TEXAS INSTRUMENTS

Improving Man'’s Effectiveness Through Electronics

(r

Model 990 Computer
TX990 Operating System

Programmer’s Guide
(Release 2)

L T D

MANUAL NO. 946259-9701
ORIGINAL ISSUE 1 APRIL 1977
REVISED 15 DECEMBER 1977 -

(r

Digital Systems Division

(:) Texas Instruments Incorporated 1977
A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the prior consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer TX990 Operating System Programmer’s Guide
(Release 2) (946259-9701)

Original Issue i i i 1 April 1977
Revisedo 15 December 1977 (ECN 41915)

Total number of pages in this publication is 274 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO, NO.
Cover 0 Appendix ADiv 0 Appendix IDiv. 0
Effective Pages 0 Al-A4d 0 Fl-12 ... oo 0
fii-xiv...... oL 0 Appendix BDiv 0 Appendix IDiv. 0
-1-1-8. ..o 0 B1-B16 0 J1-J2. .0 i 0
2-1-26....... . 0 AppendixCDiv 0 Appendix KDiv 0
3-1-322. ... 0 C1-C8....coovvn... 0 Kl-K2....0ouun.n.. 0
4-1-4-10. 0 Appendix DDiv 0 Appendix LDiv 0
S-1-56.......0... ... 0 . D1-D4............. 0 L-1-L6............. 0
6-1-6-14............. 0 Appendix EDiv 0 AppendixMDiv 0
71-726.. ... 0 E1-E2............. 0 Ml-M4............. 0
81-816............. 0 Appendix FDiv 0 Alphabetical Index Div. . . .0
91-938............. 0 F1-F2............. 0 Index-1 - Index-6. 0
10-1-106............ 0 Appendix GDiv 0 User’s Response 0
11-1-11-6.o 0 G1-G2.. ..., 0 Business Reply 0
12.1-122. 00000 0 Appendix HDiv0 CoverBlank 0
13-1-136.t 0 H1-H2............. 0 Coveroovvuunn. 0

0
(_r@) 946259-9701

PREFACE

This manual enables the user to employ the TX990 Operating System, in its standardized or
customized modular configuration (including associated utility programs), with the user’s
standardized or customized hardware configuration.

The sections and appendixes of this manual are organized as follows:

1 General Description — Provides a general description of the TX9990 Operating System and
its utility programs.

11 Loading the Operating System — Provides several alternative step-by-step procedures for
loading the Operating System.

Hi Operator Communication Package (OCP) — Describes the keyboard commands available
to the operator for communicating interactively with the TX990 Operating System (e.g.,
to load a program, abort a task, abort an I/O operation, debug a program, set and clear
breakpoints, et al). '

IV Control Program — Describes how to use the Control Program to load and execute program
from the console.

A% Programming Tasks — Describes how to program user tasks to run under TX990.

VI Executive Sui)ervisor Calls — Describes how the user can employ the executive manage-
ment capability of the Operating System through programmed supervisor calls.

VII Device and File I/O Supervisor Calls — Describes how the user can employ the executive
management capability of the Operating System for controlling an input/output device or
file.

VIII Diskette OCP System Utility (SYSUTL) Program — Describes the keyboard commands
available to the operator for communicating interactively with diskette devices and files.

IX System Generation (GENTX) Utility Program — Describes how the user can customize an
operating system for a specific hardware and software configuration.

X Diskette/Disc Backup and Initialize (BACKUP) Utility Program — Describes how to copy
(or backup) and verify diskettes, as well as initialize new diskettes.

XI Object Manager (OBJMGR) Utility Program — Describes how to copy standard and
compressed object modules from diskette-, cassette-, or card-files onto diskette or cassette
files and how to organize the files by deleting or adding modules.

XII LIST80/80 (LIST 80) Utility Program — Describes how to copy 80-character records
from one device or file to another.

XIII Diskette Dump (DSKDMP) Utility Program — Describes how the user can load, display,
and modify diskettes on an allocation unit basis.

iii Digital Systems Division

@ 946259-9701

A List of Supervisor Calls — Provides a list of all the TX990 Operating System supervisor
calls.

B Device Character Sets — Lists the character sets for the 911 VDT, 913 VDT, 733 or 743
Data Terminal, 804 Card Reader, 306, 2230, 2260 and 588 Line Printers, 33 ASR
Teletypewriter.

C User-Supplied Modules — Describes user-supplied software modules that may be required
for unique peripheral devices, user’s extended operations, or user supervisor calls.

D Glossary — Clarifies selected words used in this TX990 Operating System Programmer’s
Guide.

E TX990-DX10 Compatibility — Describes the considerations to be met to achieve upward
compatibility of tasks from the TX990 Operating System to the DX 10 Operating System.

Compressed Object Code Format — Describes the compressed object code format.
Task State Codes — Lists and describes the task state codes.

H Printout of Fatal Task Error Codes or Display of Illegal Interrupt Code — Lists and
describes the fatal task error codes and the illegal interrupt code.

I 1I/O Error Codes — Lists and describes the I/O error codes available to the user, when
coding a program, for printout or display on a terminal device.

J System Tasks — Describes the eight system tasks capable of being included in the TX990
Operating System.

K System Generation using DX10 Release 3.0 — Steps involved in TX990 system generation
on a DX10 system.

L Support for the 32 I/O Module — Describes the 1/O supervisor call and system generation
support for the 32 I/O module supported by TX990 as a special device.

M Support for the 5MT/6MT Module — Describes the I/O supervisor call and system
generation support for the SMT/6MT special device supported by TX990.

The following documents contain additional information related to the TX990 Operating System
and are referenced herein this manual:

Title Part Number

Model 990 Computer Terminal Executive Development 9462589701
System (TXDS) Programmer’s Guide

Model 990 Computer TMS9900 Microprocessor Assembly 943441-9701
Language Programmer’s Guide

Model 990 Computer Model FD800 Floppy Disc System 9452539701
Installation and Operation

iv Digital Systems Division

946259-9701

Title

Model 990 Computer Model 913 CRT Display Terminal
Installation and Operation

Model 990 Computer Modei 911 Video Display Terminal
Installation and Operation

Model 990 Computer Model 733 ASR/KSR Data
Terminal Installation and Operation

Model 990 Computer Model 804 Card Reader Installation
and Operation

Model 990 Computer Models 306 and 588 Line Printers
Installation and Operation

Model 990 Computer PROM Programming Module
Installation and Operation

990 Computer Family Systems Handbook

Model 990 Computer Communications Systems
Installation and Operation

Model 990 Computer DX10 Operating System
Programmer’s Guide

Model 990 Computer Communications
System Software

Part Number

9434579701

945423-9701

9452599701

945262-9701

945261-9701

945258-9701

9452509701

9454099701

9452579701

946236-9701

v/vi

Digital Systems Division

946259-9701

TABLE OF CONTENTS

Paragraph Title Page

SECTION I. GENERAL DESCRIPTION

1.1 Overview . . C e e e e e e e e e 1-1
1.2 Supported Hardware e e e e e e e s e 1-2
1.3 File Management Features .. 1-2
1.3.1 Volume Names L 12
1.3.2 Sequential Files 0L, 1-3
133 Relative Record Files .. 13
1.34 Program Files Lo L L. 14
1.4 Logical I/0 L o 14
14.1 Pathnames 14
14.2 I/OModes, 1-5
1.5 Supervisor Calls L. . . L. 16
1.6 Operator Interfaces . . . e e e e e e e 1-6
1.7 System Memory Layout Consxderatlons C e e e s 16

SECTION II. LOADING THE OPERATING SYSTEM

2.1 Introduction . . . e e e e e e 2-1
2.2 Loading the TX990 Operatmg System e s 2-1
2.2.1 Loading from Diskette .. 2-1
2.2.2 Loading from Cassette Using Diskette/Cassette ROM Loader 2-2
223 Loading from Cassette Using Card/Cassette ROM Loader 23
23 Initialization . . . C e e e e s e 24
23.1 Initialization Usmg OCP e C e e e 24
232 Initialization Using the Control Program Ce e e e e e e 2-5
2. Manual System Restart L . L L L. 2-5

SECTION 11I. OPERATOR COMMUNICATION PACKAGE (OCP)

3.1 Introduction . . . e e e 3-1
3.2 Activating and Deactzvatmg OCP e e e e e 3-1
33 LUNOs C e e e e e e e e e e 3-1
34 Command Format and Syntax C e e e s e 341
35 OCP Commands . . . e e e e s 32
35.1 OCP Task Support Commands S e e e e 35
3.5.2 OCP Debugging and Error Recovery Commands e e 3-8
3.5.3 OCP 1/0 Utility and Status Request Commands 313
354 OCP Time and Date Commands . 3.6
355 OCP Termination (TE) Command 317
3.6 ErrorMessages Lo Lo L0 317

SECTION IV. CONTROL PROGRAM

4.1 Introduction . . . e e e 4-1
42 Activating and Deactlvatmg the Control Program e e e e 4-1
43 LUNOs oo e 4-1

vii Digital Systems Division

946259-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
44 Operator Interaction 4-2
44.1 Prompt Responses ... 4-2
4.4.2 Default Values . . . e e e e e e 43
443 Special Keyboard Control Keys e e e e e e e s 43
4.5 Accessing Parameters through the Control Program e e e 4-5
4.6 ErrorMessages L L L L. L., 49

SECTION V. PROGRAMMING TASKS

5.1 Introduction . . . Ce e e e e e e 5-1
5.2 Task Structure and Programmmg C e e e e e e e e e 5-1
5.3 Task Scheduling e e e e 5-2
54 Preventing Accidental Alteratlon or Destructlon of the Operatmg System e e 5-3
55 User-Specified End Action Routine in Response to Fatal Errors, . . 54
56 Coding Supervisor Calls and Supervisor Call Blocks 5-5

SECTION VI. EXECUTIVE SUPERVISOR CALLS

6.1 Introduction . . . e e e e e e e e e e e e, 6-1
6.2 Task Control Supervmor Calls e e e e e e e e e e e e 6-2
6.2.1 Bid Task Supervisor Calt 5 .. 6-2
6.2.2 Change Priority SupervisorCall 1146 6-2
6.2.3 Do Not Suspend SupervisorCall 9y 6-3
6.2.4 Time Delay Supervisor Call 2, . . . e e e e e e e 6-3
6.2.5 Activate Time Delay Task Supervisor Call E16 C e e e e e 6-3
6.2.6 Unconditional Wait Supervisor Cali 6, 6-4
6.2.7 Activate Suspended Task SupervisorCall 7,4 64
6.2.8 End of Task SupervisorCalldy 64
6.2.9 End of Program Supervisor Call 1646 Ce e e e e e 6-5
6.2.10 Get Parameters Supervisor Call 17,6 6-5
6.2.11 Get OwnID Supervisor Call 20y 6-5
6.2.12 Make Task Privileged Supervisor Call23,, 6-6
6.3 Code Conversion Supervisor Calls e e e e e e 6-6
6.3.1 Convert Binary to Decimal ASCII Supervisor Call Am . 6-6
6.3.2 Convert Decimal ASCII to Binary Supervisor CallB,y 6-7
6.3.3 Convert Binary to Hexadecimal ASCIHI SupervisorCallCy 6-7
6.3.4 Convert Hexadecimal ASCII to Binary Supewlsor CalDy 68
6.4 Memory Allocation SupervisorCalls 68
64.1 Get Memory SupervisorCall 1246 6-8
6.4.2 Release Memory Supervisor Call 13,6 69
64.3 Get System Table SupervisorCall21,, 69
6.4.4 Get Common Data Address SupervisorCall 106 6-10
6.4.5 Return Common Data SupervisorCall1By 610
6.5 Intertask Communication SupervisorCalls 611
6.5.1 Put Data Supervisor Call 1C . 611
6.5.2 Get Data SupervisorCall 1Dy 612
6.6 Date and Time SupervisorCall3,6 . 612

viii Digital Systems Division

9462599701

Paragraph

7.1
7.2
7.2.1
7.2.2
7.2.3
724
7.2.5
7.2.6
7.2.7
7.2.8
7.29
7.2.10
7.2.11
7.2.12

791
f.L.1

7.2.14
7.2.15
7.2.16
7.2.17
7.2.18
7.2.19
7.2.20
7.2.21
7.2.22
7.2.23
7.2.24
7.2.25
7.2.26

e 2o W 1]
felodd

7.2.28
73
7.3.1
7.3.2
7.4
7.4.1
7.4.2
74.3
7.5
7.6
7.7

TABLE OF CONTENTS (Continued)

Title Page
SECTION VII. DEVICE AND FILE I/O SUPERVISOR CALLS

Introduction -1
1/0 Supervisor Call (Q(D) 7-1
1/0 Operations 7-6
Open Operation (Code 0016) 7-6
Close Operation (Code 014) . . 77
Close with EOF Operation (Code 0216) 7-10
Open Rewind Operation (Code 034) . 7-10
Close Unload Operation (Code 04,5) 7-10
Read Device File Status Operation (Code 05 16) 7-11
Forward Space Operation (Code 064) 7-11
Backward Space Operation (Code 0746) 7-11
Read ASCIH Operation (Code 0946) 7-11
Read Direct Operation (Code 0A) 7-12
Write ASCII Operation (Code 0By) 7-13
Write Direct Operation (Code 0Cy¢) 7-14
Write EOF Operation (Code ODyg) . 7-14
Rewind Operation (Code OE ;) . 7-15
Unload Operation (Code OF) 7-15
Unlock Operation (Code 4A) . 7-15
Create File Operation (Code 904) . . 7-15
Assign LUNO to Pathname Operation (Code 91 ,6) 7-15
Delete File Operation (Code 924) - . 7-16
Release LUNO Assignment Operation (Code 931(, . 7-16
Compress File Operation (Code 946) . 7-16
Change File Name (Code 95) 7-16
Unprotect File Operation (Code 96,6) . 7-16
Write Protect File Operation (Code 97) . 7-16
Delete Protect File Operation (Code 98,6 7-16
th!ly rdllllldlll\. O) llldz\ \bUUC 7716} . . . 7'}6
Coding Examples Using File Management Supervmor Call 0016 ... 116
Supervisor Call 15,5 Support for Tasks Designed to Run Under TX990, Release 1 0 ... 7-18
Supervisor Call 15, SCB Format Y A £
Coding Example . . 7-18
VDT Character Mode Supemsor Cahs 1A16, 8,6, and 1816 7-19
VDT Utility Supervisor Call 1A 7-19
VDT Character Input Supervisor Call 8;¢ . .. 7-24
VDT Conditional Character Input Supervisor Call 8¢ 7-24
Wait for I/O Supervisor Cail 0146 . . 7-24
Abort 1/O Supervisor Call OF ;¢ Operation 7-25
Abort 1/0 Supervisor Call Block 1E;6 . 7-25

ix

Digital Systems Division

946259-9701

TABLE OF CONTENTS (Continued)
Paragraph Title Page

SECTION VIII. DISKETTE OCP SYSTEM UTILITY (SYSUTL) PROGRAM)

8.1 Introduction L L, 8-1
8.2 Loading SYSUTL . . . S e e e e e e e s e e e e e 8-1
8.2.1 Loading SYSUTL Using OCP .. e e e 8-1
8.2.2 Loading SYSUTL Using the TX990 Operatmg System and the TXDS

Control Program . . . e e e s, 8-3
83 LUNOs e e e e e 84
8.4 SYSUTL Command Format and Syntax e e e 84
8.5 SYSUTLCommands ... 8-5
8.5.1 BootCopy(BC), 8-5
85.2 Set System File (SF) 85
8.5.3 Create File (CF) 8-6
854 Delete File(DF), 86
8.5.5 CompressFile (CM) ... 8-6
8.5.6 Change FileName (CN) 8-6
8.5.7 Change Protection(CP) .. 8-7
8.5.8 Define Output (DO) 8-7
8.59 Map Diskette(MD) 8-8
8.5.10 MapFileMF) 89
8.5.11 Diskette Dump(DD) 8l0
8.5.12 DisketteLoad(DL) .. 811
8.5.13 FileDump(FD) 81
8.5.14 File Load (FL) T - 18
8.5.15 Initialize Date and Time (ID) R - 1 0
8.5.16 Print Time and Date(TI) . 812
8.5.17 Terminate SYSUTL(TE) . 83
8.5.18 Change Volume Name (CV) 813
8.6 SYSUTL ErrorMessages 814

SECTION IX. SYSTEM GENERATION

9.1 Introduction . . . C e e e e 9-1
9.2 Preparation for Generatmg a TX990 Operatmg System e e e e e e e 9-1
9.3 Defining the New System e e e e e e e e e 9-1
9.3.1 LUNOs Used by GENTX e e e 92
9.3.2 Loading and Executing System Genera’uon (GENTX) Utlhty Program e e e e 92
9.3.3 DefinitionPhase e e e e e 9-3
9.34 ConstructionPhase o 919
9.3.5 GENTX ErrorMessages .. 919
9.4 Assembling the SourceModules 92
9.5 Linking the Object Modules 92
9.6 Example of System Generation .. 930

X Digital Systems Division

946259-9701

TABLE OF CONTENTS (Continued)
Paragraph Title Page

SECTION X. DISKETTE/DISC BACKUP AND INITIALIZE PROGRAM

10.1 Introduction . . e e e e e e s e e e 10-1
10.2 LUNO:s and Their Uses e 18]
10.3 Operating Procedure . . . e 18]
10.4 User Interaction with the Backup Utlhty . {1 &)
10.5 Error Messa ges and ReCOV'GI'y s e e e e e e e e e e e e e e e e e e e 10

SECTION XI. OBJECT MANAGER (OBJMGR) UTILITY PROGRAM

11.1 Introduction L L . . L oL o oo oo oI
11.2 LUNOs . . . e 11-1
113 Loading OBJMGR - S B B
11.3.1 Loading OBIMGR Using the TX990 Operatmg System and OCP O § 5

132 Loading OBIMGR Using the TX990 Terminal Executive Development System 112
11.3.3 Loading and Executing OBJIMGR Usmg DX10,Release 30 112
11.4 Operator Interaction S B

SECTION XII. LIST80/80 (LIST80) UTILITY PROGRAM

12.1 LISTSO/80« . . . e e e e e e e e 12
12.1.1 Load and Executing LIST80/80 121
12.1.2 LIST80/80 Error Messages« . « « .+ « « o . . oo .. 122
SECTION XIII. DISKETTE DUMP (DSKDMP) UTILITY PROGRAM
13.1 Introduction L o 134
13.2 LUNOs o o e v e e e e e e e e e e e e e e e e 13-1
133 Loading Procedures ... 131
134 Operating Procedures . . . e e e e e e e e e e e e e e e e 132
13.4.1 Increment Sector Number (I) O K
13.4.2 Decrement Sector Number (D) O 2
1343 Print Display P) . . . O
1344 Set Data Mode to ASCII (A) O 2
13.4.5 Set DataModetoEBCDIC(E) « « . .« . . 133
13.4.6 Set Data Mode to Hexadecimal (H) 134
13.4.7 Modify Displayed Sector Data(M) 134
13.4.8 Position Cursor to Sector: Field(New Line) 134
13.5 ErrorMessages o« e e e e e e e e e e 135

xi Digital Systems Division

946259-9701

APPENDIXES

Appendix Title Page
A List of Supervisor Calls for User Tasks and File Management of

I/ODevice-Files .A1
B Device CharacterSetsBl
C User-Supplied Modules~C1
D Glossary . . . 0 5 |
E TX990 - DX10 Compatlblhty e =3
F Compressed Object Code Format . F1
G Task State Codes . . . T ¢ 5 |
H Printout of Fatal Task Error Codes or Dlsplay of Illegal Interrupt Code B & 8
I I/OErmorCodes e 5
J System Tasks . . . S 1 |
K TX990 System Generatlon Usmg DXlO Release 3 0 B €3 |
L Support for the SMT/6MT 1/O Interface Special Device . . . B O |
M Support for the 32-IN/Transition Detection Module Special DeV1ce B ' 03|

LIST OF ILLUSTRATIONS

Figure ' Title : Page
1-1 TX990 Control Flow . . . T 1Y
1-2 Typical TX990 Operating System Conﬁguratlons O,
5-1 TX990 Task Structure . o . .51
6-1 Intertask Communication Supervisor Calt Block6-11
7-1 Supervisor Call Block for I/O SupervisorCall00, 12
7-2 Bit Manipulation for Direct Read of Card . . . O B3
7-3 File Management Supervisor Call Block for File Management Superv1sor

Call 15,6 . . . e 3 1
7-4 VDT Utility Supervisor Call Block e B!

Xii Digital Systems Division

946259-9701

Table

6-1

7-1
72
7-3
74
7-5

8-1

9-1
9-2
9-3

QA
TS

9-5
9-6
9-7

13-1

LIST OF TABLES

Title
Standard TX990 Device Names .
Syntax of OCP Commands
OCP General Error Messages .
OCP Operand Error Messages .

Byte-Allocation of COMMON Memory
TXDS Control Program Error Messages

Executive Supervisor Calls
1/O Supervisor Calls .

SVC 00 1/0 Operations
/0 Operations (Record Mode)

Device Code Numbers and File Code '\hmbels .

VDT Utility Completion Codes .
SYSUTL Error Messages

GENTX Prompts .

System Timing Parameters

GENTX Device Keywords .

System Task Definition

Priority Digits . .

GENTX Error Messages .
TX990 Operating System Modules .

Error Messages

Diskette Dump Utility Directives

Page
24

33
3-18
3-19

46
4.9/4-10

6-1

7-1
7-6
7-8
7-10
7-23

9-4
9-7
9-9
9-14
9-15
9-19
9-21

11-6

134

xifi/xiv

Digital Systems Division

(@ 946259-9701

SECTION I

GENERAL DESCRIPTION

1.1 OVERVIEW

The TX990 operating system is an executive that controls task execution in a real time
environment. TX990 executes in either the Model $90/4 or the Model 990/10 Computer. The
memory protect hardware option (Model 990/4) and memory mapping option (Model 990/10) are
not used by TX990. The maximum memory size is 56K bytes in the Model 990/4 Computer and
62K bytes in the Model 990/10 Computer.

TX990 may be customized to provide many features for the user, and configured to save memory
by excluding features which are not desired. A minimum TX990 system includes a task scheduler,
interrupt handler for the clock, and a supervisor call interface, and occupies about 4K bytes of
memory. Additional modules and features (e.g., file management, operator communications
package) are optional according to application requirements.

The task scheduler provides multiple priority level scheduling of Central Processor Unit (CPU) time
and maintains a list of active tasks at each priority level. Four levels of priority are available for user
tasks. The TX990 Operating System allocates time to tasks by time slicing. Tasks are allocated time
slices at each of the four priority levels on a first-in, first-out (FIFO) basis. During system
generation the user may specify the maximum number of time slices that may occur at each priority
level before giving the next priority level a time slice. The length of time slice is also specified during

system generation.

The interrupt handling software operates in conjunction with the prioritized interrupt scheme to
allow the user to assign high interrupt priorities to critical devices or input lines. The interrupt
handler must be included in the operating system to support clock-interrupt time slicing and
time-dependent supervisor calls.

Tasks request the support of the operating system by executing supervisor calls (SVCs). SVCs are
routed through a supervisor call interface to an associated supervisor call processor. A substantial
number of file management supervisor calls and task control calls are supported by the operating
system. The user may also include his own custom supervisor call processors if desired.

Tasks that execute under TX990 may be classified as either dynamic tasks or tasks linked into the
operating system. When a TX990 operating system is generated, its variou$ parts must be link edited
to form a single linked object module, which can be loaded into memory and executed as an
operating system. Any system or user tasks linked with the other system modules are loaded into
memory when the system is booted, and are memory resident.

Other tasks, called dynamic tasks, that are not linked with the system may reside in diskette files or
cassettes. They may be dynamically loaded and executed through the use of operator commands or
supervisor calls. All user tasks not linked in with the system are dynamic tasks. Dynamic tasks are
loaded beyond the end of the operating system and all linked-in tasks, into memory called the
dynamic task area. The TX990 operating system may be customized to support a single dynamic
task, multiple dynamic tasks, or no dynamic tasks.

Digital Systems Division

@ 9462599701

1.2 SUPPORTED HARDWARE
The Model 990 Computer System hardware supported by TX990 include the following:

e Model 990/4 or 990/10 Computer

e Programmer Panel

e FDS800 Floppy Disk

® Model 911 or 913 Video Display Terminal

e Model 733 “Silent 700”°* ASR/KSR Data Terminal

e Model 743 Data Terminal

e Model 306 Line Printer

e Model 588 Line Printer

e Model 810 Line Printer

e Model 2230 Line Printer

e Model 2260 Line Printer

e Model 804 Card Reader

e 33 ASR Teletype Data Terminal

® 5SMT/6MT Serial Interface Module

° 32-In/Transition Detection Module
1.3 FILE MANAGEMENT FEATURES
The TX990 operating system optionally provides a file management package to support file
structures and operations on diskettes and file-oriented devices. File management maintains a
directory on all initialized diskettes in the system (see Section X on diskette initialization). This
directory can point to up to 48 files on the diskette. Diskette files consist of blocks of allocation
units. An allocation unit is a logical division of the diskette. A diskette is divided into 333 allocation
units, each consisting of six sectors. Two basic file types are supported: sequential files and relative
record files. Additionally, a special usage of the relative record file, called a program file, is
supported. Some of the features of the file management package and file types are described in the
following paragraphs. :
1.3.1 VOLUME NAMES. In addition to accessing files on a particular diskette drive (e.g., DSC,
DSC2), file management optionally supports volume names for initialized diskettes. When a diskette
is initialized, the user may assign it a one to four character volume name. If volume name support is
included in the operating system, files on that diskette may be accessed through the volume name
or the diskette drive device name. Addressing a diskette by volume name can be performed

regardless of which drive it may be mounted on.

*Trademark of Texas Instruments Incorporated

1-2 Digital Systems Division

@ 946259-9701

Volume names are only supported by operating systems which include the module VOLUME (see
the section on system generation). The standard TI supplied TX990 operating systems do not
provide volume name support and diskettes may only be accessed by drive name.

1.3.2 SEQUENTIAL FILES. The logical data records in a sequential record file must be accessed
in a sequential manner (i.e., record 1 must be processed before record 2, etc.). When a sequential
file is closed following an access, the operating system saves the position of the last access to the
file. When the file is opened again, the next I/O call accesses the next logical record in the file
instead of the first logical record of the file. To access the first logical record, the file must be
rewound before the access.

The last write operation performed on a file defines the current end of that file. No data can be read
from the media that is beyond the current end of that file. The operating system prevents switching
from a read, backspace or forward space operation to a write or write end-of-file operation until an
end-of-file mark is read; however, when extending a file, a backspace of one record can be followed
by write operations. This precaution prevents writing on data previously stored in a file. Similarly,
the operating system prevents switching from a write operation to a read, forward space, backspace,
or rewind operation until an end-of-file mark is written.

Sequential files are blank compressed: i.e., when a logical record is written to a file, ASCII blanks
are removed from the record. Blanks are restored to the record as it is read from the file.

1.3.2.1 Sequential Cassette File. A cassette may contain a single file that fills one side of the
cassette, or it may contain multiple subfiles with an end-of-file mark separating each individual file.
The beginning of the first file on the tape is located by executing a rewind operation. Subsequent
subfiles can be located by forward spacing or reading to the next end-of-file mark. Any number of

ho ~oggettos b mccencon . o PRSI

~e o 1.4 1 L ~f 4l £1. . 12 PR 5 [oS
the cassette; however, the length of the file is limited to one side of the

subfiles may appear or
cassette.

1.3.2.2 Sequential Diskette File. A sequential diskette file is comprised of logical records in blocks
of allocation units. Whenever possible, the operating system will allocate contiguous blocks of
allocation units. Diskette files may be created by either the Create File operation (code 90), or
through the autocreate function when the file is opened. The operating system allocates additional
allocation units to the file as needed when writing to the file. Each diskette file can contain a
maximum of 20 noncontiguous blocks. Each file is terminated by an end-of-file mark. The
beginning of the file can be located by executing a rewind file operation. Subfiles can be created by
inserting end-of-file marks within the file, To add a new record to the end of a existing file or last
subfile, read (or forward space) until the end-of-file mark is detected. Then backspace one record to
position the media on the end-of-file record and write the new record(s).

1.3.3 RELATIVE RECORD FILES. Relative record files are supported only on diskette. A relative
record file is comprised of contiguous and noncontiguous blocks of logical records, in or out of
sequence (i.e., in random sequence). Each logical record is identified by a logical record number.
Space is automatically allocated for a relative record file in blocks of contiguous allocation units
when possible and, when not possible, in blocks of noncontiguous allocation units. There is no
maximum number of logical records which can be placed in the file. However, there can be no more
than 20 noncontiguous blocks of allocation units. The beginning of a relative record file is specified
by logical record C; the end of the relative record file is specified by the highest numbered logical
record, which is automatically identified with an end-of-file mark. No subfiles exist in relative
record files.

Digital Systems Division

{@ 946259-9701

Logical records in a relative record file have a fixed length defined when the file is created. If the
user tries to write a record larger than the specified record length, the record is truncated. If the
record is shorter than the fixed record length, the record is binary zero filled.

By initially coding the logical record number to zero, the relative record file may be automatically
written or read sequentially until the highest logical record number is reached. After a read or write
1/O file operation, the logical record number is incremented by the file management task: the logical
record number is also incremented, or decremented, when the relative record file is rewound,
forward spaced or backward spaced. The user may access any record at random by specifying the
desired logical record number. Subsequent accesses may be either random or sequential. When
another relative record number is specified out of sequence, access is at random. When none is
specified, the next record in sequence is accessed.

1.3.4 PROGRAM FILES. Program files are relative record files used to contain a program memory
image; i.e., the linked object of one task segment and possibly one procedure segment and up to
256 overlay segments. Program files are created by the Link Editor in IMAGE format. A program
file may contain only one task and one procedure.

A program file contains several records of system overhead information, and then the linked object
of a program (task, procedure, and overlays). The object code is in a format such that it can be
loaded directly into memory by the image loader. By linking programs into program files, the user
may save diskette space and load time. Programs in program files take 25%-40% less time to load
than programs in compressed or noncompressed object files, and require approximately 25% less
diskette space.

1.4 LOGICALI/O

TX990 uses logical unit numbers (LUNOs) to represent physical devices and files. User tasks are
coded to perform I/O to a LUNO, which is converted by the operating system to represent the
physical device or file to which the LUNO is assigned. This enables a user to code an I/O operation
independent of a specific hardware or file configuration.

LUNOs may be assigned and released by a task using I/O Supervisor Call 00 operations or operator
commands. A LUNO is assigned to a pathname, which may be either a device name (1-4 characters)
or a file name. Pathname format and syntax is described in the following paragraph. LUNOs may
range in value from 0 to FF 6.

1.4.1 PATHNAMES. A pathname may be the name of a device or a file. If a pathname represents a
device, it is the name (1-4 characters, first must be alphabetic) assigned to that device at system
generation (e.g., CS1, LP, CR).

If a pathname represents a file, it has the following format:

<device name>

<volume name> <file name> |/ [<extension of file name>]]

The first pathname component is optional, and is the name of the diskette drive or diskette volume
which contains the file. A volume name is 1-4 characters, like a device name. The first character
must be alphabetic; the remaining characters must be alphanumeric. A volume name may only be
used if volume name support is selected during system generation (see Section IX). TI supplied
TX990 systems do not include volume name support. The default value for this pathname
component is defined during system generation.

1-4 Digital Systems Division

@ 946259-9701

The second pathname component consists of a colon (:) and a 1-7 character file name. The first
character of the file name must be alphabetic; the rest may be alphanumeric.

The third pathname component is an optional 1-3 character extension of the file name. Thé first
character must be alphabetic or blank; the rest must be alphanumeric or blank. If an extension is
used, it must be separated from the file name by a slash (/) character. Optionally, the slash may be
used alone, and the extension is interpreted to be three blanks. If no slash-extension is used, the
extension is again interpreted as blanks.

The following are examples of legal pathnames:

:FILE File name, 1 to 7 characters; the device name is the
default disk name.

DEV:FILE Device and file name; the extension is defined as
blanks.

VOL:FILE Volume Name 1 to 4 characters; the extension is
defined as blanks.

:FILE/EXT ‘ File name and file extension name; the extension can
be 1-3 chars. The device name is the default disk
name.

DEV:FILE/EXT Complete pathname with no defaults.

VOL:FILE/EXT Complete pathname with no default

DEV:FILE/ Defaults to a blank extension

VOL:FILE/ Volume name, and file name, extension defaults to

blank extension.

Trailing blanks are allowed at the end of each field (as presented below), but embedded blanks are
not allowed within the field itself.

DSC:FILEYBY/HBY is the same as :FILE/or :FILE
NOTE

The above example assumes that DSC was generated as the default
diskette name during system generation.

1.4.2 1/0 MODES. Three 1/O modes of operation are employed: file mode, record mode, and
character mode. I/O devices are designated for file, record or character mode of operation during
system generation. An I/O device placed in the file mode is assigned to the calling task when an
open I/O operation is employed and remains assigned to that calling task until a close operation is
performed. An I/O device placed in the record mode remains assigned to the calling task only during
execution of the individual I/O operation. In the record mode, a Video Display Terminal (VDT) has
a LUNO assigned to enable execution of an 1/O operation. However, a 911 or 913 VDT is also
capable of being operated in the character mode. The character mode enables the VDT to be
uniquely programmed and accessed by a station number, rather than a LUNO.

1-5 Digital Systems Division

(I‘_@; 9462599701

1.5 SUPERVISOR CALLS

Tasks request the support of the operating system by executing supervisor calls that are routed
through a supervisor call interface to an associated supervisor call processor. A substantial number
of file management supervisor calls and task control calls are supported by the operating system.
The user may also include his own custom supervisor call processors if desired. The different
supervisor calls provided by TX990 are described in Sections VI and VII.

1.6 OPERATOR INTERFACES

TX990 optionally provides two operator interfaces, the Operator Communications Package (OCP)
and the Control Program. A customized TX990 system may include neither, one, or both of the
interface packages. The Control Program prompts the operator to load and execute any system
utility or user program. It also provides a means of passing parameters to the program. The Operator
Communications Package provides several commands which may be entered by the operator, and
which perform various system functions (e.g., loading or executing programs, and debugging
capabilities). The two operator interfaces are described in Sections III and IV.

1.7 SYSTEM MEMORY LAYOUT CONSIDERATIONS

Figure 1-1 shows the flow of control within a TX990 that includes all options. The task scheduler
initiates execution of a user task as previously described. The task requests support of the executive
by executing SVCs that are processed by the supervisor call interface. I/O supervisor calls are
processed by the I/O Supervisor (I0S), and other supervisor calls are processed by their respective
supervisor call processors. Following execution of a supervisor call, the supervisor call interface
returns control either to the calling task or to the task scheduler, according to the type of supervisor
call. Interrupts from the clock and from active I/O devices are processed by the appropriate handler,
which passes control to a common interrupt return after processing the interrupt. The common
interrupt return passes control to the point in the task or executive at which the interrupt occurred.

In figure 1-1, the optional portions of TX990 are shown outlined with dashed lines. Figure 1-2
shows memory maps of several possible configurations of TX990. The minimal system consists of
the basic configuration shown in figure 1-2A. This provides a basic task scheduling and an interrupt
processing monitor for a small static system. The minimal TX990 Operating System includes the
data structures, task scheduler, supervisor call interface (with dummy supervisor call processors),
and the interrupt processcr. The user tasks in this type of system are linked and loaded with the
system and perform any I/O operations without the aid of TX990.

The addition of supervisor call processor modules, I/O supervisor call processor modules, and Device
Service Routine (DSR) modules results in the configuration shown in figure 1-2B. In this
configuration, it is necessary to link and load user tasks with the system.

The addition of OCP modules as shown in figure 1-2C adds the capability of operator interaction
with the oSystem ssing OCP commands. Addition of a dynamic task area, also shown in figure 1-2C,
allows the operator to load a task or tasks by OCP command into the dynamic task area for
execution. This capability, along with the use of OCP commands, enables debugging of tasks. Other
user tasks must be linked and loaded with the operating system.

The addition of file management modules, as shown in figure 1-2D, adds the capability of
performing I/O operations with diskettes. This capability is necessary when the user wants to
configure the Operating System using Terminal Executive Development System (TXDS). TXDS
provides the user with those utilities necessary for software development (see the TXDS
Programmer’s Guide, part number 946258-9701, for details).

16 Digital Systems Division

L1

uoising swaeysAs 1enbig

(A)133421

-

Figure 1-1. TX990 Control Flow

{_INTERRUPT HANDLERS 1'
! | I 1
| TIMER al BASE — ‘08 i
, } Lt
oevice 1 | | e———— =
| |Nc%yn‘\38r;'r TASK —————-[SUPERVISOR |
RETURN # SCHEDULER proCESSors | |
- =]
¢ |
| | '
| | SUPERVISOR
l DEVICE N || : INTERFACE
e e e — - INTERRUPT GCCURED
| ocP —1-———»——--——-—-—-—--————-4 TASK
|
‘ -

10467657916

946259-9701

BASIC TX990 BASIC TX990
SVC PROCESSORS
USER TASKS 10s
WITH
STANDALONE
170
DSRS
USER
TASKS
A. B.
BASIC TX990 BASIC TX990
SVC PROCESSORS SVC PROCESSORS
10s 10s
DSRS FILE MANAGEMENT
ocP DSRS
USER : OCP
TASKS
USER TASKS
DYNAMIC
TASK AREA DYNAMIC TASK AREA
C. D,

(A)133422A

Figure 1-2. Typicail TX990 Operating System Configurations

A system configured as shown in figure 1-2A requires less of available memory for system purposes
(overhead) than the other configurations, and is desirable where minimizing memory overhead is the
most important consideration. The additional support provided by the other configurations requires
that more memory be available for system use.

Systems configured as shown in figure 1-2A and B support user tasks that are identified to the
operating system during system generation and are linked and loaded with the operating system.
These tasks occupy the area of memory beyond the area occupied by TX990, and may be placed in
execution when the operating system is loaded. Operating Systems configured as shown in
figure 1-2C and 1-2D also support these types of tasks but, in addition, they support a dynamic task
area into which tasks may be loaded and executed by OCP command. The dynamic task area
consists of the available memory beyond the area occupied by the other user tasks.

1-8 Digital Systems Division

o]
{@ 946259-9701

SECTION II

LOADING THE OPERATING SYSTEM

2.1 INTRODUCTION

The TX990 operating system may be loaded into memory from a diskette or a cassette. Basically,
two methods may be used to load the operating system: (1) a ROM loader can execute and load the
TXBOOT program from diskette which in turn loads the Operating System; or (2) a ROM loader
can execute and load the operating system directly into memory from a cassette or cards. More
specifically, when the operating system is loaded from a diskette, a diskette/cassette ROM loader is
utilized and the TXBOOT loader is loaded from a diskette; when the operating system is loaded
from cassette, a diskette /cassette ROM loader or a card/cassette ROM loader is utilized.

This section provides the step-by-step procedures required to achieve successful loading with each
method. The initilization procedure required to be performed after the operating system is loaded
into memory is also presented in this section. Two alternative initialization procedures are
presented: one is used when an Operator Communication Package (OCP) is supplied with the
operating system and the other is used when the TX990 Control Program and no OCP is supplied
with the operating system. Any operator interaction with an operating system that does not include
OCP capability must be provided by either user tasks or user-supplied system modules. At the end
of this section, a procedure is provided to manually restart the system in event a system failure does
not cause the contents of memory to be altered.

When an error occurs, the error code is displayed by the indicators on the front of the Programmer
Panel and the FAULT indicator is turned on. (See Appendix H, Printout of Fatal Task Error Codes
or Display of Illegal Interrupt Code.) When an Operator Panel is used in the system, any error which
occurs during loading causes the FAULT indicator to turn on and stay on.

2.2 LOADING THE TX990 OPERATING SYSTEM
The following paragraphs describe four methods for loading a TX990 operating system.

. Proceed as follows:

1. Insert one of the three operating system diskettes (i.e., the diskette which contains the
913 VDT operating system, the 733 ASR operating system, or the 911 VDT operating
system) into any diskette drive.

[\

Sequentially depress the HALT/SIE, RESET, and LOAD switches on the front of the
programmer panel. The TXBOOT program will now load into memory, followed by the
TX990 operating system.

NOTE

The ROM loader tries to load from each of the first four diskette
drives, beginning with diskette drive O, until a READY drive is
found. If none of the diskette drives indicate READY, the ROM
loader will load from the cassette drive that is in the PLAYBACK
mode and in the READY state.

2-1 Digital Systems Division

o
%@ 9462599701

3. When successful loading of the TXBOOT program and the operating system is completed,
observe the following printed output or display from the system console (provided the
Initial Start Task (STASK) module-feature is supplied with TX990):

TX990 SYSTEM RELEASE 2.2
MEMORY SIZE (WORDS): 16384 AVAILABLE: 5940

(where the memory size printout or display is in decimal numbers specifying the quantity
of memory words; the size, in words, of the dynamic task area is printed out as available
memory).

NOTE

1. When the user does not include a task that produces an
indication of successful loading of the operating system, the
only possible way to verify successful loading is by usage of the
operating system.

2. The operating system diskette being used during the loading
procedure must have the diskette boot program written on
allocation units O through 4, and the system file pathname must
be defined. All standard TI diskettes have the diskette boot and
the system file pathname previously defined; however, if the
user wants to create an operating system diskette, the diskette
boot program can be written and the system file pathname can
be defined by using the Set System File (SF) command from
the Diskette OCP System Utility (SYSUTL) Program. For
information relating to SYSUTL, see the Diskette OCP System
Utility (SYSUTL) Program section in this manual.

4. After loading of the operating system is completed (i.e., after the printed output or
display appears on the system console as specified in the previous step), perform the
initialization procedure presented in paragraph 2.3.

2.2.2 LOADING FROM CASSETTE USING DISKETTE/CASSETTE ROM LOADER. Proceed as
follows:

1. Place the cassette which contains the TX990 operating system in either of the two
cassette drives of the 733 ASR terminal.

NOTE
For operating instructions covering the cassette unit, refer to the
Model 990 Computer 733 ASR/KSR Data Terminal Installation and
Operation Manual, part number 945259-9701.
2. Rewind the operating system cassette.

3. Place the cassette unit in the PLAYBACK mode and in the READY state.

4. Press the HALT/SIE switch and then the RESET switch on the Programmer Panel.

22 Digital Systems Division

o
@ 946259-9701

5. Place the number 0080, into memory address 0080, as follows:

a. Press the CLR switch and the 8 switch on the Programmer Panel to set the displayed
value to 0080;¢ .

b. Press the ENTER MA switch on the Programmer Panel.
c. Press the MDE switch on the Programmer Panel.

6. Load TX990 into memory by pressing the LOAD switch on the Programmer Panel.

7. When loading of the operating system program is completd, observe the following printed
output or display from the system console (provided the Initial Start Task (STASK)
module-feature is supplied with TX990):

TX990 SYSTEM RELEASE 2.2

MEMORY SIZE (WORDS): 16384 AVAILABLE: 5940

(where the memory size printout is in decimal numbers specifying the quantity of
memory words; the size, in words, of the dynamic task area is printed as available
memory).

8. After loading of the operating system is completed (i.e., after the printed output or
display appears on the system console as specified in the previous step), perform the

initialization procedure presented in paragraph 2.3.

2.2.3 LOADING FROM CASSETTE USING CARD/CASSETTE ROM LOADER. Proceed as
follows:

I. Place the TX990 operating system cassette in either of the two cassette drives of the 733
ASR terminal.

NOTE
For operating instructions covering the cassette unit, refer to the

Model 990 Computer Model 733 ASR/KSR Data Terminal
Installation and Operation Manual, part number 945259-9701.

[

Rewind the operating system cassette.
3. Place the cassette unit in the PLAYBACK mode and in the READY state.

4. If the system has an Operator Panel instead of a Programmer Panel, proceed to the next
step. If the system has a Programmer Panel, press the HALT/SIE switch and then the
RESET switch.

5. Load the operating system into memory by pressing the LOAD switch on the
Programmer Panel.

2-3 Digital Systems Division

(o]
%@ 946259-9701

6. When loading of TX990 is completed, observe the following printed output or display
from the system console (provided the Initial Start Task (STASK) module-feature is
supplied with TX990):

TX990 SYSTEM RELEASE 2.2
MEMORY SIZE (WORDS): 16384 AVAILABLE: 5940

(where the memory size printout is in decimal numbers specifying the quantity of
memory words; the size, in words, of the dynamic task area is printed as available
memory).

7. After loading of the operating system is completed (i.e., after the printed output or
display appears on the system console as specified in the previous step), perform the
initialization procedure presented in paragraph 2.3.

2.3 INITIALIZATION

Two initialization procedures are available: one for use when OCP is included in the operating
system and the other for use when the Control Program is included. When OCP is included in the
operating system, OCP commands may be entered on a system console such as a 733 ASR Data
Terminal, or a 913 or 911 Video Display Terminal. The system console is defined during the system
generation, and LUNO 0 is assigned to the system console device at that time. Refer to table 2-1 for
a list of the standard TX990 device names.

Table 2-1. Standard TX990 Device Names

Device Device Name
733 ASR/KSR Keyboard/Printer LOG, ASR
743 KSR Keyboard/Printer LOG, KSR
733 ASR Cassette Unit 1 (Unit on ieft) CS1
733 ASR Cassette Unit 2 (Unit on right) CS2
Line Printer LP
Card Reader CR
913 or 911 Video Display Terminal CRT, LOG
Dummy DUMY
Diskette Unit 1 (Unit on left) DSC
Diskette Unit 2 (Unit on right) DSC2
Communication Device COM
Teletype Keyboard/Printer’ LOG, ASR
‘Teletype Paper Tape Reader’ PTR
Teletype Paper Tape Punch! ' PTP

! Supported by Texas Instruments as a nonstandard item.
2.3.1 INITIALIZATION USING OCP. Proceed as follows:

1. Enter an exclamation point (!) at the keyboard of the system console. This activates OCP,
which responds by printing a period (.) to request entry of a command.

24 Digital Systems Division

o]
%@ 946259-9701

2. Assign LUNO 1 to a printing or display device on which information is to be displayed or
‘printed. Table 2-1 lists device names in the operating system supplied by Texas
Instruments. The standard TX990 assigns LUNO 1 to the system console. The following
is an example of a command to assign LUNO 1 to a line printer. The command is
followed by a carriage return.

ALLLLP.
3. When TX990 includes date and time support, initialize the date and time. The following
command initializes the time and date to 3:42 P.M., February 3, 1976. The command is
followed by a carriage return.

ID,1976,2,3,15,42.

The operating system responds by printing time and date information (updated
approximately), in the following format:

15:42:18 FEB 3, 1976

At this point, other commands may be entered to perform available functions. The OCP commands
are described in Section III. ‘

2.3.2 INITIALIZATION USING THE CONTROL PROGRAM. Proceed as follows:

1. Enter an exclamation point (!) at the keyboard of the system console. This activates the
Control Program, which prints the following heading and prompt:

TXDS 936215 *A
PROGRAM:
2. Insert the TX990 parts diskette in drive 1.

3. Activate the OCP System Utility Program (SYSUTL) by responding to the PROGRAM:
prompt as follows:

PROGRAM: :SYSUTL/SYS*
4. Initialize the time and date by responding to the SYSUTL OP: prompt as follows:
TX990 SYSTEMS UTILITY 937544 *B
OP:ID, <year>, <month>, <day>, <hour>, <minute>. TE.
SYSUTL returns controls to the Control Program.
2.4 MANUAL SYSTEM RESTART
When the TX990 operating system is used in a Model 990 Computer equipped with a Programmer
Panel, it is possible to restart the system without performing another loading procedure. A restart is

appropriate in the event a system failure did not alter the contents of the system area of memory.
To restart the system, perform the following steps at the Programmer Panel:

25 Digital Systems Division

[e]
&r@\i@ 946259-9701

1. Transfer control to the Programmer Panel by pressing the HALT/SIE switch.
2. Press the RESET switch. ,

| 3. Press the CLR switch and observe that the indicators of the display are not lit.
4. Press the 8 switch and the 10 switch, setting a number of 00AQ, "in the display.
5. Press the ENTER PC switch. |

6. Press the RUN Switch.

NOTE
A standard TI-supplied TX990 Operating System does not execute

Initial Start Task (STASK) after a restart operation and, therefore,
no display or printout is presented on the system console.

7. Perform the initialization procedure presented in paragraphs 2.3.1 or 2.3.2.

2-6 Digital Systems Division

[o]
%@ 946259-9701

SECTION Il

OPERATOR COMMUNICATION PACKAGE (OCP)

3.1 INTRODUCTION

OCP allows the user to interactively request actions from the operating system through a terminal
(e.g., 733 ASR, 743 KSR, 33 Teletype, 911 or 913 VDT). Actions are initiated by the user by
responding to the OCP command prompt (a period) with one of the OCP commands described in
paragraph 3.5.

Processing of operator commands is performed by five or more modules of the Operator
Communication Package (OCP). OCP consists of four required modules and five optional command
processor modules. These modules are described in the system generation section of this manual.
The user may modify the OCP commands, add one or more command processors to a command
processor module, or add one or more command processor modules to OCP.

3.2 ACTIVATING AND DEACTIVATING OCP
In a TX990 system which includes OCP, it is initiated at the system console by entering an
exclamation mark (!). OCP responds by prompting for a command, displaying a period (.):

!

OCP may not be activated in a system which does not have the OCP modules linked-in (i.e., OCP
may not be executed as a dynamic task).

OCP is deactivated by issuing the OCP Terminate {TE) command in response to a prompt:

.TE.
3.3 LUNOs
OCP uses two LUNOs, 1 and 2. LUNO 1 is assigned to the device to which all messages or output is
to be directed. LUNO 2 is assigned to the device which contains a file (e.g. object program) being

input.

3.4 COMMAND FORMAT AND SYNTAX.

Each command consists of a command word, optionally followed by one or more operands. OCP
recognizes a command by the first two letters of the command word; these letters may be followed
by additional letters or by blanks. One or more blanks, or a comma, may separate a command word
and operands. However, embedded blanks are not allowed within the command word or an
operand. More than one command may be entered in a single line, which may contain up to 72
characters and must be terminated by a carriage return (NEW LINE on 911 or 913 Video Display
Terminal). When more than one command is entered on one line, each command must be
terminated with a period (the period may be omitted following the last command on the line).
When an error is detected in a command, any subsequent command on that line is ignored. Two
consecutive commas are interpreted as a null operand, which may be used to omit an optional
operand. When a null operand is entered for a numeric operand, the null operand takes the value of
zero. When a null operand is entered for a character operand, the null operand takes the value of a

31 Digital Systems Division

[e]
%@ 946259-9701

blank. If a command generates printout to a hardcopy device such as a 733 ASR, the printout can
be aborted by pressing the ESCape key. If a line is entered in error and if the carriage return has not
yet been entered, the operator may press the RUB OUT key. This deletes the entry from the OCP
input buffer, and the user can then enter a correct command. '

NOTE

All numeric OCP inputs are assumed to be hexadecimal numbers.

The following examples illustrate the manner in which OCP interprets equivalent commands entered

in different ways. The commands in the examples are equivalent and valid.

The complete command word is entered with two

hexadecimal operands separated by commas and

The command word is entered in two-letter form;

blanks are used as separators; leading zeros are
omitted; and the period is omitted. (Period is not
omitted when another command is entered on the

The complete command word is entered; an addi-

tional blank is entered; a comma is used as a separator

.DMEM,0000,0010.
terminated with a period.
.DM 0 10
same line.)
.DMEM, 0 10
in one place and a blank in another.
.DM,, 10

.DMXXX,0000 10

.DM 0 10 XYZ 55

In subsequent definitions of OCP commands, the following notation is used.

The command word is entered in two-letter form, and

first operand is entered as a null operand.

The first two letters of the command word are fol-

lowed by other letters; a blank is used as a separator.

This is the same as the second example except for

additional operands, which are ignored.

Angle brackets < > enclose items supplied by the user

Brackets [] enclose optional items

Braces { }enclose alternative items, one of which must be entered
An ellipsis (. . .) indicates that the preceding item may be repeated

Items shown in capital letters must be entered as shown

3.5 OCP COMMANDS
The OCP commands are divided into the following groups: task support commands, debugging
commands, I/O utility and status commands, time and data commands, and the termination
command. Table 3-1 shows every OCP command and its syntax.

Digital Systems Division

Available only
with multiple
dynamic task
support.

AL l
ALUNO
RL l
RLUNO
LP l
LPROG
EX l
EXECUTE

IT
ITASK

P I
IPROC

DT }
DTASK

DP
DPROC

Table 3-1. Syntax of OCP Commands

OCP Task Support Commands
,<luno>,<pathname>.
,<luno>,
,<pathname>[,[<priority>]1[P] 1]
,<task id>[,<parml>[,<parm2>]].
,<pathname> <task id> {,<priority>] [,<procedure id>] [.P] [N]
,<procedure id>.
,<task id>.

,<procedure id>.

OCP Debugging and Error Recovery Commands
,<starting address>[,<ending address>].
,<address>,<value>[,<value>] ...
,<address>.

[,<address>].
,<value>,<value>.
,<value>,<value>,

,<address>,<address>.

33 Digital Systems Division

946259-9701

oCpP

|
|
|

-

Available only with
multiple dynamic
task support.

|
|

|

Table 3-1. Syntax of OCP Commands (Continued)

Debugging and Error Recovery Commands (Continued)

Dw] <task id>
DWKSP skl
KT <task id>
DTASK Staskid>
KI I <
KIO ,<luno>,
TR <address>
TRACE {, ress>].
OCP 1/0 Utility and Status Request Commands
RE l <1 >
REQIND SUnoZ.
FS l <l > < ber>
FSPACE ,<luno>,<number>.
BS <luno>,<number>
BSPACE ,<dluno>,<numoer.>,
ST l <task ID>
STASK [:<task ID>].
Si
SlOl [,<luno>]
SP ' < d id>
SPROC [,<procedure 1.
OCP Time and Date Commands
1D l < >, < th>,<day>,<h >,<minute>
IDATE ,<year>,<month>,<day>,<hour>,<minute>.
TI l .
TIME
OCP Termination Command

TE I
TERMINATE

34

Digital Systems Division

o]
{@ 9462599701

Each group of commands is discussed in detail in a subsequent paragraph.

3.5.1 OCP TASK SUPPORT COMMANDS. These commands are processed by either module
OCPLRT or module DOCPLRT, and enable the user to assign and release LUNOSs, load programs
into the dynamic task area, and execute programs, through a terminal. DOCPLRT should be used to
support multiple dynamic tasks.

3.5.1.1 Assign Logical Unit Number (AL or ALUNO). The Assign Logical Unit (AL or ALUNO)
command assigns a logical unit to a pathname. The syntax for the command is as follows:

{AL

ALUNO} ,<luno>, <pathname>.

The LUNO operand is a hexadecimal number from O through FE¢. In systems that include OCP,
LUNO 0 is a system LUNO and may not be assigned by the user. When a previously assigned LUNO
is reassigned, the previous assignment is released unless a task is performing I/O to the LUNO.
When a task is performing I/O to the LUNO, the LUNO is neither released nor reassigned and an
error message is printed.

The following are examples of ALUNO commands:

AL, 10,CR. Assign LUNO 10,, to the card reader.
ALUNO,11,LP. Assign LUNO 11,4 to the line printer.
AL,10,:FILE/SYS. Assign LUNO 104 to a disc file.

Error messages are discussed in paragraph 3.6 and in Tables 3-2 and 3-3.
Error messages 1 through 6 (Table 3-3) apply to the AL or ALUNO command.

3.5.1.2 Release Logical Unit Number (RL or RLUNO). The Release Logical Unit (RL or RLUNO)
command releases the assignment of a LUNO to a physical device or file. An attempt to release a

LUNO to which a task is performing I/O results in an error message. The syntax for the command
is as follows:

RL
{RLUNO } ,<<luno>.
The LUNO operand specifies a LUNO to be released. The following is an example of an RLUNO
command:
RL,1A. Release LUNO 1A,4.

Error messages 1 through 4 (table 3-3) apply to this command.

3-5 Digital Systems Division

o]
%@ 046259-9701

3.5.1.3 Load Program (LP or LPROG). The Load Program (LP or LPROG) command reads the
object code on the specified device and installs it in the dynamic task area. When a task that was
previously installed in the dynamic task area has not terminated, the current task is not installed
and an error message is printed. The snytax for the command is as follows: ’

LP <pathname>[,[<priority>] [,P]].
{ LPROG} ~Spathname>>(,[<priority>] [,P]

The pathname operand is the name of the input device or file appropriate for the module that
contains the object code for the task. OCP assigns LUNO 2 to the device. The priority operand
is the priority level, O through 3, of the task. When the priority operand is omitted, priority level 3
is assigned to the task. The third operand is the letter P to specify that the task executes in the
privileged mode. When the third operand is omitted, the task executes in the nonprivileged
- mode.

The task identifier (ID) of a task installed with the LRROG command is 104 .

When loading_from a cassette, the LPROG command processor does not perform a rewind operation
prior to reading the module. It is necessary for the user to position a cassette to the desired object
module. When loading from a diskette file, the file is automatically rewound.

The following examples show use of LPROG commands:
LPROG,CS1. Read the object module (i.e., the program or task)

from the cassette in cassette drive 1 and install the
module in the dynamic task area at priority level

3.

LP.CR,2. Read the object module from the card reader and
install the module in the dynamic task area at priority
level 2.

LP,DSC2:IBMUTL/SYS,3,P. Read the object module from the diskette in diskette

drive 2 and install the module in the dynamic task
area at priority level 3 as privileged.

3.5.1.4 Execute Task (EX or EXECUTE). The Execute Task (EX or EXECUTE) command places
the specified task in execution. Execution begins when the task becomes the oldest task on the
active list for its priority level, and no task at a higher priority level is active. The syntax for the
command is as follows:

{EX

EXECUTE} ,<task id>[,<parameter1>[,<parameter2>]].

The task ID operand is a two-digit hexadecimal operand. The task ID of the task installed in the
dynamic task area is 10,5. Task IDs of resident tasks are assigned when the system is generated.
The parameter operands are optional task parameters, each of which is a hexadecimal number of up
to four digits. When the operands are omitted, TX990 supplies zeros. The task obtains the
parameters by executing a Get Parameter supervisor call, described in Section IV.

36 Digital Systems Division

[o]
{@ 946259-9701

The following are examples of EXECUTE commands:

EX,10. Execute task 1046, installed in the dynamic task area.
EX,11,4845,4CS50. Execute task 11,5, and passes the characters HELP to the task.
.EXECUTE,10,IC. Execute the task installed in the dynamic task area, and pass the

value 1Cy4 (28) to the task.
Error messages 1 and 12 (tabie 3-3) apply to this command.

3.5.15 _ Instal! Task (IT or HASK). The Install Task commaﬁd. loads an object module from a
“sequential file into the dynamic task area. The syntax of the command is as follows:

IT . ..
{IT ASK} s<pathname>, <task id>[,[<priority>] [,[<procedure id>][,P][,N]]]

The <pathname> is the name of the sequential file or device which contains the object module of
the task being installed, and is required.

The required <task id> parameter is the 1D to be assigned to the installed task. Valid IDs are in the
range of 10,6 to EFy4.

The optional <priority> parameter’ is the priority (O to 3) at which the task will execute. The
default value is 3, the lowest priority.

<Procedure id> is the ID of a

e ID v 1stalle e > which
when loaded. If no value is given, no procedure is attached to the task.

The letter P is used to specify that the task should execute in privileged mode; if not used, the task
is nonprivileged.

The letter N is used to prevent the input file <pathname> from being rewound before the task is
loaded. If N is not used, the file is rewound.

The following examplesAshow the use of the Install Task command:
ITASK, DSC: TASK/OBJ, 30, 3, 10,P,N

Read the object module from file :TASK/OBJ and install it as task 30,s with priority 3.
Attach procedure 10, and make the task privileged. Do not rewind the file.

IT, CS1, CB.

Read the object module from CS1 and install it as task CB,s. The task is nonprivileged, has no
attached procedures, and has priority 3.

3.5.1.6 Install Procedure {IPROC). The Install Procedure {IPROC) command reads the specified
file and installs it in the dynamic task area. The syntax for the command is as follows:

{{gRoc} ,<pathname>,<procedure id>

The <pathname> is the name of the sequential file or device which the object module of the
procedure being installed, and is required.

3-7 Digital Systems Division

[o] .
(_r@? 946259-9701

The <procedure id> specifies the procedure to be installed with _the IPROC command. If a
procedure with the same id is already installed, the new procedure is not installed and an error
message is returned.

3.5.1.7 Delete Task (DTASK). The Delete Task command deletes a task from memory and returns
the memory occupied by the task to the available memory pool in the dynamic task area. The
syntax for the command is as follows:

DT .
{DTASK} <task id>.

The task previously installed with an ITASK command using the same <task id> is deleted. If a task
with the specified ID is not installed in the dynamic task area, no task is deleted, and an error
message is printed. When a procedure is attached by an ITASK command to the task being deleted,
the task is detached from the procedure. A task linked with the system may not be deleted.

3.5.1.8 Delete Procedure (DPROC). The Delete Procedure command deletes a procedure from
memory and returns the memory to the available memory pool in the dynamic task area. The
snytax for the command is as follows:

DP .
{DPROC} <procedure id>.

The procedure previously installed with an IPROC command using the <procedure id> is Qeleted
unless one or more tasks are attached. When one or more tasks are attached or a pr(?cedure with the
specified ID is not installed, the procedure is not deleted, and an error message is printed.

3.5.2 OCP DEBUGGING AND ERROR RECOVERY COMMANDS. These OCP commands are
processed by Command Processor module OCPSLD and OCPTLD, and enable the operator, by use
of the system console keyboard, to perform some real debugging operations; dumping and loading
memory, which allows the user to patch his task or to examine different variables in memory;
setting and clearing run-time breakpoints in a task; adding and subtracting hexadecimal addresses;
calculating JMP instruction displacements; and dumping the current workspace of an executing
task. These commands are described in the following paragraphs.

3.5.2.1 Dump Memory (DM or DMEM). The Dump Memory (DM or DMEM) command causes
OCP to print the contents of specified sequential memory locations on the device to which LUNO 1

is assigned. The syntax for the command is as follows:

{BII:II/IEM } ,<starting address>[,<ending address>].

The starting address operand is a one- to four-digit hexadecimal address of the first memory
location to be displayed. The optional ending address operand is a one- to four-digit hexadecimal
address of the last memory location to be displayed. When the ending address operand is omitted,
the ending address is equal to the starting address. Contents of eight memory words are printed
on one line, following the address of the first memory location displayed. The contents are dis-
played in hexadecimal representations and in ASCII character representations, with nonprinting
characters printed as periods. OCP displays a multiple of eight words; when the ending address is
omitted or when the ending address is greater than the starting address by 16 or less, one line is
printed. Similarly, the last line printed includes the contents of the ending address and any addi-
tional words required to fill the line. When the starting address is an odd value, the next lower even
address is used.

3-8 Digital Systems Division

%@ 946259-9701

The following is an example of a DMEM command and the resulting display of memory contents:
.DM,15,34. Display contents of memory locations 00154 through 0034,4.

0014=07BA 0796 0568 O05E2 0568 OSE2 0568 OSE2
0024 =0572 05B0O 057C OSBC 0568 OSE2 0568 05C80 . > . . I
0034 =0568 0SE2 0568 05E2 0590 05D4 0568 0SE4T .

Error message 1 (table 3-3) applies to this command. On a computer equipped with TILINE*, an
attempt to address a nonexistent memory address terminates OCP. On other computers, the com-
mand is executed, but gives unpredictable results.

3.5.2.2 Load Memory (LM or LMEM). The Load Memory (LM or LMEM) command places
values in memory af specified locations. The syntax for the command is as follows:

{LM

LMEM } , <address> <value>[,<value>. .. .]

The address operand is a one- to four-digit hexadecimal address into which the first value operand
is placed. The value operand is a one- to four-digit hexadecimal representation of the value to be
placed in a word of memory. When additional values are entered, they are placed in successive ad-
dresses. When the address operand is an odd address, the value is at the next lower even address.
The following is an example of an LMEM command:

LM,0100,FFFF,1284. Place the values FFFF,, and 1284, in memory words at ad-
dresses 010044 and 01024, respectively.

Error message | (table 3-3) applies to this command. On a computer equipped with TILINE*, an
attempt to address a nonexistent memory address terminates OCP. On other computers, the
command is executed but the results are unpredictable.

'3.5.2.3 Set Breakpoint (SB or SBKPT). The Set Breakpoint (SB or SBKT) command sets a break-
point in a task. A breakpoint may be set in any resident task or in a task that has been installed in
the dynamic task area, whether or not the task is active. Setting a breakpoint consists of replacing
the contents of the specified breakpoint location with a single-instruction loop (JMP §).

CAUTION

Do not mistakenly set the breakpoint outside of the task area, or a
memory area other than the task area may be destroyed.

As many as four breakpoints may be active at any one time. The syntax of the command is as
follows:

{ ggKPT} <address>.

The address operand is a one- to four-digit hexadecimal address at which the breakpoint is set. The
following is an example of an SBKPT command:

SB,048C. Set a breakpoint at the instruction at address 048C .

*TILINE is a registered trademark of Texas Instruments Incorporated.

39 Digital Systems Division

@ 9462599701

Error messages 1, 6, and 13 (table 3-3) apply to this command. On a computer equipped with
TILINE, an attempt to set a breakpoint in a nonexistent memory address terminates OCP. On other
computers, the command is executed, but the results are unpredictable.

The user must be careful to set a breakpoint at the address of a single-word instruction, or at the
address of the first word of a multiword instruction. Effects of setting breakpoints at other
locations are unpredictable.

3.5.2.4 Clear Breakpoint (CB or CBKPT). The Clear Breakpoint (CB or CBKPT) command clears
one or all breakpoints in a task or system. A breakpoint may be cleared in any resident task orin a
task that has been installed in the dynamic task area, whether or not the task is active.

When a breakpoint occurs, a CBKPT command must be executed to continue execution of the task.
Clearing a breakpoint consists of restoring the original contents of the breakpoint location. How-
ever, when clearing a breakpoint is requested for a breakpoint location that no longer contains a
single-instruction loop (JMP $) the contents of memory are not altered. The syntax for the
command is as follows:

{CB

CB KPT} ,<laddress>.

The address operand is a one- to four-digit hexadecimal address of a breakpoint to be cleared. When
the address is omitted, all current breakpoints are cleared. The following is an example of a CBKPT
command:

CBKPT,048C. Clear breakpoint at address 048C,,.
Error messages 1, 12, and 14 (table 3-3) apply to this command.

3.5.2.5 Add (AD or ADD). The Add (AD or ADD) command provides the sum of two values. The
syntax of the command is as follows:

{AD

ADD } ,<value> <value>.

The value operands are one- to four-digit hexadecimal numbers, and are added using the A machine
instruction. The addition follows the rules that apply to the A instruction, and the result is not
modified by the state of the Carry or Overflow bits following the operation. The following are
examples of ADD commands and resulting sums:

ADD,300,700. Adds 300,¢ to 70046 and prints the sum 0A0Q,,.
0A00

AD.7FFF,8000. Adds 7FFF, to 8000,¢ and prints the sum FFFF,q, the maximum
FFFF value that is represented without an overflow.

AD.8000,8000. Add 8000,¢ to 8000, and prints the four least significant digits of
0000 the sum, 0000.

Error message 1(table 3-3) applies to this command.

3-10 Digital Systems Division

{ép 946259-9701

3.5.2.6 Subtract (SU or SUB). The Subtract (SU or SUB) command subtracts the first of two
specified’ values from the second, and prints the difference. The syntax for the command is as
follows:

{ggB} <value>,<value>.

The first value operand (subtrahend) is the value to be subtracted from the second value operand
(minuend). Both operands are one- to four-digit hexadecimal numbers, and are subtracted using the
S machine instruction. The subtraction follows the rules that apply to the S instruction, and the
result is not modified by the state of the Carry or Overflow bits following the operation. The
following are examples of SUB commands and resulting differences:

SUB,500,A00. Subtract 500, from A0Q,, and prints the difference, 500,¢.
0500

SU,FFFF,100. Subtract FFFF,¢ (-1) from 100,4, and prints the difference, 10144.
0101

SU,1000,300. Subtract 1000, from 300, and prints the difference, F300,¢
F300 (-D00y).

Error message 1 (table 3-3) applies to this command.

3.5.2.7 Jump Instruction (JM or JMP). The Jump Instruction (JM or JMP) command builds a jump
instruction having a displacement corresponding to the specified addresses. The JMP command
prints an instruction word with a 1 as the first digit and the displacement in the two least signifi-

cant digits. An asterisk follows the 1 and represents the second hexadecimal digit of a specific jump
instruction; i.e., 0 for JMP, 3 for JEQ, etc. The syntax for the command is as follows:

{iﬁP} ,<address>,<address>.

The address operands are one- to four-digit hexadecimal addresses; the first is that of the jump in-
struction being built; the second address is that of the instruction to which control is to be trans-
ferred by the jump instruction. The following are examples of JMP commands and the resulting

instructions:
JMP,109A,10B0. Build a jump instruction to be placed at address 109A,¢ to jump to
1*0A address 10B04.
IM,109A,1000. Build a jump instruction to be placed at address 109A,4 to jump to
1*B2 address 100044

Error messages 1 and 15 (table 3-3) apply to this command.

3.5.2.8 Dump Workspace (DW or DWKSP). The Dump Workspace (DW or DWKSP) command
causes OCP to print the contents of the workspace of a specified task. When the debugging OCP
described previously is not included, this command will not execute. OCP also prints the task ad-
dress and the workspace pointer register contents. The syntax for the command is as follows:

{DW

DWKSP} <task id>.

3-11 Digital Systems Division

o]
%@ 946259-9701

The task ID operand is the task identifier of the task. The task identifier is a one- or two-digit
hexadecimal number assigned when the task was loaded. The following is an example of a DWKSP
command and the resulting printout:

DWKSP,0D. Print contents of workspace of task 0D ;4.

ADR: 20F0 WP: 20F6
20F6 =06BE 06AE 06CA 06AC 06EA 070A 06EA 070A > .
2106 =05E4 0568 O05E4 0568 O0SE4 0568 O05E4 0568

On the first line, OCP prints the starting address at which the task was loaded, and the contents of
the workspace pointer register. On the next two lines, the contents of the 16 words of the work-
space are printed in the format of the DM command. The address of the first word on each line is
printed as a four-digit hexadecimal number, followed by an equal sign. The address on the first of
these two lines is the address that is in the workspace pointer register. To the right of the equal sign
are eight four-digit hexadecimal numbers that represent the contents of workspace registers O
through 7 in hexadecimal representation. The ASCII representation of the same values is printed
further to the right, with periods substituted for nonprinting ASCII characters. The contents of
workspace register 8 through F are printed in the same format on the next line.

Error messages 1 and 12 (table 3-3) apply to this comrha_nd.

3.5.2.9 Kill Task (KT or KTASK). The Kill Task (KT or KTASK) command forces termination of
an executing task. If end action is specified by the task, it is taken. Otherwise, any I/O operations in
progress are terminated in error; all assignments of file-oriented devices to the task are released; and
any files that were opened are closed. The syntax for the command is as follows:

{ KT

KT ASK} <task id>.

The task ID operand is the task identifier assigned when the task was installed, and consists of two
hexadecimal digits. The following is an example of a KTASK command:

KTASK,21. Force termination of task 21,4.
Error messages 1, 12, and 16 (table 3-3) apply to this command.

3.5.2.10 Kill I/O Operation (KI or KIO). The Kill I/O Operation (KI or KIO) command terminates -
any I/O operation to the specified device. If an I/O operation to the device is in progress, that
operation is terminated in error. The syntax for the command is as follows:

{%iO } ,<luno>.

The LUNO operand is a hexadecimal number, the LUNO assigned to the device on which I/O is to

be terminated. When the specified device is file-oriented, the command also closes the file, which

releases the assignment of the device to the task. The following example shows a KIO command:
KI10,30. Terminate I/O to the device or file to which LUNO 30, is assigned.

' Error messages 1 and 17 (table 3-3) apply to this command.

3-12 Digital Systems Division

[e]
{@ 946259-9701

3.5.2.11 Trace (TR or TRACE). Trace (TR or TRACE) displays the current contents of a memory
location on the programmer panel lights. When the contents of memory change, the programmer
panel lights will aiso change. It has up to one parameter. This parameter is the hexadecimal memory
address. If no parameter is given, the standard display, the Program Counter (PC), will be displayed
on the programmer panel. By entering the command with no parameter, the trace is, in effect,
turned off.

TRACE,[<memory address>].

3.5.3 OCP 1/O UTILITY AND STATUS REQUEST COMMANDS. These OCP commands are
processed by Command Process Module OCPIOU or DOCPIOU, and enable the operator, by use of
the system console keyboard, to perform various I/O utility and status request commands.
DOCPIOU should be included to support multiple dynamic tasks.

3.5.3.1 Rewind Device (RE or REWIND). The Rewind Device (RE or REWIND) ‘command

initiates a rewind operation on a rewindable device or file. The syntax, for the command is as
follows:

{RE

REWIND } ,<luno>.

The LUNQ operation is a hexadecimal number, the LUNO assigned to the device or file to be re-
wound. When the LUNO is assigned to a device that is not rewindable, the command is ignored. The
following is an example of a REWIND command: '

RE,2C. Rewind the device to which LUNO 2C; is assigned.
Error messages 1, 17, and 18 (table 3-3) apply to this command.

3.5.3.2 Forward Space (FS or FSPACE). The Forward Space (FS or FSPACE) command forward-
spaces a sequential file or device a specified number of records. When the file or device forward
spaces to an end-of-file (EOF) record, it remains positioned at the record following the end-of-file
record. The syntax for the command is as follows:

FS
{FSPACE} ,<luno>,<number>.

The LUNO operand is the LUNO to which the device or file to be forward-spaced is assigned. When
the LUNO is assigned to a device other than the cassette, the command is ignored. The number, a
one- or two-digit hexadecimal value, is the number of records to be forward spaced. The following is
an example of an FSPACE command:

FS,1C,5. Forward space the device to which LUNO 1C g is assigned 5 records.
Error messages 1, 17, 18, and 19(table 3-3) apply to this command.
3.5.3.3 Backspace (BS or BSPACE). The Backspace (BS or BSPACE) command backspaces a

sequential file or device a specified number of records. When the cassette tape is at the beginning-of-
tape marker, the command is ignored. The syntax for the command is as follows:

BS }
{BSPACE ,<<luno>,<number>.

313 Digital Systems Division

(o]
{@ 946259-9701

The LUNO operand is the LUNO to which the device to be backspaced is assigned. The number, a
one- or two-digit hexadecimal value, is the number of records to be backspaced. The following is
an example of a BSPACE command:

BSPACE,2E,10. Backspéces the device to which LUNO 2E,q is assigned 10,4 records.
Error messages 1, 17, 18, and 19 (table 5-4) apply to this command. - '

3.5.3.4 Task Status (ST or STASK). The Task Status (ST or STASK) command causes OCP to
print the current status of all tasks. The syntax for the command is as follows:

ST .
{ST ASK} [<task id>].

No operand is required; however, if <task id> is supplied, only the status of that one task will be
printed. The following is an example of an STASK command and the resulting printout:

. ST .
ID PRIOR ADDR WP PC ST STATE PROC
OF) 18F8. 18FE 1D38 240F 07
oD 01 37CE ‘ 04
10 01 38EE 04
Al 02 BCAO 04 27
0:02:53 JAN 1, 0

OCP prints a heading, followed by a line for each task. In the first column, OCP prints the task ID.
OCP prints the priority level of the task in the second column. The next four columns contain
four-digit hexadecimal addresses. The first of these, under the heading ADDR, is the address of the
task. Next, under the heading WP, is the value to be placed in the workspace pointer register when
the task is executed. In the column headed PC is the program counter contents, and in the column
headed ST is the status register contents. The contents of the WP, PC, and ST registers are the
contents at the most recent execution of the task. The seventh column, headed STATE, contains
the task state code used by task management. These codes are listed in Appendix G. The last
column, headed PROC, is only specified if multiple dynamic tasks are allowed. It contains the
procedure identifier if a procedure is attached to the task. It is blank when no procedure is attached
to the task.

Task identifiers and priority levels are assigned at system generation, except for tasks in the
dynamic task area, which have identifiers and priority levels assigned by the ITASK command.

Task addresses are those into which the tasks were loaded when the system was loaded, or during
execution of the ITASK command.

3.5.3.5 Status of I/O (SI or SIOQ). The Status of I/O (SI or SIO) command-request causes OCP to
print the status of all assigned LUNOs or of a particular LUNO. The syntax for the command is as
follows:

SI -
{SIO} [,<luno>]

3-14 Digital Systems Division

[e]
{@ 946259-9701

No operand is required. The following is an example of an SIO command and the resultant
printout:

SIL ‘
LUNO PATHNAME TASKID . SYSLUN
FO DSC -
F1 DSC2 -
00 LOG —
01 LOG —
06 DSC:TXCCAT/SYS —
10:11:10 JAN S, 1977

22 <K<

OCP prints a heading, followed by a line for each LUNO and, in the first column, OCP prints the
hexadecimal digits of the LUNO. The PATHNAME column contains the device, or file name to
which the LUNO is assigned; and the SYSLUN column contains YES for LUNOs designated for
system use and NO for other LUNOs. The Task ID coiumn contains hyphens for LUNOs that are
not assigned to tasks, or the task identifier of tasks to which LUNOs are assigned. A LUNO for a
file-oriented device is assigned to a task from the time the task issues an Open supervisor call. This
call specifies the LUNO until the task terminates or issues a Close supervisor call for the LUNO. A
LUNO for a record-oriented device is assigned to a task only during an I/O operation. If the status is
requested for a LUNO which has not been assigned, the header line only willbe printed.

.S1,20.

LUNO PATHNAME TASK ID SYSLUN
3.5.3.6 Procedure Status (SP or SPROC). The Procedure Status (SPROC) command causes OCP to
print the current status of procedures. The syntax for the command is as follows:

Sp .

SPROC [<procedure id>].

The status of the specified procedure will be printed. When the <procedure id> is omitted, the
statug of all procedures will be printed. The following is an example of a SPROC command and the
resulting printout.

. SP .

ID ADR # TASKS
27 BE60 01
0:02:37 JAN 1, 0

OCP prints a heading, followed by a line for each procedure. In the first column, OCP prints the
procedure identifier. Column two contains the address at which the procedure was loaded. OCP
prints the number of tasks to which the procedure is attached in the third column. Procedure
identifiers are assigned by the IPROC command. The number of tasks to which the procedure is
attached is incremented each time an ITASK command specifies attachment of that procedure and
is decremented each time a DTASK command deletes a task to which that procedure had been
attached.

3-15 Digital Systems Division

o
@ 946259-9701

3.5.4 OCP TIME AND DATE COMMANDS. The OCP date and time commands are:
® [Initialize Date and Time (ID or IDATE)
® Print Time and Date (TI or TIME)

These OCP commands are processed by Command Processor Module OCPTAD and enable the
operator, by use of the system console keyboard, to initialize time and date for the Operating
System. The above listed commands are described in the following paragraphs.

3.5.4.1 Initialize Date and Time (ID or IDATE). The Initialize Date and Time (ID or IDATE)
command initializes the date and time values for the system. The syntax for the command is as
follows: :

{ig ATE } ,<year>,<month> <day>,<hour>,<minute>.

The year operand is the four-digit decimal number of the years 1975 through 1999, and the menth
operand is the decimal number of the month, 1 through 12. The day operand is a one- or two-digit
decimal number, 1 through 31, and the hour operand is a one- or two-digit decimal number, 0
through 23. The PM hours are specified by the sum of 12 and the hour. The minute is the decimal
number of the minute, 0 through 59. The second is set to zero when the command is entered. After
the command is entered, the time and date will be written to the log for verification. The following
example shows an IDATE command:

ID,1976,2,12,17,29. Initialize the time and date to 5:29 PM, February 12, 1976.
5:29:00 FEB 12,1976
Error message 1 (table 3-3) applies to this command.

3.5.4.2 Print Time and Date (TI or TIME). The Print Time and Date (TI or TIME) command
causes OCP to print the time and date. The syntax for the command is as follows:

{Tie
TIME) *
The command requires no operands. The following example shows a TIME command and the

resulting output:

TIL
9:29:12 FEB 13,1976

When the date and time have not been initialized, the time printed is the elapsed time from the
most recent loading of the Operating System.

3-16 Digital Systems Division

o]
‘l@ 946259-9701

3.5.5 OCP TERMINATION (TE) COMMAND The syntax for the TErminate (TE) command is as
follows:

{TERmmate |
TERMINATE
The command requires no operands.

3.6 ERROR MESSAGES

OCP prints two categories of error messages. The messages in the general category are shown in
table 3-2. These messages are not related to any specific command. The messages in the operand
category apply to one or more operands of specific commands. These messages are listed in
table 3-3 and are numbered to allow them to be associated with the commands to which they apply.
The numbers do not represent an error code, but are arbitrarily assigned for identification purposes.

When more than one OCP command is entered on a line, and an error occurs, the command in error
(or that caused the error) and all subsequent commands in the statement must be entered again. It is
sometimes necessary to supplement the error message information with information obtained by
executing other OCP commands (ST, SI, DM, DW, etc.) to determine which commands have
executed correctly. System generation documentation provides information about the tasks actually
in the system, their identifiers, and their priority levels. It is also helpful to enter the commands
individually so that any error messages are printed following entry of the command. However, the
user must exercise care to avoid reexecuting a command that executed correctly and will provide
undesirable results if it is executed again.

Wi TTNIN S, a AL 1ian -1 ot cagiona A oA

When LUNO 1 is assigned to a device that is off line, or when LUNO 1 is not assigned an

command is used which generates a listing (DMEM,STASK,SIO), OCP ignores the command and
prompts the user with a period(.).

3-17 Digital Systems Division

946259-9701

Message.
* INVALID COMMAND *

1/0 ERROR, TERMINATED

OUTPUT ERROR

UNDEFINED ERROR

MISSING SYS MSG

Table 3-2. OCP General Error Messages

Meaning

* The command word is not valid.

An I/O error was detected
during reading of the command.

‘An error was detected during
output and execution of the
command has been terminated.

TX990 returned an error code to

OCP that is not recognized by OCP.

OCP could not locate the text for
an OCP error message.

Recovery

Check the command word, and
reenter correctly.

Input from the system console was
not received correctly or the device
timed out.

This message is printed when LUNO
1.has not been assigned. Check device
for errors.

This is a system error. Make another
attempt to enter the command. If
eITor reoccurs, reinitialize the
system.

OCP is incorrectly configured or
incorrectly programmed. First verify
that the proper OCP modules were
linked with the system, and relink
and reload the system if they were
not. If all required modules were
linked, and these modules were
supplied by Texas Instruments,
contact your Texas Instruments
representative. If user-supplied
OCP modules are involved, refer
to error message information in
paragraph 6.2.2 and verify the
coding of the OCP module.

3-18

Digital Systems Division

uoysiAlg swejlsAs 1enbia

Message

OPERAND ERROR (S)

LUNO IN USE

BAD LUNO

NO! SYSTEM LUNO
BAD DEVICE

TABLE AREA FULL

Table 3-3. OCP Operand Error Messages

Meaning

One or more operands are invalid.

The LUNQ is busy and cannot be re-
leased or reassigned until the LUNO
becomes available. .

Invalid LUNO specification.

A system LUNO cannot be reas-
signed or released.

Invalid device name.

The table area used by the command
is full.

Recovei-y

When a required operand has been
ontitted, enter the complete com-
mand. When a numeric operand is re-

quired, but a nonnumeric operand was

entered, enter the command with the
correct type of operand.

If a record mode I/O operation to the

LUNQO is in progress, enter the command
again after the opertion has completed.
If the LUNO is assigned to a file-oriented
device, and has been apened, enter the
command again after the LUNO has been

closed.

Enter the command with a valid LUNO,

0 through FE 16 .
Enter the command with the correct
LUNO. When the system inludes OCP
LUNO 0 is a system LUNO.

Enter the command with one of the

device names assigned when the system

‘was generated.

When the message entry of an ALlor LP
command, release an unused LUNO, and
enter the command again. Alternatively,

Applies to

|AL, RL, LP,

EX, DM, LM,

SB, CB, AD,
SU, IM, KT,
KI, RE, F§,
BS, ID, DW.

|AL,RL, LP.

AL,RL.

AL, RL.

AL, LP,

{AL, LP, SB.

generate a new TX990 that contains more

LUNO blocks. When the message follows
entry of an SB command, clear a break-

point and enter the command again.

10L6°6579P6

uoysjalq sweysAs 1eyb)g

Number

10

11

Message

CHECKSUM ERROR

1/0 ERROR

WON'T FIT

CAN'T BID LOADER

TASK RUNNING

Table 3-3. OCP Operand Error Messages (Continued)

Meaning

Checksum error occurred while
reading load module.

Error occurred while reading load
module,

The program being loaded is too
large for the dynamic task area.

The loader module is currently in use

or is not included in the system.

A user task in the dynamic task area
is currently executing. '

Recovery

The device that reads the module is un-
able to read a record accurately. The last
record read is the record in error. Make
another attempt to read the record, or
obtain another module and load. This
error is normal when a record of the
object module has been modified without
correcting the checksum of the record.
To override the error, enter'the LP com-
mand again without repositioning the
medium on which the object module
resides. .

Position the medium at the first record
and enter the command again to read the
module again, or obtain another module
and load.

The size of the dynamic task area is -
printed by STASK. To execute a task
larger than that size, increase the size of
the dynamic task area by relinking the
system with fewer modules or by increas-
ing the size of memory.

When current loading has been com-
pleted, enter the command again. If the
loader is not in the system, relink the
system to include the loader.

When the task completes execution, enter
the command again. Alternatively, enter

a KTASK command to force termination -

of the task, and enter the command again.

Applies to

| LP.

ITP.

10L676579%6

uoysiAlg swejsAs 1eybia

1€

Message
Number

12

13

14

15

16

17

Message

NOT FOUND

ALREADY SET

NOT JMP $

OUT OF RANGE

NOT RUNNING
BAD LUNO

Table 3-3. OCP Operand Error Messages (Continued)

Meaning -

The specified task cannot be found.

A breakpoint has already been set
at this location, or the location con-
tains a JMP § instruction.

The location had a breakpoint set

but does not contain a JMP § instruc-

tion. Contents of the location are not
altered, but breakpoint is removed
from the table.

The address in the second operand
cannot be reached with a JMP instruc-
tion.

The specified task is not running.

The specified LUNQ is invalid or not
assigned.

Recovery Applies to

When the task cannot be found because EX, CB, KT,
the user has entered the identifier incor- DW,

rectly, enter the command with the cor-

rect identifier. When the identifier is

correct, but the task was not identified

to the system or linked to the system,

generate and/or link the system correctly.

When the breakpoint was previously set, SB.
the command does not need to be entered
again. When the location contains JMP §

in error, enter the correct instruction with

an LMEM command. When the JMP §
instruction is the correct contents, no

further command is required. However, the
task will not execute beyond that point.

The JMP § instruction has been overlayed CB.
as a result of a programming error or by
loading a new task without clearing active
breakpoints. Enter a LMEM command to
correct the contents if not correct.

Use another instruction or combination JM.
of instructions instead of a JMP instruc-

tion. Alternatively, reorder the segments of
code so that the destination of the instruc-
tion is within the range of a JMP instruc-

tion.

No recovery necessary. KT.
Enter the command again with the cor- ‘ RE, FS, BS.

rect LUNO. If in doubt about LUNO
assignment, enter an SIO cornmand.

10L6-65T9%6

e

uorsialg sweysAs reubig

Message
Number

18|

19

20

21

22

Table 3-3. OCP Operand Error Messages (Continued)

Message Meaning

RESOURCE NOT AVAILABLE The specified LUNO is assigned to a

task.
~ END-OF-FILE An EOF was detected during the
requested operation.
ID IN USE The task or procedure ID specified .
is already used.
NO! TASKS ATTACHED The procedure being deleted has
: tasks attached.
BADID An invalid task ID or attached

procedure ID was selected.

Recovery

When the task has completed, enter the
command again. Alternatively, enter a
KTASK command to force termination
of the task and enter the command
again.

The operation ceases when the EOF is
detected. No recovery necessary.
Select another ID.

Delete the attached tasks.

Select another ID. .

Applies to

RE, FS, BS.

FS, BS.

IT, IP.

DP.

IT.

(@ 946259-9701

SECTION IV

CONTROL PROGRAM

4.1 INTRODUCTION

The TX990 Control Program provides a simple interface which allows a terminal operator/user to
load and execute programs. It can also be used to pass parameters to a program being executed. The
following paragraphs describe how to use the Control Program, as well as the mechanism used to
pass parameters to initiated tasks (programs).

4.2 ACTIVATING AND DEACTIVATING THE CONTROL PRGGRAM
The Control Program, like OCP, may not be executed unless it is linked in with the TX990

operating system. Activation of the Control Program is different between systems which include
OCP and systems which do not.

In an operating system which does not include OCP', the control program is activated by entering an
exclamation point (!) at an terminal.

In a system which does include OCP, the Control Program must be activated through OCP:
1. Enter! at a terminal, activating OCP.
2. Respond to the OCP command prompt (i) as shown:
.EX, 16. TE.
3. The above command executes task 16,6, (the Control Program) and terminates OCP.

After the Control Program is executed, the following printout or display is presented at the system
console:

Q 7 *
XDS 936215 **

PROGRAM:

The previous display tells the operator that the Control Program is in execution and that the
operator may respond to the PROGRAM: prompt by specifying the program to be loaded and/or
executed. The display heading indicates the name of the monitor (TXDS), the part number of the
software, the revision status (** = no revision, *A = 1st revision, *B = 2nd revision, etc.), and the
date and time of day that the program was loaded (152/77 = 152nd day of 1977).

The Control Program may be terminated by entering only a carriage return in response to the
PROGRAM: prompt.

4.3 LUNOs
The Control Program assigns LUNO 2 to a pathname given in response to the PROGRAM: prompt
(i.e., the file or device from which the desired program is to be loaded).

41 Digital Systems Division

{@ 946259-9701

4.4 OPERATOR INTERACTION
The Control Program assists in program loading and execution by printing out or displaying
prompts on the system console, sequentially, as follows:

PROGRAM:
INPUT:
OUTPUT:
OPTIONS:

The following paragraphs describe the prompts and user responses.

4.4.1 PROMPT RESPONSES. The Control Program prompts the user to enter the program
pathname, input pathname, output pathname, and option-selections. ID or It checks each pathname
for syntax. If the syntax is not correct, it will prompt the user again. After all of the responses to
the prompts are entered, the Control Program loads and/or executes the specified program.

4.4.1.1 PROGRAM: Prompt. The operator’s response to the PROGRAM: prompt is used for
specifying either the pathname of the file containing the program to be loaded and executed, or the
ID of a program in memory.

Only one pathname can be entered in response to the PROGRAM: prompt. When the program is to
be loaded as a privileged task (enabling the task to execute certain supervisor calls), the user must
enter the pathname followed by a “P”. A task, when not linked with the operating system, can be
made privileged when it is loaded or by issuing a Make Task Privileged SVC at execution. All tasks
linked with TX990 are privileged. When the task is loaded, it is assigned task ID 10y.

Should the user desire to execute a task already in memory, the task ID, preceded by a hexadecimal
sign (>) must be entered in response to the PROGRAM: prompt. For example, after the TXEDIT
utility program has been loaded into memory, it can be reexecuted as follows:

TXDS 936215 ** 010/77 2:05

PROGRAM: >10
INPUT: DSC:TASK2/SRC
OUTPUT: DSC:SCRATCH/SRC
OPTIONS: (carriage return)

4.4.1.2 INPUT: Prompt. The operator’s response to the INPUT: prompt is used to specify the
pathname(s) of input information needed by the program during its execution. The operator can
enter zero to three input pathnames separated by commas. The Control Program will check each
parameter for syntax. If the syntax is wrong, the Control Program will prompt the user again. The
user must enter the entire line again. :

4.4.1.3 OUTPUT: Prompt. The operator’s response to the OUTPUT: prompt is used to specify the
pathname for storage of the output information resulting from execution of the program. Up to
three pathnames (separated by commas) can be entered in response to the OUTPUT: prompt.

4.4.1.4 OPTIONS: Prompt. The operator’s response to the OPTIONS: prompt is used to specify
the option(s) selected from the total alternative options available for the program which is to be
loaded and executed.

4-2 Digital Systems Division

{_ép 9462599701

4.4.2 DEFAULT VALUES. Except for the PROGRAM: prompt, default values for the Control
Program prompts are determined by the program being executed.

If the user intends to execute a task already in memory without reloading it, he must enter the task
ID; no default value is allowed.

If the user intends to load the program from a device (not a file), the device name must be specified
(i.e., there is no default value). If a file pathname is entered (see Section I on pathnames), the user
may leave both the device/volume name and the file extension fields unspecified.

When a PROGRAM: pathname does not specify the diskette volume name or drive, the Control
Program starts a device-file search beginning with the diskette drive that is the default-substitute
defined during system generation. For a standard TI-supplied system, the default-substitute is DSC.
If the file is not on the diskette of the first default diskette transport drive, the Control Program
will concatenate a 2 to DSC and the file search would then proceed to DSC2. In the same manner,
the search continues to DSC3 and to DSC4. The search is only effective when the diskette
default-substitute is the main diskette drive and when its device-name identifier is comprised of
three characters, (i.e., DSC or any other three characters). It should also be noted that whenever the
user specifies the dev1ce—name identifier in response to the PROGRAM: prompt only the specified
device (e.g., the specified diskette transport drive) is searched

When the user enters only a slash (/) as the extension field in the PROGRAM: prompt pathname,
the extension will default to SYS and SYS will be substituted into the pathname before any drives
are searched. If neither the extension nor a slash is entered, the extension is assumed to be blanks.

4.4.3 SPECIAL KEYBOARD CONTROL KEYS. The special keyboard control keys are described
as follows:

1. RUBOUT/DELETE LINE Allows the operator to reenter a parameter.
Pressing the RUB OUT key causes a line feed
followed by a carriage return. The operator may
then enter the line again.

2. CONTROL H/Back Arrow Allows the operator to backspace by character
and correct a typing error.

3. Carriage Return/NEW LINE . Causes TXDS Control Program to terminate if
the carriage return or NEW LINE was the only
entry in response to the PROGRAM: prompt,
otherwise terminates a prompt line entry.

4. ESCAPE/RESET If an ESCAPE or RESET is entered during a
print out, the TXDS Control Program
terminates.

5., Causes a default to be activated when entered as
the response to the INPUT: or OUTPUT:
prompts.

6. & In any prompt line, pressing the & key as the

first character in the response causes the TXDS
Control Program to restart with the PROGRAM:
prompt.

4-3 Digital Systems Division

P

@ 946259-9701

7. * When entered after a prompt line entry, in place
of a carriage return, permits the next prompt
line to be entered without being prompted by
the TXDS Control Program. When a prompt line
is terminated with an asterisk (*) followed by a
carriage return, no more prompts are given and
default-substitutes are made by the utility
program for those pathnames not entered. The
experienced user can enter all or several of the
parameters on one prompt line.

The following examples utilize the asterisk (*) feature in lieu of the INPUT:, OUTPUT:, and
OPTIONS: prompts:

Example 1:

To load the TXEDIT utility program after the TXDS Control Program has been loaded, the
asterisk (*) is used as presented in the following example:

TXDS 936215 =** 010/77 2:05

PROGRAM: DSC:TXEDIT/SYS*DSC:TASK2/SRC*DSC:SCRATCH/SRC*
(where DSC:TASK2/SRC is the INPUT: pathname; DSC:SCRATCH/SRC is the OQUTPUT:
pathname; and the OPTIONS: entry is provided by the default-substitution specified in the
TXEDIT utility program.)
The above can also be entered as follows:

TXDS 936215 ** 010/77 2:05

PROGRAM: DSC:TXEDIT/SYS
INPUT: DSC:TASK2/SRC*DSC:SCRATCH/SRC*

Example 2:

To load the SYSUTL utility program after the TXDS Control Program has been loaded, the
asterisk (*) is used as follows:

TXDS 936215 ** 101/77 ,2:05
PROGRAM: :SYSTUL/SYS***CF,:TEMP/OBJ

(where the INPUT: and OUTPUT: parameters are null and the OPTIONS: parameter is
CF,:TEMP/OBI.)

NOTE
1. In the above examples, it is necessary to press the carriage

return key at the end of the parameter line to cause the
program to be loaded and executed.

44 Digital Systems Division

(@ 9462599701

2. If a parameter line ends with an asterisk (*) and a pathname is
not entered for each prompt, then default substitutes are made
by the utility program for those pathnames not entered.

Example 3:

The following example utilizes the comma (,) to cause a default-substitution to be made in the
OUTPUT: pathname below.

TXDS 9326215 ** 010/77 2:05

PROGRAM: :TXMIRA/SYS
INPUT: :TASK1
OUTPUT: ,CRT
OPTIONS: M800,X,L

(where the OUTPUT: pathname defaults to a substitute specified in the TXMIRA Assembler
utility program.)

The following example utilizes both the asterisk (*) and the comma (,) special keybeard controls:

To load the TXMIRA Assembler utility program after the TXDS Control Program has been
loaded, the asterisk (*) is used as follows:

TXDS: 936215 ** 010/77 2:05

PROGRAM: :TXMIRA/SYS*:TASK1*,CRT*M800,X,L

(where TASKI1 is the INPUT: pathname and where the OUTPUT: pathname is the
default-substitute provided in the TXMIRA Assembler utility program.)

4.5 ACCESSING PARAMETERS THROUGH THE CONTROL PROGRAM

The responses to the prompts of the Control Program are entered into a block of memory known as
COMMON memory. The task which is being loaded and executed then accesses COMMON memory
for the information contained in these responses. The response-information is stored in the bytes of
COMMON memory in an organized nammer using the format presented in table 4-1. The
programmer, when coding a user utility program or a user applications program, will find it
necessary to become familiar with the format of COMMON memory. Access to the
response-information in COMMON memory is provided to the programmer by the use of Get
COMMON Data supervisor call 10, (see Section 6). Get COMMON Data returns the memory
address and the byte-size of COMMON to the task. The Control Program can only execute in an
operating system which was generated with at least 170 bytes of COMMON memory. The user must

take this into consideration when performing system generation.

A typical example of an operator’s response-entries to the TXDS Control Program’s prompts is
presented below, immediately followed by the hexadecimal and ASCII representation in binary
code of the operator’s response that is placed in the COMMON memory block.

TXDS 936215 *A 010/77 2:05

PROGRAM: :TXLINK/
INPUT: :TXTST,/,CS1
OUTPUT: :TXTST2/OBJ,LP
OPTIONS: ITXT,M4000

45 Digital Systems Division

946259-9701

Table 4-1. Byte-Allocation of COMMON Memory
Parameter Byte(s) Explanation

PROGRAM: 0-15 To be coded with the same pathname information that is
entered in response to a PROGRAM: prompt.

NOTE

The response-entries to the PROGRAM:, INPUT:, and OUTPUT: prompts are
placed in byte-groups of 16 bytes each. The device name is entered in the first four
bytes, left-justified, and space-filled with zeros. A colon is placed in the fifth byte if
the program name is a diskette file name; otherwise a binary zero is placed in the
fifth byte. The file name is entered in the sixth through twelfth bytes, left-justified,
and space-filled with binary zeros. A slash is placed in the thirteenth byte when a
diskette file is to be referenced by the pathname being entered; otherwise a binary
zero is placed in the thirteenth byte. The extension is placed in the fourteenth
through sixteenth bytes, left{justified, and space-filled with binary zeros. Whenever
the device, file, or extension is to be defaulted by the utility or the user’s task, the
binary field relating to the device, file, or extension will be space-filled with binary
zeros. When the total parameter (which includes the device, file, and extension
fields) is defaulted, a colon (:) is placed in the fifth byte and a slash is placed in the
thirteenth byte and all the fields become space-filled with binary zeros.

INPUT: #1 16-31 To be coded with the same pathname information that is
entered for the first INPUT: parameter.

INPUT: #2 3247 To be coded with the same pathname information that is
entered for the second INPUT: parameter.

INPUT: #3 48-63 To be coded with the same pathname information that is
entered for the third INPUT: parameter.

OUTPUT: #1 64-79 To be coded with the same pathname information that is
entered for the first OUTPUT: parameter.

OUTPUT: #2 80-95 To be coded with the same pathname information that is
entered for the second OUTPUT: parameter.

OUTPUT: #3 96-111 To be coded with the same pathname information that is
entered for the third OUTPUT: parameter.

OPTION: 112-143 To be coded with the character-entries that the operator
entered in response to the OPTIONS: prompt. The charac-
ters entered in response to the OPTIONS: prompt will be
copies into 112-143. Up to 30 characters can be entered
and copied into COMMON memory and following the last
character entered is a binary zero.

4-6 Digital Systems Division

946259-9701

Table 4-1. Byte-Allocation of COMMON Memory (Continued)

Chaining 144-159 Used for the chaining pathname, which is the pathname of

Pathname the next program to be loaded and executed if the chaining
flag in byte 160 is set to a nonzero number. The chaining
pathname is initialized so that the first four bytes each have
a binary zero, the fifth byte has a colon, the sixth through
twelfth bytes each contain a binary zero, the thirteenth byte
contains a slash, and the fourteenth through sixteenth bytes
each contain a binary zero.

Chaining 160 This is the chaining flag byte which is set to a nonzero number

Flag by a user program or a utility program when it is desired to
chain from the end of one program to the pathname specified
in bytes 144-159. The object program which is at the path-
name specified in bytes 144-159 is then loaded and executed.
One program (a user’s task or TXDS utility program) can
chain to another by setting the chaining flag in memory
(byte 160), placing the access name (i.e., the chaining path-
name) for the new program in bytes 144-159 and executing
an End-of-Program 16,4 supervisor call. The INPUT:
OUTPUT:, and OPTIONS: prompts can be used as required
to pass parameters to the new program.

Batch Mode 161 Set if batch job control stream is in progress. The TXDS
Flag Control Program loads and executes the object program
' which is in the pathname specified in bytes 144-159.

Batch 162 Set when a program terminates in error during a batch
Error stream.
Chaining 163 Chaining Error Flag. Set when the program chained to termi-
Error nate is in error.
Default 164-167 Default system console print device declared at time of system
Print generation.
Reserved 168-170 Reserved for later enhancements.
4-7

Digital Systems Division

946259-9701

The above responses to the prompts are placed into the COMMON memory block as follows:

Byte Hexadecimal Representation (Upper Row)
Address and ASCII Representation (Lower Row)
0-15 0000 0000 3A54 584C 494E 4B00 2F00 0000
.. T X L I N K . [.
1631 0000 0000 3A54 5854 5354 0000 2F20 0000
.. : T X T ST /b=
3247 0000 0000 3A00 0000 0000 0000 2F00 0000
: /.
48-63 4353 3100 0000 0000 0000 0000 0000 0000
C S 1
64—79 0000 0000 3A54 5854 5354 3200 2F4F 424A
. . : T XT ST 2 /0 BJ
80-95 4C50 0000 0000 0000 0000 0000 0000 0000
LP
96—111 0000 0000 3A00 0000 0000 0000 2F00 0000
112-143 4954 5854 2C40 3430 3030 UNDEFINED
I T X T , M 40 00
144—-159 0000 0000 2A00 0000 0000 0000 2F00 0000
. .. : [.
160 00
161 00
162 00
163 00
164—-167 4C4F 4720 This assumes that LOG was defined as system
-L O G default print device during system generation.
168—n Not used.
4-8

Digital Systems Division

946259-9701

4.6 ERROR MESSAGES

Refer to table 4-2 for a list of error messages, the reason for each error, and the recovery method.

Table 4-2. TXDS Control Program Error Messages

Error

nn-BAD PGM LOAD

—BAD PGM LOAD

nn—CAN’T BID TASK

CANT GET COMMON-
ABORTED

Reason

nn represents error code
listed in error appendix D.

Can’t find object file.
nn represents the task state
code of task 10 listed in

state code appendix C.

System was configures without
COMMON.

Recovery

Reenter parameter

Reenter parameter

Reenter parameter

Configure a system
with 168 bytes of
common

4-9/4-10

Digital Systems Division

{@} 946259-9701

SECTION V

PROGRAMMING TASKS

5.1 INTRODUCTION

A program that executes under the TX990 operating system is also referred to as a task. The task
consists of a data division and a procedure division. These divisions may be assembled as a single
moduie or as two or more separate moduies linked to form a single object module. The structure of
a task is described in this section.

This section also includes a description of the programming considerations for writing tasks to be
executed under TX990, and detailed descriptions of the supervisor calls by which a user task
requests the support of TX990. Also included is a description of task scheculing.

5.2 TASK STRUCTURE AND PROGRAMMING

Logically, a task consists of a data division and a procedure division. Figure 5-1 shows the task
structure supported by TX990, and the relationship of the first three words of the task to the data
and procedure divisions. The data division contains the workspaces required by the task and aii
other data structures (tables, supervisor call blocks, buffers, constants, etc.). The procedure division
contains the executable code for the task. When the task is assembled as a single module, the logical
division of the task into a data division and a procedure division is optional; however, the task
should be organized so that the procedure division may be shared with other tasks should it become
desirable.

WORD 0O INITIAL WP CONTENTS DATA DIVISION
WORD 1 INITIAL PC CONTENTS
WORD 2 END ACTION ADDRESS
L § <
- 1#
WORKSPACE

PROCEDURE DIVISION

(A)133423

Figure 5-1. TX990 Task Structure

>1 Digital Systems Division

{@ 946259-9701

When a procedure division is shared with several data divisions, each combination of a data division
with the procedure division is a separate task. The procedure division must be reentrant in this case.
General requirements of reentrant programming are described in the Model 990 Computer
TMS9900 Microprocessor Assembly Language Programmer’s Guide, part number 943441-9701. In
addition to those requirements, TX990 requires that addressing of data in the data division by the
instruction in the procedure be indexed addressing. The user must place the data-division address in
one of the workspace registers when the data division is assembled and use this register to index
addresses in the procedure.

The user may resolve the addressing problems of a procedure being shared by more than one task in
either of two ways. The user may include the dummy origin directive when assembling the
procedure, making the data-division relative addresses available to the procedure. Alternatively, the
user may link the data divisions and the procedure division. This will result in multiple definitions.
The definitions must be identical, if the procedure is to be shared. Therefore, whichever of the
multiple definitions is used by the link editor, the result will be correct and the multiple definition
messages may be ignored. Any of the tasks that share a procedure may be executed in the dynamic
task area. This can be done by linking the data division for that task to the common procedure
division, and loading the task into the dynamic-task area.

The first three words of the data division contain the addresses of the initial workspace, the
procedure entry point, and the end action entry point, respectively. The contents of the first word
are placed in the WP register when the task begins execution. The user places the address of the
initial workspace (16-word memory area accessible as 16 workspace registers) in that word. The
second word contains the address of the entry point to the procedure division, which is placed in
the PC when the task begins execution. The third word controls end action. When the value in the
third word is greater than 15, the value is interpreted as the address of an end action routine,
described in greater detail in paragraph 5.5. When the value is 15 or less, this value has no
significance other than to indicate that no end action is to be taken.

In addition to dividing a task into data and procedure divisions, the user may make parts of the task
into overlays, using the Link Editor. TX990 supports the automatic overlay loading capability of
the Link Editor, as described in the Model 990 Computer Link Editor Reference Manual, part
number 949617-9701.

Briefly, to create an overlayed program the user should assemble each intended overlay as a separate
module, placing the output from the assemblies into separate files. All calls to overlay modules must
be Branch and Load Workspace Pointer (BLWP) instructions, with the entry point of the overlay as
the operand (no indexing or register operand is allowed). Next, the program must be linked, using
the Link Editor. The user specifies the overlay structure of the problem through various link editor
commands. The link editor LOAD directive must be used, to notify the Link Editor that automatic
overlay loading is desired. See the Link Editor Reference Manual for more explanaiton of overlayed
programs and usage of the Link Editor.

5.3 TASK SCHEDULING
The task scheduler uses a priority scheme with four levels and maintains a list of active tasks at each
priority level. A task is added at the end of the active list in each of the following cases:

e When the task is placed in execution (bid).

e At the completion of a time slice.

52 Digital Systems Division

{@} 946259-9701

A time slice is a period of execution of a task, beginning when the scheduler passes control to the
task. A time slice ends when any of the following occurs:

e The system suspends the task upon expiration of the maximum time period allowed for a
time slice.

e The task executes a supervisor call that suspends the task.
e The system suspends the task to await completion of an I/O operation.

The maximum time period allowed for a time slice is a system parameter specified when the system
is generated.

When the currently executing task completes a time slice, the task scheduler passes control to the
oldest task on the active list for the highest priority (0). If there is no task on the active list for
priority O, the oldest task on the active list for the next highest priority receives control.

To avoid completely locking out low priority tasks, there is a maximum number of consecutive time
slices (weighting factor) for each priority level. When this number of time slices has been used by 2
priority level, the oldest task on the active list for the next lower priority is allowed a time slice
before the higher level again has control. The maximum number of time slices for each priority level
are system parameters defined during system generation.

Task management maintains a state code for each task. The state codes are listed in Appendix G.

5.4 PREVENTING ACCIDENTAL ALTERATION OR DESTRUCITON OF THE OPERATING
SYSTEM ,

The most important consideration in programming user tasks is that the tasks do not interfere with
the proper operation of the operating system. TX990 executes in either the Model 990/4 or the
Model 990/10 Computer. Programming considerations to prevent accidental alteration or

destruction of the operating system are different in each model.

In the Model 990/10 Computer, user tasks may execute in either the privileged or nonprivileged
mode. An attempt to execute any of the following assembly instructions (described in the
Model 990 Computer TMS 9900 Microprocessor Assembly Language Programmer’s Guide part
number 943441-9701) in the nonprivileged mode will result in a fatal error:

e RSET
e IDLE

e CKOF
e CKON
e LREX

e SBO, when the effective CRU address is EQ0¢ or greater
. SBZ, when the effective CRU address is E0Q,¢ or greater

e TB, when the effective CRU address is EOOQ,s or greater

Digital Systems Division

il—@a 946259-9701

e LDCR, when the effective CRU address is EOQ,¢ or greater
. STCR, when the effective CRU address is EOOy¢ or greater
e LIMI

e LMF (only available in computers having map option)

e LDS (only available in computers having map option)

e LDD (only available in computers having map option)

Although privileged and non-privileged modes are not used in the Model 990/4 Computer, generally,
the user should avoid using the above instructions. If necessary the user may execute some of the
above instructions with care; however, the system may operate improperly or fail to operate.

Execution of an RSET instruction has unpredictable results. Execution of an IDLE instruction
places the computer in the Idle mode until an interrupt occurs. The CKOF and CKON instructions
control the real-time clock, which is used by the system to allot execution times to tasks according
to the scheduling algorithm. A CKOF instruction must not be executed, and a CKON instruction
should not be required. Execution of an LREX instruction transfers control of the program that
controls the programmer panel, stopping system operation. Execution of an LIMI instruction may
interfere with the system control of interrupts. An LIMI instruction with an operand of 0 inhibits
all interrupts. This instruction is permissible if the user reenables interrupts by executing an LIMI
instruction having an operand of 15 as soon as possible. A user task should use the Do Not Suspend
supervisor call to inhibit suspension of the task at the end of the current time slice rather than an
LIMI instruction. Integrity of system time is lost if interrupts are not reenabled within 8.3 ms
(60-Hz line frequency) or 10 ms (50-Hz line frequency).

The operating system uses the higher-order Communications Register Unit (CRU) addresses for
dedicated purposes. None of the CRU instructions (SBO, SBZ, TB, LDCR, or STCR) should access
any CRU addresses greater than DFF s . For example, if workspace register 12 contained 1BFO,¢

as the CRU base address, an SBO instruction with a displacement of 8 results in an effective CRU
address of E00,s , a dedicated address. Displacements less than 9 would result in valid addresses.
The same base address in workspace register 12 would result in accessing dedicated addresses if an
STCR instruction to store 8 or more bits were attempted. Refer to the Model 990 Computer
Assembly Language Programmer’s Guide, part number 943441-9701, for details of CRU addressing.

The user may write routines to perform extended operations (XOP). For tasks executing under
TX990 in a Model 990/4 Computer, the same restrictions to the use of instructions apply both in
the task and in the XOP routine. For tasks executing under TX990 in a Model 990/10 Computer,
the restrictions that apply to the Model 990/4 Computer apply also in the XOP routine in the
Model 990/10 Computer, because the Model 990/10 Computer is placed in the privileged mode by
execution of an XOP instruction. Additional information about programming extended operations
is included in Appendix C, entitled “User-Supplied Modules”.

5.5 USER-SPECIFIED END ACTION ROUTINE IN RESPONSE TO FATAL ERRORS

The user specifies end action by placing the address of an end-action routine in the third word of
the user task. When TX990 detects a fatal error and terminates the task abnormally, control
transfers to the address in the third word unless that word initially contained a value of 15 or less.
This allows the user to supply a routine to perform any required terminating function.

4
5 Digital Systems Division

{@ 946259-9701

TX990 places the appropriate error code in the third word of the task after obtaining the end action
routine address. After performing end action, or when the error is detected and no end action is
specified, TX990 reieases ali 1/O devices, cioses all files, and removes the task from execution. The
task error codes are listed in Appendix H, entitled “Printout of Fatal Task Error Codes and Illegal
Interrupt Code™.

When a task that has taken end action is to be reexecuted without reloading, the end-action routine
must restore the end-action-routine address in the third word of the task.

5.6 CODING SUPERVISOR CALLS AND SUPERVISOR CALL BLOCKS

A user task requests support of the operating system by executing a supervisor call, XOP Level 15.
A supervisor call block contains one or more bytes that define the supervisor call. The first byte of a
supervisor call block contains the code of the supervisor call. Subsequent bytes are used as described

for specific supervisor calls, when required.

The supervisor call may be coded in either of two ways. The first example shows a supervisor call
coded as an XOP instruction:

XOP @SCBA,15 Perform extended operation 15, by passing the
address corresponding to @SCBA to the system.

Alternatively, a symbol may be defined for supervisor calls using DXOP directive, as follows:

DXOP SV(C,15 Define symbol SVC for extended operation 15.

r call block in the operand field as follows:

L el 1UME

t
and the address of the superviso
SvC @SCBA Perform extended operation 15 using the supervisor

call block at address @SCBA.

Supervisor call blocks are coded using BYTE directives, DATA directives, or both. Some supervisor
call blocks must be aligned on word boundaries (i.e., they must have even addresses). Use of a
DATA directive assures word alignment, but a BYTE directive does not perform word alignment.
The descriptions of supervisor calls in the previous paragraphs identify the supervisor call blocks
that must be word-aligned.

The following examples show coding for supervisor call blocks:

SCBA BYTE >10,0 Place 10, , the code for a Get Common Data Address
supervisor call, in a byte at location SCBA. The second
byte contains 0.

SCBB DATA >0300,DTBUF Place 03,6 , the code for a Get Date and Time supervisor
call, in the first byte of a two-word block at location
SCBB, a word boundary. The second byte of the block
contains 0, and the last two bytes contain the address
corresponding to location DTBUF, a five-word buffer into
which the function places the date and time.

5-5 Digital Systems Division

@ 946259-9701

Alternatively, the label for a supervisor call block may be supplied with an EQU directive, as
follows:

SCBB EQU §

DATA <300,DTBUF Assign label SCBB to current location. Place 03 in the first
byte of a two-word block and the address corresponding to
location DTBUF in the second word of the block, as in the
preceding example.

The preceding example produces-the intended result only if the current location is a word-aligned
location. When the statements in the example follow a BYTE directive or a TEXT directive the
location may not be word-aligned, and, if it is not, SCBB will not be the address of the supervisor
c¢all block. The following example will provide the desired result:

SCBB EVEN
DATA <0300,DTBUF If the location is not word-aligned, increment the location
to a word boundary and assign label SCBB to the result.
Otherwise, assign label SCBB to the location. Build the
supervisor call blocks as in the preceding example.

5
6 Digital Systems Division

946259-9701

6.1 INTRODUCTION

SECTION VI

EXECUTIVE SUPERVISOR CALLS

Executive supervisor calls (SVCs) in the TX990 operating system provide the user with the ability
to control activities/operations in the user program, and to request services
system. Table 6-1 shows the executive supervisor calls provided by TX990.

Table 6-1. Executive Supervisor Calls

SVC Name

>

Bid Task

Change Priority

Do Not Suspend
Time Delay

Activate Time Delay
Unconditional Wait
Activate Suspended Task
End-of-Task
End-of-Program

Get Parameters

Get Own ID

Make Task Privileged

Convert Binary to Decimal
Convert Decimal ASCII to Binary
Convert Binary to Hexadecimal ASCII

Get Memory

Release Memory

Get System Table

Get COMMON Data
Return COMMON Data

Put Data
Get Data

Date and Time

Hexadecimal
SVC Code

B OO =

from the operating

6-1

Digital Systems Division

[e]
@ 946259-9701

6.2 TASK CONTROL SUPERVISOR CALLS

Task control SVCs are used to schedule and control the execution of tasks. These SVCs are
discussed in the following paragraphs.

6.2.1 BID TASK SUPERVISOR CALL 5,. Bid Task supervisor call 5, activates the specified
task. The supervisor call block contains three, six, or eight bytes, aligned on a word boundary. Byte
0 contains the code, and the system returns a value in byte 1. Byte 2 contains the task identifier
assigned to the task being bid. If the task is a linked-in task, the task ID was assigned during system
generation. In systems supporting multiple dynamic tasks, the ID of a dynamic task is assigned by
the IT OCP command. In single dynamic task systems, the task identifier of the task in the dynamic
task area is 10,5. Byte 3 is unused. Bytes 4 through 7 may contain parameters to be passed to the
task. The task obtains the parameters by executing a Get Parameters supervisor call.

When the system is unable to locate the specified task, it returns a -1 in byte 1 of the supervisor call
block. Otherwise, the system returns the current task state code in that byte. The task state code
for a terminated task is 4. Other task state codes are listed in Appendix G. When the task state code
is not equal to 4, the supervisor call is ignored.

Bid task call block:

o 5 ERROR CODE

TASK ID .~ RESERVED

BiD PARAMETER 1

(A)137478 6 BID PARAMETER 2

The following are examples or coding for supervisor call blocks for Bid Task calls:

SCBB DATA >0500,>1000,>4845,>4C50 Supervisor call block for a Bid Task call to bid

task 10,4, and pass the ASCII representations
of characters HELP to the task.

SCBA DATA >0500,>1A00 Supervisor call block for a Bid Task call to bid
task 1A,¢. Undefined data from bytes corres-
ponding to bytes 4 through 7 of the supervisor
call block is passed to the task as parameters.

6.2.2 CHANGE PRIORITY SUPERVISOR CALL 11,4. Change priority supervisor call 11
changes the priority of the calling task to a specified value. The supervisor call block contains two
bytes and need not be aligned on a word boundary. Byte O contains the code, and byte 1 contains
the new priority value. The valid priority levels are O through 3 (0 is usually reserved for system
tasks). The system returns the previous priority value in byte 1. When the priority level is not
0 through 3, the previous priority level is not altered, and the system returns -1 in byte 1. The
system returns the previous priority value in byte 1.

Change priority call block: o 11,6 PRIORITY

(A)137479

The following is an example of coding for a supervisor call block for a Change Priority call:

SCBP BYTE >11,1 Change the priority of the calling task to 1.

6-2 Digital Systems Division

o
@ 946259-9701

6.2.3 DO NOT SUSPEND SUPERVISOR CALL 9,,. Do Not Suspend supervisor call 9,6 causes
the system to override the time slice for the calling task by inhibiting the system from suspending
the task. The task may suspend itself by executing an I/O supervisor call, or a Time Delay, Wait for
1/O, or Unconditional Wait supervisor call. The supervisor call block contains two bytes, and need
not be aligned on a word boundary. Byte 0 contains the code, and byte 1 contains O or a positive
number. When byte 1 contains 0, the task will not be suspended for a system time unit. When
byte 1 contains a number, the task will not be suspended for that number of system time units.

Suspension of a task may be inhibited for a period from 1 to 255 system time units.

The length of a system time unit is dependent on the power-line frequency. For 60-Hz power, the
system time unit is 50 ms. For 50-Hz power the system time unit is 40 ms.

Do not suspend call block °© 9 NUMBER OF SLICES

(A)137490
The following is an example of coding for a supervisor call block for a Do Not Suspend call:

SCBI BYTE 9,5 Inhibit suspending of calling task for five system time units.

The Do Not Suspend supervisor call should be used instead of an LIMI instruction having an
operand of zero to inhibit suspension of a task at the end of the current time slice. When a task
manipulates a data structure that is used by several tasks, the task should complete its alterations
to the data structure before any of the tasks that use the data execute again. The Do Not Suspend
supervisor call allows such a task to lock out other tasks while changing the data.

6.2.4 TIME DELAY SUPERVISOR CALL 2,,. Time Delay supervisor call 2, suspends the calling
task for a specified time period. The supervisor call block contains four bytes, aligned on a word
boundary. Byte O contains the code, and byte 1 contains zero. Bytes 2 and 3 contain the number of
system time units during which the task is to be suspended. The range of time-delay-suspension
periods is from 1 to 32,767 system time units. When a negative number is used, the task is
suspended for 1 system time unit. The system time unit is defined in the preceding paragraph.

o 2 o]

2 NUMBER OF TIME UNITS TO DELAY

(A)137481

The tollowing example shows coding for a supervisor call block for a Time Delay call:
SCBT DATA >200,40 Suspend the calling task for 40 system time units.

6.2.5 ACTIVATE TIME DELAY TASK SUPERVISOR CALL E,q. Activate Time Delay Task
supervisor call E;¢ activates the specified task if it is in the time delay state. The supervisor call
block contains three bytes, and need not be aligned on a word boundary. Byte 0 contains the code,
and the system returns a value in byte 1. Byte 2 contains the task identifier assigned to the task.

When the system is unable to locate the task in the system, it returns -1 in byte 1 of the supervisor
call block. Otherwise, the system returns the current task state code in that byte. The task state
code for a task in time delay is 5. Other task state codes are defined in Appendix G.

6-3 Digital Systems Division

[o]
%@ 946259-9701

Activate time delay call block:

o Eqg ERROR CODE

2 TASK 1D

(A)137482

The following is an example of coding of a supervisor call block for an Active-Time-Delay Task
call:

SCBR BYTE >E00,>13 Activate task 13,4, a task in a time delay.

6.2.6 UNCONDITIONAL WAIT SUPERVISOR CALL 6,,. Unconditional Wait supervisor call
616 suspends the calling task indefinitely, unless an Activate Suspended Task supervisor call that
specifies the task has already been executed. In that case, execution resumes immediately. Other-
wise, the calling task remains suspended until another task executes an Active Suspended Task
supervisor call for this task. The supervisor call block consists of a single byte that contains the
code, and need not be aligned on a word boundary.

Unconditional Wait call block: o 6

(A)137483

The following is an example of coding a supervisor call block for an Unconditional Wait call:
SCBW BYTE >6 Suspend the calling task unconditionally.

6.2.7 ACTIVATE SUSPENDED TASK SUPERVISOR CALL 7,,. Activate Suspended Task
supervisor call 7,4 activates the specified suspended task. When the specified task has not yet been
suspended by an Unconditional Wait supervisor call, the effect of this supervisor call is to activate
the task immediately following execution of an Unconditional Wait supervisor call. The supervisor
call block consists of three bytes, and need not be aligned on a word boundary. Byte 0 contains the
code, and the system returns a value in byte 1. Byte 2 contains the task identifier assigned when the
task was loaded.

When the system is unable to locate the task in the system, it returns a -1 in byte 1 of the supervisor
call block. Otherwise, the system returns the task state code in that byte. The task state code for
a suspended task is 6. Other task state codes are defined in Appendix G.

Activate suspended task call block:
o 7 ERROR CODE

2 TASK ID

(A)137484

The following is an example of coding for a supervisor call block for an Active Suspended Task call:
SCBSBYTE >7,0>11 Activate task 11,4, previously suspended.

6. END OF TASK SUPERVISOR CALL 4,,. End of Task supervisor call 4, closes all LUNOs
assigned by the task and terminates the task. The supervisor call block consists of a single byte that
contains the code, and need not be aligned on a word boundary.

6-4 Digital Systems Division

(o]
@ 946259-9701

End task call block: o 4
(AY137485
The following is an example of coding for a supervisor call block for an End-of-Task call:
SCBE BYTE >4 Terminate calling task normalily.

-6.2.9 END OF PROGRAM SUPERVISOR CALL 16,s. End-of-Program supervisor call 1644
terminates a task. The supervisor call block consists of a single byte that contains the code, and
need not be aligned on a word boundary. The function of an End-of-Program call is to close all
LUNOs assigned by the task, to terminate the task, and to execute the rebid task which is normally
the TXDS control program. The rebid task is discussed in Appendix J.

End program call block: © 186

(A)137486

The following is an example of coding for a supervisor call block for an End of Program call:
SCBP BYTE >i6 Terminate caliing task normally.

6.2.10 GET PARAMETERS SUPERVISOR CALL 17;4. Get Parameters supervisor call 174
obtains task parameters passed to the task by an EXECUTE OCP command or by a Bid Task
supervisor call. When a task includes a Get Parameters supervisor call, it must be the first supervisor
call in the task. The supervisor call block consists of six bytes, aligned on a word boundary. Byte 0
contains the code, and byte 1 contains zero. The system places the parameters in bytes 2 through 5,
in the same order in which they were placed in the EXECUTE command or in the Bid Task call.

Get parameters call block:

o) 1716 0
2 BID PARAMETER 1
4 BID PARAMETER 2

(A)137487

The following is an example of a supervisor call block for a Get Parameter call:
SCBG DATA >1700,0,0 Obtain task parameters in two words at location SCBG+2.

6.2.11 GET OWN ID SUPERVISOR CALL 20,,. Get Own ID supervisor call 20,4 returns the
Task ID of the user task in byte 1 of the call biock. The call block contains two bytes and need not

be aligned on a word boundary. Byte O contains the code, and byte 2 is the task ID returned by the
system.

Get own ID call block: o 20,¢ TASK 1D

(A)137488

The following is an example of coding of the Get-Own-ID supervisor call:

SCBB BYTE >20,0.

6-5 Digital Systems Division

[e]
{@ 946259-9701

6.2.12 MAKE TASK PRIVILEGED SUPERVISOR CALL 23;,. This supervisor call will make the
calling task privileged, which allows the task to perform direct disc I/O, and to execute a Get
System Table supervisor call. The supervisor call block contains two bytes and need not be aligned
on a word boundary. Byte O is the code and byte 1 is unused.

Make task privileged call block: o 23, RESERVED

(A)137439
The following is an example of the Make Task Privileged supervisor call:

SCBB BYTE >23,0

6.3 CODE CONVERSION SUPERVISOR CALLS
The code conversion group of supervisor calls consist of four supervisor calls that convert the binary
value in a word to ASCII characters, or a group of ASCII characters to a binary value. The super-
visor calls are described in the following paragraphs.

6.3.1 CONVERT BINARY TO DECIMAL ASCII SUPERVISOR CALL A . Convert Binary to
Decimal ASCII supervisor call A;g converts the binary value in task workspace register O to the
ASCII representation of the equivalent decimal value. The supervisor call block consists of eight
bytes, and need not be aligned on a word boundary. Byte O contains the code and byte 1 contains
zero. The system places an ASCII minus sign in byte 2 when the value being converted is negative,
or a blank in that byte when the value is zero or positive. The converted value is placed in bytes
3 through 7, right-justified with leading blanks.

Convert bin to decimal ASCII call block: Are Y

0
2 SIGN CONVERTED
4
VALUE
6

(A)137490

The following is an example of coding a supervisor call block for a Convert Binary to Decimal

ASCII call:
SCBD BYTE >A,0,0,0,0,0,0,0 Convert value in workspace register 0 to decimal
ASCII and place the result in the supervisor call
block.

The following examples show typical values and the results:

Register 0 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
0001,¢ 2046 2046 2046 204 2046 3l
7FFF,¢ 2046 33 324 3716 3646 3716
FFFF 4 2Dy6 2046 2046 2046 20,6 3146

6-6 Digital Systems Division

o]
% 946259-9701

6.3.2 CONVERT DECIMAL ASCII TO BINARY SUPERVISOR CALL B,,. Convert Decimal
ASCII to Binary supervisor call By converts the ASCII characters in bytes 2 through 7 of the super-
visor call block to a binary value, and places the value in task workspace register 0. The supervisor
call block consists of eight bytes and need not be aligned on a word boundary. Byte O contains the
code; and the system returns a value in byte 1. The calling task places the sign of the decimal value
in byte 2, which may be the ASCII representation of +, -, zero, or blank. A - identifies the value as
negative, and +, blank, or zero identifies the value as zero or positive. The ASCII representations of
the decimal digits are entered in bytes 3 through 7, right-justified with leading blanks or ASCII
zeros. When the system is able to perform the complete conversion correctly, it returns a zero in
byte 1. When one or more of the characters are not valid, or the decimal number is not within the
range of -32,768 to 32,767, the system is not able to complete the conversion, and returns a value

of -1 in byte 1.

Convert decimal ASCII to binary call block: o By RETURNED VALUE
2 SIGN ASCII
4
VALUE
(A)137491 6

The following example shows the coding of a supervisor call block for a Convert Decimal ASCII
to Binary call: ‘

SCBB BYTE >B,0,0°, *°, < *,'3°*7",'8” Convert 378 to its binary equivalent and place the
result in workspace register 0.

The following examples show typical ASCII values and results.

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Register 0 Byte 1

2B, 20,6 2046 2046 204 314 0001 44 0
2046 2016 2016 2016 31 16 41 16 Undefined FF16
3046 334 3246 3716 3616 3716 TFFF 4 0
D, 30, 30, 30, 3046 315 FFFF,, 0

6.3.3 CONVERT BINARY TO HEXADECIMAL ASCII SUPERVISOR CALL C,¢. Convert
Binary to Hexadecimal ASCII supervisor call C;4, converts the binary value in task workspace
register 0 to the ASCII representation of the equivalent hexadecimal value. The supervisor call block
consists of six bytes, and need not be aligned on a word boundary. Byte O contains the code, and
byte 1 contains zero. The system returns the result in bytes 2 through 5.

Convert binary to hex ASCII call blockoz
16

2
RETURNED VALUE
a4

(A)137492

6-7 Digital Systems Division

[o]
%@ 946259-9701

The following is an example of coding of a supervisor call block for a Convert Binary to Hexadeci-
mal ASCII call:

SCBH BYTE >(C,0,0,0,0,0 Convert the value in workspace register O to hexadecimal
and place the result in the supervisor call block.

The following examples show typical values and the results:

Register 0 Byte 2 Byte 3 Byte 4 Byte 5
00014 3044 3046 304 314
7FFF ¢ 3716 4616 4646 4646
FFFF 4 46,6 464 4646 4646

6.3.4 CONVERT HEXADECIMAL ASCII TO BINARY SUPERVISOR CALL D,,. Convert Hexa-
decimal ASCII to Binary supervisor call D¢ converts the ASCII characters in bytes 2 through 5 of
the supervisor call block to a binary value, and places the value in task workspace register 0. The
supervisor call block consists of six bytes, and need not be aligned on a word boundary. Byte O con-
tains the code, and the system returns a value in byte 1. The calling task places the ASCII charac-
ters representing the hexadecimal digits in bytes 2 through 5. When the system is able to perform
the complete conversion correctly, it returns a zero in byte 1. When one or more of the characters is
not valid, the system is not able to complete the conversion, and returns a value of -1 in byte 1.

Convert hex ASCII to decimal call block:
0 RETURNED VALUE

16

2

ASCIl VALUE
4

(A)137493

The following is an example of coding a supervisor call block for a Convert Hexadecimal ASCII to
Binary call:

SCBH BYTE >D,0,0’,°3’,'F’,'4’ Convert 03F4,¢ to binary.
The following examples show typical ASCII values and results:

Byte 2 Byte 3 Byte 4 Byte 5 Register 0 Byte 1

3044 30, 30, 314 0001, 0
30 16 3016 3316 4B16 Undefined FF16
374 4644 461 46,46 7FFF,q 0
46, 46, 46, 461 FFFF,, 0

6.4 MEMORY ALLOCATION SUPERVISOR CALLS
The memory allocation group of supervisor calls consist of five supervisor calls that allow the user
to access various blocks of memory. These supervisor calls are described in the following paragraphs.

6.4.1 GET MEMORY SUPERVISOR CALL 12,,. Get Memory supervisor call 12, allocates
a specified number of contiguous 32-byte blocks to the calling task. Each block is aligned on a
word boundary. The address of the first byte in the first block is returned in user task workspace
register 9. The supervisor call block consists of four bytes, aligned on a word boundary. Byte 0
contains the code, and the system returns a value in byte 1. Bytes 2 and 3 contain the number of
blocks desired.

6-8 Digital Systems Division

946259-9701

The TX990 Operating System allocates memory in the dynamic task space. If the requested
memory is not available, TX990 returns a -1 in byte 1 of the supervisor call block.

Get memory call block:

s 1246 ERROR CODE

2 NUMBER OF 32—-BYTE BLOCKS TO GET

(A)137494

The following is an example of a supervisor call block for a Get Memory call:

LY 1 m o, peeey

SCBG DATA >1200,i6 Allocate 256 words of memory to the calling task and return
the address of the memory area in workspace register 9.

6.4.2 RELFASE MEMORY SUPERVISOR CALL 13,,. The Release Memory supervisor call 134
returns memory to the available pool in the dynamic task area. The calling task places the address of
the first byte of the first block of memory that would be released in task workspace register 9. The
supervisor call block consists of four bytes, aligned on a word boundary. Byte 0 contains the code,
and byte 1 contains zero. Bytes 2 and 3 contain the number of blocks that would be released.

Release memory call block:

(o] 1356 4]

2 NUMBER OF BLOCKS TO BE RELEASED

(A)137495
The following is an example of a supervisor call block for a Release Memory call:

SCBR DATA >1300,16 Release 256 words of memory starting at the address specified
in workspace register 9.

6.4.3 GET SYSTEM TABLE SUPERVISOR CALL 21,¢. Get System Table supervisor call 21,4
returns to the caller the address of the system table in which pointers to data structures within
TX990 are located. This call can only be made by a privileged task. The supervisor call block
contains four bytes, bytes 0 through 3, and must be aligned on a word boundary. Byte O contains

tho ciinarvicnr.ral . 1 .
LI dsupvl v,lovx‘vcul COde, b}’t@ 1 1S unused, 15

tain the address of the system table.

(=9
<
<
o+
<«
w
o

£
3
(&%
W
o)
4
D
-+
D
=
5
o]
D
ol
[on
<
=
g
(¢]
w2
-
w
p4N
(3
3
vl
3
(=N
«
o}
3

Q1T rviumiiivae

The system table has the following format:

® Word 0 is a pointer to the system time and date block. The time and date blocks consist
of five words with the following data:

year, Julian day, hour, minute, and second.
® Word 1 is a pointer to the first element in the Task-Status-Block (TSB) chain.
¢ Word 2 is a pointer to the first element in the Physical-Device-Table (PDT) chain.
® Word 3 is a pointer to the first element in the Logical-Device-Table (LDT) chain.

® Word 4 is a pointer to the default disc name.

6-9 Digital Systems Division

lo]
%@ 946259-9701

. Word 5 is a pointer to the Device Name Table (DNT).

. Word 6 is a pointer to the first element in the Procedure Status Block (PSB) chain.

Get system table call block:
0 21,4 RESERVED

2 RETURNED ADDRESS

(A)137496
Coding example:

SCBB DATA >2100,0
with the address of the system table returned in the second word of the call block.

6.4.4 GET COMMON DATA ADDRESS SUPERVISOR CALL 10,4. Get Common Data Address
supervisor call 10,5 causes the system to return the address of the beginning of the COMMON
area of memory in task workspace register 9, and the size of the area (in bytes) in task workspace
register 8. The size of the COMMON area is a system parameter specified at system generation.
The supervisor call block consists of two bytes and need not be aligned on a word boundary. Byte 0
contains the code, and the system returns a value in byte 1.

When no intertask common has been specified for the system, the system returns a -1 in byte 1 of
the supervisor call block. Otherwise, the system returns O in that byte.

Get COMMON call block: o 10,¢ ERROR CODE

(A)137497

The following is an example of coding a supervisor call block for a Get Common Data Address
supervisor call:

SCBG BYTE >10,0 Supply address and size of common memory in workspace
register 9 and 8, respectively.

6.4.5 RETURN COMMON DATA SUPERVISOR CALL 1B,s. Return Common Data supervisor
call 1B;¢ performs no operation in TX990 Operating System. The call is included for compatibility
with DX10 Operating System. The supervisor call block consists of single byte that contains the
code, and need not be aligned on a word boundary.

Return COMMON call block: © B¢

(A)137498
The following is an example of the coding of a supervisor call block for a Return Common Data call:

SCBR BYTE >1B Perform a no-operation.

6-10 Digital Systems Division

946259-9701

6.5 INTERTASK COMMUNICATION SUPERVISOR CALLS

The Intertask Communication supervisor calls allow the user to pass messages between tasks. The
system must include Intertask Communication and buffers for messages specified during system
generation.

The Intertask Communication supervisor calls are the Put Data and the Get Data supervisor calls.
Each call specifies an identifier that corresponds to a queue of data messages. Put Data calls that
specify a given identifier place the data messages in the queue in the order in which the calls are
executed. Get Data calls that specify the same identifier retrieve the data messages in the first-in
first-out sequence.

Messages are queued in buffers supplied by Buffer Management. The number of buffer pools, the
sizes of the buffers, and the numbers of buffers in each pool are specified during system generation.
The number of characters required for a message buffer includes the overhead (eight characters per
message). When a task executes a Put Data supervisor call to place an 80-character message in a
buffer, the system requests a buffer at least 88 characters in size. Buffer pools must be specified to
provide an adequate number of buffers of adequate size to support the Intertask Communication
supervisor calls in the concurrently executing tasks.

6.5.1 PUT DATA SUPERVISOR CALL 1C,,. Put Data supervisor call 1C,, places a message
from a specified buffer in the user’s task into a queue of data messages. The supervisor call block
consists of 12 bytes aligned on a word boundary as shown in figure 6-1. Byte O contains the code
and the system places a status code in byte 1 at the completion of the operation. Byte 2 contains
the Purge flag in the most significant bit. The Purge flag should be set to zero for a Put Data
supervisor call. Byte 3 contains the identifier, a number less than 255. Bytes 4 and 5 contain the
address of the buffer that contains the message. Bytes 6 and 7 are not used by the Put Data
supervisor call. Bytes 8 and 9 contain the number of characters in the message. Bytes 10 and 11
contain zero.

The operation places the specified number of characters from the specified buffer into the queue
corresponding to the identifier. The system returns zero in byte 1 when the operation completes
sucessfully, and -1 (FF,s) in byte 1 when memory is not available in a queue for the message.

RELATIVE 0 1 2 3 4 5 6 7) 1 2 3 4 5 6 7
ADDRESS

0 CODE STATUS

2 P 0 0 ¢} (o] 0 o] 0] IDENTIFIER

a4 BUFFER ADDRESS

6 MESSAGE LENGTH

8 ACTUAL MESSAGE LENGTH

10 o 0
(A) 137510

Figure 6-1. Intertask Communication Supervisor Call Block

6-11 Digital Systems Division

%@ 9462599701

The following is an example of coding for a supervisor call block for a Put Data supervisor call:

SCBP DATA >1C00 " Place message in buffer at address
MSG1 in queue for identifier 15.
Message contains 80 characters.

BYTE O FLAGS

BYTE 25 IDENTIFIER
DATA MSG! BUFFER ADDRESS
DATA 0 NOT USED

DATA 80 80 CHARACTERS
DATA 0 ZERO REQUIRED

6.5.2 GET DATA SUPERVISOR CALL 1D,,. Get Data supervisor call 1D,¢ obtains a message
from a specified queue and places it in the specified buffer in the user’s task. The supervisor call
block consists of 12 bytes aligned on a word boundary as shown in figure 6-1. Byte O contains the
code and the system places a status code in byte 1 at completion of the operation.

Byte 2 contains the Purge flag in the most significant bit. When the Purge flag is set to 1, the super-
visor call deletes all the messages in the specified queue and does not place a message in the
specified buffer. When the Purge flag is set to 0, the supervisor call performs the normal operation.
Byte 3 contains the identifier of the queue from which the message is obtained. Bytes 4 and 5 con-
tain the address of the buffer into which the message is placed. Bytes 6 and 7 contain the maximum
number of characters to be placed in the buffer. The system places the number of characters
actually received in bytes 8 and 9 at completion of the operation. Bytes 10 and 11 contain zero.

When the Purge flag is set to 0, the operation transfers a message from the queue associated with the
specified identifier to the user’s buffer. Messages in the queue are transferred in first-in first-out
order. The number of characters transferred is the number of characters in the message or the
number of characters specified in bytes 6 and 7 of the supervisor call block, whichever is less. When
the Purge flag is set to one, the operation deletes all the messages in the queue associated with the
specified identifier. The system returns zero as a status code in byte 1 when the operation com-
pletes successfully. When there is no message in the specified queue, the system returns -1 (FF4) in
byte 1. The following is an example of coding for a supervisor call block for a Get Data supervisor

call:

SCBG DATA >1D00 GET DATA Obtain a message up to 64 charac-
BYTE O NORMAL OPERATION ters in length (or the first 64 char-
BYTE 35 IDENTIFIER acters of a longer message) from the
DATA RMSG BUFFER ADDRESS queue for identifier 35 and place
DATA 64 64 CHARACTERS the message in a buffer at location
DATA O ACTUALMESSAGE LENGTH RMSG.
DATA O ZERO REQUIRED

6.6 DATE AND TIME SUPERVISOR CALL 3,,

Date and Time supervisor call 3,4 returns date and time in binary form. The supervisor call block
consists of four bytes, aligned on a word boundary. Byte 0 contains the code, and byte 1 contains
zero. Bytes 2 and 3 contain the addresses of a five-word area into which the function places the

result. The binary values corresponding to the year, day, hour, minute, and second are placed in
the first through fifth words of that area, respectively.

6-12 Digital Systems Division

@ 9462599701

Date and time call block: o 3 0
2 BUFFER ADDRESS
(A)137499
Buffer block:
o YEAR
2 DAY
4 HOUR
& MINGTE
(A)137500 8 SECOND

The following is an example of coding for a supervisor call block for a Date and Time call:

SCBT DATA >300,DAT Place date and time data in a five-word area at location
DAT.

6-13/6-14 Digital Systems Division

[e]
e‘—@? 946259-9701

SECTION VII

DEVICE AND FILE I/O SUPERVISOR CALLS

7.1 INTRODUCTION

The TX990 Operating System provides several supervisor calls used for performing I/O to devices
and files. Supervisor call 00 may be used to perform many general I/O and file management
operations which apply to many different types of devices and files. Three supervisor calls to
perform character mode I/O to Video Display Terminals are provided. Also provided are a Wait for
I/O SVC and two Abort I/O SVCs. Table 7-1 lists the I/O supervisor calls. The following paragraphs

describe each SVC separately.

Table 7-1. 1/O Supervisor Calls

Hexadecimal

SVC Name SVC Code
General 1/O 00
TX990 release 1.0 file management 15
VDT utility 1A
VDT character input 8
VDT conditional character input 18

Wait for 1/0O 1
Abort I/0 by LUNO

Abort I/0O by call block 1E

7.2 1/0 SUPERVISOR CALL (00)

The general I/O supervisor call (SVC 00) is used to perform I/O to devices and files, and to perform
many file manipulation operations. The SVC is programmed by coding the appropriate bytes in the
call block, as shown in figure 7-1.

The coding of the bytes is described below.
e Byte 0 Coded by user with 00, (for supervisor call 00,).

. Byte 1 Error status code returned by TX990. For the list of error status codes, see
Appendix I — I/O Error Codes.

e Byte2 Coded by user with the I/O operations code (described in paragraph 7.2.1).

e Byte3 Coded by user with the LUNO number to be associated with the I/O device or
file to be utilized for the I/O operation. The LUNO is ignored during Create
File, Delete File, Compress File, Unprotect File, Write Protect File, and Delete
Protect File Operations.

7-1 Digital Systems Division

(o]

4
0,1 0016 ERROR STATUS CODE
2,3 OPCODE LUNO
1] 1 1 1 1 2 |2 2 2 REQUIRED
4,5 |IesY|er”|ecd] '] ' |1 't inPRev AP 2] | 1?2]| For SEQUENTIAL
| RECORD 1/0
DEVICE-FILE
OPERATIONS
6,7 DATA BUFFER ADDRESS
8,9 READ CHARACTER COUNT REQUIRED
FOR RELATIVE
RECORD 1,0
DEVICE—F ILE
10,11 WRITE CHARACTER COUNT OPERATIONS
12,13 REPLY BUFFER ADDRESS OR
LOGICAL RELATIVE RECORD NUMBER
14,15 L Gl?L RELATIVE EC%;D NUMBE1
.= REQUIRED
IR L 7 § A ale B € F FOR
Tt T . | L OP CODES
DATA FILE 90,6-99
te, 17 | 3] Bl 2 333 a3 3 3] 3| 3| Tvee |AT Tvee 167=916
_ L. 1 1
18,19 LOGICAL RELATIVE RECORD SIZE
20,21 NOT USED
22,23 PATHNAME POINTER
24,25 NOT USED
26,27 NOT USED
28,29 NOT USED
ONLY
NECESSARY
FOR DX10
30,31 NOT USED COMPATIBILITY
32,33 NOT USED
34,35 NOT USED
NOTE 1! SYSTEM FLAGS NOTE 2: USER FLAGS

(B)1359088B

BSY
ERR
EOF
I

BUSY FLAG INT = INTIATE FLAGS

ERROR FLAG RPY = REPLY FLAG
END—OF—FILE FLAG AP = ACCESS PRIVILEGE
FLAG
IGNORED
L = LOCK AND UNLOCK
FLAG
[= COMMUNICATION TIME-
OUT FLAG
| = IGNORED

NOTE 3! UTILITY FLAGS
AC AUTO-CREATE FLAG
1 IGNORED
AT = ALLOCATION TYPE

(CONTIGUOUS/
NONCONTIGUOUS)

Figure 7-1. Supervisor Call Block for 1/O Supervisor Call 00,4

7-2

Digital Systems Division

@ 9462599701

Bytes 4 through 15 are ignored by I/O operation codes 905
through 99 .

NOTE

® Byte 4,bit 0 TX990 places a 1 in the busy bit during an I/O operation. When the task
codes the Initiate I/O flag to 1, it must monitor this bit when waiting for
the I/O to complete.

e Byte4,bitl TX990 places a | in the error bit when the I/O operation terminates in
error. It is O for normai termination.

® Byte4,bit2 The operating system sets this bit to I when it detects an end-of-file
record ; otherwise, it is set to 0.

® Byted4, Unused.
bit 3-7

® Byte5,bit 0 Coded by the user with the initiate I/O flag. When this bit is set to 1,
the operating system will begin the specified I/O operation and retumn
control to the task before the I/O is completed. When this bit is set to 0,
the operating system will not return control to the task until the I/O
operation is completed. This bit is useful when buffering I/O.

® Byte 5,bit 1 Coded by the user with the reply flag. This bit should only be set to 1
when the I/O operation is a write and the LUNO specifies an interactive
device. When the bit is set to 1, the specified write will be foliowed by a
read, allowing the task to receive a reply from the interactive device. When
this bit is I, byte 12-13 must contain the address of a reply block. A reply
block is a 3-word block: the first word is coded by the user and must con-
tain the buffer address that contains the characters entered in reply to the
write operation; the second word must contain the maximum number of
characters expected to be entered (usually the size of the reply buffer);
the third word will be returned by the operating system and will contain
the number of characters actually entered in reply to the write operation.

® Byte 5,bit2 Ignored by TX990.

® Byte 5,

bit 34 Coded by the user to attain the access privilege, during an open opera-
it

tion. These bits are ignored during another operation.

00 — Exclusive all flag indicating that only one task may open the file
concurrently.

10 — Shared flag indicates more than one task may open the file con-
currently. This bit should only be set when doing an open operation
to a relative record file.

73 Digital Systems Division

{—@; 946259-9701

® Byte5,bit5 Coded by the user to lock or unlock a logical relative record. When set,
this flag specifies that the logical relative record is to be locked for all
read operations and unlocked for all rewrite operations. A locked record
cannot be read or rewritten by any task except the locking task, and then
the locking task must use the same LUNO. Any task can unlock a record
using a 4A;4 I/O operation. When this flag is zero, then current status
(Iocked or unlocked) is unchanged.

® Byte5,bit6 Coded by the user with the communications timeout flag. See the Com-
munications manual for more detail.

® Byte 5,bit7 Not used by TX990.

L Bytes 6-7 The user must code these bytes to contain the starting address of the I/O
buffer.
e Bytes 89 The user must code these bytes when using a read 1/O operation code.

The bytes must contain the maximum number of characters to be read.
When the record length specified exceeds the maximum number of charac-
ters that the device-file supports, only the number of characters that are
supported by the device-file applies. Not used for write operations.

® Bytes 10-11 When a Write I1/O operation is used, bytes 10-11 will contain the number
of characters to be written. When the character count exceeds the maxi-
mum number of characters for the device-file, the maximum number of
characters for the device-file applies. When a Read 1/O operation is used,
the operating system will return the actual number of characters read in
these bytes.

® Bytes 12-13 When the user sets the reply flag to 1, these bytes must contain the
address of the reply block described above. These bytes need not be
appended to the above bytes if the I/O operations are directed to sequen-
tial device-files.

® Bytes 12-15 When the user is doing 1/O operations to relative record files, these bytes
contain the logical record number. The operating system will update

these bytes after I/O operations. These bytes need not be appended to
the above bytes, except when directing I/O to a relative record file.

® Bytes 16-34 Need not be appended to the above bytes except when using I/O opera-
tion codes 90,4 through 99 .

® Bytes 16-17 Utility Flags.

® Bytes 16-17, Need to be zero for DX10 compatibility. TX990 ignores it.
bit 0-2,4-5,7,9-10

® Bytes 16-17, Need to be one for DX10 compatibility. TX990 ignores it.
bit 3, 8 ‘

74 Digital Systems Division

946259-9701

e Bytes 16-17,
bit 6

e Bytes 16-17,
bit 11-12

e Bytes 16-17,
bit 13

e Bytes 16-17,
bit 14-15

® Bytes 18-19

e Bytes 2021

® Bytes 22-23

e Byte 24-35

User sets to one to request automatic logical file creation. It is set during
an assign I/O device-file operation and causes a file to be created during an
Open I/O operation.

The user must code these bits in the following manner:

Code Meaning

00 Binary data

01 ASCII data

10,11 Reserved for new data forﬁats

These bits are ignored except during create file operations.

Set to one when creating a noncontiguous file or to a zero when creating
a contiguous file. TX990 will ignore the bit if it is set to zero and will
create a noncontiguous file without flagging an error. TX990 supports
only non-contiguous files. This bit is ignored except during create file
operations.

Set to one of the following codes to specify the file type when the file is
created. This field is ignored except for create operations.

Code Meaning
00 undefined

01 sequential file

10 relative record file

11 Trawr inndaw £31a fant 11
11 K&Y 1GCX 1UC ({101 sy

v
T
e
«
=y

When using create file operations to create a relative record file, the user
must code these bytes with the number of characters in each record
(i.e., record size). These bytes are ignored when creating a sequential file.

These bytes are not used by TX990.

The user must code these two bytes with address of a pathname. These
bytes are used for Assign LUNO, Create File, Delete File, Change the
Name, Unprotect File, Write Protect File, Delete Protect I/O operations.
All other operations ignore this field. The pathname is in the following
format:

Count Pathname

Byte n Byte 1-n

The first byte at the pathname address is the character count. The follow-
ing bytes are the pathname itself.

Need only be appended for DX 10 compatibility.

7.5

Digital Systems Division

946259-9701

7.2.1. 1/O OPERATIONS. The I/0 SVC may be used to perform all of the operations listed in
Table 7-2, by coding the correct 1/O opcode in byte 2 of the call block, and correctly defining the
remaining fields in the call block. The opcode for each operation is given in the table.

Table 7-2. SVC 00 I/O Operations

Hexadecimal

Operation Opcode
Open 00
Close 01
Close with end-of-file 02
Open with rewind 03
Close and unload 04
Read device status 05
Forward space . 06
Backward space 07
Read ASCII 09
Read direct 0A
Write ASCII 0B
Write direct oC
Write end-of-file 0D
Rewind OE
Unload OF
Create file 90
Assign LUNO to pathname 91
Delete file 92
Release LUNO assignment 93
Compress file 94
Assign new file name 95
Unprotect file 96
Write protect file 97
Delete protect file 98
Verify pathname 99
Unlock 4A

NOTE

Most of the “ninety” opcodes do not apply to device operations
(exceptions are Assign and Release LUNO). Table 7-3 shows which
of the other operations apply to which devices.

The following paragraphs describe each operation in detail.
7.2.2 OPEN OPERATION (CODE 00,). The Open operation is specified by placing code 00, in

byte 2 of supervisor call block. A description of how the Open operation controls the I/O device
and the file on the medium of the I/O device is presented in the following subparagraphs.

7-6 Digital Systems Division

946259-9701

7.2.2.1 Controlling the I/O Device. When a device is designated during system generation to be in
the file mode (i.e., available to be utilized by only one program), the open operation causes the
device to be assigned solely to the calling program until a close operation (i.e., Close, Close with
EOF, or Close Unload is executed. In addition, when a device is designated during system genera-
tion to be in the file mode, an open operation (i.e., Open or Open Rewind) must be performed be-
fore any other file management operation is executed. Until an open operation is executed, files on
diskettes are not located and file management operations to manipulate them cannot be initiated or
performed.

The following device operation(s) result from execution of an open operation:

® Dummy No operation.

® 9110r913VDT Performs a line feed and a carriage return.

® 733 ASR Keyboard/ Performs a line feed and a carriage return.
Printer

® 33 ASR Teletype Performs a line feed and a carriage return.
Keyboard/Printer

® 33 ASR Teletype Two bells are output and a RUB OUT key must be entered.
Paper Tape Punch,
and Reader

® Other devices No operation.

When a device responds to an open operation, the operating system returns the device code
number (table 7-3) to bytes 6 and 7 of the supervisor call block, which bytes are usually used for
data buffer address field.

7.2.2.2 Controlling the Diskette File. When a relative record file is to be exclusively accessed, the
shared access flag in byte 5 of the supervisor call block, for the open operation, must be set to zero.
Sequeniial files are always exclusively accessed. The file then remains assigned to the program until
the program is terminated or until a close operation is executed. In response to an open operation
to a file, the operating system returns the file code number (table 74) to bytes 6 and 7 of the
supervisor call block (which bytes are usually used for the data buffer address), code O1FF to
indicate that a sequential file has been opened or code 02FF ¢ to indicate that a relative record file
has been opened. When the auto create flag is set during the assign LUNO to pathname operation,
the open operation causes a file to be created if the file does not already exist. When a relative
record file is opened. the record size is returned in bytes 8-9 of the call block.

7.2.3 CLOSE OPERATION (CODE 01 ,¢). The close operation is specified by placing code 01,4 in
byte 2 of File Management Supervisor Call Block 00,,. When specified by the user, the close opera-
tion releases the 1/O device and the file on the medium of the I/O device from the calling task.
When a task assigns more than one LUNO to an 1/O device and opens them, a close operation
should be executed for all LUNOs for which an open operation was performed. When a close
operation is executed to a diskette file, the file is released from the task and any records locked
by the task are released. When I/O device is designated to be in the file mode during system
generation, a close operation (or close with EOF or close unload) must be executed to release
the file from the calling task.

77 Digital Systems Division

8L

uoIsiAlg swajsAs (enbia

I/0 Code/Operation 733 ASR/KSR
(Hexadecimal) or 743 KSR
Keyboard/Printer
0046 R
OPEN
01,6 R
CLOSE
02,6 R
CLOSE-WRITE EOF
036 R
OPEN-REWIND
CLOSE-UNLOAD
056 I
READ DEVICE STATUS
06,6 [
FORWARD SPACE
076 I
BACKWARD SPACE
09,6 R
READ ASCII
0A 6 E
READ DIRECT
0By R
WRITE ASCII
0C6 E

WRITE DIRECT

Table 7-3. I/O Operations (Record Mode)

Card
Reader

Line 733 ASR
Printer Cassette Units

R R
R R
R R
R R
R R
I I
I R
1 R
E R
E R
R R
R R

913/911
VDT
(Record Mode)

R

R

Dummy
Device

33 ASR
Keyboard/Printer

33 ASR
Punch

33 ASR
Reader

10L6-6579%6

6L

uoisialg swajsAs 1eubig

1/0 Code/Operation
(Hexadecimal)

0Dis
WRITE EOF

0E 4
REWIND

0F 4
UNLOAD

4A6
UNLOCK

Table 7-3. I/0 Operations (Record Mode)(Continued)

733 ASR/KSR Card Line 733 ASR 913/911 Dummy 33 ASR
or 743 KSR Reader Printer Cassette Units VDT Device Keyboard/Printer
Keyboard/Printer (Record Mode)
R E R R R 1 R
I I R R I I I
1 I I R I I I

Note: Unlock 1/O operation used for relative record diskette files.

R Response
I lIgnored
L. Error

33 ASR
Punch

33 ASR
Reader

10L6-65T9Y6

946259-9701

Table 7-4. Device Code Numbers and File Code Numbers

Device/File Name Device Code Number File Code Number
Dummy 0000
743 KSR or 733 ASR/KSR Keyboard/Printer 0001
Line Printer 0002
733 ASR Cassette Unit 0003
Card Reader 0004
911 or 913 Video Display Terminal 0005
33 ASR Keyboard/Printer 0001
33 ASR Paper Tape Punch 0003
33 ASR Paper Tape Reader 0003
Diskette 0006
Communication Device 0007
Sequential Record File 01FF ¢
Relative Record File 02FF 4

No physical device operation(s) results from execution of a close operation.

7.2.4 CLOSE WITH EOF OPERATION (CODE 02,¢). The close with EOF operation is specified
by 1/O operation code 02,,. The operation consists of the close operation previously described
and a write EOF operation for the specified device. When the device specified is the keyboard/
printer, the printer performs three line-feed operations. When the device specified is the line printer,
the printer performs a form-feed operation. When the device specified is the 911 or 913 VDT, only
the close operation is performed. The close with EOF operation is an illegal operation for the card
reader and the system returns the appropriate error status code. When the device specified is the
paper-tape punch, an ASCII EOF is punched (DC3, CR, LF, DC3, null, null, null, null) and 80 null
frames are punched for trailer. If a close with EOF operation is executed to a diskette file, the cur-
rent position of the file is stored as the end-of-file. The close with EOF operation for relative record
writes the end-of-file to the record number in bytes 12 through 15 of the SCB.

7.2.5 OPEN REWIND OPERATION (CODE 03,,). The open rewind operation is specified by 1/O
operation code 03,5. The operation consists of an open operation previously described, and a
rewind operation. When the device is the line printer, the device performs a formfeed operation.
When the device is a VDT, the system blanks the screen and positions the cursor on column 0 of
the last row, the home position. When the device is a cassette unit, the device rewinds the cassette
and places it in the ready state. When the device is the keyboard/printer or the card reader, only
the open operation is performed.

When the paper-tape punch is opened with rewind, two bells are output and the user then turns
on the punch and presses the RUB OUT key. When the RUB OUT key has been pressed then 80
null frames are punched for leader. For a sequential diskette file, the current record is the first
record in the file, and for a relative record file, the record number in the SCB is set to zero.

7.2.6 CLOSE UNLOAD OPERATION (CODE 04,,). The close unload operation is specified by
I/O operation code 04,,. This operation consists of a close operation previously described, and an
unload operation. When the device is the line printer, the device performs a form-feed operation.
When the device is a cassette unit, the device rewinds the cassette to the clear area at the beginning
of the tape. When the device is a keyboard/printer or the card reader, only the close operation
is performed.

7-10 Digital Systems Division

@ 946259-9701

When the device is the 33 ASR paper-tape punch, 80 null frames are punched. A close unload
operation to a diskette file causes the file to be closed.

7.2.7 READ DEVICE FILE STATUS OPERATION (CODE 05,;). The read device-file status
operation is specified by 1/O operation code 05,¢. The operation is ignored by all devices except
33 ASR and diskette files.

When the device is the 33 ASR, the read character count (bytes 8 and 9) is cleared.

When the device-file is a diskette file, file characteristics and format are stored in the user’s buffer
address, which is specified by bytes 6, 7 of the supervisor call biock. The buffer must contain 3
words. The operating system will return a 0 in word 1. Word 2 will contain the logical record
length when file is a relative record file; otherwise it will contain a zero. Word 3 will contain the

physical record length and will be 128.

7.2.8 FORWARD SPACE OPERATION (CODE 06,). The forward space operation is specified
by I/O operation code 06,4. The operation is ignored by all devices except the 733 ASR cassette
units. The operation moves the cassette tape forward a specified number of records or until an
end-of-file record is read. The number of records to be read is placed in bytes 10 and 11 of the
supervisor call block. When an end-of-file record is read, the tape is positioned at the beginning
of the record following the end-of-file. The end-of-file record consists of a DC3 (X-OFF) in the
first character position of the record.

The forward space operation causes a diskette file to skip records in the forward direction. Bytes
10 and 11 of the Supervisor Call Block (SCB) contain the number of records to be skipped. For a
relative record file, file management updates the record number in the SCB. If an end-of-file occurs
before the specified number of records has been skipped, the end-of-file flag in the SCB is set,
and the operation stops. The next operation accesses the first record following the end-of-file.
Following the operation, bytes 10 and 11 of the supervisor call block contain the number of records
remaining to be skipped; zero when an end-of-file did not occur.

7.2.9 BACKWARD SPACE OPERATION (CODE 07,¢). The backward space operation is spec-
ified by I/O operation code 07,¢. The operation is ignored by all devices except the 733 ASR
cassette units. The operation moves the cassette tape a specified number of records in the reverse
direction. Bytes 10 and 11 of the Supervisor Call Block (SCB) contain the number of records to
be moved. The backward space operation causes a diskette file to skip records in the reverse direc-
tion. The number of records to be skipped is placed in bytes 10 and 11 of the SCB. For a relative
record file, file management updates the record number in the SCB. For a sequential file, if an
end-of-file occurs before the specified number of records has been skipped, the operation stops.
The next operation accesses the first record after the EOF. Following the operation, bytes 10 and
11 of the SCB contain the number of records remaining to be skipped; zero when an end-of-file
did not occur.

7.2.10 READ ASCII OPERATION (CODE 09,¢). The read ASCII operation, code 09,¢, reads a
record of the specified file and stores the data, packed two characters per word in the buffer at
the address in bytes 6 and 7 of the Supervisor Call Block (SCB). The maximum number of char-
acters in the buffer is placed in bytes 8 and 9 of the SCB. The actual number of characters stored is
placed in bvtes 10 and 11 of the SCB. This number will be the number of characters in the record
or the value in bytes 8 and 9, whichever is less. If an end-of-file occurs, file management sets the
EOF bit in the SCB and sets the character count in bytes 10 and 11 of the SCB to zero. When the
file is a relative record file and no end-of-file was encountered and the read operation is successful.
file management increments the record number in bytes 12 through 15 of the SCB.

711 Digital Systems Division

[e]

946259-9701

NOTE

The ASCII characters listed for each device in Appendix B are the
valid characters for that device, and are stored with the most signif-
icant bit set to zero. Except as noted for the card reader, other
characters are ignored.

When the device specified is either the keyboard/printer or the VDT, the operation sounds a tone to
request the user to enter the characters at the keyboard. Characters are transferred to a buffer until
the user enters a carriage return (New Line on a 913 VDT) or the number of characters specified in
bytes 8-9 are entered. A carriage return is not included in the character count. If only a carriage
return is entered, a zero is returned in the character count word in the SCB. When the device is the
keyboard/printer, the user may correct the most recently-entered character by entering a backspace
(CTRL/H). The character is deleted, and the printer performs a backspace and a line feed operation.
When the device is a VDT, the most-recently entered character may be corrected by entering the
left arrow (<), which deletes the character in the buffer and backspaces the cursor.

When the device specified is a 733 ASR cassette unit, the operation transfers characters from the
cassette to the specified buffer until an end-of-record is detected or the number of characters
specified in bytes 8-9 are read. The maximum number of characters in a cassette record is 83.
When the number of characters to be read is less than the number of characters in the record,
the remaining characters in the record are not available. An end-of-file record on the cassette
is a record having a DC3 (X-OFF) character as the first character. The cassette unit does not pro-
vide a logical end-of-medium indication, but does provide a physical end-of-tape indication. The
physical end-of-tape indication may indicate either end of the tape.

When the device specified is a card reader, the operation reads a card and transfers the characters
read to the specified buffer. The number of characters specified is transferred up to a maximum of
80 characters. When the number of characters specified is greater than 80, only 80 characters are
read and transferred. When fewer than 80 characters are specified, the remaining characters on
the card are not available. Characters other than those listed in Appendix B for the card reader are
placed in the buffer as spaces, and the system returns an error status code when these characters
are read. The end-of-file record for the card reader has a slash in the first column and an asterisk
in the second column (/*).

The read ASCII operation is an illegal operation for the line printer, and the system returns an
error status code.

When the device specified is a 33 ASR paper-tape reader, the operation transfers characters from the
paper tape to the specified buffer until an end-of-record is detected or the number of characters
specified in bytes 8-9 are read. An end-of-file record on a paper tape is a DC3 (X-OFF, 13)
character as the first character of the input record. The read ASCII operation for the 33 ASR
paper-tape punch is an illegal operation and the system returns an error code.

7.2.11 READ DIRECT OPERATION (CODE 0A). The read direct operation is specified by I/O
operation code OA .. The operation reads the number of characters specified as the record length
in bytes 8 and 9 of the Supervisor Call Block (SCB). The operation transfers the characters to the
buffer at the address in bytes 6 and 7 of the SCB without any characters translation and places the
number of characters read in bytes 10 and 11 of the SCB.

When the device specified is the cassette unit, the system sets the most significant bit of each
character to zero and stores the characters two per word. The read operation terminates when a
complete physical record has been read.

7-12

Digital Systems Division

[e]

946259-9701

When the device specified is the card reader, a column on the card is stored in a word of the buffer.
The four most significant bits of the word are set to zero; the holes in the card are stored as ones, in
the order shown in figure 7-2. The entire record is transferred to the buffer, and the end-of-file
record is underfined for a read direct operation.

When the device specified is the 33 ASR paper-tape reader, each frame contains one byte of
information in ASCII format.

A diskette file read direct operation is identical to the read ASCII operation for a diskette file.

When a read direct operation is attempted on the other devices, the system returns an error status
code.

7.2.12 WRITE ASCII OPERATION (CODE 0By). The write direct operation, code OBy ,
transfers the data in the buffer at the address in bytes 6 and 7 of the Supervisor Call Block (SCB) to
the specified file. The characters in the buffer are packed two per word. Bytes 10 and 11 of the SCB
contain the number of characters to be written. When the file is a relative record file and the write
operation is successful, file management increments the record number in bytes 12 through 15 of
the SCB. A write ASCII operation clears any end-of-file indication for the current record or for a
subsequent record.

NOTE

Each device recognizes the characters listed for the device in
Appendix B. Other characters are ignored.

MEMORY WORD
¢} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CARD

cowMN/TZ_ *T**““jﬁﬁ’
(A})132855

Figure 7-2. Bit Manipulation for Direct Read of Card

7-13

Digital Systems Division

[e]

946259-9701

When the device specified is the keyboard/printer, the characters are printed. An HT character
results in a space, and an FF character results in eight line feed operations. When the device
specified is the line printer, the characters are also printed. Model 306 and Model 588 Line Printers
recognize the SO(OE,¢) character as specifying a line of elongated characters. The SO character
should be the first character of the line, and causes the printer to print double-width characters on
the entire line. The number of characters per line is one-half the normal number of characters;i.e.,
40 characters per 80-character line, or 66 characters per 132-character line.

When the device specified is a cassette unit, the characters are written on the cassette. A carriage
return in the buffer is translated to an ETB (17,¢) character. The maximum number of characters
to be written is 83. When the buffer has been written, the system then writes a carriage return, a
line feed, a DC4 (record off) character, and a DEL (rub out) character to indicate an end of
physical record. When the reply bit is set, the response is read from the other cassette unit.

When a write ASCII operation is attempted on the card reader, the system returns an error status
word.

When the device specified is the 33 ASR paper-tape punch, characters are written a byte at a time
in the ASCII format. A carriage return in the buffer is translated to an ETB (17,¢) character. The
system punches an ASCII end-of-record (CR. LF, DC3, null, null, null, null) when the buffer is
exhausted. When a write ASCII operation is attempted on the 33 ASR paper-tape reader, the system
returns an error status word.

7.2.13 WRITE DIRECT OPERATION (CODE 0C,¢). The write direct operation is specified by
the I/O operation code 0C,,. The operation writes a record without performing any translation,
writing the characters from the buffer at the address in bytes 6 and 7 of the Supervisor Call Block
(SCB). The number of characters to be written is specified in bytes 10 and 11 of the SCB.

When the device specified is the cassette unit, the seven least significant bits of each byte are written
on the cassette. The maximum number of characters per record is 83. If a DC4 character is
embedded in the buffer, the system writes the character and also 2 DC2 (record on) to continue
the operation. To assure that the last record is actually written on the tape, the user task should
place a carriage return in the buffer. When the reply bit is set, the response is read on the other
cassette unit.

When the device specified is the 33 ASR paper-tape punch, all eight bits of each byte are punched
on the paper tape. If a DC4 (14,,) character is embedded in the buffer, the system punches the
character and also a DC2 (record on, 12,4) to continue the operation. The system punches an
end-of-record (DC3, null, null, null) when the buffer is exhausted.

When the device specified is a line printer, the seven least significant bits are sent to the printer and
the installed options will determine how the characters are interpreted.

A diskette file write direct operation is identical to the write ASCII operation for a file.

When the write direct operation is attempted on any other device, the system returns an error
status code.

7.2.14 WRITE EOF OPERATION (CODE 0D,¢). The write EOF operation is specified by 1/O
operation code 0D,¢. The operation consists of writing the end-of-file record defined for the
specified device.

7-14

Digital Systems Division

@ 9462599701

When the device specified is the cassette unit, the operation writes a DC3 (X-OFF) character on
the cassette. When the device is the keyboard/printer, the operation performs three line-feed
operations. When the device is the line printer, the operation performs a form-feed operation. When
the device is the VDT, the operation is ignored. When the device is the card reader, the system
returns an error status code, and no operation is performed.

When the device specified is a 33 ASR paper-tape punch, an ASCII end-of-file is punched.

When the unit specified is a diskette file, the write EOF operation writes the end-of-file record.
There is no limit to the number of end-of-file records that may be written to a sequential file but
there may be only one for relative record files. For a relative record file the end-of-file is written in
the record specified (bytes 12-15 of the supervisor call block).

7.2.15 REWIND OPERATION (CODE OE,4). The rewind operation is specified by I/O operation
code OE;4. When the device specified is the cassette unit, the operation rewinds the cassette tape to
the clear area at the beginning of the tape, and then moves the tape in the forward direction to the
beginning of tape marker, illuminating the READY indicator on the 733 ASR. When the specified
device is the line printer, the operation performs a form feed operation.

A diskette file rewind operation simulates the rewinding of a cassette file, causing the next read
or write operation performed on the file to access the first record in the file (not a subfile). After-
a sequential file has been opened and records written to it, the file cannot be rewound until an
EOF mark is written or the file is closed. When the file is a relative record file, file management
places a zero in bytes 12-15 (logical relative record number) of the supervisor call block.

The rewind operation is ignored by other devices.

7.2.16 UNLOAD OPERATION (CODE OF,). The unload operation is specified by operation
code OF¢. The operation is ignored by all devices and files except the cassette unit. The unload
operation for the cassette unit consists of rewinding the cassette tape to the clear area at the
beginning of the tape.

7.2.17 UNLOCK OPERATION (CODE 4A,;). The unlock operation, code 4A ¢, unlocks a
relative record file record that has been locked by a previous read. The record to be unlocked is
specified in bytes 12 through 15 of the supervisor call block.

7.2.18 CREATE FILE OPERATION (CODE 90,.). The create file operation is specified by
placing code 90,6 in byte 2 of file management supervisor call 00,4. To create a file, code utility
flag byte 16, logical relative record size bytes 18 and 19, and pathname pointer byte 22. All other
bytes in the supervisor call block, except bytes 0 and 2 are ignored.

7.2.19 ASSIGN LUNO TO PATHNAME OPERATION (CODE 91 16). The assign LUNO to
pathname operation is specified by placing code 91,4 in byte 2 of the Supervisor Call Block (SCB).
The user must code byte 3 of the SCB with the LUNO, and byte 22-23 with the pathname pointer
to the file or device. When the user sets the auto-create bit 6 of bytes 16-17 to a 1, the user must
also code bits 11-15 of bytes 16-17 and bytes 18, 19 of the SCB. If the diskette file does not al-
ready exist it will be created when an open operation is executed using the LUNO in byte 3.
Diskettc files are not located by file managemeni untii they are opened, therefore the user may
assign LUNOs to diskette files before the diskette which contains the file is actually loaded. Unlike

diskette files. devices are located when the LUNO is assigned. All other bytes of the SCB are
ignored.

7-15 Digital Systems Division

{@ 946259-9701

7.2.20 DELETE FILE OPERATION (CODE 92,.). The delete file operation is specified by
placing code 92,¢ in byte 2 of the Supervisor Call Block (SCB). The file identified by the pathname
specified in bytes 22 and 23 is deleted when this operation is executed. Coding of all of the other
bytes is ignored. When the file to be deleted does not exist, an error is returned.

7.2.21 RELEASE LUNO ASSIGNMENT OPERATION (CODE 93,¢). The release LUNO assign-
ment operation is specified by placing code 93¢ in byte 2 of the Supervisor Call Block (SCB). The
user must code byte 3 with the LUNO number which is to be released from its previously assigned
pathname. All other bytes are ignored.

7.2.22 COMPRESS FILE OPERATION (CODE 94,,). The compress file operation is specified
by placing 94,¢ in byte 2 of the Supervisor Call Block (SCB). The user must also code bytes 22-23
of the SCB with the pathname pointer to the file that is to be compressed. It is beneficial to com-
press files that have contained a large number of records and then rewritten so they contain fewer
records than the original file. The compress operation will return the unused allocation units be-
yond the end-of-file which are not being used by the current file.

7.2.23 CHANGE FILE NAME (CODE 95,¢). The user must code bytes 22 and 23 with the
pointer to the new pathname and code byte 3 with the LUNO which must be previously assigned
to the old file pathname which is to be changed. Coding of all other bytes is ignored.

7.2.24 UNPROTECT FILE OPERATION (CODE 96,¢). The user must code bytes 22-23 with
the pathname pointer to the file that is to be unprotected. If the file is already opened using an
open 1/O device-file operation, the file will not be unprotected until the file is closed. All other
bytes are ignored.

7.2.25 WRITE PROTECT FILE OPERATION (CODE 97,¢). The user must codes bytes 22-23 of
the supervisor call block with the pathname pointer to the file that is to be write protected. If the
file is already opened, the file will not be write protected until the file is closed. All other bytes are
ignored.

7.2.26 DELETE PROTECT FILE OPERATION (CODE 98,¢). The user must codes bytes 22-23
of the supervisor call block with the pathname pointer to the file that is to be delete protected.
If the file is already opened, the file will not be deleted protected until the file is closed. Delete
protected files are also write protected. All other bytes are ignored.

7.2.27 VERIFY PATHNAME SYNTAX (CODE 99,.). The user must code bytes 22-23 of the
supervisor call block with the pathname pointer to the pathname that is to be verified. If the syntax
is correct, the error status byte will be 0, otherwise it will contain an error code. See error code,
Appendix 1.

7228 CODING EXAMPLES USING FILE MANAGEMENT SUPERVISOR CALL 00,. The
following is a coding example for a supervisor call block that will write a record to LUNO 8. LUNO
8 must have been previously assigned to an interactive device. The reply flag is set to 1 indicating
that a read will follow the write.

716 Digital Systems Division

@ 946259-9701

SCBO

An example of a reply block is as follows:

RBLK

DATA
BYTE
DATA

DATA

DATA
DATA

DATA

DATA
DATA
DATA

0
>0B.8
>0040

OBUFF

0
80

RBLK

RBUFF
40
0

Write a record to LUNO &

The flag word of the SCB indicates that this will
be an output with reply.

The record will be written from the memory
buffer OBUFF.

80 characters will be written from the memory
buffer.
The reply control block is located at RBLK.

Place the reply in the memory buffer RBUFF.

Input up to 40 characters.

The number of characters actually inputed will
be returned by the system in this data word.

The following example shows how File Utility Supervisor Call 00, assigns LUNO 6 to the diskette
file DSC:TEXT/SRC. If the file does not already exist it will be created when an OPEN operation
is performed on LUNO 6.

SVCBLK EVEN

BYTE
BYTE
BSS

MNMATA
/A1 n

DATA
DATA
DATA

BSS

PATHNM BYTE

TEXT

12

16

‘DSC :TEXT

Assign LUNO 6 to a file.

Set the auto-create flag to create a noncontiguous

sequential file.

PATHNM refers to a memory buffer that has the
ASCII representation of the file pathname.

/SRC’

The following example shows an 1/O file write operation supervisor call, writing to the logical
relative record 56 in the relative record file that LUNO 3C,, has been previously assigned.

SCBF

DATA
BYTE
DATA
DATA
DATA
DATA
DATA
DATA

0
>(0B,>3C
0
FILOUT
0

20

0

56

Write to the file that LUNO 3C,, is assigned.
All the flag bits are turned off.

Write it from the memory buffer FILOUT.
Unused word.

Write 20 bytes.

Write it to record 56 of the relative record file.

7-17

Digital Systems Division

@ 946259-9701

7.3 SUPERVISOR CALL 15, SUPPORT FOR TASKS DESIGNED TO RUN UNDER TX990,
RELEASE 1.0

The TX990 Operating System also supports the file utility supervisor call for tasks that were
generated to run under the 1.0 version of the TX990 Operating System.

File utility supervisor call 15,4 performs the following functions:
® Assigns a LUNO to a device
® Releases a LUNO assignment.
7.3.1 SUPERVISOR CALL 15, SCB FORMAT. The file utility supervisor call block for file
utility supervisor call 15,6 consists of 12 bytes aligned on a word boundary. As shown in figure 7-3,
the content of the supervisor call block is as follows:
® 15,6 (supervisor call code) in byte 0 |
® A byte reserved for a status code, byte 1
e Utility operation code in byte 2, either of the following:
01 Assign LUNO to device
03 Release LUNO assignment
® User flags in byte 3, as follows:
Zeros in bits 0 through 4
File Allocation bit — bit 5. Ignored by TX990.
File Type — bits 6 and 7, set to zero for a device.
® [UNO in byte 4 (FF,, is illegal)
® Validation identifier in byte 5. Not applicable to TX990.

® Record length in bytes 6 and 7. Not applicable to TX990.

® Device name in bytes 8 through 11, consisting of up to four characters left-justified with
trailing spaces (not required for release function).

The status codes returned by the system in byte 1 at the completion of the function are listed in
the error appendix. - ‘

7.3.2 CODING EXAMPLE. The example below assigns LUNO 2 to cassette transport drive 2.

DATA >1500 Supervisor call code.
DATA >0100 Assign opcode.
DATA >0200 Luno.

DATA O

TEXT °‘CS2° Cassette drive 2.

7-18 Digital Systems Division

{_@) 946259-9701

RELATIVE
ADDRESS
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
T T T T T T T T T T T T T T
0 1516 STATUS CODE 0]
2 UTILITY OP CODE o} 0 o) o o AL TYPE
4 LUNO VALIDATION IDENTIFIER
6 RECORD LENGTH
8 DEVICE NAME , CHAR, 1 DEVICE NAME, CHAR, 2
10 DEVICE NAME, CHAR, 3 DEVICE NAME, CHAR. 4

NQOTE @ RETURNED BY SYSTEM, ALL OTHER ITEMS SUPPLIED BY USER AS
APPLICABLE

(A)133424

Figure 7-3. File Management Supervisor Call Block for File Management Supervisor Call 154

7.4 VDT CHARACTER MODE SUPERVISOR CALLS 1A, 8, and 18.

With these supervisor calls, the user task can position the VDT cursor, write or read fields of data on
the VDT screen, and input characters from the VDT keyboard. The following supervisor calls are
used for character mode operation:

e VDT Utility Supervisor Call 1A
e VDT Character Input from Station Keyboard Supervisor Call 8¢
° VDT Conditional Character Input from Station Keyboard Supervisor Call 18,6

In the character mode, the user task first executes a VDT utility supervisor call 1A, to open the
VDT. Subsequent device I/O operations are performed using character input supervisor calls and
utility supervisor calls. The VDT is taken out of the character mode by the VDT utility supervisor
call that specifies the close device I/O operation.

One or more VDTs may be designated in character mode or record mode, when the system is
generated. VDTs designated in record mode may also use character mode 1/O operations. Character
mode device 1/O operations address the VDT by the station number which is assigned to the VDT
when the system is generated.

7.4.1 VDT UTILITY SUPERVISOR CALL 1A,. VDT utility supervisor call 1A, allows the
following seven VDT I/O operations with a 911 or 913 VDT:

7-19

Digital Systems Division

946259-9701

® Opens the VDT, placing it in the character mode

® Positions the cursor

® Tabs the cursor to an unprotected field on the screen

® Reads a field of characters from the screen

® Writes a field of characters to the screen

® Writes a character in a specified number of character positions on the screen

® (loses the VDT, terminating the character mode.

One or more of the above VDT I/O operations may be specified in this supervisor call by setting
a bit to 1 in byte 2 of the supervisor call block. When more than one VDT I/O operation is speci-

fied, the operations are performed in the sequence indicated in the above list of seven VDT I/O
operations.

The open device 1/O operation must be performed before any other device I/O operation or super-
visor call to the VDT. The user task supplies the station number of the VDT to be opened and
requests the open VDT operation. The result is to enable character mode operation of the VDT.
When the RC flag is set to 1, the VDT open operation places the maximum values of row and
column in bytes 6 and 7 of the supervisor call block, which is normally the buffer address.

The cursor position VDT operation positions the cursor at any character of any line of the screen.
The user task supplies the station number of the VDT and the row and column to which the cursor
is to be moved.

The tab VDT operation positions the cursor at the leftmost character of an unprotected field. When
characters are written on the screen, they are written either as protected or as unprotected charac-
ters. When the cursor is at a position that contains a protected character, the tab VDT operation
skips protected characters leaving the cursor at the leftmost character of the unprotected field to
the right of the original position of the cursor. When the cursor is at a position that contains an un-
protected character, the tab VDT operation moves the cursor to the leftmost character of the
current unprotected field. The user task supplies the station number of the VDT for the tab VDT
operation.

The read characters VDT operation reads a field of characters from the screen at the cursor
position. The task may specify a number of characters to be read, or may read all the characters in
an unprotected field. This VDT operation also moves the cursor to the position following the last
character read. The user task supplies the station number of the VDT, the number of characters
to be read, and the address of a buffer in which are placed the characters read from the screen.

The write characters VDT operation writes a field of characters to the screen at the cursor position.
The task specifies a maximum number of characters to be written. The operation terminates before
writing the maximum number of characters if the operation detects a character having the most
significant bit set. In that case, the operation negates the character code, writes the resulting char-
acter, and terminates. The user task supplies the station number of the VDT, the maximum number
of characters and the address of the buffer.

7-20 Digital Systems Division

946259-9701

The write character (propagate) VDT operation writes the first character in the buffer into a field
of characters on the screen at the cursor position. The task specifies the number of times the char-
acter is to be written. The user task supplies the station number of the VDT, the number of
characters to be written, and the address of the buffer that contains the character.

The VDT close operation must be performed to terminate the character mode of the VDT. The
VDT may then be opened for record mode operations when the VDT has been designated for both
modes. The user task supplies the station number of the VDT to be closed.

The user may specify that the operations of a VDT supervisor call be followed by a beep tone, or

that the cursor remain disabled following the operations. All device I/O operations return the row
and column of the cursor position at completion.

7.4.1.1 VDT Utility Supervisor Call Block. VDT utility supervisor call block, shown in figure 74,
consists of the following:

e The code, 1A 4, in byte 0.
® Byte I reserved for a completion code (table 4-3).
® Operation flags in byte 2, as follows:

PR flag — bit 0, set to one to write protected characters. Set to zero to write un-
protected characters.

RC flag — bit 1, set to one to cause an open VDT operanon The maximum values
for row and column are placed in bytes 6 and 7 of the supervisor cail biock.

PC flag — bit 2, set to one for a position cursor VDT operation.
T flag — bit 3, set to one for a tab VDT operation.
R flag — bit 4, set to one for a read VDT operation.
W flag — bit 5, set to one for a write VDT operation.
WP flag — bit 6, set to one for a write propagate device /O operation.
C flag - bit 7, set to one for a close VDT operation.
® The station number in byte 3.
& Control flags in byte 4, as follows:
B flag — bit 0, set to one to provide a beep tone following the operations specified.
CD flag — bit 1, set to one to disable the cursor following the operations specified.

. The row, for a position cursor device 1/O operation, in bits 3 through 7 of byte 4. The
range of values is O through By, . Returned by the system after each call.

. The column for a position cursor device 1/O operation, in bits 1 through 7 of bvte 5. The
range of values is O through 4F,,. Returned by the system after each call.

7-21 Digital Systems Division

946259-9701

e The address of a buffer in bytes 6 and 7. A read device I/O operation transfers characters
into the buffer, a write function transfers characters out of the buffer, and a write
propagate device I/O operation copies the first character in the buffer into one or more
character positions on the screen. When bit 1 of byte 2 is set to one during an open
operation, the maximum values of row and column are placed in bytes 6 and 7.

® The number of characters for a read operation, in bytes 8 and 9. When zero, read the
entire unprotected field. Otherwise, read the specified number of characters.

e The maximum number of characters to be written in a write operation, or the number of
characters to be written in a write propagate operation, in bytes 10 and 11. In a read
operation, the system returns the actual number of characters read in these bytes.

The system returns a completion code in byte 1. The codes are listed in table 7-5.

RELATIVE

ADDRESS o] 1 2 3 4 5 6 7 o] 1 2 3 4 5 6 7
T T T T T T T T T T T T T T
o] 1A, ¢ COMPLETION CODE ®
PRB REL..
ADDR.,
2 PR RC | PC T R w P c STATION NUMBER
4 B cD ROW COLUMN

BUFFER ADDRESS

8 NUMBER OF CHARACTERS — READ

NUMBER OF CHARACTERS

NOTE@ RETURNED BY SYSTEM ,ALL OTHER ITEMS SUPPLIED BY USER,

(AY132858

Figure 7-4. VDT Utility Supervisor Call Block

7-22 Digital Systems Division

946259-9701

Table 7-5. VDT Utility Completion Codes

Code
(Hexadecimal) Description
0 Satisfactory completion.
1 Ilegal station number.
4 Illegal cursor position specified.
5 Iegal buffer address (Applies to DX10)
6 No unprotected field found in tab function.
7 No unprotected field found in read function of
unspecified length (Note 1)
80 VDT currently in record mode or assigned to
another task.
NOTE 1

When a read function that has no specified length does not read a pro-
tected field, the full screen of characters is read before the operation is
terminated in error. Contents of memory locations immediately above
the buffer are destroyed when the buffer size is less than the screen
size (960 characters for 913 VDT). (1920 characters for 911 VDT).

7.4.1.2 Coding Example. The following are examples of coding for supervisor call blocks for VDT

utility calls.

SCBV ~ DATA >1A00,>A402,>4300,WBUFF,0,8

SCVCT DATA >1A00,>5802,0,RBUFF,5,0

SCBVC DATA >A100,>2902,>8220,RBUFF 4,0

Station 2 is already opened, position
the cursor at column 0 of row 3,
and write eight protected charac-
ters from buffer at location WBUFF,
leaving the cursor disabled.

Open station 2, tab cursor, and
read five characters into buffer at
location RBUFF, with cursor
enabled.

Station 2 is already opened, posi-
tion the cursor at row 2, column 32,
read 4 characters into buffer at
location RBUFF, close station 2,
and sound a beep tone.

7-23

Digital Systems Division

946259-9701

7.4.2 VDT CHARACTER INPUT SUPERVISOR CALL 8,,. The character input supervisor call,
code 8¢, inputs a character from a specified station keyboard. The calling task is suspended until
the character is transferred. The system places the character in the most significant byte of the task
workspace register 0. The supervisor call block consists of three bytes, and need not be aligned on a
word boundary. Byte O contains the code, and the system returns a value in byte 1. Byte 2 contains
the station number. When the system is unable to locate the station, it returns -1 in byte 1. When
the station has not been opened in the character mode, or when power is off at the station, the
system returns 80,, in byte 1. Otherwise, the system returns zero in that byte.

VDT character input call block: 0 8 ERROR CODE
2 STATION NUMBER
(A)137501
VDT conditional character input call block: g 18,6 ERROR CODE
2 STATION NUMBER

(A)137502

The following is an example of coding for a supervisor call block for a character input from station
keyboard supervisor call:

SCBC BYTE 8,0,2 Input a character from station 2 and place the
character in the most significant byte of
workspace register 0.

74.3 VDT CONDITIONAL CHARACTER INPUT SUPERVISOR CALL 8. Conditional
character input supervisor call 18, inputs a character from a specified station keyboard. When a
character is entered, the function sets the equal bit (bit 2) of the status register to 1 and places the
character in the most significant byte of workspace register 0. When a character has not been
entered, the function sets the equal bit of the status register to 0, indicating a “not equal’’ status. In
either case, the function returns control to the calling task immediately. The supervisor call block
consists of three bytes, and need not be aligned on a word boundary. Byte O contains the code, and
the system returns a value in byte 1. Byte 2 contains the station number. When the system is unable
to locate the station, it returns -1 in byte 1. When the station has not been opened in the character
mode, or when power is off at the station, the system returns 80, in byte 1. Otherwise, the system
returns zero in that byte.

The following is an example of coding for a supervisor call block for a conditional character input
from station keyboard supervisor call:

SCBT BYTE >18,0,5 Input a character from station S and place it on the
most significant byte of workspace register 0 if a
character has been entered at the keyboard.

7.5 WAIT FOR I/O SUPERVISOR CALL 01 .

Wait for I/O supervisor call 01,, places the calling task in suspension pending completion of a
specified I/O operation. Wait for I/O supervisor call block 01, contains four bytes aligned on a
word boundary as shown below. Byte O contains the supervisor call code and byte 1 contains a zero.
Bytes 2 and 3 contain the address of the second word in the supervisor call block that defines the
/O operation. When the specified 1/O operation is not in progress, control is immediately returned
to the calling task.

7-24 Digital Systems Division

[e]
%@ 946259-9701

(A)137503
The following example shows coding for a supervisor call block for a wait for I/O call:

0 0116 0016

2 SCB ADDRESS + 2

SWBW DATA >100,SCB5+2 Suspend the calling task pending completion of the
I/O operation defined in the SCB at location
SCBS.

7.6 ABORT I/O SUPERVISOR CALL OF ,;, OPERATION.

Abort 1/O supervisor call OF ¢ terminates I/O operations on the specified 1/O device. The calling
task is suspended during execution of the abort 1/0O supervisor call. If the device is file-oriented, it
becomes unassigned. If the device is busy, the system sets the error flag in the supervisor call block
for the current operation. No device operation is performed, and the medium remains positioned as
the last I/O operation left it. That is, tape in a cassette is not backspaced or rewound, nor are the
remaining cards of a deck read. Abort 1/O supervisor call block OF ;s consists of two bytes which
need not be aligned on a word boundary as shown below. Byte 0 contains the code and byte 1
contains the LUNO assigned to the device.

(o]

Fis LUNO

(A)137504

The system returns zero as a status code in byte 1 when the operation completes successfully and -1
(FF,) when the LUNO specified in the SCB has not been defined.

The following example shows the coding for a supervisor call block for an abort 1/O call:

SCBA BYTE >F>11 Abort 1/O to the device to which LUNO 11, is
assigned.

7.7 ABORT I/O SUPERVISOR CALL BLOCK 1Ej.

Abort supervisor call 1E;, terminates an 1/O operation defined by a specified Supervisor Call Block
(SCB). The abort operation supervisor call block consists of four bytes aligned on a word boundary
as shown below. Byte O contains the code, and the system refurns a status code in byte 1. Bytes 2
and 3 contain the address of the second word in the SCB for the operation to be terminated.

0 1E4g STATUS CODE

2 SCB ADDRESS + 2

(A)137505

The following is an example of coding for a supervisor call block for an abort supervisor call:

SCBA DATA >1E00 ABORT I/O Operation Abort the I/O operation defined in a
DATA SCBZ+2 Address supervisor call block at location SCBZ.

7-25/7-26 Digital Systems Division

[e]
@ 946259-9701

DISKETTE OCP SYSTEM UTILITY (SYSUTL) PROGRAM

SECTION Viil

8.1 INTRODUCTION
Basically, SYSUTL provides the operator with additional keyboard-command-control capability for
use with diskette devices and files and, therefore, functions as a diskette-related supplement to the

Operator Communication Package (OCP). The SYSUTL commands are listed as follows:

BC — Boot Copy MD -- Map Diskette

SF — Set System File MF — Map File

CF — Create File DD - Diskette Dump

DF — Delete File DL — Diskette Load

CM — Compress File FD — File Dump

CN — Change File Name FL — File Load

CP — Change Protection ID — Initialize Date and Time
DO — Define Output TI — Print Time and Date

TE — Terminate
CV — Change Volume Name

In general, SYSUTL is a module of TX990 and a diskette-resident extension of the OCP module
(described in Section III of this manual). SYSUTL may be executed under OCP or under the
Terminal Executive Development System (TXDS) using console control in a manner similar to OCP.

The following paragraphs describe the loading procedure, LUNOs, syntax, and the individual

commands. The last paragraph in this section covers the SYSUTL error messages.

8.2 LOADING SYSUTL

SYSUTL can be loaded using the OCP module or in conjunction with the Control Program. When
using the OCP module, perform the procedure itemized in paragraph 8.2.1. When using the Control
Program perform the procedure itemized in paragraph 8.2.2. :

8.2.1 LOADING SYSUTL USING OCP. Load the program as follows:

1. After loading the OCP in accordance with the procedure itemized in the section entitled
Operator Communication Package, observe the printout or display on the system console
of the period (.) prompt.

2. Place the object module for SYSUTL in either the cassette or floppy diskette drive and
ready the device.

3. Usiqg OCP’s LP (Load Program) command, load the SYSUTL object module from
the input media into memory as follows:

.LP.DSC2:SYSUTL/SYS Load from floppy diskette DSC2 the object
module file SYSUTL/SYS.

8-1 Digital Systems Division

[o]
{@ 946259-9701

An alternate method for loading the SYSUTL object module from cassette follows:

.LP,CS1. Load SYSUTL object module from cassette
unit 1.

4. Enter OCP’S EX (Execute) command to execute SYSUTL and terminate OCP as follows:
EX,10.TE. Executes SYSUTL and terminates OCP
5. Observe the following printout or display on the system console:
TX990 SYSTEMS UTILITY 937544**

6. After SYSUTL has started execution, the SYSUTL module causes the OP: prompt to
be printed or displayed on the system console as follows:

TX990 SYSTEM UTILITY 937544 **
OP:

7. At this step in the procedure, one or more SYSUTL commands, with a limit of up to 76
characters on one line, may be entered on the system console. An example follows:

OP: MD,DSC2.SF,DSC2:SYSFIL/SYS
NOTE

All of the commands must be entered on the same OP: line and not
carried to another line.

8. After SYSUTL executes the commands entered in the preceding step, observe that the
OP: prompt is again printed out or displayed on the system console.

9. At this step in the procedure, the operator has the choice of entering another SYSUTL
command or terminating SYSUTL by entering a terminate response to the prompt as
follows:

OP: TE.
NOTE

If an error occurs during execution of a command, the appropriate
error message is issued.

10. If TXDS is in the system, observe that SYSUTL has terminated when the following print-
out or display is produced on the system console:

TXDS 936215 ** (Date and Time)

PROGRAM:

8-2 Digital Systems Division

@ 9462599701

8.2.2 LOADING SYSUTL USING THE TX990 OPERATING SYSTEM AND THE TXDS
CONTROL PROGRAM. Load the program as follows:

1. After loading the TX990 Operating System in accordance with the loading procedure in
the section entitled Loading the TX990 Operating System, bid the TXDS Control Pro-
gram. This can be accomplished by use of the OCP module or without use of the OCP
module. When the OCP module is used, enter EX,16.TE. in response to OCP’s period (.)
prompt to bid the TXDS Control Program and proceed to the next step. When the OCP
module is not present, enter an exclamation point (!) to bid the TXDS Control Program
and proceed to the next step.

2. Observe the following printout or display on the system console:
TXDS 936215 ** 359/77 1:00
PROGRAM:

3. Enter the pathname of the SYSUTL object module in response to the PROGRAM:
prompt as follows:

PROGRAM: :SYSUTL/SYS

4. Depress the carriage return key and observe that the INPUT: prompt is printed out or
displayed on the system console.

NOTE

The asterisk (*) feature can be used in lieu of the carriage return/

NEW LINE entry to by pass the remaining prompts (Input, Output,
Options).

5. Make a null entry by depressing the carriage return and observe that the OUTPUT:
prompt is printed out or displayed on the system console.

6. Make a null entry by depressing the carriage return and observe that the OPTIONS:
prompt is printed out or displayed on the system console.

7. In response to the OPTIONS: prompt, only one SYSUTL command can be entered on
the system console (with a limit of up to 30 characters on the same line). For example:

OPTIONS: MD,DSC2
NOTE

1. When multiple SYSUTL commands are to be entered, the
response to the OPTIONS: prompt must be a carriage return
(i.e., a null entry). This will cause SYSUTL to print or display
the OP: prompt on the system console to which prompt the
operator responds with one or more SYSUTL commands (with
a limit of up to 76 characters on one line).

2. A SYSUTL command may not be continued on the next line.

83 Digital Systems Division

o}
@ 9462599701

3. When muitiple SYSUTL commands are entered, SYSUTL
processes each individual command, one at a time, until it has
no more commands to process, at which time the operator can
enter a TE (Terminate) SYSUTL command. This, in turn,
causes the TXDS Control Program to be rebid.

8. After the SYSUTL command entry is made in response to the OPTIONS: prompt,
observe that the TXDS Control Program is rebid and the following printout or display
is presented on the system console:'

TXDS 936215 ** (Date and Time)
PROGRAM:

8.3 LUNOs

SYSUTL uses LUNO 0, LUNO 6, and LUNO 7. LUNO 0 is assigned to the system console. All com-
munications between operator and task, including error messages, are performed through LUNO 0.
LUNO 6 is assigned by SYSUTL to the diskette being accessed by all diskette-related commands.
LUNO 7 is internally assigned to the default print device upon loading SYSUTL and is used as
the SYSUTL output LUNO for any printer output. The user has the option to redirect any printed
output, excluding error messages, to a device other than the LOG by executing the Define Output
(DO) command (described in one of the paragraphs below).

8.4 SYSUTL COMMAND FORMAT AND SYNTAX

Each command consists of a command word, optionally followed by one or more operands.
SYSUTL recognized a command by the first two letters of the command word, the command key.
These letters may be followed by additional letters or by blanks. One or more blanks, or a comma,

may separate a command key and its operands. However, embedded blanks are not allowed within
the command word or an operand.

If Systems Utility is executed using OCP, more than one command may be entered in a single line,
which may contain up to 72 characters and must be terminated by a carriage return (NEW LINE on
913 VDT). When more than one command is entered on a line, each command must be terminated
with a period, except the last command on the line, then it may be omitted. When an error is
detected in a command, any subsequent command on that line is ignored.
SYSUTL syntax also entails the following items and/or rules:

° Angle brackets < > enclose items required to be supplied By the user

° Brackets [] enclose optional items

° Braces { } enclose alternative items, one of which must be entered
° An ellipsis (. . . .) indicates that the preceding items may be repeated

b Items shown in capital letters must be entered as shown

® Pathname is described in 1.4.1.

84 Digital Systems Division

o]
Y.r@j 946259-9701

8.5 SYSUTL COMMANDS

SYSUTL provides commands to initialize the time and date and to display the time and date.
SYSUTL also provides a command to define a listing device for the display commands. All the re-
maining commands deal with functions that involve the diskette. SYSUTL has a command to in-
voke every file utility operation: create a file; delete a file; compress a file; change a file name; and
change protection on a file. SYSUTL also supports maintenance functions for the diskette: map the
diskette, which displays the file names along with various information of all the files on the
diskette; map file, which displays information for a single file; disc dump, which displays absolute
locations on the diskette; disc load, which writes to absolute locations on the diskette; file dump,
which displays physical sectors within a file; and file load, which writes to physical sectors within
a file.

SYSUTL provides two commands for maintenance of a system diskette. The first command is
Boot Copy (BC) which copies the TXBOOT program to diskette. The second command is Set
System File (SF), which allows the user to define any object file as the file that will be loaded as
the Operating System. The system file pathname must be defined before the Operating System
loading procedure is performed. (Refer to the loading procedure in Section II of this manual for
additional information.)

If a null entry is made wherever a device is to be specified, the default-substitute will be the system
diskette which is specified during system generation. There will be no other defaults.

All numeric output is in decimal except the output from the Diskette Dump (DD) and File Dump
(FD) commands. These dumps are in hexadecimal.

8.5.1 BOOT COPY (BCj. The Boot Copy (BC) command causes a copy of the TXBOOT program
to be written on the specified diskette. A diskette ROM loader cannot be used to load the Operating

System or astand-alone program from diskette until the TXBOOT program is written to the diskette
that will be used during loading. The syntax of the command is presented as follows:

BC, f<device>. }
<volume>.

The operand must be a one-to-four-character diskette or volume name. There is no
default- substltute for the device operand. Upon executing the BC command, the TXBOOT program
is copied to physical tract O of the specified diskette. The following is an example of the Boot Copy

(BC) command:

OP:BC,DSC2. The TXBOOT program is copied to physical track
0 of DSC2.

8.5.2 SET SYSTEM FILE (SF). The Set System File (SF) command defines a diskette file to be
loaded as the Operating System or as a stand-alone program. The syntax is as follows:

SF ,<pathname>.

The file designated by the specified pathname is the file that contains the linked object code that is
to be loaded and executed as the Operating System or as a stand-alone program. Refer to the
diskette/cassette ROM loader description for further details on loading. An example of the Set
System File (SF) command follows:

OP:SF,DSC:TX990/SYS. The file TX990/SYS on DSC is to be used as the
Operating System file when the diskette is booted.

8-5 Digital Systems Division

le]
(@ 946259-9701

8.5.3 CREATE FILE (CF). The Create File (CF) command creates a sequential or relative record
file. The syntax for the command is as follows:

CF <pathname>,[,<RR> <record length>].

The pathname operand is the name assigned to the file upon its creation. The newly created file is a
noncontiguous sequential file unless the optional operand ‘RR’ follows the pathname. If ‘RR’ is
specified, the file is created as a noncontiguous relative record file with the specified record length.
For relative record files, the recrod length must be given. Record length is assumed to be decimal
uniess preceded by >’. All files are created unprotected and have a protection code of ‘U’.

The following are examples of the CF command:
OP:CF,DSC2:FILE/SEQ. Create sequential file named ‘FILE/SEQ’ on DSC2.

OP:CF,VOLI:RELREC,RR,>80. Create relative record file names ‘RELREC’ with
record length of 80, on the diskette with the
volume name VOLI1.

8.5.4 DELETE FILE (DF). The Delete File (DF) command deletes the specified file from the
diskette. The syntax for the command is as follows:

DF ,<pathname>.
The following question is issued:

ARE YOU SURE???

Only one character is accepted. If any response is entered other than a ‘Y’ for ‘yes’, the delete file
command is ignored. Upon entering a ‘Y’, the specified file is deleted from the diskette. An
example of the DF command follows:

OP:DF,DSC:TEMPFIL

ARE YOU SURE??? Y Upon entering ‘Y’, the file ‘TEMPFIL’ is deleted from
DSC.

8.5.5 COMPRESS FILE (CM). The Compress File (CM) command returns to the Operating System
all allocation units (AUs) beyond the EOF for the specified pathname.

CM,<pathname>.

The pathname operand must be a valid pathname as defined in the section in this manual entitled
File Management Executive Supervisor Calls. The Compress File command compresses the desig-
nated file to its minimum size. The following is an example of the CM command:

OP: CM,:OCPFIL/SRC. Compresses file ‘OCPFIL/SRC’ on system default diskette.
8.5.6 CHANGE FILE NAME (CN). The Change File Name (CN) command changes the file name

and extension of an existing file to the new pathname as specified. The syntax of the command is as
follows:

CN,<old pathname> ,<new pathname>.

8-6 Digital Systems Division

%@ 946259-9701

Both the old pathname and new pathname operands must be valid pathnames as'defined in section I
of this manual. The file with the specified old pathname retains all its directory information such as
protection code and file type. Only the name of the file on the diskette is changed. The following
is an example of the CN command:

OP: CN,DSC2:0CPFL1,DSC2:0CPFIL/SYS. Changes the name of the file that is cur-
rently listed in the file directory on DSC2
as OCPFL1 to the new file name OCPFIL/
SYS.

8.5.7 CHANGE PROTECTION (CP). The Change Protection (CP) command changes the file
protection code of the specified file to the new protection code. The syntax of the command is

as follows:
U
CP,<pathname>, { D
w

The pathname operand must be a valid pathname. The existing protection code of the specified
file is changed to the newly defined protection code. The second operand is a one-character
abbreviation of the possible protection code as follows:

U — Unprotect File (File is Unprotected)
D — Delete Protect File (Protects File from Being Deleted)
W — Write Protect File (Protects File from Being Written On or Deleted)

If the specified file is already open, the new protection will not be in effect until the file is closed.
The following is an example of the CP command:

OP: CP,DSC:LIST80/SYS,W. Protects the file ‘LIST80/SYS’ on DSC from being written
over or deleted.

Moy R S N 2 0) I U, A Aieato
{DG). The Define Output (DO) command directs th

YSUTL commands to the specified device. The syntax of the command is as follows:
DO, <device>.

All displays are directed to the default print device until changed. The DO command allows the
printed output of the following commands to be directed to the specified device:

MD — Map Disc

MF — Map File

DD — Disc Dump

FD -~ File Dump

TI — Print Time and Date

ID — Initialize Date and Time.

8-7 Digital Systems Division

o
@ 946259-9701

The device operand is a one- to four-character device name.

If SYSUTL is terminated and then rebid without reloading, the use of the last output device
assigned will be resumed. The following is an example of the DO command:

OP: DO,LP. Redirects all displays (excluding error messages) to the line
printer until the DO command is reexecuted.

OP: DO. Displays are resumed to the default print device, which
is the system console for standard TI supplied Operating
Systems.

8.5.9 MAP DISKETTE (MD). The Map Diskette (MD) command maps the specified diskette by
file name, by extension, or maps every file on the diskette to the display device. The syntax for the
command is as follows:

‘MD <device> ,<extension>}
<volume> <file name>
If no device is specified, the operating system diskette is used. The device operand is a one- to four-
character device name that is to be mapped. The extension operand consists of a slash immediately
followed by a one- to three-character extension name which will be used to map the diskette. To

map the diskette according to a specified file name, a colon must be entered and immediately fol-
lowed by a one- to seven-character file name.

The Map Disc command outputs the Diskette Identification field, the total number of allocation
units on the specified diskette, and the number of available and bad Allocation Units (AUs) on the
diskette. MD also lists the name of all files on the diskette, their file type, file protection code, and
the total number of AUs allocated to each file. The command output is terminated with the print-
ing of the time and date. :

The following are examples of legal MD commands:

MD,DSC2:FILE/. Map all files with the name FILE and any extension
on DSC2.

MD,VOL2:FILE/. Map all files with the name FILE and any extension
on the diskette with volume name VOL2.

MD,VOL/OBJ . . Map all files with the extension OBJ on volume VOL.

MD,/SRC. Map all files on the default disc with the extension
SRC.

MD,VOL3. Map all files on volume VOL3.

MD,: TASK1/. Map all files on the default disc with the name

TASK1 and any extension.

It is not legal to give both a file name and an extension in a Map Diskette command.

8-8 Digital Systems Division

o]
@ 9462599701

The output of the MD command may be directed to any desired device using the Define Output
command. Output of the MD command is sorted alphabetically by file name and extension. The
following are examples of the Map Disc command:

OP: MD. Maps all of the default diskette.

DISC I. D. : TX990 1/27/77

DSC ALLOC. UNITS(TOTAL): 333 FREE: 0 BAD: 0
FILE TYPE PT ALLOC. UNITS

DSKDMT/SYS S] 18

IBMUTL/0BJ S U 20

SCRATCH/SRC S u 8

SCRTCH S U 102

SOURCE/SRC S U 8

SYs012 S u 8

SYS0127/5YS S y 102

TEMP/SRC S u 8

TEMP/TMP) U 7

TXEDIT/SYS S U 22

TXTST1/SRC S u 8

TXTST2/0Bd S U 8

TXTST3/084 S u 8

10:45:35 FEB 3, 1977

OP: MD,/SYS. Maps all files on default diskette with the extension ‘SYS’.

DISC I. D. : TX990 1/27/77

DSC Loc UNITS{TOTAL Y 2132 cprEr 0 DAnR. n

wov [at SN SV AY) Uil 1\ iVine (e pv] LAY == v DAL . v
FILE . TYPE PT ALLOC. UNITS

DSKDMT/SYS S U 18

SYS0127/SYS S U 102

TXEDIT/SYS S U 22

10:46:08 FEB 3, 1977

8.5.10 MAP FILE (MF). The Map File (MF) command outputs pertinent information of the
specified file to the defined output device. The syntax for the command is as follows:

MF <pathname>.

89 Digital Systems Division

o
%@ 946259-9701

The pathname operand specifies the name of the file that is to be mapped and the device on which
it is located. This command displays the type of file, whether sequential or relative record, the
file-protection code, the record length if it is a relative record file, and the number of allocation
units (AU) contained in the file. The MF command also outputs the starting allocation unit num-
ber and the number of units contained in each block allocated to the specified file. The command
output is terminated with the printing of the time and date. The following are examples of the Map
File (MF) command for a sequential record file.

OP: MF,DSC:DSKDMT/SYS. Map file ‘DSKDMT/SYS’ on diskette DSC.

NAME: DSKDMT/SYS TYPE:S PT:U REC LENGTH: #A. U. 18
START ALLOC. UNIT # OF UNITS
200 16
240 2

10:46:52 FEB 3, 1977

8.5.11 DISKETTE DUMP (DD). The diskette Dump (DD) command causes SYSUTL to print the
contents of the specified absolute diskette locations on the defined display device. The syntax for
the command is as follows:

DD[, <device>] <alloc unit>,<sector>[,<start byte>[,<end byte>]].
DD, T[,<device>] <track><sector>[,<start byte>[,<end byte>]].

The Diskette Dump command may be executed in either of two modes: by allocation unit or phys-
ical track. If the diskette is to be accessed by track, a “T” must be entered immediately after the
command key ‘DD’. The optional device operand is a one- to four-character name. If the device
operand is omitted, the default system diskette as specified during system generation is used. The
allocation unit operand is a one- to three-digit number that specifies the desired allocation unit.
If the dump is to be performed by physical diskette track, the track operand is a one- to two-digit
number that specifies the desired track. The sector operand is a one- to two-digit number that
designates a sector on the allocation unit or track. The next two operands are one- to four-digit
numbers that specify the starting and ending byte addresses within the sector to be printed. When
only the starting byte is entered, the contents of the word that contains the specified byte as well
as the remainder of the sector, are printed. When both the starting and ending byte addresses are
omitted, the contents of the entire sector are printed.

All numeric operands (allocation unit, track, sector, starting and ending byte) are assumed to be
decimal unless otherwise preceded by a <’ for hexadecimal. The following is an example of the
Diskette Dump (DD) command and the resulting printout:

OP: DD,12,0>10,>30 Dumps sector 0 of allocation unit 12, byte 10,¢ through
30,¢ on default diskette.

0010 3641 3043 3043 3041 4231 3030 3837 4631 6A 0C OC OA B1 00 87 Fl
0020 3445 4620 5458 3939 3030 3535 FF42 3036 4E F TX 99 00 55 .B 06
0030 4130 A0

10:47:41 FEB 3, 1977

8-10 Digital Systems Division

@ 946259-9701

The contents of sixteen bytes are printed per line following the address of the first byte printed on
the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the right end
of the line, the contents are printed as ASCII characters. The bytes that contain values that corre-
spond to printable ASCII characters are translated and printed as ASCII characters. The nonprinting

ASCII characters are printed as periods. The display is terminated with the printing of the time and
date.

8.5.12 DISKETTE LOAD (DL). The Diskette Load (DL) command places the specified data on
a diskette at a specified address. The Diskette Load command may be performed by allocation units
or by physical track. The syntax for the command is as follows:

DL [,<device>],<allocation unit> <sector>,<starting byte>,<data>[,<data>...]
‘DL, T[,<device>] ,<track>,<sector><starting byte> <data>[,<data>....]

If the diskette is to be accessed by .rack, a “T” must be entered immediately after the command key
‘DL’. The optional device operand is a one- to four-character device name. If the device operand is
omitted, the default-substituted system diskette as specified at SYSGEN time is used. The
allocation-unit operand is a one- to three-digit number which specifies the allocation unit to be ac-
cessed. A number consisting of one to two digits is entered for the track operand if the diskette is
to be accessed by physical track. The sector is a one- to two-digit number that specifies a sector on
the aliocation unit or track that is to be loaded. The starting byte is a one- to four-digit byte address
into which the first data value is placed. If the byte address is odd, the previous even-byte address
will be used. When additional words of data are entered, they are placed in successive addresses.

All numeric operands (allocation unit, track, sector, starting byte, data) are assumed to be decimal
unless otherwise preceded by a <>’ for hexadecimal. The following is an example of a Diskette
Load (DL) command:

OP: DL,DSC2,1,3,>20,>5448,>4453,32,57. Place the ASCII codes for the characters
T, X, D, and S in bytes 20,4 through
23,6 and decimal data in bytes 244
through 27,¢ of sector 3 of allocation unit
1 on DSC2.

CAUTION

The DL command has the capability of modifying any data on the
system diskette, including the Operating System file and Operating
System file structures. Verify the address by performing a DD com-
mand that specifies the same allocation unit or track, and sector be-
fore entering a DL command. When the contents do not agree with
the contents of the bytes to be altered, determine the correct AU
track and sector before proceeding.

8.5.13 FILE DUMP (FD). The File Dump (FD) command causes SYSUTL to print the contents
of a specified physical sector of a specified diskette file. The syntax of the command is as follows:

FD,<pathname>, <sector>[,<starting byte>[,<ending byte>]}.

The pathname operand specifies the name of the file and the diskette unit on which it is located
that is to be dumped. The sector operand is the number of the sector that is to be accessed relative
to the beginning of the file. The next two operands, the starting and ending byte, are one- to four-
digit addresses within the sector to be printed. When only the starting byte is entered, the contents
of the word that contains the specified byte are printed. When the byte addresses are omitted, the
contents of the entire sector are printed. The contents are printed in hexadecimal representation
and in ASCII character representation. A nonprinting character is represented by a period. The dis-
play is terminated with the printing of the time and date.

§-11 Digital Systems Division

[e]
{—@) 946259-9701

All numeric operands (sector, starting byte, ending byte) are assumed to be decimal unless other-
wise preceded by >’ for hexadecimal. The following is an example of a File Dump (FD) command
and the resulting output:

OP: FD,DSC2:SYSUTL/SYS,1,>36. Dumps sector 1, bytes O through 36,4 of
file SYSUTL/SYS on DSC2.

8.5.14 FILE LOAD (FL). The File Load (FL) command places the specified data in specified
bytes of a diskette file record. The syntax for the command is as follows:

FL,<pathname> <sector>,<starting byte> <data>[,<data>....]

The pathname operand specifies the name of the file and the diskette unit on which it is located
that is to be accessed. The sector operand is a one- to two-digit number presenting the sector to
be loaded relative to the beginning of the file. The starting byte is a one- to four-digit address into
which the first data value is placed. When an odd number is entered for the starting byte, the value
is placed in the even address immediately preceding the odd value. When additional words of data
are entered, they are placed in successive addresses.

All numeric operands (sector, starting byte, data) are assumed to be decimal unless otherwise
preceded by a >’ for hexadecimal. The following is an example of an FL command:

OP: FL,DSC:TEMPFIL,2,0,>444D >4879. Places 444D,, and 4879, into bytes
0 through 3 of the second sector in
TEMPFIL on DSC.

8.5.15 INITIALIZE DATE AND TIME (ID). The Initialize Date and Time (ID) command
initializes the date and time values for the system. The syntax for the command is as follows:

ID,<year> ,<month> <day>,<hour>,<minute>.

The year operand is the four-digit decimal number of the years 1976 through 1999, and the month
operand is the decimal number of the month 1 through 12. The day operand is a one- or two-digit
decimal number, 1 through 31, and the hour operand is a one- or two-digit decimal number, 0
through 23. The minute is the decimal number of the minute O through 59. The second is set to
zero when the command is entered. An example of an ID command follows:

OP: 1D,1977,2,12,17,29 Initialize the time and date to 5:29 PM, February12,1977.
17:29:00 FEB 12,1977

8.5.16 PRINT TIME AND DATE (TI). The Print Time and Date (TI) command causes SYSUTL
to print the time and date. The syntax for the command is as follows:

TI.

The command requires no operands. The following exampleghows a TI command and the resultant
output.

OP: TL

9:29:12 FEB 13, 1977

812 Digital Systems Division

[o]
@ 946259-9701

When the date and time have not been initialized, no date is printed and the time printed is the
elapsed time from the most recent loading of the Operating System or from system restart.

8.5.17 TERMINATE SYSUTL (TE). The Terminate SYSUTL (TE) command terminates execu-
tion of SYSUTL and releases all related LUNQOs. If the TXDS Control Program is linked with the
TX990 Operating System, it will be rebid. The syntax for the command is as follows:

TE.

The command requires no operands.

8.5.18 CHANGE VOLUME NAME (CV). The change volume (CV) command causes SYSUTL to
change the volume name of a diskette to a new volume name. The syntax for the command is as
follows:

CV, [<device>

<volume>] <volume>.

The first parameter defines the old volume name or device. The second parameter defines the new
volume name. It is wise to avoid volume names that are also device names, because the TX990
operating system will not be able to find the correct volume. :

When a volume name for a disc has not been defined, it may be defined by using the device name, as
follows:

CV,DSC2,VOL2.

8.6 SYSUTL ERROR MESSAGES

The error messages capable of being issued by SYSUTL are listed in table 8-1. When more than one
SYSUTL command is entered on a line and an error occurs, the command in error (or that caused
the error) and all subsequent commands in the statement must be entered again. Unless otherwise
noted, when an error occurs, the command is ignored and SYSUTL prompts for input.

8-13 Digital Systems Division

9462599701

Message

INVALID COMMAND

I/0 ERROR, IGNORED

OUTPUT ERROR

UNDEFINED ERROR

OPERAND ERROR(S)

BAD DEVICE

DEVICE OFF LINE

INVALID DISC
ADDRESS

BAD FILE NAME

INVALID INPUT
PARAMETER

DUPLICATE FILE NAME

FILE NAME UNDEFINED

DISKETTE FULL

Table 8-1. SYSUTL Error Messages

Meaning
The command word is not valid.

An I/O error was detected during
reading of the command.

An error was detected during output
and execution of the command has
been terminated.

TX990 returned an error code to
SYSUTL that is not recognized by
SYSUTL.

One or more operands are invalid.

Invalid device name.

Specified device not on line.

Invalid track, AU, or sector
specified.

Specified pathname has a syntax
€rror.

Bad parameter in supervisor call
block.

File already exists with specified
filename.

Specified file does not exist.

No available allocation unit or
diskette.

Recovery

Check the command word, and re-
enter correctly.

Input from the system console was not
received correctly. Check the device,
and reenter the entire line.

This message is printed when the user
has entered an ESC character to ter-
minate output, or if LUNO 1 has not
been assigned. If neither of these
applies, check device for errors.

This is a system error. Make another
attempt to enter the command. If
error recurs, reinitialize the system.

When a required operand has been
omitted, enter the complete com-
mand. When a numeric operand is re-
quired, but a nonnumeric operand was
entered, enter the command with the
correct type of operand.

Enter the command with one of the
device names assigned when the sys-
tem was generated.

Check diskette device. If power off or
diskette not installed in drive, correct

and reissue command.

Check command operands and reenter
correctly.

Check pathname input and reenter
correctly.

Reload and execute SYSUTL.

Check file name and reenter correctly.

Check file name and reenter correctly.

Delete any unnecessary files and/or
compress files. Printer command.

8-14

Digital Systems Division

946259-9701

Message
FILE DELETE PRO-
TECTED — UNABLE
TO DELETE
INVALID FILE PRO-
TECTION SPECIFIED
UNABLE TO READ DISC

UNABLE TO WRITE DISC

CAN’T OPEN OUTPUT
LUNO

CAN’T LOAD PAST EN
OF SECTOR

UNABLE TO GET
REQUIRED MEMORY

UNABLE TO GET COMMON

FILE DIRECTORY EMPTY

INPUT PARAMETER OUT
OF RANGE OF SECTOR.

Table 8-1. SYSUTL Error Messages (Continued)

Meaning

Delete File command. Attempted
to delete file that is write-protected
or delete-protected.

Change File protection command.
Protection specified is not valid

character: ‘U’, ‘D’, or ‘W’.

Error occurred while reading

diskette.

Error occurred while writing to
diskette.

SYSUTL output LUNO is already
in use by another task.

Diskette Load or File Load command.

Specified sector not in range of file.

Memory required to exccute speci-
fied command is not available.

Error occurred in trying to get
COMMON.

Map Diskette command. Attempted
to map a diskette which has no files
on it.

Byte address specified not in range
of sector.

Recovery

If you wish to delete the specified file,
it must first be unprotected.

Reenter file-protection code.

Reenter command.

Reenter command.

If a record mode I/O-operation to the
LUNO is in progress, enter the com-
mand again after the operation is com-
pleted. If the LUNO is assigned to a
file-oriented device that has been
opened, enter the command again
after the LUNO has been closed.

Check desired sector number and
reenter command correctly.

Verify that TX990 has COMMON. If

not. the svgtem must he resenerated
not, the system must be regenerated

to include COMMON.
Check device name and reenter corr-

rectly.

Check input and reenter command
correctly.

8-15/8-16

Digital Systems Division

(e}
q@ 946259-9701

SECTION iX

SYSTEM GENERATION

9.1 INTRODUCTION

The GENTX utility program provides the user with the capability of generating an operating system
customized to the user’s specific hardware and software configuration. Basically, the customized
operating system is generated as foliows

e First, GENTX is used to produce source code for two source modules: TXDATA and
TASKDF. The TXDATA source module is used for providing the data needed by the
operating system to enable its communicating with (i.e., controlling) each device in the
user’s total hardware configuration. (Whenever another device is added to the user’s
hardware configuration, it is necessary to add data to the TXDATA source module.) The
TASKDF source module is used for providng the data needed by the operating system to
enable execution of any of the various TI-supplied modules/tasks (e.g., File Management,
Operator Communications Package, Start Task, Diagnostic Task, etc.) or of any
user-supplied tasks/programs (including user-utilities).

® Second, an assembler is used to assemble the TXDATA and TASKDF source modules
into object modules.

® Third, a linker is used to link TXDATA and TASKDF object modules tc other selected

object modules such as a user task/program, the File Management utility program, the

Operator Communications Package, Start Task, Diagnostic Task, etc. This linked object
module is the resultant customized Operating System.

The following paragraphs describe these steps in detail.

9.2 PREPARATION FOR GENERATING A TX990 OPERATING SYSTEM

In preparation for generating a customized TX990 operating system, the user must select the
peripheral devices to be included in his system and assign Communications Register Unit (CRU)
addresses and interrupt levels for each of those devices which can be obtained from the chart that is
pasted on top of the Model 990/4 or Model 990/10 computer chassis.

The user must write and assemble a Device Service Routine (DSR) for each type of device not
supported by any of the TI-supplied TX990 modules. The DSR must process interrupts generated
by the device and I/O calls to the device. The devices supported by Tl-supplied modules are listed
in Section I. The user must also write and assembly and user-supplied routines (e.g. supervisor calls,
extended operations) and include the object code when linking the system. Appendix C contains
detailed information about writing such routines.

9.3 DEFINING THE NEW SYSTEM

Definition of a new operating system is accomplished by executing the GENTX utility program.
GENTX prompts the user to define various parameters, as well as devices connected in the system.
After all parameters have been defined GENTX builds two source modules, TXDATA and
TASKDF, which form part of the operating system kernel.

9-1 Digital Systems Division

o]
@ 946259-9701

9.3.1 LUNOS USED BY GENTX. GENTX uses the system console for user interactions and
LUNO 104 for file output.

9.3.2 LOADING AND EXECUTING SYSTEM GENERATION (GENTX) UTILITY PROGRAM.
GENTX may be loaded and executed using a TX990 or DX10 Operating System. The following

paragraphs describe how to load and execute GENTX using a TX990 Operating System, or TXDS,
or DX10 release 2.2 system.

9.3.2.1 Loading and Executing Using TXDS. When executing GENTX using TXDS Control

Program in a system without OCP, place the GENTX object module in the appropriate input device
and perform the following steps:

1. Enter an exclamation point (!).
2. Enter the GENTX pathname to the “PROGRAM:” prompt as follows:

PROGRAM: :GENTX/SYS* If the object program for GENTX is in diskette
file, :GENTX/SYS.

PROGRAM: CS1* If on Cassette 1.
PROGRAM: CR* If on Card Reader.
After GENTX starts executing it will display the following title message:
TX990 SYSTEM GENERATION 945673 *B

9.3.2.2 Loading and Executing GENTX with TX990 Using OCP. When executing GENTX on a
TX990 system using OCP, place the GENTX object module in the appropriate input device and
perform the following steps:

1. Enter an exclamation point (!) at the keyboard of the system console to activate OCP.
OCP responds by printing a period (.) to request a command. '

2. Enter an OCP command to load GENTX in the dynamic task area. The following are
examples of commands to load GENTX:

.LP,CS1,3. Load task GENTX at priority level 3 when the
object module is on Cassette Unit 1.

.LP,CR3. Load task GENTX at priority level 3 when the
object module is in the Card Reader.

.LP,:GENTX/SYS. Load task GENTX at priority level 3 when the
object module is in diskette file.

3. Enter the following OCP command to execute GENTX and terminate OCP:

EX,10.TE. Execute the task in the dynamic task area,
GENTX and terminate OCP.

9-2 Digital Systems Division

[o]
@ 9462599701

After GENTX starts executing it will display the following message:
TX990 SYSTEM GENERATION 945673 *B

9.3.2.3 Loading and Executing GENTX with DX10 Release 3.0. For details on the DX10 release
3.0 process, refer to Appendix K.

9.3.3 DEFINITION PHASE. GENTX begins execution in the definition phase, in which GENTX
requests the user to enter system parameters and constructs an internal table of data from which
GENTX later constructs the source statements for TXDATA and TASKDF. GENTX prints the
request on the system console, and the user enters the parameters on the keyboard of the same
device. In the following paragraphs, numeric parameters are specified as hexadecimal or decimal
numbers according to the type of number that normally would be used. Either hexadecimal or
decimal values may be entered for any numeric parameter. A hexadecimal number is preceded by a
greater-than (>) character. If at anytime the user wishes to terminate GENTX, enter an asterisk.
Table 9-1 shows all of the prompts which may be displayed by GENTX, and gives information
concerning correct replies. The following paragraphs describe each prompt.

9.3.3.1 General System Definitions. The first prompt displayed by GENTX is as follows:
MEMORY AVAILABLE—

The user enters the amount of memory (bytes) available to GENTX, to be used for table storage.
No default when only a carriage return is entered. The total memory available may be calculated
by subtracting the size of GENTX (2B65,¢ bytes) from the total memory avallable The suggested
memory allocation is 2000, bytes.

The next six prompts are requesting timing information that will be used by the task scheduler
within the new TX990 Operating System being generated.

LINE FREQ.—

The user enters the power-line frequency, a decimal value followed by a carriage return. The valid

13 £ Wt
parameters are 50 for 50-Hz powerline frequency or 60 for 60-Hz powerlinc frequency. When a

carriage return only is entered, GENTX uses the default value, 60.
The next request is as follows:

TIME SLICE—

The user enters the number of real-time-clock cycles per maximum time period, followed by a
carriage return. The maximum time period is used for a time slice by the task scheduler. When only
a carriage return is entered, GENTX uses the default value, 6, corresponding to a 50-ms time slice

when the power-line frequency is 60-Hz, or a 40-ms time slice when the power-line frequency is
50-Hz (see table 9-2).

The next four requests ask for the maximum number of consecutive time slices for priority level
0-3. If a priority level exceeds its maximum number of consecutive time slices, the task scheduler
will give a time slice to a task at a lower priority, therefore, preventing lockouts of low priority
tasks. The highest priority level is level O; its weighting factor is requested as shown below.

PL O WT.FACTOR—-

9-3 Digital Systems Division

946259-9701

Table 9-1. GENTX Prompts

Discussed in
Request Range Default Paragraph

MEMORY AVAILABLE — Note 7 none 9.3.3.1
LINE FREQ. 50 or 60 60 9.3.3.1
TIME SLICE Note 1 6 9.3.3.1
PLO-3 WT.FACTOR Note 1 10 9.3.3.1
COMMON SIZE Primarily limited 0 9.3.3.1

by size of available

memory.
OF EXP CHASSIS 1-7 0 9.3.3.1
CHASSIS 1 -4 INT LEVEL 3,4,6,7 None 9.3.3.1

(990/4)

3,4,6-15 None

(990/10)
CHASSIS 5 -7 3,4,6,7 None 9.3.3.1

(990/4)

3,4,6-15 None

(990/10)
CHASSIS 0-7 None 9.3.3.2
DEV NAME Note 2 None 9.3.3.2
DEV TYPE Listed in table 7-3. None 9.3.3.2
LEFT CASS/PTP NAME Note 2 None 9.33.2
RIGHT CASS/PTR NAME Note 2 None 9.3.3.2
STATION # 1-127 None 9.3.3.2
CRU BASE ADDR 0->1FFE Device de- 9.3.3.2

pendent

ACCESS MODE FILE,RECORD, Listed in 9.3.3.2

or CHARACTER table 7-3.
INT LEVEL 3,4,6,7 Device de- 9.3.3.2

(990/10) pendent

3,4,6-15

(990/10)

9-4

Digital Systems Division

946259-9701

Table 9-1. GENTX Prompts (Continued

Discussed in
Request Range Default Paragraph
INT POSITION 0-15 None 9332
TIMEOUT COUNT Note 1 Device de- 9.3.3.2
pendent

OF DRIVES 1-4 9.3.3.2
CRU INT LINE 0-31 15 93.33
ENTRY LABEL OF DSR Note 3 None 9.3.33
ENTRY LABEL OF ROUTINE Note 3 None 9.333
INT BRANCH LABEL Note 3 None 9.33.3
EXTENSION DATA Note 3 None 9.3.33
SVC # Note 4 None 9.3.34
ENTRY LABEL Note 4 None 9334
XOP # 1-14 None 9.3.3.5
WORKSPACE LABEL Note 5 None 9.3.35
ENTRY LABEL Note S None 9.3.3.5
TASK ID # 0-0F, None 9.3.3.6

11 -FE
PRIORITY LEVEL Note 6 None 9.3.3.6
INITIAL DATA LABEL Note 6 None 9.3.3.6
MULTIPLE DYNAMIC TASKS (Y ORN) YorN None 9.33.6
OF DYNAMIC TASKS 1-256 None 9.33.6
OF PROCEDURES 0-128 None 9.3.3.6
CONSOLE DEV NAME Device name of a None 9.3.3.7

733 ASR, 733 KSR,

911 VDT, 0r 913

vD1
DEFAULT DISC DEV Note 8 None 9.3.3.7

9-5

Digital Systems Division

946259-9701

Discussed in

Request Range Default Paragraph
DEFAULT PRINT DEV Any printing device DUMY 9.3.3.7
ASSIGN LUNO 1-FO None 9.3.3.7
DEV NAME Device narﬁe None 9.3.3.7
OF SPARE DEV LUNO BLOCKS 0-63 5 9.33.7
OF SPARE FILE LUNO BLOCKS 0-63,Note 9 5 9.33.7
OF FILE CONTROL BLOCKS 0-53,Note 9 3 9.3.3.7
OF DEFAULT BUFFERS 1-20 0 9.3.3.7
BUFFER SIZE 2-1024 None 9.33.7
OF GENERAL BUFFERS 1-50 0 9.3.3.7
BUFFER SIZE 1-1024 None 9.3.3.7
UPPER THRESHOLD — 1-99 None 9.3.3.8
LOWER THRESHOLD — 1-99 None 9.33.8
Notes:

Table 9-1. GENTX Prompts (Continued)

Any positive value that would have practical significance is accepted. The
actual limit 1 - 65,535.

Device names consist of one to four characters, the first of which must be
alphabetic.

These inputs apply to user-supplied DSRs for non supported devices.
These inputs apply to user-supplied supervisor call routines.

These inputs apply to extended operation routines.

These inputs apply to tasks.

Memory available for use by GENTX.

Disc device name as it appeared in the name request.

Not prompted if no diskettes are defined in the system.

9-6 Digital Systems Division

9462599701

Parameter
Real Time
Clock Cycle

System Time Unit

Maximum time
period for a
Time Slice

Timeout Counts

Time Delay

Do Not Suspend
periods.

Table 9-2. System Timing Parameters

Unit of Measurement
8.3 ms. for 60 Hz.
10 ms. for 56 Hz.

Real Time Clock

Cycles
J

Lies

Real Time Clock
Cycles

System Time Units

System Time Units

System Time Units

Use
Used to derive System Time
Unit and to define maximum
time period for a time slice
Used to define Timeout
Counts, Time Delays, and

Do Not Suspend periods.

Used by Scheduler.

Used by I0S and DSR to
detect device errors.

Used by Scheduler.

Used by Scheduler.

How Specified

Determined by power line
frequency.

6 cycles (50 ms.) for 60 Hz.
4 cycles (40 ms.) for 50 Hz.

During system generation.

During system generation.

Time Delay supervisor call.

Do Not Suspend supervisor
call.

The user enters the maximum number of consecutive time slices for priority level 0, followed by a
carriage return. When a carriage return only is entered, GENTX uses the default value of 10.
GENTX then requests a weighting factor for priority levels 1, 2, and 3 in a similar manner.

PL 1 WI.FACTOR-

PL 2 WT.FACTOR—

I

PL3 WI.F

CTOR-

The next request is as follows:

COMMON SIZE—

The user enters the number of bytes to be allocated for the COMMON area of memory, followed by
a carriage return. The address and size of the COMMON area is supplied to a task in response to a
Get COMMON Data Address supervisor call. If a TXDS system is being generated, enter at least 170.
When the user enters a carriage return only, no COMMON area is allocated in memory.

The next request is as follows:

OF EXP CHASSIS —

The user enters the number of CRU expansion chassis connected in the system. a decimal value.
0 through 7, followed by a carriage return. When the user enters a carriage return only, GENTX uses
the default value. 0. The response to this request causes GENTX to request interrupt level assign-
ments for the expansion chassis. Chassis 1 through 4 share an interrupt level, and chassis 5 through
7 share another interrupt level. When the response to this request is 0. explicitly or by default, the
next two requests are omitted.

Digital Systems Division

946259-9701

When the response to the number of expansion chassis is greater than 0, GENTX prints the
following request:

CHASSIS 14 INT LEVEL —

The user specifies the interrupt level for chassis number 1 through 4, a decimal value followed by a
carriage return. When the response to the number of expansion chassis is less than 5, the next
request is omitted.

When the response to the number of expansion chassis is greater than 4, GENTX prints the
following request:

CHASSIS 5-7 INT LEVEL —

The user specifies the interrupt level for chassis number 5 through 7, a decimal value followed by
carriage return. :

9.3.3.2 Supported Peripheral Device Definitions. The peripheral devices connected to the CRU
through the CPU chassis are defined as a group. Each device, if it conforms to the standard interrupt
interface configuration, may be placed on the same interrupt level as another device with like
constraints. The standard interrupt interface configuration is that CRU bit 15 from the base address
of the device will be “set” when an interrupt occurs. Table 9-3 shows which supported devices may
share an interrupt level. The user must determine if a special device conforms to this requirement.

The peripheral devices connected to the CRU through each expansion chassis are also defined as
a group. The devices on expansion chassis 1-4 share an interrupt level, and the devices on expansion
chassis 5-7 share another interrupt level. Each device within an expansion chassis has a unique
interrupt identifier for use in interrupt decoding.

Expansion chassis interrupts may also be shared with devices connected to the CRU through the
CPU if the devices conform to the standard interface configuration.

The following request begins the peripheral-device definition portion of the definition phase:
CHASSIS —

The user enters a digit, O through 7, followed by a carriage return, to specify the group of devices
to be defined.

A response of 0 specifies that the subsequent device definitions (until the next chassis request) are
those of devices connected within the CPU. A response of 1 through 7 specifies that subsequent
device definitions are those of devices connected through expansion chassis 1 through 7, respective-
ly. The response to this request must be consistent with the response to the number of the
expansion-chassis request described previously. A response of a carriage return only terminates the
device-definition portion of the definition phase.

GENTX issues the following request to identify the first device to be defined in the chassis:

DEV NAME —

9-8 Digital Systems Division

/]

946259-9701

The user enters a user-defined device name, consisting of up to four characters, the first of which
must be alphabetic, the rest may be alphanumeric. The device name is followed by a carriage return.
GENTX then requests the appropriate device information as described in the following paragraphs.
When the user enters a carriage return only, GENTX terminates the current chassis definition, and
repeats the “CHASSIS — request for the next chassis. If the user wishes to correct an invalid input
of a previously detined device. he may enter the name of that device in response to the “DEV
NAME —” prompt and reenter all the following requests for the device type and CRU base, etc. Ifa
user is defining a disc drive, then it is necessary to make the name 3 characteis long.

Following the request for a device name, GENTX issues the following request to identify the type
of device. The type of device will determine the succeeding questions that will be asked.

DEV TYPLE -

The user enters a device-type keyword, as listed in table 9-3. followed by a carriage return. If a
carriage return only is entered, the device definition for the above requested device name is deleted.

Table 9-3. GENTX Device Keywords

Default Multiple
Device Default Default Default Interrupt Devices per
Type Access Time-Out CRU Level Interrupt
Keyword Device Mode Count Base (CPU Only) Level
TTY ASR 33 Teletype RECORD 8192 0 6 Yes
ASR 733 ASR Electronic RECORD 8192 0 6 Yes
Data Terminal
KSR 733 or 743 KSR RECORD 8192 0 6 Yes
Electronic Data
Terminal
Lp Line Printer FILE 4096 604¢ 6 Yes
FLP 2230 or 2260 Line FILE 4096 6046 6 Yes
Printer
CR* Card Reader FILE 4096 40,6 4 No
V913 913 Video Display RECORD None COq6 3 Yes
COM Communications None None None None N/R
Device
FD Diskette Drive None None 8046 7 N/R
V91i 911 Video Display RECORD None CO 3 Yes
Terminal
SD Special Device RECORD None None None U/D

N/R - Not Recommended
U/D - User decision
* Card reader must have an exclusive interrupt assignment.

9-9 Digital Systems Division

946259-9701
&

If the user enters one of the first eleven keywords in the table, the device is supported
by TX990 Operating System. The last keyword, SD (special device) specifies a nonsupported device.
Additional GENTX requests for information on nonsupported devices are described in paragraph
“Defining Other Peripheral Devices”.

When the user enters the keyword V911 or V913 as the device type, GENTX requests the
following:

STATION # —

The user enters a decimal number, 1 through 127, followed by a carriage return. The number is the
station number used in character mode I/O to the Video Display Terminai (VDT). There is no
default for station number.

When the user enters the keyword ASR or TTY, GENTX prints the following requests: the name
for the left cassette/paper-tape punch, and the right cassette/paper-tape reader:

LEFT CASS/PTP NAME —
RIGHT CASS/PTR NAME —

Following each request, the user enters a user-defined device name, one to four characters, the first
of which must be alphabetic. The device name is followed by a carriage return. The user assigns the
cassette or paper-tape units to LUNOs by means of these device names.

The next request for each TX990 supported device, except a communications device, is as follows:

CRU BASE ADDR —

The user enters the CRU base address as a hexadecimal value followed by a carriage return. A
greater-than character (>) entered as the first character identifies the entry as hexadecimal in the
range of numbers O through 1FFE . The CRU base address is the CRU address shifted one bit
position to the left (multiplied by 2). and must be an even number. On top of each chassis is a chart
which defines the CRU base for each device. If a carriage return is entered, a standard base will be
used. Defaults are listed in table 9-3.

The fourth request for each device, except diskette or a communications device, is as follows:
ACCESS MODE —
The user enters one of the following keywords, followed by a carriage return:

L FILE, for a file-oriented device, or for a 913 or 911 VDT that is to be used in cither the
file mode or the character mode,

L RECORD, for a record-oriented device, or for 913 or 911 VDT that is to be u.sed in the
record mode, as well as character mode (if a VDT is to be used as a system console, it

must be in RECORD mode).
® CHAR,fora9130or911 VDT to be used in the character mode only.

When the user enters a carriage return only, the default access mode for the spcuﬂed dum applics.
Default access mode for devices are listed in table 9-3.

Digital Systems Division

Sy N

946259-9701

One of the two formats 1s used for the fifth request. depending on whether the device is connected
to the CRU through the CPU or through an expansion chassis. When the device is connected
through the CPU (CHASSIS - 0), the request is as follows:

INT LEVEL —

The user enters a decimal or hexadecimal value followed by a carriage return. The entry represents
the interrupt level for the device. If a carriage return only is entered. a standard level will be used.
Defaults are listed in table 9-3. The user must not enter the interrupt level of the CLOCK. On a
990/4 computer the clock interrupt level is 5; on a 990/10 computer the clock interrupt level is
5 or 10. When the device is connected through an expansion chassis (chassis entry not equal to
zero), the request is as follows:

INT POSITION -

The user enters a decimal value followed by a carriage return. The entry represents the interrupt
identifier returned by the expansion chassis when a device generates an interrupt. The interrupt
identifier is a number in the range of O through 15 and is determined by connections within the
CRU expansion chassis.

The sixth request for each device, except a diskette or a communications device, is as follows:
TIME-OUT COUNT -

The user enters a decimal value followed by a carriage return. The value represents the number of
system time units to be used as a timeout count for the device. This timeout count will be used by
the DSR to determine how long to wait on a device before determining that a timeout error has
occurred. When the user enters a carriage return only, the default value for the specified device
applies. Default values for devices are listed in table 9-3. Entering a zero specifies no timeout.

If the device is a diskette the following request is made instead of the timeout count request:
OF DRIVES —
The user must enter a number in the range of one to four.

If the user wishes to define more than one diskette drive he enters the first name and a 2, 3, 4 is
concatenated onto the first three characters of the disc name up to the number entered for # OF
DRIVES— prompt. thus all drives are defined from the first name entered. The names that were
generated may not be used again, nor may they have already been used.

If the user wants to generate a system with more than one diskette controller, he can do so by
entering a different three-character name so that the names generated by concatenating a 2, 3, 4
are different than the disc names that have already been defined.

When the device is a supported device, GENTX next repeats the device name request to define
another device.

9-11 Digital Systems Division

946259-9701

9.3.3.3 Special Device Definition. Special devices are those which are not supported by T1 supplied
modules. When the device type request is printed. the user may enter the keyword SD.GENTX
requests the same six parameters as for supported devices, then prints the following request:

CRU INT LINE —

The user enters a number in the range of zero through 31, followed by a carriage return. The
number represents the displacement from the base address to the CRU line that is set when an inter-
rupt occurs.

The next request for a nonsupported device is as follows:
ENTRY LABEL OF DSR —

The user enters the entry label of the Device Service Routine (DSR) for the device followed by a
carriage return. The entry point required in response to this request is the entry point for supervisor
call processing. The user supplies the DSR for the device when he links the TX990 system together.

The next request for a nonsupported device is as follows:
ENTRY LABEL OF ROUTINE —

The user enters the entry label of the interrupt routine for the device, usually a part of the DSR.,
followed by a carriage return.

The next request for a nonsupported device is as follows:

INT BRANCH LABEL —

The user enters the label of the interrupt branch followed by a carriage retum. Typically an inter-
rupt routine performs processing common to any interrupt for the device. then branches to perform
processing appropriate to the context of the interrupt. For example, an unsolicited interrupt usually
requires different processing than the interrupts that occur while performing an I/O operation
specified in a supervisor call. The label to which the unsolicited interrupt causes the system to
branch is supplied in response to the above request.

The next request for a nonsupported device is as follows:
EXTENSION DATA —

The user enters a source statement in assembly language, followed by a carriage retum. The user
may enter an exclamation point (!) following each field of the source statement to tab to the
beginning of the next field. Specifically. entering an exclamation point positions the following
character at position 8, 13, or 31.

The source statement will be entered in the source file for TXDATA following the source state-
ments supplied by GENTX for the PDT for the device. GENTX repeats the request. until the user
enters a carriage return only, which terminates the definition for the device. Subsequent source
statements are placed following the initial statement. The group of source statements entered in
response to this series of requests forms an extension to the PDT that contains device-related data.
When the user terminates the definition of the device, GENTX repeats the device name request to
define another device.

9-1 2 . . . I3 .
Digital Systems Division

{@ 946259-9701

9.3.3.4 Defining User-Supplied Supervisor Calls. When the wuser has terminated the
peripheral-device portion of the definition phase, GENTX prints the following request:

SVC# —

The user enters a hexadecimal number, followed by a carriage return. The number represents the
call code of a user-supplied supervisor call (XOP level 15). The valid codes begin at 80,4 and extend
as far as required to include all user-supplied calls. For example, if three supervisor calls are supplied
by a user, the call codes must be 80,¢, 81,4, and 82,. They may be entered in any order, but must
all be included. Similarly, if a single supervisor call were supplied, its cail code would be 80,,. When
the user enters a carriage return only, GENTX omits the next requesi and terminates the supervisor-
call portion of the definition phase.

When the user has entered a supervisor-call code, GENTX prints the following request:

ENTRY LABEL —

The user enters the entry label of the supervisor-call code, followed by a carriage return. The user
must supply the supervisor-call routine when linking the TX990 operating system. GENTX then
repeats the SVC number request.

9.3.3.5 Defining Extended Operations. When the user has terminated the supervisor call portion of
the definition phase, GENTX enters the extended operation portion of the definition phase and
prints the following request:

XOP # —

The user enters a decimal number, O through 14, followed by a carriage return. The number
represents the level of a software implemented extended operation. The user supplies an XOP
routine for the extended operation. When the user enters a carriage return only, GENTX omits the
next two requests and terminates the extended operation portion of the definition phase. For
further details concerning extended operation routines refer to Appendix C.

WORKSPACE LABEL —

The user enters the label of the workspace of the XOP routine, followed by a carriage return.
GENTX then prints another request:

ENTRY LABEL —
The user enters the label of the entry to the XOP routine, followed by a carriage return.

The user must supply the object programs that process the XOP when linking the TX990 Operating
System. GENTX then repeats the XOP number request.

9.3.3.6 Defining Tasks. When the user terminates the extended operation portion, GEN1X enters
the task definition portion. During this phase of system definition, GENTX adds to the internal
table of data from which it will generate the source statements for TASKDF. Both system tasks,
and user-supplied tasks must be defined at this time if they are to be linked with the new TX990
Operating System. Table 9-4 shows the task IDs for the system tasks under the “ID” column, the
priority level of each task is under the “PRIORITY” column, and the label on the first word of each
task is under the “DATA LABEL” column. Each system task, and its purpose, is described in
Appendix 1.

9-13 .
Digital Systems Division

{@ 946259-9701

Table 9-4. System Task Definition

Task ID Priority Data Label
FMP1 >F0 0 FMP1
FMP2 >F1 0 FMP2
FMP3 >F2 0 FMP3
FMP4 >F3 0 FMP4
FUR >B 1 FUR
VOLUME >C 0 VOLUME
DTASK >D 1 DIAGTS
ocp >F 1 6,614
CNTROL >16 1 CNTROL
STASK >10 1 STRT

The user may select a task ID for his tasks but they must not be the same ID as a system task ID.
Task IDs 1-F,¢ and FO,, —FF, are reserved for system tasks. The task ID will be used to bid the
task, or to execute the task from OCP. The priority level will define which tasks will use the most
time slices. Priority level zero is the highest available priority level. The data label is a defined (using
the assembler directive, DEF) label on the first three words of a task. These words define the initial
Workspace, Program Counter, and End Action address. A reference {an assembler REF directive)
will be generated inside the TASKDF module, so that the TX990 Operating System will have the
information needed to begin execution of that task.

The following requests are made by GENTX asking for the above information.
TASK ID # —

The user enters a number, followed by a carriage return. The number represents the task identifier
by which the task is identified to the system, and must be less than FF,¢. Identifier 10,4 is assigned
to the dynamic-task area, and user tasks should be assigned identifiers greater than 10,5. When the
user enters a carriage return only, GENTX terminates the task-definition portion of the definition
phase, and begins requesting information for assigning LUNOs.

For each task, GENTX prints two requests following entry of the task identifier. The first request
is as follows:

PRIORITY LEVEL —

The user enters a two-digit hexadecimal number, followed by a carriage return. The first digit must
be one of the digits listed in table 9-5, which also lists the meaning of each digit. When the digit that
applies to the task is zero, it may be omitted. The second digit is the actual priority level. Priority
level O should be used only for system tasks.

The second request is as follows:

INITIAL DATA LABEL —

The user enters the label on the first word in the task, followed by a carriage return. Then GENTX
repeats the task ID request. When all tasks have been defined and the user has terminated the
task-definition portion, GENTX asks if the system is to support multiple dynamic tasks.

9-14 Digital Systems Division

946259-9701

Table 9-5. Priority Digits

Digit
(Hexadecimal) Meaning
0 Privileged; not active at initial load of operating
‘ system, restart, or power restart.
1 Privileged; active at initial load of operating
system or restart; not active at power restart.
2 Privileged; not active at initial load of operating
system or restart; active at power restart.
3 Privileged; active at initial load of operating

system, restart, or power restart.

The request is as follows:
MULTIPLE DYNAMIC TASKS (Y ORN) —

The user should enter Y or N. If the response is N, GENTX proceeds to the Assign LUNO phase. If
the response is Y, GENTX requests the maximum number of dynamic tasks allowed to be in the
dynamic task area at one time, as follows:

OF DYNAMIC TASKS —

The user enters a decimal number between 1 and 255, inclusive. Then GENTX requests the
maximum number of procedures allowed to be installed in the dynamic task area at one time, as
follows:

OF PROCEDURES -
The user enters a decimal number between O and 127

Assign LUNO phase.

9.3.3.7 Information For Assigning LUNOs. The following information is used to generate: names
for LUNO assignments; memory blocks that will be reserved for device LUNOs; and file LUNOs and
memory blocks that will be reserved for communication devices.

The following request is made by GENTX asking for the device name of the system console. Most
of the utilities, and the Operator Communication Package (OCP) interact with the user through the
system console. The request is as follows:

CONSOLE DEV NAME —

The user enters the device name (previously assigned) for the system console, followed by a carriage
return. The device must be either device type ASR, KSR, or VDT. When the device is device type
VDT, it must have been previously defined for the record mode. The user may enter a carriage
return only to specify no system console.

15 Digital Systems Division

@ 946259-9701

GENTX makes the following request:

DEFAULT DISC DEV —

The user must enter the diskette device name (previously defined) as it appeared in the name
request. The user may enter a carriage return to specify no default disc. The default disc name is
used when a utility is referring to the system disc; it is also used when no disc name is appended to
the pathname of a file.

GENTX makes the following request:
DEFAULT PRINT DEV —

The user enters the device name (previously defined) for the system default printers. The device can
be any printing device. The user may enter a carriage return to specify the Dumy device. The
device is used by some of the TIsupplied utilities when no listing device is specified. It is a required
parameter in a TX990 Operating System that supports a Terminal Executive Development System.

Next, GENTX prints the following request:
ASSIGN LUNO —

The user enters a hexadecimal value, followed by a carriage return. The range of values is 1 through
F0,6. The value represents a LUNO by which a device is accessed for I/O operations. When the user
enters a carriage return only, GENTX skips the next request of the definition phase. Otherwise,
GENTX requests the name of the device to be assigned to the LUNO, as follows:

DEV NAME —

The user enters the device name previously assigned to a device. GENTX then repeats the assign
LUNO request.

The next request is as follows:
OF SPARE DEV LUNO BLOCKS —

The user enters a decimal number followed by a carriage return. The number represents the number
of device logical unit blocks to be provided in the system in addition to those numbers assigned
previously. When the ALUNO OCP command of the File Utility supervisor call is included in a
TX990 system, there must be logical unit blocks for all LUNOs that will be assigned at one time.
When the user enters a carriage return only in response to the request, GENTX provides five
additional blocks. In systems which support multiple dynamic tasks, more blocks may be necessary.

The next request, if a diskette has been defined, is as follows:

OF SPARE FILE LUNO BLOCKS —
The user enters a decimal number followed by a carriage return. The number represents the number
of file logical unit blocks to be provided in the system. There must be file logical unit blocks for all

LUNOs that will be assigned to files at one time. When the user enters a carriage return, GENTX
provides five additional blocks.

9-16 Digital Systems Division

{@ 946259-9701

The next request, if a diskette has been defined, is as follows:
OF FILE CONTROL BLOCKS —

The user enters a number between 0 and 50. The number represents the maximum number of files
that can be open at any time. If File Management is to be used with TXDS, a minimum of three File
Control Blocks are required.

The next request is as follows:

OF DEFAULT BUFFERS —
The user enters a decimal number from 0 to 20. If a carriage return is entered, no buifers are
reserved and GENTX skips the size request. If GENTX accepts the number, it requests the size of
the buffer in bytes by presenting the following prompt:

BUFFER SIZE —
The user must enter a decimal number from two to 1024.
The next request is:

OF GENERAL BUFFERS —

The user enters a decimal number from 0 to 50. If a carriage return is entered, no buffers are
allocated and GENTX omits the next request and terminates the general buffer portion of the
definition phase. ’

If GENTX accepts the number it requests:
BUFFER SIZE —

The user enters a decimal number from 1 to 1024 which represents the number of bytes in each
buffer. GENTX then repeats the GENERAL BUFFER request. The default and general buffers are

simply reserved areas in the system table area which may be accessed by user tasks via the Get Data
and Put Data SVCs.

9.3.3.8 Communication Threshold Definition. If a device name was defined as a ;:ommunications
device by entering “COM” for the “DEV TYPE—" request, GENTX requests the communications
thresholds as follows:

UPPER THRESHOLD —
LOWER THRESHOLD —
(The user is referred to the Communications Systems Manual for a detailed explanation of

thresholds.) The user enters decimal numbers, from 1 to 99, and the upper threshold must be
greater than or equal to the lower. If in error, the sequence will be repeated.

Digital Systems Division

il_@) 946259-9701

9.3.3.9 Suggestions For Defining Devices. The following request of GENTX are repeated until the
user enters a carriage return only in response. This allows an indefinite number of each item to be
defined, as appropriate for the application. These requests are as follows:

CHASSIS

SVC#

XOP#

TASK ID#

ASSIGN LUNO

OF GENERAL BUFFERS
When the same chassis number is entered by the user in response to a subsequent chassis request,
additional devices entered following the second entry of the chassis number are added to the group
originally defined. This allows definition of devices by function or by physical arrangement rather
than by connection within the computer. That is, in the following example, the line printer and
card reader are connected through the CPU, and the VDT is connected through expansion chassis 1:

CHASSIS -0

DEV NAME — LIPR
DEV TYPE — LP

DEV NAME —
CHASSIS — 1

DEV NAME — GTTY

DEV TYPE — V913

DEV NAME —
CHASSIS -0

DEV NAME — CRDR
DEV TYPE — CR

When the same device name, supervisor call number, extended operation number, task identifier,
or LUNO is entered again, the previously entered information is replaced by the new information,
redefining the item. To delete a device name, enter the chassis number and the device name. Then
enter a carriage return only in response to the device type request.

Digital Systems Division

946259-9701

9.3.4 CONSTRUCTION PHASE. After the last request of the Definition Phase of GENTX, the
Construction Phase is entered. During the construction phase, GENTX generates source statements
for TXDATA and TASKDF using the responses entered by the user during the definition phase.
GENTX prints the following request:

TASKDF OUTPUT FILE NAME —

The user may enter the full file name or device name. If the file does not exist it will be created.

The user may inhibit output of TASKDF by entering a carriage return only. GENTX then prints the

final request as foliows:

TXDATA OUTPUT FILE NAME —

The user enters the full file or device name. When the file does not exist it will be created. The
user may inhibit output of TXDATA by entering a carriage return only. GENTX then terminates,

bidding the rebid task.

NOTE

DX10 output file names must be full pathnames; synonyms are

not accepted.

9.3.5 GENTX ERROR MESSAGES. Table 9-6 lists the error messages or warnings produced by

GENTX.

Error

INVALID INPUT

INPUT ERROR

*LUNO 0 ASSIGNED
TO CONSOLE*

INVALID DEV

* ASSIGN ERROR*

QPEN ERROR

CLOSE ERROR

*STORAGE ALLOC.
ERROR*

Table 9-6. GENTX Error Messages

Reason
Response not valid.
Response not within range.

The input has already been pre-

ias LA

viously defined.

User tried to assign LUNO 0 to a
device other than the console.

The device type name was not valid

Could not assigit LUNO 10 to the
output device or file.

Could not open output device or
file.

Could not close, or release output
device of file.

GENTX table area exhausted. Mem-
ory area not large enough.

Recovery
Reenter response.
Reenter response.
Reenter response.
Select a LUNO other than 0.
Reenter response.
See table 7-3. Reenter response.
Release some LUNOs and re-
execute the task; or an invalid

device name was entered. Re-
enter response.

Reexecute task and increase
size of the MEMORY
AVAILABLE request.

9-19

Digital Systems Division

%@ 946259-9701

9.4 ASSEMBLING THE SOURCE MODULES

After termination of GENTX, the user must assemble the two source modules, TXDATA and
TASKDF. Assembly is accomplished by executing the TXDS Assembler, TXMIRA. Each source
module is assembled separately.

For detailed instructions for operating TXMIRA consult the TXDS Programmer’s Guide.

9.5 LINKING THE OBJECT MODULES

After assembling the two modules it is necessary to use the Object Manager to select the T1-supplied
object modules that support features of the TX990 operating system. Selection of these features is
made from the object module files residing on the diskette which contains the TX990 parts and an
object file residing on the system diskette. The files are described below:

. :DSRLIB/OBJ — Object file that contains DSR modules supplied by Texas Instruments;

. :DYNTSK/OBJ — Object file that contains modules to support multiple dynamic tasks;

. :OCPLIB/OBJ — Object file that contains OCP modules supplied by Texas Instruments;

e :FMPLIB/OBIJ - Object file that contains FILE MANAGEMENT. modules supplied by
Texas Instruments;

. :CNTROL/OBJ — Object file that contains the TXDS control program;

° :TXLIB/OBJ — Object file that contains TX990 modules supplied by Texas Instruments.
The user must create a file that will contain all the object modules he wishes to link to form the
new operating system. This new file will contain modules from each of the object library files. The
user should refer to table 9-7 to select the modules which support the desired features. The modules
should be selected from the files in the following order:

:DSRLIB/OBJ

:DYNTSK/OBJ

:OCPLIB/OBJ

:FMPLIB/OBJ

:CNTROL/OBJ

:TXLIB/OBJ

9-20 Digital Systems Division

1T°6

uoising swalsAs 1enbia

Name

TXDATA

TASKDF

FPYDSR

***FLPDSR

DSR733

DSR913

DSRI11

Table 9-7. TX990 Operating System Modules

Required for
Approximate Required File
Function Size (Bytes) Required for OCP Management
System configuration in- Typical X
formation, interrupt de- 600-1200
coders, trap initialization
data.
Task Definition module. Typical X
All tasks must be identi- 100-200
fied here.
DSRLIB
FD800 Diskette support 1066 ‘ X
Models 2230 and 2260 272
Line Printer Support
733 ASR Keyboard/ 1460 *
Printer and Cassette
Unit support
913 VDT support for 700 *
record or file mode 1/O
911 VDT support as a 730 *

sequential I/O device

* One of the DSRs with an asterisk must be included for OCP.
** DNTs and PDTs are placed in TXDATA by using the GENTX utility.
**% PLPDSR and LPDSR must not be included in the system together.

List In
TASKDF Notes

TXDATA must contain Device
Name Table (DNT)** and Phys-
ical Device Table (PDT)**
entries for diskettes.

TXDATA must contain DNT**
and PDT** entries for Line
Printers.

TXDATA must contain DNT**
and PDT** entries for 733 ASRs.

TXDATA must contain DNT**
and PDT** entries for VDTs. Sys-
tem must include STA913, unless
only character mode 1/O is used.

TXDATA must include DNT**
and PDT** entries for VDTs.
System must include STA911.

10L6-6579Y6

6

uorsing swajsAs reubig

Name

***LPDSR

~ CRDSR

KSRDSR

DSRTTY

DSR5SMT

DIGDSR

OCPTSK

OCPTBL

* One of the DSRs with an asterisk must be inctuded for OCP.

Function

Models 306, 588, and 810
Line Printer support

Card Reader support

733 or 743 KSR Key-
board/Printer support

ASR33 Teletype support
SMT/6MT special device
support

32-IN Transition Detection

Module Special device
support

OCP data base

OCP configuration
tables

Table 9-7. TX990 Operating System Modules (Continued)

Approximate
Size (Bytes)

264

508

700

1460

532

177

250

180

Required for
Required File List In
Required for OCP Management TASKDF
®
*
OCPLIB
X X

** DNTs and PDTs are placed in TXDATA by using the GENTX utility.
**¥ FLPDSR and LPDSR must not be included in the system together.

Notes

TXDATA must contain DNT**
and PDT** entries for Line
Printers.

TXDATA must contain DNT**
and PDT** entries for Card
Readers.

TXDATA must contain DNT**
and PDT** entries for 733 KSRs.

TXDATA must contain DNT**
and PDT** entries for ASRs.

DSR module to control the
SMT/6MT I/O Interface.

DSR module to control the
32-IN Transition Detection
module.

System must include TSKFUN,
IOSUPR, CNVRSN, FURSVC,
OCPTBL, OCPPRC, and OCPEND.

System must include TSKFUN
IOSUPR, CNVRSN, FURSVC,
OCPTSK, OCPPRC, and OCPEND.

10L6-65ST9%6

€6

uoysiAlg swayshs jenbig

Name

OCPPRC

OCPIOU

DOCPIOU

OCPTLD

OCPSLD

OCPTAD

Function

OCP main procedure

STASK, SIO, REWIND,
FSPACE, and BSPACE
OCP commands

SPROC, STASK, SI0,
REWIND, FSPACE,
and BSPACE OCP
commands

DWKSP, KTASK, and
K10 OCP commands

LMEM, DMEM, SBKPT,
CBKPT, ADD, SUB, and
JMP OCP commands

TIME and IDATE OCP
commands

Table 9-7. TX990 Operating System Modules (Continued)

Required for
Required File
for OCP Management

List In
TASKDF

Approximate

Size (Bytes) Required

600 X

600

790

330

550

520

Notes

System must include TSKFUN,
IOSUPR, CNVRSN, FURSVC,

OCPTSK, OCPTBL, and OCPEND.

System must include TSKFUN,
IOSUPR, CNVRSN, FURSVC,
OCPTSK, OCPTBL, OCPPRC,
and OCPEND.

This module must be used in
place of OCPIOU if multiple
dynamic tasks are allowed; it
isin :DYNTSK/OBIJ.

System must include TSKFUN,
IOSUPR, CNVRSN, FURSVC,
OCPTSK, OCPTBL, OCPPRC,
OCPSLD, and OCPEND.

System must include TSKFUN,
IOSUPR, CNVRSN, FURSVC,
OCPTSK, OCPTBL, OCPPRC,
and QCPEND.

System must include TSKFUN,
IOSUPR, CNVRSN, FURSVC,
OCPTSK, OCPTBL, OCPPRC,
and OCPEND.

10L6-65T9v6

144

uossinig swesAs [eubia

Name

OCPLRT

DOCPLRT

OCPEND

CONTROL

TXFMP1

TXFMP2

TXFMP3

TXFMP4

Table 9-7. TX990 Operating System Modules (Continued)

Approximate
Function Size (Bytes)

ALUNO, RLUNO, LPROG, 420
and EXECUTE OCP com-
mands

AL,RL, LP, EX, IT, DT, 700
IP, DP, OCP commands

OCP dummy external 20
reference/definition

module

TXDS control program 1340
File management data 100

section for drive 1

File management data 100
section for drive 2

File management data 100

" section for drive 3

File management data 100
section for drive 4

TRequired only if the corresponding drive is included in the system.

Required
Required for OCP

CONTROL

FMPLIB

Required for
File
Management

Xt

Xt

X

List In
TASKDF Notes

System must include TSKFUN,
IOSUPR, CNVRSN, FURSVC,
OCPTSK, OCPTBL, OCPPRC,
OCPEND, and TSKLDR.
Must be included to support
multiple dynamic tasks. This
module is in :DYNTSK/OBJ.
System must include TSKFUN,
IOSUPR, CNVRSN, FURSVC,
OCPTSK, OCPTBL, and OCPPRC.

X

X

Xt

Xt

Xt

10L676579V6

ST-6

uorsinig swesAg 1eybig

Name

TXFMP

FMOPEN

FMCLOS

FMREAD

FMWRIT

FMFBSP

FMUTIL

FURTSK

FURSVC

Table 9-7. TX990 Operating System Modules (Continued)

Required for
Approximate Required File
Function Size (Bytes) Required for OCP Management
File Management main 266 X
drive and opcode decoder
Open processor for files 500 X
Close processor for files 336 X
Read processor for files 520 X
Write processor for files 560 X
Forward and backspace 420 X
processors for files
Utility routines to support 500 X
the other file management
opcode processors
File utility opcode deéode 124 X
for opcodes 90,6 t0 99,4
Contains assign and release 700 X

LUNGO:s for files and devices
including those for super-
visor call 15,4

List In
TASKDF

Notes

If only assign and release LUNO
support is required the user may
include only this module with-

out the rest of File Management.

The system must include
IOSUPR and TSKFUN.

10L676579Y6

9C-6

uoIsialg swasAs jenbiq

Name

SERDIR

ALUNIT

FILESV

CHSVC

TXROOT

SVCI13

STA913

Approximate

Function Size (Bytes)
Searches the file directory 154
for a particular file
Allocates AUs on the 292
diskette, also deallocates
AUs on the diskette
Contains the create, delete, 278

and compress modules for
file utility

Contains the change protec-
tion, and change name
modules for file utility

Scheduler, clock handler,
internal interrupt processors,
interrupt and XOP return
processing, queueing
routines, time delay
management, date/time
control, error handling,

bid task logic.

913 VDT Utility supervisor
call routine

913 VDT character mode
input support

Table 9-7. TX990 Operating System Modules (Continued)

276

1000

430

204

Required

Required
for OCP

TXLIB

Required for
File
Management

X

List In
TASKDF

Notes

TXDATA must contain Key-
board Status Block (KSB)
entries for VDTs.

10L6-65T9V6

LT6

uoISIAIg SwalsAsS jenbig

Name

SV(CIl1

STA911

CRTPRO

IOSUPR

MEMSVC

DMEMSVC

TBUFMG

CNVRSN

EVENTK

TSKLDR

Approximate

Function Size (Bytes)
911 VDT Utility supervisor 430
call
911 VDT character mode 204
input support
Decodes the VDT 913, or 164
VDT 911 supervisor call
Input/Output supervisor 900
call routine
Get/Return Memory and 56
Set Condition
Same as MEMSVC 176
Buffer management routine 176
Hexadecimal/decimal/binary 360
conversion supervisor call
routines
Break key 250
Object module loader 462

Table 9-7. TX990 Operating System Modules (Continued)

Required for
Required File
Required for OCP Management
X X
X
X X

List In
TASKDF Notes

TXDATA must contain the Key-
board Status Block (KSB)
entries for VDTs.

Must be present if STA911,
SVC911, STA913, or SVCI13

modules are included

System must include TSKFUN.

Supports multiple dynamic tasks.

This module is in :DYNTSK/OBJ.

Used in AMPL systems.

System must include TSKFUN
and IOSUPR.

10L6°65T9%6

876

uoIsiAlg swasAs 1enbig

Name

DTSKLDR

IMGLDR

DYNTSK

TSKFUN

TITTCM

DTASK

TXSTRT

Function

Object module loader

Program image loader

Multiple dynamic task
support

Task support function:
Bid Task, Get Parameters,
End of Task, Do Not Su-

Table 9-7. TX990 Operating System Modules (Continued)
Required for
Approximate Required File
Size (Bytes) Required for OCP Management

520

478

780

290

spend, Time Delay, Change

Priority, Unconditional
Wait, Activate Suspended
Task, Date and Time, and
Get Common Address
supervisor call routines

GETDAT/PUTDAT
Supervisor calls routine

Diagnostic task

Initial and manual restart
logic

140

242

200 X

List In
TASKDF

Notes

Supports multiple dynamic tasks.

This module is in :DYNTSK/OBJ.

Loads images from program files.

This module is in :DYNTSK/OBJ.

System must include TSKFUN
and IOSUPR.

May optionally be placed follow-
ing module TXEND to provide
more memory for dynamic task
area. When TXSTRT is placed
following TXEND, TXSTRT
executes only on IPL, and
manual restart is not possible.

10L6-6579%6

6T6

uoysing swalsAs [eubia

Name Function
TXEND TX990 dummy external
reference/definition
module
STASK Initial startup task

Table 9-7. TX990 Operating System Modules (Continued)

Required for
Approximate Required File
Size (Bytes) Required for OCP Management
12 X
180

List In
TASKDF

Notes

May optionally be placed
between TXSTRT and TXEND
to be executed both during an
IPL and during a manual restart.
STASK begins execution at the
completion of each IPL to iden-
tify the revision level of the
operating system and to indicate
that the IPL has executed suc-
cessfully. When STASK is linked
following TXEND, it is located in
the dynamic task area, where it
will be overlaid by the first user
task installed in the dynamic

task area. It is assigned task
identifier 10,¢. When it is

desired to execute STASK follow-
ing a manual restart, STASK
must be linked ahead of TXEND.

10L6-65T9V6

@ 946259-9701

There is no defined order in which modules must be included, although user-supplied object
modules and programs must be included before the object module TXEND, i_n file: TXLIB(OBJ t
is logical to place a DSR with the other DSRs, a supervisor call routine with the supervisor call
routines, and a task with the other tasks.

After the file has been generated by the Object Manager (OBJMGR), the user must link it with the
two object modules, TXDATA and TASKDF. TXDATA must be first in the link sequence and
TASKDF must be second.

Because many modules which may be incorporated in a customized TX990 system are optional, the
modules TXEND and OCPEND contain many dummy symbol definitions. When optional modules
are included, the link editing process results in multiply defined symbol errors, as shown in the
following:

SYMBOL MULTIPLY DEFINED *W*W*W*W*W*W*W*W*W W ¥ W W ¥ W W *W*
SYMBOL = ALRSET , MODULES =47, 49

SYMBOL MULTIPLY DEFINED *W*W*W#*W ¥W*W *W *W* W & WX W W =W kW €W *
SYMBOL =BADID MODULES =42, 49
Such errors do not result in an incorrect link edit. To be sure that the multiply defined symbols are
not caused by fatal errors, compare the second number given after MODULES in the error message

to the module numbers given in the link map for: OCPLRT, OCPIOU, OCPEND, or TXEND.

The following is an examble of part of such a link Iﬁap:

OCPTAD 48 657A 01F8 INCLUDE 01/14/77 14:07:24 SDSMAC
OCPEND 49 6772 0016 INCLUDE 09/15/77 11:26:28 SDSMAC
TXEND 50 6788 0142 INCLUDE 10/05/77 13:15:42 SDSMAC

If the numbers match, the error is nonfatal and is to be expected.

After the files have been linked to form a new TX990 operating system, the new object module file
containing the new TX990 must be defined as the system file by using the System Utility
(SYSUTL) command “SF’’. Also, the TXBOOT program must be copied to the diskette by using
the SYSUTL command “BC”. .

9.6 EXAMPLE OF SYSTEM GENERATION
The materials needed are:

® The TX990 parts diskette (diskette #1)
e The TXDS system diskette (one of TXDS system diskettes #2, 3, 6)

® A scratch disc on which the system can be built.

9-30 Digital Systems Division

9462599701

NOTE

o
Operatg&responses to prompts presented on the system console are
underlined in the following procedure. Prompts are not underlined.

Load diskette #1 (TXPARTS) in diskette drive 2 (right). Load diskette #2, #3, or
#6 (TXDS system) in diskette drive 1 (left).

Load the TX990 Operating System into memory by pressing the following keys on the
Programmer’s Panel.

a. Halt
b. Reset
¢. Load

After the TX990 Operating System is loaded into memory the following message will be
printed out or displayed on the system console:

TX990 SYSTEM Release 2.2
MEMORY SIZE (WORDS): 24576 MEMORY AVAILABLE: 16749

Bid TXDS by entering

will appear on the syst

n exclamation point (!) on the terminal. The following display

a
m console:

w

!

TXDS 936215 ** 1/ 0 0: 0
PROGRAM:

Load a scratch diskette in drive #1.

Initialize the scratch diskette by responding to the prompts printed out or displayed on
the system console as follows:

TXDS 936215 ** 1/0 0:02
PROGRAM: :BACKUP/SYS*

BACKUP AND INITIALIZE UTILITY 936212 *A

OUTPUT DISC OR VOLUME NAME? DSC
THE OUTPUT DISC MUST BE INITIALIZED
INITIALIZE DSC AY/N) Y

DISCI. D. ? SCRATCH

VOLUME NAME ? SCR

CHECKING DSC

9-31 Digital Systems Division

%@ 946259-9701

6.

TXDS 936215 ** 1/ 0 0:12

PROGRAM: :GENTX/SYS*
TX990 SYSTEM GENERATION 945673 *B

MEMORY AVAILABLE — 2000

LINE FREQ. —

TIME SLICE —

PL 0 WT. FACTOR —
PL 1 WT. FACTOR —
PL 2 WT. FACTOR —
PL 3 WT. FACTOR —
COMMON SIZE — 170
OF EXP CHASSIS —

CHASSIS — 0

d.

For ASR System

DEV NAME — LOG
DEV TYPE — ASR

LEFT CASS/PTP NAME — CS1

RIGHT CASS/PTR NAME = CS2

CRU BASE ADDR —
ACCESS MODE —
INT LEVEL —
TIME-OUT COUNT —

For 911 System:

DEV NAME — LOG
STATION # — 1
CRU BASE ADDR —
ACCESS MODE —
INT LEVEL —
TIME-OUT COUNT —

For 913 System:

DEV NAME — LOG
STATION # — 1

CRU BASE ADDR —
ACCESS MODE —
INT LEVEL —
TIME-OUT COUNT —

After the diskette has been initialized, the user must bid the System Generation
(GENTX) Utility by responding to the prompts printed out or displayed on the system
console as presented below. When no response to a prompt is indicated, the user must
enter a carriage return/NEW LINE to cause the default-substitute to be used.

Take default (table 7-7)
Take default (table 7-7)
Take default (table 7-7)
Take default (table 7-7)
Take default (table 7-7)
Take default (table 7-7)

Take default (table 7-3)
Take default (table 7-3)
Take default (table 7-3)
Take default (table 7-3)

Take default (table 7-3)
Take default (table 7-3)
Take default (table 7-3)
Take default (table 7-3)

Take default (table 7-3)
Take default (table 7-3)
Take default (table 7-3)

9-32

Digital Systems Division

{@? 946259-9701

d.

Resume system generation:

DEV NAME — DSC
DEV TYPE — FD
CRU BASE ADDR —
INT LEVEL —

OF DRIVES — 2

DEV NAME — LP
DEV TYPE — LP
CRU BASE ADDR —
ACCESS MODE —
INT LEVEL —

TIME-OUT COUNT —

DEV NAME —
CHASSIS —
SVC# —
XOP # —
TASK ID # — >F0
PRIORITY LEVEL — 0
INITIAL DATA LABEL — FMPI
TASK ID # — >F1
PRIORITY LEVEL — 0
INITIAL DATA LABEL — FMP2
TASK ID # — >B
PRIORITY LEVEL — 1
INITIAL DATA LABEL — FUR
TASK ID# — >C
PRIORITY LEVEL — 0

INITIAL DATA LABEL — VOLUME

TASK ID # —>D
PRIORITY LEVEL — 1

INITIAL DATA LABEL — DIAGTS

TASK ID # — >F
PRIORITY LEVEL — 1
INITIAL DATA LABEL — OCP
TASK ID # — >16
PRIORITY LEVEL - 1

INITIAL DATA LABEL — CNTROL

TASK ID # —
MULTIPLE DYNAMIC TASKS

(YORN) - N
CONSOLE DEV NAME — LOG
DEFAULT DISC DEV — DSC
DEFAULT PRINT DEV — LP
ASSIGN LUNO — 1

DEV NAME — LOG
ASSIGN LUNO -
OF SPARE DEV LUNO BLKS —
OF SPARE FILE LUNO BLKS —

Generate floppy

Take default (table 7-3)
Take default (table 7-3)
Two drives: DSC and DSC2

Take default (table 7-3)
Take default (table 7-3)
6 on 911 system or

take default (table 7-3)
Take default (table 7-3)

Terminate sequence

FMP1
FMP2

FUR

Volume name support

Add in OCP

TXDS CONTROL

Terminate sequence

Terminate sequence
Take default (table 7-3)
Take default (table 7-3)

9-33

Digital Systems Division

@ 946259-9701

OF FILE CONTROL BLOCKS — 3 ‘
OF DEFAULT BUFFERS — None

OF GENERAL BUFFERS —
OF GENERAL BUFFERS — Terminate sequence

TASKDF OUTPUT FILE NAME — :TASKDF/SRC Note 1
TXDATA OUTPUT FILE NAME — :TXDATA/SRC Note 2

END TX990 SYSGEN

7. Select the TI-supplied object modules to support the desired TX990 Operating System
features and copy them to the scratch diskette by responding to the prompts as follows:

TXDS 936215 *A 1/0 00:00

PROGRAM: :OBJMGR/*
990 OBJECT MANAGER 939870 **

OUTPUT FILE: DSC:TXPART/OBIJ
INPUT FILE: DSC2:DSRLIB/OBJ
REWIND INPUT FILE? Y
FPYDSR ?
DSR733 ? S if no ASR733
KSRDSR 7
LPDSR ?
FLPDSR ?
DSR913 ? Cif913 VDT
CRDSR ?
DSRTTY ?
DSR911 ?
DSRSMT ?
DIGDSR ?

END-OF-FILE

Cif911 VDT

nununnunnnAAnn N

Notes:
1. Constructs a source program for the task definitions and puts them in the file :TASKDF/SRC.

2. Constructs a source program for the TX990 Operating System data structures and puts them in
the file :TXDATA/SRC.

9-34 Digital Systems Division

@ 946259-9701

INPUT FILE: DSC2:0CPLIB/OBJ
REWIND INPUT FILE?

OCPTSK

END-OF-FILE

INPUT FILE: DSC2:FMPLIB/OBJ
REWIND INPUT FILE?

VOLUME
TXFMP1
TXEMP2
TXFMP3
TXFMP4
TXFMP
FMOPEN

END-OF-FILE
INPUT FILE: DSC2:CONTROL/OBJ

REWIND INPUT FILE?

CNTROL

END-OF-FILE

INPUT FILE: DSC2:TXLIB/OBIJ
REWIND INPUT FILE? Y

TXROOT
IMGLDR
EVENTK
TITTCM
CRTPRO
STA913
SVCI13
STA911
SVCI11
IOSUPR
TSKFUN
TSKLDR
CNVRSN
MEMSVC
TBUFMG
DTASK
TXSTRT
TXEND
STASK

END-OF-FILE

D D tmD 1S 1D mD mD nD 1m0 n nD D enD mD mD D D D e

?

9

O D D D - D e

?

9

A

OO0

C

a0 nnnaannnn

INPUT FILE:

END OBJIECT MANAGER

All of OCP is included,
without multiple dy-
namic task support

No DSC3
No DSC4
Rest of file

Sifno 913 VDT
Sifno913 VDT
Cif911 VDT
Cif911 VDT

9-35

Digital Systems Division

(l‘_@ 9462599701

8. Remove diskette #1 from drive #2 and load diskette #2 or #3 or #6 in drive #2.

9. Assemble TASKDF and TXDATA for linking with the selected TI-supplied modules as
follows: v

TXDS 936215 ** 1/ 0 0:40

PROGRAM: :TXMIRA/SYS Assemble TXDATA
INPUT: :TXDATA/SRC
OUTPUT: :TXDATA/OBJ :TXDATA/LST Put listing on diskette
OPTIONS: (IS
TXMIRA 936227 **

TXDS 936215 ** 1/ 0 0: 46

PROGRAM: :TXMIRA/SYS Assemble TXDF
INPUT: :TASKDE/SRC
OUTPUT: ;TASKDF/OBJ.:TASKDF/LST Put listing on diskette
OPTIONS: CLS
TXMIRA 936227 **

10. Link the system as follows:

TXDS 936215 ** 1/ 0 0:47

PROGRAM: :TXLINK/SYS
INPUT: :TXDATA/OBJ, :TASKDF/OBJ + TXPART/OBJ

OUTPUT: :NEWSYS/SYS,:NEWSYS/LST
OPTIONS: CLITX990
TXLINK 937537 **

11. Remove diskette #2 or #3 or #6 from drive #2 and load diskette #1 in drive #2.

12. Mark the newly-linked system as the system file as follows:

TXDS 936215 ** 1/ 0 0:54
PROGRAM: :SYSUTL/SYS*

TX990 SYSTEMS UTILITY 937544 **

OP: .SF, :NEWSYS/SYS. TE.
0:55:35 JAN 1, 0

TXDS 936215 ** 1/ 0 0: 55
PROGRAM:

9-36 Digital Systems Division

%@ 946259-9701

13. Load into memory the new TX990 Operating System by pressing the HALT, RESET,
and LOAD keys on the Programmer Panel:

TX990 SYSTEM RELEASE 2.2
MEMORY SIZE (WORDS): 24576 AVAILABLE: 14631

14. Bid TXDS via OCP by entering an exclamation point (!) to bid OCP; then respond to the
period (.) prompt as follows:

!

. EX, 16. TE. (Execute TXDS)
TXDS 936215 ** 1/ 0 0: 0

15. Remove diskette #1 from diskette drive #2 and insert diskette #2 into drive #2.

16. Copy TXDATA, TASKDF and LINK MAP LISTINGS to LP as follows:

PROGRAM: :TXCCAT/SYS
INPUT: ;TXDATA/LST,.TASKDF/LST,:NEWSYS/LST
OUTPUT: LP
OPTIONS: RO
TXCCAT 937543 **

9-37/9-38 Digital Systems Division

K,_@'D 946259-9701

DISKETTE/DISC BACKUP AND INITIALIZE PROGRAM

SECTION X

10.1 INTRODUCTION

The Diskette Backup and Initialize Utility Program (BACKUP) may be used for two functions:
initializing a diskette and copying (backing up) files to a diskette. It allows the user to: back up an
entire diskette, partially backup a diskette, simply initialize a new diskette, or partially backup
several diskettes to a single diskette.

The backup utility can copy and verify files, or copy or verify files separately. Errors are listed at
the system console. Files that have no data are identified by warning messages.

Before writing to the output diskette, BACKUP checks to see if it is initialized. If not, it requests
the user to initialize the diskette, prompting for required information. When copying files, BACKUP
generates contiguous files on the output diskette, thus reducing fragmentation of disk space.

BACKUP also initialize the directory and allocation bit map on the output diskette, and can
designate a system file if requested by the user.

10.2 LUNOs AND THEIR USES

LUNOs 5, 6, 10 and 11 are used. All LUNOs are assigned by BACKUP and are released when
BACKUP terminates. LUNO 5 is assigned to the output diskette. LUNO 6 is assigned to the input
diskette. LUNO 10 is assigned to the input file, and LUNO 11 is assigned to the output file.

10.3 OPERATING PROCEDURE
To load the Diskette Backup Utility and place it in execution under TX990, perform the following
steps using the OCP:

1. Place the object module for BACKUP in the appropriate device and ready the device.

2. Enter the appropriate command to load the module. For exampie:

LP,CS2. Loads the object code from cassette drive 2.

LP,DSC:BACKUP/SYS Loads the object code from diskette file
DSC:BACKUP/SYS.

3. Enter the appropriate command to execute the task.
EX,10.TE. Execute the program just loaded. If the backup
utility was linked to the system, the user need only to

execute the task ID assigned to it at that time.

To place the backup utility under execution using the Terminal Executive Development System.
perform step 1 above. If the TXDS Control Program is not executing, bid task 16,6 if OCP is active.

EXECUTE,16.TE.

10-1 N "y
Digital Systems Division

@ 946259-9701

TXDS lists its heading and asks for input as follows:

TXDS 936215 ** (011/77 2:10

PROGRAM: DISC:BACKUP/SYS*
The user enters DSC:BACKUP/SYS* in response to the prompt: “PROGRAM:” The object code in
the diskette file, DSC:BACKUP/SYS, is loaded and executed by the control program. Alternatively,
the user can enter the cassette drive name.

PROGRAM: (CS1*

Then the object code on cassette drive 1 is loaded and executed.

10.4 USER INTERACTION WITH THE BACKUP UTILITY
When BACKUP is executed, it displays a heading:

BACKUP & INITIALIZE UTILITY PART NO. 936213*B
After the heading is displayed, BACKUP requests the output diskette name:
OUTPUT DISC OR VOLUME NAME?

The user enters either a device name or the volume name of the diskette to be initialized or copied
to.

NOTE
A user response of “*” to any BACKUP prompts terminates the
utility. A user response of “&” to any prompt returns BACKUP to
the above prompt, “OUTPUT DISC OR VOLUME NAME?”.

After the user specifies the output diskette, BACKUP checks it to see if it is initialized. If SO,
BACKUP prompts the following:

DELETE ALL FILES ON XXXX? (Y/N)
where XXXX is the output device name. The user enters Y if he desires to delete any preexisting
files on the diskette. BACKUP clears all directory entries and resets the allocation bit map on the
diskette. If the user enters N, BACKUP prompts the “INITIALIZE XXXX” message as described
below.
If the output diskette is not initialized, BACKUP displays the following:

THE OUTPUT DISC MUST BE INITIALIZED

If the diskette must be initialized, or the user response to the “DELETE ALL FILES” message was
N, BACKUP prompts the following:

INITIALIZE XXXX? (Y/N)

10-2 Digital Systems Division

@ 946259-9701

where XXXX is the output device name. If the user answers Y, the diskette is initialized. BACKUP
prompts the message:

OUTPUT DISC ID

The user must enter a 1 to 32 character title for the diskette. The title is displayed by the SYSTUL
Map Disc (MD) command. The following message is then displayed:

OUTPUT VOLUME NAME

The user may enter a 1 to 4 character volume name. The volume name will be used to access files on
the diskette if volume name support is included in the user’s customized TX990 Operating System.
The volume name should not be the same as a device name. If the user enters only a carriage return,
no volume name is defined for the diskette. Diskette initialization takes about four minutes.

In order to copy files to a diskette without destroying all of the files on the diskette, the user must
respond N to both the “DELETE ALL FILES” and “INITIALIZE” prompts.

After the diskette is initialized, erased, or left intact, the user may copy and/or verify the files on
any diskette. BACKUP prompts the following two messages, in order:

COPY FILES? (Y/N)
VERIFY FILES? (Y/N)

If the user responds with a Y to either prompt, BACKUP requests the pathname of the files to be
copied/verified, as follows:

INPUT PATHNAME?

Valid responses must have one of the following formats.

VOL ENTIRE DISKETTE
vOT . TIT I/ ATT EITES ON THE DISKETTE OB VOT IIME WITH
YUL.L J.LJ‘_JI L3, 11000 LN 4111, R7RJEN1.1 81 \JIN Y \JL,VLvil, VYYil1ll

THIS FILE NAME

:FILE/ ALL FILES ON DEFAULT DISKETTE WITH THIS FILE
NAME

VOL/EXT ALL FILES ON THE DISKETTE OR VOLUME WITH
THIS EXTENSION

/EXT ALL FILES ON DEFAULT DISKETTE WITH THIS
EXTENSION

VOL:FILE/EXT
VOL:FILE
:FILE/EXT

:FILE

ONLY THIS FILE
ONLY THIS FILE
THIS FILE FROM THE DEFAULT DISC

THIS FILE FROM THE DEFAULT DISC

10-3

Digital Systems Division

@ 946259-9701

where VOL = DISKETTE NAME OR VOLUME NAME
FILE = FILE NAME
EXT = FILE NAME EXTENSION

If the output diskette already contains a file with the same name as one of the input files, the
existing file is deleted and the copied file replaces it. After the specified files are copied and/or
verified, BACKUP repeats the sequence with the “COPY FILES” prompt.

When the user responds N to both the “COPY FILES” and “VERIFY FILES” prompts, BACKUP
prompts the user to designate a system file. A system file is the image of a TX990 system which
may be booted (eg. :SYSASR/CMP). To insure that the file is on the output diskette, the diskette
name is also prompted, as follows:

SYSTEM FILE PATHNAME? DSC2:
where DSC2 is the value given by the user in respbnse to the “OUTPUT DISC” prompt.

The user may then enter the name of a file on the output diskette which is to be the system file. If
only a carriage return is entered, no system file is designated.

After the “SYSTEM FILE” prompt, BACKUP returns to the “OUTPUT DISC OR VOLUME
NAME” prompt. The utility may be terminated by a response of “*” to any prompt.

When BACKUP terminates, it displays the following message:
BACKUP & INITIALIZE UTILITY ENDED

10.5 ERROR MESSAGES AND RECOVERY

Error Reason Recovery
The OUTPUT DISC IS Bad diskette Get another diskette.
NOT USABLE. BACKUP
UTILITY ABORTED.
pathname DOES NOT Bad copy Rerun the backup utility.
VERIFY.
pathname WAS EMPTY. A file was created on the input

file but was never used.
DISC NAMES CANNOT User entered same name for input Reenter the disc names.
BE THE SAME. and output disc names.
THE OUTPUT DISC Output diskette has never been Execute the diskette
MUST BE INITIALIZED. initialized. initialization program.
pathname WAS UNSUC- Disc was offline or diskette Ready the disc.
CESSFULLY OPENED. was full.
10-4

Digital Systems Division

946259-9701

Error

COULD NOT GET
MEMORY. BACKUP
UTILITY ABORTED.

pathname HAD AN I/O
ERROR, CODE nn.

THE INPUT DISC HAS

A BAD DIRECTORY RECORD.

THE FILES IN THAT RECORD
WERE NOT COPIED.

THE OUTPUT DISC HAS
A BAD DIRECTORY
RECORD. THE OUTPUT
DISC IS NOT USABLE.

DISC I/O ERROR CODE NN.

FILE NOT FOUND.

Reason

There is not enough memory
to run the backup utility.

nn is the error code; see error

appendix I.

There is a diskette
flaw in that
record.

There is a Diskette
flaw on the output
diskette.

nn is the error
code; see
Appendix I - 1/O
Error Codes.

The system file
does n

oes not exist.

NOTE

Recovery

Correct problem. Rerun

backup utility.

None.

Disregard the diskette.

Correct error and
retry.

Select another
file as the system
file.

The pathname parameter will be filled in with the actual pathname of the file.

10-5/10-6

Digital Systems Division

{_@; 946259-9701

OBJECT MANAGER (OBJMGR) UTILITY PROGRAM

SECTION XI

11.1 INTRODUCTION

The Object Manager (OBJMGR) Utility Program is used to collect object modules from several
different diskette or cassette files and combine them into a single output file. The ability to do so is
especially necessary when preparing to link all of the modules of a customized TX990 Operating
System, since the TXDS Linking Utility can only accept up to three input files.

11.2 LUNOs

The OBJMGR Utility Program uses LUNO 0, LUNO 4, and LUNO 5. The system console, which is
assigned to LUNOO, is used by the OBJMGR Utility Program to request operator input
information. LUNO 4 is used to read the input file, and LUNO 5 is used to write the output file.
Both LUNO 4 and LUNO 5 are assigned and released by the OBJIMGR Utility Program.

11.3 LOADING OBIMGR

OBIMGR executes using the TX990 Operating System in conjunction with the OCP module, or
with the TXDS Control Program, or using the DX10, release 2.2 Operating System. The following
paragraphs describe how to load and execute OBJMGR under each operating system.

11.3.1 LOADING OBJMGR USING THE TX990 OPERATING SYSTEM AND OCP. Load the
program as follows:

1. After loading the OCP in accordance with the procedure itemized in the section in this
manual entitled Operator Communication Package, observe the printout or display on the
system console of the period (.) prompt.

2. Place the object module for OBJMGR in either the cassette or diskette drive and ready
the device.

3. Using the LP (Load Program) command, load the OBJMGR‘ object module from a
cassette or diskette by using one of the following indicated methods:

e LPCS1,3 Load OBJMGR at priority level 3 when the object
module is on the cassette in cassette drive 1.

° LP,DSC:OBJMGR/SYS. Load OBJMGR from the diskette in diskette drive 1.
4. Enter the EX (Execute) command to execute OBJMGR and terminate OCP as follows:
.EX,10.TE.

5. Observe the following printout or display on the system console when OBJMGR begins
execution:

990 OBJECT MANAGER 939870**

Digital Systems Division

El_@; 9462599701

11.3.2 LOADING OBIJMGR USING THE TX990 TERMINAL EXECUTIVE DEVELOPMENT
SYSTEM. Load the program as follows:

1.

Place the object module for OBJMGR in either the cassette or diskette drive and ready
the device.

“’73

If the TXDS control program is not active enter an and observe the following display:

TXDS 936215 *A 088/77 3:14
PROGRAM:

When the OBJMGR object module is in cassette drive 1, enter “CS1*” in response to the
prompt, as follows:

PROGRAM CS1*

When the OBJMGR object module is on a diskette file called :OBJMGR/SYS, enter the
following:

PROGRAM: :OBJMGR/SYS*

Observe the following printout or display on the system console when OBJMGR begins
execution:

990 OBJECT MANAGER 939870**

11.3.3 LOADING AND EXECUTING OBIMGR USING DX10, RELEASE 3.0. Perform the
following steps on a DX10 release 3.0 system:

1.

Place the OBJMGR object module in some sequential media which is readable by DX10.
If the module is on cassette, place it in a cassette drive. If the module is on a diskette file,
use the TXDX conversion utility available under DX10 to convert the object module file
to a DX10 file.
Install the object module as a task, using the DX10 IT command:

IT PF = .SPROGA, TN = OBIMGR, OBJ = <acnm>

where <acnm> is the DX10 access name of the file or device which contains the object
module.

Execute the object manager, using the DX10 XTS command.
XTS TN =O0BIMGR
Upon execution, OBJMGR displays the following message:

990 OBJECT MANAGER 945672*C

Digital Systems Division

il—é? 9462599701

11.4 OPERATOR INTERACTION ;
After the initial heading is displayed, the object manager requests the following information:

OUTPUT FILE: <pathname of a sequential file or device>

INPUT FILE: <pathname of a sequential file or device>

REWIND INPUT FILE? Y

N
“IDT of an object module™? C

S

I

R

A

D

NOTE

If an “*” is entered in response to any prompt, OBJMGR writes an
end-of-file to the output file, closes the file, releases all LUNOs and
terminates. If an “&” is entered, OBIMGR performs all of the above
except terminate; it then restarts with the “OUTPUT FILE” prompt.

The first prompt made by OBIMGR is the following:
OUTPUT FILE:
The user must enter a complete pathname for a sequential device or file. There are no defaults.

DX10 users must not use synonyms. The object modules selected by the user in later steps are
written to this pathname.

The next prompt is the following:

INPUT FILE:
The user must enter the name of a sequential file or device which contains object modules to be
edited onto the output file. In addition to modules on this input file, the user may insert new
modules from other files.

‘

After the input file pathname is entered, OBJMGR prompts the following:

REWIND INPUT FILE?
The user must answer either Y (yes, rewind the input file) or N (do not rewind the file).
After the input file is ready, OBJMGR reads the first record, and displays the IDT (see the
Assembly Language Programmer’s Guide) for that module, followed by a question mark. The user

may then choose to include or exclude that module from the output file, or to insert modules from
other files, by entering one of the following action commands:

C — copy the object module
S — skip the object module
I — insert object modules from other files

11-3 Digital Systems Division

@ 946259-9701

— replace this module with modules from other files
(combination of S and I)

copy all remaining object modules in the input file
— done with this input file; leaves the file positioned
at the current IDT for future use.

o» =
|

The Copy (C) command causes the object manager to copy the module with the displayed IDT to
the output file.

The Skip (S) command causes OBJIMGR to skip the module with the displayed IDT without
copying it.

The Insert (I) command allows the user to insert modules from another file (the insert file) onto the
output file, before the module with the displayed IDT. After the I command is given, OBJMGR
prompts the “INPUT FILE” and “REWIND” messages. The user enters the new file, and Y or N,
and OBJMGR reads the first record of the new input file and displays the IDT of the first object
module. The user may enter any of the action commands except I or R. After the user enters a
Done (D) command, OBJMGR skips several lines and displays a line of asterisks, followed by the
IDT that was displayed when the Insert command was entered. If an end-of-file on the insert file is
read, an “END-OF-FILE” message is displayed, followed by the IDT that was displayed before the
Insert command. The user may then enter any command.

The Replace (R) command causes OBJMGR to skip the object module with the displayed IDT, and
then insert modules from another file (the replace file). After skipping the original module, .the
Replace command executes exactly like the Insert command.

The All (A) command causes the object manager to copy all of the remaining object modules in the
input file to the output file, and then resume execution at the “INPUT FILE” prompt.

The Done (D) command causes OBJMGR to backspace the current file one record (so that the IDT
which was displayed will be displayed next time the file is opened without rewind). If D is issued
while processing a Replace or Insert command, OBJMGR resumes prompting of IDTs on the
original input file. If D is issued for the input file, execution is resumed by prompting for a new
“INPUT FILE”.

11.5 ERROR MESSAGES
Table 11-1 shows the error messages which may be returned by OBJMGR.

114 Digital Systems Division

9462599701

Error Message

CAN’T ASSIGN I/O

INPUT ERROR

CAN'T OPEN J/O,
TERMINATING

INVALID IDT RECORD

INPUT ERROR,
RETRY?

OUTPUT FILE ERROR,
TERMINATING

EOF EMBEDDED IN
OBJECT MODULE

INVALID COMMAND
C = COPY, S = SKIP,

R = REPLACE, I = INSERT,

D=DONE, A=ALL

Table 11-1. Error Messages

Description

Attempt to assign LUNO
for input or output was
unsuccessful.

1/0O error during keyboard entry.
Error during open operation for

input or output.

First record of object module
does not contain identifier.

Error while reading input file.

Error while writing output file.

An end-of-file record has been
detected in object module.

Invalid response to request.

Recovery

Check device name, and enter
correct name. If system capacity
for active LUNOs has been reached,
release a LUNO that is no longer re-
quired. The user may terminate
Object Manager and attempt to
assign the LUNO with an ALUNO
command to obtain a more

specific error message.

Try again. If error persists, check
input device and interface.

Object Manager terminates.
Obtain correct object module or
add proper first record and restart
Object Manager.

Object Manager terminates. Obtain
correct object module or add
proper first record and restart
Object Manager.

Enter N to use the record as read.
Enter Y to backspace and reread
the record. When record is a card,
user must remove card from output
stacker and place it in input hopper.
Enter a carriage return to terminate.

Object Manager terminates. Correct
the problem and restart Object
Manager.

Object Manager terminates. Obtain
correct object module or remove
misplaced record and restart
Object Manager.

Enter correct response. An
asterisk terminates OBJIMGR, and
an ampersand (&) restarts it.

Digital Systems Division

(o]
@ 9462599701

SECTION XII

LIST80/80 (LIST80) UTILITY PROGRAM

12.1 LIST80/80
The LIST80/80 utility program copies 80-character records from one device or file to another.

Optional

ly, LIST80/80 adds carriage control characters for displaying or printing. All files must

previously have been created and all files and devices must previously have been rewound.
LIST80/80 can be run from OCP control only and cannot be run using the TXDS Control Program.

12.1.1 LOAD AND EXECUTING LIST80/80. To execute LIST80/80, place the object code in the
appropriate device and perform the following steps:

[\]

NOTE

When LIST80/80 is linked into the Operating System during system
generation, step 1 does not apply.

Fnter a command to load LIST80/80 in the dynamic task area. The following are
examples of commands to install LIST80/80:

LP,CS1,3. Load task LIST80/80 at priority level 3 when the
object module is on cassette unit 1.

.LPROG,CR,3. Load task LIST80/80 at priority level 3 when the
object module is in the card reader.

.LP,:LIST80/SYS,3. Load task LIST80/80 at priority level 3 when the
object module is in the disc file DCS:LIST80/SYS.

Accicn TTIINN 10 tn thia dmaaas i i
Assign LUNQO 104 10 tnie input device. The fGHO‘v‘v’lﬂg exampif

device is Cassette Unit 2. (The cassette must have been written in the line mode with
records that contain 80 or fewer characters.)
.ALUNO,10,CS2.

Assign LUNO 11, to the output file. The following example applies when the output
file is DSC2:SOURCE/SRC.

.ALUNO,11,DSC2:SOURCE/SRC.
Enter the following command to execute LIST80/80 and terminate OCP.
.EXECUTE,10.TE.
NOTE
When LIST80/80 is linked into the system during system genera-

tion, the task identifier assigned during system generation is used
instead of 10 in the command in step 4.

12-1 Digital Systems Division

%@ 946259-9701

5. LIST80/80 displays a title and part number heading, as shown:
LIST80/80 937976*A

6. LIST80/80 reads the records from the input device, adds carriage control characters,
and writes the records to the output device.

7. When LIST80/80 finishes, a message is displayed on the LOG.
LIST80/80 TERMINATED

When the output device is a cassette unit, LIST80/80 does not add carriage control characters.
An alternative command may be entered in step 4, as follows:

.EXECUTE,10,FFFF.TE.
When the Execute command is entered in this form (or with any nonzero value instead of FFFF),
LIST80/80 does not add carriage control characters to the output record, regardless of the output
device.

12.1.2 LIST80/80 ERROR MESSAGES. LIST80/80 prints two error messages. One error message
prints as follows: .

ERROR DETECTED ON OPEN OF LUNO 10 OR 11
The possible reasons for this error are:
® LUNO 10 assigned to an inappropriate device.
® LUNO 11 assigned to an inappropriate device.
® An error other than busy was returned by the OPEN supervisor call.
The following error message is printed when an unsuccessful read operation occurs on LUNO 10:
READ ERROR ON LUNO 10.
The following error message is printed when an unsuccessful write operation occurs on LUNO 10:

WRITE ERROR ON LUNO 11.

12-2 Digital Systems Division

[¢]
%@ 946259-9701

DISKETTE DUMP (DSKDMP) UTILITY PROGRAM

SECTION XIII

13.1 INTRODUCTION

The Diskette Dump Utility (DSKDMP) Program allows users to load, dump and modify FD800
Floppy Disc diskeites on an allocation unit {AU) basis. {Refer o Section IV of this manual for
a description of the allocation unit and its application to file management.) The utility can be
executed from either OCP or TXDS.

In addition to the diskette, a V911 or V913 Video Display Terminal is required.

13.2 LUNOs

Diskette Dump uses Video Display Terminal (VDT) station number 1, LUNO 4 and LUNO 1.
It uses VDT station number 1 to display sectors to the user and accept commands from the user.
It assigns LUNO 4 internally to the floppy-disc drive whose diskette is being dumped, loaded, or
modified.

The utility uses LUNO 1 when the print directive (P) is entered. Therefore, the user must assign
LUNO 1 before the print directive is exercised.

13.3 LOADING PROCEDURES

To load the Diskette Dumpn Utility a

LJISATLIL S Ladipy vaaasy

nd execute it usin
entering commands at the keyboard of

g QCP. perfor
g OCP, perform

d e !
the system console.

1. Place the object module for Diskette Dump in the appropriate device and ready the
device.

2. Enter a command to install Diskette Dump in the dynamic task area. The following are
examples of load program (LP) commands to install Diskette Dump:

.LP,CS1. Load Diskette Dump at priority level 3 when the object module
is Cassette Unit 1.

.LP,CR. Load Diskette Dump at priority level 3 when the object module
is in the Card Reader.

3. Assign LUNO 1 to a printing device if the print directive is to be exercised. The following
is a sample command:

AL,LLP. Assign LUNO 1 to the line printer.
4. Enter a command to execute Diskette Dump and terminate OCP, as follows:
.EXECUTE,10.TE.
If Diskette Dump was linked into the system at system generation, the load program command is

not entered and the operand of the execute command (EXECUTE) is the task identifier assigned to
Diskette Dump when the system was generated.

13-1 Digital Systems Division

o]
%@ 946259-9701

To initiate execution of the Diskette Dump utility using the Terminal Executive Development
System perform step 1 above, followed by the steps below:

‘S"’ 6"’7

1. Bid TXDS control program when OCP is not active by entering “‘!”’. Otherwise, enter

to bid OCP and enter “EX,16.TE.” to bid TXDS control program.
2. The TXDS control program displays a heading and prompts for input as follows:

TXDS 936215 *A 011/77 2:10
PROGRAM:

3. Enter :DSKDMP/SYS* in response to the prompt as follows:
PROGRAM: :DSKDMP/SYS*

13.4 OPERATING PROCEDURES
Upon execution, an initial mask is displayed on the station number 1 VDT with the cursor
positioned to the first field of the command line.

The following shows the initial VDT mask:

990 DISKETTE DUMP/LOAD 937562**

00-0F
10—1F
20-2F
30-3F
40—-4F
50-5F
60—-6F
70-7F

DISC: ___ _ AUNO:__ SECTOR: _

The cursor is positioned under the first space after DISC:. The user now must enter, in the proper
field of the command line, the disc drive name, AU number and sector number which is to be dis-
played on the VDT. To advance from one field of the command line to the next, the user either
enters the maximum number of characters allowed in the field or presses the TAB key. To return
to a previous field, the user presses the NEW LINE key. For example, if the cursor was positioned
at the SECTOR: field and the user wished to return to the DISC: field, the user would press the
NEW LINE key twice.

Each time data is entered in a field, the utility validates the data. If the data is not correct, the
message WRONG! is displayed in the lower-right-hand corner of the VDT screen. Before the user
may advance from one field to the next, valid data must be entered in the field from which the
user wishes to advance. The following is a list of restrictions on the values for each of the command
line fields:

DISC: Requires a one- to four-character disc-drive name. This name is determined at
system generation time.

AU NO: Requires a one- to three-digit decimal number. The range of AU numbers is
0 to 332. Leading zeros are not required. Hitting the TAB key without
entering a number causes a zero to be entered.

SECTOR: Requires a one-digit decimal number. The range of the sector number is O to S.
Hitting the TAB key without cntering a number causes zero to be entered.

13-2 Digital Systems Division

@ 9462599701

After the user has entered the disc-drive name, AU-number, and sector-number parameters, the
utility displays the sector on the VDT, indicates the mode of the data being displayed (either
ASCII, EBCDIC, or hexadecimal and positions the cursor, as indicated by the blinking light, to
accept utility directives. The following is an example of the VDT display:

P90 DIZKETTe DoMie-Land JITIRE e
DIZss Do .. bt Seisy OM u Malc: AScll
i oL i1 L a E U 00 0 W 0o an oo
o = = i H E il L A an » Woon (1]
a o oL I E a L 4 an I W G0 ag oo
L L i L t L J un 3D Wl 00 ouo0n
3 C M7 3 i i = oo 30 W00 oo on

The user can now enter one of the Blinking Cursor one-character directives indicated in table 13-1.
The following paragraphs define these functions.

13.4.1 INCREMENT SECTOR NUMBER (D). This directive increments the number of the sector
being displayed and causes the new sector to be displayed. If the new sector number goes beyond 5,
the first sector (sector 0) of the next AU is displayed.

13.4.2 DECREMENT SECTOR NUMBER (D). This directive decrements the number of the sector
being displayed and causes the new sector to be displayed. If the new sector number goes lower
than 0, the last sector (sector 5) of the previous AU is displayed.

13.4.3 PRINT DISPLAY (P). This directive causes the displayed sector to be written to the hard-
copy device assigned to LUNO 1. After P is input, the following message is displayed:

PRINT? (Y/N)

The user can then assign LUNO 1 to the hard-copy device, if it has not already been done. The fol-

lowing is an example of the command that may be entered on the system console.
AL,1,LLOG.TE.

After assigning LUNO 1, the user types a Y on the VDT and the output is performed. Typing an N
indicates to the utility that the user decided not to print the display and so the printing process is
not started.

13.4.4 SET DATA MODE TO ASCII (A). This directive causes the sector data to be interpreted
and displayed in ASCII format.

13.4.5 SET DATA MODE TO EBCDIC (E). This directive causes the sector data to be interpreted
and displayed in EBCDIC format.

13-3 Digital Systems Division

%@ 946259-9701

Table 13-1. Diskette Dump Utility Directives

Directive Function
I Increment sector number
D Decrement sector number
P Print display
A Set data mode to ASCII
E Set data mode to EBCDIC
H Set data mode to Hexadecimal
M Modify displayed sector data

New-Line-Position cursor to SECTOR: field.

13.4.6 SET DATA MODE TO HEXADECIMAL (H). This directive causes the sector data to be
displayed in hexadecimal format.

Figure 12-1 shows the same sector displayed in the three different modes: ASCII, EBCDIC and
hexadecimal. The displayed sector is grouped into 8-bit (byte) fields. Therefore on each line of the
display there are 16 bytes of the sector displayed. On the hexadecimal (hex) display each byte is
represented by two hexadecimal characters. On the ASCII and EBCDIC displays, each byte is
represented as either a two-character upper-case ASCII or EBCDIC character (first character is
blank), a two-character lower-case ASCII or EBCDIC character (first character is a *.”), or if the
byte of data has no ASCII or EBCDIC representation, the two-character hexadecimal value is
displayed.

13.4.7 MODIFY DISPLAYED SECTOR DATA (M). This directive allows a user to modify the
displayed sector data. After the user enters the directive, the following message is output:

MODIFY? (Y/N):

If the user types N, the utility stops the modify operation. If the user types Y, the cursor positions
to the first byte displayed for the sector (upper-left-hand corner of the display). The user may move
the cursor about with the “arrow” keys up, down, right and left. Hexadecimal characters may be
entered by entering the two character hex value. An ASCII character may be entered by typing
a blank followed by the desired ASCII character. An EBCDIC character may be entered by typing
a period followed by the desired EBCDIC character. After all changes have been made, the “‘new
line” character must be entered. This causes the following message to be output:

RE-WRITE DISC?:

If the user types N, the modify operation is terminated without modifying the data on the disc.
If the user types Y, the modified sector is written to disc.

13.4.8 POSITION CURSOR TO SECTOR: FIELD (NEW LINE). Typing New Line causes the
cursor to position to the SECTOR: parameter field. Typing this character three more times causes
Diskette Dump to terminate. It outputs the following message on the VDT screen.

#*%% END OF PROGRAM **#*

134 Digital Systems Division

946259-9701

13.5 ERROR MESSAGES
The following error messages can be generated during execution of DSKDMP:

WRONG! An attempt was made to input invalid parameters, command directives,
or to perform an invalid operation or LUNOs were not available to the
task.

DISC ERROR Either a disc hardware error occurred or an attempt was made to read

a nonexistent AU.

2333 DISKETTE DUMP-LORD FITIRZ e
n1zce: DiICE AL, ¢ 3 SECTOR: 0 MODE: HEX
N=-ne 42 4D |0 30C 43 42 20 IF 42 IR 0o 0a ST 0N a0 an
10=-1F 44 S2 2 4C 42 a2 20 4F 42 IR an 2R ST o0 a4 Ny
20=-2F IF 42 LD T 33 42 20 4F 42 4R nn 43 ST N nnoan
IN=2F 54 52 4C 43 42 2n 20 4F 42 4R ny S T L] i
GN=3F 37 45 4E 5S4 s2 29 20 32 Sa 532 an oan ST on ng 01
SH=-SF 2E 2E 2E Z2E 2€ 2E 2E 2E 2E ZE 2E 2E 2E 2E 2E 2E
af—-aF 2E 2E 2€ 2E 2E 2E 2E 2E 2E 2E ZE 2E ZE 2E 2E ZE
TN-7F 2E 2E 2E 2E 2E 2E 2E 2E ZE ZE 2E 2E 2E 2€ 2€ ZE
DIZC: psc2 A, 3 3 ZECTOR:] MODE: A3CII
n=-nF F M LA I B a B J g Na Woon 00 An
10=-1F D = R L I B a B o e W 00 30 00
20=-2F g e v I B a B) M I W 0N DY)
20=-3F T = L I B s} B J an SD (L] an nn
40-4F 3 € M T £ 3 ¥ 3 a8 20 W) an a0
IN=-5F . e . . « . « . . e
S)=-0F « e - e
THN-7F PR e = . e
pI3C: D3IC2 R.. 2 S SECTOR: 0 MODE: EBCDIC
nin=-nF 45« % 4 43 42 20 4F 12 4R no Na ST 00 . an
10-1F 44 52 52 < 43 42 20 4F 42 4R an 2R ST a0 an 09
2N=-2F 4F 43 E 4 43 32 20 4F 42 4R nn 43 ST an onoan
30-3F 4 53 < 43 32 20 20 4F 42 4R o : Ss7 an nn oan
)=-4F 47 495 + S4 T2 20 20 S3 59 532 an 20 ST 00 N Na
S0-5F 2E 2E 2E 2E 2€ 2E 2E 2 2E 2E 2E 2E 2E 2E 2€ 2E
al-5F 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E 2E ZE 2E 2E
70-7F ZE 2E 2€ 2 2E 2E 2E 2E 2E 2E 2E 2E 2€ 2E 2E 2E
(A)137506

Figure 13-1. Three Modes of Sector Display

13-5/13-6 Digital Systems Division

APPENDIX A

LIST OF SUPERVISOR CALLS FOR USER TASKS AND
FILE MANAGEMENT OF /0 DEVICE-FILES

Digital Systems Division

946259-9701

APPENDIX A

LIST OF SUPERVISOR CALLS FOR USER TASKS AND
FILE MANAGEMENT OF I/0 DEVICE-FILES

Table A-1 lists the supervisor calls available to the user. The call code, the hexadecimal value to be
placed in byte O of the supervisor call block (SCB), is shown in the first column. The name of the
supervisor call is listed in the second column, followed by the byte-size of the supervisor call block
in the third column. The fourth column contains an X if the (SCB) must be word-aligned. The fifth
column contains a brief description of the results of the supervisor call. For a detailed description
of each supervisor call, refer to Sections III and IV herein this manual. It should be noted that “R”
signifies “Workspace Register” in table A-1 below.

Table A-1. Supervisor Calls

Code Supervisor Call Byte Size Aligned Result

0046 File Management Note 1 X Note 1

0146 Wait for I/O 4 X Calling task suspended pending com-
pletion of I/O operation defined in
SCB at the address in bytes 2 and 3 of
SCB.

0246 Time Delay 4 X Calling task suspended for number of
system time units in bytes 2 and 3 of
SCB.

0346 Date and Time 4 X Date and time returned in binary form
in five-word area at address in bytes 2
and 3 of SCB.

0446 End of Task 1 Calling task terminated.

054 Bid Task Note 2 X Task (ID in byte 2 of SCB) is bid.

06,6 Unconditional Wait 1 Calling task suspended unconditionally.

0716 Activate Suspended 3 Suspended task (ID in byte 2 of SCB) is

Task activated.

0846 Character Input 3 Input character from station keyboard
(ID in byte 2 of SCB); place in RO.

0946 Do Not Suspend 2 Inhibit suspension of calling task by sys-
tem for number of system time units de-
termined by contents of byte 1 of SCB.

0As6 Convert Binary to Decimal 8 Convert binary value in RO to decimal
ASCII characters; place in bytes 2
through 7 of SCB.

A-l Digital Systems Division

946259-9701

Table A-1. Supervisor Calls (Continued)

Code Supervisor Call Byte Size Aligned Result

0By¢ Convert Decimal to Binary 8 Convert decimal ASCII characters in
bytes 2 through 7 of SCB to binary
value; place in RO.

0Cy6 Convert Binary to Hexa- 6 Convert binary value in RO to hexadeci-

decimal : mal ASCII characters; place in bytes 2
~ through 5 of SCB.

0Dy¢ Convert Hexadecimal to 6 Convert hexadecimal ASCII characters

Binary 2 through 5 of SCB to binary value
place in RO.

OE Activate Time Delay Task 3 Time delay task (ID in byte 2 of SCB) is
activated.

OF ;6 Abort 1/0 2 I/O in progress with LUNO in byte 1 is
terminated.

1046 Get COMMON Data 2 Address of COMMON area in R9; size

Address in R8.

1146 Change Priority 2 Priority of calling task changed to value
in byte 1 of SCB.

1246 Get Memory 4 The number of 32-byte blocks of
memory requested in bytes 2 and 3 of
the SCB is allocated and the address of
the first block is placed in R9.

1346 Release Memory 4 " Included for compatibility with DX10;
performs no operation.

154 File Management 12 The file management operation defined
in the SCB (Assign or Release LUNO) is
performed.

1646 End of Program 1 Operation bids the rebid task which is
usually the TXDS Control Program.

1746 Get Parameters 6 Task parameters are placed in bytes 2
through 5 of SCB.

1846 Conditional Character 3 Bit 2 of Status Register set to one and

Input character from station keyboard (ID in
byte 2 of SCB) placed in RO, or bit 2 set
to zero if no character available.

1A, VDT Utility 12 The VDT I/O operations defined in the
SCB are performed. (Write or read
characters, open or close I/O, position
cursor or tab.)

A-2

Digital Systems Division

946259-9701

Table A-1. Supervisor Calls (Continued)

Code Supervisor Call Byte Size Aligned Result

1By Return COMMON 1 Included for compatibility with DX10;
performs no operation.

1C6 Put Data 14 X Put message on message queue.

1Dy Get Data 14 X Get message from message queue.

1E Abort I/O SVC 4 X Abort I/O on specific SVC.

2046 Get Own ID 2 Task ID returned in byte 1.

2144 Get System Table 4 X System table address returned in bytes 2
and 3.

[\

2316 Make Task Privileged Makes the task privileged.

Notes:

1. Size of SCB for File Management supervisor call includes 2-byte SCB and 10- or 14- or 22-byte SCB. I/0
operation defined in SCB is performed.

. Size of SCB for Bid Task supervisor call is 3, 6, or 8 bytes. When two optional parameter words are included,

AQ nra raiead hararian

ane pton szemad o fmaliadad £ Lo H C ot 3
ai paraimetéi wora is inciuded, o bytes are TeqQuITea; OuUieIWise, 3

[\

8 bytes are required; when a single op
bytes are required.

A-3/A4 Digital Systems Division

APPENDIX B

DEVICE CHARACTER SETS

Digital Systems Division

@ 946259-9701

APPENDIX B
DEVICE CHARACTER SETS
The TX990 Operating System supports ASCII I/O operations with all devices. This section lists the
character sets for the devices and the end-of-record and end-of-file sequences for the devices.

Table B-1. 911 Video Display Terminal Character Set
End-of-Record - NEW LINE (CR)

Character Hexadecimal Character Hexadecimal Character Hexadecimal

Space 20 1 31 B 42
! 21 2 32 c 43
. 22 3 33 D M
23 4 34 E 45
s 24 5 35 F 46
% 25 6 36 G 47
& 26 7 37 H 48
’ 27 8 38 o 49
(28 9 39 I 4A

) 29 : 3A K 4B
. 2A ; 3B L 4c
+ 28 < 3C M 4D
; 2C = 3D N 4E
2D > 3E 0 4F
2E ? 3F . P 50
/ 2F @ 40 Q 51
0 30 A a1 R 52

B-1 Digital Systems Division

946259-9701

Table B-1. 911 Video Display Terminal Character Set (Continued)

Character Hexadecimal
S 53
T 54
U 55
v 56
w 57
X 58
Y 59
Z 5A
[5B
\ 5C
1 5D
A 5E
- SF

Notes:

1

Character

Hexadecimal

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

Character Hexadecimal
n 6E
o 6F
p 70
q 71
I 72
s 73
t 74
u 75
v 76
w 77
X 78
y 79
z 7A

. Entering left arrow (<) backspaces the cursor and deletes the character in the buffer.

2. Entering right arrow (—) moves the cursor one column to the right and places the character in the buffer.

3

N

. Entering ERASE FIELD moves the cursor to the first character of the line, clears the characters on the line, and

deletes those characters in the buffer.

. Entering RETURN positions the cursor at the first character of the next line and terminates the record.

Digital Systems Division

9462599701

Table B-1. 911 Video Display Terminal Character Set (Continued)
Notes (Continued):
5. Table B-1 applies to the record and file modes only.

6. The maximum buffer size for record or file mode VDT is 82 characters.

)

. Pressing the space bar stops output in record mode. Pressing the space bar again restarts output.

o]

. Pressing the ESC key terminates output.

. Entering a tab stores 09,4 in the buffer and writes a space to the screen.

O

B-3 Digital Systems Division

946259-9701

Table B-2. 913 Video Display Terminal Character Set

End-of-Record - NEW LINE (C/R)

Character Hexadecimal Character Hexadecimal Character Hexadecimal
Space 20 6 36 L 4C
! 21 7 37 M 4D
" 22 8 38 N 4E
23 9 39 0 4F
$ 24 : 3A P 50
% 25 ; 3B Q 51
& 26 < 3C R 52
’ 27 = 3D S 53
(28 > 3E T 54
) 29 ? 3F U 55
* 2A @ 40 v 56
+ 2B A 41 W 57
, 2C B 42 X 58
2D C 43 Y 59
2E D 44 z SA
/ 2F E 45 [SB
0 30 F 46 \ 5C
1 31 G 47] sD
2 32 H 48 A SE
3 33 I 49 - 5F
4 34 J 4A
5 35 K 4B

B4 Digital Systems Division

946259-9701

Table B-2. 913 Video Display Terminal Character Set (Continued)
Notes:
1. Pressing the backspace arrow (<) moves the cursor one column to the left and deletes the character in the buffer.

2. Pressing the forward space arrow (=) moves the cursor one column to the right and places the character in the
buffer.

3. Entering DELETE LINE moves the cursor to the first character of the line, clears the characters on the line, and
deletes those characters in the buffer.

4. Entering NEW LINE positions the cursor at the first character of the next line and terminates the record.
5. Entering TAB causes 094 to be stored in the buffer and a space to be written on the screen.

6. Table B-2 applies to the record and file modes only.

7. The maximum buffer size for record or file mode VDT is 82 characters.

8. Pressing the space bar stops output in record mode. Pressing the space bar again restarts output.

9. Pressing the RESET key terminates output.

B-5 Digital Systems Division

946259-9701

Table B-3. 733 or 743 Data Terminal Character Set
End-of-Record - C/R (applies to keyboard and cassette input only)

End-of-file - DC3 (applies to keyboard and cassettes only)

Character Hexadecimal Character Hexadecimal Character Hexadecimal

Space 20 7 37 N 4E
! 21 8 38 o 4F
o 22 9 39 P 50
23 : 3A Q © 51
$ 24 ; 3B R 52
% 25 < 3C S 53
& 26 = 3D T 54

’ 27 > 3E U 55

(28 ? 3F A 56

) 29 @ 40 W 57
* 2A A 41 X 58
+ 2B B 42 Y 59
, 2C C 43 Z 5A

- 2D D 44 [5B
2E E 45 \ 5C
/ 2F F 46] 5D
0 30 G 47 A SE

1 31 H 43 - SF

2 32 i 49) 60
3 33 ¥ 4A a 61
4 34 K 4B b 62
S 35 L 4C c 63
6 36 M 4D d 64

B-6 Digital Systems Division

9462599701

Table B-3. 733 or 743 Data Terminal Character Set (Continued)

Character Hexadecimal Character Hexadecimal Character Hexadecimal
e 65 n 6E w 77
£ 66 0 6F x 78
g 67 P 70 y 79
h 68 q 7 . z 7A
i 69 I 72 { 7B
j 6A $ 73 ' 7C
k | 6B t 74 } 7D
I 6C u 75 ~ 7E
m 6D v 76

Notes:

Keyboard: 1. BS character (08,¢) is returned to printer as LF and BS. Deletes most recently entered
character in buffer.

2. HT character (09,¢) is returned to printer as space. Character is placed in buffer.
3. LF character (0A,¢) is retumed to printer as LF, but is not stored in buffer.

4. CR character (0Dy) is returned to printer as CR, and character is not placed in buffer.
Character terminates the record.

S. DC3 character (13¢) is not stored in buffer. When DC3 is first character of record, the
record is an end-of-file record.

6. ESC character (1By¢), when entered during output, terminates output with a write error.

~1

. DEL character (7F ¢) is returned to printer as a line feed and carriage return. Character
deletes current input record.)

. Maximum buffer size is 83 characters.
Printer: . BS character (08,¢) results in a backspace operation.

. HT character (09,¢) results in printing a space.

. LF character (0A;¢) results in a line feed operation.

. FF character (0C) results in eight line feed operations.

. CR character (0Dyg) results in a carriage return operation.

. End-of-record occurs when specified number of characters have been printed.
. Maximum buffer size is 83 characters.

. The characters LF (0A;¢) and DEL (7F ;4) or the character DEL at the beginning
of a record are ignored. The first valid character of the record is the character
following the DEL.

2. The characters HT (09,4), FF (0C,¢), BEL (07,¢), and BS (08,¢) are stored in the
user’s buffer.

3. The character ETB (17,4) is stored in the user’s buffer as a CR {0Dyq).

) N B W N = 0o

Cassette Input:

B-7 Digital Systems Division

9462599701

Table B-3. 733 or 743 Data Terminal Character Set (Continued)

Notes: (Continued)

4. The character DC3 (134) as the first character of a record indicates an end-of-file
record. The system returns end of file status after positicning the tape at the be-
ginning of the next record. The DC3 is not stored in the buffer.

5. The character CR (0D,¢) indicates end-of-record, and is not stored in the buffer.
6. Maximum buffer size is 83 characters.

. The end of block character sequence is CR (0Dy¢) LF (0A ;) DC4 (14,5) DEL (7F ;).
The end of file character sequence is DC3 (13,5) CR DC4 DEL. These characters are
supplied by the system, not by the user.

2. The characters HT (09,¢), FF (0C,¢), BEL (07,¢), and BS (08,¢) are written unchanged.
3. The character CR (0D,¢) is transiated to ETB (17,¢) and written.

4. The character DC3 (13,5) may be placed within a record, but may not be the first
character of a record other than the end of file record.

p—

Cassette Qutput:

5. End-of-record occurs when specified number of characters have been written.

6. Maximum buffer size is 83 characters.

B-8 Digital Systems Division

946259-9701

Table B-4. Card Reader Character Set

End-of-File /* (Cols. 1 and 2)

Character Hexadecimal Row Punches Character

Hexadecimal Row Punches

Space 20 None 8 38 8

! 21 1182 9 39 9

22 8-7 : 3A 8-2

23 8-3 ; 3B 11-8-6
$ 24 11-8-3 < 3C 1284
% 25 0-84 = 3D 8-6

& 26 i2 > 3E 0-8-6

’ 27 8-5 ? 3F 08-7
(28 12-8-5 @ 40 84

) 29 11-8-5 A 41 12-1

* 2A 11-84 B 42 122
+ 2B 12-8-6 C 43 123

, 2C 0-8-3 D 44 124

) D 11 E 45 12:5

2E 12-8-3 F 46 12-6

/ 2F 0-1 G 47 12-7
0 30 0 H 48 12-8

1 31 | I 49 12-9
2 32 2] 4A 11-1

3 33 3 K 4B 112
4 34 4 L 4C 11-3

5 35 5 M 4D 114
6 36 6 4E 11-5
7 37 7 0 4F 11-6

B9 Digital Systems Division

946259-9701

Table B-4. Card Reader Character Set (Continued)

End-of-File /* (Cols. 1 and 2)

Character Hexadecimal Row Punches Character Hexadecimal Row Punches

P 50 11-7 X 58 0-7

Q 51 11-8 Y 59 0-8

R 52 119 z 5A 09

S 53 02 [5B 12-8-2

T 54 0-3 \ 5C 0-8-2

U 55 04 | 5D 12-8-7

A 56 0-5 —_ SE 11-8-7

w 57 0-6 - SF 0-8-5
Notes:

1. End of record occurs when the specified number of characters, or 80 characters have been read.

2. Maximum buffer size is 80 characters.

B-10 Digital Systems Division

9462599701

Table B-5. Line Printer Character Set

Character Hexadecimal Character Hexadecimal Character Hexadecimal

Space 20 9 39 R 52
! 21 3A S 53
" 22 ; 3B T 54
23 < 3C U 55
s 24 = 3D A 56
% 25 > 3E W 57
& 26 ? 3F X 58
i 27 @ 40 Y 59
(28 A 41 z SA
) 29 B 42 [5B
* 2A C 43 \ 5C
+ 2B D 44 H 5D
s 2C E 45 A SE
N 2D F 46 - SF
2E G 47 60

/ 2F H 48 a 61
0 30 I 49 b 62
1 31 J 4A c 63
2 32 K 4B d 64
3 33 L 4C e 65
4 34 M 4D f 66
5 35 N 4E g 67
6 36 (0] 4F h 68
7 37 P 50 i 69
8 38 Q 51 j 6A

B-11

Digital Systems Division

9462599701

Table B-5. Line Printer Character Set (Continued)

Character Hexadecimal Character Hexadecimal Character Hexadecimal
k 6B r 72 y 79
l 6C s 73 z TA
m 6D t 74 { 7B
n 6E u 75 ' 7C
0 6F v 76 } 7D -
p 70 w 77 ~ 7E
q 71 X 78 DEL 7F
Notes:

1. Models 306 and 588 printers respond to the following control characters:
BS (08¢) results in a backspace operation.
HT (09,¢) results in a single space.
LF (0A ¢) results in a line feed operation.
CR (0D;¢) results in a carriage réturn operation.
FF (0C,¢) results in a form feed operation.

BEL (07,¢) results in a tone signal.

The character SO (OE,¢) results in character elongation for the line of characters following the SO. Elongation
doubles the width of the characters, and a line of elongated characters contains one-half the number of
characters on a normal line; i.e., 40 or 66.

2. Models 2230 and 2260 printers respond to the following control characters:

HT (09,6) results in a single space.

LF (0A ¢) results in a line feed operation.

CR (0Dy¢) results in a carriage return operation.
FF (0C ¢) results in a form feed operation.

Only characters 20,¢ through 5F ¢ are supported. All other graphics character codes are converted to blanks.
The codes 5E;¢ and 5F, produce the characters 1 and <, respectively.

3. The Model 810 printer responds to the various control characters and control character sequences as follows:

CR (OD) Carriage return causes data in the printer buffer to be printed. The print head is left in its current
position.

LF (0A) Line feed causes data, if any, in the printer buffer to be printed and advances the paper one
line.

BEL (07) Bell results in a tone signal.

BS (08) Backspace results in a backspace operation.

B-12 Digital Systems Division

946259-9701

Table B-5. Line Printer Character Set (Continued)

Notes: (Continued)

HT (09) Horizontal Tab causes spaces to be entered in the printer buffer up to the next horizontal tab
position.

DC1 (11) Select selects the printer, enabling it to receive data.

DC2, N (12, N) Tab to line causes the paper to advance to the line specified by N. N must be greater than
current line position. ’

DC3 (13) Deselect deselects the printer, preventing it from receiving data.
DEL (7F) Delete clears the printer buffer of all characters.
NUL (00) Null terminates the tab setting sequence (see below), otherwise it is ignored.

DC4, N (14, N) Tab to column causes the carriage to advance to the column specified by N. N must be
greater than the current column position, otherwise it will be ignored.

ESC, 1,N1,N2,N3,...,NK,NUL (1B, 1,N1,N2, ..., NK, 00) Set vertical tabs clears all existing tabs
and sets new tabs at lines N1, N2, .. ., and NK.

ESC, 2, N (1B, 2, N) Set form length sets the form length used by the FF command to N.

ESC,3,N1,N2,...,NK,NUL (1B, 3,N1,N2, .. .,NK, 00) Set horizontal tab clears all existing horizontal
tabs and sets new tabs at locations N1, N2, ..., NK.

ESC, 4 (1B, 4) Sets paper drive system to 6 lines per inch.
ESC, 5 (1B, 5) Sets paper drive system to 8 lines per inch.
ESC, 6 (1B, 6) Sets print size to 10 characters per inch.

ESC, 7 (1B, 7) Sets print size to 16.5 characters per inch.

ESC, 8, M (1B, 8, M) Stores vertical format data, either vertical tab locations or form length (see note 1),
into vertical format channel M (non-volatile internal printer memory).

ESC, 9, M (1B, 9, M) Recalis vertical format data from vertical format channel M into working memory.
This command has the same effect as issuing a set vertical tabs command or set form length.

ESC, :, N (1B,3A N) Ccaverts printer from 132 position printer to one of N positions where
2<NK127.

ESC, ; (1B, 3B) Returns printing to normal 132 positions.

All of the preceding commands may not apply if the printer does not have the particular option needed to execute
the command. If the printer does not have the required hardware to execute the command, the command will be
ignored.

N, N1, N2, etc, used in the ESC commands represent 7 bit binary numbers. If the parity option is selected on the
printer, correct parity must be supplied here also. M is an ASCII number, where 1<M<8. Commas are used in
the preceding commands for separators only and are not to be included in the commands.

B-13 Digital Systems Division

946259-9701

Notes: (Continued)

Table B-5. Line Printer Character Set (Continued)

SO (OE) SO causes elongated character printing. The elongated character must be sent as the first character
of the line and must precede each line printed in elongated characters. Also, with elongated print only 66
characters per line are allowed. If more than 66 characters are sent, the excess are printed on the next

line as standard, nonelongated characters.

VT (0B) Vertical Tab causes data, if any, in the buffer to be printed and advances the paper to the next
vertical tab location or top of form, whichever comes first. If no vertical tabs are set, a VT command causes
the paper to advance to the top of the form.

FF (0C) Form Feed causes data, if any, in the printer buffer to be printed and advances the paper to top
of the next form. At Power Up, the lines per form is 66.

For a write ASCII operation, the line printer DSR filters all control characters in the range 0--1F ;4 , except the

following:

BEL
BS
HT
LF
FF
CR
SO
S1

07
08
09
0A
0C
0D
OE
OF

Bell

Backspace

Horizontal tab (converted to a space)
Line feed

Form feed

Carriage return

Elongated character

(ignored by the line printer)

If the user wishes to use the full control character set, the Write Direct (0C) operation must be used. No characters
will be filtered on a Write Direct (OC) operation.

Note 1: The two options, vertical forms control and form length, are mutually exclusive. The printer may have

either option but not both.

B-14 Digital Systems Division

946259-9701

Table B-6. ASR 33 Teletypewriter Character Set

Printer Keyboard Punch (ASCII) Punch (Direct)
END-OF-RECORD Depletion of CR Depletion of Depletion of
character count character count character count
END-OF-FILE N/A DC3 DC3 N/A
Reader (ASCII) Reader (Direct)
END-OF-RECORD CR DC3
END-OF-FILE DC3 N/A
Character Hexadecimal Character Hexadecimal Character Hexadecimal

Space 20 A 41 C 63

! 21 B 42 D 64

” 22 C 43 E 65

23 D 44 F 66

$ 24 E 45 G 67

% 25 F 46 H 68

& 26 G 47 I 69

’ 27 H 48 J 6A

(28 I 49 K 6B

) 29 J 4A L 6C

* 2A K 4B M 6D

+ 2B L 4C N 6E

. 2C M 4D 0} 6F

- 2D N 4E P 70

. 2E 0 4F Q 71

/ 2F P 50 R 72

0 30 Q 51 S 73

1 31 R 52 T 74

2 32 S 53 U 75

3 33 T 54 \% 76

4 34 U 55 w 77

5 35 v 56 X 78

6 36 w 57 Y 79

7 37 X 58 z 7A

8 38 Y 59 [7B

9 39 VA S5A / 7C

: 3A [5B] 7D

; 3B / 5C t 7E

< 3C] 5D

= 3D t SE

> 3E « S5F

? 3F @ 60

@ 40 A 61

B 62
B-15 Digital Systems Division

946259-9701

Table B-6. ASR 33 Teletypewriter Character Set (Continued)

Notes

Printer:

NN R W=

. BS character (08,6) results in a backspace operation.

. HI character (09,4) results in printing a space.

. LF character (0A;¢) results in a line feed operation.

. CR character (0D) results in a carriage return operation.

. FF character (0C;) results in eight line feed operation.

. End-of-record occurs when specified number of characters have been printed.
. Maximum buffer size is 72 characters.

Keyboard:

A WN -

S.

. BS character (086) is returned to printer as LF and BS. Deletes most recently entered character in buffer.

- HT character (09,¢) is returned to printer as space. Character is placed in buffer.

. LF character (0Dy¢) is returned to printer as CR, and character is not placed in buffer; terminates the record.

- DEL character (7Fy) is returned to printer as a line feed and carriage return. Character deletes current input

record.
Maximum buffer size is 72 characters.

Paper Tape Punch:

1.

w

w

The end of block character sequence for ASCII is CR (0Dys), LF (0Ay4), DC3 (13,6), NULL (004¢), Null (004¢),
Null (0046), Null (0046) for Direct is DC3 (1344), Null (0044), Null (00,¢), Null (00,), Null (00,). The end-of-
file character sequence for ASCII is DC3 (134), CR (0Dy), LF (0A4), DC3 (134), Null (00,4), Null (00,),
Null (00,¢), Null (00,) for Direct is not applicable.

- The characters BEL (07,4), BS (0845), HT (094), and FF (0C;) are punched on tape unchanged.
. The character CR (0D,) is translated to ETB (17¢) and punched.
. The character DC3 (13,6) may be placed within a record, but may not be the first character of the record other

than the end-of-file record.

. End-of-record occurs when SCB specified number of characters have been punched.
- Direct mode punches all characters. If a punch-off is in the buffer, a punch-on is output immediately following

the character.

Paper Tape Reader:

AW

- All null characters are ignored at the first of the record and the first nonnull character is the first valid character.
. The character BEL (076), BS (0846), HT (09,4) and FF (0C;¢) are stored in the user’s buffer.

. The character ETB (17,) is stored in the user’s buffer as a CR (0D;).

. The character CR (0D,¢) indicates end-of-record, and is not stored in the buffer.

. The character DC3 (134) as the first character of a record indicates an end-of-file record. The system returns

end-of-file status after positioning the tape at the beginning of the next record. The DC3 is not stored in the
buffer.

- In direct mode all characters are stored in the buffer until the buffer is full, then the program searches for a DC3

character to terminate.

B-16 ’ Digital Systems Division

APPENDIX C

USER-SUPPLIED MODULES

Digital Systems Division

[s]
{@; 9462599701

APPENDIX C

USER-SUPPLIED MODULES

C.1 INTRODUCTION

Texas Instruments supplies support modules for a large number of user options in a TX990
operating system. However, there are some user needs that require modules that are not available,
which the user must provide. These modules are:

® DSR (including an interrupt routine) for a unique peripheral device
® Extended Operation routines for user’s extended operations
® Supervisor call routines for user supervisor calls
The user-supplied modules execute in the privileged mode in the Model 990/10 Computer, and

all instructions are available. In the Model 990/4 Computer, all instructions are also available. For

information on writing each type of routine consult the TX990 System Documentation manual,
part number 944776-9701.

NOTE

When writing modules to be linked with the operating system (i.e.,
DSRs, XOPs, SVCs, user tasks), do NOT use the AORG (absolute
origin) assembler directive. The TXBOOT program cannot load a
system with any absolute origins in it.

C-1/C-2 Digital Systems Division

APPENDIX D

GLOSSARY

Digital Systems Division

{—@ 9462599701

APPENDIX D

GLOSSARY

Allocation Unit — A unit of space allocation on the diskette used during file management. An
allocation unit is equal to six sectors. There are 333 allocation units on a diskette.

Boot Program — A program that 1

System executing.

oads the Operating System into memory and starts the Operating

COMMON — An area of memory which may be coded by use of the system console keyboard (e.g.,
a 733 ASR, a 911 VDT, et al) or by means of a task-specified-code and then made accessible -
for use by a task through the Get COMMON Data address supervisor call. The size of the
system COMMON memory area is determined by a system parameter specified when the
system is generated.

Default-substitute — A substitute pathname, or field of a pathname, provided by some utility
programs when the program or keyboard-entry does not supply the data.

Device Name Table — A table accessed by the File Management supervisor call to obtain the address
of the Physical Device Table (PDT) corresponding to a device name. Contains all device names
defined in the system and addresses of the PDTs for the devices.

Device Service Routine — A routine of the TX990 Operating System that controls I/O operations
with a device.

DNT — Device Name Table.
DSR — Device Service Routine.

Dynamic Task Area — The area of memory into which tasks may be loaded and executed. Tasks can
only be loaded by using the Operator Communication Package (OCP) or the TXDS controi
program.

End-of-file — A record in a file (either logically or physically) that marks the end of the file. The
character sequences that denote end-of-file for the file-oriented supported devices are shown in
Appendix B.

End-of-record — A character of a record that marks the end of the record. The characters that
denote end-of-record for supported devices are shown in Appendix B.

EOF — End-of-file.

EOR — End-of-record.

GENTX — The system generation task, which obtains system parameters interactively from the
keyboard of the system console. GENTX builds source statement files from which modules
TXDATA and TASKDF are assembled.

IDT — Program identifier of the source module.

Initial Program Load — The loading of a TX990 system from disc, cassette, or cards, placing the
module in memory and starting execution of the system.

D-1 Digital Systems Division

o]
@ 9462599701

1/O Supervisor — The portion of TX990 that processes File Management supervisor calls, and passes
control to the Device Service Routine (DSR) for the device.

IPL — Initial Program Load.

Keyboard Status Block (KSB) — A data structure in TXDATA used for character mode I/O with a
VDT. TXDATA includes a KSB for each VDT.

KSB — Keyboard Status Block.
LDT — Logical Device Table.

Logical Device Table (LDT) — A table in TXDATA that contains a Logical Unit Number (LUNO)
and the address of the Physical Device Table (PDT) that corresponds to the device assigned to
the LUNO.

Logical Unit Number (LUNO) — A number by which an I/O operation specifies the device for the
operation.

LUNO — Logical Unit Number.
OCP — Operator Communication Package.

Operator Communication Package (OCP) — A package of modules that contains the routines
for the commands by which the operator or user communicates with TX990.

PC — Program Counter.
PDT — Physical Device Table.

Physical Device Table (PDT) — A table in TXDATA that contains device-related data required by
the Device Service Routine (DSR) in an I/O supervisor call for the device.

Program Counter (PC) — A register in the computer hardware that contains the address of the next
instruction to be executed.

Stand-alone Program — A program that executes without an operating system.

Status Register — A register in the computer hardware that contains condition bits and the inter-
rupt mask.

Supervisor Call Block — A block of memory that defines a supervisor call, addressed by the XOP
instruction. The code of the supervisor call is in byte O of the supervisor call block. The num-
ber of additional bytes (if any) and the content of the additional bytes are deﬁned for each
supervisor call.

SCB — Supervisor Call Block.

Supervisor Call Table — A table in TXROOT in which entry points to supervisor call routines are
listed in a supervisor call code order.

Task Data Division — One of two logical divisions within a task. The data division contains one or
more workspaces, data structures, supervisor call blocks, and data for the task. A data division
may or may not be assembled separately from the procedure division of the task, and is not
shared with any other task.

D-2 Digital Systems Division

946259-9701

Task Management — Task Management maintains a state code for each task. The state codes are
listed in Appendix G.

Task Scheduler — Initiates execution of a user task (see paragraph 11.2). When the currently
executing task completes a time slice, the task scheduler passes control to the oldest task on
the active list for the highest priority (0). If there is no task on the active list for priority 0,
the oldest task on the active list for the next highest priority receives control.

Task Status Block (TSB) — A data structure in TXDATA used by the TX990 Operating System to
control execution of the task.

Task Time Delay — The result of a task executing a Time Delay supervisor call. The Time Delay
supervisor call suspends the calling task for a specified number of 50 ms periods.

Task Time Slice — A period of execution of a task having a maximum length defined when the
system is generated. A task time slice begins when the task scheduler passes control to the task.
A task time slice ends: (1) when the system suspends the task upon expiration of the
maximum time period allowed for a task time slice; (2) when the task executes a supervisor
call that suspends the task; (3) when the system suspends the task to await completion of an

/O operation. To avoid completely locking out low priority tasks, there is 2 maximum number
of consecutive time slices (weighting factor) for each priority level. When the number of time
slices has been used by a priority level, the oldest task on the active list for the next lower
priority is allowed a time slice before the higher level again has control. The maximum number
of time slices for each priority level are system parameters defined when the system is
generated. The maximum period of a time slice may be extended by execution of a Do Not
Suspend supervisor call. The time slice is less than the maximum time period when the task
suspends itself, or is suspended awaiting completion of an I/O operation.

Task Weighting Factor — A count of task time slices for a priority level. When the number of task
time slices specified as the weighting factor for priority level has been used by tasks at that
priority level after a task at a lower level has had control, a task at a lower priority level
receives control for a time slice.

Tagl- A
1dON I

Memory area where tasks may be loaded and executed (see Dynamic Task

vy Ga VY 2i S

ses, Loading of).
Task, Active — A task which is in memory on an active queue, waiting for a time slice.

Task, Bid — To start execution of a task causing the TX990 Operating System to enter the task on
the active list according to its priority level.

Task, Debugging of a — The process of removing errors from a task.

Task, Diagnostic (DTASK) — A system task that terminates a task when fatal errors occur in the
task, and prints an error message.

Task, Executing a — Controlling the processor and the resources of the computer.

Task, Linked — Consists of separately assembled modules that have been combined by resolving
external references and definitions in the modules to form a single executable module.

D-3 Digital Systems Division

946259-9701

Task, Loaded — A task copied from an external storage medium into the memory of the computer
in preparation for execution.

Tasks, Multiple — Two or more tasks concurrently active in an operating system.

Task, Procedure Division — One of two logical divisions within a task. The procedure division
contains the executable code for the task. A procedure division may or may not be assembled
separately from the data division of the task and may be shared with other tasks.

Task, Suspended — A task temporarily removed from the active list and from execution as a result
of a supervisor call or during an I/O operation.

Task, Terminated — A task removed from execution and from the active list either at normal
completion or at an abnormal termination initiated by the operator or by the diagnostic task
when a fatal error is detected.

Task, Time Delay — A task which has halted execution for a specified length of time, at the end of
which the task is reactivated.

Task, User, Loading of — The task loaded into the dynamic task area using the OCP LPROG
command.

Task, Waiting — A task waiting for completion of an 1/O operation or for a system function or
resource.

Volume Name — A one to four character name, other than a drive name, by which a diskette may
be accessed.

Workspace — A 16-word area of memory addressed as workspace registers 0 through 15. The active
workspace is defined by the contents of the workspace pointer register.

Workspace Pointer (WP) — A register that contains the address of workspace register 0.

Workspace Register — A memory word accessible to an instruction of the computer as a general

purpose register. It may be used as an accumulator, a data register, an index register, or an
address register.

WP — Workspace pointer register.

D4 Digital Systems Division

APPENDIX E

TX990 - DX10 COMPATIBILITY

Digital Systems Division

%@ 9462599701

APPENDIX E
TX990 - DX10 COMPATIBILITY

E.1 INTRODUCTION

The upward compatibility of the TX990 operating system to DX 10 operating system (release series
3.0 and higher) allows tasks that execute under TX990 to be executed under DX10 when the
proper considerations are met. This appendix describes those considerations. This appendix also
compares the supervisor calls of the two systems. The compatibility information cannot be specified
because of the possible existence of several releases of each system. For information about
compatibility with a specific release of DX 10, the user must study the information about DX 10 and
note the difference.

E.2 TASK STRUCTURE COMPATIBILITY

The task structure required for the TX990 operation system is compatible with that of DX10. Tasks
that execute in the dynamic task area of TX990 and other tasks that consist of a data division and
procedure division in the same module may be installed as either memory-resident or disc-resident
tasks under DX10 without modification. Tasks that share a procedure division use the mapping
capabilities of the Model990/10 Computer when executed under the DX 10 operating system. The
addresses of the procedure division are mapped into the low order addresses of the addressable
memory, and the addresses of the data division are mapped into the addresses above those of the
procedure, beginning on a 32-byte boundary. Only the address in the index register used to address
data is affected by this difference. The task may be relinked to provide this address, or the address
can be patched.

E.3 SUPERVISOR CALLS
The following supervisor calls are available to the TX990 operating system user but are not
supported by DX10.

e VDT Utility

e Make Task Priviieged

e VDT Get Character

e GetOwnlID

e VDT Conditional Get Character

e Get System Table
The following supervisor calls that perform no operational activity in the TX990 operating system
perform operations in the DX10 operating system as described in the DX10 operating system
manuals.

e Return Memory

e Return Common

E-1 Digital Systems Division

@ 946259-9701

The End of Program supervisor call performs different operations in the TX990 operating system;
after terminating the task, it activates the rebid task, which is normally the TX990 Control
Program.

The TX990 Operating System task that shares a procedure and contains both a Get Memory and a
Get Common Data Address supervisor call has an additional restriction under DX10. Memory
management in DX10 utilizes the mapping capabilities of the computer. The addressable memory
area of a task consists of three contiguous address segments. The procedure division is mapped into
the lowest of these address segments, beginning at address zero. The data division is mapped into
the lowest of these address segments, beginning at address zero. The data division is mapped into
the next higher segment, leaving one segment for either common memory or a memory block
obtained with a Get Memory call. A Get Memory call must be followed by a Release Memory call
before a Get Common Data Address call can be executed. Similarly, a Get Common Data Address
call must be followed by a Return Common call before a Get Memory call can be executed. The

address returned by a Get Memory supervisor call or a Get Common Data address is aligned on a
32-byte boundary in DX10.

E.4 FILE MANAGEMENT

The TX990 Operating System supports two file types, sequential and relative record. Sequential
files are automatically blocked and blank compressed in the TX990 Operating System while in the
DX10 Operating System the user optionally controls blocking and blank compression. Only one
user may access a sequential file at a time; the user’s position in the file is maintained across close
and assign operations while in the DX10 Operating System multiple reads and a single write opera-
tion may be operating simultaneously, and assign operations cause a rewind operation to occur. The
file pathname, under a TX990 Operating System assign operation, is compatible with the DX10
Operating System if the following structure is maintained; device.file name (where device is a
maximum of 4 characters and file name is a maximum of 6 characters, e.g., DSC.FILMN). The
‘exclusive all’ access privilege code on an open service call in the TX990 Operation System is 00
while in the DX 10 Operating System it is an 01.

Digital Systems Division

APPENDIX F

COMPRESSED OBJECT CODE FORMAT

Digital Systems Division

-A/1-4

uoIsIAlg SwalsAs 1enbig

APPENDIX F

COMPRESSED OBJECT CODE FORMAT

The standard object code format under the TX990 Operating System is comprised basically of an ASCII tag character followed by one
or two ASCII fields. The first field is numeric in value and the optional second field contains a symbol. (For additional familiarity with
standard object code format, refer to Section 9.5 of the Model 990 Computer Assembly Language Programmer’s Guide, part number
943441-9701.) The first ASCII field in standard object code format is four characters (i.e., four bytes) in length which, when con-
verted to compressed object code format, is changed to binary, two bytes in length. The second field in standard object code format
is left unchanged when converting to compressed object code format. Records are terminated with the standard end-of-record tag
character, only. The beginning-of-module-tag-character is an ASCII zero in standard object code format and a binary one in com-
pressed object code format. This is used to distinguish between compressed and uncompressed modules. The end-of-module colon
record, identified by the colon at the beginning of the last line of the module, is unchanged. The diskette is the only device capable
of supporting compressed object code format.

ASCII Standard Object Code Format (e 8., from punched cards)

00008TASK A0000B000AB020000000B00007F7EEF
TASK 021/77 12:32:54
Hexadecimal Representation of Standard Format ASCII Representation of Standard Format
3030 3030 3854 4153 4B20 2020 2041 3030 00 00 8T AS K A 00
3030 4230 3030 4142 3032 3030 4330 3030 00 BO 00 AB 02 00 CO 00
3042 4330 3030 3746 3745 4546 2020 2020 OB CO 00 7F 7E EF
Hexadecimal Representation of Compressed Format ASCII Representation of Compressed Format
0100 0854 4153 4B20 2020 2041 0000 4200 .. T AS K A .. B
0A42 0200 4300 0042 C000 4600 0000 0000 B .. ¢. B .. F
Colon Record for Both Formats Hexadecimal Representation ASCII Representation
3A20 2020 2020 2054 4153 4B20 2020 2020 : T AS K .
2030 3231 2F37 3720 2020 2031 323A 3332 o 21 /77 1 2: 32

3A35 3420 2020 S 4

1046765796

APPENDIX G

TASK STATE CODES

Digital Systems Division

(e]
%@ 946259-9701

APPENDIX G

TASK STATE CODES

The user-task supervisor calls which return one of the task state codes listed in table G-1 to byte 1
of the supervisor call block are:

® Bid Task Supervisor Call
® Activate Suspended Task Supervisor Call
® Activate Time Delay Task Supervisor Call

The user may code his program to read out the task state code to an output device or, using the
OCP STate (ST) command, the user can cause a terminal to print out the task state codes.

Table G-1. List of Task State Codes

Code
(Hexadecimal) Significance
00 Active task, priority level 0
01 Active task, priority level 1
02 Active task, priority level 2
03 Active task, priority level 3
04 Terminated task
05 Task in time delay
06 Suspended task
07 Currently executing task
08 Task awaiting VDT character input
09 Task awaiting completion of I/O
0A Task queued for I/O
0B Task queued for file utility routine
0C Task on the diagnostic queue
0D Task waiting for file management completion
10 Task queued for file management

G-1/G-2 Digital Systems Division

APPENDIX H

PRINTOUT OF FATAL TASK ERROR CODES OR DISPLAY OF ILLEGAL INTERRUPT CODE

Digital Systems Division

‘l‘_@; 946259-9701

PRINTOUT OF FATAL TASK ERROR CODES OR DISPLAY OF ILLEGAL INTERRUPT CODE

APPENDIX H

The capability of printing out fatal task error codes or displaying an illegal interrupt code is
available to the user when the Diagnostic Task (DTASK) module is supplied with the TX990
Operating System. DTASK begins to execute when the TX990 Operating System error logic detects
a fatal error during task execution; the resuit of the DTASK moduie being executed is the printout
of the fatal task error code or the display of the illegal interrupt code. The fatal task error code is
printed out on a LUNO, as described below in this appendix, when the task being executed does not
specify an end action to be executed; the illegal interrupt is displayed on the Programmer Panel.
When DTASK prints the error message identifying the error, it causes the task to be terminated. The
fatal errors detected by TX990 are listed in table H-1.

When TX990 detects that execution of a task has resulted in a fatal error and the task does not
perform end action, the error logic removes the task in error from the active queue, places it on the
diagnostic queue, sets the task’s state to on diagnostic queue, and executes DTASK. DTASK prints
an error message on LUNO 0 as shown in the following example:

*TASK=0F, ERROR=03,ADDRESS-214E
WP=2154,PC-28 A0,ST=300F

The example shows that the task having identifier F,, attempted to access memory address beyond
the existing range of memory (error code 3). The task address is 214E ¢ ; the current workspace is
at address 21544 ; and the program counter contains 28A0,,. Since the program counter is ad-
vanced to the next address before an instruction is executed, the instruction that attempted the
memory access would be at address 289A,,, 289C,¢, or 289E,¢, according to the size of the

instruction. The status register contains 300F 4.

After printing the error message, DTASK sets a flag in the Task Status Block (TSB) and places the
task on the active queue. The flag set by DTASK causes the scheduler to terminate the task.

In the event that DTASK itself commits a fatal error, it prints the following message on LUNO 0:
HELP!

This represents a system error that requires the system to be loaded again.

H-1 Digital Systems Division

946259-9701

Error Code

Table H-1. Fatal Task Error Codes and Illegal Interrupt Code

Error Description

Memory parity error. Can only occur if the computer is equipped
with memory parity or error correction hardware.

Illegal operation code. Can only occur in a Model 990/10 Computer.

TILINE* timeout. Nonexistent memory was addressed. Can only
occur in a Model 990/10 Computer.

lllegal XOP. An XOP instruction having an undefined extended
operation number or an illegal supervisor call was executed.

Map error. An access outside of the address space defined by the
current map was attempted. Can occur only in a Model 990/10
Computer with map option in which the map is enabled. Since
TX990 does not enable the map, this error could only occur if the
user task enabled the map.

Privileged operation. A privileged instruction was attempted in the
nonprivileged mode. Can only occur in a Model 990/10 Computer
in the nonprivileged mode.

Mlegal interrupt. An external interrupt, for which there is no inter-
rupt routine, has occurred. The user may display the status register
to determine the interrupt level and must clear the interrupt before
attempting to resume operation.

*TILINE is a registered trademark of Texas Instruments Incorporated.

H-2 Digital Systems Division

APPENDIX I

I/0 ERROR CODES

Digital Systems Division

Code
(Hexadecimal)

00
01
02
03
04
05
06
07
11
12
15
19
1A
1B

10
iy

1D
1E

- 20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
3B
3E
3F

APPENDIX I

1/O ERROR CODES

Description

NO ERROR

ILLEGAL LUNO

ILLEGAL OPERATION CODE
LUNO IS NOT YET OPENED
RECORD LOST DUE TO POWER FAILURE
ILLEGAL MEMORY ADDRESS
TIME OUT, OR ABORT

READ CHECK ERROR
DEVICE ERROR

NO ADDRESS MARK FOUND
DATA CHECK ERROR
DISKETTE NOT READY
WRITE PROTECT
EQUIPMENT CHECK ERROR

INVATIDNTDA I/ (\P CEOTND
ANV AAAl/ AINAVA VN DDV IURN

SEEK ERROR OR ID NOT FOUND
DELETED SECTOR DETECTED

FILE MANAGEMENT ERRORS

LUNO IS IN USE

BAD DISC NAME

PATHNAME HAS A SYNTAX ERROR
ILLEGAL FUR OPCODE

BAD PARAMETER IN PRB
DISKETTE IS FULL

DUPLICATE FILE NAME

FILE NAME IS UNDEFINED
ILLEGAL LUNO

SYSTEM BUFFER AREA FULL
SYSTEM CAN'T GET MEMORY

FILE MANAGEMENT ERROR

CAN'T RELEASE SYSTEM LUNO
FILE IS PROTECTED

ABNORMAL FUR TERMINATION
FILE UTILITY DOESN'T EXIST IN SYSTEM
NON-EXISTENT RECORD

INVALID ACCESS PRIVILEGE

FILE CONTROL BLOCK ERROR
FILE DIRECTORY FULL

I-1

Digital Systems Division

946259-9701

I/O ERROR CODES (Continued)

Code
(Hexadecimal) Description

TASK LOADER ERROR
60 I/0 ERROR, LOAD NOT COMPLETE
61 OBJECT MODULE CONTAINS NONRELOCATABLE OBJECT CODE
62 CHECKSUM ERROR LOAD ABORTED
63 LOADER RAN OUT OF MEMORY
64 TASK 10 IS BUSY
65 IMAGE FILE ERROR

VDT ERRORS
80 DEVICE NOT AVAILABLE

VDT STATION NOT FOUND

Note:

Error Code >FF is a general error code.

I-2 Digital Systems Division

o
@ 946259-9701

APPENDIX J

SYSTEM TASKS

Digital Systems Division

(o]
(‘:@@ 946259-9701

APPENDIX J

SYSTEM TASKS

J.1 INTRODUCTION

There are eight system tasks in a complete TX990 Operating System: (1) one Operator Communi-
cation Package (OCP); (2) one Initial Start Task (STASK); (3) one Diagnostic Task (DTASK);
(4) four File Management Tasks (TXFMP1, TXFMP2, TXFMP3, TXFMP4); (5) one File Utility
Routine (FUR); (6) one rebid task. The operation of OCP and the supported OCP commands are
described in Section V. Descriptions of the other system tasks and their operation are included in
this appendix.

J.2 INITIAL START TASK (STASK)

The initial start task (STASK) begins execution at the completion of each IPL to identify the
revision level of the operating system and to indicate that the IPL has executed successfully. The
following is an example of the message printed by STASK:

TX990 SYSTEM Release 2.2
MEMORY SIZE WORDS: 12288 AVAILABLE: 5940

The memory size printed is the decimal number of words of memory in the system. The size, in
words, of the dynamic task area, is printed as the available memory.

‘V"’he 1 STAS is lln}.\ €4 10u0W caled 11 I.J.Lv

1 OWin Z LN‘ iS \J
overlaid by the first user task installe 1n the dynamic task area It is assigned task identifier
10,¢. When it is desired to execute STASK following a manual restart, STASK must be linked
ahead of TXEND.

¢ task area. where it will be

I QiTG, ¥Yax L Wiz U

J.3 DIAGNOSTIC TASK (DTASK — TASK ID Dy4).

The diagnostic task (DTASK) is executed when TX990 error logic detects a fatal error in a task.
DTASK prints an error message identifying the error and causes the task to be terminated in error.
The fatal errors detected by TX990 are listed in Appendix F.

When TX990 detects that execution of a task has resulted in a fatal error and the task does not

perform end action, the error logic removes the task in error from the active queue, places it on the

diagnostic queue, sets the task’s state to on diagnostic queue, and executes DTASK. DTASK prints
- an error message on LUNO 0 as shown in the following example:

*TASK=0F, ERROR=03, ADDRESS=214E
WP=2154, PC=28A0, ST=300F

The example shows that the task having identifier F,, attempted to access a memory address
beyond the existing range of memory (error code 3). The task address is 214E ¢, the current
workspace is at address 2154,¢, and the program counter contains 28A0,¢. Since the program
counter is advanced to the next address before an insiruction is executed, the instruction that
attempted the memory access would be at address 289A,¢, 289C ¢, or 289F 4, according to the
size of the instruction. The status register contains 300F 4.

J1 Digital Systems Division

o]
%@ 946259-9701

After printing the error message, DTASK sets a flag in the Task Status Block (TSB) and places the
task on the active ~ueue. The flag set by DTASK causes the scheduler to terminate the task.

In the event that DTASK itself commits a fatal error, it prints the following message on LUNO 0:
HELP!
This represents a system error that requires the system to be loaded again.

J4 FILE MANAGEMENT TASKS (TXFMP1, TXFMP2, TXFMP3, TXFMP4 — TASK ID,
F0;6,Fly6,F2:5,F346)

File management must be included in the TX990/TXDS system to enable the user task to com-
municate with files on the diskette. File management consists of one procedure and a data section
for each diskette drive included in the system. The four data sections (TXFMP1, TXFMP2,
TXFMP3, TXFMP4) when linked with the procedure (TXFMP) define the File Management task
and must be included in the task definition at system generation time. (See Section 7 entitled
“System Generation”.) If one diskette drive is in the system, TXFMP1 has to be included: if-two
diskette drives are included in the system, both TXFMP1 and one TXFMP2 must be included:
etc. The required GENTX parameters for these file management tasks are described in the System
Task Definition Table.

J.5 FILE UTILITY TASK (FUR — TASK ID By¢)
The File Utility Routine (FUR) assigns and releases LUNOs to files and performs file maintenance
functions.

If the file management task is included in the system, the File Utility task must also be included
during system generation. The required GENTX parameters for FUR are described in table 7-1
entitled “‘System Task Definition”.

J.6 REBID TASK

The system rebid task is the task that will be activated whenever an end program superv1sor ‘call
is made. For standard TX990/TXDS systems, the TXDS control program is defined as the rebid
task, and will be activated when a task terminates with an end program supervisor call, task
ID 16,¢. The user may wish to designate another task as the rebid task. This may be accomplished
in the following manner:

1. Place the following statements in the new Rebid Task.

- DEF REBID
REBID EQU ID*>100

where ID = Task ID of the new Rebid task.

2. If the TXDS control program is included in the system, link this module before module
CNTROL.

J.7 VOLUME NAME SUPPORT (VOLUME — TASK ID Cy)
The volume name support task associates a volume name with a diskette drive, allowing files on the
diskette to be assessed through the volume name as well as the device name.

J-2 Digital Systems Division

@ 946259-9701

APPENDIX K

TX990 SYSTEM GENERATION USING DX10 RELEASE 3.0

Digital Systems Division

(o]
{_@:’p 946259-9701

TX990 SYSTEM GENERATION USING DX10 RELEASE 3.0

APPENDIX K

GENTX must be installed and executed using the IT and XTS commands on a DX10 system.
Perform the following steps on a DX10 release 3.0 system:

1. Place the GENTX object module on a DX10 sequential file or device. If the module is on
cassette, place it in a cassette drive. If it is on diskette, execute the DX10 conversion
utility TXDX and convert the object file to a DX10 sequential file.

2. Instali the task, using the IT command:
II PF = .S§PROGA, TN = GENTX, OBJ = <acnm>, TI = <id>

where <acnm> is the DX10 access name for the file or cassette unit which contains the
GNTXDX object module and <id> is the task’s ID

3. Execute the task, using the XTS command:

XTS TN =GENTX, PF = .S3PROGA

Tassrismes mrnccace 1o A3

T Tam ~ 1 icnlavad
1HUWIE THEddAET 1> UldbpidyTu

Upon initiation o

GENTX task:

£ dlan mniensnt i PR +1. £ e, +Ln
1 UiC golclat L 1 Uy Lo

ExN

TX990 SYSTEM GENERATION — 945673*C

5. After the message is displayed, the GENTX program enters the definition phase described
in paragraphs 7.4.2 through 7.4.10. Refer to this section for a description of the user
options. '

6. Upon completion of the construction phase the source programs generated for TXDATA
and TASKDF must be assembled. These source programs may be assembled using
SDSMAC. The object code files created will be used as input to the linking process in
step 10.

7. At this point, the TX990 object modules must be selected from the DSRLIB, OCPLIB,
FMPLIB and TXLIB cassettes. This selection process is accomplished by use of the
OBJMGR (Object Manager Task). A file is created as output from OBJMGR and will be
used as input to the linking process in step 18.

8. The Link Editor is used to link the object modules of TXDATA, TASKDF, and TX990
parts created in the above steps. This may be accomplished using the following link
control file:

NOSYMT

PHASE 0,TX990
INCLUDE name |
INCLUDE name 2
INCLUDE name 3
END

K-1 Digital Systems Division

946259-9701

where
name 1 is the pathname for TXDATA object file
name 2 is the pathname for TASKDF object file
name 3 is the pathname for the selected TX990 parts file.

The output of SDSLNK may now be copied to cassette or diskette and used on a TX990
system.

K-2 Digital Systems Division

{@ 946259-9701

APPENDIX L

SUPPORT FOR THE 5MT/6MT I/0 INTERFACE

QDT AYT NLUIMNT
SQrCUIAL DEVILLD

Digital Systems Division

946259-9701

APPENDIX L

SUPPORT FOR THE 5MT/6MT 1I/O INTERFACE SPECIAL DEVICE

L.1 SYSTEM GENERATION PARAMETERS

To include a SMT/6MT Serial I/O Interface Module in a hardware configuration, a new operating
system must be generated, as described in the section on system generation. During execution of
GENTX, the SMT/6MT module must be defined as a special device. The responses to GENTX
prompts are shown in table L-1. Items in all capitals must be entered as shown.

Table L-1. GENTX Parameters for the SMT/6MT Modules
Prompt Response

CHASSIS Number of the chassis in which the interface
card is connected (0-7)

DEV NAME 1 to 4 character name (e.g. 1056); first
character must be alphabetic

DEV TYPE SD

CRU BASE ADDR As shown in the chart on top of the chassis

ACCESS MODE FILE

INT LEVEL As shown in the chart on top of the chassis

IN;IPOSITION As connected to the expansion chassis

TIME-OUT COUNT Desired number, as described in section 9

CRU INT LINE 31

ENTRY LABEL OF DSR DSRSMT

ENTRY LABEL OF ROUTINE = INTRUP
INT BRANCH LABEL UNSOL
EXTENSION DATA carriage return

L.2 INCLUDING THE DEVICE SERVICE ROUTINE

When linking the newly generated system, the module DSR5MT in file :DSRLIB/OBJ on the
TX990 parts diskette must be included. See the paragraph entitled LINKING THE NEW SYSTEM
in section 9, and the section on the Object Manager, OBJMGR, for details on how to include this
DSR.

L-1 Digital Systems Division

le]
%@ 946259-9701

L.3 FUNCTIONAL DESCRIPTION OF THE 5MT/6MT MODULE
There are different modes of operation provided by the SMT/6MT DSR: read status, read-random,
write-random, read-sequential, and write-sequential mode. Any of the read/write modes may be

executed in conjunction with a transmit/receive operation using the same supervisor call block
(SCB), which is described in paragraph L.4.

All operations possible with the SMT/6MT interface module can be performed using the SCB and its
data base. No other control commands are necessary.

These various modes of operation allow the user to output or retrieve information in single bit
format (up to 16 bits at a time) or single or multiple word format (up to 16 words at a time), and
are described in the following paragraphs.

L.3.1 READ STATUS MODE. The read status mode allows the user to perform a self-test type of
operation on the interface module.

When a read status call is made the DSR causes the interface to dump the contents of its output
RAM into its input RAM and then read the input RAM into a 16 word program buffer whose
address is specified in the SCB.

Each time a read status call is made the DSR will place several status flags in the 17th word of the
program buffer. The flag bits have the following significance when set:

Bit Meaning

0-8 Not used

9 Self-test enabled

10-11 If 00 — transmit/receive mode

01 — sequential read/write mode
11 — random read/write mode

12 I/F module busy

13 Power on (0 = power off)
14 I/F interrupt unmasked
15 I/F interrupt present

The usefulness of this call is that the user could output a set of known test data to the output RAM
and then compare it with the information retrieved from the input buffer to see if the two match. If
the two sets of data do not match then this indicates the possibility of a hardware problem.

L.3.2 READ-RANDOM MODE. The read-random mode retrieves information from the input RAM
one bit at a time or up to as many as 16 bits at a time, and is performed after any transmit/receive
cycle.

The SCB provides an address in the calling program for: storage of the input information; the
starting address of the input RAM where the information will be taken from; and a bit count
indicating the number of bits to be input.

With this operation, the status of a single bit can be tested.
The information input during a read-random operation is always placed by the DSR in a one-word

program buffer with the starting RAM bit beginning at the right-most bit position of that word.
Any bit positions to the left not filled with information will be filled with zeroes.

L-2 Digital Systems Division

[o]
%@ 946259-9701

L.3.3 WRITE-RANDOM MODE. The write-random mode outputs information from a buffer to
the output RAM on the SMT/6MT serial interface, one bit at a time, or up to 16 bits at a time.

The information to be output is stored in a calling program buffer whose address is given in the SCB
of the calling program. The SCB also provides the starting address of a location within the calling
program buffer. The DSR starts at this location and outputs the number of bits specified in the bit
count of the SCB, to the SMT/6MT output RAM.

With this operation, a single bit can be output at a time.
The write-random operation is performed before any transmit/receive operation.

L.3.4 READ-SEQUENTIAL MODE. The read-sequential mode retrieves information from the
input RAM in the form of 16 bit words. The read-sequential mode can input as many as 16 words
(256 bits) at a time.

The SCB provides an address pointing to a buffer in the calling program where the input
information will be stored; a RAM base address, pointing to one of the 16 words in RAM where the
information will be taken from; and a count indicating the number of words to be retrieved.

The read-sequential operation is performed after the transmit/receive operation.

L.3.5 WRITE-SEQUENTIAL MODE. The write-sequential mode outputs information from a
buffer to the output RAM of the SMT/6MT serial interface, in 16 bit word format, and up to as
many as 16 words at a time. The information to be output is stored in a calling program buffer
whose address is given in the SCB of the calling program The SCB also prcvides the address which
points to a starting location in the calling program buffer where the information to be output is

taken from. The DSR starts at this location and outputs the number of bytes specified in the
character count of the SCB to the output RAM.

L.3.6 TRANSMIT/RECEIVE OPERATION. The transmit/receive operation allows the user to
output all of the information contained in the output RAM to the SMT/6MT modules while reading
the present status of the modules into the input RAM of the serial interface. Both operations are
performed at the same time.

The transmit/receive (T/R) operation is initiated by clearing a bit in byte 5 of the SCB.

When the T/R operation is completed an interrupt is generated. The calling task is suspended until
the interrupt is received unless the initiate bit in byte 4 of the SCB is set. When the initiate bit is set,
control is returned to the calling task after I/O is initiated. When an interrupt is received the
information from the SMT/6MT modules is then present in the input RAM and can be stored in the
input sotrage buffer.

The transmit/receive operation precedes the read operations and follows the write operations when
the T/R bit is set.

L.4 SUPERVISOR CALL BLOCK FORMAT

The SCB consists of a 7 word block as shown in figure L-1. The first six words in the block are
standard for all types of I/O with the exception of byte 5 which contains user set bits peculiar to
this type of I/O. The remaining word belongs exclusively to this type of 1/O.

Byte @ contains the supervisor call code (§0) for I/O operation.

L-3 Digital Systems Division

o
e@ 946259-9701

10

12

(A)137507

SVC CODE STATUS CODE
1/0 OPCODE LUNO
SYSTEM BITS T/R)| 6

GENERAL PURPOSE DATA BUFFER ADDRESS

RECORD LENGTH

CHARACTER COUNT

STARTING RAM ADDR

BIT COUNT

Figure L-1. SMT/6MT I/O Call Block

Byte 1 is the reserved location where the system places a status code after completion of the

operation.

There are 4 status codes that may be returned by the system.

Normal Completion (90)

[llegal Opertion (92)

Record Loss Due To Power Failure (04)
Operation Timed Out Or Terminated Abnormally (§6)

Byte 2 of the SCB contains the user placed I/O opcode indicating which I/O operation will be

performed.

The I/O operations are:

e OPEN (00). The SMT/6MT serial interface module shall be considered a file oriented
device, so that an ‘OPEN’ operation should be performed before proceeding with any
other operations. The ‘OPEN’ call returns a status code of @@ in byte 1 of the SCB.

e CLOSE (01). The ‘CLOSE’ call ends I/O operation to the device and places a code of 0@
in the status byte of the SCB.

e READ STATUS (95)

e READ-SEQUENTIAL (20,)

L4

Digital Systems Division

946259-9701

e READ-RANDOM (214)
e WRITE-SEQUENTIAL (224)
e WRITE-RANDOM (23)
Byte 3 contains the logical unit number (LUNO).
Byte 4 contains the system flags, described in detail in section 7.
Byte 5 contains the transmit/receive (T/R) bit in bit location 5. This bit initiates the
transmit/receive cycle when reset. The cycle being automatically after a write operation and before

any read operation.

Bytes 6-7 General Purpose Data Buffer Address. This location can serve as two different types of
addresses depending on the type of I/O call being made.

For a read call the value stored here is the input data buffer address. This address points to the
location in the calling program where the data to be input from the modules is stored.

For a write call the value stored here is the output data buffer address. This address points to the
location in the calling program where the data to be output to the modules is stored.

Bytes 8-9 Record Length. This location indicates the maximum number of bytes to be transferred
during a read sequential operation.

Bytes 10-11 Character Count. The system returns the actual number of bytes transferred during a
read sequential operation in this location. For a write sequential operation this location contains the
number of bytes to be output to the module.

Byte 12 Starting Location Address. The value placed in this location applies to both read and write
operations.

-
r]
>
v

e
o
}
D
2
z
D

1

input, the value in this byte ranges from 0 to 255. For words 1nput the value
ranges from O to 15. During the read operation the DSR looks at the starting location address value,
goes to that corresponding address on the input RAM and inputs the number of words or bits
specified by the words/bits count into the calling program buffer. The words or bits are placed in
the program buffer in locations which correspond to the RAM locations.

Byte 13 Bit Count. This location is used by random-type I/O only. The value placed here must be
between 0 and 15 and indicates how many bits are to be input or output. A value of O indicates that
16 bits are to be input or output.

L-5/L-6 Digital Systems Division

{@} 946259-9701

APPENDIX M .

SUPPORT FOR THE 32-IN/TRANSITION DETECTION MODULE
SPECIAL DEVICE

Digital Systems Division

%@ 946259-9701

SUPPORT FOR THE 32-IN/TRANSITION DETECTION MODULE SPECIAL DEVICE

APPENDIX M

M.1 SYSTEM GENERATION PARAMETERS

The 32-In/Transition Detection module may be supported as a special device by a customized
TX990 operating system. To generate a system which includes the module, initiate the system
generation program GENTX, as described in section 9. During the device definition phase, define
the module as a special device by responding to the GENTX prompts as shown in table M-1.

Table M-1. GENTX Parameters for the 32-In/Module

Prompt Response

CHASSIS Number of the chassis to which the module is
connected (0-7)

DEV NAME 1 to 4 character name {e.g., SD32)
DEV TYPE SD
CRU BASE ADDR As shown in the chart on top of the chassis
ACCESS MODE FILE |
INT LEVEL As shown in chart on top of main chassis
IN’(l)"rPOSITION As shown in chart on expansion chassis
TIME-OUT COUNT Desired number, as described in section 9
CRU INT LINE 3i
ENTRY LABEL OF DSR DIGDSR
ENTRY LABEL OF ROUTINE INT321
INT BRANCH LABEL NONSOL
EXTENSION DATA carriage return

M.2 INCLUDING THE DEVICE SERVICE ROUTINE
When linking the object modules of the new operating system together, the module DIGDSR in file
:DSRLIB/OBJ on the TX990 parts diskette must be included.

M.3 SUPERVISOR CALL BLOCK FORMAT
Figure M-1 shows the format of the I/O call block used for all 32-In/Transition module operations.

M1 Digital Systems Division

@ 946259-9701

0 00 STATUS
2 1/0 OPCODE LUNO

4 SYSTEM FLAGS USER FLAGS
6 GENERAL PURPOSE ADDRESS

8 RECORD LENGTH
10 ' CHARACTER COUNT

(A)137508

Figure M-1. 32-In/T Call Block Format

The first three words of the block are standard for all I/O supervisor calls:

Byte O contains the supervisor call code (@) for I/O operation.

Byte 1 is the reserved location where the system places a status code after completion of the

operation.

There are 4 status codes that may be returned by the system:

00 — Normal Completion
02 — Illegal Operation Code
P4 — Recorded Loss Due To Power Failure

06 — Operation Timed Out Or Terminated Abnormally

Byte 2 of the SCB contains the user placed I/O operation code:

e OPEN (p@P) — The 32-In/Transition module is considered a file oriented device; therefore,
an ‘OPEN’ operation should be performed before proceeding with any other operations.
The ‘OPEN’ returns a status code of 0 in byte 1 of the SVC block.

e CLOSE (@1) — The ‘CLOSE’ call ends I/O operation to the device and places a code of @

in the status byte of the SVC block.
e READ 32 BITS (20,) — The ‘READ 32 BITS

of the SCB.

> call reads 32 bits of information from
the module and places it at the location given by the address contained in bytes 6 and 7

Digital Systems Division

%@ 9462599701

. WRITE MASK (224) — The ‘WRITE MASK" call outputs 32 bits of information located
at the address given in bytes 6 and 7 of the SVC to the module. This data acts as a bit
level interrupt mask. When a ‘1’ is output to a particular line on the module this enables a
board level interrupt. The computer however, does not recognize these board level
interrupts until a ‘READ INTERRUPTING BIT’ call is executed. This call allows the
computer to recognize any unmasked board interrupts according to the data in the
‘WRITE MASK” call.

e READ INTERRUPTING BIT (21,6) — The ‘READ INTERRUPTING BIT’ call enabled
the computer to recognize any board level interrupts set up previously by the ‘WRITE
MASK’ 1/O call.

Byte 3 contains the ‘LOGICAL UNIT NUMBER’ (LUNO).
Bytes 4 and 5 contain the system flags and user flags described in Section VII.

Bytes 6 and 7 form a general purpose address which can be used for three separate operations. It
provides for the (1) address of a two word mask, (2) the ad:'ress of the interrupt data, and (3) the
address of a two word block of data. These three addresses are described in the following
paragraphs.

When used with the ‘WRITE MASK’ I/O call, bytes 6 and 7 contain the address of a two word mask
for enabling or disabling module interrupts. Any bits set to a ‘1’ by the two word mask will enable a
corresponding interrupt on the module. A bit reset to a ‘9’ will prevent an interrupt from occurring.

When used with a2 ‘READ INTERRUPTING BIT’ I/O call the module address of the interrupt data
is returned by the system at the address given in bytes 6 and 7. The returned module address
appears in the left-most byte of the word whose address is given in bytes 6 and 7, along with the
status (1 or 0) of the particular line on the module that caused the interrupt. The configuration of

the returned module data looks like this:
BITS o-1 2 3-7 8-15
[ST l MOD ADDR]

(A)137509
When used with a ‘READ 32 BITS’ I/O call, bytes 6 and 7 contain the address pointing to the
location where the 32 bits of information are stored after the operation.

Bytes 8 and 9 contain the maximum number of bytes to be transferred during any operation,
therefore, a value of 4 must be placed here by the user during all operations.

Bytes 10 and 11 contain the actual number of bytes transferred by the system. A value of 4 will be
placed here by the DSR during any operation.

M-3/M-4 Digital Systems Division

o
@ 946259-9701

ALPHABETICAL INDEX

Digital Systems Division

946259-9701

ALPHABETICAL INDEX

INTRODUCTION

The following index lists key words and concepts from the subject material of the manual
together with the area(s) in the manual that supply major coverage of the listed concept. The
numbers along the right side of the listing reference the following manual areas:

e Sections - References to Sections of the manual appear as “Section x” with the symbol
X representing any numeric quantity.

e Appendixes - References to Appendixes of the manual appear as “Appendix y”’ with the
symbol v representing any capital letter.

e Paragraphs - References to paragraphs of the manual appear as a series of alphanumeric
or numeric characters punctuated with decimal points. Only the first character of the
string may be a letter; all subsequent characters are numbers. The first character refers
to the section or appendix of the manual in which the paragraph is found.

e Tables - References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number:

Tx-yy

e Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number:

Fx-yy

e Other entries in the Index - References to other entries in the index are preceded by
the word “See” followed by the referenced entry.

Index-1 Digital Systems Division

946259-9701

Abort 1/0: Put Data Supervisor 6.5.1
Supervisor: Release Memory Supervisor 64.2
Call i i 7.6 Return Common Data Supervisor ... 6.4.5
CallBlock 7.7 Time Delay Supervisor 624
Action, End 5.5 Unconditional Wait Supervisor 6.2.6

Activate Suspended Task VDT:

Supervisor Call 6.2.7 Character Input Supervisor 7.4.2

Activate Time Delay Task Conditional Character Input
Supervisor Call 6.2.5 Supervisor 743

Add Command 35.25 Utility Supervisor 74.1

All(A)Command 114 Wait for I/O Supervisor 7.5

Allocation Unit e e 1.3 Calls:

Area, Dynamic Task 1.1 I/O Supervisor Section VII

Assign Logical Unit Command 35.1.1 Supervisor 1.1, TA-1

Assign LUNO to Change:

Pathname Operation 7.2.19 File Name: '
Automatic Overlay Loading 5.2 (CN) Command e 8.5.6
Operation 7.2.23

Backspace Command 3.5.33 Priority Supervisor Call 6.2.2

Backup: Protection (CP) Command 8.5.7
and Initialize Utility Program 10.1 Character Mode 14.2
Error Messages 10.5 Clear Breakpoint Command 3524

Backward Space Operation 7.29 Close:

Bid Task Supervisor Call 6.2.1 Operationcccvuuu... 7.2.3

Binary to Hexadecimal ASCII Supervisor Unload Operation 7.2.6
Call, Convert 6.3.3 With EOF Operation 7.2.4

Blank Compressed 1.3.2 Code, lllegal Interrupt TH-1

Block, Supervisor Call 5.6 Code Numbers:

Boot Copy (BC) Command 8.5.1 Device T7-3

Bspace Command 3533 File i, T7-3

Codes:

Call: Fatal Task Error TH-1
Abort IO Supervisor 7.6 I/OError Appendix |
Activate Suspended Task Task State Appendix G

Supervisor 6.2.7 Command:
Activate Time Delay Task Add o 3525
Supervisorc.0 0. 6.2.5 AL(A) .o 11.4
Bid Task Supervisor 6.2.1 Assign Logical Unit 3.5.1.1
Block. Supervisor 5.6 Backspace 3533
Change Priority Supervisor 6.2.2 Boot Copy(BC) 85.1
Convert Binary to Decimal ASCII Change:
Supervisor 0oL 6.3.1 File Name (CN) 8.5.6
Convert Binary to Hexadecimal ASCII Protection (CP) 8.5.7
Supervisor 6.3.3 Clear Breakpoint 3524
Convert Decimal ASCII to Binary Compress File (CM) 8.5.5
Supervisor 6.3.2 Copy(C) ...t 11.4
Convert Hexadecimal ASCII to Binary Define Qutput (DO) 8.5.8
Supervisor 0. 6.3.4 Delete:
Date and Time Supervisor 6.6 File(DF) 8.54
Do Not Suspend Supervisor 6.2.3 Procedure 3518
End of Program Supervisor 6.2.9 Task 35.1.7
End of Task Supervisor 6.2.8 Diskette:
File Utility Supervisor 7.3 Dump(DD) 8.5.11
General 1/0O Supervisor 7.2 Load(DL) 8.5.12
Get Common Data Address Done(D) 11.4
SUpervisor 6.4.4 Dump:
Get Data Supervisor 6.5.2 Memory 3.5.2.1
Get Memory Supervisor 6.4.1 Workspace 35.28
Get Own ID Supervisor 6.2.11 Execute Task 35.14
Get Parameters Supervisor 6.2.10 File:
Get System Table Supervisor 6.4.3 Dump(FD) 8.5.13
1/O Supervisor 7.2 Load (FL) 8.5.14
Make Task Privileged Supervisor ... 6.2.12
Index-2

Digital Systems Division

946259-9701

Command: (Continued)
Format

Forward Space 35
Initialize Date and Time 3.5.
D)y ... 8.5
Insert (1)
Install Procedure 3
Install Task 3
Jump Instruction 3
Kill I/O Operation 35
Kill Task 3
Load:
Memory 3.
Program 3
Map:
Diskette 8.5
File(MF) 8
Print Time and Date 3.
(TH e 8
3
3

...........

................

Procedure Status
Release Logical Unit
Replace(R)
Rewind Device 3.5.
Set:

Breakpoint 3.

System File (SF)
SKip(S) - oo it e
Status of I/O
Subtract
Task Status
Terminate

...........

~RhiuoNCOY W vouumoabUn—~ER

................

SYSUTL(TE) 8
Time 3.
Trace 5
Commands:

OCP i i,

Task Support

SYSUTL
Common Memory
Communication Package (OCP),

Operator Section 111
Compress File:

(CM)Command 8.5.5

Operation
Construction Phase 934
Control;

Program

Error Messages
CONTROL,/OBJ
Convert:

Binary to Decimal ASCII

Supervisor Call

Binary to Hexadecimal ASCII

Supervisor Call

Decimal ASCII to Binary

Supervisor Call

Hexadecimal ASCII to Binary

Supervisor Call
Copy (C) Command
Create File Operation

—NUpbhINBADNDW

Decrement Sector Number (D)

Directive 1342
Default Values 442
Define Output (DO) Command 8.5.8
Definition Phase 933
Delete File:

(DF) Command 85.4

Operation 7.2.20
Delete:

Procedure Command 35.1.8

Protect File Operation 7.2.26

Task Command 35.17
Device:

Code Numbers 173

Keywords, GENTX T9-3

Name00. v, 14.1

Table, Physical C.2
Directive:

Decrement Sector Number (D) 13.4.2

Increment Sector Number (I) 134.1

Modify Displayed Sector Data (M) .. 13.4.7

Print Display (P) 13.4.3

Set Data Mode to ASCII (A) 1344

Set Data Mode to EBCDIC(E) 1345

Set Data Mode to

Hexadecimal (H) 13.4.6
Directives, Diskette Dump Utility TI3-1
Directory 1.3
Diskette Dump (DD) Command 8.5.11
Diskette:

Dump:

{DSKDMP) Utility

Program Section XIII

Utility Directives T13-1
Diskette Load (DL) Command 8.5.12
Division:

Data 5.13

Procedure 5.1.3
Do Not Suspend Supervisor Call 6.2.3
Done (D) Command 114
DSKDMP Error Messages i3.5
DSR C2
DSRLIB/OBJ 9.5
Dump (DSKDMP) Utility

Program, Diskette Section XIII
Dump Memory Command 35.2.1
Dump Utility Directives, Diskette T13-1
Dump Workspace Command 3528
Dynamic:

Task Area 1.1

Tasks i 1.1
DYNTSK/OBJ 9.5
End Action 55
End of Program Supervisor Call 6.2.9
End of Task Supervisor Call 6.2.8
Error:

Codes:

Fatal Task TH-1

O ... Appendix 1
Error Messages:

BACKUP 10.5

Control Program T4-2

Digital Systems

Division

946259-9701

Error Messages: (Continued) Operationsooveuun.. 7.2.1
DSKDMP 13.5 Supervisor:
GENTXc .. T9-6 Call, 7.2
LIST80/80 12.1.2 Calls Section VII
OBJIMGR TI1-1 Illegal Interrupt Code TH-1
OCP ... i i T3-2 Increment Section Number
Generalt T3-2 () Directive 13.4.1
Operandc00nvennnn 3-3 Initialize Date and Time:
SYSUTL 0oy T8-1 (ID) Command 8.5.15
Execute: Command00vuen... 354.1
Commandscovv.0... 35.14 Initialize Utility Program, Backup and .. 10.1
Task Command 35.14 INPUT: Prompt 44.12
Extended Operation Routines C3 Insert (I) Command 114
Extensionoeeiineenn.. 1.4.1 Install Procedure Command 3.5.1.6
Install Task Command 3.5.1.5
Fatal Task Error Codes TH-1 Interfaces, Operator 1.6
Features, File Management 1.3 Interrupt Code, Illegal TH-1
File: Interrupt Handler I.1
Code Numbers T7-3
Dump (FD) Command 8.5.13 Load Memory Command 35.2.2
Load (FL) Command 8.5.14 Load Program Command 3.5.1.3
Management Features 1.3 Loading:
Management Tasks J4 Automatic Overlay 5.2
Modeciiiiuenn. 1.4.2 the Operating System Section Il
Name0ciivin.. 1.4.1 Logical /O 1.4
System ..., i 10.4 LUNOs i, 1.4
Utility Supervisor Call 7.3
Utility Task J.5 Make Task Privileged
Files: Supervisor Call 6.2.12
Program 1.34 Management Features, File 1.3
Relative Record 1.3.3 Map Diskette Command 8.5.9
Sequential 1.3.2 Map File (MF) Command 8.5.10
FMPLIB/OBJ 9.5 Memory, Common 4.5
Format: Messages, SYSUTL Error T8-1
Command 34 Mode:
SYSUTL Command 8.4 Characterouvuvvennn 1.4.2
Forward Space: File 0 ... 1.4.2
Command0000uu.. 3.5.3.2 I/O e 1.4.2
Operationccouevunn 7.2.8 Read Status L.3.1
Read-Random32
General Error Messages, OCP T3-2 Read-Sequential L34
General I/O Supervisor Call 7.2 Record 1.4.2
Generation, System Section IX Write-Random L.3.3
GENTX: Write-Sequential L.3.5
Device Keywords T9-3 Modify Displayed Sector Data
Error Messages T9-6 (M) Directive:..... 13.4.7
Prompts T9-1 Modules, User-Supplied Appendix C
Utility Program 9.1
Get: Name:
Common Data Address Device00, 1.4.1
Supervisor Call 6.4.4 Filec0iiiiiii.. 1.4.1
Data Supervisor Call 6.5.2 Name Support Task, Volume J.7
Memory Supervisor Call 6.4.1 Names, Volume 1.3.1
Own ID Supervisor Call 6.2.11
Parameters Supervisor Call 6.2.10 Object Manager (OBJMGR) Utility
System Table Supervisor Call 6.4.3 Program Section XI
OBJMGR Error Messages TI1-1
Hexadecimal ASCII to Binary Supervnsor OCP:
Call, Convert 634 Commands 3.5
Error Messages T3-2
I/0: General Error Messages T3-2
ErrorCodes Appendix | Operand Error Messages T3-3
Logical 1.4 Task Support Commands 3.5.1
Mode 1.4.2 OCPLIB/OBJ 9.5
Index-4

Digital Systems Division

946259-9701

Open Operation 7.2.2 GENTX Utility 9.1
Open Rewind Operation 7.2.5 LIST80/80 (LISTR0)
Operand Error Messages, OCP T3-3 Julity L L. Section XIi
Operating System T9-7 Object Manager (OBJMGR)
Loadingthe Section 11 Utility Section XI
Operation: System Utility Section VIII
Assign LUNO to Pathname 7.2.19 Program: Prompt 44.1.1
Backward Space 729 Programming Tasks Section V
Change File Name 7.2.23 Prompt:
CloSE v v v e e e 7.2.3 Input: 44.1.2
Close Unload 7.2.6 Options: 44.1.4
Close with EOF 724 Output:5% 44.13
Compress File 7.2.22 Program: 4.4.1.1
Create File 7.2.18 Prompts, GENTX T9-1
DeleteFile 7.2.20 Put Data Supervisor Call 6.5.1
Delete Protect File 7.2.26
Forward Space 7.2.8 Read ASCII Operation 7.2.10
(0737 « 722 Read Device File Status Operation . 727
OpenRewind 7.2.5 Read Direct Operation 7.2.11
Read ASCII 7.2.10 Read Status Mode L.3.1
Read Device File Status 7.2.7 Read-Random Mode L.3.2
Read Direct 7.2.11 Read-Sequential Mode ‘L34
Release LUNO Assignment 7.2.21 Rebid Task J.6
Rewind 7215 Record Mode 1.4.2
Transmit/Receive L.3.6 Rewind Operation 7.2.15
Unload 7.2.16 Routines:
Unlock ..o oo i, 72.17 Extended Operation C3
Unprotect File 7.2.24 User-Supplied Supervisor Call C4
Verify Pathname Syntax 7.2.27
Write ASCIT 72.12 Scheduler Task 1.1,5.3
Write Direct . . oo o o oo e 7213 Sequential Files 1.3.2
Write EOF 7.2.14 Set:
Write Protect File 7.2.25 Breakpoint Command 3523
Operations, [/O 7.2.1 Data Mode to ASCII
Operator: (A) Directive 13.44
Communication Package Set Data Mode to EBCDIC
OCP)civvn.. Section II1 (E) Directive 134.5
Interfaces 1.6 Set Data Mode to Hexadecimal
OPTIONS: Prompt 44.14 (H) Directive 13.4.6
OUTPUT: Prompt 44.13 Set System File (SF) Command 8.5.2
Overlay Loading, Automatic 5.2 Skip(S)Command 11.4
Overlaysoviiinnne .. 5.2 Shlice, Time 5.3
State Codes, Task Appendix G
Parameters, System Timing T9-2 Status of I/O Command 3.5.35
Pathnames 1.4.1 SubCommands 3.5.2.6
PDT .t e e e e C.2 Subfiles 1.3.2.1
Phase: Subtract Command 3.5.2.6
Constructionouveeunnn.. 934 Supervisor:
Definitionc.uou.... 9.3.3 Call:
Physical Device Table C.2 Abort /O 7.6
Print Display (P) Directive 13.43 Activate Suspended Task 6.2.7
Print Time and Date: Activate Time Delay Task 6.2.5
(ThHCommand 8.5.16 Bid Task 6.2.1
Commandovou... 3.542 BL, Abort /O 7.7
Procedure Division 5.1.3 Block 5.6
Procedure Status Command 35.36 Change Priority 6.2.2
Program: Convert:
Backup and Initialize Utility 10.1 Binary to Decimal ASCII 6.3.1
Control 1.6, 4.1 Binary to Hexadecimal ASCII .. 6.3.3
Diskette Dump (DSKDMP) Decimal ASCII to Binary 632
Utility Section XIII Convert Hexadecimal ASCI1
Error Messages, Control T4-2 toBinary 6.3.4
Files 1.3.4
Index-5

Digital Systems Division

946259-9701
Supervisor: (Continued) Terminate:
Dateand Time 6.6 Command 355
Do Not Suspend 6.2.3 SYSUTL (TE) Command 8.5.17
End of Program 6.2.9 The Operating System, Loading . . . Section II
Endof Task 6.2.8 Time:
File Utility 7.3 Command 3.54.2
General /O 7.2 Delay Supervisor Call 624
Get: Shice oL, 1.1,53
Common Data Address 6.4.4 Timing Parameters, System T9-2
D 6.5.2 Trace:
Memory 6.4.1 Command 3.5.2.11
OwnlID 6.2.11 Transmit/ Receive Operation L.3.6
Parameters 6.2.10 CIXLIB/OBJ 9.5
System Table 6.4.3 TXDATA 9.1
/O .. e . 7.2 .)
Make Task Privileged 6.2.12 Unconditional Wait Supervisor Call 6.2.6
PutData oo, 6.5.1 Unit, Allocation 1.3
Release Memory 6.4.2 Unload Operation 7.2.16
Return Common Data 6.4.5 Unlock Operation 7.2.17
Routines, User-Supplied C4 Unprotect File Operation- 7.2.24
TimeDelay624 User-Supplied:
Unconditional Unit 6.2.6 Modules Appendix C
VDT: Supervisor Call Routines C4
Character Input 7.4.2 Utility: o
Conditional Character Input ... 7.4.3 Directives, Diskette Dump -T13-1
Utilityvtiiiinn.. 7.4.1 Program:
WaitforI/O 75 Backup and Initialize - 10.1
Calls o ovvvne e, 1.1, TA- Diskette Dump -
O i Section VII (DSKDMP) Section XIII
System: GENTX 9.1
Filecoiiiiiiiunnnnann. 10.4 LIST80/80 (LIST80) Section XII
Generation Section 1X Object Manager :
Tasks . .vvii . Appendix J (OBJMGR) Section X1
Timing Parameters T9-2 System DRI Section VIII
Utility Program Section VIII Supervisor Call, File we.. 13
SYSUTL ... 8.1 Values, Default 442
(TE) Command, Terminate 8.5.17 VDT:
Command Formatuuu... 8.4 Character Input Supervisor Call 7.4.2
Commandsvvvvnnnnnnnn 8.1 Conditional Character Input
Error Messages T8-1 Supervisor Call 7.4.3
Utility Supervisor Call 7.4.1
Table, Physical Device Cc2 Verify Pathname Syntax Operation ... 7.2.27
Task: Volume:
Area, Dynamic 1.1 Name Support Task J.7
Error Codes, Fatal TH-1 Names 131
File Utilityc..... J5 Wait for 1/O Supervisor Call 7.5
Rebidcovuiiinna... J.6 Write: C
Scheduler 1.1,5.3 ASCII Operation 7.2.12
State Codes . .. v v o Appendix G Direct Operation P 7.2.13
Task: EOF Operation 7.2.14
Status Command e 3.5.3.4 Protect File Operation 7.2.25
Support Commands, OCP 3.5.1 Random Mode L.3.3
Volume Name Support J.7 Sequential Mode L.3.5
TASKDF e 9.1
Tasks . ..o i i i i e 1.1
Dynamic, 1.1
File Management J.4
Programming Section V
System Appendix J
Index-6

Digital Systems Division

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title:— Model 990 Computer TX990 Operating System Programmer’sGuide
(Release 2) (946259-9701)

Manual Date: 15 December 1977 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Piease list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN US.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE). TAPE AND MAIL

FOLD

FIRST CLASS

PERMIT NO. 7284
DALLAS, TEXAS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

- POSTAGE WILL BE PAID BY

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

P.0. BOX 2909 - AUSTIN, TEXAS 78769

ATTN: TECHNICAL PUBLICATIONS
MS 2146

FOLD

ﬁ

s

o
<

/]

TEXAS INSTRUMENTS

INCORPORATED

DIGITAL SYSTEMS DIVISION
POST OFFICE BOX 2909 AUSTIN, TEXAS 78769

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	11-04
	11-05
	12-01
	12-02
	13-01
	13-02
	13-03
	13-04
	13-05
	A-00
	A-01
	A-02
	A-03
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-00
	C-01
	D-00
	D-01
	D-02
	D-03
	D-04
	E-00
	E-01
	E-02
	F-00
	F-01
	G-00
	G-01
	H-00
	H-01
	H-02
	I-00
	I-01
	I-02
	J-00
	J-01
	J-02
	K-00
	K-01
	K-02
	L-00
	L-01
	L-02
	L-03
	L-04
	L-05
	M-00
	M-01
	M-02
	M-03
	index-0
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	replyA
	replyB
	xBack

