EXPLORER NETWORKING REFERENCE

MANUAL REVISION HISTORY

Explorer Networking Reference (2243206-0001*B)

Original TSSUE ... oottt e et July 1985
ReVISION A ..ottt it it e e e March 1986
Revision Bt i i i s June 1987

© 1985, 1986, 1987, Texas Instruments Incorporated. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of
Texas Instruments Incorporated.

The system-defined windows shown in this manual are examples of the soft-
ware as this manual goes into production. Later changes in the software may
cause the windows on your system to be different from those in the manual.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subdivision (b)(3) (ii) of the Rights in Technical Data and Com-
puter Software clause at 52.227-7013.

Texas Instruments Incorporated
ATTN: Data Systems Group, M/S 2151
P.O. Box 2909
Austin, Texas 78769-2909

Lambda is a trademark of LISP Machine, Incorporated.
MS and MSDOS'are registered trademarks of Microsoft Corporation.
Multics is a registered trademark of Honeywell Inc.

NuMachine is a trademark of Texas Instruments Incorporated.
Explorer is a trademark of Texas Instruments Incorporated.

Sun is a trademark of Sun MicroSystems, Inc.

Symbolics is a trademark of Symbolics, Inc.

TENEX is a trademark of Bolt Beranek and Newman Inc.
UNIX and UNIX UCB are registered trademarks of AT&T.

VAX, VMS, VMS4, DEC10, DEC20, and TOPS-20 are trademarks
of Digital Equipment Corporation.

THE EXPLORER™ SYSTEM SOFTWARE MANUALS

Introduction to the
Explorer System

Zmacs Editor
Tutorial

Master Index

Lisp Reference

Input/Output
Reference

Tools and Utilities

Zmacs Editor
Reference

Window System
Reference

Programming
Concepts

Networking
Reference

Glossary

System Software
Installation

Technical
Summary

System Software
Design Notes

Little/No Interest

Medium Interest

Required

First Day of
Explorer Use

Casual or New
Developer

Experienced
Developer

Applications
Programmer

Systems
Manager

THE EXPLORER™ SYSTEM SOFTWARE MANUALS

Mastering Explorer Technical Summaryc0o...... 2243189-0001

the Explorer Introduction to the Explorer System 2243190-0001

Environment Explorer Zmacs Editor Tutorial 2243191-0001

EXplorer GlOSSaryovvv vt it it it et i 2243134-0001

Explorer Networking Reference 2243206-0001

Explorer Diagnosticsciitiriinnininnnen, 2533554-0001

Explorer Master Index to Software Manuals 2243198-0001

Explorer System Software Installation Guide 2243205-0001

Programming Explorer Programming Conceptso0oovuvvn... 2549830-0001

With the Explorer Explorer Lisp Referencecocviiiiinennnn. 2243201-0001

Explorer Input/Output Reference. 2549281-0001

Explorer Zmacs Editor Reference 2243192-0001

Explorer Tools and Utilities 2549831-0001

Explorer Window System Reference 2243200-0001

Explorer Options Explorer Natural Language Menu System User’s Guide 2243202-0001
Explorer Relational Table Management

System User’s Guideccovuu... S 2243203-0001

Explorer Grasper User’'s Guidecocvvvnvnn.. 2243135-0001

Explorer Prolog User's Guidevivvvunnn.n. 2537248-0001

Programming in Prolog, by Clocksin and Mellish 2537157-0001

Explorer Color Graphics User’s Guide 2537157-0001

Explorer TCP/IP User’s Guidecovuuinn.. 2537150-0001

Explorer LX™ User's Guidec0vvu... 2537225-0001

Explorer LX System Installation 2537227-0001

Explorer NFS™ User’'s Guideoovvininnn.n. 2546890-0001

Explorer DECnet™ User's Guideouvun... 2537223-0001

Personal Consultant™ Plus Explorer 2537259-0001

System Software Explorer System Software Design Notes 2243208-0001

Internals Release Information, Explorer System Software 2549844-0001

Explorer and NuBus are trademarks of Texas Instruments Incorporated.
Explorer LX is a trademark of Texas Instruments Incorporated.

NFS is a trademark of Sun Microsystems, Inc.

DECnet is a trademark of Digital Equipment Corporation.

Personal Consultant is a trademark of Texas Instruments Incorporated.

THE EXPLORER™ SYSTEM HARDWARE MANUALS

Explorer 7-Slot System Installation 2243140-0001

System Level
Publications Explorer System Field Maintenancec...uu. 2243141-0001
Explorer System Field Maintenance Documentation Kit 2243222-0001
Explorer System Field Maintenance Supplement 2537183-0001
Explorer System Field Maintenance Supplement
Documentation Kit i 2549278-0001
Explorer NuBus™ System Architecture
General Descriptionccciiiiiiiiininnnnnn, 2537171-0001
System Enclosure Explorer 7-Slot System Enclosure General Description 2243143-0001
Equipment Explorer Memory General Description (8-megabytes) 2533592-0001
Publications Explorer 32-Megabyte Memory General Description 2537185-0001
Explorer Processor General Description 2243144-0001
68020-Based Processor General Description 2537240-0001
Explorer II Processor and Auxiliary Processor
Options General Descriptioncovvu... 2537187-0001
Explorer System Interface General Description 2243145-0001
Explorer NuBus Peripheral Interface
General Description (NUPI board) 2243146-0001
Display Terminal Explorer Display Unit General Description 2243151-0001
Publications CRT Data Display Service Manual, Panasonic
code number FTD85055057Co, 2537139-0001
Model 924 Video Display Terminal User’s Guide 2544365-0001
143-Megabyte Explorer Mass Storage Enclosure General Description 2243148-0001

Disk/Tape Enclosure
Publications

Explorer Winchester Disk Formatter (ADAPTEC)
Supplement to Explorer Mass Storage Enclosure

General Descriptionc.cciiiiiiiiiinnnnn, 2243149-0001
Explorer Winchester Disk Drive (Maxtor)

Supplement to Explorer Mass Storage Enclosure

General Description v, 2243150-0001
Explorer Cartridge Tape Drive (Cipher)

Supplement to Explorer Mass Storage Enclosure

General Description ..., 2243166-0001
Explorer Cable Interconnect Board (2236120-0001)

Supplement to Explorer Mass Storage Enclosure

General Description, 2243177-0001

143-Megabyte
Disk Drive Vendor
Publications

XT-1000 Service Manual, 5 1/4-inch Fixed Disk

Drive, Maxtor Corporation, part number 20005

(5 1/4-inch Winchester disk drive, 112 megabytes) 2249999-0001
ACB-5500 Winchester Disk Controller User’s

Manual, Adaptec, Inc., (formatter for the

5 1/4-inch Winchester disk drive) 2249933-0001

1/4-Inch Tape Drive
Vendor Publications

Series 540 Cartridge Tape Drive Product Description,

Cipher Data Products, Inc., Bulletin Number

01-311-0284-1K (1/4-inch tape drive) 2249997-0001
MTO01 Tape Controller Technical Manual,

Emulex Corporation, part number MT0151001

(formatter for the 1/4-inch tape drive) 2243182-0001

182-Megabyte
Disk/Tape Enclosure
MSU II Publications

Mass Storage Unit (MSU II)
General Descriptioniiiiiniiinerann.. 2537197-0001

182-Megabyte
Disk Drive Vendor
Publications

Control Data® WREN™ III Disk Drive OEM Manual,
part number 77738216, Magnetic Peripherals, Inc.,
a Control Data Companyouvuuvvnenuneennnn 2546867-0001

515-Megabyte Mass
Storage Subsystem
Publications

SMD/515-Megabyte Mass Storage Subsystem General
Description (includes SMD/SCSI controller
and 515-megabyte disk drive enclosure) 2537244-0001

515-Megabyte Disk
Drive Vendor
Publications

515-Megabyte Disk Drive Documentation Master Kit

(Volumes 1, 2, and 3), Control Data Corporation 2246129-0002
Volume 1, General Description, Operation, Installation

and Checkout, and Part Data e 2246125-0004
Volume 2, Theory, General Maintenance, Trouble

Analysis, Electrical Checks, and Repair Information 2246125-0005

Volume 3, Diagramsuiiutiinrnneeinrannennn 2246125-0006

1/2-Inch Tape Drive
Publications

MT3201 1/2-Inch Tape Drive
General Descriptionc.oviiuinieninennn.a. 2537246-0001

‘1/2-Inch Tape Drive
Vendor Publications

Cipher CacheTape® Documentation Manual Kit
(Volumes 1 and 2 With SCSI Addendum and,

Logic Diagram), Cipher Data products 2246130-0001
1/2-Inch Tape Drive Operation and Maintenance

(Volume 1), Cipher Data Productso..o.... 2246126-0001
1/2-Inch Tape Drive Theory of Operation

(Volume 2), Cipher Data Products 2246126-0002
SCSI Addendum With Logic Diagram,

Cipher Data Productscotiiiiiinnennnn.. 2246126-0003

Control Data is a registered trademark of Control Data Corporation.
WREN is a trademark of Control Data Corporation.
CacheTape is a registered trademark of Cipher Data Products, Inc.

Printer Model 810 Printer Installation and Operation Manual 2311356-9701
Publications Omni 800™ Electronic Data Terminals Maintenance
Manual for Model 810 Printers 0994386-9701
Model 850 RO Printer User’s Manual 2219890-0001
Model 850 RO Printer Maintenance Manual 2219896-0001
Model 850 XL Printer User’s Manual 2243250-0001
Model 850 XL Printer Quick Reference Guide 2243249-0001
Model 855 Printer Operator’s Manual 2225911-0001
Model 855 Printer Technical Reference Manual 2232822-0001
Model 855 Printer Maintenance Manual 2225914-0001
Model 860 XL Printer User’s Manual 2239401-0001
Model 860 XL Printer Maintenance Manual 2239427-0001
Model 860 Xl Printer Quick Reference Guide 2239402-0001
Model 860/859 Printer Technical Reference Manual 2239407-0001
Model 865 Printer Operator’s Manual 2239405-0001
Model 865 Printer Maintenance Manual 2239428-0001
Model 880 Printer User’s Manual 2222627-0001
Model 880 Printer Maintenance Manual 2222628-0001
OmniLaser™ 2015 Page Printer Operator’s Manual 2539178-0001
OmniL.aser 2015 Page Printer Technical Reference 2539179-0001
OmniLaser 2015 Page Printer Maintenance Manual 2539180-0001
Omnil.aser 2108 Page Printer Operator’s Manual 2539348-0001
Omnil.aser 2108 Page Printer Technical Reference 2539349-0001
Omnil.aser 2108 Page Printer Maintenance Manual 2539350-0001
Omnil.aser 2115 Page Printer Operator’s Manual 2539344-0001
OmnilLaser 2115 Page Printer Technical Reference 2539345-0001
Omnil.aser 2115 Page Printer Maintenance Manual 2539356-0001
Communications 990 Family Communications Systems Field Reference 2276579-9701
Publications EI990 Ethernet® Interface Installation and Operation 2234392-9701
Explorer NuBus Ethernet Controller
General Descriptionc0 ittt 2243161-0001
Communications Carrier Board and Options
General Descriptiono, 2537242-0001

Omni 800 is a trademark of Texas Instruments Incorporated.
OmnilLaser is a trademark of Texas Instruments Incorporated.
Ethernet is a registered trademark of Xerox Corporation.

CONTENTS

Section Title

About This Manual

Networking Concepts

Networking Protocols

Network Applications

Getting On the Network

Chaosnet Applications Programming and Networking

The Generic Network System

N SN O AW e

Network Status and Troubleshooting
Appendix A External Data Representation
Appendix B Remote Procedure Call (RPC)
Appendix C Writing RPC SErvers

Networking Reference xi

Contents

Paragraph Title Page

About This Manual
INtrodUCHION .« vt ittt ettt ettt e e xxi
Contents of This Manual ...t xxi
Keystroke SeqUeNCeS .. .vvvve e entanrnent oy xxiii
Mouse ClCKS .+ . vviiii ittt e iannnansasees xxiv
Lisp Code . ovvi it e e e e XXV

1 Networking Concepts

1.1 Introductionco'tier ot eriensrnnnonnonnnoenanens 1-1
1.2 Protocols and the ISO/OSI Model ity 1-3
1.3 Lower-Level Protocolsccviiiniitinnner e 1-5
1.3.1 Physical Layerc.tiiuiiieeniennrrateieenraanny 1-5
1.3.2 Data Link Layeroiuiiiitiiientiiininaanes 1-5
1.4 Data Transfer in Lower-Level Protocols\, 1-6
1.4.1 Building the Ethernet Packet oo, 1-7
1.4.1.1 Destination Addresscoviiiiniiiiniiireas 1-8
1.4.1.2 Source AdAIessvvviiininniiiirirraeesesaseas 1-8
1.4.1.3 Type Field. i 1-9
1.4.1.4 Data Field ... 00ttt ity 1-9
1.4.1.5 Frame Check Sequence Fieldt 1-9
1.4.2 Link Managementoueiuitenierannranoonnesnens 1-9
1.4.2.1 COMA/CD it ittt it 1-9
1.4.2.2 Traffic Detectiont iee it ienannneas 1-9
1.4.3 Data EnCodingc.vvvvntevvnnetenneenneneessonneeos 1-10
1.4.3.1 Preamblettt i e 1-10
1.4.3.2 Manchester Encodingccviiiiiiiiiiiiiiiinas 1-10
1.4.4 Packet TranSmiSSiOnvv e et inen e rneerveaenns 1-11
1.4.4.1 [070) 1173709 1 Y- T AT 1-11
1.4.4.2 Collision Fragmentsccoeeineeviennreannsoesss 1-11
1.4.4.3 JaMS ottt e e e e e e e e 1-11
1.4.5 Data RECEPLION . ..t vviti vttt on ey 1-11
1.4.6 Decoding . ..ottt ittt i e e 1-11
1.4.7 Link Level ...ttt ittt ieiiannaansonns 1-11
1.4.8 Decapsulationvvvv it it i i e 1-12
1.5 Higher-Level Protocolscvi v, 1-12
1.5.1 Network-Layer Protocolsovvitiiiini i ineoneens 1-12
1.5.2 Transport-Layer Protocols oo, 1-13
1.5.3 Session-Layer ProtoCols . ..o ivi e 1-13
1.5.4 Presentation-Layer Protocolso 1-13
1.5.5 Application-Layer Protocolsoiiviiiiiiiine, 1-14
1.6 Data Transfer in Higher-Level Protocols, 1-14
1.6.1 Building the Chaosnet Packet, 1-14
1.6.1.1 Packet Headerscoiiiiiinnneninenoneeoennns 1-16
1.6.1.2 Chaosnet Data ittt i iiienernnnnnns 1-16
xii Networking Reference

Contents

Paragraph Title Page
1.6.2 Translating Higher-Level Protocol Addresses 1-16
1.6.2.1 Address Resolution Tablecciitiiennnneann 1-17
1.6.2.2 Address Resolution Packetsc.ciiiiiiienenens 1-17
O T3 = . O 1-19
1.7.1 Server FUNCLION . ..ottt ittt ittt e i iinnaeean 1-19
1.7.2 Client FUNCLION ..o vt ittt it et ittt e tinnnnarans 1-19
1.8 Network Configurationsiiiiiuiii it 1-19
1.8.1 Ethernet Segmentsottt enenons 1-19
1.8.2 Connecting Ethernet Networks 1-20
1.8.2.1 Bridges ... v e e e 1-20
1.8.2.2 GateWays ..ottt ittt e e e 1-20
1.8.3 Packet ROUtIng ... v i e i e 1-20
1.8.3.1 Host Routing Tableooiiiiiiiiiiiiiinnn, 1-22
1.8.3.2 L I 2) - 1-22
1.8.3.3 Packet Transmissioncoiiii it 1-22

2 Networking Protocols
2.1 IntroduCtion ... it e et 2-1
2.2 ChaosSneloiiiiiini it e 2-1
2.3 TCP/IP. ittt e e e e 2-1
2.4 DECHEt .ottt iiit et it i e e 2-2

3 Network Applications
3.1 Introduction vt i e e e e 3-1
3.2 File Servers ..o vv vt i e e e 3-1
3.2.1 Chaosnet File Server Variables e 3-3
3.2.2 Chaosnet File Server Functionsviveevvunnnens 3-3
3.2.3 Chaosnet File Server Conditionsooovv v iiinvnn e, 3-4
2 T =Y § o - A 3-5
3.3.1 Entering a Telnet Windowo v ittt 3-6
3.3.2 Telnet Commandsttt it nrersroaens 3-7
3.3.3 Telnet Serverttt ittt itnnnaeneeennns 3-7
3.4 VTI00 Emulatorccoiiiiniiiiininnnnnnnnnnnnnnennns 3-8
3.5 CONVEISE ..ttt iiti it et i e 3-11
3.5.1 Zmacs Editor Commands With Converse 3-12
3.5.2 Converse FUNCHONSttt iiiiiieeen e 3-12
3.5.3 User Options With Converseo 3-14
3.6 NaAME ..ttt it i e i i e e 3-16
3.7 e i i e e e e e e 3-16
3.8 Eval Serving ...ttt e s i e e e 3-16
3.9 Fingering HOStS ... v'viiiiiettteer oo nnenenennennnnnns 3-17
3.9.1 The Finger Functionc.ciiiiiiiiiirnnnnnnannns 3-17
3.9.2 Making Finger Assignments iiiivnnnn. 3-18
3.10 Remote Disk Server and Band Transfers 3-20
3.11 Sending and Printing Notifications vuo... 3-24

Networking Reference

xiii

Contents

Paragraph Title Page
4 Getting On the Network
4.1 INtroduCtion v v ittt 4-1
4.2 The Network NameSpace v v e et nmreeeannenenns 4-2
4.2.1 Network Namespace Classesocviiiriiiianenon 4-2
4.2.2 Network Namespace Attributeso 4-3
4.2.3 Multiple Network Namespacescovveenerion e 4-13
4.2.4 Namespace Search Ruleso b 4-13
4.2.5 Network Namespaces, Servers, and Caches R 4-14
4.3 How to Update a Network From Release 2 4-14
4.3.1 Updating the First Host on the New Network 4-14
4.3.2 Updating the Other Hosts on the Network 4-16
4.3.3 Optional Method for Updating Other Designated Co-Servers 4-16
4.4 Updating an Existing Namespacecoovcecnviirennn 4-17
4.5 Building a Network From Scratch ocovvvnn 4-19
4.5.1 Plan the Network Namespacevvveeviinevroneeas 4-19
4.5.1.1 Site Diagrams and Site Characteristics 4-21
4.5.1.2 Host Characteristics . .« « v v v v v v v iv vt enees 4-22
4.5.1.3 Printer CharacteristiCso vv ittt ess 4-24
4.5.1.4 Namespace Characteristicst 4-24
4.5.2 Create the Network Namespacecccoeeeveirivenenann 4-25
4.5.2.1 Sequence of Events During Initial Boot 4-25
4.5.2.2 Rename Your Network Namespace Co-Server 4-26
4.5.2.3 Completing the Initial Booto 4-26
4.5.2.4 Bring Up the Namespace Editor0 4-26
4.5.2.5 Create the Host Objectscoovvii i nnns 4-28
4.5.2.6 Idientify the Namespace Serversoo.. 4-31
4.5.2.7 Create the Printer Objectso 4-31
4.5.2.8 Create the Site Objectcvvv i 4-333
4.5.3 Verify the Network Namespacec.coevvunenninnn. 4-35
4.5.4 Distributing the Network Namespacecvvtn 4-35
4.5.5 Boot the Host on the New Networko 4-36
4,6 Logical SUDNELSt vvvt ittt 4-36
4.7 Network Initialization Menu Options v 4-38
4.7.1 Change Machine Name v, 4-38
4.7.2 Locate an Explorer NameServercevvuuerevansoas 4-39
4.7.3 Contact Specific Explorer i 4-439
4.7.4 Convert a Network Configuration File: 4-40
4.7.5 Create a New Network Configuration.................. 4-40
4.7.6 Contact a Specific Non-Explorer Nameserver 4-40
4.7.7 Load Local Files for a Temporary Nameserver 4-41
4.7.8 Running Standalonec.tiiit it 4-41
4.7.9 Defaults for Booting a Disk-Saved Version 4-41
4.8 Network Namespace Functions and Variables 4-42

xiv Networking Reference

Contents

Paragraph Title Page
5 Chaosnet Applications Programming and Networking
5.1 IntroduCtion . .ovvviiiiii ittt et e s 5-1
5.2 CONNECHONS .ttt ttneee ettt innnes ot 5-2
5.3 Using Simple Transactions cvvitt it eennneas 5-2
5.3.1 The User Side e e e e e e 5-2
5.3.2 The Server Side . ..o v vttt et e 5-3
5.3.2.1 LiSteningu vttt 5-3
5.3.2.2 Contact NaImMeE . . vttt i iitiniee ettty 5-3
5.3.2.3 Sending e e i e 5-3
5.3.2.4 Server Auxiliary Function. vy 5-3
5.3.2.5 Initializations, ..o vt vt i in it it i e s 5-4
5.4 Sending Messages From the User Sideoty 5-4
5.4.1 The User’s Packet . ..o vttt ennerneronensens 5-5
5.4.2 The Server’s Side .. oo i it ittt i e i i e 5-5
5.5 Using Stream Input and OQutput i 5-6
5.5.1 Client Side—Spelling Servert 5-6
5.5.1.1 Opening @ Stream.o.uvtvvnueerennnnreonnnoeens 5-6
5.5.1.2 Writing to @ Streamo e 5-7
5.5.1.3 Forcing Packet OUtputcovuiiiiiiir e 5-7
5.5.1.4 Reading from a Stream0, 5-7
5.5.2 Server Side—Spelling Server i i 5-7
5.5.2.1 Server’'s End of Streamttt 5-7
5.5.2.2 Checking Spelling i 5-8
5.5.2.3 Writing Back e 5-8
5.5.3 Auxiliary Spelling Functions i, 5-8
5.6 ProtOCOIS .. v vttt et e 5-8
5.6.1 Client Side ...ttt ittt i 5-9
5.6.2 Server Side ..ottt e e s 5-9
5.6.3 Writes and Reads. ... ittt 5-10
5.6.3.1 First Write—Client Side ittt iiieereennnn 5-10
5.6.3.2 First Read—Server Side i 5-10
5.6.3.3 Second Write—Server Side i 5-10
5.6.3.4 Second Read—Client Side ... i 5-10
5.6.3.5 Flag Waving. et e s 5-11
5.6.3.6 Third Write—Client Sideovviiiiii ittt 5-11
5.6.3.7 Third Read—Server Sidey 5-12
5.6.3.8 Fourth Writecc.iiiiiii i 5-12
5.6.3.9 Fourth Readtiiiiiiiienrtnrninnnnnrnennns 5-12
5.7 FrllS. i et e e 5-12
5.7.1 Rejecting a Connectionvvvvvniit e vniiineinnnneeons 5-12
5.7.2 Notifying the User at the Server Side 5-13
5.7.2.1 Getting Information on a Foreign Host 5-13
5.7.3 Server Side Protectionot 5-14
5.8 COMNS + vt ittt et e s 5-15
5.8.1 States Of @ CONM.ttt ittt ettt s 5-15
5.8.2 Accessor Functions fora Conn 5-16
5.8.3 Wait Function on a Conn vvvit i 5-16
5.9 Opening and Closing Connectionscovvvin it 5-17
5.9.1 User Side of the Connection 5-17
Networking Reference XV

Contents

Paragraph Title Page
5.9.2 Server Side of the Connection0 i inreneeann 5-18
5.10 Stream Input and Outputttt 5-20
5.11 Packet Input and Outputottt anees 5-22
5.12 Connection INterruptsottt 5-26
5.13 Information and Controlc0iiiet ittt iinnnoes 5-27

6 The Generic Network System

6.1 INtroductioniiiiiiiiniiiuttneenoeererrreensnenns 6-1

6.2 The Generic Network Interface utn. 6-1
6.2.1 Mediums, Layers, and Connectionsccvveuee.nn 6-2
6.2.2 Medium Implementationsciietiiiir o 6-3
6.2.2.1 metwork Step e i e e e 6-3
6.2.2.2 medium Step ... e e e 6-3
6.2.3 Medium Desirabilityoovii i e e e 6-5
6.2.4 Logical Contact Namesc.cocvvviiveronnonnnnnnnnns 6-5
6.2.5 Defining a Medium0iitiiiii it iienrrennnnnnns 6-6
6.2.6 Medium Connectionsoviiitit ittt rereennnnnns 6-6
6.3 The Generic Services Interfaceciiiiiiiinna... 6-7
6.3.1 CEIVICES . it e e e e e e e e 6-7
6.3.1.1 Service Implementation it 6-7
6.3.1.2 Service Operationscovivieinuennnenneneaneas 6-7
6.3.1.3 Service Implementation Argumentsoc0eee., 6-8
6.3.2 5 0 N 6-9
6.3.2.1 Service Attributes ittt e e 6-9
6.3.2.2 Service Implementation List e e 6-10
6.4 The Generic Programmatic Interface 6-10
6.4.1 GNI FUNCHONS . v i vvvvt i i ittt et e enonnneeeeennnns 6-10
6.4.2 GSI Functionsuiiiiniiiiinnerroneeeoneeeeenns 6-14
6.5 Using the Generic Network Interfaceovvvvvvn.. 6-16
6.5.1 Chat —A Simple Servercciiiiiiiiiiirneeeeennn. 6-16
6.5.1.1 Chat —The Client Side it 6-16
6.5.1.2 Forcing Output ittt i, 6-16
6.5.1.3 Chat —The Server Side 6-17
6.5.1.4 Chat —Getting on the Net vt 6-17
6.5.2 A Witticism Server e 6-18
6.5.3 The Server Sideottt i i e e e 6-18
6.5.4 Getting the Server Up and Running0vt. 6-19
6.5.4.1 Logical Contact Nameciiiiiiinnininnnnes, 6-19
6.5.4.2 Add Server for Mediumdc v, 6-19
6.5.4.3 Defining the Service i, 6-19
6.6 Application Protocols 6-20
6.6.1 Client Sidecvi i i e it et 6-21
6.6.2 The Server Side i i e 6-21
6.6.3 Contact Namettt it et e 6-22
6.6.4 Adding the Serverouti i i 6-22

xvi Networking Reference

Contents

Paragraph Title Page
6.6.5 Writes and Readsottt e i 6-23
6.6.5.1 First Write — Client Side covvin.. 6-23
6.6.5.2 First Read — Server Side e e 6-23
6.6.5.3 Second Write — Server Side 0. 6-23
6.6.5.4 Second Read — Client Sidecivitvininvnn... 6-23
6.6.5.5 Flag Waving ... oottt i iiii i 6-23
6.6.5.6 Third Write — Client Side 0., 6-24
6.6.5.7 Third Readttt it ittt 6-24
6.6.5.8 Fourth Write. i i, 6-24
6.6.5.9 Fourth Read. it 6-24
6.7 Generic Access of Protocol-Specific Services 6-25
6.7.1 Server Functionttt e e 6-25
6.7.2 Client Side. ittt it i et et e e 6-26
6.7.2.1 Defining a Service Flavor viiiieiinennnnnn. 6-26
6.7.2.2 Service Implementation Mixincciivvuin.. 6-26
6.7.2.3 Client Side i i i e i 6-26
6.7.2.4 Compiling Flavor vttt i it e i i 6-27
6.7.3 Getting onthe Network ittt 6-27
6.7.3.1 Logical Contact Namec.c0vitininrenninnnnans 6-27
6.7.3.2 Define the Serviceiviiiutiiieiiininneinnnn, 6-27
6.7.3.3 Service Implementation it 6-27
6.7.4 The :services Attribute i i i e 6-27
LT T 7 ¢ o ¢ 6-28
6.8.1 Standard Network Errorsvivuervnenenennn.n. 6-28
6.8.2 Local Problemso.ivinuininiiiiii ittt 6-28
6.8.3 Problems Involving the Actions of Other Machines 6-29
7 Network Status and Troubleshooting
7.1 Introductionoiiiiitinii i 7-1
7.2 Networking Functionsot innenn. 7-1
7.3 Peek Utilityo ii i i i 7-4
7.3.1 Network Mode . ..o iniii it e e e e e 7-4
7.3.1.1 CHAOS Selection ...ttt rnneenn. 7-5
7.3.1.2 ETHERNET Selectionitiiitiiinnnrnnenn. 7-8
7.3.2 File Status Modeottt it i ini e, 7-9
7.3.3 Servers Mode .. .o e e e 7-9
7.3.4 Host Status Modeottt it i, 7-10
7.4 Network Operations Menuc.c.viuiinninenneennn.nn. 7-10
7.5 Network Displays Menuoviiit i ininninnnnn.. 7-12
7.6 Network Diagnostics Menuoovvtiiuevnnnennsnnenns. 7-13
7.7 Network Controller Configuration Menu0, 7-15

Networking Reference xvii

Contents

Appendix Title Page
A External Data Representation
Al Introduction, e e e e e A-1
A.2 The XDR Techniqueottt enreeaneanens A-1
A.3 The Explorer Implementation i A-1
A4 XDR Streamsttt tiirinnriorsooereeresseeenenons A-2
A.5 Additional XDR FOrmsc.iviiiviuneenrtaerrenessons A-6
A6 XDREXAMPIES . oo vv vttt e e A-7
A7 XDR MEMOTY « ottt ittt iittiiiiaans e ininnseeneenns A-12
A.8 XDR Conditionscvviiiiivnirineeane i, A-13
B Remote Procedure Call (RPC)
B.1 Introduction it iiiiiiiiiinereirennnans B-1
B.2 The RPC Caller0 ittt tnneenneenoas B-1
B.2.1 o |y o< B-1
B.2.2 rpc:make-spec and callrpc-spec i i B-3
B.3 RPC Port Mapping . ..ot vvvi ittt ittt B-3
B.4 Starting Port Map Serversc.o vt B-4
B.4.1 Resetting Existing Serversccvvvvviiiiniiinaeen, B-5
B.4.2 Arresting Existing Servers i i B-5
B.5 The RPC Serveroiititit ity B-6
B.5.1 Making a Function Available to an RPC Server B-6
B.5.2 Making Your Own RPC Serverooiviiiiiiiinnnns B-7
B.5.3 Registering Processes in a New Server B-9
B.6 The Dispatcherot i e B-9
B.7 RPC FUNCHONS .. .ov ittt ittt i ittt i s B-10
B.8 RPC Variablesciuiiiiiii i B-11
B.9 RPC Conditionsctiiiiiii i B-12
C Writing RPC Servers
C.l IntrodUCHiOn o0ttt it et e e ey C-1
C.2 A SKetchof RPC Servingccovuvriiinniiernnneennnnns C-1
C.3 A Four-Function Calculator Servercoivivevinne... C-2
C.3.1 Procedures vs. Programs vs. Processeso00ivn.. C-2
C.3.2 Arguments and Returned Values C-4
C.3.3 Procedure Definitions i C-5
C.3.4 An Alternate Calculator Serviceo, C-6
C.3.5 How to Avoid Consingttt iiniiininninnnnns C-8
C.3.6 rpc:server Features Error Handling C-9
Cid Tracing . .ovvviiiii i i i i i i e e i e s C-10
C.5 ANNOtationttiririnnnet it oeenas C-10
Glossary
Index

xviii Networking Reference

Contents

Figure Title Page
Figures 1-1 A Simple Network — Site: FLEETot 1-2
1-2 ISO Reference Model for Open Systems Interconnection......... 1-4
1-3 Ethernet Layersoovuiuit it i innnos 1-6
1-4 Ethernet Packet Formatc.ccotiiiiinininnnnnnnnns 1-8
1-5 Manchester-Encoded Data Format e 1-10
1-6 Chaosnet Packetottt i i i i 1-15
1-7 A More Complicated Network i, 1-21
4-1 Site: FLEET ... ittt ittt i it ans 4-20
4-2 Site FLEET (With Future Host Names)0cvuvnv.n. 4-21
4-3 Site FLEET (With Chaosnet Subnetwork Numbers
and HoOSt AdAresses) ... v.vvitinnt ittt eens 4-23
4-4 Logical Subnetworksttt 4-38
6-1 Mediums and Layersvviiiriiit e e 6-2
6-2 Implementations and Connection Stepso, 6-4
7-1 Typical Contents of the Peek Network Mode
Chaosnet Selection Screenvviviiiin s 7-5
7-2 Typical Contents of the Peek Network Mode
Ethernet Selection Screencivi i 7-8
7-3 Typical Contents of the Peek File Status Mode Screen 7-9
7-4 Typical Contents of the Peek Servers Mode Screen 7-9
Table Title Page
Tables 3-1 ASCII File Server Encodingviiiiitiiiieneiannn., 3-2
3-2 Telnet Commands .. .vvvv vttt inenn ettt i 3-7
3-3 VT100 Commands ... vvvvv ittt inmmn e etnnnneeennenss 3-10
3-4 Converse Commandsccovvtiiiniiiiiiniiiiieiiaen 3-12
4-1 Known Site Characteristics of Site FLEET 4-22
4-2 Known Host Characteristics of Site FLEET 4-24

Networking Reference xix

ABOUT THIS MANUAL

Introduction

The Explorer Networking Reference manual helps you to understand the
various networking facilities that are available with the Explorer system. This
manual will teach you how to do the following:

B Understand the basic concepts of networking

B Use networking applications

B Set up an Explorer system as part of a network or as a standalone
computer

B Create and maintain a network namespace

B Check on network status and reset the network

Contents of
This Manual

This manual includes an index and a glossary and is organized into the
following sections.

Section 1: Networking Concepts — Describes the terms and concepts associ-
ated with networks, such as protocols, layers, and configuration.

Section 2: Networking Protocols — Briefly describes networking protocols
that are available with the Explorer system. These include DECnet, Transmis-
sion Control Protocol/Internet Protocol (TCP/IP), Chaosnet, and the Systems
Network Architecture (SNA).

Section 3: Network Applications — Describes a number of network applica-
tions that are available with the Explorer system. Some of these include:

B Telnet - Allows you to use its window as a terminal to another host.

B VT100™ emulator - Allows you to use the Explorer monitor and
keyboard as a VT100 terminal.

B Converse - Allows you to conduct a dialogue with another user.

m Finger - Allows you to see who is logged in at the machines in your
network.

M Time - Allows a host to ask the time of day.
M Eval - Allows you to set up a read-eval-print loop on a remote host.

B Remote disk server and band transfers - Allows you to read and write to
disks on remote hosts.

VT100 is trademark of Digital Equipment Corporation.

Networking Reference

xxi

About This Manual

Section 4: Getting On the Network — Describes how to create a new
network, update a Release 2 network configuration to a Release 3 network
namespace, add an Explorer host to an existing network, and so on.

Section 5: Chaosnet Applications Programming and Networking — Describes
how you can use Chaosnet to move data over a network that includes
Explorer systems. This section is provided for the applications developer who
has a need for the network communication services that Chaosnet offers. It
assumes the developer is familiar with the Chaosnet protocol.

Section 6: The Generic Network System — Describes how to make
applications work across different protocols. This section includes the
Generic Network Interface (GNI) and the Generic Services Interface (GSI).

Section 7: Network Status and Troubleshooting — Discusses how to use the
Network and Host-status items of the Peek utility to check on network status.
Also describes the commonly used functions for checking network status and
resetting the network.

Appendix A: External Data Representation — Describes the Explorer system
implementation of Sun Microsystems™ External Data Representation
protocol, which allows different types of machines to exchange operands
across a network.

Appendix B: Remote Procedure Call — Describes the Explorer system
implementation of Sun Microsystem’s Remote Procedure Call protocol,
which allows different types of machines to interact with each other on a
procedure level.

Appendix C: Writing RPC Servers — Describes how to write servers on the
Explorer system, using the RPC protocol.

Sun Microsystems is a trademark of Sun Microsystems, Incorporation.

xxii

Networking Reference

About This Manual

Keystroke
Sequences

Many of the commands used with the Explorer are executed by a combi-
nation or sequence of keystrokes. In this manual, hyphens connect the
names of keys that you should press simultaneously (chord). Spaces separate
the names of keys that you should press one after the other. The following
table illustrates this manual’s conventions for describing keystroke sequences.

Keystroke Sequence Interpretation

META-CTRL-D Hold the META and CTRL keys while
pressing the D key.

SYSTEM HELP Press and release the SYSTEM key, then
press and release the HELP key.

CTRL-X CTRL-F Hold the CTRL key and press the X key,
release the X key, and then press the F
key. Alternatively, press CTRL-X, release
both keys, and press CTRL-F.

META-X-Find File Hold the META key while pressing the
RETURN key, release the keys, type the letters
Find File and then press the
RETURN key.
TERM-SUPER-HELP Press the TERM key and release it, press

the minus key (-) and release it, then
press and hold the SUPER key while
pressing the HELP Kkey.

Networking Reference

xxiii

About This Manual

Mouse Clicks

The optical mouse features three buttons that enable you to execute opera-
tions from the mouse without returning your hand to the keyboard. Pressing
and releasing a button is called clicking. The following table illustrates the
abbreviations used online to describe clicking the mouse.

Abbreviation Action

L Click the left button (press the left button
once and release it).

M Click the middle button (press the middle
button once and release it).

R Click the right button (press the middle
button once and release it).

L2 Click the specified button twice quickly.

M2 (Press the button, release it, then press it

R2 again quickly.) This is called double
clicking®.

LHOLD Press the specified button and hold it

MHOLD down.

RHOLD

NOTE:

* If you double click too fast, the system sees only one click, If you
double click too slowly, the system sees two single clicks. You can use
alternative method to prevent this: press and hold the CTRL key while
you click the specified button one time.

xxiv

Networking Reference

About This Manual

Lisp Code

Three fonts are used in this manual to denote Lisp code:

B System-defined words and symbols are in boldface. System-defined
words and symbols include names of functions, variables, macros,
flavors, methods, and so on-any word or symbol that appears in the
system source code.

B Examples of programs and output are in a special monowidth font.
System-defined words in an example are also in this font.

W Sample names are in italics. Names in italics can be replaced by any
value you choose to substitute. (Italics are also used for emphasis and to
introduce new terms.)

For example, this sentence contains the word setf in boldface because setf is
defined by the system.

Some function and method names are very long—for example, get-ucode-
version-of-band. Within the text, long function names may be split over two
lines because of typographical constraints. When you code the function name
get-ucode-version-of-band, however, you should not split it or include any
spaces within it.

Within manual text, each example of actual Lisp code is shown in the
monowidth font. For instance:

(setf x 1 y 2) => 2
(+ xy) =>38

The form (setf x 1 y 2) sets the variables x and y to integer values;
then the form (+ x y) adds them together.

In this example of Lisp code with its explanation, setf appears in the
monowidth font because it is part of a specific example.

For more information about Lisp syntax descriptions, see the Explorer Lisp
Reference manual.

Words for which you can substitute another value are shown in italics, as in
the following example:

The variables vars contained in the lambda list of some function foo are
bound to the argument values of the function invocation.

Occasionally, in examples where you could substitute a specific value, the
boldface and italics fonts are used together.

Networking Reference

XXV

NETWORKING CONCEPTS

Introduction

1.1 This section explains the fundamental concepts of networking. It
emphasizes the way messages are passed around a network by means of
hardware and software protocols that allow Explorer systems and various
other computer systems to converse. This section provides a conceptual
framework for the later sections on network configuration, network appli-
cations programming, and the creation of servers and protocols. If you are
familiar with the principles of networking, you can skip this section.

A computer network is a group of computers that can communicate with each
other, sharing resources such as programs, data, memory, and peripheral
devices, which includes printers, mass storage devices, and often even
processors as well.

A network can provide your system with the following benefits:

B Reduced costs in handling tasks

B Decreased transaction time

B Connection with other networks through a gateway
B Electronic mail transaction

W Rapid data transfer between different computers

B Remote login capability, making your workstation a virtual terminal on
another system

M Use of a remote Explorer system or other computer in the net as a
coprocessor to speed complex computations

B Easy installation, future expansion, and reconfiguration

There are two basic types of networks. A long haul network is a group of
computers that communicate via satellite or telephone communications link
and are typically separated by long distances. However, this manual does not
concern itself with long haul networks.

The other type of network is the local area network (LAN). The LAN (on
which this manual focuses) is a group of computers that are usually connected
by a high bandwidth cable within a building or campus.

A LAN is a communications link between computers and peripherals such as
printers or mass storage devices. The word local implies a distance of S to
1000 meters between computers. The upper distance limit is determined by
the electrical characteristics of the transmission cable and interface devices.

Networking Reference

Networking Concepts

A LAN provides a reliable, high-speed means of information exchange and
resource sharing. LANs also expand the possibilities for communications
between devices of different vendors and between local and remote
networks.

Figure 1-1 shows an example of a simple network whose site name is Fleet.
The backbone of this network is the Ethernet® cable. Ethernet, a local area
network specification, forms the backbone of Explorer networks. The
Ethernet specifications prescribe standards that allow various operating
systems, communications devices, and computer hardware to operate in a
network.

Transceivers are attached at prescribed intervals along the Ethernet cable. A
transceiver cable between the transceiver and each Explorer system’s NuBus
Ethernet controller board provides the link to the LAN. One of the Explorer
systems in this network (ASTROLABE) has a printer, which serves as the
printer for the entire network.

Figure 1-1 A Simple Network — Site: FLEET
HELOISE ¢ inat
‘ erminator
transceiver cable
! Y transceiver
Ethernet E
address t
#<ABABABAB h
e
r
ASTROLABE .
—— printer
transceiver cable .
! transceiver
Ethernet
address
#xCBCBCBCB
c
a
ABBEY b
]
e
transceiver cable transceiver
Ethernet =
address
#xEFEFEFEF
2288067
Ethernet is a registered trademark of Xerox Corporation.
1-2

Networking Reference

Networking Concepts

All of the devices in this network communicate by passing digital information
to each other over the Ethernet cable. At the most basic level, information is
passed from one machine to another by rapidly changing the electrical state
of the network.

Protocols and the
ISO/OSI Model

1.2 Initially, there is no way for one Lisp machine to interpret the rapidly
fluctuating changes in the Ethernet’s electrical potential. Before meaning can
be associated with these changes in the state of the network, systematic rules
for interpretation must be imposed in the hardware, in the software, or in
both. To assure successful communication, every Explorer system on the
network must operate under the same set of rules. The rules that govern the
proper composition and interpretation of signals on the network are called
protocols.

Protocols exist for many different levels of a network. For example, some
protocols govern physical transmission of data, some govern interaction with
user processes, and others govern areas that fall between these two examples.

The International Standards Organization (ISO) has established a compre-
hensive formal hierarchical model that arranges different network
functionalities into seven levels or layers. This model, known as the ISO
Model for Open Systems Interconnection (OSI), is shown in Figure 1-2. The
discussion of networking that follows refers continuously to Figure 1-2 and
the small network of Explorer systems shown in Figure 1-1.

Networking Reference

1-3

Networking Concepts

Figure 1-2 ISO Reference Model for Open Systems Interconnection

outgoing frame incoming frame
construction reduction
application application
process A process B
A application application
presentation presentation
session session
transport transport
network network
data link data link
1 Y ¥
physical completed frame physical
communications »s physical transmission communications
path medium (Ether cable) path
2288068

The ISO/OSI model assumes that data is transmitted in frames. Each frame
consists of various types of information, such as the address of the target
computer, the type of the frame, and the actual data. You will see shortly that
Ethernet and some other higher-level protocols refer to these frames as
packets.

Each successively higher level in the OSI model is embedded in its parent
level immediately below. A frame at the transport level is embedded within
the data segment of a network-layer frame. A user at a given layer on one
side of a communications session converses directly with a user or process at
the corresponding layer at the other side of the communications session, as
indicated by the horizontal arrows in Figure 1-2.

Lower levels are invisible to higher levels. For instance, a user at ABBEY in
Figure 1-1 might use an application-layer process to transmit a message to a
user at HELOISE. To both users, the process consists of a direct transfer of
information from one to the other. They do not concern themselves with the
fact that various types of header information are appended to the data by the
protocols at each successive layer.

1-4

Networking Reference

Networking Concepts

Theoretically, this structured arrangement allows each layer to be imple-
mented in such a way that each successive layer need only respond to the
requirements of the previous lower layer. The idea is to provide for
modularity of the functions of the network. In practice, however, the various
layers are not always clearly demarcated as in the OSI model. Still, most
network protocols, including Ethernet, at the lowest levels adhere reasonably
well to the proposed ISO/OSI standard. ‘The following paragraphs discuss
each of these layers and its implementation and function in Explorer
networks.

Lower-Level
Protocols

Physical Layer

Data Link Layer

1.3 The two lower-level protocols of the OSI model are actually the
physical layer and the data link layer.

1.3.1 The physical layer is the lowest level in the ISO/OSI model. This layer
specifies the most essential physical network characteristics controlling how
data is encoded, transmitted, received, and then decoded. For Ethernet, the
physical-layer protocol includes specifications such as the following:

m Cable lengths — An Ethernet segment can be 500 meters long.

B Distance between hosts — The minimum distance between hosts is 2.5
meters. Marks on the cable every 2.5 meters indicate points at which
transceivers may be attached.

HW Data rate — Specified as 10 million bits per second on Ethernet.

W Timing — Ethernet uses asynchronous timing.

B Electrical characteristics — FEthernet employs a 50-ohm shielded

baseband coaxial cable that is grounded at one end and has a 50-ohm
terminator at the other.

1.3.2 The second level in the ISO/OSI model, the data link level, is the
uppermost Ethernet layer. This level provides the procedural and functional
means to establish, maintain, and release data link connections among
network entities and to transfer data frames. This layer also detects and may
correct errors that might occur in the physical layer. The link level has two
major functions in an Ethernet network: data encapsulation and link
management.

Data encapsulation/decapsulation includes the following processes:

B Framing — Defines how a message begins and ends (frame boundary
delimitation)

B Addressing — Handles source and destination addresses

M Error detection — Detects physical channel transmission errors
Link management includes two very important functions:

B Channel allocation — Assures collision avoidance

B Contention resolution — Controls collision handling

Networking Reference

Networking Concepts

Data Transfer
in Lower-Level
Protocols

1.4 In an Explorer network, the functions at the physical and data link
layers are carried out by the Explorer Ethernet controller board, the trans-
ceiver and transceiver cable, and the Ethernet coaxial cable. The relationship
between these hardware components and the ISO/OSI link and physical
layers is shown in Figure 1-3. The sequence of events during data transmis-
sion flows as shown by the arrow pointing downward on the left side of the
diagram. The flow of events during data reception follows the path shown by
the arrow pointing upward on the right side of the diagram.

Figure 1-3

Ethernet Layers

data sent data received

header block header block

user layer | destination data destination data
source block source block

type type

vt ettt ettt

data data
encapsulation g encapsulation

data link
layer

link
management

data data
encoding encoding

transceiver cable

physical
layer

channel channel
access access

—» Ethernet coaxial cable —

— .

2288069

To understand the ways in which the lower levels of the ISO/OSI model
interact, it is best to consider their function during the transmission and
reception of data over a network. Transmission is a top-down process: the
higher-level protocol passes data to the next lower level, which then passes it
down to the next layer, and so on. Eventually, the data link layer receives the
data and hands it to the physical layer, which is responsible for the actual
electrical transmission of the data from one side of the session to the other.
Reception is the reverse of the transmission process. Since the data link layer
is the first (or last) layer in the chain of successive encapsulations and
manipulations of data, you should first understand how this layer functions
and how it is related to the physical layer.

Networking Reference

Building the
Ethernet Packet

Networking Concepts

Assume that a user or user process at HELOISE, on the network illustrated in
Figure 1-1, finds it necessary to send data to ABBEY. To transmit this data,
the user at HELOISE sends two objects to the Ethernet controller board: a
header block and a data block.

The header block contains three pieces of information that allow the receiv-
ing host to decode, interpret, and respond to the transmitting host’s data:

B Destination Address — This indicates the host, in this case ABBEY
(whose Ethernet address is #EFEFEFEF), to which the data or message
is to be transmitted.

M Source Address — This is optionally passed by the user to the Ethernet
controller board, depending upon the particular higher-level software
being used. The Ethernet controller board knows its own Ethernet
address, which is stored in ROM. HELOISE includes the Ethernet
number #xABABABAB.

B Type — This is a number that indicates to the receiving host (ABBEY)
the type of data being transmitted. The user’s software uses this number
to determine which higher-level protocol to follow to interpret the data.

The data block contains the actual data or message the user wishes to
transmit to the receiving host.

1.4.1 Before HELOISE can transmit these two blocks of information over
the Ethernet network illustrated in Figure 1-1, they must first be put into an
appropriate format. When HELOISE sends the header block and data block
to the Ethernet controller board for transmission, the controller board first
encapsulates them in a packet, the step indicated in the transmission
procedure diagrammed in Figure 1-3. The data encapsulation process
constructs the packet, performs a cyclic redundancy calculation, and appends
the result of this calculation to the frame check field of the packet.

Figure 1-4 shows the format of an Ethernet packet. A packet must be at least
72 bytes long and at most 1526 bytes long, where a byte is eight bits. All of
the fields in a packet are fixed-length except for the data field, which can
vary in length from 46 to 1500 bytes. The data field contains the user’s
original data.

Networking Reference

1-7

Networking Concepts,

Figure 1-4 Ethernet Packet Format

destination source type FCS
preamble address address field data field (CRC)
64 bits 6 bytes 6 bytes 2 bytes 46 to 1500 bytes 4 bytes
[t CRC calculated on these fields —————————»»
- packet Y
2288070

Destination Address

Source Address

1.4.1.1 The first item appended to the packet by the encapsulation process
is the 48-bit station address of the host to which the packet is being transmit-
ted. The Ethernet controller board gets this number from the block of header
data.

At higher layers in the ISO/OSI model, the destination address is usually
invisible to the user. It is either hidden behind the host name(s) or behind
the names of servers that carry out functions the receiving host makes avail-
able to other Explorer systems on the network. In FLEET, the sample site in
Figure 1-1, the host name HELOISE is associated with the Ethernet address
#xABABABAB, and ABBEY is associated with the Ethernet address
#XEFEFEFEF. The Ethernet address of ASTROLABE is #xCBCBCBCB.
ASTROLABE provides printing services to the network. A request to print a
document by any Explorer system in this network (including ASTROLABE)
might result in an automatic passing of ASTROLABE’s Ethernet address as
the destination address to the Ethernet controller board, depending on the
higher-level software in use, since all machines on the network could know
the address of the machine providing the printer service.

The Address Resolution Protocol (ARP) passes the Ethernet address of the
target host, along with the type flag identifying the network-layer protocol
currently employed, to the Ethernet controller board. The operation of this
protocol is discussed in detail in paragraph 1.6.2, Translating Higher-Level
Protocol Addresses.

HELOISE might find it necessary to send a broadcast message to both
ASTROLABE and ABBEY. The need to broadcast a message to more than
one host simultaneously arises often in certain mail systems in which a user at
one host wishes to send a bulletin or announcement to everyone else at the
site. Multicast addresses are also important in the functioning of ARP
discussed later and in the distribution of general networking information
throughout a network by the Network Namespace server (discussed in
Section 4, Getting On the Network). Each Explorer system in a network may
have one or more multicast addresses. Multicast addresses usually correspond
to groups of logically related hosts in a network. Multicast addresses are not a
concern now, because they are essentially treated in the same manner as the
station destination and source addresses.

1.4.1.2 The source address is the address of the Explorer system that is
sending the data. It indicates the sender’s address to the receiver. The user
does not have to pass this number to the Ethernet controller; this address is
stored in ROM on each host’s Ethernet controller board. The controller gets
this address from ROM and appends it to the packet.

1-8

Networking Reference

Type Field

Data Field

Frame Check
Sequence Field

Link Management

CSMA/CD

Traffic
Detection

Networking Concepts

1.4.1.3 The type field is a two-byte field that identifies the way the receiving
host is to interpret incoming data. This number must be passed by the sender,
along with the destination address and the data, to the Ethernet Controller
board. Often the type field is used to indicate the higher-level protocol used
in the data field. The data field for Internet Protocol (IP) is always #x0800,
that of Chaosnet is #x0804, and that of ARP is always #x0806. Thus, the type
field is a link to the next higher-level protocol (OSI level 3) above the Ether-
net data link level. In most higher-level protocols, the type is specified auto-
matically and is completely invisible to the user.

1.4.1.4 After the information from the user’s block of header information
has been included in the packet, the user’s data block can be added. Often,
higher-level software protocols break the user’s data into a group of data
blocks to be passed to the Ethernet controller board. Each block is then
passed to the receiving station in a series of packets.

1.4.1.5 At this point, the destination address, source address, and type of
packet have been appended to the user’s data. The Ethernet controller board
now does a cyclic redundancy calculation on the destination address, source
address type, and data fields as one data unit. The result of this calculation is
appended to the end of the packet. The receiving Explorer system uses this
frame check sequence for error detection and correction. The packet is now
passed on to the sender’s Ethernet link management level.

1.4.2 The link management sublayer monitors the activity of the network to
determine when to send the packet. An Ethernet network is a distributed
network that has no central master; all hosts on the network are equal. All of
these hosts need time on the Ethernet, so there must be a mechanism for
allocating access time.

1.4.2.1 The Ethernet network uses a probabilistic access scheme called
carrier sense multiple-access with collision detection (CSMA/CD). At any
given time, there is a probability that the Ethernet is free. This probability is a
function of variables, such as overall network length, packet length, and level
of overall bus activity.

1.4.2.2 A host must listen before it transmits data. If the sending host
detects activity on the, network, it defers to the passing traffic and waits a
brief time before attempting to retransmit the packet. After at least 9.6
microseconds (the minimum time allowed between packet transmissions), the
host can attempt to transmit again. When it cannot detect a signal on the
network, the packet is passed to the data-encoding level of the Ethernet
controller.

Networking Reference

1-9

Networking Concepts

Data Encoding

Preamble

Manchester Encoding

1.4.3 If no collision is detected, the data link mechanisms of the Ethernet
controller board send the packet to be encoded. Encoding is a function of the
ISO/OSI physical layer and involves two processes:

m Construction and transmission of the packet preamble

m Conversion of the binary-encoded packet into a Manchester phase-
encoded format

1.4.3.1 The preamble is a 62-bit sequence of 10s, terminated by the 2-bit
sequence 11. The first 62 bits allow all of the Explorer systems on the net-
work to set their timing for reception of the transmitted packet. The last 2
bits mark the end of the preamble and the beginning of the data.

1.4.3.2 To transmit a binary-encoded packet, the data must first be
translated into a phase-encoded form. The Manchester-encoding format used
by Ethernet is illustrated in Figure 1-5. In this type of encoding, a transition
occurs in the center of each bit cell. The first half of the bit cell contains the
complement of the value of the bit; the second half of the bit cell contains the
true value of the bit. In Figure 1-5, the first half of the first (leftmost) bit cell
has a negative, or 0, voltage level. In the middle of the bit cell, the voltage
changes to a positive, or 1, level, which represents the true value of the bit
cell. A 0 bit cell (the rightmost bit cell in Figure 1-5) begins with a positive,
or 1, component that shifts to a negative, or 0, component halfway through
the bit cell. Each bit cell is 100 nanoseconds(ns) long, resulting in a burst
data rate of 10 million bits per second. For various reasons to be discussed
shortly, the actual data transfer rate is slower than this theoretically attainable
rate.

Figure 1-5 Manchester-Encoded Data Format

> bit lcell o bitlcell |t bit cell »
' 0
+V
line
signal
Y
lat——— 100 ns ——Plf——— 100 ns ——P»lt—— 100 ns —P»
2288071

1-10

Networking Reference

Packet Transmission

Collisions

Collision
Fragments

Jams

Data Reception

Decoding

Link Level

Networking Concepts

1.4.4 After the preamble has been constructed and sent, the Manchester-
encoded packet is sent over the transceiver cable to the transceiver, which
handles channel access. This step involves the actual generation of electrical
signals as well as the detection of collisions on the Ethernet.

1.4.4.1 Because of propagation delays and probability, two or more stations
can start to transmit at the same time on an apparently free bus. The result is
a collision, in which data from both stations appears on the bus. Receiving
stations have no way to distinguish between the bit streams, so the data from
the transmitting stations is corrupted.

1.4.4.2 A collision fragment is the partially transmitted packet left as a
result of a halt in transmission after a collision is detected. Collision fragments
are always short because they occur only when two (or more) transmitters try
to access a previously free Ethernet. Receiving stations can detect and reject
collision fragments because they are shorter than the minimum allowable
Ethernet packet size of 64 bytes.

1.4.4.3 The transmitting transceiver detects collisions by listening to the
network. The transceiver assumes that transmissions on the line that are not
in exact phase with the station transmit clock are from other stations. If the
transceiver detects a collision on transmission, it sends a signal back to link
management, which then sends a 4-byte to 6-byte sequence called a jam.
This sequence notifies all hosts attempting to send data that a collision has
occurred. Each transmitting host then waits a random length of time before
again attempting to transmit.

1.4.5 1If no collision is detected, the preamble and packet are injected onto
the Ethernet cable. Each host’s transceiver (the channel access layer) senses
activity on the network the moment the preamble is sent so that all of the
hosts on the network begin to listen. All listening transceivers now perform
three operations:

B Turn on a carrier sense signal for use by the data link layer
M Synchronize with the incoming bit stream of 10s in the preamble

B Send the incoming bits up to the next level (on the Ethernet controller
board) to be decoded

1.4.6 The decoder (on the Ethernet controller board) now carries out the
following three operations:

B Translates the Manchester-encoded data back into binary data
m Discards the preamble

H Sends the data to the data link layer

1.4.7 The link management level of the Ethernet controller board of each
host on the network has already been notified that a signal is present on the
Ethernet. When the signal sense detector goes off in a given host (that is,
there is no more activity on the network), the link manager assumes that the
packet is complete and sends the incoming data to the data decapsulator.

Networking Reference

1-11

Networking Concepts

Decapsulation

1.4.8 The decapsulator then does a cyclic redundancy calculation on the
packet; it compares the results of this ¢heck with the checksum it finds in the
frame check sequence field of the received packet. If the two numbers do not
match, the packet is rejected.

If the packet passes the cyclic redundancy test, the decapsulator examines
the destination address field. If it matches the Ethernet address of the
receiving host (or is a broadcast address), then the data is passed up to the
user. If the destination address does not match the host’s destination address,
then the data is rejected, and the packet is not passed to the user.

Note that all of the hosts on the network carry out the processes up to the
point of examination of the destination address. Only the host having a
matching Ethernet address passes the data up to the user. All hosts sharing a
particular multicast address will accept the packet. The transmission of data
at the lowest levels of the ISO/OSI model has now been completed. The
original data or message transmitted by the user of the transmitting Explorer
system has been sent to the user or process in the receiving Explorer system.
Note that all of the necessary functions at this level have been carried out by
the Explorer Ethernet controller boards in both communicating hosts, the
transceiver cables, and the transceivers of the transmitting and receiving
Explorer workstations and the Ethernet coaxial cable.

Higher-Level
Protocols

Network-Layer
Protocols

1.5 While the physical and link layers of the ISO/OSI model are imple-
mented by the Explorer Ethernet hardware, the higher-level protocols of the
ISO/OSI model are implemented as Explorer Lisp functions and programs.
As noted previously, a frame, or packet, at each level in the ISO/OSI model
is embedded within the data field of the previous lower level.

For instance, in the Explorer implementation, a Transmission Control
Protocol (TCP) segment at the transport layer is embedded in the data field
of an IP datagram at the network layer, which is encapsulated in turn within
the data field of an Ethernet packet for transmission. Some protocol imple-
mentations can be quite clearly associated with one ISO/OSI layer. IP, at the
network layer, is one such protocol. Protocols such as Chaosnet (which has
functions at the network, transport, and session layers) and TCP (at the
transport/session layer) span ISO/OSI layers. In such cases, it is not always
possible to determine the boundaries between layers. The present discussion
is restricted to Chaosnet. For further discussion of IP and other protocols, see
the Explorer TCP/IP User’s Guide.

1.5.1 Explorer networks use the Chaosnet and IP network-layer protocols,
as well as some others. Network-layer protocols have the following
responsibilities:

B The establishment of connections between hosts

m The transfer of data from one host to another

H The termination of connections at the end of a communication session
Network-layer protocols control the flow of information through multi-LAN
systems. They are critical in determining routing through networks that utilize

bridges, gateways, and dial-up applications (bridges and gateways are
discussed later in this section).

1-12

Networking Reference

Transport-Layer
Protocols

Session-Layer
Protocols

Presentation-Layer
Protocols

Networking Concepts

1.5.2 The transport layer of the ISO/OSI model assures that data is trans-
ferred from one party to the other with no losses or duplications. It also
handles issues such as cost effectiveness and reliability of data transmission.
This layer is defined to fulfill the following functions:

B Segmentation and blocking — Breaks long data segments into segments
that can fit into the data field of the packet.

M Sequencing — Assures that data is reassembled in the correct order at the
time of reception.

M Error detection and monitoring — Assures that data is received correctly.

The Chaosnet functions that are used for reading and writing to Chaosnet
streams belong to the transport layer of the ISO/OSI model. These functions
allow user processes to write indefinitely large amounts of data to a stream
that is read by a foreign process at the other end of the connection. The
details of breaking the data into packet-sized chunks for encapsulation into
packets is invisible to the user. For details on the use of Chaosnet streams,
see Section 5, Chaosnet Applications Programming and Networking.

1.5.3 The session layer has also not been completely specified. Its purpose
is generally considered to fulfill the following functions:

M Quarantine service — Allows the sender to request that data transmission
be delayed until an acceptable quantity of data has accumulated.

B Interaction management — Determines whether the interaction between
hosts is one-way, two-way simultaneous, or two-way alternate.

B Expedited and normal data exchange — Provides for methods of
establishing data traffic priorities.

B Error recovery and exception reporting — Assures that certain trans-
actions are never aborted halfway through the transmission.

1.5.4 Presentation-layer protocols provide the means to establish, manage,
and terminate a connection between communicating processes. Among the
functions fulfilled are the following:

B Code and character set translation

W Formatting and data compression

B Syntax resolution

B Data encryption

The presentation layer is principally responsible for assuring that all parties
interpret data in the same way.

Networking Reference

1-13

Networking Concepts

Application-Layer

Protocols

1.5.5 Application-layer protocols have also been only partially specified.
This layer provides the sole means for a user or the user’s application to
access the lower layers of the ISO/OSI model. Its purpose is generally
considered to fulfill the following functions:

B Identification of intended communications partners

B Determination of the current availability of the intended communications
partners

B Establishment of the authority to communicate
B Agreement on responsibility for error recovery
B Agreement on the procedures to be used for the control of data integrity

The protocols at all layers below the application layer are completely
transparent to the user.

Examples of application-layer utilities in the Explorer environment include
Mail, VT100 emulation, the TIME protocol, and Converse, as well as various
file transfer services.

Data Transfer
in Higher-Level
Protocols

Building the
Chaosnet Packet

1.6 The Chaosnet protocol can serve as an example of a network-layer
protocol. For specific information on TCP/IP and DECnet, refer to the
Explorer TCP/IP User’s Guide and the Explorer DECnet User’s Guide.

1.6.1 Like lower-level protocols, Chaosnet, at the network (and higher)
layers, bundles data into packets for transmission. A Chaosnet packet
includes header information and data, as well as a checksum for the verifica-
tion of packet transmission reliability. Since Chaosnet is (basically) a
network-layer protocol, it relies upon the protocol at the next lower layer, the
data link layer, for actual transmission of the packet over the network. Ether-
net is the next lower level. When Chaosnet presents a packet, Ethernet
encloses it within an Ethernet packet for transmission. A Chaosnet packet is
always entirely embedded within the data field of the Ethernet packet within
which it is transmitted. Figure 1-6 shows the Chaosnet packet format and the
way it is related to the Ethernet packet that carries it.

1-14

Networking Reference

20U 2y SulyLOMIIN

ST-1

Figure 1-6 Chaosnet Packet

2288072

Chaosnet packet
destination | destination | source] source| packet
opcode | count S dress index address | index | number. acknowledgment
data field
16 bits | 16 bits| 16 bits 16 bits 2 bytes |2 bytes| 2 bytes 2 bytes 0 to 488 bytes
——
—_—
—_—
—
—
—
—
destination source type
preamble address address fidla (glgg)
data field
64 bits 6 bytes 6 bytes 2 bytes 46 to 1500 bytes 4 bytes
Ethernet packet

) CRC calculated on these fields >

- packet -

s1dasuo) BuryiompaN

Networking Concepts

Packet Headers

Chaosnet Data

Translating
Higher-Level
Protocol Addresses

1.6.1.1 At every level of the ISO/OSI model (except the physical layer), a
frame, or packet, consists of a header and a data field. Header information is
used to establish peer-to-peer communications sessions. The header may also
contain information used to activate services and functions provided by lower
levels. Remember, at the data link layer, an Ethernet packet header contains
the destination address, source address, and type field number. At the
network level, a Chaosnet packet has a header that provides eight types of
information necessary for the routing of packets through the network.

W Operation code (opcode) — A 16-bit number that tells how to interpret
the packet. For example, opcode #x01 indicates that the packet is a
request for connection.

m Count — A 16-bit number indicating not only the number of times a
message has been forwarded across bridges in the network but also the
length of the data field of the packet.

m Destination subnetwork address — A 16-bit number indicating the net-
work on which the destination host is found.

m Destination host address — A 16-bit number giving the address of the
host to whom the data is directed.

m Source subnet address — A 16-bit number indicating the subnetwork on
which the host sending the data is found.

B Source host address — A 16-bit number identifying the host that is
sending the data.

B Packet number — A 16-bit number indicating the order in which a
controlled packet has been transmitted. Controlled packets undergo
various error-checking and error-correcting procedures.

1.6.1.2 Tt is possible for the data field of a Chaosnet datagram to be empty
or to be very small. This is always the case for certain types of packets, as
indicated by the packet’s opcode. An EOF packet, for example, always has
an empty data field. Such packets are only 16 bytes long. This runt packet is
too small: the Ethernet data field must be at least 46 bytes long. The lowest
level Chaosnet software automatically pads the data field of a runt packet so
that it is at least 46 bytes in length. This padded data (which is found to be in
excess of the length of the data field provided by the count field) is stripped
off the Chaosnet packet after the Ethernet controller board passes the packet
to the receiver’s network level process.

1.6.2 When a host passes a Chaosnet or other higher-level packet to Ether-
net for encapsulation and transmission, there is no information directly
available by which Ethernet’s data link layer can determine either the type
field of the Ethernet packet, which tells the destination host which higher
level protocol is being used, or the Ethernet address of the destination host.

1-16

Networking Reference

Address
Resolution Table

Address
Resolution Packets

Networking Concepts

ARP is used to translate higher-level protocol addresses (such as 16-bit
Chaosnet addresses or 32-bit Internet addresses) into 48-bit Ethernet hard-
ware addresses. ARP also determines the Ethernet type field of the packet,
which indicates to the receiving host how to interpret the packet. ARP also
maintains and updates a table of known high-level addresses and their
corresponding Ethernet addresses.

ARP works roughly as follows. A user at CERBERUS boots the system. Sub-
sequently, a user process at CERBERUS, which has the Chaosnet address
#xFABA, builds an Ethernet packet that it wishes to transmit to a user
process at CHARON, which is at Chaosnet address #xFACA. As usual, the
packet’s opcode and count fields are filled in, as are the destination address
and index, the source address and index, and so on. This packet now passes
to the ARP.

1.6.2.1 Now, ARP must determine the Ethernet address of the host,
CHARON, which is to receive the message. ARP looks in its table of known
hosts for a Chaosnet address matching that specified in the packet’s destina-
tion address and index fields. Since the host has just booted, however, there
are no entries in the table. Every time an Explorer system is powered down or
rebooted, the entries in this table go away. Therefore, ARP must get the
Ethernet address of the target host by other means.

1.6.2.2 At this point, CHARON discards the Chaosnet packet passed to
ARP by the user process and creates an address resolution packet. This
packet has the following information in its data field:

B Hardware type — Always specified as Ethernet

W Ethernet type — The type of the higher-level protocol, in this case
Chaosnet

B Length of hardware address — The length in bytes of the hardware
address

B Length of protocol address — The length of the Chaosnet address (in this
case)

Address resolution opcode — Either *ar-request* or *ar-reply*
Hardware (Ethvernet address) of the sender — Self-explanatory
Protocol address of sender — The Chaosnet address of the sender

Hardware (Ethernet) address of target host — If known

Protocol address of the target host — The Chaosnet address of the target
host

There are two types of address resolution packets:

M Request — This type of address resolution packet is sent when there is not
an entry for the target host in the address resolution table.

H Reply — This type of address resolution packet is sent in response to a
request packet.

Networking Reference

1-17

Networking Concepts

Request Packets Since CHARON cannot find any reference to the Chaos-
net address of the target host CERBERUS, CHARON broadcasts a request
packet to every host on the network. A broadcast packet has the broadcast
address as the destination address of the Ethernet packet. Therefore, the
exact address of the destination address of the original packet is unnecessary.
Each item in the data field in the packet is specified as above, except for
CERBERUS’ Ethernet address. The address resolution opcode is now set to
ar-request.

Reply Packets When CERBERUS receives the broadcast request packet, it
decapsulates the packet and passes the data field of the Ethernet packet to
ARP. ARP first determines that CERBERUS has the same hardware type as
that specified in the request packet and that it knows the network-level
protocol being used (Chaosnet in this case). It then enters CHARON's
protocol type (Chaosnet), Chaosnet address, and corresponding Ethernet
address in CERBERUS’ address resolution table. If this information is already
on the table, it is overwritten by the new table entries.

Next, CERBERUS sees the address resolution opcode and notes that it is
dealing with a request packet. Now, it puts its own Ethernet address in the
sender’s Ethernet address field (in the data field of the packet), sets the
address resolution opcode of the packet to *ar-reply*, and sends the packet
directly back to CHARON. The packet is not broadcasted. Note that at this
point CERBERUS knows how to access CHARON, but CHARON still does
not know how to reach CERBERUS directly.

Now, CHARON receives the reply packet from CERBERUS. CHARON
enters CERBERUS’ protocol type (Chaosnet) and Chaosnet address and
their mapping to CERBERUS’ Ethernet address. CHARON notes that the
packet is an address resolution reply and throws it away. Since the original
Chaosnet packet still has not been transmitted, the higher-level protocol can
now attempt retransmission. The Chaosnet protocol now passes a copy of the
original Chaosnet packet to ARP. ARP then finds CERBERUS’ addressing
information on the address resolution table and passes the protocol type
(Chaosnet) and target Ethernet address to the data link level for encapsula-
tion and subsequent transmission.

From now on, CERBERUS and CHARON have all of the information about
each other that is necessary to transfer packets back and forth. The address
resolution table at each host on the network is built up incrementally as a host
attempts to transmit a Chaosnet packet to a remote host. Once address
resolution information about a host is available, the local host does not have
to broadcast a request packet on subsequent attempts to reach that host.

Advantages of ARP This incremental method of address resolution has
several advantages:

B A host needs to keep information only about those hosts with which it
communicates frequently.

M An address resolution packet can be reused for sending a reply back to
the originating host.

m Maintaining a (relatively) small database of protocol-type/address to
Ethernet address mappings saves the overhead that would result from a
large number of hosts constantly broadcasting request packets over the
network.

1-18

Networking Reference

Networking Concepts

Servers

Server Function

Client Function

1.7 At the network l‘ayer and higher, processes on different hosts pass data
back and forth between themselves. On the Explorer system, these processes
consists of two sorts of Lisp functions:

M Server Functions

B Client Functions

1.7.1 A server function is a Lisp function that provides a service to other
hosts on the network.

1.7.2 The client function invokes a server on a remote host and interprets
the data received from the server.

Network
Configurations

Ethernet Segments

1.8 The preceding discussion has focused on the simple network of three
Explorer systems shown in Figure 1-1. Often, however, the network is far
more complicated, involving multiple Ethernet cables with connections of
various types to non-Explorer computer systems. A simple example of such
an extended network is shown in Figure 1-7.

1.8.1 The simplest Ethernet networks are single-segment networks such as
the three Explorer networks shown in Figure 1-1. An Ethernet segment is
usually a single length of Ethernet coaxial cable. A segment can consist of
several shorter cables linked with coaxial cable connectors and barrel adapt-
ers or transceiver connectors. In any case, the Ethernet cable segment cannot
exceed 500 meters in length. This restriction theoretically allows as many as
100 transceivers to be installed on a single segment.

Multiport boxes allow additional Explorer workstations to be attached to a
single transceiver. In Figure 1-7, TEOTL, OMETOCHTLI, and TLALOC
are connected to the Ethernet via a multiport box.

NOTE: Ethernet networks can branch, but they cannot form loops. This is in
direct contrast to token-passing networks, which must form loops.

Several single-segment networks such as that in Figure 1-1 can be connected
together to form a single large network. This is done in several different ways,
depending upon the distance between hosts, the architectural layout of the
site, and so on.

When two Ethernet segments are located within 100 meters of each other,
they can be connected by a local repeater. The repeater attaches to the
Ethernet coaxial cable with a transceiver and transceiver cable. In
Figure 1-7, a repeater connects two segments in Tsuris Hall. Note that both
of these segments are on the same network, #xFA.

Networking Reference

1-19

Networking Concepts

Connecting
Ethernet
Networks

Bridges

Gateways

Packet Routing

When longer distances, such as may occur between buildings at a site, are
required between Ethernet segments, two half-repeaters must be used. Each
half-repeater is connected to its Ethernet cable by a transceiver and trans-
ceiver cable. The connection between the two half-repeaters is usually a
duplex fiber-optic cable. This arrangement allows two subnets to be as far as
1000 meters apart. Two half-repeaters connect the #xFA subnetwork
segments in Tsuris Hall with the #xFA segment in Toad Hall. Note that the
#xFA segment in Toad Hall is part of the same network as the #xFA
segments in Tsuris Hall, even though they are in different buildings, possibly
separated by a long distance.

1.8.2 It is sometimes necessary or desirable to interconnect two or more
Ethernet networks. This is normally done in one of two ways: an Explorer
system or another computer on one network serves either as a bridge or as a
gateway to the other network.

1.8.2.1 A bridge is any host that is connected to two subnetworks, both of
which operate under the same set of protocols. The purpose of the bridge is
to forward packets from a host on one subnetwork to a host on another
subnetwork. The bridge connects to its two subnetworks via two Ethernet
controller boards and transceiver cables. In Figure 1-7, FRIAR-LARRY is a
bridge between network #xFA and network #xBE; ARION is the bridge
between network #xBE and #xCB. Other bridges connect various other
networks in Figure 1-7.

1.8.2.2 A gateway interconnects two networks that obey different protocols.
It must understand and translate the information passing through it. Since a
gateway may interconnect networks operating at different speeds, gateways
must also handle data flow and error control. In Figure 1-7, CERBERUS on
Ethernet #xFA serves as a gateway to the alien network #xFE, which oper-
ates under different hardware and software protocols. CERBERUS serves as a
translator between these two subnetworks.

1.8.3 Routing determines the specific way that a packet is delivered from
one subnetwork to -another subnetwork as specified by the packet’s destina-
tion address. In the simplest case, routing is trivial. One host sends a packet
to another host on the same network. The destination address is the same as
the source address.

For instance, in Figure 1-7, PERSEPHONE and HADES are both on sub-
network #xFA. However, it is more complicated for PERSEPHONE on
network #xFA to send a packet to QUINE, on network #xAB. The packet
must pass through at least one bridge (CHARON, between network #xFA
and network #xAB) and at most three bridges (FRIAR-LARRY, between
#xFA and #xBE; ARION, between #xBE and #xCB; and FATOU, between
#xCB' and #xAB). Between PERSEPHONE and KOCH, there are also two
possible routes, both of which require passing packets through two bridges.
The network-layer and transport-layer protocols of the ISO/OSI model deter-
mine which route to take in complicated situations such as these. Chaosnet
routing is similar in many respects to that implemented in the TCP/IP proto-
cols and exemplifies many of the principles and problems involved.

1-20

Networking Reference

Networking Concepts

Figure 1-7 A More Complicated Network

Repeater #x

T

Tsuris
Hall

#xFE

Dante Beatrice

-

Half
Repeater

=]

Multiport Box

Ometochtli

Tlaloc

1™

Friar-Larry

7

Virgil

2288073

Teotl

Vesuvius

T
Cantor Koch Fatou
Bridge
T_"L_T #‘}AB
Frege

Russell

Networking Reference

1-21

Networking Concepts

Host Routing
Table

RUT Packet

Packet Transmission

1.8.3.1 Each host in a network has a routing table. This table provides the
following information:

B The subnetwork on which each host resides

B The type of connection between a host and a subnetwork (direct or
bridge)

B The Chaosnet address of each host on the same network
B The cost of sending a packet through a given route

1.8.3.2 Bridges send routing (RUT) packets to each subnet to which they
are directly connected at 15-second intervals. The route packet contains the
address of each subnetwork to which it is connected, either directly or indi-
rectly, and the cost of sending data to that subnetwork. Each host on the
subnetwork uses the RUT packet to update the information in its routing
table.

1.8.3.3 Now, assume that a user at PERSEPHONE wishes to transmit a
packet to a user or application at QUINE. PERSEPHONE first looks on her
routing table to find the best route by which to pass the data through the
network. PERSEPHONE finds two routes:

B Route A — PERSEPHONE via network #xFA to bridge CHARON,
CHARON via network #xAB to QUINE.

B Route B — PERSEPHONE via network #xFA to bridge FRIAR-LARRY,
FRIAR-LARRY via network #xBE to bridge ARION,
ARION via network #xCB to bridge FATOU,
FATOU via network #xAB to QUINE.

Cost PERSEPHONE chooses the route which costs least. The cost of a
route is generally determined by adding the cost of each network gateway
through which the packet must pass. This results in fewer hops across bridges
and eliminates loops. PERSEPHONE chooses Route A. The cost of a given
subnetwork is increased by one unit every four seconds, until the cost reaches
a maximum value. This maximum cost is retained until the next RUT packet
forces it to be reset to a lower value.

Transmission Once PERSEPHONE has found an efficient route to QUINE,
she sends the packet with the Ethernet (hardware) destination address of the
first bridge through which the message must pass. In this case, that bridge is
CHARON. CHARON accepts the message, looks at the software packet
header information, and sees that the final destination address is #xAB. It
now retransmits the entire packet that was sent from PERSEPHONE, header
and all. CHARON uses its own Ethernet address as the source address and
QUINE’s Ethernet address as the destination address. Thus, the software
source and destination addresses are used to indicate the final destination of
the data to the various bridges. Each bridge in turn decides the best way to
forward the packet through the network.

1-22

Networking Reference

NETWORKING PROTOCOLS

Introduction

2.1 This section introduces the networking protocols standardly available, or
as options on the Explorer system. These include the following:

B Chaosnet
M Transmission Control Protocol/Internet Protocol (TCP/IP)

N DECnet

Chaosnet

2.2 Chaosnet is a family of protocols that provide the basic networking
services for Explorer systems. The main purpose of Chaosnet is to allow high
speed communication between processes on different machines, and to
ensure that transmission error do not go undetected.

Chaosnet actually spans the network and transport layers of the ISO/OSI
network reference model. In so doing, it provides simple datagram services as
well as transmission services that provide extensive error-checking and
resolution.

For information about how to program applications in the Chaosnet
environment, see Section 5, Chaosnet Applications Programming and
Networking, of this manual.

For specifications on Chaosnet, see David A. Moon’s Chaosnet, A.1. Memo
No. 628, M.I.T. Artificial Intelligence Laboratory, June 1981.

TCP/IP

2.3 TCP/IP is a family of protocols that provide various services in the
networking environment.

TCP resides in the fourth ISO/OSI layer (the transport layer) and provides
reliable transmission service between user processes—not just between
machines.

IP provides the datagram service residing in the ISO/OSI network layer of the
implementation. Note that IP is used not only for local area networking, but
also as a means of connecting Explorer hosts to gateways that connect, in
turn, to wide area networks such as ARPANET. Explorer systems cannot be
connected directly to wide area networks; they must attach to a gateway.

The User Datagram Protocol (UDP) is another protocol provided in the TCP/
IP family. UDP provides quick and easy data transfers. In the transport layer,
UDP provides a datagram service from one process to another with minimal
connection procedures. It is transaction-oriented and appropriate for request-
response interactions rather than for streams of data.

Networking Reference

Networking Protocols

Two application level programs are included with the TCP/IP software that
interface to TCP. These are Telnet (including the VT100™ emulator) and
the File Transfer Protocol (FTP). The Trivial File Transfer Protocol (TFTP)
is also available for interfacing to UDP.

On an Explorer system, you can interface to TCP/IP in two different ways.
The first is through explicit menus. Menus are used both by FTP and TFTP
for transferring files between your local host and a remote host that also has a
TCP/IP implementation. Most implementations of TCP/IP allow this first
method of interfacing. However, Explorer TCP/IP provides the additional
capability of interfacing directly with the Explorer file system, via Dired and
other file system utilities.

For more information on TCP/IP, see the Explorer TCP/IP User’s Guide.

DECnet

2.4 DECnet is a set of programs and protocols for use on Digital Equipment
Corporation’s (DEC™) computer systems. DECnet’s architecture is called
Digital Network Architecture (DNA).

The intention of DECnet is to provide network communications between
DEC equipment. There are many isolated DECnets in the world. DECnet
also differs from ARPANET in that there is no distinction between hosts and
IMPs. A DECnet is just a collection of machines (nodes) some of which may
run user programs, some of this may do packet switching, and some of which
may do both. The functions performed by a given machine may even change
with time.

DECnet has five layers:

W Application — A mixture of the ISO/OSI presentation and application
layers

W Network services — Corresponds to the ISO/OSI transport layer
B Transport — Corresponds to the ISO/OSI network layer

B Data link control — Corresponds to the ISO/OSI data link layer
WM Physical — Corresponds to the ISO/OSI physical layer
DECnet’s physical layer can handle most kinds of lines available.

For more information on DECnet, see the Explorer DECnet User’s Guide.

VT100 is a trademark of Digital Equipment Corporation.
DEC is a trademark of Digital Equipment Corporation.

Networking Reference

NETWORK APPLICATIONS

Introduction 3.1 This section describes several of the main network applications available
on the Explorer system.

M File Servers

N Telnet

m VT100 emulator

m Converse

H Name

B Time

m Eval-Serving

W Finger

B Remote disk server and band transfers

B Sending and printing notifications

File Servers 3.2 Files on remote hosts are accessed using file servers over a network.
Normally, connections to servers are established automatically when you try
to use them, but there are a few ways you can interact with them specifically.

When characters are written to a file server computer that normally uses the
ASCII character set to store text, Explorer characters are mapped into an
encoding that is reasonably close to an ASCII transliteration of the text.
When a file is written, the characters are converted into this encoding; the
inverse transformation is performed when a file is read back. No information
is lost. Note that the length of a file, in characters, is not the same measured
in original Explorer characters as it is measured in the encoded ASCII
characters. In the currently implemented ASCII file servers, the following
encoding is used (see Table 3-1). All printing characters and any characters
not mentioned explicitly here are represented as themselves.

Networking Reference 3-1

Network Applications

Table 3-1 ASCII File Server Encoding
Explorer Code ASCII Transliteration
#0010 (Lambda) This group of code is preceded by a #0177; that
#0011 (Gamma) is, #0177 is used as a quoting character.
#0012 (Delta)
#0014 (Plus-minus)
#0015 (Circle-plus)
#0177 (Integral)
#0200-207 inclusive
#0213 (Delete)
#0216 and above
#0210 (Backspace) Converted to #0010 (backspace)
#0211 (Tab) Converted to #0011 (horizontal tab)
#0212 (Line) Converted to #0012 (line feed)
#0214 (Page) Converted to #0014 (form feed)
#0215 (Tab) Converted to #0015 (carriage return) followed

by #0012 (line feed)

#0377 Ignored completely — cannot be stored in files
When a file server is first created for you on a particular non-Explorer host,
you must tell the server how to log in on that host. This procedure involves
specifying a user name and, if required by that file server, a password. The
Explorer system prompts you for these on the terminal when they are
needed.
Logging in on a non-Explorer file server is not the same as logging in on an
Explorer. The latter identifies you as a user in general and involves specifying
one host, your login host. (For more information about logging in, see the
documentation for that host’s system.) The former identifies you to a particu-
lar file server host and must be performed for each host on which you access
files. However, logging in on the Explorer system does specify the user name
for your login host, and logs in on a file server there.
The Explorer system uses your user name as a first guess for your password
(this takes no extra time). If that does not work, you are asked to type a
password, or else a user name and a password, on the keyboard. You do not
have to give the same user name with which you logged in, because you may
have or use different user names on different machines.
Once a password is recorded for one host, the system uses that password as
the guess if you connect to a file server on another host.

3-2 Networking Reference

Chaosnet File Server

Network Applications

3.2.1 The following variables are associated with the Chaosnet implementa-

Variables tion of a file server.

fs:user-unames Variable
This variable represents an association list that matches host names with the
user names that you have specified on these hosts. Each element is the cons
of a host object and the user name, expressed as a string.

fs:user-host-password-alist Variable
Once you have specified a password for a given user name and host, that
password is remembered for the duration of the session in this variable. The
value is a list of elements, each of the following form:
((user-name hostname) password)
All three elements are strings.
The remembered passwords are used if more than one file server is needed
on the same host, or if the connection is broken and a new file server needs
to be created. If you do not want your password known, turn off the record-
ing by setting the following variable.

fs:record-passwords-flag Variable
If this variable is non-nil, passwords are recorded in the password alist when
you type them in.
You should set fs:user-host-password-alist at the front of your initialization
file and also set fs:record-passwords-flag to nil, because it already recorded
your password when you logged in.

fs:host-unit-lifetime Variable

Chaosnet File Server

If you do not use a file server for an extended period of time, it is killed in
order to save resources on the server host.

The fs:host-unit-lifetime variable indicates the length of time after which an
idle file server connection should be closed (expressed in 60ths of a second.
The default is 20 minutes.

3.2.2 Some hosts have a caste system in which all users are not equal. It is

Functions sometimes necessary to enable your privileges in order to exercise them. This
is done with the following functions.
fs:enable-capabilities host &rest capabilities Function

The fs:enable-capabilities function enables the named capabilities on file
servers for the specified host. The capabilities argument is a series of strings
whose meanings depend on the particular file system that is available on host.
If capabilities is nil, a default list of capabilities is enabled; the default is also
dependent on the operating system type.

Networking Reference

3-3

Network Applications

fs:disable-capabilities host &rest capabilities Function

The fs:disable-capabilities function disables the named capabilities on file
servers for the specified host. The capabilities argument is a series of strings
whose meanings depend on the particular file system that is available on host.
If capabilities is nil, the default list of capabilities is disabled; the default is
also dependent on the operating system type.

Chaosnet File Server 3.2.3 The following conditions are signaled when there are errors in

Conditions communication with file servers.

fs:file-request-failure (fs:file-error) Condition
This condition name categorizes errors that prevent the file system from
processing the request made by a program.

The following condition names are always built on the more general classifica-
tion of fs:file-request-failure, fs:file-error, and error.

fs:data-error ' Condition

This condition signifies inconsistent data found in the file system, indicating a
failure in the file system software or hardware.

fs:host-not-available Condition

This condition signifies that the file server host is up, but is refusing connec-
tions for file servers.

fs:network-lossage Condition

This condition signifies certain problems in the use of the Chaosnet by a file
server, such as a failure to open a data connection when it is expected.

fs:not-enough-resources Condition

This condition signifies a shortage of resources needed to consider processing
a request, as opposed to resources used up by the request itself. This shortage
may include running out of network connections or job slots on the file server
host. It does not include running out of space in a directory or running out of
disk space, because these are resources whose requirements come from
processing the request.

fs:unknown-operation Condition

This condition signifies that the particular file system fails to implement a
standardly defined operation, such as expunging or undeleting on a host file
system that does not support these capabilities.

3-4

Networking Reference

Network Applications

Telnet

3.3 The Telnet window allows you to use the Explorer screen as a terminal
to another host. When you are in a Telnet window, characters typed on the
keyboard are passed to the remote host’s Telnet server.

You can enter Telnet in any of the following ways:

B Press SYSTEM T.

M Type (telnet) in a Lisp Listener.

M Click on the Telnet item in the main System menu.

The following describes the telnet function.

telnet &optional path mode Function

This function makes a Telnet connection to a host specified by path, which
can be either the name of a valid host or nil.

For those sites that have hosts serving as gateways (bridges) between
Chaosnet and Arpanet subnetworks, path can also be a string that contains
information about how to get to a valid host. The following are example
formats:

gateway-name ESCAPE internet-host-name
internet-host-name | socket-number
gateway-name ESCAPE internet-host-name / socket-number

In the previous examples, ESCAPE means to press the ESCAPE key at that
point.

The default for mode is t. If mode is set to t and path is specified, a non-
connected Telnet window is selected and a connection to path is made. If
mode is set to t and path is nil, a connected Telnet window is selected, if
there is one available; if there is not one available, a connection is made to
the host named by the variable telnet:telnet-default-path.

When mode is nil, a Telnet window is selected. If mode is set to nil and path
is specified, a new Telnet window is selected and a connection to path is
attempted. If mode is set to nil and path is nil, a connection is made to the
host whose name is the current value of the variable telnet:telnet-default-
path.

Once you have established a Telnet connection, you can transmit key combi-
nations, or key sequences, for generating all 128 USASCII codes. For more
information, refer to J. Postel and J. Reynolds’ Telnet Protocol Specification,
RFC 854, USC/Information Sciences Institute, May 1983.

Networking Reference

3-5

Network Applications

Entering a
Telnet Window

3.3.1 When you enter a Telnet window, you are prompted for a name that
specifies the host to which you want to connect. If a connection is already
established when you enter the window, Telnet continues to use that connec-
tion and you are not prompted for a host name.

The Telnet General Help window shows the various ways of identifying this
host. One way is to specify the host as a string which the remote host
recognizes as its host name or alias.

You can also specify a string formed from the name of the host followed by a
slash and the connect name (for example, *HosT,/TELNET"). The connect
name is used by a server to recognize a service, and must be formed of
uppercase ASCII letters, numbers, and/or punctuation. After a connection is
established, the connect name is discarded. Telnet’'s connect name is
"TELNET".

For those sites that have hosts serving as gateways (bridges) between
Chaosnet and ARPANET subnetworks, the host name can be substituted by a
string that contains information about how to get to a valid host. The
following are example formats:

gateway-name ESCAPE internet-host-name

internet-host-name / socket-number

gateway-name ESCAPE internet-host-name | socket-number

Once you are connected to a host, most of the keys on the terminal keyboard
lose their normal function and their characters pass to the remote host.

Particular keys are affected as follows:

B The SYSTEM and TERM Kkeys retain their normal function (and are
therefore not forwarded).

B The ABORT, BREAK, and RESUME Kkeys retain their normal function
and they are not forwarded to the remote host.

B The CLEAR INPUT Key sends the Erase Line (EL) Telnet command to
the remote host.

B The STATUS key sends the Are You There (AYT) Telnet command to
the remote host.

m The NETWORK Kkey is the first key of a two-key sequence that sends a
Telnet command to the remote host.

® The END key exposes the previously selected window and leaves the
Telnet connection open.

Because Telnet is implemented with the Universal Command Loop (UCL),
Telnet command descriptions and online help are available from the HELP
key. '

3-6

Networking Reference

Network Applications

Telnet Commands 3.3.2 To enter a Telnet command, use a two-key sequence, where
NETWORK is the first key, followed by one of the keys listed in Table 3-2.

Table 3-2 Telnet Commands
Keystroke Description
A Send the Abort Output (AO) Telnet command to the

CLEAR INPUT

D

END

HELP

Q

STATUS

remote host.

Send the Erase Line (EL) Telnet command to the
remote host.

Disconnect from the current remote host and ask for
the name of another remote host to which you want
to connect.

Expose the previously selected window and leave the
Telnet connection open.

Déscribes the Telnet commands. Also, you can obtain
this information by pressing HELP and clicking on
Command Display.

Toggle the *more* processing variable on the

‘Telnet window.

Toggle between Insert mode (the default mode) and
Overwrite mode.

Send the Interrupt Process (IP) command to the
remote host.

Expose the previously selected window and
disconnect from the remote host.

Send the Are You There (AYT) Telnet command
to the remote host.

Telnet Server 3.3.3 When a connection is first established, Telnet sends the remote host
the print herald of the local machine. Telnet then uses the read-eval-print
loop to set up a communications loop, reading characters from-the remote
host until a complete Lisp expression arrives. Telnet then evaluates the Lisp
expression and returns the resulting value(s) to the remote host.

NetWorking Reference

3-7

Network Applications

Use the following function on your system to enable or disable the Telnet
server.

telnet:telnet-server-on (mode :notify) Function

This function enables and disables the Telnet server. mode can take on the
following values: t for on; nil for off; :notify (the default) for on, with the
condition that the user is notified when a connection is made; and
:not-logged-in for on, if no one is logged in.

NOTE: Note that this function affects what happens when a remote host
attempts to use Telnet on your system. It does not affect a remote host on
which you may later want to use Telnet.

VT100 Emulator

3.4 The VT100 emulator runs as an application on top of Telnet. With the
VT100 emulator, you can use the Explorer monitor and keyboard as a
VT100 terminal. The VT100 emulator is resident on the Explorer system and
has the following features:

E All alphanumeric keys and cursor-control keys transmit the proper
VT100 codes.

m All function keys transmit VT100 codes, except the BREAK key and its
variants.

B The keys on the Explorer keypad transmit VT100 auxiliary keypad
codes.

m Most of the control commands used by a VT100 terminal are emulated
on the Explorer.

B There are no Explorer keys that correspond to the VT100 SETUP and
NO SCROLL keys.

B CTRL-H corresponds to the VT100 BACKSPACE key.

The VT100 emulator is implemented using the UCL; command descriptions
and online help are available from the HELP key.

For a description of the VT100 escape and control sequences, refer to the
VT100 User’s Guide, published by Digital Equipment Corporation.

To enter an Explorer window that emulates the VT100 terminal, press
SYSTEM V. The VT100 emulator frame has an automatic-scroll window and
a light-emitting diode (LED) window. If a connection has not already been
established before you enter the VT100 frame, you are prompted in the
automatic-scroll window for the name of a host to which you want to connect.
The LED window displays four LEDs that simulate the LEDs on a VT100
keyboard. The LEDs are turned on and off by the appropriate key
sequerices.

3-8

Networking Reference

Network Applications

In addition to a default character font, the font map for a VT100 window
includes the following:

Graphics font
Top and bottom fonts

Double-wide font

The graphics font matches the VT100 special graphics character set. It is
selected after you enter the proper VI'100 command sequence. The VT100
emulator uses the top and bottom fonts when you enter the double-height,
top-bottom command sequence. It uses the double-wide font after you enter
the double-width command sequence.

The following VT100 control sequences are currently not implemented on
the Explorer system:

Underscore on

Bold on (used with graphics font)
Invoke confidence test

Cursor Key mode

ANSI/VTS2 mode

Scrolling mode

Origin mode

Autorepeat

Interlace

The Explorer builds the VT'100 emulator frame on top of Telnet. Just as in
the Telnet window, most of the keys pressed on the keyboard are passed to
the remote host. Particular keys are affected as follows:

The SYSTEM and TERM keys retain their normal function (and are
therefore not forwarded).

The ABORT, BREAK, and RESUME keys retain their normal function
and are not forwarded to the remote host.

The CLEAR INPUT key sends the Telnet EL command to the remote
host.

The STATUS key sends the Telnet AYT command to the remote host.

NETWORK is the first key of a two-key sequence that sends a Telnet
command to the remote host. Most of the Telnet commands are also
valid in the VT100 emulation frame. See the Telnet section for a
description of these commands.

Networking Reference

3-9

Network Applications

Table 3-3 describes the VT100 commands displayed in the command menu.
Be sure to press the NETWORK key before each VT100 command.

Table 3-3 VT100 Commands

Name Keystroke Description

Answerback B Send the Answerback message string in
vt100-answerback-message

80/132 Columns C VT100 Setup-A 80/132 Columns

Set Lines L Set the number of lines for the VT100 screen and

reconfigure screen
Reset VT100 Setup-A Reset
VT100 Switch Enable/Disable VT100 escape sequence processing

Truncate Toggle truncating of VT'100 screen pane

< H »n =

Reverse Video Complement black-on-white state of VT100 screen

3-10 Networking Reference

Network Applications

Converse

3.5 Converse is an interactive message editor that displays all the messages
that you have sent or received. You can enter Converse in any of the
following ways:

B Press SYSTEM C.
B Type the form (gsend) in a Lisp Listener.
B Click on the Converse item in the System menu.

On the screen, Converse groups into a conversation all the messages that you
send to or receive from a particular user. Conversations from different users
are separated by thick dividing lines. Do not delete these dividing lines
because this will cause messages to be lost. Messages are grouped according
to user name. Messages are put into separate conversations in the following
cases:

®m The same user name is employed on different hosts
m Different user names are employed

Within a conversation, the name of the other party to the conversation
appears at the top of a chronologically ordered group of messages. Converse
creates a new conversation when you begin communicating with someone for
whom there is no existing conversation.

When Converse asks you to enter a user name with the To: prompt, use the
following syntax conventions:

B When you want to deal with one user, specify the form user@host, where
user is a valid user name and host is a valid host name.

B When you want to deal with multiple users, specify the form user@host,
user-1@host-1, user-2@host-2,... user-n@host-n. A separate copy of your
message will go into the conversation for each of the recipients.

B If you just enter user instead of user@host, Converse will try to find an
Explorer that user is logged in to and forward the message to that host. If
you give the variable zwei:*converse-extra-hosts-to-check* a list of
hosts to check, Converse tries to determine where user is logged in
among these hosts. If user is not logged in under any of the hosts in that
list, Converse gives you a menu of hosts from which to choose in order to
continue your search for user.

H You can omit the user name and specify only the host as @host. Whoever
is logged in on that host receives your message.

To send a message, perform the following:
1. Move the cursor to the right of the To: prompt and type the user name.
2. Press the RETURN key and enter your message.

3. Press the END key or use the CTRL-END sequence in order to transmit.

Networking Reference

3-11

Network Applications

Zmacs Editor
Commands
With Converse

3.5.1 Converse allows you to use most of the Zmacs editor commands to
edit your messages and move them around to different conversations.
Table 3-4 lists the additional Converse commands that are available.

Table 3-4 Converse Commands

Key Sequence

Explanation of Command

END
CTRL-END
ABORT
CTRL-M
META-{
META-}

META-X Delete
Conversation

META-X Write
Buffer

META-X Write
Conversation

META-X Append
Conversation

META-X Regenerate
Buffer

META-X Gag
Converse

Send the current message without exiting from Converse.
Send the current message and exit from Converse.

Eliminate the current Converse window.

Mail the current message instead of sending it with Converse.
Move to the previous To: line.

Move to the next To: line.

Delete the current conversation.

Write all of the conversations into a file.

Write only the current conversation into a file.

Append the current conversation to the end of a file.

Rebuild the buffer structure. This command is useful if you edit in or
across the thick dividing lines that separate conversations, which damages
the buffer structure. Some error messages may suggest that you execute
this command before retrying an operation. Note that this command
deletes anything you have inserted in the buffer but have not yet sent.

Toggle the value of the zwei:*converse-gagged* variable. If set to t, the
variable tells Converse to reject incoming messages; if set to nil, it tells
Converse to accept incoming messages.

Converse Functions 3.5.2 You can use the following Converse functions to send or reply to a

message:

gsends-off &optional gag-message Function

If the value of gag-message is set to t, which is the default, Converse rejects
all incoming messages; if it is set to nil, Converse accepts all incoming
messages. This command is useful to specify whether you want to be
interrupted with any interactive messages. gag-message can be a string that is
automatically forwarded as a reply to the sender of a message.

3-12

Networking Reference

gsends-on

Network Applications

Function

This function specifies that all incoming messages are to be accepted. This
function is the complement to the gsends-off function.

gsend &optional destination message mail-p wait-p Function

This function sends message, which should be a string, to the user name(s)
specified in destination. If message is empty, you are prompted for its
contents. destination can be one of the following:

HM When you want to deal with one user, specify user@host, where user is a
valid user name and host is a valid host name.

M When you want to deal with multiple users, specify a list in the form
(user@host user-1@host-1 user-2@host-2 ... user-n@host-n).

W If you just enter user instead of user@host, Converse will try to find an
Explorer that user is logged in to and forward the message to that host. If
you give the variable zwei:*converse-extra-hosts-to-check* a list of
hosts to check, Converse tries to determine where user is logged in
among these hosts. If user is not logged in under any of the hosts in that
list, Converse gives you a menu of hosts from which to choose in order to
continue your search for user.

3 You can omit the user name and specify only the host as @host. Whoever
is logged in on that host receives your message.

If destination is empty, the user is put into the Converse window and asked to
specify the destination.

If mail-p is set to nil, which is the default value, the message is sent interac-
tively; if it is set to t, the message is mailed instead.

If wait-p is set to nil, the gsend function immediately returns nil as its value
and sends the message in background mode. If wait-p is set to t, the gsend
function monitors the status of the message it sends and returns a list of the
recipients that received the message. The default value for wait-p is set to the
value of the zwei:*converse-wait-p* variable.

(gsend ‘ (john@zebra jane@giraffe) "The ark is ready"))

zwei:reply &optional message destination mail-p wait-p Function

This function sends message, a string, to the last user who sent you a
. |

message. If message is empty, the command prompts you for the contents of

the message.

Because the default value of destination is set to the value of zwei:*last-
converse-sender*, the message goes to the host from which the last user sent
a message, unless you specify another host as destination. If you specify
destination, provide a user name.

If mail-p is set to nil, which is the default value, the message is sent interac-
tively; if it is set to t, the message is mailed instead.

Networking Reference

3-13

Network Applications

If the value of wait-p is nil, the zwei:reply function returns the recipient of
the message. If wait-p is set to t, the zwei:reply function monitors the status
of the message it sends and returns a list of the recipients that received the
message. The default value for wait-p is set to the value of the
zwei:*converse-wait-p* variable.

User Options 3.5.3 You can set the following user options in your login initialization file:
With Converse

zwei: *converse-receive-mode* Variable

This variable controls what occurs when you receive a new interactive
message. The variable can take on one of five values:

:auto indicates that the Converse window is automatically entered when a
message arrives.

inotify indicates that, whenever a message arrives, you are to be informed
about both its arrival and its origin.

:notify-with-message is similar to :notify, except that you are given the
sender’s message as well as the sender’s name. This is the default value for
the variable.

:pop-up indicates that the receipt of a message results in the appearance of a
pop-up window on the screen. The window gives you the option to reply to
the message, to enter the Converse window, or to do nothing at all. This
window notifies you in the same way as :notify-with-message.

:simple is the same as :pop-up.

zwei:*converse-append-p* Variable

If this variable is set to t, a new message is appended to the end of the
sender’s conversation. If this variable is set to nil, which is the default value,
a new message is added to the beginning of the sender’s conversation.

zwei:*converse-beep-count* Variable

This variable indicates the number of times the Explorer will beep when a
message arrives. The default value is two.

zwei: *converse-extra-hosts-to-check* Variable

This variable indicates which hosts are checked when someone types user
instead of user@host when asked for a user name. The hosts are checked to
see if user is logged in to any of those hosts. To specify a group of hosts, enter
a list of valid host names. This variable defaults to nil, which means that all
hosts are checked.

zwei: *converse-end-exits* Variable

If the value of this variable is t, the following will happen after you type a
message:

m If you press END, the message is sent and you exit Converse.

m If you press ABORT, the message is not sent and you exit Converse.

3-14

Networking Reference

Network Applications

m If you press CTRL-END, the message is sent and you remain
in Converse.

If the value of this variable is nil, which is the default value, the following will
happen after you type a message:

B If you press END, the message is sent and you remain in Converse.
B If you press ABORT, the message is not sent and you exit Converse.

W If you press CTRL-END, the message is sent and you exit Converse.

zwei:*converse-gagged* Variable

If the value of this variable is not nil, Converse will reject all incoming
messages. In this case, zwei:*converse-gagged* should be a string that
contains the reason why you are not receiving messages.

If the value of this variable is nil, which is the default value, you will receive
all incoming messages.

Although this variable is available for your convenience, the gqsends-on and
gsends-off functions are recommended instead.

zwei:*converse-wait-p* Variable

If this variable is set to t, which is the default value, Converse waits to
determine the status of any message that you send. If set to nil, Converse
does not monitor the status of messages.

Networking Reference

3-15

Network Applications

Name

3.6 This is the ARPANET Name protocol. The Name protocol establishes a
full connection—with retransmission—to get the names of user(s) currently
logged in to a host. When used with a Lisp machine, this protocol is similar to
the Finger protocol. There is no Explorer high-level interface to this protocol.

Time

3.7 The Time protocol allows a host to ask the time of day. It is used by the
system software to get the time of day. There is no Explorer high-level
interface to this protocol.

Eval Serving

3.8 The Eval server allows you to set up a read-eval-print loop on a remote
host. Before you can use the Eval server, it must be enabled on the remote
host. Use the following functions to turn on the Eval server at the host site.

chaos:eval-server-on (mode t) Function

This function enables and disables the Eval server. The mode argument can
take on the following values: t for on (the default), nil for off, :notify for on,
with the condition that the user is notified when a connection is made, or
:not-logged-in for on, in the case that no one is logged in.

After you enable the server at the remote host, start the Eval session by
issuing the chaos:remote-eval function at your host.

chaos:remote-eval host Function

This function initiates an Eval server session to host, where the read-eval-
print loop is handled. Resuits are returned to your terminal until you
terminate the session.

Each time a complete symbolic expression arrives, the Eval server reads it,
evaluates it, and sends back the result. Terminate the Eval session by pressing
ABORT.

3-16

Networking Reference

Network Applications

Fingering Hosts

The Finger Function

3.9 The finger function and the TERM F key sequence display information
about users logged in at various machines in your network. The chaos:find-
hosts-or-lispms-logged-in-as-user function returns a list of hosts on which a
user is logged in.

The finger function and the TERM F key sequence display the following
information about a user logged in at a machine in your network:

W Login name

H Full name

B Process now running

m Idle time (if any)

B Location

Both the finger function and the TERM F key sequences are interfaces to
the Finger protocol. The Finger protocol is a Lisp machine version of the

ARPANET Name protocol that uses a simple transaction instead of a stream
connection.

3.9.1 The following paragraphs describe the finger function.

finger &optional spec (stream standard-output) hack-brackets-p Function

Example:

Prints brief information about a user as specified by spec. The spec argument
can be user@host or @host. The stream argument specifies where to print the
information. If hack-brackets-p is t, the first line shows what host you are
fingering.

If you enter the finger function with no arguments, your own machine is
fingered.

You can also obtain finger information by pressing TERM 0 F. You are
prompted for user@host or @host.

Pressing TERM F displays information about all users logged in at the various
machines in your network.

Finger digits can be assigned via the Namespace Editor. These assignments
specify which machines to finger. For example, pressing TERM 3 F might
display information about the users logged on the machines ROMEO,
SIERRA, and TANGO.

(finger "@young")
The following is displayed:

LISA - ZMACS 12 TI-AUSTIN

Networking Reference

3-17

Network Applications

chaos:find-hosts-or-lispms-logged-in-as-user user Function
&optional hosts no-lispms-p

Making Finger
Assignments

Returns a list of hosts on which user is logged in. The hosts argument is the
list of hosts to check (in addition to all Lisp machines). If no-lispms-p is t, the
function does not return any Lisp machines.

3.9.2 To make finger assignments, you must first have a valid network
namespace, or you must create one, adding your finger assignments as you do
so. Creating a network namespace is discussed in detail in Section 4, titled
Getting on a Network. If you are unfamiliar with the Namespace Editor, see
the Explorer Tools and Utilities manual. The following paragraphs describe
how to make specific finger assignments in a pre-existing network namespace.

1.

Enter the Namespace Editor by selecting it from the system renu or by
using the Edit Namespace Zmacs command. A pop-up menu will appear
similar to the one following:

Choose Namegpace to edit
BOOT

<YOUR -NETWORK -NAMESPACE>
<OTHER -NAMESPACE>

Click on the name of your network namespace. The Namespace Editor
now brings your network namespace into an editing buffer on your
screen.

Place the mouse cursor box around the class name :sSITE and click
middle on the mouse. A menu of commands appears.

Click on the Expand/Unexpand class command. The :SITE class name
expands, listing all of the site objects for your network namespace.

Place the mouse cursor box around the object that represents your
network namespace’s site and click middle on the mouse. A menu of
commands appears.

Click on the Expand/Unexpand object command. The site listing expands
showing all of the attributes (and their values) for your site. Notice that
the :terminal-f-arguments attribute already has the default values
described earlier in this paragraph.

Place the mouse cursor box around the :terminal-f-arguments attribute
and click middle on the mouse. A menu of commands appears.

Click on the Add Group Member command. A pop-up menu appears similar
to the one following:

Enter values for the Finger Digit Assignment

Number of Finger Digit Assignment: NIL

Operation to perform:.............. NIL
List of hosts (optional):.......... NIL

abort [EHRD] [po it [KENDDI

3-18

Networking Reference

10.

11.

12.

13.

Network Applications

The Number of Finger Digit Assignment prompt requires the actual
finger digit itself. A finger digit is a numeric value to be used as the n
value when you press TERM-n-F. Click on the NIL next to the prompt,
enter the new finger digit, and press RETURN.

The operation to perform prompt allows ydu select the type of operation
you want the fingering to perform. Click on the NIL value for this prompt.
The following pop-up menu appears:

ALL-LISP-MACHINES
LOCAL-LISP-MACHINES
LOGIN
DEFAULT-FILE-SERVER

READ
USE-HOST-LIST

The entries are as follows:

® ALL-LISP-MACHINES — Fingers all machines with a :system-type
attribute of :explorer, :lispm, or :symbolics. For information on
system type attributes, see paragraph 4.2.2, titled Network
Namespace Attributes. This entry will update your local cache from
the network.

® LOCAL-LISP-MACHINES — This selection performs the same job as ALL-
LISP-MACHINES, except that it only looks in your local cache. Because
of this, LOCAL-LISP-MACHINES is normally faster than ALL-LISP-
MACHINES.

s 1ociN — Fingers the host to which you are logged into. This host,
which is identified by the net:user-login-machine variable, may or
may not be the local host.

®= DEFAULT-FILE-SERVER — Fingers the host which is the default file
server for the host you are logged into. This host is identified by the
net:associated-machine variable.

= READ — Prompts you for the name of a host whenever you invoke the
Finger utility.

® USE-HOST-LIST — Allows you to specify which hosts you want for this
finger digit assignment. You specify the list of hosts in the List of
hosts (optional) prompt.

Click on the use-HoOST-LIST value. The value of USE-HOST-LIST replaces
NIL in the original pop-up menu.

Click on the NIL next to the List of hosts (optional) prompt, enter the
names of any hosts you want associated with the finger digit and press
RETURN. Your new host list replaces NiL. The list should use the
following syntax:

("Slocum" "Chichester" "Magellan" "LM2-Alpha")

Press the END key or click on the po it at the bottom of the pop-up
menu. You are then returned to the Namespace Editor buffer.

Networking Reference

3-19

Network Applications

14. To put the changes into effect for the current session only, you must
update the network namespace locally. To make your changes permanent
for the network, you must update them globally. Both options are avail-
able to you if you click middle on the mouse and select the appropriate
menu command.

Remote Disk
Server and
Band Transfers

3.10 The remote disk server is the process by which you can read from and
write to disks on remote hosts. These operations are transparent to higher-
level functions. Therefore, functions such as print-disk-label and load-mcr-
file can be executed on a remote host.

To address absolute disk locations, pass to the sys:disk-read and sys:disk-
write functions a unit identifier that is a closure representing the target disk
on the remote host.

The closure is created by the following function.

sys:decode-unit-argument unit use Function

This function returns a closure that identifies the remote unit.
Arguments:

unit can be a string that contains the name of a remote host. In this case, the
target disk will be the disk that is defined as the default disk on the remote
host. If you want to specify another disk instead, unit should be a string that
contains the host name, followed by a colon, followed by a unit number or
pack name. For example, “explorer” specifies the default disk on a host
named Explorer; “explorer:2” specifies disk unit 2 on the same host.

use is a string that describes the reason for accessing a remote disk. The string
is displayed on the remote host’s terminal when the network connection is
created.

This function returns two values. The first is a closure that represents the
network connection to a remote host. If the second value is nil, the function
did in fact decode unit. nil indicates that, when the remote operation has
completed, you need to call the sys:dispose-of-unit function to release the
closure. If the second value is t, unit was already a decoded unit. A t indi-
cates that it is up to someone else to call the sys:dispose-of-unit function.

3-20

Networking Reference

Network Applications

Most disk utilities already use the sys:decode-unit-argument function so that
access to remote disks is accomplished by specifying the host name and unit
number in the unit parameter. You can use the following functions with
remote disks as well as local disks:

sys:print-disk-label

sys:copy-disk-label

sys:edit-disk-label

sys:copy-disk-partition

sys:compare-disk-partition

sys:set-pack-name

sys:get-pack-name

sys:current-band

sys:set-current-band

sys:describe-partition

sys:describe-partitions

sys:get-ucode-version-of—band

sys:measured-size-of-partition

sys:print-available-bands
B sys:load-mcr-file

Full descriptions of these utilities can be found in the Explorer Input/Output
Reference manual.

The previous functions work well for printing and editing disk labels. For
comparing or copying partitions, the following functions are more efficient for
machine-to-machine transfers.

Networking Reference

3-21

Network Applications

sys:receive-band from-machine from-part to-unit to-part Function

&optional subset-start subset-n-blocks

This function copies a partition from a remote machine.

from-machine is a string that contains the name of the remote host, followed
by a colon, followed by a unit number or pack name. If you do not specify
the unit number, the default unit on the remote host is used.

from-part is a four-character string that contains the name of the target
partition on the remote disk.

to-unit is the unit number or pack name that contains the name of the
destination disk on the local host.

to-part is a four-character string that contains the name of the destination
partition on the local disk.

subset-start is a number that specifies an offset from the beginning of the
partition, measured in hundreds of blocks. This offset is used to specify the
point to restart the operation if the connection is broken for any reason.

subset-n-blocks is the number of blocks you want to transfer in case only a
partial transfer is required, measured in hundreds of blocks.

As the sys:receive-band function is executing, the number of blocks—in
hundreds—that have been transferred is displayed. For example, 4 indicates
400 blocks have been transferred. Knowing the number of blocks is useful if
the network connection is broken for any reason. In that case, you could
restart the function at the last hundredth block transferred. When you restart
the function, enter the last displayed number as the value for the subset-start
parameter. The copy will begin from there.

sys:transmit-band from-part from-unit to-machine to-part Function

&optional subset-start subset-n-blocks

This function transmits a partition from a local disk to a target partition on a
remote host.

from-part is a four-character string that contains the name of the target
partition on the local disk.

from-unit is the unit number or pack name of the target disk on the local
host.

to-machine is a string that contains the name of the remote host, followed by
a colon, followed by a unit number or pack name. If you do not specify the
unit number, the default unit on the remote host is used.

to-part is a four-character string that contains the name of the destination
partition on the remote disk.

The subset-start and subset-n-blocks options are identical to those of the
sys:receive-band function.

3-22

Networking Reference

Network Applications

As the sys:transmit-band function is executing, the number of blocks—in
hundreds—that have been transferred is displayed. For example, 4 indicates
400 blocks have been transferred. Knowing the number of blocks is useful if
the network connection is broken for any reason. In that case, you could
restart the function at the last hundredth block transferred. When you restart
the function, enter the last displayed number as the value for the subset-start
parameter. The copy will begin from there.

sys:compare-band from-machine from-part to-part Function

&optional to-unit subset-start subset-n-blocks

This function compares the contents of two partitions on different machines.
It is useful for verifying that a remote copy completed without error. If any
differences are found, an error message is displayed that specifies the
location of the difference according to the block number and half-word offset
within the block. To keep error messages manageable, a maximum of three
error messages per block are printed.

All arguments are identical to those of the sys:receive-band functicn. The
to-unit option defaults to sys:*default-disk-unit*.

As the sys:compare-band function is executing, the number of blocks—in
hundreds—that have been transferred is displayed. For example, 4 indicates
400 blocks have been transferred. Knowing the number of blocks is useful if
the network connection is broken for any reason. In that case, you could
restart the function at the last hundredth block transferred. When you restart
the function, enter the last displayed number as the value for the subset-start
parameter. The copy will begin from there.

Networking Reference

3-23

Network Applications

Sending and 3.11 The chaos:shout, chaos:notify-all-lms, and chaos:notify functions

Printing

send notifications to Lisp machines. The print-notifications function reprints

Notifications any notifications that have been received.

In addition to the functions that send notifications, a notification can come
from utilities such as Mail and Converse. Also, a notification is not restricted
to the network. It can be an asynchronous message from the Explorer system
itself.

chaos:shout Function

Sends a message to all Lisp machines. The message is read from the terminal.
The message should be brief; otherwise, you should use mail.

chaos:notify-all-lms &optional (message (notify-get-message)) Function

Sends a message to all Lisp machines. The message is printed as a noti-
fication. If you omit message, the message is read from the terminal. The
message should be brief; otherwise, you should use mail.

chaos:notify host &optional (message (notify-get-message)) Function

Sends a message to host. The message is printed as a notification. If you omit
message, the message is read from the terminal. The message should be brief;
otherwise, you should use mail.

print-notifications Function

Reprints any notifications that have been received. The difference between a
notification and a send is that a send comes from other users, while a notifi-
cation is usually an asynchronous message from the Explorer system itself.
However, the default way for the system to inform you about a send is to
make a notification. So print-notifications normally includes all sends as
well as notifications.

3-24

Networking Reference

GETTING ON THE NETWORK

Introduction 4.1 Release 3 of the Explorer networking software changes the entire aspect
of network configuration. Several situations now exist for which this section
provides support. These include the following:

W You are updating an existing Explorer network from Release 2 software
to Release 3 software. In so doing, you must convert your existing
network configuration to a network namespace.

M You are creating an Explorer network from scratch. In so doing, you
must create a new network namespace.

B You are modifying an existing Explorer network (such as adding hosts or
printers). You must modify the existing network namespace.

NOTE: If you are not familiar with namespace concepts, you can refer to the
Explorer Tools and Utilities manual. This section assumes that you are
familiar with the basic namespace concepts.

The first part of this section introduces the concepts involved with network
namespaces, including classes, objects, attributes, servers, caching, and so
on.

Next, several paragraphs give explicit information about how to update your
network from Release 2 to Release 3, and how to create a network
namespace for a group of Explorer systems just up and running from their
shipping crates.

The section closes with a group of reference paragraphs that detail the various
options outlined in the network initialization menu.

Networking Reference 4-1

Getting On the Network

The Network
Namespace

Network
Namespace Classes

4.2 With Release 3, Explorer network configuration information is stored in
a network namespace. The hosts in a network refer to a network namespace
for all the information they need concerning network activities.

All network namespaces should be public namespaces. Public namespaces
are much faster at recording updates, and they can be loaded automatically
when a server is booted.

To create or modify a network namespace, you use the Namespace Editor,
rather than the network configuration menu-driven interface used in previous
releases.

The information in a network namespace is arranged hierarchically. A
network namespace contains six classes, which in turn contain objects that
contain various attributes, which in turn have certain value assignments. The
following two paragraphs discuss network namespace classes and their associ-
ated attributes.

4.2.1 A network namespace contains six classes of objects that relate to a
network. Although the following list only describes the system-defined
classes, you can use the Namespace Editor to add your own. The six network
namespace classes are as follows:

W :host Class — The objects in the :host class represent the hosts on a
network, either logical or physical.

M :mailing-list Class — The objects in the :mailing-list class represent
actual mailing lists, with the name of the object being the same as that of
the mailing list itself.

H :namespace Class — The objects in the :namespace class represent
actual namespaces. At the very minimum, one object should exist in this
class; that object represents the current namespace. You can also add
namespace objects for other namespaces in order to tell how these
namespaces are to be accessed.

m :printer Class — The objects in the :printer class are the printers on
your network.

B :site Class — The object names in the :site class are strings that represent
the name of network sites. Objects in this class contain information about
the resources available at the site; that is, most of the hosts for this site
have common attributes.

W :user Class — The objects in the :user class represent the users on your
network. Each object is the same as the user ID (or login name) for that
user.

Each object in these classes has attributes and attribute values. While objects
in different classes can duplicate an attribute name, the value assigned to
these duplicated attributes can differ from object to object. One feature that
the namespace system uses to its advantage is that the value of one duplicated
attribute can override the value of another.

4-2

Networking Reference

Network
Namespace
Attributes

Getting On the Network

In the network namespace system, the :user, :host, and :site classes (in that
order) take advantage of overriding attribute values. When duplication occurs
in all three of these classes, the actual value used by the network namespace
is that of the :user attribute. If duplication occurs only between the :host and
the :site attribute, the network namespace takes the value of the :host attrib-
ute. Accordingly, the value of the :user attribute is taken over that of the
:site attribute.

4.2.2 Each network namespace class has certain attributes associated with
it, and values are assigned to those attributes. Some attributes are defined by
the system; however, you can use the Namespace Editor to add your own or
to modify the defaults supplied by the Explorer system.

The attributes available for the network namespace system are alphabetically
arranged in the bulleted list that follows. Following each of the attribute
names is a letter (or letters) that tells the class (or classes) for which the
attribute is used. The letters are:

H — :host class

M — :mailing-list class
N — :namespace class
P — :printer class

S — :site class

U — :user class

The network namespace attributes are as follows:

M :address-list (M) — Mail addresses of recipients for mail that is being
sent to a mailing list.

B :addresses (H) — This attribute is a list of network addresses for a host
The syntax for this attribute is as follows:

‘((net-type addr) (net-type addr) ...)
For example:

“((:chaos 1464) (:IP 1090550504) (:IP 1090550504) ...)

NOTE: Even though a host may have multiple IP addresses, it will not act
as an IP gateway unless you specifically add the following as a group
member to the :services attribute associated with that host:

(:gateway :ip :ip-gateway)

| :*alias-of* (H S U) — The name of an object for which this object is an
alias.

W :aliases (H) — This attribute identifies a list of aliases associated with a
particular host. Alias objects are added and/or deleted automatically
after this attribute is edited.

Networking Reference

Getting On the Network

:auditing-enabled (N) — If t, all changes made to the namespace are
written into the Im:name-service;<namespace-name>-audit.text#> file,
thereby providing an easy-to-read summary of the changes made. This
attribute is not applicable to Symbolics™ or Personal namespaces.

:auto-save-enabled (N) — If t, all changes made to the namespace are
automatically written to the lm:name-service;<namespace-name>.x1d#>
file as soon as the number of changes reaches the value set by the
:changes-before-save attribute. The :auto-save-enabled attribute
applies only to co-servers. Clients cannot write to the XLD file.

If the value of :auto-save-enabled is nil, changes are written only into
the log file (Im:name-service;<namespace-name>-log.text). However, if
the value of the attribute is nil, you can force changes to be written to the
XLD file by invoking the name:distribute-namespace function (which is
discussed at the end of this section).

:baud (P) — This attribute identifies the baud rate for the printer on the
serial interface. The acceptable values for this attribute include the
following: 300., 600., 1200., 1800., 2000., 2400., 3600., 4800., 7200.,
9600., or 19200. The default is 4800., which is the default value for the
printer:*default-baud-rate* variable. Ignore this if the interface is not
via the serial port.

:bitmap-printer (H S U) — The value of this attribute specifies the
default printer to use when printing screen dumps or other graphics
images.

:boot-init-file (H) — The name of a file to be loaded automatically after
booting. On a warm boot, the :boot-init-file will be loaded only if the file
has changed since you last booted.

:cache-entry-timeout (N) — This attribute specifies the amount of time
until a locally cached copy of an object times out. (The copy is deleted,
and a new copy is obtained from a namespace server.) You can specify
this value as a number of seconds or as a list in the following form:

(n :second or :seconds
:minute or :minutes
thour or :hours
:day or :days
:week or :weeks)

An example is (30 :minutes). The value is stored in the name:*default-
cache-timeout* variable. The default is (24 :hours). This attribute is not
applicable to Personal Namespaces.

:caching-control (N) — This attribute identifies whether or not to store
objects received from a co-server in the local cache. For a brief descrip-
tion of caching, see paragraph 4.2.5, titled Network Namespaces,
Servers, and Caches. The acceptable values for this attribute include the
following:

n t or :always — Caches all objects received from a co-server.

u :selective — Caches all objects received from a co-server, unless that
object has the :*non-cacheable* attribute set to t.

Symbolics is a trademark of Symbolics, Incorporated.

4-4

Networking Reference

Getting On the Network

= nil — Does not cache any objects.
This attribute is not applicable to Personal Namespaces.

:changes-before-save (N) — If the value of the :auto-save-enabled
attribute is t, the value of the :changes-before-save attribute specifies
how many changes can be made to the namespace before they are written
to an XLD file. This attribute is not applicable to Symbolics namespaces.

:character-printer-p (P) — If the value of this attribute is non-nil, the
printer can print streams of ASCII characters. The default is t.

:current-version (N) — This attribute is used internally by the
Namespace system. Do not edit or delete this attribute.

:data-bits (P) — This attribute identifies the number of data bits per
character used by the serial interface. Acceptable values for the
:data-bits attribute include the following: 5, 6, 7, or 8. You must use 8 if
you want to print screen images on a TI855, TI880, TI201S5, or
TI2115 printer. The default is 8, which is the default value for the
printer:*default-data-bits* variable. Ignore this if the interface is not
via the serial port.

:default-device (H) — Name of device that should be used as a default
in pathnames for a particular host.

:default-file-server (H S U) — This attribute is the name of the default
file server associated with the local host. Normally, all of the hosts in a
site act as their own default file servers.

:default-login-name (H S U) — User-ID used when getting files from
sys-host (such as an error table).

:default-login-password (H S U) — Password used when getting files
from sys-host (such as an error table).

:default-mail-host (H S U) — The host to use as the default in mail
addresses that have an unspecified host. This applies only to new
messages entered into the mail system and does not override the options
relating to mail servers and gateways.

:directory-translations (H) — This attribute specifies the translations to
be used for a logical host. (For information about logical hosts, see the
Explorer Input/Output Reference manual.) Pathname translations for
logical hosts (such as “SYS”), can be specified in one of two ways:

s From a translations file identified by the :translations-file attribute
(which is discussed later in this paragraph); however, this practice is
discouraged.

m From the values of the two attributes :directory-translations and
thost-translation (used together). If these last two attributes are
given values on a logical host, they override any translations file
specified for that logical host.

The :host-translation attribute specifies the name of the host to
which your logical host points.

Networking Reference

4-5

Getting On the Network

The :directory-translations attribute specifies the translations to be
used for that host. The format is a list of sublists that can take one of
the three following forms:

. (logical-directory physical-device-and-directory)
. (logical-directory physical-device physical-directory)
" (logical-directory physical-device (subdir subdir ...))

Using a translations file is much slower than specifying the :host-
translation and :directory-translations attributes in the namespace.
When you access a logical host that uses a translations file, the
translations file is loaded on your local machine (a time-consuming
procedure) if either of these two conditions are true: This is the first time
you are trying to access the logical host, or you try to access the logical
host after the cached version of the host has been marked for refresh.

If you use the :directory-translations and :host-translation attributes to
specify a logical host (the recommended procedure), there is no file to
load, so access to logical hosts is generally faster. On the other hand, if
the size of your network namespace is a problem, the use of translations
files instead of the :directory-translations and :host-translation
attributes would probably make your namespace smaller.

To transfer information from a translations file to the :directory-
translations attribute, perform the following steps:

1. Bring the translations file into a Zmacs buffer.

2. Find the desired directory translations list, and copy it to the Kkill
history.

3. Find the :directory-translations attribute on the desired logical host
in the Namespace Editor. If it is a group attribute (marked with a
“G”), press G to toggle the group status.

4. Press E to edit the scalar attribute. A pop-up window appears.

5. Press CTRL-Y to yank the translations from the kill history into the
pop-up window.

6. Press the END key.

7. Update globally by pressing CTRL-W, or only update locally (for
testing) by pressing W.

8. If you have changed it, toggle the group status of the attribute back to
its original value by pressing G.

9. Update globally again by pressing CTRL-W.

:file-control-lifetime (H) — Length of time (in 60ths of seconds) to
leave idle connections to a file server open.

:file-server-type (H) — Refers to the mode or protocol used by the file
server.

Networking Reference

Getting On the Network

:ftp-implementation-type (H) — The name of the implementation of
the FTP server running on a particular host.

:ftp-prompt-for-account (H) — If t, FTP will ask for account informa-
tion when prompting for remote login information.

thome-host (U) — The value of this attribute is the name of the host to
which the user is normally logged-in to.

:home-phone (U) — The value of this attribute is the home phone
number at which a particular user can normally be reached.

thost (P) — The value for this attribute specifies the host on which a
particular printer is located. The value for :host can be the name of any
valid host; for example, “BOLIVAR”.

shost-for-bug-reports (H S U) — The value of this attribute is the name
of a host to which bug reports submitted via MAIL should be sent.

thost-translation (H) — The name of a host (physical or logical) to
which a logical host points. Pathname translations for logical hosts (such
as “SYS”), can be specified in one of two ways:

s From a translations file identified by the :translations-file attribute
(which is discussed later in this paragraph); however, this practice is
discouraged.

m From the values of the two attributes :directory-translations and
thost-translation (used together). If these last two attributes are
given values on a logical host, they override any translations file
specified for that logical host. For more information, see the
:directory-translations attribute.

:image-printer-p (P) — If the value of this attribute is non-nil, the
particular printer can print bit-mapped graphics (pixel arrays) such as
screen images. The default is t.

:ip-addr-subnet-bits (H) — The implementation of subnetting requires
some part of the local IP address to be dedicated to the network address
providing a unique network address. The number of bits you enter is the
number that will be appended to the host address. The :ip-addr-subnet-
bits attribute is only used for gateways. Further information can be ob-
tained in RFC950 by J. Mogul and J. Postel entitled Internet Standard
Subnetting Procedure.

NOTE: Even though a host may have multiple IP addresses, it will not act
as an IP gateway unless you specifically add the following as a group
member to the :services attribute associated with that host:

(:gateway :ip :ip-gateway)

:known-classes (N) — Specifies a standard set of Symbolics classes. This
value is stored in the name:*known-symbolics-classes* variable. This
attribute is only applicable to Symbolics namespaces.

Networking Reference

Getting On the Network

:local-mail-domains (H S U) — Identifies the valid mail domains
for hosts at this site. This option is needed only for hosts in mail
addresses that are not already recognized in the Name Server configu-
ration. For instance, if this site was in the Internet domain
“WIDGETS.ACME.COM”, this option should have the following value:

("WIDGETS" "WIDGETS.ACME" "WIDGETS.ACME.COM").

:location (H S U) — This attribute identifies the geographical location of
the site that is, where the hardware for a host is located.

:machine-type (H) — This attribute identifies the type of processor used
by this host. For Explorers, the normal value of this attribute is
:explorer.

:mail-address (U) — The value of this attribute is the mail address at
which a particular user receives electronic mail.

:mail-gateway-host (H) — This attribute is the name of another host
that should receive all mail destined for this particular host.

:medium-desirability (H) — This attribute is an alist in the following
form:

((mediuml X) (medium2 X) ...)

This alist (where 0 <= X <= 1), is used to calculate the desirability of
mediums.

:namespace-file-pathname (N) — Specifies the default file where the
namespace is stored. The default pathname is as follows:

Im:name-service; namespace_name-namespace_type.xld

For example, for a public namespace called cats, the default
:namespace-file-pathname would be:

Im:name-service;cats-public.xld

Of course, you may override the default by specifying a different value
for this attribute.

:namespace-search-list (H S U) — This attribute is a list of all
namespaces that should be searched (in order) whenever information is
needed from a namespace.

:parity (P) — This attribute identifies the number of parity bits per
character used by the serial interface. Acceptable values for the :parity
attribute include the following: nil, :even, or :odd. The default is nil,
which is the default value for the printer:*default-parity* variable.
Ignore this if the interface is not via the serial port.

:personal-name (U) — The value of this attribute is the full name
associated with the user not just a user ID. One use for this attribute is to
generate the From: line of the mail system.

:port (P) — This attribute identifies the specific I/O hardware port to
which the printer is attached. This value can be 1, 2, or 3 for a serial
printer. This value is nil for a parallel printer. The default value is nil.

4-8

Networking Reference

Getting On the Network

:postmaster (H S U) — This attribute identifies a user name or mail
address of a person responsible for mail-related problems and queries.

:primary-device (H) — The value of this attribute is a device name to be
used as a default in pathnames for a particular host.

:primary-mail-servers (H S U) — The value of this attribute is a list of
host names that specifies which hosts will queue and forward mail.

:primary-servers (N) — This attribute specifies the primary Symbolics
servers used first for any type of request. Applicable to Symbolics
namespaces only.

:primary-time-servers (H S U) — The value of this attribute is a list of
hosts that act as time servers. Time servers provide the time of day to all
hosts on the network via the Chaos TIME protocol. You will need to
specify which is the primdry time server and which is the secondary time
server in order of importance. If the first should fail, the second will
provide the time.

:printer (H S U) — The value of this attribute specifies the default
printer to be used for printing of character files from a host.

:read-only (N) — If the value of :read-only is t, no changes are allowed
to be made to the namespace. This attribute is not applicable to a
Symbolics namespace.

:reject-mail (H) — Determines whether a host accepts mail. A value of
:non-local-addresses means to accept only local mail and reject all mail
destined for other hosts.

:remark (M) — This attribute explains the purpose of a particular
mailing list.

:secondary-servers (N) — Specifies the secondary Symbolics servers
used for reads only (not updates) if no primary servers respond. This
attribute is applicable to Symbolics namespaces only.

:servers (N) — This attribute is a list that identifies the hosts that will be
co-servers for this namespace. It is suggested that you qualify the server
names. For information about qualified and unqualified object names,
see paragraph 4.2.4, Namespace Search Rules. If you do not qualify the
names, the host in the current namespace is searched first. Then, search
rules are applied.

NOTE: To describe one namespace (X) from within another namespace
(Y), you should add a :namespace object that looks like the one
contained in the actual namespace (X). Its function is to tell you how to
access namespace X by listing the servers you can contact.

Networking Reference

4-9

Getting On the Network

:service-desirability (H) — An alist in the following form:
((servicel X) (service2 X) ...)

This alist (where 0 <= X <= 1), is used to calculate the desirability of
services.

:services (H S U) — This attribute is a list of the services supported by
this host. Services are identified by triplets of the form (service medium
protocol), as in the following example:

((:FILE :LOCAL :LOCAL-FILE)

:STATUS :CHAOS :CHAOS-STATUS)
:MAIL-TO-USER :CHAOS-STREAM :MAIL)
:LOGIN :CHAOS-STREAM :TELNET)
:FILE :CHAOS :QFILE)

:STATUS :TCP :IP-STATUS)
:MAIL-TO-USER :TCP-STREAM :SMTP)
:LOGIN :TCP-STREAM :TELNET)

:FILE :TCP :FTP))

NOTE: Even though a host may have multiple IP addresses, it will not act
as an IP gateway unless you specifically add the following as a group
member to the :services attribute associated with that host:

(:gateway :ip :ip-gateway)

More information about services is available in Section 6, The Generic
Network Interface.

:short-name (H) — Short name to be given this host. An alias named
with the value of :short-name is created automatically by the Namespace
Editor after editing this attribute.

:site (H) — The SITE to use for a particular host. This is useful because
the net:get-site-option function gets the attribute values from the :site
object if the attributes are not specified by the :user object or the :host
object.

:site-directory (H) — This attribute identifies the directory to be used as
the site directory for a particular host. If someone references the SITE
directory on this host, the directory given as the :site-directory will be
accessed.

:site-device (H) — A string that represents the name of the storage
device to use when someone references the site directory on a particular
host.

:stop-bits (P) — This attribute identifies the number of stop bits per
character used by the serial interface. Acceptable values for the :stop-
bits attribute include the following: 1, 1.5, or 2. The default is 1, which is
the default value for the printer:*default-stop-bits* variable. Ignore this
if the interface is not via the serial port.

4-10

Networking Reference

Getting On the Network

:stream (P) — This attribute identifies the type of I/O hardware port to
which the printer is attached. Normal values include :serial and
:parallel. The default is :serial, which is the default value for the
printer:*default-stream* variable.

:string-for-printing (H) — This attribute identifies a string to be used
when printing the name of a particular host (as used in pathnames and so
on). An alias named with the value of :string-for-printing is created
automatically after editing this attribute.

:sys-host (H S U) — This attribute is the name of the host (logical or
physical) that will function as file server for the system files.

:system-type (H) — This attribute identifies the operating system
currently running on a particular host. For Explorer hosts, the value of
this attribute is :explorer. For Symbolics hosts, the value of this attribute
is :symbolics. For all other Lisp machines, the value is :lispm.

:terminal-f-arguments (H S U) — The value of this attribute is a list of
the finger assignments for the network in general. The format for the
value of this attribute is as follows: ‘

((0 :read))

The TERM-n-F key sequence invokes the Finger utility, which displays
information about users logged in at various machines in your network.
This information includes their login name, full name, and so on. The
site-wide values you supply here will be the defaults for all the individual
hosts on the network, unless overridden by the hosts individually.

:timezone (H S U) — The time zone attribute can be either an acronym
for a time zone or a decimal integer representing the difference between
your local time zone and Greenwich Mean Time. The default value of
this attribute is the value returned by the time:timezone-string function
(which should be the correct time zone for your area).

:top-level-mail-domain-servers (H S U) — This attribute specifies top
level mail domains (such as COM, EDU, GOV, and so on), as well as
which hosts can relay mail to which domains. The attribute’s value is
stored as an association list; each alist item is of the following form:

("HOST" "DOMAIN1" "DOMAIN2" ...)

:translations-file (H) — Pathname translations for a logical host can be
loaded from the translations file specified by the value of :translations-
file. A translations file can be used only on a logical host. Pathname
translations for logical hosts (such as “SYS”) can be specified in one of
two ways:

= From a translations file identified by the :translations-file attribute
(which is discussed in this paragraph). This practice is discouraged.

= From the values of the two attributes :directory-translations and
:host-translation (used together). If these last two attributes are
given values on a logical host, they override any translations file
specified for that logical host. For more information, see the
:directory-translations attribute.

Networking Reference

4-11

Getting On the Network

Using a translations file is much slower than specifying the :host-
translation and :directory-translations attributes in the namespace.
When you access a logical host that uses a translations file, the
translations file is loaded on your local machine (a time-consuming
procedure) if either of these two conditions are true: This is the first time
you are trying to access the logical host, or you try to access the logical
host after the cached version of the host has been marked for refresh.

If you use the :directory-translations and :host-translation attributes to
specify a logical host (the recommended procedure), there is no file to
load, so access to logical hosts is generally faster. On the other hand, if
the size of your network namespace is a problem, the use of translations
files instead of the :directory-translations and :host-translation
attributes would probably make your namespace smaller.

stype (N) — This attribute identifies the type of a namespace (such as
:public or :personal). The namespace type in turn determines the
attributes associated with that namespace. All network namespaces
should be of type :public. Public namespaces provide you wiih a cache;
they are much faster at recording updates; and they can be loaded
automatically when the machine is booted.

:type (P) — This attribute identifies the type of a printer. The values
associated with the :type attribute can be :ti855, :ti880, :ti2015,
:ti2115, or :imagen-printer.

:usage (N) — The :usage attribute governs the way the Namespace
Editor edits a particular namespace. You can specify the usage mode
corresponding to a set of expert editors. For information about the
Namespace Editor, see the Explorer Tools and Utilities manual.

:use-primary-mail-servers (H S U) — The value of this attribute
specifies when hosts should forward mail to a primary mail server.
Acceptable values for this attribute include the following:

m :never — Each host performs complete mail delivery, including
address verification, queuing, and retries.

s :always — Hosts never attempt to complete mail delivery or even
attempt to validate mail addresses. All mail is passed to the server for
processing.

= :unknown-address — Similar to :never, except that unknown mail
addresses are passed to the primary mail server.

s :after-first-attempt — Hosts validate and attempt to deliver mail;
however, mail for hosts that do not respond is forwarded to the
primary mail server.

:uucp-gateway-hosts (H S U) — The value of this attribute is a list of
hosts that will forward mail to the uucp (UNIX™-to-UNIX copy)
network. An address is considered to be for the uucp network if it
contains no “@” and it contains at least one “!”.

:work-phone (U) — The value of this attribute is the work phone
number at which a particular user can normally be reached.

UNIX is a registered trademark of AT&T.

4-12

Networking Reference

Multiple
Network Namespaces

Namespace
Search Rules

Getting On the Network

B :xon-xoff (P) — This attribute specifies whether or not xon/xoff protocol
is used. If the value of :xon-xoff is t, the protocol is used; if nil, it is
not used. The default is t, which is the default value for the
printer:*default-xon-xoff* variable.

4.2.3 Multiple network namespaces can exist. If your machine is on more
than one network namespace, you can specify which network namespace that
your host will boot under by setting the name:*default-who-am-i-domain*
variable to the name of your network namespace. For example, if the host
name of your machine is BOLIVAR, and you want to be booted under a
network namespace called NEW-NET#4, you would set name:*default-who-
am-i-domain* to NEW-NET#4|BOLIVAR. To make this variable-binding
permanent across boot sessions, you must be sure to perform a disk save.

Another way to specify which network namespace that your host will boot
under is to use the disk label editor to modify the actual name of your disk so
that it reflects both the host name and the network namespace name. Note
that the total length of the disk name is limited to 16 characters; therefore,
you may need to abbreviate the host name portion of the host/namespace
name coricatenation.

For example, when you concatenate NEW-NET#4, a vertical bar character
(), and BOLIVAR, you end up with a total of 17 characters. In this
situation, you could drop the final R in BOLIVAR and change your disk’s
name to NEW-NET#4|BOLIVA. In this way, you comply with the 16 charac-
ter limit. When BOLIVA(R) is rebooted, the booting process separates the
host name and the network namespace name according to the vertical bar,
and boots BOLIVA(R) under network namespace NEW-NET#4.

Multiple network namespaces can also be hierarchically structured. (That is,
a network namespace can exist whose name is contained in another network
namespace.) Names can be explicitly qualified to indicate the containing
namespace, or defaults can be assumed.

4.2.4 When looking up or retrieving an object either from a single
namespace or from multiple namespaces, the namespace utilities follow a set
of search rules, which are discussed here.

The name of an object can be either unqualified or qualified. An unqualified
(or relative) object name contains no namespace name in which to search for
the object. In this situation, the namespace search rules state that the
namespace utilities rely upon a search list. The search list contains a list of
available namespaces. If you look up NEIL (an unqualified name), then the
namespace utilities immediately check the namespace search list for available
namespaces to search, and then search those namespaces in the order that
they appear on the search list. The lookup operation stops either when NEIL
is found, or when the namespace search list is exhausted.

A qualified object name contains the namespace name in which to search for
the object. Only object names that are strings can be qualified. In a qualified
object name, a vertical bar character (]) separates the namespace name (also
called domain name), from the object name. When used in this context, the
vertical bar is called the domain delimiter. If you look up AUSTIN|NEIL (a
fully qualified name), the namespace utilities try to find the object NEIL in
the namespace AUSTIN. In this situation the namespace search list is not
used.

Networking Reference

4-13

Getting On the Network

Network Namespaces,
Servers, and Caches

4.2.5 One or more hosts can act as servers for a network namespace. These
servers work in conjunction with each other across the network to handle
concurrent access. An individual server is called a co-server (even if it is the
only one).

A co-server can accept changes that you make to a network namespace, write
these changes to the local copy of the network namespace, and also
propagate these changes to other co-servers

When you edit a network namespace from a co-server, those changes exist
only in a buffer until you write them out (either locally or globally). Writing
the changes out locally modifies your co-server’s cache.

A cache contains temporary copies of some of the objects found in the
network namespace. One common use for modifying a co-server’s network
namespace cache is to test a new network configuration before broadcasting it
to all the other network namespace co-servers.

The cache is cleared whenever its host is rebooted. To be able to save
changes across booting sessions, you must write out any changes globally.
Writing out changes globally also changes that network namespace on all of
its co-servers.

Clients (that is, hosts that are not co-servers) also have caches. Normally,
their caches only hold copies of the network namespace brought in at boot
time. However, clients can edit their copies of a network namespace, and
then write out those changes locally; thereby modifying their own caches, and
altering their networking environments. When a client makes a global
change, that change is first made in the client’s cache, and is then updated
globally at a co-server.

How to Update
a Network
From Release 2

Updating the
First Host on the
New Network

4.3 If you have updated a site’s Explorers from Release 2 to Release 3
software, you must convert the main network configuration server’s
configuration file (which is normally named Im:site;siteinfo.xfasl) into a
network namespace.

4.3.1 The first machine to receive the release software should have a
current Release 2 configuration file (site;siteinfo.xfasl#>) on its file band.
Although you can begin the update process from any machine on the
network, unless that machine has its own copy of a Release 2 configuration
file, you will need to supply the Chaosnet address of a machine that does
have the needed configuration file. Normally, the machine you select should
also be designated as a future network namespace co-server.

4-14

Networking Reference

Getting On the Network

When the new co-server’s software has been updated to Release 3 and it
begins its initial boot under the new software, a network initialization menu
appears, similar to the one following:

>> No Explorer Nameserver knows this machine as <name>
Choose a network initialization alternative: [T/0=2 mins]

Change the name of this machine and return to this menu

Try (again) to locate an Explorer Nameserver that knows about <name>
Try to contact a specific Explorer Nameserver directly

Convert an existing Network Configuration file into a namespace
Create a new network namespace after booting

Try to contact a specific non-Explorer nameserver

Try loading local files to use this machine as a temporary nameserver

Run stand-alone (no networking) [* DEFAULT *]

To convert a Release 2 configuration file into a network namespace, click on
the fourth item in the network initialization menu. The following window will
appear:

Convert siteinfo file into network namespace

Pathname of a NetConfig Siteinfo file: LM:SITE;SITEINFO.XFASL

abort [CHED] [po it [CRD] [

Enter a name for your new network namespace (one that uniquely identifies
your local site) and press RETURN. If your siteinfo file name differs from the
default value of Im:site;siteinfo.xfasl, change that value and press RETURN.
When both values are acceptable, click on the po it prompt or press END.
(If you choose the abort option to the Convert Siteinfo menu, you are simply
returned to the network initialization menu.)

If you specify a remote host’s pathname as the source of the Release 2
configuration file, another menu will appear, requesting a network address
for that host (normally a Chaosnet or IP address). You must supply those
values before continuing.

After you have identified a source for the Release 2 configuration file, your
local host loads that file and begins the translation process. You may see the
configuration file’s name appear in the lower right of the status line followed
by a figure showing how much of the file has been loaded. This figure will be
either a byte count or a percentage value.

Networking Reference 4-15

Getting On the Network

Updating the
Other Hosts
on the Network

Optional Method

for Updating Other

Designated
Co-Servers

Next, if you choose to save the namespace (you are prompted to do so), the
translation is written into a new namespace file with the name: Im:name-
service;<name>.xld#>. You may see the new file’s name appear in the lower
right of the status line, followed by a figure showing how much of the file has
been written. This figure will be either a byte count or a percentage value.

When the new network namespace file has been written, the initial boot
sequence completes. If your local host is not one of the designated network
namespace co-servers, it will act as a temporary co-server until you can boot a
real one.

4.3.2 With a co-server (either temporary or permanent) up and running
with a network namespace loaded, you can update the rest of the hosts on
the network. As each of the other hosts is updated to Release 3 software and
begins its initial boot sequence under that software, it attempts to load any
namespace(s) for which it is a co-server.

At this time, the newly booted host will have no namespaces associated with
it; therefore it issues a who-am-i message which is picked up by the co-server
for which you just converted the Release 2 configuration file. The co-server
then sends the necessary namespace information to the local host. After
receiving the namespace information, the local host completes its initial boot
sequence. From this point on, the local host has network access. Repeat this
process for the rest of the hosts on the network.

NOTE: If the first host you booted was not designated as a network
namespace co-server, it will continue to act as one (temporarily) until the first
host actually designated as a co-server has acquired its own copy of the new
network namespace. At that point, the actual co-server recognizes that it is a
designated co-server, completes its initial boot sequence, and then sets itself
up as a namespace co-server.

4.3.3 If you followed the previous suggestion and booted a designated net-
work namespace co-server as the first machine to run under Release 3 soft-
ware, the other co-servers can get their copies of the new network namespace
in one of two ways. The first way was described in the previous paragraph.

You also have the option of preparing future co-servers while they are
running under Release 2 software. In this method, you first create a
name-service directory on the future co-server, and then copy the following
files from the host having its namespace already created:

<host-name>:name-service;server-boot-list.lisp#>
<host-name>:name-service;<namespace-name>-public.xld#>
<host-name>:name-service;<namespace-name>-log.text#>

With these files in place, as soon as the new co-server is booted under
Release 3 software, it automatically boots the network namespace available
from those files, and sets up itself as a namespace co-server.

4-16

Networking Reference

Getting On the Network

Updating
an Existing
Namespace

4.4 If you already have an existing network namespace, and must modify it
in some manner (adding a host or a printer for example), you need only edit
that network namespace. Editing a network namespace is no different from
editing any namespace. If you are unfamiliar with the operation of the
Namespace Editor, see the Explorer Tools and Utilities manual.

After you have made the required changes to a network namespace, first
write out the changes locally so that you can test them before distributing
them to the rest of the network.

After you are sure that the changes are stable, write them out globally. Before
the Namespace Editor will write any changes locally or globally, it performs
an incremental verification to insure that your changes are consistent. An
incremental verification checks only those objects that have been edited to
see if they are valid and consistent with the rest of the namespace.

Different verification levels are available, according to the value of the
nse:*verification-level* variable (discussed in paragraph 4.8, titled Network
Namespace Functions and Variables).

Several Namespace Editor commands are available for performing
verification of changes to a network namespace:

Verify Namespace Command
Keystroke: META-X Verify Namespace

Verifies objects and associated attributes within a namespace. The verifica-
tion routine(s) that is called by this command is determined by the values
of the :namespace-verification-routine keyword of the expert editors.
Verification routines have already been established for network namespaces.
However, other namespaces do not have expert editors with verification
routines unless someone has created them. Refer to the Explorer Tools and
Utilities manual for more details.

Verify Class Incrementally Command
Keystroke: META-X Verify Class Incrementally

Verifies objects within the current class. The verification routine(s) that is
called by this command is determined by the value of the :incremental-
verification-routine keyword of the expert editor. (Verification routines
have already been established for network namespaces.) Refer to the
Explorer Tools and Utilities manual for more details.

Verify Object Incrementally Command
Keystroke: META-X Verify Object Incrementally

Verifies the current object. If verification fails, you are warned that the object
content is not correct. The verification routine(s) that is called by this
command is determined by the value of the :incremental-verification-
routine keyword of the expert editor. Verification routines have already been
established for network namespaces. However, other namespaces do not
have expert editors with verification routines unless someone has created
them. Refer to the Explorer Tools and Utilities manual for more details.

Networking Reference

4-17

Getting On the Network

Verify Attribute Incrementally Command
Keystroke: META-X Verify Attribute Incrementally

Verifies the value of the current attribute. If verification fails, you are warned
that the attribute value is invalid. The verification routine(s) that is called by
this command is determined by the value of the :incremental-verification-
routine keyword of the expert editor. Verification routines have already been
established for network namespaces. However, other namespaces do not
have expert editors with verification routines unless someone has created
them. Refer to the Explorer Tools and Utilities manual for more details.

A Namespace Editor command and a function are available for distributing a
network namespace:

Distribute Namespace Command
Keystroke: META-X Distribute Namespace

Distributes the current namespace to all servers or to the local machine only.
If necessary, you are asked to save the namespace before dlstrlbutlng (This
command calls the name:distribute-namespace function.)

name:distribute-namespace namespace-name Function

&optional &key :local-only (:save-first t) :server-list
(:search-list-loc :beginning) (:notify t)

Terminates configure or convert mode for a new public namespace. These
modes are described in the :explorer-server init-args of the name:add-
namespace function in the Explorer Tools and Utilities manual.

You can optionally dump the namespace to a binary file. You should do this
if you are in convert mode because no changes have been written to the log
file.

Propagating to servers of subsequent changes is enabled.

A local client instance is created, and all further namespace accesses at this
machine now go through the client instance rather than directly to the server

instance.

Optionally, you can start other servers, which obtain their information from
this host. This works only if those servers are already on the network.

:local-only — When set to t, distributes only to this host. The cefault is nil.

:save-first — When set to t (the default), dumps the namespace to an xId file
first.

:server-list — Specifies a list of servers to receive distribution. The default is
all servers.

:search-list-loc — Specifies where to put the namespace in the search list:
:beginning, :end, or nil.

:notify — When set to t (the default), notifies you if some servers did not
answer.

4-18

Networking Reference

Getting On the Network

Building
a Network
From Scratch

Plan the
Network
Namespace

4.5 Once you have assembled all the Explorers and their related hardware
for a new network, you must place all the network configuration information
into a network namespace. The network namespace provides information
about the relationships between the names and addresses of hosts and servers
(printer servers, time servers, and so on) that are available on a network.
Every host on the network uses such information to find paths to other hosts
and to the services provided over the network.

You will follow five steps in creating a new network.

B Plan the network.

Create the network namespace, using the Namespace Editor utility.
Verify the network namespace.

Distribute the network namespace.

Reboot all the hosts on the network.

4.5.1 The first step in getting on a network requires planning its namespace.
You should have all the information about the future network written down
before attempting create your network namespace. This information concerns
the characteristics of the following components of the network:

m Site — The site is the entire network. Site characteristics affect all
components of the network.

B Hosts — Hosts are the individual machines on the network. They inherit
some characteristics from the site (such as location), but they also have
individual characteristics (such as their network addresses).

M Printers — Printers are also individual components of a network.

M Namespace — The namespace characteristics affect how the network
maintains its information about itself.

The network namespace is a hierarchical arrangement of network informa-
tion. For example, it treats each of the preceding network components as a
class. Within each class are specific objects. The objects represent actual
entities on the network, such as a specific host or printer. Within each object
are attributes that are associated with that object. Some of the host attributes
include address and machine type. Finally, attributes have associated values;
for instance, a machine type attribute may have the value :explorer.

Based on the attributes and values discussed in paragraph 4.2, titled The
Network Namespace, gather all the specific information about your network’s
component classes. Be sure to write all of this information in one place for
easy access later. When you have collected all this information, you can
proceed to paragraph 4.5.2, titled Create the Network Namespace.

In the example that runs throughout these paragraphs, you will deal with a
site named FLEET which is located in Galveston. FLEET’s initial configura-
tion is seen in Figure 4-1. All machines have the default factory-shipped
name (P1) at this point, and FLEET uses the Chaosnet protocol. You know
nothing more about the site.

Networking Reference

4-19

Getting On the Network

Figure 4-1 Site: FLEET

Fleet

repeater

graphics
printer _ P1

2288077

4-20 Networking Reference

Getting On the Network

Site Diagram 4.5.1.1 Taking the top-down approach, you should first plan the details
and Site about the site (FLEET in this example). Site planning requires some pencil
Characteristics work.

Make a diagram of your network, and label each Explorer with its future
name. With the future names assigned, each host is easily distinguishable
(unlike when dealing with a network full of P1’s). Figure 4-2 shows FLEET
with arbitrarily chosen names for each of its hosts.

Figure 4-2 Site FLEET (With Future Host Names)

Heloise Dante

Charon
Astrolabe Beatrice

Bridge

Abbey ‘ Virgil

rnet bridge
Lope Cervantes Calderon
2288078

Now that you have a sketch of the future network site, you must collect infor-
mation about the site as a whole. As stated earlier, you need a table of infor-
mation about the site characteristics. Eventually, you will enter your site’s
characteristics as attributes for a site object in your network namespace.

Remember that site attributes are described in paragraph 4.2.2, titled
Network Namespace Attributes. Table 4-1 , which follows, shows how
FLEET’s network administrator gathered the information about FLEET.

Networking Reference 4-21

Getting On the Network

Table 4-1

Host Characteristics

Known Site Characteristics of Site FLEET

Characteristic or

Attribute Value
Location Galveston
Time Zone Central Daylight Savings Time
Default File Server Im

System Host Cervantes

Host for Bug Reports Abbey
Character Printer Astrolabe
Graphics Printer Calderon
Primary Time Servers Heloise, Dante
Primary Mail Server Beatrice
Terminal F Args Accept defaults
Namespace Search List Accept defaults

4.5.1.2 Now that you have all the characteristics of your site tabulated, you
must do the same thing for each host that will reside on the network. A little
more work is required to get all the host attributes.

Host attributes are described in paragraph 4.2.2, titled Network Namespace
Attributes. The five host attributes you must gather for each host include the
host’s aliases, network address(es), the services provided by that host, and
the host’s machine type and system type.

Aliases In the FLEET example, the network administrator assigned the
following aliases for the hosts in FLEET.

Heloise He
Astrolabe Astro
Abbey Ab
Charon Ch
Dante Dan
Beatrice Bea
Virgil \'2}
Lope Lp
Cervantes CVv
Calderon Cal

Addresses To assign addresses for each host on a network,. you must
identify any subnetworks and assign numbers to them. For example, FLEET
consists of two subnets. In Figure 4-1 and Figure 4-2, FLEET’s subnetwork
topography is distinguished by shading. Notice that one host (CHARON) acts
as a bridge between the two subnets, passing data from one subnet to the
other. As a bridge, that host is a member of both subnets.

Each subnet must be assigned a Chaosnet subnetwork number. This number
is an 8-bit hexadecimal number in the range #x01 through #xFE. The
network administrator chooses Chaosnet subnetwork addresses arbitrarily. In
the FLEET example, address #xDE is assigned to the top left subnet, and
#xCA to the right subnet. Note that the subsegment at the bottom also has
the Chaos subnetwork number #xCA, since a repeater connects the two sub-
segments.

4-22

Networking Reference

Getting On the Network

Each host must also be assigned a Chaosnet host address. A Chaosnet host
address is also an 8-bit hexadecimal number in the range #x01 through #xFE.
The network administrator can choose these numbers arbitrarily. As with
subnetwork numbers, a bridge must be assigned two host addresses.

Figure 4-3 shows the FLEET site with arbitrarily assigned Chaosnet subnet-
work numbers and host addresses.

Figure 4-3 Site FLEET (With Chaosnet Subnetwork Numbers and Host Addresses)

#xDE #xCA
Heloise Dante
#x0 1 #xA1l
Charon
Astrolabe ##j;OA‘L Beatrice
#x02 #xA2
Bridge
Abbey Virgil
#x03 #xA3
ernet bridge
Lope | Cervantes Calderon
#xAS5 #xA6 #xA7
2288079

Chaosnet addresses for each host on a network are constructed from the
concatenation of Chaosnet subnet numbers and host addresses. For example,
DANTE on subnet #<CA has the host address #xA1. Therefore, DANTE’s
Chaosnet address is #xCAA1. HELOISE, on the other hand, is on subnet
#xDE and has the host address #x01. Her Chaosnet address is therefore
#xDEO1. Remember that CHARON is a bridge. One of this machine’s sub-
network numbers is #xDE and the other is #xCA. We arbitrarily assign
CHARON the two host addresses #x04 and #xA4. Concatenate one of these
host addresses, say #x04 to subnet number #xDE, and the other to subnet
number #xCA. CHARON has Chaosnet addresses #DE04 and #xCAA4.

Services At this point you must determine which network services are to be
rendered by which hosts, if you have not already done so. The hosts in site
FLEET have only the default services. Services are discussed in detail in
Section 6, The Generic Network System.

Machine Type and System Type All of the hosts in site FLEET are
Explorers. Therefore, their machine type and system type attributes will all be
:explorer.

Networking Reference

4-23

Getting On the Network

After gathering all of the information about each of the hosts on your
network, tabulate the information for easy reference. Table 4-2 is a table of
host information for site FLEET. This table will be used as a reference during
the creation of the network namespace. The present network configuration
represented in this table is shown also in Figure 4-3.

Table 4-2 Known Host Characteristics of Site FLEET

Host Network Machine System
Name Aliases Address{es) Services Type Type
Heloise He #xDEO1 default :explorer :explorer
Astrolabe Ast #xDEQ02 default :explorer :explorer
Abbey Ab #xDEO03 default :explorer :explorer
Charon Ch #xDE04, #xCAA4 default :explorer :explorer
Dante Dan #xCAA1 default :explorer :explorer
Beatrice Bea #xCAA2 default :explorer :explorer
Virgil Vi #xCAA3 default :explorer :explorer
Lope LOP #xCAAS default texplorer :explorer
Cervantes CcvV #xCAA6b default :explorer :explorer
Calderon Cal #xCAAT7 default :explorer :explorer
Printer 4.5.1.3 Repeat the process of collecting and tabulating information; this
Characteristics time for each of the printers on your network. To know what information is
vital about a printer, see the printer attributes discussed in paragraph 4.2.2,
titled Network Namespace Attributes.
Namespace 4.5.1.4 For planning purposes, you need to know only one characteristic for
Characteristics the future namespace you will be creating; that is, which machines will act as
the network namespace’s servers (actually called so-servers).
Network namespace co-servers maintain a usable copy of the configuration
information that you have just gathered. Whenever a client boots, it sends a
who-am-i message (containing the host address) out on the network. If a
co-server is available, it will respond to the who-am-i message by sending the
necessary network namespace information to the newly booted host, thereby
enabling network services for that host.
In the FLEET example, VIRGIL will act as the only network namespace
co-server for FLEET.
4-24

Networking Reference

Create the
Network
Namespace

Sequence of Events
During Initial Boot

Getting On the Network

4.5.2 Now that you have planned your network configuration and have both
a site diagram and a table of all the known network characteristics, you are
ready to perform the initial boot sequence for the machine you have chosen
to be the network namespace server (Virgil for FLEET). When that machine
is first booted, you will have an option of creating a network namespace.

Each new Explorer system is shipped with a load band containing a boot
network namespace that contains only enough information to boot the new
system as a standalone unit. From the factory, all new Explorer units are
named P1. You will change this name during the initial boot sequence.

4.5.2.1 When you first boot a new Explorer, it runs a series of self-tests on
its hardware. If everything passes these tests, you are prompted to specify
what kind of boot sequence is to take place. You will take the defaults.

After you take the default value specifying the type of boot sequence, the
machine immediately loads all of the namespaces for which it acts as a co-
server. A factory-shipped machine has no such namespaces; therefore, it
proceeds to the next step in the initial boot sequence.

The next step a new machine takes during the initial boot sequence is to
broadcast a who-am-i message to the network. The who-am-i message
contains the host’s name (from its disk-pack), and the host’s address.

Even though the physical portions of the new network are connected, no
hosts on the net contain a network namespace, and therefore, no one can
respond to a who-am-i message. (Besides, it is doubtful that any namespace
would recognize a host called P1.) With no network namespace available
from an external host, the machine proceeds to the next step of the initial
boot sequence.

At this point, a network initialization menu appears, similar to the one
following;:

>> No Explorer Nameserver knows this machine as <name>
Choose a network initialization alternative: [T/0=2 mins]

change the name of this machine and return to this menu

Try (again) to locate an Explorer Nameserver that knows about <name>
Try to contact a specific Explorer Nameserver directly

Convert an existing Network Configuration file into a namespace
Create a new network namespace after booting

Try to contact a specific non-Explorer nameserver

Try loading local files to use this machine as a temporary nameserver

Run stand-alone (no networking) [* DEFAULT *]

Networking Reference

4-25

Getting On the Network

Rename Your

Network Namespace

Co-Server

Completing
the Initial Boot

Bring Up the
Namespace Editor

4.5,2.2 The first step in preparing the new network configuration for site
FLEET is to rename the network namespace server host. Click on the change
the name of this machine and return to this menu prompt. The following
pop-up menu appears when you click on this menu item.

Change machine name

Abort [CGHIEED] [po it [KERD>] [

Change p1 to the name of your network namespace co-server (VIRGIL for
FLEET). Accept the default value of nil for the Desired namespace
(optional prompt. (This prompt lets you specify a default network
namespace to be used with this host.) Click on the nNo value for the save
desired namespace in pack-name prompt.

Your machine has now been properly named, and the network initialization
menu reappears.

4.5.2.3 Now click on create a new network configuration after booting.
After you click on this option, booting completes, and the following message
appears at the top of the print herald:

x To create a new network namespace after booting has completed,
select the Namespace Editor from the System Menu.

Log in to your new Explorer, specifying -1m for the host name, and t to
indicate that no login-initialization file should be loaded, as in the following
example:

(login ‘roger “1lm t)

4.5.2.4 When you have successfully logged in, click right to bring up the
system menu, then select the Namespace Editor option under the Programs
column. Most of the information you need to use the editor is contained in
this section. If, however, you need more information, see the Explorer Tools
and Utilities manual. The following pop-up menu appears:

Choose Namespace to edit
BOOT

<OTHER-NAMESPACE>

NOTE: The BooT namespace is a memory-resident-only namespace that
allows an Explorer to boot standalone. Although you can edit the Boor
namespace, you cannot save any changes that you make. The changes are in
effect only until the machine is rebooted.

4-26

Networking Reference

Getting On the Network

Click on the <OTHER-NAMESPACE> option. A prompt appears in the minibuffer,
requesting the name of a namespace to edit. Enter a name and press
RETURN. At this point a display appears, similar to the one following:

configure Namespace
Namespace Name:........v. 0 SIMPLE -NETWORK
Namespace Type:....... ... PUBLIC PERSONAL SYMBOLICS BASIC
Local search list placement:BEGINNING END NONE
New namespace:c..n Yes No
Namespace Usage:...........:NETWORK
Abort [CEIRD] [] po it [KERID] [

Namespace Name Move the cursor to the end of the dotted lines by the
Namespace Name prompt, and click left. Enter the name by which your new
network namespace will be known (SIMPLE-NETWORK in this example).

Namespace Type All network namespaces should be public namespaces so
that the information on the network namespace is accessible to everyone on
the network. Choose the puBLIC option (which is the default).

Local Search List Placement Your network namespace resides on a search
list stored in the name:*namespace-search-list* variable. When you act as a
server for several namespaces, they will all be on this list. It is possible for a
host to be defined in more than one namespace.

The Local search list placement: prompt allows you to specify where your
new network namespace is placed on the search list. The first namespace in
the search list is searched first for the host. If the host is not found on that
namespace, then the second namespace is searched, and so on, until the host
is found. In the creation of SIMPLE-NETWORK, which is new, you choose
the BEGINNING option.

New Namespace Your network is new, (and so is FLEET); therefore
choose the YEs option at this point. (The default is No.)

Namespace Usage The default value is :network. Since you are setting up a
network namespace, you will accept the default.

Click on Do It or press the END key to signal that you have completed
entering information in the Configure Namespace menu. At this point, your
Explorer enters the Namespace Editor, and displays the Namespace Editor
buffer on the screen:

NAMESPACE EDITOR FOR "SIMPLE-NETWORK"
This is a namespace of type :NETWORK

g tHOST
+ ngys"

*MAILING-LIST
:NAMESPACE
:PRINTER
:SITE

:USER

Networking Reference

4-27

Getting On the Network

Create the
Host Objects

NOTE: The following paragraphs tell you how to create objects for each of
the classes needed by the network namespace. The paragraphs also tell how
to change the default attribute values for each of those objects.

If you have questions about a class, object, or attribute, you can refer to
paragraph 4.2, titled The Network Namespace, or you can move the editing
cursor next to the item for which you need information, and then press
CTRL-SHIFT-D to see the online documentation for that item.

While this manual discusses the creation and editing of the different network
namespace objects in a certain order, you are not restricted to that same
order. For example, you can prepare your :site class object first and your
:host class objects last, if you so desire. The only restriction to this procedure
is that you create the namespace on a machine that you have designated as a
network namespace co-server.

4.5.2.5 The next step in creating a network namespace is to create host
objects for every host that will reside on the new network. The hosts must be
added one at a time, beginning with the host that is being used to create the
namespace. In the FLEET example, VIRGIL is used for this purpose, and
VIRGIL will remain FLEET’s network namespace co-server in the future.

Remember, if you have questions about a class, object, or attribute, you can
refer to paragraph 4.2, titled The Network Namespace, or you can move the
editing cursor next to the item for which you need information, and then
press CTRL-SHIFT-D to see the online documentation for that item.

1. Place the mouse cursor box around the class name :HoST and click
middle on the mouse. A menu of commands appears.

2. Click on the add object command. A prompt appears in the minibuffer,
requesting you to enter the class of the new object.

3. Be sure that the class for the new object is :HosT, and press RETURN.
You are now prompted to enter the name of the new :host object.

4. Enter the name of your host. For FLEET, we enter virgil. A display will
appear, similar to the one following, showing the default attributes (and
values) of the new host.

NAMESPACE EDITOR FOR "SIMPLE-NETWORK"
This is a namespace of type :NETWORK

:HOST
" SYS "
"Virgil"
:ALIASES NIL
G :ADDRESSES ((:CHAOS NIL) (:IP NIL))
G :SERVICES ((:FILE :LOCAL :LOCAL-FILE))
:MACHINE-TYPE :EXPLORER
:SYSTEM-TYPE :EXPLORER

{MAILING-LIST

4-28

Networking Reference

Getting On the Network

5. Currently, the default value of the :ALIASES attribute is nil, meaning that
the host (VIRGIL) has no aliases. To change the nil value so that the
host has an alias, move the mouse cursor box around the :ALIASES
attribute, and click middle. A menu of commands appears.

6. Click on the Edit Attribute command. The following edit window
appears:

NIL
Text Fill (Press the END key to exit, ABORT to abort)
Edit the attribute value of :ALIASES above.

10.

Delete NIL, using standard Zmacs key functions (such as CTRL-D for
delete), and replace NIL with your host’s alias ("vi» for VIRGIL). Press
the END key (not RETURN) to signal completion of the new value for
the :aliases attribute. Now "vir replaces NIL as the value of :ALIASEs,
and a host object for "vi» is automatically added to your display.

You are now ready to enter the address(es) for this host. Place the mouse
cursor box around the attribute name : ADDRESSES and click middle on the
mouse. Because :ADDRESSES is a group attribute, its value is a list of
(network-type address) pairs. Accordingly, a slightly different menu
appears.

Click on the Edit Group Member command. The following pop-up menu
appears:

Choose Group Member to Edit
(:CHAOS NIL) (:IP NIL)

Click on the appropriate entry to change an address from nil. For
VIRGIL, only one type of address (Chaosnet) is available. Therefore we
click on the (:cHAos NIL) entry. The following edit window appears:

(:CHAOS NIL)

Text Fill (Press the END key to exit, ABORT to abort)
Edit the attribute value of (:ADDRESSES :GROUP) above.

Networking Reference

4-29

Getting On the Network

11.

12.

13.

14.

Edit the value just as you did in step 7, previously. This time add the
correct Chaosnet address for your host, maintaining the list format
presented as the value of the group attribute : ADDRESSES. After entering a
Chaosnet address, the list of :sErRVICES is automatically updated to
include the default Chaos services.

NOTE: If you include non-numeric characters in the (network-type
address) pair (such as periods to indicate dotted decimal format), you
must enclose the address portion of the (network-type address) pair in
quotation marks. For example: (:IP "101.001.001.747")

This action does not apply to the #x that indicates a hexadecimal
address.

If your host has other network protocols (such as IP), you must repeat
steps 8 through 11 for each protocol’s address that you need to add for
your host.

When you have entered correct values for all the possible network
addresses of your first host, you are ready to add any services provided
the particular host. Services are discussed in Section 6, The Generic
Network System. Normally, the default services are all that are needed in
a new network. If you must add a service for this host, perform the fol-
lowing steps:

a. Move the mouse cursor next to the :SERVICES attribute and click
middle. A command menu appears.

b. Now click on the Add a Group Member command. A prompt appears
in the minibuffer, requesting you to enter the new group member.

c. Add the new group member and press RETURN.

VIRGIL provides only local file service and the default Chaos services, so
FLEET skips step 13.

Unless you have a non-Explorer host, you can accepts the default values
provided for the next 2 attributes (:MACHINE-TYPE and :SYSTEM-TYPE).
Should you ever need to change the value of these attributes, you can do
so by using the standard Namespace Editor commands as previously
presented.

The following pop-up menu identifies the choices you could select from if
you needed to change the value of the :MACHINE-TYPE attribute:

Choose Machine Type For "Virgil®
APOLLO CADR
DEC10 DEC20
EXPLORER ITS
LAMBDA LM-2
MSDOS MULTICS
NU-MACHINE SUN
SYMBOLICS-36XX VAX
OTHER

4-30

Networking Reference

Identify the
Namespace Servers

Create the
Printer Objects

Getting On the Network

The following pop-up menu identifies the choices you could select from if
you needed to change the value of the :sysTEM-TYPE attribute:

Choose System Type for "Virgil"

EXPLORER ITS LISPM
LOGICAL MSDOS MULTICS
SYMBOLICS TOPS20 TENEX
UNIX UNIX-UCB VMS
VMS4 OTHER

15. Repeat steps 1 through 14 to create a :host-class object for every
machine on your network. FLEET would need to create 10 new objects
in the :host class.

4.5.2.6 For a new network, only one possible change needs to be made to
the :namespace class. You must identify any machines that will be co-servers
for the network namespace other than the machine on which you are creating
the network namespace. If you have only the one co-server for your network
namespace, you can skip the following 6 steps.

Remember, if you have questions about a class, object, or attribute, you can
refer to paragraph 4.2, titled The Network Namespace, or you can move the
editing cursor next to the item for which you need information, and then
press CTRL-SHIFT-D to see the online documentation for that item.

1. Place the mouse cursor box around the class name :NAMESPACE and click
middle on the mouse. A menu of commands appears.

2. Click on the Expand All Objects in class command. The :NAMESPACE
class then expands showing all of its default attributes. Notice that the
value of the :SERVERS attribute is a list that already has the disk-pack
name of the host on which you are working.

3. Place the mouse cursor box around the :sErvERS attribute, and click
middle. A menu of commands appears.

4. Click on the add a Group Member command. A prompt appears in the
minibuffer, requesting that you enter the new group member.

5. Enter the name of a host that will be a network namespace co-server, and
press RETURN.

6. Repeat steps 1 through 5 for any other hosts that will be acting as network
namespace CO-Servers.

4.5.2.7 Having added the necessary values for all the :host and
:namespace objects, you must now identify your printers to the network.

Remember, if you have questions about a class, object, or attribute, you can
refer to paragraph 4.2, titled The Network Namespace, or you can move the
editing cursor next to the item for which you need information, and then
press CTRL-SHIFT-D to see the online documentation for that item.

1. Place the mouse cursor box around the class name :PRINTER and click
middle on the mouse. A menu of commands appears.

2. Click on the Add object command. A prompt appears in the minibuffer
requesting you to enter the class of the new object.

Networking Reference

4-31

Getting On the Network

Be sure that the class for the new object is : PRINTER, and press RETURN.
You are now prompted to enter the name of the new :printer object.

Enter a name for your printer. The name can be any alphanumeric
collection of characters. FLEET’s character printer resides on host
Astrolabe, so as a mnemonic we enter p-asTRo. A display will appear,
similar to the one following, showing the default attributes {and values) of
the new printer.

NAMESPACE EDITOR FOR "SIMPLE-NETWORK"
This is a namespace of type :NETWORK

:PRINTER
"P-ASTRO"

:HOST "New Explorer"
:TYPE :TI8B5S
: STREAM ' : SERIAL
:PORT NIL
:BAUD 4800
:DATA-BITS 8
: STOP-BITS 1
:PARITY NIL
:XON-XOFF T
:CHARACTER-PRINTER-P T
: IMAGE-PRINTER-P NIL

Place the mouse cursor box around the attribute :HosT and click middle
on the mouse. A menu of commands appears.

Click on the Edit Attribute command. The edit window appears.

Delete "NEW EXPLORER", and replace it with the name of the host to which
your printer is attached. Press the END key (not RETURN) to signal
completion of the new value for the :HoST attribute.

If your printer is not a TI855 as shown as the default value for the :TYPE
attribute, place the mouse cursor box around the attribute :TYPE and
click middle on the mouse. A menu of commands appears.

Click on the Edit Attribute command. This time, a pop-up menu
appears, similar to the one following:

Choose Printer Type for Printer "P-ASTRO"

TI85S TIB80
TI2015 TI2115
IMAGEN-PRINTER OTHER

4-32

Networking Reference

Create the
Site Object

Getting On the Network

10. Click on the printer type that agrees with your printer.

11. Change the values as needed for any of the remaining attributes shown
for your new printer. Whenever you click on the Edit Attribute
command for the remaining attributes, an appropriate pop-up menu will
appear, complete with the necessary choices from which to select.

12. Repeat steps 1 through 11 for any other printers that you need to add to
your network.

4.5.2.8 Having added the necessary values for all the :host, :namespace,
and :printer objects, you must now define your site attributes.

Remember, if you have questions about a class, object, or attribute, you can
refer to paragraph 4.2, titled The Network Namespace, or you can move the
editing cursor next to the item for which you need information, and then
press CTRL-SHIFT-D to see the online documentation for that item.

1. Place the mouse cursor box around the class name :sITE and click
middle on the mouse. A menu of commands appears.

2. Click on the Add object command. A prompt appears in the minibuffer
requesting that you enter the class of the new object.

3. Be sure that the class for the new object is :sI1TE, and press RETURN.
You are now prompted to enter the name of the new :site object.

4. Enter a name for your site. The name can be any alphanumeric collection
of characters. FLEET is the site name in our example. When we enter
FLEET and press RETURN, a display will appear, similar to the one
following, showing the default attributes (and values) of the new site.

*

Q
+H++++ o+

NAMESPACE EDITOR FOR "SIMPLE-NETWORK"

This is a namespace of type :NETWORK
:HOST
" SYS "
:MAILING-LIST
:NAMESPACE
"SIMPLE -NETWORK"
:PRINTER
:SITE
"Fleet"
:LOCATION NIL
: TIMEZONE "CDT"
:DEFAULT-FILE-SERVER NIL
: SYS-HOST "sys"
:HOST-FOR-BUG~REPORTS NIL
:PRINTER NIL
:BITMAP-PRINTER NIL
: PRIMARY-TIME-SERVERS NIL
:PRIMARY-MAIL-SERVERS NIL
:USE-PRIMARY-MAIL-SERVERS :after-first-attempt
:UUCP-GATEWAY -HOSTS NIL
:DEFAULT -MAIL-HOST NIL
: TERMINAL-F-ARGUMENTS ((NIL :LOCAL-LISP-MACHINES) (O :READ)
:NAMESPACE-SEARCH-LIST ("SIMPLE-NETWORK")
:USER

Networking Reference

4-33

Getting On the Network

10.

11.

Place the mouse cursor box around the attribute :LocAaTION and click
middle on the mouse. A menu of commands appears.

Click on the Edit Attribute command. The edit window appears.

Delete N1L, and replace it with the name of your site. Press the END key
(not RETURN) to signal completion of the new value. In the example,
FLEET is located in Galveston, so we would enter Galveston.

If the default value shown for the :TIMEZONE attribute is correct, skip to
step 11. Otherwise, place the mouse cursor box around the attribute
:TIMEZONE and click middle on the mouse. A menu of commands
appears.

Click on the Edit Attribute command. A pop-up menu appears, similar
to the one following:

Choose Timezone for "FLEET"

-2 -11 -10 -8 -8 -1

-8 -5 -4 -3 -2 -1
GMT © 1 2 3 ADTE
4 EST 5 CST 6 MSTE

7 PST 8 YST 9 HSTE
10 BST 11 12 i

Either click on one of the three-letter timezones that matches the
timezone where your site is located, or click on a number that represents
the difference in hours between Greenwich Mean Time (GMT) and your
local timezone. Negative numbers indicate that your timezone is earlier
that GMT, and positive numbers indicate that your timezone is later than
GMT.

Change the values as needed for any of the remaining attributes shown
for your new site. Whenever you click on the Edit Attribute command
for the remaining attributes, an appropriate edit window will appear, or a
pop-up menu will appear that contains the choices from which you can
select.

NOTE: If you have multiple values to add to a given attribute, for
example :terminal-f-arguments, be sure that the attribute has been
designated as a group attribute. However, when order is important, as in
:primary-time-servers, the attribute should not be a group attribute.
Group attributes have the letter G slightly to the left of the attribute.

To make an attribute a group attribute, place the mouse cursor box
around that attribute and click middle. Then, click on the Toggle Group
Status command.

4-34

Networking Reference

Verify
the Network
Namespace

Distribute
the Network
Namespace

Getting On the Network

4.5.3 After you have created a network namespace, you must write out the
changes. When the changes are written, they are also verified. Verification
checks to make sure that the choices you made during the creation of the
network namespace are valid and consistent.

To write out the new network namespace you have created, perform the
following steps:

1. Click middle on the mouse. A menu of commands appears.

2. Click on the following command: verify namespace. A prompt appears in
the minibuffer asking if you want to verify the entire network namespace.

3. Because your network namespace is totally new, answer YEs, and press
RETURN. At this point, your new network namespace is verified, and
any constraint violations are reported. If you have errors, correct them
before proceeding.

After you are sure that the changes are stable, write them out globally. Before
the Namespace Editor will write any changes globally, it performs an incre-
mental verification to ensure that your changes are consistent. An incre-
mental verification checks only those objects that have been edited to see if
they are consistent with the rest of the namespace.

4.5.4 When you have made all your corrections, you are ready to distribute
your new namespace. The act of distributing your network namespace
performs several functions.

M Creates the network namespace cache on the local machine. The cache
holds a partial copy.of the network namespace for use during an interac-
tive Explorer session. The cache goes away when the machine is
rebooted, and after a certain time interval, the cached entries are
marked for renewal, and are renewed the next time you query the
namespace for that entry.

H Writes a machine-readable representation of the namespace into the
following file: Im:name-service;<namespace-name>.x1d#>

B Creates the following file: Im:name-service;<namespace-name>-log.lisp#>
This file will be used to record any changes made to the network
namespace either by your current machine or by any other host on the
network.

To distribute your new network namespace, perform the following steps:

1. Click middle on the mouse. A menu of commands appears.

2. Click on the pistribute namespace command.

3. Press the END key to exit the Namespace Editor utility.

Also, you can press the END key after verifying the namespace changes, and
you will be prompted to distribute the namespace.

Networking Reference

4-35

Getting On the Network

Boot the Hosts
on the New Network

4.5.5 As you boot each of the hosts on your new network, the network
initialization menu will appear. Select the change the name of this machine
and return to this menu prompt, and change the name of each host accord-
ing to your configuration plan made earlier.

As each new host issues its who-am-i message along with its new name, your
network namespace co-server responds by sending necessary boot
information to that host.

After obtaining the necessary boot information, each new host completes its
initial boot sequence and is then available for use, with full network access.

Logical Subnets

4.6 All discussion of network configuration to this point has dealt with
physical bridges and subnets, in which there is an actual hardware separation
between subnets. For example, CHARON serves as the bridge between the
two physical subnets at FLEET. CHARON has two Ethernet controller
boards and two Ethernet addresses, which translate into two Chaosnet
addresses. It is CHARON's responsibility to forward messages from hosts on
one subnet to hosts on the other subnet. It is possible, and in many cases
desirable, to have multiple logical networks on a single physical Ethernet net-
work. In such cases, all hosts are connected directly to a single Ethernet and
networks are defined logically. This allows multiple logical networks and sub-
networks to reside on a single hardware network.

Figure 4-4 shows an Ethernet on which two logical networks reside. The
highlighted areas are on one network. All of the hosts on this network have a
Chaosnet address #x03. All of the hosts with a Chaosnet address of #x02 are
on the other subnetwork. This serves to isolate the hosts from one network
from those in the other. The hosts on network #x03 cannot communicate at
all with those on subnet #x02. This kind of insulation is useful where some
machines need to be quarantined for one reason or another.

In cases such as these, two network namespaces must be created on separate
servers on each network.

4-36

Networking Reference

Getting On the Network

Figure 4-4 'Logical Subnetworks

Networking Reference 4-37

Getting On the Network

Network

Initialization Menu

Options

4.7 The network initialization menu appears not only when an Explorer is
booted for the first time, but whenever no network namespace co-servers
can be found to supply network information.

Similarly, the same menu appears if you execute the name:initialize-name-
service function and no namespaces are listed in the local server-boot-list file
(that is, your host is not a co-server), or no co-server responds to the who-
am-i message.

The following paragraphs describe each of the options supplied in the net-
work initialization menu as shown here.

>> No Explorer Nameserver knows this machine as <name>
Choose a network initialization alternative: [T/0=2 mins]

Change Machine
Name

Change the name of this machine and return to this menu

Try (again) to locate an Explorer Nameserver that knows about <name>
Try to contact a specific Explorer Nameserver directly

Convert an existing Network Configuration file into a namespace
Create a new network namespace after booting

Try to contact a specific non-Explorer nameserver

Try loading local files to use this machine as a temporary nameserver

Run stand-alone (no networking) [* DEFAULT *]

4.7.1 The first option allows you to change the name of your Explorer.
When an Explorer is first taken from the box it is named P1. If you are
installing a new network of Explorers you will have to change the names of all
the hosts but one, which can be left with the name P1. Otherwise you would
create a network configuration in which all hosts on the network have the
same name. You will probably want to change all the names, however. The
following window appears if you click on this menu item.

Change machine name

Save desired namespace in pack-name?:..YES NO

abort [CGHERD] [] po it [CEND] []

Note that the current machine name, P1, appears as the default new machine
name. You can replace this name with any name you wish. Press RETURN to
signify that you have completed adding a new name.

The Desired namespace (optional) prompt lets you specify a default network
namespace to be used with this host. When you give a value for this prompt,
that value is immediately bound to the name:*default-who-am-i-domain*
variable. This variable stays bound to the new value until you reboot.

4-38

Networking Reference

Locate an
Explorer Nameserver

Getting On the Network

The save desired namespace in pack-name prompt lets you store the name of
the network nanespace in your disk label, so that when you boot your host, it
will select that network namespace automatically.

Select the Do it option with the mouse or press END to change the machine
name and return you to the network initialization menu. Choosing Abort
selects the default machine name and returns you to the network initialization
menu.

4.7.2 If you choose the second item on the network initialization menu,
your Explorer will attempt to find an Explorer Nameserver on the network
that knows about your machine. If there is no Explorer nameserver to be
found, you will be returned to the network initialization menu, with an
advisement to the effect that no nameserver could be found:

>> No Explorer Nameserver knows this machine as <name>
Choose a network initialization alternative: [T/0=2 mins]

Contact
Specific Explorer

Change the name of this machine and return to this menu
Try (again) to locate an Explorer Nameserver that knows about <name>
Try to contact a specific Explorer Nameserver directly
Convert an existing Network Configuration file into a namespace
~ Create a new network namespace after booting
Try to contact a specific non-Explorer nameserver

Try loading local files to use this machine as a temporary nameserver

Run stand-alone (no networking) [* DEFAULT *]

4.7.3 1If your new Explorer has been preassigned an address in an existing
network namespace configuration, and you know the address of an Explorer
co-server on that network, you can select the third option in the network
initialization menu to obtain namespace information from the remote co-
server for your local machine.

If you choose this network initialization menu item, the following window
appears:

Contact Explorer Nameserver

Namespace Name:t iveetrnnorineennnnns .NIL
Network type:ttt ittt ine i CHAOS IP
Network address of this machine:................ NIL
Network address of the Explorer Nameserver:..... NIL

Ethernet Controller number for these addresses: 1

abort [CHIRD] [CJ po it KEID] [

This pop-up window prompts you for a namespace name, network type,
address of the local machine, the Explorer nameserver (the host that supplies
the namespace), and the number of the Ethernet controller of the local
machine. Network types can be Chaosnet or Internet Protocol, depending on
what protocols are supported on the target network.

Networking Reference

4-39

Getting On the Network

Convert a Network
Configuration File

Create a
New Network
Configuration

Contact a Specific

Non-Explorer
Nameserver

The Ethernet Controller number identifies which Ethernet controller board in
your chassis provides control for the network address of your host. The
default value of 1 identifies the first Ethernet controller board in your chassis
(going from right to left, looking in the back of the Explorer chassis).

4.7.4 If you have updated a site’s Explorers from Release 2 to Release 3
software, you must convert the main network configuration server’s
configuration file (which is normally named Im:site;siteinfo.xfasl) into a
network namespace. This subject is discussed extensively earlier in this
section in paragraph 4.3, titled How to Update a Network From Release 2.

If you choose the fourth option from the network initialization menu, the
following window will appear, requesting that you enter a namespace name
and the name of the existing configuration file (which you want to convert).

convert siteinfo file into network namespace

Pathname of a NetConfig Siteinfo file: NIL

Abort [CHIERD] [po it [KEND] [

Choosing the Abort option simply returns you to the network initialization
menu.

4.7.5 If you choose the fifth option in the network initialization menu, the
boot sequence will continue. When booting completes, you can enter the
namespace editor as described in the example at the first of this section.

4.7.6 If you are installing a new Explorer on an existing network whose
nameserver is not an Explorer, you can establish contact by choosing the
sixth option in the network initialization menu. The following window will
appear:

Contact Symbolics nameserver

Chaos address of this machine:.................. NIL
Chaos address of the Symbolics Nameserver:...... NIL
Ethernet Controller number for these addresses: 1
Abort [CAHEED] [po it [KERID] [

The Chaos-address prompts can be in any format.

The Ethernet Controller number identifies which Ethernet controller board in
your chassis provides control for the network address of your host. The
default value of 1 identifies the first Ethernet controller board in your chassis
(going from right to left, looking in the back of the Explorer chassis).

Currently, the only non-Explorer name server that is supported is Symbolics.

4-40

Networking Reference

Load Local Files
For a Temporary
Nameserver

Running Standalone

Defaults for Booting
a Disk-Saved Version

Getting On the Network

4.7.7 Even though your local host is not a network namespace co-server,
you can store certain files on your host so that you can gain network access
when no co-servers are available. You should copy the following files from a
co-server so that you will be prepared for this contingency:

Im: name-service;server-boot-list.lisp#>
Im: name-service;<namespace-name>-public.xld#>
Im: name-service;<namespace-name>-log.lisp#>

You can store these files anywhere on your local host, and specify the
namespace name in response to the pop-up menu’s prompt whenever you
select this option from the network initialization menu:

Force local namespace load

Name of the local namespace to try loading: NIL

abort [CGHRD] [J po it [KED} [
Although loading the XLD file allows you to access the network and even to

make local changes to the namespace, you cannot make any global changes
to the network namespace.

4.7.8 If you do not wish for this Explorer to participate in a network, you
can choose the last option. If you do not choose one of the options in the
network initialization menu within two minutes, the configuration will default
to standalone operation, and the initial boot sequence will continue.

4.7.9 Whenever you choose any of the non-standard boot selections from
the network initialization menu (such as Try to contact a specific Explorer
nameserver directly, Try to contact a specific non-Explorer nameserver,
or Try loading local files to wuse this machine as a temporary
nameserver, the following prompt appears as soon as that option completes its
actions:

should your choice be the default for booting a disk-saved version of
this band? (Yes or No)

If you answer YEsS to this query, the namespace software stores certain
information inside the name:*non-standard-boot-alternative* variable.
You can then perform a disk save of the current environment, and when you
reboot, your host will automatically select the same non-standard boot alter-
native. In so doing, your host bypasses both the network initialization menu
and any network namespace co-servers not identified as part of the booting
alternative.

If, by mistake, you answer YES to this query, simply set the name:*non-
standard-boot-alternative* variable to nil before performing your disk save.
By doing so, you can follow the standard boot alternatives on rebooting.

Networking Reference

4-41

Getting On the Network

Network 4.8 The following functions and variables can be used to modify your
Namespace network namespace environment.
Functions and
Variables
name:initialize-name-service &optional namespace (display t) Function

Performs all name service (and network) initializations as those done during a
cold boot (destroying any local namespace updates). If you specify
namespace, this function broadcasts for a server of that namespace (but does
not override a qualified pack host name for this machine). If display is non-
nil (the default), the resulting namespace configuration is shown on
standard-output.

name:run-standalone Function
Removes your host from the network until you run the name:initialize-
name-service function.

name:show-namespace-configuration &optional (stream *standard-output*) Function
Displays information about the namespaces available on this machine. The
following information is displayed:
B Name — The name of the namespace.

B Type — The type of namespace, such as :personal.

W Usage — The usage mode corresponding to a set of expert editors. (Refer
to the Explorer Tools and Utilities manual for information on expert
editors.)

m Search # — Where in the search list the namespace appears (1 for first, 2
for second, and so on).

m Server? — Whether the namespace has a server at this machine.

name:distribute-namespace namespace-name Function
&key :local-only (:save-first t) :server-list
(:search-list-loc :beginning) (:notify t)

Terminates configure or convert mode for a new public namespace. These
modes are described in the :explorer-server init-args of the name:add-
namespace function in the Explorer Tools and Utilities manual.

CAUTION: The name:distribute-namespace is mainly intended for
internal use.

You can optionally write the namespace to a binary file. You should do this if
you are in convert mode because no changes have been written to the log file.

Propagating to servers of subsequent changes is enabled.

4-42 Networking Reference

Getting On the Network

A local client instance is created, and all further namespace accesses at this
machine now go through the client instance rather than directly to the server
instance.

Optionally, you can start other servers, which obtain their information from
this host. This works only if those servers are already on the network.

:local-only — When non-nil, distributes only to this host. The default is nil.

:save-first — When non-nil (the default), writes the namespace to an xld file
first.

:server-list — Specifies a list of servers (host names) to receive distribution.
The default is all servers.

:search-list-loc — Specifies where to put the namespace in the search list:
:beginning, :end, or nil (that is, do not put it on the search list).

:notify — When non-nil (the default), notifies you if some servers did not
answer.

name:*default-who-am-i-domain* Variable

The name:*default-who-am-i-domain* variable allows you to specify which
network namespace that your host will boot under. The value you bind to this
variable should be the name of the network namespace. You must perform a
disk save to make the variable-binding permanent across boot sessions.

name: *non-standard-boot-alternative* Variable

The name:*non-standard-boot-alternative* variable is only useful when
you mistakenly answer YES to the Should your choice be the default for
booting a disk-saved version of this band? (Yes or No) query during a
non-standard boot sequence.

A YEs answer to this query causes the namespace software to store certain
information inside the name:*non-standard-boot-alternative* variable so
that a disk save of the current environment will cause future reboots to
automatically select the same non-standard boot alternative. In so doing, your
host bypasses both the network initialization menu and any network
namespace co-servers not identified as part of the booting alternative.

To correct the mistake, simply set the name:*non-standard-boot-alterna-
tive* variable to nil before performing your disk save. By doing so, you can
follow the standard boot alternatives on rebooting.

nse:*verification-level* Variable

This variable specifies the default level of verification, which applies to
incremental verification as well as namespace verification. The following lists
the possible values for this variable:

H :errors-only — Warnings are not printed for incremental verification or
namespace verification.

M nil or :none — Automatic incremental verification is not performed
before updates.

W :full — Full verification is performed; warnings and error messages are
printed for all verifications. This is the default value.

Networking Reference

4-43

Getting On the Network

net:get-host-attribute host atiribute &optional default Function

The net:get-host-attribute function returns the value of the attribute identi-
fied by the attribute argument from the host identified by the host argument.

The host argument is either a symbol or a namestring.
The attribute argument is a keyword.

The optional default argument, if non-nil, causes this function to return the
default value of the attribute rather than its current value.

For example, in a particular namespace, the following code returns a value of
kj:

(net:get-host-attribute “ti-7|knox-johnson :short-name)

net:set-host-attribute host attribute value Function

The net:set-host-attribute function stores the value specified by the value
argument into the attribute identified by the attribute argument. The attribute
is then updated locally in the namespace.

The host argument identifies a particular host; or rather a network
namespace host-class object. The attribute to be set belongs to this host-class
object. The host argument can be either a symbol or a namestring.

The attribute argument is a keyword.
The value argument can be any Lisp form (symbol, string, or Lisp object).

net:get-user-attribute key Function

The net:get-user-attribute function returns the value of the attribute identi-
fied by the key argument (based on who is currently logged in to the local
host). If no :user object exists for that person, net:get-user-atiribute returns
nil.

net:get-site-option key &optional local-only Function

The net:get-site-option function returns the value of the site option
identified by the key argument (for the local site only). Site option values are
specified in the site class of the network namespace.

The key argument is a keyword, such as :location, :timezone, and so on.

The optional local-only argument, if non-nil (the default is nil), always
returns a value obtained from the local cache; never from a network
namespace co-server.

net:set-logical-host logical-host translated-host Function
&key :site-directory :site-device (:verbose t)
(:local-only *local-only-namespace-updates*)
(:namespace *default-namespace-for-logical-hosts*)

The net:set-logical-host function sets the value of the logical-host argument
so that it translates to the host (logical or physical) identified by the
translated-host argument. For information about logical hosts, see the
Explorer Input/Output Reference manual.

4-44 Networking Reference

Getting On the Network

If translated-host is a logical host, then this function only sets the host
translation; the directory translations are provided from the host identified by
the translated-host argument. If translated-host is a physical host, then this
function not only sets the host translation; it also tries to provide directory
translations by loading the site translations file. The name of this file is based
on the arguments to net:set-logical-host:

“translated-host: site-directory; logical-host.translations”

If the host has device components to its pathnames, the site-device argument
would provide that component immediately following the translated-host
component.

The :site-directory argument identifies the directory name where the transla-
tion file resides. This value can be either a string (such as “site”, the default)
or a symbol.

The :site-device argument identifies the device name where the translation
file resides. On Explorer systems, this defaults to nil.

The :verbose argument (which defaults to t) specifies whether or not to print
a message to the screen informing the user about the change.

The :local-only argument, if non-nil, causes the translations to be in effect
only for your local namespace cache. The default value of this keyword is the
same as the value of the *local-only-namespace-updates* variable.

The :namespace argument, if non-nil, identifies which network namespace
contains the logical host specified as the first argument of this function. The
default value of :namespace is the same as the value of the *default-
namespace-for-logical-hosts* variable.

net:set-sys-host translated-host Function

&key :site-directory :site-device (verbose t)
(local-only *local-only-namespace-updates*)
(namespace *default-namespace-for-logical-hosts*)

This function sets the host called “SYS” to translate to the value specified by
the translated-host argument.

net:translated-host host Function

This function returns three values: the translated host object, the logical-host
object that translated to a non-logical host, and the directory translations.

Networking Reference

4-45

CHAOSNET APPLICATIONS
PROGRAMMING AND NETWORKING

Introduction 5.1 This section, which discusses Chaosnet applications programming and
networking, assumes that your are familiar with the Chaosnet protocol. The
main source of information about the Chaosnet protocol is available as a
memo (AIM-628) from the following address:

Publications, Room NE43-818

M.I.T. Artificial Intelligence Laboratory
545 Technology Square

Cambridge, MA 02139 USA

Note that the memo describes a Chaosnet network built on Chaosnet hard-
ware. The Explorer Chaosnet implementation is built on top of Ethernet
hardware.

Section 5 focuses on creating Chaosnet-specific network servers, including
how they are implemented on server hosts, and how you can access the
service provided. Several example servers are discussed in detail.

A server is a Lisp program on a host that provides some service to other hosts
on the network. The user can usually access such a program in a manner that
is transparent to the operator at the server host. Every Explorer server
requires two types of Lisp functions:

B User functions — The functions that the user invokes to access the server

B Server functions — The functions that process the user’s request for
service and return the results to the user

The functions invoked by the user are usually fairly simple in construction.
The server’s side can be more complicated. There are two types of functions
that must be implemented at the server’'s side of a connection:

B Auxiliary functions — The functions the server uses to perform the data
processing procedures requested by the user

R Communications functions — The functions the server uses to communi-
cate with the user

((:FILE :LOCAL :LOCAL-FILE)
(:FILE :TCP :FTP))

Networking Reference 5-1

Chaosnet Applications
Programming and
Networking

Connections

5.2 Processes on different hosts can communicate by using a simple transac-
tion as described in the following paragraph; however, for more sustained
communication to occur between the processes, Chaosnet must first establish
a connection between the processes. A Chaosnet connection is a full-duplex
channel.

A conn is one side of a Chaosnet connection. A conn is a named structure of
type chaos:conn (for more information on structures, see the section titled
Structures, in the Explorer Lisp Reference manual). The conn may have an
actual connection attached to it; it may have a connection still being made; or
it may record that a connection was refused, closed, or broken.

Using Simple
Transactions

User Side

5.3 A simple transaction is one in which a user host sends out one request
for connection packet to a server host, which in turn returns exactly one
answer packet back to the user. A full connection is not established during a
simple transaction. Therefore, if a local host performs a simple transaction
and expects a reply from a remote host, it is possible that the remote host
may receive the request and actually reply. If the reply is lost on the network,
the local host locks up and waits for the reply even though it may never be
forthcoming. For this reason, simple transactions are not normally used in
situations where a client and server must exchange data.

Since a packet’s data field is limited to 488 bytes, the amount of data that
can be exchanged between the server and the user during a simple transac-
tion is restricted, but simple transactions are quite useful when small amounts
of data need to be passed back and forth over the net.

5.3.1 The following example illustrates the use of a very simple service and
the way it is accessed from the user’s side. The means by which the user
accesses a particular server can vary from simple to extremely complex.
Usually a server is invoked by a function provided to users for that purpose.
The following function takes a minimalist approach to server access. To in-
voke the services of the Witticism server on the host called GROUCHO, the
user can simply enter the following into a Lisp Listener:

(witticism "GROUCHO")
The definition of this function is as follows:

(defun witticism (host)

"Return witticism."

(let ((pkt (chaos:simple host "Witticism")))
(format t "~&-s" (chaos:pkt-string pkt))
(chaos:return-pkt pkt)
nil))

The chaos:simple function carries out the user side of a simple transaction.
In so doing, chaos:simple performs several operations. First, a connection is
created and opened, and a request-for-connection packet is transmitted over
the network to the host specified as the argument to witticism. The contact
name “witticism" is transmitted in the data field of the request-for-
connection packet. The system waits for an answer packet in response. Upon
receipt of the server’s packet, the connection is automatically closed.

5-2

Networking Reference

Server
Side

Listening

Contact Name

Sending

Server
Auxiliary
Function

Chaosnet Appliations
Programming and
Networking

The variable pkt is bound to the value returned by the chaos:simple function,
which is the packet transmitted back to the user from the server. The
function chaos:pkt-string extracts the string filling the data field of the
Chaosnet packet. The format statement sends a carriage return and formats
this returned string.

The next function called is chaos:return-pkt, which returns the packet to the
system for reuse. This function must always be used after using the
chaos:simple function.

5.3.2 A server is a process on a host that provides some service to other
hosts on the network. Servers listen to the network for requests and respond
to a user. The definition of the witticism-server function is as follows:

(defun witticism-server ()
(let* ((conn (chaos:listen "witticism")))
(chaos:answer-string conn (wit))))

5.3.2.1 The first part of the function witticism-server establishes a
connection conn that is in a chaos:listening-state waiting for an incoming
request for connection. The function chaos:listen returns the connection
with the contact name "witticisnm".

5.3.2.2 The contact name is a string identifying the particular server. As
mentioned earlier, the contact name is transmitted in the data field of the
request for connection packet. When GROUCHO receives the request for
connection with the contact name "witticism", chaos:listen returns a
connection that is in the chaos:rfc-received-state.

NOTE: The contact name is always the string of bytes up to the first #/Space
character in the data field of the packet. This delimiter allows the contact
name to be distinguished from any data being transmitted in the RFC packet.

5.3.2.3 The server now answers the user’s request for a witticism using the
function chaos:answer-string. This function sends a reply back to the user
with a string in its data field. This is the heart of the simple server illustrated
here.

5.3.2.4 Server auxiliary functions are used to carry out the network-
independent data processing operations associated with the server. In this
example, the function wit is called. Its duty is to return a randomly chosen
witticism from a data bank. The following is a very simple example of an
implementation of this function:

(defun wit ()
(nth (random (length *witticisms*)) *witticisms*))

Networking Reference

Chaosnet Applications
Programming and
Networking

Initializations

Sending
Messages From
the User Side

The function randomly selects a witticism-string from the list identified by the
witticisms variable. An example of how to establish the *witticisms* list
follows:

(defvar *witticisms* “("Time is money."
"Money is the root of all evil."
"Time is the root of all evil."
"Without evil there can be no good."
"Without money you cannot have a good time."
"Without time you cannot spend money.")

5.3.2.5 For the witticism server to function properly, the server function
that is to listen for user requests must first be added to the chaos:server-
alist. This association list (alist) maintains a list of all services that a given
host provides over Chaosnet. This list tells the system to evaluate the function
witticism-server automatically, whenever a request for connection is
received. Automatic evaluation ensures that the host is always listening for a
request for connection with the server. Use the add-initialization function to
add a server to the server alist.

(add-initialization "witticism"
‘ (process-run-function "wit" ‘witticism-server)
nil
‘chaos:server-alist)

For more details on initializations, see the Explorer Lisp Reference manual.
Note that process-run-function is used when adding the initialization, rather
than calling the server function directly. This action ensures that the server
function has its own separate process in which to run (as opposed to running
in the background). By running separate processes, Chaosnet is not affected
if the server process fails.

5.4 Many applications that employ a simple transaction require that a
message be sent from the user side to the server side. When the user wishes
to send a message to another host, the message must be included in the data
field of the packet. At the user side, this operation requires the concatenation
of the contact name, which occupies the first n-bytes up to the first #\Space
in the data field of the packet, and the actual message, which occupies the
rest of the data. This character string then has to be parsed at the server side
of the connection so that the actual message can be printed on the server’s
screen-—minus the contact name. The following example shows the imple-
mentation of chat, a simple message-sending program. A user at the client
host can send a message to a chat server at host YOUNG by entering the
following in a Lisp Listener:

(chat "young" "This is intended as a message for Young")
The server’s function is to print the message on the screen of the local host. It

then sends a reply back to the originator of the transaction with the message
"Gossip sent!".

5-4

Networking Reference

The User’s
Packet

The Server’s

Side

Chaosnet Appliations
Programming and
Networking

5.4.1 At the user's side, the message is transmitted by the use of the
function chat, whose definition is given here:

(defun chat (host message)
(let ((pkt (chaos:simple host
(format nil "chat ~A " message))))
(format t "~&-A" (chaos:pkt-string pkt))
(chaos:return-pkt pkt)
nil))

In this example, the variable pkt is bound to a packet returned from a chat
server host.

The format nil sequence joins the contact name to the message (which must
be entered by the user as a string). Note that the space after the last character
in the contact name ("chat *) is crucial. This delimits the contact name from
the rest of the data field at the server side of the connection.

Next, the string returned from the chat server is formatted on the client’s
screen. As before, this string is extracted from the packet with the chaos:pkt-
string function. The packet pkt is then returned to the system for reuse with
the function chaos:return-pkt.

5.4.2 When the server receives the packet, the contact name, in this case
chat is automatically parsed out of the data string. The rest of the data field is
not, however. Your server function must have provisions for stripping the
contact name from the data string prior to processing the remaining data in
the string occupying the data field of the packet. The chat-server function is
defined as follows.

(defun chat-server ()
(let* ((conn (chaos:listen "CHAT"))

(pkt (chaos:get-next-pkt conn))

(message-string (subseq (chaos:pkt-string pkt) 5))

(host (net:get-host-from-address

(chaos: foreign-address conn) :chaos)))

(tvinotify nil "Chat from -A: ~A" host message-string)
(chaos:answer-string conn "Gossip sent.")
(chaos:return-pkt pkt)))

In this function definition, a connection conn in the chaos:listening-state is
created. As soon as conn goes into chaos:rfc-received-state (that is, it has
recognized the contact name "CHAT"), pkt is returned with the chaos:get-
next-pkt function. This function returns the next packet from a connection.

Next, the local variable message-string is bound to the message sent by the
user at the client host. While the function chaos:listen can recognize a
contact name that has been concatenated to a data string in the data field of
the packet, it does not actually remove it from the data. To strip the message
from the contact name, you can use the function subseq on the string
returned by chaos:pkt-string. The numeric argument to subseq must be an
integer equal to the length of the actual contact name plus 1 (to account for
the #/Space after the contact name in the string). Since (length "CHAT ")
returns 5, the chat-server function extracts everything in the data string after
the contact name by specifying a numeric argument 5 to subseq.

Networking Reference

5-5

Chaosnet Applications
Programming and
Networking

The next local variable (host) returns the client’s host name, using the
function chaos: foreign-address. This function returns the Chaosnet address
of the remote host at the other end of the connection. The function net:get-
host-from-address returns the host address of the remote host using its
Chaosnet address.

The message is then displayed on the user’s screen.

The function chaos:answer-string sends a verification message back to the
source host that the operation has been successful. This type of return
message is the only mechanism available to a simple transaction by which the
originator of the transaction can determine the success of the transmission.

Lastly, the chaos:return-pkt function is called to return the packet to the
system for reuse.

As with all servers, the chat server must be added to chaos:server-alist to
ensure that it listens constantly for the chat server’s contact name.

(add-initialization "chat"
‘(process-run-function "chat" ‘chat-server)
nil
‘chaos:server-alist)

Using Stream
Input and Output

Client Side—
Spelling Server

Opening a Stream

5.5 Chaos streams provide a higher level of abstraction to insulate you
from many bookkeeping details, such as keeping track of the state of a
connection or determining the number of bytes in the data field of the
packet, that are required when using the lower-level Chaosnet functions. The
functions chaos:open-stream, chaos:make-stream, as well as the methods
:foreign-host, :close, :force-output, :finish, ;eof, and :clear-eof, are used
to manipulate Chaosnet streams, a higher-level way to utilize full Chaosnet
connections. The following discussion of the use of the Chaosnet stream
functions and methods focuses on the development of a simple server that
checks spelling for other hosts on the network.

5.5.1 A user at the client side of the speller invokes the spelling server
with the function check-spelling. Input to this function is simply a list of
words that the user wants to check for correct spelling. In return, the spelling-
server returns a list of those words that are poorly spelled or possibly
unknown to the server. The client-side function check-spelling is as follows:

(defun check-spelling (host text)
(with-open-stream (stream (chaos:open-stream host "speller"))
(write text :stream stream)
(send stream :force-output)
(format t
"~&The following words are either incorrect or unknown:")
(read stream)))

5.5.1.1 The function chaos:open-stream is used at the client side of a
networking function to open a chaos stream. This function opens a Chaosnet
connection and returns an I/O stream. The arguments to chaos:open-stream
are the host to which you wish to connect and the server you wish to use. The
host specified by the host argument provides the spelling server functions to
the network. The contact name for the server is "SPELLER".

The Common Lisp macro with-open-strean is used to create a stream named
stream. The constructor for the stream is the call to chaos:open-stream.

5-6

Networking Reference

Writing to a Stream

Forcing
Packet Output

Reading From a Stream

Server Side—
Spelling Server

Server’s
End of Stream

Chaosnet Appliations
Programming and
Networking

5.5.1.2 The body of the with-open-stream macro is concerned with writing
to and reading from the stream stream. The Common Lisp function write,
which writes characters to a stream, is used to write the list of words to be
checked to the stream stream.

5.5.1.3 The Chaosnet stream functions handle all of the details of placing
user data into packets. Therefore, the user normally need not be concerned
with the size of the body of data to be transmitted. If the body of data is very
large, as in the case of a file transfer from client to server or vice versa, the
Chaosnet stream functions break it into packet-sized pieces for transmission
as a sequence of packets. If user data comes in chunks, however, they are
normally held back (buffered) until there is enough data to fill a packet,
which is subsequently transmitted.

There remains the possibility, however, that a small amount of data, too small
to fill a packet, will fail to be transmitted. For instance, a small amount of
user data at the client side of a file transfer (say, the last three characters and
period, in the case of a text) may remain after the rest of the file has already
been transmitted to the server. If no more data is forthcoming from the user,
this data will never be transmitted. If there is a possibility that data to be
transmitted will not fill the data field of the packet, then you must use the
Chaosnet stream method :force-output to fill out the the packet’s data field.
Otherwise, the packet may never be transmitted. In general, any time your
application deals with small blocks of data, you should send a :force-output
message to the stream immediately after writing to the stream.

5.5.1.4 The Chaosnet function read is used to read a stream of characters.
Upon transmission of the list of words to be checked, the client-side function
check-spelling waits for a reply from the server. It reads the reply on the
bidirectional stream stream. The reply will be a list of words not found in the
server’s glossary.

5.5.2 The spelling-server function does the job of checking the spelling of
the text transmitted by the user at the client-side of the session.

(defun spelling-server ()
(let ((conn (chaos:listen "SPELLER")))

(chaos:accept conn)

(with-open-stream
(stream

(chaos:make-stream conn :ascii-translation t))

(write (get-misspellings (read stream)) :stream stream)
(send stream :force-output))))

The following form ensures that the server is listening for a contact name by
adding an entry to chaos:server-alist:

(add-initialization "SPELLER"
- (process-run-function "spserver" ‘spelling-server)
nil
‘chaos:server-alist)

5.5.2.1 In this example, once a connection has been accepted, the server
makes a stream for that connection. It uses the Chaosnet chaos:make-stream
function for this purpose. Since the data being passed to the server is in the
form of a list of words, the server needs to know to translate the ASCII
characters representing the data into characters that the Explorer system
understands. To do this, you must pass the :ascii-translation argument to
the function chaos:make-stream function with a value of t.

Networking Reference

5-7

Chaosnet Applications
Programming and
Networking

Checking Spelling

Writing Back

Auxiliary Spelling
Functions

5.5.2.2 The actual process of checking the spelling is carried out by the
server as follows. The Common Lisp read function reads from the stream
stream. The value returned by read is passed as the argument to the auxiliary
function get-misspellings, which returns a list of all of the unrecognized
words in the list.

5.5.2.3 Now the server uses the write function to send the list of misspelled
words back to the user. As happened at the client side, the server now sends
a :force-output message to the stream to force the data to be sent.

5.5.3 The following definitions, or similar ones, are necessary for the
spelling server to perform the tasks required of it. The following are the mini-
mum necessary for the example server used here:

(defvar *spelling-listx
’("Thi.s" nign" wg" "sample" "word" "1i$t"))

(defun get-misspellings (text)
(loop for word in text
when (not
(member (symbol-name word)

gpelling-list
ctest
#’string-equal))

collect word))

Protocols

5.6 The simple servers discussed to this point involve simple interactions
between the client side and the server side, in which the client requests
information or a service from the server and the server performs that service
or returns the needed information, terminating the information exchange
immediately. When more complex interactions between the client side and
the server side are required, it becomes necessary to synchronize interactions
between the client and server. This is done by establishing a protocol, which
determines the manner and order in which each of the communicating parties
in the session is to interpret the data received from the other party.

To illustrate the problems posed in synchronizing complex interactions
between the client and the server, a more complicated version of the spelling
server is used. A hypothetical user interaction with this version of the spelling
checker might proceed as follows.

You enter a request for a spelling check in a Lisp Listener:

(check-spelling
‘(Impudent and prolix sesquipedalians intimidate more than impress))

The server then checks each form against the glossary and returns a list of
unrecognized forms to you at the client side of the session with the following
message:

These words are incorrect or unknown:
(PROLIX SESQUIPEDALIAN)

You are then given an opportunity to add an unrecognized though correctly
spelled word to the word list:

Do you wish to add PROLIX to the word list? (Y or N)

5-8

Networking Reference

Chaosnet Appliations
Programming and
Networking

After you have responded to each prompt, the list of words to be added to
the server’s spelling list is sent to the server. The server then sends a message
back to the client that terminates the session. The client side function then
prints a "pone" message and returns nil.

Client Side 5.6.1 As always, the client side of the session invokes the server. The defini-
tion of the client server invocation function is as follows:

(defun check-spelling (host text)
(with-open-stream (stream (chaos:open-stream host "SPELLER"))

(write text :stream stream)

(send stream :force-output)

(let ((wrong-words (read stream)))

(cond ((equal wrong-words "1'")
(format t "~&No incorrect spellings exist. -%")
(no-new-additions-to-spelling-list stream))
(t (format
t
v~&These words are incorrect or unknown: ~&~s~%~%"
wrong-words)
(loop
for word in wrong-words
when (and word (y-or-n-p "Add ~S to the word list?"
word))
collect word into new words
finally
(cond ((null new-words)
(no-new-additions-to-spelling-list stream))
(t (write new-words :stream stream)
(send stream :force-output)))))))
(let ((done (read stream)))
(format t "~&~S" done))) nil)

The client side auxiliary communications function no-new-additions-to-
spelling-list is defined as follows:

(defun no-new-additions-to-word-list (stream)
(write "O" :stream stream)
(send stream :force-output))

Server Side 5.6.2 The new spelling-server function is defined as follows:

(defun spelling-server ()
(let ((con (chaos:listen "SPELLER")))
(chaos:accept conn)
(with-open-stream (stream
(chaos:make-stream conn :ascii-translation t))
(let ((misspellings (get-misspellings (read stream))))
(cond ((null misspellings)
(write "1" :stream stream)
(send stream :force-output))
(t (write misspellings :stream stream)
(send stream :force-output)))
(let ((temp (read stream)))
(cond ((equal temp "O")
(send-done-message stream))
(t (add-to-spelling-list temp))))
(send-done-message stream)))))

Networking Reference 5-9

Chaosnet Applications
Programming and
Networking

Writes and Reads

First Write—
Client Side

First Read—
Server Side

Second Write—

Server Side

Second Read—
Client Side

The auxiliary communications function send-done-message, used by the
spelling server function, is as follows:

(defun send-done-message (stream)
(write "Done" :stream stream)
(send stream :force-output))

For the sake of discussion the auxiliary functions used by the spelling server
are kept as simple as possible.

(defun add-to-spelling-list (text)
(loop for word in text
collect (symbol-name word) into string-list
finally (setq *spelling-list*
(nconc string-list *spelling-listx*))))

The function get-misspellings has the same definition as it did earlier, as
does the global variable *spelling-list*, which holds the spelling list.

(defun get-misspellings (text)
(loop for word in text
when (not (member (symbol-name word)
spelling-list :test #’string-equal))
collect word))

Finally, the spelling server must to added to chaos:server-alist with the add-
initialization function:

(add-initialization "SPELLER"
‘(process-run-function
"SPELLER"
‘spelling-server)
nil
‘chaos:server-alist)

5.6.3 The more complicated the interaction between client and server, the
more careful you must be that server and client side reads correspond to the
correct server-side and client-side writes. Special care must be paid where a
read at one side of a connection corresponds to two or more writes at the
other side, as can occur, for example, in a conditional expression. In order to
understand this concept more clearly, you can step through the client-side
function, check-spelling and the server-side function spelling-server.

5.6.3.1 The first write takes place at the client side of the connection. The
function check-spelling sends the text or word list to the server to be
checked. To make sure that the entire text is transmitted, a :force-output
message is sent to the stream stream.

5.6.3.2 At the server side of the connection, after opening the stream
stream, the stream is read. The value returned by read is then passed to the
function get-misspellings. The value of this list is bound to misspellings.

5.6.3.3 Now it is the server’s turn to transmit. The first conditional clause
offers two possibilities. Either it writes the arbitrarily chosen character "1" to
stream, if get-misspellings has found no strange words and misspellings is
bound to nil, or it sends the list of nonexistent or misspelled words back to
the client-side function.

5.6.3.4 The client-side function binds the variable wrong-words either to
v1v or to a list containing unrecognized words, whichever the server sends.

5-10

Networking Reference

Flag Waving

Third Write—
Client Side

Chaosnet Appliations
Programming and
Networking

5.6.3.5 If the spelling server does not find any incorrect words, it must
notify the client-side function of this fact. Since nil cannot be sent back over
the network, an arbitrary string is chosen to serve as a flag to the client side
that no misspellings were found. In the first conditional clause in the function
spelling-server, the string "1 is sent to flag the client function that no list of
wrong-words is forthcoming.

NOTE: At this point, you might think that you could simply write the "There
are no incorrect spellings." message and return nil, immediately
terminating the transaction, as in the following code:

(cond ((equal wrong-words "1")
(format stream "~&There are no incorrect spellings.")
nil)))

This form does not work, however, because the spelling server expects to
read additional input from the client side (on the server side, see the
(let ((temp (read stream))) form). The whole communication session
simply hangs after printing the message. The server will listen forever to its
stream, and the function with-open-stream will never close the connection.

CAUTION: Every read, whether on the client side or on the server side,
must have a corresponding write at the other side of the connection.

5.6.3.6 As noted in the previous discussion, after binding wrong-words, the
function at the client side can respond to the server in one of two ways. It
must respond, however.

Even if there are no new words or misspellings to be considered as additions
to the *spelling-list*, the client side must return something to the server.
If the client does not require further service of the server, it waves a flag
during this write by sending a "o" back to the server with the no-new-
additions-to-spelling-list function.

If the server finds unrecognized words in the input list, then at the client side
you decide which of the words to add to the spelling list that the server
maintains.

Again, there are two possibilities. If you decide not to add any new words to
the lexicon, then the list bound to the variable new-words by the loop macro
will be empty. As in the case of the previous option, the server is still listening
to the stream, so the client must send something. The client side calls the
function no-new-additions-to-spelling-1list, as it did earlier, sending a "o*
flag to the server.

The last possibility at the client side (the third write) is that you have made a
selection of words to be added to the word list. These words are put into a list
by the loop macro, which then uses the write function to send them to the
server. To be sure that everything is sent properly, a : force-output message is
sent to the stream.

Networking Reference

5-11

Chaosnet Applications
Programming and
Networking

Third Read—
Server Side

Fourth Write

Fourth Read

5.6.3.7 The third read takes place at the server side of the connection.
Whatever is read from the stream is bound to the variable temp. This variable
is bound to either a list of words to be added to the *spelling-list* or to
llo " .

5.6.3.8 The value of the variable temp determines whether to add words to
the *spelling-list* or not. If temp is bound to "o", then "done" is transmit-
ted back to the client by the fourth write. If temp is bound to a list of words,
then the list is appended to the *spelling-list*, and a "done" message is
sent back to the client.

5.6.3.9 A communications session is always complete when the last read has
been accomplished, whether by the client or by the server. In the spelling
program, this final read occurs on the client side of the connection. When the
client receives the "Done" message, Done is printed on the client’s screen and
nil is returned.

At this point, the functions at both sides of the connection have terminated
normally. Neither side has any outstanding reads, so the Common Lisp
function with-open-stream takes care of closing the stream at both the client
side and the server side.

Frills

Rejecting a
Connection

5.7 For clarity, the examples shown so far have defined simple servers that
involve nether a great deal of user interaction nor error checking. In the
following examples, a number of error-catching devices are used, as well as
rejection of the connection and advice or notification to both the user at the
client side and the user on the server side of the connection.

5.7.1 There are many conditions under which you might want to reject a
request for connection. Most often the rejection occurs at the server side of
the connection. The example shown below illustrates how this situation is
handled.

You use the Chaosnet function chaos:reject to reject a request for connec-
tion. You can also include a message when you reject a connection.

(defun etcetera-server-function ()
(let ((conn (chaos:listen "etc"))
(cond ((not (member user-id ‘(nil " ") :test #‘equal))
(reject conn
(format ()
"This machine in use by ~A. Try later!"
user-id))
(return-from etcetera-server-function ())))
(t (chaos:accept conn)))

In this example, code has been added to reject a connection if anyone is
logged onto the remote host. The code following the (chaos:accept conn)
form is the same as found in the example in paragraph 5.6.2, with minor
adjustments to parentheses.

5-12

Networking Reference

Notifying the
User at the
Server Side

Getting
Information on
a Foreign Host

Chaosnet Appliations
Programming and
Networking

5.7.2 The chat server example in paragraph 5.3, Using Simple Trans
actions, illustrated one way a message can be transmitted to a user at the
server side of a connection. It is good practice, or at least polite, to incorpo-
rate some mechanism in your server functions to notify a user at the server
host that a remote host is accessing a server, and to identify either the
machine, by name or address, using the server, or the name of the user.
There are several other possibilities to consider. Functions are available to
allow you to get this information. When providing such notifications at the
client side, your server process must be temporarily interrupted. The next
examples show how this is typically done.

5.7.2.1 You get information on a foreign host by using the functions
chaos:conn-foreign-address, net:get-host-from-address, and host-short-
name. For instance, the following fragment of Lisp code will returns the host
short name:

(host -short-name (chaos:conn-foreign-address conn))

The short name, discussed in Section 4, Getting on the Network, is the host
name normally used in messages in the status line and in filenames. The
function host-short-name takes an address as its argument. In this example,
the address of the foreign host is retrieved with the function chaos:conn-
foreign-address. This function takes a connection as argument and returns
the address of the client side host.

The function net:get-host-from-address takes an address as argument and
returns the actual host object. Information about this host can be obtained by
sending specific messages.

Networking Reference

5-13

Chaosnet Applications
Programming and
Networking

Server Side
Protection

5.7.3 Under certain circumstances, a user at the server side of a connection
might find it inconvenient to allow another machine to access a server. You
can provide a means to allow a user at the host to selectively disallow the
establishment of a connection. First, you need to create the *spelling-
server-on* variable as follows:

(defvar *spelling-server-on* nil
"t means always allow SPELLING server requests,
:notify means allow requests, but notify the user,
nil means never allow them, and
:not-logged-in means allow them when no one is logged in.")

Next, add a conditional statement to the spelling-server function, similar to
the one following. The conditional statement allows the connection to be
rejected and control to be returned to the calling function.

(defun spelling-server ()
(let ((conn (chaos:listen "SPELLER")))

;; protection begins
(cond ((null *spelling-server-onk)
(chaos:reject conn "The spelling server is off.")
(return-from spelling-server))
((eq *spelling-server-on* :not-logged-in)
(chaos:reject conn "This machine in use by someone else.")
(return-from spelling-server))
((eq *spelling-server-on* :notify)
(tvinotify nil "Spelling server in use by -~s"
(net:get-host-from-address
(chaos:conn-foreign-address conn) :chaos))))
;s protection ends

(chaos:accept conn)
(with-open-stream (stream

In this example, the code following (stream can be taken from the example in
paragraph 5.6.2, with minor adjustments to parentheses.

5-14

Networking Reference

Chaosnet Appliations
Programming and
Networking

Conns

5.8 A conn is one side of a Chaosnet connection. A conn is a named struc-
ture of type chaos:conn. The conn may have an actual connection attached
to it; it may have a connection still being made; or it may record that a
connection was refused, closed, or broken.

States of a Conn 5.8.1 A conn may be in any of the following states.

chaos:inactive-state Constant

The conn is not in use.

chaos:rfc-sent-state Constant

The conn was used to request a connection to another process, but no reply
has yet been received. When the reply is received, it may change the state of
the conn to chaos:answered-state, chaos:cls-received-state, or
chaos:open-state.

chaos:listening-state Constant

The conn is being used for listening. If the conn receives an RFC packet with
the contact name for which it is listening, the state of the conn changes to
chaos:rfc-received-state.

chaos:rfc-received-state Constant

An RFC packet has arrived with the exact name for which the conn was
listening. You can accept, reject, forward, or answer the request. Accepting
the request changes the state of the conn to chaos:open-state. Answering,
refusing, or forwarding the request changes the state to chaos:inactive-state.
chaos:open-state Constant
The conn is now one end of an open connection. You can send and receive
data packets, including any packets that were waiting.
chaos:answered-state Constant

The conn was used to send an RFC packet, and an ANS packet was received
in response. In other words, an answer to a simple transaction arrived, and
you can then read the ANS packet.

chaos:cls-received-state Constant

The conn has received a CLS packet. In other words, the connection was
closed or refused. You can read any data packets that were received before
the CLS packet. After reading them, you can read only the CLS packet.
chaos:los-received-state Constant
The remote host has sent an LOS packet stating that the conn does not have
the connection with the remote host that the conn assumed it had.
chaos:host-down-state Constant

The host at the other end of the connection has not responded to anything
sent by the conn for a significant period of time.

Networking Reference 5-15

Chaosnet Applications
Programming and
Networking

chaos:foreign-state Constant

The connection is being used with a foreign protocol that is enclosed in
uncontrolled packets.

Accessor Functions 5.8.2 The following accessor functions can be used to obtain information
for a Conn about a conn. Note that these functions are open-coded by the compiler.

chaos:conn-state conn Function

This accessor function returns the state of the conn.

chaos:conn-foreign-address conn Function

This accessor function returns the Chaosnet address of the remote host at the
other end of the connection. To find out which host this is, use net:get-host-
from-address.

chaos:conn-read-pkts conn Function

This accessor function returns an internally threaded chain of incoming pack-
ets that are available to be read from the conn. To read from this chain, use
chaos:get-next-pkt.

If the result returned is not nil, there are incoming packets available to be
read by the application program.

chaos:conn-window-available conn Function

This accessor function returns the maximum number of packets you can
transmit before the network software forces you to wait for the receiver to
read some of them. By the time you actually send that many packets, the
receiver might indicate there is room for more. The chaos:send-pkt function
waits for this number to take on a nonzero value.

chaos:conn-plist conn Function
This accessor function returns the properties that have been defined for
conn.

chaos:contact-name conn Function

This accessor function returns the contact name with which conn was created.
The contact name is not significant to the functioning of the connection, once
the connection has been established. But the contact name is saved in case
debugging is needed.

Wait Function 5.8.3 You can use the following function with a connection to set a timeout.
on a Conn

chaos:wait conn state timeout &optional whostate Function

This function waits until the state of the conn is not equal to the symbol state
or until a set time has elapsed. The set time is equal to the value of timeout,
which is given in units of 1/60th of a second. For example, a value of 600
specifies a timeout of ten seconds. If a timeout occurs, nil is returned; other-
wise, t is returned. As an option, you can specify whostate, which indicates
the process state to put in the status line of the Explorer screen. If you do not
specify whostate, the default is chaosnet wait.

5-16 Networking Reference

Chaosnet Appliations
Programming and
Networking

Opening
and Closing
Connections

User Side of
the Connection

5.9 You can use the following functions and variables to open and close a
connection. This paragraph is divided into two parts: the user side and the
server side.

5.9.1 You can use the following functions and variables to open and close
a connection from the user side of the connection.

chaos:connect host contact-name &optional window-size timeout Function

This function opens a connection. If successful, it returns a network connec-
tion object; if not, it signals a fatal network-error condition. A network con-
nection object is important because it can be used as input to other functions
that require you to supply an argument for conn. The host may be the Chaos-
net address or a string containing the name of a known host. The contact-
name argument is a string containing the contact name and any additional
arguments to go in the RFC packet. If not specified, the value of window-size
is 13 by default. If not specified, timeout is 600, which is equal to 10 seconds.

chaos:simple host contact-name &optional timeout Function

This function performs the user side of a simple transaction. If successful, the
server returns an ANS packet; if not, a network-error condition is signaled.
The ANS packet should be disposed of when you are done with it; use the
chaos:return-pkt function for that purpose. The host argument can be the
Chaosnet address or a string containing the name of a known host. The
contact-name argument is a string containing the contact name and any
additional arguments to go in the RFC packet. If not specified, timeout is
600, which is equal to 10 seconds.

chaos:remove-conn conn Function

This function makes conn null and void. The conn becomes inactive, all its
buffered packets are freed, and the corresponding Chaosnet connection—if
any—goes away.

chaos:close-conn conn &optional reason Function

This function closes and removes the connection. If the connection is open, a
CLS packet is sent from it containing reason, which is a string that contains
an explanation for the closure. Do not use this function to reject a request;
use chaos:reject for that purpose.

chaos:open-foreign-connection foreign-host foreign-index Function

&optional pkt-allocation distinguished-port

This function establishes the local side of a connection that can be used to
transmit and receive foreign protocols that are enclosed in uncontrolled
packets.

This function is typically used to set up a transmission channel between an
Explorer and a non-Explorer machine, which is referred to as the foreign
host. Since you are not setting up a connection but only the local side of one,
you provide to this function information concerning the foreign host. The
foreign-host argument can be the Chaosnet address of the foreign host or a
valid host name that is known on the network. The foreign-index argument is
a number in the range of 0 through 127 decimal that you use to represent the
conn. Together, foreign-host and foreign-index make up the destination
address for packets that are sent with chaos:send-unc-pkt.

Networking Reference

5-17

Chaosnet Applications
Programming and
Networking

The pki-allocation argument indicates the maximum number of input packets
that can be buffered, which correlates to the window size. If not specified,
the value of pkt-allocation is 10 by default. If specified, the value for
distinguished-port determines the number by which the local index is set. A
value for distinguished-port is necessary for protocols that define the
meanings of particular index numbers.

Server Side 5.9.2 You can use the following functions and variables to open and close
of the Connection a connection from the server side of a connection.

chaos:listen contact-name &optional window-size wait-for-rfc Function

This function waits for a request for the specified contact name to arrive. It
then returns a network connection object that will be in chaos:rfc-received-
state.

The contact-name argument is a string containing the contact name. If not
specified, the value of window-size is 13 by default. The maximum window
size is 128. If not specified, the value of wait-for-rfc is t. If the value of
wait-for-rfc is specified as nil, then the conn is returned immediately without
waiting for an RFC to arrive.

chaos:server-alist Variable

This variable contains an entry for each server that always exists. An entry is
a list composed of a contact name, a form to be invoked, and two items that
are used for accounting by the add-initialization function.

When an RFC arrives for one of these servers, the specified form is evaluated
in the background process. Typically, it creates a process that then performs
a chaos:listen. Use the add-initialization function to add entries to this list.

add-initialization name form Function
&optional keywords (list-name ’sys:warm-initialization-list)

This function adds an initialization with name and definition form to an
initialization list.

The name argument should be a string and form an expression to be
evaluated later.

The keywords can be one keyword or a list of them. The keywords can be in
any package. Keywords can be :head-of-list, meaning add to the front of the
list rather than to the end, :cold, :warm, :once, :system, :before-cold,
:login, :logout, :site, :site-option, :full-gc or :after-full-gc, specifying a list,
or :now, :first, :normal or :redo, indicating when to run the initialization.
The :now argument specifies to run the initialization as well as adding to the
list; :first means run the initialization now if it is not on the list; :normal
means do not run the initialization now; :redo means do not run it now, but
mark it as never having been run even if it is already on the list and has been
run.

If the keywords do not specify the list, :list-name is used. The default for
:list-name is sys:warme-initialization-list.

5-18

Networking Reference

Chaosnet Appliations
Programming and
Networking

chaos:accept conn , Function

This function accepts a request for a connection. Before you can use this
function, the connection must be in a chaos:rfc-received-state. In other
words, conn must have received a valid request. An OPN packet is transmit-
ted and conn enters the open state. If the RFC packet has not already been
read—with chaos:get-next-pkt—the packet is discarded. If the RFC packet
contains arguments in addition to the contact name, you should read the
packet before accepting the request.

chaos:reject conn reason : Function

This function rejects a request for a connection. Before you can use this
function, conn must be in chaos:rfc-received-state. This function sends a
CLS packet that contains reason, which is a string that explains why the conn
is being rejected, and the conn is removed.

chaos:forward-all contact-name host Function

This function changes the host that is associated with contact-name, from the
present host to that designated by host. All future requests for connection
that specify contact-name are forwarded to host.

The contact-name argument is a string containing the contact name and any
additional arguments to go in the RFC packet. The host¢ argument can be the
Chaosnet address or a string containing the name of a known host.

chaos:answer-string conn string Function

This function sends an ANS packet that contains string, and conn is
removed. Before using this function, conn must be in chaos:rfc-received-
state.

chaos:answer conn pkt Function

This function transmits pkt as an ANS packet, and conn is removed. Before
using this function, conn must be in chaos:rfc-received-state. The pk¢
argument must be a released packet, which means that either the chaos:get-
pkt function has allocated it or that Chaosnet has given it to the application.
Use this function when the answer is made up of binary data rather than a
string of text.

chaos:fast-answer-string contact-name string Function

If a pending request exists to contact-name, this function sends an ANS
packet that contains string in response to the request, and t is returned.
Otherwise, nil is returned. This function involves the minimum possible over-
head. No connection is created.

The contact-name argument is a string containing the contact name and any
additional arguments to go in the RFC packet.

Networking Reference

5-19

Chaosnet Applications
Programming and
Networking

Stream Input 5.10 The following functions, variables, and methods are available for
and Output stream input and output.

chaos:open-stream host contact-name &rest options Function

This function opens a Chaosnet connection and returns a stream that
performs I/O. The host to which you want to connect is specified by kost, and
the contact name for that host is specified by contact-name. If the value of
host is nil, the function listens for contact-name on the local host, calls the
chaos:accept function, and returns a stream object that represents the
packets for that connection. The arguments host and contact-name are
passed along to the function chaos:connect or to the function chaos:listen.

The host argument can be the Chaosnet address or a string containing the
name of a known host. The contact-name argument is a string containing the
contact name and any additional arguments to go in the RFC packet.

A list of alternating keywords and values is specified by options, which is
made up of the following:

:window-size — This numeric argument specifies the number of packets that
can be sent at one time without being acknowledged. It is passed to the
function chaos:connect or to the function chaos:listen. The default is
13.

:timeout — This numeric argument is passed to the function chaos:connect
or to the function chaos:listen. For example, a value of 600 specifies a
timeout of 10 seconds, which is the default.

rerror — If the value of this function is nil, the argument returns a string that
explains the reason for an error, in the event that one occurs. If the value
of this argument is t, which is the default, a failure to connect generates a
Lisp error and an error condition is signaled.

:direction — This argument is passed to the function chaos:make-stream.
The value of this argument can be :bidirectional, :input, or :output.
The default is :bidirectional.

:characters — This argument is passed to the function chaos:make-stream.
Specify t for the argument if the stream contains characters; nil if it does
not. The default is t.

:ascii-translation — This argument is passed to the function chaos:make-
stream. Specify t for the argument if characters are present in the stream
and need to be translated from ASCII to the Explorer character set.
Otherwise, specify nil, which is the default.

chaos:make-stream conn &Kkey :direction :characters :ascii-translation Function

This function creates and returns a stream that performs I/O on conn, which
should be open as a stream connection. The :direction option can take on
the value :input, :output, or :bidirectional. The default is :bidirectional.

If the value for :characters is nil, the stream reads and writes 16-bit bytes. If
the value for characters is not nil, the stream reads and writes 8-bit bytes.
The default is not nil.

5-20 Networking Reference

:foreign-host

:close

:force-output

:finish

reof

:clear-eof

Chaosnet Appliations
Programming and
Networking

If the value for :ascii-translation is not nil, characters written to the stream
are translated from ASCII to the Explorer character set. The default is nil.

Method of chaos streams

This method returns the host object for the host at the other end of this
stream’s connection.

Method of chaos streams

This method sends a CLS packet and removes the connection. If the stream
can transmit data, the method first sends the stream an :eof message.

Method of chaos output streams

This method forces any buffered data to be transmitted. Normally, output is
accumulated until a packet’s worth of bytes is ready to be transmitted so that
a full packet is sent.

Method of chaos output streams

This method waits until either all packets have been sent and acknowledged
or until the connection ceases to be open. If the operation is successful, t is
returned. If the connection goes into a bad state, nil is returned.

Method of chaos output streams
This method forces any buffered output to be transmitted. It then sends an
EOF packet and performs a :finish method.

Method of chaos input streams

This method allows you to read past an EOF packet during input. Until a
:clear-eof message is sent, one of the following occurs if any :tyi message is
sent after an EOF:
M An end-of-file error is signaled.

M The message returns nil.

Note that the :tyi method itself has an option that controls whether nil is
returned when an end of file is reached.

Networking Reference

5-21

Chaosnet Applications
Programming and

Networking

Packet Input 5.11 Using the functions in this paragraph, you can perform input and out-
and Output put on a Chaosnet connection at the packet level. A packet is represented by

a chaos:pkt data structure. Allocation of packets is controlled by the system.
Each packet that it gives you must be given back. There are functions to
convert between packets and strings. A packet is an art-16b array containing
the packet header and data. For more information on arrays, refer to the
Explorer Lisp Reference manual. The leader of a packet contains a number
of fields used by the system.

chaos:first-data-word-in-pkt Constant
The value of this constant is the offset to the first 16-bit word of user data—
following the header data—in any packet.

chaos:pkt-opcode pkt Function

This function allows you to get or set the opcode field of pkt. To set the
opcode, use the following statement:

(setf (chaos:pkt-opcode my-pkt) my-opcode)

The system provides names for all the standard opcodes. The names that are
useful in an application program appear at the end of this numbered
paragraph.

chaos:pkt-nbytes pkt¢ Function

This function allows you to get or set the number-of-data-bytes field of pk:.
This field indicates how much of the data within pkt is valid, measured in
8-bit bytes. The field can be also be set with the setf statement. The
maximum number of data bytes is 488.

chaos:pkt-string pkt Function

This function can be used to get or set an indirect array that fills the data field
of pkt as a string of 8-bit bytes. The length of this string is equal to the value
of chaos:pkt-nbytes. If you wish to record the contents of pkt permanently,
you must copy this string.

chaos:set-pkt-string pki &rest strings Function
This function concatenates strings, copies them into the data field of pk¢, and
sets the number-of-data-bytes field of pkt accordingly.

chaos:get-pkt Function
This function allocates a packet for your use. The packet must be returned by
either the chaos:return-pkt function or the chaos:send-pkt function.

chaos:return-pkt pkt Function

This function returns pkt to the system for reuse. The packets given to you by
the chaos:get-pkt, chaos:get-next-pkt, and chaos:simple functions should
be returned in this way when you are finished with those packets.

5-22

Networking Reference

Chaosnet Appliations
Programming and
Networking

chaos:send-pkt conn pkt &optional opcode Function

This function transmits the packet specified in pkt on conn. The pkt must be
a released packet allocated by chaos:get-pkt, and it must have its data field
and its number-of-data-bytes field filled in. If conn is not open, an appropri-
ate network-error condition is signaled.

The opcode argument allows you the option of specifying an opcode for the
packet. If specified, opcode must be either EOF or a data opcode of 200 or
more. Its default is equal to the value of chaos:dat-op.

Note that giving a packet to the chaos:send-pkt function is the same as giving
it back to the system. You do not need to call the chaos:return-pkt function.

chaos:send-string conn &rest strings Function

This function obtains and sends a data packet that contains the concatenation
of strings as its data.

chaos:send-unc-pkt conn pkt &optional pktn-field ack-field Function

This function transmits pkt, an uncontrolled packet, on conn. The opcode
packet number and acknowledge fields in the packet header are filled in. The
optional arguments for pktn-field and ack-field allow you to use these fields
for your own purpose.

The default for pktn-field is the value of pktnum, whose default is set to pkt.
The default for ack-field is the value of pkt-ack-num, whose default is set to
pkt.

chaos:may-transmit conn Function

This function is a predicate that returns t if there is any space in the window
for transmitting on conn. A t means you can transmit immediately. If the
function returns nil, you may have to wait before you can transmit data.

chaos:finish-conn conn &optional whostate Function

This function waits for either all packets to be sent and acknowledged or for
the connection to cease being open. If successful, the function returns t. If
the connection ceases to remain open, the function returns nil. For whostate,
specify the process state you want to display in the status line you wait for the
function to complete. Net Finish is the default.

Networking Reference

5-23

Chaosnet Applications
Programming and
Networking

chaos:get-next-pkt conn &optional no-hang-p Function
whostate check-conn-state

This function returns the next input packet from conn. Since the system
releases the packet to you, you must give it back to the system with the
chaos:return-pkt function.

If you specify the no-hang-p argument, giving t as its value, the function
returns nil if there are no packets available or if the connection is not open.
If the value of no-hang-p is nil, which is the default, and the connection is
not open, an error is signaled. The following condition names indicate which
conditions could be signaled:

B chaos:host-down-state

B chaos:los-received-state

B chaos:read-on-closed-connection

If the value of no-hang-p is nil and if no packets are available, the chaos:get-
next-pkt function waits for packets to come in or for the state of the
connection to change.

The default value for whostate is chaosnet Input.

The check-conn-state argument is a Boolean argument that specifies whether
the state of the conn is checked. Its default is the opposite of the no-hang-p

argument.

chaos:data-available conn Function

This function is a predicate that returns t if there are any input packets
available from conn.

The following are symbolic names that you need to know for the opcodes
used in chaos packets. A description of the part of the packet that contains
data is given as well.

chaos:rfc-op Constant

This constant has as its value an opcode that is used for requesting a connec-
tion. The data consists of the contact name, terminated by a space character.
As an option, additional data can follow the space character; the interpreta-
tion of such additional data is the responsibility of the server for that contact
name.

chaos:lsn-op Constant

This constant has as its value an opcode that is used when you ask to listen
for a contact name. The data is simply the contact name. This packet is never
actually sent over the network. Instead, the contact name is kept within the
Chaosnet software, which compares it to the contact names in the RFC
packets that arrive.

chaos:opn-op Constant

This constant has as its value an opcode that is used by the server process to
accept the request for a connection conveyed by an RFC packet. Its data
serves only internal functions.

5-24 Networking Reference

chaos:ans-op

chaos:los-op

chaos:cls-op

chaos:eof-op

chaos:dat-op

Chaosnet Appliations
Programming and
Networking

Constant

This constant has as its value an opcode that is used to send a simple reply.
The server sends a simple reply in place of opening a connection.

Constant

This constant has as its value an opcode used in a packet that you receive if
you try to use a connection that has been broken or that no longer exists. Its
data may be a message that explains the situation and that can be printed out.

Constant

This constant has as its value an opcode used in a packet that is sent by one
end of a connection to close the connection. Its data is a message that
explains the reason for closure and that can be printed out. Note that the
other side of a connection cannot depend on receiving a CLS packet because
it is not retransmitted if it is lost. If a CLS packet is lost during its transmis-
sion, the other side—thinking that the connection is still open—receives an
LOS packet the next time it tries to use the connection.

CLS packets are also used to refuse to open a connection in the first place. In
this case, use the chaos:reject function to send the CLS packet.

Constant

This constant has as its value an opcode that is used to indicate the end of the
data for transmission. When the EOF packet is acknowledged by the other
process, you know that all the data was received properly. You can wait for
this acknowledgment with the chaos:finish-conn function. An EOF packet
carries no data itself.

Constant

This constant has as its value an opcode of 200 octal, which is the normal
opcode for 8-bit user data. Some protocols use multiple data opcodes in the
range 200 through 277 octal, but simple protocols that do not need to distin-
guish between different types of packets simply use opcode 200 octal.

Networking Reference

5-25

Chaosnet Applications
Programming and
Networking

Connection 5.12 The following functions are available for interrupting a connection.
Interrupts

chaos:interrupt-function conn Function

This function specifies whether another function is stored as an attribute of
conn. If a function is stored as an attribute, it is called when certain events
occur on the connection. Normally, the value of chaos:interrupt-function is
nil, which means not to call any function.

If you choose to store a function as an attribute, you can use the setf
function. Since a function that is stored as an attribute is called in the
Chaosnet background process, the function should not perform any methods
that might have to wait for the network, because waiting for the network
could permanently hang up the background process.

The value of the stored function is an object that can be called as a function.
The function must accept two arguments and can optionally take a third.

The first argument of the function can be one of the following:

:input — A packet has arrived for the connection when the connection did
not have any input packets queued. The chaos:get-next-pkt function
can be invoked without waiting. There are no additional arguments.

routput — An acknowledgment has arrived for the connection, making space
in a window that was formerly full. Additional output packets can now be
transmitted with the stored function without waiting. There are no
additional arguments.

:change-of-state — The state of the connection has changed. A third argu-
ment for the stored function is necessary, and the third argument is the
symbol for the new state.

The second argument of the function is the network connection object that is
associated with conn.

The optional third argument of the function is the symbol for the new state of
the connection. It is present only if :change-of-state is the first argument.

In the following example, the setf statement stores the pkt-historian
function as an attribute of a conn. Both reason and conn represent arguments
that can be called by a function.

(defun pkt-historian (reason conn)
(if (eq reason :input)
(push (copy (read-pkts conn)) #*input-history*)))

(setf (chaos:conn-interrupt-function conn) #‘pkt-historian)

chaos:pkt-link pkt Function

This function returns the next packet in the list that pk¢t was part of. If no
packets are available, the macro returns nil. To alter the next packet after
pkt, use setf.

5-26 Networking Reference

Chaosnet Appliations
Programming and

Networking
Information 5.13 The following functions are available to help you gain information or
and Control control different host attributes.
chaos:print-conn conn &optional short-pkt-display Function

This function prints everything it knows about the specified connection. If the
value of short-pkt-display is nil, the function also prints everything the system
knows about each queued input and output packet on the connection. The
default value of short-pkt-display is t.

chaos:print-pkt pkt &optional short-pkt-display Function

This function prints everything the system knows about the packet. If short-
pkt-display is t, only the first line of the information is printed. The default
value of short-pkt-display is nil. The data field is printed as a string, so binary
data is not printed in any meaningful way.

chaos:print-all-pkts pkt &optional short-pkt-display Function

This function calls the chaos:print-pkt function on pkt and on all packets on
the threaded list emanating from it. If short-pkt-display is t, only the first line
of the information is printed. The default value of short-pkt-display is t.
net:halt stop? Function
If stop? is not nil, all network operations for this host are halted. If stop? is
nil, the network is enabled for this host.
chaos:reset &optional enable-p Function

This function resets the Chaosnet for this host. If the value of enable-p is nil,
which is the default, the function turns off the network for this host. If
enable-p is not nil, the network is enabled and turned on. This function does
not override the net:halt function.

chaos:assure-enabled Function

This function turns on the network for this host if it is not already on. The
network is normally on unless you call the chaos:disable function. This func-
tion does not override the net:halt function.

chaos:enable Function

This function turns on the Chaosnet network for this host.

chaos:disable Function

This function turns off Chaosnet network access for this host.

Networking Reference 5-27

THE GENERIC NETWORK SYSTEM

Introduction

6.1 This section describes the generic network system, a standard interface
to the transport, session, and presentation layers of the networking protocols
available for the Explorer system (such as Chaosnet and TCP).

The servers on a network implement services in various protocols. The
generic network system allows you to access these services transparently, that
is, without knowing protocol-specific information.

The generic network system provides these advantages:

B The ability to write protocol-independent applications and services

M Access to all of the services available with the installed set of network
protocols

M A set of standardized error conditions

Two interface modules form the generic network system:

M The generic network interface (GNI)

B The generic services interface (GSI)

The following paragraphs discuss both these modules, providing information
about the flavors, functions, and conditions available to you in GNI and GSI.

Finally, this section tells how to implement generic network servers and how
to define generic services.

The Generic
Network
Interface

6.2 The function of GNI is to determine the most efficient way to provide
services that are available on the network (such as file transfer, remote login
on a virtual terminal, mail, and so on). This interface allows a user process to
request a network connection to a remote process using varying degrees of
specificity about the network layer protocol to be used.

For instance, if you know that a particular service is available on a Chaosnet
network, then you can request that Chaosnet implementation. On the other
hand, if all that your user process requires is a byte stream for input, then it
can request a simple byte stream connection. GNI determines which byte
stream implementation is best for making the connection between user and
server processes, returning a byte stream (such as a Chaos-stream or TCP-
stream) based on the protocol and implementation that it has determined to
be best. Your user process need not specify the specific lower-level stream
connection to be returned. GNI returns the best available stream connection
to the requested service.

Networking Reference

6-1

The Generic Network System

Mediums, Layers,
and Connections

Figure 6-1

6.2.1 A medium is a structure that returns a network connection.
Depending on the type of connection returned by the medium, that medium
is said to exist in one of three possible layers: the generic layer, the stream
layer, and the transport layer. In Figure 6-1, the :byte-stream medium exists
in the generic layer, the :tcp-stream and :chaos-stream mediums in the
stream layer, and the TCP and Chaos mediums in the transport layer.

Mediums and Layers

:byte-stream medium

[implementation| [implementation|

generic layer

:tcp-stream medium :chaos-stream medium

2288074

A transport-layer medium returns only transport connection objects (such as
Chaosnet conns), while a stream-layer medium returns only stream connec-
tion objects (such as Chaos-stream connections). With these three medium
layers, a user process has a choice about how specific a connection request
needs to be.

For example, if process A (spawned by the QFILE protocol) requests a con-
nection, it requires no stream I/0 at all. The QFILE protocol takes care of all
packet assembly and shipping. Therefore, process A would issue its connec-
tion request specifying that the :chaos medium be used.

Process B, on the other hand, may require a TCP stream for its input connec-
tion. If this is the case, and process B is actually aware that the connection
must be made via TCP, it can issue its connection request by specifying the
:tcp-stream medium. However, if process B does not know what protocol is
necessary for the connection (only that a byte stream is required), it can issue
its connection request by specifying the :byte-stream medium. In either case,
process B is assured of getting the proper type of connection.

6-2

Networking Reference

Medium
Implementations

tnetwork Step

:medium Step

The Generic Network System

6.2.2 An implementation performs the actual steps necessary to return a
connection for a given medium. A medium can have one or more imple-
mentations by which it establishes a connection of a particular type. For
example, the generic byte stream medium shown in Figure 6-1 has two
implementations that return stream objects; one returns a TCP stream object,
and one returns a Chaosnet stream object.

All implementations of the medium should return the same type of connec-
tion. To guarantee that a medium returns a byte stream, all of the implemen-
tations of that medium must return connections on byte streams.

When a connection request specifying a particular medium is issued, the
request invokes that medium’s implementations one-by-one until one
succeeds. If the net:*try-all-medium-implementations* variable is non-nil
and none of the implementations can make the connection, a proceedable
error is signaled.

When a medium’s implementation is invoked, it executes its connection
steps. These steps direct the medium to call a connect function or call an-
other medium. Connection steps appear as a list of keyword-designated
actions, described in the following paragraphs.

6.2.2.1 The :network step calls a connect function. For example, a connec-
tion step that would call the chaos:chaos-connect-function or the
chaos:listen-function would appear as follows:

((:network :chaos))

The :chaos argument identifies the name of the network-layer protocol from
which the connect function is called.

6.2.2.2 The :medium step indirectly obtains a connection by requesting
that connection from another (secondary) medium.

The secondary medium can have another :medium step (taking the level of
indirection one step further), or it can have a :network step that calls the
connection function. A :medium step would appear as follows:

((:medium :chaos))

When a connection is finally obtained, it is passed as a returned value up
through each medium in the calling sequence until it reaches the original
medium making the connection request. If the connection object is passed
from medium B to medium A as is, that is, without altering it in any way, then
medium A is said to be the superior of medium B.

However, a connection can be altered by any of the mediums in the calling
sequence, as is shown in the following example based on Figure 6-2.

Networking Reference

6-3

The Generic Network System

Figure 6-2

In Figure 6-2, notice that the boxes representing each medium’s implementa-
tion now contain that implementation’s connection steps.

Implementations and Connection Steps

:byte-stream medium

I ((:medium :chaos-stream)) |

generic layer

chaos-stream medium

(:medium :chaos))

:chaos medium

((:network :chaos))

2287075

When the :byte-stream medium requests a connection, its implementation
immediately executes a :medium connection step, telling the :chaos-stream
medium to obtain the connection.

When the :chaos-stream medium requests the connection, its implementa-
tion executes another :medium connection step, telling the :chaos transport-
layer medium to obtain the connection.

The :chaos transport-layer medium requests the connection, and its imple-
mentation executes a :network connection step, telling the :chaos network-
layer (not shown) to send a connection object (conn). Now the connection
object is returned to the :chaos medium.

The :chaos medium, in turn, passes the connection object back up to the
:chaos-stream medium, which binds the connection object to a stream
object, and passes the newly bound stream object up to the :byte-stream
medium.

In this situation, the :byte-stream medium is the superior of the :chaos-
stream medium, because both mediums deal with the same type of
connection object. However, the :chaos-stream medium is not the superior
of the :chaos medium. This is because the :chaos-stream medium binds the
connection object returned from the :chaos medium to a stream object
before passing it upward. By modifying the returned connection object, the
:chaos-stream medium is said to have encapsulated that object. Encapsu-
lation, then, is one way of modifying a returned connection object for use by
a superior medium.

6-4

Networking Reference

Medium
Desirability

Logical
Contact Names

The Generic Network System

6.2.3 Each implementation has an associated desirability. When a
medium requests a connection from its implementations, the most desirable
implementation is consulted first. The medium desirability is expressed as a
number between 0 and 1, with the most desirable medium implementations
having a value closer to 1. If the global variable net:*try-all-medium-
implementations* is bound to t, then each succeeding implementation is
consulted in inverse order of its desirability until one of them succeeds in
returning a connection on the particular medium.

6.2.4 When an application requests a connection to a remote server, it
addresses that server using a logical contact name. Each service on the
network has a logical contact name that is defined using GNI. This contact
name is a structure whose name is a string. It also has an association list of
pairs whose keys are network types and whose values are contact names
appropriate to each particular network. For instance, a fortune cookie server
that uses a byte stream network connection might have the name "FORTUNE"
and associated value of 599. When making a connection to the fortune
cookie server, a remote host addresses the server on port 599 when using
TCP, but uses the contact name "FORTUNE* when using Chaosnet.

When a generic server listens for a contact name, it does so on all medium
implementations that have translations for the logical-contact-name. The
net:define-logical-contact-name function (described later in this section)
defines a generic contact name if one does not already exist and adds to it a
set of translations for the mediums that are implemented. The function
net:listen-for-connection-on-medium listens for the logical contact name on
a particular medium.

Networking Reference

6-5

The Generic Network System

Defining a Medium

Medium Connections

6.2.5 The function net:define-medium is used to define a medium object -
and add an implementation to it, or simply to add an implementation to an
existing medium object. The net:define-medium function is discussed in
paragraph 6.4.1, titled GNI Functions; however, the following paragraphs
introduce you to some of the function’s major arguments.

NOTE: The code shown in paragraph 6.2.5 has already been implemented in
the Explorer system, and is not required to run the examples later in this
section.

The following portions of code refer to the mediums used in Figure 6-2.

(net:define-medium :byte-stream)

In the preceding line of code, the net:define-medium function defines a
medium called :byte-stream. Only one argument is provided for net:define-
medium, and that is :byte-stream, which is the name argument. The name
argument is a keyword (or a string) that represents the name of the medium
object being created. Because it has no superior-medium-list argument, the
:byte-stream medium has no superiors. Now consider the medium definition
for the :chaos-stream medium:

(net:define-medium :chaos-stream
:connection-steps “ ((:medium :chaos))
:medium-desirability .85
:implementation-desirability .85
:superior-medium-list “(:byte-stream)
:listen-function ‘chaos-stream-listen-function
:connect - function ‘chaos-stream-connect-function)

In this code, another net:define-medium function defines the :chaos-stream
medium. This medium has as its superior the :byte-stream medium
previously created. The rest of the arguments are discussed in the definition
of the net:define-medium function, found in paragraph 6.4.1. The final
medium to be defined is the :chaos medium:

(net:define-medium :chaos
:connection-steps - ((:network :chaos))
:medium-desirability .8
:implementation-desirability .8
:connect-function ‘chaos-stream-connect-function
:connection-possible-p-function “chaos-connection-possible-p-function
:add-server-function ‘chaos-add-server-function
:delete-server-function ‘chaos-delete-server-function
:listen-function “chaos-listen-function)

Again, with no superior-medium-list argument, the :chaos medium has no
superiors.

6.2.6 The functions net:open-connection-on-medium and net:listen-for-
connection-on-medium are used as connect functions by an implementa-
tion’s connection function or listen function.

Again, these functions are discussed in detail later in this section (in
paragraph 6.4.1, titled GNI Functions).

Networking Reference

The Generic Network System

The Generic
Services
Interface

Services

Service
Implementation

Service
Operations

6.3 GSI allows an application to request a network service, such as file
transfer, status, or time, without specifying the exact network implementation
that is to be used. Rather, when a request for a particular service is made, the
GSI looks at the network services currently available and selects the most
appropriate implementation of the service to use. If the net:*try-all-service-
implementations* variable is non-nil, GSI tries every implementation of a
service until one of them is successful.

6.3.1 A service is a generic utility that you can access over a network. A
service refers abstractly to a specific generic function available to hosts on a
network. Examples include Mail, remote login (virtual terminal), and file
transfer services, each of which refers to the generic service provided, without
specifying the precise nature of their implementations. These implementa-
tions can differ considerably from one network to another depending upon
the type of network protocols being used.

For example, file transfer services are provided by QFILE for the Chaosnet
family of protocols, and by FTP for the TCP/IP family of protocols. Never-
theless, these two file transfer utilities perform (essentially) the same task:
they transfer files from one host to another. Likewise, the mail service is
provided by the Mail protocol on Chaosnet and by the SMTP protocol on
Chaosnet and IP.

Again, these protocols play a similar role on their respective networks. There-
fore, the (abstract) generic services :file and :mail can be said to exist
independently of the type of network and lower-level network-specific
protocols by which users and servers interact.

A service definition must have the following information:
M How the service is accessed

B Specifications of the operations (methods) that must be supported by any
particular implementation of the service

M What side effects are expected to result from a call to the service
M Any returned values

6.3.1.1 A generic service may have one or more implementations. An
implementation tells the generic services interface how to access a particular
server and carry out the operations that it allows. Service implementations are
flavor instances that implement the utility defined by the service definition. In
defining the generic service :file, you mix in the service-implementation-
mixin flavor with the service to be provided.

6.3.1.2 Each separate operation that a service offers is a different method
of the service flavor. For example, if QFILE is a service implementation of
the FILE service, then the :delete method must be defined to provide the file
deletion operation. To delete the file "romeo:mercutio;play.text#3", you
should be able to enter the following:

(send (find-service-implementation :qfile)
:delete "romeo:mercutio;play.text#3")

Networking Reference

The Generic Network System

Service
Implementation
Arguments

The net:define-service macro (discussed later in this section) allows you to
specify the keyword arguments that are passed to the service implementation.
You can pass anything that exists in the method’s environment, such as self
(the host) or the method’s instance variables. Two useful keyword arguments
you should specify are :host and :medium.

The keyword :host identifies the host from which the service is requested.

The keyword :medium identifies the medium by which the service is
provided. Each service implementation verifies that the connection provided
by the medium is acceptable to it. This verification is done by defining the
medium that the service implementation is designed to run on and by testing
the medium that is passed to see if the desired medium is one of its superiors.

6.3.1.3 An implementation of a service must handle all of the arguments
that could be sent to any of the other implementations of the same service,
and it should ignore any arguments not understood. In the simplest case, the
various implementations of a service could be written in such a way as to
accept exactly the same set of arguments. For instance, you could have a
:chat service that has IP and Chaosnet implementations. A user passes the
client side function chat the name of the target host and a message, in that
order. The server side then prints the message on the screen of the target
host. In writing the IP and Chaosnet code, you could arrange for both the
Chaosnet implementation and the IP implementation to take the same
arguments. Then, in genericizing the service, you provide the means for the
generic server to handle the target host name and the message.

A more complicated situation can arise when two existing servers take
different arguments, but provide exactly the same generic service. Suppose,
for instance, that you have a generic service called :weather-report that has
two implementations. A user invokes the Chaosnet implementation of the
chaos:weather-bureau server with a Chaosnet-specific client side function
called weather-forecast. The fictitious chaos:weather-forecast function
takes the two arguments city and state. The weather-report service also has a
TCP/IP implementation called 1P:weather that is normally invoked by the IP
specific client-side function report-on-the-weather. The latter function takes
four arguments: time, date, city, and state.

A generic weather service for these two implementations can take one of two
courses.

It can accept the four arguments city, state, time, and date. In this situation,
if the generic :weather-report service makes a connection on the :chaos-
stream medium (thereby using the Chaosnet weather-forecast server), the
additional time and date arguments passed to the generic server must be
ignored.

It can accept two arguments, city and state. In this situation, if the generic
:weather-report service makes a connection on the :chaos-stream medium
(thereby using the Chaosnet weather-forecast server), you can have the
Chaosnet weather-forecast server generate its own additional ¢time and date
arguments.

6-8

Networking Reference

Hosts

Service
Attributes

The Generic Network System

It may be the case that one implementation of a service does not support all
of the operations defined for the service. One operation may be allowed by
one implementation, but not by another. For example, QFILE supports non-
destructive deletions on hosts that support this utility, but FTP does not. In
this case, what delete means to FTP is what delete-and-expunge means to
QFILE. FTP only handles the delete-and-expunge operation. If a user wishes
to delete a file, the generic services interface chooses to do so via QFILE, the
chaosnet implementation of the generic FILE protocol.

6.3.2 A host is an object that represents a physical host on a network. A
user process can call a generic service without specifying which service
implementation to use by sending the host object a service message such as
the following:

(send (net:parse-host “thor) :file :delete "thor:jones;foo.text")

Most of the attributes of a host pertain to defining the host object in the
network namespace, as discussed in Section 4, Getting on the Network. In
order to access generic services, the most important of these attributes is the
service attribute.

6.3.2.1 Each host has a service attribute whose value is a list of service-
medium-protocol triples for each service that the host provides to the
network,

For instance, if the host PONY-EXPRESS provides the mail service for the
network, in addition to the usual mail and Telnet (login) services, then the
:service attribute is as follows:

((:mail :chaos :chaos-mail)
(:login :chaos :telnet))

It is possible for a host to have more than one entry for a particular service
that it provides. This situation occurs when there is more than one way to
access a particular service on the given host.

For instance, a host on two networks, one of which is IP and the other
Chaos, might provide mail-forwarding service on both networks. This host’s
:service attribute might include the following entries:

((:mail :chaos-stream :mail)
(:mail :chaos-stream :smtp)
(:mail :tcp-stream :smtp))

The first entry specifies that the mail service can be reached over the Chaos-
stream medium via the Mail protocol. The second entry allows the mail
service to be reached over the Chaos-stream medium again, only this time by
using the SMTP protocol. The third entry specifies that the mail service can
be reached on the TCP-stream medium via the SMTP protocol.

Networking Reference

The Generic Network System

Service
Implementation List

6.3.2.2 Each host object contains a list of the services and implementations
that are supported by that host. The elements of this list are of the form
(service medium service-implementation). This list indicates that this host can
provide a service using service-implementation if a connection can be made
on medium. When an application requires an operation provided by a serv-
ice, the name of the service is sent a message to the host from which the
service is desired. To delete the TAURUS:USER;FILE. TEXT#3 file, for
example, use the following form:

(send (net:parse-host “taurus) :file :delete "taurus:user;file.text#3")
A method created by the net:define-service macro handles this message.
The method attempts to match the message with one of the elements of the
services list. Once an element is found and a connection can be established
on medium, then the service-implementation is called with the arguments that
were passed in the original call.

If this call completes successfully, then the value returned by the service-
implementation fails, indicating one of three situations:

B A connection was not possible on medium.
W service-implementation was not installed on this host.
W The call signals the gsi-service-failure error condition.

In any of these situations, another element of the services list is found and
tried.

The Generic
Programmatic
Interface

GNI Functions

6.4 There are a number of flavors, methods, functions and macros, as well
as error conditions that allow you to create a new medium and to create
and access generic services.

6.4.1 The following functions are used to access GNI:

net:open-connection-on-medium host medium logical-contact-name Function

&rest args &Kkey :timeout :timeout-after-open :window-size :stream-type

This function opens a connection to the server process that is listening for
logical-contact-name on some host on the network.

The host argument identifies the host on which the connection is to be made.

The medium argument is a keyword representing the name of the medium on
which to make the connection. If a connection can be made on more than
one media, then this argument is a list of keywords representing each
medium.

The logical-contact-name argument is a string representing the contact name
of the process to which the user is trying to establish a connection.

6-10

Networking Reference

The Generic Network System

The args argument represents the arguments passed to the media on which
you are trying to establish a connection. The value of args is one of the
following keywords and its associated value.

:timeout — The timeout used when attempting to connect to a host.
:timeout-after-open — The timeout used when reading from a connection.

:window-size — The window size in bytes (byte size being determined by the
protocol involved).

:stream-type — The type of stream to be returned (such as :ascii-
translating-character-stream). For a complete list of stream types, see
the following file: sys: chaosnet; medium.lisp#>.

net:listen-for-connection-on-medium medium logical-contact-name &rest args Function

This function listens for the logical-contact-name (of the server process) on
each single-step implementation of the medium (identified by the medium
argument) for which the logical-contact-name has a translation.

The medium argument is a keyword representing the name of the medium on
which to listen for the contact name of the server. If there is more than one
medium through which a service can be provided, then this argument is a list
of keywords representing each medium.

The logical-contact-name argument is either a string representing the contact
name for which the server process is listening, or the actual logical contact
name object.

The args argument represents the arguments passed to the media on which
you are trying to establish a connection. The value of args is one of the
following keywords and its associated value.

:timeout — The timeout used when attempting to connect to a host.

:timeout-after-open — The timeout used when reading from a connection.

:window-size — The window size in bytes (byte size being determined by the
protocol involved).

:stream-type — The type of stream to be returned (such as :ascii-
translating-character-stream). For a complete list of stream types, see
the following file: sys: chaosnet; medium.lisp#>.

net:add-server-for-medium medium logical-contact-name function Function

This function runs function when a connection request is received for logical-
contact-name on any single-step implementation of medium. This function
must be evaluated after calling net:define-logical-contact-name.

The medium argument can be a keyword, string, or medium object. It can
also be a list of string or medium objects if more than one medium is available
on which to make a connection to access the particular service.

The logical-contact-name argument can be either a string representing the
contact name of the server process being solicited, or the actual logical-
contact-name object itself.

Networking Reference

6-11

The Generic Network System

The function argument represents the function to be evaluated when a
connection request is received for logical-contact-name on any single-step
implementation of medium.

net:delete-server-for-medium medium logical-contact-name Function

This function deletes the server identified by logical-contact-name on the
medium identified by medium.

The medium argument can be a keyword, string, or medium object. This
argument can also be a list of string or medium objects if more than one
medium is available on which to make a connection to access the particular
service.

The logical-contact-name argument can be either a string representing the
contact name of the server process being solicited, or the actual logical-
contact-name object itself.

net:find-medium medium-name &optional error-p Function

Returns the medium object identified by the medium-name argument. The
medium-name argument can be a string or keyword.

The error-p argument, if non-nil and no medium is found, causes an error to
be signaled.

net:define-medium name :superior-medium-list :connection-steps Function

:connect-function :connection-possible-p-function :listen-function
:add-server-function :delete-server-function :implementation-name
:implementation-desirability :medium-desirability
:implementation-desirability-function

The net:define-medium function creates a medium object for name (if such
an object does not already exist) and adds one implementation to it.

An example of net:define-medium’s syntax would be as follows:

(net:define-medium :chaos
:connection-steps ‘((:network :chaos))
:connect-function ‘chaos-stream-connect-function
:connection-possible-p-function ‘chaos-connection-possible-p-function
:listen-function ‘chaos-listen-function)
:add-server-function ‘chaos-add-server-function
:delete-server-function ‘chaos-delete-server-function
:implementation-desirability .8
:medium-desirability .8

The name argument is a keyword (or a string) that represents the name of the
medium object being created.

The :superior-medium-list argument is a list of the media of which the
current medium is an implementation; for example:

The :connection-steps argument is a list such as the following:
“((:medium :chaos))

The ;connect-function argument is a function used to return a connection
after the connection steps have been satisfied. The arguments to :connect-
function are as follows: host, logical-contact-name, connection, and args. In
certain cases, some of these arguments can be ignored.

6-12

Networking Reference

The Generic Network System

The :connection-possible-p-function argument is a function or function
name that returns t if it is possible to get a connection from one host to
another on this medium. If in doubt, return t. The arguments to the
:connection-possible-p function are host-a and host-b.

The :listen-function argument is a function that listens for connections to the
logical contact name and returns an open connection object. The arguments
to the :listen-function are logical-contact-name, connection, and args.

The :add-server-function argument identifies the function responsible for
doing whatever is required for adding a server for the medium. Its arguments
are logical-contact-name and form.

The :delete-server-function argument identifies the function responsible for
doing whatever is required for deleting a server for the medium. It takes one
argument: logical-contact-name.

The :implementation-name argument is the name of the implementation.
This argument defaults to the name of the medium.

The :implementation-desirability argument is a number between 0 and 1,
used to determine the order in which to use implementations. The default
value for :implementation-desirability is the same as for :medium-
desirability.

The :medium-desirability argument is a number between 0 and 1, used to
determine: the order in which to use mediums. The default value for
:medium-desirability is the same as for :implementation-desirability.

The :implementation-desirability-function argument is a function that can
be used to determine the medium desirability.

net:find-logical-contact-name name &optional error-p Function

This function returns the logical contact name object for the string name.

The name argument is a keyword (or a string) that represents the name of the
service being solicited.

The error-p argument, if non-nil and name is not found, causes an error to
be signaled.

NOTE: Although a logical contact name must have been defined prior to a
call to the net:add-server-for-medium function, net:find-logical-contact-
name need not be called prior to calling net:add-server-for-medium.

net:translate-logical-contact-name name network-protocol Function

This function returns the contact identifier to use on the protocol for name.

The name argument is a keyword (or a string) that represents the name of the
service being solicited.

The network-protocol argument is a keyword representing the protocol to be
used to access the service indicated by name.

Networking Reference

6-13

The Generic Network System

net:define-logical-contact-name name translations Functions
This function adds name as a logical contact name, if it is not already
defined, and adds translations to it.

The name argument is a keyword (or a string) that represents the name of the
logical contact name to be added.

The translations argument is a list of logical contact name translation
elements. An example is ((:chaos "MAIL") (:TCP 250)).

net:connection-possible-p medium host-a &optional (host-b sys:local-host) Function
This predicate returns t if it is theoretically possible to create a connection
from host-b to host-a on at least one implementation of medium.

The medium argument is a keyword (or string) that represents the medium or
the actual medium object.

The host-a argument is a string representing the host name of the host to be
contacted, or the actual host object itself.

The host-b argument is a string representing the host name of the host
originating the connection, or the actual host object itself. The default
binding of this parameter is net:local-host.

net:superior-medium-p medium superior-medium Function
This predicate returns t if medium is one of the implementations of superior-
medium.

The medium argument is a string representing the medium, or the actual
medium object.

The superior-medium argument identifies the name of the superior medium.

GSI Functions 6.4.2 The following functions allow you to access GSI programatically.
net:define-service service-name service-arguments implementation-arguments Macro
&optional documentation
The net:define-service macro defines a generic service; that is, it defines a
method (specified by the service-name argument) for a host object.

The service-name argument is a keyword that identifies the generic service
(such as :qfile or :ftp).

The service-arguments argument is a list of arguments with which the method
is defined.

The implementation-arguments argument is a list of the arguments that are
actually passed to the implementation. This list can include items specified in
the service-arguments argument, host instance variables, or special variables.

The optional documentation argument is a documentation string.

6-14 Networking Reference

The Generic Network System

NOTE: The net:define-service macro has an additional argument called
operation. However, do not include the operation argument in your service
definition; the system does this automatically.

net:define-service-implementation flavor-name Function
The flavor-name argument represents the name of the service imple-
mentation flavor.

This function creates an instance of the flavor that can be found by the
net:find-service-implementation function.

net:find-service-implementation service Function
This function finds an appropriate implementation of the service on the local
host.

The service argument is a keyword specifying a service implementation.

net:service-implementation-mixin ' Flavor

This flavor should be mixed into any service implementation flavors that are
created in order to give the object a common type and to add needed
instance variables.

net:define-stream-type stream-type flavor medium Function

This function defines the flavor of stream to instantiate for stream-type on
medium.

The stream-type argument is a keyword that will serve to identify the new
generic service (such as :qgfile or :ftp). Some of the acceptable types of
streams are: :binary-stream, :character-stream, and :ascii-translating-
character-stream. To see a list of the currently available stream types,
evaluate the net:*medium-stream-type-alist* variable.

The flavor argument identifies the flavor name for the instantiation.
The medium argument identifies which medium the stream type operates in.

net:find-stream-type stream-type medium Function

This function returns the flavor of stream to instantiate for stream-type on
medium.

The stream-type argument is a keyword that will serve to identify the new
generic service (such as :qfile or :ftp). Some of the acceptable types of
streams are: :binary-stream, :character-stream, and :ascii-translating-
character-stream. To see a list of the currently available stream types,
evaluate the net:*medium-stream-type-alist* variable.

The medium argument identifies which medium the stream type operates in.

Networking Reference 6-15

The Generic Network System

Using the Generic 6.5 The following paragraphs discuss the development of applications using

Network Interface GNI. The principal topic is the creation of generic network servers, their
implementation on server hosts, and the ways by which you can access the
service provided. Several example servers are discussed in detail.

Chat — 6.5.1 The first example server, the chat server, simply sends a message to a
A Simple Server remote host. If the user at the remote host is in a Lisp Listener, the screen
flashes and beeps, and the message appears in the Lisp Listener. If the
remote user is in a Zmacs buffer, then the screen flashes and beeps, and the
message appears in a minibuffer. The server does not provide error handling
or other frills. To send a message from one host to another, a user at host
sahara enters the following into a Lisp Listener:

(generic-chat "foreign-legion" "Bring water!")

At the remote host "foreign-legion”, the screen flashes and beeps, and the
following message appears on the screen:

Chat from Sahara: Bring water!

The server then sends an acknowledgment message "Gossip sent!" to the
user side to indicate that the message from the client was received.

Chat — 6.5.1.1 A user at the client side of the connection can access the chat
Client Side server at a remote host with the following function:

(defun generic-chat (host message)
(with-open-stream
(stream (net:open-connection-on-medium
(net:parse-host host)
:byte-stream
"generic-chat"
:stream-type :ascii-translating-character-stream))
(write-line message stream)
(send stream :force-output)
(format t "-&-A-%" (read-line stream)) nil))

The function net:open-connection-on-medium is used to create a generic
bidirectional byte-stream connection stream to a remote host host. The
stream created is of the :ascii-translating-character-stream type.

Forcing 6.5.1.2 Since stream connections normally buffer their output until enough

Output data is available to fill an entire packet (in the case of Chaosnet) or segment
(in the case of IP), it is possible for a write-line operation to be successful
without it being sent over the network. To make sure that the packet is sent,
it is sometimes necessary to send the stream a :force-output message. This
action forwards a small amount of data (such as what you are writing in this
example) to the other side of the stream connection. Sending the :force-
output message is especially important if the client side needs to read data
back from the server, as in the present case. As soon as the message appears
on stream, the server’s process can read it.

After the message is sent to the remote host, the chat function waits to read
data from the stream connection. This reading is accomplished with the
read-line function. The data sent from the server is read from the stream
and printed on the screen by the format function.

6-16 Networking Reference

Chat —
Server Side

Chat —
Getting on the Net

The Generic Network System

Now the chat function is exited, and with-open-stream automatically closes
the stream. ‘

6.5.1.3 The chat server function, at the remote side of the connection, is as
follows:

(defun generic-chat-server ()
(with-open-stream
(stream (net:listen-for-connection-on-medium
:byte-strean
"generic-chat"
:stream-type :ascii-translating-character-stream))
(let ((message (read-line stream))
(host (send stream :foreign-host)))
(tv:inotify nil "Chat from ~A: ~A" host message)
(write-line "Gossip sent!" stream))))

6.5.1.4 After you have defined the client and server side functions, you
must make three additional function calls to get the server up and running,
and to access it.

The following function call defines the generic service :chat at the client’s
side of the connection:

(net:define-service :chat (host message) (host message))

The first argument to net:define-service is a keyword that identifies the
generic service. In this case, it is :chat. The next two arguments are lists of
arguments passed to the client-side function. The first list is the set of
arguments required by the generic function. The second is a list of arguments
expected by the particular lower-level implementation of the service.

NOTE: To avoid compiler errors, all function calls to net:define-logical-
contact-name and net:add-server-for-medium must be evaluated, and
therefore entered, into your .LISP file (or Zmacs buffer) in the order that
they are presented in the following discussion.

net:define-logical-contact-name This function is called to define the
server’s logical contact name. The arguments include the logical contact
name and a list of network name translations. The necessary form for the
chat server is as follows, assuming that both the Chaosnet and TCP/IP net-
works are implemented:

(net:define-logical-contact-name
"generic-chat"
“((:chaos "Chat")
(:tep 250)))

net:add-server-for-medium This function adds a server for the specified
medium.

(net:add-server-for-medium
:byte-stream
"generic-chat"

‘ (process-~-run-function
"generic-chat"
‘generic-chat-server))

Networking Reference

6-17

The Generic Network System

A Witticism 6.5.2 The next example is slightly more complicated than the first. The
Server means by which you access a particular server can vary from simple to
extremely complex. The chat server simply sends a message to a remote host
and closes the connection. The following server, a witticism server, is slightly
more complex. Here, you open a connection with the server, which returns a
witticism back to you. As in the case of the chat server, the following example
takes a minimalist approach to networking. For simplicity, no error handling
or other frills complicate the code. This server again illustrates the use of a
generic byte stream. If your network had a witticism server called GrRoucHo,
you could invoke GRouCHO's witticism services by entering the following form
into a Lisp Listener:

(generic-witticism "GROUCHO")

The definition of this function is as follows:

(defun generic-witticism (host)
"Generically return a witticism."
(with-open-stream
(stream (net:open-connection-on-medium
(net:parse-host host)
:byte-stream
:stream-type :ascii-translating-character-stream))
(let ((notion (read-line stream)))
(format t "-&-s" notion) nil)))

First, a stream connection is opened using net:open-connection-on-medium.
The witticism server is listening for a request for connection on the foreign
host identified by the net:parse-host function. The medium type is :byte-
stream, and the stream type, as always, is :ascii-translating-character-
stream.

After opening the connection, the user function invokes the read-line
function to get the incoming witticism sent by the server on the stream
connection. Note that the client-side function is now in a wait state. Nothing
more is done until the read-line function returns a value.

Note that at the level of a generic byte stream this client-side function does
not send anything to the server. It simply opens the connection and waits for
a response.

Server 6.5.3 The witticism server listens for "generic-witticism" (the logical
Side contact name) and returns the requested generic witticism back to the client
side of the session. The definition of the generic-witticism-server function

is as follows:

(defun generic-witticism-server ()
(with-open-stream

(stream (net:listen-for-connection-on-medium
:byte-stream
"generic-witticism"
:stream-type :ascii-translating-character-stream))

(let ((message (wit)))

(write-line message stream))))

The witticism-server function listens for a connection on the generic
:byte-stream medium. It listens for the "generic-witticism" logical contact
name. The stream type is :ascii-translating-character-streanm.

6-18 Networking Reference

Getting the Server
Up and Running

Logical
Contact Name

Add Server
for Medium

Defining
the Service

The Generic Network System

The connection is established, and the generic-witticism-server binds the
message variable to a string returned by running an auxiliary function, wit,
that finds and returns the appropriate generic witticism. The following
function is a simple version of wit that works for demonstration purposes.

(defun wit ()
(nth (random (length *witticisms*)) *witticisms*))

The function randomly selects a witticism-string from the list identified by the
witticisms variable. An example of how to establish the *witticisms* list
follows:

(setf *witticisms* “("Time is money."
"Money is the root of all evil."
"Time is the root of all evil."
"Without evil there can be no good."
"Without money you cannot have a good time."
"Without time you cannot spend money.")

Finally, the server writes the message to stream. Remember that the client-
side function generic-witticism is already waiting to read the witticism from
the stream at this point.

Finally, the with-open-stream macro takes care of closing the connection
prior to exiting.

6.5.4 Once the client-side function and the server function have been
defined, three further tasks remain to be completed. These are performed at
the client’s side. Neither the generic service nor the implementation client-
side functions take any arguments. Remember that these functions must be
called in the order in which they are discussed.

6.5.4.1 A logical contact name must be defined for the server. To do this,
you use the function net:define-logical-contact-name at the server side.
This function is called with the logical contact name and a list of translations
as arguments. In this case, the logical contact name is "generic-witticism";
the list of translations given here indicates that the logical contact name
"generic-witticism" translates into the Chaosnet contact name "witticism®
and into TCP port 250:

(net:define-logical-contact-name
"generic-witticism"
‘((:chaos "witticism")
(:tcp 250)))

6.5.4.2 To add the server to the medium, you must use the GNI function
net:add-server-for-medium. This function is called as follows for the generic
witticismn server. The medium is :byte-stream, the logical contact name is
vgeneric-witticism", and the server function is generic-witticism-server:

(net:add-server-for-medium
:byte-stream
"generic-witticism"
’(process-run-function "wit" ‘generic-witticism-server))

6.5.4.3 The last function, which must be called on the client side, is
net:define-service. The appropriate call for the witticism server is as follows:

(net:define-service :witticism () ()
"This service returns a witticism.")

Networking Reference

6-19

The Generic Network System

Application
Protocols

6.6 The servers discussed to this point involve simple interactions between
the client side and the server side in which the client requests information or
a service from the server, and the server performs that service or returns the
needed information, terminating the information exchange immediately.
When more complex interactions between the client side and the server side
are required, it becomes necessary to synchronize interactions between the
client and server.

To illustrate the problems posed in synchronizing complex interactions
between the client and the server, a more complicated version of the previous
spelling server is discussed. A hypothetical user interaction with this version
of the spelling checker might proceed as follows.

The user enters a request for a spelling check in a Lisp Listener:

(check-spelling
- (Impudent and prolix sesquipedalians intimidate more than impress))

The server then checks each form against the spelling list and returns a list of
unrecognized forms to the user at the client side of the session with the
following message:

These words are incorrect or unknown:
(PROLIX SESQUIPEDALIAN)

The user is then given an opportunity to add an unrecognized though
correctly spelled word to the spelling list:

Add PROLIX to the spelling list? (Y or N)

After the user has responded to each prompt, the list of words to be added to
the server’s spelling list is sent to the server. The server then sends a message
back to the client that terminates the session. The client-side function then
prints a “Done" message to the user and returns nil.

The principal task here is to create the necessary client and server functions
in such a way that each knows what to expect from the other at any given
time.

6-20

Networking Reference

The Generic Network System

Client Side 6.6.1 As always, the client side of the session invokes the server. The

definition of the client server invocation function is as follows:

(defun generic-check-spelling (host text)
(with-open-stream

(stream (net:open-connection-on-medium
(net:parse-host host)
:byte-stream
"generic-speller"
:stream-type :ascii-translating-character-stream))

(write text :stream stream)

(send stream :force-output))

(let ((wrong-words (read stream)))

(cond ((equal wrong-words "1")

(format t "~&No incorrect spellings in the text.-%")
(no-new-additions-to-spelling-list stream))
(t (format
t

"~&These words are incorrect or unknown: ~&~s~%~%"
wrong-words)
(loop
for word in wrong-words
when (and word

(y-or-n-p "Add ~S to the spelling list?"
word))
collect word into new words
finally
(cond ((null new-words)
(no-new-additions-to-spelling-list stream))
(t (write new-words :stream stream)
(send stream :force-output)))))))
(let ((done (read stream)))

(format t "~&~S" done))) nil)

The client-side auxiliary communications function no-new-additions-to-
spelling-list is defined as follows:

(defun no-new-additions-to-spelling-list (stream)
(write "O" :stream stream)
(send stream :force-output))

- Server Side 6.6.2 The generic-spelling-server function is defined as follows:

(defun generic-spelling-server ()
(with-open-stream
(stream
(net:listen-for-connection-on-medium
:byte-stream
"generic-speller"
:stream-type :ascii-translating-character-stream))
(let ((misspellings (get-misspellings (read stream))))
(cond ((null misspellings)
(write "1" :stream stream)
(send stream :force-output))
(t (write misspellings :stream stream)
(send stream :force-output)))
(let ((temp (read stream)))
(cond ((equal temp "O")
(send-done-message stream))
(t (add-to-spelling-list temp))))
(send-done-message stream))))

Networking Reference

6-21

The Generic Network System

The auxiliary communications function send-done-message, used by the
spelling server function, writes the string "done" to the stream and executes a
: force-output. It is defined as follows:

(defun send-done-message (stream)
(write "Done" :stream stream)
(send stream :force-output))

For the sake of discussion, the auxiliary functions used by the spelling server
are kept as simple as possible:

(defun add-to-spelling-list (text)
(loop for word in text
collect (symbol-name word) into string-list
finally (setq *spelling-listx
(nconc string-list *spelling-list*))))

The function get-misspellings has the same definition as it did earlier, as
does the global variable *spelling-list* which holds the spelling list:

(defvar *spelling-list*
'("This" nign" ngn "sample" "word" nlistu))

(defun get-misspellings (text)
(loop for word in text
when (not
(member (symbol-name word)

¥spelling-list*
itest
#-string-equal))

collect word))

Contact 6.6.3 For the spelling server to function properly, you must define its logical
Name contact name. The function net:define-logical-contact-name is used for this
purpose:

(net:define-logical-contact-name
"generic-server"
((:chaos "spelling")
(:tcp 241)))

Adding the Server 6.6.4 To tell the system of the existence of the server, use the function
net:add-server-for-medium:

(net:add-server-for-medium :byte-stream
"generic-spelling"
‘generic-spelling-server)

6-22

Networking Reference

Writes and Reads

First Write —
Client Side

First Read —
Server Side

Second Write —
Server Side
Second Read —

Client Side

Flag Waving

The Generic Network System

6.6.5 The more complicated the interaction between client and server, the
more carefully you have to be that server-side and client-side reads
correspond to the correct server-side and client-side writes. Special care must
be paid where a read at one side of a connection corresponds to two or more
possible writes at the other side, as can occur, for example, inside a
conditional expression. In order to understand this more clearly, you can step
through the client-side function generic-check-spelling and the server-side
function generic-spelling-server to check reads against writes.
|

6.6.5.1 The first write takes place at the client side of the connection. The
function generic-check-spelling sends the text or word list to the server to
be checked. To make sure that the entire text is transmitted, a : force-output
message is sent to stream.

6.6.5.2 At the server side of the connection, after opening stream, the
stream is read. The value returned by read is then passed to the function
get-misspellings. The value of this list is bound to misspellings.

6.6.5.3 Now it is the server’s turn to transmit. The first conditional clause
offers two possibilities. Either it writes the arbitrarily chosen character "1 to
stream if get-misspellings has not found any strange words and
misspellings is bound to nil, or it sends the list of nonexistent or misspelled
words back to the client-side function.

6.6.5.4 The client-side function binds the variable wrong-words either to
*1» or to a list containing any unrecognized words, whichever the server
sends.

6.6.5.5 If the spelling server does not find any incorrect words, it must
notify the client-side function of this fact. An arbitrary string is chosen to
serve as a flag to the client side that no misspellings were found. In the first
conditional clause in the function generic-spelling-server, the string "1 is
sent to flag the client function that no list of wrong-words is forthcoming.

NOTE: At this point, you might think that you could simply write the "There
are no incorrect spellings." message and return nil, immediately
terminating the transaction, as in the following code:

(cond ((equal wrong-words "1")
(format stream "~&There are no incorrect spellings.")
nil)))

This form does not work, however, because the generic spelling server
expects to read additional input from the client side (on the server side, see
the (let ((temp (read stream))) form). The whole communication session
simply hangs after printing the message. The server will listen forever to its
stream, and the function with-open-stream will never close the connection.

Networking Reference

6-23

The Generic Network System

CAUTION: Every read, whether on the client side or on the server side,
must have a corresponding write at the other side of the connection.

Third Write— 6.6.5.6 As noted in the previous numbered paragraph, after binding wrong-
Client Side words, the function at the client side can respond to the server in one of two
ways. It must respond, however.

Even if there are no new words or misspellings to be considered as additions
to *spelling-1list*, the client side must return something to the server. If
the client does not require further service of the server, it waves a flag at this
write by sending a "o back to the server with the no-new-additions-to-
spelling-list function.

If the server finds unrecognized words in the input list, then the user at the
client side decides which of the words to add to the spelling list that the server
maintains.

Again, there are two possibilities. If the user decides not to add any new
words to the lexicon, then the list bound to the variable new-words by the
loop macro will be empty, as in the case of the previous option. The server is
still listening to the stream, so the client must send something. The client side
calls the function no-new-additions-to-spelling-list, as it did earlier,
sending a o flag to the server.

The last possibility at the client side (the third write) is that the user has made
a selection of words to be added to the spelling list. These words are put into
a list by the loop macro, which then uses the write function to send them to
the server. To be sure that everything is sent properly, a :force-output
message is sent to the stream.

Third Read 6.6.5.7 The third read takes place at the server side of the connection.
Whatever is read from the stream is bound to the variable temp. This variable
is bound to either a list of words to be added to *spelling-list* or to "o".

Fourth Write 6.6.5.8 The value of the variable temp determines whether to add words to
spelling-list. If temp is bound to "o", then "done" is transmitted back to
the client by the fourth write (via the send-done-message function). If temp is
bound to a list of words, then the list is appended to *spelling-list*, and a
"done" message is sent back to the client.

Fourth Read 6.6.5.9 A communications session is always complete when the last read has
been accomplished, whether by the client or the server. In the generic
spelling program, this final read occurs on the client side of the connection.
When the client receives the "Done" message, Done is printed on the client’s
screen and nil is returned.

At this point, the functions at both sides of the connection have terminated
normally. Neither side has any outstanding reads, so the Common Lisp
function with-open-stream takes care of closing the stream at both the client
side and the server side.

6-24 Networking Reference

The Generic Network System

Generic Access of
Protocol-Specific
Services

Server
Function

6.7 One of the principal benefits of the Generic Services Interface is the
ability to use a predefined protocol-specific server without the need to modify
the server code. For instance, an existing Chaosnet, TCP/IP or DECnet
specific server can be used without modification. The only change that must
be made is to the way that the client-side accesses the provided service. The
following paragraphs discuss how this is arranged.

6.7.1 The following example has two servers. The first of these is a
Chaosnet protocol-specific server and the second is a TCP-specific server
function. They are modified versions of the the chat server already discussed
within the context of the generic network interface. Refer to the detailed
discussion of this example in Section 5, titled Chaosnet Applications
Programming and Networking; although the inner workings of the server
function should be familiar in light of the preceding discussion of GNI. (See
also the Explorer TCP/IP User’s Guide for details on the TCP/IP
programmatic interface.)

The following code represents the Chaosnet version of the chat server:

(defun chaos-chat-server ()
(let ((conn (chaos:listen "Chat")))
(chaos:accept conn)
(with-open-stream
(stream (chaos:make-stream conn :ascii-translation t))
(let ((message (read-line stream))
(host (sys:get-host-from-address
(chaos: foreign-address conn) :chaos)))
(w:notify nil "Chat from -~A: ~A host message)
(chaos:answer-string conn "Gossip sent!")))))

The following code represents the TCP version:

(defun tcp-chat-server ()
(with-open-stream
(stream
(ip:open-stream nil
:local-port 241
:characters :ascii))
(let ((message (read stream))
(host (send stream :foreign-host)))
(tvinotify nil "Chat from ~A: ~A host message)
(write "Gossip sent!" :stream stream))))

To ensure that the chat server is listening for the contact name, you use the
function add-initialization. (See the Explorer Lisp Reference manual for
further details on initializations.) To initialize the chaos-chat-server, the
function add-initialization is called as follows:

(add-initialization "chat"
‘(chaos-chat -server)
nil
‘chaos:server-alist)

To initialize the TcP-chat-server, use the following function call:

(add-initialization 241
‘(process-run-function "TCP Chat" ‘tcp-chat-server)
nil
‘ip:*tcp-server-alist*)

Networking Reference

6-25

The Generic Network System

Client Side

Defining a
Service Flavor

Service
Implementation
Mixin

Client Side

6.7.2 The server function of a service implementation is identical to any
other protocol-specific server. However, the generic client-side functions
used to access the servers require some attention.

6.7.2.1 As discussed earlier, a service implementation is a flavor instance.
The name of the generic implementation of chat is to be :chat. The chat
flavor is defined as follows. Note that the name of the flavor and the name of
the service implementation need not be identical, although they are in this
case.

(defflavor chat
((net:name :chat))
(net:service-implementation-mixin))

6.7.2.2 When defining a service implementation flavor, you must include
the mixin flavor net:service-implementation-mixin, as illustrated
previously.

6.7.2.3 The principal difference between the use of generic services and the
use of a client-side function to invoke a generic byte-stream server or a
protocol-specific (that is, a Chaosnet or IP) server is that the latter accesses
the server via a client-side function call. A generic service is accessed by a
method on the particular service implementation flavor. The :send-message
method of the chat flavor is defined as follows.

(defmethod (chat :send-message) (host medium message)
(unless (net:superior-medium-p medium :byte-stream)
(ferror ‘net:gni-service-error
vchat will not work on medium -~S."
medium))
(with-open-stream (stream
(net:open-connection-on-medium
host
medium
"new-chat"
:stream-type
:ascii-translating-character-stream))
(write message :stream stream)
(send stream :force-output)
(read stream)

Note that this method uses the generic byte-stream medium to make the
connection, even though the server with which the connection is made is
Chaosnet-specific. As a result, the user can access the chat server in any of
three ways:

B Use the generic :byte-stream medium:

(send "target-host" :chat :byte-stream "Using the byte stream medium. ")
m Use the :chaos-stream medium:

(send "target-host" :chat :chaos-stream "Using chaos stream medium.")
W Use the :tcp-stream medium:

(send "target-host" :chat :tcp-stream "Using tcp stream medium.")

6-26

Networking Reference

Compiling a Flavor

Getting on
the Network

Logical
Contact Name

Define
the Service

Service
Implementation

:services
Attribute

The Generic Network System

6.7.2.4 Use the compile-flavor-methods macro to ensure that the
:send-message method is compiled appropriately:

(compile-flavor-methods chat)

6.7.3 Once the server function and the client-side service implementation
flavor have been defined, several additional client side tasks remain.

6.7.3.1 As is true with all generic services, the logical contact name must be
defined. In the present case, you have two protocol translations, one for the
the IP chat server, and the other for the Chaosnet chat server:

(net:define-logical-contact-name "new-chat"
‘((:chaos "Chat") (:ip 241)))

6.7.3.2 To define the service, you use the net:define-service macro. The
service name is :chat; the generic service argument is the message sent to the
foreign host:

(net:define-service :chat (message)
(self net:medium message)
"This service chats a foreign host.")

6.7.3.3 Next, you must define the service implementation with the function
net:define-service-implementation:

(net:define-service-implementation ‘chat)

6.7.4 You still cannot access the chat server as a generic service. To get
to the chat server you must now enter the Namespace Editor to edit the
host’s :services attribute.

Add the following services to the :services attribute list:
(:chat :chaos-stream :chaos-chat)

(:chat :TCP-stream :TCP-chat)

You can now test the chat server by entering the following into a Lisp
Listener:

(send sys:local-host :chat :send-message "Hello! This is a test.")

Networking Reference

6-27

The Generic Network System

Errors 6.8 Several types of network errors can occur. First are the standard generic
network errors that trap errors independently of the individual protocols
implemented on the network. Additionally, each protocol has its own error
monitor and trapping facilities. Thus, Chaosnet, TCP/IP, and so on, have
their own error conditions. The following paragraphs discuss the standard
network errors and the error conditions particular to the Chaosnet protocol.
For specific information about error conditions in other network protocols,
you should refer to the specific documentation for the networking option in
question.

Standard 6.8.1 The following definitions are for the standard network error
Network Errors condition/flavors.

net:network-error (error) Flavor
This is the base flavor for all network errors. All network errors use flavors
built upon this one.

net: gni-medium-error Condition

This is used inside of any medium-related failure.

net:gni-service-error Condition

This is used inside of any service-related error.

Local Problems 6.8.2 The following Chaosnet-oriented error conditions can occur on a local
host:

net:local-network-error (net:network-error error) Flavor
This flavor is used for problems that are entirely the result of activity on the
local Explorer machine.
net:local-network-error (net:local-network-error Condition
net:network-error error)
Some problem that is not described in the following conditions has occurred
on the local network.
net:network-resources-exhausted (net:local-network-error Condition
net:network-error error)

This condition is signaled when some local resource in the Network Control
Programs is exhausted. There are probably too many Chaosnet connections
and the connection table is full.

net:unknown-address (net:local-network-error net:network-error error) Condition

The address argument to chaos:connect or some similar function was not
recognizable. The :address operation on the condition instance returns the
address that was supplied.

6-28 Networking Reference

The Generic Network System

Problems Involving 6.8.3 The following error conditions can occur as a result of the actions of
the Actions of remote hosts.
Other Machines
net:remote-network-error (net:network-error error) Flavor

This flavor is used for network problems that involve the actions—or lack of
them—of other machines. This flavor is often useful for testing as a condition
name.

The :connection and :foreign-host messages return the chaos:conn object
and the host object for the foreign host.

Every instance of net:remote-network-error is the result of either
net:connection-error or net:bad-connection-state.
net:connection-error (net:remote-network-error error) Condition

This condition name indicates failure to complete a connection.

net:bad-connection-state (net:remote-network-error error) Condition

This condition name indicates that an existing connection that was formerly
valid has now become invalid. This error is not signaled until you try to use
the connection.

net:no-server-up (net:connection-error net:remote-network-error Condition
net:network-error error)
This condition indicates that no server was available.
net:host-not-responding-during-connection (net:connection-error Condition
net:remote-network-error error)
This condition indicates that a host is not responding after it has been asked
to make a connection.
net:host-stopped-responding (net:bad-connection-state Condition
net:host-not-responding net:remote-network-error error)
This condition indicates that a host is not responding even though a
connection to it already exists.
net:connection-refused (net:connection-error Condition
net:remote-network-error error)
This condition indicates that a connection was refused.
If the CLS packet contained a reason for the refusal, the :reason operation

on the condition instance returns that reason. Otherwise, the operation
returns nil.

net:connection-closed (net:bad-connection-state Condition
net:remote-network-error error)

This condition indicates that you have tried to transmit on a connection that
has been closed by the other host.

If the CLS packet contained a reason for the refusal, the :reason operation
on the condition instance returns that reason. Otherwise, the operation
returns nil.

Networking Reference 6-29

The Generic Network System

net:connection-lost (net:bad-connection-state Condition
net:remote-network-error error)

This condition indicates that you have tried to use a connection on which an
LOS packet was received.

If the CLS packet contained a reason for the refusal, the :reason operation
on the condition instance returns that reason. Otherwise, the operation
returns nil.

net:connection-no-more-data (net:bad-connection-state Condition
net:remote-network-error error)

This condition indicates two things: first, you have tried to read from a con-
nection that has been closed by the other host; second, there are no more
packets left to be read. Note that it is not an error to read from a connection
that has been closed if you have not yet read all the packets that arrived,
including the CLS packet.

If the CLS packet contained a reason for the refusal, the :reason operation
on the condition instance returns that reason. Otherwise, the operation
returns nil.

6-30 Networking Reference

NETWORK STATUS
AND TROUBLESHOOTING

Introduction 7.1 This section discusses how to check the status of the network, and
provides a brief description of the network debugging tools. Specific topics in
this section include the following:

B Networking functions
W Networking-applicable portions of the Peek window
» Network
m File Status
s Servers
B Networking menu interface
m Network operations menu
» Displays menu
= Diagnostics menu
= Controller configuration menu

Networking 7.2 Several functions are available for checking network status and

Functions resetting the network. The utilities in Peek and the networking menu
interface also employ the following functions:

net:host-status &rest hosts Function

The net:host-status function checks on the status of hosts. If the hosts
argument is nil, net:host-status polls all hosts known by the locally-cached
version of the network namespace. Otherwise, the function polls the specified
hosts. A status message is returned for each medium supported by each host.
(For related information, see the description of the net:*poll-each-status-p*
variable which follows the net:host-status function definition.)

Following is an example returned by the net:host-status function:

ADDR HOST STATUS
1462 "Brigham-Young" is responding on medium CHAOS.
1107337720 "Brigham-Young" is responding on medium IP.

The following list explains the meaning of the headers:

ADDR The address of the listed host.

HoST The name of the host.

sTaTus The status (responding or not responding) of the host, and the
medium in which the particular protocol has been implemented.

Networking Reference

7-1

Network Status and Troubleshooting

chaos:enable

net:*poll-each-status-p* Variable

The net:*poll-each-status-p* variable, if nil, causes the net:host-status
function to return only the status of the most desirable protocol of each host.
With less information to check, the net:host-status function operates more
quickly. If net:*poll-each-status-p* is non-nil, (t is the default), the
net:host-status function operates as previously described, returning status for
each protocol on the target host.

When proper network transmission and reception breaks down, the first
corrective action you should take is to reset the network. To do so, use the
following function:

net:reset &optional enable-p Function

The net:reset function resets the network for all the protocols currently
loaded. If the value of enable-p is nil (the default), the function turns off the
network for this host. If enable-p is non-nil, the network is enabled and
turned on.

The net:reset function calls the various reset functions for all the protocols
that are loaded.

The following descriptions describe some of the reset functions available for
Explorer-supported networking protocols.

chaos:reset &optional enable-p Function

The chaos:reset function resets the network for the Chaosnet protocol only.
If the value of enable-p is nil (the default), the function turns off the network
for this host. If enable-p is non-nil, the network is enabled and turned on.

Function

The chaos:enable function enables the network for the Chaosnet protocol
only. This function is called by chaos:reset, if that function’s enable-p
argument is non-nil.

NOTE: The following functions may or may not be applicable to your
Explorer’s networking environment, depending on the protocols available in
your environment.

ip:reset &optional (enable-p nil) (debug-p nil) Function

The ip:reset function resets the network for the Explorer TCP/IP family of
protocols (IP, ICMP, UDP, TFTP, FTP, and TCP). Again, if the value of
enable-p is nil (the default), the function turns off the network for this host.
If enable-p is non-nil, the network is enabled and turned on.

139)

Networking Reference

ip:enable

Network Status and Troubleshooting

The value you supply for the debug-p argument determines which of the three
levels of debugging output is displayed when resetting the network. The
default value of nil allows no debugging, t allows moderate debugging, and
tverbose allows maximum debugging. The debugging output interfaces with
normal system use, and is not used under normal circumstances.

Function

The ip:enable function enables the network for the Explorer TCP/IP family
of protocols. This function is called by ip:reset, if that function’s enable-p
argument is non-nil.

dna:reset &optional enable-p Function

dna:enable

The dna:reset function resets the network for the Explorer DECnet family of
protocols. Again, if the value of enable-p is nil (the default), the function
turns off the network for this host. If enable-p is non-nil, the network is
enabled and turned on.

Function

The dna:enable function enables the network for the Explorer DECnet
family of protocols. This function is called by dna:reset, if that function’s
enable-p argument is non-nil.

The easiest way to enter Peek is to press SYSTEM-P on the keyboard. Peek
is a window-oriented utility that shows you a continual update of system
status. This section also highlights some of the interesting system meters that
the Network and Host Status items can show. For more information about
how to use Peek, refer to the Explorer Tools and Utilities manual.

B Fingering hosts — Discusses the finger function and the TERM F key
sequence, which display information about users logged in at various
machines in your network. Also, discusses the chaos:find-hosts-or-
lispms-logged-in-as-user function, which returns a list of hosts on which
a user is logged in.

B Sending and printing notifications — Discusses the chaos:shout and the
chaos:notify-all-lms functions, which send a message to all Lisp
machines. Also, discusses the chaos:notify function, which sends a brief
message to a specified host. Finally, discusses the print-notifications
function, which reprints any notifications that have been received.

Networking Reference

Network Status and Troubleshooting

Peek Utility 7.3 The following paragraphs discuss the networking-applicable portions of
the Peek utility. The Peek utility is made of modes; each mode of which has
an associated window/interface.

You select a mode by pressing the key with the first letter of the item you
want (N for Network, F for File Status, and so on). Alternately, you can
select a Peek menu item with the mouse.

Network Mode 7.3.1 If you press N (for Network), a pop-up menu appears. The contents
of that pop-up window depend on which networking protocols you have
loaded in the current Explorer environment. If you have Chaosnet (a default)
and TCP/IP loaded, the pop-up menu would appear as follows:

NETWORK PROTOCOLS

ICMP
TCP
UDP
IP
CHAOS

ETHERNET

The 1cMp, Tcp, UDP, and IP selections are discussed in detail in the Explorer
TCP/IP User’'s Guide. The following paragraphs discuss the cHaos and
ETHERNET selections.

7-4 Networking Reference

Network Status and Troubleshooting

CHAOS Selection 7.3.1.1 When you select the c¢Haos option in the Peek network pop-up
menu, a display appears, similar to the one in Figure 7-1, following:

Figure 7-1 Typical Contents of the Peek Network Mode Chaosnet Selection Screen

Chaosnet connections at 04/09/87 12:05:31

Connection to 00728 from host ti-7|balboa (27083),

OPEN-STATE, local idx 171301, foreign idx 100364

Windows: local 13, foreign 13, (13 available)

Received: pkt 7 (time 131450), read pkt 7, ack pkt 7, 0 queued
Sent: pkt 10, ack for pkt 10, 0 queued

Type Slot Subnet #-In #-0ut Aborted Lost FCS-Error Timeout Too-Big
NUBUS FO 0 1860 257 0 89 1 0 0

== Values of Other Interesting Meters ===============
63 Number of Chaos ARP Replies Received
80 Number of Chaos ARP Request Broadcasts Sent
4 Number of Chaos ARP Replies Sent
9797 Number of Chaos ARP Request Broadcasts Received
0 Number of routing packets
10637 Number of rut pkts from indirectly reachable net.
191068 Number of pkts to be forwarded, except not a bridge.
0 Number of pkts too big to be valid Chaos pkts.
0 Number of pkts dropped due to not knowing how to route to their subnet.
0 Number of pkts with bad version number.
6827 Number of RUT pkts received.
2 Connections that were deactivated when already inactive.
0 Number of PKTs dropped due to expired reservation.
O Number of Chaos INT Pkts actually In Use
50 Number of Chaos INT Pkts actually Free.
29 Number of Non-Int Chaos Pkts actually Free
0 Number of Chaos INT Pkts currently allocated
85227 Number of data packets transmitted.
4600 Number of data packets received.
108 Number of duplicate packets received.
89 Number of duplicate packets transmitted.
2 Number of current LOS packets.
0 Number of all LOS packets received.
0 Number of pkts forwarded.
0 Number of pkts forwarded too often and discarded.
88986 Number of pkts transmitted via Chaosnet.
15571 Number of pkts received via Chaosnet.
45 Number of Chaos Pkts ever made
0 Number of Times an Ethernet controller locked up in the No Resources State
0 Could not send -- no INT-PKT available

Gateway Gateway

Subnet Address Name Cost
0001 083C ours 49,
0003 053C ours 24.
0005 Direct
0008 05B8 Hull.com 22.

Networking Reference 7-5

Network Status and Troubleshooting

The following explains the meaning of the headers:

Chaosnet connections at — This gives you the current time. The time is
expressed as a relative value that is incremented by 60 every second.

Connection to server at host host — If this item appears, it lists a Chaosnet
connection to a specific host. If you click on the connection to server, the
following pop-up menu appears:

Connection Operations

Close
Probe
Status
Retransmit
Send LOS
Remove
Describe
Inspect

If you click on host, you get a pop-up menu similar to the one following:

HOST C¢@

Reset

Host Status One
Insert Host Status
Remove Host Status
Describe

Inspect

Additional information is also displayed for the connection object. If you are
interested in the concepts behind this additional information, see the
paragraph titled Accessor Functions for a Conn in Section 5 of this manual,
the section titled Chaosnet Applications Programming and Networking.
Below the connections listed in Figure 7-1, the following headers appear:
Type — The type of controller hardware used in this machine.

slot — The number of the NuBus logical slot (FO through F6).

subnet — The number of the subnet for this controller.

#-1n — The number of packets that were received since you last booted or
reset the network.

#-out — The number of packets that have been transmitted since you last
booted or reset the network.

aborted -— The number of packets that were aborted during transmission.

Lost — The number of packets that the controller attempted to receive but
could not. Remember, controlled packets are retransmitted.

Networking Reference

Network Status and Troubleshooting

Fcs-Error — The number of packets that showed FCS errors. FCS stands for
frame check sequence, which is the same as a cyclic redundancy check.

Timeout — The number of controller hardware timeouts.

Too-Big — The number of incoming packets that exceeded the legal size for
packets under the Ethernet and Chaosnet protocols.

More information is given under the heading values of Other Interesting
Meters. This information is self-explanatory.

At the bottom of the screen, the following three headers describe the type of
connection the host has to hosts on other subnets.

subnet — This indicates the number of other subnets with which the host can
communicate.

Gateway — This indicates whether the host has a direct connection over a
particular subnet or whether it is first routed through another host.

cost — This describes the difference in expected transmission time through
relative numbers. For example, a cost of 24 indicates twice the transmission
time as does a cost of 12.

Networking Reference

Network Status and Troubleshooting

ETHERNET Selection 7.3.1.2 When you select the ETHERNET option in the Peek network pop-up
menu, a display appears, similar to the one in Figure 7-2, following;:

Figure 7-2 Typical Contents of the Peek Network Mode Ethernet Selection Screen

Type Slot Subnet #-In #-0ut Aborted Lost FCS-Error Timeout Too-Big
NUBUS FO [¢] 49469 748 o] 89 1 [¢] o]

m==z==z====== Ethernet Meters ============

0 NUBUS FO Damaged frames seen by software
0 NUBUS FO NuBus Read/Write Timeouts
2 NUBUS FO Average Ethernet Receive time (ms)
2 NUBUS FO Average Ethernet Transmit time (ms)
3 NUBUS FO Chaos pkts discarded for "other" reasons
2759 NUBUS FO Pkts received for UNKNOWN protocol
2116 NUBUS FO Pkts received for another protocol
7384 NUBUS FO Address Resolution pkts received
173 NUBUS FO Chaos pkts transmitted
87207 NUBUS FO Chaos pkts received
27 NUBUS FO Collisions on ether
47737 NUBUS FO Number of Ethernet broadcast pkts received

At the top of Figure 7-2, the following headers appear:

Type — The type of controller hardware used in this machine.
slot — The number of the NuBus logical slot (FO through F6).
subnet — The number of the subnet for this controller.

#-In — The number of packets that were received since you last booted or
reset the network.

#-out — The number of packets that have been transmitted since you last
booted or reset the network.

aborted — The number of packets that were aborted during transmission.

Lost — The number of packets that the controller attempted to receive but
could not. Remember, controlled packets are retransmitted.

Fcs-Error — The number of packets that showed FCS errors. FCS stands for
frame check sequence, which is the same as a cyclic redundancy check.

Timeout — The number of controller hardware timeouts.

Too-Big — The number of incoming packets that exceeded the legal size for
packets under the Ethernet and Chaosnet protocols.

More information is given under the heading values of Ethernet Meters.
This information is self-explanatory.

7-8 Networking Reference

Network Status and Troubleshooting

File Status Mode 7.3.2 When you select the File Status item from the command menu, Peek
lists the file system host units as shown in Figure 7-3. Clicking on a host unit
causes Peek to display a menu of useful operations on hosts. If you have any
files open on a remote host when you select the File Status item, the status
for each file is listed under its respective host, including such information as
how far into the file you were when you called Peek. Clicking on any of these
files causes Peek to display a menu of useful operations.

Figure 7-3 Typical Contents of the Peek File Status Mode Screen

LISPM HOST TI-7|TRIPLETT
Host unit #>HOST-UNIT 7107011>, control connection in OPEN-STATE
output TI-7|TRIPLETT:MORNINGSTAR.LISP#>, Character, 7795 bytes

LISPM HOST TI-7 |MELVILLE
LISPM HOST TI.7|NELSON

Servers Mode 7.3.3 When you select the Servers item from the command menu, the
contact name, host, process, and connection of each active server are
displayed as shown in Figure 7-4. The host, process, and connection are all
mouse-sensitive items. Clicking on any of these items causes Peek to display a
menu that lists the useful actions to be performed on these items.

Figure 7-4 Typical Contents of the Peek Servers Mode Screen

Active Servers

Contact Name Host Process / State
Connection
FILE TI-7|ALLCARD #<SYS:PROCESS File Server 25121614> Chaosnet Input
#<CHAOS Connection 6840220>
User: PRINTER Server Tag: G2321

File Server Data 01582 Data Conn Cmd, sibling I1581, OUTPUT, cmd: (idle)
File Server Data 01581 Data Conn Cmd, sibling I1582, INPUT, cmd: (idle)
File Server Data 01578 Data Conn Cmd, sibling I1575, OUTPUT, cmd: (idle)
File Server Data 01575 Data Conn Cmd, sibling I1576, INPUT, cmd: (idle)

TELNET TI-7|SLOCUM #<SYS:PROCESS Telnet Server 25123236> TCP Input
#<NET: :GENERIC-PEEK-BS-SERVER 55361034>
FILE TI-7|NJAMES #<SYS:PROCESS File Server 6757735> Chaosnet Input
#<CHAOS Connection $640060>
User: Mailer Server Tag: G22986

Networking Reference 7-9

Network Status and Troubleshooting

Host Status Mode

7.3.4 You select the Host Status item by pressing H or clicking on Hostat at
the bottom right corner of the Peek window with the mouse. When you select
the Host Status mode, Peek calls the net:host-status function, and a type-out
window appears with information similar to the following:

ADDR HOST STATUS
1462 "Brigham-Young" is responding on medium CHAOS.
1107337720 "Brigham-Young" is responding on medium IP.

The following list explains the meaning of the headers:
ADDR — The address of the listed host.
HoST — The name of the host.

sTATUS — The status (responding or not responding) of the host, and the
medium in which the particular protocol has been implemented.

Network Operations
Menu

7.4 Note that the information about this and all subsequent menus
described in this section is for debugging purposes only; it is not to be used
for starting the network.

When you click on the Network item from the main System menu, the
following menu appears:

Network Operations

Reset Routing Table
Disable

Enable

Reset

Reset Address Translations
Reset Meters

Reset One Controller

Reset Controllers

Create Controllers
Controller Config

Displays

Diagnostics

The following list describes what happens when you click on each of the items
in this menu:

Reset Routing Table — Resets the routing table to the proper state for the
loaded configuration. The routing table then contains entries for only those
subnets attached to the local host. This operation is useful only for debugging
and is not needed for routine use.

Disable — Disables access to the Chaosnet system from or to the current
host. The chaos:disable function is invoked.

7-10

Networking Reference

Network Status and Troubleshooting

Enable — Enables access to the Chaosnet system from or to the current host.
The chaos:enable function is invoked.

Reset — Resets and enables access to the Chaosnet system from or to the
current host. The chaos:reset function is invoked, with the enable parameter
for that function set to t.

Reset Address Translations — Deletes all entries in the cache of Ethernet to
logical address translations.

Reset Meters — Resets all the network meters to zero. The meters are
displayed in the Peek utility and in submenus of the Network Display menu.
The meters are counts of interesting items the Network has done or detected.

Reset one Controller — Resets one NuBus Ethernet controller board. If
more than one controller is in use on this machine, then a pop-up menu lists
the available controllers, and you must click on the one you want to reset.
Resetting a controller does not disrupt any Chaosnet operations. This opera-
tion applies to both the software controller object and the NuBus Ethernet
controller board.

Reset Controllers — Resets all the NuBus Ethernet controller boards. Reset-
ting all the controllers does not disrupt any Chaosnet operations. This opera-
tion applies to both the software controller object and the NuBus Ethernet
controller board.

Create Controllers — Creates new data objects for all the Ethernet control-
lers on the local host. Each NuBus Ethernet controller board on the system
must have a related software object. You must first specify the configuration
of these controllers by clicking on the Controller Config item. This operation
is useful only for debugging and is not needed for routine use.

controller config — Specifies the configuration of the NuBus Ethernet
controller boards in the chassis. A pop-up menu appears to help you with the
configuration. The pop-up menu is explained in paragraph 7.7, titled
Network Controller Configuration. This operation is useful only for debugging
and is not needed for routine use.

pisplays — Enters the Network Displays menu. You will also get a typeout
window.

Diagnostics — Selects the Network Diagnostics menu. You will also get a
typeout window.

Quit — Returns to the previous window.

Networking Reference

7-11

Network Status and Troubleshooting

Network Displays
Menu

7.5 When you click on the Displays item in the Network Operations menu
or in the Network Diagnostics menu, the following menu appears, along with
a typeout window:

Network Displays

Print Chaosnet Address Translations
Print IP Address Translations

Print STS Why

Print Recent Headers

State

Print Routing Table

NuBus Controller Status

o o

Print Address Translations
Controller Stats

Reset Controller Stats
Recent Pkts from Ether
Diagnostics

Clear Screen

The following describes what happens when you click on each of the items in
this menu:

Print Chaosnet Address Translations — Prints to the value of *terminal-io*
all known translations from Chaosnet addresses to physical Ethernet
addresses.

Print IP Address Translations — Prints to the value of *terminal-io* all
known translations from IP addresses to physical Ethernet addresses.

Print STS Why — Prints the reasons why the last 64 status (STS) packets were
sent. The following are possible reasons:

Print Recent Headers — Prints the headers from the last 50 Chaosnet packets
received.

state — Prints out a summary about the state of the network.

Print Routing Table — Prints routing information for all known subnets. This
information is taken from the routing table.

NuBus Controller status — Displays the status of each NuBus Ethernet
controller.

Print Address Translations — Prints to the value of *terminal-io* all known
translations from IP and Chaosnet addresses to physical Ethernet addresses.

controller stats — Displays the network meters that contain statistics about
the network controllers. The statistics include the number of received and
transmitted packets, and the number of collisions.

7-12

Networking Reference

Network Status and Troubleshooting

Reset Controller stats — Sets all the network meters (which were displayed
by the previous command) to 0.

Recent Pkts from Ether — Prints the contents of the recent frames that were
collected from Ethernet while the ethernet:debug-ether-recv variable was
set to t.

Diagnostics — Enters the Network Diagnostics menu.

clear Screen — Clears the screen.

Quit — Exits this menu and returns to the Network Operations menu.

Network
Diagnostics
"Menu

7.6 When you click on the Diagnostics item in the Network Operations
menu or in the Network Displays menu, the following menu appears, along
with a typeout window:

Network Diagnostics

Show Routing Path
Show Routing Table
Examine NuBus Controller
Chip State
Diagnose Chip
Reflectometer Test
Test Controller
Loop Back Test
NuBus Memory Dump
Memory Test
Monitor Ethernet
Displays

Clear Screen

The following list describes what happens when you click on each of the items
in this menu:

Show Routing Path — Computes the routing path between any two hosts on
the same subnetwork. You are prompted for the names of the two hosts.

Show Routing Table — Prints the subnets that are reachable by a particular
host. You are prompted for the name of the host.

Networking Reference

7-13

Network Status and Troubleshooting

NOTE: Several of the following items in the Network Diagnostics menu refer
to structures described either in the Explorer NuBus General Description
manual (part number 2243161-0001) or the Intel® LAN Component User’s
Manual.

Examine NuBus Controller — Interactively examines the Receive Area in a
NuBus Ethernet controller. See the Explorer NuBus Ethernet Controller
General Description manual.

chip state — Dumps a portion of a NuBus Ethernet controller chip’s data
and gives the state of the chips. See the Intel LAN Component User’s
Manual.

Diagnose chip — Sends the Diagnose command to a NuBus Ethernet
controller chip and prints the results of command execution. See the Intel
LAN Component User’'s Manual.

Reflectometer Test — Runs a Time Domain Reflectometer test on a NuBus
Ethernet controller board and prints the results. See the Intel LAN
Component User’s Manual.

Test Controller — Runs the Memory, Diagnose Chip, Loopback, and Time
Domain Reflectometer tests on a NuBus Ethernet controller board and prints
the results. See the Explorer NuBus Ethernet Controller General Description
manual and the Intel LAN Component User’s Manual.

Loop Back Test — Runs a Loopback test on a NuBus Ethernet controller
board. This test performs loopbacks at the controller chip, at the serial driver
chip, and at the transceiver. See the Explorer NuBus Ethernet Controller
General Description manual and the Intel LAN Component User’s Manual.

NuBus Memory Dump — Dumps NuBus memory from a NuBus Ethernet
controller board. See the Explorer NuBus Ethernet Controller General
Description manual.

Memory Test -— The network must be disabled to perform this test. This test
exercises the memory of a NuBus Ethernet controller board. See the
Explorer NuBus Ethernet Controller General Description manual.

Monitor Ethernet — Intercepts all Ethernet frames received on the local ma-
chine and displays their contents. Clicking on this item turns off the normal
Ethernet receiver, so all Ethernet communications are off while this item is
running. Once invoked, this state can be aborted by pressing the CTRL-
ABORT key sequence.

pisplays — Exits this menu and enters the Network Displays menu.

clear screen — Clears the screen.

Quit — Exits this menu and returns to the Network Operations menu.

Intel is a registered trademark of Intel Corporation.

7-14

Networking Reference

Network Status and Troubleshooting

Network Controller 7.7 When you click on the Controller Config item in the Network Oper-

Configuration
Menu

ations menu, the following menu appears:

Network Controller Configuration

** Systems Loaded *x*
TI NuBus Yes No

** NuBus Controller Slots *x
NuBus Slots: (FO)

%% CHAOS Address & Subnets *x*

Chaos Address: 548
Chaos Subnets (8)
Ether Subnets: (5)

Set Vvalue

s O :

Under the heading ** systems Loaded ** is a prompt for designating which
controller software is loaded on the host.

TI NuBus — Because Explorer systems use only the TI NuBus at present,
answer Yes.

Under the heading ** NuBus controller slots ** is a prompt for designating
which slot(s) the controller board is in.

NuBus Slots — Enter the numbers of the slots in a Lisp list. The range of slots
in the chassis is from the leftmost in a Lisp list, #xF0, through the rightmost,
#xF6. Enter these numbers in ascending order.

NOTE: When you enter lists in response to the NuBus Slots, Chaos Subnets,
and Ether Subnets prompts, be sure that the ordering of each list corresponds
logically with the ordering of the other lists.

Under the heading ** cHA0S Address & Subnets ** is a prompt for supplying
information about the Chaosnet addresses and subnets associated with the
controller.

Chaos Address — Enters the Chaosnet address of one of the NuBus Ethernet
controller boards. You have one controller board for each physical subnet on
which the host resides. It does not matter which controller board you choose
for its Chaosnet address because that address will be parsed for its least-
significant eight bits, which identify the host ID. (The host ID is the same for
all the controller boards on a host.)

Networking Reference

Network Status and Troubleshooting

Chaos Subnets — Enters a list that contains the Chaos ID number for each
subnet that is associated with a NuBus Ethernet controller board. For
example, if subnets 12, 15, and 17 are each associated with the boards in this
host, you would enter the following list: (12 15 17).Each element in the list is
used to calculate the 16-bit Chaosnet address for its associated controller
board. (A subnet number becomes the most-significant eight bits of the ad-
dress; the host ID from the Chaos Address item becomes the most-significant
eight bits of the address.)

Ethernet Subnets — Enter a list of all the Chaosnet subnet nurnbers for which
this host has an Ethernet controller. This item currently does nothing. It is
held over the days when Ethernet and Chaosnet used different hardware.

7-16

Networking Reference

EXTERNAL DATA REPRESENTATION

Introduction

A.1 Sun Microsystems™ created the External Data Representation (XDR)
protocol to allow two dissimilar machines to exchange operands over a net-
work despite differences in byte ordering, word length, floating-point repre-
sentation, and so on.

The XDR
Technique

A.2 XDR defines a standard byte representation for certain primitive data
types as they would appear on the network between two machines. The
sending machine converts, or filters, its native data formats into the XDR
standard representation and then outputs the filtered versions to the network.
The receiving machine inputs the standard representations from the network
and filters them into its own native representation.

Implied in this scheme are the following requirements:

B The sender and receiver must agree exactly on the order and XDR data
type of the operands transferred.

m The XDR protocol must offer a sufficient selection of primitive data types
to construct the higher level data structures that the two machines might
need to exchange.

The Explorer
Implementation

A.3 Although XDR was created to aid in networking, the XDR protocol
itself does not involve networking. Instead, XDR is only a data representation
standard, independent of where that data might reside.

On the Explorer, the XDR protocol is available as a stream mixin flavor,
rpc:xdr-stream, for filtering Lisp operands to and from an Explorer stream.
Explorer streams are usually byte-oriented; however, the XDR mixin causes
the stream to be operand-oriented. That is, you input and output whole oper-
ands to an XDR stream — never individual bytes.

The rpc:xdr-stream flavor conveniently allows Explorer programmers to
view network 1/O as a serial operand stream. However, the network software
itself always works in terms of buffers of operands. Therefore, it is necessary
to serialize buffers received from the net into streams and to deserialize an
Explorer stream into a buffer for transfer to the net. The flavor rpc:xdr-
memory-stream performs all the filtering functions of rpc:xdr-stream. In
addition, it performs the serialization and deserialization needed for network
transfer.

Sun Microsystems is a trademark of Sun Microsystems, Inc.

Networking Reference

External Data Representation

XDR Streams

A.4 The following paragraphs discuss the flavors and methods associated
with XDR streams.

rpc:xdr-stream Flavor

The rpc:xdr-stream mixin converts an ordinary Explorer stream into an
XDR operand stream. It is an abstract flavor with required methods :byte-in
and :byte-out, which are synonymous with the standard :tyi and :tyo
methods of streams. These alternate method names are needed by special
underlying streams that must distinguish XDR-filtered I/O (carried by :byte-
in and :byte-out) from direct stream I/O (carried by :tyi and :tyo).

:transfer-direction Method of rpc:xdr-stream
:set-transfer-direction direction Method of rpc:xdr-stream

XDR streams are inherently bidirectional. Therefore, the stream’s transfer
direction identifies the direction in which operands will be filtered.

W If the direction argument is :encode, then Lisp operands will be encoded
into XDR operands and output to the stream,

m If the direction argument is :decode, then XDR operands will be input
from the stream and decoded into Lisp operands.

For every XDR filter that encodes a Lisp variable into a certain XDR data
type, there must be a matching filter to decode that XDR operand back into a
Lisp variable. Instead of all filters being written in pairs, each filter is written
to be bidirectional. A filter takes one data argument. For encoding, the value
of that argument is read as any function’s argument would be. For decoding,
however, the decoded stream data is stored back into the contents of the
filter’s data argument.

Therefore, for decoding to work, the filter’s data argument must have been
passed as the locative of the variable that is to receive the decoded data.
Encoding, on the other hand, does not need a locative argument; it will
accept either the data value itself or a locative of that value.

The simplest way of obtaining the locative of a variable is to use the locf
macro. To access the value of a variable passed as a locative, use the
contents function. The last two forms increment the value of var by one:

(setf locf-of-var (locf var))

(setf var (1+ var))
(setf (contents locf-of-var) (1+ (contents locf-of-var)))

A-2

Networking Reference

External Data Representation

:xdr-enum 32-bit-signed Method of rpc:xdr-stream
:xdr-integer 32-bit-signed Method of rpc:xdr-stream
:xdr-unsigned 32-bit-unsigned Method of rpc:xdr-stream
:xdr-hyper 64-bit-signed Method of rpc:xdr-stream
:xdr-unsigned-hyper 64-bit-unsigned Method of rpc:xdr-stream
:xdr-float single-float Method of rpc:xdr-stream
:xdr-double double-float _ Method of rpc:xdr-stream
:xdr-bool boolean . Method of rpc:xdr-stream

These methods filter various simple data types to and from an XDR stream,
depending upon the transfer direction. The :xdr-enum method is synony-
mous with the :xdr-integer method as far as Lisp is concerned. The two
names are provided to conform to the names used in Sun’s XDR documenta-
tion. None of these methods return any values of interest.

If the XDR stream is opened for encoding, then the argument to the filter
may be either the Lisp operand to be encoded or the locf of that operand.

If the XDR stream is opened for decoding, then the argument must be the
locf of the Lisp variable that is to receive the decoded XDR operand.

:xdr-void ignore Method of rpc:xdr-stream

This method is a dummy placeholder filter that ignores its operand, returns
no value, and performs no I/O. It is used where the syntax of a function
requires an XDR filter, but there is no operand to transfer.

For example, consider the problem of using callrpc to call a remote proce-
dure that takes no arguments. The :xdr-void method would satisfy callrpc’s
requirement for an xdr-in filter operand but would not produce other
unwanted effects.

:xdr-string string Method of rpc:xdr-stream

This method is the appropriate filter to use for transferring variable-length
strings in which no character translations are performed. It returns no values
of interest.

If the XDR stream is opened for encoding, :xdr-string outputs the elements
of string (which must be a vector or the locf of one) to the stream as 8-bit
bytes. If string has a fill pointer, then it is observed.

Notice that during encoding, string actually need not be a string. It can be a
vector of any element type that can be properly encoded as 8-bit unsigned
bytes.

If the XDR stream is opened for decoding, :xdr-string inputs a variable-
length string from the stream and stores it into the contents of string (which
in this case must be a locative in order to unconditionally store back into it).

If the initial contents of string is not a vector, then :xdr-string allocates a
suitable string and stores it into the contents of string. For example, if you
bind a local variable to nil and then pass the locf of that variable as the string
argument to :xdr-string, then that variable ends up with a newly created
string containing the decoded operand.

Networking Reference

External Data Representation

If string initially contains a vector, then this method assumes that the existing
vector is suitable for receiving the decoded string and reuses it. If that existing
vector has a fill pointer, then the fill pointer is modified to reflect the length
of the newly decoded string.

This reuse feature allows you to avoid consing new strings that need only to
be examined, but not saved. You can allocate a permanent string buffer with
a fill pointer and then pass the locf of that string as the string argument on
each call. The fill pointer allows you to tell the length of each decoded string
inside the permanent string buffer.

Unfortunately, this reuse feature may cause unexpected problems when you
are expecting it to allocate its own strings. If :xdr-string is used inside a loop,
then the first time through the loop it allocates a new string. The second time
through the loop it sees an existing string and attempts to reuse it. However, if
the second string is longer than the first, a subscript out-of-range error
occurs.

Therefore, if you use :xdr-string in a loop, be sure to setf the destination
variable to nil before each call to :xdr-string so that it will allocate a new
string each time. Otherwise, setf the destination variable to a vector with a fill
pointer large enough to handle all input.

:xdr-ascii-string string Method of rpc:xdr-stream

This method is similar to :xdr-string except that it assumes that string
contains Explorer standard characters, whereas the XDR stream contains
standard ASCII characters with the end of lines delimited by ASCII
NEWLINE characters. That is, an Explorer #\RETURN character is en-
coded as an ASCII RETURN followed by an ASCII LINEFEED and visa-
versa.

This method does for XDR string operands what the sys:ascii-translating-
mixin does for Explorer streams.

:xdr-array array elt-xdr-function Method of rpc:xdr-stream

This filter is the generalized version of :xdr-string. While the elements fil-
tered by :xdr-string are always 8-bit bytes, the elements of an XDR array
(actually a vector) may be of any filterable XDR data type. Otherwise, the
:xdr-array method offers all the options and features of :xdr-string.

The elt-xdr-function argument is used to filter each element of array.

B If elt-xdr-function is a keyword, then it is assumed to be the name of a
method of rpc:xdr-stream. It will be sent as a message to the stream with
an element from array as its single argument. For example:

(send self elt-xdr-function (aref array 1i))

W If elt-xdr-function is not a keyword, then it is assumed to be a functional
object. It will be funcalled with the stream and an element from array as
its two arguments. For example:

(funcall elt-xdr-function self (aref array i))

For example, to transfer a vector of integers, you would use :xdr-integer as
elt-xdr-function.

Networking Reference

External Data Representation

:xdr-unsigned-vector vector start end Method of rpc:xdr-stream

This method is a specialization of :xdr-array with an implied elt-xdr-function
argument of :xdr-unsigned. Instead of transferring the entire vector
operand, this method transfers only the vector elements starting with the in-
dex start and ending one element before end (that is, start and end have the
conventional meaning). Otherwise, the :xdr-unsigned-vector method offers
all the options and features of :xdr-array.

Many of the higher-level data structures used in remote procedure calling
include substructures that can be viewed as vectors of unsigned integers. This
method is more efficient at filtering those substructures than an equivalent
series of individual calls to :xdr-unsigned. The start and end indexes make it
convenient to encode out of or decode into the middle of a larger data
structure.

:xdr-opaque string Method of rpc:xdr-stream

This method is a specialization of :xdr-string for the case of fixed length
strings whose length is known to both the sender and receiver. The opaque
XDR data type is intended to be a bag of bytes that can be passed freely
among different machines. However, the XDR opaque data type has meaning
only to the machine that originally created it.

If the stream is opened for encoding, the string (a vector or a locf of a
vector) is output to the stream as 8-bit bytes without any character transla-
tion. If string has a fill pointer, it is observed.

If the stream is opened for decoding, then string must be the locf of a
preallocated string of the correct length. It is the length of this preallocated
string that tells this method how many bytes to decode from the stream. If
string has a fill pointer, it is observed.

:xdr-union union discriminator discriminator-alist Method of rpc:xdr-stream

&optional default-discriminator

This method is defined to filter an operand called the union, which will be
one of several possible types. The specific type is identified by the
discriminator. The possible choices of operand type are in the discriminator-
alist argument.

The discriminator argument is an enumeration (a signed integer).

The discriminator-alist argument is an association list of discriminator values
dotted with elt-xdr-functions (see the preceding discussion of :xdr-array).

The default-discriminator argument, if present, is an elt-xdr-function to be
used if discriminator is not present in the discriminator-alist.

If the XDR stream is open for encoding, the discriminator, a Lisp integer, is
encoded as an XDR enumeration to tell the receiving end what type of oper-
and follows. Next discriminator is looked up in the discriminator-alist to find
its associated elt-xdr-function. If discriminator is not found, the value of
default-discriminator is used as the elt-xdr-function instead; otherwise, an
rpc:unknown-union-discriminator error is signaled.

Networking Reference

External Data Representation

Once the elt-xdr-function is known, then encoding proceeds as though the
elt-xdr-function filter had been called with union (a value or a locative of a
value) as its single argument.

If the XDR stream is open for decoding, a discriminator enumeration is
decoded from the stream to determine the type of operand that follows. That
discriminator is looked up on the discriminator-alist to find its associated
elt-xdr-function. If the discriminator is not found, then the value of default-
discriminator is used as the elt-xdr-function instead. If no default discrimina-
tor is found, the rpc:unknown-union-discriminator error is signaled.

Once the elt-xdr-function is known, then decoding proceeds as though the
elt-xdr-function filter had been called with union (which, in this case, must be
a locative) as its single argument.

Additional
XDR Forms

A.5 The following paragraphs discuss additional XDR functions and macros.

value-of object Function

If object is a locative, value-of returns its contents. Otherwise, value-of
returns object itself.

default-vector-and-resolve variable length element-type Macro

If the contents of the variable argument (a locative) is not a vector, then
default-vector-and-resolve creates a new vector of element type element-
type and length length. The macro then setfs the contents of the variable
argument to this vector. Finally, if variable is a locative, default-vector-and-
resolve setfs it to its own contents.

This macro returns no value of interest. It is used only for its side effects.

default-and-resolve argument type-spec constructor-name Macro

&rest constructor-args

If argument is a locative whose contents are not of the type identified by the
type-spec argument, then default-and-resolve first funcalls the constructor-
name specifying constructor-args as its arguments. It then sets the contents of
argument to the value returned from that funcall. That is, in the caller’s
original variable, default-and-resolve actually creates a new data structure of
the proper type to contain the value decoded from the network.

In all cases, default-and-resolve replaces a locative with its contents.

This macro returns no value of interest. It is used only for its side effects.

resolve-locative variable Macro

If variable is a locative, then resolve-locative setfs it to its own contents.
Otherwise, this macro takes no action.

Networking Reference

External Data Representation

round-to-quad integer Function

This function takes the integer argument and returns the value of integer
rounded up to the next multiple of 4.

xdr-io stream filter data Macro

This macro performs I/O on the XDR stream identified by the stream argu-
ment, taking into account whether the filter argument is a keyword or a
funcallable object.

If filter is a keyword, then it is assumed to be an operation on stream which
takes data as its only argument. If filter is a function, then it is funcalled with
stream and data as its two arguments.

If the rpc:transfer-direction instance variable in stream is :encode, then the
filter argument performs a transfer from data to stream. If rpc:transfer-
direction is :decode, it performs the transfer from stream to data.

XDR Examples

A.6 For the first example, assume that you have a small data structure
composed of two integers and a float:

(defstruct fool
(a O :type integer)
(b O :type integer)
(¢ 0.0 :type single-float))

An XDR filter function for the foo1 structure would appear as follows:

(defun xdr-fool (stream fool-obj)
(send stream :xdr-integer (locf (fool-a fool-obj)))
(send stream :xdr-integer (locf (fool-b fool-obj)))
)

(send stream :xdr-float (locf (fool-c fool-obj))))

NOTE: Do not enter the above example; it will not work. Later in this
section, the example will be modified to work properly.

Since the :xdr-integer and :xdr-float methods are designed to be bidirec-
tional, and since the xdr-fool function passes the operands to these methods
as locatives, then xdr-fool is bidirectional also.

In this example, the data argument to the xdr-foo1 function (fooi-obj) is
passed as an ordinary variable—not a locative. This choice seems to contra-
dict previous statements that the data argument to an XDR filter must always
be a locative. Actually, the rule is this:

B If the filter function needs to modify the data argument itself back inside
the caller of the filter, then that argument must be passed as a locative.

m If the filter needs to modify only the elements inside the data argument
(for example, slots in a structure argument), then the argument itself
does not need to be a locative.

Networking Reference

A-7

External Data Representation

In this example, then, the argument is a foo1 structure. The filter needs to
modify slots in this structure, so it uses the locf of those slots. There is no
need for the structure itself to be a locative. By way of contrast, if the argu-
ment were a nonstructured object such as an integer or a flcat, then that
argument would have to be a locative.

Of course, saying that the arguments are sometimes locatives and sometimes
not creates its own problems. The accessor function for slot A in the previous
example is written as follows:

(fool-a fool-obj)

This form requires that the argument fooi-obj be an ordinary variable. If,
however, the argument were a locative of the foo1 structure, then the acces-
sor would have to be written as follows:

(fool-a (contents fool-obj))

In this form, the contents function resolves the locative passed in foo1-obj
into the actual fool structure that the fooi-a accessor needs.

This xdr-foo1 filter function would be more robust if it could accept either a
fool structure or the locative of such a structure with equal grace. To accom-
plish this generalization, you can use either the rpc:value-of macro or the
rpc:resolve-locative macro as shown in the examples that follow.

(defun xdr-fool (stream fool-obj)
(send stream :xdr-integer (locf (fool-a (rpc:value-of fool-obj))))
(send stream :xdr-integer (locf (fool-b (rpc:value-of fool-obj))))
(send stream :xdr-integer (locf (fool-c¢ (rpc:value-of fool-obj))))
)

(defun xdr-fool (stream fool-obj)
(rpc:resolve-locative fool-obj)
(send stream :xdr-integer (locf (fool-a fool-obj)))
(send stream :xdr-integer (locf (fool-b fool-obj)))
(send stream :xdr-integer (locf (fool-c fool-obj)))
)

Either use a rpc:value-of macro around every reference to an argument that
may or may not have been passed as a locative, or use rpc:resolve-locative
once at the beginning.

If foo1-obj is a locative of a foo1 structure, then rpc:value-of resolves each
usage of fooi-obj while rpc:resolve-locative sets fool-obj to that
structure. In the previous example, rpc:value-of would expand into some-
thing similar to the following:

(if (locativep fool-obj)
(contents fool-obj)
fool-obj)

The rpc:resolve-locative would expand into something similar to the
following:

(when (locativep fool-obj)
(setf fool-obj (contents fool-obj)))

A-8

Networking Reference

External Data Representation

Using rpc:resolve-locative, later accesses to fool-obj from inside xdr-foo1
will see just the foo1 structure. The caller’s copy of the foo1 structure that it
passes to xdr-fool is unchanged—only the function local variable foo1-obj is
changed. If fooi-obj is not a locative, then rpc:resclve-locative does
nothing.

Therefore, with the rpc:resolve-locative macro in place, the body of the
function is written as if its argument is always a variable and never a locative.
At the same time, the caller can pass either the structure itself or the locative
of that structure.

Unfortunately, one more problem remains. This filter assumes that even
when the stream is open for decoding (that is, filtering from the network to a
Lisp data structure), the destination foo1 structure already exists. That is, the
caller found (or created) an empty foo1 structure that it passed to the xdr-
foo1 filter to be filled up with data decoded from the network.

An XDR filter function such as xdr-fooi can perform another service for the
caller by creating its own destination data structures when required. For
example, if the stream is open for decoding (that is, filtering from the net-
work to a Lisp data structure) and if the fool-obj is passed as a locative,
then xdr-fool can examine the destination location in the caller to see if it
really is a fool structure.

If the locative is pointing to a suitable structure, then it is used as is. How-
ever, if the locative is pointing to anything else, then the filter function can
create the necessary structure and then store the structure itself back into the
caller’s data area using the locative that the caller passed. Once there is a
suitable structure in the caller’s data area (regardless of how it got there), you
can proceed with the rpc:resolve-locative.

If all of this extra work were done in open code, the previous example would
look something like the following:

(defun xdr-fool (stream fool-obj)
(when (locativep fool-obj)
(when (not (typep (contents fool-obj) “fool))
(setf (contents fool-obj) (make-fool)))
(setf fool-obj (contents fool-obj)))

(send stream :xdr-integer (locf (fool-a fool-obj)))
* ok k)

We can reduce the amount of code needed by using the rpc:default-and-
resolve macro instead:

(defun xdr-fool (stream fool-obj)
(rpc:default-and-resolve fool-obj fool make-fool)

(send stream :xdr-integer (locf (fool-a fool-obj)))
* ¥ *)

Therefore, with the rpc:default-and-resolve macros as the first forms in
each XDR filter function, the function automatically accommodates locative
and nonlocative arguments and will create its own destination data structure
when required.

Networking Reference

A-9

External Data Representation

As a second example, consider a filter that must behave differently when
encoding than when decoding. The :xdr-bool method is reimplemented as a
filter function (which is somewhat less efficient than :xdr-bool). A problem
arises because Lisp sees true as non-nil and false as nil while XDR sees true
as the integer 1 and false as the integer 0.

(defun xdr-boolean (stream boolean)
(ecase (send stream :transfer-direction)
(rencode
(rpc:resolve-locative boolean)
(if boolean
(send stream :xdr-unsigned 1)
(send stream :xdr-unsigned 0)))

(:decode
(let ((number nil))
(send stream :xdr-unsigned (locf number))
(setf (contents boolean) (plusp number))))))

The ecase statement selects either encode or decode based on the transfer
direction. It also signals an error if the transfer direction is anything other
than :encode or :decode.

The encode logic has no use for a locative operand. It therefore starts by
resolving boolean so that by the time the if boolean statement starts execu-
tion, boolean is an ordinary value, regardless of whether or not it initially was
a locative. Once boolean is known, the encoding logic simply outputs an un-
signed integer, O or 1.

The decode logic starts by decoding an unsigned integer into a local variable,
number. Assuming that number decodes as either a 1 or 0, the plusp function
effectively converts it into the equivalent Lisp boolean. The setf of the con-
tents of boolean rather than of boolean itself effectively modifies the caller’s
variable that was passed to xdr-boolean.

A-10

Networking Reference

External Data Representation

The third example illustrates how a list of strings can be filtered. The XDR
representation is a more-to-come boolean value followed by a string if the
boolean is true. If the boolean is false, then the end of the list has been
reached.

(defun xdr-string-list (stream str-lst)
(ecase (send stream :transfer-direction)
(:encode

(rpc:resolve-locative str-lst)

(dolist (str str-1lst)
(send stream :xdr-bool t) ;more to come
(send stream :xdr-string str))

(send stream :xdr-bool nil)) ;no more to come

(:decode
(let ((more-p nil)

(str nil))

(setf (contents str-lst) ()) ; start empty

(loop
(send stream :xdr-bool (locf more-p))
(unless more-p (return))
(setf str nil) ; don‘t reuse it
(send stream :xdr-string (locf str))
(push str (contents str-1lst)))))))

Notice that the decode loop is careful to destroy the old value of str each
time through the loop so that :xdr-string can allocate a new string. Also
notice that since this loop used a push to attach each new string to the list,
the order of the strings on the list are reversed from the way they appear in
the XDR stream. If you want to maintain the order, then replace the last line
with this one:

(setf (contents str-1lst) (nconc (contents str-lst) (list str)))

This new line adds each new string to the end of the list rather than to the
front, as push does.

Networking Reference

A-11

External Data Representation

XDR Memory

A.7 The following paragraphs discuss the flavors and methods associated
with XDR memory.

rpc:xdr-memory-stream Flavor

This instantiable flavor allows a Lisp vector to be accessed as an XDR stream.
rpc:xdr-memory-stream includes rpc:xdr-stream as a mixin so that all
XDR primitive filters can be sent to this stream.

Unlike with most Explorer streams, you do not need to open an XDR
memory buffer stream (although you may). The :set-transfer-direction
method is called automatically based on the :open's :direction argument.
The :set-transfer-direction method causes the buffer and associated
variables to be initialized for a new transfer.

:memory-buffer Method of rpc:xdr-memory-stream
:memory-buffer new-memory-buffer-vector Init option of rpc:xdr-memory-stream
:set-memory-buffer new-memory-buffer-vector Method of rpc:xdr-memory-stream

If the stream is open for encoding, then the XDR encoded bytes are collected
in this buffer. If the stream is open for decoding, then the XDR encoded
bytes are read from this buffer. The new-memory-buffer-vector argument rep-
resents the memory buffer you are filtering to or from.

If the buffer has a fill pointer, then it is set to the total size of the buffer by
each :set-transfer-direction message.

:memory-buffer-end Method of rpc:xdr-memory-stream
:set-memory-buffer-end end Method of rpc:xdr-memory-stream

The memory-buffer-end is the upper exclusive limit beyond which any
attempt to encode or decode signals the error rpc:end-of-memory-buffer.
This value is automatically set to the total size of the buffer by :set-transfer-
direction. Note that some filter primitives check before attempting a transfer
so that the error is signaled early (before the end-of-file marker). For
example, when dealing with a very large string, :xdr-string may see that the
buffer will overflow. The method signals the error, even though the buffer
pointer is still positioned in the middle of the buffer.

:memory-buffer-pointer Method of rpc:xdr-memory-stream
:set-memory-buffer-pointer index Method of rpc:xdr-memory-stream

:read-pointer

This pointer is the index into :memory-buffer at which the next encoded
byte will be read or the next decoded byte written. This value is automatically
set to zero by the :set-transfer-direction message and is automatically incre-
mented by the various XDR filters. No checks are made to assure that index
lies within the :memory-buffer-end limit.

Method of rpc:xdr-memory-stream

:set-pointer index Method of rpc:xdr-memory-stream

These methods are the standard Explorer stream interface to the information
contained in :memory-buffer-pointer. Attempts to set the pointer beyond
:memory-buffer-end signals the standard file system errors.

A-12

Networking Reference

External Data Representation

XDR Conditions

A.8 A number of conditions can be signaled when XDR encounters an
error. Each condition that is signaled contains a hierarchy of the other condi-
tions upon which it was built. Each condition described in the following
paragraphs is followed by a list displaying its condition-calling hierarchy.
Although it is not listed, the condition being described is the last condition in
the hierarchy.

rpc:unknown-union-discriminator (ferror rpc:xdr-error) Condition

This condition is signaled whenever a union discriminator is not in the
discriminator alist, and no default discriminator has been provided.

The :stream message identifies the XDR stream.

rpc:end-of-memory-buffer (sys:end-of-file rpc:xdr-error) Condition

This condition is signaled whenever a remote procedure call attempts to read
or write an XDR memory stream beyond the value of memory-buffer-end.
Note that this error condition can be signaled before or after the actual trans-
fer is attempted. For example, when dealing with a very large string, :xdr-
string may see that the buffer will overflow. The method signals the error,
even though the buffer pointer is still positioned in the middle of the buffer.

The :stream message identifies the XDR stream.

Networking Reference

A-13

REMOTE PROCEDURE CALL (RPC)

Introduction B.1 Sun Microsystems defined the Remote Procedure Call (RPC) protocol
so that machines of different types could interact with each other on a proce-
dure level. This interaction means that one machine can call a procedure on
the other, pass arguments to that procedure, and then receive any returned
values.

Because it is based on the XDR protocol, RPC can insure data compatibility
between the machines (byte order, word length, and so on).

The RPC protocol is divided into two parts: a caller and a server. The
following paragraphs discuss the Explorer implementation of these two parts.

The RPC Caller B.2 An RPC caller issues a procedure call to an RPC server on a remote
host, identifying the remote procedure by specifying the following minimum
information:

B Remote program number
H Remote program version
M Remote procedure number

On the Explorer, the RPC caller is implemented by two functions: callrpc
and callrpc-spec.

callrpc B.2.1 The function description of callrpc is as follows:

callrpc host prog# vers# proc# xdr-in in xdr-out out Function
&optional credentials (protocol :udp)

The callrpc function issues a procedure call to an RPC server on a remote
host.

The host argument identifies the remote host on which the procedure resides.
The type of this argument must be acceptable to the sys:parse-host function
(symbol, string, or host object). Also, LM is recognized as shorthand for the
local Explorer system itself.

The prog#, vers#, and proc# arguments identify the remote program number,
version number, and procedure number, respectively. These arguments must
be specified as 32-bit unsigned integers.

Networking Reference B-1

Remote Procedure Call (RPC)

The in argument represents the argument passed to the remote procedure.
The RPC interface allows only one argument to be passed with a procedure
call. The value of the xdr-in argument resembles the value of the elt-xdr-
Junction argument of several of the rpc:xdr-stream methods; that is, it is the
XDR filter function required to encode in onto the network.

NOTE: Both the xdr-in and the xdr-out arguments must be acceptable to the
xdr-io macro discussed in the previous section.

The out argument is a locative of the structure that will receive the argument
returned by the remote procedure. The xdr-out argument is the XDR filter
function required to decode out from the network. If you supply no value for
out, callrpc initializes a temporary variable to nil and passes the locative of
that variable to xdr-out. On receiving the locative of something other than its
output value, xdr-out must create the necessary value for the contents of the
locative. XDR filter functions that use rpc:default-and-resolve automatically
create this value, as do all of the XDR primitives.

You should supply a value for out if you are not familiar with the xdr-out
function you are using. You must supply a value for out if the function speci-
fied by xdr-out does not automatically create its own output value. In these
situations, you must define your own output variable, initialize it to the type
of structure that the xdr-out function expects, and then pass the locative of
your variable as out.

The optional credentials argument can be one of these possible values:
B The credentials symbol of an nfs:with-credentials macro

B An rpc:opaque-auth structure such as one returned by rpc:authunix-
create or rpc:make-opaque-auth

B An rpc:cred-verifier structure such as that returned by rpc:make-
cred-verifier

M nil
The optional protocol argument is one of two protocol keywords: either :udp

(for accesses by the User Datagram Protocol) or :busnet (for accesses over
the BusNet to the local 68020-based processor).

B-2

Networking Reference

rpc:make-spec
and callrpc-spec

Remote Procedure Call (RPC)

B.2.2 Although some of the arguments that must be passed to callrpc are
variable, several are usually constant. For the constant arguments, you can
create a structure containing their values by using the rpc:make-spec func-
tion. Then you can use callrpc-spec in place of callrpc and its numerous
arguments. The following paragraphs describe both rpc:make-spec and
callrpc-spec.

rpc:make-spec prog# vers# proc# &optional Function

(xdr-in :xdr-void) (xdr-out :xdr-void) (protocol! :udp)

The rpc:make-spec function creates an rpc:spec structure that contains per-
tinent information about an RPC remote procedure. The rpc:spec structure is
used in turn by the callrpc-spec function.

The arguments for rpc:make-spec have the same meanings that they have for
the callrpc function just documented.

NOTE: Both the xdr-in and the xdr-out arguments must be acceptable to the
xdr-io macro discussed in the previous section.

callrpc-spec host spec in out &optional credentials Function

Example:

The callrpc-spec function calls a procedure on a remote host.

The host, in, out, and credentials arguments are the same as those for
callrpc.

The spec argument identifies an rpc:spec structure that has been previously
created by rpc:make-spec.

The example that follows shows how an rpc:spec structure is created and
used in a callrpc-spec function.

(defconstant spec
(rpc:make-spec prog# vers# proc# xdr-in xdr-out :udp))

(callrpc-spec host spec in out cred)

RPC
Port Mapping

B.3 RPC is port-oriented. Before callrpc or callrpc-spec can find a specific
remote procedure, it must first locate the port associated with that procedure.

Each RPC host has a port map server (or port mapper) that contains the port
numbers of all the program/version pairs available on that host. By conven-
tion, port mappers themselves are always on a known port.

To find the port number of a procedure on a remote host, issue an RPC
request to the port mapper on the remote host, asking for the port number of
the procedure. After you get the remote procedure’s port number, you can
issue another RPC request (specifying the port number you just acquired) to
call the remote procedure.

Networking Reference

B-3

Remote Procedure Call (RPC)

Each new program/version pair must be logged with the port mapper before it
can be called remotely. For more details about the port mapper, see Sun
Microsystem’s Remote Procedure Call Protocol Specification.

NOTE: The Explorer port mapper does not yet support the callit procedure
described in Sun Microsystem’s Remote Procedure Call Protocol
Specification.

rpc:*pmap-getport-cache-p* Variable

Another, perhaps easier, way to allow callrpc or callrpc-spec to find the port
number of a remote procedure is to enable the foreign-port cache of your
local machine. This cache contains the port numbers of every remote proce-
dure that has been called previously by the local machine. To enable the
foreign-port cache, you must set rpc:*pmap-getport-cache-p*.

If non-nil, rpc:*pmap-getport-cache-p* causes the local host to check its
foreign-port cache before issuing a remote get port request. If the port
number for the remote request resides in the cache, then that information is
appended to the request and then sent to the remote host. In this way, one
network access can be eliminated, because the remote host’s port mapper
need not be queried before sending a request.

Starting Port
Map Servers

B.4 The port map server is designed to survive most situations. In particular,
internal errors encountered during the execution of the port map server
simply cause the error to be recorded and the server to be restarted. How-
ever, the port map server can be Kkilled deliberately from the outside. Once it
has been killed (for whatever reason), you must restart it manually from a
Lisp Listener.

To restart the port map server, use rpc:start-port-map-server. Whenever
you use this function to start a new instance of a server, any existing instances
of that server are Kkilled first. That is, this start server function always
provides a clean start regardless of the initial conditions.

The rpc:start-port-map-server function has only one required argument—
the protocol (which is usually :udp). This function also has several other
optional arguments for user convenience. For example, rpc:start-port-map-
server does not destroy the current port map when it restarts unless you
explicitly request it to do so with an optional argument.

Ultimately, the most complex form you should ever have to enter in a Lisp
Listener is the following:

(rpc:start-port-map-server :udp)

If you attempt to start a port map server and none can be found, then a new
one is started.

Networking Reference

Resetting
Existing Servers

Arresting
Existing Servers

Remote Procedure Call (RPC)

B.4.1 If a port map server appears to be running, according to the Peek
Process menu, but you suspect that the server has become wedged for some
reason, then you need not kill the process. Instead, select the Reset & Enable
item from the Peek Process menu. This process has been designed so that a
Reset & Enable does almost everything that killing and restarting the process
does but without having to enter a Lisp form in a Lisp Listener. This is true
for any RPC server.

B.4.2 If you want a port map server to temporarily stop honoring requests
from the network, then select the Arrest item from the Peek Process menu.
When you are ready for the server to resume honoring requests, select
UnArrest from the Peek Process menu. This procedure works for any RPC
server.

The following constants, functions, and variables are associated with the port
map server.

rpc:start-port-map-server protocol &optional clear-port-map-p Function

clear-foreign-port-map-cache-p &rest make-server-process-args

This function first kills all existing port map servers for the specified protocol.
Then it starts a new instance of the port map server for the specified protocol.

The protocol argument can be :udp, :busnet, or an SRI NIC protocol
number.

If clear-port-map-p is true, this function deletes all port map entries for
protocol.

If clear-foreign-port-map-cache-p is true, this function deletes all port map
entries of any foreign hosts for protocol.

The make-server-process-args argument is a list of parameters that are passed
to the rpc:make-server-process function. These parameters are alternating
keywords and values.

rpc:pmapprog Constant

The value of this constant is the port map server program number to be used
as the second argument to callrpc. The default value is 100000.

rpc:pmapvers Constant

The value of this constant is the port map server version number to be used
as the third argument to callrpc. The default value is 2.

Networking Reference

Remote Procedure Call (RPC)

rpc:pmapproc-null Constant
rpc:pmapproc-set Constant
rpc:pmapproc-unset Constant
rpc:pmapproc-getport Constant
rpc:pmapproc-dump Constant
rpc:pmapproc-callit Constant
rpc:pmapproc-limit Constant

The values of these constants are the RPC procedure numbers for the corre-
sponding port map procedures to be used as the fourth argument to callrpc.
The default values are 0, 1, 2, 3, 4, 5, and 6, respectively.

rpc:pmap-null-spec Constant
rpc:pmap-set-spec Constant
rpc:pmap-unset-spec Constant
rpc:pmap-getport-spec Constant
rpc:pmap-dump-spec Constant

These constants are the symbols to be used as the second argument to
callrpc-spec.

The RPC Server

Making a

Function Available

to an RPC Server

B.5 Stated somewhat simply, an RPC server accepts a remote procedure call
from the network and then executes the call. Each machine running RPC has
a minimum of one RPC server; Explorer’s RPC allows multiple servers.

Each Explorer RPC server runs as a separate process that is associated with a
unique program/version number pair. Within a particular program/version
number pair, multiple procedures can reside.

B.5.1 If you write a procedure to be called remotely by RPC, keep in mind
that the procedure must accept only one argument and must return only one
value. If multiple arguments or values are required, you must define a struc-
ture that contains the multiple arguments or values, so that RPC can pass the
structure as a single unit.

If the structure you define does not correspond to the data types accepted by
the XDR protocol, you must then define an XDR filter for it.

Once the procedure is written, you must use the registerrpc function to
inform RPC of its existence.

registerrpc prog# vers# proc# function xdr-in xdr-out Function

&Kkey (protocol :udp) &allow-other-keys

The registerrpc function registers the procedure identified by the function
argument with the local machine’s port mapper.

NOTE: Be sure that you register a procedure correctly the first time. For any
program/version number pair, certain information is observed only on the
first call to registerrpc. If you try to add new information in a subsequent
call, that information is ignored.

B-6

Networking Reference

Making Your
Own RPC Server

Remote Procedure Call (RPC)

The prog# and vers# arguments determine which local RPC server will handle
the procedure. In selecting a program number for your procedure, remember
the RPC standard developed by Sun Microsystems. The standard assigns
program numbers in certain range groups, as follows:

#x00000000 — #x1FFFFFFF Defined by Sun
#x20000000 — #x3FFFFFFF Defined by user
#x40000000 — #xSFFFFFFF Transient
#x60000000 — #xFFFFFFFF Reserved

The proc# argument uniquely identifies a procedure within a particular pro-
gram/version number pair.

- The function argument is the name of the local function that implements the

procedure identified by proc#.

The xdr-in argument filters the argument(s) received as input from the net-
work back into a single XDR-format argument. If xdr-in is :xdr-void, the
Sfunction argument should be the name of a function that has no required
input arguments.

The xdr-out argument filters the single XDR-format argument so that it is
acceptable for transfer across the network.

NOTE: Both the xdr-in and the xdr-out arguments must be acceptable to the
xdr-io macro discussed in the previous section.

The protocol argument’ specifies which communications protocol that the
particular RPC implementation is built on. The value of the argument is one
of two protocol keywords: either :udp or :busnet.

The &allow-other-keys argument permits you to specify additional arguments
to be supplied to the rpc:make-server-process function. These parameters
are alternating keywords and values that include such information as the
required port number and the process’s pretty-print name.

B.5.2 At times, you may want to place several programs into a single RPC
server, especially if several programs are relatively trivial in terms of execu-
tion time. Also, you may want to increase the efficiency of lower-level
control, such as reading arguments directly (rather than having them filtered
as single arguments by the default dispatcher). To do this, use the rpc:make-
server-process function.

rpc:make-server-process prog# vers# &key (protocol :udp) port Function

(dispatcher ’rpc:universal-rpc-dispatcher)
(name (princ-to-string program))

(initial-form ’rpc:universal-rpc-initial-form)
initial-form-args run-reason server-id

(flavor 'rpc:server)

(receive-whostate rpc*default-server-who-state*)
make-process-args

The rpc:make-server-process creates a new RPC server process.

Networking Reference

Remote Procedure Call (RPC)

The prog# and vers# arguments (which are unsigned 32-bit integers or nil)
identify the newly created process.

The protocol argument specifies which communications protocol that the
particular RPC implementation is built on. The value of the argument is one
of two protocol keywords: either :udp or :busnet. The default value is :udp.

Although port defaults to a randomly selected port, you can specify a particu-
lar port for the procedure. If you supply a value for port, it must be an
unsigned 16-bit integer greater than 1.

The dispatcher argument is a funcallable Lisp object that performs server
functions. Normally when you create your own server, you can accept the
default value for the dispatcher argument, rpc:universal-rpc-dispatcher.
The dispatcher is discussed in greater detail later in this appendix.

The name argument is a user-recognizable name of the prog# argument. This
form is used by various Explorer utilities (such as Peek). The default value
for name is the prog# written as a string. For example, network file system
(NFS) would default to “100003”, although a preferred name would be
“NFS”.

The initial-form is a funcallable object that starts the process. Its default
value is rpc:universal-rpc-initial-form.

The initial-form-args are those arguments (if any) required by initial-form.

The run-reason argument, if non-nil, sends the newly created process a run
reason, thereby activating the process. The default value is nil, meaning the
process is not activated.

The server-id argument assigns each server an ID that can be used by the
rpc:kill-server-process function to kill any previous instances of itself that
are still active. The server-id argument can be any symbol other than nil. The
rpc:kill-server-process function will not kill a server-id of nil.

The flavor argument identifies the flavor for the make-process function to
instantiate. It should be rpc:server or a flavor based on rpc:server.

The receive-whostate argument is a string to be displayed as the who-state
while waiting on an RPC call. The default value is rpc:*default-server-who-
state*.

The make-process-args argument is a list of parameters that are passed to the
make-process function. These parameters are alternating keywords and
values.

B-8

Networking Reference

Registering
Processes in
a New Server

Remote Procedure Call (RPC)

B.5.3 Because registerrpc creates a separate server for each program/
version number pair, you cannot use it to register your procedures from dif-
ferent programs with the same server. Instead, you must use the :register
method.

:register program version dispatcher ‘ Method of rpc:server

&optional (set-port-map-p t))

This method associates the version number version of the RPC program
number program with the dispatch function dispatcher. If set-port-map-p is
true (the default), then the program/version number pair is registered with
the local port mapper for the server’s protocol. If :register cannot register
the program, it signals an rpc:unable-to-set-port-map error.

runregister program version &optional (arrest-on-empty-p t) Method of rpc:server

This method disassociates version number version of the RPC program
number program from any dispatch function. If arrest-on-empty-p is true and
no programs remain registered, then :unregister posts an arrest reason of
rpc:no-registered-programs for this process. If :unregister is unable to
unregister the program, it signals an rpc:unable-to-unset-port-map-warning
error.

The Dispatcher

B.6 When an RPC server receives a remote procedure call, it calls a
dispatcher (either the default dispatcher or one that you have provided). The
default dispatcher takes the incoming message from the network and extracts
the destination program/version number pair from it. Matching this informa-
tion to a function in its procedure registry, the default dispatcher then calls
that function. The definition of the default dispatcher function follows:

rpc:universal-rpc-dispatcher request stream Function

This function is the default dispatcher function provided for rpc:make-
server-process. The rpc:universal-rpc-dispatcher function executes the
calling procedure and returns its result.

The request argument contains the header information from the RPC call in
the form of an rpc:svc-req structure. This information includes the program/
version number pair, procedure number, XDR filters, protocol, and so on.
This information can be obtained by executing the functions discussed imme-
diately after this description.

The stream argument identifies the XDR stream (positioned to begin reading
arguments) that is received from the remote host requesting an RPC transfer.

The default dispatcher function also binds the rpc:rpc-call-msg-header vari-
able to request. By declaring rpc:rpc-call-msg-header special in the function
argument of registerrpc, you can access the extra rpc:svc-req information
even without writing your own dispatcher.

Because it can access the program/version number pair, a single dispatcher
can control multiple programs.

The following functions obtain information for the request argument of
rpc:universal-rpc-dispatcher.

Networking Reference

B-9

Remote Procedure Call (RPC)

rpc:svq-req-program request Function
rpc:svq-req-version request Function
rpc:svq-req-procedure request Function
rpc:svg-req-credentials request Function

These functions extract the program/version number pair, procedure
number, or credentials from the rpc:svc-que structure containing the RPC
call header information.

RPC Functions

B.7 The following functions manipulate RPC server processes:

rpcinfo "e flag &optional host program version-number Function

This function, which accepts its arguments in a UNIX-style syntax (no
quoting is needed), displays information about the status of the specified RPC
server. The following are the accepted values for flag along with the appropri-
ate arguments (those in brackets are optional for the corresponding flag
value):

-p [host] — Dumps the entire port map for host (which defaults to the local
host) to the value specified by *standard-output*.

—u host program [version-number] — Prints the status of the RPC server for
version version-number of program on host for protocol UDP.

-b host program [version-number] — Prints the status of the RPC server for
version version-number of program on host (which defaults to the local
LX host) for protocol BusNet.

-t host program [version-number] — Prints the status of the RPC server for
version version-number of program on host for protocol TCP.

The program argument can be an integer or a symbol. The version-number
argument defaults to 1.

rpc:universal-rpc-initial-form &optional signal-errors-p Function

This function is the default initial form provided for the rpc:make-server-
process function. As such, its only purpose is to send the newly created
process a irun message.

If the signal-errors-p argument is non-nil and an error occurs in the server,
the error enters the debugger. If this argument is nil and an error occurs in
the server, the server is restarted.

rpc:kill-server-process server-id &optional protocol Function

The rpc:kill-server-process function kills RPC server processes identified by
the server-id argument.

To Kkill a specific RPC server process, use the server ID provided by the
rpc:make-server-process function. If server-id is the symbol t, the function
kills all RPC server processes. If server-id is nil or is not a symbol, the func-
tion does nothing.

The optional protocol argument allows you to further identify the server proc-
ess to be killed by its associated protocol. If protocol is nil, then all server
processes with a server ID the same as server-id are killed, regardless of their
associated protocol.

B-10

Networking Reference

Remote Procedure Call (RPC)

rpc:protocol-no protocol Function

The rpc:protocol-no function returns the number associated with the proto-
col specified by protocol. The protocol can be either a protocol keyword
(such as :udp) or the protocol number itself. Either way, the protocol
number is returned. If the protocol is not known, this function signals
rpc:unknown-protocol.

rpc:protocol-keyword protocol v Function

The rpc:protocol-keyword function returns the keyword associated with the
protocol specified by protocol, which can be either a protocol number or the
protocol keyword itself (such as :udp). Either way, the protocol keyword is
returned. If the protocol is not known, this function signals rpc:unknown-

protocol.
rpc:make-cred-verifier &key credentials verifier Function
rpc:cv-credentials cred-verifier-structure = Function
rpc:cv-verifier cred-verifier-structure Function

The rpc:make-cred-verifier function creates a cred-verifier-structure
structure from the rpc:opaque-auth structures credentials and verifier.

The rpc:cv-credentials accessor function extracts the credentials from the
rpc:opaque-auth structure. The rpc:cv-verifier accessor function extracts
the verifier (or nil if there is no returned verifier) from the rpc:opaque-auth
structure. Both of these functions are ‘setfable.

RPC Variables B.8 The descriptions of the more important RPC variables are as follows:

rpc: *rpc-default-area* Variable

The value of this variable is the default consing area number for remote pro-
cedure calls and related servers.

rpc:*call-who-state* Variable
rpc: *default-client-who-state* Variable

The rpc:*call-who-state* variable, if non-nil, contains a string that replaces
the who-state string displayed during a wait for an RPC client call reply. If
rpc:*call-who-state* is nil, the value of rpc:*default-client-who-state* is
used.

rpc: *default-server-who-state* Variable

The rpc:*default-server-who-state* variable contains a string seen in the
Peek utility whenever the server is waiting.

rpc:*default-unix-uid* Variable
This variable contains the default UNIX user ID. Normally, this value is 0.
rpc:*default-unix-gid* , , Variable

This variable contains the default UNIX group ID. Normally, this value is 1.

Networking Reference B-11

Remote Procedure Call (RPC)

rpc:*callrpc-timeout* Variable

This variable contains the number of seconds allowed before each :call or
:broadcast to a client times out. The default value is 10 seconds.

rpc:*callrpc-retrys* Variable

This variable contains the number of retries performed for each unsuccessful
:call or :broadcast to a client. The default value is three retries.

rpc:*pmap-getport-timeout* Variable

This variable contains the number of seconds allowed before each rpc:pmap-
getport times out. The port mapper uses this variable in lieu of rpc:*callrpc-
timeout*. The default value is five seconds.

rpc:*pmap-getport-retrys* Variable

This variable contains the number of retries allowed before each rpc:pmap-
getport times out. The port mapper uses this variable in lieu of rpc:*callrpc-
retrys*. The default value is 12 retries.

rpc:*rpcinfo-name-number-alist* Variable

This parameter is an association list containing dotted pairs formed from RPC
server name symbols and their associated RPC program numbers or synonym
name symbols. The alist ignores case and maps all #_ (underscore) charac-
ters to #\- (hyphens) before lookup. This mapping also supports symbolic
arguments to rpcinfo.

RPC Conditions B.9 A number of conditions can be signaled when an RPC transfer encoun-
ters an error. Each condition that is signaled contains a hierarchy of the other
conditions upon which it was built. Each condition described in the following
paragraphs is followed by a list displaying its condition-calling hierarchy.
Although it is not listed, the condition being described is the last condition in
the hierarchy.

rpc:unknown-port (rpc:rpc-error) Condition

This condition is signaled when a network port number cannot be mapped
back to its port object.

The :protocol message returns the number of the protocol that the request
attempted to use, and :port returns the number of the port that was assigned
to the request.

rpc:unknown-protocol (rpc:rpc-error) Condition

This condition is signaled when one of the protocol information access func-
tions (such as rpc:protocol-no or rpc:protocol-keyword) cannot find the
information it was asked for.

The :protocol message returns the number of the protocol that the request
attempted to use, and :attribute returns the type of information that
rpc:unknown-protocol could not find about the protocol.

B-12

Networking Reference

Remote Procedure Call (RPC)

rpc:unsupported-protocol (rpc:rpc-error) Condition

This condition is signaled when a client is instantiated with a known, but
unsupported, protocol. If the protocol is unknown, rpc:unknown-protocol is
signaled instead.

The :protocol message returns the number of the protocol that the request
attempted to use.

rpc:non-call-msg-received (rpc:rpc-error rpc:server-error) Condition

This condition is signaled when an RPC server receives an RPC message that
does not have a call message type.

The message :msg-type returns the message type actually received by the
RPC request, and the :xid message returns the transaction ID of the request.

rpc:unable-to-set-port-map (rpc:rpc-error rpc:server-error) Condition

This condition is signaled when rpc:pmap-set indicates to (:method
rpc:server :register) that it cannot set the specified program, version, and
protocol to the specified port.

The :program and :version messages return the program and version
numbers, respectively, of the RPC request. The :protocol message returns
the number of the protocol that the request attempted to use, and :port
returns the number of the port that was assigned to the request.

rpc:unable-to-unset-port-map-warning (sys:warning rpc:server-warning) Condition

This condition is signaled when rpc:pmap-unset indicates to (:method
rpc:server :unregister) that it cannot unset the specified program and
version.

The :program and :version messages return the program and version
numbers, respectively, of the RPC request.

rpc:conflicting-ports (rpc:register-error) Condition

rpc:call-error

This condition is signaled when registerrpc requests to register a procedure
on a specific port other than the one that the program was previously
registered on.

The :program, :version, and :procedure messages return the program,
version, and procedure numbers of the RPC request. The :protocol message
returns the number of the protocol that the request attempted to use. The
:port message returns the number of the port that the current call to register-
rpc was requesting for this program/version number pair, and :registered-
port returns the port it was already registered on.

Flavor

rpc:call-warning Flavor

The rpc:call-error and the rpc:call-warning flavors provide the basis for a
number of RPC conditions whose descriptions immediately follow this one.
After each condition described in the following paragraphs is a list displaying
its condition-calling hierarchy.

Networking Reference

B-13

Remote Procedure Call (RPC)

Both rpc:call-error and rpc:call-warning use rpc:call-info-mixin, which
supports a number of messages that obtain general information about the call
being attempted at the time of the error:

H :rpc-host — Who was being called

B :program, :version, :procedure — What was being called

H :protocol, :protocol-keyword — How they were being called

m :port — On which protocol port

m :client — Which rpc:client instance was handling the call
rpc:call-timeout (rpc:call-error) Condition

This condition is signaled when the :call method times out while waiting for a
reply.

The :retrys message returns the number of retries attempted before time-out
occurred, :seconds returns the number of seconds allotted for each try
before the remote host times out, and :discarded-replys returns the number
of reply messages (received from the remote host during the wait) that were
not replies to the current call.

rpc:prog-unregistered (rpc:call-error) Condition
This condition is signaled when rpc:pmap-getport cannot find a port number
for the remote host’s requested program and version numbers.

rpc:unknown-reply-stat (rpc:call-error) Condition

This condition is signaled when an RPC reply is received with an unknown
reply-stat field. You can obtain the unknown reply-stat field with the
:status message.

rpc:garbage-args (rpc:call-error rpc:unsuccessful-accept-stat) Condition
This condition is signaled when an accept-stat of rpc:garbage-args is
received in an RPC reply.

rpc:proc-unavail (rpc:call-error rpc:unsuccessful-accept-stat) Condition
This condition is signaled when an accept-stat of rpc:proc-unavail is
received in an RPC reply.

rpc:prog-mismatch (rpc:call-error rpc:unsuccessful-accept-stat) Condition
This condition is signaled when an accept-stat of rpc:prog-mismatch is
received in an RPC reply.

The :low and :high messages return the lowest and highest versions of the
program served by the remote host, respectively.
rpc:prog-unavail (rpc:call-error rpc:unsuccessful-accept-stat) Condition

This condition is signaled when an accept-stat of rpc:prog-unavail is
received in an RPC reply.

B-14

Networking Reference

Remote Procedure Call (RPC)

rpc:system-err (rpc:call-error rpc:unsuccessful-accept-stat) Condition
This condition is signaled when an accept-stat of rpc:system-err is received
in an RPC reply.

rpc:unknown-accept-stat (rpc:call-error rpc:unsuccessful-accept-stat) Condition
This condition is signaled when an unknown accept-stat is received in an
RPC reply.

The :status message returns the unknown accept status.

rpc:auth-error (rpc:call-error rpc:reject-stat) Condition
This condition is signaled when a reject-stat of rpc:auth-error is received in
an RPC reply.

The :auth-status message returns a specific reason for the authentication
error.

rpc:rpc-mismatch (rpc:call-error rpc:reject-stat) Condition
This condition is signaled when a reject-stat of rpc:rpc-mismatch is received
in an RPC reply.

The :low and :high messages return the lowest and highest versions of RPC
supported by the remote host.

rpc:unknown-reject-stat (rpc:call-error rpc:reject-stat) Condition
This condition is signaled when an unknown reject-stat is received in an RPC
reply.

The :reject-status message returns the unknown status.

rpc:non-reply-msg-received-warning (rpc:call-warning) Condition
This condition is signaled when the reply to an RPC call does not have a
msg-type of reply.

The :msg-type message returns the type of the RPC message actually
received.

rpc:wrong-reply-xid-warning (rpc:call-warning) Condition
This condition is signaled when the XID field sent with the previous call does
not match the XID of the current reply.

The :call-xid message returns the expected transaction ID, and :reply-xid
returns the transaction ID actually received.

Networking Reference B-15

WRITING RPC SERVERS

Introduction

C.1 There are two ways to write a Remote Procedure Call (RPC) server.
The first way uses registerrpc and is simpler because it lets registerrpc do
most of the work. The generality of registerrpc imposes a small additional
overhead, which should be undetectable. The only functional disadvantage of
the registerrpc approach is that it forces you to treat all remote procedures
as virtually standalone programs. With registerrpc you cannot, for example,
establish a common set of error handlers for all remote procedures in a
program.

The other way of writing RPC servers is to write your own dispatcher function
to replace rpc:universal-rpc-dispatcher, the general-purpose dispatcher
function that registerrpc uses. Your own dispatcher function gives you a
central point from which you can dispatch execution to one of several action
routines based on the program, version, and procedure number of the call.
Similarly, having your own dispatcher function gives you a common point for
call authentication and error handling.

A Sketch of
RPC Serving

C.2 On the Explorer system, each RPC server is represented by a process
built on the rpc:server flavor. The function rpc:make-server-process
creates the process, initializes it appropriately from the arguments you give it,
and then starts the server running or leaves it stopped as you request.

Each RPC server process spends most of its time waiting for data in the form
of a call to arrive on a specified port of a specified transport protocol. One
server process cannot wait on more than one port or on more than one proto-
col. However, it is a trivial matter to start extra identical servers if you need
to handle, for example, two separate protocols.

When a call arrives, the server examines it enough to be sure that it really is a
call that the server knows how to handle. Once satisfied, the server uses the
program number and version number in the call to decide which dispatcher
function, of those it has previously been told about, corresponds to this call
(see the :register method of rpc:server). Finally, the server calls that
dispatcher function with the RPC structure and the XDR stream from which
the dispatcher can read any arguments to the call. It is up to this dispatcher
function to do all further processing. Therefore, to summarize:

B A unique RPC process server must be dedicated to each port of each
transport protocol that calls can arrive on.

B Each server can act as a front end to one or more dispatcher functions.
Usually, there is exactly one dispatcher function per server.

M The server chooses a dispatcher function based on the program number
and version number of the call. One dispatcher function can handle any
number of program-version number pairs. (Usually there is exactly one
program-version number pair per dispatcher.)

Networking Reference

Writing RPC Servers

W The dispatcher function is called with the header information from the
call and an XDR stream positioned to read the first procedure argument.

Once the dispatcher function is called, it is in complete charge of what—if
anything—is done about actually executing the call. The server flavor merely
provides methods to return values and report standard RPC errors.

In the case of rpc:universal-rpc-dispatcher, the default dispatcher function
used by registerrpc, dispatching proceeds as follows:

1. Enforces the Null Procedure convention by immediately returning with
no value if the procedure number is 0.

2. Determines the call’s program, version, and procedure numbers plus the
protocol the call arrived on.

3. Uses this information to look up the input XDR filter function, the proce-
dure, and the return XDR filter function, which a previous registerrpc
recorded in rpc:*procedure-registry*.

4. Uses the XDR input filter to decode the input arguments, if any. That is,
the :xdr-void filter reads nothing from the network.

5. Applies the procedure to the newly decoded input arguments. If the input
filter is :xdr-void, then the procedure is called with no arguments.

6. Uses the XDR output filter to encode the procedure’s return values, if
any. That is, the :xdr-void filter writes no value into the RPC reply that is
about to be returned to the caller.

A Four-Function
Calculator Server

Procedures
vs. Programs
vs. Processes

C.3 Before discussion of the two methods, perhaps it would be instructive
to construct a simple RPC server by both techniques. This example demon-
strates the differences in functionality and capability.

The following example defines an RPC server to add, subtract, multiply, and
divide two integers. For simplicity, real world problems such as overflow and
dividing by zero will be ignored. The server will have four procedures, one
per operation. Each procedure will accept a structure of two integers as an
argument and will return one integer as a result.

C.3.1 Even at this early stage of definition, there is the question of how to
decide on program numbers, version numbers, and procecdure numbers.
From one standpoint, you can look at the 32-bit program, version, and
procedure numbers as one large 96-bit procedure identifier. In fact, if you
have no particular requirements as to which procedures should be grouped
together or kept separate or which should be allowed to run in parallel, then
you could probably ignore the distinction of program, version, and procedure
number fields in the 96-bit identifier.

On the other hand, a number of places in RPC processing treat a program-
version number pair as a single identifier and the procedure number as a
subidentifier. For example, the RPC port map server remembers the trans-
port protocol port number of a program-version pair. That is, you cannot
query a foreign host’s port mapper about the port number on that foreign
host of a program without also specifying the program’s version, nor can you

Networking Reference

Writing RPC Servers

directly ask about a procedure. Similarly, an incoming RPC is handed off to a
dispatcher function based upon the program-version number of that call.

Therefore, you should think in terms of a two-part RPC identifier: a program-
version number pair and a procedure number within that program version. If
the program and version number are always used as one unit, then why give
names to the two subfields?

Actually, these subfields help solve the problem of upgrading software in the
field. As an example, assume that you picked the following program, version,
and procedure numbers for your calculator:

(defconstant calcprog #x20000123) ; Program number
(defconstant calcvers 1) ; Version number
(defconstant calcproc-add 1) ; Procedure number

(defconstant calcproc-subtract 2)
(defconstant calcproc-multiply 8)
(defconstant calcproc-divide 4)

Of course, if your calculator server is to be of much use, then you need to
advertise the value of calcprog so that others on the network can call it.
Now, what happens if you later decide to upgrade your server to handle the
overflow and divide-by-zero problems ignored previously?

The solution is to leave the program number as is and change the version.
You still have to inform other users of the new version number, but there is
some help built into the RPC protocol for that. For example, if you make a
remote procedure call to a foreign host to a program and version number that
the foreign host has never heard of, then RPC returns an error as you would
expect.

If, however, the foreign host has a different version of the program you asked
for, then it informs you that it knows about the program you want, but that it
only supports versions X through Y of that program (that is, the RPC error
reply contains machine-readable version number limits). Therefore, a user at
the terminal is informed of what is available and a client program could even
perform automatic retry of the new version.

Although programmers speak of servers, that term does not appear in the
RPC protocol specification. That is, the specification makes the following
tacit assumptions (not enforced by RPC):

m All procedures that belong together in some sense constitute a server and
share a common program number.

m Different versions of the same program number represent minor vari-
ations, updates, or enhancements to the same server.

M You can decide on a server-by-server basis whether a server runs in its
own process or shares a process with several other servers.

This last point is actually unique to the Explorer system and outside the RPC
standard. On the Explorer system, if two servers share one process, then only
one procedure from one server or the other can execute at one time, and
each procedure must complete execution before the other procedure starts. If
the two servers are in different processes, then procedures from each server
can execute in parallel. That is, the Explorer system’s central-processing unit
(CPU) is time-sliced between them,

Networking Reference

C-3

Writing RPC Servers

Arguments and
Returned Values

Note that since the Explorer system’s RPC process flavor is named
rpc:server, there is a natural tendency to call the process the server. It is also
natural to call each unique RPC program number a server as explained
previously.

One of the assumptions made by registerrpc is that each program-version
pair constitutes one server and runs in its own process independently of all
other servers. Actually, whenever registerrpc is asked to register a proce-
dure, it makes a quick’ check of the local port mapper. If this program-
version pair is not already registered, then registerrpc registers it immediately
and creates a new server process for it. Notice that registerrpc creates a new
process based upon the absence of a port map entry, not upon the absence of
a server process.

C.3.2 The returned value of each of the calculator procedures is a single
integer that is already supported by an XDR primitive method, :xdr-integer.
The input arguments are a pair of integers not supported by a single existing
XDR method. Thus, you must define a simple structure that holds the two
integer arguments and then define an XDR function to filter that structure:

(defstruct (calc-args (:conc-name "ARG-")) x y)

(defun xdr-calc-args (stream args)
(rpc:default-and-resolve args calc-args make-calc-args)
(send stream :xdr-integer (locf (arg-x args)))

(send stream :xdr-integer (locf (arg-y args))))

This code defines a simple structure named calc-args that has two slots, x
and y, accessed with arg-x and arg-y. The xdr-calc~-args function is bidirec-
tional and filters a pair of integers between a calc-args structure in Lisp and
a stream of bytes on the network.

You should probably use the rpc:default-and-resolve macro at the beginning
of each of your XDR filters because it allows your users a number of standard
options. In this particular case, it arranges to create a new calc-args struc-
ture if necessary to record integers freshly decoded from the network. That
is, if stream is open for encoding Lisp to network and if args is a locative,
then args is resolved into the actual argument, which is the contents of that
locative. If args is not a locative, then it is used as is.

On the other hand, if stream is open for decoding network to Lisp, then it
must be possible for xdr-calc-args to store the two freshly decoded integers
back into the caller. There are several alternatives for what the caller can
pass to as the args value to xdr-calc-args:

1. It is sufficient for the caller to pass a calc-args structure because the
xdr-calc-args can store the decoded integers into the slots of that struc-
ture, thereby modifying the caller’s original structure.

2. If the caller passes a locative of a calc-args structure, then that locative
can simply be resolved into the structure itself and then used as in the
first case.

3. If the caller passes a locative of something other than a calc-args struc-
ture, then rpc:default-and-resolve defaults the contents of that locative
by calling make-calc-args and storing the results in the contents of the
locative. The locative is then resolved.

Networking Reference

Procedure Definitions

Writing RPC Servers

Then again, if you do not want to bother with remembering all of that, just
put a rpc:default-and-resolve at the beginning of your XDR filters.

C.3.3 Next, you need to define four procedures to add, subtract, multiply,
and divide two integers. Since these functions are going to be used with
registerrpc, they must take exactly one argument (which is the calc-args
structure) and return exactly one value, an integer.

(defun calc-add (args)
(+ (arg-x args) (arg-y args)))

(defun calc-subtract (args)
(- (arg-x args) (arg-y args)))

(defun calc-multiply (args)
(* (arg-x args) (arg-y args)))

(defun calc-divide (args)
(truncate (arg-x args) (arg-y args)))

At this point, you have defined the procedures necessary to use registerrpc.
To register these procedures, simply do this:

(registerrpc calcprog calcvers calcproc-add ‘calc-add ‘xdr-calc-args :xdr-integer)
(registerrpc calcprog calcvers calcproc-subtract ‘calc-subtract “xdr-calc-args :xdr-integer)
(registerrpc calcprog calcvers calcproc-multiply ‘calc-multiply “xdr-calc-args :xdr-integer)
(registerrpc calcprog calcvers calcproc-divide ‘calc-divide ‘xdr-calc-args :xdr-integer)

Once your action routines are registered, the server is up and running. Actu-
ally, a new server is started in its own process as soon as the registration of
calcproc-add is complete. The three following registrations to the same

program-version pair simply record more procedure numbers for that server
to handle.

Notice that registerrpc does something different the first time it is called for
a given program-version number pair. It creates a new server process on the
first call and merely adds to that original process’s workload on all following
calls for the same program-version pair. The registerrpc function takes a
number of optional arguments, most of which are of interest only when the
server is created.

For example, if you were to use Peek (press SYSTEM P) to look at the
current processes, you would probably see one with a name something like
RPC UDP nnnnnnn vi, where nnnnnnn is the decimal version of the program
number that was registered. However, if you include a :name "calculator®
keyword in the first call to registerrpc for the calcprog program, then Peek
shows something a little more informative, such as RPc UDP calculator vi. If
you include :name arguments to any of the following registerrpc requests,
then they would be ignored because the server would already have been
created.

Networking Reference

Writing RPC Servers

An Alternate
Calculator Service

When this server starts running, it can handle only add requests. As the
remaining registerrpc requests execute, the server learns how to handle the
other functions. While this piecemeal start-up creates no problem for this
simple calculator server, other servers may require an all-or-nothing
approach. That is, the server must be able to handle all of its defined
procedures if it handles any of them. You can override registerrpc’s urge to
immediately start a new server by doing something like the following:

(setf server-process (registerrpc calcprog calcvers
caloproc-add ‘calc-add “xdr-calc-args :xdr-integer :run-reason nil))

If this were the first registerrpc to be executed for calcprog and calcvers,
then a new server would have been created and recorded in server-process,
but that server would be stopped because it would have no run reason. After
all of the server’s other procedures have been registered, then you could do
the following to enable the process and start it running:

(process-enable server-process)

Actually, registerrpc has several other optional arguments that give your
server a better outward appearance, especially from the Peek process menu.
For example, your calculator server would show up under Peek as follows:

RPC protocol 536871203 v1 Waiting RPC Call

In this display, protocol is the keyword value of the :protocol parameter of
registerrpc (usually UDP or BUSNET), and 538871208 is the decimal
equivalent of calcprog, #x20000123, and Waiting RPC Call is the default RPC
receive status. If you add :name vcalculator” to the initial call to
registerrpc, then Peek would have shown the following:

RPC protocol calculator vi waiting RPC Call

Similarly, you can change the receive status displayed by Peek by using
:receive-whostate "Waiting Calculation" to produce the following display:

RPC protocol calculator vi waiting Calculation

The :server-id is a more practical option to registerrpc. You can kill any
process from Peek with a menu, but it is also sometimes useful to be able to
kill a process from another function. For example, if you were to write a
utility function, start-calculator-server, then it would be nice if that func-
tion could kill any existing servers so that it could start afresh. All processes
known to the system are recorded in the global variable sys:all-processes
and it is easy to recognize RPC server processes (they are of type
rpc:server). But, how do you tell which RPC server process is a calculator
server?

If you include :server-id ‘calculator in your original call to registerrpc,
then you can call (rpc:kill-server-process ‘calculator) to get rid of any
previous calculator servers.

C.3.4 If the simple dispatching action of the default dispatcher function
used by registerrpc is not sufficient, then you can write your own dispatcher.
Once you have a custom dispatcher function, you can either use registerrpc
to establish your new dispatcher as an RPC server, or you can call rpc:make-
server-process yourself.

C-6

Networking Reference

Writing RPC Servers

(defun calc-dispatcher (svc-request stream)
“Calculator Server dispatcher function”
(let ((args (make-calc-args))) ;argument structure
(flet ((get-calc-args-or-return ()
“decode CALC-ARGS from STREAM or return decode error”
(when (null (send stream :getargs :xdr-calc-args (locf args)))
;ithen failed to decode args, so report it and return
(send stream :svcerr-decode)
(return-from calc-dispatcher)))

(calc-error-handler (condition)
“report any error as SYSTEMERR and return”
(declare (ignore condition))
(send stream :svcerr-systemerr)
(return-from calc-dispatcher)))

(condition-bind ((error #‘calc-error-handler))
(case (rpc:svc-req-procedure svc-request)

(0 ; null procedure
(send stream :sendreply :xdr-void nil))
(#.CALCPROC-ADD ; add procedure

(get-calc-args-or-return)

(send stream :sendreply :xdr-integer (calc-add args)))
(#.CALCPROC-SUBTRACT ; subtract procedure
(get-calc-args-or-return)

(send stream :sendreply :xdr-integer (calc-subtract args)))
(#.CALCPROC-MULTIPLY ; multiply procedure
(get-calc-args—-or-return)

(send stream :sendreply :xdr-integer (calc-multiply args)))
(#.CALCPROC-DIVIDE ; divide procedure
(get-calc-args-or-return)

(send stream :sendreply :xdr-integer (calc-divide args)))
(otherwise ; unsupported procedure

(send stream :svcerr-noproc)))))))

This previous example was intended to be as much like the registerrpc ver-
sion as possible for illustration purposes. Of course, the whole point of writing
your own dispatcher is to allow you to do things differently. Therefore, con-
sider a variation of this custom dispatcher example. Differences between
these versions are shown by striking out lines which have been deleted in the
new version and marking new lines with revision bars on the left.

(defun calc-dispatcher (svc-request stream)
“Calculator Server dispatcher function”

ttet—¢targs—(make-calc=argeyryr Fargument stHueRe — ———————
(let ((x nil) ; individual x and y operands

(y nil))
(flet ((get-calc-arg-or-return (arg)
“Decode an integer from STREAM or return decode error”
(when (null (send stream :getargs :xdr-integer arg))
i+ Then failed to decode this arg, so report it and return
(send stream :svcerr-decode)
(return-from calc-dispatcher)))

(case (rpc:svc-req-procedure svc-request)

(0 ; null procedure
(send stream :sendreply :xdr-void nil))

(#.CALCPROC~ADD ; add procedure
tget-caltc~args=or-return)y—————-———————————————
tsend--stream--sendreply —xdr—integer -(oalo—add -arge)))-
(get-calc-arg-or-return (locf x))
(get-calc-arg-or-return. (locf y))
(send stream :sendreply :xdr-integer (+ x y)))

(otherwise ;unsupported procedure
(send stream :svcerr-noproc)))))))

Networking Reference C-7

Writing RPC Servers

How to
Avoid Consing

The principal changes in this version are *. The let statement now binds the
actual arguments x and y rather than a structure to hold the pair of argu-
ments *. The get-calc-args-or-return is Now get-calc-arg-or-return
(singular) and now just reads one integer argument off the network and stores
it into its argument. Inside the case statement clauses, the two arguments are
now read separately and the operation is performed directly rather than call-
ing an intermediate function.

This example shows that the repeated statement that remote procedures must
be written to accept exactly one argument is false (or at least not universally
true). For simple arguments such as the two integers, it does not matter too
much whether they are first collected into a structure or they are used directly
off the wire. However, for remote procedures that must read large data
buffers, the extra step could mean a large overhead.

C.3.5 In the first example with the make-calc-args call in the let, a
calc-args structure is consed up each time the dispatcher is called (which is
once per remote procedure call). In this case, the structure is so small that it
is probably not worth trying to prevent consing. But in other cases, it might be
important.

One alternative is to simply replace the let in the dispatcher with a global
variable. For example:

| (defvar *args* (meke-calc-args))
(defun calc-dispatcher (svc-request stream)

(flet ((get-calc-args-or-return ()
+whon--{aull-(sond-siream-+gotargs-ixdr—eale—args-(loecf-args)))—
(when (null (send stream :getargs :xdr-calc-args (locf *args¥*)))
(send stream :svcerr-decode)
(return-from calc-dispatcher)))
2)

Now, each call to the dispatcher reuses the same calc-args structure in the
global variable *args* and avoids consing up a new one.

Of course, this alternative tacitly assumes that there will never be more than
one calculator server running at one time. If you want to avoid consing of
multiple calculator servers, then you have to provide a permanent copy of a
calc-args structure for each server. The simplest way to do this is to create a
calculator server flavor:

(defflavor calc-server

((args nil)) ; instance variable
(rpc:server) ; component flavor
:settable-instance-variables) ; make args gettable, settable, and inittable

(defmethod (calc-server :after :init) (init-plist)

(declare (ignore init-plist))
(setf args (make-calc-args)))

| (defun-method calc-dispatcher calc-server (svc-request stream)

(flet ((get-calc-args-or-return ()
(when (null (send stream :getargs :xdr-calc-args (locf args)))
(send stream :svcerr-decode)
(return-from calc-dispatcher)))

This defines the flavor calc-server to be just like the rpc:server flavor
except that calc-server includes an extra instance variable, the calc-args
structure. The calc-dispatcher function has become a defun-method so that
the compiler will know that the (locf args) is referring to an instance
variable of the flavor calc-server created; each will always have its own
private copy of its input argument structure.

Networking Reference

rpc:server Features
Error Handling

Writing RPC Servers

C.3.6 The rpc:server flavor is designed to be highly survivable. That is, to
the greatest extent possible, errors in the dispatcher function do not cause a
server built on rpc:server to terminate or to unexpectedly enter the error
handler. There are a number of consequences of this design.

First, it is difficult to intentionally debug a process that is deliberating hiding
all of its errors. Therefore, each server built on rpc:server includes three
debug-related instance variables: signal-errors-p, condition-count, and
condition-history. If signal-errors-p is false when an error occurs, then
condition-count is incremented, the error condition object is pushed onto
condition-history, and the server is restarted to wait for the next call.

The simplest way to determine if a server has suffered an error is to use Peek
to inspect the server process. The Inspector’s display includes the server’s
instance variables such as condition-count and condition-history. The
Inspector also allows you to modify the value of signal-errors-p to be true. If
anything in the server signals an error while signal-errors-p is true or if any
signaled error is ever classed as a dangerous or debugging condition, then the
server enters the error handler. Since RPC servers are usually running in
background (that is, they have no window of their own), then when the
server enters the error handler, you receive a notification that some process
got an error. You can then press TERM 0 S to see the error handler typeout.

In case of error, one of the available proceed types is to restart the server.
Similarly, in the Peek display, one of the options is to Reset Or to Reset &
Enable the process. Either of these options causes the server process to stop
whatever the server is doing (that is, all outstanding unwind-protects are
honored). Any outstanding RPCs are returned to their RPC callers as system
errors.

Next, the server attempts to reestablish itself as nearly as possible to the state
it was in immediately after being created. That is, the intent is that you should
never need to kill and then restart a server that has become wedged. Instead,
you should never have to do anything other than click on Reset & Enable in
the Peek menu.

Normally, a flavor instance receives an :init message exactly once in its life:
immediately after it is instantiated. Part of rpc:server’s technique of resetting
everything is to send itself another :init message each time its process is reset.
This technique is the actual reason why the previous example initialized its
args instance variable in its :after :init method rather than by providing a
default value to the instance variable. If the defflavor reset the server, you
are guaranteed to get a new calc-args structure in the args instance variable
just in case it had been corrupted in some manner.

If, despite all of these precautions, you do need to kill an RPC server, then
rpc:server has been designed to die immediately and completely. Without
these special provisions, a server can get into certain states from which it
cannot be killed.

Once the RPC server has been killed, you need to create a new server manu-
ally. Nothing in the system automatically restarts permanent servers. The
principal server that supports RPC is the port mapper. You can restart the
port mapper with the rpc:start-port-map-server function. Use nfs:start-
mount-server and nfs:start-nfs-server functions to start those servers. It
would be a good idea to create a similar start server function for any RPC
servers you might write.

Networking Reference

C-9

Writing RPC Servers

Note that UNIX implementations of RPC warn you that if you restart the
UNIX port map server, that you must restart all other RPC servers on that
system. You do not have this problem on the Explorer system. The port map
information is held in a global variable, not inside the process itself. There-
fore, killing one port map server and instantiating another one has no effect
on previously registered entries. The rpc:start-port-map-server function
does have optional arguments to allow you to clear out the local port map and
the foreign port map cache if you wish.

Tracing

C.4 There are two levels of built-in trace: RPC message level and RPC
buffer level. The message level is controlled by the rpc:*rpc-msg-trace-p*
trace flag, which basically tells you who called whom and who replied to
whom. The buffer level is controlled by the rpc:*rpc-buffer-trace-p* trace
flag and gives you a dump of the RPC message buffer with the header portion
formatted. There is no particular advantage in turning both of these traces on
at the same time.

If either of these global special variables is non-nil, then the corresponding
trace is printed to the *trace-output* stream. If an RPC client on the
Explorer system is active, then your trace is usually displayed in the window
you are using. However, RPC servers usually run in background and have no
window. Therefore, your trace appears in one of the small typeout windows.

A better alternative for tracing background RPC activity is to set the appropri-
ate trace flag to a stream rather than to another non-nil value, such as the
background typeout window. For example, if your are in a Lisp Listener and
set rpci*rpc-msg-trace-p* to *terminal-io*, then all of your traces from all
RPC clients and servers are displayed in your Lisp Listener. If you use
dribble-all before you set the trace flag, then the dribble file collects your
trace.

Annotation

C.5 Although RPC deals exclusively in program, version, and procedure
numbers, you can have your traces annotated with program and procedure
names. Also, you can provide mnemonic program names for the rpcinfo
utility. Use the function rpc:define-program-procedure-name to associate a
comment string with a given program and procedure number during tracing.
For example:

(rpc:define-program-procedure-name 100000 1 "Pmap Getport")

This form causes any trace of procedure 1 of program 100000 to be labeled
as "Pmap Getport*.

Use the function rpc:define-rpcinfo-name to associate mnemonic symbols
with program number for input to and display by rpcinfo:

(rpc:define-rpcinfo-name 100000 “PMAP “PORT~MAP “PORT-MAPFER)

This form allows an rpcinfo port map dump to label an entry with a program
number of 100000 as "puaP*. Similarly, instead of entering the program num-
ber 100000 as an argument to rpcinfo, you now have the option of specifying
“PORT-MAP, °PMAP, OI ~PORT-MAPPER,

C-10

Networking Reference

GLOSSARY

a

acknowledgment

A signal indicating that a transmitted packet has been received by the user at
a remote host.

b

bad state

A state of the connection that is inappropriate for the current operation that
is being attempted.

C

channel

Chaosnet

Chaosnet address

conn

connection

A communications link. Packets or data streams are not sent between the
hosts themselves; they are sent between channels that are associated with user
processes on the hosts. Each channel is identified by a 32-bit string, which
includes fields for the subnet involved, the host involved, the index entry that
identifies the user process, and a unique index entry.

A communications protocol that provides an Ethernet protocol between two
user processes on different machines. The protocol is a full-duplex, packet-
transmission channel. The term Chaos in the name refers to the fact that
there is no central control.

A 16-bit number that is used to identify a host on the network. The most-sig-
nificant eight bits identify the subnet that the host uses, and the least-signifi-
cant eight bits are a unique ID for the host itself. Neither the subnet number
nor the host ID can be zero. Addresses are used in the routing of packets.

A data object representing one side of a connection. A conn is associated
with the local process involved in a connection.

An object that represents a data transmission channel between two user proc-
esses. The channel itself is full-duplex and transmits data in packets. To
maintain its reliability, the channel may halt communications in the event of
an error, rather than running the risk of garbling, losing, duplicating, or rese-
quencing any packets in transmission. In the event of such a halt in commu-
nications, Chaosnet informs both user processes. A connection is identified
by the Chaosnet addresses and the local indexes assigned by the two hosts.
The interpretation of packets or byte streams is dependent on the program or
high-level protocol that is using the connection.

Networking Reference

Glossary-1

Glossary

contact name

controlled packet

A string that is used to find the process with which to connect. A connection
includes a requestor process and a listener process. The requestor process
issues a request for connection (RFC) packet that contains the contact name.
The RFC packet is like an invitation, and the contact name is like the name
of the person invited. When the listener process hears its contact name, it
decides whether to agree to a connection. Once a connection is established,
the contact name of a user process is no longer used by the software. The
Explorer system remembers what contact name was used to open a connec-
tion, but this is for a user’s information only. On the other hand, the contact
name can be the name of a standard server, such as Telnet. In this case, the
receiving host creates a process with which to respond; the process executes
the program for that server. In the case where two existing processes that
already know about each other want to establish a connection, the two of
them must agree on a contact name. Then, one process must send the
request while the other process listens. The two of them must agree between
themselves about what each process is to do. Contact names can be any string
of characters terminated by a space. Explorers accept lowercase as well as
uppercase characters in a contact name. However, other hosts may not
accept lowercase. All hosts accept uppercase letters, numbers, and ASCII
punctuation. The maximum length of a contact name is limited only by the
packet size. However, on Incompatible Timesharing System (ITS) hosts, the
names of automatically started servers are limited to six characters by the file
system. A contact name is terminated by a space. If an RFC packet contains
data beyond the contact name, the data is intended for interpretation by the
listener process. The listener process can use this extra data to decide
whether to accept the connection.

A packet that is retransmitted until receipt of the packet is acknowledged by
the other end of a connection.

c

Ethernet The DEC-INTEL-XEROX® (DIX) standard network communications sys-
tem, version 1.0, 30 September 1983.

f

foreign host

foreign protocol

A foreign host is a non-Explorer machine.

A foreign protocol is a non-Chaosnet protocol.

h

header

The first part of a data transmission, containing information about the
following data packet, such as the length of the packet.

XEROX is a registered trademark of XEROX Corporation.

Glossary-2

Networking Reference

Glossary

n

Network Control
Program (NCP)

A program that works to maintain the integrity of data transmission with an
optimal rate of data flow.

packet

The basic unit for data transmission in Chaosnet. Each packet contains an
opcode , which has an 8-bit number, a three-letter code, and a name. The
8-bit number identifies the function of the packet. Opcodes less than 200
octal have a special purpose. Each of these opcodes has an assigned name
and a specific function. Opcodes 200 through 277 are used for 8-bit user
data; opcodes 300 through 377 are used for 16-bit user data. The three-letter
code identifies what kind of packet it is. For example, the code for an RFC
packet is RFC, which stands for request for connection. Packets can be either
uncontrolled or controlled. Uncontrolled (UNC) packets are used for low-
level functions of Chaosnet such as error control. They are never
retransmitted. Uncontrolled packets are different from controlled packets,
which are retransmitted by a host until receipt of the packet is signaled. Most
packets are controlled packets. User packets are always controlled packets
unless a user deliberately uses an uncontrolled packet. The following are im-
portant packets:

answer (ANS) packet — A packet sent by a server process to a requestor
process. It contains a string that is the server’s response to an RFC. However,
it does not open a connection.

close (CLS) packet — A packet that can be used in the following ways:

B To act as a negative answer to a request for connection. In this case, a
server refused the RFC packet.

B To close a connection that had previously been open. Any packets in
transit may be lost.

A CLS packet is an uncontrolled packet that contains a string that explains
the reason for refusal. Use of a CLS packet is not absolutely necessary. One
process may simply shut down its end of a connection. The next time the
other process tries to use the connection it still thinks it has, it receives an
LOS packet.

end-of-file (EOF) packet — A packet that signals the end of a stream of data.
It is a controlled packet that contains only an end-of-file mark. Do not put
data in an EOF packet, since Chaosnet will ignore any data present. In other
words, the byte count for the data in an EOF packet should always be zero.

forward (FWD) packet — A packet used by a server process to turn down a
request for connection. However, an FWD packet contains a string that
suggests to the user process that it try a different host or a different contact
name.

lossage (LOS) packet — An uncontrolled packet that one Network Control
Program uses to tell another that an error has occurred. It contains a string

Networking Reference

Glossary-3

Glossary

that explains the nature of the problem. An LOS packet is sent in response to
receiving a packet for a broken or nonexistent connection.

listen (LSN) packet — A packet used by the listener process to listen for a
contact name.

open (OPN) packet — A packet sent by a server when the server agrees to a
connection with a user process. Since it is a controlled packet, it is
retransmitted until it is acknowledged.

request for connection (RFC) packet — A packet that a user process sends to
initiate the opening of a connection with a server process. Sending an RFC
packet is always the first step the user process takes to open the connection.
It contains a contact name, which can be followed by other arguments to the
server. The arguments are delimited by a space character. Since an RFC is a
controlled packet, it is retransmitted until the server sends back a response,
or the request times out.

sense (SNS) packet — An uncontrolled packet that is used when one end of a
connection wants the other to send back a status (STS) packet.

status (STS) packet — An uncontrolled packet sent from one host to another
in order to acknowledge the receipt of packets. The second host then knows
it does not have to attempt retransmission of the packets.

r

receipt

route

routing table

A signal indicating that a transmitted packet has been received by the
machine at a remote host.

The path that a packet takes to reach the host specified by the destination
address field of the packet. A route is direct if there is a direct hardware
connection between the two hosts involved. The packet is simply transmitted
on the subnet between the two hosts. A route is indirect if the packet must go
through several subnets before it reaches the target host. Any host that is
connected to more than one subnet can be called on by the network to
forward the packet. Explorer tries to determine the best route available for
the packet to take with a routing table.

Each host has its own routing table, which tells the host the best way to send
packets to different hosts. The table is arranged according to subnet because
destination hosts are identified with a particular subnet. When forwarding a
packet, a host uses the table to forward the packet to the host that is the best
bridge to the destination host. Each packet contains a forwarding-count field
that is incremented by one for each host that forwards the packet. If the field
reaches a maximum value of 15, the packet is discarded. An Explorer signals
an error condition when a packet is discarded for this reason. An Explorer
may indicate that no viable connection can be established between the two
particular hosts.

Glossary-4

Networking Reference

Glossary

]

server process

simple transaction

The best way to imagine the server process in relation to a user process is to
think of the two as responder and initiator. For example, when one process
sends an RFC packet, it is acting as a user process. When the other process
sends back an OPN packet, it is acting as the server process. Keep in mind
that the concept of a server process and a user process is dynamic. Like two
people in a conversation, who is questioning and who is answering can switch
back and forth.

This is when a user process sends an RFC packet to a server process and the
server process returns an ANS packet.

u

uncontrolled packet

user process

A packet that is not retransmitted. Receipt of the packet is not acknowledged
by the other end of a connection.

The best way to imagine the user process in relation to a server process is to
think of the two as initiator and responder. For example, when one process
sends an RFC packet, it is acting as a user process. When the other process
sends back an OPN packet, it is acting as the server process. Keep in mind
that the concept of a server process and a user process is dynamic. Like two
people in a conversation, who is questioning and who is answering can switch
back and forth.

Networking Reference

Glossary-5

INDEX

Introduction

The indexes for this Explorer software manual are divided into several sub-
indexes. Each subindex contains all the entries for a particular category, such
as functions, variables, or concepts. The various subindexes for this manual
and the pages on which they begin are as follows:

Index Name Page
L€ =54 1) - v.... Index-2
(@70 's o)14 Lo 'o V- Index-6
(@70 o 1] - o L. See Variables
Defsubsts e et e e e e e e See Functions
Flavors e e e et e e e e Index-7
D s T (o)'o V- J Index-8
Initialization Optionsttt See General
MaCrOS . v v it ittt e e e e BN See Functions
Methods ... ii ittt i i i i e e e e See General
Special FOrms vviiii ittt i e e See Functions
Operations e e Index-10
Variables e e e e e e e ceveee... Index-12

Alphabetization
Scheme

The alphabetization scheme used in this index ignores package names and
nonalphabetic symbol prefixes for the purposes of sorting. For example, the
rpc:*callrpc-retrys* variable is sorted under the entries for the letter C
rather than under the letter R.

Hyphens are sorted after spaces. Consequently, the multiple menus entry
precedes the multiple-choice facility entry.

Underscore characters are sorted after hyphens. Consequently, the xdr-io
macro precedes the xdr_destroy macro.

Networking Reference

Index-1

General Index

General

A

address resolution
packets, 1-17
table, 1-17
:address-list attribute, 4-3
:addresses attribute, 4-3
:*alias-of* attribute, 4-3
:aliases attribute, 4-3

annotating remote procedure calls (RPC), C-10

application-layer protocols, 1-14
arrays, A-4

:auditing-enabled attribute, 4-4
:auto-save-enabled attribute, 4-4

B

band transfers, 3-20
:baud attribute, 4-4
:bitmap-printer attribute, 4-4
boot
non-standard, 4-41
sequence of events, 4-25
:boot-init-file attribute, 4-4

bridge, 1-20
C
cache, 4-14

:cache-entry-timeout attribute, 4-4
:caching-control attribute, 4-4
:changes-before-save attribute, 4-5
Chaosnet, 2-1
contact name, 5-3
file server
conditions, 3-4
functions, 3-3—3-4
foreign host, getting information on, 5-13
information and control functions, 5-27
packet, 1-14
packet 1/0, 5-22—5-25
server
example, 5-5
protection, 5-14
simple transaction (example), 5-3
writes and reads, 5-10
specification, 5-1
stream I/0, 5-6
functions, 5-20—5-21
methods, 5-20—5-21
subnetworks, 7-16
:character-printer-p attribute, 4-5
co-server, 4-14

namespace
Distribute Namespace, 4-18
Verify Attribute Incrementally, 4-18
Verify Class Incrementally, 4-17
Verify Namespace, 4-17
Verify Object Incrementally, 4-17
Telnet, 3-7
VvT100, 3-10
configuration file, 4-15, 4-40
conn, 5-2, 5-15—5-16
accessor functions, 5-16
states, 5-15—5-16
wait function, 5-16
connect name (Telnet), 3-6
connection, 5-2
interrupts, 5-26
opening and closing a, 5-17
rejecting a, 5-12
consing, avoiding in RPC servers, C-8
contact name, 5-3
Converse
functions, 3-12—3-14
user options, 3-14—3-15
utility, 3-11—3-15
Zmacs commands with, 3-12
:current-version attribute, 4-5

D

DARPA specification, Telnet, 3-5
data link layer (of a network), 1-5
:data-bits attribute, 4-5

DECnet, 2-2

:default-device attribute, 4-5
:default-file-server attribute, 4-5
:default-login-name attribute, 4-5
:default-login-password attribute, 4-5
:default-mail-host attribute, 4-5
diagnostics, network, 7-13
directory translations, 4-6
:directory-translations attribute, 4-5
discriminated unions, A-5—A-6
disk save boot defaults, 4-41
domain delimiter, 4-13

E

error handling for rpc:server, C-9—C-10
errors, 6-28—6-30

local, 6-28

remote, 6-29

standard network, 6-28

collision fragments, 1-11 Etlllernet L6

collisions, 1-11 ayers, 1-

commands packet, 1-7

Index-2 Networking Reference

Ethernet(continued)
segments, 1-19
subnetworks, 7-16

Eval server, 3-16

external data representation
definition, A-1
examples, A-7—A-11
Explorer implementation, A-1
filters, A-1 '

in XDR streams, A-2—A-6

streams, locatives in, A-2

F
file
configuration, 4-15, 4-40
directory translations, 4-6
name-service access, 4-41
server-boot-list, 4-41
servers, 3-1—3-4
siteinfo, 4-15, 4-40
:file-control-lifetime attribute, 4-6
:file-server-type attribute, 4-6
filters
definition, A-1
Explorer implementation, A-1
Finger
making assignments, 3-18
utility, 3-17—3-20
foreign-port cache, B-4
:ftp-implementation-type attribute, 4-7
ftp-prompt-for-account attribute, 4-7

G

gateway, 1-20
generic network interface, 6-1
accessing protocol-specific services, 6-25
errors, 6-28
functions, 6-10—6-14
using (example), 6-16—6-19
generic network system, 6-1
programmatic interface, 6-10
generic services interface, 6-7
GNI. See generic network interface
GSI. See generic services interface

H

:home-host attribute, 4-7
:home-phone attribute, 4-7

‘host attribute, 4-7

:host class, 4-2
:host-for-bug-reports attribute, 4-7
:host-translation attribute, 4-7

I

:image-printer-p attribute, 4-7
incremental verification, 4-17, 4-35
initialization menu, 4-38

General Index

IP protocol, 2-1
:ip-addr-subnet-bits attribute, 4-7
ISO/OSI reference model, 1-3—1-5

K

:known-classes attribute, 4-7, 4-8

L

link management, 1-9
:location attribute, 4-8
locatives in XDR streams, A-2
logical contact names, 6-5

defining, 6-14

finding, 6-13

translating, 6-13

M

:machine-type attribute, 4-8
:mail-address attribute, 4-8
:mail-gateway-host attribute, 4-8
:mailing-list class, 4-2
medium, 6-2

adding a server for, 6-11

connections, 6-6—6-7

defining a, 6-6, 6-12

desirability, 6-5

generic layer, 6-2

implementations, 6-3

layers, 6-2

stream layer, 6-2

transport layer, 6-2
:medium-desirability attribute, 4-8
menus

change machine name, 4-38

contact Explorer nameserver, 4-39

contact Symbolics nameserver, 4-40

convert a network configuration file, 4-40

force local namespace load, 4-41

network controller configuration, 7-15

network diagnostics, 7-13

network displays, 7-12

network initialization, 4-38

network operations, 7-10

N

Name protocol, 3-16
name-service directory, 4-16, 4-41
namespace. See network namespace
:namespace class, 4-2
:namespace-file-pathname attribute, 4-8
:namespace-search-list attribute, 4-8
:namespace-verification-routine keyword, 4-17
network

building from scratch, 4-19

controller configuration menu, 7-15

diagnostics, 7-13

menu, 7-13

Networking Reference

Index-3

General Index

displays menu, 7-12

initialization menu, 4-38

local area (LAN), 1-1

long-haul, 1-1

namespace, 4-2
attributes, 4-3
classes, 4-2—4-3
commands
Distribute Namespace, 4-18
Verify Attribute Incrementally, 4-18
Verify Class Incrementally, 4-17
Verify Namespace, 4-17
Verify Object Incrementally, 4-17
functions, 4-42
multiple, 4-13
search list, 4-13
search rules, 4-13
servers and caches, 4-14
updating an existing, 4-17—4-18
updating from Release 2, 4-14—4-16
variables, 4-42

operations menu, 7-10

physical layer, 1-5

resetting functions, 7-1—7-3

status functions, 7-1—7-3

network-layer protocols, 1-12
notifications, sending and printing, 3-24

0
opaque data, A-5

P

packet
Chaosnet, 1-14
Ethernet, 1-7
1/0, 5-22—5-25
routing, 1-20
:parity attribute, 4-8
Peek, 7-4—7-10
File Status item, 7-9
Host Status item, 7-10
Network item, 7-4--7-8
Network options
Chaosnet, 7-5—7-7
Ethernet, 7-8—7-16
Servers item, 7-9
:personal-name attribute, 4-8
physical layer (of a network), 1-5
:port attribute, 4-8
port map server
arresting, B-5
resetting, B-5
restarting, B-4
starting, B-4
:postmaster attribute, 4-9
presentation-layer protocols, 1-13
:primary-device attribute, 4-9

:primary-mail-servers attribute, 4-9
iprimary-servers attribute, 4-9
:primary-time-servers attribute, 4-9
:printer attribute, 4-9
:printer class, 4-2
program numbering standard in rermote
procedure calls, B-4

protocols

application-layer, 1-14

Chaosnet, 2-1

DECnet, 2-2

higher-level, 1-12

1P, 2-1

lower-level, 1-5

Name, 3-16

network-layer, 1-12

presentation-layer, 1-13

session-layer, 1-13

TCP, 2-1

Time, 3-16

transport-layer, 1-13

UDP, 2-1

R

:read-only attribute, 4-9
:reject-mail attribute, 4-9
:remark attribute, 4-9
remote disk server, 3-20
remote procedure call (RPC)
annotation, C-10
caller, B-1—B-3
conditions, B-12—B-15
definition, B-1
dispatcher, B-9—B-10
port map server, B-4—B-6
port mapping, B-3—B-4
procedure numbers, C-2—C-4
program numbering standard, B-4
program numbers, C-2—C-4
server, B-6—B-9, C-1—C-2
avoiding consing in, C-8
examples, C-2—C-8
making a function available, B-6
making your own, B-7
registering processes in, B-9
writing, C-1
tracing, C-10
version numbers, C-2-—-C-4
rpc:server error handling, C-9—C-10

S

search rules, 4-13
:secondary-servers attribute, 4-9
server

Eval, 3-16

remote disk, 3-20

writing RPC server, C-1

Index-4

Networking Reference

:servers attribute, 4-9
service, 6-7
attributes, 6-%
implementation, 6-7
implementation list, 6-10
operations, 6-7
:service-desirability attribute, 4-10
:services attribute, 4-10
session-layer protocols, 1-13
:short-name attribute, 4-10
simple transactions, 5-2
:site attribute, 4-10
:site class, 4-2
:site-device attribute, 4-10
:site-directory attribute, 4-10
siteinfo file, 4-15, 4-40
standalone operation, 4-41, 4-42
:stop-bits attribute, 4-10
:stream attribute, 4-11
:string-for-printing attribute, 4-11
strings, A-3—A-4
subnetwork, logical, 4-36
:sys-host attribute, 4-11
:system-host attribute, 4-11

T

TCP/IP, 2-1

Telnet, 3-5—3-8
commands, 3-7
connect name, 3-6
server, 3-7

General Index

:terminal-f-arguments attribute, 4-11
Time protocol, 3-16
:timezone attribute, 4-11
:top-level-mail-domain-servers attribute, 4-11
tracing remote procedure calls (RPC), C-10
:tranlations-file attribute, 4-11
translations, directory, 4-5
transport-layer protocols, 1-13
:type attribute

namespace class, 4-12

printer class, 4-12

U

UDP protocol, 2-1

:usage attribute, 4-12
:use-primary-mail-servers attribute, 4-12
:user class, 4-2

:uucp-gateway-hosts attribute, 4-12

Vv

verification, incremental, 4-17
VT100 '
commands, 3-10
emulator, 3-8—3-10

W

:work-phone attribute, 4-12

X

:xon-xoff attribute, 4-13

Networking Reference

Index-5

Conditions Index

Conditions
A N
rpc: auth-error, B-15 fs: network-lossage, 3-4
net: network-resources-exhausted, 6-28
B net: no-server-up, 6-29
net: bad-connection-state, 6-29 rpc: non-call-msg-received, B-13
rpc: non-reply-msg-received-warning,
C B-15
fs: not-enough-resources, 3-4
rpc: call-timeout, B-14
rpc: conflicting-ports, B-13 P
net: connection-closed, 6-29 . _ 1 B-14
net: connection-error, 6-29 rpc: proc ur.xavalt,h B-14
net: connection-lost, 6-30 Tpe: prog—mlsma.lc].’;-1;
net: connection-no-more-data, 6-30 Tpe: prog-unava_lé 4 B-14
net: connection-refused, 6-29 rpc: prog-unregistered,
D R
fs: data-error, 3-4 rpc: rpe-mismatch, B-15
E S
rpc: end-of-memory-buffer, A-13 rpe: system-err, B-15
error, 3-4
U
F rpc: unable-to-set-port-map, B-13
fs: file-error, 3-4 rpc: unable-to-unset-port-map-warning,
el e) B-13
fs: file-request-failure, 3-4 rpc: unknown-accept-stat, B-15
G net: unknown-address, 6-28
fs: unknown-operation, 3-4
rpc: garbage-args, B-14 rpc: unknown-port, B-12
net: gni-medium-error, 6-28 rpc: unknown-protocol, B-12
net: gni-service-error, 6-28 rpc: unknown-reject-stat, B-15
rpc: unknown-reply-stat, B-14
H rpc: unknown-union-discriminator, A-13
fs: host-not-available, 3-4 rpc: unsupported-protocol, B-13
net: host-not-responding-during-
connection, 6-29 w
net: host-stopped-responding, 6-29 pc: wrong-reply-xjd-warning’ B-15
L
net: local-network-error, 6-28
Index-6

Networking Reference

Flavors Index

Flavors

rpc:
rpc:

net:

net:

C

call-error, B-13
call-warning, B-13

L

local-network-error, 6-28

N

network-error, 6-28

net:

net:

rpc:
rpc:

R

remote-network-error, 6-29

S

service-implementation-mixin, 6-15

X

xdr-memory-stream, A-12
xdr-stream, A-2

Networking Reference

Index-7

Functions Index

Functions
A net: find-stream-type, 6-15
finger, 3-17
chaos: accept, 5-19 oo
add-initialization, 5-18 cl;laos: ?msh-cczlonlrll, g '123
net: add-server-for-medium, 6-11 Chaos: lorwarc-all, >-
chaos: answer, 5-19
chaos: answer-string, 5-19 G
chaos: assure-enabled, 5-27 net: get-host-attribute, 4-44
chaos: get-next-pkt, 5-24
C chaos: get-pkt, 5-22
lirpe, B-1 net: get-site-option, 4-44
2:]l$2-spec B-3 net: get-user-attribute, 4-44
chaos: close-conn, 5-17
sys: compare-band, 3-23 H
chaos: conn-foreign-address, 5-16 net: halt, 5-27
chaos: conn-plist, 5-16 net: host-status, 7-1
chaos: conn-read-pkts, 5-16
chaos: conn-state, 5-16 I
zﬁgg:f gggg;\gn%?\lv?-avallable, 5-16 name: initialize-name-service, 4-42
net: connection-possible-p, 6-14 chaos: interrupt-function, 5-26
chaos: contact-name, 5-16 K
rpc: cv-credentials, B-11
rpc: cv-verifier, B-11 rpc: Kkill-server-process, B-10
D L
chaos: data-available, 5-24 chaos: listen, 5-18
sys: decode-unit-argument, 3-20 net: listen-for-connection-on-medium,
default-and-resolve, A-6 6-11
default-vector-and-resolve, A-6
net: define-logical-contact-name, 6-14 M
ne::: ge?ne-mecl.lum,661-12 rpc: make-cred-verifier, B-11
net: - deline-service, 6- c: make-server-process, B-7
net: define-service-implementation, 6-15 rrgc: make-spec,]3?.3
net: define-stream-type, 6-15 chaos: make-stream, 5-20
net: dglete-server-for-medlum, 6-12 chaos: may-transmit, 5-23
chaos: disable, 5-27
fs: disable-capabilities, 3-4 N
name: distribute-namespace, 4-18, 4-42)
chaos: notify, 3-24
E chaos: notify-all-Ims, 3-24
chaos: enable, 5-27, 7-2 (0
dna: enable, 7-3) .
ip: enable, 7-3 net: open-connection-on-medium, 6-10
fs: enable-capabilities, 3-3 chaos: open-foreign-connection, 5-17
chaos: eval-server-on, 3-16 chaos: open-stream, 5-20
F P
chaos: fast-answer-string, 5-19 chaosi pkt-link, 5-26
chaos: find-hosts-or-lispms-logged-in-as- chaos: pkt-nbytes, 5-22
user, 3-18 chaos: pkt—opf:ode, 5-22
net: find-logical-contact-name, 6-13 chaos: pkt-string, 5-22
net: find-medium, 6-12 chaos: prgnt-all—pkts, 5-27
net: find-service-implementation, 6-15 chaos: print-conn, 5-27
Index-8 Networking Reference

chaos:

rpc:
rpc:

sys:

chaos:
chaos:
chaos:
zwei:
chaos:
dna:
ip:
net:

chaos:

name:

chaos:
chaos:
chaos:
net:set-

print-notifications, 3-24

print-pkt, 5-27

protocol-keyword, B-11

protocol-no, B-11

Q

gsend, 3-13
gsends-off, 3-12
gsends-on, 3-13

R

receive-band, 3-22
registerrpc, B-6
reject, 5-19
remote-eval, 3-16
remove-conn, 5-17
reply, 3-13

reset, 5-27, 7-2
reset, 7-3

reset, 7-2

reset, 7-2
resolve-locative, A-6
return-pkt, 5-22
round-to-quad, A-7
rpcinfo, B-10
run-standalone, 4-42

S

send-pkt, 5-23
send-string, 5-23
send-unc-pkt, 5-23
host-attribute, 4-44

net:
chaos:
net:
chaos:
chaos:
rpc:
net:
rpc:
rpc:
rpc:
rpc:

telnet:
net:
net:
sys:

rpc:
rpc:

chaos:

set-logical-host, 4-44
set-pkt-string, 5-22
set-sys-host, 4-45
shout, 3-24

simple, 5-17

Functions Index

start-port-map-server, B-5
superior-medium-p, 6-14
svq-req-credentials, B-10
svg-req-procedure, B-10

svq-req-program, B-10

svq-req-version, B-10

T

telnet, 3-5
telnet-server-on, 3-8

translate-logical-contact-name, 6-13

translated-host, 4-45
transmit-band, 3-22

U

universal-rpc-dispatcher, B-9
universal-rpc-initial-form, B-10

Vv

value-of, A-6
A%

wait, 5-16
X

xdr-io, A-7

Networking Reference

Index-9

Operations Index

Operations

C

:clear-eof method of chaos input streams, 5-21
:close method of chaos streams, 5-21

E

:eof method of chaos output streams, 5-21

F

:finish method of chaos output streams, 5-21
:force-output method of chaos output streams, 5-21
:foreign-host method of chaos streams, 5-21

M

:memory-buffer initialization option of rpc:xdr-memory-stream, A-12
:memory-buffer method of rpc:xdr-memory-stream, A-12
:memory-buffer-end method of rpc:xdr-memory-stream, A-12
:memory-buffer-pointer method of rpc:xdr-memory-stream, A-12

R

:read-pointer method of rpc:xdr-memory-stream, A-12
:register method of rpc:server, B-9

S

:set-memory-buffer method of rpc:xdr-memory-stream, A-12
:set-memory-buffer-end method of rpc:xdr-memory-stream, A-12
:set-memory-buffer-pointer method of rpc:xdr-memory-stream, A-12
:set-pointer method of rpc:xdr-memory-stream, A-12
:set-transfer-direction method of rpc:xdr-stream, A-2

T

:transfer-direction method of rpc:xdr-stream, A-2

U

:unregister method of rpc:server, B-9

X

:xdr-array method of rpc:xdr-stream, A-4
:xdr-ascii-string method of rpc:xdr-stream, A-4
:xdr-bool method of rpc:xdr-stream, A-3
:xdr-double method of rpc:xdr-stream, A-3
:xdr-enum method of rpc:xdr-stream, A-3
:xdr-float method of rpc:xdr-stream, A-3
:xdr-hyper method of rpc:xdr-stream, A-3
:xdr-integer method of rpc:xdr-stream, A-3
:xdr-opaque method of rpc:xdr-stream, A-5
:xdr-string method of rpc:xdr-stream, A-3
:xdr-union method of rpc:xdr-stream, A-5

Index-10 Networking Reference

Operations Index

:xdr-unsigned method of rpc:xdr-stream, A-3
:xdr-unsigned-hyper method of rpc:xdr-stream, A-3
:xdr-unsigned-vector method of rpc:xdr-stream, A-$5
:xdr-void method of rpc:xdr-stream, A-3

Networking Reference Index-11

Variables Index

Variables
A N
chaos: ans-op, 5-25 name: *non-standard-boot-alternative*,
chaos: answered-state, 5-15 4-41, 4-43
C 0)
rpc: *call-who-state*, B-11 chaos: open-state, 5-15
rpc: *callrpe-retrys*, B-12 chaos: opn-op, 5-24
rpc: *callrpc-timeout*, B-12
chaos: cls-op, 5-25 P

chaos: cls-received-state, 5-15
zwei: *converse-append-p*, 3-14
zwei: *converse-beep-count*, 3-14
zwei: *converse-end-exits*, 3-14
. ’ : -getport-spec, B-6
zwei: * convers:).e-f;(tra-hosts—to-check *, $2 Iz;:gpg_egeligons_ K:mc, eout*, B-12
N : -null- , B-
zwei: * conver%e-f;;tra-hosts--to-check *, rrgf: grrﬁig-g:t-s;zi? B- 66
R rpc: pmap-unset-spec, B-6
rpc: pmapproc-callit, B-6
rpc: pmapproc-dump, B-6
rpc: pmapproc-getport, B-6

rpc: pmap-dump-spec, B-6
rpc: *pmap-getport-cache-p*, B-4
rpc: *pmap-getport-retrys*, B-12

zwei: *converse-gagged*, 3-12, 3-15
zwei: *converse-receive-mode*, 3-14
zwei: *converse-wait-p*, 3-15

rpc: pmapproc-limit, B-6
D rpc: pmapproc-null, B-6
chaos: dat-op, 5-25 rpc: pmapproc-set, B-6
rpc: *default-client-who-state*, B-11 rpc: pmapproc-unset, B-6
sys: *default-disk-unit*, 3-23 rpc: pmapprog, B-5
rpc: *default-server-who-state*, B-11 rpc: pmapvers, B-5
rpc: *default-unix-gid*, B-11 net: *poll-each-status-p*, 7-2
rpc: *default-unix-uid*, B-11
name: *default-who-am-i-domain*, 4-13, R
4-43 fs: record-passwords-flag, 3-3
chaos: rfc-op, 5-24
E chaos: rfc-received-state, 5-15
chaos: eof-op, 5-25 chaos: rfc-sent-state, 5-15
rpc: *rpc-default-area*, B-11
F rpc: *rpcinfo-name-number-alist*, B-12

chaos: first-data-word-in-pkt, 5-22
chaos: foreign-state, 5-16 S
chaos: server-alist, 5-18

H
chaos: host-down-state, 5-15 T
fs: host-unit-lifetime, 3-3 telnet: telnet-default-path, 3-5
I U
chaos: inactive-state, 5-15 fs: user-host-password-alist, 3-3
fs: user-unames, 3-3
L
chaos: listening-state, 5-15 \4
chaos: los-op, 5-25 nse: *verification-level*, 4-17, 4-43

chaos: los-received-state, 5-15
chaos: lIsn-op, 5-24

Index-12 Networking Reference

Data Systems Group - Austin
Documentation Questionnaire

Explorer Networking Reference

Do you use other TI manuals? If so, which one(s)?

How would you rate the quality of our manuals?
Good Fair Poor

Accuracy
Organization
Clarity
Completeness
Overall design
Size

Illustrations
Examples

Index

Binding method

%
Q
e,
e
=]
-

T
T
T

Was the quality of documentation a criterion in your selection of hardware or software?

1 Yes [0 No

How do you find the technical level of our manuals?

[0 Written for a more experienced user than yourself
[0 Written for a user with the same experience

[0 Written for a less ‘experienced user than yourself
What is your experience using computers?
[0 Less than 1 year [0 1-5years [J 5-10 years [0 Over 10 years
We appreciate your taking the time to complete this questionnaire. If you have additional

comments about the quality of our manuals, please write them in the space below. Please
be specific.

Name Title/Occupation

Company Name

Address . City/State/Zip

Telephone Date

Manual Part No. 2243206-0001 *B

TAPE EDGE TO SEAL

...... e BOLD e
NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES
I E——
IEEE—
BUSINESS REPLY MAIL S —
FIRST-CLASS PERMIT NO. 7284 DALLAS, TX R
POSTAGE WILL BE PAID BY ADDRESSEE =
EEEE———
TEXAS INSTRUMENTS INCORPORATED T
DATA SYSTEMS GROUP I —
E——

ATTN: PUBLISHING CENTER
P.0O. Box 2909 M/S 2146
Austin, Texas 78769-9990

	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	replyA
	replyB

