OPERATION AND MAINTENANCE
INSTRUCTIONS:

ASC-4X CENTRAL PROCESSOR (CP-4X)
VOLUME 1

TEXAS INSTRUMENTS

INCORPORATED

Equipment Group
P.O. Box 2909
Austin, Texas 78767

931443-2
January 1976

OPERATION AND MAINTENANCE
INSTRUCTIONS:

ASC-4X CENTRAL PROCESSOR (CP4X)
VOLUME 1

(:) Texas Instruments Incorporated 1976
A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the prior consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

l|ST or EF FECTIVE PAGES Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Operation and Maintenance Instructions: ASC-4X Central Processor (CP-4X). Vol. 1, P/N 9314432

Original Issue - - May 1974
Revised and Reissued| . - - -« .« January 1976

Total numbe » of pages in this publication is 298 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO, NO. NO. NO. NO. NO.
Title . .
Effective Pages

iili - x
1-1-1-32
2-1/2-2
3-1/3-2

4-1 -4.252 .

CoocCcooo

Paragraph

1.1
1.2
1.3
14
14.1
142
143
14.4
145
14.6
1.4.7
148
149
1.4.10
1.4.11
14.12
14.13
14.14
14.15
14.16
1.5
1.6
1.7
1.8
19
19.1
192

2.1

3.1

4.1

42
4.2.1
42.1.1
42.12
4.2.2
423
424
424.1
425

TABLE OF CONTENTS
Title Page

SECTION 1. GENERAL DESCRIPTION

General . . . e 1-1
PUIPOSE . .+« v o o e e e e e e e e e e e e e e e e e 1-1
ASC System OVEIVIEW v v v v o o e o v e e e e e e e e e e 1-1
Functional Description+« « v« o o e e e e e e e e e 1-3
Address Registers and Controlo 1-5
cRegister Fileo e e e 1-5
Instruction Files & o o i e 1-5
Instruction Registers o . o .o oo e e e 1-5
Address Modification e h e e e e e e e e e e e e e e e e e 1-5
Address and Operand Registers o oo 1-5
IMM/REG RegIStErS . . . v v v v v v v v e e e e e e e e e e 1-5
Memory Address Controlo oo 1-6
Memory Buffer Fileo oo 1-6
MAB/MCD Operand Registers« « « v o v v o oo oo e 1-6
AU Control Decode . .« v v v v e 1-6
Buffer Update and Store« . . o oo e e 1-6
AB/CD Operand Registers« o ot vt e 1-6
Pipeline Path Control« . . oo e e 1-6
Arithmetic Pipeline 0oL oo e e 1-6
EF Output Register o o o v v v v o e 1-7
General Characteristics« v o v e e e e e e e e e e e e e e e e e e e 1-7
CP Instruction Set e e e e e e e e e e e e e 1-7
Instruction FOrmat o e o e e e e e e e e e e e e e e e e e 1-24
Data FOIMAatS . . -« v v v v e 1-25
Physical Descriptiono e e e e e e e e 1-27
Cooling SYStemM« v v i e e e e e e e e e e e e e e 1-27
Logic CIrCUits « « « « v v v v e e e e e e e e e 127

General e 2-1

General . . . e 3-1

General e 4-1
TPU Level 0 . . o o o o e 4-1
Look-Ahead Register (LA)« « v o v v o v ot e e 4-1
Cycle Interruptions« o o . o e o e e e e e e e e e e e e e e 4-1
Output COmMPAre« v o o v v v o e s e e e e e e e e e e e 4-2
Load Look-Ahead Counter « « « « « o e e et e e e e e e e 4-2
Branch Address Register (BA)« o . oo oo 42

. Present Address Register (PA) o ..o oo e 4-2
PAINPULS L o L e e e e e e e e e e e e e e e e e 4-2
Output Address Register (OA)« ¢« o v v b 4-13

i Advanced Scientific Computer

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4.2.5.1 P3 Register Output 4-13
4252 LA Register Qutput 4-13
4253 AR Register Qutput 4-13
4254 Load/Store Details 4-13
4.2.6 KCM Memory Interface File 4-13
4.2.6.1 Instruction Processing 4-13
4.26.2 Load/Store Details 4-13
4.2.6.3 Store File ... 4-14
427 KA/KB Current Instruction Files 7 4-14
4.2.8 File Select 4-14
429 Word Select 4-14
4.2.10 Level O Controller00 4-14
4.3 PULevel I oo 4-14
4.3.1 PIRegistero 4-15
4.3.2 Instruction Register (IR) 4-15
4.3.3 Level 1 Controller 4-15
4.4 Register File 4-15
4.4.1 Base Address File, Aand B 0 4-15
4.4.2 General Storage File, Cand D 4-15
443 Index File. I 4-15
4.4.4 Vector Parameter File, V. 4-15
45 IPU Level2 e e e 4-16
4.5.1 Level 2 Controller 4-16
4.5.2 Level ZROM . ..o 4-16
453 RIRegister 4-16
454 Indexing Register (XR) 4-17
4.5.5 Displacement Register (NR) 4-17
4.5.6 PXRegister . ..o 4-18
4.5.7 Base Address Register (BR) 4-18
4.6 PULevel 3. . ..o 4-18
4.6.1 Modification Adder 000 4-18
4.6.2 Adder Resultant (AR) Register 4-18
4.6.3 P3Register 4-18
4.6.4 Level SROM oo 4-19
4.6.5 ROM Supplement Register (C3) "' 4-19
4.6.6 R3Register 4-19
4.6.7 Level 3 Controller 4-19
4.6.8 Branch, Indirect, Execute Comparison 4-19
4.7 PULevel4 ..o 421
4.7.1 Level 4 Controller e e 421
4.7.2 Register Stack 4-21
4.7.3 Register Hazard Comparison """ 4-21
474 AORegister 423
4.7.5 ZModel Stack 4-23
4.7.6 o Operand Hazard Comparison 423
4.7.7 Near Range Instruction Hazard Comparison 4-25
4.7.8 Far Range Instruction Hazard Comparison 4-25
4.79 RO Register 4-26
4.8 Master Hard Core (MMHCA) 4-26
iv

Advanced Scientific Computer

TABLE OF CONTENTS (Continued)

Paragraph _ Title Page
- 4.8.1 Capture Common Command Register (Capture CCR) 4-27
482 MCW, MCP and Error Monitor e e 427

4.8.2.1 CP Control Register 4-27

4822 CPSwitches 427

4823 MHC Response 4-28

483 Sequence Control e e e e e e e e e e e e e 4-28

484 CCR Output Register e e e 4-28

485 Unit Register Read 4-32

49 Memory Buffer Units (MBUS) 4-32

49.1 Memory Interface File (SC), 4-32

49.2 Vector Buffer File (XB, XH, YB, YH) 4-32

493 Operand Buffer Files (X, Y) 4-32

494 Xand Y Word Select 4-33
- 495 MAB/MCD Output Registers 4-33

49.5.1 Scalar Data Paths00 4-33

4952 Vector Data Paths 0L 4-33

49.6 REG Register L .4-33

49.7 IMM Register L, 4-33

498 Z Register Select L. 4-33

499 Z Resultant Storage File 4-33

49.10 ZH Half Phase Holding File 4-34

49.11 ZB Memory Storage File 4-34

49.12 ROM Address Register . . .". L. 434

49.13 ROM Address Select 4-35

49.14 MBUROM 4-35

49.15 ROM Output Register 4-35

49.16 Select Next Controller 4-35

49.17 AU Control L Lo 4-35
- 49.18 AUModelo oL 4-35

49.19 Z Data and Address Control 4-35

4.9.20 Level S Controller, L 4-36

49.21 Level 6 Controller 4-36

49.22 Inner Loop Storage Register (NIS) 4-36

49.23 Self Loop Count Register 4-36

49.24 Vector Initialization Control 4-36

49.25 Vector Loop Controlo 4-36

49.25.1 Selt Loop Counter (FLP) 4-36

49252 Inner Loop Counter (FNI) 4-37

49253 Outer Loop Counter (FNO) 4-37

49254 Vector Controller e 4-37

49.26 MBU Unit Hard Core 4-38

4927 Vector Address Generation (A/B Vectors) 4-38

49.27.1 Vector Address Register (NAA/NBA) 4-38

49272 Address Adder Lo L 4-38

49.27.3 Octet Request Register (SBA/YBA) e e e e e e e, 4-38

49274 Circular Address File (CAF) 4-39

49.28 Buffer Operand Address Register (XA/YA) 4-39

49.29 C Vector and Storage Address Generation 4-39

49.29.1 C Vector Address Register (NCA) e e e e e e 440

v Advanced Scientific Computer

TABLE OF CONTENTS (Continued)

Paragraph Title Page
49.29.2 Address Adder . . 0L L L0 L L0 o oo 440
49.29.3 Scalar Storage Address Register (NSA) o o oL 0oL 4-40
49.294 Resultant Storage Address Register (ZA) e e e e e e e 440
49.295 Haif Phase Holding Register (ZAH) 4-40
4.9.29.6 Memory Storage Address Register (ZBA) o000 000 4-40
49.29.7 Halfword Modified Indicator Register (ZM) 4-40
49.2938 Half Phase Holding Register (ZMH) 441
49299 Memory Storage Modified Halfwords Register (ZBM) 4-41
4.9.29.10 Storage Word Addiess Register (ZEA) . . . 000 0 0oL 4-41
49.30 Central Memory Requester (CMR)o L. 441
4.9.30.1 CMR Priority Gate S P 441
4.9.30.2 Meiory Octet Address Register (QA) o L. .44)
49303 Asynchronous Address Register (AA) S 4-41
49.30.4 Halfword Bits Check and Merge e 4-42
4.9.30.5 Zone Control Bit Registers (ZCB/AZC)o 442
49.30.6 CMR Control L Lo e s 442
4.9.30.7 Cue File Lo 4-42
4.10 AUldnput o 0oL e e e e e e e e e e e e 443
4.11 Exponent Subtract L L oL Lo L e 443
4.11.1 Input Select L Lo Lo 4-43
4.11.2 Subtiact Exponents and Compare Magnitude 0000000 4-43
4.11.3 LOR Register o o Lo 445
4114 SOR Register © L. 445
4.11.5 ED Register L L. oo oo 445
4.11.6 Compuare Code L L L o e e e e 445
4.12 Align and Right Shift o o . oL oL 445
4.12.1 Select . . . L L L Lo o e e 445
4122 Hex Shift Decode . . . 0 o . o o o oo oL L0 L 4-45
4123 Bit Shift Decodeo Lo e 4-45
4124 Shift Sequence L ..o oo Lo I =
4.12.5 Not Shifted Rewster (NS) 446
4.13 Adder Section L L L L L Lo L oL o e e e e 446
4.13.1 Input Selecto Lo oL L 416
4.132 Adder . . © L L e e 4-46
4.13.3 Adder Output Register (ADD)Yo Lo Lo 446
4.14 Accumulator . . L L L L L L L L o e e e e 446
4.14.1 Operand Select oL Lo 448
4142 Adder . . . Lo L e e 445
4.14.3 Accumulator Output Register (ACC) 4-48
415 Output . . . L L L L L e e e e e e e 4-48
4.15.1 Logical ()peralluns 4-48
4152 Output Select, o 448
4.153 EF Register L. oL oL 4-48
4.15.5 Result Code 4-49
4.15.6 Arithmetic Exception Cells (Ah) s 4-49
4.16 Normalize Section L0 0oL Lo oo e .. .449
4.16.1 Input Selecto e 4-49
4.16.2 Most Significant 1 Searcho 00000000 o . .4-50
4.16.3 Left Shift Code Register450
4.16.4 Exponemt Adder Lo Lo L . .4-50
vi

Advanced Scientitic Computer

Paragraph

4.16.5
4.16.6
4.16.7
4.16.8
4169
4.16.10
4.16.11
4.17
4.17.1
4.17.2
4.17.3
4.17.5
4.17.6
4.17.7
4.17.8
4.178.1
4.17.8.2
4.17.8.3
4.17.84
4179
4.17.10
4.17.11
4.18
4.18.1
4.19
4.20
4.20.1
4.20.2
4.21
4.22
4.22.1
4.22.1.1
4.22.1.2
4.22.1.3
4.22.14
4.22.15
4.22.1.6
4.23
4.23.1
4.23.1.1
4.23.1.2
4.23.1.3
4.23.2
42321
4.23.2.2
4.24
4.25
4.26
427
4.28

TABLE OF CONTENTS (Continued)

Title Page

Left Shift Hex Decode o e e e 4-50
Hex Shift Network/Bit Shift Network 4-50
Normalized Output Register NORM) 4-50
Left Shift Bit Decode L. 4-52
Bit Shift Magnitude Determination 4-52
Bit Shift Encode and Register 4-52
Overflow Check o o . e e e e 4.52
Multiplier Section L L L L o e e e s 4-52
Dividend Register L L e 4-52
Divisor Registero 4-53
P-Term Logic o L e e e e e e e e 4-53
Multiplicand/Multiplier Select e .. 4-53
Recode L oL e e e e e 4-53
Fanout oL . 4-54
Form Summands oL Lo o 4-54
Overflow Salvage 4-54
Sign Extension Summand L. Lo oL Lo Lo Lo 4-56
Division Summand oL oL Lo Lo 4-56
Two’s Complement e e e 4-56
Adder Tree L Lo o e e e e 4-56
Pseudo-Sum (PS) Register 4-56
Pseudo-Carry (PC) Register i e 4-56
Multiplication Theory L. e 4-58
Algorithm Derivation L. 0L s 4-58
AU Division Theory L. e e e 4-60
Sign Extension Algorithm L L L. 4-61
Two’s Complement Formation 4-63
Algorithm Derivationo Lo 4-63
AU Unit Hard Core o o i e e e e e e e e 4-64
Controller Descriptions and Flowcharts 4-65
Instruction Flow L. e 4-65
Indirect Addressing L L. e e, 4-65
Execute Instruction L. Lo 4-67
SKIps e e e e e e e e e e e e e, 467
Branches L L L e e, 4-67
Store File and Load File Instructions 4-67
Push, Pull Instructions 4-67
Level 5 Scalar Input Controller e e e e e e e e 4-174
Input Stage Not Active NOT MBIAC) 4-174
Load Immediate Operand 4-174
Load From X Buffer (LDXA) 4-174
Load From Y Buffer (LDYA) 4-180
Input Stage Active (MBIAC) 4-180
Transfer OK e 4-180
Transfer Not OK oo 4-181
Level 6 Controller - Scalar Mode 4-182
Level 6 Controller - Vector Mode 4-182
Select Next Controller oo 4-190
Central Memory Requester (CMR) 4-193
Other Control Circuits e e e e 4-209

vii Advanced Scientific Computer

LIST OF ILLUSTRATIONS

Figure Title Page
1-1 ASC Simplified Block Diagram00 1-2
1-2 4XCP Unit Structure o v v e e e e e e e e e e e e e 1-3
1-3 Central Processor Block Diagram o000 14
1-4 Scalar Op Code Map e 4-12
1-5 Vector Op Code Map o o Lo e e 1-23
1-6 ASC Instruction Word Format Lo oL oo 1-25
1-7 T-Field Subdivision L oL e e e 1-25
1-8 32-Bit, Fixed Point Data Word Format 1-26
1-10 32-Bit, Floating Point Data Word Format 1-27
1-11 64-Bit, Floating Point Data Word Format 1-27
1-12 Typical ASC Central Processor Four-Pipe Configuration 1-28
1-13 Schematic Representation of CP Cooling System 1-29
1-14 ECL Circuits o o . oo e e e e e 1-30
4-1 Central Processor Block Diagramo L. 4-3
4-2 Vector Parameter File Format oL 4-16
4-3 Branch, Indirect, Execute Comparisons 0oL 4-20
44 Register Hazard Comparisons 00 4-22
4-5 Operand Hazard Comparisons« « v v v o i e e e 4-24
4-6 Near Range Instruction Hazard Comparisons 4-25
4-7 Far Range Instruction Hazard Comparisons 4-26
4-8 Common Command Register and Transfer Bit 427
49 CP Control Register Lo e e 4-28
4-10 CP Response Byte o 4-29
4-11 CP Condition Byteo e 4-31
4-12 Typical CAF Word e e 4-39
4-13 Exponent Subtract and Compare Logic Flowchart 4-44
4-14 Simplified Right Shift Netowrk (Bit 16 of Operand) 4-47
4-15 Simplified Left Shift (Normalize) Network (Bit 16 of Operand) 4-51
4-16 Multiplier Word Recode Bit Assignments Lo L . 4-53
4-17 Summand Array L L L L e e e e e e e e e e e e e e e e 4-55
4-18 Simplified Adder Tree Block Diagram L. L. 4-57
4-19 CP Hardware Utilization-Division Process4-62
4-20 IPU Control o e e e e e e 4-66
4-21 Level O Controller Flowchart 4-68
4-22 Level 1 Controller Flowchart 4-71
4-23 Level 2 Controller Flowchart 4-80
4-24 Level 3 Controller State Diagram 4-85
4.25 Level 3 Controller Flowchart 4-87
426 R/Z Join Flowchart 4-153
4-27 Arithmetic Exception and Arithmetic Exception Mask Control 4-156
4-28 Compare Code Register Controller Flowchart 4-157
4-29 Result Code Register Controller Flowchart 4-158
4-30 Level 4 Controller Flowchart 4-159
4-31 Level 4 IPUModels e 4-160
4-32 Leve 14 MBU Model e 4-161
4-33 Level 4 Select Next Controller Model 4-162
4-34 Level 4 IPU's AUModelo 4-164
4-35 Level 4 PACAUO =1 e e e e 4-166
viii

Advanced Scientific Computer

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
4-36 Level 4 AU OQutput to File e 4-168
4.37 Level 4 Forced Write Controller, 4-169
4-38 Level 4 ZPFULL Controller« v v i v i i e i e 4-171
4-39 Level 4 ZBFULL Controller o e 4-172
4-40 Level 4 ZPTNS Controller e 4-173
4-41 Level 5 Scalar Input Controller Flowchart 4-175
4-42 Level 6 MBU Output Control Flowchart - Scalar 4-183
4.43 Level 6 MBU Output Control Flowchart - Vector 4-184
4-44 Level 6 ROM Address Selection Flowchart (Scalar and Vector) 4-189
4-45 Select Next Controller Flowchart 4-191
4-46 CM Requester Flowchart 4-194
4-47 CAF Output Control Flowchart 4-210
4-48 Vector Initialization Control Flowchart 4211
4-49 A/B Vector Address Generation Flowchart v v v i 4-216
4.50 C Vector Address Generation Flowchart 4-233
4-51 AU Control - PACR Flowchart 4-239
4-52 AU Control - CATAR Flowchart 4-241
4-53 AU Control - GATAI Flowchart 4-242
4-54 AU Control - PCAUO Flowchart 4.243
4.55 AU Control - GATAQ) Flowchart 4-245
4.56 Z Address Flow and C Control Flowchart 4-246

4-57 Z Data Flow Flowchart e 4252

LIST OF TABLES
Table Title Page
1-1 Central Processor General Characteristics v o v ... 1-7
1-2 Vector Instruction Set L L Lo oo e 1-8
1-3 Scalar Instruction Set L. L e e e 1-13
14 ECL Circuit Types« o v v i i e i e e et e e e e e e e e e e 1-31
4-1 V-File Field Description 4-17
4-2 CP Control Byte Bit Definitions, 4-29
4-3 CP Response Bit Definitions 4-30
4-4 CP Conditions Byte Bit Definitions 4-31
4-5 Recode Output Control Signal Definitions 4-54
4-6 Recode Circuit Data Analysis 4-60
ix/x

Advanced Scientific Computer

W

SECTION 1

GENERAL DESCRIPTION

1.1 GENERAL

This section describes the operation of the 4-Pipe Central Processor (CP) of the Texas
Instruments Advanced Scientific Computer (ASC-4X). It includes a brief system overview of the
ASC, a general functional block diagram description of the CP, a physical description of the CP,
plus information about the instruction set and words used in the CP. Section 4 of this manual
provides a detailed discussion of the CP theory of operation. Other useful charts and data are
contained in the appendices of this manual. This manual applies to 4-pipe CP configurations
only.

1.2 PURPOSE

The ASC CP accesses program instructions from Central Memory, executes those instructions,
and stores the results either within the CP or back into Central Memory. In performing this
fuaction, it also monitors program status to detect errors, branches and conflicts, and informs
the Peripheral Processor if it is unable to continue a particular operation. The Peripheral
Processor controls the selection of programs executed by the CP.

1.3 ASC SYSTEM OVERVIEW
Besides the CP, the ASC includes the following major units:

® Peripheral Processor (PP)

® (Central Memory System (CM)

® System Clock

® Disc Storage System

® Magnetic Tape System

® Data Communications Channel

® Paper Peripheral Channels

® Operators Console

® Display Console

® Power System

® Maintenance System.
The relationship of these components is shown in figure 1-1. The CP interfaces directly with
Central Memory for instruction and operand fetching, as well as for maintenance purposes. Initial

programming sequences are determined by the PP, which also controls CP reaction to certain
status conditions and calls. The CP, however, executes programs under its own control.

1-1

Advanced Scientific Computer

1

481Ndwoy 2113us13S PAJUEADY

SYSTEM
CLOCK

PERATORS

OLE

00
2n
0na

|

CARD
PUNCHES

LLINE PRINTERS

TAPE
VOLUME
CATALOG
SYSTEMS

PERIPHERAL
PROCESSOR
(PP)

N

CENTRAL
PROCESSOR

jo—a 5

D1SC
STORAGE
SYSTEM

m
z
-

RAL
ORY

2Z0
gm
22

DISPLAY
CONSOLE

CARD
READERS

(A) 114358

To PP

Figure 1-1. ASC Simplified Block Diagram

DATA
- > COMMUNI— R gg.ﬁ”"
CATIONS R R
CATIONS CENTRATO
TO PP
MAGNETIC TO LIELD
TAPE INTERFACE
SYSTEM TERMINAL

1.4 FUNCTIONAL DESCRIPTION

The ASC-4X Central Processor (4XCP) is comprised of nine units - one Instruction Processing
Unit (JPU4) to process the CP commands, four Memory Buffer Units (MBU’s) to provide central
memory operands, and four Arithmetic Units (AU’s) to perform the specified arithmetic opera-
tions. The structuring of these units is shown in figure 1-2. Figure 1-3 is a block diagram of the
4XCP. h

The 4XCP provides four parallel execution pipelines below the IPU. Any mixture of scalar or
vector instructions may be in execution simultaneously in the four pipes. In any of the CP
configurations, the interaction between an IPU, MBU, and AU is equivalent to that of one
pipeline. The flow of data is from the IPU to the MBU, from the MBU to the AU, and then
from the AU back to the MBU for stores to memory or back to the IPU for arithmetic results to
the register file. The IPU performs all decisions pertaining to the routing of instructions to
various pipes. MBU’s and AU’s are not aware of other MBU-AU pairs.

In the multiple-pipeline CP’s, each MBU has its own dedicated memory port. The times-four CP,
for example, uses five memory ports; one for the IPU4 and four for the MBU’s. The AU details
information is loaded from or stored into memory only during maintenance commands and
context switching. AU memory requests, therefore, occur infrequently and are routed through an
expander cascaded on another expander.

r—-——=-—-=-=-=—7

l 1PUA4 '
PRIMARY
PORTS] AN |
VRN
| /AU AN |
T // TR AN
/ / \ \\ '
| / / \ \ |
I |
| i
| !
|

FOUR~PIPELINE CP
ASC 4X

Figure 1-2. 4XCP Unit Structure

1-3

Advanced Scientific Computer

1

9 PAIUBADY

U9

4

2

18)ndwio)

; UPDATE

STORE

TO MEMORY

{B)127593

LEVELS " —

12 "VARIES WITH OPERATION

PATHWAY SELECT'

TO/FROM MEMOFY

IPU- 4 1 | | MBU (1 OF 4)
‘____ AU DATA y LEVEL o LEVELS 272 LEVEL 4 LEVEL 5 I LEVEL &
i | ' DATA
4 l FROM
MEMORY DATA | TEMBRY
REGISTER AoOR
FILE 4 RGTR OPERAND . TO I
1 ' BAs OPERAND ADDRESS MEMORY
s INDEX? BASE
(6x8) g I I .
; EFFECTIVE ADDRESS OF INST. I OPAEDRDARND MEMORY al MEMORY
I H ADDRESS BUFFER
—
| CONTROL | FILE =
ADDRESS 2
ocTET REGISTERS l I .2
ADDRESS AND DIRECT - INDIRECT ADDRESS OPERAND OR ADDRESS L OPERAND |
MEGORY | CONTROL ADDR ADDR MoDIFICA- ADDRESS AND E% _ l ﬁ
| | OPERAND =3
D
REGISTERS G
9s
— |8 l
I | ':‘é‘ IMM Mco
| 1 H AND I AND
| | REG »l MAB 1
r —_—— _l I ’ I
OPERAND OPERAND
RGTR lg |
I STACK REGISTERS I REGISTERS
INDIRECT
I SELECT ADDR, FIELDS I i
P — ADDR. .
GATE
INSTRUCTION INSTRUC- 7 l INS TRUC— I %PF|C‘E)3[§ | OP CODE 2 |
) TioN H O—wors TION } DECODE MoDE
MY
MEMORY FILES REGISTER RO I
I | | REGISTER_AND
IMMEDIATE l
OPERANDS
STORE BUFFEK
DATA }
oP cooE ’]
TPU AU 8FR
I J CONTROL \ UPDATE
LEVEL 0 LEVEL 1 SEconE RE’S”_T i
e ‘ AU (1 OF 4) |
R |
PIPEL INE RESULT EF
PATH ARITHMETIC PIPELINE oUTPUT
CONTROL . REGISTER I
L l LEVEL 12 '
. "ROUTING OF OPERANDS IN
I * EXPONENT | FRACTION [AU CONTROLLED BY ROM
SUBTRACT ALIGN ADD MULT ACCLL":“{ NOlF;héAL- IN MBU .,
- |
AB/CD L j I
OPERAND vd | o o |] l
REGISTERS *
I L— MAINTENANCE BUS
L ——— — _i - —

Figure 1-3. Central Processor Block Diagram

-©

1.4.1 ADDRESS REGISTERS AND CONTROL. Four address registers control the acquisition
of instruction word octets (8-word groups) from Central Memory. These registers select the
proper instruction word for processing, call up a new octet while the current one is being
processed, and provide for branch address acquisition. During indirect addressing, the output of
the Address Modification network updates the Output Address Register in this circuit for each
new address developed by the network until the terminal effective address is reached. The other
registers maintain the program address so that the program resumes when the effective address is
reached.

1.4.2 REGISTER FILE. The Register File is a memory source contained within the IPU. These
registers are loaded by program instructions with data from either memory or the AU output.
The file consists of six sets of eight 32-bit register (six octets). Each area in the file has a
primary function, such as base addresses for developing effective addresses (15 words), general
arithmetic use (16 words), seven index registers, and eight vector parameter registers to define
the scope of a specific vector instruction. They may, however, be used for other processes.

1.4.3 INSTRUCTION FILES. Two instruction files, each containing one octet (eight words),
supply a continuous source of instructions to the Instruction Register. The Address Registers and
Control block controls loading and selection from these registers. It first loads one file and
begins drawing instructions from the octet in that file. Address Control then loads the second
file while the first one empties. Consecutive addresses supply a smooth transition from one file
to the next. During indirect addressing, the effective address of an instruction from the Address
Modification block selects the output from the instruction files if the address is currently in the
files.

1.4.4 INSTRUCTION REGISTER. The Instruction Register receives the selected word from the
instruction file and holds it for processing. Depending on the instruction format, the register may
contain address bits, address modifiers, and operand andfor an operation code. The register
output drives instruction decode and address generation networks.

1.4.5 ADDRESS MODIFICATION. When the Instruction Register specifies either direct or
indexed addressing, the Address Modification block performs the operations required to generate
a new address. This block provides for base address (from Register File) plus displacement
modification and/or additional of the contents of one of the seven index registers in the Register
File. The circuit permits direct or indirect addressing with or without modification, or the
development of an immediate operand. Operands, direct operand addresses, and terminal operand
addresses transfer to the MBU’s to provide operands for the AU’. If an indirect address
develops, it returns to the Output Address Register to retrieve a new instruction word for further
address generation. The modification hardware includes input registers for indexing, base address
and displacement, an adder, plus a result holding and output register.

1.4.6 ADDRESS AND OPERAND REGISTERS. These two registers are the IPU output register.
They provide each MBU (according to pre-determined priorities) with either two operands, one
operand and an operand address, or just one address.

1.4.7 IMM/REG REGISTERS. The Immediate (IMM) and Register (REG) Operand Registers
receive operands from the IPU. During vector initialization, the IMM Register also transmits the
vector parameters to the MBU Registers to set up the beginning vector conditions. Once a vector
operation begins, neither of these registers is used until the next operation begins. Control
signals, generated within the MBU, transfer data that is in these registers to the output registers
of the MBU during scalar operations.

Advanced Scientific Computer

i
i.\[p
1.4.8 MEMORY ADDRESS CONTROL. This circuit supplies addresses to memory for storing
results from the AU vector and storc operations and for accessing new operand octets from
memory for input to the AU. During scalar operations, operand addresses are supplied from the
IPU. If the desired operand is already in the Memory Buffer File, the IPU sends only a 4-bit
address to select the output from one of the file registers. If the operand is not in the buffer
file, the IPU sends a full 21-bit address to fetch the octet containing the operand from Central
Memory and loads it into the buffer file betore transferring the operand to the output register.

During vector operations, Memory Address Control generates the address of each octet in the
vector after the address is initially loaded by the 1PU.

1.4.9 MEMORY BUFFER FILE. The Memory Buffer File consists of six octet buffers plus an
octet receiver/synchronizer register. The buffers are arranged in two three-stage buffers with the
output of the final stage available to the output registers. Inputs to the buffers may enter the
final file to bypass the delay in the buffering sequence. During scalar operations, Memory
Address Control can select the output from either buffer and transfer it to the MCD Operand
Register. During vector operations each buffer set supplies a strcam of operands to onc of the
MAB/MCD Operand Registers. Lither buffer set may be modified by the result output from the
Arithmetic Pipeline (update) during scalars.

1.4.10 MAB/MCD OPERAND REGISTERS. These registers supply two operands simultaneously
to the AU for processing. The MAB Register receives registers operands from the REG Register
during scalar operations, and vector operands {rom the buffer file during vector operations. The
MCD Register receives either immediate operands from the IMM Register or operands from cither
set of the buffer file during scalar operations. During vector operations the buffer file supplies a
stream of operands to the MCD Register.

1.4.11 AU CONTROL DECODE. The AU Control Decode is a Read Only Memory (ROM) that
designates to the AU which processes must be performed to accomplish the function specified by
the Op Code. The decode circuit also supplies control signals to aid in selection of operands for
the MAB/MCD registers.

1.4.12 BUFFER UPDATE AND STORE. The buffer update provides temporary retention of an
octet of AU output. This octet may change the contents of the buffer file, or may be stored
into Central Memory when the AU begins to produce results for a new octet.

1.4.13 AB/CD OPERAND REGISTERS. These registers are the input phase to the arithmetic
pipeline. They receive two operands from the MBU and transfer them to the pipcline when the
pipeline segment that performs the first operational step becomes available. Other inputs to these
registers come from within the AU to provide a fecdback path.

1.4.14 PIPELINE PATH CONTROL. This circuit follows the directions of the AU Control ROM
in the MBU to perform the gating and sequencing functions required to develop a complete
process in the pipeline.

1.4.15 ARITHMETIC PIPELINE. The Arithmetic Pipeline is a segmented arithmetic processor
whose sequence is determined by the MBU ROM signals. Six segments of the pipe perform
independent operations on up to six different sets of operands simultancously. Each segment is a
basic function that, combined in a specific order with other segments, performs arithmetic
operations from scalar addition to complex vector operations on both fixed and floating point
operands.

1-6 Advanced Scientific Computer

1.4.16 EF OUTPUT REGISTER. The EF Output Register receives a result from any segment of
the pipeline, except the multiplication segment (output of multiplier is two partial products that
must be added to produce a result). The output of this register may return to the Register File
in the IPU (scalar operations), may update the data in the Memory Buffer File, or may be stored
in memory (vectors and store operations).

1.5 GENERAL CHARACTERISTICS
Table 1-1 lists some of the general characteristics of the ASC Central Processor.

1.6 CP INSTRUCTION SET

The ASC Central Processor performs scalar and vector operations through a powerful array of
instructions. The instruction set includes Load and Store functions, arithmetic scalar operations,
scalar logical instructions, and branching capabilitiecs. Two special instructions, VECT and
VECTL, expand the ASC instructions into the vector mode by loading a new set of parameters
into the IPU from the Vector Parameter File. The sct of vector parameters includes a vector
operation code. The function of the vector operation is defined by an additional set of vector
instructions that can be loaded only through this vector mode. Table 1-2 lists the instructions in
the normal ASC instruction set with their mnemonic code and operation code; figure 1-4
supplies a mapping of scalar Op Codes. Table 1-3 and figure 1-5 contain similar information for
the vector mode instructions. Refer to the ASC programming manuals for a more detailed
explanation of the uses of cach instruction.

Table 1-1. Central Processor General Characteristics

Item

Construction
Word Size

Instruction word size

Memory address size:

Octet
Word

Memory transfer size

Number of memory paths

Operation Modes
Control:

Initiate/ Terminate
Operating

CP Clock Period

Characteristic

Layered pipeline

16 bits (halfword) -fixed point only
32 bits (singleword) -fixed or floating point
64 bits (doubleword) -floating point only

32 bits (8 Op Code, 4 R-ficld, 4 T-field,
4 M-field, 12 N-field)

21 bits (sent to CM)
24 bits (internal to CP)

1 octet (256 bits)

9: 1-IPU (instruction fetch), 4-MBU’s (operand

fetch/store) 4-AU’s (maintenance - Load/Store
Details)

2: Scalar and Vector

Through CR File in the Peripheral Processor
Individual pipe level controllers in CP

65 nanoseconds

1-7 Advanced Scientific Computer

Table 1-2. Vector Instruction Set

%Sgll‘)‘g | 1‘38;“; INSTRUCTION

VA 40 Vector add, fixed point singleword

VAF 42 Vector add, floating point singleword

VAFD 43 Vector add, floating point doubleword

VAH 41 Vector add, fixed point halfword

VAM 44 Vector add magnitude, fixed point singleword
VAMF 46 Vector add magnitude, floating point singleword
VAMFD 47 Vector add magnitude, floating point doubleword-
VAMH 45 Vector add magnitude, fixed point singleword
VAND EO Vector logical AND, singleword

VANDD E1 Vector logical AND, doubleword

vC DO Vector arithmetic comparison, fixed point singleword
VCAB EA Vector compare AND singleword boolean

VCADB EB Vector compare AND doubleword boolean

VCAND E2 Vector logical comparison using AND, singleword
VCANDD E3 Vector logical comparison using AND, doubleword
VCB FO Vector compare fixed point singleword boolean

VCF D2 Vector arithmetic comparison, floating point singleword
VCFB F2 Vector compare floating point singleword boolean
VCFD D3 Vector arithmetic comparison, floating point doubleword
VCFDB F3 Vector compare floating point doubleword boolean -
VCH D1 Vector arithmetic comparison, fixed point halfword
VCHB F1 Vector compare fixed point halfword boolean

VCOR E6 Vector logical comparison using OR, singleword
VCORB EE Vector compare OR singleword boolean

VCORD E7 Vector logical comparison using OR, doubleword
VCORDB EF Vector compare OR doubleword boolean
VD 64 Vector divide fixed point, singleword

VDF 66 Vector divide floating point, singleword
VDFD 67 Vector divide floating point, doubleword
VDH 65 Vector divide fixed point, halfword
VDP 68 Vectbr dot product, fixed point singleword
VDPF 6A Vector dot product, floating point singleword
VDPFD 6B Vector dot product, floating point doubleword .
VDPH 69 Vector dot product, fixed point halfword

VEQC EC Vector logical Equivalence, singleword

VEQCD ED Vector logical Equivalence, doubleword

VFDFX A2 Vector convert floating point doubleword to fixed point

singleword
1-8

Advanced Scientific Computer

Table 1-2. Vector Instruction Set (Continued)

CODE CODE

VFHFD AB Vector convert fixed point halfword to floating point
doubleword

VFHFL A9 Vector convert fixed point half length to floating point
singleword

VFLFH Al Vector convert floating point singleword to fixed point
halfword

VFLFX A0 Vector convert floating point singleword to fixed point
singleword

VFXFD AA Vector convert fixed point singleword to fixed point
doubleword

VFXFL A8 Vector convert fixed point singleword to floating point
singleword

VL 50 Vector search for largest arithmetic element, fixed point
singleword

VLF 52 Vector search for largest arithmetic element floating point
singleword

VLFD 53 Vector search for largest arithmetic element, floating point
doubleword

VLH 51 Vector search for largest arithmetic element, fixed point
halfword

VLM 54 Vector search for largest magnitude, fixed point single-
word

VLMF 56 Vector search for largest magnitude, floating point
singleword

VLMFD 57 Vector search for largest magnitude, floating point
doubleword

VLMH 55 Vector search for largest magitude, fixed point half-
word

VM 6C Vector multiply, fixed point singleword

VMAP F8 Vector map singleword

VMAPB FC Vector map singleword boolean

VMAPD FB Vector map doubleword

VMAPDB FF Vector map doubleword boolean

VMAPH F9 Vector map halfword

VMAPHB FD Vector map halfword boolean

YMAX F4 Vector maximum/minimum fixed point singleword ‘

VMAXF F6 Vector maximum/minimum floating point singleword

VMAXFD F7 Vector maximum/minimum floating point doubleword

VMAXH F5 Vector maximum/minimum fixed point halfword

VMF 6E Vector multiply, floating point singleword

VMFD 6F Vector multiply, floating point doubleword

1-9 Advanced Scientific Computer

ASSMB
CODE

VMG
VMGD
VMGH
VMH
VNFH
VNFX
VO

VOF
VOFD
VOH
VOR
VORD
VPP
VPPF
VPPFD
VPPH
VREP
VREPB
VREPD
VREPDB
VREPH
VREPHB
VS

VSA
VSAD
VSAH
VSC
VSCD
VSCH
VSEL
VSELB
VSELD
VSELDB
VSELH
VSELHB
VSF
VSFD
VSH

Table 1-2. Vector Instruction Set (Continued)

MCHN
CODE

D8
DB
D9
6D
AD
AC
D4
D6
D7
D5

Co
C3
Cl1
CcC
CF
CDh
BO
B4
B3
B7
Bl
BS
4A
4B
49

INSTRUCTION

Vector merge singlewords

Vector merge doublewords

Vector merge halfwords

Vector multiply, fixed point halfword
Vector normalize fixed point halfword
Vector normalize fixed point singleword
Vector order singlewords, fixed point
Vector order singlewords, floating point
Vector order doublewords, floating point
Vector order halfwords, fixed point
Vector logical OR, singleword

Vector logical OR, doubleword

Vector peak, fixed point singleword
Vector peak, floating point singleword
Vector peak, floating point doubleword
Vector peak, fixed point halfword

Replace singlewords in vector 6

Vector replace singleword boolean

Replace doublewords in vector ¢

Vector replace doubleword boolean
Replace halfwords in vector 6

Vector replace halfword boolean

Vector subtract, fixed point singleword
Vector arithmetic shift, fixed point singleword
Vector arithmetic shift, fixed point doubleword
Vector arithmetic shift, fixed point halfword
Vector circular shift, singleword

Vector circular shift, doubleword

Vector circular shift, halfword

Select singlewords from vector B

Vector select singleword boolean

Select doublewords from vector 1_3)

Vector select doubleword boolean

Select halfwords from vector B

Vector select halfword boolean

Vector subtract, floating point singleword
Vector subtract, floating point doubleword
Vector subtract, fixed point halfword

1-10

Advanced Scientific Computer

Table 1-2.. Vector Instruction Set (Continued)

ASSMB MCHN INSTRUCTION
CODE CODE .
VSL - C4 © Vector logic shift, singleword
VSLD - . Cc1 o Vector loglcal Shlft doubleword
VSLH ' C5 - Vector logical shlft halfword
VSM " 4C ' Vector subtract magnitude, fixed point singleword
VSMF 4E © i Vector subtract magnitude, floating point singleword
VSMFD 4F . Vector subtract magmtude floating point double-
: C word ~
VSMH 4D Vector subtract magnitude, fixed point halfword
VSS 58 - Vector search for smallest arithmetic element, fixed point
singleword
VSSF ' 5A " Vector sedrch for smallest arithmetic element, floating point
. singleword
VSSFD 5B Vector search for smallest arithmetic element, floating point
) doubleword
VSSH : 59 . Vector search for smallest arithmetic element, fixed point
' halfword
VSSM . 5C Vector search for smallest magmtude fixed pomt
. K : singleword
VSSMF ' SE - Vector search for smallest magmtude floating point
. ' singleword
VSSNFD . 5F Vector search for smallest magnitude, floatmg point
A doubleword . .
VSSMhE ‘ 5D Vector search for smallest magnitude, fixed point half-
: : N g word ;
VXOR E8 - -+ Vector-logical Exclusive OR; singleword
VXORD E9 Vector logical Exclusive OR, doubleword
1-11

Advarniced Scientific Computer

Il

481ndwio? a1413U3198 PAJUBAPY

OP BITS 4-7

OP BITS 0—3

(o] 1 2 3 4 5 6 7 8 9 A B Cc D E F
(o) l LRL STZ LN A Al A Al I1SE MCP - FLFX VECT SAH AND ANDI1
1 LEM STZH | LNH AH AlH ISNE BCC FLFH SAH ANDD
2 LAM SPS LNF AF LEA A Al DSE INT FDFX CAND CAND1
3 LAC STZD | LND AFD DSNE PSH SAD CANDD
4 L ST STN AM LI D DI BCLE MCWwW SL OR ORI
5 LLL STLL | STNH | AMH LIH DH DIH BCG BRC SLH ORD
6 LLA STRL { STNF ’ AMF LEA DF BCLE XEC RVS COR CORI
7 N LD STD STND | AMFD DFD BCG PUL SLD CORD

(o]
8 P L ST LNM S S1 M M1 I1BZ | BLB FXFL | C Cl XOR XOR1
9 LLR | sTLR |LNMH | sH S1H I1BNZ BLX FHFL CH CIH | XORD
A XCH STOH | LNMF | SF M Mi DBX FORK | FXFD CF
B LF STF LNMD | SFD DBNZ JOIN FHFD CFD
c| L ST LM SM L1 M Ml 1BZ BXEC | NFX sC EQC EQCl
D LRR | STRR | LMH SMH MH MIH IBNZ BAE NFH SCH EQCD
E Lo STO LMF SMF MF DBZ PB SCLK (o4 Cl
F ' LFM | STFM { LMD SMFD MFD DBNZ MOD SCD

(A)132345

Figure 1-4. Scalar Op Code Map

Table 1-3. Scalar Instruction Set

ASSMB T MCHN OPERAND
CODE INSTRUCTION CODE FORMAT
A Add to arithmetic register, fixed point single- 40 r,[@} [=]n[x]
word
A Add to base register, fixed point singleword 60 r,[@] [=]n[x]
A Add to index or vector parameter register 62 ,[@] [=]n[,x]
AF Add to arithmetic register, floating point 42 r,[@] [=]n[,x]
singleword
AFD Add to arithmetic register, floating point 43 .[@] [=]n[x]
doubleword.
AH Add to arithmetic register, fixed point halfword 41 r,[@] [=]n[,x]
Al Add immediate to arithmetic register, fixed 50 ri[,x]
point singleword
Add immediate to base register, fixed point 70 il x]
singleword
Al Add immediate to index or vector parameter 72 ri[,x]
register, fixed point singleword
AJH Add immediate to arithmetic register, fixed 51 r,i[,x]
point halfword
AM Add magnitude to arithmetic register, fixed 44 r,[@] [=]n[.x]
point singleword
AMF Add magnitude to arithmetic register, floating 46 r,[@] [=]n[x]
point singleword
AMFD Add magnitude to arithmetic register, floating 47 r,[@] [=]n[x]
point doubleword
AMH Add magnitude to arithmetic register, fixed 45 r,[@] [=]n[x]
point halfword
AND AND, singleword - arithmetic register EO r,[@] [=]n[x]
ANDD AND, doubleword - arithmetic register E1l r,[@] [=]n[.x]
ANDI AND immediate, singleword - arithmetic FO r,i[,x]
register
B Unconditional branch, Assembler supplies R 91 [@[=]]In][.x]
field of 7
BAE Branch on arithmetic exception condition true 9D m,[@[=]]n[x]
BCC Branch on compare code true 91 m,[@[=]]n[x]
BCG Branch on arithmetic register greater than 85 I,r,n
BCG Branch on index or vector register greater 87 r,r,n
than
BCLE Branch on arithmetic register less than or 84 r,r,n
equal
BCLE Branch on index or vector register less than 86 I,r,n
or equal
BCM Branch on compare code of mixed zeros and 91 [@[=]1n][x]

ones, Assembler supplies R field of 4

1-13

Advanced Scientific Computer

o

Table 1-3. Scalar Instruction Set (Continued)

ASSMB MCHN OPERAND
INSTRUCTION

CODE CODE FORMAT

BCNM Branch on compare code of not mixed, 91 [@[=]1n[,x]
Assembler supplies R field of 3

BCNO Branch on compare code of not all ones, 91 {@[=]In[x]
Assembler supplies R field of 5

BCNZ Branch on compare code of not all zeros, 91 [@[=]n[x]
Assembler supplies the R field of 6

BCO Branch on compare code of all bits are one. 91 [@[=]]1n[x]
Assembler supplies R field of 2

BCZ Branch on compare code of all bits are zero, 91 [@[=]1n[x]
Assembler supplies R field of one

BD Branch on divide check, Assembler supplies 9D [@[=]}]n[,x]
R field of 8 ‘

BDO Branch on divide check or floating point 9D [@[=]]In]x]
exponent overflow, Assembler supplies R
field of A

BDU Branch on divide check or floating point 9D [@[=]]In]x]
exponent underflow, Assembler supplies R

- field of 9
BDUO Branch on divide check or floating point 9D [@[=]1n[x]

exponent overflow or underflow, Assembler
supplies R field of B

EDX Brauch on divide check or fixed point overflow, 9D [@[=]]1n[x]
Assembler supplies R field of C
BDXO Branch on divide check or fixed point overflow 9D [@[=] In[,x]

or floating point exponent overflow, Assembler
supplies R field of E

BDXU Branch on divide check or fixed point overflow 9D [@[=]]n[x]
or floating point exponent underflow, Assem-
bler supplies R field of D

BDXUO Branch on divide check or fixed point overflow 9D [@]=]]n[,x]
or floating point exponent overflow or under-
flow, Assembler supplies R field of F

BE Branch on compare code of equal, Assembier 91 [@[=]In[x]
supplies R field of one

BG Branch on compare code of greater than, 9i [@][=]]n[,x]
Assembler supplies R field of 2

BGE Branch on compare code of greater than or 91 {@[=}]n[x]
equal, Assembler supplies R field of 3

BL Branch on compare code of less than, Assem- 91 [@[=] In[x]
bler supplies R field of 4

BLB Branch and load base register with program 98 n,[@[=]]n[,x]
counter

BLE Branch on compare code of less than or equal. 91 [@[=]]n][x]

Assembler supplies R field of 5

1-14 Advanced Scientific Computer

Table 1-3. Scalar Instruciion Set (Continued)

ASSMB | INSTRUCTION MCHN OPERAND

CODE ' o CODE FORMAT

BLR Branch on logical result 95 m,[@[=]]n[.x]

BLX Branch and load index or vector register with 99 r,[@[=] In[,x]
program counter

BMI Branch on result code of negative, Assembler 95 [@[=]1n[x]
supplies the R field of 4

BNE Branch on compare code of not equal, 91 [@[=]]1n],x]
Assembler supplies R field of 6

BNZ Branch on result code of not zero, Assembler 95 [@[=]]n[x]
supplies the R field of 6

BO Branch on floating point exponent overflow, 9D [@[=] In[x]
Assembler supplies R field of 2

BPL Branch on result code of positive, Assembler 95 [@[=] In[x]
supplies the R field of 2

BRC Branch on rosult code true 95 m,[@[=]] n[x]

BRM Branch on result code of bits mixed zeros and 95 [@[=]1n[,x]
ones, Assembler supplies the R field of 4

BRNM Branch on result code of bits not mixed zeros 95 {@[=]1n[x]
and ones, Assembler supplies the R field of 3

BRNO Branch on result code of not all bits ones, 95 [@[=]]n[x]
Assembler supplies the R field of 5

BRNZ Branch on result code of not all bits zeros, 95 [@[=]]In[x]
Assemblcr supplies the R field of 6

BRO Branch on result code of all bits are one, 95 [@[=]]n[x]
Assembler supplies the R field of 2

BRZ Branch on result code of zall bits are zero, 95 [@[=]]n[,x]
Assembler supplies the R field of one :

BU Branch cn floating point exponent underflow, 9D [@[=]]n[.x]
Assembler supplies R field of one

BUO Branch cn floating point exponent underflow 9D [@[=]In[x]
or overflow, Assembler supplies R field of 3

BX Branch on fixed point overflow, Assembler 9D [@[=]]n[x]
supplies R field of 4

BXEC Branch on Execute branch condition true, : 9C [@]n]x]
Assembler supplies R field of one or odd

BXO Branch on fixed point overflow or floating 9D [@[=]]1n[x]
point exponernt overflow, Assembler supplies
R field of 6

BXU Branch on fixed point overflow or floating 9D [@]=] In[x]

~ point exponent underflow, Assembler supplies

R field of 5

BXUO Branch on fixed point overflow or floating 9D [@]=]]n[x]

point exponent overflow or underflow, Assem-
bler supplies R field of 7

1-15 Advanced Scientific Computer

ASSMB
CODE

BZ

BZM

BZP

2

CAND
CANDD
CANDI
CF
CFD
CH

CI

Cl

CIH
COR
CORD

CORI

DBNZ
DBNZ

DBZ

Table 1-3. Scalar Instruction Set (Continued)

INSTRUCTION

Branch on result code of zero, Assembler
supplies the R field of one

Branch on result code of zero or negative,
Assembler supplies the R field of 5

Branch on result code of zero or positive.
Assembler supplies the R field of 3
Compare arithmetic register, fixed point
singleword

Compare index or vector register, fixed
point singleword

Compare logical AND, singleword - arith-
metic register

Compare logical AND, doubleword - arith-
metic register

Compare immediate logical AND, singleword -

arithmetic register

Compare arithmetic register, floating point
singleword

Compure arithmetic register. floating point
doubieword

Compare arithmetic register, fixed point
halfword

Compare immediate ariiimetic register,
fixed point singleword

Compare index or vector regisier with imme-
diate singleword

Compare arithmetic regisic, iramediate,
fixed point halfword

Compare logical OR, siigleword - arivhmetic
register

Compare logical OR, doubleword - arithmetic
register

Compare immediate logical OR, singlewori -
arithmetic register

Divide into arithmetic register, fixed point
singleword

Decrement arithmetic register, test, and
branch on not zero

Decrement irdex or vector register, test,
and branch oa not zero

Decrement «rithmetic register, tust. and
branch on zero

MCHN
CODE

95

95

95

C8

CE

E2

E3

F2

CA

CB

C9

D8

DE

D9

E6

E7

F6

64

8B

8F

8A

OPERAND
FORMAT

[@[=]]n[x]
[@[=]]n[x]
[€[=]]n[x]
r.[@][=]n[X]
r[@] [=]n[x]
r[@] [=]n[x]
r[€] [=]n[x]
n,i[,x]

r,[@] [=]n[X]
r.[@][=]n[x]
r.[@][=]n[x]
ril.x]

r,i[,x]

1,i[,x]

r,[@] [=]n[x]
r,[@] [=]n[X]
ri[,x]

r.[@] [=]n[x]
n[@[=]]n[x]
rn[@[=]In[x]

r.@[=]]n[x]

1-16

Advanced Scientific Computer

Table 1-3. Scalar Instruction Set (Continued)

ASSMB . : MCHN OPERAND
INSTRUCTION .

CODE ' : CODE FORMAT

DBZ Decrement index or vector register, test, . SE 1,[@[=]] n[,x]
and branch on zero

DF Divide into arithmetic register, floating 66 r,[@] [=]n[x]
point singleword

DFD Divide into arithmetic register, floating 67 r,[@] [=]n[,x]
point doubleword

DH Divide into arithmetic register, fixed point 65 ,[@] [=]n[,x]
halfword

DI Divide immediate into arithmetic register, 74 ,i[,x]
fixed point singleword

DIH Divide immediate into arithmetic register, ' 75 r,i[,x]
fixed point halfword

DSE Decrement arithmetic register, test, and 82 ,[@] [=]n[,x]
skip on equal

DSNE Decrement arithmetic register, test, and 83 1,[@] [=]n],x]
skip on not equal

EQC Equivalence, singleword - arithmetic EC ,[@] [=]n[,x]
register

EQCD Equivalence, doubleword - arithmetic ED ,[@] [=]n[x]
register

EQCI Equivalence immediate, singleword - FC ri[,x]
arithmetic register

FDFX Convert floating point doubleword to fixed A2 r,[@]n[x]
point singleword

FHFD Convert fixed point halfword to floating point AB r,[@]n[x]
doubleword

FHFL Convert fixed point halfword to floating point A9 r,[@]n[x]
singleword

FLFH Convert floating point singleword to fixed Al ,[@]n|x]
point halfword

FLFX Convert floating point singleword to fixed AQ 1,[@]n[,x]
point singleword

FORK Set fork indicator A9

FXFD Convert fixed point singleword to floating AA 1,[@]n[,x]
point doubleword

FXFL Convert fixed point singleword to floating A8 r,[@]n[,x]
point singleword

IBNZ Increment arithmetic register, test, and 89 r,[@[=]]n[x]

branch on not zero

IBNZ Increment index or vector register, and 8D r,[@[=]] n[,x]
branch on not zero

IBZ Increment arithmetic register, test, and 88 r,[@[=] In[,x]
branch on zero

1-17 Advanced Scientific Computer

ASSMB
CODE

IBZ

INT
ISE

ISNE

JOIN

LAC
LAM
LD

LEA
LEA

LEM
LF
LF
LF
LF
LF
LF
LFM
LI

LI

LIH

LLA
LLL

LLR

LM

LMD

Table 1-3. Scalar Instruction Set (Continued)

INSTRUCTION

Increment index or vector register, test,
and branch on zero

Interpret - arithmetic register

Increment arithmetic register, test and skip
on equal

Increment arithmetic register, test, and skip
on not equal

Reset fork indicator
Load arithmetic register, singleword
Load base register, singleword

Load index register or vector parameter
register, singleword

Load arithmetic exception condition
Load arithmetic mask

Load arithmetic register doubleword
Load effective address into base register

Load effective address into index or vector
register

Load arithmetic exception mask and condition
Load base register file A, m=0

Load base register file B, m=1

Load arithmetic register file C, m=2

Load arithmetic register file D, m=3

Load index register file X, m=4

Load vector parameter register file V, m=5
Load all six eight-word register files

Load immediate into arithmetic register
singleword

Load immediate into index register, or vector
parameter register, singleword

Load immediate into arithmetic register,
halfword

Load look ahead

Load memory left halfword, indexed, into
arithmetic register left halfword

Load memory right halfword, indexed, into
arithmetic register left halfword

Load magnitude, fixed point singleword,
arithmetic register

Load magnitude, floating point doubleword
arithmetic register

MCHN
CODE

8C

92
80

81

9B
14
18
1C

13
12
17
52

56

11
1B
1B
1B
1B
1B
1B
1F
54

5C

55

19

3C

3F

OPERAND
FORMAT

rl@[=]]n[x]

r.f@][=]n[x]
r[@} [=]n[x]

r,[@] [=]n[.x]

@] [=lnfx]
n[@] [=]n{x]
e} [=]n[x]

[“[=]]n[x]
[@[=]In[x]
R[] [=]n [
r,[@] [=]n[x]
r.f@] [=]n[x]

[@]=]]n[x]
m,[&] n[.x]
m.[@]n[.x]
m.[¢]n].x]
m.[@]n{.x]
m.[@]n]|.x]
m,[@]n[.x]
[@]n[x]

ri[x]
r,i[,x]
r,i[x]

i

r.[€][=]n[x]
r,([@] [=]n[x]
r.[@] [=]n[x]
rfe] [=n[x]

Advancea Scientisic Computer

ASSMB
CODE

LMF

LMH

LN

LND

LNF

LNH

LNM

LNMD

LNMF

LNMH

LO

LRL

LRR

MCP
MCW
MF

MFD

MH

MI

Table 1-3. Scalar Instruction Set (Continued)

INSTRUCTION

Load magnitude, floating point singleword,
arithmelic register

Load magnitude, fixed point halfword,
arithmetic register

Load negative, fixed point singleword,
arithmetic register

Load negative, floating point doubleword,
arithmetic register

Load negative, floating point singleword,
arithmetic register

Load negative, fixed point halfword,
arithmetic register

Load negative magnitude, fixed point single-
word, arithmetic register

Load negative magnitude, floating point
doubleword, arithmetic register

Load negative magnitude, floating point
singleword, arithmetic register

Load negative magnitude, fixed point halfword,
arithmetic register

Load arithmetic register with ones complement
singleword

Load memory left halfword, indexed, into
arithmetic register right halfword

Load memory right halfword, indexed, into
arithmetic register right halfword

Multiply fixed point singleword - arithmetic
register

Multiply, fixed point singleword - base
register

Multiply. fixed point singleword - index or
vector parameter register

Monitor call and proceed
Monitor call and wait

Multiply, floating point singleword -
arithmetic register

Multiply, floating point doubleword -
arithmetic register

Multiply, fixed point halfword - arithmetic
register

Multiply immediate, fixed point singleword -
arithmetic register

MCHN
CODE

3E
3D
30
33
32
31
38

3B
3A
39
1E
10
ID
6C
68
6A

90
94
6E

6F
6D

7C

OPERAND
FORMAT

i) [=]n].x]
r[@] [=]n[x]
nle] =] 1x]

rf@]{=]n].x]
rle][=Inlx]
nl@] [=]n[x]
n[@] [=]n[x]
r[@][=]n[x]
rl@] [=]n[x]
rle][=]n[x]
rl@] [=In]x]
r[@][=]n[x]
r[@] [=]n[x]

- rl@l=In[x]

r[@] [=In[x]
r[@][=]n[x]

il.x]
i[x]
r.[@] [=[n]x]

n[@ [=]n[x]
(@] [=]n[x]

r,i[,x]

Advanced Scientific Computer

ASSMB
CODE

MI
MI
MIH

MOD
NFH
NFX
NOP

OR
ORD
ORI

PB

PSH
PUL
RVS

SA
SAD
SAH
SC
SCD

SCH
SCLK
SF

SFD
SH

SI

Table 1-3. Scalar Instruction Set (Continued)

INSTRUCTION

Multiply immediate, fixed point singleword -
base register

Multiply immediate, fixed point singleword -
index or vector parameter register

Multiply immediate, fixed point halfword -
arithmetic register

Modify stack parameter doubleword
Normalize fixed point halfword
Normalize fixed point singleword

Take next instruction, Assembler supplies R
field of zero

OR, singleword - arithmetic register
OR, doubleword - arithmetic register

OR immediate, singleword - arithmetic
régister

Prepare to Branch

Push word into last-in-first-out stack

Pull word from last-in-first-out stack

Bit reversal, singleword - arithmetic register
Subtract from arithmetic register, fixed

Arithmetic shift, fixed point singleword -
arithmetic register

Arithmetic shift, fixed point doubleword -
arithmetic register

Arithmetic shift, fixed point halfword -
arithmetic register

Circular shift, singleword - arithmetic
register

Circular shift, doubleword - arithmetic
register

Circular shift, halfword - arithmetic register
Store 32-bit fixed point clock

Subtract from arithmetic register, floating
point singleword

Subtract from arithmetic register, floating
point doubleword

Subtract from arithmetic register, fixed
point halfword

Subtract immediate from arithmetic register,
fixed point singleword

MCHN
CODE

78

TA

7D

9F
AD
AC
91

E4
ES
F4

9E
93
97
Cé
48
Co

C3

C1

CC

CF

CD
AE
4A

4B

49

58

OPERAND
FORMAT

r,if,x]
r,i[,x]
ri[.x]

r,[@]n[,x]
r,[@]n[x]
r,[@n[x]
[@[=]In[X]

r,[@][=]n[x]
r,[@] [=]n[x]

r,i[,x]

m,[@[=] In[x]
r,[@]n[x]
r[@n[x]
ri[x]

r,[@] [=]n[x]

ri[,x]
i x]
ni[x]
Li[,x]
Li[,x]

r,i[,x]
@ n[x]
r,[@] [=]n[x]

r,[@] [=[n[x]
r,[@][=]n[x]

ri[,x]

1-20

Advanced Scientific Computer

Table 1-3. Scalar Instruction Set (Continued)

J
s o
SIH Subtract immediate from arithmetic register, 59 r,i[,x]
fixed point halfword
SL Logical shift, singleword - arithmetic Cc4 r,if,x]
register
SLD Logical shift, doubleword - arithmetic register Cc7 ri[,x]
SLH Logical shift, halfword - arithmetic register C5 r,i[,x]
SM Subtract magnitude from arithmetic register, 4C ,[@] [=[n[,x]
fixed point singleword
SMF Subtract magnitude from arithmetic register, 4E @] [=]n[,x]
floating point singleword
SMFD Subtract magnitude from arithmetic register, 4F 1,[@] [=]n][,x]
floating point doubleword
SMH Subtract magnitude from arithmetic register, 4D r,[@] [=]n[,x]
fixed point halfword
SPS Store program status word 22 [@]n[.x]
ST Store arithmetic register, singleword 24 r,[@]n[,x]
ST Store base register, singleword 28 r,[@]n[x]
ST Store index register or vector parameter 2C r,[@] n[x]
register, singleword
STD Store arithmetic register, doubleword 27 ,[@]n]x]
STF Store base register file A, M=0 2B m,[@]n[,x]
STF Store base register file B, M=1 2B m,[@]n[,x]
STF Store arithmetic register file C, M=2 2B m,[@]n[x]
STF Store arithmetic register file D, M=3 2B m,[@]n[,x]
STF Store index register file X, M=4 2B m,[@] nlx]
STF Store vector parameter register file V, M=5 2B m,[@]n[x]
STFM Store all six eight word register files 2F [@]n[x]
STLL Store arithmetic left halfword into memory 25 r,[@]n[x]
left halfword, indexed
STLR Store arithmetic register left halfword into 29 r,[@]n[x]
memory right halfword, indexed
STN Store negative, fixed point word 34 r,[@]n[x]
STND Store negative, floating point doubleword 37 r,[@]n[x]
STNF Store negative, floating point word 36 r,[@]n[,x]
STNH Store negative, fixed point halfword 35 ,[@]n[x]
STO Store ones complement, word 2E 1,[@]n[,x]
STOH Store ones complement, halfword 2A ,[@]n[.x]
STRL Store arithmetic right halfword into memory 26 r,[@}n][,x]

left halfword, indexed

1-21 Advanced Scientific Computer

ASSMB
CODE

STRR

STZ

STZD
STZH
VECT

. VECTL

XCH

XEC
XOR

XORD

XORI

Table 1-3. Scalar Instruction Set (Continued)

INSTRUCTION

Store arithmetic register right halfword into
memory right halfword, indexed

Store zero, word
Store zero, doubleword
Store zero, halfword

Execute vector parameter file, Assembler
supplies R field of one

Load and execute vector parameter file,
Assembler supplies R field of zero

Exchange - arithmetic register with effective
address

Execute addressed instruction in line
Exclusive OR, singleword - arithmetic
register

Exclusive OR, doubleword - arithmetic
register

Exclusive OR immediate, singleword -
arithmetic register

M{'HN OPERAND
CODE FORMAT
2D r{@]n] x|

20 [@]n].x]

23 [@]n],x]

21 @] n],x]

BO [@]n|.x]

BO [@]n[.x]

1A ,]@n]x)

96 [«l=lnlx]
E8 r]@f = nf.x]
119 nl@] |=]nl.x]
I8 ril.x]

1-22

Advanced Scientific Coriputer

€1

191ndWOoY I1411UBIDS PIIUBADY,

OP BITS 0—3

0 3 4 5 6 7 8 9 A B Cc D E
0 VA VL 'VFLFX VSEL* VSA vC VAND VCB*
3 * k3
1 VAH VLH VFLFH [VSELH | VSAH | VCH VANDD |VCHB
2 VAF VLF VFDFX VCF VCAND VCFB*
%
3 VAFD VLFD VSELD | VSAD | VCFD | VCANDD|VCFDB
4 VAM VLM VD VSELB | VSL VO VOR VMAX*
* *
5 VAMH VLMH VDH VSELHB| VSLH | VOH VORD VMAXH
*
~ 6 VAMF VLMF VDF VOF VCOR VMAXF
1
< * . *
" 7 VAMFD | VLMFD | VDFD VSELDB| VSL.D | VOFD | VCORD |VMAXD
£ *
@ 8 VS VSS VvDP VFXFL |VREP VMG VXOR vMAPX
o
o X *
9 VSH VSSH VDPH VFHFL |VREPH VMGH | vXORD |[VMAPH"
A VSF VSSF VDPF VFXFD VCAB
* *k X
B VSFD VSSD VDPFD VFHFD |VREPD VMG VCADB {VMAPD
“ * *
cl VSM VSSM VM VNFX |VvREPB | vcs VPP VEQC VMAPB
%
D VSMH VSSMH | VMH VNFH {VREPHB| VCSH | VPPH | VEQCD |VMAPBH
- *
E VSMF VSSMF | VMF VPPF | VCORB
* * *
F VSMFD | VSSMFD| VMFD VREPDB| vCsSD | VPPFD|VCORDB|VMAPDB
(A)132346 NOTE:*BLANK BOXES REPRESENT ILLEGAL OP CODES,

4 PIPE ONLY

Figure 1-5. Vector Op Code Map

1.7 INSTRUCTION FORMAT
The instruction word of the Central Processor contains 32 bits and is divided into five fields as
shown in figure 1-6.

® Op-Field. The Op-Field specifies the machine instruction to be executed.

® R-Field The R-Field addresses one of 16 registers from the arithmetic, base, or index
register group.

® T-Field. The T-field is an address modifier tag that has the following interpretation:

VIRTUAL ADDRESS , O
T ADDRESSING TYPE R O OPERAND

0 DIRECT ADDRESS N + (M
=7 INDEXED ADDRESS N + (M) +(T)
8 INDIRECT gN + (M;)
9—F INDEXED INDIRECT (N + (M) + (T ~ 8))
ADDRESS

(A)132473

A symbol of expression enclosed by parentheses () represents ‘‘the contents of™.

The T-field (figure 1-7) may be divided into an I-bit and an X-ficld where the most
significant I-bit designates indirect addressing and the 3-bit X-field specifies one of
seven index registers used in the indexing operation. The index registers are physically
assigned to register file address locations 21 through 27 (hexadecimal). A special set of
index instructions are used to load, store, modify, and test the index registers.

Displacement indexing is provided such that the indexing operation is compatible with
word size; i.e., the index registers are automatically aligned according to word size. If
an index register contains the value K, the Kth element of an array is accessed,
whether it is a halfword, singleword, or doubleword.

® M-Field The M-field is a base register designator. It is used to extend the addressing
range capability of the ASC to a potential 16.7 million words. The M-field selects one
of fifteen 24-bit base registers to be added to the N-field displacement before indexing
or indirect addressing. No base addressing is used when M equals 0.

® N-Field The N-field is the address displacement relative to the base address contained
in M.

The M- and N-fields also may be interpreted as immediate operands when immediate instructions
are specified by the operation code.

1-24 Advanced Scientific Computer

ADDRESS BASE
OPERATION REGISTER MODIFIER ADDRESS DISPLACEMENT
CODE ADDRESS TAG DESIGNATOR ADDRESS
/N N\ N\ A\
/ \ N/ N\ /
0 7 8 11 12 15 16 19 20 24 28 31
oP R T M N
| 1 1
Ho Hy Ho Hg Hy He He Heo
(A)132347 HEXADECIMAL CHARACTER

Figure 1-6. ASC Instruction Word Format

H3

I—
BIT X—FIELD

T-FIELD

Figure 1-7. T-Field Subdivision

1.8 DATA FORMATS
Four data format representations may be used in the ASC:

® Fixed point, single length, 32-bit word (see figure 1-8).

The sign bit is zero for positive numbers and one for negative. Negative numbers are
represented in twos complement notation. The binary point is to the right of the least
significant bit (LSB), particularly for multiplication or division. The result after
addition is the same as though two binary fractions were added.

® Fixed point, half length, 16-bit word (two half length words are shown in figure 1-9).

The sign bit is zero for positive numbers and one for negative. Negative numbers are
represented in twos complement notation. The binary point is to the right of the LSB.
Numbers are in fixed point sizned integer notation.

® Floating point, single length, 32-bit word (see figure 1-10).

The sign bit is zero for positive numbers and one for negative. Sign and magnitude
representation is used for the fractional portion, bits 0, 8 through 31. The binary point
is to the left of the MSB of the fraction (between bits 7 and 8).

The biased hexedecimal exponent has the range of 00,4 to 7F,¢, which covers the
base 16 exponent range 16°%* to 1693,

If the value 40 hex is subtracted from the biased exponent, a number is obtained
which is signed integer twos complement notation (sign in bit position 1) can be
converted to its equivalent decimal value. Sixteen raised to this decimal power gives a
number which when multiplied by the fraction produces the number that was repre-
sented in floating point notation.

1-25 Advanced Scientific Computer

Examples:

Floating point Decimal value

4110 0000 (1/16) X 16! =

4210 0000 (1/16) X 16% = 16
CI110 0000 (1/16) X 16" = -
7FF0 0000 (15/16) X 16*%

0010 0000 (1/16) X 16 = 16

By definition:

0000 G000 zero

7FFF FFFF +o0

FFFF FFFF -0

7F00 0000 Indefinite (machine generated)
XX00 0000 Indefinite (dirty zero)

® Floating point, double length, 64-bit word (see figure 1-11).

The sign bit is zero for positive numbers and one for negative. Sign and magnitude
representation is used for the fractional portion, bits O, 8 through 63. The binary point
is to the left of the MSB of the fraction (between bits 7 and 8).

The biased hexadecimal exponent has the range 00,, to 7F,, which covers the base
sixteen exponent range 16-% to 16+,

Subtracting the value 40,, from the biased exponent yields a number which, in signed
integer twos complement notation (sign in bit position 1), can be converted to its
equivalent decimal value. Sixteen raised to this power gives a number which when
multiplied by the fraction produces the number that was represented in floating point
notation.

SIGN Ls8e

\ /_

2 . M

FIXED POINT SIGNED INTEGER

Figure 1-8. 32-Bit, Fixed Point Data Word Format

SIGN

SIGN —\‘ MsB Ls8 '//—7MSE LsB

+

- SIGNED INTEGER SIGNED INTEGER

o 2 . . . 16 17 18 N

Figure 1-9. 16-Bit, Fixed Point Data Word Format

1-26 Advanced Scientific Computer

SIGN ——\ — M58 Ls8

BIASED EXPONENT FRACTION

4+

o 1 . . . 7 8 9 . L. . 31

Figure 1-10. 32-Bit, Floating Point Data Word Format

4] BIASED E XPONENT FRACTION

FRACTION

Figure 1-11. 64-Bit, Floating Point Data Word Format

1.9 PHYSICAL DESCRIPTION

The ASC-4X Central Processor in a four-pipe configuration is housed in a series of vertical logic
and service columns. Figure 1-12 illustrates a typical layout for these columns: their actual
arrangement may be changed to meet the physical requirements of the particular site. Each
vertical logic column (IPU, MBU or AU) contains a three motherboard chassis capable of
accepting up to 66 logic cards. Other vertical columns containing mounting spacc for power
supplies provide the dc power requirements for their respective CP unit. Between the three main
logic columns is a service column that contains the connector panels for the cable connections
between the logic columns. In addition to this central service column, other non-logic service
columns provide electrical output busses and water input plumbing for the CP cooling system.

19.1 COOLING SYSTEM. The Central Processor cooling system consists of a combination of
forced air and circulated, cooled water to dissipate heat generated by the logic circuits. This
cooling system is represented schematically in figure 1-13. The cold plate between cach set of
logic cards is a copper plate with small tubes running through it. Cooled water pumped through
these tubes absorbs heat from the air surrounding the cold plate and carries the heat away from
the logic card area to a heat exchangcr The heat t,xchdnger releases the heat to the surrounding
air and returns the cooled water to the logic chassis to complete the cycle. A blower assembly in
each logic column aids cooling by circulating room temperature air past the logic cards.

1.9.2 LOGIC CIRCUITS.Central Processor logic is implemented on 9-1/2 inch by 7-1/2 inch
printed circuit boards using Emitter Coupled Logic (ECL) integrated circuit packages. A 272-pin
connector on one end of the circuit board mates with a corresponding receptacle in one of three
motherboards in a vertical logic column. The motherboard supplies inter-chassis wiring con-
nections plus a bus of common signals, bias voltages and ground. Figure 1-14 illustrates the
different logic circuits in the ECL logic set. Table 1-4 defines the function of each of these logic
circuits. Refer to Section VI, Parts Listing, of this manual for a listing of the logic cards by
chassis location.

1-27 Advanced Scientific Computer

o]

AUt-ECL1 MB1-ECL1 MB4-ECL4 AU4-ECL4

CP1-SC1

}S-F‘SI /

MB2-ECL2

mMB5-PS1
AU2-ECL2
IP2- ECL1

AU6-PS2

MB6—-PS2 i
!
IP5-PS1

77

IPiI-SC1 IP3-ECL2 IP4-SC2

(B)128426

MB8-PS4
AUB—-PS4
MB7-PS3
AU3-ECL3
AU7-PS3
tP6-SC2

Figure 1-12. Typical ASC Central Processor Four-Pipe Configuration

1-28

Advanced Scientific Computer

f—) —
coLD
PLATE
]] WARM
WATER
RETURN
HEAT
EXCHANGER
ll
| | | LOGIC
CARD _ ~\\\ COOLED
WATER
TO LOGIC
CHASSIS
LOGIC /7~ \
CARD - [PUMP|

CIRCULATED g $$
AIR
(A) 115136 @

FAN

Figure 1-13.> Schematic Representation of CP Cooling System

1-29 Advanced Scientific Computer

o)

ASC LOGIC SEY

1 4 . 2
TR 16
EL PIN EL PIN Vee — PIN 3 AND 6 EXCEPT FOR
96,50 ,Q3 ,H2, - -
Vgg = PIN 15 FF,DF ,TR,SR,
1 12 WHICH HAVE -
Veg — PIN 10 V.~ = PIN 3 OHLY

cc

5
6
«
3 8 2 1 - S
4 9 10 1 12 4
5 7 " 16 ey .
41 47
€ 1 12 14
—4
13 13 -
2N
R
—
— 9 7._4.._J_' 8 <+~ s 14 4—IN 4+t g -} |
- 8 ——{n 44 s 4+ H- - e 11212 44 s
9 4 . — T
= - 12 44 NP+ 5 12 +—4A 18
12 — 11— —— S
2 A | 5 12 L 13 4+ A4~ a . —
12 4 — a— —+
H—--—«NF—-—Z o
— 2 13 —4— 24— N}——8 1a —4—] S S
= a 44 4=
v A 1a 4] ! 4 11 Alb+4-7 - 2
. 44 -
16 —1 16 A 4
- . |6—"—'A'—*"‘2 28 S—
14 — N B |._._.1_J ,~_1L_ M
I - 1
— ol s
6 4+— N 5
8 98 a1 - 4 13 A 7
8 L 1a L 2 8
;e = - O~ 4
N 744N+ 5 9 4+—InHte o 12 48 .
8 4+ ? 8~ - - s 4T wH4 - °
Q i 9 [+4— s A . 11 —C T
L -
1T peeey 12 +— A 51
11+ 12 b - 14 HEN
124 A 5 12 1| - — 6 2
- — vy A ;
1 RIS = N = e T 4
134 N a — 1~ 2 16 4+ Al DE
1a 4 -2 va 44 4 b
|‘—‘—1 16 —4d 1——-—-—«7—-.—
16 4 - 16 44—
U L P
14— 2 AR
end L
48 3N 1) sQ
— 4 4K 16 4a o 7
8 m 6 N s 6 — N _ _ N
9 N H 11— 0Dy, 94A ThF S
i 7 7 s W 6
9 — G111 14 dg Cl 2
14 = -
16 Atto+t— 4 — e 1" H 8 — b2, 1248 Tl 4
- 9 N 9 -+ 5 7 —46G21 1» 4C
— 4
N HH 11 e 12 ¢ 11 ¢
i 12 TN 11 45, "
C
B — -1 e
12 AL— = 12] 14 12
S 13 NI . EBEmE 16—522
14 ! —622
U H- e = a2
= 16 [5 4=
1 -
" kol g — e +{vH By -2
' N . 4 Py 12 46, Q| a
1] 2 - 9 4C 61"‘8
2 H s 2 HTH 16 -n
-
n L a 1 1 43 92t s
1 1340, Q-6
2 1a 462 9,
GC Qa3 FF
(8) 109045

Figure 1-14. ECL Circuits

1-30 Advanced Scientific Computer

Table 1-4. ECL Circuit Types

Type Title

1B Four single to double ended converters
2N Four 2-input inverting gates

2B Three Z-input complementary gates

3N Three 3-input inverting gates

4B Two 4-input complementary gates

9B 9-input complementary gate

31 Two 3-input, 3-output inverting gates

3M Two 3-input, 3-output non-inverting gates
41 Two 4-input, 2-output inverting gates

SQ Three 3-input, One 2-input gates with dotted complementary out-

puts

GC Four bit group carry gate structure

Q3 Four 3-input with dotted inverted output
DE Three bit decoder with enable

AC Full sum-carry with complementary outputs
H2 Six 2-input with dotted inverted outputs
FF Two single-input gated clocked latches
DF Two 2-input gated clocked latches

TR Termination resistors (40£2)

SR Termination resistors (80£2)

TE TTL/ECL level converters W/ECL enable
ET ECL/TTL level converters

oD TTL output drivers

RS Termination resistors (40082 pulldown)
RD Termination resistors (802 TTL)

AD Two 2-input ECL/MOS level converters
DD Four single-input TTL/MOS level converters
MA MOS 256 X 8 memory array

28 Two 2-input line receivers

1-31/1-32

Advanced Scientific Computer

SECTION 11
INSTALLATION

2.1 GENERAL
Installation information for the CP is provided in the ASC System Installation manual, Texas

Instruments part number 929980-1.

2-1/22 Advanced Scientific Computer

@
SECTION 111

OPERATING INSTRUCTIONS

3.1 GENERAL _
Operating instructions are not included in this publication. Refer to the ASC Operator’s Manual,

Texas Instruments part number 931433-1.

3-1/32 Advanced Scientific Computer

SECTION IV

PRINCIPLES OF OPERATION

4.1 GENERAL

The ASC-4X Central Processor is a layered, four-pipeline processor. As such, the CP contains
distinct levels, or stages, in the development of an instruction in the IPU, of operands in the
MBU?’s, and of results in the AU’s. Each of these levels can hold and simultaneously operate on a
separate instruction or set of operands, unless the level has been reserved by a previous
instruction. The IPU contains five levels for instruction development (levels 0-4), each MBU has
an input and an output level for operand selection (levels 5 and 6), and the AU’s have a
minimum of two levels (input and output). The number of effective levels in an AU varies with
the operations being performed. Figure 4-1 illustrates the basic components of the Central
Processor, their interconnections, and their relation to the levels of each CP pipe. The following
theory discussion centers around this block diagram and explains the major functions of each
block in the Central Processor. Additional maintenance data is included in the appendices to this
manual. Detailed controller flowcharts and discussions follow the block diagram description.

4.2 1PU LEVEL O

Level O of the IPU generates addresses to central memory to request instruction octets (eight
word groups), receives the octets from memory, and selects one word instructions from the
octets for transfer to the Instruction Register (IR) in level 1. The addressing portion consists of
the Look-Ahead (LA) Register, the Present Address (PA) Register, the Output Address (OA)
Register and the Branch Address (BA) Register. These registers ensure that the correct address
will be in OA to access the next octet of instructions for the IPU. The Memory Interface File
(KCM) and the two Current Instruction Files (KA and KB) receive and hold instruction octets
from memory so that the selection circuits may access words from the octets. The File and Word
select circuits use the address in PA to select an instruction from either KA or KB. While
instructions are being drawn from either KA or KB, the other unused file can receive a new
octet from memory. This latter file can then supply the next series of instructions without delay
to the IPU. The following paragraphs describe the function of each of these level O components.

4.2.1 LOOK-AHEAD REGISTER (LA). LA is a 24-bit register that normally holds the address
of the octet that is currently being requested from memory. When central memory accepts that
request, the output from LA is fed through an adder to increase the address by eight to form
the address of next octet in sequence. This new octet address enters the OA register for transfer
to central memory, and also the LA register for the next look ahead cycle. At the start of an
instruction sequence, the first address to be fetched from memory is in the P3 register (P3
receives this address during initial CP loading, since the addressing registers at level O are used to
load the CP with the new program). To initiate the new program the address in P3 transfers into
OA, LA and PA. The IPU issues a memory request for the octet indicated by the address in OA,
and transfers the address in LA through the adder to OA and LA. The address in PA selects an
instruction from the octet when it returns from memory. LA continues to supply addresses
through the adder to OA until the end of the program sequence if no cycle interruptions occur.

42.1.1 Cycle Interruptions. The normal processing cycle for the LA register may be broken by
either a branch instruction, a Load Look-Ahead (LLA) instruction, or an instruction hazard at
level 3 of the [PU. When a branch instruction reaches level 3 of the IPU and the address of the

41 Advanced Scientific Computer

S

branch target is not already in the pipe, the address of the new instruction transfers from the
AR register in level 3 to LA, OA and PA so that instructions from the branch path may be
accessed from memory and loaded into the IPU.

An LLA instruction prepares the IPU for a branch back to a point in the program sequence
occupied by the LLA. When the LLA reaches level 3 of the IPU, the address of the LLA in the
P3 register is stored into the BA register. When the indicated branch instruction enters the pipe,
the address in BA transfers to LA and OA to fetch the octet containing the LLA from memory
and continue to access instructions from that instruction path.

If an instruction reaches level 3 of the IPU and a hazard has occurred that makes the instruction
invalid, the address of that instruction is transferred from P3 to LA and OA to re-fetch that
instruction octet from memory to obtain valid information for that instruction. When memory
returns the valid instruction, the look ahead cycle continues in the normal manner.

4.2.1.2 Output Compare. The output of the LA Register feeds two compare circuits. One
network uses the output to determine if a far range instruction hazard exists in the LA octet.
The other network determines if the LA octet contains the object address of a branch or execute
instruction or an indirect address. Refer to the discussion of these networks for further
explanation of the comparisons.

4.2.2 LOAD LOOK-AHEAD COUNTER. The Load Look-Ahead Counter is a 12-bit, decrement-
ing counter used only during a Load Look-Ahead instruction. When the LLA instruction reaches
Level 3 of the IPU, the N field of that instruction enters the LLA Counter. The N field specifies
the number of instructions to be executed before the required branch occurs. The counter then
decrements by one for each instruction that reaches Level 1. When the LLA count minus the
number of active IPU levels (at the time of the LLA) is equal to zero, the counter transfers the
address in the Branch Address Register to the Look-Ahead Register (LA) request to memory.
Refer to the Load Look-Ahead controller discussion for a flowchart and theory of the look-
ahead process. '

4.2.3 BRANCH ADDRESS REGISTER (BA). BA is a 24-bit register that is used only during a
Load Look-Ahead operation. When the LLA instruction reaches Level 3 of the IPU, the
instruction address at that level transfers from the P3 Register to BA. BA then holds that address
until the LLA Counter transfers the address to the LA register.

4.2.4 PRESENT ADDRESS REGISTER (PA). The PA Register is a 24-bit address register that
holds the address of the next word to be transferred from the instruction file to the Instruction
Register (IR). The address in PA increments by one word address each time a word enters the
Instruction Register. The three least significant bits of the PA Register select the word from the
Instruction File during normal instruction processing. These bits also determine when the last bit
in an octet has been accessed and are, therefore, used to gate input to the PA Register and to
toggle the File Select network from one instruction file to the other. As a new instruction enters

IR, the word address in PA transfers to P1 Register to accompany the instruction through the
IPU.

4.2.4.1 PA Inputs. The PA Register is normally loaded from the LA Register when the three
LSB’s of PA are all 1’s. However, the output from P3 can enter PA at the start of an instruction
sequence if an instruction hazard is detected at Level 3 of the IPU. The output from the AR
register can also load PA during a branch instruction, an execute instruction, or for indirect
addressing, providing that the object address of the operation is contained in the current octet as
determined by the Branch, Execute, Lidirect comparison network at Level 3.

4-2 Advanced Scientific Computer

LEVEL 0 LEVEL 1 LEVEL 2
CONSTANT
AUO(0-3) LEVEL 3
2 oUTPUT CONTROL. 4 B8iT
24 BIT ADDRESS - ADRESS TO CM SELECT T T2
SELECT REGISTER)
(oA) aBIT
SELECT
—
I
LOOK ADDS VECTOR
24 BIT AHEAD 8 5 STATUS WORD -
SELECT REGISTER REGISTER SIZE vy
(LAY 2
== DECODER - l
P l P2
I REGISTER | REGISTER
2
PRESENT
24 BIT ADDRESS
eorpor REGISTER INCREMENT,
(PA) WORD
SELECT INDEXING
t REGISTER
I | EXRY
WORD — e l
BRANCH o] SELECT " WORD
24 BIT ADDRESS
2 SELECT REGISTER 1 SAELL:(;T I BASIC
| l (BA) L y WORD 1 ADDRESS e
REGISTER NS
(BR) “
WORD
| sELECT I l
LOAD/1.OOK k
2 BIT
ssELECT AHEAD COUNT DECREMENT, SELECT | INSTRUCTION DISPLACEMENT
CONTROL —— REGISTER REGISTER S -
(Le) R nNR =
I 2
l
T
INSTR N
FILE 13 [CH
'.: KB) -
cM
MEMORY
INTERFACE — :
FILE
(KEM) iy ————
e LEVEL
I i - FOM 2
CURRENT y . ROM ‘: :
INSTR i
FILE 3 3
{(KA) | 1~ l |
1 e
: H
1 [LEVEL
. ;) —=® DECODER Rt 2 o ®
-] SELECT 1 ! { ue 2
o i b
1% PR
L
!
— —————e —_— m— L
;’\\ by
—— 1] H
. ‘ . 1 i I |2 Lo
i el -] REGISTER g
T L ‘ 2
i i B .
GENERAL o I i i i ! BASE VECTOR | S |
STORAGE ”:E it ADDRESS PARAMETER ‘
FILE J—‘ 3 L ”.' FILE JJ FILE |- MAINTENANCE _
(cD) A (AB) v} » ,
M1 I annemM
REGISTER FiLE LEVEL ¢ LEVEL 1 EVEL 2

(on27s8s5 (1/5)

Figure 4-1. Central Processor Block Diagram
(Sheet 1 of 5)

Advanced Scientific Computer

LEVEL 4 .
—
LEVEL 3 . 1 -IPU ' MBU oo i LEVEL® RE:IES";I‘ER i I
u PICAL) osf————— D
1 . w *o) TETS FROM oFo | : :::lgr';?a
SHIFTER Y I AROT3 PERAND OC o 5—'
CENTRAL MEMORY ol (64 BITS)
= 8x32 00 I MM
| I SC MMEDIATE '
MEMORY ‘——.—. OPERAND 25
INPUT INTERFACE |- l REGISTER
ADDER 3 GATES oL n F s
ER RESULTANT YA{0-3) = (64 BITS) IMM TO ADDR GEN
REGISTER REGISTERS — s — — —_— — s — AND LOOE CONTROL
. (AR) I P/O LEVEL 6
:; I I scTxB '
‘ P e — A
‘ - IMMEDIATE SCALAR
oy —————— VECTOR oP-
INCRE- cLoc XA(0-3) TO HAZARD 3 l A e
Lock ! . ———
MENTER REGISTERS DETECT [~ P e — VECTOR MAB
\ I CIRCUITS 1832} 66 | x] OUTPUT
E. J i x8 y WOoRD D_" REGISTER
S:Ean X VECTOR SELECT | (64 BITS) 4
ECT |
5‘:::“ 1 l OPERAND TO AU
B R —— C— CE— CRRCTIED M RSN CR—
~——{ INCR/ LicTL
DECR . [832 |
1T "0 e —— —z }——)
1 WORD o XCTX/XHTX
REGISTER
P SELECT m o. Y
f P P Lo 8X32 07
s REGISTER ' 3 o‘;__"a"_] / onk
! l 00 8X32 ",“
L . XH / ol
1 3 VECTOR /w————
ADDER LXCTL BUFFER E x
FILE "
wDan':: A0 g |~ Z OPERAND
EGISTER -
SELECT, REGH BI;:I:‘EER -]J
XFR CONTROL
! | scTz
" -
3 z
REGISTER [32}—o
SELECT
' LICTL Rxd ol 5332 I a0
R3 MBU ROM —
1 3 3
REGISTER aoress [/ XCTzB/ZHTZB
3 ——— RESULTANT
REGISTERS [¢4] stomace | | J—
-
DECODER FILE | . STORAGE DATA TO
[o . -
78IT ¥ [—— CENTRAL MEMORY
LEVEL i SELECT — 0‘0
' . - Lo0-9 s Lexsz} 0 |
bc l REGISTERS v ANT zB
- = :::::L;N oxaz] N MEMORY
05 STORAGE b
I - I REGISTER 04 - FILE _J
Lo (Au) 0'3=
LEVEL I % a
ROM 3 7817 I i°°
RoM ! SELECT - 2H ¥ YHTY/SCTY
. HALF-PHASE |
. REGT;TER ' HOLDING = 4 °g7 I
FILE
L3CTL - m 05
ROM l PO e—
! SUPPLEMENT ogf————
L REGISTER] Soxaz} 3
{€3) l scrTYs | SSaat 00 v s
— —— —— —— — — — — — [OPERAND
BUFFER &
I 2 FILE _j =
o
N pvorers B I
Lexazie to ‘ va)
3 Y8 WORD
ImT 6BIT é’ _ | VECTOR ADDRESS
‘ SELECT SELECT l BUFFER |} 3
] REGISTER FILE '
] c STACK !
> 3 in 3 ' *NOTE:
gt - OPERAND FROM AND DATA TO
. WORD CENTRAL MEMORY TRAVEL
— SIZE l OVER SAME BI-DIRECTIONAL P — r - = /0
DATA BUS
f o [ax32] o4 LEVEL
SCALAR MMEDIATE 6
smT z80-3) o ———— By OPERAND i
SELECT REGISTERS o |
48T zP(0-3) ™ |] g I
SELECT REGISTERS I vH v B ‘roal ;Tc::’ .
LE— VECTOR WORD XEe e —W
. FER - T
T P s’:u-: H SELECT cca um! E (64 0UTS) OPERAND .
ON27595A (2/5) 3 o o

Figure 4-1. Central Processor Block Diagram
(Sheet 2 of 5)

4-5/4-6 Advanced Scientific Computer

ADDRESS ADDRESS
CONTROL. CONTROL.
2 scauars From Py A VECTOR FETCH ADDRESS per— MBU CENTRAL MEMORY
7a |_LVL4 RX/RY REGISTERS 5 3] GENERATION CAF CIRCULAR ADDRESS FILE CAF REQUESTER (CMR)
INPUT (CAF) OUTPUT
CONTROL
CONTROL 16-7 BIT REGISTERS CONTROL CONTROL
DAS
2 VECTORS ROM . “ DAl —
MM - ADDRESS E SELECT 5 BU EI__.
REGISTER ROM ADDRESS NAA XA
(@ BITS) bAO ADDER A VECTOR ; X BUFFER
—————!:l———-—h ADDRESS OPERAND
@. REGISTER D_. ADDR RGTR
FROM IPU REGISTER STACK A (25 BITS) (4 8ITS)
ac 4 ‘ [25]
XBA
‘E—’ OCTET CMR
ROM REQUEST PRIORITY
SELECT ouTPUT /. conTrOL ASELECT A 2 To 1PU
NEXT o7 21 REGISTER GATE
FROM IPU TO AU AF 1
coneRoOL REGISTER At | 21 |iTs) L »HAZARD
LEVEL 4 CONTROL i (256 BITS) CONTROL COMPARE
TO IPU — — ———— — —— — — a— o—— op— o— — t— on—— o— to——y o st
il B VECTOR FETCH ADDRESS TotPU
2 GENERATION YBA [~ LAZARD
l —'@—. OCTET COMPARE
DATA REQUEST
PRESENT, ‘@__ REGISTER OA
D—> Z DATA (21 BITS) MEMORY
LEVEL 5 LEVEL & Au | al ADDRESS va) OCTET ADDR
CONTROLLER ‘E CONTROLLER PAAC CONTROL. CONTROL. WORD REGISTER
NBA YA A (21 BITS)
s DDR
oA DBS — B VECTOR { }—-P Y BUFFER
XFR CONTROL TO - 25} 4 ADDRESS ADDRESS OPERAND n
Z ADDR AND Z DATA | ADDER _@_ﬂ REGISTER ADDR RGTR
[16] REGISTERS pB1 @ . @5 B1TS) (4 81TS)
AU
o ADDRESS ADDRESS
PAC TO IPU DB CONTROL CONTROL
LEVEL 4 CONTROL - '@' —> vy
2 _._{ : l_.
- car B VECTOR cAF ASYNCHRONOUS
GATE TIMING INPUT CIRCULAR ADDRESS FILE ouTPUT ADDRESS
[Y CONTROL TO AU ASELECT 8 CONTROL (CAF) CONTROL CONTROL REGISTER
I =5 16-7 BIT REGISTERS @1 BiTs)
IMM DAS 3x25
Z a — — — — — — —— —— — — — — — — o— — naany i
VECTOR [DB C VECTOR
AFILE = oB1 l 2
S oBes
s 3x25 NCA ZA ZAH ZBA @o)
L— _| :l_" C VECTOR RESULTANT HALF-PHASE MEMORY OCTET ADDRESS
| DCo
VAEC‘ITOER N D_CS___@_. ADDRESS ADDRESS STORAGE _.E._. HOLDING _@_. STORAGE TO CENTRAL MEMORY
FiL [be1 ADDER REGISTER ADDR RGTR REGISTER ADDR RGTR (8 CLOCK)
J DCS DC1 (25 BITS) (21 BITS) (21 BITS) (21 BITS)
was —fes}—
/ c
VECTOR N I bco — (4] - ZEA
o 1 WORD
arie ¢ ZEA ADDRESS zBM
VECTOR STORAGE MEM STORAGE HALF WORD
INITIALIZATION VECTOR COMPLETE e ©; (] WORD [4] MODIFIED BITS, CHECK
CONTROL ADDR RGTR 2 HALF WORD AND MERGE
I ASELECT C n n (4 BITS) RGTR(16 BITS
+— C VECTOR LOOP CONTROL
LOAD AND XFR COMMANDS
! 1 8 VECTOR LOOP CONTROL NSA Y ZMH [1¢]
/ A VECTOR LOOP CONTROL SCALAR MODIFIED HALF WORD HALF-PHASE P
STORAGE HALF WORD MODIFIED + HOLDING
ADDR RGTR DECODE INDICATOR REGISTER
(25 BITS) RGTR(16 BITS) (16 BITS)
I zcB
— — — — —_— e — — e — — ZONE
LPs / eLp ' I CONTROL.
SELF L.OOP SELF LOOP CP CONTROL. n B cSR-CSW, Y TO/FROM BITS RGTR
STORAGE / COUNTER REGISTER (] CENTRAL MEMORY
REGISTER E_, CAPTURE D_’ SEQUENCE RESPONSE
CCR i 8 CONTROL BITS TO/FROM PPU
GENERATED o] CONDITION | cgr FILE []
Z l 4 T —.—'————FBH.s ZFILN
I B COMMON y
s CONTROL TO AND
—] CEGI AND STATUS RESPONSE F— CENTRAL AzC
NIS REGISTER ccr FROM UNIT HARD CuE MEMORY ZONE
ER LOOP / N (FROM PP~ CORES FILE REQUESTER CONTROL
'NSNTORAGE INNER LOOP A / CR FILE) ‘;UT::';R - [*—] conTroOL OUTPUT RGTR
REG!
NTEI B
REGISTER / o COUNTER VECTOR uNIT MCW,McP reason | TO/FROM
CONTROLLER REGISTER —-—. AND ERROR Prrr PP CR FILE
READ MONITOR
| COMMAND . []
=1 I INPUT
m UR SELECT MASTER HARD CORE GATES
(14MHCA) STATUS
OUTER Lgop — UR SELECT REQUESTS TO ZONE CONTROL
COUNTER
/ CENTRAL MEMORY TO CENTRAL MEMORY
+ p— TO MHC CIRCUITS TO/FROM UNIT HARD CORES

(D)127595A (3/5)

Figure 4-1, Central Processor Block Diagram

(Sheet 3 of 5)

4-7/4-8

Advanced Scientific Comg iter

LEVEL N

-

FROM MBU A

gj

FROM OUTPUT SECTION

FROM ALIGN-RIGHT
SHIFT

2
FROM MBU @

FROM EXPONENT
SUBTRACT SECTION

FROM OUTPUT OF
INPUT SECTION

FROM INPUT SECTION

FRCM ACCUMULATOR
SECTION

FROM NORMALIZE
SECTION

FROM INPUT SECTION

FROM ALIGN SECTION

FROM ALIGN SECTION

FROM INPUT SECTION

(D)127595 (4/5)

- INPUT SECTION

T

EXPONENT SUBTRACT SECTION

TO INPUT, EXPONENT
SUBTRACT, ALIGN, ADDER
ACCUMULATOR,
NORMALIZE AND OUTPUT
SECTIONS

TO ADDER, NORMALIZE

AND OUTPUT SECTIONS

TO EXPONENT SUBTRACT,
MULTIPLIER, ADDER,

ALIGN, NORMALIZE
AND OUTPUT SECTIONS

TO ADDER, ACCUMULATOR.

MAB
—j' I-—U AB OPERAND
| PUSH CONSTANT . >
PULL CONSTANT (&) AB
1 EF RESULTANT SELECT [64] OPERAND
E D__. REGISTER
- I EF RESULTANT
HALF LENGTH D. > AB OPERAND
J HEX RIGHT SHIFTED| E—.
I MCD
D—. CD OPERAND
I INCR CONSTANT
RisIslRete]toR va LR -
DECRCONSTANT | [y o co
SELECT {64] OPERAND
l AELGOR D REGISTER
CD OPERAND
| AB OPERAND D"‘ >

LOR
LARGE
CPERAND
REGISTER
NORMALIZED DATA OPERAND
X
AB CPERAND % INPUT
SELECT ED
l LOR EH - EXPONENTS
T 7 DIFFERENCE
REGISTER
SUBTRACT
EXPONENTS
AND COMPARE
MAGNITUDE
r SOR
= o] SMALL
QOPERAND
CD OPERAND D > INPUT REGISTER
SELECT
I ACC OPERAND
l Y
COMPARE
——{F—> cooe
=.>)
— —— —— —— — — — — — —— —
ADDER SECTION
' NORMALIZED DATA
I NORMALIZED DATA
) AB OPERAND
I AB OPERAND
N NOT SHIFTED
I OPERAND
ADD
CARRY TO LSB S ADDER
QUTPUT
N REGISTER
ZEROS TO MCB °

SHIFTED OPERAND

SHIFTED OPERAND

CD OPERAND

/]
l CD OPERAND

NORMALIZE AND OUTPUT
SECTIONS

TO INPUT SECTION

TO EXPONENT SUBTRACT,
AND ALIGN SECTIONS

TO ALIGN SECTION

TO ALIGN AND QUTRUT
SECTIONS

CC

TO CUTPUT SECTION
ADDER TO NORMALIZE AND
OQUTPUT OUTPUT SECTIONS

FROM INPUT SECTION

FROM ACCUMULATOR
SECTION

FROM EXPONENT
SECTION

FROM INPUT SECTION

FROM EXPONENT
SUBTRACT SECTION

FROM EXPONENT
SUBTRACT SECTION

FROM NORMALIZE
SECTION

FROM ACCUMULATOR
SECTION

FROM INPUT SECTION

FROM ACCUMULATOR
SECTION

FROM INPUT SECTION

ALIGN AND RIGHT SHIFT SECTI

CD OPERAND

AB OPERAND

— — c— — o— — o—

BT
BIT GATES BIT
SHIFT SHIFT
DECODE NETWORK

HEX
SHIFTED m E

OPERAND

SH
SHIFTED
OPERAND
REGISTER

SHIFTED OPERAND

TO ADDER AND

HEX
GATES

HEX

=

OUTPUT SECTIONS
HIFTED OPERAND

w

TO ADDER SECTION

TO INPUT SECTION

SHIFT
NETWORK

HEX RIGHT
D SHIFTED

NS
l LOR NOT SHIFTED NOT SHIFTED OPERAND
l 54"_‘ OPERAND
REGISTER
NORMALIZED MULTIPLIER SECTION
DATA - >
DIVIDEND
ACC — REGISTER
| <o A{ }.—’. MULTIPLICAND
OPERAND SELECT
MOST/LEAST
64 SIGNIFICANT)
| Ps
l] PSEUDC
- . SUM
DIVISOR
FANOUT 3
. REGISTER RECISTER
l +MSB s 17X32
P
FORM
| TERM SUMMANDS
LOGIC :
| DIVIDE
P TO
‘%Mss's m m
™M
QDIFIER RECODE
I REGISTER

AB
OPERAND

MULTIPLIER
SELECT
(MOST/LEAST
SIGNIFICANT)

le4 l[TO ADDER SECTION
PSEUDO TO ACCUMULATOR
SUM SECTION

TO ACCUMULATOR

E PSEUDC
CARRY SECTION

Figure 4-1. Central Processor Block Diagram
(Sheet 4 of 5)

4-9/4-10

Advanced Scientific Computer

ACCUMULATOR SECTION OUTPUT SECTION (LEVEL 12)

FROM NORMALIZE

SECTION
FROM MULTEIZ'I;:E: PSEUDO SUM l l AB OPERAND - \\ I
s 164} j' I—.
OPERAND OVERFLOW |
FROM NORMALIZE NORMALIZED - . AB OPERAND - o |
ECTION j’ i‘—’ -D——D
s DATA sELECT I | l:l:OM ' '
uT
£ROM INPUT SECTION ASOLERAD / SECTION CD OPERAND i py— y
CD OPERAND AE
D CELLS
FROM MULTIPLIER PSEUDO CARRY \ ADDER OUTPUT
SECTION (64} l | FROM ADDER SECTION D“ —_— I
OPERAND
CD OPERAND
FROM INPUT SECTION - [ea) B . FROM NORMALIZE SECTION NORMALIZED DATA E,_,
SELECT
FIXED-FLOATING | . ACC
FROM ACCUMULATOR SECTION 1' "l_—’
CONSTANT 164} / (o<} I I 6 IEF TO INPUT
RESULTANT
[64] AND = EF AU = SSECTION
ouTeuT l_lL (SHORT
REGISTER CIRCUIT
= CD OPERAND . oR . PATH)
Ferl TO MULTIPLIER FROM LOGICAL :
OPERAND ACC 64F SECTION INPUT OPERATIONS To
c ACCUMULATOR SECTION AB OPERAND EXOR SELECT
64] TO EXPONENT, 6} fo4] [6a] FILE
SELECT ouTPUT AcC
REGISTER 64 SUBTRACT ,ALIGN, 2 MBu)
[= MULTIPLIER .OUTPUT EQc o] |
32 / AND NORMALIZE
ON
SECTIONS ONE RESULT TO
:]'zxn }-—— ————-] :I-—D CODE [64] u RGTR
| FILE
| l ZERO
fi}—
SOR (SMALL OPERAND)
FROM EXPONENT SUBTRACT SECTION j']—-u
}_____.____________.__________L___.__ l
NORMALIZE SECTION FROM ALIGN SECTION SHIFTED OPERAND D
- MisC. D COMPARE
LEFT cooE
CD OPERAND SHIFT A ‘) .
D——" HEX FROM ACCUMULATOR SECTION CC(LSBS)EF MSB'S) @——
DECODE
MisC,
-
MisC
4 /
CD OPERAND = [16] FROM EXPONENT
pa) HEX SHIFT GAT SUBTRACT SECTION
FROM INPUT SECTION (NORMALIZE)
CD OPERAND —
= GUARD DIGIT
- HEX
FROM ACCUMULATOR | ace — SHIF —
SECTION DATA SHIFT
l L INPUT MANTISSA sELECT — NETWORK
SELECT
FROM ADDER SECTION ADDER OUTRUT (64}
HEX SHIFT GA
AB OPERAND —1 (NORMALIZE) [e4]
= 16
FROM INPUT SECTION
| a8 opErRAND 1 EXPONENT
| sy TP T ey
1 NORM ™ NORMALIZED DATA
o TO ADDER SECTION
NORMALIZED
OUTPUT NORMALIZED DATA TO ACCUMULATOR ,OUTFUT MULTIPLIER,
MOST T REGISTER 1’ } “$ ADDER, AND EXPONENT SUBTRACT
Jl Il SIGNIFICANT —E——-— copE SECTIONS
| SEARCH REGISTER I
I 64
BIT SHIFT
——l : i—— ENCODE AND Dz ™ overFLow
| REGISTER CHECK OVERFLOW FLAG # TO OUTPUT SECTION
1
MosT
SIGNIFICANT
HEX LEFT
SHIFT BIT SHIFT GATES BiT
BIT (LEFT SHIFT)
| DECODE NETWORK
BIT SHIFT HEX SHIFTED DATA
S I-———’ MAGNITUDE f——op T 5
81T SHIFT GATES " [6]
DETERMINATION {FL. DIVIDE}
(0)127595 (5/5) l I

Figure 4-1. Central Processor Block Diagram
(Sheet 5 of 5)

4-11/4-12 Advanced Scientific Com uter

425 OUTPUT ADDRESS REGISTER (OA). The Output Address Register is a 24-bit register
that relays 21-bit octet addresses to Central Memory for data transter to/from KCM. All memory
accesses from the 1 PU must transmit an address to memory through the OA register. Three input
paths to the OA register provide addressing capability for all IPU communication to Central
Memory.

4.2.5.1 P3 Register Output. During an instruction sequence start-up, or if an instruction hazard
is detected at Level 3. The contents of the P3 Register (Level 3 Program Address Register)
transfer into the OA Register. P3 holds either the first address of the instruction sequence in the
case of a start-up operation, or the address of the instruction that must be re-fetched due to an
instruction hazard. In either case, the OA Register transmits that address to Central Memory to
begin the instruction sequence.

4252 LA Register Output. During normal instruction processing, new instruction addresses
enter the OA Register through the octet adder circuit (+8) from the Look-Ahead Register. The
LA register provides a continuous source of instruction addresses to be fetched from memory.

4.2.5.3 AR Register Output. For indirect addresses or for branch or exccute instructions, the
output of the AR Register may transfer to the OA Register if the required address is not already
in the pipe. Comparison circuits at Level 3 determine if it is necessary to access memory for the
desired word.

4.2.5.4 Load/Store Details. The OA Register transmits sequential addresses to memory to Load
or Store the contents of the IPU from or into memory. The details instruction from the
peripheral processor loads the OA Register with a pointer address that points to indicate the
address of the first octet of the details map in memory. A partial adder then increments the
address by one octet (addition of 8) to provide sequential octet addresses to memory.

4.2.6 KCM MEMORY INTERFACE FILE. KCM is an octet register file containing cight 32-bit
registers. This file performs a buffer function between ASC Central Memory and the IPU
registers and flip-flops. All IPU data transfer operations to and from Central Memory must pass
through KCM. KCM holds the data until it can be synchronized with clock pulses for orderly
transfer through the IPU, or until memory accepts the data to be stored.

4.2.6.1 Instruction Processing. During instruction processing, the KCM file receives instruction
octets from Central Memory and transfers the octets to one of the two current instruction files:
KA or KB. The KCM file is transferred to whichever current instruction file is not being accessed
by the current instruction address. For indirect addressing, a direct path from KCM to the
instruction word select circuit by-passes the current instruction files to avoid alteration of the
files. This path allows an instruction from Central Memory to be loaded directly into the
Instruction Register.

4.2.6.2 Load/Store Details. Each bit in the KCM file connects directly to numcrous bits
throughout the IPU for use in a Load or Store Details operation. Each octet of the dctails map
in Central Memory transfers sequentially to the KCM file (Load Details). The position of the
octet in the details map determines which of the KCM output paths will be enabled for each bit
of the octet until all flip-flops and registers in the IPU reflect the condition specified in the
details map. The transfer path is similar, but in the opposite direction for a Store Details
operation. Certain Details paths are also used in Load/Store Status or Intermediate commands.
The process is the same for these operations as for the Details operation, but limited in scope.

413 Advanced Scientific Computer

4.2.6.3 Store File. The Store File operation passes through KCM for transfer to Central Mem-
ory. The output from the Register File fills KCM and the octet transfers to memory. Load File
enters data into KCM and then to the Register File.

4.2.7 KA/KB CURRENT INSTRUCTION FILES. The Current Instruction Files are two octet
files containing eight 32-bit registers each. During normal operation they receive alternate,
synchronized octets from KCM that contain instruction words to be accessed by the IPU. The
first octet enters the KA instruction file. While addresses are selecting words from the KA file,
KCM loads the next octet into the KB file. This alternate loading process allows the IPU to
proceed uninterrupted through an instruction sequence without the delay required to access a
new octet from Central Memory. This time advantage is lost, however, when a Branch instruction
jumps to an instruction that is not resident in either the KA or the KB file.

4.2.8 FILE SELECT. The File Select circuit controls the sequencing of the Current Instruction
Files and relays the file siatus to the Level O Controller. When the first instruction octet from
memory enters KA, the File Select circuit gates the output from the KA registers to the Word
Select network. File Select then monitors the three least significant bits (LSB) from the Present
Address Register and enables the KB registers to the Word Select network on the clock after the
three LSB’s of PA are all ones (hexadecimal 7). File selection alternates in a like manner until
the instruction set is complete or a Branch instruction alters the order of instruction processing.
File Select also notifies the Level 0 Controller when either instruction file is full and which file

is selected. This enables the controller to determine if valid data is available for transfer to Level
1.

4.2.9 WORD SELECT. The Word Select circuit enables the proper instruction word from either
KA or KB to be transferred to the Instruction Register. The Look-Ahead Controller determines
when the transfer will take place. Only one octet is active to the input of the word select
circuits at any one time. During sequential instruction fetching, the file select circuit supplies one
octet to the word select network. When the object address of an indirect address or an Execute
instruction is not resident in the KA .or KB files, either the KCM octet or an octet from the
Register File supplies inputs to the word select network, depending upon the origin of the
instruction octet. The select circuit then monitors the three LSB’s from either the PA register
(sequential instruction acquisition) or the AR register (indirect addressing or Execute instruc-
tion). These bits designate a particular word within th: active octet.

4.2.10 LEVEL 0 CONTROLLER. The Level O Controller monitors the status of the instruction
files to determine if the valid data is present in Level 0, checks the status of the Level 1
Controller to determine if that level can accept a new instruction, and receives instruction status
from Level 3 to determine if an instruction in Level 3 affects the actions required by Level 0.
Level 0 Controller then issues a transfer signal to gate the Level O instruction and program
address into the Level 1 registers. Refer to the Level 0 Controller flowchart and description later
in this section for a detailed representation of control:zr functions.

43 IPU LEVEL 1

Level 1 of the IPU is a passive level. It receives an instruction word from the Level O selection
network and holds it until Level 2 is ready to accept the new instruction. While in Level 1, the
instruction is checked for an indirect address or an Execute instruction, either of which disables
instruction reception for Level 1 until the object of those functions passes through Level 1. The
following paragraphs describe the major components of Level 1.

4-14 Advanced Scientific Computer

&

4.3.1 P1 REGISTER. The Pl Register is a 24-bit register that holds the address of the
instruction currently in the Instruction Register of Level 1 of the IPU. The address transfers into
P1 from the PA register when the instruction enters the Instruction Register and leaves P! when
the Level 1 Controller gates the instruction to Level 2. ‘

4.3.2 INSTRUCTION REGISTER (IR). The Instruction Register is a 32-bit register that receives
an instruction word that has been sclected from the instruction file, from Central Memory
directly through KCM, or from the output of the Register File. IR holds the instruction until
Level 1 Controller transfers it to Level 2. If IR contains an Executive instruction, or one
containing an indirect address, Level 1 Controller prevents further instructions from entering the
Instruction Register until the object of that instruction is retrieved from memory and passes into
the Instruction Register.

4.3.3 LEVEL 1 CONTROLLER. The Level 1 Controller monitors the hazard detection circuit
to detect a far range hazard, checks the status of Level 2 Controller to determine if that level
can accept a transfer, and samples the instruction in Level 3 to determine its effect on Level 1.
The controller then gates the contents of Level 1 into Level 2 and sets the active bit in the Level
2 Controller. Refer to the Level 1 Controller flowchart and description later in this section for a
complete representation of the controller’s functions.

4.4 REGISTER FILE

The Register File is a storage area in the IPU that is loaded by either a direct memory transfer
or from the output of the Arithmetic Unit of the Central Processor. The file consists of
forty-eight 32-bit registers grouped into six octets. The octets are designated by the letters A, B,
C, D, I and V, and respond to the hexadecimal addresses 01 through 2F if the “M” field of the
addressing instruction is equal to zero. The output of the Register File is available to three levels
of the IPU: Level O for indirect addressing and Execute instructions, Level 2 for base addresses
and indexing, and Level 4 for operands and vector parameters except X, Y, and Z addresses. The
following paragraphs provide an outline of the contents and function of the octets in the
Register File.

44.1 BASE ADDRESS FILE, A AND B.Octets A and B of the Register File (addresses Q1
through OF) are used for base addressing. Their output is selected by the 4-bit “M” field in the
instruction containing base addressing. Since an “M” field of zero indicates no base addressing is
to be done, Register File address 00 is inaccessible by this network. No register resides in
location 00 of the Register File.

4.4.2 GENERAL STORAGE FILE, C AND D. Octets C and D of the Register File (addresses
10 through 1F) provide general storage for arithmetic operations or for quick access by
instructions. These files can be loaded directly from memory to provide a source of instructions
or operands to the IPU.

4.4.3 INDEX FILE, L Octet I of the Register File (addresses 20 through 27) holds the index
registers for indexing an address of an instruction. The T field of that instruction selects the
proper register from the Index File to be used in the indexing process. Since a T field of zero
indicates that no indexing will be performed, address 20 of the I File is inaccessible to the
indexing network. Address 20 provides an additional general storage register.

4.4.4 VECTOR PARAMETER FILE, V. Octet V of the Register File (addresses 28 through 2F)
suppiies eight words that define the parameters used in a vector operation. A vector instruction
resulis in reading the entire contents of the file. The words of the file are assigned as shown in
figure 4-2. Table 4-1 defines the word fields. Words 29, 2A, 2B of the file, the starting addresses
of the vectors, enter Level 2 of the IPU pipe for possible address modification. The remaining
five words enter directly into Level 4 for transfer to the MBU.

415 Advanced Scientific Computer

Ho Hy Ha H3 Hg Hg He Hy

REGISTER

28 OPR ALCT | sv L

29 - XA SAA

HS 8 SAB

2A X

B Vi XxC SAC

2¢c DA 15':]]

- oct NI

" : —
DAO

2 DBO

oF DCo NO
114314

Figure 4-2. Vector Parameter File Format

4.5 1PU LEVEL 2 ,

Level 2 of the IPU is a selection and holding level in preparation for address modification. If
index or base plus displacement addressing is indicated hy the incoming instruction, this level
chunnels the proper index and basc address values into their respective holding registers, modifies
the register outputs as required by the operation to be performed, and places the resulting 24-bit
words tor input to the Level 3 Modification Adder. The following paragraphs describe functions
of the major components of Level 2 of the 1PU,

4.5.1 LEVEL 2 CONTROLLER. The Level 2 Controller monitors the hazard detection circuit
to detect a far range hazard, checks the status of Level 3 Controller to determine if that level
can accept a transfer, and samples the instruction in Level 3 to determince its effect on Level 2.
The controller then gates the contents of Level 2 into Level 3 after any nccessary address
modification has been performed and sets the active bit in the Level 3 Controller. Other control
functions performed by this circuit are determined by the specific operation being processed.
Refer to the Level 2 Controller flowcharts and description later in this section for a complete
representation ol controller functions.

4.5.2 LEVEL 2 ROM. The Level 2 ROM receives the 8-bit operation code of the instruction
word as it enters Level 2. Depending upon the Op Code, the ROM generates 32 control bits that
are used in Level 2 to control instruction processing or that transter to the €3 ROM Supplement
Register in Level 3.

4.5.3 R2 REGISTER. The R2 Register is a 4-bit register that reccives the R field bits of the
incoming instruction word and transfers them to Level 3 when the instruction enters Level 3.
The output of this register is also used in Level 4 hazard detection logic to find a register hazard.

4-16 Advanced Scientific Computer

Table 4-1. V-File Field Descriptions

Reg Chiraeter Field Description
28 HyH, OPR Operation code
28 H, ALCT Arith. & Log. Comparison Term
28 Hs SV Single-valued vector
28 II4-H7 L Vector dimension
29 H, XA Initial index A
2A I, . XB Initial index B
2B H, XC Initial index €
29 Hy-Hy SAA Starting address A
2A Hy-Hy SAB Starting address B
2B Hz‘ll7 SAC Starting address C
29 Hy-Hy (29) Immediate operand A
2A llo-l-l7 (2A) Immediate operand B
2A Hy HS Halfword starting address
2B Hy Vi Vector increment direction
2C Hy-Hs DAI FAA;, inner loop
2C Hy-Hy DBI *AB;, inner loop
2D HyHy DCI £AC,, inner loop
2D Hy-Hy NI Inner foop count
2 IIO-H3 DAO iAAO, outer loop
2E Hy-Hy bBO +AB. outer loop
2F HyH DCO +AC(, outer loop
2F Hy-Hy NO Quter foop count

4.5.4 INDEXING REGISTER (XR). The Indexing Register is a 32-bit register that receives
input from one of the seven index registers in the Register File. I’ the instruction entering Level
2 from Level 1 indicates that indexing will be required, the 4-bit T field of that instruction
selects one register in the | File for transfer to the Indexing Register. The output from XR
enters a shift network. Control bits from the Level 2 ROM indicate whether the index word will
be left-shifted one bit (doubleword addresses), right-shifted one bit (halfword addresses), or
remain unaltered (single word addresses). The output from the shift network enters the modifica-
‘tion adder. ‘

4.5.5 DISPLACEMENT REGISTER (NR). The Displacement Register is a 32-bit register that
receives the instruction word from the Level 1 Instruction Register. Only part of the instruction
is used by the displacement circuit, however. The instruction word from the Displacement
Register enters a sign extension circuit. Control bits from the Level 2 ROM then determine one
of two possible places for sign extension to occur. The LSB’s of the resulting 24-bit word that
enters the modification adder contain either the N field (bits 20 to 31) of the instruction word,
or both the M and the N field (bits 16 to 31) of the instruction word. The remaining bits to the
left of these ficlds are the result of sign extension.

4-17 Advanced Scientific Computer

a2

4.5.6 P2 REGISTER. The P2 Register is a 24-bit register that holds the address of the
instruction that currently resides in IPU Level 2. The address enters the P2 Register when the
Level 1 Controller transfers the instruction into Level 2 and leaves the P2 Register when the
Level 2 Controller transfers the instruction into Level 3. The output of the P2 Register may also
transfer to the AR Register in Level 3 through the address modification network. The two
comparison networks, hazard and branch, examine the contents of P2.

4.5.7 BASE ADDRESS REGISTER (BR). The Base Address Register is a 32-bit register that
receives the base address word from file A or B of the Register File. If the instruction word that
enters Level 2 contains an M field that is not zero, the M field bits select the output from one
of the Register File registers and transter that 32-bit word to the Base Address Register. When
selected for base addressing, the Base Address Register inputs to the address modification adder.
The Base Address Register is also used to transfer the first three words of the Vector Parameter
File through the address modification network, and into the MBU. A select network at the
output of this register allows control signals from the Level 2 ROM to select either the Base
Address Register output or the output from the P2 register as the base address used in the
modification addition.

4.6 IPU LEVEL 3

IPU Level 3 develops the effective address of the operand to be sent to the MBU. It receives
input from the Level 2 instruction registers, adds the applicable base, displacement, and/or index,
and holds the resultant address for use in Level 4. Level 3 also checks for hazards and
reprocesses an instruction if a hazard exists concerning that instruction. The following paragraphs
describe the function of the major blocks in Level 3.

4.6.1 MODIFICATION ADDER. The Modification Adder is a 32-bit (24 effective bits) parallel
adder circuit with a double-level look-ahead, carry determination circuit. The adder receives
inputs from the Base Address, Displacement, and Indexing Registers and adds them to form one
24-bit resultant that transfers to the Adder Resultani (AR) register when the Level 2 Controller
enables the transfer. A feedback path from the AR register to the adder allows for incrementing
the AR register to provide continuous octet addresses to Central Memory for Load File Multiple
or Store File Multiple instructions.

4.6.2 ADDER RESULTANT (AR) REGISTER. The AR Register is a 32-bit (24 effective bits)
register that receives the modified operand address from the Modification Adder. The output
from this register may load the Level O addressing registers during a branch operation, indirect
addressing, or an execute instruction. A feedback path to the Modification Adder provides for
incrementing the address in the AR register for loading or storing multiple Register Files. If the
address that enters the AR Register is an effective address of an operand (address) or an
immediate operand, the contents of AR transfer to the AO Register in Level 4 under control of
the Level 3 Controller. The address from AR also enters the Z model Stack (Store operation) or
the Register Stack and is available to the hazard detection circuits in Level 4.

4.6.3 P3 REGISTER. The P3 Register is a 24-bit register that contains the address of the
instruction that is currently in Level 3 of the IPU. It receives the address from the P2 Register
wlen the instruction enters the AR Register after undergoing any indicated modifications. The
output of this register can be used to load the BA Register in Level 0, or can be transferred to
the RO Register in Level 4 as a direct operand. In all cases, the output from this register is
available to the hazard detection circuits in Level 4.

4-18 Advanced Scientific Computer

5@0
4.6.4 LEVEL 3 ROM. The Level 3 ROM receives the Operation Code portion of the instruction
word from Level 2 as that instruction word enters Level 3 through the Modification Adder. The
8-bit Op Code produces a 32-bit output from the Level 3 ROM. This output, in conjunction
with the C3 Register outout, provides control bits for coordination of Level 3 processes and
supplies bits to complete the address stored in the Register Stack in Level 4. If the Op Code

indicates a branch, indirect or execute instruction, the Level 3 ROM triggers a comparison circuit
for those operations.

4.6.5 ROM SUPPLEMENT REGISTER (C3) The C3 Register is a 24-bit register that stores
control bits from the Level 2 ROM to be used as control bits in supplement to those produced
by the Level 3 ROM. The control bits enter the C3 Register when the Level 2 Controller
transfers the particular instruction into Level 3. The output is immediately available to the Level
3 circuits for gating and control purposes. C3 output bits also transfer to the Register Stack in
Level 4 to complete the address stored in that stack.

4.6.6 R3 REGISTER. The R3 Register is a 4-bit register that receives the R field bits of the
incoming instruction word and transfers them to the Register Stack in Level 4 when the operand
or operand address from the AR Register transfers to Level 4. The output of this register also
selects a word from the Register File to enter into the RO Register in Level 4 as one of the
operands needed by the selected MBU for transmission to its AU.

4.6.7 LEVEL 3 CONTROLLER. The Level 3 Controller monitors the hazard detection circuits
to determine if a hazard exists for the instruction that is now in Level 3. If the hazard bit sets,
the operand or address in the AR Register may not be valid. This condition causes the
instruction to be re-addressed by transferring the contents of the P3 Register to the Level O
Addressing Registers to begin processing that instruction again. The instructions currently in
Levels 1 and 2 will also be re-addressed by the addressing registers following fetching of the
Level 3 instruction from its memory location.

In addition, the Level 3 Controller monitors the status of the Level 4 Controller to determine if
Level 4 can accept a transfer and then gates the contents of Level 3 to Level 4. Refer to the
Level 3 Controller flowcharts and description later in this section for a detailed representation of
the controller’s functions.

4.6.8 BRANCH, INDIRECT, EXECUTE COMPARISONS. Whenever a Branch or Execute in-
struction or an address requiring indirect processing reaches Level 3 of the IPU, the IPU must
examine the addresses of the instructions currently in the registers to determine if a new
memory fetch will be necessary to obtain the desired word. The Branch, Indirect, Execute
Comparisons circuit performs this function in the following sequence (refer to figure 4-3):

® (Compare AR with P2 (24 bits). If AR = P2, transfer Level 2 to Level 3.
® Compare AR with P1 (24 bits). If AR = P1, sequence Level 1 to Level 3.

® (Compare AR octet with PA octet (21 bits). If equal, force AR to PA and LA to access
new word (Branch), or use AR to select from Current Instruction File (Indirect or
Execute).

® Compare AR octet with LA octet (21 bits). If equal, force AR to PA and LA to begin
new sequence (Branch), or use AR to select from waiting Current Instruction File
(Indirect or Execute).

® If all comparisons fail, transfer AR to OA, use LA or PA to access new octet (Branch),
or transfer AR to OA and use AR to select word from KCM (Indirect or Execute).

419 Advanced Scientific Computer

AR COMPARISON . RESULT

AR
RGTR
24 BITS
24 BITS
REZ o LVL2-eLVL3
24 BITS
1 24 BITS
P
ROTR LVLI1-»LVL3
21 BITS (MSB)
21 BITS
PA AR->PA,LA (BRANCH)
RGTR AR SELECT WORD (INDIRECT/EXECUTE)
21 BITS
LA AR-»PA,LA (BRANCH)
RGTR — AR SELECT WORD (INDIRECT/EXECUTE)

AR-»0A
P AR-®LA PA (BRANCH)
AR SELECT WORD (INDIRECT/EXECUTE)

114346

Figure 4-3. Branch, Indirect, Execute Comparisons

Advancec Scientific Computer

4.7 IPU LEVEL 4

IPU Level 4 is the IPU output level to the MBU. It includes an address and an operand output
register, word selection logic, and a controller. Also included within the Level 4 circuits, but not
solely operational within Level 4, are the hazard detection circuits. These circuits protect the
IPU from processing potentially faulty instructins or operands. The following paragraphs briefly
describe the major components included in Level 4 of the IPU.

4.7.1 LEVEL 4 CONTROLLER. The Level 4 Controller monitors the Level 5 status of the
MBU’s to determine if any MBU is ready to accept new data from the IPU. If an MBU can
accept a transfer and the active bit in Level 4 Controller is set, the Level 4 Controller enables
the output from the RO and AO Registers, along with control signals, to the MBU. Refer to the
Level 4 Controller flowcharts and description later in this section for a complete representation
of the Level 4 Controller functions.

4.7.2 REGISTER STACK. The Register Stack stores the resultant storage addresses of the
operands in each level of the CP from [PU Level 4 through AU Level 12 (nine levels maximum).
The stack is four-wide from Level 5 through Level 12 to allow storage of operand addresses for
four pipes. The stack is used for any instruction that passes through an AU and has a storage
destination in the Register File. The Register Stack registers contain the storage address of the
result as well as control bits. The destination address is normally developed from the output of
the R3 Register and specific control bits from the Level 3 ROM and ROM Supplement Register
(C3). However, during a Store (R) into a when « is less than or equal to 2F (in the Register
File). the output from the AR Register in Level 3 supplies the destination address to the
Register Stack. The output from the Register Stack is used for hazard detection. The Register
Hazard Comparison circuit compares the contents of the Register Stack with various addresses in
the IPU to determine whether an instruction will draw from a location that is to be modified by
the operands preceding it. Refer to the Register Hazard Comparison description for a more
detailed discussion of the comparison circuitry.

4.7.3 REGISTER HAZARD COMPARISON. A register hazard exists when an instruction in the
IPU accesses a register in the Register File and that register will be modified by an operation
being processed elsewhere in the CP. The contents of that register will not be valid data until the
modification operation is complete and the result has been stored in the Register File. The
Register Hazard Comparison circuit prevents access to a register in the Register File until any
instruction that modifies that register has cleared the CP. The comparison circuit performs this
safeguard functions through the series of register comparisons illustrated in figure 4-4.

As an instruction enters Level 1 of the IPU, the compare circuit monitors both the T field
(index register select) and the M field (base register select) and compares these fields with the
contents of the Register Stack registers to determine if the T or M field registers will be
modified by an instruction in Levels 4 through 12 of the IPU. Registers R2 and R3 are also
compared with the two fields to determine if the instruction in Level 2 or 3 will modify the
Register File register. The AR Register in Level 3 is also compared with the T and M fields of
Level 1 to detect a hazard during a Load Register File operation, where the AR Register holds
the address of the register in the Register File to be loaded. If the instruction passes these tests,
it moves to Level 2. If not. the instruction must wait until the hazard condition drops before it
can transfer to Level 2 to select the registers from the Register File.

At Level 2 the comparison circuit checks only the AR Register in Level 3 for a hazard against
the T and M fields of the instruction at Level 2. This comparison checks an address that was not
generated when the instruction was in Level 1. If the instruction passes this test. it may move to
Level 3.

Advanced Scientific Computer

R4
R2 R3 AR TF!:‘IRH
R 2
GTR RGTR RGTR RGTR
STACK
fJ'JJ
SR
INSTRUCTION , o
LEVEL T AND M
1 FIELDS |
—0
INSTRUCTION
LEVEL T AND M —0
2 FIELDS
s)
RGTR -0
LEVEL
3
AR _
RGTR O
0O = COMPARE
114349

Figure 4-4. Register Hazard Comparisons

422 Advanced Scientific Computer

@

 Since the output of the R3 Register may select a Register File register for input to the RO
Register in Level 4, and the AR Register may select a Register File register during indirect
addressing, these two registers are checked for a hazard conflict at Level 3 before being allowed

to access the Register File. The addresses specified by these two registers are compared with the
addresses stored in the Register Stack to detect a hazard condition.

4.7.4 AO REGISTER.The AO Register is a 64-bit register that receives the output from the AR
Register in Level 3. This output may be either the memory address of an operand for use by an
MBU or a direct operand (either immediate or from Register File) for transfer to an AU. Before
entering the AO Register, the AR Register output (24 bits) undergoes a sign extension process to
create a 64-bit input to the AO Register. The AO Register transfers its 64-bit word to an MBU
when directed by the Level 4 Controller.

4.7.5 Z MODEL STACK. The Z Model is a 5-register stack that contains the destination address
of all Store operations to Central Memory in the CP. The address input is from the AR Register
in Level 3 and enters the Z Model only if the Op Code of the instruction specifies a Store
operation. The address then moves through the stack registers as the operand moves through the
CP. The registers in the Z Model correspond to levels as follows:

® 7P Register. Contains the destination address of a Store operation that is currently in
pipe levels 4 through 12.

® 7A Register. Contains the destination address of a Store operation that is in the MBU
Z Register, having been processed by the CP.

® 7B Register. Contains the destination address of a Store operation that has transferred
from the Z File to the AB File in the MBU, and is no longer available for X and Y
update.

® 70 Register. Contains the destination address of a Store operation that is being sent to
Central Memory. :

® MA Register. Contains the destination address of a Store operation that is in the
Memory Control Unit, but has not been written into its addressed location of the
Memory Module.

The output from the Z Model is-used to determine if a requested operand from memory is to be
changed by a Store operation currently in a pipe (operand hazard). The Instruction and Operand
Hazard Comparison circuits determine if any hazards exist with respect to the contents of the Z
Model.

476 o OPERAND HAZARD COMPARISON. An Operand hazard exists when the operand
addressed by the AR Register is about to be altered by a Store instruction that is farther along
in the CP. The hazard indicates that if the operand is acquired at the present moment, before
the Store instruction is complete, a faulty operand may be obtained from memory. To avoid
accessing a faulty operand, the Operand Hazard Comparison monitors the Z Model and compares
its contents with the address indicated by the AR Register. This comparison is illustrated in
figure 4-5.

423 Advanced Scientific Computer

XA
RGTR
(MBU)

ADDRESS
TO
MBU

YA
RGTR
{(MBU)

114350

AR
RGTR
STORE
v ADDR
COMPARE
ZP ———— P O
RGTR
ZA
RGTR PO —
ZB SR, R —
RGTR
PO
Z0
RGTR
MA Ol —
RGTR

Figure 4-5. Operand Hazard Comparisons

4-24

Acivaced Scieniitfic Compu:tor

o

An additional comparison is performed by this circuit to indicate whether a Z to X or Y update
is necessary. The address in the ZA Recgister is compared with the address of the octets in the X
and Y Buffers of the MBU. If the address in the ZA Register is within the octet in cither the Y
or the X Buffer, the IPU may choose to update the information in the butfers with the resultant
data found in the MBU Z Register.

4.7.7 NEAR RANGE INSTRUCTION HAZARD COMPARISON. An Instruction hazard exists
when an instruction that has been accessed by the IPU is to be altered by a Store instruction
that is already in a pipe. The Near Range Instruction Hazard Comparison circuit detects an
imminent instruction huazard by comparing the store operation address record in the Z Model
with the address of the instruction that is about to be executed in Level 3 of the IPU. This
address is contained in the P3 Register. If a near range hazard is detected by this comparison,
the hazard flag is set. When the offending store instruction is finished, P3 transfers its contents
to LA, OA, and PA (o begin another pass at the instruction in memory. The near range
comparison is illustrated in figure 4-6.

4.7.8 FAR RANGE INSTRUCTION HAZARD COMPARISON. A far range instruction hazard
indicates that an instruction in the IPU before Level 3 has been fetched from a memory location
that is being changed by a previous store instruction that is writing into memory. This condition
means that the instruction in the pipe is not valid. To detect a far range hazard, the comparison
circuit monitors the address in the MA Register of the Z Model and compares that address with
the addresses of the instructions in the P1 ad P2 Registers and the octet address contained in PA
and the LA Registers (refer to figure 4-7). Detection of a far range instruction hazard has no
immediate effect on the IPU, as the invalid instruction may be disregarded by a branch, skip, or

Z MODEL
COMPARE
O zp
O ZA
LEVEL 3
P3

—B0owt- zB

o z0

—P»O— MA

114351

Figure 4-6. Near Range Instruction Hazard Comparisons

4-25 Advanced Scientific Computer

COMPARE

p"l
>oe (24-B1T) ©
Z MODEL O Pi

(24 BIT)

MA

.DO([PA

(21—-BIT)
—»Owd LA

(21-BI17T)

114352

Figure 4-7. Far Range Instruction Hazard Comparisons

other diversion before it rcaches Level 3. Instead of an immediate recaction, a tar range hazard
flag sets in the controller corresponding to the invalid instruction. This flag passes from
controller to controller as the instruction moves through the IPU levels. When the instruction
reaches Level 3, the Level 3 Controller checks the far range hazard flag. It that flag is set, the
controller loads the P3 Register into PA, LA, and OA Registers to restart the instruction
sequence.

4.79 RO REGISTER. The RO Register is a 04-bit register that holds an operand for trans-
mission to an MBU. The 4-bit R ficld from the R3 Register selects one word from the Register
File for entry into the RO Register when the Level 3 Controller transfers information from Level
3 into Level 4. The RO Register may also be loaded from the P3 program address register for
operations using a direct operand contained in the address registers. The output from the RO
Register transfers to the selected MBU for input to the AU after the MBU fetches the second
operand from memory.

4.8 MASTER HARD CORE (I4MHCA)

Master Hard Core (MHC) is the communications port and control channel between the Master
Controller (MC) in the Peripheral Processor (PP) and the Central Processor (CP). MHC contains
conncctions to the Unit Hard Cores (UHC) for cach CP unit. the IPU, the MBU(s) and the
AU(s). These connections carry maintenance commands and switch commands to the UHCs and
status, response and data feedback lines from the UHCs. The CP Block Diagram (figure 4-1, sheet
3) illustrates the major circuits involved in the Master Hard Core. The tfollowing paragraphs
describe the functions of ecach of these components. Refer to Appendix D for further detail
regarding MHC.

4-26 Advanced Scientific Computer

)

%

4.8.1 CAPTURE COMMON COMMAND REGISTER (CAPTURE CCR). Capture CCR monitors
the Common Command Register in the PP Communication Register File (CR File) in an
asynchronous mode. The CCR (figure 4-8) is a 16-bit portien of the CR File Register Cye. [t
contains a 4-bit unit identificr, a 4-bit Op Code, and 8 bits of address that further define the
function to be performed. In order for this register to be active, the Transfer Bit (bit 16 of CR
File Register C) must be set.

Capture CCR first monitors the Transfer Bit for an active PP command. When the Transfer Bit
sets, Capture CCR examines CCR bits 0-7 to determine if the active command is intended for
the CP. If these bits represent a hexadecimal 41, Capture CCR transters the five least significant
bits of CCR to a holding register and clears the Transter Bit in the PP. The function code
transfers to Sequence Control, Sequence Control decides whether to gate the four least signit-
icant bits to the CCR OQutput Register. or if it must generate a new code to the UNHCs.

482 MCW, MCP AND ERROR MONITOR. This circuit receives error indications from all
UlICs of the CP, examines the TPU for a Monitor Call and Wait (MCW) or a Monitor Call and
Procced (MCP) instruction, and checks the 8-bit CP Control Register in the CR File. From these
inputs, the circuit determines when switching of CP contents should be performed. It the switch
is not possible, it generates a three bit reason code to the -PP. Sequence Control enables the
reason code to the PP, or performs the actual switching operation when the Monitor indicates
that the switch is necessary.

4.8.2.1 CP Control Register. The CP Control Register consists of cight flag bits residing in bits
24-31 of the CR File Register A (see figure 4-9). Table 4-2 lists cach of these bits and their
definitions. These bits are used by the PP to condition the responses of the CP Master Hard Core
to status conditions.

4.8.2.2 CP Switches. Besides the switch initiated by an MCW instruction, the Monitor circuit
checks the CP UHCs for the following error conditions and performs a switch when it detects an
error if permitted by the PP:

® (M Protect Violation (PV)

® (M Purity Error (PE)

® lllegul Opcode Detection (11)
® Arithmetic Exception (AL).

o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T T] L} L Y v Ls T T L4 LS T -
- e (e CR FILE
UNIT ID OP CODE ADDRESS (FUNCTION) N REGISTER G
i 1 } b I . e b A Nl i 2 3 4
fe COMMON COMMAND REGISTER c.lﬁ\

TRANSFER BIT

A)115836

Figure 4-8. Common Command Register and Transfer Bit

4-27 Advanced Scientific Computer

24 25 26 27 28 29 30 31
CA CT SA SP SR TR AC AS
\ /\ /
V- vV
SOFTWARE CONTROL BITS MONITORED BY MHC

115839

Figure 4-9. CP Control Register

4.8.2.3 MHC Response. When the MHC detects an error or call, it responds by setting bits in
the CP Response Register (see figure 4-10), and initiates an operation in the Sequence Control
circuit if the operation is allowed by the MC. If the context switch cannot be performed, it sets
a reason code in the CP Response Register to tell the PP why the switch is not performed. In
this case, only the reason code bits of the response byte are modified and the CP run bit is reset,
which halts normal CP operation. Table 4-3 defines the bits of the CP Response Byte, including
a decoding of the Reason Code bits. Refer to the controller descriptions later in this section for
a flowchart of the PP status checking cycle of the response bits.

4.8.3 SEQUENCE CONTROL. Sequence Control monitors error and call status from the Moni-
tor circuit, status and response bits from CP UHCs and four control bits from the CR File CP
Control Register. It also receives the 5-bit function code from the Capture CCR circuit. From
these inputs, Sequence Control determines the required steps to carry out the function
prescribed by the PP. In performing this function, Sequence Control generates condition and
response bits to inform the PP of current conditions. Four response bits transfer to-the CR File
CP Response Register. These bits are described under the Monitor circuit description. Eight
condition bits, generated by Sequence Control transfer to the CP Condition Register in the CR
File, Register 12,,. Table 4-4 lists and defines these condition bits; figure 4-11 illustrates the CP
Condition Byte.

In addition to status reports, Sequence Control generates control signals to the CP Unit Hard
Cores to coordinate performance of the PP Functions. If the hard core function originates from
a CP error, Sequence Control produces a 4-bit code that transfers to the CCR Output Register in
lieu of a PP produced command.

4.8.4 CCR OUTPUT REGISTER. CCR Output is a 4-bit register that holds the operation code
required by the CP Unit Hard Cores to perform any maintenance or switch function. The input
may be directly from the Capture CCR circuit. However, when an error produces a switch
condition, Sequence Control generates the 4-bit input to the CCR Output Register. Input from
Capture CCR is a transfer of the four least significant bits of the CCR command. In addition,
special fanouts of this register are sent to the AU UHCs for “LOAD/STORE CP Details. Since
the X7 and X4 AU UHCs are identical, and CCR commands 410B-D are not the same for X1
and X4 systems, the MHC in the X4 system records 410B to 410E, and reads 410C to 410F. In
the case of MC issued CCR exchange commands (410A, 410D), the MHC issues the appropriate
“LOAD - followed by Store” CCR commands.

4-28 Advanced Scientific Computer

Table 4-2. CP Control Byte Bit Definitions
Bit : Name Function

CA CP Auvailable Set by Master Controlier when no CP step is
primed. Indicates the need to poll for ac-
tivity on the CP execution queue. Reset by
Master Controller when a CP step is primed.

CT CP Test Set by Master Controller to indicate CP con-
trol is being relinquished to MCD. When set,
the Master Controller will not respond to any
other activity in the CP Response or Condition
bytes.

SA Step Active Set by Master Controller when a CP step is
initiated. Reset when a step terminates and no
no step is primed for execution.

SP Step Primed Set by Master Controller to switch a CP step
into execution. Reset by MC when CP begins
executing step and no other step is ready

for priming.

SR System Reset Set by Master Controller to initiate a CP reset.
Must be reset before any other CP action can
be taken.

TR Terminate Request Set by the Master Controller to terminate

outstanding CCR or Automatic Switches in
the CP. Reset by the MC.

AC Allow Call Set by the Master Controller to permit Au-
tomatic MCP and MCW calls. Reset by MC to
inhibit these calls. Should be reset anytime a
CCR command is used that invalidates the
next job step status defined by pointers 16,
17, and 28.

- AS Allow Switch Set by the Master Contrcller to permit au-
tomatic MCW and Error context switching.
Reset to inhibit these switches. In the case
of MCW’s, no action can be taken if either

AC=0 or AS=0.
o 1 2 3 4 5 6 7
R FILE
ng.STé’R 1':2'1'6 SE AT MC sc sSS REASON CODE
0 ! 1 | 2

(A)115841A

Figure 4-10. CP Response Byte

4-29 Advanced Scientific Computer

Bit

SE

AT

MC

SC

SS

Table 4-3. CP Response Byte Bit Definitions
Name Function

System Error Set by CP to indicate a Parity Error during nor-
mal CP operation. Reset by Master Controller.

Attention Set by the CP to indicate an abnormal termina-
tion (as defined by the Condition Byte) of an
automatic call or switch (as defined by the MC and
and SC bits). Reset by the Master Controller.

Message Complete Set by the CP to indicate the completion of an
MCP or MCW. Reset by the Master Controller
after operation on the message.

Switch Complete Set by the CP to indicate the completion of an

MCW or Error switch. Reset by the Master
Controller after priming the next switch.

Stored Status Set by MHC to indicate a CP Status word has
been stored on an automatic switch or CCR
command.

RZ(0-2) Reason Codes Set by the CP to inform the Master Con-

troller of the following context switch
conditions:

CODE INTERPRETATION

000 NOOP
001 MCP inhibited by MC or SC bits being set.
010 MCW inhibited by MC or SC bits being set.

011 Error switch inhibited by MC or SC bits
being set.

100 MCW inhibited by AC = 0.
101 MCP inhibited by AC = 0.
110 MCVW inhibited as AS = 0.
111 Error switch inhibited by AS = 0.

The Master Controller rcsets these bits and sets the CP Run Bit via a CCR
command after preparin ; for the indicated condition.

4-30 Advanced Scientific Computer

Bit

CcC

AB

ME

PE

IL

AE

PV

RB

CR FILE
REGISTER 1 216

(A)115846

Table 44. CP Conditions Byte Bit Definitions

Name

Command Complete

Abnormal Terminate

Memory Error

Parity Error

Illegal Opcode

Arithmetic Exception

Protection Violation

Function

Set by MHC to indicate the last CCR command
Servicing has completed. Gated to Master Cont-
roller with [4QGCC. Reset in MC by MC.

Set by MHC to indicate the last CCR command
Servicing terminated abnormally because of at
least one Unit Hard Core abnormally terminating,
or because of TR being set by the MC. Gated

to MC with 14QGCC.

Set by MHC to indicate the cause of the abnormal
termination was a protection violation or parity
error encountered by at least one of the Unit
Hard Cores. Gated to MC with 14QGCB.

Set by MHC to indicate that a parity error
caused or tried to cause an error context switch.
Gated to MC with I14QGCB.

Set by MHC to indicate that an illegal opcode
was encountered which caused or tried to cause
an error context switch. Gated to MC with
14QGCB.

Set by MHC to indicate an unmasked arithmetic
exception caused or tried to cause an error con-
text switch. Gated to MC with I4QGCB.

Set by MHC to indicate a C.M. Request resulted
in a protection violation which caused or tried
to cause an error context switch. Gated to MC
with 14QGCB.

CP Run bit Continuously gated to MC to reflect the state of
the CP: If RB=1, CP is running; If RB=0,
CP is halted (frozen).
16 17 18 19 20 21 22 23
cc AB ME PE L AE PV RB

Figure 4-11. CP Condition Byte

4-31 Advanced Scientific Computer

4.8.5 UNIT REGISTER READ. Unit Register Read performs the maintenance function of
addressing a hard core (unit or master) register or series of flip-flops, so that the contents of the
selected register are transferred to the CR File for inspection by the PP. All bits selected in this
manner transter to the CP Unit Register in the CR File, Register A (bits 8-15). The sclected byte
transfers directly from its respective Unit Hard Core to the CP Unit Register in the CR file.

4.9 MEMORY BUFFER UNITS (MBUS)

The Memory Buffer Units (MBUs) receives addresses or immediate operands from the IPU. If the
word is an address, the MBU requests the octet containing that address from central memory,
and extracts the proper operand from that octet. In either case the MBU lorwards the operand,
immediate or addressed, to its AU for processing. The two operands within the MBU can be up
to 64 bits long. During vector operations, each MBU buffers up to three octets from memory for
each of two input buffers so that a steady input of data to its AU is ensured. The components
of the MBU are illustrated in the detailed block diagram of the central processor in figure 4-1.
The following paragraphs describe the function of each of those components within the MBU.

49.1 MEMORY INTERFACE FILE (SC). The MBU Memory Interface File (SC) receives all
operands from Central Memory that the MBU transfers to the AU. The file is an eight-register
(octet) group with 32 bits to each register. It receives data directly from the memory data lines
and holds that data until it is synchronized with the CP clock pulses. The clock pulses then
transfer the data through the remainder of the MBU, subject to gating signals trom the MBU
controllers. The output from the SC File may enter one of many places in the MBU. During
scalar operations and during vector operations when the Vector Buffer Files are empty, the SC
output transfers directly into either the X or Y operand buffer. When a vector operation is in
progress and the X or Y operand buffers are full, the SC output enters either the YB or the XB
Vector Buffer File. Two paths supply data to the Z Storage Files also. One path provides fill-in
for partially filled words for storage into memory (ZB), while the other path is useil exclusively
during a Load Details operation (Z).

492 VECTOR BUFFER FILES (XB, XH, YB, YH). Each Vector Buffer File consists of eight
32-bit operand registers. During vector operations, the files provide continuous operands to the X
and Y Operand Files for operand streaming into the AU. Two Vector Buffer Files supply two
stages of octet buffering for each of the two Operand Files. Cue and control bits from the
Central Memory Requester control entry into the Vector Buffer Files. The individual vector
controllers (figure 4-1) gate the data between the files. When an octet arrives in the SC File,
CMR determines which vector stream addressed that particular octet and gates the octet into
either the X or Y data stream. The octet may enter cither the B level or directly into the
operand file, depending on the status of the operand file. If the octet enters the B level and the
next buffer is clear (XH or YH) on the next clock pulse, a gate from the vector controller
transfer the new octet into the H buffer. When the corresponding Operand Buffer File empties,
another gate and a clock pulse transfer the octet from the H level to the Operand File.

4.9.3 OPERAND BUFFER FILES (X, Y). Both Operand Buffer Files consist of eight 32-bit
registers. These files supply operands to the MBU output registers during both scalar and vector
operations. The files receive their input octet from three sources: the SC Interface File, the XH
or YH Vector Buffer Files during vector operations, and the ZH Holding File. This last source of
operands is used when the Z pipe contains modified entries for storage in the octet that is
resident in either of the Operand Buffer Files. Flag bits record the halfwords that have changed
in the octet so that only the changed portions of the octet transter to the Operand Buffer Files
during this update procedure. The output from these files is available to the MAB and MCD
output registers through a selection network for input to the AU.

4-32

Advanced Scientific Computer

i&j
494 X AND Y WORD SELECT. The word select circuits receive inputs from their respective
Operand Buffer File and use a 4-bit word address (figure 4-1), Address Generation Circuit to
select a half, single or doubleword entry from the operand octet. During vector operations, the
output from the X select circuit is sent only to the MAB register and the output from the Y

select circuits drives only the MCD register. No crossover of operands is possible. In scalar mode,
both select circuits supply operands exclusively to the MCD register.

49.5 MAB/MCD OUTPUT REGISTERS. The MAB and MCD registers are two 64-bit registers
that supply operands to the AU for processing. All operands, whether scalar or vector must pass
through these registers for transmission to the AU.

49.5.1 Scalar Data Paths. During scalar processing, the MAB Register receives operands exclu-
sively from the REG Register. This register supplies operands from the IPU Register File if a
register operands is required. The MAB register may not be used during a scalar operation if no
register operands are needed. The MCD Register, however, has three sources of operands during a
scalar operation. It may receive operands from Central Memory through either the X or the Y
Operand Buffers, or an immediate operand from the IMM Register.

49.5.2 Vector Data Paths. In vector mode each output register has one main operand source:
the X Operand File for the MAB Register and the Y Operand File for the MCD Register. Either
“output register, however, may receive an immediate vector through the IMM Register.

49.6 REG REGISTER. The REG Register is a 64-bit register that receives operands directly
from the IPU during scalar mode operation. REG then holds the operand until a corresponding
operand from Central Memory, or an immediate operand is available, and the Level 5 Controller
enables a transfer from Level 5 to Level 6 of the CP pipe. The contents of the REG register then
transfer to the MAB Register at Level 6 of the MBU.

4.9.7 IMM REGISTER. The IMM Register is a 64-bit register that receives immediate operands
from the IPU and transfers them to the Level 6 output registers at the direction of the Level 5
Controller. The IMM Register output may transfer only to the MCD Register during a scalar
operation. However, during a vector operation, the IMM Register loads the vector parameters
into the MBU vector processor circuits, and may also be used to load an immediate, one-value
vector into either the MAB or the MCD output register.

49.8 Z REGISTER SELECT. The Z Register Select circuit receives the resultant data from the
AU and routes it to a particular register in the Z Resultant Storage File. A 4-bit element address
from the Z address generation circuit (figure 4-1) designates the particular register for storing the
resultant data. This circuit and the Z File pipe are used for scalar store operations and all vector
operations only. All other scalar operations store results in the IPU Register File.

499 Z RESULTANT STORAGE FILE. The Z File consists of eight 32-bit registers that receive
input data from the AU for storage in Central Memory. The Z File represents one contiguous
octet of Central Memory, the actual address of which is controlled by the Z Address Generation
circuit (figure 4-1). The entire octet, therefore, may not be filled in any one operation if storage
addresses do not indicate continuous memory locations. Whenever the storage addresses begin
storing into a new octet, the Z Address Generation circuit transfers the contents of the Z File to
the ZB File for storage and begins storing a new octet in the Z File. This transfer takes place
regardless of the full status of the Z File. The input line to the Z File from the SC File is used
during a Load Details operation only.

4-33 Advanced Scientific Computer

=50

49.10 ZH HALF PHASE HOLDING FILE. The ZH File is an eight-register file used exclusively
for a transfer delay between the Z File and the ZB File to avoid a premature transfer of
contents from Z to ZB. Two clock pulses control the timing of transfers between the files, Phase
0 and Phase 1 clocks. Phase O enables input to the Z and the ZB files (along with other gating
pulses from the control logic). The Phase 1 clock occurs at equal intervals to the Phase O clock,
but the pulses are 180 degrees out of phase with the Phase O clock. Phase 1, therefore,
represents a “‘half-phase” pulse with respect to the Phase O clock. This half-phase clock transfers
the contents of the Z File into the ZH File, exclusive of all other control signals. ZH, therefore,
always reflects the contents of the Z File after a half-clock delay. Because of this delay, ZH
provides a stabilized output to the ZB File. At the end of an octet in the Z File, Phase 0 clock
can simultaneously transfer the octet in the Z File, as reflected in ZH into the ZB File, and
begin storing data for a new octet in the Z File. One half-clock later, Phase 1 clock changes the
ZH File to reflect the new octet in the Z File.

If the octet in ZH is to be stored and the X or Y Operand File is currently using that octet, the
changed words in the ZH octet transfer to the X or Y File to update that information before the
store gate transfers the octet to the ZB File. This update path is also available if the operand
address indicates an access to a word that is in the Z File. CMR will transfer the changed words
from ZH to the requesting file, X or Y, to update the new octet as it enters X or Y from SC.

49.11 ZB MEMORY STORAGE FILE. The ZB File consists of eight 32-bit registers. The
output from these registers supplies data to Central Memory for storage in octet transfers.
Central Memory cannot store halfwords without destroying the secand half of the word stored in
that memory location. The ZB File receives either full or partially full octets from the Z File
through the ZH File when address control begins storing AU results into a new octet. If the
transfer contains a modified halfword that does not have a corresponding halfword to form a
single word store, the Central Memory Requester circuit addresses memory to read the contents
of the octet from its memory location into the SC Memory Interface File. Cue bits in CMR
transfer the unmodified halfwords in the octet from the SC File to the ZB File to complete the
storage octet. CMR then transfers the changed words into memory to replace the information
stored at that location. If the AB File receives only single words from the Z File, CMR stores
the words of that octet without the fill-in process.

4.9.12 ROM ADDRESS REGISTER. The ROM Address Register is a 9-bit register that holds
control bits from the IPU to designate the starting address of the next ROM sequence for AU
gating control. During scalar operations, the nine bits have the following sources:

® Bit 0 - Designates one of two halves of the ROM. May be set to allow a new sequence
without modifying the remaining address bits. '

® Bit 1-4 - The four most significant bits of the current instruction Op Code.

® Bits 5-8 - A recording of the four least significant bits of the current instruction Op
Code.

The ROM Address Register receives this input during the Level 4 to Level 5 address transfer and
holds the address bits until the Select Next Controller gates the output into the ROM circuits.

During vector operations, the ROM Address Register is loaded from the Vector Parameter File in
the IPU. At the start of a vector operation, the operation code in the first word of the Vector
Parameter File enters the ROM Address Register from the IMM Register. Since the operation
code is only eight bits, the ninth bit is held at a constant “1°° level.

4-34

Advanced Scientific Computer

@)
4.9.13 ROM ADDRESS SELECT. Control bits from the Select Next Controller monitor the
progress of the ROM sequence and designate to the Select circuit which address source to gate
into the ROM circuit. The address may be derived either from the ROM Address Register or
from the output of the ROM itself. The first source is used to initiate a ROM sequence; the
second source continues the ROM sequence by supplying succeeding addresses from the ROM
output to access the next ROM word. The ROM supplies two 9-bit addresses during sequencing

(B, and ;). The Select circuit may choose either of these addresses, depending upon conditions
monitored by the Select Next Controller.

4.9.14 MBU ROM. The output from the MBU ROM controls the gating of operations through
the AU pipe. The ROM supplies a 256-bit output from a 9-bit address input. In addition to AU
Control bits, the ROM produces two 9-bit addresses that feed back to the Select circuit to
address the next output from the ROM during sequences of more than one ROM instruction. An
output map of the function codes is provided on site in computer printout form.

4.9.15 ROM OUTPUT REGISTER. The ROM Output Register is a 256-bit register that receives
the code from the ROM and holds it for relay to the AU gating circuits. The contents of this
register change each clock time to follow the output of the MBU ROM.

49.16 SELECT NEXT CONTROLLER. Select Next monitors the status of the MBU ROM
sequence and determines when a new sequence may be started for the next instruction to enter
the AU pipe. In streams of similar operations, a new operand may be entered into the AU before
the previous operand has completed processing. The precise point of entry is determined by the
nature of the operation. When a new operation can begin without disturbing the one in process,
Select Next enters the new Op Code into the ROM. The ROM then produces gate signals for
both instructions concurrently. Refer to the flowchart and description of the Select Next
Controller that appears later in this section.

4.9.17 AU CONTROL. The AU control circuit produces timing signals to the AU to coordinate
the gating signals produced by the MBU ROM. It receives control signals from the ROM, status
from the Level 6 Controller, and a reflection of the contents of the AU from the AU Model. AU
control then generates the proper enable pulses to the AU to route data to the proper pipe
segment at the proper time in the ROM sequence. AU control also supplies the Level 6
Controller with a Path Ahead Clear (PAC) indication so that the controller can gate data from
Level 6 into the AU. Refer to the AU Control flowchart and description that appears later in
this section.

4.9.18 AU MODEL. The AU Model consists of a series of AU status flip-flops that mirror the
current condition of each level of the AU. Timing and control signals from the AU Controller set
and clear the respective level busy bits in the model to assure a current status picture in the
model at all times. The output from the model supplies status signals to the AU Controller and
to the Select Next Controller to aid in coordination of AU operations and instructions.

49.19 Z DATA AND ADDRESS CONTROL. This circuit controls the transfer of data between
the Z, ZH, and ZB Files and the corresponding transfer of addresses from the NSA to the ZBA
Registers through the ZA Register. To determine the timing of these transfers, the circuit
monitors the status of data in the AU pipe to discover when a new octet of addresses will be
started in the Z File. This circuit also controls the introduction of a new storage address into the
NSA Register by monitoring status commands from the IPU and gating the new address from the
Z Stack in the IPU when the operand and instruction reaches Level 7 of the CP. To provide
immediate destination selection for resultant AU data, the addresses in the address registers
precede their respective data by one clock period as they pass through the Z files. Flowcharts for
the address and data flow through the Z file appear later in this section along with description of
the major decision paths. ‘

435 Advanced Scientific Computer

a2

4.9.20 LEVEL 5 CONTROLLER. The Level 5 Controller receives status and transfer bits from
the Level 4 Controller in the IPU, gates the IPU addresses into the Level 5 Registers, returns
status bits to Level 4 and provides Level 6 with information for transfer coordination into Level
6. The Select Next Controller also provides a gating input to the Level 5 Controller to enable the
controller to transfer new data into the next level of the pipe. A flowchart and description of
the scalar input cycle appears later in this section. Vector inputs are under control of the
separate vector controllers. :

4.9.21 LEVEL 6 CONTROLLER. The Level 6 Controller receives transfer control signals from
the Level 5 Controller, path status signals from the AU Controller, and a transfer enable signal
from the Select Next Controller. By combining these signals, the Level 6 Controller determines
when to transfer operands and ROM addresses such that no data or ROM control bits are lost.
The Level 6 Controller also returns data present indications to the AU Controller to indicate an
active level state. The logic flow of the Level 6 Controller in the scalar mode and vector mode is
discussed later in this section.

49.22 INNER LOOP STORAGE REGISTER (NIS). NIS is a 16-bit storage register that receives
the inner loop count portion of the Vector Parameter File at the beginning of a vector
operation. NIS then holds this count for restoration to the inner loop counters when a new inner
loop is begun. The count held in NIS is used by the inner loop counters for all three vectors.

4.9.23 SELF LOOP COUNT REGISTER (LPS). LPS is a 16-bit storage register that receives the
Length portion of the Vector Parameter File at the beginning of a vector operation. LPS then
holds this count for restoration to the self-loop counters when a new self-loop is begun. The
count held in LPS is used by the self-loop counters for all three vectors.

4.9.24 VECTOR INITIALIZATION CONTROL. Vector Initialization Control performs the
gating functions required to begin vector processing in the MBU/AU and also clears out the units
at the completion of a vector to prepare the pipe for the next operation. At the start of a vector
operation, this circuit distributes the sections of the Vector Parameter File from the IMM
Register to their proper destinations within the vector control and generation circuits, starts the
address generators, performs the first operand fetch of the vector, and aligns the first operands
for processing. At that point vector control and generation circuits take control of operation and
run until completion.

When the vector is complete, the Initialization Control circuit again assumes control to store the
last results of the vector into Central Memory. Initialization Control also cycles the MBU ROM
to a NOP (no operation) condition and sequences the AU to clear the gate and control flip-flops.
This clean-up operation prevents alteration of the next operation that will be processed by the
pipe. Refer to the flowchart and discussion of the Vector Initialization Controller that appears
later in this section.

4.9.25 VECTOR LOOP CONTROL. Vector Loop Control consists of a 16-bit decrementing
counter for each of the three address loops plus a vector controller. The controller monitors
counter status and the status of the address generation network corresponding to that vector. It
then controls counter decrementing and input gating to the address generator. Each of the three
possible vectors, A, B, and C, have a separate and independent loop control circuit.

4.9.25.1 Self Loop Counter (FLP). FLP receives the 16-bit length field of the Vector Parameter
File from LPS at the beginning of a vector operation. Control pulses from the vector controller
then decrement the count in the counter each time an address is generated by the address
generation circuits. If the FLP received a count of zero (NOP), or all loop counters receive a

4-36 Advanced Scientific Computer

count of one (unit vector) to start the vector, the vector requires no address generation. When
the counter reaches a count of one, it signals the vector controller that the FLP is 1. If
additional self loops are to be executed, the vector controller loads the FLP with the original
self-loop count from the LPS holding register.

4.9.25.2 Inner Loop Counter (FNI). FNI receives the 16-bit inner loop count field of the
Vector Parameter File from the NIS register at the beginning of a vector operation. If the inner
loop count is equal to zero or one, the inner loop will not be executed: the self loop will be
executed once. If the inner count is greater than one, control pulses from the vector controller
decrement the count in the counter each time a new self-loop of addresses begins. When the
count in the counter reaches a one, the counter signals the vector controller that the FNI is
equal to “17. If additional inner loops are to be executed, the vector controller loads the FNI
with the original inner loop count from the NIS holding register.

4.9.25.3 Outer Loop Counter (FNO). FNO receives the 16-bit outer ioop count field of the
Vector Parameter File directly from the IMM Register at the beginning of a vector operation. If
the outer loop count is 2qual to onc or zero, the outer loop will not be executed: only the
self-loop and inner loops will run to completion. If the outer loop count is greater than one.
conirol pulses from the vector controller decrement the count in the counter each time a new
inner loop of addresses begins. When the count in the counter reaches a one, the counter signals
the vector controiler that FNO is equal to 1. Another cycle of inner and self-loops is
performed tc complete the vector. A new outer loop count entered into the FNO counter
indicates the beginning of a new vector.

4.9.25.4 Vector Controller. The Vector Controller supplies increment pulses to the loop
counters and gating signals to the address generation circuits to select increment values between
addresses. At the beginning of a vector operation, the controller checks the value in the FLP
counter. It this value is a zero (NOP) or a one (unit vector), the incoming vector requires no
address generation. If the self-loop count is greater than one, the controller enables the address
generation adder to increment the address. Each new address produced by the generation circuit
causes the controller to decrement the FLP counter. When FLP reaches a **17 count, the
controller disables the increment input to the address adder and inspects the FNI counter.

It the inner loop count in the FNI counter is equal to zero or one, vector processing is finished.
It the inner loop count is greater than one, the controller enables the inner loop displacement
input to the address adder to produce the starting address of the next seli-loop and decrements
ENI. The controller then loads the self-loop count into FLP and enables the address adder 1o
increment through the selt-loop again. This process continues until both FLP and FNI contain a
count of one. At that point the controller disables the address adder and inspects the FNO
counter. :

It the outer loop count in FNO is equal to zero or one. the vector operation is complete. If the
outer loop count is greater than one, the controller enables the address adder to add the outer
loop displacement to the last address and decrements the outer loop counter. Both the inner
loop count and the self-loop count restore to FNI and FLP. respectively, and the self- and inner
loop sequence repeats. When the outer loop counter reaches a count of one. a final repetition of
the self- and inner loop sequence completes the vector.

When the controller determines that the vector is finished. it disables the address generation
circuit and informs the Vector Initialization Controller of the status. Vector Initialization
Control then stores the remaining results in memory and clears the pipe for the next instruction.

4-37

. Advanced Scientific Computer

49.26 MBU UNIT HARD CORE. MBU Unit Hard Core is the maintenance function and
context switching controller for the MBU. It receives maintenance and switching commands from
the PP through Master Hard Core. It then performs the specific operation inde pendent from the
other two unit hard cores in the CP. When the operation is complete, MBU UHC reports the
completed status to MHC. Among the tunctions performed by Unit Hard -Core and Load and
Store Details or Intermediate operations, and Unit Register Read when the register to be
transierred to the PP is in the MBU Unit Hard Core Rnfer to Appehu\ 1 for tlowcharts and an
explanation of hard core opcldtlons B ‘ - -
4.9.27 VECTOR ADDRESS GENERATION (A/B VECTORS) The address generdtlm‘a “Circuits
for the A and B vectors are functionally identical. Each circuit produces addresses To access
vector components from memory for their réspective vectors. At the start of a vector operation.
Vector Initialization Control loads the vector starting address field into the Vector Address
Register (NAA'NBA). The octet addfess of this word transfers to the' Octet Request Register
(XBA/YBA). If it is a new octet, the vector controller generates a request to the Central Memory
Requester (CMR). The 4-bit word address wi thm an otctet is stored into the vector Circular
Address File (CAF). The word addresses are' then' retrieved sequentially (first in - first out) to
“select from their Lorrespondmg octet for input to thée MAB/MCD Registers. As cach word
“address enters CAF, the entire address feeds back through the address adder to create the next
address in the vector. The following paragraphs describe each major component of the uddress
generation circuit. Refer to the Address Generation Controllers discussion later in this section for
description and ﬂOWChdItS of the process.

4.9.27.1 Vector Address Register (NAA/NBA). This register receives the 25-bit vector starting
address field from the Vector Parameter File at the start of a vector operation. This field enters
from the IMM Register under control of the Vector Initialization Controller. The Vecfor Address
Register then holds that address until modified by input from the Address Adder or a new
starting address field. The 21 most smmmant bits of this register (octet address) transfer to the
Octet Request Register for transmission to memorx The four least significant bits are stored in
the CAF for use in routing the proper operand to the'data stream. The output trom the register
is then applied to the mput of the Address Adder for possible modification.

4.9.27.2 Address Adder. The Address Adder pertorms address modification on the addréss from
the Vector Address Register to form a stream of addresses to access the component operands of
a vector. Any one of three modification inputs may be added to the contents of the Vector
Address Register to produce the next address to be accessed. Selection cf the particular input is
under control of the Vector Controller in the Vector Loop'Control circuit. If the loop counters
indicate a self-loop is to be performed, the controller enables the DAS input. This input is 4
fixed **17, sc¢ that it produces an increment or decrement nf one. depending upon the sign.
Similarly, for changing the address to begin a new self-loop sequence (inner loop) the DAI input
is added to the address: for beginning a new inner loop sequence (outer loop) the DAO input is
added to the address. The output from the adder transfers to the Vector Address Register to
supply the next address in the stream.

49.27.3 ‘Octet Request Register (SBA/YBA). The Octet Request Register receives the 21-bit
octet address from the Vector Address Register and makes it available to the Central Memory
Requester for transmission to Central Memory. The individual vecter controller monitors the
contents of this register and produces a request to CMR when a new octet address eriters the
register. When CMR accepts this request and transfers the octet address to the OA Register. the
Octet Request Register is' free to accept a new address. During scalar operations. ‘a direct path
from the IPU AO Register loads the Octet Request Register. I

4-38 Acivanced Scientific Computer

(9]

49.27.4 Circular Address File (CAF). CAF is a file of 16, 7-bit registers. Together with its
input and output controllers, it kecps track of all vector components whose addresses have been
requested from memory but have not been used by the operand selection circuit that loads the
MAB and/or MCD Registers. The file has a capacity of 16 unused operands, so that when this
limit is reached, the address generation circuit is disabled until onc of the operands is used,
creating a vacancy in the file. The seven bits of the file words are divided as illustrated in figure
4-12. The four most significant bits in the word are the element address bits from the Vector
Address Register. Each time a new address enters the Vector Address Register, the four least
significant bits of the address transfer to the CAF and fill the four MSB’s of the next vacant file
word. When the bits enter the file, the input controller scts bit 4 of the file word to indicate
that the element address is active. When the word is used, the output controller clears bit 4 to
indicate that that word is now vacant. Bit 5 is a control bit that indicates that the word is the
end of a self-loop. This bit is set every time that the Vector Controller enables the DAI or DAO
input to the Address Adder. Bit 6 is set by the input controller to indicate the first word of a
new octet. When the octet address in the Octet Request Register differs from the octet address
in the Vector Address Register, the controller sets bit 6. The words remain stored in sequence in
the file until an operand request removes the address from the file.

EFach time the MBU needs a new operand to send to the AU, the output controller translers one
of the file words to the Buifer Operand Address Register (XA/YA) and clears the active bit in
the file corresponding to tiie word that was removed. The output controller assures that the file
words are removed in exactly the same order that they were put into the file so that they
remain matched with their proper octets that arrive from memory. Refer to the controller
discussion later in this section for a flowchart and description of the address output cycle.

4928 BUFFER OPERAND ADDRESS REGISTER (XA/YA). The Buffer Operand Address
Register is a 4-bit register whose output selects the proper word from an octet in the X or Y
Operand Bufter for transfer into the MAB or MCD output registers. This register receives its
efement address from either the CAF in the case of vector streams. or dircctly from the 1PU AO
Register during scalar operations.

4.9.29 ’C VECTOR AND STORAGE ADDRESS GENERATION. This network generates mem-
ory addresses for storing the resultant vector (C) from a vector operation and processes the
storage address of a scalar Store operation. For either operation, the addresses are coordinated
with their proper data octets in the Z File so that the address is sent to memory when the
corresponding data octet is in the ZB File. In addition, this nctwork records the modification
status of each halfword in the Z files for use in an update of the X or Y Buffer Files. The

0 1 2 3 4 5 6
BIT 29 BIT 30 BIT 31 BIT 32 acTive |gENP O p|NEW ocTET
— /
'z

LLSB’S OF WORD ADDRESS

Figure 4-12. Typical CAF Word

4-39

Advanced Scientific Computer

following paragraphs describe the major component circuits of this network. Refer to the
detailed theory discussion later in this section for a flowchart of the address generation circuit.

4.9.29.1 C Vector Address Register (NCA). NCA receives the 25-bit C Vector starting address
field from the Vector Parameter File at the beginning of a vector operation. The Vector
Initialization Controller enables this input through the IMM Register during vector start-up. The
output of NCA is used to generate further addresses for storing the vector and also transfers the
address to the CMR through the ZA/ZBA registers for use in storing the resultant vector in
Central Memory.

4.9.29.2 Address Adder. The Address Adder modifies the address in the Vector Address
Register, NCA, to form a stream of addresses for storing the resultants of a vector operation.
Any one of three modification inputs may be added to the contents of NCA to produce the
next address for resultant storage. Selection of the particular input is under control of the C
Vector Controller in the C Vector Loop Control circuit. If the loop counters indicate a self-loop
is to be performed, the controller enables the DCS input. This input is fixed “1” that produces
an increment or decrement of one to the address in the register. Similarly, for changing the
address to begin a new self-loop sequence (inner loop) the output from the DCI Register is
added to the address; to begin a new inner loop sequence (outer loop), the DCO Register output
is added to the address. The output from the adder transfers to the C Vector Address Register to
supply the next address in the stream to the CMR.

4.9.29.3 Scalar Storage Address Register (NSA). NSA is a 25-bit register that contains the
storage address of a scalar operation resultant that is currently in the AU pipe. A 21-bit input
from the IPU ZP Register forms the octet address portion. (most significant bits) of the storage
address. Four bits from the [PU Register Stack (level R6) become the clement address that is
used to store the word within the octet contained in the Z File. The address enters NSA when
the respective operands enter the AU and leaves NSA to transfer to ZA and ZEA one clock
before the resultant of the operation leaves the AU EF Register.

49.29.4 Resultant Storage Address Register (ZA). ZA is a 21-bit octet address register. The
contents of this register indicate the destination storage address of the octet that is currently in
the Z File. The address enters ZA from NSA (scalar) or NCA (vector) one clock before the
resultant begins storing into that octet in the Z File. The output of the register then transfers to
the ZAH Register on the following Phase 1 clock pulse.

4.9.29.5 Half Phase Holding Register (ZAH). ZAH is a 21-bit octet address register that reflects
the address in ZA after a one-half clock delay. Refer to the discussion of the ZH Holding File
for a description of the half phase relationship of the two registers. The output of ZAH transfers
to the ZBA Register when a new octet address enters the ZA Register.

4.9.29.6 Memory Storage Address Register (ZBA). ZBA is a 21-bit octet address register that
contains the address of the octet that is currently in the ZB File awaiting transfer to Central
Memory. The address transfers to ZBA from ZAH one clock before the corresponding octet
transfers from the ZH File to the ZB File. An address that enters ZBA immediately results in a
memory request to the CMR. Since store requests have priority over all other memory requests
CMR immediately begins a memory cycle to store the contents of the ZB File into the memory
location contained in the ZBA Register.

4.9.29.7 Halfword Modified Indicator Register (ZM). ZM is a |6-bit register that is used to keep
a record of those halfwords in the Z File that have been modified by resultants from the AU.
Each bit in ZM corresponds to one-half word in the Z File. When an entry is made into a
particular halfword in the 7 File, the corresponding indicator bit in the ZM Register is set. The

4-40 Advanced Scientific Computer

Modified Halfword Detect circuit monitors each element address sent to the Z File and generates
the signal that sets the control bit in ZM.

4.929.8 Half Phase Holding Register (ZMH). ZMH is a 16-bit register that reflects the contents
of the ZM Register after a one-half clock delay. The output bits gate the changed halfwords into
the X or Y File during a Z to X (Y) update.

49.29.9 Memory Storage Modified Halfwords Register (ZBM). ZBM is a 16-bit register that
stores the modification indicator bits for the octet of data in the ZB File. It receives its input
from the ZMH Register one clock before the data file transfers from ZH to ZB. If an update of
X or Y is needed during the time that its corresponding octet is still in ZH, the output of ZBM
may be used to gate the modified words of that file to the corresponding words in the X or Y
Files. Since memory can only consider whole word storage, the output of this register is merged
into eight whole-word-modified indicator bits before being transferred to CMR as zone control
bits.

4.9.29.10 Storage Word Address Register (ZEA). ZEA is a 4-bit register that receives the
element address from either NCA (vector) or NSA (scalar). The output of this register directs the
output from the AU EF Register into the proper word of the octet currently residing in the Z
File. ZEA re-eives a new input address as soon as the old address has performed its gating
function.

49.30 CENTRAL MEMORY REQUESTER (CMR). CMR performs the coordination, book-
keeping and transfer functions required to store or fetch octets in Central Memory. It assures
that octets read from memory are routed to the data file that requested that particular octet.
For store functions it also assures that only valid full words of data are stored into memory to
avoid destroying information in Central Memory. Three addressing circuits provide requests for
memory access to CMR. If conflicts occur between these requests, CMR resolves the conflict.
Refer to the controller discussion that appears later in this section for flowcharts of CMR cycles.

4.9.30.1 CMR Priority Gate. This circuit monitors memory requests generated by the vector
controllers during vector operation, or from the IPU during scalar operation, and resolves any
conflicts that may occur over simultaneous memory requests. Since storage requests have no
address buffer, storage requests involving the ZBA Register address always receive the highest
priority for memory requests. Conflicts involving the addresses from XBA and YBA are resolved
alternately; that is, a request for access to the location in XBA receives access to memory for the
first conflict with a request from the Y pipe, but the second conflict is resolved in favor of the
Y pipe request. The Priority Gate then transfers the address from the highest priority channel to
the OA Address Register.

49.30.2 Memory Octet Address Register (OA). OA is a 21-bit register that receives memory
addresses from one of three input registers and holds that address until CMR Control completes
processing the request. Once the address enters OA, the output is immediately available to the
AA Register.

49.30.3 Asynchronous Address Register (AA). AA is a 21-bit address register that provides
request addresses to Central Memory. Transfer of an address from OA into AA depends only
upon Central Memory’s acceptance of the address previously held in AA. AA is not dependent
upon clock pulses.

4-41 Advanced Scientific Computer

4.9.30.4 Halfword Bits Check and Merge. This circuit receives the 16 “‘halfword modified” flags
from the ZBM Register and processes them for two purposes. First, the circuit checks each pair
of bits that represents the two halves of a whole word. If only one of the pair of bits is set, it
indicates that only half of that word contains valid data in the ZB File. The other half, being
unwritten into, contains unknown and undesirable data. The circuit, therefore, signals the CMR
Controller that a Z Fill-in process is required (refer to CMR Controller description). The circuit
then examines the bit pairs again and inputs a “1” bit to the ZCB Register for each pair of bits
having at least one bit set. This produces a set of flags in ZCB that indicates which whole words
in the ZB File have been changed.

4.9.30.5 Zone Control Bit Registers (ZCB/AZC). ZCB and AZC are 8-bit registers that hold the
zone control bits corresponding to the octet residing in the ZB File. Each zone control bit
corresponds to one word in that octet. A set bit indicates that its word in ZB contains data that
resulted from the AU pipe operations. A cleared bit indicates tliat no data is stored in that word.
These bits enter ZCB when the address of the storage data enters the OA Register. AZC is an
asynchronous register so that the control bits transfer to AZC as soon as Central Memory accepts
the last group of control bits. Central Memory stores only those words in the ZB File whose
corresponding zone control bit is set in the AZC Register. Valid data stored in memory is
thereby not destroyed by writing unmodified (blank) words from ZB over the valid data.

49.30.6 CMR Control. CMR Control coordinates all memory requests, routes the resulting
octets to the requesting file, and assures that only valid data is stored into Central Memory.
During a fetch from memory, CMR gates the request address to memory and sends a 2-bit code
to the Cue File that indicates the destination for the octet when it returns from memory (X, Y
or Z pipes). When an octet enters the SC File from memory, CMR gates the octet to the proper
file by accessing the cue bits in the Cue File.

At the start of a memory store operation in CMR. the controller inspects the halfword bits
check circuit to determine if the octet to be stored contains any half complete words. If all the
words in the octet are complete, the octet is written into memory using the zone control bits
from the AZC Register to determine which words in the octet are to be written. If, however,
one or more of the words in the octet are only partially filled with new data, CMR Control
initiates a Z Fill-in operation.

Z Fill-in results in supplying complete words to memory. CMR Control issues a fetch request to
Central Memory for the octet in the location corresponding to the address of the octet to be
stored. When the octet enters the SC File, CMR Control transfers it to the ZB File using the cue
bits from the Cue File. The “halfword modified” control bits from the ZBM Register prevent the
incoming octet from replacing those halfwords that are already in the ZB File. The incoming
octet. therefore, only stores into the vacant halfwords of the ZB File. When the ZB File is
compiete, CMR Control issues a request to memory to store the octet in ZB. The zone control
bits sent with it to Central Memory, however, allow only the modified words to be stored,
preventing alteration of valid data that is already stored in memory.

4.9.30.7 Cue File. The Cue File is a 2-bit circular file with an eight-entry capacitv. Each time
the CMR Controller sends a memory request for a read from memory, it also generates a 2-bit
code, design:ting the destination of the requested octet, and enters that code in the Cue File.
The cue code: are as follows:

00 = octet to X Buffer Files

01
10

octet to Y Buffer Files
ociet to ZB File (Z Fill-in).

i

4-42 Arvanced Scientific Computer

@O
Since memory requests are processed by Central Memory on a first-in, first-out basis, no tag bits
are required to identify the cue entries with their octet. As octets return from memory, the cue

entries are accessed from the Cue File in the order that they were stored. They are then used to
gate the incoming octet to the proper file.

4.10 AU INPUT

The Input section of the AU is pipe level 7 of the Central Processor. It receives the original
operand inputs from the MBU, plus numerous other inputs that are developed within the AU
and fed back for further processing. Of significant interest is the additional input from the EF
Output Register. This input supplies the ‘short-circuit’ feedback that is used for performing
consecutive instructions on the same set of operands. It allows the result of one operation to be
used as the input for the next operation without the delay that would be required if the first
result were stored and then re-accessed. Control signals from the AU Control ROM in the MBU
select the proper input and transfer it to the AB or CD Operand Registers. These 64-bit registers
hold the operands until further control signals route the output to the AU level corresponding to
the first operation to be performed.

4.11 EXPONENT SUBTRACT

The Exponent Subtract section determines which of the two input operands is larger and, in the
process, performs a 7-bit subtraction of the operand exponent bits. The circuit is used to input
properly ordered data and a right shift count to the Aligner and Right Shift section for aligning
the smaller operand to the larger. It may also be used in simple arithmetic compare operations to
designate the larger operand. The following paragraphs summarize the functional blocks of the
Exponent Subtract section. Figure 4-13 provides a flowchart of the comparison logic.

4.11.1 INPUT SELECT. Control bits from the AU Control ROM in the MBU select the proper
pair of inputs for a designated operation. Each input is 64-bits; however, during half or single
word operation, only 16 or 32 bits may be active, leaving the remaining bits ineffective.

4.11.2 SUBTRACT EXPONENTS AND COMPARE MAGNITUDE. This circuit performs a
comparison of the magnitude of the input operands by subtracting the exponent portion of the
data word. If the result of the subtraction (X - Y) is positive, then operand X is greater than
operand Y. Operand X is then gated to the LOR Register; operand Y, to the SOR Register; and
the “greater than” compare code bit is set. If the result of the subtraction is zero, the circuit
compares the magnitude of the two mantissas to determine which operand is larger. If the two
mantissas are equal, the “equal to” compare code bit sets, the X operand transfers to the LOR
Register, and the Y operand transfers to the SOR Register. If they are unequal, either no bits or
the “greater than” compare code bit sets; the incoming operands are routed to the proper output
registers. If the result of the subtraction is negative, operand Y is greater than operand X.
Operand X transfers to the SOR Register and Y enters the LOR Register. No compare bit sets,
indicating that operand X is neither greater than nor equal to operand Y. The result of the
exponent subtraction always enters the ED Register for output to the next stage of the AU.

This circuit also complements floating point numbers in preparation for effective subtraction.
That is, if the signs of X and Y are different during a Floating Point Add, the operand will be
complemented (one’s complement) before entering the SOR Register. Similarly, if these signs of
X and Y are the same during a Floating Point Subtract, the operand will also be complemented
before entering the SOR Register. The carry-in bit to complete the two’s complement is added in
the Adder section.

443 Advanced Scientific Computer

OPERAND FOR~

FLOATING

X -+ SOR
v — LOR

CLR COMP CODE

X=+= LOR
Y—=SOR
SET =11
COMPARE BIT

MAT X ,Y
FIXED
S
NO
YES
MO
YES
X— LOR
Y—+ SQR
SET ">
COMPARE BIT

*NOTE: FOR FLOATING
POINT , NUMBER MAY
BE COMPLEMENTED
BEFORE ENTERING
SOR |F .

1, SIGNS OF X AND
Y DIFFER DUR—
ING AN ADD

2, SIGNS OF X AND
Y ARE THE
SAME DURING
A SUBTRACT

(a-bg TO ED
f(169X)Y—>sorR
€| ; 6bv— LoR

CLR COMP CODE

f(163x) S soR

tt—]| 16Pv—LOR
CLR COMP CODE

FLOATING

y

OPERAND FOR-—
MAT

162X

160y

(a=b) To ED
169X On

182 X-» LOR
f(16by)>s0R
SET!' > coMP
RIT

(A) 117983

Figure 4-13. Exponent Subtract and Compare Logic Flowchart

f(1,6¥x)— LOR

1ePyS SOR
seT ''=" comp
BIT

Advanced Scientific Computer

@
4.11.3 LOR REGISTER. The LOR Register is a 64-bit register that holds the larger of the two

input operands for output to the alignment section. Control signals from the Subtract and
Compare circuit select which operand to transfer into the LOR Register.

4.11.4 SOR REGISTER. The SOR Register is a 64-bit register that holds the smaller of the two
input operands for output to the alignment section. Control signals from the Subtract and
Compare circuit select which operand to transfer into the SOR Register. The contents of SOR
are right shifted in the Align circuit to make the exponent portion of the two operands (SOR
and LOR) equal.

4.11.5 ED REGISTER. The ED Register is a 7-bit register that receives the result of the
exponent subtraction process. The output of this register indicates the magnitude of the
difference between the SOR and LOR operands and, therefore, indicates how many bits the SOR
operand must be right shifted to align with the LOR operand.

4.11.6 COMPARE CODE. The Compare Code consists of two flag bits. One bit is set to
indicate that the X operand is larger than the Y operand; the other bit sets to indicate that the
two operands are equal. If neither bit is set, the X operand is neither larger than nor equal to
the Y operand and must, therefore, be smaller than the Y operand.

4.12 ALIGN AND RIGHT SHIFT ‘

This section is used for all floating point add instructions or for any right shift instruction. It
performs floating point alignment in one pass through its circuitry and processes fixed point
right shifts in two passes. A not-shifted holding stage is also supplied to maintain coordination of
two corresponding operands as they pass through the section. The following paragraphs describe
the major functional divisions of the Align and Right Shift circuit.

4.12.1 SELECT. The Align and Right Shift circuit has two select circuits. One select circuit
supplies a 64-bit operand to the Hex Shift circuit for processing. The other select circuit provides
a parameter input that indicates the magnitude of the required shift. This parameter may be
specified by bits 25-31 of the CD Operand Register for a fixed point right shift, by bits 25-31 of
the Accumulator Output Register for a fixed-floating or a floating-fixed conversion, or by the
7-bit output of the ED Register for a floating point add operation. The ED Reglster input is a
base 16 number. It specifies only a shift of 4-bit multiples, or hex shift. The other inputs are
base 2 numbers and specify both a hex shift and a bit shift. For this reason, floating point add
alignment requires only one pass through the circuit for hex shifting, whereas the other shift
operations require both a hex shift and a bit shift to complete the operation.

4.12.2 HEX SHIFT DECODE. This circuit receives the shift select bits from the select circuit
and generates the required gating signals to perform the specified hex shift. Since there are 16
possible hexadecimal shifts for a 64-bit word, 16 separate gate signals are required to allow for
any specified right shift. These 16 gates specify hex shifts from zero to 15 hexadecimal
characters to the right.

4.12.3 BIT SHIFT DECODE. This circuit monitors the two least significant bits of the shift
select network. During operations requiring a bit shift in addition to a hex shift, this circuit
produces one of four possible gate signals to shift the hex shifted operand between one and four
bits to the right.

4-45 Advanced Scientific Computer

4.12.4 SHIFT SEQUENCE. The Shift Sequence involves the bit shift nctwork, the hex shilt
network, and the SH Shifted Operand Register. The incoming data word is first hex shifted, and
the hex shifted result is stored in the SH Register. This output is available to the adder circuil
for a floating point add at this time. If, however, a bit shift is required, the hex shifted operand
in SH is fed back into the shift circuit gates. The bit shifted result then appears in SH.

Depending upon which hex shift gate bit is active, any onc of 16 inputs to the ARSHIO FF
(figure 4-14) may be enabled. The next clock pulse will transter that enabled input to the 1 and
provide a hex shifted output. If a bit shifted result is required, once of the bit shift gate bits will
enable the output from one of four of the SH Register 117s to be fed back as an input to the SH
Register. The second clock period transfers that bit into the SII Register to complete the shift
operation.

4.12.5 NOT SHIFTED REGISTER (NS). The pipehine siructure of the AU requires that both
operands of an operation be at the same level of the pipe at all times to avoid contusion or loss
of data. Thercfore, even though the larger operand of a floating point add requires no action of
the Align and Right Shift scction, a holding stage must be provided for that operand while the
smaller operand is being hex shifted. For this purpose, NS receives the output from the LOR
Register and holds that operand until the hex shitt of the smaller operand is complete. Both
operands then transfer to the Add scction of the pipe for the addition portion of the floating
point add instruction.

4.13 ADDER SECTION

The Adder section performs both addition and subtraction operations on either fixed or floating
point operands. [t is capable of processing two 64-bit operands during one clock period. The
following paragraphs describe the functions of the major components ot the AU Adder Section.

4.13.1 INPUT SELECT. Two sclect gates provide the pair of operands to the adder circuit.
Control signals from the AU Control ROM in the MBU designate the proper gate signals to the
Select circuits. IFor floating point adds and subtracts, the input trom the Align and Right Shift
section is selected. The Input section of the AU supplies operands for fixed point operations. L
the adder is to perform a subtraction, control signals sclect the input corresponding to the
complement of the subtrahend. This number will be a simple one’s complement; an additional
carry input to the adder creates the two's complement input required for a subtract operation.

4.13.2 ADDER. The adder performs 64-bit addition on two operands in a parallel mode.
Two-level, look-ahead logic determines the carry of the total operation and adds it to the partial
sum to form the sum that is transferred to the ADD Register. For subtraction operations. one ol
the input operands is in one’s complement form. An extra bit is added to the least significant bit
position of the addition to develop an equivalent to a two’s complement for performing the
subtraction.

4.13.3 ADDER OUTPUT REGISTER (ADD). The Adder Output Register is a 64-bit register
that receives the resultant sum or difference of an adder operation and forwards that answer to
the next level of the AU pipe as determined by control signals from the AU Control ROM in the
MBU. The result from floating point operations is sent to the Normalize section before being
placed into the EF Output Register. Fixed point results transfer directly to the EF Register.

4.14 ACCUMULATOR

The Accumulator is a special purpose adder section used to total the output ol the Multiplier
section for vector dot products and for other functions that require a running total. The
following paragraphs describe the basic functions performed by the accumulator..

4-46 Advanced Scientitfic Computer

SHIFT 0 HEX

BIT 16
SHIFT 1 HEX —_—
81T 12 /
SHIFT 2 HEX —\
BIT 8]
SHIFT 3 HEX _ﬂ
8IT 4 I
SHIFT 4 HEX —
BIT O]
SHIFT 5 HEX
' BIT 60]
SHIFT 6 HEX
BIT 58 }_—'—
SHIFT 7 HEX ——\
BITS2 }
SHIFT 8 HEX
SHIFT 9 HEX —\ E?_crsl‘sgm
BiT 44 J
USMIFT 10 HEX
BIT 40 3—_———‘
SHIFT 11 HEX
BIT 36
SHIFT 12 HEX —\
BIT 32 }
SHIFT 13 HEX
BIT 28
SHIFT 14 HEX
: BIT 24 e
SHIFT158IT
BIT 20 —>———
SHIFT 1 BIT -—__‘_'—'"l
HEX SHIFTED 15 D——.— |
SHIFT 2 BIT
HEX SHIFTED 14 -‘__)———‘ '
SHIFT 3 BIT |
HEX SHIFTED 13 D_————__ l
SHIFT 4 BIT I
HEX SHIFTED 12

(A) 117984

L

e ——— — cr— ——

81T 16

ARSH SHIFTED OPERAND
(HEX OR HEX_AND
BIT SHIFTED)

Py
v

HEX SHIFTED
—® 710 BITS 17-20
FOR BIT SHIFT

BIT SHIFT
NETWORK

Figure 4-14. Simplified Right Shift Network (Bit 16 of Operand)

4-47

Advanced Scientific Computer

4.14.1 OPERAND SELECT. The Accumulator has three operand select circuits that provide
inputs to the adder portion of the circuit. Two or three of the select circuits may be enabled at
one time. Control signals from the AU Control ROM in the MBU enable the select circuits to
select the proper operands. One of the select gates provides a wrap-around path from the result
sum in the ACC Register so that new incoming data may be added to the contents of ACC to
form an accumulated total in ACC.

4.14.2 ADDER. The Accumulator adder is a 64-bit parallel adder with double level look-ahead
logic for determining the carry of the addition operation. The adder has three inputs, all of
which may be active at one time. Refer to the Multiplier section description for information
regarding a similar 3-input adder tree used in that section. The output of the adder is stored in
the ACC Register for output to the next level in the AU.

4.14.3 ACCUMULATOR OUTPUT REGISTER (ACC). ACC is a 64-bit register that receives the
output from the accumulator adder and holds that output until a new result is entered from the
adder. The output from this register 1s available to other stages of the AU as directed by the AU
Control bits from the ROM in the MBU. A feedback path from this register to the input select
circuit allows the contents of ACC to be added to incoming data to form an accumulated total.

4.15 OUTPUT

The AU output section gates all AU results to either the MBU for vectors and store operations
or to the IPU Register File. It receives the output signals from all AU sections except the Multiplier
section. Control signals from the AU Control ROM in the MBU select the input to this section
and determine the destination of its output. This section also performs basic Boolean logical
functions and reports status conditions to the IPU. The following paragraphs describe the major
components of the AU Output section.

4.15.1 LOGICAL OPERATIONS. The Output section receives operands dircctly from the Input
section to perform four Boolean logical operations on them. These operations are always
performed on all operands that pass through the Input section. The output corresponding to the
particular function need only be selected to place the logical result into the EF Output Register.
The logical operations performed by this circuit are Logical AND, Logical OR, Exclusive OR,
and Equivalence.

4.15.2 OUTPUT SELECT. The Output Select circuit uses control signals from the MBU ROM
to select the proper resultant to place into the EF Output Register. The circuit may select the
output from any AU section, except the Multiplier whose output is a partial result that must be
added by the Accumulator to be meaningful. Three miscellaneous word inputs provide for
transferring status bits or other messages to the IPU or to the MBU for storage into Central
Memory. Other inputs provide a word of all zeroes, two 11-bit entries of ones, and 32 least
significant bits of the ACC Register fos input to the 32 most significant bits of EF.

4.15.3 EF REGISTER. The AU Output Register (EF) is a 64-bit register that holds the
resultant output of the AU process until it is either transferred to the Register File in the IPU
(scalar operations) or to the MBU for storage into memory (vectors and store operations). The
output of this register is also fed back to the AU input section for use by the next following
instruction if that instruction addresses the register address of the result in the EF Register. This
“short circuit” path saves the time required to fetch the result from its register storage location
if the instruction immediately following it will require that same result as an operand.

4-48

Advanced Scientific Computer

]

4.15.4 COMPARE CODE. The Compare Code performs two functions of comparison. In both
cases it provides three mutually exclusive flags to the [PU for determining whether two operands
are equal or if one is larger than the other. The first usage receives the comparison flag bits from
the Exponent Subtract section and uses those bits to set the X greater than Y, less than Y, or
equal to Y flag. Only one flag can be sct at one time. The second function monitors the logical
compare circuit and sets the compare code to indicate if the result of that comparison is mixed
ones and zerocs. all ones, or all zeroes. '

4.15.5 RESULT CODE. The Result Code is a 3-bit, mutually exclusive flag set that indicates
whether the result contained in the EF Register after an arithmetic operation is positive,
negative, or equal to zero. During logical operations, these flags indicate if the result is all ones,
all zeroes, or mixed ones and zeroes.

4.15.6 ARITHMETIC EXCEPTION CELLS (AE). This series of {lags monitors various error bits
in the AU and sets a tlag if an arithmetic exception occurs. Types of arithmetic exceptions
include: fixed point overflow, floating point overflow. floating point underflow, and divide check
(attempt to divide by zero).

4.16 NORMALIZE SECTION

The Normalize section is employed for both tloating point add instructions and fixed point left
shift instructions. Divisors are routed through this section to assure bit normalized inputs for
divide instructions. The scction performs essentially the same as the Align and Right Shift
section, except that this section must also determine the length of a hexadecimal floating point
shift during normalization. During Iett shifts, however. the instruction word specifies the length
of shift, so that the operation of this circuit is then analogous to the Align and Right Shift
section. This circuit also employs a 7-bit adder to update the exponent tor normalizing processes.
The following paragraphs describe the major tunctional blocks of the Normalize section,

4.16.1 INPUT SELECT. The Normalize section has two input select circuits. The first circuit
determines which input will be entered into the normalize logic to designate the length of shift
required to normalize the input. Control bits from MBU ROM control the selection of the input
word. The output of this sclect circuit is divided into two parts: the exponent and the mantissa.

The second select circuit determines the mput to the shifter. The input may be the mantissa
output from the first select circuit during a normalize operation. In this case a 4-bit guard digit
is also added to the mantissa to avoid loss of data. During a fixed point left shift, the output
from the input scction is sclected to the shifter. For these instructions, the AB operand is the
number to be shifted and the CD operand contains the shift parameters.

The guard digit added in the second select circuit consists of the four least significant bits and is
used to avoid the loss of one hexadecimal digit of accuracy resulting from truncation prior to
double length addition or subtraction. FFour bits are sufficient, since the only times normalization
may produce a loss of accuracy, it requires a shift of only one hexadecimal digit. Normalized
operands are required for the guard digit to be of maximum use. For example, when multiplying
two normalized operands, the fractions will be between 2% and 2°'. The result will be between
2% and 2°%. Therefore, the result will always require no more than one 4-bit shift to normalize
the fraction to between 2% and 2-'. During an addition, if the exponents are equal, no
alignment is required. Therefore, the guard digit is not necessary. If the exponents differ by one,
the guard digit will retain significant information. Finally, it the exponents ditfer by more than
one, it can be shown that the result 1o be normalized will require no more than one hexadecimal
shift. Thus, the guard digit contains information that can be retrieved.

4-49 Advanced Scientific Computer

a2

4.16.2 MOST SIGNIFICANT 1 SEARCH. This logic searches the incoming 56-bit mantissa,
beginning with the most significant hexadecimal digit, for the first 1 bit in the number. While
searching, it totals the number of hex digits that have been checked until the 1 bit is found. This
total defines the number of left hex shifts required to normalize the number. From this total the
circuit enables one of 16 hex shift gates in the Hex Shift Network to perform the hex shift for
normalization. In order to adjust the exponent to fit the normalized mantissa, the shift count is
fed to the Left Shift Code Register, where the count is added to the exponent.

4.16.3 LEFT SHIFT CODE REGISTER. This register is 5-bit holding register that stabilizes the
shift code determined by the Significant 1 Search circuit and inputs that code into the exponent
adder. The five bits in this register correspond to the five most significant bits of the exponent.
The output from this register is also used during shift instructions to determine if the requested
shift produces an overflow.

4.16.4 EXPONENT ADDER. The Exponent Adder is a 7-bit adder that receives the exponent
portion of the data to be normalized and adds the hex shift count to it. The result represents
the adjusted exponent that corresponds to the shifted mantissa. An additional flip-flop parallel to
the adder holds the sign bit during the addition, so that the sign bit remains unmodified.

4.16.5 LEFT SHIFT HEX DECODE. During a Left Shift instruction, the CD operand from the
AU Input section specifies the parameters of the left shift. This circuit receives the 7-bit shift
count from that operand and enables one of 16 possible hex shift gates to the Hex Shift
Network after decoding the incoming shift count to determine which shift gate to activate. The
shift count parameter input to this circuit is also used to detect a possible overflow in the shift
network.

4.16.6 HEX SHIFT NETWORK/BIT SHIFT NETWORK. Both shift networks are electrically
integrated, but functionally separate. That is, although both shift networks employ the same
type of circuitry and funnel through the same gates into the NORM Register, the hex shift must
be performed before the bit shift. Refer to figure 4-15 for a simplified representation of the shift
circuitry for one bit of the operand.

An incoming operand to be left shifted, whether for normalization of for bit shifting, must first
pass through the hex shift network. One of 16 hex shift gates, turned on by the Significant 1
Search or the Left Shift Hex Decode circuit, enables an input gate to each bit of the NORM
Register corresponding to the number of hexadecimal digits involved in the shift. For nor-
malization, processes, except bit normalization, the process is then complete. The output of the
NORM Register is available to the circuit requiring normalized data.

During a left shift or bit normalization, the output of the NORM Register is fed back through a
four-gate input to the NORM Register. One of four select signals enables one of the four input
gates for each bit of the operand, resulting in a shift of zero to three bits to the left. The bit
shifted operand is then available to other AU levels from the output of the NORM Register.

4.16.7 NORMALIZED OUTPUT REGISTER (NORM). NORM is a 64-bit register that receives
the results of the normalizer shift networks and holds them for output to the other levels of the
AU, or to the bit shift network in the Normalize section. Inputs enter directly from the shift
gates without enabling pulses, so that when an operand passes through the shift gates, it
immediately enters the NORM Register. During floating point normalize operations, eight input
bits (one sign bit plus seven exponent bits) from the Exponent Adder fill-in the exponent
portion of the floating point data word in the NORM Register. The mantissa portion of the data
word (56-bits) passes through the Hex Shift Network before entering the NORM Register. During
left shift operations, the entire 64-bit word for the NORM Register enters from the Hex Shift
Network, or from the Bit Shift Network following the second pass.

4-50 Advanced Scientific Computer

SELECT HEX SHIFT 1

BIT 20

SELECT HEX SHIFT 2

BiT 24

SEL.ECT HEX SHIFT 3

BiT 28

SELECT HEX SHIFT 4

BIT 32

SELECT HEX SHIFT 5

BIT 36

JOU0

SELECT HEX SHIFT 6

BIT 40

SELECT HEX SHIFT 7

BiT 44

SELECT HEX SHIFT 8

BIT 48

SELECT HEX SHIFT 9

8IT 52

NORM
REGISTER

SELECT HEX SHIFT 10 BIT 16

BIT 56

SHIFTED CUTPUT

SELECT HEX SHIFT 11

BIT 60 HEX SHIFTED

.BIT 16
TO BIT SHIFTS

12-15

SELECT HEX SHIFT 12

BIT O

SELECT HEX SHIFT 13

BIT 4

SELECT HEX SHIFT {4

BIT 8

SELECT HEX SHIFT 15

BIT 12

SELECT HEX SHIFT 16

BIT 16

SELECT BIT SHIFT 0

HEX SHIFTED BIT 16

SELECT BIT SHIF™ 1

H: X SHIFTED BIT 17

T

BIT SHIFT

SELECT BIT SHIFT 2 NETWORK

HEX SHIFTED BIT 18

SELECT BIT SHIFT 3

I

HEX SHIFTED BIT 19

117985

Figure 4-15. Simplified Left Shift (Normalize) Network (Bit 16 of Operand)

4-51 Advanced Scientific Computer

4.16.8 LEFT SHIFT BIT DECODE. Bit Decode receives the two least significant bits of the CD
Operand Register and generates one of four input gating signals to the bit shift network. The
input gating signals result in enabling a left shift of between zero and three bits. By combining
the 4-bit shift with a hex shift from zero to 16 hexadecimal digits, any magnitude of left shift
may be performed from zero to 63 bits.

4.16.9 BIT SHIFT MAGNITUDE DETERMINATION. During bit normalization, the Normalize
section must determine the magnitude of the bit shift. To accomplish this function, a magnitude
determination inspects the most significant hexadecimal digit of the hex shifted operand to
locate the most significant 1 bit in that hex digit. By counting the number of zerocs preceding
that 1 bit, this circuit determines the magnitude of left shift required to bit normalize the
number. This circuit then generates one of four input gate signals to the Bit Shift Network to
produce the required bit shift.

4.16.10 BIT SHIFT ENCODE AND REGISTER. This circuit monitors the most significant
hexadecimal digit of the NORM Register during a left shift operation and produces a 2-bit code
that indicates the number of bit shifts that can be performed on that number before an overflow
will occur. The 2-bit code indicates a shift from O to 3 digits to the left, depending upon the
position of the most significant one bit in the hexadecimal digit. A 2-bit register in this circuit
holds the shift code for input to the Overflow Check circuit.

4.16.11 OVERFLOW CHECK. This circuit determines if an overflow of significant data occurs
during a left shift instruction. By the nature of a normalize operation, no overflow can occur
during that process. The seven bits of the CD operand that indicate the magnitude of the left
shift enter this circuit at the beginning of the operation. Control signals then route the AB
Operand through the Significant 1 Search network in addition to transferring it to the Hex Shift
Network. The Search circuit creates a 5-bit code that indicates the maximum possible hex shift
before data will be lost due to an overflow. This function is identical to determining the hex
shift required for normalization. Overflow Check compares this code with the requested hex shift
in the CD Operand. If the requested shift is greater than the maximum shift, the Overflow Flag
sets. If a bit shift is to be performed, the Bit Shift Encode and Register circuit supplies a 2-bit
code that specifies the maximum bit shift, the Overflow Flag sets. If a bit shift is to be
performed, the Bit Shift Encode and Register circuit supplies a 2-bit code that specifies the
maximum bit shift allowable before an overflow will occur. Overflow Check compares this code
against the requested bit shift and sets the Overflow Flag if the requested shift is greater than
the allowable shift. In any case, performance of the shift is not interrupted. An Arithmetic
Exception cell in the Output section of the AU informs the IPU of the error.

4.17 MULTIPLIER SECTION

The Multiplier section of the AU performs both multiplication and division on 32-bit operands
for the ASC Central Processor. Doubleword operands are processed as two single words; the
results are then combined to form the doubleword result. Division is performed as a series of
reciprocal multiplications. The following paragraphs describe the functional blocks that perform
the multiplication. Following the block diagram description are two sections that discuss the
theory of the multiplication and division processes in this section.

4.17.1 DIVIDEND REGISTER. The Dividend Register is a 64-bit register that holds the number
to be divided during division. One of two inputs may supply the dividend to this register. The
Normalizer section output supplies initial input for all division operations. The Accumulator
input allows for loading the result of one multiply or divide immediately into the dividend
register to start a new iteration.

4-52 Advanced Scientific Computer

]@
4.17.2 DIVISOR REGISTER. The Divisor Register is a 64-bit register that holds the number to
divide into the dividend. One of two inputs supply operands to this register: the normalizer
section of the AU supplies normalized floating point inputs, while the Accumulator section

supplies results from a previous multiplication or divide for starting a new iteration of the
division process.

4.17.3 P-TERM LOGIC. The P-Term Logic uses the seven most significant bits of the divisor as
an address to access a table location within the logic. The table contains 5-bit numbers that are
approximations of the reciprocal of the input address. Therefore, each input of seven bits from
the Divisor Register results in placing five bits into the Modifier Register that are an approxima- .
tion of the reciprocal of the divisor. This reciprocal is accurate to five bits so that the maximum
estimation error is less than or equal to 0.00001,. The estimation error is eliminated in
significance through several iterations in the division operation. The 5-bit P-term enters the five
mostsignificant bits of the Modifier Register; the remaining bits of the register are zeroes.

4.17.4 MODIFIER REGISTER. The Modifier Register is a 64-bit holding register for input to
the Recode circuit during a division. At the start of a divide, the 5-bit approximate reciprocal of
the divisor enters the Modifier Register in the five most significant bits. The multiplier multiplies
the divisor and then the dividend by the fraction in the Modifier Register as the first steps in the
production of a quotient. The Modifier Register also stores 1ntermed1ate multiplication terms
throughout the division process.

4.17.5 MULTIPLICAND/MULTIPLIER SELECT. The Multiplicand/Multiplier Select circuits
provide 32-bit inputs to the Fanout and Recode circuits, respectively, during both multiply and
divide operations. During multiplication, the AB operand input to the Multiplier Select and the
CD Operand input to the Multiplicand Select circuits are enabled. These are, however, 64-bit
inputs. Control signals from the AU Control ROM direct these circuits to enable either the most
or the least significant half of the 64-bit input for output to their respective circuits.

During division, three inputs are available to the fanout circuit, depending upon the stage of the
division process that has been reached. Refer to the discussion of the division process that has
been reached. Refer to the discussion of the division process in the Multiplier circuit for the
particular gating sequence. Three inputs are also available to the Recode circuit during a divide:
two through the Modifier Register and one directly from the complemented output of the
Accumulator Register. The gating of these signals is also discussed in the division process
explanation.

4.17.6 RECODE. The Recode circuits inspect the incoming 32-bit multiplier word in three bit
segments, as illustrated in figure 4-16. Sixteen separate recode circuits (R, - R;s) are required
for a single word multiply; an additional circuit (Rpy) is used to generate a fraction summand
during a division. Rpyy checks the most significant bit of the multiplier. If it is a one it copies
the multiplicand into the DV summard; if it is a zero, it complements the multiplicand and
enters it into the DV summand. Each of the other recode circuits operates on its respective bits
identically to the other decode circuits to activate one or none of four control lines to the Form
Summand circuit. In general form, Recode circuit Ry monitors the 3-bit segment XYZ of the

I; 19 llolll lIle.‘SIlAIlshﬂ17l18llglzo]2|]22 [23[24'25'25]27[2;1;9|30|31J o
—— —— —— —— \-—v—’ ——
Ri2

Ro R2 R4 Re Re Rl o

_——
-
L—
N
_—
w
—
Y
b—
w
—
o
—
N
—
@

R, INSERT
4 ZERO

RN - RECODE CIRCUIT N

Figure 4-16. Multiplier Word Recode Bit Assignments

453 Advanced Scientific Computer

incoming multiplicr word (Y is an even power ol 2). The cquivalent cquations in table 4-5 define
the states of X, Y and Z that produce cach of four output control signals and the void state of
no output control signals.

4.17.7 FANOUT. The [Fanout circuit receives the 32-bit Multiphicand word from the Multi-
plicand Select circuit and duplicates it 16 times. The outpul from this circuit supplies 16
identical 32-bit words to the Summand FFormation circuit to be used in creating the first 16
summands for input to the Adder Tree. Lach of these words is 4 copy ol the Multiplicand.
During division, a 17th fanout is produced to generate the division summand in the Form
Summands circuit.

4.17.8 FORM SUMMANDS. This circuit receives the Multiplicand words rom the fanout circuit
and manipulates each word, as dirccted by the recode bits before placing the words into their
respective adder tree inputs. Figure 4-17 illustrates the arrangement of the 18 possible summands
in a figurative addition array. The summand circuits are gating devices and contain no registers
for the individual summands.

4.17.8.1 Overflow Salvage. During a left shift, a one bit from the data word may be shified out
of the summand. To avoid losing this bit, an c¢xtra bit position preceding cach data word catches
the shifted bit. This bit is not, however, added in the Adder Tree. [Uis significant ouly in its use
to fili the Sign Extension summand, so that a shift will not change the elfective sign of any

summand.
Table 4-5. Recode Output Control Signal Definitions
Signal Equation Control Function
RyPI = X (Y@ Z) Copy Multiplicand into Summand N
RyP2 = NAYRZ, Left shift Mualtiplicand by one bit and enter shifted woed into
Summand N
RyMI = XA(Y m Z) Enter the two’s complement of the Multiplicand into Summand
N
RyM2 = XxYkZ Form the two's complement oi the Mualtiplier, left shift the
complement by one bit, and enter (he result into Summand
N*x
Void = X*YAZ + Load zeroes into Summand N
(all signals XhY7,

are 78rv)

*Refer to Summard circuit description for a refinement of the complement process.

4-54 Advanced Scientific Computer

SS

493ndwoy) 21413ua1IS pAJUEAPY,

SUMMAND 15 "

SUMMAND 14

SUMMAND 13

SUMMAND 12

SUMMAND 11

SUMMAND 10

OVERFLOW SALVAGE BITS (DOTTED BOXES)

ADD 1 BIT FOR SIGN EXTENSION

=9

« SUMMAND 9 '

SUMMAND 8 N

SUMMAND 7 [

—-=1

SUMMAND 6

SUMMAND S !

SUMMAND 4 '

SUMMAND 3 |

SUMMAND 2 |

SUMMAND 1

SUMMAND O

DIVISION (DV) SUMMAND

SIGN EXTENSION (SE) SUMMAND UERBUNLEUSLEUELEL

t

1 S S

0 A S N O O

NTER COMPLEMENT OF MS

10

11 12 13 14 15

E
(INCLUDING AN OVERFLOW BIT IF GENERATED)
FROM SUMMAND INTO SE SUMMAND BLANK BITS

(A) 117986

Figure 4-17. Summand Array

RRY IN BITS
DOTTED BOXES)

4.17.8.2 Sign Extension Summand. To avoid the requirement of extensive hardware to add sign
extension bits of the summands, a single Sign Extension Summand represents the sum of all sign
extension bits. Certain bits in the Summand are fixed at a one value; the remaining bits are
governed by the complement of the most significant bit of the modified multiplicand in each
preceding Summand. The sign bit will be in the overflow salvage bit if a shift occurred.
Otherwise, it will be the MSB of each summand. An additional one bit, added to the least
significant bit of the SE Summand, completes the sign extension total. This bit occupies the
overflow salvage bit of summand 15. Refer to paragraphs 4-185 through 4-187 for further
explanation of the sign extension algorithm.

4.17.8.3 Division Summand. During a divide operation a 17th multiplicand enters from the
fanout circuit and is acted upon by the Division Recode bits (Ryy) to form the Division
Summand. Rpy can specify only & load multiplicand (RpyP1) or a load complemented
multiplicand (RpyM1). Addition of the Division Summand to the summand addition produces a
multiplication by an unsigned fraction rather than a signed whole number.

4.17.8.4 Two’s Complement. To perform a two’s complement, the Summand circuit forms the
one’s complement (invert each bit) of the word and adds one to the least significant bit. The
mechanics of the operation and slightly different for each of the two complementing cperations.
The RyMI recode bit (enter two’s complement) enters the one’s complement of the 31 most
significant bits and the true value of bit 31 into the proper Summand. If bit 31 is a zero, a carry
would have been generated by the addition of one to bit 31. The circuit then enters a “‘carry-in”
one bit into the bit 32 position of the next Summand. This results in adding that bit to bit 30
of the first summand when the Adder Tree forms the Pseudo-Sum and Pseudo-Carry.

The RyM2 recode bit (enter two’s complement and left shift) actually loads the one’s comple-
ment into the proper Summand and shifts it left one bit. To complete the two’s complement, it
loads a one hit into the ‘“‘carry-in” bit of the next Summand so that when the Adder Tree adds
that column. the carry-in bit will be added to the shified LSB of the multiplicand.

4.17.9 ADDER TREE. The Multiplier Adder Tree is an 18-input adder circuit that receives the
32-bit Summand words from the Form Summands circuit and produces two 64-bit results: a
pseudo-sum and a pseudo-carry. Figure 4-18 provides a simplified circuit diagram of the Adder
Tree for one bit of the addition process. The inputs represent a 1-bit vertical slice from the
Summand array. There will be a similar circuit for each vertical column in the array, except that
most will not be as extensive as the sample circuit due to a fewer number of elements in the
column. The output from this adder in the form of two 64-bit words is not in itself meaningful.
These two data words must be totaled in the Accumulator section of the AU to form the final
produce or quotient.

4.17.10 PSEUDO-SUM (PS) REGISTER. PS is a 64-bit register that receives one of the resultant
words from the Adder Tree during any operation that passes through the Multiplier section. The
output from this register always goes to the Accumulator section of the AU to be added to the
output from the PC Register.

4.17.11 PSEUDO-CARRY (PC) REGISTER. PC is a 64-bit register that receives one of the
resultant words from the Adder Tree during a multiply or divide operation. The output from this
register always goes to the Accumulator section of the AU to be added to the output from the
PS Register.

4-56 Advanced Scientitic Comuuter

[

SUMMAND INPUTS

v 44

by 4y b bib bbb o4 by

1A 1B 24 2B 3A 3c
‘/T ‘/] ‘/J c13a
CO3A
CO1A co1B cozA coz2s cO3B
Ci1A cl2Aa
S1A siB S2A /// s2B S3A s$3B
, | ;
1c 2¢ 3c
ci3B
co1i1c EE:] ciic coz¢ ci2B Cl2cC co3c cl3C
/ 4 ///
/ s1C sz2C s3c
1D 2D Ee)
ct3p
ciip sS1D cl2o 1s20 coap s s3p
coip co2p
4
aA a8
S4A ClaA S4B
CO4A
CO4B
4c
Cl4acC
ciaB
s4c
coac
NOTE :
1. CO — CARRY OUT TO NEXT
HIGHER BIT 4D
2. C! = CARRY IN FROM NEXT
LOWER BIT l
118046 pC ps

Figure 4-18. Simplified Adder Tree Block Diagram

4-57 Advanced Scientific Computer

4.18 MULTIPLICATION THEORY

The AU Multiplier section multiplies two 32-bit operands to form two 64-bit partial results that
are added to provide a final 64-bit product in the Accumulator section. Each 32-bit operand may
be represented in the form:

Map+2n-lay +20-2a o4+ 224, + 2 +ag

or in summation notation (for a 32-bit operand):

3]

E M a,

n=0

Where a can be either a one or a zero bit coefficient, and n indicates the power of 2 position of
that bit. The product of this operand and another 37 bit operand, B, is represented as:

31

E 2" a B

n=0
One classical computer multiplication process performs this operation through a series of
additions and register shifts. This process, for 32-bit operands, would require 32 add/shift cycles,
or 32 partial Summands, depending on the desirability of execution time versus hardware bulk.
The AU improves these extremes through the use of a recording algorithm that reduces the
number of Summands required for a high-speed multiply.

4.18.1 ALGORITHM DERIVATION. An equivalent binary expansion form of the multiplier is:

I2n+1 22 M2n-1 . . 9.
= aZn+l+"‘na2n+“n 1‘12n--~1+"'+22‘12+"1]—I_a(l

This representation is equivalent to the first notation, but has the advantage of differentiating
between odd and even terms. The summation can, therefore, be written defining half as many
index values for n:

15

§ : 22000 Ay + 27 ay,

n=0

By multiplying each odd term of the expansion by an equivalent of one, (2 - 1), a more useful
expression evolves:

(2= 1)2:M%Lay | +2Ma) +(2 1) 2:-la, +. ..
+22a, +(2 - 1) 2a; +a,

or, through simplification and replacement of each 2(220+1) with 2n+2
22n+232n+] — 22n+1 Ay t 221](3211 +ay, 1)__ 22n— ‘a2n N

+22 (a, +a;) — 2a; +a,

4-58 Advanced Scientific Computer

which can be written in summation form as (for a 32-bit operand):

15

2 . bl R
232y, * E : 2 b ay g+ 2 Ay, 2 ay,

n=0

The term 23%a;, preceding the summation is-actually a repetition of the sign bit, ay;. Or a sign
extension term that overflows the modulus of the multiplier. This term is, therefore. discarded to
produce the expression

IN]

Mon+ 1. 32n 12n .
E - dln+1+- a.’.n+— Rl

n=0

that is the equivalent of the binary expansion for the 32-bit cperand. Multiplication of the
multiplicand by this representation of the multiplier requires only 16 summands (terms) instead
of 32 for the normal expansion. An inspection of the multiplication using this term demonstrates
the algorithm used in the AU multiplier.

To multiply multiplicand B by the multiplier A in the new format. each bit position of B is
multiplied by the term

Mon+1 2 2n. N 2n
- A 41 t- dr + - dm -1

to form the 16 Summands, one for each value of n, needed to form the product. If B is
represented by the expression

31

k=0
then each bit of the ns/i Summand will be determined as follows:
Bit k of B = 2k by

Mdn+1 . M2n - : 3t
. N —2an+d ooy t 2T Ay, 20 dm.
times nr/7 term of A =

22n+kM K = —dy . by 2MFRFL 4 b 22tk 4y, DIask
or.
":azn-;-] bl\ 33"+k +a:n bk :2n+k +32n_1 bk :2n+k

Which can be simplified to: (—2ay,, 1 182, +a,,)b, 27k

4-59 Advanced Scientific Computer

This expression indicates that the Nth Summand can be determined by multiplying each b, (k
from 0-31) by the constant inside parentheses and placing the resulting bits in the 22k bit
position. The constant is determined by inspecting the even term (a,;) and its neighboring odd
terms (ay,.y, @yn+1) Of the multiplier with respect to the relation: constant = 2a,,.; +a,,
+a,,.;. The Recode circuit of the AU Multiplier performs this inspection to yield the results
outlined in table 4-6.

4.19 AU DIVISION THEORY
The Multiplier section performs division by multiplying the dividend by the reciprocal of the
divisor. That is, the division Y + X is performed as the equivalent multiplication:

/X Y.

Both X and Y are the mantissa portion of normalized floating point numbers. The Exponent
Subtract section processes the exponent portion of the data. This division process. however,
requires finding the reciprocal of X.

The AU approximates this reciprocal by providing a table of reciprocals (P-Term Logic) that is
accurate to four binary places. This table, therefore, yields a reciprocal that is accurate within
+0.00001,. For discussion, the Greek letter (A) represents the absolute value of this error. The
reciprocal table provides a first approximation of the reciprocal of:

1/X £A
to provide an approximation of the quotient (Q). through multiplication, of:

Y/X = Q=Y(1/X ta)

Q = Q(1 £XA).
Table 4-6. Recode Circuit Data Analysis
Incoming Bits Resulting Required Action to perform
Ayn+1: 220 32p-1 Constant (C) multiplication (Cyx(bj)
000.or 111 0 Fill Summand with zeroes.
110. or 101 -1 Perform two’s complement of B
and enter into Summand.
010. or 001 +1 Copy each by into correspond-
ing bit positions of Summand.
011 +2 Left shift the B operand one bit
and enter into Summand.
100 -2 Complement B. left shift it one

bit. and enter result into Summand.

4-60 Advanced Scientific Computer

@O
Since X is normalized, it is of the form:

0.1-—
0.01—
0.001-
or '
0.0001

Therefore, the product (XA) can be no greater than A. For this worst case, as the error
approaches A, the value of X in the product XA can be disregarded to yield an approximation of

Q:
Q =~ Q(1 £4).

To reach a more acceptable value of Q, further refinement is necessary. But multiplying the
approximate quotient by an approximation of one, this refinement is achieved. This operation
produces:

Q ~ Q(I £A) (1 £A) = Q(1 - A?).

The error is reduced from *A (4-bit accuracy) to -A? (8-bit accuracy). Extending this process
develops the following approximations:

Q~Q(l-AY)(1+AY)=Q(-A%
and
Q= Q(1-4A%(1+A%=Q(1 - A%.

This last step reduces the erfor to A8, (32-bit accuracy), which is not significant for single word
(32 bit) operands. Double length operands require an additional step:

Q~Q(l-A4%(1+A%)=Q(-A
to provide a value of Q that is accurate to 64 bits, or 2-55,

Figure 4-19 illustrates the paths utilized by the AU to accomplish the division process. The
vertical sequence on the left of the figure derives the multipliers for each step of the refinement
process; the right column produces the approximations of Q. Notice that both the Accumulator
and the Multiplier sections of the AU are in continuous use until a solution produced, each one
being used alternately by one of the two derivation cycles.

4.20 SIGN EXTENSION ALGORITHM

The sign extension algorithm allows the replacement of 272 Summands and their associated
adder tree logic with a single 32-bit Summand that uses existing inputs to the adder tree. The
algorithm determines the sum of all sign extension bits by inspecting the most significant bit (or
overflow bit if the summand was shifted) of each summand. The resulting sum of the sign
extension bits is determined by complementing the most significant bit, including overflow, of
Summand 15 and placing the result in the least significant bit of the SE Summand. The
complemented MSB’s of the remaining summands enter every other bit of the SE Summand in
sequence, while one bits fill the intervening bit positions of the SE Summand. Finally, an
additional one bit is added to the LSB of the SE Summand to complete the process (this bit
actually occupies the “overflow salvage” bit position of Summand 15).

4-61 Advanced Scientific Computer

14
DIVISOR (X) P-TERM (X) DIVIDEND (Y)
[X] = muLTipLicaTION
(DIVISOR ‘ (MODIFIER (DIVIDEND = ARBUMOLATOR
REGISTER) l DSRj l”°°q REGISTER) DVD | REGISTER)
o =y
% le > X A =X~
PSEUD PSEURO
¢ sum?[PS PC lEARRY PS PC
MAGNITUDE OF
; DEVIATI
— {ACCUMULATOR L DEVIATION
(14) REGISTER)
{ X
- Q(11d) A< 278

|
>
>
1442 -lmoorl Acc |+ a(1-a%) A2 s 279

SINGLE LENGTH
STOPS HERE ™

«— a(1-4%) A< 2717

Q1 -4t 6)
DOUBLE LENGH —*
QUOTIENT

8
Qi 1~-4%)
MODF c IO—— Sihele LENGTH AB < 5-33
T _ QuOTIENT
] AIS < 2-65
PC

Figure 4-19. CP Hardware Utilization-Division Process

117987

4-62 Advanced Eciencific Computer

@
4.20.1 TWO'S COMPLEMENT FORMATION. . Before discussing the derivation of the sign
extension algorithm, two methods of forming the two’s complement of a binary number must be
reviewed. The first method forms the two’s complement of a number by starting with the LSB
of the number and copying all bits of the number up to and including the first one bit. After
that point, all bits of the number are inverted. That is, copy the LSB. If that bit is a one,

complement the remaining bits of the number. If it is a zero, copy the next bit, inspecting it in
a like manner.

The second method of two’s complementing forms the two’s complement by creating the one’s
complement of each bit of the number and then adding one to the LSB of the complemented
number and performing any carry addition that may be required.

4.20.2 ALGORITHM DERIVATION
NOTE

The following derivation considers only a three-entry sign exten-
sion. Expansion of this explanation to a 16-entry extension as
employed in the AU is valid, but for simplicity of presentation is
not covered in this discussion.

Consider the sign extension bits from Summands 0, 1 and 2. Using letters to represent these bits.
they would appear in the Summand array as:

Total = abcdef

By inspection of the addition and application of Boolean logical functions, the sum of the sign
extension bits (abcdef) can be expressed in terms of the sign extension bits A, B, and C:

f =

e:
d=BeC*

¢c =B+C
b=Ae(B+C(C)
a=A+B+C

(& is the symbol for exclusive OR).

This expression does not define a process for directly determining the sum. To further simplify
this expression, the relation, A = (A+6,), will be used. That is, a number is always equal to the
complement of the complement of that number.

*d = 1 if B or C is a one, but not if both are ones. If B and C are ones, d = 0 and a carry is gen-
erated to the next bit, c.

Similarly,

¢ =1if Bor Cis a one, or if both are a one. If both are ones, however, the sum includes a
carry from bit d, and in turn generates a carry to bit b.

4-63
Advanced Scientific Computer

Forming the two’s complement of abcedef, using the first method outlined above, produces a new
number, UVWXYZ, whose individual bits are defined as follows:

2 =1 o (copy; first bit)

Y =ef +ef ' © (if f = I. complement e. if not. then copy ¢)
=eaf ‘
X =d(e+) +de+ 1) (complement d it any preceding bit is a one: otherwise,
=da(e+ D copy d)
W=cle+f+d)+c(d+e+1f) (similar to d)
=c=s(d+tetf) '
V=bs(c+d+e+1 (similar to d)
U=as(h+ct+td+e+ ! (similar to d)

Substituting the equivalent forms of abedef into the definitions tor UVWXYZ yields the
following relationships:

Z=C
Y=CsC=0

X=Be)=(C+C)=B=zc)>C=8B

W=B+O)s[(B-C)+Cl=B+C)s(B+C)=0
V=[A=2B+0)] =[(B+C)+(B+ ()]
=[A3(B+C)] =(B+C)=A

U=(A+B+(C)s [AsB+O)+B+C)
=(A+B+C)sA+B+C)=0

These expressiois indicate that the two's complement of the sum of the sign extension bits m.
be represented as:

0A0BOC

Forming the two’s complement of this representation (using the second method explaiin=d above)
returns to an equivalent expression ot the sum of the sign extension bits:

1A1B1C

+ 1

This expression defines the algorithm used to fill the Sign Extension Summand in the Summan.!
array. Extending the SE Summand expression to 32-bits expands it to the right by udding bits ot
alternate ones ¢nd complemented sign extension bits. The additional one bit is always added to
the last significaat bit of the sum.

4.21 AU UNIT HARD CORE

Unit Hard Core performs .context switches, power down sequences. and other maintenance
tunctions, as instructed by the CP Master Hard Core. Refer to Appendix D for further
information about AU hard core.

4-64 Anvanced Scientific Computer

@
4.22 CONTROLLER DESCRIPTIONS AND FLOWCHARTS
The following pages contain information concerning the control circuits within the ASC Central
Processor. Each control circuit is represented by a flowchart that outlines the decision paths

within the controller. Text accompanying the flowcharts explains these paths in relation to the
functions performed and signals generated by the controller.

IPU control can be viewed as shown in figure 4-20. The control of each level of the pipeline
through the IPU is treated independently in the flowcharts that accompany each control circuit
description. Each level controller serves three primary functions: data selection, register gating,
and generation of the “‘path ahead clear” (PAC) function for that level. The data selection and
register gating required for transfers between levels do not affect the progress of an instruction
from one level to the next. The PAC, along with other circuits in the controller, determine when
data gates into the next level.

In general, the flowcharts for level O control through level 4 control indicate the following
actions:

1. The gating of data into the succeeding level is usually indicated by the statement
“LVLn—~>LVL,,;”, and is accompanied by setting the activity bit at level ntl,
“1>Ap 417 In general, this action occurs if the path ahead is clear into level n+1, level
n is active, and hazards do not exist.

2. The progression of the inactivity to a succeeding level is usually indicated by resetting
the activity bit at level n+1 “0—A ,;”.

In general, this action occurs if the path ahead is clear into level n+1, but level n is
inactive or a hazard exists.

3. The communication between a given controller and other controllers is indicated by
output statements; for example, “PAC,”. This statement normally occurs if level n is
inactive or if level n is active and is passmg its data to level n+1.

4. Changing the primary control cells at a given level constitutes a state change at that
level. These state changes normally occur when the subsequent actions at a given level
are dependent on current conditions at that level.

5. State changes at a given level are sometimes accomplished by manipulation of
secondary control cells. These cells are referred to as flags or counters. Changes in
these flags are indicated by statements such as “1-HOLD FLAG”, or “DEC COMP
CTR.”

4.22.1 INSTRUCTION FLOW. The data residing at a given level of the IPU is usually an
instruction in a partially decoded and developed condition. This data usually passes from one
level to the next, never occupying more than one level at any given time. For such cases, the
flowchart for each level can easily be studied independently. There are, however, several
situations for which the levels in the IPU do not operate independently. The following para-
graphs supply an overview of the IPU objectives in order to more easily understand the
flowcharts for these situations.

4.22.1.1 Indirect Addressing. As an indirect instruction proceeds through the IPU, it reserves
the level 1 through level 3. Thus, when an indirect instruction reaches level 3, levels 1 and 2 are
inactive. Level 3 control makes a request for the indirect cell via the IPU memory bus and then
becomes inactive. When the indirect cell is available, it enters level 1, proceeds through level 2,
and finally replaces the address associated with the original instruction which still resides at level
3. When the indirect cell enters level 3, the activity bit at level 3 is set again, and the level 3

4-65 Advanced Scientific Computer

MEMORY
REQUESTOR

T ODRESS
SIS TERS
- ADDRESS
CONTROL.

HARDCORE
CONTROL

O
INST cMm
BUFFERS
e
-
DATA
SELECTION
LVLO
CONTROL
INST l
LVL. 1] GATES
REGISTERS PAC T
DATA
-
SELECTIOM LVL1
CONTROL
PRE INDEX ‘—__IGATES PAC2
vi.2 REGISTER ¢
DATA
SELECTION Lyl 2
CONTROL
GATES
EXECUTION 1;_______J—_ PAC3
Lvi3 REGISTER
DATA
SELECTION LvL3
CONTROL
: OUTPUT @ CATES I A
Lvi.a REGISTERS PACA4
LVL 4
CONTROL
\ /
V
MBU’S
(A127596

Figure 4-20. IPU Control

e MBU'S

4-66

Advanced Scientific Computer

@)
controller is again aware of the instruction. If the address is still indirect, then levels 1 and 2
were again reserved as the indirect cell passed through. As the terminal indirect cell progresses

through levels 1 and 2, these levels revert to their usual condition, and take no further part in
indirect cycling. Indirect addresses never advance down the pipe beyond level 3.

4.22.1.2 Execute Instruction. As an execute instruction (XEC) passes through the IPU to level 3
it reserves levels 1 and 2 of the pipe in a manner similar to an indirect instruction. Level 3
control makes a request for the object of the XEC, sets the XEC flag, and becomes inactive.
When the object of the XEC instruction reaches level 3, all trace of the original instruction is
gone except that the XEC flag is set and the address register at level 3 contains the address of
the XEC. The object instruction is performed as if it had been in the program string in the
position of the XEC. The XEC flag alters skips, branches, and calls such that the program string
is not altered. Al the conclusion of the instruction the XEC flag is reset.

422.1.3 Skips. Skips produce a SKIP signal from level 3. Each upstream level control observes
pipe “activity in the upper levels and the instruction to be skipped is inactivated if it is in the
pipe. If it is not yet in the pipe, then this fact is recorded by the level 1 control. When the
instruction does appear in level 1, it is discarded by the Level 1 controller.

4.22.1.4 Branches. A branch instruction produces commands from level 3 to the upstream
levels. Each upstream level deactivates those instructions which are in the pipe but which are not
desired because of the branch. If the instruction to which the branch is taken is not in the pipe
upstream from level 3, then the branch address in level 3 is accepted by address control, and the
pipe remains inactive through level 3 until the new instruction stream can be fetched and started
down the pipe.

Indirect branches reserve levels 1 and 2 of the pipe as do all indirect instructions. However,
indirect cycling does not begin until and unless the branch test is satisfied.

42215 Store File and Load File Instructions. Store File and Load File instructions reserve
level 2 as they pass down the pipe to level 3. This block at level 2 eliminates special and
extensive hazard detection logic which would be required if an instruction were at level 2 during
execution of file instructions at level 3.

Memory requests required for execution of the file instructions are initiated by level 3 control
via the IPU memory bus. Normal instruction flow resumes through level 2 after the file
instruction.

4.22.1.6 Push, Pull Instructions. Push and Pull instructions reserve level 2 as they pass down the
pipe to level 3. The Push or Pull instruction occupies level 3 while the address of the stack
parameters advances to the MBU. The MBU fetches/and transfers them to the AU for modifica-
tion and testing. When available for the AU, the stack pointer is accepted into level 2, advances
to level 3, and proceeds down the pipe, appearing to be a load (Pull) or a store (Push). As the
pointer moves into level 3, normal instruction flow into level 2 resumes.

If the AU test indicates termination should result, level 3 control terminates the operation and
resumes normal instruction flow. If termination is not necessary, then the address of the stack
parameters advances to the MBU and the MBU stores the modified values.

Controller flowcharts for levels 04 und a level 3 controller state diagram are provided in figure
4-21 through 4-40. These include flowcharts for R/Z Join, Arithmetic Exception (AE) and AE
Mask, along with those for Compare Code and Result Code controllers.

4-67 Advanced Scientific Computer

LvL3
COMMAND

S

SELECT
KA INST

¥ INCLUDES SELECTION FOR INST HAZ

AND PV FLAGS

(8)127597 (1/3)

1. IHAZ ,TARGET FAIL ,BRANPA BRANLA ,BRANOA 3
2, NONE OF THE ABOVE

Figure 4-21. Level 0 Controller Flowchart (Sheet 1 of 3)

4'68 4 (j‘&"“ri'f i

W Sientific Compucer

ST o

REG
INHIB
FLAG AT
LEVEL 3

¥¥|NCLUDES SELECTION FOR PV
FLAGS AND INST. HAZ FLAGS

oK

SELECT SELECT
KA INST. KB INST,

BRANCH
INST, AT
LEVEL 3

SELECT
FILE WORD

0—A1

SRS

Figure 4-21. Level 0 Controller Flowchart (Sheet 2 of 3)

(B)127597 (2/3)

4-69 Advanced Scientific Computer

[¢]

NEW INST

*INCLUDES SELECTION
FOR PV FLAGS

y "

SELECT KA

SELECT KB

INDIRECT
REQUEST (vL3 1HAZ OR NONE
COMM
W N——
* LOAD IR
G NO
IND RE LOCAL
ND REQ INDIRECT
y O IR YES
SELECT —
KCM WORD 1Al
p—
CMT IR r—
NO
ves LVLO——=LVL1
1——A1 L
@————. 0—=Al —————®

(B)127597 (3/3)

Figure 4-21. Level 0 Controller Flowchart (Sheet 3 of 3)

4-70 Advanced Scientific Computer

START

Lve

0O—A2

SELECT.
(T1)— xR
(M1)—BR

(OP)—C2
(oP),R—R2
P1-—P2

(8127598 (1/9)

TARGET FAIL, IHAZ | BRANPA |

BRANLA , BRANGA
BRANP 1
SKIP

HONE OF THE ABOVE

Figure 4-22. Level 1 Controller Flowchart (Sheet 1 of 9)

4-71

Advanced Scientific Computer

NO
YES
TARGET
FAIL
LVL1 INST
M HAZ FREE
LVL1 BLOCK
0—A2
YES
NO
GATE BR,XR,
NR,CTL P2
1—~Aa2
0—A2
PAC 1
YES
NO NO
YES
PAC 1
NO
YES lll'
1
LVL1 BLOCK
LVL1 ADV
a4

(B)t127598 (2/9)

Figure 4-22. Level 1 Controller Flowchart (Sheet 2 of 9)

472 Advanced Scientific Computer

NONE Lt

RECOVER
LVL2 HAZ

VECTOR
PUSH ,PULL
OR

ORANGE INST
AT LvL2

PAC 1
Oo— A2
PAC 1
L2 BLOCK
Q-—A2
R 1
%
YES
NO

PAC 1

ORANGE
LOAD AT
Lvi.2

PUSH ,PULL
AT LvVvL2

(B)127598 (3/9)

Figure 4-22. Level 1 Controller Flowchart (Sheet 3 of 9)

4-73 Advanced Scientific Computer

IND AT 2
1 ‘LVL3 3
0-—A2 - COMMAND —P» VL1 BLOCK
2
0—A2
PAc 1 RECOVER
o LVL2 HAZ
YES
1
1. TARGET FAIL,IHAZ, 1—A2 h——- E—
BRANPA ,BRANLA ,BRANOA NO
2., SKIP
3, NONE OF THE ABOVE
9 O-—=A2
H
IND INST
- —_—

IND AT 3

AT LvL2
Yrs NO
/ &

SELECT,
(TIND) — XR
ADR— NR
TIND—T2

(o= ¥F

IND AT 3

1. IHAZ

2, BRANCH NOT TAKEN 0 A2
3, . NONE OF THE ABOVE

— 0-——A2

(B)127598 (4/9)

'Figure 4-22.'Level 1 Controller Flowchart (Sheet 4 of 9)

4-74 Advanced Scientific Computer

[N

GATE XR,
NR ,CTL

ORANGE
INST

PAC 1

Lvi 1 BLOCK

o

VECTOR

PAC 1

PUSH ,PULL ﬂ

PAC 1

PAC 1

0—=A2

LVL1 BLOCK

(B)127598 (5/9)

ORANGE
LOAD
AT LVL3

Figure 4-22. Level 1 Controller Flowchart (Sheet 5 of 9)

4-75

Advanced Scientific Computer

. XEC AT 3

SELECT.
&I}}—"é’é
MT ,N{—=NR ' 0— A2
T1— T2
» LVL1 ADV
1—=A2
YES
GATE BR ,XR,
NR ,CTL
YES
NO
NO
YES
LVL1 BLOCK
4
e PAC 1
(B)127598 (6/9) 1

Figure 4-22. Level 1 Controller Flowchart (Sheet 6 of 9)

4-76 Advanced Scientific Computer

LOAD FILE STORE FILE)
LVL2 BLOCK LVL2 BLOCK
NO NO
YES YES
NO NO
PAC 1 PAC 1
*
NO
YES
0—A2 ————3 o—A2
PAC 3
YES NO
NO YES

nad

NO

DAV
WAIT

LVL2 BLOCK

YES

l._

*PREVENTS STATE CHANGE WHEN A TERMINAL INDIRECT CELL IS AT LVL2 AND LVL3

IS NOT ACTIVE
FOR STORE FILE

LVL3ACT INDICATES LAST DATA KCM
WACK INDICATES LAST DATA

DAV INDICATES LAST DATA

(B)127598 (7/9)

McCuU
CM STORAGE

Figure 4-22. Level 1 Controller Flowchart (Sheet 7 of 9)

4-77

Advanced Scientific Computer

PP

SELECT.
PTR— BR

:

LVL2 BLOCK

PAC 1

LvL3
COMMAND

NONE OF
THE ABOVE

VECT

SELECT,
VP, —BR
Xpy =~ XR

‘

VECTOR WORD
SI1ZE TO

LvL2

LVL2 -LOCK

GATE XR ,BR

0—=A2

GATE BR

'

0—A2

PAC 1

1.VvI0,vI1,Vi2
2. IHAZ ,VI3 ,VECT NOOP
3. NONE'OF THE ABOVE

LvL3
COMMAND

0—=A2

-

(B)127598 (8/9)

Figure 4-22. Level 1 Controller Flowchart (Sheet 8 of 9)

4-78 Advanced Scientific Computer

t—A2 ‘—___1
HAZ *

SELECT.
T2V« XR
M2)— BR

'

LvL2 BLOCK

VACANT
(PIRT

NO
LvL3 s —
COMMAND oAz AR
1
NONE OF l
— > GATE XR,BR
1 L1 BLOock [P
YES
NO

— PAC 1

NO
H 1

(81127598 (9/9°

Figure 4-22. Level 1 Controller Flowchart (Sheet 9 of 9)

+79 Advanced Scientific Computer

LvLe2

TARGET FAIL , SKIP PP1
LOCAL INDIRECT TO IR nlomzév REQ.

2. BRANP: ,BRANPA ,BRANLA ,BRANOA
3. INC AR,VIT1,Vi2,Vi3
Ln 4. PPI1

5. NONE OF THE ABOVE

SELECT ADDER

INPUTS PER

CTL2 AND AR

INO FLAG

YES
NG

(LVL3 COMMAND)
‘\ 2 3 *4

C——=A3 GATE AR Lvilz BLOCK
NO
YES ‘
C—eA7 PAC 2
-

GATE AR PAC 2

O—A3

(B1127599 (1 3"

Figure 4-23. Level 2 Controller Flowchart (Sheet 1 of 3)

+-80 Acvanced Scientific Corouter

¢}

PAC 2

LvVL2 BLOCK

'

RECOVER
LVL2 HAZ

(B)127589 (2/3)

Figure 4-23. Level 2 Controller Flowchart (Sheet 2 of 3)

4-81 Advanced Scientific Computer

(B)127599 (3/3)

INDIRECT
CELL AT
LvL2

ILLEGAL
OP CODE

LEADING
ZEROS

GATE AR
PAC 2
1—=A3

1—ILOP FLAG

R

LVL2 —LVvL3

!

PAC 2
1—=A3

Figure 4-23. Level 2 Controller Flowchart (Sheet 3 of 3)

4-82

Advanced Scientific Computer

[e]

OP BITS 4~7

Scalar Op Code Map and Associated Controllers/Registers

OP BITS 0—3

o 1 2 3 4 5 6 7 8 9 A) c D E F
11 E) 11 13 10 13| 10| 4 1 13 E) 10 13 10
o LRL |STZ LN A Al A(B) | A(B) | ISE MCP | FLFX | VECT SAH AND ANDI
- 11 9 11 13 10| 3 3 135 10 73
1 LEM |STZH |LNH AH AlIH ISNE 8cc FLFH SAH ANDD
11 9 11 13 12 13 10| 4 11 13 10
2 LAM | SPS LNF AF LEA(B) | A(XV)|AKXV)| DSE INT FDFX CAND CANDI
11 9 11 13 a 7 10 13]
3 LAC |sTzD |[LND AFD DSNE | PSH SAD CANDD
11 F) 9 13 12 13] 10| 1 10 13
4 L sT STN AM LI(XV) | D DI BCLE | MCw sL OR OR1
11 13 12 13| 10gce 5 3 10 13
5 LLL |STLL |[STNH | AMH | LIH(XV)| DH DIH | (Xv) BRC SLH ORD
10 9 9 13 12 13| BCLE 5 3 16 13 10
6 LLA | STRL |STNF | AMF | LEA(XV)| DF xv) XEC RVS COR COR1
11 £} 9 13 13] 5 7 1 13
7 N LD STD STND | AMFD DFD BCG PUL. SLD CORD
° 11 9 11 13 10 13] 10 5 3 i3 13 10 13 10
8f P L(B) | ST LNM |s st M(B) | MI(B) IBZ(XV) BLB | FXFL c c1 XOR XORI
1 9 11 13 10 5 3 13 13 10 13
9 LLR |STLR |LNMH | SH SIH IBNZ BLX FHFL CH CIH | XORD
12 11 13 13 19 pBz 5 3 13
A XCH {STOH |LNMF | SF M(XV)[MI(XV)| (XV) FORK | FXFD CF
2 2| 11 13 DBNZ 5 3 13 13
B LF STF LNMD | SFD (xv) JOIN | FHFD CFD
11 9 11 13 12 13 TO 5] 3 11 10| 13 10|
c L(XV)} ST(XV) LM SM LI(XV)Y| M M1 1BZ BXEC | NFX sc EQC EQCI
11 9 11 13| 13 10 5| 3 11 16 13
b LRR(XV) STRR |LMH | SMH MH MiH |1BNZ | BAE | NFH SCH EQCD
11 9 11 13| 13 5| 3 9 BLE 10
E Lo(xv)| sTO LMF SMF MF DBZ PB SCLK C(XV){CH(XV)
2 2| 11 13 5i 7 10
F LFM | STFM | LMD | SMFD MFD DBNZ | MOD scD
(A)132348

4-83/4-84

Advanced Scientific Computer

POINTER
WAIT
STATE

(15)

PUSH—PULL

STATE
(15)

ORANGE
WAIT+1
STATE

(16)

VECTOR
STATE

(12)

ORANGE
WAIT
STATE

(16)

VECTOR
INITIATE
STATE

(12)

INDIRECT
WAIT VECTOR
STATE BURST

STATE

(16)

(14)

NEW
INSTRUCTION
WAIT STATE

(14)

INDIRECT
REQUEST
STATE

(16)

SKIP
REQUEST

(5)

VECTOR

VECTOR
+1

STATE

(13)

g,

NOTE: NUMBERS IN PARENTHESES

ARE STARTING SHEET NUMBERS

OF THE LEVEL 3 CONTROLLER

FLOWCHART INSTRUGTION
HAZARD

suB—
ORANGE

(17)

STATE
(17)

(B)127600A

Figure 4-24. Level 3 Controller State Diagram

4-85/4-86 Advanced Scientific Computer

LEVEL 3
{IDLE)

0=>~FORGET
1T (0-3)

AO AND RO
REGISTERS
AVAILABLE

REGISTER
iNHIBIT FLAG,

ANY
T3 HAZARD

YES REGISTER o REGISTER
l INHIBIT FLA HA ZARD
l (GREEN FIRST)
' EXIT TO
ALL NEW INST. ' EVEL 3 (IDLE
PES AR RANGI NO FREEZE
MP HAZARD FLAG (NIFRZ)
ATLVL 3 YES |
SCA4;
1—-BRANCH IMMEDIATE -
| DONE FLAG @LvL 4 o
INST. INDICATOR B4
PROTECT ' ‘c
1 I
JioLATION, ANY NEAR
RANGE HA ZARD ' EXIT 1O
LEVEL 3
() ARZP(%) EXIT TO LEVEL 3 RDST(0) RDST(1) RDST(2) ROST(3)
I DECIDE (GREEN) (IDLE)
ILLEGAL SUBCYCLE
OPERATION | STLDCN(%) B,C,D,E I l ‘ ‘
aLop) PVv) *SPECIFICATION ERROR |
@LVL3 = ORANGE MEMORY
EXIT T T. }
“ A’;ARDosl:fTE MULTIPLE TO FILE STORE AT T T l
' LEVEL 4 LEVEL 3 (IDLE
(IHAZ A 1=
I— —— | INDICATOR
wever 3 1 INDIRECT -
AND B o
- BRANCH |
—r . lc
BRANCH o l YES NO SCAd
INST. [IMMEDIATE EXIT TO
] I @LvL4a LEVEL 3 * RDST(0) RDST(1) RDST(2) RDST(3)
/ (IDLE)
I 1=-ZEX(*) O=—-ZEX(%) l i i i
EXIT TO 0—»ZEY(¥) 1—=ZEY(x)
YELLOW I
SUBCYCLE J AR=LD(0) ‘
| |
’ {YES I
LEVEL 3 INSTRUCTION DECODE ’ i)
NO OP EXECUTE |OTHERS |SKIP BRANCH, |COND. FILE PUSH. VECTORS |MONITOR ' 0—+EXECUTE FLAG NO : *
LLA, BRANCH PULL, cALLS 0-~REGISTER INHISIT FLAG :
P8 OR XCH MoD I 0-+HOLD FLAG {yes i
i
- H 1 :
EXIT TO EXIT TO EXIT TO EXIT TO EXIT 7O \ i i LEVEL 3—»-LEVEL 4 T 1 N ! /ym——i———-\Ex!f —
NO OP GRAY BLUE ORANGE VECTOR H PAC 3 | i ! rpsT(2) E | RDST(3) (LEVEL 3
SUBCYCLE SUBCYCLE SUBCYCLE SUBCYCLE suBcYCLE _/ ; i i | ' il o
) b [H £ it -
H e T —
= ! ,, I §
t o - 3 ']
1= EXECUTE EXIT TO EXIT TO EXIT TO EXIT TC |
FLAG PINK GREEN STACK BROWN SHEET NUMBER——18 | | syp
(XEC) SUBCYCLE SUBCYCLE SUBCYCLE SUBCYCLE leor SUBROUTINE e INE Pyvr— VL34
DETAILS, WHICH ARE | | gymBOL 1 HOLD FLAG
SHOWN ON SHEETS

18-33 *NOTE: REFERS TO ONLY THAT PIPE THAT
RECEIVED LAST INSTRUCTION

l INDICATED BY PIRT (0-3) m

EXIT TO
LLLOW SUBCYCLE,

(D)'I_ZSOSBA

Figure 4-25. Level 3 Controller Flowchart (Sheet 1 of 33)

4-87/4-88 Advanced Scientific Comguter

PARAMETERS IN

IPU RGTRS
(PEXFER)

PAC 3

0-»-EXECUTE FLAG

O-»REBISTER K-
HIBIY FLAG

r——y——"

l EXIT TO LEVEL 3
i (ILE)}

o e o o c—

(D)127601 (2/33)

|
-

BLUE
SUBCYCLE

PREPARE TO
BRANCH 'PB!

(Lra:

BLB OR BLX INST

INDIRECT
INSTRUCTION

LOAD LOOK AHEAD

ALL
Qe FORK READS
INDICATOR COM - =)
PLETE

FORK
INOICATOR

ANY VECTOR
IN PIPES

'

1= FORK
INDICATOR

EXIT TO DECIDE
(BLUE! SUBCYCLE

PAC 3

0=ZXECUTE FLAG

0-»REGISTER IN-
HIBIT FLAG

r——y "

l =it o LeveL 3y |
' (1IOLE) |

(L |

BLB ,BLX

IMMEDIATE
AT LEVEL 4
(MMy)

AC AND RO
AVAILABLE

ANY ARITH
EXCLPTION
HAZAROD

ANY
REGISTER HAZARD
{RHAZ .

NO

A
am
s
——
c i
‘ 7
T RHAZ PIPE 2 RHAZ PIPE 1
BRANCH DONE FLAG >V rg]
[PACA PIPE 3 PaCa PIPE 2
YES
|
|
i
00— O—= O
' = BRANCH OR i
N]
Py SKIP COND. !
BIT (8SC L
NO [
B j! ROST{3) RDST/2) ROST(1} RDST(0)
26 26 26 26
BRANCH A 1=~ BRANCH
DONE
LOCATOR! | graNCH LOCAL. cLaG
OR REQUESTED ENABLE
e o28 LVL3 +-LVL4
CM BRANCH
NOT REQUESTED
-~ OPERA- 2 | :iBrANCH
. -
;g’:s CM BRANCH LOCATOR BRANCH DONE FLAG
NOT REQUESTED
T
" BRANCH LOCAL
| OR REQUESTED
tete BRANCH OR E
SKIF COND |
BIT (BSC: |
s !
. i |
‘e EXECUTE FLAG] i i {
9o REGISTER IN- ; H :
] weTrac lg .] i
14 BRANCH DONE
ot CPERATION
ooniE
r——i—=—" PACI

EXIT TO 1 EVI
5 {IDLEL

Figure 4-25. Level 3 Controller Flowchart (Sheet 2 of 33)

4-89/4-90

Advanced Scientific Computer

DECIDE

DECIDE
(GREEN)

INDIRECT
INSTRUCTION

RC HAZARD

EXIT TO YELLOW

TARGET FAIL BRANCH BRANCH SUBCYCLE
(TO LOOK AHEAD NOT LOCATOR
CONTROLLER) TAKEN =3 CM BRANCH
. NOT REQUESTED
A

BRANCH BRANCH LO-

HAZARD CAL OR RE-

(BRHAZ) QUESTED

CMR
READY
{RDACK)

CMR
READY
(RDACK)

DUAL
MODE

NO

EXIT TO LEVEL 3

EXIT TO LEVEL 3 ;
(IDLE} :

RESET
TESTED BITS

T RRANCH) H :
OR SKIP [
conD, BIT NO YES - e
85C) ! :
: ;
1
! i
YES ’ ' .
|
0—EXECUTE FLAG i
! 0—-REGISTER INHIBIT
BRANCH NOT H FLAG *
TAKEN ! 0~ HGL.O FLAG !
D= BRANCH DONE 3
PAC3 i
¢ =x1T TO LEVEL 3
5 \ U=~»BRANCH A DLEY
o OR SKIP
COND. BIT]
(BSC)
(D)125075A

Figure 4-25. Level 3 Controller Flowchart (Sheet 3 of 33)

4-91/4-92 Aclvanced Screntific Computer

STATUS
FREEZE

O~ HOLD
FLAG

PAC3

==

(D) 127601 (4/33)

>
EMPTY
ALl g
PIPES
ANY
VECTOR IN —-
PIPES YES
NO
CALL
COMPLETE
TU MASTER-HC
0—-MBU 1—-MONITOR
PROTECT CALL
AND MAP CONDITION NO
OFF FLAG BIT (MCC)
0-»EXECUTE
FLAG MCP REQUEST MCW REQUEST
Os REGISTER TO MASTER TO MASTER
INHIBIT HARD CORE HARD CORE

|

cAaLL

N

R

PER
INDICATO! NO

1=s-MBU PROTECT
AND MAP
GFF FLAG

j-» HOLD FLAG

!

-| MEMCORY STOR

AT LEVEL 4
ZSTA

ARZP!1

ARZP{2:

-0

&

Ja LE 22

0-+REGISTEHR
INHIBIT
FLAG

TRANSFER

LEVEL 3
- _EVEL 4

2 i
HAZARD |

BRANCH
INST

REGISTER
INHIBIT
FLAG

ANY
o REGISTER

HAZARD YES

LOCAL
INDIRECT
TO IR

INDIRECT
REQUEST

COMPLETE

l YES

REGISTER
1= INHIBIT

FLAG

EXIT TO INDIRECT
' REQUEST STATE

r— "
|
]

EXIT TO LEVEL. 3 |
(IDLE)
1

¥ SOME PIPES MAY BE BROKEN

¥ APPLIES ONLY TO PIPE THAT

RECEIVED LAST INSTRUCTION

INDICATED BY PIRT(u-3)

PINK
suBCcyCLE

AO AND RO
RGTRS AVAXE_ABL

0-= EXECUTE FLAG

0+ REGISTER
INHIBIT FLAG

O~ HOLD FLAG
PAC 3

NO

SKIP TAKEN
INDICATOR

NO

EXECUTE
FLAG

YES

0--BRANCH OR
SKIP
CONDITION
BIT (BSC)

YES

EXECUTE
FLAG NO

YES

1= BRANCH OR -
SKIP
CONDITION
8IT (B8SC)

(JOLE)

EXIT TO LEVEL 3

SKIP

TARGET FAILS

Figure 4-25. Level 3 Controller Flowchart (Sheet 4 of 33)

4-93/4-94

Advanced Scientific Computer

ISR3A
DOUBLEWORD
ADDRESS

REGISTER

ARt 2F

NO

INHIBIT FLAG

oREGISTER
AZARD

IMMEDIATE AT LEVEL 4
INDICATOR (TO MBU)

(D) 127601 (5/33)

EXIT TO
LEVEL 3 (IDLE

26

RDST1)

26

RDST!2} RDST(3)

ANY
a RGTR
NO HAZARD
YES
NO
AR ©
NO
YES
YES
PAC4(0) 5
1s @
YES A DOUBLEWORD YES
ADDRESS
A RDB(0) RDB(1) RDB(2) RDB(3) r -
NO I l
EXIT TO
_ JB 29 ‘5 29 P 30 15 30 | \ever snoey/ |
" & L—_——_4d
| EXIT 7O | SCRY i
) E
RDST(1) RDST(2) RDST(3 IMMEDIAT
] (LEVEL 3 (IDLE)) | RDST(0) @LvL 4
1
L — — —— J I Fr l 26 l 26 l 26
TzZP o
PACA4(0)
c 23
. RDST(0)
RDST(0) RDST1) RDST(2) RDSTI3
26
26 l 26 l 26 1 26
E L.
™M
™ o
25
c 25
RDST(2} RDST 2 1-+HOLD F LAG
RDST0) RDST(1) LVL 3==LVL 4

— T /"

—
I EXIT TC)
I LEVEL 3 (DLE)

1

|
I
e e e ——d

Figure 4-25. Level 3 Controller Flowchart (Sheet 5 of 33)

4-95/4-96 Advanced Scientific Computer

1. ADD, SUBTRACT, DIVIDE, MULTIPLY, CONVERSION, COMPARE ,BOOLEAN '
2. STORE
3. ADD IMM, SUBTRACT IMM, DIVIDE IMM, MULTIPLY IMM , STORE W/OP CODE
CX, RVS COMPARE IMM, BOOLEAN IMM
4, LEA, LOAD IMM
5. LOAD, NFX, NFH (NORMALIZE)

DETERMINE
SUBTYPE
1} 2{ 3] 4 5

EXIT 7O EXIT TC EX{T TC EXIT TC EXIT TO
B-YELLOW SUB-ORANGE SUB-BLUE SUB-GREEN SUB-PINK

ONE ARITH.
" EXCEPTION

EXIT TO

LEVEL 3 (IDLE
SCA4

PACA(0)

c REGISTER
AZARD~PIP

@ REGISTER
HA ZARD-PIPE,

1

RDB(0) A RDB(1) .3 RDB(2) A RDB(3} A
‘e ‘c lb Lr—:
IMMEDIATE
AT LEVEL 4 RDST(O) s
INDICATOR RDST(1) RDST(2) RDST(3)

AR=L.D(0)

x l l _—

PACA(0}

RDST(C) ROST(1) RDST(2)

I——

YES YES ;st

-0

RDST(0) RDSTII) RDST(Z)
0« EXECUTE FLAG

o REGISTER INHIBIY
FLAG

i
1
ROST3) §
i

sl
g -
-

LEVEL 2+ LEVEL 4
PAC3

|
| R
/

EXIT TC
LEVEL 3 (IDLE

(D)125082A
«

Figure 4-25. Level 3 Controller Flowchart (Sheet 6 of 33)

AR e e [P

4-97/498 Advanced Scientific Computer

.

CLOCR==~RC

IS

YES

‘i—NO

HEX
REGISTER
HAZARD,

; NO

31

0+ EXECUTE FLAG
0+ REGISTER INHIBIT
FLAG

LEVEL 3+ LEVEL 4
PAC3

{D)127601

5

fFraa

r—=—.—=—"

l EXIT TC |
' LEVEL 3 (IDLE) '

L4

6
SuB-BLUE

|
i
1
IMMEDIATE
AT LEVEL &
INDICATOR
TO MBU!

ANY
R-HAZARD
YES

PACA(0)

PIPE{1}

RDST(I

r—=—!=—A

| EXIT TO |
i LEVEL3 GoLg) |

e J

|
i
i
L .
i
r————9 .
L]
l EXIT TO L £
l EVEL 3 IDLEY l
7 iMM D
| O = |
25
c
v T
I : Z H RDSTI3} |
| ROSTi: i RDSTIN | ROST(2} B
i H
| H i i i
1 T T e T 26
: P i !
] L] [}]

6
SuUB-GREEN

IMMEDIATE
AT LEVEL 4
INDICATOR
(TO MBU)

T

ANY

REGISTER
HAZARD,

RDST(0)

REGISTER
HAZARD IN
PIPE(1),

REGISTER

ROST(1} RDST{2) ROST(3)
1 26 i 26 i 26 26
A
3
B MM
i
jc 25 i
|1 i
ROST(O) RDST1) RDST(3} :
I T 28 26 | 26
! ! !
]]]

S+ EXECUTE FLAG
o+ REGISTER INHIBIT
FLAG

LEVEL 3 LEVEL 4
PAC3

O+ EXECUTE FLAG
o+ REGISTER INHIBIT
FLAG

LEVEL 3+ LEVEL 4

PA?S
r——y——"
| |
I

EXiT TO
LEVEL 5 IDLEY

r
|
|
-

Figure 4-25. Level 3 Controller Flowchart (Sheet 7 of 33)

4-99/4-100

Advanced Scientific Computer

SUB-PINK

REGISTER

INHIBIT FLAG

e REGISTER
HAZARD

ISR3 A
DOUBLEWORD
ADDRESS
‘HDW)Y

EXIT TC
LEVEL 3 /IDLE}

A DOUBLEWORD
ADDRESS
{(ADW?

NO

IMMEDIATE
AT LEVEL 4
INDICATOR

YES

ANY
R HAZARD

IS R3 A
DOUBLEWORD
ADDRESS
HOW)

SUB- PINK

DESTINATICON

k

RDST/OY

RDSTi2)

RDST!3)

Lzs

!

HAZARD

IMMEDIATE
AT LVL 4
INDICATOR;
SCA4

R HAZARD
IN PIPE (0)

RDSTIOY

Lze

R HAZARD
IN PIPE (1)

RDST(1)

l 26

R HAZAR
IN PIPE (2

D
)

IN PIPE (3)

RDST(2)

!

R HAZARD

RDST(3)

EXIT TO
LEVEL 3 (1DLE)

(D)127601 @®/33)

IMMEDIATE
e Lvi 4 TC

MBU ‘¢l

26

A
B8 MM
C 25
IMMEDIATE IMMEDIATE
VL 4 TO & LVL 4 TO
MBU (1) MBU (2}
RDST 1 RDS T2
26 26

26

EXIT TO
LEVEL 3 (IDLE)

e S |

o REGISTER
HA ZARD IN PIPE
0

YES

YES

YES
R HAZARD
YES

ISR3A
DOUBLEWORD
ADDRESS

{(HDW)

R-HAZARD
IN PIPE (0)

RDSTI(0)

& 26

o REGISTER
HAZARD IN PIPE
0

1S R3 A
DOUBLEWORD
ADDRESS
(HDW)

R-HAZARD
IN PIPE (1)

RDST(1)

‘ 26

2 REGISTER
HAZARD IN PIPE
(21

ISR3A
DOUBLEWORD
ADDRESS
(HDW)

R-HAZARD
IN PIPE (2)

RDST(2)

‘ 26

¢ REGISTER
HAZARD IN PIPE

ISR3 A
DOUBLEWORD
ADDRESS

{HDW)

R-HAZARD
IN PIPE (3}

RDST{3)

J 26

IMMEDIATE
‘a LVL 4 TO

MBU (3)

RDSTI3)

0 —<~EXECUTE FLAG
0— REGISTER
INHIBIT FLAG

LEVEL 3—~LEVEL 4
PAC3

F===———"

-r——— 12
i EXIT TO {
l LEVEL 3 (1DLE) l

Figure 4-25. Level 3 Controller Flowchart (Sheet 8 of 33)

4-101/4-102

Advanced Scientific Comput >r

*THAT IS, IS ANY OTHER PIPE STORING INTO THE
LOCATION INDICATED BY (AR).

THIS IS IMPLEMENTED IN THE RDB(0-3) FUNCTION
BY DISABLING THE START FORCED WRITE SIGNAL
IF A SUB-PINK INSTRUCTION IS AT LVL 3.

SUB-PINK
DESTINATION
HA ZARD

R-HA ZARD
IN PIPE (3)

R-HAZARD
IN PIPE (2

R-HAZARD
IN PIPE (1)

R-HAZARD
IN PIPE (0) NO

NO)

O—o

ANY OTHER
AR=ZP

ANY OTHER

ANY OTHER

EXIT TO '
LEVEL 3 (IDLE) l

b e —

|
I

PACA4(0)

A A A A
RDB(0) > RDB(1) o1 RDB(2) 3 RDB(3)
30
g 29 c 29 o 3° E
0+ EXECUTE FLAG
0+ REGISTER INHIBIT
FLAG
LEVEL 3- LEVEL 4
PAC3
RDST(0)) RDST(1) RDST!2) RDST(3)
26 26 } 26 25
r IS SRE—— R SRR ﬂ
| TxT 7o I
+ | LEVEL 3 (IDLE) |

1
(D)127601 (9/33) I —

Figure 4-25. Level 3 Controller Flowchart (Sheet 9 of 33)

4-103/4-104 Advanced Scientific Computer

sus
YELLOW

ANY
R-HAZARD

YES

R HAZARD
N PIPE(3)

SCR 4

scAa
IMMEDIATE
@ LEVEL 4

oRGTR

DOUBLEWORD
ADDRESS

aRGTR

HAZARD IN HAZARD IN
RDBI(0 Q‘_ RDB{1} RDB(2) RDB(3)
la 29 lc 29 ‘D 30 ‘E 30
r——=-——-" AR “LD(0)
| EXIT TO 1 RDSTiO! RDSTI1} RDST(2) RDSTI3)
[LEVEL 3 (IDLE) |
1 -
| I 1 26 l 26 L 26 l 2
EGIS e
TER INHIBIT
FLAG, YES A T2P
o 5
ne RDST(0) RDST(1) RDST(2) RDST(3}
lc 23
) 2 2 26
F———]=——n Py l 26 ’ l 6
A e DSTI} RDST(2) RDST/3) IMMEDIATE
R = 2F; | EXIT 70 ' RDST(0) RDST(
Mo NO AT LEVEL 4
] LEVEL 3 (IOLE) |
2
L 1—‘ 1 26 l 26€ l 26 l 2¢
ves —— e ——
ANY ¢ SCA4; e RGTR o RGTR
REGISTER IMMEDIATE | HAZARD IN HAZARD IN ~HA ZARD
NO HAZARD AT LEVEL 4 QIPER)) TN PIPE(2)
YES
AR= 0
NC
YES
fsoA
OUBLEWOR
DDRESS” ves
YES
- | ——— .
r A RDSTC) RDSTI1} RDST(2) | REST) RDST(0) RDST(S RDST(2) RDST3)
! |
| EXIT TO | | |
| LEVEL 3 (0LE) J | T 26 ‘ 26 3 26 l 26 - ™26 r: 26
1
—— o)
A 3
MM
B o
C 25
r—————=—n
0+ EXECUTE FLAG | I
l- — e | — —-—I RDS TG} RDST!1) RDST(2) RDST 3 0+ REGISTER INHIBIT FLAG EXIT TO
| | LEVEL 3—LEVEL 4 | LEVEL 3 (IDLE) |
EXIT TO PAC 3 1
Lever3aore) J | 26 e e ———

(D)127601 (10/33)

* 26

‘ 26

Figure 4-25. Level 3 Controller Flowchart (Sheet 10 of 33)

4-105/4-106

Advanced Scientific Comp:1ter

MULTIPLE
INSTR

C=EXECUTE
FLAG

0= RECISTER
INHIBIT
FLAG

!

Pac 3

NUTHIN -
NOWHR

ANY

o

. STACK
OCTET SCALAR:
HAZARDS YES
0+ REQUEST EXIT TO
COUNTER LEVEL 3 (IDLE)
5+~ COMPLETION AQ AND RO
COUNTER RGTRS

AVAILABLE

ORANGE
LOAD AT
LEVEL 3

5% REQUEST
COUNTER

REGISTER
o#* COMPLE -

ORANGE

DESTINATION,
LOAD AT TION COUNTER] l- —_——]——
LEVEL 3
‘ | EXIT TO |
l LEVEL 3 (IDLE |
STORE 1
ORANGE ANY FILE b -
LOAD AT STORE FILE REQUEST Rt
DISABLE LEVEL 3 HAZARD ran
KCM TO FILE Tl
(IRDISKSL)
STORE
LOAD FILE)
FILE REQUEST XY RESET
TRANSFER FILE-> FILE TEuEST 1 :?:: bl
0% EXECUTE FLAG) : REQUEST STORE
o> REGISTER INHIBIT XY RESET Lt
FLAG FOR MM A TzP
‘ STORE B 3 — — | —— 8
EILE r

EXIT TO
LEVEL 3/IDLE

PAC3

CMR
READY FOR

CMR

1
i IMMEDIATE IMMEDIATE '— — e a— —

READY FOR WRITE OPERATION IMMEDIATE IMMEDIATE
;__.. WRITE (WACK) INDICATOR TO INDICATOR TO INDICATOR TO INDICATOR TO
WACK' MBuU (0) MBU (1) MBU (2) MBU 13)
[mmac0)] mma(n) MMa(2) wma (3)]

0 +=EXECUTE

FLAG 1+ AR RDST(0) RDST(11 RDST(2) RDST(3) RDST(0} RDST(1) ROST!2) REST(3)
0-+REGISTER INCRE~

INHIBIT FLAG MENT

26 l 26 l 26 l 26 l 26 ‘ 26 l 26 J 26

PAC3

TRANSFER
LEVEL 3 -»
LEVEL 4

I

EXIT TO
LEVEL 3 1CLE}

(D)127661 (11/33)

Figure 4-25. Level 3 Controller Flowchart (Sheet 11 of 33)

4-107/4-108 Advanced Scientific Computer

VECTOR (VECTS
STATE

7+ COMPLETION

COUNTER

ANY
VECTOR
HAZARD

LSB OF
R-FIELD-
]

EXIT TO
NO OP
SUBCYCLE

(VECTL)

EMPTY
FORK ALLOW JOIN
INDICATOR NT
CURRE PIPES .

EMPTY |}A&

- 1+ JOIN
L 8 FLAG
PIPES

(D)127601

SELECT ANY
B ECTED
PIPE FOR SE:IPCE
VECTOR
o
A 18

FORCED
WRITE WAIT
IN SELECTED
PIPE

MEMORY
STORE IN
SELECTED PIPE
(ZsTP)

START FORCED
WTITE N
SELECTED PIPE

STORE OCTET
IN SELECTED PIPE
(zPFUL)

1 VECTOR STATE
CONTINUED

(12/33)

VECTOR STATE
CONTINUED

ANY
VECTOR
HAZARD

EXIT TO
LEVEL 3
(IDLE)

R-FIELD

REGISTER
INHIBIT FLAG

eHAZARD || B
(SCALAR)

27

LOAD FILE
REQUEST
(TO CMR)

EXIT TO
FILE WAIT
STATE

TRANSFER
FILE=>FILE

o0 REGISTER

OCTET
HAZARD

EXIT TO
LEVEL 3
IDLE)

VECTOR
INITIATE
STATE

INSTRUCTION
AND 2HAZARD
INSPECTION

EMPTY

PIPES

27

»
0-=SELECTED
PIPE 0-3) 1= HOLD
o—= HAZARD YES FLAc
eFLAG
NO
r——y—-— A
PAC3 EXIT TO |
3 0=+EXCHANCE '
FLAG '
0—»REGISTER 13
— — ——
INHIBIT FLAG
VECTOR
NO OP
a EMPTY EXIT TC
JOIN LEVEL 3
PIPES (ADLE}
START FORCED

A 27 | wRITE IN
SELECTED PIPE

SELECT
PIPE FOR
VECTOR

FORCED
WRITE WAIT
IN SELECTED
PIPE

MEMORY
STORE IN
SEL PIPE
(ZSTP)

" OCTET IN
SEL PIPE
(zPFUL)

vio: DECREMENT COMPLETION
hg——— VP,* Lvez COMPLETION & COUNTER
COUNTER ‘ =7

Vit 1+ VI START o> e
VPo'; Lvia FOR SELECTED HAZARD
LVE2-1L VL3 PIPE FLAG
VP, LVL2

EXIT TO

EXIT TO
VECTOR BURST

LEVEL 3
(IDLE)

Figure 4-25. Level 3 Controller Flowchart (Sheet 12 of 33)

4-109/4-110 Advanced Scientific Computer

12 fYEcTOR
STATE

INST
PRCTECT

7=+ COMPLETION
COUNTER

VIOLATION

2
FILE WAIT
STATE

-
B EMPTY
ALL
PIPES NEAR
RANGE 1-» LEVEL 3

FAR RANGE
HAZARD FLAG

FORCED
WRITE WAIT
IN SEL PIPE

HAZARDS

MEMORY STORE

SELECT
TARGET B START
PIPE FOR FORCED WRITE IN
AT LEVEL 3 . VECTOR SELECTED PIPE
A 18 I

NEW INST
FREEZE EMPTY FAR EMPTY
(NIFR7} ALL RANGE HAZARD JOIN
PIPES .
PIPES FL‘CE :‘T YES
L

8 27

1
EXIT TO '
LEVEL 3 {(IDLE} | i EXIT TO i
1 l VECTOR INITIATE INST. AND
- = l o HAZARD
1=~ JOIN L__ P Y INDIRECT INSPECTION
FLAG

27

EMPTY
TRANSFER ALL B
FILE +FILE PIPES
18
A

aeREGISTER
OCTET
HAZARD

OCTET
FROM MEMORY
TOFILE

LOAD
FILE
INSTRUCTION

1-»HOLD FLAG

(ICCMTFIL)
a HAZARD B
(SCALAR) Ty
A 27

PAC.,3 1= @HAZARD FLAG I EXIT TO VECTOR |
VECTOR TIATE STATE |
NO OP LOAD FILE

REQUEST — — a— o—— —;2—'

{TO CMR)

0-+=0HAZARD FLAC
0=+=HOLD FLAG
0=+ JOIN FLAG

VECTOR
IN PIPE

r— ="y —— 7 -
l

| ExXIT 7O
I LEVEL 3 {IDLE] .
e e — 8 ALL READS
COMPLETE
} -+ JOIN | =2 HAZARD "LAG ry o7

FLAG

(D)127601 (13/33)

Figure 4-25. Level 3 Controller Flowchart (Sheet 13 of 33)

Advanced Scientific Computer

12 VECTOR
BURST STATE

NEAR

12 FAR RANGE

JOIN
FLAG RANC-E HAZARD HAZARD AT
YES
YES LEVEL 3 FLAG
‘NO NO
emery | |
JOIN
PIPES
N 27
VECTOR
WAITA TO
SELECTED
pIPE
v
o= Vi IP2 LvL2 vis VI 4
Ve
LvL2*LvL3
START - LV LvL3+LvLa
Lviz Lvis LVL3™ LVvLd
LvL3* LvLd
FOR 0% LD ACT
SELECTED
PIPE 0% XA ACT s
s vis
4
o+ YA ACT VP LVL
VECT WAITC | (TOMBUY)
vi e
VR LVL4
DECREMENT
cmPL’énou ‘DECODE COMPL. a:-»x.vu
TION COUNTER %
COUNTER
vie
VP, LVLA

ANY
JOINED

REQUESTS

{Dj127601 (14/33)

1+ VECTOR IN

— PROGRESS

(FOR SEL
ECTED PIPE)

REPLACE OR

1= vBAD (SP)
{VECTOR BAD

GUY IN SEL
ECTED PIPE,

VECTOR
GO STATE,

YES

0—+SELECTED PIPE (0-3)

0—~EXECUTE FLAG

0~+REGISTER INHIBIT FLAG

PAC3

ALLOW
FOLLOWING

r——-—

- -

ALLOW
FOLLOWING

VECTOR

GET oU
(FROM HARD
CORE)}

1= LEVEL 3 FAR
RANGE HAZARD FLAG

0—VECTOR
IN PIPE
(SEL PIRE)

RESET

ALL
XY

0—»FORK 1=+ FORK
INDICATOR INDICATOR
V=Z JOIN
(SEL PIPE)

- "

S H @

LEVEL 3 (1IDL.

| EXIT T
| VECTOR+! STATE

I

13

i
| :
I S |

D |

NEW INST
WAIT STATE

&

VECTOR WAITC

FOR
SEL PIPE

L)

EMPTY VECTOR WAITA

JOIN 8 FOR
NO PIPES SEL PIPE
27

YES A

VECTOR WAITA 1+ LEVEL 3
FOR FAR RANGE
SEL PIPE HAZARD
FLAG
VECTOR
IN PIPE
0+ JOIN A ALL 8
FLAG READS
OMPLETE

27

LvL 3
FAR RANGE
HAZARD

1 FORGET

IT IN NO
SEL PIPE]

IBQFRGET

EXIT TO 1~ VECTOR ORDER,
LEVEL 3 IN PIPE SELECT. MAP,
(IDLE} (SEL REPLACE
PIPE)

1» VECTOR
BAD GUY
(VBAD]

Figure 4-25. Level 3 Controller Flowchart (Sheet 14 of 33)

4-113/4-114

Advanced Scientific Computer

H POINTER
WAIT STATE

Po
SIGNAL

*QUESTIONS ADDRESSED
TO PIPE THAT RECEIVED
THE STACK INSTRUCTION
INDICATED BY PIRT (0-3)

TERMINATE] TERMINATE

1=
O*INDICATOR INDICATOR

Po
INDICATOR,

PPO

Yo
W1
L2

(D)127601 (15/33)

RESUME
CHECK STATE,

PUSH PULL
STATE

noLo TERMINATE
POINTER INDICATOR Tush
ves INST o
YES
A . REGISTER
ARZP INHISIT ' R
E £
21 . .
2 sTB TzpP
v =]
B.C.D
31 .
MEMORY 7O 0= TERMINATE C 2 < 5 23
AR)S
INDICATOR l
STORE AT AND M -0
LEVEL 4
1 REGISTER] .
YES DESTINATION ARZPIO) cos o)
- AT LEVEL 4
e s 21 e
LoXAL _ovad .
1% ZEX 1™ ZEY STLDCN EXECUTE
£
0+ ZEY 0+ ZEX FLAG YES
T T | ~
L i] NO ARZP(1) | SR—
c 2 26
"APPLIES TG PIPE THAT TRANSEER
RECEIVED STACK INSTRUCTION LEVEL 3
INDICATED BY PIRT 0 3} LEVEL 4
I -
I !
A i
ARZP(2) _.O Lo | ppsz
i
{
YES — .
] NC
© -+ BRANCH
SKiP OR SKIP
CONDITION
BIT BSC) ARZP(3) RDST(3)
e 22 26
—— i
- :
YRANSFER
LEVEL 3~=LEVEL 4
0»EXECUTE
FLAG
PP o—REGISTER]
INHIBIT FLAG
PAC3
PAC 3
0—=EXECUTE FLAG
raY 0—- REGISTER
I | INHIBIT FLAG
[|

EXIT TO
LEVEL 3
IDLES

4-115/4-116

Advanced Scientific Computer

INDIRECT
REQUEST
STATE

11
ORANGE ORANGE WAIT 4
WAIT STATE 1 STAT

INDIRECT
INSTRUCTION

0—=HOLD FLAG

INCREMENT
AR

ORANGE t.0AD

AT LEVEL 3 YES -
1+ REGISTER 0==REGISTER
INHIBIT INHIBIT
NO FLAG FLAG .

OCTET FROM
MEMORY TO FILE
NCCM TFILY

XY RESET FOR
\ STORE FILE

INDIRECT
REQUEST
STORE FILE (TO CMR)
REQUEST
i TO CMR)

1—HOLD
FLAG

MR READ'
FOR WRITE
IWACK)

INDIRECT

WAIT
. STATE

COMPLETION
COUNTER 9

SELECTED

REQUEST

COUNTER 3 DECREMENT
COMPLETION
COUNTER

D= AR INCRE-
MENT
FLAG

INDIRECT
REQUEST

REQUEST
COUNTER=Y

REQUEST

SOUNTER" 2 INSTRUCTION INSTRUC T ON
LOAD FILE HAZARD FLAG) HAZARD F LAC
REQUEST =
(TO CMR)
- INCREMENT
REQUEST NG
COUNTER:
INCREMENT AR
CMR READY
(RDACK)
0—+EXECUTE FLAG
e REGISTER IN- © CAL ;Nsosaziz
HIBIT FLAG INDIRECT (‘»f)ML:’L.E‘TE
INCREMENT REQUEST To 1R s 3
COUNTER INCREMENT
REQUEST
COUNTER;
INCREMENT AR
PACK
RLouE S IMDIREC T
COUNTER 4
—_————— REQUE< !
COMPLETE

EXIT TO LEVEL 3
CIDLE

0—AR INCRE-
MENT FLAG

EXIT YO

LEVEL 3

(D}127601 (16,33}

Figure 4-25. Level 3 Controller Flowchart (Sheet 16 of 33)

4-117/4-118 Advanced Scientific Computer

INSTRUCTION HAZARD
STATE (1HAZ)

(IHAZ)

INSTRUCTION
HAZARD
(IHAZ)

NO

STORE IN PIPE 0

FORCED WRITE
WAIT(0)

START FORCED
WRITE(0)

YES

NO

FORCED WRITE
WAIT(1)

START FORCED
WRITE(1)

YES

FORCED WRITE
WAIT(2)

P3=2ZP
PIPE 3

ANY

START FORCED
WRITE(2)

NEAR RANGE
HAZARD,

NO

NO [P3EQZP@3)]

P3EQZP(N)+
NO P3EQZB(N)

INST HAZARD
RECOVERY
REQUEST

CMR READY
FOR READ REQUES
(RDACK)

FORCED WRITE
WAIT(@3)

EXIT TO
START FORCED LEVEL 3

WRITE(3) (IDLE)

(D) 127601 (17/33)

Figure 4-25. Level 3 Controller Flowchart (Sheet 17 of 33)

AR AL L R T T e i

4-119/4-120 Advanced Scientific Computer

EMPTY
ALl
PIPES LEVEL 2
CONTROLLER

MEMORY
STORE IN

ORCED FORCED
E

WRITE
WAIT(1)

FORCED FORCED FORCED
WRITE WRITE WRITE WRITE
WAIT (0) WAIT (1} WAIT (2) WAIT (3)

FORCED
WRITE

WAIT (2) WAIT (3)

NEW NEW NEW
OCTET IN PIPE(0) OCTET IN PIPE 1| OCTET IN PIPE 2 OCTET IN PIPE 3
[zPFuL(0}) [2ZPFUL(1Y] [zPFUL(2)] {zPFUL (3)

NEW
OCTET IN PIPE (2)
[zPFuUL(2)]

NEW

OCTET IN PIPE (1) OCTET IN PIPE (3)

[zPFuL1)] YES YES

START FORCED START FORCED START FORCED START FORCED .
WRITE WRITE WRITE WRITE
PIPE 0 PIPE 1 PIPE 2 PIPE 3

8
PIPES NOT EMPTY

. SELECT
PIPE FOR
VECTOR

VECTOR l:EPcI:gRZ
IN PIPE

SELECT SELECT SELECT SELECT SELECT SELECT SELECT SELECT
PIPE 0 PIPE 1 . PIPE ? PIPE 3 1 PIPE D PIPE 1 PIPE 2 PIPE 1
START START START START

FORCED FORCED FORCED FORCED
WRITE IN WRITE IN WRITE IN WRITE IN

PIPE 0 PIPE { PIPE 2 PIPE 3

A
PIPE SELECTED

(D)127601 (18/33)

Figure 4-25. Level 3 Controller Flowchart (Sheet 18 of 33)

4-121/4-122 Advanced Scientific Computer

STL

¥ REGISTER FILE
DEST. @ LVL 4

AR == R4

NO

ANY
o RGTR
HAZARD
YES
PIPE O s ° o 3 o
ANY
% ves o RGTR HAZARD RGTR HAZARD RGTR HAZARD
R RGTR HAZARD
NO NO
YES

STLDCN(0)

A DOUBLEWORD AR

. R3- LD
NO ADDRESS A DOUBLEWORD PIPE 0
l_ — — e — - .—I ¥ ADDRESS NG
YES | ves
—0Q
o
STLDCN(1} RGTR HAZARD PACA(0) STLDCN(0)
PIPE O YES ‘€S
No 20 PACA(O} PACA(T) S
— o | ———
NO =1
' EXIT TO Q LEVEL 3 l YES
-—— e — —— - E
l | (IDLE} i
1 H
o L——————=4 O
RGTR HAZARD STLDCN{1}
PIPE 1 YES YES
STLDCN(2 NO 20
— e e] o — SHORT CIRCUIT SHORT CIRCUST SHORT CIRCUIT SHORT CIRCUIT
No r @ LV 4 @ LvL 4 @‘-‘”—*\ @Lrve a4
(PIPE 2 P]
' EXIT 'ro LEVEL 3 | (PIPE O (PIPE 1) (PIPE 3
-— - ———
PIPE\ o
VACANT RGTR HAZARD STLDCN(2} , .
YES PIPE 2 YES YES r STLDCN(OY STLOCN(1! STLDCN{2) STLDCN(Z)
NO 20
F———y—— =" | , o %o . >0 20
%o 4
STLDCN(3! — o —— —
l EXIT TO LEVEL 3
Lo—————=4 |
fe
o
rPrm—= =" RGTR HAZARD STLDCN(3)
I I PIPE 3 YES YES
EXIT TO LEVEL 3 >0
l {IDLE} | NO
f NO
L m—
CONTROL SEQUENCE
=== 1

EXIT TO LEVEL 3
1IDLE

RETURN TO
CONTROL SEQUENCE

(D)127601 (19,33

Figure 4-25. Level 3 Controller Flowchart (Sheet 19 of 33)

4-123/4-124 Advanced Scientific Computer

STLDCN(OQ)

'

AR+RS ARITH
EXCEPTION
POSSIBLE
YES
[ARITH EXCEPTION
HAZARD
NO @LEVEL 4
=L.DACT RETURN TO CON-
(PIPE 0) TROL SEQUENCE
YES
NO
O-LDACT R¥»=LD AR->-LD
(PIPE 0) (PIPE D) (PIPE 0)
I . I
e
IMMEDIATE
AT LEVEL 4
(PIPE 0)
YES
NO
'GATE RO
IRTA{0)

REGISTER
FILE SOURCE
@LEVEL 3

REGISTER DATA
PRESENT@LVLA
(PIPE 0)

OPERATION
ODIFY RESULT,

1+RC ROUTE PIPE O
O*RC ROUTE PIPES 0,1,2
RC HAZARD AT LEVEL 4

(D) 127601 (20/33)

STLDCN(1}

L

1
AR*>R4 ARITH
EXCEPTION
POSSIBLE
YES
IARITH EXCEPTION
HAZARD
NO @LEVEL 4
=LDACT RETURN TO CON-
(PIPE 1) TROL SEQUENCE
YES
NO
O-=LDACT R3»LD AR--LD
(PIPE 1) (PIPE 1) (PIPE 1)
1 e |
IMMEDIATE
AT LEVEL &
{PIPE 1)
YES
NO
GATE RO
IRTA(1)

REGISTER
FILE SOURCE
@LEVEL 3

REGISTER DATA
PRESENT@L VLA
{PIPE 1)

OPERATION
QDIFY RESULT,

1--RC ROUTE PIPE
O*RC ROUTE PIPES 0,1,2
RC HAZARD AT LEVEL 4

STLDCN (2)

i

AR>R4

=L DACT
(PIPE 2)

ARITH
EXCEPTION
POSSIBLE

ARITH EXCEPTION
HA ZARD
@LEVEL 4

RETURN TO CON-
TROL SEQUENCE

O»LDACT
(PIPE 2)

AR+LD
(PIPE 2)

|

-

TMMEDIATE
AT LEVEL 4
(PIPE 2)

NO

GATE RO

e

1IRT4(2)

REGISTER
FILE SOURCE
@LEVEL 3

REGISTER DATA
PRESENT@L VLA
(PIPE 2)

ODIFY RESULT,

1--RC ROUTE PIPE 2
0> RC ROUTE PIPES 0,1,2
RC HAZARD AT LEVEL 4

STLDCN(3)
AR->R4 ARITH
EXCEPTION
POSSIBLE
YES
. ARITH EXCEPTION
HAZARD
NO @LEVEL 4
FLDACT RETURN TG CON
(PIPE 3) TROL SEQUENCE

O=LDACT
(PIPE 3)

R3»LD
(P'PE 3)

AR-»LD
{PIFE 3)

L . |
v
IMMEDIATE
AT LEVEL &
(PIPE 3)

NO

GATE RO

IRTA(3)

REGISTER
FILE SOURCE
@LEVEL 3

REGISTER DATA
PRESENT@LVL4
(PIPE 3)

ODIFY RESULT,

1+RC ROUTE PIPE 3
O0-*RC ROUTE PIPES 0,1,2
RC HAZARD AT LEVEL 4

Figure 4-25. Level 3 Controller Flowchart (Sheet 20 of 33)

4-125/4-126 Advanced Scientific Computer

AR ZP(0O)

!

AR==ZP(0)
1-»ZPFUL{0}
AR-»=R4

NO

1-+-LDACT(0}
R3—+LD{0)

0= LDACT(0)

le

|

-

8 RESET
Xy(1)

‘A 28

RESET
XY(2)

lA 28

B RESET
XY(3)

ZPFUL(0)

START FORCED
WRITE-PIPE O

. |

(D) 127601 (21/33)

[}

IMMEDIATE
AT LEVELY4
(PIPE 0)

GATE RO

IRT4(0)

REGISTER
FILE SOURCE
@LvL 3

REGISTER DATA
PRESENT @ LVL 4
(PtPE 0)

OPERATION
MCDIFY RESULT
CCDE

1-RC ROUTE PIPE 0
0-+RC ROUTE
PIPES 1,2.3
RC HAZARD @ LEVEL 4

ARITH
EXCEPTION
POSSIBLE

ARITH EXCEPTION
HAZARD @ LEVEL 4

RETURN TO CONTROL.
SEQUENCE

ARZP(1)

!

AR-»2P (1)
1=+ ZPFUL (1)
AR—-R4

1-»-LDACT(1)
R3—LD(1)

0—~LDACT (1)

le

v

RESET

xy(1)

‘A 28

RESET

Xy (2)

*A 28

RESET

XY (3}

FORCED
WRITE
WAIT-PIPE 1

START FORCED
WRITE-PIPE 1

NO

MMEDIATE
AT LEVEL 4
(PIPE 1)

GATE RO

IRTA (1)

REGISTER
FILE SOURCE
@LvL 3

REGISTER DATA
PRESENT @ LVL 4
(PIPE 1)

OPERATION
MODIFY RESULT
CODE

1==RC ROUTE PIPE 1
0—RC ROUTE
PIPES 1.2.3
RC HAZARD @ LEVEL 4

ARITH
EXCEPTION
POSSIBLE

ARITH EXCEPTION
HAZARD @tLEVEL 4

RETURN TO CONTROL
SEQUENCE

Figure 4-25. Level 3 Controller Flowchart (Sheet 21 of 33)

4-127/4-128

Advanced Scientific Compu‘er

ARZP (2)

!

AR->ZP(2)
1-»ZPFUL (2)
AR “R4

NO

1 LDACT(2)
R3-»LD(2)

0= LDACT(2)

e

™~

8 RESET
xy(1)

ZPFUL(2)

NO

FORCED
WRITE
WAIT-PIPE 2

START FORCED
WRITE-PIPE 2

1
I 1
|

-J

(D) 127601 (22/33)

o

IMMEDIATE
AT LEVEL4
(PIPE 2)

GATE RO

IRTA ('2)

REGISTER
FILE SOURCE
@Lve 3

REGISTER DATA
PRESENT @ LVL 4
(PIPE 2)

OPERATION
MODIFY RESULT
CODE

NO

1—+-RC ROUTE PIPE 2
0—-RC ROUTE

PIPES 1.2.3
RC HAZARD @ LEVEL 4

ARITH
EXCEPTION
POSSIBLE

ARITH EXCEPTION
HAZARD @LEVEL 4

RETURN TO CONTROL
SEQUENCE

ARZP(3)

!

AR—»>2ZP (3)
1=+ ZPFUL (3)
AR —=R4

1-»LDACT(3)
R3—LD (3)

0==LDACT (3)

le

I

I

8 RESET
XY(1)

‘A 28

B RESET
Xy(2)

l,\ 28

a8 RESET
XY(3)

YES

NO

START FORCED
WRITE PIPE 3

IMMEDIATE
AT LEVEL4
(FIPE 2)

GATE RO

IRT4(3)

REGISTER
FILE SOURCE
@rve 3

REGISTER DATA
PRESENT & LVL 4
(PIPE 3)

WiILL
OPERATION
MODIFY RESULT
CODE

1~ RC ROUTE PIPE 3
0—+RC ROUTE

PIPES 1,2.3
RC HAZARD @ LEVEL 4

ARITH
EXCEPTION
POSSIBLE

ARITH EXCEPI1iON
HAZARD @ LEVEL 4

RETURN TCQ CONTROL
SEQUENCE

Figure 4-25. Level 3 Controller Flowchart (Sheet 22 of 33)

4-129/4-130

Advanced Scientific Compu er

o
BUF

FER COM

MEMORY
STORE IN PIPE
0%

STORE IN
PIPE (1)

MEM
STORE IN
PIPE (2)

OCTET IN

EMORY

STORE IN
PIPE 7"

— — = 1 12| |] 1 o o | mops
MoD4 f n) 1 10| 1 9 ! ! !] - | o | | 0] |1 o | o | ! s ! ° 0 ! 0 ! 1) s | ° | 1]
LDXAZ 1 ' e ° © 1 o 1 o 1 1 1 o o 0 1 o 1 o 1 ! ! ° o ° ! ° ! o ! ! ! o e o ! 1 1 o 1 | Loxas
LDXBA4 [o ° ° ° f ° c ° 0 ° o ° 0 o ' ° ° o 0 o o [[} 0 1 o o o o 0 0 ° 0 o 1 o ° o o | Loxsas
LDYAS o o ' ' ' N 1 o ' o o o . . ' o \ ° 1 o 0 0 1 1 1 0 1 ° 1 0 ° o 1 1 1 ° ° ° 1 o | Lovas
LDYBA4 ° 0 o ° 1 ° ° 0 0 o [° ° o 1 ° o o ° ° ° o ° ° ! ° ° ° ° o ° o ° ° 1 ° ° 0 o o | LOYBA4
- . s | - al - e] R - | |] - - - - - -] - - - - - | - - - | - A ha s
BN o ‘ o (o] [] zrue
1 ° 0 °
2TXU4 o 1 [0 3} o ° o o 1 o 1) o [o o o 1 o o o o ° ° ° z g °) ° ! ° o ° ° 0 [1 o | ZTYUS
ZTYU4 o]] 1 o] o o 1 0 o 0 o 1 0 o o 0 o ° 1 0 o 1 g cl: . : 1 0 o 0 <] 1 o c: o ; N o | xura
xues 1 ° c o o 1 ° 1 ° 0 1 o o 0 ° 1 ° 1 o o ° o M e) N ° o : ° i . S 1 o ° o | yurs
YLP4 o o 1 o 1 0 1 o o o 0 o 1 o f o 1) o 1 o 0 o [[1 0 1] o
] || -] - . - - I s s L I hau - —| - s - | - - | - -] -] |] - -] - = - -] | -
SET YNEXT| 1 1 0 c °) 0 1 ° 1 1 1 ° 0 0 1 o ' 0 1 ' ! o o o ! o 1 o 1 1 1] ° ° 1 0 1 o 1 | SET YNEXT
1 ' o 1 0 1 1
RESET 0 [1 1 1 0 1 o L_ [Lo] 1 L ! o L 2 Lo ° ! U ° 12 2 : 0 L L1 RESET
et T r’ ry T T T T T T T T T T T T 7T o
-
AR+ XA(0) | AR+ YA (0) AR+ XA(1) AR > YA(1) AR -+ XA(2) AR YA(2) AR +'XA(3) AR>YA(3)
YAACT(0) XAACT(1) YAACT(1) XAACT(2) YAACT(2) XAACT(3)
AR - Z8(D)
AR+ YA(D) AR YA(Y) AR+ YA(2: AR YA(2)
o] AR== XAD) — e AR xA(1) ——{ AR® XA(2 —e ARe XA(3)

(D) 127601 (23.33)

LDXA4
LDXBA4
LDYA4
LDYBAL

7T XU
7TYua
xyPa
YuP4

SET YNEXT
RESET YNEXT

}.ﬂ.

" o
n

LooP X
3

o

o

G

o

13

1

a
PIPE 0 LOADED

PIPE 2 L OADED

E

PIPE 3 LOADED

Figure 4-25. Level 3 Controller Flowchart (Sheet 23 of 33)

4-131/4-132

Advanced Scientific Computer

(=
YAACT(3) m m —%E}Z’\

XAACT(0* VACANT, NO VACANT NO

AR “XA0)
MoD4 o 3 0
o | | o | 1 °] | 2]
LOXA4 o ’ o 1 o '
LDXBA4 o 1 o 1 o 1
PIPE (0 AVA| A) < LDvA4 : ° ! ° ! °
AVAILABLE . ILABLES ? LoYBA4 ! ° 1 o 1 0
2TXU4 0 . ° o o o °
ZTyua 0 ° o 0 0 0
° 0 °
o o o ° [o | XUuP4 o <] o o
I j o] 1 1 1 YuPa o 0 o 0 [
LOXA4 o ' o 1 1 o - _-— - —— — —
LDXBA4 ; e o 0 ° ? SET YNEXT |° 1 ° ! "’ ;
LDYAs o o 1 0 ° RESET YNEXT |! o ! N
LDYBA4 ° o o 0 ° ° ° "I' T I
o |1 - - - |
0 [0 o] [}
2TXU4 0 0 o o o o o o
ZTvYua 0) ° ° ° AR YA(1) AR+ XA(1) AR YA(2) AR XA(2)
XUP4 o o Z . o o o o AR >YA(0) AR XA(0)
0 0
0
YuP4 0 s] — —
- 1 o 1 o 1 .
SET YNEXT 1 o 1 0 1 o 1 I J . l J J
RESET YNEXT | 0 1 0 _l_

-] D
PIPE 0 LOADED, PIPE 1 LOADED PIPE 2 LOADED

AR* XA(0) AR > YA(0) AR XA(1) AR= YA(1) | AR+XA@ AR® YA(2) AR> XA(3) AR+ va(3)

l | L
)

DIVIDE
INST IN PIPE
1)

DIVIDE
INST IN PIPE
)

B E
PIPE 0 LOADED, PIPE 3 LOADED

PIPEQ) |
AVAILABLE

PIPE (D
AVAILABLE

SAME
GROUP(2)

SAME
GROUP(1)

SAME
GROUP(0),

DIVIDE
INST iN PIPE

DIVIDE
INST IN PIPE
(3)

DIVIDE
INST IN PIPE
(1)

DIVIDE
INST IN PIPE
)

DIVIDE
INST IN PIPE
(2)

DIVIDE
INST IN PIPE

8
1
1
o
0

—
0
o
0
0

-
1
[

PACA(0)

>

AR YA(3) AR+ XA(3)

.__[-olooool—-noa

PIPE (2)
AVAILABLE

PIPE (3)
AVAILABLE

EARLY
WINDOW(3}

EARLY
WINDOW(2)

EARLY
WINDOW1)

EARLY
WINDOW{0)

NO

-E
PIPE 3 LOADED

PIPE (3}
AVAILABLE

PIPE (0}
AVAILABLE

PIPE (1)
AVAILABLE

PIPE (2)
AVAILABLE

PIPE (3)
AVAILABLE

PIPE (2)
AVAILABLE

PIPE {0)
AJAILABLE

PIPE {1}
AVAILABLE

NO
: !
Dves loes oms i
A
L.OOP

Figure 4-25. Level 3 Controller Flowchart (Sheet 24 of 33)

(D) 127601 (24/33)

4-133/4-134 Advanced Scientific Computer

PIPE 3

PIPE

VACANT

NO

E
PIPE 3 LOADED

VACANT

NO

D
PIPE 2 LOADED,

SAME

NO

DIVIDE
INST IN PIPE
)

WINDOW (0)
YES

LATE
INDOW (0)

8
PIPE 0 LOADED

(D) 127601 (25/33)

NO

DIVIDE
INST IN PIPE
(1)

FLOATING

C
PIPE 1 ILLOADED,

PIPE

IMM

VACANT

[+
PIPE 1 LOADED,

DIVIDE
INST IN PIPE
(2)

=]
PIPE 2 LOADED,

DIVIDE
INST IN PIPE
(3)

E
PIPE 3 LOADED,

PIPE 2
AVAILABL

PIPE O
AVAILABL.

PIPE 1
AVAILABL

B Cc D
PIPE 0 LOADED, PIPE 1| LOADEQD PIPE 2 LOADED

D
PIPE 2 LOADED

B : C
PIPE 0 LOADED, PIPE 1 LOADED

Figure 4-25. Level 3 Controller Flowchart (Sheet 25 of 33)

E
PIPE 3 LOADED

PIPE 3
AVAILABL

E
PIPE 3 LOADED

4-135/4-136

Advanced Scientific Compiiter

RDST(0)

'

IRTA(0)

RESULT CODE HAZARD
AT LEVEL 4
{—=-RC ROUTE (0)
0-»-RC ROUTE (1,2,3)

COMPARE CODE

HAZARD AT LEVEL 4
1-»CC ROUTE (0)
0—=CC ROUTE (1,2,3)

L

TRANSFER
R3-=R4

REGISTER
FILE

DESTINATION

SET REGISTER
DESTINATION

AT LVL 4
XCH
msT. i
No
TRANSFER 1—»-LDACT
R3->LD (PIPE 0)
{= LDACT(PIPEC)
REGISTER
REGISTER DATA
FILE SOURCE 33 PRESENT
AT LVL 3 AT LVL 4
NO

ARITHMETIC
EXCEPTION
POSSIBLE

NO

ARITH. EXCEPT.
HAZARD @ L.VL 4
(PIPE 0)

RETLRN TC CONTROL
SEQUENCE

{D) 127601 (26/33)

RDST(1)

'

1RT4 (1)

RESULT CODE HAZARD
AT LEVEL 4

1-+RC ROUTE (1)

0~»RC ROUTE (1,2,3)

COMPARE CODE

HAZARD AT LEVEL 4
1-»CC ROUTE (1)
0==CC ROUTE (1,2,3)

L

TRANSFER
R3—»R4

REGISTER
FILE

DESTINATION

SET REGISTER
DESTINATION

AT LVL 4
xCH
INST. ES
NO
ANSFER
7:3_":; 1-=LDACT
1-= LDACT(PIPE 1) (PIPET)
REGISTER
REGISTER DATA
FILE SOURCE PRESENT
AT LVL 3 AT LVL 4

ARITHMETIC
EXCEPTION

POSSIBLE YES

NO

ARITH. EXCEPT,
HAZARD @ LVL 4
(PIPE 1)

RETURN TO CONTROL
SEQUENCE

RDST(2)

:

IRTA (2)

RESULT CODE HAZARD
AT LEVEL 4

1—=-RC ROUTE (2)

0-=RC ROUTE (1,2.3)

COMPARE CODE

HAZARD AT LEVEL 4
1—+-CC ROUTE (2)
0~»CC ROUTE (1,2,3)

L

TRANSFER
R3—>R4

REGISTER
FILE

DESTINATION

SET REGISTER
DESTINATION

AT LVL 4
XCH
INST. es
NO
T:;_"‘f::“ 1--LDACT
G
{-= LDACT(PIPE 2) (PIPE 2)
REGISTER
REGISTER DATA
FILE SOURCE PRESENT
AT LVL3 AT LVL 4

ARITHMETIC
EXCEPTION
POSSIBLE

ARITH. EXCEPT.
HAZARD @LVL 4
(PIPE 2)

RETURN TO CONTROL
SEQUENCE

RDST(3)

‘

IRTA(3)

RESULT CODE HAZARD
AT LEVEL 4

1--RC ROUTE (3)

0~=~RC ROUTE (1,2,3)

ODIF
COMPARE

NO

COMPARE CODE

HAZARD AT LEVEL 4
1—=-CC ROUTE (3)
0~=-CC ROUTE (1,2,3)

L

TRANSFER
R3-»R4

REGISTER
FILE

DESTINATION

YES

SET REGISTER
DESTINATION
AT LVL 2

XCH

INST. YES

NO

TRANSFER
R3->LD
1-= LDACT{PIPE 3)

1-»LDACT
(PIPE 3)

]

REGISTER
FILE SOURCE
AT LVL 3

NO

ES

REGISTER
DATA

PRESENT

AT LVL 4

ARITHMETIC
EXCEPTION
POSSIBLE

ARITH. EXCEPT.
HAZARD @LVL 4
(PIPE 3)

RETURN TO CONTROL
SEQUENCE

Figure 4-25. Level 3 Controller Flowchart (Sheet 26 of 33)

4-137/4-138

Advanced Scientific Computer

ALL
READS
COMPLETH
YES
NO
YES
NO

<
m
mn

No

YES

J

NO

YES

¢

NO

YES

<>

NO

YAACT!3!

NO

0—-XAACT! 3l
O~e-YAAC T/ ail }

A ALL READS
LOMPLETE

(D) 127601 (27/33)

YES

YES

NO

NC

NC

NO

NO

NO

B OUTSTANDING

MEMORY REQUEST,

GHAZARD
(SCALAR}

STORE IN
PIPE O

START START START START
FORCED FORCED FORCED FORCED
WRITE (0) WRITE (1) WRITE (2) WRITE (3)
B
EMPTY
JOIN
PIPES

YES

START
FORCED
WRITE IN
PIPE O

FORCED
WRITE WAIT IN
PIPE (1)

STORE IN
PIPE

START START
FORCED FORCED
WRITE IN WRITE IN
PIPE | PIPE 2

FORCED
WRITE WAIT IN

STORE IN
PIPE 2

START
FORCED
WRITE IN
PIPE 3

YES

S8 FORCED
WRITE REQUIRED

A
JOIN PIPES EMPTY

INSTRUCTION
AND ¢HAZARD
INSPECTION

o AR
HAZARD NO

1 oHAZARD
FLAG

:

RETURN TO
CONTROL SEQUENCE

XY RESET
FOR
STORE
FILE
AR XA(0)
= o
YES
G >=XAACT(0)
NQ
‘YES
O—»XAACT(3)
NO
YES
Q= XAACT(1)
NC
YES
0~wYAACT{0)
NO
YES

C—m XAACTI(2)

7

OCmamY AACT(1}

NO
YES

O—=YAACT(2)

YES

0—e-YAACT(3)

RETURN TO CON-
TROL SEQUENCE

i
Figure 4-25. Level 3 Controller Flowchart (Sheet 27 of 33)

4-139/4-140

Advanced Scientific Compu-er

RESET
XY

Q-= XAACT/Q
O—eXAFULIO)
O—-YNEXTID}
G+ ZEXI0)

0= YAACT 0
G—e-YAFUL
1= YNEXT
O ZEY 6,

EXIT A
XY RESET

EXIT 3
NAIT FOR
MEMORY

(D) 127601 (28/33:

RFESET
xY 1

S XAACT 1
foom XAFUL 1
e YMEXT 1
T —-—ZEX' 1

YAACTI 1t

G AACTOY:
re-YAFUL 1
1 YNEXT 15
C = SEYC

Ext1T A
XY RESE T

NAIT FOR
MEMORY

N XAAC T2
N—am XAF I 7
O==YNEXT 2%
O ZEXI2Y

YAAC T2

O YAF 1L
1 YNEXT
G-—-CEY 2

EXIT A
XY RESET

£

bR

NALT
MEMOR

i RESE!

O XAACT 3
S XAF U] 3
O YNE XT 11
¢ PEXi Y1

O~ YAAC T3
O~-YARI LD 31
T YNEXI3)
G ZEY V)

S

exir A
XY RESE 1

X1
WAINT F OF
MEMOR 'y

HRANG 1

O ATCR

CANCEL
LiA P

BRANC M
TOLENEL &

BRANCH
TQLEVEL 1

]

TARGET f AIL
ITO L CGOR ANE AR
CONTROLLE FR

HRANCH
TO PA

BRANCH TO
CMR

MR READY

BRANCH
TO LA

(RDACK: YE

u
CM HRANC H NGO T
REQUE S TE(

4

PRANCH REQUESTED

Figure 4-25. Level 3 Controller Flowchart (Sheet 258 of 33)

4-141/4-142

Advanced Scientific Computer

i ROB "
ROB .1}

FORCED
WRITE WAIT
PIPE 3

FORCED
WRITE WAIT
PIPE 2

FORCED
WRITE WAIT
PIPE 3

FORCED
WRITE WAIT
PIPE 2

FORCED
WRITE WAIT
YES PIPE 1

FORCED

FORCED FORCED
WRITE WAIT WRITE WAIT WRITE WAIT
e 1 BIFE 2 PIPE 3 WRITE WAIT WRITE WAIT WRITE WAIT zPruL (1)
PIPE O PIPE 2 PIPE 3 ~No
YES

NO
suli:_;NK SUB-PINK
. NST.
INST ves
. 'NO
START FORCED START FORCED STORE FORCED
WRITE IN WRITE IN WRITE IN START FORCED START FORCED STORE FORCED

PIPE 1 PIPE 2 FIPE 3 WRITE IN ! WRITE IN WRITE IN
PIPE O PIPE 2 PIPE 3

1 |

e ' .

> i
YES NO NO ~ o
YES NO N
NO YES YES NO YES YES

t—-LDYA4 (0} 1—»LDXA4 (0}
1+ LDYBA4(0) 1 LDXBA4(0} 1LDYAZ (1) T~ LDXA4(1)
RESET YNEXT 0} SET YNEXT (0} 1= LDYBAL(1} 1->-LDXBAZ(1)
AR—=YA 10} AR XA (0} NO NO RESET YNEXT:1) SET YNEXT 1) O 0
Tes Tes AR—» YA (1) AR—» XA {1)
1 . YES YES
]

1=+ LDYA4 (0) 1 LDXA4 /0))

0—-MoDs (o) RESET YNEST (0) SET YNEXT (0) Ge-MODA (1) 1=Lovas (1 1 LDXA4 (1)

AR—>YA (07 AR—+ XA (0} A RESET YNEST({1) SET YNEXT (1)
AR—YA (1) AR—=XA (1)

! I

IN Z-BUFFER
COMPLETE

NO
NO
YES ';\’ES YES
1--MOD4 (0) 0-=-MOD4 (0) 1-=-MOD4 (0) o-»=MOD4 0) 1--MOD4 (0) 1-+-MOD4 (0) 1=+-MOD4 (0) 1+-MOD4 10) 0~-=-MOD4 (0}
0} ©0-+-MOD4 (0) N 5 ~ MoDa —MODA i
1->1LDXA4(0) 1-+ LDXA4(0) 1= LDYA4(0) | = LDYA4(0) 1-- LDYA4(0) 1->-LDXA4(0) 1> LDYA4(0) LD XAA(O! e LOYAL 01 o LoxAae: 1—>MODA 1 1) GoenOns 1 1=MOD: (1} Com N DDA Y ‘»ts\.:\ma“:\] :..':;ngf‘)] 1==MODa {1} 1-+-MOD4 (1) a-+-MoD: (1) 0--MOD2 (1)
1+ XUP4 (0) 1 ZTXUA(0) 1~YUPa (0 1= 2TYU4(0) ::";3:‘3‘:?) ::;3:??;)‘“ - YUP4 Q) 1= xUP4 (0) -2 TYUa0) 2T auan 1L DXAA(TD 1 L0XAL 1Y y-LDYA2(1) 1+ LDYAS N I gt t N 1= LDYAS(1) 1+ LDXA2, 1) 1= LDYA4 (1) 1 LDXAL (1)
i N . . . T 1 YRR Gat b Sl . ¢ -
SET YNEXT /0) seT YNEXT 0 | [RESET YNEXT!0)| | RESET YnNEXT0:] | RESET YNEXT(@)| | SET YNEXT(O) RESET YNEXT(0)| | SET YNEXT t¢} | [rESET YNEXTICH] | SET YNEXT 0} 1= xups 1) e ZT X0 (1 {eyups 1} 1 7TV tomePa 1) || temXUPA(D: 1= YUP4 (1 1=->uPs 1) 1ezTYUA (1) 1= zTXU2(1)
AR—>=XA (0 AR XA (0 AR~ YA (9) AR-e-YA (0) AR+YA (0) J| AR+ XA (0 AR—>=YA (O AR YA (0 AR XA SET YNEXT /1) ses vnExT 1 | |RESET YNEXT(1)] |RPESET YREXT 14 {RESET vnEXT(1) | SET YNEXT(1) | |RESET YNEXT(1) | SET YNEXT (1] [RESET YNEXT(1 SET YNEXT (1)
AR—» XA (1) AR-» XA 1Y AR -+ YA(1) AR YALT ¢ ar—va 1Y) AR XA‘1) AR—>-va(l) AR—=XA(1Y AR—=YA(1) AR—>-xa11)

! : P i i !] : : ' !

(D) 127601 (29/33)

Figure 4-25. Level 3 Controller Flowchart (Sheet 29 of 33)

+143/4-144 Advanced Scientific Computer

FORCED

AR ZB O WRITE WALT

FORCED
WRITE WAIT
PIPE O

SUB-PINK
INST

FLRCED
WRITE WAIT
PIPE 1

FCRCED
WRITE WAIT
PIPE 1

MEMORY
STORE IN
PIPE 1

iNC

FCRCED
WRITE WAIT
PIPE 3

FCRCED
WRITE WAIT
FIPE 3

MEMCRY
. STORE IN
PIPE 3

SUB-PINK
iINST.

i‘ND

;]
START FORCED , START FORCED STORE FORCED
WRITE IN i WRITE N : WRITE IN
PIPE O | PIPE 1 i PIPE 3
T | T
j | : !
¢ 1] 1 |
I
YES NO NO
NG YES YES
1 iLDYAS(2) 1 LDXA2{2}
1 LDYBA4 2} 1—-LDXBA4{2"
+ 2
RESET YNEXT 2) SET YNEXT(2) NG NO
AR YA(2) AR+ XA (2)
T lYES YES
] ¥

5—-MOD4 (2}

1= LDYA4(2)
RESET YNEST/2)
AR—=YA 121

t-» LDXA4 2)
SET YNEXT/2)
AR XA(21

i

CCTET
IN 7 BUFFER
COMPLETE

IYES

]

e-MODA(2) 0—e-MOD4 2) 1-+-MOD4(2) [e-MODA (21 1-~MOD4 (2) t—-MOD4 2} 184004 (2 f-MODA 2} CmMOD (2) o—-MOD4 (2]
t--_DXAZ 2 1 DXAL(2! I LDYA42) | LDYA4I2) ;:tgz:;:zo) ::tg:‘;::—%)&) 1= LDYAL(2) 1= LDXA%:2) 1 LDYA1(2: 1>LDXA4 2)
1= XUP4 2" 1 ZTXU4 2) 1= ZTYU4a (2 1> YUPA 2} i_,xup“z, 1==-YUP41 (2} 1=~ XUP4(2) 12 TYus (2 1. ZTXU4(2)
SET YNEXT(2) SET YNEXT 2) PESET YNEXT(2) |RESET YNEXT(2) | SET YNEXT(2) SET YNEXT 2) | |RESET YNEXT(2 SET YNEXT(2)
AR == XA (2 AR XA {2} } AP—vA{Zl | AR—=YA 21 | AR—- XA 2) AR==XA(2) AR—vYA(2] | AR XA (2)

T T T

! ! i I

L ' ' ' ' ' '

(D) 127601 (3033

RDS (3)

FCRCED

|i WRITE WAIT

FORCED
WRITE WAIT

FCRCZED
ARITE WALT
PIPE 1

FCRCED
WRITE WAIT

FORCED
WRITE WAIT

PIFE O PIPE 1 PIPE 2 | ~e
! ves
i
MEMORY H }
STCRE In i
PIPE 2 i i
SUB PINK
YES INST. A
NC 'NO ‘NC : I YES
START FORCED START FORCED STORE FORCEC :
WRITE (N WRITE iN WRITE IN
PIPE O PIPE 1 PIPE 2 Ne
YES
_L ‘) S ExiTA
WAIT
BXIT A
WALT
YES NO
~NO YES
1 LDYAZ{3Y 1 LOXAL(3)
1 LDYBA4:3) 1= _CXBA4(3)
RESET YNEXT (31 SET YNEXT (3) NO
AR-»YA (3) AR~ XA (3)
YES
Mons 1=-iDYA4 3) 1 LCXA4(3)
A (3
S-MODA 3 RESET YNEST(3) SET YNEXT (3}
AR-»YA {3) AR XA 3]
l T
NC ~Q '
YES | vES .
! CcTET |
i IN 7 BUFFER
COMPLETE ! H
|
{
i
P
,
N : {
i i
IVES ;vss ' vES i .
1—=MOD4¢3) C—mMOD4 3 t-=MODA4:3) S +-MOD4 (3) 1-+MOD4 '3 1-=M024 (3 1= MOD4 (3) 10D (3) fe=MOCE 31 ; =MOC4 (31 ;
1=l DXxAd(3) 1= LDXAZ (3} 1om LOYAL(3} T uDYA1(3) f*t;t;:;-ﬂ;‘n :*rgi;id%; t=. oAl 3) fee D xAZ 3) 1. Dras) T !
7 2 P - e ¢ L {3 ; : E
1= XUP4 (3) 1 ZTXUL(3) 1= YUFS$:3 T 7TYLA(2) e YUPA 3 T XUP4 (37 1= YUPE (3 T XxUP2 (3) 17 vud (3) Jm WA (E
SET YNEXT (3 SET YNEXT 311 {RESET YNEXT/3)| | RESE™ YNEXT (3! |RESET YNEXT(3) | SET YNEXT(3 ' | [RESET YNEx7(3) | 6~ vnEx7/3)| |RESE™ vNEXT(3) | ST~ vaE»-(3) |
AR XxA13) AR— XA (3" AR = YA(3. AR vAi3) | AR~e-YA 3} | AR XA:3} AR—-YA (3) AR XA (3) AR YA 3: AR s 3 i
T l T T T T T i |
i [] Y L] i] 1 !

Figure 4-25. Level 3 Controller Flowchart (Sheet 30 of 33)

4-145/4-146

Advanced Scientific Comp:t ter

AN

R3 LD

AN

R3 LD

R3 LDi0)

NO

NO

PAC4(0) PACA2) . PACA(3)
N:

[|

YES r——— r———{——-—19

) i EXIT TO 1 | EXIT TO | | EXIT TO |

AR ZB(2)) scra ! LEVEL 3 /IDLE | scra ScRe 1 LEVEL 3 (IDLE | SCR4 | LEVEL 3 (IDLE) |
1 1 1

L | I R —

YES

r-——y_— "1

MEMORY 1 EXIT TO | NO NO NO No
STORE LEVEL 3 (IDLE)
GLEVEL &] _————d YES YES YES YES
ANY
R HAZARD NO No NO No ne
YES YES YES YES YES
YES
1 = ZEX(0) 0+ ZEX(0) > ZEXI) 0—=ZEX(1) 1—=ZEX!2) 0 ZEX(2) 1= ZEX(3) 0—=~ZEX(3)
-
0—=ZEY(0) 1 ZEY(0) o ZEY(1) 1= ZEY(1) 0==ZEY(2) 1—-ZEY(2) 0=-ZEY(3) 1=-2ZEVY(3)
0—=ZEX(0) 0 ZEX(1) o—ZEX(2) 0—»ZEX(3)
RI A 0= ZEY(0) 0—=ZEY(1) 0—ZEY(2) 0-ZEY(3)
DOUBLEWORD
ADDRESS
y TXIT TO EXIT TO J
' LEVEL 3 (IDLE) LEVEL 3 (1IDLE) -
. ARZP(O) ARZP(1) ARZP(2) ARZP(3)
EXIT TO l -

LEVEL 3 (iDLE)

NO NO

r———{—-—

[it S |

| EXIT TO |
| LEVEL 3 (IDLE) |

| et S

l I EXIT TO ' l EXIT TO
ScRr4 1 EVEL 3 (IDLE | - SCR4 | LEVEL 3 {IDLE)

—_———

1 1 1
I I I | |
XAACTIO) YAACT(0) XAACT(1) XAACT(3)
NO NO
YES YES
AR=XA(0) AR YA(0)
NO NO
YES YES
1-=ZEX(0) 0—=ZEX0) 0—+ ZEX(0) 1—ZE X(1) 0= ZEX(1) 0—=ZEX(1) (== ZEX(2) 0—ZEX(2) 0= ZEX(2) 1—>ZEX'3" 0—=-ZEX'3) 0—=ZEX(3)
« N y :
0~ ZEY(0) 1= ZEY(0) 1-» ZEY(0) 0—ZEY(1) 1= ZEY(1) 0= ZEY(1) 0 ZEY(2) 1= ZEY(2) 0 ZEY(2) o—ZEY!3) 1= ZEY! 3 0—ZEY(3)

ARZPIC) ARTP 1! AR ZPI2 ARZP:3}

22

(D)127601 (31/33)

Figure 4-25. Level 3 Controller Flowchart (Sheet 31 of 33)

4-147/4-148 Advanced Scientific Computer

S

NSC
XY

AR = XA(0Y

1+ ZEX(0)
o+ ZEY(0)

:

ARZP(O)

1+ ZEX(1)
o+ ZEY(1)

:

ARZP(1)

1 ZEX(2)
o+ ZEY(2)

'

ARZPI(2)

1+ ZEX(3)
0 ZEY(3)

‘

ARZPI(3)

AR YA(0)

o = ZEX(0)
1= ZEY(0)

:

ARZP(0)

o—=ZEX(1)
1—=ZEY(1)

:

ARZP/1}

PIPE 2
VACANT

0+ ZEX(2)
1+ ZEY(2)

!

AR7ZP(2)

o+ ZEX(3)
1+ ZEY(3)

:

ARZP(3)

1+ ZEX(0)
0+ ZEY{0)

1= ZEX(1)
o= ZEY/1)

1+ ZEX(2)
o+ ZEY(2)

AR7ZPQ

ARZP(2!

21

* IN'ONE PIPE MWE)’W |N.‘ONE OPERATIONAL SCALAS PIPE MODE
THE"ONE PIPE IS ALWAYS VACANT AND PAC4 IS CHECKED

(D)127601 (32/33)

1-- ZEX(3}
o+ ZEY(3)

ARZP3;

22

AR YA(0)

o+ ZEX(0)
1+ ZEY(0)

0—+ZE X{0)
1—»ZEY!1)

ARZP(O}

ARZPI11

21

o+ ZEX(2)
1+ ZEY(2)

ARZP(2

PIPE 3
AVAILABSL!

0+ ZEX(3)
1+ ZEY(3)

ARZP{3)

~
"~

PIPE O
VACANT

0+ ZEX(0)
0+ ZEY(0)

AR 7PIOY

o+ ZEX(3)
o+ ZEY(1)

ARZPI1®

o< ZEX(2)
0¥ ZEY(2)

ARZP(2)

22

YES

r = T

| EXIT TO |
o ZEX(3)] LEVEL 3 (IDLE) 4 1
owzeve | L
ARZP(3)
22

Figure 4-25. Level 3 Controller Flowchart (Sheet 32 of 33)

4-149/4-150

Advanced Scientific Computer

NXYZ

PIPE O PIPE t PIPE 2 PIPE 3 PIPE 0
VACANT VACANT NO VACANT NO VACANT NO YES ZAGE 3 NO NO NC NO
YES YES YES
YES NO YES YES YES vES
r——=l-—-—-q
- l EXIT TO l
o0+ ZEX(0) 0+ ZEX(1) o+ ZEX(2) 0> ZEX(3) 0+ ZEX(0) 0+ ZEX(1) o+ ZEX(2) 0+ ZEX(3) i LEVEL 3 (IDLE)
. o+ ZEY(0) 0+ ZEY(1) o ZEY(2) 0+ ZEY(3) 0+ ZEY(0) o»ZEY(1) o+ ZEY(2) 0+ ZEY(3) 1
L — G o— ve— — -J YE
ARZP(0) ARZP(1) ARZP(2) ARZP(3) AR ZP(0) ARZP(1) ARZP(2) AR7P(3)
s
21 21 22 22 21 21 22 22

PIPE 3
O 7EX(3)
0—7EY(3)

AR7P/3;

(D)127601 (33/33)

PIPE 2
0—»ZEX(2)
0—-ZEY(2)

ARZP(2)

PIPE 3
VAILABL

PIPE 0
AVAILABL

PIPE 1
o—»ZEX(1)
0==ZEY(1)

ARZPIi1)

22

EXIT TO
LEVEL 3 (1IDLE)

PIPE 0
0—=-ZEX(0)
0~»7EY{0)

ARZP(0)

Figure 4-25. Level 3 Controller Flowchart (Sheet 33 of 33)

4-151/4-152 Advanced Scientific Computer

o

(r/zson }

ZPFUL(0)

1— ZJOIN(0)
1= L4RJN ZPFUL(1)
NO
YES
READ
REQ STILD 1-~~Z JOIN(1)
PENDING
(0)
0—RJCIN({O 1— ZJOIN(
©) ©) ZPFUL(2)
ARTZP(1) 1—-- ZJOIN(2)
0— RJOIN(1) 1— ZJOIN(1)] ZPFUL(3) R
YES
§-— ZJOIN(3)
ARTZP(2)
0—RJOIN(2) 1—ZJOIN(2) -————————————— L VL A—L VLS
NO
YES
ARTZP(3) 0-——L4RJN
0— RJOIN(3) 1— ZJOIN(3) B
2

* SEE SHEET 3 FOR AN EXPANSION

(B)132349 (1/3) 2 OF THESE BLOCKS

Figure 4-26. R/Z Join Flowchart (Sheet 1 of 3)

4-153 Advanced Scientific Computer

0— RJOIN(0)

1— RJOIN(0) ZPFUL(1)

NO

0— RJOIN(1) 0 —ZJOIN(1)

1— RJOIN(1)

0—RJOIN(2)

1— RJOIN(2)

0— ZJOIN(2)

FOR&
WRITE COM-—

0—~RJOIN(3)

t— RJOIN(3)

—

0— ZJOIN(3)
A
i 1
0—ZJOIN(0) **SEE SHEET 3

(B)132349 (2/3)

Figure 4-26. R/Z Join Flowchart (Sheet 2 of 3)

4-154 Advanced Scientific Computer

ok

YES NO

n=0,1,2,3

NO
YES

‘.

Y
(B)132349 (3/3)

F-

Figure 4-26. R/Z Join Flowchart (Sheet 3 of 3)

4-155 Advanced Scientific Computer

AE
CONTROL

AE AND AEM CONTROL

SELECT
EF REG
FROM AU(0)

SELECT
EF REG
FROM AU(1)

SELECT
EF REG
FROM AU{2)

SELECT
EF REG

FROM AU(3)

EF(0-3)
— AE(0—-3)

ANY
DIVIDE
CHECK

{—~ AE(0)

1-— AE(1)

1-- AE(2)

1—AE(3)

NO

0 — AE(n)
WHERE

RESETHN
IS TRUE

(B)132350

LAM
BIT AT
LVL12(0)

LAM
BIT AT
LVvL12(3)

YEsS

SELECT
EF REG
FROM AU(0)

SELECT
EF REG
FROM AU(1)

SELECT
EF REG
FROM AU(2)

SELECT

—onl EF REG

FROM AU(3)

EF(4-7)
— AEM(0-3)

Figure 4-27. Arithmetic Exception and Arithmetic Exception Mask Control

4-156

Advanced Scientific Computer

S

CC REG. CONTROLLER

1—~CC ROUTE(0)
0—~CC ROUTE(1)

jJ0—~CC ROUTE(2)
0—CC ROUTE(3)

1—CC ROUTE(1)
0—CC ROUTE(0)

0—~CC ROUTE(2)
0—CC ROUTE(3)

{—CC ROUTE(2)

0—CC ROUTE(0)
0—CC ROUTE(1)
0—CC ROUTE(3)

1—CC ROUTE(3)
0—~CC ROUTE(0)

0—CC ROUTE(1)
0—~CC ROUTE(2)

SELECT
COMP, CODE
SIGNALS
FROM AU(0)

SELECT
COMP, CODE
SIGNALS
FROM AU(1)

SELECT
COMP, CODE
SIGNALS

FROM AU(2)

SELECT
COMP. CODE
SIGNALS

FROM AU(3)

GATE

CC REG.

(B)132351

Figure 4-28. Compare Code Register Controller Flowchart

4-157

Advanced Scientific Computer

1--RC ROUTE(0)
0--RC ROUTE(1)

0--RC ROUTE(2)
0--RC ROUTE(3)

1--RC ROUTE(1)
0—RC ROUTE(0)

0--RC ROUTE(2)
0--RC ROUTE(3)

1--RC ROUTE(2)

0—~RC ROUTE(0)
0 ~RC ROUTE(1)
0--RC ROUTE(3)

1—RC ROUTE(3)
0--RC ROUTE(0)

0--RC ROUTE(1)
0 ~RC ROUTE(2)

SELECT
RES. CODE
SIGNALS
FROM AU(0)

RC
ROUTE(0)
NO

SELECT
RES. CODE
SIGNALS
FROM AU(1)

SELECT
RES. CODE
SIGNALS
FROM AU(2)

SELECT
RES. CODE
SIGNALS
FROM AU(3)

GATE

RC REG

(8)132352

Figure 4-29. Result Code Register Controller Flowchart

4-158

Advanced Scientific Computer

CONTROLLER

LvLa ()

PACMBI ()

MODE ()

-
NO ‘ Q'R()/ YES

NO

LVL4—LVLS5 (

ZSTP ()

PAC4 ()
AOROA(_/)
NO l
YES
LVLAMD4 () —MODE ()
LDXA4 ()—LDXA ()
LDXBA4 ()—LDXBA ()
LDYA4 ()~—~LDYA ()
‘ g:m?\?f(() LDYBA4 ()—~LDYBA ()
0—MODE () | o—LDYBA 8) XUP4 {)—XUP ()
8“’;_8%‘3;\() ?_—.’zm‘rsu YUP4 {)—~YUP ()
?:ggzu(g 0—<REGDP () IRT4 ()—=QIRT ()
0—RGDP ZTXU4 ()—-ZTXU ()
ZTYUA ()—ZTYU ()
IMM4 ()—IMM ()
RGDP4 ()—REGDP ()
AOROA () y
AOROA ()

LvL4 — LvLS
0——= QIRT () R
AOROA ()

PACMBL! ()

(B)127602

Figure 4-30. Level 4 Controller Flowchart

4-159 Advanced Scientific Computer

RXAFUL ()

iB;127603

NO

1——~XAACT (H——P
0—>XAACT ¢ j f——
1—=XAFUL () P
0 —=XAFUL (; >

1—=YRACT (

0—=YAACT (,

SYAFUL ()

RYAFUL ()

NO

1—=YAFUL (}

0—YAFUL ()

Figure 4-31. Level 4 IPU Models

4-160

Advanced Scient’fic Compurer

MBU(0~3)
MODEL. IPU’S MBU() MODEL.

GATMBO ()
1—DPMBO ()

1—DPMBI () |——P

0*—MBIACT ()
H 0—DPMEI () }——>»

NO NO NO PACMBI ()
YES YES YES
NO NO
YES YES
XAFUL () YAFUL ()
NO) NO
YES YES

0—=DPMBI ()

1—DPMEI () 1—DPMBI ()

1+—MBIACT ()
GATMBI E ;
PACMBI

(B)127604

Figure 4-32. Level 4 MBU Model

4-161 Advanced Scientific Computer

SELECT IPU’S MODEL OF SELECT NEXT CONTROLLER FOR PIPE ()

TABI
ACTIVE

ACTIVITY
Lvle—Lviit

(—~SLNXT b

LAST INSTR,
AT LVLS A
ONE CLOCK

ONE CLOCK
AT LVLS

Poral—

NEXT ROM
CODRE NOP

i
1
|
i
|
1 BLNXT b

INSTR, AT LvVL4
IS IN SAME GRCUP
AS LAST INSTR.

SLNXT
PACMBO

FIRST CLOCK
SAME GROUP
TIME

SHORT
CIRCUIT
AT LvLa

SHORT
CIRCUILT
AT LEVEL 4

NEXT CLOCK
15 LAST CiLOCK
OF ROM SEQ,

SLNXT
FPACMBO

ASLNRT PACMBOC-3 =
- CPMBO/0-3 - PACNURIG-3

w
o

1
m
i
Ul
[V}

Figure 4-33. Level 4 Select Next Controller Model (Sheet 1 of 2)

4-167 .
4-162 Scientific Comiiuter

(Bi127605

INSTR. AT LVLS
IS iM SAME GROUP

SHORT
CIRCUIT

NEXT ROM
CODE NOP

ONE CLOCK
AT LVLS

AT LVLS YES

SLNXT
PACMBO

1S NEXT CLOCK
THE LAST CLOCK

YES OF ROM SEQ.

NEXT CLOCK IS
SAME GROUP TIME
IN ROM SEQ.

INSTR, AT LVLS

AS LAST INSTR.

1 - SLNXT

1S IN SAME GROUP

YES AS LAST INSTR,

0 — SLNXT

(272)

A SLNXT PACMBO(0~3) - — DPMBO(0-3)
+ PACNUR(0—3)

Figure 4-33. Level 4 3elect Next Controller Model (Sheet 2 of 2)

4-163

Advanced Scientific Computer

—
Nl
.}

X

AU
MODEL

PACAUO ()

ARITHMETIC

EXCEPTION
NO

YES

NO

SHORT
CIRCUIT
AT LVL6

ANY
ACTIVITY AT
LVL7-LVL 11

PACAUR ()

DPMBO (

0 —DPMBO (
GATAUR 2 ;
GATAUC

(B:1276086 (1/2)

Figure 4-34. Level 4 IPU’s AU Model (Sheet 1 of 2)

Hz

4-164

Acvanced Scientific Compuiter

LVvL11 ACTIVE
OR GATE AUO
SHORT CIRCUIT NO

" LVL7 ACTIVE
AND NOT A
ONE CLOCK

PACAUO ()

NO

GATAUI ()
GATAUC ()

PACAUI ()

PACAUO ()

NO

ANY
ACTIVITY AT
LvLs—LVvL11

NO

GATAUO ()

(8)127606 (2/2)

Figure 4-34. Level 4 IPU’s AU Model (Sheet 2 of 2)

4-165 Advanced Scientific Computer

PACAUO(0—3)E1

REG. DEST.
AT LVL11 (0)

REG, DEST, AT
LVL7 (0) AND ONE
CLOCK(A;‘ LvL?
o

AU OUTPUT TO

REGISTER FILE PRIORITY CONTROLLER

REG. DEST. AT
LVL7 (1) AND ONE

EXPECT REG.
DEST, AT
LVL12 (0)

1 — PACAUO (0)

REG. DEST,

YES

CLOCK (AT LvL?7
1)

PACAUO (1)
YES

EXPLCT REG,
DEST. AT
LVL12 (1)

EXPECT REG,

0= PACAUO (1)

AT LVL11 (1)

NO

(B)127607 (1/,2)

1 -—=PACAUO (1 jlp——]

Figure 4-35. Level 4 PACAUO = 1 (Sheet 1 of 2)

Advanced Scientific Computer

[e]

REG. DEST.
AT LVL1T (2)

REG. DEST. AT

LVL7 (2) AND ONE

CLOCK(A)T LvL7
2

PACAUO (2)

EXPECT REG.
DEST., AT
LvLt12 (2)

EXPECT
REG. DEST. AT
LVL12 (0) OR (1)

0—=PACAUO (2)

YES

L] 1—PACAUO (2)

(8)127607 (2/2)

Figure 4-35. Level 4 PACAUO = 1 (Sheet 2 of 2)

3 (—=PACAUO (3) 9

REG. DEST.
AT LVL11 (3)

REG. DEST. AT

LVvL?7 (SAAND ONE

CLOCK(')I" LVL7
3

PACAUO (3)

EXPECT REG.
DEST. AT
LvL12 (3)

EXPECT
REG, DEST, AT
LvL12 ((02)),(1),0R

0 — PACAUO (3)

Advanced Scientific Computer

O

AU
OUTPUT

RDT BIT
AT LVL12 (0)

SELECT EF AND
REG. STACK
ADDRESS FOR
PIPE (0)

RDT BIT
AT LVL12 (1)

SELECT EF AND
REG. STACK
ADDRESS FOR
PIPE (1)

ROT BIT
AT LVL12 (2)

SELECT EF AND
REG. STACK
ADDRESS FOR
PIPE (2)

RDT BIT
AT LVL12 (3)

SELECT EF AND

PIPE (3)

GATE
REG. FILE I

(B)127608

Figure 4-36. Level 4 AU Output to File

4-168 Advaniced Scientific Computer

FORCED WRITE
CONTROLLER

START FORCED
WRITE

G—ZEX {
0—=ZEY (}
RZPFUL ¢

ZEX {)
NO NO

YES

1—=ZTXU () 1—=2ZTYU ()

¢ zpTZ8
' L o 1—-zar(-'u}|_

IZ

(B 127609 (12;

Figure 4-37. Level 4 Forced Write Controller (Sheet 1 of 2)

4-169 Advanced Scientific Computer

FORCED
WRITE
HAIT

FORCED WRITE
FEQ TO
MBU !

C—2TXU 7,
C—2ZTYS ¢

WAIT
4

FORCED
WRITE
WAIT

FORCED WRITE
COMPLETE (
NO

C—=ZBFUL

8 127609 /2-2:

Figure 4-37. Level 4 Forced Write Controller (Sheet 2 of 2)

4-170 . e T

ZPFULL
CONTROLLER

1—=ZPFUL ()

NO

0—ZPFUL ()

(B)127610

Figure 4-38. Level 4 ZPFULL Controller

4171 Advanced Scientific Computer

s lanl

)
l}—————— FORCED WRITE

ZB8 FULL
CONTROLLER

vIP ()
- ZBFUL ()

BAD GUY
ABORT (

O——ZBFUL (1—ZBFUL {) 1—-—2ZBFUL ()

LAST WRITE
SIGNAL FROM
MBU ()

0—=ZBFUL (
COMPLETE (!

BAD GUY
ABORT ()
YES

0—ZBFUL ()
0—=ZBFUL () FORCED WRITE

i
COMPLETE ()

'

(B)127611

Figure 4-39. Level 4 ZBFULL Controller

4-172 Advanced Scientific Computer

: ZPTNS -
CONTROLLER

7Z—STORE
AT LVL6

Z-STORE
AT LVL7

Z-STORE
AT LVL10
NO

YES

PUSH ,PULL ,
OR MODIFY 2ND
NO

YES

NO NO
YES YES
ONE CLOCK ONE CLOCK
oo AT LVEE AT LVL7 ves
YES NG
PACAUR PUSH ,PULL ,
NO OR MODIFY 2ND
PASS YES
YES
NO
PACAUL Y
NO
YES
1 ¢
ZPTNS ()
(B)127612

Figure 4-40. Level 4 ZPTNS Controller

4-173

Advanced Scientific Computer

4.23 LEVEL 5 SCALAR INPUT CONTROLLER

The level S scalar input controller monitors the interface control bits from the IPU levels 3 and
4 uand enables data transters to perform the specified loading operations. The operations
performed are further qualified by status inputs from level 5 and level 6 of the MBU. Figure
4-41 illustrates the control paths involved in the level 5 input controtler. Since vector loading
operations are handled by a different controller that is not dependent on the IPU-MBU interface
control bits, this controller is responsible only for scalar loading of the MBU.

4.23.1 INPUT STAGE NOT ACTIVE (NOT MBIAC). If level 5 (Memory Buffer Input, MBI) is
not busy with an input operation, the controller can accept data and address inputs from the
IPU. The IPU inputs can specify any one of three types of operations for the controller to
perform: load an immediate operand from the IPU, load an operand from the X butfer, or load
an operand from the Y butfer.

4.23.1.1 Load Immediate Operand. If the IMMED interfuce control bit is set from the IPU,
then the AO register in level 4 of the IPU contains data to be loaded into the pipe. The
controller enables the transfer of the data in AQO directly into the IMM register in the MBU input
stage, sets IMFUL to indicate that IMM contains valid data, and sets DPMBI to indicate the
presence of data in the input stage to the MBU. The controller next examines the Register Data
Present (REGDP) interface control bit to determine if the RO register in the IPU also contains
data to be placed into the pipe. If REGDP is set, the controller enables transter of the data in
RO into the REG register in the input stage of the MBU, and sets RGFUL to indicate the
prescnce of valid data in the REG register.

Regardless of the state of the REGDP bit, the controller sets MBIAC to indicate that the input
stage contains valid operands to be transferred to level 6. enables the Op Code from the RX or
RY register at IPU level 4 to be transferred to the ROM Address Register, allows the word size
indicator from the IPU to select the operand word size to be used during the operation in the
AU, and issues PACMBI to the IPU indicating that the MBU is ready to examine the next
instruction.

4.23.1.2 Load From X Buffer (LDXA). If the LDXA interfacc control bit is set, the level 5
controller must select a word from the X buffer and load it into the MAB output register at
level 6. To prepare for this transfer, the controller transters the address of the word from the
AO register into the XA register in the MBU. XA output will then be able to select the correct
operand from the X buffer when level 5 to level 6 occurs. The controller then scts XAFUL to
indicate that a valid address is in XA, and clears YFRST. YFRST is a pointer that indicutes
which buffer will receive the next input octet from memory during scalar operations. When set,
YFRST indicates that the Y buffer will receive the input: when clear, YFRST indicates that the
X buffer will receive the input. The controller must then determine if the X buffer contains the
correct octet. It LDXBA is set, a memory octet must first be transferred into the X buffer
before the word can be selected. The controller, therefore, transfers the address of the octet
from the AO register to XBA for input to the Central Memory Requester, sets XBREQ to
indicate that CMR will have to perform a fetch for the octet, and clears XFUL to indicate that
the octet currently in the X buffer is not the desired octet. The controller sets MBIAC as it
leaves this control loop so that it waits for the octet to return from memory before performing
any further operations with the level 5 data.

If LDXBA was not set, then no memory fetch will be required to load the X butfer. The
controller then checks that the X buffer contains valid data (XFUL). It XFUL is set, or il it is
clear and a Z to X update is required (ZTXU), thereby setting XFUL, the controller checks the
XUP interface control bit. If this bit is set, the update operation has not yet completed. The

4-174 Advanced Scientific Computer

~

/
~

~

M o 1

INPUT
I ACTIVE I

[fiac From |

IPU TO INPUT

IMMEDIATE
DATA I
| FLAG FROM IPU |

TO USE DATA

| FROM X BUFFER

| FLAG FROM IPU I
TO USE DATA
I FROM Y BUFFER

IMM «—AO
IMFUL -—1

/

XA<—AO
XAFUL +—1
YFRST+—0

DPM Bl -—

1
DATA PRESENT
IN LEVEL 5

LDXBA

(I

ROM CM
P il

SELECT X
BUFFER TO
UPDATE

r

| DOES X

BUFFER NEED
TO BE LOADED

XB: <p0 ZTO Y
XBREQ +—1 UPDATA
/ XFUL+—0
4
e
NOTIFY XFUL —1 YFUL ~——1
CM REQUESTER GOOD DATA GOOD DATA
TO LOAD X IN X INY :
IBUFFER
!]
YES No NO YES
ALL IPU SIGNALS ARF HELD AT
LEVEL 4 IF UPDATE IS REQUIRED \
TIL XFUL BECOMES TRUE,EVEN R
THOUGH LV4 ~~LV5 TOOK PLACE Is x DATA I IS Y DATA
UPDATED DPMBl+—— § Ll PDATED
CORRECT DA ESENT
ATA IN X IN {%\?ERL 5 TA lN
| EGISTE I | EGISTE I

NO

YES

I SELECT Y | YA——AG
BUFFER TO — gl YAFUL oy
UPDATE YFRST «—1

LDYBA

ZTYU

YBA+—AO
YBREQ «—1
YFUL+«—0O

Y

(A) 1157874

INPUT ACTIVE
ROM ADDRESS\ [
\
\ PATH AHEAD
MBIAC —1 CLEAR @ MBU
gggu*:R01 RMADR «<—OP INPUT (LLEVEL 5)
- WDSIZE PACMB

SIGNAL TO 1PU
FOR NEXT INST,

Figure 4-41.

WORD SIZE

SELECT CORRECT

Level 5 Scalar Input Controller Flowchart (Sheet 1 of 5)

4-175

Advanced Scientific Computer

(e}

ATA PRESENT

///l;MBUINPUT l
L

I SELECT NEXT. |
>

- ——‘I £OR ANOTHER I
COMMAND

L

r:ATN AHEAD—]

RE
— 30 oTRUT
(LEVEL &

L

LoXA
NO
3
YES ~ I'— -_ "l
YES
~ IS THERE AN
IMMEDIATE I

\I OPERAND
IMM ~—AO ‘ | XAT——AO
MFUL—— —_ XAFUL ~—1
YFRST+—0 l_ —_—— —l
VALID
ACDRESS
T I) |
* REGISTE

OPMEBI=1

o —

DPMB|*—1
XFUL ~—t

YES

1S X DATAZ

UPDATE

_CORRECT XBA~—AG

i DATA iN X XBREQ=—1
£, XFU

-G

DATA FRCM
- CM HAS 3FEN
\l RETURKED Forp
X BUFF

L —

XFUL+—1

OPMBle—1

B 1157884

Figure 4-41. Level 5 Scalar Input Controller Flowchart (Sheet 2 of 5)

4-176 Advanced Scientific Computer

DPMBIl-—1
YFUL -1

YA-— AO
YAFUL —-1
YFRST~—1

—_— No

I:ISPY DATA I I DATA FROM
CM HAS BEEN

(CORRECT DATA E' E

(X Ree.) IR TURN DFOR

L~

YFUL-—1

r—. —_— ——
VALID _I
ADDRESS

REGISTER

e l___

YBA----AO
YBREQ «— 1
YFUL ~— 0O

DPMBI-—1
F
PATH AHEAD CLEAR@MBU
1 INPUT (LEVEL 5
'/
REG+— RO MBIAC ~— 1
REGDP RGFUL — 1 ROMADR - OPCD PACMBI
YES WORD SIZE |
1
NO

(B)125111A

Flgure 4-41. Level 5 Scalar Input Controller Flowchart (Sheet 3

3 of §5)

4-177

Advanced Scientific Computer

= —
YFRST«— O YFRST =1
{ 1
XA<—AO YA —AC
XAFUL -1 YAFUL «—1
NO NO

YES YES
XBA «—AO YBA = AO
XBREQ =——1 YBREQ «—1
XFUl. =0 YFUL -0

G
(B) 115789

Figure 4-41. Level 5 Scalar Input Controller Flowchart (Sheet 4 of 5)

4-178

Advanced Scientific Corputer

XFUL=—1

oPMBI =—1

YFUL =1

YES

{SCFUL+Q: X /FROM CMR

(SCFLULQ- Y

DPMES ~—1

Figure 4-41. Level 5 Scalar Input Controller Flowchart (Sheet 5 of 5)

4179

Advanced Scientific Computer

a2

controller will wait for XUP to clear before performing any additional operations with level 5
operands. If XUP is not set, then the data in X will not be changed by an update in progress or
is being changed by ZTXU update and will, therefore, represent a valid octet. The controller sets
DPMBI to indicate the presence of valid data in the input stage. Regardless of the path taken
through the load from X sequence, the controller completes the cycle by loading REG with data
from RO and setting RGFUL (if the REGDP interface control bit is set), setting MBIAC to
indicate activity at level 5. transferring the Op Code from RX to the ROM Address register,
selecting the word size to be used for the operands from the word size indicator in the MBU,
and generating PACMBI to indicate to the IPU that the controller can examine a new
instruction.

4.23.1.3 Load From Y Buffer (LDYA). The LDYA control paths are identical to the LDXA
control paths, except that the action and decision blocks involve the status and registers
associated with the Y bufter instead of the X buffer. Refer to the description of the Load From
X Buffer (LDXA) control sequence for an understanding of the LDYA sequence.

4.23.2 INPUT STAGE ACTIVE (MBIAC). If MBIAC is set when the controller begins the
control cycle, then level 5 contains a valid operation to be performed. The controller can then
enter one of two routines depending upon whether the operation at level 5 will be passed to
level 6 during the next clock pulse. To determine this condition, the controller examines DPMBI
(Data Present MBI), SLNXT (Select Next instruction) and PACMBO (PAC from level 6). If all of
these signals are true, then the opeiation at level 5 will pass to level 6 during the next clock. If
any one of these conditions is not m:t, the operation at level 5 will not pass to level 6.

4.23.2.1 Transfer OK. If the next clock pulse will transfer the operation in level 5 into level 6,
then the controller can examine the incoming instruction and prepare to route it into level 6.
The controller, therefore, determines if the instruction in the output of the IPU is an immediate
operand, requires a load from the X buffer, or requires a load from the Y buffer.

For immediate operands, the controller enables the next clock pulse to transfer the contents of
AO to the output stage of the IPU into the IMM register in level 5 of the MBU, and sets IMFUL
to indicate the presence of valid data in the IMM register. The controller also sets DPMBI to
indicate the presence of valid data in level 5, before proceeding to examine the REGDP control
bit. If there is an operand in the RO register (REGDP set) the controller enables that operand
into the REG register in the MBU and sets RGFUL to indicate the presence of data in that
register. Regardless of the state of REGDP, the controller sets MBIAC to indicate the new
operation in level 5, enables the op code portion of the instruction from RX or RY in level 4 to
the ROM Address register in the MBU, and uses the word size indication from the IPU to select
the operand size to be sent to the AU. The controller issues PACMBI to the IPU before
returning to the start of the control cycle.

If the new instruction from the IPU requires a load into level 6 from either the X or the Y
buffer (LDXA or LDYA), the controller transfers the address of the operand from the AO
register in the IPU to the respective operand address register (XA or YA) to select the correct
word from the output of the Buffer. The controller also sets the full flag (YAFUL or XAFUL)
associated with that address register to indicate the presence of a valid address in that register
and either sets or clears the YFRST pointer, depending upon whether the Y or the X buffer will
receive the next operand from memory. If a memory request is required to load an octet into
the selected huffer (LDYBA or LDXBA), YAFUL will not be set during the first control cycle
for the instruction. The controller then indicates to CMR that a memory request is required
(YBREQ or XBREQ), transfers the address from AQ into the operand address register (YBA or
XBA) and clears YFUL to indicate that the octet in the Y buffer is not valid. If YAFUL is set
when the controller takes the LDYBA path, then the instruction in level $ is using the YA

4-180 Advanced Scientific Computer

! o]
register or the controller has already made the memory request for the level 4 instruction. If
YAFUL is set, the controller makes three other inspections to determine if it can request a new
octet from memory to satisfy the LDYBA bit. If YAFUL and IMFUL are both true, then the
instruction in level 5 is an immediate and the controller has already requested the octet for the
instruction at level 4. Therefore, the controller checks the YFUL flag and sets DPMBI if the
octet for level 4 instruction has returned from memory. If YAFUL is set, but the instruction at
level 5 is not an immediate operand, the controller checks the XAFUL flag. If XAFUL is not
set, then the level 5 to level 6 transfer that will occur on the next clock pulse will select a word
from the Y buffer, clearing YAFUL. The controller can therefore issue a memory request for an
octet to be loaded into the Y buffer. If both YAFUL and XAFUL are set and level 5 is not
immediate data, the controller checks the YFRST flag. If YFRST is not set, then the octet to be
loaded into the Y buffer for this instruction has already been requested from memory (since the
X buffer is first and XA corresponds to the operands in level 5, therefore YA corresponds to the
instruction at level 4 and YAFUL indicates that the octet has been ordered). The controller then
checks to see if the octet for the Y buffer has returned from memory (SCTY), and if so, it sets
YFUL and DPMBI. The controller then sets MBIAC, transfers the op code from RY in the IPU
to the ROM Address register and selects the word size of the operand to be used for the
operation at level 4. If the REGDP (Register Data Present) flag is set, the controller enables the
transfer of the register operand from RO to the REG register and sets RGFUL. Regardless, the
controller sends PACMBI to the level 4 controller so that not only will the next clock pulse
transfer the operands of the level 5 operation into level 6, but it will also transfer the instruction
at level 4 into level 5.

If a memory fetch is not required to furnish the operand for the instruction at level 4, (not
LDYBA), the controller checks the YUP control bit from the level 4 controller. If this bit is set,
the controller waits until YUP clears indicating that the Z-to-Y update has been performed and
the Y buffer contains the correct data. When YUP clears during a Z-to-Y update (ZTYU), the
controller sets DPMBI and YFUL to indicate that the correct data is ready in the Y buffer. If
there is no Z-to-Y update and YUP is clear, the controller waits for data to return from memory,
sets YFUL, and also sets DPMBI (if data has already returned from memory or was resident in
the current buffer, YFUL will already be set). The controller then enables the next clock pulse
to transfer level 4 into level 5 along with any register operand that may be in the RO register,
sets MBIAC and selects the operand word size.

4.23.2.2 Transfer Not OK. If MBIAC is set at the start of a control cycle, but either DPMBI,
SLNXT (select next), or PACMBO is not active, then the instruction at level 5 will not transfer
to level 6 during the next clock. Therefore, the level 5 controller will not be able to accept a
new instruction from level 4. It can, however, request the octet containing the operand from
memory if a request is required. If the instruction at level 4 is an immediate operand, then no
memory fetch will be needed. The controller, therefore, waits until the instruction at level §
moves to level 6 before processing an immediate operand.

If the instruction at level 4 requires an operand from either the X or Y buffer (LDXA or
LDYA), the controller can prepare the registers for that operation. The requirements of either an
LDXA or an LDYA are identical; only one cycle will be described. For an LDXA, the controller
first inspects the XAFUL flag to determine if the instruction at level 5 is using the XA register
to select its operand from the X buffer. If that is the case, the controller may not load a new
address into XA until the level 5 to level 6 transfer occurs. If XA is not full, the controller
inspects YAFUL. If YAFUL is not set, the controller clears YFRST to indicate that, since the
instruction at level 4 is the only instruction in levels 4 and 5, the X buffer will be the next
buffer to receive a memory transfer. If YAFUL is set, the Y buffer will be used first so the
controller leaves YFRST set to select that buffer. Regardless of the state of YAFUL, as long as
XAFUL is not set, the controller enables the next clock to transfer the word address of the

4-181 Advanced Scientific Computer

52

operand from AO into the XA register and sets XAFUL to indicate the presence of a valid
address in XA. If a memory request is required to fill the X buffer (LDXBA), the controller also
enables the octet address in AO to the XBA register, clears XFUL to indicate that the X buffer
does not contain the desired octet, and issues XBREQ to CMR to indicate the need for a
memory request. The controller then examines the X buffer flags to determine if the buffer
contains valid data for the instruction to be executed. If the XUP bit is still set, the buffer
requires a Z-to-X update and the present data is not correct. The controller then waits for XUP
to clear. When XUP has cleared, the controller determines if an octet has returned from memory
(SCTX) into the X buffer. If SCTX is true, the controller sets XFUL to indicate the presence of
data in the X buffer. Also, if new data did not arrive, but a Z-to-X update was performed
(ZTXU), the controller also sets XFUL. If YFRST is not set, indicating that the X buffer will be
the next source of operands for the MBU, the controller also sets DPMBI to indicate that the
input stage is prepared to transfer data to level 6.

424 LEVEL 6 CONTROLLER - SCALAR MODE

The level 6 controller (figure 4-42) operating in the scalar mode monitors signals {from the level 5
and Select Next controllers to gate data from level 5 into level 6 for output to the AU. For a
transfer to occur, the following signals must be present:

® DPMBI - Data Present in Memory Buffer Interface
® SLNXT - Select Next; indicates that the next instruction can be input to the AU
® DPMBO - Data Present in Memory Buffer Output stage
or
® PACAUR - Path Ahead Clear in the AU Receiver section.

If these signals are present, the controller checks the level 5 register status flags. If an immediate
operand is in level 5, the controller enables the contents of IMM into the MCD register, clears
IMFUL and sets DPMBO. If a register operand is in level 5, the controller enables the contents
of the REG register into the MAB register. For X or Y operands, the controller checks the
YFRST flag. If it is set, the controller examines the Y buffer flags first. In either case, if the
first inspection does not result in a transfer into MCD, the controller will check the flags
associated with the other buffer and transfer data from that buffer into MCD if valid data is
present. When all required transfers are complete during a control cycle, the controller issues
PACMBO to the level 5 controller.

4.25 LEVEL 6 CONTROLLER - VECTOR MODE

Level 6 vector mode control is illustrated in figure 4-43. Description of this circuit will be
supplied at a later date. Level 6 ROM address selection for both scalar and vector modes is
illustrated in figure 4-44.

4-182 Advanced Scientific Computer

XTMCD

7 YEs CLR XAFUL
IMTMCD
CLR IMFUL
BCROMTOT —
SET DPMBO YES
INDADR
YTMCD
o CLR YAFUL
§ CLR YFRST
YES
RGTMAB
CLR RGFUL
RGFUL
NO
YES
RGTMAB
CLR RGFUL
BCROMTOT
SET DPMBO
INTADR
CLR DPMBI
GATMBO

(B)132253

Figure 4-42. Level 6 MBU Output Control Flowchart - Scalar

4-183 Advanced Scientific Computer

START

i

SET SRMST

BCISTAT 9
NO

SRMST ¥

=1 VORST CLR SRMST —— >

PAOMBO

z
o
<
‘ m
wn

<
m
w

ORD.
SEL ,REP
BREP+MAP

CLR VORST

NO

BREP

<
é m
n

Z
o

Y

NO
YES YES
BAUAC
NO NO
YES YES
— @ @ W
YES YES
BAUAC v
YES 2
2

NC

wd

(B8:132354 (1/5)

Figure 4-43. Level 6 MBU Output Control Flowchart - Vector (Sheet 1 of 5)

4-184 Advanced Scientific Computer

B ADDRESS USER !
ACTIVE ONLY

ORD,
SEL, REP
BREP , +MAP

ORD ,
SEL ,REP,
BREP+MAP

XTMAB
YTMCD
GATMBO
CLR XAFUL
NO CLR YAFUL
YES
YES Do
SUBR1
YES A NO
e —— gl
k 1
YTMCD NO .
CLR YAFUL
GATMBO
YES
SET YALEBU
CLR YALSE
DO
SUBRI
NO NO
YES YES
SET YALEBU | SET XALEBU
CLR YALSE CLR XALSE

(B)132354 (2/5) [i E 1

Figure 4-43. Level 6 MBU Output Control Flowchart - Vector (Sheet 2 of 5)

4-185 Advanced Scientific Computer

"A ADDRESS USER ACTIVE ONLY

ORDER
YES

XTMAB
GATMBO
CLR XAFUL

DO
SUBR1

SET XALEBU
CLR XALSE

(A)132354 (3/5)

NO

5

Figure 4-43. Level 6 MBU Output Control Flowchart - Vector (Sheet 3 of 5)

4-186

Advanced Scientific Computer

"A B ACTIVE ,ORDER ,SEL ,REP ,BREP ,MAP

ORDER .
YES :

SEL + MAP AGRTR
NO

YES
XTMAS

GATMBO XTMAB
CLR.YAFUL CLR XAFUL

AGRTR

NG

YTMCD
CLR YAFUL

GATMBO
SET
DPMBO

SET YALEBU
CLR YALSE

XALSE

YES

SET XALEBU
CLR XALSE

CF

1
(C)132354 (4/5)

Figure 4-43. Level 6 MBU Qutput Control Flowchart - Vector (Sheet 4 of 5)

4-187 Advanced Scientific Computer

o
=3

SUBR!

ENTER
SUBR 1

SET DPMBO

NO
YES
NO
YES
SET ESLMO

RETURN

Figure 4-43. Level 6 MBU Output Control Flowchart - Vector (Sheet 5 of §)

iA)132354 (5/5)

4-188 Advanced Scientific Computer

O

YES

START

NO

Yail

YES

YES

DPMBIX
-+ DPMBO

Y

NO

DPMBIX
PACAR NO

O

YES

BCINTADR
(@ BRANCH)

SRCH+DP

+PP+CMP vES

NO

SEL+REP
+MAP vEs

NO

ORDER
NO

YES

BCEXTADR(2)
(B,BRANCH) P

BCEXTADR(1)
(B {BRANCH).

(A) 132355

Figure 4-44. Level 6 ROM Address Selection Flowchart (Scalar and Vector)

4189

Advanced Scientific Computer

5

426 SELECT NEXT CONTROLLER

The Select Next controller (figure 4-45) enables transfer of instructions into the AU, operation
codes into the AU control ROM, and operands from level 5 to level 6 by setting the SLNXT
control bit. Except for vector initiation, the controller is used for scalar operations only. Select
Next (SLNXT) is set under the tfollowing conditions:

1. VECTOR INITIATION loads first vector address into the AU control ROM.
2. MBI INACTIVE
® MBI Inactive and AU empty - enables level 5 to level 6.

® MBI Inactive and AU active with a one clock operation - enables level 5 to level 6
since AU will be empty on next clock.

® MBI Inactive, PACMBO and AU active during last clock of operation - enables
level 5 to level 6 since AU will be empty on next clock.

° Next ROM Code NO OP - No Op will have no effect on operation in AU;
therefore level S to level 6 is enabled.

3. MBI ACTIVE and PACMBI

® One clock operation at level 5 - enables level S to level 6 to prepare to insert one
clock operation into pipe at completion of current operation.

® Same group at level 4, first clock of same group and not short circuit (wait) at
level 4 - allows transfer of instruction to prepare for interleave of operation in
same group time.

4. MBI ACTIVE AND NOT PACMBI

¥
® AU Inactive - enter next operation into pipe for processing.

® One clock at level 5 and in AU - Enter next operation since AU will be vacant
after next clock.

® AU active, PACMBO, Next ROM Code No Op - No Op will not affect AU, load
MBO in preparation for next operation.

® AU active, PACMBO, Next clock last clock of current ROM instruction - AU
operation is completing, load MBO in preparation for next operation.

® Same group, Same group time, and if single-length multiply, the result in the AU
will be the same as the result of the new instruction at level 5 (see explanation
below).

4-190 Advanced Scientific Computer

(@]

A START

BCISTATE(1) SET SLNXT

BCISTATE(0)

SET SLNXT

Lée-L11

PACMBI
(GA+MBO)

ACTIVE

NEXT ROM
CODE HOOP

NO

FIRST
CLOCK SAME
GROUP TIME

ONE_CL.OCK
@rLa
YES
ONE_CLOCK
@La
NO
SHORT CKT
@L4
NO

CLEAR SL.NXT

ROMTOT
PACMBO
YES

NEXT CLOCK
LAST CLOCK

YES

NO

CLEAR SLNXT

(B)132356 (1/2)

Figure 445. Select Next Controller Flowchart (Sheet 1 of 2)

4-191

Advanced Scientific Computer

ROMTOT

NEXT ROM
CODE NOOP

PACMBO

LAST
INSTR SAME

GROUP AS SET SLNXT
LAST INSTR

CLEAR SLNXT

NEXT CLOCK
LAST CLOCK

YES

LS
INSTR SAME
GROUP AS
AST INSTR

L——. CLEAR SLNXT

NO

SET SLNXT

(8)132356 (2/2) !

Figure 4-45. Select Next Controller Flowchart (Sheet 2 of 2)

4-192 Advanced Scientific Computer

a2

RODD indicates that the result of a single-length multiply at level 5 will be stored into an odd
memory location, and therefore cannot be a doubleword result. R OPTION FALSE and R
OPTION TRUE are AU ROM signals that indicate the word length of the result of a single-length
multiply currently in the pipe. R OPTION FALSE indicates that the result will be single-length;
R OPTION TRUE indicates that the result will be double-length. The Select Next controller;
however, examines the complement of these two ROM signals so that non-multiply instructions
need not be coded with ones. Therefore, if RODD is false (indicating an even storage address)
and R OPTION FALSE is also false (indicating a double-length result), both operations specify
the same length result. Similarly, if RODD is true and R OPTION TRUE is false (indicating a
single-length result), both operations specify the same length result. The controller can then
enable SLNXT so that the operands in level 5 can be inserted into the AU at the same group
time to be overlapped with the current instruction in the AU. One of these two paths will
always be true for same group operations other than single-length multiply.

4.27 CENTRAL MEMORY REQUESTER (CMR)

The Central Memory Requester (CMR) in the MBU (figure 4-46) receives requests for octets
from either the level 5 controller or from the Z storage control circuit. CMR then decides
priority for the requests, issues the requests to memory, and routes the returning octets from
memory, through the SC Memory Interface File, into the buffer file (X, Y or Z) that requested
the data. Data requested for the Z buffer is for a Z Fill-in (ZFILN) operation. That is, the data
in the Z buffer contains some incomplete halfwords and cannot be stored into memory without
filling the empty halfword positions with valid data from memory. The halfword modified flags
in the ZBM register designate which halfwords in the Z buffer contain valid data, and prevent
the incoming memory words from changing those halfword positions in ZB. CMR also issues
storage requests to memory to write the contents of the ZB file into memory after a fill-in
operation, or when the next word to be stored into the Z buffer will be in a new octet. The
control circuits contain an examination state for each number of allowable outstanding requests
to memory. Each cycle performs the same basic functions.

If a hardcore operation must be performed, the controller checks to see if an outstanding request
has returned from memory. If SCFUL is set (new octet in SC) and the queue indicate that the
octet is for a Z buffer fill-in operation (CUE = 10), the controller allows the next clock to
transfer the contents of SC into the ZB file, clears the ZFILN flag, and enables the halfword
modified flags to transfer the changed halfwords from the Z buffer into ZB to update the octet
for storage into memory. The controller relinquishes control to MBU Unit Hard Core for the
next clock cycle.

If the OA register is available to transfer another address to central memory, the controller also
checks for a Z Fill-in operation and performs the transfers described above. The controller then
checks for a request that originates in the Z buffer stream since Z requests must be made
immediately due to lack of a buffer stage for the Z data. If there is no ZFILN operation, the
controller transfers the address in ZBA to OA to designate the storage area in memory to be
used, clears ZWAIT and ZBREQ, and sets the protect mode bits to a “01”, indicating that the
request is to be governed by the write protection parameters in the MCU. The controller then
sets the zone control bits in ZCB that correspond to any of the halfword-modified flags in ZBM,
and sets OAFUL to indicate that a request is being made to memory.

4-193 Advanced Scientific Computer

[N

< CM REGISTER >

A
0 PENDING STATE
@ TO HARD CORE
MBU CMR
scTzB
ZBM <~ SET
ZFILN ~— CLR @

(REQUEST-CONFIGURATION (XBREQ, YBREQ, ZBREQ))
000 010 110 100
YES)
REQUEST~CONF IGURATION
(XBREQ, YBREQ, ZBREQ)
001 o11] 101 111
NO
° YES <) .
YBATOA XB
YBREQ « CLR BREQ<— CLR
YNEXT <« CLR YNEXT ~— SET
CUE =— 01 CUE «— 00
PM =10 PM «— 10
ZBATOA ZCBe ZBM ZBATOA
ZWAIT<-CLR | — B OAFUL<SET ZWAIT e SET ZCB<CLR
ZBREQe- CLR CUE=-10 OAFULe SET
PM<-01 PMe-01 Ky UEIP &
2 ?CUEIP) +1
(B) 115821 J

Figure 4-46. CM Requester Flowchart (Sheet 1 of 15)

4-194 Advanced Scientific Computer

1 REQUEST PENDING

sCTZB
2ZFiLLN «— CLR
ZBMe—SET

I

C REQUEST-CONFIGURATION (XBREQ. YBREQ. ZBREQ))

010 110, 100

?EQUEST—CONFIGURATI N
XBREQ. YBREGQ. ZBREQ

001 o011 101 111

O ! :

YBATOA XBATOA
YBREQe-CLR YBRECe-CLR
YNEXTe CLR YNEXTe SET
CUE«-01 CUE=«- 00
PMe-10 PMe-10
ZBATOA

ZBATOA -

z - |3l ZCBeZBM IWAIT< SET ZCBe—CLR

Z:RAE.EQ-gt: OAFUL e SET CUEe-10 OCAFULe— SET

PMe01 PMe-01 Ay | CUEIP <

(CUEIP) + 1
3
(8) 115822

Figure 4-46. CM Requester Flowchart (Sheet 2 of 15)

4-195 Advanced Scientific Computer

(A)

‘ (SCFUL, WRACC)) ((SCFUL, WRACC))
11

10

|

01 00 10 o1 00

CUEOP <
ZBBSYe-CLR (CUEOP) + 1 ZBBSY<CLR
ZBBSY«-CLR

Y

CUEOP = CUEOP «
(CUEOP) + 1 (CUEOP) + 1
-
Ko K1
v K2
1 2 . 4
115823

Figure 4-46. CM Requester Flowchart (Sheet 3 of 15)

4-196 Advanced Scientific Computer

2 REQUESTS PENDING

SCTZB
ZBM<e-SET
ZFILN«-CLR

SCTZB
ZBM@e~SET
ZF ILNe—CLR

REQUEST-CONFIGURATION (XBREQ, YBREQ, ZBREQ)

000 010
REQUEST-CONE IGURAT)
. XBREQ ,YBREQ ,ZBRE
001 011
A20
5
YBATOA XBATOA
YBREQe-CLR XBREQwe-CLR
YNEXT< CLR YNEXTaSET
CUE=-01 CUEe-00
PMe-10 PMe-10
ZBATOA ZBATOA
ZWAIT<CLR gl ZCB<-2BM ZWAIT*SET ‘ ZCB <-~CLR
ZBREQ<-CLR OAFULe—SET CUE«10 OAFUL#-SET
PM<-01 PMe-01 Aoy | cUEIP @
(CUEIP) + 1
(B) 115824

]

Figure 4-46. CM Requester Flowchart (Sheet 4 of 15)

A2o

4-197

Advanced Scientific Computer

Aao L PY
((SCFUL, WRACC) > C (SCFUL, WRACC) ’
11 10 o1 (1] 11 10 01 00
CUEOP <+ CUEOP «
(CUEOP) + 1 ZBBSY<+ CLR (CUEOP) + 1 ZBBSY<CLR
ZBBSY+CLR ZBBSY+ CLR :
CUEOP <« CUEOP -
(CUEOP) + 1t (CUEOP) + 1
rg—
1 2 4 6

(A) 118825

Figure 4-46. CM Requester Flowchart (Sheet 5 of 15)

4-198 Advanced Scientific Computer

3 REQUESTS PENDING

2B sET >
-
ZFILN«+CLR

OAF UL
* 1ICLEARING

ZFILNe-CLR

REQUEST-CONF IGURATION
(XBREQ, YBREQ, ZBREQ) -

G10 110 100

Figure 4-46. CM Requester Flowchart (Sheet 6 of 15)

REQUES T-CONF IGURATION
XBREQ, YBREQ, ZBREQ)
001 011
A0
7
|
[
YBATOA XBATOA
YBREQe-CLR XBREQe-CLR
YNEXTe-CLR YNEXTeSET
CUE<01 CUEe-00
PM<—10 PMe—10
IBATOA ZBATOA
ZCBe-ZBM
IWAIT<CLR ZWAIT<SET
ImREQe—CLR [P OAFUL<-SET CUE=—10 S Ehiie =
PMe—01 PMe-01 UEIP &
3t TCUEIP) =~ 1
1
H
(B) 115826

4-199

dvanced Sciert/fic Comaouter

((SCFUL , WRACC)) ((SCFUL, WRACC))

11 10 o1 00 11 10 01 00
UEOP <~ CUEOP+-
CUEOP) + 1 ZBBSY+CLR (CUEOP) + 1 ZBBSY+CLR
ZBBSY<+CLR ZBBSY+CLR

Y Y

CUEOP« CUEOP
(CUEOP) + 1 (CUEOP) + 1

2

(A) 115827

Figure 4-46. CM Requester Flowchart (Sheet 7 of 15)

4-200 Advanced Scientific Computer

4 REQUESTS PENDING

scTzB
ZBM<-SET
ZFILN<CLR

OAF UL
*1CLEARING

sCcTi8

ZBM< SET
ZFILNeCLR [

REQUEST-CONF IGURAT ION
(XBREQ, YBREQ, ZBREQ)

Figure 4-46. CM Requester Flowchart (Sheet 8 of 15)

010 110 100
YeES NO
REQUES T-CONF IGURATION
XBREQ, YBREQ, ZBREQ)
.
o001 011 101 11
Nao
NO
ol ©
YBATOA XBATOA
YBREQe-CLR XBREQe-CLR
YNEXT<-CLR YNEXTeSET
CUE<-01 CUE+-00
PM<—10 PMe—10
TOA ZBATOA
ZIWAIT<CLR oa e ZIWAIT< SET ZCBeCLR
IBREQ<—C — CUE=—10 SAFLL A SET
PMe—01 PM=-01)\41 UEIP &
?cuslp) + 1
(B) 115828

[]

LT

4-201

Advanced Scientific Computer

M N
Mo N4t
((SCFUL, WRACC)) ‘ (SCFUL, WRACC))
11 10 01 00 11 10 01 00
CUEOP+« CUEOP + .
(CUEOP) + 1 ZBBSY+CLR (CUEOP) + 1 ZBBSY<«CLR
ZBBSY<«CLR ZBBSY+CLR

Y Y

CUEOP+ CUEOP <+
(CUEOP) + 1 (CUEOP) + 1
L
4 6 8 10

(A) 115829

Figure 4-46. CM Requester Flowchart (Sheet 9 of 15)

4-202 Advanced Scientific Computer

5 REQUESTS PENDING

SCTZB
ZBM<—SET

ZFILN=CLR

L

SCTZB

ZBMe— SET
ZFILN=+-CLR

REQUEST~CONF IGURATION
(XBREQ ,YBREQ, ZBREQ)

~

REQUEST-CONF IGURATION
(XBREQ, YBREQ ,ZBREQ)

)

001

Aso

o1t 101

Y

BT crn zcas- 2o

-

ZBREGe CLR | GAFUL<SET iyl
PMa—01 PMe-01

(B) 115830

Y

YBATOA
YBREQ<e-CLR
YNEXT<-CLR
CUE<-O1
PMe—10

v

100

Y

XBATOA
XBREQe- CLR
YNEXTa- SET
CUE<-00
PM<—10

ZCB=«-CLR
OAFULe- SET
-

(]

?UE!P
CUEIP) + 1

Figure 4-46. CM Requester Flowchart (Sheet 10 of 15)

A 50

4-203

Advanced Scientific Computer

Aso As1

((SCFUL , WRACC) ‘) ((SCFUL, WRACC))

11 10 01 oo 11 10 o1 (o]}
CUEOP+
CUEOP«
(cur?op) + 1 ZBBSY « CLR (CUEOP) + 1 ZBBSY«CLR
ZBBSY « CLR ZBBSY<— CLR

Y y

?UEOP*- CUEOQOP +
CUEOP) + 1 (CUEOP) + 1

6 8 10

12

(A) 115831
Figure 446. CM Requester Flowchart (Sheet 11 of 15)

4-204 Advanced Scientific Computer

6 REQUESTS PENDING

SCTZ8 -— oo
ZBM * SET

ZFILN == CLR

sCcTZB
ZBM e SET
ZFIL.NeCLR

REQUEST-CONF IGURATION
{XBREQ, YBREQ ,ZBREQ)

REQUEST—-CONF IGURATION
(XBREQ, YBREQ, ZBREQ)
001
Xeo
13
YBATOA XBATOA
YBREQ< CLR XBREQ< CLR
YNEXT<CLR YNEXT+ SET
CUE=—01 CUE<—00
PM<—10 PMe— 10
IWAIT — ¢ > FWAITS- SET
WAIT LR zCcB ~ IBM
ZBREQ - CLR CAFUL + SET CUE=—10 re, | ORFUL<=SeT
PM o1 61 | CUEIP o
13 (CUEIP) + 1

|

(8) 115832
Figure 4-46. CM Requester Flowchart (Sheet 12 of 15)

4-205 Advanced Scientific Computer

60 Ag 1

((SCFUL, WRACC) ' ((SCFUL, WRACC))
11 10 o1 00 11 10 01 00
CUEOP+ CUEOR) + 1 ZBBSY+ CLR
CUEOP) + 1 ZBBSY «CLR “
éBB SY‘)‘ CLR ZBBSY<«-CLR

Y]

CUEOP « CUEOP +
(CUEOP) + 1 (CUEOP) + 1

(A) 115833

Figure 4-46. CM Requester Flowchart (Sheet 13 of 15)

4-206 Advanced Scientific Computer

7, REQUESTS PENDING K 70

(QUEUE FULL Wi

NEXT REQUEST i's
sSL“:n -
Z -
ZFLIN<-CLR
CLEARING
YES
SCTZ8
ZBM<SET
ZFiLNe-CLR
REQUEST—CONF IGURATION
(XBREQ, YBREQ, ZBREQ)
000
N70
15
NO
ZWALT - ZBT@A SET éi?ﬁ’-.i“’én
ZWAIT *~ CLR ZC8 *~ ZBM ZWAIT = -
- -~ CUE<10 UE P < X
ZBREQ - CLR % GAruL = sET cuE= L = 70
15
(B) 115834

Figure 4-46. CM Requester Flowchart (Sheet 14 of 15)

4-207 Advanced Scientific Computer

< (SCFUL, WRACC))

11 10 o1 00
CUEOP+ .
(CUEOP) + 1 7RBSY+CLR

ZBBSY <« (LR

y

CUEOP «
(CUEOP) + 1
Ky
14
e
Ko "6
10 12

(A) 115835

Figure 4-46. CM Requester Flowchart (Sheet 15 of 15)

4-208 Advanced Scientific Computer

a2

If ZBREQ is set and a ZFILN operation is required, the controller examines ZWAIT to
determine if the Z buffer data will be stored or held. If ZWAIT is set, the controller continues
examining the requests from the X and Y buffers. If ZWAIT is not set, the controller sets
ZWAIT to indicate that a ZFILN fetch is in progress, enables the next clock to transfer the
address in ZBA to the OA register for transfer to memory, sets the queue code to 107,
indicating a destination of the Z buffer for the returning octet, and sets the protect mode bits to
“01” to indicate to the MCU that this particular read operation is to be governed by the write
protect bits (since the final result will be a write into that location). The controller then clears
ZCB indicating a read operation to the MCU, sets OAFUL to indicate that a memory requests is
in progress, and increments the queue input pointer for the next operation.

If no Z buffer operation is to be performed during this clock period, the controller examines the
XBREQ, YBREQ and YNEXT signals. YNEXT resolves conflicts between X and Y data streams
when simultaneous requests appear from both (YNEXT selects YBREQ; not YNEXT selects
XBREQ). For either request, the controller transfers the memory address from the corresponding
address register (XBA or YBA) into the OA register for transfer to memory, clears the request
flag (XBREQ or YBREQ), toggles the YNEXT indicator so that the other buffer request will be
selected during the next conflict, sets the protect mode bits to “10” to designate the read
protect parameters to the MCU, and loads the corresponding code into the queue to indicate the
origin of the request and ultimate destination of the octet from memory (X buffer = 00, Y
buffer = 01). CMR then clears the zone control bits for the read operation, sets OAFUL to
indicate that a memory operation is in progress, and increments the queue input pointer (CUEIP)
to select the queue position for the next operation.

Regardless of the path through the decode cycle, the controller completes the control cycle by
inspecting the SCFUL and WRACC flags. If SCFUL is set, the controller increments the queue
output pointer (CUEOP) since the code has been used to select the destination of the new octet.
It WRACC is present (write acknowledgement from the MCU), the last write operation is
complete. The controller, therefore, clears ZBBSY indicating that the ZB buffer no longer
contains needed data and that a new octet may be transferred into ZB for storage into memory.
4.28 OTHER CONTROL CIRCUITS
Flowcharts for the remaining controllers and control circuits in this volume are provided in
figures 4-47 through 4-57. These circuits include:

® CAF output control logic (figure 4-47)

® Vector initialization control (figure 4-48)

® AB vector address generation control (figure 4-49)

® (C vector address generation (figure 4-50)

® AU control (figure 4-51 through 4-55)

® 7 address flow and _6 control (figure 4-56)

® 7 data flow (figure 4-57).

See Appendix B for the IPU’s CMR and Look-ahead Controllers, and Appendix D for the Har
Core Controllers. ‘

4-209 Advanced Scientific Computer

(B*132357

START

{

ADDRESS USER ACTIVE
(NOT IMMEDIATE}

0

YES "A ADDRESS 1S
NO VALID AND NGT
- BEING USED DUE
CURRENT CAF A ACTIVE TO PIPE BLOCK
NTRY ACTIVE
NO YES vES
YES NO
XAFUL * IAC ~—
< XTMAB AAVAC—0 g
YES
NG
ALLOWS LAST
NEXT CAF TRANSFER AT
ENTRY ACTIVE ND OF VECTOR
AVCAC AVDES
NO vES NO
LAST NO YES A DE

NEXT CAF ENTRY
IS NEW OCTET

NO

Q

YES
LAST ELEMENT OF
CURRENT OCTET
BEING MOVED TO
XALSE-—1 XA

9

CURRENT CAF ENTRY IS
END OF SELF LOOP

XAENL—1

Y

ACTV-—0 CLEAR CURRENT CAF ACTIVE TAG

CAF TXA MOVE WCRD IN OCTET ADDRESS TO XA
AUP-—AUP+1 BUMP A USER POINTER TO NEXT CAF ENTRY
XAFUL —1 SET XAFUL

Figure 4-47. CAF Output Control Flowchart

4-210

Advancec Scientific Computer

5
START

YES

EVO)—'IMM
VIj—VIS

CLEAR XFUL, YFUL.
GATE WORD SIZE
IMM (0—7))—ROMIN
IMM{8—11)—ALCT
IMM({12—15)—~SV
IMM(16—31
V1)—IMM

—-LPS

(IMM (8~ 52)2'.—A~A

SET AVCAC
SET AAUAC
SET AVCSV

(IMM(8—32))—
NAA

SET AVCAC
SET AAUAC

(IMM) — MA

LPS)—GLP
LPS)—SLP
ATE ROM

(V2)—IMM

LLPS —~FLP

Ia

i3
(A)132358 (1/5) 2

Figure 4-48. Vector Initialization Control Flowchart (Sheet 1 of 5)

4-211 Advanced Scientific Computer

ILLEGAL
VNORMALIZE SEARCH,

PEAKPICK (DONT WANT B ACTIVE)

(IMM(B8—32 ;—
NBA

SET B/CAC

SET BAUAC

(IMM , —MCD

(IMM(8—32) —
NBA

SET BVCAC
SET BAUAC
SET BVCSV

GATE AU WORD
SI1ZE CLEAR
TOGLE
(V3)—IMM

NO

YES

NO
YES —_— e — —
l Ia

(NAA }— XBA ' '
S BREQ
| 8

L

.

m
-
x

(A" 132358 {2 3°

Figure 4-48. Vector Initialization Control Flowchart (Sheet 2 of §)

4-212 e St
Acyznoces Sgrertitic Complter

_ SELECT € .B
(IMM(8~32))— WRD SI1ZE
NCA (IMMOL) —DC]
(Va)—1MM (IMMOR ; —NTS
YES i —~SLP
NO
SELECT C,B
WRD SIZE
IMMOL) — BCI
SET VCNOP E,MMORﬂ_.N,S
vES
NO
NG (V6)— MM
YES
i6
IMM(8~32)— - —
¢ 'TEA iy

SET YBREQ

SET CVCAC

i4

|

|

|

|

|

|

|

|

|

|

|

1

|

|

|

|

|
B |
is ! _l
|
_
|

|

|

SELECT AB
WRD SZ
IMMOL }—DAI
IMMOR —DBI
(V5)—=1MM

(A)132358 (3/5]

4-213 Advanced Sciert: “ic Computer

O

(A)132358 (4/5)

SELECT A ,B
WORD SIZE
IMMOL;-—-—DAO
IMMOR j— DBO
NIS)—FNI
NIS)—GNI
NISj— SNi
(V7)—IMM

SELECT C,B
WORD SIZE
IMMOL.)—DCO
IMMOR) —FRO
IMMOR)—GNO
IMMOR)—SNO
SET VORST

IF ORDER TYPE

NO
YES

CLEAR CVCAC
CLR XB,YB
REQ

SET VCNOP

NOTE

Y
)
NO
5

FORGET IT CLLEARS CVCAC IN ANY

STATE , NOT JUST STATE 9

Figure 4-48. Vector Initialization Control Flowchart (Sheet 4 of 5)

4-214

Advanced Scientific Computer

Y

CLEAR AVCAC
CLEAR BVCAC
CLEAR AAUAC
CLLEAR BAUAC

ZERO
PENDING

CLEAR LOOP
COUNTERS
CLEAR XAFUL
CLEAR XBFUL
GATE ROM
i10
NO i11
—B ECE
VECTOR ! G§¥A? ND
NOOP
NO - — | —— —— —— —
to

0 —~BCVECEND

ZBREQ
+ZBBSY
NO

ZFLNRQ—ZFILN

SET LSTVW 1

ig LSTVW=LAST VECTOR WRITE

(A)132358 (5/5)

Figure 4-48. Vector Initialization Control Flowchart (Sheet 5 of 5)

4215 Advanced Scientific Computer

STATE O

BCQFSTAO (0-1)

@ >

Il

BCQFSTA1 (0—-1)

(BFCAFFUL)

(NAA (HXBA) XBREQ

* — WAIT FOR STATE 9 IN ORDER
TO HAVE A'S LOADED PRIOR
TO USE,

(A) 115800

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 1 of 17)

4216 Advanced Scient/fic Computer

AFUL. (XBFUL. XHFUL. XFUL)

-
A DATA STATUS:

ISCFUL* QUE = X| [XBFUL] LXHFULI XF * ST
EEehrkd

STATE O

C

-
A DATA STATUS

0000 0001 0010 0011 0100 0101 0110 0111
XBTXH
NO UPDATE NO UPDATE AFUL<-011 NO UPDATE
XHTX XBTXH XHTX
AFUL <000 AFULe-001 AFUL*010 AFULe—101
Bo
s
(A)115801

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 2 of 17)

4-217

Advanced Scientific Computer

STATE 0
601
AFUL: (XBFUL, XHFUL, XFUL)

-

A DATA STATUS.

SCFU E=X| IXBFUL] (XHFULJ

IXFUL * LAST ELEMENT |
—
A DATA STATUS

0000 0001 0010 0011 0100 0101 o110 o111
NO UPDATE NO UPDATE AR NO UPDATE
XHTX XBTXH XHTX
AFUL® 000 AFUL €001 AFUL <010 AFULe—101
U <o
1
XBAe— (NAA)
XBREQeSET
B
10
(A)115802

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 3 of 17)

4-218 Advanced Scientific Computer

STATE 0

AFUL: (XBFUL ,XHFUL ,XFUL)

-
A DATA STATUS! ‘a2
LSCFUL* QUE] | XBFUL | [XHFUL.|

LXFUL* LAST ELEMENT]

—
A DATA STATUS
0000 0001 | 0010 0011 0100 o101 o110 0111
XBT XH
NO UPDATE NO UPDATE AFUL 011 NO UPDATE
XHT X XBT XH XHT X
AFUL =000 AFUL «+-001 AFUL<* 010 AFUL %101
€0
!
(A) 115803

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 4 of 17)

Advanced Scientific Computer

4-219

Bo

CAF =

(NAA 29-32)
AGP o

(AGP) + 1

STATE 0

FLP « {LPS)

FLP - (FLP)—1
NAA <= (NAA) -0

|

AVCAC+—CLR
AVCSV-—CLR

A)115804

FNIe—(NIS)

FNle— (FNI}-1
NAA < (NAA)
+ DAI

FNO o—sFNO;— 1
NAA =— (NAA
+ DAO

ap

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 5 of 17)

4-220

Advanced Scientific Computer

[e]

oy STATE 1

AVSAC
BCISTATE 9

YES

SPACE
AVAILABLE

(BFCAFFUL)

(NAA D xXBA) XBREQ

YES

612

*— WAIT FOR STATE 9 IN ORDER

To RAVE A's LOADED PRIOR
TO USE. -

(A) 115805

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 6 of 17)

4-221 Advanced Scientific Computer

@ﬂ

E _d

A DATA STATUS!
|SCFUL* QUE=X| [XBFUL] |XHFUL| | XFUL* LAST ELEMENT]

AFUL (XBFUL, XHFUL, XFUL)

b10

STATE 1

¢

-
A DATA STATUS

~

0000 0001 0010 0011 0100 otml 1000 | 1001J 1010 1011
X ¥ Yy Y Y
NO UPDATE NO UPDATE XBTXH scTXB scTxs
AFUL =011 AFUL <101 AFUL*111
ScTXB
- XHTX XBTXH scTX R
AFUL<-000C AFUL * 001 AFUL * 010 AFUL <001 AFUL 9501
By Po
1o s
(A)115806

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 7 of 17)

4-222

Advanced Scientific Computer

6 STATE 1
11
- - | AFUL: (XBFUL, XHFUL, XFuL,
A DATA STATUS:]
[SCFUL* QUE=X| | XBFUL| |XHFUL| {XFUL* (AST ELEMENT|
- .
A DATA STATUS
0000 0001 0010 0011 0100 0101 1000 1001 1010 1011
XBTXH SCTXB s
NO UPDATE NO UPDATE AFUL 011 AFUL*-101 AFUC o311
AFUL< 000 XHTX XBTXH scTX scTXB
AFUL =001 AFUL <010 AFUL<-001 XHTX
AFUL <101
o
a
(}._. 1
XBA®- (NAA) ¢ XBA® (NAA)
XBREQ «-SET 1 XBREQ@-SET
s
B By
2
is 10

A)115807

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 8 of 17)

4-223

Advanced Scientific Computer

-
A DATA STATU
|SCFUL’ QUE=X]

S

AFUL (XBFUL, XHFUL, XFUL)
"IXBFUL|] |XHFUL| {XFUL' LAST ELEMENT]|

STATE 1

C

—
A DATA STATUS

10ll|

0000 0001 0010 0011 0100 0101 } 1000 1001 1010
XBTXH SCTXB SCTXB
NO UPDATE NO UPDATE AFUL=-011 AFUL* 101 AFUL <111
SCTXB
XHTX XBTXH SCTX
AFUL* 000 XHTX
AFUL <001 AFUL %010 AFUL < 001 AFUCHTX o1 !
< €o
(3 1

(A)115808

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 9 of 17)

4-224

Advanced Scientific Computer

STATE

By

CAF e (NAA
29-321
AGPe (AGP) +1

VECTO#
ORDER

YES

NO

FLP®=(\FLP)-1!
NAA S (NAA:
+ DAS

*) iYES

FLP €. PS) FLPe }FL";" EEEEE—

NAA®— (NAA)}+O

\
g FNi = O
YES
NO
i
FNle—{FNIY -t i
NAA®— (NAAY EEEEm——]
NO + DAJ i
!
YES |
FNl® (NIS} 1
YES
NO
ENO * (FNO)—1
| NAA e (NAAS Y @y
+ DAO
1

(A} 115809

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 10 of 17)

4.99% , . e
4-225 Advarced Scientific Computer

92

STATE 2

SPACE

(BFCAFFUL) < AvAILABLE

(NAA@XBA)

H22

* — WAIT FOR STATE 9 IN ORDER
To HAVE A'sS LOADED PRIOR
TO USE,

12 13 14

(A) 115810

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 11 of 17)

4-226 Advanced Scientific Computer

STATE 2

AFUL : (XBFUL , XHFUL. , XFUL)

- .
A DATA STATUS .

ISCFUL*QUE = X| | XBF UL, | IXHFUL. |
[XFUL* LAST ELEMENT| 20

—_— .
‘ A DATA STATUS)

5000 000 1 0010 0100 1000 1001 1010
XBT XH SCTXB
. - scTx : SCTXR
‘ : - XHTX
AFUL <000 AFUL <001 AFUL <00 1 AFUL <301

p2 "

15 10

(A) 115811

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 12 of 17)

4:227 Advainiced Scientific Computer

—
3

STATE 2

AFUL: (XBFUL,XHFUL , XFUL)
_’
A DATA STATUS .
LSCFUL! QUE=X| | XBFUL] | XHFUL. j ‘g

s
LXFUL' LAST ELEMENT]
e > N
k A DATA STATUS)
0000 000t 0010 0100 1000 1004 1010 f

XBTXH
XHT X SCTX SCTXH
AFUL=-000 AFUL=-00 1 AFUL%—00 1 AFU’E‘FELX'O‘
XBA®~- (NAA) ' €2 XBA®—(NAA ! 1
XBREQe~SET A xanEQ‘-SE%‘
6

v | B3 B2
\A 's

(A) 115812

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 13 of 17)

4-228 Advanced Scientific Computer

STATE 2

AFUL: (XBFUL ,XHFUL ,XFUL)
-

A DATA STATUS.
ISCFUL *QUE = X| [XBFUL] |XHFUL]

| XFUL * LAST ELEMENT|

T 22

-
< ’ : A DATA STATUS ’

0000 0001 0010 0100 1000 1001 1010
. XBTXH SCTXB
NO UPDATE AFUL®—0 10 AF‘ULC)—(lO 1
SCTXB
XHTX SCTX
AFUL*-000 AFUL*—00 1 AFUL<-00 1 arutie X0

€2 3]

11 5

(A) 1135813

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 14 of 17)

4-229 Advanced Scientific Compurer

STATE 2

P2
CAF @ (NAA
29-32)
AGP e (AGP) +1
i Pas
VECTOR SLP = |
ORDER T
YES
NO
FLP *srupgﬂ
NAA @ (NAA'
+ DAS
- FLP @ (FLP)-1
FLP «(LPS) NAA._iNAA I Lt

g vES FNI = O
NO
MR
NO +DAI :
YES

FNIe- (NIS)

SRR y o
> +DAO 2
1"

AVCAC *-CLR B,
AVCSV «-CLR o
5

(A)115814

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet .15 of 17)

4-230 Advanced Scientific Computer

STATE 3

AVCAC*

BCISTATES *WAIT FOR STATE 9 IN ORDER TO

HAVEAS LOADED PRIOR TO USE

YES
SPACE
(BFCAFFUL) AVAILABLE
(NAA @ xBA)
- —- -
‘ A DATA STATUS) (A DATA STATUS)
0000 1000 0000 100
scTX scTX
AFUL +000 AFUL « 001 AFUL +000 AFUL+ 001

g g - €
v Jre u Jr2 C A DATA STATUS) 2
17 s 11
rooo 1000 l

ScTX
AFUL+000 AFUL « 001

€2
11

115815

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 16 of 17)

4-231 Advanced Scientific Computer

Ps

CAF % (NAA
29-32)
AGP @ (AGP)+1

ORDER

‘/ECTOR\

FLP* |_PS

‘*YES

FLP @& ‘FLP ~
NAA @ 'NASY

+ DAS

YES

1 YES

Y

AVUCAC « CLR
AV(CSV e« CLR

(A)115816

FLP @& FLP —1
WAL @ (NAA +0

>

FNIe (NiS

FNO = 1

|

Fhie FNit—1

NAA @ (NAAS p————
- DAl l :

E 2
S

FNO @ (FNO, -1
NAA @ INAAY
+ DAO

.- ———— -

Figure 4-49. A/B Vector Address Generation Flowchart (Sheet 17 of 17)

Advanced Sciertific Computar

(Wi PN

—

(B} 119911

ESL@uviit

LVL11 ACTIVE®

NSA <—(NCA)
NCA -—
(NCA)+DCS

SMTNCA
QLSENC=—0O

NO

" PKVCMP
«~HS(0)

QCVEND =——§
[AUL11(1) =1

ACT§.’- 1}>—0
ESL(7=10) w0

v

Figure 4-50. C Vector Address Genération Flowchart (Sheet 1 of 6)

4-233 -

Advanced Scientific Computer

NCTZA
(NSTZA)

NEW OCTET
(NCAZZA)

PACZB

QZFUL =1

ZBA<—$ZA)
L — ZBM=—(ZM)
ZBREQ=—1
v]
ZEA=-—(NCA)
ZA<=—(NCA)
ENZMDE
ENZAGT
QZFUL=-—0 D
QPKVAQ <+—Q
SMTNCA
YES
NO
3 4
(A) 119912

QPKVAQ =— 1

Figure 4-50. C Vector Address Generation Flowchart (Sheet 2 of 6)

NO

4-234

Advanced Scientific Comouter

SLP = (SLP)—{

NCA == (NCA)
TOGLE=— 0
NCA<— (NCA)
: +DC i
NG TOGLE =—1
YES
SNi=—(shLa
SLP =—(LP
> Ner T heRs e
bcl
SNO ~—(shoy=1
N1 (NJ
L sm—-&ys; —
NCA =—(NCA
+DC
vl NO
CVCAC «——CLR

(B) 119913

Figure 4-50. C Vector Address Generation Flowchart (Sheet 3 of 6)

4-235 Advanced Scientific Computer

(A)Y 119914

NO

SLP ——(SLP -1

SNI=—(SNI,~1
SLP = (LPS;

3

SNO -—{SNO — 1
SNI-—$NIS.
SLP «=—(LPS .

ww

Figure 4-50. C Vector Address Generation Flowchart (Sheet 4 of 6)

4236

Y Sciertific Compurter

o

EsL@uveii

QLSENC =1

/No

i

NSTZA

CORNCA
SMTNCA
DCSTSM

ENZMDE
ZEA=—(NSA)
7M‘-$ SA;

ZA - (NSA
QZFUL<—0

(8) 119915

ZBREQw— § QZFUL=—1
ZBA -—§2A) QESLAQ =1 -
ZBM e (ZM) QLSENC=—1{

» CLEARED BY B8CAUTZ

Figure 4-50. C Vector Address Generation Flowchart (Sheet 5 of 6)

Advanced Scientific Computer

QLSENC
NO
YES
NSA <—(NCA)
SMTNCA

DCSTSM
QLSENC-—0

® NO NO
YES

YES

CLCVAC
QCVEND=-—O0

5

Figure 4-50. C Vector Address Generation Flowchart (Sheet 6 of 6)

(A) 119916

4-238 Advanced Scientific Computer

| S PN

BLKAR
ACT 7—11
+AURACDA

YES
ACTIIX
- CLRNG
+ ACTIIDA
L. ACT 7-11
YES
.
ESLMBO
g * GATAR
YES
YES
-

YES

GATAR+GATAL
YES

(B)132359 (1,2

Figure 4-51. AU Control - PACR Flowchart (Sheet 1 of 2)

4239 Advanced Scientific Computer

PACAODA

NO

1CK+ EXOPR

1CK* | PACAO

ACTIIDA
+SCAOERMO

AUC %
EXOPRERMO
O 1CK RMO

YES

ACTII
+SCAOPAUC
k1 CLRG

% PACAO

- EXOPR@
X DCK RMO

YES

1CK AUCX*
GATAO

PACRDA

(B)132359 (2/2)

Figure 4-51. AU Control - PACR Flowchart (Sheet 2 of 2)

4-240 Advanced Scientific Computer

(A)132360

START

PACRDA
MO NG
YES YES
GATMBO Seeg ZRPND
YES YES
NOC
NO ‘
DPMEO
X GATAR
NO
scr@
c RMO
YES YES
NO
GATAR
PACAR

Figure 4-52. AU Control - GATAR Flowchart

4-241

Advanced Scientific Computer

YES

AL H1tDA

PALAODA

ACTIL =
1 CLRNG
~ACTIIT A

scao @
RMOQ +SCAO
@ Avc

(B:13u361

YES

BLKAI

CACTIN+
SCAL@ AU”
* 4 CATAL

AURACDA % REP

GATIL

Figure 4-53. AU Control - GATAI Flowchart

LRACDA

Acvancer

C

[

ier

i

Lomputer

START

Y

YES

NO

9

YES

ZBREQ
NO

0

YES YES

| B
)

REG
DEST STOP
i * DPAUO NO S
NO (PCAODA) ~~ ORDER
SEL. ,REP,
BREP , +MAP

ZBBSY

v

<
m
6]

DPAUO

YES

O

z
o]

SET PACAO

d)
N (o]

(B)132262 (1°2)

Figure 4-54. AU Control - PCAUO Flowchart (Sheet 1 of 2)

4-243 Advanced Scientific Computer

YES

NO

HDPEX
SRCH-+DP e YES
NO NO
NO
ALH1I
YES YES
NO
PKVCMP *
—
-1 PKCPOV NO
YES
ALH11 .
YES
NO

(A1132362 2 2,

Figure 4-54. AU Control - PCAUO Flowchart (Sheet 2 of 2)

4-244 Advanced Scientific Computer

PCAOQDA

DFMBOX
-1 GATAR

AUHLD (@ RMO

AURACDA
*1CK @ RMO

ALt

NG

SET
CATAO

(Bi132363

Figure 4-55. AU Control - GATAO Flowchart

4245

Advanced Scientific Computer

7 ADDRESS FLOW(cTaRT)

3.5,6
— FRCOWR
ENABLE
NSA--ZA
z--z8
SET zBasY
;S;
NO
: ENZ1 DE
CLR ZAFUL
SET ZBRE3Z
ZFILNRQ —ZF ILN
ZA—ZBA
ZM—Z8M
YES
GATAOX
NSFUL* NO
(AURAC ’
+ACTIN:
YES
NSA--ZA
SET ZAFUL
CLR ZFUL
CCR NSFUL.
ZBLOCK
SET ZFUL IZPTNSA
NO
YES
ZP-—NSA
SET NSFUL
8)132364 (1/¢

Figure 4-56. Z Address Flow and E Control Flowchart (Sheet 1 of 6)

4-246 Advanced Scientific Computer

PeonTrOL v

AUL11(1)) —
¢ AU(L)i)i(t)

STATE ¢

BIPKVCMP
ENCAg——NSA *= HS(0)
CUCENB NCA)+DCS—NCA
SMTNCA
CLR QLSENC
YES

STORE INDEX
1C

ESL @11

SET QVCEND
SET AUL11(1)
CLR ACT(6—11
CLR ESL{(6—10
4
— Gty J
BSEL+
BREP+BMAP+
SEL+REP+ SELECT
MAP NCTZA
G
. ’
3

{(B)132364 (2/6)

Figure 4-56. Z Address Flow and é Control Flowchart (Sheet 2 of 6)

4-247 Advanced Scientific Computer

-»
C CONTROL

NEWOLT

NO

PACZB

SET ZFUL

SET PKVAO

(A)132364 (3/6)

NO

YES

ZA)—ABA
SM)—ZBM
SET ZBREQ

ENZMDE
NCA)—ZA
NCA)—ZEA
CLR—ZFUL
CLR PKVAO

SMTNCA

Figure 4-56. Z Address Flow and € Control Flowchart (Sheet 3 of 6)

4-248

Advanced Scientific Computer

—
C CONTROL

SEL+BSEL

NCTZA
CLR ZFUL

NCTZA
CLR ZFUL

y

(A)132364 (4/6)

Figure 4-56. Z Address Flow and C Control Flowchart (Sheet 4 of 6)

4249 Advanced Scientific Computer

VOPF%
VvIS(0)

C CONTROL

3

- CUCEND

SLP;— +—SLP
NCA)+DCS——

PP+CMP
vssi\\\\\

No

CLRCUCAC

CLR TOGLE

(NCA)+DCS—
CA

N
SET TOGLE

(SLP)~ 1—5SLP

DC1TSM

sle)—'l—‘SNl
(LPS)—SLP

SNI)=1—5SNI
LPS)—SLP
NCA }+DCI—NCA

DCOTSM

SNO)~ 1—+SNO
NIS y—~SNO

SNO)~ 1—SNO
NIS)—SNI1
LPS)—SLP

LPS)—SLP
NCA)+DCO—=NCA

(B)132364 (5/6)

Figure 4-56. Z Address Flow and C Control Flowchart (Sheet 5 of 6)

4-250

Advanced Scientific Computer

"C CONTROL

NSTZA

SET
LSENC

CORNCA

(A)132364 (6/6) @
3

Figure 4-56. Z Address Flow and E) Control Flowchart (Sheet 6 of 6)

4-251 Advanced Scientific Computer

le]

START

GATAUO

(EF)—2
CLR DPAUO

YES

SET DPAUC
SET ACT12

PKVCMP
* 1 PKCPOV

SET DPAUO
SET ACT12

SET DPAUO

PACAO

SET ACT12

(B)132365

Figure 4-57. Z Data Flow Flowchart

4-252

Advanced Scientific Computer

Ti1-22006

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	2-01
	3-01
	4-001
	4-002
	4-003
	4-005
	4-007
	4-009
	4-011
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-087
	4-089
	4-091
	4-093
	4-095
	4-097
	4-099
	4-101
	4-103
	4-105
	4-107
	4-109
	4-111
	4-113
	4-115
	4-117
	4-119
	4-121
	4-123
	4-125
	4-127
	4-129
	4-131
	4-133
	4-135
	4-137
	4-139
	4-141
	4-143
	4-145
	4-147
	4-149
	4-151
	4-153
	4-154
	4-155
	4-156
	4-157
	4-158
	4-159
	4-160
	4-161
	4-162
	4-163
	4-164
	4-165
	4-166
	4-167
	4-168
	4-169
	4-170
	4-171
	4-172
	4-173
	4-174
	4-175
	4-176
	4-177
	4-178
	4-179
	4-180
	4-181
	4-182
	4-183
	4-184
	4-185
	4-186
	4-187
	4-188
	4-189
	4-190
	4-191
	4-192
	4-193
	4-194
	4-195
	4-196
	4-197
	4-198
	4-199
	4-200
	4-201
	4-202
	4-203
	4-204
	4-205
	4-206
	4-207
	4-208
	4-209
	4-210
	4-211
	4-212
	4-213
	4-214
	4-215
	4-216
	4-217
	4-218
	4-219
	4-220
	4-221
	4-222
	4-223
	4-224
	4-225
	4-226
	4-227
	4-228
	4-229
	4-230
	4-231
	4-232
	4-233
	4-234
	4-235
	4-236
	4-237
	4-238
	4-239
	4-240
	4-241
	4-242
	4-243
	4-244
	4-245
	4-246
	4-247
	4-248
	4-249
	4-250
	4-251
	4-252
	xBck

