. USER'S MANUAL
‘T200/T250

PERSONAL OFFICE COMPUTER

ﬁmf j] i

m/:% N ” —J —
o

| prall o
| A\
R

TOSHIBA

USER'S MANUAL
T200/T250

PERSONAL OFFICE COMPUTER

[

|

il

=

“___Vr :\ T ;
EE=aa

TOSHIBA

TABLE OF CONTENTS

Page

INTRODUCTION ...ttt et et e et e et ettt et e e i e nnans i
PR T 1 . e e e 3
Overview of Part 1o i e et e e e 5
The Five Basic Componentsooiitiiiniiiit ittt iiieieanneannn. 7
Turning the Power On e e 9
Adjusting the Display Screen Brightness i i 9
The CUISOT ... e e e et 11
Using the Keyboard i i it et 11
Data Ky S ..ottt e e e 11

Line Editing Keys e 13
Special Function Keys 15
Program Function Keys i 15
Working with the Floppy Disks ... i 17
Using the Floppy Disks ... e i 17
Loading and Removing Floppy Disks ...t 19

Using the System Disk 21
Mounting ...t e 21

CP/M Loading (Cold Boot)coiviiiiiii e 21

CP/M Loading (Reboot)ooiiiriiiiiiii i i, 21

Winchester Disks ...ttt e e e e e 21
Turning the Power Off e e 23
PART 2 e 25
Overview of Part 2 et 27
The Operating Systemot e it 28
What is the Operating System?ottt i, 28
Operating System Capabilities ... 28

The Four Parts of the Operating System 28

1. Console Command Processor (CCP)ccviiiiiiia... 28

2. Basic Input Output System (BIOS)o, 29

3. Basic Disk Operating System (BDOS)coiiiiiiiiiiiii i, 29

4. Transient Program Area (TPA)t 29

User Interaction throughthe CCP i 29
Communicating with the Operating Systemoooiiii.n. 30

File Names e e it e 30
Ambiguous File Referencescc.oiiiiiiiiiiiiiiii, 31

Using the “*” 31

Using the “ 2 ... e 32

L0700 411 T 1 U 33
Built-in Commands for BASICUsersccciiiiiiiiiiininnn.n. 35

DR o e e e 35

TYPE L e e 35

ST AT e 37

PIP e 39

Other Built-in Commandsot 41

REN e P 41

SAVE 41

Other Transient Commandscoiiiiiiiiiiiiiiiiinn... 42

ASM L e 42

DT e 42

DUMP . 42

ED e 43

LOAD . 43

SUBMIT .. e 43

The XSUB Functioncooiiiiiiiiiiiiiiiiiiiinan... 45

SYSGEN .. e 46

PIP 46

ST AT e 49

Command Quick-Reference Listccoiinat. e 51

Line Editing and Output Controlt 51

L TP 53
Disk to Disk Copyingcoiiiiiiiiiiiiiiii i e 53
Setting up New Disks (Formatting)c.ooiiiiiii ... 54

The Currently Logged Disk/Switching Disks 55
Write-Protecting Disksol 57

Error Messages 57
Using BASIC Programsouuuiintininint ettt iaieananns 59
Using CBASIC e e 61
Initiating MBASIC e 63
BASIC Commandsc.uiuuiniiiiii i e 63
The Direct Modet e 63

The Indirect Mode i 63
Entering a BASIC Program, 65
Correcting a BASIC Programt 67
Running a BASIC Program ...ttt 67
Storing a Programon Disk 67
DiskDataFileso i i 69
Activating Saved BASIC Programsc.cooiiiiiiiniiiiinenennnnnn.n. 70
Terminating BASIC 70
Using Assembler Programs ittt L. 71
Program Format i 72
Forming the Operand i i 73
Labels e 73
Numeric Constantscoiiiiiiiiiiiiiiii i 74
Reserved Words ... 74

String Constantso.oiuiiii i e 75

Arithmetic and Logical Operatorscoiiiiiiiiiiinin... 75

Precedence of Operators, 76

Assembler Directives e 77
The ORG Directive ...ttt e e 77

The END Directive ... i e 78

The EQUDIrectiveottt 78

The SET Directive ...t i 79

The IF and ENDIF Directivesc. i 79

The DB Directiveot e 80

The DW Directiveottt e 80

The DS Directiveot e e 81
Operation Codes ...ttt e e 81
Jumps, Callsand Returns i 81
Immediate Operand Instructionsot 82
Increment and Decrement Instructions 83

Data Movement Instructions i i 83
Arithmetic Logic Unit Operationscooviiiiiiiiiini i, 84
Control Instructions oot i 84

Error Messages ... 85
A Sample SeSSION e 85
System Entry Points ... 91
Operating System Call Conventionscooiiiiiiiiann. 92
System Function Summary ...t 109

A Sample File-to-File Copy Program 110

A Sample File Dump Utility i, 112

A Sample Random Access Programol 116

The Dynamic Debugging Toolo i, 123
DDT Commandsooueiiniteeniieeiit et eanneeanns 124

1. The A (Assemble) Command 125

2. The D (Display) Commandccoovvinna... 125

3. The F (Fill) Commandcoiiiiiia... 126

4. The G(Go)Commandc.ooviiiiiiiiiieennn... 126

5. The I (Input) Commandccooiviiviiiin... 126

6. The L (List) Commandcoiiiieiaa... 127

7. The M (Move) Commandooiiiini.. 127

8. The R(Read) Commandcccoviiiiina... 127

9. TheS(Set) Commandccooiiiiiiiinniinnnn... 128

10. The T (Trace) Commandcovviiieinnnennnn. 128

11. The U (Untrace) Commandcooviiie.an. 129

12. The X (Examine) Commandc..coue., 129
Implementation Notes i 129
AnExampleo e e e e 130

The Text EQitorot et et 141
ED Operationoiiiiiiiiiiii i 141

Text Transfer Functions o i i 141
Memory Buffer Organizationol 142

Memory Buffer Operationco it 142

Command Stringscoiiiiiiii ittt 143

Text Search and Alterationciiiiiiiiiiiiininnnnannn. 144
Source Librariescoviiiiiiiiiii i et e 147
Repetitive Command Executioncoiiiiiiiii, 147
ED Error Conditionsciiiiiiiiiiiiiiiiieiiiieeeeeeannns 147
Control Characters and Commandsccoeviiiiiennann... 148
Summaryof Commandsc.oiiiiiiiiiiiiiiiiii e 148
Line NUMDEYSoii i ittt et it 149
Free Space Interrogationciiiiiiiiiiiiii 150
Block Move Facilityo iiiiiiiiiiiii i 150
0 g o)< J 150
Other Notes OnNEDttt 150
APPENDIX A: Installationttt ittt et it teeinannanns 155
APPENDIX B: Character Code Table ...ttt i 159
APPENDIX C: Disk CharacteristiCsoiiiiiiniiiiiiit it eeeaaiiiaiennnns 161
APPENDIX D: The Printercouutiiiiii ittt ettt et eaieeeninnenns 163
APPENDIX E: Communication Interfacecciiiiiiiiiiiiiii it 171
APPENDIX F: Floppy Disk Storage Layout ..., 179
APPENDIX G: Patching CP/Mttt e e 181
13 D) 0, G 183

1.1
1.2
2.1
2.2
3.1

© oG

10.1
10.2
11.1
11.2
12.1
12.2
13.1
13.2
14
15
16
17.1
17.2
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

LIST OF FIGURES

Page
T200 Computer SyStemuiueiiiiniiiiii ittt 6
T250 Computer SYSEEIMoiuttit ittt i eaaenns 6
T200: Turning the Power On o i i 8
T250: Turning the Power On i 8
T200 Brightness Control Switcho i 8
T250 Brightness Control Switch i 8
The CUISOT ..ottt e ettt et 10
The Keyboard — DataKeyscoiniiiiiimiii e 10
The Keyboard — Line EditingKeyso, 12
The Keyboard — Special FunctionKeys ...t 14
The Keyboard — Program FunctionKeysot 14
Taking Care of the Diskso 16
T200: Floppy DisK . ..ueiiii i et 16
T250: Floppy Disk ..ot e 16
T200: Opening Disk DOOro 18
T250: Opening DisSk DOOYc.iiiiiii i ea e 18
T200: Mounting Disko.oiuiiii 18
T250: Mounting Diskot 18
T200: Closing Disk Door e 18
T250: Closing Disk DOOYot e 18
MOUNT SYSTEM DISK Promptoiuiniiiniii it 20
CP/M LOADING MESSAZE ... eenttneneeteetaen et itataenineneneneenennn. 20
ReEDOOt .. 20
T200: Turning the Power Off i i 22
T250: Turning the Power Off i 22
DIRCommandouuiuiiniitiiii ittt 34
TYPE Commandcouiiuiiiiiiii et 34
NoFileFoundt e 36
STAT Commandoiutiuiintitti ittt ittt 36
PIP Commandottt ittt 38
Write-Protecting T200 Disks ... 56
Creating a CBASIC Programccouiiuiniiiiiiiiiiniiiiiiiniineenn. 60
Initiating MBASICo e e e e e e e 62
BASICDirect Modecoiuiiniiiiii e it 62
O or PRINT o e e e e 62
ABASICProgramcccoovvvvenenen... T 64
Program Corrections/LIST i i 66
RUN Commandoiuiiniiiiiiii it 66
A File-Handling Programoiuiiiiiiniiii it 68
Overall ED Operationc.iiuuiiiiiinineiiaeeieenenienneennnens 140
Memory Buffer Organizationt 140

Logical Organization of Memory Buffer oot 140

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Signal Cable Connectionociiuiiiuiiitii ittt i, 156
Connecting Printer Signal Cableo 156
Connecting Keyboard Signal Cable ...t 156
Keyboard Click Adjusterc.oiiiiiiiiiiiiit ittt iiiiieeiiieennanns, 156
Printer Power Switch i 164
Printer ... e e e e e 164
Inserting the Paper i e 165
Opening the Paper Coverottt 165
Setting the Paper on Tractor Pins 166
Adjusting the Paper Position it 166
Setting the Paper Holdersci it 167
Turning the Paper Feed Knobo i 167
Opening the Top CoVeriiiiiiiii ittt eeie e aiaeens 168
Removing the Ribbon Spools ... 168
The RIbbon Spools e ettt e e e 169
Loading the Ribbon Spoolscoi i 169
Communication Interface Signals i 172

Disk Storage Layout 179

-Zx00D0kF—-0Z

INTRODUCTION

INTRODUCTION

Your Toshiba T200 or T250 computer gives you very powerful processing capabilities to
keep pace with the challenges of today’s Information Age. The extensive capabilities of your
system are the result of centuries of evolution in computing power:

1642 Blaise Pascal built the first known gear-based adding machine.

1694 Gottfried Willhelm von Leibniz, the inventor of calculus, improved on Pascal’s
adding machine. His version could add, subtract, multiply, divide and extract
square roots by repeated additions — which is exactly how modern computers
handle such problems.

1835 With British government financing, Charles Babbage built a machine that not only
performed the calculations of the Leibniz machine, but also was a true program-
mable computer.

1939 The first automatic digital computer was built. It operated electromechanically
but was quite noisy. The first fully electronic — and silent — computer followed.

1960 Transistors began to take over, allowing miniaturization of the formerly gigantic
computers.

1970 Integrated circuits emerged next. Standards began to develop for the Computer
Age.

1980 More effective and less costly computers became widely available.

Your Toshiba table-top T200 has capabilities that once required a computer that filled a
large room and cost hundreds of thousands of dollars. Today, at a fraction of that cost,
Toshiba’s business computers offer more capabilities, greater efficiency, greater ease-of-use
and far more reliability than their predecessors of 25 years ago.

Today, Toshiba’s T200 and T250 computers are widely used to handle such business
accounting applications as general ledger, accounts receivable, accounts payable and payroll.
They write orders, keep track of inventory, control production, manage work and manufactur-
ing schedules and file and fill out government and other forms. Toshiba’s T200 and T250 com-
puters also provide valuable management aids, allowing fast and precise profit analysis, and
quick performance assessment of the sales force, including route management and highlighting
of weak or Rey sales areas. In addition, the T200 and T250 can provide valuable decision
making support because they can store and sort through enormous amounts of information at
high speeds, allowing managers to simulate the results of various choices they are considering.

Such a list should certainly inspire you toward plans for your new computer. And, soon
after you begin to see your computer’s capabilities, you will even come up with other uses
tailored to meet your needs.

l
N
T
R
o
D
U
C
T

|
o
N

You are to be congratulated on your choice of a system with top quality engineering. Every
imaginable aspect of business requirements and operator needs has been taken into considera-
tion during the design process. The following are a few of the system advantages:

e Your T200 or T250 is compatible with the majority of standard components and pro-
grams currently on the market. Numerous programming packages which are already
available can be used just as they are. Programs can be purchased from Toshiba to
meet various needs. If these are applicable, you need not write programs for your
computer.

e [n addition, new programs can be written should you choose to do so, and existing
programs can be modified to suit your system needs.

® User-oriented programmable function keys are available.
e Large disk storage eliminates many of the problems encountered with older computers.

o A high speed, high quality printer provides efficiency, as well as a professional looking
product.

e The system layout is flexible and easy to use.

Whether you are an experienced computer professional or a first time user, you are proba-
bly experiencing excitement at the prospect of mastering and enjoying the benefits of a new
tool, as well as some concern about the process of that mastery. This manual is designed to
accompany you through that process with as much enjoyment, and as little frustration, as pos-
sible. First time users have the detail necessary to learn what they require and experienced
computer users will find the information well-organized for either scanning or in-depth study.

Don’t try to understand how to use your computer by reading through the manual. Rather,
we recommend that after your computer is installed (described in Appendix A), you start your
journey at the computer itself, with the manual open as a guide beside you.

Your manual is divided into two major sections: Part 1 and Part 2. You will begin with Part
1 which describes the system hardware. Hardware is the actual equipment —the keyboard, the

main unit, the disks, the printer. Part 1 explains this equipment and how to use it. lllustrations
will guide you, both for the T200 and T250.

Part 2 of the manual will cover the system software. Software refers to programs. Pro-
gramming makes the computer (the hardware) perform various functions such as figure pay-
roll or check inventory. As mentioned, the T200 and T250 are designed so that you can buy
“prepackaged’” programs, write programs yourself or modify existing programs to meet your
needs.

Part 2 first describes the operating system which is software designed to act like your
computer’s manager. You will learn to interact with and oversee that manager. Part 2 also
covers use of the BASIC programming language on your computer. (BASIC is easy to learn and
versatile for performing a range of business applications. Learning BASIC, however, is a process
all by itself and if you do not already know it, you should consult the MBASIC and CBASIC
reference manuals devoted to that purpose.) Part 2 also discusses assembler programming for
those who might use it, as well as the use of program debugging and text editing utilities.

Infrequently used information has been placed in appendices. For ease of reference, an
index appears at the end of this manual.

Although every attempt has been made to make the use of this manual as comfortable as
possible, the information presented here will only “come alive” as you use it to discover the
capabilities of your system. As you persist and master the use of your computer system, you will
achieve the satisfaction of seeing your business operations improve greatly.

PART 1

C

OVERVIEW OF PART 1

Part 1 presents facts about operating the hardware, or equipment, of your computer sys-
tem. Included are descriptions of:

[]

Most of the material in Part 1 applies equally to both the T200 and T250 systems. In cases
where there are differences, a unique one-line border is used to the left of the section to indi-

Understanding the Basic Components
Turning the Power On

Adjusting the Display Screen Brightness
Using the Cursor

Using the Keyboard

Working with the Floppy Disks

Turning the Power Off

cate whether the material refers to the T200 or T250. This quickly highlights sections you do
need to read, as well as those that you do not. The following borders are used:

1]

T200

T250

You will observe in Part 1 that all illustrations and charts are placed on the left pages,
while text is placed on the right pages. Therefore, always begin by reading the right page, and
refer to the left page when it is referenced in the text.

Once you have learned the basics about operating the hardware, you will be ready to learn
in Part 2 about using the accompanying software.

Printer

Display Screen

Processing Unit (Inside)

Floppy Disk Drive

Keyboard

Figure 1.1 T200 Computer System

Display Screen

Keyboard

Processing Unit (Inside)
Floppy Disk Drive

Figure 1.2 T250 Computer System

THE FIVE BASIC COMPONENTS

This section provides general information about the five basic components of your T200 or
T250, as shown in the figures at left. As needed, following sections will describe the compo-
nents and their use in more detail.

KEYBOARD
A typewriter-like keyboard that also includes special programming and number keys. You
enter data and instructions into the computer via the keyboard, which is movable for your
convenience.

DISPLAY SCREEN
A TV-like screen measuring 12 inches diagonally. The screen displays information the user
enters via the keyboard, prompts the user for responses and instructions and shows replies
from the computer. The screen contains up to 1,920 characters of information, 80 charac-
ters per line and 24 lines at a time. The displayed image scrolls up when the screen is filled

up and a new line is to be displayed.

PROCESSING UNIT

The “insides” of the main console box. This unit is the control center of the system and
does the arithmetic and logic operations, as well as other system control functions. It also
contains 65,536 bytes of main memory. (One byte holds one character of information.)

FLOPPY DISK DRIVE
Data and programs are stored on what is called a floppy disk, which is a thin, flexible disk
permanently enclosed in a plastic jacket. These floppy disks are inserted into a floppy disk
drive, where information can be written onto the disk or read from it. Since information can
be stored, it does not need to be rekeyed constantly on the keyboard.

PRINTER
The printer is used when you want to print information instead of just leaving it on the

screen. Appendix D describes the use of the printer.

Lm0

/\ Power Switch

ﬁwer Switch

Figure 2.1 T200: Turning the Power On

Figure 2.2 T250: Turning the Power On

Brightness
Control

Brightness
Control

Figure 3.1 T200: Brightness Control Switch Figure 3.2 T250: Brightness Control Switch

8

TURNING THE POWER ON

The console power switch is located on the back right-hand side of the main console unit.
To turn the power on, press the raised side of the switch, as shown in the top figures at left.
When the power is turned on, the cooling fan starts running.

When the power has been turned off, wait several seconds before turning it on again.

NOTE: This power switch does not turn on the printer. See Appendix D for printer
instructions.

ADJUSTING THE DISPLAY SCREEN BRIGHTNESS

The intensity of the characters on the display screen can be adjusted to optimize the com-
fort of your eyes. Simply turn the control switch. This switch is found (as shown in the figures
at left.)

T200 - on the front of the main unit below the disk drives.

T250 - on the left side of the console.

The characters are light green, displayed against a dark green background.

To prolong screen life, keep the brightness setting at the lowest level that allows eye
comfort during work sessions and when the system is left idle. Orienting the screen away from
glare allows using a lower brightness level.

A dirb: * 8.BA_

Screen Cursor

Figure 4 The Cursor

Figure 5 The Keyboard — Data Keys

10

THE CURSOR

The display screen contains a marker that moves like a “bouncing ball” to indicate your
place on the screen. The marker, called the cursor, is in the shape of a flashing underscore.
Top figure at left illustrates the cursor.

When data keys are pressed on the keyboard, the entered characters are displayed on the
screen and the cursor advances with each new keystroke.

USING THE KEYBOARD

The keyboard, shown at lower left, contains various types of keys:

® Data keys
e Line editing keys
e Special function keys

® Program function keys

Data Keys

Uppercase and lowercase characters, numeric characters and special symbols are on the
white keys. These keys, along with the space bar, the SHIFT key and the LOCK key, are oper-
ated as on a standard typewriter.

When the LOCK key is touched, uppercase letters can be entered without holding the
SHIFT key. The red light on the LOCK key is lit while the keyboard is in this upper case mode.
Touch the LOCK key again to resume the lowercase mode.

The keyboard also has a 10-key numeric pad, on the right side, to aid in entering numbers.
KEYBOARD, Continued —

11

Figure 6 The Keyboard — Line Editing Keys

12

Line Editing Keys

Line editing keys may be pressed when you enter data to send, correct or repeat data. A
TAB key is convenient for placement of the data.

l The carriage return key terminates the input of a line and sends it to
! l the system.

The ENTER key can be used as a substitute for the carriage return key.

ImMm-+4Zm

The backspace key moves the cursor back to the left by one character
-4— | | position. This key is used to retype and correct the characters of a line
before pressing the carriage return key.

~ DEL The DEL key deletes the last character typed on the line, but displays it
(, on the screen with an “echo effect”. This can be used for more than
. one character. Example:

e abcdef is typed.
® DEL is pressed three times.
* abcdeffed is displayed on the screen.

® abc is the effective input.

- The CAN key cancels the entire input line if pressed before the carriage
CAN return key. When the CAN key is pressed, # is displayed, and the input
can be retyped from the beginning.

When the REPT key is held down with a character key, the character
REPT typed repeats.

(The TAB key moves the cursor position to the next tab. Tabs are set on"
- TAB every 8 characters of a line.

KEYBOARD, Continued —#

13

njalalalalalalnlalsls
WE DN D DG E
AEPEEE D E

Figure 7 The Keyboard — Special Function Keys

Figure 8 The Keyboard — Program Function Keys

14

Special Function Keys

({ , Pressing special function keys tells the system to perform certain functions.

Pressing this key causes all following operating system command inter-
‘ﬁ;g?g;) action (between keyboard and screen) to be printed on the printer.
Pressing this key again deactivates the printing. (This does not work
while MBASIC is in use.) .

. Keyboard operation is disabled. The second touch unlocks the keyboard.
LOCK
When pressed simultaneously with the CTRL key, the system Cold Boot
(PL) is performed (described under “Using the System Disk™).
(h Reboots the system (described under “Using the System Disk™) or
- (BREAK) interrupts BASIC processing. When this key is pressed, AC is displayed

on the screen.

Edits a BASIC input line with the EDIT comand. When this key is
ESC pressed, [is displayed.

Performs predefined functions when another key is pressed
CTRL simultaneously.

Program Function Keys

Ten program function keys, PF0 through PF9, send a specific code to the program execut-
ing in the central processor. The following symbols, respectively, are displayed on the screen
when one of the program keys is pressed:

{, I, }, § AB, AD, AF, AG, AK or AN

Appendix B shows the character code table, including a decimal representation of the
(: program function keys.

15

envelopes.

floppy disk.

including smoke.

recommended.

TAKING CARE OF THE DISKS
e When not in use, floppy disks must be stored in the protective

® Do not touch or attempt to clean the data recording surface of the

®* Floppy disks may be damaged if twisted, bent, dropped sharply,
exposed to sunshine, winter cold, food, liquid, beverages or dust,

® Do not write too firmly on the floppy disk label. A felt-tip pen is

¢ Do not use erasers on the floppy disk label or near the floppy disk.
¢ Do not use magnets or magnetized objects near the floppy disk.
® Do not use rubber bands or paper clips on the floppy disk.

¢ Do not place heavy objects on the floppy disk.

Figure 9 Taking Care of the Disks

5.25 inch Floppy Disk

Protective Floppy Disk
Envelope Label

User Label

Floppy Disk

8-inch Floppy Disk

Floppy Disk
Label

Protective
Envelope

Floppy Disk User Label

Figure 10.1 T200: Floppy Disk

Figure 10.2 T250: Floppy Disk

16

NS

WORKING WITH THE FLOPPY DISKS

You will be working with floppy disks that serve different purposes. The system disk con-
tains the operating system which serves as the computer’s manager. This disk is delivered with
your system, and loaded each time its data is required.

You will also use floppy disks for storing your data or programs. “Prepackaged” programs
are available on floppy disks. The amount of information you can store is limited only by the
number of floppy disks that you have available.

Regardless of the type of disk you are using, the floppy disks hold information magnetically
and require special care. A list of precautions to protect the life of your disks is shown in the
chart at left.

Using the Floppy Disks

The T200 and T250 use different sizes of floppy disks. The lower figures at left show the
two sizes.

l:] The T200 has one or two floppy disk drives to mount 5.25-inch two-sided double-
density floppy disks.
I The T250 has one or two floppy disk drives that can read and write data on either

one-sided single-density 8-inch disks or two-sided double-density 8-inch disks.

The disk type is identified by the label on the jacket. The label shows the number of bytes
per sector as “Record Length.” “One-sided” is indicated with a 1S and “two-sided” with a 2D.
Appendix C gives disk characteristics for each type of disk, including the number of sectors and
bytes.

Your system may be equipped with one or two disk drives to house the removable disk
media. Disk drive #1 is always the one closest to the screen. Drive #1 is also called A. If the
system has two disk drives, the right-hand disk drive (#2) is also called B.

DISKS, Continued —#

17

STEP 1:

Press the

Open Button.

Figure 11.1 T200: Opening Disk Door

Figure 11.2 T250: Opening Disk Door

Place the Disk
with Label to
the Left-hand
Side.

STEP 2:

Place the Disk
with Label to
the Left-hand
Side.

Figure 12.1 T200: Mounting Disk

Figure 12.2 T250: Mounting Disk

Shut the Door

STEP 3:

Shut the Door

by Sliding to by Sliding to
the Right. the Right.
Figure 13.1 T200: Closing Disk Door Figure 13.2 T250: Closing Disk Door

18

(

STEP 1.

STEP 2.

STEP 3.

The three loading steps are illustrated at left.

STEP 1.

STEP 2:

STEP 3:

STEP 4:

NOTE:

Loading and Removing Floppy Disks

LOADING

Open the disk drive door:
D T200: Raise the right edge of the door.
l T250: Press the disk drive Open Button.

Place the disk in the drive with the label on the jacket to the left side. Be sure the disk
is all the way in the drive.

l (On the T250, a click should be heard.)

Close the door by sliding it firmly to the right.

REMOVING

Confirm that the busy indicator on the disk drive is off. Never remove the disk when
the light is on.

Open the disk drive door.
l (On the T250, press the Open Button. The disk pops out.)

Remove the disk and place it in the protective paper envelope.
Close the door.
New disks must be formatted before use via software contained in the operating

system. See Part 2, “The Operating System.”

DISKS, Continued —#

19

_

MOUNT SYSTEM DISK

J

igure 14 MOUNT SYSTEM DISK Prompt

=

-

CP/M LOADING

Fi gure I5 CP/M LOADING Message

_

A >AC (BREAK key is pressed.)
A>

e L

Figure 16 Reboot

20

Using the System Disk
MOUNTING

About five seconds after you have turned on your computer, it will display the statement,
MOUNT SYSTEM DISK. This prompt is shown in the top figure at left. (If you mounted the
system disk before turning on the power, the statement is not displayed and system loading
starts automatically.)

You should now place the system disk into disk drive #1 (drive A). Remember, if you have
two drives, this is the one closest to the screen.

Mounting the system disk means that you are loading the operating system stored on the
system disk into the main memory of the processing unit. While Part 2 will explain how the
operating system works, it will help you to know now that all programs are run under the
control of the operating system. In addition, some of the instructions that you enter from the
keyboard are accepted and processed by the operating system.

NOTE: You may also receive a message to exchange the system disk if you are using a one-
sided disk. This is only applicable for the T250.

Using the System Disk
CP/M LOADING (Cold Boot)

After you have successfully mounted the system disk, the message CP/M LOADING
appears on the screen, as shown in the middle figure at left. For a few seconds while the system
disk is loaded internally and the message is displayed, the red busy light is lit on the drive in use.

Once the system disk has been loaded successfully, A > appears on the screen. This is
known as a “prompt” because it is telling you that you can now enter a command.

This loading procedure is called “Cold Boot.” When the console power is already on and
you want to reload the operating system by Cold Boot, this can be accomplished by holding the
CTRL key and pressing the (IPL) key. If you have not already inserted the system disk, the
MOUNT SYSTEM DISK prompt will appear.

Using the System Disk
CP/M LOADING (Reboot)

Occasionally, you will receive error messages during the use of your computer. If you do,
you will need to reboot to restart your operating system.

To reboot, either: ‘
® Press the (BREAK) key, or

® Press the CTRL key and type C following the A > or B > prompt.

These methods are shown in the bottom figure at left.

The operating system will then restart from the outset. This procedure is also called a
warm start.

NOTE: When the BASIC language is being used (MBASIC), the above methods return MBASIC
to command level, rather than performing the reboot.

Winchester Disks

Toshiba plans to introduce Winchester disks in the T200/T250 product line soon. When the
Winchester disk is present, it will replace one of the floppy disk drive units.

21

=

g

&

/\ Power Switch

Figure 17.1 T200: Turning the Power Off

o K
Awer Switch

Figure 17.2 T250: Turning the Power Off

22

TURNING THE POWER OFF

Follow these steps to turn the power off:

STEP 1. Verify first that:
a. The red light is off on the front of the disk drive.

b. The printer is not printing.

STEP 2. If the disks are inserted in the disk drives, remove them and store in their protective
envelopes.

STEP 3. Turn off the power (as shown in the figures at left):
a. On the console

b. On the printer

NOTE: If you have need of communication interfaces, Appendix E provides this information.

23

7N

PART 2

25

OVERVIEW OF PART 2

O

Part 2 discusses your computer system’s software. Whether you buy prepackaged pro-
grams, write programs or modify existing ones, you need to understand the operating system
software, as well as how to use a computer language on your system. Part 2 includes the
following major sections:

® The Operating System
e (Capabilities
® Parts
e User Interaction
* File Names
¢ Commands
e Utilities
® Error Messages
e BASIC Programs
® Assembler Programs

If you will use only BASIC programs, you do not need to read the assembler programs
section of Part 2. Although the debugging tool and text editor are somewhat useful with BASIC,
these two facilities are primarily for use with assembly language. Therefore, they are included
in the assembler program section.

27

THE OPERATING SYSTEM

What is the Operating System?

Your computer consists of an interrelated system of devices and programs. While you are
the external manager of these components, computers also require an internal manager. For
that purpose, the Toshiba T200 and T250 have an operating system designed especially for
microcomputers by Digital Research. This system is called CP/M, for CONTROL PROGRAM for
MICROPROCESSORS.

Operating System Capabilities

Recall that each time you turn on your computer, you mount the system disk (described in
Part 1). This process loads the operating system into your computer. Once you have the oper-
ating system loaded into your computer, you can begin to use its capabilities. To do so, you
type established commands on the keyboard.

The operating system accepts established commands from the keyboard and trans-
lates them into electronic “language” that other parts of the computer can understand.

As you enter information and programs into your computer, you will want a method for
keeping track of that data.

The operating system allocates file spaces on disks and allows rapid access to any
file. The system allows dynamic allocation of file space, as well as sequential and ran-
dom file access.

When you write programs, you will need access to the software for that language, and the
ability to store the programs.

The operating system supports BASIC, assembler, and other languages. A large
number of distinct programs can be stored in both source and machine executable
form.

If you write assembly language programs, you will want a method of checking those
programs.

The operating system provides a text editor and “debugging” tool.

The Four Parts of the Operating System

In order to carry out its functions, the operating system is divided into four distinct parts. A
brief discussion of each will give you a better understanding of how your computer works, and
how you need to interact with it.

1. The Console Command Processor (CCP)

You communicate with your computer via the keyboard. In essence, you are setting elec-
tronic switches when you press the keys on the keyboard. The Console Command Processor
(CCP) then reads and translates your commands (switches) into a more complex series of
switches. The CCP, therefore, lets you communicate with your computer in simple language
similar to English.

For example, the CCP processes commands that list a directory of your files, print the
contents of files and control the operation of “transient”” programs such as assemblers, editors
and debuggers. The standard commands available will be explained in upcoming sections of
this manual. In summary, the CCP provides an interface between your keyboard and the
remainder of the operating system.

28

2. The Basic Input Output System (BIOS)

As you know, your T200 or T250 uses at least one disk drive. One of the four parts of the
operating system, the Basic Input Output System (BIOS), provides access to the disk
drive(s). In addition, the BIOS allows you to add other peripherals to your system by changing
the peripheral drivers to handle them.

3. The Basic Disk Operating System (BDOS)

In addition to gaining access to the disk drives, the operating system also provides disk
management. The part that does this, the Basic Disk Operating System (BDOS), controls
one or more disk drives that contain independent file directories. The BDOS is the “strategist”
in that it implements disk allocation to provide fully dynamic file construction. At the same
time, the BDOS minimizes head movement during disk access.

The BDOS allows any file to contain any number of records providing that the file does not
exceed the size of any single disk. Each disk can contain up to 256 distinct files. Specific com-
mands are available for working with the files and disks via the BDOS, such as renaming a file.

4. The Transient Program Area (TPA)

The fourth part of the operating system serves as a “juggler” allowing your computer to
swap in and overlay additional program segments. The Transient Program Area (TPA) holds
programs which are loaded from the disk under command of the CCP. For example, during
program editing the TPA holds the text editor machine code and data areas. Similarly, programs
created under the operating system can be checked out by loading and executing these pro-
grams in the TPA.

In addition to the flexibility offered by the TPA, any or all of the four operating system parts
can be “overlayed” by an existing program. That is, once a program is loaded into the TPA, the
CCP, BDOS and BIOS areas can be used as the program’s data area. A “bootstrap” loader is
programmatically accessible whenever the BIOS portion is not overlayed. The user’s program
need only branch to the bootstrap loader at the end of execution, and the complete operating
system is reloaded from disk.

See Appendix G for patching the operating system.

User Interaction through the CCP

You interact with the operating system primarily through the CCP, which reads and inter-
prets the commands you enter via the keyboard. Upon initial computer startup, you load the
system disk into disk drive #1 (A). The CCP displays the message:

Toshiba xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this system manages, and m.m is the version
number.

In general, the CCP addresses one of two disks which can be inserted into the disk drives
(A and B). Following system startup, the operating system automatically logs in disk A and
prompts you with the symbol A >. This symbol indicates that the CCP is currently addressing
disk A.

A disk is “logged in” if the CCP is currently addressing it. In order to indicate clearly which
disk is logged in, the CCP always prompts you with the disk name followed by the symbol > .
When you receive such a prompt, the system will wait until it receives a command from you.

29

Communicating with the Operating System

As you know, you communicate with the operating system primarily through the CCP.
Often, you will be requesting that the computer do certain things with your data. However,
when you want to store your data or a program on a disk file, you have to give a name to the
file. So before you learn the established commands, it is important that you understand how to
formulate file names properly. ’

Remember, your computer responds to the presence or absence of electrical currents con-
trolled by switches. You must activate the correct keyboard switches for a file name in order
for the CCP to translate your request into the desired computer actions with that file.

File Names

Accurately formed file names can consist of just a primary part or a primary and secon-
dary part. The primary name distinguishes the particular source file. The secondary file name,
though optional, is helpful for identification in that it usually specifies the characteristics of
files. For example, data files used in Accounts Receivable control may be given a secondary
name of .AR.

Characteristics of file names are:
e The primary file name consists of one to eight characters.
® The secondary file name, if used, consists of one to three characters.
® If both file names are used, they are separated by a period.

® [f just the primary file name is used, it is equivalent to a primary name plus a secondary
name consisting of three blanks.

® Uppercase and lowercase characters and numbers are usually used.
® The following special characters can also be used in formulating file names:
N1 s %& () - -/ +@A
The remaining special characters cannot be used for file names.

® Lowercase letters are always translated by the operating system to uppercase when
they are entered for command names and file names, unless BASIC is involved. (Lower-
case characters entered for a file name with the specially designed BASIC language
commands and statements are not translated to upper case.)

If you are working with General Ledger files, you might have file names like the following:
GLTRAX
GLJOURNL
GLACCT.AR

Observe that the longest primary file name (GLJOURNL) has the maximum of eight let-
ters. Shorter primary file names (GLTRAX and GLACCT) are also acceptable, and more desira-
ble since they are logical abbreviations. The secondary file name .AR is also used. Note the
placement of the period.

30

For convenience (if you have more than one drive), file names can be prefixed with a drive
name (A or B), followed by a colon (:). The A or B indicates the disk where the file is located.
Examples:

A:GLTRAX
B:GLACCT.AR

Observe that the drive letter and the colon are counted in the maximum of eight characters
allowable for the primary part.

NOTE: A special case occurs with secondary names for BASIC files in the following situation.
BASIC automatically supplies a .BAS if no period (.) appears in the file name, when
given with the SAVE command, and the entire file name is less than nine characters
long. The SAVE command will be explained in an upcoming section.

Ambiguous File References

When you want to identify a unique file on a particular disk attached to the operating
system, you can call out the exact file name. It is termed the unambiguous reference, since
the file name refers only to that one unique file. You also have the option to specify part of the
file name in an ambiguous, or “wild card,” reference. This type of reference enables you to
locate all files, or a subset of all files, in a particular group of files. There are two basic ways to
use the wild card file reference. One method uses the * symbol; the other uses the ?.

Using the *

Using the * is the simplest way to make wild card, or ambiguous file references. For exam-
ple, to get the names of all files beginning with GL and having no secondary file name:

TYPING PRODUCES FILES IN THIS FORM
GL* GLTRAX
GLJOURNL

To get the names of files beginning with GL and also containing a secondary file name:

TYPING PRODUCES FILES IN THIS FORM
GL*.* GLACCT.AR
GCLACCT.PAY

The following chart summarizes the use of the asterisk (*) in wild card (ambiguous) file
reference:

AMBIGUOUS FILE REFERENCE RECEIVE
* ¥ All files on a disk.

pPPPPPPPP-* All files on a disk with a primary name of
up to 8 specified letters.

*.sss All files on a disk with a secondary name
of up to 3 specified letters.

31

Using the ?

The question mark symbol (?) matches any character of a file name in the ? position. A
maximum of eight question marks to the left of the period in a file name and a maximum of
three question marks to the right of the period are allowed (2???2222.22??). In this method of
wild card file reference, the total number of characters and question marks determines which
files will be found. For example: '

TYPING PRODUCES THESE FILE TYPES

GL??? GLTAX

GL???? GLTRAN

GL???7??? GLJOURNL

GL?2?2.2? GLACCT.AR

GL??222.2?? GLACCT.PAY

272272.AR GLACCT.AR

222?222.PAY GLACCT.PAY

X?Z.COM XYZ.COM

X?Z.C?M XYZ.COM
X3Z.CAM

mmn All files on a disk with no secondary file
name.

7n7NNaN All files on a disk.

You may have already deduced that some ambiguous file references using the ? symbol would
produce the same result as those using the * symbol:

* = NNMIMN
PPPPPPPP-* = PPPPPPPP.???
* sss = M M2.sss
B:*.BAS = B:??7?7772.BAS

Note that it is quicker to use the asterick (*) when you are not specifying any of the
characters to the left and/or right of the period.

32

C

Commands

Now that you have a general understanding of formulating file names, you can begin to
learn about the commands, many of which deal with the files in various ways. Two types of
commands are available. The first type is called built-in. That means that the commands are
usable even when the system disk (which contains the Command Console Processor) has been
removed from the disk drive. Recall that the operating system is loaded from the system disk
into memory when you turn on your computer and perform a “boot” or “cold start.” The TPA
then executes the built-in commands as you use them.

The second type of command is called transient. When you use transient commands, the
currently logged disk must have had the system area copied onto it from the actual system
disk. While this procedure is described later in “Disk-to-Disk Copying,” it is important you
understand now this prerequisite for transient command use. The system portion can be copied
onto blank floppy disks, as well as those containing programs. Transient commands are also
important because they allow you the capacity to define your own additional transient com-
mands. This procedure is described under the LOAD command section.

You can enter commands when the operating system is prompting you for input via the A>
or B> prompt. You type the command on the keyboard and it appears on the screen as you
type it. To submit any command to the operating system for action, you always have to press
the carriage return key. Remember that the CCP translates these letters into upper case, so you
need not bother holding the SHIFT key.

The following pages describe the individual commands. If you will use mainly BASIC pro-
grams, you will probably need only three of the built-in and two of the transient commands.
These commands will be presented in the first two upcoming sections. Other additional com-
mands will follow. A quick-reference list of the commands is given after that, including unam-
biguous and/or ambiguous file references as required by the commands.

33

A > dir b:*.bas

B: WWW BAS: NPV BAS: ACT012 BAS: A BAS
B: TSTAT BAS: B BAS: C BAS: D BAS
B: E BAS: LONG BAS

A>

Figure 18 DIR Command

A >type B: PRCHS.JNL
721,1201, ABC INC,, 180.9, 511
723, 1203, TAI, 3200.9, 120
728, 1204, OA INC, 400.2, 170
A>

Figure 19 TYPE Command

34

C Built-in Commands for BASIC Users

DIR

The DIR (directory) command causes the names of all files on a disk which satisfy the ambig-
uous file reference to be displayed on the screen. The following are examples given to demon-
strate variations of this command. You of course will have your own file names, and just drive A
if your system has one disk drive. Remember that you press the carriage return key after a

command.

COMMAND FORM FILE NAMES DISPLAYED

DIR All files on the current disk.

DIR *.* Same as DIR above.

DIR A: All files on the disk inserted in drive A.

DIR B:*.TS All files on the disk in drive B with the
secondary name T8S.

DIR B:*.BAS All BASIC file names on the disk in drive
B. (This example is shown in the top
figure at left.)

C ‘, Other valid commands are:
/ DIR XY DIR X?Z.C?M DIR B:X.Y

NOTE: If no files can be found on the selected disk to satisfy the directory request, either a ?,
NOT FOUND or NO FILE is displayed on the screen.

TYPE
The TYPE command types on the screen the contents of an unambiguous source file.

COMMAND FORM DISPLAYS

TYPE XY The contents of file X.Y.

TYPE XXX The contents of file XXX.

TYPE B:X1 The contents of file X1 on drive B.
T

[TYPE B:PRCHS.JNL The contents of the PRCHS.JNL file on
S drive B (shown in the lower figure at
left.)

NOTE: The TYPE command expands tabs (CTRL-I characters), assuming tab positions are set
at every eighth column.

e

A>dir B: XYZ
NO FILE

_

Figure 20 No File Found

A> stat B:

Bytes Remains On B: 126k
A> stat B: PRCHS. JNL
Recs bytes Ext Acc

1 1k 1 R/WB:PRCHS.JNL
Bytes Remains On B: 126k
A>

Figure 21 STAT Command

36

ERA

N The ERA (erase) command removes the specified file(s) from the currently logged disk and
L* makes available the space the file(s) once occupied. You may use either an unambiguous
reference to erase one file, or an ambiguous reference to erase a group of files. Once the file is
erased, you should not see the file displayed when you enter the DIR command. The figure at

top left gives a sample response to such a request.

COMMAND FORM FILE(S) ERASED FROM CURRENT
DISK

ERA X.Y XY

ERA X.* All files with primary name X.

ERAX?Y.C?M All files which satisfy X?Y.C?M.

ERA *.* All files on the current disk. (Before this

extreme command is enacted, the CCP
displays the message, ALL FILES (Y/N)?
A Y response for yes must be given
before the files are actually removed.)

ERA B:*.PRN All files on drive B which satisfy the
ambiguous reference ??2?2????.PRN
— (independent of the currently logged
C disk).

Transient Commands for BASIC Users
STAT
The STAT (status) command provides system status information about file storage.

COMMAND FORM DISPLAYS

STAT The storage remaining on all active disk
drives (with the drive letter, read/write
(RW) or read only (R/0), the remaining
space in kilobytes).

STAT B: The storage remaining on drive B. Drive
A may be currently logged. (See Figure
21).

STAT B:PRCHS.JNL Information about file PRCHS.JNL on
disk B. (See Figure 21)’

C ‘ STAT X?Y.C?™M Individual and summarized information

« about the files (in alphabetical order)
which satisfies the ambiguous file
reference:

37

A> pip

*B: TESTDATA=CON:

10100 200.70 3200 50 ASSEMBLY-D
10200 180.00 254 0 ASSEMBLY-A
10300 230.50 230 0 ASSEMBLY-H
10800 120.00 45 1 PS UNIT
(CRTL/Z are pressed.)

* (Carriage Return is pressed.)

A>

—

Figure 22 PIP Command

38

RECS = The number of 128-byte records
allocated to the file.

BYTES = The number of kilobytes for the file.
(BYTES = RECS*128/1024)

EXT = The number of 16K extensions.
(EXT = BYTES/16)

FILE NAME/TYP = The primary/secondary file name.

NOTE: The STAT command can also be used for device assignment, as explained in “Other
Transient Commands;” and to set a drive to read-only. (See “Write Protecting Disks.”)

PIP

The PIP (Peripheral Interchange Program) command allows copying and combining of disk
files. PIP enables you to work with a destination file which receives data and a source file
(including the keyboard) which delivers the data.

COMMAND FORM RESULT
Simple Copying:
PIP X=Y File Y is copied to File X. File Y

remains unchanged.

Linking Files:

PIP X=Y, Z Files Y and Z are concatenated (linked
together) and copied to File X. Files Y
and Z are unchanged.

Different Disks:

PIP NEW.M=B:OLD.M A copy of OLD.M is moved from drive B
to the currently logged disk (A). The
new file is named NEW.M.

Using Ambiguous File Names:

PIP A:=B:*.* All files on disk B are copied to A with
the same file names.
PIP B:TESTDATA=CON: The file TESTDATA is created on disk B

by reading the keyboard (CON:) input
until the CTRL and Z keys are
pressed simultaneously.

C

' The above example is shown in the Figure 22. The user received an asterisk when just PIP was
entered.

39

Ambiguous File, Continued

PIP A:=GL* All files which satisfy GL* are copied
from the currently logged disk to the
same file names on drive A. Each
unambiguous file name is listed as it
is copied.

PIP B:=*.COM g All files which have the secondary name
COM are copied to drive B from the
currently logged drive.

PIP A:=B:ZAP.* All files which have the primary name
ZAP are copied from A to B.

Same File Names on

Different Disks:

PIP B:=GAMMA.BAS Equivalent to
B:GAMMA.BAS=GAMMA.BAS
PIP B:=A:GAMMA.BAS Equivalent to

B:GAMMA BAS=A:GAMMA BAS

PIP
Other Points Regarding the PIP Command:

® Information from the source is copied left to right to the destination.
e The copy operation can be terminated at any time by pressing any key on the keyboard.

¢ [f you form the PIP command properly, and the destination file exists, it is removed and
replaced with the source file data. The destination file is not changed if an error
condition exists.

e If the destination file also appears as one or more of the source files, the source file is
not altered until the entire concatenation is complete.

e Other less frequently used PIP capabilities are also listed under “Other Transient
Commands.”

The following two sections:
Other Built-in Commands
Other Transient Commands

explain command forms for use with languages other than BASIC. Therefore, if you plan to use
just BASIC, skip over these sections to “Line Editing and Output Control.”

40

N

REN

Other Built-in Commands

The REN (rename) command renames a specified file that exists on a disk. The currently
logged disk is assumed to contain the file to be renamed.

COMMAND FORM
REN X.Y=QR
REN XYZ.COM=XYZ.XXX

REN A:X.ASM=Y.ASM

REN B:A.ASM=B:A.BAK

NOTE: If the file name you wish to use is already present on the drive, the REN command will
respond with the error message, FILE EXISTS. The change will not be performed.

If the file name you wish to rename does not exist on the specified disk, NOT FOUND
is printed on the screen.

RESULT
The name of file QR is changed to X.Y.

The name of file XYZ.XXX is changed
to XYZ.COM.

The file Y.ASM is renamed to X.ASM on
drive A. (If one name is preceded by a
drive name and the other is not, both
file names are assumed to be on the

same disk.)

The file A.BAK is renamed to A.ASM on
drive B.

The SAVE command literally saves information by placing a specified number of pages (256-
byte blocks) onto disk from the TPA. SAVE also names this as a file. In the operating system
distribution system, the TPA starts at 100H (hexadecimal), which is the second page of
memory. Thus, if the user’s program occupies the area from 100H through 2FFH, the SAVE
command must specify two pages of memory. The machine code file can subsequently be
loaded and executed. The SAVE operation can be used any number of times without altering

the memory image.

COMMAND FORM
SAVE 3 X.COM
SAVE 40 Q

SAVE 4 XY
SAVE 10 B:ZOT.COM

41

RESULT
Copies 100H through 3FFH to X.COM.

Copies 100H through 28FFH to Q. (Note:
28 is the page count in 28FFH, and
28H=2*16+8=40 decimal.)

Copies 100H through 4FFH to X.Y.

Copies 10 pages (100H through OAFFH)
to the file ZOT.COM on drive B.

Other Transient Commands

ASM

The ASM (assembler) command loads the assembler and assembles the specified program
from disk. You provide a file name after the ASM command. The secondary file name ASM is
assumed and thus need not be specified.

COMMAND FORM RESULT

ASM GAMMA The two-pass assembler is automatically
executed for the source file GAMMA.

ASM B:ALPHA The assembler is loaded from the

currently logged drive and operates on
the source program ALPHA.ASM on
drive B.

If assembly errors occur during the second pass, the errors are displayed on the screen.
The assembler produces a file:

x.PRN

where x is the primary name specified in the ASM command. The PRN file contains a listing of
the source program (with imbedded tab characters if present in the source program), along
with the machine code generated for each statement and diagnostic error messages, if any. The
PRN file can be listed using the TYPE command, or sent to a peripheral device using PIP. Note
also that the PRN file contains the original source program, augmented by miscellaneous
assembly information in the leftmost 16 columns (for example, program addresses and
hexadecimal machine code). Thus, the PRN file can serve as a backup for the original source
file. If the source file is accidentally removed or destroyed, the PRN file can be edited. (See the
text editor section.) The editing is accomplished by removing the leftmost 16 characters of
each line (issuing a single editor “macro” command). The resulting file is identical to the

original source file and can be renamed (REN) from PRN to ASM for subsequent editing and
assembly. The file

x.HEX -

is also produced which contains 8080 machine language in Intel “hex” format suitable for
subsequent loading and execution. (See the LOAD command.) For complete details of the
operating system’s assembly language program, see the assembly programs section.

DDT

The DDT (Dynamic Debugging Tool) command is used to load the debugger into the TPA
and start execution. The use of this command is explained in detail under the debugging tool
“section.

DUMP

The DUMP command initiates a program which types the contents of an unambiguous disk file
on the screen in hexadecimal form. The file contents are listed sixteen bytes at a time, with the
absolute byte address listed to the left of each line in hexadecimal. Long typeouts can be
aborted by pushing the DEL key during printout.

42

~

ED

The ED command controls the program which is the operating system’s context editor. It
allows creation and alteration of ASCII files in the operating system environment. The use of
this command is explained in detail in the text editor section.

LOAD

The LOAD command reads the specified unambiguous file, which is assumed to contain hex
format machine code, and produces a memory image file which can be subsequently executed.
The file name is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command. The LOAD command creates a file
named

x.COM

which marks it as containing machine executable code. The file is actually loaded into memory
and executed when the user types the file name x immediately after the prompting character >
which is printed by the CCP.

In general, the CCP reads the name x following the prompting character and looks for a
built-in function name. If no function name is found, the CCP searches the system disk directory
for a file by the name

x.COM

If found, the machine code is loaded into the TPA, and the program executes. Thus, the
user need only LOAD a hex file once. It can subsequently be executed any number of times
simply by typing the primary name. In this way, the user can “invent” new commands in the
CCP. (Formatted disks contain the transient commands as COM files, which can be deleted at
the user’s option.) The operation can take place on an alternate drive if the file name is
prefixed by a drive name. Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and operates upon drive
B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format hexadecimal
machine code records (as produced by the ASM program, for example) which begin at 100H,
the beginning of the TPA. Further, the addresses in the hex records must be in ascending order.
Gaps in unfilled memory regions are filled with zeroes by the LOAD command as the hex
records are read. Thus, LOAD must be used only for creating CP/M standard “COM” files which
operate in the TPA. Programs which occupy regions of memory other than the TPA can be
loaded under the DDT.

SUBMIT

The SUBMIT command allows CP/M commands to be batched together for automatic process-
ing. The unambiguous file name given in the SUBMIT command must be the name of a file
which exists on the currently logged disk, with an assumed file type of SUB. The SUBMIT
command takes the form:

SUBMIT filename pl1 p2 p3...pn

where pl through pn are actual parameter values.

43

The SUB file is created with the ED program like any other file. It contains CP/M prototype
commands, with dummy parameters that allow substitution of actual parameter values at exe-
cution time. The dummy parameters take the form:

$i
where i is an integer. For the first such parameter, i must equal 1, for the second i=2, for the
third i=3, and so on. For example, SUBMIT file TYPICAL.SUB might contain:
DIR $1:$2 (cr)
PIP A:=$1:$2 (cr)

where $1 and $2 are the dummy parameters that function as variables, accepting the values of
the actual parameters at execution time. The actual parameter values following the file name
are substituted into the dummy parameters. If no errors occur, the file with substituted parame-
ters is processed sequentially by CP/M.

When the SUBMIT transient is executed, the actual parameter values pl . . . pn are paired
with the dummy parameters $1 . . . $n in the prototype commands. If the number of dummy and
actual parameters does not correspond, then the SUBMIT function is aborted with an error
message on the screen.

The SUBMIT function creates a file of substituted commands with the name
$$$.SUB

on the logged disk. When the system reboots (at the termination of the SUBMIT), this com-
mand file is read by the CCP as a source of input, rather than the console. If the SUBMIT
function is performed on any disk other than drive A, the commands are not processed until the
disk is inserted into drive A and the system reboots. Further, the user can abort command
processing at any time by pressing the DEL key when the command is read and echoed. In this
case, the $$$.SUB file is removed, and the subsequent commands come from the keyboard.
Command processing is also aborted if the CCP detects an error in any of the commands.
Programs which execute under CP/M can abort processing of command files when error condi-
tions occur simply by erasing any existing $$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, you may type a $$ which reduces to a
single $ within the command file.

The last command in a SUB file can initiate another SUB file, thus allowing chained batch
commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype commands
| ASM $1
DIR $1.*
ERA *.BAK
PIP $2:=8§1 PRN
ERA $1.PRN
and the command
SUBMIT ASMBL X PRN (press carriage return)

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file, substituting X for all
occurrences of $1 and PRN for all occurrences of $2, resulting in a $$$.SUB file containing the
commands

44

ASM X

DIR X.*

ERA *. BAK

PIP PRN:=X.PRN

ERA X.PRN
which are executed in sequence by the CCP

The SUBMIT function can access a SUB file which is on an alternate drive by preceding the

file name by a drive name. Submitted files are only acted upon, however, when they appear on
drive A. Thus, it is possible to create a submitted file on drive B which is executed at a later
time when it is inserted in drive A.

THE XSUB FUNCTION

XSUB extends the power of the SUBMIT facility to include line input to programs as well as
the Console Command Processor. The XSUB command is included as the first line of your sub-
mit file and, when executed, self-relocates directly below the CCP. All subsequent submit com-
mand lines are processed by XSUB, so that programs which read buffered console input (BDOS
function 10) receive their input directly from the submit file. For example, the file SAVER.SUB
could contain the submit lines:

XSUB

DDT

1$1. HEX

R

GO

SAVE 1 $2.COM
with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The XSUB program loads,
followed by DDT which is sent the command lines “IX.HEX” “R” and “G0” thus returning to the
CCP. The final command “SAVE 1 Y.COM” is processed by the CCP.

The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate its presence. Subsequent submit command streams
do not require the XSUB, unless an intervening cold start has occurred. Note that XSUB must be
loaded after DESPOOL, if both are to run simultaneously.

45

SYSGEN

This utility adds operating system patch TPATCH to the released version of CP/M, generating a
version 2.xx BIOS and writing it on a newly formatted disk on drive B. To perform SYSGEN:

following the system prompt, type SYSGEN
place the newly formated disk in drive B.

NOTE: BREAK will abort the SYSGEN process.

* k ¥ k kx ¥ ok

The following two commands, PIP and STAT, were also discussed under commands for
BASIC users. More uses for them are detailed below.

PIP

PIP allows reference to physical and logical devices which are attached to the CP/M system.
The device names are the same as given under the STAT command, along with a number of
specially named devices. The logical devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), LST: (list) while the physical devices are
CRT: (console or list)
LPT: (list)

(Note that the BAT: physical device is not included, since this assignment is used only to
indicate that the RDR: and LST: devices are to be used for console input/output.)

The RDR, LST, PUN and CON devices are all defined within the BIOS portion of CP/M and
thus are easily altered for any particular I/O system. (The current physical device mapping is
defined by IOBYTE.) The destination device must be capable of receiving data (that is, data
cannot be sent to the punch), and the source devices must be capable of generating data (that
is, the LST: device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 40 “nulls” (ASCII 0’s) to the device (this can be issued at the end of the
punched output).

EOF: Send a CP/M end-of-file (ASCIl CTRL-Z) to the destination device (sent automati-
cally at the end of all ASCII data transfers through PIP).

INP: Special PIP input source which can be “patched” into the PIP program itself: PIP
gets the input data character-by-character by CALLing location 103H, with data
returned in location 109H (parity bit must be zero).

OUT: Special PIP output destination which can be patched into the PIP program: PIP
CALLs location 106H with data in register C for each character to transmit. Note
that locations 109H through 1FFH of the PIP memory image are not used and can be
replaced by special purpose drives using the debugging tool.

PRN: Same as LST:, except that tabs are expanded at every eighth character position,
lines are numbered and page ejects are inserted every 60 lines, with an initial eject
(same as [t8np]).

File and device names can be interspersed in the PIP commands. In each case, the specific
device is read until end-of-file (CTRL-Z for ASCII files, and a real end-of-file for non-ASCII disk
files). Data from each device or file is concatenated from left to right until the last data source
has been read. The destination device or file is written using the data from the source files, and
an end-of-file character (CTRL-Z) is appended to the result for ASCII files. Note that if the

46

2N

‘\#2’

destination is a disk file, then a temporary file is created ($$$ secondary name) which is
changed to the actual file name only upon successful completion of the copy. Files with the
extension COM are always assumed to be non-ASCILI.

The copy operation can be aborted at any time by depressing any key on the keyboard (a
DEL suffices). PIP will respond with the message ABORTED to indicate that the operation was
not completed. Note that if any operation is aborted, or if an error occurs during processing,
PIP removes any pending commands which were set up while using the SUBMIT command.

Valid PIP commands are shown below

COMMAND FORM RESULT

PIP LST:=X.PRN Copies X.PRN to the LST device and
terminates the PIP program.

PIP Starts PIP for a sequence of commands
(PIP prompts with *).

*CON:=X.ASM,Y.ASM,Z.ASM Concatenates three ASM files and copies
to the CON device.

*X.HEX=CON:,Y.HEX PTR: Creates a HEX file by reading the CON

(until a CTRL-Z is typed), followed by
data from Y.HEX, followed by data from
PTR until a CTRL-Z is encountered.

PIP PUN:=NUL: X.ASM,EOF: NUL: Send 40 nulls to the punch device; then
copy the X.ASM file to the punch, fol-
lowed by an end-of-file (CTRL-Z) and 40
more null characters.

You can stop PIP with a single carriage return.

The user can also specify one or more PIP parameters enclosed in left and right square
brackets, separated by zero or more blanks. Each parameter affects the copy operation, and the
enclosed list of parameters must immediately follow the affected file or device. Generally, each
parameter can be followed by an optional decimal integer value (the S and Q parameters are
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII x-off character (CTRL-S)
is received from the source device. This allows transfer of data to a disk file from a
continuous reading device, such as a cassette reader. Upon receipt of the x-off, PIP
clears the disk buffers and returns for more input data. The amount of data which
can be buffered is dependent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer of data to the desti-
nation from the character source. This parameter is used most often to truncate
long lines which are sent to a (narrow) printer or console device.

Echo all transfer operations to the console as they are being performed.

F Filter form feeds from the file. All imbedded form feeds are removed. The P
parameter can be used simultaneously to insert new form feeds.

H Hex data transfer: all data is checked for proper Intel hex file format. Non-essential
characters between hex records are removed during the copy operation. The con-
sole will be prompted for corrective action in case errors occur.

47

I Ignore “:00” records in the transfer of Intel hex format file (the I parameter auto-
matically sets the H parameter).

L Translate upper case alphabetics to lower case.

Add line numbers to each line transferred to the destination starting at one, and
incrementing by l. Leading zeros are suppressed and the number is followed by a
colon. If N2 is specified, then leading zeroes are included and a tab is inserted
following the number. The tab is expanded if T is set.

o Object file (non-ASCII) transfer: the normal CP/M end-of-file is ignored.

Pn Include page ejects at every n lines (with an initial page eject). If n=1 or is excluded
altogether, page ejects occur every 60 lines. If the F parameter is used, form feed
suppression takes place before the new page ejects are inserted.

R Read system files. Files with the system attribute can be included in PIP transfers if
the R parameter is included, otherwise system files are not recognized.

Tn Expand Tabs (CTRL-I characters) to every nth column during the transfer of
characters to the destination from the source.

U Translate lower case alphabetics to upper case during the copy operation.

A" Verify that data has been copied correctly by rereading after the write operation.
(The destination must be a disk file.)

W Write over read only files without console interrogation. If the operation involves
several concatenated files, the W parameter need only be included with the last file
" in the list.

Z Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file transfer:

COMMAND FORM RESULT

PIP X ASM=B:[v] Copies X.ASM from drive B to the cur-
' rent drive and verifies that the data was
properly copied.

PIP LPT:=X.ASM[nt8u] - Copies X.ASM to the LPT: device;
numbers each line, expands tabs to
every eighth column, and translates
lower case alphabetics to upper case.

PIP PUN:=X.HEX[i],Y.AOT[h] First copies X.HEX to the PUN: device
- - and ignores the trailing “:00” record in
' X.HEX; then continues the transfer of
. data by reading Y.ZOT, which contains
hex records, including any “:00” records
which it contains.

48

N

R

PIP PRN:=X.ASM[p50] Sends X.ASM to the LST: device, with
line numbers, tabs expanded to every
eighth column, and page ejects at every
50th line. Note that nt8p60 is the
assumed parameter list for a PRN file;
p50 overrides the default value.

Under normal operation, PIP will not overwrite a file which is set to a permanent R/O
status. If an attempt is made to overwrite an R/O, then

DESTINATION FILE IS R/O, DELETE (Y/N)?

is issued. If the operator responds with the character Y, then the file is overwritten. Otherwise,
the response

* * NOT DELETED * *

is issued, the file transfer is skipped, and PIP continues with the next operation in sequence. In
order to avoid the prompt and response in the case of R/O file overwrite, the command line can
include the W parameter, as shown below:

PIP A:=B:*.COM[W]

The above copies all non-system files to the A drive from the B drive, and overwrites any R/O
files in the process. If the operation involves several concatenated files, the W parameter need
only be included with the last file in the list, as shown in the following example:

PIP A.DAT = B.DAT,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers if the R parameter is
included. Otherwise, the system files are not recognized. The command line

PIP ED.COM = B:ED.COM([R]

for example, reads the ED.COM file from the B drive, even if it has been marked as an R/O and
system file. The system file attributes are copied, if present.

STAT

The STAT command allows control over the physical to logical device assignment. (See the
IOBYTE function in the system entry points section, and the “CP/M System Alteration Guide.”)
In general, there are four logical peripheral devices which are, at any particular instant, each
assigned to one of several physical peripheral devices. The four logical devices are named:

CON: The system console device (used by CCP for communication with the operator).
RDR: Input device (i.e., RS232 port).

PUN Output device (i.e., RS232 port).

LST: The output list device.

The actual devices attached to any particular computer system are driven by subroutines
in the BIOS portion of CP/M. Thus, the logical RDR: device, for example, could actually be a
high speed reader, Teletype reader or cassette tape. In order to allow some flexibility in device
naming and assignment, several physical devices are defined, as shown below:

CRT: Cathode ray tube device (high speed console).

BAT: Batch processing (console is current RDR:, output goes to current LST: device).

49

LPT: Line printer (Centronics port).
COM: RS232 Communications port.

It must be emphasized that the physical device names may or may not actually correspond
to devices which the names imply. That is, the PTP: device may be implemented as a cassette
write operation, if the user wishes.

The possible logical to physical device assignments can be displayed by typing:
STAT VAL: [carriage return]

The STAT prints the possible values which can be taken on for each logical device:

CON:= CRT: LPT: BAT: COM:
RDR:= CRT: COM: COM: COM:
PUN:= CRT: COM: LPT: LPT:
LST:= CRT: LPT: LPT: COM:

In each case, the logical device shown to the left can take any of the four physical assignments
shown to the right on each line. The current logical to physical mapping is displayed by typing
the command:

STAT DEV: |[carriage return]

which produces a listing of each logical device to the left, and the current corresponding physi-
cal device to the right. For example, the list might appear as follows:

CON: = CRT:
RDR: = COM:
PUN: = COM:
LST: = LPT:

The current logical to physical device assignment can be changed by typing a STAT command
of the form:

STAT Idl = pdl, 1d2 =pd2, . . ., ldn = pdn [carriage return]

where 1dl through ldn are logical device names, and pdl through pdn are compatible physical
device names (that is, 1di and pdi appear on the same line in the VAL: command shown above).
The following are valid STAT commands which change the current logical to physical device
assignments:

STAT CON: = CRT: [carriage return]
STAT PUN:=TTY:, LST: = LPT:, RDR: = TTY: [carriage return]

e

COMMAND QUICK-REFERENCE LIST

COMMAND BASIC/ TRANS/* AFN/ DESCRIPTION MANUAL
CALL OTHER BUILTIN UFN** OF COMMAND PAGE #
ASM Other Trans UFN Loads assembler 42

DIR BASIC Builtin AFN Lists file directory 35

DDT Other Trans UFN Loads debugger 42

DUMP Other Trans UFN Dumps file in hex 42

ED Other Trans UFN Loads editor 43

ERA BASIC Builtin Either Erases a file 37

LOAD Other Trans UFN Loads file in hex 43

PIP BASIC Trans Either Loads Per. Inter. Prog. 39, 46
REN Other Builtin UFN Renames a file 41

SAVE Other Builtin UFN Saves pages from TPA 41

STAT BASIC Trans Either Gives status (space) 37,49
SUBMIT Other Trans UFN Submits file for proc. 43
SYSGEN Other Trans --- Creates new CP/M disk 46

TYPE BASIC Builtin UFN Types file contents 35

* For transient commands, the currently logged disk must contain a system disk portion. This is not

required for built-in commands.
** AFN = Ambiguous File Name
UFN = Unambiguous File Name

Line Editing and Output Control

All users occasionally make mistakes while typing at the keyboard. The CCP offers various
ways for correcting mistakes. Three of the methods (backspace, DEL key, CAN key) are for
correcting the input of data. These were discussed in Part 1 under “Line Editing Keys.” These
three methods can also be used for correcting the entry of commands. Additional line editing
of commands, both for mistakes and other purposes, is performed by pressing the CTRL key
and one other specified key simultaneously:

51

CTRL - C

(BREAK KEY)
CTRL - E
CTRL - H
(===KEY)
CTRL - J
CTRL - M
CTRL - R
CTRL - U
CTRL - X
CTRL - Z

Reboots the operating system (a warm start) when used at the
beginning of a line. May be used when error messages are
encountered.

Returns the carriage from the end of a line to the beginning of the
next line, but the line is not submitted to the computer for action
until the carriage return key is pressed. (CCP command lines can
generally be up to 128 characters in length.)

Backspaces one character position.

Terminates the current input (line feed).

Terminates the input (carriage return).

Retypes the current command line, deleting any characters cor-
rected with the DEL key (types a “clean” line). This is helpful
since the DEL key leaves the wrong character on display, even
though the correct key is also displayed and is the only one effec-
tively sent to the computer for action.

Deletes the entire line typed at the console. (Same result as press-
ing the CAN key.) '

Same as CTRL - U.

Ends the input from the keyboard. (This is used for PIP and
ED commands.)

In contrast to the above input controls, output controls are also available:

CTRL - P

CTRL - S

Copies all subsequent console output to the currently assigned list
device. (See the STAT command.) Output is sent to both the list
device and the console device until this same key combination is
typed again.

Temporarily stops the output displayed on the screen so that a
segment of the output can be viewed. When the next CTRL and S
combination is simultaneously typed, the program execution and
output continue.

In addition, pressing the key labeled:

(H-COPY)
P.STOP

Sends all subsequent output to both the screen and the printer
until this key is pressed again.

52

Utilities

Disk to Disk Copying

On the T250, to copy disks, type UTIL and carriage return. This brings the following copy
options to the screen in menu format:

1. Copy entire disk from Drive A to Drive B.

2. Copy CP/M system tracks only.

3. Copy disk in Drive A using one drive only.

F. Go to FORMAT menu.

X. Exit this menu program and return to CP/M.

Then select the type of copy you wish to perform from the menu.

To copy disks on the T200, type COPY.COM. This initiates a series of three screens that
step you through the copy process. Screen #1 displays:

TOSHIBA T200 CP/M COPY UTILITY
Step 1> Insert SOURCE disk in Drive # 1
Step 2> Insert FORMATTED disk in Drive # 2
Press RETURN to begin copy or BREAK to end
After pressing RETURN, Screen # 2 displays the following information:

TOSHIBA CP/M COPY UTILITY
Copying Disk Now Please wait
Track # X X

During the copy operation, the X X indicating the track number will cycle from 00 through
35 and then from 36 through 70. Then, the screen will contain the information shown on
Screen # 3, unless one of these error messages appear on Screen #2:

‘Bad Disk Please Try Another !
OR
Not a FORMATTED disk in Drive #2

Screen #3 will contain the following information if the copy is completed successfully:
TOSHIBA T200 CP/M COPY UTILITY
Copy Now Complete ! Remove Disks
Press RETURN to continue copy or BREAK to end

If there is a problem completing the copy successfully at this point, line 2 of Screen #3
displays:

Copy NOT Complete Please Try Again

53

Setting Up New Disks (Formatting)

Before you use new floppy disks for storing data, you must first “format” them. This
process is necessary since it prepares the format of your disks for storing information properly.
Appendix F describes the storage layout of floppy disks.

On the T250, to perform formatting, begin with the menu used above for the T250 under
“Disk to Disk Copying.” Select option F from the menu, which will bring the following
format options to the screen in menu format:

1. Format the disk in Drive B as a 256 sector double sided double density disk.
2. Format the disk in Drive B as a 128 sector single sided disk.

C. Go to COPY menu.

X. EXIT this menu program and return to CP/M.

Select the type of formatting you want from the menu.

[On the T200, to format disks, type FORMAT.COM. This initiates a series of three screens
that step you through the copy process. Screen # 1 displays:

TOSHIBA T200 CP/M FORMAT UTILITY
Step1> Insert A NEW disk in Drive # 2
REMEMBER>>If this disk has data on it this will erase it totally.
Press RETURN to begin format or BREAK to end

After pressing RETURN, Screen # 2 displays:
TOSHIBA T200 CP/M FORMAT UTILITY
Formatting Disk Now Please wait
Track # X X

During formatting, the track number cycles from 00 - 35 twice. The system then displays
Screen # 3 unless this error message appears on screen # 2:

Bad Disk Please Try Another !

If the formatting is completed successfully, Screen # 3 dispiays:
TOSHIBA T200 CP/M FORMAT UTILITY
Format Now Complete ! Remove Disk
Press RETURN to continue format or BREAK to end

If there is an error during the formatting procedure, line 2 of Screen # 3 displays:

|| Format NOT Complete Please Try Again

54

The Currently Logged Disk/Switching Disks

.

As described under “User Interaction through the CCP,” the currently logged disk is the
one identified on the screen via the prompt symbol A > for drive A, or B > for drive B.

If you have two disk drives and want to switch disks, you simply type the disk name you
want (A or B), followed by a colon (:). This must be done when the CCP is in a receptive mode,
prompting you for some type of input. The sequence of prompts and commands shown below
might occur after the operating system is initially loaded from drive A.

PROMPTS/COMMANDS

xxK CP/M VER 2.2
A>DIR

SAMPLE ASM
SAMPLE PRN

L A >B:
B > DIR *.ASM

DUMP ASM
FILES ASM
B >A:

55

EXPLANATION OF COMMANDS

List all files on disk A.

Switch to disk B.
List all ASM files on B.

Switch back to A.

© Silver
[Paper

To Write-protect,
stick the Silver
Paper over

the cutout.

O,
I

To make disk writable
again, rip the Silver
Paper off.

o

Figure 23 Write-Protecting T200 Disks

56

()

Write-Protecting Disks

Floppy disks are like cassettes in that you can record new information over prior information.
The T200 and T250 offer different ways of protecting the contents stored on a disk from
erroneously being covered over with new information.

T200; The 5.25-inch disks can be write-protected by sticking a protective silver paper on
the disk jacket. (Shown in figure 23.)

T250: The way to protect disks on the T250 is to set the disk drive itself to a read only
mode (rather than read and write). Use the STAT command in the following form:

STAT x:R/O

where x is drive A or B. Any disk mounted on the drive will not accept the write
operation until the next warm or cold start.

NOTE: When you have disks that contain important information, it is recommended that you
make backup disks by copying (PIP command or the disk copying operation).

If you try to write to a disk in a read only situation, you will receive an error
message (see next section).

Error Messages

In the course of using your computer, you may encounter error messages displayed on
your screen. The list below gives the messages possible, as well as steps for correcting the

ERROR MESSAGE EXPLANATION CORRECTION

NO FILE The operating system ® Check the directory for file

or cannot find a file. names on both the A and B
NOT FOUND drives. The file may not exist on

either drive directory.

® Make sure you have the most
current data disk.

® Retype the file name in case you
did not spell it correctly the

first time.

FILE EXISTS The file name already ® Select a new name for the new
exists and may not be file, or rename the file that
used again. already exists.

PIP? The PIP program is not 1. Check the directory of the
stored on currently operating system for PIP.COM.

logged disk. 2. Load the disk that has the

PIP.COM program.

57

ERROR MESSAGE

BDOS ERR ON x
(where x is drive A
or B)

BDOS ERR ON x:
BAD SECTOR

EXPLANATION

A problem exists in
reading or writing to
the disk.

CORRECTION

Make sure the power to the disk
drive is on.

Make sure the disk drive door is
completely shut.

Make sure the disk is formatted
and not too worn.

Make sure the disk has been
mounted on the drive.

Check to see if the disk is worn
out or damaged.

Verify that the disk is a type
recommended by Toshiba (see
Appendix C).

Recover from this situation by
pressing the CTRL and C keys
simultaneously to reboot

the system.

NOTE: You may also press the RETURN key which ignores the bad sector. However, using the
RETURN key in this situation may destroy your disk integrity if the operation is a directory
write. In this case, make sure you have adequate backup. Check with your Toshiba
representative if your system reports this error more than once a month.

BDOS ERR ON x:
READ ONLY

BDOS ERR ON x:
SELECT

An attempt has been
made to write to a disk
which has been set to
read onlyin a STAT
command, or when the
drive has been set to
read only by BDOS.

An attempt has been
made to address a drive
other than A or B.

58

Reboot the operating system by
pressing the CTRL and C keys
simultaneously, or perform a
cold start when the disks are
changed. (The drive is returned
to read and write capacity.)

Reboot the system by pressing
the RETURN or ENTRY key.

If necessary, restart the
computer.

// \‘\V\C

USING BASIC PROGRAMS

This section describes how to run programs written in the BASIC language. There are many
versions of BASIC, and two are offered with the T200 and T250 systems. These are the CP/M
version of Microsoft’s BASIC-80 (MBASIC) and Digital Research Incorporated’s CBASIC.

If you are not familiar with these languages, please refer to the MBASIC Reference Manual
and the CBASIC Reference Manual that you have received. The rules of writing BASIC programs,
the meaning of BASIC statements and commands, as well as sophisticated methods for
modifying programs, are described in these manuals. You can then refer to the following
section in order to learn the specifics of using the BASIC language in conjunction with your
Toshiba T200 or T250.

CBASIC is a variation of a compiler language. This means that a program is written with an
editor and then compiled. The programs used to compile (CBAS2) and to run (CRUN2) it are
separate. After the source code of a program has been created, the CBASIC compiler generates
intermediate code that the computer executes.

The intermediate code is derived from a CBASIC (or later version called CBASIC 2)
compiled source program. It can be executed using the CRUN2 command. This command
assumes that a program has already been compiled.

The version of MBASIC that is provided with your Toshiba T200 or T250 is an interpretive
form of BASIC. It executes the source program statements directly by interpreting into object
code. This avoids the step of compiling which in turn decreases the program development time.

59

Flow chart showing process of creating CBASIC program.

CREATE OF CORRECT
PROGRAM WITH TEXT
EDITOR

i.e. WORDSTAR

CHECK THE CBASIC
REF. MANUAL FOR
EXPLANATION OF
ERROR (COMPILER
ERROR MESSAGES)

YES

PROGRAM

ANY SYNTAX
ERRORS?

RUN THE
PROGRAM

CHECK THE CBASIC
REF. MANUAL UNDER
(RUNTIME ERROR
MESSAGE) FOR AN
EXPLANATION OF THE
ERROR

FOR EXAMPLE:
CBASE2 PROGRAM

LOGICAL
ERRORS?

PROGRAM
COMPETED

YES

FOR EXAMPLE:
CRUN2 PROGRAM

Figure 24

Creating a CBASIC Program.

60

TN
-

Using CBASIC

To write a CBASIC program, first you create the source statements using a text editor or
word processing program of your preference. Be sure to use a text editor such as WordStar,
which has a mode or creating text which is a nondocument mode. Most text editors, in the
normal word processing mode, will put in many characters and set certain bit flags which the
CBASIC compiler cannot understand. Once you have created the source program (following the
rules and statement explanations of the CBASIC reference manual) you compile the program.
This is done by typing (while at the CP/M level):

A>CBAS2 Program name

Where “program name” is the name of the program you created.

NOTE: The program must have the secondary file name of .BAS or the compiler will not find it.
Also, the primary filename can be no longer than 8 characters. Example: PROCESS.BAS.
Make sure you follow these rules and give the program the same name when you create
it with the text editor that you use to reference it from CP/M.

The compile will flag any errors it finds during compilation. These error messages can be
found in the back of the CBASIC reference manual under “Compiler Error Messages.” You must
go back and correct any mistakes by using the text editor. Repeat this cycle until the program
compiles successfully with no errors found. Now you are ready to try running the program. To
do this type:

A>CRUN2 Program name

Any errors found during execution will be flagged by the runtime module (CRUN2.COM) and
you will be taken out to CP/M level. Go to the back of the CBASIC reference manual to find an
explanation of the error message under “Runtime error messages.” Then go back to the text
editor, make the necessary changes to the program, recompile it, and try running it again until
it runs without errors.

The process involved in writing a CBASIC program is illustrated by the flow chart on the
left.

61

A> mbasic

BASIC-80 Rev. 5.2

[CP/M Version]

Copyright 1977, 78, 79, 80 (C) by Microsoft
mmmmm Bytes free

Ok

_

Figure 25 Initiating MBASIC

Ok

PRINT 1000* (1.12) 5
1762.34

Ok

PRINT EXP (-2*2.54)
6.21991E-03

Ok

_

Figure 26 BASIC Direct Mode

Ok

? SQR (2.53/N2 + 3.45/N\2)
4.27825

Ok

_

N | |

Figure 27 “?” for PRINT

62

N

TN

Initiating MBASIC

After you load the operating system into your computer, you receive the command prompt
A> on the screen. You have learned that at this point your system is waiting for a command
from you. If you want to work with MBASIC, be sure the system disk is in drive A and enter the
name of the file which contains the BASIC program. This file, called MBASIC, is on the system
disk. As with any command, you then press the carriage return key to send the command to the
operating system. (See the figure at top left.)

About eight second after you send MBASIC, the system will reply as shown in the top figure
at left. The prompt OK is displayed when BASIC is ready to accept your commands to BASIC. At
this point, you may remove the system disk from the drive since MBASIC has been loaded into
memory until the next warm or cold start.

BASIC Commands

BASIC accepts predefined commands. If you enter anything other than the established
commands, and press the carriage return key, you will see the error message Syntax error on
the screen. This means that BASIC cannot understand what you are trying to request. (Error
messages and their causes are explained in the MBASIC and CBASIC Reference Manuals.)
Therefore, in order to work with BASIC, you must use the established terminology. You can
enter BASIC commands and statements in either of two modes: direct or indirect.

The Direct Mode

In the direct mode, BASIC commands and statements are entered directly without line
numbers. These commands and statements begin with a key word such as PRINT. An input line
is submitted to BASIC when the carriage return key is pressed and the commands and
statements are executed. As shown in the middle figure at left, the direct mode may be used as
a “calculator” for quick computations that do not require a complete program. A BASIC
statement PRINT precedes the arithmetic operation you want to calculate

As shown in the bottom figure at left, a shorthand method is available (as the exception)
for the use of PRINT. A question mark (?) can be used in place of PRINT.

The Indirect Mode

The indirect mode is used for entering programs. Program lines are preceded by line
numbers and are stored in memory. The upcoming section, “Entering a BASIC Program,”
describes this process.

63

Ok

new

Ok

auto

10 rem Net Present Value Calculation

30 input “Enter cost for each year”; C(1), C(2), C(3), C(4), C(5)
40 input “Interest rate”; D

50 for N=1to 4

60 NPV=NPV + (R(N) — E(N)/(1 + D) AN
70 print “Net Present Value . .”; NPV

80 goto 20

90 end

100 N\ C (BREAK key is pressed.)

Ok

list

10 REM Net Present Value Calculation

20 INPUT “Enter revenue for each year”; R(1),

30 INPUT “Enter cost for each year”; C(1), C(2), C(3), C(4), C(5)
40 INPUT “Interest rate”; D

50 for N=1to 4

60 NPV=NPV + (R(N) — E(N)/(1 + D) AN

70 PRINT “Net Present Value .. ”; NPV

80 GOTO 20

90 END

OK

20 input “Enter revenue for each year”; R(1), R(2), R(3), R(4), R(5)

R(2), R(3), R(4), R(5)
(

Figure 28 A BASIC Program

64

N

(

Entering a BASIC Program

A BASIC program consists of program lines composed in the following manner:

line number BASIC statement

A BASIC program line always begins with a line number and ends with a carriage return. The
line numbers may be typed in, or for additional convenience, automatically generated by the
AUTO command.

The figure at top left shows a sample BASIC program. Observe that two commands are given
before the program lines begin. The first command, NEW, tells the system that you are entering
a new program. This command clears all lines stored in memory. The second command, AUTO,
is used (as descibed above) to generate line numbers automatically. To terminate automatic
line numbering, hold the CTRL key and touch the C key, or simply touch the (BREAK) key. The
line in which CTRL and C are typed is not submitted and BASIC returns to command level.

After the program was entered, the command LIST was typed in order to display the
program just stored in memory.

NOTE: Command and statement keywords, such as REM, INPUT and PRINT, were typed in the
example at top left in lowercase. They were automatically converted to uppercase, as shown in
the LISTed program on the next page.

65

Ok

50 forN=1to 5

15 dim R(5), C(5)

65 next N

45 NPV=0

80

61 print R(N)—C(N), NPV

list

10 REM Net Present Value Calculation

15 DIM R(5), C(5)

20 INPUT “Enter revenue for each year”; R(1), R(2), R(3), R(4), R(5)
30 INPUT “Enter cost for each year”; C(1), C(2), C(3), C(4), C(5)
40 INPUT “Interest rate”; D

45 NPV=0

50 FORN=1TO5

60 NPV=NPV + (R(N) — C(N))/(1 +D) AN
61 PRINT R(N)—C(N), NPV

65 NEXT N

70 PRINT “Net Present Value . .”; NPV

90 END

Ok

list

Ok

Figure 29 Program Corrections/LIST

Ok

RUN

Enter revenue for each year? 200, 340, 800, 450, 400
Enter cost for each year? 1010, 150, 20, 20, 20
Interest rate? 0.25

—810 —648
190 —526.4
780 —127.04
430 49.0881
380 173.607

Net Present Value . .173.607

Figure 30 RUN Command

66

AN
A

Correcting A BASIC Program

L\ ® If an incorrect character is entered as a line is typed, use the left arrow key to move the
cursor to the incorrect character position and continue typing the line as desired.

® If a program line that is currently in memory needs correction, retype the line using
the same line number, as shown below:

Ok
50 for N=1to 5

BASIC automatically replaces the old line with the new line.

® If lines need to be inserted to a program in memory, simply type the lines with the
appropriate numbers, as shown below (line numbers indicate the order in which the
program lines are stored in memory):

15 dim R(5), C(5)

65 next N

45 NPV=0

61 print R(N)-C(N), NPV

«

¢ If lines in memory need to be deleted, type the line number and press the carriage
return:

80

® If you have made a correction, confirm it by using the LIST command which prints out
the program currently in memory.

The program at top left shows some corrections and then the LISTed program. The LLIST
command prints the program on the printer.

Running a BASIC Program

To execute the program in memory, type the RUN command. The program is executed, and
the results are given. In the example at lower left, the program requested yearly revenue and
cost as well as interest rate. The program then figured and printed out the net present value.

C\‘ Storing A Program on Disk

The program entered from the keyboard is not permanently recorded in memory. The
program may be erased and written over by other programs, or deleted when you turn the

67

10 REM Purchase Journal

20 OPEN “O”, #1, “B:PRCHS.JNL”

30 INPUT “Voucher No.”; N

40 IF N = 9999 THEN 200

50 INPUT “Name of Supplier”; S$

60 INPUT “Date”; M

70 INPUT “Amount”; CREDIT

80 INPUT “Debit: No. and Amount”; J,DEBIT
90 IF J=120 OR J=511 OR J=521 OR J=531 OR J=170 THEN 160 ELSE 100
100 PRINT *“120 . . .Merchandise Inventory”

110 PRINT “511 . . .Head Office Expense”

120 PRINT “521 . . .South Branch Expense”

130 PRINT “531 .. .North Branch Expense”

140 PRINT “170 . . .Office Equipment”

150 GOTO 80

160 IF CREDIT < > DEBIT THEN 170 ELSE 180
170 PRINT “error”

175 GOTO 70

190 GOTO 30
200 CLOSE
210 END

Figure 31

A File-handling Program

68

TN
N\,

N

system’s power off. Before this occurs, the program should be written from the memory to a
o disk by the SAVE command. In the following example, the SAVE command saves the file named

(NPV:

Ok
SAVE “B:NPV*
Ok

The “B:” indicates that the program is to be stored on a disk which is inserted in drive B (#2). If
you have removed the system disk and mounted your disk on the drive A (#1), type:

SAVE “A:file name”

Or, if your disk is mounted on the currently active disk drive, you do not need to reference a
drive and can simply type:

SAVE “file name”

(The saved program can be recalled at any time from the disk and loaded into memory for
program changes or execution via the LOAD command:

Ok
LOAD “B:NPV”
Ok

In dealing with programs, it is important that you understand two types of files:
® Program files
® Data files

Program files contain the saved programs. Data files contain data which are read or
written by the executing programs.

For example, a data file used for an inventory control application may contain relatively
fixed information such as merchandise name, price and vendor name, as well as inventory
status information.

T Data files are created with specified names, loaded with contents, modified or appended by
(. the BASIC application programs. These include OPEN, PRINT#, INPUT#, WRITE#, CLOSE,
GET, PUT and so on.

The figure at left shows an example of a file-handling program.

69

Activating Saved BASIC Programs

You will want to activate programs that you write and/or purchase. These programs are
stored on floppy disks,with unique file names. To activate the execution of a program, insert
the appropriate disk into drive B (#2) and enter any of the following command sequences:

A>MBASIC B:file name

Ok
LOAD “B:file name”,R

Ok
RUN “B:file name”

Ok
LOAD “B:file name”
RUN

If you want to execute two or more programs in a specified sequence, you can write the
commands to initiate these programs in order in a “command file.” You then type a single
SUBMIT command which causes the program to be executed automatically in a batch mode:

A>SUBMIT B:command-file name

Each program should contain a SYSTEM statement to return to the operating system when it is
finished, as described below.

Terminating BASIC

To exit from BASIC and return to the operating system, type SYSTEM. You then receive the
prompt A>.

If you have removed the system disk, mount it on drive A before you type SYSTEM or the
message, SET DISK IN DRIVE A OR DISK ERRORS appears on the screen.

NOTE: To interrupt program execution and return to BASIC command level, hold the CTRL key
and press the C key, or simply press the (BREAK) key.

70

¢

USING ASSEMBLER PROGRAMS

The CP/M assembler, system entry points, debugger and text editor are used by advanced
users who have a special need for working with them. The assembler reads assembly language
source files from the disk and produces 8080 machine language in Intel hex format. The CP/M
assembler is initiated by typing:

ASM filename or
ASM filename.parms
In both cases, the assembler assumes there is a file on the disk with the name
filename.ASM

which contains an 8080 assembly language source file. The first and second forms shown above
differ only in that the second form allows parameters to be passed to the assembler to control
source file access and hex and print file destinations.

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first command, the assembler reads
the source file with assumed file type ASM and creates two output files:

filename.HEX and
filename.PRN

The HEX file contains the machine code corresponding to the original program in Intel hex
format, and the PRN file contains an annotated listing showing generated machine code, error
flags and source lines. If errors occur during translation, they will be listed in the PRN file as
well as at the console,

The second command form can be used to redirect input and output files from their
defaults. In this case, the “parms” portion of the command is a three-letter group which
specifies the origin of the source file, the destination of the hex file and the destination of the
print file. The form is

filename.plp2p3

where pl, p2, and p3 are single letters
pl: AB,...,Y designates the disk name which contains the
source file

p2: AB,...,Y designates the disk name which will receive the
hex file

Z skips the generation of the hex file

p3: AB,...,Y designates the disk name which will receive the
print file

X ' places the listing at the console

Z skips generation of the print file

71

Thus, the command
ASM X AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that the hex (X.HEX) and
print (X.PRN) files are to be created on disk A. This form of the command is implied if the
assembler is run from disk A. That is, given that the operator is currently addressing disk A, the
above command is equivalent to: '

ASM X

The command:
ASM X.ABX

indicates that the source file is to be taken from disk A, the hex file is placed on disk B, and the
listing file is to be sent to the console. The command

ASM X.BZZ

takes the source file from disk B, and skips the generation of the hex and print files. (This
command is useful for fast execution of the assembler to check program syntax).

The source program format is compatible with both the Intel 8080 assembler (macros are
not currently implemented in the CP/M assembler, however), as well as the Processor
Technology Software Package #1 assembler. That is, the CP/M assembler accepts source
programs written in either format. There are certain extensions in the CP/M assembler which
make it somewhat easier to use. These extensions are described below.

Program Format

An assembly language program acceptable as input to the assembler consists of a
sequence of the form:

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each assembly language
statement is terminated with a carriage return and line feed (the line feed is inserted
automatically by the ED program), or with the character ! which is treated as an end-of-the line
by the assembler. (Thus, multiple assembly language statements can be written on the same
physical line if separated by exclamation point symbols.)

The line” is an optional decimal integer value representing the source program line
number, which is allowed on any source line to maintain compatibility with the Processor
Technology format. In general, these line numbers will be inserted if a line-oriented editor is
used to construct the original program. Thus ASM ignores this field if present.

The label field takes the form
identifier
or
identifier:

and is optional, except where noted in particular statement types. The identifier is a sequence
of alphanumeric characters (alphabetics and numbers), where the first character is alphabetic.
Identifiers can be freely used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All characters are significant in
an identifier, except for the embedded dollar symbol ($) which can be used to improve
readability of the name. Further, all lower case alphabetics are treated as if they were upper
case. Note that the : following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid instances of labels:

72

TN

X Xy long$name
X: yxl: longer$named$data:
x1y2 x1x2 x234$5678$9012$3456:

The operation field contains either an assembly directive, or pseudo operation, or an 8080
machine operation code. The pseudo operations and machine operation code are described
below.

The operand field of the statement, in general, contains an expression formed out of
constants and labels, along with arithmetic and logical operations on these elements. Again,
the complete details of properly formed expressions are given below.

The comment field contains arbitrary characters following the ; symbol until the next real
or logical end-of-line. These characters are read, listed, and otherwise ignored by the
assembler. In order to maintain compatibility with the Processor Technology assembler, the
CP/M assembler also treats statements which begin with a * in column one as comment
statements, which are listed and ignored in the assembly process. Note that the Processor
Technology assembler has the side effect in its operation of ignoring the characters after the
operand field has been scanned. This causes an ambiguous situation when attempting to be
compatible with Intel’s language, since arbitrary expressions are allowed in this case. Hence,
programs which use this side effect to introduce comments must be edited to place a ; before
these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements of the above
form, terminated optionally by an END statement. All statements following the END are ignored
by the assembler.

Forming the Operand

In order to describe completely the operation codes and pseudo operations, it is necessary
to present first the form of the operand field, since it is used in nearly all statements.
Expressions in the operand field consist of simple operands (labels, constants and reserved
words), combined in properly formed subexpressions by arithmetic and logical operators. The
expression computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly. Further, the number of significant
digits in the result must not exceed the intended use. That is, if an expression is to be used in a
byte move immediate instruction, then the most significant 8 bits of the expression must be
zero. The restrictions on the expression significance is given with the individual instructions.

Labels

As discussed above, a label is an identifier which occurs on a particular statement. In
general, the label is given a value determined by the type of statement which it precedes. If the
label occurs on a statement which generates machine code or reserve memory space (for
example, a MOV instruction or a DS pseudo operation), the label is given the value of the
program address which it labels. If the label precedes an EQU or SET, then the label is given
the value which results from evaluating the operand field. Except for the SET statement, an
identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the assembler. This
value can then be combined with other operands and operators to form the operand field for a
particular instruction. »

73

Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the radix of
the constant, is denoted by a trailing radix indicator. The radix indicators are:

B binary constant (base 2)

0] octal constant (base 8)

Q octal constant (base 8)

D decimal constant (base 10)

H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter O is easily confused with the
digit 0. Any numeric constant which does not terminate with a radix indicator is assumed to be
a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. That is, binary constants
must be composed of 0 and 1 digits, octal constants can contain digits in the range 0 - 7, while
decimal constants contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (10D), B (11D), C (12D), D (13D), E (14D) and F (15D). Note that the
leading digit of a hexadecimal constant must be a decimal digit in order to avoid confusing a
hexadecimal constant with an identifier (a leading 0 will always suffice). A constant composed
in this manner must equate to a binary number which can be contained within a 16-bit counter,
otherwise it is truncated on the right by the assembler. Similar to identifiers, imbedded $ signs
are allowed within constants to improve their readability. Finally, the radix indicator is
translated to upper case if a lower case letter is encountered. The following are all valid
instances of numeric constants: ‘

1234 1234D 1100B 1111$0000$1111$0000B
1234H OFFEH 33770 33$77$22Q
33770 Ofe3h 1234d Offffh

Reserved Words

There are several reserved character sequences which have predefined meanings in the
operand field of a statement. The names of 8080 registers are given below, which, when
encountered, produce the value shown to the right:

2 0 T MmO O ® >

w
lav)]
OB D U W N = O =

3
=

74

O

(Again, lower case names have the same value as their upper case equivalents). Machine
instructions can also be used in the operand field, and equate to their internal codes. In the
case of instructions which require operands, where specific operand becomes a part of the
binary bit pattern of the instruction (for example, MOV A B), the value of the instruction (in this
case MOV) is the bit pattern of the instruction with zeroes in the operand fields (for example,
MOV produces 40H).

When the symbol $ occurs in the operand field (not imbedded within identifiers and
numeric constants), its value becomes the address of the next instruction to generate, not
including the instruction contained within the current logical line.

String Constants

String constants represent sequences of ASCII characters, and are represented by
enclosing the characters within apostrophe symbols (). All strings must be fully contained
within the current physical line (thus allowing ! symbols within strings), and must not exceed
64 characters in length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes ’ *), which becomes a single
apostrophe when read by the assembler. In most cases, the string length is restricted to either
one or two characters (the DB pseudo operation is an exception), in which case the string
becomes an 8 or 16-bit value, respectively. Two character strings become a 16-bit constant,
with the second character as the low order byte, and the first character as the high order byte.

The value of a character is its corresponding ASCII code. There is no case translation
within strings; thus, both upper and lower case characters can be represented. Note, however,
that only graphic (printing) ASCII characters are allowed within strings. Valid strings are:

‘A? 6‘AB’ ‘ab’ ‘CY
1919 ’ a 119 79 %99 y ” b
‘Walla Walla Wash.’

‘She said ‘ ‘Hello’ ’ to me.’
‘I said “Hello” to her.’

Arithmetic and Logical Operators

The operands described above can be combined in normal algebraic notations using any
combination of properly formed operands, operators and parenthesized expressions. The
operators recognized in the operand field are:

OPERATOR EXPLANATION

a+b Unsigned arithmetic sum of a and b
a—b Unsigned arithmetic difference between a and b
+b Unary plus (produces b)
—b Unary minus (identical to 0 — b)
a*b Unsigned magnitude multiplication of a and b
a/b Unsigned magnitude division of a by b
aMODDb Remainder aftera /b
NOT b Logical inverse of b (all 0’s become 1’s; 1’s become 0’s), where b is

considered a 16-bit value

75

aAND b Bit-by-bit logical and of a and b

aORD Bit-by-bit logical or of a and b
aXORb Bit-by-bit logical exclusive or of a and b
aSHLb The value which results from shifting a to the left by an amount b,

with zero fill.

aSHR Db The value which results from shifting a to the right by an amount b,
with zero fill.

In each case, a and b represent simple operands (labels, numeric constants, reserved
words and one or two character strings), or fully enclosed parenthesized subexpressions such
as:

10+20 10h+37Q L1/3 (L2+4) SHR 3

(‘a’ and 5fh) + ‘0’ (‘B'+B) OR (PSW+M)
(14(2+¢)) shr (A—(B+1))

Note that all computations are performed at assembly time as 16-bit unsigned operations. Thus,
—1 is computed as 0—1 which results in the value Offffh (that is, all 1's). The resulting
expression must fit the operation code in which it is used. If, for example, the expression is used
in an ADI (add immediate) instruction, then the high order eight bits of the expression must be
zero. As a result, the operation “ADI —1” produces an error message (—1 becomes 0ffffh which
cannot be represented as an 8-bit value), while ADI (—1) AND OFFH is accepted by the
assembler since the AND operation zeroes the high order bits of the expression.

|
|

Precedence of Operators

As a convenience to the programmer, ASM assumes that operators have a relative
precedence of application which allows the programmer to write expressions without nested
levels of parentheses. The resulting expression has assumed parentheses which are defined by
the relative precedence. The order of application of operators in unparenthesized expressions
is listed below. Operators listed first have highest precedence (they are applied first in an
unparentesized expression), while operators listed last have lowest precedence. Operators
listed on the same line have equal precedence, and are applied from left to right as they are
encountered in an expression.

* / MOD SHL SHR
-t
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler as the fully
parenthesized expressions shown to the right below:

a*b+c (a*b)+c
atb*c at(b*c)
aMODb *cSHL d ((aMODDb) *¢)SHL d

aORbAND NOTc+dSHLe aOR(bAND (NOT (c + (d SHL e))))

76

“ N

Balanced parenthesized subexpressions can always be used to override the assumed
parentheses. Thus, the last expression above could be rewritten to force application of
operators in a different order as:

(aORDb)AND (NOT c) + dSHL e
resulting in the assumed parentheses:
(aOR b) AND ((NOT c¢) + (d SHL e))

Note that an unparenthesized expression is well-formed only if the expression which results
from inserting the assumed parentheses is well-formed.

Assembler Directives

Assembler directives are used to set labels to specific values during assembly, perform
conditional assembly, define storage areas and specify starting addresses in the program. Each
assembler directive is denoted by a “pseudo operation” which appears in the operation field of
the line. The acceptable pseudo operations are:

OPERATION EXPLANATION

ORG Set the program or data origin

END End program, optional start address
EQU Numeric “equate”

SET Numeric “set”

IF Begin conditional assembly

ENDIF End of conditional assembly

DB Define data bytes

DW Define data words

DS Define data storage area

The individual pseudo operations are detailed below.
The ORG Directive
The ORG statement takes the form:
label ORG expression

where label is an optional program label, and expression is a 16-bit expression, consisting of
operands which are defined previous to the ORG statement. The assembler begins machine
code generation at the location specified in the expression. There can be any number of ORG
statements within a particular program, and there are no checks to ensure that the programmer
is not defining overlapping memory areas. Note that most programs written for the CP/M
system begin with an ORG statement of the form

ORG 100H

which causes machine code generation to begin at the base of the CP/M transient program
area. If a label is specified in the ORG statement, then the label is given the value of the
expression. (This label can then be used in the operand field of other statements to represent
this expression.)

77

The END Directive

The END statement is optional in an assembly language program, but if it is present, it
must be the last statement, (All subsequent statements are ignored in the assembly.) The two
forms of the END directive are:

label END
label END expression

where the label is again optional. If the first form is used, the assembly process stops, and the
default starting address of the program is taken as 0000. Otherwise, the expression is
evaluated, and becomes the program starting address. (This starting address is included in the
last record of the Intel formatted machine code “hex” file which results from the assembly.)
Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient program area.)

The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular numeric values.
The form is:

label EQU expression

where the label must be present, and must not label any other statement. The assembler
evaluates the expression, and assigns this value to the identifier given in the label field. The
identifier is usually a name which describes the value in a more human-oriented manner.
Further, this name is used throughout the program to ‘“parameterize” certain functions.
Suppose, for example, that data received from a teletype appears on a particular input port, and
data is sent to the teletype through the next output port in sequence. The series of equate
statements could be used to define these ports for a particular hardware environment:

TTYBASE EQU 10H ;BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ;TTY DATA IN
TTYOUT EQU TTYBASE+1 ;TTY DATA OUT

At a later point in the program, the statements which access the teletype could appear as:

IN TTYIN ;READ TTY DATA TO REG-A

ouT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/O ports had been used. Further, if the
hardware environment is redefined to start the teletype communication ports at 7FH instead of
10H, the first statement need only be changed to:

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

78

£

The SET Directive
The SET statement is similar to the EQU, taking the form:
label SET expression

except that the LABEL can occur on other SET statements within the program. The
expression is evaluated and becomes the current value associated with the label. Thus, the
EQU statement defines a label with a single value, while the SET statement defines a value
which is valid from the current SET statement to the point where the label occurs on the next
SET statement. The use of the SET is similar to the EQU statement, but is used most often in
controlling conditional assembly.

The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language statements which are to
be included or excluded during the assembly process. The form is

IF expression
statement#1

statement#2

statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF. (All operands in the expression must be defined ahead of the IF statement.) If the
expression evaluates to a non-zero value, then statement#1 through statement*n are
assembled. If the expression evaluates to zero, then the statements are listed, but not
assembled. Conditional assembly is often used to write a single “generic”’ program which
includes a number of possible run-time environments, with only a few specific portions of the
program selected for any particular assembly. The following program segments, for example,
might be a part of a program which communicates with either a teletype or a CRT console (but
not both) by selecting a particular value for TTY before the assembly begins:

TRUE EQU OFFFFH ;DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE
TTY EQU TRUE ;TRUE IF TTY, FALSE IF CRT
TTYBASE EQU 10H ;BASE OF TTY I/O PORTS
CRTBASE EQU 20H ;BASE OF CRT I/O PORTS
IF TTY ;ASSEMBLE RELATIVE TO TTYBASE
CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE+1 ;CONSOLE OUTPUT

79

ENDIF

IF NOT TTY ;ASSEMBLE RELATIVE TO CRTBASE N
CONIN EQU CRTBASE ;CONSOLE INPUT
CONOUT EQU CRTBASE+1 ;CONSOLE OUTPUT
ENDIF
IN CONIN ;READ CONSOLE DATA
ouT CONOUT ;WRITE CONSOLE DATA
In this case, the program would assemble for an environment where a teletype is connected,
based at port 10H. The statement defining TTY could be changed to:
TTY EQU FALSE
and, in this case, the program would assemble for a CRT based at port 20H.
The DB Directive
The DB directive allows the programmer to define initialized storage areas in single
precision (byte) format. The statement form is:
label DB e*#l, e*2, ..., e*n o
where e#1 through e#n are either expressions which evaluate to 8-bit values (the high "
order bits must be zero), or are ASCII strings of length no greater than 64 characters. There is
no practical restriction on the number of expressions included on a single source line. The
expressions are evaluated and placed sequentially into the machine code file following the last
program address generated by the assembler. String characters are similarly placed into
memory starting with the first character and ending with the last character. Strings of length
greater than two characters cannot be used as operands in more complicated expressions.
(They must stand alone between the commas). Note that ACSII characters are always placed in
memory with the parity bit reset (0). Further, recall that there is no translation from lower to
upper case within strings. The optional label can be used to reference the data area throughout
the remainder of the program. Examples of valid DB statements are:
data: DB 0,1,2,3,45
DB data and 0fffh,5,377Q,1+2+3+4
signon: DB ‘please type your name’,cr,1f,0
DB ‘AB’ SHR 8, ‘C’, ‘DE’ AND 7FH
The DW Directives , _
The DW statement is similar to the DB statement except double precision (two-byte)
words of storage are initialized. The form is:
label DW e*l, e*2, ..., e¥n ——
where e#1 through e#n are expressions which evaluate to 16-bit results. Note that ASCII N

strings of length one or two characters are allowed, but strings longer than two characters are

80

not allowed. In all cases, the data storage is consistent with the 8080 processor: the least
significant byte of the expression is stored first in memory, followed by the most significant
byte. Examples are:

doub: DW Offefh,doub+4,signon-$,255+255
DW ‘a’, 5, ‘ab’, ‘CD’, 6 shl1 8 or 11b
The DS Directive
The DS statement is used to reserve an area of uninitialized memory, and takes the form
label DS expression

where the label is optional. The assembler begins subsequent code generation after the area
reserved by the DS. Thus, the DS statement given above has exactly the same effect as the
statement

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
ORG $+expression ;MOVE PAST RESERVED AREA

Operation Codes

Assembly language operation codes form the principal part of assembly language
programs, and form the operation field of the instruction. In general, ASM accepts all the
standard mnemonics for the Intel 8080 microcomputer, which are given in detail in the Intel
manual “8080 Assembly Language Programming Manual.” Labels are optional on each input
line and, if included, take the value of the instruction address immediately before the
instruction is issued. The individual operators are listed briefly in the following sections for
completeness. The Intel manuals should be referenced for exact operator details. In each case:

e3 Represents a 3-bit value in the range 0-7 which can be one
of the predefined registers A,B,C,D,E,H,L,M,SP or PSW
e8 Represents an 8-bit value in the range 0-255

el6 Represents a 16-bit value in the range 0-65535

which can themselves be formed from an arbitrary combination of operands and operators. In
some cases, the operands are restricted to particular values within the allowable range, such as
the PUSH instruction. These cases will be noted as they are encountered.

In the sections which follow, each operator code is listed in its most general form, along
with a specific example with a short explanation and special restrictions.

Jumps, Calls and Returns

The Jump, Call and Return instructions allow several different forms which test the
condition flags set in the 8080 microcomputer CPU. The forms are:

JMP el6 JMP L1 Jump unconditionally to label

INZ el6 JMP L2 Jump on non-zero condition to label
Jz el6 JMP 100H Jump on zero condition to label
JNC el6 IJNC L1+4 Jump no carry to label

JC el6 JC L3 Jump on carry to label

JPO el6 JPO $+8 Jump on parity odd to label

JPE el6 JPE L4 Jump on even parity to label

81

JpP
M

CALL
CNZ
Ccz
CNC
CC
CPO
CPE
Cp
CM

RST

RET
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

Immediate Operand Instructions

Several instructions are available which load single or double precision registers, or single
precision memory cells with constant values. Instructions which perform immediate arithmetic

el6
el6

el6
el6
el6
el6
el6
el6
el6
el6
el6

e3

JP GAMMA
M al

CALL S1

CNZ S2

Ccz 100H
CNC S1+4
CC S3

CPO $+8
CPE S4

Cp GAMMA
CM bl$c2
RST 0

Jump on positive result to label

Jump on minus to label

Call subroutine unconditionally
Call subroutine if non-zero flag
Call subroutine on zero flag
Call subroutine if no carry set
Call subroutine if carry set

Call subroutine if parity odd
Call subroutine if parity even
Call subroutine if positive result
Call subroutine if minus flag
Programmed ‘“‘restart,” equivalent to CALL 8*e3,
except one byte call

Return from subroutine

Return if non-zero flag set
Return if zero flag set

Return if no carry

Return if carry flag set

Return if parity is odd

Return if parity is even

Return if positive result

Return if minus flag is set

or logical operations on the accumulator (register A) are also available.

MVI e3, e8

ADI e8
ACI e8
SUI e8
SBI e8
ANI e8
XRI e8
ORI e8

MVI B,255

ADI 1

ACI OFFH

SUIL + 3

SBIL AND 11B
ANI $ AND 7FH
XRI1111$0000B
ORIL AND 1+1

Move immediate data to register A, B, C, D, E, H, L or
M (memory)

Add immediate operand to A without carry
Add immediate operand to A with carry
Subtract from A without borrow (carry)
Subtract from A with borrow (carry)
Logical “and” A with immediate data
“Exclusive or” A with immediate data

Logical “or”” A with immediate data

82

7N

AN

CPl e8

LXI e3,el6

CPI ‘@’

LXI B,100H

Compare A with immediate data (same as SUI
except register A not changed)

Load extended immediate to register pair (e3 must
be equivalent to B, D, H or SP).

Increment and Decrement Instructions

Instructions are provided in the 8080 repetoire for incrementing or decrementing single and

double precision registers. The instructions are:

INR €3

DCR e3

INX e3

DCX e3

INRE

DCR A

INX SP

DCX B

Data Movement Instructions

Instructions which move data from memory to the CPU and from CPU to memory are given

below:

MOV e3, e3

LDAX e3

STAX e3

LHLD el6

SHLD el6

LDA el6
STA el6
POP e3

PUSH e3

IN e8
OUT e8
XTHL
PCHL
SPHL
XCHG

MOV AB

LDAX B

STAX D

LHLD L1

SHLD L5+x

LDA Gamma
STA X3-5
POP PSW

PUSH B

INO
OUT 255

Single precision increment register (e3 produces
oneof A)B,C,D,E, H, L, M).

Single precision decrement register (e3 produces
oneof A)B,C,D,E H, L, M).

Double precision increment register pair (e3 must
be equivalent to B, D, H or SP).

Double precision decrement register pair (e3 must
be equivalent to B, D, H or SP).

Move data to leftmost element from rightmost
element (e3 produces one of A, B, C,D, E,H, L or
M). MOV MM is disallowed.

Load register A from computed address (e3 must
produce either B or D).

Store register A to computed address (e3 must
produce either B or D).

Load HL direct from location e16 (double precision
load to H and L).

Store HL direct to location el6 (double precision
store from H and L to memory).

Load register A from address el6.
Store register A into memory at el6.

Load register pair from stack, set SP (e3 must
produce one of B, D, H or PSW).

Store register pair into stack, set SP (e3 must
produce one of B, D, H or PSW).

Load register A with data from port e8.
Send data from register A to port e8.
Exchange data from top of stack with HL.
Fill program counter with data from HL.
Fill stack pointer with data from HL.
Exchange DE pair with HL pair.

83

Arithmetic Logic Unit Operations

Instructions which act upon the single precision accumulator to perform arithmetic and

logic operations are:

ADD e3

ADC e3
SUB e3

SBB e3

ANA e3
XRA e3
ORA e3
CMP e3
DAA

CMA
STC
CMC
RLC

RRC

DAD e3

ADD B

ADCL
SUB H

SBB 2

ANA 1+1
XRA A
ORAB
CMP H

DAD B

Control Instructions

Add register given by e3 to accumulator without
carry (3e must produce one of A, B, C, D, E, H, or L).

Add register to A with carry, e3 as above.

Subtract reg e3 from A without carry, e3 is defined
as above.

Subtract register e3 from A with carry, e3 defined as
above.

Logical “and” reg with A, e3 as above.
“Exclusive or” with A, e3 as above.
Logical “or” with A, e3 defined as above.
Compare register with A, e3 as above.

Decimal adjust register A based upon last arithmetic
logic unit operation.

Complement the bits in register A.
Set the carry flag to 1.
Complement the carry flag.

Rotate bits left, (re)set carry as a side effect (high
order A bit becomes carry).

Rotate bits right, (re)set carry as side effect (low
order A bit becomes carry).

Rotate carry/A register to left (carry is involved in
the rotate).

Rotate carry/A register to right (carry is involved in
the rotate).

Double precision add register pair e3 to HL (e3 must
produce B, D, H or SP).

The four remaining instructions are categorized as control:

HLT
DI
El
NOP

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system

No operation

84

Error Messages

When errors occur within the assembly language program, they are listed as single
character flags in the leftmost position of the source listing. The line in error is also echoed at
the console so that the source listing need not be examined to determine if errors are present.
The error codes are:

ERROR CODE EXPLANATION
D Data error: element in data statement cannot be placed in the specified
data area
E Expression error: expression is ill-formed and cannot be computed at
assembly time.
L Label error: Label cannot appear in this context (may be duplicate label).
N Not implemented: features which will appear in future ASM versions (for

example, macros) are recognized, but flagged in this version.

o Overflow: expression is too complicated (too many pending operators) to
compute. Simplify it.

P Phase error: label does not have the same value on two subsequent passes
through the program.

R Register error: the value specified as a register is not compatible with the
operation code.

. \Y Value error: operand encountered in expression is improperly formed.
(Several error messages are printed which are due to terminal error conditions:

ERROR/MESSAGE EXPLANATION

NO SOURCE FILE PRESENT The file specified in the ASM command does not exist
on disk.

NO DIRECTORY SPACE The disk directory is full. Erase files which are not
needed, and retry.

SOURCE FILE NAME ERROR Improperly formed ASM file name (for example, it is
specified with ? fields).

SOURCE FILE READ ERROR Source file cannot be read properly by the assembler.
Execute a TYPE to determine the point of error.

OUTPUT FILE WRITE ERROR Output files cannot be written properly, most likely
cause is a full disk, erase and retry.

CANNOT CLOSE FILE Output file cannot be closed. Check to see if disk is

write protected.
A Sample Session

The following section shows interaction with the assembler and debugger in the
development of a simple language program.

85

ASM SORT

2
@
"~
015C next free address
003H USE FACTOR % of table used 00 to FF (hexadecimal)
END OF ASSEMBLY
DIR SORT. *
2
SORT ASM source file
SORT BAK backup from last edit
SORT PRN print file (contains tab characters)
SORT HEX machine code file
A>TYPE SORT. PRN)
Source line
A
machine code r A
location ; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE
; START AT THE BEGINNING OF THE TRANSIENT PROGRAM AR
0100 . ORG 100H
‘ generated machine code
0100 214601« SORT: LXI H, SW :ADDRESS SWITCH TOGGLE
0103 3601 MVI M1 ;SET TO 1 FOR FIRST ITERATION
0105 214701 LXI H,I ;ADDRESS INDEX
0108 3600 MVI M,0 =0
; TN
; COMPARE I WITH ARRAY SIZE (\\/,,
010A 7E COMP: MOV AM :A REGISTER =1
010B FE09 CPI N-1 ;CYSET IFI < (N—1)
010D D21901 JNC CONT ;CONTINUE IF | < = (N-2)
END OF ONE PASS THROUGH DATA
0110 214601 LXI H,SW ;:CHECK FOR ZERO SWITCHES
0113 7EB7C20001 MOV AM! ORA A! JNZ SORT ;END OF SORT IF SW=0
0118 FF ’ RST 7 ;GO TO THE DEBUGGER INSTEAD OF RES
truncated CONTINUE THIS PASS
; ADDRESSING I, SO LOAD AV(]) INTO REGISTERS
0119 5F16002148 CONT: MOV E,A! MVI D,0! LXI H,AV! DAD D! DAD D
0121 4E792346 . MOV CM! MOV A,C! INX H! MOV BM
; LOW ORDER BYTE IN A AND C, HIGH ORDER BYTE IN B
; MOV H AND L TO ADDRESS AV (I+1)
0125 23 [HX H
; COMPARE VALUE WITH REGS CONTAINING AV(I)
0126 965778239E SUB M! MOV D, A! MOV A B! INX H! SBBM ; SUBTRACT
: BORROW SET IF AV(I+1) > AV (1)
012B DA3FO01 JC INCI ;SKIP IF IN PROPER ORDER (’f “
; CHECK FOR EQUAL VALUES
012E B2CA3F01 ORA D! JZ INCL ;SKIP IF AV(1) = AV(I+1)

assemble SORT.ASM

86

0132 56702BSE MOV D,M! MOV M,B! DCX H! MOV EM
0136 712B722B73 MOV M,C! DCX H! MOV M,D! DCX H! MOV M,E
: INCREMENT SWITCH COUNT
013B 21460134 LXI H,SW! INR M
: INCREMENT I
013F 21470134C3INCI: LXI H.I! INR M! JMP COMP
: DATA DEFINITION SECTION
0146 00 SW: DB 0 .RESERVE SPACE FOR SWITCH COUNT
0147 I DS 1 -SPACE FOR INDEX
0148 050064001EAV: DW 5,100, 30, 50, 20, 7, 1000, 300, 100, —32767
000A = N EQU ($—AV)/2 :COMPUTE N INSTEAD OF PRE
015C \equate value END
A>TYPE SORT.HEX 3

:10010000214601360121470136007EFE09D2190140)
:100110002146017EB7C20001FF5F16002148011988
:10012000194E79234623965778239EDA3F01B2CAA7
:100130003F0156702B5E712B722B732146013421C7
:07014000470134C30A01006E
:10014800050064001E00320014000700E8032C01BB
:0401580064000180BE

:0000000000

A>DDT SORT.HEX

16K DDT VER 1.0
NEXT PC

015C 0000 default address (no address on END statement)
—XP

2

P=0000 100) Change PC to 100

> machine code in HEX format

about with rubout

*UFFFF;? untrace for 65535 steps
C0ZOMOEOI0O A=00 B=0000 D=0000 H=0000 S=0100 P=0100 LXIH,0146*0100

—110y trace 10 steps

COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
CO0ZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
CO0ZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A M
CO0ZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1Z0MI1EOI0O A=00 B=0000 D=0000 H=0147 S=0100 P=010D JNC 0119
C1Z0M1EOI0O A=00 B=0000 D=0000 H=0147 S=0100 P=0110 LXI H, 0146
C1ZOMIEOIO A=00 B=0000 D=0000 H=0146 S=0100 P=0113 MOV A M
C1Z0MIEOI0O A=01 B=0000 D=0000 H=0146 S=0100 P=0114 ORA A
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0115 JINZ 0100
CO0ZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
CO0ZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
CO0ZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
CO0ZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A, M*010B
—A10D

OIOD) JC 119) change to a jump on carry

0110

87

stopped at 108H

P=010B 10(12 reset program counter back to beginning of program
—T10

Altered instruction

COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0100 LXI H, 0146
COZOMOEOIO A=00 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
COZOMOEOIO A=00 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010A MOV A M
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1ZOMIEOI0O A=00 B=0000 D=0000 H=0147 S=0100 P=010D JC 0119
C1ZOMIEOI0O A=00 B=0000 D=0000 H=0147 S=0100 P=0119 MOV E,A
C1Z0MIEOI0O A=00 B=0000 D=0000 H=0147 S=0100 P=011A MVI D, 00
C1ZOMIEOI0O A=00 B=0000 D=0000 H=0147 S=0100 P=011C LXI H, 0148
C1ZOMI1EOI0 A=00 B=0000 D=0000 H=0148 S=0100 P=011F DAD D
COZOMIEOIO A=00 B=0000 D=0000 H=0148 S=0100 P=0120 DAD D
COZOMIEOIO A=00 B=0000 D=0000 H=0148 S=0100 P=0121 MOV C,M
AC
H

trace execution for 10H steps

COZOMIEOIO A=00 B=0005 D=0000 H=0148 S=0100 P=0122 MOV
COZOMI1EOIO A=05 B=0005 D=0000 H=0148 S=0100 P=0123 INX

COZOMI1EOIO A=05 B=0005 D=0000 H=0149 S=0100 P=0124 MOV B, M*0125
—L100)

0100 LXI H,0146
0103 MVI M, 01
0105 LXI H, 0147
0108 MVI M, 00
010A MOV AM
010B CPI 09 > list some code from 100H
010D JC 0119
0110 LXI H, 0146
0113 MOV A M
0114 ORA A
0115 INZ 0100
) S
0118 RST 07
0119 MOV EA
011A MVI D, 00 list more
011C LXI H,0148
above list with rubout

-G, 118‘) start program from current PC (0125H) and run in real time to 11BH

~ Automatic breakpoint

*0127 stopped with an external interrupt 7 from front panel (program was looping
indefinitely)

—T4‘2 look at looping program in trace mode

COZOMOEOIO A=38 B=0064 D=0006 H=01 Sg S=0100 P=0127 MOV D,A
COZOMOEOIO A=38 B=0064 D=3806 H=0156 S=0100 P=0128 MOV A B
COZOMOEOIO A=00 B=0064 D=3806 H=0156 S=0100 P=0129 INX H
COZOMOEOIO A=00 B=0064 D=3806 H=0157 S=0100 P=012A SBB M*(012B

—D148 data is sorted, but program doesn’t stop

0148 05 00 07 00 14 00 1E 004 . ..
0150 32 00 64 00 64 00 2C 01 ES8 03 01 8 00 00 00 00 2. D. D.
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00ooovooooo .

88

—G0, return to CP/M
DDT SORT. HEX) reload the memory image

P=0000 100 y set PC to beginning of program
&

—LlOD) list bad op code

010D IJNC 0119
0110 LXI H,0146
abort list with rubout

—AlOD) assemble new op code
010D JC 119)
0110

2

—LlOO) list starting section of program

0100 LXI H,0146
0103 MVI M,01
0105 LXI H,0147
0108 MVI M,00
abort list with rubout

—A103) change “switch” initialization to 00
0103 MVI M,O)
0105

P

—"C return to CP/M with ctl-c (GO works as well)

SAVE 1 SORT.COM.) save 1 page (256 bytes, from 100H to 1FFH)
on disk in case we have to reload later

A>DDT SORT.COM) restart DDT with saved memory image

16K DDT VER 1.0

NEXT PC

0200 0100 “COM” file alway starts with address 100H
—G,) run the program from PC=100H

*0118 programmed stop (RST7) encountered
-D148

data properly sorted

0148 05 00 07 00 14 00 1E 007........

0150 32 00 64 00 64 00 2C 01 E8 03 01 8 00 00 00 00 2.D.D.,...........

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

—GO) return to CP/M

ED SORT ASM make changes to original program
Ctl —Z P

) fmd next “.0”

MVI I=0
*) up one ||ne in text
LXI H,I ;ADDRESS INDEX
) up another line
MVI M,1 ;SET TO 1 FOR FIRST ITERATION
*KT) kill line and type next line
LXI H,I ;/ADDRESS INDEX
*l) insert new line
MVI M,0 ;ZERO SW
‘) LXI H,I ;ADDRESS INDEX
*NIJNC
J C*T‘?
CONT) ;CONTINUE IF I <<= (N-2)
-2DIC@OLT
J CONT ;CONTINUE IF I <= (N-2)
2
source from disk A
hex to disk A
skip prn file

ASM SORT. AAZ)
CP/M ASSEMBLER - VER 1.0

015C next address to assemble
003H USE FACTOR
’ END OF ASSEMBLY

DDT SORT. HEX) test program changes

16K DDT VER 1.0
NEXT PC
015C 0000
—G100
2

*0118
—D148
2

data sorted

0148 05 00 07 00 14 00 lﬁ/ 00........
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00

abort with rubout

—GO) return to CP/M - program check OK

90

00 00 00 2.D. D.
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

.........

N

System Entry Points

This section describes CP/M system organization, including the structure of memory and
sytem entry points.

The BIOS and BDOS are logically combined into a single module with a common entry
point, referred to as the FDOS. The CCP is a distinct program which uses the FDOS to provide a
human-oriented interface to the information which is cataloged on the backup storage device.
The TPA is an area of memory, that is, the portion which is not used by the FDOS and CCP,
where various non-resident operating system commands and user programs are executed. The
lower portion of memory is reserved for system information and is detailed in later sections.
Memory organization of the CP/M system is shown below:

high
memory
FBASE FDOS (BDOS+BIOS)
CBASE: CCpP
TPA
TBASE
BOOT system parameters

The exact memory addresses corresponding to BOOT, TBASE, CBASE and FBASE vary from
version to version, and are described fully in the “CP/M Alteration Guide.” All standard CP/M
versions, however, assume BOOT = 0000H, which is the base of random access memory. The
machine code found at location BOOT performs a system “warm start” which loads and
initializes the program and variables necessary to return control to the CCP. Thus, transient
programs need only jump to location BOOT to return control to CP/M at the command level.
Further, the standard versions assume TBASE = BOOT+0100H which is normally location
0100H. The principal entry point to the FDOS is at location BOOT+005H (normally 0005H)
where a jump to FBASE is found. The address field at BOOT+0006h (normally 0006H) contains
the value of FBASE and can be used to determine the size of available memory, assuming the
~CP is being overlayed by a transient program.

91

Transient programs are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each prompt. Each command
line takes one of the forms:

command
command filel
command filel file2

where command is either a built-in function such as DIR or TYPE, or the name of a transient
command or program. If the command is a built-in function of CP/M, it is executed immediately.
Otherwise, the CCP searches the currently addressed disk for a file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program which executes in the TPA.
Therefore, it originates at TBASE in memory. The CCP loads the COM file from the disk into
memory starting at TBASE and possibly extending up to CBASE.

If the command is followed by one or two file specifications, the CCP prepares one or two
file control block (FCB) names in the system parameter area. These optional FCB'’s are in the
form necessary to access files through the FDOS, and are described in the next section.

The transient program receives control from the CCP and begins execution, perhaps using
the I/0 facilities of the FDOS. The transient program is “called” from the CCP. Therefore, it can
simply return to the CCP upon completion of its processing, or can jump to BOOT to pass
control back to CP/M. In the first case, the transient program must not use memory above
CBASE. In the latter case, memory up through FBASE-1 is free.

The transient program may use the CP/M 1/0 facilities to communicate with the operator’s
console and peripheral devices, including the disk subsystem. The 1/O system is accessed by
passing a “function number” and an “information address” to CP/M through the FDOS entry
point at BOOT+0005H. In the case of a disk read, for example, the transient program sends the
number corresponding to a disk read, along with the address of an FCB, to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk read completion indication
or an error number indicating that the disk read was unsuccessful. The function numbers and
error indicators are given below.

Operating System Call Conventions

The purpose of this section is to provide detailed information for performing direct
operating system calls from user programs. CP/M facilities which are available for access by
transient programs fall into two general categories: simple device I/O and disk file /0. The
simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character

Get or Set 1/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

92

&

(

_

The FDOS operations which perform disk Input/Output are:

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished by passing a function

number and information address through the primary entry point at location BOOT+0005H. In
general, the function number is passed in register C with the information address in the double
byte pair DE. Single byte values are returned in register HL. (A zero value is returned when the
function number is out of range). For reasons of compatibility, register A = L and register B = H
upon return in all cases. Note that the register passing conventions of CP/M agree with those of
Intel’s PL/M systems programming language. The list of CP/M function numbers is given below:

System Reset
Console Input
Console Output
Reader Input
Punch Output

List Output

Direct Console I/0
Get I/0 Byte

Set 1/0 Byte

Print String

10 Read Console Buffer
11 Get Console Status
12 Return Version No.
13 Reset Disk System
14 Select Disk

15 Open File

16 Close File

17 Search for First

18 Search for Next

LRI WN ~O

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Delete File

Read Sequential
Write Sequential
Make File

Rename File

Return Login Vector
Return Current Disk
Set DMA Address
Get Addr (Alloc)
Write Protect Disk
Get R/O Vector

Set File Attributes
Get Addr (Disk Parms)
Set/Get User Code
Read Random

Write Random
Compute File Size
Set Random Record

(Functions 28 and 32 should be avoided in application programs to maintain upward

compatibility with MP/M.)

93

Upon entry to a transient program, the CCP leaves the stack pointer set to an eight level
stack area with the CCP return address pushed onto the stack, leaving seven levels before
overflow occurs. Although this stack is usually not used by a transient program (most
transients return to the CCP through a jump to location 000H), it is sufficiently large to make
CP/M system calls since the FDOS switches to a local stack at system entry. The following
assembly language program segment, for example, reads characters continuously until an
asterisk is encountered, at which time control returns to the CCP (assuming a standard CP/M
system with BOOT = 0000H):

BDOS EQU 0005H ;STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
’ ORG 0100H .BASE OF TPA
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN A
CPl " .END OF PROCESSING?
INZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a logical organization
which allows any particular file to contain any number of records from completely empty, to
the full capacity of the drive. Each drive is logically distinct with a disk directory and file data
area. The disk file names are in three parts: the drive select code, the file name consisting of
one to eight non-blank characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular file, while the file name
distinguishes individual files in each category. The file types listed below name a few generic
categories which have been established, although they are generally arbitrary:

ASM Assembler Source PLI L/I Source File

PRN Printer Listing REL Relocatable Module
HEX HEX Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File

COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each “line” of the source file
is followed by a carriage return line feed sequence (0DH followed by 0AH). Thus, one 128-byte
CP/M record could contain several lines of source text. The end of an ASCII file is denoted by a
CTRL-Z character (1AH) or a real end-of-file, returned by the CP/M read operation. CTRL-Z
characters embedded within machine code files (for example, COM files) are ignored, however,
and the end-of-file condition returned by CP/M is used to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65,536 records of 128 bytes each,
numbered from 0 through 65,535, thus allowing a maximum of 8 megabytes per file. Note,
however, that although the records may be considered logically contiguous, they may not be
physically contiguous in the disk data area. Internally, all files are broken into 16K byte
segments called logical extents, so that counters are easily maintained as 8-bit values.
Although the decomposition into extents is discussed in the paragraphs which follow, they are
of no particular consequence to the programmer since each extent is automatically accessed in
both sequential and random access modes.

94

In the file operation starting with function number 15, DE usually addresses a file control
block (FCB). Transient programs often use the default file control block area reserved by CP/M
at location BOOT+005CH (normally 005CH) for simple file operations. The basic unit of file
information is a 128-byte record used for all file operations. Thus, a default location for disk 1/0
is provided by CP/M at location BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26). All directory operations take place in a reserved area which
does not affect write buffers, with the exception of Search First and Search Next, where
compatibilty is required.

The File Control Block (FCB) data area consists of a sequence of 33 bytes for sequential
access and a series of 36 bytes in the case that the file is accessed randomly. The default file
control block normally located at 005CH can be used for random access files, since the three
bytes starting at BOOT+007DH are available for this purpose. The FCB format is shown with the
following fields:

dr | fl f2]/ / lf8]t1 [t2 ltS ex S1J32 rc dOI/ / [dn cr[ro}ﬂlrz
00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
where
dr drive code (0 - 16)
0 = use default drive for file
1 = auto disk select drive A,
2 = auto disk select drive B,
16 = auto disk select drive P.
fl...f8 contain the file name in ASCII upper
case, with high bit =0
tl, t2, 13 contain the file type in ASCII upper case,

with the high bit = 0
t1’, t2’ and t3’ denote the bit of these
positions,
tl’ = 1 = Read/Only file,
t2’ = 1 = SYS file, no DIR list

ex contains the current extent number,
normally set at 00 by the user, but in
range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set to
zero on call to OPEN, MAKE, SEARCH

rc record count for extent “ex,” takes on
values from 0 - 128

d0...dn filled in by CP/M, reserved for
system use

cr current record to read or write in a

sequential file operation, normally set to
zero by the user

r0, rl, r2 optional random record number in the
range 0-65535, with overflow to r2, r0, r1
constitute a 16-bit value with low byte
r0, and high byte r1

95

Each file being accessed through CP/M must have a corresponding FCB which provides the
name and allocation information for all subsequent file operations. When accessing files, it is
the programmer’s responsibility to fill the lower 16 bytes of the FCB and initialize the cr field.
Normally, bytes 1 through 11 are set to the ASCII character values for the file name and file
type, while all other fields are zero.

FCB’s are stored in a directory area of the disk, and are brought into central memory before
proceeding with file operations (see the OPEN and MAKE functions). The memory copy of the
FCB is updated as file operations take place and is later recorded permanently on disk at the
termination of the file operation (see the CLOSE command).

The CCP constructs the first 16 bytes of two optional FCB'’s for a transient by scanning the
remainder of the line following the transient name, denoted by filel and file 2 in the prototype
command line described above, with unspecified fields set to ASCII blanks. The first FCB is
constructed at location BOOT+005CH, and can be used as is for subsequent file operations.
The second FCB occupies the d0 . . . dn portion of the first FCB, and must be moved to another
area of memory before use. If, for example, the operator types:

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at BOOT+005CH is
initialized to drive code 2, file name X and file type ZOT. The second drive code takes the
default value 0, which is placed at BOOT+006DH, with the file name Y placed into location
BOOT++006DH, and file type ZAP located 8 bytes later at BOOT+0075H. All remaining fields
through cr are set to zero. Note again that it is the programmer’s responsibility to move this
second file name and type to another area, usually a separate file control block, before opening
the file which begins at BOOT+005CH, due to the fact that the open operation will overwrite
the second name and type.

If no file names are specified in the original command, then the fields beginning at
BOOT+005DH and BOOT+006DH contain blanks. In all cases, the CCP translates lower case
alphabetics to upper case to be consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location BOOT+0080H is initialized to
the command line tail typed by the operator following the program name. The first position
contains the number of characters, with the characters themselves following the character
count. Given the above command line, the area beginning at BOOT+0080H is initialized as
follows:

BOOT+0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
14 6 9 l(B” “:77 6$x” K(.’? “Z?’ “O?? ‘(T” 6 ‘AY" tt.,7 tﬂZ” t‘A’? ‘tP”

where the characters are translated to upper case ASCII with uninitialized memory following
the last valid character. Again, it is the responsibility of the programmer to extract the
information from this buffer before any file operations are performed, unless the default DMA
address is explicitly changed.

The individual functions are described in detail on the following pages, completed by a
summary list of the functions.

FUNCTION 0: SYSTEM RESET
Entry Parameters:
Register C: 00H

The System Reset function returns control to the CP/M operating system at the CCP level.
The CCP re-initializes the disk subsystem by selecting and logging in disk drive A. This function
has exactly the same effect as a jump to location BOOT.

96

N

SN

S

FUNCTION 1: CONSOLE INPUT
Entry Parameters:
Register C: O01H
Returned Value:
Register A: ASCII Character

The Console Input function reads the next console character to register A. Characters,
along with carriage return, line feed and backspace (CTRL-H) are echoed to the console. Tab
characters (CTRL-I) are expanded in columns of eight characters. A check is made for
start/stop scroll (CTRL-S) and start/stop printer echo (CTRL-P). The FDOS does not return to
the calling program until a character has been typed, thus suspending execution if a character

is not ready.

FUNCTION 2: CONSOLE OUTPUT
Entry Parameters:
Register C: 02H

Register E: ASCII Character

C

The ASCII character from register E is sent to the Console Device. Similar to function 1,
tabs are expanded and checks are made for start/stop scroll and printer echo.

FUNCTION 3: READER INPUT
Entry Parameters:
Register C: 03H
Returned Value:

Register A: ASCII Character

The Reader Input function reads the next character from the logical reader into register A
(see the IOBYTE definition in the “CP/M Alteration Guide”). Control does not return until the

character has been read.

FUNCTION 4: PUNCH OUTPUT
Entry Parameters:
Register C: 04H
Register E: ASCII Character

device.

C

The Punch Output function sends the character from register E to the logical punch

97

FUNCTION 5: LIST OUTPUT
Entry Parameters:
Register C: O05H
Register E: ASCII Character

The List Output function sends the ASCII character in register E to the logical listing
device.

FUNCTION 6: DIRECT CONSOLE I/0
Entry Parameters:
Register C: O06H

Register E: OFFH (input) or
char (output)

Returned Value:

Register A: char or status
(no value)

Direct Console I/0 is supported under CP/M for those specialized applications where
unadorned console input and output is required. Use of this function should, in general, be
avoided since it bypasses all of CP/M’s normal control character functions (for example, CTRL-
S and CTRL-P). Programs which perform direct 1/0 through the BIOS under previous releases of
CP/M, however, should be changed to use direct /O under BDOS so that they can be
supported under future releases of CP/M.

Upon entry to function 6, register E either contains hexadecimal FF, denoting a console
input request, or register E contains an ASCII character. If the input value is FF, then function 6
returns A = 00 if no character is ready, otherwise A contains the next console input character.

If the input value in E is not FF, then function 6 assumes that E contains a valid ASCII
character which is sent to the console.

FUNCTION 7: GET 1/0 BYTE
Entry Parameters:
Register C: 007H
Returned Value:
Register A: 1/0 Byte Value

The Get I/0 Byte function returns the current value of IOBYTE in register A. See the
“CP/M Alteration Guide.”

FUNCTION 8: SET I/0 BYTE
Entry Parameters:
Register C: 08H
Register E: 1/0 Byte Value

98

The Set 1/0 Byte function changes the system IOBYTE value to that given in register E.

(FUNCTION 9: PRINT STRING
Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in memory at the location
given by DE to the console device, until a $ is encountered in the string. Tabs are expanded as
in function 2, and checks are made for start/stop scroll and printer echo.

FUNCTION 10: READ CONSOLE BUFFER
Entry Parameters:
Register C: 0AH
Registers DE: Buffer Address
Returned Value:

Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer addressed by
registers DE. Console input is terminated when the input buffer overflows. The Read Buffer

C \ takes the form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 ... +n

c3‘ c4

c5 | c6

where mx is the maximum number of characters which the buffer will hold (1 to 255), nc is the
number of characters read (set by FDOS upon return), followed by the characters read from
the console. The nc < mx, then uninitialized positions follow the last character, denoted by ??
in the above figure. Various control functions are recognized during line editing (DEL, CRTL-C,
E, H, J, M, R, U and X). These are described in the line editing section. Note also that certain
functions which return the carriage to the leftmost position do so only to the column position
where the prompt ended.

FUNCTION 11: GET CONSOLE STATUS
Entry Parameters:
Register C: OBH
Returned Value:

Register A: Console Status

(\ The Console Status function checks to see if a character has been typed at the console. If
- a character is ready, the value OFFH is returned in register A. Otherwise, a 00H value is returned.

99

FUNCTION 12: RETURN VERSION NUMBER
Entry Parameters:
Register C: OCH
Returned Value:

Registers HL: Version Number

Function 12 provides information which allows version independent programming. A
two-byte value is returned, with H=00 designating the CP/M release. CP/M returns a
hexadecimal in register L, in the range of 21, 22 through 2F. Using function 12, for example, you
can write application programs which provide both sequential and random access functions.

FUNCTION 13: RESET DISK SYSTEMS
Entry Parameters:
Register C: ODH

The Reset Disk function is used to restore programmatically the file system to a reset
state where all disks are set to read/write (see functions 28 and 29). Only disk drive A is
selected, and the default DMA address is reset to BOOT=0080H. This function can be used, for
example, by an application program which requires a disk change without a system reboot.

FUNCTION 14: SELECT DISK
Entry Parameters:
Register C: OEH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the default disk
for subsequent file operations, with E=0 for drive A, 1 for drive B, and so forth through 15,
corresponding to drive P in a full sixteen drive system. The drive is placed in an “on-line” status
which, in particular, activates its directory until the next cold start, warm start or disk system
reset operation. If the disk media is changed while it is on-line, the drive automatically goes to a
read-only status in a standard CP/M environment (see function 28). FCB’s which specify drive
code zero (dr=00H) automatically reference the currently selected default drive. Drive code
values between 1 and 16, however, ignore the selected default drive and directly reference
drives A through P.

FUNCTION 15: OPEN FILE
Entry Parameters:
Register C: OFH
Registers DE: FCB Address
Returned Value:

Register A: Directory Code

100

S

The Open File operation is used to activate a file which currently exists in the disk
directory for the currently active user number. The FDOS scans the referenced disk directory
for a match in positions 1 through 14 of the FCB referenced by DE (byte sl is automatically
zeroed), where an ASCII question mark (3FH) matches any directory character in any of these
positions. Normally, no question marks are included and, further, bytes ex and s2 of the FCB
are zero.

If a directory element is matched, the relevant directory information is copied into bytes d0
through dn of the FCB, thus allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a successful open operation is
completed. Upon return, the open function returns a “directory code” with the value 0 through
3 if the open was successful, or OFFH (255 decimal) if the file cannot be found. If question
marks occur in the FCB, then the first matching FCB is activated. Note that the current record
(“cr”™) must be zeroed by the program if the file is to be accessed sequentially from the first
record.

FUNCTION 16: CLOSE FILE
Entry Parameters:
Register C: 10H
Registers DE: FCB Address
Returned Value:

Register A: Directory Code

The Close File function performs the inverse of the open file function. Given that the FCB
addressed by DE has been previously activated through an open or make function (see
functions 15 and 22), the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical to the open function. The
directory code returned for a successful close operation is 0, 1, 2 or 3, while a OFFH (255
decimal) is returned if the file name cannot be found in the directory. A file need not be closed
if only read operations have taken place. If write operations have occurred, however, the close
operation is necessary to record permanently the new directory information.

FUNCTION 17: SEARCH FOR FIRST
Entry Parameters:
Register C: 11H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB addressed by
DE. The value 255 (hexadecimal FF) is returned if the file is not found, otherwise 0, 1, 2 or 3 is
returned indicating the file is present. If the file is found, the current DMA address is filled with
the record containing the directory entry, and the relative starting position is A*32 (rotate the A
register left 5 bits, or ADD A five times). Although not normally required for application
programs, the directory information can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from f1 through ex
matches the corresponding field of any directory entry on the default or auto-selected disk
drive. If the dr field contains an ASCII question mark, then the auto disk select function is
disabled, the default disk is searched, with the search function returning any matched entry,

101

allocated or free, belonging to any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all current directory values. If
the dr field is not a question mark, the s2 byte is automatically zeroed.

FUNCTION 18: SEARCH FOR NEXT
Entry Parameters:
Register C: 12H
Returned Value:

Register A: Directory Code

The Search Next function is similar to the Search First function, except that the directory
scan continues from the last matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

FUNCTION 19: DELETE FILE
Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

The Delete File function removes files which match the FCB addressed by DE. The file
name and type may contain ambiguous references (question marks in various positions), but
the drive select code cannot be ambiguous, as in the Search and Search Next functions.

Function 19 returns a decimal 255 if the reference file or files cannot be found, otherwise
a value in the range 0 to 3 is returned.

FUNCTION 20: READ SEQUENTIAL
Entry Parameters:
Register C: 14H
Registers DE: FCB Address
Returned Value:

Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make function
(numbers 15 and 22), the Read Sequential function reads the next 128-byte record from the
file into memory at the current DMA address. The record is read from position cr of the extent,
and the cr field is automatically incremented to the next record position. If the cr field
overflows, then the next logical extent is automatically opened and the cr field is reset to zero
in preparation for the next read operation. The value 00H is returned in register A if the read
operation was successful. A non-zero vaue is returned in register A if the read operation was
successful. A non-zero value is returned if no data exists at the next record position (for
example, an end-of-file occurs).

102

FUNCTION 21: WRITE SEQUENTIAL
Entry Parameters:
Register C: 15H
Registers DE: FCB Address
Returned Value:

Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make function
(numbers 15 and 22), the Write Sequential function writes the 128-byte data record at the
current DMA address to the file named by the FCB. The record is placed at position cr of the
file, and the cr field is automatically incremented to the next record position. If the cr field
overflows, then the next logical extent is automatically opened and the cr field is reset to zero
in preparation for the next write operation. Write operations can take place into an existing file,
in which case newly written records overlay those which already exist in the file. Register
A=00H upon return from a successful write operation, while a non-zero value indicates an
unsuccessful write due to a full disk.

FUNCTION 22: MAKE FILE
Entry Parameters:
Register C: 16H
Registers DE: FCB Address
Returned Value:

Register A: Directory Code

The Make File operation is similar to the open file operation except that the FCB must
name a file which does not exist in the currently referenced disk directory (that is, one named
explicitly by a non-zero dr code, or the default disk if dr is zero). The FDOS creates the file and
initializes both the directory and main memory value to an empty file. The programmer must
ensure that no duplicate file names occur, and a preceding delete operation is sufficient if there
is any possibility of duplication. Upon return, register A=0, 1, 2 or 3 if the operation was
successful and OFFH (255 decimal) if no more directory space is available. The make function
has the side-effect of activating the FCB and thus a subsequent open is not necessary. Byte s2 is
zeroed upon entry to the BDOS.

FUNCTION 23: RENAME FILE
Entry Parameters:
Register C: 17H
Registers DE: FCB Address
Returned Value:

Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all occurrences of the file
named in the first 16 bytes to the file named in the second 16 bytes. The drive code dr at
position 0 is used to select the drive, while the drive code for the new file name at position 16 of

103

the FCB is assumed to be zero. Upon return, register A is set to a value between 0 and 3 if the
rename was successful, and OFFH (255 decimal) if the first file name could not be found in the
directory scan.

FUNCTION 24: RETURN LOGIN VECTOR
Entry Parameters:
Register C: 18H
Returned Value:

Registers HL: Login Vector

The login vector returned by CP/M is a 16-bit value in HL, where the least significant bit
of L corresponds to the first drive A, and the high order bit of H corresponds to the sixteenth
drive, labeled P. A 0 bit indicates that the drive is not on-line. A 1 bit marks a drive that is
actively on-line due to an explicit disk drive selection, or an implicit drive select caused by a file

operation which specified a non-zero dr field. Registers A and L contain the same values upon
return.

FUNCTION 25: RETURN CURRENT DISK
Entry Parameters:
Register C: 19H
Returned Value:

Register A: Current Disk

Function 25 returns the currently selected default disk number in register A. The disk
numbers range from 0 through 15, corresponding to drives A through P.

FUNCTION 26: SET DMA ADDRESS
Entry Parameters:
Register C: 1AH
Registers DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often used in connection with
disk controllers which directly access the memory of the mainframe computer to transfer data
to and from the disk subsystem. Although many computer systems use non-DMA access (the
data is transferred through programmed 1/0 operations), the DMA address has, in CP/M, come
to mean the address at which the 128-byte data record resides before a disk write and after a
disk read. Upon cold start, warm start or disk system reset, the DMA address is automatically
set to BOOT+0080H. The Set DMA function, however, can be used to change this default value
to address another area of memory where the data records reside. Thus, the DMA address
becomes the value specified by DE until it is changed by a subsequent Set DMA function, cold
start, warm start or disk system reset.

104

o

/

.

C

FUNCTION 27: GET ADDR(ALLOC)
Entry Parameters:
Register C: 1BH
Returned Value:
Registers HL: ALLOC Address

An allocation vector is maintained in main memory for each on-line disk drive. Various
system programs use the information provided by the allocation vector to determine the
amount of remaining storage (see the STAT program). Function 27 returns the base address of
the allocation vector for the currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked read only. Although this function is
not normally used by application programs, additional details of the allocation vector are found
in the “CP/M Alteration Guide.”

FUNCTION 28: WRITE PROTECT DISK
Entry Parameters:
Register C: 1CH

The Write Protect Disk function provides temporary write protection for the currently
selected disk. Any attempt to write to the disk, before the next cold or warm start operation
produces the message

BDOS ERR ON x: R/O

where x is the disk drive.

FUNCTION 29: GET READ ONLY VECTOR
Entry Parameters:
Register C: 1DH
Returned Value:
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL which indicates drives which have the
temporary read only bit set. Similar to function 24, the least significant bit corresponds to drive
A, while the most significant bit corresponds to drive P. The R/O bit is set either by an explicit
call to function 28, or by the automatic software mechanisms within CP/M which detect
changed disks.

105

FUNCTION 30: SET FILE ATTRIBUTES
Entry Parameters:
Register C: 1EH
Registers DE: FCB Address
Returned Value:

Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of permanent
indicators attached to files. In particular, the R/O and system attributes (+1’ and +2”) can be
set or reset. The DE pair addresses an unambiguous file name with the appropriate attributes
set or reset. Function 30 searches for a match, and changes the matched directory entry to
contain the selected indicators. Indicators f1° through f4’ are not presently used, but may be
useful for applications programs since they are not involved in the matching process during file
open and close operations. Indicators f5’ through f8 and t3’ are reserved for future system
expansion.

FUNCTION 31: GET ADDR(DISK PARMS)
Entry Parameters:
Register C: 1FH
Returned Value:
Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned in HL as a result of this
function call. This address can be used for either of two purposes. First, the disk parameter
values can be extracted for display and space computation purposes, or transient program can
dynamically change the value of current disk parameters when the disk environment changes, if
required. Normally, application programs will not require this facility.

FUNCTION 32: SET/GET USER CODE
Entry Parameters:
Register C: 20H
Register E: OFFH (get) or User Code (set)
Returned Value:

Register A: Current Code or (no value)

An application program can change or interrogate the currently active user number by
calling function 32. If register E=0FFH, then the value of the current user number is returned in
register A, where the value is in the range 0 to 31. If the register E is not OFFH, then the current
user number is changed to the value of E (modulo 32).

106

FUNCTION 33: READ RANDOM
Entry Parameters:
Register C: 21H
Registers DE: FCB Address
Returned Value:

Register A: Return Code

The Read Random function is similar to the sequential file read operation of previous
releases, except that the read operation takes place at a particular record number, selected by
the 24-bit value constructed from the three-byte field following the FCB (byte positions r0 at 33,
rl at 34 and r2 at 35). Note that the sequence of 24 bits is stored with the least significant byte
first (r0), middle byte next (r1) and high byte last (r2). CP/M does not reference byte r2,
except in computing the size of a file (function 35). Byte r2 must be zero, however, since a
non-zero value indicates overflow past the end-of-file.

Thus, the r0, r1 byte pair is treated as a double-byte, or word value, which contains the
record to read. This value ranges from 0 to 65535, providing access to any particular record of
the 8-megabyte file. In order to process a file using random access, the base extent (extent 0)
must first be opened. Although the base extent may or may not contain any allocated data, this
ensures that the file is properly recorded in the directory, and is visible in DIR requests. The
selected record number is then stored into the random record field (r0, r1), and the BDOS is
called to read the record. Upon return from the call, register A either contains an error code, as
listed below, or the value 00 indicating the operation was successful. In the latter case, the
current DMA address contains the randomly accessed record. Note that contrary to the
sequential read operation, the record number is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current record values are
automatically set. Thus, the file can be sequentially read or written, starting from the current
randomly accessed position. Note, however, that in this case, the last randomly read record will
be re-read as you switch from random mode to sequential read, and the last record will be
re-written as you switch to a subsequent write operation. You can, of course, simply advance
the random record position following each random read or write to obtain the effect of a
sequential I/0 operation.

Error codes returned in register A following a random read are listed below:

01 Reading unwritten data

02 (Not returned in random mode)
03 Cannot close current extent

04 Seek to unwritten extent

05 (Not returned in read mode)

06 Seek past physical end of disk

Error codes 01 and 04 occur when a random read operation accesses a data block which has
not been previously written, or an extent which has not been created, which are equivalent
conditions. Error 3 does not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is not physically write
protected. Error code 06 occurs whenever byte r2 is non-zero. Normally, non-zero return codes
can be treated as missing data, with zero return codes indicating that the operation is complete.

107

FUNCTION 34: WRITE RANDOM
Entry Parameters:
Register C: 22H
Registers DE: FCB Address
Returned Value:

Register A: Return Code

The Write Random operation is initiated similar to the Read Random call, except that data
is written to the disk from the current DMA address. Further, if the disk extent or data block
which is the target of the write has not yet been allocated, the allocation is performed before
the write operation continues. As in the Read Random operation, the random record number is
not changed as a result of the write. The logical extent number and current record positions of
the file control block are set to correspond to the random record which is being written. Again,
sequential read or write operations can commence following a random write, with the notation
that the currently addressed record is either read or rewritten again as the sequential operation
begins. You can also simply advance the random record position following each write to get the
effect of a sequential write operation. Note that, in particular, reading or writing the last record
of an extent in random mode does not cause an automatic extent switch as it does in sequential
mode.

The error codes returned by a random write are identical to the random read operation,
with the exception of error code 05, which indicates that a new extent cannot be created due to
directory overflow.

FUNCTION 35: COMPUTE FILE SIZE
Entry Parameters:

Register C: 23H

Registers DE: FCB Address
Returned Value:
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in random
mode format (bytes r0, r1 and r2 are present). The FCB contains an unambiguous file name
which is used in the directory scan. Upon return, the random record bytes contain the virtual
file size which is, in effect, the record address of the record following the end of the file. If,
following a call to function 35, the high record byte r2 is 01, then the file contains the maximum
record count 65536. Otherwise, bytes r0 and rl constitute a 16-bit value (r0 is the least
significant byte, as before) which is the file size.

Data can be appended to the end of an existing file simply by calling function 35 to set the
random record position to the end-of-file, then performing a sequence of random writes starting
at the preset record address.‘

108

N

)

The virtual size of a file corresponds to the physical size when the file is written
sequentially. If, instead, the file was created in random mode and “holes” exist in the
allocation, then the file may in fact contain fewer records than the size indicates. If, for
example, only the last record of an 8-megabyte file is written in random mode (record number
65535), then the virtual size is 65536 records, although only one block of data is actually
allocated.

FUNCTION 36: SET RANDOM RECORD
Entry Parameters:
Register C: 24H
Registers DE: FCB Address
Returned Value:
Random Record Field Set

The Set Random record function causes the BDOS to produce automatically the random
record position from a file which has been read or written sequentially to a particular point. The
function can be used in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the positions
of various key fields. As each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data unit size is 128 bytes, the
resulting record position is placed into a table with the key for later retrieval. After scanning the
entire file and tabularizing the keys and their record numbers, you can move instantly to a
particular keyed record by performing a random read using the corresponding random record
number which was saved earlier. The scheme is easily generalized when variable record lengths
are involved since the program need only store the buffer-relative byte position along with the
key and record number in order to find the exact starting position of the keyed data at a later
time.

A second use of function 36 occurs when switching from a sequential read or write over to
random read or write. A file is sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and write operations
continue from the selected point in the file.

System Function Summary

FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS
0 System Reset none none

1 Console Input none A = char

2 Console Output E = char none

3 Reader Input none A = char

4 Punch Output E = char none

5 List Output E = char none

6 Direct Console I/0 see def see def

7 Getl/O Byte none A =10BYTE
8 SetI/O Byte E = IOBYTE none

9 Print String DE = .Buffer none

10 Read Console Buffer DE = .Buffer see def

109

FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

11 Get Console Status none A = 00/FF

12 Return Version Number none HL = Version*
13 Reset Disk System none see def

14 Select Disk E = Disk Number see def

15 Open File DE = .FCB A = Dir Code
16 Close File E = .FCB A = Dir Code
17 Search for First DE = .FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = .FCB A = Dir Code
20 Read Sequential DE = .FCB A = Err Code
21 Write Sequential DE = .FCB A = Err Code
22 Make File DE = .FCB A = Dir Code
23 Rename File DE = .FCB A = Dir Code
24 Return Login Vector none HL = Login Vect*
25 Return Current Disk none A = Cur Disk*
26 Set DMA Address DE = .DMA none

27 Get Addr(alloc) none HL = Alloc

28 Write Protect Disk none see def

29 Get Addr(=R/O Vector) none HL = R/O Vect**
30 Set File Attributes DE = .FCB see def

31 Get Addr(disk parms) none HL = .DPB

32 Set/Get User Code see def see def

33 Read Random DE = .FCB A = Err Code
34 Write Random DE = .FCB A = Err Code
35 Compute File Size DE = .FCB r0, rl, r2

36 Set Random Record DE = .FCB r0, r1, r2

*Note that A=L, and B=H upon return.

A Sample File-to-File Copy Program

The following program provides a relatively simple example of file operations. The
program source file is created as COPY.ASM, using the CP/M ED program. It is then assembled
using ASM or MAC, resulting in a HEX file. The LOAD program is then used to produce a
COPY.COM file which executes directly under the CCP. The program begins by setting the
stack pointer to a local area, and then proceeds to move the second name from the default
area at 006CH to a 33-byte file control block called DFCB. The DFCB is then prepared for file
operations by clearing the current record field.

At this point, the source and destination FCB’s are ready for processing since the SFCB at
005CH is properly set up by the CCP upon entry to the COPY program. This means that the first
name is placed into the default FCB, with the proper fields zeroed, including the current record
field at 007CH. The program continues by opening the source file, deleting any existing
destination file and then creating the destination file. If all this is successful, the program loops
at the label COPY until each record has been read from the source file and placed into the
destination file. Upon completion of data transfer, the destination file is closed and the program
returns to the CCP command level by jumping to BOOT.

110

\\

ps

0000 =
0005 =
005¢c =
005¢c =
006¢c =
0080 =
0100 =

0009 =
000f =
0010 =
0013 =
0014 =
0015 =
0016 =

0100
0100 311b02

0103 0el0
0105 116c00
0108 21da01
010b 1a

010c 13

010d 77

010e 23

010f 0d

0110 c20b01

0113 af
0114 32fa01

0117 115¢00
011a cd6901
011d 118701
0120 3c

0121 cc6101

0124 11da01
0127 ¢d7301

printf
openf
closef
deletef
readf
writef
makef

,

mfcb:

sample file-to-file copy program
at the ccp level, the command
copy a:x.y bau.v

copies the file named x.y from drive
a to a file named u.v on drive b.

equ 0000h ; system reboot
equ 0005h ; bdos entry point
equ 005ch ; first file name
equ fcbl ;. source fcb

equ 006ch ; second file name
equ 0080h ; default buffer
equ 0100h ; beginning of tpa
equ 9 ; print buffer func#
equ 15 ; open file func#
equ 16 ; close file func*
equ 19 ; delete file func*
equ 20 ; sequential read
equ 21 ; sequential write
equ 22 ; make file func#
org tpa ; beginning of tpa
Ixi sp,stack ; local stack

move second file name to dfcb

mvi c,16 ; half an fcb

Ixi d,fcb2 ; source of move
Ixi h,dfcb ; destination fcb
ldax d ; source fcb

inx d ; ready next
mov m,a ; dest fcb

inx h ; ready next

dcr c ; count 16...0
jnz mfcb ; loop 16 times

name has been moved, zero cr
Xra a ;a=00h
sta dfcber ; currentrec =0

source and destination fcb’s ready

Ixi d,sfcb ;. source file

call open ; error if 255

1xi d,nofile ; ready message
inr a ;255 becomes 0
cz finis ; done if no file

source file open, prep destination
Ixi d,dfcb ; destination
call delete ; remove if present

111

012a 11da01 Ixi d,dfcb ; destination

012d cd8201 call make ; create the file

0130 119601 Ixi d,nodir ; ready message
0133 3¢ inr a ;255 becomes 0
0134 cc6101 cz finis ; done if no dir space

source file open, dest file open
copy until end of file on source

A e e e e

0137 115¢c00 opy: Ixi d,sfcb ; source
013a cd7801 call read ; read next record
013d b7 ora a ; end of file?
013e c25101 Inz eofile ; skip write if so
; not end of file, write the record
0141 11da01 Ixi d,dfcb ; destination
0144 cd7d01 call write ; write record
0147 11a901 Ixi d,space ; ready message
014a b7 ora a ;00 if write ok
014b c46101 cnz finis ; end if so
014e c33701 jmp copy ; loop until eof
eofile: ; end of file, close destination
0151 11da01 Ixi d,dfcb ; destination
0154 cd6e01 call close ; 255if error
0157 21bb01 1xi h,wrprot ; ready message
015a 3c inr a ;255 becomes 00
015b cc6101 cz finis ; shouldn’t happen

; copy operation complete, end

Note that there are several simplifications in this particular program. First, there are no
checks for invalid file names which could, for example, contain ambiguous references. This
situation could be detected by scanning the 32-byte default area starting at location 005CH for
ASCII question marks. A check should also be made to ensure that the file names have in fact
been included. (Check locations 005DH and 006DH for non-blank ASCII characters.) Finally, a
check should be made to ensure that the source and destination file names are different. A
speed improvement could be made by buffering more data on each read operation. One could,
for example, determine the size of memory by fetching FBASE from location 0006H and use the
entire remaining portion of memory for a data buffer. In this case, the programmer simply
resets the DMA address to the next successive 128-byte area before each read. Upon writing to
the destination file, the DMA address is reset to the beginning of the buffer and incremented by
128 bytes to the end as each record is transferred to the destination file.

A Sample File Dump Utility

The file dump program shown below is slightly more complex than the simple copy
program given in the previous section. The dump program reads an input file, specified in the
CCP command line, and displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCP’s stack before returning directly to the
CCP. Thus, the dump program does not perform a warm start at the end of processing.

112

N

0100

0005 =
0001 =
0002 =
0009 =
000b =
000f =
0014 =

005¢c =
0080 =

000d =
000a =

005¢c =
005d =
0065 =
0068 =
006b =
007c =
007d =

0100 210000
0103 39

0104 221502
0107 315702

010a cdc101
010d feff
010f c21b01

0112 11£301
0115 ¢d9c01
0118 ¢35101

011b 3e80
011d 321302

0120 210000

0123 e5
0124 cda201
0127 el
0128 da5101
012b 47

; DUMP program reads input file and displays hex data

’

bdos
cons
typef
printf
brkf
openf
readf

fcb
buff
cr
1f

b

fcbdn
fcbfn
fcbft
fcbrl
fcbre
fcber
fcbin

’

,

openok:

gloop:

org 100h

equ 0005h ; dos entry point

equ 1 ; read console

equ 2 ; type function

equ 9 ; buffer print entry

equ 11 ; break key function (true if char
equ 15 ; file open

equ 20 ; read function

equ 5ch ; file control block address

equ 80h ; input disk buffer address

non graphic characters

equ 0dh ; carriage return

equ Oah ; line feed

file control block definitions

equ fcb+0 ; disk name

equ fcb+1 ;file name

equ fcb+9 ; disk file type (3 characters)

equ fcb+12
equ fcb+15
equ fcb+32

; file’s current reel number
; file’s record count (0 to 128)
; current (next) record number (0

equ fcb+33 ; fcb length

set up stack

Ixi h,0

dad sp

entry stack pointer in hl from the ccp
shld oldsp

; set sp to local stack area (restored at finis)
Ixi sp,stktop

read and print successive buffers

call setup ;set up input file

cpi 255 ; 255 if file not present
jnz openok ; skip if open is ok

file not there, give error message and return

Ixi d,opnmsg
call err
jmp finis ; to return

; open operation ok, set buffer index to end
mvi a,80h

sta ibp ; set buffer pointer to 80h
hl contains next address to print

Ixi h,0 ; start with 0000

push h ; save line position

call gnb

pop h ; recall line position

ic finis ; carry set by gnb if end file
mov b,a

113

012c 7d
012d e60f
012f c24401

0132 cd7201

0135 cd5901

0138 0f
0139 da5101

013c 7c
013d cd8f01
0140 7d
0141 cd8f01

0144 23
0145 3e20
0147 cd6501
014a 78
014b cd8f01
014e ¢32301

0151 ¢d7201
0154 2a1502
0157 f9

0158 c9

0159 e5d5¢5
015¢ 0eOb
015e c¢do500
0161 cldlel
0164 ¢9

0165 e5d5¢5
0168 0e02
016a 5f
016b c¢d0500
016e cldlel
0171 c9

0172 3e0d
0174 cd6501

nonum:

’
finis:

pchar:

crif:

print hex values
check for line fold

mov a,l

ani 0fh ; check low 4 bits
jnz nonum

print line number

call crlf

check for break key

call break

accum 1sb = 1 if character ready

rrc ; into carry

jc finis ; don’t print any more
mov a,h

call phex

mov a,l

call phex

inx h : to next line number
mvi a,’’

call pchar

mov a,b

call phex

jmp gloop

end of dump, return to ccp
(note that a jmp to 0000h reboots)
call crlf

1hld oldsp

sphl

stack pointer contains ccp’s stack location
ret ; to the ccp
subroutines

; check break key (actually any key will do)
push h! push d! push b; environment saved
mvi c,brkf

call bdos

pop b! pop d! pop h; environment restored
ret

; print a character
push h! push d! push b; saved

mvi c,typef

mov e,a

call bdos

pop b! pop d! pop h; restored
ret

mvi a,cr

call pchar

114

()

C

0177 3e0a
0179 cd6501
017c c9

017d e60f
017f fe0a
0181 d28901

0184 c630
0186 c38b01

0189 c637
018b ¢d6501
018e c9

018f f5

0190 0f
0191 0f
0192 0f
0193 0f
0194 ¢d7d01
0197 f1
0198 ¢d7d01
019b c9

019c¢ 0e09
019e c¢d0500
0lal c9

0la2 3a1302
01ab fe80
01a7 c2b301

Olaa cdce01
Olad b7
Olae cab301

01b1 37
01b2 c9

01b3 5f
01b4 1600
01b6 3c
01b7 321302

plo0:
prn:

phex:

err:

gnb:

mvi alf
call pchar
ret

; print nibble in reg a

ani Ofh ; low 4 bits
cpi 10

jnc pl0

less than or equal to 9

adi ‘0

jmp prn

greater or equal to 10

adi ‘a’— 10

call pchar

ret

; print hex char in reg a
push psw
rrc
rrc
rrc
rrc
call pnib
pop psw
call pnib
ret

; print nibble

; print error message
d,e addresses message ending with “$”

mvi c,printf ;print buffer function
call bdos
ret

; get next byte

lda 1bp
cpi 80h
jnz g0

read another buffer

call diskr
ora a ; zero value if read ok
iz g0 ; for another byte

end of data, return with carry set for eof
stc
ret

;read the byte at buff+reg a

mov ea ; 1s byte of buffer index

mvi d,0 ; double precision index to de
inr a ; index=index+1

sta ibp ; back to memory

pointer is incremented

115

Olba 218000
01bd 19

Olbe 7e

01bf b7
01c0 c9

Olcl af
01c2 327c00

01c5 115¢00
01c8 0e0f
Olca cd0500

Olcd c9

diskr:
Olce e5d5c5
01d1 115¢00
01d4 Oel4
01d6 cd0500
01d9 cidlel
0ldc c9

01dd 46494c0 signon:
01£3 0d0a4e0 opnmsg:

0213 ibp:

0215 oldsp:

0217 ’
stktop:

’

0257

The following program is a rather extensive, but complete, example of a random access
operation. The program performs the simple function of reading or writing random random
records upon command from the terminal. Given that the program has been created, assembled

save the current file address

Ixi h,buff

dad d

absolute character address is in hl
mov am

byte is in the accumulator

ora a ; reset carry bit
ret

; set up file

open the file for input

Xra a ;zero to accum
sta fcber ; clear current record
Ixi d,fcb

mvi c,openf

call bdos

255 in accum if open error

ret

; read disk file record
push h! push d! push b

Ixi d,fcb

mvi c,readf
call bdos

pop b! pop d! pop h
ret

fixed message area
db file dump version 2.0$’
db cr, 1f, 'no input file present on disk$’

variable area

ds 2 ; input buffer pointer

ds 2 ; entry sp value from ccp
stack area

ds 64 ; reserve 32 level stack
end

A Sample Random Access Program

and placed into a file labeled RANDOM.COM, the CPP level command:

starts the test program. The program looks for a file by the name X.DAT (in this particular
case) and, if found, proceeds to prompt the console for input. If not found, the file is created

RANDOM X.DAT

before the prompt is given. Each prompt takes the form

next command?

and is followed by operator input and terminated by a carriage return.

116

A

The input commands take the form
nW nR Q

where n is an integer value in the range 0 to 65535, and W, R and Q are simple command
characters corresponding to random write, random read and quit processing, respectively. If
the W command is issued, the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by a carriage return.
RANDOM then writes the character string into the X.DAT file at record n. If the R command is
issued, RANDOM reads record number n and displays the string value at the console. If the Q
command is issued, the X.DAT file is closed, and the program returns to the Console Command
Processor. For brevity, the only error message is

error, try again

The program begins with an initialization section where the input file is opened or created,
followed by a continuous loop at the label ready where the individual commands are
interpreted. The default file control block at 005CH and the default buffer at 0080H are used in
all disk operations. The utility subroutines then follow which contain the principal input line
processor, called readc. This particular program shows the elements of random access
processing and can be used as the basis for further program development.

; sample random access program for cp/m 2.0

’

0100 org 100h ; base of tpa

0000 = reboot equ 0000h ; system reboot

0005 = bdos equ 0005h ; bdos entry point

0001 = coninp equ 1 ; console input function
0002 = conout equ 2 ; console output function
0009 = pstring equ 9 ; print string until ‘$’

000a = rstring equ 10 ; read console buffer

000c = version equ 12 ; return version number
000f = openf equ 15 ; file open function

0010 = closef equ 16 ; close function

0016 = makef equ 22 ; make file function

0021 = readr equ 33 ; read random

0022 = writer equ 34 ; write random

005¢c = fcb equ 005ch ; default file control block
007d = ranrec equ fcb+33 ; random record position
007f = ranovf equ fcb+35 ; high order (overflow) byte
0080 = buff equ 0080h ; buffer address

000d = cr equ 0dh ; carriage return

000a = If equ O0ah ; line feed

’
’

’

117

0100 31bc0

0103 0elc
0105 cd050
0108 fe20
010a d2160

010d 111b0
0110 cdda0
0113 c3000

0116 0eOf
0118 115¢c0
011b ¢d050
0Olle 3c
011f c2370

0122 0el6
0124 115¢0
0127 cd050
012a 3c
012b ¢2370

012e 113a0
0131 cdda0
0134 ¢3000

0137 cde50
013a 227d0
013d 217£0
0140 3600
0142 fe51
0144 c2560

0147 0el0
0149 115¢0
014c cd050
014f 3c

; load SP, set-up file for random access

’

’

’
’
’
)

b
)
b

ready:

Ixi sp,stack

version 2.0?

mvi - c,version

call bdos

cpi 20h ; version 2.0 or better?
jnc versok

bad version, message and go back

Ixi d,badver

call print

jmp reboot

correct version for random access

mvi c, openf ;open default fcb

Ixi d,fcb

call bdos

inr a ; err 255 becomes zero

jnz ready

cannot open file, so create it

mvi c,makef

Ixi d,fcb

call bdos

inr a ; err 255 becomes zero
jnz ready

cannot create file, directory full

Ixi d,nospace
call print
jmp reboot ; back to ccp

- loop back to “ready” after each command

file is ready for processing

call readcom ;read next command
shid ranrec ; store input record*
Ixi h,ranovf

mvi m,0 ; clear high byte if set
cpi ‘Q ;quit?

jnz notq

quit processing, close file

mvi c,closef

Ixi d,fcb

call bdos

inr a ; err 255 becomes 0

118

C

0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b 114d0
015 cdda0
0161 Oe7f
0163 21800

0166 c5
0167 e5
0168 cdc20
016b el
016¢c cl
016d fe0d
016f ca780

0172 77
0173 23
0174 0d
0175 c2660

0178 3600

017a 0e22
017c 115c0
017f ¢cd050
0182 b7
0183 c2b90
0186 ¢3370

0189 fe52
018b c2b90

018e 0e21
0190 115c0

iz error

; error message, retry

jmp reboot ; back to ccp

; end of quit command, process write

notg:

’

rloop:

]
’

’

not the quit command, random write?
cpi ‘W’
jnz notw

this is a random write, fill buffer until cr

Ixi d,datmsg

call print ; data prompt

mvi c,127 ; up to 127 characters
Ixi h,buff ; destination

; read next character to buff

push b ; save counter

push h ; next destination
call getchr ; character to a

pop h ; restore counter
pop b ; restore next to fill
cpi cr : end of line?

jz erloop

not end, store character

mov m,a

inx h ; next to fill

dcr ¢ ; counter goes down
jnz rloop ; end of buffer?

end of read loop, store 00
mvi m,0

write the record to selected record number

mvi C, writer

Ixi d,fcb

call bdos

ora a ; error code zero?
jnz error ; message if not
jmp ready ; for another record

; end of write command, process read

’
]

notw:

not a write command, read record?
cpi ‘R’
jnz error ; skip if not
read random record

mvi c,readr

Ixi d,fcb

119

0193 ¢d050
0196 b7
0197 c2b90

019a cdcf0
019d 0e80
019f 21800

0la2 7e
01a3 23
0la4 e67f
01a6 ca370
01a9 c5
Olaa e5
0lab fe20
0lad d4c80
01b0 el
01bl c1
01b2 0d
01b3 c2a20
01b6 c3370

01b9 11590
01bc cdda0
01bf ¢3370

01c2 0e01
01c4 cd050
01c7 c9

01c8 0e02
Olca 5f
0lcb cd050
Olce c9

0lcf 3e0d

call bdos
ora a ; return code 00?
jnz error

; read was successful, write to console

call crif ; new line
mvi c,128 ; max 128 characters
Ixi h,buff ; next to get
wloop:
mov a,m ; next character
inx h ; next to get
ani 7th ; mask parity
iz ready ; for another command if 00
push b ; save counter
push h ; save next to get
cpi T ; graphic?
cnc putchr ; skip output if not
pop h
pop b
dcr C ; count=count—1
jnz wloop
jmp ready

; end of read command, all errors end-up here

error:
Ixi d,errmsg
call print
jmp ready

H
’
H
; utility subroutines for console i/o

’

getchr:
; read next console character to a
mvi c,coninp
call bdos
ret
putchr:
; write character from a to console
mvi c,conout
mov ea ; character to send
call bdos ; send character
ret
crif:

; send carriage return line feed
mvi a,cr ; carriage return

120

01d1 cdc80
01d4 3e0a
01d6 cdc80
01d9 c9

0lda d5
01db cdcf0
0lde dl
01df 0e09
0lel cd050
Oled c9

0le5 116b0
01e8 cddal
Oleb Oela

Oled 117a0
01f0 cd050

01£3 21000
01f6 117c0
01f9 1a
01fa 13
01fb b7
Olfc c8

01fd d630
01ff fe0a
0201 d2130

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
020a 85
020D 6f
020c d290
020f 24
0210 c3f90

0213 c630
0215 fe61
0217 d8

0218 e65f
021a c9

print:

’

readcom:

readc:

endrd:

call putchr

mvi a,lf ; line feed
call putchr

ret

; print the buffer addressed by de until $

push d

call crif

pop d ; new line

mvi c,pstring

call bdos ; print the string
ret

; read the next command line to the conbuf

Ixi d,prompt

call print ; command?

mvi c,rstring

Ixi d,conbuf

call bdos ; read command line
command line is present, scan it

Ixi h,0 ;start with 0000

Ixi d,conlin ;command line

ldax d ;next command character
inx d :to next command position
ora a ;cannot be end of command

rz
not zero, numeric?

sui ‘0

cpi 10 ;carry if numeric
jnc endrd ‘

add-in next digit

dad h *2

mov cl

mov b,h ;bc = value * 2
dad h ;¥4

dad h *8

dad b 2+ *8="*10
add 1 ;+digit

mov l,a

jnc readc ;for another char
inr h ;overflow

jmp readc ;for another char

end of read, restore value in a

adi ‘0’ ;command

cpi ‘a’ ;translate case?
rc

lower case, mask lower case bits

ani 101$1111b

ret

121

; string data area for console messages
)

’

badver:
021b 53679 db ‘sorry, you need cp/m version 2§’
nospace:
023a 4e6£29 db ‘no directory<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>