Q Trany&ra

GENERAL UTILITIES

OPERATOR'S MANUAL

(LA

LA

QTrcm)Erq

EXPANDING YOUR CAPABILITIES

TransEra Corporation
3707 North Canyon Rd.
Provo, Utah 84604

Tel: 801-224-6550
Telex: 296438

Manual Part No. 070-0550-00
Copyright TransEra Corp. 1983

All Rights Reserved

Printed in the United States of America
May 1983

GENERAL UTILITIES

OPERATOR’S MANUAL

Section 1

SECTION 2

Section 3

TABLE OF CONTENTS

GENERAL DESCRIPTION
Introduction 00I.0.."0‘.'.....;...0..0..
Installation Instructions .cceceeececeess

MAGNETIC TAPE UTILITIES

Introduction ...ceeeeeccencacsccscccasane

Naming Routines
NAME cesvreccsaseretcasnncsna
TLI2 teveeecccascennssnsocancnsscscnansa
FILE? cececereccnsvascsensasncccconccccns

TYPE. L0 R B I K B R 2 R N R R N BE B AR BE R R IR AR N BN AR R BN BE SR 3

Status Routines
STATUS tieeeeesocesscccscnssssnscaanons
OPEN? ...0eevens cesessessaans cesessnans
Error Recovery Routines
MARKZ +icciiesssscceosovonsocsnssacnes .
TFRWRD ...cceeseccccescnnscssscsccannass
TBACK cvveviecoscososonsososscccnscncnns
TREAD sesscaceceseresncccsssasanes
THRITE cvveeeccnecesoncsacscsascsocanns
4051 Enhancement Routines
MTPACK civvvevevnvcrscnsssnsconssnccnns
FIND tovieccecnns secescanas casssssseense
SETAPE ...cieecnveccancacassconcenns vee
Summary of Routinesc.cccene... ceee

ARRAY UTILITIES

Introduction ...eviveiieiecenecstecesconns

Subscripting Routines
ROW cecrineeinerenccrcacacccccccssannans
COL tevieineinnennnceacencnconseaneannas
POS ..coennenes csecsescassscssessssonas

NDOUT ®eeceescsvsscesBLsLsePGGOOOLELOIRSOETOIETPSETS

NDIN coiieieienceeecenceccacccosesscnsnns
Array Transfer Routines
SEND .vciiuereesnsococcenscsconnsonsonane
ALOAD ..iiiriereeninececnnsoocasccacanns
$WRITE tcvvveenvescsnccaccancccasoacnne
$READ tocvvvecencescosscanccnscacanaans
SWAP .eeiuereeienesecencsecnoscsnnsnnss
ASORT c.vvveeencecececscncccssccnsennna
Array Math Routines
ARRAY ..iciivirinreerencrceccconsonccnsnone
OPERATOR .vcecvvsescsvecscsccccssnccnns
COMPAREcccvnee crecsccnsesssannson

M.Ax ® % S 0 00 PP L OO OO OE SO SN SO LSOO TOIOEPTPSIOEOON
I

SUM ® e s 00c0ccereEROLOLLeBNOCOOPOLIOOLOIOGSIOEOIEOEOES

ARYSET S0 e s e e PesrerssLs R sITROSISIOIOEPIOIEEOEISITCOCDS

Summary of Routinescceeeececevsncece

3-3
3-4
3-5
3-5

3-6
3-7
3-8
3-9
3-10
3-11

3-12
3-13
3-14
3-15
3-15
3-16
3-17
3-18

Section 4§

Section 5

BINARY UTILITIES

Introduction ...ccceveeccecccccccccccncss

I1/0 and Graphics Routines
GPIBIN ..ciecnccncocsncsascccscccscannsns
PLOT$ cevvvevccccnccncncancconcnsannans
UNLEAV ...cicececerncovasevocnncsconnnns

MAXI @ P 000000 s eePPOLEPCELISELIOGEOEOLOLOLOEBSOIEOSOENLGSEES

MINI Pesees e s sres0 s P esseREPIEROCEOEOEBROIEBLIOEEOETETRETSE

BSWAP ..cccvees cecsssssrrscssscnssseans
Data Conversion Routines

PACK t.cieecencasnccccsscconcsancscsccsne

UNPACK cicecececccscsoncnccsoncnsossanse

DECBIN ..cveeeececsocscsccaansanencsnnse

Arithmetic and Logic Routines
ADDB .veveececccsacrenssscnsncsnsscnnsse
SUBB tevcvnceenscccrsanccscnsocassosnnans
MULB tccicrievcccnccescnsaancnssonsnnse
ANDB sesccssessescssssesesannasnss
ORB ceteccessesssssssearsassans
X0 31

ROLB ® 8 0060000000002 00e0920000s0s0003000000

ROR-B ® S 0 085000 9eN ® & 00O P U SOOI ES S Ps eSS
ASLB cecveeiecenenes cescscccnesccsssnne

LSRB 5 © 9 0 ¢ e P CEVELITELBOLIEOSINLIOSIOSOOESISEOSISEIOTEO

Summary of Routinescccceeveenecaces

GENERAL UTILITIES
Introductionccvcvveccecccecenccanes
Array Routines
INTERP ..vueeeincneccerennccccccnnenens
INTEG civeececececccncacnscccccccnsccns

DERIV RN RN NN EE RN ENEREREE I I A I

PACK - ® %0 00 ® & & B 6 O S " OSSO OGS se O
UNPACK *® 0 8 5 00 S PO TSSO OSSO RO NSRS
String Routines

SET$ © 869 2000000000 GL00LCLBOSRESELINLELIEODL

DIM$ ------ e e e s ees00ePsLLseeesEEEPIOSETSLTES

LISTS cececcceccsvosscvoccccnscccsccnsse

$SORT ceeevcosoccvccnscanconsassnacanans

EDIT s.eveeecanes tetsesecsecnscsassasana
I/0 Routines

GETCHR .vvceeecscosccccnsveasccnscssnces

GPIBIN ..vieeereeccnccancccnnncscancensa

PLOT$ eccccsscscssressncassennnone
Miscellaneous Routines

LREF @ P s 0 ePLePOPLIORELNSIOEPIOEORNBLOEIEOOIOENOEOETTTS

XREF S8 008 ss P00t IPEREOSIERNETRTRSERIRRETOSES

RUN seces s o se v essssse Pe s e sesvecenerae
GETRET S s e e s s reteLsOesERNOLOIOGEROIESOEOIOTOOETSYS

SWAP IR RE NN NN EENEEERENEE RN ERENERE NEERXER RN NI

BEEP 06 P LSOV sOPILEOISOIPIOIOEOCERIOEOERPOEIOEIEIBTROGOTDOIOESE

‘Sunmary of Routinesccceceecccccecss

y-2

4-3
4
4-5
4-6
4-6
47

4-8

4-9
4-10

4-11
4-12
§-13
4-14
§-15
4-16
4-17
4-18
4-19
4-20
§-21

5-9

5-10
5-11
5-12
5-13
5-15

5-16
5-17
5-18

5-19
5-20
5-21
5-21
5-23
5-24
5-25

Section 6 EDIT UTILITIES

Introduction i.c.eeeeecereccccccencscncnnes

File String Format ...cececccccccnccnceas

File Routines
DIMS ceverenieeceencecencnccacccancnnnas
EDREAD ..cvcececcevocccsocsccsocnsos ceee
LINES tevvieeececsccccsccscscscccsannsnsns
SUBSTR ceceeccces csecescecscccscsssserane
REPLAC .c.vccececncccccscocccccncacasas
INSERT ceveeecoanevcascsccsnncssncsnsansce
DELETE +vvvceecosccncoccscccocscccacnnsse

Line Routines
FNDLIN ..ciieeeeccccnccnccccascacnasesas D=11
LINNUM (.ovieierececccccccoscsccnvoccnes 0=12
LINLEN cececreccseccceascnsess 6=13
CURRLNcc.. eececescsscccsscsasacsss D=14
BACKLN ..iviiereroecccscccccncancsccnsss D=15
NEXTLN ceveecececocsococnccvcssoncensse B=16

User Interface Routines
GETCHR ceceeeccccccsccacscasccnnscacass 0=1T
EDIT cieeeeenceccnonconcccncscncscensnss 0=18
LIST ceeeerecececsscccsnccasascaccnces D=19

Summary of Routinesccecececvcecse.. 6-20

[}
w N

[
=0 001U I

?\O\O\O\?\O\O\ [« 3 =)
o

Appendix A ERROR MESSAGEScccceveiinnrcececeecnnss A-1

Appendix B SUWARY OF ROUTINES LI I I SR 2 ®e0e 000000000 B-1

GENERAL DESCRIPTION

Introduction

The TransEra Utilities are firmware utility routines that
enhance the capabilities of the Tektronix 4050 Series Graphic
Systems. The five utility groups are as follows: Magnetic
Tape Utilities, Array Utilities, Binary Utilities, General
Utilities, and Edit Utilities.

These utility routines are accessed in a program by the CALL
statement, but are written in assembly language for maximum
execution speed. A detailed description for each routine is
provided in the following sections. The format of the
description consists of the CALL statement format, a
definition of the parameters, and a general description of
operation.

In the listing of the calling parameters, the letters O and I
following the parameter name indicate whether the parameter is
used as an input to the routine, an output from the routine,
or both. 1In general, input parameters may be variables,
expressions, or constants. Output parameters must be
variables, Error checking is done by the routine to insure
correct typing of the calling parameters.

Installation Instructions

The power to the 4050 should be turned off before the ROM Pack
is installed. After the power is shut off, the ROM Pack may
be inserted into a slot in the firmware backpack or into a
slot of a ROM Expander unit., Press down dgently until the edge
card connector is seated in the receptacle connector.

MAGNETIC TAPE UTILITIES

IntrOdUCtion ® 8 © 9 6 60 8 03 8 0 0 0T EC OO O L EE SO eSO TSR SO

Naming Routines

NAME ® 8 € 9 0 08 &0 0 G QBSOS ST E SO ECE OO OSSR SSECESC OO OCESE

TLI2 ® 9 6 5 0 6 06 00 00T 00 S CT TGS S C O E 0GOS S EEs SO0 se

Status Routines
FILE? e @ © & & ¢ ¢ QO ¢ 0 5 O E O S SO O C O QO S O O St e SO PO RS e C s
TYPE ? ® ® % ¢ & @ 8 O ¢ 0 & OO S 2 OB O O OGO S E e T OO O OO R SO G O S e OO
STATUS ® 6 @ 6 0 ¢ 9 ¢ 8 S O S QO T SO O O OO OO SO e OO OSSO PNET ST OO

OPEN? ® © @ 0 ¢ 0 08 O S S S OO SO OO S CE TS OIS TSSOSO P EC OO POEOO PSS

Error Recovery Routines

meKZ ® ® 0 9 2 08P T S O T GO S S CCE ST ST SO S EO TSSO OO ITSSCE

TFRWRD ® 0 0 8 & 9 O 8 2 O 09 S O O S OSSO O C O E O OO T OSSO OSSN

TBACK ® ® 0 ¢ 9 0 @0 O T O S OO O O 2O S O D OSSO S CF TS O SO SN OOS O

TREAD 2 ® 0 ¢ ¢ ¢ ¢ ¢ & ¢ Q¢ S O OO0 C P S G O ST E TS IO eSO SO OO OO CE PO QSO

TWRITE .'.....‘........IIOCOOOOOCQOQ..‘.0'.‘...0

4051 Enhancement Routines
blTPACK 9 @ 0 8 9 & 0 0 9 9 & O S O S O G P O G O G G E S QOO R OO S SO O S s
F IND ® 9 & @ 0 % ¢ 9 O € O 8 @ H O O S S T E O E G E O O C O E O SO SO B E 9SO GSD

SETAPE ® € % 9 6 6 0 8 Q00 S C OO0 SO OO S OO OEEP SO CSE LSOO

Summary of Magnetic Tape Utility ROUtINeS c.evecocccocs

MAGNETIC TAPE UTILITIES

Introduction

The Magnetic Tape Utilities are firmware routines that enhance
the features of the 4050 internal magnetic tape drive. These
routines include file naming and status utilities, error
recovery routines, and routines that add some of the features
of the 4052/54 tape drive to the 4051.

There are two naming routines and four status routines in the
Magnetic Tape Utilities. They are NAME, TLI2, FILE?, STATUS,
OPEN?, and TYPE?. NAME and TLI2 allow naming tape files and
displaying the names. FILE?, STATUS, OPEN?, and TYPE? allow
the user to determine the current status of the tape drive and
file control systemn.

There are five error recovery routines. They are MARK2,
TFRWRD, TBACK, TREAD, and TWRITE. MARK2 allows a file to be
remarked without destroying the next file., TFRWRD and TBACK
move the tape forward or backward one physical block. TREAD
and TWRITE allow unformatted access to one physical block to
repair damaged data blocks.

There are three 4051 enhancement routines., They are SETAPE,
FIND, and MTPACK. SETAPE and FIND are also included in the
4052/54 version of the ROM Pack for compatibility, but MTPACK
is not, since it is built in to the 4052 and 4054. SETAPE
locates the beginning of the closest file on the tape. FIND
finds and opens the desired tape file without first rewinding
the whole tape. MTPACK duplicates the CALL "MTPACK" built in
to the 4052 and 4054.

2-2

NAME

CALL "NAME",AS
As$:I DATA TO BE PUT IN HEADER OF TAPE FILE

NAME puts a name in the header record of the current tape
file. The format used does not affect the operation of the
standard TLIST, but allows TLI2 to see the names, The file to
be named must have been opened just prior to calling NAME. The
name is inserted into positions 45 through 71 of the header
record which are normally unused. Strings longer than 27
characters are truncated.

Example: 100 FOR I=1 TO 10
110 FIND I
120 PRINT "ENTER NAME FOR FILE ";I;": ";
130 INPUT AS
140 CALL "NAME",AS$
150 NEXT I
160 CALL "TLI2"
170 END

In this example, the user is prompted for a name for each file
between 1 and 10. NAME puts the name in the file header for
later access by TLI2.

TLI2

CALL "TLI2"[,D]

D:I DEVICE TO SEND LISTING TO
(OPTIONAL - default is graphics screen)

TLI2 reads the file headers from the tape and prints them to
the device specified. The default device is the graphics
screen, Files named by the NAME routine are shown with their
names, while unnamed files appear as in a normal TLIST.

Example: 100 CALL "TLI2"
110 CALL "TLI2",51
120 END

In this example, TLI2 sends a listing of tape files to the
screen and the printer interface in slot 51.

FILE?

CALL "FILE?",A
A:0 TARGET VARIABLE FOR FILE NUMBER (-1 IF NOT VALID)

FILE? returns the number of the file currently under the tape
head, If for some reason, no file is valid, -1 will be
returned.

Example: 100 INPUT N
110 FIND N
120 CALL "FILE?",A
130 PRINT "FILE: ";A
140 END

In this exmple, FILE? returns the number of the most recently
found file., This should be the same as N.

TYPE?

CcaLL "TYPE?",A,B,C
A:0
B:O
C:0

C

0=LAST
1=NEW
2=ASCII
3=BINARY

TYPE? returns the type of
called first to determine
The first parameter, A, is returned with a value

the system.

of one if the current file is secret, zero otherwise,

TARGET VARIABLE
TARGET VARIABLE
TARGET VARIABLE

SECRET (1=SECRET)
PROGRAM (1=PROGRAM)
TYPE

FOR
FOR
FOR

file last opened. OPEN? should be
if there is a valid opened file in

The

second parameter, B, is returned with a value of one if the

current file is a program file, zero otherwise.
is returned with a value of zero if the current

parameter, C,

The third

file is the LAST file, one for a NEW file, two for an ASCII
file, or three for a BINARY file.

100
110
120
130
140
150
160
170
180
190
200
210
220
230

Example:

CALL "TYPE2?",A,B,C

AS="n
IF A=1 THEN 140
As$="NOT "

PRINT "THE CURRENT FILE IS ";AS$;"SECRET."
C=C+1+(C>1) *2*B

FOR.I=1] TO C

READ A$

NEXT I

PRINT "IT IS A ";AS$;" FILE."

DATA "LAST","NEW"

DATA "ASCII DATA","BINARY DATA"

DATA "ASCII PROGRAM","BINARY PROGRAM"

END

In this example, TYPE? returns the type of the current file.
Lines 110 through 140 print to the user whether the file is

secret,

Lines 150 through 220 print to the user whether the

file is LAST, NEW, ASCII DATA, BINARY DATA, ASCII PROGRAM, or

BINARY PROGRAM.

2-6

STATUS

CALL "STATUS",A,B,C

A:0 TARGET VARIABLE FOR SHORT RECORD (1=SHORT RECORD)
B:0 TARGET VARIABLE FOR NO CHECKSUM FORMAT (1=NO CHECKSUM)
C:0 TARGET VARIABLE FOR NO HEADER FORMAT (1=NO HEADER)

STATUS returns the tape status as set by PRINT @33,0:. The
target variables are in the same order and have the same
meaning as in the PRI @33,0: statement that sets the status.

Example: 100 INPUT A,B,C
110 PRINT €33,0:A,B,C
120 CALL "STATUS",X,Y,Z
130 PRINT X,Y,Z
140 END

In this example, STATUS returns the same values into X, Y, and
Z as were used in line 110 for A, B, and C, respectively.

OPEN?

CALL "OPEN?",A,B

A:0 TARGET VARIABLE FOR TAPE IN STATUS
B:0 TARGET VARIABLE FOR OPEN STATUS

A ' B
0=TAPE NOT IN 0=FILE NOT OPEN
1=WRITE PROTECTED 1=JUST OPENED
2=WRITABLE 2=ACCESSED

OPEN? returns the current status of the tape drive and control
system. The first parameter, A, is returned with a value of
zero if there is no tape cartridge in the tape drive or if the
tape drive has not been initialized since the cartridge was
inserted, a value of one if there is a tape cartridge present,
but it is write protected, or a value of two if there is a
tape cartridge present and it is not write protected.

The second parameter, B, is returned with a value of zero if
there is no open file, a value of one if the file has been
opened, but not accessed yet, or a value of two if the file
has been both opened and accessed.

Example: 100 CALL "OPENZ2",A,B
110 RESTORE 150
120 FOR I=1 TO A+l
130 READ AS
140 NEXT I
150 DATA "NOT PRESENT.","WRITE PROCTECTED."
160 DATA "WRITABLE."
170 PRINT "THE TAPE IS ";AS
180 RESTORE 220
190 FOR I=1 TO B+l
200 READ AS
210 NEXT I
220 DATA "NOT OPEN.","JUST OPENED."
230 DATA "ACCESSED."
240 PRINT "THE CURRENT FILE IS ";AS$
250 END

In this example, OPEN? determines whether the tape is not

present, write protected, or writable. It also determines
whether a file is not open, just opened, or has been accessed,

2-8

MARK2

CALL "MARK2",A
A:I NUMBER OF BYTES TO MARK

MARK2 is an enhancement of the MARK statement in BASIC. It
allows the user to mark a tape file (usually to repair the
file) without marking the next file as the dummy LAST file.
To call MARK2, the tape must have just been positioned to the
beginning of a file. MARK2 erases and formats the file, then
rewinds the tape back to the beginning of the file, The file
is marked NEW and all data is overwritten.

NOTE: MARK2 should ALWAYS be used to mark the file to the
same number of records as the file was originally marked to.
Failure to observe this may result in losing other files,

Example: 100 FIND 3
110 CALL "MARK2",2000
120 END

In this example, MARK2 marks file 3 to 2000 bytes without
disturbing any other files.

TFRWRD and TBACK (Tape Forward and Tape Back Up)

CALL "TFRWRD"
CALL "TBACK"

TFRWRD moves the internal magnetic tape forward one physical
record without reading or writing any data. TBACK moves the
tape backward one physical record without reading or writing
any data. These routines are intended to be used with TREAD
and TWRITE to aid recovery of data from damaged tape files and
repair of tape files. Since the motion of the tape is in
physical records, no information should be in the buffer
waiting to be written to the tape. Also, these routines will
produce very unpredictable results if interspersed with the
normal INPUT, PRINT, READ, and WRITE statements,

Example: 100 FIND 3
110 FOR I=1 TO 3
120 CALL "TFRWRD"
130 NEXT I
140 FOR I=1 TO 2
150 CALL "TBACK"
160 NEXT I
170 END

In this example, lines 110 through 130 position the tape head
at the beginning of the fourth block of file 3. Lines 140
through 160 position the tape head back to the second block of
the same file.

2-10

TREAD and TWRITE (Tape Read and Tape Write)

CALL "TREAD",AS

A$:0 STRING TO PUT RECORD INTO (Must be
dimensioned to 258 or larger)

CALL "TWRITE",AS$
STRING TO WRITE TO TAPE (Must be

dimensioned to 258 or larger,
length must be 128 or 256)

AS:I

TREAD and TWRITE are intended to be used with TFRWRD and TBACK
to help in recovering data from damaged tape files and
repairing files., TREAD reads one physical record from the
internal magnetic tape. TWRITE writes one physical record on
the tape. '

The recommended procedure to follow in recovering data from
damaged tape files is to position the tape head just before
the unreadable record, call TREAD to read the physical record,
call TBACK to move the tape back to the original position,
modify the string to eliminate incorrect data, and call TWRITE
to write the corrected string back to tape.

Caution must be exercised when using these routines, because
they may cause additional damage to the tape file if
complications arise. It is strongly recommended that these
routines not be used unless the tape file is already damaged
too badly to be read normally. Also, these routines should be
used more cautiously on non-standard tape format files.

100
110
120
130
140
150
160
170
180

Example:

FIND 3

FOR I=1 TO 3
CALL "TFRWRD"
NEXT I

DIM A$(258)
CALL "TREAD",A$
CALL "TBACK"
CALL "TWRITE,AS
END

In this example, lines 110 through 130 position the tape head

at the beginning of

the fourth record in file 3, TREAD reads

the block, TBACK backs up to the beginning of the block again,
and TWRITE writes the same data back into the block.

2-11

MTPACK Mag Tape Pack

CALL "MTPACK"

MTPACK is essentially the same routine built in to the 4052
and 4054, It is included only in the 4051 version for this
reason. This routine should be called several times to break
in a new tape before marking the files. It can also be used
to keep the tape from packing unevenly.

Example: 100 FOR I=1 TO 5
110 CALL "MTPACK"
120 NEXT I
130 END

In this example, the tape is packed five times to break in a
new tape. This will work the same on a 4051 with this ROM
Pack installed as on a 4052 or 4054,

2-12

FIND

CALL "FIND",F
F:I FILE NUMBER TO FIND

FIND is essentially the same as the BASIC FIND statement in
the 4052 and 4054. It allows the 4051 to find a tape file
without the neccessity of rewinding the entire tape first.
When FIND is called, it rewinds the tape looking for the start
of a file. When a file is found, the header is read to locate
the position of the tape. FIND then runs the tape in the
appropriate direction to find the desired file. FIND is
included in the 4052/54 version to provide BASIC software
compatibility.

Example: 100 CALL "FIND",3
110 END
In this example, file 3 is found and opened. This will work

the same on all 4050 series machines. It is the same as the
FIND statement on the 4052/54,

2-13

SETAPE

CALL "SETAPE"

SETAPE rewinds the tape until the start of a file is seen. It
then reads the file header to find the position of the tape.

Example: 100 CALL "SETAPE"
110 FIND 3
120 END

In this example, SETAPE locates the current position of the
tape, so the FIND statement can find file 3 without rewinding
the whole tape to the beginning. This will work in both the
4051 and 4052/54.

2-14

Summary of Magnetic Tape Utility Routines

CALL "NAME",AS
CALL "TLI2",D

CALL "FILE?",A
CALL "TYPE?",A,B,C
CALL "STATUS",A,B,C
CALL "OPEN?",A,B
CALL "MARK2",A
CALL "TFRWRD"

CALL "TBACK"

CALL "TREAD",AS
CALL "TWRITE",AS
CALL "MTPACK"

CALL "FIND",F

CALL "SETAPE"

2-15

ARRAY UTILITIES
Intr‘oduction ® S 5 9 0 0 G O PO LSOO L E LSOO SN eSS

Subscripting Routines

Row ® 9 © © 0 0% P O S PP OO P H OE OO ST OO CE TSSOSO EsSeS
COL ...c..... cecenecsnons ceeeen verseone ceccccee
POS ...cc.ee seecescessesessccasssescncssene coe

Array Transfer Routines
SEND teeeeeenccccnancanas ceeeeans cecscceane cees
ALOAD ..covvecnnnn. tececssencnne ceceesseccecanne
$WRITE +.vveerenececcnancncncnnocncans secensens
$READ t.vveeevenncnnnnnnnne N .o
SWAP civevnenencnnenne ceccsescccssssccsserene .e

Array Math Routines
ARRAY ececcssasessccnasecassarcccssasons
OPERATOR sessscsscssencncscssossssanses
COMPARE ...iiiecennrecnncneeans csesesescencscnnne

MAX e e v e e00s 000000 Se s e s eee L0000 000000
MIN ses esccse e et eeeeres 0000000000000 0000000000
SUM L RN R RN

ARYSET © 0 009 0060000008000 06909009 9000000000000

Summary of Array Utility Routines ceesses

ARRAY UTILITIES

Introduction

The Array Utilities are firmware routines that complement the
array functions built into the 4050 Series. These routines
include subscripting functions, transfer and formatting
functions, math functions, and multi-dimensional subscripting.

There are five subscripting routines in the Array Utilities.
They are ROW, COL, POS, NDOUT, and NDIN. ROW and COL return
the dimensioned size and shape of an array. POS returns the
row and column subscripts of an array element given its linear
position in the array. NDOUT and NDIN allow subscripting of
an array as if it had up to five dimensions.

There are six array transfer routines. They are SEND, ALOAD,
$WRITE, $READ, SWAP, and ASORT. SEND moves data from a source
array to a target array. ALOAD inputs data from a specifiec
input device into a target array. $WRITE formats data from an
array into a string variable using an IMAGE string similar to
the PRINT USING statement. $READ transfers data from a string
to an array. SWAP exchanges the contents of two arrays,
scalars, or strings. ASORT performs a shell sort on an array
by rows or columns. Most of these routines allow the user to
specify a starting location in the array and an increment.

There are seven array math routines. They are ARRAY,
OPERATOR, COMPARE, MAX, MIN, SUM, and ARYSET. ARRAY performs
+, -, ¥ /, and " arithmetic operations on array data.
OPERATOR performs monadic (SIN, COS, SQR, erc.) operations on
array data. COMPARE finds the first element less then,
greater than, equal to, or not equal to a given value. MAX
and MIN find the largest and smallest value in an array. SUM
sums the elements in an array. ARYSET defines an array with a
starting value and an incremental value for each successive
array element.

3-2

ROW and COL (Row and Column Dimension)

CALL "ROW",A[,I1]
CALL "COL",A[,Il]

A:I ARRAY
I1:0 TARGET (OPTIONAL)

The ROW and COL routines return the row and column dimensions
of the specified array to the target variable or the Graphics
System screen. A one dimensional array has a column dimension
of zero,

Example: 100 DIM A(3,2)
110 CALL "ROW",A
120 CALL "COL",A,C
130 PRINT C

Output: 3
2

POS (Position)

CALL "POS",A,I2([,I,J]

A:I ARRAY

I2:I POSITION

I:0 TARGET FOR ROW (OPTIONAL)
J:0 TARGET FOR COLUMN (OPTIONAL)

NOTE: I AND J MUST BOTH BE PRESENT OR ABSENT

The POS routine returns the row and column subscript of an
element in an array, given its linear position in the array.
The subscripts are returned to the target variables, if
passed, or the Graphics System screen. The row subscript is
printed to the screen first.

Example: 100 DIM A(3,3)
110 CALL "POS",A,6,1,J
120 PRINT I,J

Output: 2 3

3-4

NDOUT and NDIN (n-Dimensional Input and Output)

CALL "NDOUT",A,S,D,I

A:I SOURCE ARRAY

S:0 TARGET SCALAR

D:I VECTOR OF PSEUDO DIMENSIONS
I:I VECTOR OF PSEUDO INDICES

CALL "NDIN",A,S,D,I1

A:0 TARGET ARRAY

S:I SOURCE SCALAR

D:I VECTOR OF PSEUDO DIMENSIONS
I:I VECTOR OF PSEUDO INDICES

The NDOUT and NDIN routines allow subscripting into an array
as if it had up to five dimensions. The pseudo dimensions and
pseudo indices are passed in separate singly dimensioned
arrays. There may be from 1 to 5 pseudo dimensions. The
dimensions are in lexicographic order, that is, the first
element of the pseudo dimension and pseudo index arrays is
weighted the greatest in determining the position of the
specified element of the sequentially stored array. NDOUT
transfers data from the array to the scalar. NDIN transfers
data from the scalar to the array.

Example: 100 DIM A(720) ,D(5),1I(5)
110 READ D
120 DATA 2,3,4,5,6
130 READ 1
140 paTA 1,1,3,5,2
150 FOR X=1 TO 720
160 A(X)=X
170 NEXT X
180 CALL "NDOUT",A,S,D,I
190 PRINT S
200 CALL "NDIN",A,3,D,1
210 END

Output: 86

In this example, array A is set up to look like a five
dimensional array with dimensions (2,3,4,5,6). NDOUT puts
element 86 from array A into scalar S. NDIN puts a value of 3
into the same element.

SEND

CALL "SEND",A(X,Y),I,B(X1,Y1),I1,I[N]

SOURCE ARRAY

ROW IN A

COLUMN IN A

INCREMENT FOR A

TARGET ARRAY

ROW IN B

COLUMN IN B

INCREMENT FOR B

NUMBER OF ELEMENTS (OPTIONAL)

R D
Z T H e DD

26 8¢ 00 S0 40 80 s 08 W

HHMFHMHOQOMHH H

The SEND routine moves data from the source array to the
target array. The array elements are used starting at the
specified starting position and incremented by the specified
increment. The routine stops when the specified number of
elements have been transfered or the end of either array
encountered.

Example: 100 paTA 1,2,3,4,5,6,7,8,9
110 DIM A(3,3).
120 DIM B(5)
130 READ A
140 B=0
150 CALL "SEND",A(1,1),2,B(2),1,3
160 PRINT B

Output:

oo

3-6

ALOAD (Array Load)

Q)
>
e
=

"ALOAD“’D'A'X'I['N]

DEVICE TO INPUT FROM
TARGET ARRAY

STARTING POINT IN INPUT
INCREMENT (INPUT)

NUMBER TO INPUT (OPTIONAL)

ZHNXPUO
HHHOM

The ALOAD routine inputs data from the specified input device
and puts the data in the target array. Data up to the
specified input starting point is disregarded. The incoming
data is put into the target array according to the specified
increment. Data incremented past is disregarded. The target
array is loaded sequentially starting with the first element
of the array. The routine stops when an end of file condition
is encountered, the specified number of numbers have been
loaded into the target array, or the end of the target array
is encountered.

Due to complexities in the I/0 process, if the specified input
device is nonexistent or does not send enough data, the
routine may hang waiting for input. This will require
pressing the BREAK key twice to regain control of the
computer,

Example: 100 DIM A(5)
110 A=0
120 FIND 1

130 CALL "ALOAD",33,A,3,2,4
‘140 PRINT A

Output: 3 5 7 9
-0

Tape file 1 contains integers starting with 1 and incrementing by 1.

$WRITE (Write to String)

CALL "$WRITE",F$,A$(,I1],A(X,Y)[,I,N]

F$:1 FORMAT FOR PACKING

A$:0 TARGET STRING

I STARTING POSITION IN TARGET STRING (OPTIONAL)
SCURCE ARRAY

ROW IN A

COLUMN IN A

INCREMENT (OPTIONAL)

NUMBER TO DO (OPTIONAL)

A -
°e w8 o0 se
Lo B e B o B B e]

NOTE: I MUST BE PRESENT IF N IS.

NOTE: IF THE IMAGE STRING IS TO BE USED MORE THAN
ONCE, THERE MUST BE NO NON-DATA ITEMS ON THE
END OF THE IMAGE STRING.

The $WRITE routine loads the contents of the source array into
the string variable using the format string. Data is put into
the target string starting with the specified starting
position. If the starting position is greater than 1, leading
spaces are inserted in A$. The syntax of the format string is
the same as for the PRINT USING statement in BASIC. The
format string is recycled and used again if there is more data
to process than format specifiers in the format string. Note,
however, that if this is the case, there must be no trailing .
non-data items in the format string, or an error message will
be issued. '

The routine loads the contents of the source array starting
with the specified starting position and increments through
the source array by the specified increment. If the increment
specification is not passed, the default increment of 1 is
used. The routine stops when the specified number of elements
have been loaded, the end of the array is encountered, or the
dimensioned length of the target string is exceeded. Note
that the increment specifier and the number of elements to
process must both be passed, or neither be passed.

Example: 100 DATA 1,2,3,4,5
110 DIM A(5)
120 READ A
130 CALL "$WRITE","3D.1D",A$,4,A(2),1,3
140 PRINT A$

Output: 2.0 3.0 4.0

$READ (Read from String)

CALL "$READ",A$[,11]1,A(X,Y)[,I,N]

A$:1 SOURCE STRING

I1:I STARTING POSITION IN A$ (OPTIONAL)
TARGET ARRAY

ROW IN A&

COLUMN IN A

INCREMENT (OPTIONAL)

NUMBER TO DO (OPTIONAL)

2 G b
- - O

.
.
»
.
.
.
.
.
.
.

NOTE: I MUST BE PRESENT IF N IS.

The $READ routine loads data from the source string into the
target array starting with the specified position in the
source string. The data is interpreted the way the BASIC VAL
function would interpret the data. The target array is loaded
starting with the specified starting position. The increment
refers to the target array. The routine stops when the
specified number of elements have been transfered, the end of
the target array is encountered, or the data is exhausted.

Example: 100 A$="9 1 2 3"
110 DIM A(T7)
120 A=0
130 CALL "$READ",A$,3,4(2),2,3
140 PRINT A
Output: 0 1 0 2
0 3 0

3-9

SWAP

CALL "SWAP",A,B

A:I0 SOURCE/TARGET VARIABLE (SCALAR, STRING, OR ARRAY)
B:I0 TARGET/SOURCE VARIABLE (SCALAR, STRING, OR ARRAY)

The SWAP routine exchanges the contents of a scalar variable,
a string variable, or an array variable. If two string
variables are to be exchanged which are incompatible, string A
having a longer current length than the dimension of string B,
error message 21 is issued. If arrays of different sizes are
exchanged, the routine sequentially exchanges the elements of
the arrays until the end of either array is encountered. No
error is produced when the end of an array is encountered, and
the rest of the larger array is left unaltered.

Example: 100 A$="THIS IS AS"
110 B$="THIS IS BS"
120 CALL "SWAP",AS$,BS
130 PRINT AS$
140 PRINT BS

Output: THIS IS BS$
THIS IS AS$

3-10

ASORT (Array Sort)

CALL "ASORT",A,D$,X1[,X2[,X311]

A:I0 ARRAY TO BE SORTED

D$:I ROW OR COLUMN SORT

X1:I PRIMARY ROW/COLUMN NUMBER

X2:1 SECONDARY ROW/COLUMN NUMBER (OPTIONAL)
X3:I TERTIARY ROW/COLUMN NUMBER (OPTIONAL)

The ASORT routine performs a shell sort on the specified
array. The array is sorted either by rows or by columns as
specified. Row integrity is maintained for column sorts, and
column integrity is maintained for row sorts., If secondary
and/or tertiary row/column numbers are passed, the array is
sorted by these if the primary row/column contains identical
values.

Example: 100 DIM A(5
110 DATA 5,
120 DATA 9,
130 DATA 4,
140 DATA 1,
150 DATA 3,
160 READ A
170 PRINT A
180 CALL "ASORT",A,"C",4,2,3
190 PRINT A

OUTJ W~

200 END

Output: 5 3 7 7
9 8 8 2
4 7 5 2
1 5 3 5
3 8 2 2
4 7 5 2
3 8 2 2
9 8 8 2
1 5 3 5
5 3 7 7

In this example, ASORT performs a column-based sort on array A
with primary column 4, secondary column 2, and tertiary column
3.

3-11

ARRAY

)
o
B
£

"ARRAY",A(X,Y),I1,0%,B(X1,Y1),I2,C(Cl),IN]

SOURCE ARRAY 1

ROW IN A

COLUMN IN A
INCREMENT IN ARRAY A
ARITHMETIC OPERATION
SOURCE ARRAY 2

ROW IN B

COLUMN IN B
INCREMENT IN B
TARGET ARRAY
STARTING POINT IN C
NUMBER OF OPERATIONS (OPTIONAL)

alala o+
ZHEONK TN KD

00 8% 60 00 &0 45 00 e 00

O H H B -

@

The ARRAY routine performs the indicated operation on elements
of two arrays and puts the results in a third array.

Allowable arithmetic operators are "+", "-=-", "%", "/" and
"*", The source arrays are used starting at the element
indicated and incremented by the specified increment. The
arrays may be of different size and shape. The routine stops
when the specified number of elements have been operated on or
the end of any of the three arrays is encountered.

Example: 100 DIM A(9),B(3,2),C(3)
110 DATA 1,2,3,4,5,6,7,8,9
120 DATA 11,12,13,14,15,16
130 READ A _
140 READ B / 5
150 CALL "ARRAY",A(2),3,"+",B(1,1),2,C(1),5
160 PRINT C

Qutput: 13 18 23
/’\--l‘w. T Ay L Y
A T e T L YT
.

3-12

OPERATOR

CALL "OPERATOR",F$,A(X,Y),Il1,B(X1,Y1),I2,I[N]

g3

FUNCTION NAME

SOURCE ARRAY

ROW IN A

COLUMN IN A

INCREMENT IN ARRAY A

TARGET ARRAY

ROW IN B

COLUMN IN B

INCREMENT IN ARRAY B

NUMBER OF OPERATIONS (OPTIONAL)

HE DG
ORI KMXD 0
e 60 a5 o4 ee o4 ¢s o0
HEHMHEHOMHHMHH

The OPERATOR routine subjects elements of the source array to
the specified named monadic operator and puts the results in
the target array. The arrays are used starting with the
specified starting position and incremented by the specified
increment. The arrays may be of different sizes and shapes.

Allowable operators are "ABS", "ACS", "ASN", "ATN", "Cos",
"gxp", "INT", "LGT", "LOG", "SGN", "SIN", "SQR", "TAN" as
explained in the Tektronix literature. Since these operators
are uniquely determined by their first two letters, only the
first two letters need be passed in the string. Any extra
characters are disregarded.

Example: 100 DATA 1,2,4,2,9,2,16,2,25
110 DIM A(S)
120 DIM B(9)
130 B=0
140 READ A
150 CALL "OPERATOR","SQR",a(1l),2,B(2),1,5
160 PRINT B

Outputﬁ 0 1 2 3
4 5 0 0
0

3-13

COMPARE

CALL "COMPARE",A(X,Y),I,0%,C,R[,X1,Y1])[,N]

A:I ARRAY TO SEARCH
X:I ROW NUMBER OF STARTING POINT
Y:I COLUMN NUMBER OF STARTING POINT
I:I INCREMENT
O0$:I RELATIONAL OPERATOR
C:I NUMBER TO COMPARE WITH
R:0 VALUE FOUND
X1:0 ROW NUMBER OF R (OPTIONAL)
Y1:0 COLUMN NUMBER OF R (OPTIONAL)
N:I NUMBER OF ITEMS TO TEST (OPTIONAL)

The COMPARE routine permits the search of arrays. The array
is searched starting with the element indicated. Allowable
relational operators are "<" for less than, ">" for greater
than, "=" for equal, and "N" for not equal. The first element
of the array satisfying the relational operator is returned
for the "=" and "N" cases. The element of the array
satisfying the relational operator closest in value to the
value to compare with is returned in the "<" and ">" cases.

The value of the element found is returned. Zero is returned
if no value was found to satisfy the relational operator. The
row and collumn subscript of the element found are also
returned if X1 and Yl are passed in the CALL statement. The
array is searched until the specified number of elements have
been tested or the end of the array is found., If N is not
passed, the routine stops when the end of the array is
encountered. ‘

Example: 100 DATA 5,4,3,2,1,2,3,4,5
110 DIM A(3,3)
120 READ A
130 CALL "COMPARE",A(1,2),1,"<",2.5,R,X1,Y1,7
140 PRINT R,X1l,Y1

Output: 2 2 1

3-14

MAX and MIN (Maximum and Minimum)

CALL "MAX",A[,Il,X]
CALL "MIN",A[,I1,X]

A=I ARRAY
I1=0 TARGET FOR POSITION (OPTIONAL)
X=0 TARGET FOR VALUE (OPTIONAL)

NOTE: Il AND X MUST BOTH BE PRESENT OR ABSENT

The MAX and MIN routines return the maximum and minimum values
in the specified array to the target variables or the Graphics
System screen. The position is printed on the screen first.
If the array is two-dimensional, the POS routine may be used
to convert from the position to the row and column subscripts.

Example: 100 DATA 9,8,7,6,5,4,3,2,1
110 DIM A(9)
120 READ A
130 CALL "MAX",A,I1,X
140 PRINT I1,X
150 CALL "MIN",A

Output: 1 9
9
1

SUM

@)
o]
e
o

"SuM",A(X,Y),I,S[,NI]

ARRAY TO SUM

ROW NUMBER OF STARTING POINT

COLUMN NUMBER OF STARTING POINT
INCREMENT IN A

SUM TARGET

NUMBER OF ELEMENTS TO SUM (OPTIONAL)

0N

HOMKMHH H

The SUM routine sums all the elements in the array starting at
the indicated element and incrementing by the specified
increment until the specified number of elements has been
summed or the end of the array is encountered. The sum is
returned in the target variable. If the number of elements to
sum is not passed, the routine stops when the end of the array
is encountered.

Example: 100 paTA 1,2,3,4,5,6,7,8,9
110 DIM A(9)
120 READ A
130 CALL "SUM",A(2),2,S,3
140 PRINT S

Qutput: 12

3-16

ARYSET (Array Set)

CALL "ARYSET",A,M,B

A:0 TARGET ARRAY
M:I VALUE FOR A(1l)
B:I INCREMENTAL VALUE

ARYSET defines an array with a starting value and an
incremental value for each successive array element. The
array must have been previously DIMENSIONed to the desired
number of elements. It may be one or two dimensional. The
value of M is assigned to the first element in the array. M+B
is assigned to the second element, and so on. ARYSET stops
when it encounters the dimensioned end of the array.

Example: 100 DIM A(5)
110 CALL "ARYSET",A,100,10
120 PRINT A
130 END

Output: 100 110 120 130
140 '

In this example, ARYSET assigns the value 100 to the first
element of the array A, 110 to the second element, and so on.

Example 2: 100 DIM X(100),Y(100)
: 110 CALL "ARYSET",X,0,1

120 CALL "ARYSET",Y,0,PI*2/99
130 Y=SIN(Y) :
140 WINDOW 0,99,-1,1
150 MOVE X(1),Y(1)
160 DRAW X,Y
170 END

In this example, ARYSET assigns values 0 through 99 to
elements of X and value 0 through PI*2 to elements of Y. Line
130 computes the sine of .each element of Y., Lines 140 through
160 plots the sine wave defined by X and Y to the screen.

3-17

Summary of Array Utility Routines

CALL "ROW",A[,I1]

CALL "COL",A[,I1]

CALL "POS",A,I12[,I,J]

CALL "NDOUT",A,S,D,I

CALL "NDIN",A,S,D,I

CALL "SEND",A(X,Y),I,B(X1,Y1),I1,N

CALL "ALOAD",D,A,X,I[,N]

CALL "$WRITE",F$,A$,A(X,Y)[,I,N]

CALL "$READ",A$,A(X,Y)[,I,N]

CALL "SWAP",A,B

CALL "ASORT",A,D$,X1[,x2[,%3]]

CALL "ARRAY",A(X,Y),I1,0$,B(X1,Y1),12,C(C1),N
CALL "OPERATOR",F$,A(X,Y),I1,B(X1,Y1),I2,N
CALL "COMPARE",A(X,Y),I,0$,C,R[,X1,Y1][,N]
CALL "MAX",A[,I1,X]

CALL "MIN",A[,I1,X]

CALL "SUM",A(X,Y),I,S[,N]

CALL "ARYSET",A,M,B

3-18

BINARY UTILITIES

IntrOdUCtion TR I I I I I I IR BN ST I T B R B B L AL 4.2

I/0 and Graphics Routines
GPIBIN "N EEEEEEEENENR NN = I I I B A BNCECE RN BN B R B BN S B BN R A

PLOT$ ®© 9 0 6 6 0 06 €8 &6 0 00 QS O EC LSS0 L OO EEIE SOOI OSse

MAXI S 6 8 2 5 6 0 0 T 0 E OO SO E SO T OGSO O S L O EECOOEESEO OO TSL OO
MINI '"EEEEREEE NI N I S I S AR IR BRI N B B BN R R B R B AN]

4
4
UNLEAV ® ® 6 8 8 6 ¢ ¢ C A P S E S GG C ST EN 0T OO OSSO OE S0 eD 4
4
4
4

BS&QAP 'R EREEEEIEIE N B I B B AR BN B R R R R I A I I A B S

Data Conversion Routines
PACK '!.'..!..C...‘...'.lQ....‘l...‘!.l"ll..“

DECBIN I REEEEE NI I R I BRI A N R Y YR N I RN I B L 4

4
UNPACK ®© 0 6 0 6 0 85 0 9 8 GG P S O SO EE OGO OSSO EC e OB SON TS SS e 4_
4
BINDEC 2 8 8 € 0 0 8 ¢ 8 0 C G0 0N E O S E OO SE OB E OO OCOCCTEOITTTOCTLTS 4

Arithmetic and Logic Routines
BDDB seeeesosscecocsccsscesscsccesccossssccoscscsccsce 4 11
SUBB cecceseccescevsssosscscescsssacscscsccsscoscssosase 4 12
MULB eccecececscccstscoscescsscssssssoscscosscscncsccssce 4-13
ANDB cveseocsccecncecocscssssoscscssssescsccscscsccnsosce 4'14
ORB ececcecessaosososcscccessscecscsccessccssscssscssccce 4—15
EORB soceecceccccccorsascsscsscscscscscecscccnoccsnosocce 4-16
ROIB ceeeoceceenrccecsoscocosscscsscecscosossncssscscocace 4—17
RORB ceeececcococscccoseresscscesascscasscncsssocsse 4-18

ASLB € 6 6 0 8 8 8 9 T E O 00O Q000 OO E SO O CEOETOEOOIOTLEEEOSEOCOESITBSDOCETE 4—19

ILSRB cseecececescssrseversnoscseccsccseacsscsccssosccsscss 4'20

Summary of Binary Utility ROUtINES seeeeseesceccccocess 421

4-1

BINARY UTILITIES

Introduction

The Binary Utilities are firmware routines for manipulating
binary string format data. These include I/0 and graphics
routines, data conversion routines, and arithmetic and logic
routines,

There are six I/0 and graphics routines in the Binary
Utilities. They are GPIBIN, PLOT$, UNLEAV, MAXI, MINI, and
BSWAP. GPIBIN allows input from the GPIB. Data taken by this
routine is stored in a string variable. PLOTS$ draws a graph
of data in a string variable. UNLEAV separates multiplexed
data from a string variable. MAXI and MINI find the value and
position of the largest and smallest datum in a string.

There are four data conversion routines. They are PACK,
UNPACK, DECBIN, and BINDEC. PACK and UNPACK convert between
floating point data in an array variable and binary string
data in a string variable. DECBIN and BINDEC convert between
numeric data and ASCII 1l's and 0's.

There are 10 arithmetic and logic routines. They are ADDB,
SUBB, MULB, ANDB, ORB, EORB, ROLB, RORB, ASLB, and LSRB.
ADDB, SUBB, and MULB perform arithmetic operations on binary
string data. ANDB, ORB, and EORB perform logical operations
on binary string data. ROLB, RORB, ASLB, and LSRB perform
shift and rotate operations on binary string data.

GPIBIN

CALL "GPIBIN",AS$,N

AS$:0 Target for data
N:I Number of bytes to take

The GPIBIN routine takes data from the GPIB and puts it in a
string variable. This allows two computers to communicate
with each other over the GPIB. The data should be sent with
the WBYTES statement or the PRINT statement. All items
received are put into the string, including addresses.

A$ is a string variable. It must be dimensioned large enough
to contain the data to be read. If not previously
dimensioned, it will be dimensioned to the default length of
72. N is the number of bytes to take. It may be a simple
variable, an expression, or a literal value.

Example, sender: 100 PRINT €15:"THIS IS A TEST."
110 END
Example, reciever: 100 CALL "GPIBIN",AS$,50

110 A$=SEG(AS,3,LEN(AS))
120 PRINT AS$
130 END

Output: THIS IS A TEST.

In this example, the computers are tied together with the GPIB
cable. The sender outputs the primary listen address for
device 15, which is 47, the secondary address for print, which
is 108, and the string "THIS IS A TEST." The reciever puts
all this data into A$. Line 110 strips off the addresses, and
line 120 prints the received string.

PLOTS$

CALL "PLOTS",A$,D,I,S,N,B

A$:I String to be graphed
D:I Device number for graphing
I:I Interval
S:I Starting point
N:I Number of points to plot
B:I Number of bytes per sample

The PLOT$ routine draws a graph of data in a string. AS is
the string containing the data to be graphed. D is the device
to draw to. It must be a legal value. I is the incremental
value between plotted points. It should be 1 for
unmultiplexed data. S is the point in the string to begin
graphing at. N is the Number of points to plot. B is the
number of bytes (1 or 2) per sample.

PLOT$ draws a graph of every I'th point starting at number S.
It draws until N points have been graphed. The graph is drawn
to device D. AS$ must be a defined string. All other
parameters may be simple variables, expressions, or literal
values. Before calling PLOT$, the WINDOW should be set to N
in the horizontal direction and the largest expected sample in
the vertical direction.

Example: 100 DIM A$(100) ,A(50)
110 FOR I=1 TO 50
120 A(I)=32768* (1+SIN(PI*1/25))
130 NEXT I
140 CALL "PACK",AS$,A,50,2
150 WINDOW 1,50,0,65535
160 CALL "PLOTS$",AS$,32,1,1,50,2
170 END

In this example, lines 100 through 140 create a string of 50
2-byte words of data. Line 150 sets the plotting window to
the correct size. Line 160, PLOTS$, plots the data to the
screen using an interval of 1 and a starting location of 1.
This plots all 50 2-byte words and draws one cycle of a sine
wave on the screen.

4 4

UNLEAV

CALL "UNLEAV",AS$,BS,I,S,N,B

Source string

Target string

Interval

Starting Point

Number of points to extract
Number of bytes per point

o

WZ2nHunwn

LY Y I T}

HHKHHOH

The UNLEAV routine extracts every I'th point in A$ starting at
point S. It puts the extracted points in B$. It extracts
until N points have been extracted. B is the number of bytes
per point. B should be either 1 or 2, This is useful in
separating multiplexed data.

Example: 100 A$="1234567890"
110 CALL "UNLEAV",AS$,BS$,3,2,2,1
120 PRINT BS
130 END

Output: 25

In this example, A$ contains ten characters. UNLEAV extracts
two l-byte points into B$ starting with the second point in AS
and using an interval of three. This extracts the digits 2
and 5. AS$ is not changed. '

MAXI/MINI

CALL "MAXI",AS$,M,P,B
CALL "MINI",A$,M,P,B

A$:I Data string

M:0 Target for value

P:0 Target for position

B:I Number of bytes per sample

MAXI finds the value and position of the largest point in AS.
MINI finds the value and position of the smallest point in AS.
The number of bytes per sample (1 or 2) is specified by B. B
may be a simple variable, an expression, or a literal value.
The value of the extreme point is returned in M. The position
in A$ is returned in P. M and P must be simple variables.

Example: 100 As="123ABCO0al23ABC"
110 CALL "MAXI",A$,M,P,1
120 PRINT "MAX",M,P
130 CALL "MINI",AS$,M,P,1
140 PRINT "MIN",M,P

150 END
Output: MAX 97 8
MIN 48 7

In this example, MAXI and MINI work on 1 byte data. MAXI
returns the ASCII value and position of the character "a" and
MINI returns the ASCII value and position of the character
"0".

4- 6

BSWAP

CALL "BSWAP",AS
A$:I10 Data string

The BSWAP routine exchanges bytes in a string. It exchanges
the first and second byte, the third and fourth bytes, and so
on. The main purpose of this is to allow the other routines
to manipulate data in which the least significant byte is
first in the data string. If the length of the string is odd,
the last byte is unaffected. .

Example: 100 A$="1234ABCDE"
110 CALL "BSWAP",AS
120 PRINT AS
130 END

Output: 2143BADCE

In this example, BSWAP exchanges every 2-byte pair in A$. The
length is odd, so the last byte is unaffected.

PACK/UNPACK

CALL "PACK",AS$,A,N,B
CALL "UNPACK",A$,A,N,B

AS$:I0 Target or source string

A:I0 Target or source array

N:I Number of samples to convert
B:I Bytes per sample

The PACK routine compresses data from a floating point numeric
array A to 1 or 2 byte integers and stores the binary result
into string variable A$. The UNPACK routine takes data thus
represented in string variable A$ and converts it to the 8
byte floating point format and stores each number in an
element of the numeric array A.

N is the number of samples to convert. B is the number of
bytes per sample. B should be either 1 or 2. Array A should
be dimensioned to at least N elements. String A$ should be
dimensioned to at least N*B bytes and the length should be at
least N*B for UNPACK., If B is 1, the values PACKed can be no
larger than 255. 1If B is 2, the values PACKed can be no
larger than 65535,

Example: 100 DIM A(5),As$(10),B(10)
110 FOR I=1 TO 5
120 A(I)=I
130 NEXT I
140 CALL "PACK",AS$,A,5,2
150 CALIL "UNPACK",AS$,B,10,1

160 PRINT B :
170 END
Output: 0 1 0 2
0 3 0 4
0 5

In this example, PACK packs five elements from array A into AS$
using two bytes for each sample. UNPACK unpacks ten l-byte
samples from A$ into array B. This also demonstrates that the
most significant byte is first.

4-8

DECBIN

CALL "DECBIN",E$,F$,X

E$:0 Target string for the most significant byte
F$:0 Target string for the least significant byte
X:1I Number to convert

The DECBIN routine takes a floting point number and creates a
two byte binary number represented as a most significant and a
least significant byte in two 8 character string variables
with ASCII 1's and 0's.

Example: 100 A=3*%256+34
110 CALL "DECBIN",ES,F$,A
120 PRINT ES$;"™ ";FS
130 END

Output: 00000011 00100010
In this example, DECBIN converts 3*256+34 into its ASCII

binary representation. The most significant byte is assigned
to E$, and the least significant byte is assigned to FS$.

BINDEC

CALL "BINDEC",ES$,X

E$:I String to convert
X:0 Target variable

The BINDEC routine performs the opposite function of the
DECBIN routine. The input string E$ can be any length up to
16 characters. The blnary number representea by this string
of ASCII 1's and 0's is converted into a dec1mal number and
stored in variable X.

Example: 100 CALL "BINDEC","100010",X
110 PRINT X
120 END

Output: 34

In this example, BINDEC converts the string "100010" to
decimal and assigns the result, 34, to X.

4-10

ADDB

CALL "ADDB",BS,I,B
CALL "ADDB",B$,C$,B

B$:I0 Target and string source 1
I:I Decimal source 2

C$:1I String source 2

B:I Bytes per sample

The ADDB routine allows adding a single integer value to an
array of packed 1 or 2 byte binary numbers. If also allows
two equal lengthed strings to be summed together. In the
first case, I is the integer number that will be added to each
word in B$. In the second case, C$ is a string of the same
length as B$. Corresponding elements of C$ and BS$ are added
together. 1In both cases, the result is stored back in B$ and
B is the number of bytes per sample and should be 1 or 2.

Example: 100 A$="123ABC"
110 CALL "ADDB",AS$,2,1
120 PRINT AS
130 END-

Output: 345CDE
In this example, ADDB adds 2 to each byte of A$., This

increases each numeric character by 2 and changes each
alphabetic character to the letter 2 later in the alphabet.

4-11

SUBB

CALL "SUBB",B%,I,B
CALL "SUBB",B$,C$,B

I

I Decimal source 2
I String source 2
I Bytes per sample

B$:I0 Target and string source 1
$

C

I
B
The SUBB routine is used in the same way as the ADDB routine.

The SUBB routine subtracts I or C$ from B$ and stores the
difference back into BS$,.

Example: 100 As$="567XYZ"
110 CALL "SUBB",AS$,2,1
120 PRINT AS
130 END

Output: 345VWX
In this example, SUBB subtracts 2 from each byte in A$. This

decreases each numeric character by 2 and changes each
alphabetic character to the letter 2 earlier in the alphabet.

4-12

MULB

CALL "MULB",BS,I,B
CALL "MULB",BS$,CS$,B

B$:I0 Target and string source 1
I:I Decimal source 2

C$:1I String source 2

B:I Bytes per sample

The MULB routine is used to multiply a series of binary
numbers in a string by an integer or by corresponding binary
numbers in another string. As with ADDB and SUBB, the

each element in B$ is multiplied by I or by the corresponding
element in C$ and put back into B$. B is the number of bytes
per sample and should be 1 or 2,

Example: 100 As$="12345"
110 CALL "MULB",AS$,2,1
120 PRINT AS
130 END

Output: bdfhj

In this example, MULB multiplies each byte in A$ by 2. This
doubles the ASCII value of each character.

4-13

ANDB

CALL "ANDB",B$,CS$

B$:I0 Target and source string 1
C$:I Source string 2

The ANDB routine allows two string variables to be ANDed
together, Each byte of B$ is ANDed with the corresponding
byte of C$, and the result is put back into BS.

Example: 100 As$="abcdqrst"
110 CALL "ANDB",AS$,""""7>>>>"
120 PRINT AS
130 END

Output: €BBD0224
In this example, ANDB performs a logical AND operation on the
strings "abcdgrst" and """"7>>>>", This zeroes bits 6 and 1

of the first four characters of A$ and bits 7 and 1 of the
last four,

4-14

ORB

CALL "ORB",B%,C$

B$:I0 Target and source string 1
C$:1 Source string 2

The ORB routine is used in the same way as the ANDB routine,
but is performs a logical OR between the bytes in B$ and Cs$.

Example: 100 As$="1234ABCD"
110 CALL "ORB",A$,"@eee@ "
120 PRINT AS$
130 END

Output: grstabcd
In this example, ORB performs a logical OR operation on the

strings "1234ABCD" and "eeee ", This sets bit 7 of the
first four characters in A$ and bit 6 in the last four.

4-15

EORB

CALL "EORB",BS$,CS$

B$:I0 Target and source string 1
C$:1 Source string 2

The EORB routine is also used in the same way as the ANDB and
the ORB routines with the exception that is performs a logical
EXCLUSIVE OR function.

Example: 100 A$="QRST5678"
110 CALL "EORB",A$," ' ''%nm
120 PRINT AS
130 END

Output: 1234U0VWX
In this example, EORB performs an EXCLUSIVE OR function on the

strings "QRST5678" and " ' '''' ‘", This inverts bits 6 and 7
of each byte of A$ exchanging numbers and upper case letters,

4-16

ROLB

CALL "ROLB",B$,C,N,B

B$:I0 Data string to be rotated.

C:I0 Initial carry value and target for flnal carry
N:I Number of bit places to shift

B:I Number of bytes per sample

The ROLB routine is used to perform a Rotate Left bit shift
over 1 or 2 byte binary words. The rotate function causes the
carry generated from the previous shift to be shifted into the
least significant bit position. The carry may be initially
set or cleared by argument C which should be 1 or 0. The
value of C will be used for the carry on the first shift in
each word but will be returned with the actual value of the
carry resulting from the final shift on the last binary word.
N is the number of bit places to shift. B is the number of
bytes per binary word over which shifting is to take place and
should be 1 or 2,

Example: 100 As="123"

' _ 110 C=1
120 CALL "ROLB",ASs,C,1,1
130 PRINT As,C
140 END

Output: ceg 0
In this example, ROLB performs a left rotate operation on the

string "123" with an initial carry of 1. This essentially
multiplies the ASCII value of each character by 2 and adds 1.

4-17

RORB

CALL "RORB",BS,C,N,B

B$:I0 Data string to be rotated.

C:I0 Initial carry value and target for final carry
N:I Number of bit places to shift

B:I Number of bytes per sample

The RORB routine is the same as the ROLB routine except that
the direction of the shifting is to the right.

Example: 100 As$="ceg"
110 C=0
120 CALL "RORB",A$,C,1,1
130 PRINT AS,C
140 END

Output: 123 1
In this example, RORB performs a right rotate operation on the
string "ceg" with an initial carry of 0. This is the inverse

operation of the example for ROLB. It essentially divides the
ASCII value of each character by 2.

4-18

ASLB

CALL "ASLB",BS$,C,N,B

B$:I0 Data string to be shifted

C:0 Target for final carry

N:I Number of bit places to shift
B:I Number of bytes per sample

The ASLB routine is an Arithmetic Shift Left operation the
same as the ROLB routine except that on each shift a 0 is
shifted into the least significant bit position instead of the
result from the carry. The variable C is returned with the
value of the carry from the last shifting operation. N is the
number of bit places to shift. B is the number of bytes per
word over which the shifting is to take place and should be 1
or 2.

Example: 100 As="123"
110 CALL "aASsLB",ASs,C,1,1
120 PRINT AS,C
130 END

Output: bdf 0
In this example, ASLB performs a left shift operation on the

string "123", This essentially multiplies the ASCII value of
each character by 2.

4-19

LSRB

CALL "LSRB",BS$,C,N,B

B$:I0 Data string to be shifted

C:0 Target for final carry

N:I Number of bit places to shift
B:I Number of bytes per sample

The LSRB routine is a Logical Shift Right operation that is
the same as the RORB routine except that it shifts a 0 into
the most significant bit position rather than the result of
the carry. It is also the same as the ASLB routine except
that the direction of the shifting is reversed.

Example: 100 As="bdf"
110 CALL "LSRB",AS$,C,1,1
120 PRINT AS$,C
130 END

Ouput: 123 -0
In this example, LSRB performs a right shift operation on the
string "bdf". This essentially divides the ASCII value of

each character by 2. Note that this is the inverse of the
example for ASLB.

4-20

Summary of Binary Utility Routines

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

"GPIBIN",AS,N
"pLOTS$",A$,D,I,S,N,B
"UNLEAV",AS$,B$,I,S,N,B
"MAXI",AS,M,P,B
"MINI",AS,M,P,B
"PACK",AS$,A,N,B
"UNPACK",AS$,A,N,B
"DECBIN",AS$,BS,X
"BINDEC",AS$,X
"ADDB",AS$,I,B
"ADDB",A$,BS$,B
"SUBB",AS$,I,B
"SUBB",A$,BS$,B
"MULB",AS$,I,B
"MULB",AS$,BS$,B
"ANDB",AS$,BS
"ORB",AS,BS
"EORB",A$,B$
"ROLB",AS$,C,N,B
"RORB",AS$,C,N,B
"ASLB",A$,C,N,B
"LSRB",A$,C,N,B
"BSWAP",A$

4-21

GENERAL UTILITIES

IntrOdUCtion © 0 0 8 ¢ 00 00 2 00 E 9T 0L S S SE SO S E SO E SO SESOT OO TSTE PSS

Array Routines
INTERP ® 86 6 0 8 6 0 8 ¢ ¥ O ¢ S S O 8 TS G O W O OO O C s SO E T O OO S GCE S OO
INTEG ® ® 8 © & 6 6 & & O 8 P S O S S TP SN S E O S E T T S SO C T O T OO
DERIV S ® 0 & 0 0 ¢ ¢ O 9 P PSS O E S TS O ET OSSO PO E ST ST O EE SO e s e
PACK ® 9 € 0 & & 9 6 & Q0 ¢ 5 B 0SS O O ST O S O TS OSSO S S C S S OO E PSS OO

UNPACK ® 8 ¢ ¢ @ 0 S G O T O 2 O P O S C S E O E O OO OSSO T OSSO

String Routines
SET$ ® 9 @ @ ¢ S 0 0 8 O O C O E T O T OO C T GO O S OGO OO R O C OO DR OEE SO
DIM$ ® 9 9 8 @ & 9 ¢ O Q& O S S O T OOV CT OO0 SO EE O C OO ES eSS
LISTs 9 9 ¢ 0 @ B O ¢ O C EC OO O SO P ECE T SO O OO O E OO CECESES SO EEEOE PSS
SSORT ® 9 ¢ 0 0 ¢ ¢ 8 ¢ 8 0 0 " SO PSS C O T E S OO SO CE eSO OO ECECES OO TPDSE

EDIT € @ 8 0 ¢ 8 ¢ QO ¢ 08 QE OSSO TS T T O OO EOE OSSO OO OSSO S e O E 00

I/0 Routines

GETCHR 6 0 € 0 0 00 66 C 00 S0 CETE OO G E SO CEC OSSOSO INEEEECEESTOTOTE
GPIBIN @ & 9 8 & & 6 9 6 S Q@ GO 8P OO T PO S SEE T O SO SOV E OO S s O

PLOT$ © 2 9 € 0 6 ¢ 00 0 QE TS S ST ST L T O SO OT SO OO SISO ECEOEEST TS OIOE

Miscellaneous Routines

LREF € & & 0 0 0 O 8 8 QE 00T O E S S S C SO QO OO G E O PC OO SO E PSS ECECETOSTEE

XREF ® 6 © @ 0 0 ¢ 9 ¢ O ¢ 0 ¢ O QOO S C O O O N C O S S SO S OO SN OO STEEOE O
RUN S 0 @ 0 O 2 & ¢ ¢ 0 8 & O O O T O SO S QO QST E SO OO QO s TN e O
GETRET ® & ® 9 0 ¢ 0 0 © ¢ T G OO S S O T C S OO S OO S S S E OSSOSO S DN
SWAP 4 e veeeeencecesoeanaasacassescsssasssncssns

BEEPIQCQO'...'"...'....'..‘..Q.......ll

Summary of General Utility RoUtineS ..cececescecsosscccec

5-1

GENERAL UTILITIES

Introduction

The General Utilities are general purpose firmware utility
routines. They include routines that perform a variety of
useful functions not otherwise possible from BASIC ranging
from cross reference utilities to special math and string
functions. : :

There are five array routines in the General Utilities. They
are INTERP, INTEG, DERIV, PACK, and UNPACK. INTERP performs
linear interpolation on array data. INTEG performs
integration. DERIV performs first or second order derivation.
PACK converts array data to packed binary string data. UNPACK
converts packed binary string data to array data.

There are five string routines., They are SETS$, DIMS, LISTS,
$§SORT, and EDIT. SET$ fills a string with a specified
character and length., DIM$ returns the dimensioned length of
a string variable, LISTS$ displays a string to the screen
using underline format for control characters. $SORT performs
a shell sort on the data in a string variable. EDIT allows
the user to modify a string using the standard line editor
keys.

There are three I/0 routines. They are GETCHR, GPIBRIN, and
PLOT$. GETCHR returns the next character from the type-ahead
buffer if one is present. GPIBIN reads binary data from the
GPIB into a string variable., PLOT$ graphs packed binary
string data directly.

There are six miscellaneous routines. They are LREF, XREF,
RUN, GETRET, SWAP, and BEEP. LREF prints a cross-reference
listing of lines in the current BASIC program and lines that
refer to them. XREF prints a cross-reference listing of lines
that refer to a specified variable or a table of references to
each defined variable. RUN allows a variable to specify the
line number where a program is to begin running. GETRET gets
the return line number from the last user key pressed and
stores it in a variable that can be saved and later recalled
to restart a program from the point it was aborted by the user
key by RUN. SWAP exchanges the contents of two strings,
scalars, or arrays. BEEP outputs a tone of a specified
frequency and duration.

5=2

INTERP (Interpolate)

CALL "INTERP",X,Y,B,CI[,Cl]

X:I SOURCE ARRAY, OLD INDEPENDENT VARIABLE
Y:I SOURCE ARRAY, COLD DATA

B:I SOURCE ARRAY, NEW INDEPENDENT VARIABLE
C:0 TARGET ARRAY, NEW DATA

Cl:I INITIAL FILL VALUE (OPTIONAL)

INTERP performs linear interpolation on the original data in
array Y with the independent variable in array X onto the new
independent variable in array B. The new data is stored in
array C. The range of B should be less than or equal to the
range of X. Cl is the optional fill value for C and has a
default value of zero. INTERP is implemented from the
following BASIC program:

2480 REM START OF BASIC INTERP

2490 C=Cl

2500 J1=1

2510 K=X(N5)>X(1)

2520 FOR I=1 TO N4

2530 LO0=B(I) ~

2540 IF LO<X(K+N5%(1-K)) OR LO>X(N5*K+1-K) THEN 2610
2550 FOR J=J1 TO N5-1

2560 J1=J

2570 IF LO<X((J+1)*K+J*(1-K)) AND LOG=>X(J*K+(J+1)* (1-K)) THEN 2590
2580 NEXT J

2560 J=J-(J>N5-1)

2600 C(I)=(Y(J+1)-¥Y(J))/(X(J+1)-X(J))*(LO-X(J))+Y(J)
2610 NEXT I ,

2620 REM END OF BASIC INTERP

Example: 100 N5=100
110 N4=9
120 DIM X(N5),Y(N5),B(N4),C(N4)
130 FOR I=1 TO N5
140 X(I)=I a
150 Y(I)=SIN((I-1)*2*PI/(N5-1))
160 NEXT I
170 FOR I=1 TO N4
180 B(I)=1+(I-1)*(N5-1)/(N4-1)
190 NEXT I
200 CALL "INTERP",X,Y,B,C
210 WINDOW 1,N5,-1,1
220 MOVE X (1) ,Y(1)
230 DRAW X,Y
240 MOVE B(1),C(1)
250 DRAW B,C
260 END

In this example, arrays X and Y approximate a sine wave in 100
points. INTERP interpolates this curve into arrays B and C,
which then approximate a sine wave in 9 points. This is what

the plot looks like:

INTEG (Integrate)

CALL "INTEG",X,Y,B

X:I SOURCE ARRAY, DATA _
Y:I SOURCE ARRAY, INDEPENDENT VARIABLE
B:0 TARGET ARRAY, INTEGRAL OF DATA

INTEG performs integration of the data in array X over the
independent variable in array Y. The result for each element
is stored in array B. It is implemented from the following
BASIC program:

2840 REM BASIC INTEG

2850 S=0

2860 K=2*(X(N1)>X(1))-1
2870 K1=K<>1

2880 B(1)=0

2890 B(N1l)=0

2900 FOR I=1 TO N1l-1

. 2910 J=I*K+(N1+1)*K1

2920 S=S+0.5* (Y (J)+Y (J+K)) * (X (J+K)-X(J))
2930 B(J+K)=S

2940 NEXT I

2950 REM END OF BASIC INTEG

Example: 100 N1=10
110 DIM X(N1),Y(N1l) ,B(N1)
120 FOR I=1 TO N1
130 X(I)=I"2
140 Y(1I)=I
150 NEXT I _
160 CALL "INTEG",X,Y,B
170 PRINT X,Y,B

180 END-
Output: 1 4 9 16

25 36 49 64

81 100

1 2 3 4

5 6 7 8

9 10

0 4.5 17 41.5
82 142.5 227 339.5.

484 664.5

In this example, INTEG integrates the data in array X over the
independent variable in array Y and stores the result for each
point in array B.

DERIV (Derivative)

CALL "DERIV",A,Z,Al,N2

A:I SOURCE ARRAY, DATA

zZ:1 SOURCE ARRAY, INDEPENDENT VARIABLE
Al:0 TARGET ARRAY, DERIVATIVE OF DATA
N2:I ORDER OF DERIVATIVE

DERIV performs the derivative of the data in array A with
respect to the independent variable in array Z. The result
for each element is stored in array Al. N2 determines the
order of the derivative taken and should be 1 or 2. The first
and last point of a second order derivative are not calculated
and are set to zero. DERIV is implemented from the following
BASIC program:

3120 REM START OF BASIC DERIV

3130 IF N2=2 THEN 3230

3140 FOR I=2 TO I2-1

3150 D1=Z(1)-Z(1-1)

3160 D4=7Z(I+1)-Z (1)

3170 D3=1/(D1*D4* (D1+D4))

3180 Al1(I)=(D4*D4*(A(I)-A(I-1))+D1*D1*(A(I+1)-A(I)))*D3
3190 NEXT I

3200 A1(1)=(A(2)-A(1))/(2(2)- Z(l))

3210 A1(12)=(A(I2)-A(I2-1))/(Z(12)-2(12-1))
3220 GO TO 3320

3230 REM SECOND DERIVATIVE

3240 FOR I=2 TO I2-1

3250 D1=Z(1)-2(1-1)

3260 D4=Z(I+1)-Z(1)

3270 D3=1/(D1*D4* (D1+D4))

3280 Al(1)=2*(D4* (A(I- l)—A(I))+Dl*(A(I+l)—A(I)))*D3
3290 NEXT I

3300 Al(1)=0

3310 A1(12)=0

3320 REM END OF BASIC DERIV

Example: 100 12=10
110 DIM A(I2),Z2(I2),A1(I2),A2(I2)
120 FOR I=1 TO I2
130 A(I)=I"2
140 z(1I)=I
150 NEXT I
160 CALL "DERIV",A,Z,Al,l
170 CALL "DERIV",A,Z,A2,2
180 PRINT A,Z,Al,A2
190 END

5-6

Cutput: 1 4 9 16
25 36 49 64
81 100
1 2 3 4
5 6 7 8
9 . 10
3 4 6 8
10 12 14 16
18 19
0 2 2 2
2 2 2 2
2 0

In this example, DERIV performs the derivative of the data in
array A with respect to the independent variable in array Z.
The result of the first order derivative is put in array Al,
and the result of the second order derivative is put in array
A2,

5-7

PACK

CALL "PACK",AS$,A,N,B

A$:0 TARGET STRING

A:I SOURCE ARRAY

N:I NUMBER OF POINTS TO CONVERT
B:I BYTES PER POINT

PACK converts floating point data in an array to packed binary
data in a string variable., PACK takes data from array A,
converts it, and puts the converted data into string variable
A$. N is the number of points to convert. B is the number of
bytes -of A$ to use for each converted point and may be either
1 or 2. Array A must contain at least N defined elements,
String variable A$ must be dimensioned to at least B*N bytes.

PACK rounds each element to be converted to the nearest

whole number and packs it into binary format. If B is 1,
values of 0 to 255 are valid. If B is 2, values of 0 to 65535
are valid.

Example: 100 DIM A(5),As$(5)
110 READ A
120 DATA 48,49,50,51,52
130 CALL "PACK",A$,A,5,1
140 PRINT AS
150 END

Output: 01234
In this example, PACK converts five elements from A to l-byte

binary format and puts the converted data in A$. AS$ thus
contains 5 characters when pack has finished.

5-8

UNPACK

CALL "UNPACK",AS$,A,N,B

o

wa > n

SOURCE STRING

TARGET ARRAY

NUMBER OF POINTS TO DO
BYTES PER POINT

HHOH

s se s e

UNPACK converts packed binary data from string A$ and puts the
converted values into floating point array A. It is
essentially the reverse of the PACK routine. N is the number
of points to convert. B is the number of bytes to take from
AS for each conversion and may be either 1 or 2. Array A must
be dimensioned to at least N bytes and string A$ must contain
at least N*B characters.

UNPACK converts each binary value to the corresponding integer
in floating point format. If B is 1, values from 0 to 255 may
be produced. If B is 2, values from 0 to 65535 may be
produced.

Example: 100 DIM A(5)
110 CALL "UNPACK","01234",A,5,1
120 PRINT A
130 END

Output: 48 49 50 51
52

In this example, UNPACK takes its data from the literal string
"01234" and puts the converted data into array A. Five points
are converted, using one byte from the source string for each
point.

SETS (Set String)

CALL "SETS$",AS$,A[,N[,I]]

A$:0 TARGET STRING

A:I ORDINAL VALUE TO FILL WITH

N:I NUMBER OF CHARACTERS TO FILL (OPTIONAL)
I:I STARTING POSITION IN STRING (OPTIONAL)

The SET$ routine fills a string with a specified ordinal
value. This is intended to be primarily used for preparing a
string for the $SORT routine. Any ordinal value may be passed
up to 65535, but the value is taken mod 256 before filling the
string. If the string is intended to be used for the $SORT
routine, the ordinal value passed should be zero,

The string length is set to the lesser of N+I-1 and the
dimensioned length of the string. Characters are filled
starting at position I unless I is greater than the
dimensioned length.

Example: 100 CALL "SETs",As$,65,10
110 PRINT AS
120 CALL "SETS$",A$,66,5,8
130 PRINT AS$

Output: AAARAAAAMAA
AAAAAAABBBBB

5-10

DIMS (Dimensioned Léngth of a String)

CALL "DIMS",AS,I

A$:I STRING IN QUESTION
I:0 TARGET FOR DIMENSIONED LENGTH

The DIM$ routine returns the dimensioned length of a string
variable. This is the argument of the most recently executed
DIM statement.

Example: -100 DIM AS$(500)
110 CALL "DIMsS",AS,I
120 PRINT I
130 END

Output: 500

5-11

LIST$

CALL "LISTS$",AS

A$:I STRING TO PRINT

LISTS$ prints the string A$ to the screen in list format., This
displays all control characters except control M (carriage

return) as the corresponding upper case letter with an
underline,

5-12

$SORT (String Sort)

CALL "$SORT",As$,S,X1[,X2[,X31]

AS$:I0 STRING TO BE SORTED

S:I RECORD SIZE

X1:I OFFSET TO PRIMARY SUBRECORD (STARTS AT 0)
X2:I OFFSET TO SECONDARY SUBRECORD (OPTIONAL)
X3:I OFFSET TO TERTIARY SUBRECORD (OPTIONAL)

The $SORT routine performs a shell sort on the data in a
string variable. The string is assumed to have a fixed record
size, which is passed into the routine. It is also assumed to
be filled with padding characters. A record may contain any
number of subrecords or fields, which may be of mixed lengths.
The offset used to index into the subrecords starts at zero,
that is, the first subrecord has an offset of zero. There
must be at least one null (ASCII value of zero) character at
the end of any subrecord used in the sort to act as a
delimiter,

The sort is done by comparing the subrecord indexed by the
primary offset., If subrecords contain identical data, the
secondary offset, if passed, is used, and so on. When
ordering the records, entire records are moved, so record
integrity is maintained. Upper case and lower case are
treated as different. The sorted string is in increasing
order of ASCII values.

Example: 100 DIM A$(250)
110 CALL "SET$",A$,0
120 FOR I=1 TO 250 STEP 10 .
130 READ BS$
140 CALL "SETs",B$,0,1,LEN(BS$)+1
150 A$=REP(B$,I,LEN(BS))
160 NEXT I
170 DATA "A","Z","3","8","BILL"
180 DATA "B","Y","1","8","FRED"
190 DATA "C","X","2","8","JOE"
200 DATA "D","wW","6","7","SAM"
210 DATA "E","V","4","5","GEORGE"
220 CALL "$SORT",AS$,50,30,20,40
230 FOR I=1 TO 250 STEP 50
240 FOR J=0 TO 40 STEP 10
250 B$=SEG(AS$,I+J,10)
260 PRINT B$;" ";
270 NEXT J
280 PRINT
290 NEXT I
300 END

5-13

Output: E V 4 5 GEORGE
DW 6 7 SAM
B Y 1l 8 FRED
C X 2 8 JOE
A Z 3 8 BILL

In this example, $SORT uses a record lentgh of 50 characters.
Each record is made up of five subrecords of 10 characters
each. Lines 100 through 210 initialize A$. $SORT uses a
primary offset of 30, a secondary offset of 20, and a tertiary
offset of 40. This sorts A$ according to the fourth, third,
then fifth subrecords.

5-14

EDIT

CALL "EDIT",ZS$
Z$:I0 DATA STRING TO BE EDITED

The EDIT routine displays the string to be edited, allows the
user to modify the string using the standard line editor keys
on the 4050, and stores the resulting string when the carriage
return is pressed.

The maximum size of the data string to be edited is 72
characters. An attempt to edit a longer string will result in
an error message. If the string variable is dimensioned
smaller than the length of the string after editing, which can
only happen if the string is dimensioned smaller than 72, the
string is truncated when it is put into the variable. A line
number may be printed to the left of the string, but the line
number will not be reprinted by expand, compress, or reprint,

The data string may be extracted from the file string by
SUBSTR, and put back in the file string by REPLACE. EDIT may
also be used to insert material by passing the null string to
EDIT and using INSERT to put the line into the file string.
In this case, EDIT works much like the BASIC string INPUT
statement.

The string passed to EDIT should not contain any carriage
returns in the line string. Cursor motion is unpredictable if
the line contains a carriage return.

Example: 100 A$="THIS IS A TEST"
110 CALL "EDIT",AS

This example prints "THIS IS A TEST" on the graphics system
screen, allows the user to modify the string, and returns the
modified string in AS.

5-15

GETCHR (Get Character)

CALL "GETCHR",AS$
A$:0 TARGET FOR CHARACTER (LENGTH=0 IF NOTHING THERE)

GETCHR tests for the presence of a character from the
keyboard, returns that character if present, or returns the
null string if there is no character present. This is
intended to be used to aid cursor generation and command input
procedures.

Example: 100 CALL "GETCHR",AS
110 PRINT AS;
120 IF AsS<>"@" THEN 100

This example echos the input from the keyboard until the at
sign is pressed. When the at sign is pressed, the program
drops out. When no key has been pressed, A$ is empty, so line
110 does nothing.

GPIBIN

CALL "GPIBIN",AS$,N

A$:0 Target for data
N:I Number of bytes to take

The GPIBIN routine takes data from the GPIB and puts it in a
string variable. This allows two computers to communicate
with each other over the GPIB. The data should be sent with
the WBYTES statement or the PRINT statement, All items
received are put into the string, including addresses.

A$ is a string variable. It must be dimensioned large enough
to contain the data to be read. If not previously
dimensioned, it will be dimensioned to the default length of
72. N is the number of bytes to take. It may be a simple
variable, an expression, or a literal value. ‘

Example, sender: 100 PRINT @15:"THIS IS A TEST."
110 END
Example, reciever: 100 CALL "GPIBIN",A$,50

110 AS=SEG(AS$,3,LEN(AS))
120 PRINT AS$
130 END

Output: THIS IS A TEST.

In this example, the computers are tied together with the GPIB
cable. The sender outputs the primary listen address for
device 15, which is 47, the secondary address for print, which
is 108, and the string "THIS IS A TEST." The reciever puts
all this data into A$. Line 110 strips off the addresses, and
line 120 prints the received string.

5-17 -

PLOTS$

CALL "PLOTS$",A$,D,I,S,N,B

A$:I String to be graphed
D:I Device number for graphing
I:I Interval
S:I Starting point
N:I Number of points to plot
B:I Number of bytes per sample

The PLOT$ routine draws a graph of data in a string. AS$ is
the string containing the data to be graphed. D is the device
to draw to. It must be a legal value. I is the incremental
value between plotted points. It should be 1 for
unmultiplexed data. S is the point in the string to begin
graphing at. N is the NMumber of points to plot. B is the
number of bytes (1 or 2) per sample.

PLOT$ draws a graph of every I'th point starting at number S,
It draws until N points have been graphed. The graph is drawn
to device D. AS$ must be a defined string. All other
parameters may be simple variables, expressions, or literal
values. Before calling PLOTS, the WINDOW should be set to N
in the horizontal direction and the largest expected sample in
the vertical direction.

Example: 100 DIM As$(100) ,A(50)
110 FOR I=1 TO 50
120 A(I)=32768*% (1+SIN(PI*I/25))
130 NEXT I
140 CALL "PACK",A$,A,50,2
150 wINDOW 1,50,0,65535
160 CALL "PLOTS",A$,32,1,1,50,2
170 END

In this example, lines 100 through 140 create a string of 50
2-byte words of data. Line 150 sets the plotting window to
the correct size. Line 160, PLOT$, plots-the data to the
screen using an interval of 1 and a starting location of 1.
This plots all 50 2-byte words and draws one cycle of a sine
wave on the screen,

5-18

LREF (Line Cross-reference)

CALL "LREF"I[,D],A

D:I DEVICE TO OUTPUT TO
A:I 1 - TABLE OF REFERENCES
2 - LIST OF DEAD-END POINTERS
4 - LIST OF DEAD CODE
FUNCTIONS CAN BE CONBINED, 7=DO EVERYTHING

LREF produces a listing of line references in the current
BASIC program. This listing can be sent to any device with
the optional device number D. The default for D is 32, the
Graphics System screen. Parameter A determines which of the
three available functions is performed. Any combination of
functions can be selected.

If A is 1, 3, 5, or 7, LREF produces a table showing each line
and the lines that refer to it. If A is 2, 3, 6, or 7, LREF
produces a list of lines containing references to non-existent
lines. I1f A is 4, 5, 6, or 7, LREF produces a list of lines
that cannot be reached during program execution, Lines 4
through 80 may appear in this list and should be disregarded
if they are reached through a User-Definable Key. If multiple
functions are selected, they will be performed in the same
order as they are explained in this paragraph.

5-19

XREF (Line Cross-reference)

CALL "XREF",DI,A]

D:I DEVICE TO PRINT TO
A:I VARIABLE TO SEARCH FOR (OPTIONAL)

XREF sends a listing of the variables referenced in the
current program and the lines they are used in. This listing
may be sent to any I/0 device including the mag tape. If a
variable A is specified, only references to it are printed. If
no variable is specified, all references to all variables are
printed., :

5-20

RUN and GETRET (Get Return Line Number)

CALL "RUN",L
L:I LINE NUMBER TO RUN FROM

RUN allows a variable to specify the line number where a
program is to begin running, This is intended primarily to
restart a program when the current line number was saved by
GETRET. When CALLed from immediate mode, RUN is equivalent to
the RUN statement. When CALLed from a program line, RUN is
equivalent to the GO TO statement.

CALL "GETRET",L
L:0 TARGET FOR THE RETURN LINE NUMBER

GETRET gets the return line number from the last user key
pressed and stores it in target variable L. If no return line
is found, it returns a value of zero. GETRET is intended to
be used with CALL "RUN" to make overlaid programs run more
effectively. The suggested procedure is as follows:

1. The user presses a key that forces a GOSUB to a line
between 4 and 80.

2. GETRET puts the return line number into a variable.

3. The program saves the return line number and any
important data and OLDs in the appropriate overlay.

4, The overlay runs to cbmpletion.
5. The overlay OLDs in the original program.

6. The original program reads back in the saved data and
performs a CALL "RUN" to the return line number.

Since CALL "RUN" cannot reconstruct the stack entries for
FOR/NEXT loops and GOSUB statements, it is recommended that
the user keys be disabled during FOR/NEXT loops and
subroutines. Also, it is recommended that the user keys be
disabled when executing GO TO statements since GETRET will not
return the correct line number if the user key is pressed
while executing a GO TO statement.

Example: 1 GO TO 200
(main program) 4 GO TO 400
100 N=0
110 GO TO 300
200 FIND 2
210 READ @33:N,L
220 CALL "RUN",L
300 N=N+1
310 PRINT "N EQUALS ";N
320 CALL "waiT",1
330 GO TO 200
400 CALL "GETRET",L
410 FIND 2
420 WRITE N,L
430 FIND 3
440 OLD

(overlay) 100 PRINT "OVERLAY RUNNING"
120 FIND 1
130 OoLD

In this example, the main program (on file 1) is started by
typing RUN 100. This initializes N. Lines 300 through 330
print sequential numbers to the screen. When user key 1 is
pressed, lines 400 through 440 get the return line number,
saves N and L, and brings in the overlay from file 3, The
overlay runs and brings the original program back in., Lines
200 through 220 read N and L back in and resume operation
where the user key was pressed.

5-22

SWAP

CALL "SWAP",A,B

A:I0 SOURCE/TARGET VARIABLE (SCALAR, STRING, OR ARRAY)
B:I0O TARGET/SOURCE VARIABLE (SCALAR, STRING, OR ARRAY)

The SWAP routine exchanges the contents of a scalar variable,
a string variable, or an array variable, If two string
variables are to be exchanged which are incompatible, string A
having a longer current length than the dimension of string B,
error message 21 is issued. If arrays of different sizes are
exchanged, the routine sequentially exchanges the elements of
the arrays until the end of either array is encountered. No
error is produced when the end of an array is encountered, and
the rest of the larger array is left unaltered.

Example: 100 A$="THIS IS As"
110 B$="THIS IS BS"
120 CALL "SwaAP",A$,BS
130 PRINT AS
140 PRINT BS

Output: THIS IS BS$
THIS IS AS

5-23

BEEP

CALL "BEEP",F,D

F
D

FREQUENCY OF BEEP (Hz.)

I
I DURATION OF BEEP (SEC.)

BEEP generates a tone of the specified frequency and duration
on the Graphics System speaker. BEEP will do its best to
provide whatever tone is requested, so it is recommended that
parameters be within reason.

5-24

Summary of General Utility Routines

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

"INTERP",X,Y,B,CI[,C1]
"INTEG",X,Y,B
"DERIV",A,Z,Al,N2
"PACK",AS$,A,N,B
"UNPACK",A$,A,N,B
"SETS$" ,AS$,A[,N[,I]]
"DIMS",AS,I
"LISTS",AS
"$SORT",AS$,S,X1[,X2[,X31]
"EDIT",Z$

"GETCHR",AS$
"GPIBIN",AS,N
"pLOTS",A$,D,I,S,N,B
"LREF"[,D],A
"XREF",DI[,Al

"RUN",L

"GETRET",L

"SWAP",A,B
"BEEP",F,D

5-25

EDIT UTILITIES

IntroduCtion ® 8 ® 0 € 2 @ 0 62 0 8 G 9 S O F S S S E S S ¢SS S S OO SO OO SIS
File String Format ® 0 ® 9 5 & €6 0 8 C O 5 T G ST T H TS OC OSSN ES SO e

File Routines

DIM$ ® 9 € & 8 @8 ¢ O 6 C O O TS E SO OO ET OB O EE OGS CEE OSSOV

EDREAD ® 0 € 8 6 0 6 0 0 9 S 0 8 8 O PO E S T O ST OSSO E NS EOsBEE N

LINES ® 9 © & 5 2 9 & O 0 B SO SO P PO G EE SO0 EE ST TS OO EE OISO

SUBSTR ® ® € 2 0 8 5 9 8 O E T TSSO T S SO0 EEOE O E O EENS OSSO CECST

REPLAC 92 9 0 @ ¢ 8 6 8 0 0 O & ¢ TGOSV E E S T O S O O EOC S ST OGO OGS OIS

INSERT @ 6 € 5 5 6 © 9 @ QU 60 5 E O H S C O 0T E ST SO E S OO OECEETS

DELETE ® 9 0 6 & 8 5 0 8 0 E 0 S S SO S P EE O ORGSO O E LT O G QOO OSSO

Line Routines

FNDLIN ® 0 9 5 0 3 ¢ 08 ¢S P O T E SO OO E QS OSSO O SO O NS ECSTE OO

LINNUM ® 9 2 6 8 0 ¢ 0 ¢ 0 9 E E ST O O S OC O O E T SO OO SO COCSOCOCS OIS

LINLEN ® 9 € 08 2 0 8 O ¢ O E E S ST E OO G G E O S S G SO OO OTE R EC OO

CURRLN ® 686 ¢ 8 06 0" PSSR ERE OGS C SR

® ¢ ¢ 600 &0 S ¢S CEC ST D

BACKLN ® 6 0 6 6 2 & 0 6 60 9 ¢ PO S CE S O S EC OO O C SO OO OSSO EC OO TS TSES

NEXTLN ® @ @ @ 8 ¢ 0 ¢ ¢ S O QO E SO SO SO S S SO O T S OSROE OISO E PSS TSSO

User Interface Routines

GETCHR ® @ 6 ¢ 6 8 0 & 9 8 0 6 ¢ S E OO T G C O EE TSSO SO0 C O PEEEOPE TSI

EDIT ® ® 0 0 0 ¢ 8 9 8 00 80 ¢ C O S PP O T OSSP S S OSSOSO C S EC O CCOCTETS

LIST$ € 8 € 6 @ ¢ 8 0 6 GO S OO R O SO E O 0L G ES O E O SEESS SO

Summary of Edit Utility Routines .ceeeecececcccscccccnce

6-1

EDIT UTILITIES

Introduction

The Edit Utilities are firmware utility routines designed to
complement the string functions supplied in the Tektronix 4050
Series Graphics Systems and allow a supervisory program in
BASIC to accept commands and manipulate a string variable
using these routines to perform the editing functions on data
inside the string.

There are seven file routines in the Edit Utilities. They are
DIM$, EDREAD, LINES, SUBSTR, REPLACE, INSERT, and DELETE.

DIM$ returns the length of the file string. EDREAD reads an
entire file into the file string from tape or a GPIB device.
LINES counts the number of lines in a file string. SUBSTR
extracts a line from the file string without disturbing the
file string. REPLACE replaces a line in the file string with
another line. INSERT inserts a line into the file string,
DELETE removes a line from the file string.

There are six line routines, They are FNDLIN, LINNUM, LINLEN,
CURRLN, BACKLN, and NEXTLN. FNDLIN locates the position of a
given line in a file string given its number. LINNUM returns
the number of the line at a given position in the file string.
LINLEN returns the length of a line given its position, CURRLN
returns the position of the beginning of a line given its
position. BACKLN returns the position of the beginning of the
previous line. NEXTLN returns the position of the beginning
of the next line.

There are three user interface routines. They are GETCHR,
EDIT, and LIST$. GETCHR returns the next character in the
type-ahead buffer if one is present., EDIT modifies a string

- using the standard line editor keys. LIST$ prints a string on
the screen using underline format for control characters.

6-2

File String Format

The format used by the edit utility routines is as follows.
The entire file is contained in one large string variable.
Separate lines within the file are delimited by carriage
returns. This allows the file string to be printed to the
4050 graphics screen, magnetic tape drive, disk, or other I/0
device.

There is no overhead within the file string for line numbers
or line lengths. The number of a line is found by scanning
through the string and counting the carriage returns. The
length of a line is found by scanning for the next carriage
return after the start of a line.

Lines within the file string are terminated by carriage
returns. Thus, the first character of a file will not be a
carriage return unless the first line is empty. The last
character of a file should be a carriage return.

The position in the file string as used by these routines is
the same as that used by the BASIC POS, SEG, and REP
statements. Thus, the position of the first character in the
file string is one. The position of a line is the position of
the first valid character of that line. The position of an
empty line is the position of the carriage return that
terminates that line.

6-3

DIMS (Dimension of a String)
CALL "DIMS",AS$,A

A$:I FILE STRING
A:0 TARGET FOR DIMENSIONED LENGTH OF AS$

DIMS returns the dimensioned length of a string variable.

This is intended to be used in editing programs to help with
the task of monitoring the size of file strings. The value
returned by DIM$ minus the current length of the string equals
the number of characters left in the string. The value
returned by DIM$ is the argument used in the most recently
executed DIM statement.

Example: 100 DIM As$(500),B$(100),Cs$(3)
110 CALL "DIMS$",AS,A
120 caLL "DIMS",Bs,B
130 CALL "DIMS$",Cs,C
140 PRINT A,B,C
150 END

Output: 500 100 3

In this example, DIMS$ returns the dimensioned size of the
three strings A$, BS$, and CS.

6-4

EDREAD (Edit Read)

CALL "EDREAD",AS$,D

A$:0 TARGET STRING TO READ INTO
D:I DEVICE TO GET STRING FROM

EDREAD performs multiple inputs from an ASCII tape file, or
other device. Strings are input into the file string and
separated by carriage returns until the end of file on the I/O
device is encountered or the dimensioned length of the file
string is exceeded. It is essentially the same as a loop in
which a string is input and concatenated onto the file string
followed by a carriage return.

Example: 100 FIND 1
110 CALL "EDREAD",AS$,33
120 FIND 2
130 PRINT @33:A$

This example finds file 1 on the internal magnetic tape drive
and inputs the file into A$. The operation stops when the
data in the tape file is exhausted or A$ is filled. The
entire file of data is then written on tape file 2. The PRINT
statement outputs the entire file, while the INPUT statement
would only input a single line,

6-5

LINES

CALL "LINES",AS$,A

A$:I FILE STRING
A:0 TARGET FOR LINE COUNT

The LINES routine counts the number of lines in a file string.
If the last line in the file is not terminated by a carriage
return, it is not counted. Thus, LINES -—~eturns the number of
carriage returns in the file string. Since LINES must scan
the entire file string, it takes approximately 1 second worst
case, This is for a file string length of 25,000 in the 4051
and 50,000 in the 4052/54.

Example: 100 FIND 1
110 CALL "EDREAD",A$,33
120 CALL "LINES",AS$,X
130 PRINT X

This example reads a file from tape and prints the number of
lines in the file.

6-6

SUBSTR (Substring)

CALL "SUBSTR",AS$,A,BS

E$:I FILE STRING (IS NOT CHANGED)
A:I POSITION OF LINE TO GET
B$:0 TARGET FOR LINE

The SUBSTR routine extracts a line from the file string,
leaving the file string unchanged. This may be used for
displaying the file string a line at a time with line numbers
added by the BASIC program. It may also be used to extract a
line for the EDIT routine,

If the position is greater than the length of the file string,
SUBSTR returns the null string. SUBSTR puts characters from
AS$ into BS$ until a carriage return or the end of AS$ is
encountered. B$ will not contain the carriage return. If an
attempt is made to put more characters in B$ than will fit, an
error message will be issued. If the position passed is not
the first character of a line, only the part of the line from
the specified position onward is transferred to BS.

Example: 100 FIND 1
110 CALL "EDREAD",As$,33
120 CALL "SUBSTR",AS$,1,BS
130 CALL "EDIT",BS

This example inputs a file from tape file 1, extracts the

first line from the file, and allows the user to edit the
line,

6-7

REPLAC (Replace)

CALL "REPLAC",AS$,A,BS

A$:1I0 FILE STRING
A:I POSITION TO PUT LINE
B$:I LINE TO PUT IN

REPLAC replaces a line in a file string. Characters are
deleted from the file string, starting from the specified

position until a carriage return or the end of the file string
is detected. Then, the line to be inserted is put in the file

string, starting at the specified position. No carriage

returns are added or taken away.
file string is not changed by REPLAC. A position more than one
past the end of the file string will cause an error message to

be issued, as will exceeding the dimensioned length of the

file string. If the position passed is one greater than the

length of the file string, the line is effectively

concatenated onto the

Example: 100 FIND
110 CALL
120 CALL
130 CALL
140 CALL

This example inputs a

end of the file string.

1

"EDREAD" ,A$,33
"SUBSTR",AS$,1,BS$
"EDIT",BS$
"REPLAC",A$,1,B$

file from tape file 1, extracts the

first line from the file, and allows the user tc edit the
line. Then, the modified line is put back into the file
string in the same position in the file.

The number of lines in the

INSERT

CALL "INSERT",A$,BS,A

A$:I0 FILE STRING
B$:I LINE TO INSERT
A:I POSITION TO INSERT AT

INSERT inserts a new line into an file string. It is the
equivalent of using the BASIC REP statement to insert a string
containing a single carriage return into A$ at position A,
then inserting B$ at the same position. Since a carriage
return is inserted into the file string, the number of lines
in the file string is increased by one.

If the position is one greater than the length of the file
string, the new line is concatenated onto the end of the file
string and terminated by a carriage return., If the position
is more than one greater than the length of the file string,
an error message is issued.

Example: 100 FIND 1
110 CALL "EDREAD",A$,33
120 CALL "FNDLIN",AS$,3,B
130 CALL "INSERT",A$,"HI",B

This example reads a file from tape and puts in a new line 3.

The o0ld line 3 is now line 4. If line 3 does not exist,
INSERT issues an error message.

6-9

DELETE

CALL "DELETE",AS,A

A$:I0 FILE STRING
A:I POSITION TO DELETE FROM

DELETE removes a line and its terminating carriage return from
the file string. Data is deleted from the file string,
starting with the character pointed to by the position, until
a carriage return or the end of the file string is
encountered. Since the rest of the file string is compressed
into the space originally taken by the deleted line, multiple
lines may be deleted by repeatedly calling DELETE with the
same position. However, for large files, this type of
multiple line deletion is slower than finding the position of
the line after the last line to be deleted and using the BASIC
REP statement to delete the entire mass of data in one
statement.

Example: 100 FIND 1
110 CALL "EDREAD",AS$,33
120 CALL "FNDLIN",AS$,3,B
130 CALL "DELETE",AS,B

This example reads a file from tape and deletes the third

line., If line 3 does not exist, DELETE issues an error
message. The old line 4 is now line 3.

6-10

FNDLIN (Find Line)

CALL "FNDLIN",AS$,A,B

A$:I FILE STRING
A:I LINE NUMBER
B:0 POSITION TARGET

FNDLIN finds the position of a line in the file string, given
the line number. The position returned by FNDLIN is the
position within the file string of the first valid character
in the line requested. If the line number passed to FNDLIN is
less than one, FNDLIN returns a value of one. If it is
greater than the number of lines in the file string, FNDLIN
returns the character position one past the end of the file
string., Since FNDLIN might need to scan the entire file
string, it could take approximately 1 second worst case. This
is for a position of 25,000 in the 4051 and 50,000 in the
4052/54,.

Example: 100 FIND 1
110 CALL "EDREAD",A$,33
120 CALL "FNDLIN",AS$,3,B
130 CALL "SUBSTR",AS,B,BS
140 CALL "EDIT",BS$
150 CALL "REPLAC",AS$,B,BS

This example reads a file string from tape file 1, finds line
3 in the file string, allows the user to edit it, and puts the
medified line 3 back in the file string. If line 3 does not
exist, SUBSTR will issue an error message. '

6-11

LINNUM (Line Number)

CALL "LINNUM",AS$,A,B

:I FILE STRING

:I POSITION OF LINE TO FIND
:0 LINE NUMBER TARGET

AS
A
B

LINNUM returns the line number of a given position within the
file string. The string is scanned for carriage returns until
the first carriage return beyond the indicated position is
encountered. This count is then returned as the line number
of the position in question. LINNUM is essentially the reverse
of FNDLIN. If the position is greater than the length of the
file string, the number of the last line plus one is returned.
Since LINNUM might need to scan the entire file string, it
could take approximately 1 second worst case., This is for a
position of 25,000 in the 4051 and 50,000 in the 4052/54,

Example: 100 FIND 1
110 CALL "EDREAD",AS$,33
120 CALL "LINNUM",AS$,LEN(AS),B

This example finds the line number of the last character in
AS$S. If the last line is properly terminated, this is the same
as that returned by LINES. 1If the last line is unterminated,
this is one greater than that returned by LINES.

6-12

LINLEN (Line Length)

CALL "LINLEN",A$,A,B

A$:I FILE STRING
A:I CURRENT POSITION
B:0 TARGET FOR THE LENGTH OF THE LINE

LINLEN returns the length of the line pointed to by a given
position. The carriage return that terminates the line is not
counted., If the given position is greater than the length of
the file string, the length of the last line in the file
string is returned.

Example: 100 FIND 1
110 CALL "EDREAD",A$,33
120 CaLL "LINLEN",AS,1,B

This example returns the length of the first line in the file
string.

6-13

CURRLN (Current Line)

CALL "CURRLN",AS$,A,B
A$:I FILE STRING

I CURRENT POSITION

O TARGET FOR PRECEDING CR (CAN STAY)

o wn

s e e

CURRLN gives the position of the beginning of the line pointed
to by a given position. It essentially moves the pointer to
the beginning of the current line. If the position given is
already at the beginning of a line, CURRLN returns the same
position. If the given position is greater than the length of
the file string, the position of the start of the last line in
the file string is returned. CURRLN stops on the character
after a.carriage return or the first position in the file
string, whichever is encountered first. CURRLN returns zero
if the file string is empty.

Example: 100 FIND 1
110 CALL "EDREAD",AS$,33
120 CALL "CURRLN",AS$,LEN(AS),B

This example returns the position of the beginning of the last
line in the file string.

6-14

BACKLN (Back Up One Line)

CALL "BACKLN",AS$,A,B

A$:I FILE STRING
A:I CURRENT POSITION
B:0 TARGET FOR PRECEDING LINE START (MUST MOVE)

BACKLN returns the position of the beginning of the line prior
to that pointed to by a given position. If the position
points to the first line in the file, a value of 1 is returned
by BACKLN., If the given position is greater than the length
of the file string, the position of the last line in the file
is returned. BACKLN returns zero if the file string is empty.

Example: 100 FIND 1
110 CALL "EDREAD",AS$,33
120 CALL "BACKLN",AS$,LEN(AS),B

This example returns the position of the beginning of the
second to last line in the file string.

6-15

NEXTLN (Next Line)

CALL "NEXTLN",A$,A,B

A FILE STRING

$:1I
A:I CURRENT POSITION
B:0 TARGET FOR NEXT LINE START (MUST MOVE)

NEXTLN returns the position of the beginning of the next line
in the file string. If the given position is greater than the
length of the file string or points to the last line in the
file string, the position one past the last character of the
file string is returned. NEXTLN returns zero if the file
string is empty.

Example: 100 FIND 1
110 CALL "EDREAD",A$,33
120 CALL "NEXTLN",AS,1,B

This example returns the position of the beginning of the
second line in the file string.

6-16

GETCHR (Get Character)

CALL "GETCHR",AS
A$:0 TARGET FOR CHARACTER (LENGTH=0 IF NOTHING THERE)

GETCHR tests for the presence of a character from the
keyboard, returns that character if present, or returns the
null string if there is no character present. This is
intended to be used to aid cursor generation and command input
procedures,

Example: 100 CALL "GETCHR",AS
110 PRINT AS;
120 IF AS<>"@" THEN -100

This example echos the input from the keyboard until the at
sign is pressed. When the at sign is pressed, the program
drops out. When no key has been pressed, AS$ is empty, so line
110 does nothing.

6-17

EDIT

CALL "EDIT",Z$
Z$:I0 DATA STRING TO BE EDITED

The EDIT routine displays the string to be edited, allows the
user to modify the string using the standard line editor keys
on the 4050, and stores the resulting string when the carriage
return is pressed.

The maximum size of the data string to be edited is 72
characters. An attempt to edit a longer string will result in
an error message. If the string variable is dimensioned
smaller than the length of the string after editing, which can
only happen if the string is dimensioned smaller than 72, the
string is truncated when it is put into the variable. A line
number may be printed to the left of the string, but the line
number will not be reprinted by expand, compress, or reprint.

The data string may be extracted from the file string by
SUBSTR, and put back in the file string by REPLACE. "EDIT may
also be used to insert material by passing the null string to
EDIT and using INSERT to put the line into the file string.
In this case, EDIT works much like the BASIC string INPUT
statement.

The string passed to EDIT should not contain any carriage
returns in the line string. Cursor motion is unpredictable if
the line contains a carriage return.

Example: 100 A$="THIS IS A TEST"
110 CALL "EDIT",AS
This example prints "THIS IS A TEST" on the graphics system

screen, allows the user to modify the string, and returns the
modified string in AS.

6-18

LISTS

CALL "LISTsS",AS

A$:I STRING TO PRINT

LISTS prints the string A$ to the screen in list format. This

displays all control characters except contrcl M (carriage

return) as the corresponding upper case letter with an
underline.

6-19

Summary of Edit Utility Routines

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

"DIMS",AS,A
"EDREAD",AS$,D
"LINES",AS$,A
"SUBSTR",AS$,A,BS$
*REPLAC",AS$,A,BS
"INSERT",AS$,BS$,A
"DELETE" ,AS$,A
"FNDLIN",AS,A,B
"LINNUM",AS$,A,B
"LINLEN",AS$,A,B
"CURRLN",AS$,A,B
"BACKLN",AS$,A,B
"NEXTLN",AS$,A,B
"GETCHR",AS
"EDIT",Z$%
"LISTS",AS

6-20

ERROR MESSAGES

MESSAGE
NUMBER ERROR MESSAGE
12 There is an error in the parameter list in the
CALL statement.
89 XREF or LREF has detected a pre-existent

condition in the BASIC program indicating
corruption of system memory. A system error 0
may occur with this condition present.

SUMMARY OF ROUTINES

Magnetic Tape Utility Routines

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

"NAME",A$
"TLI2",D
*FILE?",A
"TYPE?",A,B,C
"STATUS",4,B,C
"OPEN?",A,B
"MARK2" , A
*TFRWRD"
"TBACK"
"TREAD", A$
"TWRITE",A$
"MTPACK"
"FIND",F
"SETAPE"

Summary of Array Utility Routines

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

"ROW",A[,I1]

ncoL",A[,I1]

"pos*,A,12[,1,J]

"NDOUT",A,S,D, I

“NDIN",A,S,D,I
"SEND",A(X,Y),I,B(X1,Y1),I1,N
"ALOAD",D,A,X,I[,N]
"$WRITE",F$,A$,A(X,¥)[,I,N]
"$READ",A$,A(X,Y)[,I,N]

“SWAP",A,B

"ASORT",A,D$,X1[,X2[,X3]]
"ARRAY",A(X,Y),11,0$,B(X1,Y1),I2,C(C1),N
"OPERATOR",F$,A(X,Y),I1,B(X1,Y1),I2,N
"COMPARE",A(X,Y),I,0$,C,R[,X1,Y1][,N]
"MAX",A[,11,X]

"MIN",A[,I1,X]

"SuM",A(X,Y),I,S[,N]

"ARYSET",A,M,B

Summary of Binary Utility Routines

CALL "GPIBIN",AS$,N
CALL "PLOTS",AS$,D,I,S,N,B
CALL "UNLEAV",A$,B$,I,S,N,B
CALL "MAXI",AS$,M,P,B
CALL "MINI",AS$,M,P,B

CALL "PACK",A$,A,N,B

CALL "UNPACK",AS$,A,N,B
CALL "DECBIN",A$,BS,X

CALL "BINDEC",AS$,X

CALL "ADDB",A$,I,B

CALL "ADDB",A$,B$,B

CALL "SUBB",AS$,I,B

CALL "SUBB",A$,B$,B

CALL "MULB",A$,I,B

CALL "MULB",A$,B$,B

CALL "ANDB",A$,BS$

CALL "ORB",AS$,BS$

CALL "EORB",AS$,BS$

CALL "ROLB",A$,C,N,B

CALL "RORB",AS$,C,N,B

CALL "ASLB",AS$,C,N,B

CALL "LSRB",AS$,C,N,B

CALL "BSWAP",AS$

Summary of General Utility Routines

CALL "INTERP",X,Y,B,C[,Cl1]
CALL "INTEG",X,Y,B

CALL "DERIV",A,Z,Al,N2
CALL "PACK",A$,A,N,B

CALL "UNPACK",A$,A,N,B
CALL "SETS",AS,Al,N[,I1]
CALL "DIMS",AS,I

CALL "LISTS$",A$

CALL "$SORT",AS$,S,X1[,X2[,X31]
CALL "EDIT",Z$

CALL "GETCHR",A$

CALL "GPIBIN",A$,N

CALL "PLOTS",A$,D,I,S,N,B
CALL "LREF"[,D],A

CALL "XREF",DI,Al

CALL "RUN",L

CALL "GETRET",L

CALL "SWAP",A,B

CALL "BEEP",F,D

Summary of Edit Utility Routines

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

"DIMS",A$,A
"EDREAD" ,AS$,D
"LINES",AS$,A
"SUBSTR",A$,A,BS
"REPLAC",AS$,A,BS
"INSERT",A$,B$,A
"DELETE" ,A$,A
"FNDLIN",AS$,A,B
"LLINNUM",AS$,A,B
"LINLEN",A$,A,B
"CURRLN",AS$,A,B
"BACKLN",AS$,A,B
"NEXTLN",AS$,A,B
"GETCHR" ,AS$
"EDIT",Z$
"LISTS",AS

	000
	001
	002
	003
	004
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	A-01
	B-01
	B-02
	B-03

