
· · USER'S MANUAL
·T200/T250

PERSONAL OFFICE COMPUTER

II

·-· t•., .,_ .. _______ _

USE~S MANUAL
T200/T250
PERSONAL OFFICE COMPUTER

-
[) [)

r-i r-i

Uo ~o

L LT ~ l " vfJIIL J D
.....___

~

6 0 0 j -
\ ~~~ ~
~

]
......... -

TOSHIBA

© 1982 Toshiba America, Inc.

(

TABLE OF CONTENTS

Page

INTRODUCTION
PART 1 ... 3

Overview of Part 1 . 5
The Five Basic Components . 7
Turning the Power On . 9
Adjusting the Display Screen Brightness . 9
The Cursor . 11
Using the Keyboard . 11

Data Keys . 11
Line Editing Keys . 13
Special Function Keys 15
Program Function Keys . 15

Working with the Floppy Disks .. 17
Using the Floppy Disks ... 17

Loading and Removing Floppy Disks . 19
Using the System Disk .. 21

Mounting ... 21
CP/M Loading (Cold Boot) .. 21
CP /M Loading (Reboot) . 21

Winchester Disks . 21
Turning the Power Off . 23

PART 2 ... 25
Overview of Part 2 . 27
The Operating System . 28

What is the Operating System? ... 28
Operating System Capabilities . 28
The Four Parts of the Operating System 28

1. Console Command Processor (CCP) 28
2. Basic Input Output System (BIOS) .. , 29
3. Basic Disk Operating System (BOOS) . 29
4. Transient Program Area (TPA) 29

User Interaction through the CCP .. 29
Communicating with the Operating System . 30
File Names . 30

Ambiguous File References ... 31
Using the"*" .. 31
Using the "?" .. 32

Commands .. 33
Built-in Commands for BASIC Users 35

DIR .. 35
TYPE .. 35
ERA ... 37

Transient Commands for BASIC Users 37
STAT .. 37
PIP .. 39

Other Built-in Commands ... 41
REN .. ' 41

SAVE .. 41
Other Transient Commands ... 42

ASM ... 42
DDT ... 42
DUMP ... 42
ED .. 43
LOAD ... 43
SUBMIT ... 43
The XSUB Function .. 45
SYSGEN ... 46
PIP .. 46
STAT .. 49

Command Quick-Reference List ·. 51
Line Editing and Output Control 51

Utilities .. 53
Disk to Disk Copying . 53
Setting up New Disks (Formatting) 54
The Currently Logged Disk/Switching Disks 55
Write-Protecting Disks .. 57

Error Messages . 5 7
Using BASIC Programs ... 59

Using CBASIC .. 61
Initiating MBASIC .. 63
BASIC Commands .. 63

The Direct Mode . 63
The Indirect Mode . 63

Entering a BASIC Program .. 65
Correcting a BASIC Program .. 67
Running a BASIC Program .. 67
Storing a Program on Disk .. 67

Disk Data Files .. 69
Activating Saved BASIC Programs .. 70
Terminating BASIC ... 70

Using Assembler Programs . 71
Program Format ... 72
Forming the Operand .. 73

Labels .. 73
Numeric Constants . 7 4
Reserved Words .. 74
String Constants . 75
Arithmetic and Logical Operators . 75

Precedence of Operators . 76
Assembler Directives . 77

The ORG Directive . 77
The END Directive . 78
The EQU Directive . 78
The SET Directive . 79
The IF and ENDIF Directives . 79
The DB Directive .. 80
The DW Directive ... 80
The DS Directive . 81

Operation Codes . 81
Jumps, Calls and Returns ... 81
Immediate Operand Instructions . 82
Increment and Decrement Instructions 83
Data Movement Instructions .. 83
Arithmetic Logic Unit Operations 84
Control Instructions .. 84

Error Messages . 85
A Sample Session .. 85
System Entry Points .. 91

Operating System Call Conventions 92
System Function Summary . 109
A Sample File-to-File Copy Program . 110
A Sample File Dump Utility . 112
A Sample Random Access Program . 116

The Dynamic Debugging Tool 123
DDT Commands . 124

1. The A (Assemble) Command 125
2. The D (Display) Command 125
3. The F (Fill) Command 126
4. The G (Go) Command 126
5. The I (Input) Command 126
6. The L (List) Command . 127
7. The M (Move) Command 127
8. The R (Read) Command 127
9. The S (Set) Command 128

10. The T (Trace) Command 128
11. The U (Untrace) Command . 129
12. The X (Examine) Command . 129

Implementation Notes . 129
An Example . 130

The Text Editor . 141
ED Operation . 141
Text Transfer Functions . 141
Memory Buffer Organization 142
Memory Buffer Operation . 142

Command Strings . 143
Text Search and Alteration . 144
Source Libraries . 14 7
Repetitive Command Execution . 147
ED Error Conditions . 14 7
Control Characters and Commands . 148
Summary of Commands . 148
Line Numbers . 149
Free Space Interrogation . 150
Block Move Facility 150
Errors . 150
Other Notes on ED . 150

APPENDIX A: Installation 155
APPENDIX B: Character Code Table 159
APPENDIX C: Disk Characteristics . 161
APPENDIX D: The Printer . 163
APPENDIX E: Communication Interface 171
APPENDIX F: Floppy Disk Storage Layout . 179
APPENDIX G: Patching CP/M . 181
INDEX .. 183
WARRANTY .. 189

(

(

LIST OF FIGURES

Page

1.1 T200 Computer System . 6
1.2 T250 Computer System . 6
2.1 T200: Turning the Power On . 8
2.2 T250: Turning the Power On . 8
3.1 T200 Brightness Control Switch . 8
3.2 T250 Brightness Control Switch . 8
4 The Cursor . 10
5 The Keyboard - Data Keys 10
6 The Keyboard - Line Editing Keys 12
7 The Keyboard - Special Function Keys 14
8 The Keyboard - Program Function Keys . 14
9 Taking Care of the Disks 16
10.1 T200: Floppy Disk 16
10.2 T250: Floppy Disk . 16
11.1
11.2
12.1
12.2
13.l
13.2
14
15

T200: Opening Disk Door . 18
T250: Opening Disk Door . 18
T200: Mounting Disk . 18
T250: Mounting Disk . 18
T200: Closing Disk Door . 18
T250: Closing Disk Door 18
MOUNT SYSTEM DISK Prompt . 20
CP /M LOADING Message . 20

16 Reboot . 20
1 7.1 T200: Turning the Power Off 22
1 7 .2 T250: Turning the Power Off . 22
18 DIR Command . 34
19 TYPE Command . 34
20 No File Found . 36
21 STAT Command . 36
22 PIP Command . 38
23 Write-Protecting T200 Disks 56
24 Creating a CBASIC Program . 60
25 Initiating MBASIC . 62
26 BASIC Direct Mode . 62
27 "?" for PRINT . 62
28 A BASIC Program . 64
29 Program Corrections/LIST 66
30 RUN Command . 66
31
32
33
34

A File-Handling Program . 68
Overall ED Operation 140
Memory Buffer Organization . 140
Logical Organization of Memory Buff er . 140

35 Signal Cable Connection 156
36 Connecting Printer Signal Cable 156
37 Connecting Keyboard Signal Cable 156 I

38 Keyboard Click Adjuster 156
39 Printer Power Switch .. . 164
40 Printer .. . 164
41 Inserting the Paper .. . 165
42 Opening the Paper Cover .. . 165
43 Setting the Paper on Tractor Pins .. . 166
44 Adjusting the Paper Position 166
45 Setting the Paper Holders .. . 167
46 Turning the Paper Feed Knob ; 167
47 Opening the Top Cover .. . 168
48 Removing the Ribbon Spools .. . 168
49 The Ribbon Spools .. . 169
50 Loading the Ribbon Spools .. . 169
51 Communication Interface Signals .. . 172
52 Disk Storage Layout 179

/

INTRODUCTION

(-.·

,

(

INTRODUCTION

Your Toshiba T200 or T250 computer gives you very powerful processing capabilities to
keep pace with the challenges of today's Information Age. The extensive capabilities of your
system are the result of centuries of evolution in computing power:

1642 Blaise Pascal built the first known gear-based adding machine.

1694 Gottfried Willhelm von Leibniz, the inventor of calculus, improved on Pascal's
adding machine. His version could add, subtract, multiply, divide and extract
square roots by repeated additions - which is exactly how modern computers
handle such problems.

1835 With British government financing, Charles Babbage built a machine that not only
performed the calculations of the Leibniz machine, but also was a true program­
mable computer.

1939

1960

1970

1980

The first automatic digital computer was built. It operated electromechanically
but was quite noisy. The first fully electronic - and silent - computer followed.

Transistors began to take over, allowing miniaturization of the formerly gigantic
computers.

Integrated circuits emerged next. Standards began to develop for the Computer
Age.

More effective and less costly computers became widely available.

Your Toshiba table-top T200 has capabilities that once required a computer that filled a
large room and cost hundreds of thousands of dollars. Today, at a fraction of that cost,
Toshiba's business computers offer more capabilities, greater efficiency, greater ease-of-use
and far more reliability than their predecessors of 25 years ago.

Today, Toshiba's T200 and T250 computers are widely used to handle such business
accounting applications as general ledger, accounts receivable, accounts payable and payroll.
They write orders, keep track of inventory, control production, manage work and manufactur­
ing schedules and file and fill out government and other forms. Toshiba's T200 and T250 com­
puters also provide valuable management aids, allowing fast and precise profit analysis, and
quick performance assessment of the sales force, including route management and highlighting
of weak or key sales areas. In addition, the T200 and T250 can provide valuable decision
making support because they can store and sort through enormous amounts of information at
high speeds, allowing managers to simulate the results of various choices they are considering.

Such a list should certainly inspire you toward plans for your new computer. And, soon
after you begin to see your computer's capabilities, you will even come up with other uses
tailored to meet your needs.

You are to be congratulated on your choice of a system with top quality engineering. Every
imaginable aspect of business requirements and operator needs has been taken into considera­
tion during the design process. The following are a few of the system advantages:

• Your T200 or T250 is compatible with the majority of standard components and pro­
grams currently on the market. Numerous programming packages which are already
available can be used just as they are. Programs can be purchased from Toshiba to
meet various needs. If these are applicable, you need not write programs for your
computer.

• In addition, new programs can be written should you choose to do so, and existing
programs can be modified to suit your system needs.

• User-oriented programmable function keys are available.

• Large disk storage eliminates many of the problems encountered with older computers.

• A high speed, high quality printer provides efficiency, as well as a professional looking
product.

• The system layout is flexible and easy to use.

Whether you are an experienced computer professional or a first time user, you are proba­
bly experiencing excitement at the prospect of mastering and enjoying the benefits of a new
tool, as well as some concern about the process of that mastery. This manual is designed to
accompany you through that process with as much enjoyment, and as little frustration, as pos­
sible. First time users have the detail necessary to learn what they require and experienced
computer users will find the information well-organized for either scanning or in-depth study.

Don't try to understand how to use your computer by reading through the manual. Rather,
we recommend that after your computer is installed (described in Appendix A), you start your
journey at the computer itself, with the manual open as a guide beside you.

Your manual is divided into two major sections: Part 1 and Part 2. You will begin with Part
1 which describes the system hardware. Hardware is the actual equipment -the keyboard, the
main unit, the disks, the printer. Part 1 explains this equipment and how to use it. Illustrations
will guide you, both for the T200 and T250.

Part 2 of the manual will cover the system software. Software refers to programs. Pro­
gramming makes the computer (the hardware) perform various functions such as figure pay­
roll or check inventory. As mentioned, the T200 and T250 are designed so that you can buy
"prepackaged" programs, write programs yourself or modify existing programs to meet your
needs.

Part 2 first describes the operating system which is software designed to act like your
computer's manager. You will learn to interact with and oversee that manager. Part 2 also
covers use of the BASIC programming language on your computer. (BASIC is easy to learn and
versatile for performing a range of business applications. Learning BASIC, however, is a process
all by itself and if you do not already know it, you should consult the MBASIC and CBAS/C
reference manuals devoted to that purpose.) Part 2 also discusses assembler programming for
those who might use it, as well as the use of program debugging and text editing utilities.

Infrequently used information has been placed in appendices. For ease of reference, an
index appears at the end of this manual.

Although every attempt has been made to make the use of this manual as comfortable as
possible, the information presented here will only "come alive" as you use it to discover the
capabilities of your system. As you persist and master the use of your computer system, you will
achieve the satisfaction of seeing your business operations improve greatly.

ii

c:

PART I

c·
3

)

OVERVIEW OF PART 1

Part 1 presents facts about operating the hardware, or equipment, of your computer sys­
tem. Included are descriptions of:

• Understanding the Basic Components

• Turning the Power On

• Adjusting the Display Screen Brightness

• Using the Cursor

• Using the Keyboard

• Working with the Floppy Disks

• Turning the Power Off

Most of the material in Part 1 applies equally to both the T200 and T250 systems. In cases
where there are differences, a unique one-line border is used to the left of the section to indi­
cate whether the material refers to the T200 or T250. This quickly highlights sections you do
need to read, as well as those that you do not. The following borders are used:

(· ~ = T200

You will observe in Part 1 that all illustrations and charts are placed on the left pages,
while text is placed on the right pages. Therefore, always begin by reading the right page, and
refer to the left page when it is referenced in the text.

Once you have learned the basics about operating the hardware, you will be ready to learn
in Part 2 about using the accompanying software.

5

Figure I. System Computer l-~T~2~0~0~~::.:.:.;_:.~­

Keyboard

-~----:~---:;~;(')-C-;;;;,~-;;;;,,.S-Y~stem Computer -2 T250 Figure I.

6

(_:

(-.-_-.'
/

('

THE FIVE BASIC COMPONENTS

This section provides general information about the five basic components of your T200 or
T250, as shown in the figures at left. As needed, following sections will describe the compo­
nents and their use in more detail.

KEYBOARD
A typewriter-like keyboard that also includes special programming and number keys. You
enter data and instructions into the computer via the keyboard, which is movable for your
convenience.

DISPLAY SCREEN
A 1V-like screen measuring 12 inches diagonally. The screen displays information the user
enters via the keyboard, prompts the user for responses and instructions and shows replies
from the computer. The screen contains up to 1,920 characters of information, 80 charac­
ters per line and 24 lines at a time. The displayed image scrolls up when the screen is filled
up and a new line is to be displayed.

PROCESSING UNIT
The "insides" of the main console box. This unit is the control center of the system and
does the arithmetic and logic operations, as well as other system control functions. It also
contains 65,536 bytes of main memory. (One byte holds one character of information.)

FLOPPY DISK DRIVE
Data and programs are stored on what is called a floppy disk, which is a thin, flexible disk
permanently enclosed in a plastic jacket. These floppy disks are inserted into a floppy disk
drive, where information can be written onto the disk or read from it. Since information can
be stored, it does not need to be rekeyed constantly on the keyboard.

PRINTER
The printer is used when you want to print information instead of just leaving it on the
screen. Appendix D describes the use of the printer.

7

Figure 2.1 T200: Turning the Power On

PJ

~\
Power Switch

Figure 2.2 T250: Turning the Power On

Brightness
Control

Figure 3.1 T200: Brightness Control Switch Figure 3.2 T250: Brightness Control Switch

8

(
TURNING THE POWER ON

The console power switch is located on the back right-hand side of the main console unit.
To turn the power on, press the raised side of the switch, as shown in the top figures at left.
When the power is turned on, the cooling fan starts running.

When the power has been turned off, wait several seconds before turning it on again.

NOTE: This power switch does not turn on the printer. See Appendix D for printer
instructions.

ADJUSTING THE DISPLAY SCREEN BRIGHTNESS

The intensity of the characters on the display screen can be adjusted to optimize the com­
fort of your eyes. Simply turn the control switch. This switch is found (as shown in the figures
at left.)

~ T200 - on the front of the main unit below the disk drives.

I T250 - on the left side of the console.

The characters are light green, displayed against a dark green background.
To prolong screen life, keep the brightness setting at the lowest level that allows eye

comfort during work sessions and when the system is left idle. Orienting the screen away from
glare allows using a lower brightness level.

9

A dir b: * 8.BA_

l,
Screen Cursor

Figure 4 The Cursor

Figure 5 The Keyboard - Data Keys

10

THE CURSOR

The display screen contains a marker that moves like a "bouncing ball" to indicate your
place on the screen. The marker, called the cursor, is in the shape of a flashing underscore.
Top figure at left illustrates the cursor.

When data keys are pressed on the keyboard, the entered characters are displayed on the
screen and the cursor advances with each new keystroke.

USING THE KEYBOARD

The keyboard, shown at lower left, contains various types of keys:

• Data keys

• Line editing keys

• Special function keys

• Program function keys

Data Keys

Uppercase and lowercase characters, numeric characters and special symbols are on the
white keys. These keys, along with the space bar, the SHIFT key and the LOCK key, are oper­
ated as on a standard typewriter.

When the LOCK key is touched, uppercase letters can be entered without holding the
SHIFT key. The red light on the LOCK key is lit while the keyboard is in this upper case mode.
Touch the LOCK key again to resume the lowercase mode.

The keyboard also has a 10-key numeric pad, on the right side, to aid in entering numbers.
KEYBOARD, Continued __..

11

Figure 6 The Keyboard - Line Editing Keys

12

Line Editing Keys

Line editing keys may be pressed when you enter data to send, correct or repeat data. A
TAB key is convenient for placement of the data.

rn
El

The carriage return key terminates the input of a line and sends it to
the system.

The ENTER key can be used as a substitute for the carriage return key.

The backspace key moves the cursor back to the left by one character
position. This key is used to retype and correct the characters of a line
before pressing the carriage return key.

The DEL key deletes the last character typed on the line, but displays it
on the screen with an "echo effect". This can be used for more than
one character. Example:

• abcdef is typed.

• DEL is pressed three times.

• abcdeffed is displayed on the screen.

• abc is the effective input.

The CAN key cancels the entire input line if pressed before the carriage
return key. When the CAN key is pressed, # is displayed, and the input
can be retyped from the beginning.

When the REPT key is held down with a character key, the character
typed repeats.

The TAB key moves the cursor position to the next tab. Tabs are set on
every 8 characters of a line.

KEYBOARD, Continued---.

13

U•• II II
llDITJOJ mm [JJ[J D ITJ[J[J D

@J~(IJ~[!J[!)~[!J@J[!JITJ A

00LEJ0w~00cgoo
00[£]~~~~[JIIJIT]

II

Figure 7 The Keyboard - Special Function Keys

R'll r;r f7l r;;-i 1s1 r;;;-i r&l 1.1 1i1 r;-, n n r:::i mm ~ u u u u LJ ~ LJ L!_J LJ u L:J

@J~(IJ~[!J[!)~[!J@J[!JITJ A

00LEJ0w~00cgoo
00[£]~~~~[JIIJIT]

•

Figure 8 The Keyboard - Program Function Keys

14

Special Function Keys

Pressing special function keys tells the system to perform certain functions.

(HCOPY)
P,STOP

~
~

Pressing this key causes all following operating system command inter­
action (between keyboard and screen) to be printed on the printer.
Pressing this key again deactivates the printing. (This does not work
while MBASIC is in use.)

Keyboard operation is disabled. The second touch unlocks the keyboard.

When pressed simultaneously with the CTRL key, the system Cold Boot
is performed (described under "Using the System Disk").

Reboots the system (described under "Using the System Disk") or
interrupts BASIC processing. When this key is pressed, AC is displayed
on the screen.

Edits a BASIC input line with the EDIT comand. When this key is
pressed, [is displayed.

Performs predefined functions when another key is pressed
simultaneously.

Program Function Keys

Ten program function keys, PFO through PF9, send a specific code to the program execut­
ing in the central processor. The following symbols, respectively, are displayed on the screen
when one of the program keys is pressed:

{,I,},§, AB, AD, AF, AG, /\Kor AN

Appendix B shows the character code table, including a decimal representation of the
(-" program function keys.

15

TAKING CARE OF THE DISKS
• When not in·· use, floppy disks must be stored in the protective

envelopes.

• Do not touch or .attempt to clean the data recording surface of the
floppy disk.

• Floppy disks may be damaged if twisted, bent, dropped sharply,
exposed to sunshine, winter cold, food, liquid, beverages or dust,
including smoke.

• Do not write too firmly on the floppy disk label. A felt-tip pen is
recommended.

• Do not use erasers on the floppy disk label or near the floppy disk.

• Do not use magnets or magnetized objects near the floppy disk.

• Do not use rubber bands or paper clips on the floppy disk.

• Do not place heavy objects on the floppy disk.

Figure 9 Taking Care of the Disks

5.25 inch Floppy Disk 8-inch Floppy Disk

Protective
Envelope

\

Floppy Disk User Label

Figure 10.1 T200: Floppy Disk

Protective

Enve~·---

Floppy Disk User Label

Figure 10.2 T250: Floppy Disk

16

c

WORKING WITH THE FLOPPY DISKS

You will be working with floppy disks that serve different purposes. The system disk con­
tains the operating system which serves as the computer's manager. This disk is delivered with
your system, and loaded each time its data is required.

You will also use floppy disks for storing your data or programs. "Prepackaged" programs
are available on floppy disks. The amount of information you can store is limited only by the
number of floppy disks that you have available.

Regardless of the type of disk you are using, the floppy disks hold information magnetically
and require special care. A list of precautions to protect the life of your disks is shown in the
chart at left.

Using the Floppy Disks

The T200 and T250 use different sizes of floppy disks. The lower figures at left show the
two sizes.

D The T200 has one or two floppy disk drives to mount 5.25-inch two-sided double-
density floppy disks.

I The T250 has one or two floppy disk drives that can read and write data on either
one-sided single-density 8-inch disks or two-sided double-density 8-inch disks.

The disk type is identified by the label on the jacket. The label shows the number of bytes
per sector as "Record Length." "One-sided" is indicated with a IS and "two-sided" with a 20.
Appendix C gives disk characteristics for each type of disk, including the number of sectors and
bytes.

Your system may be equipped with one or two disk drives to house the removable disk
media. Disk drive # 1 is always the one closest to the screen. Drive # 1 is also called A. If the
system has two disk drives, the right-hand disk drive (#2) is also called 8.

DISKS, Continued __..

17

STEP 1:

Open Button.

Figure 11.1 T200: Opening Disk Door Figure 11.2 T250: Opening Disk Door

STEP2:

Place the Disk
with Label to
the Left-hand
Side.

Figure 12.1 T200: Mounting Disk Figure 12.2 T250: Mounting Disk

STEP 3:

Shut the Door
by Sliding to
the Right.

Figure 13.1 T200: Closing Disk Door

Shut the Door
by Sliding to
the Right.

Figure 13.2 T250: Closing Disk Door

18

Loading and Removing Floppy Disks

LOADING

STEP I . Open the disk drive door:

D T200: Raise the right edge of the door.

I T250: Press the disk drive Open Button.

STEP 2. Place the disk in the drive with the label on the jacket to the left side. Be sure the disk
is all the way in the drive.

I (On the T250, a click should be heard.)

STEP 3. Close the door by sliding it firmly to the right.

The three loading steps are illustrated at left.

REMOVING

STEP I. Confirm that the busy indicator on the disk drive is off. Never remove the disk when
the light is on.

STEP 2: Open the disk drive door.

I (On the T250, press the Open Button. The disk pops out.)

STEP 3: Remove the disk and place it in the protective paper envelope.

STEP 4: Close the door.

NOTE: New disks must be formatted before use via software contained in the operating
system. See Part 2, "The Operating System."

DISKS, Continued ~

19

Figure 16 Reboot

-· ----- --·----

MOUNT SYSTEM DISK

rompt

essage

CP/M LOADING

A >AC (BREAK key is pressed.)
A>

20

(~

Using the System Disk
MOUNTING

About five seconds after you have turned on your computer, it will display the statement,
MOUNT SYSTEM DISK. This prompt is shown in the top figure at left. (If you mounted the
system disk before turning on the power, the statement is not displayed and system loading
starts automatically.)

You should now place the system disk into disk drive #l (drive A). Remember, if you have
two drives, this is the one closest to the screen.

Mounting the system disk means that you are loading the operating system stored on the
system disk into the main memory of the processing unit. While Part 2 will explain how the
operating system works, it will help you to know now that all programs are run under the
control of the operating system. In addition, some of the instructions that you enter from the
keyboard are accepted and processed by the operating system.
NOTE: You may also receive a message to exchange the system disk if you are using a one­

sided disk. This is only applicable for the T250.

Using the System Disk
CP /M LOADING (Cold Boot)

After you have successfully mounted the system disk, the message CP /M LOADING
appears on the screen, as shown in the middle figure at left. For a few seconds while the system
disk is loaded internally and the message is displayed, the red busy light is lit on the drive in use.

Once the system disk has been loaded successfully, A >appears on the screen. This is
known as a "prompt" because it is telling you that you can now enter a command.

This loading procedure is called "Cold Boot." When the console power is already on and
you want to reload the operating system by Cold Boot, this can be accomplished by holding the
CTRL key and pressing the (IPL) key. If you have not already inserted the system disk, the
MOUNT SYSTEM DISK prompt will appear.

Using the System Disk
CP/M LOADING (Reboot)

Occasionally, you will receive error messages during the use of your computer. If you do,
you will need to reboot to restart your operating system.
To reboot, either:

• Press the (BREAK) key, or

• Press the CTRL key and type C following the A > or B > prompt.

These methods are shown in the bottom figure at left.
The operating system will then restart from the outset. This procedure is also called a

warm start.
NOTE: When the BASIC language is being used (MBASIC), the above methods return MBASIC

to command level, rather than performing the reboot.

Winchester Disks

Toshiba plans to introduce Winchester disks in the T200/T250 product line soon. When the
Winchester disk is present, it will replace one of the floppy disk drive units.

21

Figure 17.1 T200: Turning the Power Off

P)

~
Power Switch

Figure 17.2 T250: Turning the Power Off

22

c

c

TURNING THE POWER OFF

Follow these steps to turn the power off:

STEP 1. Verify first that:

a. The red light is off on the front of the disk drive.

b. The printer is not printing.

STEP 2. If the disks are inserted in the disk drives, remove them and store in their protective
envelopes.

STEP 3. Turn off the power (as shown in the figures at left):

a. On the console

b. On the printer

NOTE: If you have need of communication interfaces, Appendix E provides this information.

23

/ \
\..., ___ ;'

c

PART2

c

25

/'\.

c

c

-----··-·-----

OVERVIEW OF PART 2

Part 2 discusses your computer system's software. Whether you buy prepackaged pro­
grams, write programs or modify existing ones, you need to understand the operating system
software, as well as how to use a computer language on your system. Part 2 includes the
following major sections:

• The Operating System

• Capabilities

• Parts

• User Interaction

• File Names

• Commands

• Utilities

• Error Messages

• BASIC Programs

• Assembler Programs

If you will use only BASIC programs, you do not need to read the assembler programs
section of Part 2. Although the debugging tool and text editor are somewhat useful with BASIC,
these two facilities are primarily for use with assembly language. Therefore, they are included
in the assembler program section.

27

THE OPERATING SYSTEM

What is the Operating System?

Your computer consists of an interrelated system of devices and programs. While you are
the external manager of these components, computers also require an internal manager. For
that purpose, the Toshiba T200 and T250 have an operating system designed especially for
microcomputers by Digital Research. This system is called CP /M, for CONTROL PROGRAM for
MICROPROCESSORS.

Operating System Capabilities

Recall that each time you turn on your computer, you mount the system disk (described in
Part 1). This process loads the operating system into your computer. Once you have the oper­
ating system loaded into your computer, you can begin to use its capabilities. To do so, you
type established commands on the keyboard.

The operating system accepts established commands from the keyboard and trans­
lates them into electronic "language" that other parts of the computer can understand.

As you enter information and programs into your computer, you will want a method for
keeping track of that data.

The operating system allocates file spaces on disks and allows rapid access to any
file. The system allows dynamic allocation of file space, as well as sequential and ran­
dom file access.

When you write programs, you will need access to the software for that language, and the
ability to store the programs.

The operating system supports BASIC, assembler, and other languages. A large
number of distinct programs can be stored in both source and machine executable
form.

If you write assembly language programs, you will want a method of checking those
programs.

The operating system provides a text editor and "debugging" tool.

The Four Parts of the Operating System

In order to carry out its functions, the operating system is divided into four distinct parts. A
brief discussion of each will give you a better understanding of how your computer works, and
how you need to interact with it.

1. The Console Command Processor (CCP)
You communicate with your computer via the keyboard. In essence, you are setting elec­

tronic switches when you press the keys on the keyboard. The Console Command Processor
(CCP) then reads and translates your commands (switches) into a more complex series of
switches. The CCP, therefore, lets you communicate with your computer in simple language
similar to English.

For example, the CCP processes commands that list a directory of your files, print the
contents of files and control the operation of "transient" programs such as assemblers, editors
and debuggers. The standard commands available will be explained in upcoming sections of
this manual. In summary, the CCP provides an interface between your keyboard and the
remainder of the operating system.

28

2. The Basic Input Output System (BIOS)
As you know, your T200 or T250 uses at least one disk drive. One of the four parts of the

operating system, the Basic Input Output System {BIOS), provides access to the disk
drive(s). In addition, the BIOS allows you to add other peripherals to your system by changing
the peripheral drivers to handle them.

3. The Basic Disk Operating System (BOOS)
In addition to gaining access to the disk drives, the operating system also provides disk

management. The part that does this, the Basic Disk Operating System (BDOS), controls
one or more disk drives that contain independent file directories. The BOOS is the "strategist"
in that it implements disk allocation to provide fully dynamic file construction. At the same
time, the BOOS minimizes head movement during disk access.

The BOOS allows any file to contain any number of records providing that the file does not
exceed the size of any single disk. Each disk can contain up to 256 distinct files. Specific com­
mands are available for working with the files and disks via the BOOS, such as renaming a file.

4. The Transient Program Area {TPA)
The fourth part of the operating system serves as a "juggler" allowing your computer to

swap in and overlay additional program segments. The Transient Program Area (TPA) holds
programs which are loaded from the disk under command of the CCP. For example, during
program editing the TPA holds the text editor machine code and data areas. Similarly, programs
created under the operating system can be checked out by loading and executing these pro­
grams in the TP A.

In addition to the flexibility offered by the TPA, any or all of the four operating system parts
can be "overlayed" by an existing program. That is, once a program is loaded into the TPA, the
CCP, BOOS and BIOS areas can be used as the program's data area. A "bootstrap" loader is
programmatically accessible whenever the BIOS portion is not overlayed. The user's program
need only branch to the bootstrap loader at the end of execution, and the complete operating
system is reloaded from disk.

See Appendix G for patching the operating system.

User Interaction through the CCP
You interact with the operating system primarily through the CCP, which reads and inter­

prets the commands you enter via the keyboard. Upon initial computer startup, you load the
system disk into disk drive #I (A). The CCP displays the message:

Toshiba xxK CP /M VER m.m

where xx is the memory size (in kilobytes) which this system manages, and m.m is the version
number.

In general, the CCP addresses one of two disks which can be inserted into the disk drives
(A and B). Following system startup, the operating system automatically logs in disk A and
prompts you with the symbol A >. This symbol indicates that the CCP is currently addressing
disk A.

A disk is "logged in" if the CCP is currently addressing it. In order to indicate clearly which
disk is logged in, the CCP always prompts you with the disk name followed by the symbol > .
When you receive such a prompt, the system will wait until it receives a command from you.

29

Communicating with the Operating System
As you know, you communicate with the operating system primarily through the CCP.

Often, you will be requesting that the computer do certain things with your data. However,
when you want to store your data or a program on a disk file, you have to give a name to the
file. So before you learn the established commands, it is important that you understand how to
formulate file names properly.

Remember, your computer responds to the presence or absence of electrical currents con­
trolled by switches. You must activate the correct keyboard switches for a file name in order
for the CCP to translate your request into the desired computer actions with that file.

File Names
Accurately formed file names can consist of just a primary part or a primary and secon­

dary part. The primary name distinguishes the particular source file. The secondary file name,
though optional, is helpful for identification in that it usually specifies the characteristics of
files. For example, data files used in Accounts Receivable control may be given a secondary
name of .AR.

Characteristics of file names are:

• The primary file name consists of one to eight characters.

• The secondary file name, if used, consists of one to three characters.

• If both file names are used, they are separated by a period.

• If just the primary file name is used, it is equivalent to a primary name plus a secondary
name consisting of three blanks.

• Uppercase and lowercase characters and numbers are usually used.

• The following special characters can also be used in formulating file names:

- I + @ A

The remaining special characters cannot be used for file names.

• Lowercase letters are always translated by the operating system to uppercase when
they are entered for command names and file names, unless BASIC is involved. (Lower­
case characters entered for a file name with the specially designed BASIC language
commands and statements are not translated to upper case.)

If you are working with General Ledger files, you might have file names like the following:

GLTRAX

GLJOURNL

GI.ACCT.AR

Observe that the longest primary file name (GLJOURNL) has the maximum of eight let­
ters. Shorter primary file names (GLTRAX and GLACCT) are also acceptable, and more desira­
ble since they are logical abbreviations. The secondary file name .AR is also used. Note the
placement of the period.

30

For convenience (if you have more than one drive), file names can be prefixed with a drive
name (A or B), followed by a colon(:). The A or B indicates the disk where the file is located.
Examples:

A:GLTRAX

B:GLACCT.AR

Observe that the drive letter and the colon are counted in the maximum of eight characters
allowable for the primary part.

NOTE: A special case occurs with secondary names for BASIC files in the following situation.
BASIC automatically supplies a .BAS if no period(.) appears in the file name, when
given with the SA VE command, and the entire file name is less than nine characters
long. The SA VE command will be explained in an upcoming section.

Ambiguous File References
When you want to identify a unique file on a particular disk attached to the operating

system, you can call out the exact file name. It is termed the unambiguous reference, since
the file name refers only to that one unique file. You also have the option to specify part of the
file name in an ambiguous, or "wild card," reference. This type of reference enables you to
locate all files, or a subset of all files, in a particular group of files. There are two basic ways to
use the wild card file reference. One method uses the * symbol; the other uses the ? .

Using the*

Using the * is the simplest way to make wild card, or ambiguous file references. For exam­
ple, to get the names of all files beginning with GL and having no secondary file name:

TYPING

GL*

PRODUCES FILES IN THIS FORM

GLTRAX

GLJOURNL

To get the names of files beginning with GL and also containing a secondary file name:

TYPING

GL*.*

PRODUCES FILES IN THIS FORM

GLACCT.AR

GCLACCT .PAY

The following chart summarizes the use of the asterisk (*) in wild card (ambiguous) file
reference:

AMBIGUOUS FILE REFERENCE

* *
pppppppp.*

*.sss

RECEIVE

All files on a disk.

All files on a disk with a primary name of
up to 8 specified letters.

All files on a disk with a secondary name
of up to 3 specified letters.

31

Using the?

The question mark symbol (?) matches any character of a file name in the ? position. A
maximum of eight question marks to the left of the period in a file name and a maximum of
three question marks to the right of the period are allowed (????????.???). In this method of
wild card file reference, the total number of characters and question marks determines which
files will be found. For example:

1YPING

GL???

GL????

GL??????

GL????.??

GL????.???

??????.AR

??????.PAY

X?Z.COM

X?Z.C?M

????????

????????. ???

PRODUCES THESE FILE 1YPES

GLTAX

GLTRAN

GLJOURNL

GLACCT.AR

GLACCT.PAY

GLACCT.AR

GLACCT.PAY

XYZ.COM

XYZ.COM

X3Z.CAM

All files on a disk with no secondary file
name.

All files on a disk.

You may have already deduced that some ambiguous file references using the ? symbol would
produce the same result as those using the * symbol:

* *
pppppppp.*

*.sss

B:*.BAS

????????. ???

pppppppp. ???

????????.sss

B:??????.BAS

Note that it is quicker to use the asterick (*) when you are not specifying any of the
characters to the left and/ or right of the period.

32

I

.J

Commands
Now that you have a general understanding of formulating file names, you can begin to

learn about the commands, many of which deal with the files in various ways. Two types of
commands are available. The first type is called built-in. That means that the commands are
usable even when the system disk (which contains the Command Console Processor) has been
removed from the disk drive. Recall that the operating system is loaded from the system disk
into memory when you turn on your computer and perform a "boot" or "cold start." The TPA
then executes the built-in commands as you use them.

The second type of command is called transient. When you use transient commands, the
currently logged disk must have had the system area copied onto it from the actual system
disk. While this procedure is described later in "Disk-to-Disk Copying," it is important you
understand now this prerequisite for transient command use. The system portion can be copied
onto blank floppy disks, as well as those containing programs. Transient commands are also
important because they allow you the capacity to define your own additional transient com­
mands. This procedure is described under the LOAD command section.

You can enter commands when the operating system is prompting you for input via the A>
or B> prompt. You type the command on the keyboard and it appears on the screen as you
type it. To submit any command to the operating system for action, you always have to press
the carriage return key. Remember that the CCP translates these letters into upper case, so you
need not bother holding the SHIIT key.

The following pages describe the individual commands. If you will use mainly BASIC pro­
grams, you will probably need only three of the built-in and two of the transient commands.
These commands will be presented in the first two upcoming sections. Other additional com­
mands will follow. A quick-reference list of the commands is given after that, including unam­
biguous and/ or ambiguous file references as required by the commands.

33

A> dir b:* .bas

B: WWW BAS: NPV
B: TSTAT BAS: B

BAS: ACT012 BAS: A BAS
BAS: C BAS: D BAS

B: E BAS: LONG BAS
A>

Figure 18 DIR Command

Figure 19 TYPE Command

A> type 8: PRCHS.JNL

A>

721, 1201, ABC INC., 180.9, 511
723, 1203, T Al, 3200.9, 120
728, 1204, OA INC, 400.2, 170

34

Built-in Commands for BASIC Users

DIR

The DIR (directory) command causes the names of all files on a disk which satisfy the ambig­
uous file reference to be displayed on the screen. The following are examples given to demon­
strate variations of this command. You of course will have your own file names, and just drive A
if your system has one disk drive. Remember that you press the carriage return key after a
command.

COMMAND FORM

DIR

DIR * .*

DIRA:

DIRB:*.TS

DIR B:*.BAS

(~/ Other valid commands are:

DIRX.Y DIRX?Z.C?M

FILE NAMES DISPLAYED

All files on the current disk.

Same as DIR above.

All files on the disk inserted in drive A.

All files on the disk in drive B with the
secondary name TS.

All BASIC file names on the disk in drive
B. (This example is shown in the top
figure at left.)

DIRB:X.Y

NOTE: If no files can be found on the selected disk to satisfy the directory request, either a ?,
NOT FOUND or NO FILE is displayed on the screen.

1YPE

The 1YPE command types on the screen the contents of an unambiguous source file.

NOTE:

COMMAND FORM

TYPE X.Y

TYPE XXX

TYPE B:Xl

TYPE B:PRCHS.JNL

DISPLAYS

The contents of file X.Y.

The contents of file XXX.

The contents of file XI on drive B.

The contents of the PRCHS.JNL file on
drive B (shown in the lower figure at
left.)

The TYPE command expands tabs (CTRL-1 characters), assuming tab positions are set
at every eighth column.

Figure 20 No File Found

Figure 21 STAT Command

A>dir B: XYZ
NO FILE

A> stat B:
Bytes Remains On B: 126k
A> stat B: PRCHS. JNL
Recs bytes Ext Ace

1 1 k 1 R/W B:PRCHS.JNL
Bytes Remains On 8: 126k
A>

36

'~ ____ /

ERA

The ERA (erase) command removes the specified file(s) from the currently logged disk and
makes available the space the file(s) once occupied. You may use either an unambiguous
reference to erase one file, or an ambiguous reference to erase a group of files. Once the file is
erased, you should not see the file displayed when you enter the DIR command. The figure at
top left gives a sample response to such a request.

STAT

COMMAND FORM FILE(S) ERASED FROM CURRENT
DISK

ERAX.Y

ERA X.*

ERAX?Y.C?M

ERA * *

ERA B:* .PRN

X.Y

All files with primary name X.

All files which satisfy X?Y.C?M.

All files on the current disk. (Before this
extreme command is enacted, the CCP
displays the message, ALL FILES (Y /N)?
A Y response for yes must be given
before the files are actually removed.)

All files on drive B which satisfy the
ambiguous reference ????????.PRN
(independent of the currently logged
disk).

Transient Commands for BASIC Users

The STAT (status) command provides system.status information about file storage.

COMMAND FORM

STAT

STAT B:

STAT B:PRCHS.JNL

STAT X?Y.C?M

37

DISPLAYS

The storage remaining on all active disk
drives (with the drive letter, read/write
(RW) or read only (R/0), the remaining
space in kilobytes).

The storage remaining on drive B. Drive
A may be currently logged. (See Figure
21).

Information about file PRCHS.JNL on
disk B. (See Figure 21)'

Individual and summarized information
about the files (in alphabetical order)
which satisfies the ambiguous file
reference:

Figure 22 PIP Command

A> pip
*B: TESTDATA=CON:
10100 200.70 3200 50
10200 180.00 254 0
10300 230.50 230 0
10800 120.00 45

ASSEMBLY-D
ASSEMBLY-A
ASSEMBLY-H
PS UNIT

(CRTL/Z are pressed.)
*(Carriage Return is pressed.)
A>

38

c
RECS = The number of 128-byte records

allocated to the file.

BYTES = The number of kilobytes for the file.
(BYTES = RECS*128/1024)

EXT= The number of 16K extensions.
(EXT = BYTES/16)

FILE NAME/TYP = The primary/secondary file name.

NOTE: The STAT command can also be used for device assignment, as explained in "Other
Transient Commands;" and to set a drive to read-only. (See "Write Protecting Disks.")

PIP

The PIP (Peripheral Interchange Program) command allows copying and combining of disk
files. PIP enables you to work with a destination file which receives data and a source file
(including the keyboard) which delivers the data.

COMMAND FORM

C Simple Copying:

RESULT

c

PIP X=Y

Linking Files:

PIP X=Y, Z

Different Disks:

PIP NEW.M=B:OLD.M

Using Ambiguous File Names:
PIP A:=B:*. *

PIP B:TESTDATA=CON:

File Y is copied to File X. File Y
remains unchanged.

Files Y and Z are concatenated (linked
together) and copied to File X. Files Y
and Z are unchanged.

A copy of OLD.M is moved from drive B
to the currently logged disk (A). The
new file is named NEW.M.

All files on disk B are copied to A with
the same file names.

The file TESTDATA is created on disk B
by reading the keyboard (CON:) input
until the CTRL and Z keys are
pressed simultaneously.

The above example is shown in the Figure 22. The user received an asterisk when just PIP was
entered.

39

PIP

Ambiguous File, Continued

PIP A:=GL*

PIP B:=* .COM

PIP A:=B:ZAP. *

Same File Names on

Different Disks:

PIP B:=GAMMA.BAS

PIP B:=A:GAMMA.BAS

Other Points Regarding the PIP Command:

All files which satisfy GL * are copied
from the currently logged disk to the
same file names on drive A. Each
unambiguous file name is listed as it
is copied.

All files which have the secondary name
COM are copied to drive B from the
currently logged drive.

All files which have the primary name
ZAP are copied from A to B.

Equivalent to
B:GAMMA.BAS= GAMMA.BAS

Equivalent to
B:GAMMA.BAS=A:GAMMA.BAS

• Information from the source is copied left to right to the destination.

• The copy operation can be terminated at any time by pressing any key on the keyboard.

• If you form the PIP command properly, and the destination file exists, it is removed and
replaced with the source file data. The destination file is not changed if an error
condition exists.

• If the destination file also appears as one or more of the source files, the source file is
not altered until the entire concatenation is complete.

• Other less frequently used PIP capabilities are also listed under "Other Transient
Commands."

The following two sections:

Other Built-in Commands

Other Transient Commands

explain command forms for use with languages other than BASIC. Therefore, if you plan to use
just BASIC, skip over these sections to "Line Editing and Output Control."

40

''-._ ____ /

,/ -- ""

Other Built-in Commands

REN

The REN (rename) command renames a specified file that exists on a disk. The currently
logged disk is assumed to contain the file to be renamed.

COMMAND FORM

REN X.Y=Q.R

REN XYZ.COM=XYZ.XXX

REN A:X.ASM=Y.ASM

REN B:A.ASM=B:A.BAK

RESULT

The name of file Q.R is changed to X.Y.

The name of file XYZ.XXX is changed
to XYZ.COM.

The file Y.ASM is renamed to X.ASM on
drive A. (If one name is preceded by a
drive name and the other is not, both
file names are assumed to be on the
same disk.)

The file A.BAK is renamed to A.ASM on
drive B.

NOTE: If the file name you wish to use is already present on the drive, the REN command will
respond with the error message, FILE EXISTS. The change will not be performed.

If the file name you wish to rename does not exist on the specified disk, NOT FOUND
is printed on the screen.

The SAVE command literally saves information by placing a specified number of pages (256-
byte blocks) onto disk from the TPA. SA VE also names this as a file. In the operating system
distribution system, the TPA starts at !OOH (hexadecimal), which is the second page of
memory. Thus, if the user's program occupies the area from lOOH through 2FFH, the SAVE
command must specify two pages of memory. The machine code file can subsequently be
loaded and executed. The SA VE operation can be used any number of times without altering
the memory image.

COMMAND FORM

SAVE 3 X.COM

SAVE 40 Q

SAVE 4 X.Y

SAVE 10 B:ZOT.COM

41

RESULT

Copies !OOH through 3FFH to X.COM.

Copies !OOH through 28FFH to Q. (Note:
28 is the page count in 28FFH, and
28H=2* 16+8=40 decimal.)

Copies !OOH through 4FFH to X.Y.

Copies 10 pages (!OOH through OAFFH)
to the file ZOT.COM on drive B.

Other Transient Commands

ASM

The ASM (assembler) command loads the assembler and assembles the specified program
from disk. You provide a file name after the ASM command. The secondary file name ASM is
assumed and thus need not be specified.

COMMAND FORM

ASM GAMMA

ASM B:ALPHA

RESULT

The two-pass assembler is automatically
executed for the source file GAMMA.

The assembler is loaded from the
currently logged drive and operates on
the source program ALPHA.ASM on
drive B.

If assembly errors occur during the second pass, the errors are displayed on the screen.
The assembler produces a file:

x.PRN

where x is the primary name specified in the ASM command. The PRN file contains a listing of (\
the source program (with imbedded tab characters if present in the source program), along \ __ /
with the machine code generated for each statement and diagnostic error messages, if any. The
PRN file can be listed using the TYPE command, or sent to a peripheral device using PIP. Note
also that the PRN file contains the original source program, augmented by miscellaneous
assembly information in the leftmost 16 columns (for example, program addresses and
hexadecimal machine code). Thus, the PRN file can serve as a backup for the original source
file. If the source file is accidentally removed or destroyed, the PRN file can be edited. (See the
text editor section.) The editing is accomplished by removing the leftmost 16 characters of
each line (issuing a single editor "macro" command). The resulting file is identical to the
original source file and can be renamed (REN) from PRN to ASM for subsequent editing and
assembly. The file

x.HEX 1

is also produced which contains 8080 machine language in Intel "hex" format suitable for
subsequent loading and execution. (See the LOAD command.) For complete details of the
operating system's assembly language program, see the assembly programs section.

DDT

The DDT (Dynamic Debugging Tool) command is used to load the debugger into the TPA
and start execution. The use of this command is explained in detail under the debugging tool
section.

DUMP

The DUMP command initiates a program which types the contents of an unambiguous disk file
on the screen in hexadecimal form. The file contents are listed sixteen bytes at a time, with the
absolute byte address listed to the left of each line in hexadecimal. Long typeouts can be
aborted by pushing the DEL key during printout.

42
·-· --·· -----~----

ED

The ED command controls the program which is the operating system's context editor. It
allows creation and alteration of ASCII files in the operating system environment. The use of
this command is explained in detail in the text editor section.

LOAD

The LOAD command reads the specified unambiguous file, which is assumed to contain hex
format machine code, and produces a memory image file which can be subsequently executed.
The file name is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command. The LOAD command creates a file
named

x.COM

which marks it as containing machine executable code. The file is actually loaded into memory
and executed when the user types the file name x immediately after the prompting character >
which is printed by the CCP.

In general, the CCP reads the name x following the prompting character and looks for a
built-in function name. If no function name is found, the CCP searches the system disk directory
for a file by the name

x.COM

If found, the machine code is loaded into the TPA, and the program executes. Thus, the
user need only LOAD a hex file once. It can subsequently be executed any number of times
simply by typing the primary name. In this way, the user can "invent" new commands in the
CCP. (Formatted disks contain the transient commands as COM files, which can be deleted at
the user's option.) The operation can take place on an alternate drive if the file name is
prefixed by a drive name. Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and operates upon drive
B after execution begins.

It must be noted that the BET A.HEX file must contain valid Intel format hexadecimal
machine code records (as produced by the ASM program, for example) which begin at I OOH,
the beginning of the TPA. Further, the addresses in the hex records must be in ascending order.
Gaps in unfilled memory regions are filled with zeroes by the LOAD command as the hex
records are read. Thus, LOAD must be used only for creating CP /M standard "COM" files which
operate in the TP A. Programs which occupy regions of memory other than the TPA can be
loaded under the DDT.

SUBMIT

The SUBMIT command allows CP /M commands to be batched together for automatic process­
ing. The unambiguous file name given in the SUBMIT command must be the name of a file
which exists on the currently logged disk, with an assumed file type of SUB. The SUBMIT
command takes the form:

SUBMIT filename p I p2 p3 ... pn

where pl through pn are actual parameter values.

43

The SUB file is created with the ED program like any other file. It contains CP /M prototype
commands, with dummy parameters that allow substitution of actual parameter values at exe­
cution time. The dummy parameters take the form:

$i

where i is an integer. For the first such parameter, i must equal 1, for the second i=2, for the
third i=3, and so on. For example, SUBMIT file TYPICAL.SUB might contain:

DIR $1:$2 (er)

PIP A:=$1:$2 (er)

where $1 and $2 are the dummy parameters that function as variables, accepting the values of
the actual parameters at execution time. The actual parameter values following the file name
are substituted into the dummy parameters. If no errors occur, the file with substituted parame­
ters is processed sequentially by CP /M.

When the SUBMIT transient is executed, the actual parameter values pl ... pn are paired
with the dummy parameters $1 ... $n in the prototype commands. If the number of dummy and
actual parameters does not correspond, then the SUBMIT function is aborted with an error
message on the screen.

The SUBMIT function creates a file of substituted commands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the SUBMIT), this com­
mand file is read by the CCP as a source of input, rather than the console. If the SUBMIT
function is performed on any disk other than drive A, the commands are not processed until the
disk is inserted into drive A and the system reboots. Further, the user can abort command ("·
processing at any time by pressing the DEL key when the command is read and echoed. In this 0
case, the $$$.SUB file is removed, and the subsequent commands come from the keyboard.
Command processing is also aborted if the CCP detects an error in any of the commands.
Programs which execute under CP /M can abort processing of command files when error condi-
tions occur simply by erasing any existing $$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, you may type a $$ which reduces to a
single $ within the command file.

The last command in a SUB file can initiate another SUB file, thus allowing chained batch
commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype commands

ASM$1

and the command

DIR $1.*

ERA *.BAK

PIP $2:=$1.PRN

ERA$1.PRN

SUBMIT ASMBL X PRN (press carriage return)

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file, substituting X for all
occurrences of $1 and PRN for all occurrences of $2, resulting in a $$$.SUB file containing the
commands

44

(

ASMX

DIRX.*

ERA*. BAK

PIP PRN:=X.PRN

ERAX.PRN

which are executed in sequence by the CCP

The SUBMIT function can access a SUB file which is on an alternate drive by preceding the
file name by a drive name. Submitted files are only acted upon, however, when they appear on
drive A. Thus, it is possible to create a submitted file on drive B which is executed at a later
time when it is inserted in drive A.

THE XSUB FUNCTION

XSUB extends the power of the SUBMIT facility to include line input to programs as well as
the Console Command Processor. The XSUB command is included as the first line of your sub­
mit file and, when executed, self-relocates directly below the CCP. All subsequent submit com­
mand lines are processed by XSUB, so that programs which read buffered console input (BOOS
function 10) receive their input directly from the submit file. For example, the file SA VER.SUB
could contain the submit lines:

with a subsequent SUBMIT command:

XSUB

DDT

1$1.HEX

R

GO

SAVE 1 $2.COM

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The XSUB program loads,
followed by DDT which is sent the command lines "IX.HEX" "R" and "GO" thus returning to the
CCP. The final command "SAVE 1 Y.COM" is processed by the CCP.

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent submit command streams
do not require the XSUB, unless an intervening cold start has occurred. Note that XSUB must be
loaded after DESPOOL, if both are to run simultaneously.

45

SYS GEN

This utility adds operating system patch TPATCH to the released version of CP /M, generating a
version 2.xx BIOS and writing it on a newly formatted disk on drive B. To perform SYSGEN: '~j

following the system prompt, type SYSGEN

place the newly formated disk in drive B.

NOTE: BREAK will abort the SYSGEN process.

* * * * * * *
The following two commands, PIP and STAT, were also discussed under commands for

BASIC users. More uses for them are detailed below.

PIP

PIP allows reference to physical and logical devices which are attached to the CP /M system.
The device names are the same as given under the STAT command, along with a number of
specially named devices. The logical devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), LST: (list) while the physical devices are

CRT: (console or list)

LPT: (list)

(Note that the BAT: physical device is not included, since this assignment is used only to
indicate that the RDR: and LST: devices are to be used for console input/output.)

The RDR, LST, PUN and CON devices are all defined within the BIOS portion of CP/M and
thus are easily altered for any particular 1/0 system. (The current physical device mapping is
defined by IOBYTE.) The destination device must be capable of receiving data (that is, data
cannot be sent to the punch), and the source devices must be capable of generating data (that
is, the LST: device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 40 "nulls" (ASCII O's) to the device (this can be issued at the end of the
punched output).

EOF: Send a CP/M end-of-file (ASCII CTRL-Z) to the destination device (sent automati­
cally at the end of all ASCII data transfers through PIP).

INP: Special PIP input source which can be "patched" into the PIP program itself: PIP
gets the input data character-by-character by CALLing location 103H, with data
returned in location I 09H (parity bit must be zero).

OUT: Special PIP output destination which can be patched into the PIP program: PIP
CALLs location 106H with data in register C for each character to transmit. Note
that locations 109H through IFFH of the PIP memory image are not used and can be
replaced by special purpose drives using the debugging tool.

PRN: Same as LST:, except that tabs are expanded at every eighth character position,
lines are numbered and page ejects a~e inserted every 60 lines, with an initial eject
(same as [t8np]).

File and device names can be interspersed in the PIP commands. In each case, the specific
device is read until end-of-file (CTRL-Z for ASCII files, and a real end-of-file for non-ASCII disk !

files). Data from each device or file is concatenated from left to right until the last data source
has been read. The destination device or file is written using the data from the source files, and
an end-of-file character (CTRL·Z) is appended to the result for ASCII files. Note that if the

46

c/

destination is a disk file, then a temporary file is created ($$$ secondary name) which is
changed to the actual file name only upon successful completion of the copy. Files with the
extension COM are always assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on the keyboard (a
DEL suffices). PIP will respond with the message ABORTED to indicate that the operation was
not completed. Note that if any operation is aborted, or if an error occurs during processing,
PIP removes any pending commands which were set up while using the SUBMIT command.

Valid PIP commands are shown below

COMMAND FORM

PIP LST:=X.PRN

PIP

*CON:=X.ASM,Y.ASM,Z.ASM

*X.HEX=CON:,Y.HEX,PTR:

P_IP PUN:=NUL:,X.ASM,EOF:,NUL:

You can stop PIP with a single carriage return.

RESULT
Copies X.PRN to the LST device and
terminates the PIP program.

Starts PIP for a sequence of commands
(PIP prompts with *).

Concatenates three ASM files and copies
to the CON device.

Creates a HEX file by reading the CON
(until a CTRL-Z is typed), followed by
data from Y.HEX, followed by data from
PTR until a CTRL-Z is encountered.

Send 40 nulls to the punch device; then
copy the X.ASM file to the punch, fol­
lowed by an end-of-file (CTRL-Z) and 40
more null characters.

The user can also specify one or more PIP parameters enclosed in left and right square
brackets, separated by zero or more blanks. Each parameter affects the copy operation, and the
enclosed list of parameters must immediately follow the affected file or device. Generally, each
parameter can be followed by an optional decimal integer value (the Sand Q parameters are
exceptions). The valid PIP parameters are listed below.

8 Block mode transfer: data is buffered by PIP until an ASCII x-off character (CTRL-S)
is received from the source device. This allows transfer of data to a disk file from a
continuous reading device, such as a cassette reader. Upon receipt of the x-off, PIP
clears the disk buffers and returns for more input data. The amount of data which
can be buffered is dependent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer of data to the desti­
nation from the character source. This parameter is used most often to truncate
long lines which are sent to a (narrow) printer or console device.

E

F

H

Echo all transfer operations to the console as they are being performed.

Filter form feeds from the file. All imbedded form feeds are removed. The P
parameter can be used simultaneously to insert new form feeds.

Hex data transfer: all data is checked for proper Intel hex file format. Non-essential
characters between hex records are removed during the copy operation. The con-
sole will be prompted for corrective action in case errors occur.

47

I

L

Ignore ":00" records in the transfer of Intel hex format file (the I parameter auto­
matically sets the H parameter).

Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred to the destination starting at one, and
incrementing by I. Leading zeros are suppressed and the number is followed by a
colon. If N2 is specified, then leading zeroes are included and a tab is inserted
following the number. The tab is expanded if T is set.

0 Object file (non-ASCII) transfer: the normal CP/M end-of-file is ignored.

Pn Include page ejects at every n lines (with an initial page eject). If n=l or is excluded
altogether, page ejects occur every 60 lines. If the F parameter is used, form feed
suppression takes place before the new page ejects are inserted.

R Read system files. Files with the system attribute can be included in PIP transfers if
the R parameter is included, otherwise system files are not recognized.

Tn Expand Tabs (CTRL-1 characters) to every nth column during the transfer of
characters to the destination from the source.

U Translate lower case alphabetics to upper case during the copy operation.

V Verify that data has been copied correctly by rereading after the write operation.
(The destination must be a disk file.)

w Write over ,read only files without console interrogation. If the operation involves
several concatenated files, the W parameter need only be included with the last file
in the list.

z Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file transfer:

COMMAND FORM

PIP X.ASM=B:[v]

PIP LPT:=X.ASM[nt8u]

PIP PUN:=X.HEX[i],Y.AOT[h]

48

RESULT

Copies X.ASM from drive B to the ·cur­
rent drive and verifies that the data was
properly copied.

Copies X.ASM to the LPT: device;
numbers each line, expands tabs to
every eighth column, and translates
lower case alphabetics to upper case.

First copies X.HEX to the PUN: device
and ignores the trailing ":00" record in
X.HEX; then continues the transfer of
data by reading Y.ZOT, which contains
hex records, including any ":00" records
which it contains.

c~

~\

('/

c,,

PIP PRN:=X.ASM[p50] Sends X.ASM to the LST: device, with
line numbers, tabs expanded to every
eighth column, and page ejects at every
50th line. Note that nt8p60 is the
assumed parameter list for a PRN file;
p50 overrides the default value.

Under normal operation, PIP will not overwrite a file which is set to a permanent R/0
status. If an attempt is made to overwrite an R/O, then

DESTINATION FILE IS R/0, DELETE (Y /N)?

is issued. If the operator responds with the character Y, then the file is overwritten. Otherwise,
the response

* * NOT DELETED * *

is issued, the file transfer is skipped, and PIP continues with the next operation in sequence. In
order to avoid the prompt and response in the case of R/O file overwrite, the command line can
include the W parameter, as shown below:

PIP A:=B:* .COM(W]

The above copies all non-system files to the A drive from the B drive, and overwrites any R/0
files in the process. If the operation involves several concatenated files, the W parameter need
only be included with the last file in the list, as shown in the following example:

PIP ADAT = B.DAT,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers if the R parameter is
included. Otherwise, the system files are not recognized. The command line

PIP ED.COM= B:ED.COM[R]

for example, reads the ED.COM file from the B drive, even if it has been marked as an R/O and
system file. The system file attributes are copied, if present.

STAT

The STAT command allows control over the physical to logical device assignment. (See the
IOBYTE function in the system entry points section, and the "CP /M System Alteration Guide.")
In general, there are four logical peripheral devices which are, at any particular instant, each
assigned to one of several physical peripheral devices. The four logical devices are named:

CON: The system console device (used by CCP for communication with the operator).

RDR: Input device (i.e., RS232 port).

PUN Output device (i.e., RS232 port).

LST: The output list device.

The actual devices attached to any particular computer system are driven by subroutines
in the BIOS portion of CP /M. Thus, the logical RDR: device, for example, could actually be a
high speed reader, Teletype reader or cassette tape. In order to allow some flexibility in device
naming and assignment, several physical devices are defined, as shown below:

CRT: Cathode ray tube device (high speed console).

BAT: Batch processing (console is current RDR:, output goes to current LST: device).

49

LPT: Line printer (Centronics port).

COM: RS232 Communications port.

It must be emphasized that the physical device names may or may not actually correspond
to devices which the names imply. That is, the PTP: device may be implemented as a cassette
write operation, if the user wishes.

The possible logical to physical device assignments can be displayed by typing:

ST AT VAL: [carriage return]

The STAT prints the possible values which can be taken on for each logical device:

CON:= CRT: LPT: BAT: COM:
RDR: = CRT: COM: COM: COM:
PUN:= CRT: COM: LPT: LPT:
LST: = CRT: LPT: LPT: COM:

In each case, the logical device shown to the left can take any of the four physical assignments
shown to the right on each line. The current logical to physical mapping is displayed by typing
the command:

ST AT DEV: [carriage return]

which produces a listing of each logical device to the left, and the current corresponding physi­
cal device to the right. For example, the list might appear as follows:

CON: CRT:
RDR: COM:
PUN: COM:
LST: LPT:

The current logical to physical device assignment can be changed by typing a STAT command
of the form:

STAT ldl = pdl, ld2 =pd2, ... , ldn = pdn [carriage return]

where ldl through ldn are logical device names, and pdl through pdn are compatible physical
device names (that is, ldi and pdi appear on the same line in the VAL: command shown above).
The following are valid STAT commands which change the current logical to physical device
assignments:

STAT CON:= CRT: [carriage return]

STAT PUN:=TTY:, LST: = LPT:, RDR: =TTY: [carriage return]

50

(-

(

COMMAND QUICK-REFERENCE LIST

COMMAND BASIC/ TRANS/* AFN/ DESCRIPTION MANUAL
CALL OTHER BUILTIN UFN** OF COMMAND PAGE #

ASM Other Trans UFN Loads assembler 42

DIR BASIC Builtin AFN Lists file directory 35

DDT Other Trans UFN Loads debugger 42

DUMP Other Trans UFN Dumps file in hex 42

ED Other Trans UFN Loads editor 43

ERA BASIC Builtin Either Erases a file 37

LOAD Other Trans UFN Loads file in hex 43

PIP BASIC Trans Either Loads Per. Inter. Prog. 39,46

REN Other Builtin UFN Renames a file 41

SAVE Other Builtin UFN Saves pages from TPA 41

STAT BASIC Trans Either Gives status (space) 37,49

SUBMIT Other Trans UFN Submits file for proc. 43

SYSGEN Other Trans Creates new CP /M disk 46

TYPE BASIC Builtin UFN Types file contents 35

* For transient commands, the currently logged disk must contain a system disk portion. This is not
required for built-in commands.

** AFN = Ambiguous File Name

UFN = Unambiguous File Name

Line Editing and Output Control

All users occasionally make mistakes while typing at the keyboard. The CCP offers various
ways for correcting mistakes. Three of the methods (backspace, DEL key, CAN key) are for
correcting the input of data. These were discussed in Part 1 under "Line Editing Keys." These
three methods can also be used for correcting the entry of commands. Additional line editing
of commands, both for mistakes and other purposes, is performed by pressing the CTRL key
and one other specified key simultaneously:

51

CTRL · C
(BREAK KEY)

CTRL · E

CTRL · H
(..-KEY)

CTRL · J

CTRL · M

CTRL · R

CTRL · U

CTRL - X

CTRL • Z

~-- "··--- --------~

Reboots the operating system (a warm start) when used at the
beginning of a line. May be used when error messages are
encountered.

Returns the carriage from the end of a line to the beginning of the
next line, but the line is not submitted to the computer for action
until the carriage return key is pressed. (CCP command lines can
generally be up to 128 characters in length.)

Backspaces one character position.

Terminates the current input (line feed).

Terminates the input (carriage return).

Retypes the current command line, deleting any characters cor­
rected with the DEL key (types a "clean" line). This is helpful
since the DEL key leaves the wrong character on display, even
though the correct key is also displayed and is the only one effec­
tively sent to the computer for action.

Deletes the entire line typed at the console. (Same result as press­
ing the CAN key.)

Same as CTRL - U.

Ends the input from the keyboard. (This is used for PW and
ED commands.)

In contrast to the above input controls, output controls are also available:

CTRL - P

CTRL · S

Copies all subsequent console output to the currently assigned list
device. (See the STAT command.) Output is sent to both the list
device and the console device until this same key combination is
typed again.

Temporarily stops the output displayed on the screen so that a
segment of the output can be viewed. When the next CTRL and S
combination is simultaneously typed, the program execution and
output continue.

In addition, pressing the key labeled:

(H·COPY)
P.STOP

Sends all subsequent output to both the screen and the printer
until this key is pressed again.

52

0

c

Utilities

Disk to Disk Copying

On the T250, to copy disks, type UTIL and carriage return. This brings the following copy
options to the screen in menu format:

1. Copy entire disk from Drive A to Drive B.

2. Copy CP /M system tracks only.

3. Copy disk in Drive A using one drive only.

F. Go to FORMAT menu.

X. Exit this menu program and return to CP /M.

Then select the type of copy you wish to perform from the menu.

To copy disks on the T200, type COPY.COM. This initiates a series of three screens that
step you through the copy process. Screen # 1 displays:

TOSHIBA T200 CP /M COPY UTILITY

Step 1> Insert SOURCE disk in Drive# 1

Step 2> Insert FORMATTED disk in Drive # 2

Press RETURN to begin copy or BREAK to end

After pressing RETURN, Screen # 2 displays the following information:

TOSHIBA CP /M COPY UTILITY

Copying Disk Now Please wait

Track# XX

During the copy operation, the X X indicating the track number will cycle from 00 through
35 and then from 36 through 70. Then, the screen will contain the information shown on
Screen # 3, unless one of these error messages appear on Screen #2:

Bad Disk Please Try Another !

OR

Not a FORMA TIED disk in Drive #2

Screen #3 will contain the following information if the copy is completed successfully:

TOSHIBA T200 CP /M COPY UTILITY

Copy Now Complete ! Remove Disks

Press RETURN to continue copy or BREAK to end

If there is a problem completing the copy successfully at this point, line 2 of Screen #3
displays:

Copy NOT Complete Please Try Again

53

Setting·Up New Disks (Formatting)

Before you use new floppy disks for storing data, you must first "format" them. This
process is necessary since it prepares the format of your disks for storing information properly.
Appendix F describes the storage layout of floppy disks.

On the T250, to perform formatting, begin with the menu used above for the T250 under
"Disk to Disk Copying." Select option F from the menu, which will bring the following
format options to the screen in menu format:

1. Format the disk in Drive B as a 256 sector double sided double density disk.

2. Format the disk in Drive Bas a 128 sector single sided disk.

C. Go to COPY menu.

X. EXIT this menu program and return to CP /M.

Select the type of formatting you want from the menu.

On the T200, to format disks, type FORMAT.COM. This initiates a series of three screens
that step you through the copy process. Screen # 1 displays:

TOSHIBA T200 CP /M FORMAT UTILITY

Step I> Insert A NEW disk in Drive# 2

REMEMBER> >If this disk has data on it this will erase it totally.

Press RETURN to begin format or BREAK to end

After pressing RETURN, Screen# 2 displays:

TOSHIBA T200 CP /M FORMAT UTILITY

Formatting Disk Now Please wait

Track# XX

During formatting, the track number cycles from 00 - 35 twice. The system then displays
Screen # 3 unless this error message appears on screen # 2:

Bad Disk Please Try Another !

If the formatting is completed successfully, Screen # 3 dispiays:

TOSHIBA T200 CP /M FORMAT UTILITY

Format Now Complete ! Remove Disk

Press RETURN to continue format or BREAK to end

If there is an error during the formatting procedure, line 2 of Screen # 3 displays:

Format NOT Complete Please Try Again

54

(\
i !
\..__,/

c

c

The Currently Logged Disk/Switching Disks

As described under "User Interaction through the CCP," the currently logged disk is the
one identified on the screen via the prompt symbol A > for drive A, or B > for drive B.

If you have two disk drives and want to switch disks, you simply type the disk name you
want (A or B), followed by a colon(:). This must be done when the CCP is in a receptive mode,
prompting you for some type of input. The sequence of prompts and commands shown below
might occur after the operating system is initially loaded from drive A.

PROMPTS/COMMANDS

xxK CP/M VER 2.2

A>DIR

SAMPLE ASM

SAMPLE PRN

A>B:

B >DIR *.ASM

DUMP ASM

FILES ASM

B >A:

EXPLANATION OF COMMANDS

List all files on disk A.

Switch to disk B.

List all ASM files on B.

Switch back to A.

55

J---0

To Write-protect,
stick the Silver
Paper over
the cutout.

Silver
Paper

Figure 23 Write-Protecting T200 Disks

56

To make disk writable
again, rip the Silver
Paper off.

(_

-------- ------

Write-Protecting Disks

Floppy disks are like cassettes in that you can record new information over prior information.
The T200 and T250 offer different ways of protecting the contents stored on a disk from
erroneously being covered over with new information.

D T200; The 5.25-inch disks can be write-protected by sticking a protective silver paper on
the disk jacket. (Shown in figure 23.)

T250: The way to protect disks on the T250 is to set the disk drive itself to a read only
mode (rather than read and write). Use the STAT command in the following form:

STATx:R/O

where x is drive A or B. Any disk mounted on the drive will not accept the write
operation until the next warm or cold start.

NOTE: When you have disks that contain important information, it is recommended that you
make backup disks by copying (PIP command or the disk copying operation).

If you try to write to a disk in a read only situation, you will receive an error
message (see next section).

Error Messages

In the course of using your computer, you may encounter error messages displayed on
your screen. The list below gives the messages possible, as well as steps for correcting the

ERROR MESSAGE

NO FILE
or

NOT FOUND

FILE EXISTS

PIP?

EXPLANATION

The operating system
cannot find a file.

The file name already
exists and may not be
used again.

The PIP program is not
stored on currently
logged disk.

57

CORRECTION
• Check the directory for file

names on both the A and B
drives. The file may not exist on
either drive directory.

• Make sure you have the most
current data disk.

• Retype the file name in case you
did not spell it correctly the
first time.

• Select a new name for the new
file, or rename the file that
already exists.

1. Check the directory of the
operating system for PIP .COM.

2. Load the disk that has the
PIP.COM program.

ERROR MESSAGE

BDOSERRONx
(where x is drive A
orB)

BDOS ERR ON x:
BAD SECTOR

EXPLANATION

A problem exists in
reading or writing to
the disk.

CORRECTION

• Make sure the power to the disk
drive is on.

• Make sure the disk drive door is
completely shut.

• Make sure the disk is formatted
and not too worn.

• Make sure the disk has been
mounted on the drive.

• Check to see if the disk is worn
out or damaged.

• Verify that the disk is a type
recommended by Toshiba (see
Appendix C).

• Recover from this situation by
pressing the CTRL and. C keys
simultaneously to reboot
the system.

NOTE: You may also press the RETURN key which ignores the bad sector. However, using the
RETURN key in this situc;ltion may destroy your disk integrity if the operation is a directory
write. In this case, make sure you have adequate backup. Check with your Toshiba
representative if your system reports this error more than once a month.

BDOS ERR ON x:
READ ONLY

BDOS ERR ON x:
SELECT

An attempt has been
made to write to a disk
which has been set to
read only in a STAT
command, or when the
drive has been set to
read only by BOOS.

An attempt has been
made to address a drive
other than A or B.

58

• Reboot the operating system by
pressing the CTRL and C keys
simultaneously, or perform a
cold start when the disks are
changed. (The drive is returned
to read and write capacity.)

• Reboot the system by pressing
the RETURN or ENTRY key.

• If necessary, restart the
computer.

-- --------------------

USING BASIC PROGRAMS

This section describes how to run programs written in the BASIC language. There are many
versions of BASIC, and two are offered with the T200 and T250 systems. These are the CP /M
version of Microsoft's BASIC-80 (MBASIC) and Digital Research lncorporated's CBASIC.

If you are not familiar with these languages, please refer to the MBASIC Reference Manual
and the CBASIC Reference Manual that you have received. The rules of writing BASIC programs,
the meaning. of BASIC statements and commands, as well as sophisticated methods for
modifying programs, are described in these manuals. You can then refer to the following
section in order to learn the specifics of using the BASIC language in conjunction with your
Toshiba T200 or T250.

CBASIC is a variation of a compiler language. This means that a program is written with an
editor and then compiled. The programs used to compile (CBAS2) and to run (CRUN2) it are
separate. After the source code of a program has been created, the CBASIC compiler generates
intermediate code that the computer executes.

The intermediate code is derived from a CBASIC (or later version called CBASIC 2)
compiled source program. It can be executed using the CRUN2 command. This command
assumes that a program has already been compiled.

The version of MBASIC that is provided with your Toshiba T200 or T250 is an interpretive
form of BASIC. It executes the source program statements directly by interpreting into object
code. This avoids the step of compiling which in turn decreases the program development time.

59

Flow chart showing process of creating CBASIC program.

CHECK THE CBASIC
REF. MANUAL FOR
EXPLANATION OF
ERROR (COMPILER
ERROR MESSAGES)

YES

Figure 24 Creating a CBAS/C Program.

CREATE OF CORRECT
PROGRAM WITH TEXT
EDITOR
i.e. WORDSTAR

CHECK THE CBASIC
REF. MANUAL UNDER
(RUNTIME ERROR
MESSAGE) FOR AN
EXPLANATION OF THE
ERROR

FOR EXAMPLE:

NO

PROGRAM
COMPETED

60

CBASE2 PROGRAM

YES

FOR EXAMPLE:
CRUN2PROGRAM

0

(/.

(

c

Using CBASIC
To write a CBASIC program, first you create the source statements using a text editor or

word processing program of your preference. Be sure to use a text editor such as WordStar,
which has a mode or creating text which is a nondocument mode. Most text editors, in the
normal word processing mode, will put in many characters and set certain bit flags which the
CBASIC compiler cannot understand. Once you have created the source program (following the
rules and statement explanations of the CBASIC reference manual) you compile the program.
This is done by typing (while at the CP/M level):

A>CBAS2 Program name

Where "program name" is the name of the program you created.

NOTE: The program must have the secondary file name of .BAS or the compiler will not find it.
Also, the primary filename can be no longer than 8 characters. Example: PROCESS.BAS.
Make sure you follow these rules and give the program the same name when you create
it with the text editor that you use to reference it from CP /M.

The compile will flag any errors it finds during compilation. These error messages can be
found in the back of the CBASIC reference manual under "Compiler Error Messages." You must
go back and correct any mistakes by using the text editor. Repeat this cycle until the program
compiles successfully with no errors found. Now you are ready to try running the program. To
do this type:

A>CRUN2 Program name

Any errors found during execution will be flagged by the runtime module (CRUN2.COM) and
you will be taken out to CP /M level. Go to the back of the CBASIC reference manual to find an
explanation of the error message under "Runtime error messages." Then go back to the text
editor, make the necessary changes to the program, recompile it, and try running it again until
it runs without errors.

The process involved in writing a CBASIC program is illustrated by the flow chart on the
left.

61

Figure 25 Initiating MBASIC

A>mbasic
BASIC-80 Rev. 5.2
[CP/M Version]
Copyright 1977, 78, 79, 80 (C) by Microsoft
mmmmm Bytes tree
Ok

Ok
PRINT 1000* (1.12) 5
1762.34
Ok
PRINT EXP (-2*2.54)
6.21991 E-03
Ok

Figure 26 BASIC Direct Mode

Figure 27 "?"for PRINT

Ok
? SOR (2.531\2 + 3.451\2)
4.27825
Ok

62

(

(~.·,
/

Initiating MBASIC
After you load the operating system into your computer, you receive the command prompt

A> on the screen. You have learned that at this point your system is waiting for a command
from you. If you want to work with MBASIC, be sure the system disk is in drive A and enter the
name of the file which contains the BASIC program. This file, called MBASIC, is on the system
disk. As with any command, you then press the carriage return key to send the command to the
operating system. (See the figure at top left.)

About eight second after you send MBASIC, the system will reply as shown in the top figure
at left. The prompt OK is displayed when BASIC is ready to accept your commands to BASIC. At
this point, you may remove the system disk from the drive since MBASIC has been loaded into
memory until the next warm or cold start.

BASIC Commands
BASIC accepts predefined commands. If you enter anything other than the established

commands, and press the carriage return key, you will see the error message Syntax error on
the screen. This means that BASIC cannot understand what you are trying to request. (Error
messages and their causes are explained in the MBASIC and CBASIC Reference Manuals.)
Therefore, in order to work with BASIC, you must use the established terminology. You can
enter BASIC commands and statements in either of two modes: direct or indirect.

The Direct Mode

In the direct mode, BASIC commands and statements are entered directly without line
numbers. These commands and statements begin with a key word such as PRINT. An input line
is submitted to BASIC when the carriage return key is pressed and the commands and
statements are executed. As shown in the middle figure at left, the direct mode may be used as
a "calculator" for quick computations that do not require a complete program. A BASIC
statement PRINT precedes the arithmetic operation you want to calculate

As shown in the bottom figure at left, a shorthand method is available (as the exception)
for the use of PRINT. A question mark (?) can be used in place of PRINT.

The Indirect Mode

The indirect mode is used for entering programs. Program lines are preceded by line
numbers and are stored in memory. The upcoming section, "Entering a BASIC Program,"
describes this process.

63

Ok
new
Ok
auto
10 rem Net Present Value Calculation
20 input "Enter revenue for each year"; R(1), R(2), R(3), R(4), R(5)
30 input "Enter cost for each year"; C(1), C(2), C(3), C(4), C(5)
40 input "Interest rate"; D
50 for N=1 to 4
60 NPV=NPV + (R(N) - E(N)/(1 + D) /\ N
70 print "Net Present Value .. "; NPV
80 goto 20
90 end
100 /\ C (BREAK key is pressed.)
Ok
list
10 REM Net Present Value Calculation
20 INPUT "Enter revenue for each year"; R(1), R(2), R(3), R(4), R(5)
30 INPUT "Enter cost for each year"; C(1), C(2), C(3), C(4), C(5)
40 INPUT "Interest rate"; D
50 for N=1 to 4
60 NPV=NPV + (R(N) - E(N)/(1 + D) /\ N
70 PRINT "Net Present Value .. "; NPV
80 GOTO 20
90 END
OK

Figure 28 A BASIC Program

64

'--

\'-_ ___ /

---·--·---

c

Entering a BASIC Program

A BASIC program consists of program lines composed in the following manner:

line number BASIC statement

A BASIC program line always begins with a line number and ends with a carriage return. The
line numbers may be typed in, or for additional convenience, automatically generated by the
AUTO command.

The figure at top left shows a sample BASIC program. Observe that two commands are given
before the program lines begin. The first command, NEW, tells the system that you are entering
a new program. This command clears all lines stored in memory. The second command, AUTO,
is used (as descibed above) to generate line numbers automatically. To terminate automatic
line numbering, hold the CTRL key and. touch the C key, or simply touch the (BREAK) key. The
line in which CTRL and C are typed is not submitted and BASIC returns to command level.

After the program was entered, the command LIST was typed in order to display the
program just stored in memory.

NOTE: Command and statement keywords, such as REM, INPUT and PRINT, were typed in the
example at top left in lowercase. They were automatically converted to uppercase, as shown in
the LISTed program on the next page.

65

Ok
50 for N=1 to 5
15 dim R(5), C(5)
65 next N
45 NPV=O
80
61 print R(N)-C(N), NPV
list
10 REM Net Present Value Calculation
15 DIM R(5), C(5)
20 INPUT "Enter revenue for each year"; R(1), R(2), R(3), R(4), R(5)
30 INPUT "Enter cost for each year"; C(1), C(2), C(3), C(4), C(5)
40 INPUT "Interest rate"; D
45 NPV=O
50 FOR N=1 TO 5
60 NPV=NPV + (R(N) - C(N))/(1 + D) f\ N
61 PRINT R(N)-C(N), NPV
65 NEXT N
70 PRINT "Net Present Value .. "; NPV
90 END
Ok
list
Ok

Figure 29 Program Corrections/LIST

Ok
RUN
Enter revenue for each year? 200, 340, 800, 450, 400
Enter cost for each year? 1010, 150, 20, 20, 20
Interest rate? 0.25
-810

190
780
430
380

Net Present Value .. 173.607

Figure 30 RUN Command

66

-648
-526.4
-127.04

49.0881
173.607

I

·,~

c

Correcting A BASIC Program
• If an incorrect character is entered as a line is typed, use the left arrow key to move the

cursor to the incorrect character position and continue typing the line as desired.

• If a program line that is currently in memory needs correction, retype the line using
the same line number, as shown below:

Ok

50 for N=1 to 5

BASIC automatically replaces the old line with the new line.

• If lines need to be inserted to a program in memory, simply type the lines with the
appropriate numbers, as shown below (line numbers indicate the order in which the
program lines are stored in memory):

15 dim R(5), C(5)

65 next N

45 NPV=O

61 print R(N)-C(N), NPV

• If lines in memory need to be deleted, type the line number and press the carriage
return:

I .___I _ao _____.I I
• If you have made a correction, confirm it by using the LIST command which prints out

the program currently in memory.

The program at top left shows some corrections and then the LISTed program. The LUST
command prints the program on the printer.

Running a BASIC Program
To execute the program in memory, type the RUN command. The program is executed, and

the results are given. In the example at lower left, the program requested yearly revenue and
cost as well as interest rate. The program then figured and printed out the net present value.

Storing A Program on Disk
The program entered from the keyboard is not permanently recorded in memory. The

program may be erased and written over by other programs, or deleted when you turn the

67

10 REM Purchase Journal
20 OPEN "O", #1, "B:PRCHS.JNL"
30 INPUT "Voucher No."; N
40 IF N = 9999 THEN 200
50 INPUT "Name of Supplier"; S$
60 INPUT "Date"; M
70 INPUT "Amount"; CREDIT
80 INPUT "Debit: No. and Amount"; J,DEBIT
90 IF J=120 OR J=511 OR J=521 OR J=531 OR J=170 THEN 160 ELSE 100
100 PRINT "120 ... Merchandise Inventory"
110 PRINT "511 ... Head Office Expense"
120 PRINT "521 ... South Branch Expense"
130 PRINT "531 ... North Branch Expense"
140 PRINT "170 ... Office Equipment"
150 GOTO 80
160 IF CREDIT<> DEBIT THEN 170 ELSE 180
170 PRINT "error"
175 GOTO 70
180 PRINT#1,M;",";N;",";S$;",";CREDIT;",";J
190 GOTO 30
200 CLOSE
210 END

Figure 31 A File-handling Program

68

----··---

(_/

system's power off. Before this occurs, the program should be written from the memory to a
disk by the SA VE command. In the following example, the SA VE command saves the file named
NPV:

Ok

SAVE "B:NPV"

Ok

The "B:" indicates that the program is to be stored on a disk which is inserted in drive B (#2). If
you have removed the system disk and mounted your disk on the drive A (#1), type:

SAVE "A:file name"

Or, if your disk is mounted on the currently active disk drive, you do not need to reference a
drive and can simply type:

I 1 ___ s_A_v_E_"f-ile_n_am_e·_· ___ 11

The saved program can be recalled at any time from the disk and loaded into memory for
program changes or execution via the LOAD command:

Ok

LOAD "B:NPV"

Ok

In dealing with programs, it is important that you understand two types of files:

• Program files

• Data files

Program files contain the saved programs. Data files contain data which are read or
written by the executing programs.

For example, a data file used for an inventory control application may contain relatively
fixed information such as merchandise name, price and vendor name, as well as inventory
status information.

Data files are created with specified names, loaded with contents, modified or appended by
the BASIC application programs. These include OPEN, PRINT#, INPUT#, WRITE#, CLOSE,
GET, PUT and so on.

The figure at left shows an example of a file-handling program.

69

-- --- ---- --- -----------

Activating Saved BASIC Programs
You will want to activate programs that you write and/ or purchase. These programs are ~--

stored on floppy disks,with unique file names. To activate the execution of a program, insert ~~/
the appropriate disk into drive B (#2) and enter any of the following command sequences:

A>MBASIC B:file name

Ok

LOAD "B:file name",R

Ok

RUN

Ok

"B:file name"

LOAD "B:file name"

RUN

If you want to execute two or more programs in a specified sequence, you can write the
commands to initiate these programs in order in a "command file." You then type a single
SUBMIT command which causes the program to be executed automatically in a batch mode:

A>SUBMIT B:command-file name

Each program should contain a SYSTEM statement to return to the operating system when it is
finished, as described below.

Terminating BASIC

To exit from BASIC and return to the operating system, type SYSTEM. You then receive the
prompt A>.

If you have removed the system disk, mount it on drive A before you type SYSTEM or the
message, SET DISK IN DRIVE A OR DISK ERRORS appears on the screen.

NOTE: To interrupt program execution and return to BASIC command level, hold the CTRL key
and press the C key, or simply press the (BREAK) key.

70

G

USING ASSEMBLER PROGRAMS

The CP /M assembler, system entry points, debugger and text editor are used by advanced
users who have a special need for working with them. The assembler reads assembly language
source files from the disk and produces 8080 machine language in Intel hex format. The CP /M
assembler is initiated by typing:

ASM filename or

ASM filename.parms

In both cases, the assembler assumes there is a file on the disk with the name

filename.ASM

which contains an 8080 assembly language source file. The first and second forms shown above
differ only in that the second form allows parameters to be passed to the assembler to control
source file access and hex and print file destinations.

In either case, the CP /M assembler loads, and prints the message

CP /M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first command, the assembler reads
the source file with assumed file type ASM and creates two output files:

filename.HEX and

filename.PRN

The ffEX file contains the machine code corresponding to the original program in Intel hex
format, and the PRN file contains an annotated listing showing generated machine code, error
flags and source lines. If errors occur during translation, they will be listed in the PRN file as
well as at the console.

The second command form can be used to redirect input and output files from their
defaults. In this case, the "parms" portion of the command is a three-letter group which
specifies the origin of the source file, the destination of the hex file and the destination of the
print file. The form is

filename.plp2p3

where pl, p2, and p3 are single letters
pl: A,B, ... , Y designates the disk name which contains the

source file

p2: A,B, ... , Y

z
p3: A,B, ... , Y

x
z

designates the disk name which will receive the
hex file

skips the generation of the hex file

designates the disk name which will receive the
print file

places the listing at the console

skips generation of the print file

71

Thus, the command

ASM X.AAA ~
I

indicates that the source file (X.ASM) is to be taken from disk A, and that the hex (X.HEX) and ·"-
print (X.PRN) files are to be created on, disk A. This form of the command is implied if the
assembler is run from disk A. That is, given that the operator is currently addressing disk A, the
above command is equivalent to:.

ASMX

The command:

ASMX.ABX

indicates that the source file is to be taken from disk A, the hex file is placed on disk B, and the
listing file is to be sent to the console. The command

ASMX.BZZ

takes the source file from disk B, and skips the generation of the hex and print files. (This
command is useful for fast execution of the assembler to check program syntax).

The source program format is compatible with both the Intel 8080 assembler (macros are
not currently implemented in the CP/M assembler, however), as well as the Processor
Technology Software Package #} assembler. That is, the CP/M assembler accepts source
programs written in either format. There are certain extensions in the CP /M assembler which
make it somewhat easier to use. These extensions are described below.

Program Format
An assembly language program acceptable as input to the assembler consists of a ~

sequence of the form: '~

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each assembly language
statement is terminated with a carriage return and line feed (the line feed is inserted
automatically by the ED program), or with the character! which is treated as an end-of-the line
by the assembler. (Thus, multiple assembly language statements can be written on the same
physical line if separated by exclamation point symbols.)

The line# is an optional decimal integer value representing the source program line
number, which is allowed on any source line to maintain compatibility with the Processor
Technology format. In general, these line numbers will be inserted if a line-oriented editor is
used to construct the original program. Thus ASM ignores this field if present.

The label field takes the form

identifier

or

identifier:

and is optional, except where noted in particular statement types. The identifier is a sequence
of alphanumeric characters (alphabetics and numbers), where the first character is alphabetic.
Identifiers can be freely used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All characters are significant in
an identifier, except for the embedded dollar symbol ($) which can be used to improve
readability of the name. Further, all lower case alphabetics are treated as if they were upper
case. Note that the : following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid instances of labels:

72

---------- -··-~------~ -------.. ·--··-----

C•
'

(

x

x:

xly2

xy

yxl:

xlx2

long$name

longer$named$data:

x234$5678$9012$3456:

The operation field contains either an assembly directive, or pseudo operation, or an 8080
machine operation code. The pseudo operations and machine operation code are described
below.

The operand field of the statement, in general, contains an expression formed out of
constants and labels, along with arithmetic and logical operations on these elements. Again,
the complete details of properly formed expressions are given below.

The comment field contains arbitrary characters following the ; symbol until the next real
or logical end-of-line. These characters are read, listed, and otherwise ignored by the
assembler. In order to maintain compatibility with the Processor Technology assembler, the
CP/M assembler also treats statements which begin with a * in column one as comment
statements, which are listed and ignored in the assembly process. Note that the Processor
Technology assembler has the side effect in its operation of ignoring the characters after the
operand field has been scanned. This causes an ambiguous situation when attempting to be
compatible with Intel's language, since arbitrary expressions are allowed in this case. Hence,
programs which use this side effect to introduce comments must be edited to place a ; before
these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements of the above
form, terminated optionally by an END statement. All statements following the END are ignored
by the assembler.

Forming the Operand

In order to describe completely the operation codes and pseudo operations, it is necessary
to present first the form of the operand field, since it is used in nearly all statements.
Expressions in the operand field consist of simple operands (labels, constants and reserved
words), combined in properly formed subexpressions by arithmetic and logical operators. The
expression computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly. Further, the number of significant
digits in the result must not exceed the intended use. That is, if an expression is to be used in a
byte move immediate instruction, then the most significant 8 bits of the expression must be
zero. The restrictions on the expression significance is given with the individual instructions.

Labels

As discussed above, a label is an identifier which occurs on a particular statement. In
general, the label is given a value determined by the type of statement which it precedes. If the
label occurs on a statement which generates machine code or reserve memory space (for
example, a MOV instruction or a DS pseudo operation), the label is given the value of the
program address which it labels. If the label precedes an EQU or SET, then the label is given
the value which results from evaluating the operand field. Except for the SET statement, an
identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the assembler. This
value can then be combined with other operands and operators to form the operand field for a
particular instruction.

73

Numeric Constants
A numeric constant is a 16-bit value in one of several bases. The base, called the radix of

the constant, is denoted by a trailing radix indicator. The radix indicators are:

B binary constant (base 2)

0 octal constant (base 8)

Q octal constant (base 8)

0 decimal constant (base 10)

H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter 0 is easily confused with the
digit 0. Any numeric constant which does not terminate with a radix indicator is assumed to be
a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. That is, binary constants
must be composed of 0 and 1 digits, octal constants can contain digits in the range 0 - 7, while
decimal constants contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (100), B (110), C (120), 0 (130), E (140) and F (150). Note that the
leading digit of a hexadecimal constant must be a decimal digit in order to avoid confusing a
hexadecimal constant with an identifier (a leading 0 will always suffice). A constant composed
in this manner must equate to a binary number which can be contained within a 16-bit counter,
otherwise it is truncated on the right by the assembler. Similar to identifiers, imbedded $ signs
are allowed within constants to improve their readability. Finally, the radix indicator is
translated to upper case if a lower case letter is encountered. The following are all valid
instances of numeric constants: /"-,

1234

1234H

~3770

12340

OFFEH

Ofe3h

llOOB

33770

1234d

1111$0000$1111$0000B

33$77$22Q

Offffh

Reserved Words

There are several reserved character sequences which have predefined meanings in the
operand field of a statement. The names of 8080 registers are given below, which, when
encountered, produce the value shown to the right:

A 7

B 0

c 1

0 2

E 3

H 4

L 5

M 6

SP 6

PSW 6

74

-----~------- -------

~ u

(Again, lower case names have the same value as their upper case equivalents). Machine
instructions can also be used in the operand field, and equate to their internal codes. In the
case of instructions which require operands, where specific operand becomes a part of the
binary bit pattern of the instruction (for example, MOV A,B), the value of the instruction (in this
case MOV) is the bit pattern of the instruction with zeroes in the operand fields (for example,
MOV produces 40H).

When the symbol $ occurs in the operand field (not imbedded within identifiers and
numeric constants), its value becomes the address of the next instruction to generate, not
including the instruction contained within the current logical line.

String Constants

String constants represent sequences of ASCII characters, and are represented by
enclosing the characters within apostrophe symbols('). All strings must be fully contained
within the current physical line (thus allowing ! symbols within strings), and must not exceed
64 characters in length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes ' '), which becomes a single
apostrophe when read by the assembler. In most cases, the string length is restricted to either
one or two characters (the DB pseudo operation is an exception), in which case the string
becomes an 8 or 16-bit value, respectively. Two character strings become a 16-bit constant,
with the second character as the low order byte, and the first charactet as the high order byte.

The value of a character is its corresponding ASCII code. There is no case translation
within strings; thus, both upper and lower case characters can be represented. Note, however,
that only graphic (printing) ASCII characters are allowed within strings. Valid strings are:

'A' ''AB' 'ab' 'c'

'' '' 'a''' '''''' ., ' ' " '

'Walla Walla Wash.'

'She said' 'Hello'' to me.'

'I said "Hello" to her.'

Arithmetic and Logical Operators

The operands described above can be combined in normal algebraic notations using any
combination of properly formed operands, operators and parenthesized expressions. The
operators recognized in the operand field are:

OPERATOR EXPLANATION

a + b Unsigned arithmetic sum of a and b

a - b Unsigned arithmetic difference between a and b

+ b Unary plus (produces b)

- b Unary minus (identical to 0 - b)

a * b Unsigned magnitude multiplication of a and b

a I b Unsigned magnitude division of a by b

a MOD b Remainder after a I b

NOTb Logical inverse of b (all O's become l's; l's become O's), where bis
considered a 16-bit value

75

aANDb

aORb

aXORb

aSHLb

aSHRb

Bit-by-bit logical and of a and b

Bit-by-bit logical or of a and b

Bit-by-bit logical exclusive or of a and b

The value which results from shifting a to the left by an amount b,
with zero fill.

The value which results from shifting a to the right by an amount b,
with zero fill.

In each case, a and b represent simple operands (labels, numeric constants, reserved
words and one or two character strings), or fully enclosed parenthesized subexpressions such
as:

10+20 10h+37Q

('a' and 5fh) + 'O'
(1+(2+c)) shr(A-(B+l))

Ll/3 (L2+4) SHR 3

('B'+B) OR (PSW+M)

Note that all computations are performed at assembly time as 16-bit unsigned operations. Thus,
-1 is computed as 0-1 which results in the value Offffh (that is, all l's). The resulting
expression must fit the operation code in whic~ it is used. If, for example, the expression is used
in an ADI (add immediate) instruction, then the high order eight bits of the expression must be
zero. As a result, the operation "ADI -1" produces an error message (-1 becomes Offffh which
cannot o~ represented as an 8-bit value), while ADI (-1) AND OFFH is accepted by the
assembler\since the AND operation zeroes the high order bits of the expression.

I
I

Precedence of Operators

As a convenience to the programmer, ASM assumes that operators have a relative
precedence of application which allows the programmer to write expressions without nested
levels of parentheses. The resulting expression has assumed parentheses which are defined by
the relative precedence. The order of application of operators in unparenthesized expressions
is listed below. Operators listed first have highest precedence (they are applied first in an
unparentesized expression), while operators listed last have lowest precedence. Operators
listed on the same line have equal precedence, and are applied from left to right as they are
encountered in an expression.

*I MOD SHL SHR

-+
NOT

AND

OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler as the fully
parenthesized expressions shown to the right below:

a* b+c (a* b) + c

a + b * c a + (b * c)

a MOD b * c SHL d ((a MOD b) * c) SHL d

a OR b AND NOT c + d SHL e a OR (b AND (NOT (c + (d SHL e))))

76

______ .•

~.··

(

('',

Balanced parenthesized subexpressions can always be used to override the assumed
parentheses. Thus, the last expression above could be rewritten to force application of
operators in a different order as:

(a OR b) AND (NOT c) + d SHL e

resulting in the assumed parentheses:

(a OR b) AND ((NOT c) + (d SHL e))

Note that an unparenthesized expression is well-formed only if the expression which results
from inserting the assumed parentheses is well-formed.

Assembler Directives
Assembler directives are used to set labels to specific values during assembly, perform

conditional assembly, define storage areas and specify starting addresses in the program. Each
assembler directive is denoted by a "pseudo operation" which appears in the operation field of
the line. The acceptable pseudo operations are:

OPERATION EXPLANATION

ORG Set the program or data origin

END End program, optional start address

EQU Numeric "equate"

SET Numeric "set"

IF Begin conditional assembly

END IF End of conditional assembly

DB Define data bytes

DW Define data words

DS Define data storage area

The individual pseudo operations are detailed below.

The ORG Directive

The ORG statement takes the form:

label ORG expression

where label is an optional program label, and expression is a 16-bit expression, consisting of
operands which are defined previous to the ORG statement. The assembler begins machine
code generation at the location specified in the expression. There can be any number of ORG
statements within a particular program, and there are no checks to ensure that the programmer
is not defining overlapping memory areas. Note that most programs written for the CP /M
system begin with an ORG statement of the form

ORG IOOH

which causes machine code generation to begin at the base of the CP /M transient program
area. If a label is specified in the ORG statement, then the label is given the value of the
expression. (This label can then be used in the operand field of other statements to represent
this expression.)

77

The END Directive

The END statement is optional in an assembly language program, but if it is present, it
must be the last statement, (All subsequent statements are ignored in the assembly.) The two
forms of the END directive are:

label

label

END

END expression

where the label is again optional. If the first form is used, the assembly process stops, and the
default starting address of the program is taken as 0000. Otherwise, the expression is
evaluated, and becomes the program starting address. (This starting address is included in the
last record of the Intel formatted machine code "hex" file which results from the assembly.)
Thus, most CP /M assembly language programs end with the statement

END lOOH

resulting in the default starting address of lOOH (beginning of the transient program area.)

The EQU Directive

The EQU (equate) ·statement is used to set up synonyms for particular numeric values.
The form is:

label EQU expression

where the label must be present, and must not label any other statement. The assembler
evaluates the expression, and assigns this value to the identifier given in the label field. The
identifier is usually a name which describes the value in a more human-oriented manner. .~
Further, this name is used throughout the program to "parameterize" certain functions. ~/
Suppose, for example, that data received from a teletype appears on a particular input port, and
data is sent to the teletype through the next output port in sequence. The series of equate
statements could be used to define these ports for a particular hardware environment:

TTVBASE

ITYIN

ITYOUT

EQU

EQU

EQU

lOH

TTYBASE

TTYBASE+l

;BASE PORT NUMBER FOR TTY

;ITYDATAIN

;ITY DATA OUT

At a later point in the program, the statements which access the teletype could appear as:

IN ITYIN ;READ ITY DATA TO REG-A

OUT ITYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute 1/0 ports had been used. Further, if the
hardware environment is redefined to start the teletype communication ports at 7FH instead of
1 OH, the first statement need only be changed to:

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

78

0

(

(~

The SET Directive

The SET statement is similar to the EQU, taking the form:

label SET expression

except that the LABEL can occur on other SET statements within the program. The
expression is evaluated and becomes the current value associated with the label. Thus, the
EQU statement defines a label with a single value, while the SET statement defines a value
which is valid from the current SET statement to the point where the label occurs on the next
SET statement. The use of the SET is similar to the EQU statement, but is used most often in
controlling conditional assembly.

The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language statements which are to
be included or excluded during the assembly process. The form is

IF expression

statement#!

statement#2

ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF. (All operands in the expression must be defined ahead of the IF statement.) If the
expression evaluates to a non-zero value, then statement#! through statement#n are
assembled. If the expression evaluates to zero, then the statements are listed, but not
assembled. Conditional assembly is often used to write a single "generic" program which
includes a number of possible run-time environments, with only a few specific portions of the
program selected for any particular assembly. The following program segments, for example,
might be a part of a program which communicates with either a teletype or a CRT console (but
not both) by selecting a particular value for TfY before the assembly begins:

TRUE EQU OFFFFH ;DEFINE VALUE OF TRUE

FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE

TfY EQU TRUE ;TRUE IF TIT, FALSE IF CRT

TfYBASE EQU lOH ;BASE OF TfY 1/0 PORTS

CRTBASE EQU 20H ;BASE OF CRT 1/0 PORTS

IF TfY ;ASSEMBLE RELATIVE TO TfYBASE

CO NIN EQU TfYBASE ;CONSOLE INPUT

CONOUT EQU TTYBASE+l ;CONSOLE OUTPUT

79

END IF

IF

CO NIN EQU

CON OUT EQU

END IF

IN

OUT

NOT TTY

CRTBASE

CRTBASE+l

CO NIN

CON OUT

;ASSEMBLE RELATIVE TO CRTBASE

;CONSOLE INPUT

;CONSOLE OUTPUT

;READ CONSOLE DATA

;WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a teletype is connected,
based at port IOH. The statement defining TTY could be changed to:

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

The DB Directive

The DB directive allows the programmer to define initialized storage areas in single
precision (byte) format. The statement form is:

label DB

where e#l through e#n are either expressions which evaluate to 8-bit values (the high
order bits must be zero), or are ASCII strings of length no greater than 64 characters. There is
no practical restriction on the number of expressions included on a single source line. The
expressions are evaluated and placed sequentially into the machine code file following the last
program address generated by the assembler. String characters are similarly placed into
memory starting with the first character and ending with the last character. Strings of length
greater than two characters cannot be used as operands in more complicated expressions.
(They must stand alone between the commas). Note that ACSII characters are always placed in
memory with the parity bit reset (0). Further, recall that there is no translation from lower to
upper case within strings. The optional label can be used to reference the data area throughout
the remainder of the program. Examples of valid DB statements are:

data: DB 0, 1,2,3,4,5

DB data and Offfh,5,377Q,1 +2+3+4

signon: DB 'please type your name',cr,lf,O

DB 'AB' SHR 8, 'C', 'DE' AND 7FH

The DW Directives

The DW statement is similar to the DB statement except double precision (two-byte)
words of storage are initialized. The form is:

label DW

where e# I through e#n are expressions which evaluate to 16-bit results. Note that ASCII
strings of length one or two characters are allowed, but strings longer than two characters are

80

(

(_

not allowed. In all cases, the data storage is consistent with the 8080 processor: the least
significant byte of the expression is stored first in memory, followed by the most significant
byte. Examples are:

doub: DW Offefh,doub+4,signon-$,255+255

DW 'a', 5, 'ab', 'CD', 6 shl 8 or I lb

The DS Directive

The DS statement is used to reserve an area of uninitialized memory, and takes the form

label DS expression

where the label is optional. The assembler begins subsequent code generation after the area
reserved by the DS. Thus, the DS statement given above has exactly the same effect as the
statement

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION

ORG $+expression ;MOVE PAST RESERVED AREA

Operation Codes
Assembly language operation codes form the principal part of assembly language

programs, and form the operation field of the instruction. In general, ASM accepts all the
standard mnemonics for the Intel 8080 microcomputer, which are given in detail in the Intel
manual "8080 Assembly Language Programming Manual." Labels are optional on each input
line and, if included, take the value of the instruction address immediately before the
instruction is issued. The individual operators are listed briefly in the following sections for
completeness. The Intel manuals should be referenced for exact operator details. In each case:

e3 Represents a 3-bit value in the range 0-7 which can be one
of the predefined registers A,B,C,D,E,H,L,M,SP or PSW

e8 Represents an 8-bit value in the range 0-255

e16 Represents a 16-bit value in the range 0-65535

which can themselves be formed from an arbitrary combination of operands and operators. In
some cases, the operands are restricted to particular values within the allowable range, such as
the PUSH instruction. These cases will be noted as they are encountered.

In the sections which follow, each operator code is listed in its most general form, along
with a specific example with a short explanation and special restrictions.

Jumps, Calls and Returns

The Jump, Call and Return instructions allow several different forms which test the
condition flags set in the 8080 microcomputer CPU. The forms are:

JMP e16 JMP LI Jump unconditionally to label

JNZ e16 JMP L2 Jump on non-zero condition to label

JZ e16 JMP IOOH Jump on zero condition to label

JNC el6 JNC L1+4 Jump no carry to label

JC e16 JC L3 Jump on carry to label

JPO e16 JPO $+8 Jump on parity odd to label

JPE el6 JPE L4 Jump on even parity to label

81

-------------- ----

JP e16 JP GAMMA

JM e16 JM al

CALL e16 CALL SI

CNZ e16 CNZ S2

CZ e16 CZ IOOH

CNC el6 CNC S1+4

cc e16 cc S3

CPO e16 CPO $+8

CPE e16 CPE S4

CP e16 CP GAMMA

CM e16 CM bl$c2

RST e3 RST 0

RET

RNZ

RZ

RNC

RC

RPO

RPE

RP

RM

Immediate Operand Instructions

Jump on positive result to label

Jump on minus to label

Call subroutine unconditionally

Call subroutine if non-zero flag

Call subroutine on zero flag

Call subroutine if no carry set

Call subroutine if carry set

Call subroutine if parity odd

Call subroutine if parity even

Call subroutine if positive result

Call subroutine if minus flag

Programmed "restart," equivalent to CALL 8*e3,
except one byte call

Return from subroutine

Return if non-zero flag set

Return if zero flag set

Return if no carry

Return if carry flag set

Return if parity is odd

Return if parity is even

Return if positive result

Return if minus flag is set

Several instructions are available which load single or double precision registers, or single
precision memory cells with constant values. Instructions which perform immediate arithmetic
or logical operations on the accumulator (register A) are also available.

MVIe3,e8 MVI 8,255 Move immediate data to register A, 8, C, D, E, H1 L or
M (memory)

ADI e8 ADI 1 Add immediate operand to A without carry

ACI e8 ACI OFFH Add immediate operand to A with carry

SUI e8 SUI L + 3 Subtract from A without borrow (carry)

SBI e8 S8I LAND 118 Subtract from A with borrow (carry)

ANI e8 ANI$AND 7FH Logical "and" A with immediate data

XRI e8 XRI 1111$00008 "Exclusive or" A with immediate data

0Rle8 ORI LAND 1+1 Logical "or" A with immediate data

82

0

c

c

c

CPie8

LXI e3,e16

CPI 'a'

LXI B,lOOH

Compare A with immediate data (same as SUI
except register A not changed)

Load extended immediate to register pair (e3 must
be equivalent to B, D, H or SP).

Increment and Decrement Instructions

Instructions are provided in the 8080 repetoire for incrementing or decrementing single and
double precision registers. The instructions are:

INR e3 INR E Single precision increment register (e3 produces
one of A, B, C, D, E, H, L, M).

DCRe3 DCRA

INXe3 INXSP

DCXe3 DCXB

Data Movement Instructions

Single precision decrement register (e3 produces
one of A, B, C, D, E, H, L, M).

Double precision increment register pair (e3 must
be equivalent to B, D, H or SP).

Double precision decrement register pair (e3 must
be equivalent to B, D, H or SP).

Instructions which move data from memory to the CPU and from CPU to memory are given
below:

MOVe3,e3

LDAXe3

STAXe3

LHLD e16

SHLD e16

LDAe16

STAe16

POPe3

PUSH e3

IN e8

OUTe8

XTHL

PCHL

SPHL

XCHG

MOVA,B

LDAXB

STAXD

LHLD L1

SHLD L5+x

LDAGamma

STAX3-5

POPPSW

PUSHB

IN 0

OUT 255

Move data to leftmost element from rightmost
element (e3 produces one of A, B, C, D, E, H, L or
M). MOV M,M is disallowed.

Load register A from computed address (e3 must
produce either B or D).

Store register A to computed address (e3 must
produce either B or D).

Load HL direct from location e16 (double precision
load to H and L).

Store HL direct to location e 16 (double precision
store from Hand L to memory).

Load register A from address e 16.

Store register A into memory at el6.

Load register pair from stack, set SP (e3 must
produce one of B, D, Hor PSW).

Store register pair into stack, set SP (e3 must
produce one of B, D, Hor PSW).

Load register A with data from port e8.

Send data from register A to port e8.

Exchange data from top of stack with HL.

Fill program counter with data from HL.

Fill stack pointer with data from HL.

Exchange DE pair with HL pair.

83

Arithmetic Logic Unit Operations

Instructions which act upon the single precision accumulator to perform arithmetic and c
logic operations are: . .. ·

ADDe3

ADCe3

SUBe3

SBBe3

ANAe3

XRAe3

ORAe3

CMPe3

DM

CMA

STC

CMC

RLC

RRC

RAL

RAR

DADe3

ADDB

ADCL

SUBH

SBB2

ANA 1+1

XRAA

ORAB

CMPH

DADB

Control Instructions

Add register given by e3 to accumulator without
carry (3e must produce one of A, B, C, D, E, H, or L).

Add register to A with carry, e3 as above.

Subtract reg e3 from A without carry, e3 is defined
as above.

Subtract register e3 from A with carry, e3 defined as
above.

Logical "and" reg with A, e3 as above.

"Exclusive or" with A, e3 as above.

Logical "or" with A, e3 defined as above.

Compare register with A, e3 as above.

Decimal adjust register A based upon last arithmetic
logic unit operation.

Complement the bits in register A.

Set the carry flag to 1.

Complement the carry flag.

Rotate bits left, (re)set carry as a side effect (high
order A bit becomes carry).

Rotate bits right, (re)set carry as side effect (low
order A bit becomes carry).

Rotate carry I A register to left (carry is involved in
the rotate).

Rotate carry I A register to right (carry is involved in
the rotate).

Double precision add register pair e3 to HL (e3 must
produce B, D, H or SP).

The four remaining instructions are categorized as control:

HLT

DI

EI

NOP

Halt the 8080 processor

Disable the interrupt system

Enable the interrupt system

No operation

84

c

c

Error Messages
When errors occur within the assembly language program, they are listed as single

character flags in the leftmost position of the source listing. The line in error is also echoed at
the console so that the source listing need not be examined to determine if errors are present.
The error codes are:

ERROR CODE EXPLANATION

D Data error: element in data statement cannot be placed in the specified
data area

E Expression error: expression is ill-formed and cannot be computed at
assembly time.

L Label error: Label cannot appear in this context (may be duplicate label).

N Not implemented: features which will appear in future ASM versions (for
example, macros) are recognized, but flagged in this version.

0 Overflow: expression is too complicated (too many pending operators) to
compute. Simplify it.

P Phase error: label does not have the same value on two subsequent passes
through the program.

R Register error: the value specified as a register is not compatible with the
operation code.

V Value error: operand encountered in expression is improperly formed.

Several error messages are printed which are due to terminal error conditions:

ERROR/MESSAGE

NO SOURCE FILE PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME ERROR

SOURCE FILE READ ERROR

OUTPUT FILE WRITE ERROR

CANNOT CLOSE FILE

EXPLANATION

The file specified in the ASM command does not exist
on disk.

The disk directory is full. Erase files which are not
needed, and retry.

Improperly formed ASM file name (for example, it is
specified with ? fields).

Source file cannot be read properly by the assembler.
Execute a TYPE to determine the point of error.

Output files cannot be written properly, most likely
cause is a full disk, erase and retry.

Output file cannot be closed. Check to see if disk is
write protected.

A Sample Session

The following section shows interaction with the assembler and debugger in the
development of a simple language program.

85

ASM SOR~ assemble SORT.ASM

015C next free address
003H USE FACTOR % of table used 00 to FF (hexadecimal)
END OF ASSEMBLY

DIR SORT. j

SORT ASM source file
SORT BAK backup from last edit
SORT PRN print file (contains tab characters)
SORT HEX machine code file
A>TYPE SORT. PRN .J

Source line

machine code
location SORT PROGRAM IN CP /M ASSEMBLY LANGUAGE

+ OlUU

0100
0103
0105
0108

OlOA
OlOB
OlOD

0110
0113

0118

0119
0121

0125

0126

012B

012E

START AT THE BEGINNING OF THE TRANSIENT PROGRAM AR
ORG lOOH

generated machine code
214601~ SORT: LXI H,SW

M,l
H,I
M,O

;ADDRESS SWITCH TOGGLE
3601 MVI ;SET TO 1 FOR FIRST ITERATION

;ADDRESS INDEX 214701 LXI
3600 MVI ;I= 0

7E
FE09
D21901

214601
7EB7C20001

FF

' COMP:

truncated '.

i :
5Fl6002148 CONT:
4E792346

23

965778239E

DA3F01

B2CA3F01

COMP ARE I WITH ARRAY SIZE
MOV A,M ;A REGISTER = I
CPI N-1 ;CY SET IF I< (N-1)
JNC CONT ;CONTINUE IF I < = (N-2)

END OF ONE PASS THROUGH DATA
LXI H,SW ;CHECK FOR ZERO SWITCHES
MOV A,M! ORA A! JNZ SORT ;END OF SORT IF SW=O

RST 7 ;GO TO THE DEBUGGER INSTEAD OF RE8

CONTINUE THIS PASS
ADDRESSING I, SO LOAD AV(I) INTO REGISTERS
MOV E,A! MVI D,O! LXI H,AV! DADD! DADD
MOV C,M! MOV A,C! INX H! MOV B,M
LOW ORDER BYTE IN A AND C, HIGH ORDER BYTE IN B

MOV H AND L TO ADDRESS AV (I+ 1)
IHX H

COMPARE VALUE WITH REGS CONTAINING AV(I)
SUB M! MOV D,A! MOV A,B! INX H! SBB M ; SUBTRACT

BORROW SET IF AV(I+ 1) >AV (I)
JC INCi ;SKIP IF IN PROPER ORDER

CHECK FOR EQUAL VALVES
ORAD! JZ INCL ;SKIP IF AV(I) = AV(l+l)

86

((\
I I

~'

(>

c

0132 5670285E MOY D,M! MOY M,8! DCX H! MOY E,M
0136 7128722873 MOY M,C! DCX H! MOY M,D! DCX H! MOY M,E

INCREMENT SWITCH COUNT
0138 21460134 LXI H,SW! INR M

'
INCREMENT I

013F 21470134C3INCI: LXI H,I! INR M! JMP COMP

'
DATA DEFINITION SECTION

0146 00 SW: DB 0 ;RESERVE SPACE FOR SWITCH COUNT
0147 I: DS 1 ;SPACE FOR INDEX
0148 05006400 IEAV: DW 5, 100,30,50,20, 7, 1000,300, 100,-32767
OOOA = N
015C "-equate value

EQU ($-AY)/2 ;COMPUTE N INSTEAD OF PRE
END

A>TYPE SORT.HEX..)

:10010000214601360121470136007EFE09D2190140
:100110002146017EB7C20001FFSF16002148011988
:10012000194E79234623965778239EDA3F01B2CAA7
:100130003F0156702BSE712B722B732146013421C7
:07014000470134C30A01006E
:10014800050064001E00320014000700E8032C01B8
:0401580064000180BE

machine code in HEX format

:0000000000
A>DDT SORT.HEXJ

16K DDT VER 1.0
NEXT PC
015C 0000 default address (no address on END statement)
-XPJ

P='OOOO lOOJ Change PC to 100 about with rubout

! -UFFFFJ untrace for 65535 steps

COZOMOEOIO A=OO B=OOOO D=OOOO
-1 l~ trace 1016 steps

H=OOOO S=OlOO P::;;:OlOO LXI H,0146*0100

COZOMOEOIO A=Ol B=OOOO D=OOOO
COZOMOEOIO A=Ol B=OOOO D=OOOO
COZOMOEOIO A=Ol B=OOOO D=OOOO
COZOMOEOIO A=Ol B=OOOO D=OOOO
COZOMOEOIO A=Ol B=OOOO D=OOOO
COZOMOEOIO A=OO B=OOOO D=OOOO
ClZOMIEOIO A=OO B=OOOO D=OOOO
ClZOMIEOIO A=OO B=OOOO D=OOOO
ClZOMIEOIO A=OO B=OOOO D=OOOO
ClZOMIEOIO A=Ol B=OOOO D=OOOO
COZOMOEOIO A=Ol B=OOOO D=OOOO
COZOMOEOIO A=Ol B=OOOO D=OOOO
COZOMOEOIO A=Ol B=OOOO D=OOOO
COZOMOEOIO A=Ol B=OOOO D"'OOOO
COZOMOEOIO A=Ol B=OOOO D=OOOO
COZOMOEOIO A=Ol B=OOOO D=OOOO
-AlOD

H=0146
H=0146
H=0146
H=0147
H"'0147
H,,,0147
H=0147
H=0147
H,,,0146
H=0146
H=0146
H=Ol46
H=Ol46
H=0146
H=Ol47
H=0147

0100 \ JC 119 \ change to a jump on carry
OllOM' ll

S=OlOO
S=OlOO
S=OlOO
S=OlOO
S=OlOO
S=OlOO
S=OlOO
S=OlOO
S=OlOO
S"'OlOO
S=OlOO
S=OlOO
S=OlOO
S=OlOO
S=OlOO
S=OlOO

87

P=OlOO
P=0103
P=0105
P=0108
P"'OlOA
P=OlOB
P=OlOD
P=Ol 10
P=0113
P=Ol 14
P=Ol 15
P=OlOO
P=0103
P=OlOS
P=0108
P=OlOA

LXI H,.0146
MYI M, 01
LXI H, 0147
MYI M,00
MOY A,M
CPI 09
JNC 0119
LXI H, 0146
MOY A,M
ORA A
JNZ 0100
LXI H, 0146
MYI M, 01
LXI H, 0147
MYI M,00
MOY A, M*OlOB

t
stopped at 108H

-XPJ

P=OlOB 10<J reset program counter back to beginning of program

-TIOJ trace execution for 1 OH steps

COZOMOEOIO A=OO
COZOMOEOIO A=OO
COZOMOEOIO A=OO
COZOMOEOIO A=OO
COZOMOEOIO A=OO
COZOMOEOIO A=OO
ClZOMIEOIO A=OO
ClZOMIEOIO A=OO
ClZOMIEOIO A=OO
ClZOMIEOIO A=OO
ClZOMIEOIO A=OO
COZOMIEOIO A=OO
COZOMIEOIO A=OO
COZOMIEOIO A=OO
COZOMIEOIO A=05
COZOMIEOIO A=05
-LIOOJ

0100 LXI H,0146
0103 MVI M, 01
0105 LXI H, 0147
0108 MVI M, 00
OIOA MOV A,M

B=OOOO
B=OOOO
B=OOOO
B=OOOO
B=OOOO
B=OOOO
B=OOOO
B=OOOO
B=OOOO
B=OOOO
B=OOOO
B=OOOO
B=OOOO
B=0005
B=0005
B=0005

D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO
D=OOOO

H=Ol47 S=OlOO
H=Ol46 S=OlOO
H=0146 S=OlOO
H=Ol47 S=OlOO
H=Ol47 S=OIOO
H=Ol47 S=OlOO
H=Ol47 S=OlOO
H=Ol47 S=OlOO
H=Ol47 S=OlOO
H=Ol47 S=OlOO
H=Ol48 S=OlOO
H=Ol48 S=OlOO
H=Ol48 S=OlOO
H=Ol48 S=OlOO
H=Ol48 S=OlOO
H=Ol49 S=OlOO

OlOB CPI 09 list some code from 1 OOH
OlOD JC 0119
0110 LXI H, 0146
0113 MOV A, M
0114 ORA A
0115 JNZ 0100

-LJ

0118 RST 07 }
0119 MOV E, A
01 IA MVI D, 00 list more
01 IC LXI H, 0148

above list with rubout

P=OlOO
P=0103
P=0105
P=0108
P=OlOA
P=OlOB
P=OlOD
P=Oll9
P=Ol IA
P=Ol IC
P=OllF
P=0120
P=0121
P=Ol22
P=Ol23
P=0124

LXI
MVI
LXI
MVI
MOV
CPI
JC
MOV
MVI
LXI
DAD
DAD
MOV
MOV
INX
MOV

Altered instruction

H,0146
M, 01
H,0147
M,00
A,M
09
0119
E,A
D, 00
H,0148
D
D
C,M
A,C
H
B, M*Ol25

t
Automatic breakpoint

-G, 118.J start program from current PC (0125H) and run in real time to 11 BH

*0127 stopped with an external interrupt 7 from front panel (program was looping
indefinitely)

-T4J look at looping program in trace mo~e

COZOMOEOIO A=38 B=0064 D=0006 H=0156 S=OlOO
COZOMOEOIO A=38 B=0064 D=3806 H=0156 S=OIOO
COZOMOEOIO A=OO B=0064 D=3806 H=0156 S=OlOO
COZOMOEOIO A=OO B=0064 D=3806 H=0157 S=OIOO

P=Ol27
P=Ol28
P=Ol29
P=Ol2A

MOV D,A
MOV A, B
INX H
SBB M*Ol2B

-D148 data is sorted, but program doesn't stop

oo/. 0148 05 00 07 00 14 00 IE
0150 32 00 64 00 64 00 2C
0160 00 00 00 00 00 00 00

01 ES 03 01 80 00 00 00 00 2. D. D. ,
00 00 00 00 00 00 00 00 00 .

88

c:

c

-GOJ return to CP/M

(DDT SORT. HEX J reload the memory image

c/

P=OOOO 100) set PC to beginning of program
It

-LIOD J list bad op code

OlOD JNC 0119/
0110 LXI H,0146

abort list with rubout

-AlOD J assemble new op code

010D JC 119J

OllOJ

-LIOOJ list starting section of program

0100 LXI H,0146
0103 MVI M,01
0105 LXI H,0147
0108 MVI M,00

abort list with rubout

-Al03J change "switch" initialization to 00

0103 MVI M,OJ

0105J

-AC return to CP/M with ctl-c (GO works as well)

SAVE 1 SORT.CO~ save 1 page (256 bytes, from 100H to 1 FFH)
on disk in case we have to reload later

A>DDT SORT.COM .J restart DDT with saved memory image

16K DDT VER 1.0
NEXT PC
0200 0100 "COM" file alway starts with address 100H
-GJ run the program from PC=100H

*0118 programmed stop (RST7) encountered
-D148

data properly sorted

/ 0148 05 00 07 00 14 00 IE 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80
0160 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00

-GOJ return to CP/M

00 00
00 00
00 00

00 00 2. D. D.,
00 00
00 00

ED SORT .ASM, make changes to original program
Ctl-Z · 11

@TT find next ",O"
MVl.J M,O ;I= 0

*-.J up one line in text
LXI H,I ;ADDRESS INDEX

\ up another line
" MVI M, 1 ;SET TO 1 FOR FIRST ITERATION

*KT.J kill line and type next line .
LXI H,I ;ADDRESS INDEX

*I\ insert new line
1t MVI M,O ;ZERO SW

*T
.J LXI H,I ;ADDRESS INDEX

*NJNCfZ)OT \
JNC*T"
CONTJ ;CONTINUE IF I <= (N-2)

* -2DICfZJOL T \
Jc" It CONT ;CONTINUE IF I<= (N-2)

*E
J

source from disk A
\ hex to disk A

__ _\ J /kip prn file

ASM SORT. MZ J
CP /M ASSEMBLER - VER 1.0

Ol5C next address to assemble
003H USE FACTOR
END OF ASSEMBLY

DDT SORT. HEXJ test program changes

16K DDT VER 1.0
NEXT PC
015C 0000
-GIOO.J

*0118
-Dl48.J

data sorted

/
IE 00 0148 05 00 07 00 14 00

0150 32 00 64 00 64 00
0160 00 00 00 00 00 00

2C 01 E8 03
00 00 00 00

01 80 00 00 00 00 2. D. D.,
00 00 00 00 00 00 .

abort with rubout

-GO.J return to CP/M - program check OK

90

-------------··--·---

c

,- \

'-_/

System Entry Points

This section describes CP /M system organization, including the structure of memory and
sytem entry points.

The BIOS and BOOS are logically combined into a single module with a common entry
point, referred to as the FDOS. The CCP is a distinct program which uses the FOOS to provide a
human-oriented interface to the information which is cataloged on the backup storage device.
The TPA is an area of memory, that is, the portion which is not used by the FOOS and CCP,
where various non-resident operating system commands and user programs are executed. The
lower portion of memory is reserved for system information and is detailed in later sections.
Memory organization of the CP /M system is shown below:

high

memory

FBASE: FOOS (BOOS+BIOS)

CBASE: CCP

TPA

TBASE:

BOOT: system parameters

The exact memory addresses corresponding to BOOT, TBASE, CBASE and FBASE vary from
version to version, and are described fully in the "CP /M Alteration Guide." All standard CP /M
versions, however, assume BOOT = OOOOH, which is the base of random access memory. The
machine code found at location BOOT performs a system "warm start" which loads and
initializes the program and variables necessary to return control to the CCP. Thus, transient
programs need only jump to location BOOT to return control to CP /M at the command level.
Further, the standard versions assume TEASE = BOOT+OIOOH which is normally location
OlOOH. The principal entry point to the FOOS is at location BOOT+005H (normally 0005H)
where a jump to FBASE is found. The address field at BOOT +0006h (normally 0006H) contains
the value of FBASE and can be used to determine the size of available memory, assuming the
'":CP is being overlayed by a transient program.

91

Transient programs are loaded into the TPA and executed as follows. The operator
communicates .with the CCP by typing command lines following each prompt. Each command
line takes one of the forms:

command

command file 1

command filel file2

where command is either a built-in function such as DIR or TYPE, or the name of a transient
command or program. If the command is a built-in function of CP /M, it is executed immediately.
Otherwise, the CCP searches the currently addressed disk for a file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program which executes in the TPA.
Therefore, it originates at TBASE in memory. The CCP loads the COM file from the disk into
memory starting at TBASE and possibly extending up to CBASE.

If the command is followed by one or two file specifications, the CCP prepares one or two
file control block (FCB) names in the system parameter area. These optional FCB's are in the
form necessary to access files through the FOOS, and are described in the next section.

The transient program receives control from the CCP and begins execution, perhaps using
the 1/0 facilities of the FOOS. The transient program is "called" from the CCP. Therefore, it can
simply return to the CCP upon completion of its processing, or can jump to BOOT to pass
control back to CP /M. In the first case, the transient program must not use memory above
CBASE. In the latter case, memory up through FBASE-1 is free.

The transient program may use the CP /M 1/0 facilities to communicate with the operator's
console and peripheral devices, including the disk subsystem. The 1/0 system is accessed by
passing a "function number" and an "information address" to CP /M through the FOOS entry
point at BOOT +OOOSH. In the case of a disk read, for example, the transient program sends the
number corresponding to a disk read, along with the address of an FCB, to the CP /M FOOS. The
FOOS, in turn, performs the operation and returns with either a disk read completion indication
or an error number indicating that the disk read was unsuccessful. The function numbers and
error indicators are given below.

Operating System Call Conventions

The purpose of this section is to provide detailed information for performing direct
operating system calls from user programs. CP /M facilities which are available for access by
transient programs fall into two general categories: simple device 1/0 and disk file 1/0. The
simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character

Write a Sequential Tape Character

Write a List Device Character

Get or Set 1/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

92

c

c

The FOOS operations which perform disk Input/Output are:

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read

Random or Sequential Write

Interrogate Available Disks

Interrogate Selected Disk

Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FOOS functions is accomplished by passing a function
number and information address through the primary entry point at location BOOT +0005H. In
general, the function number is passed in register C with the information address in the double
byte pair DE. Single byte values are returned in register HL. (A zero value is returned when the
function number is out of range). For reasons of compatibility, register A= Land register B = H
upon return in all cases. Note that the register passing conventions of CP /M agree with those of
Intel's PL/M systems programming language. The list of CP /M function numbers is given below:

0 System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 Write Sequential
3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List Output 24 Return Login Vector
6 Direct Console 1/0 25 Return Current Disk
7 Get 1/0 Byte 26 Set DMA Address
8 Set 1/0 Byte 27 Get Addr (Alloc)
9 Print String 28 Write Protect Disk

10 Read Console Buffer 29 Get R/O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version No. 31 Get Addr (Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next

(Functions 28 and 32 should be avoided in application programs to maintain upward
compatibility with MP /M.)

93

Upon entry to a transient program, the CCP leaves the stack pointer set to an eight level
stack area with the CCP return address pushed onto the stack, leaving seven levels before
overflow occurs. Although this stack is usually not used by a transient program (most c· __ /·.
transients return to the CCP through a jump to location OOOH), it is sufficiently large to make
CP /M system calls since the FOOS switches to a local stack at system entry. The following
assembly language program segment, for example, reads characters continuously until an
asterisk is encountered, at which time control returns to the CCP (assuming a standard CP /M
system with BOOT = OOOOH):

BOOS

CONIN

NEXTC:

EQU OOOSH

EQU 1

ORG OlOOH

MVI C,CONIN

CALL BOOS

CPI '*'

JNZ NEXTC

RET

END

;STANDARD CP /M ENTRY

;CONSOLE INPUT FUNCTION

;BASE OF TPA

;READ NEXT CHARACTER

;RETURN CHARACTER IN A

;END OF PROCESSING?

;LOOP IF NOT

;RETURN TO CCP

CP /M implements a named file structure on each disk, providing a logical organization
which allows any particular file to contain any number of records from completely empty, to
the full capacity of the drive. Each drive is logically distinct with a disk directory and file data ('
area. The disk file names are in three parts: the drive select code, the file name consisting of ~/
one to eight non-blank characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular file, while the file name
distinguishes individual files in each category. The file types listed below name a few generic
categories which have been established, although they are generally arbitrary:

ASM Assembler Source PLI L/I Source File
PRN Printer Listing REL Relocatable Module
HEX HEX Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File

COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each "line" of the source file
is followed by a carriage return line feed sequence (OOH followed by OAH). Thus, one 128-byte
CP /M record could contain several lines of source text. The end of an ASCII file is denoted by a
CTRL-Z character (IAH) or a real end-of-file, returned by the CP /M read operation. CTRL-Z
characters embedded within machine code files (for example, COM files) are ignored, however,
and the end-of-file condition returned by CP /M is used to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65,536 records of 128 bytes each,
numbered from 0 through 65,535, thus allowing a maximum of 8 megabytes per file. Note,
however, that although the records may be considered logically contiguous, they may not be
physically contiguous in the disk data area. Internally, all files are broken into 16K byte
segments called logical extents, so that counters are easily maintained as 8-bit values. 0
Although the decomposition into extents is discussed in the paragraphs which follow, they are V
of no particular consequence to the programmer since each extent is automatically accessed in
both sequential and random access modes.

94

(

c

c

In the file operation starting with function number 15, DE usually addresses a file control
block (FCB). Transient programs often use the default file control block area reserved by CP /M
at location BOOT+005CH (normally 005CH) for simple file operations. The basic unit of file
information is a 128-byte record used for all file operations. Thus, a default location for disk 1/0
is provided by CP/M at location BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26). All directory operations take place in a reserved area which
does not affect write buffers, with the exception of Search First and Search Next, where
compatibilty is required.

The File Control Block (FCB) data area consists of a sequence of 33 bytes for sequential
access and a series of 36 bytes in the case that the file is accessed randomly. The default file
control block normally located at 005CH can be used for random access files, since the three
bytes starting at BOOT +007DH are available for this purpose. The FCB format is shown with the
following fields:

00 01 02

where

dr

fl ... f8

tl, t2, t3

ex

sl
s2

re

dO ... dn

er

r0,rl,r2

08 09 1 0 11 12 13 14 15 1 6

drive code (0 - 16)
0 = use default drive for file
1 = auto disk select drive A,
2 = auto disk select drive B,

16 =auto disk select drive P.
contain the file name in ASCII upper
case, with high bit = 0
contain the file type in ASCII upper case,
with the high bit = 0
t1 ', t2' and t3' denote the bit of these
positions,
t1' = 1 = Read/Only file,
t2' = 1 = SYS file, no DIR list
contains the current extent number,
normally set at 00 by the user, but in
range 0 - 31 during file 1/0
reserved for internal system use
reserved for internal system use, set to
zero on call to OPEN, MAKE, SEARCH
record count for extent "ex," takes on
values from 0 - 128
filled in by CP /M, reserved for
system use
current record to read or write in a
sequential file operation, normally set to
zero by the user
optional random record number in the
range 0-65535, with overflow to r2, rO, rl
constitute a 16-bit value with low byte
rO, and high byte rl

95

31 32 33 34 35

Each file being accessed through CP /M must have a corresponding FCB which provides the
name and allocation information for all subsequent file operations. When accessing files, it is
the programmer's responsibility to fill the lower 16 bytes of the FCB and initialize the er field.
Normally, bytes 1 through 11 are set to the ASCII character values for the file name and file
type, while all other fields are zero.

FCB's are stored in a directory area of the disk, and are brought into central memory before
proceeding with file operations (see the OPEN and MAKE functions). The memory copy of the
FCB is updated as file operations take place and is later recorded permanently on disk at the
termination of the file operation (see the CLOSE command).

The CCP constructs the first 16 bytes of two optional FCB's for a transient by scanning the
remainder of the line following the transient name, denoted by file l and file 2 in the prototype
command line described above, with unspecified fields set to ASCII blanks. The first FCB is
constructed at location BOOT +OOSCH, and can be used as is for subsequent file operations.
The second FCB occupies the dO ... dn portion of the first FCB, and must be moved to another
area of memory before use. If, for example, the operator types:

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at BOOT+OOSCH is
initialized to drive code 2, file name X and file type ZOT. The second drive code takes the
default value 0, which is placed at BOOT+006DH, with the file name Y placed into location
BOOT +006DH, and file type ZAP located 8 bytes later at BOOT +0075H. All remaining fields
through er are set to zero. Note again that it is the programmer's responsibility to move this
second file name and type to another area, usually a separate file control block, before opening
the file which begins at BOOT +OOSCH, due to the fact that the open operation will overwrite
the second name and type.

If no file names are specified in the original command, then the fields beginning at
BOOT+OOSDH and BOOT+006DH contain blanks. In all cases, the CCP translates lower case
alphabetics to upper case to be consistent with the CP /M file naming conventions.

As an added convenience, the default buffer area at location BOOT+0080H is initialized to
the command line tail typed by the operator following the program name. The first position
contains the number of characters, with the characters themselves following the character
count. Given the above command line, the area beginning at BOOT+0080H is initialized as
follows:

BOOT +0080H:

+oo +01 +02 +o3 +o4 +os +06 +o7 +os +o9 + 10 + 11 + 12 + 13 + 14
14 "" "B" ":" "X" "." "Z" ''O" "T" "" ''Y" "." "Z" "A" "P"

where the characters are translated to upper case ASCII with uninitialized memory following
the last valid character. Again, it is the responsibility of the programmer to extract the
information from this buffer before any file operations are performed, unless the default OMA
address is explicitly changed.

The individual functions are described in detail on the following pages, completed by a
summary list of the functions.

FUNCTION 0: SYSTEM RESET

Entry Parameters:

Register C: OOH

The System Reset function returns control to the CP /M operating system at the CCP level.
The CCP re-initializes the disk subsystem by selecting and logging in disk drive A. This function
has exactly the same effect as a jump to location BOOT.

96

(~
FUNCTION I: CONSOLE INPUT

Entry Parameters:

Register C: OIH

Returned Value:

Register A: ASCII Character

The Console Input function reads the next console character to register A. Characters,
along with carriage return, line feed and backspace (CTRL-H) are echoed to the console. Tab
characters (CTRL-1) are expanded in columns of eight characters. A check is made for
start/stop scroll (CTRL-S) and start/stop printer echo (CTRL-P). The FOOS does not return to
the calling program until a character has been typed, thus suspending execution if a character
is not ready.

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:

Register C: 02H

Register E: ASCII Character

The ASCII character from register E is sent to the Console Device. Similar to function 1,
tabs are expanded and checks are made for start/ stop scroll and printer echo.

FUNCTION 3: READER INPUT

Entry Parameters:

Register C: 03H

Returned Value:

Register A: ASCII Character

The Reader Input function reads the next character from the logical reader into register A
(see the IOBYTE definition in the "CP/M Alteration Guide"). Control does not return until the
character has been read.

FUNCTION 4: PUNCH OUTPUT

Entry Parameters:

Register C: 04H

Register E: ASCII Character

The Punch Output function sends the character from register E to the logical punch
device.

97

FUNCTION 5: LIST OUTPUT

Entry Parameters:

Register C: 05H

Register E: ASCII Character

----"---··---- ·--

The List Output function sends the ASCII character in register E to the logical listing
device.

FUNCTION 6: DIRECT CONSOLE I/0

Entry Parameters:

Register C: 06H

Register E: OFFH (input) or
char (output)

Returned Value:

Register A: char or status
(no value)

Direct Console 1/0 is supported under CP/M for those specialized applications where
unadorned console input and output is required. Use of this function should, in general, be
avoided since it bypasses all of CP /M's normal control character functions (for example, CTRL­
S and CTRL-P). Programs which perform direct 1/0 through the BIOS under previous releases of
CP/M, however, should be changed to use direct 1/0 under BOOS so that they can be
supported under future releases of CP /M.

Upon entry to function 6, register E either contains hexadecimal FF, denoting a console
input request, or register E contains an ASCII character. If the input value is FF, then function 6
returns A= 00 if no character is ready, otherwise A contains the next console input character.

If the input value in E is not FF, then function 6 assumes that E contains a valid ASCII
character which is sent to the console.

FUNCTION 7: GET I/0 BYTE

Entry Parameters:

Register C: 007H

Returned Value:

Register A: 1/0 Byte Value

The Get 1/0 Byte function returns the current value of IOBYTE in register A. See the
"CP/M Alteration Guide."

FUNCTION 8: SET I/ 0 BYTE

Entry Parameters:

Register C: 08H

Register E: 1/0 Byte Value

98

The Set 1/0 Byte function changes the system IOBYTE value to that given in register E.

FUNCTION 9: PRINT STRING

Entry Parameters:

Register C: 09H

Registers DE: String Address

The Print String function sends the character string stored in memory at the location
given by DE to the console device, until a $ is encountered in the string. Tabs are expanded as
in function 2, and checks are made for start/stop scroll and printer echo.

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:

Register C: OAH

Registers DE: Buffer Address

Returned Value:

Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer addressed by
registers DE. Console input is terminated when the input buffer overflows. The Read Buffer
takes the form:

DE: +o +I +2 +3 +4 +5 +6 +7 +8 . . . +n

where mx is the maximum number of characters which the buffer will hold (1 to 255), nc is the
number of characters read (set by FOOS upon return), followed by the characters read from
the console. The nc < mx, then uninitialized positions follow the last character, denoted by ??
in the above figure. Various control functions are recognized during line editing (DEL, CRTL-C,
E, H, J, M, R, U and X). These are described in the line editing section. Note also that certain
functions which return the carriage to the leftmost position do so only to the column position
where the prompt ended.

FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:

Register C: OBH

Returned Value:

Register A: Console Status

The Console Status function checks to see if a character has been typed at the console. If
a character is ready, the value OFFH is returned in register A. Otherwise, a OOH value is returned.

99

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:

Register C: OCH

Returned Value:

Registers HL: Version Number

Function 12 provides information which allows version independent programming. A
two-byte value is returned, with H=OO designating the CP /M release. CP /M returns a
hexadecimal in register L, in the range of 21, 22 through 2F. Using function 12, for example, you
can write application programs which provide both sequential and random access functions.

FUNCTION 13: RESET DISK SYSTEMS

Entry Parameters:

Register C: OOH

The Reset Disk function is used to restore programmatically the file system to a reset
state where all disks are set to read/write (see functions 28 and 29). Only disk drive A is
selected, and the default OMA address is reset to BOOT=0080H. This function can be used, for
example, by an application program which requires a disk change without a system reboot.

FUNCTION 14: SELECT DISK

Entry Parameters:

Register C: OEH

Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the default disk
for subsequent file operations, with E=O for drive A, 1 for drive B, and so forth through 15,
corresponding to drive Pin a full sixteen drive system. The drive is placed in an "on-line" status
which, in particular, activates its directory until the next cold start, warm start or disk system
reset operation. If the disk media is changed while it is on-line, the drive automatically goes to a
read-only status in a standard CP/M environment (see function 28). FCB's which specify drive
code zero (dr=OOH) automatically reference the currently selected default drive. Drive code
values between 1 and 16, however, ignore the selected default drive and directly reference
drives A through P.

FUNCTION 15: OPEN FILE

Entry Parameters:

Register C: OFH

Registers DE: FCB Address

Returned Value:

Register A: Directory Code

100

c

(
The Open File operation is used to activate a file which currently exists in the disk

directory for the currently active user number. The FOOS scans the referenced disk directory
for a match in positions 1 through 14 of the FCB referenced by DE (byte sl is automatically
zeroed), where an ASCII question mark (3FH) matches any directory character in any of these
positions. Normally, no question marks are included and, further, bytes ex and s2 of the FCB
are zero.

If a directory element is matched, the relevant directory information is copied into bytes dO
through dn of the FCB, thus allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a successful open operation is
completed. Upon return, the open function returns a "directory code" with the value 0 through
3 if the open was successful, or OFFH (255 decimal) if the file cannot be found. If question
marks occur in the FCB, then the first matching FCB is activated. Note that the current record
("er") must be zeroed by the program if the file is to be accessed sequentially from the first
record.

FUNCTION 16: CLOSE FILE

Entry Parameters:

Register C: 1 OH

Registers DE: FCB Address

Returned Value:

Register A: Directory Code

The Close File function performs the inverse of the open file function. Given that the FCB
addressed by DE has been previously activated through an open or make function (see
functions 15 and 22), the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical to the open function. The
directory code returned for a successful close operation is 0, 1, 2 or 3, while a OFFH (255
decimal) is returned if the file name cannot be found in the directory. A file need not be closed
if only read operations have taken place. If write operations have occurred, however, the close
operation is necessary to record permanently the new directory information.

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:

Register C: 11 H

Registers DE: FCB Address

Returned Value:

Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB addressed by
DE. The value 255 (hexadecimal FF) is returned if the file is not found, otherwise 0, 1, 2 or 3 is
returned indicating the file is present. If the file is found, the current OMA address is filled with
the record containing the directory entry, and the relative starting position is A*32 (rotate the A
register left 5 bits, or ADD A five times). Although not normally required for application
programs, the directory information can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from fl through ex
matches the corresponding field of any directory entry on the default or auto-selected disk
drive. If the dr field contains an ASCII question mark, then the auto disk select function is
disabled, the default disk is searched, with the search function returning any matched entry,

10:

--- -- ··----- ·--- -----~ ---- --

allocated or free, belonging to any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all current directory values. If
the dr field is not a question mark, the s2 byte is automatically zeroed.

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:

Register C: 12H

Returned Value:

Register A: Directory Code

The Search Next function is similar to the Search First function, except that the directory
scan continues from the last matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

FUNCTION 19: DELETE FILE

Entry Parameters:

Register C: 13H

Registers DE: FCB Address

Returned Value:

Register A: Directory Co~e

The Delete File function removes files which match the FCB addressed by DE. The file
name and type may contain ambiguous references (question marks in various positions), but
the drive select code cannot be ambiguous, as in the Search and Search Next functions.

Function 19 returns a decimal 255 if the reference file or files cannot be found, otherwise
a value in the range 0 to 3 is returned.

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:

Register C: 14H

Registers DE: FCB Address

Returned Value:

Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make function
(numbers 15 and 22), the Read Sequential function reads the next 128-byte record from the
file into memory at the current DMA address. The record is read from position er of the extent,
and the er field is automatically incremented to the next record position. If the er field
overflows, then the next logical extent is automatically opened and the er field is reset to zero
in preparation for the next read operation. The value OOH is returned in register A if the read
operation was successful. A non-zero vaue is returned in register A if the read operation was r '
successful. A non-zero value is returned if no data exists at the next record position (for 0
example, an end-oMile occurs).

102

FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:

Register C: 15H

Registers DE: FCB Address

Returned Value:

Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make function
(numbers 15 and 22), the Write Sequential function writes the 128-byte data record at the
current OMA address to the file named by the FCB. The record is placed at position er of the
file, and the er field is automatically incremented to the next record position. If the er field
overflows, then the next logical extent is automatically opened and the er field is reset to zero
in preparation for the next write operation. Write operations can take place into an existing file,
in which case newly written records overlay those which already exist in the file. Register
A=OOH upon return from a successful write operation, while a non-zero value indicates an
unsuccessful write due to a full disk.

FUNCTION 22: MAKE FILE

Entry Parameters:

Register C: 16H

Registers DE: FCB Address

Returned Value:

Register A: Directory Code

The Make File operation is similar to the open file operation except that the FCB must
name a file which does not exist in the currently referenced disk directory (that is, one named
explicitly by a non-zero dr code, or the default disk if dr is zero). The FOOS creates the file and
initializes both the directory and main memory value to an empty file. The programmer must
ensure that no duplicate file names occur, and a preceding delete operation is sufficient if there
is any possibility of duplication. Upon return, register A=O, 1, 2 or 3 if the operation was
successful and OFFH (255 decimal) if no more directory space is available. The make function
has the side-effect of activating the FCB and thus a subsequent open is not necessary. Byte s2 is
zeroed upon entry to the BOOS.

FUNCTION 23: RENAME FILE

Entry Parameters:

Register C: 17H

Registers DE: FCB Address

Returned Value:

Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all occurrences of the file
named in the first 16 bytes to the file named in the second 16 bytes. The drive code dr at
position 0 is used to select the drive, while the drive code for the new file name at position 16 of

103

the FCB is assumed to be zero. Upon return, register A is set to a value between 0 and 3 if the
rename was successful, and OFFH (255 decimal) if the first file name could not be found in the
directory scan.

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:

Register C: 18H

Returned Value:

Registers HL: Login Vector

The login vector returned by CP/M is a 16-bit value in HL, where the least significant bit
of L corresponds to the first drive A, and the high order bit of H corresponds to the sixteenth
drive, labeled P. A 0 bit indicates that the drive is not on-line. A I bit marks a drive that is
actively on-line due to an explicit disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero dr field. Registers A and L contain the same values upon
return.

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:

Register C: 19H

Returned Value:

Register A: Current Disk

Function 25 returns the currently selected default disk number in register A The disk
numbers range from 0 through 15, corresponding to drives A through P.

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:

Register C: IAH

Registers DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often used in connection with
disk controllers which directly access the memory of the mainframe computer to transfer data
to and from the disk subsystem. Although many computer systems use non-DMA access (the
data is transferred through programmed 1/0 operations), the DMA address has, in CP/M, come
to mean the address at which the 128-byte data record resides before a disk write and after a
disk read. Upon cold start, warm start or disk system reset, the DMA address is automatically
set to BOOT+0080H. The Set DMA function, however, can be used to change this default value
to address another area of memory where the data records reside. Thus, the DMA address
becomes the value specified by DE until it is changed by a subsequent Set DMA function, cold
start, warm start or disk system reset.

104

('

/

c

FUNCTION 27: GET ADDR(ALLOC)

Entry Parameters:

Register C: 1 BH

Returned Value:

Registers HL: ALLOC Address

An allocation vector is maintained in main memory for each on-line disk drive. Various
system programs use the information provided by the allocation vector to determine the
amount of remaining storage (see the STAT program). Function 27 returns the base address of
the allocation vector for the currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked read only. Although this function is
not normally used by application programs, additional details of the allocation vector are found
in the "CP/M Alteration Guide."

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:

Register C: 1 CH

The Write Protect Disk function provides temporary write protection for the currently
selected disk. Any attempt to write to the disk, before the next cold or warm start operation
produces the message

BDOS ERR ON x: R/0

where x is the disk drive.

FUNCTION 29: GET READ ONLY VECTOR

Entry Parameters:

Register C: IDH

Returned Value:

Registers HL: R/0 Vector Value

Function 29 returns a bit vector in register pair HL which indicates drives which have the
temporary read only bit set. Similar to function 24, the least significant bit corresponds to drive
A, while the most significant bit corresponds to drive P. The R/O bit is set either by an explicit
call to function 28, or by the automatic software mechanisms within CP /M which detect
changed disks.

105

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:

Register C: IEH

Registers DE: FCB Address

Returned Value:

Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of permanent
indicators attached to files. In particular, the RIO and system attributes (+I' and +2') can be
set or reset. The DE pair addresses an unambiguous file name with the appropriate attributes
set or reset. Function 30 searches for a match, and changes the matched directory entry to
contain the selected indicators. Indicators fl' through f4' are not presently used, but may be
useful for applications programs since they are not involved in the matching process during file
open and close operations. Indicators f5' through f8' and t3' are reserved for future system
expansion.

FUNCTION 31: GET ADDR{DISK PARMS)

Entry Parameters:

Register C: I FH

Returned Value:

Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned in HL as a result of this
function call. This address can be used for either of two purposes. First, the disk parameter
values can be extracted for display and space computation purposes, or transient program can
dynamically change the value of current disk parameters when the disk environment changes, if
required. Normally, application programs will not require this facility.

FUNCTION 32: SET/GET USER CODE

Entry Parameters:

Register C: 20H

Register E: OFFH (get) or User Code (set)

Returned Value:

Register A: Current Code or (no value)

An application program can change or interrogate the currently active user number by
calling function 32. If register E=OFFH, then the value of the current user number is returned in
register A, where the value is in the range 0 to 31. If the register Eis not OFFH, then the current
user number is changed to the value of E (modulo 32).

106

c

c

FUNCTION 33: READ RANDOM

Entry Parameters:

Register C: 21 H

Registers DE: FCB Address

Returned Value:

Register A: Return Code

The Read Random function is similar to the sequential file read operation of previous
releases, except that the read operation takes place at a particular record number, selected by
the 24-bit value constructed from the three-byte field following the FCB (byte positions rO at 33,
rl at 34 and r2 at 35). Note that the sequence of 24 bits is stored with the least significant byte
first (rO), middle byte next (rl) and high byte last (r2). CP/M does not reference byte r2,
except in computing the size of a file (function 35). Byte r2 must be zero, however, since a
non-zero value indicates overflow past the end-of-file.

Thus, the rO, rl byte pair is treated as a double-byte, or word value, which contains the
record to read. This value ranges from 0 to 65535, providing access to any particular record of
the 8-megabyte file. In order to process a file using random access, the base extent (extent 0)
must first be opened. Although the base extent may or may not contain any allocated data, this
ensures that the file is properly recorded in the directory, and is visible in DIR requests. The
selected record number is then stored into the random record field (rO, rl), and the BOOS is
called to read the record. Upon return from the call, register A either contains an error code, as
listed below, or the value 00 indicating the operation was successful. In the latter case, the
current OMA address contains the randomly accessed record. Note that contrary to the
sequential read operation, the record number is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current record values are
automatically set. Thus, the file can be sequentially read or written, starting from the current
randomly accessed position. Note, however, that in this case, the last randomly read record will
be re-read as you switch from random mode to sequential read, and the last record will be
re-written as you switch to a subsequent write operation. You can, of course, simply advance
the random record position foil owing each random read or write to obtain the effect of a
sequential 1/0 operation.

Error codes returned in register A following a random read are listed below:

01 Reading unwritten data

02 (Not returned in random mode)

03

04

05

06

Cannot close current extent

Seek to unwritten extent

(Not returned in read mode)

Seek past physical end of disk

Error codes 01 and 04 occur when a random read operation accesses a data block which has
not been previously written, or an extent which has not been created, which are equivalent
conditions. Error 3 does not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is not physically write
protected. Error code 06 occurs whenever byte r2 is non-zero. Normally, non-zero return codes
can be treated as missing data, with zero return codes indicating that the operation is complete.

107

FUNCTION 34: WRITE RANDOM

Entry Parameters:

Register C: 22H

Registers DE: FCB Address

Returned Value:

Register A: Return Code

The Write Random operation is initiated similar to the Read Random call, except that data
is written to the disk from the current OMA address. Further, if the disk extent or data block
which is the target of the write has not yet been allocated, the allocation is performed before
the write operation continues. As in the Read Random operation, the random record number is
not changed as a result of the write. The logical extent number and current record positions of
the file control block are set to correspond to the random record which is being written. Again,
sequential read or write operations can commence following a random write, with the notation
that the currently addressed record is either read or rewritten again as the sequential operation
begins. You can also simply advance the random record position following each write to get the
effect of a sequential write operation. Note that, in particular, reading or writing the last record
of an extent in random mode does not.cause an automatic extent switch as it does in sequential
mode.

The error codes returned by a random write are identical to the random read operation,
with the exception of error code 05, which indicates that a new extent cannot be created due to
directory overflow.

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:

Register C: 23H

Registers DE: FCB Address

Returned Value:
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in random
mode format (bytes rO, rl and r2 are present). The FCB contains an unambiguous file name
which is used in the directory scan. Upon return, the random record bytes contain the virtual
file size which is, in effect, the record address 9f the record following the end of the file. If,
following a call to function 35, the high record byte r2 is 01, then the file contains the maximum
record count 65536. Otherwise, bytes rO and rl constitute a 16-bit value (rO is the least
significant byte, as before) which is the file size.

Data can be appended to the end of an existing file simply by calling function 35 to set the
random record position to the end-of-file, then performing a sequence of random writes starting
at the preset record address.

108

-------- ~--~~----

f'
\.____ .. ·

(

(~'

The virtual size of a file corresponds to the physical size when the file is written
sequentially. If, instead, the file was created in random mode and "holes" exist in the
allocation, then the file may in fact contain fewer records than the size indicates. If, for
example, only the last record of an 8-megabyte file is written in random mode (record number
65535), then the virtual size is 65536 records, although only one block of data is actually
allocated.

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:

Register C: 24H

Registers DE: FCB Address

Returned Value:

Random Record Field Set

The Set Random record function causes the BOOS to produce automatically the random
record position from a file which has been read or written sequentially to a particular point. The
function can be used in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the positions
of various key fields. As each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data unit size is 128 bytes, the
resulting record position is placed into a table with the key for later retrieval. After scanning the
entire file and tabularizing the keys and their record numbers, you can move instantly to a
particular keyed record by performing a random read using the corresponding random record
number which was saved earlier. The scheme is easily generalized when variable record lengths
are involved since the program need only store the buffer-relative byte position along with the
key and record number in order to find the exact starting position of the keyed data at a later
time.

A second use of function 36 occurs when switching from a sequential read or write over to
random read or write. A file is sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and write operations
continue from the selected point in the file.

System Function Summary

FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS
0 System Reset none none
I Console Input none A= char
2 Console Output E =char none
3 Reader Input none A= char
4 Punch Output E =char none
5 List Output E =char none
6 Direct Console 1/0 see def see def
7 Get 1/0 Byte none A= IOBYTE
8 Set 1/0 Byte E = IOBYTE none
9 Print String DE= .Buffer none
IO Read Console Buffer DE= .Buffer see def

109

FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS
11 Get Console Status none A= 00/FF
12 Return Version Number none HL =Version*
13 Reset Disk System none see def
14 Select Disk E = Disk Number see def
15 Open File DE= .FCB A= Dir Code
16 Close File E = .FCB A= Dir Code
17 Search for First DE= .FCB A= Dir Code
18 Search for Next none A= Dir Code
19 Delete File DE= .FCB A= Dir Code
20 Read Sequential DE= .FCB A= Err Code
21 Write Sequential DE= .FCB A= Err Code
22 Make File DE= .FCB A= Dir Code
23 Rename File DE= .FCB A= Dir Code
24 Return Login Vector none HL =Login Vect*
25 Return Current Disk none A= Cur Disk#
26 Set DMA Address DE= .OMA none
27 Get Addr(alloc) none HL = Alloc
28 Write Protect Disk none see def
29 Get Addr(=R/0 Vector) none HL = R/0 Vect**
30 Set File Attributes DE= .FCB see def
31 Get Addr(disk parms) none HL = .DPB
32 Set/Get User Code see def see def
33 Read Random DE= .FCB A= Err Code
34 Write Random DE= .FCB A= Err Code
35 Compute File Size DE= .FCB rO, rl, r2
36 Set Random Record DE= .FCB rO, rl, r2

*Note that A=L, and B=H upon return.

A Sample File-to-File Copy Program
The following program provides a relatively simple example of file operations. The

program source file is created as COPY.ASM, using the CP/M ED program. It is then assembled
using ASM or MAC, resulting in a HEX file. The LOAD program is then used to produce a
COPY.COM file which executes directly under the CCP. The program begins by setting the
stack pointer to a local area, and then proceeds to move the second name from the default
area at 006CH to a 33-byte file control block called DFCB. The DFCB is then prepared for file
operations by clearing the current record field.

At this point, the source and destination FCB's are ready for processing since the SFCB at
OOSCH is properly set up by the CCP upon entry to the COPY program. This means that the first
name is placed into the default FCB, with the proper fields zeroed, including the current record
field at 007CH. The program continues by opening the source file, deleting any existing
destination file and then creating the destination file. If all this is successful, the program loops
at the label COPY until each record has been read from the source file and placed into the
destination file. Upon completion of data transfer, the destination file is closed and the program
returns to the CCP command level by jumping to BOOT.

110

sample file-to-file copy program

(~
at the ccp level, the command

copy a:x.y b:u.v

copies the file named x.y from drive
a to a file named u.v on drive b.

0000 = boot equ OOOOh system reboot
0005= bdos equ 0005h bdos entry point
005c == fcbl equ 005ch first file name
005c = sfcb equ fcbl source fcb
006c = fcb2 equ 006ch second file name
0080 = dbuff equ 0080h default buffer
0100 = tpa equ OlOOh beginning of tpa

0009 = printf equ 9 print buffer func#
OOOf = openf equ 15 open file func#
0010 = closet equ 16 close file func#
0013= deletef equ 19 delete file func#
0014= readf equ 20 sequential read
0015 = writef equ 21 sequential write
0016 = makef equ 22 make file tune#

0100 org tpa beginning of tpa
0100 311b02 lxi sp,stack local stack

c move second file name to dfcb
0103 OelO mvi c,16 half an fcb
0105 116c00 lxi d,fcb2 source of move
0108 21da01 lxi h,dfcb destination fcb
OlOb la mfcb: ldax d source fcb
OlOc 13 inx d ready next
OlOd 77 mov m,a dest fcb
OlOe 23 inx h ready next
OlOf Od dcr c count 16 ..• o
0110 c20b01 jnz mfcb loop 16 times

name has been moved, zero er
0113 af xra a a=OOh
0114 32fa01 sta dfcbcr ; current rec= 0

source and destination fcb's ready

0117 115c00 lxi d,sfcb source file
Olla cd6901 call open error if 255
01 ld 118701 lxi d,nofile ready message
0120 3c inr a 255 becomes 0
0121 cc6101 CZ finis done if no file

c~
source file open, prep destination

0124 l ldaOl lxi d,dfcb destination
0127 cd7301 call delete

'
remove if present

111

012a l ldaOl
012d cd8201
0130 119601
0133 3c
0134 cc6101

0137 115c00
013a cd7801
013d b7
013e c25101

0141 lldaOl
0144 cd7d01
0147 1 la901
014a b7
014b c46101
014e c33701

0151 1 ldaOl
0154 cd6e01
0157 2lbb01
015a 3c
015b cc6101

copy:

eofile:

lxi d,dfcb destination
call make create the file
lxi d,nodir ready message
inr a 255 becomes 0
CZ finis done if no dir space

source file open, <lest file open
copy until end of file on source

lxi
call
ora
lnz

d,sfcb
read
a
eofile

source
read next record
end of file?
skip write if so

not end of file, write the record
lxi d,dfcb destination
call write write record
lxi d,space ready message
ora a 00 if write ok
cnz finis end if so
jmp copy loop until eof

; end of file, close destination
lxi d,dfcb destination
call close 255 if error
lxi h,wrprot ready message
inr a 255 becomes 00
cz finis shouldn't happen

copy operation complete, end

Note that there are several simplifications in this particular program. First, there are no
checks for invalid file names which could, for example, contain ambiguous references. This
situation could be detected by scanning the 32-byte default area starting at location OOSCH for
ASCII question marks. A check should also be made to ensure that the file names have in fact
been included. (Check locations OOSOH and 0060H for non-blank ASCII characters.) Finally, a
check should be made to ensure that the source and destination file names are different. A
speed improvement could be made by buffering more data on each read operation. One could,
for example, determine the size of memory by fetching FBASE from location 0006H and use the
entire remaining portion of memory for a data buffer. In this case, the programmer simply
resets the OMA address to the next successive 128-byte area before each read. Upon writing to
the destination file, the OMA address is reset to the beginning of the buffer and incremented by
128 bytes to the end as each record is transferred to the destination file.

A Sample File Dump Utility

The file dump program shown below is slightly more complex than the simple copy
program given in the previous section. The dump program reads an input file, specified in the
CCP command line, and displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCP's stack before returning directly to the 14
CCP. Thus, the dump program does not perform a warm start at the end of processing. \ii,_

112

DUMP program reads input file and displays hex data

(0100 org lOOh
0005 = bdos equ 0005h ; dos entry point
0001 = cons equ I ; read console
0002 = typef equ 2 ; type function
0009 = printf equ 9 ; buffer print entry
OOOb= brkf equ 11 ; break key function (true if char
OOOf = openf equ 15 ; file open
0014= readf equ 20 ; read function

005c = fcb equ Sch ; file control block address
0080= buff equ 80h ; input disk buffer address

non graphic characters
OOOd= er equ Odh ; carriage return
OOOa= If equ Oah ; line feed

file control block definitions
005c= fcbdn equ fcb+O ; disk name
005d= fcbfn equ fcb+l ; file name
00(>5= fcbft equ fcb+9 ; disk file type (3 characters)
0068= fcbrl equ fcb+l2 ; file's current reel number
006b= fcbrc equ fcb+IS ; file's record count (0 to 128)
007c = fcbcr equ fcb+32 ; current (next) record number (0
007d= fcbln equ fcb+33 ; fcb length

c set up stack
0100 210000 lxi h,O
0103 39 dad sp

entry stack pointer in hi from the ccp
0104 221502 shld oldsp

set sp to local stack area (restored at finis)
0107 315702 lxi sp,stktop

read and print successive buffers
OlOa cdclOl call setup ;set up input file
OlOd feff cpi 255 ; 255 if file not present
OlOf c2lb01 jnz openok ; skip if open is ok

file not there, give error message and return
0112 l lf301 lxi d,opnmsg
0115 cd9c01 call err
0118 c35101 jmp finis ; to return

openok: ; open operation ok, set buffer index to end
Ollb 3e80 mvi a,80h
Olld 321302 sta ibp ; set buffer pointer to 80h

hi contains next address to print
0120 210000 lxi h,O ; start with 0000

gloop:
0123 e5 push h ; save line position

(, 0124 cda201 call gnb
0127 el pop h ; recall line position
0128 da5101 jc finis ; carry set by gnb if end file
012b 47 mov b,a

113

print hex values
check for line fold

012c 7d mov a,1 (
012d e60f ani Ofh ; check low 4 bits 0,
012f c24401 jnz non um

print line number
0132 cd7201 call crlf

check for break key
0135 cd5901 call break

accum lsb = 1 if character ready
0138 Of rrc ; into carry
0139 da5101 jc finis ; don't prlnt any more

013c 7c mov a,h
013d cd8f01 call phex
0140 7d mov a,1
0141 cd8f01 call phex

non um:
0144 23 inx h : to next line number
0145 3e20 mvi a,''
0147 cd6501 call pchar
014a 78 mov a,b
014b cd8f01 call phex
014e c32301 jmp gloop

finis:
end of dump, return to ccp r
(note that a jmp to OOOOh reboots) ~-_/

0151 cd7201 call crlf
0154 2a1502 lhld oldsp
0157 f9 sphl

stack pointer contains ccp's stack location
0158 c9 ret ; to the ccp

subroutines

break: ; check break key (actually any key will do)
0159 e5d5c5 push h! push d! push b; environment saved
015c OeOb mvi c,brkf
015e cdo500 call bdos
0161 cldlel pop b! pop d! pop h; environment restored
0164 c9 ret

pchar: ; print a character
0165 e5d5c5 push h! push d! push b; saved
0168 Oe02 mvi c,typef
016a Sf mov e,a
016b cd0500 call bdos
016e cldlel pop b ! pop d ! pop h; restored
0171 c9 ret

~
' 0' crlf:

0172 3e0d mvi a,cr
0174 cd6501 call pchar

114

-- - -------

0177 3e0a mvi a,lf
0179 cd6501 call pchar

c: Ol 7c c9 ret

pnib: ; print nibble in reg a
017d e60f ani Ofh ; low 4 bits
Ol 7f feOa cpi 10
0181 d28901 jnc plO

less than or equal to 9
0184 c630 adi 'O'
0186 c38b01 jmp prn

greater or equal to 10
0189 c637 plO: adi 'a' -10
018b cd6501 prn: call pchar
018e c9 ret

phex: ; print hex char in reg a
018f f5 push psw
0190 Of rrc
0191 Of rrc
0192 Of rrc
0193 Of rrc
0194 cd7d01 call pnib ; print nibble
0197 fl pop psw

c, 0198 cd7d01 call pnib
019b c9 ret

err: ; print error message
d,e addresses message ending with "$"

019c Oe09 mvi c,printf ;print buffer function
019e cd0500 call bdos
Olal c9 ret

gnb: ; get next byte
Ola2 3al302 Ida lbp
Ola5 fe80 cpi 80h
Ola7 c2b301 jn;z go

read another buffer

Olaa cdceOl call diskr
Olad b7 ora a ; zero value if read ok
Olae cab301 jz gO ; for another byte

end of data, return with carry set for eof
Olbl 37 stc
Olb2 c9 ret

gO: ;read the byte at buff+reg a

c Olb3 Sf mov e,a ; Is byte of buffer index
Olb4 1600 mvi d,O ; double precision index to de
Olb6 3c inr a ; index=index+ I
Olb7 321302 sta ibp ; back to memory

pointer is incremented

115

Olba 218000
Olbd 19

Olbe 7e

Olbf b7
OlcO c9

setup:

Olcl af
Olc2 327c00

Olc5 115c00
Olc8 OeOf
Olea cd0500

Olcd c9

diskr:
Olce e5d5c5
Oldl 115c00
Old4 Oe14
Old6 cd0500
Old9 cldlel
Olde c9

Oldd 46494c0signon:
Olf3 Od0a4e0opnmsg:

0213
0215

0217

0257

ibp:
oldsp:

stktop:

save the current file address
lxi h,buff
dad d
absolute character address is in h 1
mov a,m
byte is in the accumulator
ora a ; reset carry bit
ret

; set up file
open the file for input
xra
sta

a
fcbcr

lxi d,fcb
mvi c,openf
call bdos

;zero to accum
; clear current record

255 in accum if open error
ret

; read disk file record
push h! push d! push b
lxi d,fcb
mvi c,readf
call bdos
pop b! pop d! pop h
ret

fixed message area
db 'file dump version 2.0$'
db er, lf, 'no input file present on disk$'

variable area
ds 2 ; input buffer pointer
ds 2 ; entry sp value from ccp

stack area
ds 64 ; reserve 32 level stack

end

A Sample Random Access Program

The following program is a rather extensive, but complete, example of a random access
operation. The program performs the simple function of reading or writing random random
records upon command from the terminal. Given that the program has been created, assembled
and placed into a file labeled RANDOM.COM, the CPP level command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name X.DAT (in this particular
case) and, if found, proceeds to prompt the console for input. If not found, the file is created
before the prompt is given. Each prompt takes the form

next command?

and is followed by operator input and terminated by a carriage return.

116

(/:

(~'

--- -- ------------------.----

The input commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R and Q are simple command
characters corresponding to random write, random read and quit processing, respectively. If
the W command is issued, the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by a carriage return.
RANDOM then writes the character string into the X.DAT file at record n. If the R command is
issued, RANDOM reads record number n and displays the string value at the console. If the Q
command is issued, the X.DAT file is closed, and the program returns to the Console Command
Processor. For brevity, the only error message is

error, try again

The program begins with an initialization section where the input file is opened or created,
followed by a continuous loop at the label ready where the individual commands are
interpreted. The default file control block at 005CH and the default buffer at 0080H are used in
all disk operations. The utility subroutines then follow which contain the principal input line
processor, called readc. This particular program shows the elements of random access
processing and can be used as the basis for further program development.

; sample random access program for cp/m 2.0

0100 org lOOh ; base of tpa

0000 = reboot equ OOOOh ; system reboot
0005 = bdos equ 0005h ; bdos entry point

0001 = coninp equ 1 ; console input function
0002 = conout equ 2 ; console output function
0009 = pstring equ 9 ; print string until '$'
OOOa= rstring equ 10 ; read console buffer
OOOc = version equ 12 ; return version number
OOOf = openf equ 15 ; file open function
0010 = closef equ 16 ; close function
0016 = makef equ 22 ; make file function
0021 = readr equ 33 ; read random
0022 = writer equ 34 ; write random

005c = kb equ 005ch ; default file control block
007d= ranrec equ fcb+33 ; random record position
007f = ranovf equ fcb+35 ; high order (overflow) byte
0080 = buff equ 0080h ; buffer address

OOOd = er equ Odh ; carriage return
OOOa= If equ Oah ; line feed

117

0100 31bc0

0103 OeOc
0105 cd050
0108 fe20
OlOa d2160

OlOd 11 lbO
0110 cddaO
0113 c3000

0116 OeOf
0118 115c0
Ollb cd050
Olle 3c
01 lf c2370

0122 Oe16
0124 115c0
0127 cd050
012a 3c
012b c2370

012e 113a0
0131 cddaO
0134 c3000

0137 cde50
013a 227d0
013d 217f0
0140 3600
0142 fe51
0144 c2560

0147 OelO
0149 115c0
014c cd050
014f 3c

; load SP, set-up file for random access

versok:

'

!xi sp,stack

version 2.0?
mvi c,version
call bdos
cpi 20h ; version 2.0 or better?
jnc versok
bad version, message and go back
lxi d,badver
call print
jmp reboot

correct version for random access
mvi c, openf ;open default fcb
lxi d,fcb
call bdos
inr
jnz

a
ready

; err 255 becomes zero

cannot open file, so create it
mvi c,makef
lxi d,fcb
call bdos
inr
jnz

a
ready

; err 255 becomes zero

cannot create file, directory full
lxi d,nospace
call print
jmp reboot ; back to ccp

; loop back to "ready" after each command

ready:
file is ready for processing

call readcom ; read next command
shld ranrec ; store input record#
!xi h,ranovf
mvi m,O ; clear high byte if set
cpi 'Q' ;quit?
jnz notq

quit processing, close file
mvi c,closef
!xi d,fcb
call bdos
inr a ; err 255 becomes 0

118

----- -------- ---- ------··

c

(_

(~:
/

0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b l 14d0
015 cddaO
0161 Oe7f
0163 21800

0166 c5
0167 e5
0168 cdc20
016b el
016c cl
016d feOd
016fca780

0172 77
0173 23
0174 Od
0175 c2660

0178 3600

Ol 7a Oe22
017c l 15c0
017f cd050
0182 b7
0183 c2b90
0186 c3370

0189 fe52
018b c2b90

018e Oe21
0190l15c0

jz error ; error message, retry
jmp reboot ; back to ccp

; end of quit command, process write

notg:
not the quit command, random write?
cpi 'W'
jnz notw

this is a random write, fill buffer until er
lxi d,datmsg
call print ; data prompt
mvi c,127 ; up to 127 characters
lxi h,buff ; destination

rloop: ; read next character to buff
push b ; save counter
push h ; next destination
call getchr ; character to a
pop h ; restore counter
pop b ; restore next to fill
cpi er ; end of line?
jz er loop
not end, store character
mov m,a
inx h ; next to fill
dcr c ; counter goes down
jnz rloop ; end of buffer?

er loop:
end of read loop, store 00
mvi m,O

write the record to selected record number
mvi c, writer
lxi d,fcb
call bdos
ora a ; error code zero?
jnz error ; message if not
jmp ready ; for another record

; end of write command, process read

notw:
not a write command, read record?
cpi 'R'
jnz error

read random record
mvi
lxi

c,readr
d,fcb

119

; skip if not

0193 cd050
0196 b7
0197 c2b90

019a cdcfO
019d Oe80
019f 21800

Ola2 7e
Ola3 23
Ola4 e67f
Ola6 ca370
Ola9 c5
Olaa e5
Olab fe20
Olad d4c80
OlbO el
Olbl cl
Olb2 Od
Olb3 c2a20
Olb6 c3370

Olb9 11590
Olbc cddaO
Olbfc3370

Olc2 OeOl
Olc4 cd050
Olc7 c9

Olc8 Oe02
Olea Sf
Olcb cd050
{Hee c9

Old 3e0d

call bdos
ora a ; return code 00?
jnz error

read was successful, write to console
call crlf ; new line
mvi c,128 ; max 128 characters
!xi h,buff ; next to get

wloop:
mov a,m ; next character
inx h ; next to get
ani 7fh ; mask parity
jz ready ; for another command if 00
push b ; save counter
push h ; save next to get
cpi '' ; graphic?
enc putchr ; skip output if not
pop h
pop b
dcr c ; count=count-1
jnz wloop
jmp ready

; end of read command, all errors end-up here

error:

!xi
call
jmp

d,errmsg
print
ready

; utility subroutines for console i/ o

getchr:

putchr:

crlf:

; read next console character to a
mvi
call
ret

c,coninp
bdos

; write character from a to console
mvi
mov
call
ret

c,conout
e,a ; character to send
bdos ; send character

; send carriage return line feed
mvi a,cr ; carriage return

120

/-

Oldl cdc80 call putchr

(
Old4 3e0a mvi a,lf ; line feed
Old6 cdc80 call putchr
Old9 c9 ret

print:
; print the buffer addressed by de until $

Olda d5 push d
Oldb cdcfO call crlf
Olde dl pop d ; new line
Oldf0e09 mvi c,pstring
Olel cd050 call bdos ; print the string
Ole4 c9 ret

readcom:
; read the next command line to the conbuf

Ole5l16b0 lxi d,prompt
Ole8 cddaO call print ; command?
Oleb OeOa mvi c,rstring
Oled 117a0 lxi d,conbuf
OHO cd050 call bdos ; read command line

command line is present, scan it
Olf3 21000 lxi h,O ;start with 0000
Olf6l17c0 lxi d,conlin ;command line
Olf9 la readc: ldax d ;next command character
Olfa 13 inx d :to next command position

(
Olfb b7 ora a ;cannot be end of command
Olfc c8 rz

not zero, numeric?
Olfd d630 sui 'O'
Olff feOa cpi 10 ;carry if numeric
0201 d2130 jnc endrd

add-in next digit
0204 29 dad h ;*2
0205 4d mov c,l
0206 44 mov b,h ;be = value * 2
0207 29 dad h ;*4
0208 29 dad h ;*8
0209 09 dad b ;*2 + *8 = *10
020a 85 add 1 ;+digit
020b 6f mov l,a
020c d2f90 jnc readc ;for another char
020f 24 inr h ;overflow
0210 c3f90 jmp readc ;for another char

endrd:
end of read, restore value in a

0213 c630 adi 'O' ;command
0215 fe61 cpi 'a' ;translate case?
0217 d8 re

lower case, mask lower case bits
0218 e65f ani 101$11 llb

Ci 02la c9 ret

121

02lb 536f79

023a 4e6f29

024d 547970

0259 457272

026b 4e6570

027a 21
027b
027c
0021 =

029c

02bc

; string data area for console messages

badver:
(
~

db 'sorry, you need cp/m version 2$'
nospace:

db 'no directory space$'
datmsg:

db 'type data: $'
errmsg:

db 'error, try again.$'
prompt:

db 'next command? $'

' ; fixed and variable data area

conbuf: db conlen ;length of console buffer
consiz: ds 1 ;resulting size after read
conlin: ds 32 ;length 32 buffer
conlen equ $-consiz

ds 32 ;16 level stack
stack:

end
/'

Again, major improvements could be made to this particular program to enhance its L
operation. In fact, with some work, this program could evolve into a simple data base
management system. One could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called GETKEY, could be developed
which first reads a sequential file and extracts a specific field defined by the operator. For
example, the command

GETKEY NAMES.DAT LASTNAME IO 20

would cause GETKEY to read the data base file NAMES.OAT and extract the LASTNAME field
from each record, starting at position 10 and ending at character 20. GETKEY builds a table in
memory consisting of each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list, and writes a new file, called
LASTNAME.KEY, which is an alphabetical list of LASTNAME fields with their corresponding
record numbers. (This list is called an "inverted index" in information retrieval parlance.)

Rename the program shown above as QUERY, and massage it a bit so that it reads a sorted
key file into memory. The command line might appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric string which is a
particular key to find in the NAMES.OAT data base. Since the LASTNAME.KEY list is sorted,
you can find a particular entry quite rapidly by performing a "binary search," similar to looking
up a name in the telephone book. Starting at both ends of the list, you examine the entry
halfway inbetween. If not matched, you split either the upper half or the lower half for the next
search. You'll quickly reach the item you are looking for (in log2(n) steps) where you will find c--_ -_
the corresponding record number. Fetch and display this record at the console, just as has -
been done in the program shown above.

122

c

0

At this point, you are just getting started. With a little more work, you can allow a fixed
grouping size which differs from the 128-byte record shown above. This is accomplished by
keeping track of the record number, as well as the byte offset within the record. Knowing the
group size, you randomly access the record containing the proper group, offset to the beginning
of the group within the record read sequentially until the group size has been exhausted.

You can improve QUERY considerably by allowing boolean expressions which compute the
set of records which satisfy several relationships. Examples are a LASTNAME between HARDY
and LAUREL, and an AGE less than 45. Display all the records which fit this description. Finally,
if your lists are getting too big to fit into memory, randomly access your key files from the disk
as well.

The Dynamic Debugging Tool
The Dynamic Debugging Tool (DDT) program allows dynamic interactive testing and
debugging of programs generated in the CP /M environment. The DDT is generally used for
assembler language programs. The debugger is initiated by typing one of the following
commands at the CP /M Console Command level:

DDT

DDT filename.HEX

DDT filename.COM

where filename is the name of the program to be loaded and tested. In both cases, the DDT
program is brought into main memory in the place of the Console Processor, and thus resides
directly below the BOOS portion of CP /M. The BOOS starting address, which is located in the
address field of the JMP instruction at location SH, is altered to reflect the reduced TPA size.

The second and third forms of the DDT command shown above perform the same actions
as the first, except there is a subsequent automatic load of the specified HEX or COM file. The
action is identical to the sequence of commands:

DDT

Ifilename.HEX or Ifilename.COM

R

where the I and R commands set up and read the specified program to test. (See the
explanation of the I and R commands below for exact details).

Upon initiation, DDT prints a sign-on message in the format:

nnK DDT-D VEDR m.m

where nn is the memory size (which must match the CP/M system being used) and m.m is the
revision number.

Following the sign on message, DDT prompts the operator with the character - and waits
for input commands from the console. The operator can type any of several single character
commands, terminated by a carriage return to execute the command. Each line o.f input can be
line-edited using the standard CP /M controls.

DEL
CTRLU
CTRLC

remove the last character typed
remove the entire line, ready for retyping
system reboot

123

Any command can be up to 32 characters in length (an automatic carriage return is inserted as
the 33rd character), where the first character determines the command type:

A Enter assembly language mnemonics with operands

D Display memory in hexadecimal and ASCII

F Fill memory with constant data

G Begin execution with optional breakpoints

I Set up a standard input file control block

L List memory using assembler mnemonics

M Move a memory segment from source to destination

R Read program for subsequent testing

S Substitute memory values

T Trace program execution

U Untraced program monitoring

X Examine and optionally alter the CPU state

The command character, in some cases, is followed by zero, one, two or three hexadecimal
values which are separated by commas or single blank characters. All DDT numeric output is in
hexadecimal form. In all cases, the commands are not executed until the carriage return is
typed at the end of the command.

At any point in the debug run, the operator can stop execution of DDT using either a
CTRL-C or GO (jump to location OOOOH), and save the current memory image using a SA VE
command of the form:

SAVE n filename.COM

where n is the number of pages (256-byte blocks) to be saved on disk. The number of blocks
can be determined by taking the high order byte of the top load address and converting this
number to decimal. For example, if the highest address in the TPA is 1234H then the number of
pages is 12H, or 18 in decimal. Thus the operator could type a CTRL-C during the debug run,
returning to the Console Processor level, followed by:

SAVE 18 X.COM

The memory image is saved as X.COM on the disk, and can be directly executed simply by
typing the name X. If further testing is required, the memory image can be recalled by typing:

DDTX.COM

which reloads previously saved program from location IOOH through page 18 (12FFH). The
machine state is not a part of the COM file. The program must be restarted from the beginning
in order to test it properly.

DDT Commands

The individual commands are given below in some detail. With each command, the
operator must wait for the prompt character (-) before entering the command. If control is
passed to a program under test and the program has not reached a breakpoint, control can be
returned to DDT by executing a RST 7 from the front panel. (Note that the DEL key should be
used instead if the program is executing a T or U command). In the explanation of each
command, the command letter is shown in some cases with numbers separated by commas,

124

('
where the numbers are represented by lower case letters. These numbers are always assumed
to be in a hexadecimal radix, and from one to four digits in length (longer numbers will be
automatically truncated on the right).

Many of the commands operate upon "CPU state" which corresponds to the program
under test. The CPU state holds the registers of the program being debugged, and initially
contains zeroes for all registers and flags except for the program counter (P) and stack pointer
(S), which default to lOOH. The program counter is subsequently set to the starting address
given in the last record of a Hex file if a file of this form is loaded (see the I and R commands).

1. The A (Assemble) Command. DDT allows inline assembly language to be inserted
into the current memory image using the A command which takes the form

As

where s is the hexadecimal starting address for the inline assembly. DDT prompts the console
with the address of the next instruction to fill, and reads the console, looking for assembly
language mnemonics, followed by register references and operands in absolute hexadecimal
form. (See the Intel 8080 Assembly Language Reference Card for a list of mnemonics). Each
successive load address is printed before reading the console. The A command terminates
when the first empty line is input from the console.

Upon completion of assembly language input, the operator can review the memory seg­
ment using the DDT disassembler (see the L command).

Note that the assembler/disassembler portion of DDT can be overlayed by the transient
program being tested, in which case the DDT program responds with an error condition when
the A and L commands are used. (Refer to the debugging example at the end of this section.)

C 2. The D (Display) Command. The D command allows the operator to view the contents
of memory in hexadecimal and ASCII formats. The forms are:

D

Os

Ds,f

In the first case, memory is displayed from the current display address (initially lOOH), and
continues for 16 display lines. Each display line takes the form shown below:

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display address in hexadecimal, and bb represents data present in memory
starting at aaaa. The ASCII characters starting at aaaa are given to the right (represented by the
sequence of e's), where non-graphic characters are printed as a period (.) symbol. Note that
both upper and lower case alphabetics are displayed. They will appear as upper case symbols
on a console device that supports only upper case. Each display line gives the values of 16
bytes of data, except that the first line displayed is truncated so that the next line begins at an
address which is a multiple of 16.

The second form of the D command shown above is similar to the first, except that the
display address is first set to address s. The third form causes the display to continue from
address s through address f. In all cases, the display address is set to the first address not
displayed in this command, so that a continuing display can be accomplished by issuing suc­
cessive D commands with no explicit addresses. c Excessively long displays can be aborted by pushing the DEL key.

125

3. The F (Fill) The F command takes the form

Fs,f,c

where s is the starting address, f is the final address, and c is a hexadecimal byte constant. The
effect is as follows. DDT stores the constant c at address s, increments the value of s and tests
against f. If s exceeds f, then ~he operation terminates. Otherwise, the operation is repeated.
Thus, the fill command can be used to set a memory block to a specific constant value.

4. The G (Go) Command. Program execution is started using the G command with up to
two optional breakpoint addresses. The G command takes one of the forms:

G Gs,b,c

Gs G,b

Gs,b G,b,c

The first form starts execution of the program under test at the current value of the program
counter in the current machine state, with no breakpoints set. (The only way to regain control
in DDT is through an RST 7 execution.) The current program counter can be viewed by typing
an X or XP command. The second form is similar to the first except that the program counter in
in the current machine state is set to address s before execution begins. The third form is the
same as the second, except that program execution stops when address b is encountered (b
must be in the area of the program under test). The instruction at location bis not executed
when the breakpoint is encountered. The fourth form is identical to the third, except that two
breakpoints are specified, one at b and the other at c. Encountering either breakpoint causes
execution to stop, and both breakpoints are subsequently cleared. The last two forms take the
program counter from the current machine state, and set one and two breakpoints,
respectively.

Execution continues from the starting address in real-time to the next breakpoint. There is
no intervention between the starting address and the break address by DDT. Therefore, if the
program under test does not reach a breakpoint, control cannot return to DDT without
executing an RST 7 instruction. Upon encountering a breakpoint, DDT stops execution and
types:

*d

where d is the stop address. The machine state can be examined at this point using the X
(Examine) command. The operator must specify breakpoints which differ from the program
counter address at the beginning of the G command. If the current program counter is 1234H,
then the commands:

G,1234

and

G400,400

both produce an immediate breakpoint, without executing any instructions whatsoever.

5. The I (Input) Command. The I command allows the operator to insert a file name into
the default file control block at 5CH. (The file control block created by CP /M for transient
programs is placed at this location.) The default FCB can be used by the program under test as
if it had been passed by the CP /M Console Processor. Note that this file name is also used by r
DDT for reading additional HEX and COM files. The form of the I command is: ~_,

lfilename

126

(
or

lfilename.filetype

If the second form is used, and the filetype is either HEX or COM, then subsequent R commands
can be used to read the pure binary or hex format machine code. (See the R command for
further details.)

6. The L (List) Command. The L command is used to list assembly language mnemonics
in a particular program region. The forms are:

L

Ls

Ls,f

The first command lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s, and then lists twelve lines of code. The last
form lists disassembled code from s through address f. In all three cases, the list address is set
to the next unlisted location in preparation for a subsequent L command. Upon encountering
an execution breakpoint, the list address is set to the current value of the program counter.
(See the G and T commands.) Again, long typeouts can be aborted by using the DEL key during
the list process.

7. The M {Move) Command. The M command allows block movement of program or
data areas from one location to another in memory. The form is:

Ms,f,d

where s is the start address of the move, f is the final address of the move, and d is the
destination address. Data is first moved from s to d, and both addresses are incremented. If s
exceeds f then the move operation stops, otherwise the move operation is repeated.

8. The R (Read) Command. The R command is used in conjunction with the I command
to read COM and HEX files from the disk into the transient program area in preparation for the
debug run. The forms are:

R

Rb

where b is an optional bias address which is added to each program or data address as it is
loaded. The load operation must not overwrite any of the system parameters from OOOH
through OffH (that is, the first page of memory). If bis omitted, then b=OOOO is assumed. The R
command requires a previous I command, specifying the name of a HEX or COM file. The load
address for each record is obtained from each individual HEX record, while an assumed load
address of 1 OOH is taken for COM files. Note that any number of R commands can be issued
following the I command to reread the program under test, assuming the tested program does
not destroy the default area at SCH. Further, any file specified with the filetype "COM" is
assumed to contain machine code in pure binary form (created with the LOAD or SAVE
command), and all others are assumed to contain machine code in Intel hex format (produced,
for example, with the ASM command).

Recall that the command:

DDT filename.filetype

which initiates the DDT program is equivalent to the commands:

DDT

-lfilename.filetype

-R

127

Whenever the R command is issued, DDT responds with either the error indicator ? (file cannot
be opened, or a checksum error occurred in a HEX file), or with a load message taking the form:

NEXT PC

nnnn pppp

where nnnn is the next address following the loaded program, and pppp is the assumed
program counter (IOOH for COM files, or taken from the last record if a HEX file is specified).

9. The S (Set) Command. The S command allows memory locations to be examined and
optionally altered. The form of the command is:

Ss

where s is the hexadecimal starting address for examination and alteration of memory. DDT
responds with a numeric prompt, giving the memory location, along with the data currently
held in the memory location. If the operator types a carriage return, then the data is not
altered. If a byte value is typed, then the value is stored at the prompted address. In either
case, DDT continues to prompt with successive addresses and values until either a period (.) is
typed by the operator, or an invalid input value is detected.

IO. The T (Trace) Command. The T command allows selective tracing of program
execution for I to 65535 program steps. The forms are:

T

Th r
In the first case, the CPU state is displayed, and the next program step is executed. The _____,
program terminates immediately, with the termination address displayed as:

*hhhh

where hhhh is the next address to execute. The display address (used in the D command) is
set to the value of Hand L, and the list address (used in the L command) is set to the value of
H and L, and the list address (used in the L command) is set to hhhh. The CPU state at program
termination can then be examined using the X command.

The second form of the T command is similar to the first, except that execution is traced
for n steps (n is a hexadecimal value) before a program breakpoint occurs. A breakpoint can be
forced in the trace mode by typing a DEL character. The CPU state is displayed before each
program step is taken in trace mode. The format of the display is the same as described in the X
command.

Note that program tracing is discontinued at the interface to CP /M, and resumes after
return from CP/M to the program under test. Thus, CP/M functions which access 1/0 devices,
such as the disk drive, run in real-time, avoiding 1/0 timing problems. Programs running in trace
mode execute approximately 500 times more slowly than in real time since DDT gets control
after each user instruction is executed. Interrupt processing routines can be traced, but it must
be noted that commands which use the breakpoint facility (G, T and U) accomplish the break
using an RST 7 instruction, which means that the tested program cannot use this interrupt
location. Further, the trace mode always runs the tested program with interrupts enabled,
which may cause problems if asynchronous interrupts are received during tracing.

Note also that the operator should use the DEL key to get control back to DDT during
trace, rather than executing an RST 7. This ensures that the trace for the current instruction is
completed before interruption.

128

c

11. The U (Un trace) Command. The U command is identical to the T command except
that intermediate program steps are not displayed. The untrace mode allows from 1 to 65535
(OFFFFH) steps to be executed in monitored mode, and is used principally to retain control of
an executing program while it reaches steady state conditions. All conditions of the T command
apply to the U command.

12. The X (Examine) Command. The X command allows selective display and alteration
of the current CPU state for the program under test. The forms are:

x
Xr

where r is one of the 8080 CPU registers:

c Carry Flag

z Zero Flag

M Minus Flag

E Even Parity Flag

I Interdigit Carry

A Accumulator

B BC register pair

D DE register pair

H HL register pair

s Stack pointer

P Program Counter

In the first case, the CPU register state is displayed in the format:

(0/1)

(0/1)

(0/1)

(0/1)

(0/1)

(0/FF)

(0-FFFF)

(0-FFFF)

(0-FFFF)

(0-FFFF)

(0-FFFF)

CfZfMfEflf A=bb B=dddd D=dddd H=dddd P=dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double byte quantity
corresponding to the register pair. The inst field contains the disassembled instruction which
occurs at the location addressed by the CPU state's program counter.

The second form allows display and optional alteration of register values, where r is one of
the registers given above (C, Z, M, E, I, A, B, D, H, S or P). In each case, the flag or register value
is first displayed at the console. The DDT program then accepts input from the console. If a
carriage return is typed, then the flag or register value is not altered. If a value in the proper
range is typed, then the flag or register value is altered. Note that BC, DE and HL are displayed
as register pairs. Thus, the operator types the entire register pair when B, C, or the BC pair is
altered.

Implementation Notes

The organization of DDT allows certain non-essential portions to be overlayed in order to
gain a larger transient program area for debugging large programs. The DDT program consists
of two parts: the DDT nucleus and the assembler/disassembler module. The DDT nucleus
is loaded over the CCP. Although it is loaded with the DDT nucleus, the assembler/disassembler
is overlayable unless used to assemble or disassemble.

In particular, the BDOS address at location 6H (address field of the JMP instruction at
location SH) is modified by DDT to address the base location of the DDT nucleus which, in turn,
contains a JMP instruction to the BDOS. Thus, programs which use this address field to size

129

memory see the logical end of memory at the base of the DDT nucleus rather than the base of
the BOOS.

The assembler/disassembler module resides directly below the DDT nucleus in the (~
Transient Program Area. If the A, L, T or X commands are used during the debugging process, ·
then the DDT program again alters the address field at 6H to include this module. This further
reduces the logical end of memory. If a program loads beyond the beginning of the
assembler/disassembler module, the A and L commands are lost (their use produces a ? in
response). The trace and display (T and X) commands list the inst field of the display in
hexadecimal, rather than as a decoded instruction.

An Example:

The following example shows an edit, assemble and debug for a simple program which
reads a set of data values and determines the largest value in the set. The largest value is taken
from the vector and stored into LARGE at the termination of the program.

ED SCANASM~ tab character I rubout
*I //rubout echo
--J t-1 QRG t-1 I OOH L-L ; ST ART OF TRANSIENT AREA J

MVI B,LEN ;LENGTH OF VECTOR TO sc~J
MVI C,O ;LARGER-RST VALUE SO FAR J

LOOP - • P - 0 - 0 - L LXI H,VECT ;BASE OF VECTOR,}
LOOP:t MOV A,M ;GETVALUEJ
Rubout SUB f_ ;LARGER VALUE INC? J
deletes JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUNQ \

_;_character NEW LARGEST VALUE, STORE IT TO C) N

MOV C,A
NFOUND: INX H ~ ;TO NEXT ELEMENT J

OCR B ;MORE TO SCAN?

7J
tfcT:
LEN
LARGE:
+z
*BOP -J

LOOP:

NFOUND:

JNZ LOOP ;FOR ANOTHER .J,)

END OF SCAN, STORE C J
MOV A,C ;GET LARGEST VALUE.\
STA LARGE ~
JMP 0 J ;REBOOT J

TEST DATA
DB
EQU
OS
END~

2,0,4,3,5,6, 1,5 J
$-VECT ;LENGTH J
I ;LARGEST VALUE ON EXIT -J

ORG I OOH ;ST ART OF TRANSIENT AREA

Create Source
Program - underlined
characters typed
by programmer
"J" represents carriage
return.

MVI B,LEN ;LENGTH OF VECTOR TO SCAN
MVI C,O ;LARGEST VALUE SO FAR
LXI H,VECT ;BASE OF Y£CTOR
MOV A,M ;GET VALUE
SUB C ;LARGER VALUE INC?
JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUND
NEW LARGEST VALUE, STORE IT TO C
MOV C,A
INX H
OCR B
JNZ LOOP

;TO NEXT ELEMENT
;MORE TO SCAN?
;FOR ANOTHER

130

(.•.

/

END OF SCAN, STORE C
MOV A,C ;GET LARGEST VALUE
STA LARGE
JMP 0 ;REBOOT

'
TEST DATA

VECT: DB 2, 0, 4, 3, 5, 6, 1, 5
LEN
LARGE:

EQU $-VECT ;LENGTH
DS 1 ;LARGEST VALUE ON EXIT
END

ASM SCANJ Start Assembler

CP /M ASSEMBLER - VER 1.0

0122
002H. USE FACTOR
END OF ASSEMBLY Assembly Complete - Look at Program Listing

TYPE SCAN .PRN
Code Address '-J Source Program

+ Machine Code l
0100 I ORG lOOH ;START OF TRANSIENT AREA
0100 0608 MVI B,LEN ;LENGTH OF VECTOR TO SCAN
0102 OEOO MVI C,O ;LARGEST VALUE SO FAR
0104 211901 LXI H,VECT ;BASE OF VECTOR
0107 7E LOOP: MOV A,M ;GET VALUE
0108 91 SUB C ;LARGER VALUE INC?
0109 020001 JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUND

OlOC
0100
OlOE
OlOF

4F
23
05
C20701

0112 79
0113 322101
0116 C30000

Code/data listing
truncated--...._

0119 0200040305
0008 -,
0121
0122 Value of

A> Equate

NEW LARGEST VALUE, STORE IT TO C
MOV C,A

NFOUND: INX H ;TO NEXT ELEMENT
;MORE TO SCAN?
;FOR ANOTHER

VECT:
LEN
LARGE:

OCR B
JNZ LOOP

END OF SCAN, STORE C
MOV A,C ;GET LARGEST VALUE
STA LARGE
JMP 0 ;REBOOT

TEST DATA
DB 2,0,4,3,5,6, 1,5
EQU $-VECT ;LENGTH
OS 1 ;LARGEST VALUE ON EXIT
END

131

DDT SCAN HE\~ Start Debugger using hex format machine code

l 6K DDT VER 1.0
NEXT PC next instruction
0121 0000 to execute at
~ PC=O

-X-J last load address +1 /

COZOMOEOIO A=OO B=OOOO 0=0000 H=OOOO S=OlOO P=OOOO OUT 7F
-XP \ -J Examine registers before debug run
P=OOOO lO°J Change PC to 100

-X~ Look at registers again

Next instruction
to execute at PC=100

I
PC changed

t
COZOMOEOIO A=OO B=OOOO 0=0000 H=OOOO 5=0100 P=OlOO MYI B,00
-LIOOJ

0100 MYI B,08
0102 MYI C,00
0104. LXI H,0119
0107 MOY A,M
0108 SUB c Disassembled Machine

0109 JNC 0100
OlOC MOY C,A
0100 INX H
OlOE OCR B
OIOF JNZ 0107
0112 MOY A,C
-L -J
0113 STA 0121
0116 JMP 0000
0119 STAX B
OllA NOP
OllB INR B
OllC INX B
0110 OCR B
OllE MYI B,01
0120 OCR B
0121 l:XI D,2200
0124 LXI H,0200

Code at 100H
(See Source Listing
for comparison)

A little more
machine code
(note that program
ends at location 116
with a JMP to 0000)

-Al 16.> enter inline assembly mode to change the JMP to 0000 into a RST 7, which

0116 RST ~\ ~ill cause the program under test to return to DDT if 116H
" 1s ever executed.

011 ~ (single carriage return stops assemble mode)

-LI 13-J List Code at 113H to check that RST 7 was properly inserted

0113 STA 0121
0116 RST 07 - in place of JMP

132

(

(/\

0117 NOP
0118 NOP
0119 STAX B
OllA NOP
OllB INR B
OllC INX B

-x -J Look at registers

COZOMOEOIO A=OO B=OOOO 0=0000 H=OOOO S=OlOO P=OlOO MVI B,08
-T -J Execute Program for one stop. initial CPU state, before J is executed

COZOMOEOIO A=OO B=OOOO 0=0000 H=OOOO S=OlOO P=OlOO MVI B,08*0102

-TJ Trace one step again (note 08H in B) automatic bfeakpoint

COZOMOEOIO A=OO B=0800 0=0000 H=OOOO S=OlOO P=0102 MVI C,00*0104
-T -J Trace again (Register C is cleared)

COZOMOEOIO A=OO B=0800 0=0000 H=OOOO S=OlOO P=Ol04 LXI H,0119*0107
-T3 _:.J Trace three steps

COZOMOEOIO A=OO B=0800 0=0000H=Ol19 S=OlOO P=0107 MOV A,M
COZOMOEOIO A=02 B=0800 0=0000H=Ol19 S=OlOO P=0108 SUB C
COZOMOEOll A=02 B=0800 0=0000H=Ol19 S=OlOO P=Ol09 JNC 0100*0100
-0119 ;J I

Automatic breakpoint at 10DH
Display memory starting at 119H.

~ 0119 00 04 03 OS 06 01
Program data
.......

0120 11 00 22 21 00 02 7E EB 77 13 23 EB OB
0130 27 01 C3 03 29 00 00 00 00 00 00 00 00
0140 00 00 00 00 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 00 00 00 00 00 00 00 00
0160 00 00 00 00 00 00 00 00 00 00 00 00 00
0170 00 00 00 00 00 00 00 00 00 00 00 00 00
0180 00 00 00 00 00 00 00 00 00 00 00 00 00
0190 00 00 00 00 00 00 00 00 00 00 00 00 00
OlAO 00 00 00 00 00 00 00 00 00 00 00 00 00
OIBO 00 00 00 00 00 00 00 00 00 00 00 00 00
OlCO 00 00 00 00 00 00 00 00 00 00 00 00 00
-x Current CPU state -J \
COZOMOEOll A=02 B=0800 0=0000H=Ol19 S=OlOO P=OlOO INX H
-TS _!_J Trace 5 steps from current CPU State

COZOMOEOll A=02 B=0800 0=0000H=Ol19 S=OlOO P=OlOO INX H
COZOMOEOll A=02 B=0800 0=0000 H=Ol lA S=OlOO P=OlOE OCR B
COZOMOEOll A=02 B=0700 0=0000 H=Ol lA S=OlOO P=OlOF JNZ 0107
COZOMOEOll A=02 B=0700 0=0000 H=Ol lA S=OlOO P=Ol07 MOV A,M
COZOMOEOll A=OO B=0700 0=0000 H=O l lA S=O 100 P=O 108 SUB C*O 109

IT§] Bl "! W$ 0
00 00 ')

00 00
00 00
00 00 Data is displayed

00 00 in ASCII with a "•"

00 00 in the position of

00 00 non-graphic

00 00 characters

00 00
00 00

-US, 'Automatic
K Trace without listing intermediate states Breakpoint

COZOMOEOlll A=OO B=0700 0=0000 H=Ol lA S=OlOO P=Ol09 JNC 0100*0108

-!S:_J CPU State at end of US .J
COZOMOEOlll A=04 B=0600 0=0000 H=Ol IB S=OlOO P=Ol08 SUB C

133

*0116

-~J

Run Program from current PC until completion (in real time)
breakpoint at 116H, caused by executing RST 7 in machine code
CPU state at end of Program

COZlMOElll A=OO B=OOOO 0=0000 H=0121 S=OlOO P=Ol 16 RST 07
-XPJ examine and change Program counter

P=0116 lOOJ

-XJ

COZlMOElll A=OO B=OOOO D=OOOO H=0121 S=OlOO P=OlOO MVI B,08
-Tl~ Trace 10 (hexadecimal) steps
first aata element current largest value subtract tor comparison A<C
COZlMOElll A=OO B=OOOO D=OOOO H=0121 S=OlOO P=OlOO MVI B,O~
COZlMOElll A=OO B=0800 0=0000 H=0121 S=OlOO P=0102 MVI C,00
COZlMOElll A=OO B=0800 0=0000 H=0121 S=OlOO P=0104 LXI H,0119
COZlMOElll A=OO 8=0800 0=0000H=Ol19 S=OlOO P=Ol07 MOV A,M
COZlMOElll A 02 B=O 0 0=0000H=Ol19 S=OlOO P=0108 SUB C
COZOMOEOll A=U~ 8=0800 D=OOOO H=Ol 19 S=OlOO P=0109 JNC 0100
COZOMOEOll A=02 B=0800 0=0000H=Ol19 S=OlOO P=OlOD INX_H ___ _
COZOMOEOll A=02 8=0800 0=0000 H=Ol lA S=OlOO P=OlOE OCR B
COZOMOEOll A=02 B=0700 0=0000 H=Ol lA S=OlOO P=OlOF JNZ 0107
COZOMOEOll A=02 B;:::0700 0=0000 H=Ol lA S=OlOO P=Ol07 MOV A,M
COZOMOEOll A=:OO 8=0700 0=0000 H=Ol lA S=OlOO P=0108 SUB C
COZlMOElll A=OO B=0700 0=0000 H=Ol lA S=OlOO P=Ol09 JNC 0100
COZlMOElll A=OO B=0700 D=OOOO H=Ol lA S=OlOO P=OlOD INX H
COZlMOElll A=OO B=0700 D=OOOO H=Ol lB S=OlOO P=OlOE OCR B
COZOMOE 111 A=OO 8=0600 D=OOOO H=O 118 S=O 100 P=O lOF JNZ 0107
COZOMOElll A=OO B=0600 0=0000 H=Ol lB S=OlOO P=0107 MOV A,M*0108

-A109J Insert a "hot patch" int0 Program should have moved the
the machine code value from A into C since A>C.

0109 JC 100~ to change the Since this code was not executed,
JNC to JC it appears that the JNC should

have been a JC instruction OlOCJ

-GO -'.i}
Stop DDT so that a version of
the patched Program can be saved

SAVE 1 SCAN.COMJ Program resides on first page, so save 1 page.

A>DDT SCAN.COMJ restart DDT with the saved memory image to continue testing

16K DDT VER 1.0
NEXT PC
0200 0100
-LlOOJ List some code

0100
0102
0104
0107
0108
0109

MVI
MVI
LXI
MOV
SUB
JC

B,08
C,00
H,0119
A,M
c
0100 - Previous patch is present in X.COM

134

- --------- -------- --

(
010C MOY C,A
0100 INX H
OlOE OCR B
OlOF JNZ 0107
0112 MOY A,C
-XP -J
P=OlOOJ

Trace to see how patched version operates
-TIO
-J Data is moved from A to C

COZOMOEOIO A=OO B=OOOO 0=0000 H=OOOO S=OlOO P=OlOO MY! B,08
COZOMOEOIO A=OO B=0800 0=0000 H=OOOO S=OlOO P=Ol02 MY! C,00
COZOMOEOIO A=OO B=0800 0=0000 H=OOOO S=OlOO P=Ol04 LXI H,0119
COZOMOEOIO A=OO B=0800 0=0000H=Ol19 S=OlOO P=Ol07 MOY A,M
COZOMOEOIO A=02 B=0800 0=0000H=Ol19 S=OlOO P=Ol08 SUB C
COZOMOEOll A=02 B=0800 O=:=OOOO H=Oll9 S=OlOO P=Ol09 JC 0100
COZOMOEOll A=02 B=0800 0=0000H=Ol19 S=OlOO P=OlOC MOY C,A
COZOMOEOll A=02 B=O 2

1
0=0000H=Ol19 S=OlOO P=OlOO INX H

COZOMOEOll A=02 B=0802 0=0000 H=Ol lA S=OlOO P=OlOE OCR B
COZOMOEOll A=02 B=0702 0=0000 H=Ol lA S=OlOO P=OlOF JNZ 0107
COZOMOEOll A=02 B=0702 0=0000 H=Ol lA S=OlOO P=Ol07 MOY A,M
COZOMOEO!l A=OO B=0702 0=0000 H=Ol lA S=OlOO P=Ol08 SUB C
ClZOMlEOIO A=FE B=0702 0=0000 H=Ol lA S=OIOO P=Ol09 JC 0100
ClZOMlEOIO A=FE B=0702 0=0000 H=Ol lA S=OlOO P=OlOO INX H
ClZOMlEOIO A=.FE B=0702 0=0000 H=Ol lB S=OlOO P=OlOE OCR B
ClZOMOElll A=FE B=0602 0=0000 H=Ol lB S=OlOO P=OIOF JNZ 0107*0107

-XJ breakpoint after 16 steps/

ClZOMOElll A=FE B=0602 0=0000 H=Ol lB S=OIOO P=Ol07 MOY A,M

-G,108J Run from current PC and breakpoint at 108H

*0108
-x -J

next data item

i
ClZOMOElll A=04 B=0602 0=0000H=Ol18 S=OlOO P=Ol08 SUB C
-T -J Single step for a few cycles

ClZOMOElll A=04 B=0602 0=0000 H=Ol lB S=OlOO P=Ol08 SUB C*Ol09
-T -J
COZOMOEOll A=02 B=0602 0=0000 H=Ol lB S=OlOO P=Ol09 JC OlOO*OlOC
-x -J
COZOMOEOll A=02 B=0602 0=0000 H=Ol lB S=OlOO P=OlOC MOY C,A
-G Run to completion -J
*0116
-X -J
COZlMOElll A=03 B=0003 0=0000 H=Ol21 S=OlOO P=Ol 16 RST 07
-Sl21J look at the value of "LARGE"

0121 03J Wrong Value!

135

0122 00.J

1023 22.J

0124 2~

0125 O°.J

0126 02 \ End of the S Command "/ .

0127 7E.:...J

-LIOOJ

0100
0102
0104
0107
0108
0109
OlOC
0100
OlOE
OlOF
0112

-L-.J

MVI
MVI
LXI
MOV
SUB
JC
MOV
INX
OCR
JNZ
MOV

B,08
C,00
H,0119
A,M
c
0100
C,A
H
B
0107
A,C

0113 STA 0121
0116 RST 07
0117 NOP
0118 NOP
0119 STAX B
onA NOP
01 lB INR B
OllC INX B
0110 OCR B
OllE MVI B,01
0120 OCR B
-XP

Review the Code

P=Ol 16 lOOJ Reset the PC

-TJ Single Step, and watch data values

COZlMOElll A=03 B=0003 0=0000 H=0121 S=OlOO P=OlOO MVI B,08*0102
-T -J
COZlMOElll A=03 B=0803 0=0000 H=0121 S=OlOO P=0102 MVI C,00*0104

-T J Count set'- /largest set"

COZlMOElll A=03 B=0800 0=0000 H=0121 S=OlOO P=Ol04 LXI H,0119*0107

-T-J /base address of data set

COZlMOElll A=03 B=0800 0=0000H=Ol19 S=OlOO P=0107 MOVA, M*0108

136

·---·-~---~- ---

(

·~.

(

----------···-····--· --·-··

-T --J /first data item brought to A

COZlMOElll A=02 B=0800 0=0000H=Ol19 S=OlOO P=Ol08 SUB C*Ol09
-T -J
COZOMOEOll A=02 B=0800 0=0000 H=0119 S=OlOO P=Ol09 JC OlOO*OlOC
-T
-J

COZOMOEOll A=02 B=0800 0=0000H=Ol19 S=OlOO P=OlOC MOV C,A*OlOO

-T-J /first data item moved to C correctly

COZOMOEOll A=02 B=0802 0=0000H=Ol19 S=OlOO P=OlOO INX H*OlOE
-T -J
COZOMOEOll A=02 B=0802 0=0000 H=Ol lA S=OlOO P=OlOE OCR B*OlOF
-T -J
COZOMOEOll A=02 B=0702 0=0000 H=Ol lA S=OlOO P=OlOF JNZ 0107*0107
-T -J
COZO~OEOll A=02 B=0702 0=0000 H=Ol lA S=OlOO P=0107 MOV A,M*0108
-T

--J second data item brought to A
/

COZOMOEOll A=OO B=0702 0=0000 H=Ol lA S=OlOO P=Ol08 SUB C*Ol09
-T -J subtract destroys data value which was loaded!

/
ClZOMIEOIO A=FE B=0702 0=0000 H=Ol lA S=OlOO P=Ol09 JC 0100*0100
-T -J
ClZOMIEOIO A=FE B=0702 0=0000 H=Ol lA S=OlOO P=OlOO INX H*OlOE
-LIOOM'

0100 MVI
0102 MVI
0104 LXI
0107 MOV
0108 SUB
0109 JC
OlOC MOV
0100. INX
OlOE OCR
OlOF JNZ
0112 MOV
-Al08:J

0108 CMP CJ

0109J

B,08
C,00
H,0119
A,M
c -- This should have been a CMP so that register A
0100 would not be destroyed

C,A
H
B
0107
A,C

hot patch at 108H changes SUB to CMP

-GO
--J

stop DDT for SAVE

137

SAVE 1 SCAN.COM J

A>DDT SCAN.COM J

16K DDT VER 1.0
NEXT PC
0200 0100
-XP
--,)

P=OIOOJ

-L116J

0116 RST 07

Save memory image
Restart DDT

0117. NOP
0118 NOP
0119 STAX B
OllA NOP

Look at code to see if it was properly loaded
(long typeout aborted with rubout)

- (rubout}

Run from 100H to completion

*0116

-XC ') Look at Carry (accidental typo)

ClJ

-X Look at CPU state -J
ClZlMOElll A=06 8=0006 D=OOOO H=0121 S=OlOO P=Ol 16 RST 07

-S121;J Look at "Large" - it appears to be correct.

0121 06J

0122 OOJ

0123 22 "J

-GO stop DDT -.J
ED SCAN.ASM J Re-edit the source program, and make both changes

*NSUBJ
*OL T 'J Ctl-Z

SUB I c
*SSUBtZCMPtzoL 1.: \

CMP ~ C
*

;LARGER VALUE IN C?

;LARGER VALUE IN C?

JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUND
* SNCtzdZOL T \

JC " NFOUND ;JUMP IF LARGER VALUE NOT FOUND
*F -J

138

(
'__ ..

/·
i

\.__

c

ASM SCAN.AAZ;J Re-assemble, selecting source from disk A
hex to disk A

CP/M ASSEMBLER - VER 1.0 print to Z (selects no print file)

0122
002H USE FACTOR
END OF ASSEMBLY

DDT SCAN.HEX J

16K DDT VER 1.0
NEXT PC
0121 0000
-Lll6J

Re-run debugger to check changes

0116 JMP 0000 check to ensure end is still at 116H
0119 STAX B
OllA NOP
OllB INR B
- (rubout)

-GlOO, l 16;J Go from beginning with breakpoint at end

*0116 breakpoint reached

-Dl21;J Look at "LARGE"

/correct value computed

0121 @ 00 22 21 00 02 7E EB 77 13 23 EB
0130 C2 27 01 C3 03 29 00 00 00 00 00 00
0140 00 00 00 00 00 00 00 00 00 00 00 00

- (rubout) aborts long typeout

-GOJ stop DDT, debug session complete

139

08
00
00

78 Bl "! W#X
00 00 00 ')

00 00 00

Source
File
x.y

I
I

After 1
Edit I (E)

I

t
Backup

File

x.BAK

Figure 32 Overall ED Operation

1 \

2

3 ~
\

Source File

First Line , \

\ Appended · \ \
\ .

\ Lines

',-',-\'

Source
Libraries

Append Write
(A) (W)

Memory Buffer

Insert Type
(I) (T)

0

Memory Buffer

1 , \ First Lin~ \ '

\ \ \ \ \
2 ' Buffered .

\ . \ \
Text

\ \ \ \
\ --SP 1---------'

L. MP-+- \ , \ ' \ '
I

Temporary
File

x.$$$

I
I

After 1

Edit : (E)

+

New
Source

File
x.y

2

3

TP-

U d
: :------ext t-1 ------~--1

nprocesse Free
Source 1 Append 1 Memory

Next Write

Lines 1 Space
I I

I L ___ - - - __ .J I I .._ ________ _.

Figure 33 Memory Buffer Organization

Memory Buffer

first --------------------------------<er> <If>
line

--------------------------------<er> <If>

~~~~n~ ----------------rcP:r·------------<cr> <If> 

last --------------------------------<er> <If> 
line 

Figure 34 Logical Organization of Memory Buffer 

140 

----. ----- -----

Temporary File 

\ First Line 
\ \ 

\ ' ' \ \ Processed ' \ 

\ Text \ \ \ \ \ \ 
\ \ - \ \ 

\ \ \ \ \ \ \ 

Free File 
Space 1 

I 
L _______ J 

( 



c 

0 

The Text Editor 
ED is the context editor for CP /M, and is used to create and alter CP /M source files, such 

as assembler files. ED is initiated in CP /M by typing: 

ED filename 

ED filename.filetype 

In general, ED reads segments of the source file given by filename or filename.filetype into 
central memory, where the file is manipulated by the operator, and subsequently written back 
to disk after alterations. If the source file does not exist before editing, it is created by ED and 
initialized to er.-.j)ty. The overall operation of ED is shown in figure 32. 

ED Operation 

ED operates upon the source file, denoted in figure 32, by x.y, and passes all text through a 
memory buffer where the text can be viewed or altered. Text material which has been edited is 
written onto a temporary work file under command of the operator. Upon termination of the 
edit, the memory buffer is written to the temporary file under command of the operator. Upon 
termination of the edit, the memory buffer is written to the temporary file, followed by any 
remaining (unread) text in the source file. The name of the original file is changed from x.y to 
x.BAK so that the most recent previously edited source file can be reclaimed if necessary. (See 
the CP /M commands ERASE and RENAME). The temporary file is then changed from x.$$$ to 
x.y which becomes the resulting edited file. 

The memory buff er is logically between the source file and working file as shown in figure 
33. 

Text Transfer Functions 

Given that n is an integer value in the range 0 through 65535, the following ED commands 
transfer lines of text from the source file through the memory buff er to the temporary (and 
eventually final) file. 

NOTE: The ED program accepts both lower and upper case ASCII characters as input from the 
console. Single letter commands can be typed in either case. The U command can be issued to 
cause ED to translate lower case alphabetics to upper case as characters are filled to the 
memory buffer from the console. Characters are echoed as typed without translation, however. 
The -U command causes ED to revert to "no translation" mode. ED starts with an assumed -U 
in effect. 

COMMAND 
FORM* 

nA 

nW 

E 

H 

RESULT 
Appends the next n unprocessed source lines from the source file at SP to 
the end of the memory buffer at MP. Increments SP and MP by n. 

Writes the first n lines of the memory buffer to the temporary file free space. 
Shifts the remaining lines n+l through MP to the top of the memory buffer. 
Increments TP by n. 

Ends the edit. Copies all buffered text to temporary file, and copies all 
unprocessed source lines to the temporary file. Renames files as described 
previously. 

Moves to head of new file by performing automatic E command. Temporary 
file becomes the new source file, the memory buffer is emptied and a new 
temporary file is created (equivalent to issuing an E command, followed by 
a reinvocation of ED using x.y as the file to edit). 

141 



COMMAND 
FORM* RESULT 

0 Returns to original file. The memory buffer is emptied, the temporary file is (,, 
deleted, and the SP is returned to position 1 of the source file. The effects of 
the previous editing commands are thus nullified. 

Q Quits edit with no file alterations, return to CP /M. 

*Each command is followed by a carriage return. 
A number of special cases should be considered. If the integer n is omitted in any ED 

command where an integer is allowed, then 1 is assumed. Thus, the commands A and W 
append one line and write one line, respectively. In addition, if a pound sign (#) is given in 
place of n, then the integer 65535 is assumed (the largest value of n which is allowed). Since 
most reasonably sized source files can be contained entirely in the memory buffer, the 
command #A is often issued at the beginning of the edit to read the entire source file to 
memory. Similarly, the command #W writes the entire buffer to the temporary file. Two special 
forms of the A and W commands are provided as a convenience. The command OA fills the 
current memory buffer to at least half-full, while OW writes lines until the buffer is at least half 
empty. It should also be noted that an error is assumed if the memory bufffer size is exceeded. 
You may then enter any command (such as W) which does not increase memory requirements. 
The remainder of any partial line not read during the overflow will be brought into memory on 
the next successful append. 

Memory Buffer Organization 

The memory buffer can be considered a sequence of source lines brought in with the A 
command from a source file. The memory buffer has an associated (imaginary) character 

'
( pointer CP which moves throughout the memory buffer under command of the operator. The 

memory buffer appears logically as shown in figure 34. The dashes represent characters of the .\____, 
source lines of indefinite length, terminated by carriage return (er) and line feed (If) 
characters, and rCPJ represents the imaginary character pointer. Note that the CP is always 
located ahead of the first character of the first line, behind the last character of the last line, 
or between two characters. The current line CL is the source line which contains the CP. 

Memory Buffer Operation 

Upon initiation of ED, the memory buffer is empty (CP is both ahead and behind the first 
and last character). The operator may either append lines (A command) from the source file, 
or enter the lines directly from the console with the insert command: 

I (carriage return) 

ED then accepts any number of input lines, where each line terminates with a er (the If is 
supplied automatically), until a CTRL-Z is typed by the operator. The CP is positioned after the 
last character entered. The sequence: 

I (er) 

NOW IS THE (er) 

TIME FOR (er) 

ALL GOOD MEN (er) 

CTRL-Z 

142 



leaves the memory buffer as shown below: 

NOW IS THE (er) (If) 

TIME FOR (er) (If) 

ALL GOOD MEN (er) (If) 

Various commands can then be issued which manipulate the CP or display source text in the 
vicinity of the CP. The commands shown below with a preceding n indicate that an optional 
unsigned value can be unsigned, or have an optional preceding plus or minus sign. As before, 
the pound sign(#) is replaced by 65535. If an integer n is optional, but not supplied, then n=l 
is assumed. Finally, if a plus sign is optional, but none is specified, then + is assumed. 

COMMAND 
FORM* 
+B 

+nC 

+nD 
+nk 

+nL 

±nT 

±n 

RESULT 
Moves CP to beginning of memory buffer if +, and to bottom if -. 

Moves CP by ±n characters (toward front of buffer if + ), counting the (er) 
(If) as two distinct characters. 

Deletes n characters ahead of CP if plus, and behind CP if minus. 

Kills (removes) ±n lines of source text using CP as the current reference. If 
CP is not at the beginning of the current line when K is issued, then the 
characters before CP remain if + is specified, while the characters after CP 
remain if - is given in the command. 

If n= 0 then moves CP to the beginning of the current line (if it is not already 
there). If n does not equal 0, then first moves the CP to the beginning of 
the current line, and then moves it to the beginning of the line which is n 
lines down (if +) or up (if - ). The CP will stop at the top or bottom of the 
memory buffer if too large a value of n is specified. 

If n=O then types the contents of the current line up to CP. If n=l then 
types the contents of the current line from CP to the end of the line. If n is 
greater than 1 then types the current line along with n-1 lines which follow, 
if + is specified. Similarly, if n is greater than I and - is given, types the 
previous n lines, up to the CP. The break key can be depressed to abort long 
type-outs. 

Equivalent to ±nLT, which moves up or down and types a single line. 

*Each command is followed by a carriage return. 

Command Strings 
Any number of commands can be typed continuously (up to the capacity of the CP /M 

console buffer), and are executed only after the carriage return is typed. Thus, the operator 
may use the CP /M console command functions to manipulate the input command: 

DEL 

CTRL-U 

CTRL-C 

CTRL-E 

Remove the last character 

Delete the entire line 

Re-initialize the CP /M System 

Return carriage for long lines without transmitting buffer 
(max 128 characters) 

143 



Suppose the memory buffer contains the characters shown in the previous section, with 
the CP following the last character of the buffer. The command strings shown below produce 
the results shown to the right. 

COMMAND STRING EFFECT RESULTING MEMORY BUFFER 

1. B2T(cr) Moves to beginning 
@ 

NOW IS THE( er) (If) 
of buffer and types TIME FOR( er) (If) 
2 lines: 
NOW IS THE ALL GOOD MEN( er) (If) 
TIME FOR 

2. 5COT(cr) Moves CP 5 characters and types NOW l@J S the( er) (If) 
the beginning of the line NOW I 

3. 2L-T(cr) Moves two lines down NOW IS THE( er) (If) 
and types previous 

@ 
TIME FOR( er) (If) 

line TIME FOR ALL GOOD MEN( er) (If) 

4. -L#K(cr) Moves up one line, NOW IS THE (er) (If) @ 
deletes 65535 lines 
which follow 

5. l(cr) Inserts two lines NOW IS THE( er) (lf) 
TIME TO( er) of text TIME TO( er) (If) @ INSERT( er) INSERT( er) (If) 

CTRL-Z 

6. -2L#T(cr) Moves up two lines, NOW IS THE( er) (If) @ 
and types 65535 TIME TO (er) (If) 
lines ahead of CP 
NOW IS THE INSERT( er) (If) 

7. (er) Moves down one line NOW IS THE( er) (If) 
and types one line TIME TO( er) (If) @ 
INSERTS INSERT( er) (If) 

Text Search and Alteration 

ED also has a command which locates strings within the memory buffer. The command 
takes the form: 

{
(er) } 

nF c1 c2 ... ck (CTRL-Z) 

where c 1 through ck represent the characters to match followed by either a (er) or CTRL-Z. ED 
starts at the current position of CP and attempts to match all k characters. The match is 
attempted n times, and if successful, the CP is moved directly after the character ck. If the n 
matches are not successful, the CP is not moved from its initial position. Search strings can 
include CTRL-L, which is replaced by the pair of symbols (er) (If). 

144 



The following commands illustrate the use of the F command: 

COMMAND 
STRING 
BUFFER 

I. 

2. 

3. 

FS T(cr) 

FI (up 
arrow up) 
OTT 

EFFECT 

Moves to beginning 
and types entire 
buffer 

Finds the end of 
the string S T 

Finds the next I 
and types to the 
CP, then types the 
remainder of the current 
line: TIME FOR 

RESULTING MEMORY 

NOW IS THE( er) (If) 
TIME FOR( er) (lf) 
ALL GOOD MEN( er) (If) 

NOWIST @ 
HE(cr) (If) 

NOW IS THE (er) (If) 
TI rCPJ ME FOR( er) (If) 

ALL' GOOD MEN( er) (If) 

An abbreviated form of the insert command is also allowed, which is often used in 
conjunction with the F command to make simple textual changes. The form is: 

I c1c2 ... en (CTRL-Z) or 

I c1c2 ... cn(cr) 

where c1 through c2 are characters to insert. If the insertion string is terminated by a (CTRL-Z), 
the characters c1 through en are inserted directly following the CP, and the CP is moved 
directly after character en. The action is the same if the command by a (er) except that a 
(er )(If) is automatically inserted into the text following character en- Consider the following 
command sequences as examples of the F and I commands: 

COMMAND 
STRING 

BITHIS IS (CTRL-Z) 
(er) 

EFFECT 

Inserts THIS IS 
at the beginning 
of the text 

FTIME (CTRL-Z)-4DIPLACE(CTRL-Z)( er) 

Finds TIME and deletes it; 
then inserts PLACE 

3FO(CTRL-Z)-3DICHANGES(CTRL-Z)(cr) 

RES UL TING MEMORY BUFFER 

THIS IS NOW THE( er )(If) 

@ 

TIME FOR( er )(lf) 
ALL GOOD MEN( er )(If) 

THIS IS NOW THE( er )(If) 

PLACE@ for (er )(If) 

ALL GOOD MEN( er )(If) 

THIS IS NOW THE( er )(If) 

Finds third occurrence PLACE FOR( er )(If) 
of O (the second 0 in GOOD), ALL CHANGES@Ccr)(lf) 
deletes previous 3 characters, then 
inserts CHANGES 

145 



COMMAND 
STRING 

-8CISOURCE( er) 

EFFECT 

Moves back 8 characters 
And inserts the line 
SOURCE (er )(If) 

RESULTING MEMORY BUFFER 

THIS IS NOW THE( er )(If) 
PLACE FOR( er )(If) 
ALL SOURCE( er )(If) 

rCPJ CHANGES(cr)(lf) 

ED also provides a single command which combines the F and I commands to perform 
simple string substitutions. The command takes the form: 

{ (er) } 

CTRL-Z 

and has exactly llie same Fe~::.:::::::::~::d:~.:~sm~~:7-z} 
a total of n times. That is, ED searches the memory buffer starting at the current position of CP 
and successively substitutes the second string for the first string until the end of buffer, or until 
the substitution has been performed n times. 

As a convenience, a command similar to F is provided by ED which automatically appends 

and writes lines as llie seMch proce::·c::.f~km i{c~:Z} 

which searches the entire source file for the nth occurrence of the string c1c2···ck (recall the F 
fails if the string cannot be found in the current buffer). The operation of the N command is 
precisely the same as F except in the case that the string cannot be found within the current 
memory buffer. In this case, the entire memory contents is written (an automatic #Wis issued). 
Input lines are then read until the buffer is at least half full, or the entire source file is 
exhausted. The search continues in this manner until the string has been found n times, or until 
the source file has been completely transferred to the temporary file. 

A final line editing function, called the juxtaposition command, takes the form: 

{ 
(er) } 

n J c 1c2 ... ck(CTRL-Z) d 1d2 ... dm(CTRL-Z) eie2···eq CTRL-Z 

with the following action applied n times to the memory buffer: search from the current CP for 
the next occurrence of the string c1c2···ck If found,jrysert the string d1,d2···,dm, and move CP 
to follow dm· Then delete all characters followiqg CP up to (but not including) the string 
e1 ,e2,•··eq, leaving CP directly after dm. If e 1 ,e2, ... eq cannot be found, then no deletion is 
made. If the current line is: 

rCPJ NOW IS THE TIME( er )(If) 

Then the command: 

1W ( CTRL-Z)WHA T( CTRL-Z)( CTRL·Z) 1 (er) 

Results in: 

NOW WHAT @ (cr)(lf) 

146 



(~ 

c: 

Recall that ( CTRL-Z) represents the pair (er )(If) in search and substitute strings. 
It should be noted that the number of characters allowed by ED in the F, S, N and J 

commands is limited to 100 symbols. 

Source Libraries 

ED also allows the inclusion of source libraries during the editing process with the R 
command. The form of this command is 

Rf 1 f2··.fn(CTRL-Z)z or 

R f1f2 .. .fn(cr) 

where f1f2 ... fn is the name of a source file on the disk with an assumed filetype of LIB. ED 
reads the specified file, and places the characters into the memory buffer after CP, in a manner 
similar to the I command. Thus, if the command: 

RMACRO(cr) 

is issued by the operator, ED reads from the file MACRO.LIB until the end-of-file, and 
automatically inserts the characters into the memory buffer. 

Repetitive Command Execution 

The macro command M allows the ED user to group ED commands together for repeated 
evaluation. The M command takes the form: 

{ 
(er) } 

CTRL-Z 

where c 1 c2···ck represent a string of ED commands, not including another M command. ED 
executes the command string n times if n> 1. If n=O or 1, the command string is executed 
repetitively until an error condition is encountered. (For example, the end of the memory buffer 
is reached with· an F command.) 

As an example, the following macro changes all occurrences of GAMMA to DEL TA within 
the current buffer, and types each line which is changed: 

MF GAMMA( CTRL-Z)-5DIDEL TA( CTRL-Z)OTT( er) 

or equivalently 

MSGAMMA( CTRL-Z)DEL TA( CTRL-Z)OTT( er) 

ED Error Conditions 

On error conditions, ED prints the last character read before the error, along with an error 
indicator: 

? Unrecognized command 

> Memory buffer full (use one of the commands D, K, N, Sor W to 
remove characters), F, N or S strings too long. 

# 

0 

Cannot apply command the number of times specified (for 
example, in F command) 

Cannot open LIB file in R command 

147 



---------·----·--·-··-~-

Cyclic redundancy check (CRC) information is written with each output record under CP/M 
in order to detect errors on subsequent read operations. If a CRC error is detected, CP /M will 
~e ( 

PERM ERR DISK X 

where x is the disk drive. The operator can choose to ignore the error by typing any character 
at the console. (In this case, the memory buffer data should be examined to see if it was 
incorrectly read.) Or, the user can reset the system and reclaim the backup file, if it exists. The 
file can be reclaimed by first typing the contents of the BAK file to ensure that it contains the 
proper information: 

TYPE X.BAK (er) 

where x is the file being edited. Then remove the primary file: 

ERAx.y (er) 

and rename the BAK file: 

REN x.y=x.BAK (er) 

The file can then be re-edited, starting with the previous version. 

Control Characters and Commands 

The following table summarizes the control characters and commands available in ED: 

CONTROL CHARACTER FUNCTION 

CTRL-C 

CTRL-E 

CTRL-1 

CTRL-L 

CTRL-U 

CTRL-Z 

DEL 

Break 

COMMAND 

nA 

±8 

±nC 

±nD 

E 

nF 

H 

I 

System reboot 

Physical (cr)(lf) (not actually entered in command) 

Logical tab (columns 1, 8, 15, ... ) 

Logical (cr)(lf) in search and substitute strings 

Line delete 

String terminator 

Character delete 

Discontinue command (for example, stop typing) 

Summary of Commands 

FUNCTION 

Append lines 

Begin bottom of buff er 

Move character positions 

Delete characters 

End edit and close files (normal end) 

Find string 

End edit, close and reopen files 

Insert characters 

148 



(_ 

(~ 

( ' 

/ 

COMMAND 

nJ 

±nK 

±nL 

nM 

nN 

0 

±nP 

Q 
R 

nS 

±nT 

±U 

nW 

nZ 

±n (er) 

FUNCTION 

Place strings in juxtaposition 

Kill lines 

Move down/up lines 

Macro definition 

Find next occurrence with autoscan 

Return to original file 

Move and print pages 

Quit with no file changes 

Read library file 

Substitute strings 

Type lines 

Translate lower to upper case if U; no translation if -U 

Write lines 

Sleep 

Move and type ( ±nL T) 

Line Numbers 

ED produces absolute line number prefixes when the V (Verify Line Numbers) command is 
issued. Following the V command, the line number is displayed ahead of each line in the format: 

nnnnn: 

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer is empty, 
or if the current line is at the end of the memory buffer, then nnnnn appears as five blanks. 

The user may reference an absolute line number by preceding any command by a number 
followed by a colon, in the same format as the line number display. In this case, the ED 
program moves the current line reference to the absolute line number, if the line exists in the 
current memory buffer. Thus, the command 

345:T 

is interpreted as move to absolute line 345, and type the line. Note that absolute line 
numbers are produced only during the editing process, and are not recorded with the file. In 
particular, the line numbers will change following a deleted or expanded section of text. 

The user may also reference an absolute line number as a backward or forward distance 
from the current line by preceding the absolute line number by a colon. Thus, the command 

:400T 

is interpreted as type from the current line number through the line whose absolute 
number is 400. Note that absolute line references of this sort can precede any of the standard 
Ed commands. 

149 



Free Space Interrogation 

A special case of the V command (OV) prints the memory buffer statistics in the form: 

free/total 

where free is the number of free bytes in the memory buffer (in decimal), and total is the size 
of the memory buffer. 

Block Move Facility 

ED also includes a "block move" facility implemented through the x (Xfer) command. The 
form 

nX 

transfers the next n lines from the current line to a temporary file called 

X$$$$$$$.LIB 

which is active only during the editing process. In general, the user can reposition the current 
line reference to any portion of the source file and transfer lines to the temporary file. The 
transferred lines accumulate one after another in this file, and can be retrieved simply by 
typing: 

R 

which is the trivial case of the library read command. In this case, the entire tr an sf erred set of 
lines is read into the memory buffer. Note that the X command does not remove the transferred 
lines from the memory buffer, although a K command can be used directly after the X, and the 
R command does not empty the transferred line file. That is, given a set of lines has been 
transferred with the X command, they can be re-read any number of times back into the source ( 
file. The command "'--· 

ox 
is provided, however, to empty the transferred line file. 

Note that upon normal completion of the ED program through Q or E, the temporary LIB 
file is removed. If ED is aborted through CTRL-C, the LIB file will exist if lines have been 
transferred, but will generally be empty. (A subsequent ED invocation will erase the temporary 
file.) 

Errors 

Due to common typographical errors, ED requires that several potentially disastrous 
commands be typed as single letters, rather than in composite commands. The commands 

E (end), H (head), 0 (original), Q (quit) 

must be typed as single letter commands. 
ED also prints error messages in the form 

BREAK "x" AT c 

where xis the error character, and c is the command where the error occurred. 
Other Notes on ED 

ED has no practical restriction on line length (no single line can exceed the size of the 
working memory), which is instead defined by the number of characters typed between carriage 
returns. Although the CP /M has a limited memory work space area (approximately 5000 c·, . . 
characters in a 16K CP/M system), the file size which can be edited is not limited, since data is 
easily "paged" through this work area. 

150 



c 

0 

Upon initiation, ED creates the specified source file, if it does not exist, and opens the file 
for access. The programmer then "appends" data from the source file into the work area, if the 
source file already exists (see the A command), for editing. The appended data can then be 
displayed, altered and written from the work area back to the disk (see the W command). 
Particular points in the program can be automatically paged and located by context (see the N 
command), allowing easy access to particular portions of a large file. 

Given that the operator has typed 

ED X.ASM (er) 

the ED program creates an intermediate work file with the name 

X.$$$ 

to hold the edited data during the ED run. Upon completion of ED, the X.ASM file (original file) 
is renamed to X.BAK, and the edited work file is renamed to X.ASM. Thus, the X.BAK file 
contains the original (unedited) file, and the X.ASM file contains the newly edited file. The 
programmer can always return to the previous version of a file by removing the most recent 
version, and renaming the previous version. Suppose, for example, that the current X.ASM file 
was improperly edited. The sequence of CCP commands shown below would reclaim the 
backup file: 

DIR X. * Check to see that BAK file is available. 

ERA X.ASM Erase most recent version. 

REN X.ASM=X.BAK Rename the BAK file to ASM. 

Note that the programmer can abort the edit at any point (reboot, power failure, CTRL-C or Q 
command) without destroying the original file. In this case, the BAK file is not created, and the 
original file is always intact. 

The ED program allows the user to "ping-pong" the source and create backup files 
between the two disks. The form of the ED command in this case is 

ED file name x: 

where the file name exists on the currently logged disk and is to be edited, and x is the name of 
an alternate drive. The Eb program reads and processes the source file, and writes the new file 
to the specified alternate drive using the file name given in the command above. Upon 
completion of processing, the original file becomes the backup file. Thus, if the programmer is 
addressing disk A, the following command is valid: 

EDX.ASMB: 

which edits the file X.ASM on drive, creating the new file X.$$$ on drive B. Upon completion of 
a successful edit, A:X.ASM is renamed to A:X.BAK, and B:X.$$$ is renamed to B:X.ASM. For user 
convenience, the currently logged disk becomes drive B at the end of the edit. Note that if a file 
by the name B:X.ASM exists before the editing begins, the message 

FILE EXISTS 

is printed at the console as a precaution against accidentally destroying a source file. In this 
case, the programmer must first ERAse the existing file and then restart the edit operation. 

Similar to other tran~ient commands, editing can take place on a drive different from the 
currently logged disk by preceding the source file name by a drive name. Examples of valid edit 
requests follow: 

EDA:X.ASM Edits the file X.ASM on drive A, with new file and backup on drive A. 

151 



ED B:X.ASM A: Edits the file X.ASM on drive B to the temporary file X.$$$ on drive 
A. On termination of editing, changes X.ASM on drive B to X.BAK, 
and changes X.$$$ on drive A to X.ASM. 

ED also takes file attributes into account. If the operator attempts to edit a read only file, 
the message 

**FILE IS READ ONLY** 

appears at the console. The file can be loaded and examined, but cannot be altered in any way. 
Normally, the programmer simply ends the edit session, and uses STAT to change the file 
attribute to R/W. If the edited file has the "system" attribute set, the message 

"SYSTEM" FILE NOT ACCESSIBLE 

is displayed at the console, and the edit session is aborted. Again, the STAT program can be 
used to change the system attribute, if desired. 

152 

c 

c 



APPENDICES 

(/ 

153 





(' 
APPENDIX A 
INSTALLATION 

The first step in installing your computer is to make sure that various requirements are 
met. These are described at the beginning of this section. 

Operating Environment: 

Temperature 

Relative humidity 

Temperature gradient 

Vibration 

Altitude 

Nonoperating Environment: 
Temperature 

Relative humidity 

Temperature gradient 

Vibration 

Other Conditions: 

Environment Requirements 

l0° ... 32°C (50° ... 90°F) 

20 ... 80% 

10°C/hour 

Max. 0.3G at 2-60 Hz 

Up to 2,440m above sea level 

-l0° ... 55°C (-14° ... 131°F) 

5 ... 95% 

l0°C/hour 

Max. 0.6G at 3-60 Hz 

C' Do not install the system in a place exposed to the following conditions: 

• A great deal of dust 

• Strong vibrations 

• Strong electromagnetic field 

• Corrosive gases 

• Sunshine 

• Non-horizontal surface 

Physical Dimensions: 

Size Width 
T200 Console 550 

T250 Console 620 

Keyboard 444 

Printer 560 

Weight 

T200 Console with dual drive unit 

c T250 Console with dual drive unit 

Keyboard 

Printer 

Height 
329 

390 

73 

188 

155 

30 kg 

39 kg 

1 kg 

15 kg 

Depth 
432 

470 

215 

368 

mm 

mm 

mm 

mm 



Printer Signal Cable 

! 
AC AC 

Console 

Keyboard 

Figure 35 Signal Cable Connection 

Cable Retainer 

Printer Signal Cable Inlet 

I ' 
I ', 
1 ', AC Power Cable 
I ' 

Err==1 ====;i~, 
\ l..J Lift up the Connector 

Retainer. Set it after 
the Connector has 

~een inserted. 

Printer Signal Cable 
Connector 

Figure 36 Connecting Printer Signal Cable 

0 

Keyboard Adjuster 

Keyboard 
(Bottom) 

Minus Driver 

Figure 37 Connecting Keyboard Signal Cable Figure 38 Keyboard Click Adjuster 

156 

~-



Electrical Requirements: 

Two IS-ampere, single-phase grounded receptacles are required for each T200 or T250 system. 
Power cords are attached to the console and the printer each 2.5 meters (8.3 feet) long. The AC 
voltage requirements are: 

The power requirements are: 

Console and Keyboard 

Printer 

60 Hz± Y2 

115 v ± 10% 

Max. 0.3 kVA 

Max. 0.2 kVA 

After the various requirements have been satisfied, you connect the cabling. 

Cabling 

Two interunit signal cables come out of the back of the console. One connects to the 
keyboard. The other connects to the printer. 

The printer signal cable has a 36-pin connector with plastic hood. This is to be connected 
to the inlet located at the back of the printer. See figure 35. 

The keyboard signal cable has a 50-pin connector with grounding lead. Connect the signal 
cable to the inlet located at the back of the keyboard. 

Remove the cable retainer screw on the keyboard inlet. 
Attach the connector to inlet with the label "KB" and pull the tab facing downward. 
When you are sure that the connector is placed correctly, push it firmly. 
Attach the cable retainer around the cable and the grounding lead to the ground screw. 
See figures 36 and 37. 

After you have satisfied the various requirements and hooked up the cabling, adjust the 
keyboard and you will be ready to use your computer. 

Adjusting the Keyboard Click 

The keyboard has an adjuster for key-in click sound. It is located at the bottom of the 
keyboard as shown in figure 38. Turning the adjuster to the right increases the click sound. 

157 





0 

0 

APPENDIXB 
CHARACTER CODE TABLE 

r- - - - - - - - - - - - - - - - - - - --+- 0 0 
I 

I r - - - - - - - - - - - - - - -- 0 0 
I I .- - - - - - - - - - - --+- 0 0 
I I I . I I r - - - - - - - --- 0 1 

Lbs b7 b6 b5 b4 b3 b2 bl 0 1 
0 0 0 0 0 P-STOP 

CTRL_LP 
0 0 0 1 1 CTRL/A CTRL/Q 
0 0 1 0 2 PF4 CTRL/R 
0 0 1 1 3 BREAK CTRL/S 

CTRL/C 
0 1 0 0 4 PF5 CTRL/T 
0 1 0 1 5 CTRL/E CAN 

CRTL/U 
0 1 1 0 6 PF6 CTRL/V 
0 1 1 1 7 PF7 CTRL/W 
1 0 0 0 8 CTRL/X 

CTRL/H 
1 0 0 1 9 TAB CRTL/Y 
1 0 1 0 A CTRL/J CTRL/Z 
1 0 1 1 B PF8 ESC 
1 1 0 0 c CTRL/L 
1 1 0 1 D CR 
1 1 1 0 E PF9 
1 1 1 1 F CTRL/O • 

159 

·---~-------- ---- ----- - ----- - --

0 0 0 0 0 0 
0 0 1 1 1 1 
1 1 0 0 1 1 
0 1 0 1 0 1 
2 3 4 5 6 7 

SP 0@ p p 

! 1 A lQ a _q 
" 2 B R b r 
# 3 c s c s 

$ 4 D T d t 
% 5 E u e u 

& 6 F v f v 
' 7 G JW Lg_ w 
c 8 H x h x 

) 9 I y i y 
* : J z j z 
+ ;K l k PFO 

' < L \' 1 PFl 
- - M )m PF2 
. > N If\; n PF3 
I ? 0 1--1 o DEL 



• The carriage return is sent when either the carriage return key or the ENTER key is 
pressed. 

• To implement reverse video, press the CTRL and 1 keys. Pressing these keys again 
resumes the normal display mode. 

• The decimal representation of the program function keys is as follows: 

PFO 123 

PFI 124 

PF2 125 

PF3 126 

PF4 2 

PFS 4 

PF6 6 

PF7 7 

PF8 11 

PF9 14 

The BASIC programs can use these decimal values to decide which program function key is 
pressed. 

Example: 

110 

120 

LET A$=INPUT$(1) 

IF ASC(A$)=2 THEN 300 

ELSE 400 

300 REM PROCESSING FOR PF4 KEY 

The statement 110 accepts the input of one character (without the carriage return) from the 
keyboard. The statement decides if the key PF4 has been pressed and branches accordingly. 

160 

( 
~.· 

C, 
,/ 



c 

T200: 

Sectors per cylinder 

Bytes per sector 

Storage capacity in bytes 

T250: 

Sectors per cylinder 

Bytes per sector 

Storage capacity in bytes 

APPENDIXC 
DISK CHARACTERISTICS 

32 

256 

286,720 

I-sided 

26 

128 

256,256 

2-sided 

52 

256 

1,025,024 



c 



APPENDIXD 
THE PRINTER 

Toshiba offers a choice of printers for use with your T200 or T250. The standard matrix 
printer has a printing speed of 125 characters per second. It is capable of printing upper and 
lower case characters, numeric characters and special symbols. The printer prints in both 
directions to reduce print time. Other features are as follows: 

Print font 

Characters per line 

Character spacing 

Line spacing 

Multicopies 

9 X 7 dot matrix 

136 

10 characters per inch 

6 lines per inch 

Up to 3 including original 

Operating the Printer 

Turn on Power 

The power switch is located on the back left side. When the power is turned on, the 
POWER light is lit on the control panel. See figure 39. 

Select Mode 

If the SELECT light is not lit on the control panel, press the SELECT push button. This sets 
the printer to the SELECT mode. The printer can print information when it is in the SELECT 
mode. 

Deselect Mode 

The LINE FEED and TOP OF FORM push buttons are used to feed the paper manually. 
These buttons are enabled when the printer is in the DESELECT mode. 

• If the SELECT light is on, push the SELECT button. This places the printer in the 
DESELECT mode and turns the SELECT light off. 

• One line feed takes place each time the LINE FEED button is pressed. 
• When the TOP OF FORM button is pressed, the paper advances to the next top-of-page 

position. There are 66 print lines from a top-of-page to the next. See figure 40. 

Paper Loading 

Before setting the new paper, press the TOP OF FORM button in the DESELECT mode. 
Insert the paper through the back of the printer. See figure 41. 

Open the front view cover. Lift the paper holders up. Grasp the end of the paper. See 
figure 42. Make sure that the print ribbon is not loosened. If it is loosened, open the top cover 
and tighten the ribbon. 

Lift up the paper and set the holes on both sides of paper to the tractor pins. See figure 
43. 

Adjust the vertical paper position right on the first print line of a paper at this time. See 
figure 44. 

Press down the paper holders. See figure 45 
(~ Turn the feed knob for vertical alignment of paper. See figure 46. 

163 



Paper Empty Status 

The end of paper is detected by a microswitch located in front of the platen. When this 
occurs, the PAPER EMPTY light is lit on the control panel and the SELECT light is turned off. At 
this time, if the SELECT button is pressed, the PAPER EMPTY light will go out after printing one 
character. The PAPER EMPTY light is lit again and this step can be repeated. 

Power Switch 

Figure 39 Printer Power Switch 

Front View Cover 

Figure 40 Printer 

164 



( 

C Figure 41 Inserting the Paper 

Lift the Paper Holders up. 

Figure 42 Opening the Paper Cover 

165 



Paper Tractor 

Figure 43 Setting the Paper on Tractor Pins 

Figure 44 Adjusting the Paper Position 

166 

This Metal Maker 
indicates the Position 
of the First Line. 

c 

c 

c 



--- ---------·-------------------·····-- -· ·-------·---------- - -------------

Set the Paper Holders 

c Figure 45 Setting the Paper Holders 

c 
Figure 46 Turning the Paper Feed Knob 

167 



Press Both Sides here to open the Top Cover. 

Figure 47 Opening the Top Cover 

Figure 48 Removing the Ribbon Spools 

168 



(/ 

Ribbon Replacement 

To look at the ribbon, press the latch on both sides of the cover and open it. See figure 47. 
Remove the ribbon and spools which are loaded. The spools come out vertically. See 

figure 48. 
Inspect the removed ribbon. If the upper and lower portions of the ribbon are worn out, 

the ribbon cannot be used. Keep the empty spool. If only one side of the ribbon has been used, 
turn the spools over and load the ribbon again. 

If the new ribbon is to be used, attach the end of the new ribbon to the empty spool and 
wind the ribbon until the eyelet is wound over the empty spool. See figure 49. 

To load the ribbon, thread the ribbon through the ribbon guides as indicated in figure 50. 
Close the top cover. 

New Ribbon 

Eyelet 

Figure 49 The Ribbon Spools 

Print Head 

Ribbon 

fD : Ribbon Guides 

Figure 50 loading the Ribbon Spools 

169 



(_ 

c 

c 

------------ ---- ----



( 
APPENDIXE 

COMMUNICATION INTERFACE 
The T200/T250 system is equipped with a communication interface which conforms to the 

EIA RS-232C standard. With this interface, the T200/T250 system can connect a device, such as 
a modem, which also has the RS-232C interface. 

The communication interface consists of the following components: 

• An Intel 825 lA comparable device that is a universal synchronous/ asynchronous 
receiver /transmitter (USART). 

• An 8253 Timer. 

• Additional electronic circuits. 

To communicate with the external device which is connected to this interface, the user has 
to prepare communication control program routines, including: 

• Writing the transmission rate to the 8253 Timer. 

• Writing a mode byte to USART. 

• Writing command bytes to USART. 

• Transmitting or receiving data through USART. 

• Reading the USART status byte. 

If the station address is used, the terminal ID can be read from the switch register port. 
The following communication features are assumed in subsequent descriptions: 

( • Asynchronous communication. 

• Half-duplex transmission. 

• A transmission rate of 110, 150, 300, 600, 1200, 2400 or 4800 bps. 

171 



Communication Interface Lines 

Data and control lines of the communication interface are as shown in the figure below: 

Pin 
Number 

Protective Ground 
c 
0 Transmitted Data 
M 
M Received Data 
u 
N Request to Send 
I 
c Clear to Send 
A Data Set Ready 
T 
I Signal Ground 

0 
N Received Line Signal Detector 

To 

Trans. Signal Element Timing 
MODEM 

Receiver Signal Element Timing 

I ( 
N f 

T Data Terminal Ready 
E 
R 
F 
A Ring Indicator 
c 
E 

Trans. Signal Element Timing 

@ 
Male Connector 

Figure 51 Communication Interface Signals 

172 

"- -~----------------



( 

c/ 

When connected to a modem, the interface lines are used as follows: 

Protective Ground Bonds the chassis ground of the modem to that of the communication 
interface. 

Signal Ground 

Transmitted Data 

Received Data 

Request to Send 

Clear to Send 

Data Set Ready 

Provides a common ground reference between the modem and the 
communication interface. 

Transfers serial data from the communication interface to the modem. 

Transfers serial data from the modem to the communication interface. 

Requests that the modem prepare itself to transmit (by establishing 
carrier). 
Indicates that the modem has established a connection with a remote 
modem and is ready to transmit data. 

Indicates that the modem is ready to transmit and receive data in the 
data mode. 

Data Terminal Ready Indicates that the modem is ready to transmit and receive data in the 
data mode. 

Ring Indicator Indicates that the modem is receiving a ringing signal from the 
telephone system. 

Received Line Signal Indicates that the modem is receiving a signal which is suitable for 
Detector demodulation. 

Transmitter Signal Provides the signal element timing for the transmitted data. 
Element Timing 

Receiver Signal Provides the signal element timing for the received data. 
Element Timing 

The signal level is as follows: 

Max Allowable +25V 

Maximum + 15V 

Minimum +3V 

-3V Minimum 

-15V Maximum 

-25V Max allowable 

1/0 Ports for the Communication Interface 
The communication interface is operated by a program which writes and reads control and data 
bytes on the 1/0 ports shown in the table below: 

1/0 Port Read/ 
in Hex Write Function 
AO R/W 8253 Timer Counter #Q 
Al R/W 8253 Timer Counter #J 
A2 R/W 8253 Timer Counter #2 
A3 w 8253 Timer Control 
A4 R/W USART Data 
A5 R/W USART Control Status 
A6 R/W CCM Mode Register 
A7 R Cl/CTS Status Register 

173 



Communication Interface Functions 
Setting the 8253 Timer 

If the internal clock is used for communication, the clock rate used must be written to the 
8253 ports. For asynchronous communication, write as follows: 

Port Funttion Contents Written 
A3 Control "B6" (hex) 
A2 Counter 

110 baud 1135 (Decimal) 
150 832 
300 416 
600 208 
1200 I04 
2400 52 
4800 26 

NOTE: To write on Port A2, send the least significant byte first, then the most significant byte. 

Initializing the USART: 
Before starting the data transfer, the USART must be loaded with the control bytes through 

the Port AS. The control bytes define the USART operations such as: 

• Stop bit length 

• Parity checking 

• Character code length 

• Baud rate 

There are two types of control bytes: 
Mode instruction 
Command instruction 

The mode instruction is loaded once after resetting the USART (internally or externally). The 
command instruction is loaded following the mode instruction. Subsequently, the command 
instructions can be loaded any time during the data transfer. 

The mode instruction byte is in the following format: 

S2 SI EP PEN L2 LI 82 Bl 

SIS I: Stop bit length 
01 ... 1 bit 
IO ... 1-1~ bits 
11 ... 2 bits 

EP: Parity check 
O ... Odd 
1 ... Even 

PEN: parity enable/disable 
0 ... Disable 
1 ... Enable 

L2: Character length 
00 ... 5 bits 
01 ... 6 
IO ... 7 
11 ... 8 

174 

c 



c 

-·----~--~~-·-- --·- ··-·-·-··-···---------------

828 I: Baud rate 
10 ... x16 (when 8253 Timer is used) 
11 ... x64 

Example: 
For a 7-bit character, even parity check, start/stop bit each 1 bit, write "7A" (hex) to port 

AS. 
The command instruction byte specifies enabling/disabling data transfer, error resetting, 

modem control and so on. It is in the following format: 

EH IR RTS ER S8RK RxE DTR TxEN 

EH: Hunt sync character 
1 ... Search 
0 ... No operation 

IR: Internal reset 
1 ... Reset USART (to accept mode byte) 
0 ... No operation 

RTS: Request to send 
1 ... Set RTS on (establish carrier) 
0 ... No operation 

ER: Error reset 
1 ... Reset error flags (PE, OE, FE) 
0 ... No operation 

S8RK: Send break character 
1 ... Send break character 
0 ... Normal transmission mode 

RxE: Receive enable 
I ... Enable 
0 ... Disable 

DTR: Data terminal ready 
I ... Set DTR on 
0 ... No operation 

TxEN: Transmit enable 
I ... Enable 
0 ... Disable 

Example: 
To set "Request to Send" on, write "25" (hex) to port AS. 

Reading the Status 
The USART, when in operation, allows the communication status to be read at any time by 

the program from port AS. The status byte has the following format: 

DSR SYN FE OE PE TxE Rx Tx 
DET ROY ROY 

DSR: Data set ready signal from modem 
SYNDET: Sync detected 

175 



Error flags 
FE: Framing error indicating that a valid stop bit had not been 

detected. 

OE: Overrun error indicating that a character has not been read 
out before the next character arrives. 

PE: Parity error 

TxE: Transmitter empty 
This indicates whether the USART has a character pending transmission 
or not. 

RxRDY: Receiver reader 
This indicates that the USART has a character which has been received. 

TxRDY: Transmitter ready 
This indicates that the USART can accept a character to transmit. 

The program should check the status byte before and after the data transfer. For example, 
prior to sending a byte to the USART, the status is checked if TxRDY is on. Prior to receiving a 
byte from the USART, the status is checked if RxRDY is on. 
Each data byte is read or written through port A4. 

CCM Mode Register 
This register is used to set up the clock or to clear the receive buffer. 

M2 Ml RATE RxD TxD 
CHG INH WA 

M2Ml: 00 ... Asynchronous 
01 ... Synchronous (modem clock) 
10 ... Synchronous{internal clock) 
11 ... Synchronous (direct) 
This must conform to the 8253 Timer setting. 

RATE CHG: Change modem speed 
0 ... Normal 
1 ... Half 

RxDINH: Inhibit receiving 

TxDWA: Send back internally the transmitted data 

NOTE: In asynchronous and half-duplex communication, the first data received sometimes 
results in an error. To avoid this, we recommend that the receive buffer be cleared before data 
is received, by the following procedures: 

Set RxDINH=l, TxDWA=l 

Send a dummy data byte 

Reset RxDINH=O, TxDWA=O 

Send an error reset command 

Read a data byte 

176 

r 
I 

~-

c 



L 

c 

CI/CTS Status Register 
This register provides the additional status information of the interface. 

CI CD CTS TxDWA * 

CI: Call indicator 

CD: Carrier detected 

CTS: Clear to send 

* * 

TxDWA: Indicates TxDWA of the CCM mode register 

Terminal ID 
The terminal ID is obtained by the following steps: 

• Write "02" (hex) to the data register port Cl (hex). 

• Read from the switch register port 02 (hex). 

The terminal ID is given in one byte. 

NOTE: You must enable the interrupts before any transmission to the CCM. Upon completion 
of transmission, disable interrupts. 

Summary of Commands 

REMOTE LEAD-IN ASCII 

COMMANDS REQD (X)* CODE DECIMAL 

Home cursor x DC2 18 

Up cursor x FF 12 

Down cursor x vr 11 

Left cursor BS 8 

Right cursor OLE 16 

Address cursor x DC1,X+96, 17,X+96,Y+96** 
Y+96** 

Read cursor address x ENQ 5 

Clear screen x FS 28 

Clear foreground x GS 29 

Clear to end of line x SI 15 

Clear to end of screen x CAN 24 

Delete line x DC3 19 

Insert line x SUB 26 

*Lead-in code: 

HEX 7E 

Decimal 126 

**The value 96 should be added only in those cases where the values of X and Y are 30 or less. 

177 



c 



( 
APPENDIXF 

FLOPPY DISK STORAGE LAYOUT 
The floppy disks have the layout shown in the figure below: 

--------------- -

2D Disks 250/200 1S Disk 250 
SideO 

INDEX 

BIOS 

DATA 
AREA 

Cylinder 0 

Cylinder 1 

Figure 52 Disk Storage Layout 

Side 1 

CP/M 

DATA 
AREA 

179 

INDEX track O 

CP/M track 1 





c 

APPENDIXG 
PATCHING CP/M 

Although CP/M's default parameters suffice for normal operation, some special circumstances 
may require patching the operating system. The PATCH utility allows modifying the operating 
system to suit these special circumstances. 

To execute the PATCH utility: 

Place the system disk or disk containing PATCH program in drive A. 

Press the BREAK key. CP /M should display the A> prompt. 

Type PATCH and press the ENTER key. The following menu should be 
displayed: 

TOSHIBA BIOS Patch Utility 
Command? 
Patch commands 
0 Return to CP /M 
1 Change read after write 
2 Change cursor shape 
3 Change baud rate 
4 Change parity, # stop/ data bits 
5 Change communications command 
6 Change patch flag 

To modify CP/M, enter one of the Patch commands. All entries are 1 or 2 hexadecimal 
bytes (indicated by the prompt). If you do not want to modify a parameter, just enter RETURN 
to prompt for data for that command and you will be returned to the main menu for another 
command. 

The following table explains the patch commands and their legal values: 

COMMAND 
0 

1 

2 

LEGAL VALUES VALUE FUNCTION 
Return to CP /M 

0 

1 

49 

40 

Default; no read after write. 

Read after write; disk 1/0 is slower. 
NOTE: 1 value causes CP /M to perform write verification of 
floppy disks to ensure data was correctly written to disk. 
This slows disk 1/0 and normally is not required with the 
reliability of today's disks. 

Default; blinking underscore cursor. 

Blinking box shaped cursor. 

69 Slow blinking underscore cursor. 

60 Slow blinking box shaped cursor. 

29 Stationary underscore cursor. / 

20 Stationary box shaped cursor. 
NOTE: Other values may produce unpredictable results. If 
the cursor disappears, reselect option 2 and enter 49 and 
return in response to prompt. This should return the 
standard cursor. 

181 



COMMAND LEGAL VALUES VALUE FUNCTION 

3 

4 

5 

6 

OlAO 

OODO 

Default 300 BAUD 

600 BAUD 

0068 1200 BAUD 

0034 2400 BAUD 

00 IA 4800 BAUD 

OOOD 9600 BAUD 

6E 

B6 

0 

1 

NOTE: Default is 300 BAUD, no parity, 2 stop bits. 
Normally, only the baud rate needs to be changed. Other 
parameters may be set by referring to APPENDIX E, 
COMMUNICATION INTERFACE. 

Default. 
NOTE: refer to APPENDIX E, COMMUNICATION INTERFACE, 
for parameters to change the number of data and stop bits 
for each character, and to select odd or even parity. 

Default. 
NOTE: There is normally no need for the default value. 

Sets drive B back to normal status. 

Sets drive B to patched status. 
NOTE: This option allows changing the disk patched flag. It 
is normally used after using the utility DIR128 to force disk 
B to use 128 directory entries that the old disk used. If the 
option is set to 0, CP/M uses the disk normally. However, if 
the option is set to 1 (which is done by DIR128) the diskl is 
forced into just one format, determined by the last disk 
placed in the drive. 

If you receive the error message: 

Function must be 0-6 

it means you entered an illegal PATCH command. The system responds to the 0 command with: 

TOSHIBA BIOS Patch Utility Operation Completed 
A> 

c 

~--~-~- --------- ----------



·----· ·--- -···-··--····-·· 

INDEX 

c 

183 





( 

(/ 

A (assemble) command (DDT), 125 
Allocation vector, 105 
ASCII, 46, 75 
ASM Command, 42 
Assembler, 

Directives, 72-73, 77 
Programs, 71 

Assembly language, 71 
AUTO command, 65 
Babbage, Charles, i 
Backspace, 13 
BASIC, ii, 21, 33, 35, 37 

Commands, 63 
Initiation, 

CBASIC, 61 
MBASIC, 63 

Termination, 70 
Basic Disk Operating System (BOOS), 29, 91 
Basic Input Output System (BIOS), 29, 91 
BASIC programs, 59 

Activating, 70 
Correcting, 67 
Entering, 65 
Running, 67 
Storing, 67 

Batch, 49 
Bit-by-bit logical, 76 
Block mode transfer, 47 
Block move facility, 150 
Boot, 91 
Bootstrap, 29 
Bytes, 7,39 
Cabling, 157 
Call,81 
CAN key, 13 
Carriage return, 13 
Carry flag, 82 
CBASE, 91 
CBASIC, 59, 61 
CBASIC 2, 59 
CCM Mode Register, 176 

185 

Character codes, 159 
Cl/CTS Status Register, 177 
Circuits, integrated, i 
Close file function, 101 
Cold boot, 15, 21 
Cold start, 21 
COM file, 47 
Commands, 33 

Built-in, 33, 35, 41 
Correcting, 51 
Line length, 52 
Quick-reference list, 51 
Transient, 33, 37, 42 

Communication Interface, 171 
Functions, 17 4 
1/0 Ports, 173 
Lines, 172 

Compute file size function, 108 
Conditional assembly, 77 
Console, 46 
Console Command Processor (CCP), 28, 43, 

44,45,91 
User Interaction, 29 

Console input function, 97 
Console output function, 97 
Constant, 73 

Binary, 74 
Decimal, 74 
Hexadecimal, 7 4 
Numeric, 74 
Octal, 74 
Radix of the, 7 4 
String, 75 

Copying (file), 39 
CP/M, 21, 28, 91 

Functions, 93 
CTRL key, 15 
Cursor, 11 
D (display) command (DDT), 125 
Data keys, 11 
Data movement, 83 



DB directive, 80 Enable, 84 
DDT, 42, 123 END directive, 78 c Commands, 124 ENDIF directive, 79 
Debugging tool (see DDT) ENTER key, 13 
Default buffer area, 95 Environment requirements, 155 
DEL key, 13, 42, 44, 125 EQU directive, 73, 78 
Delete characters, 4 7 ERA command, 37 
Delete file function, 102 Error messages, 
Deselect mode, 163 ASM, 85 
Destination file, 39 CP/M, 57 
Digital computer, i ED, 147 
DIR command, 35 System entry points, 107 
Direct console 1/0 function, 98 Exclusive or, 76 
Direct mode, 63 F (fill) command (DDT), 126 
Disable, 84 FBASE,91 
Disk drive, 7, 17 FOOS, 91 
Disks, File control block (FCB), 95 

Care, 16 File names, 30 
Characteristics, 161 Ambiguous, 31 
Copying, 53 Characteristics, 30 
Data files, 69 Concatenation, 39 
Loading, 19 Copying, 39 
Loggedin,29,55 Linking, 39 (,----

Management, 29 Primary, 30 "----
One-sided, 17 Secondary, 30 
Removing, 19 Unambiguous, 31 
Storage layout, 179 Floppy disk (see disks) 
Switching, 55 Formatting, 19, 43, 54 
Two-sided, 1 7 Function keys, 
Write-protecting, 57 Program, 15 

OMA (Direct Memory Address), 95, 104 Special, 15 
Double precision, Functions, 96-109 

Decrement, 83 Summary, 109 
Increment, 83 G (go) command (DDT), 126 

OS directive, 81 Get addr( alloc) function, 105 
DUMP command, 42 Get addr( disk parms) function, 106 
OW directive, 80 Get console status function, 99 
Dynamic debugging tool (see DDT) Get 1/0 byte function, 98 
Echo effect, 13 Get read only vector function, 105 
ED command, 43, 141 Hardware, ii, 5 

Commands, 148 Hex,42,43,47 
Control characters, 148 Hexadecimal, 41 

Edit, 15 I (input) command (DDT), 126 ,r 
Electrical requirements, 157 Identifier, 73 

'--

186 



IF directive, 79 Pseudo, 73, 77 

( 
Ignore records, 48 Operator 
Immediate operand, 82 Arithmetic, 73, 75 
Indirect mode, 63 Logical, 73, 75 
Installation, 155 Precedence, 76 
Intel hex format, 42 ORG directive, 77 
Jump, 81 Output control, 51 
Key lock, 15 Page ejects, 48 
Keyboard, 7, 11 Paper loading, 163 

Click, 157 Parity, 82 
Kilobytes, 29 Pascal, Blaise, i 
L (list) command (DDT), 127 Patching, 181 
Label(assemblylanguage), 73 Physical dimensions, 155 
Leibniz, Gottfried Willhelm von, i PIP command, 39-40, 42, 46 
Line editing, 51 Power off, 23 
Line editing keys, 13 Power on, 9 
Line feed, 163 Primary entry point, 91 
Line numbers, 149 Print string function, 99 
Linking files, 39 Printer, 7, 163 
List, 46 Printing, (H-COPY) Key, 15 
LIST command, 65 PRN file, 42 
List device, 46 Processing unit, 7 

c List output function, 98 Program, 
LUST command, 67 Files, 69 
LOAD command, 43 Function keys, 15 
LOCK key, 11 Prompt, 21 
Logical and, 76 Punch output function, 97 
Logical inverse, 75 R (read) command (DDT), 127 
Logical or, 76 Read console buffer function, 99 
M (move) command (DDT), 127 Read only, 57, 58, 105 
Make file function, 103 Read random function, 107 
MBASIC, 59, 63 Read sequential function, 102 
Memory, 142 Reader, 46 
Mnemonics, standard, 81 Reader input function, 97 
MOY instruction, 73 Reboot, 15, 21, 44 
Nulls, 46 Record length, 17 
Object file transfer, 48 Register pair, 83 
Open file function, 100 REN command, 41 
Operand, Rename file function, 103 

Field, 73 REPT key, 13 
Forming, 73 Reserved words, 73, 7 4 

Operating system, ii, 28 Reset disk systems function, 100 

c Operation, Return current disk function, 104 
Codes, 73, 81 RETURN key, 13 
Field, 73 

187 



Return login vector function, 104 
Return version number function, 100 
Ribbon replacement, 169 
RUN command, 67 
S (set) command (DDT), 128 
SA VE command, 31, 41 
Screen, 7 

Brightness, 9 
Search for first function, 101 
Search for next function, 101 
Select disk function, 100 
Select mode, 163 
SET directive, 73, 79 
Set OMA address function, 104 
Set file attributes function, 106 
Set/ get user code function, 106 
Set 1/0 byte function, 98 
Set random record function, 109 
Single precision, 

Accumulator, 82 
Decrement, 83 
Increment, 83 

Software, ii, 27 
Source file, 39 
STAT command, 37, 39, 49 
SUBMIT command, 43, 45 
Syntax error, 63 
Syntax, program (checking), 72 
SYSGEN, 46 
System disk, 1 7, 28 

Mounting, 21 
System reset function, 96 
T (trace) command (DDT), 128 
TAB key, 13 
Tab positions, 35, 48 
TBASE,91 
Teletype, 79 
Terminal ID, 1 77 
Text editor (see ED command) 
Transient Program Area (TPA), 29, 41, 43, 92 
Transistors, i 
Translate lower case, 141 
TYPE command, 35, 42 
U (untrace) command (DDT), 129 

188 

Unary 
Minus, 75 
Plus, 75 

Unsigned magnitude, 75 
Utilities, 53 
Verification, 48 
Warm Start, 21, 91 
Winchester disks, 21 
Write protect disk function, 105 
Write protecting disks, 57 
Write random function, 108 
Write sequential function, 103 
X (examine) command (DDT), 129 
XSUB function, 45 



( Toshiba America, Inc. ("TAI") 
Information Systems Division 

2441 Michelle Drive 
Tustin, California 92680 

LIMITED 90 DAY WARRANTY FOR 
TAI INFORMATION PROCESSING EQUIPMENT 

This equipment and any word processing software which may be contained in the same package as this equipment 
(collectively, the "Equipment") is warranted free from defects in workmanship and material, software errors and 
non-conformity with TAl's Standard Performance Specifications included in the package in which the Equipment is 
shipped, for a period of 90 days after installation. Installation shall be deemed to have occurred not later than ten 
(10) days following the date of purchase. Any Equipment which fails to meet this express warranty during the 
relevant warranty period will be repaired or replaced free of charge as necessary to cure such failure. Carry-in 
service can be obtained during the warranty period by bringing or mailing your unit to any authorized TAI service 
center. To locate the authorized TAI service center nearest you, refer to the authorized TAI service center directory 
enclosed or write to the TAI Warranty Division at the address specified above. A receipt of purchase or other proof of 
the date of purchase or installation of the Equipment will be required before any warranty service will be performed. 

THIS WARRANTY SHALL BE EFFECTIVE ONLY IF THE WARRANTY REGISTRATION CARD BELOW IS COMPLETED, 
SIGNED AND RETURNED TO TAI BY MAIL NOT LATER THAN TEN (10) DAYS FOLLOWING INSTALLATION OF THE 
EQUIPMENT COVERED, AND RETURN OF THE COMPLETED WARRANTY REGISTRATION CARD TO TAI WITHIN SUCH 
PERIOD IS A PRE-CONDITION FOR WARRANTY COVERAGE AND FOR WARRANTY SERVICES TO BE PERFORMED. 

This warranty applies only to Equipment which is new and unopened on the date of purchase and which is located 
within the United States, Canada, Puerto Rico or Mexico during the entire relevant warranty period. This warranty is 
contingent upon normal and proper use of the Equipment and does not cover damage which occurs in shipment or 
damage or failure resulting in whole or in part from alteration, unusual physical or electrical stress, misuse, failure to 
follow the most current instructions promulgated by TAI with respect to proper use of the equipment, abuse, neg­
lect, fire, accident, flood, act of God, improper installation or improper maintenance, or any defect or error in any 
hardware, peripheral device or software other than the Equipment covered by this warranty. This warranty does not 
cover Equipment on which the original identification marks or serial numbers have been removed or altered. 

TAl'S OBLIGATION TO REPAIR OR REPLACE ANY EQUIPMENT WHICH FAILS TO MEET THE EXPRESS WARRANTY 
SET FORTH ABOVE SHALL BE THE SOLE AND EXCLUSIVE REMEDY FOR A BREACH OF SUCH WARRANTY. THE 
ABOVE EXPRESS WARRANTY IS THE SOLE WARRANTY MADE BY TAI WITH RESPECT TO THE EQUIPMENT AND IS IN 
LIEU OF ALL OTHER WARRANTIES BY TAI, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE WAR­
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS TO CONSUMER GOODS IN 
WHICH CASE THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY 
FOR THE PERIOD OF THE EXPRESS WARRANTY. THE EQUIPMENT COVERED BY THIS WARRANTY IS MARKETED 
AND SOLD BY TAI AS A BUSINESS RATHER THAN CONSUMER PRODUCT AND IS NOT INTENDED FOR A PERSONAL, 
FAMILY OR HOUSEHOLD USE. 

UNDER NO CIRCUMSTANCES WILL TAI BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, SPECIAL OR EXEM­
PLARY DAMAGES ARISING OUT OF OR CONNECTED WITH THE DELIVERY, SALE, USE OR PERFORMANCE OF THE 
EQUIPMENT, EVEN IF TAI IS APPRISED OF THE LIKELIHOOD OF SUCH DAMAGES OCCURRING. SOME STATES DO 
NOT ALLOW FOR THE EXCLUSION OF CONSEQUENTIAL DAMAGES OR THE LIMITATION OF IMPLIED WARRANTIES 
WITH RESPECT TO CONSUMER PRODUCTS SO THE ABOVE EXCLUSION MAY NOT BE APPLICABLE IF THE COVERED 
EQUIPMENT CONSTITUTES A CONSUMER PRODUCT UNDER APPLICABLE LAW. 

IN NO EVENT SHALL TAl'S LIABILITY (WHETHER IN CONTRACT, TORT OR OTHERWISE) FOR DAMAGES ARISING 
OUT OF OR RELATED TO A BREACH OF THE ABOVE EXPRESS WARRANTY OR THE SALE, DELIVERY, USE OR PER­
FORMANCE OF THE EQUIPMENT EXCEED THE PURCHASE PRICE OF THE EQUIPMENT. SUCH LIMITATION OF LIA­
BILITY SHALL, WITHOUT LIMITATION, BE APPLICABLE IN THE EVENT THAT THE SOLE REMEDY OF REPAIR OR 
REPLACEMENT FOR A BREACH OF THE ABOVE EXPRESS WARRANTY FAILS OF ITS ESSENTIAL PURPOSE OR OTH­
ERWISE IS UNENFORCEABLE. 

This warranty gives you specific legal rights and you may also have other rights which may vary from state to state. 

Any word processing software included in the Equipment is licensed for use on TAI word processing equipment 
pursuant to TAI's End-User Word Processing Software License Agreement and is not sold. 

If a problem with this Equipment develops during the warranty period, first contact the dealer from which you 
purchased it or an authorized TAI service center. If the problem is not handled to your satisfaction, then write to the 
TAI Warranty Division at the company address indicated above. 

RETAIN THIS PORTION FOR YOUR RECORDS 

189 




