
SYSTEM DESIGN/Software 

Matching hardware to Lisp 
yields peak performance 
The Lisp environment differs significantly from conventional 
computing. Understanding how the software features of Lisp affect 
the operation of Lisp machines, gives designers an edge in choosing 
a high-performance workstation. 

The system designer or software developer moving 
into symbolic processing soon finds that choos­

ing an intelligent workstation requires a knowledge 
of the unique features of Lisp architecture. These 
features include the extensive use of multiple 
variables and data types, the use of garbage collec­
tors to control data traffic, a linear address space 
that uses a large number of data structures, and an 
extended data-tagging system field. 

A Lisp machine that effectively implements these 
features in hardware takes advantage of the 
idiosyncrasies of the Lisp environment. To imple­
ment the internal Lisp features, the Lisp machine 
must have a very large microcode memory. It must 
also have a variety of extra internal registers to take 
care of data tagging. Finally, the machine must 
have a dual-pointer stack to track data movement 
within the large abstract address. 

In Fortran or Pascal, a variable can hold only a 
single data type. In Lisp, many basic operations 
work for several types of data, and any variable can 
hold any type of data. For example, there is only 
one add operation in Lisp (called "PLUS" or 
"+ "), which works for all valid numerical repre­
sentations, such as fixed and floating point. At­
tempts to operate on invalid data types are detected 

Gene Matthews, Glenn Manuel and Steven Krueger 
Matthews is director of the Symbolic Computing Lab 
for Texas Instruments (Dallas, TX). Manuel is a 
technical contributer also for TI. Krueger is a senior 
member of Tl's technical staff 

and aborted with an error message. One example of 
an invalid operation is adding a list to an integer. 
Since this operation is done at run time, rather than 
during compilation, the hardware architecture 
must provide a method of carrying the data type 
along with the data value. This provision is not 
necessary for conventional architectures. 

Because the programmer works symbolically in a 
large address space, there is less inherent concern 
for memory management issues in the Lisp environ­
ment. But since memory management is still re­
quired to implement the programmer's large 

COMPUTER DESIGN/May 1, 1 986 9 5 



MAIN DATA BUS 

A REGISTER 

M REGISTER 

POINTER I 

STACK 

POINTER 2 

MEMORY DATA 
REGISTER 

VIRTUAL MEMORY 
ADDRESS 

MACROCODE 
LOCATION COUNTER 

I 

In the data paths of a simple Lisp machine, register 
files (A and M) and a data bus drive the ALU, which 
in turn drives the main data bus. The main data bus 
drives the control section of the Lisp machine and 
feeds data back to the ALU inputs. 

abstract address space in a real-world machine that 
has limited physical memory space, a variety of tech­
niques must be used to implement memory manage­
ment. These techniques are collectively known as 
garbage collection. 

Managing memory in Lisp 
The Lisp environment is memory-intensive, and 

memory management techniques help determine 
Lisp performance. Because of the way that Lisp 
manipulates lists, for example, many small chunks 
of memory are used for short periods of time. A 
large amount of list handling can quickly fragment 
the Lisp machine's memory and exhaust its 
memory space. 

To ease the handling of large lists, a Lisp system 
has a built-in garbage collector. Periodically, the 
garbage collector reclaims chunks of memory that 
are no longer used. In addition, most garbage col­
lectors perform compaction. This process rear­
ranges the blocks of data in memory, removes 
fragmentation and restores memory to a linear, 
contiguous order. 

9 6 COMPUTER DESIGNIMay 1, 1 986 

To maintain the integrity of the data structures 
during the compaction process, garbage collectors 
need to keep track of data movement so that 
pointers to the data can be updated. One method of 
tracking data is to place a pointer's new location in 
its old location when the pointer is moved. The old 
location is marked as a forwarding pointer, rather 
than a normal pointer. As a protective feature, any 
attempt to use the old location is automatically 
redirected to the location to which the data has 
been moved. 

Tracking the data 
When this technique is used, the pointer must be 

identified as a normal or forwarding pointer. In ad­
dition, the presence of forwarding pointers com­
plicates memory access. Each time a pointer is 
accessed, it must be checked to see if it is a normal 
or forwarding pointer. Since the pointer can be 
either a forwarding or normal pointer, the checking 
process must be repeated. 

If it is a forwarding pointer, the pointer must be 
followed to where it points. When the end of the 
forwarding pointer chain is reached, the original 
pointer which started the memory access must be 
updated with the final pointer value. This enables 
subsequent memory access to go directly to the new 
location, instead of going through the chain of for­
warding pointers. 

Since the process of checking for forwarding 
pointers adds to the overhead of each memory ac­
cess, it must be as efficient as possible. A Lisp hard­
ware architecture must provide support for 
forwarding pointers. 

A linear address space is the critical feature of 
an efficient Lisp architecture. To provide the best 
possible implementation of the Lisp address space, 
logical memory should be as large, linear and 
uniform as possible. Memory address spaces with 
partitions imposed by logical address limitations 
(such as base registers and segments) complicate 
efficient memory management for a variety of 
reasons. 

Overcoming management obstacles 
First, because Lisp pointers are actually memory 

addresses, they must be extended to include the 
memory partition. Unfortunately, this procedure 
uses memory inefficiently, since pointers are 
longer . It also slows execution because of a more 
complex pointer format. The base register, for ex­
ample, must be checked. It may even have to be 
changed for every access. 

Second, symbolic processing programs tend to 
use large numbers of data structures. If the size of 



a data structure exceeds the size of a memory parti­
tion, the data structure access will be very ineffi­
cient. Finally, since garbage collection must be 
done on the entire address space, the garbage col­
lector itself can add significant overhead to pro­
gram execution (depending upon the algorithm 
used). This problem is also aggravated by the base 
register changes that are required as the garbage 
collector moves through memory. 

Tagging the data 
Because of the need to reorganize memory via 

garbage collection, and because Lisp contains both 
pointers and data, data must be tagged. In a tagged 
data architecture, each memory word contains both 
the data and a tag which indicates the data type. In 
addition to indicating the data type, tags dif­
ferentiate between pointers and actual data. Special 
bits in the tag may also be required for memory 
management to provide forwarding pointers and 
garbage collector status bits. These status bits in­
dicate whether or not a word can be reclaimed. 

Another requirement for Lisp implementation is 
a flexible architecture. Since Lisp is an interactive 
and dynamic language, the architecture must be 
easy to modify, so that it can track and support 
changes and extensions in the language. The key to 
this flexible architecture is effectively modifying 
the architecture in accordance with the microcode 
and microprogramming. 

A simple Lisp machine 
A Lisp machine has a very large microcode 

memory (typically 16 kbytes x 50 to 60 bits). In such 
a machine, Lisp source code is not executed direct­
ly, but is compiled down to a virtual machine code 
(macrocode). The microcode then interprets the 
macrocode. To allow interpreted execution of Lisp 
source code, a compiled Lisp interpreter program is 
always resident in the system. Many of the internal 
Lisp features, such as the virtual memory manage­
ment and garbage collection, are implemented in 
microcode. Since the microcode is resident in the 
system, changes, extensions and modifications can 
be easily made. 

In the data paths of a simple Lisp machine, a 
register file drives one input of the ALU, and the 
other ALU input is driven by a bus. On this bus is 
a second register file, stack cache, virtual memory 
address register, memory data register, Lisp macro­
code location counter and macrocode instruction 
buffer. The ALU output drives the machine's main 
data bus. This bus feeds data back to the data path 
sources and to parts of the control section. 

In parallel with the ALU is a shifter / masker 

which also drives the main data bus. Each machine 
instruction uses the ALU or the shifter / masker to 
perform its operation. To eliminate a separate tag 
processor, tags are implemented as the top few bits 
of the data word and the normal data paths are used 
for tag processing. The shifter / masker is added to 
make tag processing, which involves many bit ma­
nipulations, more efficient. 

The shifter/ masker consists of a barrel shifter 
and a full-width programmable AND gate. The 
barrel shifter shifts a data word any number of bits 
in one operation, and the masker allows any 
number of bits in the shifted word to be masked 
off. It then combines the masked word with a back-

Real world implementations 

Explorer, a Lisp machine from Texas Instruments, 
uses a 32-bit tagged data path (25 data bits and 

7 tag bits). The 25-bit pointers provide a 128-Mbyte 
virtual address space. Memory accesses, however, 
can bypass the virtual address mapping hardware, 
which allows full use of the 32-bit (4-Gbyte) logical 
address space. 

The Explorer data paths use two register files, 
an ALU , a shifter/masker and 1-kbyte words of 
stack cache that include two pointers, the Lisp 
macrocode location counter, the memory data 
register, the virtual memory address register and 
the macrocode instruction buffer. Additional hard­
ware improves tag processing . A tag comparator 
across the inputs of the ALU implements a tag 
equal check on the two operands of an instruction. 
In addition, a tag classifier RAM (instead of a dis­
patch memory) handles generic tag checking . 

The control section features a 16-kbyte x 56-bit 
microcode memory, a program counter stack with 
a depth of 64 bits and a 4-kword dispatch memory. 
A 2-kword microcode PROM is used for booting 
and self-test. Circuitry is included to modify the in­
struction register of the next instruction. This 
design provides for dynamic instruction modifica­
tion , such as one-instruction calculation and the 
ability to set up the shifter/masker control bits for 
the next instruction. 

Designers investigating Lisp machines for sym­
bolic processing will see a Lisp architecture in 
VLSI. Texas Instruments is developing a 2-micron 
CMOS generic Lisp processor architecture called 
Compact Lisp Machine. Although this chip will not 
implement the microcode memory and the 
memory mapper, it will include some features not 
in the generic architecture, such as a normalizer 
that improves floating-point performance. 

Since Compact Lisp Machine is too fast (40-MHz 
clock) to be supported by standard DRAM , the data 
cache is accessed in parallel with the mapper. In 
this design, for a cache hit, the data is returned im­
mediately, with the memory operation aborted. For 
a miss, the memory operation in progress is com­
pleted and memory is accessed over the Lisp 
machine system bus (NuBus). 

COMPUTER DESIGN/May 1, 1986 9 7 



FROM 
DATA PATH 

TRAP 
LOGIC 

~____,_, MUX PROGRAM 
COUNTER 

PROGRAM COUNTER 
STACK 

MICROCODE 
MEMORY 

INSTRUCTION 
REGISTER 

The decoded outputs of the instruction register are 
the control signals that bring about the execution of 
each instruction. The program counter is selected 
from the previous counter (incremented), a field of 
the instruction register, a program counter stack, trap 
logic or an output of dispatch memory. 

ground word. The shifter and masker perform the 
load byte operation , the deposit byte operation 
and the selective deposit operation. Load byte, 
which is usefu l for extracting a tag from a 
data word, replaces a specific number of the lowest 
bits of a word with a field of the same length. (This 
field can be located anywhere within another 
word.) Deposit byte uses this same number of 
lowest bits to replace the same number of bits in 
another word. This is useful for storing a tag with 
a data word. 

Selective deposit replaces a field of length n in 
one word with the bits in the same location of 
another word. This is useful for copying tags from 
one word to another. Finally, the shifter / masker is 
useful in processing the data portion of the word. 
The result is greatly improved performance for 
many data operations, especially the extensive bit 
manipulations needed for bit-mapped graphics . 

Stack aids performance 
The Lisp machine is a stack machine-each call 

to a function causes a frame to be added to the 
stack. The frame contains information and storage 
space fo r that invocation of the function, including 
storage of local variables. When a function is ex­
ecuted, its frame is removed from the stack and re­
placed by the frame of the next function. To 
improve the performance of stack operations, a 

9 8 COMPUTER DESIGN/May 1, 1986 

hardware stack cache is provided . 
Two pointers are used to index the stack. One 

always points to the top of the stack for conven­
tional push and pop operations. The other can 
point anywhere, and is useful for accessing local 
variables within the stack. This hardware stack is 
used as the top of a large memory-resident stack 
that is managed by the microcode. 

The abstract address space of the Lisp machine is 
implemented as demand-paged virtual memory. 
Memory mapping hardware translates the CPU's 
virtual addresses into the memory's physical ad­
dresses. Memory access is performed independent 
of the CPU. This independent operation lets the 
CPU start a read request before it actually needs the 
data, nearly eliminating wait states. Lisp macro­
code is contained in the virtual address space. 

Maintaining control 
In the control section of the basic Lisp machine, 

microcode memory is addressed by the program 
counter, and its output is latched in the instruction 
register. The decoded outputs of the instruction 
register are the control signals, which cause execu­
tion of each instruction. The program counter is 
selected from either the previous counter, a field of 
the instruction register (for jump instructions), a 
program counter stack (for subroutine calls or 
returns), a trap address generator or the output of 
dispatch memory. 

Dispatch memory is used for macroinstruction 
decoding and generic operations. It contains the 
starting addresses of specific microcode routines. 
The dispatch memory address is selected from one 
of two sources. For example, using the macrocode 
instruction buff er as the source, the next macro­
instruction is decoded by jumping to the microcode 
routine which implements it. Using the shif­
ter / masker output as the source, the tag can cause 
a jump to the microcode routine for handling a par­
ticular data type (this function is used for generic 
operations). The shifter / masker output can also be 
used for other more specialized applications. CD 

Please rate the value of this article to you by 
circling the appropriate number in the "Editorial 
Score Box" on the Inquiry Card. 

High 267 A verage 268 Low 269 


