OPERATION AND MAINTENANCE
INSTRUCTIONS

ASC-4X CENTRAL PROCESSOR (CP)
Volume 2

Equipment Group
P.0. Box 2909
Austin, Texas

934726-2
January 1976

78767

OPERATION AND MAINTENANCE
INSTRUCTIONS

ASC-4X CENTRAL PROCESSOR (CP)
Volume 2

TEXAS INSTRUMENTS

INCORPORATED

INTRODUCTION

This manual is volume 2 of a two-volume set of operation and maintenance
instructions for the 4-pipe Central Processor, which is used in the Advanced
Scientific Computer (ASC) system, manufactured by Texas Instruments
Incorporated.

This volume contains the following sections and appendixes:

Section 5 - Maintenance
Section 6 - Parts Listing
Section 7 - Diagrams

Appendix A - Details Maps

Appendix B - 4XIPU Listings and Circuit Board Descriptions
Appendix C - 4XCP Hazard Conditions

Appendix D - Hard Core

The part number for Volume 1 is 931443-2.

Advanced Scientific Computer

i%
SECTION V
MAINTENANCE
5-1 GENERAL
The maintenance philosophy for the 4-pipe Central Processor consists of running a
a series of diagnostic tests to fault isolate to a functional section and the
use of AU Functional Logic Descriptions (FLDs), harness lists (in Fiche form),
and flowcharts in conjunction with conventional test equipment to fault isolate
down to the replaceable card level.
The FLDs available for the 4-pipe CP include:
° IPU4 FLD, part no. 931490
) AU4 FLD, part no. 931491
e MBU4 FLD, part no. 931492

The diagnostic tests available for maintenance of the 4-pipe CP are described
in the multi-volume set of ASC System Diagnstics available at each ASC site.

5-1/5-2 Advanced Scientific Computer

a2

SECTION VI
PARTS LISTING

6-1 INTRODUCTION

This section provides a 1ist of replaceable logic cards and their part numbers
for the ASC 4X-Central Processor. The 1ist is intended as a guide for ordering
new cards and installing them in the CP. Items such as IC's, screws, washers, -
etc., are not included.

6-2 LOGIC CARDS

Logic cards for the CP are contained in ten chassis: two IPU's, four MBU's, and
four AU's. Each AU and MBU chassis has three motherboards, and each IPU con-
tains two motherboards which hold the logic cards. These motherboards are
designated with the letters A, B, and C from top to bottom, respectively. Each
card slot in a motherboard is designated with a two letter label, LA to LV.
These designators are used to identify the particular card location in the CP.
Figure 6-1 illustrates the information contained in a card location designator.
The first two letters refer to the chassis. The next character refers to the
column. The fourth character designates the motherboard in that column, and

the Tast two letters identify the card slot on that motherboard. Table 6-1
lists all CP Togic cards and are arranged by card location. Only one of the
four identical MBU and AU pipes is listed.

P 1 A

e
SUBUNIT ‘J , l

SUBUNIT COLUMN
NUMBER

LA
—
I_ CARD CONNECTOR

MOTHERBOARD DESIGNATOR

(A) 115137

Figure 6-1. Card Location Information

6-1 Advanced Scientific Computer

i

Card
Location

IP2ALA
IP2ALB
LC

LU
IP3ALV

Table 6-1. Central Processor Logic Cards

Function

TERMCRD

T4ZHAZ(1)
I4ZHAZ(0)
I4RHAZ(0)
I4ZHAZ(3)

TERMCRD
DUMMY
DUMMY
[4FILE
I4FILE

T4FILE(
I4FILE(
DUMMY

Card

Part Number Location Function Part Number
650296-1 IP2BLA DUMMY 695011-1
923558-1 A LB I4HDCORE 923570-1
923558-1 LC TI4CMREQ 923573-1
923555-1 LD I4INFACE(2) 923567-1
923558-1 LE I4INFACE(1) 923567-1
923558-1 LF I4INFACE(0Q) 923567-1
923558-1 LG I4PIPTOP 923576-1
923558-1 LH I14MISC 923582-1
923558-1 LI I4VECLAS 923579-1
923558-1 LJd I4LVL3 923585-1
923558-1 LK TERMCRD 6509261
923558-1 LL I4ROUTE] 923588-1
923555-1 LM I4ROUTE3 923594 -1
923558-1 LN I4ROUTE2 923591-1
" 923558-1 LO I4INFACE(3) 923567-1
923558-1 LP BUCTL4-2 922700-2
923558-1 LQ DUMMY 695011-1
923555-1 LR DUMMY 695011-1
923558-1 LS DUMMY 695011-1
923558-1 Y LT DUMMY 695011-1
923558-1 IP2BLU LOGCLK-5 650356-5
650296-1
695011-1 IP3BLA DUMMY 695011-1
695011-1 A LB DUMMY 695011-1
923549-1 LC DUMMY 1 695011-1
923549-1 LD I4PIPE(4) 923561-1
923549-1 LE I4PIPE(3) 923561-1
923549-1 LF I4PIPE(2) 923561-1
923549-1 LG I4STATUS 923564-1
923549-1 LH I4PIPE(0) 923561-1
923549-1 LI I4PIPE(1) 923561-1
650296-1 LJ TERMCRD 650296-1
923549-1 LK ROMCRD L3 650299-228
923549-1 LL BUCTL4-2 922700-2
923552-1 LM DUMMY 695011-1
923552-1 LN LOGCLK-7 650356-7
923549-1 LO ROMCRD L2 650229-227
923549-1 LP I4PIPE(5) 923561-1
923549-1 LQ I4PIPE(6) 923561-1
923549-1 LR I4PIPE(7) 923561-1
923549-1 LS I4MHCA 932005-1
923549-1 * LT DUMMY 695011-1
923549-1 LU DUMMY 695011-1
695011-1 IP3BLV DUMMY 695011-1

6-2

Advanced Scientific Computer

Card

Table 6-1. Central Processor Logic Cards (Continued)

Location Function Part Number Function Part Number
MBTALA ROMCRD(0) 650299-207 DUMMY 695011-1
A B ROMCRD(8) 650299-215 B DUMMY 695011-1
C BUROM(0) 686490-1 - C DUMMY 695011-1
D ROMCRD(9) 650299-216 D BUZAG 650362-1
E ROMCRD(1) 650299-208 E BUDATA(O) 650365-1
F ROMCRD(2) 650299-209 F BUDATA(1) 650365-1
G ROMCRD(10) 650299-217 G BUDATA(2) 650365-1
H BUROM(1) 686490-1 H BUDATA(3) 650365-1
I ROMCRD(11) 650299-218 I BUDATA(4) 650365-1
J ROMCRD(3) 650299-210 J BUDATA(5) 650365-1
K BUCTL4-2 922700-2 K BUDATA(6) 650365-1
L ROMCRD(4) 650299-211 L BUDATA(7) 650365-1
M ROMCRD(12) 650299-219 M BUDATA(8) 650365-1
N BUROM(2) 686490-1 N BUDATA(9) 650365-1
0 ROMCRD(13) - 650299-220 0 BUDATA(10) 650365-1
P ROMCRD(5) 650299-212 p BUDATA(11) 650365-1
Q ROMCRD(6) 650299-213 Q BUDATA(12) 650365-1
R ROMCRD(14) 650299-221 R BUDATA(13) 650365-1
S BUROM(3) 686490-1 S BUDATA(14) 650365-1.
Y T ROMCRD(15) 650299-222 " T BUDATA(15) 650365-1
1] ROMCRD(7) 650299-214 U TERMCRD 650296-1
MBTALV TERMCRD 650296-1 MB1BLV DUMMY 695011-1
MB1CLA BUCTL3A 931981-1 AUTALA TERMCRD 650296-1
A B BUCMR 932026-1 A B AUAXSELA(1) 931996-1
C BUCTL1 922691-1 C AU4XSELA(0) 931996-1
D BUCTL4A 931984-1 D AU4ADDA(0) 931936-1
E TERMCRD 650296-1 E AU4ADDA(1) 931936-1
F BUCAFA(0) 931966-1 F AU4ADDA(2) 931936-1
G BUCAFA(1) 931966-1 G AU4ADDA(3) 931936-1
H BUADDRA(4) 931939-1 H AU4AADDA(4) 931936-1
I BULOOP(1) 686478-1 I AU4ADDA(5) 931936-1
J BULOOP(0) 686478-1 J AU4ADDA(6) 931936-1
K BULOOP(3) 686478-1 K AU4ADDA(7) 931936-1
L BULOOP(2) 686478-1 L AU4CTLIA 929096-1
M BUADDRA(3) 931939-1 M AU4ADDA(8) 931936-1
N BUADDRA(2) 931939-1 N AU4ADDA(9) 931936-1
0 TERMCRD 650296-1 0 AU4ADDA(10) 931936-1
P BUADDRA(1) 931939-1 p AU4ADDA(11) 931936-1
Q BUADDRA(0) 931939-1 Q AU4ADDA(12) 931936-1
R. DUMMY 695011-1 R AU4ADDA(13) 931936-1
S LOGLK-7 650356-1 S AUAADDA(14) 931936-1
' T LOGCLK-3 650356-1 Y T AU4ADDA(15) 931936-1
U BUMHC1 710258-1 U TERMCRD 650296-1
MB1CLV DUMMY 695011-1 AUTALV LOGCLK-4 650356-4

6-3 Advanced Scientific Computer

&

Table 6-1. Central Processor Logic Cards (Contfnued)

Logg:?on Function Part Number Loggz?on Function Part Number
AUIBLA TERMCRD 650296-1 AUICLA TERMCRD - 650296-1 -
LB AUOUTB(0) 931978-1 J B AUMULTA(0) 929335-1
ﬁ LC AUOUTB(1) 931978-1 - C AUSUMD(10) 686487-1
LD AUOUTB(2) 931978-1 D AUMULTA(1) 929335-1
LE AUOUTB(3) 931978-1 E AUSUMD(8) 686487-1
LF AUOUTB(4) 931978-1 F AUSUMD(4) 686487 -1
LG AUOUTB(5) 931978-1 G AUMULTA(2) 929335-1
LH AUQUTB(6) 931978-1 H AUSUMD(2) 686487-1
LI AUOUTB(7) 931978-1 I AUSUMD(7) 686487 -1
LJ AUCTL3B 931969-1 J AUMULTA(3) 929335-1
LK AUROMFFB 931972-1 K AUSUMD(6) = 686487-1
LL AUCTL2B 931954-1 L AUSUMD(5) 686487 -1
LM AUCTL4A 931945-1 M AUMULTA(4) 929335-1
LN AUNORMA(0) 929338-1 N AUSUMD(T1) 686487 -1
LO AUNORMA(1) * 929338-1 0 AUMULTA(5) 929335-1
LP AUNORMA(2) 929338-1 P AUSUMD(9) 686487 -1
LQ AUNORMA(3) 929338-1 Q AUSUMD(3) 686487 -1
LR AUNORMA(4) 929338-1 R AUMULTA(6) 929335-1
LS AUNORMA(5) 929338-1 S AUSUMD(0) 686487 -1
LT AUNORMA(6) 929338-1 T AUMULTA(7) 929335-1
Y LU AUNORMA(7) 929338-1 * U AUCTL5B 929093-1
AUIBLV TERMCRD 650296-1 AUICLV TERMCRD 650296-1

6-4 Advanced Scientific Computer

a2

SECTION VII
DIAGRAMS

7-1 GENERAL

ASC Hardware Documentation Control at the TI Austin Facility provides each ASC
site with the latest logic diagrams and engineer's lists. However, individual
logic diagram sets, and the associated engineer's list in Fiche form, may be -
obtained from them by specifying only the card name. Drawing numbers are not
required. Engineer's Tists, in Fiche form, for motherboards and harnesses may
also be obtained by name. In addition, logic diagrams may be ordered by drawing
number from Drawing Control at the TI Austin Facility.

7-1/7-2

Advanced Scientific Computer

APPENDIX A
DETAILS MAPS

Dedicated CM Locations. e
4XCP Details Map Overview
4XCP Status Map and PSW Register. . . .
4XCP Details Locations.
4X IPU Register Stack
4X IPU Details Map.
4X MBU Details Map.
4X AU Details Map

4X Hard Core Unit Register Maps:

Master Hard Core
IPU Hard Core.
MBU Hard Core.
AU Hard Core

Page

........ e A-1
..... e e A-2
.......... A-3
.......... A-4
.......... A-6

.......... A-15
.......... A-23

.......... A-31
.......... A-32
.......... A-33
.......... A-33

Advanced Scientific Computer

LOCATION
(HEX)

FUNCTION

Default bootstrap buffer start

MCW address cell CP0O

MCW address cell CP1

MCW address cell CP2

MCW address cell CP3

Pointer to store Status area {single CP)
Pointer to load Status area (single CP)
Pointer to store Intermediate area (X1CP)
Pointer to load Intermediate area (X1CP)
Pointer to store Details area (single CP)
Pointer to load Details area (single CP)
BRSM augmented PC save words

Pointer to MCU Context switch area CP0
Pointer to MCU Context switch area CP1
Pointer to MCU Context switch area CP2
Pointer to MCU Context switch area CP3
Pointer to store MCU Map and Protect area
Pointer to load MCU Map and Protect area
ROM RO augmented save words

ROM R1 augmented save words

ROM R2 augmented save words

ROM R3 augmented save words

ROM Base augmented save words

ROM PC augmented save words

Pointer to TCC2(0) High Priority queue headers
Pointer to TCC2(0) Low Priority queue headers
DISC 0 CA address

DISC 1 CA address

DISC 2 CA address

DISC 3 CA address

Pointer to TCC2(2) High Priority queue headers

Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer

to TCC2(2) Low Priority queue headers
to TCC2(3) High Priority queue headers
to TCC2(3) Low Priority queue headers
to TCC2(4) High Priority queue headers
to TCC2(4) Low Priority queue headers
to TCC2(5) High Priority queue headers
to TCC2(5} Low Priority queue headers
to TCC2(6) High Priority queue headers
to TCC2(6) Low Priority queue headers
to TCC2(7) High Priority queue headers
to TCC2(7) Low Priority queue headers
to TCC2(8) High Priority queue headers
to TCC2(8) Low Priority queue headers
to TCC2(9) High Priority queue headers
to TCC2(9) Low Priority queue headers

MEM EXT

Tape SCB 0
Tape SCB 1
Tape SCB 2
Tape SCB 3

ROM dump return address to caller
ROM dump final octet address
Automatic interrupt ROM exit pointer
Software interrupt ROM exit pointer
ROM card boot convert pointer

Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer

to TCC2(1) High Priority queue headers
to TCC2(1) Low Priority queue headers
to User Exit area for CPO

to Monitor Entry area for CPO

to User Exit area for CP1

to Monitor Entry area for CP1

to User Exit area for CP2

to Monitor Entry area for CP2

to User Exit area for CP3

to Monitor Entry area for CP3

to Monitor Exit area for CP0

to User Entry area for CP0

to Monitor Exit area for CP1

to User Entry area for CP1

to Monitor Exit area for CP2

to User Entry area for CP2

to Monitor Exit area for CP3

to User Entry area for CP3

ACC 0 Start Ca address
ACC 1 Start CA address
ACC 2 Start CA address
ACC 3 Start CA address

(B)132488

Figure A-1. Dedicated CM Locations

A-1

Advanced Scientific Computer

ocTET] 4XIPU
ADDR | WoRD o 1 2 3 a 5 6 7
o o PswW / P3 BA XAQ XAt xA2 XA3
1 8 AR P2 LA YAO YAL YAZ YA3
2 10 IR P CKCNT 2P0 zP1 zP2 zP3
3 18 RO L z80 281 zB2 z83
4 20 no PA RS0 RS1 R52 RS3
/ g H S S
o o
5 28 BR S reo |01 Re1 gl mez 2] re3 CONT
+ T Y T T
6 30 XR R70 R71 R72 R73
< N
7 as NR R8O RrB1 RB2 Rr83
8 40 R2 /X4 R9O R91 R92 R93
° a8 Rr3 RY4 RAD RA1 RA2 RA3
10 50 RBO RB1 rRBZ RB3
4 *
1" 58 RCO RCT RC2 RC3
INSTRUCTION BUFFER KA
12 60 o 1 2 3 4 5 5 7
+ " +
INSTRUCTION BUFFER KB
13 68 o N 1 2 N 3 4 N 6 7
BASE REGISTER A
14 70 1 2 3 4 5 [7
BASE REGITER'B
15 78 2 9 A 8 c o 3 £
ARITHMETIC REGISTER C
16 80) 1 2 3 4 . s 6 . 7
ARITHMETIC REGISTER D
17 88 8 9 A N B . c \ o N 3 F
INDEX REGISTER |
18 90 0 1 2 3 4 . s 6 7
VECTOR PARAMETER FILE REGISTER V
19 98 o 1 3 4 5 6 7
WORD ADDR
OCTET| 4xMBU
PIPE
2 1 .
X DATA REGISTER
0 280 200 150 AO o . 1 2 3 4 s 6 7
Y DATA REGISTER
1 288 208 158 A8 0 1 . 2 3 a 5 [. 7
+ +
Z DATA REGISTER
2 2c0 210 160 BO) 1 2 3 a 5 [7
*
3 2cs 218 68 BB MAB REG Mco iMM
7 s s
CAFX CAFY
4 200 220 370 CO |LPS |FLP |[GLP |SLP NAA XBA HE H
/2 ! ! o,8l o0 8
/ s
5 208 228 178 cB NS [FNI [GNI |SNI / NBA YBA H sl
/ ! 1,911, 9
s
6 260 230 180 DO /FNO cNo [sno NCA 2A 4loaso
° 2. Al 2 A
5
7 2E8 238 188 DB [zM |zBMm / NSA 28a 2Joceo
0 3 B}l 3,8
IO“'I
8 2F0 240 190 EO . i aclac
CONT ROM
9 2Fe 248 198 E8 + CONT A] syl 5, D
oUTPUT
10 300 250 1A0 FO . 6, E|l 6 E
11,308 258 1A8 F8 P / 7, Fl7 ¢
WORD ADDR
OCTET!
axAu
3 2 _, 1 ., o N
o 310 260 180 100 CONT acc ABM
+ 1
-]
1 31 268 188 108 A8 (upuT) MPS AsL
2 320 270 1co 110}¢€ MPC com
a (INPUT) 3
3 328 278 1ce 1187 SoR EF coL
(OUTPUT)
H
4 330 280 1D0 120 LoR NORM DVRM N
G - T
LL E
5 338 288 1D8 128 SH Rowm DVRL
r
6 340 290 10 130]V NS aoom DVNDM
§ c
7 348 298 1EB 138 . ADD ¢t7Jo| ovnoL
N i
% :
8 350 2A0 1F0 140 X MODFM
LE S
9 358 2A8 1FB 148 MODFL
(8)125810

Figure A-2. 4XCP

Details Map Overview

A-2

Advanced Scientific Computer

ADDR 0 1 2 3 , 4 . 5 , 6 . 7
7 :
| = =~ | = G 11 T
% f f 4 ¥
8 //////// BASE REGISTER
1 \ 2) 3 . 4 1 5 . 6 7
} } } } + }
10 BASE REGISTER
8 ; 9 . A ' B . c s D , E_ . F
18 : ARITHMETIC REGISTER
0 . 1 . 2 , 3 . 4 . 5 . 6 . z
} + t 4 + + :
20 ARITHMETIC REGISTER
8 ' 9 } A ; B : [. D) E . F
28 INDEX REGISTER
0 : 1 , 2 , 3 \ 3 X 5 . 6) 7
+ } } ¢ + }
30 VECTOR PARAMETER FILE REGISTER
0 : 1 . 2 3) 4) 5 . 6 . 7
(B)125803

Figure A-3. 4XCP Status Map

BYTE 0 1 2 3
AE AE MASK 7 PIPE :{I ; /// F M| B / COMPARE ", RESULT
/ DISABLES P 0o / o|Cis / CODE / CODE
Lol ol | Dol L LB | Dol e«
ofsl|afsfolt|2]|spP A/)/ Ao]1]|2]3 N////A /LTGTVE it |eT|E
) a 8 12 16 20 24 28 31
ARITHMETIC EXCEPTION (AE) - MONITOR CALL CONDITION (MCC) -
D - DIVIDE CHECK CP TRIED TO EXECUTE AN MCP/MCW
1 - FX. PT. OVERFLOW
2- FL. PT. OVERFLOW BRANCH OR SKIP CONDITION (BSC)
3- FL. PT. UNDERFLOW CP TRIED TO EXECUTE A BRANCH/SKIP

FOR WHICH CONDITION WAS TRUE
PROTECT ENABLE (PROTEN) -
CM PROTECTED

MAP ENABLE (MAPEN) -
CM MAPPED

FORK MODE INDICATOR (FORK) -
CP IN FORK MODE

(B)125809

Figure A-4. 4XCP Program Status Word (PSW)

A-3 Advanced Scientific Computer

\\\‘\\\

7
é

///

BRI
NMAMNNNRNNRNN

BV//!S

DI

IIIIIIIIIIIIII

2
AND HARDWARE 4
LOCATIONS OF T
EEEEEEEEEEE 5
AAAAAA . /
] ALL

ZZZZZ

Y

_OaO T

N

Figure A-5. 4XCP Details Locations

(Sheet 1 of 2)

A-4

Advanced Scientific Computer

IAPIPE(0-7):
14ADDR(0-1):
4ADDR(0-1):
I[4AADDR(0-1):
I1ARHA Z(0-3):
14ZHAZ(0-3);
14ZHAZ(4-7):
14ZHAZ(8—11):
[4ZHAZ(12-15):

O 00 NNOU B W N —

1. BUDATA(0-15):

2, BULOOP(0-3):

3. BUADDRA(0-4):

4., BUCMR
BUADDR(0-4):
BUZAG :

5, BUCMR :
BULOOP(0):

BULOOP(1):
6. BUCMR:

BULOOP(2):

BULOOP(3):

AUCTL4A

.

0O N OU A WN =

.

(B)130856A (2/2)

4X DETAILS LOCATIONS

IPU DETAILS MAP

4 BITS/CARD
12 BITS/CARDS
16 BITS/CARD
4 BITS/CARD
2 BITS/CARD
6 BITS/CARD
6 BITS/CARD
6 BITS/CARD
6 BITS/CARD

IAVECLAS:
14MISC:
I14CMREQ:

10,

11,
12,
13.

14INFACE(0-3):
14INFACE(0-3):
[ASTATUS:
I4ACMREQ:
I4PIPTOP:
IAROUTE3:
14L.VL3:

14, I4FILE(0-15):

MBU DETAILS MAP

1 BIT/HALFWORD/
CARD

5 BITS/CARD
1ST BIT

1 HEX/CARD
LAST HEX
1ST 4 BITS;
NEXT 7 BITS

LAST 7 BITS

1ST 4 BITS IN
OCTETS 4 AND 6;
NEXT 7 BITS

NEXT 7 BITS

7. BUCAFA():
8. BUCAFA(1);
9. BUCTL3A

10.
11.

BUROM(0-3):
BUCMR:
12, BUCTL4A:

13. BUCTL3A:

14,
15.

BUL.OOP(0-3):
BUROM(0—3):

AU DETAILS MAP

AUMULTA(0-8): ONE HEX/CARD
AUROMFFB, BITS (0-12); AU4CLTIA, BITS (13-15)

AUCTL2B BITS (0-2); AUCTL3B BITS (3-7)
AUCTLS5B BITS (0-7)

AU4ADDA(0-15): ONE HEX/CARD
AUOUTB(0-8): TWO HEX/CARD; ALSO FANS OUT AUNORM (0-7) AND AUCTLA4A
AUNORMA(0-8): TWO HEX/CARD

BITS(0-2);
BITS(3-5);
BIT(6); BIT(7)
NOT USED

1 BIT/HEX/CARD
4 BITS/CARD
BITS (0-3);

BITS (4-7):

BITS (8—10):

BIT (11);

BITS (12-15)

1 BIT/HALFWORD/
CARD

COVERS 6L
COVERS 6R
GATES OUT OL.,
OCTETS 9-B

1 HALFWORD/CARD
COVERS 3L,
BITS 0-8
COVERS 3L,
BITS 9-15,
COVERS 3R,
BITS 0—-14;

BIT 15, SPARE
1 HEX/CARD

2 BITS/CARD

Figure A-5. 4XCP Details Locations (Sheet 2 of 2)

A-5

Advanced Scientific Computer

REGISTER STACK FORMAT ~ |

X4 CP

QRr

N - O
QOWPoxddonn

(8-31), IPU DETAILS MAP WORDS 3,4,5, AND 6

RSTACK BITS 8 9 10 1

2
|

DESCRIPTOR
NAME

112,13 1405 16'I7I18||9]20|2||22'23 24 25 26 7|ze|29

Q, ~

& &
s/xfofe/S/A/w/om/rS e/ N/ sSo /A /NSo/2/s /A /D
Y/ X/ S/ 0/ F] O 5/
&))E)5)T))&)E)L)E))T) E SRS SE) S/ F)E) L) ES ¥

REGISTER ADDRESS BITS — RA0-6
BITS 0-2 DECODED TO SELECT RF OCTET (A-V)
BITS 4-5 DECODED TO SELECT WORD (0-7)IN OCTET

BIT

SCR -
SCA -
LAM -
LAC -
VHZ -
CHZ -
RHZ -
AEH —
ACT -
OCK —
ZST -
DHW —
DDW —
RDT —

(B)131560

6 SELECT LEFT (=0) OR RIGHT (=1) HW IN WORD

SHORT CIRCUIT REGISTER OPERAND

SHORT CIRCUIT ALPHA OPERAND

LOAD ARITHMETIC MASK

LOAD ARITHMETIC CONDITION

VECTOR HAZARD (VPF BEING MODIFIED)
COMPARE CODE HAZARD INSTRUCTION TYPE
RESULT CODE HAZARD INSTRUCTION TYPE
ARITHMETIC EXCEPTION HAZARD INSTRUCTION TYPE
LEVEL 5-C ACTIVITY BIT

ONE CLOCK INSTRUCTION TYPE

Z STORE (CM DESTINATION) INSTRUCTION TYPE
DESTINATION HALFWORD

DESTINATION DOUBLEWORD

REGISTER FILE DESTINATION INSTRUCTION TYPE

Figure A-6. 4X IPU Register Stack

[303
-\,
&)
fog)
3
S
SPII

sP2 SPARE (UNUSED) RSTACK BITS
sP3 f

Format

A-6

Advanced Scientific Computer

e

IPU ¢ DETAILS MAP

WORD 0
3
°o,_¢/,
N o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2 2.
IRQAE(0) I RQAE'1) I QAE(ROAE3) | tRQAEM(0 IRQAEM']‘—[H?OAEMIZ) { IRQAEM(3) | NOT USED | NOT USED |[NOT USED | NOT USE! Shmi AL nSAB Sam IRQ IRQ I : - =
° () [1 IR 2 |) ¢ USED | DISABLE | DISABLE | DISABLE | DISABLE
) 2) |Sm B3] MAPEN | PROEN | NOTUSED [NOT USED | NOT USED | IRQFORK l IRQMCC IRQBSC NOT USED IRQCL IRQCG IRQCE NOT USED| -8QRL l IRQRG IRQRE
1 IRQAR (0-31)
2 HQIR (9-31}
3 }1BQROC (0~31)
4 |1BQAOG (0-31)
5 |tPeBR (c-31;
6 |tPaxRr r0-31%
7 IPQNR f0-313
NOT NOT NOT NOT
F'—'— R2) \ NOT . N :
8 USED ° USED Rz1 USED R22 usED R2(3) USED R2i4 usoeTn RZ'S U'_cgu R2:6 Nov R21Y
s LSED
NOT NOT NOT NOT J
R3C R . NOT NCT NOT T
s I* useD USED 3t USED R32 USED R3G1 USED R3e USED R35 USED R3€ uNsoEo R3r7
1 |NOT useD
11 |NOT useD
12 |IL@kAC fo-31: .
13 [ILOKBO {0-31)
14 ALL ZEROS
15 1FQBO (G-31} i
1e |1FQco fo-31;
1: [1Fepe fo-31;
18 [IFQIO fo-31)
19 LFQVO (¢-31)
IPU4 DETAILS MAP
WORD 1
ENEN
ON 9 1 2 3 a s € 7 3 9 10 " 12 13 14 15 16 17 19 21 23 25 2¢ 27 28 2 b 31
NOT
0 USED IRQP3.2-21:
. NOT
usED IPQP2 8 31
2 NOT
USED QP18 31
3 |1BQRO1 (0-31)
4 | 1BQAOGY (0-31)
5 |NOT USED
& |NOT USED
7 |NOT USED
NOT NOT NOT NOT NOT ¢
8 RX4'0} e RX&(!: RX4" . NOT . NOT] NCT N
USED USED USED 2 USED RXxa(3) USED fxa) USED RX4s UsED Rxa& USED Rxa)
NOT NOT NOT R NOT NOT NOT
). a1 RYA(2: o 5 . NOT iren ~NOT
s USED RY#0 usED Ry USED USED RY43) USED RYSO USED RY4S USED RYse useo RY4(T)
10 [NOT USED
11 |NoT useED
12 [1L@KAT 0-31)
13 |Laxe1 (0-31!
14 |IFOAL ic-31°
15 [1IFQB1 '0-31°
16 [IFQCH c-317%
17 |iFQD1 (0-31"
18 {IFQIT 10-31
13 PIFQv1 fo-313
(D} 123682 .

Figure A-7. 4X IPU

(Sheet 1 of 4)

Details Map

A-7/A-8

Advanced Scientific Comp iter

" 1PU4 DETAILS MAP

WORD 2 ¢
NS
A
) o 1 2 3 4 S & 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3t
NOT o
° USED 1LQBA (8—31) -
1 NOT ILQLA (8-31) -
USED
2| cKCNTR (0-31) > <
3 lcac NOT USED >
(0-7)
NOT
4 - 2
USED 1naPa(8-31)
5| NOT USED
6| NOT USED
7| NoT USED - ’
8| NOT USED -
9| NnoT usED -
10| NOT USED -
11| NOT USED -
12§ 1ILQKA2 (6—31)
13} ILQKB2 (0-31) o
14| 1FoA2 (0-31) .
15| IF@B2 (0-31) e
16 | IFQc2 (0-31) e
17| 1FaDp2 (0-31) T
18] wrarz 0-3)
191 1IFQv2 (0-31)
IPU DETAILS MAP
WORD 3
O &,
A ° 1 2 3 4 s 6 7 8 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 EY 31
o| LboacT R4ACT LDORA3 | R4RA3 LDORA4 RARAL LDORAS | R4RAs | XA0E—31)
6 NOT YAO (8'—3|)
1| LoopHw RADHW LDORA2 | R4RA2 LDORAO | R4RA UsED RARHZ -
NOT
2| Lpoobow RADDW LDORAS RARAG LDORA! RARA1 USED R4LAC [ZPO (8-31)
3| LoracT R4LAM LDI1RA3 RACHZ LDIRA4 R40CK LDIRAS RAAEH | ZBO &-31)
NOT NOT
RS0 (8-31 T
4| LDiDHW useD LDIRAZ | R4VHZ LDIRAO RASCR USED RARDT (8-31)
NoT NOT NOT
LD1DDW LD1RAG R4ZST LDIRA1 R4SCA R60 (8-31) ¢
s usED USED USED
NOT NOT NOT NOT
LD2RA4 LD2RAS R70 (8-31)
6| Lp2acT USED Lo2RAS | L , USED UeED
NOT NOT NOT NOT NOT RBO (8-31)
7| Lo2pHw USED LD2RA2 USED LD2RAO vsED USED USED
NOT
8| Lp20DW Lozras | NOT LD2RA1 NoT NoT NoT R90 (8-31)
USED USED USED USED USED
NOT NOT NOT NOT _
LD3RA RAO (8-31)
9| LD3ACT USED LD3RA3 SED LD3RA4 USED D3RAS useD
NOT NOT NOT NOT NOT
A LD3RA RBO (8-31)
10] Losonw USED LD3RAZ USED 3RA0 USED USED USED
NOT NOT NOT NOT NOT Py
RCO (8-31)
11| LD3DDW USED LD3RA6 USED LD3RA1 USED USED usSED
12| ILQKA3 (0-31)
13| 1LQKB3 (0-31) -
141 IFQA3 (0-31) i
15| 1F@B3 (0-31)
16| IFQC3 (0-31) ———
17| IFQD3 (0-31) -
18| IFQI3 (0-31) T
19| 1FQvs (0-31) i
(D) 123683 .

Figure A-7. 4X IPU Details Map
(Sheet 2 of 4)

A-9/A-10 Advanced Scientific Computer

U4 PETAILS MAP B N
WORD 4 s

SN,
NG
N 0 1 2 3 a s 6 7 8 s 10 11 12 13 14 1s 16 17 18 19 20 21 22 23 24 25 2 27 28 2 2 3
VIPO o ero| NOT XA1(8-31)
0 VISTRO ARINC ZJOIND ZOAGE1 BURHW WNDI usED i
NOT Al (o Iy
1| we VISTRI ARHAZ ZJcinNg Z0AGE2 | BURSW WNDERT | oo YA1 (8-31)
NOT —
2} viPz VISTR2 RCTRQ ZJOIN2 ZOAGE3 BURDW WNDER2 | usebp ZP1 (8-31)
NOT
3| wiP3 VISTR3 RCTR1 ZJOIN3 Z1AGEO BUAHW WNDER3 | ,gep Z8B1 (8-31)
. NOT ~
SELPIO VBADO RCTR2 RJOINO - ZIAGE2 BUASW WNDLTO | oep R51 (8-31)
NOT
s{ SELPU VBAD1 JOIN RJOINT ZIAGE3 BUADW WNDLTI USED R61 (8-31)
6] seLPi2 VBAD2 noT RJOINZ z2AGE0 | vHw wnoLrz | T R71 (8-31) >
USED USED
NOT NOT -
SELPI3 N N R81 (8-31)
7 VBAD3 USED RJOIN3 Z2AGE1 vsw wNDLT3 |
NOT NOT -
g | 4cETIO NoT NoT L4RIN z2AGE3 | vOw R91 (8-31)
usep | usep USED USED
NOT NOT NOT NOT NOT NOT —
RA1 (8-31
9 deemn USED USED USED Z3AGEY | yseo USED USED)
NoT NOT NOT NoT Nor NoT
RB1 (8 31)
10| acET2 USED USED usED Z3AGET | ysep useD USED
NOT NOT NOT NOT NOT NOT _
1] 4cET USED USED USED 23a6E2 | ysep usED useD RCH (8-31)
12 | 1LakAs (0-an)
13 1ILQK B4 (0-31)
12| 1Faaa (0-31)
15| 1FeBa (0-31) -
16 | tFaca (0-31) >
17 1FQD4 (0—-31) -
18| 1Fai4 (0-31) .
19] wava -31) -
fPU4 DETAILS MAP
WORD 5
) s
N ° 1 2 3 4 5 5 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 27 26 29 30 3
o| msiaco MBIACH MBIAC2 MBIAC3 GPILO GPIL1 GPIL2 GP1L3 XA2 (8- 31) . o
1| oemeio DPMBI1 pPMer2 | DPMBI3 GP2LO GP2L1 GP2L2 GP2L3 YA2 (8-31) -
2| opmeoo | bPMBO1| DPmBoz | bPMBO3 | GP3LO GPaL1 GP3L2 GP3L3 ZP2 (8-31) -
3| xaacTo xAACT1 | xaacT2 | xAACT3 | GPawo GP4L1 GPaL2 GPAL3 282 (8-31)
a| vaacto YAACT1 | YAACT2 | YAACT3 SMGP40 | SMGP41 SMGP42 | sMGP43 | RS2 (8-31) p
5{ cueexo CuEQx1 | cuEax2 | CuEQx3 | SMGP50 | SMGPS1 sMeps2 | smeps3 | R62 (8-31) s
6} cueavo cueayt | cueavz | cueavs | ock4o ockal ocka2 ocKa3 R72 (8-31))
7{ XaFuro XAFUL1 XAFUL2 XAFUL3 ocKSo OCKSt | Ocks2 OCKS3 R82 (8-31)
8] varFuLo ‘yAFuL1] YAFuL2 { YAFUL3 FCSGTO | FCSGT1 FcseT2 | FeseTa | R9Z 8-31)
9| scktsao | sckTar | sckTaz | sckTaz | sunxTe | sLnxTi sunxT2 | sinxTs | RAZ (8-31)
10] sckTso SCKTS1 SCKTS2 { SCKTS3 PPMFO PPMF1 PPMF2 PPMF3 RB2 {8-31)
11 | sckTeo SCKT61 SCKT62 SCKTE3 PACAOO PACAO1 PACAO2 PACAO3 RC2 {8-31)
12 | nekas (o-31)
13] nakes (0-31) >
14 | 1FQas (0-31)
15| 1FeBs 0-31) -
16 | 1FQcs (0-31)
17 | IFQDS (0-31) -
18| 1F@IS (0-31) -
19 IFQV5 (0-31) o

(D) 123634

Figure A-7. 4X IPU Details Map
(Sheet 3 of 4)

A-11/A-12

Advanced Scientific Computer

1PU4 DETAILS MAP

. WORD 6
AN .
AN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 .15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
o] ENABO ENABL ENAB2 ENAB3 QIRTO QIRT1 QIRT2 QRT3 XA3 (8-31) -
1] romso ROMB1 ROMS82 ROMB3 MODEO MODE1 MODE2 MODE3 | YA3 (8-31) —
2| romso ROMO1 ROM92 ROMS93 LDXAO LDXA1 LDXA2 LDXA3 | zP3 (8-31) -
3| romao ROMAL ROMA2 ROMA3 LDXBAO LDXBAT | LDXBA2 LDXBA3 | ZB3 (8-31)
4| romso ROMBYI ROMB2 ROMB3 LDYAO LDYA1 LDYA2 Lbya3 | R53(8-31)
5| romco ROMC1 ROMC2 ROMC3 LDYBAO LDYBA1 | LDYBA2 LDYBA3 | R63(8-31) >
6| rEQFwo | REQFWiI| REQFW2| REQFW3| XUPO XUP1 XUP2 XUP3 R73 (8-31) >
7| FwwTo FWWTI FWWT2 FWWT3 YUPO YUP1 YUP2 YuP3 R83 (8-31)
s zPFULO 2zPFULS | ZPFUL2 ZPFUL3 2TXUO 2TXU1 zTXU2 zTxu3 | R93 (8-31)
9| zBFuULO ZBFULY | ZBFUL2 ZBFUL3 ZTYUO zTyut zTYu2 zTyua | RA3 (8-31) >
10| zEXO ZEX1 zEX2 ZEX3 REGDPO | REGDP1 REGDF2 | REGDP3 | RB3 (8-31) -
t ZEYo0 ZEY1 ZEY2 ZEY3 IMMo IMM1 MM2 IMM3 RC3 (8-31)
12| 1LQKA6 (C-31)
13| 1LaKB6 (0-31)
14| 1FQAe (0-31)
15| 1FaBe (0-31) —
16| 1FQCs (0-31)
17| 1Faps (0-31) -
18| 1FQIs (0-31)
19| Fave (0-31) —l-
1PU4 DETAILS MAP
% WORD 7
A
A o 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 11 19 20 21 22 23 24 25 26 27 28 29 30 31
NOT NOT NOT
o| ccrTo CCRT1 CCRT2 CCRT3 USED USED VACO VAC1 CCTRO USED L1ACT YNEXTO | L3ACT L3PPL L3CHK L3PWT PRMRAO PRMRA1 | PRMRA6| PRMBR PRMIDW PRMAEH| PRMEXN| PRMEXM | PRMAUa | PRMAUS prRMAUE | PRMAUT | PRMGPI| PRMGP2| PRMGP3| PRMGP4
NOT NOT NOT
1] RCRTO RCRT1 RCRT2 RCRT3 UsED LAORD DUAL TFAIL CCTRI 1@so1 PRVI YNEXT1| RIHIB L3BWN L3WT L3IHZ prmprw| PrMDDW| PRMIHW| PRMISW | PRMM prmMrHz| PrMcar| Prmchz | PRMRDT| PRMRSE prmunw] Prmsow| Prvmov| Prwior | usep USED
2| ADDRM4 | ADDRMS | ADDRM6 | ADDRM7 | PBVLL FLGFL FLGI2 FLGA ccTr2 1Qso2 FRHAZ! YNEXT2| XEC HOLD BRON OPDN C3RA0 C3RA1 C3RA6 c3Br c3DwW C3AEH C3EXN C3IFXM c3AU4 c3AuUS C3AUE c3au7 C3GP1 C3GP2 c3cP3 C3GP4
NOT NOT NOT NOT NOT NOT
3| Ti0 T T12 T QIPO QIP1 QoPo QOP1 L2ACT HQS03 TARGT1 YNEXT: 1
11 3 Q 3| usep USED USED USED C3DHW C30DW C3IHW caisw c3Mm C3RHZ C3CAR C3CHZ C3RDT C3RSE C3HHW c3sDwW c3MDV c3lop USED USED
. . NOT NOT NOT NOT NOT
a| T20 T21 T22 T23 QBSYO0* aBsv1 QBsY? QBsyY3* IND2 11Qs04 USED ZMALIO| FRHAZ3 | ILOP PRV3 TARGT2 | rReRMAHw| RRMADW| RRMsSBL| RRMSGN| RRMBRH| RRMPNK[RRMBLU| RRMIDN RRMSHW| ysED RRMNSP| yseDp RRMSTR| RRMNSN| ysep USED
s R NOT s rrmsor| rrM “ NOT NOT NOT NOT NOT NOT NOT
AROT26 AROT27 AROT28 AROT29 PRVO ACTO CUEQ0 CUEI0 FRHAZ2 1@s0s USED zmaL1r | CRSLT SKIND TRMIN POIND RRMSPK | RRMSYL GRY| RRMIDZ RRMGRN| ,5gp USED RRMSGT| RRMOCK RRMRGS| ,cep USED USED USED USED
NOT NOT NOT NOT NOT
6| AROT30 AROT31 AROT32 AR32 PRV1 ACTI® cuEo! CuEn TARGT2 [n@s06 ZMAL12 | HCALI PMOFF MEQO IND3 PD F DETH
USED CMH USED USED USED P i USED
NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT
M1 Mt PRV2 ACT2" cuEo2 CUE12 PRV 7 ™M PDGNOP PDCORG | PDCPB Pl PDCVET
7 o Mt M1z 3 2 11aso USED MALIZ L sEp USED USED How PDCLF 0 USED USED oc USED USED pocee c USED USED POCXEC | epp USED USED
NOT NoT NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT
PRV3 ACT3" CUE03 CUE13 M20 1aQsos PIRTO L3VIN LIFLW L3VPL L3VBR
8| useo sED USED USED USED 3 ve RDCLF ROCNOP | yeep USED RDCORG | RDCPB USED . RDCPP | RDCVCT USED USED RDCXEC | ysgp USED USED
NOT NOT NOT NOT NOT NOT
KRTAG KAFUL KAPRV KAHAZ M21 nasos PIRT1 LaNIw L3VGO L30RW L30ORM RDCBBX | RDCBCC | RDCBCG{ RDCBWN| RDCBXC | RDCFRK | RDCIN RDCLLA| RDCMCP RDCMLT| RDCPSH| RDCSTK| RDCXCH| RDCSTC
91 useo USED USED USED USED 3 3 RDCBAE . USED
NOT N
10| NOoT Nov NoT NoT NoT KBFUL KBPRY KBHAZ Mm22 1es10 NoT PIRT2 Nov NoT NoT NoT rocecL | Rocerc | caosco rocLac | rocLam| eaosct | NOT ROCSKE | rocsps | cacscz j@——— Nor caoscs | NOT
USED USED USED USED USED USED USED USED USED USED USED USED USED USED
NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT NOT
E 1PIOP IPPRV M23 STATE PIR
1"l ysep UsED USED USED AREX IPPA USED T3 USED USED USED USED AUIACO LIACTO oAvwTO| ygED AUIACT L7ACT1 DAVWT! | yggp AUIAC2 L7ACT2 DAVWT2 | yggDd AUIAC3 L7ACT3 DAVWT3 | ygED
12| 1LQKA7 (0-31) -
13 ILQKB7 (0-31} -
14| IFQA7 (0-31)
15 | 1FaB7 (o-31) -
16 | 1FQC7 (0-31) i
17 | 1FQD7 (0-31) ol
18 | 1FQ7 (0-31) —
15 | 1IFQV7 (0-31) -

(D) 123900

ANOTE DO NOT LOAD ACTO, ACT1, ACT2, ACT3,
aBsSY0, QBSY1, QBSYZ, QBSY3,
AREX, IPPAE, 1PiDP, IPPRV

Figure A-7. 4X IPU Details Map
(Sheet 4 of 4)

A-13/A-14

Advanced Scientific Computer

LEFT HALFWORD 0

RIGHT HALFWORD 0

5 N S S N IR N AN S S T B B B

OCTET

[g 0-15) -
1 BRAYOR(0—15)

2 8RQZOR(0—15)

3 BIQMAR(0-15)

4 BLQFLP(0~15)

5 BLQFNI(0—15)

6 - BLAFNO(0—15) - T

7 BAQZBM(0—15)

8 NOT USED —IL no 15 I[: IN(1-8)

9 NOT USED
10 d NOT USED
11 NOT USED

RIGHT HALFWORD 1
BIT
OCTET] |) l 2] 3 ‘ 4 l s l s l 7 8 l 9 ! 10 l 1 | 12] 13 ‘ 14 ! 15

o BRAX1R(0™15)

1 BRQY 1R(0- 15}

2 BRQZ 1R(0—15) >
3 BIQMBR(0—15) Lo
a BLASLP(0—15)

5 B8LASNI(0-15)

6 BLQSNO(0—15) L
N - T r z BHASPCFN(0—15) - -

BHSECFX |BHSECFXB l BHSECFXH | BHSECFY |BHSECFY8 | BHSECFYH | BHSECFZ | BHSECFZB]sus:cml BHSECO BHSECA BHSECF BHSECC BHSECL. 1 BHSECRI I BHSECRO
8 j§———— GEMQROMOT =—————> NOT USED BMQROMOT(68-79)
(64-66)

g BMQROMOT(80-95) -
10 BMQROMOT(96-111)

BIT
OCTET o l 1 | 2 ‘ 3 | 4 | s l 3 l 7 8 I £} ‘ 10 | 11 | 12 I 13 | 14 [15
o BRQXOL(0-15) -
1 BRQYOL(0—15)
2 BRQZOL{0-15)
3 BIQMAL(0~15)
a BLQLPS(0-15) s
5 BLANIS(0—15)
6 g NOT USED
7 BAQZM(0—15)
8 NOT USED .
9 s-r%ﬁ-?o) sTBA(‘:l'Q(I) l srafro(z) sri‘-:ra(s) Ac?:‘-:r:fo) l AceT(1) | AceT(2) | AcCT(3) sav?qo) sv(1) I sv(2) I sv(3) uss‘ig) szﬁg(o) Avggg(l) Avgig(Z)
10 NOT USED v::sc(no) Mgig(o) Aauaig(n veoe
1" BFQP(0—15) >
LEFT HALFWORD 1
BIT
OCTET o | 1 l 2 I 3 I 4 | 5 l 6 } 7 8 ! 9 l 10 l 11 | 12 t 13 | 14 | 15
o et BRAX1L(0-15)
1 BRAY1L(0-15) L
2 B8RQZ1IL(0-15) »
3 BIQMBL(0~15)
4 - BLQGLP(0—15) »
5 BLQGNI(0-15) >
6 ad BLQGNO(0—15)
7 NOT USED
8 oT(0—15) >
9 BMQROMOT(16-31)
10 BMQROMOT(32~42) > NOT USED [q— sv?‘?ggﬁgr —
1 NOT USED |.—— srzlgggglsc;-r :[l: NOT USED an(ggk_oslal)of PE— |

BMQROMOT(112-118) > NOT USED %

BMQROMOT(123~127) =iy}

(D)127613 (1/4)

Figure A-8. 4X MBU Details Map
(Sheet 1 of 4)

A-15/A-16 Advanced Scientific Computer

LEFT HALFWORD 2 RIGHT HALFWORD 2

BIT 8IT
[T -1 1-1-71]°] [ol el w [=] e] -] | 11 [:]-1°¢] IR EREE |
OCTET o 1 2 3 a 5 6 7 8 9 10 1 12 13 14 15 OCTET [1 2 3 a s 6 7 8 9 10 11 12] IR l 12 l 15

0 BRQX2L(0—15) ° 8RQX2R(0—15)

1 BRQY2L(0- 15} o 1 BRQY2R (0-15,

2 BRQZ2L(0—15) 2 BRQZ2R(0-15)

3 BIQREGOL(0-15) B 3 B1QREGOR(0— 15+

4 NOT USED : BAQNAA(8-16) a BAQNAA(17—32;

5 NOT USED 8-186) L 5 (17-32j

3 NOT USED > BAQNCA(8~16) 6 BAGNCA(17-32

7 NOT USED A (8=16) 7 [(17-32; -
8 BMQROMOT(128~ 143} 8 BM T(192-206; =l} ool

9 BMQROMOT(144-159) 3 NOT USED L .
1o BMQROMOT(160-173) =J| NOT USED 10 BMQROMOT{224-239; P
1" j—— ?-‘-75_‘ 751; + NOT USED —%amo‘ngrov NOT USED l‘._—_ eMaRaMaT e s & 1 0T(240-249) :l[NOT USED |-———— BMQROMOT{251-255) —ind

LEFT HALFWORD 3 RIGHT HALFWORD 3
ar eIT
ocTET D l ' | : | : l ‘ l ° I ° I 7 ° l ° | ' l " l 2 l ° I ' I 'S T °] ' l : | ? I ‘ | ° l ‘ | i ° I i [* ‘ " I - 1 - l " l °
[BRAX3L(0-15) > o BRAX3R(0~15)
1 BRAY3L(0-15) * 1 BRQY3R(0~15)
2 = BRQZ3L(0-15) 2 BRQZ3R(0-15}
3 BIQREGIL{0—15) 3 BIQREGIR(0-15)
4 NOT USED AQXBA(8~161 4 - BAQXBA(17-28) BAQXA{29-32, e
s NOT USED BAQYBA(8—16} s ay BAQYBA(17-28} BAQYA(29-32; —
6 NOT USED BAQZA(8- 161 o 6 BAQZA(17-28) BAQZEA(29~32) emmm—
7 NOT USED BAQZBA(8-16} L 7 BAQZBA(17-28) NOT USED —i
acq 8cQ sca 8ca 8ca Bca Q sca BCQ 8cq scq 8ca BCQ Bca Baca BCQ BCQ sca 8cQ aca sca BCQ BCQ aca aca NOT
8 CUEPO CUEPO CUED cuEo CuE2 CUEZ ZBREQ xBHEQ xi‘i&o NSFUL HWC owe SWC IMFUL MBIAC SRMST e PCAUR GATAR AURAC SCKTS NOPRI CCKRI £SLMO AULOB AULOB RMOUT) RMOUT USED
(0} (1) (0) (1) (0} {13 [:)) (1) (0} 1) (0) (4 (e (12 (16; (20}
8cq BCQ 8cq 1= B8cQ BcQ BCQ NOT BcQ BcqQ 8cQ aca aca 8ca aca NOT 8cQ 8ca BCQ BCQ aca 8cQ 8cQ aca acq BCQ NOT
9 CUEP1 CUEP1 CUE1 cUE! CUES CUES z88sY YNEXT USED ZAFUL HWZ owz vic RGFUL oPMB! PVCAO 9 USED GATAI AcT12 SCR6 SMGRP SGTRI ESLAR AULO9 AULO9 RMOUT RMOUT USED
(0) (1) ((1) (0) 1) (0) (1) [£B) (5) (9, 13 (17 21)
sca Bca sca Bca sce BcQ 8CQ aca NOT aca 8ca sca aca sca BCQ sca sca BCa eca 8ca sca NoT sca sca aca 8ca 8CQ NOT NOT
1o cuEP2 CUEP2 CuE2 E2 . CUE6 cuES 1Z8sY ZFILN USED ZFUL SLPE1 SNIET SNOE1 YFRST DPMEO LSENC 1o PCAVO GATAC DPAUO RODOG OCRMA UsSEo EsLAo AuL.10 AuL10 RMOUT RMOUT USED USED
(o) [(o) o) (o) &8 (o m @) (6 10, (1ay f1e;
o | e | xR | &R | 8% | &8 | &0 | %r | vises | vicyw | oifn | 3% | o3 | o882 | yoRer| A%t | 138 o | et | s | NeT | AR | 8% | e | MOT LS | M | enr o | oS | 8%
PRVLT CUE3 UE3 CUE7 CUE7 v TO USED 3
©) 10y 5 VZAZB | VLSTW VORST USED USED (5) (1) (3)) (11, (s 0%

(D)127613 (2:4)

Figure A-8. 4X MBU Details Map
(Sheet 2 of 4)

-
A-17/A-18 Advanced Scientific Computer

LEFT HALFWORD 4 RIGHT HALFWORD 4
BIT BIT
OCTET 0 l 1 ‘ 2 l 3 [4 l s I 6 I 7 8 I ° l 10 I " | 12 I 13 l 14] 15 OCTET o I 1] 2 I 3 l a I s I 6 I 7 8 l 9 l 10 I 11 J 12 J 13 I 18 [15
° BRAX4L(0—15) > o © BRAXA4R(0-15) >
' - BRAY4L(0-15) 1 BRAY4R(0- 15)
2 BRQZ4L(0-15) o 2 B8RAZ4R(0—15)
3 81QMCL(0—15) 3 ~15)
. NOT usED #» 80dsABI(0-1) 4 80QSABI(2-3) B8DQDABI(1-7) > 80QDABI(11-17)
s NOT USED bt (e=1) s BDASDCI(2-3) 1-7) 11-17}
6 NOT USED 0=1)] & BDASABO(2-3) BDQDABO(1~7) L BDQDABO(11-17)
? - NOT UsSED o-t) 7 80as0CO(2-3) 1-7) 11-17)
u | star~ | sLarL- | ecaors- Bcax— -
o ac?“’?“ ac&v) PEO PE1 TAO FUuL NOT USED - 8 NOT USED
(0) {0) {0) (0)
BCOSWA | Bcaav- | sLaFn- | swaFn- | ascars- | ecaxw-
1) () Sv 1£0 1E} TA1 FUL NOT USED > ° NOT USED
(0) {0) (0) (0) {0)
10 BO?HWA ﬁ'sogo ong - M'on{ |"_ sczn.:t: - 'cguxl.'-' NOT USED
°) (0) () () () 10 NOT USED
BCAXA- | BCAXA-
11 e NOT USED e—— LSE Ful. NOT USED 11 NOT USED
©) (0)
LEFT HALFWORD 5 RIGHT HALFWORD 5
(134 81T
oCTET ° l 1 l 2 l E) l 4 I s ‘ 6 I 7 8 I 9 ‘ 10 I n [12] 3 I 14 I 15 OCTET [l 1 I 2 l 3 I a l H |r 6] 7 I 8 l 9 I 10 [1" [12] 13 [14 I 15
o BRAXSL(0-15) - L o 15)
1 BRQYSL(0=-15) 1 BRQYSR(0~15)
2 BRQZSL(0—15) 2 BRQZSR(0—15)
3 BIQMDL(0-15) o 3 - 0-15)
" NOT USED 7] B8DASABI(4-5) 4 BDQSABI(6~7) ll: BDADABI(21-27) ‘L‘—r 31-37)
s NOT USED s NOT USED
6 . NOT USED :} BDASABO(4-5) 6 BDQASABO(6—7) 1|:— 80Q 21-27) 7]'[: 0(31-37)
7 NOT USED 7 NOT USED
scoowA | scavia eLaFL- | BLGFL- | BcaFs- | Bcaxe-
8 (1) 1) PEQ PE) TAC UL, NOT USED 8 NOT USED
1)) (1) (1)
A- BLAFN- - FS= | scax-
s | o | oS Ao | e | OORRST| WA s
) (1) (1) [$)])
BLQFN- | BCGXA- | Bcaxs-
10 o fir 2 OEQ OE | ENL FUL NOT USED > 10 NOT USED
(1) (1) 1) 1)
"n e ———— NOTUSED e scl(sm :: B so;(gux'):— NOT USED . " NOT USED
1 1 T

(0)127613 (374)

Figure A-8. 4X MBU Details Map
(Sheet 3 of 4)

A-19/A-20 Advanced Scientific Computer

LEFT HALFWORD 6 RIGHT HALFWORD 6
BIT BIT
. T
OCTET [1 2 3 4 5 6 7 8 9 10 iRl 12 13 14 15 OCTET o 1 2 3 a 5 6 7 8 9 10 1" 12 13] T4 15
I
o BRQAX6L(0— 15" o - BRQXBR(O—15) L
1 BRAYEL(0- 151 1 BRAY6R(0— 15
2 BRQZ6L(0~15) 2 s BRQZER(0-15;
3 BIQIMMOL(0-15} L 3 g BIQIMMOR(0-15) >
a BFQCAFO | BFQCAFt | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL NOT BFQCAFC | BFQCAF!1 ‘| BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFOENDL NOT 4 BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 { BFQACTV | BFANEWO | BFQENDL NOT BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | 2FQNEWO | BFQENDL NOT
(0) (o) (0} 0 (o) (0) (0) USED (8) 8} [8) (8) 8) (8) USED (16) (16) (16) (16) (163 (16) (18) USED (24 (22) (24) (24) (24} (24 (243 USED
BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL NOT BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL BFQCAFO | BFQCAF! | BFQCAF2 | BFQCAF3 | BFQACTV | BFANEWO | BFQENDL NOT BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL NOT
s (1)) (1) (] (1) 1) 1} USED (9 (2] (9 {9) (9) (o) {9) JggD s a7 (17) (17) (17) a7 t7) 17) USED (25 (25) (25) (25) (25) (25) (25 USED
6 BFQCAFO | BFQCAFt | BFQCAF2 | BFQCAF3 | BFQACTV | BFONEWO | BFQENDL NOT BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFGNEWO | BFQENDL NOT BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL NOT BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL NOT
(2) (2) (2) (2} (2) (2) (2) USED (10} {(10) (10) 10 (10) (10) (10) USED s 18 18 18) 18) 18) (18 18 USED (26) 26) (26) (26" (26) (26) (286) USED
)
BFQCAFO | BFQCAF1 BFQCAF 2 BFQCAF3 BFQACTV | BFONEWO | BFQENDL NOT BFQCAFQ BFQCAF 1 BFQCAF2 BFQCAF3 BFQACTV BFANEWO | BFQENDL NOT BFQCAFO BFQCAF 1 BFQCAF2 BFQCAF3 | BFQACTV BFAQNEWO | BFQENDL NOT B8FQCAF O BFQCAF 1 BFQCAF 2 BFQCAF3 | BFQACTV BFANEWO | BFQENDL NOT
7 3) 3) (3) 3) (3% 3) 13) USED 1 O 11) 11 (113 1) 1) oS 7 (19) (19) (19) (19) (19) (19) 19) USED (27 (27) 27) (275 273 27 (27 USED
s BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENOL NOT BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFANEWO | BFQENDL NOT a BFQCAFO | BFQCAF! | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL NOT 8FQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTYV | BFONEWO | BFQENDL NOT
(a) (4) (a) (a) (4) (4) (ay USED (12) 12}y (12) (12) (12) (127 (12) USED (20) (20) (20) (20) (20) (20) (20) USED (28) (28 (28) (281 (28) (28 (28) SED
° BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL NOT BFQCAFG | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFANEWO | BFQENDL NOT BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL NOT B8FQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL NOT
(5) {s5) (5 (5) (5) (5) (5) USED 133 13) (13) {13) (13) (13) {13 USED el (21) (21) (21) (21) (21) (21) {(21) USED (29) (291 (29 (29) (29) (29} (29} USED
BFQCAFO | BFQCAF1 BFQCAF 2 BFQCAF3 BFQACTV BFANEWO | BFQENDL NOT BFQCAFO BFQCAF t BFQCAF2 BFQCAF3 BFQACTV BFQNEWO | BFQENDL NOT BFQCAFQ BFQCAF 1 BFQCAF2 BFQNEWO | BFQENDL NOT BFQCAFO BFQCAF 1 BFQCAF2 BFQCAF3 | BFQACTV BFQNEWO | BFQENODL NOT
to te) t3) te) 16 t6) (6) USED (13 (1a) (1) (1a) (14) (13) (1a) usen 10 (22) (22) 2 SRR | ATV | e e Usen 30) (30) (30) 30) tH et 30) $%%
BFQCAFO | BFQCAF1 BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENDL NOT BFQCAFO { BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFGNEWO | BFRENDL NOT. BFQCAFO | BFQCAF1 | BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | BFQENODL NOT BFQCAFO | BFQCAF1 BFQCAF2 | BFQCAF3 | BFQACTV | BFQNEWO | SFQENDL NOT
" (7)) (7 7 (7) (7) (7) USED 155 (15} 13y 15) 1s) (15) ashg USED " (23) (23) (23) (23) (23) (23) (23) USED (31 (31} (31} (31) 31 (313 31 USED
* LEFT HALFWORD 7 RIGHT HALFWORD 7
BIT BIT
OCTET [l 1 l 2] 3 l 4] 5 ‘ 6 J 7 8 | £} [10 1 11 l 12 I 13 I 14 1 15 OCTET o] 1 l 2 | 3 I 4 l 5 J 6] 7 8 I 9] 10 ‘ 1 ! 12] 13 [14 | 15
o - BRQX7L(0-15% o BRAXTR(0~ 15,
1 BRQY7L(0—15} - 1 BRQY7R(0-15)
2 BRQZ7L{0~15) L 2 BRQZ7R(0-15) : o
3 BIQIMM 1L(0~15) L 3 BIQIMMIR(0—15) L
4 NOT USED 2 4 NOT USED
s NOT USED s NOT USED
6 NOT USED - 6 NOT USED
7 NOT USED . 7 NOT USED
8 NOT USED T 8 NOT USED
9 NOT USED > 9 NOT USED
10 NOT USED L . 10 NOT USED
11 NOT USED o 1 NOT USED L

(D)127613 (4/4)

Figure A-8. 4X MBU Details Map
(Sheet 4 of 4)

A-21/A-22 Advanced Scientific Compu er

LEFT HALFWORD 0 RIGHT HALFWORD 0

BIT BIT
OCTET] | 1 ‘ 2 3 4 I 5 6 I 7 8 [S l 10 | 11 l 12 | 13 I 14 [15 QCTET 0 l 1 [2 ‘ 3 l 4 5 { [1 7 8 I 9 I 10 L 11 | 12 J 3 I 14 | 15

) i~ ALQSHENC(0~—2) =——7w ACQPPOFX paffmmmm— ASQIDXCT(C—3) D —— | o

1 ALQSHENC(3—4) ALQ(AD)DCR Aon(soqncv AOQ(SZG)NCV ADQCVSGN | ACQLSHOF [Aoq FLEXOF .

8)
' |

2 ALQFLUFN “?‘2";():‘ ALQFLOFN ———————— ACQGINF(0—4) ————ereree e z

3 AXQUFFLT | AXQFLTUF Sggn p— AOQGIND(0O~ 41 —— 3

4 jaf——— NOT USED ———PW{ASQGZERO | AOQRCDT | ASQFXOF | ACQDVCHK | ASQITMCT <

5 nm— NOT USED ———P» AOQOFFX | AOQOFFL | ACQUFFL |AOQGZERC AOCQRL 3

6 l4——— noTusep | ——® A0aRG ACQRE acacL AOQCG AoQcE 6

7 j§———— NOT USED =———Pm{ ACQPPZER| ASQESL |ASQRFODD | AOQPPINL [ASQXOFSF 7

8 NOT USED > 8

° NOT USED N

AUCTL.2B AUCTL3B
- 1ALL ‘rﬁ 18Ly o1t NOT USED L NOT USED P
L EFT HALFWORD 1 RIGHT HALFWORD 1
BIT BIT
T
OCTET o 1 [2 { 3) I 5 I 6 l 7 8 ‘ 9 l 10 1 11 I 12 ‘ 13] 14 ‘ 13 ocTET 0] 1 | 2 | 3 I 4 I 5 1 6 | 7 s] 9 l 10 [11] 12 l 13 l 14 } 15
AXQCTL(0—7) Y
0 - °
| [I [axarom(o-7)] |
- AXQCTL. e AXQD1V AXQFLT
1 . (8-13) AXQ-= !
| | [Axarom(s-12)] | reczer

2 AXQEXP(O=7: . z

3 AXQEXPH(0=71 3

4 AXQSGN A I-—I‘ NOT USED — e 2

s NOT USED L 5

6 NOT USED o S

7 NOT USED L B

8 NOT USED o 8

9 NOT USED L] @

AU?J.‘:USB P NOT USED - NOT USED

(01127614 (1/4)

Figure A-9. 4X AU Details Map
(Sheet 1 of 4)

A-23/A-24 Advanced Scientific Compute-

S

LEFT HALFWORD 2 RIGHT HALFWORD 2
BIT sIT
OCTET o] 2 3 a 5 6 7 { 8 9 10 1 12 13 14 15 OCTET o 1 2 3 4 5 & 7 8 9 10 11 J 12 13 14 15
o | WSRO |wONETIS | UAZ | Jgh | M| M ednga | woruses RGMERST| REHITSEY| woruseo IRGNSTY|RSNGUR| up o | e [rwemeie] awer i G et B el ol) IS [CIE (TR e
2 ROM (85

1 AIQAB(O— 151 1 AIQAB(16~31)
2 A1QCDI0-15 2 AlQCD{16-31 -
3 AEQSOR(0— 15" > 3 AEQSOR(16-31:
a AEQLOR(0-15) 4 AEQLOR(16-311
5 ARQSH(0-15 o s ARQSH(16-31)
6 ARQNS{0=15 6 ARQNS (1631}
bd . AAQADD/ 0= 15 7 AAQADD(16-31)
8 et NOT USED 8 NOT USED
s NOT USED 9 NOT USED

e AU4A2£A(0) . Au AA'DA?_AE(U o Au‘?iEQ(Z) AUM&?:;G\ —_— l———— Aua:\z_n:(am Au4A1DA?j(5)A Auu’\REﬁ\(e)A !UA?I:E:WJA —_

me ! T T g T T
LEFT HALFWORD 3 RIGHT HALFWORD 3
BIT BIT
OCTET] 1 2 3 4 5 € 7 8 9 10 11 12 13 14 s OCTET [¢] 1 2 3 4 ES 3 7 8 9 10 T 12 12 14 15
o | REVENE | RERGES | rARclor | B8% | AOVGES. | ROWEEY noT usED ROGNET. | mor |WomriesT| NGT, | Aomiiss: |‘Romcine] momresy | ST o [Rouiet RN | AP U8 | AMIe | gen | edWSls| S |ed9%e. | aoWOE, | eS| OS5 | ANSPI] Amamxan |amarias | wor
ROM(84)
1 ot i AIQAB(32-47) 1 AlQAB(48-63)
2 AIQCD(32-47 L 2 AlQCD(48-63) e
3 AEQSOR:22-47" L 3 AEQSOR(48~63
4 AZQLOR!32-27. 4 AEQLOR(48-63
5 ARQSH32-47 - 5 ARQSHi 48-63
6 ARQNS(32-27 P 3 - ARQNS 48-63, o
7 ADQADC32-37 7 AAQADD! 28-63;
8 NOT USED > 8 NOT USED
5 NOT USED . s NOT USED
| |
DR i ' g e Rar R G > Aianzzagso) wangpares - G
T T D T I :

(Di127614 (2:4:

Figure A-9. 4X AU Details Map
(Sheet 2 of 4)

A-25/A-26 Advanced Scientific Computer

LEFT HALFWORD 4 RIGHT HALFWORD 4

BIT BIT

OCTET 0 [1 , 2 l 3 I 4 | B | [I 7 8 ‘ 9 | 10 ‘ 11 l 12 ‘ 13 | 14 l 15 OCTET o 1 l 2 [3 I 3 I 5 | 6 | 7 8 I 9 10 L 1] 12 | 13] 14 l 15

° ASQACC(0-15) Q ASQACC(16—31)
16 | 17 18 1 19 20 | 21 1 22 23 | 24 | 25 | 26 27 I\ 28 L 29 | 30y 31
1 AXQMPS(0~15) 1 AXQMPS(16-31)
2 s AXQMPC(1-16) —p> 2 AXQMPC(17-32) =
3 AOQEF(0~15) . 3 AOQEF(16—31)
4 ALQNORM({0—~15) o a >3 ALQNOPM(16=31) Ly
s NOT USED ‘. 5 - NOT USED
6 NOT USED ~ 6 NOT USED
7 NOT USED 7 NOT USED
8 NOT USED 8 NOT USED
9 NOT USED 9 NOT USED
ALOUTB(0) AuouTB(1) AUOUTB(2) AUQUTB(3)
- 1BLB 18LC L 1BLD 'T‘ 1BLE
LEFT HALFWORD 5 RIGHT HALFWORD 5)
BIT BIT
octer | 0 1 2 3 a 5 6 7 8 9 10 11 12 13 14 15 OCTET <] | 1 | 2 | 3 | 4 | 5 J 6] 7] 8 I ° [10 | 1 l 12] 13 I 14 I 15
ASQACC(32-47
5 SQACC(3) o ASQACC(48-63)
32 1 33 L 34) 35 1 36 L 37 | 38 1 39 | 40 | 41 L 42 | a3 | a4 | 45 L 46 ! 247
1 AXQMPS(32-47) 1 AXQMPS(48—63)
2 AXQMPC(32-47) - L. 2 AXQMPC(48~63)
3 AOQEF(32-47) > 3 AOQEF(48-63) o
4 ALQNOPM(32-47) 4 ALQNORM(48-63) >
ANQOGT(0—15) ALQ- ALQ- A0Q
s NOT USED 5 ANQADDR(0~8" DZNRM DZACC HWRES |
AMQL— L AMQNGT(1—15) AMQ AMQ~ AsQ— AMQ—
23 R
6 NOT USED € NTC l AMQADDR(0-8) ACTAC ACCEX VHW -
7 NOT USED 7 ——— ALQGDGT(0~3) g AOQAE(0-8) 7JAAQADXOF AOQPPZER | ACQPPINL
-a)
e NOT USED 8 l&——— ALacEXxsF(o-4) »> NOT USED
9 NOT USED 9 NOT USED
AUOUTE(2) | AUOUETI_BéS) o AUCUTB(6) AUOUTE(7)
1BLF - T 1 18LH V]* 18LI -

(D)127614 (3/4)

Figure A-9. 4X AU Details Map
(Sheet 3 of 4)

A-27/A-28 Advanced Scientific Computer

LEFT HALFWORD 6

RIGHT HALFWORD 6

BIT BIT
OCTET [:} | 1 L 2 l 3 I a ’ 5 | 6 | 7 8 I 9 J 10 I 11 I 12 I 13 [124 ’ 15 OCTET o | 1] 2 3 l 4 | 5 | 3 l 7 8 ’ 9 l 10 | 11 l 12 I 13 , 1a I 's
o AXQABM(0—15)) AXQABM(16-31)
00 i o1 02 03 1 04 i 05 I 06 1 07 1 08 1 09 I 10 1 11 | 12 | 13 1 14 1 15 16 1 17 1 18 19 1 20 24 1 22 [23 | 24 1 25 1 26 | 27 | 28 1 29 | 30 I 31
1 AXQABL.(32~47) - 1 AXQABL(48-83)
32 1 33 34 35 1 36 L 37 L 38 | 39 1 40 I a1 L a2 | 43 | 42 i 45 L 46 { a7 48 | 49 | 50 51 [52 53 | 54 L) 1 56 1 57 { 58 59 60 1 61 | 62 | 63
2 AXQCDM (0~ 15) . 2 AXQCDM(16-31)
3 AXQCDL(32-47) 3 AXQCDL(48-63)
4 AXQDVRM(0~15) Lo 4 AXQDVRM(16-31) :
5 AXQDVRL(32-47) 5 AXQDYRL(48-63)
6 AXQDVNDOM(0—15) 6 AXQDVNOM(16-31)
7 AXQDVNDL(32-47) . 7 AXQDVNDL(48—~63)
8 AXQMODFM(C—15) 2 8 AXQMODFM(16-31) »
9 AXQMODFL(32-47) 9 AXQMODFL(48~63)
AUMULTA(0) . AUMULTA(1) AUMULTA(2) AUMULTA(3) AUMULTA(4) AUMULTA(S) AUMULTA(6
[— 1cLB —‘- 1CLD 1CLG —I‘ 100y — e —— 1CLM :l— 1cLo’ =[: iCLR() —l— AUM.UC'L";A(” —— e
LEFT HALFWORD 7 RIGHT HALFWORD 7
BIT BIT
OCTET [1 2 3 3 [5 l 6 l 7 8 9 10 11 12 13 14 | 15 OCTET o I 1 | 2] 3 | 4 I H I 6 I 7 l 8 I 9 | 10 l 1 | 12 I 13 | 14 | 18
FF(0) FF(1) FF(2) FE(3) FF(4) FF(S FF(6 FF(7) FF(8 FF(9)
o] AMOA&C(() AMQA&:(G) AMQA&C(S) AMQSHFAC AgA(gAOFSL(O—B)) £ AMQAR)CP AMQARSH |ANQOGT(0) [ANQOGT(11 JANQOGT(12)|l AEQED(1-3) — o
ROM(64) | ROM(65) | ROM(66) ROM(69) 3 ROM(70) | ROM(71) y ROM(72) | ROM(73) ROM(74) ROM(0) ROM(11) ROM(12)
FF(10) FF(H% FF(12) FF(IS% FF(14) FE(15) [FF(16) AM—FF(17) AM-| FF(18) FF(19)
1 AMQBTNRC | AMQCRCSH| AMQDIV | AMQDIVDP |[AMQOLMUL { AMQFIRS | FLARC(0) |QFLARC(1)| AMQFLAR [AMQFLOAB [ANQOGT (1 4¥ANQOGT(15JANQOGT(18) lf—m AEQED(4-6) — 1
ROM(75) ROM(77) ROM(78) ROM(79) ROM(81) ROM(B2) ROM(84) | ROM(85) ROM(86) | ROM(B7) ROM(15) ROM(16) ROM(19)
FF(20) FF(21) FF(22) FF(23) FFE@ AM-| FF(25) FF(26) FE(27) FF{28) FE(29)
2 AMQFLDIV [AMQFLDNM | AMQFLMDP [AMQFLMUL|QFLARC(2) | AMQFLSUB| AMQFXNOR | AMQEXSH | AMQGFD31 | AMQGSDIS JANQOGT(19)ANQOGT(20 JANQOGT(21) AEQED(7) | AMQINC AAQADCRS 2
ROM(88) | ROM(B9) | ROM(91) | ROM(22) | ROM(93) ROM(S4) | ROM(96) | ROM(97) | ROM(98) [ROM(S9) [ROM(20 23)[ROM(21 22)jROM(22 25
FF(30) AM—FF(31) AM—| FF(32) FF(33) FF(34 FF(35), FF(36) FF(37) FF(38) FF(39),
3 QXOFCD(1) | QXOFCD(2) | AMQLGARS MQLOGCD(‘O—Z) AMQLOGCP ﬂ— MQNORM(0—2) g—— ANQOGT(22—24) AEQET AEQAGTC |AEQEDARX 3
ROM(101) | ROM(102) | ROM(103) | ROM(104) ; ROM(105) ; ROM(106) | ROM(107) | ROM(108) | ROM(109) | ROM(110) | ROM(26) | ROM(27) | "ROM(28
FF(40) FF(41) FF(42) FF(43) |FF(44) AM-FF(45) AM—| FF(46) [FF(47)AM~ |[FF(48)AM— |FF(49)AM—
4 AMQPKPK |AMQPPCMP | AMQPPCPS | AMQPPINL | QRCEN(S) | QRCEN(7) |AMQSTSHAC| QRCENC(2) QRCENcg) QRCENC;OW ANQOGT(26- 27" AMQNGT(21) AEQFLCAR | AEQEDEX | AEQSCHIE 4 .
ROM(111) | ROM(112) | ROM(103) | ROM(114}| ROM(32) | ROM(33) | ROM(34) | ROM(35) | ROM(36) | ROM(37) | ROM(30) A "ROM(31) | ROM(22)
5 FF(50) FF(51) FF(52) FF(53) FF(54) EF(55} FF(56) |FF(57) AN—| FF(58) |FF(59) AN— 5
AMQFXDIV | AMQHLDSG AMQRCEN(17-18) AMQRCEN(20,17) AMQDVINC | QSOFSL.(3) | AMQSLMUL | QRCEN(18) [AMQNGT20 | ANQSDVCK | AMGNGT(1){ ARQNSEXT | AOQSGDEL | AAQADDEX
ROM(38) | ROM(39) | ROM(40) ROM(41) | ROM(42); ROM(43) b ROM(47) ROM(1)
FF(60) FF(61) FF(62) FF(64) |FF(65) AM— FF(66) FF(67) FF(68) [FF(69) AM—|
6 Mosorsl.é1—3) ANQSRCK2 |AXQMODLSH QXOFCD(0) | AMQSCCD | AMQVDP | AMQVECT | gxcTL(0) AMQNGTSZ) AMQNGT(4-5) AAQFPS(0) | AAQFPS(2) |ARQDCD(0) 6
ROM(45) = ROM{46) , ROM(47) ROM(49) | ROM{50) ROM(51) | ROM(52) | ROM(53) ROM(2 ROM(4) ROM (5)
B | SEGR | R G |aiEGs | REGR | aiEshr| atESiotx [fERRAT A le— AmanaT(e-u) o —_— 7
7 - NOT USED
ROM(€8) ROM(83) ROM(90) | ROM(95) OM(100) ROM(76) ROM(6) ROM(Q/) | Rom(s °
AM— AN—
8 AMQNGT(9—10 QNGT(13) AMQNGT(16—-17) ANQXOFCD(1—2) ANQOGT(1-2) AMQNGT(3) QSOFSL(1) ANQOGT(4—5) e NOT USED D 8 M
ROM(9) ROM(10) aom(ga) ROM(17) |' ROM(18) ROM(3) ©
AM— AN—
9 —————— ANQOGT(6~10) — PIANQOGT(13)| ANQOGT(16-17) ANQOGT(25) QNGT(19) ANQRCEN(S)ANQRCEN(7*QXOFCD(O) l§——— NOT USED ——d 9
AUROMFFB el AUACTLIA —_—
- 1BLK TALL NOT USED

(D)127614 (4/4)

Figure A-9. 4X AU Details Map

(Sheet 4 of 4)

A-29/A-30

Advanced Scientific Computer

o]

CP MASTER HARD CORE

4XCP UNIT REGISTER FORMAT

BIT READ 440n WHEREn =BYTE NUMBER
BYTE #,n 0 . 1 . 2 N 3 X 4 5 . 6 . 7
0 - STATE (1,~8) L
L i 4 F re
L] .
1 §—————— CCRI(12-15) == CCR(12-15) —— gl
2 RPF RP(0) RP(1) GCC GSE GAT GCB GRZ
CCRI
3 an RPLY HCINIT ABORT ZROPN | MHCCMP | MHCABT CSR
4 ERR ERRF SYSERR AUTO RZF RIPF EXCHF EXCMD
5 AT AB INTRP VBG MCP MCW MCWF CLCMP
6 PRV PAR ILLO AREXC MIERR AMERR ICMP IABT
7 a———————— MABT(0-3) —le— AABT(0-3) — ol
8 ————————— MCMP(0-3) L ACMP(0-3) —— o
9 PV PE . AE ME g—————— RZ(0-2) —@>
A TR AS AC sSB MC sc SS RB

(B)125813 (1/3)

Figure A-10. Master Hardcore UR Format

A-31

Advanced Scientific Computer

O

IPU HARD CORE

READ 444n WHEREnN =BYTE NUMBER

BIT
BYTE #_.n 0 1 . 2 3 4 5 6 . 7
0 FREEZE |g STATE (0-6) >
1 LSD (0-3) EXCH HCREQ HCINP LDPTR
V,
2 SPSDW // //- OCTR (0-4) >
7
7 7
3 / / PRM (0) | PRM (1) /-——-—- RC (0-2) — o
gd 7
4 RDA RDS RA AR DAV DAV PAR PAR
5 RDA WRITE PRV IPPRV PAE IPPAE AREX IPIOP
6 // / / / / / /
4 + +
; : ; Z
8 . P (01} gl OP (0-1)—_gotes BSY (0-3) >
9 s ACT (0-3) e PRV(0-3)— gl
A CUEO (0) | CUE1 (0) | CUEO (1) | CUE1 (1) | CUEO (2) | CUE1 (2) | CUEOD (3) | CUE1 (3)
B . OA (8—15) -
c - OA (16-23) »
D s OA (24-31) P
7 ’ :
E ////'____m (29-31)—— g . PA (29-31)_______ &)
/]

2,

(B)125813 (2/3)

Figure A-11. IPU Hardcore UR Format

A-32

Advanced Scientific Computer

MBU HARD CORE

BYTE #,

READ 44mn, WHEREmM= 2 FOR PIPE 0 MBU,
m=3 FOR PIPE 1 MBU,
M=6 FOR PIPE 2 MBU,
M= 7 FOR PIPE 3 MBU

BIT
0 N 1 2 3 4 5 6 7
0 PM (0-1) ZBR AR RA RDA RDS OAFUL
1 OA (8—-15)
2 Sr— OA (16—23) -
L L i 4]
3 g OA (24-28) at—————RSTAT (0—2)—— g
4 -——— ozc (0-7) —
5 bt ————— 1.SD (003) —— gl HCMPRV | HPARER |CCMPRV | CPARER
6 ——————— HSTATE (0-3)—— g HCREQ HCINP RNEQoO EXCH
/

7 jt—————__HCCNT (03— gl UNCMP ABTRM ILOPR /
8 f@——DSTATE (0-2)—————m DSCMP f——WRAP (0~1) —gmta@—AVDES (0-1)—»

AU HARD CORE

Figure A-12. MBU Hardcore UR Format

A-33

Advanced Scientific Computer

READ 44mn , WHEREmM =8 FOR PIPE 0 AU
m=A FOR PIPE 1 AU
m=C FOR PIPE 2 AU
m=E FOR PIPE 3 AU

BIT
BYTE B 0o .1 . 2, 3 4 . 5 .6 . 7

0 ADDR (8—15) -
1 fon— | | ADDR (16—23) : - ‘ —
2 | : A DDRI (24-31) : | —t
3 ‘ ; zCcB (0-7) = -
4 |lg——PM ;0—1)_. AR MBFUL WRCMP PR PA //

. 7.
5 STATE (0-7) —
6 leg—— 1SD(0-3) N oCcTCT (0—3)7___.

(B)125813 (3/3)

Figure A-13. AU Hardcore UR Format

A-34 Advanced Scientific Computer

APPENDIX B

X4 IPU LISTINGS, DIAGRAMS, AND DESCRIPTIONS

Page

I4FILE Circuit Board Description. B-1" thru B-35

I4CMREQ Circuit Board Description B-37 thru B-109
Look Ahead Controller Flowchart. B-56
Central Memory Requester Flowchart B-85

I4ADDR Circuit Board Description. B-111 thru B-151

X4 IPU Registers. « . ¢« v ¢ v v v .. B-153

X4 IPU Block Diagram. B-155

X4 IPU Controller Diagram B-157

X4 IPU Controllers and Flip-flops B-158

Program Status Word Registers B-163

X4 TPUROM 1 Listing« . .. B-164

X4 TPU ROM 2 Listing« o v .. B-166

X4 IPU Interface Signals. B-167

X4 TPU GT0SSary « « v v v v v v v o v o o o o B-184

Advanced Scientific Computer

I4FILE

a2

INTRODUCTION - BLOCK DIAGRAM SYMBOLS

The block diagram at the end of this section (figure B-6) condenses the in-

formation contained in the logic diagrams to a one sheet representation. The

diagram contains all data lines and control signatures that are inputs to or out-

puts from the circuit board.

In addition many of the key data and control lines

internal to the board are illustrated. Other information contained on the block

diagram is illustrated in figure 33—1, and includes:

Pin Number

Bus size

Sheet Number -

Location of the logic diagram for the depicted
function within the logic set for the circuit
board. Multiple sheets are referenced with a
letter that is explained in the notes on the dia-
gram.

Circuit board input/output pin that carries the
indicated signal. When more than one pin num-
ber appears, the pin for the most significant
bit appears first (data), or the pin numbers
appear in the order of the signatures listed on
the line (control). ILarge quantities of pins are
in tabular form in the notes on the diagram
sheet.

Numbers on all lines indicate the number of
bits represented by that particular line. A line
without a number contains only one bit. The
representation '"8 x 32" indicates a multiple
word transfer of eight, 32-bit words.

Data lines are heavy black lines. Control lines are single width lines.

B-1 Advanced Scientific Computer

/ GENERAL FORM OF SIGNATURE

MULTIPLE WORD BUS:! 8 WORDS=32 BITS/WORD

/SHEET NUMBER IN LOGIC DIAGRAMS
17 IRDRO1(0—31)
" EH (TO 14PIPEMB)
380/478

FUNCTIONAL: RO .
TITLE FOR CIRCUIT DOUBLEWORD
SELECT IREO(0~31

SINGLE CONTROL
LINE (1 BIT)

SIRSEL—(0—31)

DATA BUS
(HEAVY BLACK LINES)

E
IBENRU 4 SINGLEWORD
BUS (32 BITS)

IRU (1,3,5,7) CIRCUIT BOARD
PIN NUMBERS

GENERAL DESTINATION
OF SIGNAL

A) 123676 MULTIPLE CONTROL.
(A) LINE (4 BITS)

Figure B-1. Key to Symbols - Circuit Board Block Diagrams

B-2 Advanced Scientific Computer

a2

The I4FILEMB contains sixteen I4FILE circuit boards that comprise the

I4F'ILE CIRCUIT BOARD

following major components of the IPU:

KCM Memory Interface File ILQKCMO-7(0-31)

KA Octet Buffer ILQKAO-7(0-31)
KB Octet Buffer ILQKBO-7(0-31)
Register File:
Base Address File A IFQAI-7(0-31)
Base Address File B IFQB1-7(0-31)

General Arithmetic File C IFQC1-7(0-31)
General Arithmetic File D IFQD1-7(0-31)
Index Address File I IFQI1-7(0-31)
Vector Parameter File V. IFQV1-7(0-31)

Each I4FILE circuit board contains two bits of each word in each octet of
the above components, plus the required gating circuits to load each octet
and retrieve information from each octet. The bits are distributed to the

sixteen I4FILE circuit boards as listed in table B-1.

Table B-1. I4FILE Bit Slice Distribution

Octet Word Bits Circuit Board Location within I4FILEMB (3A)
0 and 16 I4F1LE(O) LT
1 and 17 I4FILE(1) LS
2 and 18 I4FILE(2) LU
3 and 19 I4FILE(3) 1.C
4 and 20 I4FILE(4) LQ
5 and 21 I4FILE(5) LP
6 and 22 I4FILE(6) LO
7 and 23 I4FILE(7) LD
8 and 24 I4FILE(8) LL
9 and 25 I4FILE(9) LR

10 and 26 I4FILE(10) LK

11 and 27 I4FILE(11) LI

12 and 28 I4FILE(12) LH

13 and 29 I4FILE(13) LG

14 and 30 I4FILE(14) LF

15 and 31 I4FILE(15) 1LE
B-3

Advanced Scientific Computer

a2

The enclosed fold-out block diagram illustrates all of the data paths and con-
trol signals that are implemented on the I4FILE circuit boards. The circuits
include loading the register file, interface with the MCU, and gating circuits
from the I4FILE octets to the AO, RO, XR, BR and IR registers. The follow-
ing paragraphs describe the component circuits on the I4FILE circuit board

and the required control signals to perform the transfers.

INTERFACE SIGNALS

Table B-2 defines the input signals to the I4FILE circuit board. Table B-3

defines the output signals from the I4FILE circuit board.

Advanced Scientific Computer

O

Table B-2.
Signature | Origin
AOQEF00:2(0-31) AU Pipe 0
AOQEF01:2(0-31)
AOQEF10:2(0-31) AU Pipe 1
AOQEF11:2(0-31)
AOQEF20:2(0-31) AU Pipe 2
AOQEF21:2(0-31)
AOQEF30:2(0-31) AU Pipe 3
AOQEF31:2(0-31)
ICCMSTRB I4HDCORE
ICLOCK:(0-15) I4ADDR
-ICWRITE I4HDCORE
-IIAUPP I4PIPTOP
IIISEL(0-2) I4PIPTOP
-IISELAB(0-3) I4PIPTOP
IIVTBR(0 and 1) I4PIPTOP
-ILHAOIND I4PIPTOP
ILRFTIR I4PIPTOP

I4FILE Circuit Board Input Signals

Function

Doubleword (64-bit) input data from EF
register. Appears as AOQEF0(0-63) at
AU level.

Double word input data from EF register.
Appears as AOQEF1(0-63) at AU level.

Doubleword input data from EF register.
Appears as AOQEF2(0-63) at AU level.

Doubleword input data from EF register.
Appears as AOQEF3(0-63) at AU level.

Enables data input from MCU to KCM
memory interface file.

System clock. Originates as
$XCLOCKO04:0(00-15). Clock pulses for
register file and KA/KB buffers.

Enables data transfer from IPU to MCU.

Selects AU word to BR for push, pull and
modify instructions.

Selects word from IFQI (0-31) in register
file for transfer to XR register for in-
dexing.

Selects word from IFQA (0-31) or

IFQB (0-31) in register file for transfer
to BR register.

Selects words 1, 2 or 3 from IFQV_(0-31)
in register file for transfer to BR register
during vector initialization.

Gates word from KCM to IR.

When -ILHAOIND = "1", gates a word from
KA or KB ("'1'), or from register file (''0")
to IR.

Advanced Scientific Computer

a2

Table B-2. I4FILE Circuit Board Input Signals (Continued)

Signature

ILSELK(29-31)

-ILSELKA

-ILSELKB

IMCLEAR
IMCMTA
IMCMTB
IMCMTGC
IMCMTD
IMCMTKA
IMCMTKB
IMCMTI

IMCMTV

-IMDTLO0(0-31)

-IMDTL1(0-31)
~IMDTL2 (8-31)
-IMDTL3(0-7)
-IMDTL3(8-31)
-IMDTL4(0-2)
-IMDTL4(3-5)

-IMDTL4(6)

-IMDTL4(8-31)

Origin

14ADDR

14PIPTOP

I4PIPTOP

I4HDCORE
I4HDCORE
14HDCORE
I4HDCORE
I4HDCORE
I4ACMREQ
JACMREQ
I4HDCORE
I4HDCORE
I4PIPE
I4PIPE
TLATDR
14RHAZ
[4ZHAZ
I4VECLAS
14MISC

I4CMREQ

[4ZHAZ

Function

Selects a word from KCM octet and from
KA or KB octet to be subject to gating to
IR. " -

Enables output from KA to other IPU
circuits. ‘

Enables output from KB to other IPU
circuits.

Master clear to KCM.

Gates octet from KCM to register file A.
Gates octet from KCM to register file B.
Gatesv octet from KCM to register file C.
Gates octet from KCM to register file D.
Gates octet from KCM to KA buffer file.
Gates octet from KCM to KB buffer file.
Gates octet from KCM to register file I.
Gates octet from KCM to register file V.
Store details data lines to memory bus.
Store details data lines to memory bus.
Store details data lines to memory bus.
Store details data lines to memory bus.
Store details data lines to memory bus.
Store details data lines to memory bus.
Store details data lines to memory bus.
Store details data line to memory bus.

Store details data line to memory bus.

B-6 Advanced Scientific Computer

a2

Table B-2.
Signature Origin
-IMDTL5(0-7) I4INFACE
_IMDTL5(8-31) I4ZHAZ
-IMDTL6(0-7) I4INFACE
-IMDTL6(8-31) 14ZHAZ
~-IMDTL7(0-3) I4STATUS
-IMDTL7(4-7) I4CMREQ
-IMDTIL7(8-10) I4PIPTOP
-IMDTL7(11) I14ROUTE3
-IMDTL7(12-15) 14LVL3
~-IMDTL7(16-31) I4INFACE
IMFSLDIS I4HDCORE
IMRE:4 I4HDCORE
IMSE :4 I14HDCORE
IOCMO0-7(0-31) MCU
IRAOSE1,(0-4) 14MISC
IRDISKSL I4MISC
IRELTAOR

I4MISC

I4FILE Circuit Board Input Signals (Continued)

Function

Store details data lines to memory bus.
Store details data lines to- memory bus.
Store details data lines to memory bus.
Store details data lines to memory bus.
Store details data lines to memory bus.
Store details data lines to memory bus.
Store details data lines to memory bus.
Store details data line to memory bus.
Store details data lines to memory bus.
Store details data lines to memory bus.
Disables selection of register file and
memory interface files to MCU, register

file or AOQ.

Master reset to register file and KA/KB
buffers.

Preset to register file and KA/KB buffers.

Bidirectional data bus to/from memory.
Transfers octets only.

Selects doubleword from register file,
KCM, KA or KB for transfer to AO regis-
ter. Also selects entry from register
file to IR.

Disables selection of KCM, KA or KB to
MCU, register file or AO,

Enables even left halfiword to AO right half.

Advanced Scientific Computer

a2

Table B-2.
Signature Origin
IRELTROR I14MISC
IRENRU I14MISC
IRLEMSEL(0-3) I4STATUS
IROLTAOL I14MISC
IROLTAOR 14MISC
IROLTROL I14MISC
IROLTROR I14MISC
IRORTAOR I14MISC
IRORTROR 14MISC
IRROSEL(0-4) I14MISC
-IVAUSEL(0-3) 14MISC
IVREGDST I14MISC
IVRSTACK I4INFACE
(0-6, 8 and 9)

=S¥DTL2 (0-7) T/ATDE

I4FILE Circuit Board Input Signals (Continued)

Function

Enables even left halfword to RO right
half.

Enables RO input selection.

Gates one of four AU pipes' output to
status register.

Enables odd left halfword to AO left
half.

Enables odd left halfword to AO right
half.

Enables odd left halfword to RO left half.
Enables odd left halfword to RO right half.

Enables odd right halfword to AO right
half.

Enables odd right halfword to RO right
half.

Selects doubleword from register file for
entry into RO ,

Each bit selects one of the AU pipes for
transferring data into the register file,
or to the BR register for push, pull and
modify.

Enables input address decoding for the
register file.

Bits 0-6 are register file storage address;
Bit 8 indicates a halfword store

Bit 9 indicates a doubleword store

(Bit 7 is not received by I4FILE).

Store details data lines to memory bus.,

Advanced Scientific Computer

~

Table B-3. I4FILE Circuit Board Output Signals

Signature
IFQV0(0-7)

IFQV0(8-11)

IFQV0(12)

IFQVO0(13-15)

IFQV0(16-31)

IFQV1(0-4, 8-15)

IFQVI1(5-7)

IFQV2
(0, 4, 8-15)

IFQV2(1-3)

IFQV2(5-7)

IFQV3(0-3)

IFQV3(5-7)
IFQV3(4,8-15)
IFQV5(16-31)
IFQV7(16-31)
IIDBR(0-31)
-IIDXR(0-31)
ILKTIR(0-31)

-ILKTIR(0-31)

Destination

I4MISC
Not Used
I4MISC

I4PIPTOP

I4INFACE
Not used
I4PIPTOP

Not used
I4STATUS

I4PIPTOP

I4MISC

I4PIPTOP
Not used
I4INFACE
I4INFACE
14PIPE
I4PIPE
Not used

I4PIPE

Function

Vector Op Code from register file V

Register file V output

Register file V output - Single valued
vector

Register file V output - Vector length

Register file V output - Index A vector

Register file V output - halfword start-
ing address

Register file V output - Index B vector

Register file V output - Vector Incre-
ment direction

Register file V output - Index C vector

Register file V output - Inner loop count
Register file V output - Outer loop count
Input word to BR register

Input word to XR register

Input word to IR register

Advanced Scientific Computer

R

Signature

Table B-3.

-ILQKCMO:2
(0-31)

-ILQKCM1:2
(0-31)

-ILQKCM2 :2
(0-31)

-ILQKCM3:2
(0-7)

-ILOKCMS3:2
(8-31)

-ILQKCM4:2
(0-2)

-ILQKCM4:2
(3-3)

~-ILQKCM4:2(6)

-ILQKCM4:2(7)

~-ILQKCM4:2
(8-31)

-ILQKCM5:2
(0-7)

-ILQKCMS5:2
(8-31)

-ILOKCM6:2
(0-7)

-ILQKCM6:2
(8-31)

-ILQKCM7:2
(0-3)

I4FILE Circuit Board Output Signals (Continued)

Destination

14PIPE
14PIPE
14ADDR
I4RHAZ
14ZHAZ
I4VECLAS
14MISC

I4CMREQ
Not used

I4ZHAZ
I4INFACE
I4ZHAZ
I4INFACE
14ZHAZ

I14STATUS

Function

Load Details data lines from KCM
Load Details data lines frbm KCM
Load Details data lines from KCM
Load Details data lines from KCM
Load Details data lines from KCM
Load Details data lines from KCM
Load Details data lines from KCM

Lioad Details data line from KCM

Load Details data line from KCM

Load Details data lines from KCM
Load Details data lines from KCM
Load Details data lines from KCM
Load Details data lines from KCM

Load Details data lines from KCM

Advanced Scientific Computer

a2

Table B-3. I4FILE Circuit Board Output Signals (Continued)

Signature Destination Function

-ILOQKCMT:2 I14HDCORE/ Load Details data lines from KCM

(4-7) 14CMREQ '

~-ILQKCMT7:2 14PIPTOP Load Details data lines from KCM

(8-10)

-ILQKCMT7:2(11) I4ROUTES3 Load Details data line from KCM

-ILQKCMT7:2 I141L.VL3 Load Details data lines from KCM

(12-15)

-ILQKCMT7:2 I4INFACE Lioad Details data lines from KCM

(16-31)

IRDACOO0(0-31) I4PIPE Input word to most significant 32 bits
of AO.

IRDAOI1(0-31) I4PIPE Input word to least significant 32 bits
of AO.

IRDROO0(0-31) I4PIPE Input word to most significant 32 bits
of RO, '

IRDROI1(0-31) I4PIPE Input word to least significant 32 bits
of RO,

IRLEMDAT(0-7) I4STATUS Input byte to status register from EF

register of selected AU pipe.

IRLEMDAT (8-15) Not used

B-11 Advanced Scientific Computer

a2

AU Word Select contains a four-input selectable multiplexer for each of the

AU WORD SELECT

sixty-four bits of the incoming Arithmetic Unit (AU) word, plus eight four-
input multiplexers that relay the eight most significant bits of the AU word

to the status register on the I4PIPEMB. The inputs to each multiplexer orig-
inate in the EF output register of the four AU's. Each input is gated indepen-
dently by a separate gate signal (- IVAUSEL(0-3)). However, only one gate
signal can be active at any one time. For example, if -IVAUSEL(1) is active,
it transfers the 64-bit input from AUl (AOQEF10 (0-31) /AOQEF11(0-31)) into
the Register File or to the BR register on the I4PIPEMB. Control gates on
the I4CTLMB prevent the remaining IVAUSEL bits from becoming active.

The data output (-IFAUOO/-IFAUOI (0-31)) enters the register file for storage

after control signals determine if it is a singleword, doubleword or halfword.

The eight most significant bits of the AU input (AOQEF X0:2(0-7)) may also
transfer to the Program Status Doubleword register (IRQPSW) on the
I4PIPEMB. Four select bits (IRLEMSEL(0-3)) from the Status Controller

on the I4PIPEMB determine which AU pipe will be gated to the status register.
The output from this selection (IRLEMDAT(0-7)) transfers to the I4PIPEMB.

B-12 Advanced Scientific Computer

O

Two control bits from the I4CTLMB (IVRSTACK 9 and 8) determine the word

WORD SIZE SELECT

size of the incoming data from the selected AU pipe. If neither of these bits

is set, a singleword size is selected (32 bits). . The signal IFAUSW enables
IFAUOO0(0-15) to the left halfword inputs to the register file (IFAUEL/IFAUOL),
and IFAUOO (16-31) to the right halfword inputs to the register file (IFAUER/
IFAUOR). Singleword inputs always originate from IFAUOO0. If IVRSTACK(9)
is set, a doubleword size is selected (64 bits). The signal IFAUDW gates
IFAUOO (0-31) to the left and right halves of the even word inputs to the register
file (IFAUEL/IFAUER), and IFAUOI (0-31) to the left and right halves of the
odd word inputs to the register file (IFAUOL/IFAUOR). If IVRSTACK(8) is

set, a halfword size is selected (16 bits). The signal IFAUHW transfers
IFAUOO(16-31) to all four halfword inputs to the register file., A halfword
input will always originate in the sixteen least significant bits of IFAUOO.
Figure B-2 summarizes these transfer paths. IVRSTACK (8 and 9) cannot

be set simultaneously.

B-13 Advanced Scientific Computer

TO
IFAUQOQ REGISTER FILE

0\ 0
DOUBLEWORD _
| ﬁ EVEN
EWORD
SINGL R . LEFT
(= IFAUEL) worD
’ (0 !21416)
15/ 15 '
16\ 16 A
HALFWORD
.
DOUBLEWORD
“ RIGHT
(= IFAUER)
SINGLEWORD
.
31 / '
IFAUO 1
0\ oA
‘“
DOUBLEWORD
“ LEFT
(= IFAUOL)
'
15_ / 15 §
16 N\ 16 A
P
oDD
DOUBL.EWORD
—4 RIGHT
(- IFAUOR)
WORD
P (1,3,5,7)
31 / 31 '
(A)123678

Figure B-2. Word Size Select Paths

B-14 Advanced Scientific Computer

a2

Seven control bits from I4CTLMB (IVRSTACK(0-6)) address the register file

REGISTER FILE ADDRESS DETERMINATION

to the halfword level. The I4FILE circuit board decodes these bits to pro-
duce 94 halfword gate signals, one for each halfword in the register file.

This circuit operates during an AU transfer into the register file.

IVRSTACK BITS. The IVRSTACK address originates in the register
stack registers R5 through RC that correspond to each of the CP pipes (0-3).
The register stack is located on I4HAZMB, When the operation in the AU
pipe is complete, the address for storing the result transfers from register
stack register C to [I4CTLMB. If the address is less than or equal to 2F
(the highest address in the register file), the IVRSTACK bits are sent to the
IAFILE circuit boards to choose a register file location for storing the output
from the AU pipe. The seven address bits allow the control circuit to desig-
nate any halfword in the register file. Bits 0, 1 and 2 select the octet within
the file, bits 3, 4 and 5 isolate the word within the octet and bit 6 selects the
right (bits 16-31) or left (bits 0-15) halfword. Refer to figure]{35—3 for an

illustration of this bit breakdown.

2 HEXADECIMAL

// DIGITS < 2F X\

/ N7/ AN
IVRSTACK
REGISTER FILE 0 1 2 3 4 5 6
DDRESS WORD)
N ™\ -/ \ HALFWORD
‘VQ\ (RIGHT = 1
OCTET: 000=A WORD LEFT = 0)
001=B (0-7)
010=C
011=D
100=1
(A) 123679 101=V

Figure B-3. IVRSTACK(0-6) Bit Assignments

Advanced Scientific Computer

O

lect a register file halfword is not a direct decode of the address bits. Since

IVRSTACK HARDWARE DECODE. Decode of the IVRSTACK bits to se-

the control circuits may address either a halfword, a singleword, or a double-
word in the register file, I4FILE decodes the control bits in segments to allow
for this capability. The decode circuit first examines bits 5 and.6 of the in-
coming address, plus IVRSTACK(8) (halfword select) and IVRSTACK (9)
(doubleword select). The output from this examination designates the four
possible combinations of half words represented by bits 5 and 6:

Odd word, Right halfword (IFENGOR)

Odd word, Left halfword (IFENGOL)

Even word, Right halfword (IFENGER)
Even word, Left halfword (IFENGEL)

If IVRSTACK(8) is set, the decode network generates one of these gating sig-
nals to select the proper halfword. During a singleword store, however, the
differentiation between halfwords is not needed. The decode circuit produces
two of the gating signals to select either the entire odd word, or the entire even
word. If IVRSTACK(9) is set, this portion of the decode circuit is unnecessary.

All four gating signals are generated.

The decode network network enabled by IVREGDST, then checks bits 0 and 1

of the incoming address to pick a group of two octets within the register file.

If bit 0 is set, the address selects either the I or V files. If bit 1 is set, the
address selects either the C or the D file. If neither of the two bits are set,
the address selects either the A or B file. Since the control circuit has already
determined that the address is less than or equal to 2F, bits 0 and 1 cannot be
set simultaneously. This portion of the decode, combined with the first decode

stage, isolates the halfword(s) within the two octets selected by bits 0 and 1.

The decode circuit then examines bits 2, 3 and 4 of the address. Bit 2 selects

either the odd or the even octet of the two selected octets. Bits 3 and 4 deter-

Advanced Scientific Computer

mine the doubleword within that octet. When combined with the previously
generated select bits, either one, two or four gate signals are produced to
enter the incoming AU data word into the proper location in the register file.

Figure B-4 illustrates the breakdown of the address word as viewed by the

hardware decode circuit.

B OR D OR V FILE

C OR D FILE) ODD/EVEN WORD
1 OR V FILE \ \ / / RIGHT/LEFT HALFWORD

IVRSTACK
REGISTER FILE 0 1 2 3 4 5 6
DDRESS WORD) ODD-RIGHT,
s sl
FT ,EVEN—
N v N\ v/ 7N\ v 7 DEFT (MOGIFIED
\ * BY HALF, SINGLE
OR DOUBLEWORD)
SELECTS EITHER AB FINAL

CD, OR IV FILE GROUPS.

DOUBL.LEWORD SELECTION
(A) 123680

Figure B-4. IVRSTACK(0-6) Hardware Decode Bit Assignments

Advanced Scientific Computer

52

The register file is a storage area in the IPU that consists of forty-seven

REGISTER FILE (IFQA - IFQV)

32-bit registers. These registers are grouped into six groups of eight words
(octets). The letters A, B, C, D, I and V differentiate the six octets. Octet A,
however, contains only seven words, since the first word in that octet

(address 00) cannot be addressed in the register file. Each I4FILE circuit
board contains two bits of each word in the register file. These two bits are
drawn from each halfword of the word so that bits 0 and 16 are on I4FILE(0),
bits 1 and 17 are on I4FILE(1), etc. The primary block diagram description

of the IPU describes the contents and functions of each register file octet.

INPUTS. Two input sources provide inputs to the register file: central
memory through KCM, and any of the four AU pipes. The AU inputs (-IFAUEL,
-IFAUER, -IFAUOL, '-IFAUOR) allow storage of all process results into the
register file so they may be retrieved without the need for a memory cycle to
the MCU. The input from KCM (-IFSEL (0-31)) loads file instructions, and
is also used during a Load Details operation to load the register file. When
the I4HDCORE circuit board on I4CTLMB is performing a CP Load Details,
it generates each of the six input gates to the régister file (IMCMTA, IMCMTB,
IMCMTC, IMCMTD, IMCMTI, and IMCMTV) as its respective octet is read
from memory into KCM and becomes available for input to the register file.
For a Load File instruction, the IPU Level 3 Controller forces the [4CMREQ
circuit board on I4CTLMB to fetch an octet from memory. Level 3 Controller

generates input gates to the register file octets to load the memory octet.

STRUCTURE. The register file is composed of ECL type DF flip-flops.
One input to each flip-flop is the -IFSEL bit from KCM. This input is enabled
by the corresponding gate signal (IMCMTA - IMCMTV). The second input to
the flip-flop is the -IFAUxx input. This input is gated by the respective IFAUG

B-18 Adverced Scientific Computer

@o
signal from the address decode. The system clock pulse (ICLOCK:1-15)
supplies transfer pulses for entering data. In addition, master reset and

preset functions are provided by the IMRE:4 and IMSE:4 signals, respec-

tively.

OUTPUTS. The register file outputs are available to other select cir-
cuits within the I4FILE circuit board that choose the inputs to other registers
in the IPU. In addition, the V octet can be directly transferred to I4CTLMB

for vector parameter definition and hazard detection.

B-19 Advanced Scientific Computer

a2

The I octet of the register file contains seven words (1 through 7) that are used

XR INPUT SELECT

for instruction indexing. Three bits from the level 1 controiler on I4CTLMB
(IIISEL(0-2)) select the I octet word for transfer to the XR Register on
I4PIPEMB. An octal decode circuit produces a separate gate signal for each
of the seven words in the I octet. If all of the select bits are zeroes, no gate
signal is produced so that only zeroes may be transferred to the XR register.
(no indexing). The other seven combinations of the three bits gates produce

for the respective words in the I octet (IFQI (0-31)).
RO INPUT SELECT

The RO register is a 64-bit register located on the I4PIPE circuit boards. The
input select to this register from the I4FILE circuit board provides either a
halfword, a singleword, or a doubleword input to RO from any octet in the reg-
ister file. The selection of the proper input is performed in three steps:

octet selection, doubleword selection, and singleword/halfword selection.

OCTET SELECT. Three control bits (IRROSEL(0-2)) from the level 3
controller on [4CTLMB determine which of the six register file octets are to
be used for data to the RO register. The three bits produce six gating signals
(IRUA, IRUB, IRUC, IRUD, IRUI and IRUV) to choose one of the octets. The
decode circuit views the three bits as a binary representation of an octal num-
ber. The output gating signals correspond to decodes 0 through 5 for octets A
through V, respectively. Each of the six gating signals selects one of the oc-
tets from the register file. The output from this selection (~IRSEL (0-31))
is then subjected to further refinement to the doubleword, singleword or half-

word level.

Advanced Scientific Computer

a2

I4CTLMB determine which doubleword from the selected register file octet

DOUBLEWORD SELECTION. Two control bits (IRROSEL(3 and 4)) from

contains data for entry data to the RO registei'. In addition,v an enable signal
(IRENRU) allows the circuit to perform the selection and forward data to RO.
If IRENRU is set, the following combinations of IRROSEL(3 and 4) select the
indicated doubleword from the selected octet (-IRSEL (0-31)):

IRROSEL(3) (4) Gate Signal Doubleword Selected
0 0 IRU(1) -IRSELO0(0-31) and -IRSEL1(0-31)
0 1 IRU(3) -IRSELZ2(0-31) and -IRSE13(0-31)
1 0 IRU(5) -IRSEI14(0-31) and -IRSEL5(0-31)
1 1 IRU(7) -IRSEL6(0-31) and -IRSEL7(0-31)

The selected doubleword is then available to the singleword and halfword se-
lection circuit as two singlewords. The singleword that originated from
-IRSEL0,2,4,0r 6 bécomes the even output word, IRE0(0-31). The single-
word that originated from -IRSELIl, 3,5 or 7 becomes the odd output word,
IRDROI1(0-31). IRDROI1(0-31) is also available to RO to form the least signifi-

cant singleword of a doubleword transfer.

SINGLEWORD/HALFWORD SELECTION. Four control signals from
I4CTLMB determine the composition of the IRDROO0(0-31) output word to the
RO register (refer to figure B-5). These control signals and their literal 4
meaning are as follows:

IROLTROR Odd word, Left half To RO register Right word
IRORTROR Odd word, R1ght half To 5, RO register Right word

IRELTROR Even word, Left half To RO register Right word
IROLTROL Odd word, Left half To RO register Left word

If the transfer toRO is a doubleword transfer, all of the above control signals
will be zeroes. This condition transfers the input word IREO(0-31) directly
to the IRDROO0(0-31) output word to become the most significant word input to
the RO register (IRDROI1 (0-31) is the least significant word). For singleword

Advanced Scientific Computer

@
entry into RO, either the odd singleword or the even singleword may be trans-
ferred to the most significant word of RO. If the even word is to be trans-
ferred, (IREO(0-31)) the control signals remain at zeroes and the even word
transfers directly to the output word as in a doubleword transfer. Gating sig-
nals to RO prevent iRDROl(O-Sl) from transferring to RO during a singleword
é,nd halfword transfer. If the odd word is to be transferred to RO, IRORTROR
and IROLTROL set. These signals gate the two halfwords of IRDRO1(0-31)

to the corresponding halfword positions in the output word to RO.

All halfword transfers must be made through the right halfword (IRDROO0(16-31))
to RO. The singleword gating processes can also transfer the right half of
either input word to the right half of the output word during halfword selections.
The two remaining gate signals, IROLTROR and IRELTROR, transfer the left
half of either the odd input word or the even input word, respectively, to the

right halfword for output to RO.

Advanced Scientific Computer

EVEN WORD

DOUBLEWORD/EVEN SINGLEWORD

IREO(0~15)
NO CONTROL. SIGNALS

EVEN—LEFT HALFWORD
IRELTROR

OUTPUT WORD TO
LEFT WORD OF RO
DOUBLEWORD,
EVEN SINGLEWORD

IREO(16—31)

AND EVEN—RIGHT
HALFWORD—NO
CONTROL SIGNALS

IRDROO(0—15)

ODD WORD
._.._——.
IRDROO(16—31)
ODD SINGLEWORD *6‘#5"?%? rO)
—.__..
IROLTROL.
IRDRO1(0—15))

ODD—LEFT HALFWORD
IROLTROR

ODD SINGLEWORD/
ODD—RIGHT HALFWORD

IRORTROR

IRDRO1(16-31)

(A)123681

Figure B-5. Double/Single/Haliword Selection Paths

B-23 Advanced Scientific Computer

a2

The BR register is a 32-bit register, located on I4PIPEMB, that holds the

BR INPUT SELECT

base address for input to the address modification circuits. The input select
gates transfer either the output from the A or B octets in the register file,

the three vector address words from the V octet, or bits 32 through 63 from
one of the AU pipes to the BR register. Seven control lines from [4CTLMB -

perform the transfer gating function.

A OR B OCTET SELECT. Four control bits (-IISELAB(0-3)) determine
selection of either the A or the B octet in the register file for transfer to BR.
Bit 0 of this group determines if the A or the B file will be used. When set
it selects the A octet; when equal to zero, it selects the B octet. The re-
maining bits select one of the eight words in the selected octet. The signals
are first inverted to produce ''true'' level signals before decoding. The de-
code circuit produces gate signals to the octet word that corresponds to the
octal number represented by the three inverted control bits (ILSELAB(1-3)).

The selected word is immediately available to the BR register.

V OCTET SELECTION. At the initiation of a vector instruction, words
1, 2 and 3 of the V octet (containing the starting addresses of the A, B and
C vectors, respectively) are transferred to BR for possible address modifi-
cation before being sent to the MBU. Two control signals (IIVT BR(0 and 1))
determine which of the three words will be transferred to BR at a particular
moment. If both control bits are zero, no selection is made. Otherwise

the bits select the following words:

01 IFQV1(0-31)
10 IFQV2(0-31)
11 IFQV3(0-31)

AU INPUT SELECT. During Push, Pull or Modify instructions, the

AU modifies the memory pointer that is used for storage of results. In order

Advanced Scientific Computer

&)

to transfer the modified pointer to the MBU, a path thfough the IPU address
development circuits is required. The BR input select provides this path.
Only the right word (bits 32-63) of the AU output can be gated to the BR regis-
ter. Four control bits (-IVAUSEL(O-3)) determine which AU pipe will supply

the AU input (refer to the AU Word Select circuit description). To transfer

" the AU word to BR, a control signal (-IIAUPP) gates the word througfi ‘the in-

put select circuit to BR.

Advanced Scientific Computer

a2

The IF Octet Select circuit receives octet inputs from the register file, from

IF OCTET SELECT

KCM and from the two buffer files KA and KB. Five control signals from
I4CTLMB determine which octet will be placed on the -IFSEL (0-31) bus line.
This bus line provides input data to the register file, to the memory storage
select circuit and also to the AO and IR register input gating circuits. Con-~
trol signals, derived from the type of instruction being processed, determine

the destination of the -IFSEL (0-31) data bits.

CONTROL SIGNAL DECODE. Five control signals, IRAOSEL(0-2),
IMFSLDIS and IRDISKSL choose one of the input octets for output from the
select circuit. IMFSLDIS, when high, disables the decode circuit. If this
signal is low, IRAOSEL(0-2) selects one of the eight input octets as follows:

IRAOSEL(0-2) Selected Octet Gate Signal
000 IFQA_(0-31) IBUA
001 IFQB_(0-31) IBUB
010 IFQC_(0-31) IBUC
011 IFQD (0-31) IBUD
100 IFQI_(0-31) IBUI
101 IFQV_(0-31) IBUV
110 ILK (0-31) ILSTORK
111 ILQKCM (0-31) ILSELKCM

The last two selections can be disabled by setting the remaining control sig-

nal, IRDISKSI., to a one level.

OUTPUT BUS PATHS. The -IFSEL (0-31) bus provides inputs to other
gating circuits on the I4FILE circuit board. Each of these inputs, however,
has restricted use. The input path to the register file provides data from
central memory through KCM, for storage in the register file. This path is
used for LoadFile and Load File Multiple instructions, and a Load Details

operation. The input path to the memory input select circuit may be used to

B-26 Advanced Scientific Computer

@
store any of the input octets in memory. When storing maintenance details
(-IMDTL_(0-31)), IMFSLDIS must disable selection of any octet to the
-IFSEL_(0-31) lines. The bus path to the AO and IR register inputs may be

used for octets from the register file, or from the memory interference

files. This path for loading IR is normally only used for register file data.
CENTRAL MEMORY INTERFACE

The I4FILE circuit board contains the IPU's interface with central memory.
This interface is asynchronous (not clocked). It reads octets from memory
for instruction fetches and load details operations, and stores octets into
memory for store file instructions and store details operations. The memory
interface file, KCM, receives octets from memory; a memory storage gate

circuit enables data octets to memory for storage.

MEMORY STORAGE GATE. Two source data signals may be relayed to
central memory through the memory storage gate. The gate is enabled by
_ICWRITE from I4CTLMB. When this signal is low, either of the two input
data lines may transmit data to memory. Control signals from I4CTLMB
ensure that when one of the data line inputs is active, the other input will be
dormant. One input to this gate (-IMDTL_(0-31)) transmits details informa-
tion from the other IPU cifcuit boards to central memory during a store de-
tails operation. The other input to this gate may be used for store details of
the I4FILE circuit board registers, or for a store file or store file multiple
instruction. Either case relays the contents of registers on the I4FILE cir-
cuit board to central memory for storage. When neither of these storage op-
erations is being performed, the -ICWRITE signal goes high to enable the
data bus to the MCU (IOCM_(0-31)) to be used for data transmission to KCM.

KCM MEMORY INTERFACE FILE. KCM is an octet buffer file that re-
ceives read data from the MCU through the bidirectional data bus (IéCM_(0-3 1)).

Advanced Scientific Computer

@
Addresses to the MCU to fetch data are produced on the I4ADDR circuit board.
KCM has no clock input so that it may accept data from memory any time that
it is enabled. One control signal (ICCMSTRB) from I4CTLMB enables all reg-

isters in the file. Inputs to the file are always octets. When ICCMSTRB is a
"1", ILQKCM (0-31) is loaded with the data on the memory data bus.

Three output buses from KCM channel the data to other components of the IPU,
ILOKCM_(0-31) allows data transfer through the IF select circuit to the regis-
ter file during store file and load details operations, and also allows storage

of KCM contents into memory during a store details operation. ILQKCM (0-31)
also routes the contents of the file to the instruction register (IR) on the
I4PIPEMB for indirect and execute instruction fetches. A second output from
KCM (-ILQKCM _:2(0-31)) fans-out to other components of the IPU and is used
exclusively for load details operations. The third output from KCM

(-ILQKCM :1(0-31)) transfers the contents of KCM to one of the two octet
buffer files (KA or KB) so that KCM will be prepared to accept the next instruc-

tion octet from memory.
IMCLEAR from I4CTLMB initializes the file at the beginning of operations.

KA/KB OCTET BUFFER FILES. KA and KB are octet files that receive
data input exclusively from KCM and hold that data for use by the IPU. During
normal instruction processing, either KA or KB is initially loaded with an oc-
tet of instructions. While the instructions are being used from this first octet,
the remaining file is loaded with the next instruction octet. The two files are
used in this alternating fashion as long as instructions are in contiguous octet

locations. I4CTLMB controls the input and output gating of KA and KB.
IMCMTKA enables the next pulse from the ICLOCK to transfer the contents

of KCM into the KA f_ile. Similarly, IMCMTKB allows ICLOCK to transfer

Advanced Scientific Computer

}lg
KCM into KB. Two other control signals (-ILSELKA and -ILSELKB) gate
the output from the corresponding file to the IPU circuit. The output from
these files normally transfers to the instruction register (IR) on I4PIPEMB.

However, during a store details the output is fed through the IF select cir-

cuit for transfer to memory.

B-29 Advanced Scientific Computer

a2

AO is a 64 bit register, located on I4PIPEMB, that relays operands to the

AO INPUT SELECT

MBU. The portion of the AO mput select that is on the I4FILE circuit board
supplies doubleword, singleword or halfword inputs to AO from the octets in
the register file or from KCM, KA or KB. The select circuit supplies two
32 -bit words to AO: one odd word (IRDAOI1(0-31)) that becomes the least sig-
nificant half of AO, and one even word (IRDAOO0(0-31)) that becomes the most
significant half of AO. Singlewords are loaded through the even word output;
halfwords are loaded through the right half of the even word output (IRDAQO-

(16-31)).

OCTET SELECT. Octet selection for AO is performed by the IFSEL octet

select gate. Control bits IRAOSEL(0-2) choose the correct octet from the

register file or from one of the memory interface files to supply input to AO.

DOUBLEWORD SELECTION. Two control bits from I4CTLMB (IRAOSEL-

(3 and 4)) determine which doubleword from the selected octet Will enter data

to AO. The following combinations of these control bits select the indicated

doubleword from the selected octet:

IRAOSEL(3)

(4) Gate Signal Doubleword selected
0 0 IBU(1) -IFSELO0(0-31) and -IFSEL1(0-31)
0 1 IBU(3) -IFSE12(0-31) and -IFSEL3(0-31)
1 0 IBU(5) -IFSEL4(0-31) and -IFSEL5(0-31)
1 1 IBU(7) -IFSEL6(0-31) and -IFSEL7(0-31)

The selected doubleword is then available to the singleword and halfword selec-

tion circuit as two singlewords. The singleword that originated from

-IFSELO0, 2,4 or 6 becomes the even output word, IBEO(0-31). The singleword

Advanced Scientific Computer

a2

that originated from -IFSELI1,3,5 or 7 becomes the odd output word,
IRDAO1(0-31), This odd word is also available to the AO register to form

the least significant singleword of a doubleword entry.

SINGLEWORD/HALFWORD SELECTION. Four control signals from the
I4CTLMB determine the composition of the IRDAOO0(0-31) output word to the
AO register. These control signals and :chejr literal meaning are as follows:
IROLTAOR 0Odd word, Left half To AO register, Right word
IRORTAOR Odd word, nght half to AO register, Right word

IRELTAOR Even word, Left half To AO register, Right word
IROLTAOL Odd word, Left half To AO register, Left Word

If the transfer to AO is a doubleword transfer, all of these control signals will
be zeroes. This condition transfers the input word IBE0(0-31) directly to the
output line to AO, while the odd word IRDAOI1(0-31) transfers to the least sig-
nificant half of AO.

For singleword entries into AO, either the odd singleword or the even singleword
may be transferred to the most significant word of AO. If only the even word is
to be transferred (IBEO(0-31)), the control signals remain at zeroes and the

even word transfers to the output word as it does for a doubleword transfer.
Gating signals prevent the other halfword from entering AO as part of a double-
word. If the odd word is to be transferred to AO, IRORTAOR and IROLTAOL
set. These signals gate the two halfwords of IRDAO1(0-31) to the corresponding
halfword positions in the output word to AO.

A1l halfword transfers to AO must be made through the right halfword (IRDAOO-
(16-31). The singleword gating processes allow the right half of either input
word to be transferred to the right half of the output word. The two remaining
gate signals, IROLTAOR AND IRELTAOR, enable the transfer of the left half

of either the odd word or the even word input, respectively, to the right halfword

for output to AO.

Advanced Scientific Computer

In addition to supplying inputs to the left singleword of AO, this selection cir-
cuit also provides inputs from the register file to the instruction register (IR)
on I4PIPEMB. The output to the IR input select (-IRDAOO0(0-31)) is the com-
plement of the word supplied to AO. Entries from the memory interface octets

to IR are performed more efficiently by a different selection network, and are

not loaded through this gate.

Advanced Scientific Computer

O

The instruction register (IR) is a 32-bit register that receives input instruc-

IR INPUT SELECT

tion words for processing by the IPU. The input selection to this register
contained on the I4FILE circuit board chooses a word from KCM, KA, KB, or
the register file for entry into IR. During normal processing, entry into IR
is from either KA or KB. KCM transfers to IR when a hard core address is -
required from central memory or if an indirect address is contained in mem-
ory and is not resident in the IPU. The register file may also supply indirect
address responses through the AO input selection, but only for the first indi-
rect address. Subsequent indirect address fetches must be made to central

memory.

KCM, KA AND KB WORD SELECT. Three control bits from the I4ADDR
circuit board select a word from KCM, and from KA or KB for input to the
final word selection gate. These three bits (ILSELK(29-31)) enter an octal
decode circuit that produces one of eight possible input gates (ILUK(0-7)) de-
pending upon the value of the input code. The ILUK(0-7) signa.l‘ that is enabled
transfers the corresponding word from ILQKCM (0-31) aﬁd ILK (0-31) to the
final IR input gate.

FINAL WORD GATING. Three data words are available for final selection
to IR: ~-IRDAOOQ(0-31) containing an input from the register file, -ILKCM(0-31)
containing a word from central memory through KCM, and -ILKAB(0-31) that
supplies inputs from either the KA or KB buffer files. Two control bits
(-ILHAOIND and ILRFTIR) from I4CTLMB select which input word is to be
transferred to IR. The first of these signals is dominant. Whenever -ILHAQIND
is a zero level the input word from KCM will be transferred to IR. If this con-
trol line is high, ILRFTIR (register file to IR) transfers the register file input
to IR when high and gates the KA/KB input word to IR when low.

Figure B-b6 is the block diagram of the I4FILE circuit board.

B-33/B-34 Advanced Scientific Computer

8 x 32 }
M EMORY 10CM~(0—21" Bi-
. (FROM DUSHRIT Egets v oraGE DIRECTIONAL
1BUA 14cTLMB: 38 GATE SEE noTe DATA BUS
FrOM - IMFSLDTS > Tomcu
117
14CTLMB L com ~IMDTL~(0-31)
12 {0=31) 3 | aCTLME : IRDISKSL o sELECT (DETAILS FROM
ARBRLRL Y 135 DECODE IPU MB S) SEE NOTE 5 _-_
IRLEMDAT(0-7) . LA ¥
54 AOQEF10/11 2(0-31) 14PIPEME) I’RAZC:SEL o wem
—] fo-:
T 067307:205/407 IFAUOO(O-31) - LLSTORK
| 137,335,139 ILSELKCM
INPUTS AOQEF20/21 2:(0-31) AU
FROM
s 285/185:385/384 WORD IFAUOY (0-31)
SELECT ILK-(0-31)
AOQEF30/31:2 (0-31)
1867107 454,308 - 32 § 8X32 | VIFSEL-(0-31) (FROM KA KB) (i4)
(FROM IRACSEL (3, 18
140 (N IRDAOC1 (031 —
i 14aCcTLME) 18U{1,3,5,7
TFROM < tio{~1FAUEL L (==1-7) \rAOSEL) | CFCCOPE : r ‘TO 14PIPEMB)
_ AL TO BR worD] {16} o ’ 213314
14CTLME) 149 150,116,151 INPUT —LEAUER m
seLecT |onn SIFAYO REGISTER
{FROM SEL(0-3) \ SELECT 16 FILE
12PIPEMB) 7 160,259 163,352 IFAUOR 18 19 110-311
) ﬂﬂe, A1-A7 Ac AcC IRDAOCOZ3T: - 32} TG 14PIPEMBS
ro KA KB ! B0-87 _@ @__. DOUBLEWORD SINGLE ‘—“279 '
(FROM SE 4j ce-¢7) TIESEL- SELECT HALFWCRD 2IRDAOO{0-31)
\4CTLMB) >M__D_— oD ,EVE%- IFAUSW FROM J178(TO KA ,@@ D0-07 1FQV-.0-31 0=31} SELECT
(5.6,8, —17
) GATE AND | IFAUHW t4cTLME >ML— [\?o—‘v‘ IFQI=i0-31" 266 . IROLTACR 9 *
176 HALFWORD 76 kil i
\FAUDW O— 8 X 32 TA]
::Z DECODE iCLOCK 1-15 [ox 22] (FROM ap6 DIRQRTAOR |
15 m— WORDS - ILQKCM- g-31 1aCTLMBIY o IRELTACR
e IFENGEL R . -7 IROLTACL {LaKeM - o3t FILKCM .0~ 31
\FENGER CLOCK FANOUT N l 228 gza 32
trEncoL renasoL | i3] e seurot . Nevon |
IFENGOR F ! XR THOXR FroMICCMSTRE | KCM ¢ = (BITS §-31)
IFENABER | Pyt [f0-3n e W MEMORY DATA TO TO I4ADDR
: : LB ¢ ! S
IFENABOR i : sELECT @ :jﬁ vy NTEREACE IPUMB S) 8ITS 0-7
, . i 412,182 IMCLEAR gy g TILGKCM= 1{0-31) . o 14 ILKTIRIC-31) NOT USED)
(FROM) VRSTACK .1 T Te | IFAUGA-L.- i-7 |) Y (FROM 71 {E—— [a] 1iaxa-io-31; l ULHAOIND 4——@—.
14CTLMB : 152, 153 IZ! ™ewe GENERATE | IFAUGA-R - 1 \ 14CTLMB) £ IMSE 4 KA WORD 1_[5_] S>——] 161 26C
. lemour SEnERe i 13PIPEMB) (FROM e sE. Ec ILUKg-7 TeROM 169 I
IFAUGB-L =507 RGTR IMRE 4 IEP ¥ T
(FROM > /REGDST HALFWORD . HALFWORD < 1 iPuiii-7y Fie @ BUFFER CECCDE : 14CTILMB LRFTIR ‘SNEPLUECT)
14CTLMB) 7 455 [pECCOE GATE {FAUGER(-7077 HE ! FILE | > ULKTIR(0-31) 20t ”(?ro
! 113 FROM 14CTLMB) | 242 SN
14PIPEMB)
| DECODE IMCMTKA X '_L
™ 128 o]
IFAUGC-L |
—T-EN icLock 00 |cLocK SYNC)
GENERATE | IFAUGC-R 171, 271, 469 [FROM 14ADDR - AND —‘E.} " K- -
(FENIVEL | D FILE e AveD FROM 3 $XCLOCK04 0/00-15)] FANOUT - s - P P A | ‘15
t SD- . K 3 1 =
IFENIVER IFENCDEL i HALFWORD ACTLMBY jsELio-2) . et ILaKB-(0-31) <A KB o RECETER e s
\FENIVOL IFENCDER 3 GATE IFAUGD-R (FROM » OUTPUT SELECT | KA K8
\FENTVOR IFENCDOL | [ACTLMB) bmm 8 X 32 el BUFFER TMLSELKA ouTPUT WORD
\ IFENCDOR H > f FILE FROM 133 SELECT seLecr | MtxABC-an
i 128 IMCMTKE , LEC
: T IFAUGI-L 1FQv2 3 4CTLMB TULSELKS
; e —4———_@—. To TO REGISTER ‘34
_H }‘" GENERATE] _IFAUGI-R 12PIPEMB
| e 1FQVO(0~7,12-31) FILE
i v IFAUGV-L _____-.—
(FROM IVRSTACK(2-4) i HALFWORD
14cTLMB) 155.156. 162 ALE}'. GATE IFAUGV-R
. ») '
IFQv2{5-7) ro L2 . IRDRO1 (0-31) ~
NOTES' (to IRROSEL(0-2} [RO ocTET JIRSELZ(0-31) {52 } Ro : ~fi2 ot (0 1471PEME)
. - JEQu3c7.07) SELECT L2x32 F DOUBLEWOR 3807478
, LEFT BITS (0-15)=SHEETS 20.23.26.29.32, 35,3¢.41 1acTLMB) (FROM SELECT SELECT IREC (0-31)
: RIGHT BITS (16-31)=SHEETS 21.24.27,30.33,36,33.42 SEE NOTE 5~ seni e DECODE (oz3n))
2. B =SHEETS 22,25,28,31,34.37.40.43 . -
3, SEE IST LEVEL BLOCK DIAGRAM FOR BIT SLICE INFORMATICN \FQv7(16-31) a5z
4. UNLESS OTHERWISE SPECIFIED, A BLANK (=} IN SIGNATURE MAY HVTBRIO e
BE FILLED WITH THE NUMBERS 0-7 TODESIGNATE OCTET WORDS. 'FROM 14CTLMB® >--rmr (FROM HAUPP
, . 14ACTLMB) 172 IRRO:! (3
5. OCTET PIN DESIGNATIONS (LEFT RIGHT) (FROM UFAUO1(0-31) 146 SELT I" 171BENRY
IMDTL(L. R} lOCMI(L R) ILQKCM 2(L R) 1FQV (L R AU V_VO_RD©_@_. IRROSEL(4) : .
WORD 0 102 487 100 300 408 483 210 t14 SELECT) (FROM 148 DECODE
WORD 1 189. 388 400 430 208 309 3t - (=L Car 10] B8R TACTLMB)) 70 IRENRU g, IRUG.3:5.7) I
WORD 2 180 378 290 301 166 264 an - INPUT ML@_. (TO 12PIPEMB =
WORD 3 404 103 401 489 184 283 480 - 1eQe-(0-31) 172
WORD 2 304 203 201 101 481 109 - - SELECT 1 312 225> IROLTROR | 6
WORD 5 387 287 288 389 209 210 - a7 w)-{'_]_—
WORD 6 465 305 289 403 382 282 - - WORDS 1.2.3) Lo 2 - 3265 RORTROR RO
WORD 7 485.187 303 202 183 110 - 278 1 . IRE! SINGLEWORD LIRDROO(0-31
\PVISEL , IPV2SEL . (PVISEL 14CTLMB) 429_&. HALFWORD
bECODE 3 (8] sELECT [T5212 (TO 4PIPEMB)
IROL.TROL
163
NSELAB(O-3 1PuBe7)
— .
FroM tcTLMBY STUSELABE.) [suinecosE _
© 123677 ¢ 226.173.2%9,219 \PUA(1-7)

Figure B-6. I4FILE Circuit Board

Block Diagram

B-35/B-36

Advanced Scientific Computer

{@(p | {[4CMREQ

INTRODUCTION - BLOCK DIAGRAM SYMBOLS

The block diagram included in this circuit board describtion_condenses the
information contained in the logic diagrams to a one sheet representation.

The diagram contains all control signatures that are inputs to or outputs from
the circuit board. In addition many of the key control lines internal to the
board are illustrated. Since the circuit board is a'control board, no data
Tines are found on the board. Other information contained on the block dia-

gram is illustrated in figure B-7, and includes:

° Sheet Number - Location of the logic diagram for the depicted
function within the logic set :for the circuit
board. Multiple sheets are referenced with a
letter that is explained in the notes on the
diagram,

° Pin Number - Circuit board input/output pin that carries the
indicated signal. When more than one pin number
appears, the pin for the most significant bit
appears first, or if different signals are in-
cluded on one line, the pin numbers appear in the

-order of the signatures Tisted on the line. Large
quantities of pins are in tabular form in the notes
on the diagram sheet.

° Line size - Numbers on all 1lines indicate the number of bits
represented by that particular line. A 1ine with-
out a number represents only one bit.

B-37 Advanced Scientific Computer

INPUT PINS

SHEET NUMBER

MULTIPLE INPUT OF CIRCUIT IN
LINE (4 LINES) LOGIC DIAGRAM
SET
OUTPUT PINS
BMQRMERQ(0—-3) o "IIRWINDER(0~—3) /
30 .
s ™ 4 >
359,455,357,458 | TO
311,411,210,212 AU - ‘ S * * ' 14ROUTE
'\312,412,213,114 WINDOW 454,457,456 ,355
FLAGS
NI py B : -\
BMQRMLTW(0—3) l—b

A TIMQFREEZ : 1

_—:‘:Ilnw INDLT(0—3) S‘ﬁcﬁ’ﬁ?ﬁggﬁgb

FUNCTIONAL TITLE FOR CIRCUIT
INPUT FROM
OTHER CIRCUIT ON
THE CIRCUIT BOARD

1. BIT LINE (NO NUMBER)
FROM MBU'S 0-3 '

(A) 123675

Figure B-7. Key to Symbols - I4CMREQ Circuit Board Block Diagrams

Advanced Scientific Computer

R

I4CMREQ CIRCUIT BOARD

The I4CMREQ circuit board is a control circuit board that contains the Look
Ahead Controller and the Central Memory Requester for the IPU. In addition
the circuit board contains a hazard determination for the KA and KB buffer
files, flag flip-flops for the early and late window signals from the AU ROM,
plus unit register fanin, and details fanin-fanout circuits. These circuits
and their interrelations are illustrated on the block diagrahvat the end of
this section (figure B-14), The following paragraphs describe the component
circuits on the I4CMREQ circuit board and the control signals produced to co-

ordinate instruction octet fetching for the IPU.

INTERFACE SIGNALS

Table B-4 defines the input signals to the I4CMREQ circuit board. Table B-5
defines the output signals from the I4CMREQ circuit board.

Table B-4. I4CMREQ Circuit Board Input Signals

Signature Origin Function
BMQRMERW(0-3) AU ROM in Indicates that the divide in pipe 0-3 is at
MBU's 0-3 a point so that a divide of the same group

in Tevel 3 could reach the AU in time to
save divide initialization time by over-
lapping (Early Window). Includes memory
fetch time.

Advanced Scientific Computer

a2

Table B-4.

Signature

BMQRMLTW(0-3)

ICCMFUL

ICLOCK:00

-ICOABSY

ICQAREX
ICQIPIOP
ICQIPPAE
ICQIPPRY
ICﬁCMPV

THQOA: 1
(8-31)

I4CMREQ Circuit Board Input Signals (Continued)}

Origin

AU ROM in
MBU's 0-3

I4HDCORE

CLOCKFAN

I4HDCORE

I4HDCORE
I4HDCORE
I4HDCORE
I4HDCORE
I4HDCORE

I4ADDR

Function

Indicates that the divide in pipe 0-3 is at
a point so that a divide of the same group
in level 3 could reach the AU in time to
save divide initialization time by over-
lapping (Late Window). Does not include
memory fetch time,

Indicates to CMR that KCM (memory interface .
buffer) contains an octet of instructions
for memory.

System clock. Originates as $XLOCK02:0(005).
Clock pulses for control circuits.

Indicates to CMR that the OA address register
to the MCU contains a valid instruction address
that has not been transmitted.

Arithmetic exception flag, Transferred during
store details only.

IPU il1legal op code flag. Transferred during
store details only.

Parity error flag. Transferred during store
details only.

Memory protect violation flag. Transferred
during store details only.

Read protect violation indication to CMR: last
memory request produced a protect violation.

Contents of the OA register for transfer as
Unit Register data.

Advanced Scientific Computer

S

Table B-4,
Signature Origin
IIQLTACT I14PIPTOP
11QS(6) I4PIPTOP
-ILLAEQZB(0-3) 14ZHAZ (0,4,
8,12)
-ILQKCM4(6) T4FILE(6)

-ILQKCM7 (4-7)
ILQLC(0-7)

ILQPA(29-31)

ILPAEBA(0,1)

(-) ILPAEN

ILPAENSB(1,2)

ILZBVSPA

- IMHCREQ

I4FILE(4-7)
I4ADDR

T4ADDR

T4ADDR

I4PTIPTOP

I4PIPTOP

I4PIPTOP

I4HDCORE

I4CMREQ Circuit Board Input Signals (Continued)

Function

Level 1 active flag: used by look ahead con-
troller to determine if a PB target is in
level 0.

Level 1t controller state 6 flag; store file
instruction at level 2.

Indicates that the look ahead octet is to be

modified by an instruction in pipes 0 through
3.

Load details input to early and late window
flags.

Load details inputs for I4CMREQ circuits.

Contents of the look ahead counter: used by
the look ahead controller to determine the
position of an upcoming branch.

Word address contained in the PA register.
Used by Took ahead controller to determine
octet boundary (PA = 7). Also transferred
as unit register data to the PP.

Indicates to the look ahead controller that
the address in BA is equal to the present
address octet jn PA.

Enables the look ahead controller to transfer
a new instruction into the IR register.

Enables the look ahead controller to transfer
a new instruction into the IR register.

Indicates that the present address octet will
be modified by an instruction in one of the
IPU pipes.

Indicates to CMR that a maintenance command
is being performed (hard core request).

B-41 Advanced Scientific Conﬁputer

52

Table B-4. I4CMREQ Circuit Board Input Signals (Continued)

Signature

IMLDTL:2

IMOCTR:2(0-3)

-IMQFREEZ:1

IMRE:2
IMSDTL:2

IMSE:2
IMUREN(0-3)

-IPL2BLK

IPQDCPB

IPQL2ACT

-IPR2(4-7)

IRALINCM

Origin

I4HDCORE

I4HDCORE
I4HDCORE

I4HDCORE
I4HDCORE

T4HDCORE
I4HDCORE

I4PIPTOP

I4INFACE

I4PIPTOP

I4PIPE(4-7)

I4ROUTE]

Function

Enables the details count decoder to generate
the load details gates to the circuits on
I4CMREQ.

Provides the sequencing count used during load
and store details operations.

Disables IPU operation due to run bit being
cleared or other abnormality.

Master reset to I4CMREQ circuits.

Enables the details count decoder to generate
the store details gates to the circuits on
T4CMREQ.

Master preset to T4CMREQ circuits.

Four b1t code that selects one of seven inputs
from I4CMREQ for transfer as unit register
data to the PP,

Level 2 Block (not) - enables the look ahead
controller to transfer a new instruction into
the IR register.

Prepare to Branch instruction at level 2:
used by look ahead controller to locate the
PB target.

Level 2 active flag: used by Took ahead con-
troller to determine if a PB target is in
level 0.

Contents of the level 2 R register (R2):
used by Took ahead controller to determine
if a PB target is at level 0.

Alpha in Central Memory: Indicates that the
desired operand is not in the register file.

Advanced Scientific Computer

O

Table B-4. T4CMREQ Circuit Board Input Signals (Continued)

Signature

~-IRARELA

-IRAREPA

IRBRHAZ

-IRBRTLA

-IRBRTOA

-IRBRTPA

~IRBRTPI]

-IRBRTP2

-IRDLBNT

Origin

I4LVL3

I4LVL3

T4LVL3

I4LVL3

14LVL3

T4LVL3

I4LVL3

I4LVL3

I4LVL3

Function

Address in the AR registef in level 3 is
contained in the look ahead octet.

Address in the AR register in level 3 is
contained in the presently executing octet.

A branch instruction at level 3 has encoun-
tered a hazard in the pipe and 1s waiting
for it to clear.

Indicates to the look ahead controller that
the target instruction of a branch at level
3 1s contained in the look ahead octet.

Indicates to the look ahead controller that
the target instruction of a branch at level
3 will have to be fetched from memory.

Indicates to the Took ahead controller that
the target instruction of a branch at level
3 is contained in the currently executing
octet.

Indicates to the look ahead controller that
the target instruction of a branch at level
3 is contained in level 1 of the IPU.

Indicates to the Took ahead controller that
the target instruction of a branch at level
3 is contained in level 2 of the IPU,

Dual and Branch not taken: While operating
in dual mode, the expected branch was either
skipped over, or not executed due to the Tack
of a required condition.

Advanced Scientific Computer

52

Table B-4. I4CMREQ Circuit Board Input Signals (Continued)

Signature Origin Function
~-IREXIND I4LVL3 An indirect address, or an Execute instruc-

tion is at Tevel 3 and requires a new octet
from memory to continue processing.

-IRINHAZ I4LVL3 An instruction hazard has occurred and the
corresponding instruction octet must be re-
fetched to recover to changed information.

~-IRLCLBR T4LVL3 Local Branch: the branch instruction at level
3 references a target instruction that is
resident in the IPU octets.

-IRLFREQ I4VECLAS Load file request: Data octets are to be
transferred from memory to the register file.
IRLLXFER T4LVL3 A Load Look Ahead instruction is at Tevel 3.
-IRPBXFER I4LVL3 A Prepare to Branch instruction is at level 3
and is enabled.
IRPAC3:1 I4ROUTE Level 3 Path Ahead Clear - Enables the look

ahead controller to transfer a new instruction
into the IR register.

IRQDCPB I4INFACE(1) Prepare to Branch instruction at level 3:
used by the look ahead controller to locate
the PB target.

IRQP3(29-31) I4PIPE(7) Word address of the instruction in level 3;
used in look ahead controller to determine
position of PB target.

TRQTARGT I4LVL3 PB target at level 3 flag.

-IRR3(4-7) I4PIPE(4-7) Contents of the level 3 R register. (R3):
used by the Took ahead controller to deter-
mine if a PB target is at Tevel 0.

B-44 Advanced Scientific Computer

52

Table B-4. I4CMREQ Circuit Board Input Signals (Continued)

Signature Origin Function
-IRSFREQ I4VECLAS Store file request: Data octet(s) are to
be transferred from the register ifile to memory.
-IRTGTFL T4LVL3 Target fail: An expected branch was skipped
over or failed to branch when it reached
level 3,
B-45

Advanced Scientific Computer

a2

Table B-5. I4CMREQ Circuit Board Output Signals

Signature Destination Function
ICCMTFIL I4VECLAS/ Transfers an octet from KCM to the
T4AMISC

register file input routing circuit
for storage in the register file.

ICCMTIR I4PIPTOP Enables transfer of a selected instruc-
tion word from KCM to the IR register.

ICCUEMPY I4HDCORE Indicates that the memory request queue
is empty.

ICFL I4HDCORE Indicates that the returning octet

is 1intended for the register file.

ICINCOP T4HDCORE Increment signal for the request queue
output pointer. Enables protect viola-
tion flag due to ICFL or ICIR (on
I4HDCORE).

ICIR I4HDCORE , Indicates that the returning octet

is
intended to supply an instruction to the
IR register.

ICLDO(11) I4HDCORE Load details count 11.

ICPRVO T4HDCORE The currently selected output queue loca-
tion encountered a protect violation when
trying to access data from memory. Enables
protect violate flag on I4HDCORE due to
ICFL or ICIR.

ICQKAFUL I4PIPTOP/ The KA buffer contains an instruction octet
IALVL3 that can supply instructions to IR.

Advanced Scientific Computer

a2

Signature

Table B-5.

ICQKAHAZ

ICQKAPRY

ICQKBFUL

ICQKBHAZ

ICQKBPRY

ICQKRTAG

~-ICRDACK

-ICURDATA(0-7)

ICWACK

TCWACK1

ILARTBA(0,1)

~-ILARTLA

I4CMREQ Circuit Board Output Signals (Continued)

Destination

I4PIPTOP/
T4LVL3

I4PIPTOP

I4PIPTOP/
I4LVL3

I4PIPTOP/
T4LVL3

I4PIPTOP

I4PIPTOP/
I4LVL3

I4VECLAS/
I4LYL3

I4HDCORE

T4VECLAS/
T4PIPTOP

I4HDCORE
I4ADDR(0,1)

I4ADDR

Function

An instruction in the pipe(s) will modify
the data contained in the. KA buffer.

The data in the KA buffer resulted from a
fetch that violated memory protect, and
is therefore invalid data.

The KB buffer contains an instruction oc-
tet that can supply instructions to IR.

An instruction in the pipe(s) will modify
the data contained in the KB buffer.

The data in the KB buffer resulted from a
fetch that violated memory protect, and
is therefore invalid data.

Selects either the KA or the KB buffer
to supply instructions to the IR register.

Indicates that CMR can accept a new read
request to obtain data from memory.

Unit register byte to be transferred to
the PP.

Indicates that CMR can accept either a
read or a write request, because the re-
quest queue is empty.

Fanout of ICWACK.

Transfers the contents of the AR register
to the BA register.

Transfers the contents of the AR register
to the LA register.

Advanced Scientific Computer

a2

Table B-5. I4CMREQ Circuit Board Output Signals (Continued)

Signature Destination Function

-ILARTLC I4ADDR Transfers the contents of the AR register
to the LC counter.

~-ILARTOA I4ADDR Transfers the contents of the AR register
to the OA register. ‘

-ILARTPA T4ADDR Transfers the contents of the AR register
to the PA register.

-ILBATLA : I4ADDR Transfers the contents of the BA register
to the LA register.

-ILBATOA I4ADDR Transfers the contents of the BA register
to the OA register.

-ILBATPA I4ADDR Transfers the contents of the BA regisfer
to the PA register.

-ILCNTBA T4ADDR Transfers LA + 8 to the BA
register.

ILDECLC(0,1) I4ADDR Decrement pulse to the LC counter.

-ILDTARGT I4PIPTOP Indicates that a PB target branch is in
level 1.

ILDUAL I4LVL3 Dual: A branch has encountered a hazard

at level 3 and is holding for it to clear;
therefore, the look ahead controiler re-
tains the current octet while fetching a
new look ahead octet containing the target
instruction of the branch.

-ILGBA I4ADDR Enables loading of the BA register.
-ILGLA I4ADDR Enables loading of the LA register.
B-48

Advanced Scientific Computer

O

Table 4-2. TI4CMREQ CIRCUIT BOARD OUTPUT SIGNALS (Cont.)

Signature Destination Function

-ILGLC I4ADDR Enables loading of the LC counter.
-ILGOA I4ADDR Enables loading of the OA register.
-ILGPA 14ADDR Enables loading of the PA register.
-ININCLA I4ADDR Increment LA: Adds 8 to the address

currently contained in the LA register.

-ININCPA I4ADDR Increment PA: Adds 1 to the address
currently contained in the PA register.

~ILINHAZ I4ABDR Transfers the address in P3 into the OA,
LA and PA registers to recover from an
instruction hazard.

~ILLATBA I4ADDR Transfers the contents of the LA register

| to the BA register.
-ILLATOA I4ADDR Transfers the contents of the LA register
| to the 0A register.
ILLOADIR:1 I4APIPTOP Transfers a new instruction word into the
-ILLOADIR:1 I4PIPTOP ;
-ILLOADIR:2 T4PIPEMB IR register.
ILPATBA(0,1) I4ADDR Transfers the contents of the PA register
to the BA register.
ILPBEN I4LVL3 Prepare to Branch instruction enabled.
-ILP3TBA I4ADDR Transfers the contents of the P3 register
' to the BA register.
-ILP3TOA T4ADDR Transfers the contents of the P3 register
' to the OA register. (Not used)
-ILR3TLC I4ADDR Transfers the contents of the R3 register
to the LC counter.
IMCMTKA IAFILE ' Transfers the octet in KCM to the KA buffer;
B-49

Advanced Scientific Computer

a2

Table B-5. I4CMREQ Circuit Board Output Signals (Continued)

Signature Destination Function

IMCMTKB I4FILE Transfers the octet in KCM to the KB
buffer.

-IMDTL4(6) I4FILE(6) Store details data lines to memory bus.

-IMDTL7(4-7) I4FILE(4-7) Store details data Tines to memory bus.

~-IRWINDER(0-3) I4ROUTE?2 Early window flag for AU(0-3). Indicates

that if a divide at level 3 is in the
same group as a divide that is currently
in the pipe, the new divide can reach the
AU in time to save divide initialization
time by overlapping. This window allows
for memory fetch time. This signal is
delayed one clock from the input signal
BMQRMERW(0-3) that produced it.

~-IRWINDLT(0-3) T4ROUTE2 Late window flag for AU(0-3). Indicates
that if a divide at level 3 is in the
same group as a divide that is currently
in the pipe, the new divide can reach the
AU in time to save divide initialization
time by overlapping. This window does not
allow for memory fetch time. This signal
is delayed one clock from the input signal,
BMQRMLTW(0-3) that produced it.

IVDMZERO(0-7) not used Fixed logic zero signals.

Advanced Scientific Computer

a2

The look ahead controller produces gating and control signals required to

LOOK AHEAD CONTROLLER

load each of the address registers on the I4ADDR circuit board and the IR
register in level 1 of the IPU. The controller monitors the status of instruc-
tion octets in the IPU, and by loading the address registers at the proper
time, assures that instructions will be available to IR with the minimum '
possible delay. During normal instruction sequencing, the controller loads
the address of the look ahead octet (the next sequential octet after the current
octet) into the OA register, so that the Central Memory Requester (CMR)
may fetch that octet from memory and place it into the look ahead buffer

(KA or KB). If a branch enters the pipe that has been preceded by a LLA

or PB instruction, the controller fills the pipe following the branch instruc-
tion with instructions from the target octet of the branch. When the branch
occurs, the instructions in the branch path will be immediately available.

A branch that is not preceded by a PB or LLA instruction creates a delay

by requiring a new memory fetch.

The following paragraphs describe the operation of the look ahead controller
with reference to the flow chart of the controller logic that follows this de-
scription. The paragraphs follow the same order as the logic flow through
the chart, and explain the major decision paths that are pos sible within the
controller. Table 346 lists the register transfers that the look ahead con-

troller initiates.

CONTROLLER TIMING

The look ahead controller is composed of combinational logic, and as such,
has no timing chain, sequence of events, or formal states. All of the ques-
tion blocks illustrated in the flow chart are examined simultaneously during
each control cycle to enable only one path through the controller. When the

control clock pulse occurs, all of the action blocks on that enabled path are

Advanced Scientific Computer

Table B-6. Look Ahead Controller Transfers Index

TRANSFER REFERENCE SIGNALS

AR—BA SILBLK (18), (27)

AR—LA AILBLK (0), (2), (4), (20), (29), (30), (45)

AR—~LC —ILBLK (13)

AR—0A SILBLK (0), (20), (30), (45) (also Load/Store File from CMR)
AR—PA SILBLK (0), (2),.(3), (4), (22)

BA—LA SILBLK (7), (9), (10), (33), (34), (37), (41), (42)

BA—-0A SILBLK (9), (10), (33), (37), (41) |

BA—PA SILBLK (6), (7), (9), (38)

LA—BA TILBLK (46)

LA+8—+BA SILBLK (47)

LA+8—~LA MILBLK (14), (15), (16), (19), (28), (31), (36), (39), (43), (44)
LA+8~0A SILBLK (14), (15), (16), (19), (28), (31), (39), (43), (44)
LC-1—LC SILBLK (38), (40), (48)

LOAD IR ﬂ%zgkk (1), (15), (17), (22), (25), (29), (30), (31), (38), (40),
PA+1—BA SILBLK (22), (38) |

PA+1~PA JILBLK (11), (15), (17), (25), (29), (30), (31), (40), (48)
P3—BA SILBLK (13)

P3~LA —ILBLK (1)

P3—0A =IILBLK (1)

P3—=PA SILBLK (1)

R3—LC —ILBLK (18), (27)

Advanced Scientific Computer

a2

executed simultaneously. This type of timing means that action blocks up-

stream from other decision blocks in the flow chart do not affect the deci-

sion block. Also, since all actions occur simultaneously, all action state-

ments refer to conditions at the start of the control cycle. For example,

ILBLK(22) (sheet 3 of the flow chart) transfers AR to PA and PA + 1 to BA.

This statement does not mean that BA then contains AR + 1, but rather, it

contains the address contained in PA at the beginning of the control cycle

plus an increment.

LOOK AHEAD CONTROLLER TERMS

The following terms and their definitions are essential to understanding the

flow charts and the look ahead controller discussion:

Branch -An instruction that causes the next instruction to be

accessed from a non-sequential location, creating the necessity

‘for the controller to fetch a new look ahead octet.

Buffer - The KA and KB octet buffers on the I4ADDR circuit board.
The current buffer is that buffer from which instrucﬁons are cur-
rently being drawn. The look ahead buffer is the non-current

buffer containing the next octet of instructions to be used.

CMR - Central Memory Requester: The controller that initiates

requests to memory for instruction octets.

Dual - A mode of operation of the controller that is entered When
a non-targeted branch encounters a hazard at level 3, and therefore,
the terms of the branch cannot be determined. The controller saves
the current octet, and fetches a new look ahead octet that contains

the target instruction of the branch.

Flag Full - An internal controller flag that indicates that the target

instruction is in the current buffer and the target branch is in the

B-53 Advanced Scientific Computer

look ahead buffer. Theréfore, the branch will be to an instruc-

tion that has previously been in the current buffer.

Flag 4 - An internal controller flag that indicates that a target
branch is in the IPU pipe (levels 1-3).

Flag 12 - An internal controller flag that indicates that the target
instruction of a branch either has been requested from memory or

is resident in the IPU buffers.

LA Ordered - An internal controller flag that indicates that a normal
look ahead octet (present address +8) has been requested from
memory, or is resident in the IPU buffers. The name is derived
from the fact’that the Look Ahead octet has been ORDERED from

memory.

LLA - Load Look Ahead instruction: An instruction that prepares

the controller to branch back to a previous point in a program.
When the LLA instruction reaches level 3, the address of the LLA
contained in P3 is the target address of the branch and the developed
portion of the LLA in the AR register designates the number of in-

structions between the LILA and the branch instruction.

PB - Prepare to Branch instruction: An instruction that prepares
the controller to branch to a predetermined address. When the PB
instruction reaches level 3, the developed portion of the instruction
in AR contains the target address of the branch, and the R3 register
designates the number of instructions between the PB and the branch

instruction (15 instructions maximum).

Target Branch - The branch instruction that is the object of a PB

or LLA instruction. May also be referred to as PB Target.

Advanced Scientific Computer

e Target Fail - An internal controller flag that indicates that when
a targeted branch reached level 3, the branch was not taken or
the instruction was skipped. The controller must then reconstruct

the original instruction sequence.

e Target Instruction - The instruction that is the object- of any branch

instruction.

FLOW CHARTS

The look ahead controller flow charts that follow this description may be used
as both a theory learning tool and a maintenance tool. Each question or ac-
.tion block contains a brief phrase that describes the function(s) of that par-
ticular block. Beside the block is the exact signature of the signal that is
being examined (question block) or produced (action block). Along with the
signature is a set of tagging information that designates the origin or moni-

- toring point for that signal in the hardware, and the sheet in the logic diagrams
where that signal originates. All sheet references are to sheets wifhin the
logic set for the 14CMREG circuit board. Figure B-8 illustrates the tagging
information included with each signature on the flow charts. Figure B-9 is

the Look Ahead Controller Flowchart.

/ Circuit board pin number that
-ILGBA (PIN323) SHT 15 signal appears on

Sheet of I4CMREQ logic where
signal originates

7 7 Logic diagram signature
- ILQLAORD (423-2) SHT 16
IC package location and package
pin number for signal origin

Figure B-8. Flowchart Tagging Information

B-55 Advanced Scientific Computer

)G

CLEAR FLAGS:
DUAL,

P8 OR LLA IN
m&n;ﬁ 3 PROGRESS,
PIN 3
& 2 ILSBRSEE S22 g" i? YT, | FEAGFUL,
. lLQFLG!Z(i tg:r 17]Fac 4 - 3
ILQFLGFL % “1 ILBLK (8
DISABLED ves 1ILQFLGA,(420~6),5 1’7 ¢ ;zu-a)zu-z)
NO .
1('5.%"T33) ICRDACK 1 : 2 [ULARTPAL (PN 124)28HT 13
Shr 7 24z xemian—en. RISRCRRITIIR o
SHT 28 [y e g FiLGoA T (PIN 16 3»&
N i e 1
BRANCH GRDERED
T0 0A STBR(0) 1 d LQLAGRD, 423—35)-.5#11' 16
YES YES 241—4
SHT 7
NO NO
NIRINHAZ
(PN 285) ICRDACK 1% 2
- ILGLA (PIN 320)SHT 14
SHT 28 ILGPAT(PIN 324)SHT 13
XFR: PA—eLA LGOA (P HT 2|
P3—-PA “m_mqu ;-sn'r 13
CMR P3—0A \LALAGRD (AZ -2
READY 7YES (1) ILBLK(1) CLR LA ORDERED
429-7
a29-8
SHT 7
NO NO i
“1IRBRTLA '
EIN 289)
HT 7
TOGGLE KA/KB JCGKTAG: (240~ 4)1SHT 24
osest pcm-rzn, 2 ILARTPA § PIN 124)1SHT 13
BRANCH XFRIAR —PA "Ci” Pl 4 A;"IT
R h) 14
TO LA o ST CLEAR LA ORDERED h(P:I‘J 320;-,)%#7
Gt 24 s LAt AOKS" (4332 iSHT 16
NO
<V IRBRTP. 1LQLAORD
(PIN 389 (222
SHT 7 SHT 16
FILARTPA {(PIN 124);SHT 13
BRANCH La XFR:AR—PA 1 (P B
TO PA YES ORDERED YES JILBLK(3) _ ILGPA S (FIN 324)5SHT 13
(341—4)
SHT 7
“JILBLK(4) l
NO (443-5) NO
SHT 7
TJILGPA(PIN 324)1SHT 13
JILARTPAL(PIN | 24)SHT 1 2
XFREAR=PA AILARTLAL(PIN 220)SHT 13
AR~LA JILGLA ((FIN 320)4SHT 13
“NRTGTFL
(PIN 283) (2)geracaa
SHT 7 418-1,418-2)
SHT 3
PA - BA 1= TFAIL ILQTFAIL(421-2)ISHT 17
YES NO ILBLK () FLAG
27-5)
3
NO YES I
-
ILQLAORD
(423-2)
SHT 16
vl XFR:BA—PA |V ILBATPA ,(PIN 423 SHT 13
ORDERED . -
YES NLBLK(6) ~iteean el 5247 Xadt
2 (5317-4)
SHT 7
NO [
ILBLK(7)
(533-4)
SHY 7

(B) 123650

Figure B-9.

XFR?BA—LA
SHT 12 BA—PA

Look-Ahead Controller Flowchart (Sheet 1 of 8)

B-56

Advanced Scientific Computer

ILTFAIL
Gaa-9)
HT 15

g’m 385)

’ FETCH BRANCH OCTET

DUAL AND
BRANCH NOT
TAKEN

TVIRBRTP14(PIN 187)
SHT 8
TIRBRTP2 3(PIN 287)
SHT 8

ICRDACK 151 TVILGPA S(PIN JZALSHT, 3
(242-1) XFR'BA-‘PA “VILBATPA: (PIN2 S SHT 13
H 28 A—~OA '\II.BA l SHT 15

—LA r' ce * 28
SR SRR ER: HHET e
FLAG QTFAIL;{‘ZI‘Z;‘,SHT 17
START MEMORY ILINSTR1¢(832~4){SHT 18

REQUEST
‘ [} START

ICRDACKT : 1
(242-1) 1
HT 28
VILGOA S(PIN 169),SHT 28
CMR XFR: BA—OA 1||.aA1'6 PIN 371)4SHT 15
READY BA—LA - LBATL.AF} PIN 419) {SHT 14
YES T1ILBLK(10) SELECT KA OR KB, |-ILGLA,(FIN 320),SHT 14
(527-7) START MEMORY ILINSTRY (532-4)2SHT 18
H 7 REQUEST, SET LA 513 ILNEXT §s4z~§14) SHT 18
° ORDERED, CLR DUAL | 1LQLAORD ;(d23-2)%SHT 16
N ILQBUAL % (330~ 2)$8RT 17

L.
Tiagevis

ILQPBVLL, CLEAR FLAGS:

(421-6)¢ 9uT17] FBOR LLA
ILQFLG13: IN PROGRESS,
420-2)3shT17 N

A FLAG FULL
LQFLGFL FLag m
] 1
(420-6)4SHT17

OR LLA
IN pmey YES

NO

IRLLXFER
(PIN 490)
SHT &

LLA
AT LSEVEL

YES

{18432

SET PB OR LLA
IN PROGRESS FLAG, ‘l
XFRIP

AR—‘LC

LEVELS ~ ||..QVAé
ILQVAC

|
NUMBER OF VACANT ares gﬂ

(8) 123651

Figure B-9.

ILQPBVLL }(421-6)
SHT

TIRPBXFER
ng 285)
HT

NO

IN 421) SHT 15

P
ILGBA‘ &Pl&l 323) SHT 15
PIN ZGG)SHT 16

25 SHT 16
5~-5)SHT 16 TO
227—6)SHT 4 AND
423“6 ISHT 4,

ILPAEN$(PIN 184)

ILPAEN: 1 (328—4) SHT13

THLPBTGTLO(315-5)%SHT 2

TARGET
AT LEVEL O

NO
ILBLK(11)3(533-5)4SHT 7

172)SHT 13
IN 219)SHT 13
LOAD IR REGISTER, ILLO, IN 171) SHT 13
INCREMENT PA '\ILINCF‘A' ng SHT 13
NICGPAS (B 24) $HT 13
B START
1
ILBUFCLR ILBUFCNG
(326~4) (342~2)
SHT 3 SHT 3
1S PB
TARGET IN
CURRENT NO

BUFFER

Look-Ahead Controller Flowchart (Sheet 2 of 8)

B-57

Advanced Scientific Computer

PB AT LEVE
TARGET IN CURREN‘I' BUFFER

qiLBLK (19), (540-7), SHT 8

SILLAORD, (442-5)
SHT 17

XFR: LAM—-LA

gILINcLA, (PIN 319)
TILGLA, (PIN 320)

+8 — OA SHT 14
-S'DI-C"‘TA:ELA' (PIN 384) A START MEMORY g:ll#TOA, (PIN 271)
REQUEST
ORDERED

TIRAREPA, (PIN 484)
SHT 8

SELECT KA OR KB

JULGOA, (PIN 169)
SHT
ILINSTRY, (332-4)

SET LA
ORDERED g JHLNEXT, (642-4/5)
II.QLAORB (432-2)
SHT 16
ICRDACK 1: 2
(242-5) SHT 28 g XFR: ARTTLA
YES AR~ O0A
AILBLK (20) START MEMORY
?‘31'7_35) REQUEST
SELECT KA OR KB
CLEAR LA
ORDERED
'\ILARTLA" PIN 2%0), SH;I' 14
AILGLA, (PIN 320 -
ILINSTR1, (532-4), SHT 1 ALBLK(21), (733=7), SHT 9
"I&ILNEX , (642-4, 642-5), SHT 18
LQLAORD, (423-2), T ILQFLGT2
ILPAEN AILARTO, l’ PIN 121), SHT 16 420-2)
(PIN 184) IR ULGoA, (PN 169), SHT SET gt
READY FLAG 12

ILPAEN: 1 (328—4) SHT 13

AILPBTGTLO

31575) ILPAEN, (PIN 184)
TARCET AT
NO
LE})VYES ILPAEN. 1 (328—4) SHT 13
NO
2
ILPBTGTLO
(315-4) SHT 2
ST AT
TARG (IMPLIES AR=
—m.m.xszs) NO LE\DlEL LA OR PA)
(633-5), SHT 9
<ILLOADIR: |, PIN 172), SHT 13 YES
lIITtLORD‘:R 3, Lm‘g:é gwr1 :1’3 9ILBLK(22), (637-5)
LOAD IR JILINCPA, (P1 22“§ 3 'LAREQPA- (341-2) SHT 9 *
INCREMENT PA | 1LGPA, (PIN 324), SHT 13 SHTSlpA. (PIN 484)
SHT 9 LOAD IR
XFR AR—PA
PA+1I— BA
2 SET FLAG 4
ILBLK (27) FLAG "TARGET
(425-7), SHT 9 AT LEVEL 1"
TILGBA, (PIN 323), SHT_15
ILARTBA, (PIN 469}, SHT 15
XFR: AR — BA
ILLOADIR:t, (PIN 172)
TILBLK (24) | TMILBLK (23) lsl'foiamﬂ PIN 171
(580-4) (628-7) A)
HT 9 HT 9 JILLOADIR: 2, (PIN 219)
SHT 13
ILARTPA, (PIN 124)
JILGPA, (PIN 324)
SHT 13
ILPATBA(0 , 1)
P[lr_os 370) 470)
ILQLAORD
- CLEAR LA ILGBA, (PIN 32
gﬁ_a‘g) ORDERED -'HTG‘_r,' ¢ 323)
ILQFLG4, (420—6)
SET LA ILQLAORD JILDTARGT, (PIN 173
ICGKTAG TOGGLE KA/KB ORDERED 423-2) SHT 19 ()
(240—4) OUTPUT POINTER HT 16
SHT 24
'|ILBLK$27)
(425-8), SHT 9
XFR: R3—LC
JILR3TLC, (PIN 467), SHT 16
yuoes o kb 12, Sne
o 2
‘ﬂﬁﬂ‘g LEVELS lLQVAC{l :gn: 6;' SHT 4
LaQPBVLL, (42i-6), SHT 17
SET P8 O
T PROGRESS FLAG
START
(8) 123652

Figure B-9,.

Look-Ahead Controller Flowchart (Sheet 3 of 8)

B-58

Advanced Scientific Computer

PB AT LEVEL 3 : . FLBLK(28), (543-4)
TARGET ENTERING
CURRENT BUFFER

XFR: I-AM —LA

LING!
PIN 5183, SHT 14
+8—OA 1L

HT

“1IRAREPA

(PIN 484)
HT 9

1CRDACK 132
(242-5)

AIRARELA
(PIN 382)
SHT 9

MILLATOA, (PIN 271), SHT 15

SILINCLUA, (PIN 319), SHT 14

MLGLA, (RIN 320), SHT 1
ICGKTAG , (240—4), HT 28
ILINSTRP, (7ﬂc-4?
-mu.owm 1, (PiNs N8
W0z, (PIN 2191, SHT 13
QULINCPA, (PIN 224), SHT 13
TULGPA ('P N 324, é HT 13
1LaFLGi2, (420~ SHT 17

(B) 123668

Figure B-9.

g?t!é-s) (442-7)

LA
ORDERED

YES

ILPA
(PIN

ILPAEN: 1 (328—4) SHT 13

EN
184)

SET LA
ORDERED
START MEMORY
REQUEST

SELECT KA OR KB i

PIN 320), SHT 14
PIN ZA7I). SHT 15
‘FIN 169), SHT 28
SHT 16
332-4), SHT 18
))ILN
642-5/4), SHT 18

o
JaCNbIESEIEaE

23—
iNSTR{
2

INCREMENT PA
XFR: AR— LA

-(m.an.xszs) LOAD IR
TOGGLE KA/KB
E‘I)ILSUB(I) OUTPUT POINTER
538-7/5)
SH CLEAR LA
ORDERED

SET FLAG 12
AND FLAG FULL

THLINCPA

(PIN 224), SHT 13
JILGPA

(PIN 324), SHT 13
JILART

PIN 220) SHT 14

PIN 320 SHT 14
;g 320iRTT
NS 172/171)

ILLOADR
(PIN 219), SH'I’ 13

CMR
READY
NO
YES
SILARTOA
(PIN 121), SHT 16
ILGOA
(PIN 169), SHT 28
JILARTLA |
(PIN 220), SHT 1
- XFR: AR— OA
AR - LA No —LA
VILGLA,
TOGGLE KA/KB PIN 320), SHT 14
s OUTPUT POINTER CGKTAG
START MEMORY 5,_2_?,?—4&:5 SHT 24
REQUEST 736—4), SHT 18
?el‘ls-gl_-lﬁao) LoAD 1R NiLLoADiR
8377 Ns |72/|7|)
E‘!)IL_SUB(U INCREMENT PA SHr NaoiR:2
538-7/5) (PIN 219), SHT 13
SHT 9 SET FLAG 12 SILINCPA
CLEAR LA (PIN 224), SHT 13
ORDERED
'llLBL.KS:!I)
(73
SHT o
Eﬁ)u_sus 1)
538-7/5
HT 9

XFR: LA+8 —OA
LA+B — LA

TOGGLE KA/KB
OUTPUT POINTER

START MEMORY
REQUEST

LOAD IR
INCREMENT PA
SET FLAG 12

(320-2), SHT 17

JlLera (PIN 324)

IL.Q LG

420-2 SHT 17
LQLAORD
(423—2), SHT 16

TO ILBLK(18)

Look-Ahead Controller Flowchart (Sheet 4 of 8)

B-59

Advanced Scientific Computer

PB AT LEVEL 3
TARGET NOT IN OR
ENTERING CUR“ENT BUFFER

L'I)ILPAEQ7D

ICRDA
(242—1) St 28

242—4), (242~2)
HT 3
YES
ILINSTR2 (430-2) START MEMORY
SHT 18 REQUEST
(DILNEXT (642-5,
642—4) SHT 18 SELECT KA OR KB JVILLAORD
ICRDACK 1: 1 ILQLAORD, (423-2) '\ILBLKSIS) 442-5)
(242—1) SHT 28 SHT 16 SET LA 542-7 HT 17
AILINCLA (PIN 319) | ORDERED
SHT 1 LA
AILGLA (PIN 320) XFR: LA+B—LA ORDERED
SHT 14 A+8—0A
JULLATOA (PIN 271)
SHT 15
YES
—4) ,SHT13 ILPAEN
ILPAEN" 1 (328—4) (PIN 184)
ILPAEN
(PIN 184) ILPAEN: 1 (328—4),SHT 13

“T)ILLAORD
442—5), (442—7) LA
HT 17 ORDERED
YES
? Ll;(id) ‘IILBLKQ‘S) ?ILBLKSI7)
SHT 8 (edr=a SHT 8
':" INCPA
TILGLA (PIN 320) XFR: LA+8—LA 1|LGLA (PIN 320 XFR: LA+8— LA INCREMENT PA (s 1- 4)
SHT 14 LA +8—0A LA+8 — OA L
JILINCLA (PIN 319) '||L|NCLA (PIN 319) PIN 29
a (START MEMORY 14 START MEMORY ém 133)
AILLATOA (PIN 271) REQUEST 1ILLA70A (PIN 271 REQUEST LOAD IR NILLOADIR: !
SHT 15 SHT 1 PIN |7z
ILINSTR2, (430-2) SELECT KA OR KB FILINSTRP (736~ 4! TOGGLE KAKB g)
T SHT 18 OUTPUT POINTER ILLOADIR 1
E'I)ILNEXT (642~4), SET LA ICGKTAG (2404 \ (PIN 171%)
642—5) SHT 18 ORDERED %H;_r 24 : LoAD IR 3
ILLOADIR : JILLOADIR:2
(PIN172) INCREMENT PA (PIN 219)
3, SHT 13
| LO
(BN |7|> SHT 13
b1l DIR:
(F'IN £|9l SHT 13
ﬁILGPA (PIN 324,
3
‘IILiNCF'A (PIN 224,
SHT 113
ILQLAORD
(423-2)
SHT 16
T)ILBLK(181
425-5,425~4)
HT
XFR: AR — BA TILGBA, (PIN 323) SHT 15
ILARTBA(O ;, §PIN 459; SHT 15
SET PB OR LLA ILARTBA(1 PIN 123) SHT 15
IN PROGRESS FLAG iLaPevLL, 1421-6) SHT 17
AMLRITLC, (PIN 467) SHT 16
XFR: R3 —LC qiLGLe, (PIN 1 LSHT Ve
ILGLC, (135-5), SHT 16 TO
NUMBER OF lLQVAé?O%. 5227—5}. SHT 4 AND
= VACANT LEVELS 1LQvAac(1), (423-6), SHT 4

—=VAC FF'S

. START

(B) 123669

Figure B-9. Look-Ahead Controller Flowchart (Sheet 5 of 8)

B-60 Advanced Scientific Computer

AILFLG4
2503—3)
HT 19

NORMAL LOGK AHEAD

FLAG 4 SET

TILLCEQ4
413=7)

YES

ILTGTAPA
(436—4), SHT 11

YES

VLBLK(32)
(618—5) SHT 10

CLEAR PB
OR LLA IN
PROGRESS FLAG

NO

ILFLG120F

c2 4

(START)
—_— e —— —
XFR
TARGET
TO
LEVEL 1 JiRsEREQ (PIN 185
JIRLFREQ (PIN 186

ILPAEBA
(418—2)
SHT 3

ILFLG12
gSOS—!G)
HT 19

AIREXIND (PIN 481)
SHT 10

BRANCH |

N
CURRENT OCTET FETCH
TARGET INSTRUCTION

SILLAORD
(442-5)
SHT 17

tLQPBVLL

AND
PA+LCS11

C
CURRENT OCTET)

OCTI
TAINING BRANCN

ICRDACK 1: 1
(242—1) SHT 28

XFR: BA — OA
BA—LA

START MEMORY

REQUEST

SELECT KA

OR K8

ILBLK(33
?627—A) CLEAR LA

83778 ORDERED
SET FLAG 12

IPAEQ7D

(242-2) SHT 3

R}l

LA
ORDERED NO

YES

*'IILBLK(34). (622—4), SHT 10

XFR: BA—LA

!

'm.al.xsss)
637-2
o HT 10 JILFLEFL
N 15 16/1) ILBLK(36)
620-7)
{SaoraS L
40— TOGGLE KA/KB
SET LA
SHT 24 oy YES ORDERED
9ILBLK(49)
(620—4), SHT 10
: TURSFREQ
(PIN 185)
NIRLFR CLEAR LA
PIN 186) ORDERED
IREXIND ILALAORD
ICRDACK 131 (PIN 481) SHT 10 (423-2) SHT 16
2-1)

SILBATLA (PIN 419) SHT 14
SILGLA, (PIN 320), SHT 14

XFR: LA+8—= LA

TILBATOA (PIN 37‘) SHT 15

‘llLGOA (PIN 169) S
I_BATLA (PIN 41 9) SHT 14

ILBATOA (PIN 371) SHT 15

TILGOA (PIN 169) SHT 26
LBATLA (PIN 419) SHT 14
JILGLA 320) SHT 14

T INSTRY (532—4) SHT

(JALNEXT (642-24/5) SHT 18

SHT 16

ILQFLG12 §420“Z§ SHT 17

TILINCLA, (PIN 319)
SHT

TJILGLA, (PIN 320)
SHT 14

ILQLAORD, (423~2)
SHT 16

1 |.Bu(838) (631~4) .

ISI.PATBA(O .1)(333-5,7)
ILDECLC(0,1) (324-5,7)

IN 320) SHT 14
START MEMORY n_ms =4 T 1
EELEE;?T o TR (736-4) SHT 18
KA OR K -
JOGELE KA/KB i']ékNExT (542)5/:‘)1_5"1' 18
P R LI a3a2byEnT 16

CLEAR LA ORDERED

P [

XFR: PA+1——BA
LC—-1—LC

FLAG "TARGET
AT LEVEL 1"

Si
'III.SATPA (PIN 423)

TILGPA PIN 324) SHT 13
DIR:1 (PINS 1,72/1)

'Iil‘LI.OADIR.Z (PIN 219)
ILQFLG4 (420-6)

(B) 123670

Figure

(STAHTM

TILDTARGT (PIN 173)
SHT 19

B-9. Look-Ahead Controller Flowchart (Sheet 6 of 8)

B-61

Advanced Scientific Computer

NORMAL LOOK AHEAD

FETCH NEW OCT . .
(PA=7)
AIREXIND (PIN 481
ICRDACK 1:1, (242—1) SIRLFREQ 3? N “6); SILLATOA (PIN 271)
) ILLAORD SHT 28 JIRSFREQ {PIN 185) SHT 11 1||.caA (PIN 169)
Qaz—sn)
HT 17 TesTr (532-4)
ILNEXT , (642-5/4
orbtheD $4 o4 4l
XFR: LA+8-— OA ILQLAORD , (423-2)
LA+B— LA SHT 16
START MEMORY ILINCLA (PIN 319)

REQUEST
SELECT KA OR KB AILGLA (PIN 320)
SET LA ORDERED SHT 14

SILBLK (39)
g 44— 4)
HT 11
ICRDACK 1 : 1
(242-1) SHT 28
™ A
(e
frin
*NOTE: T S VIREXIND (PIN 481)
'LLL.TE?IOZR = (JILFLG4)*(7ILLCLT4) AND :‘51:%"5;:52 i.’:lﬂ lgg
L is ‘BETWEEN 4 AND 12 HT 11
YES b
— —— —— —
BRANCH IN
NEXT OCTET
ILPAEN 1(328—4) SHT 13
ILPAEN ILPB
(PIN 184) 3;5—5114(3—"_0
T 2
P8 SH >
TARGET AT
LEVEL o YES
'nRExm%(mm 4]8316)
TIRSFREQ (PIN 135; JILPAEN 1 (328—4) SHT 13
ILPAEN
(PIN 184)
-
ICRDACK1: 1 YES
(242-1) SHT 28
B
] 1
(START) (START)
ILBLK (43) -
~4) SH
FILBLK (41) 634-4) 11
(639-4)
SHT 11
T I1LBATOA N 371) SHT 15
s ga—pn | G T (o3 B xemi gt —on | cuciaon, em 2712 sur 15
— 8 —
START MEMORY ILGLA , (bY 320) SHT 14 START MEMORY ;’:tﬁ?@ﬁém?m'r? 3) 95‘ SHT 14
AR hocneo | IERSTHE (S TG el AT B 1o
- T
SET FLAG 12 ILQFI..G|2 fazo— ;su-r 17 ILINS (736-4), S
“7ILBATLA, (PIN 419) XFR: BA—
S| CLR LA RDERED
TMLGLA (PIN 320) SHT 14 SET FLAG 12
ILQLAORD, {423-2) SHT 16 No FLAG FULL
ILQFLGI 2, (420~2) SHT 17
ILQFLGFL, {320~2) SHT 17
~IILBLK (40)
440-4)
HT 11
JeoKTAG , (240-4 T 24
TOGGLE KA/KB ¢ rgms 172/171) SHT 13
OUTPUT POINTER 3 BDIR: 3 PIN 2,34 SHT 13
7 TILINCPA (mk 224) SHY 13
{NCREMENT PA JILGPA (PIN 324‘) SH’ .
ILDECLC (0,1), PiNg 424/455) SHT 16
(B) 123671 B

(START) f

Figure B-9. Look-Ahead Controller Flowchart (Sheet 7 of 8)

B-62 Advanced Scientific Computer

25
rm

AZ, (PIN 483), SHT 12

P3(29) (208—2), SHT 3

QURLCLBR
gPIN 387)
HT 12

P8 OR
LLA IN
PROGRESS

LA
ORDERED

J)ILLACRD
442-5/7)
SHT 17

§442-5/7)
HT 17

CRDACK 1:1
(242-— 1)
SHT 28

DUAL

ICRDACK 131 MODE
JUMLFLG12, (505-1), SHT 19 Az
TILLTEQY], (205-1), SHT &
FL?)GR 12
PA+LC <11 YES
1|REX|ND PIN 481
{DiLLaorRD Tircrrza), PN AAL

IRSFREQ, (PIN 185)

TILBLK(45)
(340-4) SHT 12

XFR: AR —O0A TLARTOA, (PIN 121), SHT 16
AR —LA JILGOA, (PIN 169), S 8
1ILARTLA [N z;o) su'r 14
START MEMORY REQUEST LGLA [(b s’H
"llLlNSTR‘I (532-4), s T q8
SELECT KA OR KB (7&ILNEXT (642-5/4) SHT 18
ILGDUAL, {330-2), SHT
SET DUAL iLQLAORD, (423-2), su'r 15

CLR LA ORDERED

QJIREXIND, (PIN
'IIRLFREQ
~IIRSFREQ

ILCNTBA

(PIN 369) SHT 15
ILGBA

(PIN 323), SHT 15

7ILBLK(47)
(@i

LA BA
ORDERED XFR: LA+8

NO

YES

}PIN

'|ILBLK846'3
PIN (344=2) SHT 12

XFR: LA—BA

TILBLK(44)
(435-4), SHT 12

LLATI
(PIN 270)

(PIN 323), SHT 15

XFR: LA+8—=0A TILLATOA 536—2), SHT 15
LA+8—LA AILGOA , 169), SHT 28
‘III.INCL.A ;PIN 3]9) SHT !4
START MEMORY REQUEST éHT
lNSTR' 4

SELECT KA OR KB

SV&ILNEXT‘ (sa
SET LA ORDERED

7]
g 4). SHT 18
LAORD ' (423-27, SHT 16

(B) 123672

PB
TARGET AT
LEVEL 0

ILPAEN
(PIN 184)

ILPAEN: 1 (328~4) SHT 13

TILPBTGTLO

{315-5) SHT 2

¥

Teaui(as)
(533—2), SHT 12

JlLincea, (PN 224) SHT 13
INCREMENT PA | 11 Gpa . (PiN 52 4), SHT 13
LOAD IR (I LLLORDIR: 1, (PINS 172/171), skt 13
Le-1—Lc LDECLC(0, 1), (PINS 424/466), SHT 16

(START)

Figure B-9.

Look-Ahead Controller Flowchart (Sheet 8 of 8)

B-63 Advanced Scientific Computer

a2

A branch instruction at level 3 of the IPU that references an address that is

BRANCH TO OA

not currently resident in the IPU registers requires a transfer of the branch
address to OA so that the target instruction may be retrieved from memory.
This condition is a branch to OA. The AR register at level 3 contains the
branch address. Therefore, the controller transfers this address to OA for
transmission to memory during the next memory request. In addition, the |
address is loaded into PA to select the target word from the new octet and
into LA to be incremented and loaded into LLA and OA as the next look-ahead
address. At this point the address in LA is the same address as that in PA,
indicating that the next octet has not yet been requested. Therefore, the "LA
Ordered' flag, ILQLAQRD, is cleared. The next control cycle will initiate

the request to memory for the target octet.

INSTRUCTION HAZARD RECOVERY

If an instruction hazard has occurred at level 3, the controller must reaccess
the octet from which the current instruction was drawn to obtain the new infor-
mation. The address of the hazarded instruction is in the P3 register. To
prepare for a memory fetch to access the octet, the address in P3 is trans-
ferred into the OA register. In addition, the controller loads the address

into PA to select the target word from the new octet, and into LA to be incre-
mented and loaded into LA and OA as the next look-ahead address. At this
point the address in PA is the same as the address in LA, indicating that the
next octet has not yet been requested. Therefore, the "LA Ordered" flag,
ILQLAORD, is cleared. The next control cycle initiates the request to memory

for the octet containing the hazarded instruction.

BRANCH TO LA

If a branch at level 3 references an address equal to the ILA address, the

target instruction will be in the look ahead buffer, KA or KB. (Since the

Advanced Scientific Computer

&
level 3 controller checks the resident address registers in reverse order,
i.e., P2, Pl, PA and then LA, LA must be different from PA in order to
produce a branch to LA. Therefore, LA has been ordered frrom memory).
To access the word from LA, the target address in AR is transferred to PA
and the KA/KB output selection pointer is toggled to choose the unused buf-
fer. To ensure that LLA contains the correct address and has not been altered
since the branch determination, the address in AR is transferred to LA to
be incremented for the next look-ahead octet. The LA Ordered flag clears

to ensure that the look ahead octet will be ordered during the next control

cycle.

BRANCH TO PA

If a branch at level 3 references an address equal to the PA address, the
target instruction is in the current buffer. To access the target word from

the current buffer, the branch address from AR is transferred to the PA
register. In addition, if the LLA Ordered flag is not set, the controller trans-
fers the address in AR to LA to ensure that the next octet fetched from memory

will be the next sequential octet following the target octet.

TARGET FAIL

If a branch instruction failed to branch when it reached level 3, or was
skipped over in the program sequence, a target fail condition exists. The
look ahead controller must then revert to the program sequence that was
abandoned when the branch instruction entered the pipe. At that time the
address of the instruction following the branch instruction was stored into

the BA register, and the controller began loading instructions from the branch
path. Since the branch will not be taken, the controller must use the address

in BA to fetch the next instruction to continue the program. If the address in

Advanced Scientific Computer

32
BA is in the PA octet, an immediate recovery is possible without the de-
lay of a memory fetch. The contents of BA are transferred to PA to select
the proper word from the buffer to be loaded into the pipe, and if the LA
octet has not been ordered from memory, BA also transfers to LA to ensure
that the proper octet will be ordered for the next look-ahead octet. If the
BA address is not equal to PA, a memory request cycle is required to re-
cover from the target fail. The controller sets the TFAIL flag on this clock,

so that the following clock will initiate a. memory fetch for the correct octet

(see Target Fail Flag).

TARGET FAIL FLAG

If a branch failed to bra',nch and the address in BA (recovery address) is not
in PA, the Target Fail Flag (TFAIL) has been set to indicate that a memory
fetch is required to recover from the failure. To perform the memory fetch,
the recovery address in BA is transferred to OA and a signal is sent to the
central memory requester to begin a memory request. In addition, BA trans-
fers to PA to select the word from the fetched octet and continue the program
- sequence. BA also transfers to LA to ensure that the proper look-ahead octet
is fetched. At this point, LA is equal to PA, indicating that the look-ahead
octet has not been fetched. The LA Ordered flag clears. This sequence of
events corrects the target fail condition, so that the controller clears the

Target Fail Flag.

DUAL AND BRANCH NOT TAKEN

If the look ahead controller is operating in the Dual mode and the branch at
level 3 will not be taken, the look ahead octet that was discarded at the be-
ginning of Dual mode must be retrieved. The address of this octet is stored

in the BA register. The look ahead controller transfers the address in BA

Advanced Scientific Computer

a2

to OA and signals the central memory requester to initiate a memory request
to fetch the look ahead octet. It also loads the address in BA into LLA to en-
sure that the next look ahead octet will be in sequence with the octet that is
being requested. Since BA contains the look ahead address Aof the current
octet, the address in LA is eight greater than PA, indicating that the look
ahead octet has been ordered. The LA Ordered flag sets. Fetching the new
octet terminates Dual mode, so the controller clears the Dual flag. To pre-
pare for loading IR with the next instruction, selection of a word from KA or
KB is enabled. If IR can accept a new instruction and the next instruction is
not the target of a PB in the pipe, the controller loads IR with a word from
the current buffer and increments the PA address. A PB target must be held
at level 0 until the PB reaches level 3.

PB TARGET AT LEVEL 3

When a targeted branch instruction reaches level 3, the look ahead controller
determines if the branch is to a location that is currently in the IPU pipe. If
the branch address is equal to either P2 or P1, the target instruction is in
the pipe. The IPU needs only to clock the target instruction through the pipe
to level 3. No additional memory fetches will be required to obtain the in-
struction. The look ahead controller clears the branch status flags (PB or
LLA in Progress, Flag 12, Flag Full and Flag 4) to indicate that the branch
has been satisfied, and continues with a normal look ahead cycle to put a new
instruction into IR. The other pipe level controllers ensure that the pipe re-

mains inactive until the target instruction reaches level 3.

PB OR LLA IN PROGRESS

If a PB or LLA instruction has prepared the look ahead controller for an up-
coming branch instruction, the controller checks the look ahead counter (LC)

and flag 4 (target in pipe) to determine if the branch is imminent. If the

Advanced Scientific Computer

2

branch instruction is in the curretly executing octet, the controller transfers

the address of the target instruction from BA into OA and LA (ILBLK(33) on
sheet 6), initiates a request for that octet, sets Flag 12 to indicate that the
target instruction has been ordered from memory, and enab.les a word selec~-
tion from the KA or KB buffer files. Because at this point a new string of
octets is to be begun, and LA is not‘ the next sequential octet address from
PA, the LA Ordered flag is cleared. The controller completes the cycle by

loading a new instruction into IR and decrementing the look ahead counter.

LLA AT LEVEL 3

When a Load Look Ahead (LLLA) instruction reaches level 3, the controller must
establish conditions in ‘;he IPU address registers to that it can respond when
the branch enters the pipe. To prepare for the branch, the controller sets

the PB or LLA in Progress flag to indicate that the instruction has been rec-
ognized, transfers the contents of P3 (address of target instruction) to BA,
loads the contents of AR (number of instructions until the branch occurs) into
the look ahead counter, LC, and sets the VAC flip flops with the number of
vacant levels in the pipe. These vacant levels must be considered when eval-
uating the LC count to determine the position of the branch instruction. After
setting these conditions, the look ahead controller continues with the normal

look ahead cycle to load a new instruction into IR.

PREPARE TO BRANCH AT LEVEL 3

When a PB instruction reaches level 3, the look ahead controller enters one
of three paths to prepare the address registers for the branch instruction.
The position of the target branch within the memory buffer file determines
which path is followed. If the target branch has cleared the look ahead buffer
and is in the current instruction octet, the controller follows the path illus-

trated on sheet 3 of the flow chart. If the next clock will use the last word in

Advanced Scientific Computer

L@o
the current buffer and the look ahead buffer contains the target branch, the
controller takes the path diagramed on sheet 4 of the flow chart. If neither
of these conditions is true, the controller follows the path on sheet 5 of the

flow chart. The following paragraphs describe the logical sequence of each

of the prepare to branch paths.

PB TARGET IN CURRENT BUFFER

If the target branch is in the current octet and the instruction to be referenced
by the upcoming branch instruction is resident in the IPU instruction octets
(AR = LA or PA), the controller ensures that the look ahead octet has been
requested (LA Ordered flag set) and sets Flag 12 to indicate that the target
instruction is in the IPU instruction registers, or has been requested from
memory. If the target instruction is not in the IPU, the controller must

fetch the octet that contains that instruction. If a request is permitted (CMR
Ready), the controller transfers the address of the target instruction to the
OA and LA registers and signals the central memory requester to begin a
memory request. This action sets LLA equal to some other octet than the

next sequential octet, so that the LA Ordered flag is cleared. The controller
then sets Flag 12 to indicate that the target instruction has been requested
from memory. After Flag 12 sets (through either of the above paths), if IR
can accept a new instruction and the PB target is not at level 0, the controllef
loads IR with a new instruction, increments the instruction address in PA,
stores the branch address from AR into BA ‘and the look ahead count frem

R3 into L.C, and then enables the number of vacant levels in the IPU into the
VAC flip flops for use in tracking the position of the branch instruction. When
these conditions have been established, the controller sets the PB or LLA in
Progress flag to indicate recognition of the PB instruction, and awaits the

next control clock.

Advanced Scientific Computer

@
| If the target branch is at level 0 when Flag 12 sets, the controller loads

the branch instruction into IR (if IR is ready) and transfers the address of
the target instruction from AR into PA to begin drawing instructions from
the branch path. In case the branch is not taken when the branch instruction
reaches level 3, the address following the address of the branch instruction
(P + 1) is loaded into BA. (If the branch is not taken, this address is then
loaded into PA, 1A and OA to retrieve the discarded program steps.) The
controller then sets Flag 4 to indicate that the branch is in the pipe, and
signals the level 1 controller that the branch is in level 1 (Target at level 1).
Concurrent with these steps the controller examines the address of the target
instruction contained in AR and compares it with the current PA octet. If
AR is equal to PA, then the look ahead octet that was previously ordered is
the proper look ahead octet. The controller therefore sets the LA Ordered
flag. If AR is not equal to PA, then it must be in the LA octet to be at this
point in the flow chart. Therefore, the controller toggles the KA/KB output
pointer to select the look ahead octet for the next instruction, and clears the

LA Ordered flag indicating the need for a look ahead octet.

At the end of all sequences through the PB portion of the flow chart, the look
ahead count in the R3 register is loaded into LC, the number of vacant levels
in the IPU is stored in the VAC flip flops and the PB or LLA in Progress flag
sets. The controller then waits for the next control clock to begin another

cycle.

PB TARGET ENTERING CURRENT BUFFER

When a PB reaches level 3, the next clock will use the last word in the current
buffer and the target branch is contained in the upcoming buffer, the look ahead
controller ensures that the look ahead octet has been ordered. If it has not,

the controller transfers the 1look ahead address into OA and 1.A, sets the LA

Advanced Scientific Computer

@0
Ordered flag, and signals CMR to initiate a memory request for the octet.

The controller also enables selection of a word from the buffer for insertion

into IR.

If the look ahead octet has been ordered from memory and IR can accept a
new instruction, the controller determines if the address of the farget in-
struction is equal to PA. If the target instruction is contained in PA, the
controller loads the final word from PA octet into IR, increments PA and
toggies the KA/KB output pointer to choose the next octet. It then loads the
address of the target instruction from AR into LA and clears the LLA Ordered
flag so that the next octet following the target instruction will be ordered in
the normal look ahead cycle following the branch. The controller then sets
Flag 12 to indicate that the target instruction is present in the buffer, and
Flag Full to indicate that both the branch instruction and the target instruction

of the branch are in the two buffer files.

If AR is not in the PA octet, the controller determines if AR is contained in
the look ahead octet that has been ordered. If it is not, the controller loads
the target instruction address into OA and LA and signals the CMR to begin
a memory request. It then loads the final word from the current buffer into
IR, increments PA and toggles the KA/KB output pointer to the other octet
buffer. Flag 12 sets to indicate that the target instruction octet has been
ordered, and the LA Ordered flag clears to indicate that the octet that will

enter the look ahead buffer is not the next sequential octet.

If AR is not in the PA octet, but is in the ordered LA octet, the controller
loads the last word in the current octet into IR, increments PA and toggles
the KA/KB output pointer to select the other octet buffer. It then transfers
a new look ahead octet address (LA + 8) into OA and LA and signals to CMR
to begin a request for that octet. Flag 12 sets to indicate that the octet con-

taining the target instruction of the branch is entering the look ahead buffer.

B-71 Advanced Scientific Computer

O

Regardless of the path taken through this portion of the flow chart, the

controller completes the control cycle by transferring the target instruc-

tion address from AR into BA for reference when the branch enters the

pipe, loads the look ahead counter, LC, with the count from R3 that indicates
the number of instructions between the PB and the branch instruction, and loads
the number of vacant levels in the IPU into the VAC flip flops for use in
tracking the branch instruction. The PB or LLA in Progress flag sets to

indicate recognition of the PB instruction.

PB TARGET NOT IMMINENT

If the target branch is not in the current instruction octet and the IPU is
not switching to the octét buffer that contains the target branch, two possible
- conditions exist. Either the target branch is in the look ahead octet and the
present word address in PA is not equal to 7, or the target branch is not in
the look ahead octet. If PA is not equal to 7, regardless of the position of
the target branch, the controller determines if the look ahead octet has been
requested from memory (LA Ordered). If it has not, the controller loads
LA and OA with the look ahead address (LA + 8), signals the central memory
requester to begin a memory fetch for that octet, and sets the LA Ordered
flag to indicate that the octet has been requested. The controller then enables
selection of a word from the current instruction buffer, and if IR can accept
a new instruction, loads a word from the instruction buffer into IR and incre-

ments PA to the next word address.

If PA is equal to 7 and the target branch is not in the next look ahead octet,
thé controller ensures that the look ahead octet is available in the look ahead
buffer by checking the LA Ordered flag. If the octet is not present, the con-
troller loads the look ahead address (LA + 8) into LLA and OA, initiates a
memory request through the Central Memory requester, and sets the LA

Ordered flag. The controller must then wait for the next control clock to

Advanced Scientific Computer

O

load the final instruction of the current octet into IR. If the look ahead octet

is present in the IPU, however, the controller loads the last instruction-

into IR, increments PA to the next instruction address and tqggles the KA/KB
output pointer to select the other instruction octet buffer. The controller also
transfers the look ahead address of the next octet into LLA and OA (the octet
containing the target branch) and initiates a memory request for that octet.
Since the LA Ordered flag is already set, it remains set to indicate that a

new look ahead octet has been ordered.

Regardless of the path taken through this portion of the prepare to branch logic,
the controller always ends the cycle by storing the branch parameters for use
when the target branch _rea.ches the pipe. It transfers the address of the target
instruction from AR to BA, the number of instructions until the branch from
R3 to LC, the number of vacant levels in the IPU into the VAC flip flops for
use in tracking the target branch, and sets the PB or LLA in Progress flag.
The controller will decrement the count in LLC with each new instruction

placed in IR until the branch arrives at level 3.

TRANSFER TARGET TO LEVEL 1

If Flag 4 (branch in pipe) is not set, and the count in L.C is equal to 4, the
target branch is at level 0 of the pipe and will be the next instruction trans-
ferred to IR. If IR can accept a new instruction, the controller compares
the address of the target instruction in BA with the present instruction octet
address. If the target instruction is in the current instruction octet (PA=BA),
and the look ahead octet has not been requested (LA Ordered not set), the
controller transfers the address in BA to LA so that the next octet in se-
quence with the target instruction octet will be ordered when a memory re-
quest is initiated. After preparing LA, or if LLA Ordered was set, the con-
troller loads the target branch into IR, signals the level 1 controller that the
target is at level 1, and sets Flag 4 to indicate that the branch is in the pipe.

Advanced Scientific Computer

@O
This transfer decrements the count in the LLC counter. The controller
then transfers the address of the target instruction to PA so that the in-
structions from the branch path will follow the branch instruction through
the pipe to avoid the delay necessitated by having to fetch the new instruc-
tions when the branch reaches 1e‘ve1 3. In case the branch is not.taken when
it reaches level 3, the controller transfers the address of the next instruc-

tion following the branch (P + 1) into BA. The controller can then recon-

struct the instruction sequence if the branch is not taken.

If the target instruction was not in the current instruction octet (PA not egual
to BA), the controller determines if the target instruction is in the look
ahead octet (Flag 12 set). If Flag 12 is set, the controller loads the branch
instruction into IR, decrements the LLC counter, sets Flag 4 to indicate that
the branch is in the pipe and notifies the level 1 controller that the target is
at level 1. It then transfers BA to PA and saves P + 1 in BA for recovery in
case the branch is not taken. The controller toggles the KA/KB output pointer
to select the look ahead octet containing the target instruction, and examines
the Flag Full flag. If this flag is clear, the controller clears the LA Ordered
flag to ensure that a new look ahead octet will be requested on the next con-
trol cycle. If Flag Full is set, the current octet is also the octet that follows
the look ahead octet. For this reason the controller sets the LA Ordered flag
to prevent accessing a new octet, and places the address of the current octet
(LA +8) into the look ahead address register. If the branch is taken, the IPU

will draw from the octets in the following order:

1. Current Octet - until the branch instruction is reached.

2. Look Ahead Octet - containing the target instruction of the branch.
3. Current Octet
4.

Next sequential octets (if branch not taken a second time).

If the target instruction is not in either PA or LA, the controller must request

the octet from memory. It then transfers the address of the target instruction

Advanced Scientific Computer

3

from BA to OA and LA, clears the LA Ordered flag and signals the Central
Memory Reciuester to begin a memory fetch for the octet. The branch in-
struct’ion is loaded into IR, Flag 4 sets, the LC counter decrements and the
controller informs the Level 1 Controller that the target is é.t level 1. The
address of the target instruction is then transferred from BA to PA and the
KA /KB output pointer is toggled to select the look ahead buffer containing
the requested target instruction octet for the next control cycle. The con-

troller also stores PA +1 in BA for recovery in case the branch is not taken.

FETCH TARGET INSTRUCTION

If the target branch is not at level 0 and not in the pipe (LC greater than

four and Flag 4 not set); and the target instruction is not in the IPU (Flag 12
not set and PA # BA), the controller determines if the target branch is in

the current octet. If it is in the current buffer, the controller must fetch

the octet containing the target instruction so that the target instruction can
be inserted into the pipe following the target branch. Therefore, the con-
troller transfers the address of the target instruction into OA and LA, and
signals the central memory requester to initiate a memory request for that
octet. Flag 12 sets to indicate that the target instruction has been requested.
Since this octet is a departure from the look ahead sequence, the LA Ordered

flag clears.

The controller determines if the target branch is in the current buffer by
examining the LLC count, the number of vacant levels (VAC count) at the time
thg LC count was loaded, and the present address (PA). When the L.C count
was lodded, it indicated the number of instructions from the PB at level 3
until the branch instruction. If there were vacant levels in the pipe, however,
these levels could have been filled from the current buffer (decrementing the
L.C count) without changing the number of instructions between the PB and the

branch. Therefore, to gain an accurate position of the branch, the number

Advanced Scientific Computer

¢

of vacant levels must be added to the LL.C count, yielding the number of IPU
levels from level 3 to the branch. The maximum number of levels in the
current buffer and the IPU pipe is 11. This number decreases each time
an instruction is used from the current buffer, so that the current number
of levels is actually 11 minus the current word address. Therefore, if the
target branch is in the current buffer, LC plus VAC must be less than or
equal to 11 minus PA. By transposition, the controller performs the com-
parison;

LC+ VAC + PA< 11,

to make the determination.

1f Flag 4 was not set (b_ranch not in pipe) before entering this decision se-
quence but LLC was less than 4, the controller clears the PB or LLA in
Progress flag. This set of conditions is not possible if a PB or LLA is
in progress, because LC less than 4 indicates that the branch must be in

the pipe.

NORMAL LOOK AHEAD

During normal instruction sequencing the look ahead controller inspects the
address in PA to choose one of two logic paths. If the address in PA is
equal to 7, a new octet must be fetched for the look ahead buffer. This logic
path is diagramed on sheet 7 of the flow chart. If PA is not equal to 7, the
next address will not exhaust the current buffer and no additional memory
cycle is required at this point. The following paragraphs describe the logic

steps for each of these paths.

FETCH NEW OCTET. If PA is equal to 7, the next instruction transfer
to IR will access the last instruction in the current buffer. To ensure that a
look ahead octet is available, the controller inspects the LA Ordered flag.
If this flag is not set, the controller transfers the look ahead address (LA + 8)

Advanced Scientific Computer

O

to OA and LA, initiates a memory request through the Central Memory Re-

quester, enables a word selection from the current memory buffer, and sets
the LA Ordered flag. No transfer to IR is made until the next control cycle,
so that a look ahead octet will be available in the IPU.

If the LA Ordered flag is set, the controller checks the .C count. If this
count is between 4 and 12, then a branch instruction will appear in the next
octet that has been preceded by a Prepare to Branch instruction. The con-
‘troller then checks the address of the target instruction contained in BA to
determine if it is contained in the current octet (BA=PA). If the target in-
struction is contained in PA, the controller must save the PA octet for use
‘after the branch instruction. The controller then loads IR with the last in-
struction in the current octet, decrements the LL.C count, increments PA and
toggles the KA/KB output pointer to select the next octet buffer. To save
the exhausted octet for the branch, the controller sets the Flag Full flag and
Flag 12, transfers the target instruction address from BA to LLA, and clears
the LA Ordered flag to indicate that the look ahead octet is not a sequential

look ahead address.

If the target instruction is not contained in PA (PA not equal to BA) then the
controller must fetch a new look ahead octet. When the control clock enables
transfers, the controller loads IR with the last instruction in the current octet,
increments the address in PA, toggles the KA/KB output pointer to the other
octet buffer, and decrements the L.C count. To fetch the octet containing

the target instruction, the controller transfers the address of the target in-
struction from BA to OA and LA, signals the Central Memory Requester to
initiate a memory request, sets Flag 12 to indicate that the target instruction
has been requested, and clears the LA Ordered flag to indicate that the look

ahead octet is not a sequential octet address.

If the LLC count is not between 4 and 12 (therefore it must be either greater

than 12 or non-existent, since if it were less than 4 it would have triggered

Advanced Scientific Computer

a2

another flow chart path), the controller follows a simple look ahead proce-
dure to fetch a new sequential octet for the look ahead buffer. When the con-
trol clock enables transfers, the controller loads the last instruction from
the current buffer into IR, increments the address in PA, toggles the KA/KB
output pointer to select the look ahead octet as the current octet for the next
clock, and decrements the LLC count. The controller then transfers the look
ahead address (LA + 8) into OA and LA and initiates a memory request for

that octet through the Central Memory Requester.

WITHIN SAME OCTET. If PA is not equal to 7, the next instruction
transfer to IR will not exhaust the current instruction buffer. If the controller
is not operating in the Dual mode, or will not enter the Dual mode, the con-
troller checks to see if a targeted branch is within the current octet
(PA + LC £11) or if its target instruction is in the look ahead octet (Flag 12).
If a branch is present but is already in the pipe (Flag 4) or if no branch is
imminent, the controller ensures that the look ahead octet has been requested.
If it has not been requested, the controller transfers the look ahead address
(LA + 8) to OA and LA, initiates a memory request for that octet, sets the
LA Ordered flag and enables a word selection from KA or KB instruction
buffers. In any case, if IR can accept an instruction transfer, and there is
no PB target at level 0 when the PB is in the pipe, the controller loads a new
instruction into IR, increments the address in PA and decrements any count

contained in the LC counter.

DUAL MODE

The look ahead controller enters the Dual Mode when a branch instruction has
reached level 3, but a previous instruction in the pipe may modify the condi-
tions for the branch (branch hazard). Dual mode holds the current octet con-

taining the branch instructions and fetches a new look ahead octet that contains the

Advanced Scientific Computer

a2

target instruction while holding the branch at level 3. This state is avoided

if the branch was preceded by a LLA or PB instruction, since these instruc-
tions fetch the térget instruction octet and put the target instructions in the
pipe following the branch instruction. Similarly, if the branch is to a local
octet or word (contained in LLA, PA, Pl or P2) a simultaneous fetch to memory
is not required. The address in P3 must be less than 4 in order for the con-
troller to enter the Dual mode since a new octet will be required to supply in-
structions to the pipe if P3 is 4 or more. The buffers hold the current octet

and the controller fetches the target octet. There can be no look ahead octet.

If the conditions for dual mode are met, the controller transfers the address
.of the target instruction from AR to OA and LA and initiates a fetch for that
octet through the Central Memory Requester. The controller then enables
selection of a word from KA or KB, sets the Dual flag to indicate the mode of
operation, and clears the LA Ordered flag to indicate that the look ahead oc-
tet is not in the normal sequence. If the LA Ordered flag was set prior to the
control clock pulse, then the address of that look ahead octet is stored in BA
for retrieval in case the branch is not taken. If the LA Ordered flag was not
set, the controller stores the address of the look ahead octet that should have
been ordered (LA + 8) in BA for retrieval. If IR can accept a new instruction
and the instruction at level 0 is not a PB target, the controller then loads IR
with an instruction from the current octet, increments the address in PA and

decrements the count in LC.

Advanced Scientific Computer

a2

Central Memory Requester (CMR) is the control circuit in the IPU that issues

CENTRAL MEMORY REQUESTER (CMR)

all normal operation memory requests to the Memory Control Unit (MCU), and
accounts for all outstanding requests to memory. IPU Unit Hard Core has re-
sponsibility for memory requests during maintenance fetches and stores. As
CMR issues each memory request to the MCU, it places a two bit code into the
memory request queue. This code identifies the ultimate destination of the
octet of data corresponding to that request. When the octet enters the IPU
from memory, CMR retrieves the code from the queue to route the data to the
thosen destination. CMR generates the gating signals required to perform the
designated transfer, and increments the request queue input and output pointers
with each request. If a memory protect violation occurs, CMR stores the vio-
lation as a flag. The flag accompanies the data generated by the violation
as that data travels through the pipe. When the faulty data reaches level 3
the IPU recognizes the protect violation. Only then is the IPU disabled due

to the violation.

CMR is physically distributed between I4CMREQ and I4HDCORE circuit boards.
The majority of the control circuitry is on I4CMREQ and it is therefore in-
cluded with the I4CMREQ circuit board discussion. However, the actual inter-

face signals generated to the MCU are implemented on I4HDCORE.

The following paragraphs describe the operation of the CMR with reference to
the flow chart of the controller logic that follows this description. The
paragraphs follow the same order as the logic flow through the chart, and ex-

plain the major decision paths that are possible within the controller,

Advanced Scientific Computer

a2

CONTROLLER TIMING

The Central Memory Requester is composed of combinational logic, and as such,

has no timing chain, sequence of events, or formal states. All of the question

blocks illustrated in the flow chart are examined simultaneously during each

control cycle to enable only one path through the controller. When the control

clock pulse occurs, all of the action blocks on that enabled path are executed

simultaneously. This type of timing means that action blocks upstream from

other decision blocks in the flow chart do not affect the decision block. Also,

since all actions occur simultaneously, all action statements refer to conditions

at the start of the control cycle.

CMR TERMS

The following terms and their definitions are essential to understanding the flow

charts and the Central Memory Requester discussion:

AR - Access Request: An interface signal to the Memory Control Unit
(MCU) that, when toggled, indicates that the IPU requires access to
some location in central memory. This signal is implemented on the

I4HDCORE circuit board.

Active Flag - a flag identified for each of the four request queue
positions that indicates that the queue position contains a valid

request to memory.

BOGUSA/BOGUSB - internal controller signals that are generated when
a request is made to memory for an octet that will supercede all other

octets destined for the KA or KB buffer, respectively. These sfgna]s

Advanced Scientific Computer

prepare the target buffer to receive the new octet, and cancel
the active flag for outstanding requests for their respective

buffers.

Busy Flag - a flag identified for each of the four request queue
positions that indicates that the queue position is occupied by an

outstanding memory request.

CR File - Communications Register File: An array of registers in
the Peripheral Processor (PP) that supplies maintenance commands and

receives status and reply messages from major ASC units.

IR - Instruction Register: the level 1 register of the IPU that

receives instructions from KCM, KA, KB or the register file.

KAFUL/KBFUL - flags that indicate that their respective buffer, KA
or KB, contains an octet of instructions that can be transferred

into the IPU pipe.

KAPRV/KBPRV - Protect Violation - flags that indicate that their
respective buffer, KA or KB, contains an octet of instructions that
is not valid. This flag is passed through the pipe with the instruc-
tion until it reaches level 3. Level 3 rejects any instructions

that have the PRV flag set.

KRTAG - pointer that selects either KA or KB to supply instruction
words to the IR register. When equal to "0", KRTAG selects outputs

from KA; when equal to "1", KRTAG selects outputs from KB.

Advanced Scientific Computer

NEXT - signal from the look ahead controller that is used with KRTAG
to determine the destination buffer of a memory fetch. If NEXT and
KRTAG are set to the same values (either 1's or 0's), KA is the desti-
nation buffer; if they are different values, KB is the destination

buffer.

OA - Output Address register: the register on the I4ADDR circuit

board that transfers memory address to the MCU for memory accesses.

PM(0,1) - Protect Mode bits: a two bit code to the MCU that identi-
fies which set of protect parameters in the MCU protect registers will
be used to define the permissible memory area for a particular opera-
tion. A code of "00" specifies no memory protect, "O1" specifies
write protect parameters, "10" specifies read protect parameters,

and "11" specifies execute protect parameters.

Protect Violation - A signal from the MCU (ICPRVO) that indicates that
the last memory request attempted to access an area in memory that was
outside of the permitted boundaries. The request is refused and no

data will be transferred from the MCU as a result of that request.

Queue - Request Queue: a four position array of two bit codes that

identifies the intended destination of up to four outstanding memory
requests. A code of "00" identifies the KA buffer, "01" identifies

the KB buffer, "10" identifies the IR register, and "11" identifies

the register file as the destination for the instruction octet con-

tained in KCM when the queue position is referenced by the output

pointer.

Advanced Scientific Computer

a2

The CMR flow chart (figure B-10) that follows this description may be used as

FLOW CHARTS

both a theory Tearning tool and a maintenance tool. Each question or action
block contains a brief phrase that describes the function(s) of that particular
block. Besides the block is the exact signature of the signal that is being
examined (question block) or produced (action block). Along with the signature
is a set of tagging information that designates the origin or monitoring point
for that signal in the hardware, and the sheet in the logic diagrams where that
signal originates. A1l sheet references are to sheets within the logic set for
fhe I4CMREQ circuit board, except where dotted boxes on the flow charts indi-
cate that the signals have been transferred to the I4HDCORE circuit board. The
example below illustrates the tagging information included with each signature

on the flow charts.

- Circuit board pin number that sig-
ICRCMPY (PIN 276) SHT 23 nal appears on

Sheet of I4CMREQ (or I4HDCORE)logic
where signal originates

| Logic diagram signature

-ICCUEFUL (218-4) SHT 21

\ IC package Tocation and package pin

number for signal origin

Flow Chart Tagging Information - CMR Flow Charts

TOGGLE KA/KB OUTPUT POINTER

The KA/KB output pointer selects one of the two instruction buffers to supply

instruction words to the IPU. When the look ahead controller requires a new

Advanced Scientific Computer

START .

ICGKTAG
(240—-4)
SHT 24

ICQKRTAG

PIN 167)
TOGGLE wETAG { .
KA/KB OUTPUT KRTAG SHT 25

POINTER

i

14CMREQ 14AHDCORE
ICQAR1 2
M (Pin 220)
< IMHCREQ TOGGLE ACCESS HT 21
(N 178) REQUEST TO MCU ICOABSY
(PIN275)
SIGNAL OA BUSY HT 23
ICQPRM 2 (0, 1)
SET PROTECT (PINS 320, 219)
MODE TO 11 SHT 21
IMSTORE
q1coABSY (307-2)
(PIN 275) I SHT 13
SHT 28
YES '
Yes
SICWRITE
NO | (PIN 152)
SHT 21
CLEAR SET
| WRITE WRITE
e e e | e e o b e — — o — e ——— —
ICRCMPV
(PIN 276) UICSPRY (0-3)
SHT 23 READ SET PROTECT LeaPRY (0-3)
PROTECT VIOLATION 3
VIOLATION LAG FOR LAST
REQUEST (IP—1)
~TICCUEFUL
218-4)
o B
YES
£}
r___.. e s —— —— . ——— — —— — —p ——— ——
I ICQAR:2 (PIN 220) SHT 21 TOGGLE ACCESS
E'I)ICRDACKIH REQUEST TO MCU,
cMr rEADY | SEAEZAS/V) | 1CQPRM:2 (0,1), (PINS 320, 219) SET PROTECT MODE
FoR READ SHT 21 76 01,
REQUEST
. ICRDACK1: 2 | TICWRITE, (PIN 152) SHT 21 SET WRITE,
242-5) I NEOABSY |, (PIN 275) SHT 23 SIGNAL OA BUSY
| 14HDCORE
o MAHDCORE | o e e — e T — — —
14CMREQ
ICCUEMPY
314—5)
HT 2

MEMORY CMR READY

XFR AR
ITE
FOR vg;TT YES 2 0A
*nlnsF‘REsq
PIN 18
ICWACK , (PIN 263) (SH'I' 29) T1ILGOA
SHT 28 gpl_lr_i 21369)
ICWACK1, (PIN 362) H
SHT 28 TILARTOA
gpm 121)
HT 16

(B) 123646

Figure B-10. Central Memory Requester (Sheet 1 of 4)

B-85 Advanced Scientific Computer

g’l)xcnsxn.s. (342-8/7)
HT 19

TIRINHAZ
(PIN 485)
SHT 19

“1)ICBOGU!
/ 39—5/4) gah 18

INSTRUCT B8O
CLEAR KRTAG i f437—5/4) SHT 18

HAZARD
RECOVERY
REQUES

RS
ICQKRTAG

(PIN 167) SHT 25 ﬁkﬁﬁf KBFUL gu‘r 25
JICDCUE (0,1) KAPRV, KBPRY 'g%l(!a?s'i
436-2/515-8) SHT 19 HT 2%

ICQKAPRYV

EN PIN 267
BRANGH SET CURRENT PiN 26)

TO OA POSITION
/YEs T0 0o

NO

“IRBRTOA
gPIN 189)
HT 19

ICQKBPRV
ng 166)
HT 26

ICQCUED (0—3), SHT 25
ICQCUE1 (0—3), SHT 26

14CMREQ
-

14HDCORE

ICQPRM: (0’1;
(PINS 320,219
SHT 21

TIREXIND (5':,'-,'-‘ 2‘69’

PIN a81)
GLLIEL INDIRECT

OR SET PROTECT
EXECUTE YE!

MODE TO 11 hatl

w

Zz
©
I-..—.ﬂ-—————.——

ICQPRM:2 (0,1)

(PINS 320, 219) SHT 21
1 4HDCORE
I4CMREQ

XFR AR— OA

SET CURRENT
QU UE POSITION

-nucocus(ov
43671

TILGOA, (PIN 169) SHT 28
VILARTOA, (PIN 121) SHT 16
ICQCUE 0 (0—3) SHT 25

()ICDCUE (0,1), (436~2/515-8)
SHT 19

“VIRLFREQ / XFR AR— OA

SET CURRENT
REWVVES QUEUE POSITION
TO 1%

JULGOA, (PIN 169) SHT 28
LARTSA , (PIN v2|£ SHT 16

106C0ES 50—3; SHT 25

ICQCUET (0—3) SHT 26

14CMREQ
14DHCORE

.

SET PROTECT
MODE TO 10

TJIRLFREQ
(PIN 485)
HT 21

I S|
ICQPRM:2 (0, l;
14CMREQ 14HDCORE (PINS 320, 2|9 SHT 21

INCREMENT INPUT |

TOGGLE ACCESS | 1CQAR:2
REQUE (RN 220)
HT 21

QUEUE POINTER
SET'BU AND

Al

ICINCIP, (438-4) SHT 19 QUEUE PosITION T
ICQIP (0,1), (522-2/519-2)
SHY 23

1cassy E 3; SHT 21
ICQACT (0—3) SHT 24

CLEAR WRITE JICWRITE
PIN 152)
HT 21

{(B) 123647

Figure B-10. Central Memory Requester (Sheet 2 of 4)

B-86 Advanced Scientific Computer

“ICNKXOR

g“_s) ICQCUED (0—3)
HT 18

SET CUR SHT 25
ILINSTRP, (736~4) QUEUE POSITlON
ILINSTR1, 532—4; TO 00, ICQCUET (0—3)
|LlN$TR2 2302 REQUEST 1-BOGUSA SHT 26
SHT
5‘1 JILNEXT
64 2—5/4) SHT 18
1CaK' .
62 a—s Lt 25 ICNK XO| -1)ICBOGUSA
¢) (741-4) SHT 18 5439—5/4) SHT 18
“IICQKTAGH :1
(eza—z) SHT 25
ICQCUE o (0-3) ICOKAFUL
T 25 SET CURRENT (PIN 365) SHT 25
QUEUE CLEAR KAFUL
1ICQCUE 1 (0—3 POSITION ICQKAPRY
1cacue () AND KAPRV ENAEY suT 26
l—-aoausa

{Micaosuse
la—(437-5/2) SHT 18
1CQKBFUL
(PIN 366)
SHT 25
CQKBPRY CLEAR KBFUL
(PlN 166 AND KBPRY
ICINCIP, (438~4)
SHT 19
. INCREMENT INPUT | ICQIP (O
QUEUE POINTER; g 22—2 5'19—2)
SET BUSY AND .
ACTIVE FOR | —
ACTIVE FOR oE coesv (0—3) SHT 21
POSITION ICQACT (0—3) SHT 24
14CMREQ
s — — — | o — — — — —
| | AHDCORE
1CQAR: 2, (PIN 220)
TOGGLE_ACCESS SHT 21
REQUEST TO MCU:

TCWRITE, (PIN 152)
CLEAR WRITE: SHT 21 .

f=

SET PROTECT 1ICQPRM:2 (0,1)
MODE TO 11 gPlNS 320, 219)

1CBO

GUSA
(439—4) SHT 18 CL_‘EAFR ACTIVE .

ICQACT (0—3) -
SHT 24

QUE
POSI TIONS
QUAL TC QO

J

CLEAR ACTIVE
BIT FOR

ICGACT(0=3)
SHT 20

%ngG:?BSHT QUEGE ICQACT (0—3)

437— 18 SHT 24
BOGUSB POSITIONS

EQUAL TO 01

ICGACT (0—3)
SHT 20 l

BEGIN QUEUE OQUTPUT
EXAMINATION - -

ICACTO, (310—4) SHT 24

- |
JCCMFUL,
G 176)

HT 27

SELECTED
OUTPUT QUEUE
ACTIVE

1ICPRVO (PIN 364)
SHT 24

SELECTED
OUTPUT QUEUE
ACTIVE

PROTECT

VIOLATION IN

SELECTED OUTPUT
QUEUE

ICACTO 310~4
SHT 24'(o4

(QUEUE
DECODE)

(8) 123948

Figure B-10. Central Memory Requester (Sheet 3 of 4)

B-87 Advanced Scientific Computer

KCM FULL,
QUEUE ACTIVE

lccuzozo): Esos-A SHT 25

ICCUEQ(1 306-4) SHT 26
DECODE SELECTED QUEUE BITS
00 o1 10 11
IMCMTKB
(PIN 126)
S|
;MI%M;I‘KA) .
P 25
XFR_KCM XFR KCM
SHT 27 2T KA k8
MCSETKB
UCSETKA =
(132-2) 33207)
SHT 27 27 ICCMTIR ICCMTFIL
(PIN 264) (PIN 462)
SHT 27 SHT 27
(MVICBOGUSA XFR KCM XFR_KCM
(43975/4) BOGUSA 80GUSB — IR —-RGTR
HT 18 ts FILE
5});;;350/@4-1)53
S A
nNo NO Sut'is
ICQKAFUL ' IcaKBFUL
(PIN 365) SHT 25 (PIN 366)
SET KAFUL SET KBFUL SHT 25
1CAKAPRY
1STHARRY shT 26 CLR KAPRV CLR KBPRV |COKBPRY
gPIN 166)
HT 26
KCM NOT FULL,
PROTECT VIOLATE,
QUEUE ACTIVE
ICCUED 50;, 5305—4; SHT 25
ICCUED (1), (306—4) AHT 26
DECODE SELECTED QUEUE BITS
00 o1 10 11
ICIR ICFL
(FIN 163) (FIN 262)
HT 27 HT 27
(Y)ICBOGUSB
(437-5/4)
SHT 18
(1)1ICBOGUSA
ﬁ?ﬁ;g'l) BOGUSA
Yes
l._ — e ——— — __I
NO
| 1CQIPPRY '
JcaKARyL SET ey i 299
5
SHT 2:156) lg?:‘(e;usl_) I VIOLATE TO I
PIN ¢ CR FILE
SET KAFUL SET KBFUL I '
SET KAPRV SET KBPRV |CQKBPRY
(PIN 166) 14HDCORE
ICQKAPRY SHT 26 e e e — e —
(FIN'267) 14CMREQ
HT 26
E
SELECTED
QUEUE NOT
ACTIVE 1ICINCOP, (PIN 161)
SHT 19 INCREMENT
1gaor 0 1), OUTPUT POINTER;
—6, - CLEAR FLAGS
§Wr°25 FOR SELECTED (START)
ICQPRY (0=3) SHT 21 QUEUE POSITION:
ICQACT (0-3) SHT 24 i TE !
1CQBSY (0—3) SHT 21 BUSY
(B) 123649

Figure B-10. Central Memory Requester (Sheet 4 of 4)

B-88 Advanced Scientific Computer

g’-\;;
octet to supply instructions, it signals CMR to toggle the output pointer to
select the buffer that contains the look ahead octet. When CMR detects this
signal, it inverts the output of the KRTAG flip flop and Toads the flip flop with

its inverted output. The output of the KRTAG flip flop then selects the other

instruction buffer,

HARD CORE REQUEST

If a hard core operation is to be performed in the IPU, CMR determines if the
operation will require a memory request. If no memory fetch or store is re-
quired, CMR performs no function in the hard core operation. CMR then continues
with the control cycle. If the hard core operation involves an access to memory,
CMR toggles the access request bit to the MCU indicating that an address is avail-
able for the MCU, generates an OA Busy signal to inhibit any further instructions
from using the OA register, and sets the protect mode bits to a code of "11".

This code designates to the MCU that the memory request will be restricted to

the area in memory defined by the execute protect bits in the MCU protect regis-
ters. For a store operation CMR sets the Write flag to the MCU; for read opera-

tions, the Write flag is cleared.

OA BUSY

If the OA Busy flag is set, then CMR is currently processing a previous memory
operation and cannot accept a new memory request. The control circuitry by-

passes any new requests until the OA Busy flag clears.

Advanced Scientific Computer

a2

If a memory read request initiated during the previous control cycle attempted

READ PROTECT VIOLATION

to access an address in memory that was outside of the area defined by the read
protect bits in the MCU, a read protect violation signal from the MCU informs
CMR of the violation. So that the error can be recognized when the request is
drawn from the memory queue, CMR sets a protect violation bit that corresponds

to the queue position of the last request (current input queue count less one).

MEMORY REQUEST QUEUE FULL

If the memory request queue is full, CMR cannot accept further requests until a
space opens in the queue. The control circuitry bypasses any new requests until
the queue full indication is removed. If the queue is not full, CMR indicates

to the look ahead controller that it can accept a new read request by producing

the CMR ready indication (ICRDACK1).

MEMORY REQUEST QUEUE EMPTY

CMR cannot accept a write request to memory until all previous read requests
have been satisfied. Therefore, if the queue is empty, CMR sets the write
acknowledge signal (ICWACKT) to allow write requests. If the queue is not

empty, CMR continues with the control cycle to check for memory read requests.

STORE FILE

The only IPU store operations that are not performed through the hard core cir-
cuits are the Store File operations that transfer the contents of the register
file octets to an area in memory. For any of these instructions, CMR transfers
the storage address from the AR register in level 3 to the OA register for
transfer to the MCU. It then toggles the access request bit to the MCU, sets

the Write flag and OA Busy, and transmits a protect mode of "O1" to enable the

B-90 Advanced Scientific Computer

Lo

write protect circuits in the MCU. If a store file operation is not indicated,

CMR continues to inspect for other types of memory requests.

INSTRUCTION HAZARD RECOVERY OR BRANCH TO OA

CMR reacts identically to either a branch instruction to an address in central
memory or an instruction hazard recovery. Both situations require the IPU to
start a new chain of instructions and discard all instructions that reside in
the IPU. CMR, therefore, reacts by reinitializing the control circuits and

flags. It clears the KRTAG fl1ip flop so that the new instruction sequence will

_be taken from the KA buffer, and also clears the protect violate and full flags

associated with the buffers since the instructions in the buffers are to be dis-
regarded. In addition CMR sets the code, "00" into the queue position indicated
by the input pointer to indicate that the new octet will be loaded into the KA
buffer. It then sets the protect mode to "11" to indicate to the MCU that the
new octets are to be drawn from the area in memory defined by the execute pro-
tect registers. The look ahead controller ensures that the proper address has
been loaded into OA; so that when CMR toggles AR to the MCU and clears the Write
flag, the instruction octet will be fetched from the proper address. Concurrent
with these actions, CMR increments the queue input pointer to prepare for the
next request, and sets the Busy and Active bits that correspond to the qﬁeue
position that was f111éd by the exchted reqdest. The controller then continues

through the control cycle.

INDIRECT OR EXECUTE

An indirect address or an execute instruction require the IPU to fetch a new
word from memory before proceeding with processing. CMR responds to either of

these conditions by transferring the memory address from the AR register in

B-91 Advanced Scientific Computer

O

level 3 to the OA register for transmission to the MCU, and by setting the
protect mode bits to "11", indicating to the MCU that the request is to be
subject to the confinements specified in the execute protect parameters. CMR
sets the code "10" in the queue position correspdnding to this request, so that
when the fetch is complete and the instruction is in KCM, the word will transfer
directly to IR to continue the program sequence. Having made these preparations,
CMR toggles access request to the MCU and clears the Write flag to notify the
MCU of a read request. Concurrent with the request, CMR increments the input

queue pointer to prepare for the next request, and sets the Busy and Active

flags that correspond to the queue location that was filled by the executed

request. The controller then continues with the control cycle.

LOAD FILE REQUEST

A Load File instruction transfers the contents of a location in memory into one
of the octets in the register file. When CMR detects a Load File at level 3,

it transfers the address of the octet to be loaded from the AR register to the
OA register for transmission to the MCU, and sets the protect mode bits to "10"
to indicate that the fetch will be subject to the restrictions defined by the
read protect registers. CMR then loads the code "11" into the request queue so
that when the octet is read from memory into KCM, the octet will be routed di-
rectly into the register file. CMR then toggles access request and clears the
Write flag to initiate the read cycle from memory. Concurrent with these steps,
CMR increments the queue input pointer and sets the Active and Busy flags for the

last queue position.

B-92 Advanced Scientific Computer

O

When the look ahead controller has loaded a new address into OA.and is ready

START MEMORY REQUEST

to send that address to the MCU, it activates one of three signals that indi-
cate to CMR to initiate a memory request (ILINSTRP, ILINSTRI, ILINSTRZ). When
CMR receives any of these signals, it determines if the KRTAG flip flop is in
the same state as the NEXT signal from the look ahead controller. If the two:
signals afe equal, then the returning octet from the fetch will be placed in
the KA buffer. CMR loads a code of "00" into fhe request queue to indicate the
corresponding request is destined for the KA buffer, and generates the BOGUSA
.signal that clears the KAFUL and KAPRV flags so that the new data can enter the
KA buffer. If KRTAG is not equal to NEXT, the instruction octet is destined
for the KB buffer; CMR loads a code of "01" into the request queue to indicate
that destination. It then generates BOGUSB that clears the KBFUL and KBPRV

flags so that the new data may enter the KB buffer.

When these preparations are complete, CMR sets the Busy and Active flags for
the current queue location, toggles access request to the MCU, clears the Write
flag and sets the protect mode to "11" to indicate that the request will be
subject to the restrictions of the Execute protect registers in the MCU. The
input pointer for the request queue increments to prepare for the next control

cycle.

BOGUSA

If the current control cycle produced a BOGUSA signal, CMR issued a request to
memory for an octet that will be placed into the KA buffer, and will supercede

previous memory requests for that buffer. CMR therefore disables other outstanding

Advanced Scientific Computer

a2

requests that are destined for the KA buffer by clearing the Active flag for
all queue positions that contain a code of "00" ("00" indicates a destination

of KA buffer).

BOGUSB

If the current control cycle produced a BOGUSB signal, CMR issued a request to
memory for an octet that will be placed into the KB buffer, and wi]]ksupercede
previous memory requests for that buffer. CMR therefore disables other out-
standing requests that are destined for the KB buffer by clearing the Active
flag for all queue posi;ions that contain a code of "01" ("01" indicates a

destination of KB buffer).

KCM FULL

KCM Full indicates that a new octet of data from memory has entered the IPU and
is residing in the memory interface file, KCM, on the I4FILEMB. When it re-
ceives the full indication, CMR then checks the queue Tocation indicated by

the output pointer to determine if the active bit is set. If it is not set,
the queue position is not valid. CMR increments the output pointer and clears
all flags associated with the queue Tocation that was just checked. CMR will
perform an inspection of the next output location on the next control clock.

If the selected queue is active, the control circuits proceed to the queue de-

code circuit.

PROTECT VIOLATION IN SELECTED QUEUE LOCATION

If a new octet did not appear in KCM during the control cycle (KCM not full),

CMR determines'if a protect violation occurred during the memory fetch for the

Advanced Scientific Computer

request that is represenfed by the current queue location. If no protect vio-
Tation occurred, the control circuit feturns to the beginning of the cycle and
waits for the next control clock. If a protect violation did occur, but the
current queue location is not active, CMR increments the output pointer and
clears the flags associated with that queue location to prepare for the next

control cycle. If the selected queue Tocation is active, CMR proceeds to de-

code the bits in the queue to determine a course of action.

QUEUE DECODE - KCM FULL, QUEUE ACTIVE

‘The request queue contains a two-bit code to indicate the destination of the

octef in KCM. This portion of the queue decode circuit examines the code and
generates the gating signals to transfer a valid instruction octet from KCM to
the indicated register in the IPU. The circuit produces the following actions

under the jndicated conditions:

queue = 00 - This indicates that the octet is to be transferred to the
KA buffer. CMR generates IMCMTKA to the I4FILEMB to load
the KCM octet into the KA buffer. If a BOGUSA signal has
been produced during the control cycle, another octet of
data will supercede the octet just loaded into KA. If
BOGUSA was not produced, the transferred octet is valid.
CMR then sets KAFUL and clears KAPRV flags to indicate

the presence of a valid octet in the KA buffer,

queue = 01 - This indicates that the octet is to be transferred to the

KB buffer. CMR generates IMCMTKB to the I4FILEMB to load

B-95 Advanced Scientific Computer

queue = 10 -

queue = 11 -

the KCM octet into the KB buffer. If a BOGUSB signal
has been produced during the control cycle,another
octet of data will supercede the octet just Toaded into
KB. If BOGUSB was not produced, the transferred octet
is valid. CMR then sets KBFUL and clears KBPRV flags to

indicate the presence of a valid octet in the KB buffer.

This indicates that a word from the KCM octet is to be trans-
ferred to the IR register. CMR generates ICCMTIR to the
I4FILEMB to enable KCM to supply instructions to the IR
setection circuits. These circuits on the I4FILE circuit
board select the word from the KCM octet for input to the

IR register.

This indicates that the octet in KCM is to be stored in the
register file on the I4FILE circuit boards. CMR generates
ICCMTFIL to the I4FILEMB to enable the output from KCM to
the register file input selection. Gating circuits on the
I4FILE circuit boards determine which of the octets in the

register file will be the final destination of the KCM octet.

Regardless of the code in the queue, CMR completes each control cycle by incre-

menting the output pointer to indicate the queue location for the next control

cycle, and clears all flags associated with the processed queue location so that

that queue location may be used by the input pointer to account for another re-

quest to memory.

Advanced Scientific Computer

a2

QUEUE DECODE - KCM NOT FULL, PROTECT VIOLATE

If a protect violation occurred during the fetch cycle for the current output

queue location, then no data will have been transferred from memory to KCM.

This portion of the decode circuit examines the queue code and flags the pro-

tect violation as required by each circumstance so that the IPU may run effi-

ciently:
queue = 00 -
queue = 01 -

If BOGUSA has not been generated, the controller sets
KAFUL flag to allow the IPU to continue to draw instruc-
tions from the buffer even though the data in the buffer
1s'not valid. In addition, CMR sets the KAPRV flag, so
that any instructions drawn from KA will be rejected when
they reach level 3. If BOGUSA was generated during the
control cycle, a replacement octet for the KA buffer has
been requested. CMR ignores the protect vip]ation and
does not set the KAFUL flag so that the IPU will wait for
the replacement octet to reach KA before drawing new in-

structions from that buffer.

If BOGUSB has not been generated, the controller sets
KBFUL flag to allow the IPU to continue to draw instruc-
tions from the buffer even though the data in the buffer
is not valid. In addition, CMR sets the KBPRV flag, so
that any instructions drawn from KB will be rejected when

they reach Tevel 3. If BOGUSB was generated during the

Advanced Scientific Computer

queue = 10 -

queue = 11 -

control cycle, a replacement octet for the KB buffer has
been requested. CMR ignores the protect violation and does
not set the KBFUL flag so that the IPU will wait for the re-
placement octet to reach KB before drawing new instruc-

tions from that buffer.

If the octet for which the protect violation occurred was
intended to supply input directly to the IR register, CMR
sets the IPU protect violation flag to the PP and does not
enable the transfer into IR. Processing halts until the

conflict is resolved.

If the octet for which the protect violation occurred was
intended to be stored into the register file, CMR sets the
IPU protect violation flag to the PP and does not enable

the transfer of data from KCM to the register file.

Regardless of the code in the queue, CMR completes each control cycle by incre-

menting the output pointer to indicate the queue location for the next control

cycle, and clears all flags associated with the processed queue location so that

that queue location may be used by the input pointer to account for another re-

quest to memory.

Advanced Scientific Computer

The memory request queue is a four position queue that accounts for the intended

MEMORY REQUEST QUEUE AND POINTERS

destination(s) of up to four outstanding memory read requests. Each position in
the queue contains a two bit code that represents the destinations of the memory

requests as follows:

00 KA buffer

01 KB buffer

10 IR register
11 Register file

When CMR initiates a memory request to the MCU, it Toads one position in the
queue with the destination code for the octet to be fetched with that request.
When the requested data enters KCM from the MCU, the associated destination code
is drawn from the queue, and decoded to produce the proper gating signals to
transfer the octet to its intended location. CMR loads the queue in sequential
order, accesses codes from the queue in sequential order, and assumes that data
will be returned from memory on a first-in, first-out basis. The request queue
input and output pointers hold the two bit address of the input and output queue
location to be accessed next. CMR increments the address in each pointer after
using the corresponding address so that the sequential order of filling and
emptying each position is maintained. When four memory requests are outstanding,
a queue full indication prevents CMR from initiating further requests until re-

ceipt of data from the first outstanding request clears one of the queue positions.

B-99 Advanced Scientific Computer

a2

A hazard to either the KA or KB octets exists when an instruction that has

KA/KB HAZARD DETERMINATION

been previous]y‘brocessed alters the contents of the octet in one of the buffers
after that octet has been loaded into fts buffer. The data in the buffer is
therefore not current and should not be used in proces$1ng. This circuit de-
tects all such hazards and sets a flag to indicate that the hazard occurs. Be-
cause the instruction octet may not be used due to a branch, the hazard is not
recognized until the first instruction from the faulty octet reaches level 3,
.The level 3 controller then recognizes the hazard flag and indicates to the look
ahead controller to refetch the octet. The flow chart (figure B-11) illustrates
the decisions fnvo]ved in determining the buffer hazard conditions. A1l sheet
references refer to sheets of the logic diagram set for the I4CMREQ circuit
board. The following paragraphs describe the decision paths available in the

determination.

/B EQUAL TO LA. If an address in one of the ZB registers is equal to the octet
address in the LA register, then an operation in one of the pipes will store its
results into the look ahead octet. The logic then determines which buffer is
currently supplying instructions to the pipe. If KA is active, then KB is the
look ahead buffer; the controller sets the KB hazafd flag. If KA is not active,

then KA is the look ahead buffer; the controller sets the KA hazard flag.

STORE FILE AT LEVEL 2. If a store file instruction is at level 2 and the in-
struction does not transfer the contents of one file to another file (store is

to CM), the controller examines the AR register to determine if the store file

B-100 Advanced Scientific Computer

START

“WLFREEZ:3
(333-2)
SHT 29

ILZBVSLA
117-7)

11Q5(6)
gPlN 175)
HT 27

ILZBVSPA
gPIN 182)
HT 27

TICSETKB

TTICSETKA

ICQKAHAZ
PIN 465)
SHT 28

(B) 121645

1PU
DISABLED

ICOKBHAZ
(PIN 164)
SHT 27

SET KB

HAZARD

KA
SELECTEOD FLAG

NICQKTAGH . 1
(628—2)

ICQKAHAZ
gpm 465)
HT 28

SET KA
HAZARD

IRALINCM

ILAREQLA
(PIN 139) (539=9) JICAKTAGH 1
SHT 27 SHT 9 KA (628—%)
STORE sFLECTED
FILE AT
LEVEL oUTPUT
HSGEN
(124-7) YES
SHT .27
1CQK TAGH 1COKBHAZ
(628-1) (PIN 164)
g SHT 25 SHT 27
SELECTED SET KB
SELECT HAZARD
NO U+ FLAG
ILARE QPA
(14101
SHT 27
o
SET KA ;
78 HAZARD HT 29
PA vES FLAG
NO

ICQKBHZH
31878
gﬁlra Z§ HOL.D KB
HAZARD
FLAG
1ICQKBHAZ

gPIN 164)
HT 27

CLEAR KB

HAZARD

FLAG
ICQKBHAZ
PIN 164)
SHT 27

FLAG

NO

ICQKAHZH
E53
8
KA HOLD KA
SELECTED HAZARD
FOR FLAG
INPUT
ICQKAHAZ
PIN 465)
HT 28

CLEAR KA

HAZARD
FLAG

Figure B-11. KA/KB Hazard Determination Flowchart

B-101

Advanced Scientific Computer

I
operation will affect one of the buffer files. If AR is contained in the LA
octet, then a look ahead octet hazard exists. The controller then sets the
appropriate hazard flag that corresponds to the Took ahead octet. If the ad-
dress in AR is equal to the octet address in PA, then a hazard exists for the
current instruction buffer. The controller determines which buffer is currently

supplying instructions to the pipe and sets the hazard flag that corresponds to

that buffer.

ZB EQUAL TO PA. If one of the ZB addresses is contained in the PA register
bctet, then a current buffer hazard exists. The controller determines which

buffer is currently active and sets the hazard flag for that buffer.

KB SELECTED FOR INPUT. If the KB buffer is not receiving a new octet of in-
structions during the current control clock, and the KB hazard flag has been
set by a previously detected condition, the controller prevents the KB hazard
flag from clearing. This gating path not only keeps the hazard flag set as
long as the faulty octet is in the buffer, but allows the control clock to

clear the flag when a new octet is loaded into the KB buffer.

KA SELECTED FOR INPUT. If the KA buffer is not receiving a new octet of instruc-
tiqns during the current control clock, and the KA hazard flag has been set by a
previously detected condition, the controller prevents the KA hazard flag from
clearing. This gating path not only keeps the hazard flag set as long as the
faulty octet is in the buffer, but allows the control clock to clear the flag

when a new octet is loaded into the KA buffer.

B-102 Advanced Scientific Computer

This circuit receives a four bit code (IMOCTR:2(1)) from I4HDCORE and de-

DETAILS COUNT DECODE

codes it to produce one of twelve store details select signals, or one of
thirteen load details select signals. During a details operation, the code
input to this circuit is incremented»every clock. The output of the circuit,
therefore, steps through counts 0 through 13 (ICLDO(0-13)) if the IMLDTL:2 |

~ signal indicates a load details operation, or through counts 0 through 11
(1CSDO(0-11))if the IMSDTL:2 signal indicates a store details operation. The
value of the details count is equivalent to the octet number in the IPU details
map corresponding to the byte that the count signal enables. The store details
count is forwarded to the Store Details Gate circuit where each separate count
signal selects five bits from the control circuits to be stored in memory. The
load details count fans out to the control circuits on the I4CMREQ circuit board
to enable data from the ILQKCM inputs to load parameters into the circuits. The

decode of the details count for each of the operations is as follows:

IMOCTR:2(0-3) IMLDTL:2 IMSDTL:2
0000 1CLDO(0) 1CSDO(0)
0001 ICLDO(1) ICSDO(1)
0010 ICLDO(2) 1CSDO(2)
0011 ICLDO(3) ICSDO(3)
0100 ICLDO(4) 1CSDO(4)
0101 ICLDO(5) 1CSDO(5)
0110 ICLDO(6) 1CSDO(6)
0111 ICLDO(7) 1CSDO(7)
1000 1CLDO(8) 1CSDO(8)
1001 1CLDO(9) ICSDO(9)
1010 ICLDO(10) 1CSbo(10)
1011 ICLDO(11) ICSDO(11)
1100 ICLDO(12)

1101 ICLDO(13)
B-103

Advanced Scientific Computer

3

STORE DETAILS GATE

This circuit receives twelve gating signals from the details count decode
circuit during a store details operation. Each of the twelve input gating
signals selects five bits from the I4CMREQ circuits and forwards them to I4FILE
circuit boards to be stored into memory. The gating signa]s ICSDO(0-11) corre-
spond to octets 0-11 in the memory block assigned to the IPU details. The out-
put from the I4CMREQ store details gate supplies four bits to word 7 of octets
0-11, and one bit (bit 6) to word 4 of octets 0-11 in the IPU details area of
memory. Figure B-12 illustrates the five bits transferred to memory during

each details count cycle.

LOAD DETAILS

The load details operation is the reverse of the store details operation. The
details count signals enable gates that load the details bits from memory. into
their respective flip-flops on I4CMREQ. Because of the gating signals for KA
and KB buffers are produced on I4CMREQ, two additional counts (12 and 13) are
generated during the load details. These two counts enable data from KCM into
KA and KB, respectively. Count 11 is sent to I4HDCORE since those bits originate

from that circuit board.

B-104 Advanced Scientific Computer

so1-d

191ndwoy 31411Us19S PAJUeNPY

STORE DETAILS
COUNT (OCTET)!
1CSDO(X)

“IMDTL7 JIMDTL 4
4 5 6 7 6
NOT noT |vacanT|vacanT| |au o
LEVELS | LEVELS| [EARLY
USED | USED |gprs | BIT 1 W INDOW
NOT LA TARGET| |2%:1y
USED [JorDERED| DUAL | FAIL AR
PB/LLA AU 2
IN‘PRO-| ELAS | FLAG | FLAG EARLY
GRESS W INDOW
iINpUT |iNpuT |ouTPUT |OUTPUT AU 3
POINTER POINTER| POINTER|POINTER| |EARLY
BITO |BIT1 |BITo |BIT 1 W INDOW
eueue | aueue| aueue | queuEe AU 0
0 1 2 3 LATE
BUSY BUSY | BUSY | BuUSY W INDOW
QUEUE | QUEUE | QUEUE | QUEUE AU 1
0 0 0 0 LATE
PV ACTIVE| BIT 0 | BIT 1 W INDOW
(A) 123674

10

11

~IMDTL4 TIMDTLY
6 4 5 6 7
AU 2 QUEUE | queue | auEuE | QuUEUE
LATE 1 1 1 1
WINDOW PV AcTIVE] BIT O BIT 1
AU 3 QuEUE | QueuEe | QuEUE | QUEUE
LATE 2 2 2 2
WINDOW PV ACTIVE | BIT o BIT 1
NOT QUEUE | QUEUE | QUuEUE | QUEUE
PV ACTIVE| BIT o BIT 1
ML, KRTAG | KAFUL | kAPRV |KA2ARD
NOT NOT KB
USED uUSEDp | KBFUL | KBPRV |h4azaARD
NOT ARITH,. | PARITY g—l-:,'-- IPrOTECT
USED EXCEPTJ ERROR | 28:. [VIOLATE

Figure B-12. TI4CMREQ Store Details Outputs

UNIT REGISTER (UR) DECODE

The UR decode circuit receives a four bit select code from the I4HDCORE cir-
cuit board (IMUREN 0-3) and generates seven gating signals to the Unit Register
select circuit. Each gating signal enables one eight bit byte to the unit
register fanin on the I4HDCORE circuit bo§rd. The most significant bit of the
select code (IMUREN 0) is an enable bit for the decode circuit. The remaining

bits are decoded to generate the gating signals as follows:

IMUREN 1,2,3 Output Signal
000 ICENDTUR(8)
001 ' ICENDTUR(9)
010 ICENDTUR(10)
011 ICENDTUR(11)
100 ICENDTUR(12)
101 ICENDTUR(13)
110 ICENDTUR(14)
111 No Op

UNIT REGISTER DATA SELECT

The unit register select circuit receives the signals generated by the UR De-
code circuit and uses them to produce one of seven possible input bytes (8 bits)
to be sent to the CP Unit Register in the PP, Figure B-13 illustrates the bit

assignments for the seven unit register bytes that can be gated through this

circuit.

B-106 Advanced Scientific Computer

ICENDTUR(8)

ICENDTUR(9)

ICENDTUR(10)

ICENDTUR(11)

ICENDTUR(12)

ICENDTUR(13)

ICENDTUR(14)

(A) 123673

T1ICURDATA BITS

0 1 2 3 4 5 6 7

INPUT INPUT OUTPUT OUTPUT
POINTER | POINTER | POINTER | POINTER | QUEUE QUELE QUEUE QUEUE
BIT 0 BIT 1 BIT 0 BIT 1 0 BUSY Y USy | 3 BUSY
QUEUE QUEUE |QUEUE QUEUE QUEUE QUEUE QUEUE QUEUE
0 ACTIVE| 1 ACTIVE| 2 ACTIVE| 3 ACTIVE] 0 PV 1 PV 2 PV 3 PV
QUEUE 0 | QUEUE o] QuEuE 1 | QuEUE 1| QUEUE QUEUE | QUEUE QUEUE
BIT 0 BIT 1 BIT O BIT 1 2BITo | 2BIT1 |3BITO | 3BIT 1
OA OA OA OA OA OA OA OA

BIT 8 BIT 9 BIT 10 | BIT 11 BIT 12 | BIT 13 | BIT 14 | BIT 15
oA OA oA oA OA oA oA oA
BIT 16 | BIT 17 BIT 18 | BIT 19 BIT 20 | BIT 21 BIT 22 | BIT 23
oA OA oA OA OA 0A oA OA
BIT 24 | BIT 25 | BIT 26 | BIT 27 BIT 28 | BIT 29 BIT 30 | BIT 31
NOT P3 P3 P3 NOT PA PA PA
USED BIT 29 | BIT 30 BIT 31 USED BIT 29 | BIT 30 BIT 31

NOTES:
% PV = PROTECT VIOLATION

Figure B-13.

T4CMREQ Unit Register Bytes

B-107

Advanced Scientific Computer

FROM I4ROUTE1 p=o

FROM I4PIPTOP

FROM l4PIPEMB

FROM MFILEMB

FROM 4LVL3
CIRCUIT BOARD

FROM I4INFACE
CIRCUIT BOARDS

FROM 14VECLAS
CIRCUIT BOARD

FROM I4PIPTOP
FROM j4LVL3
FROM 14VECLAS

FROM I4FILEMB

FROM 14HDCORE
CIRCUIT BCARD

(D) 123644

LOGIC l"_
2ERO [THVDMZERD (0°7) 5,
GENERATOR - NOT useD
IRPAC3 1
150~|PL2BLK IMOCTR:2(0-3 |CLDO(11)
> (0-3) g —) 361
;152 ILPAENSE(1) 381,480,479 .278 4 a1 3615 10 14HDCORE
255 5| |
IMLDTL:2 ICLDO(0-10,12,13)
>: 230 1L PAEN FROM 14HDCORE 7 os-r:u_s _{%___A._._._a__u@
286 1pQL2ACT IMSDTL:2 COUNT 1ICSDOo(o-11 2]
{300 1IQLIACT >X3s | DECODE 30 32
>S5 33
-400.301,101,408 JIPR2(4-7) ral e
ol ICQKBPRY
3401,201,410 IROP3(29-31) 3} ILQFLGFL -
iy ILQVAC(0, 1 3 4645 1o 14VECLASAALVL3 ICQKAPRV
| BMQRMERW. 4 29
478,290,489 ,113 JIRR3(4~7) E ILQDUAL - ICWACK TO 14VECLAS/IAPIPTOP FROM 311,411,210,212 ICQKBFUL
= e \LQFLGI2 MBU'S
ICCMTFIL
@-axemre-7) G} - ILQTFAIL TO 14VECLAS 1AMISC o3 | yBueemiTwon [, ICaKARUL
7 ILQFLGA ICWACK] e 312,412,213,114 2 l;*V:ls';DaEsf; tl-s: ICQKTAG
= S eQLGO-7) —{e }——-— IE ILDECLC(0, 1) 424,486, ICCUEMPY _ 162 EFR"(?:”'#F;ARD AILOKEMAE e To 1CQBSY(Q-3) 7
>-102,206,406 ILQPA(29-31) 13} ULGBA 323 W ICFL 2623 L 15 auncore ON 14FILEMB >—§;——u——‘—" AV 14ROUTE2 ICQPRV(O=3) '—‘ZJ] B JIMDTL7(4-7) o
L NLGLA 320N
202,203 ILPAEBA(, 1) L—,—,"® ETTeT 125 ICIR WINDOW | [T}aRwinpLTOS) ICQACTO-3) e 226,326,42€,157 To
L * — 2| => IMRE:2 FLAGS 254,457,456, 355 STORE \4FILE
° $ m4 iRARELA “ULGOA _ 168 [ICPRVO___ 364y e IRQWNDER(0-3) a DETAILS crCUIT
: JILGPA 245 ICCMTIR 264y @—————-—'—’ I IRQWNDL T(0-3) Z]_- GATE BOARD
484 IRAREPA ULINCLA 312 5) : OR FAFILEMB
AR A, T ILINGPA FTYRY 1ICOKAPRY 2673 L o0 imiprop ®UMQFREEZ! . 110 ICQAREX 1IMDTLA4(6) 13
3189 URBRTOA © ILINHAZ ICOKBPRY 1c 1= FROM 112 ICQIPIOP
{259 URBRTLA DILLATBA 220 ICOKAF o 1CLDO(0-7 o5 14HDCORE | 111 ICOIPPAE .
380 IRBRTPA PLLATOA 271 3% ®
S - TO I4ADDR ICOKBFUL 107 ICQIPPRV.
283 IRERHAZ {7 -LaPAISAQ.L 370.470.5 HOOKETUL 3865 > TO 14PIPTOP 14LVL3
167 TIRBRTP SiLe3TEA 1215 SIRCUIT S0ARD ICOKRTAG 167 S 7 icaipe, 1) Tl
] L
q $-287 umeRTEZ 3':"::::32 iz; IMCMTKA 225 1CQoP(0, 1} 3
{387 IRLCLER SLARTBAG T —255 IMCMTKS }TO 14FILEMB 1CQCUER 100-3]
85 URDLBNT 2 369,12 MER IS 1285
IREXIND DILARTLA 2205 . ICQKAHAZ
285 VURINHAZ MLARTLC 226 5 FROM 14ROUTE! Mﬂ_ [icaksHaz ’
o IRLLXFER Look JULBATOA a1 FROM I4HAZMB 309,307,407,103 & BLLAEQGZB(O-3)
{255 uRPEXFER AHEAD LCNTBA 363 5 182 1L.2BVSPA
487 IRQTARGT. CONTROLLER MLARTPA 124 FROM 14PIPTOP 175 1QS(6)
}MGTFL STy 4235 JIRARELA NoTES:
- <. PIN NUMBERS FOR IHQOA:1, LQLC AND IVDMZERO:
::t::::g-r 121 IRAREPA S—— SIT |HQOA:1 BIT ILOLC
173N
262 IRGDEPB 71 (D ILLOADIR' 1 2 }TO 14PIPTOP ~IMQFREEZ i1 : ::: ‘1’ :::
g L .
2 183 IPQDCPB ——-H'%MBL—‘B% TO 14PIPEMB (@) ULaKCrT (7 - KA KB 10 315 2 04
2 ILDUAL 74 5 HAZAI ICQKAHAZ
>]g§ TIRSFREQ \LPEEN e }To 14LvL3 IMRE 2 ZARD ____4_659 11 415 3 404
o B oeTerMINATION To 12 488 a 208
IMSE :2 14PIPTOP 13 476 5 205
12
E—MBE 1ICOKTAGH:1 - ICOKBHAZ 3 1aLvLs 4116 6 305
. TA 164 15 216 7
@—Msk:2 . ILINSTRP ‘1(:2:51'52 16 318 ‘OSM
o JIMQFREE2:1! ILINSTRI ICSETKE 7 ats IVDM ZERO
ILPAEN ILINSTRZ ICLDO(,10) > 18 3m8 ° 128
ICGKTAG —z] 19 376 ! 156
3 \PHICK 1,2/ ICLOCK 1-1€ 'j'a (YICFETCH E_ = @_,I 2 117 § :::
; NLNEXT 21 217
(H—leLDo(or10,12.13) 13—t — {21+ yicLock. ool CLocK {15} 22 atr 4 130
5 FROM /og GENERATE - 23 a 5 153
CLOCKFAN AND 77 6 132
FANOUT 28 472 M .
25 274 33
i . . ICWACK] 2% 474
1CLDO{0-10,12,13 e 16-28 ICRDACK].2 Lz_’. Dz 1CQAC T(0-3) Z}—- 27 118
(QHEHICK: 1.2, 1CLOCK 1716 75l {UCRDACKIL 77 A ULOKCMT(4,5 REQUEST 1CQBSY(0-3) — L 28 318
ki pa—— ICDCUE{D) 1CLDO(3) QUEUE {4 = 23 418
184 ILPAEN el ICINCIP INPUT 1cap@, 1) ICQPRV(0-3) 7 30 272
(2 | — ™leoinTER {2}~ gol 31 w3
L—'@ ICQOP(. 1} [
481 TIREXIND TO 14HDCORE 2 i
)) ! R — i
YCQAUPHO, 1)] 1CQIP(0,1) E}_- u
IRLFREQ ICINCOP 23] NIT
186 3 -—] : }——- i ICCUEO, 1(0-3)— REGISTER
@ CENTRAL D" 1CQOP(0,1) 1CQOPH(Q, 1) REQUEST - 18— oATA To
382 174,281,179 SILQKCM7/4-7) 77 MEMORY iCLDO(3) QUEUE . IHQOA 1(8-31) oot JICURDATA(0-7 TAMDCORE
T :a REQUESTER 7ILGKCM7(EJE_‘& gg;er_IPE-rR 1ICQOP(0,1) E"" FROM {4ADDR CIRCUIT BOARD ON I4FILEMB)——-—E‘l—.
: 377 JIMQFREEZ:1 ‘CMR ® |LQPA529-3I! : -
C 1CLDO(5-7.
Zi :ﬁgz::; 252 {2 }——— _IRGP3(29-31
QILQKCM7(6,7 € IMRE:2 &y
178 JIMHCREQ @3 (6,7) J@- ® {)_l—_)_{ ; it
276 ICRCMPV QICDCUE(0-1) 2 ol MEMORY e _ IMSE:2 & FROM MUREN({0-3) ICENDTUR(E
; - -
N 12 REQUEST |4HDCORE >_._i—.{3—. UR ('4)
G |ICCUESEL(0-3} [+ | QUEUE 109,209,106, 10% DECODE
> 280 IMRE _2 : 2} ICCUEO(0,1) = ICQCUEO(0-3) e
1CQCUE1(0-3)
150 IMSE 2 [—’(Q)

Figure B-14. I4CMREQ Circuit Board

Block Diagram

B-109/B-110

Advanced Scientific Computer

AU WINDOW FLAGS

The I4CMREQ circuit board receives the early and late window bits for each of

the four AU's, sets a flag when each window occurs and passes the indication

to the I4ROUTE2 circuit board. The transfer results in a one clock delay from
the time that the window pulse is producedlfrom the AU ROM in one of the MBU's
until the signal is available to the I4ROUTE2 circuit board. The window bits

are generated during an instruction sequence when a divide instruction is in

the corresponding AU. The early window flag indicates that if there is another
divide instruction at level 3 of the same group as the divide in the AU, then

the divide in level 3 may be executed (including a memory fetch for data) with

an execution time saving. The time saving is due to overlapping of the processes
in the AU to avoid the divide initialization time required to start a new divide
instruction. The late window flag indicates the same condition as the early win-
dow flag, except that for the late window, no time is allowed for memory fetch.

The operands must already be within the CP,

Figure B-14 is the I4CMREQ card block diagram.

B-108 Advanced Scientific Computer

I4ADDR

0

INTRODUCTION - BLOCK DIAGRAM SYMBOLS

The block diagram included in this circuit board description (figure B-23)
condenses the information contained in the logic diagrams to a one sheet rep-

resentation.

The diagram contains all data lines and control signatures that

are inputs to or outputs from the circuit board. In addition many of the key
data and control lines internal to the board are illustrated. Other informa-
tion contained on the block diagram is illustrated in figure B-15, and in-

cludes:

Sheet Number

Pin Number

Bus size

Location of the logic diagram for the de-
picted function within the circuit board
Togic set. Multiple sheets are referenced
with a letter that is explained in the notes
on the diagram.

Circuit board input/output pin that carries
the indicated signal. When more than one
pin number appears, the pin for the most
significant bit appears first (address), or
the pin numbers appear in the order of the
signatures listed on the line (control).
Large quantities of pins are in tabular form
in the notes on the diagram sheet.

Numbers on all lines indicate the number of
bits represented by that particular line. A
Tine without a number contains only one bit.

Data and address lines are heavy black lines. Control lines are single width

Tines.

B-111 Advanced Scientific Computer

1o

ORIGIN SINGL.E CONTROL
OF SIGNAL LINE

XARTIR
\ ¢
232)

FROM 14CTLMB

132 : $HCATOA ,

UMBER

SHEET N
DIAGRAMS

IN LOGI

O

ADDRESS BUS
INDICATES

CIRCUIT FUNC—
TIONS ONLY ON

' 14ADDR(1)
L BOARD
ILAR(29—-31)

e 2 (ADDR1) 171,370,270
IR () 'rc'> 14FILE
. _ WORD ADDR CIRCUIT
ILQPA: 1(24—31 BOARDS

SELECT

() ILSELK(29—31)

BUS SIZE DESTINATION
(3 BITS) OF SIGNAL

FUNCTIONAL TITLE
FOR CIRCUIT

PIN NUMBERS OF BITS 0O,
1 AND 2 RESPECTIVELY

N
N

(ADDR(1) 133,338,339
14CTLMB } @

$XHCASEL(0—2)

SIGNATURE OF
SIGNALS ON LINE

(A)127616

Figure B-15. Key to Symbols - I4ADDR Circuit Board Block Diagram

B-112 Advanced Scientific Computer

[17“(?

I4ADDR CIRCUIT BOARD

The I4FILEMB contains two I4ADDR circuit boards that comprise the following
major components of the IPU:

OA Output Address Register - THQOA(8-31)

LA Look Ahead Address Register - ILQLA(8-31)

PA Present Address Register - ILQPA(8-31)

BA Branch Address Register - ILQBA(8-31)

LC Look Ahead Counter (decrement) - ILQLC(0-7)

IPU Clock Counter - IMQCKCNT(8-31) and $XQCKCNT(0-7)
Clock fanout for I4FILEMB - $XLOCK04:0(0-19)

The I4ADDR(0) circuit board contains bits 8 through 19 for all registers and
bits O through 3 for the 31 bit registers; I4ADDR{1) contains bits 20 through
31 for all registers and bits 4 through 7 for the 31 bit registers. Both cir-
cuit boards are physically and electrically identical. However, due to the
bit division between the boards, a circuit that appears on one circuit board
may not be used on the other circuit board.

The block diagram at the end of this section (figure B-23) illustrates the ad-
dress paths and control signals that are implemented on the I4ADDR circuit
boards. In addition to the major components, the circuits include: input
gating networks for each register, a branch address comparator, an IR word
selector, various holding registers, and the details sequencing and gating
circuits required to perform maintenance operations on the IPU. The following
paragraphs describe the component circuits on the I4ADDR circuit board and the
required control signals to perform the transfers.

INTERFACE SIGNALS

Table B-7 defines the input signals to the I4ADDR circuit boards. Table B-8
defines the output signals from the I4ADDR circuit boards.

B-113 Advanced Scientific Computer

¢

Signature

ICLOCK:0

ILAR(08-31)

ILARTBA(0,1)

~ILARTLA
-ILARTLC
~ILARTOA
-ILARTPA
~ILBATLA
~ILBATOA
~ILBATPA

~ILCNTBA
ILDECLC(0,1)
-ILGBA
-ILGLA

Table B-7.
Origin

I4ADDR(1)

I4PIPE

T4CMREQ

T4CMREQ
T4CMREQ
T4CMREQ
14CMREQ
I4CMREQ
T4CMREQ
T4CMREQ

I4CMREQ
I4CMREQ
I4CMREQ
T4CMREQ

I4ADDR Circuit Board Input Signals
Function

Originates as ICLOCKO4:0(16 and 17). Control
clock pulse for completing transfers between
registerq.

Bits 8 through 31 of the AR register at level 3
of the IPU.

Transfers the contents of the AR register to
the BA register for I4ADDR circuit boards 0
and 1.

Transfers the contents of the AR register to
the LA register.

Transfers the contents of the AR register to
the LC counter,

Transfers the contents of the AR register to
the OA register.

Transfers the contents of the AR register to
the PA register.

Transfers the contents of the BA register to
the LA register.

Transfers the contents of the BA register to
the OA register.

Transfers the contents of the BA register to
the PA register.

Transfers LA + 8 to the BA register.
Decrement pulse to the LC counter.
Enables loading an address into the BA register.

Enables loading an address into the LA register.

B-114 Advanced Scientific Computer

a2

Table B-7. I4ADDR Circuit Board Input Signals (Continued)

Signature Origin Function

-ILGLC - I4CMREQ Enables loading value into the LC counter.
-ILGOA I4CMREQ Enables loading an address into}the OA register.
-ILGPA I4CMREQ Enables toading an address into the PA register.
-ILINCLA I4CMREQ Transfers LA + 8 to LA.

-ILINCPA I4CMREQ Enables the present address incrementer to add

one to the address in the PA register.

~ILINHAZ I4CMREQ Loads the contents of P3 into LA, OA and PA to
' initialize the operation or recover from a
hazard condition.

ILKTIR(8-31)' I4FILE A word (pointer) from KCM that is loaded into
OA at the start of a maintenance command.
-ILLATBA T4CMREQ Transfers the contents of the LA register to
the BA register.
-ILLATOA T4CMREQ Adds eight to the contents of the LA register
and transfers that address to the OA register.
ILPATBA(0,1) T4CMREQ Transfers the contents of the PA register to
| the BA register for I4ADDR circuit boards 0 and 1.
-ILP3TBA I4CMREQ Transfers the contents of the P3 register to
the BA register.
-ILQKCM2:2 I4FILE Load details inputs to the I4ADDR circuit
(8-31) boards.
-ILR3TLC I4CMREQ Transfers the contents of the R3 register to

the LC counter.

ILTOGCKI(19) T4ADDR Provides interconnection between I4ADDR(0) and
I4ADDR(1) within the clock counter circuit. In-
dicates that bits 20-31 of clock counter are
ones.

B-115 Advanced Scientific Computer

a2

Table B-7. TI4ADDR Circuit Board Input Signals (Continued)

Signature Origin Function
ILTOGCKI(31) I4ADDR A constant logic "1" input to the least sig-

nificant bit of the clock circuit.

IMCLEAR I4HDCORE Master hardcore clear to the OA register to
initialize it for maintenance functions.

-IMCMTOA I4HDCORE Gates memory input to the OA register during
the start of a maintenance command.

-IMCSTOA I4HDCORE Gates a predetermined constant address into the
OA register to fetch a pointer during a CR
command operation.

IMFREEZE:4 I4HDCORE IPU disable signal due to a reset RUN bit or
other abnormality.

-IMGOA I4HDCORE Enables loading of an address into the OA
register. '

-IMINCOA I4HDCORE Selects either OA or LA to supply the address

to the octet incrementer to create the next
octet address for transmission to the MCU.

IMLDPSDW:2 I4HDCORE Load Program Status Doubleword. Transfers a
word from memory into the clock counter.

IMLDTL:4 I4HDCORE Load details: enables details sequencer cir-
cuit to produce gating signals to the I4ADDR
registers to load the registers with memory data.

IMOCTR:4 I4HDCORE A four bit code that is decoded to produce the
(0-3) gating signals for load and store details.
IMRE: 4 I4HDCORE Master reset for I4ADDR circuits.

IMSDTL:4 T4HDCCRE Store details: enables details sequencer cir-

cuit to produce gating signals to the store

B-116 Advanced Scientific Computer

2

Signature

Table B-7.

Origin

IMSDTL:4 (continued)

IMSE:4
IMSTPSDW: 2

IRP3(8-31)

IXCLOCK:4

$XAR(24-31)

$XARTIR

$XEIGHT

$XHCASEL(0-2)

I4HDCORE
T4HDCORE

T4PIPE

LOGCLK

I4PIPE

I4PIPTOP

I4HDCORE

I4HDCORE

I4ADDR Circuit Board Input Signals (Continued)

Function

details output select to transfer the contents
of the I4ADDR registers to memory.

Master Preset for I4ADDR circuits.

Store Program Status Doubleword. Transfers
the contents of the clock counter to a word in
the details area of memory.

Contents of the P3 register in level 3 repre-
senting the address of the instruction at
level 3.

Clock signal from I4CTLMB (ICCLKOUT:8) for fan-
out. Used on I4ADDR(1) only.

Eight least significant bits of the AR register
in level 3 that supply input to the Took ahead
counter during a Load Look Ahead instruction.

Originates as ILARTIR on I4CTLMB. This signal
is sent to I4ADDR(1) to select the word address
from the AR register that designates a word for
the IR register. This input is a logic zero
for the I4ADDR(0) circuit board.

Originates as IMEIGHT. This signal is sent to
I4ADDR(1) to generate one of the pointer ad-
dresses needed to initiate any CCR command to

the CP. This input is a logic zero for I4ADDR(0).

Originates as IMHCASEL(0-2). This code is sent
to T4ADDR(1) during hard core operations to se-
lect a word from KCM into the IR register. These
inputs are logic zeroes for I4ADDR(0).

B-117 Advanced Scientific Computer

Table B-7.
Signature Origin
$HCATOA I4HDCORE
$XKARIN(16,19) I4ADDR
$XKARIN(28,31) -
$XKARPA(19) 14ADDR
$XKARPA(31) -
$XONE -
$XQKCM2: 2 IAFILE
(0-7)

-$XR3(0-7) I4PIPE
$XTOGCKI(3) T4ADDR(1)

I4ADDR Circuit Board Input Signals (Continued)

Function

Originates as IMHCATOA. This signal is sent to
T4ADDR(1) to enable $XHCASEL(0-2) to select a
word from IR during maintenance commands. This
input is a logic zero for I4ADDR(0).

Originates as ILKARIN(16,19). These two signals
interconnect the two I4ADDR circuit boards with-
in the LA incrementer circuit.

Constant logic one inputs to the least signifi-
cant bits of the LA incrementer circuit.

Originates as ILKARPA(19). Interconnects the
two I4ADDR circuit boards within the PA incre-
menter circuit.

Constant logic one input to the least signifi-
cant bit of the PA incrementer circuit.

Constant Togic inputs to the OA register: zero
for I4ADDR(0) and one for I4ADDR(1). When en-
abled, these signals and $XEIGHT generate the
pointer addresses needed to initiate any CCR
command to the CP.

Load details inputs to the eight most signifi-
cant bits of the clock counter circuit.

Bits 0-3 are fixed logic one inputs. Bits 4-7
are the contents of the R3 register at level 3
that load the LC counter during a PB instruction.

Originates as $XILTOGCKO(4). Connects I4ADDR(1)
to I4ADDR(0) within the clock counter circuit.
Indicates that bits 4-31 of the counter are ones.

B-118 Advanced Scientific Computer

S

Table B-7. I4ADDR Circuit Board Input Signals (Continued)

Signature Origin Function
$XTOGCKI(7) 14ADDR(0) Originates as ILTOGCKO(8). Connects I4ADDR(0)

to I4ADDR(1) within the clock counter circuit.
Indicate§ that bits 8-31 of the counter are
ones.

$XTOGLCI I4ADDR(1) Originates as ILTOGLCO(1). Connects I4ADDR(1)
to I4ADDR(0) within the Look Ahead Counter de-
crementing circuit. Indicates that bits 4-7
of the LCH register are equal to zero. This
input to the I4ADDR(1) circuit board is a
constant logic one.

B-119 Advanced Scientific Computer

Table B-8. I4ADDR Circuit Board Output Signals

Signature Destination Function

IHQOA:1(8-31) TI4CMREQ The memory address contained in the OA register
to be transferred to the PP as unit register
data.

IHQOA:2(8-31) MCU Requested memory address to the memory control
unit.

ILKARIN(7) - Not used.

ILKARIN(16) I4ADDR(0) Enters as $XKARIN(016). Provides interconnec-

‘ tion within the LA incrementer circuit.

ILKARIN(19) I4ADDR(0) Enters as $XKARIN(019). Provides interconnec-
tion within the LA incrementer circuit.

ILKARIN(28) - Not used.

ILKARPA(7) - Not used.

ILKARPA(19) 14ADDR(1) Enters as $XKARPA(19). Interconnects the two
I4ADDR circuit boards within the PA incrementer
circuit.

ILPAEQBA I4CMREQ Indicates to the Look Ahead Controller that the

(0,1) PA address is equal to the BA address for the

portion of the address contained on I4ADDR(0,1).
Only when both of these signals are true is the
total address in PA equal to the total address
in BA.

ILQLA:2(8-31) 147ZHAZ The look ahead address that is used by the
hazard detection circuits to detect a look ahead
octet hazard.

ILQLC(0-7) I4CMREQ The contents of the Look Ahead Counter that is
used by the Look Ahead Controller to determine
the position of an imminent branch that has been
preceded by a PB or LLA instruction.

B-120 Advanced Scientific Computer

52

Table B-8. I4ADDR Circuit Board Output Signals (Continued)

Signature

ILQPA:2(8-28)

ILQPA:2
(29-31)

ILQPAH:2
(8-31)

TLSELK
(29-31)

ILTOGCKO(8)

ILTOGCKO(20)

ILTOGLCO(O)
ILTOGLCO(1)

-IMDTL2(8-31)
IMQCCNTH(8-31)
-$XDTL2(0-7)
$XILTOGCKO(00)
$XILTOGCKO(04)

Destination

I4ZHAZ

T4CMREQ
I4PIPE
I4FILE

T4ADDR(1)

I4ADDR(0)

T4ADDR(1)

I4FILE
I4PIPE
I4FILE

I4ADDR(0)

Function

Present octet address-used by the hazard de-

tection circuits to detect a hazard to the

current octet.

Present word address used by the Look Ahead
Controller to detect octet boundaries (PA = 7).

Present instruction address transferred to the
P1 register as the instruction moves to level 1.

Selects a word from KCM, KA or KB for transfer
to the IR register.

Enters as $XTOGCKI(7). Connects I4ADDR(1) to
I4ADDR(0) within the clock counter circuit.
Indicates that bits 8-31 are ones.

Enters as ILTOGCKI(19). Connects I4ADDR(1) to
T4ADDR(0) within the clock counter circuit.
Indicates that bits 20-31 are ones.

Not used

Enters as $XTOGLCI. Indicates that bits 4-7

~ of LCH are equal to zero.

Store details data lines to memory bus.
IPU clock count to the RO register.
Store details data lines to memory bus.
Not used.

Enters as $XTOGCKI(3). Connects I4ADDR(1) to
14ADDR(0) within the clock counter circuit. In-
dicates that bits 4-31 are ones.

B-121 Advanced Scientific Computer

—

lyp

Table B-8. I4ADDR Circuit Board Output Signals (Continued)

Signature Destination Function
%XLOC§O4:0 I4FILEMB Becomes clock input (ICLOCK:04:0(0-19)) to all
0-19

circuit boards on the I4FILEMB. This output
set is used only from the I4ADDR(1) circuit

board. Cbrresponding outputs from I4ADDR(0)
are not used.

$XQCCNTH(0-7) I4PIPE IPU clock count to the RO register.

B-122 Advanced Scientific Computer

O

The OA (Output Address) register supplies octet addresses {21 bits) to the MCU
to designate the area in memory for a store or fetch operation. The Look Ahead
Controller (on the I4CMREQ circuit board) controls the gating of addresses into
the OA register and initiates requests to the MCU that transfer addresses from
OA to the MCU. The output from this register can be transferred to the PP as
unit register data, and can also be increﬁented by eight to form the next sequen-

OA REGISTER

tial octet during load or store maintenance operations. The following paragraphs
describe the six inputs to the OA register, their gating signals, and the uses
for each input in the operation of the IPU. Either of two gating pulses, -1LGOA
or -IMGOA, from I4CTLMB enable the selected input to OA. The CP clock pulse
completes the transfer by clocking the selected address into OA. Although the
register is implemented with 24 bits, only the 21 most significant bits are
effective address bits.

MAINTENANCE COMMANDS. Load, Store and Exchange maintenance commands from
the CCR file of the Peripheral Processor require the CP to access a pointer from
a fixed location in central memory and use that pointer as the startihg address
of the data transfer to or from memory. If the maintenance command requires
transfer of status, the pointer will be in locations 14 or 15; the pointer for
CP or Maintenance details commands is in locations 18 or 19. To initiate the
command, the IPU must first access the pocinter location, transfer the contents
of that location to the OA register, and initiate a request to memory to store
or fetch from that location. Two inputs to the OA register enable the IPU to
perform this function. The unit hard core controller on the I4HDCORE circuit
board generates the gating signals to OA to effect the two transfers.

The octet address of the pointer for status maintenance commands is 10; the

octet address of the pointer for CP or maintenance details commands is 18. When

the hard core controller receives a maintenance command, it enables two inputé

to the OA register bits 27 and 28 (figure'B—lﬁ) by activating -IMCSTOA. This

signal transfers a fixed logic one level ($XONE) to bit 27 and enables an input
($XEIGHT) to bit 28 of OA. If the maintenance operation is a CP or maintenance detail:

B-123 Advanced Scientific Computer

¥21-d

481ndwioY 21413U819§ PasUEAPYy

OTHER
INPUT
GATES

_$XONE [N\ - iLcbaTa BIT 27
255) V) - IHDOA(27) v,

\ — IMCSTOA
364) IHMPNTR
EE ——j :
v OTHER

OA REGISTER

THQOA ; 2(27)

INPUT
GATES

IHQOA ; 2(28)

\., IHDOA(28) 12
b |
—q
——/'

XEIGHT
438)—$
OTHER
INPUT
GATES
BI
vee IHDOA(29) -2
-
—)
VEE
IHGOA: 2
(A)127617

IHQOA : 2(2
(94

Figure B-16. Load Pointer Address Gating

TO MCu

- TO McCU

TO MCuU

O

command, the controller sets $XEIGHT to a logic one level so that both bits
27 and 28 are set. If the maintenance operation is a status command (4108
through 410A), the controller holds $XEIGHT at a zero so that only bit 27 is
set. As a result, the controller loads a hexadecimal 10 into OA for status
commands, and a hexadecimal 18 for details. When this operation is complete,
the controller generates a request to the MCU to access the pointer from the
Tocation specified by the address that has been loaded into OA.

When the MCU returns the pointer octet to the KCM memory interface file on the
I4FILE circuit boards, the controlier selects the pointer word from the octet
and transfers it to OA input gating circuit through the ILKTIR(8-31) address
bus. The controller then enables that address into the OA register by acti-
vating -IMCMTOA. This operation places the starting address of the data trans-
fer into the OA register. The controller then initiates a memory request to the
MCU to either store or fetch from that location. If more than one octet is re-
quired in the operation, the area in memory will be in consecutive Tocations.
To generate the addresses for the successive octets, the controller activates
~IMINCOA to the octet incrementing circuit. This signal enables an output
from the OA register (~-IHQOA(8-31)) through the octet incrementing circuit and
loads the incremented octet address back into the OA register. The controller
performs this transfer for each new octet that is required to service the main-
tenance transfer.

IRP3(8-31). To initiate an operation after a context switch, or to re-
cover from an instruction hazard, the level 3 instruction address from the P3
register (IRP3(8-31)) transfers to the OA register. One control signal (-ILINHAZ)
from I4CTLMB gates the P3 address into OA for either of these cases. After a
new job has been switched jnto the IPU, OA contains an address from the switching
opération which is not the address of the first instruction in the new job. The
context switch transfers the first instruction address into the P3 register. To
initiate the new instruction sequence, the hard core controller gates the P3 ad-
dress into OA (-ILINHAZ) and initiates a memory request for that octet from the MCU.

B-125 Advanced Scientific Computer

Similarly, if an instruction hazard occurs, the aborted instruction is
allowed to pass to level 3 before the hazard decision is made. At that time

P3 contains the address of the hazarded instruction. Therefore, gating the
contents of P3 into OA allows the IPU to refetch that instruction from memory
to recover from the hazard.

ILQBAH(8-31). This input to the OA register carries the contents of the
BA (Branch Address) register. The look ahead controller on the I4CMREQ circuit
board determines when this input will be enabled to the OA register by generating
the -ILBATOA gating signal. The transfer of BA to OA is performed under these
basic conditions:

1. PBor LLA - If a Prepare to Branch or Load Look Ahead instruction
has lToaded the BA register with the address of a tar-
get instruction, and the Took ahead controller deter-
mines that the expected branch is imminent, the con-
troller transfers the address in BA to OA to fetch the
octet containing the branch instruction.

2. Target Fail - If the Took ahead controller has fetched the octet
containing the target instruction of a branch, but the
branch is not taken when it reaches level 3, the con-
troller transfers the contents of BA (address of exe-
cuting instruction sequence before the target instruc-
tion octet was fetched) to recover the previous instruc-
tion sequence.

3. Dual/Branch not taken - If the look ahead controller is operating in
the Dual mode, but the branch is not taken when the
holding hazard is resolved, the controller must recover
the look ahead octet that was discarded when entering
the Dual mode. The address of the look ahead octet is
stored in BA, so the controller transfers the contents
of BA to OA to refetch the look ahead octet.

ILAR(8-31). The ILAR input carries the contents of the AR register at
level 3 of the IPU. The Took ahead controller on the I4CMREQ circuit board de-
termines when this input will be enabled to the OA register by generating the
-ILARTOA gating signal. The Tlook ahead controller transfers BA to OA under five
basic conditions:

B-126 Advanced Scientific Computer

Branch to Memory - If a branch instruction at level 3 references an
address that is not in the IPU octets, the controller
transfers the address of the target instruction from the
AR register to the OA register to access the octet con-
taining the instruction.

PB - If a Prepare to Branch instruction is at lTevel 3, and the target
branch of the PB is either in or is entering the current
octet, the controller transfers the contents of the AR
register (containing the address of the target instruction)
to the OA register to fetch the target octet from memory.

Dual - When the look ahead controller enters the dual mode, it trans-
fers the address of the target instruction from the AR
register in level 3 to the OA register to access the tar-
get octet for use as the look ahead octet.

Load File - If a load file instruction is at level 3, the controller
transfers the address of the area in memory from the AR
register to the OA register.

Store File - If a store file instruction is at level 3, the controller

transfers the address of the storage area in memory from
the AR register to the OA register.

ILCOUNT (8-31). The ILCOUNT bus carries an address from the octet incre-
menting circuit to the OA register. The address may originate in either the LA

or the OA register, but in either case the input represents the next sequential

octet to be accessed from memory. During normal look ahead processing, the IL-

COUNT lines originate in the LA register. The incrementing circuit adds eight
to the word address in the LA register to form the ILCOUNT(8-31) signals. These
address bits are normally lToaded into LA and OA simultaneously so that when the
look ahead address has been sent to the MCU, the address in OA equals the address
in LA. The OA register supplies inputs to the octet incrementing circuit only

during CCR maintenance command execution.

OCTET ADDRESS INCREMENT

This circuit and its associated input select circuit receive the contents of either
the LA or the OA register, add eight to it, and forward the results to the BA
LA and OA input select circuits. The control signal, ~IMINCOA, determines whether

the output from LA or from OA will be used in the incrementer. When this signal

B-127 Advanced Scientific Computer

N3

is low, OA is incremented; when -IMINCOA is high, LA is chosen, OA is incre-
mented only during maintenance stores and fetches. The increment circuit
examines all of the input bits in parallel. If all of the bits that are less
significant than the bit under examination are ones, the circuit toggles that
bit. Figure B-17 illustrates the circuit that performs this function for bit
eight, the most complex, and for bit 28, the least complex. All other bits
have similar circuits for examining the bits preceding them. A1l bits 9 through
28 must be ones before bit 8 toggles; bit 28 will toggle everytime due to the
fixed one inputs on $XKARIN(31) and $XKARIN(28). The input bit $XONE, is a
fixed "1" bit for I4ADDR(1) and a fixed "0" bit for I4ADDR(0). This signal
disables bits 29, 30 and 31 on I4ADDR(1) so that the address from the incre-
menter is always an even octet boundary (29, 30 and 31 equal to "0"). This
signal I4ADDR(0) enables bits 17, 18 and 19 to follow the incrementer circuit
output.

LA REGISTER

The LA (Look Ahead) register is a 24 bit register that holds the octet address
(21 most significant bits) for the look ahead octet. During normal processing,
this address is equal to the address contained in OA that is being accessed from
memory. When memory accepts the request, the look ahead controller selects the
output from LA into the octet incrementer and enters the incremented address in-
to LA and OA simultaneously. A second register associated with LA (LAH) receives
the contents of LA one-half clock time after it enters LA. The output from this
register is available for transfer to the BA register when the look ahead con-
troller enters the Dual mode. The output from the LA register is also trans-
ferred to the hazard detecting circuits for determination of a look ahead hazard,
and is available to the details gating circuit for storage into memory during a
store details maintenance operation. -ILGLA from the look ahead controller trans-
fers the inputs to the LA register from the gating circuit. The CP clock pulse
completes the transfer. The following paragraphs describe the five inputs to the
LA register, their gating signals, and the uses for each input in the operation
of the IPU.

B-128 Advanced Scientific Computer

621-d

49)ndW0? 31§13UBIIS PAOUCAPY

A

ILADN 20 ' (LOGIC ONE) \ $XKARIN(31) - ILCARIN(28)

ILADN 21) /351 ILCOUNT(28)
ILADN 22 N\ $XKARIN(28)

= e] V. (LOGIC ONE) =

ILADN 23 - ILADDIN(28)

ILADN 24
—_— -
ILADN 25 Q ’
R_ald BE-1- ILCARIN(28)
ILADN 26 A ILADN(28)

ILADDIN(28)
ILADN 27 ‘) v

“ILADN 28 ILKARIN(19)

LEAST SIGNIFICANT BIT

W 149

14ADDR(1)

14ADDR(0)

|
V¥ 3s1
MOST SIGNIFICANT BIT

ILADN(17)]

ILADN(18))
ILADN(19) ILKARIN(16) .
| SR——
$XKARIN(19)
ILADN(11) XKARIN(16 A
ILADN(12) A %——“} $ (16) ~ ILCARW(08) |,
] 249 252 ILKARIN(10 3 @
ILADN(13) (10) ILCOUNT(08)
ILADN(10)
ILADN(16) ILADN(09) - ILADDN(08)
ILADN(15))
ILADN(14)
ILCARIN(08)
ILADN(08) ILADDIN(08)
rre—
(A)127618

Figure B-17. Octet Address Incrementer, MSB and LSB

=

N

ENABLE LA INPUTS. Three transfer gating signals to the LA Input Select
(-ILINCLA, -ILARTLA and -ILARTLA) cannot enable inputs to the LA register if
the LA register is being loaded with data from memory during a context switch
or other maintenance loading operation. Therefore, when LA is being loaded
for a maintenance operation, IMCMTLA disables the three gating sigrals to pre-
vent input conflicts. The input gates are enab]ed at all other times.

ILCOUNT (8-31). This input supp]iesladdresses to LA during sequential
octet addressing in normal look ahead mode. The input consists of the address
that was previously in the LA register plus the octet increment value of eight.
Whenever LA + 8 is loaded into the OA register, this path is also enabled to
store the address sent to OA and provide an input to the octet incrementer to
generate the next look ahead address.

ILQBAH(8-31). The ILQBAH lines transfer the contents of the Branch Ad-
dress (BA) register to the LA register. The look ahead controller on the
I4CMREQ circuit board determines when this input is enabled to LA by generating
the -ILBATLA gating signal. The look ahead controller description explains in
detail the conditions required to generate this signal. In general, the output
of the BA register is transferred to the LA register under the following con-
ditions:

1. Target Fail - When the Took ahead controller has prepared the IPU
to take a branch and the branch is not taken when it
reaches level 3, the controller transfers the address
in BA (recovery address) to the LA register. That ad-
dress will be incremented and Toaded into OA to form
the next Took ahead address after the recovery address
has been sent to the MCU from OA.

2. Dual and Branch not taken - If the look ahead controller is in dual
mode, but the branch at level 3 is not taken when the
hazard is resolved, the controller transfers the re-
covery address in BA to the LA register. That address
will be incremented and loaded into OA to form the next
look ahead address after the recovery address is sent
to the MCU from OA.

3. Branch - When a PB or LLA instruction has prepared the look ahead
controller, and the controller detects the impending

B-130 Advanced Scientific Computer

branch instruction in the PA octet or in the pipe,
the controller transfers the address of the target
instruction from BA into LA (as well as OA). The
address will be incremented and loaded into OA to
form the next look ahead address after the address
of the target instruction has been sent to the MCU.

ILAR(8-31). The ILAR bus carries output from the AR register at level 3

of the IPU.

The AR register holds a developed address of a target instruction

when either a branch or a prepare to branch instruction is at level 3. The look

ahead controller determines when to transfer this address into the LA register.

This determination is explained in detail in the discussion of the look ahead
controller. In brief,

the controller transfers the address in AR into the LA

register under the following conditions:

1.

Branch to OA

Branch to LA

- When a branch instruction at level 3 references an
address that is not in the IPU, the controller trans-
fers that address to the LA register (in addition to
the OA register). This ensures that the proper ad-

dress will be incremented and loaded into OA to fetch
the next Took ahead octet following the target octet.

- When a branch instruction at level 3 references an

Branch to PA

address in the look ahead octet, the controller trans-
fers the address in AR to the LA register to ensure
that the proper LA + 8 octet address will be loaded
into OA to fetch the next look ahead octet.

- If a branch instruction at level 3 references an
address in the currently executing octet, and the next
look ahead octet has not been ordered from memory, the
controller transfers the address in AR into the LA
register to ensure that the proper look ahead address
will be loaded into OA to access the next Tlook ahead
octet.

Prepare to Branch - If a PB instruction is at level 3 and its cor-

responding branch is in the pipe, the controller trans-
fers the address in AR to the LA register (also to the
OA register). This transfer ensures that after the
target octet has been fetched, the proper address will
be loaded into the OA register to access the next look
ahead octet.

Initijate Dual - When the look ahead controller enters the dual mode,

it transfers the AR address into the LA register to en-
sure that a sequential look ahead address will be Toaded
into the OA register after the target octet has been
fetched from memory.

B-131 Advanced Scientific Computer

IRP3(8-31). These input lines carry the contents of the P3 register.
P3 holds the address of the instruction at Tevel 3 of the IPU. If an instruc-
tion hazard occurs that renders the instruction at level 3 unreliable, the look
ahead controller transfers the address of that instruction from P3 to LA. This
transfer ensures that after the instruction octet has been fetched from memory,
the proper look ahead address will be created by the octet incrementer and
loaded into the OA register to fetch the next look ahead octet.

~-ILQKCM2:2(8-31). The contents of LA are loaded from and stored into word
2 of octet 1 in the IPU details map area of central memory. During load details,
this input from word 2 of KCM is enabled to transfer the stored contents of LA
into the LA register. The IMCMTLA signal from the details sequencer enables

this transfer. This signal is produced when the details count from unit hard

core is equal to 1, designating octet 1 of the details map. Therefore, this
input and its gating signal transfer bits 8 through 31 of word 2 in octet 1 of
the details map into the LA register.

PA REGISTER

The PA (Present Address) register contains the 24-bit word address of the next
instruction that will be Toaded into the IR register. The look ahead controller
on the I4CMREQ circuit board controls the loading and incrementing of the address
in the PA register. The output from this register selects a word from the cur-
rent memory buffer for transfer to the IR register, and during a PB or LLA helps
determine if the target instruction is in the current octet. The present address
also transfers to the I4HAZMB for detecting instruction hazards in the current
octet and to the I4CTLMB for determination of octet boundaries (PA=7). A third
output from PA transfers to the PAH register. The PAH (PA Holding) register re-
ceives the contents of the PA register one-half clock after the address has
entered the PA register. This buffering stage isolates the P1 register and the
PA incrementer circuit from changes in the PA register during the control clock
pulse. The output from the PAH register transfers to the P1 register on the
I4PIPEMB when the corresponding instruction transfers to the IR register. The

P1 register holds the address of the instruction at level 1 of the IPU. In

B-132 Advanced Scientific Computer

o
¥/

4

addition, the output of the PAH register is used by the address incrementer
circuit to supply sequential word addresses to the PA register. The gating
signal, -ILGPA, from the look ahead controller enables one of five selected
inputs to transfer an address into the PA register. The control clock pulse
completes the transfer. The following paragraphs describe the five inputs to
PA, their gating signals and their use within the IPU addressing.circuits.

ILQBAH(8-31). These input lines supply an address from the BA register
for input to the PA register. The look ahead controller on the I4CMREQ circuit
board determines when to enable this input by generating the -ILBATPA gating
signal. The Took ahead controller description explains in detail the condi-
tions required to produce this gating signal. Briefly, the BA register supplies
inputs to the PA register under the following conditions:

1. Target Fail - If the Took ahead controller has prepared the IPU
for a branch but the branch is not taken, the con-
trolier must recover the old instruction sequence
before any further processing is performed. The
controller transfers the recovery address from BA
to the PA register. When the recovery octet enters
the IPU from memory, the PA register will be able to
select a word with minimum delay.

2. Branch at Level 1- When a PB or LLA has prepared the look ahead
controller to expect a branch instruction and the con-
troller transfers that branch instruction into level 1,
the controller loads the address of the target instruc-
tion from BA into PA. The next instruction sent to IR
will then be accessed from the branch path.

ILAR(8-31). The ILAR lines carry an address from the AR register at level
3. This address is developed through indexing or modification and indicates the
location of a target instruction when a branch or prepare to branch instruction
is at Tevel 3. The look ahead controller determines when to enable this input
and issues the -ILARTPA gating signal. The controller generates this signal under
the following conditions:

1. Branch to OA - If a branch instruction at level 3 references an ad-
dress not in the IPU octets, the controller transfers

B-133 Advanced Scientific Computer

52

the target address to PA to select the target instruc-
tion from the octet as it returns from central memory.

2. Branch to LA - If a branch instruction at level 3 references an ad-
dress in the look ahead octet, the controller transfers
the target address from AR into PA to select the target
instruction from the look ahead buffer when the KRTAG
bit is toggled.

3. Branch to PA - If a branch instruction at level 3 references an ad-
dress in the current octet, the controller transfers the
target address from AR into PA to select the target in-
struction on the next control clock.

4. Prepare to Branch - If a prepare to branch instruction is at level 3
and its corresponding branch is at level 0, the controller
transfers the target instruction address from AR to PA as
the branch transfers to level 1. The instructions from
the branch path will then follow immediately after the
branch instruction in the pipe resulting in a minimum
branch delay.

-TLQKCM2:2(8-31). Word 2 of octet 2 in the IPU details map area of central
memory supplies and stores the contents of PA for maintenance exchanges. This
input bus from the KCM memory interface file loads word 2 into the PA register
when IMCMTPA enables the input. The details sequencer jssues IMCMTPA when the
details count, IMOCTR:£(0-3), decodes to a count of two. This decode indicates
that octet 2 of the details map is in KCM so that enabling the Toad details in-
put to the PA register at that time results in loading word 2 of octet 2 into
the PA register.

IRP3(8-31). These input Tines carry the contents of the P3 register. This
register holds the address of the instruction at level 3 of the IPU. If an in-
struction hazard occurs that renders the instruction at level 3 unreliable, the
Took ahead controller transfers the address of that instruction from the P3
register to the PA register to select the hazarded instruction from the re-
fetched octet when it enters the IPU from memory. The IPU then reprocesses the
instruction stream from that point in the program.

ITPAINC(8-31). This address bus carries an address that is one greater
than the address currently held in the PA register. The input is gated into
the PA register after each new instruction transfer to IR so that the next

B-134 Advanced Scientific Computer

O

instruction for IR will be from a sequential location in the current octet.
The gating signal, IIINCPA, is generated by the look ahead controller on the
T4CMREQ circuit board.

PA INCREMENTER

The PA incrementer circuit receives the cqntents of the PAH register, adds one

to that address, and forwards it to the PA and BA registers. This input to PA
selects the next instruction word to be loaded into IR. When transferred to

BA, the incremented address represents a recovery address during a PB or LLA
operation. The incrementer circuit requires no gating or control signals, so

that when an address enters the PAH register, the incremented address is avail-
able from the incrementer circuit. The incrementer examines all of the input

bits in parallel. If all of the bits that are less significant than the bit

under examination are ones, the circuit toggles that bit, Figure B-18 illustrates
the circuit that performs this function for bit eight, the most complex, and for
bit 31, the least complex. All other bits have similar circuits for examining

the bits preceding them. A1l bits 9 through 31 must be ones before bit 8 toggles;
bit 31 toggles every time the input address changes due to the fixed one input

on $XKARPA(31).

BA REGISTER

The BA (Branch Address) register is a 24-bit storage register that is used in con-
junction with branch instruction handling in the IPU. This register does not
always contain a branch address, however. The look ahead controller on I4CMREQ
controls the choice of inputs to the register. In addition to holding a target
instruction address of a branch under control of a PB or LLA instruction, the
BA register may also contain a recovery address when the look ahead controller
takes a branch path of instructions in preparation for the branch instruction.
If the branch is not taken when it reaches level 3, the controller can access
the recovery address in the BA register to reconstruct the instruction sequence
that was in progress before the PB or LLA diverted the path. The BA register
outputs are available to the branch address compare circuit for determining

if the target is in the current octet, to the store details gate for transfer

B-135 Advanced Scientific Computer

9¢1-49

131ndwoy) 21j13UIIS PIIUCAPY

ILQPAH 1 120)

LOGIC ONE

(26 -
(27
ILQPAH. 1 (28,

ILKARPA(19)

PP

- ILQPAHL T (31) A

\ $XKARPA/ 31
7

1751

LIPAINCI 31

“ HICARIN(31)

HCARIN(31)

ILQPAHI1 (31)

LEAST SIGNIFICANT s(T

14ADDRIO)

ILQPAH .1 11y,

16)
(15)

$XKARPA{ 14

i14)

(13
(12

ILKARIN: 10)

ILQPAH 1 (11, Bl |

tf%b |

ILQPAH: 17110

2 HICARINIO&

ILQPAH . 1109

i N(Og

tA1127619

Figure B-18. PA

- ILOPAH(08

ILQPAH I 1{08)

Incrementer, MSB and LSB

T T3ADDR(T,

MOST SIGNIFICANT BIT

HIPAINC: 38

to memory, and to the BAH (BA Holding) register. BAH receives its address
inputs from BA one-half clock time after the address enters the BA register.
This buffering level isolates the BA register from the registers that receive
inputs from it, so that the same clock pulse can transfer the contents of BA
to another register while changing the contents of the BA register. The BAH
register supplies outputs to the PA, LA and OA registers. Refer to the dis-
cussions of these registers for the conditions that prevail when these trans-
fers occur. Six input busses may supply éddress inputs to the BA register.
The choice of inputs is under control of the look ahead controller. Once the
input is selected, -ILGBA and the IPU clock pulse enable the address transfer
into the BA register. The following paragraphs describe the six input paths
to the BA register, their gating signals, and the function of each input with-

in the operation of the IPU.

TIPAINC(8-31). This input bus carries an address that is one greater than
the current address in the PA register. This address is transferred to the BA
register as a recovery address. When a PB or LLA instruction has prepared the
controller for an upcoming branch instruction and the controller transfers that
branch instruction from level 0 to level 1, it also transfers the next address
in that instruction sequence (PA + 1) to the BA register. The controller will
then access instructions from the branch path and insert them into the pipe
following the branch instruction. If the branch instruction is skipped over,
or is not taken when it reaches level 3, the recovery address in BA is retrieved
to reconstruct the previous instruction path that would have been taken if the
branch were not anticipated.

-ILQKCM2:2(8-31). Word 2 of octet 0 in the IPU details map area of cen-
tral memory supplies and stores the contents of BA for maintenance exchanges.
This input bus from the KCM memory interface file loads word 2 into the BA reg-
jster when IMCMTBA enables the input. This gating signal is produced in the
details sequencer circuit. The details sequencer issues IMCMIBA when the de-
tails count, IMOCTR:4(0-3), decodes to a count of zero. This decode indicates
that octet 0 of the details map is in KCM so that enabling the load details input
to the BA register at that time results in loading word 2 of octet O into the BA
register.

B-137 Advanced Scientific Computer

IRP3(8-31). These input lines from the P3 register carry the address
of the instruction that is currently at level 3. The look ahead controller trans-
fers this input to the BA register as a branch address when a Load Look Ahead
instruction is at level 3. An LLA instruction prepares the IPU to loop back to
the LLA instruction location in the instruction sequence when the branch instruc-
tion is encountered. Therefore, when the LLA reaches level 3, the controller
issues ILP3TBA to transfer the address of the LLA from P3 to BA for storage.
When the branch instruction reaches 1eve1’1, the address in BA transfers to the
addressing registers so that the instruction sequence will begin again with the
LLA instruction.

ILAR(8-31). The ILAR lines carry the address contained in the AR register
‘at Tevel 3. This address is developed through indexing or modification, and
indicates the location of a target instruction when a prepare to branch instruc-
tion is at Tevel 3. The look ahead controller generates the gating signal ILARTBA
to transfer this address to the BA register whenever a PB instruction reaches
Tevel 3 and is enabled. This results in storing the target instruction address.
When the branch instruction is loaded into level 1, the controller accesses the
target instruction address from BA to select instructions from the branch path.

ILCOUNT(8-31). The ILCOUNT bus supplies an address that is eight greater
than the address contained in the LA register. If a look ahead octet has not
yet been ordered from central memory, this address is eight greater than the
currently executing address, or is equivalent to the address of the look ahead
octet. When the Took ahead controller enters the dual mode of operation, it re-
tains the current instruction octet in the active instruction buffer (KA or KB)
and fills the other instruction buffer with an octet from the branch path, so
that the IPU will be ready to execute from either path. In doing this, the con-
troller must discard or ignore the look ahead octet for the current instruction
sequence. In order to reclaim the look ahead octet if the branch is not taken,
the controller generates -ILCNTBA to store the LA + 8 address into the BA register
if the look ahead octet has not been ordered from memory. If the branch is not
taken, this address may be accessed from BA to fetch the Took ahead octet from
memory to reconstruct the instruction sequence.

B-138 Advanced Scientific Computer -

ILQLAH(8-31). This input bus supplies the address that was in the LA
register before the last control clock. If the look ahead octet has been
ordered from memory, this address represents the address of the Took ahead oc-
tet. When the look ahead controller enters the dual mode, it retains the cur-
rent instruction octet but discards the look ahead octet. So that it may re-
construct the instruction path if the branch is not taken, the controller gene-
rates -ILLATBA to transfer the look aheadiaddress in LAH to the BA register if
the Took ahead octet has been ordered. If the branch is not taken, then the
controller can access the address in BA to continue the original instruction
sequence.

BRANCH ADDRESS COMPARE

The branch address compare circuit examines the outputs from the BA register and
the PA register to determine if the octet address in BA is equal to the octet
address in PA. The circuit compares the true output of PA with the false output
of BA, and the false output of PA with the true output of BA. If neither of
these comparisons are true for each bit of the octet address, then the address

in PA is equal to BA. Two separate signals, one for the address bits on I4ADDR(0)
and one for the address bits on I4ADDR(1) are sent to the look ahead controller

on the T4CMREQ circuit board. The look ahead controller combines the two signals
to arrive at the final determination that BA is equal to PA. Although all 24 bits
of each register enter the comparison circuit, the circuit compares only the 21
most significant bits (the octet address). A hard wired logic one signal ($XONE)
to the I4ADDR(1) circuit board disables the comparison of bits 29, 30 and 31.

This input is wired to a logic zero level for I4ADDR(0).

IR WORD ADDRESS SELECT

This circuit receives three word address inputs and selects one of the addresses
for output to the I4FILE circuit boards. On the I4FILE circuit board this address
(ILSELK(29-31)) chooses a word from KA, KB or KCM to be transferred to the IR
register. Although this circuit is implemented on both I4ADDR(0) and I4ADDR(1)

B-139 Advanced Scientific Computer

a2

circuit boards, the selection for bits 17, 18 and 19 on I4ADDR(0) is not

used. The selection of bits 29 through 31 on I4ADDR(1), therefore, is the

only functional selection circuit. These bits form the word address portion

of the address in their respective registers. The following paragraphs desecribe
the inputs to the selection circuit and the conditions that exist when each
input is enabled. '

PRESENT ADDRESS. When both of the input gating signals are inactive
($XARTIR and $HCATOA), the present address register, PA, supplies word selec-
tion bits to the I4FILE circuit boards. The present address bits enter on the
ILQPA:1(29-31) bus. This input supplies word addresses during normal octet pro-
cessing, since PA normally contains the address of the currentTy used instruc-
tion.

AR REGISTER. When the $XARTIR gating signal becomes active, it gates the
word address input from the AR register to the I4FILE circuit boards. The AR
register contains an address that the IPU developed through modifications. If
the address in AR is an indirect address, the level 3 controller generates
$XARTIR to enable the word address field of the AR register to select an instruc-
tion word from the KCM, KA or KB octet. The IPU then waits for the new instruc-
tion to reach level 3 before continuing. By allowing the AR register to select
the indirect word, the IPU is able to maintain the correct current address in
the PA register.

HARD CORE WORD SELECT. At the beginning of a maintenance transfer command
from the CCR file, the IPU must fetch a pointer from one of four fixed Tocations
in memory. These Tocations are: 14 for status stores, 15 for status loads, 18
for CP and maintenance details stores, and 19 for CP and maintenance details loads.
When the hard core controller detects one of these maintenance commands, it orders
the corresponding octet (10 or 18) from memory (refer to OA register description).
When this octet arrives in the KCM octet, the controller must then select the
proper word from the octet and load that word into the OA register to initiate
the transfer to or from memory. The $XHCASEL(0-2) word address input allows the

B-140 Advanced Scientific Computer

52

controller to make this selection. Since the. correct octet is already in the
KCM file, these three input bits only designate the four values required to se-
Tect the four pointer words from their respective octets. These values, for
bits 0, 1, and 2 are:

0 000 - selects word zero from octet 18 for details
stores.

0 001 - selects word one from octet 18 (location 19) for details
loads.

° 100 - selects word four from octet 10 (Tocation 14) for status
stores.

° 101 - selects word five from octet 10 (location 15) for status
Toads.

Other values for these three bits are not possible, since bit 1 is fixed at a
zero value on the I4HDCORE circuit board. To enable these bits to the IR selec-
tion circuit on the I4FILE circuit boards, the hard core controller produces the
gating signal, $HCATOA. The selected pointer transfers only to the OA register
and never to the IR register.

LOAD/STORE DETAILS SEQUENCER

This circuit receives a four bit code (IMOCTR:4(0-3)) from I4HDCORE and decodes
it to produce one of five store details select signals, or one of six load de-
tails select signals. During a details operation, the code input to this cir-
cuit is incremented every clock. The output of the circuit, therefore, steps
through the five store details gates (IMSTORBA, IMSTORLA, IMSTORCK, IMSTORLC

and IMSTORPA) if the IMSDTL:4 signal indicates a store details operation, or
through the six Toad details gates (IMCMTBA, IMCMTLA, IMCMTPA, IMCMTLC, IMCMTCK:1
and IMCMTCK:2) if the IMLDTL:4 signal indicates a load details operation. The
decoded value of the input counter bits, IMOCTR:4(0-3), ds equivalent to the oc-
tet number in the IPU details map corresponding to the byte that the count sig-
nal enables. The store details gating signals are forwarded to the store details
odtput select circuit where each gating signal selects either an 8-bit, 24-bit
or 32-bit details transfer to central memory. The Toad details gating signals

B-141 Advanced Scientific Computer

a2

fan out to the Circuit board registers to transfer data on the KCM input bus
into the registers. The decode of the details count bits for each operation
is as follows:

IMOCTR:4(0-3) IMSDTL:4 IMLDTL :4
0000 IMSTORBA IMCMTBA
0001 IMSTORLA - IMCMTLA
0010 IMSTORCK IMCMTCK:1
' IMCMTCK: 2
0011 IMSTORLC IMCMTLC
0100 IMSTORPA IMCMTPA
0101 through 1111 No Op for I4ADDR circuit boards

STATUS DOUBLEWORD

During a Toad or store status operation, the hard core controller generates

a gating signal (IMLDPSDW:2 or IMSTPSDW:2) to the details sequencer circuit

to produce either IMCMTCK:1 and 2, or IMSTORCK. These signals enable the con-
troller to either load or store the contents of the clock counter on the I4ADDR
circuit boards as part of the store status operation. Other information in the
status doubleword includes the arithmetic exception and mask bits for each AU
and the contents of the P3 register,

STORE DETAILS OUTPUT SELECT

This circuit receives five gating signals from the details sequencer circuit
during a store details operation. Each of the gating signals selects the con-
tents of one of the I4ADDR registers and places it on the store details bus
(-IMDTL2(8-31) and -$XDTL2(0-7)) for storage in central memory. The gating
signals, (IMSTORBA, IMSTORLA, IMSTORCK, IMSTORLC and IMSTORPA) correspond to
octets O through 4, respectively, of the IPU details area in memory. Figure
B-19 illustrates the details word segments that are enabled during each count
of the details counter code (IMOCTR:4(1,2,3)).

B-142 Advanced Scientific Computer

DETAILS WORD STORED
IMOCTR:4(1,2,3)
D

DECODE = $XDTL2(0~7) - IMDTL2(8—31)
1 1 -1
8 : 31
0 (IMSTORBA) BA REGISTER—ILQBA:!1(8-31)
8 31
1 (IMSTORLA) LA REGISTER-ILQLA.1(8-31)
o 7 8 31
CLOCK
2 (IMSTORCK) $X?CKC)NT CLOCK IMQCKCNT(8—31)
o—-7
o] 7
3 (IMSTORLC) LC COUNTER
: : iLQLc(o—7)
8 31
4 (IMSTORPA) PA REGISTER—ILQPA: 1(8-31)

(A)127620

Figure B-19. I4ADDR Details Words

B-143 Advanced Scientific Computer

The load details operation is the reverse of the store details operation. The

LOAD DETAILS

details gating signals load the memory word segments from the KCM interface file
to the registers within the I4ADDR circuit boards. The registers are loaded in
the same order that they are stored during the store details operation. Two
gating signals, one for each section of the clock circuit, are generated from
the same load count.

R3 HOLDING REGISTER

The R3 holding register is an eight bit register that receives the contents of
the R3 register with each half-phase clock pulse (IPHICK:4). The register buffers
the R3 data so that the .contents of R3 may be changed at the same time that the
previous contents of R3 are loaded into the LC counter. Since the R3 register
is only a four bit register, the inputs to bits 0-3 of the R3 holding register
on I4ADDR(0) are wired to a logic one signal. The fixed one input ensures that
the four most significant bits of the R3 holding register will always be zeroes.
The R3 input loads the LC counter when a Prepare to Branch instruction is at le-
vel 3. At that time R3 contains the number of instructions between the PB and
the branch instruction. Since R3 is only four bits, the largest number of in-
structions between the PB and the branch is fifteen.

LC COUNTER

The LC counter is an eight bit, decrementing counter that the look ahead con-
troller uses to track branch instructions that have been preceded by an LLA
or PB instruction. The controller loads the LC counter with a value specified
by the LLA or PB instruction, and then decrements the count each time an in-
struction is transferred from one of the buffer files (KA or KB) into the IR
register. When the count reaches zero (when adjusted for the number of instruc-
tions in levels 1 and 2 at the time of the PB or LLA), the branch instruction
has been transferred to the IR register. The controller then fills the posi-
tions in the pipe behind the branch instruction with instructions from the
branch path. The following paragraphs describe the four major circuits within
the LC counter.

B-144 Advanced Scientific Computer

LC INPUT GATE. The input gate to the LC counter receives three, eight-
bit inputs. Three corresponding control signals determine when each one of
the three inputs will be enabled. The output of this circuit loads the eight
bit positions in the LC counter. During count 3 of a load details operation,
IMCMTLC enables the input from the KCM memory interface file (-$XQKCM2:2(0-7))
to load a value for the new program into the LC counter. If a Prepare to
Branch instruction is at level 3, the look ahead controller transfers the look
ahead count from the R3 register to the LC counter through the $XQR3H:1(0-7)
input from the R3 holding register. If a load look ahead instruction is at
level 3, the look ahead controller transfers the contents of the AR register
to the LC counter by activating the -ILARTLC signal. Any of these input loads
a value into the LC counter that specifies the number of instructions until a
branch instruction occurs‘in the instruction sequence.

LC REGISTER. Eight, type DF flip-flops comprise the LC register. The
output of the LC input gate drives one input to each flip-flop. This path
loads the counter with an initial count-down value when the look ahead con-
troller issues the -ILGLC control gate. The other data input to the register
flip-flops is the output of the LCH register. LCH buffers the output of the LC
register so that the contents of LC can be changed with respect to that output.
Eight separate gating signals (ILTOGLC(0-7)) enable each individual input to
the LC register as required to produce a decrementing count in the LC register.
An enabled input to the register results in toggling the respective bit. The
output of the LC register transfers to the LCH register, to the details output
select, and to the look ahead controller for use in tracking an .impending branch
in the IPU.

LCH REGISTER. Eight type FF flip-flops comprise the LCH register, four
flip-flops per I4ADDR circuit board. The LCH register isolates the output of
the LC register from the input to the LC register, so that the output may change
the contents of the LC register without the danger of a feed-through transfer
causing two or more changes to the LC register during one clock time. The LCH
register receives the contents of the LC register one-half clock time later than
the data enters the.LC register. When the LC contents have entered the LCH

B-145 Advanced Scientific Computer

register, the output of this register is available to the decrement deter-
mination circuit, and to the input of the LC register. The decrement deter-
mination circuit examines the bits of the LCH register and decides which in-
put bits to enable to the LC register to produce a decrement of one.

LOOK AHEAD DECREMENT. The Took ahead decrement circuit receives a count
from the LCH register and examines it to determine which bits to change to
produce a decrement by one. When a new 1ﬁstruction enters the IR register,
the Took ahead controller generates ILDECLC(0,1) to the circuit and the decre-
menter toggles bits in the LC register to decrement the count. The decrement
circuit determines which bits are to be toggled by applying an inspection algo-
rithmn. It examines each bit of the LCH register in parallel. If all the bits
that are less significant than the bit under inspection are equal to zero, then
the decrementer toggles that bit in the LC register to decrement the count.
Figure B-20 illustrates the circuit that performs this function. Bit 7 of the
LC register will always be toggled due to the hard wired logic one input on the
$XTOGLCI input. Similarly, bit 0 will toggle only if all bits in the LC register
preceding it (bits 1-7) are zeroes.

CP CLOCK COUNTER

The CP clock counter circuit is an increment-by-one counter that consists of

a register, a holding register and an incrementing gate circuit. The contents

of the register are changed to the next higher value with each CP clock pulse,
thus maintaining a running total of the number of clock pulses that have occurred
since the clock circuit was initialized. The output of the clock circuit may be
used by operating system software to determine the number of clock pulses that
elapsed during the execution of a program sequence. This operation may

be accomplished by storing the contents of the clock at the beginning and end

of the sequence, and comparing the two values. The following paragraphs de-
scribe the operation and inputs for each of the three portions of the counter.

CLOCK COUNTER REGISTER. The clock counter register consists of 32, type
DF flip-flops. One input to the register receives 32 bits from word 2 of the

B-146 Advanced Scientific Computer

FROM LOOK
AHEAD CONTROL.

LOGIC ONE

LCH REGISTER
BIT 7

LCH REGISTER
BIT 6

LCH REGISTER
BIT 5

LCH REGISTER
BIT 4

FROM LOOK \ 400

AHEAD CONTROLLER

LCH REGISTER
BIT 3

LCH REGISTER
BIT 2

LCH REGISTER
BIT 1

LCH REGISTER
BIT O

(A)127621

\ 400 ILDECLC(1) '
/)
\ 251 $XTOGLCI ILTOGLC(7)
) V. (TOGGLE BIT 7)
\ ILTOGLC(6
- ILQLCH. 1(7) Y, (6) (TOGGLE BIT &)
;) ILTOGLC(S) (TOGGLE BIT 5)
= ILQLCH, 1(86) e
\ ILTOGLC(4)
. Y, (TOGGLE BIT 4)
- ILQLCH, 1(5)
’ ILTOGLCO(1) N\ _
-~ ILQLCH. 1(4) — 1]52/ !
14ADDR(1) |
_ — - _|4ADDR(0)_]

f\

$XTOGLCI ‘
ILDECLC(O)) ILTOGL.C(3)
TOGGLE BIT 3
, / ()
1 ILTOGLC(2)
- ILQLCH, 1(3)) (TOGGLE BIT 2)
) ILTOGLC(1) (TOGGLE BIT 1)
- ILQLCH. 1(2) e’
D ILTOGLC(0)
Y. (TOGGLE BIT 0)
= ILQLCH. 1(1)
! ILTOGLCO(0) N\ noT USED
—~ ILQLCH. 1(0) — 1527

Figure B-20.

Look Ahead Decrement Circuit

B-147 Advanced Scientific Computer

J | 11/7(7;3
\-'LG()

KCM interface file. This input is used during maintenance loads and is
enabled by IMCMTCK:1, 2 from the details sequencer. These two gating sig-
nals are produced by either IMLDPSDW:2 for a Toad status, or during count 2
of a load details operation. The other input to the register is a feed-back
loop from the CNTH register. The bits of this input are individually gated
by control signals (ILTOGCK(8-31) and IXTOGCK(0-7)) from the clock increment
circuit. If the increment circuit gates a bit into the register, that bit
toggles. The increment circuit determines which bits to toggle so that an
increment-by-one operation is performed each clock time. Clock pulses from
the CP clock enable each input transfer to the CNT register. The output of
CNT transfers to the CNTH register with each half phase clock pulse, and can
be stored into memory through the details select during maintenance stores.

CNTH HOLDING REGISTER. The CNTH register receives the contents of the
CNT register one-half clock pulse after the count has been entered into the
CNT register. Half phase clock pulses (IPHICK:1 and 4) from the clock gene-
ration circuit transfer the contents of CNT to CNTH. The output of CNTH is
available to the RO register on the I4PIPEMB for monitoring by the operating
system, to the clock incrementer for determining increment gating signals,
and to the CNT register to supply the toggle input data to increment the count
in CNT.

CLOCK INCREMENTER. The clock incrementer circuit receives the contents
of the CNTH register, examines that value, and generates gating signals to the
feed back input of the CNT register to change the value in CNT.to be one greater

~ than the current value. The incrementer circuit requires no gating or control
signals as long as IPU operations are enabled (IMQFREEZE:4 is low). Therefore,
as soon as a new value is transferred into the CNTH, the incrementer circuit
begins to produce the gating signals to increment the count in the CNT register.
However, the CP clock pulse enables the actual incrementing operation in the
CNT register. The incrementer examines all of the input bits in parallel. If
all of the bits that are less significant than the bit under examination are
ones, the circuit toggles that bit. The circuit that performs this function
is illustrated in figure B-21 for bit 0, the most complex, and bit 31, the

B-148 Advanced Scientific Computer

6v1-d

481ndwoy 21411U8195 pacueApy

/ 1

MQCCNTH(31)

(30)

(29)

(28)

) ILTENCK(27)
—

(27)

(26)

(25)

(24)

) ILTENCK(23)
4

FROM
CNTH <
REGISTER |

(23)

(22)

(21)

’ ILTENCK(20)

\, /MQFREEZE 4

/426
VEE

LOGIC ONE

N\ ETOGCKI(31)

' ILTOGCK(31)

/354

) ILTOGCKO(20)

L TOGGLE
8IT 31

LEAST
SIGNIFICANT
BIT

-4

IMQCCNTH(20)

J

(18)

(17)

$XTOGCKI(03)

$XQCCNTH(07)
(06) -ﬁ $XILTOGCKO(04)
(0S) [IXTENCK(04) —
$XQCCNTH(04) —
N\ 153 \ 353
{ | 14ADDR(1)
! ! 14ADDR(0)
, __IMQCCNTH(19) 253 /]\ N\ 354

ILTOGCKI(15)

(16)

’ ILTENCK(15)
—

(15)

FROM

(14)

CNTH <
REGISTER

) ILTENCK(11)
——

N\,

7426
(8)127622

IMQFREEZE . 4
ILINCCK
VEE

Figure B-21.

CNTH
REGISTER

Clock Incrementer

. MOST
SIGNIFICANT
BIT

(13) IXTOGCK(03)
(12)
(11)
(10) 'ﬂ
(09) ILTENCK(08) $XQCCNTH(03)
IMQCCNTH(08) FROM $XQCCNTH(02)

! > IXTOGCK(00)

$XQCCNTH(O1)

e’ TOGGLE
BIT 0

least complex. A1l other bits have similar circuits for examining the bit
preceding them. A11 bits 1 through 31 must be ones before bit 0 toggles; bit
31 toggles every time the input value changes due to the fixed one input on
ILTOGCKI(31). The incrementer circuit is divided into two segments on each
I4ADDR circuit board, Because of this segmentation, the circuit requires

interconnecting lines between the two circuit boards to maintain the continuity
of the bit inspection. Figure B-22 illustrates the orientation of these inter-

connections,
14ADDR(1) 14ADDR(0)
INCREMENT
EXAMINATIONS E;‘(Rﬁ?ﬁ%‘ﬁ%ﬁs
LOGIC \ILTOGCKI(31)
354 BITS) '
20-31 BITS
ILTOGCKO(20) N N\ ILToGCKI(19) 8719
7 Vd
353 354
_______________ ¢/ ILTOGCKO(08)
r-r—-——=""~>"">"~"""~"~"~>~"=7="7>"— == —=- AN
I
|
[
|
|
L _ _\$XTOGCKI(07) 3’-1-73' $XILTOGCKO(04) N N\ $XTOGCKI(03) BITS
/253 ' -) 0=3
153 253
$XILTOGCKO(00) \
(A)127623 NOT{JSED

Figure B-22. Clock Incrementer Interconnections; I4ADDR(1) to I4ADDR(0)

B-150 Advanced Scientific Computer

255 \SXONE O —_——-{:]——) 353 ILTOGCKO(@,20)
X —31)
(aCTLMB o 435 YEXEIGAT IMQCCNTH(8-31)
64 >IMCSTOA l
FROM R) 24 FROM = _y_okcM2:2(s-31)
~31) ILGCA :
VAFILE(0-15) » ILKTIR(8731) —@——' 13 IHQOA : 1(8~28) * TO 1ACTLMB IAFILE #* 24
- ny THRUI™ — '- > UNIT REGISTER DATA) (0-15)
nacTLMBN3s YMEMIIA e 24] inooa:2(8-28) y © J ‘
‘Pra:l:«B RP3E-3) JE_. *Tomcu 354 5 1LTOGCKING 31) ‘ 35 E
14P(P] k3
LINHAZ THRU THRU!
FROM 228 IMCLEAR oA . IMQCKCNT(8=31) IMQCENTH
ucTLME A acTiMB)79 YICEEAR gu o sTER 253 $XTOGCKI(3,7) cLock 38 Satlbipw SFR 38 ——@9»
1LOBAHB-31 - cA reLocK: 58 > — E ™ \NCREMENT = (8-31)
_ILBATOA INPUT ————E}r—. . IMFREEZE 4 CNT CNTH
facTLMBY28 SELECT FROM I4CTLMB' 426 >————— 9%} CLOeK TO 1aPIPEMB
ILAR(S-I1) ul._- ~1HQOATE-317] . cLock
. — y IMCMTCK: 1,2 COUNTER COUNT
SILARTS ® \ HOLDING $XQCCNTH
REGISTER $XQCKCNT(0-7 E] . D
FROM 14CTLMBN35 IMSE 4 IMRE 4 REGISTER {0-7) ° *
~IMINCOA 7 IHINGTOR L2 L—l
235 -
ROM '——".——
IGFCTLMB INCREMENT {2¢]
—iLLatoal GATE IHINCOA 8][8 .
137 GENERATE TIRINGOA INCREMENT
R SXONE INPUT
ILAR: 17-19} (:)___——H ADN‘E-31
D : 2 = 2 SELECT IPHICK: 1.4 $XLOCKC4:¢(0-19
1LCOUNT:8-31 —————‘i]—) 153 o FROM 3 o IXCLOCK:4 g cLock _@_) TO
OcTET $XILTOGCKO0.4) ucTLMB FANOUT s WFILEMB
ADDRESS |AADDR(1} cireUIT
2 —ILINCLA INCREMENT BOARDS
1 7 -7
® FROM ILGLA(B-31 * ZSXRIAT;
FROM SILBATLA 14CTLMB
pr! SILGLA »
ucrme] 4% enABLE - 136 ERS M-IV 8) .« TO T 1cTLMB a5y pEXTOOLCY
2 SILARTLA ! 24] ThRU ZAU 1AHAZMB .)
» LA
~ILDLA.E-31 1
INPUTS ININCLA 24 4@—’ ILQLA: 1(8-28" To 3
5 RN x e verans . []
I ? [CLDCK:‘—A.!SE REGISTER SATE IPHICK: 4 r3 3H:1(0-7} = ~1LDLC(07 33 I a3 .
ICBATLA HOLDING 1LOLCIO:
SIMCMTLA R FROM -1 c 33
ICARTLA, LA REGISTE! ° MEMTLE I .
Py Lc e LoH ILQLCH: 1 {0- " Y L.OOK
INPUT $XAR(24-31 EGISTER - 152
:j_. SELECT T * —‘_'_)'.‘" INPUT cmeie | REGISTER REG AHEAD
D“ THRU P GATE @,____c_"—. DECREMENT
24 FROM 233 Y= .
FROM -1LQKCM2:2(8-31 LA WCTIME § 227 —ILARTLS @____m_ss_@_.
1AFILE(0-15) 24 1PHIC! REGISTER IMRE:4
—“ILINHAZ
IMCMTLA)
5]]
E4
176 3 IMS
D C wcTiMe QL imre:s @
~IMCMTPA
\LQBAKIE-31; 13 13
Lo Lfzd THRU. THRU
~ILINHAZ 24 ~11DPA8-31 . [37 24
ILAR: s—;n@ i
1CLOCK: 1214 ‘ :I > ILQPA:2(8-31) # TO14HAZM B(8-28)
~ILOKCM2: 2 (8-31) @ - 4.8 PA '——"__‘]::l'_) AND I4CTLMB(29-31"
PA REGISTER |, gpa:1(8-31) P 3.4
c8-31) FROM
1RP3 (8-31% (57 INPUT <.
cerect uctime L i aPA(s-31) $XCGCKENT:0 S
IMCMTPA v - 2 — I——
134 . STORE -$XDTL210-7)
UARTPA IMQCKENT8-31 " DETAILS ——-————-{:l—')i
~IBATPA 12 oUTPUT
ILQPA:1:8-31" T TO 1AFILER 15
Ty LQPA:1:8-3 D“ SELEC
SXARTIR
— i = —pepaniaea ¢ TO From J2:2 DTLI 83
——_—[_) "7 4PIPEMB acTiMB 3p Y EHCATOA {24} »
28 ~ILBATPA "'“;U
L 1e-31} 1LQLA: 18-31
FrOM] O _ILARTPA | I IPHICK 2.1 o JALOPAH: 3L 57 . FROM LA
uUcTLMB ~ILINCPA ENABLE 150 IcLock REGISTER | | qpan(e-31 ot
427 PA . crLock e e A 14cTLMB NOTES.
INPUTS ! GOACKOA 617 GENERATE INCREMENT :2: $XHCASEL(0~2" # BITS 0-: AND £-'3 ARE ON (4ADDR0 © BITS 4-7 AND 20-31 ARE ON i4ADDR’! . THE PIN
$ XL 10116),117) E G T R R R FOLLOW
. (ADDR1! TO 4FILE ealpr SSIGNME*TS FOR ADDRESS BUSSES ARE AS FOLLOWS
WPAINC8-31} | USELK 2 171370 CIRCUIT [
® 1ARIZe 3 7 WORD ADDR 270 SOARD
MCMTBA SELECT aIT 5 27 5 20 1022 11 23 1224 13 25 14 26 15 27 16 28 17 2% 18 30 19 3i
13 13 M ~31}
2 THRU THR —————L—"{iLQPA"N 2l :i—’ ILAR Tor 30: 490 401 114 112 116 1iF 315 412 38 417
- 12(8-31}
LLoKCi: 203 2 -1LDBA(8-31) = -ILQKEM2: 2 163 162 362 465 462 365 461 466 263 262 264 464
{21} 2e| |2a IMEMTCK:1,2
IRP3(8-31) 37 N ILKTIR 357 161 355 458 456 361 457 359 259 358 206 460
1CLOCK:9,10, 11 B 23
3 202 1 3 103 4 68 20
ILAR(G-31) = BA _ILQBA(S-31! ~ =/ IMEMTLC RP2 260 289 102 482 369 89 30 o 88
IMCMTBA . REGISTER 1 IMSTORBA IMQCENTH 461 281 182z 323 278 423 324 124 224 424 125 255
- _SXONE
ILCOUNT(8-31) 8A FROM ~Z=—————=» BRANCH || pAFQRBA0,1)403 LOAD IMSTORLA -IMDTL2 274 174 272 478 377 380 474 479 276 275 378 477
@7 - Sl INPUT cTIMB 327y 1LGBA ~ ADDRESS 203 MLOTL:S STORE IMSTORCK
1 > ILABA: 1(6-31 : Lata:2 202 287 404 387 167 105 286 305 405 186 290 205
ILQLAH{8-28) D SELECT 4 COMPARE IMLDPSDW:2 DETAILS LA 7 35
Cc 2 IMSE:4 IMRE:4 14CTLMB) 331 yIMSDTL:4 ER IMSTORLC ILQPA:2 3ge 485 113 4sa 212 213 483 282 414 214 415 21€
i) 13 IMSTORPA
“ILPITBA THRU : ILQPAH: 2 183 217 11 ate 319 38z 219 419 320 120 220 12t
(FROM 14C TLMB}29 24 | 24 ILOBAH{8-31) 330 HIMSTESOW:Z__ | -) IMCMTBA A ¢
(FROM 14CTLMB237 ~ILCNTBA BAH . [HQOA: 1 106, 285, 406, 185, 206, 487, 307, 107, 407, 184, 308, 208,
TILLATEA o) REGISTER] 2 208 309 385 109 206 it0 210 410 nif 311 312 283
(FROM 12CTLMBM3? areAG.L 130,299 (IMOCTR: 4 (-)IMCMTPA
TBA{D 1 a
(FROM 14CTLMB)100 2.0 (7} 1ucTLME 231 332 Yoy B >
(R) 123909 (FROM 14CTLMB)300 ILARTBA(, 1) D’ - 1LQBA: 1{8-31 BT | o0& 15 26 37 BIT 24 286 25 29 26 30 27 3}
_sxokcmz:z | 165 16¢ 167 366 SXAR 314 4t 216 a6
T & s - 8 s 10 1t 12 13 4 15 16 17 18 13 20
* 8T ° 2 i -$XR3 266 271 369 271
: 168 258 1 9 s 5 7 463 &53 434 467 435 4F2 473 273 470 374 14C
$XLOCKO4:0 256 172 169 258 160 139 157 156 26 5 55 47 7 expTL 150 176 175 480
iLaLc 331 221 421 123
i
SXQCCNTH 226 126 279 228
i

Figure B-23. I4ADDR Circuit Board

Block Diagram

B-151

/B-152 Advanced Scientific Computer

a2

Table B-9. X4 IPU Registers

REGISTER CONTENTS OR FUNCTION LOCATION
. PA Octet address for central memory requests. I4ADDR
KCM Octet data buffer for memory read requests. I4FILE
A,B Register file base registers I4FILE
C,D Register file arithmetic registers _ I4FILE
I Register file index registers I4FILE
v Vector parameter file I4FILE
STATUS Program status register - I4PIPE . .
CLOCK Central Processor clock count “ I4ADDR
BA Branch address register I4ADDR
PA Address of the next sequential instruction to be I4ADDR
executed.
LA Address of the next sequential octet of instructions I4ADDR
’ to be executed.
LC Look ahead counter I4ADDR
KA Instruction buffer (1 octet) I4FILE
KB Instruction buffer (1 octet) I4FILE
T T-field of instruction at level 1 I4STATUS
M1 M-field of instruction at level 1 I4STATUS
Pl Program counter at level 1 I4PIPE
IR Instruction at level 1 I4PIPE
T2 T-field of the instruction at level 2 I4STATUS
M2 , M-field of the instruction at level 2 . I4PIPTOP
P2 . Program Counter at level 2 ~ I4PIPE
NR Displacement of the operand address of the instruction I4PIPE
at level 2
BR Selected base register (or vector parameter file ' I4PIPE
register or stack pointer in special cases) .
XR Selected index register © I4PIPE
L2ROM Read only memory register at level 2 I4INFACE
L2DC Instruction decode at level 2 I4INFACE
R2 4 most significant bits of the op-code and the R-field I4PIPE
of the instruction at level 2
ADDRM 4 least significant bits of the op-code of the instruction I4STATUS
at level 2
VWS ~Vector word size 14MISC
ARQT3 7 least significant bits of AR or T3 ' I4STATUS
P3 Program counter at level 3 I4PIPE
AR Address register I4PIPE
c3 - Level 2 RPM transferred to Tevel 3 I4INFACE
L3DC Instruction decode at level 3 I4INFACE
L3ROM ROM at level 3 I4INFACE
R3 . . 4 most significant bits of the op-code and the R-field I4PIPE
of the instruction at level 3.
XA(0-3) Address of the contents of the X register of each MBU I14ZHAZ
YA(0-3) Address of the contents of the Y register of each MBU 14ZHAZ
Ap A address of operand I4PIPE
ZP(0-3) Address of the contents of the Z register of each MBU 14ZHAZ
RO Register Operand I4PIPE
LD(0-3) Last register address to enter the register stack I4RHAZ
R4 Destination address and other bits at level 4 I4RHAZ

B-153 Advanced Scientific Computer

1043U0)~ny ZVYHZYI 40198135 319-p2 p§
1043u0)-ny Z¥HZP1 40109195 31q-y7 £§
L2poy-~-7 IVHZY1 (40102135 SS3UpPY P4OM) 40303[3S zg
1042U0)-ny ZVHZYI 40323135 31q-47 15
1043U03-ny I¥HZY1 40123135 319-92 - 0§
(SUDLIONAISUL 3S3] pue JuUBWILDA(
£ 19Ad] IdIdbl JUBWSUADUL 404) 4DIUBWAUII(]~4DIUBWSLOU 69
€ 19Aa7 ISIWPl 4032913 319-p2 8p
€ 18A37 3d1d¥1 (909 pue 3709 J04) Joppy Ly
€ 1aad] 3SIWyI 4010913 314~ 9y
€ 19A3] ISTWYI 40319913§ 319-£ Gy
I CLEN ZYHYP1 4033335 31q-6 144
£ 184937 ZYHYYI 40323195 119-6 £
£ 19497 141dv1 403539135 paom 3| gnog 1474
€ 19437 3dldbl 403339135 31q-42 84
€ 19497 3dldyl 40303135 pJOM-3|GnhoQ [}
€ 19A37 3dIdyI Japuayxa ubLg 6¢
840] pJaey 40ay L 423UBMWAAIUY 8¢
i 2 lana 3dIdyl Joppy 33
(40 ® g0
FARELES] SNLYLSYI syndut oMy sjudsauadad A[|en3oe) 40329 (3s 9¢
¢ 19A97 GQUIN0YI L WOy §€
2 1337 FHOIAHYI 43p0d3Q 23
2 [3Aa 3dId¥] 433JLYS ‘U403088g €€
2 L2 3dIdb] 40399335 p-lom 2€
2 19437 3dIdyI 48puayxa ubig e
uoLyLpuo)
snye3s SNLYiSHI uoL1dadx3 JLIBWYILAY U0J 403D9(3S Qf
(€010 5u013dadx3 d13aWy3Ldy pue
snjels SNLYLSY] 8po) 3(nsay ‘©po) duedwo) Joy 40393{35 62
L [9A7 JSIUYI 43p033(8¢
L 13A27 JY0IaHYT 43p0odag 12
129 L 13437 YQYIWOYI 0 WOy 92
L 13A97 d0ldIdyl 40333135 3tq-¢ T4
(£-0N8W 01 € 13A 311491 JuauwuiBle pue U0L1D3|dS p4om d|gnoq v2
L 13r87 EQIE1 A 4032335 pJaoy X4
(€-0)84 340) pdey ‘g (8437 EQIER 4032335 pUoM 22
0 18A97 ERIEND 4039335 pUop 12
PLaL3-1 3934Lpul ayy
% 0 1397 SNLYLSPI 40 plaLy-| UOLIDNUISUT DY) $3D913S (g
1 [3A37 ERIE]D 40323935 pJoM 6l
peayy %007 4aayyl dvjuaweadag g|
8407 pJey
peayy 3007 HaavylI ¥0 40 Y7 01 8 Sppy Ll
peayy %007 4aayy1 J9jUBWRIOU] 9|
1 13437 ERIETD 40303 3§ p4AOM Sl
INELCE] 111441 JuawubL e pue U0LD3|3S puOM 3|qnog ¥l
peayy 3007
0 [9Ae] ERIERA 4030335 p4oM €l
0 LBAIT
3403 pury ERIER2 40333135 39320 ¢l
peayy 3007 4aavyI 40329195 319 2 LL
peayy %007 Haavyl 4033395 314 2 0t
peayy 3007 HaavvI 4039385 319 2 6
Peayy %007 q40avyI 40329135 319 2 8
9407 puey
Peayy 3007
40353nbdy) Haav I 40309135 119 $2 L
(€018 L 13r97 311491 pJdom e $399|35 9
[ERETER] ERIET! WO44 pAoM 3 gnop e subi|e pue $393|85 g
940 pdeH £ (3A97 ERIELD) 40393{3s 33330 ¥
IS ELER (40 © 40 sanduL om3
3409 pdey nding ny kRIS S3U3sd4das A{|enjoe) 38300 uv $393|35 €
(€014 J03sanbay *S3403s Auousiw
W 314p1 [2A3U3D 40y 19320 UB $B|JEUI pUR 53D3(IS 2
*ySeu pue uot3dadxa dL3awWy) L4
SNLYLS 1441 Butpeoy oy ny adoud s3dajag 1

€09y

1967 0182

(€ WK
6P, 8 i)
i
$S38a0Y
Z ngw

hm\s:mi vAY PXY * vy _ﬁ;é.: _ ezJ (€-01dZ oV g_la.ei (€-0IVX

1961 167 26 v o
o w
w sp & 0 6€
wouel € SMJ _ £ €1puy Y €d
. o .

8¢ P12

13

Computer

tific

Advanced Scien

Figure B-24. 4X IPU Block Diagram

B-155/B-156

mm_uy v % 1€ V

_ SMA _Tzﬁal 24 hgﬁ Wz ™ 48 e _; uN 4 Nn_|_

z 9% @
0
u ¥l u
0
N
L [|
snLvis _ Vi _ vd Q h ve
1 [I
. ol 6 8
. i i
g z
€ €@
L

JONVNIINIVW

U7

y\&ﬁ _ql 144 61 KW 8 S V y1 5 !

(€-00NY (Lnding nv)
. (€043 k

WO Wd

INVISNGD

(B)132483

-

Table B-9. X4 IPU Registers (Continued)

REGISTER CONTENTS OR FUNCTION LOCATION

" RX4,RY4 Mapped op-code for the MBU I4PIPE
MBUWS MBU word size , I4MISC
ZB(0-3) Address of the contents of the Z buffer of each MBU 14ZHAZ
R5(0-3) R4 copied into level 5 - 14ZHAZ
R6(0-3) R5 copied into level 6 14ZHAZ
R7(0-3) R6 copied into level 7 14ZHAZ
R8(0-3) R7 copied into level 8) I14ZHAZ
R9(0-3) R7 or R8 copied into level 9 14ZHAZ
RA(0-3) R7 or R9 copied into level A 14ZHAZ
RB(0-3) R7 or RA copied into level B 14ZHAZ
RC(0-3) R7 or RB copied into level C . 14ZHAZ

B-154

Advanced Scientific Computer

HARD LOOK CM
E REQUES—

COR e AHEAD TOR
NOTE: SEE TABLE B~10 e

FOR A BRIEF DES—

CRIPTION AND

LOCATION OF THE

CONTROLLERS AND

THEIR ASSOCIATED

FLIP-FLOPS.

AU
OUTPUT

(A)132484

Figure B-25. 4X IPU Controller State Diagram

B-157 Advanced Scientific Computer

8G1-4

181ndW oy 21413U3IIS PAIUBADY

Table B-10. Descriptions and Locations of 4X IPU
Controllers and Flip-Flops

CONTROLLER DESCRIPTION PHYSICAL LOCATION

Hard Core Controls all maintenance commands. 14HDCORE

CM Requestor Interfaces with central memory. 14CMREQ, I4HDCORE

Look Ahead Keeps appropriate data in the instruction buffers. 14CMREQ

Level O Controls transfer of instructions and indirect calls to Level 1. 14PIPTOP

Level 1 Controls transfer of Level 1 to Level 2. 14PIPTOP

Level 2 Controls transfer of Level 2 to Level 3. 14PIPTOP

Level 3 Controls transfer of Level 3 to Level 4 I4LVL3, I4VECLAS, I4MISC

I4ROUTE 1, I4ROUTE 2,
14ROUTE

Level 4 Controls transfer of Level 4 to Level 5. T4INFACE

MBU Models activity of the MBU's. T14INFACE

AU » Models activity of the AU/s. I4INFACE

AU Output Selects pipe whose results are to be accepted. 14INFACE, I4MISC

Status Controls modification of bits in the status register with the exception 14STATUS

of IRQFORK, IROBSC, IRQMCC.

Z-Model Models the activity of stores to central memory. I4INFACE
FLIP-FLOP DESCRIPTION CONTROLLER LOCATION
ICQCUEOi0—3) Destination addiess bit 0 of 4 read queue entires. CM Requestor T14CMREQ
ICQCUET (0-3) Destination address bit 1 of 4 read queue entries. CM Requestor 14CMREQ
ICQIP20,1 Read queue input pointer. CM Requestor T4CMREQ
1CQOP(0,1 Read queue output pointer. CM Requestor 14CMREQ
ICQPRY 0—3; Protect violate bit for each read queue entry. CM Requestor T4CMREQ
ICQACT(0-3 Queue entry is active and will be used. CM Reguestor 14CMREQ
10QBSY(0-3) Aueue entry s active and will be used. CM Requestor T4CMREQ
IMQRC(0-2) Number of outstanding read requests. CM Requestor 14HDCORE
ICQPRM(0,1) Protect Mode (type of request); Read = 11, Write = 01, Execute = 11. CM Requestor T4HDCORE
ICQAR Requests central memory access. CM Requestor 14HDCORE
ICQRA Central Memory request accepted. CM Requestor T4HDCORE
ICQRAC ICQRA delayed 1 clock. CM Requestor T14HDCORE
TI0QRDA Latches read data available from central memory. CM Requestor 14HDCORE
ICQRDA synchrorizes IOQRDA. CM Requestor T4HDCORE
ICQRDS Read Data Sampled. . CM Requestor 14HDCORE
10QDAY Latches data available from central memory. CM Requestor 14HDCORE
ICQDAV Synchronizes I0QDAV. CM Requestor 14HDCORE
I0QPAR Latches parity error from central memory. CM Requestor T14HDCORE
ICQPAR Synchronizes I0QPAR.) CM Requestor .- T4HDCORE
IMQPRY Protection violation on a hard core command. CM Requestor T14HDCORE
IMQPAE Parity error on a hard core command. CM Requestor 14HDCORE
ICQWRITE Last request was a write request. CM Pequestor 14HDCORE
ICQAREX Arithmetic exception. Hard Core 14HDCORE
1CQIPPAE Parity Error. Hard Core 14HDCORE
1CQIPIOP I1legal op-code. Hard Core I4HDCORE
ICQIPPRY Protect violate. 14HDCORE

Hard Core

651-4

19)ndWo?) 31§12Ud1IS PIIUBADY

Table B-10. Descriptions and Locations of 4X IPU
Controllers and Flip-Flops (Continued)

FLIP-FLOP DESCRIPTION CONTROLLER LOCATION
IMQFREEZ Disables normal instruction processing. Hard Core I4HDCORE
IMQOCTR(0-4) Hard core octet counter. Hard Core I4HDCORE
IMQHCSTA(1-6) Hard core state. Hard Core T14HDCORE
IMQLSD(0-3) Hard core command. Hard Core I4HDCORE
IMQHCREQ Hard core requirement (locks out further memory requests from Hard Core I4HDCORE
other controllers).
IMQHCINP Hard core in progress. Hard Core TI4HDCORE
IMQEXCH Indicates the 1oad half of an exchange command must be done. Hard Core 14HDCORE
IMQLDPTR Pointer octet is in KCM. Hard Core I4HDCORE
IMQSPSDW Indicates a three word rather than octet store for store program status. Hard Core I4HDCORE
ICQKAFUL KA instruction buffer is full. Level 0 I4CMREQ
ICQKBFUL KB instruction buffer is full. Level 0 TI4CMREQ
ICQKAHAZ An instruction hazard exists in KA. Level 0 I4CMREQ
ICQKBHAZ An instruction hazard exists in KB. Level 0 T4CMREQ
ICQKAPRY The request for KA caused a protection violation. Level 0 I4CMREQ
ICQKBPRV The request for KB caused a protection violation. Level 0 . T4CMREQ
ICQKRTAG Instructions are being fetched from KB. Level 0 14CMREQ
ILQSTATE Level 0 state indicating that data from memory for an execute or Level 0 I4PIPTOP
indirect request is expected.
ILQTFAIL The target branch has been skipped or not taken. Look Ahead I4CMREQ
ILQFLG12 Branch address has been requested. Look Ahead 14CMREQ
ILQFLG4 Target branch has entered the pipe. Look Ahead T4CMREQ
ILQFLGFL Branch address + 8 {s resident. Look Ahead I14CMREQ
ILQVAC(0,1) Inactive levels when a PB or LLA 1s being executed. Look Ahead I14CMREQ
ILQLAORD LA=PA+8. Look Ahead T4CMREQ
ILQPBVLL PB or LLA, active in Look Ahead controller. Look Ahead 14CMREQ
TLQDUAL Look Ahead controller in Dual mode. Look Ahead T4CMREQ
TIQLIACT Level 1 active. Level 1 14P1PTOP
11Qs{1 Skip state. Level 1 14P1PTOP
11Qs(2 Indirect or execute at level 2 state. Level 1 14P1PTOP
11QS(3 Indirect at level 3 state. Level 1 14P1PTOP
11QS(4 Execute at level 3 state. Level 1 I4P1PTOP
I1I1QS(5 Load file state. Level 1 I14P1PTOP
11QS(6 Store file.state. Level 1 I4P1PTOP
I1Qs(7 Data available wait state. Level 1 I14P1PTOP
11QS(8 Push, pull state. Level 1 I14P1PTQP
11Qs(9 Vector state. Level 1 14P1PTOP
11Qs(10) Level 2 hazard state. Level 1 - I4PT1PTOP
" TIQPRV Protect violate at level 1. Level 1 I14P1PTOP
ITQFRHAZ Instruction hazard at level 1 Level 1 I14P1PTOP
IIQTARGT Target branch at level 1. Level 1 I4P1PTOP
IPQL2ACT Level 2 active. Level 2 14P1PTOP
IPQPRY Protect violate at level 2. Level 2 14P1PTOP

091-9

483ndwo) 21413u3195 PaLEAPY

Table B-10. Descriptions and Locations of 4X IPU
Controllers and Flip-Flops (Continued)

FLIP-FLOP DESCRIPTION CONTROLLER LOCATION
IPQFRHAZ Instruction hazard at level 2. Level 2 I4P1PTOP
IPQTARGT Target branch at level 2. Level 2 14P1PTOP
IPQIND Indirect instruction at level 2. Level 2 14P1PTOP
IRQL3ACT Level 3 active. Level 3 I4LVL3
1IRQL3PPL Push, pull state. Level 3 I4LVL3
TRQL3CHK Stack overflow check state. Level 3 14LVL3
IRQL3PWT Stack pointer wait state. Level 3 I4LVL3
IRQL3BWN MCW, MCP state. ; Level 3 14LVL3
IRQL3IWT Indirect wait state. Level 3 I4LVL3
IRQL3IHZ - Instruction hazard state. Level 3 T4LVL3
IRQL3VIN Vector initfate state. Level 3 I4LVL3
IRQL3FLW File wait state. Level 3 T4LVL3
IRQL3VP1 Vector plus 1 state. Level 3 I14LVL3
IRQL3VBR Vector burst state. Level 3 I4LVL3
TRQL3NIW New instruction wait state. Level 3 14LVL3
TRQL30RW Load and store file waft state. Level 3 14LVL3
TRQL3ORM Load and store file multiple state. Level 3 14LVL3
IRQL3VGO Vector go state. Level 3 I4LVL3
IRQHOLD General purpose flag. Level 3 14LVL3
TRQOPDN Operand selection phase complete. Level 3 I4LVL3
IRQBRDN Branch phase complete. Level 3 I4LVL3
IRQARINC Increment AR for load or store file multiple. Level 3 T4VECLAS
TRQXEC Execute flag (don't branch skip or issue monitor call). Level 3 I4LVL3
IRQRCTR(0-2) Request counter. Level 3 T4VECLAS
IRQCCTR(0-2) Complete counter. Level 3 I4PIPTOP
IRQJOIN Join flag (process current vector or load file in join mode). - Level 3 T4VECLAS
IRQRIAIB Forces central memory o operand. Level 3 14LVL3
IRQMEQO M-field of instruction at level 3 was 0. Level 3 I4LVL3
IRQPMOFF Turns off protect and map enable. Level 3 14LVL3
TRQARHAZ o« hazard occured because of a vector. Level 3 14VECLAS
IRQFRHZ Instruction hazard at level 3. ' Level 3 14LVL3
IRQPRV Protect violate at level 3. Level 3 14LVL3
IRQTARGT Target branch at level 3. Level 3 14LVL3
IRQIND Indirect instruction at level 3. _ Level 3 I4LVL3
IRQILOP I1legal operation at level 3. Level 3 14LVL3
TRQHDW Use double word for hazard detection. Level 3 14LVL3
IRQVIP(n) n=0-3, vector in progress in pipe n. Level 3 I4VECLAS
IRQVISTR(n) n=0-3, vector initiate start in pipe n. Level 3 T4VECLAS
IRQSELPI(n) n=0-3, pipe n selected for vector at level 3. Level 3 I4VECLAS
IRQVBAD(n) n=0-3, vector bad guy in pipe n. Level 3 I4VECLAS
IRQ4GETI(n) n=0-3, do not execute vector waiting in MBU(n). Level 3 I4VECLAS

Table B-10. Descriptions and Locations of 4X IPU
Controllers and Flip-Flops (Continued)

~191-4

481ndwWoy 31413U319S PIIUCADY

FLIP-FLOP DESCRIPTION CONTROLLER LOCATION
IRQPIRT(n) n=0-3, previous instruction routed to pipe n. Level 3 I4ROUTE3
IRQZMAL1§n) n=0-3, all zone modification bits set in MBU(n). Level.3 I14ROUTE3
IRQYNEXT(n) n=0-3, Y buffer of MBU(n) to be loaded next. Level 3 I4ROUTE3
TRQWNDER n; n=0-3, Early window for divide in pipe n is present. Level 3 14CMREQ
TRQWNDLT (n n=0-3, Late window for divide in pipe n is present. Level 3 I4CMREQ
IRQZmMAGE(n) n=1-4, m#n, determines pipe least recently used for stores. Level 3 I4MISC
IRQPOIND Stack pointer is at the AU output. Level 3 I4LVL3
IRQTRMIN Stack has overflowed. Level 3 14LVL3
IRQHCALI Monitor call allowed. Level 3 I4LVL3
IRQCRSLT Result for BCLE, BCG operation (if set BCLE branch would be taken). Level 3 14LVL3
IRQSKIND Skip indicator. Level 3 14LVL3
IBQLARJIN Join mode read request at level 4. Level 3 I4MISC
IBQRJOIN n; n=0-3, pipe n has an outstanding join mode read request. Level 3 I4MISC
IBQZJOIN(n n=0-3, pipe n contains a store made in join mode. Level 3 I14MISC
IBQIRT(n) n=0-3, NEW INSTRUCTION AT LVL4 ROUTED TO PIPE n LEVEL 4 I4INFACE 0-3;
IBQMODE(n) n=0-3, PIPE n IS WAITING FOR AN UPDATE. LEVEL 4 I4INFACE(0-3
IBQLDXA(n) n=0-3, INSTRUCTION AT LVL4 FOR PIPE n REQUIRES AN OPERAND FROM THE
X=BUFFER LEVEL 4 I4INFACE(0-3)
IBQLDXBA(n) n=0-3, INITIATES X-BUFFER FETCH IN PIPE n LEVEL 4 I4INFACE(0-3)
IBQLDYA(n) n=0-3, INSTRUCTION AT LVL4 FOR PIPE n REQUIRES AN OPERAND FROM THE
- Y-BUFFER LEVEL 4 T4INFACE(0-3
IBQLDYBAgn) n=0-3, INITIATES Y-BUFFER FETCH IN PIPE n LEVEL 4 I4INFACE(0-3
IBQXAACT n; n=0-3, VALID ADDRESS IN XAgn; LEVEL 4 I4INFACE(0-3
IBQYAACT(n n=0-3, VALID ADDRESS IN YA(n LEVEL 4 I4INFACE(0-3
IBQXAFUL(n n=0-3, VALID DATA IN X-BUFFER FOR PIPE n LEVEL 4 I4INFACE(0-3
IBQYAFUL(n n=0-3, VALID DATA IN Y-BUFFER FOR PIPE n LEVEL 4 TI4INFACE(0-3
- IBQCUEQX(n n=0-3, BCCUEEQX{n) FROM MBUén) DELAYED BY 1 CLOCK LEVEL 4 I4INFACE(0-3)
IBQCUEQY% ; -n=0-3, BCCUEEQY(n) FROM MBU(n) DELAYED BY 1 CLOCK LEVEL 4 I4INFACE(0-3)
IBQSMGP4 ~n=0-3, INSTRUCTION AT LVL4 FOR PIPE n IS IN THE SAME GROUP AS THE
~ LAST INSTRUCTION TO ENTER PIPE n. LEVEL 4 I4INFACE§0 3;
IBQOCK4(n) .n=0-3, INSTRUCTION AT LVL4 FOR PIPE n -IS A ONE CLOCK. LEVEL 4 I4INFACE(0-3
. IBQSCKT4 n; n=0-3, INSTRUCTION AT LVL4 FOR PIPE n WILL SHORT CIRCUIT. LEVEL 4 I4INFACE(0-3)
: IBQFECSGT(n n=0- 3, INSTRUCTION AT LVL4 FOR PIPE n HAS SAME GROUP TIME ON ITS FIRST s
L $-SEQUENCE. - LEVEL 4 I4INFACE§0 -3)
. IBQREGDP (n) n=0-3, INDICATES DATA IN RO FOR PIPE n. LEVEL 4 " TAINFACE(0-3)-
3_IBQIMM$n) n=0-3, INSTRUCTION AT LVL4 FOR PIPE n DOES NOT REQUIRE A MEMORY OPERAND LEVEL 4 T4INFACE(O- 3;
IBQXUP(n) n=0-3, INHIBITS THE SETTING OF DPMBI IN PIPE n PENDING AN X-UPDATE. LEVEL 4 I4INFACE(0-3
IBQYUP(n) -n=0-3, INHIBITS THE SETTING OF DPMBI IN PIPE n PENDING A Y-UPDATE. LEVEL 4 T4INFACE(0-3)
IBQZTXU(n) n=0-3, INITIATES A Z->X UPDATE IN PIPE n. LEVEL 4 T4INFACE(0-3)
IBQZTYU(n) n=0-3, INITIATES A Z->Y UPDATE IN PIPE n. LEVEL -4 I4INFACE$0 3;
IBQZEX(n) n=0-3, INDICATES PIPE n HAS SAME OCTET IN Z+X BUFFERS. LEVEL 4 I4INFACE(0-3

£

¢9L-4

131ndwo?) 21411U19S PadUBAPY

Table B-10. Descriptions and Locations of 4X IPU
Controllers and Flip-Flops (Continued)

FLIP-FLOP DESCRIPTION CONTROLLER LOCATION
IBQZEY (n) n=0-3, INDICATES PIPE n HAS SAME OCTET IN Z+Y BUFFERS. LEVEL 4 14 INFACE(0-
1BQGPIL (n)
}ggg;gt%;; n=0-3, INDICATES GROUP NUMBER OF LAST INSTRUCTION TO ENTER PIPE n. LEVEL 4 14 INFACE (0-
1BQGP4L (n)
IVQMBIAC(n) n=0-3, INDICATES AN INSTRUCTION AT LVL5 IN PIPE n. LEVEL § T4 INFACE(0-
IVQDPMBI (n) n=0-3. INDICATES INSTRUCTION AT LVL5 IN PIPE n HAS ITS DATA, LEVEL 5 14 INFACE (0-
IVQSMGP5 (n) n=0-3. INDICATES INSTRUCTION AT LVL5 IN PIPE n IS IN THE SAME GROUP AS

THE LAST INSTRUCTION TO ENTER THIS PIPE. LEVEL 5 I4INFACE20
IVQOCK5(n) n=0-3, INDICATES INSTRUCTION AT LVLS IN PIPE n IS A ONE CLOCK. LEVEL 5 T4INFACE(0
IVQSLNXT(n) n=0-3. INDICATES FOR PIPE n WHEN AN INSTRUCTION AT LVLS CAN MOVE TO

LVL6 BASED ON WHAT INSTRUCTIONS ARE IN THE AU. LEVEL & 14 INFACE (0-
1voscx15$n; n=0-3, INDICATES INSTRUCTION AT LVL5 OF PIPE n WILL SHGRT CIRCUIT. LEVEL & 14 1NFACC(0-
IVQDPMBO(n n=0-3. INDICATES AN INSTRUCTION AT LVLE OF PIPE n. LEVEL 6 14 INFACE(0-
IVQSCKT6 (n) n=0-3. INDICATES INSTRUCTION AT LVL6 OF PIPE n WILL SHORT CIRCUIT. LEVEL 6 14 INFACE(0-
IVQENAB(n)
IVQROM&(n)
{zgggmﬁggg n=0-3, AU ROM BITS LATCHED IN THE IPU USED TO CONTROL MOVEMENT IN THE | -
VaRB) REGISTER STACK FOR PIPE n. AU MODEL T4INFACE(O-
TVQROMC (n)
IVQPACAO(n) n=0-3, PATH AHEAD CLEAR INTO LVL12 FOR PIPE n. AU MODEL I4INFACE 0-
IVQL7ACT (n) n=0-3, INSTRUCTION AT LVL7 IN PIPE n. AU MODEL 4INFACE(0-
IVQAUIAC (n) n=0-3. INSTRUCTION AT LVL8, 9, A, OR B IN PIPE n, AU MODEL I4INFACE(0
IBQREQFW(n) n=0-3. REQUEST FORCED WRITE STATE OF FORCED WRITE CONTROLLER FOR PIPE n. Z-MODEL 14 INFACE (0-
IBQFWWT (n) n=0-3. FORCED WRITE WAIT STATE OF FORCED WRITE CONTROLLER FOR PIPE n. Z-MODEL quercs(o
1BQZPFUL(n) n=0-3. INDICATES VALID Z-BUFFER ADDRESS IN ZP FOR PIPE n. 7 -MODEL 14 INFACE(O-
1BQZBFUL(n) n=0-3. INDICATES VALID ZB-BUFFER ADDRESS IN ZB FOR PIPC n. Z-MODEL 1414FACE(0-
1BQDAVHT (n) n=0-3. DAV WAIT STATE IN ZB CONTROLLER FOR PIPE n. Z-MOCEL 14 INFACE(O~
IVQPPMF(n) n=0-3. INDICATES 2ND PASS OF PUSH, PULL, OR MODIFY INSTRUCTION IN 7 -MODEL 14 INFACE (0~

PIPE n.
IRQCCRT(n) n=0-3, COMPARE CODE ROUTE FLIP-FLOPS INDICATING PIPE n WAS THE LAST TO

RECEIVE AN INSTRUCTION WHICH CAN MODIFY THE CC REGISTER. PROGRAM STATUS I4STATUS
IRQRCRT(n} n=0-3, RESULT CODE ROUTE FLIP-FLOPS INDICATING PIPE n WAS THE LAST TO

RECEIVE AN INSTRUCTION WHICH CAN MODIFY THE RC REGISTER. PROGRAM STATUS I4STATUS

3)

3)
3)
3)
3
3)
3
3)

3)

3)
3)
3)
3)
3)
3)
3)
3)
3)

MOTHERBOARD
SIGNATURE

IRQAE(0)
TRQAE(1)
IRQAE(2)
IRQAE(3)

IRQAEM(0-3)
IRQPSW(8-11)
IRQPIDIS(0-3)

IRQPROEN
IRQMAPEN
IRQPSW(18-19)

IRQPSW(20)
IRQFORK
IRQMCC
IRQBSC

IRQPSW(24)
IRQCL
IRQCG
IRQCE

TRQPSW(28)
IRQRL
IRQRG
IRQRE

Table B-11. Program Status Word Registers

CARD SIGNATURE
IRQPSH()

CARD LOC.
I4PIPE()

WM —O

4-7
8-1
12-15
16

17
18-19

20
21
22
23

NNNSN OO0 ot AR D W N~ O0D0.

DESCRIPTION

DIVIDE CHECK

FIXED POINT OVERFLOW
FLOATING POINT OVERFLOW
FLOATING POINT UNDERFLOW

ARITHMETIC EXCEPTION MASK REGISTEP
UNUSED
PIPE DISABLE REGISTER

PROTECT ENABLE BIT)
MAP ENABLE BIT

ARITHMETIC
EXCEPTION
{REGISTER

CMU REGISTER

UNUSED s

UNUSED)

FORK INDICATOR - cn ne
Ry ‘ BSR REGISTER
BSC BIT

UNUSED

COMPARE LESS THAN |
COMPARE GREATER THAN‘ CC REGISTER
COMPARE EQUAL

UNUSED
RESULT LESS THAN

RESULT GREATER THAN RC REGISTER

RESULT EQUAL

B-163

Advanced Scientific Computer

a2

Table B-12. X4 IPU ROM 1 Listing

MOTHERBOARD CARD SIGNATURE

SIGNATURE: IPQROM(BIT) CARD LOC:

IPQRMXXX IRQC3(BIT) I4INFACE(n)

IRQC3XXX BIT= n= DESCRIPTION

AEH 9 1 ARITHMETIC EXCEPTION HAZARD,
INSTRUCTION MAY MODIFY AE.

AU4 16 2 ?

AUS 17 2 MERGED OP-CODE, BIT 4-7, FOR

AU6 18 2 AU ROM ADDRESS.

AU7 19 2

BR 3 0 INSTRUCTION CAN HAVE BASE AD-
DRESSING.

CAR 14 1 CARRY INTO BIT 32 OF AR REGISTER.
FOR HALFWORD INSTRUCTIONS WHICH
NORMALLY POINT TO THE RIGHT HALF-
WORD.

CHZ 15 i COMPARE HAZARD. INSTRUCTION MAY
MODIFY CC.

DHW 4 0 REGISTER DESTINATION HALF WORD.

DDW 5 0 REGISTER DESTINATION DOUBLE WORD.

EXM 11 1 EXTENDS SIGN FROM BIT 16 OF NR TO
BIT 8 INTO OPA. EXTENDS SIGN FROM
BIT 8 OF AR TO BIT 0 INTO ROO.

EXN 10 1 EXTENDS SIGN FROM BIT 20 OF NR TO
BIT 8 INTO OPA.

GP1 24 3

GP2 25 3

GP3 26 3 INSTRUCTION GROUP NUMBER BITS.

GP3 27 3

HHW 22 2 INDICATES WHEN HAZARD COMPARISONS
SHOULD BE ON HALFWORD BASIS.

IDW 8 1 INDEXER DOUBLEWORD SIZE

THW 6 0 INDEXER HALFWORD SIZE

I0P 29 3 ILLEGAL OP-CODE

ISW 7 0 INDEXER SINGLEWORD

M 12 1 SELECT M-FIELD FROM NR INTO OPA

MDV 28 3 MULTIPLY INSTR. WITH WORD SIZE OPTION

RAO 0 0 REGISTER ADDRESS BIT 0

B-164

Advanced Scientific Computer

a2

Table B-12. X4 IPU ROM 1 Listit::g (Continued)

MOTHERBOARD CARD SIGNATURE

SIGNATURE: IPQROM(BIT) CARD LOC:

IPQRMXXX IRQC3(BIT) I4INFACE(n)

IRQC3XXX BIT= n= DESCRIPTION

RA1 0 REGISTER ADDRESS BIT 1

RA6 2 0 REGISTER ADDRESS BIT6, HALFWORD

RDT 20 2 - REGISTER DESTINATION

RHZ 13 1 RESULT CODE HAZARD. INSTRUCTION
CAN MODIFY RC.

RSE 21 2 REGISTER SPECIFICATION ERROR
POSSIBLE '

SDW 23 2 REGISTER SOURCE DOUBLEWORD SIZE

B-165 Advanced Scientific Computer

G

Table B-13. X4 IPU ROM 2 Listing

MOTHERBOARD CARD SIGNATURE CARD LOC:

SIGNATURE: IRQROM(BIT) T4TNFACE(n)

IRQRMXXX BIT= DESCRIPTIGH

ADW 1 0 ALP{/A DOUBLEWORD SIZE

AHW 0 0 ALPHA HALFWORD SIZE

BLU 10 1 BLut INSTRUCTION

BRH 8 1 BRANCH INSTRUCTION

GRN 13 1 GREEN INSTRUCTION

GRY 7 c GRAY INSTRUCTION, i.e., ALL SUB-
COLORS

IDN 11 1 INCZEMENT OR GECREMENT AND BRANCH
ON NON-ZERQ INSTRUCTICN

1DZ 12 1 INCREMENT OR DECREMENT AND BRANCH
OGN ZERO INSTRUCTICN

NSN 25 3 STORE, BUT NOT STORE NEGATIVE IN-
STRUCTION

NSP 18 Z SUB-ORANGE, BUT NOT $PS INSTR.

0CK 21 2 ONE CLOCK INSTRUCTIOM

PNK 9 1 PINK INSTRUCTION

RGS 22 2 INSTR. WITH A REGISTER SOURCE

SBL 0 SUB-BLUE INSTRUCTION

SGN J SIB-GREEN INSTRUCTION

SGT 20 2 INSTRUCTICN WHERE THE FIRST CLOCK
QF THE AU ROM SEQUENCE IS THE SAME
GROUP TIME

SHW 16 2 REGISTER SOURCE HALFWORD SIZE

SOR 6 0 SUB-ORANGE INSTRUCTION

SPK 4 0 SUB-PINK INSTRUCTION

STR 24 3 STORE INSTRUCTION

SYL 5 0 SUB-YELLOW INSTRUCTION

B-166

Advanced Scientific Computer

L91-9

431NdW0y 31411UBIIS PAJUCADY

Table B-14. X4 IPU Interface Signals
IPU-MCU INTERFACE

IPU

MCu

DESCRIPTION

10CMn(0-31)
10PA

IOPR

TOMIN

10WG

I0RA

I0RDA

- IODAV

ICPIN
ICQAR:2
ICRDS
ICWGI
ICPRR
ICZE(0-7)

IHQOA:2 (8-31)
ICQPRM: 2 (0-1)

ICPE:9
ICME: 9

n=0-7, Central memory data lines, two-way bus
MCU to IPU, Parity error

MCU to IPU, Protect violation

MCU to IPU, Memory inoperative

MCU to IPU, Write gate (put data on the bus)

MCU to IPU, Request accepted

MCU to IPU, Read data available

MCU to IPU, Store data available

IPU to MCU, Processor inoperative

IPU to MCU, Access requested

IPU to MCU, Read data sampled

IPU to MCU, Write gate inverted (data is on the bus)
IPU to MCU, Parity error

IPU to MCU, Zone enables (indicates words to be written into)
IPU to MCU, Central memory address

IPU to MCU, Protect mode

IPU to MCU, Protect enable

IPU to MCU, Map enable

891-4

131nAWoy 21413Ud13S PIJUBADY

Table B-14. X4 IPU Interface Signals (Continued)

CP CLOCK - PPU INTERFACE

CLOCK-MHC

PPU

DESCRIPTION

cTB
CCMDBT (0-8)
CCMDBT (10-15)
=CEXTR
“CSLAVE
-1CACKCMD
“1BHCLKEN:1
2
3
4

|~ AHCLKEN:

2

3
4

—7I4CLKEN

PPU
PPU
PPU
PPU
PPU
PPU
PPU
PPU
PPU

to
to
to
to
to
to
to
to
to

Clock,
Clock,
Clock,

Clock,"

Clock,
Clock,
Clock,
Clock,
Clock,

PPU to Clock, Transfer bit
PPU to Clock,
PPU to Clock,
PPU to Clock,
PPU to Clock,
Clock to PPU,

Common command register
Common command register
Run in external mode

Run in slave mode

Reset transfer bit

Clock enable for MBU (0)
Clock enable for MBU (1)
Clock enable for MBU (2)
Clock enable for MBU (3)
Clock enable for AU (0)
Clock enable for AU (1)
Clock enable for AU (2)
Clock enable for AU (3)
Clock enable for IPU

691-4

191ndwWoyy 31§11U319S PAIUBADY

Table B-14. X4 IPU Interface Signals (Continued)
PPU - MASTER HARDCORE INTERFACE

MHC UNIT-PPU DESCRIPTION
S 14CRSR PPU to MHC, System reset
Reset CPU
T4STBY PPU to MHC, System standby
[4CRTB PPU to MHC, "Have CCR for some one in the system”
T4CRCCR(0-15) PPU to MHC, Common command register buss
-1I4CRAC PPU to MCH, "Allow automatic call" flag
-1 I4CRAS PPU to MHC, "Allow automatic switch" flag
-rI4CRTR PPU to MHC, "Terminate CCR servicing abnormally"
14CRTBRL PPU to MHC, "I recognize you've sent I4TBRS,"
-1 T4CRMC PPU to MHC, "I'm not finished servicing an automatic call"
7 I4CRSC PPU to MHC, "I'm not finished servicing an automatic switch"
-7 IACRSB PPU to MHC, "When doing an exchange, do a load status on the load cycle”
7 T4CRCSR PPU to MHC, "The map and project registers have been loaded"
T141GNPE PPU to MHC, "Please ignor all parity errors"
U4EPRINT PPU to MHC, If program errors occurs, interrupt PPU with 14QINTRP
T4MCPINT PPU to MHC, If Monitor call and proceed, interrupt PPU with I[4QINTRP
TAMCWINT PPU to MHC, If Monitor call and wait, interrupt PPU with [4QINTRP
I4RERINT PPU to MHC, If reason error occurs, interrupt PPU with I4QINTRP
T4SYSINT PPU to MHC, If system error occurs, interrupt PPU with I4QINTRP
<7 14TBRS MHC to PPU, "I've got the CCR command; reset I4CRTB so I can proceed"”
-7 14QGSE MHC to PPU, "I've encountered a system error that needs your attention"
-7 14QAT MHC to PPU, "I've done a message call or program switch" ’
-1 14QMC MHC to PPU, "Here's a message for you to look at"
-7 14QSC MHC to PPU, "I've switched out one program, and switched in another"

0/1-9

181ndwoy 2141113195 PAIUCADY

Table B-14. X4 IPU Interface Signals (Continued)

PPU - MASTER HARDCORE INTERFACE

MHC UNIT-PPU DESCRIPTION
7 14QGAT MHC to PPU, The gate necessary to load at, MC and SC at the PPU end
“714QSS MHC to PPU, "I've done a store status CCR command"
1 14QRZ(0-2) MHC to PPU, The reason error code buffer
7 14QGRZ MHC to PPU, The gate necessary to load RZ(0-2) at the PPU end
—714QGCC MHC to PPU, "I've completed the CCR command” (also gates I14QAB to PPU)
—714QA8B MHC to PPU, "I've terminated due to an abnormal condition"
—1 14QME MHC to PPU, "I'vg gncountered a protect violate or parity error during
servicing :

;7140PE MHC to PPU, Parity error flag, caused by program C.M. request (IPU or MBU's)
-714Q1L MHC to PPU, Illegal opcode flag (IPU or MBU's)
~TI14QAE MHC to PPU, Arithmetic exception flag (IPU)
-714QPV Protect violate flag, caused by program C. M. request (IPU or MBU's)
~714QRB MHC to PPU, CPU run bit
~114QGCB MHC to PPU, The gate necessary to load ME, DE, IL, AE, PV and RB at PPU end
-1 14QAVBG MHC to PPU, "There's a vector bad guy running in at least one MBU-AU pipe
“TI4QINTRY:2
7 BHUR *0-7) MHC to PPU, Unit register data from MBU (0)

BHUR(10-17) MHC to PPU, Unit register data from MBU (1)

BHUR (20-27) MHC to PPU, Unit register data from MBU (2)

BHUR (30-37) MHC to PPU, Unit register data from MBU (3)
~7AHUR (0-7) MHC to PPU, Unit register data from AU (0)

AHUR (10-17) MHC to PPU, Unit register data from AU (1)

AHUR (20-27) MHC-to PPU, Unit register data from AU (2)

AHUR (30-37) MHC to PPU,.Unit register data from AU (3)

LZL-9

491ndwioy) 21411UI3S PAUBAPY

Table B-14. X4 IPU Interface Signals (Continued)
PPU - MASTER HARDCORE INTERFACE

MHC

UNIT-PPU

DESCRIPTION

7 IMDTUR (0-7)
7 I4URDATA (0-7)
I4csw (0-1)

MHC to PPU, Unit register data from IPU
MHC to PPU, Unit register data from MHC
MHC to PPU, Have the map and protect registers been loaded?

¢L1-9

481nNdWoy 21411Ua13S PAJUBADYY

Table B-14. X4 IPU Interface Signals (Continued)

MBU, AU - MASTER HARDCORE INTERFACE

MHC

UNIT - MUB(0-3)

MBU(3)

DESCRIPTION
I4RUNBIT: 1 BHRUNBIT MHC to MBU(0)
{:ggngﬂg g:gg:gg ang Eg :1133 B Indicated value of CPU run bit (I4QRB)
I4RUNBIT: 4 BHRUNBIT MHC to MBU(3)
I4CLEAR: 1 BICLEAR MHC to Msugog .
I4CLEAR:2 BICLEAR MHC to MBU(1 " "
14CLEAR:3 BICLEAR MHC to MBu(2) ([Master clear of CPU
14CLEAR: 4 BICLEAR MHC to MBU(3)
<1 14HCCCR: 1(12-15) hiBHCCR(12-15) MHC to MBU(O)
T4HCCCR:2(12-15) | BHCCR(12-15) MHC to MBU(]ﬁ | Least sigr(n'fican% hex ¢)31)’ buffered common command
I8HCCCR:3(12-15) | BHCCR(12-15 MHC to MBU(2 register (I14QCCR({12-15
I4HCCCR:4(12-15 BHCCR§12-15§ MHC to MBU§3
I4HCINIT:1 BHHCINIT MHC to Maugo; ‘
14HCINIT:2 BHHCINIT MHC to MBU(1 e es e
T4HCINIT: 3 BHHCINIT MHC to MBU(2) Initiate CCR servicing
I4HCINIT:4 BHHCINIT MHC to MBU(3) :
T4URSEL:1(0-3) | BHURSEL(0-3) MHC to MBU(0)
T4URSEL:2(0-3) BHURSEL(0-3) MHC to MBU(1) Least significant hex of PPU common command
T4URSEL:3(0-3) BHURSEL{0-3) MHC to MBU(2) register {14CRCCR{12-15)) used for selecting
14URSEL:4(0-3) | BHURSEL(0-3) MHC to MBU(3) | data to BHURD-7, 10-17, 20-27, 30-37
1 14ABORT: 1 1 BHABORT MHC to MBU(0)
1anDORT 2 B BRT MHC to ESH%%% Indicates "ABORT CCCR servicing now"
14ABORT: 4 BHABORT MHC to MBU(3)
I4HCRINP: 1 BHHCRINP MHC to MBU(0) ‘
{2:2&%:3;% BHHCRING e Lo :ggg;; Indicates "Proceed with CCR servicing”
I4HCRINP: 4 BHHCRINP MHC to

b

131ndwWoy 31411U313S PAdURAPY

Table

B-14. X4 IPU Interface Signals (Continued)
MBU, AU - MASTER HARDCORE INTERFACE

MHC

UNIT - MBU(0-3)

DESCRIPTION

eL1-g

=1 I4CLRREQ: 1
T4CLRREQ: 2
JACLRREQ:3
T4CLRREQ: 4

I4SETREQ: 1
I4SETREQ:2
I4SETREQ:3
I4SETREQ: 4

BHQUNCMP(0)
BHQUNCMP%])
BHQUNCMP(2)
BHQUNCMP(3)

BHQABTRMzO)
BHQABTRM(1)
BHQABTRM(2)
BHQABTRM(3)

BCQPRVLT(0)
BCQPRVLT(1)
BCQPRVLT(2)
BCQPRVLT(3)

BCQPAPER(O
BCQPAPER(1
BCQPAPER(2)
BCQPAPER(3)

BCQILOPR(0)
BCQILOPR(1)
BCQILOPR(2)
BCQILOPR(3)

F1BHCLRREQ
BHCLRREQ
BHCLRREQ

'BHCLRREQ

BHSETREQ
BHSETREQ
BHSETREQ
BHSETREQ

BHQUNCMP
BHQUNCMP
BHQUNCMP
BHQUNCMP

BHQABTRM
BHQABTRM
BHQABTRM
BHQABTRM

BCQPRVLT
BCQPRVLT
BCQPRVLT
BCQPRVLT

BCQPAPER
BCQPAPER
BCQPAPER
BCQPAPER

BCQILOPR
BCQILOPR
BCQILOPR
BCQILOPR

MHC to MBU
MBU

MHC to
MHC to
MHC to

- MHC to

MHC to
MHC to
MHC to

MBU(0)
MBU(1)
MBU(2)
MBU(3

)
MBU(0)
MBU(1)
MBU(2)
MBU(3)
MBU(0)
Meu(1;

)

MBU(
MBU(

()

MBU(2)
MBU(3)

MBU(O)
MBU(1)
MBU(2)
MBU(3)

to
to
to
to

to
to
to
to

to
to
to
to

to
to
to
to

to
to
to
to

MHC
MHC
MHC
MHC

MHC
MHC
MHC
MHC

MHC
MHC
MHC
MHC

MHC
MHC
MHC
MHC

MHC

MHC
MHC
MHC

Reset MBU's hard core requireﬁent flag (BHQHCREQ’

Set MBU's BHQHCREQ -

MBU'é unit hard core "I've completed CCR servicing"
"MBUHC's 'I've terminated due to an abrormal condition'"
Protection violation due to normal program CM request
Parity error due to normal program CM request

I11egal ¢ prode encountered during normal program'running

vLL-4

431ndWO0Y) 31413UI2S PAJUEADY

Table B-14. X4 IPU Interface Signals (Continued)

MBU, AU - MASTER HARDCORE INTERFACE

to AU(3)

MHC UNIT - MBU(0-3) DESCRIPTION
BHCMERRéO) BHCMERR MBU 0; to MHC
BHCMERR(1) BHCMERR MBU(1) to MHC MBU's parity error or protection violations due to
BHCMERR(2) BHCMERR MBUéZ; to MHC MBUHC CM request
BHCMERR(3) BHCMERR MBU(3) to MHC 9
BHMBUZPéO) BHMBUZP MBU 0; to MHC)
gmgﬁ%g(;; gmgg%g ngg ;g tg mg MBU's "Ive reached a zero pending CM request condition"
BHMBUZP(3) BHMBUZP MBU(3) to MHC
“BHURO(O-?% BHUR(O-D’; mugoi to PPU
" BHUR1(0-7 BHUR(0-7 MBU(1) to PPU ' . R
BHUR2§0-7; BHUR$0-7) MBU(2) to PPU MBUHC's unit register data
BHUR3(0-7 BHUR(0-7) MBU(3) to PPU
I4IGNPAR: 1 BIPAESTP MHC to MBU(0)
}ﬁgmgﬁgg g};ﬁggg mg :g ngggg Ignor parity errors {prevents loading of “ﬂags)
I41IGNPAR:4 BIPAESTP MHC to MBU(3)
TACLEAR:5 AHMRCLR MHC to AUEO;
T4CLEAR:6 AHMRCLR MHC to AU(1 " "
14CLEAR:7 AHMRCLR MHC to AU(2) Master clear of CPU
14CLEAR:8 AHMRCLR MHC to AU(3)
1 I4HCCRR:5]2-]5)'7AHCCR£]2-15) MHC to AUEO
T4HCCRR:6(12-15)| AHCCR(12-15) MHC to AUQ] Least significant hex of buffered common command
T4HCCRR:7]2-]5; AHCCR(12-15) MHC to AU(2 register (I4QCCR(12-15))
T4HCCRR:8(12-15)| AHCCR{12-15) MHC to AU(3
§4HCINIT:5 AHHCINIT - MHC to QU ?;
4HCINIT:6 AHHCINIT MHC to AU Tt b s s
T4HCINIT:7 AHHCINIT MHC to AU(2) Initiate CCR servicing
I4HCINIT:8 AHHCINIT MHC

G/1-4

483ndwoy) a1411U319S PadUAPY

Table B-14. X4 IPU Interface Signals (Continued)
MBU, AU - MASTER HARDCORE INTERFACE

MHC UNIT - MBU(0-3) DESCRIPTION
=1I14ABORT:5 -1AHABRT MHC to AU%O;
I4ABORT:6 AHABRT MHC to AU(1 " . . "
T4ABORT:7 _AHABRT MHC to AU(Z; ABORT CCR servicing now
I4ABORT:8 AHABRT MHC to AU(3
ignguﬁ}Tzs' QHNA MHC to AU&O?
H T:6 HWA MHC to AU(1 " , cal . . "
14HCWAIT:6 AHWA MHC to AU(2) Don't proceed with CCR servicing yet
I4HCWAIT:7 AHWA MHC to AU(3)
-I4URSEL:5(0-3 AHCCR(O 3; MHC to AU&O; Least significant he# of PPU
TaURSEL:610-3 AGeR o-g) we o ﬁg(;) Common Command Register (I4CRCCR(12-15)) used for
: selecting data to AHUR 0-7, 10-17, 20-27, 30-37
14URSEL:8(0-3) AHCCR(0-3) MHC to AU(3)
I14IGNPAR:5 AHIGNPA MHC to AU(0)

N : M] . Lt
%2{2:522:; Qnig:gﬁ Mng :g ﬁUE;% Ignor all parity errors (prevents loading of AHQPA)
I41GNPAR:8 AHIGNPA MHC to AU(3) :

'TAHUNITCPgog —TAHUNITCP AUgO; to MHC
AHUNITCP(1 AHUNITCP AU(T) to MHC T R
AHUNITCP(2) AHUNITCP AU(2) to MHC AU's "I've completed CCR servicing
AHUNITCP(3) AHUNITCP AU(3) to MHC
ﬂAHABNTRM%O% -1 AHABNTRM AU%O; to MHC
AHABNTRM(1 AHABNTRM AU(1) to MHC b mpd R N
AHABNTRM 2; AHABNTRM Auizg to MHC AU's "I've terminated due to an abnormal condition
AHABNTRM(3 AHABNTRM AU(3) to MHC
AHQPR% % AHQPR 23 0; to MHg
AHQPR AHQPR to MH \ Y ,
AHQPR(2 AHQPR AU%Z) to MHC AU's protection violation fa]_g, caused by AUHC CM request
AHQPR(3) AHQPR AU(3)

to MHC

9/1-4

481ndwoy 21}11Ud19S PIJUBAPY

Table B-14. X4 IPU Interface Signals (Continued)

MBU, AU - MASTER HARDCORE INTERFACE

MHC

UNIT - MBU(0-3)

DESCRIPTION
"IAHQPAgog H:HQPA AU%(]) to MHC
AHQPA(1 HQPA AU to MHC
AHQPA(2) AHQPA AU(2) to MHC) AU's parity error flag, caused by AUHC CM request
AHQPA(3) AHQPA AU(3) to MHC
—AHURO(0-7) FTAHUR(0-7) AU(Q) to PPU
AHUR1(0-7 AHUR(0-7 AU(1) to PPU ' : .
AHUR2$0-7 munéoq : AU$2 to ppy [AU's unit register data
AHUR3(0-7) AHUR(0-7) AU(3) to PPU

LL1-9

18311duioy 3i4i1Uaiag pasueipy

Table B-14. X4 IPU Interface Signals (Continued)

IPU - MASTER HARDCORE INTERFACE

“VIMDTUR(0-7)

"IMURDATA(0-7)

MHC. UNIT - IPU DESCRIPTION
I4RUNBIT:S =14RUNEQO MHC to IPUHC signal; indicating value of CPU run bit, I4QRB
I4CLEAR:9 I4CLEAR MHC to IPUHC signal; indicating "master clear of CPU*
“TI4HCCCR:9(12-15) [™I14CCR(12-15) MHC to IPUHC signals; LS hex of buffered common command register
I4HCINIT:9 I4HCINIT MHC to IPUHC signal; indicates “initiate CCR command"
T4URSEL:9(0-3) T4UREN(0-3) MHC to IPUHC signals; LS hex of PPU CCR, used to select data to Imurdata
I4ABORT9 I4ABORT MHC to IPUHC signal; indicates "ABORT CCR servicing now"
™ I4HCWAIT: 8 14ZROPEN MHC to IPUHC signal; indicates "Proceed with CCR serv1cing"'
' I4CLRREQ:5 “TI4SETREQ MHC to IPUHC signal; set IMQHCREQ so that IMQFREEZ +1
¥ I4HCCALL:9 TI4HCCALL MHC to IPU level 3; "Go ahead and write your message for the PPY."
—1I4PIPOFF(0-3) MIRPIPOFF(0-3) IPU to MHC signals; indicate which MBU-AU pipes are not operational
-t T4HCABNT ~TIMHCABNT IPUHC to MHC signal; indicates "I've terminated CCR servicing due to
abnormal conditions ‘
I4QIPPRV ICQIPPRV IPUHC to MHC flag; protection violation occurred during normal program
run
14QIPIOP ICQIPIOP IPUHC to MHC flag; illegal opcode encountered during normal program run
14QIPPAE ICQIPPAE IPUHC to MHC flag; parity error occurred during normal program run
I4QAREX ICQAREX IPUHC to MHC flag; arithmetic exception occurred during normal program run
—VI4HCCOMP FIMHCCOMP IPUHC to MHC signal; indicates "I've completed CCR servicing"
IrZRPEND IPZROPEN IPUHC to MHC signal; IPU has reached a "No CM requests pending" condition
I4CALCMP IRCALCMP IPU level 3 to MHC; "I've written my message to the PPU"
I4MCPREQ IRMCPREQ IPU level 3 to MHC; "I wish to write a message to the PPU"
I4MCWREQ IRMCWREQ IPU level 3 to MHC; "Iwish to write a message to PPU and do a program switch'
I4MEMERR IMMEMERR IPUHC to MHC flag; parity error or protection violation due to IPUHC CM
’ request
I4ANYVBG IMANYVBG - IPUHC to MHC flag; "There's at least one vector bad guy being processed"

IPUHC to PPU; unit register data from IPUHC and IPU CM requestor

8L1-19

131ndwoy) 31}11U319S PAIUBAPY

Table B-14. X4 IPU Interface Signals (Continued)

SIGNALS FROM IPU TO MBU(n); n=0, 1, 2, 3

—IBnA01(16-31)

-1IBnR00(0-15)
—IBnRO1(16-31)
-1IBnR0O1(0-15)

-71BnR0O1(16-31)

1BnA00(8-28)
1BnA00(29-31)
1BnA01(0)
InZP:1(8-28)
InZLSB(29-32)

=TIFnV3(0)
-1IFnV3(1-3)

IBQLDXA(n)*
1BQLDXBA(n)*
IBQLDYA(n)*
IBQIMM(n)*
IBQREGDP (n)*
IBQZTXU(n)
I1BQZTYU(n)
IBQZEX(n)

~BIMBNIR(0-15)

~BIMBROL (0-15)
~BIMBROR(0-15)
—1BIMBRIL(0-15
—BIMBRIR(0-15

BIAR(8-28)
BARXA(29-31)
BARXA(32)
BIZP(8-28)
BIZP(29-32)

-71BIVIS(0)
1BIVI(1-3)

BIAOTXA
BIAOTXBA
BIAOTYA
BIIMMED
BIREGDP
BIZTXUDT
BIZTYUDT
BIZAEQZA

*3pMust be = 0 dyring vectors

IPU. MBU DESCRIPTION
—118nA00(0+15) FBIMBNOL(0-15)
- - - :
,§3228?($f1§;) :l§§:§:?fig}§ rlnnediate operands and VPF data path into the IMM register.

} Register operands to REG register data path

Operand octet address to XBA or YBA register
Operand word address to XA or YA register
Operand halfword address bit to XA or YA register
‘Scalar store octet address to NSA register
Scalar store element address to ZA register

}vx field from VPF word 3 for vector initialization

Gates IBnA00(29-31) +IBnA0O1(0) into XA register

Gates IBnA00{8-28) into XBA register

Gates IBnA00(29-31) + IBnA01(0) into YA register
Gates—IBnA00(0-31) +7IBnA01(0-31) into IMM register
Gates1IBnRO0(0-31) +7IBnR0O1(0-31) into REG register

Causes Z X update under control of the zone modification bits
Causes Z Y update under control of the zone modification bits

Indicates X address = Z address. Causes a Z»X update if a forced
write request (IBQREQFW(n)) occurs. .

6/1-4

183ndwoy 21413UI2S PAIUCAPY

Table

B-14. X4 IPU Interface Signals (Continued)
SIGNALS FROM IPU TO MBU (n); n=0, 1, 2, 3

IPU

MBU

DESCRIPTION
IBQZEY(n) BIYAEQZA Indicates Y address = Z address. Causes a Z+Y update if a forced
write request (IBQREGFW(n)) occurs.
18QZUP(n) -BIXUPDT Inhibits the setting of DPMBI until the Z+X update has occurred.
TIBQYUP(n) “BIYUPDT Inhibits the setting of DPMBI until the Z-+Y update has occurred.
-1IRQVISTR(n) “BIVCINIT Starts vector initialization in the MBU and causes the transfer of
the VPF to the MBU.
'1fRVECHTC(n) BIZBBUSY Prevents a vector from generating a Z write request
IBBUADN(n) BIDWA IMM or B , -
IBBURDW(n) BIDWB REG or A Doubleword size for scalars or vectors
IPVDW(n) BIDWC c Doubleword size for C vector
IBBUASW(n) BISWA IMM or B :
IBBURSW(n) BISWB REG or A Singleword size for scalars or vectors
IPVSW(n) BISWC o ' Singleword size for C vector
IBBUAHW(n) BIHWA IMM or B o
IBBURHW (n) BIHWB REG or A Halfword size for scalars or vectors
IPVHW(n) BIHWC C Halfword size for C vector
IVZPTNS(n) BIZPTNSA Gates ZP register to NSA register
IBQSCKT4(n) -1BISSCKT4 Indicates o or REG short circuit at LVL4.
IRAE(n) BIAE Indicates arithmetic exception has occurred
IBQFCSGT(n) BIFCKSGT The first clock of the u sequence for the instruction at LVL4 is the
same group time, i.e., the time at which an overlap can occur.
IBQSMGP4(n) BISMGRP Indicates that the instruction at LVL4 is in the same instruction

group as the last instruction to enter MBU(n).

08l-9

4814wy 91413U8J3S PAULAPY

Table B-14. X4 IPU Interface Signals (Continued) .

SIGNALS FROM IPU TO MBU(n); n=0, 1, 2, 3

—1 IVnERDTC(0-3)

-1 InZHW

-1 InZDW
IBnRX4(0-3)
IBnRY4(0-3)
IBnRY4(4)
-7IRVECWTA(n)
~TIR4GETIT(n)
1 IMSUPRUN
IVRFODL5(n)
1 IMBGABRT(n)
IFnv2(0)

ICME:n, n=1,2,3,
ICPE:n, n=1,2,3,8 B;PE

HBIERDTC(0-3)

} BIME

HBIHNZ
~BIDNZ
BIOPM(1-4)
BIOPM(5-8)
BIOPM(0)
+BIVECNTA
TBI4GETIT
~BISSUPRN
BIRS(5)
- BIBGABRT
BIHS(0)

IPU M
BU DESCRIPTION
-711BQOCK4(n) -7BIOCKRMA Indicates that the instruction at LVL4 is a one clock
IBQREQRW(n) BIFRCDWR Causes MBU(n) to initiate a forcad write
IRQVISTR(n) BIVINIT Causes MBU(n) to begin vector initialization

Indicates when data destined for the- register file will be at LVL]2
on the next clock

Map enable to MBU(0-3) memory port
Protect enable to MBU(0-3) memory port
Scalar Z buffer halfword size

Scalar Z buffer doubleword size

} MBU ROM address for scalar instructions

Extended MBU ROM address for special instructions

Prevents a vector from issuing read requests

Causes MBU(n) to return to normal after a vector initialization
Allows MBU to run with run bit off (hard core)

R-field odd at LVLS

Bad guy abort signal

Option bit on peak pick, etc., to suppress item counts at end of
self loops.

e

18L-4

193ndwWoy) 31413UdIIS PAIUBADY

Table B-14. X4 IPU Interface Signals (Continued)

SIGNALS FROM IPU TO MBU (n); n=0, 1, 2, 3

MUB(n)

IPU

DESCRIPTION

BAQZA:1(8-28)

BCQSYNC(4)
BCCUEEQX(0)
BCCUEEQX(0)

'BCVECEND

BCZMAL
BHQDSCMP : 1
BMQROMOT:1(192)
BMQROMOT:1(193)
BMQROMOT:1(195)
BMQROMOT: 1(202)
BMQROMOT:1(198)
BMQROMOT:1(199
BMQROMOT:1(200
BMQROMOT:1(203)
BMQROMOT:1(205)

BMQROMOT:1(201)
BCQDAV

BCFWRTDN
BMQROMOT : 1(207)
BMQROMOT:1(208)

BAQZAn:1(8-28) .

BCQSYNC4(n)
BCCUEEQX(n)
BCCUEEQY (n)
BCVECEND(n)
BCZMAL1(n)
BHQDSCMP:1(n)
BMQNCLCK(n)
BMQNCNOP (n)
BMQRMENB (n)
BMQRMRMI (n)
BMQRMRMA (n)
BMQRMRM8(n)
BMQRMRMC (n)
BMQNCSGT(n)
BMQAUPO(n)

BMQRMRM8 (n)
BCQDAV(n) .
BCFWRTDN(n)
BMQRMERW(n)
BMQRMLTW(n)

Data path for Z-buffer octet address (ZA) to the ZB register for
hazard detection during vectors

Indicate SC buffer in MBU(n) is full

Cue is equal to X, i.e., data in SC buffer is destined for the X buffer
Cue is equal to Y, i.e., data in SC buffer is destined for the Y buffer
Indicates normal vector end ‘
Indicates zone modification bits all "1"

De-escalate complete indicates all requests in CAF have been serviced
Next clock is the last clock in the AU ROM seq

Next clock is the NOP seq in the AU ROM

AU ROM enable
AU ROM RM9

AU ROM RMA

AU ROM RMB
AU ROM RMC
Next clock is the same group time in the AU seq

Indicates, during the exeuction of a stack instruction, that the
terminate signal from the AU can be sampled and that the stack
pointer will be at LVL12 on the next clock ,

AU ROM RM8

DAV from MBU memory port

Forced write done signal from MBU's CMR
Divide early window

Divide late window

Used for stack control

¢8l-4

481ndwoy) 214131U313S PIIUBADY

Table B-14. X4 IPU Interface Signals (Continued)

SIGNALS FROM IPU TO AU(n); n=0, 1, 2, 3

IPU

AU(n)

DESCRIPTION
IVSCRL6(n) AIPUSCAB Instruction at LVL6 has short circuit reg, i.e., EF+AB
IVSCAL6(n) AIPUSCCD Instruction at LVL6 has short circuit x, i.e., EF+CD
IVDHWL6(n) AMHL " Instruction at LVL6 has halfword select
IVDOWL6 (n) AMDL Instruction at LVL6 has doubleword select
ICME:n, n=5,6,7,8 AHMPEN Map enable to AU(0-3) memory port
ICPE:n, n=5.6,7,I AHPREN Protect enable to AU(0-3) memory port

€8lL-4

431NdWOoY 31411U319S PIJURAPY

Table B-14. X4 IPU Interface Signals (Continued)

SIGNALS FROM AU(n) TO IPU; n=0, 1, 2, 3

AU(n)

IPU

DESCRIPTION
AOQOFFX:1 AOQOFFX:1(n) Fixed point overflow
AOQDVCHK: 1 AOQDVCHK: 1(n) Divide check
AOQOFFL:1 'AOQOFFL:1(n) Floating point overflow
AOQUFFL:1 AOQUFFL:1(n) Floating point underfiow
AOQRL:1 AOQRL:1(n) RL
AOQRE: 1 AOQRE:1(n) RE } Result code bits
AOQRG: L AOQRG: 1(n) RG "
AOQCL A0QCL(n) CL
AOQCE AOQCE(n) CE } Compare code bits
A0QCG A0QCG(n) cé J
~TAQOTRMSTK FTAOTRMSTK (n) Stack instruction terminate signal
AVQET:1 AEQET:1(n) Skip indicator

AOQEF:2(0-63)

AOQEFn:2(0-63)

AU output register doubleword

TERM
ACT(OP)

ACTIVITY LVL6-
LvL11(0-3)

ACTIVITY LVL7-
LVL11{0-3)

ACTIVITY LVL8-
LVL11(0-3)

ADW

AE HAZ(0-3)

AE POSSIBLE

ALLOW CURRENT

ALLOW FOLLOWING

ALL PIPES EMPTY

ALL ZMB(0-3)

Table B-15. X4 IPU Glossary

DESCR

Signal indicating that the
active bit pointed to by the
cue output pointer is true.

Signal indicating activity
at levels 6-11 for pipe(0-3).

Signal indicating there is
at least one instruct in
Tevels 7-11.

Flag indicating there is an
instruction at levels 8-11
of pipe(G-3).

ROM bit indicating that AR

contains a doubleword address.

Signal indicating the presence
of at least one AEH bit in the

register stack (levels 5-12)
for pipe (0-3) or at 1vi4.

ROM bit indicating that the
instruction at 1vi3 could
cause an arithmetic excep
tion. .

Fiag in the R-field of the
vector instruction indicating
(IF FORK IND,=1) when the
current vector instruction
can proceed independently.

Flag in the R-field of the
vector instruction which,
if it is a one(zero), sets
(resets) the fork ind.

Signal indicating there is
no activity in any of the
pipes levels 4-12.

This is the MBU signal
BCZMAL1(0-3) delayed by one
clock. It indicates that
all of the zone modification
bits for the Z-buffer in
pipe(0-3) are ones, i.e.,
that every halfword in the
Z-buffer has new data.

sIG Lac
ICACTO 14CMREQ
IVLETLBA I4INFACE
(0-3)
NONE I4INFACE
(0-3)
IVQAUIAC I4INFACE
(0-3)
IRQRMADW 14INFACE
(0)
IRAEH{0-3) i4ZHAZ
3,7,11,
15)
IRQC3AEH 4INFACE
q 5
IRQR3(5) 14PIPE
(5)
IRQR3(6) 14PIPE
(6)
IRAPIPMT 14ROUTE2
IRQZMAL1(0-3) I4ROUTE3
B-184

Advanced Scientific Computer

2

Table B-15. X4 IPU Glossary (Continued)

TERM si6 Loc DESCR

ANY JOINED REQUESTS IRANYRJN I14MIXC Signal in 1v13 controller
indicating at least one
join request flag set.

ANY NEAR RANGE HAZARD IRANRHAZ I4LVL3 Indicates comparison of P3
and any ZP (IRP3EQZP(0-3))
or ZB (IRP3EQZB(0-3))
address at the octet level.

ANY REG. DEST. IRARGDST I4ROUTET1 Signal in the 1v13 controller
indicating at least one RDT
bit in one of the register
stacks for pipes(0-3?.

ANY RHAZ IRNORHAZ I4ROUTET Signal from 1v13 controlier
indicating that none of the
RHAZ{0-3) 1is true.

ANY R-OCTET HAZ " IRANYROH I4VECLAS Signal in the 1v13 controller
indicating at least one
R-octet HAZ(0-3).

ANY SP IRANYSP I4VECLAS Signal in 1v13 controller
: : indicating that a pipe has
been selected, i.e., one
of the SP(0-3) flipflops
has been set. See SP(0-3).

ANY STF HAZ IRANYSFH I4ROUTEZ Signal indicating a store
file hazard consisting of:
AR=XA and 7 XAFUL or AR=YA
and “WAFUL for at least
one pipe(0-3).

ANY T3 HAZ IRNOARHZ I4ROUTE1 See "ANY a-RHAZ." The register

used for this comparison is
TRAROT3(26-32). Except for

a BCLE or BCG instruction,

AR data is selected into this
register and used for the
a-RHAZ comparison. For a

BCLE or BCG instruction T3

is selected and the compari-
son becomes "ANY T3 HAZ."

ANY VHAZ IRANYVHZ I4VECLAS Vector hazard signal indicating
: at least one VHZ bit is on in

one of the register stacks for
pipes(0-3). This indicates
when the index or vector
registers are going to be
modified by an instruction
in one of the pipes.

B-186 Advanced Scientific Computer

a2

Table B-15. X4 IPU Glossary (Continued)

TERM

ALL ZPFUL

a HAZ(0-3)

a HAZ FLAG

1-RHAZ(0-3)

a-REG. OCTET HAZ(0-3)

ANY AE HAZ

ANY a HAZ

ANY a-RHAZ

ANY o-REG.OCTET HAZ

ANY DIVIDE CHECK

ANY FIXED POINT
OVERFLOW

ANY FLOATING POINT
OVERFLOW

ANY FLOATING POINT
UNDERFLOW

sIG
NONE

NONE

TRQARHAZ

IRARRHZ (0-3)

IRAROHAZ (0-3)

TRAAEHZ

TRAREZPB
IRNOARHAZ

IRAARROH
IRDVCHK
IROFFX
iROFFL

TRUFFL

Loc
T4ROUTE?2

14ROUTE2

T4VECLAS

14RHAZ
(0-3)

I4PHAZ
(0-3)

I4ROUTET

[4ROUTE2
I4ROUTEY

T4VECLAS
I4STATUS
I4STATUS
I4STATUS

I4STATUS

DESCR

Signal indicating all ZPFUL(0-3)
are true.

Signal from 1v13 controller
indicating AR=ZP (IRAREQZP(0-3)
or AR=ZB (IRAREQZB(0-3) for
pipe(0-3) at the octet level.

Flag indicating that during

a vector running in the joined
mode with the "Allow Following"
bit on, the vector modified the
region from which ere of the :
following instructions was
taken.

Signal indicating AR compares
with some register stack address
(levels 4-12? for pipe(0-3).

Signal indicating AR compare
with some register stack address
(levels 4-12? at the octet

level for pipe(0-3).

Signal in 1v13 controller
indicating the presence of at
least one AE HAZ(0-3).

Signal indicating at least one
ZP%0-3) or ZB(0-3) equals AR,

Signal indicating no a-RHAZ(0-3)
is true.

Signal in the 1v13 controller
indicating at least one «-REG.
OCTET HAZ(0-3).

Signal indicating a divide check
has occurred in at least one of
the AU(0-3).

ngnal indicating a fixed point
overflow has occurred iin at
least one of the AU(0-3).

Signal indicating a floating
point overflow has occurred
in at least one of the AU(0-3).

Signal indicating a floating
point underflow has occurred
in at least one of the AU(0-3).

B-185

Advanced Scientific Computer

U'_f;
Table B-15. X4 IPU Glossary (Continued)

TERM 3 LOC * DESCR

ANY VIP TRANYVIP T4VECLAS From 1v13 controller indicating
at least one vector in progress
FLAG (IRQVIP(0-3)) is set.

ANY Z JOIN IREMJNPI I4VECLAS Signal indicating at least one
Z-JOIN(0-3) (IBQZJOIN(0-3)) set.

AORO. AVAIL. IRAORDA I4RQUTET This signal in the 1v13 con-
troller indicates that the AQ
and RO registers are free.

ARITHMETIC EXCEPTION ICQAREX I4HDCORE Flag indicating an arithmetic
exception has occurred.

ARTZP(0-3) IRARTZP(0-3) T4ROUTE3 Signal from 1v13 controller
indicating a store is going
from 1v13 to 1vi4.

AR=LA * IRAREQLA I4ZHAZ(3) Signal generated on I4ZHAZ
indicating AR=LA on the octet
level.

AR=LA or AR=PA ILARELVP I4CMREQ Signal indicating AR=LA or

: AR=PA at the octet level.

AR=LA, PA, P1, IRLCLBR I4LVL3 Signal from 1v13 controller

or P2 indicating AR=P1 or P2 at the

word level, or AR=PA or LA at
the octet level.

AR=LD(0-3) IRARVSLD(0-3) I4ZHAZ Signal indicating AR=LD for
(0’4’89 D1pe(0-3).
12)

AR=PA IRAREQPA 14ZHAZ(2) Signal generated on I4ZHAZ
indicating AR=PA at the octet
level.

AR=P1 IRARVSP1 14ZHAZ(1) Signal indicating AR=P1 at

. the word level.

AR=P2 IRARVSP2 14ZHAZ(2) Signal indicating AR=P2 at
the word level.

AR=XA(0-3) TRAREQX(0-3) I14ZHAZ Signal indicating AR=XA at

, (0,4,8, the octet level for pipe(0-3).
12)
AR=YA{0-3) IRAREQY(0-3) 14ZHAZ Signal indicating AR=YA at
(1,5,9, the octet level for pipe(0-3).
13)

B-187 Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM sIG LOC DESCR

AR=ZP(0-3) IRAREQZP(0-3) I4ZHAZ(3, Signail indicating AR=ZP at
7,11,15) the octet level for pipe(0-3).

AR=ZB(0-3) IRAREQZB(0-3) I4ZHAZ(1, Signal indicating AR=ZE a*
£,9,13) the octet level for pipe(i-3j.

AR=0 IRAREQO I4ROUTET Signal from 1v13 controlier
- indicating AR(8-31)=0.

AR<2F NONE T4ROUTE1 Composed of signals from
- I4PIPE indicating AR(8-23)
=0 and AR(24-27) < 2.
AVAIL(0-3) IBPAVAIL(0-3) I4INFACE This signal indicates that
(0-3) pipe(0-3) is available, i.e.,
that pipe(0-3) is turned cn,
no vector is in pipe(0-3),
and 1v15 of pipe(0-3) will be
empty on the next clock.

B-188 Advanced Scientific Computer

Uz
Table B-15. X4 IPU Glossary (Continued)

TERM si6 LOC DESCR

BAD GUY ABORT(0-3) IMBGABRT(0-3) I4HDCORE Signal indicating a non-recover-
‘ able switch is about to take
place while a vector bad guy
is running in pipe(0-3).

BAE IRQDCBAE I4INFACE Flag decoded from the in-
(0) struction Op code indicating
- a BAE instruction.
BCC TRQDCBCC I4INFACE Flag decoded from the in-
(0) struction Op code indicating
a BCC instruction.
BCLE,BCG IRBCGBCL I4ROUTET Signal indicating a BCLE
or BCG instruction at Tv13.
BLB,BLX IRQDCBBX I4INFACE Flag decoded from the in-
(0) struction Op code indicating
a BLB or BLX instruction.
BLUE INSTR. Al IRQRMBLU I4INFACE ROM bit indicating a BLUE
LVL3 (1) instruction at 1v13.
BOGUSA ICBOGUSA T4CMREQ Signal used to cancel any

. requests in the cue for the
KA buffer by turning off the
active bit for that request.

BOGUSB I1CBOGUSB I4CMREQ Signal used to cancel any
requests in the cue. for the
KB buffer by turning off
the active bit for that re-
quest.

BRANCH DONE FLAG TRQBRDN T4LVL3 Flag controlled by the 1v13
controller, used to delay
by one clock the testing
of the branch results for
the BCLE and BCG instructions.
It is also used to indicate
when the branch portion of
the BLB, BLX instructions has
been finished.

BRANCH INST. IRQRMBRH None ROM bit indentifying all branch
instructions.
BRANCH NOT TAKEN IRBRNTRN 14LVL3 Signal from 1vi3 controller

indicating the branch at 1v13
was not taken.

BRANCH TAKEN IRBRTKN T4ROUTE1 Signal indicating for all con-
ditional branches that a branch
will be taken.

B-189 Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM SIG LOC JESCR

BRANLA IRBRTLA 14LVL3 Signal from 1v13 controller
indicating a branch to LA,

i.e., to the instruction sctet
pointed to by LA.

BRANOA IRBRTOA I4LVL3 Signal from 1v13 controlier
indicating a branch o CA. i.2.,

» to CM.

BRANPA IRBRTPA I4LVL3 Signal from 1v13 controller
indicating a branch to PA, i.e.,
to the current instruction
octet.

BRANP1 IRBRTP1 14LVL3 Signal from 1vi3 controller
indicating a branch to 1v11.

BRANP2 TRBRTP2 14LVL3 Signal from 1v13 controller

. indicating a branch to 1vi2.

BRC TRQDCBRC TI4INFACE Flag decoded from the in-

(0) struction Op code indicating
, a BRC instruction.

BRHAZ IRBRHAZ T4LVL3 Lvl3 signal indicating that
a branch at 1v13 must wait
for a hazard to clear.

BROWN INSTR. AT TRQDCBWN I414FACE Flag decoded from instruction

LVL3 (1) Op code indicating a BROWN

: (MCP,MCW) instruction at
Tvis.
BXEC IRQDCBXC I4INFACE Flag decoded from the instruc-
(1) tion Op code indicating a
BXEC instruction.
B-190 Advanced Scientific Computer

a2

Table B-15. X4 IPU Glossary (Continued)

TERM
CALL PERMISSION IND.

CC ROUTE(0-3)

CHZ BIT AT LVLR

(0-3)

CMTFILE

CMTIR

COMP. CTR.=0-7

CUE EMPTY

CUE FULL

S16
TRQHCALI

IRQCCRT(0-3)

IVCHZLC(0-3)

ICCMTFIL

ICCMTIR

IRCCTREQ(0-7)

ICCUEMPY

ICCUEFUL

Loc
I4LVL3

I4STATUS

14ZHAZ
(])5,95
13)

T4CMREQ

T4CMREQ

T4VECLAS

I4CMREQ

I4CMREQ

DESCR

This flag is the I4HCCALL
signal from master hard
core (I4MHC) delayed by one
clock.

Flag which indicates that
pipe(0-3) was the last to
receive an instruction
that could modify the com-
pare code register.

Flag from the register stack
for pipe (0-3) indicating

an instruction is at 1vi12
that could modify the compare
code register.

Signal enabling the transfer
of KCM to one of the register
file octets. This signal
indicates that the transfer
will occur on the next clock.

Signal from CMR indicating
that an instruction or an
indirect cell will be gated
into IR from KCM on the next
clock.

Signal in the 1v13 controller
indicating that the complete
counter (IRQCCTR(0-2) con-
tains 0-7. This counter

is used by both the LF,LFM,
and VECT instructions.

Signal indicating that none
of the busy bits in the cue is
on, i.e., there are no out-
standing memory requests.

Signal indicating that all

4 busy bits in the CUE are on,
i.e., that no more memory
requests can be made.

B-191

Advanced Scientific Computer

TERM

SI6

DAV(0-)FROM MBU(0-3) BCQDAV(0-3)

DAV FROM IPU

DIVIDE(0-3)

DIVIDE FLOATING
(0-3)

DPMBI (0-3)

DPMBO(0-3)

DUAL&BRNTKN

DUAL MODE

ICDAV

IBLSTDIV(0-3)

1BDF(0-3)

IVQDPMBI(0-3)

1vQDPMBO(0-3)

IRDLBNT

ILQDUAL

Loc
MBU(0-3)

I4HDCORE

14INFACE
(0-3)

T4INFACE
(0-3)

T4INFACE
(0-3)

T4INFACE
(0-3)

14LVL3

T4CMREQ

Table B-15. X4 IPU Glossary (Continued)

DESCR

When this signal goes false
it indicates the write in
progress has reached memory.

When this signal goes false
it indicates the write in
progress has reached memory.

This signal is decoded from
the same group flipflops at
1v14 and indicates the last
instruction down pipe(0-3)
was a divide.

This signal is decoded from
the same group flipflops

at 1vl4 and indicates the
last instruction down pipe
(0-3) was a divide floating.

Lvl4 flag which indicates
when the data required by
an instruction at 1vi5 is
available.

Flag indicating an instruction
is at 1v16 of pipe(0-3).

Signal from 1v13 controller
indicating the lookahead
controller in the dual mode
and the branch will not be
taken.

Flag indicating the lookahead
controller is in the dual
mode, i.e., that the branch
octet is being fetched while
a branch is waiting at 1v13.

B-192

Advanced Scientific Computer

£

Table B-15. X4 IPU Glossary (Continued)

TERM s16 LOC DESCR

—_—

EARLY WINDOW(0-3) IRQWNDER(0-3) I4CMREQ Signal from AU ROM for pipe(0-3)
(BMQRMERW(0-3)) delayed by one
clock. It indicates that the
divide in pipe(0-3).is at a point
such that the divide at 1v13
in the same group could reach
the AU in time to save the divide
initialization time by over-
Tapping. This window includes
memory fetch time.

EXPECT REG.DEST. IVnERDTC(0-3), I4INFACE Signal sent to MBU(n) indicating

AT LVL12(0-3) n=1,2,3 (0-3) that on the next clock an in-
struction with a register desti-
nation will be at 1v112 of pipe

(0-3).

B-193 Advanced Scientific Computer

TERM

Table B-15. X4 IPU Glossary (Continued)

sI6

FAR RANGE HAZ.FLAG IRQFRHZ

AT LVL3

FILE~FILE

FIRST CLOCK SAME
GROUP

FLAGFUL

FLAGA

FLAG12

FORCED WRITE

COMPLETE(0-3)

FORCED WRITE WAIT
(0-3)

FORCED WRITE WAIT
(sP)

FORK

IRFILTFL

Loc
14LVL3

I4VECLAS

TRBQFCSGT(0-3) I4INFACE

ILQFLGFL

ILQFLG4

ILQFLG12

IBFWCOMP (0-3)
IBFWRWT(0-3)

NONE

IRQDCFORK

(0-3)

I4CMREQ

T4CMREQ

T4CMREQ
I4INFACE
(0-3)

T4INFACE
(0-3)

T4VECLAS

T4INFACE
m

DESCR

Flag carried with the instruc-
tion set by a comparison of
LA, PA, P1 or P2 with any

7B address, or set by 1v13
controller by comparison of
P3 with any ZB address during
execution of a joined vector.

Signal from 1v13 controller

used to effect a transfer of one
file to another in the register
file.

Lvl4 flag indicating that the
instructions in the same group
as the one at 1v14 have a same
group time on their first u-
sequence. This bit is the ROM-2
IRQRMSGT bit latched at 1v14.

Flag indicating the target branch
is in the lookahead buffer and
that the current buffer is the
one pointed to by the target
branch, i.e., both octets needed
after the branch is taken are
resident.

Flag used by lookahead controller
to indicate that the target
branch is in levels 1-3.

Flag indicating that the octet
pointed to by the target branch
has been requested or is resi-
dent.

Signal from the ZBFUL controller
indicating the forced write in
pipe(0-3) is complete.

Signal from the forced write
controller on I4INFACE indicating
a forced write in progress.

This is the normal forced write
wait signal with the array sig-
nal being supplied by the se-
lected pipe flipflops. See
(0-3).

Flag decoded from instruction
Op code indicating a FORK
instruction.

B-194

Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM SIG
FORK IND.. TRQFORK -
GETOUT IMGETOUT

e

GRAY INSTR. AT LVL3 IRQRMGRY

GREEN INSTR. AT LVL3 IRQRMGRN

Log

DESCR

I4PIPE(5) Flag set by the FORK instruc-

14HDCORE

I4INFACE
(0)

T4INFACE
(1)

tion or by the allow following
bit (IRQR3(6)=1) of a vector.
Reset by the join instruction
or by the allow following bit
(IRQR3(6)=0) of a vector. This
flag=1 allows subsequent in-
structions to proceed inde-
pendenitly (FORK MODE).

Signal used to reset the 1v13
controller during a joined

vector bad guy when an error
condition occurs in the unit

hardcore.

ROM bit indicating a gray
(a1l sub-colors) instruction
at 1vi3.

ROM bif indicating a green
instruction at 1v13.

B-195

Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM s16 LOC DESCR

HANDLE JN TRHNDLJN I4LVL3 Signal from the 1v13 controller
indicating there is a JOIN or
FORK instruction at 1v13 which
needs servicing by the R/Z
Join controller.

HC GATE OA IMGOA I4HDCORE Signal from the unit hardcore
used to initiate a hardcore
memory request.

HCREQ IMHCREQ I4HDCORE Signal from unit hardcore
indicating that hardcore
requies the use of the CMR.

HC STORE : IMSTORE T4HDCORE Signal from the unit hardcore
indicating that the current
memory request from the hard-
core is a store.

HOW IRQHOW I4LVL3 Lv13 flag indicating when
R3 should be taken as a double-
word address in the hazard
comparisons.

HEX REG. HAZ, NONE I4ROUTE1 Signal in 1v13 controller
indicating that there exists an
instruction in one of the pipes
that can modify one of the hex
registers: AE, CC, RC.

HOLD FLAG IRQHOLD 14LVL3 This flag is used as a steering
mechanism in the 1v13 controller
for the green, pink, brown,
and orange instructions.

HOLD PTR. IRHLDPTR I4LVL3 Signal from 1v13 controller
indicating that the second
pass of A PSH, PUL, or MOD
instruction must hold at 1vi13.
This signal prevents an other
jnstruction from moving into
1vi2 on top of the stack pointer.

B-196 Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM
THAZ

ILLEGAL OP CODE

ILOP FLAG

IMM(0-3)

INC AR

INDIRECT INSTR.

IND. INSTR.AT LVL1

IND.INSTR.AT LVL2

INDIRECT CELL AT
LvL2

INDIRECT REQ.

INSTR

sI6
IRQL3IHZ

IPQRMIOP

IRQILOP

1BQIMM(0-3)

TRINCAR

IRQIND

ITINDAT]

IPQIND

IRQIND

IREXIND

ILINSTRP*
ILINSTRI*
ILINSTR2

Loc
T4LVL3

I4INFACE

(3)

I4LVL3

T4INFACE
(0-3)

T4VECLAS

I4LVL3

14PIPTOP

T4PIPTOP

I4LVL3

14LVL3

T4CMREQ

DESCR

Flag indicating that the 1v13
controller is in the instruction
hazard state.

ROM bit indicating an unused
op code that does not have
a first hex of zero.

Set by 1v12 controller when

the current instruction has

an illegal op code, the current
indirect cell does have zeros
in the most significant hex,

or there is a spec. error at
Tvi2.

This flag is sent to MBU(0-3)
to turn on the input controller
for all instructions that do
not require a memory operand.

Signal from 1v13 controller
used to increment AR by 8
during LFM and STFM instruc-
tions.

Set by 1vi2 controller as
indirect instr. is passed to
1v13. Reset when terminai
indirect cell is sent to
1v13 or branch is not taken.

Signal indicating that an
indirect instruction is at
vil.

Lv12 flag indicating that an
indirect instruction is at
vi2. .

When Tv12 is active, this
indicates cell is at 1vi2.

Signal from 1v13 controller
indicating that an indirect cell
or the object of an execute
instruction is being requested
from CM.

Signal from the lookahead
controller initiating a memory
request for an instruction
octet.

B-197

Advanced Scientific Computer

a2

Table B-15. X4 IPU Glossary (Continued)

TERM s16 Loc DESCR
INSTR.AT LVL4 IS IN IBQSMGP4(0-3) I4INFACE Lv14 flag indicating that the
SAME GROUP AS LAST (0-3) instruction at 1v14 going to
INSTR. (0-3) pipe(0-3) is in the same group

- as the last instruction to
enter that pipe.

INSTR. AT LVLS IVQSMGP5(0-3) I4INFACE Flag indicating the instruction
IS IN SAME GROUP (0-3) at 1v15 in pipe(0-3) is in the
AS LAST INSTR. same group as the last instruc-
(0-3) tion down that pipe.
INSTR.HAZ.RECOVERY IRINHAZ I4LVL3 Signal from 1v13 IHAZ state

REQ indicating all near range HAZ.

have cleared and the instruc-
tion octet can be refetched.

INSTR.PV. IRQPRV I4LVL3 Carried with the instruction
to 1v13 to indicate that the
CM acquisition of the octet
containing this instruction
resulted in a memory protect
violation.

B-198 Advanced Scientific Computer

a2

Table B-15. X4 IPU Glossary (Cdntinued)

TERM SIG LoC DESCR
JOIN TRQDCIN I4INFACE Flag decoded from the instruction
(1) op code indicating a join instruc-

tion.

JOIN FLAG IRQJOIN T4VECLAS Flag controlled by 1v13 indicat-
ing when a joined vector is at

- 13, n

KAFUL ICQKAFUL I4CMREQ Flag controlled by the CMR
which indicates when KA has
valid data.

KA INSTR. HAZ. ICQKAHAZ I4CMREQ Flag controlled by the CMR

which indicates that LA=ZB
for the octet currently in

KA.

KBFUL - ICQKBFUL T14CMREQ Flag controlled by the CMR
indicating when KB has valid
data.

KB INSTR. HAZ I1CQKBHAZ T4CMREQ Flag controlled by the CMR

indicating that LA=ZB for
the octet currently in KB.

KCM FULL ICCMFUL I4HDCORE Signal which is true for one
clock after ICQRDA has been
toggled indicating that read
data has been put into KCM.
KCM full and PRV(OP) cannot
both be true at the same time.

KRTAG ICQKRTAG T4CMREQ - Flag contrelled by the CMR
which points to the current
instruction buffer, i.e., if
KRTAG is true KB is the cur-
rent instruction buffer, other-
wise KA is.

B-199 - " Advanced Scientific Computer

O

Table B-15. X4 IPU Glossary (Continued)

~ TERM sIa Loc DESCR

LAC BIT AT LVL12 IVLACLC(0-3) 14ZHAZ Flag in the register stack

(0-3) (0-3) for pipe(0-3) indicating a
LAC or LEM instruction is
at ivlia.

LAORD ILQLAORD I4CMREQ Flag indicating LA=PA+8.

LAM BIT AT LVL12 IVLAMLC(0-3) 14ZHAZ Flag in the register stack

(0-3) (0,4,8, for pipe(0-3) indicating a

12) _LAM or LEM instruction is

at 1vila.

LAM,LAC BITS IRLAEM I4ROUTET Signal in the 1v13 controller

indicating at least one LAM
or LAC bit in the register
stacks for pipes(0-3).

LAM,LAC,LEM . IRLAEMIN I4ROUTE1 Signal in 1v13 controller
indicating the instr. at
1v13 is LAM,LAC, or LEM,
i.e., IRQDCLAM or IRQDCLAC
is true.

LAST INSTR. AT LVL5 IVQOCKL5(0-3) I4INFACE This flag is set when a one

A ONE CLOCK(0-3) (0-3) clock instruction enters 1v15.
Since it is not reset when
the instruction goes to 1v16,
if MBIACT(0-3) is not true,
it indicates whether the last
instruction at 1vi5 was a one
clock.

LAST WRITE SIGNAL BCFWRTDN(0-3) MBU(0-3) Signal from MBU(0-3) indicating
FROM MUB(0-3) ’ either that the last write
of a vector has occurred or
that the forced write in
progress has finished.

LATE WINDOW(O0-3) IRQWNDLT(0-3) I4CMREQ Signal from AU ROM for pipe(0-3)
(BMQRMLTW(0-3)) delayed by one
clock. It indicates that the
divide in pipe(0-3) is at a
point such that the divide at
1v13 in the same group could
reach the AU in time to save
the divide initialization time
by overlapping.

LC=4 ILLCEQ4 TI4CMREQ Signal indicating that PBACT
or LLAACT is true and the loop
counter (ILQLC(0-7)) plus the
vacany flipflops (ILQVAC(0-1))
equals 4.

B-200 Advanced Scientific Computer

e
N3
Table B-15. X4 IPU Glossary (Contihued)

TERM s16 Loc DESCR

LC<4 ILLCLT4 I4CMREG Signal indicating that PBACT
or LLAACT is true and the
Toop counter (ILQLC(0-7)) plus
the vacancy flipflops (ILQVAC
{C-1)) is less than 4.

LC<12 ILLTEQ12 I4CMREQ Signal indicating that PBACT
or LLAACT is true and the
Toop counter (ILQ2C(0-7))

is < 12,
LDXA{0-3) 1BQLDXA(0-3) T4INFACE Lv14 flag sent to MBU(0-3)
(0-3) to indicate a memory operand

is to be taken from the X-
buffer by the instruction

at 1via,
LDXBA{0-3) IBQLDXBA(0-3) I4INFACE Lv14 flag sent to MBU(0-3)
~ {0-3) to initiate an X-buffer fetch
from CM.
LDYA{0-3) IBQLDYA(0-3) I4INFACE Lv14 fiag sent to MBU{0-3)
(0-3) to indicate a memory operand

is to be taken from the Y-
buffer by the instruction at

1v14.
LDYBA(0-3) IBQLDYBA{0-3) I4INFACE Lv14 flag sent to MBU(0-3)
(0-3) to initiate a Y-buffer fetch
from CM.
LEADING ZEROS IPQDCNOP I4INFACE Lvi2 flag decoded from the
(0) instruction op code indicating
the hex cf the instruction is
zero.
LEVELS 5 or 6 IR506SPA I4VECLAS Signal in 1v13 controller
ACTIVE(SP) indicating that 1vl 5 or 6 of

the pipe pointed to by (0-3)
is active. See SP(0-3).

LF REQ IRLFREQ I4VECLAS Signal used to make a memory
request during a LF or LFM
instruction.

LLA IRQDCLLA I4INFACE Flag decoded from the instruc-

(2) tion op code indicating a
Toad lookahead instruction.

LLAXFER IRLLXFER 141LVL3 Signal from 1v13 controller
indicating an LLA instruction
at 1vi3.

L,NI,OR NO=0 IRVCTNOP I4VECLAC Signal in the 1v13 controller

indicating that the self-loop,

inner-loop, or outer-loop count
in the VPF is equal to zero.
This is a vector NOP.

B-201 Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM
LOADIR

LOCAL INDIRECTO TO
IR

LOOK AHEAD BUFFER
CLEAR

LOOKAHEAD BUFFER
CLEARING

LVLT ACTIVE

LVL1 ADV

LVL1 BLOCK

LVLY HAZ STATE
LVLY IND. AT 3
STATE

LVLY INSTR. M HAZ
FREE

LVLY INSTR. T HAZ
FREE

s16
ILLOADIR

TRLCLIND

ILBUFCLR

ILBUFCNG

TIQLIACT
TILTADV

TIL1BLK

110s5(10)
11Q8(3)

TTFDMHF

TIFDTHF

Loc
I4CMREQ

I4LVL3

T4CMREQ

T4CMREQ

I4PIPTOP

14PIPTOP

I4PIPTOP

I4PIPTOP
I4PIPTOP

T4HDCORE

T4HDCORE

DESCR

Signal from CMR used to gate
an instruction or indirect
cell into the IR register.

Signal from 1v13 controller
indicating that an indirect
cell or the object of an
execute instruction is to
be taken from KA, KB, or
the register file.

Signal indicating that the
target branch of a PB in-
struction is in the current,
i.e., the buffer pointed to
by PA.

Signal indicating that the
target branch of a PB in-
struction is in the buffer
pointed to by LA, but will
be in the buffer pointed to
by PA on the next clock.

Set and reset by the 1v10
controller to indicate the
presence of an instruction
or data at 1vil.

Signal from 1vil controller
indicating that the data

in 1v11 will advance to
Tvi2.

Signal from 1v11 controller
indicating that nother should
move into 1vi1l.

Lvl1 HAZ state flipfiop.

Lvll flag indicating the 1v11
controller is in the indirect
at 3 state.

Signal decoded from the in-

struction op code indicating
that the instruction at 1vil
cannot be base relative.

Signal decoded from the in-
struction op code indicating
that the instruction at 1vi1l
cannot be indexed.

B-202

Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM

LVLT INSTR. T HAZ
FREE

LVL1 XEC AT 3

STATE

LVL2 ACTIVE

LvL2 BLOCK

VLV3 ACTIVE

LVL3 CHECK STATE

LVL3 IN PROGRESS

LVL3 PUSH PULL STATE

LVL3+LVL4(0-3)

LVL4>LVLS

LVL7 ACTIVE AND NOT
A ONE CLOCK(0-3)

LVL11 ACTIVE(0-3) -

L4RJN

s16
IIFDTHF

11Q5(4)

IPQL2ACT

IPLZBLK

IRQL3ACT

IRSTK2ND
IRLVL3IP

TRQL3PPL

IRIRT4P(0-3)
IRL4TLS

NONE

'IVQACTLB(0-3)

IBQL4RJN

Loc
I14HDCORE

I4PIPTOP

14PIPTOP

I4PIPTOP

T4LVL3

I4ROUTE3

14LVL3

14LVL3

I4ROUTE2

I4MISC

T14INFACE
(0-3)

14ZHAZ
(1,5,9,
13)

14MISC

DESCR

Signal decoded from the instruc-
tion op code indicating that
the instruction at 1v11 can-

not be indexed.

Lvll fiag indicating that the
1v11 controller is in the
execute at 3 state.

Set and reset by the 1vl1 con-
troller to indicate the pre-
sence of an instruction or
data at 1v1l.

Signal from 1vil and 1v12
controllers indicating that
nothing should move into
vi2.

Set and reset by 1viZ contrclier
to indicate the presence cf

an instruction or data at

Wil.

Signal indicating that 1v13
controller is in the result
check state.

Signal indicating that IRGHOLD,
IRQXEC, IRQBRDN, IRQOPDN, or
IRQRIHIB is set.

Flag indicating the 1v13 con-
troller is making the 3rd
pass of a push or pull in-
struction.

Signal indicating that the
data at 1v13 is going to the
1vl4 controller for pipe(0-3).

Signal indicating any 1v14
to 1v15 transfer for pipes(0-3).

Signal indicating IVQL7ACT(0-3)
js true and IVQOCKL7(0-3) is
not true for pipe(0-3).

Register stack bit indicating
an instruction at 1vlill in
pipe(0-3).

Flag indicating the instruction
is a joined read.

B-203

Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)
TERM SIG LOC DESCR

MBIACT(0-3) IVQMBIAC(0-3) I4INFACE Flag to indicate the presence

(0-3) of an instruction at 1vis
in IPU's MBU model.
MCP INSTR. IRQDCMCP I4INFACE Flag decoded from instruction
(2) op code.
M HAZ FREE IPQDCMHF I4INFACE Flag at 1v12 decoded from the
(0) instruction op code indicating
that the instruction at 1vi2
cannot be base relative.

MODE(0-3) IBQMODE(0-3) I4INFACE Flag at 1v14 indicating the 1v14

(0-3) controller is holding off a
Z+X/Y update until either the
X/Y-buffer has data or until
all Z-stores clear ptpe(0-3).

MODIFY CC IRQC3CHZ I4INFACE ROM bit indicating that the

1) instruction at 1v13 could modify
the compare code register.

MODIFY RC IRQC3RHZ I4INFACE ROM bit indicating that the

m instruction at 1v13 could modify
the result code register.

MULTIPLE AR=ZB IRZBPEN I4ROUTE2 Sigral indicating that more
than one ZB(0-3) compares with
AR. This can occur during
certain pairs of vectors.

MULTIPLE INSTR. IRQDCMLT T4INFACE Flag decoded from the instruc-

(2) tion op code indicating a
LFM or STFM instruction.

M=0 TIRQMEQO 14LVL3 Set by 1vl] controller to
indicate instruction in 1v13
has M-FIELD=0.

M1 HAZ NONE I4PIPTOP Signal indicating the com-
parison of M1 with R2, AR, or
an address in any of the
register stacks.)

M1=0 TIMIEQO I4PIPTOP Signal indicating the M-FIELD
(1IQIR(16-19)) at 1v11 is
zero.

M2 HAZ IPARVM2 14RHAZ(0) Signal indicating the com-
parison os M2 and AR.

M2=0 IPM2EO 14PIPTOP Signal in 1v12 controller
indicating that the M-FIELD
(1PQM2(0-3)) is zero.

B-204

Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM
NEAR RANGE HAZ(0-3)

NEXT

NEXT CLOCK IS LAST
CLOCK OF ROM SEQ
(0-3)

NEXT CLOCK IS SAME
GROUP TIME IN ROM
SEQ. (0-3)

NEXT ROM CODE NOP
(0-3)

NIFRZ

NOP INSTR. AT LVL3

s16

IRNRIHAZ(0-3)

ILNEXT

BMQNCLCK({0-3)

BMQNCSGT(0-3)

BMQNCNOP (0-3)

IRNIFRZ

IRQDCNOP

Loc
I4LVL3

T4CMREQ

MBU(0-3)

MBU(0-3)

MBU(0-3)

I4LVL3

T4INFACE
(0)

DESCR

Indicates comparison of P3

with ZP (IRP3EQZP(0-3)) or
%B(I§P3EQZB(0-3)) for pipe
0-3).

Signal from the lookahead
controller used in conjunc-
tion with KRTAG to indicate
whether KA or KB is to receive
the next instruction octet.
With instr true, next false
indicates the buffer pointed
to by KRTAG will be fetched.
Next true indicates the buffar
not pointed to by KRTAG will
be fetched.

AU ROM bit which indicates that
the seccnd to last u-sequence
of an instruction is at the
1v16 ROM output register, i.e.,
the next p-sequence will be
the last u-sequence for the
instruction.

AU ROM bit indicating the next
u-sequence is the same group
time in the AU ROM sequence.

AU ROM bit which indicates
that the last u-sequence for
an instruction is at the 1vi6
ROM output register, i.e.,
the next u-sequence will be
the NOP (or IDLE) segence.

Signal from 1v13 controller
used to inactivate the 1v10,
1vll, and 1v12 controllers
during the execution of a
status command. It also
tells the unit hardcore that
a new instruction is at

1v13 and 1v154-12 are empty.

Flag decoded from instruction
op code indicating a NOP at
1v13 (i.e., first hex of

op code=0).

B-205

Advanced Scientific Computer

5

Table B-15. X4 IPU Glossary (Continued)“

TERM
OABSY

ONE CLOCK AT LVL4
(0-3)

ONE CLOCK AT LVLS
(0-3

ONE CLOCK AT LVL6
(0-3)

ONE CLOCK AT LVL?
(0-3)
ONLY ONE AE HAZ

0P DONE

ORANGE INSTR. AT LVL3

ORANGE LOAD AT LVL22

~ ORANGE LOAD AT LVL3

ORDER,SELECT, RE-
PLACE ,MAP

s16
ICOABSY

1BQOCKL4(0-3)

IVQOCKL5(0-3)

IVQOCKL6(0-3)

1VQOCKL7(0-3)

TRONEAEH

IRQOPDN

IRQDCORG

IPQDCLF

IRQDCLF

IRBADGUY

Loc
TI4HDCORE

T4INFACE
(0-3)

T4INFACE
(0-3)

147HAZ
(] 1519!
13)

14ZHAZ
(1,5,9,
13)

I4ROUTE1

T4LVL3

T4INFACE
M

T4INFACE
(0)

T4INFACE
(0)

14MISC

DESCR

Signal indicating that the
AR and RA flipflops are in
opposite states, i.e., that a
memocry request is in progress
and the DA reg1ster cannot

be changed.

Lvl4 flag indicating a one
clock instruction is at 1vi4
going to pipe(0-3).

This flag is set when a one
clock instruction goes to
1v15, but it is not reset
when the instruction goes to
1v16 unless a non-one clock
follows into 1vi5. Thus,
when MBIACT(0-3) is true,
this flag indicates a one
clock instruction at 1vi5.

Register stack bit indicating
a one clock instruction at
1v16 of pipe(0-3).

Register stack bit indicating
a one clock at 1vl7.

Signal in 1v13 controller in-
dicating only one AE HAZ{0-3)
is true.

This flag is used by the 1v13
controller to indicate when
the operand load portion of
the instruction has been
finished.

Flag decoded from instruction
op code indicating an orange
(LF, LFM, STF, STFM) instru-
tion at |V|3

Lv12 flag decoded from the
instruction op code indicating
that a LF or LFM instruction
is at 1viz.

Flag decoded from the instruction

op code indicating an LF or
LFM instruction at 1vi3.

Signal decoded from VPF op
code lines indicating a vector

bad guy.

B-206

Advanced Scientific Computer

TERM

PACAUI(0-3)

PACAUO(0-3)

PACAUR(0-3)

PACMBI (0-3)

PACMBO(0-3)

PAC2

PAC3

PAC4(0-3)

PAC4(PIRT)

PAENAB

PA=BA

PA=7

Table B-15. X4 IPU Glossary (Continued)

slie
IVPACAUI (0-3)

IVQPACAQ(0-3)

IVPACAUR(0-3)

IVPACMBI(0-3)

IVPACMBO(0-3)

IPPAC2

IRPAC3

IBPAC4(0-3)

NONE

‘ILPAEN

ILPAEBA

ILPAEQ7

Loc

I4INFACE
(0-3)

T4INFACE
(0-3)

T4INFACE
(0-3)

I4INFACE
(0-3)

I4INFACE
(0-3)

I4PIPTOP
I4ROUTET

T4INFACE
(0-3)

T4ROUTE2

14PIPTOP

T4CMREQ

T4CMREQ

DESCR

Signal indicating that an
instruction at 1vis 8-11 can
advance and that an instruc-
tion at 1v17 can go to 1v18,
9, 10 or 11.

This flag indicates when an
instruction can be moved into
vli2.

Signal indicating that an
instruction can move from
1vi6 to 1vi7.

Signal indicating that an
instruction can be moved into
1v15 of pipe(0-3).

Signal which indicates when an
instruction at 1vl5 can move to
1v16 based on the movement of any
instructions in levels 6-12.

This is not the usual de-
finition, i.e.: PACMBO(0-3)=
DPMBO(0-3)*PACAUR{G-3)+1DPMBO
(0-3)*GATAUI+~AUIACT(0-3).

Signal from 1v12 controller in-
dicating that new data can
move into 1vi2.

Signal from 1v13 controller
indicating new data can move
into 1v13.

Signal from 1v14 controller(0-3)
indicating that it can accept
an instruction bound for pipe
(0-3).

This is the normal PAC4 signal
with the array number (0-33
being determined by which of
the past instruction route
flipflops is set. See PIRT
(0-3).

Signal from 1v10 controller
indicating that a new instruc-
tion can be put into IR.

Signal indicating PA=BA at the
octet level.

Signal indicating the 3 LSB's
of PA (ILQPA(29-31)) are = 7.

B-207

Advanced Scientific Computer

a2

Table B-15. X4 IPU Glossary (Continued)

TERM
PA+LC < 1

PB

PBACT+LLAACT

PB TARGET AT LVLO

PBXFER

PINK INSTR. AT LVL3

PICCLR (5-2)
PIRT(0-3)

PPO

PP1

PRV(OP)

PUSH INSTR.

PUSH, PULL AT LVL2

SIG
ILLTEQT1

IRQDCPB

ILQPBVLLA

ILPBTGTLO

IRPBXFER

TRQRMPNK

LRPLPCLR(:~3)
IRQPIRT(0-3)

IRPPO

IRPP]

ICPRVO

TRQDCPSH

1PQDCPP

Loc
I4CMREQ

T4INFACE
(M

T4CMREQ

14CMREQ

I4LVL3

T4INFACE

(1)
I4ROVTER
I4ROUTE3

I4LVL3

I4LVL3

T4CMREQ

T4INFACE
(2)

I4INFACE
(2)

DESCR

Signal indicating that PBACT

or LLAACT is true and the 3 LSB's
of PA(ILQPA(29-31)) plus the
Toop counter (ILQL6(0-7)) plus
the vacancy flipflops (ILQVAC
(0-1)) is less than 11.

Flag decoded from the instruc-
tion op code indicating a pre-
pare to branch instruction.

Flag indicating a PB or an LLA
is in progress.

Signal indicating that a PB
instruction is at 1vi2 or 1v13
and its target is the next in-
struction into IR.

Signal from 1v13 controller
indicating a PB instruction
at 1vi3 and PBENAB 1s true.

ROM bit indicating at pink
(skips) instruction at 1v13.
Levels & =C ¢ q.eé:vt.
Trese flipflops are used to
indicate which of the pipes
received the last instruction.
The array number of the flip-
flop set indicates the pipe

number.

Signal from 1v13 controller
to gate the stack pointer
into BR for a PSH or PUL
instruction.

Signal from 1v13 controller _
indicating that the PSH or PUL
instruction at 1v13 is going

to execute its third pass.

This signal gates the pointer

into AR.

Signal indicating that the
protect violation bit pointed

is true.

PRV(OP) and KCM full

cannot both be true.

Flag decoded from instruction

op code.

Lvi2 flag decoded from instruc-
tion op code indicating that
a PUSH or PULL instruction is

at 1vl12.

B-208

Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM SIG Loc DESCR
PUSH OR PULL INSTR. IRQDCPP I4INFACE Flag decoded from instruc-
AT LVL3 (2) tion op code indicating
PSH or PUL instruction.
PUSH, PULL, OR IVQPPNMF (0-3) I4INFACE Flag set on the v13+1v14
MODIFY 2ND PASS (0-3) transfer by the 1v13 con-
(0-3) troller to indicate that the

second pass of a PUSH, PULL,
or MODIFY instruction is in
progress. It is reset when
the data get to 1vii2.

PO INDICATOR IRQPOIND 14LVL3 This flag is BMQAUPO (0-3)
deiayad by one clock. It
indicates the stack pointer
is in the AU output and ready
to be gated into BR.

PO SIGNAL - BMQAUPG{0-3) MBU(0-3; This is an AU ROM bit indicating
when the terminate stack signal
from the AU can be sampled.

This signal is latched in the
PO IND. flipflop (IRQPOIND)

P3<4 ILP3(29) I4CMREQ Sigrnal indicating the 3 LSB's
of P3 are <4, i.e., bit
29 is false.
QIRT(0-3) 1BQIRT(0-3) I4INFACE Flag at 1v14 indicating the
(0-3) presence of a new instruction

at 1vl4, This flag is set

for all instructions as they

go to 1vl4 and is reset one
clock after PACMBI(0-3) is true.

B-209 Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM
RC HAZ

RC ROUTE(0-3)

RDACK

RDACK]1

RUT AT LVL12(0-3)

READ AT LVL3 GOING
TO LVL4

READ PROTECT

RECOVER LVL2 HAZ

REG.DEST. AT LVL3

REG.DEST. AT LVL7
(0-3)

REG.DEST. AT LVLII
(0-3)

sI6
IRLATRCH

IRQRCRT(0-3)

ICRDACK

IVQRDTLC(0-3)

IRNEWRD3

ICRCMPV

IPRL2HAZ

IRQC3RDT

IVQRDTL7(0-3)

IRQRDTL(0-3)

Loc

I4ROUTE?Y .

T4STATUS

I4CMREQ

T4CMREQ
14ZHAZ
(3,7,1,
15)

I4ROUTE3

14HDCORE

I4PIPTOP

T4INFACE
(2)

14ZHAZ
(3,7,11,
15)

14ZHAZ
(3,7,11,
15)

DESCR

Signal in the 1v13 controller
indicating the presence of at
least one RHZ bit in the
register stack {levels 4-12)
pointed to by the RC route
(0-3) flipflops.

Flag which indicates that

(0-3) was the last to receive

an instruction that could °
modify the compare code register.

Signal indicating the (MR
will accept a read request
if one is made.

This signal is cimplemented
where used, and it consists
of the normal RDACK and no
indirect REQ., SF REQ, or
LF REQ.

Flag in register stack for

pipe(0) indicating that an

instruction with a register
destination is at ivil2.

Signal indicating a read et
1v13 going to 1v14.

Signal indicating a protect
violation has occurred during

a read request. This signal

can be true only during the clock
following the toggling of the RA
flipflop. .

Signal from 1v12 controller
indicating a T2 or MZ hazard
exists.

ROM bit indicating that the
instruction at 1vi3 has a
register destination.

Register stack bit indicating
an instruction with a register
destination is at 1v17 in
pipe(0-3).

Register stack bit indicating
an instruction with a register
destination is at 1vill in
pipe(0-3).

B-210

Advanced Scientific Computer

1o

Table B-15. X4 IPU Glossary (Continued)

TERM
REG.INHIBIT FLAG

REG.SOURCE AT LVL3

REQ.CTR.=0-7

RHAZ(0-3)

RHZ BIT AT LVL12
(0-3)

R-OCTET HAZ(0-3)

RXAACT(0-3)

RXAFUL (0-3)

RYAACT(0-3)

RYAFUL(0-3)

R3=LD(0-3)

R3=0

sIG
IRQRIHIB

" IRQRMRGS

IRRCTREQ(0-7)

IRR3HAZ(0-3)

IVRHZLC(0-3)

IRR30HAZ(0-3)

IRRXAACT(0-3)
IRZTXACT(0-3)

IRRXAFUL(0-3)
IRRXAACT(0-3)
IRZTXACT(0-3)
IRRYAFUL(0-3)

IRR3VSLD(0-3)

IRR3EQO

Loc
T4LVL3

T4INFACE
(2),

I4VECLAS

I4RHAZ
(0-3)

14ZHAZ
(2,6,10,
14)

T4RHAZ
(0-3)

T4ROUTE3
T4VECLAS

I4ROUTE3
T4ROUTE3
I4VECLAS
I4ROUTE3
14ZHAZ
(] 15’9’
13)
T4ROUTE2

DESCR

Set by 1v13 controller to
indicate the first level

of indirect addressing

is complete. Reset by FAC3.

ROM bit indicating that the
instruction at 1vi3 has a
register source.

Signal in 1v13 controller
indicating that the reguest
counter (IRQRCTR(0-2)) con-
tains 0-7.

Signal indicating R3 compares
with some register stack
address (levels 4-12) in
pipe(0-3).

Flag in the register stack
for pipe(0-3) indicating an
instruction is at 1v112

that could modify the result
code register.

Signal indicating the 3 LSB's
of R3 (IRQR3(5-7§) compare
with some register stack
address (levels 4-12) at the
octet level in pipe(0-3).

Signals from 1v13 controller
to reset XAACT(0-3).

Signal from 1v13 controller
to reset XAFUL(0-3).

Signals from 1v13 controller
to reset YAACT(O-S).

Signal from 1v13 controllier
to reset YAFUL(0-3).

Signal indicating R3=LD for
pipe(0-3).

Signal in 1v13 controller indicating

that the R-field(IRQR34-7)) and
the ROM bits IRQC3RA0, IRQC3RA1
ARE=0, for the BAE and BXEC in-
structions this indicates a NOP.

B-211

Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM s16
R3=7 IRR3EQ7

R3>1 AND NO LLA ILPBEN
OR PB ACTIVE

Loc

I4ROUTE

I4CMREQ

DESCR

Signal in the 1vi3 controller
indicating that R-field
IRQR3(4-7)=0. For the BRC
and BCC instructions this
indicates an unconditional
branch.

Signal from lookahead con-
troller indicating that no
PB or LLA is in progress and
R3>1, i.e., a PBXFER can

be sent if a PB is at 1v13.

B-212

Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM SIG LOC DESCR

SAME GROUP(0-3) IBSMGRP (0) I4INFACE Signal from 1v14 indicating
(0-3) that the instruction at 1v13
is in the same group as the
Tast instruction to enter
pipe(0-3). The instruction
group is determined from
ROM-1 bits: GP1, GP2, GP3,

GP4.

SCLK INSTR. IRQDCSTC [4INFACE Flag decoded from instruction

(3) op code indicating a store

clock instruction.

SF REQ IRSFREQ I4VECLAS Signal used to make a memory

‘ request during a STF or STFM

instruction.

SHORT CIRCUIT AT . IBQSCKT4(0-3) I4INFACE Lv14 flag indicating the

LVL4(0-3) (0-3) instruction at 1v14 is short

circuiting on an instruction
in pipe{0-3).

SHORT CIRCUIT AT LVL5 IVQSCKT5(0-3) I4INFACE flag indicating that the
(0-3) instruction at 1v15 is going

to short circuit on the

previous instruction in

pipe{0-3).
SHORT CIRCUIT AT IVQSCKT6(0-3) I4INFACE Flag indicating an instruction
LVL6(0-3) (0-3) at 1v16 in pipe(0-3) which is

going to short circuit on the
previous instruction in that

pipe.

SKIP IRSKIP I4LVL3 Signal from 1v13 controller
indicating a skip 1s to be
taken.

SKIP TAKEN INDICATOR IRQSKIND I4LYL3 This fiag indicates that the

conditions in- the AU necessary
for a skip to take place have
been met. It is essentially
the AU signal AEQET:1(PIRT)

or its complement delayed by

one clock.
SLNXT(0-3) IVQSLNXT(0-3) I4INFACE Lv14 flag which indicates when
(0-3) an instruction can move to

1v16 based on the s of
instructions in levels 6-12
of pipe(0-3).

B-213 Advanced Scientific Computer

I 17‘7", !
r
\‘\Lj

Table B-15. X4 IPU Glossary (Continued)

TERI¢ s16 Loc DESCR

SLNXT PACH30(0-3) IVSLPMBO(0-3) I4INFACE Signal indicating that DPMBO
(0-3) (0-3) is not true or PACAUR

(0-3) is true, i.e., this is
the usual definition for
PACMBO. Since SLNXT(0-3) is
a flipfiop, this signal was
used instead of PACMBO(0-3)
to avoid introducing a bubble
into the pipe under certain con-
ditions.

SP(0-3) IRQSELPI(0-3) I4VECLAS These flipflops indicate which
pipe, if any, has been selected
by a vector instruction.

SPEC.ERR. NONE I4PIPTOP Signai indicating: 1) a BCLE
or BCG instructicn with odd
T-field; 2) an instruction
with an odd R-field when
the ROM-1 RSE bit is on; or
3) the ROM-1 10P bit on
{iLLEGAL OF}).

SPEC.ERR AT LVL3 IRORSPEC [4ROUTET Signal from 1v13 controller
indicating STFM is destined
for the register file or a
LFM is coming from the register

file.
SPS INSTR. IRQDCSPS T4INFACE Flag decoded from instruction
(2) op code indicating an SPS
instruction.
STACK INSTR.AT LVL3 IRQDCSTK IAINFACE Flag decnded from instruction
(3} op code indicating a stack
(PSH, PUL, MOD) instruction
at 1vi3.
STACK INSTR. IN IRSTKIAU I4ROUTET Signal indicafing that there
AU(PIRT) is no activity in levels

4-6 of the pipe pointed to

by PIRT(0-3) and so the first
pass of the current stack
instruction must be in the
AU (levels 7-12).

START FORCED WRITE IRSTFHRT$0-3 I4ROUTE2 Signals from the 1v13 controller
(0-3) TRSTRFRW(0-3 I4VECLAS to initiate a forced write
IRSFWIHZ(0-3) I4LVL3 in pipe{0-3).

STATUS FREEZE IMSTAFRZ I4HDCORE Signal used by 1v13 controller
to empty the pipes so that
a status command can be exe-
cuted.

B-214 Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM SIG Loc ‘ DESCR
STORE NEGATIVE IRQRMNSN T14INFACE ROM bit indicating a store
(3) that is not a store negative.
STL AT LVL3 IRSTREG I4ROUTET Signal from 1v13 controller

indicating a store instruction
at 1v13 going to the register
file (a store "little").

SUBTYPE SUB YEL I4fNFACE ROM bits indicating instruction
(0) sub colars.
SUB OR %4§NFACE
0
SUB BLUE I4INFACE
(0)
SUB GRN I4INFACE
(0)
SUB PINK I4INFACE
, (0)
SXAFUL(0-3) IRSXAFUL(0-3) I4ROUTE3 Signal from 1v13 controller to

set XAFUL(0-3).

SYAFUL (0-3) IRSYAFUL(0-3) I4ROUTE3 Signal from 1v13 controller to
set YAFUL(0-3).

B‘Z] 5 Advanced Scientific Computer

a2

Table B-15. X4 IPU Glossary (Continued)

TERM
TARGET AT LVL1

TARGET AT LVL2

TARGET AT LVL3

TARGET FAIL

TERMINAL IND. AT
LvLl

TERMINATE (PIRT)

TERMIN.IND.

TFAIL

T HAZ FREE

T IND HAZ

s16
IIQTARGT

IPQTARGT

- IRQTARGT

IRTGTFL

IITIAN

AOTRMSTK(0-3)

TRQTRMIN

ILQTFAIL

IPQDCTHF

I1THAZSI

Lo
I14PIPTOP

I4PIPTOP

I4LVL3

I4LVL3

I4PIPTOP

AU(0-3)

I4LVL3

T4CMREQ

T4INFACE
(m

I4PIPTOP

DESCR

Flag indicating that the
target of a PB or LLA in-
struction is at 1v1l.

Flag indicating that the
target of a PB or LLA in-
struction is at 1vi2.

Carried with the instruction
to 1v13 to indicate that the
current instruction came
from the target location of
a PB or LLA instruction.

Signal indicating that a
target branch has failed to
branch or has been skipped
or branched around.

Signal indicating that the
indirect cell's indirect
bit (IIQIR(4)) is not set.

This signal indicates when
a stack instruction should
be terminated because the
test pass fail. It is
latched in the TRMIN.IND
(IRQTRMIN). The array
number is provided by the
PIRT(0-3) flipflops.

This flag is the latched
version of the AU signal
AOTRMSTK(0-3). It indicates
when a stack instruction
should be terminated after
the first pass.

Flag used by the lookahead
controller to remember that
the octet containing the
TARGET+1 instruction must
be refetched after a TARGET
FAIL.

Flag at 1v12 decoded from
instruction op code indicating
that the instruction at 1v12
cannot be indexed.

Signal in 1vi1 controller
indicating a comparison be-
tween T1 and R2 or T1 and an

address in any of the register

stacks.

B-216

Advanced Scientific Computer

TERM

TOGGLE

T1 HAZ

T1=0

T2 HAZ

T2=0

Table B-15. X4 IPU Glossary (Continued)

s16
NONE

NONE

IITIEQO

IPARVTZ

IPT2EQ

LoC DESCR

T4CMREQ Signal from lookahead controller
to complement the KRTAG flipflop.

I4PIPTOP Signal indicating the comparison
of T1 with $2, AR, or an address
in any of the register stacks.

I4PIPTOP Signal indicating the T-field
(1I1QT1{(1-3)) is zero.

I4RHAZ(0) Signal indicating the comparison
of T2 and AR.

I4PIPTOP Signal in 1v12 controller in-
dicating that the T-field
(1PQT2(1-3)) is zero.

B-217 Advanced Scientific Computer

Table B-15. X4 IPU Glossary (Continued)

TERM
VACANT(0-3)

VACANT (PIRT)

VBAL(SP)

VECT.AT LVL2

VECTL R(LSB)=0

VECTOR INSTR.
AT LVL3

VECTOR,PUSH,PULL,
OR ORANGE INSTR.
AT LVL2

VIP(0-3)

VIP(SP)

vio, vIi, vI2,
VI3

sI6
IRPVAC(0-3)

IRPRPVAC

IRQVBAD(0-3)

IPQDCVCT

IRQR3(7)

IRQDCVCT

IPSBBLK

IRQVIP(0-3)

IRQVIP(0-3)

IRVIO,IRVIT
IRVIZ2,IRVI3

Loc
T14ROUTE2

T4ROUTEZ2

T4VECLAS

T4INFACE
(2)

14PIPE(7)

T4INFACE
(2)

14PIPTOP

I4VECLAS

T4VECLAS

T4VECLAS

DESTR

This signal indicates no
activity in levels 5-12
of pipe(0-3) and no in-
struction in level 4 destined
for that pipe, and that the
pipe is on with no vector
in progress. If only one
pipe is on, this signal in-
dicates only that no vector
is in progress.

[R
This is the pipe VACANT(0-3)
signal with the PIRT(0-3)
flipflops providing the
array number.

This flag indicates a vector
bad guy in progress in pipe
(0-3) with the array number
being supplied by SP(0-3).
See SP(0-3).

Lvi2 flag decoded from in-
struction op code indicating
that a vector is at 1v12.

LSB of the R-field of a
vector instruction, where=0
indicates the VPF must be
loaded before proceeding.

Flag decoded frem instruction
op code indicating a vector
(VECT) instruction at 1v13.

Signal indicating that one of
these instructions is at 1vi2.

Set by 1v13 vector controller
to indicate when a vector

is in progress in pipe(0-3).
Reset by MBU with vector

end signal.

This is the normal VIP(0-3)
flag with the array number
supplied by SP(0-3). See
SP(0-3).

Timing signals from 1v13
controiler during vector
initialization used to
control the gating of the
VPF.

B-218

Advanced Scientific Computer

TERM
WACK
XAACT(0-3)

XAFUL(0-3)

XCH INSTR.

XEC AT LVL1

XEC AT LVL2
XEC FLAG
.,FSET(0-3)

XUP(0-3)

Table B-15. X4 IPU Glossary (Continued)

s16
ICWACK

IBQYAACT(0-3)

IBQZAFUL(0-3)

IRQDCXCH

TISDXEC

IPQDCXEC

IRQXEC

IBXFSET(0-3)

IBQXUR(0-3)

Loc
I4CMREQ

I4INFACE
(0-3)

T4INFACE
(0-3)

I4INFACE
(3)

T4HDCORE

T4INFACE

(3)

I4LVL3

I4INFACE
(0-3)

I4INFACE
(0-3)

DESCR

Signal indicating the CMR
will accept a write request
if one is made.

Flag indicating the X-buffer
address in XA is valid for
pipe(0-3).

Flag indicating the X-buffer
in MBU(0-3) pointed to by the
address in XA has valid data.

This flag is decoded from the

exchange instruction op code.

Signal decoded from instruction
op code indicating an execute
instruction at 1v11.

Lvi2 flag decoded from instruc-
tion op code indicating the
instruction at 1v12 is an
execute.

Flag set by execute instruction
at 1v13 to steer the 1v13 con-
troller while it is executing
the target instruction.

Signal indicating that on the
next clock, data from CM

will be gated into the X-buffer
for pipe(0-3).

Lvi4 flag sent to MBU(0-3) to
inhibit the setting of DPMBI
(0-3) until an update can take
place.

B-219

Advanced Scientific Computer

S

TERM

YAACT(0-3)

YAFUL(0-3)

YELLOW INSTRUCTION
AT LVL3

YFSET(0-3)

YNEXT(0-3)

YNEXT(PIRT)

YUP(0-3)

Table B-15. X4 IPU Glossary (Continued)

SI6 Loc
IBQYAACT(0-3) I4INFACE
(0-3)
IBQYAFUL(0-3) I4INFACE
(0-3)
IRQDCXEC I4INFACE
(3)
IBYFSET(0-3) TI4INFACE
(0-3)

IRQYNEXT(0-3) I4ROUTE3

NONE ' I4ROUTE3

DESCR

Flag indicating the Y-buffer
address in YA is valid for
pipe(0-3).

Flag indicating the Y-buffer
in MBU(0-3) pointed to by the
address in YA has valid data.

Flag decoded from instruction
op code indicating a yellow
(execute) instruction at
v13.

Signal indicating that on
the next clock data from
CM will be gated into the
Y-buffer for pipe(0-3).

When this flipflop is set,

it indicates that the Y-
buffer in MBU(G-3) is the next
buffer to receive a read
request.

This is the normal YNEXT
flag with the array number
(0-3) being determined by
which of the PIRT fiipflops
is set. See PIRT.

Lvi4 flag sent to MBU(0-3)
to inhibit the setting of
DPMBI (0-3) until an update
can take place.

IBQYUP(0-3) I4INFACE
(0-3)
B-220

Advanced Scientific Computer

O

TERM
ZAGED(0-3)

ZAGE1(0-3)

ZAGE2(0-3)

ZAGE3(0-3)

#BFUL(0-3)
z

ZEX(0-3)

ZEY(0-3)‘

Table B-15. X4 IPU Glossary (Continued)

sie
IRZAGEDO(0-3)

IRZAGED1(0-3)

IRZAGED2(0-3)

IRZAGED3(0-3)

IBQZBFUL(0-3)

1BQZEX(0-3)

I1BQZEY(0-3)

Loc
14MISC

T4MISC

T4MISC

14MISC

T4INFACE
(0-3)

T4INFACE
(0-3)

T4INFACE

(0-3)

DESCR

Signal indicating that none of
the 3 Z-AGE flipflops for pipe
(0-3) is set, making this the
youngest of the 4 Z-buffers.
When all ZPFUL{0-3) are set,
only one pipe can have this
AGE.

Signal indicating that 1 of
the 3 Z-AGE flipflops for
pipe(0-3) is set, making .
this the second youngest

of the 4 Z-buffers. When
all ZPFUL(0-3) are set, only
one pipe can have this AGE.

Signal indicating that 2 out
of the 3 Z-AGE flipflops

for pipe(0-3) are set, making
this the second oldest of the
4 Z-buffers. When all ZPFUL
(0-3) are set, only one pipe
can have this AGE.

Signal indicating that all

- 3 of the Z-AGE flipflops

for pipe(0-3) are set, making
this the oldest of the 4
Z-buffers. When all ZPFUL
(0-3) are set, only one pipe

" can have this AGE. -

Flag controlled by ZBFUL

controller to indicate that-
the address in ZB is valid
for pipe(0-3). ‘

Lv14 flag indicating that the

Z-buffer and X-buffer in pipe

(0-3) have the same address.
It is used by the forced write
controller to initiate an
automatic Z»X update during

a forced write.

Lv14 flag indicating that the
Z-buffer and Y-buffer in
pipe(0-3) have the same address.
It is used by the forced write
controller to initiate an -
automatic Z-Y update during

a forced write.

B-221

Advanced Scientific Computer

a2

Table B-15. X4 IPU Glossary (Continued)

TERM SIG LoC DESCR

Z-JOIN(0-3) IBQZJOIN(0-3) I4MISC Flag indicating that at
least one store was made into
the Z-buffer of pipe(0-3)
while in the joined mode.
The flag is set IF FORK IND.=0
when ZPFUL(0-3) is set, and
reset when pipe(0-3) is force

written.
ZPFUL(0-3) IBQZPFUL(0-3) I4INFACE Flag controlled by ZPFUL
(0-3) controller to indicate the
address in ZP is valid for
pipe(0-3).
ZPFUL(SP) NONE I4VECLAS This is the normal IPFUL

flag with the array number
determined by the SP(0-3)
flipflops. - See SP(0-3).

IPTIR(0-3} IPZPTZE(0-3) I4INFACE Signal from forced write
(0-3) controller used to gate
ZP+ZB and set IBFUL for

pipe(0-3).

Z-STORE AT LVL6(0-3) IVQZSTL6{0-3) I4ZHAZ Register stack bit indicating
(2;6,10. a Z-store at 1lvlé of pipe(0-3).
14

Z-STORE AT LVL7(0-3) IVQZSTL7(0-3) 14ZHAZ Register stack bit indicating
(2,6,10 a Z-store at 1v17 of pipe(0-3).

14)
Z-STORE AT LVL10 IVQZSTLA(0-3) I4ZHAZ Register stack bit indicating
(0-3) (2,6,10, a Z-store at 1v110 of pipe(0-3).
14) This can happen only during the
second pass of a PUSH, PULL,
or MODIFY instruction.
ZSTP{0-3) IRZST(0-3) 14ZHAZ Indicates at Jeast one Z-store

(2,6,10, 1in levels 5-11 of pipe(0-3)
14) or a Z-store at 1vl4 destined
for pipe(0-3) generated on

I4RHAZ.
ZTXu(0-3) IBQZTXU(0-3) I4INFACE Lv14 flag sent to MBU(0-3) to
(0-3) cause a Z+X update on the next
clock.
ZTYu(0-3) 1BQzTYU(0-3) I4INFACE Lv14 flag sent to MBU(0-3)

(0-3) to cause a Z-Y update on the
next clock.

B-222 Advanced Scientific Computer

APPENDIX C
4XCP HAZARD CONDITIONS

Advanced Scientific Computer

a2

APPENDIX C
4XCP HAZARD CONDITIONS

This appendix 1ists the types of hazard conditions that occur in the times-
four CP. These hazards are divided into three main categories: (1) those
involving only scalar instructions, (2) those in which both scalars and vectors
are in progress at the same time, and (3) those involving only vectors. These
categories are further subdivided in the outline on the following page.

C-1 Advanced Scientific Computer

I. Scalar Hazards
A. Register Hazards
1. Register Operand Hazards
2. Alpha Register Operand Hazards
3. Index or Base Hazards
4.* Destination Hazards
5.* Largest Hord Size Hazard
B. Central Memory Address Hazards
1. Store-Read Hazards
Store-Load File Hazards
Store-Store File Hazards
Store-File and Load-File R-Octet Hazards

Siore File Hazard

mpth

Store File-Read Hazard
C. Instr&ction Hazards
1. Storing Over Instructions
2. Store File Over Instructions
3. Vectors Storing Over Instructions
D. Arithmetic Exception Hazards
1. Laad Arithmetic Exception Mask or Condition Hazards
2. Sipre Program Status Hazards
E. Branch Hazards
1. Result Code Hazard
2. Condition Code Hazard

3. Arithmetic Exception Branch Hazard

*New 2X, 3X, and 4X Hazards

c-2 Advanced Scientific Computer

II.

I11.

Scalar-Vector iazards

A. - VPF Modification

B. Scalars Writing Over Vector Input Arrays

C. Vectors Writing Over Scalar Read Data

D. Alpha Hazards During Vectors in Fork and Join Mode
Vector Hazards

A Vectors Storing Over Their Own Input Data Arrays

B. Addressing Conflicts Between Two Vectors Executing
Simultaneously in Parallel Pipes

C. Halfword Z-fill-in Hazard

C-3 Advanced Scientific Computer

a2

are referred to as hazards. The intended meaning of "hazard" as used

Throughout this description, operand and instruction conflicts

here should be "something to avoid if possible." In most cases not
staying away from hazards will result only in a slower execution rate
due to instruction delays while waiting for the hazard to clear, but
the hazard will not affect the logical results of a program. In other
cases, such as those involving the "vector hazard rule,”" a hazard is
quite critical and will result in numerical program errors or loss of
program control if the hazard rule is not taken into account. The
difference in terminology between these two uses of the word "hazard"
is distinguishable in this description by a block to the right of each

hazard heading which indicates the following:

DELAY | for delay-producing hazards which do not affect program

results.

FUNCTIONAL | for error-producing hazards.

Advanced Scientific Computer

O

I. Scalar Hazards

A.

Register Hazards

1.

Register Operand Hazards DELAY

Two conditions are hecessary for a register operand
hazard to exist. These conditions are:

(a) A first instruction of an instructioh stream having
a register destination aimed at one of the registers
of the register file. This instruction is located
below level 3 of the CP pipeline but has not yet
entered its result into the register file.

(b) A second instruction, occurring at a later point in
the instruction stream, having arrived at level 3
of the CP pipeline, and having a register source
requirement to read a portion or all of the register
presently destined to be modified by the first in-
struction.

ﬁgrdware'solgtion:' Logic is provided to detect this

hazard. Register operand hazards are cleared when the
first instruction has modified its destination register.

Delay avoidance: It is possible to avoid some of

the delay due to register operand hazards. Two methods

exist. |

(a) Using the short-circuit path -
Two short-circuit data paths exist from the output
to the input of the arithmetic unit. One is for
Register Short Circuits, and the other is for Alpha

Register Short Circuits.

C-5 Advanced Scientific Computer

(b)

The Register Short-Circuit path is used when
a second instruction experiencing a register hazard
determines that a first instruction causing the hazard
is still the last instruction to have entered a given
pipe. Other instructions may have occurred between
the "first" and "second" instructions, but none of
these have taken the same pipe as the first instruc-
tion.

For this short circuit to take place, the word
sizes of the source and destination registers of the
two instructions must be the same. An exception to
this rule is that halfword-to-halfword short circuits
are not brovided. In addition to the same word size
short circuits, there also exists short circuits for
doubleword results feeding back to second instruction
singleword register sources with even register addresses.
Instruction insertion -

In some cases it may be possible to insert other
instructions between the twc that cause a register
operand hazard.A The hazard is not actually avoided
by this method; it is just postponed to the point
where it does not exist any more. The method does,
however, allow the CP to perform other useful compu-
tations during time that the CP would normally be
waiting for the hazard to clear. Of course, the other
work performed could not use the register which is

causing the hazard.

C-6 Advanced Scientific Computer

Delay time: Register operand hazard delay is dependent
upon the pipe time of instruction I1 which is 4 clocks +

AU time + memory time, providing the AU output does not

"become blocked due to multiple AU outputs destined for the

register file. AU time is found listed in Table 1 of the
CP timing section (B2) of the CP Hardware Volume. Memory
time is eight clocks if instruction I1 makes a memory read
request. This time delay equation assumes an initially
empty pipe. For accurate timing estimates, all pipe con-
ditions prior to instruction I1 must be taken into account.

Example of register operand hazard:

Inst
Inst R, a Pipe Comment
Il LOAD A1, CM] (0)
12 LOAD A2, CM2 (0) Assume AR=ZP(0)
I3 ADD A1, CM3

For thiéihazard to appear in the 4X CP, operation of
the AU short-circuit path must be blocked by one or more
other instructions using a.different register between the
two instructions that cause the hazard. The other instruc-
tion(s) must use the same pipe in order to block fhe short-
circuit path. For purposes of this example, it is assumed
that a prior. store instruction has left the Z-buffer of
pipe 0 with data destined for octet CM2 in central memory.
This cdndition forces instruction I2 down pipe 0, thereby
blocking I3 from picking up its register operand (A1) over

the AU register short-circuit path from the prior result

C-7 Advanced Scientific Computer

R

of instruction I1. Without the short circuit, I3 must
wait in level 3 until Al has been modified by instruction

IT.

C-8 Advanced Scientific Computer

2

2.

Alpha Register Operand Hazards DELAY

Two conditions are necessary for an alpha register
operand hazard to exist. These conditions are:

(a) A first instruction of an instruction stream having
a register destination aimed at one of the registers
of the register file. This instruction is located
in the CP pipeline between levels 4 through 12 in-
clusive.

(b) A second instruction, occurring at a later point in
the instruction stream, having arrived at level 3 of
the CP pipeline and having an effective address a<2F
and an M-field of zero, such that an alpha register
source requirement exists to read a portion or all
all of the register presently destined to be modified
by the first instruction.

Hardware solution: Logic is provided to detect this

hazard. Alpha register operand hazards are cleared when
the first instruction has modified its destination register.

Delay avoidance: The same two methods that were used

to avoid delays due to register operand hazards are also
useful for avoiding delays due to alpha register operand
hazards.

Delay time: Alpha register hazard delay is dependent
upon the pipe time of instruction I1 which is 4 clocks +
AU time + memory time, providing the AU output does not

become blocked due to multiple AU outputs destined for the

C-9 Advanced Scientific Computer

register file. AU time is from Table 1, and memory time ‘

{s efght clocks if instruction I1 makes a memory read

request.

Inst

_# Inst R, a Pipe Comment
n LOAD A1, CMI (0)
I2 LOAD A2, CM2 (0) Assume AR=ZP(0)
I3 ADD A3, Al 0)

In this example instruction 12 takes pipe O because
its central memory read data, CM2, is assumed to be resident
in the Z-buffer of pipe 0. 12 blocks the possibility of
instruction I3 picking up its alpha register operand (A1)
via the AU alpha register short-circuit path from the out-
put of instruction I1. Without the short circuit, I3 must
wait in level 3 until Al has been modified by I1.

Cc-10 Advanced Scientific Computer

53

3.

Index or Base Hazards | DELAY

Two conditions necessary for an index or base hazard
are:

(a) A first instruction of an instruction stream having
a register destination aimed at one of the index or
base registers of the register file. This instruc-
tion is located in the CP pipeline between levels 2
through 12 inclusive.

(b) A second instruction, occurring at a later point in
the instruction stream, having the requirement to
use the index or base register presently destined to
be modified by the first instruction.

Hardware solution: Logic is provided to detect this

hazard. Index or Ease hazards are cleared when the first
instruction has modified its destination register. Index

or base hazards hold the second instruction at level 1

until the hazard is cleared. However, late index or base
hazards occur when a Store instruction into a base or index
register immediately precedes a second instruction requiring
the index or base register at level 2. For late hazards

of this type, the second instruction will refetch its index

or base register at level 2 when the hazard has cleared.

Delay avoidance: There is no hardware short circuit

to decrease the delay due to index or base hazards. The
method of instruction insertion can be used to perform
other work while waiting for the index or base hazard to

clear.

C-11 Advanced Scientific Computer

£

Delay time: Index or base hazard delay is dependent
upon the pipe time of instruction I which is 6 clocks +
AU tihe + memory time, providing the AU output does not
become blocked due to multiple AU outputs destined for
the register file. AU time is from Table 1, and memory
time is eight tlocks if instruction I1 makes a memory read
request.

Example of Index hazard:

Instruction # Inst R, «
Il LOAD X1, CMI
I2 ADD A1, CM2, X1

In this example, instruction I1 modified index register
X1; then the next instruction, 12, uses index register X1
to develop its effective address, CM2 + (X1). The second
instruction must wait in level 1‘unti1 instruction Il has

modified index register X1.

C-12 Advanced Scientific Computer

a2

4.

Destination Hazards _DELAY

Destination hazards exist in a 2X, 3X, or 4X CP, but. -
not in a 1X CP. This hazard {s due to a Load, Interpret,

or Normalize instruction having the same register destina-

tion address as that of some prior instruction which has

not yet entered its result into the register file. The

prior fnstructfon is any type that has a register destina-

: tion.

If this hazard were not detected by the 2X, 3X, and
4X machines, then it would be possible for a second in-
struction to overtake a first instruction, via another
MBU-AU pair, and place its result #n the register file

prior to the result of the first instruction. Results

: occufring out of sequence in this manner would not leave

the Tatest value in the register file at the common --
register addresé of the two instructions. Hardware pro-
tects against this type of hazard.

.Hardware solution: Logic is enabled in a 2X, 3X, or

- ax configuration for detecting destination hazards. This

logic 1s-disabled in a 1X configuration, since one instruc-
tion cannot pass another instruction in a one-pipe machine.
Also, hardware is provided in the 2X, 3X, and 4X machines
to force Load type instructions down the pipe in which

thé destination hazard exists for cases when the effective
address is selecting a register of the register file

(0 < 2F and M = 0). Forcing the instruction into the pipe

C-13 Advanced Scientific Computer

behind the destination hazard has the effect of preventing
the instruction race condition, while at the same time
allowing the Load type instruction to proceed without ex-
periencing a destination hazard delay.

For the case when the effective address of a Load
type instruction is selecting a central memory operand,
a destination hazard causes further checking by hardware
to determine whether the Load address (in register AR of
level 3) is equal to the Z-octet address contained in pipes
other than the one causing the destination hazard. If
there is address agreement, then the destination hazard
causes a delay until the hazard clears. This delay pre-
vents a forced write of Z in the other pipe and a read
request for the Load address from the destination hazard
pipe. If there is no address agreement, then the [oad
takes the pipe causing the destination hazard, and no
delay occurs.

Delay avoidance: Delays due to destination hazards

are avoided by hardware for the cases when: the Load ad-
dress {is selecting a register of the register file; or
when the Load address is selecting central memory and the
address is also resident in the Z-buffer of the desfina-
tion pipe; or when the Load address is not resident in the
Z-buffer of any of the pipes.

The method of instruction insertion can be used to

fi11 in the dead time waiting for a destination hazard

to clear.

C-14 Advanced Scientific Computer

Delay time: A destination hazard clears when the
register destination instruction causing the hazard has
placed its result in the register file. For meaningful
code, the register destination instruction (I1) should
be followed by a Store, then by the Load type instruc-
tion (I3) experiencing the delay. Otherwise, I3 will
simply write over data entered into the destination regis-
ter by I1. If, for example, I1 were an ADD, then the
result of the addition would be lost because of the Load
into the same register.

With the Store instruction between I1 and I3, the
destination hazard delay due to I1 is 3 clocks + AU time +
memory time, providing the AU output does not become blocked
due to multiple AU outputs destined for the register file.

Example of destination hazard is as follows:

Instruction # Inst R, o
I DIVIDE A1, CM1
12 LOAD A1, CM2

In this example, the divide instruction could be re-
placed by any instruction with a register destination of
Al. The Load does not see a source register operand hazard
because its source operand is from central memory. If
vould be a]f right for the Load to take a different pipe
if it were not possible for the Load to overtake and pass
the divide. To guard against this possibility, the Load
instruction is routed down the same pipe taken by the

divide. The divide pipe is taken assuming that CM2 is not

C-15 Advanced Scientific Computer

resident in the Z-buffer of any other pipe. If residency
exists, then the Load waits at level 3 until the destina-
tion hazard due to the divide has cleared.

Note that this example shows meaningless code, since

the result of the division is destroyed by the Load.

C-16 Advanced Scientific Computer

~

5.

Largest Word Size Hazard . DELAY

" Four conditions must exist for a largest word size

hazard to occur. These conditions are:

(a)

(b)

(c) |

(d)

Only two types of second instructions can cause this

hazard. They are Multiply instructions (Op codes

6C and 7C) with an even addressed arithmetic register
specification and fixed to floating point conversion

instructions (Op codes AA, A9, and AB; mnemonic codes
FXFD, FHFL, and FHFD, respectively). These two types
of instructions are the only ones which use a larger

register destination word size than their own source

word size.

The second instruction must be preceded by a first

instruction with a register destination of smaller

‘word size than that of the second instruction's

register destination.

The register destination of the first instfuction

must be contained within the register modification
space of the destination register of the second in-
struction.

The register destination of the first instruction

does not have the same address as the source register
of the second instruction. Otherwise, if the addresses
were the same, then the hazard would be classified as

a register operand hazard.

C-17 Advanced Scientific Computer

Hardware solution: Hardware detects largest word size

hazards and holds the second instruction in level 3 until
the hazard clears. |

Delay avoidance: The method of instruction insertion

can be used to fill in the dead time waiting for a largest
word size hazard to clear.

Delay time: Largest word size hazard delay time is
dependent upon the time for instruction I1 to clear the
pipe. This time is 4 clocks + AU time + memory time,
providing the AU output does not become blocked duc to
multiple AU outputs destined for the register file. AU
time is from Table 1, memory time is eight clocks if in-
struction I1 makes a memory read request.

.Example of largest word size hazard:

. An example of an instruction sequence with a largest

‘word sfze hazard is given following in which a toad to

an arithmetic register is followed by a multiply using

an adjacent, evenly addressed arithmetic register.

Instruction # Inst R, a
I LOAD A1, CM1
I2 MULTIPLY AO, CM2

The source register of the multiply does not show upvas
a register operand hazard with the destination register
of the load instruction. The mialtiply instruction, using

even address register AQ, will place its result into the

~even-odd register address pair AO-Al. If, for example,

C-18 Advanced Scientific Computer

the read octet of the muitiply was resident in one of the
four pipes and the read octet of the toad was not resident,
then it would be possible for the multiply to place its
doubleword result into registers A0 and Al prior to Al being.
entered by the Eoad instruction. If Al were entered late

by the Load, then the expected final doubleword product

of the multiply would be overwritten in its least signifi-

~ cant half. Largest word size hazard logic in the CP does

not allow this to happen.

Another example is presented to show that the hard-
ware does not call out a largest word size hazard unneces-
sarily. In this example, an evenly addressed register
(A0) is used by the foad, while an odd register (A1) is

used by the multiply. This is just opposite to the register

"usage of the previous example.

Instruction # Inst R, a

n LOAD A0, CM1
I2 MULTIPLY A1, CM2

The multiply instruction does not have a source register
operand hazard or a largest word size hazard. The multiply
selects its pipe according to thc :.ilar routing rules.

There is no hazard delay for this instruction sequence.

C-19 Advanced Scientific Computer

B. Central Memory Address Hazards

1. Store-Read Hazards DELAY

A Store instruction followed by a read from the same
octet of memory causes store-read hazards. Several Store-
read sequences are considered in order to see how timing
between instructions influences whether this type of hazard
appears or not.

Example B.1.1

Instruction Inst R, « ’ Pip
I1 STORE A1, CMI1 (0)
12 ADD A2, CMI (X) {;‘;g }; o SC

For this example, instruction I2 at level 3 determines
that there is address agreement between address register
AR and the Z-pipe register, ZP(p), for one of the pipes (p).
The ZP registers cover Store instructions from levels 4
through 12 and the Z-buffer. Another set of four registers,
ZB(p), holds the Store address of data being written into
memory.

At this point in the determination of pipe selection,
it is possihle for instruction I2 tn have a register operand
hazard and find that it can pick up its register operand
(A2) by using the AU short-circuit path. If an AU short
circuit is found, then instruction I2 will initially try
to take a pipe other than 0 because pipe 0 contains a last

destination register address of Al. The register source

C-20 Advanced Scientific Computer

O

address of an instruction is placed in the last destina-
tion register for Store instructions if they do not modify
data when passing through the arithmetic unit. Store
Negative is an example of a Store type instruction that
modifies fts register source data in the AU. |

If the Add initially tries to take a different pipe
because of both a register hazard and a short-circuit con-
dition, then a forced write to central memory will be -«
stafted for octet CM1 in pipe 0.‘ This forced write occurs
so that the data from location CM1>can be read by another
pipe. The only data path from the output of one pipe to
the input of andther pipe is by means of central memory.
Before the read request can be issued by another pipe,

the complete write cycle for that memory location must

_have finished. This is because the four pipes aré connected

to memory over separate memory ports, and the Memory Control
Unit (MCU) does not guarantee that a write to memory will
be processed first fgr the case of a write then a read to
the same octet on two different ports. |

The timing delay for both a write and a read cycle
is shown as case41 in the store-read timing diagram of
Figure 1. The ADD is completed on clock 30 for case i.

It is hiQh]y Tikely that the register will clear before
the forced write is complete; in which case, the Add instruc-
tion may choose any other pipe for its read from 1ocation

CM1. This change in routing does not affect the delay

C-21 Advanced Scientific Computer

time if the forced write has been initiated. However, if
the register hazard clears before the forced writé is
initiated, then the read from location CM1 can be done
from pipe 0. If octet CM1 is not resident ih the X~ or
Y-buffers of pipe 0, then a memory read request is re-
quired before the Z-to-X update can occur. This is shown
as case 2 of Figure 1, in which the Add is completed on
clock 17. This is thirteen clocks earlier than the time
for completion in case 1.

Case 3 occurs when the store immediately precedes the
add, there is no short-circuit condition to cause the Add
to select another pipe; and the X- or'Y-buffer has a resi-
dent octet containing locatfon CM1. The resident X or Y
is the result of a prior memory read request for data with-
in the octet containing word CM1. The Add is allowed to
move into level 6 when there are no Z-stores ih the pipe
and the update from Z to X has taken place. The Add is
completed on clock 12.'some eighteen clocks earlier than
case 1.

Case 4 is one in which there are no Z-stores between
levels 4 through 12 of pipe 0, but pipe O contains a resident
Z-octet of address CM1. This implies that the Store into -
CM1 occurred prior to the arrival of the Add at level 3
and that there were other instructions between the Store
and the Add which allowed time for the Store to pass through

- the pipeline into the Z-buffer. Also, there is assumed to

C-22 Advanced Scientific Computer

be a resident X as a result of a prior memory read request.

" The Add 1s completed on clock 9 for this case. This is

twenty-one clocks earlier than case 1.

The Store-read example used for the purpose of this
description is functionally the same as

I STORE A1, M1

I2 ADD A2, Al
Using this code, the Add takes the same pipe as the Store
because of the alpha short circuit on register Al. There

1s no long write then read delay as previously'described.

- Therefore, it is apparent from what has gone before that

code should be written as in the preceding whenever possible

in place of the Store-add example given earlier.

C-23 Advanced Scientific Computer

¥¢-2

131NdW0Y 91413UBIIS PIIUBAPY

CASE 1. STORE INTO CM1, THEN ADD WITH SHORT CIRCUIT TO ANOTHER PIPE, NONRESIDENT X.
STORE INTO CM1, THEN ADD WITH UPDATE FROM Z TO X, NONRESIDENT X,

STORE INTO CM1, THEN ADD WITH UPDATE FROM Z TO X, RESIDENT X.

RESIDENT Z OF OCTET CM1, THEN ADD WITH UPDATE FROM Z TO X, RESIDENT X.

CASE 2.
CASE 3.
CASE 4.

S

—
N DM 0O N OO0 0 o W

2
T

A
S

TIME
LEVEL 0 1 2 3 4 5 6 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
L
A
> A >

A A A

A A A

A A A

A A A A

A A A A
CASE 4 CASE 3 CASE 2 CASE 1

STORE-READ TIMING

a2

2. Store-Load File Hazards. DELAY

This hazard is caused by CP code of the form -

Instruction # ~ Inst R, o
n STORE A1, CMI
12 LOAD FILE R, CM]

Store-Load File hazards are the result of a Load File
instruction requesting the same octet from memory as was
written into by a previous Store instrucyion. The Store

| could haye been the immediately preceding::;:one which
occurred some time ago but which left its Z-octet resident
in the pipe that was taken; i.e., no other Stores to dif<-
ferent octets have taken that pipe since the Store to CM].

Since the Store octet is resident in one of the pipes,
its address, CM1, is in some ZP (p) register. The Load-
File address, CM1, is compared against all Zﬁ addresses

~ when the Load File reaches level 3 of the IPU. .Addfess_
agreement from this comparison is called an alpha hazard..

At this point the LF instruction at level 3 finds
the pipe (p) in which the resident Z-octet of address CM1
is Tocated. A check is made to see if the hazard {s due
to a vector in progress rather than a scalar Store to
memory. 'IfAthe hazard is due to a vector in progress,
then the alpha comparison is ignored; and theALoad File
proceeds to execution. The alpha comparison is ignored

in this case because compiled code will not contain vectors

C-25 Advanced Scientific Computer

that write over scalar data areas when the CP is placed

in the FORK mode. If the CP is placed in the JOIN mode,
then it is not possible for subsequent scalar instructions -
to proceed to execution until the vector has completed.

If a vector is not in progress in the pipe (p) in
which the alpha hazard exists, then the LF instruction in
level 3 waits until there are no Z-stores in pipe p. This
wait insures that the Z-octet buffer has all its data before
a "start forced write" command is issued to the MBU.

The LF instruction continues to wait at level 3 until
the storage of octet CM1 is completed to central memory.

It then proceeds to execution at level 3, making its lcad
file request via the IPU4 memory port.

Hardware solution: Logic is provided to detect this

hazard. Store-Load File hazards are cleared when the Z-octet
containing the Lload-File data has been written into mcmory. |
The Load File i$-held in level 3 until the hazard is cleared;
then it is executed at level 3. A load-File instruction |
does not use the CP pipeline below level 3.

Delay avoidance: Delay cannot bz avoided for adjacent

Store-load file instructions. The method of instruction
insertion can ba used to make the instructions nonadjacent.
If this method s used, then a second Store to a diffcrent
octet should be forced down the pipe containing CM1 by m2ans
of a short circuit to the register address of the Store.

However, be careful selecting a different octet for storage

C-26 Advanced Scientific Computer

because, if the different octet happens to be resident in
some other pipe, then the Store will take that other resi-
dent pipe. Also, the X- and Y-buffers must not contain the.
address of the second Sfore (ST2) because then ST2 would
have to wait on outstanding reads before the forced write
of ST1 could be issued. Also, the second Store must not
occur before the first Store has had time to pass through
the pipe; otherwise, the second Store would have to wait
in level 3; and that is what is to be avoided. The 1ist
of contingencies on the second Store would seem to preclude
1ts use as an effective means to avoid a Store-Load File
hazérd; however, this method is given in hopes that it can
be used to advantage.

Delay time: Store-Load File delay depends on the time
for the first Store to pass through the pipe into Z, then

- for the Z-octet to be written into memory. This time is

5 clocks + memory write time if the Store immediately pre-
cedes the Load File. The five clocks are the pipe time of
the Store and can be deleted if it is known that there are
no Stores in the pipe; i.e., that the resident Z-octet has
al1 its data. Also, this timing equation assumes that the
AU output does not becom2 blocked due to multiple AU cutputs
destined fof the register file. This would be due to in-
structions prior to the Store. Memory write time in this

cquation is normally equal to eight clocks.

C-27 Advanced Scientific Computer

Store-Store File Hazards DELAY

This hazard is essentially the same as the Storeftoad
File hazard just described. In fact, the same descriptions’
can be used for the hardware solution, delay avoidance,
and delay time sections by replacing the words "Load File"
with "Store Fi]e.“

In order for this hazard to exist, the Store instruc-
tion's address must be contained within the octet address
space of the Store File instruction. This {is an unlikely
condition for reasonable code, since data stored is immad
diately written over by the Store File instruction.

Prior to execution of the Store File, the Store in-
struction 1s‘forced out of the CP pipeline into memory so
that the Store File is certain to place its data into memdry
after the store. This is done to preserve the order of

instructions.

C-28 Advanced Scientific Computer

a2

4. Store File and Load File R-Octet Hazards DELAY

This hazard is common to both Load File and Store.

File instructions. The delay occurs when the'octet selected
by the Load-File or Store File instruction at level 3 (as
specified by the Rffie1d) covers a register being modified
by an instruction below level 3.

In the case of a Load File, the purpose of the delay
is to insure that all registers have been modified for all
1nstructfons'below level 3 that have register destinations
targeted for the same octet as that specified by the Load
File. Otherwise, if the delay were not applied, a late
arriving register destination could modify a register within
the octet entered by the Load File after the Load File vias
completed. The order of instructions would not be preserved
1f the Load File were executed without testing for an R-
octet hazard.

For a Store File instruction, the purpose of the delay
fs to insure that the register file octet to be stored has |
been modified by all instructions below level 3 that have
register destinations targeted for the same octet as that
to be stored. This is so the Store File will have all its

data to be stored.

C-29 Advanced Scientific Computer

a2

5.

Store File Hazard » , DELAY

A Store File hazard is dug_to a memory read instruc-
tion followed shortly by a Storg File to the same memory
octet. The memory read is poﬁitioned in time sh&h that
it has reqdested memory but has not yet received 1£s data
from memory. With this condition true, the Store File can-
not proceed to execution because, if it did, then it is
possible for the Store -File data to be written into memory
prior to data being read from memory by the instruction
using a memory operand. Since the-fead and write operations
take piace on different memory ports, the Memory Control
Unit (MCU) cannot guarantee that a read arriving first will
be processed first. For this reason, the Store File must
wait until the memory data has been received.

Hardware solution: Hardware detects this hazard.

Store File hazards are cleared when the X-or Y-buffer of the
MBU. which had an outstanding request for an octet of memory
of the same address as the Store File, has received its |
data. The Store File waits at level 3 until the hazard

has cleared. |

Delay avoidance: This delay can be avoided by separ

rating memory reads to a given octet from Store Files to
that same octét. The separation can be done by instruction
insertion. Enough time must be allowed for the read data
to be received before the Store File arrives at 1eve1.3

for exccution.

C-30 Advanced Scientific Computer

Delay time: Store-File hazard delay depends on the
memory time of the instruction causing the hazard. If the
memory read instruction is immediately ahead of the Store
File, then the Store-File wait time can be as high as ten
clocks, assuming no memory interference.

Example: An example of CP code producing this hazard

is as follows:

Instruction # Inst R, a
I1 ADD A1, CM1
12 STORE FILE R, CM1

C-31 Advanced Scientific Computer

6. Store File-Read Hazards DELAY

‘ This hazard is caused by CP code of the form:
Instruction # Inst R, a
In STORE FILE R, CM1
12 ADD A1, CM]

which is just the reverse of the code given in the previous
example for a Store File hazard.

To be sure of getting the latest data, the Add must
wait for the Store File to complete its write to memory
before the Add can request memory. This hazard delay
occurs as a normal part of a Store File instruction. That
is, the second instruction is delayed regardless of 1is
instruction type or memory address.

Hardvare solution: This hazard is protected by the

lTevel 1 controller of the IPU. When a Store File instruc-
tion is detected at level 2, the level 1 controller goes
into the "Store File state"” and blocks any subsequent in-
structions from reaching level 2. Subsequent instructions
are held at level 1 until the "write acknowledge" signal

is received from the MCU and the "data available" signal
has returned to "zero." These conditions indicate that

the Storc File data has been received by the MCU and that
the process of writing data into the memory module has been
initiated. At this point the instruction following the

Store File is released from level 1.

C-32 Advanced Scientific Computer

Delay avoidance: This delay cannot be avoided; it is

fnherent in the operation of the Store File instruction.
Delay time: Store File read hazards cause a delay of -
eight clocks 1in the execution of the "read" instruction at
level 3, assuming that there is no wait for "write acknowl-
edge" or for "data available" due to memory interference.
These eight clocks are to be considered as the time to
éxecute the Store File and not as any additional delay

caused by the fictitious Store File read hazard.

C-33 Advanced Scientific Computer

C. Instruction Hazards

1. Storing Over Instructions ‘ DELAY

Scalar Store instructions that modify other instruc-
tions may cause an instruction hazard delay. In particular,
vhen the address being stored into by a Store instruction
(below level 3) is equal to the instruction address of an
instruction at levels 1, 2, or 3 or is contained within
the octet of instructions requested or resident in the
KA or KB buffers, then an instruction hazard flag will be
set. |

Store instructions below level 3 include Stores resi-
dent in the Z-buffers of each of the four pipes. These
Stores have not yet been written into memory. Stores in
the pipeline or in the Z-buffers hold their storage ad-
dresses in the ZP regisfers. Stores being transferred
to memory from the Z-buffers through the ZB-buffers hold
their storage addresses in the ZB-registers during the
transfer. The ZP- and ZB-registers are compared with
the program counter values from level 3 upwards through
the present address (PA) and look-ahead address {(LA)
registers. A true comparison indicates an instruct1on
hazard. 4

Instruction hazard recovery takes place if the in-
struction so marked as having an instruction hazard
reaches level 3 for execution. Level 3 is the point at

which a flagged instruction hazard becomes a real in-

C-34 Advanced Scientific Computer

i

struction hazard. This distinction is made because it

is possible for an instruction to be marked as having a
potential instruction hazard but to never require the
instruction hazard recovery process as a result of a ‘
Branch instruction taking the branch prior to the flagged
instruction!s arrival at level 3. In this case the
flagged instruction is not executed; and, so, there is

no need to recover the modified instruction.

Thé process of instruction hazard recovery involves
performing a forced write operation on the pipe that
contains the Store which caused the instruction hazard.
Once the Store octet has been written into memory, the
IPU may refetch the instruction address that was marked
as having an instruction hazard.

‘Hardware solution: Instruction hazards are divided

into two classes for the purposes of hardware implemen-

tation. These classes are: near-range hazards and far-

‘range hazards. A near-range hazard occurs when there

§s a true comparison between the program counter at level

3 (P3) and the ZP- or ZB-registers of any of the four
pipes. This condition causes a forced write and then an
jmmediate instruction hazard recovery. It is nof a po-
tential but a real instruction hazard when it occurs at

level 3.

C-35 Advanced Scientific Computer

A far-range hazard is vhen there 1s a true compari-

., son between the following pairs of registers:

Look-ahead LA vs. ZP for all pipes

Present address PA vs. ZP "
Level 1 Pl vs. ZP . »
Level 2 P2 vs. ZP ”

These comparisons are flagged as potential hazards at the
appropriate level of the pipeline. - A far-range hazard may
never reach level 3 if a branch is taken before the flagged
fnstruction arrives at level 3. However, if it arrives

at level 3, then a forced write is sent to the pipe con-
taining the Store that caused the hazard. Instructfon
hazard recovery starts after the forced write is complete.
Recovery 1s aécomp11shed by fetching the modified instruc-
tion from memory. |

Delay avoidance: The simplest and most effective way

to avoid instruction hazards is to abide by the rule "never
modify instructions."

Delay time: For the case of a Store Negative (STM)
instruction directly ahead of an instruction vhich the
STN modifies, it takes six clocks for the Store to reach
the Z-buffer from level 4, another six clocks to coﬁplcte
the forced write to memory, eight clocks to fetch the
modified instruction into the KA- or KB-buffer, and three
more clocks to get it down to level 3 where it was when the
instruction hazard was detected. This totals twenty-three

clocks for a worst case instruction hazard recovery.

C-36 Advanced Scientific Computer

2.

Store File Over Instructions DELAY

This hazard is basically the same as storing over
instructions (C1). The main difference is that tte com-
parisons with program counter addresses P1, PA, and LA
are made against AR instead of ZP and ZB. The octet ad-
dress being stored into is in the AR register at the time
the Store File is executed. This address does not pass
through the ZP--and ZB-registers as does the address of a
Store instruction. Also, there is no need for AR to be
compared against the program counter registers at levels 2
and 3 (P2 and P3) because level 2 is blocked from holding
any instructions during a Store File and level 3 is where
the Store File is being executed; i.e., an instruction
cannot modify itself.

~ No forced write is necessary as a part of Store File
instruction hazards. Completion of execution of the Store
Ff]e:imp]ieﬁ that the Store File octet is in memory. A
refetch of the instruction address occurs when the instruc-
tion marked with an instruction hazard reaches level 3.

Hardware solution: Store File instruction hazards

are detected by the hardware. AR is compared with P1, PA,
and LA on an octet level. If the hazard reaches level 3,
instruction hazard recovery starts immediately by fetching
the modified instruction octet from memory.

Delay avoidance: Do not modify instructions.

C-37 Advanced Scientific Computer

&
Delay time: Since the instruction hazard recovery pro-

cess does not start until the flagged instruction reaches
level 3, the delay is equivalent to a Branch to a nonresident

octet at that point in the program. This delay 1s eleven

clocks.

C-38 Advanced Scientific Computer

Vectors Storing Over Instructions FUNCTIONAL

Several possibilities exist for this hazard; these
may be divided into two classes: (1) a vector storing
over subsequent vector instructions and (2) a vector
storing over subsequent scalar instructions. For both
classes, the FORK/JOIN mode determines the way in which
hardware deals with the hazard.

Consider a first vector instruction which has its
"Allow Following" bit set to "zero" so that subsequent
scalar or vector instructions are not allowed to start
execution until all vectors in progress have completed.

If the next (second) instruction is a vector, then it is
allowed to request the vector parameter file and initialize
the Memory Buffer Unit (MBU) of the selected pipe. Or, if
the Second instruction is a Load File (LF), then the opera-
tion oflloading the register file can be completed; but that
is all; no other instructions can be executed in the JOIN
mode.

In either case, the hardware monitors for instruction
hazards. This is done by comparing the C vector addresses
of all vectors in progress with the program counter of the
instruction at level 3. If a true comparison is found,
then the level 3 far-range hazard flag is set. This flag
causes an instruction refetch of the modified second instruc-

tion after all vectors have completed.

-39 Advanced Scientific Computer

If the second instruction is changed to something
other than the instructfon it was, then there fs no vay
the register file can be reinstated to what it was befofe
execution of the second instruction (thevVECTL or LF exe-
cuted while the first vector or vectors were running).

If the conditions of this hazard have occurred as stated,

- then the program will lose control, or produce incorrect

answers, as a result of the register file being modified

by an instruction that was modified.

If the second instruction is anything other than a
Vector or Load File, the hardware monitors for an instruc-
tion hazard. This is done by comparing the T vector ad-
’dresses of all vectors in progress with the program counter
of the second fnstruction at level 3. A true comparison
will set the level 3 far-range hazard flag, which - in
turn - will cause an instruction hazard recovery request
after all vectors in progress have completed. In this case
no damage has been done since the second instruction at
1eve1 3 was never executed before its modification (as
was the case with a VECTL or LF instruction). The modified
instruction will be executed after the instruction recovery
process has been completed.

Consfdef‘now a‘first.vector instruction which has its
"Allow Following" bit set to "one" so that subsequent
scalar or vector instructions are allowed to proceed in

parallel with the first vector. If the'E vector addresses

C-40 Advanced Scientific Computer

of the first vector happen to write over instruction ad-
dresses of subsequent instructions in or above level 3

(but within the IPU), then the near-range hazard signal

or the far-range hazard flag will become true, resulting

in a refetch of the modified instruction when the hazardous
instruction reaches level 3.

This hazard has the potential of causing intermittent
problems during checkout because a hazard may show up or
not depending upon the phasing of C vectors with respect
to instructions in the upper half of the pipe. However,
to isolate the problem to some extent, the "Allow Following"
bit can be set to zero and the level 3 far-range hazard
flag checked at the completion of the vector to sec if the
next instruction address at level 3 has been overwritten.

Hardware solution: Instruction hazards are marked

in the JOIN mode when vectors write over subsequent in-
structions in the IPU. These hazards may or may not 6ccur,
depending on vector-scalar phasing in the FORK mode.

Marked instructions make an instruction hazard recovery
request to obtain the modified instruction.

Delay avoidance: Do not allow vectors to write over

instruction areas of memory.
Delay time: Instruction hazard recovery time is
eleven clocks. Recovery occurs after all vectors have

completed for the case in which the last vector had the

"Allow Following" bit set te zero.

C-41 Advanced Scientific Computer

If the original and modified instruction was a VECTL
or LF, then the file load time is lost. Also, the second
vector initialization time is lost if a VECTL or VECT is

" modified.

C-42 Advanced Scientific Computer

a2

D.

Arithmetic Exception Hazards

]'

Load Arithmatic Exception Mask or AE DELAY
Condition Hazards

Three instructions exist which load the arithmetic
exception condition or mask registers. These are:

LAM Load arithmetic exception mask

LAC Load arithmetic exception condition

LEM Load arithmetic exception mask and condition
These three instructions must wait until none or only one
pipe contains instructions that may modify the arithmatic
exception (AE) condition or mask registers. Instructions
that modify the AE condition register are an LAC, LAM, or

any arithmetic operation that has the potential of setting

any of the AE condition bits. These bits are:

Divide check

Fixed-point overflow

Floating-point exponent overflow

Floating-point exponent underflow
Instructions that modify the AE mask register are an LAM
or LEM.

If on]y one pipe contains instructions that may mod{fy
the AE condition or mask registers (these instructions
generate an AE hazard signal in the pipeline below level 3),
then that pipe will be selected, providing the effective

address is big (to central memory, a > 2F). If the addréss

is small (o < 2F and M = 0), then the addressed register

C-43 Advanced Scientific Computer

must not currently be undergoing modification by another
pipe. If no modification is taking place, then the pipe
containing the AE hazard will be selected. If modification
is taking place,and the current modificatioh is by the
selected pipe, then the instruction performing the modifi-

cation must be the last instruction to have entered the

pipe containing the AE hazard. In other words, if alpha

is small and an alpha register hazard exists, then the
short circuit on alpha must occur in the pipe containing
the singular AE hazard. If these conditions exist, the
AE hazard will not cause a delay.
The AE hazard just described is possjb]e on the LAM,
LAC, and LEM 1nstruct1ons. Another delay, closely associated

with the AE hazard delay, is encountered when an arithmetic

instruction, capable of producing an arithmetic exception

-condition, finds an LAM, LAC, or LEM instruction at a

lower level of any of the four pipes. If found, the arith-
metic instruction must wait at level 3 until the LAM, LAC,
or LEM instruction has completed its operation (the pipes
are clear of any of these three instructions).

Hardware solution: Any LAM, LAC, LEM, or arithmetic

instruction capable of producing an arithmetic exception
condition will insert an AE hazard bit into the pipe selected
by the said instruction. This bit travels with the instruc-
tion as it moves down the pipeline. Any subsequent LAM,
LAC, or LEM instruction waits at level 3 until only one

or none of the AE hazard bits exist in the four pipes. If

C-44 Advanced Scientific Computer

only one pipe contains an AE hazard, then that pipe is
selected according to the previously stated conditions.

If no AE hazards exist, then the pipe is selected according
to the known scalar routing rules based on register hazards,
short circuits, and X, Y, Z buffer activity.

Also, an instruction which has the potential of an
arithmetic exception condition will make a test to see if
any LAM or LAC indicator bits are below level 3. 1If so,
then the AE possib]g instruction waits at level 3 until
the LAM or LAC instruction has been cleared from the pipe.

Delay avoidance: Insert other non-AE hazard instruc-

tions in front of LAM, LAC, or LEM instructions to allow
time for the AE hazard to clear. Also, perform nonarithmetic
operations after LAM or LAC instructions to allow time for
the LAM or LAC to clear the pipe. |

Delay time: AE hazard delay time amounts to four
clocks plus AU time plus memory time if the AE hazard pro-
ducing instruction immediately preceded the LAM, LAC, or |
LEM instruction.

C-45 Advanced Scientific Computer

s

2.

Store Program Status Hazard DELAY

Before a Store Program Status (SPS) instruction can
leave level 3, it must have the final result code and
condition code for instructions prior to the SPS. Of the
four fields stored by the SPS (CP memory usage, BSR, cc,
and RC), only the CC and RC can be modified while the SPS
is in Tevel 3. CP memory usage does not change during
program execution, and the BSR field can only change while
an Execute instruction is in level 3. The SPS waits until
all result code or condition code modifying instructions
have cleared all four pipes. It then proceeds down the
pipe selected according to the SPS storage address.

Hardware solution: An SPS instruction makes a test

for a signal called hex register hazard in the level 3
cohtrol]er. This signal will be true if any result code
or condition code modifying instructions are in any of

the pipes below level 3. When the last instfuction to set
the result code or to set the condition code (prior to

the SPS) has cleared its selected pipe, then the SPS is
released from level 3.

Delay avoidance: There is no easy way to avoid a hex

register hazard since nearly all instructions .either modify
the result code or the condition code. The instructions
remaining after the RC and CC modifying types are removed
constitute only the special operation type instructions:

LEM, LAM, LAC, LLA, XCH, LF, LFM, STF, STFM, SPS, LEA,

C-46 Advanced Scientific Computer

i

MCP, MCW, INT, PSH, PUL, MOD, BLB, BLX, FORK, JOIN, BCC,
BRC, and BAE. Nearly every one of these has 1ts}own special
delay except for LLA, LEA, and INT. Very little pro-
grarming can be done using these remainingAthree.instruc~
tions.

Delay time: SPS hazard delay time is dependent upon
the time for the last result code or condition code modi-
fying instruction to clear the pipe. If this instruction
imnediately precedes the SPS, then the delay time is four
clocks plus AU time plus memory time, providing the AU
output does not become blocked due to mult1p1e AU outputs
destined for the register file. AU tim? is from Table 1.
Memory time 1s eight clocks if the hex register hazard
producing instruction makes a memory request. It {s zero

if no request is made.

C-47 Advanced Scientific Computer

the latest result code value has not been set'yet. The
latest result code modifying instruction is below level 3
but has not cleared the pipe. The result code will be set

simultaneously with the AU result being placed in the

‘register file. A BRC instruction waits in level 3 until
'the last instruction to modify the result code has cleared
~the pipe. There may, at this time, still be other prior

| -result code setting instructions in other pipes, but these

result codes were evidently not needed and, 1n fact, will

never affect the result code if som2 other result code

modifying instruction came later and was the last one

before a BRC instruction.

Unconditional branch instructions (branches-:with an

‘R-field of 7) do not experience this delay; they simply

make their branch address request upon arrival at level 3.
A conditional branch instruction within the iop four words
of an octet willymake a request for its branch address on
the assumption that the branch will be taken. This feature
employs the "dual look-ahead" hardware of the IPU which is
based on the concept that the branch octet of instructions

will be available in one of the instruction buffers (either

KA or KB) by the time the branch decision is made.

C-48 Advanced Scientific Computer

In the event that the branch is not taken, then the fact
that at least four instructions along the downstream path
still reside in the current instruction buffer allows the
normal look-ahead octet of instructions to be refetched
while the four remaining downstream instructions are being
processed.

Hardware solution: Branch hazards are monitored by

examining one of three signals, depending upon the type
of branch instruction. The three types of branch instruc-
tions are:

BRC Branch on result code

BCC Branch on condition code

BAE Branch on arithmetic exception
These three branch instructions each check for their own
type of hazard:

BRC checks for result code hazards

BCC checks for condition code hazards

BAE checks for arithmetic exception hazards
the:register stack contains, as one of its components,
three columns of bits, one for each type of hazard. These
bits track the instructions down the pipe. When all bits
in a particular cblumn have cleared, then that hazard
associated with that column has cleared. The branch
decision can be made when the hazard associated with that

bran¢h has cleared.

C-49 Advanced Scientific Computer

i

Delay avoidance: For branch on compare code instruc-

tions, result code setting instructions can be inserted
between the branch (BCC) and thé compare code setting in-
struction. In this instance, the inserted instructions
may be selected from a wide variety of the CP instruction
set. This 1s not quite so true wfth BRC or BAE instruc-
tions since they have the characteristic of waiting on
result producing instructions. It is hard to find more
than one compare code setting instruction that can be in-
serted between a BRC or BAE and the last result code or
AE setting instruction.

Delay time: Branch hazard delay time is dependent
upon the time for the last RC , CC, or AE setting instruc-
tion to clear the pipe for a BRC, BCC, or BAE instruction,
respectively. If the hazard causing instruction immediately
precedes the BRC, BCC, or BAE instruction, tﬁen the delay
time 1s four clocks plus AU time plus memory time, providing
the AU output does not become blocked due to multiple AU
results destined for the register file. AU time is from
Table 1. Memory time is'eight clocks if the hazard-causing
instruction makes a memory read request. It is zero if no

request is made.

C-50 Advanced Scientific Computer

S

2.

3.

Condition Code Hazard

DELAY

This hazard occurs when a "Branch on Condition Code"

(BCC) instruction arrives at level 3 for execution and

the latest condition code value has not been set yet.

This hazard is similar to the Result Code Hazard just

~ described in section E.1.

Arithmetic Exception Branch Hazard

DELAY

THis hazard occurs when a "Branch on Arithmetic

Excéption" (BAE) instruction arrives at level 3 for exe-

cutfon and the latest arithmetic exception condition code

has not been set yet. This hazard is similar to the Re-

sult Code Hazard just described in section E.1.

C-51

Advanced Scientific Computer

R

II.

Scalar-Vector Hazards

A.

Vector Parameter File Modification I DELAY'

Before a vector instruction can transmit the vector
parameters to the Memory Buffer Unit (MBU), it must have the
final values in the vector parameter file (VPF). The VPF con-

sists of the Tower eight registers of the forty-eight-word

- register file (words 27 through 2F hex). This file may be .

acquired from memory (VECTL), or it may be the current con-
tents of the VPF. In either case there must not be any scalar

instructions currently 1in the CP pipeline that will modify

. the vector parameter file registers. If any such VPF modifying

instruction exists below level 3, then the vector instruction

at levei 3 will wait until the VPF hazard clears.

Hardware solution: A vector fnstruction at level 3 tests

a signal called "any V haz" to determine whether -any register

~ of the vector parameter f116 will.be modified by an tnstfuction

below level 3. The "any V haz" signal is made from an ORing
of four columns of bits in the register stack. These bits
track tﬁe instruction as it moves down the CP pipeline. The
top bit of this column is set when an instruction with an index
or vector register destination moves from level 3 to 4. The -
column sb11ts into four columns at level 5, at the point where
four pipes begin.

From the statement describing the setting of the top most
bit, it fs apparent that the signal “"any V haz" also detects

any index register modifying instructions. This protects

C-52 Advanced Scientific Computer

against picking up a wrong index value when the starting in-
dices are added to the vector starting addresses as part of
the vector initialization process.

Delay avoidance: Avoid modifying index registers or

vector parameter registers immediately before a vector. In-
sert other arithmetic or base register modifying instructions
before vectors.

Delay time: Vector parameter file hazards are dependent
upon the pipe time of the index or vector modifying instruc-
tion. If_the VPF destination‘instruction immediately precedes
the vector, then the delay time is four clocks plus AU time
plus memory time, providing the AU output does not become
blocked due to multiple AU results destined for the register
file. AU time is from Table 1, and memory time is eight ciocks

if the scalar instruction makes a memory read request.

C-53 Advanced Scientific Computer

B.

Scalars HWriting Over Vector Input Arrays FUNCTIONAL

There 1s no hardware checking to guard against scalar
store instructions writing over vector read data arrays. For
this functional hazard to exist, the following conditions must
be true:

(a) The CP must have been in the fork mode when the scalar
store was executed and must remain in that mode until a
first vector after'the scalar store is executed with the
"allow current” bdt set to "one.“

(b) The first vector must closely follow the scalar store
type instruction. Store types are all stores, push, pull,
modify, or exchange instructions.

(c) The scalar store type instruction must write into an area
of memory that is used for the initial input data by the
vector.

Therefore, in order to iot encounter this type of scalar-vettor

hazard, complement the sense of any condition a, b, or c¢ above.

In parti;ular. the simplest method of preventing the acquisition

of old data (if condition C is a requirement of the program)

is to turn "off" (zero) the "allow current" bit of the first

vector after the scalar store.

Hardware solution: Turning "off" (zeroing) the "allow

current” bit causes the vector to wait until all pipes have
been emptied and all stores currently residing in the Z buffers
of the MBU's to be forced into memory. The vector is allowed
to make its vector parameter file request while the Z buffers

are being emntied.

C-54 Advanced Scientific Computer

a2

It is also possible to place the CP in the join mode
during execution of the scalar store instruction and then
return to the fork mode prior to the vector. If the vector
has "allow current" on, then only those pipes executing stores
in the join mode will perform a forced write operation to purge
their Z buffers of write data. Other non-Z-join pipes are
not required to force their data into memory.

Delay avoidance: Negate any of the three conditions a,

b, or ¢ above. Preferably, use the join mode to prevent vector

read data from being picked up from a given memory area before

‘scalar stores have had time to write into that same memory

area.

~ Delay time: Assume that conditions b and ¢ are program
requirements. If this is so, then it {s necessary to invoke
the jofn’mode to prevent the acquisition of o1d rather than
new data. Now, if the first vector after a scalar store is a
VECTL, then the delay time for emptying the joined pipes is
overlapped with the load file fetch time for obtaining the
vector parameters of the VECTL instruction. The emptying of
the joined pipes may also be overlapped with the transmittal
of the vector parameters to thé MBU. If the jo1ﬁed pipes are
not emotied by the time: that the vector is ready to requést
its first read data from memory, then the read requests are
held up until the joined pipes are cleared.

If the first vector is a VECT, then the time for emptying

the jpined pipes can only be overlapped with vector initiali-

C-55 Advanced Scientific Computer

zatfon to the MBU. For this case, vector read requests may

be delayed more often, depending upon the time required to

clear the jotned pipes.

C-56 ' Advanced Scientific Computer

a2

C. Vectors Writing Over Scalar Read Data FUNCTIONAL

This hazard is essentially the reverse of hazard II.B

Just described. In this case a similar set of conditions

must be true for the functional hazard to exist:

(a) The vector must have the "allow following" bit set to
"one."

(b) The first scalar read must closely follow the vector,: ard
there must not have been any intervening join instruc-
tions.

(c) The vector must write into an area of memory from which
the scalar read data is obtained.

| Therefore, in order to not encounter vettor-scalar hazards,
complement the sense of any condition a, b, or ¢ above. In
particular, the easiest method of preventing the acquisition
of old data (if condition ¢ is a requirement of the program)
is to zero the "allew following" bit of the vector.

Hardware solution: Turning "off" (zeroing) the "allow

following" bit causes the vector to enter a state where it
waits for any vectors in progress to complete before executing
the next instruction at level 3. Any vector in progress in-
cludes the current vector,~so it is not possiﬁle for a subse-
quent scalar (except for a load file iﬁstruction) to begin
execution until the current vecior and all preceding vectors

- have completed. This also includes the completion of all
outstanding scalar rcads that may be in progress in other pipes

during th2' current vector execution.

C-57 Advanced Scientific Computer

@

Preventing the subsequent scalar from beginning exccution
guarantees that vector output data will have been written into
memory before a scalar read request is issued for the same
area of central memory.

Notice that load file scalar requests are allowed in the
Join mode. This is for the purpose of obtaining a new vector
parameter file and then making singleword or halfword modifi-
cations before executing a VECT instruction. The memory address
of the load file octet is monitored throughout the duration
of the vector with "allow following off." Should the vector
write over the load file octet location, a flag (alpha hazard
flag) will be set to "one." This flag causes the load file
octet to be refetched at the completion of the vector.

A hazard that is noncorrectable, along this same line of
thought, is when the vector writes over the instruction location
of the load file instruction. Should this happen, it is not
possible to reconstruct the state of the register file prior to
execution of the load file instruction. If the load file instruc-
tidn location is modified to anything other than a load file to
the same register file, then the program will most likely produce
erroneous results. Again, the rule "never modify instructions"
should prevent most individuals from making this mistake.

Delay avoidance: Negate any of the three conditions a,

b, or ¢ preceding. Preferably, turn off the "allow following"
bit to prevent reading scalar data before the preceding vector

has written into a given area of memory.

C-58 Advanced Scientific Computer

a2

Delay time: There is no overlapping of subsequent scalars
(except for load file instructions) if the "allow following"
bit is "zero." Prior vectors may continue processing in parallel
with the last vector if the prior vectors had their "allow fol-
lowing" set to "one." However, the next scalar after the last
vector must wait until the longest vector has completed since
it waits for all vectors to complete. The longest vector may
not necessarily be the last vector. Therefore, the actual
delay an exceed the expected delay unless the length of all
vectors are taken into account.
If the next instruction after the vector with "allow fol-
lowing" set to "zero" is another vector, then the next vector
is allowed to request its vector parameter file and to initialize

the MBU but to go no further.

C-59 Advanced Scientific Computer

¢

D. Alpha Hazards During Vectors in the Fork | FuncTIONAL |
and Join Mode | DELAY |

To begin with, scalar instructions by themselves cannot
cause a functional alpha operand hazard. Emphasis here should

be placed on the word "functional" as that means a possible

error-producing hazard. Aipha operand delays do occur among

purely scalar instructions (scalars executed by themselves,
clear of vectors), but these delays do not produce errors in
results. These delay-generating conditions were described in
section B under Central Memory Address Hazards.

Scalar instruction hazards were discussed in sections I.C.1

and 1.C.2 for scalars operating clear of vectors and in section

'1.C.3 for scalars and vectors operating in parallel.

What is of concern in this section is scalar alpha hazards

"caused by a prior vector. That is, a vector writing over the

memory location of a subsequent vector parameter file of a VECTL

instruction or a subsequent Load File from memory. Vectors

'wr1t1ng over scalar read data was discussed in Section II.C.

Assume that the join mode has been established within
some 1ist of scalar instructions prior to the arrival of a
first vector at level 3. If the vector is a VECTL, which
receives its vecfbf parameter file (VPF) from memory, a test is
made for an alpha hazard before issﬁing the load file request.
Since being in the join mode prior to the arrival of this vector

guarantees that there are currently no other vectors in progress,

C-60 Advanced Scientific Computer

the alpha hazard detection hardware initiates a forced vrite
signal to the MBU containing the hazard-producing store; i.c.,
the store whose address agrees with the alpha address of the
vector instruction. The VPF load request is issued after the
forced write has been completed. Delay, in this case, is due
to waiting for write data to arrive in memory prior to issuing
the read request. Had the alpha hazard not existed, the forced
write operation would have taken place as a normal part of
the preparation for the vector in the join mode; but the VPF
load would not have had to wait on the write to cdmp]ete.

Now, consider the case where a first vector is executed
in the fork mode but has its "allow following" bit set to “zero";
then, suppose a second vector follows immediately. This second
vector makes its test for alpha hazards in the "vector plus one"
state. Here the situation is different because now it 1s possible

for both vectors and scalars to be in progress simultancously |

in any of the four pipes. The alpha hazard logic cannot issue

a forced write command to a pipe that is executing a vector
because (fortunately) that pipe will simply ignore the command.
The logic will, however, issue a forced write to the pipes
containing scalar stores; and, in addition, the alpha hazard
logic will cause the VPF load request to be delayed unfil the
scalar forced writes are completed. The unprotected case is
seen to be when the first vector; with "allow following" off,
writes over the vector parameter file (in memory) of the suc-

ceeding vector. It is difficult to protect against this case

C-61 Advanced Scientific Computer

with hardware since the vector parameter file address that

is contained in the AR register of level 3 is eraséd during
vector initialization. That is, register AR becomes involved
in the process of transmitting vector parameters to the MBU

and cannot continue the function of monitoring a VPF address

in AR against all output addresses of the first ¢ vector.

It is more important, in terms of time that would otherwise

be lost on all joined vector initializations, for the initiali-
zation to proceed and to sacrifice the alpha hazard hardware
checking fér this case. Protection of a VPF in memory can

be insured by software by using the sequence:

SEQ1 VECTL “AF" =0
LF (10ad VPF)
VECT

instead of,

SEQ2 VECTL "AF" = 0

VECTL

The VPF of the second VECTL of sequence 2 is unprotected since
the second VECTL proceeds through initialization while the
first VECTL is still executing. In sequence 1 the alpha address
of the LF instruction is checked against all E’vector addresses
of the first VECTL, so the VPF for VECT is protected against
modification by VECTL.

Hardware solution: A test is made for scalar alpha hazards

prior to making the load file request for a VECTL instruction.

This is done regardless of the fork or join mode but is intended

C-62 Advanced Scientific Computer

for the join mode. If an alpha hazard, due to a prior scalar

. _§tor1ng}over a VECTL's alpha address, is seen during the fork

'mode, then the forced write takes place the same as in the join

mode. However, if a prior vector writes over a VECTL's alpha

“address and the VECTL is executed, all the while remainihg in

the fork mode, then the alpha hazard will not be seen and the
VECTL can pick up its VPF prior to modification by the first
vector.

Delay avoidance: Avoid modifying vector parameter files

(VPF) of subsequent vectors by means of scalar stores or vector
writes (to membry) which are in the immediate vicinity of a
vector using the VPF being modified. If separation of modifi-

cation from use by the method of instruction insertion is not

feasible, then at least insért a join instruction between modifi-

cation and use to prevent functional errors.

Delay time: Needs FUSS prediction.

C-63 Advanced Scientific Computer

a2

ITI. Vector Hazards

A. Vectors Storing Over Their Own Input Data Arrays |FUNCTIONAL

This hazard results from a violation of the familiar

“Vector Hazard Rule," which states that: |

A "hazard condition" occurs whenever the present
octet address of input vector A or B or the next four
octet addresses for each of vectors _Tor B is the same
as the p_resenf result octet address or the eight past

result octet addresses of output vector T.

If the Vector Hazard Rule is violated, the "ol1d" rather
than the "new" (updated) information is used as the operand.
For example, a vector will use the "o1d" values for the B
vector operands if the element address of ¢; is one greater
than the element address of b., and all vectors are assigned
a posftive increment direction during the self-loop. Hardware
is not built in to detect this hazard. Also, delay avoidance

and delay time descriptions do not apply to functional hazards.

C-64 Advanced Scientific Computer

a2

B.

Addressing Conflicts Between Two or More
Vectors Executing Simultancously in Parallel ! }:FUNCTIONAL
Pipes

This addressing conflict is caused by the independence
of separate pipes executing in parallel. Unless one is care-
ful, two vectors started in separate but parallel pipes can
have their data paths (in memory) cross one another. Input
paths crossing input paths cause no trouble. However, let an
input data path cross behind an output data path of an‘edrter
vector; and program errors are almost certain. If the memoty
paths cross 1ike an "X," then the time and phase (ahead or
behind) relationship of reaching the intercept point is impor-
tant. Since vector rates are influenced by memory interference,
it is difficult to predict the time of reaching the intercept
point for either vector. Therefore, rate control is impossible.
So, to prevent memory read-write collisions between vector#,
these intercepting vectors must be executed independently of
one another.

Another type of jntercept would be the parallel path
type, particularly when the parallel paths form a single line
tracing the same area of memory. In this case the vector
rates are also quite critical to program execution. For example,
if the output vector were trailing an input vector through
contiguous locations, all would be fine (assuming the output
vector was the second vector to start execution). Suppose

that, subsequently, the output vector of pipe 1 caught up with

C-65 Advanced Scientffic Computer

and passed the input vector of pipe 2. Now, the first vector

would be reading output data from the second vector, a diffi-

cult condition to contend with, especially when trying to
interpret program results following execution; 1.e., man,

take a look at that dump! These vectors must also be executed
independently 6f one another.

| Hardware is not implemented to detect this hazard. Also,
delay avoidance and de]ay time descriptions do not apply to

functional hazards.

C-66 Advanced Scientific Computer

a2

C. Halfword Z-fi11-in Hazards ' - FUNCTIONAL

This hazard is similar to the one just described in sec-
tfon III.B since it is caused by two or more vectors executing
simultaneously in parallel pipes. An unusual characteristic
of this hazard is that it is due to two or more halfword gﬁ;; :
put vectors writing over the same area of memory. It is also
quite difftcult to predict thé hazard based on Fortrap compiler
algorithms for finding two vectors writing into the same memory
space because the errors may arise in halfword locations within
the octet being modified and not necessarily at the halfword
location common to both vectors.

The hazard is due to the fact that halfword output vectors,
which do not fil1 up an entire octet with halfwords, require
a halfword Z-fi11-in operation. A Z-fil1-in fnvolves both a
read and a write cycle, controlled by the Memory Buffer Unit.
Since memory only accepts singleword stores (there are eight
zone enabfe 1ines controlling the word of an octet to be stored),
the MBU must recognize halfword stores which do not fill both
halves of a singleword location. This is done by examining the
sixteen halfword zone bits of the Z buffer of the MBU. Any
even-odd bit pair forming a true exclusive or logical combina-
tion indicates the need for a Z-fil1-in operation.

The operation is as follows:

(1) The address of the octet to be stored into memory

is first sent to memory as a read request for that

octet.

C-67 Advanced Scientific Computer

W@

(2) The requested octet is loaded into th2 ZR buffer of
the MBU. '

(3) The "filled" halfwords of the Z buffer are trans-
ferred to the ZB buffer. "Unfilled" halfwords are
not transferred.

(4) The "now updated" EZB buffer is written into memory
at the storage octet address. Zone enable lines
are a logical “one" for those singlewords that have
been updated.

A halfword Z-fi11-in hazard occurs when the following

sequence occurs:

(1) A first pipe requests an octet for the purpose of
Z-fill-in.

(2) A second pipe réquests the same octet for the pur-
pose of Z-fill-in.

(3) The first pipe modifies one halfword of the octet
and then stores the octet back into memory.

(4) The second pipe modifies some other halfword of
the same octet and then stores it back into memory.

Operation 4 above has just erased the work done by the

first pipe. Results in the common octet which were*to!have
been stored by the first pipe are lost,zand recovery 1§ im-
possible.

In order to protect against this functional hazard, one

must make a complete examination of halfword'f output vectors,

that are running simultaneously in the fork mode, to be sure

C-68 Advanced Scientific Computer

that memory octets common to both vectors are not being used.
If this is not possible, then vectors wifh halfword outputs
should be run with "allow following" turned off, set to zero.
Hardware is not implemented to detect this hazard. Also,
delay avoidance and delay time descriptions do not apply to

functional hazards.

C-69/C-70 Advanced Scientific Computer

5

APPENDIX D
HARD CORE
Page
Master Controller/Master Hardcore/Unit Hardcore
Overview L L e e e e e D-1
Master Hardcore e e e e e e e e e e e e D-7
IPU4 Unit Hardcore, D-28
MBU4 Unit Hardcoreo ... D-63
AU4 Unit Hardcore o e D-68
BUMHC and LOGCLK-8 Logic Cards « . « D-75
CP-4X UR Dump Interpretation D-91

Advanced Scientific Computer

v

PPU

SR - CPU RESET
TR - TERMINATE CCR REQUEST
AS - ALLOW AUTOMATIC SWITCH

AC = ALLOW AUTOMATIC CALL
MASTER CONTROLLER :
— —_— —_—0] e | —— —_— — —
0n z
ol 9
CENTRAL PROCESSING <z <
UNIT (CPU) N w @
< ©)
N {o) z)
xlxg olw @
= Afw
Sz w]r
rlo wj> O
Vo o o‘
14MHCA
IPU CONTROL
LVvL3
/MCP
1PU INTERFACE T (MASTER HARD CORE)
CCR BUSS
14HDCORE
1PU UNIT HARD CORE AUCTLSE PIPE ©
AU(0)
PIPE o BUCTL1
MBU(0) AUCTLSB PIPE 1
AU(1
PIPE 1 BUCTL1 (1)
MBU(1)
AUCTLSB PIPE 2
PIPE 2 BUCTL1 AU(2)
MBU(2) AUCTL5B PIPE 3
PIPE 3 BUCTL.1 AU(3)
MBU(3)
o / \ /
\/ — \/
MBU UNIT AU UNIT
HARD CORES HARD CORES
(A)132485

Figure D-1. Master Controller/Master Hardcore/Unit
Hardcore Overview

D-1 Advanced Scientific Computer

D-1 PP RESPONSE POLLING OF THE CP

The Peripheral Processor (PP) monitors the CP response bits in its CR File,
Register 12 (hexadecimal). These response bits are System Error (SE), Abnormal
Termination (AT), Message Complete (MC) and Switch Complete (SC). If the CP
sets one of these bits, the PP performs a set of actions to recover from the
condition that produced the response bit. Figure D-2 illustrates the polling
Toop that the PP follows. The following paragraphs describe the PP response to
each of the conditions.

D-2 SYSTEM ERROR. If the CP detects a parity error during Hardcore operation,
it sets the SE response bit. The PP then checks the PE bit in the condition
byte to determine if the parity error occurred during a memory fetch. If PE is
set, the PP indicates a parity error termination, issues a reset command to
the CP, loads a new job into the CP via an exchange intermediate CCR command,
and sets the CP run bit to start the new job into operation. If PE is not set,
the PP resets the terminate request bit in the control byte, loads a new job
into the CP and sets the Run bit to start the new job into operation.

D-3 ABNORMAL TERMINATION. If a maintenance command executing in the CP
encountered a memory error condition and terminated abnormally, the CP will
set the AT bit in the CP response byte of the PP CP File. If this bit sets,
the PP inspects the SC and MC bits to determine the condition prior to
termination.

If SC and MC are both clear, the CP is inactive between jobs and is ready to
receive new commands. If MC is clear but SC is set, and error switch was in
progress when the CP terminated the sequence. If MC is set, a monitor call
resulted in program termination. The condition of the SC bit indicates which
call was present: SC = 1 indicates a MCW operation; SC = 0 indicates a MCP
operation. The PP then determines what conditions caused the termination by
inspecting the PE and PV condition byte bits. If PE is set, then a memory
parity error or other system error caused the termination. The condition in
memory must be corrected before the job can run in that area of memory. The
PP Toads a new job into the CP and sets the Run bit to start the CP on the
new job. If the PV bit is set, then a memory operation encountered a memory
protect violation causing the CP program to terminate. The memory protect
parameters in the MCU must be adjusted to allow the program to access the
required area in memory. The PP loads a new job into the CP and sets the Run
bit to start the operation in the CP. If neither of the two condition byte
bits are set, the termination resulted from a termination request issued by
the PP. The PP resets the Termination Request bit (TR), Toads a new job into
the PP and sets the Run bit to start the new job into the CP.

D-4 NORMAL TERMINATION. If no system error or abnormal termination occurs,
the PP inspects the SC and MC response bits to determine if a switch operation
or call instruction executed properly. If neither of these two bits is set,
some condition has prevented completion of the operation. The PP inspects the
reason code bits to determine the cause. If SC is set, but MC is not, then the
CP has completed an error switch operation. The PP must examine the condition
byte to determine the nature of the error, prepare a new job for exchange
operations in case the current job in the CP requires PP intervention, and

D-2 Advanced Scientific Computer

1S SE =
(PARITY)

IS PE = §
COND BYTE
PARITY

T AT PARITY ERROR
REOUENATE TERMINATION
HONORED OF NORMAL CP
OPERATION
RESET TR SYSTEM RESET
LOAD NEW JOB OR ERROR RESET
SET RUN BIT (41086) .
FIX MEMORY *
LOAD NEW JOB

SET RUN BIT

RETURN

*FIX MEMORY—IF PARITY OCCURS,
IT iS ASSUMED THAT MEMORY IS
BROKEN AND REQUIRES REPAIR AND
THEREFORE NO ATTEMPT TO SWITCH

IS MADE.

(AY115842

Figure D-2. PP- Automatic Interrupt or Polling Loop

of CP Status (Sheet 1 of 4)

D-3

Advanced Scientific Computer

*AT = ABNORMAL. TERMINATION OF AN
AUTOMATIC CALL OR SWITCH
EX: FETCHING POINTER AND
GETTING PROTECT OR PARITY,

IS AT = 1
ATTENTION,
(RESP BYTE)

3 ** SC/MC DECODE

] READY

1 MCP_ CALL

0 SWITCH DUE TO ERROR
1 MCW CALL AND SWITCH

ABNORMAL
TERMINATION

OF AUTOMATIC
CALL OR TERMINATE REQUEST TR)
SWITCH SET BY PPU CAUSED "AT”

TO SET IF PE AND PV
ARE NOT SET

\
\

IS MC = 1
MESSAGE
COMPLETE

IS SC = 1
SWITCH
COMPLETE

NO

YES

IS MC = 1
MESSAGE
COMPLETE

NO

MCW ERROR SWITCH MCP
TERMINATED TERMINATED TERM INATED

! L

TERMINATED BY TERMINATED BY

PARITY ERROR A PROTECT VIO— TERMINATE

SYSTEM ERROR, LATION, SYSTEM REQUEST

OR ERROR " ERROR , OR ERROR| HONORED

RESET; RESET;FIX PRO- RESET TR,

P emony 558 i 3s, COR6 NEW soo.
3)

SETDRGE“Q."-? ' SET RUN BIT

Figure D-2. PP Automatic Interrupt or Polling Loop
of CP Status (Sheet 2 of 4)

D-4 Advanced Scientific Computer

MCW
COMPLETE
OPERATE ON
07, PREPARE
NEW EXCHANGE,
RESET SC, MC

ERROR SWITCH
COMPLETE,
DETERMINE
ERROR VIA
CONDITION
BYTE, PREPARE
NEW EXCHANGE,
RESET SC

MCP COMPLETE)
OPERATE ON 07
RESET MC

SC/MC DECODE

—-mO0
-0 =0

(A)115844

READY

MCP CALL

SWITCH DUE TO ERROR
MCW CALL AND SWITCH

RETURN

07 - CM POINTER

ADDRESS

Figure D-2. PP Automatic Interrupt or Polling Loop

of CP Status (Sheet 3 of 4)

D-5

Advanced Scientific Computer

ARE RZ (0-2)

BITS ©

MCP INHIBITED
BY SC OR MC=1
PREPARE FOR

MCP RESET ScC,

MCW INHIBITED
8Y SC OR MC 1
PREPARE FOR

MCW RESET SC,

ERROR
INHIBITED BY
SC OR MC- 1
PREPARE FOR
ERROR SWITCH,

MCW INHIBITED
BY AC-0,
PREPARE FOR
MCW, SET AC.

(A)115845

MC, RZ(0-2) MC, RZ(0-2) RESET SC. McC. RUN BIT
SET RUN BIT SET RUN BIT RZ (0-2), SET
RUN 81T
NO
NO
YES YES
ERROR SWITCH MCW INHIBITED MCP INHIBITED
INHIBITED BY BY AS 8y ac - o
;gEbAoée PREPARE f OR PREPARE FOR
SwiTen seT MCW SET AS. MCP SET AC,
agrTen, RUN 81T _RUN BIT
8T
RETURN

Figure D-2. PP Automatic Interrupt or Polling Loop

of CP Status (Sheet 4 of 4)

D-6

Advanced Scientific Computer

s

\{)
reset the SC bit. If MC is set, then a monitor call operation has successfully
completed. The condition of the SC bit indicates which of the two monitor calls
was completed. In either case, the PP pulls the call pointer from memory Toca-
tion 07 and performs the required operation to fulfill the CP's requirements.
The PP also resets the MC bit, and, if the operation was an MCU, prepares a

new exchange to be ready in case the current program in the CP completes or
requests context switching via another Mcl operation.

D-5 IPU4 MASTER HARDCORE (IAMHCA)

The Master Hardcore Controller card is Tocated on the Pipe Motherboard in the
IPU Column of the X4 CPU. It responds to three types of CPU actions:

(1) PPU Common Command Register (CCR) Servicing
(2) CPU Error Mode Servicing
(3) CPU Monitor Call Servicing.

These actions are further discussed in the following paragraphs.

D-6 PPU COMMON COMMAND REGISTER SERVICING. The following CCR Commands are
serviced by the X4 Master Hardcore (CP CCR Commands CR#0C, Bytes 0 and 1):

4100 THRU

4103 NOP

4104 RESET ALL CP REGISTERS

4105 SET ALL CP REGISTERS

4106 RESET CP ERROR CELLS (AE(0-3),PROTECT,PARITY,ILLEGAL OPCODE)

4107 NOP

4108 STORE CP STATUS MAP USING POINTER AT LOCATION #14.

4109 RESET CP PIPES AND LOAD STATUS MAP USING POINTER AT LOCATION
#5.

410A* EXCHANGE CP STATUS MAPS USING POINTERS AT LOCATIONS #14 AND
#15 OR #19, AND LOAD MAP AND PROTECT REGISTERS USING POINTER AT
LOCATION #28.

4108 STORE CP DETAILS MAP USING POINTER AT LOCATION #18.

410C LOAD CP DETAILS MAP USING POINTER AT LOCATION #19.

410D* EXCHANGE CP DETAILS MAP USING POINTERS AT LOCATION #18 AND #15
OR #T9, AND LOAD MAP AND PROTECT REGISTERS USING POINTER AT
LOCATION #28.

410E RESET CP RUN BIT AND STORE CP DETAILS MAP USING POINTER AT
LOCATION #18.

410F RESET CP RUN BIT AND LOAD CP DETAILS MAP USING POINTER AT

LOCATION #19.

*THE LOAD CYCLE OF 410A AND 410D DEPENDS UPON LOAD STATUS BIT
(CR #14, BYTE #3, BIT #1)

D-7 Advanced Scientific Computer

4110 RESET CP

RUN BIT

s SET CP RUN BIT
42mn TURN ON CP CLOCK ACCORDING TO m =
CONTINUOUS NORMAL CLOCK

CONTINUOUS MARGINAL CLOCK

0

= O 00
1

TO m

m O > 0 NN O W NN P&~ O
1

CONTINUOUS SLOW CLOCK

BURST OF n NORMAL CLOCK PULSES

BURST OF n MARGINAL CLOCK PULSES

BURST OF n SLOW CLOCK PULSES

44mn STORE BYTE n OF CP HARDCORE INTO THE UNIT REGISTER ACCORDING

CP MASTER HARDCORE

IPU HARDCORE

MBU PIPE O HARDCORE
MBU PIPE 1 HARDCORE
MBU PIPE 2 HARDCORE
MBU PIPE 3 HARDCORE
AU PIPE O HARDCORE

AU PIPE 1 HARDCORE

AU PIPE 2 HARDCORE

AU PIPE 3 HARDCORE

The two exchange commands are recorded into a "Store" command followed by a
"Load" command by the Master Hardcore. Thus if a 410A is received from the PPU,
a 4108 is sent to the Unit Hardcores; if a 410D, a 410B is sent. The second
pass of an Exchange command, the "Load" cycle, is controlled by I4CRSB (status
bit), which is sent by the PPU. If I4CRSB = 0, on the load cycle, a 410D is
sent to the Unit Hardcores; if I4CRSB = 1, a 4109 is sent to the Unit Hardcore.

In the Master Hardcore flowcharts and logic diagrams, the commands have been

grouped as follows:

Definition Mnemonic
1.) Simple Commands 14SIMCMD
2.) Checked Commands I4CHKCMD
3.) Memory Commands I4MEMCMD
4.) Set Run bit Command I4SRBCMD

5.) Reset Run bit C

ommand I4RRBCMD

CCR Code
4100 thru 4107
4108 thru 410D
410E and 410F
4111
4110

Within the I4CHKCMD group are the two exchange commands discussed above, and

this sub-group is called

I4EXCCMD.

D-8

Advanced Scientific Computer

D-7 CAPTURE CCR. The capture CCR logic is part of the master hardcore cir-
cuitry that monitors the transfer bit (TB) and unit code of the Command Com-
mand Register (CCR) in the Peripheral Processor Communications Register File.
The flowchart in figure D-3 illustrates the control cycle. If TB sets, the PP
is issuing a command to one of the system devices. The controller then inspects
the unit code of the command to determine if the command is intended for the
.CP. A code of 41 (in hexadecimal) specifies a CP command. The controller then
inspects the Request Present flag (QRPF) to determine if another request is
currently being processed by the hardcore logic. If this flag is set, the con-
troller must wait until it clears before proceeding. When the flag clears, the
controller activates the Reset TB (RSTB) and Gate CCR (GCCR) Tines to the CR
File to transfer the new command into the CP. When the PP returns a recognition
of the transfer (TBRL), the controller deactivates the two signals and acti-
vates the Request Present indicator (RP) to indicate to the hardcore Togic that
a new command is resident. The controller then ensures that the TB has not yet
reset. o

NOTE

Due to the long clock period of the CR File
with respect to the CP, the CP has several
cleck periods before TB resets. Therefore, if
TB is reset at this point, it should not have
been set. This feature also provides a time-
out that negates the CCR command if QRPF does
not set within-a reasonable time.

If TB is still set, the controller waits for the hardcore logic to set QRPF as
a result of RP being active. QRPF indicates an active command in the hardcore
logic. When QRPF sets, the controller drops RP and waits for TB to clear. When
TB clears, the cycle is complete and the controller is ready to begin the cycle
again.

D-8 CPU ERROR MODE SERVICING (See_Figures D-4 through D-13)

Two modes of error can occur in the CPU that are monitored and handled by the
Master Hardcore. They are: (1) Program Errors, and (2) System Errors. Program
Errors are defined as errors that occur while a program is running in the CPU.
They are further broken down into Protection Violations, Parity Errors, I1legal
Opcodes Encountered (these three types may be generated by either the IPU or
one of the MBU's) and Arithmetic Exceptions (developed by the AU and buffered
in the IPU). System Errors are defined as errors that occur while a hardcore
command is being processed. They may occur because of a Protection Violation
or Parity Error occurrance in either the IPU, the MBU's or the AU's during the
hardcore command, or because of a "Terminate Hardcore Command Request" signal
from the PPU, which is buffered as I4QTR 1in the Master Hardcore.

Program errors are. buffered individually in the Master Hardcore in I4QPV,
I4QPE, I4QIL, and I4QAE, respectively for Protection Violation, Parity Error,
IT1egal Opcode and Arithmetic Exception; the System Error, Protection Viola-
tion or Parity Error, condition is buffered as I4QME. These are gated to the
PPU by 14QGCB.

‘ D-9 Advanced Scientific Computer

So '
.
CAPTURE 3
CCR

RP <0 -

RESET TB
RSTB @1)

TE CCR
(GCCRa—1)

YES
* —— ——

RSTB -0
GCCR =0
(REQUEST

PRESENT)

S3

S2

‘ - — _

RP<— 0
(1S NOT USED NOOP
TO RESET QRPF,

NOTE: THIS 1S ALL ASYNCHRONOUS LOGIC. (1— XXX REQUIRES NO CLOCK)

*TBRL —LATCH OUTPUT ON CCR COOKIE SHEET THAT LOOKS AT ALL TB RESET LINES AND WHEN TBR
gég gggu:ss (!.EOGCEKTS SET SO THAT THE MHC KNOWS HOW LONG TO HOLD RSTB= | DUE TO

* * QRPF —~ GETS RESET VIA COMMAND COMPLETE IN SYNCHRONOUS LOGIC STATE 7.
ASYNCHRONOUS CCR LOADER
FLOWCHART SYMBOL |4QRP

(03(1)
co o
Cc1 01
c2 10
c3 1B}
HC)
(A)115837

Figure D-3. CP Master Hardcore (MHC) Capture CCR Logic Flowchart

D-10 Advanced Scientific Computer

SEE FIG, D—-5
FOR SETTING

I—ERR— . _J\\

IS MCwW = 1
NO

NO
IS SC+MC = 1

AUTO AUTO AUTO
RZERR RZERR RZERR
DRZ —100 DRZ <010 DRZ~—111
AUTO AUTO AUTO AUTO
RZERR RZERR RZERR RZERR
DRZ— 000 DRZ—110 DRZ-—011 DRZ—000
AUTO AUTO AUTO-— 1 NO—OP
RZERR RZERR DRZ~— 000
DRZ-—001 DRZ—101
115838

Figure D-4. MHC Monitor Flowchart

D-1

Advanced Scientific Computer

P
ICQIPPAE
YES

PAR-- 1
ERR
AUTO

14PIPEON(0)

YES

BCQPARER(0

YES

PAR-—1
ERR
AUTO

14PIPEON(1)

BCQPARER(1)

PAR- 1
ERR
AUTO

(B)132486

1APIPEON(2)

BCQPARER(2

NO

PAR- 1
ERR
AUTO

14PIPEON(3)

BCQPARER(3)D

NO

PAR-—1
ERR
AUTO

ICQIPPRV

PRV.- |
ERR
AUTO

14PIPEON(0)

NO

BCQPRVLT(0)

1APIPEON(1}

PAV—1
ERR
AUTO

14PIPEON(0)

BCQILOPR(0)

ILLO-1
ERR
AUTO

14PIPEON(2)

BCQPRVLT(2)>

PRVt
ERR
AUTO

14PIPEON(1)

YES

BCQILOPR(1)

YES

fLLO--1
ERR
AUTO

14PIPEON(3)
NO

YES

BCQ LT
CQPRVLT(3 NG

YES

PRV--1
ERR
AUTO

NO

14PIPEON(2)

BCQILOPR(2

HLLO-—1
ERR
AUTO

ICQIPIOP

1LLO~—1
ERR
AUTO

NO

NO

Figure D-5. MHC Program Error Cell Detection

14PIPEON(3)

BCQILOPR(3

ICQARE X

AREXC- -1

AUTO

D-12

Advanced Scientific Computer

MHC IDLE {F RB=1, IMPLIES CPU IS EX- .
STATE © ME (NOT POSSIBLE , ECUTING A JOB STEP (NORMAL
IN THIS STATE OR TR OPERATION). IF RB-0, RECEIVES
FROM PPU). SEE FIG, HALT NORMAL CPU OPERATION
07 r
~ 1
N
RB SYSERR R8-0 L
YES
NO
_ _ |SEE FiGURE
NO NO ,|o-a
’,
P e
M
RZF--1 y
RZB--R7 B
2
HCINIT— 1
QCCR—E
HCINIT —-1
¢ ERRF- 1
3 RB-0
4
CC-1 .
REF- 0 2; ! SEE FIG.
RB-- CHKCMD McC i sC - D-5
CNDB- COND vEs |RPF-0
CNDB- COND
NO
\
\
N MCWF-—1
\ 6 -
AY
THE "OR” OF THE PPU
RESPONSE BYTE BITS
(I4CRMC AND 14CRSC)
AND THE MHC BUFFERS
14QMC AND 14QSC. b
3
RIPF-- 1 EXCCMD EXCHF- 1
CCR--CCRI QCCR~— '8’
NO
YES
S5t QCCR —'g!
SS--1
CCR-- CCRI
HCINE .~ 1 ——— SEEFIG.
D-8
(C)132487 (1 8) 2

Figure D-6. Master Hardcore Flowchart (Sheet 1 of 6)

D-13

Advanced Scientific Computer

o]

1,3
14QSTAT(1) v

AN
SET REQ A TRFR0M PRu ABORT<—1

SE-—1
GRZ~—1
YES :
NO
NO
YES
prpat
GRZ-—1 RPF<« 0
GCB~—1
CC—1
RPF-—0
GCB-—1
RB-—0
CNDR<— COND
CLRREQ~—1

[

(B)132487 (2/6)

Figure D-6. Master Hardcore Flowchart (Sheet 2 of 6)

D-14 Advanced Scientific Computer

14QSTAT(3)

CALL PERMIS—
SION TO LVL3 - —] HCCALL
CONTROLLER

r———————————

CAN ONLY BE
TR FROM PPU |- —

SYSERR

l

CALL COMPLETE
FROM LEVEL 3

RZF-—1
RZB~—RZ

CONTROLLER
—] 2
14QSTAT(2)
MCe—1 I
H SS<—1 l
QCCR-— g/ CcC-—1
\/6 : l RPF—0
HCINIT— 1 | 6
4 |

(B)132487 (3/6)

Figure D-6. Master Hardcore Flowchart (Sheet 3 of 6)

D-15 Advanced Scientific Computer

1,3,5 | EI
1AQSTAT(4)

HCwAIT

EXCMODF

ERRF- 1
RB—0
ABORT—1
CNDB- COND
GCB—1

o>

5
YES &
INHRB

(C)132487 (4.6)

Figure D-6. Master Hardcore Flowchart (Sheet 4 of 6)

D-16 Advanced Scientific Computer

Y

14QSTAT(S)
csw
HCRINP
&
YES
NO
csR
NG
YES
HCRINP
ABORT
|
14QSTAT(6) YES
NO
cc—1
AB—1
No RPF~—0
YEs .
N — _ , .
\ *
J sEE
FIG. D-12 MC-—1
|
INHRB INHRB @ EXCMDF sC—1 sc—1
: YES GCB—1 AT—1
EXCMDF—1 rB—0
NG NO CNDB-—COND CNDB—COND
GeB—1
YES YES
SC—1
ce—1 MC—1 QCCR-—G
RPF—0 CNDB—COND |. YES /
GCB—1

§ J
QCCR~——C HCINIT—1

(C)132487 (5/6)

Figure D-6. Master Hardcore Flowchart (Sheet 5 of 6)

D-17 Advanced Scientific Computer

14QSTAT(7)

1v2'3'4s5

ERRF<— 0O
MCWF-— 0
EXCHF- 0
EXCMDF-— 0
RZF+—0
ABORT-— 0

HCINIT~—1
QCCR~— g/

MCWF<—— 0
RIPF— 0
EXCHF-—0
EXCMDF-— 0
RZF<+—0

ABORT+ 0
CLRREQ«—0
CC+—o0
AB+— 0
SE<+—0
AT<—0
GCB-—0
GRZ-—o0

14QSTAT(8)

-
NO
YES

RB-—1

(A)132487 (6/5)

é

Figure D-6. Master Hardcore Flowchart (Sheet 6 of 6)

D-18

Advanced Scientific Computer

D O

TR
NO
YES

SYSERR

AHQPA(0)

AHQPA(1)

AHQPA(3)

YES

AMERR- -t
SYSERR

IMMEMERR
NO

MIERR —1
SYSERR

(B)132474

I14APIPEON(0)

BHCMERR(0)

MIERR—1
SYSERR

AHQPR(0)

AMERR—1
SYSERR

14PIPEON(1)

BHCMERR(1)

MIERR—1
SYSERR

AHQPR(1)

AMERR —1
SYSERR

14PIPEON(2)

BHCMERR(2)

MIERR -1
SYSERR

AHQPR(2)

AMERR--1
SYSERR

14PIPEON(3)

BHCMERR(3)

MIERR~—1
SYSERR

AHQPR(3)
NO

AMERR--1
SYSERR

Figure D-7. MHC System Error Cell Detection Flowchart

TIRELY

D-19

Advanced Scientific Computer

Jp

START
5 14PIPEON(2)
N NO
YES

HCINIT: 'PU MBU@) | nemir: s
AU(2) ;

14P1PEON(3)

14PIPEON(0)
YES

HCINIT ¢ 1 MBU(0)
HCINITES AU(0) HCINIT: 4
HCINIT:8
MBU(B)
AU(3)
YES
HCINIT:2
HCINIT:6 MBU(1)
AU(1)

-

(A)132475

Figure D-8. MHC Initiating Unit Hardcores Flowchart

D-20

Advanced Scientific Computer

Q START

NO

QCCR - %g¥

QCCR - Wo#

YES

9

NO

Y

NO
YES
Bl
No HMBUZP(0)
YES
14PIPEON(1)
NO

BHMBUZP(1)
NO

40

YES

(A)132476 ’

NO

YES

{APIPEON(2)

YES
BHMBUZP(2)

YES

14PIPEON(3)
YES

BHMBUZP(3)
YES

ZROPN——1 |

2k

Figure D-9. MHC Zero Pending Memory Requests Detection Flowchart

D-21

Advanced Scientific Computer

(A)132477

RUNBIT ¢

I4RUNBIT:i = COPY OF 14QRB SENT TO UNIT HARD CORES [UHC'S]
[14@RrB=1 > UHCS’/ QFREEZ=0]
14 INHRB = INHIBIT RUNBIT TO UHC'S
= [14QMCWF + 14QEXCHF} % [14QSTAT(6) + I4QEXCMDF]
14RUNON = FORCE I4RUNBIT:| = 1 FOR A 4108 CCR COMMAND UNTIL IPU-

UHC RESPONDS, WITH WZERO PENDING#
[14QSTAT(4)% {14QCCR(8-12) = Wa#} * -1 14QZROPN]

i

Figure D-10. MHC Run Bit Control Flowchart

D-22 Advanced Scientific Computer

@ (START ’

ICMP-0

14PIPEON(0)

MCMP(0)~0
ACMP(0)~0

IAPIPEON(1)

MCMP(1)-0
ACMP(1)—0

1APIPEON(2)

MCMP(2)—0
ACMP(2)—0

14PIPEON(3)

MCMP(3)-0
ACMP(3)--0

(C)132478

ICMP~—0

MCMP(0)—1

14PIPEON(0) AGMP(0)—1
MCMP(0)~—1
AHUNITCP(0)
YES
ACMP(1)—1
MCMP(1)—1
I4PIPEON(1) ACMP(1)—T1

BHQUNCMP(1 D>

MCMP(1)—1

ACMP(1)~—1

O

4PIPEON(2)

MCMP(2)—1
ACMP(2)—1

BHQUNCMP(2)>

MCMP(2)—1

ACMP(2)—1

14PIPEON(3)

MCMP(3)—
ACMP(3)—1

BHQUNCMP(3

MCMP(3)—1

AHUNITCP(3) o)

YES

ACMP(3)—1

MCMP(0)
CMP(1)*(MCMP(2)
*MCMP(3)*ACMP(0)x
ACMP(1)*ACMP(2)

*ACMP(3

MHCCMP

O

Figure D-11. MHC Unit Hardcore Complete Detect Flowchart

D-23

Advanced Scientific Computer

—3

1ABT=- 0
MABT(0~3)-- 0
AABT(0-3)«. 0

I1APIPEON(1)

AHABNTRM(2)
NO
AABT(2) «-1
BHQABTRM(1) MHCABT
IABT -~ 1 MABT(1)- 1
MHCART MHCARBT
— AHABNTRM (1) ——
NO NO <vIHQAl}TRM('H
\.'
YFS Yrs
AABT(1)- 1 MABT(3)- 1
MHCABT MHCART
NO
YES
MABT(0)1
MHCABT
NO ’
YES
HHQABTRM(2) AABT(3) 1
MHCABY

AABT(O)- 1

MABT(2)+—1
MHCABT

MHCART

(B)132479

Figure D-12. MHC Unit Hardcore Abnormal Exit Detection

D-24

Advanced Scientific Computer

PV

OR
YES PA
NO
MAKE
LD/STR
To'cM
SEND
TABNORMAL
TERM INATEY
TO MHC
MHC
READY
TO PROCEED
DONE
ALL LD/STR
REQ/D
MAKE .
POINTER £
ADDRESS
FETCH)

SEND

WUNIT
COMPLETE”
TO MHC

GOT
POINTER
FROM CM

(A)132480

Figure D-13. Typical Unit Hardcore Operation Flowchart

D-25 Advanced Scientific Computer

a2

The Master Hardcore may respond in two ways to the Program errors: (1) it may
merely tell the PPU that an error has occurred and then wait for the PPU to
indicate what is to follow (manual mode) or (2) it may automatically switch
out ghe offending program and switch in a new program to be run (automatic
mode).

Manual mode occurs when:

1.) The PPU has not responded to and cleared a previous code or switch
condition (I4CRMC + I4CRSC = 1); or,

2.) The PPU has not set I4CRAS, the "Allow Automatic Switch" control bit.

In either case, the error condition is recoded into a reason error condition
via the Reason Encoder logic, and the Reason code buffer (I4QRZ(0-2)) is gated
to the PPU by I4QGRZ.

Automatic mode occurs when I4CRMC + I4CRSC = 0 and I4CRAS = 1. In this mode we
turn off the machine "Run" mode bit (I4QRB) to halt the machine, do a Store
Maintenance Details (410E CCR command) to swtich out the offending program, do
a Load Status command (if I4CRSB = 1) or a Load CP Details to switch in the
next job the PPU has cue'd up, send a "Clear Abnormal Flags" command to the
Unit Hardcores to clear the error condition (since it has been serviced), and
gina11y, turn-the run bit back on (I4QRB-1), so that the new program may
begin.

As may be seen from a casual glance at the flowcharts, system errors are
serviced differently, depending upon when they occur. The overriding concern,
however, is that the machine be halted (I4QRB-0), and the PPU notified that
such a condition exists, so that the PPU may assume control and issue such
%pmmands as necessary to restore the CPU to a running condition again.

D-9 CPU MONITOR CALL SERVICING

There are two IPU Instructions that issue a "Call" to the PPU; that is, they
halt the IPU for as long a time as necessary to either write a message only or
to write a message and switch out the present program. These instructions are
"Monitor Call and Proceed" and "Monitor Call and Wait" abbreviated MCP and MCW.
The "Call1" is sent to the Master Hardcore, which in turn determines how it will
be serviced.

As in the case of Program error servicing, MCP/MCW instructions may be handled
in either the manual mode or the automatic mode depending upon control condi-
tions from the PPU.
The manual mode will occur if:

1. I4CRMC + I4CRSC = 1; or

2. T4CRAC = 0 (the PPU has not set the "Allow Automatic Call" control
bit; or,

3. the instruction is MCW and I4CRAS = 1.

D-26 Advanced Scientific Computer

9]

If the manual mode occurs, the Reason encoder logic recodes the MCP/MCW into a
Reason error, and handles the situation exactly as described in the Program
error - manual mode section.

The automatic mode occurs when all of the above manual mode conditions are not
true; i.e., I4CRMC + I4CRSC + I4CRAC + I4CRAS = 0 for MCW instructions or
I4CPMC + I4CRSC + I4CRAC = 0 for MCP instructions. :

If the instruction is MCP, in the automatic mode, the Master Hardcore will
send I4HCCALL to the IPU Level 3 Controlier to allow it to write its message
for the PPU. When the level 3 Controller has finished, it will send IRCALCMP
to the Master Hardcore, when it is buffered in I4QCLCMP. The Master Hardcore
then sets I4QMC to tell the PPU that a message is ready for reading. The PPU
must then respond by sending I4CRMC to the Master Hardocre, so that I4QMC may
be cleared. The Master Hardcore will not consider any further MCW/MCP requests
or Error servicing requests to be in the Automatic mode until it has followed
a complete cycle of changes on I4CRMC; i.e., I4CRMC = 0, then I4CRMC = 1 then
I4CRMC = 0. If the instruction is MCP in the automatic mode, the Master Hard-
core will send I4HCCALL to the IPU Level 3 Controller and wait for IRCALCMP.
It will then issue a Store Status command to the Unit Hardcores to switch out
the present program. When it completes normally, it will issue either a Load
Program Status (if I4CRSB = 1) or a Load CP Detail to switch in the new pro-
gram. When it completes normally, it will send both I4QMC and I4QSC to the PPU

to tell it that a message is ready, and that a program switch has completed.

The PPU must respond with a complete cycle on I4CRMC + I4CRSC before the
Master Hardcore will consider any further MCP/MCW/Error service requests to be
in the automatic mode.

If after an MCP/MCW Automatic mode service request begins another error occurs,
the Master Hardcore will terminate the servicing at that point and tell the g
PPU what was in progress and why it failed via the CP Condition and CP ,
Response bytes.

D-27 Advanced Scientific Computer

[A@ JI4HDCORE

IPU4 UNIT HARD CORE CONTROLLER

’

The central processor Master Hard Core (MHC) logic transmits the four least
significant bits of CCR commands to the IPU4 Unit Hard Core controller (con-
troller). The controller then decodes those bits of the command and, if the
command is pertinent for the IPU4, generates the gating and control signals
required to perform the maintenance transfer. The controller is implemented
entirely on the I4HDCORE circuit board in location LB of the 4CTLMB. Oné
initial waiting state plus six clocked states, 1 through 6, comprise the func-
tional divisions of the controller. The state diagram and flow charts included
with this description illustrate the inter-relationship of these states. The
following paragraphs describe the operation and function of the controller
states for each maintenance command. The discussion follows the logic flow

depicted in the flow charts.

STATE 0. This state is an asynchronous waiting state of the controller.
Whenever the controller is not processing a CCR command for MHC, the con-
troller returns to state 0 to await the next command. MHC activates Hard
Core Initiate (I4HCINIT) to inform the controller of a command to be performed.
When the controller detects this signal, it transfers the four least significant
bits of the CCR code (I4CCR(12-15)) from MHC to the controller's command
register, IMQLSD(0-3). When this transfer is complete, the controller enters

state 1 following the control clock pulse.

COMMAND DECODE. When the controller has recognized and captured
a CCR command, it enters state 1 to begin decoding and processing the
indicated operation. Table D-1 lists the codes that the controller recognizes
and responds to, and the operations that the codes initiate in the IPU4. Exe-
cution of No Op conditions and basic, one-action commands is handled en-
tirely while the controller is in state 1. No Op conditions produce a command
complete signal from the controller (-IMHCCOMP). The controller returns
immediately to state 0 to await a new command. The basic commands of
master reset, master preset, and clear abnormal flags produce their re-

spective clear or set signals from the controller in state 1. The controller

D-28 Advanced Scientific Computer

@O
I4CCR(12-15),

or
IMQLSD(0-3)

0-3
4

10 (A)

11 (B)

12 (C)

13 (D)

Table D-1,

Command

No Op

Reset Details
Cells

Set Details
Cells

Reset Error
Cells

Nlegal Op
Store Status

Load Status

Exchange
Status

Store CP
Details

Load CP
Details

Exchange
CP Details

IPU4 CCR Commands

Required Action

Return Command Complete to MHC

Master Clear IPU4 registers and
flags.

Master Preset IPU4 registers and
flags.

Clear IPU4 abnormal flags.

Return Command Complete to MHC

Fetch pointer from location 14,
store program status word, P3,
clock counter and Register File
in pointer octet.

Fetch pointer from location 15;
load contents of pointer octet into
program status word, P3, clock
counter and Register File.

Fetch pointer from location 14;
store status in pointer octet.

Fetch pointer from location 15;
load status from pointer octet.

Fetch pointer from location 18;
store details parameters in octets
beginning with pointer octet. Wind
down operations in pipe before
store.

Fetch pointer from location 19;
load details parameters from octets
beginning with pointer octet.

Fetch pointer from location 18;
store details beginning with pointer
octet. Select pointer from location
19; load details beginning with
pointer octet. Wind down pipes
before store.

D-29

Advanced Scientific Computer

52

I4CCR(12-15),
or
IMQLSD(0-3)

14 (E)

15 (F)

Table D-1. IPU4 CCR Commands (Cont‘inued)

Command

Store Maint.
Details

Load Maint.
Details

Required Action

Fetch pointer from location 18;
store details parameters in octets
beginning with power octet.
Freeze pipes before store.

Fetch pointer from location 19;
load details parameters from
octets beginning with pointer
octet.

D-30

Advanced Scientific Computer

@O
then issues command complete to MHC and returns to state 0. One other

’

condition, an abort from MHC, causes the controller to return to state 0

from state 1. This condition indicates that one of the other CP unit hard

core controllers has failed to perform its function in the trah_sfer command.
Completion of the command by the IPU4 would be fruitless. The controller
then sets abnormal termination to MHC, reinitializes the octet counter, clears
the hard core request indicator to CMR, and signals command complete to
MHC. The controller then returns to state 0. All other commands involve
more complex control operations. To handle these operations, the control-
ler enters the other states. .The remaining paragraphs describe the control

paths of each of these complex transfer operations.

STATUS OPERATIONS. A status transfer (load, store or exchange) is
the minimum maintenance transfer that the CP performs. A status command
transfers six complete octets and one partial octet either to or from an area
in memory from or to the register file, the clock counter, the P3 register,
and the status word register in the IPUA4. Figure?D-l4 illustrates the octet
and word allocations for each of the data quantities in the status transfer.

‘A counter circuit (IMQOCTR(0-4)) in the unit hard core controller determines
which octet is to be involved in the transfer during any particular clock cycle.
This counter is initially loaded with a value of 20 to select the first octet in
the status map, and then with a value of 14 to select the second octet in the
status map. Subsequent memory cycles increment the counter from 14
through 19 so that all of the octets in the status map are selected. The loca-
tion of the status map in memory for a particular transfer is indicated by the
contents of another memory word in either location 14 (store) or 15 .(load).
The actual contents (pointer) of either of these memory locations is under
control of the operating system, so that the location of the map in memory
may be changed for-different jobs that are running in the CP. To access the
pointer from memory, the controller loads the octet address of the pointer
(10) into the OA register and requests that octet from memory. The control-

ler sets three selection bits, IMHCASEL(0-2), to the values that gate the

D-31 Advanced Scientific Computer

¢e-a

431NAW07) 21}13U1S PIIUEAPY

OCTET IMQOCTR WORD WORD WORD WORD WORD WORD WORD WORD
01234 0 1 2 3 4 5 6 7
o (20) IRQPSW IRQP3 CLOCK
10100 (0~31) (8=31) COUNTER
(14) REGISTER FILE A
1 o1110 ZEROES IFQA 1—-7 (0—31)
(15) RE
2 GISTER FILE B
o1111 IFQB 0—7 (0—31)
3 16) REGISTER FILE C
10000 IFQC 0-7 (0-31)
4 17) REGISTER FILE D
10001 IFQD 0-7 (0—31)
5 (18) REGISTER FILE |
10010 IFQl 0-7 (0—31)
6 (19) REGISTER FILE V
10011 IFQV 0—7 (0-31)
(A)Y127624

Figure D-14,

IPU4 Status Map

@O
proper pointer from the KCM octet to the 0A register to begin the status
transfer. Store status transfers travel through the IMDTL bus lines to the
I4FILE circuit boards to be placed on the two way data bus to memory. Load
details transfers enter the IPU at the KCM interface file and are transferred

directly from KCM to their respective registers over the ILQKCM data bus

lines.

STORE STATUS. A code of eight indicates a store status operation.
When the controller detects this code in IMQLSD(0-3), it sets the octet count-
er to a value of 20 (10100). When enabled, this count transfers the program
status word, P3 and the clock counter contents to word O of the status map
area in memory. The controller then sends Status Freeze to the level 3
controller, so that the level 3 controller will hold the next instruction at
level 3 and empty the pipes. When all pipes are empty and an unprocessed
instruction is at level 3, the level 3 controller generates -IRNIFRZ to the hard
core controller. When the controlle’r receives this signal, and if all other
unit hard core controllers in the CP have not encountered complications, the
IPU4 is prepared to perform a store status operation. The controller then
sets -IMHCREQ to central memory requester (CMR) indicating that the con-
troller will be using CMR to initiate requests to memory. The controller

then enters state 2.

In state 2 during a store status, the controller checks each CP pipe to
determine if a vector is running in that pipe that cannot be wound down with-
out further memory requests (vector bad guy). If a vector bad guy is in any
of(the pipes, the controller signals the level 3 controller that the vector will
be aborted, and then forces the vector out of the pipe without an orderly
de-escalation. The controller also ensures that de-escalatiqn is complete
in each pipe. If not and a vector is still in progress, the controller activates
-IMSUPRUN(X) so that the current buffered data in the MBU will run to com-=
pletion and stop. The controller waits until all pipes have cleared. In state 2
the controller also ensures that no memory requests are outstanding or ex-

pected, so that the outstanding requests will not be lost when the status store

D-33 Advanced Scientific Computer

a2

is performed. The controller indicates to MHC that it is ready to perform

the command by issuing zero pending (IPZROPEN). When the MHC responds
with I4ZROPEN, the controller locks the IPU4 in its present state and sets

the hard core in progress flag (IMQHCINP). The controller enters state 3.

During a store status in state 3, the controller sets bit 27 of the OA reg-
ister. Setting this bit loads octet address 10 into the OA register. This octet
is the octet that contains the pointer for status operations. The controller ini-

tiates 2 memory request for this octet through CMR, and enters state 4.

In state 4 the controller waits for the requested octet to return from mem-
ory. It then checks for a parity error or protect violation during the fetch for
the pointer octet. If either of these conditions occur, the controller terminates
the operation and indicates to the MHC that the operation is complete and ab-
normally terminated. If no errors occur, the controller sets the Load Pointer
flag to indicate that the pointer must be selected from the octet in KCM, and

advances to state 5.

When the controller enters state 5 from state 4, the write flag sets. This
flag indicates to the memory bus selection circuit on the I4FILE circuit boards
that the operation will be a store into memory. The selection circuit then en-
ables data from the store details lines to the MCU, The controller also acti-
vates the store program status doubleword flag that indicates the first status
octet is being stored. The controller then sets pointer select bit 0 of
IMHCASEL(0-2), so that word four of the pointer octet (location 14) is trans-
ferred into OA to designate the starting octet for the status store into memory.
The controller toggles access request (ICQAR:2) to the MCU to begin the store
operation for the first octet, and clears the load pointer flag so that subsequent
passes through state 5 will not reselect a pointer from KCM. The controller

enters state 6.

During the initial pass through state 6, the octet counter has been set to
a value of 20. The controller enables status inputs to the memory bus by pro-

ducing IMSTPSDW:1 and IMSTPSDW:2. When the store has been made, the

D-34 Advanced Scientific Computer

52

controller ensures that no memory errors have occurre}d. If an error occurs,
the controller performs the abnormal termination cycle. If no errors occur,

the controller clears the store status ﬂag, and the controller loads a value of
14 into the octet counter. Loading 14 into the octet counter begins a cycle for

storing the contents of the register file into memory. To initiate the memory

cycle for the first octet of the register file, the controller returns to state 5.

After the memory cycle for the first register f_ile octet has been initiated,
the controller returns to state 6, checks for a memory error, and if no errors
have occurred, increments the octet counter and returns to state; 5 to initiate
another store operation for the next register file octet. This cycle repeats
until the octet counter reaches 19 and the octet corresponding to that count
(V file) has been stored. At that point the store status operation is complete.
The controller clears the octet counter and the hard core request indication
to CMR, and terminates the operation by sending-IMHCCOMP to MHC. The

controller returns to state 0 to await another command.

LLOAD STATUS. A code of 9 in IMQLSD(0-3) indicates a load status op-
eration. When the controller detects this code, it sets the details octet icount-
er to a value of 20 (10100) so that the status word, P3 and the clock counter
will be selected first during the load operation. The controller then sets
-IMHCREQ to CMR indicating that the controller will be using the memory

access paths for a maintenance transfer. The controller then enters state 2.

For a load status, state 2 of the controller does not need to check the con-
tents of the CP pipes as in the store status, since nothing in the pipes will be
saved. Instead the controller ensures that the IPU has no outstanding requests
to memory and expects no responses from the MCU. Then, if the other unit
hard core controllers have not encountered difficulty, the controller indicates
to MHC that it is ready to perform the transfer. When MHC responds with
I4ZROPEN, the controller locks the IPU4 in its present state, sets the hard

core in progress flag, and enters state 3.

D-35 Advanced Scientific Computer

In state 3 the controller generates a master clear to the IPU4 registers
and flags to prepare the circuits for the load operation and ensure that all pre-
vious information is erased. The controller then loads a value of 10 into the
OA register by setting bit 27, and initiates a memory request for the status

pointer octet.

*.When the octet enters KCM, the controller checks for memory errors,
and if none have occurred, sets the load pointer flag to indicate that the pointer
must be selected from the KCM octet and loaded into OA to fetch the status

parameters from memory. The controller enters state 5.

. The pointer must be selected from KCM to continue with the load status
operation. State 5 sets both bits 0 and 2 of IMHCASEL(0-2) so that word 5
of the octet in KCM (location 15) will be selected and transferred to OA. The
controller generates the required transfer signals, clears the load pointer
flag, and then initiates a memory request for the first status octet by toggling

AR to the MCU. The controller then moves to state 6.

In state 6 the controller checks the value of the octet counter. Since at

the start of the load status operation (state 1) the counter was 10dded with a

~‘7va1ue of 20, the controller generates IMLDPSDW 1 and IMLDPSDW:2 to en-

able the inputs to the status word register, P3 and the clock counter from
their respective words in the KCM file. When the octet enters KCM from
memory, the controller ensures that no memory errors have been encountered,
and loads a new value of 14 into the counter so that the first octet of the regis-
ter file will be loaded during the next cycle. In order to fetch the next octet
from memory, the controller adds eight to the address in OA, and toggles AR
to initiate a memory request for that next octet. When each successive octet
returns from memory into KCM, the new value in the octet counter gates that
octet to one of the octets in the register file. Concurrently, the controller
checks for memory errors, increments the count in the octet counter, and
initiates a new memory request for the next octet (OA + 8). This cycle re-

peats until the octet counter reaches 19 and the octet corresponding to that

D-36 Advanced Scientific Computer

O

count (V file) has been loaded. At that point the load status operation is com-
plete. The controller clears the octet counter and the hard core request indi-
cation to CMR, and terminates the operation by sending -IMHCCOMP to MHC.

The controller returns to state 0 to await a new command.

EXCHANGE STATUS. A code of 10 in the IMQLSD(0-3) register indicates
an exchange status operation. The exchange status command produces a store
status operation followed by a load status operation, and follows the paths
through the controller logic described for those operations. The exchange flag,
IMQEXCH, indicates which cycle is being performed during the exhange.

This flag sets at the start of the exchange operation to indicate to the control-
ler that the store status portion of the exchange operation is in progress.
When the store status portion is complete, controller state 6 clears the ex-

change flag so that the controller will follow the load status paths.

DETAILS OPERATIONS. A details transfer (load, store or exchange)
switches the contents of all the vital registers in the IPU to preserve the
parameters of a program executing in the IPU, or enter new program param-
eters into the IPU. All details operations transfer twenty octets of informa-
tion between memory and the registers and flags of the IPU. Appendix A to
this description illustrates the bit, word and octet assignments of the critical
registers and flags of the IPU. A counter circuit (IMQOCTR(0-4)) in the unit
hard core controller determines which octet is to be involved in the transfer
during any particular clock cycle. Since twenty octets are involved, the count-
er must increment from an initial count of zero through a count of nineteen
to enable transfer of all octets in the details map. The location of the details
map in memory for a particular transfer is indicated by the contents of an-
other memory word in either location 18 (store) or 19 (load). The actual con-
tents (pointer) of either of these memory locations is under control of the op-
erating system, so that the location of the map in memory may be changed for
different jobs that are running in the CP. To access the pointer from memory,

the controller loads the octet address of the pointer (18) into the OA register

D-37

Advanced Scientific Computer

a2

and requests that octet from memory. The controller sets three selection

bits, IMHCASEL(0-2), to the values that gate the pointer from KCM to the OA
register to begin the details transfer. Store cycle data travels through the
IMDTL bus lines to the I4FILE circuit boards to be placed on the two way data
bus to memory. Load cycle data travels through KCM to the respective reg-
isters and flags in the IPU.

STORE CP DETAILS. A code of 11 in IMQISD(0-3) indicates a store CP
details command. When the controller detects this code, it clears the octet
counter to zero to ensure that the transfer starts with octet zero, and indi-
cates to CMR that it will be using the memory access paths to perform a

maintenance transfer. The controller then enters state 2.

During a store CP details, state 2 of the controller checks each CP pipe
to determine if a vector is in any of the pipes that cannot be wound down with-
out further memory fetches (vector bad guy). If a vector bad guy is in any of
the pipes, the controller indicates to the level 3 controller that the vector will
be forced from the pipe witﬁout an orderly wind-up, and sends an abort signal
(IMBGABRT) to the respective MBU to irradicate the vector. If no vector bad
guy is present, but another vector is in the pipe that hasn't been de-escalated,
the controller issues IMSUPRUN to the respective MBU to de-escalate the
vector regardless of the condition of the CP Run bit. When de-escalation is
complete in all pipes, the controller ensures that the IPU has no outstanding
requests to memory, and that a request has not been issued during the current
clock. When the controller is sure that no memory requests will be lost, it
informs MHC that zero requests are pending (IPZROPEN) so that the IPU is
prepared to execute the command. When MHC returns I4ZROPEN, the con-
troller locks the IPU in its current state, sets the hard core in progress flag,

and transfers control to state 3.

In state 3 the controller loads a value of 18 into OA by setting bits 27 and
28 of that register. The controller then initiates a memory request for the

pointer octet, and enters state 4.

D-38 Advanced Scientific Computer

i

by

\
i

When the octet enters KCM, the controller checks for memory errors,
and if none have occurred, sets the load pointer flag to indicate that the pointer
must be selected from the KCM octet and loaded into OA to provide the starting

address of the store operation in memory. The controller enters state 5.

When the controller enters state 5 from state 4, the write flag sets. This
flag indicates to the memory bus selection circuit on the I4FILE circuit boards
that the operation will be a store into memory. That selection circuit then en-
ables data from the store details lines to the MCU. The controller leaves all
of the IMHCASEL(0-2) bits clear to select word zero from the octet in KCM
(location 18). This pointef word transfers to OA and the controller toggles
AR to the MCU to initiate the first store operation of the transfer. As the con-
troller exits from state 5 to state 6, it clears the load pointer flag so that sub-

sequent passes through state 5 will not reselect a pointer from KCM.

When the controller enters state 6, the octet counter is at count zero since
the counter was cleared at the beginning of the store CP details operation
(state 1). The controller disables the output selection from the register file to
avoid storing those parameters at this time, transmits the octet count to the
individual details gating circuits on the IPU circuit boards, and enables those
gating circuits to supply inputs to the data bus to the MCU. Decode of the
octet count and selection of the corresponding input bits to the data bus is per-
formed on each IPU4 circuit board. When the store cycle is complete, the
controller checks for memory errors during the cycle, and if none have oc-
curred, it increments the count in the octet counter and returns to state 5 to
initiate another store cycle to memory. When the octet count reaches 12 or
13 (KA or KB Buffer files), IMFSLDIS deactivates since the storage path for
KA and KB is through the register file output selection gate. When the octet
counter reaches 19 and the octet corresponding to that count has been stored
(register file V), the store CP details operation is complete. The controller
clears the count in the octet counter and the hard core request flag, and trans-
mits a command complete signal to MHC. The controller then returns to

state 0 to await another command from MHC.

D-39

Advanced Scientific Computer

—
=~

\
N~

LOAD CP DETAILS. A code of 12 in IMQLSD(0-3) indicates a load CP
details command to the IPU. When the controller detec-ts this code, it clears
the octet counter to an initial value of zero and sets the hard core request flag
to indicate to CMR that unit hard core will be using the memory access paths.

The controller then enters state 2.

During a load CP details operation, the controller does not need to check
operational status in the pipes as it does during a store operation. The con-
tents of any pipe will be destroyed by the load process if the pipes are not
empty. Therefore, when the controller enters state 2 it checks only to see if
the IPU has any outstanding memory requests that will return before the opera-
tion begins. Such data may be confused with the pointer octet, and produce
errors. When the controller is sure that no requests have been sent to mem-
ory that have not returned, it transmits IPZROPEN to MHC to indicate '"zero
pending requests''. When MHC responds with I4ZROPEN, the controller locks
the IPU in its current state and sets the hard core in progress flag. Control

transfers to state 3.

In state 3 of the controller loads a valuc of 18 into OA by setting bits 27
and 28 of that register. The controller then initiates a memory request for

the pointer octet, and enters status 4.

When the octet enters KCM, the controller checks for memory errors,
and if none have occurred, sets the load pointer flag to indicate that the
pointer must be selected from the KCM octet and loaded into OA to provide

the starting address of the store operation in memory. The controller enters

state 5.

In state 5 the controller sets bit 2 of IMHCASEL(0-2) to select word one
from the octet in KCM (location 19), and transfers that word to OA fetch the
first octet of data from memory. The controller toggles AR to the MCU to
initiate the memory request for that data, and clears the load pointer flag so
that the pointer will not be reselected during repeated cycles through state 5.

Control transfers to state 6.

D-40

Advanced Scientitic Computer

Since the octet counter was cleared at the start of the load operation, the
value in the counter is zero. Therefore, when the controller enters state 6,
it transmits the contents of the counter to the separate IPU details gating cir-
cuits and enables those circuits to produce selection signals that route the in-
coming data from KCM to the proper IPU registers and flags. When the octet
enters KCM from memory, the controller checks for any memory errors. If
none have occurred during the memory cycle, the controller increments the
count in the octet counter, adds eight to the address in OA, and toggles AR to
the MCU to initiate a new memory fetch. The controller continues to cycle in
state 6 until the octet counter reaches 19. At that point the load operation is
complete. The controller clears the octet counter and the hard core re‘quest
flag, and indicates to MHC that the command is complete. The controller re-

turns to state 0 to await a new command.

EXCHANGE CP DETAILS. A code of 13 in IMQLSD(0-3) indicates an ex-
change CP details operation. The exchange CP details command produces a
store CP details followed by a load CP details operation, and follows the paths
through the controller logic described for those operations. The exchange flag,
IMQEXCH, indicates which cycle is being performed during the exchange. This
flag sets at the start of the exchange operation to indicate to the controller that
the store CP details portion of the exchange operation is in progress. When
the store por.tion is corhplete, controller state 6 clears the exchange flag so

that the controller will follow the load status paths.

STORE MAINTENANCE DETAILS. A code of 14 in IMQLSD(0-3) indi-
cates a store maintenance details command. The execution of this command
is identical to the store CP details command, except that the maintenance
details operation does not check the status of the pipes before storing the IPU
parameters. Instead it freezes the IPU in its current state as long as no re-
quests are outstanding to the MCU. This difference occurs in state 2 of the
controller. All other controller paths are identical to the CP details control-

ler paths. This command is used strictly for maintenance, and assumes that

D-41

Advanced Scientific Computer

)

due to some IPU difficulty, the data in the pipes should not be wound to com-

pletion. Therefore, the current status is stored of each of the IPU param-
eters so that the maintenance technician may examine the parameters to de-

termine the source of the error.

LOAD MAINTENANCE DETAILS. A code of 15 in IMQLSD(0-3) indicates
a load maintenance details command. Execution of this command in the unit

hard core controller is identical to execution of the load CP details command.

OUTSTANDING REQUEST COUNTER

This counter circuit keeps track of the number of outstanding read requests
to memory for use by the unit hard core controller. When the controller is
performing a read operation (-ICWRIT) and the MCU has returned the RA
(request accepted) signal (ICRQCMP), this circuit checks to see if data is
available from the MCU.

ABNORMAL FLAGS

The abnormal flags are four flip-flops. Each fl_ip-flop sets whenever its
particular abnormal condition occurs and is detected by the IPU circuits.,
The output from the circuit is available to the PP for inspection through the
UR fanin circuit, and can also be stored into memory during a maintenance
operation. The maintenance path to memory is enabled on the I4CMREQ
circuit board. Three of the flags respond to condition detection circuit that
are not on the I4HDCORE circuit board. These flags are: arithmetic excep-
tion (ICQAREX) set by -IRARTHEX from the I4STATUS circuit board, IPU
illegal op code (ICQIPIOP) set by IRSETIOP from the 14LVL3 circuit board,
and IPU parity error (ICQIPPAE) which responds to IOPA from the MCU

through the MCU interface circuit.

The memory protect violation flag (ICQIPPRYV) also responds to a signal
from an error detecting circuit not contained on I4HDCORE (IRSETPRV from
I4L.V1.3). However, an additional circuit on the I4HDCORE circuit board de-

tects another protect violation that occurs during instruction fetching for the

D-42 Advanced Scientific Computer

IR register or the register file. The four signals that comprise the two er-
ror conditions originate on-the I4CMREQ circuit board. ICIR indicates an
octet in KCM is intended for IR; ICFL indicates an octet in KCM is intended
for the register file. If either of these signals is active and the protect vio-
lation bit is sct for .the corresponding queue location (ICPRVQ), the protect
violation flag sets when the .output pointer is incremented to the next value

(ICINCOP).

One additional input to the flag circuit allows the flags to be loaded with
a value from the details map in memory during a maintenance operation.
This path from KCM (ILOKCM7(4-7)) is enabled during the maintenance
operation when the octet counter indicates that the 11th octet of the details
map is in KCM (ICL.VDO (11)). Sincev this is the only ﬁircuit on I4HDCORE
that is part of t}.le“de'tails map, the actual decode of the octet counter count
is performed on the I4CMREQ ;irc;ﬁt l:;oard and the gating signal is forwarded
to iéI&ﬁCORE. Refer té the déscription of the I4CMREQ circuit board for a
(Iiéséri.ptidr‘l be the details gating circuit. |

UNIT REGISTER (UR) DECODE

The UR decode circuit receives a four bit select code (I4UREN(0-3)) from
the master hard core controller on the I14MIIC circuit board. The circuit
decodes the four bits to produce five gating signals to the UR Data Selection
and Fanin circuit. In addition, the circuit forwards the selection code bits
to the I4CMREQ circuit board to select the UR data from that board
(IMUREN(0-3)). The four bit.select code decodes as follows to produce five

selection bits that return the indicated UR data to master hard core:

I4UREN(0-3) Qutput Signal
1000 IHENDTUR(0)
1001 IHENDTUR(1)
1010 IHENDTUR(2)

1011 ‘ IHENDTUR(3)
1100 : IHENDTUR(4)
1101 IHENDTUR(5)

UNIT REGISTER DATA SELECTION AND FANIN

D-43

Advanced Scientific Computer

This selection circuit receives the signals generated by the UR Decode
circuit and uses them to produce one of six possible input bytes (8 bits) from
the registers and flags on the I4HDCORE circuit board. If none of the input
selection bits is active, the UR data input from I4CMREQ is enabled to place
data on the UR data bus (-IMURDATA(0-7)) for transfer to the CP Unit Reg-
ister in the PP. Figure D-15 illustrates the bit assignments for the six unit
register bytes that originate on this circuit board. Refer to the description
of the I4CMREQ circuit board for the bit assignments on the -ICURDATA(0-7)

bus.
LEVEL 1 INSTRUCTION DECODE

The level 1 instruction decode circuit receives the operation code (op code)
portion of the instruction in the IR register at level 1 (IIQIR(0-7)). The cir-
cuit decodes this eight bit number into two hexadecimal digits and uses the
combination of digits to specify whether or not certain instructions or types
of instructions are currently at level 1 of the IPU. The output of this decode
circuit is not used by level 1, but transfers to DCL.2 register at level 2 when
the instruction in IR transfers to level 2. This decode circuit is selective.
It inspects only for those instructions that require IPU attention at level 2
before the instruction reaches level 3. The instructions, op codes and re-
sulting output signals that this circuit produces are listed in tables D-2 and

D-3.

-IIFDTHF. This output from the decoding circuit indicates that the
instruction at level 1 is "T Hazard Free'. That is, the instruction type
cannot be modified by indexing, so that the circuit that checks for an index-
ing hazard should be disabled. The op codes for the instructions in this
category that produce -IIFDTHF are listed in table B-10, along with the com-
ponent op codes for the other output signals from this circuit. The No Op
input that produces -IIFDTHF is conditioned by -II2S(3) from the level 1

controller. This signal indicates that an indirect instruction is not at the

D-44 Advanced Scientific Computer

- IMURDATA (0—7)

INPUT SELECT o 1 2 3 4 5 6 7
SIGNAL T T T I T T T

NO ACTIVE GATE — ICURDATA (0—-7) FROM I4CMREQ

- IMQFREEZ |HARD CORE |HARD CORE |HARD CORE |HARD CORE | HARD CORE |HARD CORE | HARD CORE
THENDTUR(0) STATE o STATE 1 STATE 2 STATE 3 STATE 4 STATE 5 STATE 6
|1 IMQHCSTA(0~6) $|
T T T
IHENDTUR(1) HARD CORE COMMAND REGISTER IMQEXCH | IMQHCREQ IMQHCINP | IMQLDPTR
IMQLSD(0~ 3)

Figure D-15.

T T T T T
IMQSPSDW NOT USED OCTET COUNTER
IHENDTUR(2) IMQOCTR(0- 4)
T) T T T
PROTECT MODE ID _NOT OUTSTANDING REQUEST
IHENDTUR(3) NOT USED ICQPRM : 1(0,1) USED COUNTER-IMQRC(0—2)
IHENDTUR(4) ICQRDA:1 | 1CQRDS:1 | 1cQrRA: 1 1ICQAR® 1 1ICQDAV: 1 10QDAV ICQPAR:1 | I0QPAR
I0QRDA JICQWRITE $ 1 1ICQIPPRY ICQIPPAE IcQIPiopP
IHENDTUR(S) IMQPRV : 1 IMQPAE: 1 ICQAREX
(B)127625

I4HDCORE UR Data Byte Assignments

D-45

Advanced Scientific Computer

a2

Op Code

0X

16
1B
1F¥F

2B
2F
50
51
54
55
58
59
X
84 - 87
90
93
94
96

97
9A

9B

Table D-2. Level 1 Instruction Decode QOutputs
Instruction

No Op

LLA

Load File

Load File Multiple

Store File

Store File Multiple

Add immediate to AR

Add immediate to AR, halfword

Load immediate to AR

Load immediate to AR, halfword
Subtract immediate from AR

Subtract immediate from AR, halfword
Add, divide or multiply immediate operations
Conditional Branches

Monitor call and proceed

Push

Monitor call and wait

Execute

Pull
Fork

Join

Output Signal

to DCL2

-IISDNOP
-IIFDTHF
-IIFDMHF

-IIFDTHF
-IIFDMHF

-IIFDLF
-IIFDORG

-IIFDLF
-IIFDORG

-IIFDORG
-IIFDORG
-IIFDMHF
-IIFDMHEF
-IIFDMHF
-IIFDMHF
-IIFDMHF
-IIFDMHF
-IIFDMHF
-IIFDTHF
-IIFDMHF
-1IFDPP
-IIFDMHF

IISDXEC
-IISDXEC

-IIFDPP

-IIFDTHF
-IIFDMHF

-IIFDTHF
-IIFDMHF

D-46

Advanced Scientific Computer

i

Table D-2. Level 1 Instruction Decode

Outputs (Continued)

Output Signal

Op Code . , . Instruction to DCL.2
9E Prepare to Branch -~ -1ISDPB
BO Execute Vector Parameter File - -IISDVECT

CC, CD, | Circular shifts -IIFDMHF

CF
Dx Combare‘ ivinﬁi;ediat_es —IIFDMHF
Fx ngical:dpef;tio‘ns’; on imhédiates -IIFDMHF

Table D-3. Output Signal Components

iigin_;al | : j “J;‘Op Codes that produce it
IIFDTHF v Ox, 16, 84, 85, 86, 87, 9A or 9B
-IIFDLF - 1B or 1F
-IIFDORG .. . 1B, IF, 2B or 2F
-IIFDPP 193 or 97
-IISDNOP . . Ox .
-1ISDPB 9E
-IISDVECT ‘ BO
~IISDXEC | 96
-IIFDMHF Ox, 16, 50, 51, 54, 55, 58, 59, 90, 94,

9A, 9B, CC, CD, CF, Dx, or Fx.

D-47 -

Advanced Scientific Computer

level 1 controller is not in the level 3 indirect at level 3 state. If the level 1
controller is in that state, the No Op input to the T Hazard Free signal is
disabled, so that the T Hazard Free flag is not set by the blocked state of the
pipe while the indirect instruction is being processed. The remaining op

codes that produce this signal are not qualified.

-IIFDMHEF'. This output from the decoding circuit indicates that the
instruction at level 1 is "M Hazard Free'. That is, the instruction cannot
be modified using the base relative modification circuits, so that the circuit
that checks for a base modification hazard should be disabled. Refer to
table D-2 for the component op codes that are included in the M Hazard

Free category.
LEVEL 2 INSTRUCTION DECODE

The level 2 instruction decode receives the op code portion of the instruc-
tion at level 2 from the R2 register (IPQR2(0-3)) and from the ADDRM reg-
ister (IPQADDRM(4-7)) on the I4PIPE circuit boards. It decodes the eight
bit input into two hexadecimal digits, and then combines the hexadecimal
digits to determine if the instruction is one of a set of instructions that re-
quires attention from the level 3 controller. The output of this circuit is not
used by level 2, but transfers to the DCL3 register at level 3 when the in-
struction transfers to level 3. The circuit inspects 6n1y for the set of in-

structions outlined in table D-4,

Figures D-16 and D-17 are flowcharts for the I4HDCORE circuit board

and figure D-18 is the card block diagram.

D-48

Advanced Scientific Computer

Hexadecimal
Op Code

11

12
13
16
1A
1F
22
2F
80
82
84

85

86

87

90

91
93

94
95
97
98
99

9A

Table D-4. Level 2 Instruction Decocde Outputs

Instruction

Load Arithmetic mask and condition

Load arithmetic mask

Load arithmetic Fexception condition
Load look ahead

Exchange

Load File Multiple

Store Program Status Word

Store file multiple

Increment, test and skip on equal
Decrement, test and skip on equal

Branch on AR less than or equal

Branch on AR greater than

Branch on index less than or equal

Branch on index greater than

Monitor call and proceed

Branch on compare code

Push

Monitor call and wait
Branch on result code

Pull

Branch and load base register with P3

Branch and load index or vector
registers with P3

Fork

Signal Generated

-IPFDLAC
-IPFDLAM

-IPFDLAM
-IPFDILAC
-IPSDLLA
-IPSDXCH
-IPEFDMLT
-IPSDSPS
-IPFDMLT
-IPFDSKE
-IPFDSKE

-IPFDBLCE
IPBCLBCG

-IPFDBDG
IPBCLBCG

-IPFDBCLE
IPBCLBCG

-IPFDBCG
IPBCLBCG

-IPSDMCP
-IPFDBWN

-IPSDBCC

-IPSDPSH
-IPFDSTK

-IPFDBWN
-IPSDBRC
-IPFDSTK
-IPFDBBX
-IPFDBBX

-IPSDFORK

D-49

Advanced Scientific Computer

a2

Table D-4. Level 2 Instruction Decode Outputs (Continued)

Hexadecimal
Op Code

9B
9C
9D
AE

Instruction

Join
Branch on execute condition true
Branch on arithmetic exception true

Store clock

Signal Generated

-IPSDJOIN
-IPSDBXEC
-IPSDBAE
-IPSDSTC

D-50

Advanced Scientific Computer

e}

IMQRC(0-2)
SHT 26

(B)127626

Figure D-16,

START

PROTECT
VIOLATION

EMORY
READ OPERATION

READ REQUEST
COMPLETE
PULSE

READ DATA
READY FROM
Mcu

DECREMENT
REQUEST

(542=1)
SHT 22

ICCMFUL3
(535-4)
SHT 11

IMM INUS
(525—4)
SHT 25

COUNTER

2
- ICCMFUL3
(535—2)
_g—— sHT READ DATA
READY FROM
YES YES McU
= ICCMPV
(436-8)
SHT 12
IMPLUS
(534—7)
SHT 25
IMQRC(0-2)
INCREMENT SHT 26
- ICWRIT REQUEST
Mo (316-4) COUNTER
SHT 21
ICRQCMP

REQUEST
COUNTER=0

NO

IMQRC(0)
(504—2)

IMQRC(1)
(403-2)
IMQRC(2)
(504-6)

YES

SHT 26

IMCMEMPY
INDICATE

NO REQUESTS
PENDING TO
UHC

I4HDCORE, Outstanding Request Counter Flowchart

Advanced Scientific Computer

(o]

STATE O

START

A
I4HCINIT
(PIN 382)
SHT 9 CCR
COMMAND

FROM MHC

(2152

IMDHCSTA)(1)
SHT 2

IMQLSD(0),(209-8
XFRI4CCR IMQLSD(1)},(209—7
12—15) IMQLSD (208—7
FROM MHC TO iMQLSD (208—8
IMQLSD(0-3)
SHT S

STATE 1

FETCH POINTER PREPARATION FOR EXECUTION
SHEET S SHEETS 3/4

ENABLE GATES AND
OCTET COUNTER
CONTROL-SHT 7/8

SELECT POINTER WORD

OR WRITE DETAILS
SHEET 6

MONITOR/CAPTURE
CCR—SHEET 1 . SHEET 2

CHECK POINTER STATUS UNIT CCR DECODE
SHEET 5

(B)127627 (1,8)

Figure D-17. I4HDCORE, IPU-4 Unit Hardcore Flowchart (Sheet 1 of 8)

D-52 Advanced Scientific Computer

o

B STATE 1
IMQHSTA(1),(308-8) ,SHT 2
IMQLSD(0—3) DECODE (526 AND 510, SHT 5)

4 0,1,2,30R 7] 6 8 9 10 1 12 13 14 i5
IMSLDA(4) [NO OP IMSLDA(5) (STORE (LOAD (XCHGE STATUS) (STORE CP|(LOAD CP | (XCHGE CP |(STORE (LOAD
526-16 526~ 1 STATUS) STATUS) DETAILS) |DETAILS) |DETAILS) |MAINT. [MAINT.
SHT 5 SHT 5 DETAILS) |DETAILS

IMDOCTR(0)| IMDEXCH IMDEXCH
307-7, (434—4) (434—4)
SHT & SHT 3 SHT 3
IMDOCTR(2)
307-4,
SHT 7
SET EXCHANGE
MASTER SET EXCHANGE | |MQEXCH FLAG TO
A FLG (STORE (414-7) INDICATE STORE
PRES CYCLE OF SHT 4 CYCLE OF
EXCHANGE EXCHANGE
COMMAND) COMMAND
hIMRE. 1-4 -~ IMDOCTR(0) IMQE XCH
SHT 11 307-7 ,SHT 6 (414-7)
SHT 4
- IMDOCTR(2)
307-4,SHT 6
IMQOCTR{0— 4
SET DETAILS oages to=a)
OCTET COUNTER al IMILDOCTR
P IMSTAFRZ (413-4)
"STATUS PIN 37
FREEZE'' TO &l 3re) SHT &

LVL3 CONTROL

= IRNIFRZ ,

gPIN 135)
HT 9

CLEAR INST LVL3
ABNORMAL - CLEAR DETAILS
FLAGS AND LuLSeT12 OCTET COUNTER

IMHC1TO(0) 1CQIPPRV ,(PIN 406)
319-4,

IMQOCTR(0-4)
SHT 7

- IMHC1TO(2)
216-2, SHT &

1ICQIPPAE ,(PIN 412)
ICQIPIOP (PIN 411)

SHT 10 SHT 25 14ABORT
g;m 401)
HT 9 - IMHC1TO(2) .
(222-4) SHT 9 SET ''HARD
CORE REQUEST"
NO TO CMR
= IMHCREQ
gpm 478)
-1 IMHC1AB(0) HT 4
322-7,
HT 9
STATE 2
- IMRE . 1-6
SHT 11
MASTER CABNORMAL — IMHCABNT| SET DETAILS IMQOCTR(0—4) c
RESET TERMINATION' ' | (PIN 424) |OCTET COUNTER | SHT 7
1PU4 TO MHC SHT 13 TO ''20 3
IMHC 1TO(0)
~MocoMP | couuano | TSSEISAT o) [oktam oErake
COMPLETE" EAR HARD '
SHT 13 CL IMLDOCTR ,{413—4),SHT &
TO MHC [CORE REQUEST IMQOCTR(0-4) . SHT 7
— IMHCREQ,(PIN 478),SHT 4
STATE O
A

(8)127627 (2/8)

Figure D-17.

I4HDCORE, IPU-4 Unit Hardcore Flowchart (Sheet 2 of 8)

D-53 Advanced Scientific Computer

STATE 2
3 IMANYVBG
(PIN 324)
SHT 14
STORE VECTOR "VECTOR BAD
STATUS OR BAD GUY IN GUY ABORT''TO
CP DETAILS YES - IMVBADEN ANY PIPE LVL3 CONTROL
(610-5)
SHT 15
IMLSDA(8)
NO (510—5) IMGETOUT
IMLSDA(11) (PIN 464)
(510-9) YES SHT 15
EXCHANGE EXCHANGE
STATUS OR STORE CYCLE a
CP DETAILS YES
NO NO
IMSCNORA
(436-2),
IMLSDA(10) sHE o
(g:,.?_g“) IMSCNORB
(433-2j, 2 IMHC2TO(0)
LOAD STATUS - SHT 9 £ 321-4
OR DETAILS YES SHT 10
NO
“"ABNORMAL
(STORE MAINT. DETAILS) TESMOINATiON"
IMLSDA(14) TO MHC
(510—2) ICCUEMPY
SHT 5 (PIN 162)
G s TANDIN INELSDAS:_)I)A) SHT 9
UTSTAND 304- OUTSTANDING - IMHCABNT
MEMORY SHT 26 EMORY (PIN 424)
YES REQUESTS REQUESTS SHT 13
NO CLEAR DETAILS
OCTET COUNTER |
CLEAR HARD
CORE REQUEST
IPZROPEN "REQUESTS
ICRUCMP (PIN 423) CLEAR AND
(542—1) SHT 10 READY TO PER— | *
SHT 22 FORM COMMAND
TO MHC
YES
e
14ZROPEN
(PIN 377) TO MHC
SHT 10
PROCEED
- ICOABSY IMHCCOMP
MLIMINTS S RRiRES
YES SHT 139 staTE O
NO
1
14ABORT

(PIN _401)
SHT 9

LOCK 1PU IN
PRESENT STATE ;
SET HARD CORE

IN PROGRESS
ABORT FROM FLAG
MHC YES
NO
STATE 3

*IMLDOCTR ,(413-4) ,SHT 6 5
IMQOCTR ga)pSHE
— IMHCREQ ,(PIN 478),SHT 4

(B)127627 (3/8)

Figure D-17,

I4HDCORE, IPU-4 Unit Hardcore Flowchart (Sheet 3 of 8)

D-54 Advanced Scientific Computer

(STATE 2)

IRQVABAD(0)
PIN 450
SHT 14

FORCE
IN PIPE O

DE—ESCALATION

BHQDSCMP(0)
(PIN 202)
SHT 15

D
ESCALATION
COMPLETE IN

PIPE O

IRQVIP(0)
PIN 150
SHT 15

VECTOR
IN PROGRESS
PIPE O

= IMSUPR)UN(O)

WIND DOWN PIN 130
VECTOR IN HT 16

PIPE O

(~)IMBGABRT(0)
PINS 183/(434)
SHT 15

STATE 2

P

VECTOR
BAD GUY
PIPE 2

DE—
ESCALAT

VECTO
iN PROGR

IRQVBAD(2)
SHT 14

COMPLETE IN
PIPE 2

PIPE 2

(~)IMSGABRT(2)
PINS 184/(231)
IN 348, SHT 15

FORCE
DE—ESCALATION
YES IN PIPE 2

IN

BHQDSCMP(2)
(PIN 374)
SHT 15

ION

1RQVIP(2)
PIN 249
SHT 15

R
ESS

IRQVDAD(1)
PIN 351 ,SHT 14

VECTOR FORCE
BAD GUY IN

PIPE 1

DE—ESCALATION
YES | IN PIPE 1

BHQDSCMP(1)
(PIN 203)
SHT 15

ESCALATION
COMPLETE IN
PIPE 1

YES

“1IRQVIP(1)
PIN 350
SHT 15

VECTOR
IN PROGRESS
PIPE 1

WIND DOWN

(~)IMBGABRT(1)
PINS 283/(232)
SHT 15

——

VECTOR
PIPE 2

WIND DOWN

- IMSUPRUN(2)
(PIN 430)

SHT 16

IN

CTO

PIPE 3

DE
ESCALAT

PIPE

VE R
BAD GUY IN

NO

COMPLETE IN
PIPE 3

VECTOR
IN PROGRESS
3

- IMBGAB}?T(a))
PrQvBAD(3) PINS 182/(132
PIN 449 SHT 15

SHT 14
FORCE
DE—ESCALATION
IN PIPE 3

BHQDSCMP(3)
(PIN 373)
SHT 15

ION
YES

IRQVIP(3)
PIN 149
SHT 15

NO
- IMSUNORB
(433-2) OR
IMSCNORA
(4a36—2)
SHT 9 P STATE 2

(B)127627 (4/8)

VECTOR IN Py VECTOR
PIPE 1 = IMSUPRUN(1) PIPE 3
PIN 330)
HT 16

WIND DOWN

IN

~ IMSUPRUN(3)
(PIN 129)
SHT 16

Figure D-17. I4HDCORE, IPU-4 Unit Hardcore Flowchart (Sheet 4 of 8)

D-55

d

STATE 3
IMQHSTA(3)
(308-8)
SKT 2
IML11T15 IMLSDA(10) - IMLSDB(2)
g?.io 7) gsao—e) (512=7
HT 5 5

EXCHANGE
STATUS

DETAILS
OPERATION

YES

IM90O 10NX
(210-2)
SHT 13

IMEIGHT
épm 141)
HT 12

gETong 28 MASTER CLEAR

IPU REGISTERS

REGISTER
~ IMRE 2 1
(PIN 237)
- IMRE: 2
(PIN 380)
- IMRE:3
(PIN 133)
SHY 11
- IMCSTOA
PIN 442)
SET BIT 27 HT 12
OF OA REGISTER
START MEMORY | = IMGOA
REQUEST (PIN 146)
SHT 13
STATE 3
IMQHSTA(4
g412—8) (4) STATE 4
HT 2
g
- ICMERR I4ABORT
(634—2) gPIN 401)
SHT 12 HT
Py ? IMHC;!TO(S)
415-4
OR PARITY POINTE SET '"LOAD
ERROR FROM oc"yl'E; 54 SHT 10 POINTER"
POINTER KCM FLAG
FETCH
YES |MQ|(-|STA(S
= IMHC4TO(0) 49577
324-2) SHT
HT 10
- STATE 5
6
IMLDOCTR STATE O
413-4
""ABNORMAL HT &) CLEAR DETAILS "COMMAND

TO MHC CLEAR HARD TO MHC
CORE REQUEST

~ IMHCABNT IMQOCTR(0—4) ,SHT 7 ~ IMHCCOMP
(PIN 424) -~ IMHCREQ, (PIN 478) gpm 123)
SHT 13 SHT 4 HT 13

(B)127627 (5/8)

TERMINATION" L~~~ ulGCTET COUNTER| g COMPLETE'" }—

Figure D-17. I4HDCORE, IPU-4 Unit Hardcore Flowchart {Sheet 5 of 8)

D-56

Advanced Scientific Computer

STATE 5
.
IMQHSTA(5)
(409-7) IMLSDA(9)
SHT 2 (—-7)
IMLSDA(12)
5510—16) IMLSDA(10)
IMQLDPTR MLSDA(15) (510—8)
(409-7) (510—4) IMLSDA(13)
SHT 4 SHT 5 (510~

POINTER
JUST FETCHED

EXCHANGE

LOAD
OPERATION OPERATION

(STORE OPERATION), I(MLB 1114
633—

NO SHT 13

IMSTORE
(307—-2)
INITIATE WRITE| SHT 13

TO MEMORY FOR

= IMQEXCH. 1
(414~5)
SHT 4

ST CYCLE
NEXT DETAILS g o OF EXCHANGE vES —
OCTET - IMLDDTL
(PIN 364)
SHT 16
H(VlSTORZE)
IMHCASEL(2) 307—
OA+8 OA - IMINCOA SET POINTER gP'N 120) SHT 13 ?(E)TI%RKI:'REI_!;'IZAG
:'r'gG‘&lé& AR gi[{_* 14247) WORD SELECT HT 13 WRITE S0
3 IMGOA BIT 2 MEMORY
(PIN 146)
SHT 13
ICQAR . 2
(PIN 220)
SHT 21 = ICWRITE
(PIN 152)
IMQSPSDW SHT 21
202-7)
IML.8910 HT 4
(315-5)
SHT 13 IMDSPSDW
(207-2) -
STATUS SHT 3 STATUS
OPERATION SET STORE OPERATION
STATUS FLAG
- IMLSDB(B;
(424-4
SHT 5 NO
IMLSDA(10
(510-8
SHT

SET POINTER IMHCASEL(0)
WORD SELECT | (PIN 341)
BIT O SHT 13

IMHCATOA ,(PIN 102) ,SHT 13
- IMCMTOA , (PIN 347),SHT 13
- IMGOA , (PIN 146),SHT 13
SELECT AND XFR IMQLDPTR ,(409—7) SHT 4
POINTER WORD TO ICQAR. 2,(PIN 220) \SHT 21
OA CLEAR LOAD

POINTER FLAG
TOGGLE AR TO MCU

IMQHSTA(6)
§4 12-7)
HT 2

STATE 6

(B)127627 (6/8) v

Figure D-17. I4HDCORE, IPU-4 Unit Hardcore Flowchart (Sheet 6 of 8)

D-57 Advanced Scientific Computer

IML91215
(614—4)
SHT 9

LOAD
OPERATION

STATE 6

IMQHSTA(6)
(412=7),SHT 2

EXCHANGE
OPERATION

(STORE OPERATION) IMLB81114,(633—5),SHT 13

IMSTENC
(637-7)
SHT 16

IMCLE11

(619—-5)

IMFSLDIS
P18.27) |o1sasLe OUTPUT] T2 OCTET
STORE CYCLE SHT 17 |D
SELECTION FROM COUNTER 11
OF EXCHANGE REGISTER FILE
IMLDENC
(53779
HT 16
IMOCLE 13 IMOCLE13
(410-4) (410=4)
SHT 8 OCTET ENABLE GATING | SHT 8 OCTET
OF DETAILS A COUNTER =
COUNTER <13 OCTETS FROM 12 0R 13
MEMORY TO 1PU
NO
IMOCNT(14 ¥ .
(69a= 4_} (PN 2) (PIN 455 ;
OCTET TRANSFER HT 17 ENABLE GATING (Mopie?)
COUNTER = 14 hal}— OF DETAILS PIN 278
T6 A FILE - OCTETS TO EMSDTL;)a
MEMORY BUS | (PIN 435)
MSDTL . 4
(PIN 355)
IM(()CNT(Z();
IMCMTB 518-16
IMO(CgJ:;T‘ng (PIN 151) SHT §,
34 OCTET TRANSFER | SHT 17 ENABLE STATUS oCTET
£ KCM OCT INPUTS TO T
COUNTER sM FiLE —— g MEMORY BUS VES COUNTER = 20
IMSTPSDW : 1
:;lN 133) 2
IMCMTC STPSDW:
IMOCNT(16) (PIN 251) (PN 446)
(5165 SHT 17
873 OCTET TRANSFER
COUNTER = KCM OCTET |—o gl
YES TO C FILE IMLDPSOW : 1
.| Sresturs | (R
ST, DW:
PARAMETERS PIN 307)
FROM MEMORY | SHT 17
IMCMTD
IMOCNT(17 gpm 148)
B e e il L
SHT 3 = e
COUNTER = TG D FILE ”%‘?5—5‘%?")
YES JSALN
OCTET OCTET
COUNTER = 20 COUNTER = 19
IMCMTI
(FIN 458) IMO?NT(IQ)
IMOCNT(18 HT 17 518-9
(518—8; SHT 8 YES
SHT OCTET TRANSFER
COUNTER = 18 KCM OCTET |
TO 1| FILE
TRANSFER
KCM OCTET
TO V FILE
- IMCMTY
* IMLDTL; 1(PIN 240 * HT 1748)
IMLDTL ! 2(PIN 279
IMLDTL: 3(PIN 136 1
IMLDTL: 4(PIN 357
(8)127627 (7/8) SHT 17 \/
8

Figure D-17.

I4HDCORE, IPU-4 Unit Hardcore Flowchart (Sheet 7 of 8)

D-58

Advanced Scientific Computer

IMOCNT(20)
(518—16)
SHT 8

(STATE 6 CONTINUED)

'

"COMMAND (PIN 123)
couNtER & COMPLETE" |SHT 13
IMHC6TO(0)
319~2)
HT 11
IMQOCTR(4),(PIN 465 (STATE 0)
lobé%_it:!;rMENT IMQOCTR(3),(PIN 462
IMQOCTR(2),(403-6
COUNTER IMQOCTR(1),(302—2 1
IMQOCTR(0),(PIN 365)
SHT 7
* - MDOCTR(I)
neoa |Sise!
SHT 6
ADD 8 TO gpm 447)
ADDRESS IN OA _‘Hl}'dégA
TOGGLE AR (PIN 126)
SHT 13
LOAD "14"
E2D) INTO OCTET
SHT 21 COUNTER
(STATE 6)
7

(B)127627 (8/8)

Figure D-

17.

-1 IMHCCOMP

EXCHANGE
CP DETAILS

(STATE 5)
ICMERR
PV INCREMENT
CTET
S ——
OR_PARLTY COUNTER
IMINCOCT
— lCWRACE (305-5) SHT 6
— NO
SELIEY 7 MoCTR(1)
IMQSPS)DW §31
202-7 iy ot
STORE CLEAR LOAD ''14
OPERATION STORE STATUS S INTO OCTET cousen T 20
YES FLAG COUNTET YES
NO
IMQOCTR(0—4)
-Slagghg?L 14ABORT SHT 7 IMOCNT(lQ;
W11 (PIN 401) (s18-9)
(STATE SHT 9
6)
OCTET
COUNTER = 19
YES IMHCGAB(O;
(338-2
14ABORT SHT 11
(PIN 201) — IMHCABNT IMArxH
PIN 424) (5372
ABORT "ABNORMAL HT 13
FROM MHC TERMINATION' STORE CYCLE
TO MHC OF EXCHANGE
NO
- IMHCGTO(Z) vES
IMOCNT(19) # (415-5),SHT
(518-9)
HT 8
CLEAR OCTET (STATE 6) |MGEXCH CLEAR EXCHANGE
OCTET COUNTER (415-5) [FLAG
COUNTER = 19 > = CLEAR HARD -——— 3373 |INTTIATE LoAD
CORE REQUEST CYCLE OF
EXCHANGE

CLEAR SET OCTET
OCTET COUNTER TO
COUNTER 20
IMLDOCTR - IMBOCTR(0)
g4|3—4) (307—
HT 6 = IMDOCTR(Z)
307—4)
HT 6
(STATE 2)
3
¥ IMLDOCTR

(413-4) ,SHT &
éMQOCTR(o—4)

— IMHCR
(PIN 478) SHT 4

I4HDCORE, IPU-4 Unit Hardcore Flowchart (Sheet 8 of 8)

D-59/D-60

Advanced Scientific Computer

LOMIN

MCuU 27z
FROM 271 LOPR 2.3.4,
301 Y JCLEAR 618 27 > NFDTHE, 189 4INFACE)/14PTPTC
303 L IASETREQ 5/5 HQIR(0-7) THRU S LIFDLF e NEACE O
388 3 4CLRREQ s WPIPE(-7) Jooe=oT 470 2 | uSONOP 3 oy b
IMLSDO '
1 - 1ARUNE QO + 14CCR(12-15) 369,287,167 ,267 ,467 5 IIFDORG . o
02§ lAHCINIT (FROM 489,488 MMLSDAD T HSDPE e LIINFAGE ¢t
0/FROM MASTER 3 v UMHC) 403,387 |__musoAo LeveL 1 p— e
HARD CORE 201 8 HARD CORE COMMAND J 118
4-6)8—1 1125(.
[IAMHCY _ 14ZROPEN IMDHCSTA{1) DECODE —--—L—x—”"‘sm 2 ::}—. (14PIPTOP) Hr253) INSTRUCTION | oovecT VINFACE 2!
7) COMMAND IMLSDB(8-15) 83 DECODE 213
224 s IMHCABNT o IMRES; 1,2 > REGISTER . > SUSOXES 11€ (1AINFACE 3°
123 g—tiMHCCOMP IMaLsD(o-3) NSDXEC 369 1APIPTOP "
<€ .
32¢ & IMANYVBC @EL%I&.._' * UFDMHF 289 I4INFACE 0/12PIPTOF}
121 ¢ |PZROPEN
:: BHQDSCMPI0 3 E] (UR DATA) % NOTES
TO/FROM MBU'S 3 T} IMBGABRT O 35 PIN NOS. FOR LARGE BUSSES AS + OL LOWS
o3 (—'| lﬁ
- IMSUPRUN'Q 3) BIT |<;|zss ICME ICPE
. - o
M v‘:‘;-;;ﬁ ~ IRNIFRZ 3} 1 318 126 225
. P 130 D d 2 418 226 429
62 3 ICCUEMPY 3 120 326 128
‘ a 414 426 228
TO/FROM CMR 105 —IMCLEAR M P e 528
14CMREQ) 478 + IMHCREQ 6 217 225 az8
7 308 124 327
176 € JCCMFUL F 222 a2
* < - — 125 221
450,351 IRGVEADLD 3, uNIT - IMDOCTR(O-2) IMQOCTRH(0-4 18 9
348 449 IMTOGCTR(O-3) 7/8 IMQOCTR(0),(3),(4
TO/FROM 150,350 IRQVIP O 3} . HARD IMQOCTR(0-4) %2 .462 465 N MUREN(-3)
245 149 >—_’—‘“'__-' —— ———'———— 1462, i _
14VECLAS e IMGETOUT CORE IMINCOCT= ‘I'_. AUREN(0-3) uNIT ____.__El_—) 07 (TO IACMREQ)
ol e — | conTrROLLER IMOCTR:1(0-3 440.139, REGISTER
455,358 353 IRCMTA .B,C.D 1,V (14MHC) 410
451,458 453 IMLDOCTR 239.339 384 DECODE o
A L IMLDDTL - 2(0-
TO/FROM 1AMISC 34— RSt ocTET IMOCTR:2(0-3) 281,480,179,178 45: o
264 £ IMSTOTL F———————— COUNTER IMOCTR . 3(0-3) ;g°
. 5 L IMINCOA {MQOCTRIO 4} __—-’——E—-.235.235_134,335
7 e
aa2 2 IMCSTOA ICLOCK: | IMOCTR 4003 155,157 ,457,255 IHENDTUR(0-5)
ja1 & IMEIGHT {UR DATA) IQHICK ;1
TO 14ADDR e GO
147 ¢ IMCMTOA
341,481 140 € B IMHCASEL.O 2] ~ IMRES:3 FROM :; (c;
CONTROLLI
247 g MESLDIS | MaSPSDW 1 2 EER [P
TO WFILE 252,151,251 IMCMTA . 8.C.D. iV CUMCLRABN 1) IMOFREEZ 3 2
148,454,248 R d ICLOCK:1
N) IMHCATOA IMFREEZ:5 IMACSTA TO ALL CLOCKED
(13ADDR/14PIPTOP} 102 o p—— ICLOCK:2 CIRCUITS ON I4HDCORE
(14VECLAS/14LVL3. 378 &mmm IMCMEMPY [IMQEXCH cLock 1CCOCK : 3
IMBGABRTO 3; e IMHCREQ
(1AVECLAS/IINFACE) 182,183,184.283 (—B——-—————— MR B UNIT REGISTER FANOUT
238,387 (—-—{: l——————‘MLDPSDWH‘Z jimarcine g (UR) DATA
14PIPE/14FILE/ IMSTPSDW:1.2 JIMRES:3,2,1 IMQLDPTR SELECTION
1aLvLs 137 446 2 2 [reeMEs AND FANIN
\ IMQFREEZ: ! IMSTORE
NamMisc/i 1277 2 IMQOCTR(0-4
p 200,334,386 & ™ IMQFREEZ:1.2.3.4 ICCMPY (CICCMFUL!
NOT USED) 338.290.334,346 & 1 - S RES:1 25/26
237.380.133 (_____E&"z_’s‘ﬁ 2 IMGOA . | \MARC(O 2) 4{ 3'-—,
153,304,337 .
o 1P 53 237180 E +IMSE;1.2.3.4 IMHCINP ICURDATA®-7) + IMURDATA{Q~7) n
CIRCUITS a7 o pMeoTL:.2.3,4 MasSPSDW:! (FROM I18CMREQ) 160 Yo J] s}-’ ——————'.'——)‘“
130357 5 IMSDTL:1.2.3.4 < ?ﬂ 461 244
439278 .23, B IMQLSD(0-3
pE RS D‘ icracme | OUTSTANDING 260 © a 422
REQUEST 159 143
L 1IcoABSY L ICWRIT COUNTER 60 1} 243
259 343
456 242
359 4 342
1CLOCK: |
Frga e Ll ~ ICQPAR
3 & .
10DAV . ~ 1ILQKCM7(4-7)
282 21-25 JCWRIT (I4FILE) 484,474,481 ,479 ICQIPPAE > 412
iOPA
“n ORA ICRQCMP1 %1y LCLDOU! 24/25 ICQUPIOP S ann 4CMREQ)
!
71 |CQRDA: 1 163 IR ICQIPERY __§ 406
1ORDA
270 - ICORDA (LICMREQ 164 HICPRVO ICQAREX 3
110 12CMREQ/I4INFACE) IPBCLBCG .
472 IOWG ICQRDS : 1 161\ ICINCOP. 7 2 | IPBCLBCG 3y 276 (14PIPTOP/STATUS)
a1 ¢ ICPRR o 262 LICFL ABNORMAL aND |11PFDEEX > 12
&— — FLAGS + IPFDBCG
TO/FROM MCU 120.219 (——-l 2 F'CQPRM 20.1; (14STATUS) 285 YT IRARTHEX o |PFDBCLE o
ICQAR:2 | ieroBcLE
220 @ 332 JIRSETIOF 103 VAINFACE (0)
> icwcr < IPSDBAE 318
4 gt ICQPARH taLve3: 433 SIRSETPRV.
N ICRDS. 2 D IPSoBCe 208
3 — s [CWCMPV 2 S]
253 QJCCMSTPB | IPSOBRC 3 206
x & Dﬂ ICZEQ 7 ®L‘£‘°_"3—_J | | ieromwn 5 L,
¢ Dq ICME:1 3 __EJ'LFREEZ | 1pFDLAC 3 g
. N E
tCPE:1 9 MEMORY IPHICK: 1 O L IPFDLAM 108
* CONTROL 1PQRS(0 3 AINFACE 1.
150 L mmaren UNIT (MCU) ICLOCK:1,2,3 14PIPE(O 3) >__————-tl‘66 :l—. | 1PSOBXEC 3 5y “
LEVEL 2
It ACE + IPSDF ORK
TO/FEOM MASTER 400 IMFROEN INTERFACI 10QRDA 266 INSTRUCTION a 1t
HARD CORE ‘14MHC * 123 IMMEMERS 10QPAR 366 DECODE | - IPSDJOIN 3 107
. ICWACKL ICQPAR: 1 466 LIPEDMLT 210
- L4STATUS IPQADDRM(4- 7 A e]
160 LGOA 10DAV 45 u o3 - IPFDSKE > 205
TO/FROM IACMREQ s g ICRTMPY ICQDAV:1 156 2 IPSDLLA >
< 14INFACE 2%
204 L COABSY ICQRDA- | 258 - iPSDMcP n2 ¢
. N IcaPrM:10.1 7 UR GATE 26 - IPSDPSH 103
FROM I4VECLAS (. IRLECEG ICQWRITE : 1 J | IPSDSPS 20
ey am IRQPMOF E ICQRDS:1 - IPEDSTK > 1’
, IRGMAPEN ICQRA: 1 - IPSOSTC 209 14INEACE 3+
1APIPE(A) 266 IRQPROEN ICQAR: . IPSDXCH 3
WAPIPTOPY 187 ICDAY |MQFRV'|
AFILE 152 2 ICWRITE IMQPAE:!

(D)327628

Figure D-18. I4HDCORE Circuit Board
Block Diagram

D-61/D-62

Advanced Scientific Compute

*¥BCQPRVLT ,BCQPARER
NOT AFFECTED

(B)132481 (1/3)

Figure D-19. 4X MBU Unit Hardcore Flowchart (Sheet 1 of 3)

NO
YES
CAPTURE
CCR(12~15)
HSTATE()
HSTATE(1)
(QCCR DECODE)
012l378A49 5 6 B D clelFr
ILOP-—0
Y9 HCA— 18, ¢
BHRE PV=EXECUTING EXCH-—1 WORD
PROTECT ADDRESS
PA=EXECUTING
PARITY
HCREQ-—1
HCREQ
PREVENTS
BHSE HCA— 18 FURTHER
16 EXECUTING
MEMORY
REQUESTS
-—
ZRPND
: 2
No CCR COMMANDS
vES 0-3,7 NOP
4 RESET MAP¥*
5 SET MAPX
6 RESET ERROR CELLS
8 ST/STATUS
9 LD/sTATUS
A XCH/STATUS
UNCMP-—1 B ST/CP DTLS
C LD/CP DTLS
D EXCH/CP BDTLS
E ST/MAINT DTLS
F LD/MAINT DTLS

D-63

Advanced Scientific Computer

S

HSTATE(1) _J

HSTATE(2)

I ABTERM-—1
RNEQO * FREEZE UNCMP-—1
- SUPRRUN | HCREQ-—0
1
NO * l NO
(QCCR DECODE) | @ BHRE
OTHER |a D N
| NO o\ J
AN
l \
AN
SCALAR \ |spvcep(2)=
VECTOR BAD
GUY (A ROM BIT)
NO
YES

(QCCR DECODE)

B,E D C,F
8HPAS «- 0
" YES
NO

/ BHPAS <1

HCREQ-—1

/
NO /
HSTATE(2) I /
Y, |HSTATE(3) / /
HC INPR =HARD / l /
CORE IN PRO— y; BHPAS=0-
GRESS ,SET BY SELECT WORD 0 HCA

C WHENEALL 4 FREEZE POINTER
OUTSTANDING

STS

OF SC =1=
SELECT WORD
1 OF SC

(B)132481 (2/3)

Figure D-19. 4X MBU Unit Hardcore Flowchart (Sheet 2 of 3)

D-64 Advanced Scientific Computer

HSTATE (3)
HSTATE (7)

— e — c— ——— | —— — — e e— e o e o ——

——
INCREMENT
: POINTER PAST
HeATA — — — _lOTHER UNITS
HCA + — PO=AO(WORDS)
P1=150

HSTATE (7)
HSTATE (8)

‘ QCCR DECODE)
BHZE=1= SET

B,E D C,F .
’ 02C—0
L PM-~—11
No
YES
ALL ZONE

CONTR(O)I(_ BITSE 3525:1

BHSDO(X) GATES |——— —

CTET x)ou'ro BHSDO(X) =1
WAY

O
THE TWO

BUS
OA<—HCA

: HSTATE (8)
HSTATE (9)

— — — o— —— o— — — c— — — — — — —

ABTRM-—1
HCREQ-—0
UNIT CMP

HCA-—HCA+8
X—X+1

HCREQ-—0
UNCMP-—1

BHLDO(X)

T EXCH-—0
GATES SC

T T e e BHPAS —1
OF MAS TET X BHLDO(X)’f' HCA-—POINTER

(B)132481 (3/3)

Figure D-19. 4X MBU Unit Hardcore Flowchart (Sheet 3 of 3)

D-65 Advanced Scientific Computer

STORE CP
DETAILS

SET AVDES SET BVDES

BAD GUY =ORDER ,SELECT, | da
REPLACE ,BREP, MAP

(BHQWRAP(0—1))
ot l 10 00

SET AVDES SET BVDES

AGP > BGP SET BVDES

AGP=8BGP

SET AVDES
SET BVDES SET AVDES

NOTE: VECEND OR ABTERM
ALWAYS FORCES
CONTROLLER TO
DSTATE(7)

(B)132482 (1/2)

N
—

Figure D-20. 4X MBU UHC De-escalate Controller Flowchart (Sheet 1 of 2)

D-66 Advanced Scientific Computer

VECEND

SET DSCMP

— — — — — — — — | c— o— o—
-

|

L L

ZA)—ZBA
ZM'j—=ZBM
ZFLNRQ —~ZFILN
SET ZBREQ
CCR ZAFUL

NO
ds NO

——— — — | — —— — co—

de

(B)132482 (2/2)

Figure D-20. 4X MBU UHC De-escalate Controller Flowchart (Sheet 2 of 2)

D-67 ‘ Advanced Scientific Computer

e

MASTER CLEAR ‘ MINOP ’ ABORT

1>AHRES
1 ->AHPINOP

#,_____“_____

1> AHRESMEM 1 —+AHPINOP

£‘ |

1-> AHRESHC z

1 >AHGATCCR

STATE 0O
STATE 1
CCR LSD DECODE ALL
4 s 6 9 A E F OTHERS
RESET SET RESET EXCHANGE CPU LOAD MAINTE- NO-oP
AU MCU STATUS MAP NANCE DETAILS
DETAILS DETAILS INTERFACE
LOAD CPU STORE M
STATUS MAP DETAILS \
AHRESMEM
AHRES AHSET AHQWAIT ~— AHQWALT ~—
AHPINOP AHWAIT AHWAIT AHUNITCP

AHUNITCP —-’@ AHQWAILT
NO
YES

AHRES v
AHUNITCP 2

(B)117988A

Figure D-21. 4X AU Unit Hardcore Flowchart (Sheet 1 of 7)

D-68 Advanced Scientific Computer

CCR-LSD DECODE
0 1 E F

STORE LOAD STORE - LOAD
SECTION SECTION DETAILS DETAILS
-
1 —>AHSLHCAD 1 S AHTHREE®
?»CNT
oooooooo)2
—+QZCB
(10), »>QPM
0—-QMBFUL
0 —+ QWRCMP

TOGGLE QAR

117989

Figure D-21. 4X AU Unit Hardcore Flowchart (Sheet 2 of 7)

D-69 Advanced Scientific Computer

ROA SETS
aQMBFUL

PR + PP

AHCMCMP3 -+

1 —=AHSLADER

QWRCMP

1 -« AHABTERM
1 - AHUNITCP

C

4]

CCR-LSD DECODE

1

E

.)

l AHST3DE (0)

IAHSTBDE(!)

| AHST3DE (14)

STORE LOAD S TORE LOAD
SECTION SECTION DETAILS DETAILS

i

i | +»AHSELWDO 1 = AHSELWDO

V 110000000)2 z ~> AHSELWD 1 1 +AHDELTAL (1) 1 - AHSELWD!

—QZzCB 00000000) ,—+QzcCB (Illlllll)z—-QZ(‘.B 1 -+ AHDELTAI (1)
1 (01),—+QPM (10) .~ aPM (01) ;- QPM gog;)ogo::’z'z-.ozca
1 = AHSTSCEN o ~dmMBFUL 1 - STDTLOCT(ENT: 10)5
1 00—+ QMBFUL 0 —+QWRCMP 0— QMBF UL 0 -QMBFUL

Lo-.owncmp

0 -QWRCMP

0 +-QWRCMP

'

'

TOGGLE QAR

TOGGLE QAR

TOGGLE QAR

TOGGLE QAR

117990

Figure D-2i. 4X AU Unit Hardcore Flowchart (Sheet 3 of 7)

D-70

Advanced Scientific Computer

AHST3DE(15)

(STORE SECTION)

L |

1 —+AHABTERM

YES

QWRCMP

<« AHCMCMP4

117991

1 -AHSTSCEN

1 -AHABTERM

1 —-+AHUNITCP

Figure D-21. 4X AU Unit Hardcore Flowchart (Sheet 4 of 7)

D-71

Advanced Scientific Computer

i

(LOAD SECTION)

y

1—> AHABTERM

YES

1— AHLDSCEN

QWRCMP

117992

1 —-AHABTERM

i,

1—+AHUNITCP

S

Figure D-21. 4X AU Unit Hardcore Flowchart (Sheet 5 of 7)

D-72

Advanced Scientific Computer

(STORE DETAILS)

{1 —AHSDTEN

A

TOGGLE QAR

11111111) ,—~QZCB
501 M2
1

)o—=QP
—~%mTL0 T(CNT)
1 —AHINC! (1)

1 —AHSELADR
{ —AHADVCNT
0—QMBFUL
0—QWRCMP

QMBFULL

1{-+AHABTERM
AHCMCMP6

AHST6E6ST6 NO YES

1—AHUNITCP

117993

Figure D-21. 4X AU Unit Hardcore Flowchart (Sheet 6 of 7)

D-73 Advanced Scientific Computer

(LOAD DETAILS)

TOGGLE QAR

(00000000) ,—+~QzcB
(10)2—»QPM

1 —AHINCI (1)

1 —» AHSLADER

1 —+ AHSELADR

1— AHADVCNT

0 —+>QMBFUL

0+ QWRCMP

A

AHCMCMP7

1—»LDDTLOCT
(CNT)

CNT =9

AHST7ST7 NO

117994

QWRCMP

YES

L |

1 =+ AHABTERM

YES

1t =+ AHUNITCP

Figure D-21. 4X AU Unit Hardcore Flowchart (Sheet 7 of 7)

D-74

Advanced Scientific Computer

a2

During early stages of CPU Check-Out, sub-units of the CPU can be checked "off
1ine". For instance the IPU can be checked alone, as can any pipe (MBU/AU
pair). In this case, since the function pipe station tester requires a master
hardcore interface, the BUMHC card (a X1 Master Hardcore card) is used to pro-
vide this interface. v

BUMHC AND LOGCLK-8 LOGIC CARDS

When pipe check-out is comp]eté, the BUMHC card can be removed from the ma-
chine: it is no longer required for proper pipe operation.

Similarly, LOGCLK-8 logic card pdeides "MASTER CPU Clock" for the pipe during
pipe check-out and may also be removed after off line pipe check-out.

The following paragraphs and f1owcharts are provided for pipe check-out, hard-
core understanding.

CAPTURE CCR

The capture CCR Togic is part of the master hard core circuitry that monitors
the transfer bit (TB) and unit code of the Common Command Register (CCR) in
the Peripheral Processor Communications Register File. The flowchart in
figure D-22 illustrates the control cycle. If TB sets, the PP is issuing a
command to one of the system devices. The controller then inspects the unit
code of the command to determine if the command is intended for the CP. A
code of 41 (in hexadecimal) specifies a CP command. The controller then
inspects the Request Present flag (QRPF) to determine if another request is
currently being processed by the hard core Togic. If this flag is set, the
controller must wait until it clears before proceeding. When the flag clears,
the controller activates the Reset TB (RSTB) and Gate CCR (GCCR) lines to the
CR File to transfer the new command into the CP. When the PP returns a recog-
nition of the transfer (TBRL), the controller deactivates the two signals

and activates the Request Present indicator (RP) to indicate to the hard core
logic that a new command is resident. The controller then ensures that the
TB has not yet reset.

NOTE

Due to the long clock period of the CR File with respect
to the CP, the CP has several clock periods before TB
resets. Therefore, if TB is reset at this point, it
should not have been set. This feature also provides a
time-out that negates the CCR command if QRPF does not
set within a reasonable time.

If TB is still set, the controller waits for the hard core logic to set QRPF
as a result of RP being active. QRPF indicates an active command in the hard
core logic. When QRPF sets, the controller drops RP and waits for TB to
clear. When TB clears, the cycle is complete and the controller is ready to
begin the cycle again.

D-75 Advanced Scientific Computer

]
RP «—0 j-——
UNIT 1D
CODE = 41
RESET TB
(RSTBw—1)
GATE CCR
(GCCRa—1)
| 'e .
YES
p— -—— ——— AR ——— ————
S3
RSTB~0
GCCR +—0
(REQUEST
PRESENT)
IS QRPF = 1{ iISsTB=0
— c— —
S2 s,
NO
RP=— 0
| (1S NOT USED | NOOP
TO RESET QRPF
YES YES
NOTE: THIS IS ALL ASYNCHRONOUS LOGIC. (1— XXX REQUIRES NO CLOCK)
» TBRL —LATCH OUTPUT ON CCR COOKIE SHEET THAT LOOKS AT ALL TB RESET LINES AND WHEN TBR
CLK OCCURS IT GETS SET SO THAT THE MHC KNOWS HOW LONG TO HOLD RSTB= 1 DUE TO
CCR 500°' NS CLOCK
* # QRPF — GETS RESET VIA COMMAND COMPLETE IN SYNCHRONOUS LOGIC STATE 7.
(A)115837

Figure D-22. Capture CCR Logic Flowchart

D-76 Advanced Scientific Computer

a2

The error monitor logic, illustrated in figure D-23, determines the conditions
in the CP hard core interface and sets the reason code bits to the PP to
indicate the status of a context switch in the CP. If an error occurs in the
program currently executing in the CP, the program should be switched out of
the CP and a new program loaded into the CP to conserve processor time. The
monitor, therefore, checks the SC and MC bits from the PP. If either of these
bits is set, then the PP has not as yet recovered from the last program switch
to ready a new program for the current switch. The controller sets the

reason code bits to "011" to indicate this condition. If however, the PP has
prepared a new program, the controller examines the AS control bit from the
PP. If Allow Switch is a zero, the PP is prohibiting a context switch. The
controller sets the reason code bits to "111" to indicate that an error has
occurred, but has not been switched out of the CP. If AS is not zero, the
controller clears the reason code bits and allows hard core logic to initiate
the context switch.

ERROR MONITOR

The decision paths are similar for MCW or MCP instructions in the program
sequence. These instructions are also dependent upon Allow Call (AC) being
set, so an inspection of that bit is also made. Since an MCP does not
initiate an immediate switch of programs, the AS bit does not have to be
active for successful completion of the instruction. If no error, MCW or

MCP is encountered during the control cycle, the controller clears the reason
code bits and returns to the start of the control cycle for the next clock.

BUMHC SEQUENCE CONTROL

Sequence control monitors the program progress in the CP, initiates context
switches when errors occur, decodes CCR commands from the CR file and issues
commands to the unit hard core controllers to execute the commands. Before
initiating any operation, sequence control examines the control byte from the
CR file to determine if that operation is permitted. The sequence control
flowchart appears in figure D-24 and table D-5 defines the acronyms used 1in
the flowchart.

STATE 0

State 0 of sequence control monitors the conditions in the CP during normal
processing and waits for a CCR command from the PP. If a program error, MCW,
MCP or system error occurs during normal processing, the controller exits to
the state 'that performs the required steps for that condition. If a CCR
command enters from the PP, the controller decodes the command and exits to

the state required to initiate that command. During normal operation, the
controller monitors the Run Bit to ensure that normal operation is in progress.
It then checks the System Error indication and exits to state 1 if a system
error has occurred. If no system error occurs, the controller checks AUTO

from the Error Monitor circuit. If this signal 1is active, the controller
determines which condition caused AUTO (by examining the other indicator bits
from the Error Monitor) and exits to the proper state. If AUTO is not set,

the controller examines QRPF. If this flag is set, then the Capture CCR logic
has detected and captured a CCR command from the PP. The controller determines

D-77 Advanced Scientific Computer

IS MCw =
NO

NO
IS SC+MC - 1

'

AUTO-— { AUTO - AUTO-— 1

RZERR=-— | RZERR - 1 RZERR — |

RZ <100 RZ<— 010 RZ-111
AUTO* | AUTO -1 AUTO~- 1 AUTO-— |
RZERR*— 0 RZERR— 1{ RZERR— | RZERR « o
RZ+— 000 RZ-— 110 RZ-— 011 RZ+000

r I i v 3

IS MCP = 1

AUTO-—1 AUTO-— 1 AUTOw— | AUTOL._ 0
RZERR~— 1 RZERR~—1 RZERR=—0 RZERRw-— 0
RZ<-001 RZ<-—- 101 RZ<— 000 RZ<-—000

| 'S i :

115838

Figure D-23. Monitor Flowchart

D-78 Advanced Scientific Computer

NO

IS SYSERR=1
TR+PE+BP

1S AUTO =1
MCW+MCP+
ERR

SYSERR _'
Si¢ Sig |RZ=001 ERR M MCPTR
2 2 4 3 3 ’ 6 I

So
4110 1S CHKCMD
1S STRB=1 =1 STATUS OR
NO
RESET
RUN
BIT
2 6 i 4 i 4 i 6 j 3
115847

Figure D-24. BUMHC Sequence Control Flowchart (Sheet 1 of 7)

D-79 Advanced Scientific Computer

Sy a

SETREQe-1

R <
SETREQe-1 CebaTE RZ SETREQ <1
RIPF +— 1 BUFFER

ABORT =1
IS SYSERR=1
NO
YES

115848

Figure D-24. BUMHC Sequence Control Flowchart (Sheet 2 of 7)

Advanced Scientific Computer

Sz

> HCINIT=<1 -
CCRQ«-CCR

NO

HCCALL <1

CALL HCCALL <1
PERMISSION MCWFe-1
INDICATOR

Y v

IS SYSERR=1

YES YES
ALLOW
= SWITCH
YES
2 4 2 4 6

115849

Figure D-24. BUMHC Sequence Control Flowchart (Sheet 3 of 7)

D-81 Advanced Scientific Computer

Sa
HCINITe1
ggllal\gloo—l HCINITe1 HCINITe—1 CCROe-CCR
CCRO < CCRO=-0 CCRO<-CCR EXCHF<—1
aT— WAITe1 WAITe1 WAITe—1
NO f
ZROISND= . ABORTe-1
NO YES
YES
1s
ERRF+MCWF
+EXCHF=
NO NO 1 NO
YES YES YES
Is
IS ERRF=1 ERRF=+1MCWF
NO NO
YES YES
IS
MCWF
=1
NO
YES
-—
6 6 6 5 6 5
115850

Figure D-24. BUMHC Sequence Control Flowchart (Sheet 4 of 7)

D-82 Advanced Scientific Computer

S WAITe-0
58 | cswe1 TO MCU s
: 5

NO

I3 WAITe 0
SA —P cswe1
ERRFe—1

Se | Csw=-o
WAIT<-0

1S ERRF=1

<>

S

Y OO0 0
6 @@kﬂs

Figure D-24. BUMHC Sequence Control Flowchart (Sheet 5 of 7)

115851

D-83 Advanced Scientific Computer

Sy ? ? ?
CCe1 ABw1 CCe-1 ABe1 CCe1 ABe1 CCe*1 ABe1
CC+1 ABel RPF<0 RPF<—0 RPF =0 RPFe 0
RPF<0 COND-+PPU COND +PPU COND-*PPU COND-» PPU
COND->PPU RB<-0 RB<-0 ABORT= 1 RBe 0
CLRREGe-1 Qfﬂ.“rl‘a“ WAIT<0 CLRINP= 1|
g
CCe1 CCe1
RPFe0 RPF<-0 CCe1 Sﬁ?io
P
Bt SE;—ROEQG—I RPF<-0 CLRINPe1
g
ATe1 SCe1
Conpeppy | MCe 1 ATe1 SCe1 Moy ¢!
RBe 0 Sgnosm PPy COND +PPU COND-+PPU
ABORT =1 ABORT= 1 RBe-0 RB<-0
WAIT*0 WAITe 0 CLRINPw-1
g
SCe-1 RZB-+PPU
SCet MCe-1 MCe1 RB<-0
CLRINP e CLRREQe-1
-
NO
YES
SE*-1 SEe{
| RZB-=PPU COND-»PPU
COND +PPU RBe0O
RB=-0 CLRREQe-1
CLRREQe-{
ALL FLAGSe0
4 / ‘
118852

—

Figure D-24. BUMHC Sequence Control Flowchart (Sheet € of 7)

D-84

Advanced Scientific Computer

115871

B i

ERRF<0Q
MCWF<Q
ABORT=-0
CLRINPwe-1
HCINITe—1
CCRQw-06

NO

CLRINP<O

Figure D-24. BUMHC Sequence Control Flowchart (Sheet 7 of 7)

D-85

Advanced Scientific Computer

Term

AB
ABORT
ABTERM
AS

AT
AUTO
cc
CCRO

CHKCMD

CLRINP

CLRREQ
CSR

CSW
ERRF

EXCHCMD

EXCHF

Table D-5. Sequence Control Acronyms
Function

Abnormal - Condition byte bit to PP that indicates that the last
CCR command terminated abnormally.

Signal to unit hard core controllers that prevents them from
further processing of any CCR command.

Signal from the unit hard core controllers that indicates an
abnormal termination of a unit command.

Allow Switch - CP Control Byfe bit from PP that enables automatic
switching for MCW and errors.

Abnormal Termination - Response Byte bit that indicates to the PP
that a switch or call terminated abnormally.

Signal from Error Monitor that indicates an MCW, MCP or an error
condition in the CP,

Command Complete - Condition Byte bit that indicates the completion
of the last CCR command.

CCR Output Register - Register in master hard core that supplies
instruction codes to unit hard core controllers.

Check Command - Internal signal indicating that the C"R command is
either a status or intermediate maintenance transfer (CCR codes
4108 through 410D).

Signal that clears the Hard Core In Progress flag in the unit hard
core controllers.

Clears the unit hard cores Hard Core Requirement f]ag..

Context Switch Response - signal from PP indicating that map and
protect parameters are set up in MCU for a switch.

Context Switch - signal to PP indicating a requirement for new map
and protect parameters in the MCU for a context switch.

Internal flag that indicates a program error switch is being
performed.

Exchange Command - internal signal that indicates that the CCR
command involves both a load and a store (exchange) - CCR codes
410A and 410D.

Internal flag that indicates that the hard core logic is process-
ing an exchange command from the PP.

D-86 Advanced Scientific Computer

a2

Term

HCCALL
HCINIT
MC
MCWF
MEMCMD
QRPF
RB
RIPF
RZF

SC

SE

SETREQ

SIMCMD

STRB
SYSERR

TR

Table D-5. Sequence Control Acronyms (Continued)

Function

Call permission indicator to level 3 controller to enable IPU to

write the call pointer.

Hard Core Initiate - Starts hard core operation in the unit hard
core controllers.

Message Complete - Response Byte bit that indicates that the CP
has completed an MCW or MCP. :

Internal flag indicating that the controller is performing an
MCW operation.

Internal signal that indicates that the CCR command is either a
Toad or store operation - CCR codes 4100, 4101, 410E and 410F.

Request in Progress flag - Set by the Capture CCR logic indi-
cating that a CCR command is active in the CP. Cleared at the
completion of command by Sequence control.

Run Bit - When set, enables CP processing.

Internal flag indicating that the command in progress will reset
the run bit.

Internal flag indicating that an error reason code will be sent
to the PP,

Switch Complete - Response Byte bit indicating that the CP has
completed an MCW or error switch.

System Error - Response Byte bit indicating that a parity error
occurred during normal processing. S

Set Hard Core Requirement - Sets the Hard Core Requirement flags
in the unit hard core controllers so that the units will wind
down operations jn preparation for a maintenance command.

Simple Command - Internal signal indicating that the CCR command

is a basic command requiring no complex operations - CCR codes 4102
through 4107.

Set Run Bit - Internal signal indicating a Set Run Bit CCR command.

System Error - Internal signal indicating that a parity error has
occurred during CP processing or the PP has set TR.

Terminate Request - Control Byte bit that instructs the CP to
cease processing the current CCR command.

D-87

Advanced Scientific Computer

5

Table D-5. Sequence Control Acronyms (Continued)
Term Function
UNCMP Unit Complete - Internal signal that indicates that all CP unit

hard core controllers have completed their operations for the
current CCR command.

WAIT Prevents memory requests to keep the CP in a zero request pending
state.
ZROPND Zero Pending - Indicates that all memory requests have been

satisfied by returning data from memory .(no outstanding requests).

that the PP has not terminated the request, and then decodes the command. If
the command is a simple one-step command (lock or unlock PC, set or reset all
registers, or reset error cells), the controller exits to state 2 to enable
the unit hard core controllers to perform their functions. If the command is
an intermediate or status command, the controller ensures that the CP has not
recently completed a context switch that the PP has not recognized (SC or MC
set). If this is the case, the program that the PP requested status or inter-
mediate information for is no longer in the CP. The controller, therefore,
sets command complete, abnormal termination, clears the request present flag
and transfers the condition byte to the PP. If the CCR command is a load or
store operation, the controller exits to state 4 to process the request. If
the command is a Set Run Bit, the controller sets the Run Bit and command
complete, and clears the Request Present flag. If none of the above commands
are present, the controller defaults to a clear run bit command which is
performed in state 1.

STATE 1
Four conditions cause the controller to enter state 1. These conditions are:

1. System error during normal operation.
2. Error reason code to be sent to PP.
3. Reset Run Bit command from PP.

4. System error during a call operation.

For each of the above causes, the controller sets the Hard Core Requirement
flag in each of the unit hard core controllers so that they will conclude the
operations that are currently being processed. If a reason code is to be sent
to the PP, the controller also updates the reason code in the reason buffer

so that the correct information will be sent to the PP, and sets the RZF flag
to indicate that the code will be sent. The RIPF flag is set if the Run Bit
will be cleared by the command in progress. The controller then waits for
ZROPND to indicate that all outstanding memory requests have returned from
memory. During the waiting period, the controller monitors the system error
indicator and disables the unit hard core controllers if a system error occurs.
The controller then decodes the states of the three indicators; SYSERR, RZF
and RIPF, to determine what actions to perform. RZF and RIPF are mutually

D-88 Advanced Scientific Computer

a2

exclusive flags, whereas, SYSERR could have occurred while waitin? for ZROPND.
The decode and the resulting actions are listed in the flowchart (figure 4-45),
The actions are enabled for the next clock following the decode (state 7).

STATE 2

The controller enters State 2 when it decodes the CCR command from the PP to
be a simple operation requiring no complex transfers in the CP. The control-
ler then issues HCINIT to the unit hard core controllers to start each of the
units into their respective sequences, and gates the CCR code into the master
hard core's CCR Output register. The controller then waits until each unit
hard core controller returns an operation complete indication before it exits
to state 7 to issue Command Complete to the PP and clear the Request Present
flag (QRPF).

STATE 3

The controller enters state 3 during call commands. In this state the control-
ler waits while the level 3 controller writes the call message into the
designated location (location 07) in memory. When the controller enters state
3, it sets HCCALL to the level 3 controller to enable it to write the message
into memory. If the command is an MCW, the controller also sets the MCWF flag.
The controller then waits for Call Complete indicating that the message has
been written. During the waiting period, the controller monitors the error
indicators to ensure that no system or program errors occur. A system error
causes the controller to exit to state 1 to terminate the operation. If a
program error occurs, the controller may terminate the operation in state 1

if the Allow Switch bit is not set. If AS is set, the controller exits to
state 4 to begin a context switch that loads a new program into the CP. If
the message is written into memory without error, the controller examines the
MCWF flag to determine if it should perform a context switch (MCW), or if it
should continue to process the same program (MCP). For an MCP, the controller
exits to state 7 to set Message Complete to the PP. For an MCW the controller
exits to state 4 to begin the context switch.

STATE 4

The controller enters state four under four conditions, each of which requires
some type of memory transfer (load, store or exchange). When the controller
enters state 4, it sets HCINIT prepare the unit hard core-controller for the
transfer operation, sets WAIT to prevent them from initiating any memory
requests, and transfers a code into the CCR Output register for transfer to
the UHC's ("0" for context switches, or CCR code for the direct CCR commands).
The Exchange flag sets if the operation is an exchange. The controller then
waits for all outstanding memory requests to return from memory. During the
waiting period, if a system error condition occurs, the controller sends Abort
to the unit hard core controllers to halt performance of the CCR command.

When ZROPND becomes active, the controller ensures that no system errors have
occurred, that a program error has not occurred, or if ERR is set, that the
operation is a context switch (ERRF or MCWF). The controller then exits to
state 5 for context switch or exchange operations and to state 6 for load or
store operations.

D-89 Advanced Scientific Computer

The controller enters state 5 to perform an exchange of CP contents. In this
state, the controller sends CSW to the PP to ensure that the map and protect
parameters have been established in the MCU. When the PP responds with CSR,
indicating that the parameters for the new program are ready, the controller
exits to state 6. When the controller enters state 5, it also clears the WAIT
flag so that the unit hard core controllers can begin the store portion of

the exchange while the sequence controller is waiting for CSR.

STATE -6

STATE 5

When the controller enters state 6, it clears the WAIT flag and CSW to the PP
if CSW was enabled in state 5. Clearing WAIT allows the unit hard core con-
trollers to perform the designated memory transfer operation. For context
switches, the new program is loaded while the controller is in state 6; for
loads or stores, that operation is performed in state 6. When each of the
unit hard core controllers has completed its transfer operation, the control-
ler determines if any of the units terminated abnormally and issues the status
and transfer commands required for each of the conditions. These commands are
illustrated in the flowchart for sequence control (figure D-24).

STATE 7

State 7 enables the status and transfer commands that the controller has
determined are required (through examination of the operations in the other
states of the controller). These transfer commands and status reports are
illustrated in the sequence control flowchart. After enabling these commands,
the controller determines if the operation completed by hard core was an error
context switch (ERRF). If not, the controller clears all control flags and
returns to the initial monitor cycle in state 0. If ERRF is set, the control-
ler exits to state 8 to reinitialize the CP hardware flags.

STATE 8

The controller enters state 8 from state 7 after completion of an error switch
operation. Since an error produced the switch operation and a new program has
entered the CP, the system error cells in each of the CP units must be cleared
so that they will not affect the operation of the new program. To :produce
this effect, the controller loads a code of "06" (Reset system error cells)
into the CCR Output register, and enables the unit hard cores by setting Hard
Core Initiate (HCINIT). The controller remains in state 8 until the.unit hard
core controllers have completed the operation (UNCMP). The controller then
returns to the initial monitor cycle in state 0.

D-90 Advanced Scientific Computer

S

Table D-6. 4XCP UR Dump Interpretation

Byte Bit Signature Description
MASTER HARDCORE
STATE(1-8)

0 0-7 I4STAT(1-8) One bit each for states 1 through 8 of the
sequence controller. State 0 is not re-
presented in UR Dump.

CCR(12-15))

1 0-3 I4QCCRI(12-15) Last hex of last CCR command sent to

the CP.
CCR(12-15)

1 4-7 I4QCCRB(12-15) Last hex of last CCR command sent to

unit hardcores.
RPF

2 0 I4QRPF Request present flag is a bit set by the
CCR loader to inform the sequence con-
troller a new CCR command is to be per-
formed. Reset by the sequence control-
ler when it completes the command.

RP(0, 1)

2 1-2 I4QRP(0,1) State flip-flops of the CCR asynchronous
loader. Responsible for setting RPF and
resetting the transfer bit in the CR file.

GCC

2 3 I4QGCC:1 Gate command complete. Set by the se-
quence controller to set the command
complete bit in the CR file to indicate
completion of a CCR command. Also
gates the AB bit (CR 12 Bits 0+ 1).

GSE

2 4 I14QGSE:1 Gate system error. Set by the sequence
controller to set the system error bit in
the CR file to indicate terminate request,
memory protect violation or memory
parity error,

GAT
2 5 I4QGAT:1 Gate attention set by the sequence con-

troller to gate the attention, switch com-
plete and message complete bits into
CR 12 byte 0, bits 1-3.

MHC consists of the Sequence Controller, the Reason Error Encoder, and

the CCR Asynchronous Loader.

D-91 Advanced Scientific Computer

Table D-6. 4XCP UR Dump Interpretation (Continued)
Byte Bit Signature Description
GCB

2 6 I14QGCB:1 Gate condition byte set by the sequence
controller to gate the CP condition bits
into CR 12 byte 2 bits 2-6; ME, PE, IL,
AE, and PV.

GRZ :

2 7 I4QGRZ:1 Gate reason code set by the sequence
controller to gate the reason code into
CR 12 byte 0 bits 5-7 as set up by the
reason error encoder,

CCRI(11)

3 0 I4QCCRI(11) CCR input register bit 11, buffers fact
that a set or reset run bit CCR command
was sent to CPU (the MHC).

RPLY

3 1 I4QRPLY:1 Reply set to indicate message complete
or switch complete, or both, has been
set in CR file 1 bits used to develop atten-
tion.

HCINIT

3 2 I4QHCINIT Hardcore initiate used to start hardcore

operation in unit hardcore controllers.
ABORT

3 3 I4QABORT Abort signal to unit hardcores to stop

CCR processing by cleaning UHC's,
ZROPN

3 4 14QZROPN Zero pending indicates no outstanding

memory requests.
MHCCMP

3 5 I4MHCCMP Master hardcore complete. An ""AND'

of all unit hardcore complete signals.
MHCABT
3 6 I4AMHCABT Master hardcore abnormal termination,

an ""OR" of all unit hardcore abnormal
termination signals.,

Advanced Scientific Computer

a2

Table D-6. 4XCP UR Dump Interpretation (Continued)

Byvte Bit Signature Description
CSR
3 7 I4QCSR Context switch reply signal sent from the
MCU to indicate the map and protect reg-
isters are valid and it is alright to pro-
ceed with the load half of an exchange
command.
ERR
4 0 I4ERR Error indicates an illegal op code, mem-
ory parity error, memory protect viola-
tion, or arithmetic exception and the run
bit was on.
ERRF
4 1 I4QERRF Seb by sequence controller to retain fact
that ERR was true and no condition exists
that requires software or manual inter-
vention.
SYSERR
4 2 I4SYSERR Master hardcore system error, '"OR" of
memory parity and protect error signals
from unit hardcores and terminate re-
quest. ‘
AUTO
4 3 I4AUTO Signal generated by ERR or a monitor
call used to interrupt normal operation.
RZF
4 4 I4QRZF Reason flag set by the sequence control-
ler to indicate that a reason code other
than zero has been generated. v
RIPF :
4 5 I4QRIPF Reset in progress flag indicates the com-
‘ mand in progress will reset the run bit.
EXCHF
4 6 I4QEXCHF Exchange flag set by sequence controller

to retain the fact that it is processing an
exchange CCR command.

D-93

Advanced Scientific Computer

2

Table D-6. 4XCP UR Dump Interpretation (Continued)

Byte Bit Signature Description
EXCMD

4 7 I4QEXCMD Exchange command set by the sequence
controller after the store portion of an
exchange command to retain the fact that
it has started the load operation and will
not reinitiate it in state 6.

AT .

5 0 I4QAT:1 Abnormal termination indicates an error
condition occurred during a switch or
call operation.

AB

5 1 I4QAB:1 Abnormal set by sequence controller to
indicate CCR command terminated ab-
normally sets CR 12 byte 2 bit 1.

INTRP

5 2 I4QINTRP Interrupt generated by sequence control-
ler when an error or monitor call condi-
tion exists and can be handled without
software or manual intervention.

VBG

5 3 I4QAVBG Any vector bad buy signal generated by
the level 3 controller to indicate that a
vector is being executed that cannot be
restarted except as a new instruction.

MCP
5 4 I4QMCP Monitor call and proceed indicates an
MCP instruction is being processed.
MCW
5 5 I4QOMCN Monitor call and wait indicates that an
' MCW is being processed
MCWF

5 6 I4QMCWEF MCW flag - a flag set in sequence con-

' troller state 3 to retain the fact that an
MCW is in progress.

CLCMP
5 7 I4QCLCMP Call complete set by the level 3 control-

ler to inform master hardcore that the
message has been stored on a monitor
call operation.

D-94

Advanced Scientific Computer

a2

Table D-6. 4XCP UR Dump Interpretation (Continued)

Byte | Bit Signature Description
PRV
6 0 I14QPRV Protect violation. '"OR' of unit protect
violations from IPU and MBU's.
PAR . .
6 1 I4QPAR Memory parity error. '"OR' of unit
parity errors from IPU and MBU's.
ILLO
6 2 I4QIL.1.O Illegal operand "OR'" of I4Q1PIOP from
IPU and BHQLLOPR(N) from MBTU's.
AREXC
6 3 I4QAREXC Arithmetic exception from IPU.
MIERR
6 4 I4OMIERR MBU or IPU memory error "OR!'" of
IAMEMERR from the IPU and BHCMERR
(0-3) from the MBU's,
AMERR v
6 5 I4QAMERR AU memory error "OR'" of AHQPR(0-3)
signals from AU's.
1CMP
6 6 14Q1CMP IPU's unit complete bit,
. IABT
6 7 I4QIABT IPU's abnormal termination bit.
MABT(0-3)
7 - 0-3 I4QMABT(0-3) MBUS' abnormal termination bits.
AABT(0-3) : .
7 4-7 I4QAABT(0-3) AUS' abnormal termination bits.
MCMP(0-3)
8 0-3 I14QMCMP(0-3) MBUS' unit complete bits.
ACMP(0-3) . ,
8 4-7 I4QACMP(0-3) AUS' unit complete bits.

Advanced Scientific Computer

Table D-6. 4XCP UR Dump Interpretation (Continued)

Byte Bit Signature Description
PV
9 0 14QPV Protect violation CR 12, byte 2, bit 6.

PE

1 I4QPE Parity error CR12 byte 2, bit 3.
1L ‘

2 I4Q1L Illegal op code CR ‘12, byte 2, bit 4,
AE

3 I4QAE Arithmetic exception CR 12, byte 2, bit 5.
ME

4 I4OME Memory error CR12, byte 2, bit 2.
RZ(0-2)

5-7 14QRZ(0-2) Reason code CR 12, byte 0, bits 5-7.
TR

A 0 I4QTR Terminate request CR A, byte 3, bit 5,

AS

1 I4QA-S Allow switch CR A, byte 3, bit 7.
AC

2 I4QAC Allow call CR A, byte 3, bit 6.
SB

3 I140SB Load status bit CR 14, byte 3, bit 1.
MC

4 140MC Message complete CR 12, byte 0, bit 2.
SC

5 140QSC Switch complete CR 12, byte 0, bit 3.
SS

6 140QSS Status stored CR 12, byte 0, bit 4.
RB

7 I4QRB Run bit CR 12, byte 2, bit 7.

*Bytes 9 and A are identical to the bits in the CR file for each condition.

D-96 Advanced Scientific Computer

Table D-6. 4XCP UR Dump Interpretation (Continued)

Byte Bit Si gknatur e Description
| IPU HARDCORE
¢t FREEZE
0 0 IMQFREEZ IPU's equivalent of run bit if run bit = 1,
freeze = 0.
STATE(0-6)
0 1-7 IMHCSTA(0-6) State flip-flops for IPU hardcore.
L.SD(0-3)

1 0-3 IMQISD(0-3) Low order hex of last CCR command sent

to the IPU by master hardcore.
EXCH

1 4 IMQEXCH Exchange indicates that the IPU hardcore

has decoded an exchange CCR command.
HCREQ »

1 5 IMQHCREQ Hardcore requirement signal to the CM
requestor to stop normal request pro-
cessing.

HCINP
1 6 IMQHCINP Hardcore in progress signal from the
‘ master hardcore to indicate it is OK to
proceed with CCR command processing.
LDPTR

1 7 IMQLDPTR Load pointer set on transition from
State 4 to State 5 to retain the fact that
the pointer octet has been loaded reset
on transition from State 5 to State 6.

SPSDW

2 0 IMQSPSDW Store program status doubleword. Set
to A 1 to gate the program status to IOCM.

A OCTR(0-4) _ A

2 3-7 IMQOCTR(0-4) Octet counter. Counter used to indicate
what data in the status, details or PSDW
is involved in a memory transfer.

PRM(0)
3 2 ICQPRM:(0) Signal developed from IMSFREQ which

is used to make a memory request during
a STF or STFM instruction,

D-97 Advanced Scientific Computer

2

Table D-6. 4XCP UR Dump Interpretation (Continued)
Byte Bit Signature Description
PRM(1)
3 3 ICQPRM:(1) Signal developed from IMLFREQ which is
used to make a memory request during a
LF or LFM instruction.
RC(0-2) _
3 5-7 IMQRC(0-2) Read counter indicates the number of out-
standing read requests to central memory.
RDA
4 0 ICQRDA:1* Q output of 2nd level F/F set by read data
available from the MCU.
RDS
4 1 ICQRDS:1 Read data sampled to the MCTU.
RA
4 2 ICQRA:1 Request accepted from MCU.
AR
4 3 ICQAR:1 Access request to MCU.
DAV
4 4 ICQDAV:1* Q output of 2nd level F/F set by data
available signal from the MCU.
DAV
4 5 IOQDAV* Q output of 1st level F/F set by data
available signal from the MCU.
PAR
4 6 ICQPAR:1* Q output of second level F/F set by
parity error signal from MCU,
PAR
4 7 IOQPAR* Q output of first level F/F set by parity
error signal from MCU.
RDA
5 0 IOQRDA* Q output of F/F set by read data avail-
able from the MCU (IORDA).
WRITE
5 1 ICQWRITE:1 Write. Indicates a write to memory op-

eration. F/F is clocked by gate signal
to OA register.

*Bits from lst level are asynchronously loaded, 2nd level are synchronized.

D-98 Advanced Scientific Computer

a2

Table D-6. 4XCP UR Dump Interpretation (Continued)

Byte | Bit Signature Description
PRV

5 2 IMQPRV:1 Protect violation which occurred while
the freeze bit was set . (i.e., a hardcore
operation).

IPPRV

5 3 ICQIPPR V3 Protect violation which occurred during

‘normal processing.
PAE |

5 4 IMQPAE:1 Memory parity error which occurred
while the freeze bit was set (i.e., during
a hardcore operation).

IPPAE

5 5 ICQIPPAE % Memory parity error during normal in-

struction processing.
AREX

5 6 ICQAREX Arithmetic exception. A divide check,
FX. PT. overflow, FL. PT. overflow,
or FL. PT. underflow has occurred and
its corresponding mask bit was set.

IPIDP

5 7 ICIPIOP#* Illegal op code.
IP(0-1)

8 0-1 ICQIF(0-1) Input pointer for CM request que.
OP(0-1)

8 2-3 ICQOP(0-1) Output pointer for CM request que.
BSY(0-3)

8 4-7 ICQBSY(0-3) CM request que busy bits if set. Each
bit indicates that the request it is associ-
ated with has been made.

ACT(0-3)
9 0-3 ICQACT(0-3) CM request que active bits if set. Each

bit indicates the request it is associated
with will be used when it returns from
memory.

**Set by lines from Level 3 Controller.

Advanced Scientific Computer

Table D-6. 4XCP UR Dump Interpretation (Continued)

Byte Bit Signature Description
PRV(0-3)
9 4-7 ICQPRV(0-3) CM request que protect violation bits.
CUEO(M),
CUE1 (M)

A 0-7 ICQCUENM) Encoded bits which give the destination
of the data for CM.request queue position
M where M =0, 1, 2, 3and N = 0, 1.

The encoding is done in the following
manner:
CUEOM) CUE1(M) Destination Operation
(Load In-
0 0 KA structions)
(Load In-
0 1 KB structions)
(Indirect
1 0 IR Address)
Register (Load
1 1 File File)
OA(8-15)
B 0-7 IHQOA(8-15)
QA(16-23) Contents of OA register bits 8-31, last
C 0-7 IHQOA(16-23) CM address accessed by the IPU.
OA(24-31)
D 0-7 IHQOA(24-31)
P3(29-31)

E 1-3 IRQP3(29-31) Low order 3 bits of P3 register. (The

program counter at Level 3).
PA(29-31)

E 5-7 ILQPA(29-31) Low order 3 bits of PA register. (The
present address or program count of the
next instruction that will be loaded into
the pipe).

PM(0-1)
0 0-1 BHQPM:1(0-1) Protect mode bits sent to MCU

D-100 Advanced Scientific Computer

Table D-6. 4XCP UR Dump Interpretation (Continued)
Byte* | Bit Signature Description
ZBR
0 2 BCQZBR:2 Z buffer release - indicates write data
has been latched up in MCU and ZB data
no longer need to be kept.
AR
0 3 BCQAR:1 Access request to the MCTU.
RA
0 4 BCRA Request accepted from the MCU.
RDA
0 5 BCRDA Read data available from the MCU,
RDS
0 6 BCQRDS:1 Read data sampled to the MCU.
OAFUL
0 7 BCQOAFUL:2 OA Full indicates that the MBU's CM
address register contains a valid address.
OA(8-15)
1 0-7 BHQOA:1(8-15)
OA(16-23)
2 0-7 BHQOA:1(16-23) Address of last MBU CM request.
OA(24-28)
3 0-4 BHQOA:1(24-28)
RSTAT(0-2)
3 5-7 BCQRSTAT(0-2) Requestor State 0-2. Outputs of 3 flip-f
flops used to encode CM requestor
States 0-7 which equals the number of
outstanding requests.
OZC(0-7)
4 0-7 BHQOZC:1(0-7 Zone control bits associated with MBU
' requester.
LSD(0-3)
5 0-3 BHQLSD:2(0-3) Low order hex of last CCR command sent
to the MBU.
HCMPRV
5 4 BHQCMPRV Protect violation which occurred during

a hardcore operation.

D-101 Advanced Scientific Computer

a2

Table D-6. 4XCP UR Dump Interpretation (Continued)

Byte* | Bit Signature Description
HPARER
5 5 BHQPARER Parity error which occurred during a
hardcore operation.
COMPRYV
5 6 BCCMPRV Protect violation which occurred during
instruction processing.
CPARER
5 7 BCPARER Parity error which occurred during in-

struction processing

HSTATE(0-3)
6 0-3 BHQSTATE:1(0-3) Output of MBU hardcore state flip-flops
used to encode States 0-9.

HCREQ
6 4 BHQHCREQ:1 Hardcore requirement. Signal to the
MBU CM requester to stop normal request
processing and proceed to a zero pending
state.
HCINP
6 5 BHQHCINP:1 Hardcore in progress signal from the
master hardcore indicating that all of the
conditions exist that will allow a CCR
command to be processed.
RNEQO _
6 6 BHRNEQO Run bit equal to zero.
EXCH
6 7 BHQEXCH:1 Exchange. Indicates an exchange com-
mand.
HCCNT(0-3)
7 0-3 BHQHCCNT:1(0-3) Hardcore count 0-3. Outputs of counter
used for load and store details.
UNCMP
7 4 BHQUNCMP Unit complete sent to master hardcore.

*Data for bytes 0 through 5 originate on BUCMR or BUCTL2 through a
selector located on the BUCAF cards. Bits 0-3 of the selector are on
BUCAF(0) and 4-7 are on BUCAF(1). Signature given is on the BUCTLMB
as input to the selector.

D-102 Advanced Scientific Computer

a2

Table D-6. 4XCP UR Dump Interpretation (Continued)

Byte Bit Signature Description
ABTRM
7 5 BHQABTRM:1 Abnormal termination indicates a memory
error during a hardcore operation.
ILOPR
7 6 BHQILOPR Illegal operand indicates an illegal oper-
and in the last attempt to interpret the
vector parameter file.
DSTATE(0-2)
8 0-2 BHQDSTAT:1(0-2) De-escalate state flip-flops used to de-
code States 0-7.
DSCMP
8 3 BHQDSCMP:1 De-escalate complete set in State 7 of
de-escalate controller indicates no activ-
ity in the pipe.
WRAP(0-1)

8 4-5 BHQWRAP:1(0-1) Wrap bits used to indicate if a CAF gen-
erator pointer has wrapped around ahead
of the other pointer necessary for de-
escalation. Bit 4 indicates the "A' vector
has wrapped around ahead of the '"B"

‘vector.
AVDES(0)

8 6 BCQAVDES:1(0) "A" vector de-escalate. Signature used
to halt the ""A'" vector input pointer for
de-escalation of vector operation.

AVDES(1)

8 7 BCQAVDES:1(1) "B' vector de-escalate. Signature used
to half the ""B'"' vector input pointer for
de-escalation of a vector operation.

AU HARDCORE
ADDR(8-15)

0 0-7 AHQADDR:1(8-15) Address bits 8-15 from AU4XSEL(0) card
for last hardcore address.

ADDR(16-23)
1 0-7 AHQADDR:1(16-19) Address bits 16-19 from AU4XSEL(0).

AHQADDR:1(8-11) Address bits 20-23 from AU4SEIL(1) for
last hardcore address.

D-103 Advanced Scientific Computer

Table D-6. 4XCP UR Dump Interpretation (Continued)
Byte Bit Signature Description
ADDR(24-31)

2 0-7 AHQADDR:1(12-19) Address bits 24-31 from AU4XSEL(1) for

last hardcore address.
ZCB(0-7)

3 0-7 AHZCB:1(0-7) Zone enable bits for the MBU with cur-
rent design should all be in the same
state since we only store octets.

PM(0-1)
4 0-1 AHQPM:1(0-1) Protect mode bits sent to the MCU,
AR

4 2 AHQAR:1 Access request. One level removed from

signal sent to the MCU.
MBF¥UL

4 3 AHOMBEFUL:1 Memory Buffer Full. Synchronized RDA

signal from MCU.
WRCMP

4 4 AHQWRCMP:1 Write complete. Synchronized write gate
signal from the MCU indicates two way
bus is turned and the MCU can accept
write data.

PR
4 4 5 AHQPR Project response. Synchronized protect
response from the MCU. '
PA

4 6 AHQPA:1 Parity error. Synchronized parity error

from the MCU.
STATEO0-7

5 0-7 AHQSTATE:1(0-7) Output cf AU hardcore state flip-flops

used one per state. :
LSD(0-3)

6 0-3 AHQCRLSD:1(0-3) Last significant digit of last CCR com-

mand sent to the AU hardcore.
OCTET(0-3)
6 4-7 AHQOCTCT:1(0-3) Output of octet counter used in load and

store details operations.

*CCR commands for CP details (410B-D) operations are recoded to main-
tenance details commands (410E, F') for the AU only.

D-104 Advanced Scientific Computer

T1-22006

	000
	001
	002
	5-01
	6-01
	6-02
	6-03
	6-04
	7-01
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-09
	A-11
	A-13
	A-15
	A-17
	A-19
	A-21
	A-23
	A-25
	A-27
	A-29
	A-31
	A-32
	A-33
	A-34
	B-000
	B-001
	B-002
	B-003
	B-004
	B-005
	B-006
	B-007
	B-008
	B-009
	B-010
	B-011
	B-012
	B-013
	B-014
	B-015
	B-016
	B-017
	B-018
	B-019
	B-020
	B-021
	B-022
	B-023
	B-024
	B-025
	B-026
	B-027
	B-028
	B-029
	B-030
	B-031
	B-032
	B-033
	B-035
	B-036
	B-037
	B-038
	B-039
	B-040
	B-041
	B-042
	B-043
	B-044
	B-045
	B-046
	B-047
	B-048
	B-049
	B-050
	B-051
	B-052
	B-053
	B-054
	B-055
	B-056
	B-057
	B-058
	B-059
	B-060
	B-061
	B-062
	B-063
	B-064
	B-065
	B-066
	B-067
	B-068
	B-069
	B-070
	B-071
	B-072
	B-073
	B-074
	B-075
	B-076
	B-077
	B-078
	B-079
	B-080
	B-081
	B-082
	B-083
	B-084
	B-085
	B-086
	B-087
	B-088
	B-089
	B-090
	B-091
	B-092
	B-093
	B-094
	B-095
	B-096
	B-097
	B-098
	B-099
	B-100
	B-101
	B-102
	B-103
	B-104
	B-105
	B-106
	B-107
	B-109
	B-110
	B-111
	B-112
	B-113
	B-114
	B-115
	B-116
	B-117
	B-118
	B-119
	B-120
	B-121
	B-122
	B-123
	B-124
	B-125
	B-126
	B-127
	B-128
	B-129
	B-130
	B-131
	B-132
	B-133
	B-134
	B-135
	B-136
	B-137
	B-138
	B-139
	B-140
	B-141
	B-142
	B-143
	B-144
	B-145
	B-146
	B-147
	B-148
	B-149
	B-150
	B-151
	B-153
	B-155
	B-156
	B-157
	B-158
	B-159
	B-160
	B-161
	B-162
	B-163
	B-164
	B-165
	B-166
	B-167
	B-168
	B-169
	B-170
	B-171
	B-172
	B-173
	B-174
	B-175
	B-176
	B-177
	B-178
	B-179
	B-180
	B-181
	B-182
	B-183
	B-184
	B-185
	B-186
	B-187
	B-188
	B-189
	B-190
	B-191
	B-192
	B-193
	B-194
	B-195
	B-196
	B-197
	B-198
	B-199
	B-200
	B-201
	B-202
	B-203
	B-204
	B-205
	B-206
	B-207
	B-208
	B-209
	B-210
	B-211
	B-212
	B-213
	B-214
	B-215
	B-216
	B-217
	B-218
	B-219
	B-220
	B-221
	B-222
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	C-55
	C-56
	C-57
	C-58
	C-59
	C-60
	C-61
	C-62
	C-63
	C-64
	C-65
	C-66
	C-67
	C-68
	C-69
	D-000
	D-001
	D-002
	D-003
	D-004
	D-005
	D-006
	D-007
	D-008
	D-009
	D-010
	D-011
	D-012
	D-013
	D-014
	D-015
	D-016
	D-017
	D-018
	D-019
	D-020
	D-021
	D-022
	D-023
	D-024
	D-025
	D-026
	D-027
	D-028
	D-029
	D-030
	D-031
	D-032
	D-033
	D-034
	D-035
	D-036
	D-037
	D-038
	D-039
	D-040
	D-041
	D-042
	D-043
	D-044
	D-045
	D-046
	D-047
	D-048
	D-049
	D-050
	D-051
	D-052
	D-053
	D-054
	D-055
	D-056
	D-057
	D-058
	D-059
	D-061
	D-063
	D-064
	D-065
	D-066
	D-067
	D-068
	D-069
	D-070
	D-071
	D-072
	D-073
	D-074
	D-075
	D-076
	D-077
	D-078
	D-079
	D-080
	D-081
	D-082
	D-083
	D-084
	D-085
	D-086
	D-087
	D-088
	D-089
	D-090
	D-091
	D-092
	D-093
	D-094
	D-095
	D-096
	D-097
	D-098
	D-099
	D-100
	D-101
	D-102
	D-103
	D-104
	xBack

