TI Lisp Machine
Virtual Architecture

Texas Instruments. Inc.

Version 1
- March 6. 1985

TI Internal Dxia

€ 1985 Texas Instruments Incorporated

This document is not Explorer user documentation. Information con-
tained herein will be included in user documentation as appropriate.
The correctness and usefuiness of this information is not warranted in
any way. expressed or implied.

Table of Contents

1 Introduetion 5
1.1 Required Reading 5
1.2 Organization 5
1.3 Stability ... e 5

2. Bootstrap Loading 7
2.1 Disk Format o 7
2.2 Kindsof Loads 8
2.3 Microloads 9
2.4 Bootstrap PROM ... 10
2.8 LiSp SLAPt e e e 12

b T T T S T 13
3.1 Interrupts on the LCL Processorottt 13
3.2 Special Programming Conventionsitiiitiiiiniiiiieiiieinneannenn.. 16

4. Deviee Handling e 19
4.1 Device Decoding ..ottt i e e 19
4.2 The NuBus Peripheral Interface Board i, 20
4.3 The Keyboardttt it i i it ia e, 20
4.4 TV Vertical Retrace (interrupt) ...ttt i e 21
4.5 The RS232 Serial Port i i e i e 21
4.6 The Paralle]l Port i e e e 21

5. Virtual Memory and Paging i 23
5.1 Physical Addresses e e 23
5.2 Virtual Addressesiiiiiiii 23
5.3 LCL Memory Interface i e e e e 24
5.4 Physical Memory Map e 25
5.5 Memory Map Hardware i i 25
5.6 Virtual Memory System Tables 25
5.7 Memory Map Dataot e s 25
5.8 Memory Map Status Codesttt 27
5.9 Physical Page Deta Table o i i 29
5.10 Reverse Map Tablecooiiniiiiiiiiiiiiiiii it i, 29
5.11 Second Level Memory Map Block Allocation ..., 30
512 PDL Buffer Handling it 30
5.13 Page Aging Process i e 30
5.14 Virtual Page Management ittt iiiie s 3

6. Internal Storage FOrmatsoiiiiiiiiii it i 37
B.1 Q FOPmMAt ..ot e 37
6.2 Structure Headersc.iiiniiiiiiiiiiiii i it e a e 41
8.3 Invisible Forwarding Pointerso i i 41
8.4 SYMbBoOls ... e e 41
L T ¥ o P 42
6.6 Self Reference Pointer Format e e e e 47
L 5 0] U T 3 Y 48
8.8 FEF FOPmMats ...t et e st 48
8.9 Floating Point Formats 48

TI Internal Data

2

Table of Contents

6.10 Bignum Format 49
6.11 Special PDL ... 49
6.12 CLOSURE Formatsoiiiiii 51
7. Storsge Mamagement 55
Tl ATeRS o 55
T2 ReBIONS .. 56
7.3 Srtandard Areas ... 56
7.4 Systems Communication Area i 59
7.5 Address Space Map Area 60
7.6 Extra PDL Area e e e e e O 80
7.7 Linear PDL Area 80
7.8 Special PDL Area 61
7.9 Working Storage Area ... 81
7.10 Macro Compiled Program Areacooiiiiiiiii 61
T GO 61
8. Garbage Collection 63
8.1 Inthe Machine i i 63
8.2 The Read Barrierc..oiiiiiiiiiiiii ittt i 63
8.3 The WriteBarrierc0ovviiuiiininnnnnnn.. P 63
8.4 Incremental GC i et 63
R 3 T 65
9. Famction Callingc..oooiiiiiiiiiiii e ieeaaaaas 67
9.1 Functional Objectso ittt 67
9.2 PDL Layout ..ot e 68
9.8 FEF Layout ..ot e 72
9.4 Calling Conventionscocoiiiiiiiiiiiininnnnnns. DU . 18
9.5 Closure Call e e e e e e e e 78
9.6 Select-Method Call 78
9.7 Instance Call 78
9.8 Entity Call ..o, 78
9.9 ADT FoPmats ..o e 79
9.10 LEXPR Funcallo e 79
9.11 FEXPR Funcall v 19
9.12 Multiple Value Returns i e 80
9.13 Catch. Throw, Unwind Protect. and Stack Unwinding 80
0.14 SUPPOPL VetlOr ...ttt ittt e e e e 81
9.15 Instance Invokeoo i 81
10. Multiprocessimgoo i 83
10.1 The Stack Group Data Structurecooiinneinneiuianeeineenaennnnns, 83
10,2 OG- tate Q ..ot e, 85
10.3 SG Instruction Dispatchottt 85
104 SG StaLESot e et e 85
11, Error Sigmalling i 89
11.1 Microcode Error Conditionsciviiniiniiiiitiiiierrerarenennannn, 89
11.2 Microcode Error Tablet e, 90
11.3 ILLOP (Illegal Operation]iivvirniurniiiiiiitiiieeinasneenasnnraeenns 95
12. Macro Instructions 99
12.1 General Format ... i 99

TI Internal Data

Table of Contents

12.2 Indicators ... oo 102
12.3 Kernel Macroinstructions 102
12.4 Main Instructions (Class 1) 102
12.5 Non-Destination Instructions (Class II) 104
12.6 Branch Instructions (Class III), 108
12.7 Miscellaneous Instructions (Class IV) 110
12.8 Array Reference Immediate (Class V) Instructions 150
138 Flavors .. oo 153
13.1 Instance Data Structure 153
13.2 Instance Descriptor Data Structure ..o 153
13.3 Self Mapping Table 154
13.4 Method Decode Table R 155
13.5 Callingan lnstance 155
13.6 Instance Variable Accessing 155

TI Internal Data

4 Table of Contents

TI1 Internal Data

1. Introduction

Unsatisfied with the structure of normal computers, they are building at
MIT's Al lab a computer whose native language is LISP. It will have 32 bits
tffth.ll"t:ﬂu_al memory, and ezecute LISP like a bat out of hell.

In a refreshing reversal of trends. it will be for one uuer at a time. “Time
sharing 1s an idea whose time has gone,” chuckles onc participant. (Project
MAC. where time-sharing grev up. was there.)

Ted Nelson. Computer Lib. Dream Machines

Here comes a man
To lead you to
Your very own machine!’
the Who from Tommy. also quoted in UCADR

This document is intended to be the definitive document both explaining and controlling
the Lisp Machine virtual machine architecture for TIs line of Lisp computers. This virtual
architecture draws heavily on the MIT Lisp Machine. The close resemblance is intentional.
Indeed. in most cases. compatibility with the MIT Lisp Machine virtual architecture will be
motivated and justified as a way of discouraging gratuitous changes.

This document describes the Lisp Machine virtual architecture as it applies to the Explorer
Systemn. Low Cost Lisp. and NuBus hardware. The microcode and software versions are as noted
in “Suability”. below.

1.1 Required Reading

It is assumed that any reader attempting to understand this document is familiar with the
hardware architecture of Explorer System and of the Low Cost Lisp processor. At minimum. the
processor general description document should be read.

In addition, extensive familiarity with Lisp Machine Lisp is also expected of the reader. No
amount of background in this area can be excessive. The language concepts manual should be
familiar to the reader as well as the language reference manual.

1.2 Organisation

This document is organized in a basically bottom-up fashion. The lowest levels of the Lisp
Machine will be described and each chapter will generally describe a higher level of the system.
The first chapter, therefore, is bootstrap loading which explains how the system is started. Next
are interrupts and devices as these form the basis for the next level, virtual memory. Next will
come Lisp data object formats, then storage management. Next is function calling which is the
basis of the higher level functions. Next is multiprocessing suport and error signaling which
uses it. Finally, we introduce the macro-instruction set. Last support for instances of flavors is
reviewed.

Of course. a complex system such as this is seldom organized as a strict hierarchy. Levels
are often mixed and circular and pseudo-circular dependencies arise. The Lisp Machine system is
not hierarchical, but may be described as hierarchical. The main contributor 1o non-hierarchical
organization seems to be level flatiening which is the squashing together of severa] levels. Level
flattening contributes to performance, and vherefore. is a useful tool for constructing high per-
formance systems.

TI Internal Data

6

Introduction

1.3 Stability

The Lisp Machine Virtual Architecture is subject Lo change as the system evolves and matures.
This document matches Lisp Machine System T Lisp System HAL 1.0 which was released on
Jun 1. 1985. It also matches system microcode Control 182. which was released on Feb 15. 1985.
This document will be re-released whenever the Lisp Machine Virtual Architecture changes in a
Lisp Machine System.

For Kistorical perspective. the previous system was Tl Experimental 0.0 which was released
on Oct 26. 1984. The previous microcode was URaven 0.0 which was released on June 2, 1984.

TI Internal Data

2. Bootstrap Loading

The unpleasant sensations of the start were less poignant now. They
merged at last into a kind of hysterical ezhilaration. | remarked. indeed. a
clumsy swaying of the machine. for which | was unable to account. But my
mind was too confused to attend to it. so with a kind of madness growing upon
me. | flung myself into Juturity.

H. G. Wells, The Time Machine

NOTE: This portion of the architecture is underguing change. This chapter should be contributed
by someone associated with the changes.

Bootstrap loading the Explorer Systeminvolves several stages and several types of loads.
While the remainder of this document is involved with system operation, bootstrap. loading
occurs before the system is operational and is. therefore. quite different from what follows in
later chapters. The three kinds of loads are cold start. warm start and diagnostic load. These
will be covered separately below.

All loads involve setiing up the writable control store and other memories of the processor
and then transferring to the microcode just loaded. The microprogram responsible for this task
is in the boot PROM which is enabled upon power-on or by a boot request from the keyboard.

Bootstrap loading is from disk. Since the paging system’ requires a disk, requiring a disk
for bootstrap loading does not exclude any already excluded system configureations. The first
module loaded is always a microload? which loads writable control store and other processor
memories. This module may do additional loading of main and virtual memories from disk or
other source.

2.1 Disk Format

he first-level format of the disk is descri - the disk label. The disk label gives information
specific to this media such as physical sector size and defines regions of the disk known as
partitions. Logical sectors are called disk blocks. Blocks are always 1024 bytes (which is 256
words). Block size is the same as a virtual memory page.

The disk label always begins ip logical block 0 of the disk and may also use successive
even bIocks of the disk. For each even block used. the corresponding odd block reserved. The
boot PROM saves s page of memory into the odd disk block corresponding to each block of the
label before reading the label into thay page of memory. This is required for proper warmstart
operation. :

The label has the format shown in Table 2-1. ***This is the CADR style format and has
not yet been altered for the Explorer System.***

Each partition is a contiguous region of the disk, specified by its starting block address and
its length. Partitions are described in the label with a partition table entry of the form shown
in Table 2-2.

There are several naming conventions in force for partitions. All are 4 character long names
in the LISP Machine character set.® Several partition names are used by the software for special
purposes. These are shown in Table 2-3 for reference.

1 See section on paging.

2 See section on mer.

3 The LISP Machine character set is the same as ASCII if restricted to alphanumerics and the
eigth bit is set to 0.

TI Internal Data

Bootstrap Loading

Word 0: “LABL". four characters stored little endian
(as are all strings)

Word 1: label version number. must match version that
PROM can read: this is format of version 1

Word 2: total number of cylinders

Word 8: number of data heads (tracks. cylinder)

" Word 4: number of blocks {1K byis) per track

Word 5: blacks per cylinder (heads - blocks)

Word 6: name of default microload partition

Word 7: name of default load band partition

Words 8-185: name of this drive

. ** how is this different than “name of this pack™**
Words 16-23: name of this pack
Words 24-48: label comment

Words 128: number of partitions
Words 129: number of words per partition descriptor
Words 130: start of partition table

Table 2-1 Disk Label Format

e Word 0: partition name
e Word 1: partition start address
e Word 2: partition size

o Word 3-entrysize: partition comment

Table 2.2 Partition Table Entry Format

PAGE virtual memory swapping storage

FILE file system storage, local directories and
files are within this partition

MNETR if using metering system. microcode meter
events are recorded here

Table 2-8 Dedicated Partition Names

In addition, there are several names that are used by the loader. If a net load is requested,
the NETB partition is microloaded. The normal names of the system microloads are “NCRn” where
“n” is a digit. The boot PROM does not enforce this naming convention. The normal names of
system loads (bands) are “LODn™ und “LDmn” where “m” and “n” are digits. The convention is
also not enforced.

2.2 Kinds of Loads

There are four kinds of loads, cold start, warm start, trial load, and diagnostic load. Euch
has fairly different requirements, but they are largely the same.

2.2.1 Cold Start

A cold start is started after power-on or when simulating a power-on restart of the system
software. If possible, a cold start is initiated automatically after power-on.*

A cold start performs kernel processor selftest, performs system test, loads the writable
control store and internal memories of the processor with sysiem microcode, and starts the

4 This feature is known to some as “self bootstrapping”.

TI Internal Data

Bootstrap Loading

| control store (1-Mem)

2 dispatch memory (D-Mem)

& main memory

14 A M memories

5 1ag classifier memory (T-Mem)
o 6 emry control

Table 2.4 Section Type Codes

system microcode. The sysiem microcode then proceeds to siart the virtual memory system.
initialize virtual memory 10 a load band. start Lisp storage management. and begin Lisp by
running the initial Lisp function. The initial Lisp function is responsible for initializing the other
higher-level software systems such as the file system and the window system.

2.2.2 Warm Start

A warm start occurs when the user requests that a halted system continue. A warm start
performs kernel processor selftest. reloads the writable control store and internal memories of
the processor with system microcode. and restarts Lisp pretty much where it left off. Notice that
a warm start must not alter any page of memory used by Lisp.

.2.2.8 Trial Load

A trial load is a way for a microload and load band to be loaded temporarily. A trial load is
initiated by Lisp. It loads writable control store and internal memories of the processor with
system microcode, and starts Lisp in the same way as cold start. The microload and load band
for a trial load are specified by Lisp and not by the disk label *** or is it N\VRAM ***. The
selected microload and selected band are never set by a trial load so that if a trial load proves
fatal. a cold start of a good microload, band is easy.

2.2.4 Diagnostic Load

A diagnostic load is a stand-alone microload. It is assumed that the purpose of a diagnostic load
is largely diagnostic. After kernel selftest and system test. a microload is loaded and started.
These microloads will usually be for diagnostic or maintenance purposes.

2.3 Microloads

The writable control store and other internal memories of the processor are loaded from a
microload. A microload is read by the boot PROM from a mass siorage device, interpreted, and
the internal memories are loaded.

The Low Cost Lisp microassembler produces an output file in the microload format. The
format of a microload file is the same as the format of a “MCR” partition on disk, and this
compact representation can be placed directly into & disk or tape partition and loaded by the
standard bootstrap PROM. It provides for the loading of I-Mem, A/M memories, D-Mem, and
main memory.

2.3.1 Microlosd Formst
A microload file is organized into 32-bit words and is divided into sections. Each section specifies
one of the above memories. or some control information.

Each section begins with a word specifying the section type. The codes are given in Table
2.4. The formats of each kind of section is given below.

If the section is for I-Mem. D-Mem. A/M-Mem. or T-Mem. the next word of the section
contains the starting location in the selected memory, and the third word contains the number
of locations of the selected memory to be loaded. The second and third words of Mun-\demory
and Entry ‘Control sections have other meanings described below.

TI Internal Data

9

10 Bootstrap Loading

2.3.1.1 1-Mem Section

For each I-Mem location represented in the section. there are two J2-bit words in the microload.
The first of each pair is the high order part of the [-Mem word which is made to appear on the
A side during the I-Mem write. The second word of the pair is the low order part which is made
to appear on the M side during the I-Mem write.

2.3.1.2 D-Mem Section

For each dispatch memory location represented in the section. there is a single $2-bit word in
the microload. The 17-bit D-Mem word is stored right-justified in the 32-bit microload word.

2.3.1.3 Main Memory Section

The second word of a main memory section in the microload contains the number of blocks to
load. The third word of the section is the relative block number of the data within the mieroload
file. In a disk partition, this is the block number of the data relative to the beginning of this
microload partition. The fourth word of the section is physical memory address where the data
should be loaded. The PROM program uses this data to request that the disk controller load
the data at the appropriate memory address.

If the number of blocks in a main memory section is zero, the third and fourth words are
ignored. This is used in microloads which are microcode augmentation files to indicate the
microcode version number for which this augmentation is valid. The required version number is
stored in the fourth word of the section. *** check if incremental assembler does this ***

*** Main Memory section has some mistake in it — if only I could remember what it is . ..

suw

2.5.1.4 A/M Memory Section

Words in the MCR are loaded into consecutive locations in A and M memories. Locations less
than 64 are stored into both A and M memories. Other locations load A memory only.

The memories are not actually loaded when this section is processed, but an image of them

- isstored in the PDL buffer. This image is copied into the A and M memories just before entering

I-Mem. Several A/M sections can reside in a single microload. The last value loaded for a

particular register remains in effect. *** What values do unloaded locations get? Zero I think.
How is info passed from PROM to loaded module? some A-Mem locations are used ***

2.3.1.5 Tag Classifier Memory Section

The tag classifier RAM is loaded from the microload by transferring the contents of each word
into 32 successive locations in T-Mem. Each word represents the boolean vector for a class.
The bits of the word correspond to the datatypes. Bit 0 corresponds to datatype 0. If the
corresponding bit in the microlond word is a 1, this datatype is a member of the class. The
location is the class number to begin loading with. The count is the number of classes to loud.

2.3.1.6 Entry/Control Section

The entry/control section is to specify other random information and to set the I-Mem entry
address. The first word of the section is a count of how many words follow. If the count is 1,
the second (and last) word of the section contains the address 1o enter in I-Mem. Control is
immediately transferred there. This is the last section in the microload.

If the count is not 1. the third word is not interpreted as an entry address. Instead, count is
the number of words in this section. Processing of the microload continues with the next section.

Currently. there is no use or format specified for this control record.

T1 Internal Data

Bootstrap Loading

2.4 Bootsirap PROM

The bootsirap PROM is read-only. non-volatile memory in the Low Cost Lisp processor that
contains selftest and loader microprograms. When the system is powered-on or a system-wide
hardware reset is issued. the boot PROM receives control. It also receives control when a load
request is made from the keyboard and provides entries for a software requested reload.

2.4.1 Powér-On Selftest

When entered from power-on. the boot PROM is responsible for performing a kernel selftest to
assure the processor 1s functional. If it detects a failure. it indicates the nature of the problem
in the processor fault lights. It tests internal memories and datapaths. It will also test main
memory. The memory test should indicate progress on the console. Memory test cannot be
performed until after NuBus configuration.

2.4.2 Preliminary NuBus Configuration

It is necessary to search NuBus for a module claiming to contain each of: memory,~ console.
non-volatile memory, and disk controller. This should find all local memory. one N\VRAM, one
console. and one disk controller. These resources are needed for loading.

The non-volatile memory is searched for first. Slots with consecutively lower ID’s are
searched starting with the slot occupied by the processor. This allows several processors to
coreside on a NuBus. each having its own resource. The NVRAM, if found, might contain the
disk controller slot ID to use. The ID found in the NVRAM is tried, and if the device in that
slot proports to be a disk controller. it becomes the controller for the boot disk. The NVRAM
also contains the unit number of the boot device. If this corresponds to a working device, that
becomes the boot device. If this unit is not valid or the indicated unit failed selftest, the lowest
numbered working unit is selected as the boot device.

If the non-volatile memory is not found or the disk controller ID is invalid, the NuBus is
searched again in the same manner for the disk controlier. and the boot device is selected as the
lowest numbered working unit on that controller.

The console is also found by searching the NuBus in the same manner, starting again with
the slot containing the processor. The console found will be used to display messages and menus
during booting. Errors encountered after this point should attempt to display a terse Mmessage
to the console.

This is a good point at which 1o display a herald indicating the selected devices.

Some memory must be found. NuBus is searched in the same manner for memory. The first
memory found must provide at least 2KB of contiguous read;write memory. With this much
configuration performed. all devices required for loading have been located.

2.4.3 Read Boot Request

Next the keyboard port is read. If it is not ready, then no request has been made and this is a
power-on restart. Power-on should cause a “default cold boot” request for autoload. If the boot
request is a warm boot, copy memory page O to the boot disk block 1 so as not to destroy any
of virtual memory when reading disk blocks.

2.4.4 Bootload Notification

Next the user should be notified that a load of the selected type is proceeding from the selected
device.

5 Starting with the slot containing the processor allows for some resources to be provided by
the processor board in high density implementations.

TI Internal Data

11

12

Bootstrap Loading

2.4.5 Power-On Memory Test

If a power-on load. run a fast memory test. Test should use no more than a few seconds per
megabyte. Should update a progress indication every few seconds. Test only local memory, if
there are other processors. they may also be testing their local (or non-local memory).

3.4.6 Boot Type =

Select one of Diagnostic Menu. System Load Menu. Network Load. Warm Start or Default Load
based on hont request.

2.4.6.1 Diagnostic Menu

If diagnostic boot request, present menu of devices and get boot device choice. Then show a menu
of the diagnostic microloads on that device. Get a choice and if valid proceed to microloading.
One menu entry returns to the menu of devices, one gets the system load menu.

2.4.6.2 System Load Menu

If verbose system load, present menu of devices and get boot device choice. Then show a menu
of the system loads on that device and get a choice. Next show a menu of microloads that will
run with that system load. Get a choice. If choices valid proceed to microloading.

2.4.6.3 Network Load

If request is for network load, the microload will be NETB partition, which contains the network
loader. The network loader is loaded and started. It performs the network load function. Proceed
to microloading.

2.4.6.4 Warm Start

Ascertain what microload was running from a special A-memory location *** location 64? ***.
It will be reloaded. Virtual memory will not be reloaded. Proceed 1o microloading.

2.4.6.5 Default Load .

If NVRAM is valid. it specifies the current system load device which must be a disk. If the
NVRAM is not valid. proceed to System Load Menu. The label of this device indicates the
selected microload and system load. Proceed to microloading.

2.4.7 Microload

The processor internal memories are loaded from the selected partition of the selected device.
Then control is passed into the WCS (I-Mem).

2.4.8 PROM Eatry Vector

"** give something on what PROM provides and how it can be accessed. ***

3.5 Lisp Start

If the microload loaded is Lisp system microcode, when it is started it must start Lisp. The first
task is to initialise the paging tables and start virtual memory. Then, LISP-INITIAL-FUNCTIONIis
called. The initial function forms the base of the initial process. LISP-INITIAL-FUNCTIONinvokes
LISP-REINITIALIZE which is responsible for performing any initialisations that are applicable
*** boot-initialisations? ***. *** more here ***

2.5.1 Virtual Memory Start
This vopic will be covered in section on paging.

2.5.2 LISP Initial Fanction

LISP-INITIAL-FUNCTION is the first lisp function called in a newly booted machine. It forms the
the base function of the initial stack group. LISP-INITIAL-FUNCTION calls LISP-REINITIALIZE
to reset various variables and perform initializations. LISP-REINITIALIZE calls PRINT-HERALD
to indicate version information. “** blah blah blah ***

TI Internal Data

woye

3. Interrupt s

“Doén't interrupt!”. said Gandalf. “You will get there in a few days nou,
tf we're lucky. and find out all about it.”
J.R.R. Tolkein. from The Hobbit

This chapter describes interrupt handling on the Low Cost Lisp, and will be of particular
interest to those who require real-time response to hardware events. An interrupt handler must
written in microcode to service the interrupt. This chapter describes how interrupts are detected,
how the system data structures are used. and the programming constraints and conventions.

Interrupts are the lowest level of mechanisms in the Lisp Machine virtual architecture. An
interrupt, therefore. cannot rely on any higher level to perform its work. Hence, interrupts
are serviced by the lowest level of the implementation (microcode) without reference to virtual
memory}. garbage collected memory. or macro instructions.?

An interrupt is caused by an 1 'O device requesting service. interprocessor communica-
tionanother processor signalling an event. and by system bus and internal processor errors. In
order to simplify interaction between interrupts and higher levels. interrupts are not automati-
cally processed. but are polled at convenient times by higher levels of the implementation. When
an interrupt is noticed by polling. control transfers to an appropriate handler for the interrupt.

Interrupts communicate with higher levels of the system via shared memory in the form
of flags in internal processor memories and shared memory. The shared memory must not be
garbage collected and must wired® so that there is no chance that the garbage collector or page
fault handler can be invoked by the interrupt handler. Memory references made by interrupt
handlers must be to wired pages or to the physical address space.

A check for pending interrupts is made at most memory operations. especially instruction
fetch. Interrupts may also be checked at other times during internal processing, but usually
are not. As a result, interrupt response time, while usually within a few microseconds. has no
guaranteed maximum. *** it would be much nicer if there were, even a very long one like 20mS
*** Interrupt handlers must. therefore, handle the case that the response was too slow if it could
cause problems.

Interrupts are the primary means for external events to signal the Lisp system. Mostly,
interrupts set flags for higher level processing to notice or move data between the I/O device and
an 1/0 buffer in wired memory. However. certain time-critical processing may be best performed
as part of the interrupt handler.

3.1 Interrupts on the LCL Processor

The Low Cost Lisp processor has hardware to ease the detection and processing of interrupts.
Since the Explorer System system is NuBus based. most interrupts are events signaled over the
system bus by writing a word with the low order bit set into special locations in the control

1 Implementation Note: Virtual memory service is divided into two levels: map handling and
page handling. Map handling is regarded as VERY low level and permitted in the interrupt
context. Both levels are described together in the Virtual Memory Section.

2 Note: In Lisp Machine Lisp, the term “interrupt” is used to refer to a process switch. This
unfortunate choice of terms creates some confusion where asynchronous hardware event signalis
(which are conventionally called “interrupts”) must be discussed. In the microcode and in this
document, “interrupt” will be used to discuss hardware event signals and “sequence break” will
be used to discuss Lisp-level process switching.

3 See section on wired memory.

TI Internal Data

14

Interrupts

NU BUS Address Interrupt Priority Level
(Hex) (Decimal)
FsE0003C 15 (Lowest)
FsE00038 14
~- .- - .FsE00034 3
FsE00030 12
FsE0002C - 11
FsE00028 10
FsE00024 9
FsE00020 8
FsE0001C 7
FsEQ0018 6
FsE00014 5
FsE00010 4
FsE0000C 3 i
FsE00008 2 (Highest)
FsE00004 1 (Preemptive) Bootrequest
F sEpOOOO 0 (Preemptive) Powerfail

Fig. 8-1 LCL Control Space

space of the Low Cost Lisp processor. A map of the interrupt locations and the priority of each
is shown in Fig. $-1.

Interrupt pending is a condition testable individually and in combination with the page fault4
and sequence break’® conditions for jump and abbreviated jump microinstructions. Microcode
tests whether there is an interrupt pending when it is convenient by performing a conditional
call to the interrupt service routine if the interrupt pending condition is true.

The interrupt service routine will process all interrupts before returning to the caller. Inter-
rupts are. of course, processed from highest priority to lowest. Interrupt priority is linked to the
location in the control space of the processor as shown above in Fig. 3-1. The highest priority
level with an interrupt pending is indicated by a special field in the machine control register
(MCR) of the Low Cost Lisp. Since there are a moderately large number of interrupt levels,
many levels can be allocated to a single device. On any level with several devices, all devices

that could interrupt to that level must be polled._For each interrupt level there is a list of device .

descriptor blocks. showp jp Fig. 3-2. This figure shows the basic structure of the block and the

details required by the interrupt handler. Device descriptor blocks are described in more detail
in chapter DEVICE HANDLING (Steve, how do I do this reference).

The lists are anchored by the interrupt vector table. The interrupt vector table is indexed
by interrupt priority and contains a pointer to the interrupt descriptor block list for all the
devices on that interrupt vector or priority. The value sero (0) indicates the null link or empty
list. The interrupt vector table is shown in figure Fig. 3-3.

Once the highest priority interrupt level has been determined, the event request is cleared
by writing a word with the low order bit set to zero into the word of the processor control space
that coresponds to the interrupt level of the device. Interrupt levels 0 and 1 are dedicated to
Powerfail and Bootrequest respectively. These events are handled as aborts, i.e. the processor
traps directly to processing of the event. If either of these events are detected as polied interrupt

¢ See section on paging.
$ See section on multiprocessing.

T1 Iaternal Data

Interrupts

#eeemcmcccaecmccccccencccnacaccenasne +
O | Pointer to next DEVICE DESCRIPTOR |

R R R R R T Y ey p R *

1 | IDI Device Type !

L R T T T N *

T2 '

Device specific words
N i

Fig. 3-2 Device Descriptor Block

Interrupt Priority Level

o | Poverfail (empty slot) |

P S Boot Request (empty slot) |
e L L L R TX P Trpupup +

2 | Device Descriptor Block Address |
L -
| I
| |)
R R LR L T TR -

16 | Device Descriptor Block Address |
fremcacectccsmcc e st cma e s e e e c e e -

Fig. 3-8 Interrupt Vector Table

events then the processor failed to trap. The interrupt processor will consider this a hardware
fault and cause the machine to halt.

For interrupt levels 2 to 15 the interrupt service routine uses the highest priority interrupt
field of the MCR to index into the interrupt vector table. This yields the list of device descriptor
blocks for this interrupt level. The interrupt processor then traverses this list. For each block in
this list the interrupt type is extracted from word 1 and the specific handler for this interrupt
type is called. This interrupt type specific handler is responsible for determining if the device
pertaining to this device descriptor blockdescriptor block has requested interrupt processing,
and if so, performing that processing. When this interrupt handler returns, the next block in the
list is examined, etc., until the end of the list is reached.

When the end of the list has been reached the interrupt pending condition is tested. If no
interrupts are pending then the interrupt processing is complete and the interrupt service routine
returns to its caller. If an interrupt is pending then the entire process is repeated.®

¢ Note that this scheme can leave an interrupt pending in a polled level that was set by a device
after the pending interrupt was cleared (before polling the devices on that level in response to
an interrupt by some other device on that level), but before this device was polled. This device
will recieve service on the first scan of all devices but leave an interrupt pending. Thus, the
polling routine should not error if it finds no devices needing service when it polls in response to
a pending interrupt.

TI Internal Data

15

Interrupts

A-INTR-VNA saved VNA
A-INTR-ND saved ND

‘A-INTR-A saved N-A

A-INTR-B saved N-B
A-INTR-T saved N-T

N-FLAGS machine flags
N-DEV-A General interrupt use
N-DEV-B General interrupt use
N-DEV-C General interrupt use
N-DEV-D General interrupt use

Table 3-1 Registers Used by Interrupt Processing

Note: There should be some limit on this loop in case the interrupt status won’t clear. The limit
should be fairiy large (100) and cause an illop. This is so the machine doesn’t just go autistic.
Any service request flags in the device itself must also be reset by the device specific interrupt

bandler

3.2 Special Programming Conventions

YR

Since i interrupt processing is the lowest level in the system there are many restrictions on interrupt :

processing code. Those restrictions are called out here.

3.2.1 Register Usage

Interrupt processing must not clobber registers that are used by higher levels. It may only alter
the registers listed Table 3-1. Several M-memory registers are saved in these to allow the use of
some M registers by interrupt handlers. Because interrupt processing must touch memory. VMA
and MD must also be saved. The saved registers must be restored before resuming higher level
processing. Several M registers are defined for general use during interrupt and device handling
operations. The conventions and uses of these registers is defined by the interrupt handler and
the associated device handier. These registers will not be preserved between calls, and no higher
level routines can expect these regisiers to be preserved accross interrupt handling.

3.2.2 Memory Usage

Interrupt processing is below the level of virtual memory and therefore must not encounter a
‘page fault. To insure this, interrupt handlers are restricted to use only wired memory and 1/0
space in virtual address space and physical NuBus addresses. 1/0 space is a part of the virtual
address space that is not paged, but refers 1o blocks of physical memory used for 1/O. Currently
1/O space contains only the video (TV) buffer.

Interrupt handler accesses to virtual memory are restricted to wired pages and 1/0 space.
These accesses will never cause a reload from disk but may require a map reload. A flag in
the M-FLAGS register indicates that interrupt processing is in progress. Virtual memory swap
handling will check this flag to 2nforce this restriction. Interrupt handler accesses to virtual
memory should be checked with

CHECK-PAGE-READ-NO-INTEFRUPT
and

CHECK-PAGE-WRITE-¥0-INTERRUPT

TI Internal Data

Interrupts 17

3.2.3 Recursive Invocation

No interrupt may be recognized inside of an interrupt handler. although an interrupt handler
may test for another interrupt before exiting and also process that interrupt. There is. therefore,
no preemption in interrupt processing. This in not a serious problem since interrupt handlers do
little work and therefore complete i less time than the variability between polling for interrupts
in non-interTupt processing.

3.2.4 Higher Leve] Events

The handling of an interrupt is indivisible 1o any higher level. Interrupt processing. therefore.
must not invoke any higher level event such as page swap page fault or sequence break. though
a flag may set to indicate that the latter service is required at the next convenient time.

TI Internal Data

18 Interrupts

T1 Interaal Data

4. Device Handling

Don’t touch me there!
the Tubes

This chapter explains device handling in the Explorer System. It explains the handling of
the disk. keyboard. serial communications. ... The graphics display (TV) and the mouse are not
described here as they are handled specially to make the user interface more powerfull.

The device handling features and conventionson the Explorer System have been designed for
simple but flexible operation, with few restrictions, relating mostly 1o cooperation with system
device operations. i.e. virtual memory on the disk. Each device is assigned a device type which is
a small positive integer. Device type numbers are assigned at sysiem build time.} This chapter
is aimed at describing the specific operation and the internal structures used by many of the
devices in the system. First. the general scheme for handling 1 'O requests is presented. later
sections detail specific devices in the Explorer Systemsyvstem.

4.1 Device Decoding

Each device in the system that requires interrupt processing maintains a Device Descriptor
Block (see section on interrupts). This descriptor block contains all the information that the
system needs for processing requests and interrupts for this device. The Device Descriptor Block
maintains information about the device state. A separate structure, the Request Block (RQB) is
used to transfer request information. The first word in the Device Descriptor Block is used as a
link word for the interrupt decoder and points to the next device descriptor on the same interrupt
level. The second word is called the device information word. This word contains information
needed 10 determine what type of processing in needed when we want to initiate an I/O request
on the device and also what type of interrupt processing is required. The device type implicitly
specifies the number of device specific words required. The details of some specific devices follows.
The initiation and interrupt processors use the device specific portion of the block to maintain
information pertaining to the device and the outstanding requests. Therefore. every device in
the system that requires microcode handling must provide an entry point in the initiate dispatch
table and an entry point in the interrupt handler dispatch table. The entries are placed in the
tables according to device type.

To initiate an 1/O request the XI0 miscop is used. The parameters are the device descriptor
address and a request descriptor. There are two basic forms for the request descriptor. The first
form is as a fixnum. In this case the single word (the value of the fixnum) specifies the operation
being requested. The second form is as an array. The request block is an array (a block of
contiguous storage space). The specifics of the request block are defined by the device handler.
To initiate a request the device type is fetched from the Device Descriptor Block and the device
initiation handler is called for this device type. The device initiation handler is responsible for
servicing this request by either starting the device operation or placing the request in a queue
for later processing.

To make the best use of the peripheral resources on the machine we may like to be able to
queue requests for I/O and continue processing. In any case we would not want the processor to
just sit idle during I/0 requests, but rather run other processes that might be ready to run. To
be able to do this some devices maintain a list of outstanding requests, and when one request
has completed the interrupt handler automatically starts the next request. This requires that
the interrupt handlers for a device maintain the queue as part of its duties.

1 Devices that do not require interrupt handling need only to be known at the Lisp level. The
conventions here do not apply to devices that are operated entirely by Lisp. The Lisp code that
operates the device defines the interface and conventions for use.

TI Internal Data

20 Device Handling

e el R L L L L L R R prpup *
0| Link vord |
R DR etk T S, -

1 | information word | device type |
- P e N m s s e c e s st s e rmcamc e r e e e me ..o - -+
2! NUPI control space address I
P e e s ccccnacccm s e e s s e ccccacccancana +

3 | Control, device active bit map |
e c e c e c e a e ccc e e s e e cc s e m e .- +

4 Queue anchor for device 0 |
Rk D L T T N, +

5 | Queue anchor for device 1 |
Rt R L T T N +

| |

[|

Rt e T L T +

19 | Queue anchor for device 1§ |
$ e emesccccccccmcr et s c e cccc s e mana +

Fig. 4-1 NUPI Device Descriptor Block

The remainder of this chapter describes specific devices and their 10/Interrupt handlers.

4.2 The NuBus Peripheral Interfuce Board

The NuBus Peripheral Interface (NuP1I) is used for interface 1o disk and tape devices. The NuPI
receives operation requests by writing the physical NuBus address of a NuPI Command Block
to a special address in the NuPI address space designated as the Commmand Register. The
NuPI then processes this command asynchronously from the Low Cost Lisp processor. When
the request has been completed the NuPI stores the status of the operation back into the status
word of the request block and then, if specified in the request block. posts an event to the Low
Cost Lisp processor to signal completion of a command. By convention all requests to the NuPI
in this system will post the completion event. This event posting is fielded by the Low Cost Lisp
processor as an interrupt. The device interrupt handler is called to process the completion the
current request and initiate the next one if required.

Fig. 4-1 shows the format of the Device Descritor Block for the NUPL The Link Word
and Device Information Word are standard for all devices. The Control Space Word holds the
NuBus address of the control space of the NUPI board. This is needed to correspond with the
board. A NUPI may have several clisk or tapes units under its control. Each disk or tape unit is
connected to a formatter. which is a local controller. A formatter may have one or two devices
connected to it. Each device, formatter and the NuPI may havea request in process. The device
handler maintains & request queue for each device. The request at the front of the queue is being
processed. When a request comes to the front of the queue the Busy Bit is set to signify that the
request is in progress. When the request is completed the Busy Bit is reset and the Done Bit is
set. The request block is removed from the queue. If there are any other requests in the queue
at this time then processing is staried for them. The Unit Busy map indicates which units have
requests in process. This is used because when a request completes and an interrupt is signalled
we must check all devices with requests in process to find which ones have completed. The bit
map allows polling of only those units for which it is possible to need processing.

TT Internal Data

Device Handling 21

4.3 The Keyboard

When a keyboard interrupt occurs. the keyboard character is copied from the hardware register
into the keyboard buffer. The kevboard process will notice that a character is available and
handle it.

4.4 TV Vertical Retrace (interrupt)

An nterrupt occurs when the T'V begins the vertical retrace interval. At this time the mouse is
checked to see if it has moved or any of the buttons have changed state. Mouse bution changes
go into the mouse buttons buffer. If the mouse has moved. it 1s undrawn in its old position and
redrawn in its new position. The mouse process notices either mouse motion or mouse buttons.
This handler does the timer 100.

4.5 The RS232 Serial Port

write sumething here.

4.6 The Parallel Port

" LER 2

write something here

T1 Internal Data

22 Device Handling

T1 Internal Data

5. Virtual Mewory and Paging

Swap read error. You lose your rnind.
COOKY. a fortune cooky program

Virtual'memory is the simulation of a large fast primary store by the use of a fast but smaller
primary store and a large but slow secondary siore. Denning70. Blocks. called pages, are moved
Letween primary and secondary store according to a page management sirategy.

A page management strategy that moves a page into primary store when it is used but not
present in primary store is termed demand paging. Usually. a page being moved into primary
memory displaces some other page. The choice of the page to remove is made by applying the
page replacement policy. If the page chosen for replacement has been altered while in primary
store. it must be written to secondary store before it can be replaced. A page in primary store
that has been altered is called a dirty page.

Some pages are exempted from paging. These are termed wired pages. Wired pages are used
for interrupt handler buffers because interrupts cannot take a page fault, for pages containing
paging tables on which a page fault cannot be allowed. for pages involved in DMA transfers, and
other pages containing critical data which must be accessed without a page fauit or for which
the performance penalty for taking a page fault is too great.

In the Lisp Machine system, semiconductor memory is used as primary storage and disk is
used as secondary storage. Pages are moved into primary store when used and not present —
demand paging. Every attempt is made to replace a page which is not dirty so that a write to
secondary store is not needed.

A page exception occurs when for some reason the virtual to physical address mapping could
not be completed with a valid memory operation without microcode support. There are many
reasons for this as discussed below. Only one of those reasons requires access 1o secondary storage.
If a page is referenced and this reference cannot be completed without operations with secondary
storage. then a page fault has occured. This destinction is made so that page exception rates
and page fault rates can be put in perspective.

Below. the details of the Lisp Machine paging system are described. Paging is below
everything except interrupts in the Lisp Machine heirarchy. They are depended on by everything
except interrupts.

5.1 Physical Addresses

Memory is accessed by presenting it with a physical address. A physical address is a system-wide
name for some storage. The Explorer System is based on the NuBus. NuBus is a 32-bit, high-
speed bus. All NuBus addresses are byte addresses. Words are aligned so that the low order 2
bits are zero. The bus incorporates fair bus arbitration and supports block transfers of up to 16
words. NuBus also supports 8-bit and 16-bit accesses. The Low Cost Lispprocessor cannot be
a NuBus block transfer master. It can perform 8-bit and 16-bit memory accesses but not using
the memory map.

Memory and peripheral control registers reside within the same 32-bit address space. Not
all bus addresses will be accessible directly from Lisp (in the virtual address space). This is
necessary because the 25-bit virtual address is smaller than the 32-bit NuBus address space.

5.2 Virtual Addresses

An address in the Explorer System is the size of the pointer field, which is 25 bits. The vircual
address is divided into a virtual page number and a page offset. The virtual page number is

T1 Internal Data

24

Virtual Memory and Paging

the high order 17 bits of the virtual address. and the page offset is the low order 8 bits of the
virtual address. Thus. each page contains 28 words of storage.

The Low Cost Lisp has a simple memory map. 1:0 is not. by default, part of virtual memory.
but instead is accessed by special physical] O operations. The A-memory has a dedicated virtual
address, which is at the very top of the virtual address space, but consumes none of the physical
address space. ' :

The virtual page number is luoked up in the map to produce the page frame number. The
page frame number is concatenated with the page offset to make a physical address. This is
used to address the primary memory over the system (or other) bus.

The map also :produces other outputs for use by the processor: 2 access bits, 2 status bits. 6
meta bits (used to indicate various per-region attributes defined later), and 2 garbage collector
volatility bits.

5.8 LCL Memory Interface

""* fix this *** The LCL microprocessor has a standard NuBus interface. In addition. it contains
a special bus to “Local Memory™. This local memory also exists in the NuBus address space
but the LCL's own private bus to this memory reduces the NuBus traffic.

There are some special microcode accessible registers in the LCL that are associated with
memory. The Memory Address Register (called VMA. meaning Virtual Memory Address) holds
up to a 32-bit address. Addresses to the NuBus are 32 bits. Addresses to the Virtual Memory
subsystem are 25 bits. The Memory Data Register (ND) contains the data to be written to
memory. or the data that was read from memory. depending on the operation performed. These
are the two main physical registers.

There are several more “logical” registers in the LCL. All of these to be mentioned here
physically coincide with the VMA and MD regisiers mentioned above; but have some important
side effects. To start a memory operation the microcode programmer need only to reference the
appropriate logical register (as a destination). The registers are as follows:

1. VMA — store a 32-bit value in the memory address register. No other effects.
2. MD — store a 32-bit value in the memory data register. No other effects.

3. VMA-Siart-Read — store a $2-bit value in the memory address register and start a virtual
memory read operation using the least significant 25 bits as the virtual address. At the
completion of the operation the memory word referenced will be found in the MD register.
The virtual memory operations are discussed later.

4. VMA-Start-Write — store a 32-bit value in the memory address register and start a virual
memory write operation using the least significant 25 bits as the virtual address. The data
word to be written to memory is contained in the MD register.

5. MD-Start-Read — store a 32-bit value in the memory data register and start a virtual
memory read operation.

6. MD-Start-Write — store a 32-bit value in the memory data register and start a virtual
memory write operation.

7. VMA-Start-Read-Unmapped — store a 32-bit value in the memory address register and
start a physical NuBus read operation.

8. VMA-Start-Write-Unmapped — analogous.
9. MD-Start-Read-Unmapped — analogous.
10. MD-Start-Write-Unmapped —- analogous.

TI Internal Data

t
H

Virtual Memory and Paging

|ignored | virt page num ! offset |
Pomcmanca= $oecmcccccacacmen bormewe - +*

Fig. 3-1 VMA Register Format

11. also byte and halfword forms.

Please note that the concept of mapped and unmapped references. and the concept of local
and NuBus memory (address space) are independent. The virtual memory mapping includes
the entire 32-bit NuBus address space. The local memory bus is accessed from the LCL if the
address referenced falls in the NuBus address space assigned to local memory.

A Low Cost Lisp virtual address consists of 25 bits. The remaining 7 bits of a word are
used for type and control information. This additional information is not of consequence for this
discussion.

The symbol VMA is used to represent the Virtual Memory Address, a hardware register,
that is the address input register to the memory map system. The VMA register is 32 bits wide,

however, the virtual memory system is concerned with only the least significant 25 bits. The 25-

bit VMA is divided into a 17-bit virtual page number and 8 bits of word address within the page
(see Fig. 5.1.)

5.4 Physical Memory Map

The physical memory present in the machine can be divided into two areas with respect to its use.
A portion of memory is set aside for use by the microcode. Data in this space is said to reside
in physical memory. These data items do not reside in the virtual memory address space. The
rest of the local memory is used as a transient page area. i.e. the virtual memory system assigns
the pages of the virtual memory to physical locations as a part of its management functions.

If Lisp macrocode functions need access to the data items that reside in physical memory,
the microcode will provide Misc-Ops to return the data in a virtual memory system compatible
format.

5.5 Memory Map Hardware

To avoid the need for a very large mapping memory. or an associative memory. & two-level map
is used. The second. or main, level consists of 128 blocks of 32 registers each. The first level is
indexed by the high 12 bits of the virtual page number and specifies the block number in the
second level.. The remaining 5 bits of the virtual page number select a register within that block.

5.6 Virtwal Memory System Tables

There are some additional tables associated with paging: the Page Hash Table (PHT) contains
an entry for every virtual page that is memory resident. The physical page data table (PPD)
contains an entry for every physical page of memory. And the reverse first level map contains
an entry for every second level map block in the memory map. The exact data and function of
these tables will be described later.

8.7 Memory Map Data

When a page exception occurs the microcode can read the status of the memory operation from
the memory map hardware. The microcode reads the data from special registers in the machine.
The first level map is read from the functional source Memory-Map-Level-1 (see Fig. 5-2).

TI Internal Data

25

26

Virtual Memory and Paging

31 15 14 13 12 11 10 9 7 6 0

teemccanccccea L R L R L +
| Not used! M| F| W! Al VI 0] GC vola.| Level 2 index|
L Y LAl EEL L EE EEE YT T Rk TR g $ecesnccccccnna +
-last access mapped

last access forced

last access vrite fault

last access access fault

map entry valid

oldspace meta bit

Fig. 5-2 Memory-Map-Level-1 Register Format

Nemory Map Lovel 2 Control Bits

31 16 15 14 13 12 1110 © 8 7 665 0

romccaccaa- tPemmtmccpantbonane L temcnee tecmccccan +
| unused ITMLITNO| L| GC | F| R/W |Status| Meta Bits|
o mm- EE T 4empmcnae tmmcnca temccccncna +

TNL = last access TN1
TNO = last access TMO

L = last access locked
F = force alloved

Nemory Map Level 2 Address Bits
31 22 21 0

b mmccacac - L L T A g o=y

| Not used (0)| Physical Page Number I

L L N Lt L L R e *

Fig. 5-8 Virtual Memory Map Data Format

The second level map is read in the as two separate functional sources since the data field is
greater than 32 bits.! The field is separated into Memory-Map-Level-2-Control-Bits and Memory-
Map-Level-2-Address-Bits (see Fig. 5-3).

To handle a p‘pge exception a check must first be made to see if the first level map entry
addressed by V'MA is valid. A bit in the Memory-Map-Level-1 register indicates this. If the first
level map entry is not valid, a block of second level map must be allocated? and initialised with

“map not valid” entries. The firs; level map must be set up to point to it. From here the page
exception is hmdled as a second level map miss, described later.

If the first level map entry is valid then the data in the second level memory map control
register determines the action to be taken. The map status code is used to determine the
processing case.

The discussion below refers to data fields in the second level map control register.

On the LCL microprocessor, two flags from the map can be substituted into the resuli of
the byte extraction part of the DISPATCH instruction. The flags are the GC volatility fault fag

! The hardware documentatior numbers the bits 34 to 0 as well as describing them as func-
tional sources and destinations as they are described here.
2 See section on mapl2alloc.

TI Internal Data

Virtual Memory and Paging

Value Access Rights
0 no access
1 no access
2 read only
3 read ‘write

Table 5-1 Access Bits Values

Bit field Use
0-1 Not used.
2 Oldspace bit.
3 Extra PDL bit.
4-5 Region representation type.

Table 5-2 Meta Bits Values

Status Meaning Access Swapped-In?

J 0 Map Miss None maybe

1 Meta Bits Only . None maybe

2 Read Only R yes

3 Read/Write First R ves

4 Read/Write RW yes .

5 Page might be in None ves

PDL Buffer
6 Possible MAR Trap None ves
7 not used

Fig. 5-4 Memory Map Status Codes

and the oldspace bit from the level one map. This feature is used by the transporter and GC-
write-test dispatches (which are associated with garbage collection).

Bits 8 and 9 taken together are called the access bits. The values of the access bits are
shown in table Table 5-1.

The Meta Bits are defined in table Table 5-2.

Bits 6 - 8 (note that bit 8 is shared between the status and access fields) form the map
status code. The status bits are dispatched on by the page exception handler to find out how
to handle the exception. The possible map status values and their interpretations are shown in
Fig. 5-4. The access status specifies what memory operations. read. read/write, or none, are
permitted by the hardware. If access is permitted the memory sysiem performs the operation.
If access is denied then no memory operation is performed and the page fault condition is set.
Later sections detail the processing required for each case in the map status table.

5.8 Memory Map Status Codes ,

In this section each memory map status code is examined in detail for the possible causes of a
trap with this code and the appropriate actions for handling this case.

5.8.1 Map Miss: code 0

Any reference 10 a page with a Map Miss status code will cause a page exception. To handle the
map not valid case the following steps take place. Check to see if the page is in the A-memory
map space. If so. the operation is simulated. Otherwise, consult the page hash vable (PHT, see

T1 Internal Data

27

28

Virtual Memory and Paging

below) entry for this virtual address (o get information about the page. The action taken from
here depends on data in the PHT table.

The dara in the PHT will indicate if the page is in physical memory. The PHT contains
an entry for each virtual page that is resident in physical memory. If an entry is found in the
PHT for this virtual address then the information in that entry describes the status and location
in physical memory for this page. The memory map is set up with this data and the memory
reference is restarted

If there 1< no entry in the PHT for the virtual page referenced then this page is not in physical
memory. It must be brought in from secondary storage. The mapping of a virtual page to a disk
address. the physical memory page frames 10 be used. and the disk operations are refered 1o as
the swapping process. The details of this process are described later. For now. assume that the
virtual page is read from the disk into physical memory. the map is set up to refer 1o this physical
page frame and the memory reference is restarted. The details of the PHT are described in a
later section. ;

5.8.2 Meta-Bits-Only: Code 1

A page exception will be generated for any page that has a map status of Meta Bits Only. This
code indicates that this map entry contains meta bits information but does not contain page-
location information. This type of map entry is created when a pointer to an object is used but
the object itself is not referenced. The meta bits in such a map entry are needed by the garbage
collector. An attempt to access the storage associated with the object will be treated like a map
miss.

5.8.3 Read Only: Code 2

An attempt was made to write to page that is set to read only will cause a page exception. A
special case is made for a forced write operation. In this case the write occurs and no access fault
is declared. This is needed so that the garbage collector/compactor can move data structures
that ordinarily need protection.

If the operation is a regular write then the operation is declared illegal and an error is
signaled.

5.8.4 Read/Write First: Code 8

A page exception occurs if an attempt to write occurs. The processing for this exception consists
of changing the status in the map and the page hash table to read/write. indicating the contents
of the page has been modified. The reference is restarted. This facility implements the dirty
page status.

If the page that is being set us dirty is currently assigned to a read-only page band then it
will be reassigned to a read/write psge band when the page needs to be swapped out of physical
mermory.

5.8.5 Read/Write: Code ¢

No exception should occur on this type of page. If this status occurs the hardware is faulty und
a crash sequence will be initiated.

5.8.6 Page might be in PDL Buffer: Code 5

Certain areas which are used to contain PDLs arrange to get the map set up this status for their
pages (instead of 4, read 'write). The microcode has to decide, on every reference, whether the
page is in the PDL buffer or in main memory, and simulate the appropriate operation. It may
be that only part, or none. of the page is in the PDL buffer on a particular reference. Thus the
page exception handler must test the virtual address 1o see if it falls in the range which is really
in the PDL buffer right now. If not. temporarily turn on read/write access, make the reference,
and turn it off again. (Note: if the page is memory resident maybe physical addressing would

T1 Internal Data

BETTPSEN

Virtual Memory and Paging

Value Memory Operation Enables Action

0 Read MAR disabled No trap
1 Read Read Trap Trap
2 Read Write Trap No trap
3 Read Read-Write Trap Trap

U 2 Write MAR disabled No trap
5 Write Read Trap No trap
6 Write Write Trap Trap
T Write Read-Write Trap Trap

Table 5-8 MAR Status Codes

i Value Meaning
-1 Page is not available in virtual memory pool.
PHT Index Normal page. Value contains the index of

the page hash table entry for this page.

Table 5-4 Physical Page Data Area word format

be simpler.) Pages may be swapped out without regard for whether they are in the PDL or
not. This works because the normal course of swapping out invalidates the 2nd level map. If the
page is then referenced as memory, it will be swapped in normally and its map status restored
from the REGION-BITS table, in the normal fashion. This will then restore the Maybe-PDL map
status. Otherwise. the addressed word is in the PDL buffer. Translate the virtual address to 2
PDL buffer address and make the reference.

5.8.7 Possible MAR Trap: Code 6

The memory address register (MAR) facility allows any word or contiguous set of words to be
monitored constantly. and cause a trap if the words are referenced in a specified manner. The
name MAR is from the similar device on the ITS PDP-10's. The MAR trap status is set for
all pages that are in the range of addresses being monitored. When this trap occurs the virtual
address is checked to see if it falls in the range. If so. a sequence break occurs. It should be
noted that sequence breaks are not allowed during stack group switches. so if a MAR monitored
address is referenced a sequence break flag is set and the break will occur at the next appropriate
time. Two A memory locations are associated with the MAR break feature. The register A-NAR-
HIGH contains the highest virtual address to be monitored and the register A-NAR-LOV contains
the lowest monitored address. If the address falls within this range then a dispatch is executed
" on the variable N-FLAGS-MAR-DISP. The action taken for various flag word values is shown in
Table 5-3.

5.9 Physical Page Data Iable

The Physical Page Data Table is a physical memory resident table with one word for each page
of main memory. When the system is booted, the microcode determines the size of main memory
and allocates a suitable portion of physical memory for this table.

An entry for a page in Physical Page Data Table is shown in Table 5-4.

All the pages that are allocated to hold the microcode management tables are marked -1, to
indicate that these pages are not to be used in the virtual memory page pool.

The Physical Page Data is used to determine which virtual page is contained in a given
physical page. The microcode page aging and replacement algorithms are driven by a scan of
the Physical Page Data Table.

TI Internal Data

29

30

Virtual Memory and Paging

0 PDL Buffer 1023

e mm e cacccc e ccc e Yeeamana R R R T Y L L +*
| I I I

| valid top invalid base valid |

| ; I | !
e R i el R 4rmmcc - +

Fig. 5.5 PDL Buffer Wrap Around

5.10 Reverse Map Table

For each block of Second Level Map registers. there is an entry in the Reverse First Level
Map which gives the number of the Firsi Level Map entry which points to this block. or sise
indicates that this block is unused. It contains a vajue which, if placed in the VMA, would
address that first level map entry. or else it contains -1 to indicate that this block is not currently
pointed to. The Reverse First Level Map is held in A memory and is 128 words long.

The Reverse First Level Map information is used when allocating map level 2 blocks. See
Second Level Memory Map Block Allocation.

5.11 Second Level Memory Map Block Allocation

A simple clock scheme is used for allocation of second level memory map blocks. If a level 1 map
fault occurs the Reverse First Level Map is consulted to see if the level 2 map block is owned by
this level 1 block. If so the valid (V) bit is set and the memory reference is restarted. If not then
a new level 2 map block must be allocated to this level 1 entry.

To find a level 2 map block to allocate the Reverse First Level Map is scanned. If the value
is -1 then this level 2 map block is free and is allocated. If the value is not -1 then it contains the
address of the map level 1 entry which owns this level 2 map block. If the level 1 valid (V) bit of
this entry is not set then this block has not been used recently and is allocated to the new entry.
If the valid (V) is set then this entry is in use. The entry is aged by turning off the valid bit.
The scan continues at the next Reverse First Level Map entry. The scan will wrap-around if the
end of the table is encountered. Since the aging is done during the scan if the entire structure
is scanned and no level 2 map block is found then the scan merely continues and will choose the
next entry since it was aged during the last scan.

The map level 2 block is allocated by setting the index in the map level 1 entry and updating
the Reverse First Level Map to reflect the new aliocation.

5.12 PDL Buffer Handling
A-memory also contains the first virtual address which currently resides in the PDL buffer (in
A-PDL-BUFFER-VIRTUAL-ADDRESS), and the pdl buffer index corresponding to that address (in A-
PDL-BUFFER-HEAD). Note that the valid portion of the PDL buffer can wrap around. For instance
see Fig. 5.5,

When a page exception is taken for a page that might be in the PDL Buffer the microcode
handler must check to see if the virtual memory address falls in the valid portion of the PDL

buffer. The further processing of this case is explained under the map level 2 status code for
Maybe PDL Buffer.

5.13 Page Aging Process

The page aging process, which runs during the idle time while waiting for disk operations (o
complete. is used to determine which pages should be swapped out, so that a needed virtual page
can use this physical memory page frame.

TI Internal Data

Virtual Memory and Paging

Virtual Memory Size = 32M Words

Physical Memory Size PHT Size
512K Words.” 2048 pages 8192 words
IM Words. 4096 pages 16384 words
2M Words. 8192 pages 32768 words

Fig 3-i Page Hash Table Sizes

The page age process. refered 1o as the ager. scans the Physical Page Data Table during
disk operation idle time. For each physical page that is used by virtual memory management the
Virtual Page Data Table entry swap status is updated by the following algorithm:

1. If page status is normal then set status to age trap.
2. If page status is age trap then increment the page age by one. R
3. If page age is above a (settable) threshold then mark the page as flushable.

Note that marking the status of a page as flushable is not equivalent to commiting it to be
flushed. The actual flushing operation does not occur until a physical page frame is required.
This means that if a page is marked flushable but then referenced that no disk operations are
required. The status is returned to normal to reflect the fact that the page has been recently
referenced.

5.14 Virtual Page Management

This section discusses a technique for dealing with the management of virtual pages. The issues
involved are related to requirements for performance improvement and increased functionality
in the Explorer virtual memory system. The increased functionality includes the ability to map
the paging related backing store across different bands. perhaps on different physical units.

If there is a page exception and there is no entry in the Page Hash Table (PHT) then it is
a page fault. and needs to be read from disk. The disk address will be calculated from a page
address mapping scheme, to be described below.

5.14.0.1 Page Hash Table

The size of the page hash table is related to the size of physical memory. Since a hashing
technique is used to search the page hash table two entries are allocated for every physical page
in the system. Each entry is two words long. See Fig. 5-6 for sizes of the page hash table for
different memory sizes. The page hash table requires 1.86% of the physical memory.

The format of an entry in the Page Hash Table is show in Fig. 5-7.

The Virtual Page Number field is the hash key indicating the virtual page that this entry
describes. The field corresponds to the virtual address field in the VMA register for convenience.

The V bit field indicates that this entry is valid if it is set. If it is not set this entry is free
for use.

Bits 0-2 of word 1 comprise the Swap Status code and indicate the current state of the
virtual page. Refer to Table 5-5 for the values and interpretations of the swap status code field.

The AGE field is valid if the status field is Age Trap. lts value is an integer page age value.

The Map Level 2 Control field corresponds to the level 2 memory map data for the control
field in the map hardware.

The Map Level 2 Address field indicates the physical page number of this virtual page.

TI Internal Data

31

32 [lUirtual Memory and Paging

VWord 1
31 26 25 8786 43 0

Prwcmcnnae LR e L k k ey, tmdeccnacnce tremam- -

| | Virtual Page Number IVi Age [Statusl|

trmcccnan- L L LT trbemcnccan LT E -
Word 2
31 22 21 0

Fig. 5.7 Page Hash Table Entry Format

Free: 0- This virtual page is open for use. It has not yet
- been used.

Normal: 1- An ordinary page is swapped in here.

Flushable: 2- Means that there is a page here, but probably no
- one is using it, so the memory can be used to swap
- a new page into. This page may first have to be
- written out if the map status indicates that it has
- been modified since last written (map status code=4#).

Pre-page: 3- Treated the same as flushable, but means that the
- page came in via a pre-page. and has not yet been
- touched.

Age trap set: 4- This page was in normal status. but is now being
- considered for swap-out. The second-level map may
- not be set up for this page. If someone references
- the page, the swap status should be set back to
- “normal”.

- Wired down: 5- The page swapping routines may not re-use the

- memory occupied by this page for some other page.
- This is used for the permanently-wired pages in
- memory.

Not Used: 6-

Not Used: 7-

Table 5-5 Page Hash Table: Swap Status Codes

The Page Hash Table is searched using a hash technique. The virtual page number is the
hash key. Hash collisions are resolved by a linear rehash. with wrap-around if the end of the
table area is encountered. If during the hash search an entry is found with the V (valid) bit not

set then the entry being searched for is not in the table.

Initially the Page Hash Table contains a dummy entry for every physical page of memory.
The swap status code for this entry is set to O to indicate that this page is available for use. This
works because the page replacement algorithms use the Physical Page Data Table, which points

to the entries in the PHT.

§.1¢.1 Disk Page Mapping Scheme

This section describes the mechanism by which given a virtual page number we may find the

disk address assigned to it.

T1 Internal Data

Virtual Memory and Paging

Yord 1
31 29 28 24 23 21 20 16 15 (o]
tomena P] tenmae $eccmcan- R X R T L T -
| S-A |Device Al S-B |Device B| Device Assignment Bit Nap |
Rl AL LT EEE T tmmeaw oo Rl Rl R kel *
Word 2
31 16 15 0
R R R R teceeccacmracr e s s e e o +
; Device A Offset ! Device B Offset |
L el L L L LR R +

Fig. 5-8 Disk Page Mapping Table

Status O No device assigned.

Status I: Read only band.

Status 2: Read "Write band.

Status 2: Read /Write band assigned.

however. a disk block has
not yet been assigned.
Status 4 - 7: Unused.

Fig. 5-9 Device Status Codes

The scheme uses a Disk Page Map Table (DPMT) that is indexed by virtual page number
and gives information about the disk address. Because of the large number of virtual pages
it not practical to have a one-to-one correspondence between virtual pages and DPMT entries.
Therfore a cluster of sixteen pages share the mapping information. There is one entry in the
DPMT for each group of sixteen contiguous virtual pages. The DPMT will be indexed by the
most significant 13 bits of the virtual page number. Disk space is allocated in blocks of sixteen
pages. Each block corresponds to one physical page and is 1024 bytes (256 words).

Each entry of the DPMT specifies one or two paging bands. A bit map in the entry specifies
which of the two bands a particular page in the cluster is mapped into. The corresponding page
in the disk block. indexed by the low 4 bits of the virtual page number. is assigned to that virtual
page. The disk page corresponding to this virtual page on the page band not selected by the bit
map is reserved but not used. If the entry in the bit map is switched this page would then be
assigned to this disk page.

The format of a DPMT entry is shown in Fig. 5-8.

The fields S-A and S-B are the device assignment status fields for device A and device B
respectively. The values and for these fields are described in Fig. 5-9.

Device A and Device B are fields that indicate which “logical paging band” this cluster of
virtual pages may be assigned to. A table is kept describing the logical paging devices known
to the virtual memory system. This field is conceptually an index into a logical paging device
table. In this way we may have several paging bands on a single device or on several devices.

A virtual page operation would proceed as follows:

1. Using the most significant 13 bits of the virtual page number pick up the Disk Mapping
Table Entry for the cluster.

T1 Internal Data

33

34

Virtual Memory and Paging

(2]

31 87 0
i il R R TR R b AR R e L +
1| Reserved (Unused) IT| Unit Number |
Ll R el Ly LA EE TR T R TN -
2 | . DBand Starting Disk Block Number I
R iR -
3 | Band Ending Block Number + 1 I
e g g S -
4 | Next Free Block in Band |
i L D L L T T R U, +

Fig. 5-10 Logical Page Device Information Block .

- Consulting the bit map decide whether this page is assigned to device A or device B of this

cluster.

Using the device status field decide if a valid operation is being performed on this device. If
no valid operation can be performed call ILLOP (crash).

5.14.1.1 Page Swapping
This section describes the steps taken to resolve a page fault.

1.
2.

Determine how many pages should be swapped in on this operation. (See pre-paging)

Find memory page frames for the pages being read by scanning the PPD table. If a page is
dirty then it must be written to the swap partition.

Issue the read operation.

When a virtual page has never been dirty there will not be a read/write page band location

assigned. When a page becomes dirty a read/write page band location will be assigned to the
cluster if it has not already been assigned.

5.14.1.2 Logical Paging Devices

A logical paging device defines a contiguous set of pages on a secondary storage device. known
as a paging band. Information is maintained to define the characteristics of the paging band
asscociated with each logical paging device.

Referring to Fig. 5-10, the information maintained is as follows:

. Page device status information. The T bit field indicates the type of device. The values

are O for a read-only band, 1 for a read/write band. The unit number field indicates which
physical device this band is associated with. The remainder of this word is reserved for
future expansion.

. Starting block number of the page band. Indicates the block number of the first block that

may used in this page band.

End of page band. This word indicates the block number of the first block that is outside
of the band. (Perhaps this should point to the last block actually inside the band.)

. Current Allocation Pointer. This point indicates the block number of the next free disk

bloaek in this band.

A band is a contiguous set of disk blocks on an integral number of tracks. Each disk block

is 1024 bytes long. A disk can be partitioned into as many bands as desired, as long as the above
restrictions are met.

TI Internal Data

Virtual Memory and Paging

Disk blocks are allocated sequentially. Initially word 3 of the device information block is the
same as the starting block number. When a disk block allocation is requested word 3 is checked
to see that it less than word 2. the end of the page band. If the value is OK, it is returned
as the allocated block. Word 3 is then incremented reflecting the fact that this block has been
assigned.

TI Internal Data

3%

36 Virtual Memory and Paging

TI Internal Data

6. Internal Storage Formats

It takes all types.
truism. spouted by Phil Mueller

Hers the formats of the data objects in the Lisp Machine system will be described. This
agrees with SYS:QC'OM version = 595.

Lisp foliows a “single sized data™ convention. which states:

Any object can be represented in a fized size storage cell.

Since some objects require more storage than the fixed size. one of these objects is represented
as a pointer to a block of storage where its state is stored in memory. Objects that can be
represented completély in a storage cell are called INUM (for “immediate number”) types.
Other types are called pointer types. This pointer based organization yields very flexible data
structuring as will be explained as the structuring data types are explained.

6.1 Q Format .
The storage cell in the Lisp Machine is called a Q or quantum. The format of a Q is shown in
Fig. 6-1. Every LISP object as a Q.

A Q is also sometimes refered to as boxed storage. Words which are not in Q format are
refered to as unboxed storage. Unboxed storage can only be interpreted in some special context.
For example. the macroinstructions for a function are stored as part of a FEF structure.

The fields of a Q are the COR CODE. DATA TYPE. and POINTER fields. These are explained
below.

6.1.1 CDR Code

The CDR CODE field is a 2-bit field in the Q. If this Q is in a list structured region or in a structure
that is treated as a list (a stack list or ART-Q-LIST array),! this code indicates how the CDR of
this CONS is stored. In some other contexts these 2 bits are used for other specialized purposes.
The DATA TYPE and Pointer fields of this Q are for the CAR of the CONS. The encoding of the
CDR CODE is shown in Table 6-1.

CDR NORNAL means that the Q following this one contains the CDR. This is the two pointers
form of CONS used in most Lisps. COR ERROR means that it is an error to take the CDR of this

--

|
B
CDR CODE I
|
DATA TYPE -----
POINTER ~---===---<----<scsccssso=s=coes

Fig. 6-1 Q Format

I See section on areas or something.

T1 htﬁa] Data

38

Internal Storage Formats

CODE SYMBOL

0 CDR-NORNAL
1 CDR-ERROR
2 CDR-NIL

3 CDR-NEXT

Table 6-1 CDR Codes

location since this is the second half of a full (CDR MORMAL) node. CDR NIL means that the CDR
of this node is the symbol NIL: this is the end of an ordinary list. COR NEXT indicates that the
CDR is at thts address — 1.

The codes are set up this way so that a list of A elements can be stored in N consecutive
Q’s using CDR NEXT and CDR NIL. This results in high storage density. The functions APPEND
and LIST form these compact lists. CONS and friends as of now always create full nodes (CDR
NORNAL. CDR ERROR). Note that to RPLACA an element of a CDR NEXT list. you simply clobber the
contents of the location. but RPLACDing is more difficult. The LISP machine does this by using
the CAR-CDR Invisible pointer which is implemented as a DTP-HEADER-FORWARD (see below).
6.1.2 Data Type
The 5-bit DATA TYPE field determines the data type of the Q. The datatypes are shown below.
Note that some of the datatypes are useful mostly for their meaning in “function context”.?
6.1.2.1 Data type 0 - DTP-TRAP
Any attempt to reference this cell will cause a trap. This is mostly for error checking. Cannot
be “in the machine” .3
6.1.2.2 Data type 1 - DTP-NULL
This datacype is used for various things to mean “nothing”. For example, an unbound atom
has one of these as its value. The pointer field points back at the atom. for ease in debugging.
Cannot be “in the machine”.
6.1.2.3 Data type 2 - DTP-FREE
This cell is free unallocated storage. The pointer field of this word has its own virtual addrass.
The user should not see this. Cannot be “in the machine”.
6.1.2.4 Data type $ - DTP-SYNBOL
This is & non-numeric atom. The pointer points to a five Q “symbol header”. Allowed to be “in
the machine”.
6.1.2.5 Data type 4 - DTP-SYNBOL -HEADER
This is always the first word of a five word block, which is pointed to by a word of DTP-SYMBOL.
The header itself acts just like an array pointer (see below). Allowed to be “in the machine”.
6.1.3.6 Data type § - DTP-FIX

A FIXNUM (fixed point number). The pointer is not really a pointer; it is the actual value of
the number, so FIX numbers with the same value will always be EQ, unlike PDP-10 Maclisp. Of
course, allowed to be “in the machine”.

6.1.2.7 Data type 6 - DTP-EXTENDED-NUMBER

Any type of number other than a FIXnum or small flonum. It points to a DTP-HEADER word (see
below). Allowed to be “in the machine”.

% See section on funcalling.
3 See section on in the machine.

T1 Internal Data

Internal Storage Formats

6.1.2.8 Data type 7 - DTP-HEADER

This word is the beginning of a block of storage of some kind. The pointer field does not contain
an address: instead it has a HEADER-TYPE field which explains what purpose the header is serving.
Cannot be “in the machine™.

6.1.32.9 Data type 8 - DTP-CC-FORVARD

The forwarding address left behind the garbage collector. If this is the first word of an object in
old space, forwards the entire object to its new location in new space. The address that got to
this object is altered to point to the object’s new location (the GC-FORWARD is “snapped out”).
Cannot be “in the machine™.

6.1.2.10 Data type 9 - DTP-EXTERNAL-VALUE-CELL-POINTER

This is a kind of “invisible pointer”. It is used by the closure feature to point to external value
cells: it is also used for the “exit areas” of FEFs to point to the value and function cells of
symbols. See section on closure. Cannot be “in the machine”.

6.1.2.11 Data type 10 - DTP-ONE-Q-FORWARD

This is a simple kind of invisible pointer used to “invisiblize” a single cell of memory. Forwards
only the Q that it is in. not the whele structure. Can be used to “alias” a symbol’s value to that
of another symbol. Cannot be “in the machine”.

6.1.2.12 Data type 11 - DTP-HEADER-FORWARD

This word is the beginning of a block of storage which has been forwarded. The pointer field
points to the new location of the header.

6.1.2.13 Data type 12 - DTP-BODY-FORVARD

This word is a word in a block of storage which has been forwarded. The pointer field points
where the header used to be (which should now be a DTP-HEADER-FORWARD). To follow a BODY-
FORWARD. follow the header forwarding to reach the new location of the structure and access the
word at the same offset into that structure. Needed to forward an array that might have pointers
into its body (eg. ART-Q-LIST)

6.1.2.1¢ Data type 13 - DTP-LOCATIVE

This is a pointer to a single cell of memory, which is not “invisible” to anything. It is used
for many things; for example, pointers to bound cells on the “binding PDL". Both CAR and
CDR return the same thing, namely the contents of the cell pointed at. Allowed to be “in the
machine”.

6.1.2.15 Data type 14 - DTP-LIST

The pointer points to a cons cell. The format of storage of LISTs is explained above, under CDR
CODE. Allowed to be “in the machine”.

6.1.2.16 Data type 15 - DTP-U-ENTRY

This is an INUM type representing a microcoded function. The pointer field is actually an
index into the MICRO-CODE-ENTRY-AREA, this contains either a FIXNUM or a function. If it
is a fixnum, that number is an index into the NICRO-CODE-SYMBOL-AREA. The number found
there is the control store address of the microcode to run for this function. If the entry in the
NICRO-CODE-ENTRY-AREA is not a FIXNUM, then the current definition of this function is not
microcoded and this entry is the function to run instead. Allowed to be “in the machine”.

6.1.2.17 Data type 16 - DTP-FEF-POINTER

Points to a macro-compiled function. It points to a word of DTP-FEF-HEADER. which is the first
of a block of words at least 8 long. Allowed to be “in the machine”.

6.1.2.18 Data type 17 - DTP-ARRAY-POINTER

This is an array object. The pointer points to a word of DTP-ARRAY-HEADER which is followed by
the array storage. Allowed to be “in the machine”.

T1I Internal Data

39

40

Internal Storage Format,

€.1.2.19 Data type 18 - DTP-ARRAY-HEADER

This word is the header word of an array. It may be followed by some extra formatting infor-
mation, (if it is a long or multidimensional array) and then by the array storage. Before it rnay
optionally be an array leader. The pointer field does not actually contain an address, but rather
several fields of data describing the array. Cannot be “in the machine”.

6.1.2.20 Data type 19 - DTP-STACK-CROUP

This is a stack group. The word Just like an ARRAY-POINTER. it points to an array header of
array type ART-STACK-GROUP-HEAD. The format of a stack group is explained in section on
multiprocessing Allowed to be “in the machine™.

6.1.2.21 Data type 20 - DTP-CLOSURE

This is a closure. It points to a block of storage 2.V - 1 long, where N is the number of cells
closed over. For details see documentation of closures. Allowed to be “in the machine”.
6.1.2.22 Data type 21 - DTP-SNALL-FLONUN

A small floating point number. The pointer is not really a pointer; instead it is a 24 *** 257
not yet! *** bit_floating point number. There 1s a 7 bit excess-100 exponent (10-1° o 10+19,
approximately) and and a 17 bit 2's complement normalized mantissa (5 digits, approximately).
Allowed to be “in the machine”.

6.1.2.28 Data type 23 - DTP-SELECT-METHOD

Method table for a message handling functional object. These aren’t used much. *** No further
documentation. There needs 1o be. *** Allowed to be “in the machine”.’

6.1.2.2¢ Data type 28 - DTP-INSTANCE

A flavor instance. Points to a word of DTP-INSTANCE-HEADER. See section on flavors for more
information. Allowed to be “in the machine”.

6.1.2.25 Data type 24 - DTP-INSTANCE-HEADER

The header word of an INSTANCE. Fointed to by a DTP-INSTANCE. See section on flavors for mare
information. Cannot be “in the machine”.

6.1.2.26 Data type 25 - DTP-ENTITY

A closure with also binds SELF if it is called (similar to DTP-INSTANCE). This type is to be
considered obsolete. Use at your own risk. Allowed to be “in the machine™.

6.1.2.27 Data type 26 - DTP-STACK-CLOSURE

A funarg. Can only be stored shallower on the stack than where it is. If stored anywhere else,
must be copied out of the stack. *** More info is required on this ***

6.1.2.28 Data type 27 - DTP-SELF-REF-POINTER

Special form for referencing instance variables. Transporter notices and accesses self via seli-
mapping table or not. Also used to monitor variables. See Self Reference Pointer, below.
6.1.2.39 Data type 28 - DTP-CHARACTER

A character. Primarily for Common Lisp compatability (for now). Can be used in arithmetic
like a FIXNUM. *** does it have fields for font and “bits”? What is layout? ***

6.1.2.30 Data type 29 - DTP-FEF-HEADER

Header for a FEF. :

6.1.2.31 Data types 30 through 31

Data types 30 through 31 are unused. They are treated the same as DTP-TRAP. They are not
allowed to be “in the machine”.

TI Internal Data

Internal Storage Formats

CODE SYMBOL Meaning
0 Q-HEADER-TYPE-ERROR Bad header. not used
1 Q-HEADER-TYPE-UNUSED-1 not used

2 Q-HEADER-TYPE-ARRAY-LEADER
- The word before the leader of an
array (which is before the
DTP-ARRAY-HEADER word). Present
to help the garbage collector find
all the storage used by an array.
Q-HEADER- TYPE-UNUSED-3 not used
4 Q-HEADER-TYPE-FLONUN

(2]

Header word of floating point
extended number.

Q-HEADER- TYPE-CONPLEX

e

Header word of complex extended
number.

6 Q-HEADER-TYPE-BIGNUN
Header word of infinite precision
integer.

7 Q-HEADER-TYPE-RATIONAL-BIGNUN
Header word of ratio of two

BIGNUM's
Table 6-2 Header Type Codes

6.1.3 Pointer

POINTER (25 bits) - The use is determined by the datatype of the Q: Usually it points to some
other object in memory. Sometimes it just contains miscellaneous data as described for INUM
types above.

6.2 Structure Headers

A word of DTP-HEADER is the first word of a number of structure types. Other kinds of structures
have a special data type for their headers. When DTP-HEADER is used, the type of the structure
is indicated by the HEADER TYPE field. Header types are shown in Table 6-2.

6.3 Invisible Porwarding Pointers

Invisible forwarding pointer types provide data indirection. That is, whenever an invisible pointer
is read, the read is indirected along the invisible pointer. This is similar to indirect addressing
in other computers, except that the indirection is specified by the reading instruction, instead it
is specified by the data read. Thus if you take the CAR of a Q which contains an invisible pointer
as its CAR Q, you will really be given the CAR of what the pointer points to.

DTP-EVCP-FORVWARD and DTP-HEADER-FORWARD are invisible pointer data types. Other for-
warding types are similar, they are DTP-GC-FORWARD and DTP-BODY-FORVWARD. Even DTP-SELF-
REFERENCE-POINTER gives behavior similar to an invisible pointer. These perform additional
work beyond following the invisible pointer. Even though an SRP is an INUM type, when one
is used for a mapped or unmapped instance variable reference, it indirects the reference to an
instance variable, much as an invisible pointer.

6.4 Symbols

A symbol is stored as a Q of datatype DTP-SYNBOL whose pointer points to a five Q symbol
block. The five words are listed in Table 6-3.

T1 Internal Data

41

42

Internal Storage Formats

OFFSET CELL NAME

PRINT-NANE-CELL
VALUE-CELL
FUNCTION-CELL
PROPERTY-CELL
PACKAGE-CELL

Table 6-3 Qs of Symbol

&= O

The PRINT-NAME-CELL holds a word of DTP-SYNBOL-HEADER pointing to a STRING array
which is the PNAME for the symbol. (See ARRAY formats).

The VALUE-CELL holds the value of the symbol, and so can be of almost any data Lype.
Instead of containing a value, a symbol’s VALUE-CELL may be empty or unbound. If the symbol
is unbound, this cell contains DTP-NULL. Symbols may be used as dynamic variables; this use is
described in section on binding PDL below.

The FUNCTIOR-CELL holds the “functional property” of the symbol. If the symbol is called
as a function, the contents of this cell will be analyzed to determine what function to perform.
Instead of containing & value, a symbol’s FUNCTION-CELL may be empty, in which case in contains
DTP-NULL. See Functional Objects below.

The PROPERTY-CELL contains the property list. Nothing in the basic system requires that
symbols have properties. so this might be ¥IL. On the other hand. many subsystems and features
make heavy use of the property list. so it is likey to contain something.

The PACKAGE-CELL is used to point to the package to which the symbol belongs for interned
symbols: for uninterned symbols. the package cell contains NIL. The only architectural support
for packages is the package cell of symbols.

When a symbol is initially created, the value and function cells contain DTP-NULL. The
property cell is initially contains NIL, however. the loader and other parts of the system that
create symbols may place properties on them.

The functions PRINT-NAME-CELL-LOCATION, VALUE-CELL-LOCATION, etc., can be used to
obtain DTP-LOCATIVE pointers to these locations and the contents can, of course, be gotten by
taking the CAR of the pointers thus obtained.

6.5 Arrays

An array consists of a group of cells, each of which may contain an object. The individual cells
are selected by numerical subscripts. The rank of an array is the number of subscripts used to
refer to one of the elements of the array.* The rank may be any integer from sero to seven,
inclusive.

The lowest value for any subscript is sero; the highest value is a property of the array. Each
dimension has a sise, which is the lowest number which is too great to be used as a subscript.
For example, a one-dimensional array of five elements, the sise of the one and only dimension is
five, and the acceptable values of the subscript are sero. one, two, three, and four.

There are many types of arrays. Some types of arrays can hold Lisp objects of any type; the
other types of arrays can only hold fixnums or lonums. The array types are known by a set of
symbols whose names begin with “ART-" (for ARray Type).

Any array may have an array leader. An array leader is like a one-dimensional ART-Q array
which is attached to the main array. So an array which has a leader acts like two arrays joined

* The rank of an array is the number of dimensions it has.

TI Internal Data

Internal Storage Formats

a1 24 23 18 16 14 12 109 0

--

D L L L R T N R R L T R R Y

b I |
DTP-ARRAY-HDR | ! |
spare -------- ! |
ARRAY TYPE -------- |
spare -------e-e-seeceen |
HAS LEADER ------===cccua- |
DISPLACED =-==========nn=n== |
FLAG BIT ------ccccecocrcaceou-
NUMBER OF DINS -=---c-cccaccccc-cn
LONG LEN FLAG -----~c-cccccccccccancna" |
NANED STRUCTURE FLAG --c-ve==ccccmcmnc--

INDEX LENGTH ---==-c-ccwecccoacccccccccccrnccnnncanan

Fig. 6-2 Array Header Word

together. The leader can be stored into and examined by special accessors, different from those
used for the main array. The leader is always one-dimensional, and always can hold any kind of
Lisp object, regardless of the type or rank of the main part of the array.

An array object is represented as a DTP-ARRAY-POINTER. The pointer field must point to
an array header word. Every array has an array header word. An array header word is of
DTP-ARRAY-HEADER. It’s pointer field has the format shown in Fig. 6-2.

6.5.1 Has Leader

The array may optionally have an array leader which is formed of a number of words before the
array header. If the HAS LEADER bit is set in the array header word. there is a leader present.

If there is a leader, then the Q immediately before the header word is a FIXNUM Q holding
the number of array leader words. Then before that are the array leader words, which may
have any data type (since any object can be stored there). and before that is a word of data
type DTP-HEADER and header type Q-HEADER-TYPE-ARRAY-LEADER. The presence of this header
is necessary for such routines as the garbage collecter which scan through memory in the usual
direction. The storage layout of an array with leader is shown in Fig. 6-3.°

6.5.2 Displaced

An array may optionally be displaced, according to the DISPLACED bit in the header. If the
array is not displaced, then the data words follow thereafter (in a 1-dimensional non-displaced
array, the data follows immediately after the header). However, if the array is displaced, then
the word which would be the first data word is actually a pointer to the data cells.

Thus, a displaced array can be used to point at the beginning of an area® (this is done often,
in fact). Following the displacement word, in what would have been the sccond data cell, is the
length of the data in Q's for the array. This is used instead of the normal index length, since
that will be 2 to indicate the length of the displaced array.

If the array is displaced and the word which would be the pointer has data type DTP-ARRAY-
POINTER, then it points to another array header. This is called an indirect array. Call the array
pointed to, the indirected array. and the displaced array, the indirect array. Then the index

5 See section on areas.

TI Internal Data

43

44 Internal Storage Formats

DTP-
R ity AR LT EEEEE LT LR I
| HEADER | ARRAY-LEADER I
R bty I SRRt LT L !
| | | leader-n
[====e=nnna- R AL LR |
|esmmmmmaa- fo-ee- W mmesseecceaaaa !
I I | leader-1
e [===--- memessmeceone-- {
| I | leader-0
f===memmonan f=e=e-- messesesccceca- f
 FIX | n | leader-length
|====ecnenn- e G E R EEE L LR P LR |
| ARRAY-HDR | | array header
fommreeeaaa- R AL L L LR L LR i

array option vords

[===mrmmmma- R n T L L L I
!) - | first contents word

|===emceana-. R L L L L L LT s |
rest of array contents wvords

Fig. 6-3 Array with Leader

length of the indirect array appears to be min(z, y) where z is the index length of the indirected
array and y is the the second data word of the indirect array. Computing min prevents referencing
bevond the actual end of the indirected array. .

If the indirect array has a third element. then this array has an index-offset from the
indirected array. This means that whenever the indirected array.is referenced, it is as if that
array were referenced, but with an index n higher. The offset,n, is stored as a FIXNUM in what
would be the third data cell if the indirect array were not displaced. The offset is expressed in
elements (not Q’s), and is always 1 dimensional (it is added after all the dimensions have been
multiplied out). The resulting index is checked against the index length computed as above.

6.5.3 Number Of Dims

If the array has more than one dimension, then there is a block of number of dims—1 Q'S immedi-
ately after the array header holding the size of each dimension. Note that only number of dims—1
are needed because one can compute the total index length from the array header itself.

6.5.4 Loag Length Flag

If the index length of the array (number of data elements) is too big to fit in the field allocuted
for it in the array header Q, an extra Q is inserted between the header and the dimensions, which
has data type FIXNUM and contains the index length. The LONG LENGTH FLAG bit in the header
Q is on to indicate the presence of this extra Q. The long length Q is the word immediately after
the header word if it is present.

0.5.5 Named Flag

The NAMED STRUCTURE FLAG is 1 to indicate that this array is an instance of a NANED-STRUCTURE
(probably defined with DEFSTRUCT with the NANED-STRUCTURE option, etc). The structure name
is found in array leader element 1 if ARRAY LEADER is set, otherwise in array element 0.

Named structures may be viewed as implementing a sort of user defined data typing facility.
Certain system primitives. if handed a NANED-STRUCTURE, will obtain the name and obtain from

TI1 Internal Data

Internal Storage Formats

CODE TYPE CODE TYPE
0 ART-ERROR 10 ART-STACK-GROUP -HEAD
1 ART-1B 11 ART-SPECIAL-PDL
2 ART-2B 12 ART-HALF-FIX
3 ART-4B 13 ART-REG-PDL
4 ART-8B 14 ART-FLOAT
5 ART-16B 15 ART-FPS-FLOAT
6 ART-32B 16 ART-FAT-STRING
7 ART-Q 17 ART-COMPLEX-FLOAT
8 ART-Q-LIST 18 ART-COMPLEX
9 ART-STRING 19 ART-COMPLEX-FPS-FLOAT

Table 6-4 Array Types

* that a function to apply. ACTOR like, to perform the primitive. One can see that there is some
potential. ..
6.5.6 Index Length

The INDEX LENGTH of an array is the number of items which is the maximum value that the
index can take on in a one dimensional array. In a multidimensional array, it is the product of
the sizes of each of the dimensions. Note: If the INDEX LENGTH of an array is larger than will fit
in this field, it is stored in the next Q and the LONG LENGTH PLAG is set (see above).

6.5.7 Array Type

The array type indicates the type of the array. The array type indicates how the data should be
accessed and the type of data that may be stored in the array. The array types are summarized
in Table 6-{and explained below.

Note: the elements of arrays (those which are smaller than 32 bits) are stored right-to-left
(i.e.. the first element of an ART-4B array would be stored right-justified, including the least
significant bit).
6.5.7.1 ART-ERROR
This is not used and it is always an error to access an array of this type. This is mainly to insure
the robustness of the implementation. Bad array header words have a chance of having this as
their array type. '
6.5.7.2 ART-1B

~ This is an array of 1-bit numbers. Accessing this array type aiways returns either FIXNUM 0
or FIXNUM 1. Storing an even FIXNUM into this type of array sets the cell to 0, odd to 1. 32
cells are stored per word.

6.5.7.3 ART-2B

This is an array of 2-bit numbers. Accessing this array type always returns a FIXNUM from 0
to 3. Storing a FIXNUM into this type of array sets the cell to the least significant 2 bits of the
FIXNUM. ART-2B arrays are stored with 16 cells per word.

6.5.7.4 ART-4B

This is an array of 4-bit numbers, analogous to ART-2B arrays. ART-4B arrays are stored with
8 cells per word.

6.5.7.5 ART-8B

This is an array of 8-bit numbers, analogous to ART-2B arrays. ART-8B arrays are stored with
4 cells per word.

TI Internal Data

45

46

Internal Storage Formats

6.5.7.6 ART-16B

This is an array of 16-bit numbers. anajogous to ART-2B arrays. ART-16B arrays are stored
with 2 cells per word.

6.5.7.7 ART-32B

ART-32B arrays have 32 bits per element. Since fixnums only have 25 bits anyway. these are the
same as ART-Q arrays except that they only hold fixnums. They are not compatible with other
“bit” array types and generally should not be used.

6.5.7.8 ART-Q

This is the commonly used type of array. Each cell holds i Lisp object of any type.

6.5.7.9 ART-Q-LIST

This is similar to ART-Q in that its elements may any Lisp object. The difference is tha: the
ART-Q-LIST array doubles as a list: there is a miscellaneous instruction (G-L-P) which will
return the elements of the array in a list. Furthmore. the elements of the list and the cells of the
array share storage so that RPLAC A ing an element of the list will change the contents of the
coresponding array cell. Such lists cannot be RPLACD'ed: an attempt to RPLACD an element
of an ART-Q-LIST array will get a YRONG-REPRESENTATION-TYPE error.

6.5.7.10 ART-STRING

This array is a character string. This type acts similarly to the ART-8B. its elements must be
fixnums or characters, of which only the least significant eight bits are stored. However, many
important system functions treat ART-STRING arrays very differently from the other kinds of
arrays. These arrays are usually called strings. See also ART-FAT-STRING.

6.5.7.11 ART-STACK-GROUP-HEAD

Stored the same way as an ART-Q array. This is pointed at by DTP-STACK-GROUP. The
format of a stack group is explained in section on multiprocessing.

6.5.7.12 ART-SPECIAL-PDL

This is the array type used to implement the special binding stack (PDL). Stored the same way
as an ART-Q array.

6.5.7.13 ART-HALF-FIX

This is an array of signed 16-bit FIXNUM's. Two cells are stored per word. Note that this differs

from ART-16B in that the 16-bit numbers are sign extended to make FIXNUM’s when read.

6.5.7.14 ART-REG-PDL

This is the array type used to implement the regular (main) stack (PDL). Stored the same way
as an ART-Q array.

6.5.7.15 ART-FLOAT

This is an array of flonums. When storing into such an array the value (any kind of number)
will be converted to a flonum. The advantage of sioring flonums in an ART-FLOAT array rather
than an ART-Q array is that the numbers in an ART-FLOAT array are not true Lisp objects.
Instead the array remembers the numerical value, and when it is read. creates a flonum Lisp
object to hold the value.

Because the system does special storage management for extended numbers that are inier-
mediate results, the use of ART-FLOAT arrays can save a lot of work for the garbage collector
and hence greatly increase performance. ART-FLOAT arrays also provide a locality of reference
advantage over ART-Q arrays containing flonums. since the flonums are contained in the array
rather than being separate objects probably on different pages of memory.

T1 Internal Data

Internal Storage Formate

b 19, SELF-REF-RELOCATE-FLAG (#02301)
bit 1y SELF-REF-NAP-LEADER-FLAG (#02201)
bit 17: SELF-REF-NONITOR-FLAG (#02101)
bits 12-0: SELF-REF-INDEX (#00014)
bits 12-1: SELF-REF-WORD- INDEX (#00113)

DA Table 6-5 Self-Reference Pointer Fields

6.5.7.16 ART-FPS.-FLOAT

This is also an array of flonuwms. The inteenal format of this array is compatible with the PDP-
11/VAX single-precision floating-point format. The primary purpose of this array type is to
interfuce with the FFI'S array processor, which can transfer data directly in and out of such an
array.

6.5.7.17 ART-FAT-STRING

This is a character siring like ART-STRING. but with wider characters. containing 16 bits rather
than 8 bits, The extra bits are ignored by string operations, such as comparison. on these strings;
typically they hold fom information. Just as ART-STRING is similar 1o ART-8B, ART-FAT-
STRING is similar to ART-161.

6.5.7.18 ART-COMPLEX-FLOAT

This is an array whose elements are numbers whose real and imaginary parts are both floating
point numbers. If a non-floating-point number is stored into the array, its real and imaginary
parts are converted 1o floating point. This provides maximum advantage in garbage collection if
all the elements stored into the srray are numbers with floating point real and imaginary parts.

6.5.7.19 ART-COMPLEX

This is an array whose clements are arbitrary numnbers which may be complex numbers.® As
compared with an ordinary ART-Q array, ART-COMPLEX provides an advantage in garbage
collection similar to what ART-FLOAT provides for lloating point numbers.

6.5.7.20 ART-COMPLEX-FPS-FLOAT
*** combined ART-COMPLEX-FLOAT and ART-FPS-FLOAT ***

6.6 Self Reference Pointer Format

The format of a DTP-SELF-REF-POINTER is shown in Table 6-5. A SELF-REF-POINTER is
used for three different purposes depending on whether MAP-LEADER-FLAG or MONITOR-
FLAG is sct. If neither is set, an SRP is an invisible pointer to an instance variable in SELF.
If MAP-LEADER-FLAG is set, it is an invisible pointer to a slot of SELF-MAPPING-TABLE. If
MONITOR-FLAG is set. the SRP is an invisible pointer to the next location on read and causes
a trap on wrilc.

The RELOCATE-FLAG. when set, says Lo use the SELF-NAPPING-TABLE; this is the standard
case (about 75% of SRPs). The INDEX is the index into the mapping table, the contents of which
is an offset into the instance. The WORD-INDEX is the index in words; mapping tables are
ART-106B arrays. A SELF-REF-POINTER with this flag set is used to access most instance
variables. Unmapped instance variables are created by the :ORDERED-INSTANCE-VARIABLES
option to defflavor. and the index in this case is the offset directly into the instance.

The MAP-LEADER-FLAG, when set, says to read the contents of a slot in the array leader
of the seif-mapping-table. This flag is used only when fetching another mapping table during the
execution of a : COMBINED method built on composed flavors (about 25% of SRPs). The INDEX

is the index into the array leader.

¢ Other numeric arrays can only hold real numbers.

T1 Internal Data

47

48 Internal Storage Farmats

3t 29 25 24 17 16 0

LA R R L R T T T TN

I S
CDR Code

|
!
| |
DTP-Small-Flonum]
‘ |

Exponent -----------

Nantissa ----------cccccccacccnracnan..

Fig. 6-4 Small Flonum Format

The MONITOR-FLAG. when set. means that this self-reference-pointer is in fact a monitor
pointer. No monitor pointers seem (o appear within methods. A monitor pointer indirects to
the next (srp-location - 1) location on read and traps on write. '

SELF-REF-POINTERS arc created and manipulated within the code for flavors, mostly in
the mapping-table sections.

6.7 PDL Format

The stack in the LISP Machinc is stored in Main memory. with the top kept in the PDL BUFFER
of the processor. The PDL Buffer acis as a 1K cache which greatly speeds up almost all references
to the stack. The cache is maintained by microcode invisibly to the macro-code and all higher

Jevels,
The PDIL. buffer is “inside the machine” and therefore, is not allowed to contain illegal or
forwarding datatypes. lu always contains boxed (typed) data.

6.8 FEF Formats

When a function is macro-compiled, the macrocompiler produces a Function Entry Frame (FEF).
The FEF contains various things including random information about the function, symbols and
constants used in the function, and the macrocode itsell. See seetion on function calling.

6.9 Floating Point Formats

There are several floating point formats supported in the Lisp Machine. Small floating point
numbers arc an INUM type, that is the pointer ficld of the Q contains the value of the object
rather than s pointer to its value. Normal floating point numbers are represented as a pointer
type of DTP-EXTENDED-NUNBER pointing to a DTP-HEADER with header type HDR-TYPE-FLONUN.
The exponent is stored in the header word and the mantissa is stored in the header word and

the next word. A flonum has a storage length of 2.
The is also a three word internal representation of a flonum.

The format of a small flonum is shown in Fig. 6-4. This format has an 8-bit exponent and
a 17-biv mantissa.

A normal floating point number is represented as an object of DTP-EXTENDED-BUMBER point-
ing 1o 8 two-word structure as shown in Fig. 6-5.

The Flonum Header has the format shown in Fig. 6-6.

TI Internal Data

Internal Storage Formats

P L L L T R P T T E R R R
P L L L R R R R PR Y i Rl g

P L L L R R R P L R LR L

Fig. 6-5 Flonum Structure Format

31 29 26 24 23 19 18 8 7 0

g S S e e e E R L RS R L E R R L

]

CDR Code | |
| |
DTP-Header |
|

Header Type FLONUN -
Exponent =-------=-=---------c--
High Order Mantissa -----=------cc--cscc=s=m=o-=co-

Fig. 6-6 Flonum Header Format

The exponent is stored in excess-4000 (octal) form. The high order mantissa has the most
significant eight bits of a twos complement mantissa (sign bit is the MSB). This is concatenated
with the low order 24 bits of mantissa from the Flonum mantissa.

The Flonum Mantissa has the format shown in Fig. 6-7.

6.10 Bignum Format

A bignum is an extended precision integer. The storage length of a bignum is determined by the
size of the integer it represents. A bignum is represented as an object of DTP-Extended-Number
pointing to a structure. The format of the bignum structure is shown in Fig. 6-8. After the
bignum header, the integer is stored in successive words with the least significant word first.

The format of the bignum header is shown in Fig. 6-9.

The LENGTH field gives the length of the bignum in words; this is the length of the bignum
structure minus one.

Each word of the bignum has the format shown in Fig. 6-10.
The high order bit is always 0. The remaining bits are a section of the bits of the posi-

tive integer that is represented. Storing the high order bit as O allows for easy multiprecision
arithmetic since the hardware does not have carry save.

TI Internal Data

49

50 /Internal Storage Formats

31 20 25 24 23 0

| | I |
1. - | |
CDR NIL | | |
I | |
DTP-Fix - | iy
| |
Spare Bit ------ I
|

Lov Order Nantissa ---------cmeeu.

| Least Significant Word I

Fig. 6-8 Bignum Structure

6.11 Special PDL

The Special PDL? is used to hold saved bindings of special variables. The LISP machine uses
shallow-binding, so the current value of any symbol is always found in the symbol’s value cell.
When a symbol is bound, its previous value is saved on the Special PDL. and the new value is
placed in the value cell.

The Special PDL also serves some other functions. When a micro-to-macro call is made, the
“micro-PDL” of the machine is stored there (this is needed because the hardware micro-PDL is
of a small fixed size).

The Special PDL is block oriented. The biocks are delimited by setting the SPECPDL-BLOCK-
START-FLAG in the first binding made in a block. The data type of the top word (last pushed)
of a block determines what kind of block this is, as shown in Table 6-6.

SPECPDL-BOCK-START-FLAG and SPECPDL-CLOSURE-BINDING are stored in the CDR-Code
field of Q’s on the Special PDL. The CDR-Code is not otherwise used on the Special PDL.
SPECPDL-CLOSURE-BINDING indicates that this binding was made “before” entering the function
(ei. by closure binding, or by the binding of SELF for a method). SPECPDL-BLOCK-START-FLAG
is bit 31.

A normal binding block is stored as a pair of Q’s for each binding; the first Q is a locative
pointer to the bound location. and the second is the saved contents of the location. Note that

T also known as the linear binding PDL (LBP)

TI Internal Data

Internal Storage Formats

31 20 26 24 23 19 18 17 0

L I Rk R R A R Y I R P Y

L R R R N L L L R R R R P R R R PR R R R RN

Header Type BIGNUN ---

Sign Bit ~-------cccceocancan

..

Section of integer ----

Fig. 6-10 Flonum Mantissa Format

any location can be bound: usually these locations will be the value cells of symbols. but they
can also be array elements. etc. (only of arrays of type Q or LIST).

The SPC blocks are always pushed onto the Special PDL all at once. and so are never
“open”. However. the normal binding blocks are created one pair at a time. To keep track of
this. when a macrocompiled function is running, the “QBBFL” bit in the “PC status” flags is
turned on if a binding block has been opened on the Special PDL. This bit is saved during macro-
to-maero calls (see calling conventions) on the regular PDL in the exit state word (see section on
PDL formats). It is restored when returning to a call block. This assured that when a compiled
function is done, “QBBFL” will correctly reflect whether it has done any bindings that must
be popped off the Special PDL. If the bit is set all of the binding of the top-most block of the
Special PDL must be undone. If not on, it means that not even one pair has yet been pushed.

Micro-to-micro calls can also cause bindings, and in order to keep that straight, a bit on the
SPC is set to indicate that a block was bound. This is all very hairy; anyone who is very, very
interested is invited to read UCONS and/or LMI. *** figure out and explain this hair ***

The Special PDL is pointed to by the location 86-SPECIAL-PDL-POINTER in the stack group
and by A-QLBNDP when the stack group is executing on processor. There is an area devoted to
storing the Special PDL’s called LINEAR-BIND-PDL-AREA.

T1 Internal Data

51

52 Internal Storage Formats

DATATYPE USE
LOCATIVE The block is a normal binding block.
FIXNUN This is a block transferred from the

processor micro-stack (SPC). Each word
in the block should be a fixnum
containing the old contents of the SPC.
Only the active part of the stack

is transferred.

Table 6-6 Special PDL Block Type

6.12 CLOSURE Formats

Lisp Machine LISP. like MACLISP. uses shallow binding; each symbol contains a “ value cell”
which contains its current binding. For this discussion, the value cell of a symbol will be known
as the “internal value cell”. An advantage of shallow binding is that the time needed to access
the value of a symbol is a very small constant: only that of a single memory reference. When
a symbol is bound, a pointer to its internal value cell and its current binding are pushed on the
binding PDL.

Some implementations of LISP us deep binding, in which accessing a variable requires an
ASS0C, and takes time proportional to the number of bindings on the A-list. In Lisp Machine
LISP. we desired to keep the short, constant access time of shallow binding but still be able 10
deal with “funargs” where a binding environment is remembered with a function.

To acomplish this, we introduce a new data type, DTP-EXTERNAL-VALUE-CELL-POINTER.

This object is treated in the usual way by the BIND and UNBIND operations. but is treated as

an “invisible pointer” by SET and SYMEVAL. (SYMEVAL is the primitive function for accessing the

value of a symbol. and SET is the function for updating the value of a symbol). The word pointed

to by the DTP-EXTERNAL-VALUE-CELL-POINTERis called the “external value cell”. Thus, SET and

~ SYMEVAL operate on the external value cell, while BIND and UNBIND refer to the internal value
cell.

The function CLOSURE takes two arguments: the first argument is a list of symbols (the
symbols whose binding are to be saved). and the second is a function object (such as a lambda
expression. or a compiled-code object). First, CLOSURE CDR's down its first argument, assuring
that each of the symbols has an external value cell. Whenever it finds one which doesn’t, it
allocates a word from free storage, places the contents of the symbol’s internal value cell into
the word. and replaces the internal value cell with a DTP-EXTERNAL-VALUE-CELL-POINTER to
the word. Then, CLDSURE allocates a block of 2N + 1 words of storage, where N is the length
of CLOSURR’s first argument. In the first word of the block. CLOSURE stores its second argument.
Then for each symbol in its first argument, it stores a pointer to the internal value cell, and a
pointer to the external value cell. Finally, CLOSURE returns an object of datatype DTP-CLOSURE
which points at the block. This is the closure itself.

When a closure is invoked as a function, the first thing that happens is that the saved
environment is restored; that is, the current contents of the internal value cells of — are saved on
the binding PDL, and the DTP-EXTERNAL-VALUE-CELL-POINTER’s are restored from the closure.
Then. the function is invoked with the same arguments as were passed to the closure.

Here is another example, in which the closure feature is used to solve a problem presented
in “LAMBDA - The Ultimate Imperative” ;Steele 777.. The problem is to write a function called
GENERATE-SQRT-OF-GIVEN-EXTRA-TOLERANCE which is to take one argument. which is the factor

T1 Internal Data

Internal Storage Formats 53

by which the tolerance is Lo be increased. You are given a function SQRT which makes a free
reference to EPSILON. which is the tolerance it demands of the trial solution.

(DEFUN GENERATE-SQRT-OF-GIVEN-EXTRA-TOLERANCE (FACTOR)
(CLOSURE ° (FACTOR)
(FUNCTION
(LAMBDA (X)
((LAMBDA (EPSILON) (SQRT X))
(s EPSILON FACTOR))))))

TI Internal Data

54 Internal Storage Formats

T1 Internal Data

7. Storage Management

This doesn’t look ltke Wansas!
Dorothy in The Wizard of 02

This chapter explains Explorer Sysiemstorage management. This includes aress and regions.
Spaces and garbage collecion will be covered in the next chapter.

Storage allocation for Lisp objects and structures is implemented on top of a large uniform
address space provided by the Virtual Memory System (see section on virtual memory). The
collection of all Lisp objects is known as the Lisp Object Space. Storage Allocation and Garbage
Collection manage the mapping of Lisp Object Space to the virtual address space. Both storage
allocation and garbage collection are logically above the virtual memory system. The virtual
memory system does not understand and therefore can not assist in a meaningful way the
allocation of address space to Lisp objects.

The storage allocation system manages the address space by breaking it down in two levels
into smaller pieces. The first level breaks the address space into areas. An area is a collection
of regions. the second level of storage management. Areas are created by explicit commands.
Creation merely defines an abstract entity called an area. Actual allocation of the virtual address
space occurs when storage space is requested. The virtual address space is assigned to a region.
The region is then divided up into blocks as per storage allocation requests.

7.1 Areas

The logical address space is divided into areas. An area defines a set of attributes on the virtual
address space that it contains. While an area doesn’t really have any of the virtual address space -
assigned directly to it. it does contain 1 or more regions which do. An area is identified by its
area number. an integer between O and 253. The area number is used as an index into the area
descriptor tables. :

Five kinds of information about areas are kept in the Area Descriptor Table. The five word
entries contain this information:

Area Name: A symbol representing the name of the area.

Area Region List: The region number of the first region in this area.

Area Region Bits: The value for the Region Bits word in a region allocated in this area.
Area Region Size: The size of a region when a region is allocated in this area.

Area Maximum Size: The maximum size this area is allowed to occupy.

Actually, the Area Descriptor Table doesn’t exist. It is implemented as five separate tables
indexed by the area number, each table corresponding to one of the five words. This makes it
easy for the microcode to index into the table and makes the code fairly insensitive to changes
the entry sise.

The set of attributes that an area has is defined by the Area Region Bits word. When a new
region is created it inherits the attributes of the area to which it belongs. These attributes will
described in detail in section on section on regions.

Areas can be created by user commands. The area in which consing (storage allocation)
occurs can also be controlled from Lisp. A program may use this feature to allocate related items
in a contiguous portion of the virtual address space. This has the effect of increasing “locality
of reference” on these data items, which can improve virtual memory paging performance. Also
virtual memory paging can be controlled on an area basis.

TI Internal Data

56 Storage Management

The list of regions associated with an area is a linked list. The last element in the list is
the area number with the sign bu set. The free regions are also in a linked list. This is needed
because garbage collection frees a set of regions when it “Rips”, therefore the set of free regions
grows and shrinks dynamically.

7.2 Regions
A region is a block of contiguous virtyal address space. Each region has a set of properties, which

hold for all objects in that region. Each region is identified by a number from 0 to 2047. This
number is used as an index into the region descriptor table.

The Region Descriptor Table contains information about the properties of each region. Each
region has a 8 word entry in the table. Like the (Area Descripior Table). the (Region Descriptor
Table) is implemented as separate tables indexed by the region number. each table corresponds
to one of the words of an entry. The words of an entry are:

Region Origin: Starting virtual address of the region. -
Region Length: The total length of virtual address space allocated to this region in words.
Region Bits: Specifies the properties of this region. See Fig. 7-1.

Region Free Pointer: Offset into this region of the next free word to be allocated. The virtual
address of the next free word in this region is the region origin plus the region free
pointer.

Region GC Pointer: Offset into this region of the next object which needs to be scavanged. See
section on garbage collection.

Region List Thread: region number of the next region in the linked list.

Regions can store two types of data. The first type is List data. The second type is structure
data. A particular region can store only one type of data: thus each region has a representation

Lype.

The space type attribute defines the storage allocation scheme that is used. The encoding
of this field is shown in Table 7-1. *** more here *** :

The region bits word defines the properties of the region. The fields within the region bits
word are shown in Fig. 7-1.

7.3 Standard Areas

When a machine comes up after a cold boot there are about 30 areas allocated for used by the
system itself. The first dozen or so of these are wired down (not allowed to be swapped out
by the virtual memory system) because they are either referenced heavily by the microcode or
are referenced at or below the level of the virtual memory system. The system parameters file
(QCOM) specifies these areas their sizes. As described above an area is indentified by a unique
area number. The assignment of these area numbers for the standard areas is made by the
QCOM file.

The fixed areas each contain a single region. The Physical Page Data table and the Page
Hash Table are allocated enough virtual space to handle up to & 10 megaword physical memory.
However, the only enough physical memory is used as is needed for management of the actual
physical memory size. The physical memory originally allocated to these tables is returned to
the virtual memory page pool and the memory maps are rolled back to only refer to the actual
memory wired down.

The standard areas are as follows:

TI Internal Data

Storage Management 57

31 26 28 20 19 18 17 16 14 13 12 987 54 (o]

fom—e- fommmenca= pom———- 4eccpmc P P tommmnaen- +

| Res | Status | Rep | 0 i GCV | R | Type (S| Res |Swap Sizel

P deemmenae- - e tem—- o mpmmm P P L -
Res: Reserved. unused.
Status: Access and status bits (o be used in the level 2 memory map. See virtual meur
Rep: Representation type. 0 - list. 1 . structure, 2 and 3 are unused.
O: Oldspace meta hin. 0 old space or free. } = new space. static space or fixert -¢
GCV: © GC Volartility for this region.
R: Reserved. unused.
Type: Space Type.
S: Savenger Enable. Value: 1 = Savenger can touch this area.
Res: Reserved. unused.
Swap Size: Number of pages the Virtual Memory System should try to swap at a time

Fig. 7-1 Regions Bits Area Entry Description

Code Region Type

0 Free

1 oldspace region of dynamic area

2 permanent newspace region of dynamic area
3 temporary space level 1

4-8 temporary space level n - 2

9 static area

10 fixed. static, not growable. no consing
11 extra PDL for a stack group

12

13

14 copy space

Table 7-1 Space Type Codes

Resident Symbol Area (wired): contains the important symbols T and NIL.

System Communication Area (wired): This area conrains various groups of words used by 1/0
routines and systems utilities. See section section on SYSCOM.

Scratch Pad Init Area (wired, read only):
Micro Code Symbol Area (wired, read only): Contains the microcode entry points for the miscops.

Region Origin Area (wired): Contains the starting address of each region, indexed by region
number.

Region Length Area (wired): Contains the length of each region. indexed by region number.
Region Bits Area (wired): Contains the region bits information for each region, indexed by region

number.

T1 Internal Data

58

Storage Management

Region Free Pointer Area (wired): Contains the free pointer for each region. index by region
number.

Device Descriptor Area (wired): Contains device descriptors for the 1/0 system.
Disk Page Map Area (wired): Contains the Disk Page Map Table for the Virtual Memory System.
Page Table Area (wired): Contains the Page Hash Table for the Virtual Memory System.

Physical Page Data Area (wired): Contains the Phy sical Page Data Table for the Virutal Memory
System.

Address Space Map Area (wired): Contains the Address Space Map for Storage Allocation and
the Virtual Memory System.

Region GC Pointer Area (fixed): Contains the GC pointer for each region. indexed by region
number.

Region List Thread Area (fixed): Contains the list thread for each region indexed by region
number.

Area Name Area (fixed): Contains the name of each area, indexed by area number.

Area Region List Area (fixed): Contains the first region number in each area, indexed by area
number. :

Area Region Bits Area (fixed):

Area Region Size Area (fixed):

Ar?a Maximum Size (fixed):

Support Entry Vector (fixed. read only): Contains Lisp functions which are callable by microcode.

Constants Area (fixed. read only): Contains some constants. references to which are generated
by the compiler.

Extra PDL Area (fixed): Number consing area.
Microcode Entry Area (fixed):

Microcode Entry Name Area (fixed):

Microcode Entry Args Info Area (fixed):
Microcde Entry Max P.DL Usage (fixed):
Microcode Entry Arglist Area (fixed):

Microcode Symbol Name Area (fixed, read only):
Linear PDL Area (fixed):

Linear Bind PDL Area (fixed):

Init List Area (fixed, read only):

TI Internal Data

Storage Management

(octal)
Addresses 400 - 437: miscellaneous words
Addresses 440 - 477: Not currently assigned

in Explorer
Addresses 500 - 511: Kevboard Buffer Header
Addresses 600 - 637: Disk Error Log
Addresses 700 - 777: Not currently assigned
in Explorer

Fig. 7-2 Map of Systems Communication Area

Working Storage Area: Default {general purpose) consing area.
~ Permanent Storage Area:

Property List Area:

Print Name String Area:

Control Tables Area:

OBT Tails Area:

Non-Resident Symbol Area:

Macro Compiled Program Area (static. read only):

PDL Area:

FASL Table Area:

FASL Temp Area:

7.4 Systems Communication Area

The Systems Communication Area contains miscellaneous words that are needed to be basic,
i.e.. not rely on the rest of the machine operating. The Systems Communication Area 1s wired
and at the fixed address of 400 (octal).

See figure Fig. 7-2.
The miscellaneous words (400 - 437) are:

1. Area Origin Pointer: virtual address of the Area Origin Area. which lists the starting virtual
address of all fixed areas.

. Valid Size

. Page Table Pointer: virtual address of the Page Hash Table.
Page Table Size

Object Array Pointer

Ether Free List

Ether Transmit List

® N owoa N

Ether Receive List

TI Internal Data

59

60

Storage Management

9. Band Format
10. GC Generation Number

11. Unibus Interrupt List: list of interrupt descriptors for simple bufferred devices. This list is
searched when a interrupt occurs and there is not special handler register to handle it.

12. Temporary

13. Free Area Number List
14. Free Region Number Lisi
15. Memory Size

16. Wired Size

17. Chaos Free List

18. Chaos Transmit List

19. Chaos Receive List

20. Debugger Requests

21. Debugger Keep Alive
22. Debugger Data 1

23. Debugger Data 2

24. Major Version

23. Desired Microcode Version
26. Highest Virtual Address

7.5 Address Space Map Area

The Address Space Map Area contains the address space map. This table is indexed by the
virtual address quantum and indicates the region number of the virtual address. If the region
number in the address space map is zero. then either the virtual address has not been alloated
to a region or the virtual address belongs to a fixed area. When a zero is found in the address
space map the fixed areas are searched to determine which area contains the virtual address. The
region number is then determined from the area number. since for fixed areas the region number
and area number are the same.

7.6 Extra PDL Area

The Extra PDL Area, or number consing area, is used to reduce the garbage generated when
evaluating arithmetic expressions. All bignums and flonums are first consed in the Extra PDL
Area. Pointers into the Extra PDL Area are only allowed “in the machine”. Before a pointer is
written into main memory, a check is made to see if the pointer points into the Extra PDL Area.
If the pointer being written points into the Extra PDL Area, then the object is copied out of the
Extra PDL Area into the default consing area and a pointer to the copy is written.

When the Extra PDL Area is full, all of the pointers in the machine are checked to see if they
point into the Extra PDL Area. If a pointer into the Extra PDL Area is found, then the object
is copied out of the Extra PDL Area into the default consing area and the pointer is replaced
by a pointer to the copy. When there are no more pointers in the machine that point into the
Extra PDL Area, then the Extra PDL Area contains only garbage. The address space is then
reclaimed by setting the free pointer for each region in the Extra PDL Area to zero. (Currently
there is exactly one region in the Extra PDL Area.)

TI Internal Data

Storage Management

7.7 Linear PDL Area

The Linear PDL Area contains the Linear PDL (Push Down List i.e.. stack) for each process.
The Linear PDL (usually just called PDL) is the run vime stack for the process. The currently
executing process will have the top part of its PDL cached in the PDL Buffer.

Any memory reference to this area results in a page fault (*** right terminology? ***) so
that the virtual memory system can check if the target of the memory reference is really in the
PDL Buffer.

7.8 Special PDL Area

The Special PDL Area contains the Special or Binding PDL for each process. The Binding PDL
contains the variable binding information for the process.

7.9 Working Storage Area

The Working Storage Area is the default cons area. that is most objects created by the user are
created in this area.

7.10 Macro Compiled Program Area
The Macro Compiled Program Area is where all compiled functions are loaded. {This includes
methods which are a special kind of function.)

In addition, any constant objects, such as lists are aiso loaded into this area. This causes
naive users to get mysterious error messages about trying to write in a read-only area, when they
try to do destructive operations (such as RPLACA) on constant objects.

7.11 CONS _
=== explain how cons finds a region in the area and makes an allocation there

LR

TI Internal Data

61

62 Storage Management

TI Internal Data

8. Garbage Collection

¥** something from Oscar on Sesame St. """
Oscar on Sesame St.

This chapter explains how the Lisp system recovers sturage that is no longer in use. The
collection algorithm used is based on the famous Baker algorithm.!

8.1 In the Machine

An important concept that is needed to explain how the garbage collector works is the concept
of *in the machine”. The universe of places to store Lisp objects includes virtual memory, the
PDL buffer. and processor registers. It is very helpful for efficiency reasons to divide these places
into those that are “inside the machine” and those that are not. Certain values that are “active”
may not be stored “inside the machine™. Since there are no active values inside the machine,
tests for active values are not needed to access data inside the machine.

Clearly. this efficiency is important for certain machine registers and (maybe less clearly)
for the PDL buffer. These places are declared to be inside the machine. The certain registers
include the lettered and numbered regisiers (eg. M-A. and M-1) and *** which other registers

LR R]

In order to assure that “active values” are not stored inside the machine, two things are
required. First. there must be a rule that no “active value” is ever generated and stored inside
the machine. The second requirement is that there must be a “barrier” to protect against reading.
an “active value” into the machine. This barrier is implemented as the transporter.

Many of the data types are not allowed “inside the machine”. These include the illegal data
types (DTP-TRAP and DTP-NULL), the header data types (DTP-HEADER. DTP-SYMBOL-
HEADER. DTP-ARRAY-HEADER, DTP-FEF-HEADER, and DTP-INSTANCE-HEADER),
the forwarding types (DTP-ONE-Q-FORWARD.DTP-GC-FORWARD. DTP-HEADER-FORWARD J§
DTP-BODY-FORWARD. and DTP-EXTERNAL-VALUE-CELL-POINTER) and some special
types (DTP-SELF-REFERENCE-POINTER). In addition to data types not allowed inside the
machine, pointer type objects that point to oldspace are also not allowed inside the machine.

Attempts to read something into the machine that is not allowed cause some action to take
place. The specific action depends on the type of the object. In any case. the prohibited object
is not allowed to pass into the machine.

8.2 The Read Barrier

The read barrier is implemented by the transporter. The transporter consists of a test for active
values and routines to take the appropriate action when an “active value” is encountered. The
decision on whether the value is an “active value” is made based on the data type of the Lisp
object read from memory and the OLDSPACE property of the region that the object points to, if
it is a pointer type object.

8.3 The Write Barrier

The write barrier is implemented by GC Write Test. Mainly it detects writing of pointers to the
extra PDL. Every Lisp object written is tested with GC write test.

! See :Baker78! for a description of this algorithm.

TI Internal Data

64

Garbage Colleetion

8.4 Incremental GC

Should be familiar with Baker's paper. Also reference Hewitt's paper. Need to understand the
basics of storage allocation, previous chapter.

The goal of incremental GC is to perform garbage collection without any long and embar-
rassing pauses. Instead, some garbage collection is done whenever storage is consed. During
collection. storage that is being collected is divided in old space and other spaces thai wil be
discussed below. Old space is dynamically allocated storage that is in the process of being purged
of garbage. The goal of this garbage collection cycle is to copy everything useful out of old space
and to reclaim the storage used by old space. :

Of course, if every object is copied out of oldspace, every useful object will be preserved and
when oldspace is reclaimed. there will be no net savings. The goal is to copy only the useful
objects out of old space. It is important 1o guarantee that there is no useful object remaining in
oldspace when it is reclaimed. The scavenging algorithm assures this.

New space is where new objects are allocated. Nothing in new space is allowed to refer to
old space. Objects that are copied from old space are moved to copy space. The remaining
type of space is static space. Static space contains objects that are intended to remain forever.
Garbage collections does not reclaim space in static space.

8.4.1 Scavenging

Scavenging is the operation of “cleaning” the other spaces of references to old space. Words are
examined and if & pointer to old space is found, the object is copied out of oldspace into copy
space. When none of the other spaces contain pointers into old space, there are no more useful
objects remaining in old space and it may be reclaimed. -

Notice that new space contains no pointers to old space so there is no need to scavenge it.
Static space must be scavenged.

Scavenging starts at the beginning of copy space and scans each word: if a word refers to
an object in old space. it is copied to the end of copy space. The storage before the scavenge
pointer cannot refer to old space since it has already been scavenged and no pointer to old space
is allowed to be stored to modify any structure (the tranporter does not allow it). When the
scavenge pointer reaches the end of copy space. copy space does not contain any pointers to old
space.

Static space is likewise scavenged, with the copied objects moved to copy space. When all
of both static and copy spaces have been completely scavenged. no pointers to old space exist
and it may be reclaimed.

8.4.2 Shared Objects

There is a problem with. this scheme when an object is refered to by several pointers. After
garbage collection, the copied object must still be shared in the same way the original in old
space was. The scheme outlined above would make several copies of the object, defeating the
sharing.

In order to preserve sharing, when an object is copied out of old space, it is replaced with
DTP-GC-FORWARD which refers to its new location in copy space. Before copying an object, a
check is first made for a GC forwarding pointer. If the object is forwarded, it is not recopied,
instead a pointer to its new location is returned.

DTP-GC-FORWARD is not valid except in old space. In other spaces it is an ILLOP to read a
DTP-GC-FORWARD.

TI Internal Data

Garbage Collection

8.4.3 Transporting

When the transporter traps due to reading a reference 1o old space. the object is immediately
copied Lo copy space (unless it has already been copied as described above). This means that
objects that are “in the machine™ may not point to old space. It is not possible therefore to store
a pointer to old space since it must first be read into the machine and transported.?

8.4.4 Areas

The description above is incomplete as it does not take into account the division of the address
space into Areas. Every object is in some region that is part of some area. Each region has
either the old. new. copy or static space property. Every area that has one or more old space
regions has one or more copy space regions. New allocation in an area goes into a new space
region.

When an object is copied from old space to copy space. the copy occurs between two regions
in the same area. Garbage collection does not change in which area an object is stored.

8.4.5 Flipping

The remaining phase of incremental GC that has not been discussed is flipping. At the latest
moment when GC can begin. a flip occurs and all new space and copy space regions are
redesignated old space and the copy process is started again. Just before the flip occurs all
pointers in the machine are written to memory. After the flip occurs the machine is reloaded
from memory. Of course. all pointers into old space are transported, so that the machine never
contains pointers to old space.

8.5 Ignore
When garbage collection begins, all regions are marked as either old space or static space.

Garbage collection then proceeds to copy useful data out of regions designated as old space”

into regions designated as copy space. This copying action is known as transporting. All new
storage allocation is done in regions designated as new space.

The transporter does not copy an object from one area into another area. That is, objects
in an old space region are copied to a copy space region in the same area.

Transporting occurs whenever a pointer into old space is read into the machine. Thus, all
of the pointers in the machine point to either copy space or new space. Since all of the pointers
written into new space come from in the machine. new space can not contain any pointers into
old space.

When objects are copied by the transporter. just the top level of the object is copied. Thus,
objects in copy space may contain pointers into old space. The scavenger goes through all
of copy space looking for pointers into old space. When the scavenger finds a pointer into
old space it copies it into copy space using the transporter. The rate at which the scavenger
scavenges copy space is proportional to the CONS rate. When all of the copy space has been
scavenaged then there are no more pointers to old space, i.e., there 1s no useful information in
old space and old space can now be reused.

At some point (when?) a flip occurs and all new space and copy space regions are designated
old space *** this is a lie *** and the copy process is started again. Just before the flip occurs
all pointers in the machine are written to memory. After the flip occurs the machine is reloaded
from memory. Of course, all pointers into old space are transported, so that the machine never
contains pointers to old space.

==* Previous attempt. ***

2 Actually can be done with YMAKE-POINTER and a fixnum for the pointer argument. Be
extremely careful when using %YNAKE-POINTER.

TI Internal Data

65

66

Garbage Collection

Garbage collection is perforined by copying useful data to another place in memory. This
occurs on a per area basis. i.e.. each area ha< it's own regions 1o which useful data items are
copied. These regions are designated as copy space. When storage is allocated in an area it js
allocated in a region designated as new space. Whenever a reference is made to storage that is
not in new space or copy space it must be copied into copy space. This copying action is known
as transporting. :

Objects that have been transported may also contain references to old space within them.
All of the data items in old space that are referenced must be transported to copy space before
a garbage collection pass may be deemed complete. However, all these references can not be
copied at the time the first object is transported as this would require enormous computational
power and this method of garbage collection would degenerate into a stop and collect scheme
rather than the incremental scherne described here.

Instead. a process known as scavenging scans all copy space regions at a CONS related speed,
that is. scavenging occurs at a rate related to the rate at which storage is allocated. When
scavenging is complete no references to old space exist. This means that no references exist to
any items contained in old space. i.e.. this space is garbage and may be used over.

When the scavenger has compieted a pass storage is reclaimed by a process know as flipping.
Flipping means that all old space regions are marked free and all new space and copy space
regions are now marked as old space. Now the transport/scavenge process starts over.

T1 Internal Data

9. Function Calling

You never call me
the Judys

This chapter explains Lisp functions and how they are called in Explorer System. There are
many kinds of Lisp functions . ..

9.1 Functional Objects

There are many kinds of functions in Lisp Machine Lisp. Here each of them is described. Note
that these functional objects are also Lisp data objects that can be passed as an argument,
returned. or stored in a variable or a data structure (eg. a list or an array). These Lisp data
objects are are special because they ran be meaningfully applied to arguments. that is, used as
functions.

When a list of the form (symbol args . . .) 1s evaluated. EVAL louks at the contents of symbol’s
FUNCTION-CELL 10 decide how to evaluate the function. The way EVAL uses the contents of the
FUNCTION CELL is called the interpretation of the datum in functional context. When a symbol
is used as the destination of a CALL instruction!, or the first argument to APPLY, its PUNCTION
CELL is likewise examined and the contents considered in functional context. .

Functional objects can be grouped into four categories by how they work. The four categories
are summarized below.

First are interpreted functions: you define them with DEFUN or LAMBDA. they are represented
as list structure and interpreted by the Lisp evaluator, EVAL. :

Secondly, there are compiled functions: they are defined by CONPILE or by loading an XFASL
file. represented by a special Lisp data type. and executed directly by the microcode. Similar to
compiled functions are microcode functions. which are written in microcode (either by hand or
by a micro-compiler) and executed directly by the hardware.

Thirdly, there are various types of Lisp objects that can be applied to arguments. but which
when applied find some other function and apply it instead. These include select-methods.
closures. instances. and entities.

Finally. there are various types of Lisp objects that, when used as functions. do something
special related to the specific data type. These include arrays and stack-groups.

Here is what some of the data types mean in functional context.

9.1.1 DTP-LIST Functions

The evaluation of lists as functions should be handled by the interpreter. Usually the list is 2
lambda expression. It can also be a macro expression. If a list is encountered in a call from a
compiled function (eg. EVAL), the microcode calls out to the macrocoded interpreter which it
finds via the support vector.?

9.1.2 DTP-SYMBOL Functions

When & symbol is encountered in a functional context, the contents of the FUNCTION-CELL of
the specified symbol is used as the function: The contents of the symbol's FUNCTION-CELL is
fetched and the function interpretation mechanism is reinvoked (tail recursively) to interpret this
object in a functional context.

1 See section on macroinstructions.
2 See section on support vector.

T1 Internal Data

68

Function Calling

9.1.3 DTP-FEF-POINTER Functions

This function is macro-compiled. so use the Function Entry Frame (FEF) pointed to. Microcode
interprets FEF's. This is the kind of function most often encountered. Most of this chapter
addresses the interpreting of FEF's.

9.1.4 DTP-U-ENTRY Functions

This function is in microcode. either from hand coding or the microcode compiler. A routine in
microcode is called for this function.

The pointer field is an index into the microcode entry arca. If the microcode entry urea
contains a fixnum at that entry. it is the index into the microcode symbol area for this microcode
function. That entry in the microcode symbol area contains the address of the first microinstruc-
tion of the microcode function. If the selected entry in the microcode entry area is not a fixnum,
the function is not a currently installed microcode function. and the entry is the functional object
to use instead.

9.1.5 DTP-ARRAY-POINTER Functions

This function is an array. This is not really a function call. but is an array reference. The
arguments to the array are the indices and the value is the contents of the element of the array.
Array referencing is handled by the microcode, so there is no “code” associated with an array. The
feature is for Maclisp compatibility and is not recommended usage. Use of AREF is recommended
instead.

9.1.6 Funcallable Hash Arrays

If an array (DTP-ARRAY-POINTER) is called that is a named structure and has a leader, leader
0 i' BRENES

9.1.7 DTP-STACEK-GROUP Punctions

Stack groups can be used as functions. The actual action taken when a stack group is called
depends on the state of the called stack group and is described below. Stack groups accept one
argument. If the stack group called is resumed, the argument is transmitted. The calling stack
group is placed in a resumable state. When it is resumed (not necessarily by the stack group it
called) the object transmitted by that resumption will be returned as the value of the function
call. Calling is one of the simple ways to resume a stack group.3

9.1.8 DTP-INSTANCE Functions

An instance is a message receiving object that has both state and a table of message-handling
functions. called methods. When an instance is called. the method for the message is located in
the method table by examining the first argument. The instance variables are bound and the
selected method is applied to the arguments.*

9.1.9 DTP-CLOSURE Functions

A closure is a kind of function that contains another function and a set of special variable
bindings. When the closure is applied, it puts the bindings into effect and then applies the other
function. When that returns, the closure bindings are removed.?

9.1.10 DTP-ENTITY Fanctions

This obsolete data type acts just like a closure. but also binds SELF like an instance.

9.1.11 DTP-STACK-CLOSURE Fanctions

Almost just like DTP-CLOSURE. **** what goes here ****

9.1.12 DTP-LOCATIVE FPunctions

Treated like a list. i.e., invoke the interpreter to deal with it. *** not likely to win ***

3 For more on stack groups. resumption. and transmitied values see section on multiprocessing.
4 See section on instance.
5 See section on closure.

TI Internal Data

Funection Calling

numerically
| Possible additional | <-- lovest address
| information |
|scecceccccnmacccannn- |
| CALL state |
! e emcocemerer oo we=e=--- ,
i EXIT state I

I FUNCTION object | <-- Argument pointer

feeeememmemccccceonnn- | (AP)
l args I

|

!
..................... '

local block | <-- Local peinter

i | (LocalP)
| |
|emmmeencrccccnmnnnnna- I
| intermediate |
| result stack | <-- Stack peinter
! | (PP)

Fig. 9-1 Call Block Layout

9.2 PDL Layout
For each function call. a CALL BLOCK is stored on the PDL. The format of a call block is shown
in Fig. 9-1.

The “possible additional information” (ADI) is used by certain complex types of calls such
as multiple-value calls which need to convey more information. (See ADI. below.)

The first four words contain various information used by the microcode which performs calls
to and returns from functions. The arguments appear when instructions with destinations D-PDL
and D-LAST are executed. When the block is activated. space is reserved for that block’s local
variables (i.e.. PROG and DO variables).

9.2.1 Function Calling

Each CALL instruction creates a new open block. An open block consists of 3 state words, the
function object, and an incomplete set of arguments (initially none). Call builds the state words
and function object on the stack as described below.

The CALL instruction computes the CALL state word by computing the delta to the active
block, the delta to the open block, and the destination code and packing these fields into the
CALL state word. The delta (offset) to the ACTIVE block at the time of the CALL (i.e., the
function which called it) is in the low 8 bits. This is used to restore the argument pointer when
leaving the function. The delta to the previous OPEN block (just the previous block on the
stack) is in the next 8 bits. And its DESTINATION field is in another 4-bit field, so that when
the called function returns. its result can be stored in the correct place. '

The CALL instruction also reserves two words for the EXIT and ENTRY state words, and
then pushes the FUNCTION object. which is typically a FEF pointer (DTP-FEF-POINTER,
that is) when a macro-compiled function is being called.

TI Internal Data

69

70 Function Calling

it e R Y g g S

i T S

SELF-NAP-PROVIDED ---~=---
TRAP-ON-EXIT ===-=c-ncemeuace-
ADI-PRESENT -=-=-=eceecmeecanaono.
DESTINATION =----==-scewecmmmuaccanann
DELTA-TO-OPEN-BLOCK ---n=====cme=meaccoomo--
DELTA-TO-ACTIVE-BLOCK -===--====m=coemcacoccacanaanan

Fig. 9.2 CALL State Bits

When something is stored in destination D-LAST, the currently active block is ezited (process-
ing leaves i) and the current open call block (the last block pushed) is activated. The currently
active block’s PC is siored in the current block’s EXIT state word as the return address, and
the PC is set to the starting address of the new function.® Also stored in the EXIT state word
is the BINDS-PUT-0N-BINDING-PDL bit.’

Then the new block is entered. and in the low 8 bits of the new call block’s ENTRY word,
the relative location of the LOCAL BLOCK is stored. Also, in the next 8 bits of the ENTRY
word is stored the number of args supplied to the new function. :

When something is siored in destination D-RETURN, execution is finished in the current block
and the value is to be returned as the value of this block. The microcode follows the pointer
stored in the dying block’s CALL state word to find its way back to the previous active call
block. and then restores the PC from that block’s EXIT state word where it was saved at exit
time. The dying block is popped off the PDL and the value is sent to the destination saved in
the CALL state word.

The stack and macro-instruction set are set up so that a function refers to its arguments
relative to AP rather than SP. Thus. a function of five arguments refers to its second argument by
2(AP) instead of -3(SP). If fact. all functions refer to their second argument by 2(AP) regardless
of the total number of arguments the function takes.

There are also some other useful bits among the CALL state, EXIT state, and ENTRY state
words. which are not necessarily related to calling, exiting, or entering; they were basically put
wherever they fit. Here are the exact formats of the words:

9.2.1.1 CALL State
The CALL state word (%%LP-CLS-) is shown in Fig. 9-2.
DELTA-TO-ACTIVE-BLOCK is the distance back to the previous active block on the PDL.

The previous active block is the one that was active when this one was called. Because the size
of any block on the PDL is limited to 256 words, this distance fits in the 8-bit field provided.

DELTA-TO-OPEN-BLOCK is the distance back to the previous open block on the PDL.
For the same reason as above, this distance also fits in the 8-bit field provided. This field is used

¢ See section on FEF format.
7 See section on binding PDL format.

T1 Internal Data

Function Calling

| 7 | 8 [U I 15

| | I | |

DTP-FIX ----- | | | |

unused ------c-c-c-ceco- ! i [

| [i

MICRO-STACK-SAVED -----<~veccna- | |

BINDING-BLOCK-PUSHED -=--~ccccccwan- f
EXIT-PC or RETURN-MICRO-PC ------cemecccecccceen

Fig. 9-8 EXIT State Word

to restore the pointer to the innermost open call block when this function is returned from. It is
also used when looking for CATCH'es or UNWIND-PROTECT's.

DESTINATION holds a code indicating where 1o store the value that will be returned. This
is the same as the 2-bit DESTINATION field of the CALL macroinstruction that built the CALL
block. An additional code D-NICRO is used by some calls originated by microcode to indicate
that the value is to be returned to microcode. '

ADI-PRESENT if set indicates that there is additional information (ADI) present. ADI is
used for multiple-value calls, Lexpr/Fexpr calls, and certain other unusual calls. The normal
CALL instruction never sets this bit.

TRAP-ON-EXIT if set will cause an error before popping the frame. This is used by
which *** debugging tools.

SELF-MAP-PROVIDED the function (presumed to be a method} does not need to compute
the SELF-MAPPING-TABLE because the caller has done so. This is set by the 4SET-SELF-
NAPPING-TABLE instruction.

9.2.1.2 EXIT State

This is information stored when this frame compietes a call. It saves state needed to restore its
siate on return. The EXIT state word (% %LP-EXS-) is shown in Fig. 9-3.

EXIT-PC (15 bits) is saved whenever another block is activated while this is the active block.
The EXIT-PC is in halfwords and is relative to the beginning of the FEF.

EXIT - PC = LC - (2 x FEF)
The same field is used instead for RETURN-MICRO-PC if this block is for microcode. Only
the low 14 bits of the field are used for RETURN-MICRO-PC.

BINDING-BLOCK-PUSHED is used to save the QBBFL bit in N~FLAGS. QBBFL is set if the
block does any binding. Just before returning, QBBFL is checked and if set, the bindings recorded
in the top block of the special PDL are undone. '

MICRO-STACK-SAVED is set if a microstack frame has been pushed onto the special PDL.

9.2.1.3 ENTRY State
This is stored when the frame is entered (activated). The ENTRY state word (%%LP-ENS-) is
shown in Fig. 9-4.

LCTYP is a 1-bit field. This is 1 for a lexpr/fexpr function call.

TI Internal Data

s _

71

72

Function Calling

LCTYP ------occmccmmnnnn..
UNSAFE-REST-ARG ----===mneuucs
ENVIRONNENT-POINTER-POINTS-HERE --
NUN-ARGS-SUPPLIED (6) -~---=-w=n=scou--

NACRO-LOCAL-BLOCK-ORIGIN (8) ====-c--couua-

Fig. 9-4 Entry State Word

UNSAFE-REST-ARG is a flag indicating that this frame has a rest arg living on the stack.
If tail recursion is attempted on & frame with this flag set. the frame will not be flushed from the
PDL.

ENVIRONMENT-POINTER-POINTS-HERE *** what does this mean? ***

NUM-ARGS-SUPPLIED is a 6-bit field indicating the number of args passed to this frame.
It is set on function entry. *** do not know that this is actually used by anyone after it is set up
**% think that this number may be different than the number of arguments received by the
function due Lo receiving some arguments as &REST or &OPTIONAL. *** *** might this be used
by the error handler? *== ’

MACRO-LOCAL-BLOCK-ORIGIN is the distance from the argument pointer (AP) to the
beginning of the local block. The locals pointer (LOCALP) can bé computed from MACRO-
LOCAL-BLOCK-ORIGIN by

LOCALP = AP - MACRO - LOCAL - BLOCK - ORIGIN

9.2.2 Argument Passing

One of the things which must be kept handy is the manner in which the function interprets its
arguments.

Function entry for compiled functions supports the complex argument specification sup-
ported by Lisp Machine Lisp. There are provisions for storing very complex specifications, such
as whether each arg is REQUIRED, OPTIONAL, or REST, whether it is SPECIAL or LOCAL,
etc. However, for simple functions a great deal of efficiency would be lost if such a general and
complex format were always used. The solution to the problem is that three forms of description
are present in a FEF. .

9.3 FEY Layout

When a function is macro-compiled, the macrocompiler produces a Function Entry Frame (FEF).
The FEF contains various things including random information about the function, symbols and
constants used in the function. and the macrocode itself.®

® It may prove hard to understand the macrocode instruction set without first understanding
the FEF format. and vice-versa: they are very closely related. It is assumed that the reader has
read the section on macroinstructions and is at least somewhat familiar with the workings of the
Low Cost Lisp.

T1 Internal Data

Funcetion Calling

31 30 20 26 24 23 22 21 20 18 17 14 13 109 o]
D R e T P ey g g g g S +
I € | DTP | 8§ | N | Type | Opt Args | Args | Locals | Eatry PC |
L D R i e o R R Lk F S iR R IR +
ce CDR (ode. unused.
DTP Data Type. DTP-FEF-HEADER.
< Special Variable Bind Flag

{r ienns no specials 10 bind
! means specials to bind.
M Get Self Mapping Table

0 means no self mapping
1 means ger self mapping table.

Type Call type. 0: No Locals. 1: Some Locals,
2: Rest Arg (with or without other locals),
3: Long or Complex Call.

Opt Args Number of optional arguments.

Args Number of required arguments.

Locals Number of locals. .
Entry PC entry PC in words.

Fig. 9-5 FEF Header Fields

9.3.1 FEF Header
The FEF begins with a word of DTP-FEF-HEADER. the format of which is shown in Fig. 9-5.

9.3.2 FEF Storage Length

The second word of the FEF is the storage length of the FEF. It is a.FIXNL'M which indicates
the number of Q's occupied by the FEF. This is used for garbage collection and other system
primitives that require the length of a structure.

9.5.8 FEF Name

The third word of the FEF is the function name. This is used for debugging. It is usually a
symbol. but may be a list such as (:METHOD FLAVOR :OPERATION).

9.3.4 Numeric Argument Descriptor

The fourth word of the FEF is the FAST-ARG-OPT word, the format of which is shown in Fig.
9-6. This word contains the numeric argument descriptor.

9.3.5 Special Variable Bit Map

The fifth word of the FEF is the SV-BITNAP word. The Special Variable Bit Map word contains
one bit telling whether it is active, and also (if it is indeed active) 22 bits of bit map. If there
are special variables bound by this function, but the word is not active, it is either because (1)
there are more than 22 arguments+local vars, or (2) There is a ZREST arg and so it is not clear
how much room will be allocated on the stack for args, and therefore not clear where the local
variables will end up. Therefore in this case, the information on whether various args and locals
are special must be obtained from the ADL.

If the Special Variable Bit Map word IS active, it is interpreted by considering it as a bit
map, in which the most significant bit corresponds to the first variable. etc. *** This is semi-
inconsistant with usual convention. but probably not worth changing. *** If the bit for a pdl-siot
is set, then that pdl-siot corresponds to a special variable.

TI Internasl Data

73

74

Function Calling

31 2026 24 23 22 21 20 19 18 17 12 11 65 0

B g g S +
ICCID'I'PlTypOIQIEIHIIlBlLocnllllellinl
LR D L L R T i K -
ccC CDR Code, unused.
DTP Data Type. DTP-FIX.
Type Call type, 0. No Locals. 1: Some Locals,

2: Rest Arg (with or without other locals).
3: Complex Call.
Quoted Rest, has a quoted rest arg
Evaled Rest, has an evaluated rest arg
Complex Quoting, must use ADL
Interpreted, no information available
Complex binding, must use ADL
Locals Number of Locals
Max Maximum Number of required plus optional
args. not including the rest arg
Min Minimum number of required args. not
including the rest arg

Fig. 9-¢ FEF Fast Argument Option Fields

W_.xmo

3T 29 25 24 23 22 15 14 76 0

Fig. 9-7 FEF Misc Word

9.3.6 FEF Miscellaneous

The sixth word of the FEF is the MISC word. It contains miscellaneous flags and values related
to the function. The sixth word has three fields as shown in Fig. 9-7. Locals is the size of the
local block (number of locals). When the function is activated. this many words will be reserved
on the PDL for local variables. ADL pos is the location of the ADL relative to the start of the
FEF. ADL len is the length of the ADL in entries. i.e.. the number of variables described. (Each
entry may have one. two or three words.) See section on Arg Descriptor List.

9.3.7 Special Value Cell Pointers

The seventh word of the FEF is the SPECIAL-VALUE-CELL-PNTRS word. This contains a list of
pointers to value cells of the special variables indicated in the SV-BITMAP. If the SV-BITMAP is
not active, this Q is irrelevant and contains NIL.

9.3.8 Optional FET Header Words

After the first seven words comes the variable FEF header. Each word in the variable FEF
header is optional depending on some bit in the fixed header area above.

The MAPPING-TABLE-FLAVOR word is present if FEFH-GET-SELF-MAPPING-TABLE is set. The
mapping table flavor is stored in the Q just before the ADL. This Q should contain a symbol.

The ADL is present unless FEFH-N0-ADL is set.® The ADL is at the offset stored in the Misc
word.

? See section on Arg Descriptor List.

T1 Internal Data

Funetion Calling

After this come the symbols and constants used by the code. The most common entry in
this section is an invisible pointer 1o the value or function rell of a symbol. DTP-External-Value-
Cell-Pointer is used for this type of invisible pointer. This scheme gives access to the current
value or function definition of the symbol. Constants are also stored in this part of the FEF.
Quoted symbols. numbers and constant valued lists are likely to be found here.

The word before the first word containing instructions holds the DEBUGGING - INFO list. This is
an ALIST containing information such as the names of local variables that is useful for debugging.

Last. the macroinstruections for the function are stored starting in the word at offset Entry
PC in words. The remainder of the FEF. starting with this word. is not typed, but contains two
16-bit macroinstructions per word. If the iast word contains only one valid instruction, the odd
halfword contains 0.

9.3.9 Function Entry
There are three types of function entries: simple. long, and complex.

If the call type in the header word is not long or complex. then the call type is simple. If
the SV-BITNAP bit is set then the simple call requires the Special Variable Bit Map word and
the SPECIAL-VALUE-CELL-PNTRS word. If the FEFH-GET-SELF-NAPPING-TABLE bit is set then
the simple call requires the MAPPING-TABLE-FLAVOR word. It the simplest case of the simple
call. only the header word is consulted.

If the call type in the header word is long or complex, then the FAST-ARG-0PT word is
consulted. If the call type in the FAST-ARG-OPT word is not complex, then the call type is long
and the values in the FAST-ARG-OPT word override the values in the header word. As in the
simple entry. the long entry may require the Special Variable Bit Map word and the SPECIAL-
VALUE-CELL-PNTRS word and /or the NAPPING-TABLE-FLAVOR word.

If the call type in the FAST-ARG-OPT word is complex. then the call type is complex.
Complex entries use the ADL for argument processing. which includes special bindings. Thus. a
complex call never uses the Special Variable Bit Map word or the SPECIAL-VALUE-CELL-PNTRS
word. However, a complex call may require the NAPPING-TABLE-FLAVOR word.

9.3.10 Arg Descriptor List :
*** 1 don’t think this first paragraph is correct PTM 3,485 **~

When the ADL !0 is used: If the FEF-QUOTE-HAIR bit is set. or the FEF-BIND-HAIR bit is
set. or if the “S.V. bit map active” bit is clear and the Special Variables Bind bit is set, then
the ADL must be present. (It may be present anyway for debugging purposes.) Also, there is
a random bit in the FEF called FAST-ARGUMENT-OPTION-ACTIVE (or FEFH-FAST-ARG) which is
semi-historical. If it is set, it is a guarantee that the ADL can be safely ignored.

Also, note that the macro-compiler always generates an ADL. and never the Numeric Arg
Description word or the S.V. bit map word: the LAP program looks at the ADL, and determines
what the Numeric Arg Description Word should be. and possibly creates an S.V. Bit map and
possibly doesn’t actually generate the ADL.

The format of the ADL is as follows: For each argument and each local variable there
are either one, two, or three Q's in the ADL. The first Q is numeric, and specifies just about
everything about the variable in an encoded format. The second word is optional (presence
indicated by a bit in the first Q), and stores the name of the variable (usually a pointer to a LISP
atom). None of the code uses this; it is for debugging purposes only. The third Q, if present, is
used to initialize the variable. under the control of various options specified by the first Q.

10 Historically the ADL was, confusingly. sometimes called the “Binding Descriptor List” or
BDL.

T1 Internal Data

75

76

Funetion Calling

31 20 256 24 23 22 17 16 15 14 13 12 9 8 76 43 0
Bt ik e L D e e TP +*
1 CC | DTP | Type | unused | N | S | F | Type | Quete | Syntax | Iait |
e i e e D D R L T T X Tupup +
cC CDR Code. unused.
DTP Data Type. DTP-FIX.
N Name Present. there is a second word containing
the name of this variahle.
S Specialness. whether this variable is local. special,
or remote.
F Functional, this function has no side effects.
Type Desired data type for this variable.
Quote Desired quotage of this argument.
Syntax Desired syntax of this argument. -
Inic Desired initialization of this variable.

Fig. 9-8 ADL First Q

Value Name Meaning
0 FEF-LOCAL Not special.
1 FEF-SPECIAL This variable is special.
2 FEF-SPECIALNESS-UNUSED
3 FEF-RENOTE *** 72 but special ***

Table 9-1 FEF Specialness

The fields of the first Q are shown in Fig. 9-8.

When the macrocode refers to special variables. the actual code compiled will refer to an
area in the FEF called the Special Variable Value Cell Pointer List (the effective addresses of
the functions use the FEF “register” (or FEF 100 or FEF-+200 etc.)). The pointer list contains
invisible pointers 1o the value cells of the special variables themselves.

When a special variable is given as a local variable (a PROG or DO or &AUX variable) it must
be bound. Instead of binding it by saving it on the Linear Binding PDL (see way below), the
old values are saved in the slots in the Local Block on the main PDL. which would otherwise be
unused. This is done for greater efficiency (sort of. Additional flavor would perhaps be a better
description). .

9.5.11 FEP SPECLALNESS

If FEF-SPECIALNESS is odd, get a pointer to the variable’s value cell from the next entry in the - -

S.V. Value Cell Pointer List, and save the value in the Local block of the PDL. The codes for
FEF Specialness are shown in Table 9-1.

9.3.13 Desired Data Type
The desired datatype is specified in a 4-bit field, encoded as shown in Table 9-2.

9.3.13 Quote Status
The encoding of quote status is shown in Table 9-3.

9.3.14 Argument Syntax ,
FEF-ARG-SYNTAX is a 3-bit field that may take on the values shown in Table 9-4.

T1 Internal Data

Function Calling

Value Name Meaning
0 DT-DONTCARE We don't care what we get.
1 DT-NUMBER Any number.
2 DT-FIXNUN Only FIXNUM.
3 DT-SYN Only SYMBOL.
4 DT-ATON Any number or symbol.
5 DT-LIST Only LIST.
6

DT-FRAME Only FRAME (i.e. FEF)
Table 9-2 Desired Daia Type ‘

Value Name Meaning
0 FEF-QT-DONTCARE We don't care what we get.)
1 FEF-QT-EVAL Should be EVALed.
2 FEF-QT-QT Should be QUOTEQG (not EVALed).
3 FEF-QT-UNUSED

Table 9-8 Quote Status

Value Name Meaning
0 FEF-ARG-REQ Required. -
1 FEF-ARG-OPT Optional. May be initialized
if arg not present.
2 FEF-ARG-REST Rest arg. (may only be one)
— below here. not really arguments
3 FEF-ARG-AUX Prog-variable. May be initialized.
— below here, ignored by function entry operation
4 FEF-ARG-FREE Variable is referenced free.
Might be nice to know but not used.
5 FEF-ARG-INTERNAL

cell used to pass an argument to
an internal LAMBDA.
6 FEF-ARG-INTERNAL-AUX
cell used by an internal PROG.

Table 9-4 Argument Syntax

9.3.15 Imit Option
FEF-INIT-OPTION is a 4-bit field which may take the values shown in Table 9-5.

9.3.16 FET Constants

If the macro-compiled program uses constants. the code generated will be either of two things; if
the constant is one of a few which many programs use, such as ¥IL, T, and some small numbers, it
may be on the Constants page. and the code addresses it with the Constants page sregister”. But
if it is & constant most likely only used by this function. the constant will be placed in the FEF
" in an area following the ADL. The macro-compiler will. in both cases. generate a reference called
QUOTE-VECTOR: it is the LAP program which actually decides whether to reference the Constants

T1 Internal Data

17

78

Function Calling

Value Name Meaning

0 FEF-INI-NONE Do not initialize (All required args
have this)
FEF-INI-NIL Initialize to NIL (Default for locals)
FEF-INI-PNTR Initialize variable to 3rd Q
FEF-INI-C-PNTR Initialize variable to the object
poinied 1o by the 3rd Q
1 FEF-INI-OPT-SA Optional starting address. Start
function here if this optional arg
s supplied. Code between normal
starting address and here initializes
variable if it is not supplied.
FEF-INI-COMP-C Variable initialized by compiled
code. Initialization too hairy to
be done by above mechanisms.
6 FEF-INI-EFF-ADR
Interprer 3rd Q as macro-code
effective address (i.e. 3-bit
register, 6-bit delta). Reference
that address and initialize variable
to what you get.
[This is used to compile
(LAMBDA (A &OPTIONAL (B A)) ..)
with A and B local, for example.:
7 FEF-INI-SELF Initialize to self. used for
(LAMBDA (&OPTIONAL (FOO F00)) ..)
which isn't reasonable unless FOO
is special.

Table 9-5 FEF Init Option

DN e

(4]}

page. or to create a new constant in the FEF and reference it instead.

9.4 Calling Conventions
nothing here — want to write it?

9.5 Closure Call

When a closure is called the bindings of the closure are reinstated and the function of the closure
is called in the usual way. The bindings in a closure are 1o External Value Cells. Several closures
may share a binding environment by sharing External Value Cells.

9.6 Select-Method Call
When a select-method is called . ..

9.7 Instamee Call

When an instance is called SELF is bound to the instance: then, the method is decoded by hash
lookup of the first (message selector) argument in the method decode table of the flavor; the
function in the stack frame (which has to now been the instance) is replaced by the method
found; if GET-SELF-MAPPING-TABLE is set and SELF-MAP-PROVIDED is clear the self
mapping table is looked up in the flavor: finally. the method is entered. .

T1 Internal Dats

Function Calling

Code Name

ADI-ERR
ADI-RETURN-INFO
ADI-RESTART-PC
ADI-FEXPR-CALL
ADI-LEXPR-CALL
ADI-BIND-STACK-LEVEL
ADI-UNUSED-6
ADI-USED-UP-RETURN-INFO

Table 9-6 ADI Kinds

-y CHh U e N = O

Code Name
0 ADI-ST-ERR
1 ADI-ST-BLOCK
2 unused-2
3 ADI-ST-MAKE-LIST

-3

ADI-ST-INDIRECT
Table 9-7 ADI Storing Options

9.8 Entity Call

When an entity is called it is treated like a closure. The closure bindings are reinstated to

External Value Cells and the function is called in the usual way.

9.9 ADI Formats

ADI words are additional information prepended to a call block by the caller. Several things
are indicated by ADI words: multivalue return. LEXPR funcall, and FEXPR funcall all provide
ADI words. Multiple ADI words may pertain to a single call block. Restart PC is used in =CATCH
frames to indicate where THROY should resume execution.

Each ADI is two words. The one with the highest PDL address is the one that contains the
ADI type and controls the meaning of the ADI. This word is always a fixnum. The other word
can contain any lisp object and its meaning is dependant on the type of the ADIL

If there are any ADI word_s. the Y%CLS-ADI-PRESENT flag is set. Whenever ADI are examined,
they must be searched while 4XPREVIOUS-ADI-FLAG is true in each ADI word. This flag is bit
30, which is part of the CDR code and is not otherwise used in ADI words.

The ADI kinds are shown in Table 9-6.

When the ADI is ADI-RETURN-INFO, the storing options are as listed in Table 9-7. Uses of
RETURN-INFO ADI are discussed below in section on multiple value returns.

9.10 LEXPR Funcall

LEXPR-FUNCALL works like a cross between APPLY and FUNCALL. Its first argument is a function to
call. Its last argument is a list of arguments to pass. The arguments between are also passed to
the function. When a function is entered that was LEXPR called, enough arguments are spread
off the rest arg to fill in the spread args. *** note will illop rather than listify spread args into
rest arg *** ‘

T1 Internal Data

79

80

Funetion Calling

Tag Meaning
NIL CATCH-ALL
T UNVWIND-PROTECT

Always continues throwing

Table 9-8 Special Catch Tags

Tag Meaning

Return from function (like desiination-return)
T Throw all the way out of the top of the stack-
group. In this case we bypass CATCH-ALL's
Must be used with non-null catch action.
NIL #CATCH returns NIL as the tag if no throw
or return operation occurred.

Table 9-9 Special "Throw Tags

9.11 FEXPR Funcall
If an ADI-FEXPR-CALL is present, the caller ..., *** What 777 ***

9.12 Multiple Value Returns

If a caller wants to receive multiple values. a special calling form is used that uses an ADI to
indicate that multiple values are expected and how to store them. The ADI is a RETURN-INFO
ADL If the ADI has the storing option ADI-ST-BLOCK the caller has a block on the stack that
the values are to be stored into. If the ADI has the storing option ADI-ST-MAKE-LIST, the value
is CONS’ed with NIL into a full (two word) list node. and that list is RPLACD’ed into the previous
tail of the returned values list. The result of this is that the returned values end up in order in
the list of returned values. If the ADI has the storing option ADI-ST-INDIRECT allows a frame
to indirect its multiple values to another frame on the same PDL *** don’t understand this ***.
Indirect storing is obsolete.

%* write some more **

9.13 Catch, Throw, Unwind Protect, and Stack Unwinding
*** needs some work still ***

A CATCH is represented as an open call block. The function in the call block is the special
function of DTP-U-ENTRY and entry index 0. This is the function *CATCH. The catch tag is stored
as the word following the caich block, which is where the first argument would go. Several catch
tags are special and are shown in Table 9-8. These have the meaning shown when encountered
as a catch tag. If the function *CATCH is ever entered, its second argument is returned as its
value,

*THROV takes two arguments, the throw tag and the value to pass to the catch. Throw
searches backward on the stack for a *CATCH with whose tag is EQ to tag. Each open frame is
examined. The throw succeeds with the first frame which is sCATCH and has a tag that is either
a special catch tag or is EQ to tag. Certain values of tag have special meanings as shown in Table
9-9.

If the *THROV is successful, the PDL is unwound to there, and control is passed to that
*CATCH as described below. This style of exit is sometimes called non-local exit. If no catch tag
is found matching the throw tag, no unwinding occurs. instead a THROW-TRAP is signalled.

T1 Internal Data

Funetion Calling

*UNVWIND-STACK is a generalized »THROW used by the error handler and by UNWIND-PROTECT.
It takes the same first two arguments as «THROW. It also takes a third argument which is a count:
if the count is NIL things are the same as *THROW. otherwise if this may frames are passed we
resume as if a catch had been found. The fourth argument. if non-NIL. means that instead of
resuming when we find the point to throw to. we call that function with one argument, the second
arg to *UNWIND-STACK.

If a *THROW or =UNWIND-STACK surceeds control passes back to the frame containing the
*CATCH. Usually the the open block for sCATCH has a RESTART-PC ADL In this case. the
restart P’C from the ADI is used as the exit PC for the active block containing the sCATCH. If the
open block for *CATCH does not contain a RESTART-PC ADL. it must be D-RETURN so that
it returns from the active block containing the sCATCH.

Tocomplete the throw. *CATCH returns up to four values: trailing null values are not returned
for reasons of microcode simplicity, but the viaues not returned will default to NIL if they are
received with MULTIPLE-VALUE or NULTIPLE-VALUE-BIND special forms. If the catch completes
normally. the first value is the value of the body of the catch and the second is NIL. If a *THROY
occurs. the first value is the second argument to »THROVW (the value), and the second value is
the first argument to »THROV (the tag). The third and fourth values are the third and fourth
arguments to *UNWIRD-STACK if that was used in place of *THROW; otherwise these values are NIL.
*CATCH does not propagate multiple values back from the last form.

UNWIND-PROTECT is a special form of CATCH that catches all stack unwinding. If the stack
frame containing an UNWIND-PROTECT is popped for any reason. the UNWIND-PROTECT catches it
and executes its unwind form. After the form executes, unwinding proceeds.

When the PDL is unwound. each block is examined. If it is an open block for *CATCH (DTP-

U-ENTRY 0) then it is checked to see if it is an UNWIND-PROTECT. If the block is active. it is-

checked for special bindings. if it has bound any specials. the bindings are undone and the binding
block is popped from the special PDL. Notice that it is easy to find all open and active blocks
by following the chain of DELTA-TO-OPEN-BLOCK offsets. The special DELTA-TO-OPEN.
BLOCK offset of 0 is placed in the first block of a PDL to indicate that the end has been reached.
This is how it is noticed that all blocks have been searched and no catch tags match the throw
tag.

9.14 Support Veetor

The support vector is a vector in wired storage that microcode uses to reference Lisp functions.
Microcode uses Lisp for hard cases of common instructions, to call the evaluator, for arithmetic
on rational or complex arguments, etc. The support vector is shown in Table 9-10.

DEFSTRUCT-DESCRIPTION is used for TYPEP of named structures. APPLY-LAMBDA is the in-
terpreter for DTP-LIST functions. EQUAL is used when a hard case of EQUAL is encountered
by microcoded EQUAL. PACKAGE does not seem to be used. EXPT-HARD is used by EXPT when
it encounters a hard case. NUMERIC-ONE-ARGUMENT and NUMERIC-TWO-ARGUMENTS are used to
perform arithmetic on complex or rational numbers. The “unbound marker” does not seem to
be used. INSTANCE-HASH-FAILURE is called if the hash lookup of a method for an instance or in
a funcallable hash array is not found or if the array needs rehashing. INSTANCE-INVOKE-VECTOR
is described below. EQUALP is called if a bad recursive case is encountered and EQUALP-ARRAY is
called if attempt EQUALP of a non-string array.

9.15 Instance Invoke

Several of the basic operations of the macroinstruction set deal with instances by sending a
message. This works by sending the instance a message with the keyword for the operation being
attempted. For example, CAR when applied to an instance, sends :CAR to the instance and uses
the resuit as the value of CAR. The keyword symbols for the supporied operations are stored in

TI Internal Data

81

82 Funetion Calling

Index Funection

NUNERIC-ONE-ARGUNENT
NUMERIC-TWO-ARGUMENTS
unbound marker

10 INSTANCE-HASH-FAILURE
11 INSTANCE-INVOKE-VECTOR
12 EQUALP

13 EQUALP-ARRAY

Table 9-10 Support Vector

0 PRINT

1 CALL-NANED-STRUCTURE
2 DEFSTRUCT-DESCRIPTION
3 APPLY-LANBDA

4 EQUAL

H] PACKAGE

6 EXPT-HARD

7

8

9

Index Operation

:GET

:GETL
:GET-LOCATION-OR-NIL
:CAR

:CDR

:SET-CAR

:SET-CDR

DN~

Table 9-10 Instance Invoke Vector

the instance invoke vector which microcode accesses via the support vector. The assigned slots of
the instance invoke vector are shown in Table 9-10. If the instance does not handle the message.
the unhandled message error is signalled as usual.

T1 Internal Data

10. Multiprocessing

If only 1 had three hands'

This chapter explains multiprocessing in the Explorer System. It explains stack groups. the
building blocks of multiprocessing and . ..

A stack group is the data structure behind the implementation of a process in the Explorer
System. Interrupt context-switching. co-routines. and generators are facilitated by the use of
stack groups.

At all times. there is exactly one active stack group. which corresponds to the process
currently being run on a time-sharing system. Although there is no time-sharing betwen users
on the Explorer System. it is still useful for to support multiple processes; for example, when
a message is received from a netword. some other stack group could be activated to handle it.
stack groups are also useful for certain control structures: a solution to the Same Fringe problem
was written using them. i

10.1 The Stack Group Data Structure

The term stack group refers to the fact that each process must have its own control stack, for

remembering function call/return data and arguments and local data. and each process must

have a Linear Binding stack to save the values of special variables.! A stack group is a pointer

of datatype DTP-STACK-GROUP. which points to an array header word the same way an ARRAY-

POINTER would; the reason for using an additional datatype is so that any routine will always

be able to distinguish a stack group array from all other arrays. The array also has its own array
type. ART-STACK-GROUP-HEAD. for the same reason.

The data section of the array holds the main PDL for the stack group , and the array leader
holds many other relevant data including a pointer to another array holding the Linear Binding
PDL (q. v.) for the stack group. the PDL pointers for both PDLs, various microcode registers,
etc.

A useful feature is that by binding appropriate special variables, the default cons area, etc,
and error and invoke handler can be made a function of which stack group is active; each may
have its own. This is because each stack group has a separate Linear Binding PDL.

The array leader contains miscellaneous data related to running and maintaining a stack
group in the system. This data is divided up into sections according to how the data is used.
The static section contains data such the stack group name, and size and limits on the PDLs.
This data is set up when the stack group is created and doesn’t normally change during the
course of system operation. This information is loaded when the stack group is entered, but
since it doesn’t change the data needn’t be saved when the stack group is left. The debugging
section has information that the error handler needs to determine what error has occured and -
how to restart the stack group. This information is read directly by the error handler as needed
and will not be loaded or saved on stack group entry or exit. The high level section contains
state information used to determine which operations are valid on this stack group.

The elements of the array leader are:

10.1.1 Static Section

SG-NAME Name of this stack group for conversing with user about it.

! See **shallow binding*".

T1 Internal Data

84

Multiprocessing

SG-REGULAR-PDL This is the array that is serving as the regular PDL of this stack group. It
must be an ART-REG-PDL array.

SG-REGULAR-PDL-LIMIT Maximum PDL pointer value before overflow.

SG-SPECIAL-PDL Array which is the special PDL for this stack group. It must be an ART.
SPECIAL-PDL array.

SG-SPECIAL-PDL-LIMIT Maximum special PDL pointer value before overflow.

SG-INITIAL-FCTN-INDEX Position in regular PDL of the topmost function pointer cell. This
is AP for the top-level function of this stack group. This is normally 3, but may
differ if ADI is present.

SG-UCODE Used somehow (**how??**) 1o indicate what microcode packages this stack
group requires to be Joaded.

10.1.2 Debugging Section

SG-TRAP-TAG Symbolic tag corresponding to 8G-TRAP-MICRO-PC. Gotten by looking up the
trap PC in the microcode error table. Properties of this symbol drive error
reporting and recovery.

SG-RECOVERY-HISTORY Available for complex SG debugging routines to leave tracks in for
debugging purposes. *** No known uses? ***

SG-FOOTHOLD-DATA Structure which saves dynamic section of “real” SG when executing in
the foothold.

10.1.3 High Level Section

SG-STATE The STACK-GROUP state. This has fields describing the high level siate of
this stack group. See Stack Group State.

SG-PREVIOUS-STACK-GROUP Pointer to SG which called be or was interrupied “for me”.
(so that this SG could be run)

SG-CALLING-ARGS-POINTER Pointer to argument-block which last called this SG.
SG-CALLING-ARG-NUMBER Number of args in above block.

SG-TRAP-AP-LEVEL Used for stepping. When stepping compiled functions. will cause a
STEP-BREAK trap when PDL pointer is below this virtual address.

10.1.4 Dynamie Section
SG-REGULAR-PDL-POINTER Saved PDL pointer, stored as a fixnum offset from 8GC-REGULAR-

PDL.

SG-SPECIAL-PDL-POINTER Saved special PDL pointer, stored as a fixnum offset from 8G-
SPECIAL-PDL.

SG-AP Points to current active block on the stack.in this stack group, stored as a fixnum

offset to 8G-RREGULAR-PDL.
SG-IPMARK Points to current open block on the stack. Stored the same way.

SG-TRAP-MICRO-PC Micro-address from which a trap was signalled. This is used as a key to
lookup the TAG-TAG in the microcode error table.

SG-SAVED-QLARYH The last array referenced.
SG-SAVED-QLARYL The last element of an array referenced.

T1 Internal Data

Multiprocessing 85

SG-SAVED-M-FLAGS Saved processor flags The flags are shown in Table 10-1. It unwise
to change most of these. Only METER-STACK-GROUP-ENABLE. CAR-NUN-NODE and
CDR-NUN-NODE are likely 10 be safe to change. In particular. changing the symbol
modes will break much system code.

SG-AC-K - Accumulator (register) M-K
SG-AC.S Accumulator (register) M-S
SG-AC-) Accumulator (register) M-J
SG-AC-1 Accumulator (registér) M-]
5G-AC-Q Accumulator (register) M-Q
SG-AC-R Accumulator (register} M-R
SG-AC-T Accumulator (register) M-T
SG-AC-E Accumulator (register) M-E
8G-AC-D Accumulator (register) M-D
SG-AC-C Accumulator (register) M-C
SG-AC-B Accumulator (register) M-B
SG-AC-A Accumulator (register) M-A
SF-AC-ZR Accumulator (register) M-ZR
SG-AC-2 Accumulator (register) M-2. pointer field in a fixnum. The data type is stored

in SG-VMA-N1-M2-VMA-TAGS. Since this register is saved in this way, it need not.
contain a valid data type.

SG-AC-1 Accumulator (register) M-1. pointer field in a fixnum. The data type is stored
in 5G-VMA-N1-N2-VMA-TAGS. As with M-1. the data type need not be valid.

SG-VMA-M1-M2-TAGS The datatypes from M-1, M-2 and VMA are packed into this fixnum.

SG-SAVED-VMA VMA address register. The data type is siored in SG-VNA-N1-N2-VMA-TAGS.
Like M-1. VMA need not contain a properly typed pointer: however, since when
it is restored MD will be restored by rereading from VMA. it must contain a
valid virtual address of a properly typed Q.

SG-PDL-PHASE PDL index of PDL buffer head. This assures that when this PDL is reloaded
into the PDL buffer on resuming this stack group. each PDL word will be at the
same word of the PDL buffer it previously occupied.

10.2‘ SG-State Q
The stack-group state Q has the format shown in Fig. 10-1.

10.3 SG Imstruction Dispatch

SG-INST-DISP is a two bit field indicating which macroinstruction dispatch is in effect. It may
take on the values shown in Table 10-3. :

10.4 SG States
The encoding of stack group states is shown in Table 10-4.

TI Internal Data

Multiprocessing

Bit(s)

Name Meaning

1-2

-8
]
ao

10
11-12

123

14

16

17

18

19

20

T1 Internal Data

QBBFL This frame has binding block on
special PDL
CAR-SYM-NODE CAR of symbol maode:
0: is an error
I: is an error except
(CAR NIL) is NIL
2: is NIL
3: unused (an error)
CAR-NUN-NODE CAR of number mode:
0: is an error
1: is NIL
2: unused (an error)
3: unused (an error)
CDR-SYN-MODE CDR of symbol mode:
0: is an error
1: is an error excetp
(CDR NIL) is NIL
2: is NIL
3: the property list
CDR-NUN-NODE CDR of number mode:
same as CAR-NUN-NODE
DORT-SWAP-IN temporary flag used in
creating “fresh” pages
TRAP-ENABLE ILLOP if try to trap
NAR-NODE temporary flag indicating read
or write access on MAR trap
PCF-WRITE temporary flag indicating
current page fault is writing
INTERRUPT-FLAG in interrupt handler
no page faults
SCAVENGE-FLAG in scavenger
no sequence breaks
TRANSPORT-FLAG in transporter
no sequence breaks
STACK-GROUP-SWITCH-FLAG
switching stack groups
no sequence breaks
DEFERRED-SQUENCE-BREAK-FLAG
remember to sequence break
INHIBIT-SCHEDULING-FLAG
is cleared
NETER-BTACK-GROUP-ENABLE
metering enabled
TRAP-OI-CALLS trap on activating stack frame

Table 10-1 Processor Flags

---------------------.--.---—---..--_---------_---------------

--

[I
DTP-FIX | |
| !

UNUSED ---- ! !
SG-ST-IN-SWAPPED-STATE |
! !
SG-ST-SWAP-SV-ON-CALL-OUT
I
SG-ST-SWAP-SV-OF-5G-THAT-CALLS-

UNUSED ---=--=-==--==========-==
$G-ST-INST-DISP ----------=-m=-=--=-o-
§G-ST-SAFE --===--=--=-c--=m====-=ococoo-
$G-ST-PROCESSING- INTERRUPT-REQUEST --------==~

Fig. 10-1 Stack Group State Q

Field Name Meaning

SG-ST-IN-SWAPPED-STATE
SG-ST-SWAP-SV-0ON-CALL-0UT
SG-ST-SWAP-SV-0F-SG-THAT-CALLS-NE
8G-8ST-INST-DISP

SG-ST-SAFE
SG-ST-PROCESSING-INTERRUPT-REQUEST
SG-ST-PROCESSING-ERROR
SG-ST-FOOTHOLD-EXECUTING
SG-ST-CURRENT-STATE

Table 10-2 Stack Group State Fields

Multiprocessing

T1 Internal Data

87

88 Multiprocessing

Value Name Meaning

0 SG-MAIN-DISPATCH Main instruction dispatch.

1 SG-DEBUG-DISPATCH - Debugging dispatch.

2 SG-SINGLE-STEP-DISPATCH Dispaich once. and then return.
3 SG-SINGLE-STEP-TRAP For sequence breaks out of

trapping instructions.

Table 10-8 Stack Group Instruction Dispatch

Value Name Meaning
0 SG-STATE-ERROR Should never get this.
1 SG-STATE-ACTIVE Actually executing on the machine.

2 S§G-STATE-RESUMABLE
Reached by interrupt or error
recovery completed.

3 - SG-STATE-AVAITING-RETURN
After doing a “legitimate” SG-CALL.
4 SG-STATE- INVOKE-CALL-ON-RETURN

To resume this, reload SG. then
simulate a store in D-LAST. The
error system can produce this
state when it wants to activate
the foothold or perform a retry.
3 SG-STATE-IMTERRUPTED-DIRTY
Get this if forced to take an
interrupt at an inopportune time.
6 SG-STATE-AWAITING-ERROR-RECOVERY
Immediately after error, before
recovery.
SG-STATE-AWAITING-CALL
SG-STATE-AWAITING-INITIAL-CALL
SG-STATE-EXHAUSTED

Table 10-4 Stack Group States

-~

© Qo

TI Internal Data

11. Error Signalling

Whoops
finger on the button

This chapter explains signalling of errors in the Explorer System. It explains how the
microcude signals an error condition to a program or to the user.

This chapter will be organized from the abstract to the concrete. First, the error conditions
will be discussed. Then progressively lower levels of the implementation will be discussed.

11.1 Microcode Error Conditions

There are a number of conditions that are signalled by the system microcode. Listed below are
the condition flavors. all of which are built directly or indirectly upon ERROR. A later section
covers the names of the microcode iraps themselves. All of the symbols listed are in the ERROR-
HANDLER (“EH") package unless another package name is present.

ARG-TYPE-ERROR an argument to an operation is not of an acceptable type.

ARRAY-NUNBER-DIMENSIONS-ERROR attempt to access an array with (ren.er or fewer dimensions
than the array has. Built on BAD-ARRAY-ERROR.

BAD-ARRAY-ERROR generic array problems that lack their own condition.
CALL-TRAP-ERROR break on entry to a function or on normal exit from a *CATCH.
CART-INITIATE-ON-THIS-DEVICE-ERROR tried to initiate 1’0 on an unknown device type.

CELL-CONTENTS-ERROR the transporter found something bad (but not fatal) in memory. Un-'
bound variables and undefined functions signal other conditions.

DANGEROUS-ERROR virtual-memory overflow, region-table overflow.
SYS:DIVIDE-BY-ZERO division by zero.
EXIT-TRAP-ERROR break on exit from a function.

FLOATING-EXPONENT-OVERFLOV-ERROR result is too large in magnitude to be represented as a
FLONUM.

FLOATING-EXPONENT-UNDERFLOW-ERROR result is too small in magmtude to be represented as a
FLONUM.

FUNCTION-ENTRY-ERROR a problem was encountered in entering a function, lxke too many or too
* few arguments, or an argument of a bad data type.

INTERNAL-MEMORY-LOCATION-00B-ERROR out-of-bounds reference to an internal processor mem-
ory.

INVALID-FUNCTION some non-functional object was called as a function.

MAR-BREAK the Memory Address Register comparator caused & break on a read or write.

PDL-OVERFLOW-ERROR stack overflow on the regular or special variable PDL.

STEP-BREAK-ERROR signalled by breakpoints, single-step breaks, and trace breaks.

SUBSCRIPT-ERROR a subscript for an array access is out-of-bounds, negative, or otherwise losing.

THROW-EXIT-TRAP-ERROR break on THROW through a marked catch.

THROW-TAG-NOT-SEEN-ERROR a THROV was done to a tag for which there is no pending *CATCH.

T1 Internal Data

90 Error Signalling

TURD-ALERT-ERROR attempt to draw on a sheet which has not been prepared.

UNBOUND-VARIABLE an access to & symbol's value cell or to a closure variable found it unbound
(DTP-NULL). Built on CELL-CONTENTS-ERROR.

UNDEFINED-FUNCTION an access 1o a symbol’s function cell or to a method of a select-method
found it unbound (DTP-NULL). Built on CELL-CONTENTS-ERROR.

UNINPLEMENTED-HARDWARE-ERROR tried some operation on XBUS or UNIBUS, neither of which
exists in the Explorer Systemn.

USER-NUBUS-ERROR error in user NuBus operation
SYS:ZERO-TO-NEGATIVE-POVER attempt was made to raise zero to a negative power,

11.3 Microcode Error Table
This chapter is a description of all existing error-table entries. as of Explorer Systemmicrocode 182

and error-handler files SYS:EH;EH.LISP#359, and SYS:EH;EHF.LISP#213. Information presented
here is mostly from the code in SYS:EHN;EHF.

The error table, read from SYS: UBIN: CONTROL TBL mnnm into MICROCODE-~ERROR-TABLE,
describes the symbolic meaning of certain microcode PC’s. Its data is rearranged into other
variables below. The MICROCODE-ERROR-TABLE relates the micro PC to a symbolic description of
error. called an ETE (for Error Table Entry), whose CAR will then have properties saying how
to construct a condition instance. The properties are defined in 8YS: EH; EHF and are described
below.

Each place in the microcode where TRAP can be called is followed by an ERROR-TABLE pseudo-
op. This should appear at the PC which is going to be TRAP’s return address. An example is:

(ERROR-TABLE ARGTYP FIXNUN N-T 0)

The CDR of this list is the ETE. So. the first element is the name of the error, and the
second is the first “argument” to that error’s associated routines.

All ETE’s should be a list whose CAR is a symbol. That symbol should be defined in a
DEF-UCODE-ERROR in this file.

DEF-UCODE-ERROR tells what flavor of condition instance to build and what to put in it for
every microcode trap, keyed by the name of the error.

Error-table entries are listed below alphabetically by type, with the args as a lambda-list.
Types not used in the error-handler are marked *. These types seem to be historical remnants.
Types not used in the microcode are marked $. Some of these types are used in CADR or Lambda
microcode; they aren’t important to us.

In the “argument” lists below, an argument with suffix “-location” should be one of N-A, N-B,
X-C, N-D, N-E, N-T, N-R, N-Q, K-I, N-J, N-8, N-K, N-1, N-2, A-QCSTKG, A-SG-PREVIOUS-STACK-
GROUP, PP meaning the top of the pdl, VA, RMD meaning ND, or (PP number) where number is a
negative index into the PDL. These values are used by EH:8G-CONTENTS to access values saved
in stack groups for the purposes of examination, replacement, and restarting.

These registers are the ones saved in stack groups. That means they will be pushed on
the PDL. written to memory, GC-WRITE-TEST'ed, and have other nasty things done to them.
Therefore, they must be fully tagged or have all ones or seros in the data-type field (N-1 and ¥-2
are exempt from this restriction).

An argument with suffix “-tag” is a pseudolabel defined by a RESTART entry. See section on
restart below.

TI Internal Data

Error Signalling

11.2.1 Special Error-Table Entries

The error-table entries in this section are those not directly related Lo trap messages. They
provide useful ancillary information for the processing of traps.

“ARG-POPPED argl arg2 arg$ arg4 ... Saves (argl arg2 ...) as info on where to find popped args
if trap after pop. The error handler collects these but never uses them.

CALLS-SUB subroutine-tag The subroutine-tag will appear on the >>TRAP line after “->”, as an
indication of what function had called the trapping routine.

*DEFAULT-ARG-LOCATIONS argl arg2 arg3 ... Saves (argl arg2 ...) as info on where args may be
found if no other info is available. The error handier collects these but never uses them.

RESTART restart-tag Defines restart-tag to be this micro-pe, as a pseudolabel for other error-table
entries. A restari-tag marks the micro-pc at which to resume execution. for proceedable
traps. Note: RESTART is the only way to define restart-tags. It is not important whether
or not the restart-tag is defined as a label in the microcode (they tend to be similar, just
for mnemonic value). but it must be unique among restart-Lags.

+4STACK-WORDS-PUSHED argl Saves argl as info about the number of words pushed, presumably
how many. These entries are collected during eh:initialize, but nothing is done with them:
it doesn’t matter, though: there aren’t any such entries, anyway.

11.2.2 Normal Error-Table Entries

The error-table entries in this section are used to signal the actual traps. Their names are used
in DEF~UCODE-ERRORs to generate condition instances.

AREA-OVERFLOW area-number-location Signalled during region consing when the area has

a maximum size. “Allocation in the /" A/* area exceeded the maximum of D.
wvords."

ARGTYP description arg-location &optional arg-number restart-tag function-name Description is
what was expected — see EH:DATA-TYPE-NAMES. It can be a list of allowable types. eg,
(fixnum bignum) for “fixnum or bignum.”

Arg-location contains the failing arg. N-1 and N-2 are currently not allowed, because the
error handler wants a locative to the slot in the erring stack group, and the high bits of N-1 and
M-2 are stored separately from the pointer field (that’s how all 82 bits are preserved). VMA is also
not allowed.

Arg-number is obvious, zero origin.
Restart-tag is the label to restart from, if other than current pc.
Function-name is the erring function, if not obvious.

ARRAY-HAS-NO-LEADER array-location restart-tag Sonre array-leader operation was attempted
on an array with no leader.

ARRAY-NUMBER-DIMENSIONS ignore number-of-dimensions array-location restart-tag Number-of-
dimensions is a constant (array-decode-*). or nil if variable (most cases).

Array-location is where to find the array.
Restart-tag “is QARYR if this is array called as function.”

BAD-ARRAY-DIMENSION-NUMBER array-location dimension-number-location *The dimension
pumber 8 is out of range for §.* ls dimension-number the dimension or its po-
sition in the order?

T1 Internal Data

91

92

Error Signalling

BAD-ARRAY-TYPE array-header-location The array rype of this array was not one of the legal
types (see ARRAY-TYPES).

BAD-CDR-CODE address-location "A bad cdr-code vas found in memory (st address 0)."J

BAD-INTERNAL -MENORY-SELECTOR-ARG object-location * 8 is mot valid as the first ar-
gument to AWRITE- INTERNAL-PROCESSOR-MENORIES.* Currently. only 1. 2. 4. and 5 are
legal.

BIGNUN-NOT-BIG-ENOUGK-DPB “There is an internal error in bignums; pleaso re-
port this bug.*

BITBLT-ARRAY-FRACTIONAL-WORD-WIDTH “An array passed to BITBLT has an invalid
wvidth. The vidth, times the number of bits per pixel, must be a multiple off
32.»

BITBLT-DESTINATION-TOO-SNALL "The destination of a BITBLT vas too small.*

BREAKPOINT Caused by executing a BPT instruction. This is the misc entry smashed in for
breakpoints in FEF's.

CALL-TRAP Looks to be microcode support for things like breakon. This is the entry half.
CAIT-IIITIATE-UI-THIB:DEVIQB device-type-location “Can’t initiate on device type S.“§
CONB-ZERO-S8IZE location Allocate zero storage? No documentation. Is used.

DATA-TYPE-SCREWUP name “This happens when some internal data structure contains wrong
data type. arg is name. As it happens, all the names either start with a vowe) or do if
pronounced as letters. Not continuable.” The name pronunciation comment is no longer
true. so the trap message might look funny. Of course, this sort of thing isn’t supposed
to happen.

DIVIDE-BY-ZERO &optional dividend-location
EXIT-TRAP Looks to be microcode support for things like breakon. This is the exit half.

FILL-POINTER-NOT-FIXNUN array-location restart-tag "The fill-pointer of the array giveaf
to 8, 8, is not a fixaum.*

${FIXNUN-OVERFLOY number-location push-new-value-flag

FLOATING-EXPONENT-OVERFLOY arg “ S produced a result too large in magnitudo to
be a :[;emall] flozum." “Result is to be placed in M-T and pushed on the pdl.
Arg is SFL or FLO. In the case of SFL the pdl has already been pushed.”

FLOATING-EXPONENT-UNDERFLOV arg * 8 produced a result too small in magnitude to
be a :[;small] flooum.* “Argis SFL or FLO.”

FLONUN-NO-GOOD A subset of argtyp. From ur-flonum: “ARGTYP not usable, I think I lost
the arg.” '
FUNCTIOB-ENTRY
“Function “S called with cnly “D argument~1@+~P.*
“Function “S called vith too many arguments (°D).*
“Function “S called with an argument of bad data type.*
$IALLB-T00-SMALL number-location

ILLEGAL-AREA "Tried to cons in free, fixed, or unused-code region. Please re-
port this error."

TI Internal Data

Error Signalling

ILLEGAL-INSTRUCTION lllegal macroinstructions that aren't unimplemented miscops. "There
vas an attempt to execute an invalid imstruction: 0.*

INDIVIDUAL-SUBSCRIPT-00B array-location dimension-number-location restart-tag Dimension-
number is the location of the offending dimension's index. “We assume that the current
frame's args are the array and the subscripts. and find the actual losing subscript that
way.”

- INSTANCE-LACKS-INSTANCE-VARIABLE var-location instance-location
‘‘Signaled by LOCATE-IN-INSTANCE.'"’
{“There is no instance variable “S in “s.")

INTERNAL-NEMORY-LOCATION-00B memory-selector-location index-location “Internal memory
location is out of range."

NAR-BREAK direction "The MAR has gone off because of an attempt to write S into
offset 0 in S." "The MAR has gone off because of an attempt to read from
offset 0 in 8." Direction is WRITE or READ. This trap is for the currently unsup-
ported MAR feature.

MICRO-CODE-ENTRY-OUT-OF-RANGE misc-number-location “MISC-instruction S is not an
implemented instruction.®

IMVR-BAD-NUMBER bad-number-location

NO-CURRERTLY-PREPARED-SHEET location “There vas an attempt to drav on the sheet
§ without preparing it first." (formerly TURD-ALERT).

NO-NAPPING-TABLE “Flavor S is not s component of SELF's flavor, S, om a call

to a function which assumes SELF is a S."
NO-MAPPING-TABLE-{ "SYS:SELF-MAPPING-TABLE is NIL in a co'nbinod method. ™

NONEXISTENT-INSTANCE-VARIABLE “Compiled code referred to instance variable §,
no longer present in flavor §."

NUNBER-ARRAY-NOT-ALLOWED may-lbcntion restari-tag “The array S, which was given to
S. is not alloved to be a number array." This one occurs when making a locative
to an array element. None of the current uses has a restart-tag.

NUMBER-CALLED-AS-FUNCTION number-location “The number, S, vas called as a fune-
tion."

PDL-OVERFLOV pdl-type “The A push-down list has overflown." Pdl-type is either REGU-
LAR or SPECIAL.:

RASTER-VIDTH-TOO-VIDE “The raster vidth of a font passed to equal to 32 pix-
els.*

RCONS-FIXED “There vas an attempt to allocate storage in the fixed ares §."
The area number is in N-8.

REGION-TABLE-OVERFLOW “Unable to create a nev region because the Tegion tablas
are full.”

RPLACD-WRONG-REPRESENTATION-TYPE first-arg-location “Attempt to RPLACD a list which
is embedded in a structure and therefore cannot be RPLACD'ed. The list is
First-arg-location tells where to find the first arg to rplacd.

T1 Internal Data

93

94 Error Signalling

SELECT-NETHOD-BAD-SUBROUTINE-CALL select-method-location “Bad 'subroutine call’ foundfl
inside select-methed."

SELECT-METHOD-GARBAGE-IN-SELECT-METHOD-LIST garbage-location “The weird object §
vas found in a select-method alist.*®

SELECTED-METHOD-NOT-FOUND select-methad-location message-location An unclaimed-message
error for a select-method

SELF-NOT-INSTANCE "A method is referring to an instance variable, but SELF is
S, not an instance."

SG-RETURN-UNSAFE “An /*"unsafe/" stack group attempted to STACK-GROUP-RETURN."
“No args, since the frob is in the previous-stack-group of the current one.”

STACK-FRANE-TOO-LARGE "Attempt to make a stack frame larger than 256. words."
Called from %ASSURE-PDL-ROON.

STEP-BREAK Interface to microcode support for single-siepping.

SUBSCRIPT-00B index-location limit-location resiart-tag indices-flag Index-location is where to
find the index used, and should always be present.

Limit-location is where to find the legal limit for the subscript.- and should always be present. .

Restart-tag may be a list, which will be pushed sequentially. “This is used to get the effect
of making the microcode restart by calling a subroutine which will recurn to the point of the
error.”

Indices-flag is “T if indices are on the stack, 1 if ar-1-force (etc) and there is only one index,
or absent if array’s rank should be used to decide where the args are.”

$THROW-EXIT-TRAP
ITHROVW-TAG-NOT-SEEN

THROW-TRAP “THROW.TRAP is used for both exit trap and tag not seen, starting in UCADR
260. If N-E contains NIL, the tag was not seen.” From ur-return: “Trap here means
tag not seen if N-E is NIL. means throwing thru trap-on-exit frame otherwise. The error
handler knows which M-locations contain the information, here.”

TOO-NMANY-PAGE-DEVICES “There is no rooa for another .logicnl page device.*

TRANS-TRAP For the conditions unbound-symbol. unbound-instance-variable, unbound-closure-
variable, undefined-function, bad-data-type-in-memory.

“The viriubh “8 “A unbound."
“The function “§ "A undefined."
“The instance variable "8 “A unbound ia “S."
“The variable “8 “A unbound (iz a closure value-cell)."
“The wvord #<°8 “8> was read from locatiom "0 “0[(im "A)"].*
$TURD-ALERT sheet-location)
TV-ERASE-OFF-SCREEN "An attempt vas made to do graphice past the end of the screen.“j

UNIMPLEMENTED-HARDVARE hardware-type “Unimplemented bardvare type §." Hardware-
type is UNIBUS or XBUS.

TI Internal Data

Error Signalling

USER-NUBUS-ERROR high-address-location low-address-location nubus-tms-type-location “"User
NuBus Error of type S, at address #x 16R 16,6,48R. %Error Bits: #x 16R."

USER-NUBUS-GACBL-LINIT "Number of GACBLs exceeded limit in user NuBus opera-
tion." :

VIR‘I‘UAL-IE!ORY-OVEB.FLOU “You've used up all available virtual memory'"

WRITE-IN-READ-ONLY address-location “There vas an attempt to write into S, which
is a read-only address.*

WRONG-SG-STATE sg-location "The state of the stack group, S, given to S, vas in-
valid." Sg-location is where to find the invalid stack group.

'S
ZERO-ARGS-TO-SELECT-METHOD select-method-location * S was applied to no arguments."

*** much more to come: explain the error handler stack group, what levels can signal an

error. restrictions on the error signaller. restarting. ... ***

11.3 ILLOP (Illegal Operation)

YOU ARE RITTING THE MOON AT EXACTLY 0276.20 MILES PER
HOUR. BLOOD, GUTS. TWISTED METAL
Space War, a famous video game

When the microcode detects an irrecoverable or “can’t happen” error, it will crash the
system. This is known as ILLOP after the microcode routine that performs this function.

ILLOP causes the machine to drop dead. Further operation in the presence of the irrecover-
able error may only worsten the situation or complicate it beyond analysis. Instead. ILLOP will
make notes about the error in a crash record in the NV RAM and then halt the machine.

ILLOP is a very low level routine. 1t assumes very little about the state of the machine and
it will just halt if it detects that any of its assumptions are wrong. It does not require that
any of interrupts, device support, virtual memory, siorage allocation. garbage collection, lisp
object support. function calling, or instruction execution be intact. It does assume that *** list
assumptions: basically that the processor kernal is well and that A-Zero. M-Zero, A-Ones. and
M-Ones are set up. and that the NuBus is available and that the NV RAM can be read and
written *** ' :

After the crash RAM has been written, the crash is indicated by complementing the video
sense of the screen. The effect is dramatic. This may fail if the memory inverface or the screen
interface is not functioning properly but a failure of this operation will not affect the proper
recording of the failure in the crash record.

11.3.1 Crash Record

ILLOP stores some of the machine state in the non-volatile RAM so that next successful startup
can explain the cause of the crash, or if the system cannot be successfully started, field service
can read the crash reason from diagnostic hardware and/or software. This data is called a crash
record.

In order that an unsuccessful attempt to restart the system will not lose the original crash
data, crash records for the last few system shutdowns should be kept in a circular buffer. Each
time the system is started a record is allocated from the buffer. When the system halts. the
reason is recorded in the crash record.

TI Internal Data

95

98 Error Signalling

NV-RAN-BASE Alloration Register

plus (hex)
80 NVRAM-CRASH-BUFF-FORMAT-PROCESSOR
88 NVRAM-CRASH-BUFF-FORMAT-REV
90 NVRAN-CRASH-BUFF-POINTER
98 NVRAN-CRASH-BUFF-REC-LEN
A0 NVRAM-CRASH-BUFF-LAST
A8 NVRAN-CRASH-BUFF -BASE

Table 11-1 Crash Record Allocation Registers

11.8.1.1 Allocation

Allocation of the crash record is controlled by 4 16-bit numbers that are stored at a known place
within the NV RAM. These are shown in Table 11-1. '

All of the allocation registers are 16-bit byte offsets into the NV.RAM. NV.RAM offset will
be expressed in hexidecimal. Alsu since NV-RAM is 8-bit memory stored one-per-word, addresses
which are multiples of four are used (eg. 0. 4. 8. C. 10....). A 16-bit quantity (ie. the crash record
allocation registers) is stored with its low order bits in the lowest address and its high order bits
in the address 4 higher. For example. F4B2,4 would be stored in BVRAN-CRASH-BUFF-POINTER --—-
with “B2” in NV-RAN-BASE—90;¢ and “F4” in NV-RAN-BASE+-94,¢. .
NVRAN-CRASH-BUFF-FORNAT-PROCESSOR is the code of the processor that is to use these
records. It is currently always 0. NVRAN-CRASH-BUFF-FORMAT-REV is the format revision of the
crash record format in use. Currently revision O is the most recent revision. .

NBVRAN-CRASH-BUFF-POINTER is the offset into the NV RAM (in bytes) of the beginning of
the currently selected crash record. The currently selected crash record describes the last sysiem
startup. When the system is running, it points to the record that will be filled in when the system
next halts. When the sysiem is not running. it points to the crash record for the last sysiem
shutdown.

NVRAN-CRASH-BUFF-REC-LEN is the size of a crash record. It is the amount by which to
increase NVRAN-CRASH-BUFF-POINTER to reach the next record.

NVRAN-CRASH-BUFF-LAST is the offset to the beginning of the last crash record in the buifer.
This is used by allocation and also when scanning the buffer backwards to see the history of
shutdowns.

NVRAN-CRASH-BUFF-BASE is the offset to the beginning of the first crash record in the buffer.
This is used by allocation to wrap around the buffer.

The algorithm to allocate a new crash record, then, is: Add NVRAN-CRASH-BUFF-REC-LEN
to NVRAM-CRASH-BUFF-POINTER the result is the new NVRAM-CRASH-BUFF-POINTER. If the new
NVRAN-CRASH-BUFF-POINTER is greater than NVRAN-CRASH-BUFF-LAST then it should be reset to
NVRAN-CRASH-BUFF-BASE.

To view the previous crash record: The record pointer is the NVRAN-CRASH-BUFF -POINTER
minus the WWRAN-CRASH-BUFF-REC-LEN. If this is less than NVRAM-CRASH-BUFF-BASE, it should
be set to NVRAN-CRASH-BUFF-LAST.

11.8.1.2 Format
The crash record format is shown in Table 11-2.

Halt kinds are listed in Table 11-3.

TI Internal Data

Error Signalling 97

NVRAN-CRASH-BUFF-POINTER (C'ontents
plus (hex)

0 - Progress. how far gotten

—_— about load ——
E] Disk Controller slot number
8 Disk Device Number for microcode

C Disk Device Number for Load Band
10 Microload Name (4)

20 Load Band Name (4)

30 Microload Version (2)

38 Load Band Version (2}

40 Load Band Revision (2)

date and time of boot

48 Month
4C Day

30 Year
54 Hour
58 Minute

5C Report Flags

about shutdown
60 Halt/Crash Microaddress (2) -
68 Halt Kind :
6C Boot Kind

saved data
70 contents of M-1 (4)
80 contents of M-2 (4)
90 contents of MD (4)
A0 contents of VMA (4)

Table 11-2 Crash Record Format

TI Internal Data

98

Error Signalling

TI Internal Data

Code

N =

Meaning

Did not halt. Hang or non-crash restart.
Microcode halt. Crash table decodes meaning.
Hardware halt. Currently unused.

Lisp halt. Software halted machine.

If Halt-Addr is zero then this is normal
system shutdown.

Table 11-8 Halt Kinds

12. Macro Instructions

When the metal is hot.
the engine is hungry
and we re all about to sce the light
Jim Steinman. in Meatloaf’s Bat Out of Hell

In this chapter. each of the Lisp Machine instructions is described. These are called macro
instructions at most places in this document to avoid confusion with microinstructions. In this
chapter. ~instruction™ will suffice.

12.1 General Format

Instructions are always sized in 16-bit units. Almost all instructions are 16 bits long, a few
branch instructions are 32 bits long. This means that usually two instructions are stored per
word. 32-bit instructions need not be word aligned. '

Instructions are stored in a part of the FEF! that does not have a data type on each word.
This leaves the entire 32 bits for data add allows two instructions to be stored in each word.

The basic instruction format is the main instruction (class I) format. Certain values in the
opcode field of the class 1 instruction indicate that it is of some other class. The format of a
class I instruction is shown in Fig. 12-1. The mapping of the opcode field into instruction class
is shown in Table 12-1. The formats of the other instruction classes will be discussed in their
respective sections. but some field of main instruction format is shared with each of the others
so the fields of the main instruction will be described here.

12.1.1 Destination Field

The destination field of the instruction is used in Class 1. Class 1V, and Class V instructions. It
is a 2-bit field used to specify where the result of the instruction is to go. Instructions in Class I]
have an implicit definition of where the destination is stored (usually,’on the stack). Instructions
in Class [Il do not have a result.

The encoding of the destination field of the instruction is shown in Table 12-2. D-IGNORE
means that the result is not stored anywhere. but it does still. set the indicators (see below).
D-PDL (or D-STACK) indicates that the result is to be pushed onto the PDL and also set the
indicators. ’

Fig. 12-1 Main Instruction Format

1 See section on FEF format.

T1 Internal Data

100 Macro Instructions

Opcode Class
0-8 I
9-11 Il
12 111

3 v
14 I
15 unused
18 Y
17-24 unused
25-27 f]
28 111
29 v
30 11
3 unused.

Table 12-1 Opcode to Class Map

Code Destination
0 D-IGNORE
1 D-PDL
2 D-RETURR
3 D-LAST

Table 12-2 Destination Field

D-RETURN indicates that the result is to be the result of the current function. That result
is returned to the caller according to the destination of the CALL instruction that invoked this
function. D-LAST indicates that the resuit is to be pushed onto the PDL (like in destination
PDL) as the last argument to a pending call. Destination LAST completes the calling of the

— function and transfers control to it.?

D-PDL and D-LAST work together to make the passing of 8REST arguments easy and inex-
pensive. As the arguments to a pending call are pushed with D-PDL the CDR-CODE of each is set
to CDR-NEXT. When the last argument is pushed with D-LAST its CDR-CODE is set to CDR-NIL.
This forms a CDR-coded list on the stack. When the function is entered. if an &REST argument
is expected a DTP-LIST pointer is made 1o the argument that is the CAR of the &REST arg.

12.1.2 Register Field

The register and offset fields together specify the effective address of the operand. These fields
are used in Class | and Class 1] instructions. The effective address is formed by using the register
specified in the register field as the base register and adding offset to it.

The register field is encoded as shown in Table 12-3.

The FEF and PEP+? registers are for addressing symbols and constants used in the function.
The FEF+64, FEF+128, and FEF+102 forms increase the range of the FEF that may be used for
symbols and constants. The function object of the currently executing stack frame (which will be
a FEF since only FEF functions contain macroinstructions) is used as the base address. Offset
is added to the base to produce an address of a Q in the FEF. This Q is read normally (it is
normally transported).

2 See section on argument passing.

T1 Imternal Data

Macro Instructions

Code Base Register

0 FEF

1 FEF+64

2 FEF+128

3 FEF+192

4 CONSTANTS

b LOCALS

6 ARGS

7 PDL/IVAR

Table 12-8 Register Field Encoding

Offset Object Type Object

0 Symbol NIL
1 Symbol T
2 Fixnum 0
3 Fixnum 1
4 Fixnum .2
5 Fixnum 3
6 Fixnum 4
7 Fixnum 5
8 Fixnum 6
9 Fixnum 7
10 Fixnum 8
11 Fixnum 9
12 Fixnum 10
13 Fixnum -1
14 Fixnum -2
15 Fixnum -3
16 Fixnum -4

Table 12.4 Constants Table

For references to the value or function cells of symbols, the addressed location in the FEF
contains an EXTERNAL-VALUE-CELL-POINTER (EVCP) to the VALUE-CELL of the symbol (if used
as a special variable) or the FUNCTION-CELL of the symbol (if used as a function).

The CONSTANTS register addresses a table in the constants area’ in wired memory* that
contains commonly used constants. The constants area is sometimes refered to as the quote
vector. The constants table is shown in Table 12-4.

The LOCALS register provides access to the locals block on the PDL of the currently active
function.’ The ARGS register provides access to the argument block on the PDL of the currently
active function. The address of argument n is computed as AP+ n-1. where AP is the argument
pointer. .

The PDL/IVAR register is used for two distinct purposes. If OFFSET is 63, then the effective

address is the top of the PDL. If OFFSET is less than 36, it is an instance variable (IVAR) reference.
If OFFSET is in the range of O to 31, the effective address is to the unmapped instance variable

3 See section on areas.
4 See section on paging.
5 See section on PDL layout.

TI Internal Data

101

102 Maero Instructions

at the slot number indicated by offset. If OFFSET ix in the range 32 1o 535. the effective address is
to a mapped instance variable. The effective address is calculated by reading the self mapping
table indexed by OF FSET - 32 The result is the slot number of the instance variable in SELF.
The effective address of an IVAR slot is the slot number plus one addressed from a base of SELF
(the instance).

All of the base registers address storage thai is “inside the machine”® except for FEF and
IVAR references. These then are the only references thai need to be transported on read.’ These
references can cause a TRANS-TRAP to be signalled if the Q read contains an invalid object or is
unbound.

Some instructions such as POP use the effective address as a destination in which to store
the resuit. Not all registers are supported as the base for a store. Only FEF (and FEF+), ARG,
and LOCAL registers are currently supported as bases for storing. In the MOVEM instruction, PDL is
also available as a destination to give an instruction that pushes a second copy of the top of the
stack (usually named DUP in stack computers). *** soon will support IVAR for stores too ***

12.2 Indicators

The instruction set uses two indicators: NIL and ATON. These are testable in branch instructions
(Class I1I). Instructions that produce a result set the indicators (even if the destination is D-
IGNORE). The NIL indicator is set only if the result is the symbol NIL. The atom indicator is set
only if the result is not a list (an object of DTP-LIST).

Note on implementation: The indicators are not actually physical flags in the Low Cost Lisp
processor. Instead. the result is remembered and the saved result is only tested when an indicator
is checked. This saves hardware complexity or increases speed. The “virtual indicators” register
is N-T. Every macroinstruction (except for the branch instructions which have no result) must,
leave its result in M-T where it can be tested if needed.

12.3 Kernel Macroinstructions

The macroinstructions can be broken into a kernel group which are needed to execute compiled
Lisp, advanced kernel group which supports exended functions of the runtime architecture [eg.
multiple value return). and high-speed functions which need only be instructions to allow for
high speed implementations (eg. MEMQ).

The basic architecture of the machine is defined by the kernel macroinstructions. This group
includes CALL, CALLO, NOVE, CAR. and CDR from the Class 1 macroinstructions. The arithmetic
and logical instructions of non-destination group 1 are also kernel macroinstructions. as are the
comparison instructions of non-destination group 2 (=. >, <. and EQ) and BINDPOP, PUSHE, MOVEN,
and POP from non-destination group 3. These taken with the branch instructions forms the core
instruction set for compiled Lisp programs. A full understanding of these few instructions is
essential to understanding the functioning of any compiled Lisp function.

13.4 Main Instrections (Class I)

The format of Class I instructions has already been described. There are 8 Class I instructions, _....
which are described below. All have both an effective address and a destination.

CALL function (Class I)
Open a call block on the stack, to call function. Whatever the function returns will go to

the destination. The actual transfer of control will not happen until the arguments have been
stored.

¢ See section on in the machine.

TI Internal Data

Macero Instructions

Function must be a callable object. a FEF. a symbol with a function property. a list (a
lambda expression). an instance. an entity.a select-method. an array, a closure, a stack group.
or a microcode entry (these are all user visible types except for numbers); if not the instruction
which uses D-LAST to finish the call will get a trap. If function is a number. the trap signalled
will be WUMBER-CALLED-AS-FUNCTION. If the contents of the effective address is an invalid data
type or the unbound marker. TRANS-TRAP will be signalled by CALL just as other instructions
signal TRANS-TRAP for unreadable arguments.

CALLO function (Class)
Call a function without passing any arguments. Opens a call block on the stack and then

transfers control immediately. What the function returns will go to the destination.

Since the call is immediately finished. the trapping on illegal functional objects as described
in CALL occurs on this instruction.

CALLO is needed to call a function passing no arguments since there is no “last” argument
to pass to D-LAST.
MOVE from (Class I)

Copies the contents of from to the destination. The source is not destroyed unless it is
PDL-POP.

MOVE is four different instructions depending on the destination: With destination PDL,
this is a “PUSH" instruction. With D-IGNORE. this is a “CHECK” instruction that only sets the

indicators based on the source. With D-RETURN, this is a return instruction. And with D-LAST, .

this is a variation of push that completes the pending call.
CAR list (Class 1)

Takes the CAR of list and stores it in the destination. List must be an object of a “list-like”
data type, otherwise an ARGTYP trap is signalled.

CDR list (Class I)

Takes the CDR of list and stores it in the destination. List must be an object of a “list-like”
data type, otherwise an ARGTYP trap is signalled.

CADR list (Class I)

Takes the CADR of /ist and stores it in the destination. List must be an object of a “list-like”
data type, otherwise an ARGTYP trap is signalled.

CDDR list (Class 1)

Takes the CDDR of list and stores it in the destination. List must be an object of a “list-like”
data type. otherwise an ARGTYP trap is signalled.

CDAR list (Class 1)

Takes the CDAR of list and stores it in the destination. List must be an object of & “list-like”
data type, otherwise an ARGTYP trap is signalled.

T1 Internal Data

103

104

Macro Instructions

18 13 12 ® 8 6 5 0

S e R s c e arcccn s rcr Lt c e v e m e .-

GROUP ----
REGISTER --------
OFFSET -~----cecacacnaaaa

Fig. 12-2 Non-Destination Instruction Format

Code Group

9 1
10 2
11 3
14 4

Table 18-5 Non-Destination Groups

CAAR list (Class 1)

Takes the CAAR of /ist and stores it in the destination. List must be an object of a “list-like”
data type. otherwise an ARGTYP trap is signalled. :

12.5 Non-Destination Instructions (Class o)

Non-destination instructions have an effective address but no destination field. Most produce a
result which is stored in an implicit destination (usually the PDL). Non-destination instructions
are most useful for stack operations such as arithmetic and POP.

The format of a non-destination instruction is'shown in Fig. 12-2. The high 3 bits of a non-
destination instruction select the operation within the group.. This field occupies the same bit
positions as the destination field and the high bit of the Class I opcode field. The remainder of
the Class I opcode field selects the non-destination group (if it is a non-destination instruction).
The non-destination values of this field are shown in Table 12-5. The low 9 bits form the register
and offset fields of an effective address as in Class I instructions.

13.5.1 Growp 1

The NDOP of a non-destination group 1 instruction is shown in Table 12-6. Those instructions
are shown below. All group 1 instructions will fetch from the effective address.

+ stack: augend EA: addend result to stack (Class 1I)

Adds addend to augend. Addend and augend must both be numeric or an ARCTYP trap is
signalled.

- stack: 7 EA: y result to stack (Class II)

Subtracts y from z. X and y must both be numeric or an ARGTYP trap is signalled.

T1 Internal Data

Macro Instructions

NDOP_ __ Instruction

—
<

illegal

+ (PLUS)

- (DIFFERENCE)
+ (TINES)

/ (QUOTIENT)
AND

XOR

IO0R

Table 12-6 Non-Destination Group 1 Decoding

- D Ut da GO N

NDOP Instruction

= (EQUAL)

> (GREATERP)
< (LESSP)

EQ

SCDR

SCDDR
SETE-1+
SETE-1-

-3 D UL b O = O

Table 127 Non-Destination Group 2 Decoding

= stack: z E.A: y result to stack (Class II)

Multiplies 7 and y. X and y must both be numeric or an ARGTYP trap is signalled.
/ dividend stack: d:'m'gor EA: result to stack (Class II)

Divides dividend by divisor. X and y must both be numeric or an ARGTYP trap is signalied.
AND stack: z EA: y result to stack (Class 1I)

Computes the bit-wise logical AND of zand y. X and y must both be numeric or an ARGTYP
trap is signalled.

XOR stack: z EA: y result to stack (Class II)

Computes the bit-wise logical exclusive-or of z and y. X and y must both be numeric or an
ARGTYP trap is signalled.

I0R stack: z EA: y result to stack (Class II)
Computes the bit-wise logical inclusive-or of z and y. X and y must both be numeric or an

ARGTYP trap is signalled.

12.5.2 Group 2

The NDOP of a non-destination group 2 instruction is shown in Table 1£-7. Those instructions
are shown below. All group 2 instructions will read from the effective address. and the last four
also store back into the effective address.

T1 Internal Data

106

106

Mucro Instruetions

= stack: 2 EA: y result to stack {Class 1)

Compares z 1o y. Returns the symbol T if 7 and y are numerically equal. otherwise retyurns
the symbol NIL. An integer can be = 10 a lonum. Both r and y must be numbers. otherwise an
ARGTYP trap is signalled.
> stack: z EA: y result to stack (Class 11)

Compares zto y. If ris greater than y (see Lisp GREATERP). result is the symbol T. otherwise
it is the symbol NIL. X and y must both be numeric or an ARGTYP trap is signalled.

< stack: 2 EA: y result to stack (Class II)

Compares 710 y. If z is less than y (see Lisp LESSP), result is the symbol T. otherwise it is
the symbol NIL. X and y must both be numeric or an ARGTYP trap is signalled.

EQ stack: r EA: y result to stack (Class 1I)

Compares zto y. If the two are identical (see Lisp EQ). result is the symbol T (true), otherwise
it is the symbol NIL (false).

SCDR source and destination: var (Class II)

Takes the CDR of the contents rar and stores it back in the contents of var. (setq frob
(cdr frob)) translates to this instruction. The contents of var must be a “list-like” object, or
an ARGTYP trap is signalled. ’
8CDDR source and destination: var (Class II)

Takes the CDDR of the contents of var and stores it back as the contents of var. (setq frob
(cddr frob)) translates to this instruction. The contents var and its CDR must be “list-like”
objects, or an ARGTYP trap is signalled.

SETE-1+ source and destination: var (Class II)

Increments the contents of var and stores the result back as the contents of var. (setq
frob (1+ frob)) translates to this. The contents of var must be numeric or an ARCTYP trap is
signalled.

SETE-1- source and destination: var (Class 1)

Decrements the contents of var and stores the result back as the contents of var. (setq

frod (1- frob)) translates to this. The contents of var must be numeric or an ARGTYP trap is. . .

singalled. ’

12.5.3 Growp 3

The NDOP of a non-destination group 3 instruction is shown in Table 12-8. Those instructions
are shown below. These instructions store into the effective address.

BIND source and destination: var (Class I])

Save the current value of var on the special binding stack and leave its value as it was.

TI Internal Data

Maero Instructions

NDOP

__Instruction

BIND
BINDNIL
BINDPOP
SETNIL
SETZERO
PUSHE
MOVEN
POP

Table 12-8 Non-Destination Group 3 Decoding

o~
<

IV da QI N =

BINDNIL source and destination: var {Class II)

Save the current value qf var on the special binding stack and set its value to NIL.
BINDPOP source and destination: var stack: newral (Class 1)

Save the current value of var on the special binding stack and set its value to newval.
SETNIL destination: var (Class II)

Set the value of var to symbol NIL.
SETZERO destination: var (Class 1)

Set the value of var to the fixnum zero.
PUSHE EA: loe result to stack (Class 11)

Push a locative pointer to loc onto the stack.
NOVEN destination: dest stack: copy (Class 1)

Copies copy from the stack without popping it. The result is stored at the effective address,
dest.

POP destination: dest stack: source (Class 11)

Copies source from the stack to the effective address, dest. Source is removed (popped) from
the stack.

12.5.4 Grouwp 4
The NDOP of a non-destination group 4 instruction is shown in Table 12-9. Those instructions

are shown below. These use effective address in several different ways including using those bits
of the instruction for something entirely different.
STACK-CLOSURE-DISCONNECT stack: arg? EA: arg? result to stack (Class II)

s» What does this do?” Look in new UC-STACK-CLOSURE ***

TI Internal Data

107

108

Macro Instructions

NDOP Instruction

STACK-CLOSURE-DISCONNECT
STACK-CLOSURE-UNSHARE
MAKE-STACK-CLOSURE
PUSH-NUNBER
STACK-CLOSURE-DISCONNECT-FIRST
PUSH-CDR-IF-CAR-EQUAL
PUSH-CDR-STORE-CAR-IF-CONS
illegal

I DU d DN = O

Table 12-9 Non-Destination Group 4 Decdding

STACK-CLOSURE-UNSHARE stack: argr EA: arg? result to stack (Class II)
*** Whar does this do”7 Look in new UC-STACK-CLOSURE *=*
MAKE-STACK-CLOSURE stack: arg? EA: argf result to stack (Class 1l)

Make a new stack closure. *** What does this do?? Look in new UC-STACK-CLOSURE

EX T}

PUSH-NUMBER number result to stack (Class 1I)

Push effective address as a fixnum. This takes the 9-bit effective address field of the instruc-
tion and returns it as a positive fixnum.

STACK-CLOSURE-DISCONNECT-FIRST stack: argf EA: argf result to stack (Class II)
*** What does this do?? Look in new UC-STACK-CLOSURE ***
PUSH-CDR-IF-CAR-EQUAL stack: frob EA: list result to stack (Class II)

Takes list, popped from the stack. if list is a cons compares its CAR to frob: if equal, the CDR
of list is pushed onto the stack. If either list is not a cons or the CAR of l/ist is not equal to jrob,
nothing is pushed onto the stack and the indicators are set to tbe symbol RIL.

*** This is mostly useful for maintaining a loop variable on the stack? *** i

PUSH-CDR-STORE-CAR-IF-CONS source and destination: dest stack: frob (Class 1)

Takes frob. popped from the stack: if frob is a coné. the CDR of frob is pushed onto the stack
and the CAR of frob is stored into dest. otherwise nothing is pushed or stored and the symbol NIL

is left in the indicators.

This is mostly useful for maintaining a loop variable (eg. for DOLIST).

TI Internal Data

Maero Instructions

B L L L L L L T T R

212, ----
BR Offset ---=~=--cec--

Fig. 12.8 Branch Instruction Format

12.6 Branch Instructions {Class III)

Branch instructions alier program flow within a function but cannot transfer outside of the
currently executing FEF. The unconditional branch instruction, BR. always transfers to the
target. Conditional branch instructions test one of the indicators and transfers if the test is
true. Two more complex branch instructions are provided for looping support.

Branch insiructions have no effective address nor destination field. Instead, the effective
address field is used as a 9-bit branch offset. The branch offset is taken as a signed two’s
complement quantity to be added to the location counter (LC) after it has be incremented to
point to the instruction following the branch instruction. This sum is the LC of the branch
target.

If the branch offset is -1.7 then a long branch is indicated. The next 18 bits of the instruction '

stream is read and it is used as a signed two's complement quantity to be added to the LC after
it has be incremented to point to the instruction following the branch instruction.®

If the branch is not taken, execution continues with the instruction following the branch
instruction. Note that even if the branch is not taken. the branch offset must be checked for
a long branch. and if it is a long branch, the next halfword (the long branch offset) must be
skipped.

The format of a branch instruction is shown in Fig. 12-8. The high 3 bits of a branch
instruction select the particular branch operation. This field occupies the same bit positions as
the destination field and the high bit of the Class I opcode field. The remainder of the Class |
opcode field is 12 to select Class IIl instructions. The remaining 9 bits (the Class I Register and
Offset fields) are the branch offset. The coding of the selection of branch operation field is shown
in Table 12-10.

BR offsct (Class III)

Always branch to the location indicated by the branch offset.

7 A branch offset of -1 makes the branch target, the branch instruction itself; and since branch
instructions do not alter the'indicators. that branch. if taken, would close a one instruction long
endless loop. The reuse of this value makes this particular kind of endless loop impossible.

$ Note that a negative (backward) long branch is one greater in magnitude than it would
be if it were a normal (short) branch because there is an extra halfword to branch over in the
instruction stream for the long branch offset. If the branch is positive (forward) there is no extra
halfword to branch over. '

T1 Internal Data

109

110

Macra Instructions

BROP .. _Instrucuion

0 BR

i BR-NIL

2 BR-NOT-NIL

3 BR-NIL-ELSE-POP

4 BR-NOT-NIL-ELSE-POP
i BR-ATOM

6 BR-NOT-ATOM

7 illegal

Table 12-10 Branch Operation Decoding

BR-NIL offset (Class IIl)
Branch if the NIL indicator is set. Otherwise. continue with the next instruction sequentially.
BR-NOT-NIL offset (Class IlI)

Branch if the ¥IL indicator is not set. Otherwise, continue with the next instruction sequen-
tially.

BR-NIL-ELSE-POP offset (Class I11)

Branch if the NIL indicator is set. Otherwise, pop the stack and continue with the next
instruction sequentially. This is useful in some loops.

BR-NOT-NIL-ELSE-POP offset (Class I1I)

Branch if the BIL indicator is not set. Otherwise, pop the stack and continue with the next
instruction sequentially. This is useful in some loops.

BR-ATOM offset (Class III)

Branch if the ATON indicator is set. Otherwise. continue with the next instruction sequen-
tiaily.

BR-NOT-ATON offset (Class III)

Branch if the ATON indicator is not set. Otherwise. continue with the next instruction
sequentially.

12.7 Miscellaneous Instructions (Class IV)

Miscellaneous instructions have a destination but no effective address field. Most take arguments
on the stack. Misc instructions are mostly used for Lisp functions that are microcoded for speed
and for very special purpoge instructions, eg. %GC-SCAVENGE.

The format of a misc instruction is shown in F: tg. 12-4. The high 2 bits select the destina-
tion, as in Class I instructions. The Class | opcode field is either 13 or 29 to select a Class IV
instruction. If 13, this is 8 Group 0 miscellaneous instruction. If 29, this is a Group 1 miscella-
neous instruction. The remainder of the Class I instruction is the miscellaneous operation field.
This 9-bit field selects the instruction within the group.

TI Internal Data

Macro Instructions

R N e T R R

Fig. 12-4 Miscellaneous Instruction Format

12.7.1 Miscops Group 0

Group O is the old form of miscellaneous instructions. It is the only group currently in use.
large task remains to complete this documentation!! ***

L R

*** oxplain the 0 - 200 miscops for AR-1, AS-1. AP-1, and instance refs

RBE HBRE "en1‘
these in group V now ****
Note: Miscops 240. and 241 are free.
M-CAR list (Class 4 - miscop 242)

Takes the CAR of list and leaves it in the destination. Signals an ARGTYP trap if list is not a°

list or an allowed CAR of a symbol or number.

N-CDR liat . ‘ (Class 4 - miscop 243)

Takes the CDR of list and leaves the result in the destination. Signals an ARGTYP trap if list
is not a list or an allowed CDR of a symbol or number.

M-CAAR it {Class 4 - miscop '244)

Takes the CAR of the CAR of list and leaves the result in the destination. Signtfs an ARGTYP
trap if list or its CAR is not a list or an allowed CAR of a symbol or number.

N-CADR list (Class 4 - miscop 245)

Takes the CAR of the CDR of list and leaves the result in the destination. Signals an ARGTYP
trap if list or its CDR is not a list or an allowed CAR or CDR of a symbol or number.

N-CDAR list : (Class 4 - miscop 246)

Takes the CDR of the CAR of list and leaves the result in the destination. Signals an ARGTYP
trap if list or its CAR is not a list or an allowed CAR or CDR of a symbol or number.

M-CDDR list (Class 4 - miscop 247)

Takes the CDR of the CDR of /ist and leaves the result in the destination. Signals an ARGTYP
trap if list or its CDR is not a list or an allowed CDR of a symbol or number.

T1 Internal Data

111

112

Maero Instructions

CAAAR list (Class 4 - miscop 250)

Takes the CAR of the CAR of the CAR of list and leaves the result in the destination. Signals
an ARGTYP trap if list or its CAR or the CAR of its CAR is not a list or an allowed CAR of a symbol
or number.

CAADR list (Class 4 - miscop 251) .

Takes the CAR of the CAR of the CDR of /ist and leaves the result in the destination. Signals
an ARGTYP trap if list or its CDR or the CAR of its CDR is not a list or any is a disallowed CAR or
CDR of a symbol or number.

CADAR list (Class 4 - miscop 252)

Takes the CAR of the CDR of the CAR of /isf and leaves the result in the destination. Signals
an ARGTYP trap if list or its CAR or the CDR of its CAR is not a list or any is a disallowed CAR or
CDR of a symbol or number.

CADDR list ‘ (Class 4 - miscop 253)

Takes the CAR of the CDR of the CDR of list and leaves the result in the destination. Signals
an ARGTYP trap if list or its CDR or the CDR of its CDR is not a list or any is a disallowed CAR or
CDR of a symbol or number.

CDAAR list (Class 4 - miscop 254)

Takes the CDR of the CAR of the CAR of list and leaves the result in the destination. Signals
an ARGTYP trap if list or its CAR or the CAR of its CAR is not a list or any is a disallowed CAR or
CDR of a symbol or number.

CDADR list ' (Class 4 - miscop 255)

Takes the CDR of the CAR of the CDR of /ist and leaves the result in the destination. Signals
an ARGTYP trap if list or its CDR or the CAR of its CDR is not a list or any is a disallowed CAR or
CDR of a symbol or number.

CDDAR list (Class 4 - miscop 256)

Takes the CDR of the CDR of the CAR of list and leaves the result in the destination. Signals
an ARGTYP trap if /ist or its CAR or the CDR of its CAR is not a list or any is a disallowed CAR or
CDR of a symbol or number.

CDDDR list (Class 4 - miscop 257)

Takes the CDR of the CDR of the CDR of /ist and leaves the result in the destination. Signals
an ARCTYP trap if /ist or its CDR or the CDR of its CDR is not a list or any is a disallowed CDR of a.
symbol or number.

CAAAAR list (Class 4 - miscop 260)

Takes the CAR of the CAR of the CAR of the CAR of /ist and leaves the result in the destination.
Signals an ARGTYP trap if /ist, its CAR, the CAR of its CAR, or the CAR of the CAR of its CAR is not
a list or any is a disallowed CAR of a symbol or number. :

CAAADR (Class 4 - miscop 261)

list Takes the CAR of the CAR of the CAR of the CDR of list and leaves the result in the destination. Signals an

TI Internal Data

LY

(]

Macro Instructions

CAADAR list (Class 4 - miscop 262)

Takes the CAR of the CAR of the CDR of the CAR of list and leaves the result in the destination.
Signals an ARGTYP trap if list. its CAR. the CDR of its CAR. or the CAR of the CDR of its CAR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CAADDR list (Class 4 - miscop 263)

Takes the CAR of the CAR of the CDR of the CDR of /ist and leaves the result in the destination.
Signals an ARGTYP trap if list. its CDR, the CDR of its CDR. or the CAR of the CDR of its CDR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CADAAR list (Class 4 - miscop 264)

Takes the CAR of the CDR of the CAR of the CAR of /ist and leaves the result in the destination.
Signals an ARGTYP trap if list, its CAR. the CAR of its CAR, or the CDR of the CAR of its CAR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CADADR list (Class 4 - miscop 265)

Takes the CAR of the CDR of the CAR of the CDR of /ist and leaves the result in the destination.
Signals an ARGTYP trap if list, its CDR, the CAR of its CDR. or the CDR of the CAR of its CDR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CADDAR list {Class 4 - miscop 266)

Takes the CAR of the CDR of the CDR of the CAR of /ist and leaves the result in the destination.
Signals an ARGTYP trap if list, its CAR. the CDR of its CAR. or the CDR of the CDR of its CAR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CADDDR l1st (Class 4 - miscop 267)

Takes the CAR of the CDR of the CDR of the CDR of /ist and leaves the result in the destination.
Signals an ARGTYP trap if list. its CDR. the CDR of its CDR, or the CDR of the CDR of its CDR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CDAAAR liast (Class 4 - miscop 270)

Takes the CDR of the CAR of the CAR of the CAR of list and leaves the result in the destination.
Signals an ARGTYP trap if list, its CAR. the CAR of its CAR, or the CAR of the CAR of its CAR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CDAADR list (Class 4 - miscop 271)

Takes the CDR of the CAR of the CAR of the CDR of list and leaves the result in the destination.
Signals an ARGTYP trap if list, its CDR, the CAR of its CDR, or the CAR of the CAR of its CDR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CDADAR list (Class 4 - miscop 272)

Takes the CDR of the CAR of the CDR of the CAR of list and leaves the result in the destination.
Signals an ARGTYP trap if list, its CAR, the CDR of its CAR. or the CAR of the CDR of its CAR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CDADDR list (Class 4 - miscop 273)

Takes the CDR of the CAR of the CDR of the CDR of /ist and leaves the result in the destination.
Signals an ARGTYP trap if list, its CDR. the CDR of its CDR, or the CAR of the CDR of its CDR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

T1 Internal Data

113

114 Macro Instructions

31 25 24 23 12 11 0

e et R e

S N S c e mercca s e crc s d e r e e e e e e e cm . .-

CONTEXT-BESC-LOCAL
CONTEXT-DESC-LEVEL -----
CONTEXT-DESC-INDEX --~--cceccmccanaan

Fig. 12.5 Context Descriptor Format

CDDAAR list (Class 4 - miscop 274)

Takes the CDR of the CDR of the CAR of the CAR of /ist and leaves the result in the destination.
Signals an ARGTYP trap if Jist. its CAR, the CAR of its CAR, or the CDR of the CAR of its CAR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CDDADR list (Class 4 - miscop 275)

_, Takes the CDR of the CDR of the CAR of the CDR of /ist and leaves the result in the destination.
Signals an ARGTYP trap if /ist, its CDR, the CAR of its CDR. or the CDR of the CAR of its CDR is not
a list or any is a disallowed CAR or CDR of a symbol or number.

CDDDAR * (Class 4 - miscop 276)
list Takes the CDR of the COR of the CDR of the CAR of list and leaves the result in the destination. Signals an A

CDDDDR (Class 4 - miscop 277)
list Takes the CDR of the CDR of the CDR of the CDR of list and leaves the result in the destination. Signals an Al
ALOAD-FRON-HIGHER-CONTEXT CONTEXTDESC , (Class 4 - miscop 300)

CONTEXTDESC is a context descriptor. which is a fixnum where fields are interpreted as
shown in Fig. 12.5.

If CONTEXT-DESC-LOCAL is zero access an argument, if one access a local in the selected
context. CONTEXT-DESC-LEVEL is the number of contexts to go up (unsigned). This identifies the
context to access. CONTEXT-DESC-INDEX is the index of the argument or local in that context.
The same format of context descriptor is used in 4LOCATE- IN-HIGHER-CONTEXT and %8STORE-[XN-
HICHER-CONTEXT instructions.

Loads the argument or local from a higher lexical context as specified by CONTEXTDESC. .
Leaves the result in the destination.

%LOCATE-IN-HIGHER-CONTEXT CONTEXTDESC (Class 4 - miscop 301)

CONTEXTDESC is a context descriptor as shown in Fig. 12-5and described above. The
resujt is a locative to the argument or local specified by the context descriptor.

1810u-il-HIGHER-COIT£XT VALUE, ENVPTR (Class 4 - miscop 302)

T1 Internal Data

Macro Instructions

CONTEXTDESC is a context descriptor as shown in Fig. 12-5and described above. VALUE
is stored into the argument or local specified by the context descripior. Returns a locative to the
modified cell as the result = 7seems 10 via RPLACA? =*.

%DATA 302 ob) {Class 4 - miscop TYPE)

Result is the data type code of oby as a fixnum

%POINTER obj (Class 4 - miscop 304)

Result is the pointer field of obj as a fixnum. Note: May be negative.

%MAKE-REST-ARG-SAFE (Class 4 - miscop 305)
iiii DANGER: Cannot find the code for this one!!!! jijis
%PERMIT-TAIL-RECURSION (Class 4 - miscop 308)

Clears the UNSAFE-REST-ARG flag in the ENTRY-STATE word of the active call block.
This allows tail recursion if the TAIL-RECURSION flag is T and the function bound no specials.

INTERNAL-FLOAT NUMBER {Class 4 - miscop 307)
Same as FLOAT.
%MAKE-POINTER DTP, ADDRESS (Class 4 - miscop 310)

Result is a Lisp object constructed from DTP and ADDRESS. DTP is the data type code of*
the object to be constructed (should be a fixnum but is not checked). The result is ADDRESS
with its data type field replaced by DTP. If ADDRESS is not a pointer data type this instruction
can produce a pointer that breaks the garbage collector: excercise extreme caution.

%SPREAD LIST (Class 4 - miscop 311)

Destination must be D-PDL or D-LAST. The elements of LIST are pushed onto the stack
(appropriately for function args). If destination is D-LAST, the last element activates the call.
If LIST is not a list an ARGTYP trap is signalled. May also signal STACK-FRAME - TOO-LARGE if the
stack frame grows to exceed the limit of 256 locations.

%P-STORE-CONTENTS POINTER, X . (Class 4 - miscop 312)
Replaces the contents of the cell pointed to by POINTER with X. Does not alter the cell’s

CDR code. Result is X.

%LOGLDB ppss, word ' (Class 4 - miscop 313)

Ppas is a field specifier as in LDB. word is uninterpreted 32 bits. Can load a field up to
25and return it as a fixnum. The result may be negative if the field size is 25. Signals ARGTYP if
ppss is not a fixnum or ppss specifies a field more than 25bits wide.

%LOGDPB value, ppss, word (Class 4 - miscop 314)

Ppaasis a field specifier as in LDB. The low order SIZE bits of value replace the field of the
same size in word. Always returns a fixnum. Does not complain about loading/clobbering the
sign; in fact, does not trap at all. *** should be symetric with S LOGLDB ***

TI Internal Data

115

1186 Macro Instructions

31 25 24 12 11 65 0
Corx 0 o 1T o |
T C o
DTP-FIX - [| I
Zero =----~s-sccmcmcnaa. | : :
POSITION -----==-=mccmemecmaccacaa.. | :
SIZE ~---=- = |
Fig. 12-6 Field Specifier Format i
LDE ppss. num (Class 4 - miscop 315)

Ppas is a field specifier which is a fixnum with the low 6 bits specifying the size of the field
(in bits) and the next 6 bits specifying the position of the field as in Fig. 12-6.

The field starts with the bit at POSITION and continues for SIZE bits. For example, the
low order 8 bits of a word is specified as 00105. The high 7 bits of a 32 bit word are 3107,. This
is called “PPSS” because when expressed in octal, two digits give the position (“PP”) and two
digits give the size (“SS™).

Extracts the field specified by ppss from num and return as s fixnum. Num must be a
fixnum or a bignum or an ARGTYP trap is signalled. Also signals an ARGTYP trap if the field
specifier specifies a field whose width is greater than 25-1 bits. Always returns a positive fixnum.

DPB value, ppss, num (Class 4 - miscop 316)

Inverse of LDB. The low order SIZE bits of value replace the field of the same size in num.

- — Never changes the sign of the quantity DPB’ed into. If POSITION is above the current size of

num, the quantity is sign extended until it is long enough to accommodate the DPB. Always
returns either a fixnum or a bignum.

Value must be a fixnum or an ARGTYP error is signailed. Ppss must be a fixnum and specify
a field of less than 23bits. otherwise an ARGTYP error is signalled. ARGTYP is also signalled unless
num is a fixnum or a bignum.

%P-STORE-TAG-AND-POINTER pointer, misc-fields, pointer-field (Class 4 - miscop 317)

Builds a pointer by depositing the data type and CDR code from the low order part of mise-
fields invo the data type and CDR code fields of pointer-field. Then stores the newly built pointer .
into the cell addressed by pointer. Does not do GC-WRITE-TEST. Result is the symbol NIL.

Pointer and pointer-field may be of any type. Misc-fields must be a fixnum or an ARGTYP
trap is signalled. See warning on %YMAKE-POINTER.
GET plist. property-name (Class 4 - miscop 320)

Looks up plist’s property-name property. If the property is found, the result is the value that
property. Otherwise, the result is the symbol NIL. Returns NIL if piist does not have a property
list or is of a type that does not have properties.

Handles objects of type symbol. list, locative. and instance. See section on instance invoke.

TI Internal Data

Macro Instructions

GETL plist, indicator-list {Class 4 - miscop 321)
Same as GET but looks for any property on tndicator-list. If it finds any indicator then it

returns the rest of the property list starting with the first indicator found.

ASSQ z, clist . {Class 4 - miscop 322)

Alist is an association list where each element is a pair where the CAR is the tag and the CDR
is the associated value. ASSQ searches alist by comparing the CAR of each element for being EQ to
z. Returns the CDR of the matching element if a match is found or the symbol NIL if no match
1s found. Signals ARGTYP if alist is not a list of lists.

LAST list (Class 4 - miscop 323)

Returns the last element (last CAR) of list. Signals ARGTYP if list is not a list-like object.
This CDRs down [ist and returns the CAR of the first pair whose CDR is NIL.

LENGTH list (Class 4 - miscop 324)
Returns the length of list. Signals ARGTYP if /st is not a list-like object.

+ n - (Class 4 - miscop 325}

Same as (PLUS n 1). Increments n. N must be a number or an ARGTYP trap is signalled.

- n : (Class 4 - miscop 326)
Same as (DIFFERENCE n 1}. Decrements n. N must be a number or'an ARGTYP trap is-

signalled.

RPLACA cons. " (Class 4 - miscop 327)

Replace the CAR of cons with z. Cons must be a list or locative or an ARGTYP trap is signalled.
Returns the altered cons. Does not recopy cons.
RPLACD cons. r (Class 4 - miscop 330)
Replace the CDR of cons with z. Cons must be a list. symbol if CDR-SYN-MODE allows. or

locative, otherwise an ARGTYP trap is signalled. Returns the altered cons. Does not recopy cons.

This handles the tricky hackery of altering a CDR-coded list. RPLACD'ing a locative is the same

as RPLACA’ing it. CDR-SYM-MODE allows RPLACD to smash the property list of the symbol. Can

also signal BAD-CDR-CODE.

ZEROP number (Class 4 - miscop 331)
Returns the symbol ‘l' if number is equal to the sero of its type; otherwise returns the symbol

NIL. Signals ARGTYP if number is not numeric.

SET symbol, z (Class 4 - miscop 332)
Sets the value cell of symbolto value z. Signals ARGTYP if symbolis not a symbol. In addition,

signals ARGTYP if symbol is NIL since it is illegal to set NIL.

FIXP X (Class 4 - miscop 333)

Returns the symbol T if X is a fixnum or a bignum. Otherwise returns the symbol NIL.

T1 Internal Data

117

118

Macro Instructions

FLOATP X {Class 4 - miscop 334)

Returns the symbol T if X is a small flonum or a lonum. Otherwise returns the symbol NIL.

EQUAL X. Y (Class 4 - miscop 335)

Returns the symbol T if X and ¥ are similar (isomorphic) objects (cf. EQ). Two numbers are
equal if they have the same value and type. Two conses are equal if their CARs are equal and
their CDRs are equal. Two strings are equal if they have the same length, and the characters
composing them are the same (see STRING-EQUAL). All other objects are equal if and only if they
are EQ.

YSET-SELF-NMAPPING-TABLE MAPPING-TABLE (Class 4 - miscop 336)

Set SELF-NAPPING-TABLE to MAPPING-TABLE and set the bit in the open call block saying
we are providing it. Destination should be either D-IGNORE or D-LAST *** not clear what
happens with other dests ***. Won’t set this flag if the function being called is a symbol because
can’t be sure what mapping table it wants *** | think this means that the compiler can't tell
what’s going on and this instruction is badly applied?*"*.

PDL-WORD N (Class 4 - miscop 337)

Returns the value of the word on the PDL that is N below the PDL-Pointer after N has
been popped. *** This should be GPDL-WORD since it does not check that Nis an integer or
that the selected word is in the PDL buffer. *** Assumes that the selected word is in the PDL
buffer: never fetches the word from memory.

FALSE. (Class 4 - miscop 340)

Result is the symbol NIL. "** Eventually flush this. after everything recompiled. New
compiled code stopped using this as of 98. ***

TRUE (Class 4 - miscop 341)

Result is the symbol T. *** Eventually flush this, after everything recompiled. New compiled
code stopped using this as of 87.27. ***

NOT X (Class 4 - miscop 342)

Also NULL. Result is the symbol T if X is the symbol NIL. Othefwis'e. the result is the
symbol NIL.

NLL X (Class 4 - miscop 342)

Also NOT. Result is the symbol T if X is the symbol NIL. Ovherwise, the result is the symbol
T.

ATOR X {Class 4 - miscop 343)

Result is the symbol NIL if X is a list. Otherwise, the result is the symbol T.

0DDP NUMBER (Class 4 - miscop 344)

Result is the symbol Tif NUMBER is odd. Otherwise. the result is the symbol ¥IL. NUMBER
must be numeric or an ARGTYP trap is signalled.

TI Internal Data

Macro Instructions

EVENP NUMBER (Class 4 - miscop 343)
Result is the symbol T if NUMBER is even. Otherwise, the result is the symbol NIL.

NUMBER must be numeric or an ARGTYP trap is signalled.

%HALT (Class 4 - miscop 346)
Halts the processor. ls intended to he continuable from the hardware debugger. This should

not normally bhe used to shutdown the sysiem.

GET-PNANE SYMBOL (Class 4 - miscop 347)
Returns the print name of SYMBOL. The object returned is an array pointer. SYMBOL

must be a symbol or an ARGTYP trap is signalled.

LSH N, NBITS (Class 4 - miscop 350)

Logical shift of N'to the left by NBITS biu positions. 1f NBITS is negative. the shift is to the
right by (ABS NBITS). Zero bits are shifted in at right (left). N and VBITS must be fixnums.
otherwise an ARGTYP trap will be signalied.

ROT N, NBITS (Class 4 - miscop 351)

Returns N rotated left NBITS bits if NBITS is positive or zero, or N rotated right (ABS
NBITS) if NBITS is negative. The rotation considers N as a 25-bit number (cf. MACLISP ROT
function). N and NBITS must be fixnums. otherwise an ARGTYP trap will be signalled.

sBOOLE FN. ARGI, ARG? (Class 4 - miscop 352).

Performs a boolean function specified by F.NV on the other two arguments. FN must be
a fixnum. otherwise an ARGTYP trap will be signalled. ARGI and ARG2 must each be either
a fixnum or a bignum. otherwise an ARGTYP trap will be signalled. FN specifies the boolean
function to be performed. If the binary representation of FN is abed (with a being the most
significant bit) then the truth table for the boolean operation is as follows:

y
| 0 1
Ol a ¢
x |
11 b d
NUMBERP X (Class 4 - miscop 353)

Returns the symbol ‘l‘ if X is a number, otherwise returns the symbol NIL.

PLUSP NUMBER (Class 4 - miscop 354)

Returns the symbol T if NUMBER is positive number, strictly greater than zero; otherwise,
returns the symbol BIL. Signals ARGTYP if NUMBER is not a number.

NINUSP NUMBER (Class 4 - miscop 355)

Returns the symbol T if NUMBER is a negative number. strictly less than sero; otherwise,
returns the symbol NIL. Signals ARGTYP if NUMBER is not a number.

TI Internal Data

119

120

Macro Instruetions

\ A ¥ (Class 4 - miscop 336)
Returns the remainder of X divided by Y. X and } must both be integers {each may be

either a fixnum or a bignum). otherwise an ARGTYP trap will be signalled.

MINUS NUMBER (Class 4 - miscop 357.)
Returns the negative of NUMBER. NUMBER must be a number or an ARGTYP trap will be

signalled.

%RSXHASH-STRING string, character-mask : (Class 4 - miscop 360)

Compute the hash code for string. Each character is logically AND’ed with character-mask
before being used in the hash computation. Returns as a fixnum the hash code of the array.

VALUE-CELL-LOCATION SYMBOL {Class 4 - miscop 361)

Returns a locative pointer to SYMBOL's internal value cell. There may also be an external
value cell. SYMBOL must be a symbol or an ARGTYP trap will be signalled.

FUNCTION-CELL-LOCATION SYAMBOL (Class 4 - miscop 362)
Returns a locative pointer to SYMBOL's function cell. If § YMBOL is not a symbol an

ARGTYP trap will be signalled.

PROPERTY-CELL-LOCATION SYMBOL (Class 4 - miscop 363)

Returns a locative pointer to the location of SYMBOL's property-list cell. SYMBOL must
be a symbol or an ARGTYP trap will be signalled.

HCONS X . (Class 4 - miscop 364)
Constructs a list cell (cons) that has a CAR of X and a CDR of NIL. The storage is allocated

in the default consing area specified by the value of the variable DEFAULT-CONS-AREA.

NCONS-IN-AREA X, area (Class 4 - miscop 385)

Like NCONS but the storage is allocated in the area specified by area. Signals ARGTYP if area
is not a fixnum or a symbol with a fixnum in its value cell.

coNs X, Y (Class 4 - miscop 366)
Constructs a list cell (cons) that has a CAR of X and a CDR of V. The storage is allocated

in the default consing area specifed by the value of the variable DEFAULT-CONS-AREA.

CONS-IN-AREA X, Y, area (Class 4 - miscop 387)

Like CONS but the storage is allocated in the area specified by area. Signals ARGTYP if area -
is not a fixnum or a symbol with & fixnum in its value cell.

Xcoms X, Y (Class 4 - miscop 370)
Reverse CONS. Same as (CONS Y X).

XCONS-IN-AREA X, Y, area (Class 4 - miscop 371)
Reverse CONS-IN-AREA. Same as (CONS-IN-AREA X V areg).

T1 Internal Data

Macero Instructions

%SPREAD-N LIST. N {Class 4 - miscop 372)

Similar to %GSPREAD. Pushes the first N elements of LIST onto the stack. 1f the destination
is D-LAST, activate the call block. Always attempt to take N CDR’s of L/ST, even if it isn't long
enough. If appropriate CDR-SYN-MODE is set. will continue pushing NILs. otherwise will signal an
ARGTYP trap. Can also signal STACK-FRANE-TO0-LARGE if the stack frame would grow beyond
the limit of 258 stack location«.

SYNEVAL SYMBOL - {Class 4 - miscop 373)

SYMEVAL is the basic primitive for retriey ing a symbol's value. The current value of SYMBOL
is returned. If the symbol is unbound. then a TRANS-TRAP error is signalled. If SYMBOL is not
a symbol. ARGTYP is signalled.

POP-N-FRON-UNDER-N num-pops. num-to-keep (Class 4 - miscop 374)

Has the same eflect as popping and saving the top num-to-keep somewhere. then popping
the next num-pops. and then pushing back the saved num-to-keep values. Actually works more
like copying the top num-to-keep stack locations down by NUM-POPS locations. Also removes
any open call blocks in that region of the stack.

GET-LEXICAL-VALUE-CELL env-list, symbol-cell-location (Class 4 - miscop 375)

Could have been defined as:

(Defun GET-LEXICAL-VALUE-CELL (env-list symbol-cell-location)
(GET-LOCATION-OR-NIL (LOCF env-list) symbol-cell-location))

except this runs much faster when env-list is a stack list in the PDL buffer.

%CALL-NULT-VALUE FUNCTION, NUM-VALUES . (Class 4 - miscop 376)

Similar to a CALL instruction in that it opens a call block to call FUNCTION. The number
of values expected as the result is NUM- VALUES. Before pushing the call block, reserves a block
of NUM-VALUES words on the stack for the returned values. Then pushes an ADI that indicates
that a multiple value block is present and gives its size. See See section on (.ADI). When the last
argument is pushed to D-LAST, FUNCTION is activated. When function returns, the values
are left on the stack.

%CALLO-NULT-VALUE VALUES, FUNCTION ' (Class 4 - miscop 377)

This is to %CALL-NULT-VALUE as CALLO is to CALL.

%RETURN-2 VALl VAL? (Class 4 - miscop 400)

Return VAL and VALZ as the values of this function; then this function returns. No more
values are returned than the caller is expecting.

%RETURN-3 VALl VALE, VALS (Class 4 - miscop 401)

Return VAL, VAL®, and VALY as the values of this function; then this function returns.
No more values are returned than the caller is expecting.

%YRETURN-N VALI, VAL2... VALN, N (Class 4 - miscop 402)

The number of values to return, N. is the last argument. VALI through VALN are returned
as the values of this function. No more values are recurned then the number expected by the
caller. When all values have been processed. this function returns.

T1 Internal Data

121

122

Macro Instructions

RETURN-NEXT-VALUE X (Class 4 - miscop 403)
Return X as a value of the current function. If the caller is expecting more values, this

becomes the next of them, otherwise it is ignored.

RETURN-LIST VALUES (Class 4 - miscop 404)

Return the elements of VALUES as the values of the current function. Iv is always called
with D-RETURN. and so always returns from the current funciion. The caller never receives
more values than it is expecting.

UNBIND-TO- INDEX-UNDER-N N (Class 4 - miscop 405)

This removes an index from the PDL, N under the PDL-pointer after popping N. This index
is then used as a Special-PDL index and the Special-PDL is unwound to the level of that index.
The regular PDL is copied down to fill in the hole where the index was removed. *** this is
wierd ***~
BIND POINTER, X (Class 4 - miscop 4086)

Bind any location to a specified value. Adds the binding to the currens stack-frame. This
allows you to bind cells other than value cells and to do conditional binding.

UNUSED407 (Class 4 - miscop 407)
Not currently used. Was %MAKE-LEXICAL-CLOSURE.

MENQ JTEM. LIST . (Class 4 - miscop 410)

If ITEMis one of the elements of LIST. the sublist of LIST beginning with the first occurrence
of ITEM is returned. If ITEM is not in LIST, the symbol NIL is returned. The comparison is
made by EQ. Because MEMQ returns NIL if /TEM is not found and something non-WIL if it is, it is
often used as a predicate.

Note that the value returned by MENQ is EQ to the portion of LIST beginning with ITEM.
Thus RPLACA on the result of MENQ may be used. if MENQ did not return NIL.
N-< NUM1, NUMg2 (Class 4 - miscop 411)

Primitive, two argument LESSP. Compares NUMI to NUME. Returns the symbol T if NUM1
is less than NUM®, returns the symbol NIL otherwise. NUM1 and NUMe® must both be numeric
types or an ARGTYP error is signalled.

N-> NUM1, NUM? (Class 4 - miscop 412)

Primitive, two argument GREATERP. Compares NUM1 to NUMS2. Returns the symbol T
if NUML1 is less than NUM®: returns the symbol NIL otherwise. NUMI and NUM® must both
be numeric types or an ARGTYP error is signalled.

N-= NUMi1, NUMe (Class 4 - miscop 413)

Returns the symbol T if NUMI and NUM® are numerically equal. An integer can be equal
to a flonum. NUM! and NUM® must both be numeric types or an ARGTYP error is signalled.

T1 Internal Data

Macero Instructions

INTERNAL-CHAR-EQUAL CHI. CH? {Class 4 - miscop 414)

Compare two characters that are either fixnums or DTP-CHARACTER objects. If the
character code part of the two are identical, the symbol T is returned. Otherwise. if ALPRABETIC-
CASE-AFFECTS-STRING-CONPARISON is non-NIL. the symbol NIL is return. If the characters are
different and case doesn’t matter. the symbol T is returned if one is the alphabetic uppercase of
the other. otherwise the symbol NIL is returned

%STRING-SEARCH-CHAR CHAR, STRING, START. END (Class 4 - miscop 415)

Search STRING from START vo END for CHAR. Character comparison is as in INTERNAL-
CHAR-EQUAL. STRING should be a numeric (or ART-STRING or ART-FAT-STRING) array.
CHAR must be a character or fixnum. START and END must be fixnums or an ARGTYP trap is
signalled. Both START and END must be in bounds on STRING.

Searching is always forward. Returns NIL if START is greater than END.

%STRING-EQUAL STRINGI, INDEX1, STRING2, INDEX2. COUNT (Class 4 - miscop 416)

Returns the symbol T if COUNT characters of STRINGI starting at INDEX1 match those
of STRING2 starting at INDEX2. The comparison ignores case if ALPHABETIC-CASE-AFFECTS-
STRING-COMPARISON is NIL.

NTH N, LIST (Class 4 - miscop 417)

Returns the N'th element of LIST. Counting starts from 0, so element O is the CAR and
element 1 is the CADR, etc.

NTHCDR N, LIST (Class 4 - miscop 420)

Discards N elements from LIST. Same as performing CDR N times.

N-+ NUMi1, NUM? " (Class 4 - miscop 421)
MISC version of + (PLUS). Adds NUMI 1o NUMZ to produce a result. NUM1 and NUM?
must both be numbers or an ARGTYP error is signalled. The result will be a number.
N-- NUM1, NUM2 (Class 4 - miscop 422)
MISC version of - (DIFFERENCE). Subtracts NUMZ2from NUM!1 vo produce the result. NUM!
and NUM2 must both be numbers or an ARGTYP error is signalled. The resuit will be a number.
M-« NUMI1. NUM? (Class 4 - miscop 423)
MISC version of * (TIMES). Multiplies NUM1 and NUM?Z to produce the result. NUM1 and
NUMZ must both be numbers or an ARGTYP error is signalled. The result will be a number.
N-// NUM1, NUM2 (Class 4 - miscop 424)

MISC version of // (QUOTIENT). Divides NUMI by NUME to produce the result. NUMI
and NUME must both be numbers or an ARGTYP error is signalled. The result will be a number.
Also signals DIVIDE-BY-ZERO if NV UM? is zero.

N-LOGAND NUMI, NUM2 (Class 4 - miscop 425)

MISC version of LOGAND. Result is the logical AND of NUM1 and NUM2. NUM1 and NUM¢?
must both be integer numbers (Fixnum or Bignum) or an ARGTYP error is signalled. The result
will be an integer number.

T1 Internal Data

123

124

Macro Instructions

N-LOGXOR NU'MI1. NUM2 (Class 4 - miscop 426)
MISC version of LOGXOR. Result is the logical exclusive-OR of' NUM! and NUM2. NUM1

and NUM® must both be integer numbers (either Fixnum or Bignum) or an ARGTYP error is
signalled. The result will be an integer number.

M-LOGIOR NUAMI, NUM?2 (Class 4 - miscop 427)

MISC version of LOGIOR. Result is the logical inclusive-OR of NUMI and NUM®2. NUM:
and AUM2 must both be integer numbers (either FIXNUM or BIGNUM) or an ARGTYP error is
signalled. The resuit will be an integer number.

ARRAY-LEADER ARRAY, INDEX (Class 4 - miscop 430)

Gets the INDEXth element of the leader of ARRAY. ARRA Ymust be an array or an ARGTYP
error is signalled. If 4ARRAY does not have a leader. ARRAY-HAS-NO-LEADER is signalled.
INDEX must be a fixnum or an ARGTYP error is signalled. If INDEX is greater than or equal to
the length of the leader. SUBSCRIPT-00B is signalled.

STORE-ARRAY-LEADER VALUE, ARRAY. INDEX (Class 4 - miscop 431)

Store VALUE into the INDEX'th element of the leader of ARRAY. ARRAY must be an
array or an ARGTYP error is signalled. If ARRAY does not have a leader, ARRAY-HAS-NO-
LEADER is signalled. INDEX must be a fixnum or an ARGTYP error is signalled. If INDEX is
greater than or equal to the length of the leader. SUBSCRIPT-00B is signalled.
GET-LIST-POINTER-INTO-ARRAY ignore (Class 4 - miscop 432)

Ignore the argument and return a list pointer to the last array element referenced. The last
array referenced element is remember in a register and kept in the stack group. The last array
referenced must be an ART-Q-LIST array or ARGTYP is signalled.

ARRAY-PUSH ARRAY, VALUE (Class 4 - miscop 433)

Add VALUE as an element at the end of ARRAY. The £ll pointer (leader element 0) is the
index of the next element to be added. Returns NIL and doesn’t update the fill pointer if the
array is full. otherwise recurns the index of the element written. Does not automatically increase
the size of the array like ARRAY-PUSH-EXTEND.

APPLY FN, ARGS (Class 4 - miscop 434)

Call FN on ARGS. ARGS are passed to FN spread or combination of spread and a rest as
FN expects them. FN can be any functional object.

RMAKE-LIST INITIAL-VALUE, AREA, LENGTH ' (Class 4 - miscop 435)

Construct a CDR-coded list of INITIAL-VALUE, LENGTH elements long in AREA.

LIST &REST ELEMENTS (Class 4 - miscop 436)

Return a list in DEFAULT-CONSING-AREA of the arguments. Actually treated like 83 optional
args rather than a rest arg.

T1 Internal Data

Macro Instructions

LIST» FIRST. REST ELEMENTS (Class 4 - miscop 437)
Like LIST except that the last cons of the constructed list is “dotted”. The last argument
to LIST* becomes the last CDR of the constructed list.
Example:
(LIST» 'A 'B 'C) => (AB . €)
which is the same as produced by
(CONS A (CONS 'B 'C))
LIST* of a single argument is just that argument. FIRST: no list is consed. This is actually
treated like 63 optional args rather than a rest arg.
LIST-IN-AREA ARE4 &REST ELEMENTS (Class 4 - miscop 440)
Returns a list of the ELEMENTS in AREA. This is actually treated like 63 optional args
rather than a rest arg.
LIST=-IN-AREA AREA, FIRST, 8REST ELEMENTS (Class 4 - miscop 441)
Like LIST+-IN-AREA is to LIST-IN-AREA as LIST« is to LIST. This is actually treated like
63 optional args rather than a rest arg.
LOCATE-IN-INSTANCE instance. symbol (Class 4 - miscop 442)

Returns a locative to te slot in instance for the instance variable symbol. *** errors? ***

%P-CDR-CODE POINTER (Class 4 - miscop 443)

Returns the CDR code value of the word addressed by POINTER. This is a number from 0 to
3. The values have standard names which are CDR-NEXT. CDR-NIL. CDR-NORNAL. and CDR-ERROR.
POINTER’s data type is ignored. it can even be fixnum.
%P-DATA 444 POINTER (Class 4 - miscop TYPE)

Returns the data type field of the word addressed by POINTER. This does not follow
forwarding pointers nor complain about illegal data types. POINTER's data type is ignored, it
can even be fixnum.

%P-POINTER POINTER (Class 4 - miscop 445)

Returns the pointer field of the word addressed by POINTER. This does not follow forward-
ing pointers nor complain about illegal data types. POINTER’s data type is ignored, it can even
be fixnum. : ’

%PAGE-TRACE table » (Class 4 - miscop 446)

Enable or disable swap in and swap out metering. Table is either a wired down array or
NIL. If NIL the page metering is disabled. Otherwise. it is an array which has been wired down.
On each swap in or swap out event. a 4-word entry is added in the array. The words are shown
in Table 12-11.

THROW-N TAG, 8REST VALUES-AND-COUNT (Class 4 - miscop 447)

Throw passing COUNT values. COUNT is the last argument. See «THROV.

T1 Internal Data

125

126

Macro [nstructions

Word Meaning

0 Microsecond clock value
1 Virtual Address
2 Miscellany:
bit 31: swap out flag
bit 30: stack-group-switch flag
bit 29: transport flag
bit 28: scavenge flag
bit 13-0: micro-PPC
3 Current function (PDLON-AP)

Table 12-11 Page Trace Entry

%P-STORE-CDR-CODE POINTER. CDR-CODE (Class 4 - miscop 450)

Store CDR-C'ODE into the CDR-code field of the word addressed by POINTER. CDR.
CODE is a number from 0 to 3 *"* is it checked? truncated? *** POINTER's data type is
ignored; it can even be fixnum. so this can be dangerous unless used with extreme care.

%P-STORE-DATA 51 POINTER, DATA TYPE (Class 4 - miscop TYPE)

Store DATA TYPE into the data type field of the word addressed by POINTER. DATA
TYPE is a value in the range 0 to 31. POINTER’s data type is ignored; it can even be a fixnum,
so this can be dangerous unless used with extreme care.

%P-STORE-POINTER POINTER, POINTER-TO-STORE * (Class 4 - miscop 452).

Store POINTER-TO-STORE into the pointer field of the word addressed by POINTER.
POINTER's data type is ignored: it can even be fixnum. so this can be dangerous unless used
with extreme care.

FLOAT-EXPONENT FLONUM (Class 4 - miscop 453)

Return as a fixnum the exponent of the floating point number, FLONUM. **I think**

FLOAT-FRACTION flonum {Class 4 - miscop 454)
Return flonum modified to contain O as its exponent. The result is either zero or has absolute

value at least 1/2 and less than one.

SCALE-FLOAT flonum, integer ‘ (Class 4 - miscop 455)
Return a FLONUM like flonum but with integer added o its exponent.

ACATCH-OPEN restart-pe (Class 4 - miscop 456)

Open a call block for the function «CATCH. This is a catch block that will catch throws to
the catch tag which is pushed as the first argument to this block. There are two ADI on the
block produced by this instruction, one recording the binding stack level and the other recording
restart-pe as the restart PC in this function if this catch is thrown to.

ACATCH-OPEN-NV restart-pc. num-vals (Class 4 - miscop 457)

Like %CATCH-OPEN but expects multiple values. Allocates space for a multiple value block
for num-vals values and adds an ADI for multiple value block.

T1 Iaternal Data

Maecro Instructions

Dest QOperation

0 FLOGR
1 CEIL

2 TRUNC
3 ROUND

Table 12-11 Internal Floor 1 Decode

INTERNAL-FLOOR-1 DIVIDEND, DIVISOR ' (Class 4 - miscop 460)

The destination field of this instruction is used to select the operation which is shown in
Table 12-11. All divide, and all round to a fixnum result in some way.

%Iv X, Y ' (Class 4 - miscop 481)

Divide X by Y returning a rational number if both X and Y are integers. j otherwise 77 ..

%FEXPR-CALL function (Class 4 - miscop 462)

Open a call block to function, indicating that it is a FEXPR call. Function entry will handle

the spreading of the part of the final list argument to get enough spread args for function.

YFEXPR-CALL-MV function, num-vals (Class 4 - miscop 463)

YFEXPR-CALL that expects multiple values. Sets up a multiple value return block to receive

num-vals values.

%FEXPR-CALL-NV-LIST function . (Class 4 - miscop 464)
%FEXPR-CALL that expects multiple values. Sets up a multiple value list return to receive all

returned values.

%CATCH-OPEN-NV-LIST restart-pc (Class 4 - miscop 465)
Open a *CATCH block that will receive values into a list. If it is thrown to, execution will

resume at restart-pc. See «CATCH below.

«CATCH TAG &REST FORMS (Class 4 - miscop 466)

Set up a tag. TAG, that a *THROW can throw to. If a «+THROW with argument EQ to TAG is
executed dynamically within FORMS, it returns immediately from the *CATCH. skipping the rest
of the execution of FORMS. The second argument of *THROV is returned as the value of *CATCH.

YBLT FROM-ADDRESS, TO-ADDRESS, COUNT, INCREMENT (Class 4 - miscop 467)

Copy a block of memory, a word at a time, with no decoding, for untyped data. Use XBLT-
TYPED for words which contain Lisp data types. The first word is copied from FROM-ADDRESS
vo TO-ADDRESS. INCREMENT is added to each address and then another word is copied, and
so on. COUNT is number of words to copy.

+THROW TAG. VALUE (Class 4 - miscop 470)

Return immediately from the innermost *CATCH that handles this TAG. The «CATCH returns
VALUE as its value.

T1 Internal Data

127

128

Macro Instructions

%LXBUS-WRITE-SYNC (Class 4 - miscop 471)
10-ADDR, WORD. DELAY. SYNC.LOC. SYNC-MASK. § YNC.- VAL

This instruction is not implemented. Any attempt to use it will signal an UNINPLEMENTED-
HARDVARE trap with XBUS as the missing hardware.
4P-LDB ppss. pointer (Class 4 - miscop 472)

Does %LOGLDB from the word pointed to by pointer. Does not interpret the data type of that
word or follow forwarding pointers there. Ppssis a field specifier as in LDB. Returns the specified
field of the word as a fixnum. The field may be up to 25bits wide. May return a negative value
if the field is 25bits wide. Signals ARGTYP if ppss is not a fixnum or specifies a field wider than
235bits.

*P-DPB VALUE. PPSS. POINTER (Class 4 - miscop 473)
Store VALUEinto byte PPSS in the word addressed by POINTER. Ppas is a field specifier

as in LDB. This byte can include any of the bits in the word., and can overlap between the various
fields normally used by Lisp. But it may not be more than 24 bits long. POINTER's data type
is ignored; it can even be fixnum, so this can be dangerous unless used with extreme care.
MASK-FIELD ppss, fiznum (Class 4 - miscop 474)
Return a number which is iznum with all but the byte ppss replaced by zero. ppssis a field
specifier as in LDB. *** returns a fixnum? is arg checked for fixnum” *** ’

%P-MASK-FIELD ppss. pointer (Class 4 - miscop 475)
Returns (MASK-FIELD ppss (%P-POINTER pointer)).

DEPOSIT-FIELD value, ppss. fiznum (Class 4 - miscop 476)

Return a number which in the byte ppss matches value and the rest matches fiznum. Ppss
is a field specifier as in LDB. *** type of result. errors? ***

%P-DEPOSIT-FIELD value, ppss, pointer (Class 4 - miscop 477)

Stores into the byte ppss of the word addressed by pointer from the same byte of value ***
is this right?? ***. This byte can include any of the bits in the word. and can overiap between
the various fields normally used by Lisp. For example, part of value’s data type field may be
included. pointer's data type.is ignored; it can even be fixnum, so this can be dangerous unless
used with extremem care.

COPY-ARRAY-CONTENTS jfrom, to (Class 4 - miscop 500)

Copy all the elements of the array frominto to. If to is longer than from, it is filled out with
seros (if a numeric array) or BILs. If either array is multidimensional, its elements are used in
the order they are stored in memory.

COPY-ARRAY-CONTENTS-AND-LEADER from, to (Class 4 - miscop 501)

Copy all the elements and leader slots of the array from into to. If to is longer than from,
it is filled out with zeros (if a numeric array) or NILs. If either array is multidimensional, its
elements are used in the order they are stored in memory.

T1 Internal Data

Macro Instructions

Dest Operation

0 FLOOR
1 CEIL

2 TRUNC
S ROUND

Table 12-11 Internal Floor 2 Decode

%FUNCTION-INSIDE-SELF (Class 4 - miscop 502)

Returns the functional part of SELF. If SELF is an instance. return the contents of the cell
referenced by the %INSTANCE-DESCRIPTOR-FUNCTION slot of the instance descriptor. This is
usually an funcallable hash array. If SELF is an entity or a closure, return the function from the
closure. Otherwise. return SELF.

ARRAY-HAS-LEADER-P array {Class 4 - miscop 303)
Returns the symbol T if array has a leader. If array does not have a leader, the symbol NKIL

is returned. array must be an array or an ARGTYP error is signalled.

COPY-ARRAY-PORTION (Class 4 - miscop 504)

from-array, from-start, from-end, to-array, to-start, to-end

Copies specified elements of from-array into to-array. From-start and from-end are indices
in from-array indicating the portion to copy. To-atart and to-end are indicies in to-array. If the

specified portiun of to-array is longer. it is filled out with zeros (if to-array is a numeric array)’

or NILs. If either array is multidimensional. its elements are used in the order they are stored in
memory.

FIND-POSITION-IN-LIST item. list (Class 4 - miscop 505)

Looks‘ down list for an element which is EQ to item, like NEMQ. However. it returns the
numeric index in the list at which it found the first occurence of item, or the symbol NIL if it did
not find it at all. The index returned is zero-based. list must be a list. Item may be any object.

%GET-SELF-MAPPING-TABLE method-flavor-name {Class 4 - miscop 506)

Netbod-flavor-name is a symbol for the flavor of the method for which to get a self mapping
table. If SELF is not an instance, NIL is returned. If the mapping table is already the value of
SELF-NAPPING-TABLE. it is returned. Otherwise, the table is located by searching the mapping
table alist of the instance descriptor for SELF for the mapping table for method-flavor-name
and returning the mapping table which is in the CDDR of it.

G-L-P array (Class 4 - miscop 507)
Return a list overlayed with the contents of array. array must be an array of type ART-Q-

LIST. ’

INTERNAL-FLOOR-2 dividend, divisor (Class 4 - miscop 510)
The destination field of this instruction is used to select the operation which is shown in

Table 12-11. All divide, and all round to a fixnum result in some way. Returns two values which
are il.?t.‘.

T1 Internal Data

129

130

Macro Instructions

EQL Y. ¥ (Class 4 - miscop 311)

When both arguments are numbers. true only if they are of the same type and have the
same value: otherwise same as EQ. This function is for Common Lisp.

AR-1 array, indez (Class 4 - miscop 512)

One dimensional array reference. Return element indez of array. Array must be an array
and indez must be a fixnum. otherwise an ARGTYP error is signalled. If indez is less than zero or
greater than the largest index premissible for array then a SUBSCRIPT-00B error is signalled. If
array does not have exactly one dimension. ARRAY-NUMBER-DIMENSIONS is signalled. The type of
the result depends on the type of array and the element stored at index.

AR-2 array, subl, sub2 , (Class 4 - miscop 513)

Two dimensional array reference. Return element selected by subscripts sub? and sub?2 of
array. Arraymust be an array and the subscripts fixnums, otherwise an ARGTYP error is signalled.
If either subl or sub2 are less than zero or greater than the largest index premissible for that
subscript of array then a SUBSCRIPT-00B error is signalled. If array does not have exactly two
dimensions, ARRAY-NUMBER-DIMENSIONS is signalled. The type of the result depends on the Lype
of array and the element read from the array.

AR-3 array, subl, sub®, subs (Class 4 - miscop 514)

Three dimensional array reference. Return element selected by subscripts subl, sub® and
sub$ of array. Array must be an array and the other arguments fixnums, otherwise an ARGTYP
error is signalled. If any of subl, sub2 or subd are less than zero or greater than the largest index
premissible for that subscript of array then a SUBSCRIPT-00B error is signalled. If array does not
have exactly three dimensions, ARRAY-NUNBER-DINENSIONS is signalled. The type of the result
depends on the type of array and the element read from the array.

AS-1 value, array, inder (Class 4 - miscop 515)

One dimensional array store. Store value into array at indez. Array must be an array and
the subscripts fixnums, otherwise an ARGTYP error is signalled. If either suds or sub® are iess than
zero or greater than the largest index premissible for that subscript of array then a SUBSCRIPT-
OOB error is signalled. If array does not have exactly two dimensions, ARRAY-NUNBER-DIMENSI0NS
is signalled. Returns value.

AS-2 value, array, subl, sub® (Class 4 - miscop 518)

Two dimensional array store. Store value into array at subl, subf. Arrgymust be an array
and the subscripts fixnums, otherwise an ARGTYP error is signalled. If either subl or sub? are
less than sero or greater than the largest index premissible for that subscript of array then a -
SUBSCRIPT-00B error is signalled. If array does not have exactly two dimensions, ARRAY-NUMBLR- -
DIMENSIONS is signalled. Returns value. :

AS-3 value, array, subl, sub®, subs (Class 4 - miscop 517)

Three dimensional array store. Store value into the array element selected by subl, subf
and subS. Array must be an array and the other arguments fixnums, otherwise an ARGTYP error
is signalled. If any of subl, sub® or subd are less than zero or greater than the largest index
premissible for that subscript of array then a SUBSCRIPT-00B error is signalled. If arrey does not
have exactly three dimensions. ARRAY-NUMBER-DINENSIONS is signalled. Returns value.

TI Internal Data

Macro Instructions

%INSTANCE-REF instance. inder (Class 4 - miscop 520)

Return the contents of slot inder in instance. The lowest valid indez is 1.

%INSTANCE-LOC :nstance, inder _ (Class 4 - miscop 521)

Return a locative pointer to slot inder in instance. The lowest valid indezis 1.

%INSTANCE-SET val, instance. inder {Class 4 - miscop 522)

Set rontents of slot inder in tnstanee to ral. The lowest valid indez is 1.

%BINDING-INSTANCES [ist-of-symbols {Class 4 - miscop 523)

Returns a list of locatives which are alternately internal and external value cell pointers.
One pair of pointers is placed on the list for each symbol in list-of-symbols. This is similar to
closure except that it does not have a function parameter.

%EXTERNAL-VALUE-CELL symbol (Class 4 - miscop 524)

Returns a locative to whatever the value cell of symbol points to. If symbol is closure bound.
this will be a locative to the external value cell. Does not check that the internal value cell
contains an external value cell pointer.

%USING-BINDING-INSTANCES binding-instances (Class 4 - miscop 525)

Install the bindings in binding-instances. Binding-instances is a list of alternating internal

and external value cell pointers as returned by XBINDING-INSTANCES. Binds the first of each pair.

to the second of each pair.

%GC-CONS-WORK NQS . {Class 4 - miscop 526)

Use this to indicate to the microcoded GC support that you have done some consing. NQS is
the number of Q's allocated. There is no need to do this if storage is allocated by the microcoded
storage allocation routines.

%P-CONTENTS-OFFSET potnter, offset (Class 4 - miscop 527)

Returns the contents of the word offset beyond that addressed by pointer. This is not the
same as what could be done with %P-CONTENTS and %NAKE-POINTER-OFFSET because it checks
for a forwarding pointer in the word addressed by pointer. The idea is that pointer points at the
beginning of a structure and offsct is an offset within it.

%DISK-RESTORE PARTITION-HIGH-16-BITS LOW-16-BITS (Class 4 - miscop 530)

Restore a load partition. The partition to load is selected by concatenating the two argu-
ments to form a 32-bit number that is interpreted as the 4 character partition name of a partition
in the disk label. If the number is zero, the current band is used.

%DISK-SAVE ‘ (Class 4 - miscop 531)
MAIN-MEMORY-SIZE PARTITION-HIGH-16-BITS LOW-16-BITS

Save current memory contents in a load partition. The partition to write into is determined
by concatenating the last two arguments to form a 32-bit number. This is matched against the
partition names in the disk label to find the designated partition. If the number is zero, the
current partition is used.

T1 Internal Data

131

132

Macero Instructions

%ARGS-INFO function (Class 4 - miscop 332)
Returns a numeric argumen descriptor (as described in section on FEF Layout) for function.

Function may be any object meeaningful as a function.

%OPEN-CALL-BLOCK function, ADl-pairs, destination (Class 4 - miscop 533)

Push a call block on the stack. for function funetion. 4Dl-pairs is the number of two-word
ADI units you have already pushed. Destination is a numeric destination code, 0 through 3,
which stands for D-IGNORE, D-PDL. D-LAST. or D-RETURN is order right? ... This works
only in compiled code. ‘

%PUSH X (Class 4 - miscop 534)

Push X onto the stack. Useful with %OPEN-CALL-BLOCK. You must make sure you have room
on the stack with YASSURE-PDL-ROON, before you push words with %PUSH. This works only in
compiled code.

RACTIVATE-OPEN-CALL-BLOCK (Class 4 - miscop 5$35)

Actually call the function in a call block you made with %0PEN-CALL-BLOCK. This is done
after pushing the arguments with {PUSH.

XASSURE-PDL-ROOM room (Class 4 - miscop 536)

Make sure there is room in the PDL buffer to do room more pushes in this active frame. Wil
signal STACK-FRAME-T00-LARGE if the current size of the frame plus room is larger than about.
248. Note that the maximum stack frame size is limited to 255.

STACK-GROUP-RETURN X . (Class 4 - miscop 537)

Resume the stack group which invoked this one. with X as the argument. Does not change
which stack group is recorded as that one’s resumer.

AS5-2-REVERSE value, array, indez?, indezl (Class 4 - miscop 540)

Store value into array, optionally reversing the indices. While arrays are stored with the
first index varying fastest, this is the same as ASET. When arrays are stored with the last index
varying fastest. this uses indez] as the first index even though it is the last argument.

ANAKE-STACK-LIST N (Class 4 - miscop 541)

Pushes N — 1 NIL's onto the stack with CDR-Next and one more NIL with CDR-NIL.
Returns a list pointer to the list. Since this pushes a bunch of words onto the stack, it may
interfere with the use of the stack for expression evaluation. This does not check for PDL room.
Should probably issue YASSURE-PDL~ROON before this.

STACK-GROUP-RESUNE SG, X (Class 4 - miscop 542)

Resume stack group SG with X as the argument. See section on multiprocessing.

%CALL-MULT-VALUE-LIST function (Class 4 - miscop 543)

Builds an open call block to function with a multi-value list return to receive returned values.
Pushes an ADI for a multiple value list return, then completes construction of the open call block
for function.

TI Internal Data

Macro Instructions

%CALLO-MULT-VALUE-LIST (Class 4 - miscop 344)
%CALLO-NULT-VALUE-LIST is to %CALL-NULT-VALUE-LIST as CALLO is to CALL.

%GC-SCAV-RESET region (Class 4 - miscop 343)
Makes the scavenger forget about a particular region. This also removes the region from the

cons cache. Returns T if the scavenger was looking at this region. or NIL otherwise.

%P-STORE-CONTENTS-OFFSET value, pointer, offset (Class 4 - miscop 346)

Store value in contents of word offset beyond that addressed by pointer. This is not the same
as could be done with %P-STORE-CONTENTS and %NAKE-POINTER-OFFSET because this instruction
checks for a forwarding pointer in the word addressed by potnter. The idea is that pointer points
at the beginning of a structure and offset is an offset within it.

%GC-FREE-REGION region (Class 4 - miscop 547)

The makes region free. Region is a region number. Use this on an oldspace region after
scavenging is complete and the region contains nothing but garbage.

%GC-FLIP region (Class 4 - miscop 550)

Flips region converting new space to old space. Then makes sure nothing in the machine
points to old space. If region is T all new space and copy space.

ARRAY-LENGTH array {Class 4 - miscop 551)

Returns the number of elements in array. Does not take account of the fill pointer.

ARRAY-ACTIVE-LENGTH array (Class 4 - miscop 552}

Returns the number of elements in array. or the fill pointer if there is one.

%COMPUTE-PAGE-HASR addr ’ (Class 4 - miscop 553)

Computes the page hash table index that corresponds to addr and returns it as a fixnum.

THROVW-SPREAD tag. value-list (Class 4 - miscop 554)

This does not really throw. It returns values in preparation for a throw. Values are extracted
from value-list and all but the last one is returned. That last one is left on the stack. On return,
the stack contains the tag and a single value, which you can pass to *THROW to complete the
throw.

%UNIBUS-READ Unibus-addr (Class 4 - miscop 5535)

Signals USIMPLENENTED-HARDVWARE because Unibus is not implemented on Explorer.

YUNIBUS-WRITE Unibus-addr, word {Class 4 - miscop 556)
Signals UNIMPLEMENTED-HARDVWARE because Unibus is not implemented on Explorer.

%GC-SCAVENGE work-units (Class 4 - miscop 557)

Scavenge for work-units of work or until a page fault. Returns NIL if completed work-units
of work or ran out of work to do. Returns non-NIL if took a page fault before done. A “work
unit” is the scavenging of one Q.

T1 Internal Data

133

134

Maero Instructions

%CHAQS -WAKEUP (Class 4 - miscop 360)

This is an illegal instruction.

%AREA-NUMBER X (Class 4 - miscop 561)

Returns the area number of the area the pointer X' points into.

*NAX numl, numg (Class 4 - miscop 562)
Return the greater of num1! and num#. Both num’ and num2 must be numbers or an ARGTYP

trap is signalled.

*NIN numl. num2 (Class 4 - miscop 583)
Return the lesser of num! and numg. Both num’ and num? must be numbers or an ARGTYP

trap is signalled.

CLOSURE syrmbol-list, function (Class 4 - miscop 363)

Returns a closure. closing function over the variables in symbol-list. The closure is a function
which when called will perform function in an environment in which those variables have the same
bindings they have now (when the closure is created). Only special variables may be closed over.

AR-2-REVERSE array. indez®, indezl (Class 4 - miscop 568)

Return an element of array, optionally reversing the indices. While arrays are stored with
first index varying fastest. this is the same as AREF. When arrays are stored with last index
varying fastest, this uses indezl as the first index even though it is the last argument.

LISTP X (Class 4 - miscop 567)

If the ojbect X is a list, the symbol T is returned. Otherwise, the symbol NIL is returned.

NLISTP X (Class 4 - miscop 570)

If the object X is a lisp atom. the symbol T is returned. Otherwise, the symbol NIL is
returned. :

SYMBOLP X (Class 4 - miscop 571)

If the object X'is a symbol. the symbol T is recurned. Otherwise. the symbol KIL is returned.

NSYMBOLP X ' {Class 4 - miscop 572)
If the object X is a symbol, the symbol NIL is returned. Otherwise, the symbol T is returned.

ARRAYP X ' (Class 4 - miscop 573)
If the object X is an array (DTP-ARRAY-POINTER), the symbol T is returned. Otherwise,

the symbol RIL is returned.

FBOUNDP symbol (Class 4 - miscop 574)

If the function cell of symbol does not contain an unbound marker, the symbol T is returned.
Otherwise. the symbol NIL is returned. symbol must be a symbol or an ARGTYP trap is signalled.

T1 Internal Data

Maero Instructions

STRINGP X {Class 4 - miscop 373)

If the object X is a one dimensional array of ART-STRING or ART-FAT-STRING, the
symbol T is returned. Otherwise. the symbol NIL is returned.

BOUNDP symbol {Class 4 - miscop 376)

If the value cell of symbol contains an unbound marker. the symbol NIL is returned. Other-
wise. the symbol T is returned. symbol must be a symbol or an ARGTYP trap is signalled.

INTERNAL-\ numl, num?2 (Class 4 - miscop 577)

Calculate GCD on numJl and numg. Both numil and num£ must be numbers or an ARGTYP
trap is signalled.

FSYNEVAL symbol : (Class 4 - miscop 600)

Returns symbol's definition. the contents of its function cell. If the function cell is unbound.
a TRANS-TRAP is signalled. Symbol must be a symbol. otherwise an ARGTYP trap is signalled.

AP-1 array. indez (Class 4 - miscop 601)

Returns a locative to array slot inder of array. ***

about?? ***

what about number arrays - what

AP-2 array. subl. sub2 {Class 4 - miscop 602)’

Returns a locative to array slot specified by subl and sub? of array. *** see AP-1 for
questions *** :
AP-3 array, subl, sub2, subs (Class 4 - miscop 603)
Returns a locative to the slot of array specified by subl, sub2 and sub3. *** see AP-1 for
questions ***
AP-LEADER array, indez (Class 4 - miscop 604)

Returns a locative to leader slot indez of array.

%P-LDB-OFFSET ppss, pointer, offset {Class 4 - miscop 605)

Returns the contexts of byte ppss in the word offset beyond.gointer. Ppssis a field specifier
as in LDB. This is not the same as what could be done with %P-LDB and %MAKE-POINTER, because
this instruction checks for a forwarding pointer in the word addressed by pointer. The idea is
that pointer points at the beginning of a structure and offset is an offset within the structure.

%P-DPB-OFFSET value, ppes, pointer, offset (Class 4 - miscop 606)

Stores value into the byte ppss in the word offset beyond potnter. Ppss is a field specifier
as in LDB. This is not the same as what could be done with %P-DPB and %MAKE-POIXTER-OFFSET
because this checks for a forwarding pointer in the word addressed by pointer. The idea is that
pointer points at the beginning of a structure and offset is a offset within the structure.

TI Internal Data

135

136

Macro Instructions

AP-NASK-FIELD-OFFSET ppss, pointer. offset (Class 4 - miscop 607)
NASK-FIELD of ppss from the contents of the word offsct beyond pointer. Ppes is a field
specifier as in LDB. This is not the same as
(AXP-MASK-FIELD ppss
(AMAKE-POINTER-OFFSET . . pointer offset))

hecause it checks for a forwarding pointer in the word addressed by pointer. The idea is that
pointer points Lo the beginning of a structure and offset is an offset within it.

%P-DEPOSIT-FIELD-OFFSET value, ppss, pointer, offset (Class 4 - miscop 810)

Copy byte ppss from value into the word offset beyond pointer. Ppss is a field specifier as
in LDB. This is not the same as what could be simulated using %P-DPB because this instruction
checks for a forwarding pointer in the word addressed by pointer. The idea is that pointer points
to the beginning of the siructure and offset is an offset within it.

ANULTIPLY-FRACTIONS numl, num?® (Class 4 - miscop 611)

Multiply numi1 and num¢ returns the high part of the resulting product. Both numi and
num® must be fixnums.

XDIVIDE-DOUBLE high-dividend, low-dividend, divisor (Class 4 - miscop 612)
Divide the double precision number made from high-dividend and low-dividend by divisor.

Return the integer quotient. Do the thing you expect.

YREMAINDER-DOUBLE high-dividend. lou-dividend. divisor (Class 4 - miscop 613)

Do the thing vou expect.

HAULONG integer (Class 4 - miscop €14)
Returns the “size” of integer in bits. (eg. the size of #0777 is nine bits.) Integer may be
either a fixnum or a bignum.
%ALLOCATE-AND-INITIALIZE (Class 4 - miscop 615)
return-dtp. header-dtp, header. word®, area, ngs
Do the thing you expect.
RALLOCATE-AND-INITIALIZE-ARRAY (Class 4 - miscop 616)
header, indez-length, leodpr-length, area, nqs
Do the thing you expect.

XMAKE-POINTER-OFFSET new-dtp, pointer, offsct (Class 4 - miscop 617)

Make a Lisp object (possibly an invalid one) which has a datatype of new-dtp and a pointer
of pointer plus offset. The data types of pointer and offsct are not checked and can even be
fixnum. This instruction is danger-ou; unless used with extreme caution.

num, ezpt (Class 4 - miscop 620)

Exponentiate num to the ezpt power. Generic operation that works with all numeric types.

T1 Internal Data

Macro Instructions

%CHANGE-PAGE-STATUS virt-addr. swap-status. access-and-meta (Class 4 - miscop 621}

Sets the swap status. access and meta-bits for the page corresponding to virt-addr if it is
paged in. This does no error checking and can easily be very dangerous. Updates the page
hash table entry and the memory map. If either suap-status or access-and-meta are NIL that
parameter is not set. Returns T if the page was found in the page has table or NIL if it was not
(meaning it was not swapped in).

%CREATE-PHYSICAL-PAGE phys-addr

(Class 4 - misqop 622)

Add a new physical page to the pool of page frames. Phys-addr is the *** logical *** physical
address of the page being added. Returns T if it succeeds. ILLOP's if it fails. **” don’t think this
checks for adding a page already in the pools which would be very bad. ***

%DELETE-PHYSICAL-PAGE phys-addr (Class 4 - miscop 623)

Deletes the physical page from the page frame pool. Phys-addr is the *** Jogical *** physical
address of the page. Returns T if it deletes the page and NIL if the page was already deleted.

%24-BIT-PLUS numl, num?2 (Class 4 - miscop 624)

Do the thing you expect. ;; should be 25-bit? ;.

%24-BIT-DIFFERENCE numl, num? (Class 4 - miscop 625)

Do the thing you expect. j; should be 25-bit? ;,

%24-BIT-TIMNES numl, num2 (Class 4 - miscop 626)

Do the thing you expect. ;; should be 25-bit? ;¢

ABS num _ (Class 4 - miscop 627)

Returns the absolute value of num which can be any type of number.

. YPOINTER-DIFFERENCE ptrl, ptre (Class 4 - miscop 630)

Return the number of words difference between ptrl and ptre. They had better be locatives

into the same object for this operation Lo be meaningful: otherwise. their relative position will
be changed by garbage collection.

%P-CONTENTS-AS-LOCATIVE pointer (Class 4 - miscop 631)

Returns a locative whose pointer field is copied from the word that pointer points to. If you
have determined that the contents of that word is a pointer type, this is a good way to find the
object it points to without getting things confused by forwarding or by DTP-NULL or by header
data types.

%P-CONTENTS-AS-LOCATIVE-OFFSET pointer, offset (Class 4 - miscop 632)

Like 4P-CONTENTS-AS-LOCATIVE but fetches the word offset locations beyond where pointer. .

points. This is not the same as

(%P-CONTENTS-AS-LOCATIVE
(\MAKE-POINTER-OFFSET ... pointer offset))

because it checks for a forwarding pointer in the word addressed by pointer. The idea is that
pointer points at the beginning of a structure and offset is an offset within it.

T1 Internal Data

137

138

Macro Instructions

N-EQ X ¥ (Class 4 - miscop 633)
Result is the symbol Tif X and } are the same Lisp object. Otherwise returns the symbol

NIL.

XSTORE-CONDITIONAL pointer. old, new (Class 4 - miscop 634)

Store new into pointer if the old contents of pointer was old. This is a basic interlocking
primitive. which can be used to simulate any sort of atomic test-any-modify operation.

ASTACK-FRAME -POINTER (Class 4 - miscop 835)

Returns a locative pointing at the first slot in the current sitack frame. This is the slot that
contains a pointer to the function that is executing. While this will execute in interpreted code,
it is not likely 1o give anything useful therein.

*UNVIND-STACK (ag. value. frame-count. action (Class 4 - miscop 636)

Do the thing you expect.

%XBUS-READ fo-addr (Class 4 - miscop 637)
Signals UNIMPLENENTED-HARDWARE since Explorer does not have an XBUS.

AXBUS-WRITE /O-ADDR, WORD (Class 4 - miscop 640)
Signals USINPLEMENTED-HARDVARE since Explorer does not have an XBUS.

ELT sequence. indez) (Class 4 - miscop €41)-

Common Lisp sequence access. Sequence may be a one-dimensional array or a list. /ndez
must be a positive fixnum or ARCTYP is signaled. Returns the indez-th element of sequence.

NOVE-PDL-TOP (Class 4 - miscop 642)

Copies the top object on the PDL to the destination without popping it.

SHRINK-PDL-SAVE-TOP value-to-move, n-slots (Class 4 - miscop 843)

Pops n-slots from the PDL and moves value-to-move to the destination. Both arguments
are popped before counting the n-slots Q's to remove.

SPECIAL-PDL-INDEX (Class 4 - miscop 644)

The result is a locative to the last slot on the special PDL that was bound.

UNBIND-TO-INDEX special-pdl-inder (Class 4 - miscop 645)
Undo bindingings on the special PDL until the special PDL pointer is less than or equal to

special-pdl-indez. Does not affect the indicators.

UNDIND-TO-INDEX-MOVE special-pdi-indez, value-to-move (Class 4 - miscop 646)

Like UNBIND-TO-INDEX. undo bindingings on the special PDL until the special PDL pointer
is less than or equal to special-pdi-indez. Return value-to-move.

FIX number (Class 4 - miscop 647)

Convert number to the largest integer. which is less than or equal to number.

TI Internal Data

Macro Instructions

Code Memory

1 Microinstruction
2 Dispatch

4 Aand M

B

Tag Classifier

Table 12-11 Internal Memory Selector Codes

FLOAT number . (Class 4 - miscop 650)

Convert number to a full-size floating point number.

SMALL-FLOAT number (Class 4 - miscop 651)

Convert number to a small flonum.

YFLOAT-DOUBLE number, number2 (Class 4 - miscop 852)

Do the thing you expect.

BIGNUM-TO-ARRAY bignum, base (Class 4 - miscop 653)

Converts a bignum into an array. Bignum is a bignum, base is a fixnum. Bignum is expressed
in base and stuffed into a appropriate art-q array. The sign of bignum is ignored. *** needs work

ARRAY-TO-BIGNUM array. base. sign (Class 4 - miscop 634)

Converts an array into a bignum. Array is an ART-Q array. base is a fixnum, and sign is
the sign bit (0 or 1}. Arrayis interpreted as a bignum expressed in base and with sign. Inverse
of BIGNUN-TO-ARRAY. **" needs work **~

%UNWIND-PROTECT-CONTINUE value, tag. count. action (Class 4 - miscop 853)

This is similar to *UNWIND-STACK but takes its arguments in a different order. If tag is NIL
this is a normal exit from an unwind-protect: simply move value to the destination. If tagis 1,
means return to a POP-OPEN-CALL instruction tat popped an unwind protect’s frame.

YWRITE-INTERNAL-PROCESSOR-MENORIES code, adr, d-hi, d-low (Class 4 - miscop 656)

Code selects which memory gets written as shown in Table 12-11. If code is not one of
the listed values, BAD-INTERNAL-MENORY-SELECTOR-ARG is signaled. Adr is the address in that
memory; adr is bounds checked against the size of the hardware memory and INTERNAL-MENORY-
LOCATION-00B is signaled if out of bounds.

For microinstruction (I) memory, d-hs supplies the portion of the I-Mem data that can be
modified with an INOD-HIGH destination (see processor documentation). This will not need to
be a bignum for Explorer. D-low supplies the portion of the I-Mem data that can be modified
with an INOD-LOY destination. This will sometimes need to be a bignum to supply 32 bits.

For A and M memories, the low order bits of d-ht supply the bits above Q-POINTER and
d-low supplies the bits of Q-POINTER for the 32-bit data to be written. Neither should be a
bignum. If adr is below the size of M memory, both A and M memories are written with the
32-bit data. otherwise only A memory is written.

TI Internal Data

139

140

Macro Instruetions

For tag-classifier (T) memory. d-hi and d-lou: are combined as for A and M memories. The
32-bit data is loaded into the class selected by adr. Bit O corresponds to Q-Data-Type = 0 and
bit 81 o Q-Data-Type = 31.

For dispaich (D) memory. d-At is ignored. The low order bits of d-low supply t.he 17-bit data
to be written. -
%PAGE-STATUS ptr (Class 4 - miscop 657)
Returns the page hash table PHT1 word of the page that ptr addresses or NIL if the page is
not swapped in. The modified bit is always up to date. even though that in PHT1 may not be.
%REGION-NUMBER ptr (Class 4 - miscop 660)

Return the number of the region ptr poinis into. Only the POINTER field of ptris significant.

%FIND-STRUCTURE-HEADER ptr (Class 4 - miscop 661)

Given a locative. return the object containing the cell addressed by the locative. Finds the
overall structure containing the cell addressed by the locative, ptr. Does not follow structure
forwarding.

%STRUCTURE-BOXED-SIZE ptr (Class 4 - miscop 662)

Returns the number of normal Lisp pointers in an object. This many words at the beginning
of the object contain normal Lisp data objects. The remaining words contain just numbers (just
bits) that do not have the normal Lisp data typing. Does not follow structure forwarding.

%STRUCTURE-TOTAL-SIZE ptr (Class 4 - miscop 663)

Returns the number of words in the object, ptr.

%MAKE-REGION bsts, size ‘ (Class 4 - miscop 664)

Create a region. Its size will be at least size and its region bits will be set to bits. You
probably don’t want to use this.

BITBLT (Class 4 - miscop 865)
ALU, width. height. from-array, from-z, from-y, to-array, to-z, to-y

Move with logical operation for bit and byte arrays. Fi rom-array and to-array must both be
two-dimensional numeric arrays. From-z and from-y specify the coordinates of the upper, left-
hand corner of a rectangie region on the source array. The rectangle has height and width as
specified by height and width. but with wrap around if an array dimension is exceeded.

Elements are copied from from-array to to-array with logical operaton. The result stored.
into the to-array is (BOOLE ALU from-eit to-elt). ALU is as specified in BOOLE. Normally ALU
is specified as the value of one of these symbols: TV:ALU-SETA for just copying, TV:ALU-IOR
(inclusive-OR) for merging images. TV: ALU-XOR (exclusive-OR) for complementary drawing, or
TV:ALU-ANDCA (AND with complement of source) for masking.

Normally, copying is performed to to bottom then left to right. but making width or height
negative will alter the order of copying. Coordinates should still be for the top left corner.

Requires that the first dimension of the array be a multiple of 32 bits. Also index-offset
arrays do not work with wrap-around. '

T1 Internal Data

Macro Instructions

%DISXK-0P RQB {Class 4 - miscop 666)

Invalid instruction.

%PHYSICAL-ADDRESS ptr {Class 4 - miscop 667)
Return the address in core of the memory pointed to by the virtual address ptr. The returned

value is a FIXNUM which may be negative. Only the pointer field of PTR is significant.

POP-OPEN-CALL restart-PC (Class 4 - miscop 670)

Remove one open call block from the stack without changing the PDL pointer. If the block
being popped is an unwind-protect. restart-PC is the PC of the restart for the unwind-protect,
otherwise it is zero. This should always have destination D-IGNORE.

%BEEP half-wavelength, duration {Class 4 - miscop 871)

Sound a beep on the console’s speaker. The half-wavelength is the number of microseconds
between zero crossings and duration is the number of microseconds for which the sound should
continue. Returns after duration has passed.

This is being migrated to macrocode. No need for it to be an instruction with modern beep
hardware.

%FIND-STRUCTURE-LEADER ptr (Class 4 - miscop 672)

Given a locative. return the object containing it and its leader. This is like %FIND-
STRUCTURE-HEADER except that italways returns the base of the structure: thus for an array

with a leader it gives a locative to the base instead of giving the array. Does not follow structure,

forwarding.
BPT _ (Class 4 - miscop 673)
Breakpoint. Signals BREAKPOINT.

%FINDCORE ' (Class 4 - miscop 674)

Returns the page frame number of an available page. Makes one available if none are
available.

%PAGE-IN PFN, VPN , (Class 4 - miscop 675)

This does not work and will trap with *** what error *"*.
ASH N, nbits (Class 4 - miscop 676)

Shift N-arithmetically by nbits. N may be any integer (DTP-FIXNUM or DTP-BIGNUM).

%MAKE-EXPLICIT-STACK-LIST length ' (Class 4 - miscop 677)

Immediately before the argument on the stack are length values that are to be made into 2
list. Changes the CDR-Code of the last one to CDR-NIL and returns a list pointer to the first
of them.

%DRAVW-CHAR (Class 4 - miscop 700)
font-array, char-code, z-bitpos, y-bitpos, alu-function. sheet

Draw character char-code of font font-array on sheet using alu-function. Aly-function is
typically TV:ALU-IOR, TV:ALU-ANDCA, or TV:ALU-XOR. X-bitpos and y-bitpos are the position in
sheet for the upper left corner of the character to be drawn.

T1 Internal Data

141

142 Macero Instructions

%DRAW-RECTANGLE {Class 4 - miscop 701)
width, height, 1-bitpos. y-bitpos. alu-function, sheet

Draw a solid rectangle on sheet using alu-function. Alu-function is typically TV:ALU-IOR.
TV:ALU-ANDCA, or TV:ALU-XOR. Height and width are the size of the rectangle. and r-bitpos and
y-bitpos are the location of the upper left corner.

ADRAW-LINE X0, Y0. X, Y. ALL, drau-end-point, sheet (Class 4 - miscop 702)

Draw a straight line from (X0. Y0) to (X. }) on sheet using ALU as the ALU function. 4LU
is typically TV:ALU-IOR, TV:ALU-ANDCA. or TV.ALU-XOR.

ADRAY-TRIANGLE X1, Y1, X2, Yg, X3, V3, ALU, sheet (Class 4 - miscop 703)

Draw a triangle with corners at (X1. Y1). (X2 Y2). and (XS. Y3) on sheet. ALU is the
drawing function ro use and is typically TV:ALU-IOR, TV:ALU-ANDCA. or TV:ALU-XOR.
%COLOR-TRANSFORN (Class 4 - miscop 704)
N17. N16. N15, N14, N18. N12, N11. N10. N7. N6. N5, N4, N3, N2, N1. N0, width, height, array, start-z, st

Modify all pixels in a rectangle with array, an ART-4B array. If the pixel contains 0, it
is replaced by NO: if it contains 1. it is replaced by N1, etc. Width and height are the size of
rectangle; start-r and start-y are the top left corner of the rectangle.

%RECORD-EVENT (Class 4 - miscop 705)
data-4. data-3, data-2. data-1. stack-level. event. must-be-4

Records a meter event on the meter band. Records event as the event number. The last
argument indicates the number of data words supplied. Only 4 data words are supported and
MUST-BE-4 is only supported with a value of 4. Results are unpredicatable if this argument is
not supplied as the FIXNUM 4.)

The four data words are included in the event record in reverse order. That is, data-1 is the
first data word in the meter event record.

The function stack-level frames up the stack is recorded as the metered function in the moter
event record.
%AOS-TRIANGLE X1, Y1, X2, Yg, X3, V3, tncrement, sheet (Class 4 - miscop 708)

Add increment to each pixel in a triangle on sheet. The triangle’s corners are at (X1, Y1),
(X2, Y2). and (X3. V3). Pixels are regarded as being between coordinate points, and the top
left pixel is considered between X values O and 1, and between Y values 0 and 1.

%SET-MOUSE-SCREEN sheet (Class 4 - miscop 707)

Set the mouse screen to sheet which may be either an array or an instance of a sheet. <=

%OPER-NOUSE - CURSOR (Class 4 - miscop 710)

Sets the mouse cursor state to open and undraws the mouse if it is currently being displayed.

SETELT sequence, indez. value (Class 4 - miscop 711)

This is the Common Lisp compatible function to set the element of any sequence type object.
The the element of sequence at indez to be value. Sequence types include LIST, and ARRAY.

TI Internal Data

Macro Instructions

%BLT-TYPED from-address. to-address. count. inerement (Class 4 - miscop 712)

Block copy typed data. Copy count words from from-address 1o to-address. After each
transfer both addresses are incremented by increment. Each word read is transported and each
word written is GC-WRITE-TEST ed. Returns NIL.

UNUSED-713 {Class 4 - miscop 713)

Do nothing but error.

AR-1-FORCE array, inder (Class 4 - miscop 714)

Return contents of element of array at indez. array is treated as a one-dimensional in that
it is indexed with a single subscript regardless of its rank.

AS-1-FORCE value, array. indez (Class 4 - miscop 715)

Store value into element of array at tndez. Arrayis treated as one-dimensional in that it is
indexed with a single subscript regardless of its rank.

AP-1-FORCE array. indez ‘ (Class 4 - miscop 716)

Return a locative to element of array at indez. Arrayis treated as one-dimensional in that
it is indexed with a single subscript regardless of its rank.

AREF array, #REST subscripts (Class 4 - miscop 717)

Return the contents of the element of array specified by subscripts.

ASET value. array. 8REST subscripts . (Class 4 - miscop 720)

Store value into the element of array specified by subscripts.

ALOC array, &REST subscripts : (Class 4 - miscop 721)

Return a locative to the element of array specified by subscripts.

EQUALP X, Y (Class 4 - miscop 722)
This is the Common Lisp EQUAL function. Almost the same as EQUAL. ;;; How is it

different?? (o

%MAKE-EXPLICIT-STACK-LIST* length (Class 4 - miscop 723)
Same as 4MAKE-EXPLICIT-STACK-LIST* except that the last of the words on the stack

becomes the (length — 1)-th CDR of the returned list.

SETCAR cons, newcar (Class 4 - miscop 724)
Replaces the CAR of cons with newear. Returns newcar. Just like RPLACA except that the

returned value is different.

SETCDR cons, newedr (Class 4 - miscop 725)

Replaces the CDR of cons with newedr. Returns newedr. Just like RPLACD except that the
returned value is different.

T1 Internal Data

143

144

Macro Instructions

GET-LOCATION-OR-NIL plist. property (Class 4 - miscop 726)

Returns a locative 1o the plist location containing the value of property. Plist can be a
symbol. instance or disembodied property list. If the property is not found. returns NIL.

ASTRING-WIDTH table. offset. string, start. end, stop-urdth (Class 4 - miscop 27)

Take each charracter in string from start to vud. subtract the offset and use the difference as
an index into table. Table is a charactor width table. Accumulate these values into a total width.
Stop when the total width would go over the stop-uidth. If stop-uidth is NIL. same as having an
infinite stop-width. Also stops if any elernent of string is not a number or character, if the table
entry is not a number or if index into table is out of bounds for table.

Returns the cumulative sum and the index of the last location of string examined.

AR-1-CACHED-1 array, subscript (Class 4 - miscop 730)
Do the thing you expect.

AR-1-CACHED-2 array, subscript {Class 4 - miscop 731)
Do the thing you expect.

AMULTIBUS-READ-16 multibus-byte-adr (Class 4 - miscop 732)

Multibus not currently implemented on the Explorer System. Signals UNINPLEMENTED-
HARDVARE.

ANULTIBUS-WRITE-16 multibus-byte-adr, word (Class 4 - miscop 733)

Multibus not currently implemented on the Explorer System. Signals UNINPLEMENTED-
HARDVARE.

YNULTIBUS-READ-8 multibus-byte-adr (Class 4 - miscop 734)

Multibus not currently implemented on the Explorer System. Signals UNIMPLEMENTED-
HARDWARE.

AMULTIBUS-WRITE-8 multibus-byte-adr, word (Class 4 - miscop 735)

Multibus not currently implemented on the Explorer System. Signals UNIMPLENENTED-
HARDWARE.

UNULTIBUS-READ-32 multibus-byte-adr ' " (Class 4 - miscop 736)

Multibus not currently implemented on the Explorer System. Signals UNINPLEMENTED-
HARDVARE.

AMULTIBUS-WRITE-32 multibus-byte-adr, word (Class 4 - miscop 737)

Multibus not currently implemented on the Explorer System. Signals UNIMPLEMENTED-
HARDYARE,

SET-AR-1 array, subscript, value (Class 4 - miscop 740)

Do the thing you expect.

SET-AR-2 array, subscriptl, subscript?, value (Class 4 - miscop 741)
Do the thing you expect.

T1 Imternal Data

Macro Instructions

SET-AR-3 array. subscriptl. subscript?. subseriptd. valuc {Class 4 - miscop 742)

Do the thing you expect.

SET-AR-1-FORCE array. subseript. value (Class 4 - miscop 743)

Do the thing you expect.

SET-AREF array, &REST subscripts-and-value {Class 4 - misc(;p 744)

Do the thing vou expect.

SET-ARRAY-LEADER array. indez, value (Class 4 - miscop 745)
Do the thing you expect.

SET-%INSTANCE-REF instance. indez, value (Class 4 - miscop 748)

Do the thing you expect.

VECTOR-PUSH neu-element, vector (Class 4 - miscop 747)

For Common Lisp. Vector must have a leader or ARRAY-HAS-NO-LEADER is signalled. The
fill pointer in leader element 0 must be a fixnum or FILL-POINTER-NOT-FIXNUM is signalled. The
fill pointer is incremented and then new-element is stored in that location. If the array is full
return NIL and leave the fill pointer unchanged. otherwise return the new fill pointer. *** this
does not check that VECTOR is a vector ***

ARRAY-HAS-FILL-POINTER-P array {Class 4 - miscop 750).

Returns the symbol T if array is an array with a leader and leader element O contains a
fixnum. Signals ARGTYP if array is not an array. Otherwise, returns the symbol NIL.

ARRAY-LEADER-LENGTH array {Class 4 - miscop 751)

Returns the length of the leader of arrey. Signals ARGTYP if array it not an array.

ARRAY-RANK array {Class 4 - miscop 752)

Returns the rank (number of dimensions) of array.

ARRAY-DIMENSION array, dimension {Class 4 - miscop 753)

Do the thing you expect.

ARRAY-IN-BOUNDS-P array &REST subscripts (Class 4 - miscop 754)
Do the thing you expect.

ARRAY-ROW-MAJOR-INDEX array &REST subscripts (Class 4 - miscop 755)
Do the thing you expect.

RETURN-N-KEEP-CONTROL &REST values N (Class 4 - miscop 756)

Do the thing you expect.

RETURN-SPREAD-KEEP-CONTROL value-list {Class 4 - miscop 757)
Do the thing you expect.

TI Internal Data

145

146

Macero Instructions

COMMON-LISP-LISTP object (Class 4 - miscop 760)
Returns T if object is the symbol NIL or has data type LIST. otherwise returns the symbol

NIL.

%NuBus-READ NuBus-slot. slot-byte-adr (Class 4 - miscop 761)

Read the word (32 bits) from the location addressed by taking the low order 24 bits from
slot-byte-adr and concatenating the low 8 bits from NuBus-slot. For NuBus slot space accesses,
the 4 bits at bit 4 of NuBus-slot should be ones. Returns an integer, either a FIXNUM or a
BIGNUM. The result is signed.

%NuBus-WRITE NuBus-slot, slot-byte-adr, word (Class 4 - miscop 762)

Write word (32 bits) at the location addressed by taking the low order 24 bits from slot-
byte-adr and concatenating the low 8 bits from ANuBus-slot. For NuBus slot space accesses, the
4 bits at bit 4 of NuBus-slot should be ones. Word should be an integer. either a FIXNUM or a
BIGNUM. Word is signed.

%NICROSECOND-TIME (Class 4 - miscop 763)

Returns the 32-bit microsecond time as an integer. either a FIXNUM or a BIGNUM.

%F IXNUM-NICROSECOND- TIME (Class 4 - miscop 764)

Returns the 32-bit microsecond time truncated to 25-bits and typed as a FIXNUM.

%I0-SPACE-READ]O-ADDR (Class 4 - miscop 765)

Read 32 bits from HARDWARE-VIRTUAL-ADDRESS space. 10-ADDR is added to
HARDWARE-VIRTUAL-ADDRESS to get the virtual address to use. Various hardwars 10
registers are mapped into HARDWARE-VIRTUAL-ADDRESS space. Returns an integer, either
a BIGNUM or a FIXNUM. The returned value is signed.

%I0-SPACE-WRITE /0-ADDR, WORD (Class 4 - miscop 766)

Write 32 bits of WORD into HARDWARE-VIRTUAL-ADDRESS space. Address is de-
veloped as in XI0-SPACE-READ. WORD must be an integer. either a BIGNUM or a FIXNUM.
WORD is interpreted as a signed quantity.

%NuBus-PHYSICAL-ADDRESS APPARENT-PHYSICAL-PAGE (Class 4 - miscop 767)
*** this was for Lambda *** APPARENT-PHYSICAL-PAGEgotten from by shifting value

from APHYSICAL-ADDRESS. Returned value is the 22-bit NuBus page number. *** don’t really

understand this. Do we need it? ***

VECTORP object (Class 4 - miscop 770)
For Common Lisp. Returns the symbol NIL if object is not a vector. A vector is defined by

Common Lisp as & one dimensional array. Otherwise, returns symbol T.

SINPLE-VECTOR-P object (Class 4 - miscop 771)

For Common Lisp. Returns the symbol T ifobject is a simple vector and the symbol NIL
otherwise. A simple vector is a one dimensional numeric array. with no fll pointer, and which is
not displaced or indirect.

TI Internal Data

Macro Instructions

SIMPLE-ARRAY-P object {Class 4 - miscop 772)

For Common Lisp. Returns the symbol T if abject is a simple array, otherwise returns the
symbol NIL. A simple array is an array that does not have a fill pointer and is not displaced or
indirect. Do the thing vou expect.

SIMPLE-STRING-P olject : (Class 4 - miscop 773)

For Common Lisp. Returns the symbol T if ohject is a simple string, otherwise returns
the symbol NIL. A simple string is a single dimensional array of array type ART-STRING or
ART-FAT-STRING with no fill pointer and not displaced or indirect.

BIT-VECTOR-P object © (Class 4 - miscop 774)

For Common Lisp. Returns the symbol T if object is a bit vector. otherwise returns NIL. A
bit vector is defined as a one dimensional array of array type ART-1b.

SINPLE-BIT-VECTOR-P object (Class 4 - miscop 775)

For Common Lisp. Returns the symbol T if object is a simple bit vector, otherwise returns
NIL. A simple bit vector is defined as a one dimensional array of array type ART-1b with no fill
pointer that is not displaced or indirect.

NAMED-STRUCTURE-P object (Class 4 - miscop 776)

If object is a named-structure array, returns its name. Otherwise returns the symbol ¥IL. If.
the array has a leader. the name is stored in leader slot 1. If it has no leader, the name is stored
in array element 0. The name returned is always a symbol. If the structure name is a closure.
the symbol for the closed function is returned. If the name is not a.symbol. the symbol NIL is
returned.

NAMED-STRUCTURE-SYMBOL object (Class 4 - miscop 776)

Same as NANED-STRUCTURE-P.

TYPEP-STRUCTURE-OR-FLAVOR object. type {Class 4 - miscop 777)
The result of this operation is the symbol T if object is a structure or instance whose name
is or contains TYPE. If object is a siructure whose name does not match type exactly, returns:
<<<< this isn’'t right >>>
(and (setq 4 (get xname ‘defstruct-description))
(defstruct-description-samed-p d)
(setq xname (car (defstruct-description-include d))))

(unless xname (return NIL))

If object is an instance, only returns the symbol T if the flavor of this instance depends on
TYPE. Uses the SINSTANCE-DESCRIPTOR-DEPENDS-ON-ALL slot of the flavor to deter-
mine depended-on flavors.

TI Internal Data

147

148 Macro Instructions

12.7.2 Miscops Group 1
= blah blah blah *

FIXNUNP OBJECT (Class 4 - miscap 0)

Do the thing you expect

SMALL-FLOATP OBJECT (Class 4 - miscop 1)

Do the thing you expect.

CHARACTERP OBJECT (Class 4 - miscop 2)

Do the thing you expect.

CAR-SAFE OBJECT (Class 4 - miscop 3)
Do the thing you expect. ;;; what is this? [/
CDR-SAFE OBJECT (Class 4 - miscep 4)

Do the thing you expect.

CADR-SAFE OBJECT (Class 4 - miscop 5)
Do the thing you expect.

CDDR-SAFE OBJECT (Class 4 - misccp 8)

Do the thing you expect.

CDDDDR-SAFE OBJECT) {Class 4 - misccp 7)

Do the thing you expect.

MTHCDR-SAFE N, OBJECT {Class 4 - miscop 10)

Do the thing you expect.

NTH-SAFE N, OBJECT {Class 4 - miscop 11)

Do the thing you expect.

CARCDR LIST) (Class 4 - miscop 12)
Do the thing you expect.

ENDP LIST : (Class 4 - miscop 13)

Returns the symbol T if LIST is the symbol NIL. Returns the symbol NIL if LIST is of data
type list. Otherwise, signals ARGTYP. Similar to NOT but signals ARGTYP with inputs that ¥OT - --
accepts.

CONSP-OR-POP OBJECT (Class 4 - miscop 14)
Do the thing you expect.

INDICATORS-VALUE OBJECT (Class 4 - miscop 15)

Do the thing you expect.

TI Internal Data

%POINTER-TIMES pointerl. pointer?

Do the thing you expect.

COMMOM-LISP-AREF array. #REST indices

For Common Lisp. Do the thing vou expect

CONMON-LISP-AR-1 array. inder

For Common Lisp. Do the thing yvou expect.

CONMON-LISP-AR-1-FORCE array, tndez

For Common Lisp. Do the thing you expect.

INTERNAL-GET-3 symbol, property, default

iii What is this?? ;.. Do the thing you expect.

%I0 RQB, device-desc

Mucro Instructions

{Class 4 - miscop 16)

(Class 4 - miscop 17)

(Class 4 - miscop 20)

(Class 4 - miscop 21)

{Class 4 - miscop 22)

(Class 4 - miscop 23)

Initiate IO request described by RQB (Request-Block) on the device described by device-
desc. The interpretation of RQB is defined by the device. RQB is often an array. device-desc is
an JO-DEVICE-DESCRIPTOR as defined in section on (device descriptor).

%ADD-INTERRUPT-ENTRY device-desc, level

Installs an interrupt for the device described by device-dese at interrupt level level. Device

(Class 4 - miscop 24)

must have a microcode interrupt handler for this device type. Does not initialize the device

interrupts.

‘ADRAVW-FILLED- TRIANGLE

11, y1, 22, y2, 138, y3, ledge. tedge. redge, bedge. ALL. drawSrd, draw@nd, drawlst, fill-color, dest

Do the thing you expect.

%DRAW-FILLED-RASTER-LINE

11, yl, y, l-edge, t-edge, r-edge, b-edge, ALU, draw-last-pt, fill-color, dest

Do the thing you expect.

%ADD-PAGE-DEVICE unit-number, starting-block, size

Do the thing you expect.

%NuBus-READ-8B hi-address, low-address
Do the thing you expect.

%NuBus-WRITE-8B hi-address, low-address, data

Do the thing you expect.

%NuBus-READ-16B hi-addéeu, low-address

Do the thing you expect.

(Class 4 - miscop 25)

(Class 4 - miscop 26)

(Class 4 - miscop 27)

(Class 4 - miscop 30)

(Class 4 - miscop 31)

(Class 4 - miscop 32)

TI Internal Data

149

150

Macro Instructions

WNuBus-WRITE-16B hi-address. lou-address. data (Class 4 - miscop 33)
Do the thing you expect.
Miscop codes 34 and 35 reserved for future implementations of physical read and write.

%HuBus-READ-8B-CAREFUL hr-address, low-address (Class 4 - miscop 36)
Do the thing you expect.

%RATIO-CONS numerator, denominator (Class 4 - miscop 37
Do the thing ‘you expect.

RATIONALP =z (Class 4 - miscop 40)
Do the thing vou expect.

RATIOP r (Class 4 - miscop 41)
Do the thing you expect.

CONPLEXP = (Class 4 - miscop 42)
Do the thing you expect.

INT-CHAR fiznum (Class 4 - miscop 43)
Do the thing you expect.

CHAR-INT character) (Class 4 - miscop 44)
Do the thing you expect.

%BLT-TO-PHYSICAL (Class 4 - miscop 45)

source-addr. dest-addr, number-of-words, increment
Do the thing you expect.

%BLT-FRON-PHYSICAL {Class 4 - miscop 46)

source-address, dest-addr, number-of-words, increment

Do the thing you expect.
From 47 to 776 are still free.

%CRASH code, object, paws-up-p (Class 4 - miscop 777)

Software crash of the machine. Halt the machine, but first write a crash record with a crash
kind of software and a crash code of code. Code should be a fixnum and will be truncated to 16
bits. Object is remembered in the crash record to report. Most pointer objects will not report
meaningfully. Paws-up-p if NIL signifies that the user has been notified of the crash and it is not
necessary to display the crash indication (inverse video or whatever).

A normal shutdown should use this after performing all shutdown tasks (like cleanly closing
the file system) with code of 0.

TI Internal Data

Macro Instructions

15 14 13 9 8 6 § o]

Bl L L R L R X T TP ey

L]

[

[]
]
]
'
1

Fig. 1210 AREFI Instruction Format

REFKIND Instruction

0 AREFI-ARRAY-NEW
AREFI-ARRAY-LEADER-NEVY
AREFI-INSTANCE-NEW
AREFI-ARRAY-NEV-COMMON-LISP
AREFI-SET-ARRAY-NEVW
AREFI-SET-ARRAY-LEADER-NEY
AREFI-SET-INSTANCE-NEY
illegal

Table 12-12 Reference Kind Decoding

U BN

12.8 Array Reference Immediate (Class V) Instructions

Class V instructions support abbreviated sequences for accessing one dimensional array’s {also
array leaders and instances) with a small constant index. The format of an AREFI instruction is
shown in Fig. 12-10. The kind of object to be referenced is indicated in the REFKIND field. The
decoding of the REFKIND field is shown in Table 12-12.

Index is a 6-bit index into the structure.

The structure to be accessed is an argument on the stack. lf an AREFI-SET- instruction, a
second argument is the new value.

TI Internal Data

151

152 . Macro Instructions

TI Internal Data

13. Flavors

31 Flavors
.Baskin Robbins Ice Cream

There is a great deal of support in Lisp Machine Lisp for the flavors object-oriented pro-
gramming system. That support will be detailed here. You will notice that this support has very
little that makes it flavor-specific: instead the support for instances of classes is more flexible to
allow for ather object-oriented programming systems. This flexibility is not currently used.

Special support is provide to keep the special variables SELF and SELF-MAPPING-TABLE
bound to the currently executing instance and the mapping table 1o map the actual positions of
the instance variables into slot numbers used by this method.

13.1 Instance Data Structure

A DTP-INSTANCE Lisp object points to a structure whose header is of type DTP-INSTANCE-
HEADER. The pointer field of that header points to a siructure (generaily an array) which
contains the fields described below. This structure is called an instance-descriptor and contains
the constant or shared part of the instance. The instance structure, after its DTP-INSTANCE-
HEADER, contains several words used as value cells of instance variables, which are the variable,
state, or unshared part of the instance.

13.2 Instance Descriptor Data Structure

All instances of a Flavor share an instance descriptor which is an ART-Q array or other structure.
The instance descriptor contains information that is same for all instances of a flavor and is not .
really dynamic (although some dynamic changes can be accomodated). The elements of the
instance descripior are as indicated in Table 19-1. Note that these are offsets. not indices into
the array. They are defined here this way because microcode uses them. This could be a CDR-
coded list or an instance rather than an array.

The word pointed to by the instance header is SINSTANCE-DESCRIPTOR-HEADER. It
is usually an array header. The next word. ZINSTANCE-DESCRIPTOR-RESERVED. is not
used by instance support and may be used by the containing structure (e.g. for named-structure
symbol).

0 %INSTANCE-DESCRIPTOR-HEADER

1 XINSTANCE-DESCRIPTOR-RESERVED

2 XINSTANCE-DESCRIPTOR-SIZE

S %INSTANCE-DESCRIPTOR-BINDINGS

4 %INSTANCE-DESCRIPTOR-FUNCTION

5 %INSTANCE-DESCRIPTOR- TYPENAME

6 %INSTANCE-DESCRIPTOR-NAPPING-TABLE-ALIST
7 - %INSTANCE-DESCRIPTOR-IGNORE

8 %INSTANCE-DESCRIPTOR-ALL-INSTANCE-VARIABLES
9 %INSTANCE-DESCRIPTOR-IGNGRE
10 %INSTANCE-DESCRIPTOR-IGNORE
11 %INSTANCE-DESCRIPTOR-IGNORE
12 %INSTANCE-DESCRIPTOR-IGNORE
13 %INSTANCE-DESCRIPTOR-IGNORE
14 %INSTANCE-DESCRIPTOR-DEPENDS-ON-ALL

Table 13-1 Instance Descriptor Offsets

TI Internal Data

154 Flavors

The third word is TINSTANCE-DESCRIPTOR-S)ZE. This is the size of each instance: this
is one more than the number of instance-variable slos. When the garbage collector needs to
copy or scavenge an instance. it refers to this slot of the instance descriptor.

, %INSTANCE-DESCRIPTOR-BINDINGS describes bindings 1o perform when the instance
is called. If this is a list, then SELF is bound to the instance and the elements of the list are
locatives to cells which are bound to EVCP's to successive instance-variable slots of the instance.
If this is not a list, it is something reserved for future facilities based on the same primitives.
NIL is a list and so binds SELF and nothing else. If the a list element is a FIXNUM rather than
a locative, it is the number of slots to skip over and not bind: a FIXNUM is not allowed to be
the last element of the list. Note that if this is a list, it must be CDR-CODED! The microcode
depends on this for a little extra speed.

Next is TINSTANCE-DESCRIPTOR-FUNCTION which is the function to be called when
the instance is called. Typically a hash table. Used to be a select-method.

Next is the ZINSTANCE-DESCRIPTOR-TYPENAME which a symbol. This is what is
returned by TYPEP.

%INSTANCE-DESCRIPTOR-MAPPING-TABLE-ALIST is an alist of mapping tables to
instances of this descriptor for various method-flavors.

All slots marked %l!\"STANCE-DESCRIPTOR-IGNORE are used only at higher levels.

%INSTANCE—DESCRIPTOR-ALL—INSTANCE-VARIABLES is a list of all instance vari-
ables. *** in same order as slots in instance? *** '

Last is ZINSTANCE-DESCRIPTOR-DEPENDS-ON-ALL which is a list of all component
flavors names. This is used by TYPEP-STRUCTURE-OR-FLAVOR.)

13.3 Self Mapping Table

A self mapping table is used to map slot numbers used by a method into actual positions within
the instance.

— _ It will take some effort to explain why this is required. It is highly desirable that when a
method is inherited by more than one flavor, that the FEF for that method be shared. This can
dramatically reduce the space used to represent a large network of related flavors. However, it is
not possible to produce a single ordering of instance variables that all combined flavors can see
a consistent ordering of the instance variables they share.

Instead, for each flavor there is a table that maps instance variables to their actual positions
within the instance. This self mapping table is an ART-16B array. To access an instance variable
in slot n, element n of the array is read and is used as the index into the instance to reference
the variable.

When flavors are combined. A mapping table is created for each flavor from which this flavor..
inherits methods. Along with the method to call, the mapping table for the flavor from which—-—
this method is inherited is stored in the hash table which serves as the method decode table.

Instance variables may be accessed directly if on self-mapping table is needed. If the flavor
has : ORDERED- INSTANCE-VARIABLES, the methods know which position will contain each instance
variable. They can them access the variables without using the self-mapping table.

If the flavor is a base flavor that inherits no methods and the instance is of that flavor, the
instance variables are in the same order as the slots. In this case, there is a special form of
mapping-table that provides the identity map. It is represented as NIL. If SELF-MAPPING-TABLE
is NIL mapped access to an instance variable acts like an unmapped access.

TI Internal Data

Flavors

Each mapping table contains in its leader slot 1. a pointer to the instance descriptor for the
method flavor it maps.

13.4 Method Decode Table

The method decode table is stored in the CINSTANCE-DESCRIPTOR-FUNCTION slot of the
instance-descriptor. It is a callable hash array. which means that it is a named structure with
a leader and the FUNCALL-AS-HASH-TABLE bit set One leader slot contains the size of the hash
table in entries. This size is assumed to be a power of two. These entries are 3 words each.

Entries in the hash array arc 3 words long. The first word is the key which matches this
entry. The second word is a locative 1o a value (or function) cell containing the function to call.
The third entry if non-NIL is the self mapping table to install before calling the function in the
second word. '

More on the hash array is explained in the next section. The use of the hash array for
decoding and calling a method is explained there. -

13.5 Calling an Instance

When an instance is called, SELF is bound to the instance. Then the pointer to the instance-
descriptor is gotten from the instance header. The bindings list is read from the instance
descriptor. If it is a list,” the bindings on the list are done as described above. If it is NIL,
no additional bindings are done. If it is not a list or NIL. then it is for some unsupported object
protocol and an error is signalled.

Next the function is read from the instance-descriptor. If it is an array, it is a callable hash
array. If it is not. perform a normal function entry on it. To call a hash array, the number of

entries in the hash table. n. which is assumed to be a power of two. The key is the first argument’

to the instance which is a symbol. The n — 1 is used as a bit mask to get the low bits of the key.
This is used as the index of the first candidate entry in the hash array.

If the first word of a candidate entry does not match (is not EQ to) the key. it is either some
. other key or DTP-NULL. If it is DTP-NULL, the key could not be found and there has been a
hash failure. A special function. 8I: INSTANCE-HASH-FAILURE is called via the support vector.
In some cases such as when the hash array has been forwarded or references a key in old space,
the method failure function is called when the method is actually in the table but the table needs
moving or rehashing.

- If the first word of a candidate entry does not match the key and is not DTP-NULL, a
rehash is required. A hash array rehashes by advancing to the next entry with wrap around.
Every hash table must have at least one entry of DTP-NULL: hash tables are usually maintained
with many more empty entries *** about 790

When the key is found, the method will be called. The second word is read and the locative
followed to read the function. If the third word is non-NIL SELF-MAPPING-TABLE is bound to

what it contains. If the function is not a symbol, the flag is set to indicate that the self-mapping..

table is supplied. This flag indicates to function entry that there is no need to search for and set
SELF-NAPPIRG-TABLE. Finally, the function is called as normal.

13.6 Instance Variable Accessing

Several ways are provided of accessing instance variables. Self-reference pointers can be used to
access instance variables either mapped or unmapped. See section on self-reference pointers for
more details.

There is an addressing mode provided in macroinstructions that allows access to instance
variables. See section on SELF addressing mode for more details.

T1 Internal Data

185

156 Flavors

There are several miscellaneous instructions that provide access to instance variables. They
are 4INSTANCE-REF. SET-%INSTANCE -REF. %INSTANCE-SET. and ‘/.INSTANCE -Loc.

TI Internal D

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156

