNONYMS (MS)

##NOTE — SYNONYMS ARE LOCAL TO THE TERMINAL AT
WHICH THEY ARE BEING USED

##NOTE — WHEN A USER ID IS IN USE AND SYNONYMS ARE
ASSIGNED. THOSE SYNONYMS GET SAVED S0 THAT
THE NEXT TIME THAT USER LOGS ON, HIZ SYNONYMS
WILL STILL BE ASSIGNED

ASSIGN SYNONYM (A%) COMMAND

FURFOSE: TO DEFINE A STRING TO SUBSTITUTE FOR ANOTHER STRING
FORMAT:
L1 AS
ASSIGN SYNONYM VALUE
SYNONYM: REPLACEMENT STRING
VALUE: REPLACED STRING
EXAMPLE:
L1 AS
AZSIGN SYNONYM VALLE
SYNCONYM: L
VALLE: LES.PASCAL.SRC
#3 NOW

L.PROG1 = LES.PASCAL.SRC.PROGL

PROGRAMS UNDER DX10 (TASKS)

PROGRAMS WHICH ARE GOING TGO RUN UNDER DX10 MUST BE INSTALLED ON A
FROGRAM FILE BEFORE THEY MAY BE EXECUTELD.

ANY PROGRAM WHICH IS INSTALLED ONM A FROGRAM FILE WILL HAVE A

“TASKE. IDY. TASKSES MAY BE INSTALLED ON A FROGRAM FILE AND ATZIGNELD
A “TASK ID0D° BY THE LINKAGE EDITOR AUTOMATICALLY AT LINK TIME.

EXECUTING TASKS LINDER DX10

TASKS MAY BE EXECUTED IN MANY DIFFERENT WAYZ UUINDER DX10.

XT) EXECUTE TASK

XHT) EXECUTE AND HALT TASK

XTS) EXECUTE AND TERMINATE =CI
XCTF) EXECUTE COBDL TAZKE FOREGROUND
XFPT) EXECUTE PASCAL TASK

P P

ETC.

MODES OF EXECUTION

ANY TASK WHICH IS EXECUTED FROM A STATION MAY EXECUTE IN OINE
OF TWO MODES:

THIS MODE IS FOR AN INTERACTIVE TASK WHICH WILL
PERFORM I/0 TO THE STATION FROM WHICH IT
WAS EXECUTED.

FOREGROUND

- BCI IS SUSPENDED IUNTIL THE TASK COMPLETES

EXECUTION.

BACKGROUND — THIZ MODE IS FOR A TASK WHICH REQUIRES NO 0N
INTERACTION WITH THE STATION FROM WHICH IT WAS
EXECUTED.

~ SCI IS NOT SUSPENDED

‘— CONTROL RETURNS T SCI AS 200N AS THE TASE SPECIFIED
IS PLACEDY IN EXECUTION.

NOTE: ONLY ONE FOREGROUND AND ONE BACKGROUND TASE MAY BE FLACED IN
EXECUTION FRUM A STATION AT ANY GIVEN TIME.

[1<

SUMMARY

SYSTEM COMMAND INTERPRETER (=CI)

O = MODES OF OPERATION
- TTY MODE

- VIOT MODE
- BATCH MODE

DX10 MAINTENANCE

O USER IDVg

- MAINTAIN DEVELOPMENT ENVIRONMENT
- MAY RESTRICT

(SYNONYMS)

SCI COMMANDS WHICH MAY BE USED
- PROVIDE =0OME SYSTEM SECURITY (LOG ON)

OX10 FILE MANAGEMENT

0 = TYPES OF FILES SUPPORTED

- SEGUENTIAL
- RELATIVE REZORD

(RANDOM ACCESS)
- MULTI-KEY INDEX

(KEY ACLCESZ)

0 HIERARCHY DIRECTORY AND FILE STRUCTURE

O 5CTI COMMANDS SUPPORT DIRECTORY STRUCTLURE

- CREATE DIRECTORY
- LIST DIRECTORY
- MAP DISk

ETC.

USER FROGRAMES (TASES

0 TWO MODES OF OPERATION

- FOREGROUND
— BACZEIGROUND

- A USER MAY EXECUTE ONE OF EACH AT A

(FOR INTERACTIVE PROGRAMZ
(FOR NON-INTERACTIVE FPROGRAME

)
)
STATION AT A TIME

c
——

MODO?

CBRJECTIVES

STUDENTS SHOULD BE ABLE TO USE THE TEXT ERITOR TO CREATE AND
EDIT PASCAL SOURCE PROGRAMS.

STUDENTS SHOULD BE ABLE TO COMPILE. LINEK, INSTALL, AND EXECUTE
FPASCAL PROGRAMS.

AGENDA

1. PASCAL COMPILER
- XTIF COMMAND

- STACK AND HEAP MEMORY SFECIFICATIONS
- ERROR MESZAGES

2. PROGRAM LINKING

- XLE COMMANLD

= LINK CONTROL FILES
- EXAMFLE

2. PROGRAM EXECUTION

- XPT COMMANLD
= TASE MANAGEMENT =CI COMMANDS

4. TEXT EDITOR

| 36

PASCAL — SOURCE TO EXECUTION

2 MAJOR STEPS

COMPILATION (XTIP)
LINKING ¢ XLE)
EXECUTION ¢ XPT)

DO A
= -

FASCAL COMFILER

The TEXAS INSTRUMENTS PASCAL (TIF) Compiler has 3 phases of executION

PHASE 1 (SILT1) — Initial SYNTACTIC scanm of source Program
PHASE = (SILTZ) — Translation from source to intermediate lanouase

. (CODEGEN) — Generation of 290 oblject from intermediate
LANGUAGE

(2]

FHASE

NOTE: No pPhase will execute if errors were found in the previous phase
Phase. '

EXECUTION OF TIF COMPILER

L1 XTIF
EXECUTE TI FASCAL COMPILER
SOIURCE: Pathname of FASCAL source
ORJECT: Pathname of PASCAL compiled oblect
LISTING: Pathname for compiled listing
MESSAGES: Pathname where Compiler messases are written
MEM1: =LH Stack, Heap memorw for SILTL
MEMZ: =.H Stack, Heap memory for SILTZ
MEM3: =,H Stack, Heap memorw for CODEGEN

MODE: FOREGROUND or BACKGROUND - Compiler execution mode

17

L)
™y

EXAMFLE
L1 XTIF
EXECUTE TI PASCAL CO

SOURCE:

OBJECT:

LISTING:

MESSAGES:

MEM1:

MEMZ:

MEMZ:

MODE:

== FOREGROUND COMMAN

COMPILER MESSAGES

SILT1 EXECUTION
MYFROG

NORMAL TERMINATION

STACK UUSED = 3710

SILTZ EXECUTION
MYFROG

N2 ERRORS IN PROGRAM
NORMAL TERMINATICN
STACK LSED = 10293

CODEGEN EXECUTION
MYFRIZIS

NORMAL TERMINATION
STACK USED = 24320

MFILER

TI.PAZCAL..SRC. MYPROG
TI.PASCAL.OBR.J.MYFROG
TI.PASCAL.LET.MYPROG

ME

FOREGROUND

I EXECUTING ==

BEGINS

HEAF LIZSED = 1240
BEGIN=

HEAF IISED = 1232
BEGINS

HEAF USED = 2484

Qo

N8

STACE. AND HEAF REQUIREMENTS FOR TIF

THE TIF COMPILER IS WRITTEN IN TIP. MEMORY FOR VARIABLEZ
USED IN A TIF PROGRAM IS ALLOCATED IN ONE OF TWO WAYS: STACK
OR HEAF.

STACK MEMORY

THIZ MEMORY IS ALLOCATED FOR “STATIC” VARIABLEZ IN
A LAST-IN — FIRST-0OUT FASHIDON (THE STACE MEMORY
REQUIRED BY A PASCAL PROGRAM IS DEFINED AT COMPILE TIME)

HEAF MEMORY

THIZ MEMORY IS ALLOCATED FOR “DYNAMICY VARIABLES WHICH
ARE CREATED AND DELETED USZING THE “NEW“ AND “DISPOSE”
STANDARD FUNCTION CALLS (THE HEAF MEMORY REGIUIIRED

FOR “DYNAMIC® VARIABLESZ IS ONLY DEFINELD AT RUN TIME)

NOTE — BOTH OF THESE MEMORY ALLOCATION STRATEGIES WILL BE
DISCUSSED LATER IN THE COURSE.

TIF REQUIREMENTS

THE USER MAY SPECIFY THE AMOUNT OF MEMORY TO BE IISED FOR
STACKE. AND HEAF MEMORY BY EACH PHASE OF TIF COMPILER WHEN IT
IS EXECUTED. IF THE SPECIFICATION IS NOT MADE. A DEFAULT VALLUE
I= SED.

THESE SPECIFICATIONS ARE MADE IN " K73 OF BYTES ".

SEE MEXT PAGE FOR TABLE OF STACK AND HEAF VALUES FOR TIF #3#

>
o

(€S

STACK AND HEAF VALUES FOR TIF COMPILER

STACK, HEAF
FHASE MIN MAX DEFAULT MIN MAX DEFAULT
MEM1 (ZILTI1) &E &k &k 4k S0k 10k
MEMZ (SILT2) 12K 13K 13K 2K 7k 4k
MEMZ (ZODEGEN) 10K 108 10K 4k 10K 2k

NOTES #4

1)

)

4)

THE DEFAULT STACK AND HEAF VALLIES ARE ADEQUATE FOR MOST
“AVERAGE SIZE- PROGRAM.

IF ROUTINES ARE VERY DEEFPLY “NESTED” WITHIN OTHER ROUTINES,
THEN MORE STACK SPACE MAY BE REGUIREL.

ROUTINES CONTAINING VERY LONG EXPRESSIONS MAY RERQUIRE MORE
STACK SPACE.

IF A PROGRAM IISES A LARGE NUMBER OF IDENTIFIERZ. MORE HEAF
SPACE MAY BE REGUIRED.

VERY LONG ROUTINES DR ONES THAT USE & LARGE NUMEBER OF
CONSTANTS MAY REQUIRE MORE HEAF SFPACE.

1o IEN:

EXAMFLES OF TIF COMPILER ERROR MESSAGES

OXFECL 1.5.0 7&8.217 TI 270 PASCAL COMPILER
FROGRAM ERRORS:

VAR B - INFUT : INTEGER;:

| B
. al

C ARRAY [1..20 1 OF REALS?
TEST BOCLEANS

BEGIN (# ERRORS %)
A = 473
1104
#3#%¥% ERROR # 105 ###3%
###% ERRIOR # 145 #3##4
B 1= 3.43;
#x#% ERROR # 145 ###%
FOR 1 = 2 TO 20 DO
b
BEGIN
CCJ 73 2= 0,03
WRITELN(” PRINT A AMESZAGE)

END3
INFUT 1= 213
143 15

##3# ERROR # 147 3333
TEST 1= TRUES
WHILE TEST DO
BEGIN
B t= B + 13
IF B > 17 THEN
TEST := FALSE:s
ENL
WRITELNC < ENDN OF A BAD PROGRAM!!!'-")
'14
END.

MAXIMLUM NUMEBER OF IDENTIFIERS USED = &

NUMBER 0OF ERRORT = 10

2 E IDENTIFIER EXPECTED
5 E 717 EXFPECTED
14 E 37 EXFPECTED
4= E STATEMENT EXPECTED
%1 E “i=7 EXPECTED
104 E UNDECLARED IDENTIFIER
105 F CLASS OF IDENTIFER IS NOT VARIARLE
145 F TYPE CONFLICT IN ASSIGNMENT
147 F UNDECLARED LAREL

Ql/705/7% 13815234

LINKEING A PROGRAM

-—

BEFORE AN ERROR FREE PROGRAM MAY BE EXECUTED, IT MUST BE
LINKED T THE NEEDED RUNTIME LIBRARIEZS AND INSTALLED ON A PROGRAM
FILE AS A TAZK.

LINE EDRITOR

THE LINK EDRDITOR IS A UTILITY WHICH RESOLVES REFERENCES BETWEEN
INDEPENDENTLY COMPILED QR ASSEMBLED MODULES.

LINK EDITOR QPERATION

} FILE

LINK j\
CONTROL |

PROGRAM
FILE

LINKAGE
EDITOR

FILES

LIBRARY \/L

USER |
OBJECT
FILES

LINK EDITOR

e o cmn s e e o e st Vot

LINKE CONTROL FILE ¢ INPUT)
- SPECIFIES TO LINK EDITOR THE LIBRARY FILEZ AND IIZER OBJECT
FILES WHICH ARE TO BE LINKED INTO A COMFLETE PROGRAM

LIBRARIES (INPUT)
- FILE DIRECTORIES WHICH CONTAIN THE RUNTIME ROUTINES WHICH MAY

BE UTILIZED BY A FROGRAM. (ONLY THOSE USED BY A PROGRAM ARE
LINKED IN) '

USER OB.JECT (INFUT)
- OBJECT FILE(3) WHICH CONTAIN THE COMPILED OR ASSEMBLED OBJECT

FOR A USER PROGRAM. (CONSTRUCTED BY A COMFPILER OR ASSEMBLER)

FROGRAM FILE (QOUTPUT)
- ANY PROGRAM (TASK) WHICH IS GOING TO RUN LUNDER DX10, MUST

BE INSTALLED ON A SPECIAL TYPE OF FILE CALLED' A “PROGRAM FILE”

BEFORE IT CAN BE EXECUTED.
WHEN EXECUTING THE LINK EDITOR, YOU MAY HAVE THE LINKED OBJECT

AUTOMATICALLY INSTALLED ON A PROGRAM FILE FOR EXECUTION.

LINK MAP (QUTFUT °)
— LISTING PRODUCED BY THE LINKAGE EDITOR WHICH LISTS ALL THE LINKING

INFORMATION NEEDED BY THE USER.

EXECUTION OF THE LINK EDITOR

L1 XLE

EXECUTE LINKAGE EDITOR
CONTROL ACCESS NAME: <PATHNAME 0OF LINK CONTROL FILEZ
LINKED QUTPUT ACCESS NAME: <PROGRAM FILE FATHNAMEZ
LISTING ACCESS NAME: <PATHNAME TO WHICH LINEK MAF I WRITTENX

PRINT WIDTH: 20

LINK CONTROL FILES (COMMAND STREAM FOR ILINE EDITOR)

PLURFOSE:

SPECIFIES OBJECT FILES AND LIBRARIES WHICH ARE TO BE LINEKED
ASSIGNS A TASK NAME TO THE PROGRAM BEING LINKED

SPECIFIES PRIORITY OF THE FROGRAM BEING LINKED

CREATED BY USING THE TEXT EDITOR

LINE CONTROL COMMANDS

TASK COMMAND

PURPOSE: ASSIGNS A NAME TO A TASK BEING LINKED

FORMAT:
TASK < NAME >
WHERE, < NAME > - 1 TO 2 CHARACTER NAME FOR PROGRAM
EXAMPLE:

TASK MYPROG

INCLUDE COMMAND

PURFOSE: SPECIFIES FILE NAME OF OBJECT MOQDULE TO BE INCLUDED
IN THE LINKED OUTPLUT MODLULE.

FORMAT:
INCLUDE < ASSEMBLED OR COMPILED OBJECT FILE PATHNAME >
EXAMFLE:
INCLUDE TI.ORIECT.MYFROG
##NOTE: IF EXTENDED PRECISION REAL NUMBERE ARE DESIRED. TWO
ADDITIONAL “INCLUDE- COMMANDS MUST FOLLOW THE < INCLUDE (MAIN) -
COMMAND IN THE LINE CONTROL FILE. THESE TWO COMMANDE ARE:

INCLUDE (FL$ITD)
INCLUDE (TENSIDD

LIBRARY COMMANID

PURPOZE: SPECIFIES DIRECTORIES WHICH ARE TO BE SEARCHELD
WHEN AN ABBREVIATED INCLUDE COMMAND IS USELD.
FORMAT:
LIBRARY < DIRECTORY NAME [< DIRECTORY NAME I ...
EXAMPLE:
LIBRARY TI.OBJECT -—-I
. I
. I << == 2> INCLUDE TI.OQBJECT.MYPROG
. I
INCLUDE ¢ MYPROG) —-I
##NOTE: LIBRARIES ARE SEARCHED IN THE ORDER IN WHICH THEY ARE
SPECIFIED.
FORMAT COMMAND
PURPOSE: SPECIFIES THE FORMAT THAT THE LINKED OBJECT MODULE
SHOULLD BE IN.
FORMAT:
IMAGE
FORMAT ASCII [.REPLACE 1] s PRIDRITY
COMPRESSED
IMAGE - QUTPUT WILL S0 TO A PROGRAM FILE
ASCII - QUTPUT WILL GO TO A STANDARD OBJECT FILE
IN ASCII FORMAT
COMPRESSED — QUTPUT WILL GO TQ A STANDARD ORJECT
FILE IN A SPECIAL “COMPRESSED” FORMAT
EXAMPLE:

FORMAT

IMAGE. REFLACE, 2

]

NOSYMT COMMANLD

PURPOSE:

FORMAT:

SPECIFIES THAT NO SYMBOL TABLE IS TO EBE INCLUDED
IN THE LINKED OUTPUT. (THIS COMMAND SHOULD BE USED
WHEN THE “FORMAT IMAGE- COMMAND IS USED)

NQOSYMT

END COMMAND

PURPOSE:

FORMAT:

TERMINATES THE LINK CONTROL FILE INFUT STREAM
T THE LINE EDITOR (EVERY LINK CONTROL FILE
MUST CONTAIN AN END COMMAND)

END

SAMPLE PASCAL LINK CONTROL FILE

NQSYMT
LIBRARY .TIF.OBJ
FORMAT IMAGE.REFLACE.:Z
TASK MYPROG
INCLUDE (MAIN)
INCLUDE TI.PASCAL.OBJ.MYPROG

END

NOTES:

COLUMN POSITION IS NOT IMPORTANT

7 (MAIN) “ IS THE PASCAL RUNTIME PACKAGE WHICH
MUST BE INCLUDED IN EVERY PASCAL LINK.

THE “INCLUDE- COMMAND FOR < (MAIN) < MUST BE THE
FIRST -“INCLUDE“ COMMAND IN THE LINK STREAM

W

PASCAL LINE EXAMFLE
[1 XLE

EXECUTE LINKAGE EDITOR

CONTROL ACCESS NAME: TI.PASCAL.LC.MYFPRIOG
: NAME: TI.FPASCAL.PROG
LISTING ACCESE NAME: TI.PASCAL.LMAP.MYFPROG

LINKELD OUTFUT ALCCE:

FRINT WIDTH: &C

SAMPLE LINEK MAP

TI ?90/10 SDSLNK 237137 #A 11715772 08131222
COMMAND LIST

NOSYMT

LIBRARY .TIP.OB.

FORMAT IMAGE.REPLACE,Z

TASK MYPROG

INCLUDE (MAIN)

INCLUDE TI.PASCAL.0OB.1.MYPROG

END

TI ?90/10 SDSLNK 939137 #A 11715778 0Q8:21:22
LINE MAF

CONTROL FILE = TI.PASCAL.LC.MYPROG

LINKED QUTPUT FILE = TI.PASCAL.PROG

LIST FILE = TI.PASCAL.LMAP.MYPROG

NUMBER OF CQUTPUT RECORDS = 24

DUTPUT FORMAT = IMAGE

o
q

FAGE

(W

)

G

TI #90/10 SDELNE 32187 #A

FHASE 0O,

MODULE

MAIN
$DATA
SUMLIT
REAL_ECH
DUMP_IT
MSG$
SCIRTNS
$DATA
P$TERM
INIT$1
PEINIT
FESINIT
RDIST
RESTST
ECOF$
ROLNS
ASSRTS
GET$CH
DEIT
GET$RCOR
ASSERS
DEX$T

COMMON

CURs
FARMS
HEAF%
SYSHMS
MEMS$

MYPROG

NO

(N A N I

NO

it RN

ORIGIM

ORIGIN

0000
4ELZ
3P0A
39FA
3AZA
3C7E
2DsC
4E9&
4422
44DA
433A
4556
4558
446B0
4700
470A
47EE
47F3
43822
4ABA
4B34
4c1g

ORIGIN

S52B4
S52B&6
52C0
S2CE
S2EE

= Q000

LENGTH

22DA
0024
Q020
0090
01F4
QODE
Q726
041E
0053
00&0
Q01
0002
0158
0050
Qn0?
Q0E4
QQ0A
002A
0263
0O0OCA
Q0C4
024A

LENGTH

0002
Q00A
Q0O0E
Q020
0522

11715772 Q&:]

LENGTH = ¢

TYFE
INCLUDE

INCLUDE
INCLUDE
INCLUDE
LIBRARY
LIBRARY

LIBRARY
LIBRARY
LIBRARY
LIBRARY
LIBRARY
LIBRARY
LIBRARY
LIBRARY
LIBRARY
LIBRARY
LIBRARY
LIBRARY
L IBRARY
LIBRARY

(TASKE 1D

DATE
0z/0%9/7%

11/715/77&
11/15/72
11715772
03/708/72
Qz/09/72

Q3/02/72
Q2/702/7%
0z/08/73
oz/708/78
0z/08/78
03/708/72
0323/08/72
0z/02/7%
02/08/73
oz/08/7%
Q2/08/72
oz/08/72
0z/08/72
Qz/702/78

= 1)

TIME

b
[y
[FX]
fxx]
| gh]
Y

[R e
= O~ 000000
HNONN
% %u S& sa as
(DN el N
oo

H AR IR

191142324
14154544
19:13:56
19:14:4%
18:23:30
17:41:12
12:04:44
17:29:22
12:54:24
19211217
13:12:08
17:32: 54
146:446: 33
12:15:03

FAGE 3

CREAEAT
SDELSLN

DXFSPSC
OXPSPSC
DXP=CL
DXPSCL
SOSLNK

SDEMALC
DXPsCL
SDSMAC
ZDSMAC
DXPSCL
DXPSCL
SDSMAC
DXPSCL
SDSMAC
SDSMAC
DXPSCL
DXPSCL
DXPSCL
DXPSCL

G

T
(@S]

NAME VALLIE
#AREND$ QO0OSE
#CLOSES O014E
#CREATS Q242
#[ISTR$E 0408
#[LUMP$Z OSFA
#ENTS Qoac

ENT$S 0114

ECLNS 110E

SGET$CH 47F2
#GET$TC 3Z1E
#INITS 1592
#MAF'$ 1BCA
#MOV$7 1074
TI 2920/10 SDSLN

NAME VALLE
#NEWS 1DBA
#P$MAIN QOQO2

PB$TER 4556
#PUTCHS$ 24FC
#RESM$$ 0042

RET$2 0128

REWRTS 2344
#3$IADD 3D5C

SHSINT 3F&6C
#SENEW 4126
#S$ESCPY 424C

SET$AC 2AC2

SUM_IT 39E83

TX$ERR 325A

WRLN$ 2748
343

N

>

1
1
1
1
1
1
1
1
1
1
1
1
1

NAME

#ABND$ 1
CLES
DEIST

#*DSTRYS

#ENCSHT
ENT®1

#ENXST

#FINDSS

#GETSME

*#GO%$
INITS1
MOV$4

#MOVS2

kK 939187 #A

i

o

N
1
1
1
1
1
1
1
&
&
=
&
1
2
1
1

NAME
OPENS$
P$TERM
#PRTSME
RDIST
RESTST
RET$M
#RSUMR$
#SHIASC
#S$ISUB
S$PARM
SHSETS
#SETHNA
SVCs
#WRCSHT
WRSST

LINKING COMPLETED

DEFINITTI

VALUE

0044
01A%Z
4244
QzFe
Q20
Q0070
QOF 40
2254
13220
142A
44F &
1094
109z

11713/

VALLE
2094
449E
2410
4574
446BE
0124
28F 4
3000
3084

4zz2

42CA
2B24
Z2BC2
3314
I7EC

N

~N

o

IS N

[l R R R xS B R B =N i e xS e e el e ol

NAME

AZSERS
#CLS$FT
DEXST
#DLIMF$H
#ENIST
ENTSZ
EQOFs
FL$SINI
#GETHPA
HALTS
#INIT4D
#MOVES
#MOIVEN
D122
NAME
#OFNS$F I
#PATCHS
PICL%$
ROLN$
#RESUMS
RET$S
#+RWINDS
#SHI0OIV
SHEMAPS
SEPTCA
#SCRSFR
#3STACKS
#TSVEC
#WREQF $
*WRXST

O N

-
=

VALLIE

4BZA
010
4ooe
044E
OCEO
Q070
4700
12B&
12DA
14F 4
14FE
1098
10oec

VALUE
2202
00AA
ZAFC
4724
22A4
0124
271A
3E7Z
4104
43FC
2900
2BAE
0000
360A
2BEE

N

1%
1

20

Pt pd bb ok b ped b ek b s
[0

S

Lol o o ey A S 2 R S e > R a4

NAME

AZSRTS
#CMF$ST
#0IVE
#OUMP$F
#ENSST

ENT$M
#+EOF$WR
#FREE%

GET$RC
#HEAFPST

ID$ERR
#MOVS4

MSGs

NAME

FSINIT
PESINI
#PUT$RC
READ_E
RET$1

REWND®
SSGTCA
#S6 IMUL
#SHNAME
#SHERTCA
#SCBSIN
#STORES
#TERM$
WRIST

VALLE

47EE
0z42
QA=
OAZE
QE40
004
10EE
1140
4AAZ
152E
12340
10?6
3C2
PAGE
VALLE
454A
4554
2740
2A22
013C
2310
432R4
2EB2
2964
442A
Z2AZC
322C
Z2EQZ
2L60

Ll i o I R O i 00 B ey i G O | e e O e S L S Wy SV

Z

|

o

-~

EXECUTION QF

A PASCAL FROGRAM

CIXFT

EXECUTE TI PASCAL TASK
PROGRAM FILE:
TASK. NAME OR ID:
INPUT:

OUTPUT:

fond

= "
et

AGES:

ME
MODE=

MEMORY :

EXAMFLE

CIXPT

EXECUTE TI PASCAL TAS
PROGRAM FILE:

TASK NAME OR ID:
INPUT:

QUTPUT:

MESSAGES:

MODE:

MEMORY:

== FOREGROUND COMMAND EXECUTING

MYFROG
NORMAL TERMINATION
STACK USED 418

HEAF

PROGRAM FILE FATHNAME

PROGRAM NAME (SEE “TASK” COMMAND)

PATHNAME FOR PASCAL “INPUTY FILE

PATHNAME FOR PASCAL “OUTPUT* FILE

LIST FILE PATHNAME FOR EXECUTION MESSAGES
FOREGROUND OR BACKGROLUND

STACK AND HEAF MEMORY FOR EXECUTING FROGRAM

K
TI.PASCAL.PROG
MYPROG
. TESTDATA
LFPO1
ME
FOREGROUND

EXECUTION BEGINS

SED 443

EXECUTION OF PASCAL TASK IS5 COMPLETE.:

TAZK RELATED =CI COMMANDE

SHOW TASK STATUS (STS) COMMAND

PURFOSE: TO DISPLAY THE STATUS OF ONE 2R ALL TASHS CLURRENTLY
RUNNING UNDER DX10.

FORMAT:

L1 =7

w

SHOW TASK STATUS

INSTALLED ID: < PROGRAM FILE TAsSK ID. =

QUTPUT ACCESS NAME: < DEVICE OR FILE FOR STATUS LISTING
EXAMPLE:

L1 57s

SHOW TASK STATUS

INSTALLED ID: (NGO ENTRY == ALL TASKS)
COUTFUT ACCESS NAME: (NO ENTRY == STATION YOU ARE AT
BIP—ID RUN IL STATION STATE FRIORITY FLAGL FLAGZ WF Fi
<0 &35 2 0% 01 S401 0120 48RS ZEF4
=Y =L 3 17 01 5000 0100 48ED AOTS
o £3 05 01 GO00 0000 04léA OARG

/30

EILL TASKE (KT) COMMAND

PURFOSE: TO KILL AN ACTIVE TAZK
FORMAT:
L1 KT
KILL TASK
RUN ID: < RUNTIME ID OF TASK - 3SEE STS PRINTOUT =

STATION NUMBER: < STATION WHERE TASE WAS EXECUTED - 3EE STS >

DELETE TASK (DT) COMMAND

PURPOSE: TO DELETE A TASK FROM A PROCGRAM FILE
FORMAT:
L1 DT
DELETE TASK
PROGRAM FILE OR LUNO: < NAME 0OF FROGRAM FILE -
TASK NAME OR ID: < INSTALLED ID OR NAME >
EXAMPLE:
L1D7
DELETE TASK
PROGRAM FILE OR LUNQO: TI.PASCAL.PROG

TASE NAME OR ID: MYPROG

##NOTE: A TASK MUST BE DELETED REFORE A NEW TASK WITH THE ZAME
NAME OR IO MAY BE INSTALLED.

IF THE “FORMAT IMAGE.REFPLACZE- LINEKE CONTROL COMMAND I3
ILSED, THE OLD TASK IS AUTOMATICALLY DELETELD AND THE NEW
ONE INSTALLED IN IT”S PLACE.

2 [37)

MOD10

TEXT EDITOR

e e o o ot Sane Sao s st

(REF — DX10 REL. 3.0 MANUAL - SEC 2 OF VoL IV)

INTRODUCTION

THE TEXT EDITOR ALLOWS THE USER TO INTERACTIVELY CREATE AND MODIFY
S0URCE PROGRAMS ONM DISK FILES. THE TEXT EDITOR MAY BE USED TO CREATE
ANDI MODIFY OTHER TYPES OF FILES AS WELL.

THE TEXT EDITOR MAY BE EXECUTED FROM THE FOLLOWING FERIPHERALS:

- %11 VDT
- ?13 VOT
- 733 ASR OR KSR
- 7432 KSR

STEPS IN EXECUTING THE TEXT EDITOR ON A VDT

1. BID SCI (HIT RESET THEN !)

IF SYSTEM RESPONDS WITH THE FOLLOWING SCREEN FORMAT, THEN GO TO
STEF 4.

SELECT ONE OF THE FOLLOWING COMMAND GROUPS

/DEV - DEVICE OPERATIONS
/FILE - FILE QPERATIONS
/PSDEV - PROGRAM DEVELOPMENT
/3MAIN - DX10 MAINTENANCE
/S0P - DX10 OFERATION

L1

IF THE SYSTEM RESPONDS ONLY WITH THE BRACKETS PROMFT (L1). THEN 50
TO STEF 2.

NSS!
~Q

2. PUT TERMINAL IN VDT MODE.

IF ONLY THE BRACKETS FROMPT ([1) WAS PRINTED,
TTY MODE AND SHOULD BE CHANGED TO VDT MODE.
JSING THE MODIFY TERMINAL STATUS (MTS) COMMAND.
VaLuM II, DX10 Z.0).

IISER DOES THE FOLLOWING (UNDERLINED INFORMATION IS ENTERED BY THE

USER) .

Ll MTS

MODIFY TERMINAL

STATUS
TERMINAL NAME: ME

NEW STATUS (ON/OFF): ON
NEW MODE (TTY/VDT): VDT

LOGIN REQUIRED?: NO

USER PRIVILEGE CODE: 7
DEFAULT MODE (TTY/VDT): <CR>

i@
QIIT

3. REBID SCI (RESET -

2

(COMPUTER SHOULD RESPOND)

SELECT ONE OF THE FOLLOWING COMMAND GROUPS

/DEV
/FILE
/PDEV
/SMAIN
/S0P

Ll

DEVICE OPERATICONS
FILE OPERATIONS
PROGRAM DEVELOFMENT
DX10 MAINTENANCE
DX10 OPERATION

(TERMINAL IS NOW IN VOT MODE)

THEN THE VDT IS
THIS MAY EBE DONE
(SECTION 1.,

)

TEXTZ

-5

TEXTZ
4. EXECUTE THE TEXT EDITOR (XE)
L1 XE

INITIATE TEXT EDITOR
FILE ACCESS NAME: PATANAME OF FILE TO BE EDITED

CREATING A NEW FROGRAM

1) CLEAR -“FILE ACCES3” FIELD (USE CLEAR KEY AS SHOWN BELOW)
2) HIT RETURN (NEW LINE - ?13)

CLEAR KEY INFORMATION

TERMINAL - 211

CLEAR KEY - ERASE INPUT CLEAR

Lo B B o B o O
0
-
£

L B B o B o N

NOTE: YOU WILL INDICATE THE FILE TO WHICH THE PROGRAM I% WRITTEN
WHEN YOU QUIT TEXT EDITING.

EXAMPLE — CREATE A NEW PROGRAM

CIXE
INITIATE TEXT EDITOR
FILE ACCESS NAME: <CR>

USE EDIT OPERATIONS
T CREATE PROBLEM

HIT ZOMMAND (HELP-?13) KEY

LIRE
RJIT EDITOR
ABORT: NO

DUTPUT FILE ACCESS NAME: TI.FASCAL.SRC.MYPROG
REPLACE: NO
MOD LIST ACCESS NAME: <ICR>

TEXT4
OPERATION OF THE TEXT EDITOR

CREATING A NEW FILE

0O EXECUTE THE EDITOR

3 FOLLOW THE STEPS ALREADY OQUTLINED (XE)
0 “#EQF” SHOULD APPEAR ON SCREEN

Q0 HIT “F77 KEY TO ENTER COMPOSE MODE

O HIT “RETURN” (NEW LINE - 913)

0 ENTER YOUR PROGRAM

O RETURN TO EDIT MODE (“F7° KEY AGAIN)

COMPOSE MODE

0 ENTERED FROM EDIT MODE BY HITTING THE “F7° KEY

0 EACH TIME USER STRIKES “RETURN” ., A BLANK LINE IS GENERATED
0 TABS ARE PRESET TO COLUMNS 1. 8, 13, 26, % 21

0 ALL EDIT FUNCTIONS ARE ACTIVE

0 RETURN TO EDIT MODE VIA “F7° KEY

0 EXIT EDITOR VIA QUIT EDITOR (QE) COMMAND,

B T e pup——

0 USED TO EDIT A NEWLY ZREATED FILE OR AN EXISTING FILE

0 TEXT EDITOR IS IN EDIT MODE WHEN IT IS EXECUTED

0 “RETURN- (NEW LINE) KEY SIMPLY CAUSES CURSOR TO BE POSITIONED TO
0 TABS ARE ACTIVE

2 ALL EDIT FUNCTIONS ARE ACTIVE

O ENTER COMPOSE MODE BY HITTING THE “F7° KEY

0 EXIT ERITOR VIA QUIT EDITOR (RE) COMMAND.

J41

EOIT FUNCTIONS

0 ACTIVE IN BOTH EDIT AND COMPOSE MODES

0 ALLOWS USER TO PERFORM CERTAIN EDITING FUNCTIONZ BY STRIKING A

FPARTICULAR KEYBOARD CHARACTER.

TEXTS

213 711 TTY
FUNCTIONE KEYTOP KEYTOP CONTROL
ENTER COMMANLD MODE HELP COMMAND X
EDIT/COMPOSE FLIP (1) F7 F7 v
ODISF/SUPRS LINE NO (Z2) Fé& Fé& F
CLEAR TOD TAB FS FI E
ROLL UP ROLL UP Fi1 A
ROLL DOWN ROLL DOWN F2 B
DUF TO TAE F4 F& o
NEW LINE NEW LINE RETURN CAR RETN
TAE TAB TAB SKIP (2) I
BACEK. TAB BACK TAB LFT FLD T
INSERT LINE INS LINE UNLABELED 5RAY KEY 0
DELETE LINE DEL LINE ERAS INP N
INSERT CHARALCTER INS CHAR INS CHR LAl
DELETE CHARACTER DEL CHAR DEL CHR 3t it 3t
CURSOR UP U
CURSOR DOWN o
CURSOR RIGHT e 22
CURS0OR LEFT (BACKSPACE) 335
HOME HOME HOME #4336
ERASE CLEAR ERAS FLI HHHH
1). ALTERNATES MODES ON SUCCEEDING HITS
2). ALTERNATES DISPLAY OF LINE NUMBERS (74 DATA CHARACTEREI) WITH NO
DISFLAY OF LINE NUMBERZ (20 CHARALCTERS)

). THE “SHIFT” KEY MUST BE FRESSED SIMULTANEOUSLY WITH THE “TAE SKIF

KEY TO ACHIEVE THE TAB FUNCTION ON THE 21t VOT

e

TEXT&

COMMANLD MODE

0 ENTERED BY HITTING THE COMMAND (HELFP - 213)
o “C1° PROMFT IS DISPLAYED

0 ALLOWS SER TO PERFORM EDITING FUNCTIONS BY ENTERING AN EDIT =SCI
COMMAND WITH PARAMETER SPECIFICATIONSZ.

COMMAND COMMAND
MNEMONIC DESCIRPTION
XE - EXECUTE TEXT EDITOR
RE - RUIT EDITOR
cL - COPY LINES
DL - DELETE LINES
D= - DELETE STRING
Fs - FIND STRING
IF - INSERT FILE
ML - MOVE LINES
MR - MODIFY ROLL
MRM - MODIFY RIGHT MARGIN
R - REPLACE STRING
MT - MODIFY TABS
sL - SHOW LINE

45

TEXT7

GUIT EDIT COMMAND (GE)

ALLOWS IMSER TO EXIT EDITOR AND SAVE CHANGES MADE TO AN EXISTING FILE OR
SAVE FILE WHICH WAS CREATEIL.
T2 QUIT EDITOR

0 HIT COMMAND (HELP - #13) KEY TO ENTER COMMAND MODE

0 [1 PROMPT IS DISPLAYED

0 ENTER RE

0 THE FOLLOWING MESSAGE IS DISPLAYED

QUIT EDITOR
ABORT: NO

USER RESPONDS

Y - ABORT EDIT SESSSION — NO CHANGES ARE SAVED

RETURN - OQUTPUT MESSAGE I% DISPLAYED (SEE NEXT PAGE)

44

OUTPUT FILE ACCESZS NAME:
REPLACE?:
MOD LIST ACCESE NAME:

(1) USER ENTERS
RETURN

NEW FILE NAME

(2) USER ENTERS

RETURN

YES

(3) USER ENTERS

RETURN
FILE OR DEVICE

NAME

TEXT=

TI.PASCAL.SRC.LAKES] (1)

(2)

()

TO USE DISPLAYED FILE AS OUTPUT FILE FOR
EDITED TEXT

TO HAVE EDITED TEXT TO G0 TO ANOTHER FILE
AND PRESERVE OLL FILE.

INDICATES USER DOES NOT WISH TO REWRITE AN
EXISTING FILE

OUTPUT FILE IS TO BE REPLACED IF IT ALREADY
EXISTS

NO LISTING OF MODIFICATIONS IS OBTAINED

LIST OF MODIFICATIONS TO FILE IS QUTPUT TO
NAME SPECIFIED.

#THE OTHER COMMANDS ARE DESCRIBED IN SECTION 2.4.1 OF VOLUME IV OF

THE DX10 MANUAL.

/45

SUMMARY

TEXT EDITOR

ALLOWS THE LUSER TO CREATE AND MODIFY TEXT FILES

FROVIDES = MODES OF OPERATION

COMPOSE MODE

USED TO CREATE NEW FILES

USED TO INSERT LARGE BLOCKS 0OR RECORDS INTOD EXISTING FILES
ENTER FROM EDIT MODE VIA “F7° KEY

BLANK LINE GENERATED EACH TIME “RETURN‘ (NEW LINE) IS ENTERED
RETURN TO EDIT MODE VIA “F77 KEY

DoOD00

EDIT MODE

0 USED TO EDIT EXISTING FILES

0 EDITOR IS IN EDIT MODE WHEN IT IS INITIALLY EXECUTED
0 ENTER COMPOSE MODE VIA “F7° EEY

0 EXIT EDITOR VIA “&E” COMMAND

COMMAND MODE

0 USED TO PERFORM PREDEFINED EDIT FUNCTIONS
O ENTER FROM EDIT OR COMPOSE MODE VIA “CMD- (HELF) EKEEY
D EXIT EDITOR VIA “RE” COMMAND

TEXT®

190

TEXT10

DISPLAY A LISTING

ONCE A LISTING FILE HAS BEEN GENERATED, IT MAY BE DISPLAYED IN ONE OF TWO
WAY:=.

SHOW FILE COMMAND

PURPDOSE: DISPLAYS THE CONTENTS OF A SPECIFIED FILE AT YOUR STATION
FORMAT:

C13F

SHOW FILE

FILE PATHNAME: PATHNAME OF FILE TO BE DISFLAYELD

PRINT FILE COMMAND

PURPOSE: TO PRINT THE CONTENTS OF A FILE TO A LISTING DEVICE.

FORMAT:
CIPF
FRINT FILE
FILE PATHNAME: PATHNAME OF FILE TO BE FRINTED
ANSI FORMAT: NO
LISTING DEVICE: LISTING DEVICE NAME
DELETE AFTER PRINTING?: NG
NUMBER OF LINES/PAGE: <CR>
EXAMPLE:®
L1 PF
PRINT FILE

FILE PATHNAME: TI.PASCAL.LST.MYPROG
ANSI FORMAT: NO
LISTING DEVICE: LPO1
DELETE AFTER PRINTING®: NO
NUMBER OF LINES/FAGE: <CRX

[He]

£
N

MoDo11

DATA TYFEE

OBJECTIVES:
- BE ABLE TO DECLARE A VARIABLE TO BE 0OF THE FOLLOWING TYFES:
BOOLEAN
SCALAR
SUBRANGE
ARRAY
RECQRD
— BE ABLE TO ACCESS ELEMENTS OF AN ARRAY.
- BE ABLE TO ACCESS FIELDS OF A RECORD.

- BIVEN A SCALAR DECLARATION BE ABLE TO DETERMINE THE VALUE 0OF
THE FUNCTIONS ORD, SUCC., ANLD PRELD.

AGENDA

1. TYPE BOOLEAN
2. SCALARS

&. SUBRANGE=

4. ARRAYS
WORKSHEET

5. PACKED ARRAYS
6. RECORDS

WORKSHEET

~
S

TYFE BOOLEAN

DEFINITION: THE VALUE OF A VARIAEBLE OF TYPE BOOLEAN IS EITHER TRUE
OR FALSE

SYNTAX: VAR <BOOLEAN VARIABLEZ : BODLEAN:

EXAMPLE: VAR SUCCESS : BOOLEANS:

SUCCESS = FALSES
IF VALUE = 10 THEN SUCCESS := TRUE;

A BODLEAN EXPRESSION CAN BE DIRECTLY ASSIGNED TO A BOOLEAN VARIABLE

EXAMPLE: THE ABOVE “IF- STATEMENT CAN BE REWRITTEN A%

SUCCESS := VALUE = 103

A BOOLEAN VARIAELE MAY BE TESTED INSTEAD OF A BOOLEAN EXPRESSION

EXAMPLE: IF SUCCESS THEN {STATEMENT>

ELSE <STATEMENT>3

DOFPERATIONS ON BOOJLEAN VARIABLES OR BOOLEAN EXFPRESSIONS

LOGICAL

THE FOLLOWING OPERATIORS

OPERATORS:

BOOLEAN VARIABLES:

OPERATOR PRECEDENCE:

/ MOD DIV

YIELD

NOT
ANLD

R

A VALLUE OF TRUE OR FALSE

HIGHEST FRECEDENCE

LOWEST PRECEDENCE

WHEN AFFLIED

T

IS0

NOT

NOT IS TRUE WHEN THE OPERAND IS FALSE

EXAMPLES: NOT (5 > 3) FALSE
NOT SUCCESS

WHEN

] ‘"TRUE FALSE
WHEN 5

UCCESS
u FALSE TRUE

CCESS

nn

NOT (I = 10)

WHEN I = 10 FALSE
WHEN I = 3 TRUE
WHEN I = 15 TRUE

AND

AND IS TRUE ONLY WHEN BOTH DPERANDS ARE TRUE

T F
T T F
F F F
EXAMPLES:
1 >3 AND 10 = 10 FALSE
I <='20 AND FINISHED
WHEN I = 10 FINISHED = TRUE TRUE
WHEN I = 20 FINISHED = FALSE FALSE
WHEN I = 30 FINISHED = TRUE FALSE
X <> Y AND NOT SUCCESS
WHEN X = Y SUCCESS = FALSE FALSE
WHEN X = 5, Y = 10, SUCCESS = TRUE FALSE
WHEN X = 10, Y = 4, SUCCESS = FALSE TRUE

R

DR IS TRUE WHEN ONE OR BOTH OF THE OPERANDS IS TRUE.

T F
T T T
F T F
EXAMPLES: 1 < 2 OR 10 > 5 TRUE
1 <2 0R 15 < 20 TRUE
1>30R 15> 3 TRUE
I <= 10 OR SUCCESS
WHEN I = S, SUCCESS = TRUE TRUE
WHEN I = 11, SUCCESS = TRUE TRUE
WHEN I = 11, SUCCESS = FALSE FALSE

I <= N OR NOT FOUND

WHEN I = S, N = 10, FOUND = FALSE TRUE
WHEN I = 10, N = 10, FOUND = FALSE TRLUE
WHEN I = 11, N = 10, FOUND = TRUE FALSE
WHEN I = 11, N = 10, FOUND = FALSE TRLE

r~

\/‘\
3)

A BOOLEAN OPERATOR CAN SIMPLIFY A NESTED

K I F r

EXAMPLE:

IF X > 0 THEN

IF (X / 2) < N THEN
AN BE REPLACED WITH
IF X 2> 0 AND (X /7 2) < N THEN

IF CODE < 1 THEN
ERROR := TRUE
ELSE IF CODE > S THEN
ERROR := TRUE:3
CAN BE REPLACED WITH
IF CODE < 1 OR CODE 2> 5 THEN

ERROR == TRUES

IN EACH CASE DETERMINE IF THE STATEMENT WILL EXECUTE:

IF I

< 10 AND NOT FINISHED THEN <STATEMENT>

WHEN I = 3, FINISHED = FALSE

WHEN I = 10, FINISHED = FALSE
WHEN I = 10, FINISHED = TRUE
WHEN I = S, FINISHED = FALSE

IF I < 10 OR NOT FINISHED THEN <STATEMENT>

WHEN I < 10, FINISHED = FALSE
WHEN I = 10, FINISHED = FALSE
WHEN I = 10, FINISHED = TRUE
WHENM I = 5, FINISHED = FALSE

AN

N3

YES

U)
J

C

SCALARST

DEFINITION:

AN ORDERED LIST OF IDENTIFIERS

SYNTAX: TYPE <NAMEZ> = (<IDENTIFIER>, ..., <{IDENTIFIERX):

THE IDENTIFIERS MUST BE UNIGUE.

SCALARS ARE NUMBERELD STARTING WITH ZERC.

YOU MAY NOT DO ARITHMETIC ON SCALAR VARIABLES.

YOU CAN'T READ OR PRINT OUT A SCALAR VALLE.

EXAMPLES:

SCALARS MAY

EXAMPLE:

TYPE FAMILY = (MOTHER, FATHER, 3S0ON, DAUGHTER)S:

TYPE PET = (CAT. DOG, BIRD, FISH);j
VAR PARTIES: (REPUBLICAN,. DEMOCRAT);

VAR VOWELS: (A-E»I.0,U)3

BE USED FOR THE FOLLOWING:
- AS AN ARRAY INDEX
- AS A FLAG
- T0O IMPROVE CODE READABILITY
TYPE COLOR = (WHITE. RED. BLUE. YELLOW,
GREEN. ORANGE., BLACK)3

VAR C, C1: COLOR;3
SUCCESS = BOOLEAN:

IF C > WHITE THEN <STATEMENTZ

PURFLE,

SCALAR VARIABLES MAY BE UUSED AS A FLAG WHEN MORE THAN

NEEDED.

EXAMFLE: TYFE =IGN = (POSITIVE. ZEROD,

VAR ISIGN = SIGN3

BEGIN
READ(I)S

NEGATIVE)

IF I > O THEN ISIGN := POSITIVE

ELSE IF I = 0 THEN ISIGN := ZEROD

ELSE ISIGN := NEGATIVE:

(# TEST ISIGN)

IF ISIGN = POSITIVE THEN WRITE(I)

ELSE IF ISIGN = NEGATIVE THEN WRITE(-I)

ELSE WRITE(“I IS ZERO")3

2 STATES

ARE

NOTES: SIGN IS A GENERAL TYPE. ISIGN IS A SPECIFIC INSTANCE OF A
VARIABLE OF TYPE SIGN. POSITIVE, ZERO. AND NEGATIVE ACT

LIKE CONSTANTS.

SCALAR OPERATIONS

YO MAY DO NO ARITHMETIC ON SCALARS.

SCALARS MAY BE MANIPULATED WITH THE FOLLOWING FUNCTIONS:

PRELDI(X) (X“S PREDECESSOR) GIVES THE SCALAR BEFORE X
SUCC(X) (X735 SUCCESSOR) GIVES THE =SCALAR AFTER X
ORD(X) GIVES X“S NUMBER IN THE ORDERING. SCALARS

ARE NUMBERED STARTING WITH ©.

EXAMPLES: TYPE PRIMARY = (RED, BLUE, YELLOW)3
TYPE SUIT = (SPADE, CLUB, HEART. DIAMOND);

VAR X, Yi: PRIMARY:

X 3

]
)

EDs

Y 2= SUCC(X)3 (# Y WILL BE BLUE #)

ORD(SPADE) = 0

ORD(BLUE) = 1

SUCC(CLUB) = HEART

FRED(RED) = LINDEFINED WILL GSIVE AN ERROR

SUCC(DIAMOND) = UNDEFINED

PADE THEN
= PRED(X)3

N
-’ -
-
-

SUBRANGE=

et s st vt vt st s v

DEFINITION:

SYNTAX:

SIUBRANGES ARE USED WHEN WE KNOW A VARIABLE WILL ONLY
HAVE A SUBSET 0OF ITS POSSIBLE VALUES. (I.E. INTEGERZ
FROM 1 TO 10 OR GRADES FROM O TO 100.

SUBRANGES 0OF THE TYPE REAL ARE NOT ALLOWED

VAR < IDENTIFIERZ> : <LOWER BOUND> .. <UFPPER BOLUNLIC

THESE TWCO DOTS ACTUALLY
APPEAR IN THE PROGRAM

BOTH LOWER BOUND AND UPPER BOUND MUST BE CONSTANTS

YOU CANNOT SAY VAR I = 0 .. N + 1

EXAMPLE: TYPE TESTSCORE = 0..1003

VAR MYSCORE, YOURSCORE : TESTSCORE;

OR

VAR MYSCORE, YOURSCORE : Q..100

TYPE IR = 0 .. 2003 (# SUBRANGE OF INTEGER#)

DAYS = (MON, TUE., WED. THU, FRI, SAT. SUN);

WORKD = MON..FRI3 (#SUBRANGE 0OF SCALER TYPE “DAYS #)

LETTER = “A“.."2Z735 (#SUBRANGE OF CHARACTERS#)

SUBRANGES MAY INTERSECT:

EXAMFLE: VAR A : 10..20; IN THIS CASE A := B I3 LEGAL
B o O15..205 A = C IS ILLEGAL
cC o 21..303 B := A BE CAREFUL!

RUNTIME OFTION CESUR

— ENABLES OR DISABLES THE CHECKING QF SUBRANGE ASSIGNMENTS AND
THE RESULTS OF PRED AND SUCC FUNCTIONS

- DEFAULT IS FALSE

ARRAYS
DEFINITION: SAME IDEA AS FORTRAN. BUT MORE GENERAL.

SYNTAX: VAR <ARRAY NAME> : ARRAYL<INDEX TYFE>] OF <BASE TYFPEX

INDEX TYPES
INTEGER

LONGINT

CHAR

BOOLEAN

SCALAR

SUBRANGE

BUT NOT REAL !

EXAMPLE: CONST N = 203

it

TYPE IR Q..200;
PEOPLE = (JANE, BILLIE, LES);

C = ARRAYL1..Nl OF CHAR3

VAR INT : ARRAYLO..N]l QF INTEGER;

CH @ ARRAYLCHAR] 0OF 0Q..443 (# CH WILL BE INDEXED BY
(# CHARACTERS #)

INTELL : ARRAYLPEOPLEY 0OF I@3 (% INTELL WILL BE INDEXED
(# BY JANE, BILLIE. OR #*)
(# LES #*)

NAME : ARRAYLFEOPLE] OF Cs

NAMES : ARRAYLPEOFLE]l OF ARRAY [1..N1 OF CHAR;

(# NAME ANLD NAME= DEFINE THE SAME ARRAY #)

O

A‘
i

ACCESSING ARRAYS
GIVEN VAR I @ INTEGER: A : IZHARS
NAMES : (JANE, LES, BILLIE)S

INTL I 1 INDEXING BY AN INTEGER

INTC I + 1 1
CHL A7 INDEXING IJSING CHARACTERS

INTELLL JANE 1 INDEXING USING A SCALAR

MULTIDIMENSIONAL ARRAYS

SYNTAX: VAR A: ARRAY[1..101 OF ARRAY[1..20] OF INTEGER
OR

VAR A: ARRAYL1..10, 1..20] OF INTEGER

ACCESSING AN ELEMENT:

ALI, J] =X
I REFERS TO THE ROW

J REFERS TO THE COLUMN

EXAMPLES: TYPE STUDENT = (JAMES, JOHN, SAM, SALLY)S
VAR GRALDES : ARRAYLSTUDENT., 1..101 OF 0..1003
GRADESLCJOHN, 21

##NOTE: 0ON THE 213, “(.” AND “.)” SUBSTITUTE FOR “[~ AND “1-.

COMFILER OPTICN CHINDEX

— ENABLES OR DISABLES CHECKING FOR ARRAY INDICES WITHIN RANGE.
- DEFAULT--FALSE

07 0= R OAND NOT =i

IF ACTT = ¥ THEM

(MM)

(% MO T3

THEERT V AFTER THE ITH ELLEMENT

ARE LLEZS THAN M ELEMENTS IN THE SRRSY S0 THAT THE
VACANT

PROCETNIRE ITMEERT (M ¢ T3 I ¢ INTEGERDS

BEGTIM
FiOp b s= N — 1 DOWNTO T + 1

S T A e~ N S e

. ' (%
Rl

[

THTadpd i

i)
which will
af thse s#lemsnt R

WORKSHEET 7

xy

%)

10.

11.

12,

14,

WRITE THE DECLARATION STATEMENT TO DECLARE A VARIABLE “FOLUNDC
A TYFE BOOLEAN.

DECIDE WHETHER THE FOLLOWING BOOLEAN EXPRESSIONS ARE TRUE OR
FALSE

NOT (& < 9)

NOT DONE WHEN DONE

FALSE

WHEN DONE TRUE

(4 < 10) AND (1 > O)

SUCCESS OR ENDLIST

WHEN SLICCESS

FALSE, ENDLIST = TRUE

WHEN SUCCESS TRUE, ENDLIST = FALSE

WHEN SLCCESS

FALSE. ENDLIST = FALZE

REWRITE THE FOLLOWING NESTED “IF” STATEMENT AS A SINGLE “IF-
STATEMENT USING A LOGICAL OFERATOR

IF I <= N THEN

IF NOT SUCCESS THEN
CESTATEMENTZ

WRITE THE DECLARATION STATEMENT TO DECLARE A TYFE LANGUASGE AS
A SCALAR WHICH MAY BE ONE 0OF THE FOLLOWING: FORTRAN. FASCAL,
COROL.

GIVEN THE DECLARATION:
VAR DOGE @ (COLLIE. SPANIEL. SHEFHERD, MUTT)

ORO(ZPANIEL) =

SLUCC(SHEFHERD) =

SUCCOMUTT)

FREDN(MUTT)

N

/!

/

13. USING A SUBRANGE. DECLARE A TYFE “BIT” WHICH
CAN HAVE VALUES FROM O TO 15,

16, WRITE THE VAR STATEMENT TO DECLARE AN ARRAY “WORDS-
CONSISTING OF FROM 1 TO 10 CHARACTERS.

17. DECLARE A 2-DIMENSIONAL ARRAY CLASS OF ARRAY 0OF GRADES.
THERE ARE 20 STUDENTS IN THE CLASS AND EACH STUDENT HAS
10 GRADES.

13. WRITE A STATEMENT WHICH WILL ASSIGN THE 4TH STUDENT IN THE
CLASS OF THE ABOVE ARRAY A GRADE OF 95 ON THE FIRST TEST.

PACKED ARRAYS

DEFINITION: A FACKED ARRAY ECONOMIZES STORAGE BY STORING
SEVERAL COMFONENTS IN ONE WORD.

SYNTAX: VAR <NAME> : PACKED ARRAYLCN1l..N21 OF <TYPEZ

EXAMPLE: VAR BOOL : PACKED ARRAY[1..141 OF BOOLEAN
“BOOL” WILL TAKE ONE 16-BIT WORD.

TYPE X = PACKED ARRAYL1..41 OF 0..75
(# WILL TAKE 1 146-BIT WORD i#)

Y = PACKED ARRAY[1..51 OF X3
(# Y WILL TAKE 40 BITS OR 4 WORDS #)
OR
Y = PACKED ARRAY[1..5, 1..41 OF 0..73
NOTE: IF THE COMPONENTS OF AN ARRAY REQUIRE ONE WORD OR MORE

OF STORAGE. PACKING THAT ARRAY HAS NO EFFECT ON THE
STORAGE ALLOCATION.

PACK ANLD LINPACK

THE PROGRAMMER MAY PACK OR UUNFACK AN ARRAY A BY UISING THE
PROCEDURES “PACK (A, I,Z)7 AND “UNPACK(Z.A,I)"

PACK(A>I,Z) MEANS FOR J := U TO V DO
ZrJl := ACJ - U + I1

UNPACK (Z,A,I) MEANS FOR J == LI TO V DO
ALY - U + 11 == Z[J]

J IS THE “FOR LOOP“ INDEX

A IS THE UNPACKED ARRAY

Z IS THE PACKELD ARRAY

I IS THE INDEX INTO THE UNPACKED ARRAY

##NOTE: THE PASCAL COMPILER WILL UNPACK A PACKELD ARRAY IF
YOU REFERENCE AN ELEMENT OF THE ARRAY. AND THEN
REPACK THE ARRAY.

TO SAVE TIME UNPACK THE ARRAY WHILE IT IS BEING
ACCESSED THEN REPACK IT.

STORAGE FOR LINPACKED ARRAY STORAGE FOR PACKED ARRAY
: : [: : (1 : A :
H H a : : T H H

-~

/.

¢/

USING PACK AND UNPACK

VAR A ¢ ARRAY [1..5 1 OF INTEGER:
F : PACKED ARRAY [1..% 1 OF INTEGERS
A= SET ELEMENTS OQF P = 0
1 F =
2 0
3 0
4 Q
S 0
0
PACK. (A.1.F)
P = PACK (A,3.F)
1 F =
2 2
2 3
4 4
s 2
3
SET ELEMENTS OF A = 0O
A=
0
0 VAR UJ * ARRAY [1..10]1 OF INTEGER
0 P : PACKED ARRAY [1..51 OF INTEGER
0 PACK(U>1.:P)
0 P= 1
2
UNPACK (F.A.1) 2
A= 4
1 S
2
3 UNPACK (P.U.1)
4 u=
5

SET ELEMENTS OF A = 0
A =

jo e oo N
SOSOOUNPRON-

UNPACK (F.A.2)
A =

PO O

LT /”Cr

DEFINITION: A
THE LOWER INDEX OF THE ARRAY MUST BE 1
A STRING MAY NOT BE LONGER THAN 70 CHARACTERS
ANY CHARACTER MAY BE REPRESENTED IN A STRING BY A
FOLLOWED BY IT3S Z-DIGIT HEXADECIMAL CHARACTER CODE.
THIS ENABLEZ UNFRINTABLE CONTROL CHARACTEREZ TO BE
INCLUDED IN STRINGS.
EXAMPLE: VAR STRING : PACKED ARRAYL1..N] OF CHAR3
STRING = “THIS IS A STRING’S (# O IF N = 14 #)
STRING 2= “ABC”; (# 0K IF N = 2 #)
STRINGL11 == “A“3

STRING IS A FPACKED ARRAY OF TYPE CHAR.

RELATIONAL OPERATORS MAY BE USED ON STRINGS IF THEY ARE THE SAME

TYPE AND SAME LENGTH.

EXAMPLE: VAR =TR1i, STR? :
STRE : PACKED
STR4 : PACKED

STR1 := STRZ2
IF STR1 < STR2
X = 13
IF STRZ >= 2STR:
X 3= 23
3TR4 := “WORD";
§TR1 := “STRING
STR1 == “STRING-

PACKED ARRAY[C1..101

OF CHARS

ARRAYC1..161 OF CHAR;

-

ARRAYLS. .21 OF CHARS
(% Ok #)
THEN
(# Ok #)
t THEN (% NOT LEGAL--STRZ AMDO STRZ=

(# ARE NQT THE ZAME LENGTH
(# NIT LEGAL-—INDEX DOESN-T
(# ZTART AT 1

“3 (# 0k *)

(% ILLEGAL--MUST HAVE 10

#*)
#*)

#*)
#*)

#*)

RECORD=

RECORDS ARE A USEFUL WAY OF GROUPING RELATED DATA TOSETHER.

SYNTAX: RECORLD
<FIELD: = STYPE:S

<FIELD> <TYPE>

END

-,

EXAMPLE: DECLARE A TYPE DATE
THE DAY. MONTH, AND

TYPE DATA = RECORD
DAY

MO

YR

END3

(# NO 3 #)

WHICH IS A RECORD CONTAINING
YEAR.

1..315
1..12;

INTEGER

VAR MYBIRTHDAY : DATE:;

HOLIDAYS @ ARRAYL 1..101 OF DATA;

EXAMPLE: DECLARE A TYFE EM_DATA WHICH IS A RECORD CONTAINING
THE EMPLOYEES NAME (UFP TO 20 DIGITS) AND HIZ SOCIAL

SECURITY NUMBER.

[:77

ACCESZING A FIELD IN A RECORD

SYNTAX:

EXAMPLE:

<RECORDZ.<FIELD NAMEI-

GIVEN THE FOLLOWING RECORD, ASSIGN MYBIRTHDAY TO BE

2/20/47
TYFE DATE = RECORD
DAY @ 1..31;
MO & 1..12%
YR & INTEGER
END3 ‘

VAR MYBIRTHDAY : DATE:
HOLIDAYS : ARRAYL 1..10 1 OF DATE:

MYBIRTHDAY.DAY := 203
MYBIRTHDAY.MO = 23 ,
MYBIRTHDAY.YR := 1747;

AZSIGN THE FIRST HOLIDAY TO BE NEW YEARS

DAY THI=

YEAR.

CAN

NESTED RECORDS

EXAMFLE: DECLARE A RECORD WHICH WILL CONTAIN A STUDENT S
NAME (UP TO 20 CHARACTERS) . HIS SCHOOL ENTRANCE
OATE AND THE DATE HE GRADUATED.

TYFE STULDATA = RECORD .
NAME : FACEED ARRAYL 1..20 1 0OF CHAR:
ENTERED @ RECORD
DAY & 1..313
MO8 1..125%
YR & INTEGER
ENIL#3
GRADUATED : RECORD
pay = 1..313%
Mo l..123
YR : INTEGER
ENI
ENDis
VAR STUDENT @ STU_DATAS
STUDENT.NAME = “JANE LOBDILL "3
STUDENT.ENTERED. DAY = 153
STUDENT. ENTERED. MO &= @3
STUDENT.ENTERED.YR = 19443
STUDENT . GRADUATED. DAY 3= 203
STUDENT . GRADUATED. MO = 43
STUDENT. GRADUATED. YR 1= 1'%493
EXAMFILE: CONSTRUCT A RECORD WHICH WILL CONTAIN THE FOLLOWING

INFORMATION:

EMFLOYEE NUMBER
SOCTIAL

SECURITY NUMBER (2

(& DIGITE)
DIGITE)

NLIMEBER OF DEFENDENTS

DATE EMPLLOYED

FACKED RECORDE

EXAMFLE ¢ TYPE R = FACKED RECORD

A &+ PACEED ARRAY [1..1031 OF 1..313

JdoTo0..73

B2 O..#FFF3

L IMTEGER

ENII:
N

;
D

—_—

<

7

SUMMARY

A BOOLEAN VARIABLE MAY HAVE A VALUE 0OF TRUE OR FALZE.
A BOOLEAN EXPRESSION MAY BE ASSIGNED TO A BOCOLEAN VARIABLE.

A BOOLEAN VARIABLE MAY BE TESTED INSTEAD OF A BOOLEAN EXFRESZION.
“ANL-, “OR”, AND “NOT ., ARE LOGICAL OPERATORS AND MAY BE APPLIED

TO BOOLEAN VARIABLES.

“NCOT- IS TRUE WHEN THE OPERAND IS FALSE.

“AND- IS TRUE WHEN BOTH OPERANDS ARE TRUE.

“OR* IS TRUE WHEN AT LEAST ONE OF THE QERANDS IS TRUE.

A BODLEAN OPERATOR CAN SIMFLIFY A NESTED “IF-.

SCALARS ARE AN ORDEREL LIST OF IDENTIFIERS.

YO MAY DO NO ARITHMETIC ON SCALARS OR READ THEM OR FRINT THEM
ouT.

SCALARS ARE IISED TO INDEX ARRAYS OR AS A FLALG,

SCALAR OPERATIONS ARE PRED, sSUCC, AND ORD,

A SUBRANGE IS A SUBSET OF VALUES.

ARRAYS ARE SIMILAR TO FORTRAN ARRAYS. THE INDEX MAY NOT BE OF
REAL.

RECORDS ARE A WAY 0OF GROUPING RELATED DATA TOGETHER.

TYFE

WORKESHEET =

e e . S s 2ot o ot 2200t S o

1. WRITE THE DECLARATION FOR A STRING OF 10 CHARACTERS

WRITE STATEMENTS TO DD THE FOLLOWING:

2. ASZIGN “WORDY THE VALUE “DEVELOFING-
i AZZIGN “WORDS THE VYALUE “ToM-
4. AZZIGN "WORDY THE VALUE ALL BLANEZ.

Z. DECLARE A RECORD “"DOG” WHICH CONTAINS THE FOLLOWING
INFORMATION:

EBREELD (WP TO 10 CHARACTERE)
DG~ NAME (UP TO 20 CHARACTERS)
DOGE REGISTRATION NUMBER (UF TO 2 DOIGITS)

CALLED

A, ADD TO TYFE DG ARBOVE ANOTHER FIELD WHICH I3 THE DOG S

ETIRTHDAY. THE EBIRTHDAY SHOULD HAVE = FIELDS, MONTH,
AND YEAR.

DAY .

WIOIRTT.

GIVEN THE FOLLOWING DECLARATIONS ASSIGN STUDENTI A GFA OF 2.5

TYPE DATA = RECORD
NAME : PACKED ARRAYL 1..20 1 OF CHAR:
MAJOR : PACKED ARRAY [1..3 1 OF CHAR;
GPA : REAL3
HRZ_COMPL : INTEGER
ENDs
VAR STUDENT1 : DATAS

GIVEN THE FOLLOWING DECLARATIONS ASSIGN PROJECT1 A STARTING
DATE 0OF MAY 12, 1977.

TYPE DATA = RECORD
PROJ_NAME = PACKED ARRAYL 1..10 1 OF CHAR;S
TOTAL_BUDGET: REALS
ODATE_STARTED = RECORD

DAY & 1..313

MO s t..12:

YR @ INTEGER
ENDO

ENDs
VAR PROJECT1 @ DATA;

GIVEN THE FOLLOWING DECLARATIONS, WRITE ASSIGNMENT STATEMENTS
TO ENTER A FPURCHASE DATE OF JUNE 21, 1977 FOR AUTO #3.

TYPE CTAR = RECOIRD
DATE_FURCHASED = RECORD

DAY = 1..313

MO o 1..12%

YR ¢ INTEGER
END

END3
VAR NUR_CARS @ ARRAYL 1..3 1 OF CAR3

[N

MOD12

PROGRAM CONTROL STATEMENTS II

OBJECTIVES:

= BE ABLE TO IISE THE FOLLOWING PROGRAMMING STRUCTURES.
REFEAT-UNTIL LOOP
CASE STATEMENT
WITH STATEMENT

AGENDA

1. PROGRAMMING STRUCTURES
~ REPEAT-LINTIL
~ CASE STATEMENT
- WITH STATEMENT

WORKSHEET

REPEAT-UNTIL

SYNTAX:

EXAMPLE:

REFEAT
CSTATEMENTZ S

<STATEMENTZ 3
UNTIL <BOOLEAN EXPRESSION;

REPEAT-UNTIL EXECUTES ONE OR MORE STATEMENTS REPEATEDLY
UNTIL A CERTAIN CONDITION IS TRUE.

A “BEGIN-END” BLOCK IS NOT USED.

VAR CH: CHAR;3

REFEAT
READ(CH) 5
WRITE(CH)S

LINTIL CH = “#73

WHILE-DW REFEAT-LINTIL

START START

TEST STATEMENT

STATEMENT ' TEST

WHILE-DO MAKES THE TEST BEFORE THE FIRST ITERATION OF THE LOOF.
REFEAT-UNTIL MAKES THE TEST AFTER THE FIRST ITERATION OF THE

-O0P.

USE “REFPEAT-UNTIL® WHEN THE VARIABLE BEING TESTED WILL NOT BE
DEFINED ON THE FIRST FASS. (CH WAS NOT DEFINED UNTIL IT WAS

REALD.)

& 174

CASE STATEMENT

SYNTAX: CASE <EXPRESSION: OF

JZASE LABELX,...,<CASE LABEL>

<ETATEMENTZ: S

ZCASE LABEL>,....<CASE LABEL> : STATEMENT
L OTHERWISE <STATEMENTZ>:...3<STATEMENTZ 1

END

WHEN A CASE STATEMENT IS EXECUTED:
- THE EXPRESSION IS EVALUATED

- ©CONTROL PASSES TO THE STATEMENT WHOSE LABEL EXACTLY
CORRESPONDS TO THE VALUE OF THE EXFREZZION.

— CONTROL PASSES TO THE NEXT STATEMENT FOLLOWING THE
END OF THE CASE STATEMENT.

EXAMPLE: VAR I : INTEGER

CASE I OF
0 : X == 103
1, 3, S X = SINC Y)3
b..10, 20, 30..40 s X = 203 Y)
ENLDi

IF I = 0 THEN I MATCHES THE LAREL ON STATEMENT 1 AND
X WILL BE ASSIGNED THE VALUE 10.

IF I = 7 THEN I MATCHES THE LABEL ON STATEMENT 2 AND
X WILL BE ASSIGNED THE VALUE COS(Y).

IF I = 50 THE CASE STATEMENT IS IUNDEFINED. THIS FROBLEM
CAN BE AVOIDED BY USING THE “OTHERWISE® CLAUSE.

CASE I OF
0 = 103
1, 2. 3 = SINC Y)s

=1

)

feol10, 20, 20..40
OTHERWISE WRITELN("X I
END

H l_.l_lt_:; (Y)3
UT 0OF BOLUNDZ)

0 > > X

,.‘_ﬂ sz s 88

EXAMPLES:

CASE DAY OF

MON, TUE. WED. THU, FRI BEGIN
WRITELNCILDD S

WRITELN(HRS, JOBNLUM)

ENDs
SAT t WRITELN(“SATURDAY)3
SN SWRITELN(“SUNDAY)

ENLi

TYPE SIGN = (POSITIVE. ZERO. NEGATIVE);
VAR ISIGN = SIGN3
I : INTEGER:

BEGIN
READC(I);
IF I >» @ THEN ISIGN == POSITIVE
ELSE IF I < O THEN ISIGN := NEGATIVE

ELSE IF I = Q THEN ISIGN := ZERO;

CASE ISIGN OF

POSITIVE : WRITE(I);

NEGATIVE WRITE (-I)3
ZERD ! WRITE (I = 07)

END

EXAMPLE:
VAR CH : CHARS
VOWEL : BOOLEAN;S
CASE CH OF
“f8*, "E*, “I° & BEGIN
WRITE(IT""3 A VOWEL");

VOWEL := TRUE

END3
SRS, T, T,
Fr, TG, “HY,
“de : BEGIN

WRITE(-IT "3 A CONSONANT)

VOWEL == FALSE

ENDs
OTHERWISE WRITE(“CH IS NOT A..d7)3
CH := <
END
NOTES: THE LABELS WITHIN A& CASE STATEMENT MUST BE UNIQUE, BUT

LABELT IN DIFFERENT CASE STATEMENTS OR EVEN NESTED CAZE
STATEMENTS ARE INDEPENDENT.

IF THE VALUE OF THE EXPRESZION DOES NOT QCCUR AMONG THE
LABELS, THE COMPUTATION IS UNDEFINED ! YO WILL SET A
RUN-TIME ERROR. YOI CAN AVOID THIS BY USING “OTHERWISE-.

SEVERAL STATEMENTS MAY FOLLOW “OTHERWISE“. A BEGIN-END
IS NOT NECESSARY.

~)

‘\.;\

WITH

STATEMENT

SYNTAX:

EXAMPLES:

(# I%

WITH <VARIABLE LLIST>

TYFE DATE = RECORD

nay

MO

YR
ENDS

VAR TODAYSDATE =

TODAYSDATE. DAY == 13

TODAYSDATE.MO ==
TODAYSDATE. YR 2=

EQUIVALENT TO

WITH TODAYSDATE Do

BEGIN
DAY == 13
M2 := MARS
YR 1= 1973
END13

oo STATEMENT

INTEGERS

AFR»
NOV,

MAR .
7T,

FEB,
SEF,

(JAN,
ALIG,

INTEGER

DATES

WRITING #)

MAY .
DEC) 3

LN

J

-

A

EXAMFPLES:

P.NAME.LAST 2= “HILL
F.NAME.FIRST := “JANE

P.

)

S 1= 45528071903
P.SEX = “F“;
F.BIRTH.DAY == 73
P.BIRTH.MO == SEPS
F.RIRTH.YR := 19473
F.DEPDTS 2= 13

FP.MS = 757

(# IS ERUIVALENT TO WRITING #)

WITH P, NAME, BIRTH DO

BEGIN
LAST == “HILL “3
FIRST := “JANE ”3

S5 2= 455807172035

A

']

~J

-5

THE WITH STATEMENT MAY BE USED WITH ARRAYS

EXAMPLEZ: TYPE FAMILY = (MOM, POP, KID1, KIDZ, KIDZ);

DATE = RECORD

MO 2 1..12%

DAY & 1..313

YR : INTEGERS
END;

VAR VACCINE : ARRAYLFAMILY1 OF DATAS

VACCINELKIDLII.MO == 43

VACCINECKID1J.DAY == 233

VACCINELKID1I1.YR = 19783
QR

WITH VACCINECEID1] DO

BEGIN

NOTE: WITH ALCI] DO
BEGIN
IS NOT ALLOWED
END

GIVEN THE EXFRESSION: “"WITH X DO Z7
X MUST NOT CONTAIN ANY VARIABLES SURJECT TO CHANGE

BY

)

SUMMARY

s o e st e ettt e

- “REPEAT-LINTIL® WILL EXECUTE ONE QR MORE STATEMENTS UNTIL A
CERTAIN CONDITON IS TRUE.

- “WHILE-DO” TESTS THE CONDITION BEFORE EXECUTING THE STATEMENT.
“"REFPEAT-UNTIL” MAKEZ THE TEST AFTER EXECUTING THE STATEMENT.

- THE “CASE” STATEMENT IS SIMILAR TO THE “ELSE-IF- CHAIN.
EXACTLY ONE STATEMENT WHOSE LABEL CORRESPONDS EXACTLY TO THE
VALUE OF THE EXFPRESSION WILL BE EXECUTED.

- LABELS IN A PARTICULAR “CASE“ STATEMENT MUST BE UNIGUE, BUT
DIFFERENT “CASE” STATEMENTS ARE INDEPENDENT.

- THE “WITH” STATEMENT IS A WAY 0OF SHORTENING RECORD FIELD
ASSIGNMENTS.

WORKSHEET #

L. "USING A “REFEAT-UNTIL - CALCULATE THE SMALLEST I SUCH THAT
Lo+ 1/72 + 173 +...+1/1 15 GREATER THAN & CONSTANT N,

e GIVEN 2 VALLUES VI AND VZ AND A CHARACTER CH = "+, =7, 3%,
OR /7 USE A “CASES STATEMEMT TO FERFORM THE CORRECT MPERSTION
ON THE TWO ARGUMENTS. T.E. IF CH = "+ THEN Z = V1 + VZ.

e REWRITE THE FOLLOWING LISING A “WITHS STATEMENT:

EMPLOYEEL ENUM 1.53N := 4569661473
EMFLOYEEL ENUM 1.HIREDLMO t= 43
EMFLOYEEL ENUM 1.HIRED.DAY := 253
EMPLOYEEL ENUM 1.HIREDLYR t= 19443
EMFLOYEEL ENUM 1.GRADE := 173
EMPLOYEEL ENUM 1.DENUCTS := 73

] = =z

EMFLOYEELD ENUM 1. INSCOLDE =

FORMATTELD I/0 MOD13

OBJECTIVES:

BE ABLE TO WRITE A STATEMENT TO QUTPUT AN INTEGER UISING
A SPECIFIED NUMBER OF COLUMNZ.

BE ABLE TO WRITE A STATEMENT TO INPUT A NUMBER FROM
A SPECIFIED NUMBER OF COLUMNZ,

BE ABLE TO WRITE A STATEMENT TO OUTPUT A REAL NUMBER
BY SPECIFYING THE FIELD WIDTH AND THE NUMBER OF DECIMAL
FLACES TO BE PRINTED.

BE ABLE T DESCRIBE THE FORMAT 0OF INPUT OR OUTPUT GIVEN
A FORMATTELD WRITE OR READ STATEMENT.

BE ABLE TO WRITE A FORMATTED READ STATEMENT FOR A VARIABLE
OF TYPE CHAR

FORMATTED READ STATEMENT

SYNTAX: READ (<FILEZ> » X & W)

- W IS THE FIELD WIDTH - X WILL BE READ FROM THE
NEXT “W* ZOLUMNE.

- FIELDZ NEED NOT SEFARATED BY A BLANEK

- REAL X DR INTEGER X
A STRING OF “W’ CHARACTERS WHICH FORM THE NUMBER ARE READ

BLANESZ ARE READ AZ ZEROS

EXAMFLE: FOR VAR X : INTEGERS

pATA 1 O 1 O 20 R 0 & 20

Ba

READ (X = 4)3 RESULTE IN R S B R . T B 2 - B

THE FIRST TIME THE REALD COMMAND IS EXECUTED. X WILL BE ASSIGNED
A VALUE 0OF 29,

- CHARACTERS:
IF A FIELD WIDTH IS SPECIFIED
- THE FIRST NON BLANE CHARACTER IS REALD
- THE FILE POINTER IS MOVED OVER THE SFECIFIED NUMBER OF
COLUNME

EXAMPLE: VAR CH = ZHARS

DATA | A | PN E W
READl {(CH = Z)3 RESULTS IN 1 A | PN E W
ANDO CH = “N-

FORMATTED WRITE STATEMENT

SYNTAX = WRITE (FILE, X = M)
- M IS THE MINIMUM FIELD WIDTH
- THE VALUE X WILL BE WRITTEN WITH M CHARACTERS
IF X REGUIRES LESS THAN M CHARACTERZT THEN LEADING BLANES
ARE INSERTED.
IF X REQUIRES MORE THAN M CHARACTERS THEN ADDITIONAL SFACE
12 USED.
- REAL X WILL BE WRITTEN IN FLOATING FOINT REPRESENTATION

- NO AUTOMATIC SPACING BETWEEN NUMEBERE

il

T, ¥ = 23, I = S0&2)

EXAMPLES: VAR X, Y, Z : INTEGER; (X
WRITE (X = 4, Y 2 4)3 RESULTS IN THE FOLLOWING OUTPUT
_——DL 23

WRITE (X 3 3, Z = 4)3 RESULTS IN

NOTE: BLANKS MAY BE INSERTED BY USING A BLANK AS A TEXT
STRING IN THE STATEMENT.

WRITE (X = 2, 7 7 , Z = 4)

Ty

FIXED POINT NOTATION: X MUST BE REAL. FIXED. OR DECIMAL
SYNTAX = WRITE (FILE. X = M = N)
- M IS THE TOTAL NUMBER 0OF DIGITS INCLUDING THE DECIMAL
- N IS THE NUMBER F DIGITS AFTER THE DECIMAL

- NO MORE PRECIZSION IS PRINTED THAN THE VALLE ACTUALLY

CONTAINS
EXAMFLES = X = &3.23 VALLE FRINTED
WRITE (FILE, X:5:2) A3LZ2S
WRITE (FILE, X:4:1) A3.2
WRITE (FILE, X:é&:3) .25

NOTE: IF M IS NOT LARGE ENOUGH TO INCLLUDE THE INTEGRAL FART
OF THE NUMBER. THE NUMBER WILL BE FRINTED IN FLOATING
FORM.

X = 33.34951
WRITE (X = 7 = 5) RESULTS IN 3.524951E1

[XX

WORESHEET 10

WSING A FORMATTED WRITE STATEMENT. FRINT 2 INTEGERS,
I1 ANDN 12, EACH HAVING 2 DIGITS, THE NUMBERS SHOULD BE

SEFARATED BY A& BLANE. WRITE TO THE DEFAULT FILE “OUTFUT .

GIVEN THE FOLLOWING CODE, SHOW THE QUTRUT:

VAR X. Y & INTEGERS

X i= 353
Y #= 103

WRITE (X)3

WRITE (Y)s

WRITELNMS

WRITE (X : 4, Y : 4);3

IN EACH CASE. SHOW THE OUTRUT IF WRITE (R @ 5 @ 2
EXECUTED:

WHEN R = 47,3724

WHEN R &= 4.73724

WHEN R 5= &4,732724E1

GIVEN THE DECLARATION VAR CHARVARIAEBLE : iZHAR:

AMD THE FOLLOWING IMPUT FILE:

+ —— e e e +

A N P RYTIVE DT EML A S

o e e e e e e e et e e e e e e e +

SHOW THE POSITION OF THE FILE POINTER AND THE VALUE OF

CHARVARIABLE AFTER THE STATEMENT READ (CHARVARIARLE
IS EXECUTED.

GIVEN THE DECLARATION VAR K @ INTEGER:
WRITE A FORMATTED READ STATEMEMT TO READ OME INTEGER OF
4 DIGITS FROM THE DEFAULT FILE “INFUT".

o

USING THE ABOVE REALD STATEMENT. WRITE A SHORT LOOF

TO READ AND “PROCESS” 4 INTEGERS.

LSE THE CHART BELOW TO SHOW THE FORMAT OF THE DATA.
THE FOUR NUMBERS YOU WISH TO READ ARE 1131, 211,

4337, 8940, ALL FOUR NUMBERS SHOULD APFPEAR ON THE SAME

LINE QF THE DATA FILE.

1 [}] 1 H !
1 1 1 t] 1 1 1 '] ! I

MODL 4

NESTED FROCEDIURES AND FLINCTIONE

STUDENTS SHOULD BE ABLE TO DECLARE AND UTILIZE NESTED FROCEDURES
TO FERFORM SFPECIFIED OPERATIONT TN A SET OF FARAMETERS.

STUDENTS SHOULD BE ABLE TO SFECIFY WHETHER A VARIABLE I3 GLOBAL
R LOCAL. TO A ROUTINE.

STUDENTS SHOULD BE ABLE TO SPECIFY WHICH RIUTINES IN A PROGRAM

MAY CALL A SFECIFIED PROCEDURE OR FUNCTION AND WHEN A “"FORWARDS
DECLARATION IS REQUIRED.

AGENDA
1. NESTED FROCEDURES

- SYNTAX
- FARAMETER FASSING

2. SCOFE OF VARIABLES

- GLOBAL
- LAl

. PROCEDURE ACCESSING RULES

- FROCEDURES AT THE SAME LEVEL

- FORWARD DECLARATIONS

~ NESTED FROCEDURES
4. PASSING VARIAEBLY DIMENZIONED ARRAYS
S, COMMON AND GLORAL VARIARLES

L. TOR DOWN DESTGN

FAZCAL PRIOGRAM SYNTAX
FROGRAM <0 FRIOWG. NAME 5
o LABEL DECLARATIONS -3
< DONSTANT DECILLARATIONT 3
< TYFE DECLARATIONG 3
< VARIABRLE DECLARATIONE %
L COMMON DECLARATIONS 3
< ADCESS DECLARATIONGS 3
“ PROCEDURE AND FUNCTION DECLARATICONT 3
BEGIM
[BODY OF FPROGRAM (BLOCE)]

ENII.

FASCAL FROCEDURE DECLARATION SYNTAX
FROCEDURE < PROCEDURE NAME > [(< FARAMETER LIST >) 13
L DECLARATIONZ 1
BEGIN
[mODY OF FPROZEDLIRE (BLOCE) 1
EMD:
#NOTES EACH FROCEDURE HAS ITS COWN DECLARATION SECTION. THID
GECLARATION SECTION MAY DONTAIN FROCEDURE AND FLUNCT IOM
DECLARATIONZ, THIS MEANT THAT A FROCEDURE MAY BE MESTED

WITHIMN ANOTHER FROCEDURE. PROCEDURES MA&Y BE NEZTED
14 LEVELES DEEF. THE MAIN FROGRAM IS CONSIDERED LEVEL 1.

‘
-

~I)
(o

EXAMFLE
FROGRAM SIDOFPELS
VAR X: Y @ INTEGERS
FROZCEDURE ONE (& 3 INTEGER)3
VAR A : IMTEGER;S
FROCEDLIRE TWO (R ¢ INTEGER)3
VAR B ¢ INTEGERS:
BEGIN (% TWO #)
: (# X, Y. A B ARE ACCESSIEBLE #)
ENDs (; TWI #)
BEGIN (% DONE #)
) (# X. Y, A ARE ACCESEZIRBLE #)
ENII (; ONE #)
FROCEMIRE THREE (S @ INTEGER)3
VAR o INTEGER:

BEGIN (% THREE ¥)

. (# X, Y, & ARE ACCESSIELE %)
END; (% THREE #)
BEGIN (% SCOPEL %)
) (* X. Y ARE ACCESSIELE #)

ENDL. (% SCOFEL #)

= CALLED. AND THE sSPACE IS RELEASED WHEM THE FROCETHIRE

NOTE: SFACE FOR LOCAL VARIARLES IS ALLOCATED WHEN THE FROCEDURE
% EXITEL.

[

DUFLICATING VARIABLE NAMES

=#RULE: IF A VARIABLE I% DECLARED IN A PROCEDURE WHICH HAS
THE ZAME NAME A A& VARIABLE WHICH I5 GLORAL T THAT

FROCEDURE. THE NEWLY DECLARED VARIABLE WILL BRE
UMTIL THE FROCEDURE IS EXITED.

EXAMFLLE:

FROGRAM TESTS
VAR I = INTEGER:
FROZEDURE A (..)3
VAR I @ REALS
FROCEDWLIRE B ¢ ..)3

VAR T @ BOOLEANS

HERE I IS RBOOLEAN

¥ HMERE I I3 REAL

HERE I IS INTEGER

TRCTIVES

FROCEDUIRE ACCEZSIRILITY RULES

®¥% A FROGRAM OR FROCEDURE MAY CALL ITSELF
*#% A FROCEDURE MAY CALL ANOTHER FROCEDLIRE WHICH I35 DEFINED WITHIN

¥# A FROCEDURE MAY CALL ANOTHER FROCEDURE AT THE SAME LLEVEL IF IT
HAZ ALREALY BREEN DEFINED.

FORWARD DECLARATIONSE

A FROCEDURE MUST BE “DEFINEDC (MUST HAVE BEEN DECLARED IM

A FROCEDURE DECLARATION) BEFORE IT MAY BE CALLED.

EXAMFLE:

FROGRAM SCOFES

FROZEDURE A (N @ INTEGER)3

B O .0) #H

FROCEDURE B (R & REAL):

I
—
a

~

*1#

#1% THIZ CALL TO A7 Im LEGAL SINCE “A° WAS DEFIMED ARGVE
{ BEFORE) “®B”

#2% THIZ CALL TO "B IS NOT LEGAL SZINCE "B HAZ NOT BEEN
DEFIMNED To THE COMRILER WHEN THE CALL TO 7B I3 COMPILLED

SOLUTION:

FROGRAM SCOFES
FROCEDURE B (R ¢ REAL)3 FORWARID: (% 1 #3

FROCEDURE A (M @ INTEGER)3
B (...)3 (# 2 #)

FPROCEDURE B3 (# NOTE THAT NI FORMAL FARMS ARE SFECIFIED #)

NOTES ON FORWARD DECLLARATION

(+ 1 ¥) - THE FORMAL ([UMMY) PARAMETER LIST SHOULD
BE SFPECIFIED ON THE FORWARD PROCEDURE DECLARATIOM

*#) - WHEN THE CALL TO "B IS MADE. "B HAS BEEN DEFINED
IN THE FORWARD FROCEDURE DECI_ARATION

NESTED FROCEDOURES

A FROCEDURE MAY CALL ANY PROCEDURE ITS

A PROZEDUIRE MAY NOT CALLL ANY FROCEDLIRE

FROGRAM T
FROCEDURE A
FROCEDURE R

FROCEDURE

FROGRAM T MAY CALL: ITSELF. FPROCEDURE A

FROCEDURE A MAY CALL: ITSELF,. FPROGRAM T.
FROCEDURE = IF 0 IS

FARENT ™MAY CAlLL.

AT A LOWER 1LEVEL

FROCEDLIRE

FROZCEDURE R.
FORWARD REFEREMCELD.

FROCEDURE B MAY CALL: ITSELF. PROCEDURE A, PROGRAM T. AND FROCEDURE ©

IF © IS FORWARD REF

FPROCEDURE © MAY CALL: ITSELF, PROGRAM T.

ERENCED

FROZEDURE &

3

EXERCIZE

FROGRAM T
FROCEDLRE A
FROCEDUIRE I
A R C oL E F G T

FROCETIIRE E
A B C D E F & T

FROCEDURE B
FROZCEMIRE F
FROZCEDLIRE G
A B o I E F

&4 B OCOoODDOE F OG0T

FROCEDUIRE
A B D E F G T

A B o oL E F G T

WORKSHEET 11

LSE THE FOLLOWING INDICATORS TO SFECIFY WHETHER CALLS TO THE
INODICATED FPROCEDURES ARE LEGAL.

LEGAL . NO FORWARD DECLARATION RECUIRED
LEGAL . IF FORWARD DECLARATION I35 REQIIIRED
NOT LEGAL.

H

L
E
N

PROGRAM T
FROCEDURE A

FROCEDURE R
FROCEDURE

A E C n E F G T

FROCEDURE I
A E C o E F K] T

FROCEDURE E
FROCEDURE F
FROCEDLIRE G

A E i n E F G T

A J [X E - i T
&y
A B C 0 E F i T
7
A B C] E F 03 T

\\5

VYARIABLE DIMEMNSION ARRAY FARAMETERS

FURFOZE: TO ALLOW A PROCEDURE TO OFERATE ON DIFFERENT ZI1ZE ARRAYS

SYNTAX:

FROCEDURE TEST (X @ ARRAY [1..7 1 OF INTEGER)3

= THE LOWER BOLUND INDEX MUST MATCH THAT OF THE
ACTLAL FPARAMETER

- THIZ IS THE ONLY TIME WHEN A "COMFLETES TYFE
DECLARATION IS ALLOWED FOR A FORMAL PARAMETER

= THE BUILT-IN FASCAL FUNCTION “UE- RETURNES THE
MAXTIMUIM IMDEX FOR THE ACTUAL ARRAY

EXAMFLE:

FROGRAM TEST:

VAR A ¢ ARRAY [1..10 1 0OF INTEGER:
B : ARRAY [1..20 1 OF INTEGERS
MAX @ INTEGER:

FROCEDLIRE FINIDMAX (X ¥ ARRAY [1..7 1 OF INTEGER:
VakR BIG @ INTEGER)3

BREGIN (% FIMIMAX)
BIG 1= X[1 33
FOR T == 2 Td UR(X) D0
IF XO I 1 BIG THEN
BIG := XL I 1
ENII: (% FINDMAX #)
BEGIN (% TEZT #)
FINOMAX ¢ A, MAX)3
FINMDMAX (B. MAX)3

ENDI. (% TEST #)

FINDING THE UFPPER BOUND OF MULTI-DIMENSIONED ARRAYS

B X 2 1) RETURNT THE MAXIMUIM INDEX OF THE FIRST DIMEMNSTION
OF ARRAY X

e ¢ X

i3
—

RETURNES THE MAXIMUM INDEX 0OF THE SECOND DIMENZSION
OF ARRAY X
EXAMFLE:
VAR ARAY ¢ ARRAY [1..10, 1..20 1 OF REALS
FROCEDURE ONME (X & ARRAY [1..7 - 1.. 7 1 0OF REALL)3
VAR M. N @ INTEGER:S

M= U (X . 1)3 (¥ M

i
e
[
*K
o

N = UR ¢ X ., 2)3 (# N

i
f-
-
*

ALTERNATIVES TO PASSING FARAMETERS TO FROCEDURES

e oo ot e e 4200 i e o ke, e o S GV 00 WS SO o S48 oo it i ekt S T4 ok e Svmsn Sy P SHren P F P SPOPS St L5420 et it et e e smnrm oo S

FAZZING A VALLUE TO A FPROCEDURE AS A PARAMETER ATDS IN DEBLIGET NG
- TYFE CHECEING
- THE ABILITY TO FASS VARED AND LINVARED FPARAMETERS
= ENHANCEZ THE READARILITY OF THE FROGRAM
THERE ARE SITUATIONS IN WHICH YOU MAY NOT WISH TO FASS A VALUE
Az A FPARAMETER
- BECALSE OF SPACE CONSIDERATIONS
= YOI MAY WANT ToO SHARE VARIABLES WITH OTHER FROGRAMS

COMMON VARIABLES

SZYNTAX: COMMON <VARIABLEZ @ <TYFEX:
- FOLLOWS VAR DECLARATION SECTION
- VARIABLE NAMESZ NOT MORE THAN & CHARACTERES
= COMMON VARTIARLEZ ARE NOT ALILOCATED OM THE STACK
- EXIZT DURING ENTIRE EXECUTION OF THE FROGRAM

= LSED T DECLARE VARIARLES WHICH MAY BE SHARED WITH OTHER
ROLTINESZ OR EXTERNAL ROUTINES.

. T2 ACCESS & TOMMON VARIABLE A ROUTIME MUST CTONTAIN AN
ACCESE DECLARATION

ACCESS DECLARAT IONS

SYNTAX & ACCESS <VARIABLEZ, < VARIABLEZ,

- AN ACCEZS DECLARATION MUST AFFEAR IN EACH ROUTIME THAT ACCESEE!

A COMMON VARIARLE.

EXAMFLLE: FRIOCEDURE F
COMMON X ¢ INTEGERS
FROCEDUIRE @3
VAR Y & INTEGER 3
FROCEDURE R
ACCESS X 3

2ol

AL

A

ACCESSING GLORBAL VARIABLES

ROUTINE MAY ACCESZS ANY VARIABLE THAT IS “GLOBAL To IT

THE QFTION (%% GLORALE #) REQUIRES AN ACCESS DECLARATION FOR
EACH GLOBAL VARIARLE LISED IN A ROUTINE.

(%% GLOBALS #)

ONLY GLOBAL VARTABLES MAMESZ IN AN “ACCESS” DECLARATION MAY RE

ED BY A ROUTINE

ROUTINE LEVEL OPTION

DEFALILT : FALSE

TOF DIOWN DESIGN

ORIECTIVE

0 THE GOAL IS TO EVENTUALLY ORTAIN A MODULAR DECOMPOSITION OF THE
FROBLEM. FOR THIS TO BE EFFECTIVE. EACH MODULE SHOULD BE:

METHOD

0 =MALL IN SIZE. LSUALLY A MODULE SIZE OF
20 T 200 LINES IS PREFERRED. THIS WILL
DEFEND ON THE FROGRAMMING GROUF, THE
LANGUAGE BEING USED AND THE FRORLEM.
MODLILES LARGER THAN THIS ARE DIFFICULT
T3 MANAGE.

0 COHESIVE. THE RELATION OF THE DIFFERENT
FARTS OF THE SAME MODULE TO EACH OTHER
SHOLLD BE A% STRONG A FOSSIELE. THE
MODULE SHOULD BE RESFONSIBLE FOR A SINGLE
FUNCTION, NOT A COLLECTION OF LINRELATED
TAZKS,

O ISOLATED. THE INTERACTIONS EETWEEN DIF-
FERENT MODULES SHOULD BE AS WEAK AS FOS-
SIBLE. IF THE MODLLES ARE TRUELY FLNCTICNAL
AND COHESIVE. THEY SHOULD EE ARLE TO INTERACT
WITH OTHER MODULES OF THE FROGRAM IN VERY
STRAIGHT FORWARD WAYS. IF FOSSIBLE. INFORMA-
TION SHOULD MOVE BETWEEN MODULES BY THE USE
IF ARGUMENTS FPASSED TO FROCEDURES AND FUNG-
TIONS. THE USE OF GLOBAL VARIARLES THAT ARE
MODIFIED BY DIFFERENT MODULES OF A PROGRAM
CAN LEAD TO INTERACTIONS BETWEEN MODULES
THAT ARE DIFFICULT T0 UNDERSTAND.

EEGIN WITH AN EXACT STATEMENT OF THE FROBLEM.

INITIALLY, EXFREZS THE SOLUTION IM ENGLISH OR WHATEVER
NOTATIN Iz CONVENIENT.

FREFINE THE "SOLUTION INTO SUCCESSIVELY MORE DETAILED
LEVELZ, PFOSTROME DETAILD UNTIL THEY ARE MNEEDED AT LOWER
LEVELE.

GIVE AZ MUCH THOUGHT TO DATA STRUCTURESZ A% TO THE FROGRAM
STRUCTURE.

[

L

L

o

VB!

TOFP DOWN ITMPLEMENTATION AND TESTING
TEST MAJIR INTERFACES FIRST, USING STUBZ FOR LOW LEVEL MODULES,

- "
- -
- -
- -
=
-
.
»
e S e e rvue e i Shnse o et SHESS St . (ot St A e . o T 48400 o0 S 48420 48008 Ve e o e Sy e e S S e s
» - -
a - -
/
= L] -
= - .
B b Yy —— J T ey s - e s vonis s e v s e o S S s
- L] . - " -
. - - - H -
. - L] L] » -
H . = » -
P T p—— e s dnoes tatme caast o o e . et s o —— 1000 o oo oo et s oo e s
» -
. -
- »
H
. = - -
= - - -
- - - .
- . - =
L] [= -
- - = -
- - L] -
- " - -

o e e e o Sovan e e (it i e it o

ADVANTAGES:

0 MAJOR INTERFACEZ ARE TESTED FIRST. S0 MAJDOR BUGES AND DESIGN
WEAKNEZSES ARE DISCOVERED FIRST.

0 PRELIMINARY VERZION OF ENTIRE SZYSTEM IS AVAILARBLE EARLY.

0 COMRFUTER TIME SFEMT OM TESTING IS DISTRIBUTED THROUSGHOUT THE
FROJECT.

0 THE DEBUGGING EFFORT IS LUSUALLY CONCENTRATED ON THE LAST
FROCEDURE ADDED T THE PROGRAM. SINCE THE FROGRAM WORKED WHEN
THE FROCEDURE WAS A STUR, MANY BUGE WILL BE FOUND QUICELY
SINCE MOST OF THEM WILL BE IN THE FROCEDURE QST ADRDED TO THE
FROGRAM.

HRNO3

THE =TUE

THE FROCEDURE ZTUR IS AN IMFORTANT FART 0OF TOF DOWN IMPLEMENTATION.
IN FAZCAL THE STUR USUALLY LOOKES LIKE ONE OF THE EXAMFLES BELOW:

FUNCTION SORT(X @ REAL): REALS
(# FUNCTION TO TAKE THE SRUJARE ROOT OF X #)
BEGIN(# SERT #)

(ex##% NOT YET IMFLEMENTELD ###3%3%)
SHRT == X/2% (# RETURN A VALUE =0 THE FROGRAM CAN BE RUN %)

END(# SORT #)3

- OR

FROCEDURE LOOKUP(KEY @ ALFA3 VAR I : INTEGER)3
(¥ TABLE LOOKLUIP ROUTINE, I IS LOCATION OF KEY IN THE TABLE #)

BEGIN(* LODEURP 3#)

(# ————=PROCENIIRE STUB———=— #*)

I 3= 13 (# RETURN SOME VALUE FOR THE FROGRAM TO USE #)
END(# LOOKLUP #) \

TO AID IN THE DEBUGGEING AND OFTIMIZATION OF A LARGE PROGRAM. SMARTER
STURBRS MAY RE USED. FOR EXAMPLE:

FROCEDUIRE INVERT(VAR A, B : ARRAY [1..7, 1..7 1 0OF REAL)3
(# FPROCEDURE TO INVERT MATRIX A AND PUT RESINT IN B #)

BEGIN(#* INVERT #)
(% 055EEXE NOT YET IMPLEMENTED <<lo<add #)
WRITELN(® INVERT REACHED, INPLUT MATRIX 1S:)3
FOR I:=1 TO URBC A, 1) DO
BEGIN
FOR Je=1 TO UBC A, 2) 00O WRITE AL I. J J:310:5)3
WRITELNS
ENDN (% FOR #)3
t= Al (# RETLIRN AN ANZWER (ALTHOUGH NOT THE RIGHT ONE) %)
(% FOR THE REST OF THE FRIOGRAM TO WORE WITH %)
END(# INVERT #)1

MOD1S

PASCAL MEMORY ALLOCATION

OBJECTIVE

STUDENTS SHOULD BE ABLE TO FIND THE STORAGE REQUIREMENTS FOR
A PARTICULAR DATA TYPE IN THE 990 PASCAL DOCUMENTATION.

AGENDA

1. STACK AND HEAP ALLOCATION

2. DATA TYPES AND MEMORY LUSAGE

FASCAL MEMORY ALLOCATON

MEMORY FOR VARIABLES IS STORED IN TWD MEMORY AREAS:

0 STACK

D HEAP

STACEK. MEMORY

- ALL VARIABLES WHICH ARE DECLARED IN A FROGRAM (STATIC
VARIABLES) ARE ALLOCATED MEMORY FROM STACK MEMORY.

- STORAGE LOCATIONS FOR A ROUTINE ARE NOT ALLOCATED UNTIL
THE ROUTINE IS CALLED.

- WHEN A ROUTINE IS EXITED, STORAGE FOR THAT ROUTINE IS
RELEASED.

HEAFP MEMORY

- ALL VARIABLES ALLOCATED USING THE “NEW’ FASCAL FUNCTION CALL
(DYNAMIC VARIABLES) HAVE THEIR STORAGE LOCATIONS IN “HEAP”
MEMORY.

- HEAP MEMORY IS A MEMORY “POOL" WHICH MAY BE LISED BY YOUR
PROGRAM TCO ALLOCATE TEMPORARY MEMORY.

- IF THE SIZE AND NUMBER 0OF YOUR VARIABLES ARE ENOWN WHEN
WRITING YOUR PROGRAM, YOI SHOULD DECLARE THEM IN THE FPROGRAM.

#4 CALL TO PR1
#*#3
END3 (# PRZ #)
BEGIN (# TESTM #)
#] —————————
#2 —————————— CALL TO PR1
#3 ——m——————— CALL TO PR2
Hly e m
END. (# TESTM #)
STACK MEMORY
I I - e I [——————— I
I MEM I I MEM 1 I MEM I
I FOR I I FOR 1 I FOR 1
I TESTM I I TESTM 1 I TESTM I
I —————m I J=——————T1 J——————— I
I I I MEM I I MEM I
I I I FOR I I FOR I
I NOT I I PR1 1 I PR2 1
I USED I [—————— I = I
I I I I I I
I I I I I I
I I I NOT 1 I NOT I
I I I USED I I USED I
I I I I I I
I I I I I I
I I I I I I
= I I——————— I = I
AT #1 AT #2 AT #=

FPROGRAM TESTMS

L TESTM VARIABLE DECLARATIONS 1

PROCEDLURE PR1

[PR1 VARIABLE DECLARATIONS 1

BEGIN (% PR1 #)

END (# PR1 #)

PROCEDURE PRZ

[PR2 VARIABLE DECLARATIONS 1

BEGIN (# PRZ #)

—— e oo o s

NOT

-

—t

-4

[B e B e B B B e B I)

——————— I [-———=—-1
MEM I I MEM I
FOR I I FOR I

TESTM I I TEEZTM I

——————— I [-—————I
MEM I I I
FOR I I I
PR2 I I NOT I

——————— I I IUSED I

I I I

I I I

NOT I I I
USED I I I

I I I

I I I

I I I
——————— I [-=———1
AT #35 AT * 4

FROGRAM WRONGS

PROCEDIURE COUNT ¢ FLAG @ BOOLEAN)3
VAR N : INTEGERS3
BEGIN (% COUNT #)
IF FLAG THEN N = 03
NI N+ 135
WRITELN ¢ "N IS 7> N
ENDs (3 COUNT 3#)

PROCEDURE CNT (FLAG = BOOLEAN)3
VAR M : INTEGER;
BEGIN (% CNT %)
IF FLAG THEN M z= 03

M:i=M+ 13
WRITELN ¢ "M IS -, M)
ENIDs

BEGIN (# MAIN)
WRITELN (“"WRONG EXECUTION BEGINS~)

WRITELNS

COUNT (TRUE)3
CNT (TRUE)3
COUNT (FALSE)3
CNT (FALSE)3
COUNT (FALSE)3
CNT (FALSE);
COUNT (FALSE)3
CNT (FALSE)3
COUNT (TRUE)3
CNT (TRUE)3

END.

WRONG EXECUTION BEGINS

IS
IS
IS
IS
Iz
IS
IS
1=
IS
Is

RZEZZ2XZIZZXZ2
o N O O R e

e

Qj)

NATA TYFE STORAGE REQAUIREMENTS

STORAGE STORAGE

TYFPE UNPACKELD PACKED
INTEGER 2 BYTES 2 BYTES
LONGINT 4 BYTES 4 BYTE=
REAL 4 BYTES 4 BYTES
REAL (N)

N <=7 4 BYTES 4 BYTES

N 2= 8 & BYTES & BYTE=
BOOLEAN 2 BYTES 1 BIT
POINTER 2 BYTES 2 BYTEZ

#ZEE PARAGRAPH 4.7.32 0OF PASCAL IUSER MANUAL FOR OTHER TYFES.

ARRAY STORAGE REGUIREMENTS

UNFACKELD:
N NUMEBER 0OF ELEMENTS
= ELEMENT SIZE UNPACKED
STORAGE = N#S BYTES

PACKED

#NOTE: A SINGLE ELEMENT OF AN ARRAY WILL NEVER BE SPLIT ACROSS

WORD BOUNDARIES.

NUMBER 0OF ELEMENTS
SIZE OF EACH ELEMENT IN BITS

mZ
i

MAXIMUM # OF ELEMENTS ARE PACKED IN EACH WORD

OF ELEMENTS / WORD
Q- IF NMODE = 0O
1 -~ IF NMODE > O

E
i3

W

STORAGE = (N DIV E) + & WORDS
EXAMFLE:
VAR TEST @ FPACKED ARRAY [1..11]1 OF CHAR

STORAGE = 11 DIV 2 + 1 = 4 WORDS

E = # OF WORDS/ELEMENT

STORAGE = N#E WORDZ

RECORDS

UNFPACKED:
STORAGE = SUM DF STORAGES REGQUIRED BY EACH COMPONENT.
EXAMPLE:

TYPE REC : RECORD
F1 2 ARRAY [1..5 1 OF INTEGER;

P2 : REALS

P3 = LONGINTS

P4 : ARRAY [1..4 1 OF CHAR
END;

A VARIABLE OF TYPE “REC” REQUIRES 13 WORDS

I I
I P1C11 I
I I
I P1LC2] I
I I
I P1L3] I
I I
I P1C41] I
I I
I P1L351 I
I I
I P2 I
I I
I P2 I
I I
I Pz I
I I
I Pz I
I -1
I-——-1 P4[1]1 I
I -1
I-—-1 P4L2]1 I
I I
I-——-I P4LZ2] I
I I
I-——-1 F404] 1
I - I

PACKED RECORDS

EXAMPLE : TYPE R = PACKED RECORD

A : PACKED ARRAY [1..101 0OF 1..213
5 I I » T 4

K o2 OQ..#FFF3

L = INTEGER

ENDs

RECORD STORAGE RULES :

1.

IF RECORD IS NOT PACKED THEN A FIELD OCCUPIES THE NUMBER
OF WORDS REGUIRED BY ITS TYPE.

IF THE PRECEEDING FIELD IS LESS THAN 1 WORD. THEN THE NEXT
FIELD IS STORED IN THE REMAINDER OF THE WORD IF IT WILL FIT.

IF IT DOESN’T FIT THEN IT IS LEFT JUSTIFIED AT THE BEGINNING
OF THE NEXT WORD AND THE PREVIOUS FIELD IS RIGHT JUSTIFIED IN
THE PREVIOUS WORD.

4. IF THE PRECEEDING FIELD QCCUPIES MORE THAN 1 WORD THEN THE NEXT
FIELD IS STORED LEFT JUSTIFIED IN THE NEXT WORLD.
TYPE REC = PACKED RECORD
A ¢ PACKED ARRAY [1..10] OF 1..31;
J 2 0..75
K 2 0..#FFF;
L : INTEGER
ENDs
R = PACKED RECORD
J o 0..78
A * PACKED ARRAY [1..10]1 OF 0..31
ENDs
STORAGE FOR R STORAGE FOR REC
! tdg ! ! !

AC1] ! ACZ21 ! AL2] ! ! ! !

AC41 ' ALS] ! ALA] ! ! ! !

AL71 ' ALS]1 ! AC9] ! ! ! !

AC101! ! ! !

“FOINMT T THE RECORD TO BE SURE IT Has

FEOARLE TO REAN TN AMD WRITE OLT &RES

FL.F ALLDATA. IATAZ
THE TIATA FOR BOTH FRRETI OF &5%
ElREOANMIT THETR SOCIal
A TAl SECURITY NUMEBER
FOLLAWED Y A MArE L TO

CTGRMMENT 2
HRTTT
OIGIT
pOTGIUE g

EACH NaME ARND SOCTAL SECURTITY ML
! . FECHD PRIMT ESCH NAME AND NU
AFTER EACH NAME AND NUMBER HAZ BEEN =70

STRATEGY :

CREATE A RECORD TYFE WHICH HAZ THE FOLLG
SOCTAL SECURITY NUMBER (2 DIGIT=:

PEME O LIPS T 20 CHARACTERS)8 THIE

CREATE A TYFE A7 WHIDH T3 AN ARRaAY OF RECONTGE
DECLARE A& GLOBAL VaRTABLE OF TYPE &.

LET THE LENMGTH OF THE ARRAY BE & COpNETaRT
WRITE THE FOLLOWING FROC "

FEAT_ECHT
~- READZ THE =iuXTaAL e
FECORD TN THE AREAY.

= ECHD FPRINTS THE MaME ok
= TEECHT THE MaArE . reo

I=

- PARAMETE
ARRAY MNAME

ARFaY LEMGTH

Th

Malhl ROUTINE WILL RE

ET OTHE DRTE FILE @nl Toi 00 el

N
\

STRUCTURE FOR PROGRAM 2A:

REALD_ECHC

2B. ADD THE FOLLOWING TO YOUR PROGRAM ZA

PRINT_ARRAY : - A PROCEDURE WHICH WRITES QUT THE ELEMNETS OF
THE ARRAY ONE NAME AND NUMBER PER LINE.

WRITE OUT A MESSAGE TO LABEL THE LIST 3SUCH A=
- EMPLOYEE LIST ~

PARAMETERS:
ARRAY NAME
NUMBER OF ELEMENTS

- MODIFY YOUR MAIN PROGRAM TO CALL PRINT_ARRAY

STRUCTURE FOR PROGRAM 2B
MAIN

I . I
READ_ECHO PRINT_.ARRAY

[

O

MOn1}

DATA STRUCTURES - POTINTERS

DRJIECTIVES:

- BE ABLE TO DECLARE FPOINTERS AND RECORL:Z CONTAINING FOINTERS.
- BE ABLE TO LUEE “NEWS To ALLOCATE A RECORD POINTED TO BY A
GIVEN FOINTER.
- BE ABLE TO WRITE STATEMENTS MANIFULATING FOINTERS:
ASSIGN VALUES
SEIGN VALUES TO A FIELD IN A RECORD POINTED TO BY A& FOINTER
- BE ABLE TO DRAW A DIAGRAM INOICATING HIW A FOINTER IS MOVED
WHEN A GIVEN STATEMENT IS EXECLUTED.
AGENDA
1. USING POINTERE
- NIL
- NEW
- LINKED LISTS
- DouBLY LINKED LISTS
WORESHEET

FOINTERS

DEFTINITICN:

SYNTAX:

A FOINTER 1% A VARIARLE THAT HOLDES THE ARDRESS OF
(OR "FPOINTS TO") A BLOCE OF MEMORY.
VAR <NAMEZ @ @<TYFEX::
R
TYFE <TYFE NAMEZ : @<ITYFEXs

A FOINTER IS DECLARED AS POINTING TO A SPECIFIC TYFE OF
DATA. IT MAY ONLY POINT TO THAT TYFE.

USTING FPOINTERS:

TYFE DATA = RECORD
INT & INTEGERS:
PNTR : @DATA:3
ENDi3
VAR F, @ 3 @DATA3

F REFERENCES THE VALUE 0OF F OR THE ADDRESS OF
A BLOCK OF “DATA".

F =0 MAKES P FOINT TO THE SAME FLACE AS @

Fe REFERENCES THE BLOCK OF DATA FOINTED TO RY F

FOINTED TO RY P.

IF P FOINTS TO A RECORD, Pe.<FIELD> REFERENCES A FIELD
IN THAT RECORLD.

F o= Fe := e

F £ P £

; ' ' :

e o e T e e e Sl VELS e
o oo oo
o o e e o +————t R atat

F@.IMNT 1= 43 @, INT =

COFIES THE DATA POINTED TO BY @ INTO THE BLOCE

EXAMFLE: TYFE FNTR = @BLOCK:
TYFE BLOCE = RECORD
INT : INTEGER:
NEXT = @RLOCE
ENIs

VAR F ¢ FPNTR3 (# F IS A POINTER T TYPE BLOCE #

t= F@.NEXT HAZ THIS EFFECT:

F F

) 1

] ¥
ot T tre S et S S
INT = A - A A
et s F———t T &
' ——t ' ———t : ———t ! :
NEXT +————+ o e e e o ———t R

P@.INT = 10 HAS THIS EFFECT:

s
R > 10)
e &
$m———

##NOTE: A FORWARD DECLARATION IS ALLOWED HERE.

e o . oo S o P S SO ot S ST S MO Bl U S D S o TS Wk S e i Soee Sasse s o iate Saims smewe

NIL

NEFINITION: NIL IS A SPECIAL VALUE THAT ALLOWS A FPOINTER TO POINT
TO NOTHING.

A FOINTER MAY BE ASSIGNED TO OR COMPARED WITH NIL.

FR.NEXT == NIL; IF FR.NEXT = NIL THEN

IF A POINTER F IS NIL THEN REFERENCING F@ WILL GIVE
AN ERROR.

NIL IS USEDR TO MARE THE END OF A CHAIN.

Pe——Trd———— Fom T e e T ——— B e
t————t | F————t | ek H————t
R ! J— ! FJ— INTIL !
o ——t s ot o

RUNTIME OPTION CHEPTR

- ENAEBLEZ 0OR DISABLES CHECEING FOR NIL VALUES OF VARIABLED OF
TYFE FOINTER AT EXECUTION TIME.

~ DEFALLT I% FALZE

ODEFINITION: ALLOCATES A& BLOCK OF MEMORY OF THE TYFE F RFOINTS TO.
FPOIS SET TO POINT TO THE NEW BLOCE.

EXAMFLE: TYFE REC = RECORD

ITEM ¢ ARRAYL[1..101 OF CHARS
MEXT : @REC
ENLi5
VAR WORD @ @RECS (¥ WORD IS A POINTER TO TYPE REC #)
NEW(WORD)3 (# CREATES A RECORD AND ZETE WORD TO

FOINT T IT #)
WORD@.NEXT &= NIL3; (% SET THE POINTER FIELD TO NIL #)

##NOTE: WHEN A NEW BLOCK IS ALLOCATEDR, SET ALL POINTERS TO NIL.
THIS IS NOT DONE FOR YO,

i . a0 o, st st oo o Mo S S U S4B St St $0058 ot S0ane o o e —

OISPOSE (P)

DEFINITION: MAKES THE SPACE POINTED To RBY F AVAILABLE FOR REUSE.

- P MUST POINT T3 A DYNAMIC VARIABLE
- I.E. ONE ALLOCATED BY NEW

- IF P = NIL AN ERROR OQCCLRE

- AFTER THE STORAGE IS DEALLOCATEDR, F IS SET TO NIL.

LIMEED LISTS

DEFINITION: A LINKED LIST IS A CHAIN OF RECORDE JOINED EBY FOINTERS.

START
i

R S e T e + = T e e + T e +
1]]] 1 1])] 1 1 1]
1 1 !] 1) 1 1 ! t t
o ——— + ! e +] F————— + ! o ———— +
i §———+ ' ==+ i Pt iONIL
t————— + Fe———— + tm———— + +————— +

EXAMFLE : SEARCH A LINKED LIST FOR THE VALLE NUM.

VAR FNTR @ LINE;3

FNTR := FIRST (# SET FNTR T THE FIRST OF THE LIST)
(# FIRST COULD BE PASSED AZ A #)
(% PARAMETER #*)

WHILE FNTR@.ZSZ < NUM Do

FNTR := PNTR@.NEXT:

e ot e e oot e vtn e o ey S S TS SO Mt 0% 1 taoed Ui et S 008 800D Tt T et e See® eSS S SWere Seare S e PSS R SO SRS S SoMS S itl et S SRS et Seee it Swemn S eams Moy SR San S 008 SRR SRS s e st e SPese 3000 il Soevs Snt

EXAMPLE: SEARCH WITH THE POSSIBILITY OF AN UNSUCCESSFIIL SEARCH.
FNTR &= FIREZT:
WHILE (FNTR < NIL) AND (FPNTR@.:=S < NLM) L

FNTR = PNTR®.MNEXT;

THE FOINTER OF THE LAST RECORD WILL FPOINT TO NIL.

PROCEDURE READ_ECHO (VAR WORD & FTR)3

VAR 1
oH
BEGIN
1 2= O3
REFEAT
I t= 1 + 13
READ (CH)3
WRITE ¢ CH)3
WORDR.A L I 1 2= CH
UNTIL CH = - OR EQL.N3
IF EOLN THENM
BEGIN
REALILNS
WRITEIN
END
ENDs (% READ_ECND #)

INTEGERS
CHARS

READ N SOCTAL SECURITY NUMBERS INTO A LINKED LIST

TYPE REC = RECORD
fOLONGINTS
NEXT : @REC
ENIDs
LINE = @RECS

i

VAR FIRST @ LINkK;

PROCEDURE READ_SOCIAL_SECURITY_NUMBERS(VAR FIRST @ LINK)3

VaR S, N. I ¢ INTEGER:
F ;O LINEK 5
BEGIN

RESET ¢ INPUT)3

READN (N)3

FIRST 1= NIL;

FOR I == 1 TO N DO
BEGIN

ENIIs

(# READ THE SOCIAL SECURITY NUMBER #)

(# P FOINTS TO A& NEW RECORD #)
(# PLT SOCIAL SECURITY NUMBER INTO %)
(# NEW RECORD)

NDEFINMITICON: A STACE T2 A& LIST IM WHICH ALL INSERTIONS
DELETIONS ARE MADE FROM THE ToOP.
AN THE ELEMENTS A B. O TO A STACE:
[TOF
E
N A
THE REZTRICTIONS ON A STACE IMFLY THAT IF A: B
AND © ARE ANDED TO A& STACK IN THAT ORDER THEN THE
FIRST ELEMENT TO BE REMOVED WILL RBE .
EXAMFLE: DECLARATIONS ARE:
TYFE BLOCE = RECORD
DATA @ H
LINE : @RLIOCHK
ENDis
VAR =TART: @BLOCKS
FROCEDURE INITIALIZE_STACKS
BREGIN
START 1= NILS
ENIs; (# INITIALIZE_STACK #)

FROCEDURE FPUSH(X

VAR P @ @BLOCE:S

BEGIN
NEW(F) 3
Fe.DATA
Fe. L INK

X3

START &=

END: (% FIISH #)

t
SR} Y !
1

e o T o e e e e e

T)s

(# FUT X INTO R
STARTS (%

INSERT RECZOR
{(# THE STACHK

AN

ECORD #)
ODAT FRONT OF #)
#*)

(# MAKE START POINT T THE FRONMT #)

(# 0OF THE LI=T

B s S S
_______ R) 1] 1
1 i 1
e

#3

AN

gg

DOURLY LINKED LISTS

DEFINITION: A DOURLY LINEED LIST HAS 2 FPOINTERS —-— ONE T THE NEXT
BLOCE OF DATA. AND ONE TO THE FREVIOUE BLOCE OF DATA.

EXAMFLE: TYFE BLOCK = RECORD
NEXT
OATA
BACE.
ENI

@RLIOCE S
INTEGERS
@RLOCE

o e e e o e e A ———————— e +

]) !]

1 ! 1 i

v Y i
e + o e e e e e e e e +) b———— +—+ I ety SEE
{START —————— RS it N b e o b
o e + Rl S At et e s et

¥ DOUBLY LINEED LISTE SIMPLIFY INSERTING AND DELETING BECALISE
THERE IZ NO NEED TO KEEF A “RACKE" FOINTER.

NOUBLY LINEED LISTZ TAKE UF MORE SFACE THAN SINGLY LINKED LISTS.

oo
Q)

SLUMMARY

A FOINTER I5 A VARIABLE THAT HOLDS THE ADDRESS OF A BLOCE
OF MEMORY. ONCE A POINTER I3 DECLARED AZ POINTING TO &
FARTICULAR TYPE OF DATA. IT MAY NOT FOINT TO ANY OTHER TYFE.

NIL [z A SFECIAL VALUE THAT ALLOWS A POINTER TO FOINT TO
NOTHIMG. NIL IS USED TO MARE THE END OF A LINKED LIST.

NEW I3 A FUNCTION WHICH ALLOCATES A NEW BLOCK OF DATA FOR
A POINTER TO POINT To.

A LINEED LIST IS A CHAIN OF RECORDS JOINED BY FOINTERSZ.

A DUBLY LIMEED LIST HAZ 2 POINTERS——ONE TO THE NEXT BLOCH
ANLD ONE TO THE FREVIOUS RBLOCK,

WORKSHEET 12

s s o s e st e o e

WRITE THE DECLARATION STATEMENTS FOR THE FOLLOWINGE
DECLARE A TYFE “BLOCKE" WHICH IS A RECORD WITH 2 FIELDS,

ONE FIELD IS AN INTEGER AND THE OTHER IS5 A FPOINTER TO
TYFE BLOCK,

NECLARE VARIABLES F1 AND P2 WHICH POINT TO TYPE BLOCE.

RITE STATEMENTS WHICH DO THE FOLLOWING:

I

AZEUME F1 AND P2 ARE FOINTERS. F1 POINTS TO A BLOCKE OF
DATA. WRITE AN ASSIGHNMENT STATEMENT TO MAKE P2 POINT
T THE =ZAME RECORD AS F1,

AZZIGN A VALLE OF 10 T THE INTEGER FIELD OF THE BLOCE
FOINTED T RY P1. ’

ALLOCATE A NEW RECORD FOINTED TO RBY FZ.

SET THE FOINTER FIELD OF THE NEW RECORID TO NIL.

ZOFPY THE DATA FRIOM P13 INTEGER FIELD INTO P2YS INTEGER
FIELD.

SET THE FOINTER FIELD OF P15 RECORD TO POINT TO P25
RECIORD.

i

NRAW A FPICTURE OF F1 AND FZ BEFORE AND AFTER THE
STATEMENT FOR GUESTION 2 I35 EXECUTED. ASSUME THAT
INITIALLY BOTH FOINTER FIELDE ARE NIL.

Wil 4 9.23

10. ASSUME TYPE REC = RECORD

OATA : REAL:
FTR & @REC
ENDs
VAR & : @RECS

LDRAW A FICTURE OF THE FPOINTER & AFTER EXECLTING NEW() .

11. DRAW A PFPICTURE OF A LINKED

LIST OF 4 RECORDS OF TYFPE RED ABOVE.
THE POINTER ZTART POINTS TO THE FIRST OF THE LLI=T. THE FOINTER
FIELD OF THE LAST RECORD [% NIL.

12, GIVEM THE FOLLOWING DECLARATIONS:

TYFE BLOCE = RECORD

DATA = T3
LINK = @BLOCE
ENDs

VAR START : @BLIOCES

WRITE A PROCEDURE POP(X @ T) WHICH WILL "POF" THE VALUE X
OFF OF A STACK POINTED TO BY START.

IF THE STACK IS NI,
CALL A PROCEDUIRE ~“LUNDERFLOW.

AFPROACH: TEST FOR NIL START (UNDERFLOW)
IF START IS NOT NIL THEN ASSIGN ¥ THE VALUE OF THE
THE DATA FIELD.
MAKE START POINT TO THE NEXT RECORD IN THE LIST
(THE OTHER RECORD WILL STILL BE THERE BUT IT WILL
NOT BE ACCESSIBLE AS FART OF THE LST)

1z.

i4.

DECLARE A RECORD DLIST FOR A DOUBLY LINKED LIST. THE
DATA FIELD IS INTEGER.

INDICATE ON THE DIAGRAM HOW THE POINTERS MUST BE MANIFULATELD
TO INSERT PY5 BLOCKE AT THE FRONT OF THE LIST.

SETS AND TYPE TRANZFERS

Bt e T U R St —

OEJECTIVES:

THE

SZTUDENT SHOULD BE ABLE TO DECLARE

SETEZ USING THE SET OFERATORE.

THE

STUDENT SHOULD BE ABRLE TO CHANGE

BY L=ING THE TYPE TRANSFER STATEMENT.

Moo 7

A SET AND MANIFLLATE

THE TYFE OF A VARIARBLE

SYMTAX:

< BASE TYPE >

EXAMFLES =

VAR

CONSTRUCTING A

HUE
INT

COURSE [I 13

L1 DENOTES
IFMZ>

SET OPERATORS:

x +

']

o

IN

TYFE

TYPE COLOR

s= [

SETE

IDENTIFIER > =

MAY BE 3

MAY NOT

MAXTMLM

= (RED, JRANGE,
MIX =
STUDENTNAME = (JOE,
INT, WIRLD,
SZHADE =
CLASS =
COIRSE &
HUE H

VIOIWELS =
SET OF

MIXs

=ET:

YELLOW,
.’I Bl

GREEN 33
o N -] s
L JdiM,

THE EMPTY SET

LINTION

INTERSECTION

SET DIFFERENCE
EQUALITY

INEGUALLITY

SET INCLUSTION

SET INCLUZION

PROFER =2ET INCLUSION
FROFER SET INCLI=ION
SET MEMBERSHIP

SET OF <

INCLUDE NEGATIVE

OF 1032

SET OF COLORS
JOHN,

SET OF
SET OF YELLGOW ..

N THEN [M..N]1 DENOTES

BASE TYFE Ir

ENIMERATION TYFE
OYNAMIC

SET TYPE

INTEGERS
ELEMENTS
YELLOW, GREEN,

JIM. JANE. LES,
M R A
BLLUES

STUDENTNAME ;
ARRAY [COURSENUMEER

1 OF

JILL 33

THE EMPTY SET

-

~ 2

BLLE,

SET OF

VILET) S

MARTIN)

STUDENTNAME §

AT

ZETE.FOZ

EXAMPLES:

VOWELS == L A7, "E7, 17, “0, " I3
WORD ¢= [13
REALD (CH) s
WHILE NOT (CH IN L 7 7y 757, “.71) [
BEGIN
WORD s= WORD + [CH 13
READ (CH)
ENDs
IF WORD # VOWELS L1 THEN WRITELN (7 NO VOWELS")3
IF WORD <= VIOWELSZ THEN WRITELN(- ONLY VOWELS")

TYPE RITZ = SET OF O..23%
VAR MASK1l. MASKZ, MASKER, SETA. SETE @ RITH:

MASK1 = [OJ3
MAzKZ 3= [11s
MASKI 2= [0,113

(# MASKING BY INTERSECTION #)
SETE 1= SETA # MASKZ:

(% EXCLUSIVE 0OR #)

SETB := SETA + SETB - SETA # SETE

##NOTES: BECAUSE OF OPERATOR PRECEDENCE,. SET EXPRESSIONS MAY HAVE
TO BE PARENTHESIZED TO PRODUCE THE DESIRED RESULTE.

A+B*C=A+ (B %)

ITERATION OVER SETS

FOR < CONTROL VARIABLE > IN < SET EXFRESSION > OO <2 STATEMENT

EXAMFLE: FOR I IN [t, 3, S, 7. 4, &, 101 DI <2 STATEMENT -

VAR ALLERRORE @ SET OF 1..4003

Fr I INM ALLERRORS Dol .

EXAMFLE: TYPE COLORS

VAR SHADE SET OF GREEN

PROGRAM EXAMPLEZ

FROGRAM SETOP3
(# EXAMFLE OF SET COFERATIONS #)
TYPE DAYS = (M, T, Ws TH, FR., =A, S

WEEE = SET OF DAYSS

VAR Wk, WIRK., FREE @ WEEKS

] : DAYSS

PROCEDURE CHECK (35 @ WEEK):
VAR I = DAYSS
BEGIN

WRITE (7 “)3
FOorR I' == M TO sSU DO

= (RED., YELLOW, GREEN,
COLORSET = SET OF COLORE:

<. B (

IF D IN S THEN WRITE (“X7) ELSE WRITD (-0°)

WRITELN

ENDs (¥ CHECK #)

BEGIN (% SETOP #)

WORK := [1; FREE := [13
WK == [M..5U13

D i= SA3

FREE := [0 + FREE + [SU13
CHECK (FREE)3

WORK := WK - FREE3

CHECK (WORK)3

IF FREE <= WK THEN WRITE (-0)3

IF NOT (WORKE = FREE) THEN WRITE (-~

IF ESAT <= WORK THEN WRITE (- FORGET
WRITELN

END. (3% SETOP #)

JACK. ") 3
IT7)s

SETS.FPOX

CIRANGE ,

COH_ORSET

FIME

1

]

SETE.FO4

FRIME NUMBER SEIVE

1. FUT ALL THE NUMBERS BETWEEN 2 AND N INTO THE "SELVE"

2. SELECT AND REMOVE THE SMALLEST MUMBER REMATIMING IM THE
SEIVE.

Z. INCLUDE THIS NUMBER IN THE "FRIMES".
4. STEF THROUGH THE SEIVE. REMOVING ALL MULTIPLEZ 0OF THIS NUMBER.

Z. IF THE SEIVE IS NOT EMPTY, REFEAT STEFS 2--5.

CONSET N = 10003
VAR SEIVE. FRIMESZ
NEXT,

SET OF 2. .N3
INTEGER;

BEGIN (% INITIALIZE #)
SEIVE := [2..N13
FRIMEZ := [1;3
NEXT 1= 23
REFPEAT (# FIND THE NEXT FRIME #)
WHILE NOT (NEXT IN SEIVE) DO NEXT == ST (NEXT)3
PRIMES := PRIMES + [NEXT13
Jor= NEXTS
WHILE J <= N DO (% ELIMINATE MULTIPLES OF NEXT #)
BEGIN
SEIVE := SEIVE - [J]1s
Jd o= 0+ NEXT
END
UNTIL SEIVE = [1]
ENII.

AN ONVoN

.

» TRANZ1

TYFE TRANZFER

TYFE TRANSFER IS A MEAMNS OF TEMPORARILY CHAMGING THE-TYFE OF
AN EXISTING VARIAERLE.

SYNTAX: < VARIABLE 2 #: < TYFE IDENTIFIER =
EXAMFLE: TYFE BYTE = O..#FF3

RECTYFE = PACKED RECORD
MSBYTE., LSRYTE : BYTE

END3
VAR V : ARRAY [1..10] OF INTEGER:
R ¢ RECTYFE:
BEGIN

VL 1 1 := #F4CLs

(# VALID TYPE TRANSFERS ARE: 3#)
R.MSBYTE == V[1 1 :: BYTE: (# R.MSBYTE = C1 #)
R.LEBYTE = #FF; (# R = C1FF #)
VL 2 1 = BYTE := R.LSBYTES (¥ VL 2 1 = 0O0OFF #)

##NOTES ¢ THE VARIABLE MUST NOT BE DECLARED TO BE A PROCEDURE,
FUNCTION OR CONSTANT.

A VARIABLE WHICH IS A COMPONENT OF A PACKED STRUCTURE
MAY ONLY BE TRANSFERRED TD A TYPE REFRESENTABLE WITHIN
THE BOUNDARIES OF THAT COMPONENT.

I.E. R.MEBYTE :: INTEGER IS ILLEGAL

THE TYFE TRANSFER APFPLIES ONLY IN THE VARIABLE IN WHICH
IT IS STATHL.

(X

WORESHEET 13

Declare a variable which

reaple in this class,

18 a set consisting of the

Write an assianment statement to include only wvourself in
t.

the above se

[leclare a set coansistins

oo

of integers O throuah 100.

tement which will access a variable
nd increment it by 10,

[x] 1:

AW

(st

Sy

EABLE TO DECLARE A FILE OF THE aPpfPROPRIAGHE TP

STUDENTS SHOULD BE ARLE TO WRITE A FASCAL PROGRAM WHIOH FERFORMD
AT OPERATIONS TO AN UNMFORMATTED FILE

STUDENTS SHOULD BFE AELE T ASSIGHN SYNONYMS T ASSOOIATE & PasCal
FILE WITH & NRXLOo FTLE

STURENTS SHOULD BE ARLE TO CREATE THEIR OWN FILES WITH THE
AFPROFRTIATE LOGICAL AND PHYSICAL RECORD LENGTHS FOR & GIVEM AFFLICATION

AGENMDA
1. FILES

- TEXT FILEZ
- UNFORMATTED FILES

. SEQUIENMTIAL FILES
T, RELATIVE RECORD (RANDOM AUCESS) FILED
4, X110 FILES

- CHARACTERISTICES

= AEETONTRG SYRNOMYRED
- CREATIMNG DX10 FILES

FIot

TEXT FILE=

O RECALL THAT THE FOLLOWING TYFES MAY BE WRITTEN T A4 TEXT FILE

TEXT

CHAR ODECIMAL

INTEGER FIXED

LONGINT BOOLEAN

REAL (N) STRINGS (PACKED ARRAYS OF CHARACTERS)

FILE CHARACTERISTICS

ALL I/0 Is DONE IN CHARACTER FORMAT

IMPLICIT CONVERSION TO CHARACTER FORMAT FOR NON-CHARACTER
DATA TYFES

RANDOOM ACCESS TEXT FILE= ARE NOT ALLOWED
STANDARD I/0 FILES “INPUT- AND “OUTPUT- ARE TEXT FILES
ODATA IS ORGANIZED IN “LINES-

20 BYTE (CHARACTER) RECORDS IF AUTO CREATED

_ 339

Froaz

NON-TEXT FILEZ (REFERENCE - PASCAL USER MANUAL. SEC. &05)

FURFOESE: TO SERVE A% SERQUENTIAL OR RANDOM ACCESS MASS STORAGE
MEDIUM FOR MOST DATA TYPES

ODECLARATIONS

VAR < FILE NAME > ¢ [RANDOM 1 FILE OF < TYFE s
WHERE »
< TYPE > CANNOT BE
- FILE
- POINTER

- ARRAY OF FILES OR POINTERE
RECORD WITH A FILE 0OR POINTER COMFOMENT

EXAMPLES:

TYPE VECTOR = ARRAY [1..10 1 0OF INTEGER:
RTYFE = RECORD
DATL : INTEGER:
DATZ : REALS
0DATZ = ARRAY [1..5 1 OF CHAR
ENIDs
VAR F1 FILE OF VECTORS

FILE OF INTEGERS
RANDOM FILE OF RTYPES

ﬂ
AN

CHARACTERISTICS OF NON-TEXT FILEX

- DATA WRITTEN OR READ MUST BE OF THE SAME TYFE
AS THE FILE

DATA I= NOT tDNVERTEU TO/FROM CHARACTER FORMAT FOR 1/0

- NON-TEXT FILES MAY BE ACCESSED BY RECORD NUMBER IF
THEY ARE DECLARED TO BE “RANDCOM-

ODATA I5 ORGANIZED IN RECORDS, MNOT “LIMESS (T.E. EOLN
HIES NOT APPLY TO NON-TEXT FILES)

So

(V)

FI1oz

SEQUENTTIAL FILES

SUFPFORT MULTIFLE END-OF-FILES (EOF-S)

MUET BE ACCESIED SEQUENTIALLY

WHEN OFEN FOR INFUT, ACCESS IS READ-ONLY

WHEN OFEN FOR OQUTPUT, ACCESS IS EXCLUSIVE WRITE
MAY NOT BE OFEN FOR READ/WRITE AT ONCE

EACH RECORD IS EITHER A COMPONENT 0OF THE SAME TYFE
AS THE FILE OR AN “ECF° MAREK

I I I1 EI I I I EI-——-1
I I I @1 I I ... I 0O [-——-I
I I I F1I I I 1 F I-——-1

170 PROCEDURES AND FUNCTIONS

—

REWRITE¢ F) - OPENEZ “F° FOR OUTPUT

- FILE I3 EMPTY AFTER OFEN (ERAZED)

- EQF¢ F) IS SET TO “TRUE-

EXTENDC(F) ~ OPEN “F* FOR OUTPUT

REZET(

= POSITION TO WRITE FOLLOWING LAST RECORD IN FILE

F — OFPEN “F° FOR TNFUT

= “F7 1% POSITIONED TO THE FIRZT COMFONENT OF THE
FIRST LOGICAL FILE (REWIND)

- IF “FY IZ EMFTY THEN ECQF(F) GETZ SET TO “TRUES
ELZE EQFC F) GETES SET TO “FALSE

3\‘3

(G

FIn4g

CLOSEC F) - “F7 I CLOSED

- AN EOF IS WRITTEN BEFORE CLOSING WHEN FILE IS OFEN
FOR QUTRPLT

READ(C F, V) = NEXT COMPONENT OF “F- I5 ASSIGNED TO THE VARIABLE -V~

- EOF(F) BECOMES TRUE WHEN THE LAST COMPONENT OF A
LOQ3ICAL FILE IS READ

- UsE “SEIPFILES” TO PASS THE EOF

WRITE(F» E) - WRITE VALUE OF THE EXPREZSION “E” A3 THE NEXT
COMPONENT OF “F~

WRITEEQF(F)

WRITE AN EOF MARK OGN “F~

SKIFPFILES (F, NFILE) ~ SEIP “NFILEY (INTEGER) EOF MARESD
AND FOSITION FILE TO FIRST RECORD OF
LOGICAL FILE

REFORE

1 1 1 I1EI I 1EI I I T1ETI I IEIE Imme——m——mm I

I I T...1@f I...I@1 I I...I0TI SRS S T S U— I

1 1 I 1F1 I I1FI I 1 IFI I 1 F 1M Iemmmmmm—m I
-1 © 1 AFTER

550 A37

BFILE)+
FILE. Walll o
FILE 3

FILE b3
FILE. Yalz is

SEGFILE)3

(% CUTFLUT THE VALLE OF THE
VALLES WERE WRITTEN AND
SECHIENTIAL FILE

WRITELN:

WRITELN (“VALZ.FA

WRITELN (“VALLZ.FR

WRITELN “VALZ.PC
EnTE.

]

il

T

MaxX IMUM NUMRER IF ILDENTIFIERET L
ITMETRUCTIONT = 101 (LERS 0
TESTFILE LITERALS = 108

(# OFEMN SEGFILE FOR OWUTFUT =3

n
k.

% OFEN SEQFTLE FOR OIMNFUT 2

INFUT VARIARBLE -“vValz” TO VER
READ CORRECTLY TO ANMD FROM T

VALZ.FA) s
VAL.Z.FBR) 3
VAaLZ. F) s

SED o= o3
WORDES OF DEAN COUE REMOVEDD
COLE = a4z DATA = 174

IFY

e
i '! F*

THaAT

#)

&)

cJY

X

RANDOM FILES

O SURPPORTS
0 ACCESSEDR

Flos

SINGLE EOF (AFTER “LASTS RECORID
BY RECORD NUMEBER

0 MAY BE OFEN FOR BOTH READ AND WRITE AT ONCE

I I I
I o 1 t I
I 1 I

amtos e G e e o o S e o o e S O SO o e 0 RS ook el SO S et SOy Seves Sarwe e T

1 I I E I
I . e s I N I 0O I
I I - I F I

170 PROCEDUIRES AND FUNCTIONS

REWRITE (F)

EXTEND (F)
RESET (F)

READ (F,REC,V)

WRITE (F,REC,E)

OPEN . “F7 FOR INPUT/0UTPUT WITH EXCLUSIVE
WRITE ACCESS

FILE I3 EMPTY (ERASED)
OPEN “F- FOR INPUT/0UTPUT WITH SHARED ACCESS
OFEN “F° FOR INPUT WITH READ-ONLY ACCESS

SEIGN THE “RECY (INTEGER O-N) COMPONENT OF
TO THE VARIABLE "V~

IF “RECY DOES NOT EXIST THEN EOF (F) = TRUE

WRITE THE VALUE OF “E- AS THE “REC” COMPONENT

oF F”

“RECY = 0.

Y%

)

WITH WAl oo
FEGIN
Fa oe= 22
FR &=
Foos=
Rl
EWRITE RELREC {4 OFEN AND ERAZD FILILE =
W ITE O RELRED, CRLET. WAL s
FEAD RELRED, RECNUM. VaLZ b3
ClsE (RELRED)3
{4 WRITE THE VALUES OF HE RECORD READ BACE FROM THE FILE %3

WRITELMS

WRITELNC 7 VALZ.PA = 7. VAlLz2.FPa. 7 VAaLZLFE = 7. Val2 PR,
VALZ.FD = 7, Va2 PC s

ERT. O RAMD %)
MaX TMUM NUMEBER OF IDENTIFIERS UIZEDR = %

TRHETRINCT IOMNS = Y4 (LERD O WORDS OF DEADR COnE REMOSETD
AN LITERALS = 114 oohE = 47 UaTh = L0

-~

?T

F1o7

ASSNCIATING DX10 FILES WITH TIF FILE NAMES

LIRS

ASSIGN

##NCOTE =

##NOTE:

##NOTE 2

SYNOMYMS ARE LISED TO BIND A& TIP FILE NAME T2 AN ACTUAL FILE.
SYMINYM
SYNONYM: SEGFIL
VALLUE: TI.FASCAL.DATA.SEQFIL ‘
FILE SYNONYMS MUST BE ASSIGNED BEFORE FROGRAM IS EXECUTED.
THE FILE SPECIFIED AS “VALUE-" IN THE SYNONYM ASSIGMNMENT NEED
NOT EXIST. TIP WILL CREATE IT WHEN IT IS OPENELD.
IF NO SYNONYM FOR A TIP FILE EXISTS, THE FILE [% CREATED ON

THE =ZYSTEM DISK A5 <NAME> NN. WHERE NN IS THE ZTATION IL.

EXAMPLE:

VAR TEST : FILE 0OF INTEGER:

FILE NAME BECOMES -“TESTOZC IF YOU ARE EXECUTINMG FROM
SETOXR

34|

3

FOR

WORKSHEET 14

NECLARE A SERUENTIAL FILE WHICH HAS COMPONENTS OF THE FOLLOWING
TYPE:

TYFE RBIGREC = RECORD
TOF : INTEGERS
BOTTOM ¢ INTEGER:S
MATRIX : ARRAY [1..50 1 OF CHAR
END;s

DECLARE A RANDOM ACCESS FILE WHICH HAS COMPONENTS

OF THE FOLLOWING
TYFE

TYPE BVECTOR = PACKED ARRAY [1..100 1 0OF BOOLEAN:

EACH OF THE FOLLOWING. WRITE THE FPASCAL STATEMENTS REQUIRED TO

CARRY 0OUT THE OFERATION (NO DECLARATIONS NECESSARY)

(]

Al

OFEN AND ERASE THE SEQUENTIAL FILE “SEQC

SEIF OVER NEXT EOF IN THE SEGUENTIAL FILE “SE@C. IF END-OF-MEDILIM
HAZ BEEN REACHED, SET THE VARIABLE I To ZERD,

\

OFEN THE RANDOM FILE . “RELRECY FOR INFLT/OUTFUT,

o NOT ERASE THE
FILE WHEN YO OFPEN IT.

/:lu

WRITE THE VALLE OF
FILE “RELREC”

THE VARIABLE “VAL-

T RECORD =@

Flosa

FOF THE RAMDOM

FIos

FILE ALLOCATION AND BLOCEING

ALLOCATION UNITE (ADUYE)

OISk SPACE IS ALLOCATED IN CHUNE-"S CALLED ALLOCATION UNITS. THE
SIZE OF AN ADU AND THE TOTAL NUMBER OF ADUCS ON A DISK I35 DEFENMDENT
ON THE TYPE OF DISK BEING USED,

OISK STATISTICE

0Os=1 D10 TZ5 TS0 T200
HEADS/DISK 2 4 S b 1%
TRACKS/DISK 4064 14632 2040 4075 15425
SECTORS/ TRACK 24 20 5] 154 22
BYTESZ/SECTOR 2a8 288 283 2o 2as
SECTORE/A0L 1 1 2 32 4

PHYSICAL RECORDS

DEFINITION: A FILE“S PHYSICAL RECORD LENGTH IS THE NUMEBER OF BYTES
READ OR WRITTEN DURING AN ACCESS TO THE FILE.

CHARACTERISTICE:

= ALWAYS BEGIN ON A SECTOR BOUNDARY
= SHOULD BE AN INTEGRAL MULTIFLE OF THE SECTOR LENGTH

a4

FIolo

LOGICAL RECORDS

e s o v oo ot S tosen o SotEe s s

DEFINITION: A FILE =S LOGICAL RECORD LENGTH I3 THE NUMBER OF BYTES
REGIIIRED BY A PROGRAM FOR A PARTICULAR [/0 OFERATION.

CHARACTERISTICS:

UEUALLY. MANY LOGICAL RECORDE MAY BE STORED IN A SINGLE
FHYSICAL RECORD.

- FOR PASCAL FILES THIZ VALUE IS THE NUMBER OF BYTES REGUIRED
T HOLD A RECORD OF THE TYPE THE FILE IS5 DECLARED TO EE.

BLOCK ING
L = LOGICAL RECORLD LENGTH
F = PHYSICAL RECORD LENGTH-

LOGICAL RECORDI/PHYSICAL RECORD = F DIV L

1 1 i 1 I NOT 1
ILRT I LR T LRZ 1 LR4 I USED I L = 200 SFEYTES

I

P = 844 BYTES

##NOTE: A LOGICAL RECORD WILL NOT USUALLY SPAN A PHYSICAL RECORD
BOUNDARY

##NOTE: PHYSICAL RECORDE BEGIN ON A SECTOR BOUNDARY

FIoil

EXAMFLE:

FROGRAM FILEZ:

TYFE RELREC = RECORD
F1 @ INTEGERS
F2 = REALSs
F3 @ PACKED ARRAY [1..401 OF CHAR

ENLi5

TYPE SEQREC = RECORD
P1 = ARRAY [1..101 OF LONGINTS

P2 © REAL:
Pz : ARRAY [1..101 OF CHAR
ENILis

RANOCOM FILE OF RELRECS
FILE OF ZEGQRECS

VAR RADOFILE
SEGFILE

PASCAL WOLLD CREATE THESE FILES AS FOLLOWS:

RADFILE - PHYSICAL RECORD LENGTH 264 RYTES
LOGICAL RECORD LENGTH 44 BYTES
BLOCKING FACTOR = 12 TO 1

SEGQFILE — PHYSICAL RECORD LENGTH 544 BYTES
LOGICAL RECORD LENGTH 44 BYTES
BLOCKING FACTOR = 13 TO 1

I0EGL

CREATING YOUR OWN FILES

— o cooa e s e

CREATE SEGUENTIAL FILE (

CFSER) COMMAND

BT L T T Iy S e

FURFOSE:
CHARACTERISTICS

FORMAT:

[l CF=EQ

CREATE SERUENTIAL FILE
PATHNAME:

LOGICAL RECORD LENGTH: <

PHYSICAL RECORD LENGTH: <

“INITIAL ALLOCATION: <

SECONDARY ALLOCATION: <

EXPANDABLEY: YEZ/NGO <
BLANK SUPPREZS?: YES/NOD <

FORCED WRITE?:

EXAMPLE:

[1 CFSEQ
CREATE SEGUENTIAL FILE)
FATHNAME =
LOGICAL RECORD LENGTH:
PHYSICAL RECORD LENGTH:
INITIAL ALLOCATION:
SECONDARY ALLOCATIONS
EXPANLDARLE™Y:
BLANE SUFPFRESSEDRN?:
FORCED WRITE™:

LOGICAL RECORDS FOR
FILE IS

YES/NO <

BRY YR PROGRAM.

FPATHNAME OF NEW FILE =

LENGTH OF FHYSICAL RECORDE

NUMBER OF LOGICAL RECORDOES

SECOND
EXPANDABLE

IS FILE BLANE SUPPR
SHOULD

UsED? =

THE FORCED

TI.PASCAL.DATA.SEQFIL
=20

Se4

15

YES
NG

NG

IS FILE EXPANDABLE?Y =

T CREATE A SEGUENTIAL FILE EXPLICITLY WITH TRHE
REGUIRED

LENGTH OF LOGICAL RECORDS IN BYTES >

IN BYTES =

T BE ALLOCATED

ALLOCATION IF

o

ESSEDY

WRITE OFTION BE

-,
-

CREATE RELATIVE RECORDO FILE (

o e e ot st S oot ot e S e e oo S s S St St S e PSS P St Seme ace oo M Foees onm doo

FURFPOSE: TO CREATE A RELATIVE

10EGE

CFREL) COMMAND

RECORD (RANDIM) FILE EXPLICITLY

WITH THE CHARACTERIZSTICE REGUIRED RY YUOUR PROGRAM.

FORMAT ¢

L1 CFREL

CREATE RELATIVE RECORD FILE

FATHNAME: < FATHNAME OF NEW FILEZ

LOGICAL RECORD LENGTH: < LENG

TH OF LOGICAL RECORDE IN TYPES »

PHYSICAL RECORD LENGTH: <0 LENGTH OF PHYSICAL RECORDE IN BYTES

INITIAL ALLOCATION: < NUMBE
INIT

SECONDARY ALLOCATION: < LOGI
EXFA

ER OF LGICAL RECORDE TO BE ALLOCATED

IALLY -
CAL RECORDS FOR SECOND ALLOCATION IF
NDAERILLE >

EXPANDARLE?: YES/NO < I3 FILE EXPANDABLE

FORCED WRITEY: YES/ND < SHIULD THE FORCED WRITE OFTION BE

EXAMPLE:

[1 CFREL

CREATE RELATIVE RECORD FILE

FATHNAME :

LOGICAL RECORDO LENGTH:

FHYSICAL RECORD LENGTH:

INITIAL ALLUOCATION:

SECONDARY ALLOCATION:

EXFANDARBLE™:

FORCED WRITE™:

LSED

TI.FASCAL.DATA. SEQFIL
=20

:3 "'4

15

S

YES
N

Qé)

CA

MODZ0

ASSIGNMENT =

It is desired to monitoar the temperature in a room. A fan
circulates air in the room. In setting urp the svstem, it is
abserved that the temperature readout fluctuates due to the air
turbulence in the room. To offset the effect of fluctuations,
it is decided to smoath the temperature data bv computing a movins
averagae of the data aver the most recent 10 samples of data. The
smoathed data are then recarded on a file.

2A. The temperature samples are recorded aon file FASCAL.DATA.DATAZ.
Your program should read a tempeerature fram the file and echa
pPrint. Then insert it ontoe the front of a linked list. After
all the data has been read. print out the linked list startine
at the front to be sure the data has heen read in correctlwy.

(when vou print out the list, the data should appear in reverse

arder.)
You should do the followina:

Create a record containing a field for the temeperature and
a field for the pointer to the next record.

Create a pPointer (pPerhaps called START) to epaint to the
front of wvour list.

You should create the followine procedures:

READ_ECHO

reads a temperature into a record.

sets the pPointer field of that recard to NIL.
echo prints the number

Parameters ¢ a pointer to the recaord.

INSERT Inserts the record into the front aof the list
‘'Parameters : pPointer to the record

PRINT_LIZST: Prints out the linked list
Your main progsram should do the fallowine:

Reset the data file
initialize the pPointer ta the front of the list
check for EOF
check faor EQLN
call READ_ECHO
call INZERT
call PRINT_LIST

ZB. Program ZA read in the data and created a linked Tist.

Frogram 2B will keep a record of the running averases.

Too do this we will keep anlvy the last 10 temperatures read

in the linked tist. This means that we will read in 10 values,
and calculate the first averase. Afrter that each time we read in
a new value and insert it into the frant of the list, we will
have to delete a value from the end af the list. Each time

a new value is read in. the averase of the last 10 values should
be computed and Printed out.

Yoau should create the following pracedured
DELETE_LAST @ Disposes of the last recard in the list.
sets the painter field of the new end record
to NIL.
Create the followine function:

AVG : averages the 10 records on the list.

m

] File TI.DATA.DATA4 coantains the fallowing infarmatian
an each empPlavee.

Emplovee numbert 1 diait (This is a small compPany)
Mame P oupP to 20 characters

sacial sec no. 309 digits

street : 25 characters

citwv, state : 20 characters

Example: lldane Lobdill 455209 190
A702 Beckett Road
Austin, Temxas 7374%
Zles Wvatt

llsina the emplovee number as the record number,

read the file and store the information in a relative
recaord file. Write the records back out in the order

of emplavee number. Use anw farmat vou wish to write out
the records.

STRATEGY:

- Declare a relative record file (RANDOM FILE OF...).
- lLet n ke a canstant which is the number of empPlaoavees.
In this case n = 9.
- Create 2 procedures:
READ_ECHC : Reads the data into a 1PASCAL record and
echa pPrints.
PRINT_FILE t reads data from the relative recaord +ile
into a PASCAL recard.
writes the record out to the output file.

- Your main Praoaram should do the followine:

Open the relative record file (rewrite or e=tend)
Open the inpPut file
For each emplovee data do the following .
Initialize the street field and citv.,state field of the
Pascal record to blanks
Call READ_ECHO ta read data into Pascal recard
Write the data out to the relative file
Call PRINT_FILE
Close the relative record file

26U .

(X}

I

Fun

vour progream a second time and update vour File using

TI.0ATA.DATAS

The file wou created during the first rum is stored
as .<CFilenamel0= where » = terminal number.
filename = the name vou called
the file in wvour Prosram.

To access the same file asmain., assian C<FilenamesxOs
a svnonym which is the name wvou use in vaour ProQram.

This time apen the file usine the “EXTEND" command
There is no “change~code” to tell wou which field
to changae, so wou will have to write the entire

new record aut.

Frint ocut the updated file in the arder of emplovee no.

MODz2

LANGLUAGE LINKAGE CONVENTIONS

e o o s ouos o e S cees S " T S o — S S0t " S St 4088 M (St S e s St et

TO ARUAINT INTERESTED STUDENTS WITH THE TECHNIGQUES REGLIIRED
TO LINKE IN AN EXTERNAL ROUTINE WRITTEN IN PASICAL. FORTRAN,. COBROL,
OR ASSEMBLY LANGUAGE.

TO ACRUAINT STUDENTS WITH THE TECHNIGUES REGUIIRED TO LINK
FPASCAL PROGRAMS WHICH SHARE COMMON PROCEDURES AND RUNTIME

AGENDA
1. EXTERNAL PROCEDURE DECLARATIONS
. EXTERNAL PASCAL ROUTINES
3. EXTERNAL FORTRAN ROUTINES
4. EXTERNAL ASSEMBLY LANGUAGE ROUTINES

5. REENTRANT PASCAL

LINKAGE CONVENTION TO OTHER LANGUAGES

ROUTINES OTHER THAN THOSE DEFINED IN YOUR FROGRAM MAY BE CALLELD.

ROUTINES WHICH MAY BE CALLED INCLUDE:

|

FASCAL ROUTINES

FORTRAN ROUTINES
REENTRANT FORTRAN ROUTINES
COROIL ROUTINES

ASSEMBLY LANGUAGE ROUTINES

CALLING AN EXTERNAL PASCAL ROUTINE

FASCAL ROUTINES WHICH ARE NOT DEFINED IN YOUR FROGRAM MUST RE
DECLARED IN AN “EXTERNAL® PROCEDURE DECLARATION,

SYNTAX:

FROCEDURE <NAMEZ> (<2 PARM LIST >)3 EXTERNALS

EXAMPLE:

FROCEDURE TEST (VAR 1 @ REAL)35 EXTERNALS

TEST (RVAL)3

##NITES:
0 THE EXTERNAL PROCEDIUURE MLET BE FPART OF COMPLETE PASCAL FROGRAM

0 THE EXTERNAL FROCEDURE MUST BE DEFINED AT THE SAME LEVEL AS
THE EXTERNAL FROCEDURE DECLARATION IN THE CALLING PROGRAM.

1 THE MAIN PROGRAM WHICH CONTAINZS THE EXTERMAL FROCEDURE
MUZT CONTAIN THE COMRILER COFTION “NO ORJECT .

EXAMFLE:

MAIN
FROGRAM EXTTETS
VAR I : INTEGERS
PROCEDURE EXT (VAR J 2 INTEGER)3 EXTERNALS
BEGIN (% EXTTST #)
I = =5; (#INITIALIZE I%)
EXT ¢ [)3 (#CALL EXTERNAL PROCH#)
WRITELN (< AFTER CALL I = *, I:3)3
END. (% EXTTST #)
EXT. PROC

FROGRAM DUMY5
FPROCEDURE EXT (VAR A4 & INTEGER)3
VAR TEMP : INTEGER:

BEGIN (# EXT #)
TEMF 1= 14 + 13
Jd 2= TEMPS
WRITELN (< HI FROM EXTERNAL ROUTINE
ENDs (# EXT #)

BEGIN ¢#DOUMY#)

(#% NO OBJECT #)
END. (sDiIMYs#)

LINK CONTROL FILE

NOSYMT ,
FORMAT IMAGE.REFLACE, 3
LIBRARY .TIP.OE.
TAzkE EXT
INCLUDE (MAIN)
INCLIMDE TI.PASCAL.IBRILEXTST
INCLIUDE TI.FPASCAL.IBILEXT
END

254

CALLING A FORTRAN SUBROUTINE

T CALL A FORTRAN SUBROUTINE. A& FORTRAN FROCEDURE DEFINITION MUST
BE MADE.

FROCEDURE FTN (I ¢ INTEGERS
R REAL. Y3 EXTERNAL FORTRANS

FTN (VAL1,.VALZ);3

#ENCOITE =
THE FORMAL PARAMETERS IN THE FORTRAN FPROCEDURE DEFINITION
SHOULD MATCH THOSE IN THE FORTRAN SUBROUTINE IN TYFE AND SIZE

"VAR“ED" PARAMETERS ARE CALLEDN BY REFERENCE AND "UN-VAR-ED"
FARAMETER= ARE CALLED BY VALUE.

PAZCAL PROGRAM TO CALL FORTRAN ROUTINE

PROGRAM FTNTETS

VAR VAL1 : INTEGERS
VALZ : REALS

(S0 30 3030 030 3636 36 6 303646 3 35 38 36 30 30 36 40300 3646 3530 3030 30403036036 36 36 3 30 30 3 3030 HE 36 30 303030 300036 40 98 3838 36 3 48 3 30 30 HR 20 6 3038
#* THIS IS5 AN EXTERNAL FORTRAN PROCEDLRE. IT INCREMENTS THE VALUE #*
* OF EACH OF IT-"S TWO FARAMETERS AND RETURNME THOSE VALUES #*
A 3 3 33 33 9 3 30303040 6 226330 36 3 3 U 33 R TR IR IR A6 6 I E I3 363 30 26 3 30 H I H AT)

PROCEDURE FTN (VAR I & INTEGERS
VAR R @ REAL)3 EXTERNAL FORTRANS

BEGIN (# FTNTST #)
VALL1 = 473
VALZ 1= 32,43
FTN VAL1. VALZ)3
WRITELN (< VAL1L =
ENLDl. (# FTNTST #)

“a VALLEZ, 7 VALZ = 7 VALZ:7 s

SAMPLE EXTERNAL FORTRAN ROUTINE

IT HAS TWO ARGUMENTS

I - INTEGER
R - REAL

EACH OF THESE PARAMETERS IS CALLED BY REFERENCE AND
EACH I3 INCREMENTELD BY ONE AND THE VALUE RETURNELD

QTSI GO0

SUBROUTINE FTN (I, R)
I =1+ 1
R=R+ 1.0
WRITE (&, S50)
S0 FORMAT (< HI FROM FORTRAN “)
RETURN
END

##NOTE: A FORTRAN subroautine does not have to be pPart of a

complete FORTRAN praosram.

SAMPLE LINK CONTROL STREAM TO LINK EXTERNAL FORTRAN ROUTINE

THIS FORTRAN SUNBROUTINE IS CALLED BY A PASCAL PROGRAM.

NOSYMT
FORMAT IMAGE,REPLACE.3
LIBRARY .TIP.CBJ
LIBRARY .FORTRN,QSLOBJ
LIBRARY .FORTRN,STLOB.
TASK FORT
INCLUDE (MAIN)
INCLUDE (FTNIOD)
INCLUDE TI.PASCAL.OBJ.FTNTST
INCLUDE TI.PASCAL.OBJ.FTN
END

957

CALLING AN ASSEMEBLY LANGUAGE ROUTINE \

o e e 900 oo Saose o et Smoas s St s eaed e Svatn o D oS08 St St S R PO P S50 TS RS T et S S St S St o intn

IN ORDER TO CALL AN ASSEMBLY LANGUAGE ROUTINE, YO MUST LSE
EITHER THE FORTRAN OR FASCAL LINKAGE CONVENTIONS,

FORTRAN LINEAGE CONVENTIONS

B e T S R S U U U

WHEN A FORTRAN SUBROUTINE CALL IS MADE THE FOLLOWING CODE IS
GENERATELD.)

CALL SUB1 (Al A2, . . . 5 AN)

GENERATES,
ADDRESS CODE COMMENTS
REF 5SUB1
XXXX + 00 BLWF @SUR1 BLWF T SUBROUTINE
XXXX + 02
XXXX + 04 DATA N NUMBER OF ARG S TO =SUR1
XXXX + 04 DATA Al ADDRESS OF ARG 1
XXXX + Oz DATA AZ ADDRESS OF ARG 2
XXXX + 77 DATA AN ADDRESE OF ARG N

)]

A
o

IF A PASCAL PROCEDIURE IS DEFINED AS “EXTERNAL FORTRANY, THE SAME
CALLING CODE IS GENERATEDR AS FOR A CALL IN A FORTRAN FROGRAM.

EXAMPLE:

VAR IVAL1
IvAaLz2

INTEGERS
REAL 3

FROCEDURE TEST (I & INTEGERS
I ¢+ REAL)3 EXTERNAL FORTRANS

TEST (IVAL1, IVALZ)S

##NOTE =

THE CODE AROVE WOULD GENERATE THE SAME CODE AS
FOLLOWING FORTRAN

SUBROUTINE TEST (I, J)

CALL TEST (IVALL, IvVALZ

STRUCTURE OF THE ASSEMBLY ROUTINE

i v e e, e e Svere o Vo S S S90S S o e e Fe S Sat0d SRS 22 49000 a8 ONE Gt bt S et b b e

10T “ASMIURS - IDT NAME OF THE AZESM. SUBE.

DEF ASMsUR EXTERNAL DEFINITION OF TRAFP VECTOR
ASMELIB ODATA WEF = NEW WORKISFACZE FOINTER -

DATA ENTER - NEW PROGRAM COUNTER -
W=zF Bz =2 RESERVE SPACE FOR REGISTERS

F 36 3 38 3 4 36 30 30 4 3 36 38 30 30 30 3 3636 30 3 30 30 36 3 36 36 90 3 38 36 36 3 35 38 34 34 330 30 3 36 30 3 30 36 3 30 3 36 30 3 3 6 3 R R0 3 3¢

*
* DATA AREA FOR =SUR #*
*

F 3638 636 F A6 S 300 3 30 30 36 3 30 30 30 36 36 30 36 30 4 30 30 3036 30 336 3 30 6 36 30 36 30 336 30 38 30 36 36 3 38 36 36 30 5 3630 36 30 36 3 3 038

ENTER EqQU $ ENTRY POINT INTO ROUTINE

34648 3 3 SRR A6 I B33 3 3 A HE I FE A I 6 334 3 S I I R S I
#* #
#* PROCEDURE AREA FOR SUR #
#* #*

36 46 3 363 36 30 3 3 30 36 3036 36 3 3 36 38 3 3030 36 30 3 36 30 36 38 30 36 30 3 44 3 30 36 304 36 36 30 36 6 36 36 36 3 36 36 30 S

#* RETURN LOGIC WHICH COULD BE USED FOLLOWS #*
MOV 14,7 GET PARM COUNT ADDRESS
MOV #7,7 GET PARM COUNT
INCT 14 INCREMENT PAST COUNT WORD
sLA 7.1 R7 = R7#2 — TWO BYTEZ/WORD
A 7,14 INCREMENT FAZT FARAMETERS
RTWF RETURN TO FASCAL PROGRAM
END ENDY ASSEMBLER DIRECTIVE

Ny
By

SAMPLE PASCAL PROGRAM T CALL EXTERNAL ASSEMBLY ROUTINE

FROGRAM ASMTESTS

INTEGERS
REAL 3
ARRAY [1..5

1 OF

CHARS

(3645 3 30 35 3 3 46 36 30 30 3 35 30 36 30 3 35 330 30 34 35 330 30 36 30 36 330 30 H 3030 4 0 30 30 3E 3 0 B 303 3030 0 SR 3 R R IR R R R R

* THIS IS AN EXTERNAL ASZEMBLY LANGUAGE ROUTINE WHICH LSES
FORTRAMN LINKAGE CONVENTIONS.,

THE

¥*
#*

3 3636 36 36 36 36 36 0 3036 36 30 36 3 36 36 36 36 30 36 36 30 36 36 3636 3 36 H 30 36 30 38 36 30 36 36 38 36 36 36 36 30 36 3 36 36 0 3 3 36 36 35 30 36 36 36 3 30 36 3 H 03)

PROCEDURE ASMSUB (VAR IVAL : INTEGER:
VAR RVAL : REAL3
VAR CVAL : CHAR)3 EXTERNAL FORTRAN:
BEGIN (# ASMTEST #)
I 1= 53
R = 0.5;3
CrL1 1 :2= “A's
cCL21:= "B
CL 21 = 073
[41 :=7/1"3
CLS 1 :i= -2
WRITELN (- BEFORE CALL TO ASMSUR <)3
A=sMsSUR (I, R, L 2 1)3
WRITELN (© AFTER CALL. I = “,I:2,° R = “,Re815S," CL[3]

END. (3% ASMTEST #)

SAMPLE LINK CONTROL STREAM FOR LINKING EXTERNAL ASSEMBLY ROUTINE

NOSYMT
FORMAT IMAGE. REFPLACE, =
LIBRARY .TIFP.OR.J
TASK TEST
INCLUDE (MATN)
INCLUDE TI.PASCAL.ORJ.ASMTET
INCLUDE TI.PASCAL.OB.J.ASMIUER
ENL

ShEMar
ACCESE NAMES TABRLE
SOURCE QCCESS
ORJECT ACCESS
LISTING QCCES!
ERROR ACCE=SS
OPTIONS=
MACRO LIBRARY FATHNAME=
ASMELIR “hEMAC
ASSEMBLY LANGUAGE

OO

OO0z

0004 3#*

Q0O0S # TWO
0O00A 3#*

QOO7 0000 00047 ASMSLIR
0003 0002 002A°

000 #*

0010 0004 W

oy
T

0011 #

o012 2000 RMASE

0013 0000 INT

0014 00ZE 0000 CHAR
O01S #*

0014 #*

SR CALLED

NOTE:

.1 o 14831224 TUESDAY. AFPR 13, 197

b

GE 0001
LOR.FTNASM
DMy
LLORGEXTE

TUNLET

.1 0 1423210264
FROM FASCAL

TASMSLIR

TUESDAY., APR 13, 13973,

FAGE 0002

1ioT

DEF ASMEUR

WORD TRAF VECTOR FOR BLWF FROM PASCAL FROGRAM

DATA WsF = NEW WORKSFACE POINTER -

DATA ENTER - NEW FPROGRAM COUNTER -

BEs 32 RESERVE NEW WORESFACE AREA
DATA 2000 REAL ZIGN BIT MAsSK

DATA O RESERVE SFACE FOR INTEGER FARAM

ODATA O RESERVE SFACE FOR CHAR FARAM

WHEN THIS ROUTINE IS ENTERELD, THE OLD FPROGRAM COUN

FROM THE FAZCAL PROGRAM WHICH IS IN R14, CONTAINS
ADDREZ:Z OF THE WORD CONTAINING THE NUMBER OF FARAM

IN THE EXTERNAL ROUTINE CALLING STATEMENT

0017 3*
ool1= +*
001 3*
QOZ0 *
0021 QO0ZA° ENTER
Q022 00zZA CICE

QOZZ 0020 O05C7

00OZ4 OOZE Z2E7

QOZ5 0020 CE1s

QOZ4

OO0

Q0=4

O0EA

.......

Eail %
MOV 14,7
INCT 7

MYV #7+,3
MOV S, @INT

INC @INT

BEGIN FROCEDLUIRE AREA
CBTAIN FARA BLOCKE ALDRESS
MOVE TO FIRST FARM ADDR

Rt d-— PARML ADDR

OBTAIN INTEGER FARM

INCREMENT INTEGER BY 1

OQFT7 00z
0058

QO

QO
OO O0O3E
OO0 Q040
o042
OOzl 0044
Q0=

[BIRY ¥2)

QO3E 0043
Q048
Q024 0040
004k
QOZ5 Q050
OS2
[DO3A
QO=R7
OO=E
Q=Y
0040
0041
0042
Q043 0054
0044

OO56A

0045

Q05

O04A OOSEH
9047 OOSC

OO45
Q4w

N ERRORE

QORE"

QSA0

QO

CAZO

QOzE

C1CE

107

QO=CE

O&817

OOSE O5E

Moy

MY

MOy

Moy

“INC

Moy

@INT, #=

#7413

#3, @CHAR

@CHAR

@CHAR, #2

RETURN INTEGER VALLE
FARMZ ADDR

OBTAIN REAL PARM FART 1
CHANGE SIGN BIT
RETURN REAL VALUE

R o-—- PARMZ ADDR

OBTAIN CHAR FARM

INCREMENT CHAR REFPRESENTATION

RETURN CHARACTER VALLE

SET UF FOR RETURN TO PASCAL FROGRAM

SEE DESCRIFTION OF LINEAGE CONVENTIONZ

RECALL THAT R14 CONTAINS THE OLD FROGRAM COUNTER VALUE

MoV

MOy

INCT

AT

A

RTWF
ENL

14,7

#7.7

14

7.1

7,14

GET PARM COUNT ADDR
GET PARM COUNT

INCREMENT FAST COUNT WORD

INCREMENT FAST FARMSE
RETURN TO PASCAL PROG.

REENTRANT F&SCAL

FasCal., TAskS
- Runtime

- tlear

M&Y SHARE
Routines
detined routines

LINEING FASCAL TASES WHICH SHARE RUNTIME ROUTINES

The usual methad of linkins Pascal epraograms tses a module called
MAIN which is included as the first module in the link. The MAIN
module is a eartial link of a number of run—time routines which are
alwavs needed. For linkine with separate procedure and task seaments

mast of the routines in MAIN can be in the procedure seament, but
soame need ta be in the task seament. Therefoare, the pPartial link
module MAIN canmet be used and the routines will nave to be picked

up individuall-.
LINE CONTROL FILE FORMAT

FORMAT IMAGE, REFLACE

LIBRARY .TIF.OR.J 5 Pascal - wwn—time lihrary
LIBRARY <user librarvs: 5 lser detined Tibrary
FROCEDURE <procedure namel> § Frocedure seament

[NCLUDE (INITS1) 5 Includes shared run—time routines
INCLUDE (CREATE$)

INCLULDE (GET$FA)

INCLUDE (HALT$)

INCLLUDE (DUMP$F)

INCLLDE (RELEAS)

INCLUDE (CLS%$)

INCLUDE (RESUMS) -

INCLUDE (RSUMRS)

INCLUDE <ather shared run—time routinesl

INCLUDE <user defined routinesk

ZEARCH JTIF.OBRJ § Rest of sharable run—time
SEARCH <user defined librarv

TASE “task namelr 5 Beginning of TASK seament
[NCLUDE (F$MAIN) 5 Must be first module in TASE seament
ALLOCATE 5 Futs COMMONET and DEEGs here
[NCLUDE <llser programis

END

i/

THE FOLLOWING ROUTINEZ ARE NOT SHARARLE
FROCEDURE SEGMENT:

OLMP$HEA
R R

INIT®
INITsD
F&INIT
TERMS

IN ORDER TO BE SAFE REMEMBER THE FOLLOWI

1. The PROCEDURE seament aof the link
link—edit of everv task which will

£

TASE seament.
The FPascal main proaram must be in

]

FROCEDIURE seament to labels define
command.

Contral files for 2 tasks which share a
deftined procedures:

TAZk1

FORMAT IMAGE, REFLACE
LIBRARY .TIF.ORJ

LIBRARY USER.FASCAL.OBJECT
FROZEDURE TESTRROC

The library routine PSMAIN must he

ANDY MUST NOT BE FUT IN THE

NE RULE=:
must be identical in the
use it.

the first module in the

the task seament.

There must not be anv references from routines in the

d after the ALLOCATE
common run—time and 2 user

TASEZ

FORMAT IMAGE, REFPLACE
LIBRARY .TIF.ORJ

LIBRARY LUSER.FPAZCAL. OBJECT
FROCEDURE TESTRROC

INCLUDE (INITs1)
INCLUDE (CREATS)
INCLUDE (GET$FA)
INCLUDE (HALT$)
INCLUDE (DUMPSF)
INCLUDE (RELEAZ)
INCLUDE (ZL=$)
INCLUDE (RESLMS)
INCLUDE (RSUMRS)
INCLUDE (ADRD)
INCLUDE (FILL)
SEARCH JTIF.OBRJ
SEARCH USER.PASCAL. OBJIECT
TASEK TAZE1
INCLUDE (FsMAIND
ALLOCATE

INCLUDE (TASEL)
ENDI

The s

Proar

econd 1ink
FROZCEDLIRE command sa

am file

file has a OUMMY
that the procedurs is not

OMMyY

INCLUDE (INIT$1)
IMNZLUDE (CREATS)
INCLUDE (GET$FA)
INCLUIDE (HALTS)
INCLUDE (DUMFSF)
INCLUDE (RELEAS)
INCLUDE (CLS$)
ITNCLUDE (REZLUMS)
INCLLUDE (RIUMRS)
INCLUDE (ADD
INCLUDE (FILL)
SEARCH . TIF.ORU
SEARCH UZER.FPASCAL.ORBJAECT
TaSH TASEL
INCLUDE (P$MAIN)
ALLICATE

ITNCLUDE (Tazk1)
ENI

command atrter
stored

the

Moo L

ODIRECT I[NTERFACE WITH DX10

- =im routines For direct interface with DX10

= Allew I/0 ta a CRU device that is not surFrpoarted by

the svetem.

- Allow user to execute any surPervisor call of the orerating
svetem.

-~ Routine must he declared externallw

- HERO

|
#
1

SRZ
- FITCH
- $TH
SUFERVIZOR CALL ROLUTINE

- EVCE

FROCEDURE $LDCR(BASE,. WIDTH, VALUE: INTEGER)3; EXTERNALS

Exameles Var B, W, V ¢ Intesers

B = #2003 (# set base to H#Z00 *)
W= 33 {(# Write a character #)

V i= #4141
sLOCRI #&,

{(# character is “A°

Vs

)

W >

FROCEDURE s=BO (BASE @ INTEGER)3 EXTERNAL:

Examples Var ADDR ¢ Integers

ADDR = #4003 (# Set base to #400 #)
GLODOR s= ADDR + 43 (% Add displacement #)
SSROC ADDR)3 (# Set kit to one #)

PROCEDURE $ZBZ (BRASE 1 INTEGER)3 EXTERMALS

Var BITOUT =

Examelen Integers R

BITOUT == #4003 (# Set Base to #400 ¥*)

BITOUT s= BITOUT + 23 (# Add Displacement #)
$SRZ (BRITOUT)3 (# SET RIT TOQ ZERO %)

FROZCEDUIRE sSTCR(BASE., WIDTH. INTEGER: VAR VALUE: [INTEGER)S

Const BS1 HZO0S
SIZE = 33
INCHR ¢ Intesers

Examrles

i

Var

SSTCRO B=1, Sizes, INCHR)3 {(# Read Character #)

FUNMCTION TR (BASE @ INTEGER)@ BOOLEANS EXTERNALS

anpn =
BLIZY:

Examples Var Inteaers

Boolzans

ADD 1= #2003
ADD = ALD + &3
BlLIZY 1= %TR (Al

{ %
{4
{ 3%

Set Base to #ZOO
Add Displacemsant
Zet Busy to value
O+ CRID [nrut E)

*)
*)

(Al s

EXTERNAL:

FROZEDURE 2VI0s

- The
e |

- FT r

FEuamplie:s

structu
ared,

Erresen

TYFE

VAR

MEW (
MEW ¢
BLOCHK
SVCS

This sh
This su
first
2nd b
Zrd &%

A1l wval

vaR
Element
Element
Elememt
Element

(F 2 FT)3 EXTERNALS

re for the surervisor call black must be

te a pPointer ta the supervisor call hlack

OANDT = ARRAY [1..5 1 OF INTEGER;
FOINT = @DANDTS
SR = RECORD
COnE ¢ INTEGERS
TIME @ PFIOINT
END3
FT = @ICRS

BLOCE @ FTs

BLOCE)3 (# Ohtain supervisaor call blaock #)
BLOCKE@. TIME)3 (% Obtain array for date and time®)
@.CIODE = #OZ003 (# Assian code and zZera #)

(BLOCE)3 (# gaet date and time #*)

isar call

owes a date anmd time surerv
s a 4-bvte block

Pervisar call reauire

bvte = cade

vte zera

4th address of a five word arrayw for the date
and time

ues for the date arnd time in the arrayv are binarwy

1 of array (Black@. Time@{[1) is the vear

is binarw equivalent of the last & disits of wvear
2 is the dawv

Z 18 the hour

4 is the minute

5 is the second

MODE=

CFBATCH O INPUT T S0T FROM SEQUENTIAL MEDIA
- SELIENTIAL FILE ¢ TYFE CREATED BY THE TEXT EDITOR)
- CARD READER
- ETLC.

O EXECUTION I= IN THE BACKGROUND

EXECUTE BATCH (XB) COMMAND

FLURFOSE: T PLACE & BATCH =CI COMMAND STREAM INTD EXECUTION IN
THE BACEGRIOUINDO AT A STATION.
FORMAT:
[1 XE
EXECLUTE BATCH

INFUT ACCESS NAME: SEQUENTIAL MEDIA CONTAIMING SOl COMMARNDE

LISTING ACCESZ NAME: FILE OR DEVICE FOR LISTING BATCH COMMANDE

EXAMFLE:
L1 XR
EXECUTE BATCH
INFUT ACCESES NAME: TI.FASCAL.BATCH. TEETIL

LISTING ACCESS NAME: LFO1

BATCHZ

BATCH COMMAEND STREAM

BATCH =D COMMAND FORMAT

FORMAT :

O COMMAND > KLl = <0 VALLE ., ... - EN

COVALLE
WHERE »
o COMMAND - — MNEMONIC FOR =CI COMMAND

Y Kl, ... EN - FEYWORDS
EXAMFLE:

CFOIR FATHNAME

= TI.COBOL. SRC,
MAX ENTRIEZS =

1OO
##NOTE: ZOME ABBREVIATIONES FOR EEYWORDE ARE LLEGAL.

GENERAL RULE: WSE THE FIRST LETTER OF THE KEYWORD IN THE
AEBREVIATION.

THE LETTEREZ IN THE ABBREVIATION MUST AFFEAR
IN THE =aME ORDER AZ THEY AFFEAR IN THE EEYWOIRD

THE ABBREVIATION USED FOR A EEYWORD MUET NOT BE
A LEGAL ABBREVIATION FOR ANOTHER FEYWORD IN THAT
SAME SOOI COMMAND.
% CONSLILT VOLLUME V OF THE DX10 MAMUAL FOR THE EXACT DEFINITION
OF THE NEAR EQUALITY ABBREVIATION ALGORITHM.

BATZH COMMAND

FURFOSE: TO DELETE ALL "SECRET =01 SYNONYMES AND DEFAULT VALLEZ FOR
BOTCH EXECUTION. (THIS HELFS GUARD AGAINST SYNINYM TARLE
OVERFLOW)
FUORMAT:
BATCH

HHRNCOTES THE “BATOHY CORMAND SHOLH.D BE THE FIRST COMMAND IN BEVERY
BATICH COMMAND =STREAM.

BATCHE

ILLEGAL BATCH =CI COMMANDS
0 ALL DEBLG AND TEXT EDITOR COMMANDE
O AT ACTIVATE TaASE) COMMAND

2EBRT (EILL BACKEGROUND TASE) COMMAMD

OMs (MODIFY SYNONYMS) COMMAND

0 sRS (0 SHOW BACKGROUND STATUS) COMMAND
O XB (EXECUTE BATCH) COMMAND

O XD ¢ INITIATE DEBUG) COMMAND

O XGEN (EXECUTE GEN 270) COMMAND

0 XHT (EXECUTE AND HALT TASk) COMMAND

o0MVI (MODIFY DISE VOLUME INFORMATION) --COMMAND

QTHER INTERACTIVE BATCH RELATED COMMANDE

SHOW BACEGROLUND STATLEE (SBES) COMMAND

o e e s e s ot Goe e o Saree eSS 404 TSNS e Ve S S SvEme ek S W Seom S oo oes S T et 43800 ST PV oo Sowwe Sveme e Seven S

FURFOSE: TO DISFLAY A MESSAGE WHICH DEZCRIBES THE STATUS OF THE
CURRENT BACEGROUND ACTIVITY AT THE STATION.

FORMAT:

SHOW BACEGROUND STATUE
ACTIVE — FRIOQRITY =

EILL BACEGROUND TASE (EBT) COMMAND

FURFOzZE: TO TERMINATE BACEGROUND ACTIVITY AT A& STATION.
FORMST:

L1 KRBT

W

R R A R S S 3

R

&

I

Weoowroowd omeowg

P S

SEoul

SAMPLE BATOH ST COMMANTT STREAM

© THAT “BATCHT SHOULD BE THE FIRST COMMESND
BaTOH STREAM!

FEFTUTT THE Posnal, COMPTLER

Al

LTI SOHETE = "TI.PASDAL SR, BATOMHY .
MRIECT = "TI.RASCAL .. OB BATCHY,
LISTIMG = "TI.FPASCAL . LST. BATOHY .
CEEAGES = "TILPASCAL . MG, BATIZHY,

MEMI = "',

MEMZ = """,

MEMZ = "',

MODE = "FOREGROUND

THERE I% A WAY TN A BATOH STREAM TO DCTERMINE IF A PASCAL COMPILATON
WAT SHCCESSFUL REFORE GOING ON T THE NEXT COMMANMD TN THE STREAM.

THE <. IF* COMMAND ALLOWS FOR CONDITIONAL EXECUTION OF & SERTES OF
COMMAMDE.,

THE SYNONYM “$s007 WILL BE EQUAL O IF THE COMPILER TERMINATED
NORMALLY . ANDN & NONM-ZERD VALLUE INODICATES THAT THE COMFILER
TERMTINATED ARNORMALILY .

THE SYNONYM “s$007 WILL RE:

O — NOERRORS DURING COMPTLATION
#A4OO0 — CRLY WARNINGS OCCURRED DURIMG COMPTLATION
FAOD0 -~ NON-FATAL ERRORS QCCURRET
#OOOD0D - FATAL ERRORES OCCURRED
OO0 - RUNTIME ERRORS OCCLRRETD
TR TOO CONDITTIONALLY LINE THE FOLLOWING CONTROL STRESM COLLTY BE LT,

SIFEES0T, FEO, O

FOLTNE COMMANTT STRFAM

LERTITE

P\

soN¢ X

b3

S

EAE

PSR O

PIMETNG COMMANTT STREAM

I @B, Ei. O POOMPTLATION TERMIMATEDR
LOATA TILPAGCAL LT, BATOH PORUIT OLINE STREAM ON FILE
NOEZYMT
FORMAT IMAGE. REFLACE. =
LIBRARY TIF.OR
TAZE NEW
INCLUDE (MAIM)
INCLUDE TI.FASCAL.DEL, BATCH
END
L E0D

EXECUTE LINKE EDITOR

XLE CONT ACD NAME
LINKED QT AZC MAME
LIST AT NAME
FRINT WIDTH

"TI.FASCAL. LO.BATOH" .
"TI.FASCALL.PROG
"TI.PAGCAL. LMAF. BATCH" .

HEO

mwoun

» ENDIF

FRINT 0OUT THE COMFILED LISTING

FF FILE PATHNAME (S ="TI.FASCAL.LLST. BATCH" .
AF="NO",
LISTING D="|_FO1".
DAF="NO",
MUM OF LLIMNES/FAGE =20

FRINT OUT MESRAGE FTLE

FF FILE FATHNAME(Z)="TI.FASCAL . MSG. BATCHY
AF=NOY
LTSTING D="LFO1",
DAF="MNI",
NUIM O LINES/FAGE=""

FMNIOOF BATOH STREAM ~ REMEMBER TO UEE THE EBATOH COEMASRD

ERaTOH

MOFML LY

COMPLLER OFT IONS

LIST CONTROL OFTIONS

LIST (STATEMENT - TRUE)

= ENABLES OR DISARLES PROGRAM SOURCE LISTING
= WHEN zET TO FALSE, OMLY LINES WITH ERRORZ AND THE
ERROR MEZZAGES ARE FRINTED

WIDEL [T (FROGRAM - FALZE)

— ENABLES OR DISABLEZ ZOURCE LINE NUMBER AND COMPCUIND
STATEMENT NIMBERS

MAF (ROUTINE - FALSE)

e oo e e s Soowe coras s S oS FS PO e Sreve P S " St s St s

- ENABLEZ OR DISABLES A "MAF- OF THE VARIARLEZ DEFINELD
IN THE ROUTINE

#ENOTE: THIS IS USEFUL WHEN ATTEMFTING 7O READ AN ERROR DUMF OR
STACE ANMD HEAF MEMORY

MAF TNFORMATION

<V NAMEZ DI=F = <JHEX VAILLUE: DRTC = T/F ZI1ZE (BYTE=Z, BITZ)

i

WHERE »
TV ONAMEZ> — VARIABLE MNAME

THEX VALUEZ - DISFLACEMENT (IN HEX BYTESZ) INTO THE ROUTINES =7ACkE

FRAME WHERE THAT VARIABLES =STORAGE MAY BE FOUND
T = VALUE IS ACTUAL IN THE STACE AZ LEFINED BY "DILEF-

Fo— YaLUE TN STACEK [5 A POINTER TO THE ACTUAL 1LOCSTION
WHERE THE VARIABLE I3 STORED

BYTEZ - QIZE oF VARIABLE [N FULL BYTESD
BITZ — MNUMBER OF BITE OVER THE FULL NUMEER OF BYTESDS REGUIRED
FOR VARIABLE STORAGE.
NOTE: TOTAL MUMBER OF BITS OF MEMORY REGUIRED BY & VARIABLE CAN
BE CALCULATED A%:

SIZE (INMBITZ) = axBYTE

(K}

-+ 1T=

e

FAGE (STATEMENT — FALSE)

- FORM FEED COMFILED LISTING DEVICZE IF TRUE
- FAGE BECOMES FALSE AFTER FORM FEED I3 WRITTEN

WARMINGS (STATEMENT - TRUE)

- ENABLEZ OR DISABLES LISTING OF WARNING MESSAGES FROM
COMPITLER

OBJECT CONTROL COFTIONS

NULLBODY (ROUTINE - FALSE)

= WHEN TRUE ONLY DUMMY OBJECT IS WRITTEN FOR ROUTINE

= USEFUL WHEN COMPILING EXTERNAL ROUTINES

TRACERBACE (ROUTINE — TRUE)

ey ——coven oy — o ——

- ENABLEZS OR DISABLES GENERATION OR TRACEBACE DATA IN THE
CORJECT CODE To ALLOW TRACING OF EVENTS WHICH LED T TERMIN-
ATION IN A PROGRAM.

ASSERTS (STATEMENT - TRUE)

- ENABLEZ OR DISARLES RECOGNITION OF ASSERT STATEMENTS 1M A
FROGRAM

ASSERT STATEMENT

v mss come e cas0s mimme eane cosat it Sonte S et Sttt s s s

FURFO=E: TO GENERATE A& RUNTIME ERROR IF A SFECIFIEDR
BOOLEAN CONDITION IS FALSE.

SYMTAX:
ASEERT <BOOLEAN EXFRESSIONZ
SYMANTICS:

- IF <EOOLEAN EXFRESSION: IS TRUE, THEN CONTINUE EXECLTION
OF PROGRAM :

= IF <JROCLEAN EXPREZSZIONZ 1% FALSE. THEN GENERATE & RUNTIME
ERROR.

RUNTIME CHECE OPTIONS

CEINDEX (STATEMENT - FaLzE)

= EMABLEZ OF DISABLES CHECEIMI FOR ARRAY

CEOVER (STATEMENT - FALSE)

— EMABRLEZ OF DISABLES CHECKING OVERFLOW WHEN EVAILLIATING,
[INTEGER, LOMGINT, DEZIMAL, AND FIXED EXFRESSIONS,

CEFREC (STATEMENT - FALZE)

= ENAEBLEZ OR DISARLES CHECEING FOR 0SS OF MOST SIGNIFICANT
FRECISTON DURING CONVERSION OF DECIMAL AND FIXED TYFES.

CEFTR (STATEMENT - FALZE)

- ENAERLEZ OR D1SARLES CHECEING FOR NIL VALLUES OF VARTIABLES
IF FOINTER TYFE AT EXECUTION TIME.

CEZET (STATEMENT - FALZE)

= ENRBLEZ OR DISARLES CHECKING OF SET ELEMENT EXFRESSIONS.

CEZUE (STATEMENT - FALZE)

~ ENARLEZ OR DISABLES THE CHECKING OF SUBRANGE AZZIGNMENTS aND
RESULTS OF FRED AMD SUCT FUNCT DONE,

CETAG (STATEMEMT - FALSE)

= ENABLEZ OR DIZABLETS THE CHECEING OF THE TAG FIELDD OF RECORD
VAR TANT=.

FRORBER (ROUTIME - FALSE)

- EMABLEZ OR DISABLEZS A SUMMARY OF THE NUMBER OF TIMES & ROUTIMNE
[EXECUTED DURING & PROGRAM EXECLTION

- THE FOLIOWING LINE CONTROL COMMANDS MLEST RBE USED TO ENABLE LUSE
OE THIES OFTION: ‘

ITNCLUDE (FREBSINIT)

INCLUDE (FPRESTERM)
INCLUDE (FRESFERF)

EXAMFLE FROBER DISFLAY

FERFORMAMCE FPROBE DATA
ROUTINE DATA NUMBER OF EXECUTIONS
CCHAR

CINT
ODIGIO

P B

FROBES (ROUTINE - FALSE)

~ ENABLEZ 0OR DISABLES PRINTING OF SUMMARY OF THE USAGE OF THE
FATHS OF EACH NCCURENCE OF THE FOLLOWING PROGRAM CONTROL
STATEMENTS :

O CASE

1 FOR

o IF

1 REFEAT
0 WHILE

- THE FOLLOWIMNG LINE CONTROL COMMAND MUST BE ITNCLUDED IF THE
FROBES OFTION IS LSED

INCLUDE (FRESINIT) NOTE 1

IMZLLUDE (FREETERM) NOTE 1
INCLLDE {FRESCOMF)

#MOITEL — THEZE TWO ARE THE SA&ME AS FOR PROBER AMD OMLY MNEED T2 BE
IMCLUDED OMCE TF BOTH FROBER aAND FRORES OFTIOME ARE LSED,

" AT

EXAMFLE FROBES DISPLA

COMRLETENESS PROBE DATA
ROITIME MNAaME HFROBES RACTIVATEDR INACTIVE FROBIES
CICHAR

CINT
[ERRER AN

75
100
100

[SR =

TOTAL NUMBER OF FROBES = 2
TOTAL NUMBER OF ACTIVATED PROBES = 7
% OF FROBES ACTIVATED = 27

7200l (STATEMENT - TRUE)

- ENARLESZ OR DISABLES THE 72 CHARACTER LIMIT FOR SOURCE FROGRAM
LINES.

FORINDEX (STATEMENT - FALZE)

- ENABLEZ OR DISABLES THE ISSUING OF WARNING MESSAGES WHEN MAMES
OF FOR CONTROL VARIABLES ARE IDENTICAL TO NAMES OF OTHER
ACCESSIBLE VARIABLES.

GLOBAL (ROUTINE - FALSE)

= ENARL_ES OR DISABLES A LIMITATION OF THE USE OF GLOBAL
VARIARLES.

WHEN COFTION TS TRUE, ONLY GLOBAL VARIABLES NaMES IN AN ACCESS
DECLARATION ARE ACCESSIBLE WITHIN A ROUT INE.

ROUND (SZTATEMENT - TRLE)

- ENABLEZ OR DIZABLES THE ROUNDING OF RESULTS OF TYPE DECTHMAL.

STAMOARD (FPROGRAM — FALSE)

- ENABLES OR DISABLES LUNTFORM IMPLEMENTATION OF STAMDARD TYRFE=.

= ZETTIMNG THE STANDARD OFTION To TRUE RESULTS IN RANGE OF YalUE:=
o INTEGER TYFE EBETNG THE 2ZAME AT THAT OF LOMGINT TYFE.
=2 147, 423, 42 THROUGH +2, 147, 4323, 447,

b

MCzs

FARSCAL PRETTY PRINMTIMG STANDARD

Each statement must hegin on a separate linse.

Each line shall be less tham or esual to 72 charactsesrs.

Comments that are appended at the end of a line of cade and

that are continued aon successive lines must be written so
that caontinued lines are under the initial comment frasment

The kevwords REFEAT. BEGIN, END. and RECORD must stand on a
line bvw themselves (except for suppartive comments)

At least one blank line must appear before LABFL, CONST,
TYPE. and VAR declarationss at least three blank lines
must arpPear hefore FROCEDURE and FUNCTION declarations.

At least ane space must arpear hbefors and after
and “=". Cine space must appear after ’:“.

ALIGNMENT RULES

FROGRAM, FROCEDURE, and FUNCTION headinss heain at the
left marain.

The BEGIN-END block faor a praaram. pProcedure or function
shall be limed up with the carresponding headins,

Each statement within a BEGIN-END. REFEAT-UNTIL, ar
CASE statement must he alianed.

INDENTATION RULESZ

e deren trntn e o oo arove Bonee S o0 Seems Svese v weres

The bodies of ILABEL, CONST, TYPE. and VAR declarations must
be indented from the beginning of the correspondins header
kevwards,

The bodies of BEGIN-END. FOR, REFEAT. WHILE. WITH. A&ND CASE
statements, as well as the bovies of RECORD-END structures,
must be indented from their corresponding header kevwords.,
A [F-THEN-ELZE statement must bhe disrlaved as Ffollaowss

IF <empressiani or IF .eﬁpress1nn“ THEM
THEN statemen
“statementl> EL=E
ELZE Cetatements

statementl

S

\‘\

~O

DR E T IRG DECTMEL NUMEBERT To HEXEDECTMAL MM

PR et ChORMVETT O THE MUMDER 7RI, 0Tl RS INTO A HE AL 0L

sLER THE INTEGRAL FART OF THE NUMBER. CONYERT
MUIMEER.

53

1t NTVIOE THE NUMDER EY 14
TOATARTING T THE

SERCTHAT TEOTHE R R

YULL PUEET WRITE THE HEX DIGIT @&, G,

THE REMATNDER 12 CAN BE REFRE
DIGIT “Co. THE
FrE L o

DLV ITITRG THE LT LTEMT B L0 LT

i LY LA T
T NEET RIS L

THED UM ENDER LD MAY BE RLUIRRI
e o, O BzC0pME= THE

DLGLT aF

Lz,

RRNTE

PoZimkrn THED MZXT D inor
L O E G St I I IR NPt AT R YT
IR kal PR T IO OF TR

T b,

Bl T

S THE NUMBIER MUET BE CTINMVERTED SEPGRATE

EMTED Y TUE e K AT
FLIRST DIGTT OF THE MURREER WE akE

RERH A R

U B SN B

[
A

ol

Y EEL
N O S S

P pr AT TR

T
VL,

FLTT LG

Ciz TR R

4
n

BT H

RN
THE

HEL VS

E

GECIMAL

10,

TINLUE
NUMEBER 13

X 14

o SO0

e D200

L THE

CEMEL

MULTIRFLLY ING B

FEaRT TN

e F-

L

F S THE

By 1A,

FUTMNT O WILL BE THEi
g1t MLIMEER

TF THE
L, 13,
GIT A. Ee
v oLA

1

ZIZRC.

P BER

THERE Iw
L= TS
IR MUMELZR

THE NUEEE
FOIMT (=
MLV

E
T THE
AT

L Ey s =

NLIMEER.

iy

(I

T

TUGE THER

Lt

UNTTL

Mie DT
R

THE .
THIE MEXT
THE
LHE TR
LAST MULTIFLICAT N
THROLIGH,

RS

FIRET

SLLFAR TS

B B

[

Ty THE

L O

T

i1t

NEHAL R
Fadfe 7T

TH

WE

HAVE

DR el

LTFT
CIGiir

THiE
LfGeT
T
Ao

-
12

1

IRCT TN

1
Qe

] ‘ {IZT
ISR

LR
LU

2R

i

THE

D Tral

FiPd e B

b

(o

(\ Al

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281

