
\

t

•

TEXAS INSTRUMENTS

Improving Man's Effectiveness Through Electronics

Model 990 Computer
TX990

Operating System Documentation

MANUAL NO. 944776-9701
ORIGINAL ISSUE 1 OCTOBER 1977

INCLUDES
CHANGE 1 15 DECEMBER 1977
CHANGE 2 1 SEPTEMBER 1978

Digital Systems Division

© Texas Instruments Incorporated 1978
All Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos­
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES Note: The portion of the text affected by the changes is
indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer TX990 Operating System Documentation (944776-9701)

Original Issue 1 October 1977
Change 1 15 December 1977 (ECN 419813)
Change 2 1 September 1978 (ECN 003580)

Total number of pages in this publication IS 116 consisting of the following:

PAGE CHANGE
NO. NO.

Cover 2
Eff. Pages 2
iii-iv 0
v - viii 2
1-1 - 1-2 2
2-1 ·2-6D 2
3-1 - 3·8 1
3-9 - 3-10 2
4-1 - 4-4 0
4-5 - 4·8B 2
4-9 - 4-lOB 1
4-11 - 4-14 0
5-1 - 5·6 1
5-7 - 5-8 0

PAGE
NO.

CHANGE
NO.

. 5-9 - 5-10 2
5-11 - 5-14B 2
5-15 - 5-16B 2
5-17· 5-18B 2
5·19 - 5-20H 2
5·21 - 5-22 0
6-1 - 6-10B 2
Alphabetical Index Div 0
Index-l - Index-6 2
User's Response 2
Business Reply 0
Cover Blank 0
Cover 0

PAGE
NO.

CHANGE
NO.

~~------------------~ 944776-9701

PREFACE

This manual is directed to the user who intends to modify the TX990 operating system. It is
assumed the user is experienced in 990 assembly language and has access to the source code for
the TX990 operating system. This manual describes the internal data structures and organization
of the operating system. The following is an abstract for each section of this manual.

I Introduction - Describes the scope of the TX990 operating system.

II TX990 Structure and Control - Describes the internal structure and control flow of
the TX990 operating system. It is necessary to understand the control flow before
modifying the system, so that the impact of any modifications on the system is
predictable.

III Privileged Supervisor Call Blocks - Describes the privileged supervisor call blocks. This
section also discusses the purpose of each supervisor call, and how it is used.

IV Modifying TX990 - Explains some of the more common reasons for modifying the
system. Describes the considerations that must be taken into account before or during
the modification of the system. Explains in detail how to modify the operator
communication package. (OCP), write device service routines (DSR), write extended
operations (XOP) and supervisor calls.

V Data Structures - Describes each data structure and the relationship between the data
structure and the operating system. This section explains how the system uses the data
structure to control system functions.

VI Module Description - Explains the purpose and function of each module so that a
user can make intelligent choices on component parts of the TX990 operating system.
Each module has a brief functional description and lists other modules that must be
included in order to utilize the module effectively.

The following documents contain information referenced in this manual:

Title

Model 990 Computer TX990 Operating System
Programmer's Guide (Release 2)

Model 990 Computer Assembly Language
Programmer's Guide

iii/iv

Part Number

946259-9701

943441-9701

Digital Systems Division

~~------------------~ 944776-9701

Paragraph

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.11.1
2.11.2
2.11.3
2.11.4
2.12
2.13

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3

Change 2

TABLE OF CONTENTS

Title Page

SECTION I. SCOPE OF THE TX990 OPERATING SYSTEM

Introduction. I-I

SECTION II. TX990 STRUCTURE

TX990 Operating System Control Flow 2-1
Task Scheduler .. 2-1
Memory Management. 2-3
Supervisor Call Interface _ 2-3
Input/Output Operations . 2-3
File Management Tasks (FMP1, FMP2, FMP3, FMP4, FUR, VOLUME) 2-3
Operator Control, Task OF 16 ••••••••••• _ ••.••••.••••.•••••••••••••••.•• 24 I
Diagnostic Task (DTASK), Task OD 16 •••••.•••.••••••••.••.•..••••••••••• 2-4A
Initial Start Task (STASK), Task 1016 ,•.•.....••.....••••.••••..••.•• 2-4A
Single Dynamic Task Loader Routine 2-4A
Multiple Dynamic Task and Procedure Loader 2-6

Install Task Call Block . 2-6
Install Procedure Call Block. 2-6A
Delete Task Call Block. 2-6A
Delete Procedure Call Block .. 2-6A

Control Program (CNTROL), Task 16 16 ••..•••••.•...••.•...••.•.•.•••..• 2-6B
Rebid Task .. 2-6C

SECTION III. PRIVILEGED SUPERVISOR CALLS

General•........................... 3-1
Get System Table .. 3-1
Direct Disc I/O .. 3-1

Introduction .. 3-1
Track-based I/O ... 3-4
Allocation Unit-based I/O ... 3-5
Floppy Disc Special Operations 3-8
Disc DSR Errors ... 3-9
Disc Read Format Data (Diskette)3-10

Initialize Date and Time Supervisor Ca1l3B16 ••••••••••••••••••••••••••••••• .3-10 I

SECTION IV. MODIFYING TX990

General . 4-1
Support of Nonstandard Devices .. 4-1

Physical Device Table .. 4-2
Interrupt Routine .. 4-2
Device Service Routine ... 4-4

Extended Operations Routines .. 4-7
User-Supplied Supervisor Call Routines 4-8
Operator Command Processing .. 4-8

Modifying an OCP Command .. .4-14
Adding an OCP Command to a Module4-14
Adding an OCP Command Module4-14

v Digital Systems Division

~-------~ 944776-9701

I

Paragraph

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.3
5.3.1
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.7
5.7.1
5.7.2
5.7.3

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12

Change 2

TABLE OF CONTENTS (Continued)

Title Page

SECTION V. DATA STRUCTURES

General ... 5-1
TXDATA , ... 5-1

Device Name Table ... 5-1
Logical Device Table .. 5-1
Buffer Pool . 5-3
FMPBUF ... 54A
Physical Device Tables . 5-4A
Multiunit Workspace .. 5-6
Keyboard Status Block ... 5-8
Interrupt Vector Table ... 5-8
Interrupt Decoder5-10
User-dermed SVC Table5-10
Intertask Message Queue <5-10

Task Definition5-10
Task Status Block .. 5-12

TXROOT5-13
System Table , 5-13
System Flags ... 5-14
Queues .. .5-15
Supervisor Call (SVC) Table .. .5-15

Physical Diskette Structure .. 5-16
Logical Diskette Structure .. .5-16

Boot Loader. .. .5-16
Disc Information Block5-17
Allocation Bit Map .. .5-17
Bad Allocation Bit Map5-17
Directory .. 5-18A

Logical File Structure .. 5-18A
Sequential File .. 5-19
Relative Record File .5-19
File Control Block (FCB):i-20G

SECTION VI. MODULE DESCRIPTIONS

General ... 6-1
TX990 Kernal Modules ... 6-1

TXROOT .. 6-1
TSKFUN .. 6-2
IOSUPR .. 6-3
CNVRSN .. 64
MEMSVC .. 64
TBUFMG .. 64
TSKLDR .. 6-4
TITTCM .. 64
CRTPRO .. 64
STA913 ... 64
STA911 ... 64
SVC913 ... 64

vi Digital Systems Division

~~-------------------~ 944776-9701

Paragraph

6.2.13
6.2.14
6.2.15
6.2.16
6.2.17
6.2.18
6.2.19
6.2.20
6.2.21
6.2.22
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6 3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11
6.3 .12
6.3.13
6.3.14
6.3.15
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11

Change 2

TABLE OF CONTENTS (Continued)

Title Page

SVC911 ... 6-4
EVENTK .. 6-4
DTASK ... 6-4
TXSTRT .. 64
TXEND ... 6-5
STASK ... 6-5
IMGLDR .. 6-5
DMEMSVC . 6-5
DYNSTK .. 6-5
DTSKLDR. 6-5

Device Service Routines .. 6-5
FPYDSR .. 6-5
DSR733 .. 6-5
KSRDSR .. 6-5
DSR913 .. 6-5
DSR911 .. 6-5
LPDSR ... 6-5
CRDSR ... 6-5
DSRTTY .. 6-5
DSRSMT .. 6-5
DIGDSR .. 6-5
FLPDSR .. 6-6
DSR979 .. 6-6
ASR9902. 6-6
KSR9902 .. 6-6
LP9902 ... 6-6

File Management. 6-6
File I/O Supervisor Call Processor Modules. 6-6
File Utility Module Descriptions 6-7
Volume (Volume Name Support) 6-9

Operator Communication Package (OCP) 6-10
OCPTSK .6-10
OCPTBL .6-10
OCPPRC .6-10
OCPLRT .. 6-10A
DOCPLRT ... 6-10A
OCPSLD . 6-10A
OCPIOU .. 6-10A
DOCPIOU ... 6-10A
OCPTAD .. 6-10A
OCPTLD . 6-10A
OCPEND. 6-10A

I

vii Digital Systems Division

J2h\ ______ _ ~ 944776-9701

I

Figure

2-1

3-1
3-2
3-3

4-1
4-2
4-3
4-4

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-S
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-1S
5-19
5-20
5-21
5-22

Table

3-1
3-2
3-3
34

4-1

6-1
6-2
6-3
64
6-5
6-6
6-7

Change 2

LIST OF ILLUSTRA nONS

Title Page

TX990 Operating System Control Flow 2-2

Direct Disc I/O SCB ... 3-1
Track-Based Read Format Data ... 3-4
Allocation Unit-Based Read Format Data 3-7

PDT Structure .. 4-3
Typical Program Structure of DSR 4-5
Workspace Contents for Supervisor Call Routine 4-9
OCP Command Processing .. .4-11

Device Name Table (DNT) Entry .. 5-1
Device LDT .. 5-1
File LDT . 5-2
Buffer Header Table Structure .. 5-3
Buffer Linkage . 5-4
Device Information Block ... 5-7
Multiunit Workspace .. 5-7
TX990 KSB .. 5-9
Interrupt Vector Table ... 5-9
Interrupt Decode Example .. 5-11
Intertask Message Format _ 5-12
Task Status Block .. 5-14
System Table ... 5-14
Supervisor Call Table List .. .5-15
Supervisor Call Table Block.5 -16
Disc Information Block .. 5-1S
Directory Entry ... 5-1SA
Program File Format .. 5-20
Program File Overhead File .. 5-20A
Program File Directory .. 5-20C
Directory Entry Format .. 5-20D
File Control Block (FCB) .. .5-21

LIST OF TABLES

Title Page

Direct Disc I/O Opcodes•.............. 3-2
Allocation Unit Record Assignments 3-6
Sampling of AUs on a Diskette .. 3-7
Floppy Disc Sector Interleaving ... 3-9

OCP Modules .. .4-10

TXROOT Routine .. 6-1
TSKFUN Routine. 6-2
IOSUPR Routines. 6-3
File I/O Routines ... 6-6A
File Utility Routines .. 6-7
Volume Modules. 6-9
OCPPRC Routines .. 6-10

viii Digital Systems Division

~~------------------~ 944776-9701

SECTION I

SCOPE OF THE TX990 OPERATING SYSTEM

1.1 INTRODUCTION
The purpose of the TX990 operating system is to provide task scheduling functions, memory
management, interactive debugging aids, interactive operator control, and a basic disc file manage­
ment package. The TX990 operating system is designed to be upwardly compatible at the task level
with the RX990 and DXlO systems. TX990 is modularly designed so that modules may be selected
according to the needs of the user to customize the TX990 operating system. TX990 is a multi­
tasking, single user operating system. Many tasks may execute simultaneously; but in the single
dynamic task environment, there is no memory resource scheduling within the operating system.
The user must be aware of which tasks require the dynamic memory area, and must execute only
one of these tasks at a time. Memory resource scheduling is provided when the multiple dynamic
tasks option is selected. Since there is no resource scheduling of certain hardware devices, such as
the line printer and card reader, conflicting requests for these devices must be resolved by the user
by either generating these devices in record mode during system generation, or by scheduling the
tasks so they do not conflict on resource requests. The user is also responsible for preventing a task
from inadvertently altering memory outside of its address space and destroying other tasks or the
operating system.

I

Change 2 1-1/1-2 Digital Systems Division

J2J7S\ ______ _ ~ 944776-9701

SECTION II

TX990 STRUCTURE

2.1 TX990 OPERATING SYSTEM CONTROL FLOW
Control flow through the operating system begins and ends with the task. When a task is bid, the I
task scheduler places the task on the active task queue according to the task's priority. When the
task is the highest priority task on the queue, the task scheduler begins the execution of the task. If
the task desires a particular service of the operating system, a supervisor call (SVC) is issued. The
supervisor call interface routine decodes the SVC code, the appropriate SVC routine is selected, and
control is transferred to it. Upon completion of the SVC or the discovery of an error, control is
transferred to a common exit routine. The common exit routine will reactivate the task im­
mediately, end the task's time slice and put the task at the end of the appropriate priority's active
task queue, or suspend the task, depending upon the particular SVC.

If an I/O operation or a device generates an interrupt for any reason, control is transferred to the I
appropriate interrupt handler, and from there to the common exit routine. The scheduler then gives
the CPU resource to the highest priority task on the active task queue.

If a fatal error occurs during the processing of an SVC or while a task is executing, control is trans­
ferred to the end action routine supplied by the task. If the task does not have an end action
routine, the diagnostic task (DTASK) will be executed. DTASK displays an error message and
performs the necessary housekeeping functions required to terminate the task. Control is then
transferred to the task scheduler where the task is terminated. See figure 2-1.

2.2 TASK SCHEDULER
The task scheduler uses a priority scheme with 131 levels and maintains a list of active tasks by
priority level. A task is added to the active task list in each of the following cases:

• When the task is placed in execution (bid).

• When the task is reactivated by another task.

• At the completion of a time slice (if time slicing was selected during SYSGEN).

• At the completion of an SVC that caused the task to be suspended.

Change 2 2-1 Digital Systems Division

9
~

~
('1)

t-J

t;.J
>
----t-J

I
0:1

o
C§:
~

~
(b

~
o
~.

Cii' o·
:3

"!1
~.

= ..
(1)

~ -
0-3

~
\0
0

0
"0

(1) ..
~ -~.
CI'l

'<:

'" -(1)

3
(")
0 ::s -.. g.
"!1
0'
~

INTERRUPT HANDLERS

I TIMER r-
I DEVICE 1

I
I

• • •
I DEVICE N ~

r I APPROPRIATE I DSR OR
FILE MGT
RUUTINE

~

I
COMMON l

EXIT I ROUTINE

1

Il

(8)136877

~
TASK

TASK SCHEDULER MODULE SUPERVISOR CALL INTERFACE

TASK SCHEDULER XOP LEvEL 15
ROUTINE DECODER

I

L
BRANCH TABLE
TO INDIVIDUAL

SCHEDULE 5VCS
HIGHEST

pRIORITY
TASK l END TASK' 5

USE OF THE CPU
AND PUT TASK TXROOT J I/D SUPERVISOR }-BACK ON THE

ACTIVE QUEUE SVC 00 -I (IOSUPR)

SUSPEND : ~ • THE
TASK

SVC N

I APPROPRIATE
DSR

i

APPROPRIATE
FILE MGT
ROUTINE

OPERATOR COMM. PKG
(OCP)

DIAGNOST Ie TASK (DTASK)

GepPRe ~
1 i DIAGNOSTIC QUEuE

TSB OF
TASK WITH

CMD PROCESSOR FATAL ERROR

~ • MESSAGE • • DISPLAY • • •
TSB OF

eM 0 PROCESSOR TASK WITH
FATAL ERROR

Figure 2-1. TX990 Operating System Control Flow

~
1.0

""'" ~ -.l
-.l
0\

I
1.0
-.l
o

~-------~ 944776-9701

The task priorities are defined as follows:

Priority

o

Real-Time
Priorities 1-127

Priorities 1, 2,
and 3

Description

Reserved for those system tasks
whose functions are necessary
to the system's operation.

Designed for real-time tasks
which perform monitoring and
control of processes.

These are the computation, I/O,
and data processing priority
levels. Most user applications
tasks and the remainder of the
system function tasks are installed
at these levels. System services
tasks should be installed at level
1 (highest), while CPU bound pro­
cessing tasks should be installed
at priority level 3 (lowest).

Priority
Ranking

Highest

Lowest

The scheduler time shares the CPU resource between tasks which are installed at the same priority,
provided time slicing was selected during system generation. A time slice is a period of execution of
a task, beginning when the scheduler passes control to the task. A time slice ends when any of the
following occurs:

• The system suspends the task upon expiration of the maximum time period allowed for a
time slice.

• The task executes a SVC to suspend the task.

• The system suspends the task to await completion of an I/O operation.

• The system suspends the task due to an event which causes a higher priority task to
become active. The higher priority task then begins execution. This action is called
preemption.

The maximum time period allowed for a time slice is a system parameter specified when the system
is generated. When the currently executing task completes a time slice, the task scheduler passes
control to the highest priority task on the active list.

If time slicing was not selected at SYSGEN time, then the task runs until it is preempted or
suspended. Without the time slicing option, tasks installed at equal priority are not preempted by
the system for the purpose of sharing the CPU.

Change 2 2-2 Digital Systems Division

~-------~ 944776-9701

To prevent a CPU bound task from completely locking out lower priority tasks (for example, an
un debugged task which gets into an infinite loop), the Task Sentry feature has been implemented in
TX990. The feature is optional at SYSGEN time. If the Task Sentry is selected, any task which uses
the CPU for more than a specified amount of time will have its priority lowered by one level. If the
task continues to run without suspending itself and the time is exceeded, the priority is again
decremented until the task's priority will go down to the lowest priority level. The amount of time
a task is allowed before the priority is lowered is also selectable at SYSGEN time.

2.3 MEMORY MANAGEMENT
User memory is maintained by the memory management routine (module MEMSVC for a single
dynamic task or DMEMSVC for multiple dynamic tasks). For the single dynamic task system,
memory is not actually allocated. A pointer to the available memory block, immediately following
the dynamic task, is returned to the task requesting memory. All tasks requesting memory will be
returned this same pointer. For multiple dynamic tasks, the user memory is actually allocated to
the requesting task. Each task requesting memory will receive a different block of memory. This
memory is returned to the available memory pool when the task terminates or issues Return
Memory SVC.

Buffer manager (module TBUFMG) is used to service the system requests for buffers contained in
TXDATA (i.e., defined during system generation. See paragraph 5.1 for a description of
TXDATA.). The buffer manager has queues of different sizes of memory blocks. These blocks of
memory are used as buffers for LUNO assignments, blocking buffers, intertask communications.
messages, communication package buffers, etc.

2.4 SUPERVISOR CALL INTERFACE
A supervisor call is the method by which the user task requests that a particular service be
performed by the operating system. TX990 implements supervisor calls by using the extended
operation (XOP) level 15. The hardware decodes the XOP level as an index into a branch table
(defined during system generation and initialized during the loading procedure) that contains the
workspace and entry address of the XOP processor. All level 15 XOPs are channeled to a
processor in module TXROOT. TXROOT decodes the XOPs operation code, which is the first
byte of the supervisor call block, and branches to the appropriate supervisor call processor.
TXROOT also has a common return routine for all the supervisor call processors which provides
three return entry points that either reactivate the task immediately, end the task's time slice
and put the task on the active queue, or suspend the task. •

2.5 INPUT/OUTPUT OPERATIONS
All XOP level 15 supervisor calls with a supervisor call code of 00 16 are handled by module
IOSUPR. The I/O supervisor call processor uses the LUNO number obtained from the supervisor
call block to determine whether the I/O is directed to a device or a disc file. When the I/O is
directed to a device, the appropriate device service routine is called. When the device service
routine completes the operation, a routine in IOSUPR, ENDREC, is called to perform system
housekeeping. Control is returned to the calling task through the common return routine in
TXROOT. When the I/O is directed to a disc file, the calling task's Task Status Block (TSB) is put
on a file management queue and the appropriate file management task is bid. The file management
task removes the TSB from the queue, performs the I/O service, and places the TSB back on the
active queue. If it has no other queued services to resolve, the file management task terminates.

2.6 FILE MANAGEMENT TASKS (FMP1, FMP2, FMP3, FMP4, FUR, VOLUME)
File management tasks are bid by module IOSUPR when an I/O operation is directed to a disc file.
A file management task removes TSBs requests from a queue and services the I/O requests. It con­
tinues to service the queued requests until the queue is empty. At that time, the file management

Change 2 2-3 Digital Systems Division

~~------------------~ 944776-9701

I
task terminates. There are four file I/O tasks: FMPI, FMP2, FMP3, and FMP4 (Task IDs F016 ,

F1 16 , F2 16 , F3 16). There must be a file I/O task for each disc drive in the hardware configuration
for which file support is desired. The fifth task is a file utility task, FUR (Task B 16). The file utility
task creates, deletes, compresses, and changes the names of files. The sixth task, VOLUME (Task
C16), locates the volume and associates with it a diskette drive and the file management task for
that drive.

2.7 OPERATOR CONTROL, TASK OF 16

TX990 has an operator communications package (OCP) that allows the user to interface with the
operating system to control, load and execute tasks, manipulate LUNOs, and debug. OCP is an
optional task (Task F 16) that must be linked to the system so it can access system data
structures. OCP is organized so that the user may easily write additional OCP commands for a
customized TX990 operating system. (Section IV describes this process.) The module OCPPRC is
the control module for OCP commands. It decodes the call and branches to a command

Change 1 2-4 Digital Systems Division

~~------------------~ 944776-9701

processor. When the command processor has completed its task, it branches to a common return
point in OCPPRC. The command processors are packaged in discrete modules so that the user may
select only those commands necessary for his dedicated application using a customized TX990
operating system.

2.8 DIAGNOSTIC TASK (DTASK), TASK OD 16
The diagnostic task is an optional, but highly recommended, linked-in TX990 system task. It has
a task I.D. of OD 16 and is activated by error detection logic in the TXROOT module.

When a task commits a fatal error and its end-action word is less than 1610 , the TXROOT error I
logic removes the task status block from its active queue and puts it on the diagnostic queue,
while changing the task's state to "On Diagnostic Queue". After this has been done, the
diagnostic task is bid.

DTASK removes a queued TSB and prints the task I.D., error code, and the workspace pointer
(WP), status register (ST), and program counter (PC) of the task when the error occurred. The
printed PC value usually points to the instruction following the one that caused the error. After
the message has been printed, the diagnostic task sets the task status block's kill task flag and
returns the task to its active queue to be killed by the scheduler. Before termination, DT ASK
checks for more entries on its queue.

In a TX990 system with DTASK, a task committing a fatal error causes a message to be printed
on LUNa o. A TX990 system without DTASK places an error task on the diagnostic queue and
takes no other action. In such a system, a task that is terminated with a fatal error remains on
the diagnostic queue, in the "On Diagnostic Queue" state. Should the diagnostic task commit a
fatal error (a system malfunction), the message "HELP" is printed on the system console.

2.9 INITIAL START TASK (STASK), TASK 1016
The TX990 startup task is a linked-in system task that runs only at initial system startup. Its
purpose is to demonstrate that the system is up and running. STASK prints the memory size of
the machine and the size of the dynamic task area on the system console. The startup task is
normally linked after the TXEND module, physically placing it in the dynamic task area. It is
overlaid by any user software that is loaded, and therefore does not add to the size of TX990.
For this reason, it is recommended that STASK be included in all TX990 systems, except
dedicated application systems.

In the normal TX990 configuratIon, STASK has a task I.D. of l016 and executes only on the
initial start of the operating system. If it is desired that STASK be executed on a manual restart
of TX990, it is necessary for it to be linked before TXEND and for a task I.D. other than 1 016
to be assigned to it during system generation.

2.1 0 SINGLE DYNAMIC TASK LOADER ROUTINE I
The loader routine loads the object code, from the file or device assigned to LUNa 2, into the
dynamic task area. The task that is loaded has the task I.D. of 10 16 . A user task that is to use
the loader routine must be linked to the operating system, since the object program is loaded
into the dynamic task area. The user task must reference three labels: LDRDAT, LDRFLG, and
LOADER. LDRFLG is a lock-out flag (see Section V). When the flag is set, only the user who
set it may use the task loader. Once the flag is set, the user task must initialize a parameter

Change 1 2-4A/2-4B Digital Systems Division

~~-------------------~ 944776-9701

block which begins at the label LDRDAT. LDRDAT is a block of memory in the task loader
itself and has the following format.

BYTE 0

BYTE 2

ADDRESS OF BUFFER

PRIORITY
LEVEL

PRIVILEGE
FLAG

LDRDAT is a two-word parameter block. Bytes 0 and 1 contain the address of an 80-character
buffer in the user's task to be used for input by the loader. Byte 2 contains the priority level at
which the task will run (See note below). Byte 3 contains the privilege flag: 0 indicates the task is to •
be loaded as nonprivileged, 8016 indicates the task is to be loaded as privileged. Once the TSKLDR
parameter block, LDRDAT, is initialized by the user task, the user task must branch to the loader
entry point, which is called "LOADER" (via a BLWP instruction). When the task loader completes
loading the file to which LUNO 2 is assigned, it returns to the user task. The task loader retur~s an
error code in the left byte of the calling task's register O.

The module IMGLDR must be included to load a task from a program image file. If the program
file being loaded has overlays, the task loader assigns LUNO > 10 to the program file. This is used
by the overlay loader routine to load overlays. See the link editor manual for details on automatic
overlay loading.

The following coding example illustrates the use of the task loader routine. LUNO 2 is already
assigned to an object file.

REF LDRDAT
REF LDRFLG
REF LOADER

WAIT DATA >200,40 TIME DELAY SVC BLOCK
*
BUF BSS 80 80-CHARACTER BUFFER
*
Ll ABS @LDRFLG SET THE SEMAPHORE

JLT L2 IF SUCCESSFUL GO SET UP LDRDAT
XOP @WAIT,lS ELSE WAIT AND TRY AGAIN
JMP Ll

L2 LI R2,LDRDAT INITIALIZE THE PARAMETER BLOCK
LI Rl,BUFF
MOV Rl,*R2+ PUT THE BUFFER ADDRESS IN BYTE 0 OF

* LDRDAT
LI Rl,>0380 SET THE PRIORITY TO LEVEL 3,
MOV Rl,*R2 AND MAKE THE TASK PRIVILEGED

*
BLWP @LOADER CALL THE LDR ROUTINE
MOVB RO,RO CHECK THE ERROR CODE
JNE ERROR IF ERROR THEN EXIT

NOTE: Priorities are represented as follows:
Priority 0: >00
Real-time Priorities 1-127: >81 to >FF
Priority 1-3: >01 to >03

•

I

I
Change 2 2-5 Digital Systems Division

Jd7S\ ______ _ ~ 944776-9701

2.11 MULTIPLE DYNAMIC TASK AND PROCEDURE LOADER
TX990 optionally supports the installation of multiple dynamic tasks and procedures at execution
time. These tasks and procedures are loaded by system routines callable by programs linked with
the operating system. Dynamic task> 1 0 can still be loaded by the same interface as described in
paragraph 2.10. System routines are provided to install task, install procedure, delete task, and
delete procedure.

The modules DYNTSK, DTSKLDR (replaces TSKLDR), and DMEMSVC (replaces MEMSVC) must
be included to support these routines. Since these routines may not be executed concurrently, the
linked-in user program must test and set the loader lock-out flag, LDRFLG, to gain exclusive access

• to the loader routines. LDRFLG is reset by the TX990 System when the load or delete operation is
complete. The following illustrates the calling sequence:

LOOP

CALL

ABS
JLT
SVC
JMP
FQU
BLWP
DATA

@LDRFLG
CALL
@DELAY
LOOP
$
@ITASK
ITBLK

TEST AND SET FLAG
IF BUSY

THEN DELAY
AND RETRY

ELSE
CALL TASK LOADER
CALL BLOCK

The calling program must pass a call block, much like a supervisor call block, to the system routine.
The format of each block is described in the following paragraphs.

2.11.1 INSTALL TASK CALL BLOCK. The install task routine requires the following data block:

BYTE

o 0 ERROR CODE

2 LUNO TASK 10

4 FLAGS PRIORITY

6 PROC1 10 0

8 EXTRA MEMORY

The install task call block data is:

Byte 0 - Not used.

Byte I - Error code returned by the system.

Byte 2 - LUNa assigned to input file.

Byte 3 - Installed task ID.

Byte 4 - Flags.

Bit 0 Privileged task.

Bit I Do not rewind LUNa.

Change 2 2-6 Digital Systems Division

~-------~ 944776-9701

Byte 5 - Task priority.

Priority 0 = >00
Real-time Priority 1-127 = >81 to >FF
Priority 1-3 = >0 1 to >03

Byte 6 - Procedure ID.

Byte 7 - Reserved (must be zero).

Bytes 8 - 9 - Allocate extra memory for task.

The LUNO must already be assigned to the file to be loaded. Errors are returned for duplicate task
ID, insufficient memory, and nonexistent procedure.

2.11.2 INSTALL PROCEDURE CALL BLOCK. The format of the install procedure block is as
follows:

BYTE

:1 ~ _____ LU_O_NO ____ ~_E_R_R_O_I: __ C_O_D_E~

The install procedure call block data 'is:

Byte 0 - Not used.

Byte 1 - Error code returned by the processor.

Byte 2 - Input LUNO.

Byte 3 - Procedure ID.

The LUNO must already be assigned to the file to be loaded. Errors are returned for duplicate
procedure ID and insufficient memory.

2.11.3 DELETE TASK CALL BLOCK. The format of the delete task data block is as follows:

BYTE

o o ERROR CODE

2 o TASK 10

The delete task call block data is:

Byte 0 - Not used.

Byte 1 - Error code returned by the SVC processor.

Byte 2 - Reserved (must be zero).

Byte 3 - ID of task to be deleted.

I

Change 2 2-6A Digital Systems Division

J2J5\ ______ _ ~ 944776-9701

An error is returned if the task is not terminated.

2.11.4 DELETE PROCEDURE CALL BLOCK. The format of the delete procedure data block is
the same as for the delete task data block, except ID refers to procedure ID. An error is returned if
the procedure is attached to a task.

2.12 CONTROL PROGRAM (CNTROL), TASK 1616

The control program is the control module for the TXDS utility programs. It decodes the user's
entries for program name, I/O specifications, and options. It then loads and branches to the
specified utility program. When the utility program terminates, the utility executes an end program
supervisor call (16 16) which activates the rebid task.

Change 2 2-6B Digital Systems Division

~~-------------------~ 944776-9701

2.13 REBID TASK
The system rebid task is the task that is activated whenever an end program supervisor call is
issued. For standard TX990/TXDS systems, the TXDS control program is defined as the rebid
task. The control program is defined to have the task I.D. of 16 16 , The user may wish to
designate another task as the rebid task. This can be accomplished in the following manner.

1. Place the following statements in the new rebid task.

REBID
DEF
EQU

REBID
ID*>lOO

Where ID = The task LD. of the new rebid task.

2. When the TXDS control program is included in the system, link the object code for
the new rebid task before the module CNTROL.

I

Change 1 2-6C/2-6D Digital Systems Division

J"2n,5\ 944776-9701

~----------
SECTION III

PRIVILEGED SUPERVISOR CALLS

3.1 GENERAL
TX990 contains a number of supervisor calls that can only be made by tasks which are
privileged. This insures that the user program cannot easily gain access to internal operating
system structures and inadvertently modify them.

3.2 GET SYSTEM TABLE
The Get System Table supervisor call (21 16) returns to the caller the address of the system table
in which pointers to data structures within TX990 are located. See Section V for a description of
the system table. This supervisor call should be used only by system tasks that require access to in­
ternal data structures. A program using this SVC will not be compatible with any other 990 opera­
ting system.

3.3 DIRECT DISC I/O

3.3.1 INTRODUCTION. To maintain disc file integrity and security, and to control disc alloca­
tion, direct disc I/O is reserved for use by TX990 system tasks. System tasks are those which are
executed in the privileged mode.

I/O to disc is controlled by an extended supervisor call block (SCB) as shown in figure 3-1. See the •
Model 990 Computer TX990 Operating System Programmer's Guide (Release 2), number
946259-9701, for a description of the standard supervisor call block. As with any other device,
access is through a LUNO assigned to the disc. TX990 has a reserved system (nonreleasable)
LUNO (starting at F0 16) for use by system tasks, such as file management and file utility, for
each disc unit configured in the system. Action taken on the I/O opcodes is described in
table 3-1. Discs are classified as record-oriented devices by TX990 and need not be opened or
closed after or before I/O operations.

o 0 ERROR CODE

2 I/O OPCODE LUNa

4 SYSTEM FLAGS USER FLAGS

6 BUFFER ADDRESS 0

8 RECORD LENGTH 0

10 CHARACTER COUNT 0

12 TRACK ADDREsS

14 sECTORS PER RECORD SECTOR ADDRESS

SYSTEM FLAGS

o - BUSY

(A)136878

Change 1

1 - ERROR

2-7 - NOT USED

USER FLAGS

o - INITIATE I/O

1-5 - NOT USED

6 - SECTOR LENGTH
SPECIFIED

7 - ALLOCATION UNIT I/O

Figure 3-1. Direct Disc I/O SeB

3-1 Digital Systems Division

~~-~---------------~ 944776-9701

I

Table 3-1. Direct Disc I/O Opcodes

Opcode Function Action

016 Open Ignored (device type returned)

116 Close Ignored

216 Close EOF Ignored

3 16 Open Rewind Ignored (device type returned)

4 16 Close Unload Ignored

516 Read Format Return disc/track format

616 Forward Space Ignored

716 Back Space Ignored

816 Write Format Formats track

916 Read ASCII Allocation-based read

A16 Read Direct Track-based read

B16 Write ASCII Allocation-based write

C16 Write Direct Track-based write

D16 Write EOF Ignored

E16 Rewind Ignored

F 16 Read Format Return disc/track format

1016 Write Deleted Sector Write deleted code on sector

Before tracks on a disc can be used for data storage using file management, they must be formatted.
This may be done by a utility program called :BACKUP/SYS.

Track numbering runs sequentially from zero to the maximum track. Physical read and write
operations must start at sector boundaries, but need not include an entire sector, and may cross
sector boundaries.

Records must be read and written from the beginning but need not be read or written to the
end. Short records written to a disc cause the remainder of the physical record to be zero filled.
Sectors are numbered from zero on each physical track.

Change 1
3-2 Digital Systems Division

~~------------------~ 944776-9701

3.3.1.1 Direct Disc Call Block. The direct disc supervisor call block (SCB) is sixteen bytes long,
as shown in figure 3-1. The SCB has the following format: I

Byte 0 - I/O SVC code.

Byte 1 - Error code returned by TX990.

Byte 2 - I/O OPCODE contains the code of the operation to be performed.

Byte 3 - LUNO. The logical unit assigned to the disc.

Byte 4 - SYSTEM FLAGS. System status in an I/O operation.

Bit 0 Busy. Set to one when operation is initiated and to zero upon completion.

Bit 1 Error. Set to one when operation terminates in error. Byte 1 contains the
error code.

Byte 5 - USER FLAGS. Set by user prior to operation.

Bit 0

Bits 1-5

Bit 6

Bit 7

Initiate I/O. User sets to one for an Initiate Call. When zero, task is sus­
pended until I/O is complete. When one, system initiates operation and
returns control to the task.

Not used.

Sector Length Specified. Set to one if user wants a different sector size.
The size, in bytes, is in byte 14 of the SCB. Also set to one to indicate
that a logical track I. D. is specified (in byte 14 of the SCB) on a write for­
mat operation.

Allocation Unit I/O. Set to one for allocation unit I/O. Set to zero for
physical track I/O.

Bytes 6-7 - BUFFER ADDRESS. Address of data buffer. Aligned on a word boundary.

Bytes 8-9 - RECORD LENGTH. Maximum number of characters to be entered.

Bytes 10-11 - CHARACTER COUNT. For input operations the number of characters actually
input. For output operations, the number of characters written.

Bytes 12-13 - TRACK ADDRESS. The physical track address on the disc for track I/O. The
allocation unit address for allocation unit I/O.

Byte 14 - SECTORS PER RECORD. This field is used in several different ways. On format
track it is the logical track 1. D., if user flag bit 6 is set, and a one (1) is returned. On
track-based read or write, it is a physical sector length in bytes.

Byte 15 - SECTOR ADDRESS. The sector within a physical track or an allocation unit.

Change 1 3-3 Digital Systems Division

I

~-------~ 944776-9701

3.3.2 TRACK-BASED I/O

3.3.2.1 General. Track-based I/O is specified when bit 7 of the SCB user flag byte (byte 5) is set to
zero. This mode of I/O is used to access the disc in its physical configuration of tracks and sectors.
The commands are treated as described below.

3.3.2.2 Read Format (5 16 and F Id. This command requires at least 5 words of buffer space.
SCB record length, character count, sectors per record, track address, and sector number are
ignored. Ten bytes of track-based disc and track-based data are returned in the user buffer as
shown in figure 3-2. The track-based read format data is:

Bytes 0-1 - WORDS/TRACK. Number of unformatted words on each track of the disc.

Byte 2 - SECTORS/TRACK. Number of sectors on each track of the disc.

Byte 3 - OVERHEAD/RECORD. Number of words required for each formatted record on
a track.

Byte 4 - # OF HEADS. Number of heads addressable on the disc unit.

Bits 0-4

Bytes 4-5 - # OF CYLINDERS. Number of cylinders addressable on the disc units.

Bits 5-15

Byte 6 - SECTORS/RECORD. Number of sectors spanned by each record on the track.

Byte 7 - RECORDS/TRACK. Number of records the track is formatted into.

Bytes 8-9 - WORDS/RECORD. Length of records on track (in words).

3.3.2.3 Write Format (816), This command requires an SCB record length and track address. It
formats the addressed track to the given record length and returns the resulting number of
sectors per record in byte 14 of the SCB. User buffer, character count, and sector number are
ignored.

o WORDS PER TRACK

2 SECTORS PER TRACK I OVERHEAD PER RECORD

4 =l/=HEADS I =1/= CYLINDERS

6 SECTORS PER RECORD I RECORDS PER TRACK

8 WORDS PER RECORD

(A)136879A

Figure 3-2. Track-Based Read Format Data

Change 1 3-4 Digital Systems Division

~~------------------~ 944776-9701

3.3.2.4 Read Direct (A I6), Write Direct (C I6). These commands transfer data to/from the user I
buffer by standard TX990 conventions. The SCB record length determines the maximum number
of characters received during a read and the SCB character count determines the number of charac-
ters transmitted during a write. No distinction is made between ASCII and direct I/O transfers, all
are binary data. Data transfers can span records and tracks.

Data is always transferred on a word basis, that is, buffer addresses and byte counts are
truncated to even numbers. Note that the complete disc address of track number, sector number,
and track format (sectors per record) is required for data transfers.

3.3.3 ALLOCATION UNIT-BASED I/O

3.3.3.1 General. Allocation unit-based I/O is specified when bit 7 of the SCB user flag byte is
set to one. This mode of operation is provided for the convenience of the TX990 file
management package. Special applications programs that do direct disc I/O usually use track­
based operations.

When operating in the allocation unit mode, the DSR restructures the physical layout of the disc
to a format more easily used by TX990 file management. This capability allows the file
management system to be implemented without any prior knowledge of the characteristics of the
device to be used for file storage, other than the fact that it is a random-access, mass storage
device.

With track-based I/O, the disc is addressed in terms of track and sector. For allocation unit
operations, the disc is addressed in terms of allocation unit and physical record.

The AU is the basic unit of file space allocation used by file management. An allocation unit is a
set of 6 physical records; i.e., sectors, located on one or two tracks of a diskette. The 6 records
composing a single AU are NOT CONTIGUOUS (table 3-2). Thirteen AUs fill 3 tracks on the
diskette. Table 3-2 lists the addresses of each of the 13 AUs on tracks 0, 1, and 2. The sequence
of sectors repeats throughout the remaining tracks on the diskette. Table 3-3 is a sampling of
initial records for other AUs on the remaining tracks.

3.3.3.2 Read Format (5 16 and F 16). The Read Format command returns sixteen bytes of
information to the calling program's buffer, as shown in figure 3-3. A disc to be used with
TX990 is always formatted to the number of sectors per record returned by this call. The
allocation unit-based read format data is:

Bytes 0-1 - BYTES PER RECORD. The number of bytes per physical record on the disc.

Bytes 2-3 - FCB SIZE. The number of bytes needed to contain the File Control Block
(FCB).

Bytes 4-5 - RECORDS PER ALLOCATION UNIT. The number of physical records in each
allocation unit.

Bytes 6-7 - MAXIMUM NUMBER OF ALLOCATION UNITS. The number of allocation
units available on the disc.

Bytes 8-11 - DIRECTORY START AND SIZE. The allocation unit where the directory
begins (2 bytes) and its length in physical records (2 bytes). The directory always starts
at physical record 0 of its allocation unit.

Change 1 3-5 Digital Systems Division

~~------------------~ 944776-9701

Bytes 12-15 - ALLOCATION TABLE START. The allocation unit (2 bytes) and physical
record (2 bytes) where the disc allocation table starts.

Bytes 16-17 - BAD ALLOCATION TABLE START. The physical record on the same alloca­
tion unit as the Allocation Table, bytes 12-13, where the disc allocation table for bad
allocation units starts.

Bytes 18-21 - DEVICE INFORMATION BLOCK START. The allocation unit (2 bytes) and
physical record (2 bytes) where the disc device information block is located.

Bytes 22-25 - HASH TABLE START. The allocation unit (2 bytes) and physical record
(2 bytes) where the directory hash table begins. This field is currently unused.

Byte 26 - DISC TYPE. A unique code for each type of disc.

Byte 27 - Unused.

Table 3-2. Allocation Unit Record Assignments

AU, Record Track, Sector AU, Record Track, Sector AU, Record Track, Sector

0,0 0,4 4, 2 1,4 8,4 2,4

0, 1 0,10 4, 3 1, 10 8,5 2,10

0, 2 0, 16 4,4 1, 16 9, ° 2, 16

0, 3 0, 22 4, 5 1,22 9, 1 2, 22

0,4 0, 2 5, ° 1,2 9, 2 2,2

0,5 0,8 5, 1 1,8 9, 3 2,8

1, ° 0, 14 5,2 1, 14 9,4 2, 14

1, 1 0, 20 5, 3 1,20 9, 5 2, 20

1, 2 0, ° 5, 4 1, ° 10, ° 2, °
1,3 0, 6 5,5 1,6 10, 1 2, 6

1,4 0, 12 6,0 1, 12 10,2 2, 12

1, 5 0, 18 6, 1 1, 18 10,3 2, 18

2, ° 0,24 6, 2 1,24 10,4 2,24

2, 1 0, 5 6, 3 1, 5 10, 5 2,5

2, 2 0, 11 6,4 1, 11 11, ° 2,11

2,3 0, 17 6, 5 1, 17 11, 1 2, 17

2,4 0,23 7,0 1,23 11,2 2,23

2,5 0, 3 7, 1 1,3 11, 3 2, 3

3,0 0, 9 7,2 1,9 11,4 2,9

3, 1 0, 15 7, 3 1, 15 11,5 2, 15

3, 2 0,21 7,4 1, 21 12, ° 2,21

3,3 0, 1 7, 5 1, 1 12, 1 2, 1

3,4 0, 7 8, ° 1, 7 12,2 2,7

3, 5 0, 13 8, 1 1, 13 12,3 2,13

4,0 0, 19 8,2 1, 19 12,4 2, 19

4, 1 0,25 8,3 1,25 12, 5 2, 25

3-6 Digital Systems Division

4P 944776-9701

AU

13
26
39
52
65
78
91

104
117
130
143
156
169

BYTES

0-1

2-3

4-5

8-9

10-11

12-13

14-15

16-17

18-19

20-21

26-27

(A)136880

Table 3-3. Sampling of AUs on a Diskette

Track, Sector AU Track, Sector

3,4 182 42,4
6,4 195 45,4
9,4 208 48,4

12,4 221 51,4
15,4 234 54,4
18,4 247 57,4
21,4 260 60,4
24,4 273 63,4
27,4 286 66,4

30,4 299 69,4

33,4 312 72,4

36,4 325 75,4

39,4 333 77,10

BYTES PER RECORD

FCB SPCE

RECORDS PER AU

MAXIMUM # AU'S

DIRECTORY START AU

DIRECTORY START REC

ALLOCATION START AU

ALLOCATION START REC

BAD ALLOC. START REC

DEV INFO BLK AU

DEV INFO BLK REC

HASH TABLE AU

HASH TABLE REC

DISC TYPE I UNUSED

Figure 3-3. Allocation Unit-Based Read Format Data

3-7 Digital Systems Division

Jdln ______ _ ~ 944776-9701

3.3.3.3 Write Format (8 16), The Write Format command is not defined for allocation unit-based
I/O.

I 3.3.3.4 Read ASCII (9 16), Write ASCII (B I6). The allocation unit-based read and write operations
are identical to the track-based operations previously described provided that all references to
"track" are changed to "allocation unit" and all references to "sector" are changed to "physical
record ".

The number of sectors per record is fixed for allocation unit I/O, therefore this field in the SCB is
ignored.

3.3.4 FLOPPY DISC SPECIAL OPERATIONS.

3.3.4.1 General. There are certain operations that can be done on the floppy disc that are not
generally supported on other discs. These operations should be avoided in any software intended
to be transferred to other disc types.

3.3.4.2 Sector Length Specified. The floppy disc controller allows the length of a sector to be
specified, the allowable range being 2 to 128 bytes. The sector length must be even, and is set to
128 bytes by the DSR unless specifically overridden. To specify the sector length for an I/O
operation, bit 6 of the SCB user flags is set to a one and the number of characters per sector is
placed in byte 14 of the SCB (sectors/record is always one for the floppy disc and the DSR
normally ignores this field). The sector length may be specified only for track-based read and
write operations.

3.3.4.3 Logical Track Specified. The floppy disc controller allows a track to be formatted with
an LD. other than the physical track the head is positioned over. This capability is necessary to
format a diskette that is to be used for data interchange with certain other vendors' equipment

The DSR always writes the track LD. to match the physical track unless specifically overridden.
To specify the track I.D. to be written, bit 6 of the SCB user flags is set to a one and the track
I.D. is placed in byte l40f the SCB. The track I.D. may be specified for write format operations
only.

3.3.4.4 Write Deleted Sector (10 16), The floppy disc controller can "delete" a sector by writing
a special data pattern on it. To delete a sector, I/O opcode 1016 is executed with the track and
sector adqress specified. Applies to track-based I/O only.

3.3.4.5 Floppy Disc Format Restrictions. The floppy disc can be formatted only in the one
sector per record configuration. For this reason, the DSR always ignores this field in the 3CB.
For software to be transportable to other disc types, it is desirable that this field be filled in
correctly for track-based I/O, even though it is not used.

3.3.4.6 Sector Interleaving. To more closely match the I/O rate of the floppy disc with the
execution rate of software on the 990, the disc sectors are. interleaved. This interleaving is in
effect only for allocation unit-based operations, and is a simple mapping of logical to physical
sectors. The mapping used is shown in table 3-4 and is illustrated in tables 3-2 and 3-3, and is such
that four or five logical sectors pass by the read/write head for every disc revolution.

Change 1 3-8 Digital Systems Division

~ 944776-9701

Table 3-4. Floppy Disc Sector Interleaving

Logical Physical Logical Physical

0 4 13 5

1 10 14 11

2 16 15 17

3 22 16 23

4 2 17 3

5 8 18 9

6 14 19 15

7 20 20 21

8 0 21 1

9 6 22 7

10 12 23 13

11 18 24 19

12 24 25 25

3.3.5 DISC DSR ERRORS. The DSR can return the following status codes:

Code Meaning

00 No error

02 Invalid I/O opcode

04 Record lost due to power failure

06 Time-out or abort

11 I. D. error

12 No address mark found

15 Data error

19 Disc not ready

3-9 Digital Systems Division

J2h\ ______ _ ~ 944776-9701

I

Code Meaning

lA Disc write-protected

IB Unit check

Ie Invalid disc address

1D Seek error

IE Deleted sector detected

3.3.6 DISC READ FORMAT DATA (DISKETTE)

3.3.6.1 Track-Based Data.

Words per track: 1664
Sectors per track: 26
Overhead per record: 0
Number of heads: 1
Number of cylinders: 77
Sectors per record: 1
Records per track: 26
Words per record: 64

3.3.6.2 Allocation Unit-Based Data.

Bytes per record: 128
FCB size (bytes): 96
Records per AU: 6
Number of AUs: 333
Directory start/size (AU/rec): 5,6
Allocation start (AU/rec): 4,1
Bad allocation start (rec): 2
Device info b1k (AU/rec): 4,0
Hash table start (AU/rec): 0,0
Disc type: 0

3.4 INITIALIZE DATE AND TIME SUPERVISOR CALL 3B16

The Initialize Date and Time SVC sets the system date and time from values supplied in the buffer
referenced by the call block. Only privileged tasks may issue this call. The SVC consists of four
bytes, aligned on a word boundary. Byte 0 contains the SVC code, 3B 16 . Byte 1 will have an error
code of FF 16 returned if the call is made by a non privileged task. Bytes 2 and 3 contain the address

Change 2 3-10 Digital Systems Division

~-------~ 944776-9701

SECTION IV

MODIFYING TX990

4.1 GENERAL
The following sections describe the modifications to the TX990 operating system most com­
monly made by users. These modifications include adding new XOP routines, adding new SVC
processors, adding device service routines (DSR) for nonstandard devices, and adding new
processors to the operator communication package (OCP). To make any of these additions, the
user must code and assemble modules to support these functions and include the object modules
in the system at system generation time. For a detailed discussion about the inclusion of user
modules during system generation, see the TX990 Operating System Programmer's Guide.

TX990 is designed as a general purpose operating system that can be tailored to fit the user's
needs. In some cases, the user may require support from the operating system that is not
provided in the standard configuration. This support can be supplied by user-generated XOP
routines or SVC processors (XOP 15). Another use for a new XOP or SVC processor is to
implement a commonly used subroutine that the user does not wish to link with each program.

TX990 is designed to be a total system, but is constructed in a way that allows the user to build
a dedicated system. In doing so, the user may use devices not directly supported by the TX990
operating system. To support these devices, the user writes a DSR that conforms to a set of
standards and modifies the standard physical device table (PDT) to support the DSR.

There are a few guidelines that should be followed when modifying the system. Enhancements to
the system should be made as discrete modules to maintain the modularity of the operating
system. When system tasks are added, they need not be linked with the system itself, but can
use the Get System Table supervisor call to obtain the pointers to the system data structures.
This allows users to link the task with the memory resident portion of the operating system or
to maintain the task on disc. All utilities should be written so that the utility may either be
linked with the memory resident portion of the 'operating system or be disc resident.

4.2 SUPPORT OF NONSTANDARD DEVICES
Before generating code to support a nonstandard device, the user must have thorough under­
standing of the following information:

I) Device interface - Most devices have a set of common characteristics, but each device
usually has its peculiarities which must be dealt with by the programmer. An in-depth
understanding of each CRU "Line" in the interface or the operation of the TILINE* is
necessary before attempting to write code to control the device. A description of a
device interface may be found in a hardware reference manual for the device.

2) Interrupt handling on 990 Family of Computers - The programmer should understand
how interrupts are handled on the 990.

3) Basic data structures, program structures, and coding techniques used in writing device
service routines.

* TILINE is a registered trademark of Texas Instruments Incorporated.

4-1 Digital Systems Division

~~------------------~ 944776-9701

In order to support a nonstandard device, the user must generate three separate sections of code:
A physical device table, an interrupt handler routine, and a device service routine (DSR). The
physical device table is created by the system generation program, but the user interactively
supplies the generation program with the nonstandard information. The user codes the DSR and
the interrupt handler, which are typically contained in the same module, but may be separate
modules.

4.2.1 PHYSICAL DEVICE TABLE. Each device in the system that can be accessed by a LUNO
has a physical device table (PDT) associated with it. The PDT contains information used by the
operating system to support the device. The PDT for a new device is created by the system
generation program (GENTX), with the user interactively specifying the new device as a special
device (SD). After the standard device requests, CRU base address, access mode, interrupt level,
and time-out count, the following inputs are requested by GENTX:

I) CRU interrupt line - The CRU bit displacement from the CRU base address for the
bit that is "set" when a device interrupt occurs.

2) Entry label of DSR - The label of the first word of the DSR. An I/O request initiated by
a supervisor call is entered two words beyond the label.

3) Entry label of interrupt routine - The label at the entry point to the interrupt routine.
The interrupt routine is entered at this point when an interrupt occurs. The interrupt
routine processes the interrupt, usually by branching to the appropriate point in the DSR.

4) Interrupt branch label - The initial address of the routine within the DSR to which
the interrupt routine branches. The address is placed in register 6 of the DSR work­
space when the operating system is initially loaded. The initial label usually points to
the routine that handles interrupts when the device is idle.

5) Extension data - Assembler source code that is placed in the extension field of the
PDT. This information is totally device dependent, and the field may be empty when
the new DSR does not require any extra data or temporary storage words.

4.2.2 INTERRUPT ROUTINE. When a device is interrupt driven, an interrupt routine must be
supplied by the user. The functions of this routine are to reset the time-out count (for keyboard
devices), reset the device interrupt, and transfer control to the appropriate point within the DSR.
The interrupt routine is entered with the DSR workspace of the PDT as the workspace (see
figure 4-1). The interrupt routine should perform the following functions:

I) Reset the device time-out count - When the DSR is waiting for an interrupt, the
operating system decrements the device time-out count each system-time interval.
When the time-out count is depleted before an interrupt occurs, the current I/O
operation is aborted. The interrupt routine for keyboard devices must reset the
time-out count to its original value. Both the original time-out count and the running
count are contained in the device information block of the PDT (figure 4-1).

2) Reset the device interrupt - This function depends on the particular device.

3) Branch to the interrupt entry point - By convention, register 6 of the workspace con­
tains a pointer to the DSR routine to be entered.

4-2 Digital Systems Division

A~ _________________ __ ~ 944776-9701

RO

Rl

R2

R3

R4

R5

R6

R7

R8

R9

RIO

R 11

R12

R13

R14

R15

o o

2 2

4 4

6 6

8 8

10 A

12 C

14 E

16 10

18 12

20 14

NOTE I

DEVICE STATUS
BIT 0 = NOT USED

I = NOT USED
2 = INITIATE I/O
3 = KILL TASK
4 = CLOSE DEVICE
5 = RE-ENTER ME
6 = NOT USED

PDT STRUCTURE

PDT LINK

sea ADDR.+2

DEVICE STATUS

DEVICE CHARACTERISTICS

DEVICE INFO. BLOCK ADDR.

SCRATCH OR WS ADDR.
(TERM.' AND MULTI-UNIT)

SCRATCH OR LABEL NAME

SCRATCH

SCRATCH

SCRATCH

SCRATCH

SCRATCH

CRU OR TILINE

WP

PC

ST

DEV ICE INFO. BLOCK

TSB ADDRESS

DSR ADDRESS

TIME OUT COUNT

TIME OUT COUNTER

INTERRUPT ROUTINE ADDRESS

PDT QUEUE POINTER - LAST

PDT QUEUE POINTER - FIRST

LDT POINTER

PDT BUSY INDICATOR

SAVED WP

SAVED ST

DSR TEMP STORAGE
VARIABLE - DEV. DEP.

NOTE 2

SYSGEN

PDT LABEL

o

NOTE

NOTE 2

$+24

o OR WS LABEL

o OR LABEL

o

o

o

o

o

CRU OR TILINE

o

o

o

o

LABEL

DEV. DEP.

o

LABEL

o

o

a

o

o

o

DEVICE
BIT 0

CHARACTERISTICS
FILE ORIENTED DEVICE
TILINE

= TIMEOUT DEVICE
= PRIVILEGED
= CONSOLE
= COMMUNICATION DEVICE
= DEVICE = 91 1

7 = ABORT PRB CALL

1
2
3
4
5
6

7-11
12-15

NOT USED
8-11 NOT USED

I 2- I 5 = INT. LEVEL -I
= DEVICE TYPE

(A)136881

Figure 4-1. PDT Structure

4-3 Digital Systems Division

~~------------------~ 944776-9701

The following is an example of an interrupt routine:

INTRPT MOV @4(R4),@6(R4) Reset device time-out count

Code to reset device interrupt

B *R6 Branch to interrupt entry point

Register 4 points to the device information block and bytes 4-5 and 6-7 in the device
information block contain the fixed time-out count and decrementing time-out count.

4.2.3 DEVICE SERVICE ROUTINE. The device service routine (DSR) consists of several parts,
including code to perform the initialization required when the power is applied, and the code to
process an abort or time-out operation. The section of the DSR entered through the entry point
processes I/O supervisor calls for the device. When the DSR is interrupt driven, there must be an
interrupt routine to process interrupts. Usually, DSRs are written reentrantly so that they may
be used by all devices of the same type in the system. In this case, the data area is the PDT and
the procedure is the DSR.

The first word of the DSR must contain the address of the entry to the routine that performs
the initialization when the power is applied. The second word must contain the address of the
entry to the routine that performs abort or time-out functions. The third word is the first word
of the portion of the DSR that processes I/O calls. The following is an example of the source
code for a DSR:

DSR DATA PWRUP
DATA ABORT

START

The DSR consists of the following routines:

1) Power-Up/Restart

2) Abort/Time-Out

3) I/O Call Handler

4) Unsolicited Interrupt Handler

5) Interrupt Handler

6) Exit Routine

Address of initialization routine
Address of abort/time-out routine
First word of I/O call processor

Figure 4-2 is an example of the typical structure of the DSR.

4-4 Digital Systems Division

~-------~ 944776-9701

IDT 'GLBDSR'

DEF GLUBER, GLBNCH, GLBINT

REF ENDRCD. SETWPS, BZYCHK

* ALSO NEED TO REF ANY OTHER SYSTEM ROUTINE LABELS *
GLUBER DATA GLBPWR

DATA GLBABT

* ENTRY HERE FOR 1/0 SVC'S

LlMIO .
BL @SETWPS

(110 CALL HANDLER)

POWER UP ENTRY

ABORT/TIME-OUT ENTRY

MASK INTERRUPTS

SYSTEM ROUTINE

B @ENDRCD RETURN TO 1;0 SUPERVISOR

* UNSOLICITED INTERRUPT HANDLER

GLBNCH EQU $.
RTWP

* COMMON INTERRUPT HANDLER

GLBINT EQU $

(RESET THE INTERRUPT)

B *6 GO TO BRANCH LABEL

* POWER UP/RESTART ENTRY

GLBPWR E~U $

RTWP

* ABORT I TIME-OUT ENTRY

GLBABT EQU $

B @ENDRCD

END

(A)136882

Figure 4-2. Typical Program Structure of DSR

4.2.3.1 Power-Up/Restart Routine. When the operating system is loaded or restarted, either
manually or through the power-up interrupt, each DSR in the system is entered at its power-up
entry point. This routine should perform the following functions:

l) Reset the interface.

2) Enable device interrupts if the device is interrupt driven.

3) Perform any initializations required by the particular device.

Change 1 4-5 Digital Systems Division

I

VI 944776-9701 ~
o

--
4) Abort in progress I/O - Check to see if I/O is in progress. This can be done with the

following instructions:

MOV
BL
JMP
LI
RTWP

NOTBSY LI
RTWP

RI,R7
@BZYCHK
NOTBSY
R6, EXIT

R6,SPRINT

Move SCB address +2 to REG 7
System routine to check if PDT busy
Not busy return
Busy, set up exit
Return
Set up vector for spurious interrupt
Return

If the device was busy, the error flag and error code (Error Code 4) in the SCB are set
by BZYCHK. The DSR should then set up a branch to the normal exit point, which
calls the end record processor. When the next interrupt occurs, the interrupt routine
branches to the exit routine of the DSR. If the PDT is not busy, the interrupt branch
vector should be set to the unsolicited interrupt routine of the DSR. The "RTWP"
returns control to the operating system.

4.2.3.2 Abort/Time-Out Routine. The operating system enters the DSR at the abort/time-out
entry point in response to an abort I/O call or when a device time-out occurs. This routine must
perform the following functions:

I I) Set error code in SCB - The routine should call the system routine BZYCHK to verify
that the PDT is busy. If the PDT is not busy, no more processing is necessary. If the PDT
is busy, the error code in the SCB should be set to 6. The error flag has already been set
by BZYCHK.

2) Reset the interface - Perform the operations needed to abort the current device I/O.

3) Other clean up - Perform any functions necessary to clean up any flags or temporary
information in the PDT.

4) Branch to exit routine.

4.2.3.3 I/O Call Handler. The I/O Call Handler is the main part of the DSR. The I/O Call
Handler performs the following functions:

1) Decode I/O Opcode - The DSR must decode the opcode in the SCB, determine the
I/O operation requested, and transfer control to the appropriate opcode processor.

2) Perform the I/O operation - The processor initiates the desired operation and loads
register 6 with the interrupt branch label. When the next interrupt occurs, the interrupt
routine branches to the address in register 6. If the processor is waiting for an interrupt
to signal the op~ration complete, the DSR is exited with a "RTWP" returning directly
to the operating system. If the operation is completed, the processor must exit the
DSR through the exit routine.

4.2.3.4 Unsolicited Interrupt Handler. The unsolicited interrupt routine handles interrupts that
occur unexpectedly. When the system is initially loaded or the device is idle, register 6, which
contains the interrupt branch address, points to this routine. The DSR should set register 6 to
point to this routine whenever an operation terminates. This routine should determine the reason
for the interrupt and act accordingly.

Change 2 4-6 Digital Systems Division

~~------------------~ 944776-9701

4.2.3.5 Exit Routine. The Exit Routine should perform the final cleanup of the PDT and/or
interface before the DSR exits to the end-record routine via a B @ENDRCD instruction. The inter­
rupt branch vector, register 6, should be set to the unsolicited interrupt routine. The end-record
routine closes the device (if record oriented) by clearing the TSB in the PDT, clears the busy flag in
SCB and PDT, and reactivates the task (if suspended on I/O).

4.2.3.6 Programming Techniques. When handling I/O calls, the DSR frequently executes a CRU
operation and then waits for notification that the operation is complete. If this notification is an
interrupt, then the DSR may use the following strategy:

LI
RTWP

R6,ADDR Set up entry address
Return

When the interrupt occurs, control will be passed to 'ADDR' in the DSR after the interrupt line
has been reset by the interrupt routine.

In some cases, it is necessary to await the occurrence of an event which generates no interrupt.
Therefore, the DSR must poll for the event. The user may set the DSR timer reentry flag (bit 5
in R2 of PDT) so that the DSR will be entered at the next system-time interval to test for the
event. The code to accomplish this is as follows:

LI
ORI
RTWP

R6,ADDR
R2,>0400

Set reentry address
Set timer reentry flag
Return

When the DSR is reentered because of the timer, the system resets the flag. If the desired event
has not occurred, the flag must be set again by the DSR. If an interrupt occurs, the interrupt
routine branches to 'ADDR'.

4.2.3.7 Bidding Tasks from DSR's. The user's application often requires tha~ certain events
(usually detected in the interrupt handler part of the DSR) be responded to ~U1ckIY. by a task.
Hence the capability to place a task into execution (or bid a task) from the DSR IS provIded by the
subro~tine "BlDO". To call BlDO, the user must have the task ID in the most significant byte of RI
and the bid parameters in R2 and R3, and then must furnish the following code:

BL@BlDO

The contents of registers R7, R8, R9, and RIO are destroyed. Upon returning from subroutine
BlDO the most significant byte of R7 is set to the previous task state if the task's TSB is found. A
task ;tate value of zero indicates that the task is active. Otherwise, the MSB of R 7 is set to >FF to
indicate that the TSB was not found.

4.3 EXTENDED OPERATION ROUTINES
When an extended operation is required, the user must write a routine to perform the required
processing. The user supplies the extended operation number (level), the entry point, and the
workspace address at system generation time. The system places the entry point and the
workspace address in the memory locations corresponding to the extended operation level. When
a user task executes an XOP command with that level number as the operand, the computer
places the effective address of the command in workspace register 11 of the XOP routine
workspace, and performs a context switch to the XOP routine. That is, the XOP routine

Change 2 4-7 Digital Systems Division

~~------------------~ 944776-9701

I

workspace becomes the active workspace, XOP (the entry point) is placed in the PC, the
previous contents of the WP register are placed in workspace register 13, the previous contents of
the PC are placed in workspace register 14, and the previous contents of the ST register are
placed in workspace register 15.

The XOP routine may retrieve parameters from the calling program by indirect addressing
through register 11 or by using indexed addressing with register 11. For example:

MOV *R11, R7

MOV @2(R11), R7

Change 2

Move parameter pointed at by register 11 to
register 7.
Move parameter which is 1 word (2 bytes) past
the word pointed at by register 11 to
register 7.

4-8 Digital Systems Division

~~-------------------~ 944776-9701

The TX990 operating system provides three entry points for returning control to the system
from an extended operation routine. When a routine returns control to XOPRTl, the calling task
continues execution immediately. When a routine returns control to XOPRT2, the calling task is
suspended. When a routine returns control to XOPRT3, the current time slice of the calling task
is terminated, and the task is placed on the active list according to its priority just as if it had com­
pleted the time slice. The extended operation routine must return control at one of these points, as
appropriate. The following examples show these returns:

B
B
B

@XOPRTl
@XOPRT2
@XOPRT3

Return and continue execution of calling task.
Return and suspend calling task.
Return, terminating current time slice of
calling task.

An extended operation routine must externally define (DEF directive) the workspace address and
the entry address. It must also externally reference XOPRT 1, XOPRT2, or XOPRT3, whichever
return point is used by the routine. More than one of these return points may be used, but each
must be referenced.

An extended operation may use the workspace without any restriction except that if the
contents of workspace registers 13, 14 and 15 are altered, they must be restored before returning
control to the system.

4.4 USER-SUPPLIED SUPERVISOR CALL ROUTINES
When a supervisor call (XOP 15) that is not provided by the system is required, the user must
write a routine to perform the required processing. The user specifies the call code for the
supervisor call and the entry point during execution of GENTX. The user-defined supervisor call
codes begin at 80 16 • Codes 0 through 7F 16 are reserved for system-defined supervisor calls. The
system places the entry point in a table from which it is accessed when the call code is
recognized in a supervisor call. The system transfers control to the user's routine with the
following instruction:

B *R6 R6 contains the entry point of the user's
routine.

A system workspace having the contents shown in figure 4-3 is the active workspace when the
supervisor call routine is entered. The user's routine may destroy the contents of any workspace
register except workspace registers 13, 14 and 15. If the use::-'s routine alters the contents of
workspace register 13, 14 or 15, the routine must store the contents of the register and restore
the contents before returning control to the system. Register 8 contains the address of the Task
Status Block (TSB) of the task issuing the supervisor call.

Return to the system utilizes the same entry points defined for extended operation routines, and
the same three options apply. The supervisor call routine must branch to XOPRTl, XOPRT2, or
XOPRT3, as previously described.

The user must externally define (DEF directive) the entry point and externally reference (REF
directive) the return point or points used in the routine.

4.5 OPERATOR COMMAND PROCESSING
Processing of operator commands is performed by five or more modules of the Operator Communi­
cation Package (OCP). The OCP consists of four required modules and from one to five optional
command processor modules. The user may modify the OCP commands, add one or more command
processors to a command processor module, or add one or more command processor modules to
OCP.

Change 2 4-8A/4-8B Digital Systems Division

•

~ ____ 9_44_7_7_6-_97_0_1 __ _

WORKSPACE
REGISTER

o

2

3

4

5

6 SUPERVISOR CALL ROUTINE ENTHY POINT

7

8 TASK STATUS BLOCK ADDRESS

9

10

1 1 EFFECTIVE ADDRESS OF SUPERVISOR CALL BLOCK

12

13 SAVED WORKSPACE POINTER

14 SAVED PROGRAM COUNTER

15 SAVED STATUS REGISTER

(A)133428

Figure 4-3. Workspace Contents for Supervisor Call Routine

Table 4-1 lists the OCP modules supplied by Texas Instruments. OCP executes as a system task,
consisting of a data division (OCPTSK) and a procedure division (OCPPRC). Module OCPTBL
contains tables of data that support the command processors that execute as subroutines of the
procedure division. Module OCPEND contains external definitions to satisfy external references
to the optional modules. It contains a dummy command word table to process optional
commands that have been omitted and external definitions to satisfy references to error messages
in optional modules. OCPEND must always be linked following the other OCP modules.

Figure 4-4 shows the flow of the processing of OCP commands. After the command line is
entered, the pre-scan logic of the OCPPRC module removes embedded blanks and inserts commas
for separators where blanks were used. When the last command in the command line has been
processed, control returns to the logic that enters a new command line. Otherwise, OCP decodes
the command, branching to print an error message when the command code is not in the
command tables. Decoding the command results in passing control to the appropriate command
processor. After performing the command processing, the command processor returns control to
the OCPPRC module; those commands that perform repetitive I/O reenter the command processor.
Others return control to test for additional commands in the command line.

4-9 Digital Systems Division

J~ _________________ __ ~ 944776-9701

I

Name

OCPTSK

OCPTBL

OCPPRC

OCPLRT

DOCPLRT

OCPSLD

OCPIOU

DOCPIOU

OCPTAD

OCPTLD

OCPEND

Table 4-1. OCP Modules

Description

OCP Data Division

OCP Tables

OCP Procedure Division

Command Processors for ALUNO, RLUNO
LPROG, and EXECUTE commands.

Command Processors for ALUNO, RLUNO,
LPROG, EXECUTE, ITASK, IPROC, DTASK,
and DPROC commands. (Replaces OCPLRT in
multiple dynamic task system.)

Command Processors for LMEM, DMEM, SBKPT,
CBKPT, ADD, SUB, and JMP commands.

Command Processors for ST ASK, SIO, REWIND
FSPACE, and BSPACE commands.

Command Processors for STASK, SIO, REWIND
FSPACE, BSPACE, and SPROC commands.
(Replaces OCPIOU in multiple dynamic task
system.)

Command Processors for TIME and IDATE

commands.

Command Processors for DWKSP, KIO, and
KT ASK commands.

Dummy external defmition module.

Linking Order

First

Second

Third

Between OCPPRC
and OCPEND

Between OCPPRC
and OCPEND

Between OCPPRC
and OCPEND

Between OCPPRC
and OCPEND

Between OCPPRC
and OCPEND.

Between OCPPRC
and OCPEND

Between OCPPRC
and OCPEND

Last

Decoding of a command involves a table in the OCPTBL module and tables in the applicable
command processor module. Each command processor module contains a Command Word Table
having a two-word entry for each command processor in the module, and a terminator. The first
word of the entry contains the two-character command code; the second word contains the
entry point of the command processor for the command. The OCPTBL module contains a
Command Word Table Address Table, consisting of the addresses of the Command Word Tables
in each of the command processor modules linked to OCP.

Upon entry to a command processor, workspace registers I, 6, 10, and 15 contain the following
information:

• Register 1 contains the two-character command code.

• Register 6 contains the address of module OCPTSK.

Change 1 4-10 Digital Systems Division

~-------~ 944776-9701

•

•

Change 1

Register 10 contains the address of the separator (either a comma or a period) at the
end of the command word. If the command has one or more operands, the first
operand begins at the next address.

Register 15 contains the address of subroutine GETHEX. (Described in a subsequent
paragraph.)

4-10A/4-10B Digital Systems Division

~~-------------------~ 944776-9701

YES

(A)133426

PRESCAN
COMMAND
LINE

COMMAND
PROCESSOR

OCPPRC
RETURN FROM
COMMAND
PROCESSOR

YES

Figure 4-4. OCP Command Processing

4-11 Digital Systems Division

~ ____ 9_44_7_7_6-_9_70_1 __ ___

If a command processor alters the contents of register 6, it must restore the contents before
exiting. The command processor may use register 10 to obtain the operand of the command (or
for any other purpose), but must place the address of any character within the command in
register 10 before exiting. That is, register 10 may contain the address of the first character of
the command. word or the period that terminates the command, or any character between these
characters. The command processor may use the other registers with no restrictions.

OCPPRC contains two subroutines that a command processor may call to obtain an operand.
Subroutine GET ARG is useful for obtaining decimal operands or those that contain characters,
and subroutine GETHEX may be used to obtain hexadecimal operands.

Subroutine GETARG obtains the operand that starts in the byte following the byte addressed by
register 10 and ends at a separator. GETARG places the operand right-justified in a six-byte
string at location ARGBF2. The string is blank filled to the left. The word preceding the six-byte
string may be used to build a supervisor call block for converting a decimal operand to binary.
The location of the word preceding the string is ARGBUF. The calling sequence for subroutine
GET ARG is as follows:

BL
JMP
JMP

@GETARG
PERIOD
ERROR

Branch to subroutine GETARG. Control
returns to the word following the BL instruction
when the operand contains only a period. When
the operand contains more than six characters,
control returns to the second word following
the BL instruction. When the GETARG opera­
tion is successful, control returns to the third
word following the BL instruction.

Upon return from subroutine GETARG, register 10 contains the address of the separator that
follows the operand in the six-byte string at location ARGBF2.

Subroutine GETHEX obtains the hexadecimal operand that starts in the byte following the byte
addressed by register 10 and ends at a separator. GETHEX converts the characters to a binary
number and places the result in workspace register RO. The calling sequence for subroutine
GETHEX is as follows:

BL
JMP
JMP

@GETHEX
PERIOD
ERROR

Branch to subroutine GETHEX. Control
returns to the word following the BL instruction
when the operand contains only a period. When
the operand contains an invalid hexadecimal
digit, control returns to the second word fol­
lowing the BL instruction. Otherwise, control
returns to the third word following the BL
instruction.

If the OCP command processor has not altered register 15, a BL * 15 instruction may be used to call
GETHEX.

Upon return from subroutine GETHEX, register 10 contains the address of the separator that
follows the operand returned in register O.

Return from a command processor is to a return point in OCPPRC. One return point terminates
the command with no output, three return points terminate the command with printed messages
and another return point provides a specified I/O operation to a specified LUNO.

4-12 Digital Systems Division

)2r75\ ______ _ ~ 944776-9701

A return to location SCANPD passes control to OCPPRC for processing the next command with
no output. This return is appropriate for commands that require no messages or results to be
printed.

A return to location OCPRTN causes OCPPRC to print a message from buffer OUTBUF on
LUNO 0 or LUNO 1 with optional additional processing. The option is specified by the termi­
nating character placed in the buffer following the last character to be printed. The characters
and the LUNOs and options are as follows:

• FC 16 - print on LUNO 0, omit processing of any additional command on current
command line.

• FD 16 - print on LUNO 0, process next command.

• FE16 - print on LUNO 1, reenter command processor.

• FF 16 - print on LUNO 1, process next command.

The first option, using terminator FC16 , is appropriate for an error condition because the
remaining commands of the command line, if any, are skipped. The third option, using
terminator FE16 , is appropriate for a repetitive command, such as a dump command. The other
options return control to the next command.

When the FE16 terminator is used and the command processor is reentered following the
printing of the message, the user must place an address in workspace register 3 before returning
to location OCPRTN. Workspace register 3 must contain the address in the command processor
at which it is reentered. OCPPRC alters the contents of registers 0, 1, and 2. The restrictions on
the use of registers 6 and 10, described previously, apply. Otherwise the command processor may
use the workspace registers as required.

A return to location ERRMSG causes OCPPRC to print an error message on LUNO O. The error
message is specified by an error code in workspace register O. Control passes to the first
command on the next command line, omitting any additional commands on the, current line.
The text of the error message may be in the command processor or in module OCPTBL. Table
ERRTBL in module OCPTBL lists the error codes and the addresses of the associated error
message texts.

A return to location ARGERR causes OCPPRC to print an error message on LUNO O. The error
message is as follows:

)

OPERAND ERROR(S)

Control passes to the first command on the next command line, omitting any additional
commands on the current line.

A return to location IOURTN causes OCP to perform an I/O operation on a specified device and
to process the next command. Workspace registers 8 and 13 define the operation and specify the
device. The I/O operation code is placed in the most significant byte of register 8, and the
LUNO is placed in the least significant byte. For forward or backward space operations, the
number of records is placed in register 13. For other operations, the contents of register 13 are
not significant. Since the interface with subroutine IOURTN has no provision for specifying a
buffer, I/O operations that require a buffer (read or write, for example) are not valid. IOURTN
performs an Open operation, the specified operation, and a Close operation, then processes the
next command.

4-13 Digital Systems Division

~~------------------~ 944776-9701

4.5.1 MODIFYING AN OCP COMMAND. To modify an OCP command, the user should obtain
the source listing of the OCP modules from Texas Instruments, and modify the command
processor to perform the operation in the desired manner. The subroutines and return locations
in OCPPRC described in the preceding paragraph may be used as required.

4.5.2 ADDING AN OCP COMMAND TO A MODULE. The command processor for an OCP
command must be a serially reentrant routine. As described previously, fourteen workspace
registers of the workspace are available for temporary storage of data. When more space is
needed, it must be provided in module OCPTSK by adding directives to provide the space at the
end of the module. When the command processor detects an error for which one of the existing
error messages is appropriate, the user may call subroutine ERRMSG with the error code for that
message in RO. When the error requires a message unique to the command, the user should
include the text of the message in the command processor, and list the error code and the
address of the text in table ERRTBL in module OCPTBL. When an error requires an additional
message common to several command processors, the text of the message should be placed in
OCPTBL, and the error code and text address placed in table ERRTBL. Any exit from the
command processor must be to one of the return points in OCPPRe.

A two-word entry for the new command must be added to the Command Word Table of the
command processor module. The zero that terminates the Command Word Table must be placed
following the additional entry.

4.5.3 ADDING AN OCP COMMAND MODULE. An OCP command module may contain one or
more additional command processors, each of which must meet the requirements outlined in the
preceding paragraph. The module must contain a Command Word Table consisting of a two-word
entry for each command processor, terminated with a word that contains zero. The address of
the Command Word Table in the added module must be placed in the Command Word Address
Table in OCPTBL. The symbolic address of the Command Word Table in the added module must
be added to the dummy word structure in OCPEND.

4-14 Digital Systems Division

Jd7s\ ______ _ ~ 944776-9701

SECTION V

DATA STRUCTURES

5.1 GENERAL
This section describes the internal data structures of the TX990 operating system, including
internal tables and file structures.

5.2 TXDATA
TXDATA contains most of the system data structures that change according to the specific
system configuration (T ASKDF contains the other data structures that vary.) TXDAT A is generated
in source statement form by the system generation program. The module must be assembled before
being linked with the system. The first two words of TXDATA contain a branch instruction to
the restart routine of the operating system. TXDATA should be the first module in the link to
provide for ease in restarting the system.

5.2.1 DEVICE NAME TABLE. The device name table (DNT), generated at system generation
time, is used by the system to map device names to devices. Each device included in the system
has an entry in the DNT. Each entry, as shown in figure 5-1, consists of a pointer to the device
PDT and a four character device name. The name is left justified in the field with trailing spaces.
The dummy device has a zero value for the PDT address. The position of the entry in the table
determines the internal unit number of the device.

5.2.2 LOGICAL DEVICE TABLE. Each LUNO assigned has a logical device table (LDT)
associated with it. The LDT provides the link between the LUNO and the physical device or
disc file. The LDT is built either by the system generation program when a LUNO is
specified or by the file utility routine (FUR) when an assign LUNO supervisor call is made.
When a LUNO is assigned, a buffer is allocated from the buffer pool for this LDT. There are two
kinds of LDTs: device and file. A device LDT, shown in figure 5-2, maps a LUNO to a device;
and a file LDT, shown in figure 5-3, maps a LUNO to a particular file on a disc.

o

2

4

(A) 136883

o

2

4

6

(A)136898

PDT ADDRESS

4-CHARACTER DEVICE NAME

Figure 5-1. Device Name Table (DNT) Entry

PDT ADDRESS

LUNO DEVICE#

NOT USED FLAGS*

LDT LINK

Figure 5-2. Device LDT

5-1

DEVICE

*FLAGS

Digital Systems Division

J2~ ______ _ ~ 944776-9701

0 0

2 2 LUNO

4 4 DISC LUNO

6 6

8 8

10 A

12 C

14 E

16 10

18 12

20 14

22 16

24 18

26 20

28 22

(A) 1 36884A

FCB

DEVICE #
FLAGS*

LOT LINK

FILE TYPE

PRB

TSB

LOGICAL RECORD LENGTH

DISC OR VOLUME NAME

7 - CHARACTER
FILE NAME

3 - CHARACTER EXTENSION

Figure 5-3. File LDT

FILE

*FLAGS:

BIT 0 - SYS. LOT
1 - FILE LOT
2 - WRITE

PROTECT
3 - SHARED
4 - BID FLAG
5 - AUTO

CREATE
6 - NOT USED
7 - NOT USED

5.2.2.1 Device LDT. Bytes 0-1 contain the address of the PDT for the device to which the
LUNO is assigned.

Byte 2 contains the actual LUNO.

Byte 3 contains the device number (positional entry in the DNT).

Byte 5 contains flags. Bit 0, when set, indicates that the LUNO is a system LUNO and may
not be released or reassigned. Bit 1 will be a zero to indicate a device LDT. All other bits are
ignored.

Bytes 6-7 contain a link to the next LDT in the chain.

5.2.2.2 File LDT. When the file is opened, bytes 0-1 contain the FCB address of the file in
memory. When the file is not open, this field is zero. When the file is in the process of being
opened, this field is a negative one.

Byte 2 contains the actual logical unit number (LUNO).

Byte 3 contains the disc device number (positional entry in the DNT).

Byte 4 contains the LUNO assigned to the disc drive on which the file is resident.

Change 1 5-2 Digital Systems Division

~ ____ 94_4_7_76_-_97_0_1 __ ___

Byte 5 contains flags. Bit 0, when set, indicates that the LUNO is a system LUNO and
cannot be released or reassigned. Bit 1 will be set to one to indicate that this is a file LDT.
Bit 2 is set to one by file management in the open processor when the file is write
protected. Bit 3 is set to one by file management in the open processor when the file may
be shared with other tasks. Bit 4 is the rebid flag and, when set, indicates that the task
should be rebid when file management finishes processing the current I/O call. Bit 5 is set
by FUR in the assign LUNO operation to indicate that the file should be created at open
time if it does not exist. Bit 6 indicates that volume names are being used. I
Byte 6-7 contain the link to the next LDT in the chain.

Bytes 8-9 contain the file type. A zero indicates a sequential file and a two indicates a
relative record file.

Bytes 10-11 contain the SCT address +2 of the current I/O call. This field is zero when no
calls are pending or being processed for this LUNO.

Bytes 12-13 contain the TSB address of the task issuing the I/O call.

Bytes 14-15 contain the logical record length of the relative record file. This field is used
only when a relative record file is auto-created at open time. This field is zero for a
sequential file.

Bytes 16-19 contain the diskette or volume name.

Bytes 20-26 contain the seven character file name. The name is left justified in the field and
blank filled.

Bytes 27-29 contain the three character extension name. The name is left justified in the
field and blank filled.

5.2.3 BUFFER POOL. TX990 maintains a pool of internal buffers which are dynamically
allocated and deallocated by buffer management for use as logical device tables, file blocking
buffers, intertask communications messages, etc. The size and number of these buffers are specified
at system generation time. A separate list is maintained for buffers of each size. A header table
contains an entry for each buffer size that points to the beginning of the respective list. Figure 5-4
shows the structure of the header table and figure 5-5 shows the linkage between buffers.

BUFH BUF1 SIZE 1

BUF2 SIZE 2

BUF3 SIZE 3

II 11

BUFF BUFK SIZE K

BUFE BUFN SIZE N

(A) 136897

Figure 5-4. Buffer Header Table Structure

. Change 1 5-3 Digital Systems Division

~~------------------~ 944776-9701

BUF2

51Z2 J/ 51Z2

/
51Z2

0

BUF2

51Z2
+
2

51Z 2

(A) 136885

Figure 5-5. Buffer Linkage

5.2.3.1 Header Table. For each size of buffer, there is a two word entry in the header table.
Word I points to the buffer at the top of the list and the second word is the buffer size. BUFH
is the label of the first entry and BUFE is the label on the last entry in the table. BUFF is the
label of the entry associated with the buffer created during SYSGEN as a "default buffer". A
call to buffer management for a fixed length buffer allocates a buffer from this list. The
communication package uses this buffer size.

5.2.3.2 Buffer Linkage. Preceding each buffer is a data word containing the size of the buffer.
This word is used to determine which list the buffer belongs on when the buffer is deallocated.
The first word of the buffer is the link to the next buffer and points to the word preceding that
buffer. The last buffer in the chain has a zero link.

5.2.4 FMPBUF. When a disc is included in the system at system generation time, the system
generation program generates a buffer called FMPBUF. This buffer is used by file management
and the file utility routine as a temporary blocking buffer for use with create, compress, delete,
etc. The use of FMPBUF is restricted by the flag FMPFLG. FMPBUF is 224 bytes in length for
the diskette system.

5.2.5 PHYSICAL DEVICE TABLES. Each device in the system that can be accessed by a
LUNO has a physical device table (PDT) associated with it. The PDT contains information used
by the operating system to support the device. All PDTs are chained together with the address of
the first PDT in the chain contained in the word PDTSTR. The system table contains this pointer.
No words initialized by the system generation program can be modified by the DSR unless other­
wise stated. The size and contents of the PDT vary according to the particular device.

The PDT consists of three parts: device service routine (DSR) workspace, device information
block, and DSR temporary storage. The DSR workspace and device information block are of
fixed size; the DSR temporary storage area is variable and dependent on the device.

Change 1 5-4 Digital Systems Division

J11s\ ______ _ ~ 944776-9701

5.2.5.1 DSR Workspace. The first 16 words of the PDT (see figure 4-1) are used as the workspace
for the DSR when an I/O call is used. Some of the registers are used as scratch registers by the DSR
and some contain device-related information used by both the DSR and the operating system. The
registers are as follows:

• Register 0 - Used by the system to link PDTs. Register 0 may not be modified by the
DSR.

• Register I - Contains the address of the second word of the supervisor call block (SCB).
The operating system places this value in register I prior to entering the DSR.

• Register 2 - Device status word. Contains information about the current status of the
device. Bit 2, the initiate I/O flag, is set by the operating system in response to an
initiate I/O call and cleared when the operation is completed. Bit 4 is the close device
flag. If set by the operating system, it causes the device to be de assigned when the
operation terminates. This bit is always set for a record-oriented device. For file­
oriented devices, this bit is set for close and abort operations only. Bit 5, the reentry
flag, is set by the DSR to cause the DSR to be reentered at its interrupt entry point
when the current system time interval expires. Bit 7 is used by communication devices
to differentiate between abort LUNO and abort SCB supervisor calls. Bits 12-15
contain the interrupt level, minus one, of the device.

• Register 3 - The device characteristics word. Contains static information about the
device. This word is generated at system generation time and should not be altered
during execution. Bit 0, when set, specifies that the device is file oriented. Bit 1, when
set, designates the device as a TILINE device rather than CRU device. When bit 2 is
set, the system will time-out I/O operations to a device. Bit 3, when set, specifies that
a task must be privileged to access the device. Bit 4 designates this device as the system
console. Bit 5 specifies that this device is a communication device and that special
handling is required. Bit 6, when set, indicates that the device is a 911 VDT rather
than a 913 VDT. Bits 12-15 contain the device type code.

• Register 4 - contains the address ·of the device information block. This address is
generated by the system generation program and should not be modified.

• Register 5 - Contains the keyboard status block (KSB) address when the device is a
VDT or contains the address of the multiunit workspace for a device with multiple
units per controller. When neither of these conditions apply, this is a scratch register
for DSR usage only. The KSB or multiunit workspace address is supplied by the
system generation program.

• Register 6 - Normally contains the internal DSR reentry branch address used by the
interrupt routine to branch within the DSR. It may also be used as a scratch register.

• Registers 7-11 - DSR scratch registers.

• Register 12 - Contains the CRU base address or TILINE address of the device
supplied by the system generation program.

• Registers 13-15 - Contain the return vectors.

5-5 Digital Systems Division

~~------------------~ 944776-9701

I

5.2.5.2 Device Information Block. The device information block (figure 5-6) contains information
supplied and used by the operating system and DSR to control the device I/O. The block is a fixed
length for all PDTs, with the following entries:

Bytes 0-1 - Contain the TSB address of the task to which the device has been allocated.
The device is not allocated when this field is zero.

Bytes 2-3 - Contain the address, supplied by the system generation program, of the DSR.

Bytes 4-5 - Contain the timeout count specified at system generation time.

Bytes 6-7 - Contain the number of system-time intervals remaining before the device will
timeout. This field is initialized to the timeout count in bytes 4-5 before the DSR is called
by the operating system.

Bytes 8-9 - Contain the interrupt entry point into the DSR. This field is supplied by the
system generation program.

Bytes 10-13 - Contain the first and last entry pointers of the PDT queue. The entries in
the PDT queue are the TSBs of the tasks requesting the services of the DSR. This queue is
used by the operating system to control access to the DSR.

Bytes 14-15 - Contain the address of the LDT currently being processed by the DSR. This
field is zero when the DSR has finished processing all I/O calls.

Bytes 16-17 - The busy flag. Set to FFFF when the DSR is processing an I/O call.

Bytes 18-21 - Contain the workspace and status of the operating system prior to the
"BLWP" to the DSR. These values are saved to ensure no loss of content if an interrupt
occurs while the DSR has interrupts enabled.

5.2.5.3 DSR Temporary Storage. This block contains information that is used by the DSR only.
The size of the block varies according to the device. The system generation program has an
internal table used to generate the block along with the initial values. The user must supply this
block for nonstandard devices. Some devices (i.e., line printer and card reader) do not require
any temporary storage.

5.2.6 MULTIUNIT WORKSPACE. Some DSRs support more than one device (i.e., disc per con­
troller). These DSRs require, in addition to one PDT per device, a single workspace to identify
the device causing the interrupt (see figure 5-7). The multiunit workspace is created by the
system generation program for any standard devices requiring this workspace. When an interrupt
occurs, the DSR interrupt decoder is entered and this workspace is used.

Registers 0- (N-l), where N is the number of devices per controller, are the PDT addresses of each
device supported by the controller. (For a diskette controller, there are a maximum of four PDT
addresses.)

Register 12 is the CRU or TILINE address of the device. This address is supplied by the system
generation program.

Registers 13-15 contain the workspace, PC, and status of the program interrupted.

All other registers are scratch registers for decoder usage.

Change 1 5-6 Digital Systems Division

~~-------------------~ 944776-9701

BYTES

PDT OR
SCRATCH

(A)136886

o

2

4

6

8

10

12

14

16

18
20

RO

Rl

R2

R3

R4

R5

R6

R7

R8

R9

Rl0

R 1 1

R12

R13

R14

R15

TSB ADDRESS OF TASK

DSR ADDRESS

TIMEOUT COUNT

SYSTEM-TIME INTERVALS REMAINING
UNTIL DEVICE TIMEOUT

INTERRUPT ENTRY POINT INTO DSR

POINTER TO FIRST PDT ENTRY

POINTER TO LAST PDT ENTRY

ADDRESS OF LOT BEl NG PROCESSED

BUSY FLAG

WORKSPACE AND STATUS OF OP. SYS.
PRIOR TO "BLWP" TO THE DSR

Figure 5-6. Device Information Block

SYSGEN

UNIT 0 PDT ADDR. PDT ADDR.

• PDT ADDR. OR 0

• •
UNIT N PDT ADDR. PDT ADDR. OR 0

SCRATCH

SCRATCH

SCRATCH

SCRATCH

SCRATCH

SCRATCH

SCRATCH

CRU OR TILINE CRU OR TILINE

WP 0

PC 0

ST 0

Figure 5-7. Multiunit Workspace

5-7 Digital Systems Division

~~------------------~ 944776-9701

5.2.7 KEYBOARD STATUS BLOCK. Each VDT in the system requires a keyboard status block
(KSB) for the workspace of the keyboard interrupt as shown in figure 5-8. The KSB, in addition
to being a workspace for the interrupt handler, contains a queue of the characters input from
the keyboard. If the mode flag, register 0, contains a nonzero value, the VDT is not allocated to
a task. The mode flag is the TSB address of the task if the VDT is allocated.

• Register 1 points to the beginning of the character queue.

• Register 2, the input pointer, points to the location within the character queue at
which to store the next character entered.

• Register 3, the output pointer, points to the next character to be retrieved by either
the DSR, Get Character Supervisor call, or VDT utility.

• Registers 4-6 are the character queue.

• Register 7, byte 0, is used by the 911 VDT as a constant, CO I6 , and marks the end of
the character queue. For the 913 VDT, this byte is the last character in the queue.

Register 7, byte 1, contains flags used by the interrupt handler and DSR. Bit 0 must
be a 1 to indicate the end of the character queue, although it is not needed for the
911 VDT. Bit 1, when set, indicates that the device may be halted (by entering the
space key) or aborted (by entering the escape or reset key). This bit is set by the DSR
when displaying data. Bit 2, when set, directs the DSR to halt the display of any new
characters. Bit 3, when set, directs the DSR to abort the current display operation. Bits
4,5, and 6 are not used, and are set to zeros. Bit 7 is set by the system generation pro­
gram to indicate a 911 VDT.

• Registers 8-11 are scratch registers for station handler usage only.

• Register 12 contains the VDT CRU address + 1016 , This field is generated during system
generation.

• Registers 13-15 contain the content of the interrupted task (i.e., WP, PC, and ST).

A list of the KSBs in the system in maintained in the KSB table. The table consists of the KSB
addresses listed sequentially according to station number. The table is terminated with a zero
entry.

5.2.8 INTERRUPT VECTOR TABLE. For each interrupt defined at system generation time, an
interrupt vector is created. Each entry in the interrupt vector table, shown in figure 5-9, contains
the hardware trap vector address and the PC and WP to be placed at that address. The hardware
trap vector address is the actual memory address from which the hardware interrupt logic
retrieves the interrupt branch vectors. The PC points to the entry point in the interrupt decoder
for this interrupt (described below). These vectors are placed in the hardware interrupt trap
locations when the system is initially loaded. The interrupt vector table does not contain the
interrupt vectors of the system interrupts, 1 (powerup), 2 (CPU), 5 (clock). These vectors are
contained in TXEND. The interrupt table is terminated by a negative one in the trap address
field.

5-8 Digital Systems Division

~ 944776-9701

BYTE NUMBER
DEC. HEX

0 0

2 2

4 4

6 6

8 8

10 A

12 C

14 E

16 10

18 12

20 14

22 16

24 18

26 1A

28 lC

30 1E

(A)136887

o

2

4

)1"

1
(A)136888

USE SYSGEN INITIALIZATION

MODE FLAG 0

QUEUE ADDRESS DATA $+6

INPUT POINTER DATA $+4

OUTPUT POINTER DATA $+2

CHARACTER QUEUE 0

CHARACTER QUEUE 0

CHARACTER QUEUE 0

CHAR QUEUE I FLAGS ::>80 t913~
>C081 911

SCrtATCH REGISTER - R8 0

SCRATCH REGISTER - R9 0

SCRATCH REGISTER - R10 0

SCRATCH REGISTER - R11 0

KEYBOARD CRU BASE CRU BASE

SAVED WP 0

SAVED PC 0

SAVED ST 0

FLAGS 8 - MUST BE A tFOR VDT 913
9 - HALT IABORT ACTIVATED

10 - HALT DISPLAY
1 t - ABORT DISPLAY
15 - VDT 911 KSB

Figure 5-8. TX990 KSB

TRAP ADDRESS

WP

PC

-1

Figure 5-9. Interrupt Vector Table

5-9

l-'

J
Digital Systems Division

~~-------------------~ 944776-9701

I
I

I

I

5.2.9 INTERRUPT DECODER. For each interrupt defined at system generation time, an
interrupt decoder is created. The interrupt decoder determines which device caused the interrupt
when multiple devices exist on the same interrupt level. The decoder contains the workspace
address and entry point for each of the individual device interrupt routines. After the DSR
returns to the interrupt decoder, it branches to a common return in the task scheduler
(TXROOT). Figure 5-10 is an example of an interrupt decoder with interrupts 3 and 6 defined.
Interrupt 6 has two devices on the interrupt level.

5.2.10 USER-DEFINED SVC TABLE. When a user-defined supervisor call is defined at system
generation time, an entry is created for it in the user SVC table. The user SVC table consists of
a two-byte entry for each supervisor call. Each two-byte entry is the entry address into the
processor for that supervisor call. The supervisor call code of an entry is relative to the beginning
of the table. The first entry corresponds to SVC 80 16 . The second corresponds to SVC code
81 16 . Space in the table is allocated starting with SVC code 80 16 to be the largest SVC code'de­
fined. The entry for any SVC code within the table that has not been defined will be initialized
to the address of the illegal SVC processor, ILLSVC.

5.2.11 INTERTASK MESSAGE QUEUE. The Put Data supervisor call is used to send messages
and/or data to other tasks. The message is placed in the Intertask Message Queue and may be
retrieved by the Get Data supervisor call. (The buffer for the message is obtained from the buffer
pool. Figure 5-11 shows the format of the message on the queue.

Bytes 0-1
Bytes 2-3
Byte 4
Byte 5
Bytes 6-7
Bytes 8-n

contain the queueing link.
contain the size of the buffer allocated for the message.
is not used.
contains the message ID.
contain the number of characters in the message.
contain the message.

5.3 TASK DEFINITION
The system generation program creates a task definition module, T ASKDF. T ASKDF consists of
task status blocks linked together. TASKDF is a source module and must be assembled before
being linked with the system. The TSBs for all tasks linked with the system, and the TSB for the
first dynamic task are contained in this module. In a multiple dynamic task system, TSBs for
subsequent tasks are allocated from a buffer pool defined in the TXDATA module at system
generation. Refer to paragraph 5.2.3 for a description of buffer pool allocation.

Change 2 5-10 Digital Systems Division

~~-------------------~ 944776-9701

PAGE
* INT DECODER

WSP4

WSP6

LEV6

GET6

NXT6

XIT6

TAB6

WSP7

XWPO

LEVO

BAD
RET
TRABAD

*
TRPINT

REF
EQU
REF
DATA
EQU
DATA
LI -
CLR
r~ov
JEQ
TB
JNE
BLWP
INC
AI
Jt~P
MOV
JEQ
JMP
EQU
REF
DATA
REF
DATA
DATA
EQU
REF
DATA
DATA
DATA
DATA
DATA
BSS
DATA
BSS
BLWP
JMP
BLWP
B
DATA
PAGE
INT
DEF
EQU
DATA
DATA
DATA
DATA

TRAPPRT XWS, BADINT
$-18
CRINT
PDT6, CRINT, 0, 0, 0, 0, °
$-18
0, 0, 0, 0, 0, 0, °
11, TAB6
10
*11 +, 12
XIT6

° NXT6
*11
10
11, 4
GET6
10, 10
BAD
RET
$
GO
>1E, PDT2, GO
LPINT
>7E, PDT5, LPINT

° $-18
FPYDCD
XWPO, FPYDCD, 0, 0, 0, 0, °
PDTO
PDT1

° ° 16
>AO
6
9
RET
@TRABAD
@TRAPRT
XWS, BADINT

VECTORS
TRPINT
$
>10, WSP4, LEVO
>18, WSP6, LEV6
>lC, WSP7, LEVO
-1

Figure 5-10. Interrupt Decoder Example

5-11 Digital Systems Division

,~ ____ 9_44_7_7_6-_9_70_1 __ ___

o QUEU ING LINK

2 BUFFER SIZE

4 UNUSED I 10

6 NO. OF CHARACTERS

8- n MESSAGE

I Figure 5-11. Intertask Message Format

5.3.1 TASK STATUS BLOCK. Each task linked with the system requires a task status block (TSB)
• as shown in figure 5-12. The TSB is used to control the execution of the task.

Bytes 0-1 - Contain the queuing link, which is used when the TSB is queued. A TSB may
be queued on the active queue, file management queue, diagnostic queue, device queue, etc.

Bytes 2-7 - Contain the current WP, PC, and ST of the task. These bytes are updated when-
I ever a task is preempted or suspended. The initial values of WP and PC are retrieved from

the first two words of the task.

Byte 8 - Contains the priority level, 0-3, of the task. Priority is represented as follows:

o
>81 to >FF
1-3

- Priority 0
- Real-time Priorities 1 to 127
- Priority 1-3

Byte 9 Contains the current state of the task. Possible task states are listed on
figure 5-13.

Byte 10 - Contains task status flags. Bit 0, when set, indicates that the task is privileged.
All tasks linked with the system are privileged. Bit 3 indicates that the task contains an end
action vector in the third word of the task. When a task error occurs, the system branches
to the user's end action routine. If this bit is not set, a fatal task error causes the diagnostic
task to be called. Bit 6, when set, indicates that the task is being aborted, either from an
end program or end task supervisor call or from a kill task OCP command. Bit 7, when set,
indicates that an Unsuspend supervisor call was issued to a task that was not suspended.
The next Unconditional Suspend supervisor call is overridden by this set bit and the bit
cleared. Bits 2, 4, and 5 are not used and are set to zeros.

Byte 11 - Contains the task LD.

Change 2 5-12 Digital Systems Division

Jd7~ _____ ,-----_ ~ 944776-9701

Bytes 12-13 - Contain the beginning address of the task.

Bytes 14-15 - Used for temporary storage. When a task is active, the Task Sentry timer value I
is maintained here. When the task is in a time delay, this word contains the number of system­
time intervals remaining in the delay. When a fatal task error occurs, the task error code is
passed via this word to the diagnostic task. The LDT address is passed via this word when file
management is called.

Bytes 16-17 - Contain the static link to the next TSB in the chain. This field will be zero in
the last TSB in the chain.

Byte 18 - Contains the initial task state. Bits 0-3 contain the initial status of the task when
the operating system is loaded, restarted, or at powerup. Bit 0, when set, indicates the task
is privileged. Bit 1, when set, indicates that the task is a system task. Bit 2, when set, indicates I
the task is to be executed at power restart. Bit 3, when set, indicates the task is to be executed
when the operating system is loaded or at restart. Bits 4 through 7 are reserved. I

Byte 19 - Contains the ID of the attached procedure. This field is 0 if no procedure is
attached.

Bytes 20-27 - Used for temporary storage. When a task is queued for I/O, the call is re­
executed from the TSB. A two-word XOP instruction and a two-word branch to return to
the task are stored here and then executed. When a task is bid, the task parameters are stored
in bytes 24-27. A Get Parameters supervisor call retrieves the parameters from this area.

Bytes 28-31 - These bytes are present in the TSBs of dynamic tasks only when the multiple I
dynamic task option is specified during system generation. Bytes 28-29 contain a pointer to a
linked list of dynamically allocated memory blocks for the task. Bytes 30-31 are reserved
and must be zero.

5.4 TXROOT
The data structures contained in TXROOT are those that are configuration independent (Le.,
structures that do not vary according to the devices or modules included in the system). These
structures include queue headers, supervisor call table, and flags.

5.4.1 SYSTEM TABLE. The system table, shown in figure 5-13, consists of pointers to other I
structures in the system. This table may be accessed by privileged tasks through the get system
table supervisor call. The system table consists of the following entries:

Bytes 0-1 - Contain a pointer to the time and date block. The time and date block consists
of Julian year, day, hour, minute, and second in that order.

Bytes 2-3 - Point to the first TSB in the TSB chain.

Bytes 4-5 - Point to the first PDT in the PDT chain.

Bytes 6-7 - Point to the first LDT in the LDT chain.

Bytes 8-9 - Point to the default disc name. The default disc name is generated by the
system generation program.

Bytes 10-11 - Point to the default printer name. The default printer name is generated by
the system generation program.

Change 2 5-13 Digital Systems Division

J2~ ______ _ ~ 944776-9701

Bytes 12-13 - Point to device name table. The device name table associates a logical name
to type device.

Bytes 14-15 - Point to the first PSB in the PSB chain.

5.4.2 SYSTEM FLAGS. TXROOT contains a number of words used as flags by the system.
These flags are used to force exclusive access to a resource (routine or buffer) and are set to
negative one when the operating system is loaded and at system restart to indicate that the
resource may be accessed. The user executes a test and set (ABS instruction) on the flag to gain
access to the resource. The flag should be reset by the user to negative one when the resource is
released. The three flags are FMPFLG, FURFLG, and LDRFLG. FMPFLG controls access to
FMPBUF. FURFLG controls access to routines in FUR. LDRFLG controls access to the task
loader routine.

Change 2 5-14 Digital Systems Division

~ ____ 9_44_7_7_6_~_7_0_1 __ __

0 0

2 2

4 4

6 6

8 8

10 A

12 C

14 E

16 10

18 12

20 14

22 16

24 18

26 lA

28 IC

30 IE

FLAGS
BIT 0

1-2
3

4-5
6
7

(A) 136890 A

0 0

2 2

4 4

6 6

8 8

10 A

12 C

14 E

(~) 136891A

Change 2

QUEUING LINK

SAVED WP

SAVED PC

SAVED STATUS

PRIORITY STATE

FLAGS ID

TASK ADDRESS

TASK SENTRY COUNTER
TIME DELAY COUNTER

DIAGNOSTIC ERROR CODE
LOT FOR FMP

TSB LINK

INITIAL TASK
PROCEDURE STATE

ID

XOP INSTRUCTION

SVC ADDRESS

/ BRANCH
BID TASK INST AND

PARAMETERS RETURN AD DR

MEMORY ALLOCATION BLOCK POINTER

RESERVED; 0

STATES (BAS E 16)
PRIVILEGED TASK 0 ACTIVE PRIORITY 0
NOT USED 81-FF ACTIVE REAL TIME
END ACTION SET PRIORITIES 1 -127
NOT USED 1-3 ACTIVE PRIORITIES 1-3
TASK ABORTED 4 INACTIVE
UNSUSPEND 5 TIME DELAY

OUTSTANDING 6 SUSPENDED
8 SUSP. FOR CRT CHAR.
9 SUSP. FOR 1/0
D SUSP. FOR FMP COMPLETE

Figure 5-12. Task Status Block

TIME AND DATE BLOCK POINTER

TSB CHAIN POINTER

PDT CHAIN POINTER

LDT CHAIN POINTER

DEFAULT DISC NAME PQINTER

DEFAULT PRINTER NAME POINTER

DNT POINTER

PSB CHAIN POI NTER

Figure 5-13 . System Table

S-14A/S-14B

ON

A
B
C

10

}

PRESENT ONLY
IF SYSTEM
CONFIGURED
WITH MULTIPLE
DYNAMIC TASKS

PROCESSOR QUEUES

1/0
FUR
DIAGNOSTIC TASK
FMP

Digital Systems Division

~~-------------------~ 944776-9701

5.4.3 QUEUES. The basic structure used by the operating system to control the execution of tasks
is the queue. The queue is used to force a first-in/first-out (FIFO) order to tasks requiring the
services of a particular system task, DSR, and to force a priority ranking of tasks requesting the task
scheduler. The queueing is handled by two routines in TXROOT. A task is queued by placing its
TSB on a queue. The queue consists of a queue header and the linked TSBs.

5.4.3.1 Active Queue. The active queue consists of two linked lists of active tasks in order of their
priorities. Tasks with priority a and real-time priorities 1-127 are on the first list, and tasks with
priorities 1-3 are on the second list. The highest priority task in each group is found at the top of
the respective list. The scheduler always places the highest priority active task into execution when
the scheduler is executed. When a task becomes active due to a bid task, upon I/O completion, etc.,
the appropriate list is searched from top to bottom, if needed, to determine where to place the task
on the active queue. The task is placed above lower priority tasks on the queue and below tasks of
equal or higher priority. Therefore, tasks of equal priority are treated in a first-in/first-out (FIFO)
manner.

5.4.3.2 System Task Queues. Tasks that require the services of file utility, file management, or
the diagnostic task are suspended and placed on the required system task's input queue. Once bid,
the system task continues to service requests on its queue until it is empty, at which time the
system task terminates.

5.4.3.3 DSR Queue. When a DSR is busy and another I/O call is made, the task issuing the call is
placed on the device's queue. The queue headers are located in the device information block of the
device PDT.

5.4.3.4 Intertask Message Queue. When a task issues a Put Data supervisor call, the message is
placed at the end of the Intertask Message Queue. When a Get Data supervisor call is issued, the
queue is searched linearly for the oldest message with the specified message identification number.

5.4.4 SUPERVISOR CALL (SVC) TABLE. The supervisor call table provides the entry points to
the individual supervisor call processors. The SVC table consists of two parts: a list of the SVC code
range for each block of consecutive SVC operation codes and the actual blocks of entry points.

5.4.4.1 Supervisor Call Table List. The supervisor call table list, shown in figure 5-14, contains a •
four-byte entry for each noncontiguous block of SVC codes. Bytes 0-1 contain the upper and lower
SVC code of the block, respectively. Bytes 2-3 contain the starting address of the supervisor call
table block. The SVC table list is terminated with a zero in bytes 0-1.

5.4.4.2 Supervisor Call Table Block. The supervisor call table block, shown in figure 5-15, consists I
of a number of words which contain the address of each SVC processor entry point. Each word in
the block corresponds to an SVC code within the range defined by the SVC table list.

Change 2 5-15 Digital Systems Division

~-----~-~ 944776-9701

UPPER SVC CODE (0+1<) I LOWER SVC CODE (0)

ADDRE.SS OF BLOCK 0

~ if.
t I

UPPER SVC CODE (M+R) I LOWER SVC CODE (M)

ADDRESS OF BLOCK (2)

o (END OF LIST)

(A) 136892

Figure 5-14. Supervisor Call Table List

Change 2 5-16 Digital Systems Division

J2r7S\ ______ _ ~ 944776-9701

I

SVC N ENTRY PO I NT

SVC N+1 ENTRY POINT

SVC N+2 ENTRY POINT

II II

SVC N+K ENTRY POINT

(A}136893

Figure 5-15. Supervisor Call Table Block

5.5 PHYSICAL DISKETTE STRUCTURE
The diskette consists of a number of physical tracks (.77 for a one-sided, single-density
IBM-compatible diskette) with 26 sectors per track. The diskette is divided into logical units
called allocation units. Each allocation unit consists of 6 sectors and there are 333 allocation
units per diskette. The physical record length is the block of data read from or written to the
diskette at one time. The diskette is formatted with one physical record per sector.

5.6 LOGICAL DISKETTE STRUCTURE
The first six allocation units are reserved for system usage and the others are available for user
files. The diskette has the following structure:

Allocation Unit Sectors

0-3 All Boot loader

4 o System information block

4 Allocation table

4 2 Bad allocation table

5 0-5 Directory

6-333 All File allocation

5.6.1 BOOT LOADER. Allocation units 0-3 contain the system boot loader (TXBOOT
program). This program is loaded from the diskette/cassette ROM loader; in turn, it loads the
system file. The boot loader is not required for a diskette which is to be used as a data diskette
only; i.e., will not contain a system file. The TXBOOT program is stored in memory image
format. The last word of each sector is a flag to the ROM loader. When the last word is not
equal to negative one, the ROM loader loads the next sector. When it is equal to negative one,
the ROM loader terminates and executes the TXBOOT program. TXBOOT is copied to the
diskette in consecutive sectors beginning at physical track 0, sector O. All of the sectors used are
contained in allocation units 0-3.

Change 2 5-16A/S-16B Digital Systems Division

~~-------------------~ 944776-9701

5.6.2 DISC INFORMATION BLOCK. The disc information block, shown in figure 5-16, I
contains configuration data needed by the system and utilities. The format of the disc informa-
tion block is:

Bytes 0-31 - Disc identification field. This information is supplied by the user during disc
initialization (BACKUP). Typically, this field contains a diskette identification name and
date. This field may be changed using the disk load (DL) command of SYSUTL or DSKDMP.

Bytes 32-33 - System file address. This field contains the starting allocation unit of the file
designated as the system file (designated by use of the SF command of SYSUTL). The field
contians zeros if no system file has been designated.

Bytes 34-35 - Contain an ASCII "TX" and is used to indicate that the disc was initialized.
The backup utility examines these bytes on the output diskette before using the diskette.

Bytes 36-37 - Reserved.

Bytes 38-41 - Contain the four character volume name. When no volume name is used, it is
binary O. This field is initialized during disc initialization (BACKUP) and may be modified
using the change volume name (CY) command of SYSUTL.

Bytes 42-43 - Reserved for future expansion.

5.6.3 ALLOCATION BIT MAP. The allocation bit map (allocation unit 4, sector 1) is a bit map
used to indicate the availability of an allocation unit. A 1 in a bit position indicates that the
allocation unit associated with that bit is allocated. The first bit in the map (bit 0) is associated
with allocation unit 0, the second bit (bit 1) is associated with allocation unit 1, etc. The
allocation bit map is initialized during disc initialization to all zeros. The bits corresponding to
the system-reserved allocation units, 0-5, unused bits in the sector (those greater than bit
position 332), and bits associated with bad allocation units are set to 1.

5.6.4 BAD ALLOCATION BIT MAP. The bad allocation bit map (allocation unit 4, sector 2) is
used to mark defective allocation units on the diskette. Utility programs use this bit map to
determine bad units. This table is identical in size and format to the allocation table. During
diskette initialization, when a defective allocation unit is found, the appropriate bit is set to 1 in
both the bad allocation bit map and allocation bit map. The bit in the allocation bit map is set
so that the allocation unit will not be used. The unused bits in the sector (those greater than bit
position 332) are set to 1 s.

Change 2 5-17 Digital Systems Division

~-------~ 944776-9701

o

DISC IDENTIFICATION
FIELD

32 SYSTEM FILE ADDRESS (A.U)

34 T J X

36 UNUSED

38

40
VOLUME NAME

42 UNUSED

(A)t 36894A

• Figure 5-16. Disc Information Block

Change 2 5-18 Digital Systems Division

~~-------------------~ 944776-9701

5.6.5 DIRECTORY. The directory (allocation unit 5, sectors 0-5) is used by the system to map file
names to the physical start location of the files on the diskette. Each of the six sectors of the
directory has space for eight files, allowing a maximum of 48 files on the diskette. Each file entry,
as shown in figure 5-17, is 16 bytes long and has the following format: I

Bytes 0-6 - Contain the 1-7 character file name. The name is left justified in the field and
blank filled.

Bytes 7-9 - Contain the 1-3 character extension name. The extension is left justified and
blank filled. This field is all blanks when the file does not have an extension. The
combination of file and extension name uniquely define a file on the diskette.

Bytes 10-11 - Contain the number of the starting allocation unit.

Byte 12 - The protection code is an ASCII character U, D, or W, which defines the file as
unprotected, delete protected, or write protected. This field is modified by the change
protection (CP) operation of SYSUTL or under program control.

Byte 13 - File type, is a hexadecimal number that represents the type of file. A sequential
file has a value of 0 and a relative record file has a value of 2.

Bytes 14-15 - Are reserved for further expansion.

When the diskette is initialized, the directory is initialized to periods (2E 16). When a file is created
the file entry is placed in the first available space in the directory. When a file is deleted, the
entry is overwritten with periods.

5.7 LOGICAL FILE STRUCTURE
For each file on the diskette there exists a file control block (FCB) which contains a list of
allocation units allocated to the file, and other data. All files begin at physical record 0 of an
allocation unit. The first physical record (0) contains the FCB. The actual file data begins at
physical record 1. TX990 supports two types of files, sequential and relative record. Each file type
has a different record and file format.

o 0

- -7 - CHARACTER
FILE NAME - - 16 BYTES/ENTRY

I
8 8 3- CHARACTER EXTENS ION

10 A STARTING ALLOC. UNIT

12 C PROTECTION CODE I FILE TYPE

14 E UNUSED

(A)136895

Figure 5-17. Directory Entry

Change 2 5-18A/5-18B Digital Systems Division

•

~ ____ 9_4_4_7_7~ __ 97~O_I __ __

5.7.1 SEQUENTIAL FILE

5.7.1.1 Record Format. A sequential logical record consists of N characters followed by an
end-of-Iogical-record character. There are also control characters for end-of-physical-record,
end-of-file, and blank compression. The characters are defined as follows:

FF End-of-Iogical-record
FE Blank compression (to be followed by a one-byte count)
FC End-of-physical record
FB End-of-file

To avoid conflicts with these control characters, data characters in the range F A16 to FF 16 will each
be expanded to a two-character string as follows:

Data Character String Expansion

FF FA, FF

FE FA, FE

FD FA, FD

FC FA, FC

FB FA, FB

FA FA, 00

The end-of-file character will always mark the end of the physical record in which it is
contained.

5.7.1.2 Sequential File Format. The first byte of each sequential file physical record contains
the file number (positional directory entry, the same as in byte I of the FCB, and the second
byte contains the sequential physical record number, modulo 256. The logical records, as
previously described, occupy the remaining space in the physical record. The logical records may
span physical record boundaries and will be stored in contiguous sectors. There can be multiple
end-of-file records in a sequential file.

5.7.2 RELATIVE RECORD FILE

5.7.2.1 Record Format. Relative record logical records are of fixed length. The system uses as
many physical records as necessary to contain a logical record. The maximum size for a logical
record is one allocation unit. There are no control characters added to the data by the operating
system.

5.7.2.2 Relative Record File Format. All logical records start at the beginning of a physical
record. Unused space within a physical record is wasted. There is no end-of-file character. The
write pointer in the FCB is the only end-of-file indicator. Space is allocated in the file for all
records from 0 to the last logical record written.

5-19 Digital Systems Division

~~------------------~ 944776-9701

5.7.2.3 Program File Format. The TX990 program file is a relative record file with a record size of
256 bytes. The file is similar to the DX10 program file, with the constraint that only one program
may be installed on a TX990 program file; that is, there is only one task, with its overlays, and
possibly one procedure. The number of overlays is limited to 255.

The TX990 program file is created by the link editor in image format. (See the Model 990 Com­
puter Link Editor Reference Manual, part number 949617-9701.) The file has the format shown in

I figure 5-18. Record zero is an overhead record, whose format is shown in figure 5-19. Records 1 and
2 form the program file directory and are described in subsequent paragraphs. The remaining
records contain task, procedure or overlay images. Note that each segment image must start on a
record boundary.

The layout of the program file overhead record is:

Bytes 0-1 - Must be zero. Indicates a program file.

Bytes 2-15 - Reserved. Zero fill.

Bytes 16-19 - Relative record number of the next available record in the image area.

Bytes 20-51 - ID bit map for memory-resident tasks. Unused in TX990.

Bytes 52-83 - ID bit map for memory-resident procedures. Unused in TX990.

Bytes 84-115 - ID bit map for tasks. TX990 only uses task number 1.

Bytes 116-147 - ID bit map for procedures. TX990 only uses procedure number 1.

Bytes 148-179 - ID bit map for nonreplicative tasks. Unused in TX990.

Bytes 180-211 - ID bit map for all overlays.

Byte 212 - Maximum number of tasks. Must be one for TX990.

Byte 213 - Offset for tasks. Unused in TX990.

Bytes 214-215 - Record number for start of task directory.

RECORD

o OVERHEAD RECORD

DIRECTORIES

3

>. TASK. PROCEDURE,
AND OVERLAY :: IMAGES

AVAI LABLE
SPACE

I Figure 5·18. Program File Format

Change 2 5-20 Digital Systems Division

~-------~ 944776-9701

BYTE

~ Jt~ ______________________________ Z_E_R_o __________________________ ~Jl

RESERVED (0) ,.~ - -
16

NUMBER OF NEXT AVAI LABLE RECORD I N IMAGE AREA

20
I

~t..
10 BIT MAP FOR MEMORY RESIDENT TASKS -....

~ I>
10 BIT MAP FOR MEMORY RESIDENT PROCEDURES -....

52

I'"
84 ::: 10 BIT MAP FOR ALL TASKS INSTALLED IN PROGRAM FILE

-L--
116

~" -v 1. 10 BIT MAP FOR ALL PROCEDURES INSTALLED IN PROGRAM FILE J
148 J[~--~JL

10 BIT MAP FOR NONREPLICATIVE TASKS '"'"' -,..
180

:~ 10 BIT MAP FOR ALL OVERLAYS INSTALLED IN PROGRAM FI LE

212 MAX NO. OF TASKS I OFFSET TO TASK DIRECTORY

214 RELATIVE RECORD NO. OF TASK DIRECTORY

216 MAX NO. OF PROCEDURES I OFFSET TO PROCEDURE DIRECTORY

218 RELATIVE RECORD NO. OF PROCEDURE DIRECTORY

220 MAX NO. OF OVERLAYS I OFFSET TO OVERLAY DIRECTORY

222 RELAIIVE RECORD NO. OF OVERLAY DIRECTORY

224 MAX NO. OF AVAILABLE ENTRIES

226 OFFSET 10 AVAILABLE SPACE DIRECIORY

228 RELATIVE RECORD NO. OF USED SPACE DIRECTORY

~I.. -
~t..

1
UNUSED (_0)

J

(A)137512

Figure 5-19. Program File Overhead File

APPLICABLE
TO SYSTEM
PROGRAM
FILE ONLY

I

Change 2 S-20A Digital Systems Division

J2t1s\ ______ _ ~ 944776-9701

Byte 216 - Maximum number of procedures. Must be one for TX990.

Byte 217 - Offset for procedures. Unused in TX990.

Bytes 218-219 - Record number for start of procedure directory.

Byte 220 - Maximum number of overlays.

Byte 221 - Offset for overlays.

Bytes 222-223 - Record number for start of overlay directory.

Bytes 224-225 - Maximum number of holes in file.

Bytes 226-227 - Offset for start of space directory.

Bytes 228-229 - Record number for start of unused space directory.

Bytes 230-255 - Unused. Set to zeros.

I The layout of the directory records is show.n in figure 5-20. Data in these fields are varying lengths,
depending on the number of tasks, procedures, and overlays in the program file. All may be one or
more records.

Bytes O-(A-l) - Names of the tasks in the file. Eight ASCII bytes per name.

I Bytes A-(B-l) - Directory entries for tasks. Sixteen bytes per task. See figure 5-21 A.

Bytes B-(C-l) - Names of the procedures in the file. Eight ASCII bytes per name.

Bytes C-(D-l) - Directory entries for procedures. Sixteen bytes per procedure. See figure
I 5-21B.

Bytes D-(E-l) - Names of the overlays. Eight ASCII bytes per name.

• Bytes E-(F-l) - Directory entries for overlays. Sixteen bytes per overlay. See figure 5-21C.

Bytes F-(F+ 1) - Number of unused directory entries in the file.

Bytes (F+2) - (F+3) - Number of records in the file.

Bytes (F+4) - (F+5) - Number of records available in file.

Bytes (F+6) - (G-l) - Used space directory. Four bytes per entry. An entry for each task,
procedure, and overlay. Unused by TX990.

The next record is the first record of the image data. Each module is followed by a relocation bit
map.

Change 2 5-20B Digital Systems Division

~ 944776-9701

BYTE

0 I A

B

ZERO i NAME OF TASK 1

ZERO

DIRECTORY ENTRY FOR TASK 1

C

1
ZERO

I NAME OF PROCEDURE 1

o ~~ -I"" ZERO

DIRECTORY ENTRY FOR PROCEDURE 1

E ::::~ ZERO ~ ~
NAME OF OVERLAY 1

NAME OF OVERLAY 2

NAME OF OVERLAY 3

F ::: :::;::
NAME OF OVERLAY 255

ZERO

01 RECTORY ENTRY F.OR OVERLAY 1

01 RECTORY ENTRY FOR OVERLAY 2

01 RECTORY ENTRY FOR OVERLAY 3

G
:~ ::: ~

DIRECTORY ENTRY FOR OVERLAY 255

::'- UNUSED SPACE DIRECTORY ,~

UNUSED (=0)

(A)137513

Figure 5-20. Program File Directory I

Change 2 5-20C Digital Systems Division

J2~ _______ _ ~ 944776-9701

I

TASK

o LENGTH

2 FLAGS

4 RECORD NO.

6 DATE INSTALLED

8 LOAD ADDRESS

OVLY
PRIORITY LINK 10

PROCI NOT
ID USED

12

PARTITION
SIZE

14

A

PROCEDURE

* o LENGTH

2 FLAGS I
4 RECORD NO.

6 DATE INSTALLED

8 LOAD ADDRESS

10

12 NOT USED (:0)

*
14

B

*IF PARTITION SIZE =0, LENGTH FROM
BYTES 0-1 IS USED.

(A)137514

Figure 5-21. Directory Entry Format

The task directory entry data is:

Bytes 0-1 - Length of the task segment in bytes.

Byte 2 - Flags. When set indicate:

Bit 0 Privileged.

Bit 1 System.

Bit 2 Memory resident.

Bit 3 Delete protected.

Bit 4 Replicative.

Bits 5-7 Unused.

OVERLAY

o LENGTH

2 FLAGS

4 RECORD NO.

6 DATE INSTALLED

8 LOAD ADDRESS

OVLY TASK
LINK 10 10

12

NOT USED (=0)

14

C

Bytes 3-5 - Record number. File record number of the start of the task image.

Bytes 6-7 - Date installed. Date is in the format:

Bits 0-6 Year displacement from 1900.

Bits 7-15 Date.

Change 2 5-20D Digital Systems Division

J17S\ ______ _ ~ 944776-9701

Bytes 8-9 - Load address.

Byte 10 - Overlay link. The overlay number of the first overlay associated with the task. Each
overlay directory entry is in turn linked to the next entry so tasks can be associated with
overlays when status or delete commands are executed. A value of 0 is used to terminate the
list.

Byte 11 - Task priority.

Byte 12 - Procedure lID.

Byte 13 - Not used.

Bytes 14-15 - Partition size is the size of the initial allocation for the task and overlays.

The procedure directory entry data is:

Bytes 0-1 - Length of the procedure segment in bytes.

Byte 2 - Flags. When set indicate:

Bits 0-1 - Not used (=0).

Bit 2 - Memory resident.

Bit 3 - Delete protected.

Bits 4-6 - Not used (=0).

Bit 7 - Directory entry in use.

Bytes 3-5 - Record number (24 bits). Logical record number of the start of the procedure
image.

;Sytes 6-7 - Date installed.

Bytes 8-9 - Load address. Must be on a beet boundary.

Bytes 10-15 - Not used (=0).

The overlay directory entry data is:

Bytes 0-1 - Length of the overlay segment in bytes.

Byte 2 - Flags. When set indicate:

Bit 0 - Relocation map is present.

Bits 1-2 - Not used (=0).

Change 1 5-20E Digital Systems Division

~~------------------~ 944776-9701

Bit 3 - Delete protected.

Bits 4-6 - Not used (=0).

Bit 7 - Directory entry is used.

Bytes 3-5 - Record number (24 bits). Logical record number of the start of the overlay
image.

Bytes 6-7 - Date installed.

Bytes 8-9 - Load address. Must be even.

Byte 10 - Overlay link to next overlay.

Byte 11 - Task ID of associated task.

Bytes 12-15 - Not used (=0).

Change 1 .5-20F Digital Systems Division

~~------------------~ 944776-9701

5.7.3 FILE CONTROL BLOCK (FCB). The format of the FCB, shown in figure 5-22, is as I
follows.

Bytes 0-1 - The file number (positional entry of the directory). When a file is deleted, this
number is replaced with FFFF 16 to indicate that this FCB is no longer valid.

Bytes 2-5 - "FCB*" sequence, used to verify that the record is an FCB and to enable the
user to easily find an FCB when doing a diskette dump.

Bytes 6-7 - Reserved for future expansion.

Bytes 8-9 - Relative record length, the number of bytes in a logical record for a relative
record file. This field is zero for a sequential file.

Bytes 10-13 - Write pointer. For a sequential file, the write pointer is the end-of-media
(i.e. the last record written in the last sub-file). The end-of-media is updated after each se­
quential write. Any record past end-of-media cannot be accessed. Bytes 10-11 contain the AU
address of the end-of-media relative to the beginning of the file. Bytes 12-13 are the physical
record within the AU of the end-of-media.

For a relative-record file, the write pointer is the address of the end-of-file record. End-of-file
for a relative-record file is either the logical record where an end-of-file has been written or the
largest-numbered logical record written, whichever occurred last. Bytes 10-13 are a 32-bit
record number.

Bytes 14-17 - Current pointer, only used for sequential files. This field has no meaning for
relative-record files. The current pointer is used to maintain the current read or write
position within a sequential file. It is the address of the next record to be read or written.
Bytes 14-15 and bytes 16-17 are the AU record address and physical record address,
respectively, of the next physical record to be read or written.

Bytes 18-19 - Current byte pointer, a pointer to the beginning byte address within a
physical record of the next logical record to be read or written. This field has no
significance for relative record files. When the last operation before a file is closed is a write
operation, the byte pointer is always set to 2, the first available byte of the next physical
record. This is done to fill out the current physical record so the blocking buffer may be
written to disc and released. If a read, backspace, or forward space occurred before closing
tQe file, the byte pointer may be other than 2. In this case, the byte pointer points into the
physical record preceding the one indicated to be the current physical record pointer by
bytes 14-17.

The rest of the FCB, beginning at byte 20, consists of 4-byte entries defining the blocks of
allocation units allocated to the file. The first two bytes are the AU address of the first allocation
unit in the block. The second two bytes are the number of contiguous allocation units in the
block. An FFFF 16 in the first two bytes of an entry defines previous entry as the last current
entry of the FCB.

When a file is open, a copy of the FCB is maintained in memory. Some of the fields have a
different meaning when in memory than when on the disc. These differences are noted in fig­
ure 5-22.

Change 2 5-20G/5-20H Digital Systems Division

I

I

Jd7.J\ ______ _ ~ 944776-9701

o

2 F

4 B

6

8

10

12

14

16

18

20

22

/
I

92

94

(A)136896

Change 2

(FCB)

FILE#

C

*
RESERVED

RELATIVE RECORD LENGTH

WRITE POINTER - TRK ADDR
(RELATIVE)

WRITE POINTER - PHY REC
(WITHIN TRACK)

CURRENT POINTER
TRK ADDR (RELATIVE)

CURRENT POINTER - PHY REC
(WITHIN TRK)

CURRENT BYTE POINTER

ALLOCATION BLOCK
ABSOLUTE TRK ADDR

#OF TRK'S IN BLOCK

TERM INATOR ; FFFF

#OF A.U'S ALLOCATED
SINCE FILE OPENED

Figure 5-22. File Control Block (FCB)

5-21/5-22

IN MEMORY

4-- FCB TRACK ADDR

+- ACCESS FLG/# OF
LUNOS OPENED

FOR REL, REC FILE·
= 24-BIT FIELD
= LAST RECORD

WRITTEN +1

}

REPEATED TO A
LIMIT OF 18 BLOCKS
FCBSIZ; 96 BYTES I

~~.
I

.-- ONLY IN MEMORY

I

Digital Systems Division

j}n~-------~ 944776-9701

SECTION VI

MODULE DESCRIPTIONS

6.1 GENERAL
This section provides a brief description of the function of each object module that may be in­
cluded in the system. This description enables the user to determine the correct modules needed
for a particular application or enables the system programmer to locate the modules which relate
to the particular programming exercise.

6.2 TX990 KERNAL MODULES

6.2.1 TXROOT. TXROOT contains data and routines required for the TX990 system. Each rou­
tine is described in table 6-l.

Table 6-1. TXROOT Routines

Name

Data Structures

Scheduler

Device/File Close Logic

End Task/End Program Supervisor Call

Interrupt and XOP Return Points

Power Fail/Restart

I/O Initialization Logic

Supervisor Call Processor

Fatal Error Logic

Clock Interrupt Handler

Meaning

The data structures contained in TXROOT are those
that are configuration independent. These structures
include queue headers, supervisor call table, and flags.
See also the paragraphs on TXROOT in the preceding
section.

Handles scheduling and execution of tasks.

Closes files or devices assigned to a task that is ter­
minating.

SVC processor for end task and end program SVCs.

Common return area for interrupt and XOP proces­
sors returning control to the operating system.

Code executed when a power fail occurs, or when
power is restored.

Initializes VDTs and PDTs after the operating system
is loaded or during manual restart.

Decodes XOP 15 and calls appropriate processor.

Entered when a CPU error is detected, or an illegal
XOP or interrupt occurs.

Executed on each clock interrupt. It sets the flag
after the specified number of clock interrupts to in­
dicate that a system-time interval has expired.

6-1 Digital Systems Division

~~-------------------~ 944776-9701

I

I

I

I

Table 6-1. TXROOT Routines (Continued)

Name

Queue and Dequeue Routines

Unsuspend Time Delay Task

Update Time and Day

Bid Task

Meaning

Routines to handle queueing and de queueing of
TSBs.

Unsuspends tasks that are in time delays when their
delay time has expired.

Maintains system time and day counters.

Places tasks on the active queue to be executed.

6.2.2 TSKFUN. TSKFUN contains a number of supervisor call processors for controlling task
execution. The individual routines are described in table 6-2.

Table 6-2. TSKFUN Routines

Name

Bid Task SVC Processor

Get Parameters SVC Processor

Get Own I .D. SVC Processor

Get System Table Address SVC Processor

Make Task Privileged SVC Processor

Do Not Suspend SVC Processor

Time Delay SVC Processor

Activate Time Delay Task SVC Processor

Change Priority SVC Processor

Unconditional Wait SVC Processor

Activate Waiting Task SVC Processor·

Get Time and Date SVC Processor

Initialize Date and Time SVC Processor

Get Task Common SVC Processor

Change 2

Meaning

This routine calls the bid task routine in TXROOT and
places the previous task state in the SVC block.

Moves task parameters from TSB to SVC block.

Return J.D. of calling task in SVC block.

Places system table address in SVC block.

Sets privileged bit in task's status register.

Sets the value of the Do Not Suspend timer.

Sets task state to time delay and initializes the delay
counter.

Reactivates time delay task by clearing delay counter.

Changes priority of task to priority specified in SVC
block.

Task state changed to unconditional wait.

The specified waiting task is reactivated.

The values of year, day, hour, minute, and second are
placed in the SVC block.

The values of year, day, hour, minute, and second in the
SVC block are used to initialize the system timer.

Returns address of common in SVC block.

6-2 Digital Systems Division

A~ _________________ __ ~ 944776-9701

6.2.3 IOSUPR. IOSUPR contains a number of routines used to process the SVC calls with code
zero. The individual routines are described in table 6-3.

Name

I/O Call Processor

I/O Queueing Logic

Dummy Device I/O

Error Exit~

Process File I/O Call

Process File Utility I/O Call

GETDEV

FNDLDT

BZYCHK

SETWPS

GTDVNM

CASTYP

CKCALL

WIOC

ABTPRB, ABRTIO

ABTPDT

Table 6-3. IOSUPR Routines

Meaning

All zero code SVC calls enter here. This routine is
the main driver for the I/O system. Other routines
within IOSUPR are called for validation of LUNO,
operation code, etc. File management, file utility,
and the DSRs are called for further processing.

When the desired PDT is busy, the TSB of the task
issuing the I/O call is queued on the PDT.

Routine called ifI/O is to dummy.

A group of entry points are provided to process
various I/O errors.

Sets up call and queues TSB for file management.

Sets up call and queues TSB for file utility routine.

Maps LDT and PDT to LUNO in I/O call.

Maps LUNO to LDT.

Routine checks whether or not the PDT is busy. If
busy, the error flag and code in the PRB are set.

Routine called by DSR to restore return context.

This routine gets the internal device number for the
specified LDT.

This routine is called from DSR733 to place the
cassette device type in the calling block.

This routine validates I/O requests and performs
open/close housekeeping.

This is the SVC processor for the wait I/O super­

visor call.

This routine is the SVC processor for the abort SCB
and abort I/O supervisor calls.

This routine aborts the I/O for a specified PDT.

6-3 Digital Systems Division

~~------------------~ 944776-9701

I

Name

ENDRCD

TIMOUT

Table 6-3. IOSUPR Routines (Continued)

Meaning

This routine is called by a DSR when an I/O opera­
tion has been completed and end-of-record processing
is required. The end-of-record routine closes the de­
vice, if it is record oriented, by clearing the TSB
in the PDT, clears the busy flag in SCB and PDT, and
reactivates the task if it is suspended on I/O.

This routine is entered every system interval to check
if a DSR is to be reentered or timed out.

6.2.4 CNVRSN. This module contains the four numeric conversion supervisor call processors.

6.2.5 MEMSVC. This module contains the supervisor call processors for Get Memory and Return
Memory in the single dynamic task system.

6.2.6 TBUFMG. This module contains the buffer management routines. See Section V for a de­
scription of buffer management and the buffer pool.

6.2.7 TSKLDR. This module is the system task loader routine (see Section II) in the single
dynamic task system.

6.2.8 TITTCM. This module contains the SVC processors for the intertask communications
supervisor calls, Get Data and Put Data.

6.2.9 CRTPRO. This module preprocesses the Get Character, conditional Get Character, and 911
and 913 VDT utility SVC calls. This routine determines the device type of the station number in
the SVC call block and calls the appropriate processor.

6.2.10 STA913. This module contains the keyboard interrupt handler for the 913 VDT and
SVC processors for the Get Character SVC and the conditional Get Character SVc. CRTPRO must
be included in a system containing ST A9l3.

6.2.11 STA911. This module contains the keyboard interrupt handler for the 911 VDT and
SVC processors for the Get Character SVC and the conditional Get Character SVC. CRTPRO
must be included in a system containing ST A91l.

6.2.12 SVC913. This module is the SVC processor for the 913 VDT utility SVC call. CRTPRO
must be contained in a system containing SVC913.

6.2.13 SVC911. This module is the SVC processor for the 911 VDT utility SVC call. CRTPRO
must be included in a system containing SVC911.

6.2.14 EVENTK. This module contains the routines required to support the break key facility
in TX990.

6.2.15 DTASK. This is the diagnostic task (see Section 11).

6.2.16 TXSTRT. This routine contains the initialization code that is executed at initial program
load, manual restart or power restart. This module may be placed after TXEND in the link causing
it to be overlayed after initialization, conserving memory and eliminating the restart capability.

Change 2 6-4 Digital Systems Division

~-------~ 944776-9701

6.2.17 TXEND. This module contains external definitions for entry points which can be
optionally left out of a given TX990 system. TXEND also contains the initial system entry point I
after loading. It initializes the interrupt vectors and XOP traps, and determines the amount of
memory present in the system. It then enters TXSTRT to complete the system initialization. All
modules linked after this module will be overlayed as part of the dynamic task area.

6.2.18 STASK. This is the start task which prints the TX990 header message when the
operating system is first loaded into memory. This task is usually overlayed by the dynamic task
area (see Section II).

6.2.19 IMGLDR. This module contains the routine to load programs from program files.

6.2.20 DMEMSVC. This module contains the supervisor call processors for Get Memory and
Return Memory supervisor calls in the multiple dynamic task system.

6.2.21 DYNTSK. This module contains the logic to build. and delete the data structures for the
installation and deletion of task and procedures in the multiple dynamic task system.

6.2.22 DTSKLDR. This module contains the system task loader in the multiple dynamic task
system.

6.3 DEVICE SERVICE ROUTINES

6.3.1 FPYDSR. This is the DSR for the diskette. The user may access a file on the diskette
with the standard supervisor call block (SCB). To access the diskette directly requires a direct
disc SCB (see Section III).

6.3.2 DSR733. This is the DSR for the 733 ASR. This DSR will handle I/O to both keyboard/
printer and cassettes. DSR733 may also be used with the 743 KSR or the 820 KSR.

6.3.3 KSRDSR. This is the DSR for the 733 KSR, 743 KSR, or 820 KSR. This DSR will handle
I/O to the keyboard/printer only.

6.3.4 DSR913. This is the DSR for the 913 VDT. The module STA913 must be included in the
system if DSR913 is included. A system may contain both DSR9l3 and DSR911.

6.3.S DSR911. This is the DSR for the 911 VDT. The module STA911 must be included in the
system if DSR911 is included. A system may contain both· DSR9l3 and DSR911.

6.3.6 LPDSR. This is the DSR for the serial interface line printer. The user may speCify write
ASCII or write direct. Write ASCII allows only ASCII characters and some control characters to ,
pass to the printer. Write direct does not filter any characters from the line printer. Write direct
should be used to make use of the special control features available on the TI line printer (model
810 line printer). .

6.3.7 CRDSR. This is the DSR for the card reader.

6.3.8 DSRTTY. This is the DSR for the 33 ASR.

6.3.9 DSRSMT. This is the DSR for the TI 5-MT digital I/O subsystem.

6.3.10 DIGDSR. This is the DSR for the 32-input transition detection module.

I

I

Change 2 6-S Digital Systems Division

Jd75\ ______ _ ~ 944776-9701

6.3.11 FLPDSR. This is the DSR for parallel interface line printers (Models 2230 and 2260).

6.3.12 DSR979. This is the DSR for the Model 797 A Magnetic Tape Unit.

6.3.13 ASR9902. This is the DSR which supports I/O to the 733 ASR/KSR and the 820 KSR
through the 9902 or 9903 communications ports on the Model 990/5 computer.

6.3.14 KSR9902. This DSR supports I/O to the 733 or 820 KSR through the 9902 or 9903
communications ports on the Model 990/5 computer.

6.3.15 LP9902. This DSR supports I/O to the serial interface line printer through the 9902 or
9903 communications ports on the Model 990/5 computer.

6.4 FILE MANAGEMENT
File management consists of a number of modules that are grouped into a reentrant procedure
(FMP), a task for each disc drive supported by the system, and file utility routine task (FUR).
If files are to be supported, all of file management must be included in the system.

6.4.1 FILE I/O SUPERVISOR CALL PROCESSOR MODULES. The file I/O SVC processor
modules are described in table 6-4.

6.4.1.1 TXFMP1. This module is the data module for drive 1. This module contains the three-word
task vector for the task associated with drive I and should be included in any disc system.

6.4.1.2 TXFMP2. This module is the data module for drive 2. It contains the three-word vector
for the task associated with drive 2, and should be included in a two-, three-, or four-drive system.

6.4.1.3 TXFMP3. This module is the data module for drive 3. It contains the three-word vector
for the task associated with drive 3, and should be included in a three-or four-drive system.

6.4.1.4 TXFMP4. This module is the data module for drive 4. This module, which contains the
three-word vector for the task associated with drive 4, should be included in a four-drive system.

6.4.1.5 TXFMP. This is the main driver of the file management procedure. This module decodes
the opcodes and calls the appropriate opcode processor.

6.4.1.6 FMOPEN. This module contains the open, open rewind, and rewind file processors. The
file is opened, and when needed, the file utility routine is called to auto-create the file.

6.4.1.7 FMCLOS. This module contains the processors for close, close-unload, and close-EOF file.
This module also contains a routine to deallocate unused allocation units to the system. The de­
allocation routine is also called by the FUR compress routine.

6.4.1.8 FMREAD. This module contains the read file processor. This module issues reads to the
DSR, performs the unblocking of physical records, and converts encoded control characters to
their decoded values.

6.4.1.9 FMWRIT. This module contains the write file processor. This module performs the
blocking of logical records, encoding of certain control characters, and calls the DSR to write the
physical record.

6.4.1.10 FMFBSP. This module contains the forward and backspace routines for diskette files.

Change 2 6-6 Digital Systems Division

~~------------------~ 944776-9701

Name

TXFMPI

TXFMP2

TXFMP3

TXFMP4

TXFMP

FMOPEN

FMCLOS

FMREAD

FMWRIT

FMFBSP

FMUTIL

GETTSB

FNDTRM

SEMAPH

GETTRK

Change 1

Table 6-4. File I/O SVC Processor Modules

Meaning

This module is the data module for drive 1. This module contains the three-word
task vector for the task associated with drive 1 and should be included in any disc
system.

This module is the data module for drive 2. It contans the three-word vector for
the task associated with drive 2, and should be included in a two-, three-, or four­
drive system.

This module is the data module for drive 3. It contains the three-word vector for
the task associated with drive 3, and should be included in a three- or four-drive
system.

This module is the data module for drive 4. This module, which contains the
three-word vector for the task associated with drive 4, should be included in a
four-drive system.

This is the main driver of the file management procedure. This module decodes
the opcodes and calls the appropriate opcode processor.

This module contains the open, open rewind, and rewind file processors. The
file is opened, and when needed, the file utility routine is called to auto-create the
file.

This routine contains the processors for close, close-unload, and close-EOF file.
This module also contains a routine to deallocate unused allocation units to the
system. The de allocation routine is also called by the FUR compress routine.

This module contains the read file processor. This module issues reads to the
DSR, performs the unblocking of physical records, and converts encoded control
characters to their decoded values.

This module contains the write file processor. This module performs the blocking
of logical records, encoding of certain control characters, and calls the DSR to
write the physical record.

This module contains the forward and backspace routines for diskette files.

This routine contains a number of routines that are called by the other file man­
agement routines. The individual routines are described below:

Gets next TSB from file management queue.

Finds end-of-file control block (FCB) in memory. FUR also calls this routine.

Routine to gain exclusive access to a resource. FUR also calls this routine.

Maps allocation unit and record number address relative to beginning of file into
physical allocation unit and record.

6-6A/6-6B Digital Systems Division

~-------~ 944776-9701

Name

FMUTIL

GETTSB

FNDTRM

SEMAPH

GETTRK

NXTREC

GETCUR

RLOCK

VALLDT

WRTFCB

Table 64. File I/O Routines

Meaning

This routine contains a number of routines that are called by the other file management
routines. The individual routines are described below:

Gets next TSB from file management queue.

Finds end-of-file control block (FCB) in memory. FUR also calls this routine.

Routine to gain exclusive access to a resource. FUR also calls this routine.

Maps allocation unit and record number address relative to beginning of file into physical
allocation unit and record.

Updates current pointers in file control block.

Maps relative record number of relative-record file into allocation and record address
relative to start of file.

Checks if relative-record file record is locked.

Verifies that LUNO has not already been opened by another task with exclusive access
and handles linkage to FCB in memory for shared files.

Writes file control block to the disc. FUR also calls this routine.

6.4_2 FILE UTILITY MODULE DESCRIPTIONS. The following modules make up the file utility
task (FUR, task OB 16), (see table 6-5). When a file I/O task (FMP1, FMP2, FMP3, or FMP4) is
included in the system, all of the file utility modules must be included_ When only assign and release
LUNO operations are desired and file management is not desired, the module FURSVC must be
included without the rest of the file utility modules.

6.4.2.1 FURTSK (File Utility Task). Removes tasks from the file utility queue and decodes the
operation code, then branches to the operation processor. When the operation processor completes
its task, it returns to FURTSK. FURTSK places the calling task back on the active queue and
continues to remove tasks from the file utility queue until all requests are satisfied.

6.4.2.2 FURSVC (Assign and Release LUNO). This module includes support to assign and release
LUNOs using the SVC code 00 16 , opcodes 91 16 , and 93 16 , This modules also includes the super­
visor call 15 16 support.

6.4.2.3 FILESVC (Create, Delete, and Compress Files). This modules supports supervisor call
code 0016 , opcodes 9016 ,9216 , and 9416 ,

6.4.2.4 CHSVC (Change File Name and Change File Protection and Check File Name Syntax).
This module supports SVC 00 16 , operation codes 95 16 , 96 16 ,97 16 , 98 16 , and 99 16 ,

6.4.2.5 ALUNIT (Allocate and Deallocate Allocation Units). This module is used by file I/O
processors and by file utility processors. It allocates and deallocates allocation units.

Change 2 6-7 Digital Systems Division

Jd1s\ ______ _ ~ 944776-9701

Name

ALSVC

RLSVC

ALPHA/ ALPNUM

DNTPDT

FLDT

SYNX

LDTOK

ALUNIT

RLUNIT

FNDSP

ALOSP

SERDIR (Search the Directory)

CRESVC

CREHRD

RDINF

WRDIR

DFSVC

RDFCB

RLTRK

SETUP

CMSVC

Change 2

Table 6-5. File Utility Routines

Meaning

Assigns a LUNO to a device or me.

Release a LUNO from a device or me.

Check range of a character.

Search device name table (DNT) for a device name.

Build a me LDT.

Check syntax of a me name and put it into an LDT block.

Validate that a LUNO is not already assigned.

Allocate diskette allocation units.

Deallocate diskette allocation units.

Find contiguious blocks of allocation units.

Set the allocated allocation units bits "on" in the allocation
bit map on the diskette.

This module is used by me I/O processors and by me
utility processors. It earches the directory for a diskette
me name.

Builds an LDT-like structure with the me pathname.

Physically create the me on the diskette.

Reads the disc control block (DCB) and initializes the
direct disc PRE.

Writes the directory entry to the diskette.

Delete me SVC processor.

Read the me control block (FCB) and verify that it is a
me control block.

Deallocate tracks in a me control block (FCB).

Builds an LDT structure, and searches the LDT list to see
if the me is already opened. Then searches the directory
for that me.

Compresses a me by trimming off the excess allocation
units. Calls the I/O routines in FMUTIL.

6-8 Digital Systems Division

J2175\ ______ _ ~ 944776-9701

Name

NMSVC

USVC

WSVC

DSVC

SEARCH

BLD

SYNSVC

Change 2

Table 6-5. File Utility Routines (Continued)

Meaning

Change the name SVC processor.

Unprotect the file SVC processor.

Write protect the file SVC processor.

, Delete protect the file SVC processor.

Set up the direct disc PRB and search the directory.

Build an LDT structure for devices or files.

Check the syntax of a file name SVC processor.

6-8A/6-8B Digital Systems Division

~~-------------------~ 944776-9701

6.4.3 VOLUME (VOLUME NAME SUPPORT). The volume task is a file management task that
locates volume names (table 6-6). When a LUNO assigned to a file using volume names is opened,
the volume task reads from each disc drive searching for the volume name. When the volume name
is located, the file management ID is placed in the LDT file management task associated with that
drive bid.

When volume name support is desired, the module volume must be included when the system is
being generated. When volume name support is not included in the system and volume names are
used in supervisor calls, an error >21, indicating a bad disc name, is returned to the calling task.

Name

VOLNAM

VOLTSK

FNDVOL

FNVOLU

FNVOL

Change 2

Table 6-6. Volume Modules

Meaning

Whenever a file is being opened by a task,
VOLNAM puts the task on the VOLQUE, then
bids VOLTSK. Called by IOSUPR.

Bid by VOLNAM. Takes tasks off VOLQUE,
locates the volume in the diskette drive, and
puts the task on FMPQUE and bids a file man­
agement task.

Sets the semaphore FMPFLG and calls FNVOL.
Returning from FNVOL, it clears the FMPFLG.
Called by FURTSK modules.

Calls FNVOL. Has the same calling interface
as FNDVOL. Called by FURTSK modules.

Scans the PDT list until a disc PDT is found.
Then it reads that diskette and compares the
LDT's volume name to the diskette's volume
name. When they compare, the file management
ID is placed in the LDT.

6-9 Digital Systems Division

~~------------------~ 944776-9701

6.S OPERATOR COMMUNICATION PACKAGE (OCP)
OCP consists of a number of modules which provide the operator with a means of communicating
with the operating system. Four modules are required when OCP is included in the system; the
rest can be optionally included. Each of the optional modules contains a number of individual
command processors.

6.S.1 OCPTSK. This module contains the data base for OCP and is a required module.

6.S.2 OCPTBL. This module contains the entry points for each of the individual OCP command
processors. This module is required.

6.S.3 OCPPRC. This module is the main driver for OCP and is required. This module contains a
I number of individual routines which are described in table 6-7.

Name

OCP Read

Input Record Pre-Scanner

Argument Manipulation Routines

Decode and Call

Common Return Routine

I/O Routines

Change 2

Table 6-7. OCPPRC Routines

Meaning

Reads command line.

Reformats the command line to a specific format.

Routines used by individual processors to get parameters, convert
to hex number if needed, and scan command line.

Decodes next command and calls correct processor.

Provides common return and error returns for processors.

Routine to handle I/O for rewind, forward space, and backspace
processors.

6-10 Digital Systems Division

~-------~ 944776-9701

6.5.4 OCPLRT. Optional processor in single dynamic task system to assign LUNO (ALUNO),
release LUNO (RLUNO), execute program (EXECUTE), load non-real time program (LPROG), and
load real-time program (LRPROG). The modules FURSVC and TSKLDR must be included also.

6.5.5 DOCPLRT. Optional processor in multiple dynamic task system to assign LUNO (ALUNO),
release LUNO (RLUNO), execute program (EXECUTE), load non-real time program (LPROG),
load real-time program (LRPROG), insta1.l non-real task (lTASK), install real-time task (lRT ASK),
install procedure (lPROC), delete task (DTASK), and delete procedure (DPROC-. The modules
FURSVC, DYNTSK, and DTSKLDR must be included also.

6.5.6 OCPSLD. Optional processor for debug commands: dump memory (DMEM), load memory
(LMEM), add (ADD), subtract (SUBTRACT), jump (JMP) , set breakpoint (SBKPT), and clear
breakpoint (CBKPT). The module CNVRSN must be included also.

6.5.7 OCPIOU. Optional processor in single dynamic task system for task status (STASK), I/O
status (SIO), rewind (REWIND), backspace (BSPACE), and forward space (FSPACE).

6.5.8 DOCPIOU. Optional processor in multiple dynamic task system for task status (STASK),
procedure status (SPROC), I/O status (SIO), rewind (REWIND), backspace (BSPACE), and forward
space (FSPACE).

6.5.9 OCPTAD. Optional processor to install time and data (lDATE) and display time (TIME). I
The :modules TSKFUN and CNVRSN must be included if OCPT AD is included.

6.5.10 OCPTLD. Optional processor for dump workspace (DWORK), kill task (KTASK), kill I/O
(KIO), .and trace address (TRACE).

6.5.11 OCPEND. This module supplies dummy command table entries to satisfy references to
processors that are not included in the system. This module is required unless all optional parts
are included in the system.

Change 2 6-10A/6-10B Digital Systems Division

Jd7.5\ ______ _ ~ 944776-9701

ALPHABETICAL INDEX

Digital Systems Division

~-------
ALPHABETICAL INDEX

INTRODUCTION

The following index lists key words and concepts from the subject material of the manual
together with the area(s) in the manual that supply major coverage of the listed concept. The
numbers along the right side of the listing reference the following manual areas:

• Sections - References to Sections of the manual appear as "Section x" with the symbol
x representing any numeric quantity.

• Appendixes - References to Appendixes of the manual appear as "Appendix y" with the
symbol y representing any capital letter.

• Paragraphs - References to paragraphs of the manual appear as a series of alphanumeric
or numeric characters punctuated with decimal points. Only the first character of the
string may be a letter; all subsequent characters are numbers. The first character refers
to the section or appendix of the manual in which the paragraph is found.

• Tables - References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number:

Tx-yy

• Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number:

Fx-yy

• Other entries in the Index - References to other entries in the index are preceded by
the word "See" followed by the referenced entry.

Index-l Digital Systems Division

Jd7.5\ ______ _ ~ 944776-9701

I

I

I

I

I

I

Abort/Time-Out Routine4.2.3.2
Active Queue 5.4.3.1
Address Table, Command Word Table 4.5
Allocation:

Unit-Based I/O 3.3.3
Units 5.6

ALUNIT 6.4.2.5
ASCII:

Read 3.3.2.4,3.3.3.4
Write 3.3.2.4.,3.3.3.4

ASR9902 6.3.1.3

Bad Allocation Bit Map 5.6.4
Bit Map:

Allocation 5.6.3
Bad Allocation 5.6.4

Blank Compression 5.7.1.1
Block:

Device Information 5.2.5 .2
Direct Disc. 3.3.1.1, 5.6.2
File Control 5.7.3
Keyboard Status 5.2.7
Physical Record 3.3.3.4
Supervisor Call Table 5.4.4.2
Task Status 2.7,4.4,5.3.1

Boot Loader. 5.6.1
Buffer:

Linkage . 5 .2.3 .2
Manager. 2.2
Pool 5.2.3

Call:
Block, Direct Disc 3.3.1.1
Get System Table Supervisor 3.2
Handler, I/O4.2.3.3
Interface, Supervisor 2.3
Processor Modules, File I/O

Supervisor 6.4.1
Routines, User-Supplied Supervisor. 4.4
Supervisor 2.1

Calls, Privileged Supervisor Section III
Character, End-of-Logical-Record 5.7.1.1
CHSVC 6.4.2.4
CNTROL 2.12
CNVRSN 6.2.4
Command:

Modifying an OCP 4.5.1
Module, Adding an OCP 4.5.3

Command Word Table 4.5
Common Exit Routine 2.1
Communications Package, Operator 2.6,6.5
Compression, Blank 5.7.1.1
Control Block File 5.7.3
Control Flow, TX990 Operating System 2.1

Operator 2.6
Program 2.1 0

CRDSR 6.3.7
CRTPRO 6.2.9

Data:
Disc Read Format 3.3.6
Structures Section V

Decoder, Interrupt. 5.2.9
DEF Directive 4.3,4.4

Change 2 Index-2

Deleted Sector, Write 3.3.4.4
Device:

Information Block 5.2.5.2
LDT 5.2.2.1
Name Table 5.2.1
Service Routine 4.2.3,6.3
Special 4.2.1

Device Table:
Logical 5.2.2
Physical.4.1,4.2.1, 5.2.5

Devices, Support of Nonstandard 4.2
DIGDSR 6.3.10
Diagnostic Task 2.1,2.7
Direct Disc I/O . 3.3
Directive:

DEF 4.3,4.4
REF 4.4

Directory, File Name 5.6.5
Disc:

DSR Errors . 3.3.5
Format Restrictions 3.3.4.5
1/0 3.3
Information Block 5.6.2
Read Format Data 3.3.6
Special Operations 3.3.4

Diskette Structure:
Logical . 5.6
Physical. 5.5

DMEMSVC 6.2.20
DNT 5.2.1
DOCPIOU 6.5.8, T4-1
DOCPLRT 6.5.5, T4-1
DSR 4.2.3

Errors, Disc 3.3.5
Queue. 5.4.3.3
Temporary Storage 5.2.5.3
Workspace 5.2.5.1

DSRTTY 6.3.8
DSR5MT . 6.3.9
DSR733 6.3.2
DSR911 6.3.5
DSR913 6.3.4
DTASK 2.1,2.7,6.2.15
DTSKLDR 6.2.22
DYNTSK 6.2.21

End-of-File ' ... 5.7.1.1
End -of-Logical Record Character 5.7.1 .1
End-of-Physical-Record 5.7.1.1
Error Message, ERRMSG 4.5
Errors, Disc DSR 3.3.5
EVENTK 6.2.14
Exit Routine4.2.3.5
Extended Operation 2.3,3.3.1,4.3

FCB 5.7.3
File:

Control Block 5.7.3
Format 5.7.1.2,5.7.2.2,5.7.2.3
I/O Supervisor Call Processor

Modules 6.4.1
LDT " 5.2.2.2
Management Tasks 2.5,6.4

I

Digital Systems Division

~~------------------~ 944776-9701

I

I
I

I

I
I

Name Directory 5.6.5
Program 5.7.2.3
Sequential 5.7.1
Structure Logical. 5.7
Utility:

Module Descriptions 6.4.2
Routine 5.2.2
Task (FUR) . 2.5

FILESVC 6.4.2.3
Flags, System . 5.4.2
Floppy Disc:

Format Restrictions 3.3.4.5
Special Operations 3.3.4

FLPDSR 6.3.11
FMPBUE 5.2.4
FMPI 2.6, 6.4.2
FMP2 2.6,6.4.2
FMP3 2.6,6.4.2
FMP4 2.6,6.4.2
FMCLOS 6.4.l.7
FMFBSP 6.4.1.10
FMOPEN 6.4.l.6
FMREAD 6.4.1.8
FMWRIT 6.4.l.9
Format:

Program File , 5.7.2.3
Read 3.3.2.2,3.3.6
Record 5.7.1.1, 5.7.2
Relative Record File 5.7.2.2
Restrictions, Floppy Disc 3.3.4.5
Sequential File 5.7.1.2
Write 3.3.2.3,3.3.3.3

FPYDSR . 6.3.1
FUR 2.5,5.2.2
FURSVC 6.4.2.2
FURTSK 6.4.2.1

Generation, System 4.2.1 , 5.3
GENTEX 4.2.l, 4.4
Get System Table Supervisor Call 3.2
GETARG 4.5
GETHEX 4.5

Handler:
I/O Call4.2.3.3
Unsolicited Interrupt4.2.3.4

Header Table . 5.2.3.1

I/O:
Allocation Unit-Based 3.3.3
Call Handler.4.2.3.3
Direct Disc. 3.3
Operation,IOURTN 4.5
Supervisor Call Processor Modules,

File 6.4.l
Track-Based 3.3.2

IMGLDR , 2.11,6.2.19
Information Block:

Device. 5.2.5.2
Disc 5.6.2

Initial Start Task 2.8
Initialize Date and Time Supervisor Call 3.4
Input/Output Operation 2.4
Interface, Supervisor Call : .. 2.3
Interleaving, Sector 3.3 .4.6

Change 2

Interrupt:
Decoder. 5.2.9
Handler, Unsolicited4.2.3.4
Routine 4.2.2
Vector Table 5.2.8

IOSUPR 2.4,6.2.3

Kernal Modules, TX990 6.2
Keyboard Status Block 5.2.7
KSB 5.2.7
KSRDSR 6.3.3
KSR9902 6.3.14

LDRDAT 2.9
LDRFLG 2.9
LDT 5.2.2
Linkage, Buffer. 5.2.3.2
List, Supervisor Call Table 5.4.4.1
Loader:

Routine. 2.9
System Boot 5.6.1
Single Dynamic Task 2.10

Logical:
Device Table 5.2.2
Diskette Structure. 5.6
File Structure. 5.7
Track Specified. 3.3.4.3

LPDSR 6.3.6
LP990? 6.3.15
LUNO 5.2.2

Management:
File 2.5,6.4

Manager, Buffer 2.2
Map:

Allocation Bit 5.6.3
Bad Allocation Bit. 5.6.4

Memory Management. 2.3
MEMSVC 6.2.5
Message:

Error 4.5
Queue, Intertask 5.2.11, 5.4.3.4

Module Descriptions Section VI
Module Task Definition 5.3
Modules:

File I/O Supervisor Call
Processor 6.4.1

TX990 Kernal. 6.2
Multiunit Workspace 5.2.6

Nonstandard Devices, Support of 4.2

OCP 2.6,4.5,6.5
OCP Command:

Adding to a Module 4.5.2
Modifying an 4.5.1
Module, Adding an 4.5.3

OCPEND 4.5,6.5.9, T4-1
OCPIOU 6.5.6, T4-1
OCPLRT 6.5.4, T4-1
OCPPRC 2.6,4.5,6.5.3,T4-1
OCPSLD 6.5.5, T4-1
OCPTAD 6.5.7, T4-1
OCPTBL 4.5,6.5.2, T4-1
OCPTLD 6.5.8, T4-1

I

I

I

I

Index-3 Digital Systems Division

52175\ ______ _ ~ 944776-9701

OCPTSK 4.5,6.5.l,T4-1
Operating System Control Flow 2.l
Operations:

Extended. 2.3
Floppy Disc Special 3.3.4
Input/Output 2.4

Operator:
Command Processing 4.5
Communications Package 2.6,6.5

PC 2.7
PDT 4.1,4.2.1,5.2.5
Physical Device Table4.1,4.2.1, 5.2.5
Physical:

Diskette Structure. 5.5
Record Block 3.3.3.4
Tracks 5.5

Pointer, Workspace 2.7

I
Power-Up/Restart Routine4.2.3.1
PRB 3.3.3.4
Priority, Task 2.1,2.2
Privileged Supervisor Calls. Section III
Program File Format 5.7.2.3

Queue:
Active 5.4.3.1

I
DSR 5.4.3.3
Intertask Message 5.2.11,5.4.3.4

Queues 5.4.3
System Task : 5.4.3.2

Read:
ASCII . 3.3.3.4
Direct 3.3.2.4
Format 3.3.2.2,3.3.3.2,3.3.6

Rebid Task 2.13
Record Format 5.7.2
REF Directive 4.4
Register, Status 2.7
Relative Record File Format 5.7.2.2
Restrictions, Floppy Disc Format. 3.3.4.5
Routine:

Abort/Time-Out4.2.3.2
Common Exit. 2.1
Device Service 4.2.3,6.3
Exit 4.2.3.5
Extended Operation 4.3
File Utility. 5.2.2
Interrupt 4.2.2
Loader 2.9
Power-Up/Restart 4.2.3.1
User-Supplied Supervisor Call 4.4

SCB . 3 .3.1 .1
Extended. 3.3.1

SD 4.2.1
Sector:

Interleaving 3.3.4.6
Length Specified. 3.3.4.2
Write Deleted 3.3.4.4

Sentry, Task 2.2
Sequential File Format. ,. 5.7.1
ST 2.7
Start Task, Initial 2.8
STASK 2.8,6.2.18

Change 2 Index-4

Status Block:
Keyboard 5.2.7
Task 2.7,4.4, 5.3.l

Status Register 2.7
STA91 1. 6.2.11
STA913 6.2.10
Storage, DSR Temporary 5.2.5.3
Structure:

Data Section V
Logical:

Diskette 5.6
File 5.7

Physical Diskette. 5.5
TX990 . Section II

Supervisor Call 2.1
Get System Table 3.2
Interface. 2.3
Privileged. Section III
Processor Modules, File I/O 6.4.1
Routines, User-Supplied 4.4
Table 5.4.4

Support of Nonstandard Devices 4.2
SVC 2.1,5.4.4
SVC Table, User-Defined 5.2.10
SVC91 1. 6.2.13
SVC913 6.2.12
System:

Boot Loader. 5.6.l
Control Flow, TX990 Operating 2.1
Flags. 5.4.2
Generation. 4.2.1 , 5.3
Table 5.4.1

Supervisor Call, Get. 3.2
Task Queues 5.4.3.2

Table:
Address Table, Command Word 4.5
Block, Supervisor Call 5.4.4.2
Command Word 4.5
Device Name 5.2.1
Get System . 3.2
Header 5.2.3.1
Interrupt Vector 5.2.8
List, Supervisor Call 5.4.4.1
Logical Device . 5.2.2
Physical Device 4.1,4.2.1,5.2.5
Get System . 3.2
Header . 5.2.3.1
Interrupt Vector : 5.2.8
List, Supervisor Call 5.4.4.1
Logical Device 5.2.2
Physical Device.4.l, 4.2.1 , 5.2.5
Supervisor:

Call. 5.4.4
Call, Get System 3.2

System 5.4.1
User-Defined SVC 5.2.1 0

Task 2.1
Definition Module. 5.3
Diagnostic 2.1,2.7
Initial Start . 2.8
Priority 2.l
Queues, System 5.4.3.2
Rebid 2.13
Scheduler 2.1,2.2

I

Digital Systems Division

J2,].5\ ______ _ ~ 944776-9701

Sentry 2.2 TXROOT 2.3,5.4,6.2.1

I Loader Routine, Single Dynamic 2.1 0
Status Block 2.7,4.4,5.3.1

TXSTRT 6.2.16

Volume Name Support. 6.4.3 Unsolicited Interrupt Handler4.2.3.4
TASKDF 5.2,5.3 User-Defined SVC Table 5.2.10
Tasks, File Management 2.5 User-Supplied Supervisor Call Routines 4.4
TBUFMG 22,62h
Temporary Storage, DSR 52.5 .3
Time Slice . 2.2
TITTCM 6.2.8

Vector Table, Interrupt 5.2.8
VOLUME 6.4.3

Track-Based I/O 3.3.2
Tracks, Physical . 5.5

Workspace:
DSR 5.2.5.1

TSB 2.4,4.4,5.3.1
TXFMP 6.4.1.5
TXFMPI 6.4.1.1
TXFMP2 6.4.1.2
TXFMP3 6.4.1.3
TXFMP4 6.4.1.4

Multiunit 52.6
Pointer 2.7

WP ~ 2.7
Write:

ASCII .. 3.3.3.4
Deleted Sector 3.3.4.4 I

TSKFUN 6.2.2 Direct 3.3.2.4
TSKLDR 6.2.7 Format 3.3.2.3,3.3.3.3
TXBOOT. 5.6.1
TXDATA 5.2 XOP 2.3
TXEND 5.2.8,6.2.17 XOPS 4.3

Change 2 Index -5 /Index-6 Digital Systems Division

USER'S RESPONSE SHEET

Manual Title: Model 990 Computer TX990 Operating System

Documentation (944776-9701)

Manual Date:_1_0_c_t_ob_e_r_1_9_78 _______ _ Date of This Letter: ______ _

User's Name: __________ ~ ___ _ Telephone: _________ _

Company: _______________ _ Office/Department: ______ _

Street Address: ___________________________ _

City/State/Zip Code: ________________________ _

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

I II I
BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

P.O. BOX 2909 • AUSTIN, TEXAS 78769

ATTN: TECHNICAL PUBLICATIONS
MS 2146

FOLD

FIRST CLASS

PERMIT NO. 7284

DALLAS, TEXAS

..

J

TEXAS INSTRUMEN'TS'
INCORPORATED
DIGITAL SYSTEMS DIVISION

POST OFFICE BOX 2905' AUSTIN. TEXAS 78769

